]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/events/core.c
perf: Add pmu callbacks to track event mapping and unmapping
[mirror_ubuntu-zesty-kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
0793a61d 45
76369139
FW
46#include "internal.h"
47
4e193bd4
TB
48#include <asm/irq_regs.h>
49
fadfe7be
JO
50static struct workqueue_struct *perf_wq;
51
fe4b04fa 52struct remote_function_call {
e7e7ee2e
IM
53 struct task_struct *p;
54 int (*func)(void *info);
55 void *info;
56 int ret;
fe4b04fa
PZ
57};
58
59static void remote_function(void *data)
60{
61 struct remote_function_call *tfc = data;
62 struct task_struct *p = tfc->p;
63
64 if (p) {
65 tfc->ret = -EAGAIN;
66 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
67 return;
68 }
69
70 tfc->ret = tfc->func(tfc->info);
71}
72
73/**
74 * task_function_call - call a function on the cpu on which a task runs
75 * @p: the task to evaluate
76 * @func: the function to be called
77 * @info: the function call argument
78 *
79 * Calls the function @func when the task is currently running. This might
80 * be on the current CPU, which just calls the function directly
81 *
82 * returns: @func return value, or
83 * -ESRCH - when the process isn't running
84 * -EAGAIN - when the process moved away
85 */
86static int
87task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
88{
89 struct remote_function_call data = {
e7e7ee2e
IM
90 .p = p,
91 .func = func,
92 .info = info,
93 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
94 };
95
96 if (task_curr(p))
97 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
98
99 return data.ret;
100}
101
102/**
103 * cpu_function_call - call a function on the cpu
104 * @func: the function to be called
105 * @info: the function call argument
106 *
107 * Calls the function @func on the remote cpu.
108 *
109 * returns: @func return value or -ENXIO when the cpu is offline
110 */
111static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
112{
113 struct remote_function_call data = {
e7e7ee2e
IM
114 .p = NULL,
115 .func = func,
116 .info = info,
117 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
118 };
119
120 smp_call_function_single(cpu, remote_function, &data, 1);
121
122 return data.ret;
123}
124
f8697762
JO
125#define EVENT_OWNER_KERNEL ((void *) -1)
126
127static bool is_kernel_event(struct perf_event *event)
128{
129 return event->owner == EVENT_OWNER_KERNEL;
130}
131
e5d1367f
SE
132#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
134 PERF_FLAG_PID_CGROUP |\
135 PERF_FLAG_FD_CLOEXEC)
e5d1367f 136
bce38cd5
SE
137/*
138 * branch priv levels that need permission checks
139 */
140#define PERF_SAMPLE_BRANCH_PERM_PLM \
141 (PERF_SAMPLE_BRANCH_KERNEL |\
142 PERF_SAMPLE_BRANCH_HV)
143
0b3fcf17
SE
144enum event_type_t {
145 EVENT_FLEXIBLE = 0x1,
146 EVENT_PINNED = 0x2,
147 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
148};
149
e5d1367f
SE
150/*
151 * perf_sched_events : >0 events exist
152 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
153 */
c5905afb 154struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 155static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 156static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 157
cdd6c482
IM
158static atomic_t nr_mmap_events __read_mostly;
159static atomic_t nr_comm_events __read_mostly;
160static atomic_t nr_task_events __read_mostly;
948b26b6 161static atomic_t nr_freq_events __read_mostly;
9ee318a7 162
108b02cf
PZ
163static LIST_HEAD(pmus);
164static DEFINE_MUTEX(pmus_lock);
165static struct srcu_struct pmus_srcu;
166
0764771d 167/*
cdd6c482 168 * perf event paranoia level:
0fbdea19
IM
169 * -1 - not paranoid at all
170 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 171 * 1 - disallow cpu events for unpriv
0fbdea19 172 * 2 - disallow kernel profiling for unpriv
0764771d 173 */
cdd6c482 174int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 175
20443384
FW
176/* Minimum for 512 kiB + 1 user control page */
177int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
178
179/*
cdd6c482 180 * max perf event sample rate
df58ab24 181 */
14c63f17
DH
182#define DEFAULT_MAX_SAMPLE_RATE 100000
183#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184#define DEFAULT_CPU_TIME_MAX_PERCENT 25
185
186int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
187
188static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
189static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
190
d9494cb4
PZ
191static int perf_sample_allowed_ns __read_mostly =
192 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
193
194void update_perf_cpu_limits(void)
195{
196 u64 tmp = perf_sample_period_ns;
197
198 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 199 do_div(tmp, 100);
d9494cb4 200 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 201}
163ec435 202
9e630205
SE
203static int perf_rotate_context(struct perf_cpu_context *cpuctx);
204
163ec435
PZ
205int perf_proc_update_handler(struct ctl_table *table, int write,
206 void __user *buffer, size_t *lenp,
207 loff_t *ppos)
208{
723478c8 209 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
210
211 if (ret || !write)
212 return ret;
213
214 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
215 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
216 update_perf_cpu_limits();
217
218 return 0;
219}
220
221int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
222
223int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
224 void __user *buffer, size_t *lenp,
225 loff_t *ppos)
226{
227 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
228
229 if (ret || !write)
230 return ret;
231
232 update_perf_cpu_limits();
163ec435
PZ
233
234 return 0;
235}
1ccd1549 236
14c63f17
DH
237/*
238 * perf samples are done in some very critical code paths (NMIs).
239 * If they take too much CPU time, the system can lock up and not
240 * get any real work done. This will drop the sample rate when
241 * we detect that events are taking too long.
242 */
243#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 244static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 245
6a02ad66 246static void perf_duration_warn(struct irq_work *w)
14c63f17 247{
6a02ad66 248 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 249 u64 avg_local_sample_len;
e5302920 250 u64 local_samples_len;
6a02ad66 251
4a32fea9 252 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254
255 printk_ratelimited(KERN_WARNING
256 "perf interrupt took too long (%lld > %lld), lowering "
257 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 258 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
259 sysctl_perf_event_sample_rate);
260}
261
262static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
263
264void perf_sample_event_took(u64 sample_len_ns)
265{
d9494cb4 266 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
267 u64 avg_local_sample_len;
268 u64 local_samples_len;
14c63f17 269
d9494cb4 270 if (allowed_ns == 0)
14c63f17
DH
271 return;
272
273 /* decay the counter by 1 average sample */
4a32fea9 274 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
275 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
276 local_samples_len += sample_len_ns;
4a32fea9 277 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
278
279 /*
280 * note: this will be biased artifically low until we have
281 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
282 * from having to maintain a count.
283 */
284 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
285
d9494cb4 286 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
287 return;
288
289 if (max_samples_per_tick <= 1)
290 return;
291
292 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
293 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
294 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
295
14c63f17 296 update_perf_cpu_limits();
6a02ad66 297
cd578abb
PZ
298 if (!irq_work_queue(&perf_duration_work)) {
299 early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 "kernel.perf_event_max_sample_rate to %d\n",
301 avg_local_sample_len, allowed_ns >> 1,
302 sysctl_perf_event_sample_rate);
303 }
14c63f17
DH
304}
305
cdd6c482 306static atomic64_t perf_event_id;
a96bbc16 307
0b3fcf17
SE
308static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
309 enum event_type_t event_type);
310
311static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
312 enum event_type_t event_type,
313 struct task_struct *task);
314
315static void update_context_time(struct perf_event_context *ctx);
316static u64 perf_event_time(struct perf_event *event);
0b3fcf17 317
cdd6c482 318void __weak perf_event_print_debug(void) { }
0793a61d 319
84c79910 320extern __weak const char *perf_pmu_name(void)
0793a61d 321{
84c79910 322 return "pmu";
0793a61d
TG
323}
324
0b3fcf17
SE
325static inline u64 perf_clock(void)
326{
327 return local_clock();
328}
329
e5d1367f
SE
330static inline struct perf_cpu_context *
331__get_cpu_context(struct perf_event_context *ctx)
332{
333 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
334}
335
facc4307
PZ
336static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
337 struct perf_event_context *ctx)
338{
339 raw_spin_lock(&cpuctx->ctx.lock);
340 if (ctx)
341 raw_spin_lock(&ctx->lock);
342}
343
344static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
345 struct perf_event_context *ctx)
346{
347 if (ctx)
348 raw_spin_unlock(&ctx->lock);
349 raw_spin_unlock(&cpuctx->ctx.lock);
350}
351
e5d1367f
SE
352#ifdef CONFIG_CGROUP_PERF
353
877c6856
LZ
354/*
355 * perf_cgroup_info keeps track of time_enabled for a cgroup.
356 * This is a per-cpu dynamically allocated data structure.
357 */
358struct perf_cgroup_info {
359 u64 time;
360 u64 timestamp;
361};
362
363struct perf_cgroup {
364 struct cgroup_subsys_state css;
86e213e1 365 struct perf_cgroup_info __percpu *info;
877c6856
LZ
366};
367
3f7cce3c
SE
368/*
369 * Must ensure cgroup is pinned (css_get) before calling
370 * this function. In other words, we cannot call this function
371 * if there is no cgroup event for the current CPU context.
372 */
e5d1367f
SE
373static inline struct perf_cgroup *
374perf_cgroup_from_task(struct task_struct *task)
375{
073219e9 376 return container_of(task_css(task, perf_event_cgrp_id),
8af01f56 377 struct perf_cgroup, css);
e5d1367f
SE
378}
379
380static inline bool
381perf_cgroup_match(struct perf_event *event)
382{
383 struct perf_event_context *ctx = event->ctx;
384 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
385
ef824fa1
TH
386 /* @event doesn't care about cgroup */
387 if (!event->cgrp)
388 return true;
389
390 /* wants specific cgroup scope but @cpuctx isn't associated with any */
391 if (!cpuctx->cgrp)
392 return false;
393
394 /*
395 * Cgroup scoping is recursive. An event enabled for a cgroup is
396 * also enabled for all its descendant cgroups. If @cpuctx's
397 * cgroup is a descendant of @event's (the test covers identity
398 * case), it's a match.
399 */
400 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
401 event->cgrp->css.cgroup);
e5d1367f
SE
402}
403
e5d1367f
SE
404static inline void perf_detach_cgroup(struct perf_event *event)
405{
4e2ba650 406 css_put(&event->cgrp->css);
e5d1367f
SE
407 event->cgrp = NULL;
408}
409
410static inline int is_cgroup_event(struct perf_event *event)
411{
412 return event->cgrp != NULL;
413}
414
415static inline u64 perf_cgroup_event_time(struct perf_event *event)
416{
417 struct perf_cgroup_info *t;
418
419 t = per_cpu_ptr(event->cgrp->info, event->cpu);
420 return t->time;
421}
422
423static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
424{
425 struct perf_cgroup_info *info;
426 u64 now;
427
428 now = perf_clock();
429
430 info = this_cpu_ptr(cgrp->info);
431
432 info->time += now - info->timestamp;
433 info->timestamp = now;
434}
435
436static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
437{
438 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
439 if (cgrp_out)
440 __update_cgrp_time(cgrp_out);
441}
442
443static inline void update_cgrp_time_from_event(struct perf_event *event)
444{
3f7cce3c
SE
445 struct perf_cgroup *cgrp;
446
e5d1367f 447 /*
3f7cce3c
SE
448 * ensure we access cgroup data only when needed and
449 * when we know the cgroup is pinned (css_get)
e5d1367f 450 */
3f7cce3c 451 if (!is_cgroup_event(event))
e5d1367f
SE
452 return;
453
3f7cce3c
SE
454 cgrp = perf_cgroup_from_task(current);
455 /*
456 * Do not update time when cgroup is not active
457 */
458 if (cgrp == event->cgrp)
459 __update_cgrp_time(event->cgrp);
e5d1367f
SE
460}
461
462static inline void
3f7cce3c
SE
463perf_cgroup_set_timestamp(struct task_struct *task,
464 struct perf_event_context *ctx)
e5d1367f
SE
465{
466 struct perf_cgroup *cgrp;
467 struct perf_cgroup_info *info;
468
3f7cce3c
SE
469 /*
470 * ctx->lock held by caller
471 * ensure we do not access cgroup data
472 * unless we have the cgroup pinned (css_get)
473 */
474 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
475 return;
476
477 cgrp = perf_cgroup_from_task(task);
478 info = this_cpu_ptr(cgrp->info);
3f7cce3c 479 info->timestamp = ctx->timestamp;
e5d1367f
SE
480}
481
482#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
483#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
484
485/*
486 * reschedule events based on the cgroup constraint of task.
487 *
488 * mode SWOUT : schedule out everything
489 * mode SWIN : schedule in based on cgroup for next
490 */
491void perf_cgroup_switch(struct task_struct *task, int mode)
492{
493 struct perf_cpu_context *cpuctx;
494 struct pmu *pmu;
495 unsigned long flags;
496
497 /*
498 * disable interrupts to avoid geting nr_cgroup
499 * changes via __perf_event_disable(). Also
500 * avoids preemption.
501 */
502 local_irq_save(flags);
503
504 /*
505 * we reschedule only in the presence of cgroup
506 * constrained events.
507 */
508 rcu_read_lock();
509
510 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 511 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
512 if (cpuctx->unique_pmu != pmu)
513 continue; /* ensure we process each cpuctx once */
e5d1367f 514
e5d1367f
SE
515 /*
516 * perf_cgroup_events says at least one
517 * context on this CPU has cgroup events.
518 *
519 * ctx->nr_cgroups reports the number of cgroup
520 * events for a context.
521 */
522 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
523 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
524 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
525
526 if (mode & PERF_CGROUP_SWOUT) {
527 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
528 /*
529 * must not be done before ctxswout due
530 * to event_filter_match() in event_sched_out()
531 */
532 cpuctx->cgrp = NULL;
533 }
534
535 if (mode & PERF_CGROUP_SWIN) {
e566b76e 536 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
537 /*
538 * set cgrp before ctxsw in to allow
539 * event_filter_match() to not have to pass
540 * task around
e5d1367f
SE
541 */
542 cpuctx->cgrp = perf_cgroup_from_task(task);
543 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
544 }
facc4307
PZ
545 perf_pmu_enable(cpuctx->ctx.pmu);
546 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 547 }
e5d1367f
SE
548 }
549
550 rcu_read_unlock();
551
552 local_irq_restore(flags);
553}
554
a8d757ef
SE
555static inline void perf_cgroup_sched_out(struct task_struct *task,
556 struct task_struct *next)
e5d1367f 557{
a8d757ef
SE
558 struct perf_cgroup *cgrp1;
559 struct perf_cgroup *cgrp2 = NULL;
560
561 /*
562 * we come here when we know perf_cgroup_events > 0
563 */
564 cgrp1 = perf_cgroup_from_task(task);
565
566 /*
567 * next is NULL when called from perf_event_enable_on_exec()
568 * that will systematically cause a cgroup_switch()
569 */
570 if (next)
571 cgrp2 = perf_cgroup_from_task(next);
572
573 /*
574 * only schedule out current cgroup events if we know
575 * that we are switching to a different cgroup. Otherwise,
576 * do no touch the cgroup events.
577 */
578 if (cgrp1 != cgrp2)
579 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
580}
581
a8d757ef
SE
582static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 struct task_struct *task)
e5d1367f 584{
a8d757ef
SE
585 struct perf_cgroup *cgrp1;
586 struct perf_cgroup *cgrp2 = NULL;
587
588 /*
589 * we come here when we know perf_cgroup_events > 0
590 */
591 cgrp1 = perf_cgroup_from_task(task);
592
593 /* prev can never be NULL */
594 cgrp2 = perf_cgroup_from_task(prev);
595
596 /*
597 * only need to schedule in cgroup events if we are changing
598 * cgroup during ctxsw. Cgroup events were not scheduled
599 * out of ctxsw out if that was not the case.
600 */
601 if (cgrp1 != cgrp2)
602 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
603}
604
605static inline int perf_cgroup_connect(int fd, struct perf_event *event,
606 struct perf_event_attr *attr,
607 struct perf_event *group_leader)
608{
609 struct perf_cgroup *cgrp;
610 struct cgroup_subsys_state *css;
2903ff01
AV
611 struct fd f = fdget(fd);
612 int ret = 0;
e5d1367f 613
2903ff01 614 if (!f.file)
e5d1367f
SE
615 return -EBADF;
616
b583043e 617 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 618 &perf_event_cgrp_subsys);
3db272c0
LZ
619 if (IS_ERR(css)) {
620 ret = PTR_ERR(css);
621 goto out;
622 }
e5d1367f
SE
623
624 cgrp = container_of(css, struct perf_cgroup, css);
625 event->cgrp = cgrp;
626
627 /*
628 * all events in a group must monitor
629 * the same cgroup because a task belongs
630 * to only one perf cgroup at a time
631 */
632 if (group_leader && group_leader->cgrp != cgrp) {
633 perf_detach_cgroup(event);
634 ret = -EINVAL;
e5d1367f 635 }
3db272c0 636out:
2903ff01 637 fdput(f);
e5d1367f
SE
638 return ret;
639}
640
641static inline void
642perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
643{
644 struct perf_cgroup_info *t;
645 t = per_cpu_ptr(event->cgrp->info, event->cpu);
646 event->shadow_ctx_time = now - t->timestamp;
647}
648
649static inline void
650perf_cgroup_defer_enabled(struct perf_event *event)
651{
652 /*
653 * when the current task's perf cgroup does not match
654 * the event's, we need to remember to call the
655 * perf_mark_enable() function the first time a task with
656 * a matching perf cgroup is scheduled in.
657 */
658 if (is_cgroup_event(event) && !perf_cgroup_match(event))
659 event->cgrp_defer_enabled = 1;
660}
661
662static inline void
663perf_cgroup_mark_enabled(struct perf_event *event,
664 struct perf_event_context *ctx)
665{
666 struct perf_event *sub;
667 u64 tstamp = perf_event_time(event);
668
669 if (!event->cgrp_defer_enabled)
670 return;
671
672 event->cgrp_defer_enabled = 0;
673
674 event->tstamp_enabled = tstamp - event->total_time_enabled;
675 list_for_each_entry(sub, &event->sibling_list, group_entry) {
676 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
677 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
678 sub->cgrp_defer_enabled = 0;
679 }
680 }
681}
682#else /* !CONFIG_CGROUP_PERF */
683
684static inline bool
685perf_cgroup_match(struct perf_event *event)
686{
687 return true;
688}
689
690static inline void perf_detach_cgroup(struct perf_event *event)
691{}
692
693static inline int is_cgroup_event(struct perf_event *event)
694{
695 return 0;
696}
697
698static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
699{
700 return 0;
701}
702
703static inline void update_cgrp_time_from_event(struct perf_event *event)
704{
705}
706
707static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
708{
709}
710
a8d757ef
SE
711static inline void perf_cgroup_sched_out(struct task_struct *task,
712 struct task_struct *next)
e5d1367f
SE
713{
714}
715
a8d757ef
SE
716static inline void perf_cgroup_sched_in(struct task_struct *prev,
717 struct task_struct *task)
e5d1367f
SE
718{
719}
720
721static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
722 struct perf_event_attr *attr,
723 struct perf_event *group_leader)
724{
725 return -EINVAL;
726}
727
728static inline void
3f7cce3c
SE
729perf_cgroup_set_timestamp(struct task_struct *task,
730 struct perf_event_context *ctx)
e5d1367f
SE
731{
732}
733
734void
735perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
736{
737}
738
739static inline void
740perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
741{
742}
743
744static inline u64 perf_cgroup_event_time(struct perf_event *event)
745{
746 return 0;
747}
748
749static inline void
750perf_cgroup_defer_enabled(struct perf_event *event)
751{
752}
753
754static inline void
755perf_cgroup_mark_enabled(struct perf_event *event,
756 struct perf_event_context *ctx)
757{
758}
759#endif
760
9e630205
SE
761/*
762 * set default to be dependent on timer tick just
763 * like original code
764 */
765#define PERF_CPU_HRTIMER (1000 / HZ)
766/*
767 * function must be called with interrupts disbled
768 */
769static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
770{
771 struct perf_cpu_context *cpuctx;
772 enum hrtimer_restart ret = HRTIMER_NORESTART;
773 int rotations = 0;
774
775 WARN_ON(!irqs_disabled());
776
777 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
778
779 rotations = perf_rotate_context(cpuctx);
780
781 /*
782 * arm timer if needed
783 */
784 if (rotations) {
785 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
786 ret = HRTIMER_RESTART;
787 }
788
789 return ret;
790}
791
792/* CPU is going down */
793void perf_cpu_hrtimer_cancel(int cpu)
794{
795 struct perf_cpu_context *cpuctx;
796 struct pmu *pmu;
797 unsigned long flags;
798
799 if (WARN_ON(cpu != smp_processor_id()))
800 return;
801
802 local_irq_save(flags);
803
804 rcu_read_lock();
805
806 list_for_each_entry_rcu(pmu, &pmus, entry) {
807 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
808
809 if (pmu->task_ctx_nr == perf_sw_context)
810 continue;
811
812 hrtimer_cancel(&cpuctx->hrtimer);
813 }
814
815 rcu_read_unlock();
816
817 local_irq_restore(flags);
818}
819
820static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
821{
822 struct hrtimer *hr = &cpuctx->hrtimer;
823 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 824 int timer;
9e630205
SE
825
826 /* no multiplexing needed for SW PMU */
827 if (pmu->task_ctx_nr == perf_sw_context)
828 return;
829
62b85639
SE
830 /*
831 * check default is sane, if not set then force to
832 * default interval (1/tick)
833 */
834 timer = pmu->hrtimer_interval_ms;
835 if (timer < 1)
836 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
837
838 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
839
840 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
841 hr->function = perf_cpu_hrtimer_handler;
842}
843
844static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
845{
846 struct hrtimer *hr = &cpuctx->hrtimer;
847 struct pmu *pmu = cpuctx->ctx.pmu;
848
849 /* not for SW PMU */
850 if (pmu->task_ctx_nr == perf_sw_context)
851 return;
852
853 if (hrtimer_active(hr))
854 return;
855
856 if (!hrtimer_callback_running(hr))
857 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
858 0, HRTIMER_MODE_REL_PINNED, 0);
859}
860
33696fc0 861void perf_pmu_disable(struct pmu *pmu)
9e35ad38 862{
33696fc0
PZ
863 int *count = this_cpu_ptr(pmu->pmu_disable_count);
864 if (!(*count)++)
865 pmu->pmu_disable(pmu);
9e35ad38 866}
9e35ad38 867
33696fc0 868void perf_pmu_enable(struct pmu *pmu)
9e35ad38 869{
33696fc0
PZ
870 int *count = this_cpu_ptr(pmu->pmu_disable_count);
871 if (!--(*count))
872 pmu->pmu_enable(pmu);
9e35ad38 873}
9e35ad38 874
2fde4f94 875static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
876
877/*
2fde4f94
MR
878 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
879 * perf_event_task_tick() are fully serialized because they're strictly cpu
880 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
881 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 882 */
2fde4f94 883static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 884{
2fde4f94 885 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 886
e9d2b064 887 WARN_ON(!irqs_disabled());
b5ab4cd5 888
2fde4f94
MR
889 WARN_ON(!list_empty(&ctx->active_ctx_list));
890
891 list_add(&ctx->active_ctx_list, head);
892}
893
894static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
895{
896 WARN_ON(!irqs_disabled());
897
898 WARN_ON(list_empty(&ctx->active_ctx_list));
899
900 list_del_init(&ctx->active_ctx_list);
9e35ad38 901}
9e35ad38 902
cdd6c482 903static void get_ctx(struct perf_event_context *ctx)
a63eaf34 904{
e5289d4a 905 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
906}
907
cdd6c482 908static void put_ctx(struct perf_event_context *ctx)
a63eaf34 909{
564c2b21
PM
910 if (atomic_dec_and_test(&ctx->refcount)) {
911 if (ctx->parent_ctx)
912 put_ctx(ctx->parent_ctx);
c93f7669
PM
913 if (ctx->task)
914 put_task_struct(ctx->task);
cb796ff3 915 kfree_rcu(ctx, rcu_head);
564c2b21 916 }
a63eaf34
PM
917}
918
f63a8daa
PZ
919/*
920 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
921 * perf_pmu_migrate_context() we need some magic.
922 *
923 * Those places that change perf_event::ctx will hold both
924 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
925 *
926 * Lock ordering is by mutex address. There is one other site where
927 * perf_event_context::mutex nests and that is put_event(). But remember that
928 * that is a parent<->child context relation, and migration does not affect
929 * children, therefore these two orderings should not interact.
930 *
931 * The change in perf_event::ctx does not affect children (as claimed above)
932 * because the sys_perf_event_open() case will install a new event and break
933 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
934 * concerned with cpuctx and that doesn't have children.
935 *
936 * The places that change perf_event::ctx will issue:
937 *
938 * perf_remove_from_context();
939 * synchronize_rcu();
940 * perf_install_in_context();
941 *
942 * to affect the change. The remove_from_context() + synchronize_rcu() should
943 * quiesce the event, after which we can install it in the new location. This
944 * means that only external vectors (perf_fops, prctl) can perturb the event
945 * while in transit. Therefore all such accessors should also acquire
946 * perf_event_context::mutex to serialize against this.
947 *
948 * However; because event->ctx can change while we're waiting to acquire
949 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
950 * function.
951 *
952 * Lock order:
953 * task_struct::perf_event_mutex
954 * perf_event_context::mutex
955 * perf_event_context::lock
956 * perf_event::child_mutex;
957 * perf_event::mmap_mutex
958 * mmap_sem
959 */
a83fe28e
PZ
960static struct perf_event_context *
961perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
962{
963 struct perf_event_context *ctx;
964
965again:
966 rcu_read_lock();
967 ctx = ACCESS_ONCE(event->ctx);
968 if (!atomic_inc_not_zero(&ctx->refcount)) {
969 rcu_read_unlock();
970 goto again;
971 }
972 rcu_read_unlock();
973
a83fe28e 974 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
975 if (event->ctx != ctx) {
976 mutex_unlock(&ctx->mutex);
977 put_ctx(ctx);
978 goto again;
979 }
980
981 return ctx;
982}
983
a83fe28e
PZ
984static inline struct perf_event_context *
985perf_event_ctx_lock(struct perf_event *event)
986{
987 return perf_event_ctx_lock_nested(event, 0);
988}
989
f63a8daa
PZ
990static void perf_event_ctx_unlock(struct perf_event *event,
991 struct perf_event_context *ctx)
992{
993 mutex_unlock(&ctx->mutex);
994 put_ctx(ctx);
995}
996
211de6eb
PZ
997/*
998 * This must be done under the ctx->lock, such as to serialize against
999 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1000 * calling scheduler related locks and ctx->lock nests inside those.
1001 */
1002static __must_check struct perf_event_context *
1003unclone_ctx(struct perf_event_context *ctx)
71a851b4 1004{
211de6eb
PZ
1005 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1006
1007 lockdep_assert_held(&ctx->lock);
1008
1009 if (parent_ctx)
71a851b4 1010 ctx->parent_ctx = NULL;
5a3126d4 1011 ctx->generation++;
211de6eb
PZ
1012
1013 return parent_ctx;
71a851b4
PZ
1014}
1015
6844c09d
ACM
1016static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1017{
1018 /*
1019 * only top level events have the pid namespace they were created in
1020 */
1021 if (event->parent)
1022 event = event->parent;
1023
1024 return task_tgid_nr_ns(p, event->ns);
1025}
1026
1027static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1028{
1029 /*
1030 * only top level events have the pid namespace they were created in
1031 */
1032 if (event->parent)
1033 event = event->parent;
1034
1035 return task_pid_nr_ns(p, event->ns);
1036}
1037
7f453c24 1038/*
cdd6c482 1039 * If we inherit events we want to return the parent event id
7f453c24
PZ
1040 * to userspace.
1041 */
cdd6c482 1042static u64 primary_event_id(struct perf_event *event)
7f453c24 1043{
cdd6c482 1044 u64 id = event->id;
7f453c24 1045
cdd6c482
IM
1046 if (event->parent)
1047 id = event->parent->id;
7f453c24
PZ
1048
1049 return id;
1050}
1051
25346b93 1052/*
cdd6c482 1053 * Get the perf_event_context for a task and lock it.
25346b93
PM
1054 * This has to cope with with the fact that until it is locked,
1055 * the context could get moved to another task.
1056 */
cdd6c482 1057static struct perf_event_context *
8dc85d54 1058perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1059{
cdd6c482 1060 struct perf_event_context *ctx;
25346b93 1061
9ed6060d 1062retry:
058ebd0e
PZ
1063 /*
1064 * One of the few rules of preemptible RCU is that one cannot do
1065 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1066 * part of the read side critical section was preemptible -- see
1067 * rcu_read_unlock_special().
1068 *
1069 * Since ctx->lock nests under rq->lock we must ensure the entire read
1070 * side critical section is non-preemptible.
1071 */
1072 preempt_disable();
1073 rcu_read_lock();
8dc85d54 1074 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1075 if (ctx) {
1076 /*
1077 * If this context is a clone of another, it might
1078 * get swapped for another underneath us by
cdd6c482 1079 * perf_event_task_sched_out, though the
25346b93
PM
1080 * rcu_read_lock() protects us from any context
1081 * getting freed. Lock the context and check if it
1082 * got swapped before we could get the lock, and retry
1083 * if so. If we locked the right context, then it
1084 * can't get swapped on us any more.
1085 */
e625cce1 1086 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 1087 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 1088 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
1089 rcu_read_unlock();
1090 preempt_enable();
25346b93
PM
1091 goto retry;
1092 }
b49a9e7e
PZ
1093
1094 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1095 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1096 ctx = NULL;
1097 }
25346b93
PM
1098 }
1099 rcu_read_unlock();
058ebd0e 1100 preempt_enable();
25346b93
PM
1101 return ctx;
1102}
1103
1104/*
1105 * Get the context for a task and increment its pin_count so it
1106 * can't get swapped to another task. This also increments its
1107 * reference count so that the context can't get freed.
1108 */
8dc85d54
PZ
1109static struct perf_event_context *
1110perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1111{
cdd6c482 1112 struct perf_event_context *ctx;
25346b93
PM
1113 unsigned long flags;
1114
8dc85d54 1115 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1116 if (ctx) {
1117 ++ctx->pin_count;
e625cce1 1118 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1119 }
1120 return ctx;
1121}
1122
cdd6c482 1123static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1124{
1125 unsigned long flags;
1126
e625cce1 1127 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1128 --ctx->pin_count;
e625cce1 1129 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1130}
1131
f67218c3
PZ
1132/*
1133 * Update the record of the current time in a context.
1134 */
1135static void update_context_time(struct perf_event_context *ctx)
1136{
1137 u64 now = perf_clock();
1138
1139 ctx->time += now - ctx->timestamp;
1140 ctx->timestamp = now;
1141}
1142
4158755d
SE
1143static u64 perf_event_time(struct perf_event *event)
1144{
1145 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1146
1147 if (is_cgroup_event(event))
1148 return perf_cgroup_event_time(event);
1149
4158755d
SE
1150 return ctx ? ctx->time : 0;
1151}
1152
f67218c3
PZ
1153/*
1154 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1155 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1156 */
1157static void update_event_times(struct perf_event *event)
1158{
1159 struct perf_event_context *ctx = event->ctx;
1160 u64 run_end;
1161
1162 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1163 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1164 return;
e5d1367f
SE
1165 /*
1166 * in cgroup mode, time_enabled represents
1167 * the time the event was enabled AND active
1168 * tasks were in the monitored cgroup. This is
1169 * independent of the activity of the context as
1170 * there may be a mix of cgroup and non-cgroup events.
1171 *
1172 * That is why we treat cgroup events differently
1173 * here.
1174 */
1175 if (is_cgroup_event(event))
46cd6a7f 1176 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1177 else if (ctx->is_active)
1178 run_end = ctx->time;
acd1d7c1
PZ
1179 else
1180 run_end = event->tstamp_stopped;
1181
1182 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1183
1184 if (event->state == PERF_EVENT_STATE_INACTIVE)
1185 run_end = event->tstamp_stopped;
1186 else
4158755d 1187 run_end = perf_event_time(event);
f67218c3
PZ
1188
1189 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1190
f67218c3
PZ
1191}
1192
96c21a46
PZ
1193/*
1194 * Update total_time_enabled and total_time_running for all events in a group.
1195 */
1196static void update_group_times(struct perf_event *leader)
1197{
1198 struct perf_event *event;
1199
1200 update_event_times(leader);
1201 list_for_each_entry(event, &leader->sibling_list, group_entry)
1202 update_event_times(event);
1203}
1204
889ff015
FW
1205static struct list_head *
1206ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1207{
1208 if (event->attr.pinned)
1209 return &ctx->pinned_groups;
1210 else
1211 return &ctx->flexible_groups;
1212}
1213
fccc714b 1214/*
cdd6c482 1215 * Add a event from the lists for its context.
fccc714b
PZ
1216 * Must be called with ctx->mutex and ctx->lock held.
1217 */
04289bb9 1218static void
cdd6c482 1219list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1220{
8a49542c
PZ
1221 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1222 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1223
1224 /*
8a49542c
PZ
1225 * If we're a stand alone event or group leader, we go to the context
1226 * list, group events are kept attached to the group so that
1227 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1228 */
8a49542c 1229 if (event->group_leader == event) {
889ff015
FW
1230 struct list_head *list;
1231
d6f962b5
FW
1232 if (is_software_event(event))
1233 event->group_flags |= PERF_GROUP_SOFTWARE;
1234
889ff015
FW
1235 list = ctx_group_list(event, ctx);
1236 list_add_tail(&event->group_entry, list);
5c148194 1237 }
592903cd 1238
08309379 1239 if (is_cgroup_event(event))
e5d1367f 1240 ctx->nr_cgroups++;
e5d1367f 1241
d010b332
SE
1242 if (has_branch_stack(event))
1243 ctx->nr_branch_stack++;
1244
cdd6c482
IM
1245 list_add_rcu(&event->event_entry, &ctx->event_list);
1246 ctx->nr_events++;
1247 if (event->attr.inherit_stat)
bfbd3381 1248 ctx->nr_stat++;
5a3126d4
PZ
1249
1250 ctx->generation++;
04289bb9
IM
1251}
1252
0231bb53
JO
1253/*
1254 * Initialize event state based on the perf_event_attr::disabled.
1255 */
1256static inline void perf_event__state_init(struct perf_event *event)
1257{
1258 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1259 PERF_EVENT_STATE_INACTIVE;
1260}
1261
c320c7b7
ACM
1262/*
1263 * Called at perf_event creation and when events are attached/detached from a
1264 * group.
1265 */
1266static void perf_event__read_size(struct perf_event *event)
1267{
1268 int entry = sizeof(u64); /* value */
1269 int size = 0;
1270 int nr = 1;
1271
1272 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1273 size += sizeof(u64);
1274
1275 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1276 size += sizeof(u64);
1277
1278 if (event->attr.read_format & PERF_FORMAT_ID)
1279 entry += sizeof(u64);
1280
1281 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1282 nr += event->group_leader->nr_siblings;
1283 size += sizeof(u64);
1284 }
1285
1286 size += entry * nr;
1287 event->read_size = size;
1288}
1289
1290static void perf_event__header_size(struct perf_event *event)
1291{
1292 struct perf_sample_data *data;
1293 u64 sample_type = event->attr.sample_type;
1294 u16 size = 0;
1295
1296 perf_event__read_size(event);
1297
1298 if (sample_type & PERF_SAMPLE_IP)
1299 size += sizeof(data->ip);
1300
6844c09d
ACM
1301 if (sample_type & PERF_SAMPLE_ADDR)
1302 size += sizeof(data->addr);
1303
1304 if (sample_type & PERF_SAMPLE_PERIOD)
1305 size += sizeof(data->period);
1306
c3feedf2
AK
1307 if (sample_type & PERF_SAMPLE_WEIGHT)
1308 size += sizeof(data->weight);
1309
6844c09d
ACM
1310 if (sample_type & PERF_SAMPLE_READ)
1311 size += event->read_size;
1312
d6be9ad6
SE
1313 if (sample_type & PERF_SAMPLE_DATA_SRC)
1314 size += sizeof(data->data_src.val);
1315
fdfbbd07
AK
1316 if (sample_type & PERF_SAMPLE_TRANSACTION)
1317 size += sizeof(data->txn);
1318
6844c09d
ACM
1319 event->header_size = size;
1320}
1321
1322static void perf_event__id_header_size(struct perf_event *event)
1323{
1324 struct perf_sample_data *data;
1325 u64 sample_type = event->attr.sample_type;
1326 u16 size = 0;
1327
c320c7b7
ACM
1328 if (sample_type & PERF_SAMPLE_TID)
1329 size += sizeof(data->tid_entry);
1330
1331 if (sample_type & PERF_SAMPLE_TIME)
1332 size += sizeof(data->time);
1333
ff3d527c
AH
1334 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1335 size += sizeof(data->id);
1336
c320c7b7
ACM
1337 if (sample_type & PERF_SAMPLE_ID)
1338 size += sizeof(data->id);
1339
1340 if (sample_type & PERF_SAMPLE_STREAM_ID)
1341 size += sizeof(data->stream_id);
1342
1343 if (sample_type & PERF_SAMPLE_CPU)
1344 size += sizeof(data->cpu_entry);
1345
6844c09d 1346 event->id_header_size = size;
c320c7b7
ACM
1347}
1348
8a49542c
PZ
1349static void perf_group_attach(struct perf_event *event)
1350{
c320c7b7 1351 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1352
74c3337c
PZ
1353 /*
1354 * We can have double attach due to group movement in perf_event_open.
1355 */
1356 if (event->attach_state & PERF_ATTACH_GROUP)
1357 return;
1358
8a49542c
PZ
1359 event->attach_state |= PERF_ATTACH_GROUP;
1360
1361 if (group_leader == event)
1362 return;
1363
652884fe
PZ
1364 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1365
8a49542c
PZ
1366 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1367 !is_software_event(event))
1368 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1369
1370 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1371 group_leader->nr_siblings++;
c320c7b7
ACM
1372
1373 perf_event__header_size(group_leader);
1374
1375 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1376 perf_event__header_size(pos);
8a49542c
PZ
1377}
1378
a63eaf34 1379/*
cdd6c482 1380 * Remove a event from the lists for its context.
fccc714b 1381 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1382 */
04289bb9 1383static void
cdd6c482 1384list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1385{
68cacd29 1386 struct perf_cpu_context *cpuctx;
652884fe
PZ
1387
1388 WARN_ON_ONCE(event->ctx != ctx);
1389 lockdep_assert_held(&ctx->lock);
1390
8a49542c
PZ
1391 /*
1392 * We can have double detach due to exit/hot-unplug + close.
1393 */
1394 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1395 return;
8a49542c
PZ
1396
1397 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1398
68cacd29 1399 if (is_cgroup_event(event)) {
e5d1367f 1400 ctx->nr_cgroups--;
68cacd29
SE
1401 cpuctx = __get_cpu_context(ctx);
1402 /*
1403 * if there are no more cgroup events
1404 * then cler cgrp to avoid stale pointer
1405 * in update_cgrp_time_from_cpuctx()
1406 */
1407 if (!ctx->nr_cgroups)
1408 cpuctx->cgrp = NULL;
1409 }
e5d1367f 1410
d010b332
SE
1411 if (has_branch_stack(event))
1412 ctx->nr_branch_stack--;
1413
cdd6c482
IM
1414 ctx->nr_events--;
1415 if (event->attr.inherit_stat)
bfbd3381 1416 ctx->nr_stat--;
8bc20959 1417
cdd6c482 1418 list_del_rcu(&event->event_entry);
04289bb9 1419
8a49542c
PZ
1420 if (event->group_leader == event)
1421 list_del_init(&event->group_entry);
5c148194 1422
96c21a46 1423 update_group_times(event);
b2e74a26
SE
1424
1425 /*
1426 * If event was in error state, then keep it
1427 * that way, otherwise bogus counts will be
1428 * returned on read(). The only way to get out
1429 * of error state is by explicit re-enabling
1430 * of the event
1431 */
1432 if (event->state > PERF_EVENT_STATE_OFF)
1433 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1434
1435 ctx->generation++;
050735b0
PZ
1436}
1437
8a49542c 1438static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1439{
1440 struct perf_event *sibling, *tmp;
8a49542c
PZ
1441 struct list_head *list = NULL;
1442
1443 /*
1444 * We can have double detach due to exit/hot-unplug + close.
1445 */
1446 if (!(event->attach_state & PERF_ATTACH_GROUP))
1447 return;
1448
1449 event->attach_state &= ~PERF_ATTACH_GROUP;
1450
1451 /*
1452 * If this is a sibling, remove it from its group.
1453 */
1454 if (event->group_leader != event) {
1455 list_del_init(&event->group_entry);
1456 event->group_leader->nr_siblings--;
c320c7b7 1457 goto out;
8a49542c
PZ
1458 }
1459
1460 if (!list_empty(&event->group_entry))
1461 list = &event->group_entry;
2e2af50b 1462
04289bb9 1463 /*
cdd6c482
IM
1464 * If this was a group event with sibling events then
1465 * upgrade the siblings to singleton events by adding them
8a49542c 1466 * to whatever list we are on.
04289bb9 1467 */
cdd6c482 1468 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1469 if (list)
1470 list_move_tail(&sibling->group_entry, list);
04289bb9 1471 sibling->group_leader = sibling;
d6f962b5
FW
1472
1473 /* Inherit group flags from the previous leader */
1474 sibling->group_flags = event->group_flags;
652884fe
PZ
1475
1476 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1477 }
c320c7b7
ACM
1478
1479out:
1480 perf_event__header_size(event->group_leader);
1481
1482 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1483 perf_event__header_size(tmp);
04289bb9
IM
1484}
1485
fadfe7be
JO
1486/*
1487 * User event without the task.
1488 */
1489static bool is_orphaned_event(struct perf_event *event)
1490{
1491 return event && !is_kernel_event(event) && !event->owner;
1492}
1493
1494/*
1495 * Event has a parent but parent's task finished and it's
1496 * alive only because of children holding refference.
1497 */
1498static bool is_orphaned_child(struct perf_event *event)
1499{
1500 return is_orphaned_event(event->parent);
1501}
1502
1503static void orphans_remove_work(struct work_struct *work);
1504
1505static void schedule_orphans_remove(struct perf_event_context *ctx)
1506{
1507 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1508 return;
1509
1510 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1511 get_ctx(ctx);
1512 ctx->orphans_remove_sched = true;
1513 }
1514}
1515
1516static int __init perf_workqueue_init(void)
1517{
1518 perf_wq = create_singlethread_workqueue("perf");
1519 WARN(!perf_wq, "failed to create perf workqueue\n");
1520 return perf_wq ? 0 : -1;
1521}
1522
1523core_initcall(perf_workqueue_init);
1524
fa66f07a
SE
1525static inline int
1526event_filter_match(struct perf_event *event)
1527{
e5d1367f
SE
1528 return (event->cpu == -1 || event->cpu == smp_processor_id())
1529 && perf_cgroup_match(event);
fa66f07a
SE
1530}
1531
9ffcfa6f
SE
1532static void
1533event_sched_out(struct perf_event *event,
3b6f9e5c 1534 struct perf_cpu_context *cpuctx,
cdd6c482 1535 struct perf_event_context *ctx)
3b6f9e5c 1536{
4158755d 1537 u64 tstamp = perf_event_time(event);
fa66f07a 1538 u64 delta;
652884fe
PZ
1539
1540 WARN_ON_ONCE(event->ctx != ctx);
1541 lockdep_assert_held(&ctx->lock);
1542
fa66f07a
SE
1543 /*
1544 * An event which could not be activated because of
1545 * filter mismatch still needs to have its timings
1546 * maintained, otherwise bogus information is return
1547 * via read() for time_enabled, time_running:
1548 */
1549 if (event->state == PERF_EVENT_STATE_INACTIVE
1550 && !event_filter_match(event)) {
e5d1367f 1551 delta = tstamp - event->tstamp_stopped;
fa66f07a 1552 event->tstamp_running += delta;
4158755d 1553 event->tstamp_stopped = tstamp;
fa66f07a
SE
1554 }
1555
cdd6c482 1556 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1557 return;
3b6f9e5c 1558
44377277
AS
1559 perf_pmu_disable(event->pmu);
1560
cdd6c482
IM
1561 event->state = PERF_EVENT_STATE_INACTIVE;
1562 if (event->pending_disable) {
1563 event->pending_disable = 0;
1564 event->state = PERF_EVENT_STATE_OFF;
970892a9 1565 }
4158755d 1566 event->tstamp_stopped = tstamp;
a4eaf7f1 1567 event->pmu->del(event, 0);
cdd6c482 1568 event->oncpu = -1;
3b6f9e5c 1569
cdd6c482 1570 if (!is_software_event(event))
3b6f9e5c 1571 cpuctx->active_oncpu--;
2fde4f94
MR
1572 if (!--ctx->nr_active)
1573 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1574 if (event->attr.freq && event->attr.sample_freq)
1575 ctx->nr_freq--;
cdd6c482 1576 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1577 cpuctx->exclusive = 0;
44377277 1578
fadfe7be
JO
1579 if (is_orphaned_child(event))
1580 schedule_orphans_remove(ctx);
1581
44377277 1582 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1583}
1584
d859e29f 1585static void
cdd6c482 1586group_sched_out(struct perf_event *group_event,
d859e29f 1587 struct perf_cpu_context *cpuctx,
cdd6c482 1588 struct perf_event_context *ctx)
d859e29f 1589{
cdd6c482 1590 struct perf_event *event;
fa66f07a 1591 int state = group_event->state;
d859e29f 1592
cdd6c482 1593 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1594
1595 /*
1596 * Schedule out siblings (if any):
1597 */
cdd6c482
IM
1598 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1599 event_sched_out(event, cpuctx, ctx);
d859e29f 1600
fa66f07a 1601 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1602 cpuctx->exclusive = 0;
1603}
1604
46ce0fe9
PZ
1605struct remove_event {
1606 struct perf_event *event;
1607 bool detach_group;
1608};
1609
0793a61d 1610/*
cdd6c482 1611 * Cross CPU call to remove a performance event
0793a61d 1612 *
cdd6c482 1613 * We disable the event on the hardware level first. After that we
0793a61d
TG
1614 * remove it from the context list.
1615 */
fe4b04fa 1616static int __perf_remove_from_context(void *info)
0793a61d 1617{
46ce0fe9
PZ
1618 struct remove_event *re = info;
1619 struct perf_event *event = re->event;
cdd6c482 1620 struct perf_event_context *ctx = event->ctx;
108b02cf 1621 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1622
e625cce1 1623 raw_spin_lock(&ctx->lock);
cdd6c482 1624 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1625 if (re->detach_group)
1626 perf_group_detach(event);
cdd6c482 1627 list_del_event(event, ctx);
64ce3126
PZ
1628 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1629 ctx->is_active = 0;
1630 cpuctx->task_ctx = NULL;
1631 }
e625cce1 1632 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1633
1634 return 0;
0793a61d
TG
1635}
1636
1637
1638/*
cdd6c482 1639 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1640 *
cdd6c482 1641 * CPU events are removed with a smp call. For task events we only
0793a61d 1642 * call when the task is on a CPU.
c93f7669 1643 *
cdd6c482
IM
1644 * If event->ctx is a cloned context, callers must make sure that
1645 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1646 * remains valid. This is OK when called from perf_release since
1647 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1648 * When called from perf_event_exit_task, it's OK because the
c93f7669 1649 * context has been detached from its task.
0793a61d 1650 */
46ce0fe9 1651static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1652{
cdd6c482 1653 struct perf_event_context *ctx = event->ctx;
0793a61d 1654 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1655 struct remove_event re = {
1656 .event = event,
1657 .detach_group = detach_group,
1658 };
0793a61d 1659
fe4b04fa
PZ
1660 lockdep_assert_held(&ctx->mutex);
1661
0793a61d
TG
1662 if (!task) {
1663 /*
226424ee
MR
1664 * Per cpu events are removed via an smp call. The removal can
1665 * fail if the CPU is currently offline, but in that case we
1666 * already called __perf_remove_from_context from
1667 * perf_event_exit_cpu.
0793a61d 1668 */
46ce0fe9 1669 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1670 return;
1671 }
1672
1673retry:
46ce0fe9 1674 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1675 return;
0793a61d 1676
e625cce1 1677 raw_spin_lock_irq(&ctx->lock);
0793a61d 1678 /*
fe4b04fa
PZ
1679 * If we failed to find a running task, but find the context active now
1680 * that we've acquired the ctx->lock, retry.
0793a61d 1681 */
fe4b04fa 1682 if (ctx->is_active) {
e625cce1 1683 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1684 /*
1685 * Reload the task pointer, it might have been changed by
1686 * a concurrent perf_event_context_sched_out().
1687 */
1688 task = ctx->task;
0793a61d
TG
1689 goto retry;
1690 }
1691
1692 /*
fe4b04fa
PZ
1693 * Since the task isn't running, its safe to remove the event, us
1694 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1695 */
46ce0fe9
PZ
1696 if (detach_group)
1697 perf_group_detach(event);
fe4b04fa 1698 list_del_event(event, ctx);
e625cce1 1699 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1700}
1701
d859e29f 1702/*
cdd6c482 1703 * Cross CPU call to disable a performance event
d859e29f 1704 */
500ad2d8 1705int __perf_event_disable(void *info)
d859e29f 1706{
cdd6c482 1707 struct perf_event *event = info;
cdd6c482 1708 struct perf_event_context *ctx = event->ctx;
108b02cf 1709 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1710
1711 /*
cdd6c482
IM
1712 * If this is a per-task event, need to check whether this
1713 * event's task is the current task on this cpu.
fe4b04fa
PZ
1714 *
1715 * Can trigger due to concurrent perf_event_context_sched_out()
1716 * flipping contexts around.
d859e29f 1717 */
665c2142 1718 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1719 return -EINVAL;
d859e29f 1720
e625cce1 1721 raw_spin_lock(&ctx->lock);
d859e29f
PM
1722
1723 /*
cdd6c482 1724 * If the event is on, turn it off.
d859e29f
PM
1725 * If it is in error state, leave it in error state.
1726 */
cdd6c482 1727 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1728 update_context_time(ctx);
e5d1367f 1729 update_cgrp_time_from_event(event);
cdd6c482
IM
1730 update_group_times(event);
1731 if (event == event->group_leader)
1732 group_sched_out(event, cpuctx, ctx);
d859e29f 1733 else
cdd6c482
IM
1734 event_sched_out(event, cpuctx, ctx);
1735 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1736 }
1737
e625cce1 1738 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1739
1740 return 0;
d859e29f
PM
1741}
1742
1743/*
cdd6c482 1744 * Disable a event.
c93f7669 1745 *
cdd6c482
IM
1746 * If event->ctx is a cloned context, callers must make sure that
1747 * every task struct that event->ctx->task could possibly point to
c93f7669 1748 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1749 * perf_event_for_each_child or perf_event_for_each because they
1750 * hold the top-level event's child_mutex, so any descendant that
1751 * goes to exit will block in sync_child_event.
1752 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1753 * is the current context on this CPU and preemption is disabled,
cdd6c482 1754 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1755 */
f63a8daa 1756static void _perf_event_disable(struct perf_event *event)
d859e29f 1757{
cdd6c482 1758 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1759 struct task_struct *task = ctx->task;
1760
1761 if (!task) {
1762 /*
cdd6c482 1763 * Disable the event on the cpu that it's on
d859e29f 1764 */
fe4b04fa 1765 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1766 return;
1767 }
1768
9ed6060d 1769retry:
fe4b04fa
PZ
1770 if (!task_function_call(task, __perf_event_disable, event))
1771 return;
d859e29f 1772
e625cce1 1773 raw_spin_lock_irq(&ctx->lock);
d859e29f 1774 /*
cdd6c482 1775 * If the event is still active, we need to retry the cross-call.
d859e29f 1776 */
cdd6c482 1777 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1778 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1779 /*
1780 * Reload the task pointer, it might have been changed by
1781 * a concurrent perf_event_context_sched_out().
1782 */
1783 task = ctx->task;
d859e29f
PM
1784 goto retry;
1785 }
1786
1787 /*
1788 * Since we have the lock this context can't be scheduled
1789 * in, so we can change the state safely.
1790 */
cdd6c482
IM
1791 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1792 update_group_times(event);
1793 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1794 }
e625cce1 1795 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1796}
f63a8daa
PZ
1797
1798/*
1799 * Strictly speaking kernel users cannot create groups and therefore this
1800 * interface does not need the perf_event_ctx_lock() magic.
1801 */
1802void perf_event_disable(struct perf_event *event)
1803{
1804 struct perf_event_context *ctx;
1805
1806 ctx = perf_event_ctx_lock(event);
1807 _perf_event_disable(event);
1808 perf_event_ctx_unlock(event, ctx);
1809}
dcfce4a0 1810EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1811
e5d1367f
SE
1812static void perf_set_shadow_time(struct perf_event *event,
1813 struct perf_event_context *ctx,
1814 u64 tstamp)
1815{
1816 /*
1817 * use the correct time source for the time snapshot
1818 *
1819 * We could get by without this by leveraging the
1820 * fact that to get to this function, the caller
1821 * has most likely already called update_context_time()
1822 * and update_cgrp_time_xx() and thus both timestamp
1823 * are identical (or very close). Given that tstamp is,
1824 * already adjusted for cgroup, we could say that:
1825 * tstamp - ctx->timestamp
1826 * is equivalent to
1827 * tstamp - cgrp->timestamp.
1828 *
1829 * Then, in perf_output_read(), the calculation would
1830 * work with no changes because:
1831 * - event is guaranteed scheduled in
1832 * - no scheduled out in between
1833 * - thus the timestamp would be the same
1834 *
1835 * But this is a bit hairy.
1836 *
1837 * So instead, we have an explicit cgroup call to remain
1838 * within the time time source all along. We believe it
1839 * is cleaner and simpler to understand.
1840 */
1841 if (is_cgroup_event(event))
1842 perf_cgroup_set_shadow_time(event, tstamp);
1843 else
1844 event->shadow_ctx_time = tstamp - ctx->timestamp;
1845}
1846
4fe757dd
PZ
1847#define MAX_INTERRUPTS (~0ULL)
1848
1849static void perf_log_throttle(struct perf_event *event, int enable);
1850
235c7fc7 1851static int
9ffcfa6f 1852event_sched_in(struct perf_event *event,
235c7fc7 1853 struct perf_cpu_context *cpuctx,
6e37738a 1854 struct perf_event_context *ctx)
235c7fc7 1855{
4158755d 1856 u64 tstamp = perf_event_time(event);
44377277 1857 int ret = 0;
4158755d 1858
63342411
PZ
1859 lockdep_assert_held(&ctx->lock);
1860
cdd6c482 1861 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1862 return 0;
1863
cdd6c482 1864 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1865 event->oncpu = smp_processor_id();
4fe757dd
PZ
1866
1867 /*
1868 * Unthrottle events, since we scheduled we might have missed several
1869 * ticks already, also for a heavily scheduling task there is little
1870 * guarantee it'll get a tick in a timely manner.
1871 */
1872 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1873 perf_log_throttle(event, 1);
1874 event->hw.interrupts = 0;
1875 }
1876
235c7fc7
IM
1877 /*
1878 * The new state must be visible before we turn it on in the hardware:
1879 */
1880 smp_wmb();
1881
44377277
AS
1882 perf_pmu_disable(event->pmu);
1883
a4eaf7f1 1884 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1885 event->state = PERF_EVENT_STATE_INACTIVE;
1886 event->oncpu = -1;
44377277
AS
1887 ret = -EAGAIN;
1888 goto out;
235c7fc7
IM
1889 }
1890
4158755d 1891 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1892
e5d1367f 1893 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1894
cdd6c482 1895 if (!is_software_event(event))
3b6f9e5c 1896 cpuctx->active_oncpu++;
2fde4f94
MR
1897 if (!ctx->nr_active++)
1898 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1899 if (event->attr.freq && event->attr.sample_freq)
1900 ctx->nr_freq++;
235c7fc7 1901
cdd6c482 1902 if (event->attr.exclusive)
3b6f9e5c
PM
1903 cpuctx->exclusive = 1;
1904
fadfe7be
JO
1905 if (is_orphaned_child(event))
1906 schedule_orphans_remove(ctx);
1907
44377277
AS
1908out:
1909 perf_pmu_enable(event->pmu);
1910
1911 return ret;
235c7fc7
IM
1912}
1913
6751b71e 1914static int
cdd6c482 1915group_sched_in(struct perf_event *group_event,
6751b71e 1916 struct perf_cpu_context *cpuctx,
6e37738a 1917 struct perf_event_context *ctx)
6751b71e 1918{
6bde9b6c 1919 struct perf_event *event, *partial_group = NULL;
4a234593 1920 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1921 u64 now = ctx->time;
1922 bool simulate = false;
6751b71e 1923
cdd6c482 1924 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1925 return 0;
1926
ad5133b7 1927 pmu->start_txn(pmu);
6bde9b6c 1928
9ffcfa6f 1929 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1930 pmu->cancel_txn(pmu);
9e630205 1931 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1932 return -EAGAIN;
90151c35 1933 }
6751b71e
PM
1934
1935 /*
1936 * Schedule in siblings as one group (if any):
1937 */
cdd6c482 1938 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1939 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1940 partial_group = event;
6751b71e
PM
1941 goto group_error;
1942 }
1943 }
1944
9ffcfa6f 1945 if (!pmu->commit_txn(pmu))
6e85158c 1946 return 0;
9ffcfa6f 1947
6751b71e
PM
1948group_error:
1949 /*
1950 * Groups can be scheduled in as one unit only, so undo any
1951 * partial group before returning:
d7842da4
SE
1952 * The events up to the failed event are scheduled out normally,
1953 * tstamp_stopped will be updated.
1954 *
1955 * The failed events and the remaining siblings need to have
1956 * their timings updated as if they had gone thru event_sched_in()
1957 * and event_sched_out(). This is required to get consistent timings
1958 * across the group. This also takes care of the case where the group
1959 * could never be scheduled by ensuring tstamp_stopped is set to mark
1960 * the time the event was actually stopped, such that time delta
1961 * calculation in update_event_times() is correct.
6751b71e 1962 */
cdd6c482
IM
1963 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1964 if (event == partial_group)
d7842da4
SE
1965 simulate = true;
1966
1967 if (simulate) {
1968 event->tstamp_running += now - event->tstamp_stopped;
1969 event->tstamp_stopped = now;
1970 } else {
1971 event_sched_out(event, cpuctx, ctx);
1972 }
6751b71e 1973 }
9ffcfa6f 1974 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1975
ad5133b7 1976 pmu->cancel_txn(pmu);
90151c35 1977
9e630205
SE
1978 perf_cpu_hrtimer_restart(cpuctx);
1979
6751b71e
PM
1980 return -EAGAIN;
1981}
1982
3b6f9e5c 1983/*
cdd6c482 1984 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1985 */
cdd6c482 1986static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1987 struct perf_cpu_context *cpuctx,
1988 int can_add_hw)
1989{
1990 /*
cdd6c482 1991 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1992 */
d6f962b5 1993 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1994 return 1;
1995 /*
1996 * If an exclusive group is already on, no other hardware
cdd6c482 1997 * events can go on.
3b6f9e5c
PM
1998 */
1999 if (cpuctx->exclusive)
2000 return 0;
2001 /*
2002 * If this group is exclusive and there are already
cdd6c482 2003 * events on the CPU, it can't go on.
3b6f9e5c 2004 */
cdd6c482 2005 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2006 return 0;
2007 /*
2008 * Otherwise, try to add it if all previous groups were able
2009 * to go on.
2010 */
2011 return can_add_hw;
2012}
2013
cdd6c482
IM
2014static void add_event_to_ctx(struct perf_event *event,
2015 struct perf_event_context *ctx)
53cfbf59 2016{
4158755d
SE
2017 u64 tstamp = perf_event_time(event);
2018
cdd6c482 2019 list_add_event(event, ctx);
8a49542c 2020 perf_group_attach(event);
4158755d
SE
2021 event->tstamp_enabled = tstamp;
2022 event->tstamp_running = tstamp;
2023 event->tstamp_stopped = tstamp;
53cfbf59
PM
2024}
2025
2c29ef0f
PZ
2026static void task_ctx_sched_out(struct perf_event_context *ctx);
2027static void
2028ctx_sched_in(struct perf_event_context *ctx,
2029 struct perf_cpu_context *cpuctx,
2030 enum event_type_t event_type,
2031 struct task_struct *task);
fe4b04fa 2032
dce5855b
PZ
2033static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2034 struct perf_event_context *ctx,
2035 struct task_struct *task)
2036{
2037 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2038 if (ctx)
2039 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2040 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2041 if (ctx)
2042 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2043}
2044
0793a61d 2045/*
cdd6c482 2046 * Cross CPU call to install and enable a performance event
682076ae
PZ
2047 *
2048 * Must be called with ctx->mutex held
0793a61d 2049 */
fe4b04fa 2050static int __perf_install_in_context(void *info)
0793a61d 2051{
cdd6c482
IM
2052 struct perf_event *event = info;
2053 struct perf_event_context *ctx = event->ctx;
108b02cf 2054 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2055 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2056 struct task_struct *task = current;
2057
b58f6b0d 2058 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2059 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2060
2061 /*
2c29ef0f 2062 * If there was an active task_ctx schedule it out.
0793a61d 2063 */
b58f6b0d 2064 if (task_ctx)
2c29ef0f 2065 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2066
2067 /*
2068 * If the context we're installing events in is not the
2069 * active task_ctx, flip them.
2070 */
2071 if (ctx->task && task_ctx != ctx) {
2072 if (task_ctx)
2073 raw_spin_unlock(&task_ctx->lock);
2074 raw_spin_lock(&ctx->lock);
2075 task_ctx = ctx;
2076 }
2077
2078 if (task_ctx) {
2079 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2080 task = task_ctx->task;
2081 }
b58f6b0d 2082
2c29ef0f 2083 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2084
4af4998b 2085 update_context_time(ctx);
e5d1367f
SE
2086 /*
2087 * update cgrp time only if current cgrp
2088 * matches event->cgrp. Must be done before
2089 * calling add_event_to_ctx()
2090 */
2091 update_cgrp_time_from_event(event);
0793a61d 2092
cdd6c482 2093 add_event_to_ctx(event, ctx);
0793a61d 2094
d859e29f 2095 /*
2c29ef0f 2096 * Schedule everything back in
d859e29f 2097 */
dce5855b 2098 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2099
2100 perf_pmu_enable(cpuctx->ctx.pmu);
2101 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2102
2103 return 0;
0793a61d
TG
2104}
2105
2106/*
cdd6c482 2107 * Attach a performance event to a context
0793a61d 2108 *
cdd6c482
IM
2109 * First we add the event to the list with the hardware enable bit
2110 * in event->hw_config cleared.
0793a61d 2111 *
cdd6c482 2112 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2113 * call to enable it in the task context. The task might have been
2114 * scheduled away, but we check this in the smp call again.
2115 */
2116static void
cdd6c482
IM
2117perf_install_in_context(struct perf_event_context *ctx,
2118 struct perf_event *event,
0793a61d
TG
2119 int cpu)
2120{
2121 struct task_struct *task = ctx->task;
2122
fe4b04fa
PZ
2123 lockdep_assert_held(&ctx->mutex);
2124
c3f00c70 2125 event->ctx = ctx;
0cda4c02
YZ
2126 if (event->cpu != -1)
2127 event->cpu = cpu;
c3f00c70 2128
0793a61d
TG
2129 if (!task) {
2130 /*
cdd6c482 2131 * Per cpu events are installed via an smp call and
af901ca1 2132 * the install is always successful.
0793a61d 2133 */
fe4b04fa 2134 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2135 return;
2136 }
2137
0793a61d 2138retry:
fe4b04fa
PZ
2139 if (!task_function_call(task, __perf_install_in_context, event))
2140 return;
0793a61d 2141
e625cce1 2142 raw_spin_lock_irq(&ctx->lock);
0793a61d 2143 /*
fe4b04fa
PZ
2144 * If we failed to find a running task, but find the context active now
2145 * that we've acquired the ctx->lock, retry.
0793a61d 2146 */
fe4b04fa 2147 if (ctx->is_active) {
e625cce1 2148 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2149 /*
2150 * Reload the task pointer, it might have been changed by
2151 * a concurrent perf_event_context_sched_out().
2152 */
2153 task = ctx->task;
0793a61d
TG
2154 goto retry;
2155 }
2156
2157 /*
fe4b04fa
PZ
2158 * Since the task isn't running, its safe to add the event, us holding
2159 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2160 */
fe4b04fa 2161 add_event_to_ctx(event, ctx);
e625cce1 2162 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2163}
2164
fa289bec 2165/*
cdd6c482 2166 * Put a event into inactive state and update time fields.
fa289bec
PM
2167 * Enabling the leader of a group effectively enables all
2168 * the group members that aren't explicitly disabled, so we
2169 * have to update their ->tstamp_enabled also.
2170 * Note: this works for group members as well as group leaders
2171 * since the non-leader members' sibling_lists will be empty.
2172 */
1d9b482e 2173static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2174{
cdd6c482 2175 struct perf_event *sub;
4158755d 2176 u64 tstamp = perf_event_time(event);
fa289bec 2177
cdd6c482 2178 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2179 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2180 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2181 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2182 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2183 }
fa289bec
PM
2184}
2185
d859e29f 2186/*
cdd6c482 2187 * Cross CPU call to enable a performance event
d859e29f 2188 */
fe4b04fa 2189static int __perf_event_enable(void *info)
04289bb9 2190{
cdd6c482 2191 struct perf_event *event = info;
cdd6c482
IM
2192 struct perf_event_context *ctx = event->ctx;
2193 struct perf_event *leader = event->group_leader;
108b02cf 2194 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2195 int err;
04289bb9 2196
06f41796
JO
2197 /*
2198 * There's a time window between 'ctx->is_active' check
2199 * in perf_event_enable function and this place having:
2200 * - IRQs on
2201 * - ctx->lock unlocked
2202 *
2203 * where the task could be killed and 'ctx' deactivated
2204 * by perf_event_exit_task.
2205 */
2206 if (!ctx->is_active)
fe4b04fa 2207 return -EINVAL;
3cbed429 2208
e625cce1 2209 raw_spin_lock(&ctx->lock);
4af4998b 2210 update_context_time(ctx);
d859e29f 2211
cdd6c482 2212 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2213 goto unlock;
e5d1367f
SE
2214
2215 /*
2216 * set current task's cgroup time reference point
2217 */
3f7cce3c 2218 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2219
1d9b482e 2220 __perf_event_mark_enabled(event);
04289bb9 2221
e5d1367f
SE
2222 if (!event_filter_match(event)) {
2223 if (is_cgroup_event(event))
2224 perf_cgroup_defer_enabled(event);
f4c4176f 2225 goto unlock;
e5d1367f 2226 }
f4c4176f 2227
04289bb9 2228 /*
cdd6c482 2229 * If the event is in a group and isn't the group leader,
d859e29f 2230 * then don't put it on unless the group is on.
04289bb9 2231 */
cdd6c482 2232 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2233 goto unlock;
3b6f9e5c 2234
cdd6c482 2235 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2236 err = -EEXIST;
e758a33d 2237 } else {
cdd6c482 2238 if (event == leader)
6e37738a 2239 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2240 else
6e37738a 2241 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2242 }
d859e29f
PM
2243
2244 if (err) {
2245 /*
cdd6c482 2246 * If this event can't go on and it's part of a
d859e29f
PM
2247 * group, then the whole group has to come off.
2248 */
9e630205 2249 if (leader != event) {
d859e29f 2250 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2251 perf_cpu_hrtimer_restart(cpuctx);
2252 }
0d48696f 2253 if (leader->attr.pinned) {
53cfbf59 2254 update_group_times(leader);
cdd6c482 2255 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2256 }
d859e29f
PM
2257 }
2258
9ed6060d 2259unlock:
e625cce1 2260 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2261
2262 return 0;
d859e29f
PM
2263}
2264
2265/*
cdd6c482 2266 * Enable a event.
c93f7669 2267 *
cdd6c482
IM
2268 * If event->ctx is a cloned context, callers must make sure that
2269 * every task struct that event->ctx->task could possibly point to
c93f7669 2270 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2271 * perf_event_for_each_child or perf_event_for_each as described
2272 * for perf_event_disable.
d859e29f 2273 */
f63a8daa 2274static void _perf_event_enable(struct perf_event *event)
d859e29f 2275{
cdd6c482 2276 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2277 struct task_struct *task = ctx->task;
2278
2279 if (!task) {
2280 /*
cdd6c482 2281 * Enable the event on the cpu that it's on
d859e29f 2282 */
fe4b04fa 2283 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2284 return;
2285 }
2286
e625cce1 2287 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2288 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2289 goto out;
2290
2291 /*
cdd6c482
IM
2292 * If the event is in error state, clear that first.
2293 * That way, if we see the event in error state below, we
d859e29f
PM
2294 * know that it has gone back into error state, as distinct
2295 * from the task having been scheduled away before the
2296 * cross-call arrived.
2297 */
cdd6c482
IM
2298 if (event->state == PERF_EVENT_STATE_ERROR)
2299 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2300
9ed6060d 2301retry:
fe4b04fa 2302 if (!ctx->is_active) {
1d9b482e 2303 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2304 goto out;
2305 }
2306
e625cce1 2307 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2308
2309 if (!task_function_call(task, __perf_event_enable, event))
2310 return;
d859e29f 2311
e625cce1 2312 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2313
2314 /*
cdd6c482 2315 * If the context is active and the event is still off,
d859e29f
PM
2316 * we need to retry the cross-call.
2317 */
fe4b04fa
PZ
2318 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2319 /*
2320 * task could have been flipped by a concurrent
2321 * perf_event_context_sched_out()
2322 */
2323 task = ctx->task;
d859e29f 2324 goto retry;
fe4b04fa 2325 }
fa289bec 2326
9ed6060d 2327out:
e625cce1 2328 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2329}
f63a8daa
PZ
2330
2331/*
2332 * See perf_event_disable();
2333 */
2334void perf_event_enable(struct perf_event *event)
2335{
2336 struct perf_event_context *ctx;
2337
2338 ctx = perf_event_ctx_lock(event);
2339 _perf_event_enable(event);
2340 perf_event_ctx_unlock(event, ctx);
2341}
dcfce4a0 2342EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2343
f63a8daa 2344static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2345{
2023b359 2346 /*
cdd6c482 2347 * not supported on inherited events
2023b359 2348 */
2e939d1d 2349 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2350 return -EINVAL;
2351
cdd6c482 2352 atomic_add(refresh, &event->event_limit);
f63a8daa 2353 _perf_event_enable(event);
2023b359
PZ
2354
2355 return 0;
79f14641 2356}
f63a8daa
PZ
2357
2358/*
2359 * See perf_event_disable()
2360 */
2361int perf_event_refresh(struct perf_event *event, int refresh)
2362{
2363 struct perf_event_context *ctx;
2364 int ret;
2365
2366 ctx = perf_event_ctx_lock(event);
2367 ret = _perf_event_refresh(event, refresh);
2368 perf_event_ctx_unlock(event, ctx);
2369
2370 return ret;
2371}
26ca5c11 2372EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2373
5b0311e1
FW
2374static void ctx_sched_out(struct perf_event_context *ctx,
2375 struct perf_cpu_context *cpuctx,
2376 enum event_type_t event_type)
235c7fc7 2377{
cdd6c482 2378 struct perf_event *event;
db24d33e 2379 int is_active = ctx->is_active;
235c7fc7 2380
db24d33e 2381 ctx->is_active &= ~event_type;
cdd6c482 2382 if (likely(!ctx->nr_events))
facc4307
PZ
2383 return;
2384
4af4998b 2385 update_context_time(ctx);
e5d1367f 2386 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2387 if (!ctx->nr_active)
facc4307 2388 return;
5b0311e1 2389
075e0b00 2390 perf_pmu_disable(ctx->pmu);
db24d33e 2391 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2392 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2393 group_sched_out(event, cpuctx, ctx);
9ed6060d 2394 }
889ff015 2395
db24d33e 2396 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2397 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2398 group_sched_out(event, cpuctx, ctx);
9ed6060d 2399 }
1b9a644f 2400 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2401}
2402
564c2b21 2403/*
5a3126d4
PZ
2404 * Test whether two contexts are equivalent, i.e. whether they have both been
2405 * cloned from the same version of the same context.
2406 *
2407 * Equivalence is measured using a generation number in the context that is
2408 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2409 * and list_del_event().
564c2b21 2410 */
cdd6c482
IM
2411static int context_equiv(struct perf_event_context *ctx1,
2412 struct perf_event_context *ctx2)
564c2b21 2413{
211de6eb
PZ
2414 lockdep_assert_held(&ctx1->lock);
2415 lockdep_assert_held(&ctx2->lock);
2416
5a3126d4
PZ
2417 /* Pinning disables the swap optimization */
2418 if (ctx1->pin_count || ctx2->pin_count)
2419 return 0;
2420
2421 /* If ctx1 is the parent of ctx2 */
2422 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2423 return 1;
2424
2425 /* If ctx2 is the parent of ctx1 */
2426 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2427 return 1;
2428
2429 /*
2430 * If ctx1 and ctx2 have the same parent; we flatten the parent
2431 * hierarchy, see perf_event_init_context().
2432 */
2433 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2434 ctx1->parent_gen == ctx2->parent_gen)
2435 return 1;
2436
2437 /* Unmatched */
2438 return 0;
564c2b21
PM
2439}
2440
cdd6c482
IM
2441static void __perf_event_sync_stat(struct perf_event *event,
2442 struct perf_event *next_event)
bfbd3381
PZ
2443{
2444 u64 value;
2445
cdd6c482 2446 if (!event->attr.inherit_stat)
bfbd3381
PZ
2447 return;
2448
2449 /*
cdd6c482 2450 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2451 * because we're in the middle of a context switch and have IRQs
2452 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2453 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2454 * don't need to use it.
2455 */
cdd6c482
IM
2456 switch (event->state) {
2457 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2458 event->pmu->read(event);
2459 /* fall-through */
bfbd3381 2460
cdd6c482
IM
2461 case PERF_EVENT_STATE_INACTIVE:
2462 update_event_times(event);
bfbd3381
PZ
2463 break;
2464
2465 default:
2466 break;
2467 }
2468
2469 /*
cdd6c482 2470 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2471 * values when we flip the contexts.
2472 */
e7850595
PZ
2473 value = local64_read(&next_event->count);
2474 value = local64_xchg(&event->count, value);
2475 local64_set(&next_event->count, value);
bfbd3381 2476
cdd6c482
IM
2477 swap(event->total_time_enabled, next_event->total_time_enabled);
2478 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2479
bfbd3381 2480 /*
19d2e755 2481 * Since we swizzled the values, update the user visible data too.
bfbd3381 2482 */
cdd6c482
IM
2483 perf_event_update_userpage(event);
2484 perf_event_update_userpage(next_event);
bfbd3381
PZ
2485}
2486
cdd6c482
IM
2487static void perf_event_sync_stat(struct perf_event_context *ctx,
2488 struct perf_event_context *next_ctx)
bfbd3381 2489{
cdd6c482 2490 struct perf_event *event, *next_event;
bfbd3381
PZ
2491
2492 if (!ctx->nr_stat)
2493 return;
2494
02ffdbc8
PZ
2495 update_context_time(ctx);
2496
cdd6c482
IM
2497 event = list_first_entry(&ctx->event_list,
2498 struct perf_event, event_entry);
bfbd3381 2499
cdd6c482
IM
2500 next_event = list_first_entry(&next_ctx->event_list,
2501 struct perf_event, event_entry);
bfbd3381 2502
cdd6c482
IM
2503 while (&event->event_entry != &ctx->event_list &&
2504 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2505
cdd6c482 2506 __perf_event_sync_stat(event, next_event);
bfbd3381 2507
cdd6c482
IM
2508 event = list_next_entry(event, event_entry);
2509 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2510 }
2511}
2512
fe4b04fa
PZ
2513static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2514 struct task_struct *next)
0793a61d 2515{
8dc85d54 2516 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2517 struct perf_event_context *next_ctx;
5a3126d4 2518 struct perf_event_context *parent, *next_parent;
108b02cf 2519 struct perf_cpu_context *cpuctx;
c93f7669 2520 int do_switch = 1;
0793a61d 2521
108b02cf
PZ
2522 if (likely(!ctx))
2523 return;
10989fb2 2524
108b02cf
PZ
2525 cpuctx = __get_cpu_context(ctx);
2526 if (!cpuctx->task_ctx)
0793a61d
TG
2527 return;
2528
c93f7669 2529 rcu_read_lock();
8dc85d54 2530 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2531 if (!next_ctx)
2532 goto unlock;
2533
2534 parent = rcu_dereference(ctx->parent_ctx);
2535 next_parent = rcu_dereference(next_ctx->parent_ctx);
2536
2537 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2538 if (!parent && !next_parent)
5a3126d4
PZ
2539 goto unlock;
2540
2541 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2542 /*
2543 * Looks like the two contexts are clones, so we might be
2544 * able to optimize the context switch. We lock both
2545 * contexts and check that they are clones under the
2546 * lock (including re-checking that neither has been
2547 * uncloned in the meantime). It doesn't matter which
2548 * order we take the locks because no other cpu could
2549 * be trying to lock both of these tasks.
2550 */
e625cce1
TG
2551 raw_spin_lock(&ctx->lock);
2552 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2553 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2554 /*
2555 * XXX do we need a memory barrier of sorts
cdd6c482 2556 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2557 */
8dc85d54
PZ
2558 task->perf_event_ctxp[ctxn] = next_ctx;
2559 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2560 ctx->task = next;
2561 next_ctx->task = task;
2562 do_switch = 0;
bfbd3381 2563
cdd6c482 2564 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2565 }
e625cce1
TG
2566 raw_spin_unlock(&next_ctx->lock);
2567 raw_spin_unlock(&ctx->lock);
564c2b21 2568 }
5a3126d4 2569unlock:
c93f7669 2570 rcu_read_unlock();
564c2b21 2571
c93f7669 2572 if (do_switch) {
facc4307 2573 raw_spin_lock(&ctx->lock);
5b0311e1 2574 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2575 cpuctx->task_ctx = NULL;
facc4307 2576 raw_spin_unlock(&ctx->lock);
c93f7669 2577 }
0793a61d
TG
2578}
2579
8dc85d54
PZ
2580#define for_each_task_context_nr(ctxn) \
2581 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2582
2583/*
2584 * Called from scheduler to remove the events of the current task,
2585 * with interrupts disabled.
2586 *
2587 * We stop each event and update the event value in event->count.
2588 *
2589 * This does not protect us against NMI, but disable()
2590 * sets the disabled bit in the control field of event _before_
2591 * accessing the event control register. If a NMI hits, then it will
2592 * not restart the event.
2593 */
ab0cce56
JO
2594void __perf_event_task_sched_out(struct task_struct *task,
2595 struct task_struct *next)
8dc85d54
PZ
2596{
2597 int ctxn;
2598
8dc85d54
PZ
2599 for_each_task_context_nr(ctxn)
2600 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2601
2602 /*
2603 * if cgroup events exist on this CPU, then we need
2604 * to check if we have to switch out PMU state.
2605 * cgroup event are system-wide mode only
2606 */
4a32fea9 2607 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2608 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2609}
2610
04dc2dbb 2611static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2612{
108b02cf 2613 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2614
a63eaf34
PM
2615 if (!cpuctx->task_ctx)
2616 return;
012b84da
IM
2617
2618 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2619 return;
2620
04dc2dbb 2621 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2622 cpuctx->task_ctx = NULL;
2623}
2624
5b0311e1
FW
2625/*
2626 * Called with IRQs disabled
2627 */
2628static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2629 enum event_type_t event_type)
2630{
2631 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2632}
2633
235c7fc7 2634static void
5b0311e1 2635ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2636 struct perf_cpu_context *cpuctx)
0793a61d 2637{
cdd6c482 2638 struct perf_event *event;
0793a61d 2639
889ff015
FW
2640 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2641 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2642 continue;
5632ab12 2643 if (!event_filter_match(event))
3b6f9e5c
PM
2644 continue;
2645
e5d1367f
SE
2646 /* may need to reset tstamp_enabled */
2647 if (is_cgroup_event(event))
2648 perf_cgroup_mark_enabled(event, ctx);
2649
8c9ed8e1 2650 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2651 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2652
2653 /*
2654 * If this pinned group hasn't been scheduled,
2655 * put it in error state.
2656 */
cdd6c482
IM
2657 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2658 update_group_times(event);
2659 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2660 }
3b6f9e5c 2661 }
5b0311e1
FW
2662}
2663
2664static void
2665ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2666 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2667{
2668 struct perf_event *event;
2669 int can_add_hw = 1;
3b6f9e5c 2670
889ff015
FW
2671 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2672 /* Ignore events in OFF or ERROR state */
2673 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2674 continue;
04289bb9
IM
2675 /*
2676 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2677 * of events:
04289bb9 2678 */
5632ab12 2679 if (!event_filter_match(event))
0793a61d
TG
2680 continue;
2681
e5d1367f
SE
2682 /* may need to reset tstamp_enabled */
2683 if (is_cgroup_event(event))
2684 perf_cgroup_mark_enabled(event, ctx);
2685
9ed6060d 2686 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2687 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2688 can_add_hw = 0;
9ed6060d 2689 }
0793a61d 2690 }
5b0311e1
FW
2691}
2692
2693static void
2694ctx_sched_in(struct perf_event_context *ctx,
2695 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2696 enum event_type_t event_type,
2697 struct task_struct *task)
5b0311e1 2698{
e5d1367f 2699 u64 now;
db24d33e 2700 int is_active = ctx->is_active;
e5d1367f 2701
db24d33e 2702 ctx->is_active |= event_type;
5b0311e1 2703 if (likely(!ctx->nr_events))
facc4307 2704 return;
5b0311e1 2705
e5d1367f
SE
2706 now = perf_clock();
2707 ctx->timestamp = now;
3f7cce3c 2708 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2709 /*
2710 * First go through the list and put on any pinned groups
2711 * in order to give them the best chance of going on.
2712 */
db24d33e 2713 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2714 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2715
2716 /* Then walk through the lower prio flexible groups */
db24d33e 2717 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2718 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2719}
2720
329c0e01 2721static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2722 enum event_type_t event_type,
2723 struct task_struct *task)
329c0e01
FW
2724{
2725 struct perf_event_context *ctx = &cpuctx->ctx;
2726
e5d1367f 2727 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2728}
2729
e5d1367f
SE
2730static void perf_event_context_sched_in(struct perf_event_context *ctx,
2731 struct task_struct *task)
235c7fc7 2732{
108b02cf 2733 struct perf_cpu_context *cpuctx;
235c7fc7 2734
108b02cf 2735 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2736 if (cpuctx->task_ctx == ctx)
2737 return;
2738
facc4307 2739 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2740 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2741 /*
2742 * We want to keep the following priority order:
2743 * cpu pinned (that don't need to move), task pinned,
2744 * cpu flexible, task flexible.
2745 */
2746 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2747
1d5f003f
GN
2748 if (ctx->nr_events)
2749 cpuctx->task_ctx = ctx;
9b33fa6b 2750
86b47c25
GN
2751 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2752
facc4307
PZ
2753 perf_pmu_enable(ctx->pmu);
2754 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2755}
2756
d010b332
SE
2757/*
2758 * When sampling the branck stack in system-wide, it may be necessary
2759 * to flush the stack on context switch. This happens when the branch
2760 * stack does not tag its entries with the pid of the current task.
2761 * Otherwise it becomes impossible to associate a branch entry with a
2762 * task. This ambiguity is more likely to appear when the branch stack
2763 * supports priv level filtering and the user sets it to monitor only
2764 * at the user level (which could be a useful measurement in system-wide
2765 * mode). In that case, the risk is high of having a branch stack with
2766 * branch from multiple tasks. Flushing may mean dropping the existing
2767 * entries or stashing them somewhere in the PMU specific code layer.
2768 *
2769 * This function provides the context switch callback to the lower code
2770 * layer. It is invoked ONLY when there is at least one system-wide context
2771 * with at least one active event using taken branch sampling.
2772 */
2773static void perf_branch_stack_sched_in(struct task_struct *prev,
2774 struct task_struct *task)
2775{
2776 struct perf_cpu_context *cpuctx;
2777 struct pmu *pmu;
2778 unsigned long flags;
2779
2780 /* no need to flush branch stack if not changing task */
2781 if (prev == task)
2782 return;
2783
2784 local_irq_save(flags);
2785
2786 rcu_read_lock();
2787
2788 list_for_each_entry_rcu(pmu, &pmus, entry) {
2789 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2790
2791 /*
2792 * check if the context has at least one
2793 * event using PERF_SAMPLE_BRANCH_STACK
2794 */
2795 if (cpuctx->ctx.nr_branch_stack > 0
2796 && pmu->flush_branch_stack) {
2797
d010b332
SE
2798 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2799
2800 perf_pmu_disable(pmu);
2801
2802 pmu->flush_branch_stack();
2803
2804 perf_pmu_enable(pmu);
2805
2806 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2807 }
2808 }
2809
2810 rcu_read_unlock();
2811
2812 local_irq_restore(flags);
2813}
2814
8dc85d54
PZ
2815/*
2816 * Called from scheduler to add the events of the current task
2817 * with interrupts disabled.
2818 *
2819 * We restore the event value and then enable it.
2820 *
2821 * This does not protect us against NMI, but enable()
2822 * sets the enabled bit in the control field of event _before_
2823 * accessing the event control register. If a NMI hits, then it will
2824 * keep the event running.
2825 */
ab0cce56
JO
2826void __perf_event_task_sched_in(struct task_struct *prev,
2827 struct task_struct *task)
8dc85d54
PZ
2828{
2829 struct perf_event_context *ctx;
2830 int ctxn;
2831
2832 for_each_task_context_nr(ctxn) {
2833 ctx = task->perf_event_ctxp[ctxn];
2834 if (likely(!ctx))
2835 continue;
2836
e5d1367f 2837 perf_event_context_sched_in(ctx, task);
8dc85d54 2838 }
e5d1367f
SE
2839 /*
2840 * if cgroup events exist on this CPU, then we need
2841 * to check if we have to switch in PMU state.
2842 * cgroup event are system-wide mode only
2843 */
4a32fea9 2844 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2845 perf_cgroup_sched_in(prev, task);
d010b332
SE
2846
2847 /* check for system-wide branch_stack events */
4a32fea9 2848 if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
d010b332 2849 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2850}
2851
abd50713
PZ
2852static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2853{
2854 u64 frequency = event->attr.sample_freq;
2855 u64 sec = NSEC_PER_SEC;
2856 u64 divisor, dividend;
2857
2858 int count_fls, nsec_fls, frequency_fls, sec_fls;
2859
2860 count_fls = fls64(count);
2861 nsec_fls = fls64(nsec);
2862 frequency_fls = fls64(frequency);
2863 sec_fls = 30;
2864
2865 /*
2866 * We got @count in @nsec, with a target of sample_freq HZ
2867 * the target period becomes:
2868 *
2869 * @count * 10^9
2870 * period = -------------------
2871 * @nsec * sample_freq
2872 *
2873 */
2874
2875 /*
2876 * Reduce accuracy by one bit such that @a and @b converge
2877 * to a similar magnitude.
2878 */
fe4b04fa 2879#define REDUCE_FLS(a, b) \
abd50713
PZ
2880do { \
2881 if (a##_fls > b##_fls) { \
2882 a >>= 1; \
2883 a##_fls--; \
2884 } else { \
2885 b >>= 1; \
2886 b##_fls--; \
2887 } \
2888} while (0)
2889
2890 /*
2891 * Reduce accuracy until either term fits in a u64, then proceed with
2892 * the other, so that finally we can do a u64/u64 division.
2893 */
2894 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2895 REDUCE_FLS(nsec, frequency);
2896 REDUCE_FLS(sec, count);
2897 }
2898
2899 if (count_fls + sec_fls > 64) {
2900 divisor = nsec * frequency;
2901
2902 while (count_fls + sec_fls > 64) {
2903 REDUCE_FLS(count, sec);
2904 divisor >>= 1;
2905 }
2906
2907 dividend = count * sec;
2908 } else {
2909 dividend = count * sec;
2910
2911 while (nsec_fls + frequency_fls > 64) {
2912 REDUCE_FLS(nsec, frequency);
2913 dividend >>= 1;
2914 }
2915
2916 divisor = nsec * frequency;
2917 }
2918
f6ab91ad
PZ
2919 if (!divisor)
2920 return dividend;
2921
abd50713
PZ
2922 return div64_u64(dividend, divisor);
2923}
2924
e050e3f0
SE
2925static DEFINE_PER_CPU(int, perf_throttled_count);
2926static DEFINE_PER_CPU(u64, perf_throttled_seq);
2927
f39d47ff 2928static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2929{
cdd6c482 2930 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2931 s64 period, sample_period;
bd2b5b12
PZ
2932 s64 delta;
2933
abd50713 2934 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2935
2936 delta = (s64)(period - hwc->sample_period);
2937 delta = (delta + 7) / 8; /* low pass filter */
2938
2939 sample_period = hwc->sample_period + delta;
2940
2941 if (!sample_period)
2942 sample_period = 1;
2943
bd2b5b12 2944 hwc->sample_period = sample_period;
abd50713 2945
e7850595 2946 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2947 if (disable)
2948 event->pmu->stop(event, PERF_EF_UPDATE);
2949
e7850595 2950 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2951
2952 if (disable)
2953 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2954 }
bd2b5b12
PZ
2955}
2956
e050e3f0
SE
2957/*
2958 * combine freq adjustment with unthrottling to avoid two passes over the
2959 * events. At the same time, make sure, having freq events does not change
2960 * the rate of unthrottling as that would introduce bias.
2961 */
2962static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2963 int needs_unthr)
60db5e09 2964{
cdd6c482
IM
2965 struct perf_event *event;
2966 struct hw_perf_event *hwc;
e050e3f0 2967 u64 now, period = TICK_NSEC;
abd50713 2968 s64 delta;
60db5e09 2969
e050e3f0
SE
2970 /*
2971 * only need to iterate over all events iff:
2972 * - context have events in frequency mode (needs freq adjust)
2973 * - there are events to unthrottle on this cpu
2974 */
2975 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2976 return;
2977
e050e3f0 2978 raw_spin_lock(&ctx->lock);
f39d47ff 2979 perf_pmu_disable(ctx->pmu);
e050e3f0 2980
03541f8b 2981 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2982 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2983 continue;
2984
5632ab12 2985 if (!event_filter_match(event))
5d27c23d
PZ
2986 continue;
2987
44377277
AS
2988 perf_pmu_disable(event->pmu);
2989
cdd6c482 2990 hwc = &event->hw;
6a24ed6c 2991
ae23bff1 2992 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2993 hwc->interrupts = 0;
cdd6c482 2994 perf_log_throttle(event, 1);
a4eaf7f1 2995 event->pmu->start(event, 0);
a78ac325
PZ
2996 }
2997
cdd6c482 2998 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2999 goto next;
60db5e09 3000
e050e3f0
SE
3001 /*
3002 * stop the event and update event->count
3003 */
3004 event->pmu->stop(event, PERF_EF_UPDATE);
3005
e7850595 3006 now = local64_read(&event->count);
abd50713
PZ
3007 delta = now - hwc->freq_count_stamp;
3008 hwc->freq_count_stamp = now;
60db5e09 3009
e050e3f0
SE
3010 /*
3011 * restart the event
3012 * reload only if value has changed
f39d47ff
SE
3013 * we have stopped the event so tell that
3014 * to perf_adjust_period() to avoid stopping it
3015 * twice.
e050e3f0 3016 */
abd50713 3017 if (delta > 0)
f39d47ff 3018 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3019
3020 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3021 next:
3022 perf_pmu_enable(event->pmu);
60db5e09 3023 }
e050e3f0 3024
f39d47ff 3025 perf_pmu_enable(ctx->pmu);
e050e3f0 3026 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3027}
3028
235c7fc7 3029/*
cdd6c482 3030 * Round-robin a context's events:
235c7fc7 3031 */
cdd6c482 3032static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3033{
dddd3379
TG
3034 /*
3035 * Rotate the first entry last of non-pinned groups. Rotation might be
3036 * disabled by the inheritance code.
3037 */
3038 if (!ctx->rotate_disable)
3039 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3040}
3041
9e630205 3042static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3043{
8dc85d54 3044 struct perf_event_context *ctx = NULL;
2fde4f94 3045 int rotate = 0;
7fc23a53 3046
b5ab4cd5 3047 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3048 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3049 rotate = 1;
3050 }
235c7fc7 3051
8dc85d54 3052 ctx = cpuctx->task_ctx;
b5ab4cd5 3053 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3054 if (ctx->nr_events != ctx->nr_active)
3055 rotate = 1;
3056 }
9717e6cd 3057
e050e3f0 3058 if (!rotate)
0f5a2601
PZ
3059 goto done;
3060
facc4307 3061 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3062 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3063
e050e3f0
SE
3064 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3065 if (ctx)
3066 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3067
e050e3f0
SE
3068 rotate_ctx(&cpuctx->ctx);
3069 if (ctx)
3070 rotate_ctx(ctx);
235c7fc7 3071
e050e3f0 3072 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3073
0f5a2601
PZ
3074 perf_pmu_enable(cpuctx->ctx.pmu);
3075 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3076done:
9e630205
SE
3077
3078 return rotate;
e9d2b064
PZ
3079}
3080
026249ef
FW
3081#ifdef CONFIG_NO_HZ_FULL
3082bool perf_event_can_stop_tick(void)
3083{
948b26b6 3084 if (atomic_read(&nr_freq_events) ||
d84153d6 3085 __this_cpu_read(perf_throttled_count))
026249ef 3086 return false;
d84153d6
FW
3087 else
3088 return true;
026249ef
FW
3089}
3090#endif
3091
e9d2b064
PZ
3092void perf_event_task_tick(void)
3093{
2fde4f94
MR
3094 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3095 struct perf_event_context *ctx, *tmp;
e050e3f0 3096 int throttled;
b5ab4cd5 3097
e9d2b064
PZ
3098 WARN_ON(!irqs_disabled());
3099
e050e3f0
SE
3100 __this_cpu_inc(perf_throttled_seq);
3101 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3102
2fde4f94 3103 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3104 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3105}
3106
889ff015
FW
3107static int event_enable_on_exec(struct perf_event *event,
3108 struct perf_event_context *ctx)
3109{
3110 if (!event->attr.enable_on_exec)
3111 return 0;
3112
3113 event->attr.enable_on_exec = 0;
3114 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3115 return 0;
3116
1d9b482e 3117 __perf_event_mark_enabled(event);
889ff015
FW
3118
3119 return 1;
3120}
3121
57e7986e 3122/*
cdd6c482 3123 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3124 * This expects task == current.
3125 */
8dc85d54 3126static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3127{
211de6eb 3128 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3129 struct perf_event *event;
57e7986e
PM
3130 unsigned long flags;
3131 int enabled = 0;
889ff015 3132 int ret;
57e7986e
PM
3133
3134 local_irq_save(flags);
cdd6c482 3135 if (!ctx || !ctx->nr_events)
57e7986e
PM
3136 goto out;
3137
e566b76e
SE
3138 /*
3139 * We must ctxsw out cgroup events to avoid conflict
3140 * when invoking perf_task_event_sched_in() later on
3141 * in this function. Otherwise we end up trying to
3142 * ctxswin cgroup events which are already scheduled
3143 * in.
3144 */
a8d757ef 3145 perf_cgroup_sched_out(current, NULL);
57e7986e 3146
e625cce1 3147 raw_spin_lock(&ctx->lock);
04dc2dbb 3148 task_ctx_sched_out(ctx);
57e7986e 3149
b79387ef 3150 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3151 ret = event_enable_on_exec(event, ctx);
3152 if (ret)
3153 enabled = 1;
57e7986e
PM
3154 }
3155
3156 /*
cdd6c482 3157 * Unclone this context if we enabled any event.
57e7986e 3158 */
71a851b4 3159 if (enabled)
211de6eb 3160 clone_ctx = unclone_ctx(ctx);
57e7986e 3161
e625cce1 3162 raw_spin_unlock(&ctx->lock);
57e7986e 3163
e566b76e
SE
3164 /*
3165 * Also calls ctxswin for cgroup events, if any:
3166 */
e5d1367f 3167 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3168out:
57e7986e 3169 local_irq_restore(flags);
211de6eb
PZ
3170
3171 if (clone_ctx)
3172 put_ctx(clone_ctx);
57e7986e
PM
3173}
3174
e041e328
PZ
3175void perf_event_exec(void)
3176{
3177 struct perf_event_context *ctx;
3178 int ctxn;
3179
3180 rcu_read_lock();
3181 for_each_task_context_nr(ctxn) {
3182 ctx = current->perf_event_ctxp[ctxn];
3183 if (!ctx)
3184 continue;
3185
3186 perf_event_enable_on_exec(ctx);
3187 }
3188 rcu_read_unlock();
3189}
3190
0793a61d 3191/*
cdd6c482 3192 * Cross CPU call to read the hardware event
0793a61d 3193 */
cdd6c482 3194static void __perf_event_read(void *info)
0793a61d 3195{
cdd6c482
IM
3196 struct perf_event *event = info;
3197 struct perf_event_context *ctx = event->ctx;
108b02cf 3198 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3199
e1ac3614
PM
3200 /*
3201 * If this is a task context, we need to check whether it is
3202 * the current task context of this cpu. If not it has been
3203 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3204 * event->count would have been updated to a recent sample
3205 * when the event was scheduled out.
e1ac3614
PM
3206 */
3207 if (ctx->task && cpuctx->task_ctx != ctx)
3208 return;
3209
e625cce1 3210 raw_spin_lock(&ctx->lock);
e5d1367f 3211 if (ctx->is_active) {
542e72fc 3212 update_context_time(ctx);
e5d1367f
SE
3213 update_cgrp_time_from_event(event);
3214 }
cdd6c482 3215 update_event_times(event);
542e72fc
PZ
3216 if (event->state == PERF_EVENT_STATE_ACTIVE)
3217 event->pmu->read(event);
e625cce1 3218 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3219}
3220
b5e58793
PZ
3221static inline u64 perf_event_count(struct perf_event *event)
3222{
e7850595 3223 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3224}
3225
cdd6c482 3226static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3227{
3228 /*
cdd6c482
IM
3229 * If event is enabled and currently active on a CPU, update the
3230 * value in the event structure:
0793a61d 3231 */
cdd6c482
IM
3232 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3233 smp_call_function_single(event->oncpu,
3234 __perf_event_read, event, 1);
3235 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3236 struct perf_event_context *ctx = event->ctx;
3237 unsigned long flags;
3238
e625cce1 3239 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3240 /*
3241 * may read while context is not active
3242 * (e.g., thread is blocked), in that case
3243 * we cannot update context time
3244 */
e5d1367f 3245 if (ctx->is_active) {
c530ccd9 3246 update_context_time(ctx);
e5d1367f
SE
3247 update_cgrp_time_from_event(event);
3248 }
cdd6c482 3249 update_event_times(event);
e625cce1 3250 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3251 }
3252
b5e58793 3253 return perf_event_count(event);
0793a61d
TG
3254}
3255
a63eaf34 3256/*
cdd6c482 3257 * Initialize the perf_event context in a task_struct:
a63eaf34 3258 */
eb184479 3259static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3260{
e625cce1 3261 raw_spin_lock_init(&ctx->lock);
a63eaf34 3262 mutex_init(&ctx->mutex);
2fde4f94 3263 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3264 INIT_LIST_HEAD(&ctx->pinned_groups);
3265 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3266 INIT_LIST_HEAD(&ctx->event_list);
3267 atomic_set(&ctx->refcount, 1);
fadfe7be 3268 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3269}
3270
3271static struct perf_event_context *
3272alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3273{
3274 struct perf_event_context *ctx;
3275
3276 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3277 if (!ctx)
3278 return NULL;
3279
3280 __perf_event_init_context(ctx);
3281 if (task) {
3282 ctx->task = task;
3283 get_task_struct(task);
0793a61d 3284 }
eb184479
PZ
3285 ctx->pmu = pmu;
3286
3287 return ctx;
a63eaf34
PM
3288}
3289
2ebd4ffb
MH
3290static struct task_struct *
3291find_lively_task_by_vpid(pid_t vpid)
3292{
3293 struct task_struct *task;
3294 int err;
0793a61d
TG
3295
3296 rcu_read_lock();
2ebd4ffb 3297 if (!vpid)
0793a61d
TG
3298 task = current;
3299 else
2ebd4ffb 3300 task = find_task_by_vpid(vpid);
0793a61d
TG
3301 if (task)
3302 get_task_struct(task);
3303 rcu_read_unlock();
3304
3305 if (!task)
3306 return ERR_PTR(-ESRCH);
3307
0793a61d 3308 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3309 err = -EACCES;
3310 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3311 goto errout;
3312
2ebd4ffb
MH
3313 return task;
3314errout:
3315 put_task_struct(task);
3316 return ERR_PTR(err);
3317
3318}
3319
fe4b04fa
PZ
3320/*
3321 * Returns a matching context with refcount and pincount.
3322 */
108b02cf 3323static struct perf_event_context *
38a81da2 3324find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3325{
211de6eb 3326 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3327 struct perf_cpu_context *cpuctx;
25346b93 3328 unsigned long flags;
8dc85d54 3329 int ctxn, err;
0793a61d 3330
22a4ec72 3331 if (!task) {
cdd6c482 3332 /* Must be root to operate on a CPU event: */
0764771d 3333 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3334 return ERR_PTR(-EACCES);
3335
0793a61d 3336 /*
cdd6c482 3337 * We could be clever and allow to attach a event to an
0793a61d
TG
3338 * offline CPU and activate it when the CPU comes up, but
3339 * that's for later.
3340 */
f6325e30 3341 if (!cpu_online(cpu))
0793a61d
TG
3342 return ERR_PTR(-ENODEV);
3343
108b02cf 3344 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3345 ctx = &cpuctx->ctx;
c93f7669 3346 get_ctx(ctx);
fe4b04fa 3347 ++ctx->pin_count;
0793a61d 3348
0793a61d
TG
3349 return ctx;
3350 }
3351
8dc85d54
PZ
3352 err = -EINVAL;
3353 ctxn = pmu->task_ctx_nr;
3354 if (ctxn < 0)
3355 goto errout;
3356
9ed6060d 3357retry:
8dc85d54 3358 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3359 if (ctx) {
211de6eb 3360 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3361 ++ctx->pin_count;
e625cce1 3362 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3363
3364 if (clone_ctx)
3365 put_ctx(clone_ctx);
9137fb28 3366 } else {
eb184479 3367 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3368 err = -ENOMEM;
3369 if (!ctx)
3370 goto errout;
eb184479 3371
dbe08d82
ON
3372 err = 0;
3373 mutex_lock(&task->perf_event_mutex);
3374 /*
3375 * If it has already passed perf_event_exit_task().
3376 * we must see PF_EXITING, it takes this mutex too.
3377 */
3378 if (task->flags & PF_EXITING)
3379 err = -ESRCH;
3380 else if (task->perf_event_ctxp[ctxn])
3381 err = -EAGAIN;
fe4b04fa 3382 else {
9137fb28 3383 get_ctx(ctx);
fe4b04fa 3384 ++ctx->pin_count;
dbe08d82 3385 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3386 }
dbe08d82
ON
3387 mutex_unlock(&task->perf_event_mutex);
3388
3389 if (unlikely(err)) {
9137fb28 3390 put_ctx(ctx);
dbe08d82
ON
3391
3392 if (err == -EAGAIN)
3393 goto retry;
3394 goto errout;
a63eaf34
PM
3395 }
3396 }
3397
0793a61d 3398 return ctx;
c93f7669 3399
9ed6060d 3400errout:
c93f7669 3401 return ERR_PTR(err);
0793a61d
TG
3402}
3403
6fb2915d
LZ
3404static void perf_event_free_filter(struct perf_event *event);
3405
cdd6c482 3406static void free_event_rcu(struct rcu_head *head)
592903cd 3407{
cdd6c482 3408 struct perf_event *event;
592903cd 3409
cdd6c482
IM
3410 event = container_of(head, struct perf_event, rcu_head);
3411 if (event->ns)
3412 put_pid_ns(event->ns);
6fb2915d 3413 perf_event_free_filter(event);
cdd6c482 3414 kfree(event);
592903cd
PZ
3415}
3416
76369139 3417static void ring_buffer_put(struct ring_buffer *rb);
b69cf536
PZ
3418static void ring_buffer_attach(struct perf_event *event,
3419 struct ring_buffer *rb);
925d519a 3420
4beb31f3 3421static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3422{
4beb31f3
FW
3423 if (event->parent)
3424 return;
3425
3426 if (has_branch_stack(event)) {
3427 if (!(event->attach_state & PERF_ATTACH_TASK))
3428 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3429 }
3430 if (is_cgroup_event(event))
3431 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3432}
925d519a 3433
4beb31f3
FW
3434static void unaccount_event(struct perf_event *event)
3435{
3436 if (event->parent)
3437 return;
3438
3439 if (event->attach_state & PERF_ATTACH_TASK)
3440 static_key_slow_dec_deferred(&perf_sched_events);
3441 if (event->attr.mmap || event->attr.mmap_data)
3442 atomic_dec(&nr_mmap_events);
3443 if (event->attr.comm)
3444 atomic_dec(&nr_comm_events);
3445 if (event->attr.task)
3446 atomic_dec(&nr_task_events);
948b26b6
FW
3447 if (event->attr.freq)
3448 atomic_dec(&nr_freq_events);
4beb31f3
FW
3449 if (is_cgroup_event(event))
3450 static_key_slow_dec_deferred(&perf_sched_events);
3451 if (has_branch_stack(event))
3452 static_key_slow_dec_deferred(&perf_sched_events);
3453
3454 unaccount_event_cpu(event, event->cpu);
3455}
925d519a 3456
766d6c07
FW
3457static void __free_event(struct perf_event *event)
3458{
cdd6c482 3459 if (!event->parent) {
927c7a9e
FW
3460 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3461 put_callchain_buffers();
f344011c 3462 }
9ee318a7 3463
766d6c07
FW
3464 if (event->destroy)
3465 event->destroy(event);
3466
3467 if (event->ctx)
3468 put_ctx(event->ctx);
3469
c464c76e
YZ
3470 if (event->pmu)
3471 module_put(event->pmu->module);
3472
766d6c07
FW
3473 call_rcu(&event->rcu_head, free_event_rcu);
3474}
683ede43
PZ
3475
3476static void _free_event(struct perf_event *event)
f1600952 3477{
e360adbe 3478 irq_work_sync(&event->pending);
925d519a 3479
4beb31f3 3480 unaccount_event(event);
9ee318a7 3481
76369139 3482 if (event->rb) {
9bb5d40c
PZ
3483 /*
3484 * Can happen when we close an event with re-directed output.
3485 *
3486 * Since we have a 0 refcount, perf_mmap_close() will skip
3487 * over us; possibly making our ring_buffer_put() the last.
3488 */
3489 mutex_lock(&event->mmap_mutex);
b69cf536 3490 ring_buffer_attach(event, NULL);
9bb5d40c 3491 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3492 }
3493
e5d1367f
SE
3494 if (is_cgroup_event(event))
3495 perf_detach_cgroup(event);
3496
766d6c07 3497 __free_event(event);
f1600952
PZ
3498}
3499
683ede43
PZ
3500/*
3501 * Used to free events which have a known refcount of 1, such as in error paths
3502 * where the event isn't exposed yet and inherited events.
3503 */
3504static void free_event(struct perf_event *event)
0793a61d 3505{
683ede43
PZ
3506 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3507 "unexpected event refcount: %ld; ptr=%p\n",
3508 atomic_long_read(&event->refcount), event)) {
3509 /* leak to avoid use-after-free */
3510 return;
3511 }
0793a61d 3512
683ede43 3513 _free_event(event);
0793a61d
TG
3514}
3515
a66a3052 3516/*
f8697762 3517 * Remove user event from the owner task.
a66a3052 3518 */
f8697762 3519static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3520{
8882135b 3521 struct task_struct *owner;
fb0459d7 3522
8882135b
PZ
3523 rcu_read_lock();
3524 owner = ACCESS_ONCE(event->owner);
3525 /*
3526 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3527 * !owner it means the list deletion is complete and we can indeed
3528 * free this event, otherwise we need to serialize on
3529 * owner->perf_event_mutex.
3530 */
3531 smp_read_barrier_depends();
3532 if (owner) {
3533 /*
3534 * Since delayed_put_task_struct() also drops the last
3535 * task reference we can safely take a new reference
3536 * while holding the rcu_read_lock().
3537 */
3538 get_task_struct(owner);
3539 }
3540 rcu_read_unlock();
3541
3542 if (owner) {
f63a8daa
PZ
3543 /*
3544 * If we're here through perf_event_exit_task() we're already
3545 * holding ctx->mutex which would be an inversion wrt. the
3546 * normal lock order.
3547 *
3548 * However we can safely take this lock because its the child
3549 * ctx->mutex.
3550 */
3551 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3552
8882135b
PZ
3553 /*
3554 * We have to re-check the event->owner field, if it is cleared
3555 * we raced with perf_event_exit_task(), acquiring the mutex
3556 * ensured they're done, and we can proceed with freeing the
3557 * event.
3558 */
3559 if (event->owner)
3560 list_del_init(&event->owner_entry);
3561 mutex_unlock(&owner->perf_event_mutex);
3562 put_task_struct(owner);
3563 }
f8697762
JO
3564}
3565
3566/*
3567 * Called when the last reference to the file is gone.
3568 */
3569static void put_event(struct perf_event *event)
3570{
a83fe28e 3571 struct perf_event_context *ctx;
f8697762
JO
3572
3573 if (!atomic_long_dec_and_test(&event->refcount))
3574 return;
3575
3576 if (!is_kernel_event(event))
3577 perf_remove_from_owner(event);
8882135b 3578
683ede43
PZ
3579 /*
3580 * There are two ways this annotation is useful:
3581 *
3582 * 1) there is a lock recursion from perf_event_exit_task
3583 * see the comment there.
3584 *
3585 * 2) there is a lock-inversion with mmap_sem through
3586 * perf_event_read_group(), which takes faults while
3587 * holding ctx->mutex, however this is called after
3588 * the last filedesc died, so there is no possibility
3589 * to trigger the AB-BA case.
3590 */
a83fe28e
PZ
3591 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3592 WARN_ON_ONCE(ctx->parent_ctx);
683ede43
PZ
3593 perf_remove_from_context(event, true);
3594 mutex_unlock(&ctx->mutex);
3595
3596 _free_event(event);
a6fa941d
AV
3597}
3598
683ede43
PZ
3599int perf_event_release_kernel(struct perf_event *event)
3600{
3601 put_event(event);
3602 return 0;
3603}
3604EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3605
a6fa941d
AV
3606static int perf_release(struct inode *inode, struct file *file)
3607{
3608 put_event(file->private_data);
3609 return 0;
fb0459d7 3610}
fb0459d7 3611
fadfe7be
JO
3612/*
3613 * Remove all orphanes events from the context.
3614 */
3615static void orphans_remove_work(struct work_struct *work)
3616{
3617 struct perf_event_context *ctx;
3618 struct perf_event *event, *tmp;
3619
3620 ctx = container_of(work, struct perf_event_context,
3621 orphans_remove.work);
3622
3623 mutex_lock(&ctx->mutex);
3624 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3625 struct perf_event *parent_event = event->parent;
3626
3627 if (!is_orphaned_child(event))
3628 continue;
3629
3630 perf_remove_from_context(event, true);
3631
3632 mutex_lock(&parent_event->child_mutex);
3633 list_del_init(&event->child_list);
3634 mutex_unlock(&parent_event->child_mutex);
3635
3636 free_event(event);
3637 put_event(parent_event);
3638 }
3639
3640 raw_spin_lock_irq(&ctx->lock);
3641 ctx->orphans_remove_sched = false;
3642 raw_spin_unlock_irq(&ctx->lock);
3643 mutex_unlock(&ctx->mutex);
3644
3645 put_ctx(ctx);
3646}
3647
59ed446f 3648u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3649{
cdd6c482 3650 struct perf_event *child;
e53c0994
PZ
3651 u64 total = 0;
3652
59ed446f
PZ
3653 *enabled = 0;
3654 *running = 0;
3655
6f10581a 3656 mutex_lock(&event->child_mutex);
cdd6c482 3657 total += perf_event_read(event);
59ed446f
PZ
3658 *enabled += event->total_time_enabled +
3659 atomic64_read(&event->child_total_time_enabled);
3660 *running += event->total_time_running +
3661 atomic64_read(&event->child_total_time_running);
3662
3663 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3664 total += perf_event_read(child);
59ed446f
PZ
3665 *enabled += child->total_time_enabled;
3666 *running += child->total_time_running;
3667 }
6f10581a 3668 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3669
3670 return total;
3671}
fb0459d7 3672EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3673
cdd6c482 3674static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3675 u64 read_format, char __user *buf)
3676{
cdd6c482 3677 struct perf_event *leader = event->group_leader, *sub;
6f10581a 3678 struct perf_event_context *ctx = leader->ctx;
f63a8daa 3679 int n = 0, size = 0, ret;
59ed446f 3680 u64 count, enabled, running;
f63a8daa
PZ
3681 u64 values[5];
3682
3683 lockdep_assert_held(&ctx->mutex);
abf4868b 3684
59ed446f 3685 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3686
3687 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3688 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3689 values[n++] = enabled;
3690 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3691 values[n++] = running;
abf4868b
PZ
3692 values[n++] = count;
3693 if (read_format & PERF_FORMAT_ID)
3694 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3695
3696 size = n * sizeof(u64);
3697
3698 if (copy_to_user(buf, values, size))
f63a8daa 3699 return -EFAULT;
3dab77fb 3700
6f10581a 3701 ret = size;
3dab77fb 3702
65abc865 3703 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3704 n = 0;
3dab77fb 3705
59ed446f 3706 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3707 if (read_format & PERF_FORMAT_ID)
3708 values[n++] = primary_event_id(sub);
3709
3710 size = n * sizeof(u64);
3711
184d3da8 3712 if (copy_to_user(buf + ret, values, size)) {
f63a8daa 3713 return -EFAULT;
6f10581a 3714 }
abf4868b
PZ
3715
3716 ret += size;
3dab77fb
PZ
3717 }
3718
abf4868b 3719 return ret;
3dab77fb
PZ
3720}
3721
cdd6c482 3722static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3723 u64 read_format, char __user *buf)
3724{
59ed446f 3725 u64 enabled, running;
3dab77fb
PZ
3726 u64 values[4];
3727 int n = 0;
3728
59ed446f
PZ
3729 values[n++] = perf_event_read_value(event, &enabled, &running);
3730 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3731 values[n++] = enabled;
3732 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3733 values[n++] = running;
3dab77fb 3734 if (read_format & PERF_FORMAT_ID)
cdd6c482 3735 values[n++] = primary_event_id(event);
3dab77fb
PZ
3736
3737 if (copy_to_user(buf, values, n * sizeof(u64)))
3738 return -EFAULT;
3739
3740 return n * sizeof(u64);
3741}
3742
dc633982
JO
3743static bool is_event_hup(struct perf_event *event)
3744{
3745 bool no_children;
3746
3747 if (event->state != PERF_EVENT_STATE_EXIT)
3748 return false;
3749
3750 mutex_lock(&event->child_mutex);
3751 no_children = list_empty(&event->child_list);
3752 mutex_unlock(&event->child_mutex);
3753 return no_children;
3754}
3755
0793a61d 3756/*
cdd6c482 3757 * Read the performance event - simple non blocking version for now
0793a61d
TG
3758 */
3759static ssize_t
cdd6c482 3760perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3761{
cdd6c482 3762 u64 read_format = event->attr.read_format;
3dab77fb 3763 int ret;
0793a61d 3764
3b6f9e5c 3765 /*
cdd6c482 3766 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3767 * error state (i.e. because it was pinned but it couldn't be
3768 * scheduled on to the CPU at some point).
3769 */
cdd6c482 3770 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3771 return 0;
3772
c320c7b7 3773 if (count < event->read_size)
3dab77fb
PZ
3774 return -ENOSPC;
3775
cdd6c482 3776 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3777 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3778 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3779 else
cdd6c482 3780 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3781
3dab77fb 3782 return ret;
0793a61d
TG
3783}
3784
0793a61d
TG
3785static ssize_t
3786perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3787{
cdd6c482 3788 struct perf_event *event = file->private_data;
f63a8daa
PZ
3789 struct perf_event_context *ctx;
3790 int ret;
0793a61d 3791
f63a8daa
PZ
3792 ctx = perf_event_ctx_lock(event);
3793 ret = perf_read_hw(event, buf, count);
3794 perf_event_ctx_unlock(event, ctx);
3795
3796 return ret;
0793a61d
TG
3797}
3798
3799static unsigned int perf_poll(struct file *file, poll_table *wait)
3800{
cdd6c482 3801 struct perf_event *event = file->private_data;
76369139 3802 struct ring_buffer *rb;
61b67684 3803 unsigned int events = POLLHUP;
c7138f37 3804
e708d7ad 3805 poll_wait(file, &event->waitq, wait);
179033b3 3806
dc633982 3807 if (is_event_hup(event))
179033b3 3808 return events;
c7138f37 3809
10c6db11 3810 /*
9bb5d40c
PZ
3811 * Pin the event->rb by taking event->mmap_mutex; otherwise
3812 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3813 */
3814 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3815 rb = event->rb;
3816 if (rb)
76369139 3817 events = atomic_xchg(&rb->poll, 0);
10c6db11 3818 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
3819 return events;
3820}
3821
f63a8daa 3822static void _perf_event_reset(struct perf_event *event)
6de6a7b9 3823{
cdd6c482 3824 (void)perf_event_read(event);
e7850595 3825 local64_set(&event->count, 0);
cdd6c482 3826 perf_event_update_userpage(event);
3df5edad
PZ
3827}
3828
c93f7669 3829/*
cdd6c482
IM
3830 * Holding the top-level event's child_mutex means that any
3831 * descendant process that has inherited this event will block
3832 * in sync_child_event if it goes to exit, thus satisfying the
3833 * task existence requirements of perf_event_enable/disable.
c93f7669 3834 */
cdd6c482
IM
3835static void perf_event_for_each_child(struct perf_event *event,
3836 void (*func)(struct perf_event *))
3df5edad 3837{
cdd6c482 3838 struct perf_event *child;
3df5edad 3839
cdd6c482 3840 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 3841
cdd6c482
IM
3842 mutex_lock(&event->child_mutex);
3843 func(event);
3844 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3845 func(child);
cdd6c482 3846 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3847}
3848
cdd6c482
IM
3849static void perf_event_for_each(struct perf_event *event,
3850 void (*func)(struct perf_event *))
3df5edad 3851{
cdd6c482
IM
3852 struct perf_event_context *ctx = event->ctx;
3853 struct perf_event *sibling;
3df5edad 3854
f63a8daa
PZ
3855 lockdep_assert_held(&ctx->mutex);
3856
cdd6c482 3857 event = event->group_leader;
75f937f2 3858
cdd6c482 3859 perf_event_for_each_child(event, func);
cdd6c482 3860 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3861 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
3862}
3863
cdd6c482 3864static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3865{
cdd6c482 3866 struct perf_event_context *ctx = event->ctx;
bad7192b 3867 int ret = 0, active;
08247e31
PZ
3868 u64 value;
3869
6c7e550f 3870 if (!is_sampling_event(event))
08247e31
PZ
3871 return -EINVAL;
3872
ad0cf347 3873 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3874 return -EFAULT;
3875
3876 if (!value)
3877 return -EINVAL;
3878
e625cce1 3879 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3880 if (event->attr.freq) {
3881 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3882 ret = -EINVAL;
3883 goto unlock;
3884 }
3885
cdd6c482 3886 event->attr.sample_freq = value;
08247e31 3887 } else {
cdd6c482
IM
3888 event->attr.sample_period = value;
3889 event->hw.sample_period = value;
08247e31 3890 }
bad7192b
PZ
3891
3892 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3893 if (active) {
3894 perf_pmu_disable(ctx->pmu);
3895 event->pmu->stop(event, PERF_EF_UPDATE);
3896 }
3897
3898 local64_set(&event->hw.period_left, 0);
3899
3900 if (active) {
3901 event->pmu->start(event, PERF_EF_RELOAD);
3902 perf_pmu_enable(ctx->pmu);
3903 }
3904
08247e31 3905unlock:
e625cce1 3906 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3907
3908 return ret;
3909}
3910
ac9721f3
PZ
3911static const struct file_operations perf_fops;
3912
2903ff01 3913static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3914{
2903ff01
AV
3915 struct fd f = fdget(fd);
3916 if (!f.file)
3917 return -EBADF;
ac9721f3 3918
2903ff01
AV
3919 if (f.file->f_op != &perf_fops) {
3920 fdput(f);
3921 return -EBADF;
ac9721f3 3922 }
2903ff01
AV
3923 *p = f;
3924 return 0;
ac9721f3
PZ
3925}
3926
3927static int perf_event_set_output(struct perf_event *event,
3928 struct perf_event *output_event);
6fb2915d 3929static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3930
f63a8daa 3931static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 3932{
cdd6c482 3933 void (*func)(struct perf_event *);
3df5edad 3934 u32 flags = arg;
d859e29f
PM
3935
3936 switch (cmd) {
cdd6c482 3937 case PERF_EVENT_IOC_ENABLE:
f63a8daa 3938 func = _perf_event_enable;
d859e29f 3939 break;
cdd6c482 3940 case PERF_EVENT_IOC_DISABLE:
f63a8daa 3941 func = _perf_event_disable;
79f14641 3942 break;
cdd6c482 3943 case PERF_EVENT_IOC_RESET:
f63a8daa 3944 func = _perf_event_reset;
6de6a7b9 3945 break;
3df5edad 3946
cdd6c482 3947 case PERF_EVENT_IOC_REFRESH:
f63a8daa 3948 return _perf_event_refresh(event, arg);
08247e31 3949
cdd6c482
IM
3950 case PERF_EVENT_IOC_PERIOD:
3951 return perf_event_period(event, (u64 __user *)arg);
08247e31 3952
cf4957f1
JO
3953 case PERF_EVENT_IOC_ID:
3954 {
3955 u64 id = primary_event_id(event);
3956
3957 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3958 return -EFAULT;
3959 return 0;
3960 }
3961
cdd6c482 3962 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3963 {
ac9721f3 3964 int ret;
ac9721f3 3965 if (arg != -1) {
2903ff01
AV
3966 struct perf_event *output_event;
3967 struct fd output;
3968 ret = perf_fget_light(arg, &output);
3969 if (ret)
3970 return ret;
3971 output_event = output.file->private_data;
3972 ret = perf_event_set_output(event, output_event);
3973 fdput(output);
3974 } else {
3975 ret = perf_event_set_output(event, NULL);
ac9721f3 3976 }
ac9721f3
PZ
3977 return ret;
3978 }
a4be7c27 3979
6fb2915d
LZ
3980 case PERF_EVENT_IOC_SET_FILTER:
3981 return perf_event_set_filter(event, (void __user *)arg);
3982
d859e29f 3983 default:
3df5edad 3984 return -ENOTTY;
d859e29f 3985 }
3df5edad
PZ
3986
3987 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3988 perf_event_for_each(event, func);
3df5edad 3989 else
cdd6c482 3990 perf_event_for_each_child(event, func);
3df5edad
PZ
3991
3992 return 0;
d859e29f
PM
3993}
3994
f63a8daa
PZ
3995static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3996{
3997 struct perf_event *event = file->private_data;
3998 struct perf_event_context *ctx;
3999 long ret;
4000
4001 ctx = perf_event_ctx_lock(event);
4002 ret = _perf_ioctl(event, cmd, arg);
4003 perf_event_ctx_unlock(event, ctx);
4004
4005 return ret;
4006}
4007
b3f20785
PM
4008#ifdef CONFIG_COMPAT
4009static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4010 unsigned long arg)
4011{
4012 switch (_IOC_NR(cmd)) {
4013 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4014 case _IOC_NR(PERF_EVENT_IOC_ID):
4015 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4016 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4017 cmd &= ~IOCSIZE_MASK;
4018 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4019 }
4020 break;
4021 }
4022 return perf_ioctl(file, cmd, arg);
4023}
4024#else
4025# define perf_compat_ioctl NULL
4026#endif
4027
cdd6c482 4028int perf_event_task_enable(void)
771d7cde 4029{
f63a8daa 4030 struct perf_event_context *ctx;
cdd6c482 4031 struct perf_event *event;
771d7cde 4032
cdd6c482 4033 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4034 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4035 ctx = perf_event_ctx_lock(event);
4036 perf_event_for_each_child(event, _perf_event_enable);
4037 perf_event_ctx_unlock(event, ctx);
4038 }
cdd6c482 4039 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4040
4041 return 0;
4042}
4043
cdd6c482 4044int perf_event_task_disable(void)
771d7cde 4045{
f63a8daa 4046 struct perf_event_context *ctx;
cdd6c482 4047 struct perf_event *event;
771d7cde 4048
cdd6c482 4049 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4050 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4051 ctx = perf_event_ctx_lock(event);
4052 perf_event_for_each_child(event, _perf_event_disable);
4053 perf_event_ctx_unlock(event, ctx);
4054 }
cdd6c482 4055 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4056
4057 return 0;
4058}
4059
cdd6c482 4060static int perf_event_index(struct perf_event *event)
194002b2 4061{
a4eaf7f1
PZ
4062 if (event->hw.state & PERF_HES_STOPPED)
4063 return 0;
4064
cdd6c482 4065 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4066 return 0;
4067
35edc2a5 4068 return event->pmu->event_idx(event);
194002b2
PZ
4069}
4070
c4794295 4071static void calc_timer_values(struct perf_event *event,
e3f3541c 4072 u64 *now,
7f310a5d
EM
4073 u64 *enabled,
4074 u64 *running)
c4794295 4075{
e3f3541c 4076 u64 ctx_time;
c4794295 4077
e3f3541c
PZ
4078 *now = perf_clock();
4079 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4080 *enabled = ctx_time - event->tstamp_enabled;
4081 *running = ctx_time - event->tstamp_running;
4082}
4083
fa731587
PZ
4084static void perf_event_init_userpage(struct perf_event *event)
4085{
4086 struct perf_event_mmap_page *userpg;
4087 struct ring_buffer *rb;
4088
4089 rcu_read_lock();
4090 rb = rcu_dereference(event->rb);
4091 if (!rb)
4092 goto unlock;
4093
4094 userpg = rb->user_page;
4095
4096 /* Allow new userspace to detect that bit 0 is deprecated */
4097 userpg->cap_bit0_is_deprecated = 1;
4098 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4099
4100unlock:
4101 rcu_read_unlock();
4102}
4103
c7206205 4104void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4105{
4106}
4107
38ff667b
PZ
4108/*
4109 * Callers need to ensure there can be no nesting of this function, otherwise
4110 * the seqlock logic goes bad. We can not serialize this because the arch
4111 * code calls this from NMI context.
4112 */
cdd6c482 4113void perf_event_update_userpage(struct perf_event *event)
37d81828 4114{
cdd6c482 4115 struct perf_event_mmap_page *userpg;
76369139 4116 struct ring_buffer *rb;
e3f3541c 4117 u64 enabled, running, now;
38ff667b
PZ
4118
4119 rcu_read_lock();
5ec4c599
PZ
4120 rb = rcu_dereference(event->rb);
4121 if (!rb)
4122 goto unlock;
4123
0d641208
EM
4124 /*
4125 * compute total_time_enabled, total_time_running
4126 * based on snapshot values taken when the event
4127 * was last scheduled in.
4128 *
4129 * we cannot simply called update_context_time()
4130 * because of locking issue as we can be called in
4131 * NMI context
4132 */
e3f3541c 4133 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4134
76369139 4135 userpg = rb->user_page;
7b732a75
PZ
4136 /*
4137 * Disable preemption so as to not let the corresponding user-space
4138 * spin too long if we get preempted.
4139 */
4140 preempt_disable();
37d81828 4141 ++userpg->lock;
92f22a38 4142 barrier();
cdd6c482 4143 userpg->index = perf_event_index(event);
b5e58793 4144 userpg->offset = perf_event_count(event);
365a4038 4145 if (userpg->index)
e7850595 4146 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4147
0d641208 4148 userpg->time_enabled = enabled +
cdd6c482 4149 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4150
0d641208 4151 userpg->time_running = running +
cdd6c482 4152 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4153
c7206205 4154 arch_perf_update_userpage(userpg, now);
e3f3541c 4155
92f22a38 4156 barrier();
37d81828 4157 ++userpg->lock;
7b732a75 4158 preempt_enable();
38ff667b 4159unlock:
7b732a75 4160 rcu_read_unlock();
37d81828
PM
4161}
4162
906010b2
PZ
4163static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4164{
4165 struct perf_event *event = vma->vm_file->private_data;
76369139 4166 struct ring_buffer *rb;
906010b2
PZ
4167 int ret = VM_FAULT_SIGBUS;
4168
4169 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4170 if (vmf->pgoff == 0)
4171 ret = 0;
4172 return ret;
4173 }
4174
4175 rcu_read_lock();
76369139
FW
4176 rb = rcu_dereference(event->rb);
4177 if (!rb)
906010b2
PZ
4178 goto unlock;
4179
4180 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4181 goto unlock;
4182
76369139 4183 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4184 if (!vmf->page)
4185 goto unlock;
4186
4187 get_page(vmf->page);
4188 vmf->page->mapping = vma->vm_file->f_mapping;
4189 vmf->page->index = vmf->pgoff;
4190
4191 ret = 0;
4192unlock:
4193 rcu_read_unlock();
4194
4195 return ret;
4196}
4197
10c6db11
PZ
4198static void ring_buffer_attach(struct perf_event *event,
4199 struct ring_buffer *rb)
4200{
b69cf536 4201 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4202 unsigned long flags;
4203
b69cf536
PZ
4204 if (event->rb) {
4205 /*
4206 * Should be impossible, we set this when removing
4207 * event->rb_entry and wait/clear when adding event->rb_entry.
4208 */
4209 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4210
b69cf536
PZ
4211 old_rb = event->rb;
4212 event->rcu_batches = get_state_synchronize_rcu();
4213 event->rcu_pending = 1;
10c6db11 4214
b69cf536
PZ
4215 spin_lock_irqsave(&old_rb->event_lock, flags);
4216 list_del_rcu(&event->rb_entry);
4217 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4218 }
10c6db11 4219
b69cf536
PZ
4220 if (event->rcu_pending && rb) {
4221 cond_synchronize_rcu(event->rcu_batches);
4222 event->rcu_pending = 0;
4223 }
10c6db11 4224
b69cf536
PZ
4225 if (rb) {
4226 spin_lock_irqsave(&rb->event_lock, flags);
4227 list_add_rcu(&event->rb_entry, &rb->event_list);
4228 spin_unlock_irqrestore(&rb->event_lock, flags);
4229 }
4230
4231 rcu_assign_pointer(event->rb, rb);
4232
4233 if (old_rb) {
4234 ring_buffer_put(old_rb);
4235 /*
4236 * Since we detached before setting the new rb, so that we
4237 * could attach the new rb, we could have missed a wakeup.
4238 * Provide it now.
4239 */
4240 wake_up_all(&event->waitq);
4241 }
10c6db11
PZ
4242}
4243
4244static void ring_buffer_wakeup(struct perf_event *event)
4245{
4246 struct ring_buffer *rb;
4247
4248 rcu_read_lock();
4249 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4250 if (rb) {
4251 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4252 wake_up_all(&event->waitq);
4253 }
10c6db11
PZ
4254 rcu_read_unlock();
4255}
4256
76369139 4257static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 4258{
76369139 4259 struct ring_buffer *rb;
906010b2 4260
76369139
FW
4261 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4262 rb_free(rb);
7b732a75
PZ
4263}
4264
76369139 4265static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4266{
76369139 4267 struct ring_buffer *rb;
7b732a75 4268
ac9721f3 4269 rcu_read_lock();
76369139
FW
4270 rb = rcu_dereference(event->rb);
4271 if (rb) {
4272 if (!atomic_inc_not_zero(&rb->refcount))
4273 rb = NULL;
ac9721f3
PZ
4274 }
4275 rcu_read_unlock();
4276
76369139 4277 return rb;
ac9721f3
PZ
4278}
4279
76369139 4280static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4281{
76369139 4282 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4283 return;
7b732a75 4284
9bb5d40c 4285 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4286
76369139 4287 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4288}
4289
4290static void perf_mmap_open(struct vm_area_struct *vma)
4291{
cdd6c482 4292 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4293
cdd6c482 4294 atomic_inc(&event->mmap_count);
9bb5d40c 4295 atomic_inc(&event->rb->mmap_count);
1e0fb9ec
AL
4296
4297 if (event->pmu->event_mapped)
4298 event->pmu->event_mapped(event);
7b732a75
PZ
4299}
4300
9bb5d40c
PZ
4301/*
4302 * A buffer can be mmap()ed multiple times; either directly through the same
4303 * event, or through other events by use of perf_event_set_output().
4304 *
4305 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4306 * the buffer here, where we still have a VM context. This means we need
4307 * to detach all events redirecting to us.
4308 */
7b732a75
PZ
4309static void perf_mmap_close(struct vm_area_struct *vma)
4310{
cdd6c482 4311 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4312
b69cf536 4313 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4314 struct user_struct *mmap_user = rb->mmap_user;
4315 int mmap_locked = rb->mmap_locked;
4316 unsigned long size = perf_data_size(rb);
789f90fc 4317
1e0fb9ec
AL
4318 if (event->pmu->event_unmapped)
4319 event->pmu->event_unmapped(event);
4320
9bb5d40c
PZ
4321 atomic_dec(&rb->mmap_count);
4322
4323 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4324 goto out_put;
9bb5d40c 4325
b69cf536 4326 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4327 mutex_unlock(&event->mmap_mutex);
4328
4329 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4330 if (atomic_read(&rb->mmap_count))
4331 goto out_put;
ac9721f3 4332
9bb5d40c
PZ
4333 /*
4334 * No other mmap()s, detach from all other events that might redirect
4335 * into the now unreachable buffer. Somewhat complicated by the
4336 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4337 */
4338again:
4339 rcu_read_lock();
4340 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4341 if (!atomic_long_inc_not_zero(&event->refcount)) {
4342 /*
4343 * This event is en-route to free_event() which will
4344 * detach it and remove it from the list.
4345 */
4346 continue;
4347 }
4348 rcu_read_unlock();
789f90fc 4349
9bb5d40c
PZ
4350 mutex_lock(&event->mmap_mutex);
4351 /*
4352 * Check we didn't race with perf_event_set_output() which can
4353 * swizzle the rb from under us while we were waiting to
4354 * acquire mmap_mutex.
4355 *
4356 * If we find a different rb; ignore this event, a next
4357 * iteration will no longer find it on the list. We have to
4358 * still restart the iteration to make sure we're not now
4359 * iterating the wrong list.
4360 */
b69cf536
PZ
4361 if (event->rb == rb)
4362 ring_buffer_attach(event, NULL);
4363
cdd6c482 4364 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4365 put_event(event);
ac9721f3 4366
9bb5d40c
PZ
4367 /*
4368 * Restart the iteration; either we're on the wrong list or
4369 * destroyed its integrity by doing a deletion.
4370 */
4371 goto again;
7b732a75 4372 }
9bb5d40c
PZ
4373 rcu_read_unlock();
4374
4375 /*
4376 * It could be there's still a few 0-ref events on the list; they'll
4377 * get cleaned up by free_event() -- they'll also still have their
4378 * ref on the rb and will free it whenever they are done with it.
4379 *
4380 * Aside from that, this buffer is 'fully' detached and unmapped,
4381 * undo the VM accounting.
4382 */
4383
4384 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4385 vma->vm_mm->pinned_vm -= mmap_locked;
4386 free_uid(mmap_user);
4387
b69cf536 4388out_put:
9bb5d40c 4389 ring_buffer_put(rb); /* could be last */
37d81828
PM
4390}
4391
f0f37e2f 4392static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
4393 .open = perf_mmap_open,
4394 .close = perf_mmap_close,
4395 .fault = perf_mmap_fault,
4396 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4397};
4398
4399static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4400{
cdd6c482 4401 struct perf_event *event = file->private_data;
22a4f650 4402 unsigned long user_locked, user_lock_limit;
789f90fc 4403 struct user_struct *user = current_user();
22a4f650 4404 unsigned long locked, lock_limit;
76369139 4405 struct ring_buffer *rb;
7b732a75
PZ
4406 unsigned long vma_size;
4407 unsigned long nr_pages;
789f90fc 4408 long user_extra, extra;
d57e34fd 4409 int ret = 0, flags = 0;
37d81828 4410
c7920614
PZ
4411 /*
4412 * Don't allow mmap() of inherited per-task counters. This would
4413 * create a performance issue due to all children writing to the
76369139 4414 * same rb.
c7920614
PZ
4415 */
4416 if (event->cpu == -1 && event->attr.inherit)
4417 return -EINVAL;
4418
43a21ea8 4419 if (!(vma->vm_flags & VM_SHARED))
37d81828 4420 return -EINVAL;
7b732a75
PZ
4421
4422 vma_size = vma->vm_end - vma->vm_start;
4423 nr_pages = (vma_size / PAGE_SIZE) - 1;
4424
7730d865 4425 /*
76369139 4426 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4427 * can do bitmasks instead of modulo.
4428 */
4429 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4430 return -EINVAL;
4431
7b732a75 4432 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4433 return -EINVAL;
4434
7b732a75
PZ
4435 if (vma->vm_pgoff != 0)
4436 return -EINVAL;
37d81828 4437
cdd6c482 4438 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4439again:
cdd6c482 4440 mutex_lock(&event->mmap_mutex);
76369139 4441 if (event->rb) {
9bb5d40c 4442 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4443 ret = -EINVAL;
9bb5d40c
PZ
4444 goto unlock;
4445 }
4446
4447 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4448 /*
4449 * Raced against perf_mmap_close() through
4450 * perf_event_set_output(). Try again, hope for better
4451 * luck.
4452 */
4453 mutex_unlock(&event->mmap_mutex);
4454 goto again;
4455 }
4456
ebb3c4c4
PZ
4457 goto unlock;
4458 }
4459
789f90fc 4460 user_extra = nr_pages + 1;
cdd6c482 4461 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4462
4463 /*
4464 * Increase the limit linearly with more CPUs:
4465 */
4466 user_lock_limit *= num_online_cpus();
4467
789f90fc 4468 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4469
789f90fc
PZ
4470 extra = 0;
4471 if (user_locked > user_lock_limit)
4472 extra = user_locked - user_lock_limit;
7b732a75 4473
78d7d407 4474 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4475 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4476 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4477
459ec28a
IM
4478 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4479 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4480 ret = -EPERM;
4481 goto unlock;
4482 }
7b732a75 4483
76369139 4484 WARN_ON(event->rb);
906010b2 4485
d57e34fd 4486 if (vma->vm_flags & VM_WRITE)
76369139 4487 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4488
4ec8363d
VW
4489 rb = rb_alloc(nr_pages,
4490 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4491 event->cpu, flags);
4492
76369139 4493 if (!rb) {
ac9721f3 4494 ret = -ENOMEM;
ebb3c4c4 4495 goto unlock;
ac9721f3 4496 }
26cb63ad 4497
9bb5d40c 4498 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4499 rb->mmap_locked = extra;
4500 rb->mmap_user = get_current_user();
43a21ea8 4501
ac9721f3 4502 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4503 vma->vm_mm->pinned_vm += extra;
4504
9bb5d40c 4505 ring_buffer_attach(event, rb);
ac9721f3 4506
fa731587 4507 perf_event_init_userpage(event);
9a0f05cb
PZ
4508 perf_event_update_userpage(event);
4509
ebb3c4c4 4510unlock:
ac9721f3
PZ
4511 if (!ret)
4512 atomic_inc(&event->mmap_count);
cdd6c482 4513 mutex_unlock(&event->mmap_mutex);
37d81828 4514
9bb5d40c
PZ
4515 /*
4516 * Since pinned accounting is per vm we cannot allow fork() to copy our
4517 * vma.
4518 */
26cb63ad 4519 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4520 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4521
1e0fb9ec
AL
4522 if (event->pmu->event_mapped)
4523 event->pmu->event_mapped(event);
4524
7b732a75 4525 return ret;
37d81828
PM
4526}
4527
3c446b3d
PZ
4528static int perf_fasync(int fd, struct file *filp, int on)
4529{
496ad9aa 4530 struct inode *inode = file_inode(filp);
cdd6c482 4531 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4532 int retval;
4533
4534 mutex_lock(&inode->i_mutex);
cdd6c482 4535 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4536 mutex_unlock(&inode->i_mutex);
4537
4538 if (retval < 0)
4539 return retval;
4540
4541 return 0;
4542}
4543
0793a61d 4544static const struct file_operations perf_fops = {
3326c1ce 4545 .llseek = no_llseek,
0793a61d
TG
4546 .release = perf_release,
4547 .read = perf_read,
4548 .poll = perf_poll,
d859e29f 4549 .unlocked_ioctl = perf_ioctl,
b3f20785 4550 .compat_ioctl = perf_compat_ioctl,
37d81828 4551 .mmap = perf_mmap,
3c446b3d 4552 .fasync = perf_fasync,
0793a61d
TG
4553};
4554
925d519a 4555/*
cdd6c482 4556 * Perf event wakeup
925d519a
PZ
4557 *
4558 * If there's data, ensure we set the poll() state and publish everything
4559 * to user-space before waking everybody up.
4560 */
4561
cdd6c482 4562void perf_event_wakeup(struct perf_event *event)
925d519a 4563{
10c6db11 4564 ring_buffer_wakeup(event);
4c9e2542 4565
cdd6c482
IM
4566 if (event->pending_kill) {
4567 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4568 event->pending_kill = 0;
4c9e2542 4569 }
925d519a
PZ
4570}
4571
e360adbe 4572static void perf_pending_event(struct irq_work *entry)
79f14641 4573{
cdd6c482
IM
4574 struct perf_event *event = container_of(entry,
4575 struct perf_event, pending);
79f14641 4576
cdd6c482
IM
4577 if (event->pending_disable) {
4578 event->pending_disable = 0;
4579 __perf_event_disable(event);
79f14641
PZ
4580 }
4581
cdd6c482
IM
4582 if (event->pending_wakeup) {
4583 event->pending_wakeup = 0;
4584 perf_event_wakeup(event);
79f14641
PZ
4585 }
4586}
4587
39447b38
ZY
4588/*
4589 * We assume there is only KVM supporting the callbacks.
4590 * Later on, we might change it to a list if there is
4591 * another virtualization implementation supporting the callbacks.
4592 */
4593struct perf_guest_info_callbacks *perf_guest_cbs;
4594
4595int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4596{
4597 perf_guest_cbs = cbs;
4598 return 0;
4599}
4600EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4601
4602int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4603{
4604 perf_guest_cbs = NULL;
4605 return 0;
4606}
4607EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4608
4018994f
JO
4609static void
4610perf_output_sample_regs(struct perf_output_handle *handle,
4611 struct pt_regs *regs, u64 mask)
4612{
4613 int bit;
4614
4615 for_each_set_bit(bit, (const unsigned long *) &mask,
4616 sizeof(mask) * BITS_PER_BYTE) {
4617 u64 val;
4618
4619 val = perf_reg_value(regs, bit);
4620 perf_output_put(handle, val);
4621 }
4622}
4623
60e2364e 4624static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4625 struct pt_regs *regs,
4626 struct pt_regs *regs_user_copy)
4018994f 4627{
88a7c26a
AL
4628 if (user_mode(regs)) {
4629 regs_user->abi = perf_reg_abi(current);
2565711f 4630 regs_user->regs = regs;
88a7c26a
AL
4631 } else if (current->mm) {
4632 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4633 } else {
4634 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4635 regs_user->regs = NULL;
4018994f
JO
4636 }
4637}
4638
60e2364e
SE
4639static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4640 struct pt_regs *regs)
4641{
4642 regs_intr->regs = regs;
4643 regs_intr->abi = perf_reg_abi(current);
4644}
4645
4646
c5ebcedb
JO
4647/*
4648 * Get remaining task size from user stack pointer.
4649 *
4650 * It'd be better to take stack vma map and limit this more
4651 * precisly, but there's no way to get it safely under interrupt,
4652 * so using TASK_SIZE as limit.
4653 */
4654static u64 perf_ustack_task_size(struct pt_regs *regs)
4655{
4656 unsigned long addr = perf_user_stack_pointer(regs);
4657
4658 if (!addr || addr >= TASK_SIZE)
4659 return 0;
4660
4661 return TASK_SIZE - addr;
4662}
4663
4664static u16
4665perf_sample_ustack_size(u16 stack_size, u16 header_size,
4666 struct pt_regs *regs)
4667{
4668 u64 task_size;
4669
4670 /* No regs, no stack pointer, no dump. */
4671 if (!regs)
4672 return 0;
4673
4674 /*
4675 * Check if we fit in with the requested stack size into the:
4676 * - TASK_SIZE
4677 * If we don't, we limit the size to the TASK_SIZE.
4678 *
4679 * - remaining sample size
4680 * If we don't, we customize the stack size to
4681 * fit in to the remaining sample size.
4682 */
4683
4684 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4685 stack_size = min(stack_size, (u16) task_size);
4686
4687 /* Current header size plus static size and dynamic size. */
4688 header_size += 2 * sizeof(u64);
4689
4690 /* Do we fit in with the current stack dump size? */
4691 if ((u16) (header_size + stack_size) < header_size) {
4692 /*
4693 * If we overflow the maximum size for the sample,
4694 * we customize the stack dump size to fit in.
4695 */
4696 stack_size = USHRT_MAX - header_size - sizeof(u64);
4697 stack_size = round_up(stack_size, sizeof(u64));
4698 }
4699
4700 return stack_size;
4701}
4702
4703static void
4704perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4705 struct pt_regs *regs)
4706{
4707 /* Case of a kernel thread, nothing to dump */
4708 if (!regs) {
4709 u64 size = 0;
4710 perf_output_put(handle, size);
4711 } else {
4712 unsigned long sp;
4713 unsigned int rem;
4714 u64 dyn_size;
4715
4716 /*
4717 * We dump:
4718 * static size
4719 * - the size requested by user or the best one we can fit
4720 * in to the sample max size
4721 * data
4722 * - user stack dump data
4723 * dynamic size
4724 * - the actual dumped size
4725 */
4726
4727 /* Static size. */
4728 perf_output_put(handle, dump_size);
4729
4730 /* Data. */
4731 sp = perf_user_stack_pointer(regs);
4732 rem = __output_copy_user(handle, (void *) sp, dump_size);
4733 dyn_size = dump_size - rem;
4734
4735 perf_output_skip(handle, rem);
4736
4737 /* Dynamic size. */
4738 perf_output_put(handle, dyn_size);
4739 }
4740}
4741
c980d109
ACM
4742static void __perf_event_header__init_id(struct perf_event_header *header,
4743 struct perf_sample_data *data,
4744 struct perf_event *event)
6844c09d
ACM
4745{
4746 u64 sample_type = event->attr.sample_type;
4747
4748 data->type = sample_type;
4749 header->size += event->id_header_size;
4750
4751 if (sample_type & PERF_SAMPLE_TID) {
4752 /* namespace issues */
4753 data->tid_entry.pid = perf_event_pid(event, current);
4754 data->tid_entry.tid = perf_event_tid(event, current);
4755 }
4756
4757 if (sample_type & PERF_SAMPLE_TIME)
4758 data->time = perf_clock();
4759
ff3d527c 4760 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4761 data->id = primary_event_id(event);
4762
4763 if (sample_type & PERF_SAMPLE_STREAM_ID)
4764 data->stream_id = event->id;
4765
4766 if (sample_type & PERF_SAMPLE_CPU) {
4767 data->cpu_entry.cpu = raw_smp_processor_id();
4768 data->cpu_entry.reserved = 0;
4769 }
4770}
4771
76369139
FW
4772void perf_event_header__init_id(struct perf_event_header *header,
4773 struct perf_sample_data *data,
4774 struct perf_event *event)
c980d109
ACM
4775{
4776 if (event->attr.sample_id_all)
4777 __perf_event_header__init_id(header, data, event);
4778}
4779
4780static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4781 struct perf_sample_data *data)
4782{
4783 u64 sample_type = data->type;
4784
4785 if (sample_type & PERF_SAMPLE_TID)
4786 perf_output_put(handle, data->tid_entry);
4787
4788 if (sample_type & PERF_SAMPLE_TIME)
4789 perf_output_put(handle, data->time);
4790
4791 if (sample_type & PERF_SAMPLE_ID)
4792 perf_output_put(handle, data->id);
4793
4794 if (sample_type & PERF_SAMPLE_STREAM_ID)
4795 perf_output_put(handle, data->stream_id);
4796
4797 if (sample_type & PERF_SAMPLE_CPU)
4798 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4799
4800 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4801 perf_output_put(handle, data->id);
c980d109
ACM
4802}
4803
76369139
FW
4804void perf_event__output_id_sample(struct perf_event *event,
4805 struct perf_output_handle *handle,
4806 struct perf_sample_data *sample)
c980d109
ACM
4807{
4808 if (event->attr.sample_id_all)
4809 __perf_event__output_id_sample(handle, sample);
4810}
4811
3dab77fb 4812static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4813 struct perf_event *event,
4814 u64 enabled, u64 running)
3dab77fb 4815{
cdd6c482 4816 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4817 u64 values[4];
4818 int n = 0;
4819
b5e58793 4820 values[n++] = perf_event_count(event);
3dab77fb 4821 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4822 values[n++] = enabled +
cdd6c482 4823 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4824 }
4825 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4826 values[n++] = running +
cdd6c482 4827 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4828 }
4829 if (read_format & PERF_FORMAT_ID)
cdd6c482 4830 values[n++] = primary_event_id(event);
3dab77fb 4831
76369139 4832 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4833}
4834
4835/*
cdd6c482 4836 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4837 */
4838static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4839 struct perf_event *event,
4840 u64 enabled, u64 running)
3dab77fb 4841{
cdd6c482
IM
4842 struct perf_event *leader = event->group_leader, *sub;
4843 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4844 u64 values[5];
4845 int n = 0;
4846
4847 values[n++] = 1 + leader->nr_siblings;
4848
4849 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4850 values[n++] = enabled;
3dab77fb
PZ
4851
4852 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4853 values[n++] = running;
3dab77fb 4854
cdd6c482 4855 if (leader != event)
3dab77fb
PZ
4856 leader->pmu->read(leader);
4857
b5e58793 4858 values[n++] = perf_event_count(leader);
3dab77fb 4859 if (read_format & PERF_FORMAT_ID)
cdd6c482 4860 values[n++] = primary_event_id(leader);
3dab77fb 4861
76369139 4862 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4863
65abc865 4864 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4865 n = 0;
4866
6f5ab001
JO
4867 if ((sub != event) &&
4868 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4869 sub->pmu->read(sub);
4870
b5e58793 4871 values[n++] = perf_event_count(sub);
3dab77fb 4872 if (read_format & PERF_FORMAT_ID)
cdd6c482 4873 values[n++] = primary_event_id(sub);
3dab77fb 4874
76369139 4875 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4876 }
4877}
4878
eed01528
SE
4879#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4880 PERF_FORMAT_TOTAL_TIME_RUNNING)
4881
3dab77fb 4882static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4883 struct perf_event *event)
3dab77fb 4884{
e3f3541c 4885 u64 enabled = 0, running = 0, now;
eed01528
SE
4886 u64 read_format = event->attr.read_format;
4887
4888 /*
4889 * compute total_time_enabled, total_time_running
4890 * based on snapshot values taken when the event
4891 * was last scheduled in.
4892 *
4893 * we cannot simply called update_context_time()
4894 * because of locking issue as we are called in
4895 * NMI context
4896 */
c4794295 4897 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4898 calc_timer_values(event, &now, &enabled, &running);
eed01528 4899
cdd6c482 4900 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4901 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4902 else
eed01528 4903 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4904}
4905
5622f295
MM
4906void perf_output_sample(struct perf_output_handle *handle,
4907 struct perf_event_header *header,
4908 struct perf_sample_data *data,
cdd6c482 4909 struct perf_event *event)
5622f295
MM
4910{
4911 u64 sample_type = data->type;
4912
4913 perf_output_put(handle, *header);
4914
ff3d527c
AH
4915 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4916 perf_output_put(handle, data->id);
4917
5622f295
MM
4918 if (sample_type & PERF_SAMPLE_IP)
4919 perf_output_put(handle, data->ip);
4920
4921 if (sample_type & PERF_SAMPLE_TID)
4922 perf_output_put(handle, data->tid_entry);
4923
4924 if (sample_type & PERF_SAMPLE_TIME)
4925 perf_output_put(handle, data->time);
4926
4927 if (sample_type & PERF_SAMPLE_ADDR)
4928 perf_output_put(handle, data->addr);
4929
4930 if (sample_type & PERF_SAMPLE_ID)
4931 perf_output_put(handle, data->id);
4932
4933 if (sample_type & PERF_SAMPLE_STREAM_ID)
4934 perf_output_put(handle, data->stream_id);
4935
4936 if (sample_type & PERF_SAMPLE_CPU)
4937 perf_output_put(handle, data->cpu_entry);
4938
4939 if (sample_type & PERF_SAMPLE_PERIOD)
4940 perf_output_put(handle, data->period);
4941
4942 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4943 perf_output_read(handle, event);
5622f295
MM
4944
4945 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4946 if (data->callchain) {
4947 int size = 1;
4948
4949 if (data->callchain)
4950 size += data->callchain->nr;
4951
4952 size *= sizeof(u64);
4953
76369139 4954 __output_copy(handle, data->callchain, size);
5622f295
MM
4955 } else {
4956 u64 nr = 0;
4957 perf_output_put(handle, nr);
4958 }
4959 }
4960
4961 if (sample_type & PERF_SAMPLE_RAW) {
4962 if (data->raw) {
4963 perf_output_put(handle, data->raw->size);
76369139
FW
4964 __output_copy(handle, data->raw->data,
4965 data->raw->size);
5622f295
MM
4966 } else {
4967 struct {
4968 u32 size;
4969 u32 data;
4970 } raw = {
4971 .size = sizeof(u32),
4972 .data = 0,
4973 };
4974 perf_output_put(handle, raw);
4975 }
4976 }
a7ac67ea 4977
bce38cd5
SE
4978 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4979 if (data->br_stack) {
4980 size_t size;
4981
4982 size = data->br_stack->nr
4983 * sizeof(struct perf_branch_entry);
4984
4985 perf_output_put(handle, data->br_stack->nr);
4986 perf_output_copy(handle, data->br_stack->entries, size);
4987 } else {
4988 /*
4989 * we always store at least the value of nr
4990 */
4991 u64 nr = 0;
4992 perf_output_put(handle, nr);
4993 }
4994 }
4018994f
JO
4995
4996 if (sample_type & PERF_SAMPLE_REGS_USER) {
4997 u64 abi = data->regs_user.abi;
4998
4999 /*
5000 * If there are no regs to dump, notice it through
5001 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5002 */
5003 perf_output_put(handle, abi);
5004
5005 if (abi) {
5006 u64 mask = event->attr.sample_regs_user;
5007 perf_output_sample_regs(handle,
5008 data->regs_user.regs,
5009 mask);
5010 }
5011 }
c5ebcedb 5012
a5cdd40c 5013 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5014 perf_output_sample_ustack(handle,
5015 data->stack_user_size,
5016 data->regs_user.regs);
a5cdd40c 5017 }
c3feedf2
AK
5018
5019 if (sample_type & PERF_SAMPLE_WEIGHT)
5020 perf_output_put(handle, data->weight);
d6be9ad6
SE
5021
5022 if (sample_type & PERF_SAMPLE_DATA_SRC)
5023 perf_output_put(handle, data->data_src.val);
a5cdd40c 5024
fdfbbd07
AK
5025 if (sample_type & PERF_SAMPLE_TRANSACTION)
5026 perf_output_put(handle, data->txn);
5027
60e2364e
SE
5028 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5029 u64 abi = data->regs_intr.abi;
5030 /*
5031 * If there are no regs to dump, notice it through
5032 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5033 */
5034 perf_output_put(handle, abi);
5035
5036 if (abi) {
5037 u64 mask = event->attr.sample_regs_intr;
5038
5039 perf_output_sample_regs(handle,
5040 data->regs_intr.regs,
5041 mask);
5042 }
5043 }
5044
a5cdd40c
PZ
5045 if (!event->attr.watermark) {
5046 int wakeup_events = event->attr.wakeup_events;
5047
5048 if (wakeup_events) {
5049 struct ring_buffer *rb = handle->rb;
5050 int events = local_inc_return(&rb->events);
5051
5052 if (events >= wakeup_events) {
5053 local_sub(wakeup_events, &rb->events);
5054 local_inc(&rb->wakeup);
5055 }
5056 }
5057 }
5622f295
MM
5058}
5059
5060void perf_prepare_sample(struct perf_event_header *header,
5061 struct perf_sample_data *data,
cdd6c482 5062 struct perf_event *event,
5622f295 5063 struct pt_regs *regs)
7b732a75 5064{
cdd6c482 5065 u64 sample_type = event->attr.sample_type;
7b732a75 5066
cdd6c482 5067 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5068 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5069
5070 header->misc = 0;
5071 header->misc |= perf_misc_flags(regs);
6fab0192 5072
c980d109 5073 __perf_event_header__init_id(header, data, event);
6844c09d 5074
c320c7b7 5075 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5076 data->ip = perf_instruction_pointer(regs);
5077
b23f3325 5078 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5079 int size = 1;
394ee076 5080
e6dab5ff 5081 data->callchain = perf_callchain(event, regs);
5622f295
MM
5082
5083 if (data->callchain)
5084 size += data->callchain->nr;
5085
5086 header->size += size * sizeof(u64);
394ee076
PZ
5087 }
5088
3a43ce68 5089 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5090 int size = sizeof(u32);
5091
5092 if (data->raw)
5093 size += data->raw->size;
5094 else
5095 size += sizeof(u32);
5096
5097 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 5098 header->size += size;
7f453c24 5099 }
bce38cd5
SE
5100
5101 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5102 int size = sizeof(u64); /* nr */
5103 if (data->br_stack) {
5104 size += data->br_stack->nr
5105 * sizeof(struct perf_branch_entry);
5106 }
5107 header->size += size;
5108 }
4018994f 5109
2565711f 5110 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5111 perf_sample_regs_user(&data->regs_user, regs,
5112 &data->regs_user_copy);
2565711f 5113
4018994f
JO
5114 if (sample_type & PERF_SAMPLE_REGS_USER) {
5115 /* regs dump ABI info */
5116 int size = sizeof(u64);
5117
4018994f
JO
5118 if (data->regs_user.regs) {
5119 u64 mask = event->attr.sample_regs_user;
5120 size += hweight64(mask) * sizeof(u64);
5121 }
5122
5123 header->size += size;
5124 }
c5ebcedb
JO
5125
5126 if (sample_type & PERF_SAMPLE_STACK_USER) {
5127 /*
5128 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5129 * processed as the last one or have additional check added
5130 * in case new sample type is added, because we could eat
5131 * up the rest of the sample size.
5132 */
c5ebcedb
JO
5133 u16 stack_size = event->attr.sample_stack_user;
5134 u16 size = sizeof(u64);
5135
c5ebcedb 5136 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5137 data->regs_user.regs);
c5ebcedb
JO
5138
5139 /*
5140 * If there is something to dump, add space for the dump
5141 * itself and for the field that tells the dynamic size,
5142 * which is how many have been actually dumped.
5143 */
5144 if (stack_size)
5145 size += sizeof(u64) + stack_size;
5146
5147 data->stack_user_size = stack_size;
5148 header->size += size;
5149 }
60e2364e
SE
5150
5151 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5152 /* regs dump ABI info */
5153 int size = sizeof(u64);
5154
5155 perf_sample_regs_intr(&data->regs_intr, regs);
5156
5157 if (data->regs_intr.regs) {
5158 u64 mask = event->attr.sample_regs_intr;
5159
5160 size += hweight64(mask) * sizeof(u64);
5161 }
5162
5163 header->size += size;
5164 }
5622f295 5165}
7f453c24 5166
a8b0ca17 5167static void perf_event_output(struct perf_event *event,
5622f295
MM
5168 struct perf_sample_data *data,
5169 struct pt_regs *regs)
5170{
5171 struct perf_output_handle handle;
5172 struct perf_event_header header;
689802b2 5173
927c7a9e
FW
5174 /* protect the callchain buffers */
5175 rcu_read_lock();
5176
cdd6c482 5177 perf_prepare_sample(&header, data, event, regs);
5c148194 5178
a7ac67ea 5179 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5180 goto exit;
0322cd6e 5181
cdd6c482 5182 perf_output_sample(&handle, &header, data, event);
f413cdb8 5183
8a057d84 5184 perf_output_end(&handle);
927c7a9e
FW
5185
5186exit:
5187 rcu_read_unlock();
0322cd6e
PZ
5188}
5189
38b200d6 5190/*
cdd6c482 5191 * read event_id
38b200d6
PZ
5192 */
5193
5194struct perf_read_event {
5195 struct perf_event_header header;
5196
5197 u32 pid;
5198 u32 tid;
38b200d6
PZ
5199};
5200
5201static void
cdd6c482 5202perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5203 struct task_struct *task)
5204{
5205 struct perf_output_handle handle;
c980d109 5206 struct perf_sample_data sample;
dfc65094 5207 struct perf_read_event read_event = {
38b200d6 5208 .header = {
cdd6c482 5209 .type = PERF_RECORD_READ,
38b200d6 5210 .misc = 0,
c320c7b7 5211 .size = sizeof(read_event) + event->read_size,
38b200d6 5212 },
cdd6c482
IM
5213 .pid = perf_event_pid(event, task),
5214 .tid = perf_event_tid(event, task),
38b200d6 5215 };
3dab77fb 5216 int ret;
38b200d6 5217
c980d109 5218 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5219 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5220 if (ret)
5221 return;
5222
dfc65094 5223 perf_output_put(&handle, read_event);
cdd6c482 5224 perf_output_read(&handle, event);
c980d109 5225 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5226
38b200d6
PZ
5227 perf_output_end(&handle);
5228}
5229
52d857a8
JO
5230typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5231
5232static void
5233perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5234 perf_event_aux_output_cb output,
5235 void *data)
5236{
5237 struct perf_event *event;
5238
5239 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5240 if (event->state < PERF_EVENT_STATE_INACTIVE)
5241 continue;
5242 if (!event_filter_match(event))
5243 continue;
67516844 5244 output(event, data);
52d857a8
JO
5245 }
5246}
5247
5248static void
67516844 5249perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5250 struct perf_event_context *task_ctx)
5251{
5252 struct perf_cpu_context *cpuctx;
5253 struct perf_event_context *ctx;
5254 struct pmu *pmu;
5255 int ctxn;
5256
5257 rcu_read_lock();
5258 list_for_each_entry_rcu(pmu, &pmus, entry) {
5259 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5260 if (cpuctx->unique_pmu != pmu)
5261 goto next;
67516844 5262 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5263 if (task_ctx)
5264 goto next;
5265 ctxn = pmu->task_ctx_nr;
5266 if (ctxn < 0)
5267 goto next;
5268 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5269 if (ctx)
67516844 5270 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5271next:
5272 put_cpu_ptr(pmu->pmu_cpu_context);
5273 }
5274
5275 if (task_ctx) {
5276 preempt_disable();
67516844 5277 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5278 preempt_enable();
5279 }
5280 rcu_read_unlock();
5281}
5282
60313ebe 5283/*
9f498cc5
PZ
5284 * task tracking -- fork/exit
5285 *
13d7a241 5286 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5287 */
5288
9f498cc5 5289struct perf_task_event {
3a80b4a3 5290 struct task_struct *task;
cdd6c482 5291 struct perf_event_context *task_ctx;
60313ebe
PZ
5292
5293 struct {
5294 struct perf_event_header header;
5295
5296 u32 pid;
5297 u32 ppid;
9f498cc5
PZ
5298 u32 tid;
5299 u32 ptid;
393b2ad8 5300 u64 time;
cdd6c482 5301 } event_id;
60313ebe
PZ
5302};
5303
67516844
JO
5304static int perf_event_task_match(struct perf_event *event)
5305{
13d7a241
SE
5306 return event->attr.comm || event->attr.mmap ||
5307 event->attr.mmap2 || event->attr.mmap_data ||
5308 event->attr.task;
67516844
JO
5309}
5310
cdd6c482 5311static void perf_event_task_output(struct perf_event *event,
52d857a8 5312 void *data)
60313ebe 5313{
52d857a8 5314 struct perf_task_event *task_event = data;
60313ebe 5315 struct perf_output_handle handle;
c980d109 5316 struct perf_sample_data sample;
9f498cc5 5317 struct task_struct *task = task_event->task;
c980d109 5318 int ret, size = task_event->event_id.header.size;
8bb39f9a 5319
67516844
JO
5320 if (!perf_event_task_match(event))
5321 return;
5322
c980d109 5323 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5324
c980d109 5325 ret = perf_output_begin(&handle, event,
a7ac67ea 5326 task_event->event_id.header.size);
ef60777c 5327 if (ret)
c980d109 5328 goto out;
60313ebe 5329
cdd6c482
IM
5330 task_event->event_id.pid = perf_event_pid(event, task);
5331 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5332
cdd6c482
IM
5333 task_event->event_id.tid = perf_event_tid(event, task);
5334 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5335
cdd6c482 5336 perf_output_put(&handle, task_event->event_id);
393b2ad8 5337
c980d109
ACM
5338 perf_event__output_id_sample(event, &handle, &sample);
5339
60313ebe 5340 perf_output_end(&handle);
c980d109
ACM
5341out:
5342 task_event->event_id.header.size = size;
60313ebe
PZ
5343}
5344
cdd6c482
IM
5345static void perf_event_task(struct task_struct *task,
5346 struct perf_event_context *task_ctx,
3a80b4a3 5347 int new)
60313ebe 5348{
9f498cc5 5349 struct perf_task_event task_event;
60313ebe 5350
cdd6c482
IM
5351 if (!atomic_read(&nr_comm_events) &&
5352 !atomic_read(&nr_mmap_events) &&
5353 !atomic_read(&nr_task_events))
60313ebe
PZ
5354 return;
5355
9f498cc5 5356 task_event = (struct perf_task_event){
3a80b4a3
PZ
5357 .task = task,
5358 .task_ctx = task_ctx,
cdd6c482 5359 .event_id = {
60313ebe 5360 .header = {
cdd6c482 5361 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5362 .misc = 0,
cdd6c482 5363 .size = sizeof(task_event.event_id),
60313ebe 5364 },
573402db
PZ
5365 /* .pid */
5366 /* .ppid */
9f498cc5
PZ
5367 /* .tid */
5368 /* .ptid */
6f93d0a7 5369 .time = perf_clock(),
60313ebe
PZ
5370 },
5371 };
5372
67516844 5373 perf_event_aux(perf_event_task_output,
52d857a8
JO
5374 &task_event,
5375 task_ctx);
9f498cc5
PZ
5376}
5377
cdd6c482 5378void perf_event_fork(struct task_struct *task)
9f498cc5 5379{
cdd6c482 5380 perf_event_task(task, NULL, 1);
60313ebe
PZ
5381}
5382
8d1b2d93
PZ
5383/*
5384 * comm tracking
5385 */
5386
5387struct perf_comm_event {
22a4f650
IM
5388 struct task_struct *task;
5389 char *comm;
8d1b2d93
PZ
5390 int comm_size;
5391
5392 struct {
5393 struct perf_event_header header;
5394
5395 u32 pid;
5396 u32 tid;
cdd6c482 5397 } event_id;
8d1b2d93
PZ
5398};
5399
67516844
JO
5400static int perf_event_comm_match(struct perf_event *event)
5401{
5402 return event->attr.comm;
5403}
5404
cdd6c482 5405static void perf_event_comm_output(struct perf_event *event,
52d857a8 5406 void *data)
8d1b2d93 5407{
52d857a8 5408 struct perf_comm_event *comm_event = data;
8d1b2d93 5409 struct perf_output_handle handle;
c980d109 5410 struct perf_sample_data sample;
cdd6c482 5411 int size = comm_event->event_id.header.size;
c980d109
ACM
5412 int ret;
5413
67516844
JO
5414 if (!perf_event_comm_match(event))
5415 return;
5416
c980d109
ACM
5417 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5418 ret = perf_output_begin(&handle, event,
a7ac67ea 5419 comm_event->event_id.header.size);
8d1b2d93
PZ
5420
5421 if (ret)
c980d109 5422 goto out;
8d1b2d93 5423
cdd6c482
IM
5424 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5425 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5426
cdd6c482 5427 perf_output_put(&handle, comm_event->event_id);
76369139 5428 __output_copy(&handle, comm_event->comm,
8d1b2d93 5429 comm_event->comm_size);
c980d109
ACM
5430
5431 perf_event__output_id_sample(event, &handle, &sample);
5432
8d1b2d93 5433 perf_output_end(&handle);
c980d109
ACM
5434out:
5435 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5436}
5437
cdd6c482 5438static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5439{
413ee3b4 5440 char comm[TASK_COMM_LEN];
8d1b2d93 5441 unsigned int size;
8d1b2d93 5442
413ee3b4 5443 memset(comm, 0, sizeof(comm));
96b02d78 5444 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5445 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5446
5447 comm_event->comm = comm;
5448 comm_event->comm_size = size;
5449
cdd6c482 5450 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5451
67516844 5452 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5453 comm_event,
5454 NULL);
8d1b2d93
PZ
5455}
5456
82b89778 5457void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5458{
9ee318a7
PZ
5459 struct perf_comm_event comm_event;
5460
cdd6c482 5461 if (!atomic_read(&nr_comm_events))
9ee318a7 5462 return;
a63eaf34 5463
9ee318a7 5464 comm_event = (struct perf_comm_event){
8d1b2d93 5465 .task = task,
573402db
PZ
5466 /* .comm */
5467 /* .comm_size */
cdd6c482 5468 .event_id = {
573402db 5469 .header = {
cdd6c482 5470 .type = PERF_RECORD_COMM,
82b89778 5471 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5472 /* .size */
5473 },
5474 /* .pid */
5475 /* .tid */
8d1b2d93
PZ
5476 },
5477 };
5478
cdd6c482 5479 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5480}
5481
0a4a9391
PZ
5482/*
5483 * mmap tracking
5484 */
5485
5486struct perf_mmap_event {
089dd79d
PZ
5487 struct vm_area_struct *vma;
5488
5489 const char *file_name;
5490 int file_size;
13d7a241
SE
5491 int maj, min;
5492 u64 ino;
5493 u64 ino_generation;
f972eb63 5494 u32 prot, flags;
0a4a9391
PZ
5495
5496 struct {
5497 struct perf_event_header header;
5498
5499 u32 pid;
5500 u32 tid;
5501 u64 start;
5502 u64 len;
5503 u64 pgoff;
cdd6c482 5504 } event_id;
0a4a9391
PZ
5505};
5506
67516844
JO
5507static int perf_event_mmap_match(struct perf_event *event,
5508 void *data)
5509{
5510 struct perf_mmap_event *mmap_event = data;
5511 struct vm_area_struct *vma = mmap_event->vma;
5512 int executable = vma->vm_flags & VM_EXEC;
5513
5514 return (!executable && event->attr.mmap_data) ||
13d7a241 5515 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5516}
5517
cdd6c482 5518static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5519 void *data)
0a4a9391 5520{
52d857a8 5521 struct perf_mmap_event *mmap_event = data;
0a4a9391 5522 struct perf_output_handle handle;
c980d109 5523 struct perf_sample_data sample;
cdd6c482 5524 int size = mmap_event->event_id.header.size;
c980d109 5525 int ret;
0a4a9391 5526
67516844
JO
5527 if (!perf_event_mmap_match(event, data))
5528 return;
5529
13d7a241
SE
5530 if (event->attr.mmap2) {
5531 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5532 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5533 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5534 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5535 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5536 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5537 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5538 }
5539
c980d109
ACM
5540 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5541 ret = perf_output_begin(&handle, event,
a7ac67ea 5542 mmap_event->event_id.header.size);
0a4a9391 5543 if (ret)
c980d109 5544 goto out;
0a4a9391 5545
cdd6c482
IM
5546 mmap_event->event_id.pid = perf_event_pid(event, current);
5547 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5548
cdd6c482 5549 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5550
5551 if (event->attr.mmap2) {
5552 perf_output_put(&handle, mmap_event->maj);
5553 perf_output_put(&handle, mmap_event->min);
5554 perf_output_put(&handle, mmap_event->ino);
5555 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5556 perf_output_put(&handle, mmap_event->prot);
5557 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5558 }
5559
76369139 5560 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5561 mmap_event->file_size);
c980d109
ACM
5562
5563 perf_event__output_id_sample(event, &handle, &sample);
5564
78d613eb 5565 perf_output_end(&handle);
c980d109
ACM
5566out:
5567 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5568}
5569
cdd6c482 5570static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5571{
089dd79d
PZ
5572 struct vm_area_struct *vma = mmap_event->vma;
5573 struct file *file = vma->vm_file;
13d7a241
SE
5574 int maj = 0, min = 0;
5575 u64 ino = 0, gen = 0;
f972eb63 5576 u32 prot = 0, flags = 0;
0a4a9391
PZ
5577 unsigned int size;
5578 char tmp[16];
5579 char *buf = NULL;
2c42cfbf 5580 char *name;
413ee3b4 5581
0a4a9391 5582 if (file) {
13d7a241
SE
5583 struct inode *inode;
5584 dev_t dev;
3ea2f2b9 5585
2c42cfbf 5586 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5587 if (!buf) {
c7e548b4
ON
5588 name = "//enomem";
5589 goto cpy_name;
0a4a9391 5590 }
413ee3b4 5591 /*
3ea2f2b9 5592 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5593 * need to add enough zero bytes after the string to handle
5594 * the 64bit alignment we do later.
5595 */
3ea2f2b9 5596 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
0a4a9391 5597 if (IS_ERR(name)) {
c7e548b4
ON
5598 name = "//toolong";
5599 goto cpy_name;
0a4a9391 5600 }
13d7a241
SE
5601 inode = file_inode(vma->vm_file);
5602 dev = inode->i_sb->s_dev;
5603 ino = inode->i_ino;
5604 gen = inode->i_generation;
5605 maj = MAJOR(dev);
5606 min = MINOR(dev);
f972eb63
PZ
5607
5608 if (vma->vm_flags & VM_READ)
5609 prot |= PROT_READ;
5610 if (vma->vm_flags & VM_WRITE)
5611 prot |= PROT_WRITE;
5612 if (vma->vm_flags & VM_EXEC)
5613 prot |= PROT_EXEC;
5614
5615 if (vma->vm_flags & VM_MAYSHARE)
5616 flags = MAP_SHARED;
5617 else
5618 flags = MAP_PRIVATE;
5619
5620 if (vma->vm_flags & VM_DENYWRITE)
5621 flags |= MAP_DENYWRITE;
5622 if (vma->vm_flags & VM_MAYEXEC)
5623 flags |= MAP_EXECUTABLE;
5624 if (vma->vm_flags & VM_LOCKED)
5625 flags |= MAP_LOCKED;
5626 if (vma->vm_flags & VM_HUGETLB)
5627 flags |= MAP_HUGETLB;
5628
c7e548b4 5629 goto got_name;
0a4a9391 5630 } else {
fbe26abe
JO
5631 if (vma->vm_ops && vma->vm_ops->name) {
5632 name = (char *) vma->vm_ops->name(vma);
5633 if (name)
5634 goto cpy_name;
5635 }
5636
2c42cfbf 5637 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5638 if (name)
5639 goto cpy_name;
089dd79d 5640
32c5fb7e 5641 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5642 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5643 name = "[heap]";
5644 goto cpy_name;
32c5fb7e
ON
5645 }
5646 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5647 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5648 name = "[stack]";
5649 goto cpy_name;
089dd79d
PZ
5650 }
5651
c7e548b4
ON
5652 name = "//anon";
5653 goto cpy_name;
0a4a9391
PZ
5654 }
5655
c7e548b4
ON
5656cpy_name:
5657 strlcpy(tmp, name, sizeof(tmp));
5658 name = tmp;
0a4a9391 5659got_name:
2c42cfbf
PZ
5660 /*
5661 * Since our buffer works in 8 byte units we need to align our string
5662 * size to a multiple of 8. However, we must guarantee the tail end is
5663 * zero'd out to avoid leaking random bits to userspace.
5664 */
5665 size = strlen(name)+1;
5666 while (!IS_ALIGNED(size, sizeof(u64)))
5667 name[size++] = '\0';
0a4a9391
PZ
5668
5669 mmap_event->file_name = name;
5670 mmap_event->file_size = size;
13d7a241
SE
5671 mmap_event->maj = maj;
5672 mmap_event->min = min;
5673 mmap_event->ino = ino;
5674 mmap_event->ino_generation = gen;
f972eb63
PZ
5675 mmap_event->prot = prot;
5676 mmap_event->flags = flags;
0a4a9391 5677
2fe85427
SE
5678 if (!(vma->vm_flags & VM_EXEC))
5679 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5680
cdd6c482 5681 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5682
67516844 5683 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5684 mmap_event,
5685 NULL);
665c2142 5686
0a4a9391
PZ
5687 kfree(buf);
5688}
5689
3af9e859 5690void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5691{
9ee318a7
PZ
5692 struct perf_mmap_event mmap_event;
5693
cdd6c482 5694 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5695 return;
5696
5697 mmap_event = (struct perf_mmap_event){
089dd79d 5698 .vma = vma,
573402db
PZ
5699 /* .file_name */
5700 /* .file_size */
cdd6c482 5701 .event_id = {
573402db 5702 .header = {
cdd6c482 5703 .type = PERF_RECORD_MMAP,
39447b38 5704 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5705 /* .size */
5706 },
5707 /* .pid */
5708 /* .tid */
089dd79d
PZ
5709 .start = vma->vm_start,
5710 .len = vma->vm_end - vma->vm_start,
3a0304e9 5711 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5712 },
13d7a241
SE
5713 /* .maj (attr_mmap2 only) */
5714 /* .min (attr_mmap2 only) */
5715 /* .ino (attr_mmap2 only) */
5716 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
5717 /* .prot (attr_mmap2 only) */
5718 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
5719 };
5720
cdd6c482 5721 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5722}
5723
a78ac325
PZ
5724/*
5725 * IRQ throttle logging
5726 */
5727
cdd6c482 5728static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5729{
5730 struct perf_output_handle handle;
c980d109 5731 struct perf_sample_data sample;
a78ac325
PZ
5732 int ret;
5733
5734 struct {
5735 struct perf_event_header header;
5736 u64 time;
cca3f454 5737 u64 id;
7f453c24 5738 u64 stream_id;
a78ac325
PZ
5739 } throttle_event = {
5740 .header = {
cdd6c482 5741 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5742 .misc = 0,
5743 .size = sizeof(throttle_event),
5744 },
def0a9b2 5745 .time = perf_clock(),
cdd6c482
IM
5746 .id = primary_event_id(event),
5747 .stream_id = event->id,
a78ac325
PZ
5748 };
5749
966ee4d6 5750 if (enable)
cdd6c482 5751 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5752
c980d109
ACM
5753 perf_event_header__init_id(&throttle_event.header, &sample, event);
5754
5755 ret = perf_output_begin(&handle, event,
a7ac67ea 5756 throttle_event.header.size);
a78ac325
PZ
5757 if (ret)
5758 return;
5759
5760 perf_output_put(&handle, throttle_event);
c980d109 5761 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5762 perf_output_end(&handle);
5763}
5764
f6c7d5fe 5765/*
cdd6c482 5766 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5767 */
5768
a8b0ca17 5769static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5770 int throttle, struct perf_sample_data *data,
5771 struct pt_regs *regs)
f6c7d5fe 5772{
cdd6c482
IM
5773 int events = atomic_read(&event->event_limit);
5774 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5775 u64 seq;
79f14641
PZ
5776 int ret = 0;
5777
96398826
PZ
5778 /*
5779 * Non-sampling counters might still use the PMI to fold short
5780 * hardware counters, ignore those.
5781 */
5782 if (unlikely(!is_sampling_event(event)))
5783 return 0;
5784
e050e3f0
SE
5785 seq = __this_cpu_read(perf_throttled_seq);
5786 if (seq != hwc->interrupts_seq) {
5787 hwc->interrupts_seq = seq;
5788 hwc->interrupts = 1;
5789 } else {
5790 hwc->interrupts++;
5791 if (unlikely(throttle
5792 && hwc->interrupts >= max_samples_per_tick)) {
5793 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5794 hwc->interrupts = MAX_INTERRUPTS;
5795 perf_log_throttle(event, 0);
d84153d6 5796 tick_nohz_full_kick();
a78ac325
PZ
5797 ret = 1;
5798 }
e050e3f0 5799 }
60db5e09 5800
cdd6c482 5801 if (event->attr.freq) {
def0a9b2 5802 u64 now = perf_clock();
abd50713 5803 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5804
abd50713 5805 hwc->freq_time_stamp = now;
bd2b5b12 5806
abd50713 5807 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5808 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5809 }
5810
2023b359
PZ
5811 /*
5812 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5813 * events
2023b359
PZ
5814 */
5815
cdd6c482
IM
5816 event->pending_kill = POLL_IN;
5817 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5818 ret = 1;
cdd6c482 5819 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5820 event->pending_disable = 1;
5821 irq_work_queue(&event->pending);
79f14641
PZ
5822 }
5823
453f19ee 5824 if (event->overflow_handler)
a8b0ca17 5825 event->overflow_handler(event, data, regs);
453f19ee 5826 else
a8b0ca17 5827 perf_event_output(event, data, regs);
453f19ee 5828
f506b3dc 5829 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5830 event->pending_wakeup = 1;
5831 irq_work_queue(&event->pending);
f506b3dc
PZ
5832 }
5833
79f14641 5834 return ret;
f6c7d5fe
PZ
5835}
5836
a8b0ca17 5837int perf_event_overflow(struct perf_event *event,
5622f295
MM
5838 struct perf_sample_data *data,
5839 struct pt_regs *regs)
850bc73f 5840{
a8b0ca17 5841 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5842}
5843
15dbf27c 5844/*
cdd6c482 5845 * Generic software event infrastructure
15dbf27c
PZ
5846 */
5847
b28ab83c
PZ
5848struct swevent_htable {
5849 struct swevent_hlist *swevent_hlist;
5850 struct mutex hlist_mutex;
5851 int hlist_refcount;
5852
5853 /* Recursion avoidance in each contexts */
5854 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
5855
5856 /* Keeps track of cpu being initialized/exited */
5857 bool online;
b28ab83c
PZ
5858};
5859
5860static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5861
7b4b6658 5862/*
cdd6c482
IM
5863 * We directly increment event->count and keep a second value in
5864 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5865 * is kept in the range [-sample_period, 0] so that we can use the
5866 * sign as trigger.
5867 */
5868
ab573844 5869u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5870{
cdd6c482 5871 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5872 u64 period = hwc->last_period;
5873 u64 nr, offset;
5874 s64 old, val;
5875
5876 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5877
5878again:
e7850595 5879 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5880 if (val < 0)
5881 return 0;
15dbf27c 5882
7b4b6658
PZ
5883 nr = div64_u64(period + val, period);
5884 offset = nr * period;
5885 val -= offset;
e7850595 5886 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5887 goto again;
15dbf27c 5888
7b4b6658 5889 return nr;
15dbf27c
PZ
5890}
5891
0cff784a 5892static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5893 struct perf_sample_data *data,
5622f295 5894 struct pt_regs *regs)
15dbf27c 5895{
cdd6c482 5896 struct hw_perf_event *hwc = &event->hw;
850bc73f 5897 int throttle = 0;
15dbf27c 5898
0cff784a
PZ
5899 if (!overflow)
5900 overflow = perf_swevent_set_period(event);
15dbf27c 5901
7b4b6658
PZ
5902 if (hwc->interrupts == MAX_INTERRUPTS)
5903 return;
15dbf27c 5904
7b4b6658 5905 for (; overflow; overflow--) {
a8b0ca17 5906 if (__perf_event_overflow(event, throttle,
5622f295 5907 data, regs)) {
7b4b6658
PZ
5908 /*
5909 * We inhibit the overflow from happening when
5910 * hwc->interrupts == MAX_INTERRUPTS.
5911 */
5912 break;
5913 }
cf450a73 5914 throttle = 1;
7b4b6658 5915 }
15dbf27c
PZ
5916}
5917
a4eaf7f1 5918static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5919 struct perf_sample_data *data,
5622f295 5920 struct pt_regs *regs)
7b4b6658 5921{
cdd6c482 5922 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5923
e7850595 5924 local64_add(nr, &event->count);
d6d020e9 5925
0cff784a
PZ
5926 if (!regs)
5927 return;
5928
6c7e550f 5929 if (!is_sampling_event(event))
7b4b6658 5930 return;
d6d020e9 5931
5d81e5cf
AV
5932 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5933 data->period = nr;
5934 return perf_swevent_overflow(event, 1, data, regs);
5935 } else
5936 data->period = event->hw.last_period;
5937
0cff784a 5938 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5939 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5940
e7850595 5941 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5942 return;
df1a132b 5943
a8b0ca17 5944 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5945}
5946
f5ffe02e
FW
5947static int perf_exclude_event(struct perf_event *event,
5948 struct pt_regs *regs)
5949{
a4eaf7f1 5950 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5951 return 1;
a4eaf7f1 5952
f5ffe02e
FW
5953 if (regs) {
5954 if (event->attr.exclude_user && user_mode(regs))
5955 return 1;
5956
5957 if (event->attr.exclude_kernel && !user_mode(regs))
5958 return 1;
5959 }
5960
5961 return 0;
5962}
5963
cdd6c482 5964static int perf_swevent_match(struct perf_event *event,
1c432d89 5965 enum perf_type_id type,
6fb2915d
LZ
5966 u32 event_id,
5967 struct perf_sample_data *data,
5968 struct pt_regs *regs)
15dbf27c 5969{
cdd6c482 5970 if (event->attr.type != type)
a21ca2ca 5971 return 0;
f5ffe02e 5972
cdd6c482 5973 if (event->attr.config != event_id)
15dbf27c
PZ
5974 return 0;
5975
f5ffe02e
FW
5976 if (perf_exclude_event(event, regs))
5977 return 0;
15dbf27c
PZ
5978
5979 return 1;
5980}
5981
76e1d904
FW
5982static inline u64 swevent_hash(u64 type, u32 event_id)
5983{
5984 u64 val = event_id | (type << 32);
5985
5986 return hash_64(val, SWEVENT_HLIST_BITS);
5987}
5988
49f135ed
FW
5989static inline struct hlist_head *
5990__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5991{
49f135ed
FW
5992 u64 hash = swevent_hash(type, event_id);
5993
5994 return &hlist->heads[hash];
5995}
76e1d904 5996
49f135ed
FW
5997/* For the read side: events when they trigger */
5998static inline struct hlist_head *
b28ab83c 5999find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6000{
6001 struct swevent_hlist *hlist;
76e1d904 6002
b28ab83c 6003 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6004 if (!hlist)
6005 return NULL;
6006
49f135ed
FW
6007 return __find_swevent_head(hlist, type, event_id);
6008}
6009
6010/* For the event head insertion and removal in the hlist */
6011static inline struct hlist_head *
b28ab83c 6012find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6013{
6014 struct swevent_hlist *hlist;
6015 u32 event_id = event->attr.config;
6016 u64 type = event->attr.type;
6017
6018 /*
6019 * Event scheduling is always serialized against hlist allocation
6020 * and release. Which makes the protected version suitable here.
6021 * The context lock guarantees that.
6022 */
b28ab83c 6023 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6024 lockdep_is_held(&event->ctx->lock));
6025 if (!hlist)
6026 return NULL;
6027
6028 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6029}
6030
6031static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6032 u64 nr,
76e1d904
FW
6033 struct perf_sample_data *data,
6034 struct pt_regs *regs)
15dbf27c 6035{
4a32fea9 6036 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6037 struct perf_event *event;
76e1d904 6038 struct hlist_head *head;
15dbf27c 6039
76e1d904 6040 rcu_read_lock();
b28ab83c 6041 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6042 if (!head)
6043 goto end;
6044
b67bfe0d 6045 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6046 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6047 perf_swevent_event(event, nr, data, regs);
15dbf27c 6048 }
76e1d904
FW
6049end:
6050 rcu_read_unlock();
15dbf27c
PZ
6051}
6052
86038c5e
PZI
6053DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6054
4ed7c92d 6055int perf_swevent_get_recursion_context(void)
96f6d444 6056{
4a32fea9 6057 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6058
b28ab83c 6059 return get_recursion_context(swhash->recursion);
96f6d444 6060}
645e8cc0 6061EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6062
fa9f90be 6063inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6064{
4a32fea9 6065 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6066
b28ab83c 6067 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6068}
15dbf27c 6069
86038c5e 6070void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6071{
a4234bfc 6072 struct perf_sample_data data;
4ed7c92d 6073
86038c5e 6074 if (WARN_ON_ONCE(!regs))
4ed7c92d 6075 return;
a4234bfc 6076
fd0d000b 6077 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6078 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6079}
6080
6081void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6082{
6083 int rctx;
6084
6085 preempt_disable_notrace();
6086 rctx = perf_swevent_get_recursion_context();
6087 if (unlikely(rctx < 0))
6088 goto fail;
6089
6090 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6091
6092 perf_swevent_put_recursion_context(rctx);
86038c5e 6093fail:
1c024eca 6094 preempt_enable_notrace();
b8e83514
PZ
6095}
6096
cdd6c482 6097static void perf_swevent_read(struct perf_event *event)
15dbf27c 6098{
15dbf27c
PZ
6099}
6100
a4eaf7f1 6101static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6102{
4a32fea9 6103 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6104 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6105 struct hlist_head *head;
6106
6c7e550f 6107 if (is_sampling_event(event)) {
7b4b6658 6108 hwc->last_period = hwc->sample_period;
cdd6c482 6109 perf_swevent_set_period(event);
7b4b6658 6110 }
76e1d904 6111
a4eaf7f1
PZ
6112 hwc->state = !(flags & PERF_EF_START);
6113
b28ab83c 6114 head = find_swevent_head(swhash, event);
39af6b16
JO
6115 if (!head) {
6116 /*
6117 * We can race with cpu hotplug code. Do not
6118 * WARN if the cpu just got unplugged.
6119 */
6120 WARN_ON_ONCE(swhash->online);
76e1d904 6121 return -EINVAL;
39af6b16 6122 }
76e1d904
FW
6123
6124 hlist_add_head_rcu(&event->hlist_entry, head);
6125
15dbf27c
PZ
6126 return 0;
6127}
6128
a4eaf7f1 6129static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6130{
76e1d904 6131 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6132}
6133
a4eaf7f1 6134static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6135{
a4eaf7f1 6136 event->hw.state = 0;
d6d020e9 6137}
aa9c4c0f 6138
a4eaf7f1 6139static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6140{
a4eaf7f1 6141 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6142}
6143
49f135ed
FW
6144/* Deref the hlist from the update side */
6145static inline struct swevent_hlist *
b28ab83c 6146swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6147{
b28ab83c
PZ
6148 return rcu_dereference_protected(swhash->swevent_hlist,
6149 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6150}
6151
b28ab83c 6152static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6153{
b28ab83c 6154 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6155
49f135ed 6156 if (!hlist)
76e1d904
FW
6157 return;
6158
70691d4a 6159 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6160 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6161}
6162
6163static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6164{
b28ab83c 6165 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6166
b28ab83c 6167 mutex_lock(&swhash->hlist_mutex);
76e1d904 6168
b28ab83c
PZ
6169 if (!--swhash->hlist_refcount)
6170 swevent_hlist_release(swhash);
76e1d904 6171
b28ab83c 6172 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6173}
6174
6175static void swevent_hlist_put(struct perf_event *event)
6176{
6177 int cpu;
6178
76e1d904
FW
6179 for_each_possible_cpu(cpu)
6180 swevent_hlist_put_cpu(event, cpu);
6181}
6182
6183static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6184{
b28ab83c 6185 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6186 int err = 0;
6187
b28ab83c 6188 mutex_lock(&swhash->hlist_mutex);
76e1d904 6189
b28ab83c 6190 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6191 struct swevent_hlist *hlist;
6192
6193 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6194 if (!hlist) {
6195 err = -ENOMEM;
6196 goto exit;
6197 }
b28ab83c 6198 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6199 }
b28ab83c 6200 swhash->hlist_refcount++;
9ed6060d 6201exit:
b28ab83c 6202 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6203
6204 return err;
6205}
6206
6207static int swevent_hlist_get(struct perf_event *event)
6208{
6209 int err;
6210 int cpu, failed_cpu;
6211
76e1d904
FW
6212 get_online_cpus();
6213 for_each_possible_cpu(cpu) {
6214 err = swevent_hlist_get_cpu(event, cpu);
6215 if (err) {
6216 failed_cpu = cpu;
6217 goto fail;
6218 }
6219 }
6220 put_online_cpus();
6221
6222 return 0;
9ed6060d 6223fail:
76e1d904
FW
6224 for_each_possible_cpu(cpu) {
6225 if (cpu == failed_cpu)
6226 break;
6227 swevent_hlist_put_cpu(event, cpu);
6228 }
6229
6230 put_online_cpus();
6231 return err;
6232}
6233
c5905afb 6234struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6235
b0a873eb
PZ
6236static void sw_perf_event_destroy(struct perf_event *event)
6237{
6238 u64 event_id = event->attr.config;
95476b64 6239
b0a873eb
PZ
6240 WARN_ON(event->parent);
6241
c5905afb 6242 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6243 swevent_hlist_put(event);
6244}
6245
6246static int perf_swevent_init(struct perf_event *event)
6247{
8176cced 6248 u64 event_id = event->attr.config;
b0a873eb
PZ
6249
6250 if (event->attr.type != PERF_TYPE_SOFTWARE)
6251 return -ENOENT;
6252
2481c5fa
SE
6253 /*
6254 * no branch sampling for software events
6255 */
6256 if (has_branch_stack(event))
6257 return -EOPNOTSUPP;
6258
b0a873eb
PZ
6259 switch (event_id) {
6260 case PERF_COUNT_SW_CPU_CLOCK:
6261 case PERF_COUNT_SW_TASK_CLOCK:
6262 return -ENOENT;
6263
6264 default:
6265 break;
6266 }
6267
ce677831 6268 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6269 return -ENOENT;
6270
6271 if (!event->parent) {
6272 int err;
6273
6274 err = swevent_hlist_get(event);
6275 if (err)
6276 return err;
6277
c5905afb 6278 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6279 event->destroy = sw_perf_event_destroy;
6280 }
6281
6282 return 0;
6283}
6284
6285static struct pmu perf_swevent = {
89a1e187 6286 .task_ctx_nr = perf_sw_context,
95476b64 6287
b0a873eb 6288 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6289 .add = perf_swevent_add,
6290 .del = perf_swevent_del,
6291 .start = perf_swevent_start,
6292 .stop = perf_swevent_stop,
1c024eca 6293 .read = perf_swevent_read,
1c024eca
PZ
6294};
6295
b0a873eb
PZ
6296#ifdef CONFIG_EVENT_TRACING
6297
1c024eca
PZ
6298static int perf_tp_filter_match(struct perf_event *event,
6299 struct perf_sample_data *data)
6300{
6301 void *record = data->raw->data;
6302
6303 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6304 return 1;
6305 return 0;
6306}
6307
6308static int perf_tp_event_match(struct perf_event *event,
6309 struct perf_sample_data *data,
6310 struct pt_regs *regs)
6311{
a0f7d0f7
FW
6312 if (event->hw.state & PERF_HES_STOPPED)
6313 return 0;
580d607c
PZ
6314 /*
6315 * All tracepoints are from kernel-space.
6316 */
6317 if (event->attr.exclude_kernel)
1c024eca
PZ
6318 return 0;
6319
6320 if (!perf_tp_filter_match(event, data))
6321 return 0;
6322
6323 return 1;
6324}
6325
6326void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6327 struct pt_regs *regs, struct hlist_head *head, int rctx,
6328 struct task_struct *task)
95476b64
FW
6329{
6330 struct perf_sample_data data;
1c024eca 6331 struct perf_event *event;
1c024eca 6332
95476b64
FW
6333 struct perf_raw_record raw = {
6334 .size = entry_size,
6335 .data = record,
6336 };
6337
fd0d000b 6338 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6339 data.raw = &raw;
6340
b67bfe0d 6341 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6342 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6343 perf_swevent_event(event, count, &data, regs);
4f41c013 6344 }
ecc55f84 6345
e6dab5ff
AV
6346 /*
6347 * If we got specified a target task, also iterate its context and
6348 * deliver this event there too.
6349 */
6350 if (task && task != current) {
6351 struct perf_event_context *ctx;
6352 struct trace_entry *entry = record;
6353
6354 rcu_read_lock();
6355 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6356 if (!ctx)
6357 goto unlock;
6358
6359 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6360 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6361 continue;
6362 if (event->attr.config != entry->type)
6363 continue;
6364 if (perf_tp_event_match(event, &data, regs))
6365 perf_swevent_event(event, count, &data, regs);
6366 }
6367unlock:
6368 rcu_read_unlock();
6369 }
6370
ecc55f84 6371 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6372}
6373EXPORT_SYMBOL_GPL(perf_tp_event);
6374
cdd6c482 6375static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6376{
1c024eca 6377 perf_trace_destroy(event);
e077df4f
PZ
6378}
6379
b0a873eb 6380static int perf_tp_event_init(struct perf_event *event)
e077df4f 6381{
76e1d904
FW
6382 int err;
6383
b0a873eb
PZ
6384 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6385 return -ENOENT;
6386
2481c5fa
SE
6387 /*
6388 * no branch sampling for tracepoint events
6389 */
6390 if (has_branch_stack(event))
6391 return -EOPNOTSUPP;
6392
1c024eca
PZ
6393 err = perf_trace_init(event);
6394 if (err)
b0a873eb 6395 return err;
e077df4f 6396
cdd6c482 6397 event->destroy = tp_perf_event_destroy;
e077df4f 6398
b0a873eb
PZ
6399 return 0;
6400}
6401
6402static struct pmu perf_tracepoint = {
89a1e187
PZ
6403 .task_ctx_nr = perf_sw_context,
6404
b0a873eb 6405 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6406 .add = perf_trace_add,
6407 .del = perf_trace_del,
6408 .start = perf_swevent_start,
6409 .stop = perf_swevent_stop,
b0a873eb 6410 .read = perf_swevent_read,
b0a873eb
PZ
6411};
6412
6413static inline void perf_tp_register(void)
6414{
2e80a82a 6415 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6416}
6fb2915d
LZ
6417
6418static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6419{
6420 char *filter_str;
6421 int ret;
6422
6423 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6424 return -EINVAL;
6425
6426 filter_str = strndup_user(arg, PAGE_SIZE);
6427 if (IS_ERR(filter_str))
6428 return PTR_ERR(filter_str);
6429
6430 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6431
6432 kfree(filter_str);
6433 return ret;
6434}
6435
6436static void perf_event_free_filter(struct perf_event *event)
6437{
6438 ftrace_profile_free_filter(event);
6439}
6440
e077df4f 6441#else
6fb2915d 6442
b0a873eb 6443static inline void perf_tp_register(void)
e077df4f 6444{
e077df4f 6445}
6fb2915d
LZ
6446
6447static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6448{
6449 return -ENOENT;
6450}
6451
6452static void perf_event_free_filter(struct perf_event *event)
6453{
6454}
6455
07b139c8 6456#endif /* CONFIG_EVENT_TRACING */
e077df4f 6457
24f1e32c 6458#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6459void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6460{
f5ffe02e
FW
6461 struct perf_sample_data sample;
6462 struct pt_regs *regs = data;
6463
fd0d000b 6464 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6465
a4eaf7f1 6466 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6467 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6468}
6469#endif
6470
b0a873eb
PZ
6471/*
6472 * hrtimer based swevent callback
6473 */
f29ac756 6474
b0a873eb 6475static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6476{
b0a873eb
PZ
6477 enum hrtimer_restart ret = HRTIMER_RESTART;
6478 struct perf_sample_data data;
6479 struct pt_regs *regs;
6480 struct perf_event *event;
6481 u64 period;
f29ac756 6482
b0a873eb 6483 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6484
6485 if (event->state != PERF_EVENT_STATE_ACTIVE)
6486 return HRTIMER_NORESTART;
6487
b0a873eb 6488 event->pmu->read(event);
f344011c 6489
fd0d000b 6490 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6491 regs = get_irq_regs();
6492
6493 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6494 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6495 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6496 ret = HRTIMER_NORESTART;
6497 }
24f1e32c 6498
b0a873eb
PZ
6499 period = max_t(u64, 10000, event->hw.sample_period);
6500 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6501
b0a873eb 6502 return ret;
f29ac756
PZ
6503}
6504
b0a873eb 6505static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6506{
b0a873eb 6507 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6508 s64 period;
6509
6510 if (!is_sampling_event(event))
6511 return;
f5ffe02e 6512
5d508e82
FBH
6513 period = local64_read(&hwc->period_left);
6514 if (period) {
6515 if (period < 0)
6516 period = 10000;
fa407f35 6517
5d508e82
FBH
6518 local64_set(&hwc->period_left, 0);
6519 } else {
6520 period = max_t(u64, 10000, hwc->sample_period);
6521 }
6522 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6523 ns_to_ktime(period), 0,
b5ab4cd5 6524 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6525}
b0a873eb
PZ
6526
6527static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6528{
b0a873eb
PZ
6529 struct hw_perf_event *hwc = &event->hw;
6530
6c7e550f 6531 if (is_sampling_event(event)) {
b0a873eb 6532 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6533 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6534
6535 hrtimer_cancel(&hwc->hrtimer);
6536 }
24f1e32c
FW
6537}
6538
ba3dd36c
PZ
6539static void perf_swevent_init_hrtimer(struct perf_event *event)
6540{
6541 struct hw_perf_event *hwc = &event->hw;
6542
6543 if (!is_sampling_event(event))
6544 return;
6545
6546 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6547 hwc->hrtimer.function = perf_swevent_hrtimer;
6548
6549 /*
6550 * Since hrtimers have a fixed rate, we can do a static freq->period
6551 * mapping and avoid the whole period adjust feedback stuff.
6552 */
6553 if (event->attr.freq) {
6554 long freq = event->attr.sample_freq;
6555
6556 event->attr.sample_period = NSEC_PER_SEC / freq;
6557 hwc->sample_period = event->attr.sample_period;
6558 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6559 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6560 event->attr.freq = 0;
6561 }
6562}
6563
b0a873eb
PZ
6564/*
6565 * Software event: cpu wall time clock
6566 */
6567
6568static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6569{
b0a873eb
PZ
6570 s64 prev;
6571 u64 now;
6572
a4eaf7f1 6573 now = local_clock();
b0a873eb
PZ
6574 prev = local64_xchg(&event->hw.prev_count, now);
6575 local64_add(now - prev, &event->count);
24f1e32c 6576}
24f1e32c 6577
a4eaf7f1 6578static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6579{
a4eaf7f1 6580 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6581 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6582}
6583
a4eaf7f1 6584static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6585{
b0a873eb
PZ
6586 perf_swevent_cancel_hrtimer(event);
6587 cpu_clock_event_update(event);
6588}
f29ac756 6589
a4eaf7f1
PZ
6590static int cpu_clock_event_add(struct perf_event *event, int flags)
6591{
6592 if (flags & PERF_EF_START)
6593 cpu_clock_event_start(event, flags);
6594
6595 return 0;
6596}
6597
6598static void cpu_clock_event_del(struct perf_event *event, int flags)
6599{
6600 cpu_clock_event_stop(event, flags);
6601}
6602
b0a873eb
PZ
6603static void cpu_clock_event_read(struct perf_event *event)
6604{
6605 cpu_clock_event_update(event);
6606}
f344011c 6607
b0a873eb
PZ
6608static int cpu_clock_event_init(struct perf_event *event)
6609{
6610 if (event->attr.type != PERF_TYPE_SOFTWARE)
6611 return -ENOENT;
6612
6613 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6614 return -ENOENT;
6615
2481c5fa
SE
6616 /*
6617 * no branch sampling for software events
6618 */
6619 if (has_branch_stack(event))
6620 return -EOPNOTSUPP;
6621
ba3dd36c
PZ
6622 perf_swevent_init_hrtimer(event);
6623
b0a873eb 6624 return 0;
f29ac756
PZ
6625}
6626
b0a873eb 6627static struct pmu perf_cpu_clock = {
89a1e187
PZ
6628 .task_ctx_nr = perf_sw_context,
6629
b0a873eb 6630 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6631 .add = cpu_clock_event_add,
6632 .del = cpu_clock_event_del,
6633 .start = cpu_clock_event_start,
6634 .stop = cpu_clock_event_stop,
b0a873eb
PZ
6635 .read = cpu_clock_event_read,
6636};
6637
6638/*
6639 * Software event: task time clock
6640 */
6641
6642static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6643{
b0a873eb
PZ
6644 u64 prev;
6645 s64 delta;
5c92d124 6646
b0a873eb
PZ
6647 prev = local64_xchg(&event->hw.prev_count, now);
6648 delta = now - prev;
6649 local64_add(delta, &event->count);
6650}
5c92d124 6651
a4eaf7f1 6652static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6653{
a4eaf7f1 6654 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6655 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6656}
6657
a4eaf7f1 6658static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6659{
6660 perf_swevent_cancel_hrtimer(event);
6661 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6662}
6663
6664static int task_clock_event_add(struct perf_event *event, int flags)
6665{
6666 if (flags & PERF_EF_START)
6667 task_clock_event_start(event, flags);
b0a873eb 6668
a4eaf7f1
PZ
6669 return 0;
6670}
6671
6672static void task_clock_event_del(struct perf_event *event, int flags)
6673{
6674 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6675}
6676
6677static void task_clock_event_read(struct perf_event *event)
6678{
768a06e2
PZ
6679 u64 now = perf_clock();
6680 u64 delta = now - event->ctx->timestamp;
6681 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6682
6683 task_clock_event_update(event, time);
6684}
6685
6686static int task_clock_event_init(struct perf_event *event)
6fb2915d 6687{
b0a873eb
PZ
6688 if (event->attr.type != PERF_TYPE_SOFTWARE)
6689 return -ENOENT;
6690
6691 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6692 return -ENOENT;
6693
2481c5fa
SE
6694 /*
6695 * no branch sampling for software events
6696 */
6697 if (has_branch_stack(event))
6698 return -EOPNOTSUPP;
6699
ba3dd36c
PZ
6700 perf_swevent_init_hrtimer(event);
6701
b0a873eb 6702 return 0;
6fb2915d
LZ
6703}
6704
b0a873eb 6705static struct pmu perf_task_clock = {
89a1e187
PZ
6706 .task_ctx_nr = perf_sw_context,
6707
b0a873eb 6708 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6709 .add = task_clock_event_add,
6710 .del = task_clock_event_del,
6711 .start = task_clock_event_start,
6712 .stop = task_clock_event_stop,
b0a873eb
PZ
6713 .read = task_clock_event_read,
6714};
6fb2915d 6715
ad5133b7 6716static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6717{
e077df4f 6718}
6fb2915d 6719
ad5133b7 6720static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6721{
ad5133b7 6722 return 0;
6fb2915d
LZ
6723}
6724
ad5133b7 6725static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6726{
ad5133b7 6727 perf_pmu_disable(pmu);
6fb2915d
LZ
6728}
6729
ad5133b7
PZ
6730static int perf_pmu_commit_txn(struct pmu *pmu)
6731{
6732 perf_pmu_enable(pmu);
6733 return 0;
6734}
e077df4f 6735
ad5133b7 6736static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6737{
ad5133b7 6738 perf_pmu_enable(pmu);
24f1e32c
FW
6739}
6740
35edc2a5
PZ
6741static int perf_event_idx_default(struct perf_event *event)
6742{
c719f560 6743 return 0;
35edc2a5
PZ
6744}
6745
8dc85d54
PZ
6746/*
6747 * Ensures all contexts with the same task_ctx_nr have the same
6748 * pmu_cpu_context too.
6749 */
9e317041 6750static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 6751{
8dc85d54 6752 struct pmu *pmu;
b326e956 6753
8dc85d54
PZ
6754 if (ctxn < 0)
6755 return NULL;
24f1e32c 6756
8dc85d54
PZ
6757 list_for_each_entry(pmu, &pmus, entry) {
6758 if (pmu->task_ctx_nr == ctxn)
6759 return pmu->pmu_cpu_context;
6760 }
24f1e32c 6761
8dc85d54 6762 return NULL;
24f1e32c
FW
6763}
6764
51676957 6765static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6766{
51676957
PZ
6767 int cpu;
6768
6769 for_each_possible_cpu(cpu) {
6770 struct perf_cpu_context *cpuctx;
6771
6772 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6773
3f1f3320
PZ
6774 if (cpuctx->unique_pmu == old_pmu)
6775 cpuctx->unique_pmu = pmu;
51676957
PZ
6776 }
6777}
6778
6779static void free_pmu_context(struct pmu *pmu)
6780{
6781 struct pmu *i;
f5ffe02e 6782
8dc85d54 6783 mutex_lock(&pmus_lock);
0475f9ea 6784 /*
8dc85d54 6785 * Like a real lame refcount.
0475f9ea 6786 */
51676957
PZ
6787 list_for_each_entry(i, &pmus, entry) {
6788 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6789 update_pmu_context(i, pmu);
8dc85d54 6790 goto out;
51676957 6791 }
8dc85d54 6792 }
d6d020e9 6793
51676957 6794 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6795out:
6796 mutex_unlock(&pmus_lock);
24f1e32c 6797}
2e80a82a 6798static struct idr pmu_idr;
d6d020e9 6799
abe43400
PZ
6800static ssize_t
6801type_show(struct device *dev, struct device_attribute *attr, char *page)
6802{
6803 struct pmu *pmu = dev_get_drvdata(dev);
6804
6805 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6806}
90826ca7 6807static DEVICE_ATTR_RO(type);
abe43400 6808
62b85639
SE
6809static ssize_t
6810perf_event_mux_interval_ms_show(struct device *dev,
6811 struct device_attribute *attr,
6812 char *page)
6813{
6814 struct pmu *pmu = dev_get_drvdata(dev);
6815
6816 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6817}
6818
6819static ssize_t
6820perf_event_mux_interval_ms_store(struct device *dev,
6821 struct device_attribute *attr,
6822 const char *buf, size_t count)
6823{
6824 struct pmu *pmu = dev_get_drvdata(dev);
6825 int timer, cpu, ret;
6826
6827 ret = kstrtoint(buf, 0, &timer);
6828 if (ret)
6829 return ret;
6830
6831 if (timer < 1)
6832 return -EINVAL;
6833
6834 /* same value, noting to do */
6835 if (timer == pmu->hrtimer_interval_ms)
6836 return count;
6837
6838 pmu->hrtimer_interval_ms = timer;
6839
6840 /* update all cpuctx for this PMU */
6841 for_each_possible_cpu(cpu) {
6842 struct perf_cpu_context *cpuctx;
6843 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6844 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6845
6846 if (hrtimer_active(&cpuctx->hrtimer))
6847 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6848 }
6849
6850 return count;
6851}
90826ca7 6852static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 6853
90826ca7
GKH
6854static struct attribute *pmu_dev_attrs[] = {
6855 &dev_attr_type.attr,
6856 &dev_attr_perf_event_mux_interval_ms.attr,
6857 NULL,
abe43400 6858};
90826ca7 6859ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
6860
6861static int pmu_bus_running;
6862static struct bus_type pmu_bus = {
6863 .name = "event_source",
90826ca7 6864 .dev_groups = pmu_dev_groups,
abe43400
PZ
6865};
6866
6867static void pmu_dev_release(struct device *dev)
6868{
6869 kfree(dev);
6870}
6871
6872static int pmu_dev_alloc(struct pmu *pmu)
6873{
6874 int ret = -ENOMEM;
6875
6876 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6877 if (!pmu->dev)
6878 goto out;
6879
0c9d42ed 6880 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6881 device_initialize(pmu->dev);
6882 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6883 if (ret)
6884 goto free_dev;
6885
6886 dev_set_drvdata(pmu->dev, pmu);
6887 pmu->dev->bus = &pmu_bus;
6888 pmu->dev->release = pmu_dev_release;
6889 ret = device_add(pmu->dev);
6890 if (ret)
6891 goto free_dev;
6892
6893out:
6894 return ret;
6895
6896free_dev:
6897 put_device(pmu->dev);
6898 goto out;
6899}
6900
547e9fd7 6901static struct lock_class_key cpuctx_mutex;
facc4307 6902static struct lock_class_key cpuctx_lock;
547e9fd7 6903
03d8e80b 6904int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6905{
108b02cf 6906 int cpu, ret;
24f1e32c 6907
b0a873eb 6908 mutex_lock(&pmus_lock);
33696fc0
PZ
6909 ret = -ENOMEM;
6910 pmu->pmu_disable_count = alloc_percpu(int);
6911 if (!pmu->pmu_disable_count)
6912 goto unlock;
f29ac756 6913
2e80a82a
PZ
6914 pmu->type = -1;
6915 if (!name)
6916 goto skip_type;
6917 pmu->name = name;
6918
6919 if (type < 0) {
0e9c3be2
TH
6920 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6921 if (type < 0) {
6922 ret = type;
2e80a82a
PZ
6923 goto free_pdc;
6924 }
6925 }
6926 pmu->type = type;
6927
abe43400
PZ
6928 if (pmu_bus_running) {
6929 ret = pmu_dev_alloc(pmu);
6930 if (ret)
6931 goto free_idr;
6932 }
6933
2e80a82a 6934skip_type:
8dc85d54
PZ
6935 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6936 if (pmu->pmu_cpu_context)
6937 goto got_cpu_context;
f29ac756 6938
c4814202 6939 ret = -ENOMEM;
108b02cf
PZ
6940 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6941 if (!pmu->pmu_cpu_context)
abe43400 6942 goto free_dev;
f344011c 6943
108b02cf
PZ
6944 for_each_possible_cpu(cpu) {
6945 struct perf_cpu_context *cpuctx;
6946
6947 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6948 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6949 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6950 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 6951 cpuctx->ctx.pmu = pmu;
9e630205
SE
6952
6953 __perf_cpu_hrtimer_init(cpuctx, cpu);
6954
3f1f3320 6955 cpuctx->unique_pmu = pmu;
108b02cf 6956 }
76e1d904 6957
8dc85d54 6958got_cpu_context:
ad5133b7
PZ
6959 if (!pmu->start_txn) {
6960 if (pmu->pmu_enable) {
6961 /*
6962 * If we have pmu_enable/pmu_disable calls, install
6963 * transaction stubs that use that to try and batch
6964 * hardware accesses.
6965 */
6966 pmu->start_txn = perf_pmu_start_txn;
6967 pmu->commit_txn = perf_pmu_commit_txn;
6968 pmu->cancel_txn = perf_pmu_cancel_txn;
6969 } else {
6970 pmu->start_txn = perf_pmu_nop_void;
6971 pmu->commit_txn = perf_pmu_nop_int;
6972 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6973 }
5c92d124 6974 }
15dbf27c 6975
ad5133b7
PZ
6976 if (!pmu->pmu_enable) {
6977 pmu->pmu_enable = perf_pmu_nop_void;
6978 pmu->pmu_disable = perf_pmu_nop_void;
6979 }
6980
35edc2a5
PZ
6981 if (!pmu->event_idx)
6982 pmu->event_idx = perf_event_idx_default;
6983
b0a873eb 6984 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6985 ret = 0;
6986unlock:
b0a873eb
PZ
6987 mutex_unlock(&pmus_lock);
6988
33696fc0 6989 return ret;
108b02cf 6990
abe43400
PZ
6991free_dev:
6992 device_del(pmu->dev);
6993 put_device(pmu->dev);
6994
2e80a82a
PZ
6995free_idr:
6996 if (pmu->type >= PERF_TYPE_MAX)
6997 idr_remove(&pmu_idr, pmu->type);
6998
108b02cf
PZ
6999free_pdc:
7000 free_percpu(pmu->pmu_disable_count);
7001 goto unlock;
f29ac756 7002}
c464c76e 7003EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7004
b0a873eb 7005void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7006{
b0a873eb
PZ
7007 mutex_lock(&pmus_lock);
7008 list_del_rcu(&pmu->entry);
7009 mutex_unlock(&pmus_lock);
5c92d124 7010
0475f9ea 7011 /*
cde8e884
PZ
7012 * We dereference the pmu list under both SRCU and regular RCU, so
7013 * synchronize against both of those.
0475f9ea 7014 */
b0a873eb 7015 synchronize_srcu(&pmus_srcu);
cde8e884 7016 synchronize_rcu();
d6d020e9 7017
33696fc0 7018 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7019 if (pmu->type >= PERF_TYPE_MAX)
7020 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7021 device_del(pmu->dev);
7022 put_device(pmu->dev);
51676957 7023 free_pmu_context(pmu);
b0a873eb 7024}
c464c76e 7025EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7026
cc34b98b
MR
7027static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7028{
7029 int ret;
7030
7031 if (!try_module_get(pmu->module))
7032 return -ENODEV;
7033 event->pmu = pmu;
7034 ret = pmu->event_init(event);
7035 if (ret)
7036 module_put(pmu->module);
7037
7038 return ret;
7039}
7040
b0a873eb
PZ
7041struct pmu *perf_init_event(struct perf_event *event)
7042{
7043 struct pmu *pmu = NULL;
7044 int idx;
940c5b29 7045 int ret;
b0a873eb
PZ
7046
7047 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7048
7049 rcu_read_lock();
7050 pmu = idr_find(&pmu_idr, event->attr.type);
7051 rcu_read_unlock();
940c5b29 7052 if (pmu) {
cc34b98b 7053 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7054 if (ret)
7055 pmu = ERR_PTR(ret);
2e80a82a 7056 goto unlock;
940c5b29 7057 }
2e80a82a 7058
b0a873eb 7059 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7060 ret = perf_try_init_event(pmu, event);
b0a873eb 7061 if (!ret)
e5f4d339 7062 goto unlock;
76e1d904 7063
b0a873eb
PZ
7064 if (ret != -ENOENT) {
7065 pmu = ERR_PTR(ret);
e5f4d339 7066 goto unlock;
f344011c 7067 }
5c92d124 7068 }
e5f4d339
PZ
7069 pmu = ERR_PTR(-ENOENT);
7070unlock:
b0a873eb 7071 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7072
4aeb0b42 7073 return pmu;
5c92d124
IM
7074}
7075
4beb31f3
FW
7076static void account_event_cpu(struct perf_event *event, int cpu)
7077{
7078 if (event->parent)
7079 return;
7080
7081 if (has_branch_stack(event)) {
7082 if (!(event->attach_state & PERF_ATTACH_TASK))
7083 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
7084 }
7085 if (is_cgroup_event(event))
7086 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7087}
7088
766d6c07
FW
7089static void account_event(struct perf_event *event)
7090{
4beb31f3
FW
7091 if (event->parent)
7092 return;
7093
766d6c07
FW
7094 if (event->attach_state & PERF_ATTACH_TASK)
7095 static_key_slow_inc(&perf_sched_events.key);
7096 if (event->attr.mmap || event->attr.mmap_data)
7097 atomic_inc(&nr_mmap_events);
7098 if (event->attr.comm)
7099 atomic_inc(&nr_comm_events);
7100 if (event->attr.task)
7101 atomic_inc(&nr_task_events);
948b26b6
FW
7102 if (event->attr.freq) {
7103 if (atomic_inc_return(&nr_freq_events) == 1)
7104 tick_nohz_full_kick_all();
7105 }
4beb31f3 7106 if (has_branch_stack(event))
766d6c07 7107 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7108 if (is_cgroup_event(event))
766d6c07 7109 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7110
7111 account_event_cpu(event, event->cpu);
766d6c07
FW
7112}
7113
0793a61d 7114/*
cdd6c482 7115 * Allocate and initialize a event structure
0793a61d 7116 */
cdd6c482 7117static struct perf_event *
c3f00c70 7118perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7119 struct task_struct *task,
7120 struct perf_event *group_leader,
7121 struct perf_event *parent_event,
4dc0da86
AK
7122 perf_overflow_handler_t overflow_handler,
7123 void *context)
0793a61d 7124{
51b0fe39 7125 struct pmu *pmu;
cdd6c482
IM
7126 struct perf_event *event;
7127 struct hw_perf_event *hwc;
90983b16 7128 long err = -EINVAL;
0793a61d 7129
66832eb4
ON
7130 if ((unsigned)cpu >= nr_cpu_ids) {
7131 if (!task || cpu != -1)
7132 return ERR_PTR(-EINVAL);
7133 }
7134
c3f00c70 7135 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7136 if (!event)
d5d2bc0d 7137 return ERR_PTR(-ENOMEM);
0793a61d 7138
04289bb9 7139 /*
cdd6c482 7140 * Single events are their own group leaders, with an
04289bb9
IM
7141 * empty sibling list:
7142 */
7143 if (!group_leader)
cdd6c482 7144 group_leader = event;
04289bb9 7145
cdd6c482
IM
7146 mutex_init(&event->child_mutex);
7147 INIT_LIST_HEAD(&event->child_list);
fccc714b 7148
cdd6c482
IM
7149 INIT_LIST_HEAD(&event->group_entry);
7150 INIT_LIST_HEAD(&event->event_entry);
7151 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7152 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7153 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7154 INIT_HLIST_NODE(&event->hlist_entry);
7155
10c6db11 7156
cdd6c482 7157 init_waitqueue_head(&event->waitq);
e360adbe 7158 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7159
cdd6c482 7160 mutex_init(&event->mmap_mutex);
7b732a75 7161
a6fa941d 7162 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7163 event->cpu = cpu;
7164 event->attr = *attr;
7165 event->group_leader = group_leader;
7166 event->pmu = NULL;
cdd6c482 7167 event->oncpu = -1;
a96bbc16 7168
cdd6c482 7169 event->parent = parent_event;
b84fbc9f 7170
17cf22c3 7171 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7172 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7173
cdd6c482 7174 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7175
d580ff86
PZ
7176 if (task) {
7177 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
7178
7179 if (attr->type == PERF_TYPE_TRACEPOINT)
7180 event->hw.tp_target = task;
d580ff86
PZ
7181#ifdef CONFIG_HAVE_HW_BREAKPOINT
7182 /*
7183 * hw_breakpoint is a bit difficult here..
7184 */
f22c1bb6 7185 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
7186 event->hw.bp_target = task;
7187#endif
7188 }
7189
4dc0da86 7190 if (!overflow_handler && parent_event) {
b326e956 7191 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7192 context = parent_event->overflow_handler_context;
7193 }
66832eb4 7194
b326e956 7195 event->overflow_handler = overflow_handler;
4dc0da86 7196 event->overflow_handler_context = context;
97eaf530 7197
0231bb53 7198 perf_event__state_init(event);
a86ed508 7199
4aeb0b42 7200 pmu = NULL;
b8e83514 7201
cdd6c482 7202 hwc = &event->hw;
bd2b5b12 7203 hwc->sample_period = attr->sample_period;
0d48696f 7204 if (attr->freq && attr->sample_freq)
bd2b5b12 7205 hwc->sample_period = 1;
eced1dfc 7206 hwc->last_period = hwc->sample_period;
bd2b5b12 7207
e7850595 7208 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7209
2023b359 7210 /*
cdd6c482 7211 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7212 */
3dab77fb 7213 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7214 goto err_ns;
2023b359 7215
b0a873eb 7216 pmu = perf_init_event(event);
4aeb0b42 7217 if (!pmu)
90983b16
FW
7218 goto err_ns;
7219 else if (IS_ERR(pmu)) {
4aeb0b42 7220 err = PTR_ERR(pmu);
90983b16 7221 goto err_ns;
621a01ea 7222 }
d5d2bc0d 7223
cdd6c482 7224 if (!event->parent) {
927c7a9e
FW
7225 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7226 err = get_callchain_buffers();
90983b16
FW
7227 if (err)
7228 goto err_pmu;
d010b332 7229 }
f344011c 7230 }
9ee318a7 7231
cdd6c482 7232 return event;
90983b16
FW
7233
7234err_pmu:
7235 if (event->destroy)
7236 event->destroy(event);
c464c76e 7237 module_put(pmu->module);
90983b16
FW
7238err_ns:
7239 if (event->ns)
7240 put_pid_ns(event->ns);
7241 kfree(event);
7242
7243 return ERR_PTR(err);
0793a61d
TG
7244}
7245
cdd6c482
IM
7246static int perf_copy_attr(struct perf_event_attr __user *uattr,
7247 struct perf_event_attr *attr)
974802ea 7248{
974802ea 7249 u32 size;
cdf8073d 7250 int ret;
974802ea
PZ
7251
7252 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7253 return -EFAULT;
7254
7255 /*
7256 * zero the full structure, so that a short copy will be nice.
7257 */
7258 memset(attr, 0, sizeof(*attr));
7259
7260 ret = get_user(size, &uattr->size);
7261 if (ret)
7262 return ret;
7263
7264 if (size > PAGE_SIZE) /* silly large */
7265 goto err_size;
7266
7267 if (!size) /* abi compat */
7268 size = PERF_ATTR_SIZE_VER0;
7269
7270 if (size < PERF_ATTR_SIZE_VER0)
7271 goto err_size;
7272
7273 /*
7274 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7275 * ensure all the unknown bits are 0 - i.e. new
7276 * user-space does not rely on any kernel feature
7277 * extensions we dont know about yet.
974802ea
PZ
7278 */
7279 if (size > sizeof(*attr)) {
cdf8073d
IS
7280 unsigned char __user *addr;
7281 unsigned char __user *end;
7282 unsigned char val;
974802ea 7283
cdf8073d
IS
7284 addr = (void __user *)uattr + sizeof(*attr);
7285 end = (void __user *)uattr + size;
974802ea 7286
cdf8073d 7287 for (; addr < end; addr++) {
974802ea
PZ
7288 ret = get_user(val, addr);
7289 if (ret)
7290 return ret;
7291 if (val)
7292 goto err_size;
7293 }
b3e62e35 7294 size = sizeof(*attr);
974802ea
PZ
7295 }
7296
7297 ret = copy_from_user(attr, uattr, size);
7298 if (ret)
7299 return -EFAULT;
7300
cd757645 7301 if (attr->__reserved_1)
974802ea
PZ
7302 return -EINVAL;
7303
7304 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7305 return -EINVAL;
7306
7307 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7308 return -EINVAL;
7309
bce38cd5
SE
7310 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7311 u64 mask = attr->branch_sample_type;
7312
7313 /* only using defined bits */
7314 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7315 return -EINVAL;
7316
7317 /* at least one branch bit must be set */
7318 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7319 return -EINVAL;
7320
bce38cd5
SE
7321 /* propagate priv level, when not set for branch */
7322 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7323
7324 /* exclude_kernel checked on syscall entry */
7325 if (!attr->exclude_kernel)
7326 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7327
7328 if (!attr->exclude_user)
7329 mask |= PERF_SAMPLE_BRANCH_USER;
7330
7331 if (!attr->exclude_hv)
7332 mask |= PERF_SAMPLE_BRANCH_HV;
7333 /*
7334 * adjust user setting (for HW filter setup)
7335 */
7336 attr->branch_sample_type = mask;
7337 }
e712209a
SE
7338 /* privileged levels capture (kernel, hv): check permissions */
7339 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
7340 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7341 return -EACCES;
bce38cd5 7342 }
4018994f 7343
c5ebcedb 7344 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 7345 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
7346 if (ret)
7347 return ret;
7348 }
7349
7350 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7351 if (!arch_perf_have_user_stack_dump())
7352 return -ENOSYS;
7353
7354 /*
7355 * We have __u32 type for the size, but so far
7356 * we can only use __u16 as maximum due to the
7357 * __u16 sample size limit.
7358 */
7359 if (attr->sample_stack_user >= USHRT_MAX)
7360 ret = -EINVAL;
7361 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7362 ret = -EINVAL;
7363 }
4018994f 7364
60e2364e
SE
7365 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7366 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
7367out:
7368 return ret;
7369
7370err_size:
7371 put_user(sizeof(*attr), &uattr->size);
7372 ret = -E2BIG;
7373 goto out;
7374}
7375
ac9721f3
PZ
7376static int
7377perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 7378{
b69cf536 7379 struct ring_buffer *rb = NULL;
a4be7c27
PZ
7380 int ret = -EINVAL;
7381
ac9721f3 7382 if (!output_event)
a4be7c27
PZ
7383 goto set;
7384
ac9721f3
PZ
7385 /* don't allow circular references */
7386 if (event == output_event)
a4be7c27
PZ
7387 goto out;
7388
0f139300
PZ
7389 /*
7390 * Don't allow cross-cpu buffers
7391 */
7392 if (output_event->cpu != event->cpu)
7393 goto out;
7394
7395 /*
76369139 7396 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
7397 */
7398 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7399 goto out;
7400
a4be7c27 7401set:
cdd6c482 7402 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
7403 /* Can't redirect output if we've got an active mmap() */
7404 if (atomic_read(&event->mmap_count))
7405 goto unlock;
a4be7c27 7406
ac9721f3 7407 if (output_event) {
76369139
FW
7408 /* get the rb we want to redirect to */
7409 rb = ring_buffer_get(output_event);
7410 if (!rb)
ac9721f3 7411 goto unlock;
a4be7c27
PZ
7412 }
7413
b69cf536 7414 ring_buffer_attach(event, rb);
9bb5d40c 7415
a4be7c27 7416 ret = 0;
ac9721f3
PZ
7417unlock:
7418 mutex_unlock(&event->mmap_mutex);
7419
a4be7c27 7420out:
a4be7c27
PZ
7421 return ret;
7422}
7423
f63a8daa
PZ
7424static void mutex_lock_double(struct mutex *a, struct mutex *b)
7425{
7426 if (b < a)
7427 swap(a, b);
7428
7429 mutex_lock(a);
7430 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7431}
7432
0793a61d 7433/**
cdd6c482 7434 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 7435 *
cdd6c482 7436 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 7437 * @pid: target pid
9f66a381 7438 * @cpu: target cpu
cdd6c482 7439 * @group_fd: group leader event fd
0793a61d 7440 */
cdd6c482
IM
7441SYSCALL_DEFINE5(perf_event_open,
7442 struct perf_event_attr __user *, attr_uptr,
2743a5b0 7443 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 7444{
b04243ef
PZ
7445 struct perf_event *group_leader = NULL, *output_event = NULL;
7446 struct perf_event *event, *sibling;
cdd6c482 7447 struct perf_event_attr attr;
f63a8daa 7448 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 7449 struct file *event_file = NULL;
2903ff01 7450 struct fd group = {NULL, 0};
38a81da2 7451 struct task_struct *task = NULL;
89a1e187 7452 struct pmu *pmu;
ea635c64 7453 int event_fd;
b04243ef 7454 int move_group = 0;
dc86cabe 7455 int err;
a21b0b35 7456 int f_flags = O_RDWR;
0793a61d 7457
2743a5b0 7458 /* for future expandability... */
e5d1367f 7459 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
7460 return -EINVAL;
7461
dc86cabe
IM
7462 err = perf_copy_attr(attr_uptr, &attr);
7463 if (err)
7464 return err;
eab656ae 7465
0764771d
PZ
7466 if (!attr.exclude_kernel) {
7467 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7468 return -EACCES;
7469 }
7470
df58ab24 7471 if (attr.freq) {
cdd6c482 7472 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 7473 return -EINVAL;
0819b2e3
PZ
7474 } else {
7475 if (attr.sample_period & (1ULL << 63))
7476 return -EINVAL;
df58ab24
PZ
7477 }
7478
e5d1367f
SE
7479 /*
7480 * In cgroup mode, the pid argument is used to pass the fd
7481 * opened to the cgroup directory in cgroupfs. The cpu argument
7482 * designates the cpu on which to monitor threads from that
7483 * cgroup.
7484 */
7485 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7486 return -EINVAL;
7487
a21b0b35
YD
7488 if (flags & PERF_FLAG_FD_CLOEXEC)
7489 f_flags |= O_CLOEXEC;
7490
7491 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
7492 if (event_fd < 0)
7493 return event_fd;
7494
ac9721f3 7495 if (group_fd != -1) {
2903ff01
AV
7496 err = perf_fget_light(group_fd, &group);
7497 if (err)
d14b12d7 7498 goto err_fd;
2903ff01 7499 group_leader = group.file->private_data;
ac9721f3
PZ
7500 if (flags & PERF_FLAG_FD_OUTPUT)
7501 output_event = group_leader;
7502 if (flags & PERF_FLAG_FD_NO_GROUP)
7503 group_leader = NULL;
7504 }
7505
e5d1367f 7506 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
7507 task = find_lively_task_by_vpid(pid);
7508 if (IS_ERR(task)) {
7509 err = PTR_ERR(task);
7510 goto err_group_fd;
7511 }
7512 }
7513
1f4ee503
PZ
7514 if (task && group_leader &&
7515 group_leader->attr.inherit != attr.inherit) {
7516 err = -EINVAL;
7517 goto err_task;
7518 }
7519
fbfc623f
YZ
7520 get_online_cpus();
7521
4dc0da86
AK
7522 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7523 NULL, NULL);
d14b12d7
SE
7524 if (IS_ERR(event)) {
7525 err = PTR_ERR(event);
1f4ee503 7526 goto err_cpus;
d14b12d7
SE
7527 }
7528
e5d1367f
SE
7529 if (flags & PERF_FLAG_PID_CGROUP) {
7530 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
7531 if (err) {
7532 __free_event(event);
1f4ee503 7533 goto err_cpus;
766d6c07 7534 }
e5d1367f
SE
7535 }
7536
53b25335
VW
7537 if (is_sampling_event(event)) {
7538 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7539 err = -ENOTSUPP;
7540 goto err_alloc;
7541 }
7542 }
7543
766d6c07
FW
7544 account_event(event);
7545
89a1e187
PZ
7546 /*
7547 * Special case software events and allow them to be part of
7548 * any hardware group.
7549 */
7550 pmu = event->pmu;
b04243ef
PZ
7551
7552 if (group_leader &&
7553 (is_software_event(event) != is_software_event(group_leader))) {
7554 if (is_software_event(event)) {
7555 /*
7556 * If event and group_leader are not both a software
7557 * event, and event is, then group leader is not.
7558 *
7559 * Allow the addition of software events to !software
7560 * groups, this is safe because software events never
7561 * fail to schedule.
7562 */
7563 pmu = group_leader->pmu;
7564 } else if (is_software_event(group_leader) &&
7565 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7566 /*
7567 * In case the group is a pure software group, and we
7568 * try to add a hardware event, move the whole group to
7569 * the hardware context.
7570 */
7571 move_group = 1;
7572 }
7573 }
89a1e187
PZ
7574
7575 /*
7576 * Get the target context (task or percpu):
7577 */
e2d37cd2 7578 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
7579 if (IS_ERR(ctx)) {
7580 err = PTR_ERR(ctx);
c6be5a5c 7581 goto err_alloc;
89a1e187
PZ
7582 }
7583
fd1edb3a
PZ
7584 if (task) {
7585 put_task_struct(task);
7586 task = NULL;
7587 }
7588
ccff286d 7589 /*
cdd6c482 7590 * Look up the group leader (we will attach this event to it):
04289bb9 7591 */
ac9721f3 7592 if (group_leader) {
dc86cabe 7593 err = -EINVAL;
04289bb9 7594
04289bb9 7595 /*
ccff286d
IM
7596 * Do not allow a recursive hierarchy (this new sibling
7597 * becoming part of another group-sibling):
7598 */
7599 if (group_leader->group_leader != group_leader)
c3f00c70 7600 goto err_context;
ccff286d
IM
7601 /*
7602 * Do not allow to attach to a group in a different
7603 * task or CPU context:
04289bb9 7604 */
b04243ef 7605 if (move_group) {
c3c87e77
PZ
7606 /*
7607 * Make sure we're both on the same task, or both
7608 * per-cpu events.
7609 */
7610 if (group_leader->ctx->task != ctx->task)
7611 goto err_context;
7612
7613 /*
7614 * Make sure we're both events for the same CPU;
7615 * grouping events for different CPUs is broken; since
7616 * you can never concurrently schedule them anyhow.
7617 */
7618 if (group_leader->cpu != event->cpu)
b04243ef
PZ
7619 goto err_context;
7620 } else {
7621 if (group_leader->ctx != ctx)
7622 goto err_context;
7623 }
7624
3b6f9e5c
PM
7625 /*
7626 * Only a group leader can be exclusive or pinned
7627 */
0d48696f 7628 if (attr.exclusive || attr.pinned)
c3f00c70 7629 goto err_context;
ac9721f3
PZ
7630 }
7631
7632 if (output_event) {
7633 err = perf_event_set_output(event, output_event);
7634 if (err)
c3f00c70 7635 goto err_context;
ac9721f3 7636 }
0793a61d 7637
a21b0b35
YD
7638 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7639 f_flags);
ea635c64
AV
7640 if (IS_ERR(event_file)) {
7641 err = PTR_ERR(event_file);
c3f00c70 7642 goto err_context;
ea635c64 7643 }
9b51f66d 7644
b04243ef 7645 if (move_group) {
f63a8daa
PZ
7646 gctx = group_leader->ctx;
7647
7648 /*
7649 * See perf_event_ctx_lock() for comments on the details
7650 * of swizzling perf_event::ctx.
7651 */
7652 mutex_lock_double(&gctx->mutex, &ctx->mutex);
b04243ef 7653
46ce0fe9 7654 perf_remove_from_context(group_leader, false);
0231bb53 7655
b04243ef
PZ
7656 list_for_each_entry(sibling, &group_leader->sibling_list,
7657 group_entry) {
46ce0fe9 7658 perf_remove_from_context(sibling, false);
b04243ef
PZ
7659 put_ctx(gctx);
7660 }
f63a8daa
PZ
7661 } else {
7662 mutex_lock(&ctx->mutex);
ea635c64 7663 }
9b51f66d 7664
ad3a37de 7665 WARN_ON_ONCE(ctx->parent_ctx);
b04243ef
PZ
7666
7667 if (move_group) {
f63a8daa
PZ
7668 /*
7669 * Wait for everybody to stop referencing the events through
7670 * the old lists, before installing it on new lists.
7671 */
0cda4c02 7672 synchronize_rcu();
f63a8daa 7673
8f95b435
PZI
7674 /*
7675 * Install the group siblings before the group leader.
7676 *
7677 * Because a group leader will try and install the entire group
7678 * (through the sibling list, which is still in-tact), we can
7679 * end up with siblings installed in the wrong context.
7680 *
7681 * By installing siblings first we NO-OP because they're not
7682 * reachable through the group lists.
7683 */
b04243ef
PZ
7684 list_for_each_entry(sibling, &group_leader->sibling_list,
7685 group_entry) {
8f95b435 7686 perf_event__state_init(sibling);
9fc81d87 7687 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
7688 get_ctx(ctx);
7689 }
8f95b435
PZI
7690
7691 /*
7692 * Removing from the context ends up with disabled
7693 * event. What we want here is event in the initial
7694 * startup state, ready to be add into new context.
7695 */
7696 perf_event__state_init(group_leader);
7697 perf_install_in_context(ctx, group_leader, group_leader->cpu);
7698 get_ctx(ctx);
b04243ef
PZ
7699 }
7700
e2d37cd2 7701 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 7702 perf_unpin_context(ctx);
f63a8daa
PZ
7703
7704 if (move_group) {
7705 mutex_unlock(&gctx->mutex);
7706 put_ctx(gctx);
7707 }
d859e29f 7708 mutex_unlock(&ctx->mutex);
9b51f66d 7709
fbfc623f
YZ
7710 put_online_cpus();
7711
cdd6c482 7712 event->owner = current;
8882135b 7713
cdd6c482
IM
7714 mutex_lock(&current->perf_event_mutex);
7715 list_add_tail(&event->owner_entry, &current->perf_event_list);
7716 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7717
c320c7b7
ACM
7718 /*
7719 * Precalculate sample_data sizes
7720 */
7721 perf_event__header_size(event);
6844c09d 7722 perf_event__id_header_size(event);
c320c7b7 7723
8a49542c
PZ
7724 /*
7725 * Drop the reference on the group_event after placing the
7726 * new event on the sibling_list. This ensures destruction
7727 * of the group leader will find the pointer to itself in
7728 * perf_group_detach().
7729 */
2903ff01 7730 fdput(group);
ea635c64
AV
7731 fd_install(event_fd, event_file);
7732 return event_fd;
0793a61d 7733
c3f00c70 7734err_context:
fe4b04fa 7735 perf_unpin_context(ctx);
ea635c64 7736 put_ctx(ctx);
c6be5a5c 7737err_alloc:
ea635c64 7738 free_event(event);
1f4ee503 7739err_cpus:
fbfc623f 7740 put_online_cpus();
1f4ee503 7741err_task:
e7d0bc04
PZ
7742 if (task)
7743 put_task_struct(task);
89a1e187 7744err_group_fd:
2903ff01 7745 fdput(group);
ea635c64
AV
7746err_fd:
7747 put_unused_fd(event_fd);
dc86cabe 7748 return err;
0793a61d
TG
7749}
7750
fb0459d7
AV
7751/**
7752 * perf_event_create_kernel_counter
7753 *
7754 * @attr: attributes of the counter to create
7755 * @cpu: cpu in which the counter is bound
38a81da2 7756 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7757 */
7758struct perf_event *
7759perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7760 struct task_struct *task,
4dc0da86
AK
7761 perf_overflow_handler_t overflow_handler,
7762 void *context)
fb0459d7 7763{
fb0459d7 7764 struct perf_event_context *ctx;
c3f00c70 7765 struct perf_event *event;
fb0459d7 7766 int err;
d859e29f 7767
fb0459d7
AV
7768 /*
7769 * Get the target context (task or percpu):
7770 */
d859e29f 7771
4dc0da86
AK
7772 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7773 overflow_handler, context);
c3f00c70
PZ
7774 if (IS_ERR(event)) {
7775 err = PTR_ERR(event);
7776 goto err;
7777 }
d859e29f 7778
f8697762
JO
7779 /* Mark owner so we could distinguish it from user events. */
7780 event->owner = EVENT_OWNER_KERNEL;
7781
766d6c07
FW
7782 account_event(event);
7783
38a81da2 7784 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7785 if (IS_ERR(ctx)) {
7786 err = PTR_ERR(ctx);
c3f00c70 7787 goto err_free;
d859e29f 7788 }
fb0459d7 7789
fb0459d7
AV
7790 WARN_ON_ONCE(ctx->parent_ctx);
7791 mutex_lock(&ctx->mutex);
7792 perf_install_in_context(ctx, event, cpu);
fe4b04fa 7793 perf_unpin_context(ctx);
fb0459d7
AV
7794 mutex_unlock(&ctx->mutex);
7795
fb0459d7
AV
7796 return event;
7797
c3f00c70
PZ
7798err_free:
7799 free_event(event);
7800err:
c6567f64 7801 return ERR_PTR(err);
9b51f66d 7802}
fb0459d7 7803EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7804
0cda4c02
YZ
7805void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7806{
7807 struct perf_event_context *src_ctx;
7808 struct perf_event_context *dst_ctx;
7809 struct perf_event *event, *tmp;
7810 LIST_HEAD(events);
7811
7812 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7813 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7814
f63a8daa
PZ
7815 /*
7816 * See perf_event_ctx_lock() for comments on the details
7817 * of swizzling perf_event::ctx.
7818 */
7819 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
7820 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7821 event_entry) {
46ce0fe9 7822 perf_remove_from_context(event, false);
9a545de0 7823 unaccount_event_cpu(event, src_cpu);
0cda4c02 7824 put_ctx(src_ctx);
9886167d 7825 list_add(&event->migrate_entry, &events);
0cda4c02 7826 }
0cda4c02 7827
8f95b435
PZI
7828 /*
7829 * Wait for the events to quiesce before re-instating them.
7830 */
0cda4c02
YZ
7831 synchronize_rcu();
7832
8f95b435
PZI
7833 /*
7834 * Re-instate events in 2 passes.
7835 *
7836 * Skip over group leaders and only install siblings on this first
7837 * pass, siblings will not get enabled without a leader, however a
7838 * leader will enable its siblings, even if those are still on the old
7839 * context.
7840 */
7841 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7842 if (event->group_leader == event)
7843 continue;
7844
7845 list_del(&event->migrate_entry);
7846 if (event->state >= PERF_EVENT_STATE_OFF)
7847 event->state = PERF_EVENT_STATE_INACTIVE;
7848 account_event_cpu(event, dst_cpu);
7849 perf_install_in_context(dst_ctx, event, dst_cpu);
7850 get_ctx(dst_ctx);
7851 }
7852
7853 /*
7854 * Once all the siblings are setup properly, install the group leaders
7855 * to make it go.
7856 */
9886167d
PZ
7857 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7858 list_del(&event->migrate_entry);
0cda4c02
YZ
7859 if (event->state >= PERF_EVENT_STATE_OFF)
7860 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7861 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7862 perf_install_in_context(dst_ctx, event, dst_cpu);
7863 get_ctx(dst_ctx);
7864 }
7865 mutex_unlock(&dst_ctx->mutex);
f63a8daa 7866 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
7867}
7868EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7869
cdd6c482 7870static void sync_child_event(struct perf_event *child_event,
38b200d6 7871 struct task_struct *child)
d859e29f 7872{
cdd6c482 7873 struct perf_event *parent_event = child_event->parent;
8bc20959 7874 u64 child_val;
d859e29f 7875
cdd6c482
IM
7876 if (child_event->attr.inherit_stat)
7877 perf_event_read_event(child_event, child);
38b200d6 7878
b5e58793 7879 child_val = perf_event_count(child_event);
d859e29f
PM
7880
7881 /*
7882 * Add back the child's count to the parent's count:
7883 */
a6e6dea6 7884 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7885 atomic64_add(child_event->total_time_enabled,
7886 &parent_event->child_total_time_enabled);
7887 atomic64_add(child_event->total_time_running,
7888 &parent_event->child_total_time_running);
d859e29f
PM
7889
7890 /*
cdd6c482 7891 * Remove this event from the parent's list
d859e29f 7892 */
cdd6c482
IM
7893 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7894 mutex_lock(&parent_event->child_mutex);
7895 list_del_init(&child_event->child_list);
7896 mutex_unlock(&parent_event->child_mutex);
d859e29f 7897
dc633982
JO
7898 /*
7899 * Make sure user/parent get notified, that we just
7900 * lost one event.
7901 */
7902 perf_event_wakeup(parent_event);
7903
d859e29f 7904 /*
cdd6c482 7905 * Release the parent event, if this was the last
d859e29f
PM
7906 * reference to it.
7907 */
a6fa941d 7908 put_event(parent_event);
d859e29f
PM
7909}
7910
9b51f66d 7911static void
cdd6c482
IM
7912__perf_event_exit_task(struct perf_event *child_event,
7913 struct perf_event_context *child_ctx,
38b200d6 7914 struct task_struct *child)
9b51f66d 7915{
1903d50c
PZ
7916 /*
7917 * Do not destroy the 'original' grouping; because of the context
7918 * switch optimization the original events could've ended up in a
7919 * random child task.
7920 *
7921 * If we were to destroy the original group, all group related
7922 * operations would cease to function properly after this random
7923 * child dies.
7924 *
7925 * Do destroy all inherited groups, we don't care about those
7926 * and being thorough is better.
7927 */
7928 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 7929
9b51f66d 7930 /*
38b435b1 7931 * It can happen that the parent exits first, and has events
9b51f66d 7932 * that are still around due to the child reference. These
38b435b1 7933 * events need to be zapped.
9b51f66d 7934 */
38b435b1 7935 if (child_event->parent) {
cdd6c482
IM
7936 sync_child_event(child_event, child);
7937 free_event(child_event);
179033b3
JO
7938 } else {
7939 child_event->state = PERF_EVENT_STATE_EXIT;
7940 perf_event_wakeup(child_event);
4bcf349a 7941 }
9b51f66d
IM
7942}
7943
8dc85d54 7944static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7945{
ebf905fc 7946 struct perf_event *child_event, *next;
211de6eb 7947 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 7948 unsigned long flags;
9b51f66d 7949
8dc85d54 7950 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7951 perf_event_task(child, NULL, 0);
9b51f66d 7952 return;
9f498cc5 7953 }
9b51f66d 7954
a63eaf34 7955 local_irq_save(flags);
ad3a37de
PM
7956 /*
7957 * We can't reschedule here because interrupts are disabled,
7958 * and either child is current or it is a task that can't be
7959 * scheduled, so we are now safe from rescheduling changing
7960 * our context.
7961 */
806839b2 7962 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7963
7964 /*
7965 * Take the context lock here so that if find_get_context is
cdd6c482 7966 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7967 * incremented the context's refcount before we do put_ctx below.
7968 */
e625cce1 7969 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7970 task_ctx_sched_out(child_ctx);
8dc85d54 7971 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 7972
71a851b4
PZ
7973 /*
7974 * If this context is a clone; unclone it so it can't get
7975 * swapped to another process while we're removing all
cdd6c482 7976 * the events from it.
71a851b4 7977 */
211de6eb 7978 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 7979 update_context_time(child_ctx);
e625cce1 7980 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 7981
211de6eb
PZ
7982 if (clone_ctx)
7983 put_ctx(clone_ctx);
4a1c0f26 7984
9f498cc5 7985 /*
cdd6c482
IM
7986 * Report the task dead after unscheduling the events so that we
7987 * won't get any samples after PERF_RECORD_EXIT. We can however still
7988 * get a few PERF_RECORD_READ events.
9f498cc5 7989 */
cdd6c482 7990 perf_event_task(child, child_ctx, 0);
a63eaf34 7991
66fff224
PZ
7992 /*
7993 * We can recurse on the same lock type through:
7994 *
cdd6c482
IM
7995 * __perf_event_exit_task()
7996 * sync_child_event()
a6fa941d
AV
7997 * put_event()
7998 * mutex_lock(&ctx->mutex)
66fff224
PZ
7999 *
8000 * But since its the parent context it won't be the same instance.
8001 */
a0507c84 8002 mutex_lock(&child_ctx->mutex);
a63eaf34 8003
ebf905fc 8004 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8005 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8006
a63eaf34
PM
8007 mutex_unlock(&child_ctx->mutex);
8008
8009 put_ctx(child_ctx);
9b51f66d
IM
8010}
8011
8dc85d54
PZ
8012/*
8013 * When a child task exits, feed back event values to parent events.
8014 */
8015void perf_event_exit_task(struct task_struct *child)
8016{
8882135b 8017 struct perf_event *event, *tmp;
8dc85d54
PZ
8018 int ctxn;
8019
8882135b
PZ
8020 mutex_lock(&child->perf_event_mutex);
8021 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8022 owner_entry) {
8023 list_del_init(&event->owner_entry);
8024
8025 /*
8026 * Ensure the list deletion is visible before we clear
8027 * the owner, closes a race against perf_release() where
8028 * we need to serialize on the owner->perf_event_mutex.
8029 */
8030 smp_wmb();
8031 event->owner = NULL;
8032 }
8033 mutex_unlock(&child->perf_event_mutex);
8034
8dc85d54
PZ
8035 for_each_task_context_nr(ctxn)
8036 perf_event_exit_task_context(child, ctxn);
8037}
8038
889ff015
FW
8039static void perf_free_event(struct perf_event *event,
8040 struct perf_event_context *ctx)
8041{
8042 struct perf_event *parent = event->parent;
8043
8044 if (WARN_ON_ONCE(!parent))
8045 return;
8046
8047 mutex_lock(&parent->child_mutex);
8048 list_del_init(&event->child_list);
8049 mutex_unlock(&parent->child_mutex);
8050
a6fa941d 8051 put_event(parent);
889ff015 8052
652884fe 8053 raw_spin_lock_irq(&ctx->lock);
8a49542c 8054 perf_group_detach(event);
889ff015 8055 list_del_event(event, ctx);
652884fe 8056 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8057 free_event(event);
8058}
8059
bbbee908 8060/*
652884fe 8061 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8062 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8063 *
8064 * Not all locks are strictly required, but take them anyway to be nice and
8065 * help out with the lockdep assertions.
bbbee908 8066 */
cdd6c482 8067void perf_event_free_task(struct task_struct *task)
bbbee908 8068{
8dc85d54 8069 struct perf_event_context *ctx;
cdd6c482 8070 struct perf_event *event, *tmp;
8dc85d54 8071 int ctxn;
bbbee908 8072
8dc85d54
PZ
8073 for_each_task_context_nr(ctxn) {
8074 ctx = task->perf_event_ctxp[ctxn];
8075 if (!ctx)
8076 continue;
bbbee908 8077
8dc85d54 8078 mutex_lock(&ctx->mutex);
bbbee908 8079again:
8dc85d54
PZ
8080 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8081 group_entry)
8082 perf_free_event(event, ctx);
bbbee908 8083
8dc85d54
PZ
8084 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8085 group_entry)
8086 perf_free_event(event, ctx);
bbbee908 8087
8dc85d54
PZ
8088 if (!list_empty(&ctx->pinned_groups) ||
8089 !list_empty(&ctx->flexible_groups))
8090 goto again;
bbbee908 8091
8dc85d54 8092 mutex_unlock(&ctx->mutex);
bbbee908 8093
8dc85d54
PZ
8094 put_ctx(ctx);
8095 }
889ff015
FW
8096}
8097
4e231c79
PZ
8098void perf_event_delayed_put(struct task_struct *task)
8099{
8100 int ctxn;
8101
8102 for_each_task_context_nr(ctxn)
8103 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8104}
8105
97dee4f3
PZ
8106/*
8107 * inherit a event from parent task to child task:
8108 */
8109static struct perf_event *
8110inherit_event(struct perf_event *parent_event,
8111 struct task_struct *parent,
8112 struct perf_event_context *parent_ctx,
8113 struct task_struct *child,
8114 struct perf_event *group_leader,
8115 struct perf_event_context *child_ctx)
8116{
1929def9 8117 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8118 struct perf_event *child_event;
cee010ec 8119 unsigned long flags;
97dee4f3
PZ
8120
8121 /*
8122 * Instead of creating recursive hierarchies of events,
8123 * we link inherited events back to the original parent,
8124 * which has a filp for sure, which we use as the reference
8125 * count:
8126 */
8127 if (parent_event->parent)
8128 parent_event = parent_event->parent;
8129
8130 child_event = perf_event_alloc(&parent_event->attr,
8131 parent_event->cpu,
d580ff86 8132 child,
97dee4f3 8133 group_leader, parent_event,
4dc0da86 8134 NULL, NULL);
97dee4f3
PZ
8135 if (IS_ERR(child_event))
8136 return child_event;
a6fa941d 8137
fadfe7be
JO
8138 if (is_orphaned_event(parent_event) ||
8139 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8140 free_event(child_event);
8141 return NULL;
8142 }
8143
97dee4f3
PZ
8144 get_ctx(child_ctx);
8145
8146 /*
8147 * Make the child state follow the state of the parent event,
8148 * not its attr.disabled bit. We hold the parent's mutex,
8149 * so we won't race with perf_event_{en, dis}able_family.
8150 */
1929def9 8151 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8152 child_event->state = PERF_EVENT_STATE_INACTIVE;
8153 else
8154 child_event->state = PERF_EVENT_STATE_OFF;
8155
8156 if (parent_event->attr.freq) {
8157 u64 sample_period = parent_event->hw.sample_period;
8158 struct hw_perf_event *hwc = &child_event->hw;
8159
8160 hwc->sample_period = sample_period;
8161 hwc->last_period = sample_period;
8162
8163 local64_set(&hwc->period_left, sample_period);
8164 }
8165
8166 child_event->ctx = child_ctx;
8167 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8168 child_event->overflow_handler_context
8169 = parent_event->overflow_handler_context;
97dee4f3 8170
614b6780
TG
8171 /*
8172 * Precalculate sample_data sizes
8173 */
8174 perf_event__header_size(child_event);
6844c09d 8175 perf_event__id_header_size(child_event);
614b6780 8176
97dee4f3
PZ
8177 /*
8178 * Link it up in the child's context:
8179 */
cee010ec 8180 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8181 add_event_to_ctx(child_event, child_ctx);
cee010ec 8182 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 8183
97dee4f3
PZ
8184 /*
8185 * Link this into the parent event's child list
8186 */
8187 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8188 mutex_lock(&parent_event->child_mutex);
8189 list_add_tail(&child_event->child_list, &parent_event->child_list);
8190 mutex_unlock(&parent_event->child_mutex);
8191
8192 return child_event;
8193}
8194
8195static int inherit_group(struct perf_event *parent_event,
8196 struct task_struct *parent,
8197 struct perf_event_context *parent_ctx,
8198 struct task_struct *child,
8199 struct perf_event_context *child_ctx)
8200{
8201 struct perf_event *leader;
8202 struct perf_event *sub;
8203 struct perf_event *child_ctr;
8204
8205 leader = inherit_event(parent_event, parent, parent_ctx,
8206 child, NULL, child_ctx);
8207 if (IS_ERR(leader))
8208 return PTR_ERR(leader);
8209 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8210 child_ctr = inherit_event(sub, parent, parent_ctx,
8211 child, leader, child_ctx);
8212 if (IS_ERR(child_ctr))
8213 return PTR_ERR(child_ctr);
8214 }
8215 return 0;
889ff015
FW
8216}
8217
8218static int
8219inherit_task_group(struct perf_event *event, struct task_struct *parent,
8220 struct perf_event_context *parent_ctx,
8dc85d54 8221 struct task_struct *child, int ctxn,
889ff015
FW
8222 int *inherited_all)
8223{
8224 int ret;
8dc85d54 8225 struct perf_event_context *child_ctx;
889ff015
FW
8226
8227 if (!event->attr.inherit) {
8228 *inherited_all = 0;
8229 return 0;
bbbee908
PZ
8230 }
8231
fe4b04fa 8232 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
8233 if (!child_ctx) {
8234 /*
8235 * This is executed from the parent task context, so
8236 * inherit events that have been marked for cloning.
8237 * First allocate and initialize a context for the
8238 * child.
8239 */
bbbee908 8240
734df5ab 8241 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
8242 if (!child_ctx)
8243 return -ENOMEM;
bbbee908 8244
8dc85d54 8245 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
8246 }
8247
8248 ret = inherit_group(event, parent, parent_ctx,
8249 child, child_ctx);
8250
8251 if (ret)
8252 *inherited_all = 0;
8253
8254 return ret;
bbbee908
PZ
8255}
8256
9b51f66d 8257/*
cdd6c482 8258 * Initialize the perf_event context in task_struct
9b51f66d 8259 */
985c8dcb 8260static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 8261{
889ff015 8262 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
8263 struct perf_event_context *cloned_ctx;
8264 struct perf_event *event;
9b51f66d 8265 struct task_struct *parent = current;
564c2b21 8266 int inherited_all = 1;
dddd3379 8267 unsigned long flags;
6ab423e0 8268 int ret = 0;
9b51f66d 8269
8dc85d54 8270 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
8271 return 0;
8272
ad3a37de 8273 /*
25346b93
PM
8274 * If the parent's context is a clone, pin it so it won't get
8275 * swapped under us.
ad3a37de 8276 */
8dc85d54 8277 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
8278 if (!parent_ctx)
8279 return 0;
25346b93 8280
ad3a37de
PM
8281 /*
8282 * No need to check if parent_ctx != NULL here; since we saw
8283 * it non-NULL earlier, the only reason for it to become NULL
8284 * is if we exit, and since we're currently in the middle of
8285 * a fork we can't be exiting at the same time.
8286 */
ad3a37de 8287
9b51f66d
IM
8288 /*
8289 * Lock the parent list. No need to lock the child - not PID
8290 * hashed yet and not running, so nobody can access it.
8291 */
d859e29f 8292 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
8293
8294 /*
8295 * We dont have to disable NMIs - we are only looking at
8296 * the list, not manipulating it:
8297 */
889ff015 8298 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
8299 ret = inherit_task_group(event, parent, parent_ctx,
8300 child, ctxn, &inherited_all);
889ff015
FW
8301 if (ret)
8302 break;
8303 }
b93f7978 8304
dddd3379
TG
8305 /*
8306 * We can't hold ctx->lock when iterating the ->flexible_group list due
8307 * to allocations, but we need to prevent rotation because
8308 * rotate_ctx() will change the list from interrupt context.
8309 */
8310 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8311 parent_ctx->rotate_disable = 1;
8312 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8313
889ff015 8314 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
8315 ret = inherit_task_group(event, parent, parent_ctx,
8316 child, ctxn, &inherited_all);
889ff015 8317 if (ret)
9b51f66d 8318 break;
564c2b21
PM
8319 }
8320
dddd3379
TG
8321 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8322 parent_ctx->rotate_disable = 0;
dddd3379 8323
8dc85d54 8324 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 8325
05cbaa28 8326 if (child_ctx && inherited_all) {
564c2b21
PM
8327 /*
8328 * Mark the child context as a clone of the parent
8329 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
8330 *
8331 * Note that if the parent is a clone, the holding of
8332 * parent_ctx->lock avoids it from being uncloned.
564c2b21 8333 */
c5ed5145 8334 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
8335 if (cloned_ctx) {
8336 child_ctx->parent_ctx = cloned_ctx;
25346b93 8337 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
8338 } else {
8339 child_ctx->parent_ctx = parent_ctx;
8340 child_ctx->parent_gen = parent_ctx->generation;
8341 }
8342 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
8343 }
8344
c5ed5145 8345 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 8346 mutex_unlock(&parent_ctx->mutex);
6ab423e0 8347
25346b93 8348 perf_unpin_context(parent_ctx);
fe4b04fa 8349 put_ctx(parent_ctx);
ad3a37de 8350
6ab423e0 8351 return ret;
9b51f66d
IM
8352}
8353
8dc85d54
PZ
8354/*
8355 * Initialize the perf_event context in task_struct
8356 */
8357int perf_event_init_task(struct task_struct *child)
8358{
8359 int ctxn, ret;
8360
8550d7cb
ON
8361 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8362 mutex_init(&child->perf_event_mutex);
8363 INIT_LIST_HEAD(&child->perf_event_list);
8364
8dc85d54
PZ
8365 for_each_task_context_nr(ctxn) {
8366 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
8367 if (ret) {
8368 perf_event_free_task(child);
8dc85d54 8369 return ret;
6c72e350 8370 }
8dc85d54
PZ
8371 }
8372
8373 return 0;
8374}
8375
220b140b
PM
8376static void __init perf_event_init_all_cpus(void)
8377{
b28ab83c 8378 struct swevent_htable *swhash;
220b140b 8379 int cpu;
220b140b
PM
8380
8381 for_each_possible_cpu(cpu) {
b28ab83c
PZ
8382 swhash = &per_cpu(swevent_htable, cpu);
8383 mutex_init(&swhash->hlist_mutex);
2fde4f94 8384 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
8385 }
8386}
8387
0db0628d 8388static void perf_event_init_cpu(int cpu)
0793a61d 8389{
108b02cf 8390 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 8391
b28ab83c 8392 mutex_lock(&swhash->hlist_mutex);
39af6b16 8393 swhash->online = true;
4536e4d1 8394 if (swhash->hlist_refcount > 0) {
76e1d904
FW
8395 struct swevent_hlist *hlist;
8396
b28ab83c
PZ
8397 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8398 WARN_ON(!hlist);
8399 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8400 }
b28ab83c 8401 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8402}
8403
c277443c 8404#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
108b02cf 8405static void __perf_event_exit_context(void *__info)
0793a61d 8406{
226424ee 8407 struct remove_event re = { .detach_group = true };
108b02cf 8408 struct perf_event_context *ctx = __info;
0793a61d 8409
e3703f8c 8410 rcu_read_lock();
46ce0fe9
PZ
8411 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8412 __perf_remove_from_context(&re);
e3703f8c 8413 rcu_read_unlock();
0793a61d 8414}
108b02cf
PZ
8415
8416static void perf_event_exit_cpu_context(int cpu)
8417{
8418 struct perf_event_context *ctx;
8419 struct pmu *pmu;
8420 int idx;
8421
8422 idx = srcu_read_lock(&pmus_srcu);
8423 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 8424 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
8425
8426 mutex_lock(&ctx->mutex);
8427 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8428 mutex_unlock(&ctx->mutex);
8429 }
8430 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
8431}
8432
cdd6c482 8433static void perf_event_exit_cpu(int cpu)
0793a61d 8434{
b28ab83c 8435 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 8436
e3703f8c
PZ
8437 perf_event_exit_cpu_context(cpu);
8438
b28ab83c 8439 mutex_lock(&swhash->hlist_mutex);
39af6b16 8440 swhash->online = false;
b28ab83c
PZ
8441 swevent_hlist_release(swhash);
8442 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8443}
8444#else
cdd6c482 8445static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
8446#endif
8447
c277443c
PZ
8448static int
8449perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8450{
8451 int cpu;
8452
8453 for_each_online_cpu(cpu)
8454 perf_event_exit_cpu(cpu);
8455
8456 return NOTIFY_OK;
8457}
8458
8459/*
8460 * Run the perf reboot notifier at the very last possible moment so that
8461 * the generic watchdog code runs as long as possible.
8462 */
8463static struct notifier_block perf_reboot_notifier = {
8464 .notifier_call = perf_reboot,
8465 .priority = INT_MIN,
8466};
8467
0db0628d 8468static int
0793a61d
TG
8469perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8470{
8471 unsigned int cpu = (long)hcpu;
8472
4536e4d1 8473 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
8474
8475 case CPU_UP_PREPARE:
5e11637e 8476 case CPU_DOWN_FAILED:
cdd6c482 8477 perf_event_init_cpu(cpu);
0793a61d
TG
8478 break;
8479
5e11637e 8480 case CPU_UP_CANCELED:
0793a61d 8481 case CPU_DOWN_PREPARE:
cdd6c482 8482 perf_event_exit_cpu(cpu);
0793a61d 8483 break;
0793a61d
TG
8484 default:
8485 break;
8486 }
8487
8488 return NOTIFY_OK;
8489}
8490
cdd6c482 8491void __init perf_event_init(void)
0793a61d 8492{
3c502e7a
JW
8493 int ret;
8494
2e80a82a
PZ
8495 idr_init(&pmu_idr);
8496
220b140b 8497 perf_event_init_all_cpus();
b0a873eb 8498 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
8499 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8500 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8501 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
8502 perf_tp_register();
8503 perf_cpu_notifier(perf_cpu_notify);
c277443c 8504 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
8505
8506 ret = init_hw_breakpoint();
8507 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
8508
8509 /* do not patch jump label more than once per second */
8510 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
8511
8512 /*
8513 * Build time assertion that we keep the data_head at the intended
8514 * location. IOW, validation we got the __reserved[] size right.
8515 */
8516 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8517 != 1024);
0793a61d 8518}
abe43400
PZ
8519
8520static int __init perf_event_sysfs_init(void)
8521{
8522 struct pmu *pmu;
8523 int ret;
8524
8525 mutex_lock(&pmus_lock);
8526
8527 ret = bus_register(&pmu_bus);
8528 if (ret)
8529 goto unlock;
8530
8531 list_for_each_entry(pmu, &pmus, entry) {
8532 if (!pmu->name || pmu->type < 0)
8533 continue;
8534
8535 ret = pmu_dev_alloc(pmu);
8536 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8537 }
8538 pmu_bus_running = 1;
8539 ret = 0;
8540
8541unlock:
8542 mutex_unlock(&pmus_lock);
8543
8544 return ret;
8545}
8546device_initcall(perf_event_sysfs_init);
e5d1367f
SE
8547
8548#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
8549static struct cgroup_subsys_state *
8550perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
8551{
8552 struct perf_cgroup *jc;
e5d1367f 8553
1b15d055 8554 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
8555 if (!jc)
8556 return ERR_PTR(-ENOMEM);
8557
e5d1367f
SE
8558 jc->info = alloc_percpu(struct perf_cgroup_info);
8559 if (!jc->info) {
8560 kfree(jc);
8561 return ERR_PTR(-ENOMEM);
8562 }
8563
e5d1367f
SE
8564 return &jc->css;
8565}
8566
eb95419b 8567static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 8568{
eb95419b
TH
8569 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8570
e5d1367f
SE
8571 free_percpu(jc->info);
8572 kfree(jc);
8573}
8574
8575static int __perf_cgroup_move(void *info)
8576{
8577 struct task_struct *task = info;
8578 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8579 return 0;
8580}
8581
eb95419b
TH
8582static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8583 struct cgroup_taskset *tset)
e5d1367f 8584{
bb9d97b6
TH
8585 struct task_struct *task;
8586
924f0d9a 8587 cgroup_taskset_for_each(task, tset)
bb9d97b6 8588 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8589}
8590
eb95419b
TH
8591static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8592 struct cgroup_subsys_state *old_css,
761b3ef5 8593 struct task_struct *task)
e5d1367f
SE
8594{
8595 /*
8596 * cgroup_exit() is called in the copy_process() failure path.
8597 * Ignore this case since the task hasn't ran yet, this avoids
8598 * trying to poke a half freed task state from generic code.
8599 */
8600 if (!(task->flags & PF_EXITING))
8601 return;
8602
bb9d97b6 8603 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8604}
8605
073219e9 8606struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
8607 .css_alloc = perf_cgroup_css_alloc,
8608 .css_free = perf_cgroup_css_free,
e7e7ee2e 8609 .exit = perf_cgroup_exit,
bb9d97b6 8610 .attach = perf_cgroup_attach,
e5d1367f
SE
8611};
8612#endif /* CONFIG_CGROUP_PERF */