]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/events/core.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-zesty-kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
0793a61d 49
76369139
FW
50#include "internal.h"
51
4e193bd4
TB
52#include <asm/irq_regs.h>
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
0da4cf3e
PZ
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
72
73 /*
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
76 */
77
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
fe4b04fa
PZ
80 return;
81 }
82
83 tfc->ret = tfc->func(tfc->info);
84}
85
86/**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
91 *
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
94 *
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
98 */
99static int
272325c4 100task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
101{
102 struct remote_function_call data = {
e7e7ee2e
IM
103 .p = p,
104 .func = func,
105 .info = info,
0da4cf3e 106 .ret = -EAGAIN,
fe4b04fa 107 };
0da4cf3e 108 int ret;
fe4b04fa 109
0da4cf3e
PZ
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
fe4b04fa 115
0da4cf3e 116 return ret;
fe4b04fa
PZ
117}
118
119/**
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
123 *
124 * Calls the function @func on the remote cpu.
125 *
126 * returns: @func return value or -ENXIO when the cpu is offline
127 */
272325c4 128static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
129{
130 struct remote_function_call data = {
e7e7ee2e
IM
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
135 };
136
137 smp_call_function_single(cpu, remote_function, &data, 1);
138
139 return data.ret;
140}
141
fae3fde6
PZ
142static inline struct perf_cpu_context *
143__get_cpu_context(struct perf_event_context *ctx)
144{
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146}
147
148static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
0017960f 150{
fae3fde6
PZ
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
154}
155
156static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
158{
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
162}
163
63b6da39
PZ
164#define TASK_TOMBSTONE ((void *)-1L)
165
166static bool is_kernel_event(struct perf_event *event)
167{
f47c02c0 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
169}
170
39a43640
PZ
171/*
172 * On task ctx scheduling...
173 *
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
177 *
178 * This however results in two special cases:
179 *
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
182 *
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
186 *
39a43640
PZ
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
fae3fde6
PZ
190typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197};
198
199static int event_function(void *info)
200{
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
0017960f 203 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 206 int ret = 0;
fae3fde6
PZ
207
208 WARN_ON_ONCE(!irqs_disabled());
209
63b6da39 210 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
214 */
215 if (ctx->task) {
63b6da39 216 if (ctx->task != current) {
0da4cf3e 217 ret = -ESRCH;
63b6da39
PZ
218 goto unlock;
219 }
fae3fde6 220
fae3fde6
PZ
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
63b6da39
PZ
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 236 }
63b6da39 237
fae3fde6 238 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 239unlock:
fae3fde6
PZ
240 perf_ctx_unlock(cpuctx, task_ctx);
241
63b6da39 242 return ret;
fae3fde6
PZ
243}
244
fae3fde6 245static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
246{
247 struct perf_event_context *ctx = event->ctx;
63b6da39 248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
249 struct event_function_struct efs = {
250 .event = event,
251 .func = func,
252 .data = data,
253 };
0017960f 254
c97f4736
PZ
255 if (!event->parent) {
256 /*
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
260 */
261 lockdep_assert_held(&ctx->mutex);
262 }
0017960f
PZ
263
264 if (!task) {
fae3fde6 265 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
266 return;
267 }
268
63b6da39
PZ
269 if (task == TASK_TOMBSTONE)
270 return;
271
a096309b 272again:
fae3fde6 273 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
274 return;
275
276 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
277 /*
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
280 */
281 task = ctx->task;
a096309b
PZ
282 if (task == TASK_TOMBSTONE) {
283 raw_spin_unlock_irq(&ctx->lock);
284 return;
0017960f 285 }
a096309b
PZ
286 if (ctx->is_active) {
287 raw_spin_unlock_irq(&ctx->lock);
288 goto again;
289 }
290 func(event, NULL, ctx, data);
0017960f
PZ
291 raw_spin_unlock_irq(&ctx->lock);
292}
293
cca20946
PZ
294/*
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
297 */
298static void event_function_local(struct perf_event *event, event_f func, void *data)
299{
300 struct perf_event_context *ctx = event->ctx;
301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 struct task_struct *task = READ_ONCE(ctx->task);
303 struct perf_event_context *task_ctx = NULL;
304
305 WARN_ON_ONCE(!irqs_disabled());
306
307 if (task) {
308 if (task == TASK_TOMBSTONE)
309 return;
310
311 task_ctx = ctx;
312 }
313
314 perf_ctx_lock(cpuctx, task_ctx);
315
316 task = ctx->task;
317 if (task == TASK_TOMBSTONE)
318 goto unlock;
319
320 if (task) {
321 /*
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
324 * else.
325 */
326 if (ctx->is_active) {
327 if (WARN_ON_ONCE(task != current))
328 goto unlock;
329
330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 goto unlock;
332 }
333 } else {
334 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 }
336
337 func(event, cpuctx, ctx, data);
338unlock:
339 perf_ctx_unlock(cpuctx, task_ctx);
340}
341
e5d1367f
SE
342#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
e5d1367f 346
bce38cd5
SE
347/*
348 * branch priv levels that need permission checks
349 */
350#define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
353
0b3fcf17
SE
354enum event_type_t {
355 EVENT_FLEXIBLE = 0x1,
356 EVENT_PINNED = 0x2,
3cbaa590 357 EVENT_TIME = 0x4,
0b3fcf17
SE
358 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359};
360
e5d1367f
SE
361/*
362 * perf_sched_events : >0 events exist
363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364 */
9107c89e
PZ
365
366static void perf_sched_delayed(struct work_struct *work);
367DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369static DEFINE_MUTEX(perf_sched_mutex);
370static atomic_t perf_sched_count;
371
e5d1367f 372static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 373static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 374static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 375
cdd6c482
IM
376static atomic_t nr_mmap_events __read_mostly;
377static atomic_t nr_comm_events __read_mostly;
378static atomic_t nr_task_events __read_mostly;
948b26b6 379static atomic_t nr_freq_events __read_mostly;
45ac1403 380static atomic_t nr_switch_events __read_mostly;
9ee318a7 381
108b02cf
PZ
382static LIST_HEAD(pmus);
383static DEFINE_MUTEX(pmus_lock);
384static struct srcu_struct pmus_srcu;
385
0764771d 386/*
cdd6c482 387 * perf event paranoia level:
0fbdea19
IM
388 * -1 - not paranoid at all
389 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 390 * 1 - disallow cpu events for unpriv
0fbdea19 391 * 2 - disallow kernel profiling for unpriv
0764771d 392 */
0161028b 393int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 394
20443384
FW
395/* Minimum for 512 kiB + 1 user control page */
396int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
397
398/*
cdd6c482 399 * max perf event sample rate
df58ab24 400 */
14c63f17
DH
401#define DEFAULT_MAX_SAMPLE_RATE 100000
402#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403#define DEFAULT_CPU_TIME_MAX_PERCENT 25
404
405int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
409
d9494cb4
PZ
410static int perf_sample_allowed_ns __read_mostly =
411 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 412
18ab2cd3 413static void update_perf_cpu_limits(void)
14c63f17
DH
414{
415 u64 tmp = perf_sample_period_ns;
416
417 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
418 tmp = div_u64(tmp, 100);
419 if (!tmp)
420 tmp = 1;
421
422 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 423}
163ec435 424
9e630205
SE
425static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
163ec435
PZ
427int perf_proc_update_handler(struct ctl_table *table, int write,
428 void __user *buffer, size_t *lenp,
429 loff_t *ppos)
430{
723478c8 431 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
432
433 if (ret || !write)
434 return ret;
435
ab7fdefb
KL
436 /*
437 * If throttling is disabled don't allow the write:
438 */
439 if (sysctl_perf_cpu_time_max_percent == 100 ||
440 sysctl_perf_cpu_time_max_percent == 0)
441 return -EINVAL;
442
163ec435 443 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
444 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 update_perf_cpu_limits();
446
447 return 0;
448}
449
450int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 void __user *buffer, size_t *lenp,
454 loff_t *ppos)
455{
456 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458 if (ret || !write)
459 return ret;
460
b303e7c1
PZ
461 if (sysctl_perf_cpu_time_max_percent == 100 ||
462 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
463 printk(KERN_WARNING
464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 WRITE_ONCE(perf_sample_allowed_ns, 0);
466 } else {
467 update_perf_cpu_limits();
468 }
163ec435
PZ
469
470 return 0;
471}
1ccd1549 472
14c63f17
DH
473/*
474 * perf samples are done in some very critical code paths (NMIs).
475 * If they take too much CPU time, the system can lock up and not
476 * get any real work done. This will drop the sample rate when
477 * we detect that events are taking too long.
478 */
479#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 480static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 481
91a612ee
PZ
482static u64 __report_avg;
483static u64 __report_allowed;
484
6a02ad66 485static void perf_duration_warn(struct irq_work *w)
14c63f17 486{
0d87d7ec 487 printk_ratelimited(KERN_INFO
91a612ee
PZ
488 "perf: interrupt took too long (%lld > %lld), lowering "
489 "kernel.perf_event_max_sample_rate to %d\n",
490 __report_avg, __report_allowed,
491 sysctl_perf_event_sample_rate);
6a02ad66
PZ
492}
493
494static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496void perf_sample_event_took(u64 sample_len_ns)
497{
91a612ee
PZ
498 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 u64 running_len;
500 u64 avg_len;
501 u32 max;
14c63f17 502
91a612ee 503 if (max_len == 0)
14c63f17
DH
504 return;
505
91a612ee
PZ
506 /* Decay the counter by 1 average sample. */
507 running_len = __this_cpu_read(running_sample_length);
508 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 running_len += sample_len_ns;
510 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
511
512 /*
91a612ee
PZ
513 * Note: this will be biased artifically low until we have
514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
515 * from having to maintain a count.
516 */
91a612ee
PZ
517 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 if (avg_len <= max_len)
14c63f17
DH
519 return;
520
91a612ee
PZ
521 __report_avg = avg_len;
522 __report_allowed = max_len;
14c63f17 523
91a612ee
PZ
524 /*
525 * Compute a throttle threshold 25% below the current duration.
526 */
527 avg_len += avg_len / 4;
528 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 if (avg_len < max)
530 max /= (u32)avg_len;
531 else
532 max = 1;
14c63f17 533
91a612ee
PZ
534 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 WRITE_ONCE(max_samples_per_tick, max);
536
537 sysctl_perf_event_sample_rate = max * HZ;
538 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 539
cd578abb 540 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 541 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 542 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 543 __report_avg, __report_allowed,
cd578abb
PZ
544 sysctl_perf_event_sample_rate);
545 }
14c63f17
DH
546}
547
cdd6c482 548static atomic64_t perf_event_id;
a96bbc16 549
0b3fcf17
SE
550static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 enum event_type_t event_type);
552
553static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
554 enum event_type_t event_type,
555 struct task_struct *task);
556
557static void update_context_time(struct perf_event_context *ctx);
558static u64 perf_event_time(struct perf_event *event);
0b3fcf17 559
cdd6c482 560void __weak perf_event_print_debug(void) { }
0793a61d 561
84c79910 562extern __weak const char *perf_pmu_name(void)
0793a61d 563{
84c79910 564 return "pmu";
0793a61d
TG
565}
566
0b3fcf17
SE
567static inline u64 perf_clock(void)
568{
569 return local_clock();
570}
571
34f43927
PZ
572static inline u64 perf_event_clock(struct perf_event *event)
573{
574 return event->clock();
575}
576
e5d1367f
SE
577#ifdef CONFIG_CGROUP_PERF
578
e5d1367f
SE
579static inline bool
580perf_cgroup_match(struct perf_event *event)
581{
582 struct perf_event_context *ctx = event->ctx;
583 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
ef824fa1
TH
585 /* @event doesn't care about cgroup */
586 if (!event->cgrp)
587 return true;
588
589 /* wants specific cgroup scope but @cpuctx isn't associated with any */
590 if (!cpuctx->cgrp)
591 return false;
592
593 /*
594 * Cgroup scoping is recursive. An event enabled for a cgroup is
595 * also enabled for all its descendant cgroups. If @cpuctx's
596 * cgroup is a descendant of @event's (the test covers identity
597 * case), it's a match.
598 */
599 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 event->cgrp->css.cgroup);
e5d1367f
SE
601}
602
e5d1367f
SE
603static inline void perf_detach_cgroup(struct perf_event *event)
604{
4e2ba650 605 css_put(&event->cgrp->css);
e5d1367f
SE
606 event->cgrp = NULL;
607}
608
609static inline int is_cgroup_event(struct perf_event *event)
610{
611 return event->cgrp != NULL;
612}
613
614static inline u64 perf_cgroup_event_time(struct perf_event *event)
615{
616 struct perf_cgroup_info *t;
617
618 t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 return t->time;
620}
621
622static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623{
624 struct perf_cgroup_info *info;
625 u64 now;
626
627 now = perf_clock();
628
629 info = this_cpu_ptr(cgrp->info);
630
631 info->time += now - info->timestamp;
632 info->timestamp = now;
633}
634
635static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636{
637 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 if (cgrp_out)
639 __update_cgrp_time(cgrp_out);
640}
641
642static inline void update_cgrp_time_from_event(struct perf_event *event)
643{
3f7cce3c
SE
644 struct perf_cgroup *cgrp;
645
e5d1367f 646 /*
3f7cce3c
SE
647 * ensure we access cgroup data only when needed and
648 * when we know the cgroup is pinned (css_get)
e5d1367f 649 */
3f7cce3c 650 if (!is_cgroup_event(event))
e5d1367f
SE
651 return;
652
614e4c4e 653 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
654 /*
655 * Do not update time when cgroup is not active
656 */
657 if (cgrp == event->cgrp)
658 __update_cgrp_time(event->cgrp);
e5d1367f
SE
659}
660
661static inline void
3f7cce3c
SE
662perf_cgroup_set_timestamp(struct task_struct *task,
663 struct perf_event_context *ctx)
e5d1367f
SE
664{
665 struct perf_cgroup *cgrp;
666 struct perf_cgroup_info *info;
667
3f7cce3c
SE
668 /*
669 * ctx->lock held by caller
670 * ensure we do not access cgroup data
671 * unless we have the cgroup pinned (css_get)
672 */
673 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
674 return;
675
614e4c4e 676 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 677 info = this_cpu_ptr(cgrp->info);
3f7cce3c 678 info->timestamp = ctx->timestamp;
e5d1367f
SE
679}
680
681#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
682#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
683
684/*
685 * reschedule events based on the cgroup constraint of task.
686 *
687 * mode SWOUT : schedule out everything
688 * mode SWIN : schedule in based on cgroup for next
689 */
18ab2cd3 690static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
691{
692 struct perf_cpu_context *cpuctx;
693 struct pmu *pmu;
694 unsigned long flags;
695
696 /*
697 * disable interrupts to avoid geting nr_cgroup
698 * changes via __perf_event_disable(). Also
699 * avoids preemption.
700 */
701 local_irq_save(flags);
702
703 /*
704 * we reschedule only in the presence of cgroup
705 * constrained events.
706 */
e5d1367f
SE
707
708 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 709 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
710 if (cpuctx->unique_pmu != pmu)
711 continue; /* ensure we process each cpuctx once */
e5d1367f 712
e5d1367f
SE
713 /*
714 * perf_cgroup_events says at least one
715 * context on this CPU has cgroup events.
716 *
717 * ctx->nr_cgroups reports the number of cgroup
718 * events for a context.
719 */
720 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
721 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
723
724 if (mode & PERF_CGROUP_SWOUT) {
725 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 /*
727 * must not be done before ctxswout due
728 * to event_filter_match() in event_sched_out()
729 */
730 cpuctx->cgrp = NULL;
731 }
732
733 if (mode & PERF_CGROUP_SWIN) {
e566b76e 734 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
735 /*
736 * set cgrp before ctxsw in to allow
737 * event_filter_match() to not have to pass
738 * task around
614e4c4e
SE
739 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 * because cgorup events are only per-cpu
e5d1367f 741 */
614e4c4e 742 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
743 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744 }
facc4307
PZ
745 perf_pmu_enable(cpuctx->ctx.pmu);
746 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 747 }
e5d1367f
SE
748 }
749
e5d1367f
SE
750 local_irq_restore(flags);
751}
752
a8d757ef
SE
753static inline void perf_cgroup_sched_out(struct task_struct *task,
754 struct task_struct *next)
e5d1367f 755{
a8d757ef
SE
756 struct perf_cgroup *cgrp1;
757 struct perf_cgroup *cgrp2 = NULL;
758
ddaaf4e2 759 rcu_read_lock();
a8d757ef
SE
760 /*
761 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
762 * we do not need to pass the ctx here because we know
763 * we are holding the rcu lock
a8d757ef 764 */
614e4c4e 765 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 766 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
767
768 /*
769 * only schedule out current cgroup events if we know
770 * that we are switching to a different cgroup. Otherwise,
771 * do no touch the cgroup events.
772 */
773 if (cgrp1 != cgrp2)
774 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
775
776 rcu_read_unlock();
e5d1367f
SE
777}
778
a8d757ef
SE
779static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 struct task_struct *task)
e5d1367f 781{
a8d757ef
SE
782 struct perf_cgroup *cgrp1;
783 struct perf_cgroup *cgrp2 = NULL;
784
ddaaf4e2 785 rcu_read_lock();
a8d757ef
SE
786 /*
787 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
788 * we do not need to pass the ctx here because we know
789 * we are holding the rcu lock
a8d757ef 790 */
614e4c4e 791 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 792 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
793
794 /*
795 * only need to schedule in cgroup events if we are changing
796 * cgroup during ctxsw. Cgroup events were not scheduled
797 * out of ctxsw out if that was not the case.
798 */
799 if (cgrp1 != cgrp2)
800 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
801
802 rcu_read_unlock();
e5d1367f
SE
803}
804
805static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 struct perf_event_attr *attr,
807 struct perf_event *group_leader)
808{
809 struct perf_cgroup *cgrp;
810 struct cgroup_subsys_state *css;
2903ff01
AV
811 struct fd f = fdget(fd);
812 int ret = 0;
e5d1367f 813
2903ff01 814 if (!f.file)
e5d1367f
SE
815 return -EBADF;
816
b583043e 817 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 818 &perf_event_cgrp_subsys);
3db272c0
LZ
819 if (IS_ERR(css)) {
820 ret = PTR_ERR(css);
821 goto out;
822 }
e5d1367f
SE
823
824 cgrp = container_of(css, struct perf_cgroup, css);
825 event->cgrp = cgrp;
826
827 /*
828 * all events in a group must monitor
829 * the same cgroup because a task belongs
830 * to only one perf cgroup at a time
831 */
832 if (group_leader && group_leader->cgrp != cgrp) {
833 perf_detach_cgroup(event);
834 ret = -EINVAL;
e5d1367f 835 }
3db272c0 836out:
2903ff01 837 fdput(f);
e5d1367f
SE
838 return ret;
839}
840
841static inline void
842perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843{
844 struct perf_cgroup_info *t;
845 t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 event->shadow_ctx_time = now - t->timestamp;
847}
848
849static inline void
850perf_cgroup_defer_enabled(struct perf_event *event)
851{
852 /*
853 * when the current task's perf cgroup does not match
854 * the event's, we need to remember to call the
855 * perf_mark_enable() function the first time a task with
856 * a matching perf cgroup is scheduled in.
857 */
858 if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 event->cgrp_defer_enabled = 1;
860}
861
862static inline void
863perf_cgroup_mark_enabled(struct perf_event *event,
864 struct perf_event_context *ctx)
865{
866 struct perf_event *sub;
867 u64 tstamp = perf_event_time(event);
868
869 if (!event->cgrp_defer_enabled)
870 return;
871
872 event->cgrp_defer_enabled = 0;
873
874 event->tstamp_enabled = tstamp - event->total_time_enabled;
875 list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 sub->cgrp_defer_enabled = 0;
879 }
880 }
881}
db4a8356
DCC
882
883/*
884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885 * cleared when last cgroup event is removed.
886 */
887static inline void
888list_update_cgroup_event(struct perf_event *event,
889 struct perf_event_context *ctx, bool add)
890{
891 struct perf_cpu_context *cpuctx;
892
893 if (!is_cgroup_event(event))
894 return;
895
896 if (add && ctx->nr_cgroups++)
897 return;
898 else if (!add && --ctx->nr_cgroups)
899 return;
900 /*
901 * Because cgroup events are always per-cpu events,
902 * this will always be called from the right CPU.
903 */
904 cpuctx = __get_cpu_context(ctx);
864c2357 905
8fc31ce8
DCC
906 /*
907 * cpuctx->cgrp is NULL until a cgroup event is sched in or
908 * ctx->nr_cgroup == 0 .
909 */
910 if (add && perf_cgroup_from_task(current, ctx) == event->cgrp)
911 cpuctx->cgrp = event->cgrp;
912 else if (!add)
913 cpuctx->cgrp = NULL;
db4a8356
DCC
914}
915
e5d1367f
SE
916#else /* !CONFIG_CGROUP_PERF */
917
918static inline bool
919perf_cgroup_match(struct perf_event *event)
920{
921 return true;
922}
923
924static inline void perf_detach_cgroup(struct perf_event *event)
925{}
926
927static inline int is_cgroup_event(struct perf_event *event)
928{
929 return 0;
930}
931
932static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
933{
934 return 0;
935}
936
937static inline void update_cgrp_time_from_event(struct perf_event *event)
938{
939}
940
941static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
942{
943}
944
a8d757ef
SE
945static inline void perf_cgroup_sched_out(struct task_struct *task,
946 struct task_struct *next)
e5d1367f
SE
947{
948}
949
a8d757ef
SE
950static inline void perf_cgroup_sched_in(struct task_struct *prev,
951 struct task_struct *task)
e5d1367f
SE
952{
953}
954
955static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
956 struct perf_event_attr *attr,
957 struct perf_event *group_leader)
958{
959 return -EINVAL;
960}
961
962static inline void
3f7cce3c
SE
963perf_cgroup_set_timestamp(struct task_struct *task,
964 struct perf_event_context *ctx)
e5d1367f
SE
965{
966}
967
968void
969perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
970{
971}
972
973static inline void
974perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
975{
976}
977
978static inline u64 perf_cgroup_event_time(struct perf_event *event)
979{
980 return 0;
981}
982
983static inline void
984perf_cgroup_defer_enabled(struct perf_event *event)
985{
986}
987
988static inline void
989perf_cgroup_mark_enabled(struct perf_event *event,
990 struct perf_event_context *ctx)
991{
992}
db4a8356
DCC
993
994static inline void
995list_update_cgroup_event(struct perf_event *event,
996 struct perf_event_context *ctx, bool add)
997{
998}
999
e5d1367f
SE
1000#endif
1001
9e630205
SE
1002/*
1003 * set default to be dependent on timer tick just
1004 * like original code
1005 */
1006#define PERF_CPU_HRTIMER (1000 / HZ)
1007/*
1008 * function must be called with interrupts disbled
1009 */
272325c4 1010static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1011{
1012 struct perf_cpu_context *cpuctx;
9e630205
SE
1013 int rotations = 0;
1014
1015 WARN_ON(!irqs_disabled());
1016
1017 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1018 rotations = perf_rotate_context(cpuctx);
1019
4cfafd30
PZ
1020 raw_spin_lock(&cpuctx->hrtimer_lock);
1021 if (rotations)
9e630205 1022 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1023 else
1024 cpuctx->hrtimer_active = 0;
1025 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1026
4cfafd30 1027 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1028}
1029
272325c4 1030static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1031{
272325c4 1032 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1033 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1034 u64 interval;
9e630205
SE
1035
1036 /* no multiplexing needed for SW PMU */
1037 if (pmu->task_ctx_nr == perf_sw_context)
1038 return;
1039
62b85639
SE
1040 /*
1041 * check default is sane, if not set then force to
1042 * default interval (1/tick)
1043 */
272325c4
PZ
1044 interval = pmu->hrtimer_interval_ms;
1045 if (interval < 1)
1046 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1047
272325c4 1048 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1049
4cfafd30
PZ
1050 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1051 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1052 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1053}
1054
272325c4 1055static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1056{
272325c4 1057 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1058 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1059 unsigned long flags;
9e630205
SE
1060
1061 /* not for SW PMU */
1062 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1063 return 0;
9e630205 1064
4cfafd30
PZ
1065 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1066 if (!cpuctx->hrtimer_active) {
1067 cpuctx->hrtimer_active = 1;
1068 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1069 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1070 }
1071 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1072
272325c4 1073 return 0;
9e630205
SE
1074}
1075
33696fc0 1076void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1077{
33696fc0
PZ
1078 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1079 if (!(*count)++)
1080 pmu->pmu_disable(pmu);
9e35ad38 1081}
9e35ad38 1082
33696fc0 1083void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1084{
33696fc0
PZ
1085 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1086 if (!--(*count))
1087 pmu->pmu_enable(pmu);
9e35ad38 1088}
9e35ad38 1089
2fde4f94 1090static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1091
1092/*
2fde4f94
MR
1093 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1094 * perf_event_task_tick() are fully serialized because they're strictly cpu
1095 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1096 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1097 */
2fde4f94 1098static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1099{
2fde4f94 1100 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1101
e9d2b064 1102 WARN_ON(!irqs_disabled());
b5ab4cd5 1103
2fde4f94
MR
1104 WARN_ON(!list_empty(&ctx->active_ctx_list));
1105
1106 list_add(&ctx->active_ctx_list, head);
1107}
1108
1109static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1110{
1111 WARN_ON(!irqs_disabled());
1112
1113 WARN_ON(list_empty(&ctx->active_ctx_list));
1114
1115 list_del_init(&ctx->active_ctx_list);
9e35ad38 1116}
9e35ad38 1117
cdd6c482 1118static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1119{
e5289d4a 1120 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1121}
1122
4af57ef2
YZ
1123static void free_ctx(struct rcu_head *head)
1124{
1125 struct perf_event_context *ctx;
1126
1127 ctx = container_of(head, struct perf_event_context, rcu_head);
1128 kfree(ctx->task_ctx_data);
1129 kfree(ctx);
1130}
1131
cdd6c482 1132static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1133{
564c2b21
PM
1134 if (atomic_dec_and_test(&ctx->refcount)) {
1135 if (ctx->parent_ctx)
1136 put_ctx(ctx->parent_ctx);
63b6da39 1137 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1138 put_task_struct(ctx->task);
4af57ef2 1139 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1140 }
a63eaf34
PM
1141}
1142
f63a8daa
PZ
1143/*
1144 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1145 * perf_pmu_migrate_context() we need some magic.
1146 *
1147 * Those places that change perf_event::ctx will hold both
1148 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1149 *
8b10c5e2
PZ
1150 * Lock ordering is by mutex address. There are two other sites where
1151 * perf_event_context::mutex nests and those are:
1152 *
1153 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1154 * perf_event_exit_event()
1155 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1156 *
1157 * - perf_event_init_context() [ parent, 0 ]
1158 * inherit_task_group()
1159 * inherit_group()
1160 * inherit_event()
1161 * perf_event_alloc()
1162 * perf_init_event()
1163 * perf_try_init_event() [ child , 1 ]
1164 *
1165 * While it appears there is an obvious deadlock here -- the parent and child
1166 * nesting levels are inverted between the two. This is in fact safe because
1167 * life-time rules separate them. That is an exiting task cannot fork, and a
1168 * spawning task cannot (yet) exit.
1169 *
1170 * But remember that that these are parent<->child context relations, and
1171 * migration does not affect children, therefore these two orderings should not
1172 * interact.
f63a8daa
PZ
1173 *
1174 * The change in perf_event::ctx does not affect children (as claimed above)
1175 * because the sys_perf_event_open() case will install a new event and break
1176 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1177 * concerned with cpuctx and that doesn't have children.
1178 *
1179 * The places that change perf_event::ctx will issue:
1180 *
1181 * perf_remove_from_context();
1182 * synchronize_rcu();
1183 * perf_install_in_context();
1184 *
1185 * to affect the change. The remove_from_context() + synchronize_rcu() should
1186 * quiesce the event, after which we can install it in the new location. This
1187 * means that only external vectors (perf_fops, prctl) can perturb the event
1188 * while in transit. Therefore all such accessors should also acquire
1189 * perf_event_context::mutex to serialize against this.
1190 *
1191 * However; because event->ctx can change while we're waiting to acquire
1192 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1193 * function.
1194 *
1195 * Lock order:
79c9ce57 1196 * cred_guard_mutex
f63a8daa
PZ
1197 * task_struct::perf_event_mutex
1198 * perf_event_context::mutex
f63a8daa 1199 * perf_event::child_mutex;
07c4a776 1200 * perf_event_context::lock
f63a8daa
PZ
1201 * perf_event::mmap_mutex
1202 * mmap_sem
1203 */
a83fe28e
PZ
1204static struct perf_event_context *
1205perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1206{
1207 struct perf_event_context *ctx;
1208
1209again:
1210 rcu_read_lock();
1211 ctx = ACCESS_ONCE(event->ctx);
1212 if (!atomic_inc_not_zero(&ctx->refcount)) {
1213 rcu_read_unlock();
1214 goto again;
1215 }
1216 rcu_read_unlock();
1217
a83fe28e 1218 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1219 if (event->ctx != ctx) {
1220 mutex_unlock(&ctx->mutex);
1221 put_ctx(ctx);
1222 goto again;
1223 }
1224
1225 return ctx;
1226}
1227
a83fe28e
PZ
1228static inline struct perf_event_context *
1229perf_event_ctx_lock(struct perf_event *event)
1230{
1231 return perf_event_ctx_lock_nested(event, 0);
1232}
1233
f63a8daa
PZ
1234static void perf_event_ctx_unlock(struct perf_event *event,
1235 struct perf_event_context *ctx)
1236{
1237 mutex_unlock(&ctx->mutex);
1238 put_ctx(ctx);
1239}
1240
211de6eb
PZ
1241/*
1242 * This must be done under the ctx->lock, such as to serialize against
1243 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1244 * calling scheduler related locks and ctx->lock nests inside those.
1245 */
1246static __must_check struct perf_event_context *
1247unclone_ctx(struct perf_event_context *ctx)
71a851b4 1248{
211de6eb
PZ
1249 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1250
1251 lockdep_assert_held(&ctx->lock);
1252
1253 if (parent_ctx)
71a851b4 1254 ctx->parent_ctx = NULL;
5a3126d4 1255 ctx->generation++;
211de6eb
PZ
1256
1257 return parent_ctx;
71a851b4
PZ
1258}
1259
6844c09d
ACM
1260static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1261{
1262 /*
1263 * only top level events have the pid namespace they were created in
1264 */
1265 if (event->parent)
1266 event = event->parent;
1267
1268 return task_tgid_nr_ns(p, event->ns);
1269}
1270
1271static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1272{
1273 /*
1274 * only top level events have the pid namespace they were created in
1275 */
1276 if (event->parent)
1277 event = event->parent;
1278
1279 return task_pid_nr_ns(p, event->ns);
1280}
1281
7f453c24 1282/*
cdd6c482 1283 * If we inherit events we want to return the parent event id
7f453c24
PZ
1284 * to userspace.
1285 */
cdd6c482 1286static u64 primary_event_id(struct perf_event *event)
7f453c24 1287{
cdd6c482 1288 u64 id = event->id;
7f453c24 1289
cdd6c482
IM
1290 if (event->parent)
1291 id = event->parent->id;
7f453c24
PZ
1292
1293 return id;
1294}
1295
25346b93 1296/*
cdd6c482 1297 * Get the perf_event_context for a task and lock it.
63b6da39 1298 *
25346b93
PM
1299 * This has to cope with with the fact that until it is locked,
1300 * the context could get moved to another task.
1301 */
cdd6c482 1302static struct perf_event_context *
8dc85d54 1303perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1304{
cdd6c482 1305 struct perf_event_context *ctx;
25346b93 1306
9ed6060d 1307retry:
058ebd0e
PZ
1308 /*
1309 * One of the few rules of preemptible RCU is that one cannot do
1310 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1311 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1312 * rcu_read_unlock_special().
1313 *
1314 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1315 * side critical section has interrupts disabled.
058ebd0e 1316 */
2fd59077 1317 local_irq_save(*flags);
058ebd0e 1318 rcu_read_lock();
8dc85d54 1319 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1320 if (ctx) {
1321 /*
1322 * If this context is a clone of another, it might
1323 * get swapped for another underneath us by
cdd6c482 1324 * perf_event_task_sched_out, though the
25346b93
PM
1325 * rcu_read_lock() protects us from any context
1326 * getting freed. Lock the context and check if it
1327 * got swapped before we could get the lock, and retry
1328 * if so. If we locked the right context, then it
1329 * can't get swapped on us any more.
1330 */
2fd59077 1331 raw_spin_lock(&ctx->lock);
8dc85d54 1332 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1333 raw_spin_unlock(&ctx->lock);
058ebd0e 1334 rcu_read_unlock();
2fd59077 1335 local_irq_restore(*flags);
25346b93
PM
1336 goto retry;
1337 }
b49a9e7e 1338
63b6da39
PZ
1339 if (ctx->task == TASK_TOMBSTONE ||
1340 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1341 raw_spin_unlock(&ctx->lock);
b49a9e7e 1342 ctx = NULL;
828b6f0e
PZ
1343 } else {
1344 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1345 }
25346b93
PM
1346 }
1347 rcu_read_unlock();
2fd59077
PM
1348 if (!ctx)
1349 local_irq_restore(*flags);
25346b93
PM
1350 return ctx;
1351}
1352
1353/*
1354 * Get the context for a task and increment its pin_count so it
1355 * can't get swapped to another task. This also increments its
1356 * reference count so that the context can't get freed.
1357 */
8dc85d54
PZ
1358static struct perf_event_context *
1359perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1360{
cdd6c482 1361 struct perf_event_context *ctx;
25346b93
PM
1362 unsigned long flags;
1363
8dc85d54 1364 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1365 if (ctx) {
1366 ++ctx->pin_count;
e625cce1 1367 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1368 }
1369 return ctx;
1370}
1371
cdd6c482 1372static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1373{
1374 unsigned long flags;
1375
e625cce1 1376 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1377 --ctx->pin_count;
e625cce1 1378 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1379}
1380
f67218c3
PZ
1381/*
1382 * Update the record of the current time in a context.
1383 */
1384static void update_context_time(struct perf_event_context *ctx)
1385{
1386 u64 now = perf_clock();
1387
1388 ctx->time += now - ctx->timestamp;
1389 ctx->timestamp = now;
1390}
1391
4158755d
SE
1392static u64 perf_event_time(struct perf_event *event)
1393{
1394 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1395
1396 if (is_cgroup_event(event))
1397 return perf_cgroup_event_time(event);
1398
4158755d
SE
1399 return ctx ? ctx->time : 0;
1400}
1401
f67218c3
PZ
1402/*
1403 * Update the total_time_enabled and total_time_running fields for a event.
1404 */
1405static void update_event_times(struct perf_event *event)
1406{
1407 struct perf_event_context *ctx = event->ctx;
1408 u64 run_end;
1409
3cbaa590
PZ
1410 lockdep_assert_held(&ctx->lock);
1411
f67218c3
PZ
1412 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1413 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1414 return;
3cbaa590 1415
e5d1367f
SE
1416 /*
1417 * in cgroup mode, time_enabled represents
1418 * the time the event was enabled AND active
1419 * tasks were in the monitored cgroup. This is
1420 * independent of the activity of the context as
1421 * there may be a mix of cgroup and non-cgroup events.
1422 *
1423 * That is why we treat cgroup events differently
1424 * here.
1425 */
1426 if (is_cgroup_event(event))
46cd6a7f 1427 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1428 else if (ctx->is_active)
1429 run_end = ctx->time;
acd1d7c1
PZ
1430 else
1431 run_end = event->tstamp_stopped;
1432
1433 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1434
1435 if (event->state == PERF_EVENT_STATE_INACTIVE)
1436 run_end = event->tstamp_stopped;
1437 else
4158755d 1438 run_end = perf_event_time(event);
f67218c3
PZ
1439
1440 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1441
f67218c3
PZ
1442}
1443
96c21a46
PZ
1444/*
1445 * Update total_time_enabled and total_time_running for all events in a group.
1446 */
1447static void update_group_times(struct perf_event *leader)
1448{
1449 struct perf_event *event;
1450
1451 update_event_times(leader);
1452 list_for_each_entry(event, &leader->sibling_list, group_entry)
1453 update_event_times(event);
1454}
1455
889ff015
FW
1456static struct list_head *
1457ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1458{
1459 if (event->attr.pinned)
1460 return &ctx->pinned_groups;
1461 else
1462 return &ctx->flexible_groups;
1463}
1464
fccc714b 1465/*
cdd6c482 1466 * Add a event from the lists for its context.
fccc714b
PZ
1467 * Must be called with ctx->mutex and ctx->lock held.
1468 */
04289bb9 1469static void
cdd6c482 1470list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1471{
c994d613
PZ
1472 lockdep_assert_held(&ctx->lock);
1473
8a49542c
PZ
1474 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1475 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1476
1477 /*
8a49542c
PZ
1478 * If we're a stand alone event or group leader, we go to the context
1479 * list, group events are kept attached to the group so that
1480 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1481 */
8a49542c 1482 if (event->group_leader == event) {
889ff015
FW
1483 struct list_head *list;
1484
4ff6a8de 1485 event->group_caps = event->event_caps;
d6f962b5 1486
889ff015
FW
1487 list = ctx_group_list(event, ctx);
1488 list_add_tail(&event->group_entry, list);
5c148194 1489 }
592903cd 1490
db4a8356 1491 list_update_cgroup_event(event, ctx, true);
e5d1367f 1492
cdd6c482
IM
1493 list_add_rcu(&event->event_entry, &ctx->event_list);
1494 ctx->nr_events++;
1495 if (event->attr.inherit_stat)
bfbd3381 1496 ctx->nr_stat++;
5a3126d4
PZ
1497
1498 ctx->generation++;
04289bb9
IM
1499}
1500
0231bb53
JO
1501/*
1502 * Initialize event state based on the perf_event_attr::disabled.
1503 */
1504static inline void perf_event__state_init(struct perf_event *event)
1505{
1506 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1507 PERF_EVENT_STATE_INACTIVE;
1508}
1509
a723968c 1510static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1511{
1512 int entry = sizeof(u64); /* value */
1513 int size = 0;
1514 int nr = 1;
1515
1516 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1517 size += sizeof(u64);
1518
1519 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1520 size += sizeof(u64);
1521
1522 if (event->attr.read_format & PERF_FORMAT_ID)
1523 entry += sizeof(u64);
1524
1525 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1526 nr += nr_siblings;
c320c7b7
ACM
1527 size += sizeof(u64);
1528 }
1529
1530 size += entry * nr;
1531 event->read_size = size;
1532}
1533
a723968c 1534static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1535{
1536 struct perf_sample_data *data;
c320c7b7
ACM
1537 u16 size = 0;
1538
c320c7b7
ACM
1539 if (sample_type & PERF_SAMPLE_IP)
1540 size += sizeof(data->ip);
1541
6844c09d
ACM
1542 if (sample_type & PERF_SAMPLE_ADDR)
1543 size += sizeof(data->addr);
1544
1545 if (sample_type & PERF_SAMPLE_PERIOD)
1546 size += sizeof(data->period);
1547
c3feedf2
AK
1548 if (sample_type & PERF_SAMPLE_WEIGHT)
1549 size += sizeof(data->weight);
1550
6844c09d
ACM
1551 if (sample_type & PERF_SAMPLE_READ)
1552 size += event->read_size;
1553
d6be9ad6
SE
1554 if (sample_type & PERF_SAMPLE_DATA_SRC)
1555 size += sizeof(data->data_src.val);
1556
fdfbbd07
AK
1557 if (sample_type & PERF_SAMPLE_TRANSACTION)
1558 size += sizeof(data->txn);
1559
6844c09d
ACM
1560 event->header_size = size;
1561}
1562
a723968c
PZ
1563/*
1564 * Called at perf_event creation and when events are attached/detached from a
1565 * group.
1566 */
1567static void perf_event__header_size(struct perf_event *event)
1568{
1569 __perf_event_read_size(event,
1570 event->group_leader->nr_siblings);
1571 __perf_event_header_size(event, event->attr.sample_type);
1572}
1573
6844c09d
ACM
1574static void perf_event__id_header_size(struct perf_event *event)
1575{
1576 struct perf_sample_data *data;
1577 u64 sample_type = event->attr.sample_type;
1578 u16 size = 0;
1579
c320c7b7
ACM
1580 if (sample_type & PERF_SAMPLE_TID)
1581 size += sizeof(data->tid_entry);
1582
1583 if (sample_type & PERF_SAMPLE_TIME)
1584 size += sizeof(data->time);
1585
ff3d527c
AH
1586 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1587 size += sizeof(data->id);
1588
c320c7b7
ACM
1589 if (sample_type & PERF_SAMPLE_ID)
1590 size += sizeof(data->id);
1591
1592 if (sample_type & PERF_SAMPLE_STREAM_ID)
1593 size += sizeof(data->stream_id);
1594
1595 if (sample_type & PERF_SAMPLE_CPU)
1596 size += sizeof(data->cpu_entry);
1597
6844c09d 1598 event->id_header_size = size;
c320c7b7
ACM
1599}
1600
a723968c
PZ
1601static bool perf_event_validate_size(struct perf_event *event)
1602{
1603 /*
1604 * The values computed here will be over-written when we actually
1605 * attach the event.
1606 */
1607 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1608 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1609 perf_event__id_header_size(event);
1610
1611 /*
1612 * Sum the lot; should not exceed the 64k limit we have on records.
1613 * Conservative limit to allow for callchains and other variable fields.
1614 */
1615 if (event->read_size + event->header_size +
1616 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1617 return false;
1618
1619 return true;
1620}
1621
8a49542c
PZ
1622static void perf_group_attach(struct perf_event *event)
1623{
c320c7b7 1624 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1625
a76a82a3
PZ
1626 lockdep_assert_held(&event->ctx->lock);
1627
74c3337c
PZ
1628 /*
1629 * We can have double attach due to group movement in perf_event_open.
1630 */
1631 if (event->attach_state & PERF_ATTACH_GROUP)
1632 return;
1633
8a49542c
PZ
1634 event->attach_state |= PERF_ATTACH_GROUP;
1635
1636 if (group_leader == event)
1637 return;
1638
652884fe
PZ
1639 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1640
4ff6a8de 1641 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1642
1643 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1644 group_leader->nr_siblings++;
c320c7b7
ACM
1645
1646 perf_event__header_size(group_leader);
1647
1648 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1649 perf_event__header_size(pos);
8a49542c
PZ
1650}
1651
a63eaf34 1652/*
cdd6c482 1653 * Remove a event from the lists for its context.
fccc714b 1654 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1655 */
04289bb9 1656static void
cdd6c482 1657list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1658{
652884fe
PZ
1659 WARN_ON_ONCE(event->ctx != ctx);
1660 lockdep_assert_held(&ctx->lock);
1661
8a49542c
PZ
1662 /*
1663 * We can have double detach due to exit/hot-unplug + close.
1664 */
1665 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1666 return;
8a49542c
PZ
1667
1668 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1669
db4a8356 1670 list_update_cgroup_event(event, ctx, false);
e5d1367f 1671
cdd6c482
IM
1672 ctx->nr_events--;
1673 if (event->attr.inherit_stat)
bfbd3381 1674 ctx->nr_stat--;
8bc20959 1675
cdd6c482 1676 list_del_rcu(&event->event_entry);
04289bb9 1677
8a49542c
PZ
1678 if (event->group_leader == event)
1679 list_del_init(&event->group_entry);
5c148194 1680
96c21a46 1681 update_group_times(event);
b2e74a26
SE
1682
1683 /*
1684 * If event was in error state, then keep it
1685 * that way, otherwise bogus counts will be
1686 * returned on read(). The only way to get out
1687 * of error state is by explicit re-enabling
1688 * of the event
1689 */
1690 if (event->state > PERF_EVENT_STATE_OFF)
1691 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1692
1693 ctx->generation++;
050735b0
PZ
1694}
1695
8a49542c 1696static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1697{
1698 struct perf_event *sibling, *tmp;
8a49542c
PZ
1699 struct list_head *list = NULL;
1700
a76a82a3
PZ
1701 lockdep_assert_held(&event->ctx->lock);
1702
8a49542c
PZ
1703 /*
1704 * We can have double detach due to exit/hot-unplug + close.
1705 */
1706 if (!(event->attach_state & PERF_ATTACH_GROUP))
1707 return;
1708
1709 event->attach_state &= ~PERF_ATTACH_GROUP;
1710
1711 /*
1712 * If this is a sibling, remove it from its group.
1713 */
1714 if (event->group_leader != event) {
1715 list_del_init(&event->group_entry);
1716 event->group_leader->nr_siblings--;
c320c7b7 1717 goto out;
8a49542c
PZ
1718 }
1719
1720 if (!list_empty(&event->group_entry))
1721 list = &event->group_entry;
2e2af50b 1722
04289bb9 1723 /*
cdd6c482
IM
1724 * If this was a group event with sibling events then
1725 * upgrade the siblings to singleton events by adding them
8a49542c 1726 * to whatever list we are on.
04289bb9 1727 */
cdd6c482 1728 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1729 if (list)
1730 list_move_tail(&sibling->group_entry, list);
04289bb9 1731 sibling->group_leader = sibling;
d6f962b5
FW
1732
1733 /* Inherit group flags from the previous leader */
4ff6a8de 1734 sibling->group_caps = event->group_caps;
652884fe
PZ
1735
1736 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1737 }
c320c7b7
ACM
1738
1739out:
1740 perf_event__header_size(event->group_leader);
1741
1742 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1743 perf_event__header_size(tmp);
04289bb9
IM
1744}
1745
fadfe7be
JO
1746static bool is_orphaned_event(struct perf_event *event)
1747{
a69b0ca4 1748 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1749}
1750
2c81a647 1751static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1752{
1753 struct pmu *pmu = event->pmu;
1754 return pmu->filter_match ? pmu->filter_match(event) : 1;
1755}
1756
2c81a647
MR
1757/*
1758 * Check whether we should attempt to schedule an event group based on
1759 * PMU-specific filtering. An event group can consist of HW and SW events,
1760 * potentially with a SW leader, so we must check all the filters, to
1761 * determine whether a group is schedulable:
1762 */
1763static inline int pmu_filter_match(struct perf_event *event)
1764{
1765 struct perf_event *child;
1766
1767 if (!__pmu_filter_match(event))
1768 return 0;
1769
1770 list_for_each_entry(child, &event->sibling_list, group_entry) {
1771 if (!__pmu_filter_match(child))
1772 return 0;
1773 }
1774
1775 return 1;
1776}
1777
fa66f07a
SE
1778static inline int
1779event_filter_match(struct perf_event *event)
1780{
0b8f1e2e
PZ
1781 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1782 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1783}
1784
9ffcfa6f
SE
1785static void
1786event_sched_out(struct perf_event *event,
3b6f9e5c 1787 struct perf_cpu_context *cpuctx,
cdd6c482 1788 struct perf_event_context *ctx)
3b6f9e5c 1789{
4158755d 1790 u64 tstamp = perf_event_time(event);
fa66f07a 1791 u64 delta;
652884fe
PZ
1792
1793 WARN_ON_ONCE(event->ctx != ctx);
1794 lockdep_assert_held(&ctx->lock);
1795
fa66f07a
SE
1796 /*
1797 * An event which could not be activated because of
1798 * filter mismatch still needs to have its timings
1799 * maintained, otherwise bogus information is return
1800 * via read() for time_enabled, time_running:
1801 */
0b8f1e2e
PZ
1802 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1803 !event_filter_match(event)) {
e5d1367f 1804 delta = tstamp - event->tstamp_stopped;
fa66f07a 1805 event->tstamp_running += delta;
4158755d 1806 event->tstamp_stopped = tstamp;
fa66f07a
SE
1807 }
1808
cdd6c482 1809 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1810 return;
3b6f9e5c 1811
44377277
AS
1812 perf_pmu_disable(event->pmu);
1813
28a967c3
PZ
1814 event->tstamp_stopped = tstamp;
1815 event->pmu->del(event, 0);
1816 event->oncpu = -1;
cdd6c482
IM
1817 event->state = PERF_EVENT_STATE_INACTIVE;
1818 if (event->pending_disable) {
1819 event->pending_disable = 0;
1820 event->state = PERF_EVENT_STATE_OFF;
970892a9 1821 }
3b6f9e5c 1822
cdd6c482 1823 if (!is_software_event(event))
3b6f9e5c 1824 cpuctx->active_oncpu--;
2fde4f94
MR
1825 if (!--ctx->nr_active)
1826 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1827 if (event->attr.freq && event->attr.sample_freq)
1828 ctx->nr_freq--;
cdd6c482 1829 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1830 cpuctx->exclusive = 0;
44377277
AS
1831
1832 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1833}
1834
d859e29f 1835static void
cdd6c482 1836group_sched_out(struct perf_event *group_event,
d859e29f 1837 struct perf_cpu_context *cpuctx,
cdd6c482 1838 struct perf_event_context *ctx)
d859e29f 1839{
cdd6c482 1840 struct perf_event *event;
fa66f07a 1841 int state = group_event->state;
d859e29f 1842
3f005e7d
MR
1843 perf_pmu_disable(ctx->pmu);
1844
cdd6c482 1845 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1846
1847 /*
1848 * Schedule out siblings (if any):
1849 */
cdd6c482
IM
1850 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1851 event_sched_out(event, cpuctx, ctx);
d859e29f 1852
3f005e7d
MR
1853 perf_pmu_enable(ctx->pmu);
1854
fa66f07a 1855 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1856 cpuctx->exclusive = 0;
1857}
1858
45a0e07a 1859#define DETACH_GROUP 0x01UL
0017960f 1860
0793a61d 1861/*
cdd6c482 1862 * Cross CPU call to remove a performance event
0793a61d 1863 *
cdd6c482 1864 * We disable the event on the hardware level first. After that we
0793a61d
TG
1865 * remove it from the context list.
1866 */
fae3fde6
PZ
1867static void
1868__perf_remove_from_context(struct perf_event *event,
1869 struct perf_cpu_context *cpuctx,
1870 struct perf_event_context *ctx,
1871 void *info)
0793a61d 1872{
45a0e07a 1873 unsigned long flags = (unsigned long)info;
0793a61d 1874
cdd6c482 1875 event_sched_out(event, cpuctx, ctx);
45a0e07a 1876 if (flags & DETACH_GROUP)
46ce0fe9 1877 perf_group_detach(event);
cdd6c482 1878 list_del_event(event, ctx);
39a43640
PZ
1879
1880 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1881 ctx->is_active = 0;
39a43640
PZ
1882 if (ctx->task) {
1883 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1884 cpuctx->task_ctx = NULL;
1885 }
64ce3126 1886 }
0793a61d
TG
1887}
1888
0793a61d 1889/*
cdd6c482 1890 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1891 *
cdd6c482
IM
1892 * If event->ctx is a cloned context, callers must make sure that
1893 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1894 * remains valid. This is OK when called from perf_release since
1895 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1896 * When called from perf_event_exit_task, it's OK because the
c93f7669 1897 * context has been detached from its task.
0793a61d 1898 */
45a0e07a 1899static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1900{
a76a82a3
PZ
1901 struct perf_event_context *ctx = event->ctx;
1902
1903 lockdep_assert_held(&ctx->mutex);
0793a61d 1904
45a0e07a 1905 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1906
1907 /*
1908 * The above event_function_call() can NO-OP when it hits
1909 * TASK_TOMBSTONE. In that case we must already have been detached
1910 * from the context (by perf_event_exit_event()) but the grouping
1911 * might still be in-tact.
1912 */
1913 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1914 if ((flags & DETACH_GROUP) &&
1915 (event->attach_state & PERF_ATTACH_GROUP)) {
1916 /*
1917 * Since in that case we cannot possibly be scheduled, simply
1918 * detach now.
1919 */
1920 raw_spin_lock_irq(&ctx->lock);
1921 perf_group_detach(event);
1922 raw_spin_unlock_irq(&ctx->lock);
1923 }
0793a61d
TG
1924}
1925
d859e29f 1926/*
cdd6c482 1927 * Cross CPU call to disable a performance event
d859e29f 1928 */
fae3fde6
PZ
1929static void __perf_event_disable(struct perf_event *event,
1930 struct perf_cpu_context *cpuctx,
1931 struct perf_event_context *ctx,
1932 void *info)
7b648018 1933{
fae3fde6
PZ
1934 if (event->state < PERF_EVENT_STATE_INACTIVE)
1935 return;
7b648018 1936
fae3fde6
PZ
1937 update_context_time(ctx);
1938 update_cgrp_time_from_event(event);
1939 update_group_times(event);
1940 if (event == event->group_leader)
1941 group_sched_out(event, cpuctx, ctx);
1942 else
1943 event_sched_out(event, cpuctx, ctx);
1944 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1945}
1946
d859e29f 1947/*
cdd6c482 1948 * Disable a event.
c93f7669 1949 *
cdd6c482
IM
1950 * If event->ctx is a cloned context, callers must make sure that
1951 * every task struct that event->ctx->task could possibly point to
c93f7669 1952 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1953 * perf_event_for_each_child or perf_event_for_each because they
1954 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1955 * goes to exit will block in perf_event_exit_event().
1956 *
cdd6c482 1957 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1958 * is the current context on this CPU and preemption is disabled,
cdd6c482 1959 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1960 */
f63a8daa 1961static void _perf_event_disable(struct perf_event *event)
d859e29f 1962{
cdd6c482 1963 struct perf_event_context *ctx = event->ctx;
d859e29f 1964
e625cce1 1965 raw_spin_lock_irq(&ctx->lock);
7b648018 1966 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1967 raw_spin_unlock_irq(&ctx->lock);
7b648018 1968 return;
53cfbf59 1969 }
e625cce1 1970 raw_spin_unlock_irq(&ctx->lock);
7b648018 1971
fae3fde6
PZ
1972 event_function_call(event, __perf_event_disable, NULL);
1973}
1974
1975void perf_event_disable_local(struct perf_event *event)
1976{
1977 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1978}
f63a8daa
PZ
1979
1980/*
1981 * Strictly speaking kernel users cannot create groups and therefore this
1982 * interface does not need the perf_event_ctx_lock() magic.
1983 */
1984void perf_event_disable(struct perf_event *event)
1985{
1986 struct perf_event_context *ctx;
1987
1988 ctx = perf_event_ctx_lock(event);
1989 _perf_event_disable(event);
1990 perf_event_ctx_unlock(event, ctx);
1991}
dcfce4a0 1992EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1993
5aab90ce
JO
1994void perf_event_disable_inatomic(struct perf_event *event)
1995{
1996 event->pending_disable = 1;
1997 irq_work_queue(&event->pending);
1998}
1999
e5d1367f
SE
2000static void perf_set_shadow_time(struct perf_event *event,
2001 struct perf_event_context *ctx,
2002 u64 tstamp)
2003{
2004 /*
2005 * use the correct time source for the time snapshot
2006 *
2007 * We could get by without this by leveraging the
2008 * fact that to get to this function, the caller
2009 * has most likely already called update_context_time()
2010 * and update_cgrp_time_xx() and thus both timestamp
2011 * are identical (or very close). Given that tstamp is,
2012 * already adjusted for cgroup, we could say that:
2013 * tstamp - ctx->timestamp
2014 * is equivalent to
2015 * tstamp - cgrp->timestamp.
2016 *
2017 * Then, in perf_output_read(), the calculation would
2018 * work with no changes because:
2019 * - event is guaranteed scheduled in
2020 * - no scheduled out in between
2021 * - thus the timestamp would be the same
2022 *
2023 * But this is a bit hairy.
2024 *
2025 * So instead, we have an explicit cgroup call to remain
2026 * within the time time source all along. We believe it
2027 * is cleaner and simpler to understand.
2028 */
2029 if (is_cgroup_event(event))
2030 perf_cgroup_set_shadow_time(event, tstamp);
2031 else
2032 event->shadow_ctx_time = tstamp - ctx->timestamp;
2033}
2034
4fe757dd
PZ
2035#define MAX_INTERRUPTS (~0ULL)
2036
2037static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2038static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2039
235c7fc7 2040static int
9ffcfa6f 2041event_sched_in(struct perf_event *event,
235c7fc7 2042 struct perf_cpu_context *cpuctx,
6e37738a 2043 struct perf_event_context *ctx)
235c7fc7 2044{
4158755d 2045 u64 tstamp = perf_event_time(event);
44377277 2046 int ret = 0;
4158755d 2047
63342411
PZ
2048 lockdep_assert_held(&ctx->lock);
2049
cdd6c482 2050 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2051 return 0;
2052
95ff4ca2
AS
2053 WRITE_ONCE(event->oncpu, smp_processor_id());
2054 /*
2055 * Order event::oncpu write to happen before the ACTIVE state
2056 * is visible.
2057 */
2058 smp_wmb();
2059 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2060
2061 /*
2062 * Unthrottle events, since we scheduled we might have missed several
2063 * ticks already, also for a heavily scheduling task there is little
2064 * guarantee it'll get a tick in a timely manner.
2065 */
2066 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2067 perf_log_throttle(event, 1);
2068 event->hw.interrupts = 0;
2069 }
2070
235c7fc7
IM
2071 /*
2072 * The new state must be visible before we turn it on in the hardware:
2073 */
2074 smp_wmb();
2075
44377277
AS
2076 perf_pmu_disable(event->pmu);
2077
72f669c0
SL
2078 perf_set_shadow_time(event, ctx, tstamp);
2079
ec0d7729
AS
2080 perf_log_itrace_start(event);
2081
a4eaf7f1 2082 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2083 event->state = PERF_EVENT_STATE_INACTIVE;
2084 event->oncpu = -1;
44377277
AS
2085 ret = -EAGAIN;
2086 goto out;
235c7fc7
IM
2087 }
2088
00a2916f
PZ
2089 event->tstamp_running += tstamp - event->tstamp_stopped;
2090
cdd6c482 2091 if (!is_software_event(event))
3b6f9e5c 2092 cpuctx->active_oncpu++;
2fde4f94
MR
2093 if (!ctx->nr_active++)
2094 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2095 if (event->attr.freq && event->attr.sample_freq)
2096 ctx->nr_freq++;
235c7fc7 2097
cdd6c482 2098 if (event->attr.exclusive)
3b6f9e5c
PM
2099 cpuctx->exclusive = 1;
2100
44377277
AS
2101out:
2102 perf_pmu_enable(event->pmu);
2103
2104 return ret;
235c7fc7
IM
2105}
2106
6751b71e 2107static int
cdd6c482 2108group_sched_in(struct perf_event *group_event,
6751b71e 2109 struct perf_cpu_context *cpuctx,
6e37738a 2110 struct perf_event_context *ctx)
6751b71e 2111{
6bde9b6c 2112 struct perf_event *event, *partial_group = NULL;
4a234593 2113 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2114 u64 now = ctx->time;
2115 bool simulate = false;
6751b71e 2116
cdd6c482 2117 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2118 return 0;
2119
fbbe0701 2120 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2121
9ffcfa6f 2122 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2123 pmu->cancel_txn(pmu);
272325c4 2124 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2125 return -EAGAIN;
90151c35 2126 }
6751b71e
PM
2127
2128 /*
2129 * Schedule in siblings as one group (if any):
2130 */
cdd6c482 2131 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2132 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2133 partial_group = event;
6751b71e
PM
2134 goto group_error;
2135 }
2136 }
2137
9ffcfa6f 2138 if (!pmu->commit_txn(pmu))
6e85158c 2139 return 0;
9ffcfa6f 2140
6751b71e
PM
2141group_error:
2142 /*
2143 * Groups can be scheduled in as one unit only, so undo any
2144 * partial group before returning:
d7842da4
SE
2145 * The events up to the failed event are scheduled out normally,
2146 * tstamp_stopped will be updated.
2147 *
2148 * The failed events and the remaining siblings need to have
2149 * their timings updated as if they had gone thru event_sched_in()
2150 * and event_sched_out(). This is required to get consistent timings
2151 * across the group. This also takes care of the case where the group
2152 * could never be scheduled by ensuring tstamp_stopped is set to mark
2153 * the time the event was actually stopped, such that time delta
2154 * calculation in update_event_times() is correct.
6751b71e 2155 */
cdd6c482
IM
2156 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2157 if (event == partial_group)
d7842da4
SE
2158 simulate = true;
2159
2160 if (simulate) {
2161 event->tstamp_running += now - event->tstamp_stopped;
2162 event->tstamp_stopped = now;
2163 } else {
2164 event_sched_out(event, cpuctx, ctx);
2165 }
6751b71e 2166 }
9ffcfa6f 2167 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2168
ad5133b7 2169 pmu->cancel_txn(pmu);
90151c35 2170
272325c4 2171 perf_mux_hrtimer_restart(cpuctx);
9e630205 2172
6751b71e
PM
2173 return -EAGAIN;
2174}
2175
3b6f9e5c 2176/*
cdd6c482 2177 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2178 */
cdd6c482 2179static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2180 struct perf_cpu_context *cpuctx,
2181 int can_add_hw)
2182{
2183 /*
cdd6c482 2184 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2185 */
4ff6a8de 2186 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2187 return 1;
2188 /*
2189 * If an exclusive group is already on, no other hardware
cdd6c482 2190 * events can go on.
3b6f9e5c
PM
2191 */
2192 if (cpuctx->exclusive)
2193 return 0;
2194 /*
2195 * If this group is exclusive and there are already
cdd6c482 2196 * events on the CPU, it can't go on.
3b6f9e5c 2197 */
cdd6c482 2198 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2199 return 0;
2200 /*
2201 * Otherwise, try to add it if all previous groups were able
2202 * to go on.
2203 */
2204 return can_add_hw;
2205}
2206
cdd6c482
IM
2207static void add_event_to_ctx(struct perf_event *event,
2208 struct perf_event_context *ctx)
53cfbf59 2209{
4158755d
SE
2210 u64 tstamp = perf_event_time(event);
2211
cdd6c482 2212 list_add_event(event, ctx);
8a49542c 2213 perf_group_attach(event);
4158755d
SE
2214 event->tstamp_enabled = tstamp;
2215 event->tstamp_running = tstamp;
2216 event->tstamp_stopped = tstamp;
53cfbf59
PM
2217}
2218
bd2afa49
PZ
2219static void ctx_sched_out(struct perf_event_context *ctx,
2220 struct perf_cpu_context *cpuctx,
2221 enum event_type_t event_type);
2c29ef0f
PZ
2222static void
2223ctx_sched_in(struct perf_event_context *ctx,
2224 struct perf_cpu_context *cpuctx,
2225 enum event_type_t event_type,
2226 struct task_struct *task);
fe4b04fa 2227
bd2afa49
PZ
2228static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2229 struct perf_event_context *ctx)
2230{
2231 if (!cpuctx->task_ctx)
2232 return;
2233
2234 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2235 return;
2236
2237 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2238}
2239
dce5855b
PZ
2240static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2241 struct perf_event_context *ctx,
2242 struct task_struct *task)
2243{
2244 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2245 if (ctx)
2246 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2247 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2248 if (ctx)
2249 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2250}
2251
3e349507
PZ
2252static void ctx_resched(struct perf_cpu_context *cpuctx,
2253 struct perf_event_context *task_ctx)
0017960f 2254{
3e349507
PZ
2255 perf_pmu_disable(cpuctx->ctx.pmu);
2256 if (task_ctx)
2257 task_ctx_sched_out(cpuctx, task_ctx);
2258 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2259 perf_event_sched_in(cpuctx, task_ctx, current);
2260 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2261}
2262
0793a61d 2263/*
cdd6c482 2264 * Cross CPU call to install and enable a performance event
682076ae 2265 *
a096309b
PZ
2266 * Very similar to remote_function() + event_function() but cannot assume that
2267 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2268 */
fe4b04fa 2269static int __perf_install_in_context(void *info)
0793a61d 2270{
a096309b
PZ
2271 struct perf_event *event = info;
2272 struct perf_event_context *ctx = event->ctx;
108b02cf 2273 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2274 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2275 bool reprogram = true;
a096309b 2276 int ret = 0;
0793a61d 2277
63b6da39 2278 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2279 if (ctx->task) {
b58f6b0d
PZ
2280 raw_spin_lock(&ctx->lock);
2281 task_ctx = ctx;
a096309b 2282
63cae12b 2283 reprogram = (ctx->task == current);
b58f6b0d 2284
39a43640 2285 /*
63cae12b
PZ
2286 * If the task is running, it must be running on this CPU,
2287 * otherwise we cannot reprogram things.
2288 *
2289 * If its not running, we don't care, ctx->lock will
2290 * serialize against it becoming runnable.
39a43640 2291 */
63cae12b
PZ
2292 if (task_curr(ctx->task) && !reprogram) {
2293 ret = -ESRCH;
2294 goto unlock;
2295 }
a096309b 2296
63cae12b 2297 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2298 } else if (task_ctx) {
2299 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2300 }
b58f6b0d 2301
63cae12b 2302 if (reprogram) {
a096309b
PZ
2303 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2304 add_event_to_ctx(event, ctx);
2305 ctx_resched(cpuctx, task_ctx);
2306 } else {
2307 add_event_to_ctx(event, ctx);
2308 }
2309
63b6da39 2310unlock:
2c29ef0f 2311 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2312
a096309b 2313 return ret;
0793a61d
TG
2314}
2315
2316/*
a096309b
PZ
2317 * Attach a performance event to a context.
2318 *
2319 * Very similar to event_function_call, see comment there.
0793a61d
TG
2320 */
2321static void
cdd6c482
IM
2322perf_install_in_context(struct perf_event_context *ctx,
2323 struct perf_event *event,
0793a61d
TG
2324 int cpu)
2325{
a096309b 2326 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2327
fe4b04fa
PZ
2328 lockdep_assert_held(&ctx->mutex);
2329
0cda4c02
YZ
2330 if (event->cpu != -1)
2331 event->cpu = cpu;
c3f00c70 2332
0b8f1e2e
PZ
2333 /*
2334 * Ensures that if we can observe event->ctx, both the event and ctx
2335 * will be 'complete'. See perf_iterate_sb_cpu().
2336 */
2337 smp_store_release(&event->ctx, ctx);
2338
a096309b
PZ
2339 if (!task) {
2340 cpu_function_call(cpu, __perf_install_in_context, event);
2341 return;
2342 }
2343
2344 /*
2345 * Should not happen, we validate the ctx is still alive before calling.
2346 */
2347 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2348 return;
2349
39a43640
PZ
2350 /*
2351 * Installing events is tricky because we cannot rely on ctx->is_active
2352 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2353 *
2354 * Instead we use task_curr(), which tells us if the task is running.
2355 * However, since we use task_curr() outside of rq::lock, we can race
2356 * against the actual state. This means the result can be wrong.
2357 *
2358 * If we get a false positive, we retry, this is harmless.
2359 *
2360 * If we get a false negative, things are complicated. If we are after
2361 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2362 * value must be correct. If we're before, it doesn't matter since
2363 * perf_event_context_sched_in() will program the counter.
2364 *
2365 * However, this hinges on the remote context switch having observed
2366 * our task->perf_event_ctxp[] store, such that it will in fact take
2367 * ctx::lock in perf_event_context_sched_in().
2368 *
2369 * We do this by task_function_call(), if the IPI fails to hit the task
2370 * we know any future context switch of task must see the
2371 * perf_event_ctpx[] store.
39a43640 2372 */
63cae12b 2373
63b6da39 2374 /*
63cae12b
PZ
2375 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2376 * task_cpu() load, such that if the IPI then does not find the task
2377 * running, a future context switch of that task must observe the
2378 * store.
63b6da39 2379 */
63cae12b
PZ
2380 smp_mb();
2381again:
2382 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2383 return;
2384
2385 raw_spin_lock_irq(&ctx->lock);
2386 task = ctx->task;
84c4e620 2387 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2388 /*
2389 * Cannot happen because we already checked above (which also
2390 * cannot happen), and we hold ctx->mutex, which serializes us
2391 * against perf_event_exit_task_context().
2392 */
63b6da39
PZ
2393 raw_spin_unlock_irq(&ctx->lock);
2394 return;
2395 }
39a43640 2396 /*
63cae12b
PZ
2397 * If the task is not running, ctx->lock will avoid it becoming so,
2398 * thus we can safely install the event.
39a43640 2399 */
63cae12b
PZ
2400 if (task_curr(task)) {
2401 raw_spin_unlock_irq(&ctx->lock);
2402 goto again;
2403 }
2404 add_event_to_ctx(event, ctx);
2405 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2406}
2407
fa289bec 2408/*
cdd6c482 2409 * Put a event into inactive state and update time fields.
fa289bec
PM
2410 * Enabling the leader of a group effectively enables all
2411 * the group members that aren't explicitly disabled, so we
2412 * have to update their ->tstamp_enabled also.
2413 * Note: this works for group members as well as group leaders
2414 * since the non-leader members' sibling_lists will be empty.
2415 */
1d9b482e 2416static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2417{
cdd6c482 2418 struct perf_event *sub;
4158755d 2419 u64 tstamp = perf_event_time(event);
fa289bec 2420
cdd6c482 2421 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2422 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2423 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2424 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2425 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2426 }
fa289bec
PM
2427}
2428
d859e29f 2429/*
cdd6c482 2430 * Cross CPU call to enable a performance event
d859e29f 2431 */
fae3fde6
PZ
2432static void __perf_event_enable(struct perf_event *event,
2433 struct perf_cpu_context *cpuctx,
2434 struct perf_event_context *ctx,
2435 void *info)
04289bb9 2436{
cdd6c482 2437 struct perf_event *leader = event->group_leader;
fae3fde6 2438 struct perf_event_context *task_ctx;
04289bb9 2439
6e801e01
PZ
2440 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2441 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2442 return;
3cbed429 2443
bd2afa49
PZ
2444 if (ctx->is_active)
2445 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2446
1d9b482e 2447 __perf_event_mark_enabled(event);
04289bb9 2448
fae3fde6
PZ
2449 if (!ctx->is_active)
2450 return;
2451
e5d1367f 2452 if (!event_filter_match(event)) {
bd2afa49 2453 if (is_cgroup_event(event))
e5d1367f 2454 perf_cgroup_defer_enabled(event);
bd2afa49 2455 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2456 return;
e5d1367f 2457 }
f4c4176f 2458
04289bb9 2459 /*
cdd6c482 2460 * If the event is in a group and isn't the group leader,
d859e29f 2461 * then don't put it on unless the group is on.
04289bb9 2462 */
bd2afa49
PZ
2463 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2464 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2465 return;
bd2afa49 2466 }
fe4b04fa 2467
fae3fde6
PZ
2468 task_ctx = cpuctx->task_ctx;
2469 if (ctx->task)
2470 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2471
fae3fde6 2472 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2473}
2474
d859e29f 2475/*
cdd6c482 2476 * Enable a event.
c93f7669 2477 *
cdd6c482
IM
2478 * If event->ctx is a cloned context, callers must make sure that
2479 * every task struct that event->ctx->task could possibly point to
c93f7669 2480 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2481 * perf_event_for_each_child or perf_event_for_each as described
2482 * for perf_event_disable.
d859e29f 2483 */
f63a8daa 2484static void _perf_event_enable(struct perf_event *event)
d859e29f 2485{
cdd6c482 2486 struct perf_event_context *ctx = event->ctx;
d859e29f 2487
7b648018 2488 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2489 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2490 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2491 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2492 return;
2493 }
2494
d859e29f 2495 /*
cdd6c482 2496 * If the event is in error state, clear that first.
7b648018
PZ
2497 *
2498 * That way, if we see the event in error state below, we know that it
2499 * has gone back into error state, as distinct from the task having
2500 * been scheduled away before the cross-call arrived.
d859e29f 2501 */
cdd6c482
IM
2502 if (event->state == PERF_EVENT_STATE_ERROR)
2503 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2504 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2505
fae3fde6 2506 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2507}
f63a8daa
PZ
2508
2509/*
2510 * See perf_event_disable();
2511 */
2512void perf_event_enable(struct perf_event *event)
2513{
2514 struct perf_event_context *ctx;
2515
2516 ctx = perf_event_ctx_lock(event);
2517 _perf_event_enable(event);
2518 perf_event_ctx_unlock(event, ctx);
2519}
dcfce4a0 2520EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2521
375637bc
AS
2522struct stop_event_data {
2523 struct perf_event *event;
2524 unsigned int restart;
2525};
2526
95ff4ca2
AS
2527static int __perf_event_stop(void *info)
2528{
375637bc
AS
2529 struct stop_event_data *sd = info;
2530 struct perf_event *event = sd->event;
95ff4ca2 2531
375637bc 2532 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2533 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2534 return 0;
2535
2536 /* matches smp_wmb() in event_sched_in() */
2537 smp_rmb();
2538
2539 /*
2540 * There is a window with interrupts enabled before we get here,
2541 * so we need to check again lest we try to stop another CPU's event.
2542 */
2543 if (READ_ONCE(event->oncpu) != smp_processor_id())
2544 return -EAGAIN;
2545
2546 event->pmu->stop(event, PERF_EF_UPDATE);
2547
375637bc
AS
2548 /*
2549 * May race with the actual stop (through perf_pmu_output_stop()),
2550 * but it is only used for events with AUX ring buffer, and such
2551 * events will refuse to restart because of rb::aux_mmap_count==0,
2552 * see comments in perf_aux_output_begin().
2553 *
2554 * Since this is happening on a event-local CPU, no trace is lost
2555 * while restarting.
2556 */
2557 if (sd->restart)
c9bbdd48 2558 event->pmu->start(event, 0);
375637bc 2559
95ff4ca2
AS
2560 return 0;
2561}
2562
767ae086 2563static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2564{
2565 struct stop_event_data sd = {
2566 .event = event,
767ae086 2567 .restart = restart,
375637bc
AS
2568 };
2569 int ret = 0;
2570
2571 do {
2572 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2573 return 0;
2574
2575 /* matches smp_wmb() in event_sched_in() */
2576 smp_rmb();
2577
2578 /*
2579 * We only want to restart ACTIVE events, so if the event goes
2580 * inactive here (event->oncpu==-1), there's nothing more to do;
2581 * fall through with ret==-ENXIO.
2582 */
2583 ret = cpu_function_call(READ_ONCE(event->oncpu),
2584 __perf_event_stop, &sd);
2585 } while (ret == -EAGAIN);
2586
2587 return ret;
2588}
2589
2590/*
2591 * In order to contain the amount of racy and tricky in the address filter
2592 * configuration management, it is a two part process:
2593 *
2594 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2595 * we update the addresses of corresponding vmas in
2596 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2597 * (p2) when an event is scheduled in (pmu::add), it calls
2598 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2599 * if the generation has changed since the previous call.
2600 *
2601 * If (p1) happens while the event is active, we restart it to force (p2).
2602 *
2603 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2604 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2605 * ioctl;
2606 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2607 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2608 * for reading;
2609 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2610 * of exec.
2611 */
2612void perf_event_addr_filters_sync(struct perf_event *event)
2613{
2614 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2615
2616 if (!has_addr_filter(event))
2617 return;
2618
2619 raw_spin_lock(&ifh->lock);
2620 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2621 event->pmu->addr_filters_sync(event);
2622 event->hw.addr_filters_gen = event->addr_filters_gen;
2623 }
2624 raw_spin_unlock(&ifh->lock);
2625}
2626EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2627
f63a8daa 2628static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2629{
2023b359 2630 /*
cdd6c482 2631 * not supported on inherited events
2023b359 2632 */
2e939d1d 2633 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2634 return -EINVAL;
2635
cdd6c482 2636 atomic_add(refresh, &event->event_limit);
f63a8daa 2637 _perf_event_enable(event);
2023b359
PZ
2638
2639 return 0;
79f14641 2640}
f63a8daa
PZ
2641
2642/*
2643 * See perf_event_disable()
2644 */
2645int perf_event_refresh(struct perf_event *event, int refresh)
2646{
2647 struct perf_event_context *ctx;
2648 int ret;
2649
2650 ctx = perf_event_ctx_lock(event);
2651 ret = _perf_event_refresh(event, refresh);
2652 perf_event_ctx_unlock(event, ctx);
2653
2654 return ret;
2655}
26ca5c11 2656EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2657
5b0311e1
FW
2658static void ctx_sched_out(struct perf_event_context *ctx,
2659 struct perf_cpu_context *cpuctx,
2660 enum event_type_t event_type)
235c7fc7 2661{
db24d33e 2662 int is_active = ctx->is_active;
c994d613 2663 struct perf_event *event;
235c7fc7 2664
c994d613 2665 lockdep_assert_held(&ctx->lock);
235c7fc7 2666
39a43640
PZ
2667 if (likely(!ctx->nr_events)) {
2668 /*
2669 * See __perf_remove_from_context().
2670 */
2671 WARN_ON_ONCE(ctx->is_active);
2672 if (ctx->task)
2673 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2674 return;
39a43640
PZ
2675 }
2676
db24d33e 2677 ctx->is_active &= ~event_type;
3cbaa590
PZ
2678 if (!(ctx->is_active & EVENT_ALL))
2679 ctx->is_active = 0;
2680
63e30d3e
PZ
2681 if (ctx->task) {
2682 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2683 if (!ctx->is_active)
2684 cpuctx->task_ctx = NULL;
2685 }
facc4307 2686
8fdc6539
PZ
2687 /*
2688 * Always update time if it was set; not only when it changes.
2689 * Otherwise we can 'forget' to update time for any but the last
2690 * context we sched out. For example:
2691 *
2692 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2693 * ctx_sched_out(.event_type = EVENT_PINNED)
2694 *
2695 * would only update time for the pinned events.
2696 */
3cbaa590
PZ
2697 if (is_active & EVENT_TIME) {
2698 /* update (and stop) ctx time */
2699 update_context_time(ctx);
2700 update_cgrp_time_from_cpuctx(cpuctx);
2701 }
2702
8fdc6539
PZ
2703 is_active ^= ctx->is_active; /* changed bits */
2704
3cbaa590 2705 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2706 return;
5b0311e1 2707
075e0b00 2708 perf_pmu_disable(ctx->pmu);
3cbaa590 2709 if (is_active & EVENT_PINNED) {
889ff015
FW
2710 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2711 group_sched_out(event, cpuctx, ctx);
9ed6060d 2712 }
889ff015 2713
3cbaa590 2714 if (is_active & EVENT_FLEXIBLE) {
889ff015 2715 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2716 group_sched_out(event, cpuctx, ctx);
9ed6060d 2717 }
1b9a644f 2718 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2719}
2720
564c2b21 2721/*
5a3126d4
PZ
2722 * Test whether two contexts are equivalent, i.e. whether they have both been
2723 * cloned from the same version of the same context.
2724 *
2725 * Equivalence is measured using a generation number in the context that is
2726 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2727 * and list_del_event().
564c2b21 2728 */
cdd6c482
IM
2729static int context_equiv(struct perf_event_context *ctx1,
2730 struct perf_event_context *ctx2)
564c2b21 2731{
211de6eb
PZ
2732 lockdep_assert_held(&ctx1->lock);
2733 lockdep_assert_held(&ctx2->lock);
2734
5a3126d4
PZ
2735 /* Pinning disables the swap optimization */
2736 if (ctx1->pin_count || ctx2->pin_count)
2737 return 0;
2738
2739 /* If ctx1 is the parent of ctx2 */
2740 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2741 return 1;
2742
2743 /* If ctx2 is the parent of ctx1 */
2744 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2745 return 1;
2746
2747 /*
2748 * If ctx1 and ctx2 have the same parent; we flatten the parent
2749 * hierarchy, see perf_event_init_context().
2750 */
2751 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2752 ctx1->parent_gen == ctx2->parent_gen)
2753 return 1;
2754
2755 /* Unmatched */
2756 return 0;
564c2b21
PM
2757}
2758
cdd6c482
IM
2759static void __perf_event_sync_stat(struct perf_event *event,
2760 struct perf_event *next_event)
bfbd3381
PZ
2761{
2762 u64 value;
2763
cdd6c482 2764 if (!event->attr.inherit_stat)
bfbd3381
PZ
2765 return;
2766
2767 /*
cdd6c482 2768 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2769 * because we're in the middle of a context switch and have IRQs
2770 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2771 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2772 * don't need to use it.
2773 */
cdd6c482
IM
2774 switch (event->state) {
2775 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2776 event->pmu->read(event);
2777 /* fall-through */
bfbd3381 2778
cdd6c482
IM
2779 case PERF_EVENT_STATE_INACTIVE:
2780 update_event_times(event);
bfbd3381
PZ
2781 break;
2782
2783 default:
2784 break;
2785 }
2786
2787 /*
cdd6c482 2788 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2789 * values when we flip the contexts.
2790 */
e7850595
PZ
2791 value = local64_read(&next_event->count);
2792 value = local64_xchg(&event->count, value);
2793 local64_set(&next_event->count, value);
bfbd3381 2794
cdd6c482
IM
2795 swap(event->total_time_enabled, next_event->total_time_enabled);
2796 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2797
bfbd3381 2798 /*
19d2e755 2799 * Since we swizzled the values, update the user visible data too.
bfbd3381 2800 */
cdd6c482
IM
2801 perf_event_update_userpage(event);
2802 perf_event_update_userpage(next_event);
bfbd3381
PZ
2803}
2804
cdd6c482
IM
2805static void perf_event_sync_stat(struct perf_event_context *ctx,
2806 struct perf_event_context *next_ctx)
bfbd3381 2807{
cdd6c482 2808 struct perf_event *event, *next_event;
bfbd3381
PZ
2809
2810 if (!ctx->nr_stat)
2811 return;
2812
02ffdbc8
PZ
2813 update_context_time(ctx);
2814
cdd6c482
IM
2815 event = list_first_entry(&ctx->event_list,
2816 struct perf_event, event_entry);
bfbd3381 2817
cdd6c482
IM
2818 next_event = list_first_entry(&next_ctx->event_list,
2819 struct perf_event, event_entry);
bfbd3381 2820
cdd6c482
IM
2821 while (&event->event_entry != &ctx->event_list &&
2822 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2823
cdd6c482 2824 __perf_event_sync_stat(event, next_event);
bfbd3381 2825
cdd6c482
IM
2826 event = list_next_entry(event, event_entry);
2827 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2828 }
2829}
2830
fe4b04fa
PZ
2831static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2832 struct task_struct *next)
0793a61d 2833{
8dc85d54 2834 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2835 struct perf_event_context *next_ctx;
5a3126d4 2836 struct perf_event_context *parent, *next_parent;
108b02cf 2837 struct perf_cpu_context *cpuctx;
c93f7669 2838 int do_switch = 1;
0793a61d 2839
108b02cf
PZ
2840 if (likely(!ctx))
2841 return;
10989fb2 2842
108b02cf
PZ
2843 cpuctx = __get_cpu_context(ctx);
2844 if (!cpuctx->task_ctx)
0793a61d
TG
2845 return;
2846
c93f7669 2847 rcu_read_lock();
8dc85d54 2848 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2849 if (!next_ctx)
2850 goto unlock;
2851
2852 parent = rcu_dereference(ctx->parent_ctx);
2853 next_parent = rcu_dereference(next_ctx->parent_ctx);
2854
2855 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2856 if (!parent && !next_parent)
5a3126d4
PZ
2857 goto unlock;
2858
2859 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2860 /*
2861 * Looks like the two contexts are clones, so we might be
2862 * able to optimize the context switch. We lock both
2863 * contexts and check that they are clones under the
2864 * lock (including re-checking that neither has been
2865 * uncloned in the meantime). It doesn't matter which
2866 * order we take the locks because no other cpu could
2867 * be trying to lock both of these tasks.
2868 */
e625cce1
TG
2869 raw_spin_lock(&ctx->lock);
2870 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2871 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2872 WRITE_ONCE(ctx->task, next);
2873 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2874
2875 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2876
63b6da39
PZ
2877 /*
2878 * RCU_INIT_POINTER here is safe because we've not
2879 * modified the ctx and the above modification of
2880 * ctx->task and ctx->task_ctx_data are immaterial
2881 * since those values are always verified under
2882 * ctx->lock which we're now holding.
2883 */
2884 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2885 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2886
c93f7669 2887 do_switch = 0;
bfbd3381 2888
cdd6c482 2889 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2890 }
e625cce1
TG
2891 raw_spin_unlock(&next_ctx->lock);
2892 raw_spin_unlock(&ctx->lock);
564c2b21 2893 }
5a3126d4 2894unlock:
c93f7669 2895 rcu_read_unlock();
564c2b21 2896
c93f7669 2897 if (do_switch) {
facc4307 2898 raw_spin_lock(&ctx->lock);
8833d0e2 2899 task_ctx_sched_out(cpuctx, ctx);
facc4307 2900 raw_spin_unlock(&ctx->lock);
c93f7669 2901 }
0793a61d
TG
2902}
2903
e48c1788
PZ
2904static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2905
ba532500
YZ
2906void perf_sched_cb_dec(struct pmu *pmu)
2907{
e48c1788
PZ
2908 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2909
ba532500 2910 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2911
2912 if (!--cpuctx->sched_cb_usage)
2913 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2914}
2915
e48c1788 2916
ba532500
YZ
2917void perf_sched_cb_inc(struct pmu *pmu)
2918{
e48c1788
PZ
2919 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2920
2921 if (!cpuctx->sched_cb_usage++)
2922 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2923
ba532500
YZ
2924 this_cpu_inc(perf_sched_cb_usages);
2925}
2926
2927/*
2928 * This function provides the context switch callback to the lower code
2929 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
2930 *
2931 * This callback is relevant even to per-cpu events; for example multi event
2932 * PEBS requires this to provide PID/TID information. This requires we flush
2933 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
2934 */
2935static void perf_pmu_sched_task(struct task_struct *prev,
2936 struct task_struct *next,
2937 bool sched_in)
2938{
2939 struct perf_cpu_context *cpuctx;
2940 struct pmu *pmu;
ba532500
YZ
2941
2942 if (prev == next)
2943 return;
2944
e48c1788
PZ
2945 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2946 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
ba532500 2947
e48c1788
PZ
2948 if (WARN_ON_ONCE(!pmu->sched_task))
2949 continue;
ba532500 2950
e48c1788
PZ
2951 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2952 perf_pmu_disable(pmu);
ba532500 2953
e48c1788 2954 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 2955
e48c1788
PZ
2956 perf_pmu_enable(pmu);
2957 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 2958 }
ba532500
YZ
2959}
2960
45ac1403
AH
2961static void perf_event_switch(struct task_struct *task,
2962 struct task_struct *next_prev, bool sched_in);
2963
8dc85d54
PZ
2964#define for_each_task_context_nr(ctxn) \
2965 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2966
2967/*
2968 * Called from scheduler to remove the events of the current task,
2969 * with interrupts disabled.
2970 *
2971 * We stop each event and update the event value in event->count.
2972 *
2973 * This does not protect us against NMI, but disable()
2974 * sets the disabled bit in the control field of event _before_
2975 * accessing the event control register. If a NMI hits, then it will
2976 * not restart the event.
2977 */
ab0cce56
JO
2978void __perf_event_task_sched_out(struct task_struct *task,
2979 struct task_struct *next)
8dc85d54
PZ
2980{
2981 int ctxn;
2982
ba532500
YZ
2983 if (__this_cpu_read(perf_sched_cb_usages))
2984 perf_pmu_sched_task(task, next, false);
2985
45ac1403
AH
2986 if (atomic_read(&nr_switch_events))
2987 perf_event_switch(task, next, false);
2988
8dc85d54
PZ
2989 for_each_task_context_nr(ctxn)
2990 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2991
2992 /*
2993 * if cgroup events exist on this CPU, then we need
2994 * to check if we have to switch out PMU state.
2995 * cgroup event are system-wide mode only
2996 */
4a32fea9 2997 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2998 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2999}
3000
5b0311e1
FW
3001/*
3002 * Called with IRQs disabled
3003 */
3004static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3005 enum event_type_t event_type)
3006{
3007 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3008}
3009
235c7fc7 3010static void
5b0311e1 3011ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 3012 struct perf_cpu_context *cpuctx)
0793a61d 3013{
cdd6c482 3014 struct perf_event *event;
0793a61d 3015
889ff015
FW
3016 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3017 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3018 continue;
5632ab12 3019 if (!event_filter_match(event))
3b6f9e5c
PM
3020 continue;
3021
e5d1367f
SE
3022 /* may need to reset tstamp_enabled */
3023 if (is_cgroup_event(event))
3024 perf_cgroup_mark_enabled(event, ctx);
3025
8c9ed8e1 3026 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3027 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3028
3029 /*
3030 * If this pinned group hasn't been scheduled,
3031 * put it in error state.
3032 */
cdd6c482
IM
3033 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3034 update_group_times(event);
3035 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 3036 }
3b6f9e5c 3037 }
5b0311e1
FW
3038}
3039
3040static void
3041ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3042 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3043{
3044 struct perf_event *event;
3045 int can_add_hw = 1;
3b6f9e5c 3046
889ff015
FW
3047 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3048 /* Ignore events in OFF or ERROR state */
3049 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3050 continue;
04289bb9
IM
3051 /*
3052 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3053 * of events:
04289bb9 3054 */
5632ab12 3055 if (!event_filter_match(event))
0793a61d
TG
3056 continue;
3057
e5d1367f
SE
3058 /* may need to reset tstamp_enabled */
3059 if (is_cgroup_event(event))
3060 perf_cgroup_mark_enabled(event, ctx);
3061
9ed6060d 3062 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3063 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3064 can_add_hw = 0;
9ed6060d 3065 }
0793a61d 3066 }
5b0311e1
FW
3067}
3068
3069static void
3070ctx_sched_in(struct perf_event_context *ctx,
3071 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3072 enum event_type_t event_type,
3073 struct task_struct *task)
5b0311e1 3074{
db24d33e 3075 int is_active = ctx->is_active;
c994d613
PZ
3076 u64 now;
3077
3078 lockdep_assert_held(&ctx->lock);
e5d1367f 3079
5b0311e1 3080 if (likely(!ctx->nr_events))
facc4307 3081 return;
5b0311e1 3082
3cbaa590 3083 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3084 if (ctx->task) {
3085 if (!is_active)
3086 cpuctx->task_ctx = ctx;
3087 else
3088 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3089 }
3090
3cbaa590
PZ
3091 is_active ^= ctx->is_active; /* changed bits */
3092
3093 if (is_active & EVENT_TIME) {
3094 /* start ctx time */
3095 now = perf_clock();
3096 ctx->timestamp = now;
3097 perf_cgroup_set_timestamp(task, ctx);
3098 }
3099
5b0311e1
FW
3100 /*
3101 * First go through the list and put on any pinned groups
3102 * in order to give them the best chance of going on.
3103 */
3cbaa590 3104 if (is_active & EVENT_PINNED)
6e37738a 3105 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3106
3107 /* Then walk through the lower prio flexible groups */
3cbaa590 3108 if (is_active & EVENT_FLEXIBLE)
6e37738a 3109 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3110}
3111
329c0e01 3112static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3113 enum event_type_t event_type,
3114 struct task_struct *task)
329c0e01
FW
3115{
3116 struct perf_event_context *ctx = &cpuctx->ctx;
3117
e5d1367f 3118 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3119}
3120
e5d1367f
SE
3121static void perf_event_context_sched_in(struct perf_event_context *ctx,
3122 struct task_struct *task)
235c7fc7 3123{
108b02cf 3124 struct perf_cpu_context *cpuctx;
235c7fc7 3125
108b02cf 3126 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3127 if (cpuctx->task_ctx == ctx)
3128 return;
3129
facc4307 3130 perf_ctx_lock(cpuctx, ctx);
1b9a644f 3131 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3132 /*
3133 * We want to keep the following priority order:
3134 * cpu pinned (that don't need to move), task pinned,
3135 * cpu flexible, task flexible.
3136 */
3137 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3138 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
3139 perf_pmu_enable(ctx->pmu);
3140 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3141}
3142
8dc85d54
PZ
3143/*
3144 * Called from scheduler to add the events of the current task
3145 * with interrupts disabled.
3146 *
3147 * We restore the event value and then enable it.
3148 *
3149 * This does not protect us against NMI, but enable()
3150 * sets the enabled bit in the control field of event _before_
3151 * accessing the event control register. If a NMI hits, then it will
3152 * keep the event running.
3153 */
ab0cce56
JO
3154void __perf_event_task_sched_in(struct task_struct *prev,
3155 struct task_struct *task)
8dc85d54
PZ
3156{
3157 struct perf_event_context *ctx;
3158 int ctxn;
3159
7e41d177
PZ
3160 /*
3161 * If cgroup events exist on this CPU, then we need to check if we have
3162 * to switch in PMU state; cgroup event are system-wide mode only.
3163 *
3164 * Since cgroup events are CPU events, we must schedule these in before
3165 * we schedule in the task events.
3166 */
3167 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3168 perf_cgroup_sched_in(prev, task);
3169
8dc85d54
PZ
3170 for_each_task_context_nr(ctxn) {
3171 ctx = task->perf_event_ctxp[ctxn];
3172 if (likely(!ctx))
3173 continue;
3174
e5d1367f 3175 perf_event_context_sched_in(ctx, task);
8dc85d54 3176 }
d010b332 3177
45ac1403
AH
3178 if (atomic_read(&nr_switch_events))
3179 perf_event_switch(task, prev, true);
3180
ba532500
YZ
3181 if (__this_cpu_read(perf_sched_cb_usages))
3182 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3183}
3184
abd50713
PZ
3185static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3186{
3187 u64 frequency = event->attr.sample_freq;
3188 u64 sec = NSEC_PER_SEC;
3189 u64 divisor, dividend;
3190
3191 int count_fls, nsec_fls, frequency_fls, sec_fls;
3192
3193 count_fls = fls64(count);
3194 nsec_fls = fls64(nsec);
3195 frequency_fls = fls64(frequency);
3196 sec_fls = 30;
3197
3198 /*
3199 * We got @count in @nsec, with a target of sample_freq HZ
3200 * the target period becomes:
3201 *
3202 * @count * 10^9
3203 * period = -------------------
3204 * @nsec * sample_freq
3205 *
3206 */
3207
3208 /*
3209 * Reduce accuracy by one bit such that @a and @b converge
3210 * to a similar magnitude.
3211 */
fe4b04fa 3212#define REDUCE_FLS(a, b) \
abd50713
PZ
3213do { \
3214 if (a##_fls > b##_fls) { \
3215 a >>= 1; \
3216 a##_fls--; \
3217 } else { \
3218 b >>= 1; \
3219 b##_fls--; \
3220 } \
3221} while (0)
3222
3223 /*
3224 * Reduce accuracy until either term fits in a u64, then proceed with
3225 * the other, so that finally we can do a u64/u64 division.
3226 */
3227 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3228 REDUCE_FLS(nsec, frequency);
3229 REDUCE_FLS(sec, count);
3230 }
3231
3232 if (count_fls + sec_fls > 64) {
3233 divisor = nsec * frequency;
3234
3235 while (count_fls + sec_fls > 64) {
3236 REDUCE_FLS(count, sec);
3237 divisor >>= 1;
3238 }
3239
3240 dividend = count * sec;
3241 } else {
3242 dividend = count * sec;
3243
3244 while (nsec_fls + frequency_fls > 64) {
3245 REDUCE_FLS(nsec, frequency);
3246 dividend >>= 1;
3247 }
3248
3249 divisor = nsec * frequency;
3250 }
3251
f6ab91ad
PZ
3252 if (!divisor)
3253 return dividend;
3254
abd50713
PZ
3255 return div64_u64(dividend, divisor);
3256}
3257
e050e3f0
SE
3258static DEFINE_PER_CPU(int, perf_throttled_count);
3259static DEFINE_PER_CPU(u64, perf_throttled_seq);
3260
f39d47ff 3261static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3262{
cdd6c482 3263 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3264 s64 period, sample_period;
bd2b5b12
PZ
3265 s64 delta;
3266
abd50713 3267 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3268
3269 delta = (s64)(period - hwc->sample_period);
3270 delta = (delta + 7) / 8; /* low pass filter */
3271
3272 sample_period = hwc->sample_period + delta;
3273
3274 if (!sample_period)
3275 sample_period = 1;
3276
bd2b5b12 3277 hwc->sample_period = sample_period;
abd50713 3278
e7850595 3279 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3280 if (disable)
3281 event->pmu->stop(event, PERF_EF_UPDATE);
3282
e7850595 3283 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3284
3285 if (disable)
3286 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3287 }
bd2b5b12
PZ
3288}
3289
e050e3f0
SE
3290/*
3291 * combine freq adjustment with unthrottling to avoid two passes over the
3292 * events. At the same time, make sure, having freq events does not change
3293 * the rate of unthrottling as that would introduce bias.
3294 */
3295static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3296 int needs_unthr)
60db5e09 3297{
cdd6c482
IM
3298 struct perf_event *event;
3299 struct hw_perf_event *hwc;
e050e3f0 3300 u64 now, period = TICK_NSEC;
abd50713 3301 s64 delta;
60db5e09 3302
e050e3f0
SE
3303 /*
3304 * only need to iterate over all events iff:
3305 * - context have events in frequency mode (needs freq adjust)
3306 * - there are events to unthrottle on this cpu
3307 */
3308 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3309 return;
3310
e050e3f0 3311 raw_spin_lock(&ctx->lock);
f39d47ff 3312 perf_pmu_disable(ctx->pmu);
e050e3f0 3313
03541f8b 3314 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3315 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3316 continue;
3317
5632ab12 3318 if (!event_filter_match(event))
5d27c23d
PZ
3319 continue;
3320
44377277
AS
3321 perf_pmu_disable(event->pmu);
3322
cdd6c482 3323 hwc = &event->hw;
6a24ed6c 3324
ae23bff1 3325 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3326 hwc->interrupts = 0;
cdd6c482 3327 perf_log_throttle(event, 1);
a4eaf7f1 3328 event->pmu->start(event, 0);
a78ac325
PZ
3329 }
3330
cdd6c482 3331 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3332 goto next;
60db5e09 3333
e050e3f0
SE
3334 /*
3335 * stop the event and update event->count
3336 */
3337 event->pmu->stop(event, PERF_EF_UPDATE);
3338
e7850595 3339 now = local64_read(&event->count);
abd50713
PZ
3340 delta = now - hwc->freq_count_stamp;
3341 hwc->freq_count_stamp = now;
60db5e09 3342
e050e3f0
SE
3343 /*
3344 * restart the event
3345 * reload only if value has changed
f39d47ff
SE
3346 * we have stopped the event so tell that
3347 * to perf_adjust_period() to avoid stopping it
3348 * twice.
e050e3f0 3349 */
abd50713 3350 if (delta > 0)
f39d47ff 3351 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3352
3353 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3354 next:
3355 perf_pmu_enable(event->pmu);
60db5e09 3356 }
e050e3f0 3357
f39d47ff 3358 perf_pmu_enable(ctx->pmu);
e050e3f0 3359 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3360}
3361
235c7fc7 3362/*
cdd6c482 3363 * Round-robin a context's events:
235c7fc7 3364 */
cdd6c482 3365static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3366{
dddd3379
TG
3367 /*
3368 * Rotate the first entry last of non-pinned groups. Rotation might be
3369 * disabled by the inheritance code.
3370 */
3371 if (!ctx->rotate_disable)
3372 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3373}
3374
9e630205 3375static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3376{
8dc85d54 3377 struct perf_event_context *ctx = NULL;
2fde4f94 3378 int rotate = 0;
7fc23a53 3379
b5ab4cd5 3380 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3381 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3382 rotate = 1;
3383 }
235c7fc7 3384
8dc85d54 3385 ctx = cpuctx->task_ctx;
b5ab4cd5 3386 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3387 if (ctx->nr_events != ctx->nr_active)
3388 rotate = 1;
3389 }
9717e6cd 3390
e050e3f0 3391 if (!rotate)
0f5a2601
PZ
3392 goto done;
3393
facc4307 3394 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3395 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3396
e050e3f0
SE
3397 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3398 if (ctx)
3399 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3400
e050e3f0
SE
3401 rotate_ctx(&cpuctx->ctx);
3402 if (ctx)
3403 rotate_ctx(ctx);
235c7fc7 3404
e050e3f0 3405 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3406
0f5a2601
PZ
3407 perf_pmu_enable(cpuctx->ctx.pmu);
3408 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3409done:
9e630205
SE
3410
3411 return rotate;
e9d2b064
PZ
3412}
3413
3414void perf_event_task_tick(void)
3415{
2fde4f94
MR
3416 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3417 struct perf_event_context *ctx, *tmp;
e050e3f0 3418 int throttled;
b5ab4cd5 3419
e9d2b064
PZ
3420 WARN_ON(!irqs_disabled());
3421
e050e3f0
SE
3422 __this_cpu_inc(perf_throttled_seq);
3423 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3424 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3425
2fde4f94 3426 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3427 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3428}
3429
889ff015
FW
3430static int event_enable_on_exec(struct perf_event *event,
3431 struct perf_event_context *ctx)
3432{
3433 if (!event->attr.enable_on_exec)
3434 return 0;
3435
3436 event->attr.enable_on_exec = 0;
3437 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3438 return 0;
3439
1d9b482e 3440 __perf_event_mark_enabled(event);
889ff015
FW
3441
3442 return 1;
3443}
3444
57e7986e 3445/*
cdd6c482 3446 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3447 * This expects task == current.
3448 */
c1274499 3449static void perf_event_enable_on_exec(int ctxn)
57e7986e 3450{
c1274499 3451 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3452 struct perf_cpu_context *cpuctx;
cdd6c482 3453 struct perf_event *event;
57e7986e
PM
3454 unsigned long flags;
3455 int enabled = 0;
3456
3457 local_irq_save(flags);
c1274499 3458 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3459 if (!ctx || !ctx->nr_events)
57e7986e
PM
3460 goto out;
3461
3e349507
PZ
3462 cpuctx = __get_cpu_context(ctx);
3463 perf_ctx_lock(cpuctx, ctx);
7fce2509 3464 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3e349507
PZ
3465 list_for_each_entry(event, &ctx->event_list, event_entry)
3466 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3467
3468 /*
3e349507 3469 * Unclone and reschedule this context if we enabled any event.
57e7986e 3470 */
3e349507 3471 if (enabled) {
211de6eb 3472 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3473 ctx_resched(cpuctx, ctx);
3474 }
3475 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3476
9ed6060d 3477out:
57e7986e 3478 local_irq_restore(flags);
211de6eb
PZ
3479
3480 if (clone_ctx)
3481 put_ctx(clone_ctx);
57e7986e
PM
3482}
3483
0492d4c5
PZ
3484struct perf_read_data {
3485 struct perf_event *event;
3486 bool group;
7d88962e 3487 int ret;
0492d4c5
PZ
3488};
3489
451d24d1 3490static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3491{
d6a2f903
DCC
3492 u16 local_pkg, event_pkg;
3493
3494 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3495 int local_cpu = smp_processor_id();
3496
3497 event_pkg = topology_physical_package_id(event_cpu);
3498 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3499
3500 if (event_pkg == local_pkg)
3501 return local_cpu;
3502 }
3503
3504 return event_cpu;
3505}
3506
0793a61d 3507/*
cdd6c482 3508 * Cross CPU call to read the hardware event
0793a61d 3509 */
cdd6c482 3510static void __perf_event_read(void *info)
0793a61d 3511{
0492d4c5
PZ
3512 struct perf_read_data *data = info;
3513 struct perf_event *sub, *event = data->event;
cdd6c482 3514 struct perf_event_context *ctx = event->ctx;
108b02cf 3515 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3516 struct pmu *pmu = event->pmu;
621a01ea 3517
e1ac3614
PM
3518 /*
3519 * If this is a task context, we need to check whether it is
3520 * the current task context of this cpu. If not it has been
3521 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3522 * event->count would have been updated to a recent sample
3523 * when the event was scheduled out.
e1ac3614
PM
3524 */
3525 if (ctx->task && cpuctx->task_ctx != ctx)
3526 return;
3527
e625cce1 3528 raw_spin_lock(&ctx->lock);
e5d1367f 3529 if (ctx->is_active) {
542e72fc 3530 update_context_time(ctx);
e5d1367f
SE
3531 update_cgrp_time_from_event(event);
3532 }
0492d4c5 3533
cdd6c482 3534 update_event_times(event);
4a00c16e
SB
3535 if (event->state != PERF_EVENT_STATE_ACTIVE)
3536 goto unlock;
0492d4c5 3537
4a00c16e
SB
3538 if (!data->group) {
3539 pmu->read(event);
3540 data->ret = 0;
0492d4c5 3541 goto unlock;
4a00c16e
SB
3542 }
3543
3544 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3545
3546 pmu->read(event);
0492d4c5
PZ
3547
3548 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3549 update_event_times(sub);
4a00c16e
SB
3550 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3551 /*
3552 * Use sibling's PMU rather than @event's since
3553 * sibling could be on different (eg: software) PMU.
3554 */
0492d4c5 3555 sub->pmu->read(sub);
4a00c16e 3556 }
0492d4c5 3557 }
4a00c16e
SB
3558
3559 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3560
3561unlock:
e625cce1 3562 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3563}
3564
b5e58793
PZ
3565static inline u64 perf_event_count(struct perf_event *event)
3566{
eacd3ecc
MF
3567 if (event->pmu->count)
3568 return event->pmu->count(event);
3569
3570 return __perf_event_count(event);
b5e58793
PZ
3571}
3572
ffe8690c
KX
3573/*
3574 * NMI-safe method to read a local event, that is an event that
3575 * is:
3576 * - either for the current task, or for this CPU
3577 * - does not have inherit set, for inherited task events
3578 * will not be local and we cannot read them atomically
3579 * - must not have a pmu::count method
3580 */
3581u64 perf_event_read_local(struct perf_event *event)
3582{
3583 unsigned long flags;
3584 u64 val;
3585
3586 /*
3587 * Disabling interrupts avoids all counter scheduling (context
3588 * switches, timer based rotation and IPIs).
3589 */
3590 local_irq_save(flags);
3591
3592 /* If this is a per-task event, it must be for current */
3593 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3594 event->hw.target != current);
3595
3596 /* If this is a per-CPU event, it must be for this CPU */
3597 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3598 event->cpu != smp_processor_id());
3599
3600 /*
3601 * It must not be an event with inherit set, we cannot read
3602 * all child counters from atomic context.
3603 */
3604 WARN_ON_ONCE(event->attr.inherit);
3605
3606 /*
3607 * It must not have a pmu::count method, those are not
3608 * NMI safe.
3609 */
3610 WARN_ON_ONCE(event->pmu->count);
3611
3612 /*
3613 * If the event is currently on this CPU, its either a per-task event,
3614 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3615 * oncpu == -1).
3616 */
3617 if (event->oncpu == smp_processor_id())
3618 event->pmu->read(event);
3619
3620 val = local64_read(&event->count);
3621 local_irq_restore(flags);
3622
3623 return val;
3624}
3625
7d88962e 3626static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3627{
451d24d1 3628 int event_cpu, ret = 0;
7d88962e 3629
0793a61d 3630 /*
cdd6c482
IM
3631 * If event is enabled and currently active on a CPU, update the
3632 * value in the event structure:
0793a61d 3633 */
cdd6c482 3634 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3635 struct perf_read_data data = {
3636 .event = event,
3637 .group = group,
7d88962e 3638 .ret = 0,
0492d4c5 3639 };
d6a2f903 3640
451d24d1
PZ
3641 event_cpu = READ_ONCE(event->oncpu);
3642 if ((unsigned)event_cpu >= nr_cpu_ids)
3643 return 0;
3644
3645 preempt_disable();
3646 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3647
58763148
PZ
3648 /*
3649 * Purposely ignore the smp_call_function_single() return
3650 * value.
3651 *
451d24d1 3652 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3653 * scheduled out and that will have updated the event count.
3654 *
3655 * Therefore, either way, we'll have an up-to-date event count
3656 * after this.
3657 */
451d24d1
PZ
3658 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3659 preempt_enable();
58763148 3660 ret = data.ret;
cdd6c482 3661 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3662 struct perf_event_context *ctx = event->ctx;
3663 unsigned long flags;
3664
e625cce1 3665 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3666 /*
3667 * may read while context is not active
3668 * (e.g., thread is blocked), in that case
3669 * we cannot update context time
3670 */
e5d1367f 3671 if (ctx->is_active) {
c530ccd9 3672 update_context_time(ctx);
e5d1367f
SE
3673 update_cgrp_time_from_event(event);
3674 }
0492d4c5
PZ
3675 if (group)
3676 update_group_times(event);
3677 else
3678 update_event_times(event);
e625cce1 3679 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3680 }
7d88962e
SB
3681
3682 return ret;
0793a61d
TG
3683}
3684
a63eaf34 3685/*
cdd6c482 3686 * Initialize the perf_event context in a task_struct:
a63eaf34 3687 */
eb184479 3688static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3689{
e625cce1 3690 raw_spin_lock_init(&ctx->lock);
a63eaf34 3691 mutex_init(&ctx->mutex);
2fde4f94 3692 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3693 INIT_LIST_HEAD(&ctx->pinned_groups);
3694 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3695 INIT_LIST_HEAD(&ctx->event_list);
3696 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3697}
3698
3699static struct perf_event_context *
3700alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3701{
3702 struct perf_event_context *ctx;
3703
3704 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3705 if (!ctx)
3706 return NULL;
3707
3708 __perf_event_init_context(ctx);
3709 if (task) {
3710 ctx->task = task;
3711 get_task_struct(task);
0793a61d 3712 }
eb184479
PZ
3713 ctx->pmu = pmu;
3714
3715 return ctx;
a63eaf34
PM
3716}
3717
2ebd4ffb
MH
3718static struct task_struct *
3719find_lively_task_by_vpid(pid_t vpid)
3720{
3721 struct task_struct *task;
0793a61d
TG
3722
3723 rcu_read_lock();
2ebd4ffb 3724 if (!vpid)
0793a61d
TG
3725 task = current;
3726 else
2ebd4ffb 3727 task = find_task_by_vpid(vpid);
0793a61d
TG
3728 if (task)
3729 get_task_struct(task);
3730 rcu_read_unlock();
3731
3732 if (!task)
3733 return ERR_PTR(-ESRCH);
3734
2ebd4ffb 3735 return task;
2ebd4ffb
MH
3736}
3737
fe4b04fa
PZ
3738/*
3739 * Returns a matching context with refcount and pincount.
3740 */
108b02cf 3741static struct perf_event_context *
4af57ef2
YZ
3742find_get_context(struct pmu *pmu, struct task_struct *task,
3743 struct perf_event *event)
0793a61d 3744{
211de6eb 3745 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3746 struct perf_cpu_context *cpuctx;
4af57ef2 3747 void *task_ctx_data = NULL;
25346b93 3748 unsigned long flags;
8dc85d54 3749 int ctxn, err;
4af57ef2 3750 int cpu = event->cpu;
0793a61d 3751
22a4ec72 3752 if (!task) {
cdd6c482 3753 /* Must be root to operate on a CPU event: */
0764771d 3754 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3755 return ERR_PTR(-EACCES);
3756
0793a61d 3757 /*
cdd6c482 3758 * We could be clever and allow to attach a event to an
0793a61d
TG
3759 * offline CPU and activate it when the CPU comes up, but
3760 * that's for later.
3761 */
f6325e30 3762 if (!cpu_online(cpu))
0793a61d
TG
3763 return ERR_PTR(-ENODEV);
3764
108b02cf 3765 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3766 ctx = &cpuctx->ctx;
c93f7669 3767 get_ctx(ctx);
fe4b04fa 3768 ++ctx->pin_count;
0793a61d 3769
0793a61d
TG
3770 return ctx;
3771 }
3772
8dc85d54
PZ
3773 err = -EINVAL;
3774 ctxn = pmu->task_ctx_nr;
3775 if (ctxn < 0)
3776 goto errout;
3777
4af57ef2
YZ
3778 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3779 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3780 if (!task_ctx_data) {
3781 err = -ENOMEM;
3782 goto errout;
3783 }
3784 }
3785
9ed6060d 3786retry:
8dc85d54 3787 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3788 if (ctx) {
211de6eb 3789 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3790 ++ctx->pin_count;
4af57ef2
YZ
3791
3792 if (task_ctx_data && !ctx->task_ctx_data) {
3793 ctx->task_ctx_data = task_ctx_data;
3794 task_ctx_data = NULL;
3795 }
e625cce1 3796 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3797
3798 if (clone_ctx)
3799 put_ctx(clone_ctx);
9137fb28 3800 } else {
eb184479 3801 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3802 err = -ENOMEM;
3803 if (!ctx)
3804 goto errout;
eb184479 3805
4af57ef2
YZ
3806 if (task_ctx_data) {
3807 ctx->task_ctx_data = task_ctx_data;
3808 task_ctx_data = NULL;
3809 }
3810
dbe08d82
ON
3811 err = 0;
3812 mutex_lock(&task->perf_event_mutex);
3813 /*
3814 * If it has already passed perf_event_exit_task().
3815 * we must see PF_EXITING, it takes this mutex too.
3816 */
3817 if (task->flags & PF_EXITING)
3818 err = -ESRCH;
3819 else if (task->perf_event_ctxp[ctxn])
3820 err = -EAGAIN;
fe4b04fa 3821 else {
9137fb28 3822 get_ctx(ctx);
fe4b04fa 3823 ++ctx->pin_count;
dbe08d82 3824 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3825 }
dbe08d82
ON
3826 mutex_unlock(&task->perf_event_mutex);
3827
3828 if (unlikely(err)) {
9137fb28 3829 put_ctx(ctx);
dbe08d82
ON
3830
3831 if (err == -EAGAIN)
3832 goto retry;
3833 goto errout;
a63eaf34
PM
3834 }
3835 }
3836
4af57ef2 3837 kfree(task_ctx_data);
0793a61d 3838 return ctx;
c93f7669 3839
9ed6060d 3840errout:
4af57ef2 3841 kfree(task_ctx_data);
c93f7669 3842 return ERR_PTR(err);
0793a61d
TG
3843}
3844
6fb2915d 3845static void perf_event_free_filter(struct perf_event *event);
2541517c 3846static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3847
cdd6c482 3848static void free_event_rcu(struct rcu_head *head)
592903cd 3849{
cdd6c482 3850 struct perf_event *event;
592903cd 3851
cdd6c482
IM
3852 event = container_of(head, struct perf_event, rcu_head);
3853 if (event->ns)
3854 put_pid_ns(event->ns);
6fb2915d 3855 perf_event_free_filter(event);
cdd6c482 3856 kfree(event);
592903cd
PZ
3857}
3858
b69cf536
PZ
3859static void ring_buffer_attach(struct perf_event *event,
3860 struct ring_buffer *rb);
925d519a 3861
f2fb6bef
KL
3862static void detach_sb_event(struct perf_event *event)
3863{
3864 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3865
3866 raw_spin_lock(&pel->lock);
3867 list_del_rcu(&event->sb_list);
3868 raw_spin_unlock(&pel->lock);
3869}
3870
a4f144eb 3871static bool is_sb_event(struct perf_event *event)
f2fb6bef 3872{
a4f144eb
DCC
3873 struct perf_event_attr *attr = &event->attr;
3874
f2fb6bef 3875 if (event->parent)
a4f144eb 3876 return false;
f2fb6bef
KL
3877
3878 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3879 return false;
f2fb6bef 3880
a4f144eb
DCC
3881 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3882 attr->comm || attr->comm_exec ||
3883 attr->task ||
3884 attr->context_switch)
3885 return true;
3886 return false;
3887}
3888
3889static void unaccount_pmu_sb_event(struct perf_event *event)
3890{
3891 if (is_sb_event(event))
3892 detach_sb_event(event);
f2fb6bef
KL
3893}
3894
4beb31f3 3895static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3896{
4beb31f3
FW
3897 if (event->parent)
3898 return;
3899
4beb31f3
FW
3900 if (is_cgroup_event(event))
3901 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3902}
925d519a 3903
555e0c1e
FW
3904#ifdef CONFIG_NO_HZ_FULL
3905static DEFINE_SPINLOCK(nr_freq_lock);
3906#endif
3907
3908static void unaccount_freq_event_nohz(void)
3909{
3910#ifdef CONFIG_NO_HZ_FULL
3911 spin_lock(&nr_freq_lock);
3912 if (atomic_dec_and_test(&nr_freq_events))
3913 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3914 spin_unlock(&nr_freq_lock);
3915#endif
3916}
3917
3918static void unaccount_freq_event(void)
3919{
3920 if (tick_nohz_full_enabled())
3921 unaccount_freq_event_nohz();
3922 else
3923 atomic_dec(&nr_freq_events);
3924}
3925
4beb31f3
FW
3926static void unaccount_event(struct perf_event *event)
3927{
25432ae9
PZ
3928 bool dec = false;
3929
4beb31f3
FW
3930 if (event->parent)
3931 return;
3932
3933 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3934 dec = true;
4beb31f3
FW
3935 if (event->attr.mmap || event->attr.mmap_data)
3936 atomic_dec(&nr_mmap_events);
3937 if (event->attr.comm)
3938 atomic_dec(&nr_comm_events);
3939 if (event->attr.task)
3940 atomic_dec(&nr_task_events);
948b26b6 3941 if (event->attr.freq)
555e0c1e 3942 unaccount_freq_event();
45ac1403 3943 if (event->attr.context_switch) {
25432ae9 3944 dec = true;
45ac1403
AH
3945 atomic_dec(&nr_switch_events);
3946 }
4beb31f3 3947 if (is_cgroup_event(event))
25432ae9 3948 dec = true;
4beb31f3 3949 if (has_branch_stack(event))
25432ae9
PZ
3950 dec = true;
3951
9107c89e
PZ
3952 if (dec) {
3953 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3954 schedule_delayed_work(&perf_sched_work, HZ);
3955 }
4beb31f3
FW
3956
3957 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
3958
3959 unaccount_pmu_sb_event(event);
4beb31f3 3960}
925d519a 3961
9107c89e
PZ
3962static void perf_sched_delayed(struct work_struct *work)
3963{
3964 mutex_lock(&perf_sched_mutex);
3965 if (atomic_dec_and_test(&perf_sched_count))
3966 static_branch_disable(&perf_sched_events);
3967 mutex_unlock(&perf_sched_mutex);
3968}
3969
bed5b25a
AS
3970/*
3971 * The following implement mutual exclusion of events on "exclusive" pmus
3972 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3973 * at a time, so we disallow creating events that might conflict, namely:
3974 *
3975 * 1) cpu-wide events in the presence of per-task events,
3976 * 2) per-task events in the presence of cpu-wide events,
3977 * 3) two matching events on the same context.
3978 *
3979 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3980 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3981 */
3982static int exclusive_event_init(struct perf_event *event)
3983{
3984 struct pmu *pmu = event->pmu;
3985
3986 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3987 return 0;
3988
3989 /*
3990 * Prevent co-existence of per-task and cpu-wide events on the
3991 * same exclusive pmu.
3992 *
3993 * Negative pmu::exclusive_cnt means there are cpu-wide
3994 * events on this "exclusive" pmu, positive means there are
3995 * per-task events.
3996 *
3997 * Since this is called in perf_event_alloc() path, event::ctx
3998 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3999 * to mean "per-task event", because unlike other attach states it
4000 * never gets cleared.
4001 */
4002 if (event->attach_state & PERF_ATTACH_TASK) {
4003 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4004 return -EBUSY;
4005 } else {
4006 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4007 return -EBUSY;
4008 }
4009
4010 return 0;
4011}
4012
4013static void exclusive_event_destroy(struct perf_event *event)
4014{
4015 struct pmu *pmu = event->pmu;
4016
4017 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4018 return;
4019
4020 /* see comment in exclusive_event_init() */
4021 if (event->attach_state & PERF_ATTACH_TASK)
4022 atomic_dec(&pmu->exclusive_cnt);
4023 else
4024 atomic_inc(&pmu->exclusive_cnt);
4025}
4026
4027static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4028{
3bf6215a 4029 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4030 (e1->cpu == e2->cpu ||
4031 e1->cpu == -1 ||
4032 e2->cpu == -1))
4033 return true;
4034 return false;
4035}
4036
4037/* Called under the same ctx::mutex as perf_install_in_context() */
4038static bool exclusive_event_installable(struct perf_event *event,
4039 struct perf_event_context *ctx)
4040{
4041 struct perf_event *iter_event;
4042 struct pmu *pmu = event->pmu;
4043
4044 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4045 return true;
4046
4047 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4048 if (exclusive_event_match(iter_event, event))
4049 return false;
4050 }
4051
4052 return true;
4053}
4054
375637bc
AS
4055static void perf_addr_filters_splice(struct perf_event *event,
4056 struct list_head *head);
4057
683ede43 4058static void _free_event(struct perf_event *event)
f1600952 4059{
e360adbe 4060 irq_work_sync(&event->pending);
925d519a 4061
4beb31f3 4062 unaccount_event(event);
9ee318a7 4063
76369139 4064 if (event->rb) {
9bb5d40c
PZ
4065 /*
4066 * Can happen when we close an event with re-directed output.
4067 *
4068 * Since we have a 0 refcount, perf_mmap_close() will skip
4069 * over us; possibly making our ring_buffer_put() the last.
4070 */
4071 mutex_lock(&event->mmap_mutex);
b69cf536 4072 ring_buffer_attach(event, NULL);
9bb5d40c 4073 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4074 }
4075
e5d1367f
SE
4076 if (is_cgroup_event(event))
4077 perf_detach_cgroup(event);
4078
a0733e69
PZ
4079 if (!event->parent) {
4080 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4081 put_callchain_buffers();
4082 }
4083
4084 perf_event_free_bpf_prog(event);
375637bc
AS
4085 perf_addr_filters_splice(event, NULL);
4086 kfree(event->addr_filters_offs);
a0733e69
PZ
4087
4088 if (event->destroy)
4089 event->destroy(event);
4090
4091 if (event->ctx)
4092 put_ctx(event->ctx);
4093
62a92c8f
AS
4094 exclusive_event_destroy(event);
4095 module_put(event->pmu->module);
a0733e69
PZ
4096
4097 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4098}
4099
683ede43
PZ
4100/*
4101 * Used to free events which have a known refcount of 1, such as in error paths
4102 * where the event isn't exposed yet and inherited events.
4103 */
4104static void free_event(struct perf_event *event)
0793a61d 4105{
683ede43
PZ
4106 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4107 "unexpected event refcount: %ld; ptr=%p\n",
4108 atomic_long_read(&event->refcount), event)) {
4109 /* leak to avoid use-after-free */
4110 return;
4111 }
0793a61d 4112
683ede43 4113 _free_event(event);
0793a61d
TG
4114}
4115
a66a3052 4116/*
f8697762 4117 * Remove user event from the owner task.
a66a3052 4118 */
f8697762 4119static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4120{
8882135b 4121 struct task_struct *owner;
fb0459d7 4122
8882135b 4123 rcu_read_lock();
8882135b 4124 /*
f47c02c0
PZ
4125 * Matches the smp_store_release() in perf_event_exit_task(). If we
4126 * observe !owner it means the list deletion is complete and we can
4127 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4128 * owner->perf_event_mutex.
4129 */
f47c02c0 4130 owner = lockless_dereference(event->owner);
8882135b
PZ
4131 if (owner) {
4132 /*
4133 * Since delayed_put_task_struct() also drops the last
4134 * task reference we can safely take a new reference
4135 * while holding the rcu_read_lock().
4136 */
4137 get_task_struct(owner);
4138 }
4139 rcu_read_unlock();
4140
4141 if (owner) {
f63a8daa
PZ
4142 /*
4143 * If we're here through perf_event_exit_task() we're already
4144 * holding ctx->mutex which would be an inversion wrt. the
4145 * normal lock order.
4146 *
4147 * However we can safely take this lock because its the child
4148 * ctx->mutex.
4149 */
4150 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4151
8882135b
PZ
4152 /*
4153 * We have to re-check the event->owner field, if it is cleared
4154 * we raced with perf_event_exit_task(), acquiring the mutex
4155 * ensured they're done, and we can proceed with freeing the
4156 * event.
4157 */
f47c02c0 4158 if (event->owner) {
8882135b 4159 list_del_init(&event->owner_entry);
f47c02c0
PZ
4160 smp_store_release(&event->owner, NULL);
4161 }
8882135b
PZ
4162 mutex_unlock(&owner->perf_event_mutex);
4163 put_task_struct(owner);
4164 }
f8697762
JO
4165}
4166
f8697762
JO
4167static void put_event(struct perf_event *event)
4168{
f8697762
JO
4169 if (!atomic_long_dec_and_test(&event->refcount))
4170 return;
4171
c6e5b732
PZ
4172 _free_event(event);
4173}
4174
4175/*
4176 * Kill an event dead; while event:refcount will preserve the event
4177 * object, it will not preserve its functionality. Once the last 'user'
4178 * gives up the object, we'll destroy the thing.
4179 */
4180int perf_event_release_kernel(struct perf_event *event)
4181{
a4f4bb6d 4182 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4183 struct perf_event *child, *tmp;
4184
a4f4bb6d
PZ
4185 /*
4186 * If we got here through err_file: fput(event_file); we will not have
4187 * attached to a context yet.
4188 */
4189 if (!ctx) {
4190 WARN_ON_ONCE(event->attach_state &
4191 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4192 goto no_ctx;
4193 }
4194
f8697762
JO
4195 if (!is_kernel_event(event))
4196 perf_remove_from_owner(event);
8882135b 4197
5fa7c8ec 4198 ctx = perf_event_ctx_lock(event);
a83fe28e 4199 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4200 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4201
a69b0ca4 4202 raw_spin_lock_irq(&ctx->lock);
683ede43 4203 /*
a69b0ca4
PZ
4204 * Mark this even as STATE_DEAD, there is no external reference to it
4205 * anymore.
683ede43 4206 *
a69b0ca4
PZ
4207 * Anybody acquiring event->child_mutex after the below loop _must_
4208 * also see this, most importantly inherit_event() which will avoid
4209 * placing more children on the list.
683ede43 4210 *
c6e5b732
PZ
4211 * Thus this guarantees that we will in fact observe and kill _ALL_
4212 * child events.
683ede43 4213 */
a69b0ca4
PZ
4214 event->state = PERF_EVENT_STATE_DEAD;
4215 raw_spin_unlock_irq(&ctx->lock);
4216
4217 perf_event_ctx_unlock(event, ctx);
683ede43 4218
c6e5b732
PZ
4219again:
4220 mutex_lock(&event->child_mutex);
4221 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4222
c6e5b732
PZ
4223 /*
4224 * Cannot change, child events are not migrated, see the
4225 * comment with perf_event_ctx_lock_nested().
4226 */
4227 ctx = lockless_dereference(child->ctx);
4228 /*
4229 * Since child_mutex nests inside ctx::mutex, we must jump
4230 * through hoops. We start by grabbing a reference on the ctx.
4231 *
4232 * Since the event cannot get freed while we hold the
4233 * child_mutex, the context must also exist and have a !0
4234 * reference count.
4235 */
4236 get_ctx(ctx);
4237
4238 /*
4239 * Now that we have a ctx ref, we can drop child_mutex, and
4240 * acquire ctx::mutex without fear of it going away. Then we
4241 * can re-acquire child_mutex.
4242 */
4243 mutex_unlock(&event->child_mutex);
4244 mutex_lock(&ctx->mutex);
4245 mutex_lock(&event->child_mutex);
4246
4247 /*
4248 * Now that we hold ctx::mutex and child_mutex, revalidate our
4249 * state, if child is still the first entry, it didn't get freed
4250 * and we can continue doing so.
4251 */
4252 tmp = list_first_entry_or_null(&event->child_list,
4253 struct perf_event, child_list);
4254 if (tmp == child) {
4255 perf_remove_from_context(child, DETACH_GROUP);
4256 list_del(&child->child_list);
4257 free_event(child);
4258 /*
4259 * This matches the refcount bump in inherit_event();
4260 * this can't be the last reference.
4261 */
4262 put_event(event);
4263 }
4264
4265 mutex_unlock(&event->child_mutex);
4266 mutex_unlock(&ctx->mutex);
4267 put_ctx(ctx);
4268 goto again;
4269 }
4270 mutex_unlock(&event->child_mutex);
4271
a4f4bb6d
PZ
4272no_ctx:
4273 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4274 return 0;
4275}
4276EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4277
8b10c5e2
PZ
4278/*
4279 * Called when the last reference to the file is gone.
4280 */
a6fa941d
AV
4281static int perf_release(struct inode *inode, struct file *file)
4282{
c6e5b732 4283 perf_event_release_kernel(file->private_data);
a6fa941d 4284 return 0;
fb0459d7 4285}
fb0459d7 4286
59ed446f 4287u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4288{
cdd6c482 4289 struct perf_event *child;
e53c0994
PZ
4290 u64 total = 0;
4291
59ed446f
PZ
4292 *enabled = 0;
4293 *running = 0;
4294
6f10581a 4295 mutex_lock(&event->child_mutex);
01add3ea 4296
7d88962e 4297 (void)perf_event_read(event, false);
01add3ea
SB
4298 total += perf_event_count(event);
4299
59ed446f
PZ
4300 *enabled += event->total_time_enabled +
4301 atomic64_read(&event->child_total_time_enabled);
4302 *running += event->total_time_running +
4303 atomic64_read(&event->child_total_time_running);
4304
4305 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4306 (void)perf_event_read(child, false);
01add3ea 4307 total += perf_event_count(child);
59ed446f
PZ
4308 *enabled += child->total_time_enabled;
4309 *running += child->total_time_running;
4310 }
6f10581a 4311 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4312
4313 return total;
4314}
fb0459d7 4315EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4316
7d88962e 4317static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4318 u64 read_format, u64 *values)
3dab77fb 4319{
fa8c2693
PZ
4320 struct perf_event *sub;
4321 int n = 1; /* skip @nr */
7d88962e 4322 int ret;
f63a8daa 4323
7d88962e
SB
4324 ret = perf_event_read(leader, true);
4325 if (ret)
4326 return ret;
abf4868b 4327
fa8c2693
PZ
4328 /*
4329 * Since we co-schedule groups, {enabled,running} times of siblings
4330 * will be identical to those of the leader, so we only publish one
4331 * set.
4332 */
4333 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4334 values[n++] += leader->total_time_enabled +
4335 atomic64_read(&leader->child_total_time_enabled);
4336 }
3dab77fb 4337
fa8c2693
PZ
4338 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4339 values[n++] += leader->total_time_running +
4340 atomic64_read(&leader->child_total_time_running);
4341 }
4342
4343 /*
4344 * Write {count,id} tuples for every sibling.
4345 */
4346 values[n++] += perf_event_count(leader);
abf4868b
PZ
4347 if (read_format & PERF_FORMAT_ID)
4348 values[n++] = primary_event_id(leader);
3dab77fb 4349
fa8c2693
PZ
4350 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4351 values[n++] += perf_event_count(sub);
4352 if (read_format & PERF_FORMAT_ID)
4353 values[n++] = primary_event_id(sub);
4354 }
7d88962e
SB
4355
4356 return 0;
fa8c2693 4357}
3dab77fb 4358
fa8c2693
PZ
4359static int perf_read_group(struct perf_event *event,
4360 u64 read_format, char __user *buf)
4361{
4362 struct perf_event *leader = event->group_leader, *child;
4363 struct perf_event_context *ctx = leader->ctx;
7d88962e 4364 int ret;
fa8c2693 4365 u64 *values;
3dab77fb 4366
fa8c2693 4367 lockdep_assert_held(&ctx->mutex);
3dab77fb 4368
fa8c2693
PZ
4369 values = kzalloc(event->read_size, GFP_KERNEL);
4370 if (!values)
4371 return -ENOMEM;
3dab77fb 4372
fa8c2693
PZ
4373 values[0] = 1 + leader->nr_siblings;
4374
4375 /*
4376 * By locking the child_mutex of the leader we effectively
4377 * lock the child list of all siblings.. XXX explain how.
4378 */
4379 mutex_lock(&leader->child_mutex);
abf4868b 4380
7d88962e
SB
4381 ret = __perf_read_group_add(leader, read_format, values);
4382 if (ret)
4383 goto unlock;
4384
4385 list_for_each_entry(child, &leader->child_list, child_list) {
4386 ret = __perf_read_group_add(child, read_format, values);
4387 if (ret)
4388 goto unlock;
4389 }
abf4868b 4390
fa8c2693 4391 mutex_unlock(&leader->child_mutex);
abf4868b 4392
7d88962e 4393 ret = event->read_size;
fa8c2693
PZ
4394 if (copy_to_user(buf, values, event->read_size))
4395 ret = -EFAULT;
7d88962e 4396 goto out;
fa8c2693 4397
7d88962e
SB
4398unlock:
4399 mutex_unlock(&leader->child_mutex);
4400out:
fa8c2693 4401 kfree(values);
abf4868b 4402 return ret;
3dab77fb
PZ
4403}
4404
b15f495b 4405static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4406 u64 read_format, char __user *buf)
4407{
59ed446f 4408 u64 enabled, running;
3dab77fb
PZ
4409 u64 values[4];
4410 int n = 0;
4411
59ed446f
PZ
4412 values[n++] = perf_event_read_value(event, &enabled, &running);
4413 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4414 values[n++] = enabled;
4415 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4416 values[n++] = running;
3dab77fb 4417 if (read_format & PERF_FORMAT_ID)
cdd6c482 4418 values[n++] = primary_event_id(event);
3dab77fb
PZ
4419
4420 if (copy_to_user(buf, values, n * sizeof(u64)))
4421 return -EFAULT;
4422
4423 return n * sizeof(u64);
4424}
4425
dc633982
JO
4426static bool is_event_hup(struct perf_event *event)
4427{
4428 bool no_children;
4429
a69b0ca4 4430 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4431 return false;
4432
4433 mutex_lock(&event->child_mutex);
4434 no_children = list_empty(&event->child_list);
4435 mutex_unlock(&event->child_mutex);
4436 return no_children;
4437}
4438
0793a61d 4439/*
cdd6c482 4440 * Read the performance event - simple non blocking version for now
0793a61d
TG
4441 */
4442static ssize_t
b15f495b 4443__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4444{
cdd6c482 4445 u64 read_format = event->attr.read_format;
3dab77fb 4446 int ret;
0793a61d 4447
3b6f9e5c 4448 /*
cdd6c482 4449 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4450 * error state (i.e. because it was pinned but it couldn't be
4451 * scheduled on to the CPU at some point).
4452 */
cdd6c482 4453 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4454 return 0;
4455
c320c7b7 4456 if (count < event->read_size)
3dab77fb
PZ
4457 return -ENOSPC;
4458
cdd6c482 4459 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4460 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4461 ret = perf_read_group(event, read_format, buf);
3dab77fb 4462 else
b15f495b 4463 ret = perf_read_one(event, read_format, buf);
0793a61d 4464
3dab77fb 4465 return ret;
0793a61d
TG
4466}
4467
0793a61d
TG
4468static ssize_t
4469perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4470{
cdd6c482 4471 struct perf_event *event = file->private_data;
f63a8daa
PZ
4472 struct perf_event_context *ctx;
4473 int ret;
0793a61d 4474
f63a8daa 4475 ctx = perf_event_ctx_lock(event);
b15f495b 4476 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4477 perf_event_ctx_unlock(event, ctx);
4478
4479 return ret;
0793a61d
TG
4480}
4481
4482static unsigned int perf_poll(struct file *file, poll_table *wait)
4483{
cdd6c482 4484 struct perf_event *event = file->private_data;
76369139 4485 struct ring_buffer *rb;
61b67684 4486 unsigned int events = POLLHUP;
c7138f37 4487
e708d7ad 4488 poll_wait(file, &event->waitq, wait);
179033b3 4489
dc633982 4490 if (is_event_hup(event))
179033b3 4491 return events;
c7138f37 4492
10c6db11 4493 /*
9bb5d40c
PZ
4494 * Pin the event->rb by taking event->mmap_mutex; otherwise
4495 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4496 */
4497 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4498 rb = event->rb;
4499 if (rb)
76369139 4500 events = atomic_xchg(&rb->poll, 0);
10c6db11 4501 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4502 return events;
4503}
4504
f63a8daa 4505static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4506{
7d88962e 4507 (void)perf_event_read(event, false);
e7850595 4508 local64_set(&event->count, 0);
cdd6c482 4509 perf_event_update_userpage(event);
3df5edad
PZ
4510}
4511
c93f7669 4512/*
cdd6c482
IM
4513 * Holding the top-level event's child_mutex means that any
4514 * descendant process that has inherited this event will block
8ba289b8 4515 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4516 * task existence requirements of perf_event_enable/disable.
c93f7669 4517 */
cdd6c482
IM
4518static void perf_event_for_each_child(struct perf_event *event,
4519 void (*func)(struct perf_event *))
3df5edad 4520{
cdd6c482 4521 struct perf_event *child;
3df5edad 4522
cdd6c482 4523 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4524
cdd6c482
IM
4525 mutex_lock(&event->child_mutex);
4526 func(event);
4527 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4528 func(child);
cdd6c482 4529 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4530}
4531
cdd6c482
IM
4532static void perf_event_for_each(struct perf_event *event,
4533 void (*func)(struct perf_event *))
3df5edad 4534{
cdd6c482
IM
4535 struct perf_event_context *ctx = event->ctx;
4536 struct perf_event *sibling;
3df5edad 4537
f63a8daa
PZ
4538 lockdep_assert_held(&ctx->mutex);
4539
cdd6c482 4540 event = event->group_leader;
75f937f2 4541
cdd6c482 4542 perf_event_for_each_child(event, func);
cdd6c482 4543 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4544 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4545}
4546
fae3fde6
PZ
4547static void __perf_event_period(struct perf_event *event,
4548 struct perf_cpu_context *cpuctx,
4549 struct perf_event_context *ctx,
4550 void *info)
c7999c6f 4551{
fae3fde6 4552 u64 value = *((u64 *)info);
c7999c6f 4553 bool active;
08247e31 4554
cdd6c482 4555 if (event->attr.freq) {
cdd6c482 4556 event->attr.sample_freq = value;
08247e31 4557 } else {
cdd6c482
IM
4558 event->attr.sample_period = value;
4559 event->hw.sample_period = value;
08247e31 4560 }
bad7192b
PZ
4561
4562 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4563 if (active) {
4564 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4565 /*
4566 * We could be throttled; unthrottle now to avoid the tick
4567 * trying to unthrottle while we already re-started the event.
4568 */
4569 if (event->hw.interrupts == MAX_INTERRUPTS) {
4570 event->hw.interrupts = 0;
4571 perf_log_throttle(event, 1);
4572 }
bad7192b
PZ
4573 event->pmu->stop(event, PERF_EF_UPDATE);
4574 }
4575
4576 local64_set(&event->hw.period_left, 0);
4577
4578 if (active) {
4579 event->pmu->start(event, PERF_EF_RELOAD);
4580 perf_pmu_enable(ctx->pmu);
4581 }
c7999c6f
PZ
4582}
4583
4584static int perf_event_period(struct perf_event *event, u64 __user *arg)
4585{
c7999c6f
PZ
4586 u64 value;
4587
4588 if (!is_sampling_event(event))
4589 return -EINVAL;
4590
4591 if (copy_from_user(&value, arg, sizeof(value)))
4592 return -EFAULT;
4593
4594 if (!value)
4595 return -EINVAL;
4596
4597 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4598 return -EINVAL;
4599
fae3fde6 4600 event_function_call(event, __perf_event_period, &value);
08247e31 4601
c7999c6f 4602 return 0;
08247e31
PZ
4603}
4604
ac9721f3
PZ
4605static const struct file_operations perf_fops;
4606
2903ff01 4607static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4608{
2903ff01
AV
4609 struct fd f = fdget(fd);
4610 if (!f.file)
4611 return -EBADF;
ac9721f3 4612
2903ff01
AV
4613 if (f.file->f_op != &perf_fops) {
4614 fdput(f);
4615 return -EBADF;
ac9721f3 4616 }
2903ff01
AV
4617 *p = f;
4618 return 0;
ac9721f3
PZ
4619}
4620
4621static int perf_event_set_output(struct perf_event *event,
4622 struct perf_event *output_event);
6fb2915d 4623static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4624static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4625
f63a8daa 4626static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4627{
cdd6c482 4628 void (*func)(struct perf_event *);
3df5edad 4629 u32 flags = arg;
d859e29f
PM
4630
4631 switch (cmd) {
cdd6c482 4632 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4633 func = _perf_event_enable;
d859e29f 4634 break;
cdd6c482 4635 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4636 func = _perf_event_disable;
79f14641 4637 break;
cdd6c482 4638 case PERF_EVENT_IOC_RESET:
f63a8daa 4639 func = _perf_event_reset;
6de6a7b9 4640 break;
3df5edad 4641
cdd6c482 4642 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4643 return _perf_event_refresh(event, arg);
08247e31 4644
cdd6c482
IM
4645 case PERF_EVENT_IOC_PERIOD:
4646 return perf_event_period(event, (u64 __user *)arg);
08247e31 4647
cf4957f1
JO
4648 case PERF_EVENT_IOC_ID:
4649 {
4650 u64 id = primary_event_id(event);
4651
4652 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4653 return -EFAULT;
4654 return 0;
4655 }
4656
cdd6c482 4657 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4658 {
ac9721f3 4659 int ret;
ac9721f3 4660 if (arg != -1) {
2903ff01
AV
4661 struct perf_event *output_event;
4662 struct fd output;
4663 ret = perf_fget_light(arg, &output);
4664 if (ret)
4665 return ret;
4666 output_event = output.file->private_data;
4667 ret = perf_event_set_output(event, output_event);
4668 fdput(output);
4669 } else {
4670 ret = perf_event_set_output(event, NULL);
ac9721f3 4671 }
ac9721f3
PZ
4672 return ret;
4673 }
a4be7c27 4674
6fb2915d
LZ
4675 case PERF_EVENT_IOC_SET_FILTER:
4676 return perf_event_set_filter(event, (void __user *)arg);
4677
2541517c
AS
4678 case PERF_EVENT_IOC_SET_BPF:
4679 return perf_event_set_bpf_prog(event, arg);
4680
86e7972f
WN
4681 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4682 struct ring_buffer *rb;
4683
4684 rcu_read_lock();
4685 rb = rcu_dereference(event->rb);
4686 if (!rb || !rb->nr_pages) {
4687 rcu_read_unlock();
4688 return -EINVAL;
4689 }
4690 rb_toggle_paused(rb, !!arg);
4691 rcu_read_unlock();
4692 return 0;
4693 }
d859e29f 4694 default:
3df5edad 4695 return -ENOTTY;
d859e29f 4696 }
3df5edad
PZ
4697
4698 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4699 perf_event_for_each(event, func);
3df5edad 4700 else
cdd6c482 4701 perf_event_for_each_child(event, func);
3df5edad
PZ
4702
4703 return 0;
d859e29f
PM
4704}
4705
f63a8daa
PZ
4706static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4707{
4708 struct perf_event *event = file->private_data;
4709 struct perf_event_context *ctx;
4710 long ret;
4711
4712 ctx = perf_event_ctx_lock(event);
4713 ret = _perf_ioctl(event, cmd, arg);
4714 perf_event_ctx_unlock(event, ctx);
4715
4716 return ret;
4717}
4718
b3f20785
PM
4719#ifdef CONFIG_COMPAT
4720static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4721 unsigned long arg)
4722{
4723 switch (_IOC_NR(cmd)) {
4724 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4725 case _IOC_NR(PERF_EVENT_IOC_ID):
4726 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4727 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4728 cmd &= ~IOCSIZE_MASK;
4729 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4730 }
4731 break;
4732 }
4733 return perf_ioctl(file, cmd, arg);
4734}
4735#else
4736# define perf_compat_ioctl NULL
4737#endif
4738
cdd6c482 4739int perf_event_task_enable(void)
771d7cde 4740{
f63a8daa 4741 struct perf_event_context *ctx;
cdd6c482 4742 struct perf_event *event;
771d7cde 4743
cdd6c482 4744 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4745 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4746 ctx = perf_event_ctx_lock(event);
4747 perf_event_for_each_child(event, _perf_event_enable);
4748 perf_event_ctx_unlock(event, ctx);
4749 }
cdd6c482 4750 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4751
4752 return 0;
4753}
4754
cdd6c482 4755int perf_event_task_disable(void)
771d7cde 4756{
f63a8daa 4757 struct perf_event_context *ctx;
cdd6c482 4758 struct perf_event *event;
771d7cde 4759
cdd6c482 4760 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4761 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4762 ctx = perf_event_ctx_lock(event);
4763 perf_event_for_each_child(event, _perf_event_disable);
4764 perf_event_ctx_unlock(event, ctx);
4765 }
cdd6c482 4766 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4767
4768 return 0;
4769}
4770
cdd6c482 4771static int perf_event_index(struct perf_event *event)
194002b2 4772{
a4eaf7f1
PZ
4773 if (event->hw.state & PERF_HES_STOPPED)
4774 return 0;
4775
cdd6c482 4776 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4777 return 0;
4778
35edc2a5 4779 return event->pmu->event_idx(event);
194002b2
PZ
4780}
4781
c4794295 4782static void calc_timer_values(struct perf_event *event,
e3f3541c 4783 u64 *now,
7f310a5d
EM
4784 u64 *enabled,
4785 u64 *running)
c4794295 4786{
e3f3541c 4787 u64 ctx_time;
c4794295 4788
e3f3541c
PZ
4789 *now = perf_clock();
4790 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4791 *enabled = ctx_time - event->tstamp_enabled;
4792 *running = ctx_time - event->tstamp_running;
4793}
4794
fa731587
PZ
4795static void perf_event_init_userpage(struct perf_event *event)
4796{
4797 struct perf_event_mmap_page *userpg;
4798 struct ring_buffer *rb;
4799
4800 rcu_read_lock();
4801 rb = rcu_dereference(event->rb);
4802 if (!rb)
4803 goto unlock;
4804
4805 userpg = rb->user_page;
4806
4807 /* Allow new userspace to detect that bit 0 is deprecated */
4808 userpg->cap_bit0_is_deprecated = 1;
4809 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4810 userpg->data_offset = PAGE_SIZE;
4811 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4812
4813unlock:
4814 rcu_read_unlock();
4815}
4816
c1317ec2
AL
4817void __weak arch_perf_update_userpage(
4818 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4819{
4820}
4821
38ff667b
PZ
4822/*
4823 * Callers need to ensure there can be no nesting of this function, otherwise
4824 * the seqlock logic goes bad. We can not serialize this because the arch
4825 * code calls this from NMI context.
4826 */
cdd6c482 4827void perf_event_update_userpage(struct perf_event *event)
37d81828 4828{
cdd6c482 4829 struct perf_event_mmap_page *userpg;
76369139 4830 struct ring_buffer *rb;
e3f3541c 4831 u64 enabled, running, now;
38ff667b
PZ
4832
4833 rcu_read_lock();
5ec4c599
PZ
4834 rb = rcu_dereference(event->rb);
4835 if (!rb)
4836 goto unlock;
4837
0d641208
EM
4838 /*
4839 * compute total_time_enabled, total_time_running
4840 * based on snapshot values taken when the event
4841 * was last scheduled in.
4842 *
4843 * we cannot simply called update_context_time()
4844 * because of locking issue as we can be called in
4845 * NMI context
4846 */
e3f3541c 4847 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4848
76369139 4849 userpg = rb->user_page;
7b732a75
PZ
4850 /*
4851 * Disable preemption so as to not let the corresponding user-space
4852 * spin too long if we get preempted.
4853 */
4854 preempt_disable();
37d81828 4855 ++userpg->lock;
92f22a38 4856 barrier();
cdd6c482 4857 userpg->index = perf_event_index(event);
b5e58793 4858 userpg->offset = perf_event_count(event);
365a4038 4859 if (userpg->index)
e7850595 4860 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4861
0d641208 4862 userpg->time_enabled = enabled +
cdd6c482 4863 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4864
0d641208 4865 userpg->time_running = running +
cdd6c482 4866 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4867
c1317ec2 4868 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4869
92f22a38 4870 barrier();
37d81828 4871 ++userpg->lock;
7b732a75 4872 preempt_enable();
38ff667b 4873unlock:
7b732a75 4874 rcu_read_unlock();
37d81828
PM
4875}
4876
906010b2
PZ
4877static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4878{
4879 struct perf_event *event = vma->vm_file->private_data;
76369139 4880 struct ring_buffer *rb;
906010b2
PZ
4881 int ret = VM_FAULT_SIGBUS;
4882
4883 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4884 if (vmf->pgoff == 0)
4885 ret = 0;
4886 return ret;
4887 }
4888
4889 rcu_read_lock();
76369139
FW
4890 rb = rcu_dereference(event->rb);
4891 if (!rb)
906010b2
PZ
4892 goto unlock;
4893
4894 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4895 goto unlock;
4896
76369139 4897 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4898 if (!vmf->page)
4899 goto unlock;
4900
4901 get_page(vmf->page);
4902 vmf->page->mapping = vma->vm_file->f_mapping;
4903 vmf->page->index = vmf->pgoff;
4904
4905 ret = 0;
4906unlock:
4907 rcu_read_unlock();
4908
4909 return ret;
4910}
4911
10c6db11
PZ
4912static void ring_buffer_attach(struct perf_event *event,
4913 struct ring_buffer *rb)
4914{
b69cf536 4915 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4916 unsigned long flags;
4917
b69cf536
PZ
4918 if (event->rb) {
4919 /*
4920 * Should be impossible, we set this when removing
4921 * event->rb_entry and wait/clear when adding event->rb_entry.
4922 */
4923 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4924
b69cf536 4925 old_rb = event->rb;
b69cf536
PZ
4926 spin_lock_irqsave(&old_rb->event_lock, flags);
4927 list_del_rcu(&event->rb_entry);
4928 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4929
2f993cf0
ON
4930 event->rcu_batches = get_state_synchronize_rcu();
4931 event->rcu_pending = 1;
b69cf536 4932 }
10c6db11 4933
b69cf536 4934 if (rb) {
2f993cf0
ON
4935 if (event->rcu_pending) {
4936 cond_synchronize_rcu(event->rcu_batches);
4937 event->rcu_pending = 0;
4938 }
4939
b69cf536
PZ
4940 spin_lock_irqsave(&rb->event_lock, flags);
4941 list_add_rcu(&event->rb_entry, &rb->event_list);
4942 spin_unlock_irqrestore(&rb->event_lock, flags);
4943 }
4944
767ae086
AS
4945 /*
4946 * Avoid racing with perf_mmap_close(AUX): stop the event
4947 * before swizzling the event::rb pointer; if it's getting
4948 * unmapped, its aux_mmap_count will be 0 and it won't
4949 * restart. See the comment in __perf_pmu_output_stop().
4950 *
4951 * Data will inevitably be lost when set_output is done in
4952 * mid-air, but then again, whoever does it like this is
4953 * not in for the data anyway.
4954 */
4955 if (has_aux(event))
4956 perf_event_stop(event, 0);
4957
b69cf536
PZ
4958 rcu_assign_pointer(event->rb, rb);
4959
4960 if (old_rb) {
4961 ring_buffer_put(old_rb);
4962 /*
4963 * Since we detached before setting the new rb, so that we
4964 * could attach the new rb, we could have missed a wakeup.
4965 * Provide it now.
4966 */
4967 wake_up_all(&event->waitq);
4968 }
10c6db11
PZ
4969}
4970
4971static void ring_buffer_wakeup(struct perf_event *event)
4972{
4973 struct ring_buffer *rb;
4974
4975 rcu_read_lock();
4976 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4977 if (rb) {
4978 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4979 wake_up_all(&event->waitq);
4980 }
10c6db11
PZ
4981 rcu_read_unlock();
4982}
4983
fdc26706 4984struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4985{
76369139 4986 struct ring_buffer *rb;
7b732a75 4987
ac9721f3 4988 rcu_read_lock();
76369139
FW
4989 rb = rcu_dereference(event->rb);
4990 if (rb) {
4991 if (!atomic_inc_not_zero(&rb->refcount))
4992 rb = NULL;
ac9721f3
PZ
4993 }
4994 rcu_read_unlock();
4995
76369139 4996 return rb;
ac9721f3
PZ
4997}
4998
fdc26706 4999void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5000{
76369139 5001 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5002 return;
7b732a75 5003
9bb5d40c 5004 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5005
76369139 5006 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5007}
5008
5009static void perf_mmap_open(struct vm_area_struct *vma)
5010{
cdd6c482 5011 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5012
cdd6c482 5013 atomic_inc(&event->mmap_count);
9bb5d40c 5014 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5015
45bfb2e5
PZ
5016 if (vma->vm_pgoff)
5017 atomic_inc(&event->rb->aux_mmap_count);
5018
1e0fb9ec
AL
5019 if (event->pmu->event_mapped)
5020 event->pmu->event_mapped(event);
7b732a75
PZ
5021}
5022
95ff4ca2
AS
5023static void perf_pmu_output_stop(struct perf_event *event);
5024
9bb5d40c
PZ
5025/*
5026 * A buffer can be mmap()ed multiple times; either directly through the same
5027 * event, or through other events by use of perf_event_set_output().
5028 *
5029 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5030 * the buffer here, where we still have a VM context. This means we need
5031 * to detach all events redirecting to us.
5032 */
7b732a75
PZ
5033static void perf_mmap_close(struct vm_area_struct *vma)
5034{
cdd6c482 5035 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5036
b69cf536 5037 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5038 struct user_struct *mmap_user = rb->mmap_user;
5039 int mmap_locked = rb->mmap_locked;
5040 unsigned long size = perf_data_size(rb);
789f90fc 5041
1e0fb9ec
AL
5042 if (event->pmu->event_unmapped)
5043 event->pmu->event_unmapped(event);
5044
45bfb2e5
PZ
5045 /*
5046 * rb->aux_mmap_count will always drop before rb->mmap_count and
5047 * event->mmap_count, so it is ok to use event->mmap_mutex to
5048 * serialize with perf_mmap here.
5049 */
5050 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5051 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5052 /*
5053 * Stop all AUX events that are writing to this buffer,
5054 * so that we can free its AUX pages and corresponding PMU
5055 * data. Note that after rb::aux_mmap_count dropped to zero,
5056 * they won't start any more (see perf_aux_output_begin()).
5057 */
5058 perf_pmu_output_stop(event);
5059
5060 /* now it's safe to free the pages */
45bfb2e5
PZ
5061 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5062 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5063
95ff4ca2 5064 /* this has to be the last one */
45bfb2e5 5065 rb_free_aux(rb);
95ff4ca2
AS
5066 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5067
45bfb2e5
PZ
5068 mutex_unlock(&event->mmap_mutex);
5069 }
5070
9bb5d40c
PZ
5071 atomic_dec(&rb->mmap_count);
5072
5073 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5074 goto out_put;
9bb5d40c 5075
b69cf536 5076 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5077 mutex_unlock(&event->mmap_mutex);
5078
5079 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5080 if (atomic_read(&rb->mmap_count))
5081 goto out_put;
ac9721f3 5082
9bb5d40c
PZ
5083 /*
5084 * No other mmap()s, detach from all other events that might redirect
5085 * into the now unreachable buffer. Somewhat complicated by the
5086 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5087 */
5088again:
5089 rcu_read_lock();
5090 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5091 if (!atomic_long_inc_not_zero(&event->refcount)) {
5092 /*
5093 * This event is en-route to free_event() which will
5094 * detach it and remove it from the list.
5095 */
5096 continue;
5097 }
5098 rcu_read_unlock();
789f90fc 5099
9bb5d40c
PZ
5100 mutex_lock(&event->mmap_mutex);
5101 /*
5102 * Check we didn't race with perf_event_set_output() which can
5103 * swizzle the rb from under us while we were waiting to
5104 * acquire mmap_mutex.
5105 *
5106 * If we find a different rb; ignore this event, a next
5107 * iteration will no longer find it on the list. We have to
5108 * still restart the iteration to make sure we're not now
5109 * iterating the wrong list.
5110 */
b69cf536
PZ
5111 if (event->rb == rb)
5112 ring_buffer_attach(event, NULL);
5113
cdd6c482 5114 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5115 put_event(event);
ac9721f3 5116
9bb5d40c
PZ
5117 /*
5118 * Restart the iteration; either we're on the wrong list or
5119 * destroyed its integrity by doing a deletion.
5120 */
5121 goto again;
7b732a75 5122 }
9bb5d40c
PZ
5123 rcu_read_unlock();
5124
5125 /*
5126 * It could be there's still a few 0-ref events on the list; they'll
5127 * get cleaned up by free_event() -- they'll also still have their
5128 * ref on the rb and will free it whenever they are done with it.
5129 *
5130 * Aside from that, this buffer is 'fully' detached and unmapped,
5131 * undo the VM accounting.
5132 */
5133
5134 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5135 vma->vm_mm->pinned_vm -= mmap_locked;
5136 free_uid(mmap_user);
5137
b69cf536 5138out_put:
9bb5d40c 5139 ring_buffer_put(rb); /* could be last */
37d81828
PM
5140}
5141
f0f37e2f 5142static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5143 .open = perf_mmap_open,
45bfb2e5 5144 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5145 .fault = perf_mmap_fault,
5146 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5147};
5148
5149static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5150{
cdd6c482 5151 struct perf_event *event = file->private_data;
22a4f650 5152 unsigned long user_locked, user_lock_limit;
789f90fc 5153 struct user_struct *user = current_user();
22a4f650 5154 unsigned long locked, lock_limit;
45bfb2e5 5155 struct ring_buffer *rb = NULL;
7b732a75
PZ
5156 unsigned long vma_size;
5157 unsigned long nr_pages;
45bfb2e5 5158 long user_extra = 0, extra = 0;
d57e34fd 5159 int ret = 0, flags = 0;
37d81828 5160
c7920614
PZ
5161 /*
5162 * Don't allow mmap() of inherited per-task counters. This would
5163 * create a performance issue due to all children writing to the
76369139 5164 * same rb.
c7920614
PZ
5165 */
5166 if (event->cpu == -1 && event->attr.inherit)
5167 return -EINVAL;
5168
43a21ea8 5169 if (!(vma->vm_flags & VM_SHARED))
37d81828 5170 return -EINVAL;
7b732a75
PZ
5171
5172 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5173
5174 if (vma->vm_pgoff == 0) {
5175 nr_pages = (vma_size / PAGE_SIZE) - 1;
5176 } else {
5177 /*
5178 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5179 * mapped, all subsequent mappings should have the same size
5180 * and offset. Must be above the normal perf buffer.
5181 */
5182 u64 aux_offset, aux_size;
5183
5184 if (!event->rb)
5185 return -EINVAL;
5186
5187 nr_pages = vma_size / PAGE_SIZE;
5188
5189 mutex_lock(&event->mmap_mutex);
5190 ret = -EINVAL;
5191
5192 rb = event->rb;
5193 if (!rb)
5194 goto aux_unlock;
5195
5196 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5197 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5198
5199 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5200 goto aux_unlock;
5201
5202 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5203 goto aux_unlock;
5204
5205 /* already mapped with a different offset */
5206 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5207 goto aux_unlock;
5208
5209 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5210 goto aux_unlock;
5211
5212 /* already mapped with a different size */
5213 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5214 goto aux_unlock;
5215
5216 if (!is_power_of_2(nr_pages))
5217 goto aux_unlock;
5218
5219 if (!atomic_inc_not_zero(&rb->mmap_count))
5220 goto aux_unlock;
5221
5222 if (rb_has_aux(rb)) {
5223 atomic_inc(&rb->aux_mmap_count);
5224 ret = 0;
5225 goto unlock;
5226 }
5227
5228 atomic_set(&rb->aux_mmap_count, 1);
5229 user_extra = nr_pages;
5230
5231 goto accounting;
5232 }
7b732a75 5233
7730d865 5234 /*
76369139 5235 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5236 * can do bitmasks instead of modulo.
5237 */
2ed11312 5238 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5239 return -EINVAL;
5240
7b732a75 5241 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5242 return -EINVAL;
5243
cdd6c482 5244 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5245again:
cdd6c482 5246 mutex_lock(&event->mmap_mutex);
76369139 5247 if (event->rb) {
9bb5d40c 5248 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5249 ret = -EINVAL;
9bb5d40c
PZ
5250 goto unlock;
5251 }
5252
5253 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5254 /*
5255 * Raced against perf_mmap_close() through
5256 * perf_event_set_output(). Try again, hope for better
5257 * luck.
5258 */
5259 mutex_unlock(&event->mmap_mutex);
5260 goto again;
5261 }
5262
ebb3c4c4
PZ
5263 goto unlock;
5264 }
5265
789f90fc 5266 user_extra = nr_pages + 1;
45bfb2e5
PZ
5267
5268accounting:
cdd6c482 5269 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5270
5271 /*
5272 * Increase the limit linearly with more CPUs:
5273 */
5274 user_lock_limit *= num_online_cpus();
5275
789f90fc 5276 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5277
789f90fc
PZ
5278 if (user_locked > user_lock_limit)
5279 extra = user_locked - user_lock_limit;
7b732a75 5280
78d7d407 5281 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5282 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5283 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5284
459ec28a
IM
5285 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5286 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5287 ret = -EPERM;
5288 goto unlock;
5289 }
7b732a75 5290
45bfb2e5 5291 WARN_ON(!rb && event->rb);
906010b2 5292
d57e34fd 5293 if (vma->vm_flags & VM_WRITE)
76369139 5294 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5295
76369139 5296 if (!rb) {
45bfb2e5
PZ
5297 rb = rb_alloc(nr_pages,
5298 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5299 event->cpu, flags);
26cb63ad 5300
45bfb2e5
PZ
5301 if (!rb) {
5302 ret = -ENOMEM;
5303 goto unlock;
5304 }
43a21ea8 5305
45bfb2e5
PZ
5306 atomic_set(&rb->mmap_count, 1);
5307 rb->mmap_user = get_current_user();
5308 rb->mmap_locked = extra;
26cb63ad 5309
45bfb2e5 5310 ring_buffer_attach(event, rb);
ac9721f3 5311
45bfb2e5
PZ
5312 perf_event_init_userpage(event);
5313 perf_event_update_userpage(event);
5314 } else {
1a594131
AS
5315 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5316 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5317 if (!ret)
5318 rb->aux_mmap_locked = extra;
5319 }
9a0f05cb 5320
ebb3c4c4 5321unlock:
45bfb2e5
PZ
5322 if (!ret) {
5323 atomic_long_add(user_extra, &user->locked_vm);
5324 vma->vm_mm->pinned_vm += extra;
5325
ac9721f3 5326 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5327 } else if (rb) {
5328 atomic_dec(&rb->mmap_count);
5329 }
5330aux_unlock:
cdd6c482 5331 mutex_unlock(&event->mmap_mutex);
37d81828 5332
9bb5d40c
PZ
5333 /*
5334 * Since pinned accounting is per vm we cannot allow fork() to copy our
5335 * vma.
5336 */
26cb63ad 5337 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5338 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5339
1e0fb9ec
AL
5340 if (event->pmu->event_mapped)
5341 event->pmu->event_mapped(event);
5342
7b732a75 5343 return ret;
37d81828
PM
5344}
5345
3c446b3d
PZ
5346static int perf_fasync(int fd, struct file *filp, int on)
5347{
496ad9aa 5348 struct inode *inode = file_inode(filp);
cdd6c482 5349 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5350 int retval;
5351
5955102c 5352 inode_lock(inode);
cdd6c482 5353 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5354 inode_unlock(inode);
3c446b3d
PZ
5355
5356 if (retval < 0)
5357 return retval;
5358
5359 return 0;
5360}
5361
0793a61d 5362static const struct file_operations perf_fops = {
3326c1ce 5363 .llseek = no_llseek,
0793a61d
TG
5364 .release = perf_release,
5365 .read = perf_read,
5366 .poll = perf_poll,
d859e29f 5367 .unlocked_ioctl = perf_ioctl,
b3f20785 5368 .compat_ioctl = perf_compat_ioctl,
37d81828 5369 .mmap = perf_mmap,
3c446b3d 5370 .fasync = perf_fasync,
0793a61d
TG
5371};
5372
925d519a 5373/*
cdd6c482 5374 * Perf event wakeup
925d519a
PZ
5375 *
5376 * If there's data, ensure we set the poll() state and publish everything
5377 * to user-space before waking everybody up.
5378 */
5379
fed66e2c
PZ
5380static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5381{
5382 /* only the parent has fasync state */
5383 if (event->parent)
5384 event = event->parent;
5385 return &event->fasync;
5386}
5387
cdd6c482 5388void perf_event_wakeup(struct perf_event *event)
925d519a 5389{
10c6db11 5390 ring_buffer_wakeup(event);
4c9e2542 5391
cdd6c482 5392 if (event->pending_kill) {
fed66e2c 5393 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5394 event->pending_kill = 0;
4c9e2542 5395 }
925d519a
PZ
5396}
5397
e360adbe 5398static void perf_pending_event(struct irq_work *entry)
79f14641 5399{
cdd6c482
IM
5400 struct perf_event *event = container_of(entry,
5401 struct perf_event, pending);
d525211f
PZ
5402 int rctx;
5403
5404 rctx = perf_swevent_get_recursion_context();
5405 /*
5406 * If we 'fail' here, that's OK, it means recursion is already disabled
5407 * and we won't recurse 'further'.
5408 */
79f14641 5409
cdd6c482
IM
5410 if (event->pending_disable) {
5411 event->pending_disable = 0;
fae3fde6 5412 perf_event_disable_local(event);
79f14641
PZ
5413 }
5414
cdd6c482
IM
5415 if (event->pending_wakeup) {
5416 event->pending_wakeup = 0;
5417 perf_event_wakeup(event);
79f14641 5418 }
d525211f
PZ
5419
5420 if (rctx >= 0)
5421 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5422}
5423
39447b38
ZY
5424/*
5425 * We assume there is only KVM supporting the callbacks.
5426 * Later on, we might change it to a list if there is
5427 * another virtualization implementation supporting the callbacks.
5428 */
5429struct perf_guest_info_callbacks *perf_guest_cbs;
5430
5431int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5432{
5433 perf_guest_cbs = cbs;
5434 return 0;
5435}
5436EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5437
5438int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5439{
5440 perf_guest_cbs = NULL;
5441 return 0;
5442}
5443EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5444
4018994f
JO
5445static void
5446perf_output_sample_regs(struct perf_output_handle *handle,
5447 struct pt_regs *regs, u64 mask)
5448{
5449 int bit;
29dd3288 5450 DECLARE_BITMAP(_mask, 64);
4018994f 5451
29dd3288
MS
5452 bitmap_from_u64(_mask, mask);
5453 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5454 u64 val;
5455
5456 val = perf_reg_value(regs, bit);
5457 perf_output_put(handle, val);
5458 }
5459}
5460
60e2364e 5461static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5462 struct pt_regs *regs,
5463 struct pt_regs *regs_user_copy)
4018994f 5464{
88a7c26a
AL
5465 if (user_mode(regs)) {
5466 regs_user->abi = perf_reg_abi(current);
2565711f 5467 regs_user->regs = regs;
88a7c26a
AL
5468 } else if (current->mm) {
5469 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5470 } else {
5471 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5472 regs_user->regs = NULL;
4018994f
JO
5473 }
5474}
5475
60e2364e
SE
5476static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5477 struct pt_regs *regs)
5478{
5479 regs_intr->regs = regs;
5480 regs_intr->abi = perf_reg_abi(current);
5481}
5482
5483
c5ebcedb
JO
5484/*
5485 * Get remaining task size from user stack pointer.
5486 *
5487 * It'd be better to take stack vma map and limit this more
5488 * precisly, but there's no way to get it safely under interrupt,
5489 * so using TASK_SIZE as limit.
5490 */
5491static u64 perf_ustack_task_size(struct pt_regs *regs)
5492{
5493 unsigned long addr = perf_user_stack_pointer(regs);
5494
5495 if (!addr || addr >= TASK_SIZE)
5496 return 0;
5497
5498 return TASK_SIZE - addr;
5499}
5500
5501static u16
5502perf_sample_ustack_size(u16 stack_size, u16 header_size,
5503 struct pt_regs *regs)
5504{
5505 u64 task_size;
5506
5507 /* No regs, no stack pointer, no dump. */
5508 if (!regs)
5509 return 0;
5510
5511 /*
5512 * Check if we fit in with the requested stack size into the:
5513 * - TASK_SIZE
5514 * If we don't, we limit the size to the TASK_SIZE.
5515 *
5516 * - remaining sample size
5517 * If we don't, we customize the stack size to
5518 * fit in to the remaining sample size.
5519 */
5520
5521 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5522 stack_size = min(stack_size, (u16) task_size);
5523
5524 /* Current header size plus static size and dynamic size. */
5525 header_size += 2 * sizeof(u64);
5526
5527 /* Do we fit in with the current stack dump size? */
5528 if ((u16) (header_size + stack_size) < header_size) {
5529 /*
5530 * If we overflow the maximum size for the sample,
5531 * we customize the stack dump size to fit in.
5532 */
5533 stack_size = USHRT_MAX - header_size - sizeof(u64);
5534 stack_size = round_up(stack_size, sizeof(u64));
5535 }
5536
5537 return stack_size;
5538}
5539
5540static void
5541perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5542 struct pt_regs *regs)
5543{
5544 /* Case of a kernel thread, nothing to dump */
5545 if (!regs) {
5546 u64 size = 0;
5547 perf_output_put(handle, size);
5548 } else {
5549 unsigned long sp;
5550 unsigned int rem;
5551 u64 dyn_size;
5552
5553 /*
5554 * We dump:
5555 * static size
5556 * - the size requested by user or the best one we can fit
5557 * in to the sample max size
5558 * data
5559 * - user stack dump data
5560 * dynamic size
5561 * - the actual dumped size
5562 */
5563
5564 /* Static size. */
5565 perf_output_put(handle, dump_size);
5566
5567 /* Data. */
5568 sp = perf_user_stack_pointer(regs);
5569 rem = __output_copy_user(handle, (void *) sp, dump_size);
5570 dyn_size = dump_size - rem;
5571
5572 perf_output_skip(handle, rem);
5573
5574 /* Dynamic size. */
5575 perf_output_put(handle, dyn_size);
5576 }
5577}
5578
c980d109
ACM
5579static void __perf_event_header__init_id(struct perf_event_header *header,
5580 struct perf_sample_data *data,
5581 struct perf_event *event)
6844c09d
ACM
5582{
5583 u64 sample_type = event->attr.sample_type;
5584
5585 data->type = sample_type;
5586 header->size += event->id_header_size;
5587
5588 if (sample_type & PERF_SAMPLE_TID) {
5589 /* namespace issues */
5590 data->tid_entry.pid = perf_event_pid(event, current);
5591 data->tid_entry.tid = perf_event_tid(event, current);
5592 }
5593
5594 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5595 data->time = perf_event_clock(event);
6844c09d 5596
ff3d527c 5597 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5598 data->id = primary_event_id(event);
5599
5600 if (sample_type & PERF_SAMPLE_STREAM_ID)
5601 data->stream_id = event->id;
5602
5603 if (sample_type & PERF_SAMPLE_CPU) {
5604 data->cpu_entry.cpu = raw_smp_processor_id();
5605 data->cpu_entry.reserved = 0;
5606 }
5607}
5608
76369139
FW
5609void perf_event_header__init_id(struct perf_event_header *header,
5610 struct perf_sample_data *data,
5611 struct perf_event *event)
c980d109
ACM
5612{
5613 if (event->attr.sample_id_all)
5614 __perf_event_header__init_id(header, data, event);
5615}
5616
5617static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5618 struct perf_sample_data *data)
5619{
5620 u64 sample_type = data->type;
5621
5622 if (sample_type & PERF_SAMPLE_TID)
5623 perf_output_put(handle, data->tid_entry);
5624
5625 if (sample_type & PERF_SAMPLE_TIME)
5626 perf_output_put(handle, data->time);
5627
5628 if (sample_type & PERF_SAMPLE_ID)
5629 perf_output_put(handle, data->id);
5630
5631 if (sample_type & PERF_SAMPLE_STREAM_ID)
5632 perf_output_put(handle, data->stream_id);
5633
5634 if (sample_type & PERF_SAMPLE_CPU)
5635 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5636
5637 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5638 perf_output_put(handle, data->id);
c980d109
ACM
5639}
5640
76369139
FW
5641void perf_event__output_id_sample(struct perf_event *event,
5642 struct perf_output_handle *handle,
5643 struct perf_sample_data *sample)
c980d109
ACM
5644{
5645 if (event->attr.sample_id_all)
5646 __perf_event__output_id_sample(handle, sample);
5647}
5648
3dab77fb 5649static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5650 struct perf_event *event,
5651 u64 enabled, u64 running)
3dab77fb 5652{
cdd6c482 5653 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5654 u64 values[4];
5655 int n = 0;
5656
b5e58793 5657 values[n++] = perf_event_count(event);
3dab77fb 5658 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5659 values[n++] = enabled +
cdd6c482 5660 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5661 }
5662 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5663 values[n++] = running +
cdd6c482 5664 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5665 }
5666 if (read_format & PERF_FORMAT_ID)
cdd6c482 5667 values[n++] = primary_event_id(event);
3dab77fb 5668
76369139 5669 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5670}
5671
5672/*
cdd6c482 5673 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5674 */
5675static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5676 struct perf_event *event,
5677 u64 enabled, u64 running)
3dab77fb 5678{
cdd6c482
IM
5679 struct perf_event *leader = event->group_leader, *sub;
5680 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5681 u64 values[5];
5682 int n = 0;
5683
5684 values[n++] = 1 + leader->nr_siblings;
5685
5686 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5687 values[n++] = enabled;
3dab77fb
PZ
5688
5689 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5690 values[n++] = running;
3dab77fb 5691
cdd6c482 5692 if (leader != event)
3dab77fb
PZ
5693 leader->pmu->read(leader);
5694
b5e58793 5695 values[n++] = perf_event_count(leader);
3dab77fb 5696 if (read_format & PERF_FORMAT_ID)
cdd6c482 5697 values[n++] = primary_event_id(leader);
3dab77fb 5698
76369139 5699 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5700
65abc865 5701 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5702 n = 0;
5703
6f5ab001
JO
5704 if ((sub != event) &&
5705 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5706 sub->pmu->read(sub);
5707
b5e58793 5708 values[n++] = perf_event_count(sub);
3dab77fb 5709 if (read_format & PERF_FORMAT_ID)
cdd6c482 5710 values[n++] = primary_event_id(sub);
3dab77fb 5711
76369139 5712 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5713 }
5714}
5715
eed01528
SE
5716#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5717 PERF_FORMAT_TOTAL_TIME_RUNNING)
5718
3dab77fb 5719static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5720 struct perf_event *event)
3dab77fb 5721{
e3f3541c 5722 u64 enabled = 0, running = 0, now;
eed01528
SE
5723 u64 read_format = event->attr.read_format;
5724
5725 /*
5726 * compute total_time_enabled, total_time_running
5727 * based on snapshot values taken when the event
5728 * was last scheduled in.
5729 *
5730 * we cannot simply called update_context_time()
5731 * because of locking issue as we are called in
5732 * NMI context
5733 */
c4794295 5734 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5735 calc_timer_values(event, &now, &enabled, &running);
eed01528 5736
cdd6c482 5737 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5738 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5739 else
eed01528 5740 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5741}
5742
5622f295
MM
5743void perf_output_sample(struct perf_output_handle *handle,
5744 struct perf_event_header *header,
5745 struct perf_sample_data *data,
cdd6c482 5746 struct perf_event *event)
5622f295
MM
5747{
5748 u64 sample_type = data->type;
5749
5750 perf_output_put(handle, *header);
5751
ff3d527c
AH
5752 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5753 perf_output_put(handle, data->id);
5754
5622f295
MM
5755 if (sample_type & PERF_SAMPLE_IP)
5756 perf_output_put(handle, data->ip);
5757
5758 if (sample_type & PERF_SAMPLE_TID)
5759 perf_output_put(handle, data->tid_entry);
5760
5761 if (sample_type & PERF_SAMPLE_TIME)
5762 perf_output_put(handle, data->time);
5763
5764 if (sample_type & PERF_SAMPLE_ADDR)
5765 perf_output_put(handle, data->addr);
5766
5767 if (sample_type & PERF_SAMPLE_ID)
5768 perf_output_put(handle, data->id);
5769
5770 if (sample_type & PERF_SAMPLE_STREAM_ID)
5771 perf_output_put(handle, data->stream_id);
5772
5773 if (sample_type & PERF_SAMPLE_CPU)
5774 perf_output_put(handle, data->cpu_entry);
5775
5776 if (sample_type & PERF_SAMPLE_PERIOD)
5777 perf_output_put(handle, data->period);
5778
5779 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5780 perf_output_read(handle, event);
5622f295
MM
5781
5782 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5783 if (data->callchain) {
5784 int size = 1;
5785
5786 if (data->callchain)
5787 size += data->callchain->nr;
5788
5789 size *= sizeof(u64);
5790
76369139 5791 __output_copy(handle, data->callchain, size);
5622f295
MM
5792 } else {
5793 u64 nr = 0;
5794 perf_output_put(handle, nr);
5795 }
5796 }
5797
5798 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5799 struct perf_raw_record *raw = data->raw;
5800
5801 if (raw) {
5802 struct perf_raw_frag *frag = &raw->frag;
5803
5804 perf_output_put(handle, raw->size);
5805 do {
5806 if (frag->copy) {
5807 __output_custom(handle, frag->copy,
5808 frag->data, frag->size);
5809 } else {
5810 __output_copy(handle, frag->data,
5811 frag->size);
5812 }
5813 if (perf_raw_frag_last(frag))
5814 break;
5815 frag = frag->next;
5816 } while (1);
5817 if (frag->pad)
5818 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5819 } else {
5820 struct {
5821 u32 size;
5822 u32 data;
5823 } raw = {
5824 .size = sizeof(u32),
5825 .data = 0,
5826 };
5827 perf_output_put(handle, raw);
5828 }
5829 }
a7ac67ea 5830
bce38cd5
SE
5831 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5832 if (data->br_stack) {
5833 size_t size;
5834
5835 size = data->br_stack->nr
5836 * sizeof(struct perf_branch_entry);
5837
5838 perf_output_put(handle, data->br_stack->nr);
5839 perf_output_copy(handle, data->br_stack->entries, size);
5840 } else {
5841 /*
5842 * we always store at least the value of nr
5843 */
5844 u64 nr = 0;
5845 perf_output_put(handle, nr);
5846 }
5847 }
4018994f
JO
5848
5849 if (sample_type & PERF_SAMPLE_REGS_USER) {
5850 u64 abi = data->regs_user.abi;
5851
5852 /*
5853 * If there are no regs to dump, notice it through
5854 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5855 */
5856 perf_output_put(handle, abi);
5857
5858 if (abi) {
5859 u64 mask = event->attr.sample_regs_user;
5860 perf_output_sample_regs(handle,
5861 data->regs_user.regs,
5862 mask);
5863 }
5864 }
c5ebcedb 5865
a5cdd40c 5866 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5867 perf_output_sample_ustack(handle,
5868 data->stack_user_size,
5869 data->regs_user.regs);
a5cdd40c 5870 }
c3feedf2
AK
5871
5872 if (sample_type & PERF_SAMPLE_WEIGHT)
5873 perf_output_put(handle, data->weight);
d6be9ad6
SE
5874
5875 if (sample_type & PERF_SAMPLE_DATA_SRC)
5876 perf_output_put(handle, data->data_src.val);
a5cdd40c 5877
fdfbbd07
AK
5878 if (sample_type & PERF_SAMPLE_TRANSACTION)
5879 perf_output_put(handle, data->txn);
5880
60e2364e
SE
5881 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5882 u64 abi = data->regs_intr.abi;
5883 /*
5884 * If there are no regs to dump, notice it through
5885 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5886 */
5887 perf_output_put(handle, abi);
5888
5889 if (abi) {
5890 u64 mask = event->attr.sample_regs_intr;
5891
5892 perf_output_sample_regs(handle,
5893 data->regs_intr.regs,
5894 mask);
5895 }
5896 }
5897
a5cdd40c
PZ
5898 if (!event->attr.watermark) {
5899 int wakeup_events = event->attr.wakeup_events;
5900
5901 if (wakeup_events) {
5902 struct ring_buffer *rb = handle->rb;
5903 int events = local_inc_return(&rb->events);
5904
5905 if (events >= wakeup_events) {
5906 local_sub(wakeup_events, &rb->events);
5907 local_inc(&rb->wakeup);
5908 }
5909 }
5910 }
5622f295
MM
5911}
5912
5913void perf_prepare_sample(struct perf_event_header *header,
5914 struct perf_sample_data *data,
cdd6c482 5915 struct perf_event *event,
5622f295 5916 struct pt_regs *regs)
7b732a75 5917{
cdd6c482 5918 u64 sample_type = event->attr.sample_type;
7b732a75 5919
cdd6c482 5920 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5921 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5922
5923 header->misc = 0;
5924 header->misc |= perf_misc_flags(regs);
6fab0192 5925
c980d109 5926 __perf_event_header__init_id(header, data, event);
6844c09d 5927
c320c7b7 5928 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5929 data->ip = perf_instruction_pointer(regs);
5930
b23f3325 5931 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5932 int size = 1;
394ee076 5933
e6dab5ff 5934 data->callchain = perf_callchain(event, regs);
5622f295
MM
5935
5936 if (data->callchain)
5937 size += data->callchain->nr;
5938
5939 header->size += size * sizeof(u64);
394ee076
PZ
5940 }
5941
3a43ce68 5942 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5943 struct perf_raw_record *raw = data->raw;
5944 int size;
5945
5946 if (raw) {
5947 struct perf_raw_frag *frag = &raw->frag;
5948 u32 sum = 0;
5949
5950 do {
5951 sum += frag->size;
5952 if (perf_raw_frag_last(frag))
5953 break;
5954 frag = frag->next;
5955 } while (1);
5956
5957 size = round_up(sum + sizeof(u32), sizeof(u64));
5958 raw->size = size - sizeof(u32);
5959 frag->pad = raw->size - sum;
5960 } else {
5961 size = sizeof(u64);
5962 }
a044560c 5963
7e3f977e 5964 header->size += size;
7f453c24 5965 }
bce38cd5
SE
5966
5967 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5968 int size = sizeof(u64); /* nr */
5969 if (data->br_stack) {
5970 size += data->br_stack->nr
5971 * sizeof(struct perf_branch_entry);
5972 }
5973 header->size += size;
5974 }
4018994f 5975
2565711f 5976 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5977 perf_sample_regs_user(&data->regs_user, regs,
5978 &data->regs_user_copy);
2565711f 5979
4018994f
JO
5980 if (sample_type & PERF_SAMPLE_REGS_USER) {
5981 /* regs dump ABI info */
5982 int size = sizeof(u64);
5983
4018994f
JO
5984 if (data->regs_user.regs) {
5985 u64 mask = event->attr.sample_regs_user;
5986 size += hweight64(mask) * sizeof(u64);
5987 }
5988
5989 header->size += size;
5990 }
c5ebcedb
JO
5991
5992 if (sample_type & PERF_SAMPLE_STACK_USER) {
5993 /*
5994 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5995 * processed as the last one or have additional check added
5996 * in case new sample type is added, because we could eat
5997 * up the rest of the sample size.
5998 */
c5ebcedb
JO
5999 u16 stack_size = event->attr.sample_stack_user;
6000 u16 size = sizeof(u64);
6001
c5ebcedb 6002 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6003 data->regs_user.regs);
c5ebcedb
JO
6004
6005 /*
6006 * If there is something to dump, add space for the dump
6007 * itself and for the field that tells the dynamic size,
6008 * which is how many have been actually dumped.
6009 */
6010 if (stack_size)
6011 size += sizeof(u64) + stack_size;
6012
6013 data->stack_user_size = stack_size;
6014 header->size += size;
6015 }
60e2364e
SE
6016
6017 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6018 /* regs dump ABI info */
6019 int size = sizeof(u64);
6020
6021 perf_sample_regs_intr(&data->regs_intr, regs);
6022
6023 if (data->regs_intr.regs) {
6024 u64 mask = event->attr.sample_regs_intr;
6025
6026 size += hweight64(mask) * sizeof(u64);
6027 }
6028
6029 header->size += size;
6030 }
5622f295 6031}
7f453c24 6032
9ecda41a
WN
6033static void __always_inline
6034__perf_event_output(struct perf_event *event,
6035 struct perf_sample_data *data,
6036 struct pt_regs *regs,
6037 int (*output_begin)(struct perf_output_handle *,
6038 struct perf_event *,
6039 unsigned int))
5622f295
MM
6040{
6041 struct perf_output_handle handle;
6042 struct perf_event_header header;
689802b2 6043
927c7a9e
FW
6044 /* protect the callchain buffers */
6045 rcu_read_lock();
6046
cdd6c482 6047 perf_prepare_sample(&header, data, event, regs);
5c148194 6048
9ecda41a 6049 if (output_begin(&handle, event, header.size))
927c7a9e 6050 goto exit;
0322cd6e 6051
cdd6c482 6052 perf_output_sample(&handle, &header, data, event);
f413cdb8 6053
8a057d84 6054 perf_output_end(&handle);
927c7a9e
FW
6055
6056exit:
6057 rcu_read_unlock();
0322cd6e
PZ
6058}
6059
9ecda41a
WN
6060void
6061perf_event_output_forward(struct perf_event *event,
6062 struct perf_sample_data *data,
6063 struct pt_regs *regs)
6064{
6065 __perf_event_output(event, data, regs, perf_output_begin_forward);
6066}
6067
6068void
6069perf_event_output_backward(struct perf_event *event,
6070 struct perf_sample_data *data,
6071 struct pt_regs *regs)
6072{
6073 __perf_event_output(event, data, regs, perf_output_begin_backward);
6074}
6075
6076void
6077perf_event_output(struct perf_event *event,
6078 struct perf_sample_data *data,
6079 struct pt_regs *regs)
6080{
6081 __perf_event_output(event, data, regs, perf_output_begin);
6082}
6083
38b200d6 6084/*
cdd6c482 6085 * read event_id
38b200d6
PZ
6086 */
6087
6088struct perf_read_event {
6089 struct perf_event_header header;
6090
6091 u32 pid;
6092 u32 tid;
38b200d6
PZ
6093};
6094
6095static void
cdd6c482 6096perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6097 struct task_struct *task)
6098{
6099 struct perf_output_handle handle;
c980d109 6100 struct perf_sample_data sample;
dfc65094 6101 struct perf_read_event read_event = {
38b200d6 6102 .header = {
cdd6c482 6103 .type = PERF_RECORD_READ,
38b200d6 6104 .misc = 0,
c320c7b7 6105 .size = sizeof(read_event) + event->read_size,
38b200d6 6106 },
cdd6c482
IM
6107 .pid = perf_event_pid(event, task),
6108 .tid = perf_event_tid(event, task),
38b200d6 6109 };
3dab77fb 6110 int ret;
38b200d6 6111
c980d109 6112 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6113 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6114 if (ret)
6115 return;
6116
dfc65094 6117 perf_output_put(&handle, read_event);
cdd6c482 6118 perf_output_read(&handle, event);
c980d109 6119 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6120
38b200d6
PZ
6121 perf_output_end(&handle);
6122}
6123
aab5b71e 6124typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6125
6126static void
aab5b71e
PZ
6127perf_iterate_ctx(struct perf_event_context *ctx,
6128 perf_iterate_f output,
b73e4fef 6129 void *data, bool all)
52d857a8
JO
6130{
6131 struct perf_event *event;
6132
6133 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6134 if (!all) {
6135 if (event->state < PERF_EVENT_STATE_INACTIVE)
6136 continue;
6137 if (!event_filter_match(event))
6138 continue;
6139 }
6140
67516844 6141 output(event, data);
52d857a8
JO
6142 }
6143}
6144
aab5b71e 6145static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6146{
6147 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6148 struct perf_event *event;
6149
6150 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6151 /*
6152 * Skip events that are not fully formed yet; ensure that
6153 * if we observe event->ctx, both event and ctx will be
6154 * complete enough. See perf_install_in_context().
6155 */
6156 if (!smp_load_acquire(&event->ctx))
6157 continue;
6158
f2fb6bef
KL
6159 if (event->state < PERF_EVENT_STATE_INACTIVE)
6160 continue;
6161 if (!event_filter_match(event))
6162 continue;
6163 output(event, data);
6164 }
6165}
6166
aab5b71e
PZ
6167/*
6168 * Iterate all events that need to receive side-band events.
6169 *
6170 * For new callers; ensure that account_pmu_sb_event() includes
6171 * your event, otherwise it might not get delivered.
6172 */
52d857a8 6173static void
aab5b71e 6174perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6175 struct perf_event_context *task_ctx)
6176{
52d857a8 6177 struct perf_event_context *ctx;
52d857a8
JO
6178 int ctxn;
6179
aab5b71e
PZ
6180 rcu_read_lock();
6181 preempt_disable();
6182
4e93ad60 6183 /*
aab5b71e
PZ
6184 * If we have task_ctx != NULL we only notify the task context itself.
6185 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6186 * context.
6187 */
6188 if (task_ctx) {
aab5b71e
PZ
6189 perf_iterate_ctx(task_ctx, output, data, false);
6190 goto done;
4e93ad60
JO
6191 }
6192
aab5b71e 6193 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6194
6195 for_each_task_context_nr(ctxn) {
52d857a8
JO
6196 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6197 if (ctx)
aab5b71e 6198 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6199 }
aab5b71e 6200done:
f2fb6bef 6201 preempt_enable();
52d857a8 6202 rcu_read_unlock();
95ff4ca2
AS
6203}
6204
375637bc
AS
6205/*
6206 * Clear all file-based filters at exec, they'll have to be
6207 * re-instated when/if these objects are mmapped again.
6208 */
6209static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6210{
6211 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6212 struct perf_addr_filter *filter;
6213 unsigned int restart = 0, count = 0;
6214 unsigned long flags;
6215
6216 if (!has_addr_filter(event))
6217 return;
6218
6219 raw_spin_lock_irqsave(&ifh->lock, flags);
6220 list_for_each_entry(filter, &ifh->list, entry) {
6221 if (filter->inode) {
6222 event->addr_filters_offs[count] = 0;
6223 restart++;
6224 }
6225
6226 count++;
6227 }
6228
6229 if (restart)
6230 event->addr_filters_gen++;
6231 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6232
6233 if (restart)
767ae086 6234 perf_event_stop(event, 1);
375637bc
AS
6235}
6236
6237void perf_event_exec(void)
6238{
6239 struct perf_event_context *ctx;
6240 int ctxn;
6241
6242 rcu_read_lock();
6243 for_each_task_context_nr(ctxn) {
6244 ctx = current->perf_event_ctxp[ctxn];
6245 if (!ctx)
6246 continue;
6247
6248 perf_event_enable_on_exec(ctxn);
6249
aab5b71e 6250 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6251 true);
6252 }
6253 rcu_read_unlock();
6254}
6255
95ff4ca2
AS
6256struct remote_output {
6257 struct ring_buffer *rb;
6258 int err;
6259};
6260
6261static void __perf_event_output_stop(struct perf_event *event, void *data)
6262{
6263 struct perf_event *parent = event->parent;
6264 struct remote_output *ro = data;
6265 struct ring_buffer *rb = ro->rb;
375637bc
AS
6266 struct stop_event_data sd = {
6267 .event = event,
6268 };
95ff4ca2
AS
6269
6270 if (!has_aux(event))
6271 return;
6272
6273 if (!parent)
6274 parent = event;
6275
6276 /*
6277 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6278 * ring-buffer, but it will be the child that's actually using it.
6279 *
6280 * We are using event::rb to determine if the event should be stopped,
6281 * however this may race with ring_buffer_attach() (through set_output),
6282 * which will make us skip the event that actually needs to be stopped.
6283 * So ring_buffer_attach() has to stop an aux event before re-assigning
6284 * its rb pointer.
95ff4ca2
AS
6285 */
6286 if (rcu_dereference(parent->rb) == rb)
375637bc 6287 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6288}
6289
6290static int __perf_pmu_output_stop(void *info)
6291{
6292 struct perf_event *event = info;
6293 struct pmu *pmu = event->pmu;
8b6a3fe8 6294 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6295 struct remote_output ro = {
6296 .rb = event->rb,
6297 };
6298
6299 rcu_read_lock();
aab5b71e 6300 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6301 if (cpuctx->task_ctx)
aab5b71e 6302 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6303 &ro, false);
95ff4ca2
AS
6304 rcu_read_unlock();
6305
6306 return ro.err;
6307}
6308
6309static void perf_pmu_output_stop(struct perf_event *event)
6310{
6311 struct perf_event *iter;
6312 int err, cpu;
6313
6314restart:
6315 rcu_read_lock();
6316 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6317 /*
6318 * For per-CPU events, we need to make sure that neither they
6319 * nor their children are running; for cpu==-1 events it's
6320 * sufficient to stop the event itself if it's active, since
6321 * it can't have children.
6322 */
6323 cpu = iter->cpu;
6324 if (cpu == -1)
6325 cpu = READ_ONCE(iter->oncpu);
6326
6327 if (cpu == -1)
6328 continue;
6329
6330 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6331 if (err == -EAGAIN) {
6332 rcu_read_unlock();
6333 goto restart;
6334 }
6335 }
6336 rcu_read_unlock();
52d857a8
JO
6337}
6338
60313ebe 6339/*
9f498cc5
PZ
6340 * task tracking -- fork/exit
6341 *
13d7a241 6342 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6343 */
6344
9f498cc5 6345struct perf_task_event {
3a80b4a3 6346 struct task_struct *task;
cdd6c482 6347 struct perf_event_context *task_ctx;
60313ebe
PZ
6348
6349 struct {
6350 struct perf_event_header header;
6351
6352 u32 pid;
6353 u32 ppid;
9f498cc5
PZ
6354 u32 tid;
6355 u32 ptid;
393b2ad8 6356 u64 time;
cdd6c482 6357 } event_id;
60313ebe
PZ
6358};
6359
67516844
JO
6360static int perf_event_task_match(struct perf_event *event)
6361{
13d7a241
SE
6362 return event->attr.comm || event->attr.mmap ||
6363 event->attr.mmap2 || event->attr.mmap_data ||
6364 event->attr.task;
67516844
JO
6365}
6366
cdd6c482 6367static void perf_event_task_output(struct perf_event *event,
52d857a8 6368 void *data)
60313ebe 6369{
52d857a8 6370 struct perf_task_event *task_event = data;
60313ebe 6371 struct perf_output_handle handle;
c980d109 6372 struct perf_sample_data sample;
9f498cc5 6373 struct task_struct *task = task_event->task;
c980d109 6374 int ret, size = task_event->event_id.header.size;
8bb39f9a 6375
67516844
JO
6376 if (!perf_event_task_match(event))
6377 return;
6378
c980d109 6379 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6380
c980d109 6381 ret = perf_output_begin(&handle, event,
a7ac67ea 6382 task_event->event_id.header.size);
ef60777c 6383 if (ret)
c980d109 6384 goto out;
60313ebe 6385
cdd6c482
IM
6386 task_event->event_id.pid = perf_event_pid(event, task);
6387 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6388
cdd6c482
IM
6389 task_event->event_id.tid = perf_event_tid(event, task);
6390 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6391
34f43927
PZ
6392 task_event->event_id.time = perf_event_clock(event);
6393
cdd6c482 6394 perf_output_put(&handle, task_event->event_id);
393b2ad8 6395
c980d109
ACM
6396 perf_event__output_id_sample(event, &handle, &sample);
6397
60313ebe 6398 perf_output_end(&handle);
c980d109
ACM
6399out:
6400 task_event->event_id.header.size = size;
60313ebe
PZ
6401}
6402
cdd6c482
IM
6403static void perf_event_task(struct task_struct *task,
6404 struct perf_event_context *task_ctx,
3a80b4a3 6405 int new)
60313ebe 6406{
9f498cc5 6407 struct perf_task_event task_event;
60313ebe 6408
cdd6c482
IM
6409 if (!atomic_read(&nr_comm_events) &&
6410 !atomic_read(&nr_mmap_events) &&
6411 !atomic_read(&nr_task_events))
60313ebe
PZ
6412 return;
6413
9f498cc5 6414 task_event = (struct perf_task_event){
3a80b4a3
PZ
6415 .task = task,
6416 .task_ctx = task_ctx,
cdd6c482 6417 .event_id = {
60313ebe 6418 .header = {
cdd6c482 6419 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6420 .misc = 0,
cdd6c482 6421 .size = sizeof(task_event.event_id),
60313ebe 6422 },
573402db
PZ
6423 /* .pid */
6424 /* .ppid */
9f498cc5
PZ
6425 /* .tid */
6426 /* .ptid */
34f43927 6427 /* .time */
60313ebe
PZ
6428 },
6429 };
6430
aab5b71e 6431 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6432 &task_event,
6433 task_ctx);
9f498cc5
PZ
6434}
6435
cdd6c482 6436void perf_event_fork(struct task_struct *task)
9f498cc5 6437{
cdd6c482 6438 perf_event_task(task, NULL, 1);
60313ebe
PZ
6439}
6440
8d1b2d93
PZ
6441/*
6442 * comm tracking
6443 */
6444
6445struct perf_comm_event {
22a4f650
IM
6446 struct task_struct *task;
6447 char *comm;
8d1b2d93
PZ
6448 int comm_size;
6449
6450 struct {
6451 struct perf_event_header header;
6452
6453 u32 pid;
6454 u32 tid;
cdd6c482 6455 } event_id;
8d1b2d93
PZ
6456};
6457
67516844
JO
6458static int perf_event_comm_match(struct perf_event *event)
6459{
6460 return event->attr.comm;
6461}
6462
cdd6c482 6463static void perf_event_comm_output(struct perf_event *event,
52d857a8 6464 void *data)
8d1b2d93 6465{
52d857a8 6466 struct perf_comm_event *comm_event = data;
8d1b2d93 6467 struct perf_output_handle handle;
c980d109 6468 struct perf_sample_data sample;
cdd6c482 6469 int size = comm_event->event_id.header.size;
c980d109
ACM
6470 int ret;
6471
67516844
JO
6472 if (!perf_event_comm_match(event))
6473 return;
6474
c980d109
ACM
6475 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6476 ret = perf_output_begin(&handle, event,
a7ac67ea 6477 comm_event->event_id.header.size);
8d1b2d93
PZ
6478
6479 if (ret)
c980d109 6480 goto out;
8d1b2d93 6481
cdd6c482
IM
6482 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6483 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6484
cdd6c482 6485 perf_output_put(&handle, comm_event->event_id);
76369139 6486 __output_copy(&handle, comm_event->comm,
8d1b2d93 6487 comm_event->comm_size);
c980d109
ACM
6488
6489 perf_event__output_id_sample(event, &handle, &sample);
6490
8d1b2d93 6491 perf_output_end(&handle);
c980d109
ACM
6492out:
6493 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6494}
6495
cdd6c482 6496static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6497{
413ee3b4 6498 char comm[TASK_COMM_LEN];
8d1b2d93 6499 unsigned int size;
8d1b2d93 6500
413ee3b4 6501 memset(comm, 0, sizeof(comm));
96b02d78 6502 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6503 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6504
6505 comm_event->comm = comm;
6506 comm_event->comm_size = size;
6507
cdd6c482 6508 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6509
aab5b71e 6510 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6511 comm_event,
6512 NULL);
8d1b2d93
PZ
6513}
6514
82b89778 6515void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6516{
9ee318a7
PZ
6517 struct perf_comm_event comm_event;
6518
cdd6c482 6519 if (!atomic_read(&nr_comm_events))
9ee318a7 6520 return;
a63eaf34 6521
9ee318a7 6522 comm_event = (struct perf_comm_event){
8d1b2d93 6523 .task = task,
573402db
PZ
6524 /* .comm */
6525 /* .comm_size */
cdd6c482 6526 .event_id = {
573402db 6527 .header = {
cdd6c482 6528 .type = PERF_RECORD_COMM,
82b89778 6529 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6530 /* .size */
6531 },
6532 /* .pid */
6533 /* .tid */
8d1b2d93
PZ
6534 },
6535 };
6536
cdd6c482 6537 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6538}
6539
0a4a9391
PZ
6540/*
6541 * mmap tracking
6542 */
6543
6544struct perf_mmap_event {
089dd79d
PZ
6545 struct vm_area_struct *vma;
6546
6547 const char *file_name;
6548 int file_size;
13d7a241
SE
6549 int maj, min;
6550 u64 ino;
6551 u64 ino_generation;
f972eb63 6552 u32 prot, flags;
0a4a9391
PZ
6553
6554 struct {
6555 struct perf_event_header header;
6556
6557 u32 pid;
6558 u32 tid;
6559 u64 start;
6560 u64 len;
6561 u64 pgoff;
cdd6c482 6562 } event_id;
0a4a9391
PZ
6563};
6564
67516844
JO
6565static int perf_event_mmap_match(struct perf_event *event,
6566 void *data)
6567{
6568 struct perf_mmap_event *mmap_event = data;
6569 struct vm_area_struct *vma = mmap_event->vma;
6570 int executable = vma->vm_flags & VM_EXEC;
6571
6572 return (!executable && event->attr.mmap_data) ||
13d7a241 6573 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6574}
6575
cdd6c482 6576static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6577 void *data)
0a4a9391 6578{
52d857a8 6579 struct perf_mmap_event *mmap_event = data;
0a4a9391 6580 struct perf_output_handle handle;
c980d109 6581 struct perf_sample_data sample;
cdd6c482 6582 int size = mmap_event->event_id.header.size;
c980d109 6583 int ret;
0a4a9391 6584
67516844
JO
6585 if (!perf_event_mmap_match(event, data))
6586 return;
6587
13d7a241
SE
6588 if (event->attr.mmap2) {
6589 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6590 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6591 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6592 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6593 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6594 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6595 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6596 }
6597
c980d109
ACM
6598 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6599 ret = perf_output_begin(&handle, event,
a7ac67ea 6600 mmap_event->event_id.header.size);
0a4a9391 6601 if (ret)
c980d109 6602 goto out;
0a4a9391 6603
cdd6c482
IM
6604 mmap_event->event_id.pid = perf_event_pid(event, current);
6605 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6606
cdd6c482 6607 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6608
6609 if (event->attr.mmap2) {
6610 perf_output_put(&handle, mmap_event->maj);
6611 perf_output_put(&handle, mmap_event->min);
6612 perf_output_put(&handle, mmap_event->ino);
6613 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6614 perf_output_put(&handle, mmap_event->prot);
6615 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6616 }
6617
76369139 6618 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6619 mmap_event->file_size);
c980d109
ACM
6620
6621 perf_event__output_id_sample(event, &handle, &sample);
6622
78d613eb 6623 perf_output_end(&handle);
c980d109
ACM
6624out:
6625 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6626}
6627
cdd6c482 6628static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6629{
089dd79d
PZ
6630 struct vm_area_struct *vma = mmap_event->vma;
6631 struct file *file = vma->vm_file;
13d7a241
SE
6632 int maj = 0, min = 0;
6633 u64 ino = 0, gen = 0;
f972eb63 6634 u32 prot = 0, flags = 0;
0a4a9391
PZ
6635 unsigned int size;
6636 char tmp[16];
6637 char *buf = NULL;
2c42cfbf 6638 char *name;
413ee3b4 6639
0b3589be
PZ
6640 if (vma->vm_flags & VM_READ)
6641 prot |= PROT_READ;
6642 if (vma->vm_flags & VM_WRITE)
6643 prot |= PROT_WRITE;
6644 if (vma->vm_flags & VM_EXEC)
6645 prot |= PROT_EXEC;
6646
6647 if (vma->vm_flags & VM_MAYSHARE)
6648 flags = MAP_SHARED;
6649 else
6650 flags = MAP_PRIVATE;
6651
6652 if (vma->vm_flags & VM_DENYWRITE)
6653 flags |= MAP_DENYWRITE;
6654 if (vma->vm_flags & VM_MAYEXEC)
6655 flags |= MAP_EXECUTABLE;
6656 if (vma->vm_flags & VM_LOCKED)
6657 flags |= MAP_LOCKED;
6658 if (vma->vm_flags & VM_HUGETLB)
6659 flags |= MAP_HUGETLB;
6660
0a4a9391 6661 if (file) {
13d7a241
SE
6662 struct inode *inode;
6663 dev_t dev;
3ea2f2b9 6664
2c42cfbf 6665 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6666 if (!buf) {
c7e548b4
ON
6667 name = "//enomem";
6668 goto cpy_name;
0a4a9391 6669 }
413ee3b4 6670 /*
3ea2f2b9 6671 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6672 * need to add enough zero bytes after the string to handle
6673 * the 64bit alignment we do later.
6674 */
9bf39ab2 6675 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6676 if (IS_ERR(name)) {
c7e548b4
ON
6677 name = "//toolong";
6678 goto cpy_name;
0a4a9391 6679 }
13d7a241
SE
6680 inode = file_inode(vma->vm_file);
6681 dev = inode->i_sb->s_dev;
6682 ino = inode->i_ino;
6683 gen = inode->i_generation;
6684 maj = MAJOR(dev);
6685 min = MINOR(dev);
f972eb63 6686
c7e548b4 6687 goto got_name;
0a4a9391 6688 } else {
fbe26abe
JO
6689 if (vma->vm_ops && vma->vm_ops->name) {
6690 name = (char *) vma->vm_ops->name(vma);
6691 if (name)
6692 goto cpy_name;
6693 }
6694
2c42cfbf 6695 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6696 if (name)
6697 goto cpy_name;
089dd79d 6698
32c5fb7e 6699 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6700 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6701 name = "[heap]";
6702 goto cpy_name;
32c5fb7e
ON
6703 }
6704 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6705 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6706 name = "[stack]";
6707 goto cpy_name;
089dd79d
PZ
6708 }
6709
c7e548b4
ON
6710 name = "//anon";
6711 goto cpy_name;
0a4a9391
PZ
6712 }
6713
c7e548b4
ON
6714cpy_name:
6715 strlcpy(tmp, name, sizeof(tmp));
6716 name = tmp;
0a4a9391 6717got_name:
2c42cfbf
PZ
6718 /*
6719 * Since our buffer works in 8 byte units we need to align our string
6720 * size to a multiple of 8. However, we must guarantee the tail end is
6721 * zero'd out to avoid leaking random bits to userspace.
6722 */
6723 size = strlen(name)+1;
6724 while (!IS_ALIGNED(size, sizeof(u64)))
6725 name[size++] = '\0';
0a4a9391
PZ
6726
6727 mmap_event->file_name = name;
6728 mmap_event->file_size = size;
13d7a241
SE
6729 mmap_event->maj = maj;
6730 mmap_event->min = min;
6731 mmap_event->ino = ino;
6732 mmap_event->ino_generation = gen;
f972eb63
PZ
6733 mmap_event->prot = prot;
6734 mmap_event->flags = flags;
0a4a9391 6735
2fe85427
SE
6736 if (!(vma->vm_flags & VM_EXEC))
6737 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6738
cdd6c482 6739 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6740
aab5b71e 6741 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6742 mmap_event,
6743 NULL);
665c2142 6744
0a4a9391
PZ
6745 kfree(buf);
6746}
6747
375637bc
AS
6748/*
6749 * Check whether inode and address range match filter criteria.
6750 */
6751static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6752 struct file *file, unsigned long offset,
6753 unsigned long size)
6754{
45063097 6755 if (filter->inode != file_inode(file))
375637bc
AS
6756 return false;
6757
6758 if (filter->offset > offset + size)
6759 return false;
6760
6761 if (filter->offset + filter->size < offset)
6762 return false;
6763
6764 return true;
6765}
6766
6767static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6768{
6769 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6770 struct vm_area_struct *vma = data;
6771 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6772 struct file *file = vma->vm_file;
6773 struct perf_addr_filter *filter;
6774 unsigned int restart = 0, count = 0;
6775
6776 if (!has_addr_filter(event))
6777 return;
6778
6779 if (!file)
6780 return;
6781
6782 raw_spin_lock_irqsave(&ifh->lock, flags);
6783 list_for_each_entry(filter, &ifh->list, entry) {
6784 if (perf_addr_filter_match(filter, file, off,
6785 vma->vm_end - vma->vm_start)) {
6786 event->addr_filters_offs[count] = vma->vm_start;
6787 restart++;
6788 }
6789
6790 count++;
6791 }
6792
6793 if (restart)
6794 event->addr_filters_gen++;
6795 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6796
6797 if (restart)
767ae086 6798 perf_event_stop(event, 1);
375637bc
AS
6799}
6800
6801/*
6802 * Adjust all task's events' filters to the new vma
6803 */
6804static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6805{
6806 struct perf_event_context *ctx;
6807 int ctxn;
6808
12b40a23
MP
6809 /*
6810 * Data tracing isn't supported yet and as such there is no need
6811 * to keep track of anything that isn't related to executable code:
6812 */
6813 if (!(vma->vm_flags & VM_EXEC))
6814 return;
6815
375637bc
AS
6816 rcu_read_lock();
6817 for_each_task_context_nr(ctxn) {
6818 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6819 if (!ctx)
6820 continue;
6821
aab5b71e 6822 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
6823 }
6824 rcu_read_unlock();
6825}
6826
3af9e859 6827void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6828{
9ee318a7
PZ
6829 struct perf_mmap_event mmap_event;
6830
cdd6c482 6831 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6832 return;
6833
6834 mmap_event = (struct perf_mmap_event){
089dd79d 6835 .vma = vma,
573402db
PZ
6836 /* .file_name */
6837 /* .file_size */
cdd6c482 6838 .event_id = {
573402db 6839 .header = {
cdd6c482 6840 .type = PERF_RECORD_MMAP,
39447b38 6841 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6842 /* .size */
6843 },
6844 /* .pid */
6845 /* .tid */
089dd79d
PZ
6846 .start = vma->vm_start,
6847 .len = vma->vm_end - vma->vm_start,
3a0304e9 6848 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6849 },
13d7a241
SE
6850 /* .maj (attr_mmap2 only) */
6851 /* .min (attr_mmap2 only) */
6852 /* .ino (attr_mmap2 only) */
6853 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6854 /* .prot (attr_mmap2 only) */
6855 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6856 };
6857
375637bc 6858 perf_addr_filters_adjust(vma);
cdd6c482 6859 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6860}
6861
68db7e98
AS
6862void perf_event_aux_event(struct perf_event *event, unsigned long head,
6863 unsigned long size, u64 flags)
6864{
6865 struct perf_output_handle handle;
6866 struct perf_sample_data sample;
6867 struct perf_aux_event {
6868 struct perf_event_header header;
6869 u64 offset;
6870 u64 size;
6871 u64 flags;
6872 } rec = {
6873 .header = {
6874 .type = PERF_RECORD_AUX,
6875 .misc = 0,
6876 .size = sizeof(rec),
6877 },
6878 .offset = head,
6879 .size = size,
6880 .flags = flags,
6881 };
6882 int ret;
6883
6884 perf_event_header__init_id(&rec.header, &sample, event);
6885 ret = perf_output_begin(&handle, event, rec.header.size);
6886
6887 if (ret)
6888 return;
6889
6890 perf_output_put(&handle, rec);
6891 perf_event__output_id_sample(event, &handle, &sample);
6892
6893 perf_output_end(&handle);
6894}
6895
f38b0dbb
KL
6896/*
6897 * Lost/dropped samples logging
6898 */
6899void perf_log_lost_samples(struct perf_event *event, u64 lost)
6900{
6901 struct perf_output_handle handle;
6902 struct perf_sample_data sample;
6903 int ret;
6904
6905 struct {
6906 struct perf_event_header header;
6907 u64 lost;
6908 } lost_samples_event = {
6909 .header = {
6910 .type = PERF_RECORD_LOST_SAMPLES,
6911 .misc = 0,
6912 .size = sizeof(lost_samples_event),
6913 },
6914 .lost = lost,
6915 };
6916
6917 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6918
6919 ret = perf_output_begin(&handle, event,
6920 lost_samples_event.header.size);
6921 if (ret)
6922 return;
6923
6924 perf_output_put(&handle, lost_samples_event);
6925 perf_event__output_id_sample(event, &handle, &sample);
6926 perf_output_end(&handle);
6927}
6928
45ac1403
AH
6929/*
6930 * context_switch tracking
6931 */
6932
6933struct perf_switch_event {
6934 struct task_struct *task;
6935 struct task_struct *next_prev;
6936
6937 struct {
6938 struct perf_event_header header;
6939 u32 next_prev_pid;
6940 u32 next_prev_tid;
6941 } event_id;
6942};
6943
6944static int perf_event_switch_match(struct perf_event *event)
6945{
6946 return event->attr.context_switch;
6947}
6948
6949static void perf_event_switch_output(struct perf_event *event, void *data)
6950{
6951 struct perf_switch_event *se = data;
6952 struct perf_output_handle handle;
6953 struct perf_sample_data sample;
6954 int ret;
6955
6956 if (!perf_event_switch_match(event))
6957 return;
6958
6959 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6960 if (event->ctx->task) {
6961 se->event_id.header.type = PERF_RECORD_SWITCH;
6962 se->event_id.header.size = sizeof(se->event_id.header);
6963 } else {
6964 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6965 se->event_id.header.size = sizeof(se->event_id);
6966 se->event_id.next_prev_pid =
6967 perf_event_pid(event, se->next_prev);
6968 se->event_id.next_prev_tid =
6969 perf_event_tid(event, se->next_prev);
6970 }
6971
6972 perf_event_header__init_id(&se->event_id.header, &sample, event);
6973
6974 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6975 if (ret)
6976 return;
6977
6978 if (event->ctx->task)
6979 perf_output_put(&handle, se->event_id.header);
6980 else
6981 perf_output_put(&handle, se->event_id);
6982
6983 perf_event__output_id_sample(event, &handle, &sample);
6984
6985 perf_output_end(&handle);
6986}
6987
6988static void perf_event_switch(struct task_struct *task,
6989 struct task_struct *next_prev, bool sched_in)
6990{
6991 struct perf_switch_event switch_event;
6992
6993 /* N.B. caller checks nr_switch_events != 0 */
6994
6995 switch_event = (struct perf_switch_event){
6996 .task = task,
6997 .next_prev = next_prev,
6998 .event_id = {
6999 .header = {
7000 /* .type */
7001 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7002 /* .size */
7003 },
7004 /* .next_prev_pid */
7005 /* .next_prev_tid */
7006 },
7007 };
7008
aab5b71e 7009 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7010 &switch_event,
7011 NULL);
7012}
7013
a78ac325
PZ
7014/*
7015 * IRQ throttle logging
7016 */
7017
cdd6c482 7018static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7019{
7020 struct perf_output_handle handle;
c980d109 7021 struct perf_sample_data sample;
a78ac325
PZ
7022 int ret;
7023
7024 struct {
7025 struct perf_event_header header;
7026 u64 time;
cca3f454 7027 u64 id;
7f453c24 7028 u64 stream_id;
a78ac325
PZ
7029 } throttle_event = {
7030 .header = {
cdd6c482 7031 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7032 .misc = 0,
7033 .size = sizeof(throttle_event),
7034 },
34f43927 7035 .time = perf_event_clock(event),
cdd6c482
IM
7036 .id = primary_event_id(event),
7037 .stream_id = event->id,
a78ac325
PZ
7038 };
7039
966ee4d6 7040 if (enable)
cdd6c482 7041 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7042
c980d109
ACM
7043 perf_event_header__init_id(&throttle_event.header, &sample, event);
7044
7045 ret = perf_output_begin(&handle, event,
a7ac67ea 7046 throttle_event.header.size);
a78ac325
PZ
7047 if (ret)
7048 return;
7049
7050 perf_output_put(&handle, throttle_event);
c980d109 7051 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7052 perf_output_end(&handle);
7053}
7054
ec0d7729
AS
7055static void perf_log_itrace_start(struct perf_event *event)
7056{
7057 struct perf_output_handle handle;
7058 struct perf_sample_data sample;
7059 struct perf_aux_event {
7060 struct perf_event_header header;
7061 u32 pid;
7062 u32 tid;
7063 } rec;
7064 int ret;
7065
7066 if (event->parent)
7067 event = event->parent;
7068
7069 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7070 event->hw.itrace_started)
7071 return;
7072
ec0d7729
AS
7073 rec.header.type = PERF_RECORD_ITRACE_START;
7074 rec.header.misc = 0;
7075 rec.header.size = sizeof(rec);
7076 rec.pid = perf_event_pid(event, current);
7077 rec.tid = perf_event_tid(event, current);
7078
7079 perf_event_header__init_id(&rec.header, &sample, event);
7080 ret = perf_output_begin(&handle, event, rec.header.size);
7081
7082 if (ret)
7083 return;
7084
7085 perf_output_put(&handle, rec);
7086 perf_event__output_id_sample(event, &handle, &sample);
7087
7088 perf_output_end(&handle);
7089}
7090
475113d9
JO
7091static int
7092__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7093{
cdd6c482 7094 struct hw_perf_event *hwc = &event->hw;
79f14641 7095 int ret = 0;
475113d9 7096 u64 seq;
96398826 7097
e050e3f0
SE
7098 seq = __this_cpu_read(perf_throttled_seq);
7099 if (seq != hwc->interrupts_seq) {
7100 hwc->interrupts_seq = seq;
7101 hwc->interrupts = 1;
7102 } else {
7103 hwc->interrupts++;
7104 if (unlikely(throttle
7105 && hwc->interrupts >= max_samples_per_tick)) {
7106 __this_cpu_inc(perf_throttled_count);
555e0c1e 7107 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7108 hwc->interrupts = MAX_INTERRUPTS;
7109 perf_log_throttle(event, 0);
a78ac325
PZ
7110 ret = 1;
7111 }
e050e3f0 7112 }
60db5e09 7113
cdd6c482 7114 if (event->attr.freq) {
def0a9b2 7115 u64 now = perf_clock();
abd50713 7116 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7117
abd50713 7118 hwc->freq_time_stamp = now;
bd2b5b12 7119
abd50713 7120 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7121 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7122 }
7123
475113d9
JO
7124 return ret;
7125}
7126
7127int perf_event_account_interrupt(struct perf_event *event)
7128{
7129 return __perf_event_account_interrupt(event, 1);
7130}
7131
7132/*
7133 * Generic event overflow handling, sampling.
7134 */
7135
7136static int __perf_event_overflow(struct perf_event *event,
7137 int throttle, struct perf_sample_data *data,
7138 struct pt_regs *regs)
7139{
7140 int events = atomic_read(&event->event_limit);
7141 int ret = 0;
7142
7143 /*
7144 * Non-sampling counters might still use the PMI to fold short
7145 * hardware counters, ignore those.
7146 */
7147 if (unlikely(!is_sampling_event(event)))
7148 return 0;
7149
7150 ret = __perf_event_account_interrupt(event, throttle);
7151
2023b359
PZ
7152 /*
7153 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7154 * events
2023b359
PZ
7155 */
7156
cdd6c482
IM
7157 event->pending_kill = POLL_IN;
7158 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7159 ret = 1;
cdd6c482 7160 event->pending_kill = POLL_HUP;
5aab90ce
JO
7161
7162 perf_event_disable_inatomic(event);
79f14641
PZ
7163 }
7164
aa6a5f3c 7165 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7166
fed66e2c 7167 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7168 event->pending_wakeup = 1;
7169 irq_work_queue(&event->pending);
f506b3dc
PZ
7170 }
7171
79f14641 7172 return ret;
f6c7d5fe
PZ
7173}
7174
a8b0ca17 7175int perf_event_overflow(struct perf_event *event,
5622f295
MM
7176 struct perf_sample_data *data,
7177 struct pt_regs *regs)
850bc73f 7178{
a8b0ca17 7179 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7180}
7181
15dbf27c 7182/*
cdd6c482 7183 * Generic software event infrastructure
15dbf27c
PZ
7184 */
7185
b28ab83c
PZ
7186struct swevent_htable {
7187 struct swevent_hlist *swevent_hlist;
7188 struct mutex hlist_mutex;
7189 int hlist_refcount;
7190
7191 /* Recursion avoidance in each contexts */
7192 int recursion[PERF_NR_CONTEXTS];
7193};
7194
7195static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7196
7b4b6658 7197/*
cdd6c482
IM
7198 * We directly increment event->count and keep a second value in
7199 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7200 * is kept in the range [-sample_period, 0] so that we can use the
7201 * sign as trigger.
7202 */
7203
ab573844 7204u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7205{
cdd6c482 7206 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7207 u64 period = hwc->last_period;
7208 u64 nr, offset;
7209 s64 old, val;
7210
7211 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7212
7213again:
e7850595 7214 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7215 if (val < 0)
7216 return 0;
15dbf27c 7217
7b4b6658
PZ
7218 nr = div64_u64(period + val, period);
7219 offset = nr * period;
7220 val -= offset;
e7850595 7221 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7222 goto again;
15dbf27c 7223
7b4b6658 7224 return nr;
15dbf27c
PZ
7225}
7226
0cff784a 7227static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7228 struct perf_sample_data *data,
5622f295 7229 struct pt_regs *regs)
15dbf27c 7230{
cdd6c482 7231 struct hw_perf_event *hwc = &event->hw;
850bc73f 7232 int throttle = 0;
15dbf27c 7233
0cff784a
PZ
7234 if (!overflow)
7235 overflow = perf_swevent_set_period(event);
15dbf27c 7236
7b4b6658
PZ
7237 if (hwc->interrupts == MAX_INTERRUPTS)
7238 return;
15dbf27c 7239
7b4b6658 7240 for (; overflow; overflow--) {
a8b0ca17 7241 if (__perf_event_overflow(event, throttle,
5622f295 7242 data, regs)) {
7b4b6658
PZ
7243 /*
7244 * We inhibit the overflow from happening when
7245 * hwc->interrupts == MAX_INTERRUPTS.
7246 */
7247 break;
7248 }
cf450a73 7249 throttle = 1;
7b4b6658 7250 }
15dbf27c
PZ
7251}
7252
a4eaf7f1 7253static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7254 struct perf_sample_data *data,
5622f295 7255 struct pt_regs *regs)
7b4b6658 7256{
cdd6c482 7257 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7258
e7850595 7259 local64_add(nr, &event->count);
d6d020e9 7260
0cff784a
PZ
7261 if (!regs)
7262 return;
7263
6c7e550f 7264 if (!is_sampling_event(event))
7b4b6658 7265 return;
d6d020e9 7266
5d81e5cf
AV
7267 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7268 data->period = nr;
7269 return perf_swevent_overflow(event, 1, data, regs);
7270 } else
7271 data->period = event->hw.last_period;
7272
0cff784a 7273 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7274 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7275
e7850595 7276 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7277 return;
df1a132b 7278
a8b0ca17 7279 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7280}
7281
f5ffe02e
FW
7282static int perf_exclude_event(struct perf_event *event,
7283 struct pt_regs *regs)
7284{
a4eaf7f1 7285 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7286 return 1;
a4eaf7f1 7287
f5ffe02e
FW
7288 if (regs) {
7289 if (event->attr.exclude_user && user_mode(regs))
7290 return 1;
7291
7292 if (event->attr.exclude_kernel && !user_mode(regs))
7293 return 1;
7294 }
7295
7296 return 0;
7297}
7298
cdd6c482 7299static int perf_swevent_match(struct perf_event *event,
1c432d89 7300 enum perf_type_id type,
6fb2915d
LZ
7301 u32 event_id,
7302 struct perf_sample_data *data,
7303 struct pt_regs *regs)
15dbf27c 7304{
cdd6c482 7305 if (event->attr.type != type)
a21ca2ca 7306 return 0;
f5ffe02e 7307
cdd6c482 7308 if (event->attr.config != event_id)
15dbf27c
PZ
7309 return 0;
7310
f5ffe02e
FW
7311 if (perf_exclude_event(event, regs))
7312 return 0;
15dbf27c
PZ
7313
7314 return 1;
7315}
7316
76e1d904
FW
7317static inline u64 swevent_hash(u64 type, u32 event_id)
7318{
7319 u64 val = event_id | (type << 32);
7320
7321 return hash_64(val, SWEVENT_HLIST_BITS);
7322}
7323
49f135ed
FW
7324static inline struct hlist_head *
7325__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7326{
49f135ed
FW
7327 u64 hash = swevent_hash(type, event_id);
7328
7329 return &hlist->heads[hash];
7330}
76e1d904 7331
49f135ed
FW
7332/* For the read side: events when they trigger */
7333static inline struct hlist_head *
b28ab83c 7334find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7335{
7336 struct swevent_hlist *hlist;
76e1d904 7337
b28ab83c 7338 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7339 if (!hlist)
7340 return NULL;
7341
49f135ed
FW
7342 return __find_swevent_head(hlist, type, event_id);
7343}
7344
7345/* For the event head insertion and removal in the hlist */
7346static inline struct hlist_head *
b28ab83c 7347find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7348{
7349 struct swevent_hlist *hlist;
7350 u32 event_id = event->attr.config;
7351 u64 type = event->attr.type;
7352
7353 /*
7354 * Event scheduling is always serialized against hlist allocation
7355 * and release. Which makes the protected version suitable here.
7356 * The context lock guarantees that.
7357 */
b28ab83c 7358 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7359 lockdep_is_held(&event->ctx->lock));
7360 if (!hlist)
7361 return NULL;
7362
7363 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7364}
7365
7366static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7367 u64 nr,
76e1d904
FW
7368 struct perf_sample_data *data,
7369 struct pt_regs *regs)
15dbf27c 7370{
4a32fea9 7371 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7372 struct perf_event *event;
76e1d904 7373 struct hlist_head *head;
15dbf27c 7374
76e1d904 7375 rcu_read_lock();
b28ab83c 7376 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7377 if (!head)
7378 goto end;
7379
b67bfe0d 7380 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7381 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7382 perf_swevent_event(event, nr, data, regs);
15dbf27c 7383 }
76e1d904
FW
7384end:
7385 rcu_read_unlock();
15dbf27c
PZ
7386}
7387
86038c5e
PZI
7388DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7389
4ed7c92d 7390int perf_swevent_get_recursion_context(void)
96f6d444 7391{
4a32fea9 7392 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7393
b28ab83c 7394 return get_recursion_context(swhash->recursion);
96f6d444 7395}
645e8cc0 7396EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7397
98b5c2c6 7398void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7399{
4a32fea9 7400 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7401
b28ab83c 7402 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7403}
15dbf27c 7404
86038c5e 7405void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7406{
a4234bfc 7407 struct perf_sample_data data;
4ed7c92d 7408
86038c5e 7409 if (WARN_ON_ONCE(!regs))
4ed7c92d 7410 return;
a4234bfc 7411
fd0d000b 7412 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7413 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7414}
7415
7416void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7417{
7418 int rctx;
7419
7420 preempt_disable_notrace();
7421 rctx = perf_swevent_get_recursion_context();
7422 if (unlikely(rctx < 0))
7423 goto fail;
7424
7425 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7426
7427 perf_swevent_put_recursion_context(rctx);
86038c5e 7428fail:
1c024eca 7429 preempt_enable_notrace();
b8e83514
PZ
7430}
7431
cdd6c482 7432static void perf_swevent_read(struct perf_event *event)
15dbf27c 7433{
15dbf27c
PZ
7434}
7435
a4eaf7f1 7436static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7437{
4a32fea9 7438 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7439 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7440 struct hlist_head *head;
7441
6c7e550f 7442 if (is_sampling_event(event)) {
7b4b6658 7443 hwc->last_period = hwc->sample_period;
cdd6c482 7444 perf_swevent_set_period(event);
7b4b6658 7445 }
76e1d904 7446
a4eaf7f1
PZ
7447 hwc->state = !(flags & PERF_EF_START);
7448
b28ab83c 7449 head = find_swevent_head(swhash, event);
12ca6ad2 7450 if (WARN_ON_ONCE(!head))
76e1d904
FW
7451 return -EINVAL;
7452
7453 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7454 perf_event_update_userpage(event);
76e1d904 7455
15dbf27c
PZ
7456 return 0;
7457}
7458
a4eaf7f1 7459static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7460{
76e1d904 7461 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7462}
7463
a4eaf7f1 7464static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7465{
a4eaf7f1 7466 event->hw.state = 0;
d6d020e9 7467}
aa9c4c0f 7468
a4eaf7f1 7469static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7470{
a4eaf7f1 7471 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7472}
7473
49f135ed
FW
7474/* Deref the hlist from the update side */
7475static inline struct swevent_hlist *
b28ab83c 7476swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7477{
b28ab83c
PZ
7478 return rcu_dereference_protected(swhash->swevent_hlist,
7479 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7480}
7481
b28ab83c 7482static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7483{
b28ab83c 7484 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7485
49f135ed 7486 if (!hlist)
76e1d904
FW
7487 return;
7488
70691d4a 7489 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7490 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7491}
7492
3b364d7b 7493static void swevent_hlist_put_cpu(int cpu)
76e1d904 7494{
b28ab83c 7495 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7496
b28ab83c 7497 mutex_lock(&swhash->hlist_mutex);
76e1d904 7498
b28ab83c
PZ
7499 if (!--swhash->hlist_refcount)
7500 swevent_hlist_release(swhash);
76e1d904 7501
b28ab83c 7502 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7503}
7504
3b364d7b 7505static void swevent_hlist_put(void)
76e1d904
FW
7506{
7507 int cpu;
7508
76e1d904 7509 for_each_possible_cpu(cpu)
3b364d7b 7510 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7511}
7512
3b364d7b 7513static int swevent_hlist_get_cpu(int cpu)
76e1d904 7514{
b28ab83c 7515 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7516 int err = 0;
7517
b28ab83c 7518 mutex_lock(&swhash->hlist_mutex);
b28ab83c 7519 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
7520 struct swevent_hlist *hlist;
7521
7522 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7523 if (!hlist) {
7524 err = -ENOMEM;
7525 goto exit;
7526 }
b28ab83c 7527 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7528 }
b28ab83c 7529 swhash->hlist_refcount++;
9ed6060d 7530exit:
b28ab83c 7531 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7532
7533 return err;
7534}
7535
3b364d7b 7536static int swevent_hlist_get(void)
76e1d904 7537{
3b364d7b 7538 int err, cpu, failed_cpu;
76e1d904 7539
76e1d904
FW
7540 get_online_cpus();
7541 for_each_possible_cpu(cpu) {
3b364d7b 7542 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7543 if (err) {
7544 failed_cpu = cpu;
7545 goto fail;
7546 }
7547 }
7548 put_online_cpus();
7549
7550 return 0;
9ed6060d 7551fail:
76e1d904
FW
7552 for_each_possible_cpu(cpu) {
7553 if (cpu == failed_cpu)
7554 break;
3b364d7b 7555 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7556 }
7557
7558 put_online_cpus();
7559 return err;
7560}
7561
c5905afb 7562struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7563
b0a873eb
PZ
7564static void sw_perf_event_destroy(struct perf_event *event)
7565{
7566 u64 event_id = event->attr.config;
95476b64 7567
b0a873eb
PZ
7568 WARN_ON(event->parent);
7569
c5905afb 7570 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7571 swevent_hlist_put();
b0a873eb
PZ
7572}
7573
7574static int perf_swevent_init(struct perf_event *event)
7575{
8176cced 7576 u64 event_id = event->attr.config;
b0a873eb
PZ
7577
7578 if (event->attr.type != PERF_TYPE_SOFTWARE)
7579 return -ENOENT;
7580
2481c5fa
SE
7581 /*
7582 * no branch sampling for software events
7583 */
7584 if (has_branch_stack(event))
7585 return -EOPNOTSUPP;
7586
b0a873eb
PZ
7587 switch (event_id) {
7588 case PERF_COUNT_SW_CPU_CLOCK:
7589 case PERF_COUNT_SW_TASK_CLOCK:
7590 return -ENOENT;
7591
7592 default:
7593 break;
7594 }
7595
ce677831 7596 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7597 return -ENOENT;
7598
7599 if (!event->parent) {
7600 int err;
7601
3b364d7b 7602 err = swevent_hlist_get();
b0a873eb
PZ
7603 if (err)
7604 return err;
7605
c5905afb 7606 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7607 event->destroy = sw_perf_event_destroy;
7608 }
7609
7610 return 0;
7611}
7612
7613static struct pmu perf_swevent = {
89a1e187 7614 .task_ctx_nr = perf_sw_context,
95476b64 7615
34f43927
PZ
7616 .capabilities = PERF_PMU_CAP_NO_NMI,
7617
b0a873eb 7618 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7619 .add = perf_swevent_add,
7620 .del = perf_swevent_del,
7621 .start = perf_swevent_start,
7622 .stop = perf_swevent_stop,
1c024eca 7623 .read = perf_swevent_read,
1c024eca
PZ
7624};
7625
b0a873eb
PZ
7626#ifdef CONFIG_EVENT_TRACING
7627
1c024eca
PZ
7628static int perf_tp_filter_match(struct perf_event *event,
7629 struct perf_sample_data *data)
7630{
7e3f977e 7631 void *record = data->raw->frag.data;
1c024eca 7632
b71b437e
PZ
7633 /* only top level events have filters set */
7634 if (event->parent)
7635 event = event->parent;
7636
1c024eca
PZ
7637 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7638 return 1;
7639 return 0;
7640}
7641
7642static int perf_tp_event_match(struct perf_event *event,
7643 struct perf_sample_data *data,
7644 struct pt_regs *regs)
7645{
a0f7d0f7
FW
7646 if (event->hw.state & PERF_HES_STOPPED)
7647 return 0;
580d607c
PZ
7648 /*
7649 * All tracepoints are from kernel-space.
7650 */
7651 if (event->attr.exclude_kernel)
1c024eca
PZ
7652 return 0;
7653
7654 if (!perf_tp_filter_match(event, data))
7655 return 0;
7656
7657 return 1;
7658}
7659
85b67bcb
AS
7660void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7661 struct trace_event_call *call, u64 count,
7662 struct pt_regs *regs, struct hlist_head *head,
7663 struct task_struct *task)
7664{
7665 struct bpf_prog *prog = call->prog;
7666
7667 if (prog) {
7668 *(struct pt_regs **)raw_data = regs;
7669 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7670 perf_swevent_put_recursion_context(rctx);
7671 return;
7672 }
7673 }
7674 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7675 rctx, task);
7676}
7677EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7678
1e1dcd93 7679void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff
AV
7680 struct pt_regs *regs, struct hlist_head *head, int rctx,
7681 struct task_struct *task)
95476b64
FW
7682{
7683 struct perf_sample_data data;
1c024eca 7684 struct perf_event *event;
1c024eca 7685
95476b64 7686 struct perf_raw_record raw = {
7e3f977e
DB
7687 .frag = {
7688 .size = entry_size,
7689 .data = record,
7690 },
95476b64
FW
7691 };
7692
1e1dcd93 7693 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7694 data.raw = &raw;
7695
1e1dcd93
AS
7696 perf_trace_buf_update(record, event_type);
7697
b67bfe0d 7698 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7699 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7700 perf_swevent_event(event, count, &data, regs);
4f41c013 7701 }
ecc55f84 7702
e6dab5ff
AV
7703 /*
7704 * If we got specified a target task, also iterate its context and
7705 * deliver this event there too.
7706 */
7707 if (task && task != current) {
7708 struct perf_event_context *ctx;
7709 struct trace_entry *entry = record;
7710
7711 rcu_read_lock();
7712 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7713 if (!ctx)
7714 goto unlock;
7715
7716 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7717 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7718 continue;
7719 if (event->attr.config != entry->type)
7720 continue;
7721 if (perf_tp_event_match(event, &data, regs))
7722 perf_swevent_event(event, count, &data, regs);
7723 }
7724unlock:
7725 rcu_read_unlock();
7726 }
7727
ecc55f84 7728 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7729}
7730EXPORT_SYMBOL_GPL(perf_tp_event);
7731
cdd6c482 7732static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7733{
1c024eca 7734 perf_trace_destroy(event);
e077df4f
PZ
7735}
7736
b0a873eb 7737static int perf_tp_event_init(struct perf_event *event)
e077df4f 7738{
76e1d904
FW
7739 int err;
7740
b0a873eb
PZ
7741 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7742 return -ENOENT;
7743
2481c5fa
SE
7744 /*
7745 * no branch sampling for tracepoint events
7746 */
7747 if (has_branch_stack(event))
7748 return -EOPNOTSUPP;
7749
1c024eca
PZ
7750 err = perf_trace_init(event);
7751 if (err)
b0a873eb 7752 return err;
e077df4f 7753
cdd6c482 7754 event->destroy = tp_perf_event_destroy;
e077df4f 7755
b0a873eb
PZ
7756 return 0;
7757}
7758
7759static struct pmu perf_tracepoint = {
89a1e187
PZ
7760 .task_ctx_nr = perf_sw_context,
7761
b0a873eb 7762 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7763 .add = perf_trace_add,
7764 .del = perf_trace_del,
7765 .start = perf_swevent_start,
7766 .stop = perf_swevent_stop,
b0a873eb 7767 .read = perf_swevent_read,
b0a873eb
PZ
7768};
7769
7770static inline void perf_tp_register(void)
7771{
2e80a82a 7772 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7773}
6fb2915d 7774
6fb2915d
LZ
7775static void perf_event_free_filter(struct perf_event *event)
7776{
7777 ftrace_profile_free_filter(event);
7778}
7779
aa6a5f3c
AS
7780#ifdef CONFIG_BPF_SYSCALL
7781static void bpf_overflow_handler(struct perf_event *event,
7782 struct perf_sample_data *data,
7783 struct pt_regs *regs)
7784{
7785 struct bpf_perf_event_data_kern ctx = {
7786 .data = data,
7787 .regs = regs,
7788 };
7789 int ret = 0;
7790
7791 preempt_disable();
7792 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7793 goto out;
7794 rcu_read_lock();
88575199 7795 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
7796 rcu_read_unlock();
7797out:
7798 __this_cpu_dec(bpf_prog_active);
7799 preempt_enable();
7800 if (!ret)
7801 return;
7802
7803 event->orig_overflow_handler(event, data, regs);
7804}
7805
7806static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7807{
7808 struct bpf_prog *prog;
7809
7810 if (event->overflow_handler_context)
7811 /* hw breakpoint or kernel counter */
7812 return -EINVAL;
7813
7814 if (event->prog)
7815 return -EEXIST;
7816
7817 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7818 if (IS_ERR(prog))
7819 return PTR_ERR(prog);
7820
7821 event->prog = prog;
7822 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7823 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7824 return 0;
7825}
7826
7827static void perf_event_free_bpf_handler(struct perf_event *event)
7828{
7829 struct bpf_prog *prog = event->prog;
7830
7831 if (!prog)
7832 return;
7833
7834 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7835 event->prog = NULL;
7836 bpf_prog_put(prog);
7837}
7838#else
7839static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7840{
7841 return -EOPNOTSUPP;
7842}
7843static void perf_event_free_bpf_handler(struct perf_event *event)
7844{
7845}
7846#endif
7847
2541517c
AS
7848static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7849{
98b5c2c6 7850 bool is_kprobe, is_tracepoint;
2541517c
AS
7851 struct bpf_prog *prog;
7852
aa6a5f3c
AS
7853 if (event->attr.type == PERF_TYPE_HARDWARE ||
7854 event->attr.type == PERF_TYPE_SOFTWARE)
7855 return perf_event_set_bpf_handler(event, prog_fd);
7856
2541517c
AS
7857 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7858 return -EINVAL;
7859
7860 if (event->tp_event->prog)
7861 return -EEXIST;
7862
98b5c2c6
AS
7863 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7864 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7865 if (!is_kprobe && !is_tracepoint)
7866 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
7867 return -EINVAL;
7868
7869 prog = bpf_prog_get(prog_fd);
7870 if (IS_ERR(prog))
7871 return PTR_ERR(prog);
7872
98b5c2c6
AS
7873 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7874 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
7875 /* valid fd, but invalid bpf program type */
7876 bpf_prog_put(prog);
7877 return -EINVAL;
7878 }
7879
32bbe007
AS
7880 if (is_tracepoint) {
7881 int off = trace_event_get_offsets(event->tp_event);
7882
7883 if (prog->aux->max_ctx_offset > off) {
7884 bpf_prog_put(prog);
7885 return -EACCES;
7886 }
7887 }
2541517c
AS
7888 event->tp_event->prog = prog;
7889
7890 return 0;
7891}
7892
7893static void perf_event_free_bpf_prog(struct perf_event *event)
7894{
7895 struct bpf_prog *prog;
7896
aa6a5f3c
AS
7897 perf_event_free_bpf_handler(event);
7898
2541517c
AS
7899 if (!event->tp_event)
7900 return;
7901
7902 prog = event->tp_event->prog;
7903 if (prog) {
7904 event->tp_event->prog = NULL;
1aacde3d 7905 bpf_prog_put(prog);
2541517c
AS
7906 }
7907}
7908
e077df4f 7909#else
6fb2915d 7910
b0a873eb 7911static inline void perf_tp_register(void)
e077df4f 7912{
e077df4f 7913}
6fb2915d 7914
6fb2915d
LZ
7915static void perf_event_free_filter(struct perf_event *event)
7916{
7917}
7918
2541517c
AS
7919static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7920{
7921 return -ENOENT;
7922}
7923
7924static void perf_event_free_bpf_prog(struct perf_event *event)
7925{
7926}
07b139c8 7927#endif /* CONFIG_EVENT_TRACING */
e077df4f 7928
24f1e32c 7929#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7930void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7931{
f5ffe02e
FW
7932 struct perf_sample_data sample;
7933 struct pt_regs *regs = data;
7934
fd0d000b 7935 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7936
a4eaf7f1 7937 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7938 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7939}
7940#endif
7941
375637bc
AS
7942/*
7943 * Allocate a new address filter
7944 */
7945static struct perf_addr_filter *
7946perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7947{
7948 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7949 struct perf_addr_filter *filter;
7950
7951 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7952 if (!filter)
7953 return NULL;
7954
7955 INIT_LIST_HEAD(&filter->entry);
7956 list_add_tail(&filter->entry, filters);
7957
7958 return filter;
7959}
7960
7961static void free_filters_list(struct list_head *filters)
7962{
7963 struct perf_addr_filter *filter, *iter;
7964
7965 list_for_each_entry_safe(filter, iter, filters, entry) {
7966 if (filter->inode)
7967 iput(filter->inode);
7968 list_del(&filter->entry);
7969 kfree(filter);
7970 }
7971}
7972
7973/*
7974 * Free existing address filters and optionally install new ones
7975 */
7976static void perf_addr_filters_splice(struct perf_event *event,
7977 struct list_head *head)
7978{
7979 unsigned long flags;
7980 LIST_HEAD(list);
7981
7982 if (!has_addr_filter(event))
7983 return;
7984
7985 /* don't bother with children, they don't have their own filters */
7986 if (event->parent)
7987 return;
7988
7989 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7990
7991 list_splice_init(&event->addr_filters.list, &list);
7992 if (head)
7993 list_splice(head, &event->addr_filters.list);
7994
7995 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7996
7997 free_filters_list(&list);
7998}
7999
8000/*
8001 * Scan through mm's vmas and see if one of them matches the
8002 * @filter; if so, adjust filter's address range.
8003 * Called with mm::mmap_sem down for reading.
8004 */
8005static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8006 struct mm_struct *mm)
8007{
8008 struct vm_area_struct *vma;
8009
8010 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8011 struct file *file = vma->vm_file;
8012 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8013 unsigned long vma_size = vma->vm_end - vma->vm_start;
8014
8015 if (!file)
8016 continue;
8017
8018 if (!perf_addr_filter_match(filter, file, off, vma_size))
8019 continue;
8020
8021 return vma->vm_start;
8022 }
8023
8024 return 0;
8025}
8026
8027/*
8028 * Update event's address range filters based on the
8029 * task's existing mappings, if any.
8030 */
8031static void perf_event_addr_filters_apply(struct perf_event *event)
8032{
8033 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8034 struct task_struct *task = READ_ONCE(event->ctx->task);
8035 struct perf_addr_filter *filter;
8036 struct mm_struct *mm = NULL;
8037 unsigned int count = 0;
8038 unsigned long flags;
8039
8040 /*
8041 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8042 * will stop on the parent's child_mutex that our caller is also holding
8043 */
8044 if (task == TASK_TOMBSTONE)
8045 return;
8046
8047 mm = get_task_mm(event->ctx->task);
8048 if (!mm)
8049 goto restart;
8050
8051 down_read(&mm->mmap_sem);
8052
8053 raw_spin_lock_irqsave(&ifh->lock, flags);
8054 list_for_each_entry(filter, &ifh->list, entry) {
8055 event->addr_filters_offs[count] = 0;
8056
99f5bc9b
MP
8057 /*
8058 * Adjust base offset if the filter is associated to a binary
8059 * that needs to be mapped:
8060 */
8061 if (filter->inode)
375637bc
AS
8062 event->addr_filters_offs[count] =
8063 perf_addr_filter_apply(filter, mm);
8064
8065 count++;
8066 }
8067
8068 event->addr_filters_gen++;
8069 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8070
8071 up_read(&mm->mmap_sem);
8072
8073 mmput(mm);
8074
8075restart:
767ae086 8076 perf_event_stop(event, 1);
375637bc
AS
8077}
8078
8079/*
8080 * Address range filtering: limiting the data to certain
8081 * instruction address ranges. Filters are ioctl()ed to us from
8082 * userspace as ascii strings.
8083 *
8084 * Filter string format:
8085 *
8086 * ACTION RANGE_SPEC
8087 * where ACTION is one of the
8088 * * "filter": limit the trace to this region
8089 * * "start": start tracing from this address
8090 * * "stop": stop tracing at this address/region;
8091 * RANGE_SPEC is
8092 * * for kernel addresses: <start address>[/<size>]
8093 * * for object files: <start address>[/<size>]@</path/to/object/file>
8094 *
8095 * if <size> is not specified, the range is treated as a single address.
8096 */
8097enum {
e96271f3 8098 IF_ACT_NONE = -1,
375637bc
AS
8099 IF_ACT_FILTER,
8100 IF_ACT_START,
8101 IF_ACT_STOP,
8102 IF_SRC_FILE,
8103 IF_SRC_KERNEL,
8104 IF_SRC_FILEADDR,
8105 IF_SRC_KERNELADDR,
8106};
8107
8108enum {
8109 IF_STATE_ACTION = 0,
8110 IF_STATE_SOURCE,
8111 IF_STATE_END,
8112};
8113
8114static const match_table_t if_tokens = {
8115 { IF_ACT_FILTER, "filter" },
8116 { IF_ACT_START, "start" },
8117 { IF_ACT_STOP, "stop" },
8118 { IF_SRC_FILE, "%u/%u@%s" },
8119 { IF_SRC_KERNEL, "%u/%u" },
8120 { IF_SRC_FILEADDR, "%u@%s" },
8121 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8122 { IF_ACT_NONE, NULL },
375637bc
AS
8123};
8124
8125/*
8126 * Address filter string parser
8127 */
8128static int
8129perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8130 struct list_head *filters)
8131{
8132 struct perf_addr_filter *filter = NULL;
8133 char *start, *orig, *filename = NULL;
8134 struct path path;
8135 substring_t args[MAX_OPT_ARGS];
8136 int state = IF_STATE_ACTION, token;
8137 unsigned int kernel = 0;
8138 int ret = -EINVAL;
8139
8140 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8141 if (!fstr)
8142 return -ENOMEM;
8143
8144 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8145 ret = -EINVAL;
8146
8147 if (!*start)
8148 continue;
8149
8150 /* filter definition begins */
8151 if (state == IF_STATE_ACTION) {
8152 filter = perf_addr_filter_new(event, filters);
8153 if (!filter)
8154 goto fail;
8155 }
8156
8157 token = match_token(start, if_tokens, args);
8158 switch (token) {
8159 case IF_ACT_FILTER:
8160 case IF_ACT_START:
8161 filter->filter = 1;
8162
8163 case IF_ACT_STOP:
8164 if (state != IF_STATE_ACTION)
8165 goto fail;
8166
8167 state = IF_STATE_SOURCE;
8168 break;
8169
8170 case IF_SRC_KERNELADDR:
8171 case IF_SRC_KERNEL:
8172 kernel = 1;
8173
8174 case IF_SRC_FILEADDR:
8175 case IF_SRC_FILE:
8176 if (state != IF_STATE_SOURCE)
8177 goto fail;
8178
8179 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8180 filter->range = 1;
8181
8182 *args[0].to = 0;
8183 ret = kstrtoul(args[0].from, 0, &filter->offset);
8184 if (ret)
8185 goto fail;
8186
8187 if (filter->range) {
8188 *args[1].to = 0;
8189 ret = kstrtoul(args[1].from, 0, &filter->size);
8190 if (ret)
8191 goto fail;
8192 }
8193
4059ffd0
MP
8194 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8195 int fpos = filter->range ? 2 : 1;
8196
8197 filename = match_strdup(&args[fpos]);
375637bc
AS
8198 if (!filename) {
8199 ret = -ENOMEM;
8200 goto fail;
8201 }
8202 }
8203
8204 state = IF_STATE_END;
8205 break;
8206
8207 default:
8208 goto fail;
8209 }
8210
8211 /*
8212 * Filter definition is fully parsed, validate and install it.
8213 * Make sure that it doesn't contradict itself or the event's
8214 * attribute.
8215 */
8216 if (state == IF_STATE_END) {
8217 if (kernel && event->attr.exclude_kernel)
8218 goto fail;
8219
8220 if (!kernel) {
8221 if (!filename)
8222 goto fail;
8223
8224 /* look up the path and grab its inode */
8225 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8226 if (ret)
8227 goto fail_free_name;
8228
8229 filter->inode = igrab(d_inode(path.dentry));
8230 path_put(&path);
8231 kfree(filename);
8232 filename = NULL;
8233
8234 ret = -EINVAL;
8235 if (!filter->inode ||
8236 !S_ISREG(filter->inode->i_mode))
8237 /* free_filters_list() will iput() */
8238 goto fail;
8239 }
8240
8241 /* ready to consume more filters */
8242 state = IF_STATE_ACTION;
8243 filter = NULL;
8244 }
8245 }
8246
8247 if (state != IF_STATE_ACTION)
8248 goto fail;
8249
8250 kfree(orig);
8251
8252 return 0;
8253
8254fail_free_name:
8255 kfree(filename);
8256fail:
8257 free_filters_list(filters);
8258 kfree(orig);
8259
8260 return ret;
8261}
8262
8263static int
8264perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8265{
8266 LIST_HEAD(filters);
8267 int ret;
8268
8269 /*
8270 * Since this is called in perf_ioctl() path, we're already holding
8271 * ctx::mutex.
8272 */
8273 lockdep_assert_held(&event->ctx->mutex);
8274
8275 if (WARN_ON_ONCE(event->parent))
8276 return -EINVAL;
8277
8278 /*
8279 * For now, we only support filtering in per-task events; doing so
8280 * for CPU-wide events requires additional context switching trickery,
8281 * since same object code will be mapped at different virtual
8282 * addresses in different processes.
8283 */
8284 if (!event->ctx->task)
8285 return -EOPNOTSUPP;
8286
8287 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8288 if (ret)
8289 return ret;
8290
8291 ret = event->pmu->addr_filters_validate(&filters);
8292 if (ret) {
8293 free_filters_list(&filters);
8294 return ret;
8295 }
8296
8297 /* remove existing filters, if any */
8298 perf_addr_filters_splice(event, &filters);
8299
8300 /* install new filters */
8301 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8302
8303 return ret;
8304}
8305
c796bbbe
AS
8306static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8307{
8308 char *filter_str;
8309 int ret = -EINVAL;
8310
375637bc
AS
8311 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8312 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8313 !has_addr_filter(event))
c796bbbe
AS
8314 return -EINVAL;
8315
8316 filter_str = strndup_user(arg, PAGE_SIZE);
8317 if (IS_ERR(filter_str))
8318 return PTR_ERR(filter_str);
8319
8320 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8321 event->attr.type == PERF_TYPE_TRACEPOINT)
8322 ret = ftrace_profile_set_filter(event, event->attr.config,
8323 filter_str);
375637bc
AS
8324 else if (has_addr_filter(event))
8325 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8326
8327 kfree(filter_str);
8328 return ret;
8329}
8330
b0a873eb
PZ
8331/*
8332 * hrtimer based swevent callback
8333 */
f29ac756 8334
b0a873eb 8335static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8336{
b0a873eb
PZ
8337 enum hrtimer_restart ret = HRTIMER_RESTART;
8338 struct perf_sample_data data;
8339 struct pt_regs *regs;
8340 struct perf_event *event;
8341 u64 period;
f29ac756 8342
b0a873eb 8343 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8344
8345 if (event->state != PERF_EVENT_STATE_ACTIVE)
8346 return HRTIMER_NORESTART;
8347
b0a873eb 8348 event->pmu->read(event);
f344011c 8349
fd0d000b 8350 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8351 regs = get_irq_regs();
8352
8353 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8354 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8355 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8356 ret = HRTIMER_NORESTART;
8357 }
24f1e32c 8358
b0a873eb
PZ
8359 period = max_t(u64, 10000, event->hw.sample_period);
8360 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8361
b0a873eb 8362 return ret;
f29ac756
PZ
8363}
8364
b0a873eb 8365static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8366{
b0a873eb 8367 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8368 s64 period;
8369
8370 if (!is_sampling_event(event))
8371 return;
f5ffe02e 8372
5d508e82
FBH
8373 period = local64_read(&hwc->period_left);
8374 if (period) {
8375 if (period < 0)
8376 period = 10000;
fa407f35 8377
5d508e82
FBH
8378 local64_set(&hwc->period_left, 0);
8379 } else {
8380 period = max_t(u64, 10000, hwc->sample_period);
8381 }
3497d206
TG
8382 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8383 HRTIMER_MODE_REL_PINNED);
24f1e32c 8384}
b0a873eb
PZ
8385
8386static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8387{
b0a873eb
PZ
8388 struct hw_perf_event *hwc = &event->hw;
8389
6c7e550f 8390 if (is_sampling_event(event)) {
b0a873eb 8391 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8392 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8393
8394 hrtimer_cancel(&hwc->hrtimer);
8395 }
24f1e32c
FW
8396}
8397
ba3dd36c
PZ
8398static void perf_swevent_init_hrtimer(struct perf_event *event)
8399{
8400 struct hw_perf_event *hwc = &event->hw;
8401
8402 if (!is_sampling_event(event))
8403 return;
8404
8405 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8406 hwc->hrtimer.function = perf_swevent_hrtimer;
8407
8408 /*
8409 * Since hrtimers have a fixed rate, we can do a static freq->period
8410 * mapping and avoid the whole period adjust feedback stuff.
8411 */
8412 if (event->attr.freq) {
8413 long freq = event->attr.sample_freq;
8414
8415 event->attr.sample_period = NSEC_PER_SEC / freq;
8416 hwc->sample_period = event->attr.sample_period;
8417 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8418 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8419 event->attr.freq = 0;
8420 }
8421}
8422
b0a873eb
PZ
8423/*
8424 * Software event: cpu wall time clock
8425 */
8426
8427static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8428{
b0a873eb
PZ
8429 s64 prev;
8430 u64 now;
8431
a4eaf7f1 8432 now = local_clock();
b0a873eb
PZ
8433 prev = local64_xchg(&event->hw.prev_count, now);
8434 local64_add(now - prev, &event->count);
24f1e32c 8435}
24f1e32c 8436
a4eaf7f1 8437static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8438{
a4eaf7f1 8439 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8440 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8441}
8442
a4eaf7f1 8443static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8444{
b0a873eb
PZ
8445 perf_swevent_cancel_hrtimer(event);
8446 cpu_clock_event_update(event);
8447}
f29ac756 8448
a4eaf7f1
PZ
8449static int cpu_clock_event_add(struct perf_event *event, int flags)
8450{
8451 if (flags & PERF_EF_START)
8452 cpu_clock_event_start(event, flags);
6a694a60 8453 perf_event_update_userpage(event);
a4eaf7f1
PZ
8454
8455 return 0;
8456}
8457
8458static void cpu_clock_event_del(struct perf_event *event, int flags)
8459{
8460 cpu_clock_event_stop(event, flags);
8461}
8462
b0a873eb
PZ
8463static void cpu_clock_event_read(struct perf_event *event)
8464{
8465 cpu_clock_event_update(event);
8466}
f344011c 8467
b0a873eb
PZ
8468static int cpu_clock_event_init(struct perf_event *event)
8469{
8470 if (event->attr.type != PERF_TYPE_SOFTWARE)
8471 return -ENOENT;
8472
8473 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8474 return -ENOENT;
8475
2481c5fa
SE
8476 /*
8477 * no branch sampling for software events
8478 */
8479 if (has_branch_stack(event))
8480 return -EOPNOTSUPP;
8481
ba3dd36c
PZ
8482 perf_swevent_init_hrtimer(event);
8483
b0a873eb 8484 return 0;
f29ac756
PZ
8485}
8486
b0a873eb 8487static struct pmu perf_cpu_clock = {
89a1e187
PZ
8488 .task_ctx_nr = perf_sw_context,
8489
34f43927
PZ
8490 .capabilities = PERF_PMU_CAP_NO_NMI,
8491
b0a873eb 8492 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8493 .add = cpu_clock_event_add,
8494 .del = cpu_clock_event_del,
8495 .start = cpu_clock_event_start,
8496 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8497 .read = cpu_clock_event_read,
8498};
8499
8500/*
8501 * Software event: task time clock
8502 */
8503
8504static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8505{
b0a873eb
PZ
8506 u64 prev;
8507 s64 delta;
5c92d124 8508
b0a873eb
PZ
8509 prev = local64_xchg(&event->hw.prev_count, now);
8510 delta = now - prev;
8511 local64_add(delta, &event->count);
8512}
5c92d124 8513
a4eaf7f1 8514static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8515{
a4eaf7f1 8516 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8517 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8518}
8519
a4eaf7f1 8520static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8521{
8522 perf_swevent_cancel_hrtimer(event);
8523 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8524}
8525
8526static int task_clock_event_add(struct perf_event *event, int flags)
8527{
8528 if (flags & PERF_EF_START)
8529 task_clock_event_start(event, flags);
6a694a60 8530 perf_event_update_userpage(event);
b0a873eb 8531
a4eaf7f1
PZ
8532 return 0;
8533}
8534
8535static void task_clock_event_del(struct perf_event *event, int flags)
8536{
8537 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8538}
8539
8540static void task_clock_event_read(struct perf_event *event)
8541{
768a06e2
PZ
8542 u64 now = perf_clock();
8543 u64 delta = now - event->ctx->timestamp;
8544 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8545
8546 task_clock_event_update(event, time);
8547}
8548
8549static int task_clock_event_init(struct perf_event *event)
6fb2915d 8550{
b0a873eb
PZ
8551 if (event->attr.type != PERF_TYPE_SOFTWARE)
8552 return -ENOENT;
8553
8554 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8555 return -ENOENT;
8556
2481c5fa
SE
8557 /*
8558 * no branch sampling for software events
8559 */
8560 if (has_branch_stack(event))
8561 return -EOPNOTSUPP;
8562
ba3dd36c
PZ
8563 perf_swevent_init_hrtimer(event);
8564
b0a873eb 8565 return 0;
6fb2915d
LZ
8566}
8567
b0a873eb 8568static struct pmu perf_task_clock = {
89a1e187
PZ
8569 .task_ctx_nr = perf_sw_context,
8570
34f43927
PZ
8571 .capabilities = PERF_PMU_CAP_NO_NMI,
8572
b0a873eb 8573 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8574 .add = task_clock_event_add,
8575 .del = task_clock_event_del,
8576 .start = task_clock_event_start,
8577 .stop = task_clock_event_stop,
b0a873eb
PZ
8578 .read = task_clock_event_read,
8579};
6fb2915d 8580
ad5133b7 8581static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8582{
e077df4f 8583}
6fb2915d 8584
fbbe0701
SB
8585static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8586{
8587}
8588
ad5133b7 8589static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8590{
ad5133b7 8591 return 0;
6fb2915d
LZ
8592}
8593
18ab2cd3 8594static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8595
8596static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8597{
fbbe0701
SB
8598 __this_cpu_write(nop_txn_flags, flags);
8599
8600 if (flags & ~PERF_PMU_TXN_ADD)
8601 return;
8602
ad5133b7 8603 perf_pmu_disable(pmu);
6fb2915d
LZ
8604}
8605
ad5133b7
PZ
8606static int perf_pmu_commit_txn(struct pmu *pmu)
8607{
fbbe0701
SB
8608 unsigned int flags = __this_cpu_read(nop_txn_flags);
8609
8610 __this_cpu_write(nop_txn_flags, 0);
8611
8612 if (flags & ~PERF_PMU_TXN_ADD)
8613 return 0;
8614
ad5133b7
PZ
8615 perf_pmu_enable(pmu);
8616 return 0;
8617}
e077df4f 8618
ad5133b7 8619static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8620{
fbbe0701
SB
8621 unsigned int flags = __this_cpu_read(nop_txn_flags);
8622
8623 __this_cpu_write(nop_txn_flags, 0);
8624
8625 if (flags & ~PERF_PMU_TXN_ADD)
8626 return;
8627
ad5133b7 8628 perf_pmu_enable(pmu);
24f1e32c
FW
8629}
8630
35edc2a5
PZ
8631static int perf_event_idx_default(struct perf_event *event)
8632{
c719f560 8633 return 0;
35edc2a5
PZ
8634}
8635
8dc85d54
PZ
8636/*
8637 * Ensures all contexts with the same task_ctx_nr have the same
8638 * pmu_cpu_context too.
8639 */
9e317041 8640static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8641{
8dc85d54 8642 struct pmu *pmu;
b326e956 8643
8dc85d54
PZ
8644 if (ctxn < 0)
8645 return NULL;
24f1e32c 8646
8dc85d54
PZ
8647 list_for_each_entry(pmu, &pmus, entry) {
8648 if (pmu->task_ctx_nr == ctxn)
8649 return pmu->pmu_cpu_context;
8650 }
24f1e32c 8651
8dc85d54 8652 return NULL;
24f1e32c
FW
8653}
8654
51676957 8655static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 8656{
51676957
PZ
8657 int cpu;
8658
8659 for_each_possible_cpu(cpu) {
8660 struct perf_cpu_context *cpuctx;
8661
8662 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8663
3f1f3320
PZ
8664 if (cpuctx->unique_pmu == old_pmu)
8665 cpuctx->unique_pmu = pmu;
51676957
PZ
8666 }
8667}
8668
8669static void free_pmu_context(struct pmu *pmu)
8670{
8671 struct pmu *i;
f5ffe02e 8672
8dc85d54 8673 mutex_lock(&pmus_lock);
0475f9ea 8674 /*
8dc85d54 8675 * Like a real lame refcount.
0475f9ea 8676 */
51676957
PZ
8677 list_for_each_entry(i, &pmus, entry) {
8678 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8679 update_pmu_context(i, pmu);
8dc85d54 8680 goto out;
51676957 8681 }
8dc85d54 8682 }
d6d020e9 8683
51676957 8684 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
8685out:
8686 mutex_unlock(&pmus_lock);
24f1e32c 8687}
6e855cd4
AS
8688
8689/*
8690 * Let userspace know that this PMU supports address range filtering:
8691 */
8692static ssize_t nr_addr_filters_show(struct device *dev,
8693 struct device_attribute *attr,
8694 char *page)
8695{
8696 struct pmu *pmu = dev_get_drvdata(dev);
8697
8698 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8699}
8700DEVICE_ATTR_RO(nr_addr_filters);
8701
2e80a82a 8702static struct idr pmu_idr;
d6d020e9 8703
abe43400
PZ
8704static ssize_t
8705type_show(struct device *dev, struct device_attribute *attr, char *page)
8706{
8707 struct pmu *pmu = dev_get_drvdata(dev);
8708
8709 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8710}
90826ca7 8711static DEVICE_ATTR_RO(type);
abe43400 8712
62b85639
SE
8713static ssize_t
8714perf_event_mux_interval_ms_show(struct device *dev,
8715 struct device_attribute *attr,
8716 char *page)
8717{
8718 struct pmu *pmu = dev_get_drvdata(dev);
8719
8720 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8721}
8722
272325c4
PZ
8723static DEFINE_MUTEX(mux_interval_mutex);
8724
62b85639
SE
8725static ssize_t
8726perf_event_mux_interval_ms_store(struct device *dev,
8727 struct device_attribute *attr,
8728 const char *buf, size_t count)
8729{
8730 struct pmu *pmu = dev_get_drvdata(dev);
8731 int timer, cpu, ret;
8732
8733 ret = kstrtoint(buf, 0, &timer);
8734 if (ret)
8735 return ret;
8736
8737 if (timer < 1)
8738 return -EINVAL;
8739
8740 /* same value, noting to do */
8741 if (timer == pmu->hrtimer_interval_ms)
8742 return count;
8743
272325c4 8744 mutex_lock(&mux_interval_mutex);
62b85639
SE
8745 pmu->hrtimer_interval_ms = timer;
8746
8747 /* update all cpuctx for this PMU */
272325c4
PZ
8748 get_online_cpus();
8749 for_each_online_cpu(cpu) {
62b85639
SE
8750 struct perf_cpu_context *cpuctx;
8751 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8752 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8753
272325c4
PZ
8754 cpu_function_call(cpu,
8755 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8756 }
272325c4
PZ
8757 put_online_cpus();
8758 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8759
8760 return count;
8761}
90826ca7 8762static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8763
90826ca7
GKH
8764static struct attribute *pmu_dev_attrs[] = {
8765 &dev_attr_type.attr,
8766 &dev_attr_perf_event_mux_interval_ms.attr,
8767 NULL,
abe43400 8768};
90826ca7 8769ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8770
8771static int pmu_bus_running;
8772static struct bus_type pmu_bus = {
8773 .name = "event_source",
90826ca7 8774 .dev_groups = pmu_dev_groups,
abe43400
PZ
8775};
8776
8777static void pmu_dev_release(struct device *dev)
8778{
8779 kfree(dev);
8780}
8781
8782static int pmu_dev_alloc(struct pmu *pmu)
8783{
8784 int ret = -ENOMEM;
8785
8786 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8787 if (!pmu->dev)
8788 goto out;
8789
0c9d42ed 8790 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
8791 device_initialize(pmu->dev);
8792 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8793 if (ret)
8794 goto free_dev;
8795
8796 dev_set_drvdata(pmu->dev, pmu);
8797 pmu->dev->bus = &pmu_bus;
8798 pmu->dev->release = pmu_dev_release;
8799 ret = device_add(pmu->dev);
8800 if (ret)
8801 goto free_dev;
8802
6e855cd4
AS
8803 /* For PMUs with address filters, throw in an extra attribute: */
8804 if (pmu->nr_addr_filters)
8805 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8806
8807 if (ret)
8808 goto del_dev;
8809
abe43400
PZ
8810out:
8811 return ret;
8812
6e855cd4
AS
8813del_dev:
8814 device_del(pmu->dev);
8815
abe43400
PZ
8816free_dev:
8817 put_device(pmu->dev);
8818 goto out;
8819}
8820
547e9fd7 8821static struct lock_class_key cpuctx_mutex;
facc4307 8822static struct lock_class_key cpuctx_lock;
547e9fd7 8823
03d8e80b 8824int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 8825{
108b02cf 8826 int cpu, ret;
24f1e32c 8827
b0a873eb 8828 mutex_lock(&pmus_lock);
33696fc0
PZ
8829 ret = -ENOMEM;
8830 pmu->pmu_disable_count = alloc_percpu(int);
8831 if (!pmu->pmu_disable_count)
8832 goto unlock;
f29ac756 8833
2e80a82a
PZ
8834 pmu->type = -1;
8835 if (!name)
8836 goto skip_type;
8837 pmu->name = name;
8838
8839 if (type < 0) {
0e9c3be2
TH
8840 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8841 if (type < 0) {
8842 ret = type;
2e80a82a
PZ
8843 goto free_pdc;
8844 }
8845 }
8846 pmu->type = type;
8847
abe43400
PZ
8848 if (pmu_bus_running) {
8849 ret = pmu_dev_alloc(pmu);
8850 if (ret)
8851 goto free_idr;
8852 }
8853
2e80a82a 8854skip_type:
26657848
PZ
8855 if (pmu->task_ctx_nr == perf_hw_context) {
8856 static int hw_context_taken = 0;
8857
5101ef20
MR
8858 /*
8859 * Other than systems with heterogeneous CPUs, it never makes
8860 * sense for two PMUs to share perf_hw_context. PMUs which are
8861 * uncore must use perf_invalid_context.
8862 */
8863 if (WARN_ON_ONCE(hw_context_taken &&
8864 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
8865 pmu->task_ctx_nr = perf_invalid_context;
8866
8867 hw_context_taken = 1;
8868 }
8869
8dc85d54
PZ
8870 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8871 if (pmu->pmu_cpu_context)
8872 goto got_cpu_context;
f29ac756 8873
c4814202 8874 ret = -ENOMEM;
108b02cf
PZ
8875 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8876 if (!pmu->pmu_cpu_context)
abe43400 8877 goto free_dev;
f344011c 8878
108b02cf
PZ
8879 for_each_possible_cpu(cpu) {
8880 struct perf_cpu_context *cpuctx;
8881
8882 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 8883 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 8884 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 8885 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 8886 cpuctx->ctx.pmu = pmu;
9e630205 8887
272325c4 8888 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 8889
3f1f3320 8890 cpuctx->unique_pmu = pmu;
108b02cf 8891 }
76e1d904 8892
8dc85d54 8893got_cpu_context:
ad5133b7
PZ
8894 if (!pmu->start_txn) {
8895 if (pmu->pmu_enable) {
8896 /*
8897 * If we have pmu_enable/pmu_disable calls, install
8898 * transaction stubs that use that to try and batch
8899 * hardware accesses.
8900 */
8901 pmu->start_txn = perf_pmu_start_txn;
8902 pmu->commit_txn = perf_pmu_commit_txn;
8903 pmu->cancel_txn = perf_pmu_cancel_txn;
8904 } else {
fbbe0701 8905 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
8906 pmu->commit_txn = perf_pmu_nop_int;
8907 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 8908 }
5c92d124 8909 }
15dbf27c 8910
ad5133b7
PZ
8911 if (!pmu->pmu_enable) {
8912 pmu->pmu_enable = perf_pmu_nop_void;
8913 pmu->pmu_disable = perf_pmu_nop_void;
8914 }
8915
35edc2a5
PZ
8916 if (!pmu->event_idx)
8917 pmu->event_idx = perf_event_idx_default;
8918
b0a873eb 8919 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 8920 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
8921 ret = 0;
8922unlock:
b0a873eb
PZ
8923 mutex_unlock(&pmus_lock);
8924
33696fc0 8925 return ret;
108b02cf 8926
abe43400
PZ
8927free_dev:
8928 device_del(pmu->dev);
8929 put_device(pmu->dev);
8930
2e80a82a
PZ
8931free_idr:
8932 if (pmu->type >= PERF_TYPE_MAX)
8933 idr_remove(&pmu_idr, pmu->type);
8934
108b02cf
PZ
8935free_pdc:
8936 free_percpu(pmu->pmu_disable_count);
8937 goto unlock;
f29ac756 8938}
c464c76e 8939EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 8940
b0a873eb 8941void perf_pmu_unregister(struct pmu *pmu)
5c92d124 8942{
0933840a
JO
8943 int remove_device;
8944
b0a873eb 8945 mutex_lock(&pmus_lock);
0933840a 8946 remove_device = pmu_bus_running;
b0a873eb
PZ
8947 list_del_rcu(&pmu->entry);
8948 mutex_unlock(&pmus_lock);
5c92d124 8949
0475f9ea 8950 /*
cde8e884
PZ
8951 * We dereference the pmu list under both SRCU and regular RCU, so
8952 * synchronize against both of those.
0475f9ea 8953 */
b0a873eb 8954 synchronize_srcu(&pmus_srcu);
cde8e884 8955 synchronize_rcu();
d6d020e9 8956
33696fc0 8957 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
8958 if (pmu->type >= PERF_TYPE_MAX)
8959 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
8960 if (remove_device) {
8961 if (pmu->nr_addr_filters)
8962 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8963 device_del(pmu->dev);
8964 put_device(pmu->dev);
8965 }
51676957 8966 free_pmu_context(pmu);
b0a873eb 8967}
c464c76e 8968EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 8969
cc34b98b
MR
8970static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8971{
ccd41c86 8972 struct perf_event_context *ctx = NULL;
cc34b98b
MR
8973 int ret;
8974
8975 if (!try_module_get(pmu->module))
8976 return -ENODEV;
ccd41c86
PZ
8977
8978 if (event->group_leader != event) {
8b10c5e2
PZ
8979 /*
8980 * This ctx->mutex can nest when we're called through
8981 * inheritance. See the perf_event_ctx_lock_nested() comment.
8982 */
8983 ctx = perf_event_ctx_lock_nested(event->group_leader,
8984 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
8985 BUG_ON(!ctx);
8986 }
8987
cc34b98b
MR
8988 event->pmu = pmu;
8989 ret = pmu->event_init(event);
ccd41c86
PZ
8990
8991 if (ctx)
8992 perf_event_ctx_unlock(event->group_leader, ctx);
8993
cc34b98b
MR
8994 if (ret)
8995 module_put(pmu->module);
8996
8997 return ret;
8998}
8999
18ab2cd3 9000static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
9001{
9002 struct pmu *pmu = NULL;
9003 int idx;
940c5b29 9004 int ret;
b0a873eb
PZ
9005
9006 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
9007
9008 rcu_read_lock();
9009 pmu = idr_find(&pmu_idr, event->attr.type);
9010 rcu_read_unlock();
940c5b29 9011 if (pmu) {
cc34b98b 9012 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9013 if (ret)
9014 pmu = ERR_PTR(ret);
2e80a82a 9015 goto unlock;
940c5b29 9016 }
2e80a82a 9017
b0a873eb 9018 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9019 ret = perf_try_init_event(pmu, event);
b0a873eb 9020 if (!ret)
e5f4d339 9021 goto unlock;
76e1d904 9022
b0a873eb
PZ
9023 if (ret != -ENOENT) {
9024 pmu = ERR_PTR(ret);
e5f4d339 9025 goto unlock;
f344011c 9026 }
5c92d124 9027 }
e5f4d339
PZ
9028 pmu = ERR_PTR(-ENOENT);
9029unlock:
b0a873eb 9030 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9031
4aeb0b42 9032 return pmu;
5c92d124
IM
9033}
9034
f2fb6bef
KL
9035static void attach_sb_event(struct perf_event *event)
9036{
9037 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9038
9039 raw_spin_lock(&pel->lock);
9040 list_add_rcu(&event->sb_list, &pel->list);
9041 raw_spin_unlock(&pel->lock);
9042}
9043
aab5b71e
PZ
9044/*
9045 * We keep a list of all !task (and therefore per-cpu) events
9046 * that need to receive side-band records.
9047 *
9048 * This avoids having to scan all the various PMU per-cpu contexts
9049 * looking for them.
9050 */
f2fb6bef
KL
9051static void account_pmu_sb_event(struct perf_event *event)
9052{
a4f144eb 9053 if (is_sb_event(event))
f2fb6bef
KL
9054 attach_sb_event(event);
9055}
9056
4beb31f3
FW
9057static void account_event_cpu(struct perf_event *event, int cpu)
9058{
9059 if (event->parent)
9060 return;
9061
4beb31f3
FW
9062 if (is_cgroup_event(event))
9063 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9064}
9065
555e0c1e
FW
9066/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9067static void account_freq_event_nohz(void)
9068{
9069#ifdef CONFIG_NO_HZ_FULL
9070 /* Lock so we don't race with concurrent unaccount */
9071 spin_lock(&nr_freq_lock);
9072 if (atomic_inc_return(&nr_freq_events) == 1)
9073 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9074 spin_unlock(&nr_freq_lock);
9075#endif
9076}
9077
9078static void account_freq_event(void)
9079{
9080 if (tick_nohz_full_enabled())
9081 account_freq_event_nohz();
9082 else
9083 atomic_inc(&nr_freq_events);
9084}
9085
9086
766d6c07
FW
9087static void account_event(struct perf_event *event)
9088{
25432ae9
PZ
9089 bool inc = false;
9090
4beb31f3
FW
9091 if (event->parent)
9092 return;
9093
766d6c07 9094 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9095 inc = true;
766d6c07
FW
9096 if (event->attr.mmap || event->attr.mmap_data)
9097 atomic_inc(&nr_mmap_events);
9098 if (event->attr.comm)
9099 atomic_inc(&nr_comm_events);
9100 if (event->attr.task)
9101 atomic_inc(&nr_task_events);
555e0c1e
FW
9102 if (event->attr.freq)
9103 account_freq_event();
45ac1403
AH
9104 if (event->attr.context_switch) {
9105 atomic_inc(&nr_switch_events);
25432ae9 9106 inc = true;
45ac1403 9107 }
4beb31f3 9108 if (has_branch_stack(event))
25432ae9 9109 inc = true;
4beb31f3 9110 if (is_cgroup_event(event))
25432ae9
PZ
9111 inc = true;
9112
9107c89e
PZ
9113 if (inc) {
9114 if (atomic_inc_not_zero(&perf_sched_count))
9115 goto enabled;
9116
9117 mutex_lock(&perf_sched_mutex);
9118 if (!atomic_read(&perf_sched_count)) {
9119 static_branch_enable(&perf_sched_events);
9120 /*
9121 * Guarantee that all CPUs observe they key change and
9122 * call the perf scheduling hooks before proceeding to
9123 * install events that need them.
9124 */
9125 synchronize_sched();
9126 }
9127 /*
9128 * Now that we have waited for the sync_sched(), allow further
9129 * increments to by-pass the mutex.
9130 */
9131 atomic_inc(&perf_sched_count);
9132 mutex_unlock(&perf_sched_mutex);
9133 }
9134enabled:
4beb31f3
FW
9135
9136 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9137
9138 account_pmu_sb_event(event);
766d6c07
FW
9139}
9140
0793a61d 9141/*
cdd6c482 9142 * Allocate and initialize a event structure
0793a61d 9143 */
cdd6c482 9144static struct perf_event *
c3f00c70 9145perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9146 struct task_struct *task,
9147 struct perf_event *group_leader,
9148 struct perf_event *parent_event,
4dc0da86 9149 perf_overflow_handler_t overflow_handler,
79dff51e 9150 void *context, int cgroup_fd)
0793a61d 9151{
51b0fe39 9152 struct pmu *pmu;
cdd6c482
IM
9153 struct perf_event *event;
9154 struct hw_perf_event *hwc;
90983b16 9155 long err = -EINVAL;
0793a61d 9156
66832eb4
ON
9157 if ((unsigned)cpu >= nr_cpu_ids) {
9158 if (!task || cpu != -1)
9159 return ERR_PTR(-EINVAL);
9160 }
9161
c3f00c70 9162 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9163 if (!event)
d5d2bc0d 9164 return ERR_PTR(-ENOMEM);
0793a61d 9165
04289bb9 9166 /*
cdd6c482 9167 * Single events are their own group leaders, with an
04289bb9
IM
9168 * empty sibling list:
9169 */
9170 if (!group_leader)
cdd6c482 9171 group_leader = event;
04289bb9 9172
cdd6c482
IM
9173 mutex_init(&event->child_mutex);
9174 INIT_LIST_HEAD(&event->child_list);
fccc714b 9175
cdd6c482
IM
9176 INIT_LIST_HEAD(&event->group_entry);
9177 INIT_LIST_HEAD(&event->event_entry);
9178 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9179 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9180 INIT_LIST_HEAD(&event->active_entry);
375637bc 9181 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9182 INIT_HLIST_NODE(&event->hlist_entry);
9183
10c6db11 9184
cdd6c482 9185 init_waitqueue_head(&event->waitq);
e360adbe 9186 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9187
cdd6c482 9188 mutex_init(&event->mmap_mutex);
375637bc 9189 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9190
a6fa941d 9191 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9192 event->cpu = cpu;
9193 event->attr = *attr;
9194 event->group_leader = group_leader;
9195 event->pmu = NULL;
cdd6c482 9196 event->oncpu = -1;
a96bbc16 9197
cdd6c482 9198 event->parent = parent_event;
b84fbc9f 9199
17cf22c3 9200 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9201 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9202
cdd6c482 9203 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9204
d580ff86
PZ
9205 if (task) {
9206 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9207 /*
50f16a8b
PZ
9208 * XXX pmu::event_init needs to know what task to account to
9209 * and we cannot use the ctx information because we need the
9210 * pmu before we get a ctx.
d580ff86 9211 */
50f16a8b 9212 event->hw.target = task;
d580ff86
PZ
9213 }
9214
34f43927
PZ
9215 event->clock = &local_clock;
9216 if (parent_event)
9217 event->clock = parent_event->clock;
9218
4dc0da86 9219 if (!overflow_handler && parent_event) {
b326e956 9220 overflow_handler = parent_event->overflow_handler;
4dc0da86 9221 context = parent_event->overflow_handler_context;
f1e4ba5b 9222#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9223 if (overflow_handler == bpf_overflow_handler) {
9224 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9225
9226 if (IS_ERR(prog)) {
9227 err = PTR_ERR(prog);
9228 goto err_ns;
9229 }
9230 event->prog = prog;
9231 event->orig_overflow_handler =
9232 parent_event->orig_overflow_handler;
9233 }
9234#endif
4dc0da86 9235 }
66832eb4 9236
1879445d
WN
9237 if (overflow_handler) {
9238 event->overflow_handler = overflow_handler;
9239 event->overflow_handler_context = context;
9ecda41a
WN
9240 } else if (is_write_backward(event)){
9241 event->overflow_handler = perf_event_output_backward;
9242 event->overflow_handler_context = NULL;
1879445d 9243 } else {
9ecda41a 9244 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9245 event->overflow_handler_context = NULL;
9246 }
97eaf530 9247
0231bb53 9248 perf_event__state_init(event);
a86ed508 9249
4aeb0b42 9250 pmu = NULL;
b8e83514 9251
cdd6c482 9252 hwc = &event->hw;
bd2b5b12 9253 hwc->sample_period = attr->sample_period;
0d48696f 9254 if (attr->freq && attr->sample_freq)
bd2b5b12 9255 hwc->sample_period = 1;
eced1dfc 9256 hwc->last_period = hwc->sample_period;
bd2b5b12 9257
e7850595 9258 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9259
2023b359 9260 /*
cdd6c482 9261 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 9262 */
3dab77fb 9263 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 9264 goto err_ns;
a46a2300
YZ
9265
9266 if (!has_branch_stack(event))
9267 event->attr.branch_sample_type = 0;
2023b359 9268
79dff51e
MF
9269 if (cgroup_fd != -1) {
9270 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9271 if (err)
9272 goto err_ns;
9273 }
9274
b0a873eb 9275 pmu = perf_init_event(event);
4aeb0b42 9276 if (!pmu)
90983b16
FW
9277 goto err_ns;
9278 else if (IS_ERR(pmu)) {
4aeb0b42 9279 err = PTR_ERR(pmu);
90983b16 9280 goto err_ns;
621a01ea 9281 }
d5d2bc0d 9282
bed5b25a
AS
9283 err = exclusive_event_init(event);
9284 if (err)
9285 goto err_pmu;
9286
375637bc
AS
9287 if (has_addr_filter(event)) {
9288 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9289 sizeof(unsigned long),
9290 GFP_KERNEL);
9291 if (!event->addr_filters_offs)
9292 goto err_per_task;
9293
9294 /* force hw sync on the address filters */
9295 event->addr_filters_gen = 1;
9296 }
9297
cdd6c482 9298 if (!event->parent) {
927c7a9e 9299 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9300 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9301 if (err)
375637bc 9302 goto err_addr_filters;
d010b332 9303 }
f344011c 9304 }
9ee318a7 9305
927a5570
AS
9306 /* symmetric to unaccount_event() in _free_event() */
9307 account_event(event);
9308
cdd6c482 9309 return event;
90983b16 9310
375637bc
AS
9311err_addr_filters:
9312 kfree(event->addr_filters_offs);
9313
bed5b25a
AS
9314err_per_task:
9315 exclusive_event_destroy(event);
9316
90983b16
FW
9317err_pmu:
9318 if (event->destroy)
9319 event->destroy(event);
c464c76e 9320 module_put(pmu->module);
90983b16 9321err_ns:
79dff51e
MF
9322 if (is_cgroup_event(event))
9323 perf_detach_cgroup(event);
90983b16
FW
9324 if (event->ns)
9325 put_pid_ns(event->ns);
9326 kfree(event);
9327
9328 return ERR_PTR(err);
0793a61d
TG
9329}
9330
cdd6c482
IM
9331static int perf_copy_attr(struct perf_event_attr __user *uattr,
9332 struct perf_event_attr *attr)
974802ea 9333{
974802ea 9334 u32 size;
cdf8073d 9335 int ret;
974802ea
PZ
9336
9337 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9338 return -EFAULT;
9339
9340 /*
9341 * zero the full structure, so that a short copy will be nice.
9342 */
9343 memset(attr, 0, sizeof(*attr));
9344
9345 ret = get_user(size, &uattr->size);
9346 if (ret)
9347 return ret;
9348
9349 if (size > PAGE_SIZE) /* silly large */
9350 goto err_size;
9351
9352 if (!size) /* abi compat */
9353 size = PERF_ATTR_SIZE_VER0;
9354
9355 if (size < PERF_ATTR_SIZE_VER0)
9356 goto err_size;
9357
9358 /*
9359 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9360 * ensure all the unknown bits are 0 - i.e. new
9361 * user-space does not rely on any kernel feature
9362 * extensions we dont know about yet.
974802ea
PZ
9363 */
9364 if (size > sizeof(*attr)) {
cdf8073d
IS
9365 unsigned char __user *addr;
9366 unsigned char __user *end;
9367 unsigned char val;
974802ea 9368
cdf8073d
IS
9369 addr = (void __user *)uattr + sizeof(*attr);
9370 end = (void __user *)uattr + size;
974802ea 9371
cdf8073d 9372 for (; addr < end; addr++) {
974802ea
PZ
9373 ret = get_user(val, addr);
9374 if (ret)
9375 return ret;
9376 if (val)
9377 goto err_size;
9378 }
b3e62e35 9379 size = sizeof(*attr);
974802ea
PZ
9380 }
9381
9382 ret = copy_from_user(attr, uattr, size);
9383 if (ret)
9384 return -EFAULT;
9385
cd757645 9386 if (attr->__reserved_1)
974802ea
PZ
9387 return -EINVAL;
9388
9389 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9390 return -EINVAL;
9391
9392 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9393 return -EINVAL;
9394
bce38cd5
SE
9395 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9396 u64 mask = attr->branch_sample_type;
9397
9398 /* only using defined bits */
9399 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9400 return -EINVAL;
9401
9402 /* at least one branch bit must be set */
9403 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9404 return -EINVAL;
9405
bce38cd5
SE
9406 /* propagate priv level, when not set for branch */
9407 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9408
9409 /* exclude_kernel checked on syscall entry */
9410 if (!attr->exclude_kernel)
9411 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9412
9413 if (!attr->exclude_user)
9414 mask |= PERF_SAMPLE_BRANCH_USER;
9415
9416 if (!attr->exclude_hv)
9417 mask |= PERF_SAMPLE_BRANCH_HV;
9418 /*
9419 * adjust user setting (for HW filter setup)
9420 */
9421 attr->branch_sample_type = mask;
9422 }
e712209a
SE
9423 /* privileged levels capture (kernel, hv): check permissions */
9424 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9425 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9426 return -EACCES;
bce38cd5 9427 }
4018994f 9428
c5ebcedb 9429 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9430 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9431 if (ret)
9432 return ret;
9433 }
9434
9435 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9436 if (!arch_perf_have_user_stack_dump())
9437 return -ENOSYS;
9438
9439 /*
9440 * We have __u32 type for the size, but so far
9441 * we can only use __u16 as maximum due to the
9442 * __u16 sample size limit.
9443 */
9444 if (attr->sample_stack_user >= USHRT_MAX)
9445 ret = -EINVAL;
9446 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9447 ret = -EINVAL;
9448 }
4018994f 9449
60e2364e
SE
9450 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9451 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9452out:
9453 return ret;
9454
9455err_size:
9456 put_user(sizeof(*attr), &uattr->size);
9457 ret = -E2BIG;
9458 goto out;
9459}
9460
ac9721f3
PZ
9461static int
9462perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9463{
b69cf536 9464 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9465 int ret = -EINVAL;
9466
ac9721f3 9467 if (!output_event)
a4be7c27
PZ
9468 goto set;
9469
ac9721f3
PZ
9470 /* don't allow circular references */
9471 if (event == output_event)
a4be7c27
PZ
9472 goto out;
9473
0f139300
PZ
9474 /*
9475 * Don't allow cross-cpu buffers
9476 */
9477 if (output_event->cpu != event->cpu)
9478 goto out;
9479
9480 /*
76369139 9481 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9482 */
9483 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9484 goto out;
9485
34f43927
PZ
9486 /*
9487 * Mixing clocks in the same buffer is trouble you don't need.
9488 */
9489 if (output_event->clock != event->clock)
9490 goto out;
9491
9ecda41a
WN
9492 /*
9493 * Either writing ring buffer from beginning or from end.
9494 * Mixing is not allowed.
9495 */
9496 if (is_write_backward(output_event) != is_write_backward(event))
9497 goto out;
9498
45bfb2e5
PZ
9499 /*
9500 * If both events generate aux data, they must be on the same PMU
9501 */
9502 if (has_aux(event) && has_aux(output_event) &&
9503 event->pmu != output_event->pmu)
9504 goto out;
9505
a4be7c27 9506set:
cdd6c482 9507 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9508 /* Can't redirect output if we've got an active mmap() */
9509 if (atomic_read(&event->mmap_count))
9510 goto unlock;
a4be7c27 9511
ac9721f3 9512 if (output_event) {
76369139
FW
9513 /* get the rb we want to redirect to */
9514 rb = ring_buffer_get(output_event);
9515 if (!rb)
ac9721f3 9516 goto unlock;
a4be7c27
PZ
9517 }
9518
b69cf536 9519 ring_buffer_attach(event, rb);
9bb5d40c 9520
a4be7c27 9521 ret = 0;
ac9721f3
PZ
9522unlock:
9523 mutex_unlock(&event->mmap_mutex);
9524
a4be7c27 9525out:
a4be7c27
PZ
9526 return ret;
9527}
9528
f63a8daa
PZ
9529static void mutex_lock_double(struct mutex *a, struct mutex *b)
9530{
9531 if (b < a)
9532 swap(a, b);
9533
9534 mutex_lock(a);
9535 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9536}
9537
34f43927
PZ
9538static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9539{
9540 bool nmi_safe = false;
9541
9542 switch (clk_id) {
9543 case CLOCK_MONOTONIC:
9544 event->clock = &ktime_get_mono_fast_ns;
9545 nmi_safe = true;
9546 break;
9547
9548 case CLOCK_MONOTONIC_RAW:
9549 event->clock = &ktime_get_raw_fast_ns;
9550 nmi_safe = true;
9551 break;
9552
9553 case CLOCK_REALTIME:
9554 event->clock = &ktime_get_real_ns;
9555 break;
9556
9557 case CLOCK_BOOTTIME:
9558 event->clock = &ktime_get_boot_ns;
9559 break;
9560
9561 case CLOCK_TAI:
9562 event->clock = &ktime_get_tai_ns;
9563 break;
9564
9565 default:
9566 return -EINVAL;
9567 }
9568
9569 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9570 return -EINVAL;
9571
9572 return 0;
9573}
9574
321027c1
PZ
9575/*
9576 * Variation on perf_event_ctx_lock_nested(), except we take two context
9577 * mutexes.
9578 */
9579static struct perf_event_context *
9580__perf_event_ctx_lock_double(struct perf_event *group_leader,
9581 struct perf_event_context *ctx)
9582{
9583 struct perf_event_context *gctx;
9584
9585again:
9586 rcu_read_lock();
9587 gctx = READ_ONCE(group_leader->ctx);
9588 if (!atomic_inc_not_zero(&gctx->refcount)) {
9589 rcu_read_unlock();
9590 goto again;
9591 }
9592 rcu_read_unlock();
9593
9594 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9595
9596 if (group_leader->ctx != gctx) {
9597 mutex_unlock(&ctx->mutex);
9598 mutex_unlock(&gctx->mutex);
9599 put_ctx(gctx);
9600 goto again;
9601 }
9602
9603 return gctx;
9604}
9605
0793a61d 9606/**
cdd6c482 9607 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9608 *
cdd6c482 9609 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9610 * @pid: target pid
9f66a381 9611 * @cpu: target cpu
cdd6c482 9612 * @group_fd: group leader event fd
0793a61d 9613 */
cdd6c482
IM
9614SYSCALL_DEFINE5(perf_event_open,
9615 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9616 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9617{
b04243ef
PZ
9618 struct perf_event *group_leader = NULL, *output_event = NULL;
9619 struct perf_event *event, *sibling;
cdd6c482 9620 struct perf_event_attr attr;
f63a8daa 9621 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9622 struct file *event_file = NULL;
2903ff01 9623 struct fd group = {NULL, 0};
38a81da2 9624 struct task_struct *task = NULL;
89a1e187 9625 struct pmu *pmu;
ea635c64 9626 int event_fd;
b04243ef 9627 int move_group = 0;
dc86cabe 9628 int err;
a21b0b35 9629 int f_flags = O_RDWR;
79dff51e 9630 int cgroup_fd = -1;
0793a61d 9631
2743a5b0 9632 /* for future expandability... */
e5d1367f 9633 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9634 return -EINVAL;
9635
dc86cabe
IM
9636 err = perf_copy_attr(attr_uptr, &attr);
9637 if (err)
9638 return err;
eab656ae 9639
0764771d
PZ
9640 if (!attr.exclude_kernel) {
9641 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9642 return -EACCES;
9643 }
9644
df58ab24 9645 if (attr.freq) {
cdd6c482 9646 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9647 return -EINVAL;
0819b2e3
PZ
9648 } else {
9649 if (attr.sample_period & (1ULL << 63))
9650 return -EINVAL;
df58ab24
PZ
9651 }
9652
97c79a38
ACM
9653 if (!attr.sample_max_stack)
9654 attr.sample_max_stack = sysctl_perf_event_max_stack;
9655
e5d1367f
SE
9656 /*
9657 * In cgroup mode, the pid argument is used to pass the fd
9658 * opened to the cgroup directory in cgroupfs. The cpu argument
9659 * designates the cpu on which to monitor threads from that
9660 * cgroup.
9661 */
9662 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9663 return -EINVAL;
9664
a21b0b35
YD
9665 if (flags & PERF_FLAG_FD_CLOEXEC)
9666 f_flags |= O_CLOEXEC;
9667
9668 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9669 if (event_fd < 0)
9670 return event_fd;
9671
ac9721f3 9672 if (group_fd != -1) {
2903ff01
AV
9673 err = perf_fget_light(group_fd, &group);
9674 if (err)
d14b12d7 9675 goto err_fd;
2903ff01 9676 group_leader = group.file->private_data;
ac9721f3
PZ
9677 if (flags & PERF_FLAG_FD_OUTPUT)
9678 output_event = group_leader;
9679 if (flags & PERF_FLAG_FD_NO_GROUP)
9680 group_leader = NULL;
9681 }
9682
e5d1367f 9683 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9684 task = find_lively_task_by_vpid(pid);
9685 if (IS_ERR(task)) {
9686 err = PTR_ERR(task);
9687 goto err_group_fd;
9688 }
9689 }
9690
1f4ee503
PZ
9691 if (task && group_leader &&
9692 group_leader->attr.inherit != attr.inherit) {
9693 err = -EINVAL;
9694 goto err_task;
9695 }
9696
fbfc623f
YZ
9697 get_online_cpus();
9698
79c9ce57
PZ
9699 if (task) {
9700 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9701 if (err)
9702 goto err_cpus;
9703
9704 /*
9705 * Reuse ptrace permission checks for now.
9706 *
9707 * We must hold cred_guard_mutex across this and any potential
9708 * perf_install_in_context() call for this new event to
9709 * serialize against exec() altering our credentials (and the
9710 * perf_event_exit_task() that could imply).
9711 */
9712 err = -EACCES;
9713 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9714 goto err_cred;
9715 }
9716
79dff51e
MF
9717 if (flags & PERF_FLAG_PID_CGROUP)
9718 cgroup_fd = pid;
9719
4dc0da86 9720 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9721 NULL, NULL, cgroup_fd);
d14b12d7
SE
9722 if (IS_ERR(event)) {
9723 err = PTR_ERR(event);
79c9ce57 9724 goto err_cred;
d14b12d7
SE
9725 }
9726
53b25335
VW
9727 if (is_sampling_event(event)) {
9728 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 9729 err = -EOPNOTSUPP;
53b25335
VW
9730 goto err_alloc;
9731 }
9732 }
9733
89a1e187
PZ
9734 /*
9735 * Special case software events and allow them to be part of
9736 * any hardware group.
9737 */
9738 pmu = event->pmu;
b04243ef 9739
34f43927
PZ
9740 if (attr.use_clockid) {
9741 err = perf_event_set_clock(event, attr.clockid);
9742 if (err)
9743 goto err_alloc;
9744 }
9745
4ff6a8de
DCC
9746 if (pmu->task_ctx_nr == perf_sw_context)
9747 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9748
b04243ef
PZ
9749 if (group_leader &&
9750 (is_software_event(event) != is_software_event(group_leader))) {
9751 if (is_software_event(event)) {
9752 /*
9753 * If event and group_leader are not both a software
9754 * event, and event is, then group leader is not.
9755 *
9756 * Allow the addition of software events to !software
9757 * groups, this is safe because software events never
9758 * fail to schedule.
9759 */
9760 pmu = group_leader->pmu;
9761 } else if (is_software_event(group_leader) &&
4ff6a8de 9762 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
9763 /*
9764 * In case the group is a pure software group, and we
9765 * try to add a hardware event, move the whole group to
9766 * the hardware context.
9767 */
9768 move_group = 1;
9769 }
9770 }
89a1e187
PZ
9771
9772 /*
9773 * Get the target context (task or percpu):
9774 */
4af57ef2 9775 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
9776 if (IS_ERR(ctx)) {
9777 err = PTR_ERR(ctx);
c6be5a5c 9778 goto err_alloc;
89a1e187
PZ
9779 }
9780
bed5b25a
AS
9781 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9782 err = -EBUSY;
9783 goto err_context;
9784 }
9785
ccff286d 9786 /*
cdd6c482 9787 * Look up the group leader (we will attach this event to it):
04289bb9 9788 */
ac9721f3 9789 if (group_leader) {
dc86cabe 9790 err = -EINVAL;
04289bb9 9791
04289bb9 9792 /*
ccff286d
IM
9793 * Do not allow a recursive hierarchy (this new sibling
9794 * becoming part of another group-sibling):
9795 */
9796 if (group_leader->group_leader != group_leader)
c3f00c70 9797 goto err_context;
34f43927
PZ
9798
9799 /* All events in a group should have the same clock */
9800 if (group_leader->clock != event->clock)
9801 goto err_context;
9802
ccff286d
IM
9803 /*
9804 * Do not allow to attach to a group in a different
9805 * task or CPU context:
04289bb9 9806 */
b04243ef 9807 if (move_group) {
c3c87e77
PZ
9808 /*
9809 * Make sure we're both on the same task, or both
9810 * per-cpu events.
9811 */
9812 if (group_leader->ctx->task != ctx->task)
9813 goto err_context;
9814
9815 /*
9816 * Make sure we're both events for the same CPU;
9817 * grouping events for different CPUs is broken; since
9818 * you can never concurrently schedule them anyhow.
9819 */
9820 if (group_leader->cpu != event->cpu)
b04243ef
PZ
9821 goto err_context;
9822 } else {
9823 if (group_leader->ctx != ctx)
9824 goto err_context;
9825 }
9826
3b6f9e5c
PM
9827 /*
9828 * Only a group leader can be exclusive or pinned
9829 */
0d48696f 9830 if (attr.exclusive || attr.pinned)
c3f00c70 9831 goto err_context;
ac9721f3
PZ
9832 }
9833
9834 if (output_event) {
9835 err = perf_event_set_output(event, output_event);
9836 if (err)
c3f00c70 9837 goto err_context;
ac9721f3 9838 }
0793a61d 9839
a21b0b35
YD
9840 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9841 f_flags);
ea635c64
AV
9842 if (IS_ERR(event_file)) {
9843 err = PTR_ERR(event_file);
201c2f85 9844 event_file = NULL;
c3f00c70 9845 goto err_context;
ea635c64 9846 }
9b51f66d 9847
b04243ef 9848 if (move_group) {
321027c1
PZ
9849 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9850
84c4e620
PZ
9851 if (gctx->task == TASK_TOMBSTONE) {
9852 err = -ESRCH;
9853 goto err_locked;
9854 }
321027c1
PZ
9855
9856 /*
9857 * Check if we raced against another sys_perf_event_open() call
9858 * moving the software group underneath us.
9859 */
9860 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9861 /*
9862 * If someone moved the group out from under us, check
9863 * if this new event wound up on the same ctx, if so
9864 * its the regular !move_group case, otherwise fail.
9865 */
9866 if (gctx != ctx) {
9867 err = -EINVAL;
9868 goto err_locked;
9869 } else {
9870 perf_event_ctx_unlock(group_leader, gctx);
9871 move_group = 0;
9872 }
9873 }
f55fc2a5
PZ
9874 } else {
9875 mutex_lock(&ctx->mutex);
9876 }
9877
84c4e620
PZ
9878 if (ctx->task == TASK_TOMBSTONE) {
9879 err = -ESRCH;
9880 goto err_locked;
9881 }
9882
a723968c
PZ
9883 if (!perf_event_validate_size(event)) {
9884 err = -E2BIG;
9885 goto err_locked;
9886 }
9887
f55fc2a5
PZ
9888 /*
9889 * Must be under the same ctx::mutex as perf_install_in_context(),
9890 * because we need to serialize with concurrent event creation.
9891 */
9892 if (!exclusive_event_installable(event, ctx)) {
9893 /* exclusive and group stuff are assumed mutually exclusive */
9894 WARN_ON_ONCE(move_group);
f63a8daa 9895
f55fc2a5
PZ
9896 err = -EBUSY;
9897 goto err_locked;
9898 }
f63a8daa 9899
f55fc2a5
PZ
9900 WARN_ON_ONCE(ctx->parent_ctx);
9901
79c9ce57
PZ
9902 /*
9903 * This is the point on no return; we cannot fail hereafter. This is
9904 * where we start modifying current state.
9905 */
9906
f55fc2a5 9907 if (move_group) {
f63a8daa
PZ
9908 /*
9909 * See perf_event_ctx_lock() for comments on the details
9910 * of swizzling perf_event::ctx.
9911 */
45a0e07a 9912 perf_remove_from_context(group_leader, 0);
0231bb53 9913
b04243ef
PZ
9914 list_for_each_entry(sibling, &group_leader->sibling_list,
9915 group_entry) {
45a0e07a 9916 perf_remove_from_context(sibling, 0);
b04243ef
PZ
9917 put_ctx(gctx);
9918 }
b04243ef 9919
f63a8daa
PZ
9920 /*
9921 * Wait for everybody to stop referencing the events through
9922 * the old lists, before installing it on new lists.
9923 */
0cda4c02 9924 synchronize_rcu();
f63a8daa 9925
8f95b435
PZI
9926 /*
9927 * Install the group siblings before the group leader.
9928 *
9929 * Because a group leader will try and install the entire group
9930 * (through the sibling list, which is still in-tact), we can
9931 * end up with siblings installed in the wrong context.
9932 *
9933 * By installing siblings first we NO-OP because they're not
9934 * reachable through the group lists.
9935 */
b04243ef
PZ
9936 list_for_each_entry(sibling, &group_leader->sibling_list,
9937 group_entry) {
8f95b435 9938 perf_event__state_init(sibling);
9fc81d87 9939 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
9940 get_ctx(ctx);
9941 }
8f95b435
PZI
9942
9943 /*
9944 * Removing from the context ends up with disabled
9945 * event. What we want here is event in the initial
9946 * startup state, ready to be add into new context.
9947 */
9948 perf_event__state_init(group_leader);
9949 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9950 get_ctx(ctx);
b04243ef 9951
f55fc2a5
PZ
9952 /*
9953 * Now that all events are installed in @ctx, nothing
9954 * references @gctx anymore, so drop the last reference we have
9955 * on it.
9956 */
9957 put_ctx(gctx);
bed5b25a
AS
9958 }
9959
f73e22ab
PZ
9960 /*
9961 * Precalculate sample_data sizes; do while holding ctx::mutex such
9962 * that we're serialized against further additions and before
9963 * perf_install_in_context() which is the point the event is active and
9964 * can use these values.
9965 */
9966 perf_event__header_size(event);
9967 perf_event__id_header_size(event);
9968
78cd2c74
PZ
9969 event->owner = current;
9970
e2d37cd2 9971 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 9972 perf_unpin_context(ctx);
f63a8daa 9973
f55fc2a5 9974 if (move_group)
321027c1 9975 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 9976 mutex_unlock(&ctx->mutex);
9b51f66d 9977
79c9ce57
PZ
9978 if (task) {
9979 mutex_unlock(&task->signal->cred_guard_mutex);
9980 put_task_struct(task);
9981 }
9982
fbfc623f
YZ
9983 put_online_cpus();
9984
cdd6c482
IM
9985 mutex_lock(&current->perf_event_mutex);
9986 list_add_tail(&event->owner_entry, &current->perf_event_list);
9987 mutex_unlock(&current->perf_event_mutex);
082ff5a2 9988
8a49542c
PZ
9989 /*
9990 * Drop the reference on the group_event after placing the
9991 * new event on the sibling_list. This ensures destruction
9992 * of the group leader will find the pointer to itself in
9993 * perf_group_detach().
9994 */
2903ff01 9995 fdput(group);
ea635c64
AV
9996 fd_install(event_fd, event_file);
9997 return event_fd;
0793a61d 9998
f55fc2a5
PZ
9999err_locked:
10000 if (move_group)
321027c1 10001 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10002 mutex_unlock(&ctx->mutex);
10003/* err_file: */
10004 fput(event_file);
c3f00c70 10005err_context:
fe4b04fa 10006 perf_unpin_context(ctx);
ea635c64 10007 put_ctx(ctx);
c6be5a5c 10008err_alloc:
13005627
PZ
10009 /*
10010 * If event_file is set, the fput() above will have called ->release()
10011 * and that will take care of freeing the event.
10012 */
10013 if (!event_file)
10014 free_event(event);
79c9ce57
PZ
10015err_cred:
10016 if (task)
10017 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10018err_cpus:
fbfc623f 10019 put_online_cpus();
1f4ee503 10020err_task:
e7d0bc04
PZ
10021 if (task)
10022 put_task_struct(task);
89a1e187 10023err_group_fd:
2903ff01 10024 fdput(group);
ea635c64
AV
10025err_fd:
10026 put_unused_fd(event_fd);
dc86cabe 10027 return err;
0793a61d
TG
10028}
10029
fb0459d7
AV
10030/**
10031 * perf_event_create_kernel_counter
10032 *
10033 * @attr: attributes of the counter to create
10034 * @cpu: cpu in which the counter is bound
38a81da2 10035 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10036 */
10037struct perf_event *
10038perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10039 struct task_struct *task,
4dc0da86
AK
10040 perf_overflow_handler_t overflow_handler,
10041 void *context)
fb0459d7 10042{
fb0459d7 10043 struct perf_event_context *ctx;
c3f00c70 10044 struct perf_event *event;
fb0459d7 10045 int err;
d859e29f 10046
fb0459d7
AV
10047 /*
10048 * Get the target context (task or percpu):
10049 */
d859e29f 10050
4dc0da86 10051 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10052 overflow_handler, context, -1);
c3f00c70
PZ
10053 if (IS_ERR(event)) {
10054 err = PTR_ERR(event);
10055 goto err;
10056 }
d859e29f 10057
f8697762 10058 /* Mark owner so we could distinguish it from user events. */
63b6da39 10059 event->owner = TASK_TOMBSTONE;
f8697762 10060
4af57ef2 10061 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10062 if (IS_ERR(ctx)) {
10063 err = PTR_ERR(ctx);
c3f00c70 10064 goto err_free;
d859e29f 10065 }
fb0459d7 10066
fb0459d7
AV
10067 WARN_ON_ONCE(ctx->parent_ctx);
10068 mutex_lock(&ctx->mutex);
84c4e620
PZ
10069 if (ctx->task == TASK_TOMBSTONE) {
10070 err = -ESRCH;
10071 goto err_unlock;
10072 }
10073
bed5b25a 10074 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10075 err = -EBUSY;
84c4e620 10076 goto err_unlock;
bed5b25a
AS
10077 }
10078
fb0459d7 10079 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10080 perf_unpin_context(ctx);
fb0459d7
AV
10081 mutex_unlock(&ctx->mutex);
10082
fb0459d7
AV
10083 return event;
10084
84c4e620
PZ
10085err_unlock:
10086 mutex_unlock(&ctx->mutex);
10087 perf_unpin_context(ctx);
10088 put_ctx(ctx);
c3f00c70
PZ
10089err_free:
10090 free_event(event);
10091err:
c6567f64 10092 return ERR_PTR(err);
9b51f66d 10093}
fb0459d7 10094EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10095
0cda4c02
YZ
10096void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10097{
10098 struct perf_event_context *src_ctx;
10099 struct perf_event_context *dst_ctx;
10100 struct perf_event *event, *tmp;
10101 LIST_HEAD(events);
10102
10103 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10104 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10105
f63a8daa
PZ
10106 /*
10107 * See perf_event_ctx_lock() for comments on the details
10108 * of swizzling perf_event::ctx.
10109 */
10110 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10111 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10112 event_entry) {
45a0e07a 10113 perf_remove_from_context(event, 0);
9a545de0 10114 unaccount_event_cpu(event, src_cpu);
0cda4c02 10115 put_ctx(src_ctx);
9886167d 10116 list_add(&event->migrate_entry, &events);
0cda4c02 10117 }
0cda4c02 10118
8f95b435
PZI
10119 /*
10120 * Wait for the events to quiesce before re-instating them.
10121 */
0cda4c02
YZ
10122 synchronize_rcu();
10123
8f95b435
PZI
10124 /*
10125 * Re-instate events in 2 passes.
10126 *
10127 * Skip over group leaders and only install siblings on this first
10128 * pass, siblings will not get enabled without a leader, however a
10129 * leader will enable its siblings, even if those are still on the old
10130 * context.
10131 */
10132 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10133 if (event->group_leader == event)
10134 continue;
10135
10136 list_del(&event->migrate_entry);
10137 if (event->state >= PERF_EVENT_STATE_OFF)
10138 event->state = PERF_EVENT_STATE_INACTIVE;
10139 account_event_cpu(event, dst_cpu);
10140 perf_install_in_context(dst_ctx, event, dst_cpu);
10141 get_ctx(dst_ctx);
10142 }
10143
10144 /*
10145 * Once all the siblings are setup properly, install the group leaders
10146 * to make it go.
10147 */
9886167d
PZ
10148 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10149 list_del(&event->migrate_entry);
0cda4c02
YZ
10150 if (event->state >= PERF_EVENT_STATE_OFF)
10151 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10152 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10153 perf_install_in_context(dst_ctx, event, dst_cpu);
10154 get_ctx(dst_ctx);
10155 }
10156 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10157 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10158}
10159EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10160
cdd6c482 10161static void sync_child_event(struct perf_event *child_event,
38b200d6 10162 struct task_struct *child)
d859e29f 10163{
cdd6c482 10164 struct perf_event *parent_event = child_event->parent;
8bc20959 10165 u64 child_val;
d859e29f 10166
cdd6c482
IM
10167 if (child_event->attr.inherit_stat)
10168 perf_event_read_event(child_event, child);
38b200d6 10169
b5e58793 10170 child_val = perf_event_count(child_event);
d859e29f
PM
10171
10172 /*
10173 * Add back the child's count to the parent's count:
10174 */
a6e6dea6 10175 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10176 atomic64_add(child_event->total_time_enabled,
10177 &parent_event->child_total_time_enabled);
10178 atomic64_add(child_event->total_time_running,
10179 &parent_event->child_total_time_running);
d859e29f
PM
10180}
10181
9b51f66d 10182static void
8ba289b8
PZ
10183perf_event_exit_event(struct perf_event *child_event,
10184 struct perf_event_context *child_ctx,
10185 struct task_struct *child)
9b51f66d 10186{
8ba289b8
PZ
10187 struct perf_event *parent_event = child_event->parent;
10188
1903d50c
PZ
10189 /*
10190 * Do not destroy the 'original' grouping; because of the context
10191 * switch optimization the original events could've ended up in a
10192 * random child task.
10193 *
10194 * If we were to destroy the original group, all group related
10195 * operations would cease to function properly after this random
10196 * child dies.
10197 *
10198 * Do destroy all inherited groups, we don't care about those
10199 * and being thorough is better.
10200 */
32132a3d
PZ
10201 raw_spin_lock_irq(&child_ctx->lock);
10202 WARN_ON_ONCE(child_ctx->is_active);
10203
8ba289b8 10204 if (parent_event)
32132a3d
PZ
10205 perf_group_detach(child_event);
10206 list_del_event(child_event, child_ctx);
a69b0ca4 10207 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 10208 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10209
9b51f66d 10210 /*
8ba289b8 10211 * Parent events are governed by their filedesc, retain them.
9b51f66d 10212 */
8ba289b8 10213 if (!parent_event) {
179033b3 10214 perf_event_wakeup(child_event);
8ba289b8 10215 return;
4bcf349a 10216 }
8ba289b8
PZ
10217 /*
10218 * Child events can be cleaned up.
10219 */
10220
10221 sync_child_event(child_event, child);
10222
10223 /*
10224 * Remove this event from the parent's list
10225 */
10226 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10227 mutex_lock(&parent_event->child_mutex);
10228 list_del_init(&child_event->child_list);
10229 mutex_unlock(&parent_event->child_mutex);
10230
10231 /*
10232 * Kick perf_poll() for is_event_hup().
10233 */
10234 perf_event_wakeup(parent_event);
10235 free_event(child_event);
10236 put_event(parent_event);
9b51f66d
IM
10237}
10238
8dc85d54 10239static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10240{
211de6eb 10241 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10242 struct perf_event *child_event, *next;
63b6da39
PZ
10243
10244 WARN_ON_ONCE(child != current);
9b51f66d 10245
6a3351b6 10246 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10247 if (!child_ctx)
9b51f66d
IM
10248 return;
10249
ad3a37de 10250 /*
6a3351b6
PZ
10251 * In order to reduce the amount of tricky in ctx tear-down, we hold
10252 * ctx::mutex over the entire thing. This serializes against almost
10253 * everything that wants to access the ctx.
10254 *
10255 * The exception is sys_perf_event_open() /
10256 * perf_event_create_kernel_count() which does find_get_context()
10257 * without ctx::mutex (it cannot because of the move_group double mutex
10258 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10259 */
6a3351b6 10260 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10261
10262 /*
6a3351b6
PZ
10263 * In a single ctx::lock section, de-schedule the events and detach the
10264 * context from the task such that we cannot ever get it scheduled back
10265 * in.
c93f7669 10266 */
6a3351b6 10267 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 10268 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
4a1c0f26 10269
71a851b4 10270 /*
63b6da39
PZ
10271 * Now that the context is inactive, destroy the task <-> ctx relation
10272 * and mark the context dead.
71a851b4 10273 */
63b6da39
PZ
10274 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10275 put_ctx(child_ctx); /* cannot be last */
10276 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10277 put_task_struct(current); /* cannot be last */
4a1c0f26 10278
211de6eb 10279 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10280 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10281
211de6eb
PZ
10282 if (clone_ctx)
10283 put_ctx(clone_ctx);
4a1c0f26 10284
9f498cc5 10285 /*
cdd6c482
IM
10286 * Report the task dead after unscheduling the events so that we
10287 * won't get any samples after PERF_RECORD_EXIT. We can however still
10288 * get a few PERF_RECORD_READ events.
9f498cc5 10289 */
cdd6c482 10290 perf_event_task(child, child_ctx, 0);
a63eaf34 10291
ebf905fc 10292 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10293 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10294
a63eaf34
PM
10295 mutex_unlock(&child_ctx->mutex);
10296
10297 put_ctx(child_ctx);
9b51f66d
IM
10298}
10299
8dc85d54
PZ
10300/*
10301 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10302 *
10303 * Can be called with cred_guard_mutex held when called from
10304 * install_exec_creds().
8dc85d54
PZ
10305 */
10306void perf_event_exit_task(struct task_struct *child)
10307{
8882135b 10308 struct perf_event *event, *tmp;
8dc85d54
PZ
10309 int ctxn;
10310
8882135b
PZ
10311 mutex_lock(&child->perf_event_mutex);
10312 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10313 owner_entry) {
10314 list_del_init(&event->owner_entry);
10315
10316 /*
10317 * Ensure the list deletion is visible before we clear
10318 * the owner, closes a race against perf_release() where
10319 * we need to serialize on the owner->perf_event_mutex.
10320 */
f47c02c0 10321 smp_store_release(&event->owner, NULL);
8882135b
PZ
10322 }
10323 mutex_unlock(&child->perf_event_mutex);
10324
8dc85d54
PZ
10325 for_each_task_context_nr(ctxn)
10326 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10327
10328 /*
10329 * The perf_event_exit_task_context calls perf_event_task
10330 * with child's task_ctx, which generates EXIT events for
10331 * child contexts and sets child->perf_event_ctxp[] to NULL.
10332 * At this point we need to send EXIT events to cpu contexts.
10333 */
10334 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10335}
10336
889ff015
FW
10337static void perf_free_event(struct perf_event *event,
10338 struct perf_event_context *ctx)
10339{
10340 struct perf_event *parent = event->parent;
10341
10342 if (WARN_ON_ONCE(!parent))
10343 return;
10344
10345 mutex_lock(&parent->child_mutex);
10346 list_del_init(&event->child_list);
10347 mutex_unlock(&parent->child_mutex);
10348
a6fa941d 10349 put_event(parent);
889ff015 10350
652884fe 10351 raw_spin_lock_irq(&ctx->lock);
8a49542c 10352 perf_group_detach(event);
889ff015 10353 list_del_event(event, ctx);
652884fe 10354 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10355 free_event(event);
10356}
10357
bbbee908 10358/*
652884fe 10359 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10360 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10361 *
10362 * Not all locks are strictly required, but take them anyway to be nice and
10363 * help out with the lockdep assertions.
bbbee908 10364 */
cdd6c482 10365void perf_event_free_task(struct task_struct *task)
bbbee908 10366{
8dc85d54 10367 struct perf_event_context *ctx;
cdd6c482 10368 struct perf_event *event, *tmp;
8dc85d54 10369 int ctxn;
bbbee908 10370
8dc85d54
PZ
10371 for_each_task_context_nr(ctxn) {
10372 ctx = task->perf_event_ctxp[ctxn];
10373 if (!ctx)
10374 continue;
bbbee908 10375
8dc85d54 10376 mutex_lock(&ctx->mutex);
bbbee908 10377again:
8dc85d54
PZ
10378 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10379 group_entry)
10380 perf_free_event(event, ctx);
bbbee908 10381
8dc85d54
PZ
10382 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10383 group_entry)
10384 perf_free_event(event, ctx);
bbbee908 10385
8dc85d54
PZ
10386 if (!list_empty(&ctx->pinned_groups) ||
10387 !list_empty(&ctx->flexible_groups))
10388 goto again;
bbbee908 10389
8dc85d54 10390 mutex_unlock(&ctx->mutex);
bbbee908 10391
8dc85d54
PZ
10392 put_ctx(ctx);
10393 }
889ff015
FW
10394}
10395
4e231c79
PZ
10396void perf_event_delayed_put(struct task_struct *task)
10397{
10398 int ctxn;
10399
10400 for_each_task_context_nr(ctxn)
10401 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10402}
10403
e03e7ee3 10404struct file *perf_event_get(unsigned int fd)
ffe8690c 10405{
e03e7ee3 10406 struct file *file;
ffe8690c 10407
e03e7ee3
AS
10408 file = fget_raw(fd);
10409 if (!file)
10410 return ERR_PTR(-EBADF);
ffe8690c 10411
e03e7ee3
AS
10412 if (file->f_op != &perf_fops) {
10413 fput(file);
10414 return ERR_PTR(-EBADF);
10415 }
ffe8690c 10416
e03e7ee3 10417 return file;
ffe8690c
KX
10418}
10419
10420const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10421{
10422 if (!event)
10423 return ERR_PTR(-EINVAL);
10424
10425 return &event->attr;
10426}
10427
97dee4f3
PZ
10428/*
10429 * inherit a event from parent task to child task:
10430 */
10431static struct perf_event *
10432inherit_event(struct perf_event *parent_event,
10433 struct task_struct *parent,
10434 struct perf_event_context *parent_ctx,
10435 struct task_struct *child,
10436 struct perf_event *group_leader,
10437 struct perf_event_context *child_ctx)
10438{
1929def9 10439 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10440 struct perf_event *child_event;
cee010ec 10441 unsigned long flags;
97dee4f3
PZ
10442
10443 /*
10444 * Instead of creating recursive hierarchies of events,
10445 * we link inherited events back to the original parent,
10446 * which has a filp for sure, which we use as the reference
10447 * count:
10448 */
10449 if (parent_event->parent)
10450 parent_event = parent_event->parent;
10451
10452 child_event = perf_event_alloc(&parent_event->attr,
10453 parent_event->cpu,
d580ff86 10454 child,
97dee4f3 10455 group_leader, parent_event,
79dff51e 10456 NULL, NULL, -1);
97dee4f3
PZ
10457 if (IS_ERR(child_event))
10458 return child_event;
a6fa941d 10459
c6e5b732
PZ
10460 /*
10461 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10462 * must be under the same lock in order to serialize against
10463 * perf_event_release_kernel(), such that either we must observe
10464 * is_orphaned_event() or they will observe us on the child_list.
10465 */
10466 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10467 if (is_orphaned_event(parent_event) ||
10468 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10469 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10470 free_event(child_event);
10471 return NULL;
10472 }
10473
97dee4f3
PZ
10474 get_ctx(child_ctx);
10475
10476 /*
10477 * Make the child state follow the state of the parent event,
10478 * not its attr.disabled bit. We hold the parent's mutex,
10479 * so we won't race with perf_event_{en, dis}able_family.
10480 */
1929def9 10481 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10482 child_event->state = PERF_EVENT_STATE_INACTIVE;
10483 else
10484 child_event->state = PERF_EVENT_STATE_OFF;
10485
10486 if (parent_event->attr.freq) {
10487 u64 sample_period = parent_event->hw.sample_period;
10488 struct hw_perf_event *hwc = &child_event->hw;
10489
10490 hwc->sample_period = sample_period;
10491 hwc->last_period = sample_period;
10492
10493 local64_set(&hwc->period_left, sample_period);
10494 }
10495
10496 child_event->ctx = child_ctx;
10497 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10498 child_event->overflow_handler_context
10499 = parent_event->overflow_handler_context;
97dee4f3 10500
614b6780
TG
10501 /*
10502 * Precalculate sample_data sizes
10503 */
10504 perf_event__header_size(child_event);
6844c09d 10505 perf_event__id_header_size(child_event);
614b6780 10506
97dee4f3
PZ
10507 /*
10508 * Link it up in the child's context:
10509 */
cee010ec 10510 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10511 add_event_to_ctx(child_event, child_ctx);
cee010ec 10512 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10513
97dee4f3
PZ
10514 /*
10515 * Link this into the parent event's child list
10516 */
97dee4f3
PZ
10517 list_add_tail(&child_event->child_list, &parent_event->child_list);
10518 mutex_unlock(&parent_event->child_mutex);
10519
10520 return child_event;
10521}
10522
10523static int inherit_group(struct perf_event *parent_event,
10524 struct task_struct *parent,
10525 struct perf_event_context *parent_ctx,
10526 struct task_struct *child,
10527 struct perf_event_context *child_ctx)
10528{
10529 struct perf_event *leader;
10530 struct perf_event *sub;
10531 struct perf_event *child_ctr;
10532
10533 leader = inherit_event(parent_event, parent, parent_ctx,
10534 child, NULL, child_ctx);
10535 if (IS_ERR(leader))
10536 return PTR_ERR(leader);
10537 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10538 child_ctr = inherit_event(sub, parent, parent_ctx,
10539 child, leader, child_ctx);
10540 if (IS_ERR(child_ctr))
10541 return PTR_ERR(child_ctr);
10542 }
10543 return 0;
889ff015
FW
10544}
10545
10546static int
10547inherit_task_group(struct perf_event *event, struct task_struct *parent,
10548 struct perf_event_context *parent_ctx,
8dc85d54 10549 struct task_struct *child, int ctxn,
889ff015
FW
10550 int *inherited_all)
10551{
10552 int ret;
8dc85d54 10553 struct perf_event_context *child_ctx;
889ff015
FW
10554
10555 if (!event->attr.inherit) {
10556 *inherited_all = 0;
10557 return 0;
bbbee908
PZ
10558 }
10559
fe4b04fa 10560 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10561 if (!child_ctx) {
10562 /*
10563 * This is executed from the parent task context, so
10564 * inherit events that have been marked for cloning.
10565 * First allocate and initialize a context for the
10566 * child.
10567 */
bbbee908 10568
734df5ab 10569 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10570 if (!child_ctx)
10571 return -ENOMEM;
bbbee908 10572
8dc85d54 10573 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10574 }
10575
10576 ret = inherit_group(event, parent, parent_ctx,
10577 child, child_ctx);
10578
10579 if (ret)
10580 *inherited_all = 0;
10581
10582 return ret;
bbbee908
PZ
10583}
10584
9b51f66d 10585/*
cdd6c482 10586 * Initialize the perf_event context in task_struct
9b51f66d 10587 */
985c8dcb 10588static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10589{
889ff015 10590 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10591 struct perf_event_context *cloned_ctx;
10592 struct perf_event *event;
9b51f66d 10593 struct task_struct *parent = current;
564c2b21 10594 int inherited_all = 1;
dddd3379 10595 unsigned long flags;
6ab423e0 10596 int ret = 0;
9b51f66d 10597
8dc85d54 10598 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10599 return 0;
10600
ad3a37de 10601 /*
25346b93
PM
10602 * If the parent's context is a clone, pin it so it won't get
10603 * swapped under us.
ad3a37de 10604 */
8dc85d54 10605 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10606 if (!parent_ctx)
10607 return 0;
25346b93 10608
ad3a37de
PM
10609 /*
10610 * No need to check if parent_ctx != NULL here; since we saw
10611 * it non-NULL earlier, the only reason for it to become NULL
10612 * is if we exit, and since we're currently in the middle of
10613 * a fork we can't be exiting at the same time.
10614 */
ad3a37de 10615
9b51f66d
IM
10616 /*
10617 * Lock the parent list. No need to lock the child - not PID
10618 * hashed yet and not running, so nobody can access it.
10619 */
d859e29f 10620 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10621
10622 /*
10623 * We dont have to disable NMIs - we are only looking at
10624 * the list, not manipulating it:
10625 */
889ff015 10626 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10627 ret = inherit_task_group(event, parent, parent_ctx,
10628 child, ctxn, &inherited_all);
889ff015
FW
10629 if (ret)
10630 break;
10631 }
b93f7978 10632
dddd3379
TG
10633 /*
10634 * We can't hold ctx->lock when iterating the ->flexible_group list due
10635 * to allocations, but we need to prevent rotation because
10636 * rotate_ctx() will change the list from interrupt context.
10637 */
10638 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10639 parent_ctx->rotate_disable = 1;
10640 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10641
889ff015 10642 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10643 ret = inherit_task_group(event, parent, parent_ctx,
10644 child, ctxn, &inherited_all);
889ff015 10645 if (ret)
9b51f66d 10646 break;
564c2b21
PM
10647 }
10648
dddd3379
TG
10649 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10650 parent_ctx->rotate_disable = 0;
dddd3379 10651
8dc85d54 10652 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10653
05cbaa28 10654 if (child_ctx && inherited_all) {
564c2b21
PM
10655 /*
10656 * Mark the child context as a clone of the parent
10657 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10658 *
10659 * Note that if the parent is a clone, the holding of
10660 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10661 */
c5ed5145 10662 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10663 if (cloned_ctx) {
10664 child_ctx->parent_ctx = cloned_ctx;
25346b93 10665 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10666 } else {
10667 child_ctx->parent_ctx = parent_ctx;
10668 child_ctx->parent_gen = parent_ctx->generation;
10669 }
10670 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10671 }
10672
c5ed5145 10673 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 10674 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10675
25346b93 10676 perf_unpin_context(parent_ctx);
fe4b04fa 10677 put_ctx(parent_ctx);
ad3a37de 10678
6ab423e0 10679 return ret;
9b51f66d
IM
10680}
10681
8dc85d54
PZ
10682/*
10683 * Initialize the perf_event context in task_struct
10684 */
10685int perf_event_init_task(struct task_struct *child)
10686{
10687 int ctxn, ret;
10688
8550d7cb
ON
10689 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10690 mutex_init(&child->perf_event_mutex);
10691 INIT_LIST_HEAD(&child->perf_event_list);
10692
8dc85d54
PZ
10693 for_each_task_context_nr(ctxn) {
10694 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10695 if (ret) {
10696 perf_event_free_task(child);
8dc85d54 10697 return ret;
6c72e350 10698 }
8dc85d54
PZ
10699 }
10700
10701 return 0;
10702}
10703
220b140b
PM
10704static void __init perf_event_init_all_cpus(void)
10705{
b28ab83c 10706 struct swevent_htable *swhash;
220b140b 10707 int cpu;
220b140b
PM
10708
10709 for_each_possible_cpu(cpu) {
b28ab83c
PZ
10710 swhash = &per_cpu(swevent_htable, cpu);
10711 mutex_init(&swhash->hlist_mutex);
2fde4f94 10712 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
10713
10714 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10715 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788
PZ
10716
10717 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
10718 }
10719}
10720
00e16c3d 10721int perf_event_init_cpu(unsigned int cpu)
0793a61d 10722{
108b02cf 10723 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 10724
b28ab83c 10725 mutex_lock(&swhash->hlist_mutex);
059fcd8c 10726 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
10727 struct swevent_hlist *hlist;
10728
b28ab83c
PZ
10729 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10730 WARN_ON(!hlist);
10731 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 10732 }
b28ab83c 10733 mutex_unlock(&swhash->hlist_mutex);
00e16c3d 10734 return 0;
0793a61d
TG
10735}
10736
2965faa5 10737#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 10738static void __perf_event_exit_context(void *__info)
0793a61d 10739{
108b02cf 10740 struct perf_event_context *ctx = __info;
fae3fde6
PZ
10741 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10742 struct perf_event *event;
0793a61d 10743
fae3fde6
PZ
10744 raw_spin_lock(&ctx->lock);
10745 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 10746 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 10747 raw_spin_unlock(&ctx->lock);
0793a61d 10748}
108b02cf
PZ
10749
10750static void perf_event_exit_cpu_context(int cpu)
10751{
10752 struct perf_event_context *ctx;
10753 struct pmu *pmu;
10754 int idx;
10755
10756 idx = srcu_read_lock(&pmus_srcu);
10757 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 10758 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
10759
10760 mutex_lock(&ctx->mutex);
10761 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10762 mutex_unlock(&ctx->mutex);
10763 }
10764 srcu_read_unlock(&pmus_srcu, idx);
108b02cf 10765}
00e16c3d
TG
10766#else
10767
10768static void perf_event_exit_cpu_context(int cpu) { }
10769
10770#endif
108b02cf 10771
00e16c3d 10772int perf_event_exit_cpu(unsigned int cpu)
0793a61d 10773{
e3703f8c 10774 perf_event_exit_cpu_context(cpu);
00e16c3d 10775 return 0;
0793a61d 10776}
0793a61d 10777
c277443c
PZ
10778static int
10779perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10780{
10781 int cpu;
10782
10783 for_each_online_cpu(cpu)
10784 perf_event_exit_cpu(cpu);
10785
10786 return NOTIFY_OK;
10787}
10788
10789/*
10790 * Run the perf reboot notifier at the very last possible moment so that
10791 * the generic watchdog code runs as long as possible.
10792 */
10793static struct notifier_block perf_reboot_notifier = {
10794 .notifier_call = perf_reboot,
10795 .priority = INT_MIN,
10796};
10797
cdd6c482 10798void __init perf_event_init(void)
0793a61d 10799{
3c502e7a
JW
10800 int ret;
10801
2e80a82a
PZ
10802 idr_init(&pmu_idr);
10803
220b140b 10804 perf_event_init_all_cpus();
b0a873eb 10805 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
10806 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10807 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10808 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 10809 perf_tp_register();
00e16c3d 10810 perf_event_init_cpu(smp_processor_id());
c277443c 10811 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
10812
10813 ret = init_hw_breakpoint();
10814 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 10815
b01c3a00
JO
10816 /*
10817 * Build time assertion that we keep the data_head at the intended
10818 * location. IOW, validation we got the __reserved[] size right.
10819 */
10820 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10821 != 1024);
0793a61d 10822}
abe43400 10823
fd979c01
CS
10824ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10825 char *page)
10826{
10827 struct perf_pmu_events_attr *pmu_attr =
10828 container_of(attr, struct perf_pmu_events_attr, attr);
10829
10830 if (pmu_attr->event_str)
10831 return sprintf(page, "%s\n", pmu_attr->event_str);
10832
10833 return 0;
10834}
675965b0 10835EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 10836
abe43400
PZ
10837static int __init perf_event_sysfs_init(void)
10838{
10839 struct pmu *pmu;
10840 int ret;
10841
10842 mutex_lock(&pmus_lock);
10843
10844 ret = bus_register(&pmu_bus);
10845 if (ret)
10846 goto unlock;
10847
10848 list_for_each_entry(pmu, &pmus, entry) {
10849 if (!pmu->name || pmu->type < 0)
10850 continue;
10851
10852 ret = pmu_dev_alloc(pmu);
10853 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10854 }
10855 pmu_bus_running = 1;
10856 ret = 0;
10857
10858unlock:
10859 mutex_unlock(&pmus_lock);
10860
10861 return ret;
10862}
10863device_initcall(perf_event_sysfs_init);
e5d1367f
SE
10864
10865#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
10866static struct cgroup_subsys_state *
10867perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
10868{
10869 struct perf_cgroup *jc;
e5d1367f 10870
1b15d055 10871 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
10872 if (!jc)
10873 return ERR_PTR(-ENOMEM);
10874
e5d1367f
SE
10875 jc->info = alloc_percpu(struct perf_cgroup_info);
10876 if (!jc->info) {
10877 kfree(jc);
10878 return ERR_PTR(-ENOMEM);
10879 }
10880
e5d1367f
SE
10881 return &jc->css;
10882}
10883
eb95419b 10884static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 10885{
eb95419b
TH
10886 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10887
e5d1367f
SE
10888 free_percpu(jc->info);
10889 kfree(jc);
10890}
10891
10892static int __perf_cgroup_move(void *info)
10893{
10894 struct task_struct *task = info;
ddaaf4e2 10895 rcu_read_lock();
e5d1367f 10896 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 10897 rcu_read_unlock();
e5d1367f
SE
10898 return 0;
10899}
10900
1f7dd3e5 10901static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 10902{
bb9d97b6 10903 struct task_struct *task;
1f7dd3e5 10904 struct cgroup_subsys_state *css;
bb9d97b6 10905
1f7dd3e5 10906 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 10907 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
10908}
10909
073219e9 10910struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
10911 .css_alloc = perf_cgroup_css_alloc,
10912 .css_free = perf_cgroup_css_free,
bb9d97b6 10913 .attach = perf_cgroup_attach,
e5d1367f
SE
10914};
10915#endif /* CONFIG_CGROUP_PERF */