]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/events/core.c
perf/x86/amd: Set the size of event map array to PERF_COUNT_HW_MAX
[mirror_ubuntu-jammy-kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
272325c4
PZ
52typedef int (*remote_function_f)(void *);
53
fe4b04fa 54struct remote_function_call {
e7e7ee2e 55 struct task_struct *p;
272325c4 56 remote_function_f func;
e7e7ee2e
IM
57 void *info;
58 int ret;
fe4b04fa
PZ
59};
60
61static void remote_function(void *data)
62{
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
65
66 if (p) {
0da4cf3e
PZ
67 /* -EAGAIN */
68 if (task_cpu(p) != smp_processor_id())
69 return;
70
71 /*
72 * Now that we're on right CPU with IRQs disabled, we can test
73 * if we hit the right task without races.
74 */
75
76 tfc->ret = -ESRCH; /* No such (running) process */
77 if (p != current)
fe4b04fa
PZ
78 return;
79 }
80
81 tfc->ret = tfc->func(tfc->info);
82}
83
84/**
85 * task_function_call - call a function on the cpu on which a task runs
86 * @p: the task to evaluate
87 * @func: the function to be called
88 * @info: the function call argument
89 *
90 * Calls the function @func when the task is currently running. This might
91 * be on the current CPU, which just calls the function directly
92 *
93 * returns: @func return value, or
94 * -ESRCH - when the process isn't running
95 * -EAGAIN - when the process moved away
96 */
97static int
272325c4 98task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
99{
100 struct remote_function_call data = {
e7e7ee2e
IM
101 .p = p,
102 .func = func,
103 .info = info,
0da4cf3e 104 .ret = -EAGAIN,
fe4b04fa 105 };
0da4cf3e 106 int ret;
fe4b04fa 107
0da4cf3e
PZ
108 do {
109 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
110 if (!ret)
111 ret = data.ret;
112 } while (ret == -EAGAIN);
fe4b04fa 113
0da4cf3e 114 return ret;
fe4b04fa
PZ
115}
116
117/**
118 * cpu_function_call - call a function on the cpu
119 * @func: the function to be called
120 * @info: the function call argument
121 *
122 * Calls the function @func on the remote cpu.
123 *
124 * returns: @func return value or -ENXIO when the cpu is offline
125 */
272325c4 126static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
127{
128 struct remote_function_call data = {
e7e7ee2e
IM
129 .p = NULL,
130 .func = func,
131 .info = info,
132 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
133 };
134
135 smp_call_function_single(cpu, remote_function, &data, 1);
136
137 return data.ret;
138}
139
fae3fde6
PZ
140static inline struct perf_cpu_context *
141__get_cpu_context(struct perf_event_context *ctx)
142{
143 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
144}
145
146static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
147 struct perf_event_context *ctx)
0017960f 148{
fae3fde6
PZ
149 raw_spin_lock(&cpuctx->ctx.lock);
150 if (ctx)
151 raw_spin_lock(&ctx->lock);
152}
153
154static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
155 struct perf_event_context *ctx)
156{
157 if (ctx)
158 raw_spin_unlock(&ctx->lock);
159 raw_spin_unlock(&cpuctx->ctx.lock);
160}
161
63b6da39
PZ
162#define TASK_TOMBSTONE ((void *)-1L)
163
164static bool is_kernel_event(struct perf_event *event)
165{
f47c02c0 166 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
167}
168
39a43640
PZ
169/*
170 * On task ctx scheduling...
171 *
172 * When !ctx->nr_events a task context will not be scheduled. This means
173 * we can disable the scheduler hooks (for performance) without leaving
174 * pending task ctx state.
175 *
176 * This however results in two special cases:
177 *
178 * - removing the last event from a task ctx; this is relatively straight
179 * forward and is done in __perf_remove_from_context.
180 *
181 * - adding the first event to a task ctx; this is tricky because we cannot
182 * rely on ctx->is_active and therefore cannot use event_function_call().
183 * See perf_install_in_context().
184 *
39a43640
PZ
185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186 */
187
fae3fde6
PZ
188typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 struct perf_event_context *, void *);
190
191struct event_function_struct {
192 struct perf_event *event;
193 event_f func;
194 void *data;
195};
196
197static int event_function(void *info)
198{
199 struct event_function_struct *efs = info;
200 struct perf_event *event = efs->event;
0017960f 201 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 204 int ret = 0;
fae3fde6
PZ
205
206 WARN_ON_ONCE(!irqs_disabled());
207
63b6da39 208 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
209 /*
210 * Since we do the IPI call without holding ctx->lock things can have
211 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
212 */
213 if (ctx->task) {
63b6da39 214 if (ctx->task != current) {
0da4cf3e 215 ret = -ESRCH;
63b6da39
PZ
216 goto unlock;
217 }
fae3fde6 218
fae3fde6
PZ
219 /*
220 * We only use event_function_call() on established contexts,
221 * and event_function() is only ever called when active (or
222 * rather, we'll have bailed in task_function_call() or the
223 * above ctx->task != current test), therefore we must have
224 * ctx->is_active here.
225 */
226 WARN_ON_ONCE(!ctx->is_active);
227 /*
228 * And since we have ctx->is_active, cpuctx->task_ctx must
229 * match.
230 */
63b6da39
PZ
231 WARN_ON_ONCE(task_ctx != ctx);
232 } else {
233 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 234 }
63b6da39 235
fae3fde6 236 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 237unlock:
fae3fde6
PZ
238 perf_ctx_unlock(cpuctx, task_ctx);
239
63b6da39 240 return ret;
fae3fde6
PZ
241}
242
243static void event_function_local(struct perf_event *event, event_f func, void *data)
244{
245 struct event_function_struct efs = {
246 .event = event,
247 .func = func,
248 .data = data,
249 };
250
251 int ret = event_function(&efs);
252 WARN_ON_ONCE(ret);
253}
254
255static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
256{
257 struct perf_event_context *ctx = event->ctx;
63b6da39 258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
259 struct event_function_struct efs = {
260 .event = event,
261 .func = func,
262 .data = data,
263 };
0017960f 264
c97f4736
PZ
265 if (!event->parent) {
266 /*
267 * If this is a !child event, we must hold ctx::mutex to
268 * stabilize the the event->ctx relation. See
269 * perf_event_ctx_lock().
270 */
271 lockdep_assert_held(&ctx->mutex);
272 }
0017960f
PZ
273
274 if (!task) {
fae3fde6 275 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
276 return;
277 }
278
63b6da39
PZ
279 if (task == TASK_TOMBSTONE)
280 return;
281
a096309b 282again:
fae3fde6 283 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
284 return;
285
286 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
287 /*
288 * Reload the task pointer, it might have been changed by
289 * a concurrent perf_event_context_sched_out().
290 */
291 task = ctx->task;
a096309b
PZ
292 if (task == TASK_TOMBSTONE) {
293 raw_spin_unlock_irq(&ctx->lock);
294 return;
0017960f 295 }
a096309b
PZ
296 if (ctx->is_active) {
297 raw_spin_unlock_irq(&ctx->lock);
298 goto again;
299 }
300 func(event, NULL, ctx, data);
0017960f
PZ
301 raw_spin_unlock_irq(&ctx->lock);
302}
303
e5d1367f
SE
304#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
306 PERF_FLAG_PID_CGROUP |\
307 PERF_FLAG_FD_CLOEXEC)
e5d1367f 308
bce38cd5
SE
309/*
310 * branch priv levels that need permission checks
311 */
312#define PERF_SAMPLE_BRANCH_PERM_PLM \
313 (PERF_SAMPLE_BRANCH_KERNEL |\
314 PERF_SAMPLE_BRANCH_HV)
315
0b3fcf17
SE
316enum event_type_t {
317 EVENT_FLEXIBLE = 0x1,
318 EVENT_PINNED = 0x2,
3cbaa590 319 EVENT_TIME = 0x4,
0b3fcf17
SE
320 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
321};
322
e5d1367f
SE
323/*
324 * perf_sched_events : >0 events exist
325 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
326 */
9107c89e
PZ
327
328static void perf_sched_delayed(struct work_struct *work);
329DEFINE_STATIC_KEY_FALSE(perf_sched_events);
330static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
331static DEFINE_MUTEX(perf_sched_mutex);
332static atomic_t perf_sched_count;
333
e5d1367f 334static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 335static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 336
cdd6c482
IM
337static atomic_t nr_mmap_events __read_mostly;
338static atomic_t nr_comm_events __read_mostly;
339static atomic_t nr_task_events __read_mostly;
948b26b6 340static atomic_t nr_freq_events __read_mostly;
45ac1403 341static atomic_t nr_switch_events __read_mostly;
9ee318a7 342
108b02cf
PZ
343static LIST_HEAD(pmus);
344static DEFINE_MUTEX(pmus_lock);
345static struct srcu_struct pmus_srcu;
346
0764771d 347/*
cdd6c482 348 * perf event paranoia level:
0fbdea19
IM
349 * -1 - not paranoid at all
350 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 351 * 1 - disallow cpu events for unpriv
0fbdea19 352 * 2 - disallow kernel profiling for unpriv
0764771d 353 */
cdd6c482 354int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 355
20443384
FW
356/* Minimum for 512 kiB + 1 user control page */
357int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
358
359/*
cdd6c482 360 * max perf event sample rate
df58ab24 361 */
14c63f17
DH
362#define DEFAULT_MAX_SAMPLE_RATE 100000
363#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
364#define DEFAULT_CPU_TIME_MAX_PERCENT 25
365
366int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
367
368static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
369static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
370
d9494cb4
PZ
371static int perf_sample_allowed_ns __read_mostly =
372 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 373
18ab2cd3 374static void update_perf_cpu_limits(void)
14c63f17
DH
375{
376 u64 tmp = perf_sample_period_ns;
377
378 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
379 tmp = div_u64(tmp, 100);
380 if (!tmp)
381 tmp = 1;
382
383 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 384}
163ec435 385
9e630205
SE
386static int perf_rotate_context(struct perf_cpu_context *cpuctx);
387
163ec435
PZ
388int perf_proc_update_handler(struct ctl_table *table, int write,
389 void __user *buffer, size_t *lenp,
390 loff_t *ppos)
391{
723478c8 392 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
393
394 if (ret || !write)
395 return ret;
396
397 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
398 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
399 update_perf_cpu_limits();
400
401 return 0;
402}
403
404int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
405
406int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
407 void __user *buffer, size_t *lenp,
408 loff_t *ppos)
409{
410 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
411
412 if (ret || !write)
413 return ret;
414
b303e7c1
PZ
415 if (sysctl_perf_cpu_time_max_percent == 100 ||
416 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
417 printk(KERN_WARNING
418 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
419 WRITE_ONCE(perf_sample_allowed_ns, 0);
420 } else {
421 update_perf_cpu_limits();
422 }
163ec435
PZ
423
424 return 0;
425}
1ccd1549 426
14c63f17
DH
427/*
428 * perf samples are done in some very critical code paths (NMIs).
429 * If they take too much CPU time, the system can lock up and not
430 * get any real work done. This will drop the sample rate when
431 * we detect that events are taking too long.
432 */
433#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 434static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 435
91a612ee
PZ
436static u64 __report_avg;
437static u64 __report_allowed;
438
6a02ad66 439static void perf_duration_warn(struct irq_work *w)
14c63f17 440{
6a02ad66 441 printk_ratelimited(KERN_WARNING
91a612ee
PZ
442 "perf: interrupt took too long (%lld > %lld), lowering "
443 "kernel.perf_event_max_sample_rate to %d\n",
444 __report_avg, __report_allowed,
445 sysctl_perf_event_sample_rate);
6a02ad66
PZ
446}
447
448static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
449
450void perf_sample_event_took(u64 sample_len_ns)
451{
91a612ee
PZ
452 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
453 u64 running_len;
454 u64 avg_len;
455 u32 max;
14c63f17 456
91a612ee 457 if (max_len == 0)
14c63f17
DH
458 return;
459
91a612ee
PZ
460 /* Decay the counter by 1 average sample. */
461 running_len = __this_cpu_read(running_sample_length);
462 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
463 running_len += sample_len_ns;
464 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
465
466 /*
91a612ee
PZ
467 * Note: this will be biased artifically low until we have
468 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
469 * from having to maintain a count.
470 */
91a612ee
PZ
471 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
472 if (avg_len <= max_len)
14c63f17
DH
473 return;
474
91a612ee
PZ
475 __report_avg = avg_len;
476 __report_allowed = max_len;
14c63f17 477
91a612ee
PZ
478 /*
479 * Compute a throttle threshold 25% below the current duration.
480 */
481 avg_len += avg_len / 4;
482 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
483 if (avg_len < max)
484 max /= (u32)avg_len;
485 else
486 max = 1;
14c63f17 487
91a612ee
PZ
488 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
489 WRITE_ONCE(max_samples_per_tick, max);
490
491 sysctl_perf_event_sample_rate = max * HZ;
492 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 493
cd578abb 494 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 495 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 496 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 497 __report_avg, __report_allowed,
cd578abb
PZ
498 sysctl_perf_event_sample_rate);
499 }
14c63f17
DH
500}
501
cdd6c482 502static atomic64_t perf_event_id;
a96bbc16 503
0b3fcf17
SE
504static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
505 enum event_type_t event_type);
506
507static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
508 enum event_type_t event_type,
509 struct task_struct *task);
510
511static void update_context_time(struct perf_event_context *ctx);
512static u64 perf_event_time(struct perf_event *event);
0b3fcf17 513
cdd6c482 514void __weak perf_event_print_debug(void) { }
0793a61d 515
84c79910 516extern __weak const char *perf_pmu_name(void)
0793a61d 517{
84c79910 518 return "pmu";
0793a61d
TG
519}
520
0b3fcf17
SE
521static inline u64 perf_clock(void)
522{
523 return local_clock();
524}
525
34f43927
PZ
526static inline u64 perf_event_clock(struct perf_event *event)
527{
528 return event->clock();
529}
530
e5d1367f
SE
531#ifdef CONFIG_CGROUP_PERF
532
e5d1367f
SE
533static inline bool
534perf_cgroup_match(struct perf_event *event)
535{
536 struct perf_event_context *ctx = event->ctx;
537 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
538
ef824fa1
TH
539 /* @event doesn't care about cgroup */
540 if (!event->cgrp)
541 return true;
542
543 /* wants specific cgroup scope but @cpuctx isn't associated with any */
544 if (!cpuctx->cgrp)
545 return false;
546
547 /*
548 * Cgroup scoping is recursive. An event enabled for a cgroup is
549 * also enabled for all its descendant cgroups. If @cpuctx's
550 * cgroup is a descendant of @event's (the test covers identity
551 * case), it's a match.
552 */
553 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
554 event->cgrp->css.cgroup);
e5d1367f
SE
555}
556
e5d1367f
SE
557static inline void perf_detach_cgroup(struct perf_event *event)
558{
4e2ba650 559 css_put(&event->cgrp->css);
e5d1367f
SE
560 event->cgrp = NULL;
561}
562
563static inline int is_cgroup_event(struct perf_event *event)
564{
565 return event->cgrp != NULL;
566}
567
568static inline u64 perf_cgroup_event_time(struct perf_event *event)
569{
570 struct perf_cgroup_info *t;
571
572 t = per_cpu_ptr(event->cgrp->info, event->cpu);
573 return t->time;
574}
575
576static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
577{
578 struct perf_cgroup_info *info;
579 u64 now;
580
581 now = perf_clock();
582
583 info = this_cpu_ptr(cgrp->info);
584
585 info->time += now - info->timestamp;
586 info->timestamp = now;
587}
588
589static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
590{
591 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
592 if (cgrp_out)
593 __update_cgrp_time(cgrp_out);
594}
595
596static inline void update_cgrp_time_from_event(struct perf_event *event)
597{
3f7cce3c
SE
598 struct perf_cgroup *cgrp;
599
e5d1367f 600 /*
3f7cce3c
SE
601 * ensure we access cgroup data only when needed and
602 * when we know the cgroup is pinned (css_get)
e5d1367f 603 */
3f7cce3c 604 if (!is_cgroup_event(event))
e5d1367f
SE
605 return;
606
614e4c4e 607 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
608 /*
609 * Do not update time when cgroup is not active
610 */
611 if (cgrp == event->cgrp)
612 __update_cgrp_time(event->cgrp);
e5d1367f
SE
613}
614
615static inline void
3f7cce3c
SE
616perf_cgroup_set_timestamp(struct task_struct *task,
617 struct perf_event_context *ctx)
e5d1367f
SE
618{
619 struct perf_cgroup *cgrp;
620 struct perf_cgroup_info *info;
621
3f7cce3c
SE
622 /*
623 * ctx->lock held by caller
624 * ensure we do not access cgroup data
625 * unless we have the cgroup pinned (css_get)
626 */
627 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
628 return;
629
614e4c4e 630 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 631 info = this_cpu_ptr(cgrp->info);
3f7cce3c 632 info->timestamp = ctx->timestamp;
e5d1367f
SE
633}
634
635#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
636#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
637
638/*
639 * reschedule events based on the cgroup constraint of task.
640 *
641 * mode SWOUT : schedule out everything
642 * mode SWIN : schedule in based on cgroup for next
643 */
18ab2cd3 644static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
645{
646 struct perf_cpu_context *cpuctx;
647 struct pmu *pmu;
648 unsigned long flags;
649
650 /*
651 * disable interrupts to avoid geting nr_cgroup
652 * changes via __perf_event_disable(). Also
653 * avoids preemption.
654 */
655 local_irq_save(flags);
656
657 /*
658 * we reschedule only in the presence of cgroup
659 * constrained events.
660 */
e5d1367f
SE
661
662 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 663 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
664 if (cpuctx->unique_pmu != pmu)
665 continue; /* ensure we process each cpuctx once */
e5d1367f 666
e5d1367f
SE
667 /*
668 * perf_cgroup_events says at least one
669 * context on this CPU has cgroup events.
670 *
671 * ctx->nr_cgroups reports the number of cgroup
672 * events for a context.
673 */
674 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
675 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
676 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
677
678 if (mode & PERF_CGROUP_SWOUT) {
679 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
680 /*
681 * must not be done before ctxswout due
682 * to event_filter_match() in event_sched_out()
683 */
684 cpuctx->cgrp = NULL;
685 }
686
687 if (mode & PERF_CGROUP_SWIN) {
e566b76e 688 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
689 /*
690 * set cgrp before ctxsw in to allow
691 * event_filter_match() to not have to pass
692 * task around
614e4c4e
SE
693 * we pass the cpuctx->ctx to perf_cgroup_from_task()
694 * because cgorup events are only per-cpu
e5d1367f 695 */
614e4c4e 696 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
697 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
698 }
facc4307
PZ
699 perf_pmu_enable(cpuctx->ctx.pmu);
700 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 701 }
e5d1367f
SE
702 }
703
e5d1367f
SE
704 local_irq_restore(flags);
705}
706
a8d757ef
SE
707static inline void perf_cgroup_sched_out(struct task_struct *task,
708 struct task_struct *next)
e5d1367f 709{
a8d757ef
SE
710 struct perf_cgroup *cgrp1;
711 struct perf_cgroup *cgrp2 = NULL;
712
ddaaf4e2 713 rcu_read_lock();
a8d757ef
SE
714 /*
715 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
716 * we do not need to pass the ctx here because we know
717 * we are holding the rcu lock
a8d757ef 718 */
614e4c4e 719 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 720 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
721
722 /*
723 * only schedule out current cgroup events if we know
724 * that we are switching to a different cgroup. Otherwise,
725 * do no touch the cgroup events.
726 */
727 if (cgrp1 != cgrp2)
728 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
729
730 rcu_read_unlock();
e5d1367f
SE
731}
732
a8d757ef
SE
733static inline void perf_cgroup_sched_in(struct task_struct *prev,
734 struct task_struct *task)
e5d1367f 735{
a8d757ef
SE
736 struct perf_cgroup *cgrp1;
737 struct perf_cgroup *cgrp2 = NULL;
738
ddaaf4e2 739 rcu_read_lock();
a8d757ef
SE
740 /*
741 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
742 * we do not need to pass the ctx here because we know
743 * we are holding the rcu lock
a8d757ef 744 */
614e4c4e 745 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 746 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
747
748 /*
749 * only need to schedule in cgroup events if we are changing
750 * cgroup during ctxsw. Cgroup events were not scheduled
751 * out of ctxsw out if that was not the case.
752 */
753 if (cgrp1 != cgrp2)
754 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
755
756 rcu_read_unlock();
e5d1367f
SE
757}
758
759static inline int perf_cgroup_connect(int fd, struct perf_event *event,
760 struct perf_event_attr *attr,
761 struct perf_event *group_leader)
762{
763 struct perf_cgroup *cgrp;
764 struct cgroup_subsys_state *css;
2903ff01
AV
765 struct fd f = fdget(fd);
766 int ret = 0;
e5d1367f 767
2903ff01 768 if (!f.file)
e5d1367f
SE
769 return -EBADF;
770
b583043e 771 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 772 &perf_event_cgrp_subsys);
3db272c0
LZ
773 if (IS_ERR(css)) {
774 ret = PTR_ERR(css);
775 goto out;
776 }
e5d1367f
SE
777
778 cgrp = container_of(css, struct perf_cgroup, css);
779 event->cgrp = cgrp;
780
781 /*
782 * all events in a group must monitor
783 * the same cgroup because a task belongs
784 * to only one perf cgroup at a time
785 */
786 if (group_leader && group_leader->cgrp != cgrp) {
787 perf_detach_cgroup(event);
788 ret = -EINVAL;
e5d1367f 789 }
3db272c0 790out:
2903ff01 791 fdput(f);
e5d1367f
SE
792 return ret;
793}
794
795static inline void
796perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
797{
798 struct perf_cgroup_info *t;
799 t = per_cpu_ptr(event->cgrp->info, event->cpu);
800 event->shadow_ctx_time = now - t->timestamp;
801}
802
803static inline void
804perf_cgroup_defer_enabled(struct perf_event *event)
805{
806 /*
807 * when the current task's perf cgroup does not match
808 * the event's, we need to remember to call the
809 * perf_mark_enable() function the first time a task with
810 * a matching perf cgroup is scheduled in.
811 */
812 if (is_cgroup_event(event) && !perf_cgroup_match(event))
813 event->cgrp_defer_enabled = 1;
814}
815
816static inline void
817perf_cgroup_mark_enabled(struct perf_event *event,
818 struct perf_event_context *ctx)
819{
820 struct perf_event *sub;
821 u64 tstamp = perf_event_time(event);
822
823 if (!event->cgrp_defer_enabled)
824 return;
825
826 event->cgrp_defer_enabled = 0;
827
828 event->tstamp_enabled = tstamp - event->total_time_enabled;
829 list_for_each_entry(sub, &event->sibling_list, group_entry) {
830 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
831 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
832 sub->cgrp_defer_enabled = 0;
833 }
834 }
835}
836#else /* !CONFIG_CGROUP_PERF */
837
838static inline bool
839perf_cgroup_match(struct perf_event *event)
840{
841 return true;
842}
843
844static inline void perf_detach_cgroup(struct perf_event *event)
845{}
846
847static inline int is_cgroup_event(struct perf_event *event)
848{
849 return 0;
850}
851
852static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
853{
854 return 0;
855}
856
857static inline void update_cgrp_time_from_event(struct perf_event *event)
858{
859}
860
861static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
862{
863}
864
a8d757ef
SE
865static inline void perf_cgroup_sched_out(struct task_struct *task,
866 struct task_struct *next)
e5d1367f
SE
867{
868}
869
a8d757ef
SE
870static inline void perf_cgroup_sched_in(struct task_struct *prev,
871 struct task_struct *task)
e5d1367f
SE
872{
873}
874
875static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
876 struct perf_event_attr *attr,
877 struct perf_event *group_leader)
878{
879 return -EINVAL;
880}
881
882static inline void
3f7cce3c
SE
883perf_cgroup_set_timestamp(struct task_struct *task,
884 struct perf_event_context *ctx)
e5d1367f
SE
885{
886}
887
888void
889perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
890{
891}
892
893static inline void
894perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
895{
896}
897
898static inline u64 perf_cgroup_event_time(struct perf_event *event)
899{
900 return 0;
901}
902
903static inline void
904perf_cgroup_defer_enabled(struct perf_event *event)
905{
906}
907
908static inline void
909perf_cgroup_mark_enabled(struct perf_event *event,
910 struct perf_event_context *ctx)
911{
912}
913#endif
914
9e630205
SE
915/*
916 * set default to be dependent on timer tick just
917 * like original code
918 */
919#define PERF_CPU_HRTIMER (1000 / HZ)
920/*
921 * function must be called with interrupts disbled
922 */
272325c4 923static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
924{
925 struct perf_cpu_context *cpuctx;
9e630205
SE
926 int rotations = 0;
927
928 WARN_ON(!irqs_disabled());
929
930 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
931 rotations = perf_rotate_context(cpuctx);
932
4cfafd30
PZ
933 raw_spin_lock(&cpuctx->hrtimer_lock);
934 if (rotations)
9e630205 935 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
936 else
937 cpuctx->hrtimer_active = 0;
938 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 939
4cfafd30 940 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
941}
942
272325c4 943static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 944{
272325c4 945 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 946 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 947 u64 interval;
9e630205
SE
948
949 /* no multiplexing needed for SW PMU */
950 if (pmu->task_ctx_nr == perf_sw_context)
951 return;
952
62b85639
SE
953 /*
954 * check default is sane, if not set then force to
955 * default interval (1/tick)
956 */
272325c4
PZ
957 interval = pmu->hrtimer_interval_ms;
958 if (interval < 1)
959 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 960
272325c4 961 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 962
4cfafd30
PZ
963 raw_spin_lock_init(&cpuctx->hrtimer_lock);
964 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 965 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
966}
967
272325c4 968static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 969{
272325c4 970 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 971 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 972 unsigned long flags;
9e630205
SE
973
974 /* not for SW PMU */
975 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 976 return 0;
9e630205 977
4cfafd30
PZ
978 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
979 if (!cpuctx->hrtimer_active) {
980 cpuctx->hrtimer_active = 1;
981 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
982 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
983 }
984 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 985
272325c4 986 return 0;
9e630205
SE
987}
988
33696fc0 989void perf_pmu_disable(struct pmu *pmu)
9e35ad38 990{
33696fc0
PZ
991 int *count = this_cpu_ptr(pmu->pmu_disable_count);
992 if (!(*count)++)
993 pmu->pmu_disable(pmu);
9e35ad38 994}
9e35ad38 995
33696fc0 996void perf_pmu_enable(struct pmu *pmu)
9e35ad38 997{
33696fc0
PZ
998 int *count = this_cpu_ptr(pmu->pmu_disable_count);
999 if (!--(*count))
1000 pmu->pmu_enable(pmu);
9e35ad38 1001}
9e35ad38 1002
2fde4f94 1003static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1004
1005/*
2fde4f94
MR
1006 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1007 * perf_event_task_tick() are fully serialized because they're strictly cpu
1008 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1009 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1010 */
2fde4f94 1011static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1012{
2fde4f94 1013 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1014
e9d2b064 1015 WARN_ON(!irqs_disabled());
b5ab4cd5 1016
2fde4f94
MR
1017 WARN_ON(!list_empty(&ctx->active_ctx_list));
1018
1019 list_add(&ctx->active_ctx_list, head);
1020}
1021
1022static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1023{
1024 WARN_ON(!irqs_disabled());
1025
1026 WARN_ON(list_empty(&ctx->active_ctx_list));
1027
1028 list_del_init(&ctx->active_ctx_list);
9e35ad38 1029}
9e35ad38 1030
cdd6c482 1031static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1032{
e5289d4a 1033 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1034}
1035
4af57ef2
YZ
1036static void free_ctx(struct rcu_head *head)
1037{
1038 struct perf_event_context *ctx;
1039
1040 ctx = container_of(head, struct perf_event_context, rcu_head);
1041 kfree(ctx->task_ctx_data);
1042 kfree(ctx);
1043}
1044
cdd6c482 1045static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1046{
564c2b21
PM
1047 if (atomic_dec_and_test(&ctx->refcount)) {
1048 if (ctx->parent_ctx)
1049 put_ctx(ctx->parent_ctx);
63b6da39 1050 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1051 put_task_struct(ctx->task);
4af57ef2 1052 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1053 }
a63eaf34
PM
1054}
1055
f63a8daa
PZ
1056/*
1057 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1058 * perf_pmu_migrate_context() we need some magic.
1059 *
1060 * Those places that change perf_event::ctx will hold both
1061 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1062 *
8b10c5e2
PZ
1063 * Lock ordering is by mutex address. There are two other sites where
1064 * perf_event_context::mutex nests and those are:
1065 *
1066 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1067 * perf_event_exit_event()
1068 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1069 *
1070 * - perf_event_init_context() [ parent, 0 ]
1071 * inherit_task_group()
1072 * inherit_group()
1073 * inherit_event()
1074 * perf_event_alloc()
1075 * perf_init_event()
1076 * perf_try_init_event() [ child , 1 ]
1077 *
1078 * While it appears there is an obvious deadlock here -- the parent and child
1079 * nesting levels are inverted between the two. This is in fact safe because
1080 * life-time rules separate them. That is an exiting task cannot fork, and a
1081 * spawning task cannot (yet) exit.
1082 *
1083 * But remember that that these are parent<->child context relations, and
1084 * migration does not affect children, therefore these two orderings should not
1085 * interact.
f63a8daa
PZ
1086 *
1087 * The change in perf_event::ctx does not affect children (as claimed above)
1088 * because the sys_perf_event_open() case will install a new event and break
1089 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1090 * concerned with cpuctx and that doesn't have children.
1091 *
1092 * The places that change perf_event::ctx will issue:
1093 *
1094 * perf_remove_from_context();
1095 * synchronize_rcu();
1096 * perf_install_in_context();
1097 *
1098 * to affect the change. The remove_from_context() + synchronize_rcu() should
1099 * quiesce the event, after which we can install it in the new location. This
1100 * means that only external vectors (perf_fops, prctl) can perturb the event
1101 * while in transit. Therefore all such accessors should also acquire
1102 * perf_event_context::mutex to serialize against this.
1103 *
1104 * However; because event->ctx can change while we're waiting to acquire
1105 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1106 * function.
1107 *
1108 * Lock order:
1109 * task_struct::perf_event_mutex
1110 * perf_event_context::mutex
f63a8daa 1111 * perf_event::child_mutex;
07c4a776 1112 * perf_event_context::lock
f63a8daa
PZ
1113 * perf_event::mmap_mutex
1114 * mmap_sem
1115 */
a83fe28e
PZ
1116static struct perf_event_context *
1117perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1118{
1119 struct perf_event_context *ctx;
1120
1121again:
1122 rcu_read_lock();
1123 ctx = ACCESS_ONCE(event->ctx);
1124 if (!atomic_inc_not_zero(&ctx->refcount)) {
1125 rcu_read_unlock();
1126 goto again;
1127 }
1128 rcu_read_unlock();
1129
a83fe28e 1130 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1131 if (event->ctx != ctx) {
1132 mutex_unlock(&ctx->mutex);
1133 put_ctx(ctx);
1134 goto again;
1135 }
1136
1137 return ctx;
1138}
1139
a83fe28e
PZ
1140static inline struct perf_event_context *
1141perf_event_ctx_lock(struct perf_event *event)
1142{
1143 return perf_event_ctx_lock_nested(event, 0);
1144}
1145
f63a8daa
PZ
1146static void perf_event_ctx_unlock(struct perf_event *event,
1147 struct perf_event_context *ctx)
1148{
1149 mutex_unlock(&ctx->mutex);
1150 put_ctx(ctx);
1151}
1152
211de6eb
PZ
1153/*
1154 * This must be done under the ctx->lock, such as to serialize against
1155 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1156 * calling scheduler related locks and ctx->lock nests inside those.
1157 */
1158static __must_check struct perf_event_context *
1159unclone_ctx(struct perf_event_context *ctx)
71a851b4 1160{
211de6eb
PZ
1161 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1162
1163 lockdep_assert_held(&ctx->lock);
1164
1165 if (parent_ctx)
71a851b4 1166 ctx->parent_ctx = NULL;
5a3126d4 1167 ctx->generation++;
211de6eb
PZ
1168
1169 return parent_ctx;
71a851b4
PZ
1170}
1171
6844c09d
ACM
1172static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1173{
1174 /*
1175 * only top level events have the pid namespace they were created in
1176 */
1177 if (event->parent)
1178 event = event->parent;
1179
1180 return task_tgid_nr_ns(p, event->ns);
1181}
1182
1183static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1184{
1185 /*
1186 * only top level events have the pid namespace they were created in
1187 */
1188 if (event->parent)
1189 event = event->parent;
1190
1191 return task_pid_nr_ns(p, event->ns);
1192}
1193
7f453c24 1194/*
cdd6c482 1195 * If we inherit events we want to return the parent event id
7f453c24
PZ
1196 * to userspace.
1197 */
cdd6c482 1198static u64 primary_event_id(struct perf_event *event)
7f453c24 1199{
cdd6c482 1200 u64 id = event->id;
7f453c24 1201
cdd6c482
IM
1202 if (event->parent)
1203 id = event->parent->id;
7f453c24
PZ
1204
1205 return id;
1206}
1207
25346b93 1208/*
cdd6c482 1209 * Get the perf_event_context for a task and lock it.
63b6da39 1210 *
25346b93
PM
1211 * This has to cope with with the fact that until it is locked,
1212 * the context could get moved to another task.
1213 */
cdd6c482 1214static struct perf_event_context *
8dc85d54 1215perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1216{
cdd6c482 1217 struct perf_event_context *ctx;
25346b93 1218
9ed6060d 1219retry:
058ebd0e
PZ
1220 /*
1221 * One of the few rules of preemptible RCU is that one cannot do
1222 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1223 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1224 * rcu_read_unlock_special().
1225 *
1226 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1227 * side critical section has interrupts disabled.
058ebd0e 1228 */
2fd59077 1229 local_irq_save(*flags);
058ebd0e 1230 rcu_read_lock();
8dc85d54 1231 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1232 if (ctx) {
1233 /*
1234 * If this context is a clone of another, it might
1235 * get swapped for another underneath us by
cdd6c482 1236 * perf_event_task_sched_out, though the
25346b93
PM
1237 * rcu_read_lock() protects us from any context
1238 * getting freed. Lock the context and check if it
1239 * got swapped before we could get the lock, and retry
1240 * if so. If we locked the right context, then it
1241 * can't get swapped on us any more.
1242 */
2fd59077 1243 raw_spin_lock(&ctx->lock);
8dc85d54 1244 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1245 raw_spin_unlock(&ctx->lock);
058ebd0e 1246 rcu_read_unlock();
2fd59077 1247 local_irq_restore(*flags);
25346b93
PM
1248 goto retry;
1249 }
b49a9e7e 1250
63b6da39
PZ
1251 if (ctx->task == TASK_TOMBSTONE ||
1252 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1253 raw_spin_unlock(&ctx->lock);
b49a9e7e 1254 ctx = NULL;
828b6f0e
PZ
1255 } else {
1256 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1257 }
25346b93
PM
1258 }
1259 rcu_read_unlock();
2fd59077
PM
1260 if (!ctx)
1261 local_irq_restore(*flags);
25346b93
PM
1262 return ctx;
1263}
1264
1265/*
1266 * Get the context for a task and increment its pin_count so it
1267 * can't get swapped to another task. This also increments its
1268 * reference count so that the context can't get freed.
1269 */
8dc85d54
PZ
1270static struct perf_event_context *
1271perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1272{
cdd6c482 1273 struct perf_event_context *ctx;
25346b93
PM
1274 unsigned long flags;
1275
8dc85d54 1276 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1277 if (ctx) {
1278 ++ctx->pin_count;
e625cce1 1279 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1280 }
1281 return ctx;
1282}
1283
cdd6c482 1284static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1285{
1286 unsigned long flags;
1287
e625cce1 1288 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1289 --ctx->pin_count;
e625cce1 1290 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1291}
1292
f67218c3
PZ
1293/*
1294 * Update the record of the current time in a context.
1295 */
1296static void update_context_time(struct perf_event_context *ctx)
1297{
1298 u64 now = perf_clock();
1299
1300 ctx->time += now - ctx->timestamp;
1301 ctx->timestamp = now;
1302}
1303
4158755d
SE
1304static u64 perf_event_time(struct perf_event *event)
1305{
1306 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1307
1308 if (is_cgroup_event(event))
1309 return perf_cgroup_event_time(event);
1310
4158755d
SE
1311 return ctx ? ctx->time : 0;
1312}
1313
f67218c3
PZ
1314/*
1315 * Update the total_time_enabled and total_time_running fields for a event.
1316 */
1317static void update_event_times(struct perf_event *event)
1318{
1319 struct perf_event_context *ctx = event->ctx;
1320 u64 run_end;
1321
3cbaa590
PZ
1322 lockdep_assert_held(&ctx->lock);
1323
f67218c3
PZ
1324 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1325 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1326 return;
3cbaa590 1327
e5d1367f
SE
1328 /*
1329 * in cgroup mode, time_enabled represents
1330 * the time the event was enabled AND active
1331 * tasks were in the monitored cgroup. This is
1332 * independent of the activity of the context as
1333 * there may be a mix of cgroup and non-cgroup events.
1334 *
1335 * That is why we treat cgroup events differently
1336 * here.
1337 */
1338 if (is_cgroup_event(event))
46cd6a7f 1339 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1340 else if (ctx->is_active)
1341 run_end = ctx->time;
acd1d7c1
PZ
1342 else
1343 run_end = event->tstamp_stopped;
1344
1345 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1346
1347 if (event->state == PERF_EVENT_STATE_INACTIVE)
1348 run_end = event->tstamp_stopped;
1349 else
4158755d 1350 run_end = perf_event_time(event);
f67218c3
PZ
1351
1352 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1353
f67218c3
PZ
1354}
1355
96c21a46
PZ
1356/*
1357 * Update total_time_enabled and total_time_running for all events in a group.
1358 */
1359static void update_group_times(struct perf_event *leader)
1360{
1361 struct perf_event *event;
1362
1363 update_event_times(leader);
1364 list_for_each_entry(event, &leader->sibling_list, group_entry)
1365 update_event_times(event);
1366}
1367
889ff015
FW
1368static struct list_head *
1369ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1370{
1371 if (event->attr.pinned)
1372 return &ctx->pinned_groups;
1373 else
1374 return &ctx->flexible_groups;
1375}
1376
fccc714b 1377/*
cdd6c482 1378 * Add a event from the lists for its context.
fccc714b
PZ
1379 * Must be called with ctx->mutex and ctx->lock held.
1380 */
04289bb9 1381static void
cdd6c482 1382list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1383{
c994d613
PZ
1384 lockdep_assert_held(&ctx->lock);
1385
8a49542c
PZ
1386 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1387 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1388
1389 /*
8a49542c
PZ
1390 * If we're a stand alone event or group leader, we go to the context
1391 * list, group events are kept attached to the group so that
1392 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1393 */
8a49542c 1394 if (event->group_leader == event) {
889ff015
FW
1395 struct list_head *list;
1396
d6f962b5
FW
1397 if (is_software_event(event))
1398 event->group_flags |= PERF_GROUP_SOFTWARE;
1399
889ff015
FW
1400 list = ctx_group_list(event, ctx);
1401 list_add_tail(&event->group_entry, list);
5c148194 1402 }
592903cd 1403
08309379 1404 if (is_cgroup_event(event))
e5d1367f 1405 ctx->nr_cgroups++;
e5d1367f 1406
cdd6c482
IM
1407 list_add_rcu(&event->event_entry, &ctx->event_list);
1408 ctx->nr_events++;
1409 if (event->attr.inherit_stat)
bfbd3381 1410 ctx->nr_stat++;
5a3126d4
PZ
1411
1412 ctx->generation++;
04289bb9
IM
1413}
1414
0231bb53
JO
1415/*
1416 * Initialize event state based on the perf_event_attr::disabled.
1417 */
1418static inline void perf_event__state_init(struct perf_event *event)
1419{
1420 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1421 PERF_EVENT_STATE_INACTIVE;
1422}
1423
a723968c 1424static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1425{
1426 int entry = sizeof(u64); /* value */
1427 int size = 0;
1428 int nr = 1;
1429
1430 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1431 size += sizeof(u64);
1432
1433 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1434 size += sizeof(u64);
1435
1436 if (event->attr.read_format & PERF_FORMAT_ID)
1437 entry += sizeof(u64);
1438
1439 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1440 nr += nr_siblings;
c320c7b7
ACM
1441 size += sizeof(u64);
1442 }
1443
1444 size += entry * nr;
1445 event->read_size = size;
1446}
1447
a723968c 1448static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1449{
1450 struct perf_sample_data *data;
c320c7b7
ACM
1451 u16 size = 0;
1452
c320c7b7
ACM
1453 if (sample_type & PERF_SAMPLE_IP)
1454 size += sizeof(data->ip);
1455
6844c09d
ACM
1456 if (sample_type & PERF_SAMPLE_ADDR)
1457 size += sizeof(data->addr);
1458
1459 if (sample_type & PERF_SAMPLE_PERIOD)
1460 size += sizeof(data->period);
1461
c3feedf2
AK
1462 if (sample_type & PERF_SAMPLE_WEIGHT)
1463 size += sizeof(data->weight);
1464
6844c09d
ACM
1465 if (sample_type & PERF_SAMPLE_READ)
1466 size += event->read_size;
1467
d6be9ad6
SE
1468 if (sample_type & PERF_SAMPLE_DATA_SRC)
1469 size += sizeof(data->data_src.val);
1470
fdfbbd07
AK
1471 if (sample_type & PERF_SAMPLE_TRANSACTION)
1472 size += sizeof(data->txn);
1473
6844c09d
ACM
1474 event->header_size = size;
1475}
1476
a723968c
PZ
1477/*
1478 * Called at perf_event creation and when events are attached/detached from a
1479 * group.
1480 */
1481static void perf_event__header_size(struct perf_event *event)
1482{
1483 __perf_event_read_size(event,
1484 event->group_leader->nr_siblings);
1485 __perf_event_header_size(event, event->attr.sample_type);
1486}
1487
6844c09d
ACM
1488static void perf_event__id_header_size(struct perf_event *event)
1489{
1490 struct perf_sample_data *data;
1491 u64 sample_type = event->attr.sample_type;
1492 u16 size = 0;
1493
c320c7b7
ACM
1494 if (sample_type & PERF_SAMPLE_TID)
1495 size += sizeof(data->tid_entry);
1496
1497 if (sample_type & PERF_SAMPLE_TIME)
1498 size += sizeof(data->time);
1499
ff3d527c
AH
1500 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1501 size += sizeof(data->id);
1502
c320c7b7
ACM
1503 if (sample_type & PERF_SAMPLE_ID)
1504 size += sizeof(data->id);
1505
1506 if (sample_type & PERF_SAMPLE_STREAM_ID)
1507 size += sizeof(data->stream_id);
1508
1509 if (sample_type & PERF_SAMPLE_CPU)
1510 size += sizeof(data->cpu_entry);
1511
6844c09d 1512 event->id_header_size = size;
c320c7b7
ACM
1513}
1514
a723968c
PZ
1515static bool perf_event_validate_size(struct perf_event *event)
1516{
1517 /*
1518 * The values computed here will be over-written when we actually
1519 * attach the event.
1520 */
1521 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1522 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1523 perf_event__id_header_size(event);
1524
1525 /*
1526 * Sum the lot; should not exceed the 64k limit we have on records.
1527 * Conservative limit to allow for callchains and other variable fields.
1528 */
1529 if (event->read_size + event->header_size +
1530 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1531 return false;
1532
1533 return true;
1534}
1535
8a49542c
PZ
1536static void perf_group_attach(struct perf_event *event)
1537{
c320c7b7 1538 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1539
74c3337c
PZ
1540 /*
1541 * We can have double attach due to group movement in perf_event_open.
1542 */
1543 if (event->attach_state & PERF_ATTACH_GROUP)
1544 return;
1545
8a49542c
PZ
1546 event->attach_state |= PERF_ATTACH_GROUP;
1547
1548 if (group_leader == event)
1549 return;
1550
652884fe
PZ
1551 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1552
8a49542c
PZ
1553 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1554 !is_software_event(event))
1555 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1556
1557 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1558 group_leader->nr_siblings++;
c320c7b7
ACM
1559
1560 perf_event__header_size(group_leader);
1561
1562 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1563 perf_event__header_size(pos);
8a49542c
PZ
1564}
1565
a63eaf34 1566/*
cdd6c482 1567 * Remove a event from the lists for its context.
fccc714b 1568 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1569 */
04289bb9 1570static void
cdd6c482 1571list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1572{
68cacd29 1573 struct perf_cpu_context *cpuctx;
652884fe
PZ
1574
1575 WARN_ON_ONCE(event->ctx != ctx);
1576 lockdep_assert_held(&ctx->lock);
1577
8a49542c
PZ
1578 /*
1579 * We can have double detach due to exit/hot-unplug + close.
1580 */
1581 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1582 return;
8a49542c
PZ
1583
1584 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1585
68cacd29 1586 if (is_cgroup_event(event)) {
e5d1367f 1587 ctx->nr_cgroups--;
70a01657
PZ
1588 /*
1589 * Because cgroup events are always per-cpu events, this will
1590 * always be called from the right CPU.
1591 */
68cacd29
SE
1592 cpuctx = __get_cpu_context(ctx);
1593 /*
70a01657
PZ
1594 * If there are no more cgroup events then clear cgrp to avoid
1595 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1596 */
1597 if (!ctx->nr_cgroups)
1598 cpuctx->cgrp = NULL;
1599 }
e5d1367f 1600
cdd6c482
IM
1601 ctx->nr_events--;
1602 if (event->attr.inherit_stat)
bfbd3381 1603 ctx->nr_stat--;
8bc20959 1604
cdd6c482 1605 list_del_rcu(&event->event_entry);
04289bb9 1606
8a49542c
PZ
1607 if (event->group_leader == event)
1608 list_del_init(&event->group_entry);
5c148194 1609
96c21a46 1610 update_group_times(event);
b2e74a26
SE
1611
1612 /*
1613 * If event was in error state, then keep it
1614 * that way, otherwise bogus counts will be
1615 * returned on read(). The only way to get out
1616 * of error state is by explicit re-enabling
1617 * of the event
1618 */
1619 if (event->state > PERF_EVENT_STATE_OFF)
1620 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1621
1622 ctx->generation++;
050735b0
PZ
1623}
1624
8a49542c 1625static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1626{
1627 struct perf_event *sibling, *tmp;
8a49542c
PZ
1628 struct list_head *list = NULL;
1629
1630 /*
1631 * We can have double detach due to exit/hot-unplug + close.
1632 */
1633 if (!(event->attach_state & PERF_ATTACH_GROUP))
1634 return;
1635
1636 event->attach_state &= ~PERF_ATTACH_GROUP;
1637
1638 /*
1639 * If this is a sibling, remove it from its group.
1640 */
1641 if (event->group_leader != event) {
1642 list_del_init(&event->group_entry);
1643 event->group_leader->nr_siblings--;
c320c7b7 1644 goto out;
8a49542c
PZ
1645 }
1646
1647 if (!list_empty(&event->group_entry))
1648 list = &event->group_entry;
2e2af50b 1649
04289bb9 1650 /*
cdd6c482
IM
1651 * If this was a group event with sibling events then
1652 * upgrade the siblings to singleton events by adding them
8a49542c 1653 * to whatever list we are on.
04289bb9 1654 */
cdd6c482 1655 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1656 if (list)
1657 list_move_tail(&sibling->group_entry, list);
04289bb9 1658 sibling->group_leader = sibling;
d6f962b5
FW
1659
1660 /* Inherit group flags from the previous leader */
1661 sibling->group_flags = event->group_flags;
652884fe
PZ
1662
1663 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1664 }
c320c7b7
ACM
1665
1666out:
1667 perf_event__header_size(event->group_leader);
1668
1669 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1670 perf_event__header_size(tmp);
04289bb9
IM
1671}
1672
fadfe7be
JO
1673static bool is_orphaned_event(struct perf_event *event)
1674{
a69b0ca4 1675 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1676}
1677
66eb579e
MR
1678static inline int pmu_filter_match(struct perf_event *event)
1679{
1680 struct pmu *pmu = event->pmu;
1681 return pmu->filter_match ? pmu->filter_match(event) : 1;
1682}
1683
fa66f07a
SE
1684static inline int
1685event_filter_match(struct perf_event *event)
1686{
e5d1367f 1687 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1688 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1689}
1690
9ffcfa6f
SE
1691static void
1692event_sched_out(struct perf_event *event,
3b6f9e5c 1693 struct perf_cpu_context *cpuctx,
cdd6c482 1694 struct perf_event_context *ctx)
3b6f9e5c 1695{
4158755d 1696 u64 tstamp = perf_event_time(event);
fa66f07a 1697 u64 delta;
652884fe
PZ
1698
1699 WARN_ON_ONCE(event->ctx != ctx);
1700 lockdep_assert_held(&ctx->lock);
1701
fa66f07a
SE
1702 /*
1703 * An event which could not be activated because of
1704 * filter mismatch still needs to have its timings
1705 * maintained, otherwise bogus information is return
1706 * via read() for time_enabled, time_running:
1707 */
1708 if (event->state == PERF_EVENT_STATE_INACTIVE
1709 && !event_filter_match(event)) {
e5d1367f 1710 delta = tstamp - event->tstamp_stopped;
fa66f07a 1711 event->tstamp_running += delta;
4158755d 1712 event->tstamp_stopped = tstamp;
fa66f07a
SE
1713 }
1714
cdd6c482 1715 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1716 return;
3b6f9e5c 1717
44377277
AS
1718 perf_pmu_disable(event->pmu);
1719
28a967c3
PZ
1720 event->tstamp_stopped = tstamp;
1721 event->pmu->del(event, 0);
1722 event->oncpu = -1;
cdd6c482
IM
1723 event->state = PERF_EVENT_STATE_INACTIVE;
1724 if (event->pending_disable) {
1725 event->pending_disable = 0;
1726 event->state = PERF_EVENT_STATE_OFF;
970892a9 1727 }
3b6f9e5c 1728
cdd6c482 1729 if (!is_software_event(event))
3b6f9e5c 1730 cpuctx->active_oncpu--;
2fde4f94
MR
1731 if (!--ctx->nr_active)
1732 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1733 if (event->attr.freq && event->attr.sample_freq)
1734 ctx->nr_freq--;
cdd6c482 1735 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1736 cpuctx->exclusive = 0;
44377277
AS
1737
1738 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1739}
1740
d859e29f 1741static void
cdd6c482 1742group_sched_out(struct perf_event *group_event,
d859e29f 1743 struct perf_cpu_context *cpuctx,
cdd6c482 1744 struct perf_event_context *ctx)
d859e29f 1745{
cdd6c482 1746 struct perf_event *event;
fa66f07a 1747 int state = group_event->state;
d859e29f 1748
cdd6c482 1749 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1750
1751 /*
1752 * Schedule out siblings (if any):
1753 */
cdd6c482
IM
1754 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1755 event_sched_out(event, cpuctx, ctx);
d859e29f 1756
fa66f07a 1757 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1758 cpuctx->exclusive = 0;
1759}
1760
45a0e07a 1761#define DETACH_GROUP 0x01UL
0017960f 1762
0793a61d 1763/*
cdd6c482 1764 * Cross CPU call to remove a performance event
0793a61d 1765 *
cdd6c482 1766 * We disable the event on the hardware level first. After that we
0793a61d
TG
1767 * remove it from the context list.
1768 */
fae3fde6
PZ
1769static void
1770__perf_remove_from_context(struct perf_event *event,
1771 struct perf_cpu_context *cpuctx,
1772 struct perf_event_context *ctx,
1773 void *info)
0793a61d 1774{
45a0e07a 1775 unsigned long flags = (unsigned long)info;
0793a61d 1776
cdd6c482 1777 event_sched_out(event, cpuctx, ctx);
45a0e07a 1778 if (flags & DETACH_GROUP)
46ce0fe9 1779 perf_group_detach(event);
cdd6c482 1780 list_del_event(event, ctx);
39a43640
PZ
1781
1782 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1783 ctx->is_active = 0;
39a43640
PZ
1784 if (ctx->task) {
1785 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1786 cpuctx->task_ctx = NULL;
1787 }
64ce3126 1788 }
0793a61d
TG
1789}
1790
0793a61d 1791/*
cdd6c482 1792 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1793 *
cdd6c482
IM
1794 * If event->ctx is a cloned context, callers must make sure that
1795 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1796 * remains valid. This is OK when called from perf_release since
1797 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1798 * When called from perf_event_exit_task, it's OK because the
c93f7669 1799 * context has been detached from its task.
0793a61d 1800 */
45a0e07a 1801static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1802{
fae3fde6 1803 lockdep_assert_held(&event->ctx->mutex);
0793a61d 1804
45a0e07a 1805 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
1806}
1807
d859e29f 1808/*
cdd6c482 1809 * Cross CPU call to disable a performance event
d859e29f 1810 */
fae3fde6
PZ
1811static void __perf_event_disable(struct perf_event *event,
1812 struct perf_cpu_context *cpuctx,
1813 struct perf_event_context *ctx,
1814 void *info)
7b648018 1815{
fae3fde6
PZ
1816 if (event->state < PERF_EVENT_STATE_INACTIVE)
1817 return;
7b648018 1818
fae3fde6
PZ
1819 update_context_time(ctx);
1820 update_cgrp_time_from_event(event);
1821 update_group_times(event);
1822 if (event == event->group_leader)
1823 group_sched_out(event, cpuctx, ctx);
1824 else
1825 event_sched_out(event, cpuctx, ctx);
1826 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1827}
1828
d859e29f 1829/*
cdd6c482 1830 * Disable a event.
c93f7669 1831 *
cdd6c482
IM
1832 * If event->ctx is a cloned context, callers must make sure that
1833 * every task struct that event->ctx->task could possibly point to
c93f7669 1834 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1835 * perf_event_for_each_child or perf_event_for_each because they
1836 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1837 * goes to exit will block in perf_event_exit_event().
1838 *
cdd6c482 1839 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1840 * is the current context on this CPU and preemption is disabled,
cdd6c482 1841 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1842 */
f63a8daa 1843static void _perf_event_disable(struct perf_event *event)
d859e29f 1844{
cdd6c482 1845 struct perf_event_context *ctx = event->ctx;
d859e29f 1846
e625cce1 1847 raw_spin_lock_irq(&ctx->lock);
7b648018 1848 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1849 raw_spin_unlock_irq(&ctx->lock);
7b648018 1850 return;
53cfbf59 1851 }
e625cce1 1852 raw_spin_unlock_irq(&ctx->lock);
7b648018 1853
fae3fde6
PZ
1854 event_function_call(event, __perf_event_disable, NULL);
1855}
1856
1857void perf_event_disable_local(struct perf_event *event)
1858{
1859 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1860}
f63a8daa
PZ
1861
1862/*
1863 * Strictly speaking kernel users cannot create groups and therefore this
1864 * interface does not need the perf_event_ctx_lock() magic.
1865 */
1866void perf_event_disable(struct perf_event *event)
1867{
1868 struct perf_event_context *ctx;
1869
1870 ctx = perf_event_ctx_lock(event);
1871 _perf_event_disable(event);
1872 perf_event_ctx_unlock(event, ctx);
1873}
dcfce4a0 1874EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1875
e5d1367f
SE
1876static void perf_set_shadow_time(struct perf_event *event,
1877 struct perf_event_context *ctx,
1878 u64 tstamp)
1879{
1880 /*
1881 * use the correct time source for the time snapshot
1882 *
1883 * We could get by without this by leveraging the
1884 * fact that to get to this function, the caller
1885 * has most likely already called update_context_time()
1886 * and update_cgrp_time_xx() and thus both timestamp
1887 * are identical (or very close). Given that tstamp is,
1888 * already adjusted for cgroup, we could say that:
1889 * tstamp - ctx->timestamp
1890 * is equivalent to
1891 * tstamp - cgrp->timestamp.
1892 *
1893 * Then, in perf_output_read(), the calculation would
1894 * work with no changes because:
1895 * - event is guaranteed scheduled in
1896 * - no scheduled out in between
1897 * - thus the timestamp would be the same
1898 *
1899 * But this is a bit hairy.
1900 *
1901 * So instead, we have an explicit cgroup call to remain
1902 * within the time time source all along. We believe it
1903 * is cleaner and simpler to understand.
1904 */
1905 if (is_cgroup_event(event))
1906 perf_cgroup_set_shadow_time(event, tstamp);
1907 else
1908 event->shadow_ctx_time = tstamp - ctx->timestamp;
1909}
1910
4fe757dd
PZ
1911#define MAX_INTERRUPTS (~0ULL)
1912
1913static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1914static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1915
235c7fc7 1916static int
9ffcfa6f 1917event_sched_in(struct perf_event *event,
235c7fc7 1918 struct perf_cpu_context *cpuctx,
6e37738a 1919 struct perf_event_context *ctx)
235c7fc7 1920{
4158755d 1921 u64 tstamp = perf_event_time(event);
44377277 1922 int ret = 0;
4158755d 1923
63342411
PZ
1924 lockdep_assert_held(&ctx->lock);
1925
cdd6c482 1926 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1927 return 0;
1928
cdd6c482 1929 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1930 event->oncpu = smp_processor_id();
4fe757dd
PZ
1931
1932 /*
1933 * Unthrottle events, since we scheduled we might have missed several
1934 * ticks already, also for a heavily scheduling task there is little
1935 * guarantee it'll get a tick in a timely manner.
1936 */
1937 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1938 perf_log_throttle(event, 1);
1939 event->hw.interrupts = 0;
1940 }
1941
235c7fc7
IM
1942 /*
1943 * The new state must be visible before we turn it on in the hardware:
1944 */
1945 smp_wmb();
1946
44377277
AS
1947 perf_pmu_disable(event->pmu);
1948
72f669c0
SL
1949 perf_set_shadow_time(event, ctx, tstamp);
1950
ec0d7729
AS
1951 perf_log_itrace_start(event);
1952
a4eaf7f1 1953 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1954 event->state = PERF_EVENT_STATE_INACTIVE;
1955 event->oncpu = -1;
44377277
AS
1956 ret = -EAGAIN;
1957 goto out;
235c7fc7
IM
1958 }
1959
00a2916f
PZ
1960 event->tstamp_running += tstamp - event->tstamp_stopped;
1961
cdd6c482 1962 if (!is_software_event(event))
3b6f9e5c 1963 cpuctx->active_oncpu++;
2fde4f94
MR
1964 if (!ctx->nr_active++)
1965 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1966 if (event->attr.freq && event->attr.sample_freq)
1967 ctx->nr_freq++;
235c7fc7 1968
cdd6c482 1969 if (event->attr.exclusive)
3b6f9e5c
PM
1970 cpuctx->exclusive = 1;
1971
44377277
AS
1972out:
1973 perf_pmu_enable(event->pmu);
1974
1975 return ret;
235c7fc7
IM
1976}
1977
6751b71e 1978static int
cdd6c482 1979group_sched_in(struct perf_event *group_event,
6751b71e 1980 struct perf_cpu_context *cpuctx,
6e37738a 1981 struct perf_event_context *ctx)
6751b71e 1982{
6bde9b6c 1983 struct perf_event *event, *partial_group = NULL;
4a234593 1984 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1985 u64 now = ctx->time;
1986 bool simulate = false;
6751b71e 1987
cdd6c482 1988 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1989 return 0;
1990
fbbe0701 1991 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1992
9ffcfa6f 1993 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1994 pmu->cancel_txn(pmu);
272325c4 1995 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1996 return -EAGAIN;
90151c35 1997 }
6751b71e
PM
1998
1999 /*
2000 * Schedule in siblings as one group (if any):
2001 */
cdd6c482 2002 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2003 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2004 partial_group = event;
6751b71e
PM
2005 goto group_error;
2006 }
2007 }
2008
9ffcfa6f 2009 if (!pmu->commit_txn(pmu))
6e85158c 2010 return 0;
9ffcfa6f 2011
6751b71e
PM
2012group_error:
2013 /*
2014 * Groups can be scheduled in as one unit only, so undo any
2015 * partial group before returning:
d7842da4
SE
2016 * The events up to the failed event are scheduled out normally,
2017 * tstamp_stopped will be updated.
2018 *
2019 * The failed events and the remaining siblings need to have
2020 * their timings updated as if they had gone thru event_sched_in()
2021 * and event_sched_out(). This is required to get consistent timings
2022 * across the group. This also takes care of the case where the group
2023 * could never be scheduled by ensuring tstamp_stopped is set to mark
2024 * the time the event was actually stopped, such that time delta
2025 * calculation in update_event_times() is correct.
6751b71e 2026 */
cdd6c482
IM
2027 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2028 if (event == partial_group)
d7842da4
SE
2029 simulate = true;
2030
2031 if (simulate) {
2032 event->tstamp_running += now - event->tstamp_stopped;
2033 event->tstamp_stopped = now;
2034 } else {
2035 event_sched_out(event, cpuctx, ctx);
2036 }
6751b71e 2037 }
9ffcfa6f 2038 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2039
ad5133b7 2040 pmu->cancel_txn(pmu);
90151c35 2041
272325c4 2042 perf_mux_hrtimer_restart(cpuctx);
9e630205 2043
6751b71e
PM
2044 return -EAGAIN;
2045}
2046
3b6f9e5c 2047/*
cdd6c482 2048 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2049 */
cdd6c482 2050static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2051 struct perf_cpu_context *cpuctx,
2052 int can_add_hw)
2053{
2054 /*
cdd6c482 2055 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2056 */
d6f962b5 2057 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2058 return 1;
2059 /*
2060 * If an exclusive group is already on, no other hardware
cdd6c482 2061 * events can go on.
3b6f9e5c
PM
2062 */
2063 if (cpuctx->exclusive)
2064 return 0;
2065 /*
2066 * If this group is exclusive and there are already
cdd6c482 2067 * events on the CPU, it can't go on.
3b6f9e5c 2068 */
cdd6c482 2069 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2070 return 0;
2071 /*
2072 * Otherwise, try to add it if all previous groups were able
2073 * to go on.
2074 */
2075 return can_add_hw;
2076}
2077
cdd6c482
IM
2078static void add_event_to_ctx(struct perf_event *event,
2079 struct perf_event_context *ctx)
53cfbf59 2080{
4158755d
SE
2081 u64 tstamp = perf_event_time(event);
2082
cdd6c482 2083 list_add_event(event, ctx);
8a49542c 2084 perf_group_attach(event);
4158755d
SE
2085 event->tstamp_enabled = tstamp;
2086 event->tstamp_running = tstamp;
2087 event->tstamp_stopped = tstamp;
53cfbf59
PM
2088}
2089
bd2afa49
PZ
2090static void ctx_sched_out(struct perf_event_context *ctx,
2091 struct perf_cpu_context *cpuctx,
2092 enum event_type_t event_type);
2c29ef0f
PZ
2093static void
2094ctx_sched_in(struct perf_event_context *ctx,
2095 struct perf_cpu_context *cpuctx,
2096 enum event_type_t event_type,
2097 struct task_struct *task);
fe4b04fa 2098
bd2afa49
PZ
2099static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2100 struct perf_event_context *ctx)
2101{
2102 if (!cpuctx->task_ctx)
2103 return;
2104
2105 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2106 return;
2107
2108 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2109}
2110
dce5855b
PZ
2111static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2112 struct perf_event_context *ctx,
2113 struct task_struct *task)
2114{
2115 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2116 if (ctx)
2117 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2118 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2119 if (ctx)
2120 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2121}
2122
3e349507
PZ
2123static void ctx_resched(struct perf_cpu_context *cpuctx,
2124 struct perf_event_context *task_ctx)
0017960f 2125{
3e349507
PZ
2126 perf_pmu_disable(cpuctx->ctx.pmu);
2127 if (task_ctx)
2128 task_ctx_sched_out(cpuctx, task_ctx);
2129 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2130 perf_event_sched_in(cpuctx, task_ctx, current);
2131 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2132}
2133
0793a61d 2134/*
cdd6c482 2135 * Cross CPU call to install and enable a performance event
682076ae 2136 *
a096309b
PZ
2137 * Very similar to remote_function() + event_function() but cannot assume that
2138 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2139 */
fe4b04fa 2140static int __perf_install_in_context(void *info)
0793a61d 2141{
a096309b
PZ
2142 struct perf_event *event = info;
2143 struct perf_event_context *ctx = event->ctx;
108b02cf 2144 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2145 struct perf_event_context *task_ctx = cpuctx->task_ctx;
a096309b
PZ
2146 bool activate = true;
2147 int ret = 0;
0793a61d 2148
63b6da39 2149 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2150 if (ctx->task) {
b58f6b0d
PZ
2151 raw_spin_lock(&ctx->lock);
2152 task_ctx = ctx;
a096309b
PZ
2153
2154 /* If we're on the wrong CPU, try again */
2155 if (task_cpu(ctx->task) != smp_processor_id()) {
2156 ret = -ESRCH;
63b6da39 2157 goto unlock;
a096309b 2158 }
b58f6b0d 2159
39a43640 2160 /*
a096309b
PZ
2161 * If we're on the right CPU, see if the task we target is
2162 * current, if not we don't have to activate the ctx, a future
2163 * context switch will do that for us.
39a43640 2164 */
a096309b
PZ
2165 if (ctx->task != current)
2166 activate = false;
2167 else
2168 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2169
63b6da39
PZ
2170 } else if (task_ctx) {
2171 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2172 }
b58f6b0d 2173
a096309b
PZ
2174 if (activate) {
2175 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2176 add_event_to_ctx(event, ctx);
2177 ctx_resched(cpuctx, task_ctx);
2178 } else {
2179 add_event_to_ctx(event, ctx);
2180 }
2181
63b6da39 2182unlock:
2c29ef0f 2183 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2184
a096309b 2185 return ret;
0793a61d
TG
2186}
2187
2188/*
a096309b
PZ
2189 * Attach a performance event to a context.
2190 *
2191 * Very similar to event_function_call, see comment there.
0793a61d
TG
2192 */
2193static void
cdd6c482
IM
2194perf_install_in_context(struct perf_event_context *ctx,
2195 struct perf_event *event,
0793a61d
TG
2196 int cpu)
2197{
a096309b 2198 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2199
fe4b04fa
PZ
2200 lockdep_assert_held(&ctx->mutex);
2201
c3f00c70 2202 event->ctx = ctx;
0cda4c02
YZ
2203 if (event->cpu != -1)
2204 event->cpu = cpu;
c3f00c70 2205
a096309b
PZ
2206 if (!task) {
2207 cpu_function_call(cpu, __perf_install_in_context, event);
2208 return;
2209 }
2210
2211 /*
2212 * Should not happen, we validate the ctx is still alive before calling.
2213 */
2214 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2215 return;
2216
39a43640
PZ
2217 /*
2218 * Installing events is tricky because we cannot rely on ctx->is_active
2219 * to be set in case this is the nr_events 0 -> 1 transition.
39a43640 2220 */
a096309b 2221again:
63b6da39 2222 /*
a096309b
PZ
2223 * Cannot use task_function_call() because we need to run on the task's
2224 * CPU regardless of whether its current or not.
63b6da39 2225 */
a096309b
PZ
2226 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2227 return;
2228
2229 raw_spin_lock_irq(&ctx->lock);
2230 task = ctx->task;
84c4e620 2231 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2232 /*
2233 * Cannot happen because we already checked above (which also
2234 * cannot happen), and we hold ctx->mutex, which serializes us
2235 * against perf_event_exit_task_context().
2236 */
63b6da39
PZ
2237 raw_spin_unlock_irq(&ctx->lock);
2238 return;
2239 }
39a43640 2240 raw_spin_unlock_irq(&ctx->lock);
39a43640 2241 /*
a096309b
PZ
2242 * Since !ctx->is_active doesn't mean anything, we must IPI
2243 * unconditionally.
39a43640 2244 */
a096309b 2245 goto again;
0793a61d
TG
2246}
2247
fa289bec 2248/*
cdd6c482 2249 * Put a event into inactive state and update time fields.
fa289bec
PM
2250 * Enabling the leader of a group effectively enables all
2251 * the group members that aren't explicitly disabled, so we
2252 * have to update their ->tstamp_enabled also.
2253 * Note: this works for group members as well as group leaders
2254 * since the non-leader members' sibling_lists will be empty.
2255 */
1d9b482e 2256static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2257{
cdd6c482 2258 struct perf_event *sub;
4158755d 2259 u64 tstamp = perf_event_time(event);
fa289bec 2260
cdd6c482 2261 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2262 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2263 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2264 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2265 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2266 }
fa289bec
PM
2267}
2268
d859e29f 2269/*
cdd6c482 2270 * Cross CPU call to enable a performance event
d859e29f 2271 */
fae3fde6
PZ
2272static void __perf_event_enable(struct perf_event *event,
2273 struct perf_cpu_context *cpuctx,
2274 struct perf_event_context *ctx,
2275 void *info)
04289bb9 2276{
cdd6c482 2277 struct perf_event *leader = event->group_leader;
fae3fde6 2278 struct perf_event_context *task_ctx;
04289bb9 2279
6e801e01
PZ
2280 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2281 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2282 return;
3cbed429 2283
bd2afa49
PZ
2284 if (ctx->is_active)
2285 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2286
1d9b482e 2287 __perf_event_mark_enabled(event);
04289bb9 2288
fae3fde6
PZ
2289 if (!ctx->is_active)
2290 return;
2291
e5d1367f 2292 if (!event_filter_match(event)) {
bd2afa49 2293 if (is_cgroup_event(event))
e5d1367f 2294 perf_cgroup_defer_enabled(event);
bd2afa49 2295 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2296 return;
e5d1367f 2297 }
f4c4176f 2298
04289bb9 2299 /*
cdd6c482 2300 * If the event is in a group and isn't the group leader,
d859e29f 2301 * then don't put it on unless the group is on.
04289bb9 2302 */
bd2afa49
PZ
2303 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2304 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2305 return;
bd2afa49 2306 }
fe4b04fa 2307
fae3fde6
PZ
2308 task_ctx = cpuctx->task_ctx;
2309 if (ctx->task)
2310 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2311
fae3fde6 2312 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2313}
2314
d859e29f 2315/*
cdd6c482 2316 * Enable a event.
c93f7669 2317 *
cdd6c482
IM
2318 * If event->ctx is a cloned context, callers must make sure that
2319 * every task struct that event->ctx->task could possibly point to
c93f7669 2320 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2321 * perf_event_for_each_child or perf_event_for_each as described
2322 * for perf_event_disable.
d859e29f 2323 */
f63a8daa 2324static void _perf_event_enable(struct perf_event *event)
d859e29f 2325{
cdd6c482 2326 struct perf_event_context *ctx = event->ctx;
d859e29f 2327
7b648018 2328 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2329 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2330 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2331 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2332 return;
2333 }
2334
d859e29f 2335 /*
cdd6c482 2336 * If the event is in error state, clear that first.
7b648018
PZ
2337 *
2338 * That way, if we see the event in error state below, we know that it
2339 * has gone back into error state, as distinct from the task having
2340 * been scheduled away before the cross-call arrived.
d859e29f 2341 */
cdd6c482
IM
2342 if (event->state == PERF_EVENT_STATE_ERROR)
2343 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2344 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2345
fae3fde6 2346 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2347}
f63a8daa
PZ
2348
2349/*
2350 * See perf_event_disable();
2351 */
2352void perf_event_enable(struct perf_event *event)
2353{
2354 struct perf_event_context *ctx;
2355
2356 ctx = perf_event_ctx_lock(event);
2357 _perf_event_enable(event);
2358 perf_event_ctx_unlock(event, ctx);
2359}
dcfce4a0 2360EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2361
f63a8daa 2362static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2363{
2023b359 2364 /*
cdd6c482 2365 * not supported on inherited events
2023b359 2366 */
2e939d1d 2367 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2368 return -EINVAL;
2369
cdd6c482 2370 atomic_add(refresh, &event->event_limit);
f63a8daa 2371 _perf_event_enable(event);
2023b359
PZ
2372
2373 return 0;
79f14641 2374}
f63a8daa
PZ
2375
2376/*
2377 * See perf_event_disable()
2378 */
2379int perf_event_refresh(struct perf_event *event, int refresh)
2380{
2381 struct perf_event_context *ctx;
2382 int ret;
2383
2384 ctx = perf_event_ctx_lock(event);
2385 ret = _perf_event_refresh(event, refresh);
2386 perf_event_ctx_unlock(event, ctx);
2387
2388 return ret;
2389}
26ca5c11 2390EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2391
5b0311e1
FW
2392static void ctx_sched_out(struct perf_event_context *ctx,
2393 struct perf_cpu_context *cpuctx,
2394 enum event_type_t event_type)
235c7fc7 2395{
db24d33e 2396 int is_active = ctx->is_active;
c994d613 2397 struct perf_event *event;
235c7fc7 2398
c994d613 2399 lockdep_assert_held(&ctx->lock);
235c7fc7 2400
39a43640
PZ
2401 if (likely(!ctx->nr_events)) {
2402 /*
2403 * See __perf_remove_from_context().
2404 */
2405 WARN_ON_ONCE(ctx->is_active);
2406 if (ctx->task)
2407 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2408 return;
39a43640
PZ
2409 }
2410
db24d33e 2411 ctx->is_active &= ~event_type;
3cbaa590
PZ
2412 if (!(ctx->is_active & EVENT_ALL))
2413 ctx->is_active = 0;
2414
63e30d3e
PZ
2415 if (ctx->task) {
2416 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2417 if (!ctx->is_active)
2418 cpuctx->task_ctx = NULL;
2419 }
facc4307 2420
8fdc6539
PZ
2421 /*
2422 * Always update time if it was set; not only when it changes.
2423 * Otherwise we can 'forget' to update time for any but the last
2424 * context we sched out. For example:
2425 *
2426 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2427 * ctx_sched_out(.event_type = EVENT_PINNED)
2428 *
2429 * would only update time for the pinned events.
2430 */
3cbaa590
PZ
2431 if (is_active & EVENT_TIME) {
2432 /* update (and stop) ctx time */
2433 update_context_time(ctx);
2434 update_cgrp_time_from_cpuctx(cpuctx);
2435 }
2436
8fdc6539
PZ
2437 is_active ^= ctx->is_active; /* changed bits */
2438
3cbaa590 2439 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2440 return;
5b0311e1 2441
075e0b00 2442 perf_pmu_disable(ctx->pmu);
3cbaa590 2443 if (is_active & EVENT_PINNED) {
889ff015
FW
2444 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2445 group_sched_out(event, cpuctx, ctx);
9ed6060d 2446 }
889ff015 2447
3cbaa590 2448 if (is_active & EVENT_FLEXIBLE) {
889ff015 2449 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2450 group_sched_out(event, cpuctx, ctx);
9ed6060d 2451 }
1b9a644f 2452 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2453}
2454
564c2b21 2455/*
5a3126d4
PZ
2456 * Test whether two contexts are equivalent, i.e. whether they have both been
2457 * cloned from the same version of the same context.
2458 *
2459 * Equivalence is measured using a generation number in the context that is
2460 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2461 * and list_del_event().
564c2b21 2462 */
cdd6c482
IM
2463static int context_equiv(struct perf_event_context *ctx1,
2464 struct perf_event_context *ctx2)
564c2b21 2465{
211de6eb
PZ
2466 lockdep_assert_held(&ctx1->lock);
2467 lockdep_assert_held(&ctx2->lock);
2468
5a3126d4
PZ
2469 /* Pinning disables the swap optimization */
2470 if (ctx1->pin_count || ctx2->pin_count)
2471 return 0;
2472
2473 /* If ctx1 is the parent of ctx2 */
2474 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2475 return 1;
2476
2477 /* If ctx2 is the parent of ctx1 */
2478 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2479 return 1;
2480
2481 /*
2482 * If ctx1 and ctx2 have the same parent; we flatten the parent
2483 * hierarchy, see perf_event_init_context().
2484 */
2485 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2486 ctx1->parent_gen == ctx2->parent_gen)
2487 return 1;
2488
2489 /* Unmatched */
2490 return 0;
564c2b21
PM
2491}
2492
cdd6c482
IM
2493static void __perf_event_sync_stat(struct perf_event *event,
2494 struct perf_event *next_event)
bfbd3381
PZ
2495{
2496 u64 value;
2497
cdd6c482 2498 if (!event->attr.inherit_stat)
bfbd3381
PZ
2499 return;
2500
2501 /*
cdd6c482 2502 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2503 * because we're in the middle of a context switch and have IRQs
2504 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2505 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2506 * don't need to use it.
2507 */
cdd6c482
IM
2508 switch (event->state) {
2509 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2510 event->pmu->read(event);
2511 /* fall-through */
bfbd3381 2512
cdd6c482
IM
2513 case PERF_EVENT_STATE_INACTIVE:
2514 update_event_times(event);
bfbd3381
PZ
2515 break;
2516
2517 default:
2518 break;
2519 }
2520
2521 /*
cdd6c482 2522 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2523 * values when we flip the contexts.
2524 */
e7850595
PZ
2525 value = local64_read(&next_event->count);
2526 value = local64_xchg(&event->count, value);
2527 local64_set(&next_event->count, value);
bfbd3381 2528
cdd6c482
IM
2529 swap(event->total_time_enabled, next_event->total_time_enabled);
2530 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2531
bfbd3381 2532 /*
19d2e755 2533 * Since we swizzled the values, update the user visible data too.
bfbd3381 2534 */
cdd6c482
IM
2535 perf_event_update_userpage(event);
2536 perf_event_update_userpage(next_event);
bfbd3381
PZ
2537}
2538
cdd6c482
IM
2539static void perf_event_sync_stat(struct perf_event_context *ctx,
2540 struct perf_event_context *next_ctx)
bfbd3381 2541{
cdd6c482 2542 struct perf_event *event, *next_event;
bfbd3381
PZ
2543
2544 if (!ctx->nr_stat)
2545 return;
2546
02ffdbc8
PZ
2547 update_context_time(ctx);
2548
cdd6c482
IM
2549 event = list_first_entry(&ctx->event_list,
2550 struct perf_event, event_entry);
bfbd3381 2551
cdd6c482
IM
2552 next_event = list_first_entry(&next_ctx->event_list,
2553 struct perf_event, event_entry);
bfbd3381 2554
cdd6c482
IM
2555 while (&event->event_entry != &ctx->event_list &&
2556 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2557
cdd6c482 2558 __perf_event_sync_stat(event, next_event);
bfbd3381 2559
cdd6c482
IM
2560 event = list_next_entry(event, event_entry);
2561 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2562 }
2563}
2564
fe4b04fa
PZ
2565static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2566 struct task_struct *next)
0793a61d 2567{
8dc85d54 2568 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2569 struct perf_event_context *next_ctx;
5a3126d4 2570 struct perf_event_context *parent, *next_parent;
108b02cf 2571 struct perf_cpu_context *cpuctx;
c93f7669 2572 int do_switch = 1;
0793a61d 2573
108b02cf
PZ
2574 if (likely(!ctx))
2575 return;
10989fb2 2576
108b02cf
PZ
2577 cpuctx = __get_cpu_context(ctx);
2578 if (!cpuctx->task_ctx)
0793a61d
TG
2579 return;
2580
c93f7669 2581 rcu_read_lock();
8dc85d54 2582 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2583 if (!next_ctx)
2584 goto unlock;
2585
2586 parent = rcu_dereference(ctx->parent_ctx);
2587 next_parent = rcu_dereference(next_ctx->parent_ctx);
2588
2589 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2590 if (!parent && !next_parent)
5a3126d4
PZ
2591 goto unlock;
2592
2593 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2594 /*
2595 * Looks like the two contexts are clones, so we might be
2596 * able to optimize the context switch. We lock both
2597 * contexts and check that they are clones under the
2598 * lock (including re-checking that neither has been
2599 * uncloned in the meantime). It doesn't matter which
2600 * order we take the locks because no other cpu could
2601 * be trying to lock both of these tasks.
2602 */
e625cce1
TG
2603 raw_spin_lock(&ctx->lock);
2604 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2605 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2606 WRITE_ONCE(ctx->task, next);
2607 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2608
2609 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2610
63b6da39
PZ
2611 /*
2612 * RCU_INIT_POINTER here is safe because we've not
2613 * modified the ctx and the above modification of
2614 * ctx->task and ctx->task_ctx_data are immaterial
2615 * since those values are always verified under
2616 * ctx->lock which we're now holding.
2617 */
2618 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2619 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2620
c93f7669 2621 do_switch = 0;
bfbd3381 2622
cdd6c482 2623 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2624 }
e625cce1
TG
2625 raw_spin_unlock(&next_ctx->lock);
2626 raw_spin_unlock(&ctx->lock);
564c2b21 2627 }
5a3126d4 2628unlock:
c93f7669 2629 rcu_read_unlock();
564c2b21 2630
c93f7669 2631 if (do_switch) {
facc4307 2632 raw_spin_lock(&ctx->lock);
8833d0e2 2633 task_ctx_sched_out(cpuctx, ctx);
facc4307 2634 raw_spin_unlock(&ctx->lock);
c93f7669 2635 }
0793a61d
TG
2636}
2637
ba532500
YZ
2638void perf_sched_cb_dec(struct pmu *pmu)
2639{
2640 this_cpu_dec(perf_sched_cb_usages);
2641}
2642
2643void perf_sched_cb_inc(struct pmu *pmu)
2644{
2645 this_cpu_inc(perf_sched_cb_usages);
2646}
2647
2648/*
2649 * This function provides the context switch callback to the lower code
2650 * layer. It is invoked ONLY when the context switch callback is enabled.
2651 */
2652static void perf_pmu_sched_task(struct task_struct *prev,
2653 struct task_struct *next,
2654 bool sched_in)
2655{
2656 struct perf_cpu_context *cpuctx;
2657 struct pmu *pmu;
2658 unsigned long flags;
2659
2660 if (prev == next)
2661 return;
2662
2663 local_irq_save(flags);
2664
2665 rcu_read_lock();
2666
2667 list_for_each_entry_rcu(pmu, &pmus, entry) {
2668 if (pmu->sched_task) {
2669 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2670
2671 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2672
2673 perf_pmu_disable(pmu);
2674
2675 pmu->sched_task(cpuctx->task_ctx, sched_in);
2676
2677 perf_pmu_enable(pmu);
2678
2679 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2680 }
2681 }
2682
2683 rcu_read_unlock();
2684
2685 local_irq_restore(flags);
2686}
2687
45ac1403
AH
2688static void perf_event_switch(struct task_struct *task,
2689 struct task_struct *next_prev, bool sched_in);
2690
8dc85d54
PZ
2691#define for_each_task_context_nr(ctxn) \
2692 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2693
2694/*
2695 * Called from scheduler to remove the events of the current task,
2696 * with interrupts disabled.
2697 *
2698 * We stop each event and update the event value in event->count.
2699 *
2700 * This does not protect us against NMI, but disable()
2701 * sets the disabled bit in the control field of event _before_
2702 * accessing the event control register. If a NMI hits, then it will
2703 * not restart the event.
2704 */
ab0cce56
JO
2705void __perf_event_task_sched_out(struct task_struct *task,
2706 struct task_struct *next)
8dc85d54
PZ
2707{
2708 int ctxn;
2709
ba532500
YZ
2710 if (__this_cpu_read(perf_sched_cb_usages))
2711 perf_pmu_sched_task(task, next, false);
2712
45ac1403
AH
2713 if (atomic_read(&nr_switch_events))
2714 perf_event_switch(task, next, false);
2715
8dc85d54
PZ
2716 for_each_task_context_nr(ctxn)
2717 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2718
2719 /*
2720 * if cgroup events exist on this CPU, then we need
2721 * to check if we have to switch out PMU state.
2722 * cgroup event are system-wide mode only
2723 */
4a32fea9 2724 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2725 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2726}
2727
5b0311e1
FW
2728/*
2729 * Called with IRQs disabled
2730 */
2731static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2732 enum event_type_t event_type)
2733{
2734 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2735}
2736
235c7fc7 2737static void
5b0311e1 2738ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2739 struct perf_cpu_context *cpuctx)
0793a61d 2740{
cdd6c482 2741 struct perf_event *event;
0793a61d 2742
889ff015
FW
2743 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2744 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2745 continue;
5632ab12 2746 if (!event_filter_match(event))
3b6f9e5c
PM
2747 continue;
2748
e5d1367f
SE
2749 /* may need to reset tstamp_enabled */
2750 if (is_cgroup_event(event))
2751 perf_cgroup_mark_enabled(event, ctx);
2752
8c9ed8e1 2753 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2754 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2755
2756 /*
2757 * If this pinned group hasn't been scheduled,
2758 * put it in error state.
2759 */
cdd6c482
IM
2760 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2761 update_group_times(event);
2762 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2763 }
3b6f9e5c 2764 }
5b0311e1
FW
2765}
2766
2767static void
2768ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2769 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2770{
2771 struct perf_event *event;
2772 int can_add_hw = 1;
3b6f9e5c 2773
889ff015
FW
2774 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2775 /* Ignore events in OFF or ERROR state */
2776 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2777 continue;
04289bb9
IM
2778 /*
2779 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2780 * of events:
04289bb9 2781 */
5632ab12 2782 if (!event_filter_match(event))
0793a61d
TG
2783 continue;
2784
e5d1367f
SE
2785 /* may need to reset tstamp_enabled */
2786 if (is_cgroup_event(event))
2787 perf_cgroup_mark_enabled(event, ctx);
2788
9ed6060d 2789 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2790 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2791 can_add_hw = 0;
9ed6060d 2792 }
0793a61d 2793 }
5b0311e1
FW
2794}
2795
2796static void
2797ctx_sched_in(struct perf_event_context *ctx,
2798 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2799 enum event_type_t event_type,
2800 struct task_struct *task)
5b0311e1 2801{
db24d33e 2802 int is_active = ctx->is_active;
c994d613
PZ
2803 u64 now;
2804
2805 lockdep_assert_held(&ctx->lock);
e5d1367f 2806
5b0311e1 2807 if (likely(!ctx->nr_events))
facc4307 2808 return;
5b0311e1 2809
3cbaa590 2810 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
2811 if (ctx->task) {
2812 if (!is_active)
2813 cpuctx->task_ctx = ctx;
2814 else
2815 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2816 }
2817
3cbaa590
PZ
2818 is_active ^= ctx->is_active; /* changed bits */
2819
2820 if (is_active & EVENT_TIME) {
2821 /* start ctx time */
2822 now = perf_clock();
2823 ctx->timestamp = now;
2824 perf_cgroup_set_timestamp(task, ctx);
2825 }
2826
5b0311e1
FW
2827 /*
2828 * First go through the list and put on any pinned groups
2829 * in order to give them the best chance of going on.
2830 */
3cbaa590 2831 if (is_active & EVENT_PINNED)
6e37738a 2832 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2833
2834 /* Then walk through the lower prio flexible groups */
3cbaa590 2835 if (is_active & EVENT_FLEXIBLE)
6e37738a 2836 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2837}
2838
329c0e01 2839static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2840 enum event_type_t event_type,
2841 struct task_struct *task)
329c0e01
FW
2842{
2843 struct perf_event_context *ctx = &cpuctx->ctx;
2844
e5d1367f 2845 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2846}
2847
e5d1367f
SE
2848static void perf_event_context_sched_in(struct perf_event_context *ctx,
2849 struct task_struct *task)
235c7fc7 2850{
108b02cf 2851 struct perf_cpu_context *cpuctx;
235c7fc7 2852
108b02cf 2853 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2854 if (cpuctx->task_ctx == ctx)
2855 return;
2856
facc4307 2857 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2858 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2859 /*
2860 * We want to keep the following priority order:
2861 * cpu pinned (that don't need to move), task pinned,
2862 * cpu flexible, task flexible.
2863 */
2864 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 2865 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
2866 perf_pmu_enable(ctx->pmu);
2867 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2868}
2869
8dc85d54
PZ
2870/*
2871 * Called from scheduler to add the events of the current task
2872 * with interrupts disabled.
2873 *
2874 * We restore the event value and then enable it.
2875 *
2876 * This does not protect us against NMI, but enable()
2877 * sets the enabled bit in the control field of event _before_
2878 * accessing the event control register. If a NMI hits, then it will
2879 * keep the event running.
2880 */
ab0cce56
JO
2881void __perf_event_task_sched_in(struct task_struct *prev,
2882 struct task_struct *task)
8dc85d54
PZ
2883{
2884 struct perf_event_context *ctx;
2885 int ctxn;
2886
7e41d177
PZ
2887 /*
2888 * If cgroup events exist on this CPU, then we need to check if we have
2889 * to switch in PMU state; cgroup event are system-wide mode only.
2890 *
2891 * Since cgroup events are CPU events, we must schedule these in before
2892 * we schedule in the task events.
2893 */
2894 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2895 perf_cgroup_sched_in(prev, task);
2896
8dc85d54
PZ
2897 for_each_task_context_nr(ctxn) {
2898 ctx = task->perf_event_ctxp[ctxn];
2899 if (likely(!ctx))
2900 continue;
2901
e5d1367f 2902 perf_event_context_sched_in(ctx, task);
8dc85d54 2903 }
d010b332 2904
45ac1403
AH
2905 if (atomic_read(&nr_switch_events))
2906 perf_event_switch(task, prev, true);
2907
ba532500
YZ
2908 if (__this_cpu_read(perf_sched_cb_usages))
2909 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2910}
2911
abd50713
PZ
2912static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2913{
2914 u64 frequency = event->attr.sample_freq;
2915 u64 sec = NSEC_PER_SEC;
2916 u64 divisor, dividend;
2917
2918 int count_fls, nsec_fls, frequency_fls, sec_fls;
2919
2920 count_fls = fls64(count);
2921 nsec_fls = fls64(nsec);
2922 frequency_fls = fls64(frequency);
2923 sec_fls = 30;
2924
2925 /*
2926 * We got @count in @nsec, with a target of sample_freq HZ
2927 * the target period becomes:
2928 *
2929 * @count * 10^9
2930 * period = -------------------
2931 * @nsec * sample_freq
2932 *
2933 */
2934
2935 /*
2936 * Reduce accuracy by one bit such that @a and @b converge
2937 * to a similar magnitude.
2938 */
fe4b04fa 2939#define REDUCE_FLS(a, b) \
abd50713
PZ
2940do { \
2941 if (a##_fls > b##_fls) { \
2942 a >>= 1; \
2943 a##_fls--; \
2944 } else { \
2945 b >>= 1; \
2946 b##_fls--; \
2947 } \
2948} while (0)
2949
2950 /*
2951 * Reduce accuracy until either term fits in a u64, then proceed with
2952 * the other, so that finally we can do a u64/u64 division.
2953 */
2954 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2955 REDUCE_FLS(nsec, frequency);
2956 REDUCE_FLS(sec, count);
2957 }
2958
2959 if (count_fls + sec_fls > 64) {
2960 divisor = nsec * frequency;
2961
2962 while (count_fls + sec_fls > 64) {
2963 REDUCE_FLS(count, sec);
2964 divisor >>= 1;
2965 }
2966
2967 dividend = count * sec;
2968 } else {
2969 dividend = count * sec;
2970
2971 while (nsec_fls + frequency_fls > 64) {
2972 REDUCE_FLS(nsec, frequency);
2973 dividend >>= 1;
2974 }
2975
2976 divisor = nsec * frequency;
2977 }
2978
f6ab91ad
PZ
2979 if (!divisor)
2980 return dividend;
2981
abd50713
PZ
2982 return div64_u64(dividend, divisor);
2983}
2984
e050e3f0
SE
2985static DEFINE_PER_CPU(int, perf_throttled_count);
2986static DEFINE_PER_CPU(u64, perf_throttled_seq);
2987
f39d47ff 2988static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2989{
cdd6c482 2990 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2991 s64 period, sample_period;
bd2b5b12
PZ
2992 s64 delta;
2993
abd50713 2994 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2995
2996 delta = (s64)(period - hwc->sample_period);
2997 delta = (delta + 7) / 8; /* low pass filter */
2998
2999 sample_period = hwc->sample_period + delta;
3000
3001 if (!sample_period)
3002 sample_period = 1;
3003
bd2b5b12 3004 hwc->sample_period = sample_period;
abd50713 3005
e7850595 3006 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3007 if (disable)
3008 event->pmu->stop(event, PERF_EF_UPDATE);
3009
e7850595 3010 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3011
3012 if (disable)
3013 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3014 }
bd2b5b12
PZ
3015}
3016
e050e3f0
SE
3017/*
3018 * combine freq adjustment with unthrottling to avoid two passes over the
3019 * events. At the same time, make sure, having freq events does not change
3020 * the rate of unthrottling as that would introduce bias.
3021 */
3022static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3023 int needs_unthr)
60db5e09 3024{
cdd6c482
IM
3025 struct perf_event *event;
3026 struct hw_perf_event *hwc;
e050e3f0 3027 u64 now, period = TICK_NSEC;
abd50713 3028 s64 delta;
60db5e09 3029
e050e3f0
SE
3030 /*
3031 * only need to iterate over all events iff:
3032 * - context have events in frequency mode (needs freq adjust)
3033 * - there are events to unthrottle on this cpu
3034 */
3035 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3036 return;
3037
e050e3f0 3038 raw_spin_lock(&ctx->lock);
f39d47ff 3039 perf_pmu_disable(ctx->pmu);
e050e3f0 3040
03541f8b 3041 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3042 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3043 continue;
3044
5632ab12 3045 if (!event_filter_match(event))
5d27c23d
PZ
3046 continue;
3047
44377277
AS
3048 perf_pmu_disable(event->pmu);
3049
cdd6c482 3050 hwc = &event->hw;
6a24ed6c 3051
ae23bff1 3052 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3053 hwc->interrupts = 0;
cdd6c482 3054 perf_log_throttle(event, 1);
a4eaf7f1 3055 event->pmu->start(event, 0);
a78ac325
PZ
3056 }
3057
cdd6c482 3058 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3059 goto next;
60db5e09 3060
e050e3f0
SE
3061 /*
3062 * stop the event and update event->count
3063 */
3064 event->pmu->stop(event, PERF_EF_UPDATE);
3065
e7850595 3066 now = local64_read(&event->count);
abd50713
PZ
3067 delta = now - hwc->freq_count_stamp;
3068 hwc->freq_count_stamp = now;
60db5e09 3069
e050e3f0
SE
3070 /*
3071 * restart the event
3072 * reload only if value has changed
f39d47ff
SE
3073 * we have stopped the event so tell that
3074 * to perf_adjust_period() to avoid stopping it
3075 * twice.
e050e3f0 3076 */
abd50713 3077 if (delta > 0)
f39d47ff 3078 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3079
3080 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3081 next:
3082 perf_pmu_enable(event->pmu);
60db5e09 3083 }
e050e3f0 3084
f39d47ff 3085 perf_pmu_enable(ctx->pmu);
e050e3f0 3086 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3087}
3088
235c7fc7 3089/*
cdd6c482 3090 * Round-robin a context's events:
235c7fc7 3091 */
cdd6c482 3092static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3093{
dddd3379
TG
3094 /*
3095 * Rotate the first entry last of non-pinned groups. Rotation might be
3096 * disabled by the inheritance code.
3097 */
3098 if (!ctx->rotate_disable)
3099 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3100}
3101
9e630205 3102static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3103{
8dc85d54 3104 struct perf_event_context *ctx = NULL;
2fde4f94 3105 int rotate = 0;
7fc23a53 3106
b5ab4cd5 3107 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3108 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3109 rotate = 1;
3110 }
235c7fc7 3111
8dc85d54 3112 ctx = cpuctx->task_ctx;
b5ab4cd5 3113 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3114 if (ctx->nr_events != ctx->nr_active)
3115 rotate = 1;
3116 }
9717e6cd 3117
e050e3f0 3118 if (!rotate)
0f5a2601
PZ
3119 goto done;
3120
facc4307 3121 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3122 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3123
e050e3f0
SE
3124 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3125 if (ctx)
3126 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3127
e050e3f0
SE
3128 rotate_ctx(&cpuctx->ctx);
3129 if (ctx)
3130 rotate_ctx(ctx);
235c7fc7 3131
e050e3f0 3132 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3133
0f5a2601
PZ
3134 perf_pmu_enable(cpuctx->ctx.pmu);
3135 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3136done:
9e630205
SE
3137
3138 return rotate;
e9d2b064
PZ
3139}
3140
3141void perf_event_task_tick(void)
3142{
2fde4f94
MR
3143 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3144 struct perf_event_context *ctx, *tmp;
e050e3f0 3145 int throttled;
b5ab4cd5 3146
e9d2b064
PZ
3147 WARN_ON(!irqs_disabled());
3148
e050e3f0
SE
3149 __this_cpu_inc(perf_throttled_seq);
3150 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3151 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3152
2fde4f94 3153 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3154 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3155}
3156
889ff015
FW
3157static int event_enable_on_exec(struct perf_event *event,
3158 struct perf_event_context *ctx)
3159{
3160 if (!event->attr.enable_on_exec)
3161 return 0;
3162
3163 event->attr.enable_on_exec = 0;
3164 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3165 return 0;
3166
1d9b482e 3167 __perf_event_mark_enabled(event);
889ff015
FW
3168
3169 return 1;
3170}
3171
57e7986e 3172/*
cdd6c482 3173 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3174 * This expects task == current.
3175 */
c1274499 3176static void perf_event_enable_on_exec(int ctxn)
57e7986e 3177{
c1274499 3178 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3179 struct perf_cpu_context *cpuctx;
cdd6c482 3180 struct perf_event *event;
57e7986e
PM
3181 unsigned long flags;
3182 int enabled = 0;
3183
3184 local_irq_save(flags);
c1274499 3185 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3186 if (!ctx || !ctx->nr_events)
57e7986e
PM
3187 goto out;
3188
3e349507
PZ
3189 cpuctx = __get_cpu_context(ctx);
3190 perf_ctx_lock(cpuctx, ctx);
7fce2509 3191 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3e349507
PZ
3192 list_for_each_entry(event, &ctx->event_list, event_entry)
3193 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3194
3195 /*
3e349507 3196 * Unclone and reschedule this context if we enabled any event.
57e7986e 3197 */
3e349507 3198 if (enabled) {
211de6eb 3199 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3200 ctx_resched(cpuctx, ctx);
3201 }
3202 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3203
9ed6060d 3204out:
57e7986e 3205 local_irq_restore(flags);
211de6eb
PZ
3206
3207 if (clone_ctx)
3208 put_ctx(clone_ctx);
57e7986e
PM
3209}
3210
e041e328
PZ
3211void perf_event_exec(void)
3212{
e041e328
PZ
3213 int ctxn;
3214
3215 rcu_read_lock();
c1274499
PZ
3216 for_each_task_context_nr(ctxn)
3217 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3218 rcu_read_unlock();
3219}
3220
0492d4c5
PZ
3221struct perf_read_data {
3222 struct perf_event *event;
3223 bool group;
7d88962e 3224 int ret;
0492d4c5
PZ
3225};
3226
0793a61d 3227/*
cdd6c482 3228 * Cross CPU call to read the hardware event
0793a61d 3229 */
cdd6c482 3230static void __perf_event_read(void *info)
0793a61d 3231{
0492d4c5
PZ
3232 struct perf_read_data *data = info;
3233 struct perf_event *sub, *event = data->event;
cdd6c482 3234 struct perf_event_context *ctx = event->ctx;
108b02cf 3235 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3236 struct pmu *pmu = event->pmu;
621a01ea 3237
e1ac3614
PM
3238 /*
3239 * If this is a task context, we need to check whether it is
3240 * the current task context of this cpu. If not it has been
3241 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3242 * event->count would have been updated to a recent sample
3243 * when the event was scheduled out.
e1ac3614
PM
3244 */
3245 if (ctx->task && cpuctx->task_ctx != ctx)
3246 return;
3247
e625cce1 3248 raw_spin_lock(&ctx->lock);
e5d1367f 3249 if (ctx->is_active) {
542e72fc 3250 update_context_time(ctx);
e5d1367f
SE
3251 update_cgrp_time_from_event(event);
3252 }
0492d4c5 3253
cdd6c482 3254 update_event_times(event);
4a00c16e
SB
3255 if (event->state != PERF_EVENT_STATE_ACTIVE)
3256 goto unlock;
0492d4c5 3257
4a00c16e
SB
3258 if (!data->group) {
3259 pmu->read(event);
3260 data->ret = 0;
0492d4c5 3261 goto unlock;
4a00c16e
SB
3262 }
3263
3264 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3265
3266 pmu->read(event);
0492d4c5
PZ
3267
3268 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3269 update_event_times(sub);
4a00c16e
SB
3270 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3271 /*
3272 * Use sibling's PMU rather than @event's since
3273 * sibling could be on different (eg: software) PMU.
3274 */
0492d4c5 3275 sub->pmu->read(sub);
4a00c16e 3276 }
0492d4c5 3277 }
4a00c16e
SB
3278
3279 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3280
3281unlock:
e625cce1 3282 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3283}
3284
b5e58793
PZ
3285static inline u64 perf_event_count(struct perf_event *event)
3286{
eacd3ecc
MF
3287 if (event->pmu->count)
3288 return event->pmu->count(event);
3289
3290 return __perf_event_count(event);
b5e58793
PZ
3291}
3292
ffe8690c
KX
3293/*
3294 * NMI-safe method to read a local event, that is an event that
3295 * is:
3296 * - either for the current task, or for this CPU
3297 * - does not have inherit set, for inherited task events
3298 * will not be local and we cannot read them atomically
3299 * - must not have a pmu::count method
3300 */
3301u64 perf_event_read_local(struct perf_event *event)
3302{
3303 unsigned long flags;
3304 u64 val;
3305
3306 /*
3307 * Disabling interrupts avoids all counter scheduling (context
3308 * switches, timer based rotation and IPIs).
3309 */
3310 local_irq_save(flags);
3311
3312 /* If this is a per-task event, it must be for current */
3313 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3314 event->hw.target != current);
3315
3316 /* If this is a per-CPU event, it must be for this CPU */
3317 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3318 event->cpu != smp_processor_id());
3319
3320 /*
3321 * It must not be an event with inherit set, we cannot read
3322 * all child counters from atomic context.
3323 */
3324 WARN_ON_ONCE(event->attr.inherit);
3325
3326 /*
3327 * It must not have a pmu::count method, those are not
3328 * NMI safe.
3329 */
3330 WARN_ON_ONCE(event->pmu->count);
3331
3332 /*
3333 * If the event is currently on this CPU, its either a per-task event,
3334 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3335 * oncpu == -1).
3336 */
3337 if (event->oncpu == smp_processor_id())
3338 event->pmu->read(event);
3339
3340 val = local64_read(&event->count);
3341 local_irq_restore(flags);
3342
3343 return val;
3344}
3345
7d88962e 3346static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3347{
7d88962e
SB
3348 int ret = 0;
3349
0793a61d 3350 /*
cdd6c482
IM
3351 * If event is enabled and currently active on a CPU, update the
3352 * value in the event structure:
0793a61d 3353 */
cdd6c482 3354 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3355 struct perf_read_data data = {
3356 .event = event,
3357 .group = group,
7d88962e 3358 .ret = 0,
0492d4c5 3359 };
cdd6c482 3360 smp_call_function_single(event->oncpu,
0492d4c5 3361 __perf_event_read, &data, 1);
7d88962e 3362 ret = data.ret;
cdd6c482 3363 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3364 struct perf_event_context *ctx = event->ctx;
3365 unsigned long flags;
3366
e625cce1 3367 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3368 /*
3369 * may read while context is not active
3370 * (e.g., thread is blocked), in that case
3371 * we cannot update context time
3372 */
e5d1367f 3373 if (ctx->is_active) {
c530ccd9 3374 update_context_time(ctx);
e5d1367f
SE
3375 update_cgrp_time_from_event(event);
3376 }
0492d4c5
PZ
3377 if (group)
3378 update_group_times(event);
3379 else
3380 update_event_times(event);
e625cce1 3381 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3382 }
7d88962e
SB
3383
3384 return ret;
0793a61d
TG
3385}
3386
a63eaf34 3387/*
cdd6c482 3388 * Initialize the perf_event context in a task_struct:
a63eaf34 3389 */
eb184479 3390static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3391{
e625cce1 3392 raw_spin_lock_init(&ctx->lock);
a63eaf34 3393 mutex_init(&ctx->mutex);
2fde4f94 3394 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3395 INIT_LIST_HEAD(&ctx->pinned_groups);
3396 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3397 INIT_LIST_HEAD(&ctx->event_list);
3398 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3399}
3400
3401static struct perf_event_context *
3402alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3403{
3404 struct perf_event_context *ctx;
3405
3406 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3407 if (!ctx)
3408 return NULL;
3409
3410 __perf_event_init_context(ctx);
3411 if (task) {
3412 ctx->task = task;
3413 get_task_struct(task);
0793a61d 3414 }
eb184479
PZ
3415 ctx->pmu = pmu;
3416
3417 return ctx;
a63eaf34
PM
3418}
3419
2ebd4ffb
MH
3420static struct task_struct *
3421find_lively_task_by_vpid(pid_t vpid)
3422{
3423 struct task_struct *task;
3424 int err;
0793a61d
TG
3425
3426 rcu_read_lock();
2ebd4ffb 3427 if (!vpid)
0793a61d
TG
3428 task = current;
3429 else
2ebd4ffb 3430 task = find_task_by_vpid(vpid);
0793a61d
TG
3431 if (task)
3432 get_task_struct(task);
3433 rcu_read_unlock();
3434
3435 if (!task)
3436 return ERR_PTR(-ESRCH);
3437
0793a61d 3438 /* Reuse ptrace permission checks for now. */
c93f7669 3439 err = -EACCES;
caaee623 3440 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
c93f7669
PM
3441 goto errout;
3442
2ebd4ffb
MH
3443 return task;
3444errout:
3445 put_task_struct(task);
3446 return ERR_PTR(err);
3447
3448}
3449
fe4b04fa
PZ
3450/*
3451 * Returns a matching context with refcount and pincount.
3452 */
108b02cf 3453static struct perf_event_context *
4af57ef2
YZ
3454find_get_context(struct pmu *pmu, struct task_struct *task,
3455 struct perf_event *event)
0793a61d 3456{
211de6eb 3457 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3458 struct perf_cpu_context *cpuctx;
4af57ef2 3459 void *task_ctx_data = NULL;
25346b93 3460 unsigned long flags;
8dc85d54 3461 int ctxn, err;
4af57ef2 3462 int cpu = event->cpu;
0793a61d 3463
22a4ec72 3464 if (!task) {
cdd6c482 3465 /* Must be root to operate on a CPU event: */
0764771d 3466 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3467 return ERR_PTR(-EACCES);
3468
0793a61d 3469 /*
cdd6c482 3470 * We could be clever and allow to attach a event to an
0793a61d
TG
3471 * offline CPU and activate it when the CPU comes up, but
3472 * that's for later.
3473 */
f6325e30 3474 if (!cpu_online(cpu))
0793a61d
TG
3475 return ERR_PTR(-ENODEV);
3476
108b02cf 3477 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3478 ctx = &cpuctx->ctx;
c93f7669 3479 get_ctx(ctx);
fe4b04fa 3480 ++ctx->pin_count;
0793a61d 3481
0793a61d
TG
3482 return ctx;
3483 }
3484
8dc85d54
PZ
3485 err = -EINVAL;
3486 ctxn = pmu->task_ctx_nr;
3487 if (ctxn < 0)
3488 goto errout;
3489
4af57ef2
YZ
3490 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3491 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3492 if (!task_ctx_data) {
3493 err = -ENOMEM;
3494 goto errout;
3495 }
3496 }
3497
9ed6060d 3498retry:
8dc85d54 3499 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3500 if (ctx) {
211de6eb 3501 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3502 ++ctx->pin_count;
4af57ef2
YZ
3503
3504 if (task_ctx_data && !ctx->task_ctx_data) {
3505 ctx->task_ctx_data = task_ctx_data;
3506 task_ctx_data = NULL;
3507 }
e625cce1 3508 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3509
3510 if (clone_ctx)
3511 put_ctx(clone_ctx);
9137fb28 3512 } else {
eb184479 3513 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3514 err = -ENOMEM;
3515 if (!ctx)
3516 goto errout;
eb184479 3517
4af57ef2
YZ
3518 if (task_ctx_data) {
3519 ctx->task_ctx_data = task_ctx_data;
3520 task_ctx_data = NULL;
3521 }
3522
dbe08d82
ON
3523 err = 0;
3524 mutex_lock(&task->perf_event_mutex);
3525 /*
3526 * If it has already passed perf_event_exit_task().
3527 * we must see PF_EXITING, it takes this mutex too.
3528 */
3529 if (task->flags & PF_EXITING)
3530 err = -ESRCH;
3531 else if (task->perf_event_ctxp[ctxn])
3532 err = -EAGAIN;
fe4b04fa 3533 else {
9137fb28 3534 get_ctx(ctx);
fe4b04fa 3535 ++ctx->pin_count;
dbe08d82 3536 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3537 }
dbe08d82
ON
3538 mutex_unlock(&task->perf_event_mutex);
3539
3540 if (unlikely(err)) {
9137fb28 3541 put_ctx(ctx);
dbe08d82
ON
3542
3543 if (err == -EAGAIN)
3544 goto retry;
3545 goto errout;
a63eaf34
PM
3546 }
3547 }
3548
4af57ef2 3549 kfree(task_ctx_data);
0793a61d 3550 return ctx;
c93f7669 3551
9ed6060d 3552errout:
4af57ef2 3553 kfree(task_ctx_data);
c93f7669 3554 return ERR_PTR(err);
0793a61d
TG
3555}
3556
6fb2915d 3557static void perf_event_free_filter(struct perf_event *event);
2541517c 3558static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3559
cdd6c482 3560static void free_event_rcu(struct rcu_head *head)
592903cd 3561{
cdd6c482 3562 struct perf_event *event;
592903cd 3563
cdd6c482
IM
3564 event = container_of(head, struct perf_event, rcu_head);
3565 if (event->ns)
3566 put_pid_ns(event->ns);
6fb2915d 3567 perf_event_free_filter(event);
cdd6c482 3568 kfree(event);
592903cd
PZ
3569}
3570
b69cf536
PZ
3571static void ring_buffer_attach(struct perf_event *event,
3572 struct ring_buffer *rb);
925d519a 3573
4beb31f3 3574static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3575{
4beb31f3
FW
3576 if (event->parent)
3577 return;
3578
4beb31f3
FW
3579 if (is_cgroup_event(event))
3580 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3581}
925d519a 3582
555e0c1e
FW
3583#ifdef CONFIG_NO_HZ_FULL
3584static DEFINE_SPINLOCK(nr_freq_lock);
3585#endif
3586
3587static void unaccount_freq_event_nohz(void)
3588{
3589#ifdef CONFIG_NO_HZ_FULL
3590 spin_lock(&nr_freq_lock);
3591 if (atomic_dec_and_test(&nr_freq_events))
3592 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3593 spin_unlock(&nr_freq_lock);
3594#endif
3595}
3596
3597static void unaccount_freq_event(void)
3598{
3599 if (tick_nohz_full_enabled())
3600 unaccount_freq_event_nohz();
3601 else
3602 atomic_dec(&nr_freq_events);
3603}
3604
4beb31f3
FW
3605static void unaccount_event(struct perf_event *event)
3606{
25432ae9
PZ
3607 bool dec = false;
3608
4beb31f3
FW
3609 if (event->parent)
3610 return;
3611
3612 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3613 dec = true;
4beb31f3
FW
3614 if (event->attr.mmap || event->attr.mmap_data)
3615 atomic_dec(&nr_mmap_events);
3616 if (event->attr.comm)
3617 atomic_dec(&nr_comm_events);
3618 if (event->attr.task)
3619 atomic_dec(&nr_task_events);
948b26b6 3620 if (event->attr.freq)
555e0c1e 3621 unaccount_freq_event();
45ac1403 3622 if (event->attr.context_switch) {
25432ae9 3623 dec = true;
45ac1403
AH
3624 atomic_dec(&nr_switch_events);
3625 }
4beb31f3 3626 if (is_cgroup_event(event))
25432ae9 3627 dec = true;
4beb31f3 3628 if (has_branch_stack(event))
25432ae9
PZ
3629 dec = true;
3630
9107c89e
PZ
3631 if (dec) {
3632 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3633 schedule_delayed_work(&perf_sched_work, HZ);
3634 }
4beb31f3
FW
3635
3636 unaccount_event_cpu(event, event->cpu);
3637}
925d519a 3638
9107c89e
PZ
3639static void perf_sched_delayed(struct work_struct *work)
3640{
3641 mutex_lock(&perf_sched_mutex);
3642 if (atomic_dec_and_test(&perf_sched_count))
3643 static_branch_disable(&perf_sched_events);
3644 mutex_unlock(&perf_sched_mutex);
3645}
3646
bed5b25a
AS
3647/*
3648 * The following implement mutual exclusion of events on "exclusive" pmus
3649 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3650 * at a time, so we disallow creating events that might conflict, namely:
3651 *
3652 * 1) cpu-wide events in the presence of per-task events,
3653 * 2) per-task events in the presence of cpu-wide events,
3654 * 3) two matching events on the same context.
3655 *
3656 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3657 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3658 */
3659static int exclusive_event_init(struct perf_event *event)
3660{
3661 struct pmu *pmu = event->pmu;
3662
3663 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3664 return 0;
3665
3666 /*
3667 * Prevent co-existence of per-task and cpu-wide events on the
3668 * same exclusive pmu.
3669 *
3670 * Negative pmu::exclusive_cnt means there are cpu-wide
3671 * events on this "exclusive" pmu, positive means there are
3672 * per-task events.
3673 *
3674 * Since this is called in perf_event_alloc() path, event::ctx
3675 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3676 * to mean "per-task event", because unlike other attach states it
3677 * never gets cleared.
3678 */
3679 if (event->attach_state & PERF_ATTACH_TASK) {
3680 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3681 return -EBUSY;
3682 } else {
3683 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3684 return -EBUSY;
3685 }
3686
3687 return 0;
3688}
3689
3690static void exclusive_event_destroy(struct perf_event *event)
3691{
3692 struct pmu *pmu = event->pmu;
3693
3694 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3695 return;
3696
3697 /* see comment in exclusive_event_init() */
3698 if (event->attach_state & PERF_ATTACH_TASK)
3699 atomic_dec(&pmu->exclusive_cnt);
3700 else
3701 atomic_inc(&pmu->exclusive_cnt);
3702}
3703
3704static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3705{
3706 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3707 (e1->cpu == e2->cpu ||
3708 e1->cpu == -1 ||
3709 e2->cpu == -1))
3710 return true;
3711 return false;
3712}
3713
3714/* Called under the same ctx::mutex as perf_install_in_context() */
3715static bool exclusive_event_installable(struct perf_event *event,
3716 struct perf_event_context *ctx)
3717{
3718 struct perf_event *iter_event;
3719 struct pmu *pmu = event->pmu;
3720
3721 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3722 return true;
3723
3724 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3725 if (exclusive_event_match(iter_event, event))
3726 return false;
3727 }
3728
3729 return true;
3730}
3731
683ede43 3732static void _free_event(struct perf_event *event)
f1600952 3733{
e360adbe 3734 irq_work_sync(&event->pending);
925d519a 3735
4beb31f3 3736 unaccount_event(event);
9ee318a7 3737
76369139 3738 if (event->rb) {
9bb5d40c
PZ
3739 /*
3740 * Can happen when we close an event with re-directed output.
3741 *
3742 * Since we have a 0 refcount, perf_mmap_close() will skip
3743 * over us; possibly making our ring_buffer_put() the last.
3744 */
3745 mutex_lock(&event->mmap_mutex);
b69cf536 3746 ring_buffer_attach(event, NULL);
9bb5d40c 3747 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3748 }
3749
e5d1367f
SE
3750 if (is_cgroup_event(event))
3751 perf_detach_cgroup(event);
3752
a0733e69
PZ
3753 if (!event->parent) {
3754 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3755 put_callchain_buffers();
3756 }
3757
3758 perf_event_free_bpf_prog(event);
3759
3760 if (event->destroy)
3761 event->destroy(event);
3762
3763 if (event->ctx)
3764 put_ctx(event->ctx);
3765
3766 if (event->pmu) {
3767 exclusive_event_destroy(event);
3768 module_put(event->pmu->module);
3769 }
3770
3771 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3772}
3773
683ede43
PZ
3774/*
3775 * Used to free events which have a known refcount of 1, such as in error paths
3776 * where the event isn't exposed yet and inherited events.
3777 */
3778static void free_event(struct perf_event *event)
0793a61d 3779{
683ede43
PZ
3780 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3781 "unexpected event refcount: %ld; ptr=%p\n",
3782 atomic_long_read(&event->refcount), event)) {
3783 /* leak to avoid use-after-free */
3784 return;
3785 }
0793a61d 3786
683ede43 3787 _free_event(event);
0793a61d
TG
3788}
3789
a66a3052 3790/*
f8697762 3791 * Remove user event from the owner task.
a66a3052 3792 */
f8697762 3793static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3794{
8882135b 3795 struct task_struct *owner;
fb0459d7 3796
8882135b 3797 rcu_read_lock();
8882135b 3798 /*
f47c02c0
PZ
3799 * Matches the smp_store_release() in perf_event_exit_task(). If we
3800 * observe !owner it means the list deletion is complete and we can
3801 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
3802 * owner->perf_event_mutex.
3803 */
f47c02c0 3804 owner = lockless_dereference(event->owner);
8882135b
PZ
3805 if (owner) {
3806 /*
3807 * Since delayed_put_task_struct() also drops the last
3808 * task reference we can safely take a new reference
3809 * while holding the rcu_read_lock().
3810 */
3811 get_task_struct(owner);
3812 }
3813 rcu_read_unlock();
3814
3815 if (owner) {
f63a8daa
PZ
3816 /*
3817 * If we're here through perf_event_exit_task() we're already
3818 * holding ctx->mutex which would be an inversion wrt. the
3819 * normal lock order.
3820 *
3821 * However we can safely take this lock because its the child
3822 * ctx->mutex.
3823 */
3824 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3825
8882135b
PZ
3826 /*
3827 * We have to re-check the event->owner field, if it is cleared
3828 * we raced with perf_event_exit_task(), acquiring the mutex
3829 * ensured they're done, and we can proceed with freeing the
3830 * event.
3831 */
f47c02c0 3832 if (event->owner) {
8882135b 3833 list_del_init(&event->owner_entry);
f47c02c0
PZ
3834 smp_store_release(&event->owner, NULL);
3835 }
8882135b
PZ
3836 mutex_unlock(&owner->perf_event_mutex);
3837 put_task_struct(owner);
3838 }
f8697762
JO
3839}
3840
f8697762
JO
3841static void put_event(struct perf_event *event)
3842{
f8697762
JO
3843 if (!atomic_long_dec_and_test(&event->refcount))
3844 return;
3845
c6e5b732
PZ
3846 _free_event(event);
3847}
3848
3849/*
3850 * Kill an event dead; while event:refcount will preserve the event
3851 * object, it will not preserve its functionality. Once the last 'user'
3852 * gives up the object, we'll destroy the thing.
3853 */
3854int perf_event_release_kernel(struct perf_event *event)
3855{
a4f4bb6d 3856 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
3857 struct perf_event *child, *tmp;
3858
a4f4bb6d
PZ
3859 /*
3860 * If we got here through err_file: fput(event_file); we will not have
3861 * attached to a context yet.
3862 */
3863 if (!ctx) {
3864 WARN_ON_ONCE(event->attach_state &
3865 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3866 goto no_ctx;
3867 }
3868
f8697762
JO
3869 if (!is_kernel_event(event))
3870 perf_remove_from_owner(event);
8882135b 3871
5fa7c8ec 3872 ctx = perf_event_ctx_lock(event);
a83fe28e 3873 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 3874 perf_remove_from_context(event, DETACH_GROUP);
683ede43 3875
a69b0ca4 3876 raw_spin_lock_irq(&ctx->lock);
683ede43 3877 /*
a69b0ca4
PZ
3878 * Mark this even as STATE_DEAD, there is no external reference to it
3879 * anymore.
683ede43 3880 *
a69b0ca4
PZ
3881 * Anybody acquiring event->child_mutex after the below loop _must_
3882 * also see this, most importantly inherit_event() which will avoid
3883 * placing more children on the list.
683ede43 3884 *
c6e5b732
PZ
3885 * Thus this guarantees that we will in fact observe and kill _ALL_
3886 * child events.
683ede43 3887 */
a69b0ca4
PZ
3888 event->state = PERF_EVENT_STATE_DEAD;
3889 raw_spin_unlock_irq(&ctx->lock);
3890
3891 perf_event_ctx_unlock(event, ctx);
683ede43 3892
c6e5b732
PZ
3893again:
3894 mutex_lock(&event->child_mutex);
3895 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 3896
c6e5b732
PZ
3897 /*
3898 * Cannot change, child events are not migrated, see the
3899 * comment with perf_event_ctx_lock_nested().
3900 */
3901 ctx = lockless_dereference(child->ctx);
3902 /*
3903 * Since child_mutex nests inside ctx::mutex, we must jump
3904 * through hoops. We start by grabbing a reference on the ctx.
3905 *
3906 * Since the event cannot get freed while we hold the
3907 * child_mutex, the context must also exist and have a !0
3908 * reference count.
3909 */
3910 get_ctx(ctx);
3911
3912 /*
3913 * Now that we have a ctx ref, we can drop child_mutex, and
3914 * acquire ctx::mutex without fear of it going away. Then we
3915 * can re-acquire child_mutex.
3916 */
3917 mutex_unlock(&event->child_mutex);
3918 mutex_lock(&ctx->mutex);
3919 mutex_lock(&event->child_mutex);
3920
3921 /*
3922 * Now that we hold ctx::mutex and child_mutex, revalidate our
3923 * state, if child is still the first entry, it didn't get freed
3924 * and we can continue doing so.
3925 */
3926 tmp = list_first_entry_or_null(&event->child_list,
3927 struct perf_event, child_list);
3928 if (tmp == child) {
3929 perf_remove_from_context(child, DETACH_GROUP);
3930 list_del(&child->child_list);
3931 free_event(child);
3932 /*
3933 * This matches the refcount bump in inherit_event();
3934 * this can't be the last reference.
3935 */
3936 put_event(event);
3937 }
3938
3939 mutex_unlock(&event->child_mutex);
3940 mutex_unlock(&ctx->mutex);
3941 put_ctx(ctx);
3942 goto again;
3943 }
3944 mutex_unlock(&event->child_mutex);
3945
a4f4bb6d
PZ
3946no_ctx:
3947 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
3948 return 0;
3949}
3950EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3951
8b10c5e2
PZ
3952/*
3953 * Called when the last reference to the file is gone.
3954 */
a6fa941d
AV
3955static int perf_release(struct inode *inode, struct file *file)
3956{
c6e5b732 3957 perf_event_release_kernel(file->private_data);
a6fa941d 3958 return 0;
fb0459d7 3959}
fb0459d7 3960
59ed446f 3961u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3962{
cdd6c482 3963 struct perf_event *child;
e53c0994
PZ
3964 u64 total = 0;
3965
59ed446f
PZ
3966 *enabled = 0;
3967 *running = 0;
3968
6f10581a 3969 mutex_lock(&event->child_mutex);
01add3ea 3970
7d88962e 3971 (void)perf_event_read(event, false);
01add3ea
SB
3972 total += perf_event_count(event);
3973
59ed446f
PZ
3974 *enabled += event->total_time_enabled +
3975 atomic64_read(&event->child_total_time_enabled);
3976 *running += event->total_time_running +
3977 atomic64_read(&event->child_total_time_running);
3978
3979 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3980 (void)perf_event_read(child, false);
01add3ea 3981 total += perf_event_count(child);
59ed446f
PZ
3982 *enabled += child->total_time_enabled;
3983 *running += child->total_time_running;
3984 }
6f10581a 3985 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3986
3987 return total;
3988}
fb0459d7 3989EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3990
7d88962e 3991static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3992 u64 read_format, u64 *values)
3dab77fb 3993{
fa8c2693
PZ
3994 struct perf_event *sub;
3995 int n = 1; /* skip @nr */
7d88962e 3996 int ret;
f63a8daa 3997
7d88962e
SB
3998 ret = perf_event_read(leader, true);
3999 if (ret)
4000 return ret;
abf4868b 4001
fa8c2693
PZ
4002 /*
4003 * Since we co-schedule groups, {enabled,running} times of siblings
4004 * will be identical to those of the leader, so we only publish one
4005 * set.
4006 */
4007 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4008 values[n++] += leader->total_time_enabled +
4009 atomic64_read(&leader->child_total_time_enabled);
4010 }
3dab77fb 4011
fa8c2693
PZ
4012 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4013 values[n++] += leader->total_time_running +
4014 atomic64_read(&leader->child_total_time_running);
4015 }
4016
4017 /*
4018 * Write {count,id} tuples for every sibling.
4019 */
4020 values[n++] += perf_event_count(leader);
abf4868b
PZ
4021 if (read_format & PERF_FORMAT_ID)
4022 values[n++] = primary_event_id(leader);
3dab77fb 4023
fa8c2693
PZ
4024 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4025 values[n++] += perf_event_count(sub);
4026 if (read_format & PERF_FORMAT_ID)
4027 values[n++] = primary_event_id(sub);
4028 }
7d88962e
SB
4029
4030 return 0;
fa8c2693 4031}
3dab77fb 4032
fa8c2693
PZ
4033static int perf_read_group(struct perf_event *event,
4034 u64 read_format, char __user *buf)
4035{
4036 struct perf_event *leader = event->group_leader, *child;
4037 struct perf_event_context *ctx = leader->ctx;
7d88962e 4038 int ret;
fa8c2693 4039 u64 *values;
3dab77fb 4040
fa8c2693 4041 lockdep_assert_held(&ctx->mutex);
3dab77fb 4042
fa8c2693
PZ
4043 values = kzalloc(event->read_size, GFP_KERNEL);
4044 if (!values)
4045 return -ENOMEM;
3dab77fb 4046
fa8c2693
PZ
4047 values[0] = 1 + leader->nr_siblings;
4048
4049 /*
4050 * By locking the child_mutex of the leader we effectively
4051 * lock the child list of all siblings.. XXX explain how.
4052 */
4053 mutex_lock(&leader->child_mutex);
abf4868b 4054
7d88962e
SB
4055 ret = __perf_read_group_add(leader, read_format, values);
4056 if (ret)
4057 goto unlock;
4058
4059 list_for_each_entry(child, &leader->child_list, child_list) {
4060 ret = __perf_read_group_add(child, read_format, values);
4061 if (ret)
4062 goto unlock;
4063 }
abf4868b 4064
fa8c2693 4065 mutex_unlock(&leader->child_mutex);
abf4868b 4066
7d88962e 4067 ret = event->read_size;
fa8c2693
PZ
4068 if (copy_to_user(buf, values, event->read_size))
4069 ret = -EFAULT;
7d88962e 4070 goto out;
fa8c2693 4071
7d88962e
SB
4072unlock:
4073 mutex_unlock(&leader->child_mutex);
4074out:
fa8c2693 4075 kfree(values);
abf4868b 4076 return ret;
3dab77fb
PZ
4077}
4078
b15f495b 4079static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4080 u64 read_format, char __user *buf)
4081{
59ed446f 4082 u64 enabled, running;
3dab77fb
PZ
4083 u64 values[4];
4084 int n = 0;
4085
59ed446f
PZ
4086 values[n++] = perf_event_read_value(event, &enabled, &running);
4087 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4088 values[n++] = enabled;
4089 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4090 values[n++] = running;
3dab77fb 4091 if (read_format & PERF_FORMAT_ID)
cdd6c482 4092 values[n++] = primary_event_id(event);
3dab77fb
PZ
4093
4094 if (copy_to_user(buf, values, n * sizeof(u64)))
4095 return -EFAULT;
4096
4097 return n * sizeof(u64);
4098}
4099
dc633982
JO
4100static bool is_event_hup(struct perf_event *event)
4101{
4102 bool no_children;
4103
a69b0ca4 4104 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4105 return false;
4106
4107 mutex_lock(&event->child_mutex);
4108 no_children = list_empty(&event->child_list);
4109 mutex_unlock(&event->child_mutex);
4110 return no_children;
4111}
4112
0793a61d 4113/*
cdd6c482 4114 * Read the performance event - simple non blocking version for now
0793a61d
TG
4115 */
4116static ssize_t
b15f495b 4117__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4118{
cdd6c482 4119 u64 read_format = event->attr.read_format;
3dab77fb 4120 int ret;
0793a61d 4121
3b6f9e5c 4122 /*
cdd6c482 4123 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4124 * error state (i.e. because it was pinned but it couldn't be
4125 * scheduled on to the CPU at some point).
4126 */
cdd6c482 4127 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4128 return 0;
4129
c320c7b7 4130 if (count < event->read_size)
3dab77fb
PZ
4131 return -ENOSPC;
4132
cdd6c482 4133 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4134 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4135 ret = perf_read_group(event, read_format, buf);
3dab77fb 4136 else
b15f495b 4137 ret = perf_read_one(event, read_format, buf);
0793a61d 4138
3dab77fb 4139 return ret;
0793a61d
TG
4140}
4141
0793a61d
TG
4142static ssize_t
4143perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4144{
cdd6c482 4145 struct perf_event *event = file->private_data;
f63a8daa
PZ
4146 struct perf_event_context *ctx;
4147 int ret;
0793a61d 4148
f63a8daa 4149 ctx = perf_event_ctx_lock(event);
b15f495b 4150 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4151 perf_event_ctx_unlock(event, ctx);
4152
4153 return ret;
0793a61d
TG
4154}
4155
4156static unsigned int perf_poll(struct file *file, poll_table *wait)
4157{
cdd6c482 4158 struct perf_event *event = file->private_data;
76369139 4159 struct ring_buffer *rb;
61b67684 4160 unsigned int events = POLLHUP;
c7138f37 4161
e708d7ad 4162 poll_wait(file, &event->waitq, wait);
179033b3 4163
dc633982 4164 if (is_event_hup(event))
179033b3 4165 return events;
c7138f37 4166
10c6db11 4167 /*
9bb5d40c
PZ
4168 * Pin the event->rb by taking event->mmap_mutex; otherwise
4169 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4170 */
4171 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4172 rb = event->rb;
4173 if (rb)
76369139 4174 events = atomic_xchg(&rb->poll, 0);
10c6db11 4175 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4176 return events;
4177}
4178
f63a8daa 4179static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4180{
7d88962e 4181 (void)perf_event_read(event, false);
e7850595 4182 local64_set(&event->count, 0);
cdd6c482 4183 perf_event_update_userpage(event);
3df5edad
PZ
4184}
4185
c93f7669 4186/*
cdd6c482
IM
4187 * Holding the top-level event's child_mutex means that any
4188 * descendant process that has inherited this event will block
8ba289b8 4189 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4190 * task existence requirements of perf_event_enable/disable.
c93f7669 4191 */
cdd6c482
IM
4192static void perf_event_for_each_child(struct perf_event *event,
4193 void (*func)(struct perf_event *))
3df5edad 4194{
cdd6c482 4195 struct perf_event *child;
3df5edad 4196
cdd6c482 4197 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4198
cdd6c482
IM
4199 mutex_lock(&event->child_mutex);
4200 func(event);
4201 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4202 func(child);
cdd6c482 4203 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4204}
4205
cdd6c482
IM
4206static void perf_event_for_each(struct perf_event *event,
4207 void (*func)(struct perf_event *))
3df5edad 4208{
cdd6c482
IM
4209 struct perf_event_context *ctx = event->ctx;
4210 struct perf_event *sibling;
3df5edad 4211
f63a8daa
PZ
4212 lockdep_assert_held(&ctx->mutex);
4213
cdd6c482 4214 event = event->group_leader;
75f937f2 4215
cdd6c482 4216 perf_event_for_each_child(event, func);
cdd6c482 4217 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4218 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4219}
4220
fae3fde6
PZ
4221static void __perf_event_period(struct perf_event *event,
4222 struct perf_cpu_context *cpuctx,
4223 struct perf_event_context *ctx,
4224 void *info)
c7999c6f 4225{
fae3fde6 4226 u64 value = *((u64 *)info);
c7999c6f 4227 bool active;
08247e31 4228
cdd6c482 4229 if (event->attr.freq) {
cdd6c482 4230 event->attr.sample_freq = value;
08247e31 4231 } else {
cdd6c482
IM
4232 event->attr.sample_period = value;
4233 event->hw.sample_period = value;
08247e31 4234 }
bad7192b
PZ
4235
4236 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4237 if (active) {
4238 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4239 /*
4240 * We could be throttled; unthrottle now to avoid the tick
4241 * trying to unthrottle while we already re-started the event.
4242 */
4243 if (event->hw.interrupts == MAX_INTERRUPTS) {
4244 event->hw.interrupts = 0;
4245 perf_log_throttle(event, 1);
4246 }
bad7192b
PZ
4247 event->pmu->stop(event, PERF_EF_UPDATE);
4248 }
4249
4250 local64_set(&event->hw.period_left, 0);
4251
4252 if (active) {
4253 event->pmu->start(event, PERF_EF_RELOAD);
4254 perf_pmu_enable(ctx->pmu);
4255 }
c7999c6f
PZ
4256}
4257
4258static int perf_event_period(struct perf_event *event, u64 __user *arg)
4259{
c7999c6f
PZ
4260 u64 value;
4261
4262 if (!is_sampling_event(event))
4263 return -EINVAL;
4264
4265 if (copy_from_user(&value, arg, sizeof(value)))
4266 return -EFAULT;
4267
4268 if (!value)
4269 return -EINVAL;
4270
4271 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4272 return -EINVAL;
4273
fae3fde6 4274 event_function_call(event, __perf_event_period, &value);
08247e31 4275
c7999c6f 4276 return 0;
08247e31
PZ
4277}
4278
ac9721f3
PZ
4279static const struct file_operations perf_fops;
4280
2903ff01 4281static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4282{
2903ff01
AV
4283 struct fd f = fdget(fd);
4284 if (!f.file)
4285 return -EBADF;
ac9721f3 4286
2903ff01
AV
4287 if (f.file->f_op != &perf_fops) {
4288 fdput(f);
4289 return -EBADF;
ac9721f3 4290 }
2903ff01
AV
4291 *p = f;
4292 return 0;
ac9721f3
PZ
4293}
4294
4295static int perf_event_set_output(struct perf_event *event,
4296 struct perf_event *output_event);
6fb2915d 4297static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4298static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4299
f63a8daa 4300static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4301{
cdd6c482 4302 void (*func)(struct perf_event *);
3df5edad 4303 u32 flags = arg;
d859e29f
PM
4304
4305 switch (cmd) {
cdd6c482 4306 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4307 func = _perf_event_enable;
d859e29f 4308 break;
cdd6c482 4309 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4310 func = _perf_event_disable;
79f14641 4311 break;
cdd6c482 4312 case PERF_EVENT_IOC_RESET:
f63a8daa 4313 func = _perf_event_reset;
6de6a7b9 4314 break;
3df5edad 4315
cdd6c482 4316 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4317 return _perf_event_refresh(event, arg);
08247e31 4318
cdd6c482
IM
4319 case PERF_EVENT_IOC_PERIOD:
4320 return perf_event_period(event, (u64 __user *)arg);
08247e31 4321
cf4957f1
JO
4322 case PERF_EVENT_IOC_ID:
4323 {
4324 u64 id = primary_event_id(event);
4325
4326 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4327 return -EFAULT;
4328 return 0;
4329 }
4330
cdd6c482 4331 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4332 {
ac9721f3 4333 int ret;
ac9721f3 4334 if (arg != -1) {
2903ff01
AV
4335 struct perf_event *output_event;
4336 struct fd output;
4337 ret = perf_fget_light(arg, &output);
4338 if (ret)
4339 return ret;
4340 output_event = output.file->private_data;
4341 ret = perf_event_set_output(event, output_event);
4342 fdput(output);
4343 } else {
4344 ret = perf_event_set_output(event, NULL);
ac9721f3 4345 }
ac9721f3
PZ
4346 return ret;
4347 }
a4be7c27 4348
6fb2915d
LZ
4349 case PERF_EVENT_IOC_SET_FILTER:
4350 return perf_event_set_filter(event, (void __user *)arg);
4351
2541517c
AS
4352 case PERF_EVENT_IOC_SET_BPF:
4353 return perf_event_set_bpf_prog(event, arg);
4354
d859e29f 4355 default:
3df5edad 4356 return -ENOTTY;
d859e29f 4357 }
3df5edad
PZ
4358
4359 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4360 perf_event_for_each(event, func);
3df5edad 4361 else
cdd6c482 4362 perf_event_for_each_child(event, func);
3df5edad
PZ
4363
4364 return 0;
d859e29f
PM
4365}
4366
f63a8daa
PZ
4367static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4368{
4369 struct perf_event *event = file->private_data;
4370 struct perf_event_context *ctx;
4371 long ret;
4372
4373 ctx = perf_event_ctx_lock(event);
4374 ret = _perf_ioctl(event, cmd, arg);
4375 perf_event_ctx_unlock(event, ctx);
4376
4377 return ret;
4378}
4379
b3f20785
PM
4380#ifdef CONFIG_COMPAT
4381static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4382 unsigned long arg)
4383{
4384 switch (_IOC_NR(cmd)) {
4385 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4386 case _IOC_NR(PERF_EVENT_IOC_ID):
4387 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4388 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4389 cmd &= ~IOCSIZE_MASK;
4390 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4391 }
4392 break;
4393 }
4394 return perf_ioctl(file, cmd, arg);
4395}
4396#else
4397# define perf_compat_ioctl NULL
4398#endif
4399
cdd6c482 4400int perf_event_task_enable(void)
771d7cde 4401{
f63a8daa 4402 struct perf_event_context *ctx;
cdd6c482 4403 struct perf_event *event;
771d7cde 4404
cdd6c482 4405 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4406 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4407 ctx = perf_event_ctx_lock(event);
4408 perf_event_for_each_child(event, _perf_event_enable);
4409 perf_event_ctx_unlock(event, ctx);
4410 }
cdd6c482 4411 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4412
4413 return 0;
4414}
4415
cdd6c482 4416int perf_event_task_disable(void)
771d7cde 4417{
f63a8daa 4418 struct perf_event_context *ctx;
cdd6c482 4419 struct perf_event *event;
771d7cde 4420
cdd6c482 4421 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4422 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4423 ctx = perf_event_ctx_lock(event);
4424 perf_event_for_each_child(event, _perf_event_disable);
4425 perf_event_ctx_unlock(event, ctx);
4426 }
cdd6c482 4427 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4428
4429 return 0;
4430}
4431
cdd6c482 4432static int perf_event_index(struct perf_event *event)
194002b2 4433{
a4eaf7f1
PZ
4434 if (event->hw.state & PERF_HES_STOPPED)
4435 return 0;
4436
cdd6c482 4437 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4438 return 0;
4439
35edc2a5 4440 return event->pmu->event_idx(event);
194002b2
PZ
4441}
4442
c4794295 4443static void calc_timer_values(struct perf_event *event,
e3f3541c 4444 u64 *now,
7f310a5d
EM
4445 u64 *enabled,
4446 u64 *running)
c4794295 4447{
e3f3541c 4448 u64 ctx_time;
c4794295 4449
e3f3541c
PZ
4450 *now = perf_clock();
4451 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4452 *enabled = ctx_time - event->tstamp_enabled;
4453 *running = ctx_time - event->tstamp_running;
4454}
4455
fa731587
PZ
4456static void perf_event_init_userpage(struct perf_event *event)
4457{
4458 struct perf_event_mmap_page *userpg;
4459 struct ring_buffer *rb;
4460
4461 rcu_read_lock();
4462 rb = rcu_dereference(event->rb);
4463 if (!rb)
4464 goto unlock;
4465
4466 userpg = rb->user_page;
4467
4468 /* Allow new userspace to detect that bit 0 is deprecated */
4469 userpg->cap_bit0_is_deprecated = 1;
4470 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4471 userpg->data_offset = PAGE_SIZE;
4472 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4473
4474unlock:
4475 rcu_read_unlock();
4476}
4477
c1317ec2
AL
4478void __weak arch_perf_update_userpage(
4479 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4480{
4481}
4482
38ff667b
PZ
4483/*
4484 * Callers need to ensure there can be no nesting of this function, otherwise
4485 * the seqlock logic goes bad. We can not serialize this because the arch
4486 * code calls this from NMI context.
4487 */
cdd6c482 4488void perf_event_update_userpage(struct perf_event *event)
37d81828 4489{
cdd6c482 4490 struct perf_event_mmap_page *userpg;
76369139 4491 struct ring_buffer *rb;
e3f3541c 4492 u64 enabled, running, now;
38ff667b
PZ
4493
4494 rcu_read_lock();
5ec4c599
PZ
4495 rb = rcu_dereference(event->rb);
4496 if (!rb)
4497 goto unlock;
4498
0d641208
EM
4499 /*
4500 * compute total_time_enabled, total_time_running
4501 * based on snapshot values taken when the event
4502 * was last scheduled in.
4503 *
4504 * we cannot simply called update_context_time()
4505 * because of locking issue as we can be called in
4506 * NMI context
4507 */
e3f3541c 4508 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4509
76369139 4510 userpg = rb->user_page;
7b732a75
PZ
4511 /*
4512 * Disable preemption so as to not let the corresponding user-space
4513 * spin too long if we get preempted.
4514 */
4515 preempt_disable();
37d81828 4516 ++userpg->lock;
92f22a38 4517 barrier();
cdd6c482 4518 userpg->index = perf_event_index(event);
b5e58793 4519 userpg->offset = perf_event_count(event);
365a4038 4520 if (userpg->index)
e7850595 4521 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4522
0d641208 4523 userpg->time_enabled = enabled +
cdd6c482 4524 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4525
0d641208 4526 userpg->time_running = running +
cdd6c482 4527 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4528
c1317ec2 4529 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4530
92f22a38 4531 barrier();
37d81828 4532 ++userpg->lock;
7b732a75 4533 preempt_enable();
38ff667b 4534unlock:
7b732a75 4535 rcu_read_unlock();
37d81828
PM
4536}
4537
906010b2
PZ
4538static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4539{
4540 struct perf_event *event = vma->vm_file->private_data;
76369139 4541 struct ring_buffer *rb;
906010b2
PZ
4542 int ret = VM_FAULT_SIGBUS;
4543
4544 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4545 if (vmf->pgoff == 0)
4546 ret = 0;
4547 return ret;
4548 }
4549
4550 rcu_read_lock();
76369139
FW
4551 rb = rcu_dereference(event->rb);
4552 if (!rb)
906010b2
PZ
4553 goto unlock;
4554
4555 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4556 goto unlock;
4557
76369139 4558 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4559 if (!vmf->page)
4560 goto unlock;
4561
4562 get_page(vmf->page);
4563 vmf->page->mapping = vma->vm_file->f_mapping;
4564 vmf->page->index = vmf->pgoff;
4565
4566 ret = 0;
4567unlock:
4568 rcu_read_unlock();
4569
4570 return ret;
4571}
4572
10c6db11
PZ
4573static void ring_buffer_attach(struct perf_event *event,
4574 struct ring_buffer *rb)
4575{
b69cf536 4576 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4577 unsigned long flags;
4578
b69cf536
PZ
4579 if (event->rb) {
4580 /*
4581 * Should be impossible, we set this when removing
4582 * event->rb_entry and wait/clear when adding event->rb_entry.
4583 */
4584 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4585
b69cf536 4586 old_rb = event->rb;
b69cf536
PZ
4587 spin_lock_irqsave(&old_rb->event_lock, flags);
4588 list_del_rcu(&event->rb_entry);
4589 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4590
2f993cf0
ON
4591 event->rcu_batches = get_state_synchronize_rcu();
4592 event->rcu_pending = 1;
b69cf536 4593 }
10c6db11 4594
b69cf536 4595 if (rb) {
2f993cf0
ON
4596 if (event->rcu_pending) {
4597 cond_synchronize_rcu(event->rcu_batches);
4598 event->rcu_pending = 0;
4599 }
4600
b69cf536
PZ
4601 spin_lock_irqsave(&rb->event_lock, flags);
4602 list_add_rcu(&event->rb_entry, &rb->event_list);
4603 spin_unlock_irqrestore(&rb->event_lock, flags);
4604 }
4605
4606 rcu_assign_pointer(event->rb, rb);
4607
4608 if (old_rb) {
4609 ring_buffer_put(old_rb);
4610 /*
4611 * Since we detached before setting the new rb, so that we
4612 * could attach the new rb, we could have missed a wakeup.
4613 * Provide it now.
4614 */
4615 wake_up_all(&event->waitq);
4616 }
10c6db11
PZ
4617}
4618
4619static void ring_buffer_wakeup(struct perf_event *event)
4620{
4621 struct ring_buffer *rb;
4622
4623 rcu_read_lock();
4624 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4625 if (rb) {
4626 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4627 wake_up_all(&event->waitq);
4628 }
10c6db11
PZ
4629 rcu_read_unlock();
4630}
4631
fdc26706 4632struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4633{
76369139 4634 struct ring_buffer *rb;
7b732a75 4635
ac9721f3 4636 rcu_read_lock();
76369139
FW
4637 rb = rcu_dereference(event->rb);
4638 if (rb) {
4639 if (!atomic_inc_not_zero(&rb->refcount))
4640 rb = NULL;
ac9721f3
PZ
4641 }
4642 rcu_read_unlock();
4643
76369139 4644 return rb;
ac9721f3
PZ
4645}
4646
fdc26706 4647void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4648{
76369139 4649 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4650 return;
7b732a75 4651
9bb5d40c 4652 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4653
76369139 4654 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4655}
4656
4657static void perf_mmap_open(struct vm_area_struct *vma)
4658{
cdd6c482 4659 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4660
cdd6c482 4661 atomic_inc(&event->mmap_count);
9bb5d40c 4662 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4663
45bfb2e5
PZ
4664 if (vma->vm_pgoff)
4665 atomic_inc(&event->rb->aux_mmap_count);
4666
1e0fb9ec
AL
4667 if (event->pmu->event_mapped)
4668 event->pmu->event_mapped(event);
7b732a75
PZ
4669}
4670
9bb5d40c
PZ
4671/*
4672 * A buffer can be mmap()ed multiple times; either directly through the same
4673 * event, or through other events by use of perf_event_set_output().
4674 *
4675 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4676 * the buffer here, where we still have a VM context. This means we need
4677 * to detach all events redirecting to us.
4678 */
7b732a75
PZ
4679static void perf_mmap_close(struct vm_area_struct *vma)
4680{
cdd6c482 4681 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4682
b69cf536 4683 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4684 struct user_struct *mmap_user = rb->mmap_user;
4685 int mmap_locked = rb->mmap_locked;
4686 unsigned long size = perf_data_size(rb);
789f90fc 4687
1e0fb9ec
AL
4688 if (event->pmu->event_unmapped)
4689 event->pmu->event_unmapped(event);
4690
45bfb2e5
PZ
4691 /*
4692 * rb->aux_mmap_count will always drop before rb->mmap_count and
4693 * event->mmap_count, so it is ok to use event->mmap_mutex to
4694 * serialize with perf_mmap here.
4695 */
4696 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4697 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4698 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4699 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4700
4701 rb_free_aux(rb);
4702 mutex_unlock(&event->mmap_mutex);
4703 }
4704
9bb5d40c
PZ
4705 atomic_dec(&rb->mmap_count);
4706
4707 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4708 goto out_put;
9bb5d40c 4709
b69cf536 4710 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4711 mutex_unlock(&event->mmap_mutex);
4712
4713 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4714 if (atomic_read(&rb->mmap_count))
4715 goto out_put;
ac9721f3 4716
9bb5d40c
PZ
4717 /*
4718 * No other mmap()s, detach from all other events that might redirect
4719 * into the now unreachable buffer. Somewhat complicated by the
4720 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4721 */
4722again:
4723 rcu_read_lock();
4724 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4725 if (!atomic_long_inc_not_zero(&event->refcount)) {
4726 /*
4727 * This event is en-route to free_event() which will
4728 * detach it and remove it from the list.
4729 */
4730 continue;
4731 }
4732 rcu_read_unlock();
789f90fc 4733
9bb5d40c
PZ
4734 mutex_lock(&event->mmap_mutex);
4735 /*
4736 * Check we didn't race with perf_event_set_output() which can
4737 * swizzle the rb from under us while we were waiting to
4738 * acquire mmap_mutex.
4739 *
4740 * If we find a different rb; ignore this event, a next
4741 * iteration will no longer find it on the list. We have to
4742 * still restart the iteration to make sure we're not now
4743 * iterating the wrong list.
4744 */
b69cf536
PZ
4745 if (event->rb == rb)
4746 ring_buffer_attach(event, NULL);
4747
cdd6c482 4748 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4749 put_event(event);
ac9721f3 4750
9bb5d40c
PZ
4751 /*
4752 * Restart the iteration; either we're on the wrong list or
4753 * destroyed its integrity by doing a deletion.
4754 */
4755 goto again;
7b732a75 4756 }
9bb5d40c
PZ
4757 rcu_read_unlock();
4758
4759 /*
4760 * It could be there's still a few 0-ref events on the list; they'll
4761 * get cleaned up by free_event() -- they'll also still have their
4762 * ref on the rb and will free it whenever they are done with it.
4763 *
4764 * Aside from that, this buffer is 'fully' detached and unmapped,
4765 * undo the VM accounting.
4766 */
4767
4768 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4769 vma->vm_mm->pinned_vm -= mmap_locked;
4770 free_uid(mmap_user);
4771
b69cf536 4772out_put:
9bb5d40c 4773 ring_buffer_put(rb); /* could be last */
37d81828
PM
4774}
4775
f0f37e2f 4776static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4777 .open = perf_mmap_open,
45bfb2e5 4778 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4779 .fault = perf_mmap_fault,
4780 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4781};
4782
4783static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4784{
cdd6c482 4785 struct perf_event *event = file->private_data;
22a4f650 4786 unsigned long user_locked, user_lock_limit;
789f90fc 4787 struct user_struct *user = current_user();
22a4f650 4788 unsigned long locked, lock_limit;
45bfb2e5 4789 struct ring_buffer *rb = NULL;
7b732a75
PZ
4790 unsigned long vma_size;
4791 unsigned long nr_pages;
45bfb2e5 4792 long user_extra = 0, extra = 0;
d57e34fd 4793 int ret = 0, flags = 0;
37d81828 4794
c7920614
PZ
4795 /*
4796 * Don't allow mmap() of inherited per-task counters. This would
4797 * create a performance issue due to all children writing to the
76369139 4798 * same rb.
c7920614
PZ
4799 */
4800 if (event->cpu == -1 && event->attr.inherit)
4801 return -EINVAL;
4802
43a21ea8 4803 if (!(vma->vm_flags & VM_SHARED))
37d81828 4804 return -EINVAL;
7b732a75
PZ
4805
4806 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4807
4808 if (vma->vm_pgoff == 0) {
4809 nr_pages = (vma_size / PAGE_SIZE) - 1;
4810 } else {
4811 /*
4812 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4813 * mapped, all subsequent mappings should have the same size
4814 * and offset. Must be above the normal perf buffer.
4815 */
4816 u64 aux_offset, aux_size;
4817
4818 if (!event->rb)
4819 return -EINVAL;
4820
4821 nr_pages = vma_size / PAGE_SIZE;
4822
4823 mutex_lock(&event->mmap_mutex);
4824 ret = -EINVAL;
4825
4826 rb = event->rb;
4827 if (!rb)
4828 goto aux_unlock;
4829
4830 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4831 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4832
4833 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4834 goto aux_unlock;
4835
4836 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4837 goto aux_unlock;
4838
4839 /* already mapped with a different offset */
4840 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4841 goto aux_unlock;
4842
4843 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4844 goto aux_unlock;
4845
4846 /* already mapped with a different size */
4847 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4848 goto aux_unlock;
4849
4850 if (!is_power_of_2(nr_pages))
4851 goto aux_unlock;
4852
4853 if (!atomic_inc_not_zero(&rb->mmap_count))
4854 goto aux_unlock;
4855
4856 if (rb_has_aux(rb)) {
4857 atomic_inc(&rb->aux_mmap_count);
4858 ret = 0;
4859 goto unlock;
4860 }
4861
4862 atomic_set(&rb->aux_mmap_count, 1);
4863 user_extra = nr_pages;
4864
4865 goto accounting;
4866 }
7b732a75 4867
7730d865 4868 /*
76369139 4869 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4870 * can do bitmasks instead of modulo.
4871 */
2ed11312 4872 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4873 return -EINVAL;
4874
7b732a75 4875 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4876 return -EINVAL;
4877
cdd6c482 4878 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4879again:
cdd6c482 4880 mutex_lock(&event->mmap_mutex);
76369139 4881 if (event->rb) {
9bb5d40c 4882 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4883 ret = -EINVAL;
9bb5d40c
PZ
4884 goto unlock;
4885 }
4886
4887 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4888 /*
4889 * Raced against perf_mmap_close() through
4890 * perf_event_set_output(). Try again, hope for better
4891 * luck.
4892 */
4893 mutex_unlock(&event->mmap_mutex);
4894 goto again;
4895 }
4896
ebb3c4c4
PZ
4897 goto unlock;
4898 }
4899
789f90fc 4900 user_extra = nr_pages + 1;
45bfb2e5
PZ
4901
4902accounting:
cdd6c482 4903 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4904
4905 /*
4906 * Increase the limit linearly with more CPUs:
4907 */
4908 user_lock_limit *= num_online_cpus();
4909
789f90fc 4910 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4911
789f90fc
PZ
4912 if (user_locked > user_lock_limit)
4913 extra = user_locked - user_lock_limit;
7b732a75 4914
78d7d407 4915 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4916 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4917 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4918
459ec28a
IM
4919 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4920 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4921 ret = -EPERM;
4922 goto unlock;
4923 }
7b732a75 4924
45bfb2e5 4925 WARN_ON(!rb && event->rb);
906010b2 4926
d57e34fd 4927 if (vma->vm_flags & VM_WRITE)
76369139 4928 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4929
76369139 4930 if (!rb) {
45bfb2e5
PZ
4931 rb = rb_alloc(nr_pages,
4932 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4933 event->cpu, flags);
26cb63ad 4934
45bfb2e5
PZ
4935 if (!rb) {
4936 ret = -ENOMEM;
4937 goto unlock;
4938 }
43a21ea8 4939
45bfb2e5
PZ
4940 atomic_set(&rb->mmap_count, 1);
4941 rb->mmap_user = get_current_user();
4942 rb->mmap_locked = extra;
26cb63ad 4943
45bfb2e5 4944 ring_buffer_attach(event, rb);
ac9721f3 4945
45bfb2e5
PZ
4946 perf_event_init_userpage(event);
4947 perf_event_update_userpage(event);
4948 } else {
1a594131
AS
4949 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4950 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4951 if (!ret)
4952 rb->aux_mmap_locked = extra;
4953 }
9a0f05cb 4954
ebb3c4c4 4955unlock:
45bfb2e5
PZ
4956 if (!ret) {
4957 atomic_long_add(user_extra, &user->locked_vm);
4958 vma->vm_mm->pinned_vm += extra;
4959
ac9721f3 4960 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4961 } else if (rb) {
4962 atomic_dec(&rb->mmap_count);
4963 }
4964aux_unlock:
cdd6c482 4965 mutex_unlock(&event->mmap_mutex);
37d81828 4966
9bb5d40c
PZ
4967 /*
4968 * Since pinned accounting is per vm we cannot allow fork() to copy our
4969 * vma.
4970 */
26cb63ad 4971 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4972 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4973
1e0fb9ec
AL
4974 if (event->pmu->event_mapped)
4975 event->pmu->event_mapped(event);
4976
7b732a75 4977 return ret;
37d81828
PM
4978}
4979
3c446b3d
PZ
4980static int perf_fasync(int fd, struct file *filp, int on)
4981{
496ad9aa 4982 struct inode *inode = file_inode(filp);
cdd6c482 4983 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4984 int retval;
4985
5955102c 4986 inode_lock(inode);
cdd6c482 4987 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 4988 inode_unlock(inode);
3c446b3d
PZ
4989
4990 if (retval < 0)
4991 return retval;
4992
4993 return 0;
4994}
4995
0793a61d 4996static const struct file_operations perf_fops = {
3326c1ce 4997 .llseek = no_llseek,
0793a61d
TG
4998 .release = perf_release,
4999 .read = perf_read,
5000 .poll = perf_poll,
d859e29f 5001 .unlocked_ioctl = perf_ioctl,
b3f20785 5002 .compat_ioctl = perf_compat_ioctl,
37d81828 5003 .mmap = perf_mmap,
3c446b3d 5004 .fasync = perf_fasync,
0793a61d
TG
5005};
5006
925d519a 5007/*
cdd6c482 5008 * Perf event wakeup
925d519a
PZ
5009 *
5010 * If there's data, ensure we set the poll() state and publish everything
5011 * to user-space before waking everybody up.
5012 */
5013
fed66e2c
PZ
5014static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5015{
5016 /* only the parent has fasync state */
5017 if (event->parent)
5018 event = event->parent;
5019 return &event->fasync;
5020}
5021
cdd6c482 5022void perf_event_wakeup(struct perf_event *event)
925d519a 5023{
10c6db11 5024 ring_buffer_wakeup(event);
4c9e2542 5025
cdd6c482 5026 if (event->pending_kill) {
fed66e2c 5027 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5028 event->pending_kill = 0;
4c9e2542 5029 }
925d519a
PZ
5030}
5031
e360adbe 5032static void perf_pending_event(struct irq_work *entry)
79f14641 5033{
cdd6c482
IM
5034 struct perf_event *event = container_of(entry,
5035 struct perf_event, pending);
d525211f
PZ
5036 int rctx;
5037
5038 rctx = perf_swevent_get_recursion_context();
5039 /*
5040 * If we 'fail' here, that's OK, it means recursion is already disabled
5041 * and we won't recurse 'further'.
5042 */
79f14641 5043
cdd6c482
IM
5044 if (event->pending_disable) {
5045 event->pending_disable = 0;
fae3fde6 5046 perf_event_disable_local(event);
79f14641
PZ
5047 }
5048
cdd6c482
IM
5049 if (event->pending_wakeup) {
5050 event->pending_wakeup = 0;
5051 perf_event_wakeup(event);
79f14641 5052 }
d525211f
PZ
5053
5054 if (rctx >= 0)
5055 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5056}
5057
39447b38
ZY
5058/*
5059 * We assume there is only KVM supporting the callbacks.
5060 * Later on, we might change it to a list if there is
5061 * another virtualization implementation supporting the callbacks.
5062 */
5063struct perf_guest_info_callbacks *perf_guest_cbs;
5064
5065int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5066{
5067 perf_guest_cbs = cbs;
5068 return 0;
5069}
5070EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5071
5072int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5073{
5074 perf_guest_cbs = NULL;
5075 return 0;
5076}
5077EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5078
4018994f
JO
5079static void
5080perf_output_sample_regs(struct perf_output_handle *handle,
5081 struct pt_regs *regs, u64 mask)
5082{
5083 int bit;
5084
5085 for_each_set_bit(bit, (const unsigned long *) &mask,
5086 sizeof(mask) * BITS_PER_BYTE) {
5087 u64 val;
5088
5089 val = perf_reg_value(regs, bit);
5090 perf_output_put(handle, val);
5091 }
5092}
5093
60e2364e 5094static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5095 struct pt_regs *regs,
5096 struct pt_regs *regs_user_copy)
4018994f 5097{
88a7c26a
AL
5098 if (user_mode(regs)) {
5099 regs_user->abi = perf_reg_abi(current);
2565711f 5100 regs_user->regs = regs;
88a7c26a
AL
5101 } else if (current->mm) {
5102 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5103 } else {
5104 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5105 regs_user->regs = NULL;
4018994f
JO
5106 }
5107}
5108
60e2364e
SE
5109static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5110 struct pt_regs *regs)
5111{
5112 regs_intr->regs = regs;
5113 regs_intr->abi = perf_reg_abi(current);
5114}
5115
5116
c5ebcedb
JO
5117/*
5118 * Get remaining task size from user stack pointer.
5119 *
5120 * It'd be better to take stack vma map and limit this more
5121 * precisly, but there's no way to get it safely under interrupt,
5122 * so using TASK_SIZE as limit.
5123 */
5124static u64 perf_ustack_task_size(struct pt_regs *regs)
5125{
5126 unsigned long addr = perf_user_stack_pointer(regs);
5127
5128 if (!addr || addr >= TASK_SIZE)
5129 return 0;
5130
5131 return TASK_SIZE - addr;
5132}
5133
5134static u16
5135perf_sample_ustack_size(u16 stack_size, u16 header_size,
5136 struct pt_regs *regs)
5137{
5138 u64 task_size;
5139
5140 /* No regs, no stack pointer, no dump. */
5141 if (!regs)
5142 return 0;
5143
5144 /*
5145 * Check if we fit in with the requested stack size into the:
5146 * - TASK_SIZE
5147 * If we don't, we limit the size to the TASK_SIZE.
5148 *
5149 * - remaining sample size
5150 * If we don't, we customize the stack size to
5151 * fit in to the remaining sample size.
5152 */
5153
5154 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5155 stack_size = min(stack_size, (u16) task_size);
5156
5157 /* Current header size plus static size and dynamic size. */
5158 header_size += 2 * sizeof(u64);
5159
5160 /* Do we fit in with the current stack dump size? */
5161 if ((u16) (header_size + stack_size) < header_size) {
5162 /*
5163 * If we overflow the maximum size for the sample,
5164 * we customize the stack dump size to fit in.
5165 */
5166 stack_size = USHRT_MAX - header_size - sizeof(u64);
5167 stack_size = round_up(stack_size, sizeof(u64));
5168 }
5169
5170 return stack_size;
5171}
5172
5173static void
5174perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5175 struct pt_regs *regs)
5176{
5177 /* Case of a kernel thread, nothing to dump */
5178 if (!regs) {
5179 u64 size = 0;
5180 perf_output_put(handle, size);
5181 } else {
5182 unsigned long sp;
5183 unsigned int rem;
5184 u64 dyn_size;
5185
5186 /*
5187 * We dump:
5188 * static size
5189 * - the size requested by user or the best one we can fit
5190 * in to the sample max size
5191 * data
5192 * - user stack dump data
5193 * dynamic size
5194 * - the actual dumped size
5195 */
5196
5197 /* Static size. */
5198 perf_output_put(handle, dump_size);
5199
5200 /* Data. */
5201 sp = perf_user_stack_pointer(regs);
5202 rem = __output_copy_user(handle, (void *) sp, dump_size);
5203 dyn_size = dump_size - rem;
5204
5205 perf_output_skip(handle, rem);
5206
5207 /* Dynamic size. */
5208 perf_output_put(handle, dyn_size);
5209 }
5210}
5211
c980d109
ACM
5212static void __perf_event_header__init_id(struct perf_event_header *header,
5213 struct perf_sample_data *data,
5214 struct perf_event *event)
6844c09d
ACM
5215{
5216 u64 sample_type = event->attr.sample_type;
5217
5218 data->type = sample_type;
5219 header->size += event->id_header_size;
5220
5221 if (sample_type & PERF_SAMPLE_TID) {
5222 /* namespace issues */
5223 data->tid_entry.pid = perf_event_pid(event, current);
5224 data->tid_entry.tid = perf_event_tid(event, current);
5225 }
5226
5227 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5228 data->time = perf_event_clock(event);
6844c09d 5229
ff3d527c 5230 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5231 data->id = primary_event_id(event);
5232
5233 if (sample_type & PERF_SAMPLE_STREAM_ID)
5234 data->stream_id = event->id;
5235
5236 if (sample_type & PERF_SAMPLE_CPU) {
5237 data->cpu_entry.cpu = raw_smp_processor_id();
5238 data->cpu_entry.reserved = 0;
5239 }
5240}
5241
76369139
FW
5242void perf_event_header__init_id(struct perf_event_header *header,
5243 struct perf_sample_data *data,
5244 struct perf_event *event)
c980d109
ACM
5245{
5246 if (event->attr.sample_id_all)
5247 __perf_event_header__init_id(header, data, event);
5248}
5249
5250static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5251 struct perf_sample_data *data)
5252{
5253 u64 sample_type = data->type;
5254
5255 if (sample_type & PERF_SAMPLE_TID)
5256 perf_output_put(handle, data->tid_entry);
5257
5258 if (sample_type & PERF_SAMPLE_TIME)
5259 perf_output_put(handle, data->time);
5260
5261 if (sample_type & PERF_SAMPLE_ID)
5262 perf_output_put(handle, data->id);
5263
5264 if (sample_type & PERF_SAMPLE_STREAM_ID)
5265 perf_output_put(handle, data->stream_id);
5266
5267 if (sample_type & PERF_SAMPLE_CPU)
5268 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5269
5270 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5271 perf_output_put(handle, data->id);
c980d109
ACM
5272}
5273
76369139
FW
5274void perf_event__output_id_sample(struct perf_event *event,
5275 struct perf_output_handle *handle,
5276 struct perf_sample_data *sample)
c980d109
ACM
5277{
5278 if (event->attr.sample_id_all)
5279 __perf_event__output_id_sample(handle, sample);
5280}
5281
3dab77fb 5282static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5283 struct perf_event *event,
5284 u64 enabled, u64 running)
3dab77fb 5285{
cdd6c482 5286 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5287 u64 values[4];
5288 int n = 0;
5289
b5e58793 5290 values[n++] = perf_event_count(event);
3dab77fb 5291 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5292 values[n++] = enabled +
cdd6c482 5293 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5294 }
5295 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5296 values[n++] = running +
cdd6c482 5297 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5298 }
5299 if (read_format & PERF_FORMAT_ID)
cdd6c482 5300 values[n++] = primary_event_id(event);
3dab77fb 5301
76369139 5302 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5303}
5304
5305/*
cdd6c482 5306 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5307 */
5308static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5309 struct perf_event *event,
5310 u64 enabled, u64 running)
3dab77fb 5311{
cdd6c482
IM
5312 struct perf_event *leader = event->group_leader, *sub;
5313 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5314 u64 values[5];
5315 int n = 0;
5316
5317 values[n++] = 1 + leader->nr_siblings;
5318
5319 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5320 values[n++] = enabled;
3dab77fb
PZ
5321
5322 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5323 values[n++] = running;
3dab77fb 5324
cdd6c482 5325 if (leader != event)
3dab77fb
PZ
5326 leader->pmu->read(leader);
5327
b5e58793 5328 values[n++] = perf_event_count(leader);
3dab77fb 5329 if (read_format & PERF_FORMAT_ID)
cdd6c482 5330 values[n++] = primary_event_id(leader);
3dab77fb 5331
76369139 5332 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5333
65abc865 5334 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5335 n = 0;
5336
6f5ab001
JO
5337 if ((sub != event) &&
5338 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5339 sub->pmu->read(sub);
5340
b5e58793 5341 values[n++] = perf_event_count(sub);
3dab77fb 5342 if (read_format & PERF_FORMAT_ID)
cdd6c482 5343 values[n++] = primary_event_id(sub);
3dab77fb 5344
76369139 5345 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5346 }
5347}
5348
eed01528
SE
5349#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5350 PERF_FORMAT_TOTAL_TIME_RUNNING)
5351
3dab77fb 5352static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5353 struct perf_event *event)
3dab77fb 5354{
e3f3541c 5355 u64 enabled = 0, running = 0, now;
eed01528
SE
5356 u64 read_format = event->attr.read_format;
5357
5358 /*
5359 * compute total_time_enabled, total_time_running
5360 * based on snapshot values taken when the event
5361 * was last scheduled in.
5362 *
5363 * we cannot simply called update_context_time()
5364 * because of locking issue as we are called in
5365 * NMI context
5366 */
c4794295 5367 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5368 calc_timer_values(event, &now, &enabled, &running);
eed01528 5369
cdd6c482 5370 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5371 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5372 else
eed01528 5373 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5374}
5375
5622f295
MM
5376void perf_output_sample(struct perf_output_handle *handle,
5377 struct perf_event_header *header,
5378 struct perf_sample_data *data,
cdd6c482 5379 struct perf_event *event)
5622f295
MM
5380{
5381 u64 sample_type = data->type;
5382
5383 perf_output_put(handle, *header);
5384
ff3d527c
AH
5385 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5386 perf_output_put(handle, data->id);
5387
5622f295
MM
5388 if (sample_type & PERF_SAMPLE_IP)
5389 perf_output_put(handle, data->ip);
5390
5391 if (sample_type & PERF_SAMPLE_TID)
5392 perf_output_put(handle, data->tid_entry);
5393
5394 if (sample_type & PERF_SAMPLE_TIME)
5395 perf_output_put(handle, data->time);
5396
5397 if (sample_type & PERF_SAMPLE_ADDR)
5398 perf_output_put(handle, data->addr);
5399
5400 if (sample_type & PERF_SAMPLE_ID)
5401 perf_output_put(handle, data->id);
5402
5403 if (sample_type & PERF_SAMPLE_STREAM_ID)
5404 perf_output_put(handle, data->stream_id);
5405
5406 if (sample_type & PERF_SAMPLE_CPU)
5407 perf_output_put(handle, data->cpu_entry);
5408
5409 if (sample_type & PERF_SAMPLE_PERIOD)
5410 perf_output_put(handle, data->period);
5411
5412 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5413 perf_output_read(handle, event);
5622f295
MM
5414
5415 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5416 if (data->callchain) {
5417 int size = 1;
5418
5419 if (data->callchain)
5420 size += data->callchain->nr;
5421
5422 size *= sizeof(u64);
5423
76369139 5424 __output_copy(handle, data->callchain, size);
5622f295
MM
5425 } else {
5426 u64 nr = 0;
5427 perf_output_put(handle, nr);
5428 }
5429 }
5430
5431 if (sample_type & PERF_SAMPLE_RAW) {
5432 if (data->raw) {
fa128e6a
AS
5433 u32 raw_size = data->raw->size;
5434 u32 real_size = round_up(raw_size + sizeof(u32),
5435 sizeof(u64)) - sizeof(u32);
5436 u64 zero = 0;
5437
5438 perf_output_put(handle, real_size);
5439 __output_copy(handle, data->raw->data, raw_size);
5440 if (real_size - raw_size)
5441 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5442 } else {
5443 struct {
5444 u32 size;
5445 u32 data;
5446 } raw = {
5447 .size = sizeof(u32),
5448 .data = 0,
5449 };
5450 perf_output_put(handle, raw);
5451 }
5452 }
a7ac67ea 5453
bce38cd5
SE
5454 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5455 if (data->br_stack) {
5456 size_t size;
5457
5458 size = data->br_stack->nr
5459 * sizeof(struct perf_branch_entry);
5460
5461 perf_output_put(handle, data->br_stack->nr);
5462 perf_output_copy(handle, data->br_stack->entries, size);
5463 } else {
5464 /*
5465 * we always store at least the value of nr
5466 */
5467 u64 nr = 0;
5468 perf_output_put(handle, nr);
5469 }
5470 }
4018994f
JO
5471
5472 if (sample_type & PERF_SAMPLE_REGS_USER) {
5473 u64 abi = data->regs_user.abi;
5474
5475 /*
5476 * If there are no regs to dump, notice it through
5477 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5478 */
5479 perf_output_put(handle, abi);
5480
5481 if (abi) {
5482 u64 mask = event->attr.sample_regs_user;
5483 perf_output_sample_regs(handle,
5484 data->regs_user.regs,
5485 mask);
5486 }
5487 }
c5ebcedb 5488
a5cdd40c 5489 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5490 perf_output_sample_ustack(handle,
5491 data->stack_user_size,
5492 data->regs_user.regs);
a5cdd40c 5493 }
c3feedf2
AK
5494
5495 if (sample_type & PERF_SAMPLE_WEIGHT)
5496 perf_output_put(handle, data->weight);
d6be9ad6
SE
5497
5498 if (sample_type & PERF_SAMPLE_DATA_SRC)
5499 perf_output_put(handle, data->data_src.val);
a5cdd40c 5500
fdfbbd07
AK
5501 if (sample_type & PERF_SAMPLE_TRANSACTION)
5502 perf_output_put(handle, data->txn);
5503
60e2364e
SE
5504 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5505 u64 abi = data->regs_intr.abi;
5506 /*
5507 * If there are no regs to dump, notice it through
5508 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5509 */
5510 perf_output_put(handle, abi);
5511
5512 if (abi) {
5513 u64 mask = event->attr.sample_regs_intr;
5514
5515 perf_output_sample_regs(handle,
5516 data->regs_intr.regs,
5517 mask);
5518 }
5519 }
5520
a5cdd40c
PZ
5521 if (!event->attr.watermark) {
5522 int wakeup_events = event->attr.wakeup_events;
5523
5524 if (wakeup_events) {
5525 struct ring_buffer *rb = handle->rb;
5526 int events = local_inc_return(&rb->events);
5527
5528 if (events >= wakeup_events) {
5529 local_sub(wakeup_events, &rb->events);
5530 local_inc(&rb->wakeup);
5531 }
5532 }
5533 }
5622f295
MM
5534}
5535
5536void perf_prepare_sample(struct perf_event_header *header,
5537 struct perf_sample_data *data,
cdd6c482 5538 struct perf_event *event,
5622f295 5539 struct pt_regs *regs)
7b732a75 5540{
cdd6c482 5541 u64 sample_type = event->attr.sample_type;
7b732a75 5542
cdd6c482 5543 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5544 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5545
5546 header->misc = 0;
5547 header->misc |= perf_misc_flags(regs);
6fab0192 5548
c980d109 5549 __perf_event_header__init_id(header, data, event);
6844c09d 5550
c320c7b7 5551 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5552 data->ip = perf_instruction_pointer(regs);
5553
b23f3325 5554 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5555 int size = 1;
394ee076 5556
e6dab5ff 5557 data->callchain = perf_callchain(event, regs);
5622f295
MM
5558
5559 if (data->callchain)
5560 size += data->callchain->nr;
5561
5562 header->size += size * sizeof(u64);
394ee076
PZ
5563 }
5564
3a43ce68 5565 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5566 int size = sizeof(u32);
5567
5568 if (data->raw)
5569 size += data->raw->size;
5570 else
5571 size += sizeof(u32);
5572
fa128e6a 5573 header->size += round_up(size, sizeof(u64));
7f453c24 5574 }
bce38cd5
SE
5575
5576 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5577 int size = sizeof(u64); /* nr */
5578 if (data->br_stack) {
5579 size += data->br_stack->nr
5580 * sizeof(struct perf_branch_entry);
5581 }
5582 header->size += size;
5583 }
4018994f 5584
2565711f 5585 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5586 perf_sample_regs_user(&data->regs_user, regs,
5587 &data->regs_user_copy);
2565711f 5588
4018994f
JO
5589 if (sample_type & PERF_SAMPLE_REGS_USER) {
5590 /* regs dump ABI info */
5591 int size = sizeof(u64);
5592
4018994f
JO
5593 if (data->regs_user.regs) {
5594 u64 mask = event->attr.sample_regs_user;
5595 size += hweight64(mask) * sizeof(u64);
5596 }
5597
5598 header->size += size;
5599 }
c5ebcedb
JO
5600
5601 if (sample_type & PERF_SAMPLE_STACK_USER) {
5602 /*
5603 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5604 * processed as the last one or have additional check added
5605 * in case new sample type is added, because we could eat
5606 * up the rest of the sample size.
5607 */
c5ebcedb
JO
5608 u16 stack_size = event->attr.sample_stack_user;
5609 u16 size = sizeof(u64);
5610
c5ebcedb 5611 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5612 data->regs_user.regs);
c5ebcedb
JO
5613
5614 /*
5615 * If there is something to dump, add space for the dump
5616 * itself and for the field that tells the dynamic size,
5617 * which is how many have been actually dumped.
5618 */
5619 if (stack_size)
5620 size += sizeof(u64) + stack_size;
5621
5622 data->stack_user_size = stack_size;
5623 header->size += size;
5624 }
60e2364e
SE
5625
5626 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5627 /* regs dump ABI info */
5628 int size = sizeof(u64);
5629
5630 perf_sample_regs_intr(&data->regs_intr, regs);
5631
5632 if (data->regs_intr.regs) {
5633 u64 mask = event->attr.sample_regs_intr;
5634
5635 size += hweight64(mask) * sizeof(u64);
5636 }
5637
5638 header->size += size;
5639 }
5622f295 5640}
7f453c24 5641
21509084
YZ
5642void perf_event_output(struct perf_event *event,
5643 struct perf_sample_data *data,
5644 struct pt_regs *regs)
5622f295
MM
5645{
5646 struct perf_output_handle handle;
5647 struct perf_event_header header;
689802b2 5648
927c7a9e
FW
5649 /* protect the callchain buffers */
5650 rcu_read_lock();
5651
cdd6c482 5652 perf_prepare_sample(&header, data, event, regs);
5c148194 5653
a7ac67ea 5654 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5655 goto exit;
0322cd6e 5656
cdd6c482 5657 perf_output_sample(&handle, &header, data, event);
f413cdb8 5658
8a057d84 5659 perf_output_end(&handle);
927c7a9e
FW
5660
5661exit:
5662 rcu_read_unlock();
0322cd6e
PZ
5663}
5664
38b200d6 5665/*
cdd6c482 5666 * read event_id
38b200d6
PZ
5667 */
5668
5669struct perf_read_event {
5670 struct perf_event_header header;
5671
5672 u32 pid;
5673 u32 tid;
38b200d6
PZ
5674};
5675
5676static void
cdd6c482 5677perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5678 struct task_struct *task)
5679{
5680 struct perf_output_handle handle;
c980d109 5681 struct perf_sample_data sample;
dfc65094 5682 struct perf_read_event read_event = {
38b200d6 5683 .header = {
cdd6c482 5684 .type = PERF_RECORD_READ,
38b200d6 5685 .misc = 0,
c320c7b7 5686 .size = sizeof(read_event) + event->read_size,
38b200d6 5687 },
cdd6c482
IM
5688 .pid = perf_event_pid(event, task),
5689 .tid = perf_event_tid(event, task),
38b200d6 5690 };
3dab77fb 5691 int ret;
38b200d6 5692
c980d109 5693 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5694 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5695 if (ret)
5696 return;
5697
dfc65094 5698 perf_output_put(&handle, read_event);
cdd6c482 5699 perf_output_read(&handle, event);
c980d109 5700 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5701
38b200d6
PZ
5702 perf_output_end(&handle);
5703}
5704
52d857a8
JO
5705typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5706
5707static void
5708perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5709 perf_event_aux_output_cb output,
5710 void *data)
5711{
5712 struct perf_event *event;
5713
5714 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5715 if (event->state < PERF_EVENT_STATE_INACTIVE)
5716 continue;
5717 if (!event_filter_match(event))
5718 continue;
67516844 5719 output(event, data);
52d857a8
JO
5720 }
5721}
5722
4e93ad60
JO
5723static void
5724perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5725 struct perf_event_context *task_ctx)
5726{
5727 rcu_read_lock();
5728 preempt_disable();
5729 perf_event_aux_ctx(task_ctx, output, data);
5730 preempt_enable();
5731 rcu_read_unlock();
5732}
5733
52d857a8 5734static void
67516844 5735perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5736 struct perf_event_context *task_ctx)
5737{
5738 struct perf_cpu_context *cpuctx;
5739 struct perf_event_context *ctx;
5740 struct pmu *pmu;
5741 int ctxn;
5742
4e93ad60
JO
5743 /*
5744 * If we have task_ctx != NULL we only notify
5745 * the task context itself. The task_ctx is set
5746 * only for EXIT events before releasing task
5747 * context.
5748 */
5749 if (task_ctx) {
5750 perf_event_aux_task_ctx(output, data, task_ctx);
5751 return;
5752 }
5753
52d857a8
JO
5754 rcu_read_lock();
5755 list_for_each_entry_rcu(pmu, &pmus, entry) {
5756 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5757 if (cpuctx->unique_pmu != pmu)
5758 goto next;
67516844 5759 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5760 ctxn = pmu->task_ctx_nr;
5761 if (ctxn < 0)
5762 goto next;
5763 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5764 if (ctx)
67516844 5765 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5766next:
5767 put_cpu_ptr(pmu->pmu_cpu_context);
5768 }
52d857a8
JO
5769 rcu_read_unlock();
5770}
5771
60313ebe 5772/*
9f498cc5
PZ
5773 * task tracking -- fork/exit
5774 *
13d7a241 5775 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5776 */
5777
9f498cc5 5778struct perf_task_event {
3a80b4a3 5779 struct task_struct *task;
cdd6c482 5780 struct perf_event_context *task_ctx;
60313ebe
PZ
5781
5782 struct {
5783 struct perf_event_header header;
5784
5785 u32 pid;
5786 u32 ppid;
9f498cc5
PZ
5787 u32 tid;
5788 u32 ptid;
393b2ad8 5789 u64 time;
cdd6c482 5790 } event_id;
60313ebe
PZ
5791};
5792
67516844
JO
5793static int perf_event_task_match(struct perf_event *event)
5794{
13d7a241
SE
5795 return event->attr.comm || event->attr.mmap ||
5796 event->attr.mmap2 || event->attr.mmap_data ||
5797 event->attr.task;
67516844
JO
5798}
5799
cdd6c482 5800static void perf_event_task_output(struct perf_event *event,
52d857a8 5801 void *data)
60313ebe 5802{
52d857a8 5803 struct perf_task_event *task_event = data;
60313ebe 5804 struct perf_output_handle handle;
c980d109 5805 struct perf_sample_data sample;
9f498cc5 5806 struct task_struct *task = task_event->task;
c980d109 5807 int ret, size = task_event->event_id.header.size;
8bb39f9a 5808
67516844
JO
5809 if (!perf_event_task_match(event))
5810 return;
5811
c980d109 5812 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5813
c980d109 5814 ret = perf_output_begin(&handle, event,
a7ac67ea 5815 task_event->event_id.header.size);
ef60777c 5816 if (ret)
c980d109 5817 goto out;
60313ebe 5818
cdd6c482
IM
5819 task_event->event_id.pid = perf_event_pid(event, task);
5820 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5821
cdd6c482
IM
5822 task_event->event_id.tid = perf_event_tid(event, task);
5823 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5824
34f43927
PZ
5825 task_event->event_id.time = perf_event_clock(event);
5826
cdd6c482 5827 perf_output_put(&handle, task_event->event_id);
393b2ad8 5828
c980d109
ACM
5829 perf_event__output_id_sample(event, &handle, &sample);
5830
60313ebe 5831 perf_output_end(&handle);
c980d109
ACM
5832out:
5833 task_event->event_id.header.size = size;
60313ebe
PZ
5834}
5835
cdd6c482
IM
5836static void perf_event_task(struct task_struct *task,
5837 struct perf_event_context *task_ctx,
3a80b4a3 5838 int new)
60313ebe 5839{
9f498cc5 5840 struct perf_task_event task_event;
60313ebe 5841
cdd6c482
IM
5842 if (!atomic_read(&nr_comm_events) &&
5843 !atomic_read(&nr_mmap_events) &&
5844 !atomic_read(&nr_task_events))
60313ebe
PZ
5845 return;
5846
9f498cc5 5847 task_event = (struct perf_task_event){
3a80b4a3
PZ
5848 .task = task,
5849 .task_ctx = task_ctx,
cdd6c482 5850 .event_id = {
60313ebe 5851 .header = {
cdd6c482 5852 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5853 .misc = 0,
cdd6c482 5854 .size = sizeof(task_event.event_id),
60313ebe 5855 },
573402db
PZ
5856 /* .pid */
5857 /* .ppid */
9f498cc5
PZ
5858 /* .tid */
5859 /* .ptid */
34f43927 5860 /* .time */
60313ebe
PZ
5861 },
5862 };
5863
67516844 5864 perf_event_aux(perf_event_task_output,
52d857a8
JO
5865 &task_event,
5866 task_ctx);
9f498cc5
PZ
5867}
5868
cdd6c482 5869void perf_event_fork(struct task_struct *task)
9f498cc5 5870{
cdd6c482 5871 perf_event_task(task, NULL, 1);
60313ebe
PZ
5872}
5873
8d1b2d93
PZ
5874/*
5875 * comm tracking
5876 */
5877
5878struct perf_comm_event {
22a4f650
IM
5879 struct task_struct *task;
5880 char *comm;
8d1b2d93
PZ
5881 int comm_size;
5882
5883 struct {
5884 struct perf_event_header header;
5885
5886 u32 pid;
5887 u32 tid;
cdd6c482 5888 } event_id;
8d1b2d93
PZ
5889};
5890
67516844
JO
5891static int perf_event_comm_match(struct perf_event *event)
5892{
5893 return event->attr.comm;
5894}
5895
cdd6c482 5896static void perf_event_comm_output(struct perf_event *event,
52d857a8 5897 void *data)
8d1b2d93 5898{
52d857a8 5899 struct perf_comm_event *comm_event = data;
8d1b2d93 5900 struct perf_output_handle handle;
c980d109 5901 struct perf_sample_data sample;
cdd6c482 5902 int size = comm_event->event_id.header.size;
c980d109
ACM
5903 int ret;
5904
67516844
JO
5905 if (!perf_event_comm_match(event))
5906 return;
5907
c980d109
ACM
5908 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5909 ret = perf_output_begin(&handle, event,
a7ac67ea 5910 comm_event->event_id.header.size);
8d1b2d93
PZ
5911
5912 if (ret)
c980d109 5913 goto out;
8d1b2d93 5914
cdd6c482
IM
5915 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5916 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5917
cdd6c482 5918 perf_output_put(&handle, comm_event->event_id);
76369139 5919 __output_copy(&handle, comm_event->comm,
8d1b2d93 5920 comm_event->comm_size);
c980d109
ACM
5921
5922 perf_event__output_id_sample(event, &handle, &sample);
5923
8d1b2d93 5924 perf_output_end(&handle);
c980d109
ACM
5925out:
5926 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5927}
5928
cdd6c482 5929static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5930{
413ee3b4 5931 char comm[TASK_COMM_LEN];
8d1b2d93 5932 unsigned int size;
8d1b2d93 5933
413ee3b4 5934 memset(comm, 0, sizeof(comm));
96b02d78 5935 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5936 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5937
5938 comm_event->comm = comm;
5939 comm_event->comm_size = size;
5940
cdd6c482 5941 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5942
67516844 5943 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5944 comm_event,
5945 NULL);
8d1b2d93
PZ
5946}
5947
82b89778 5948void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5949{
9ee318a7
PZ
5950 struct perf_comm_event comm_event;
5951
cdd6c482 5952 if (!atomic_read(&nr_comm_events))
9ee318a7 5953 return;
a63eaf34 5954
9ee318a7 5955 comm_event = (struct perf_comm_event){
8d1b2d93 5956 .task = task,
573402db
PZ
5957 /* .comm */
5958 /* .comm_size */
cdd6c482 5959 .event_id = {
573402db 5960 .header = {
cdd6c482 5961 .type = PERF_RECORD_COMM,
82b89778 5962 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5963 /* .size */
5964 },
5965 /* .pid */
5966 /* .tid */
8d1b2d93
PZ
5967 },
5968 };
5969
cdd6c482 5970 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5971}
5972
0a4a9391
PZ
5973/*
5974 * mmap tracking
5975 */
5976
5977struct perf_mmap_event {
089dd79d
PZ
5978 struct vm_area_struct *vma;
5979
5980 const char *file_name;
5981 int file_size;
13d7a241
SE
5982 int maj, min;
5983 u64 ino;
5984 u64 ino_generation;
f972eb63 5985 u32 prot, flags;
0a4a9391
PZ
5986
5987 struct {
5988 struct perf_event_header header;
5989
5990 u32 pid;
5991 u32 tid;
5992 u64 start;
5993 u64 len;
5994 u64 pgoff;
cdd6c482 5995 } event_id;
0a4a9391
PZ
5996};
5997
67516844
JO
5998static int perf_event_mmap_match(struct perf_event *event,
5999 void *data)
6000{
6001 struct perf_mmap_event *mmap_event = data;
6002 struct vm_area_struct *vma = mmap_event->vma;
6003 int executable = vma->vm_flags & VM_EXEC;
6004
6005 return (!executable && event->attr.mmap_data) ||
13d7a241 6006 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6007}
6008
cdd6c482 6009static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6010 void *data)
0a4a9391 6011{
52d857a8 6012 struct perf_mmap_event *mmap_event = data;
0a4a9391 6013 struct perf_output_handle handle;
c980d109 6014 struct perf_sample_data sample;
cdd6c482 6015 int size = mmap_event->event_id.header.size;
c980d109 6016 int ret;
0a4a9391 6017
67516844
JO
6018 if (!perf_event_mmap_match(event, data))
6019 return;
6020
13d7a241
SE
6021 if (event->attr.mmap2) {
6022 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6023 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6024 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6025 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6026 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6027 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6028 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6029 }
6030
c980d109
ACM
6031 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6032 ret = perf_output_begin(&handle, event,
a7ac67ea 6033 mmap_event->event_id.header.size);
0a4a9391 6034 if (ret)
c980d109 6035 goto out;
0a4a9391 6036
cdd6c482
IM
6037 mmap_event->event_id.pid = perf_event_pid(event, current);
6038 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6039
cdd6c482 6040 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6041
6042 if (event->attr.mmap2) {
6043 perf_output_put(&handle, mmap_event->maj);
6044 perf_output_put(&handle, mmap_event->min);
6045 perf_output_put(&handle, mmap_event->ino);
6046 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6047 perf_output_put(&handle, mmap_event->prot);
6048 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6049 }
6050
76369139 6051 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6052 mmap_event->file_size);
c980d109
ACM
6053
6054 perf_event__output_id_sample(event, &handle, &sample);
6055
78d613eb 6056 perf_output_end(&handle);
c980d109
ACM
6057out:
6058 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6059}
6060
cdd6c482 6061static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6062{
089dd79d
PZ
6063 struct vm_area_struct *vma = mmap_event->vma;
6064 struct file *file = vma->vm_file;
13d7a241
SE
6065 int maj = 0, min = 0;
6066 u64 ino = 0, gen = 0;
f972eb63 6067 u32 prot = 0, flags = 0;
0a4a9391
PZ
6068 unsigned int size;
6069 char tmp[16];
6070 char *buf = NULL;
2c42cfbf 6071 char *name;
413ee3b4 6072
0a4a9391 6073 if (file) {
13d7a241
SE
6074 struct inode *inode;
6075 dev_t dev;
3ea2f2b9 6076
2c42cfbf 6077 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6078 if (!buf) {
c7e548b4
ON
6079 name = "//enomem";
6080 goto cpy_name;
0a4a9391 6081 }
413ee3b4 6082 /*
3ea2f2b9 6083 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6084 * need to add enough zero bytes after the string to handle
6085 * the 64bit alignment we do later.
6086 */
9bf39ab2 6087 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6088 if (IS_ERR(name)) {
c7e548b4
ON
6089 name = "//toolong";
6090 goto cpy_name;
0a4a9391 6091 }
13d7a241
SE
6092 inode = file_inode(vma->vm_file);
6093 dev = inode->i_sb->s_dev;
6094 ino = inode->i_ino;
6095 gen = inode->i_generation;
6096 maj = MAJOR(dev);
6097 min = MINOR(dev);
f972eb63
PZ
6098
6099 if (vma->vm_flags & VM_READ)
6100 prot |= PROT_READ;
6101 if (vma->vm_flags & VM_WRITE)
6102 prot |= PROT_WRITE;
6103 if (vma->vm_flags & VM_EXEC)
6104 prot |= PROT_EXEC;
6105
6106 if (vma->vm_flags & VM_MAYSHARE)
6107 flags = MAP_SHARED;
6108 else
6109 flags = MAP_PRIVATE;
6110
6111 if (vma->vm_flags & VM_DENYWRITE)
6112 flags |= MAP_DENYWRITE;
6113 if (vma->vm_flags & VM_MAYEXEC)
6114 flags |= MAP_EXECUTABLE;
6115 if (vma->vm_flags & VM_LOCKED)
6116 flags |= MAP_LOCKED;
6117 if (vma->vm_flags & VM_HUGETLB)
6118 flags |= MAP_HUGETLB;
6119
c7e548b4 6120 goto got_name;
0a4a9391 6121 } else {
fbe26abe
JO
6122 if (vma->vm_ops && vma->vm_ops->name) {
6123 name = (char *) vma->vm_ops->name(vma);
6124 if (name)
6125 goto cpy_name;
6126 }
6127
2c42cfbf 6128 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6129 if (name)
6130 goto cpy_name;
089dd79d 6131
32c5fb7e 6132 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6133 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6134 name = "[heap]";
6135 goto cpy_name;
32c5fb7e
ON
6136 }
6137 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6138 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6139 name = "[stack]";
6140 goto cpy_name;
089dd79d
PZ
6141 }
6142
c7e548b4
ON
6143 name = "//anon";
6144 goto cpy_name;
0a4a9391
PZ
6145 }
6146
c7e548b4
ON
6147cpy_name:
6148 strlcpy(tmp, name, sizeof(tmp));
6149 name = tmp;
0a4a9391 6150got_name:
2c42cfbf
PZ
6151 /*
6152 * Since our buffer works in 8 byte units we need to align our string
6153 * size to a multiple of 8. However, we must guarantee the tail end is
6154 * zero'd out to avoid leaking random bits to userspace.
6155 */
6156 size = strlen(name)+1;
6157 while (!IS_ALIGNED(size, sizeof(u64)))
6158 name[size++] = '\0';
0a4a9391
PZ
6159
6160 mmap_event->file_name = name;
6161 mmap_event->file_size = size;
13d7a241
SE
6162 mmap_event->maj = maj;
6163 mmap_event->min = min;
6164 mmap_event->ino = ino;
6165 mmap_event->ino_generation = gen;
f972eb63
PZ
6166 mmap_event->prot = prot;
6167 mmap_event->flags = flags;
0a4a9391 6168
2fe85427
SE
6169 if (!(vma->vm_flags & VM_EXEC))
6170 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6171
cdd6c482 6172 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6173
67516844 6174 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6175 mmap_event,
6176 NULL);
665c2142 6177
0a4a9391
PZ
6178 kfree(buf);
6179}
6180
3af9e859 6181void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6182{
9ee318a7
PZ
6183 struct perf_mmap_event mmap_event;
6184
cdd6c482 6185 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6186 return;
6187
6188 mmap_event = (struct perf_mmap_event){
089dd79d 6189 .vma = vma,
573402db
PZ
6190 /* .file_name */
6191 /* .file_size */
cdd6c482 6192 .event_id = {
573402db 6193 .header = {
cdd6c482 6194 .type = PERF_RECORD_MMAP,
39447b38 6195 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6196 /* .size */
6197 },
6198 /* .pid */
6199 /* .tid */
089dd79d
PZ
6200 .start = vma->vm_start,
6201 .len = vma->vm_end - vma->vm_start,
3a0304e9 6202 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6203 },
13d7a241
SE
6204 /* .maj (attr_mmap2 only) */
6205 /* .min (attr_mmap2 only) */
6206 /* .ino (attr_mmap2 only) */
6207 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6208 /* .prot (attr_mmap2 only) */
6209 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6210 };
6211
cdd6c482 6212 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6213}
6214
68db7e98
AS
6215void perf_event_aux_event(struct perf_event *event, unsigned long head,
6216 unsigned long size, u64 flags)
6217{
6218 struct perf_output_handle handle;
6219 struct perf_sample_data sample;
6220 struct perf_aux_event {
6221 struct perf_event_header header;
6222 u64 offset;
6223 u64 size;
6224 u64 flags;
6225 } rec = {
6226 .header = {
6227 .type = PERF_RECORD_AUX,
6228 .misc = 0,
6229 .size = sizeof(rec),
6230 },
6231 .offset = head,
6232 .size = size,
6233 .flags = flags,
6234 };
6235 int ret;
6236
6237 perf_event_header__init_id(&rec.header, &sample, event);
6238 ret = perf_output_begin(&handle, event, rec.header.size);
6239
6240 if (ret)
6241 return;
6242
6243 perf_output_put(&handle, rec);
6244 perf_event__output_id_sample(event, &handle, &sample);
6245
6246 perf_output_end(&handle);
6247}
6248
f38b0dbb
KL
6249/*
6250 * Lost/dropped samples logging
6251 */
6252void perf_log_lost_samples(struct perf_event *event, u64 lost)
6253{
6254 struct perf_output_handle handle;
6255 struct perf_sample_data sample;
6256 int ret;
6257
6258 struct {
6259 struct perf_event_header header;
6260 u64 lost;
6261 } lost_samples_event = {
6262 .header = {
6263 .type = PERF_RECORD_LOST_SAMPLES,
6264 .misc = 0,
6265 .size = sizeof(lost_samples_event),
6266 },
6267 .lost = lost,
6268 };
6269
6270 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6271
6272 ret = perf_output_begin(&handle, event,
6273 lost_samples_event.header.size);
6274 if (ret)
6275 return;
6276
6277 perf_output_put(&handle, lost_samples_event);
6278 perf_event__output_id_sample(event, &handle, &sample);
6279 perf_output_end(&handle);
6280}
6281
45ac1403
AH
6282/*
6283 * context_switch tracking
6284 */
6285
6286struct perf_switch_event {
6287 struct task_struct *task;
6288 struct task_struct *next_prev;
6289
6290 struct {
6291 struct perf_event_header header;
6292 u32 next_prev_pid;
6293 u32 next_prev_tid;
6294 } event_id;
6295};
6296
6297static int perf_event_switch_match(struct perf_event *event)
6298{
6299 return event->attr.context_switch;
6300}
6301
6302static void perf_event_switch_output(struct perf_event *event, void *data)
6303{
6304 struct perf_switch_event *se = data;
6305 struct perf_output_handle handle;
6306 struct perf_sample_data sample;
6307 int ret;
6308
6309 if (!perf_event_switch_match(event))
6310 return;
6311
6312 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6313 if (event->ctx->task) {
6314 se->event_id.header.type = PERF_RECORD_SWITCH;
6315 se->event_id.header.size = sizeof(se->event_id.header);
6316 } else {
6317 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6318 se->event_id.header.size = sizeof(se->event_id);
6319 se->event_id.next_prev_pid =
6320 perf_event_pid(event, se->next_prev);
6321 se->event_id.next_prev_tid =
6322 perf_event_tid(event, se->next_prev);
6323 }
6324
6325 perf_event_header__init_id(&se->event_id.header, &sample, event);
6326
6327 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6328 if (ret)
6329 return;
6330
6331 if (event->ctx->task)
6332 perf_output_put(&handle, se->event_id.header);
6333 else
6334 perf_output_put(&handle, se->event_id);
6335
6336 perf_event__output_id_sample(event, &handle, &sample);
6337
6338 perf_output_end(&handle);
6339}
6340
6341static void perf_event_switch(struct task_struct *task,
6342 struct task_struct *next_prev, bool sched_in)
6343{
6344 struct perf_switch_event switch_event;
6345
6346 /* N.B. caller checks nr_switch_events != 0 */
6347
6348 switch_event = (struct perf_switch_event){
6349 .task = task,
6350 .next_prev = next_prev,
6351 .event_id = {
6352 .header = {
6353 /* .type */
6354 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6355 /* .size */
6356 },
6357 /* .next_prev_pid */
6358 /* .next_prev_tid */
6359 },
6360 };
6361
6362 perf_event_aux(perf_event_switch_output,
6363 &switch_event,
6364 NULL);
6365}
6366
a78ac325
PZ
6367/*
6368 * IRQ throttle logging
6369 */
6370
cdd6c482 6371static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6372{
6373 struct perf_output_handle handle;
c980d109 6374 struct perf_sample_data sample;
a78ac325
PZ
6375 int ret;
6376
6377 struct {
6378 struct perf_event_header header;
6379 u64 time;
cca3f454 6380 u64 id;
7f453c24 6381 u64 stream_id;
a78ac325
PZ
6382 } throttle_event = {
6383 .header = {
cdd6c482 6384 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6385 .misc = 0,
6386 .size = sizeof(throttle_event),
6387 },
34f43927 6388 .time = perf_event_clock(event),
cdd6c482
IM
6389 .id = primary_event_id(event),
6390 .stream_id = event->id,
a78ac325
PZ
6391 };
6392
966ee4d6 6393 if (enable)
cdd6c482 6394 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6395
c980d109
ACM
6396 perf_event_header__init_id(&throttle_event.header, &sample, event);
6397
6398 ret = perf_output_begin(&handle, event,
a7ac67ea 6399 throttle_event.header.size);
a78ac325
PZ
6400 if (ret)
6401 return;
6402
6403 perf_output_put(&handle, throttle_event);
c980d109 6404 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6405 perf_output_end(&handle);
6406}
6407
ec0d7729
AS
6408static void perf_log_itrace_start(struct perf_event *event)
6409{
6410 struct perf_output_handle handle;
6411 struct perf_sample_data sample;
6412 struct perf_aux_event {
6413 struct perf_event_header header;
6414 u32 pid;
6415 u32 tid;
6416 } rec;
6417 int ret;
6418
6419 if (event->parent)
6420 event = event->parent;
6421
6422 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6423 event->hw.itrace_started)
6424 return;
6425
ec0d7729
AS
6426 rec.header.type = PERF_RECORD_ITRACE_START;
6427 rec.header.misc = 0;
6428 rec.header.size = sizeof(rec);
6429 rec.pid = perf_event_pid(event, current);
6430 rec.tid = perf_event_tid(event, current);
6431
6432 perf_event_header__init_id(&rec.header, &sample, event);
6433 ret = perf_output_begin(&handle, event, rec.header.size);
6434
6435 if (ret)
6436 return;
6437
6438 perf_output_put(&handle, rec);
6439 perf_event__output_id_sample(event, &handle, &sample);
6440
6441 perf_output_end(&handle);
6442}
6443
f6c7d5fe 6444/*
cdd6c482 6445 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6446 */
6447
a8b0ca17 6448static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6449 int throttle, struct perf_sample_data *data,
6450 struct pt_regs *regs)
f6c7d5fe 6451{
cdd6c482
IM
6452 int events = atomic_read(&event->event_limit);
6453 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6454 u64 seq;
79f14641
PZ
6455 int ret = 0;
6456
96398826
PZ
6457 /*
6458 * Non-sampling counters might still use the PMI to fold short
6459 * hardware counters, ignore those.
6460 */
6461 if (unlikely(!is_sampling_event(event)))
6462 return 0;
6463
e050e3f0
SE
6464 seq = __this_cpu_read(perf_throttled_seq);
6465 if (seq != hwc->interrupts_seq) {
6466 hwc->interrupts_seq = seq;
6467 hwc->interrupts = 1;
6468 } else {
6469 hwc->interrupts++;
6470 if (unlikely(throttle
6471 && hwc->interrupts >= max_samples_per_tick)) {
6472 __this_cpu_inc(perf_throttled_count);
555e0c1e 6473 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
6474 hwc->interrupts = MAX_INTERRUPTS;
6475 perf_log_throttle(event, 0);
a78ac325
PZ
6476 ret = 1;
6477 }
e050e3f0 6478 }
60db5e09 6479
cdd6c482 6480 if (event->attr.freq) {
def0a9b2 6481 u64 now = perf_clock();
abd50713 6482 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6483
abd50713 6484 hwc->freq_time_stamp = now;
bd2b5b12 6485
abd50713 6486 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6487 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6488 }
6489
2023b359
PZ
6490 /*
6491 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6492 * events
2023b359
PZ
6493 */
6494
cdd6c482
IM
6495 event->pending_kill = POLL_IN;
6496 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6497 ret = 1;
cdd6c482 6498 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6499 event->pending_disable = 1;
6500 irq_work_queue(&event->pending);
79f14641
PZ
6501 }
6502
453f19ee 6503 if (event->overflow_handler)
a8b0ca17 6504 event->overflow_handler(event, data, regs);
453f19ee 6505 else
a8b0ca17 6506 perf_event_output(event, data, regs);
453f19ee 6507
fed66e2c 6508 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6509 event->pending_wakeup = 1;
6510 irq_work_queue(&event->pending);
f506b3dc
PZ
6511 }
6512
79f14641 6513 return ret;
f6c7d5fe
PZ
6514}
6515
a8b0ca17 6516int perf_event_overflow(struct perf_event *event,
5622f295
MM
6517 struct perf_sample_data *data,
6518 struct pt_regs *regs)
850bc73f 6519{
a8b0ca17 6520 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6521}
6522
15dbf27c 6523/*
cdd6c482 6524 * Generic software event infrastructure
15dbf27c
PZ
6525 */
6526
b28ab83c
PZ
6527struct swevent_htable {
6528 struct swevent_hlist *swevent_hlist;
6529 struct mutex hlist_mutex;
6530 int hlist_refcount;
6531
6532 /* Recursion avoidance in each contexts */
6533 int recursion[PERF_NR_CONTEXTS];
6534};
6535
6536static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6537
7b4b6658 6538/*
cdd6c482
IM
6539 * We directly increment event->count and keep a second value in
6540 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6541 * is kept in the range [-sample_period, 0] so that we can use the
6542 * sign as trigger.
6543 */
6544
ab573844 6545u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6546{
cdd6c482 6547 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6548 u64 period = hwc->last_period;
6549 u64 nr, offset;
6550 s64 old, val;
6551
6552 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6553
6554again:
e7850595 6555 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6556 if (val < 0)
6557 return 0;
15dbf27c 6558
7b4b6658
PZ
6559 nr = div64_u64(period + val, period);
6560 offset = nr * period;
6561 val -= offset;
e7850595 6562 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6563 goto again;
15dbf27c 6564
7b4b6658 6565 return nr;
15dbf27c
PZ
6566}
6567
0cff784a 6568static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6569 struct perf_sample_data *data,
5622f295 6570 struct pt_regs *regs)
15dbf27c 6571{
cdd6c482 6572 struct hw_perf_event *hwc = &event->hw;
850bc73f 6573 int throttle = 0;
15dbf27c 6574
0cff784a
PZ
6575 if (!overflow)
6576 overflow = perf_swevent_set_period(event);
15dbf27c 6577
7b4b6658
PZ
6578 if (hwc->interrupts == MAX_INTERRUPTS)
6579 return;
15dbf27c 6580
7b4b6658 6581 for (; overflow; overflow--) {
a8b0ca17 6582 if (__perf_event_overflow(event, throttle,
5622f295 6583 data, regs)) {
7b4b6658
PZ
6584 /*
6585 * We inhibit the overflow from happening when
6586 * hwc->interrupts == MAX_INTERRUPTS.
6587 */
6588 break;
6589 }
cf450a73 6590 throttle = 1;
7b4b6658 6591 }
15dbf27c
PZ
6592}
6593
a4eaf7f1 6594static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6595 struct perf_sample_data *data,
5622f295 6596 struct pt_regs *regs)
7b4b6658 6597{
cdd6c482 6598 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6599
e7850595 6600 local64_add(nr, &event->count);
d6d020e9 6601
0cff784a
PZ
6602 if (!regs)
6603 return;
6604
6c7e550f 6605 if (!is_sampling_event(event))
7b4b6658 6606 return;
d6d020e9 6607
5d81e5cf
AV
6608 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6609 data->period = nr;
6610 return perf_swevent_overflow(event, 1, data, regs);
6611 } else
6612 data->period = event->hw.last_period;
6613
0cff784a 6614 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6615 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6616
e7850595 6617 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6618 return;
df1a132b 6619
a8b0ca17 6620 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6621}
6622
f5ffe02e
FW
6623static int perf_exclude_event(struct perf_event *event,
6624 struct pt_regs *regs)
6625{
a4eaf7f1 6626 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6627 return 1;
a4eaf7f1 6628
f5ffe02e
FW
6629 if (regs) {
6630 if (event->attr.exclude_user && user_mode(regs))
6631 return 1;
6632
6633 if (event->attr.exclude_kernel && !user_mode(regs))
6634 return 1;
6635 }
6636
6637 return 0;
6638}
6639
cdd6c482 6640static int perf_swevent_match(struct perf_event *event,
1c432d89 6641 enum perf_type_id type,
6fb2915d
LZ
6642 u32 event_id,
6643 struct perf_sample_data *data,
6644 struct pt_regs *regs)
15dbf27c 6645{
cdd6c482 6646 if (event->attr.type != type)
a21ca2ca 6647 return 0;
f5ffe02e 6648
cdd6c482 6649 if (event->attr.config != event_id)
15dbf27c
PZ
6650 return 0;
6651
f5ffe02e
FW
6652 if (perf_exclude_event(event, regs))
6653 return 0;
15dbf27c
PZ
6654
6655 return 1;
6656}
6657
76e1d904
FW
6658static inline u64 swevent_hash(u64 type, u32 event_id)
6659{
6660 u64 val = event_id | (type << 32);
6661
6662 return hash_64(val, SWEVENT_HLIST_BITS);
6663}
6664
49f135ed
FW
6665static inline struct hlist_head *
6666__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6667{
49f135ed
FW
6668 u64 hash = swevent_hash(type, event_id);
6669
6670 return &hlist->heads[hash];
6671}
76e1d904 6672
49f135ed
FW
6673/* For the read side: events when they trigger */
6674static inline struct hlist_head *
b28ab83c 6675find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6676{
6677 struct swevent_hlist *hlist;
76e1d904 6678
b28ab83c 6679 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6680 if (!hlist)
6681 return NULL;
6682
49f135ed
FW
6683 return __find_swevent_head(hlist, type, event_id);
6684}
6685
6686/* For the event head insertion and removal in the hlist */
6687static inline struct hlist_head *
b28ab83c 6688find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6689{
6690 struct swevent_hlist *hlist;
6691 u32 event_id = event->attr.config;
6692 u64 type = event->attr.type;
6693
6694 /*
6695 * Event scheduling is always serialized against hlist allocation
6696 * and release. Which makes the protected version suitable here.
6697 * The context lock guarantees that.
6698 */
b28ab83c 6699 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6700 lockdep_is_held(&event->ctx->lock));
6701 if (!hlist)
6702 return NULL;
6703
6704 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6705}
6706
6707static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6708 u64 nr,
76e1d904
FW
6709 struct perf_sample_data *data,
6710 struct pt_regs *regs)
15dbf27c 6711{
4a32fea9 6712 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6713 struct perf_event *event;
76e1d904 6714 struct hlist_head *head;
15dbf27c 6715
76e1d904 6716 rcu_read_lock();
b28ab83c 6717 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6718 if (!head)
6719 goto end;
6720
b67bfe0d 6721 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6722 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6723 perf_swevent_event(event, nr, data, regs);
15dbf27c 6724 }
76e1d904
FW
6725end:
6726 rcu_read_unlock();
15dbf27c
PZ
6727}
6728
86038c5e
PZI
6729DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6730
4ed7c92d 6731int perf_swevent_get_recursion_context(void)
96f6d444 6732{
4a32fea9 6733 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6734
b28ab83c 6735 return get_recursion_context(swhash->recursion);
96f6d444 6736}
645e8cc0 6737EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6738
fa9f90be 6739inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6740{
4a32fea9 6741 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6742
b28ab83c 6743 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6744}
15dbf27c 6745
86038c5e 6746void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6747{
a4234bfc 6748 struct perf_sample_data data;
4ed7c92d 6749
86038c5e 6750 if (WARN_ON_ONCE(!regs))
4ed7c92d 6751 return;
a4234bfc 6752
fd0d000b 6753 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6754 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6755}
6756
6757void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6758{
6759 int rctx;
6760
6761 preempt_disable_notrace();
6762 rctx = perf_swevent_get_recursion_context();
6763 if (unlikely(rctx < 0))
6764 goto fail;
6765
6766 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6767
6768 perf_swevent_put_recursion_context(rctx);
86038c5e 6769fail:
1c024eca 6770 preempt_enable_notrace();
b8e83514
PZ
6771}
6772
cdd6c482 6773static void perf_swevent_read(struct perf_event *event)
15dbf27c 6774{
15dbf27c
PZ
6775}
6776
a4eaf7f1 6777static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6778{
4a32fea9 6779 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6780 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6781 struct hlist_head *head;
6782
6c7e550f 6783 if (is_sampling_event(event)) {
7b4b6658 6784 hwc->last_period = hwc->sample_period;
cdd6c482 6785 perf_swevent_set_period(event);
7b4b6658 6786 }
76e1d904 6787
a4eaf7f1
PZ
6788 hwc->state = !(flags & PERF_EF_START);
6789
b28ab83c 6790 head = find_swevent_head(swhash, event);
12ca6ad2 6791 if (WARN_ON_ONCE(!head))
76e1d904
FW
6792 return -EINVAL;
6793
6794 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6795 perf_event_update_userpage(event);
76e1d904 6796
15dbf27c
PZ
6797 return 0;
6798}
6799
a4eaf7f1 6800static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6801{
76e1d904 6802 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6803}
6804
a4eaf7f1 6805static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6806{
a4eaf7f1 6807 event->hw.state = 0;
d6d020e9 6808}
aa9c4c0f 6809
a4eaf7f1 6810static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6811{
a4eaf7f1 6812 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6813}
6814
49f135ed
FW
6815/* Deref the hlist from the update side */
6816static inline struct swevent_hlist *
b28ab83c 6817swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6818{
b28ab83c
PZ
6819 return rcu_dereference_protected(swhash->swevent_hlist,
6820 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6821}
6822
b28ab83c 6823static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6824{
b28ab83c 6825 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6826
49f135ed 6827 if (!hlist)
76e1d904
FW
6828 return;
6829
70691d4a 6830 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6831 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6832}
6833
3b364d7b 6834static void swevent_hlist_put_cpu(int cpu)
76e1d904 6835{
b28ab83c 6836 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6837
b28ab83c 6838 mutex_lock(&swhash->hlist_mutex);
76e1d904 6839
b28ab83c
PZ
6840 if (!--swhash->hlist_refcount)
6841 swevent_hlist_release(swhash);
76e1d904 6842
b28ab83c 6843 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6844}
6845
3b364d7b 6846static void swevent_hlist_put(void)
76e1d904
FW
6847{
6848 int cpu;
6849
76e1d904 6850 for_each_possible_cpu(cpu)
3b364d7b 6851 swevent_hlist_put_cpu(cpu);
76e1d904
FW
6852}
6853
3b364d7b 6854static int swevent_hlist_get_cpu(int cpu)
76e1d904 6855{
b28ab83c 6856 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6857 int err = 0;
6858
b28ab83c 6859 mutex_lock(&swhash->hlist_mutex);
b28ab83c 6860 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6861 struct swevent_hlist *hlist;
6862
6863 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6864 if (!hlist) {
6865 err = -ENOMEM;
6866 goto exit;
6867 }
b28ab83c 6868 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6869 }
b28ab83c 6870 swhash->hlist_refcount++;
9ed6060d 6871exit:
b28ab83c 6872 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6873
6874 return err;
6875}
6876
3b364d7b 6877static int swevent_hlist_get(void)
76e1d904 6878{
3b364d7b 6879 int err, cpu, failed_cpu;
76e1d904 6880
76e1d904
FW
6881 get_online_cpus();
6882 for_each_possible_cpu(cpu) {
3b364d7b 6883 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
6884 if (err) {
6885 failed_cpu = cpu;
6886 goto fail;
6887 }
6888 }
6889 put_online_cpus();
6890
6891 return 0;
9ed6060d 6892fail:
76e1d904
FW
6893 for_each_possible_cpu(cpu) {
6894 if (cpu == failed_cpu)
6895 break;
3b364d7b 6896 swevent_hlist_put_cpu(cpu);
76e1d904
FW
6897 }
6898
6899 put_online_cpus();
6900 return err;
6901}
6902
c5905afb 6903struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6904
b0a873eb
PZ
6905static void sw_perf_event_destroy(struct perf_event *event)
6906{
6907 u64 event_id = event->attr.config;
95476b64 6908
b0a873eb
PZ
6909 WARN_ON(event->parent);
6910
c5905afb 6911 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 6912 swevent_hlist_put();
b0a873eb
PZ
6913}
6914
6915static int perf_swevent_init(struct perf_event *event)
6916{
8176cced 6917 u64 event_id = event->attr.config;
b0a873eb
PZ
6918
6919 if (event->attr.type != PERF_TYPE_SOFTWARE)
6920 return -ENOENT;
6921
2481c5fa
SE
6922 /*
6923 * no branch sampling for software events
6924 */
6925 if (has_branch_stack(event))
6926 return -EOPNOTSUPP;
6927
b0a873eb
PZ
6928 switch (event_id) {
6929 case PERF_COUNT_SW_CPU_CLOCK:
6930 case PERF_COUNT_SW_TASK_CLOCK:
6931 return -ENOENT;
6932
6933 default:
6934 break;
6935 }
6936
ce677831 6937 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6938 return -ENOENT;
6939
6940 if (!event->parent) {
6941 int err;
6942
3b364d7b 6943 err = swevent_hlist_get();
b0a873eb
PZ
6944 if (err)
6945 return err;
6946
c5905afb 6947 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6948 event->destroy = sw_perf_event_destroy;
6949 }
6950
6951 return 0;
6952}
6953
6954static struct pmu perf_swevent = {
89a1e187 6955 .task_ctx_nr = perf_sw_context,
95476b64 6956
34f43927
PZ
6957 .capabilities = PERF_PMU_CAP_NO_NMI,
6958
b0a873eb 6959 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6960 .add = perf_swevent_add,
6961 .del = perf_swevent_del,
6962 .start = perf_swevent_start,
6963 .stop = perf_swevent_stop,
1c024eca 6964 .read = perf_swevent_read,
1c024eca
PZ
6965};
6966
b0a873eb
PZ
6967#ifdef CONFIG_EVENT_TRACING
6968
1c024eca
PZ
6969static int perf_tp_filter_match(struct perf_event *event,
6970 struct perf_sample_data *data)
6971{
6972 void *record = data->raw->data;
6973
b71b437e
PZ
6974 /* only top level events have filters set */
6975 if (event->parent)
6976 event = event->parent;
6977
1c024eca
PZ
6978 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6979 return 1;
6980 return 0;
6981}
6982
6983static int perf_tp_event_match(struct perf_event *event,
6984 struct perf_sample_data *data,
6985 struct pt_regs *regs)
6986{
a0f7d0f7
FW
6987 if (event->hw.state & PERF_HES_STOPPED)
6988 return 0;
580d607c
PZ
6989 /*
6990 * All tracepoints are from kernel-space.
6991 */
6992 if (event->attr.exclude_kernel)
1c024eca
PZ
6993 return 0;
6994
6995 if (!perf_tp_filter_match(event, data))
6996 return 0;
6997
6998 return 1;
6999}
7000
7001void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
7002 struct pt_regs *regs, struct hlist_head *head, int rctx,
7003 struct task_struct *task)
95476b64
FW
7004{
7005 struct perf_sample_data data;
1c024eca 7006 struct perf_event *event;
1c024eca 7007
95476b64
FW
7008 struct perf_raw_record raw = {
7009 .size = entry_size,
7010 .data = record,
7011 };
7012
fd0d000b 7013 perf_sample_data_init(&data, addr, 0);
95476b64
FW
7014 data.raw = &raw;
7015
b67bfe0d 7016 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7017 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7018 perf_swevent_event(event, count, &data, regs);
4f41c013 7019 }
ecc55f84 7020
e6dab5ff
AV
7021 /*
7022 * If we got specified a target task, also iterate its context and
7023 * deliver this event there too.
7024 */
7025 if (task && task != current) {
7026 struct perf_event_context *ctx;
7027 struct trace_entry *entry = record;
7028
7029 rcu_read_lock();
7030 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7031 if (!ctx)
7032 goto unlock;
7033
7034 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7035 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7036 continue;
7037 if (event->attr.config != entry->type)
7038 continue;
7039 if (perf_tp_event_match(event, &data, regs))
7040 perf_swevent_event(event, count, &data, regs);
7041 }
7042unlock:
7043 rcu_read_unlock();
7044 }
7045
ecc55f84 7046 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7047}
7048EXPORT_SYMBOL_GPL(perf_tp_event);
7049
cdd6c482 7050static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7051{
1c024eca 7052 perf_trace_destroy(event);
e077df4f
PZ
7053}
7054
b0a873eb 7055static int perf_tp_event_init(struct perf_event *event)
e077df4f 7056{
76e1d904
FW
7057 int err;
7058
b0a873eb
PZ
7059 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7060 return -ENOENT;
7061
2481c5fa
SE
7062 /*
7063 * no branch sampling for tracepoint events
7064 */
7065 if (has_branch_stack(event))
7066 return -EOPNOTSUPP;
7067
1c024eca
PZ
7068 err = perf_trace_init(event);
7069 if (err)
b0a873eb 7070 return err;
e077df4f 7071
cdd6c482 7072 event->destroy = tp_perf_event_destroy;
e077df4f 7073
b0a873eb
PZ
7074 return 0;
7075}
7076
7077static struct pmu perf_tracepoint = {
89a1e187
PZ
7078 .task_ctx_nr = perf_sw_context,
7079
b0a873eb 7080 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7081 .add = perf_trace_add,
7082 .del = perf_trace_del,
7083 .start = perf_swevent_start,
7084 .stop = perf_swevent_stop,
b0a873eb 7085 .read = perf_swevent_read,
b0a873eb
PZ
7086};
7087
7088static inline void perf_tp_register(void)
7089{
2e80a82a 7090 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7091}
6fb2915d
LZ
7092
7093static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7094{
7095 char *filter_str;
7096 int ret;
7097
7098 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7099 return -EINVAL;
7100
7101 filter_str = strndup_user(arg, PAGE_SIZE);
7102 if (IS_ERR(filter_str))
7103 return PTR_ERR(filter_str);
7104
7105 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7106
7107 kfree(filter_str);
7108 return ret;
7109}
7110
7111static void perf_event_free_filter(struct perf_event *event)
7112{
7113 ftrace_profile_free_filter(event);
7114}
7115
2541517c
AS
7116static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7117{
7118 struct bpf_prog *prog;
7119
7120 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7121 return -EINVAL;
7122
7123 if (event->tp_event->prog)
7124 return -EEXIST;
7125
04a22fae
WN
7126 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7127 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7128 return -EINVAL;
7129
7130 prog = bpf_prog_get(prog_fd);
7131 if (IS_ERR(prog))
7132 return PTR_ERR(prog);
7133
6c373ca8 7134 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7135 /* valid fd, but invalid bpf program type */
7136 bpf_prog_put(prog);
7137 return -EINVAL;
7138 }
7139
7140 event->tp_event->prog = prog;
7141
7142 return 0;
7143}
7144
7145static void perf_event_free_bpf_prog(struct perf_event *event)
7146{
7147 struct bpf_prog *prog;
7148
7149 if (!event->tp_event)
7150 return;
7151
7152 prog = event->tp_event->prog;
7153 if (prog) {
7154 event->tp_event->prog = NULL;
7155 bpf_prog_put(prog);
7156 }
7157}
7158
e077df4f 7159#else
6fb2915d 7160
b0a873eb 7161static inline void perf_tp_register(void)
e077df4f 7162{
e077df4f 7163}
6fb2915d
LZ
7164
7165static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7166{
7167 return -ENOENT;
7168}
7169
7170static void perf_event_free_filter(struct perf_event *event)
7171{
7172}
7173
2541517c
AS
7174static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7175{
7176 return -ENOENT;
7177}
7178
7179static void perf_event_free_bpf_prog(struct perf_event *event)
7180{
7181}
07b139c8 7182#endif /* CONFIG_EVENT_TRACING */
e077df4f 7183
24f1e32c 7184#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7185void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7186{
f5ffe02e
FW
7187 struct perf_sample_data sample;
7188 struct pt_regs *regs = data;
7189
fd0d000b 7190 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7191
a4eaf7f1 7192 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7193 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7194}
7195#endif
7196
b0a873eb
PZ
7197/*
7198 * hrtimer based swevent callback
7199 */
f29ac756 7200
b0a873eb 7201static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7202{
b0a873eb
PZ
7203 enum hrtimer_restart ret = HRTIMER_RESTART;
7204 struct perf_sample_data data;
7205 struct pt_regs *regs;
7206 struct perf_event *event;
7207 u64 period;
f29ac756 7208
b0a873eb 7209 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7210
7211 if (event->state != PERF_EVENT_STATE_ACTIVE)
7212 return HRTIMER_NORESTART;
7213
b0a873eb 7214 event->pmu->read(event);
f344011c 7215
fd0d000b 7216 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7217 regs = get_irq_regs();
7218
7219 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7220 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7221 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7222 ret = HRTIMER_NORESTART;
7223 }
24f1e32c 7224
b0a873eb
PZ
7225 period = max_t(u64, 10000, event->hw.sample_period);
7226 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7227
b0a873eb 7228 return ret;
f29ac756
PZ
7229}
7230
b0a873eb 7231static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7232{
b0a873eb 7233 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7234 s64 period;
7235
7236 if (!is_sampling_event(event))
7237 return;
f5ffe02e 7238
5d508e82
FBH
7239 period = local64_read(&hwc->period_left);
7240 if (period) {
7241 if (period < 0)
7242 period = 10000;
fa407f35 7243
5d508e82
FBH
7244 local64_set(&hwc->period_left, 0);
7245 } else {
7246 period = max_t(u64, 10000, hwc->sample_period);
7247 }
3497d206
TG
7248 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7249 HRTIMER_MODE_REL_PINNED);
24f1e32c 7250}
b0a873eb
PZ
7251
7252static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7253{
b0a873eb
PZ
7254 struct hw_perf_event *hwc = &event->hw;
7255
6c7e550f 7256 if (is_sampling_event(event)) {
b0a873eb 7257 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7258 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7259
7260 hrtimer_cancel(&hwc->hrtimer);
7261 }
24f1e32c
FW
7262}
7263
ba3dd36c
PZ
7264static void perf_swevent_init_hrtimer(struct perf_event *event)
7265{
7266 struct hw_perf_event *hwc = &event->hw;
7267
7268 if (!is_sampling_event(event))
7269 return;
7270
7271 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7272 hwc->hrtimer.function = perf_swevent_hrtimer;
7273
7274 /*
7275 * Since hrtimers have a fixed rate, we can do a static freq->period
7276 * mapping and avoid the whole period adjust feedback stuff.
7277 */
7278 if (event->attr.freq) {
7279 long freq = event->attr.sample_freq;
7280
7281 event->attr.sample_period = NSEC_PER_SEC / freq;
7282 hwc->sample_period = event->attr.sample_period;
7283 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7284 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7285 event->attr.freq = 0;
7286 }
7287}
7288
b0a873eb
PZ
7289/*
7290 * Software event: cpu wall time clock
7291 */
7292
7293static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7294{
b0a873eb
PZ
7295 s64 prev;
7296 u64 now;
7297
a4eaf7f1 7298 now = local_clock();
b0a873eb
PZ
7299 prev = local64_xchg(&event->hw.prev_count, now);
7300 local64_add(now - prev, &event->count);
24f1e32c 7301}
24f1e32c 7302
a4eaf7f1 7303static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7304{
a4eaf7f1 7305 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7306 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7307}
7308
a4eaf7f1 7309static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7310{
b0a873eb
PZ
7311 perf_swevent_cancel_hrtimer(event);
7312 cpu_clock_event_update(event);
7313}
f29ac756 7314
a4eaf7f1
PZ
7315static int cpu_clock_event_add(struct perf_event *event, int flags)
7316{
7317 if (flags & PERF_EF_START)
7318 cpu_clock_event_start(event, flags);
6a694a60 7319 perf_event_update_userpage(event);
a4eaf7f1
PZ
7320
7321 return 0;
7322}
7323
7324static void cpu_clock_event_del(struct perf_event *event, int flags)
7325{
7326 cpu_clock_event_stop(event, flags);
7327}
7328
b0a873eb
PZ
7329static void cpu_clock_event_read(struct perf_event *event)
7330{
7331 cpu_clock_event_update(event);
7332}
f344011c 7333
b0a873eb
PZ
7334static int cpu_clock_event_init(struct perf_event *event)
7335{
7336 if (event->attr.type != PERF_TYPE_SOFTWARE)
7337 return -ENOENT;
7338
7339 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7340 return -ENOENT;
7341
2481c5fa
SE
7342 /*
7343 * no branch sampling for software events
7344 */
7345 if (has_branch_stack(event))
7346 return -EOPNOTSUPP;
7347
ba3dd36c
PZ
7348 perf_swevent_init_hrtimer(event);
7349
b0a873eb 7350 return 0;
f29ac756
PZ
7351}
7352
b0a873eb 7353static struct pmu perf_cpu_clock = {
89a1e187
PZ
7354 .task_ctx_nr = perf_sw_context,
7355
34f43927
PZ
7356 .capabilities = PERF_PMU_CAP_NO_NMI,
7357
b0a873eb 7358 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7359 .add = cpu_clock_event_add,
7360 .del = cpu_clock_event_del,
7361 .start = cpu_clock_event_start,
7362 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7363 .read = cpu_clock_event_read,
7364};
7365
7366/*
7367 * Software event: task time clock
7368 */
7369
7370static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7371{
b0a873eb
PZ
7372 u64 prev;
7373 s64 delta;
5c92d124 7374
b0a873eb
PZ
7375 prev = local64_xchg(&event->hw.prev_count, now);
7376 delta = now - prev;
7377 local64_add(delta, &event->count);
7378}
5c92d124 7379
a4eaf7f1 7380static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7381{
a4eaf7f1 7382 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7383 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7384}
7385
a4eaf7f1 7386static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7387{
7388 perf_swevent_cancel_hrtimer(event);
7389 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7390}
7391
7392static int task_clock_event_add(struct perf_event *event, int flags)
7393{
7394 if (flags & PERF_EF_START)
7395 task_clock_event_start(event, flags);
6a694a60 7396 perf_event_update_userpage(event);
b0a873eb 7397
a4eaf7f1
PZ
7398 return 0;
7399}
7400
7401static void task_clock_event_del(struct perf_event *event, int flags)
7402{
7403 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7404}
7405
7406static void task_clock_event_read(struct perf_event *event)
7407{
768a06e2
PZ
7408 u64 now = perf_clock();
7409 u64 delta = now - event->ctx->timestamp;
7410 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7411
7412 task_clock_event_update(event, time);
7413}
7414
7415static int task_clock_event_init(struct perf_event *event)
6fb2915d 7416{
b0a873eb
PZ
7417 if (event->attr.type != PERF_TYPE_SOFTWARE)
7418 return -ENOENT;
7419
7420 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7421 return -ENOENT;
7422
2481c5fa
SE
7423 /*
7424 * no branch sampling for software events
7425 */
7426 if (has_branch_stack(event))
7427 return -EOPNOTSUPP;
7428
ba3dd36c
PZ
7429 perf_swevent_init_hrtimer(event);
7430
b0a873eb 7431 return 0;
6fb2915d
LZ
7432}
7433
b0a873eb 7434static struct pmu perf_task_clock = {
89a1e187
PZ
7435 .task_ctx_nr = perf_sw_context,
7436
34f43927
PZ
7437 .capabilities = PERF_PMU_CAP_NO_NMI,
7438
b0a873eb 7439 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7440 .add = task_clock_event_add,
7441 .del = task_clock_event_del,
7442 .start = task_clock_event_start,
7443 .stop = task_clock_event_stop,
b0a873eb
PZ
7444 .read = task_clock_event_read,
7445};
6fb2915d 7446
ad5133b7 7447static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7448{
e077df4f 7449}
6fb2915d 7450
fbbe0701
SB
7451static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7452{
7453}
7454
ad5133b7 7455static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7456{
ad5133b7 7457 return 0;
6fb2915d
LZ
7458}
7459
18ab2cd3 7460static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7461
7462static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7463{
fbbe0701
SB
7464 __this_cpu_write(nop_txn_flags, flags);
7465
7466 if (flags & ~PERF_PMU_TXN_ADD)
7467 return;
7468
ad5133b7 7469 perf_pmu_disable(pmu);
6fb2915d
LZ
7470}
7471
ad5133b7
PZ
7472static int perf_pmu_commit_txn(struct pmu *pmu)
7473{
fbbe0701
SB
7474 unsigned int flags = __this_cpu_read(nop_txn_flags);
7475
7476 __this_cpu_write(nop_txn_flags, 0);
7477
7478 if (flags & ~PERF_PMU_TXN_ADD)
7479 return 0;
7480
ad5133b7
PZ
7481 perf_pmu_enable(pmu);
7482 return 0;
7483}
e077df4f 7484
ad5133b7 7485static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7486{
fbbe0701
SB
7487 unsigned int flags = __this_cpu_read(nop_txn_flags);
7488
7489 __this_cpu_write(nop_txn_flags, 0);
7490
7491 if (flags & ~PERF_PMU_TXN_ADD)
7492 return;
7493
ad5133b7 7494 perf_pmu_enable(pmu);
24f1e32c
FW
7495}
7496
35edc2a5
PZ
7497static int perf_event_idx_default(struct perf_event *event)
7498{
c719f560 7499 return 0;
35edc2a5
PZ
7500}
7501
8dc85d54
PZ
7502/*
7503 * Ensures all contexts with the same task_ctx_nr have the same
7504 * pmu_cpu_context too.
7505 */
9e317041 7506static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7507{
8dc85d54 7508 struct pmu *pmu;
b326e956 7509
8dc85d54
PZ
7510 if (ctxn < 0)
7511 return NULL;
24f1e32c 7512
8dc85d54
PZ
7513 list_for_each_entry(pmu, &pmus, entry) {
7514 if (pmu->task_ctx_nr == ctxn)
7515 return pmu->pmu_cpu_context;
7516 }
24f1e32c 7517
8dc85d54 7518 return NULL;
24f1e32c
FW
7519}
7520
51676957 7521static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7522{
51676957
PZ
7523 int cpu;
7524
7525 for_each_possible_cpu(cpu) {
7526 struct perf_cpu_context *cpuctx;
7527
7528 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7529
3f1f3320
PZ
7530 if (cpuctx->unique_pmu == old_pmu)
7531 cpuctx->unique_pmu = pmu;
51676957
PZ
7532 }
7533}
7534
7535static void free_pmu_context(struct pmu *pmu)
7536{
7537 struct pmu *i;
f5ffe02e 7538
8dc85d54 7539 mutex_lock(&pmus_lock);
0475f9ea 7540 /*
8dc85d54 7541 * Like a real lame refcount.
0475f9ea 7542 */
51676957
PZ
7543 list_for_each_entry(i, &pmus, entry) {
7544 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7545 update_pmu_context(i, pmu);
8dc85d54 7546 goto out;
51676957 7547 }
8dc85d54 7548 }
d6d020e9 7549
51676957 7550 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7551out:
7552 mutex_unlock(&pmus_lock);
24f1e32c 7553}
2e80a82a 7554static struct idr pmu_idr;
d6d020e9 7555
abe43400
PZ
7556static ssize_t
7557type_show(struct device *dev, struct device_attribute *attr, char *page)
7558{
7559 struct pmu *pmu = dev_get_drvdata(dev);
7560
7561 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7562}
90826ca7 7563static DEVICE_ATTR_RO(type);
abe43400 7564
62b85639
SE
7565static ssize_t
7566perf_event_mux_interval_ms_show(struct device *dev,
7567 struct device_attribute *attr,
7568 char *page)
7569{
7570 struct pmu *pmu = dev_get_drvdata(dev);
7571
7572 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7573}
7574
272325c4
PZ
7575static DEFINE_MUTEX(mux_interval_mutex);
7576
62b85639
SE
7577static ssize_t
7578perf_event_mux_interval_ms_store(struct device *dev,
7579 struct device_attribute *attr,
7580 const char *buf, size_t count)
7581{
7582 struct pmu *pmu = dev_get_drvdata(dev);
7583 int timer, cpu, ret;
7584
7585 ret = kstrtoint(buf, 0, &timer);
7586 if (ret)
7587 return ret;
7588
7589 if (timer < 1)
7590 return -EINVAL;
7591
7592 /* same value, noting to do */
7593 if (timer == pmu->hrtimer_interval_ms)
7594 return count;
7595
272325c4 7596 mutex_lock(&mux_interval_mutex);
62b85639
SE
7597 pmu->hrtimer_interval_ms = timer;
7598
7599 /* update all cpuctx for this PMU */
272325c4
PZ
7600 get_online_cpus();
7601 for_each_online_cpu(cpu) {
62b85639
SE
7602 struct perf_cpu_context *cpuctx;
7603 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7604 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7605
272325c4
PZ
7606 cpu_function_call(cpu,
7607 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7608 }
272325c4
PZ
7609 put_online_cpus();
7610 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7611
7612 return count;
7613}
90826ca7 7614static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7615
90826ca7
GKH
7616static struct attribute *pmu_dev_attrs[] = {
7617 &dev_attr_type.attr,
7618 &dev_attr_perf_event_mux_interval_ms.attr,
7619 NULL,
abe43400 7620};
90826ca7 7621ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7622
7623static int pmu_bus_running;
7624static struct bus_type pmu_bus = {
7625 .name = "event_source",
90826ca7 7626 .dev_groups = pmu_dev_groups,
abe43400
PZ
7627};
7628
7629static void pmu_dev_release(struct device *dev)
7630{
7631 kfree(dev);
7632}
7633
7634static int pmu_dev_alloc(struct pmu *pmu)
7635{
7636 int ret = -ENOMEM;
7637
7638 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7639 if (!pmu->dev)
7640 goto out;
7641
0c9d42ed 7642 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7643 device_initialize(pmu->dev);
7644 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7645 if (ret)
7646 goto free_dev;
7647
7648 dev_set_drvdata(pmu->dev, pmu);
7649 pmu->dev->bus = &pmu_bus;
7650 pmu->dev->release = pmu_dev_release;
7651 ret = device_add(pmu->dev);
7652 if (ret)
7653 goto free_dev;
7654
7655out:
7656 return ret;
7657
7658free_dev:
7659 put_device(pmu->dev);
7660 goto out;
7661}
7662
547e9fd7 7663static struct lock_class_key cpuctx_mutex;
facc4307 7664static struct lock_class_key cpuctx_lock;
547e9fd7 7665
03d8e80b 7666int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7667{
108b02cf 7668 int cpu, ret;
24f1e32c 7669
b0a873eb 7670 mutex_lock(&pmus_lock);
33696fc0
PZ
7671 ret = -ENOMEM;
7672 pmu->pmu_disable_count = alloc_percpu(int);
7673 if (!pmu->pmu_disable_count)
7674 goto unlock;
f29ac756 7675
2e80a82a
PZ
7676 pmu->type = -1;
7677 if (!name)
7678 goto skip_type;
7679 pmu->name = name;
7680
7681 if (type < 0) {
0e9c3be2
TH
7682 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7683 if (type < 0) {
7684 ret = type;
2e80a82a
PZ
7685 goto free_pdc;
7686 }
7687 }
7688 pmu->type = type;
7689
abe43400
PZ
7690 if (pmu_bus_running) {
7691 ret = pmu_dev_alloc(pmu);
7692 if (ret)
7693 goto free_idr;
7694 }
7695
2e80a82a 7696skip_type:
8dc85d54
PZ
7697 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7698 if (pmu->pmu_cpu_context)
7699 goto got_cpu_context;
f29ac756 7700
c4814202 7701 ret = -ENOMEM;
108b02cf
PZ
7702 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7703 if (!pmu->pmu_cpu_context)
abe43400 7704 goto free_dev;
f344011c 7705
108b02cf
PZ
7706 for_each_possible_cpu(cpu) {
7707 struct perf_cpu_context *cpuctx;
7708
7709 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7710 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7711 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7712 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7713 cpuctx->ctx.pmu = pmu;
9e630205 7714
272325c4 7715 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7716
3f1f3320 7717 cpuctx->unique_pmu = pmu;
108b02cf 7718 }
76e1d904 7719
8dc85d54 7720got_cpu_context:
ad5133b7
PZ
7721 if (!pmu->start_txn) {
7722 if (pmu->pmu_enable) {
7723 /*
7724 * If we have pmu_enable/pmu_disable calls, install
7725 * transaction stubs that use that to try and batch
7726 * hardware accesses.
7727 */
7728 pmu->start_txn = perf_pmu_start_txn;
7729 pmu->commit_txn = perf_pmu_commit_txn;
7730 pmu->cancel_txn = perf_pmu_cancel_txn;
7731 } else {
fbbe0701 7732 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7733 pmu->commit_txn = perf_pmu_nop_int;
7734 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7735 }
5c92d124 7736 }
15dbf27c 7737
ad5133b7
PZ
7738 if (!pmu->pmu_enable) {
7739 pmu->pmu_enable = perf_pmu_nop_void;
7740 pmu->pmu_disable = perf_pmu_nop_void;
7741 }
7742
35edc2a5
PZ
7743 if (!pmu->event_idx)
7744 pmu->event_idx = perf_event_idx_default;
7745
b0a873eb 7746 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7747 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7748 ret = 0;
7749unlock:
b0a873eb
PZ
7750 mutex_unlock(&pmus_lock);
7751
33696fc0 7752 return ret;
108b02cf 7753
abe43400
PZ
7754free_dev:
7755 device_del(pmu->dev);
7756 put_device(pmu->dev);
7757
2e80a82a
PZ
7758free_idr:
7759 if (pmu->type >= PERF_TYPE_MAX)
7760 idr_remove(&pmu_idr, pmu->type);
7761
108b02cf
PZ
7762free_pdc:
7763 free_percpu(pmu->pmu_disable_count);
7764 goto unlock;
f29ac756 7765}
c464c76e 7766EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7767
b0a873eb 7768void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7769{
b0a873eb
PZ
7770 mutex_lock(&pmus_lock);
7771 list_del_rcu(&pmu->entry);
7772 mutex_unlock(&pmus_lock);
5c92d124 7773
0475f9ea 7774 /*
cde8e884
PZ
7775 * We dereference the pmu list under both SRCU and regular RCU, so
7776 * synchronize against both of those.
0475f9ea 7777 */
b0a873eb 7778 synchronize_srcu(&pmus_srcu);
cde8e884 7779 synchronize_rcu();
d6d020e9 7780
33696fc0 7781 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7782 if (pmu->type >= PERF_TYPE_MAX)
7783 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7784 device_del(pmu->dev);
7785 put_device(pmu->dev);
51676957 7786 free_pmu_context(pmu);
b0a873eb 7787}
c464c76e 7788EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7789
cc34b98b
MR
7790static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7791{
ccd41c86 7792 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7793 int ret;
7794
7795 if (!try_module_get(pmu->module))
7796 return -ENODEV;
ccd41c86
PZ
7797
7798 if (event->group_leader != event) {
8b10c5e2
PZ
7799 /*
7800 * This ctx->mutex can nest when we're called through
7801 * inheritance. See the perf_event_ctx_lock_nested() comment.
7802 */
7803 ctx = perf_event_ctx_lock_nested(event->group_leader,
7804 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7805 BUG_ON(!ctx);
7806 }
7807
cc34b98b
MR
7808 event->pmu = pmu;
7809 ret = pmu->event_init(event);
ccd41c86
PZ
7810
7811 if (ctx)
7812 perf_event_ctx_unlock(event->group_leader, ctx);
7813
cc34b98b
MR
7814 if (ret)
7815 module_put(pmu->module);
7816
7817 return ret;
7818}
7819
18ab2cd3 7820static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7821{
7822 struct pmu *pmu = NULL;
7823 int idx;
940c5b29 7824 int ret;
b0a873eb
PZ
7825
7826 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7827
7828 rcu_read_lock();
7829 pmu = idr_find(&pmu_idr, event->attr.type);
7830 rcu_read_unlock();
940c5b29 7831 if (pmu) {
cc34b98b 7832 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7833 if (ret)
7834 pmu = ERR_PTR(ret);
2e80a82a 7835 goto unlock;
940c5b29 7836 }
2e80a82a 7837
b0a873eb 7838 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7839 ret = perf_try_init_event(pmu, event);
b0a873eb 7840 if (!ret)
e5f4d339 7841 goto unlock;
76e1d904 7842
b0a873eb
PZ
7843 if (ret != -ENOENT) {
7844 pmu = ERR_PTR(ret);
e5f4d339 7845 goto unlock;
f344011c 7846 }
5c92d124 7847 }
e5f4d339
PZ
7848 pmu = ERR_PTR(-ENOENT);
7849unlock:
b0a873eb 7850 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7851
4aeb0b42 7852 return pmu;
5c92d124
IM
7853}
7854
4beb31f3
FW
7855static void account_event_cpu(struct perf_event *event, int cpu)
7856{
7857 if (event->parent)
7858 return;
7859
4beb31f3
FW
7860 if (is_cgroup_event(event))
7861 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7862}
7863
555e0c1e
FW
7864/* Freq events need the tick to stay alive (see perf_event_task_tick). */
7865static void account_freq_event_nohz(void)
7866{
7867#ifdef CONFIG_NO_HZ_FULL
7868 /* Lock so we don't race with concurrent unaccount */
7869 spin_lock(&nr_freq_lock);
7870 if (atomic_inc_return(&nr_freq_events) == 1)
7871 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
7872 spin_unlock(&nr_freq_lock);
7873#endif
7874}
7875
7876static void account_freq_event(void)
7877{
7878 if (tick_nohz_full_enabled())
7879 account_freq_event_nohz();
7880 else
7881 atomic_inc(&nr_freq_events);
7882}
7883
7884
766d6c07
FW
7885static void account_event(struct perf_event *event)
7886{
25432ae9
PZ
7887 bool inc = false;
7888
4beb31f3
FW
7889 if (event->parent)
7890 return;
7891
766d6c07 7892 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 7893 inc = true;
766d6c07
FW
7894 if (event->attr.mmap || event->attr.mmap_data)
7895 atomic_inc(&nr_mmap_events);
7896 if (event->attr.comm)
7897 atomic_inc(&nr_comm_events);
7898 if (event->attr.task)
7899 atomic_inc(&nr_task_events);
555e0c1e
FW
7900 if (event->attr.freq)
7901 account_freq_event();
45ac1403
AH
7902 if (event->attr.context_switch) {
7903 atomic_inc(&nr_switch_events);
25432ae9 7904 inc = true;
45ac1403 7905 }
4beb31f3 7906 if (has_branch_stack(event))
25432ae9 7907 inc = true;
4beb31f3 7908 if (is_cgroup_event(event))
25432ae9
PZ
7909 inc = true;
7910
9107c89e
PZ
7911 if (inc) {
7912 if (atomic_inc_not_zero(&perf_sched_count))
7913 goto enabled;
7914
7915 mutex_lock(&perf_sched_mutex);
7916 if (!atomic_read(&perf_sched_count)) {
7917 static_branch_enable(&perf_sched_events);
7918 /*
7919 * Guarantee that all CPUs observe they key change and
7920 * call the perf scheduling hooks before proceeding to
7921 * install events that need them.
7922 */
7923 synchronize_sched();
7924 }
7925 /*
7926 * Now that we have waited for the sync_sched(), allow further
7927 * increments to by-pass the mutex.
7928 */
7929 atomic_inc(&perf_sched_count);
7930 mutex_unlock(&perf_sched_mutex);
7931 }
7932enabled:
4beb31f3
FW
7933
7934 account_event_cpu(event, event->cpu);
766d6c07
FW
7935}
7936
0793a61d 7937/*
cdd6c482 7938 * Allocate and initialize a event structure
0793a61d 7939 */
cdd6c482 7940static struct perf_event *
c3f00c70 7941perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7942 struct task_struct *task,
7943 struct perf_event *group_leader,
7944 struct perf_event *parent_event,
4dc0da86 7945 perf_overflow_handler_t overflow_handler,
79dff51e 7946 void *context, int cgroup_fd)
0793a61d 7947{
51b0fe39 7948 struct pmu *pmu;
cdd6c482
IM
7949 struct perf_event *event;
7950 struct hw_perf_event *hwc;
90983b16 7951 long err = -EINVAL;
0793a61d 7952
66832eb4
ON
7953 if ((unsigned)cpu >= nr_cpu_ids) {
7954 if (!task || cpu != -1)
7955 return ERR_PTR(-EINVAL);
7956 }
7957
c3f00c70 7958 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7959 if (!event)
d5d2bc0d 7960 return ERR_PTR(-ENOMEM);
0793a61d 7961
04289bb9 7962 /*
cdd6c482 7963 * Single events are their own group leaders, with an
04289bb9
IM
7964 * empty sibling list:
7965 */
7966 if (!group_leader)
cdd6c482 7967 group_leader = event;
04289bb9 7968
cdd6c482
IM
7969 mutex_init(&event->child_mutex);
7970 INIT_LIST_HEAD(&event->child_list);
fccc714b 7971
cdd6c482
IM
7972 INIT_LIST_HEAD(&event->group_entry);
7973 INIT_LIST_HEAD(&event->event_entry);
7974 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7975 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7976 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7977 INIT_HLIST_NODE(&event->hlist_entry);
7978
10c6db11 7979
cdd6c482 7980 init_waitqueue_head(&event->waitq);
e360adbe 7981 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7982
cdd6c482 7983 mutex_init(&event->mmap_mutex);
7b732a75 7984
a6fa941d 7985 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7986 event->cpu = cpu;
7987 event->attr = *attr;
7988 event->group_leader = group_leader;
7989 event->pmu = NULL;
cdd6c482 7990 event->oncpu = -1;
a96bbc16 7991
cdd6c482 7992 event->parent = parent_event;
b84fbc9f 7993
17cf22c3 7994 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7995 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7996
cdd6c482 7997 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7998
d580ff86
PZ
7999 if (task) {
8000 event->attach_state = PERF_ATTACH_TASK;
d580ff86 8001 /*
50f16a8b
PZ
8002 * XXX pmu::event_init needs to know what task to account to
8003 * and we cannot use the ctx information because we need the
8004 * pmu before we get a ctx.
d580ff86 8005 */
50f16a8b 8006 event->hw.target = task;
d580ff86
PZ
8007 }
8008
34f43927
PZ
8009 event->clock = &local_clock;
8010 if (parent_event)
8011 event->clock = parent_event->clock;
8012
4dc0da86 8013 if (!overflow_handler && parent_event) {
b326e956 8014 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8015 context = parent_event->overflow_handler_context;
8016 }
66832eb4 8017
b326e956 8018 event->overflow_handler = overflow_handler;
4dc0da86 8019 event->overflow_handler_context = context;
97eaf530 8020
0231bb53 8021 perf_event__state_init(event);
a86ed508 8022
4aeb0b42 8023 pmu = NULL;
b8e83514 8024
cdd6c482 8025 hwc = &event->hw;
bd2b5b12 8026 hwc->sample_period = attr->sample_period;
0d48696f 8027 if (attr->freq && attr->sample_freq)
bd2b5b12 8028 hwc->sample_period = 1;
eced1dfc 8029 hwc->last_period = hwc->sample_period;
bd2b5b12 8030
e7850595 8031 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 8032
2023b359 8033 /*
cdd6c482 8034 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 8035 */
3dab77fb 8036 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 8037 goto err_ns;
a46a2300
YZ
8038
8039 if (!has_branch_stack(event))
8040 event->attr.branch_sample_type = 0;
2023b359 8041
79dff51e
MF
8042 if (cgroup_fd != -1) {
8043 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8044 if (err)
8045 goto err_ns;
8046 }
8047
b0a873eb 8048 pmu = perf_init_event(event);
4aeb0b42 8049 if (!pmu)
90983b16
FW
8050 goto err_ns;
8051 else if (IS_ERR(pmu)) {
4aeb0b42 8052 err = PTR_ERR(pmu);
90983b16 8053 goto err_ns;
621a01ea 8054 }
d5d2bc0d 8055
bed5b25a
AS
8056 err = exclusive_event_init(event);
8057 if (err)
8058 goto err_pmu;
8059
cdd6c482 8060 if (!event->parent) {
927c7a9e
FW
8061 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8062 err = get_callchain_buffers();
90983b16 8063 if (err)
bed5b25a 8064 goto err_per_task;
d010b332 8065 }
f344011c 8066 }
9ee318a7 8067
927a5570
AS
8068 /* symmetric to unaccount_event() in _free_event() */
8069 account_event(event);
8070
cdd6c482 8071 return event;
90983b16 8072
bed5b25a
AS
8073err_per_task:
8074 exclusive_event_destroy(event);
8075
90983b16
FW
8076err_pmu:
8077 if (event->destroy)
8078 event->destroy(event);
c464c76e 8079 module_put(pmu->module);
90983b16 8080err_ns:
79dff51e
MF
8081 if (is_cgroup_event(event))
8082 perf_detach_cgroup(event);
90983b16
FW
8083 if (event->ns)
8084 put_pid_ns(event->ns);
8085 kfree(event);
8086
8087 return ERR_PTR(err);
0793a61d
TG
8088}
8089
cdd6c482
IM
8090static int perf_copy_attr(struct perf_event_attr __user *uattr,
8091 struct perf_event_attr *attr)
974802ea 8092{
974802ea 8093 u32 size;
cdf8073d 8094 int ret;
974802ea
PZ
8095
8096 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8097 return -EFAULT;
8098
8099 /*
8100 * zero the full structure, so that a short copy will be nice.
8101 */
8102 memset(attr, 0, sizeof(*attr));
8103
8104 ret = get_user(size, &uattr->size);
8105 if (ret)
8106 return ret;
8107
8108 if (size > PAGE_SIZE) /* silly large */
8109 goto err_size;
8110
8111 if (!size) /* abi compat */
8112 size = PERF_ATTR_SIZE_VER0;
8113
8114 if (size < PERF_ATTR_SIZE_VER0)
8115 goto err_size;
8116
8117 /*
8118 * If we're handed a bigger struct than we know of,
cdf8073d
IS
8119 * ensure all the unknown bits are 0 - i.e. new
8120 * user-space does not rely on any kernel feature
8121 * extensions we dont know about yet.
974802ea
PZ
8122 */
8123 if (size > sizeof(*attr)) {
cdf8073d
IS
8124 unsigned char __user *addr;
8125 unsigned char __user *end;
8126 unsigned char val;
974802ea 8127
cdf8073d
IS
8128 addr = (void __user *)uattr + sizeof(*attr);
8129 end = (void __user *)uattr + size;
974802ea 8130
cdf8073d 8131 for (; addr < end; addr++) {
974802ea
PZ
8132 ret = get_user(val, addr);
8133 if (ret)
8134 return ret;
8135 if (val)
8136 goto err_size;
8137 }
b3e62e35 8138 size = sizeof(*attr);
974802ea
PZ
8139 }
8140
8141 ret = copy_from_user(attr, uattr, size);
8142 if (ret)
8143 return -EFAULT;
8144
cd757645 8145 if (attr->__reserved_1)
974802ea
PZ
8146 return -EINVAL;
8147
8148 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8149 return -EINVAL;
8150
8151 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8152 return -EINVAL;
8153
bce38cd5
SE
8154 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8155 u64 mask = attr->branch_sample_type;
8156
8157 /* only using defined bits */
8158 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8159 return -EINVAL;
8160
8161 /* at least one branch bit must be set */
8162 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8163 return -EINVAL;
8164
bce38cd5
SE
8165 /* propagate priv level, when not set for branch */
8166 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8167
8168 /* exclude_kernel checked on syscall entry */
8169 if (!attr->exclude_kernel)
8170 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8171
8172 if (!attr->exclude_user)
8173 mask |= PERF_SAMPLE_BRANCH_USER;
8174
8175 if (!attr->exclude_hv)
8176 mask |= PERF_SAMPLE_BRANCH_HV;
8177 /*
8178 * adjust user setting (for HW filter setup)
8179 */
8180 attr->branch_sample_type = mask;
8181 }
e712209a
SE
8182 /* privileged levels capture (kernel, hv): check permissions */
8183 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8184 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8185 return -EACCES;
bce38cd5 8186 }
4018994f 8187
c5ebcedb 8188 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8189 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8190 if (ret)
8191 return ret;
8192 }
8193
8194 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8195 if (!arch_perf_have_user_stack_dump())
8196 return -ENOSYS;
8197
8198 /*
8199 * We have __u32 type for the size, but so far
8200 * we can only use __u16 as maximum due to the
8201 * __u16 sample size limit.
8202 */
8203 if (attr->sample_stack_user >= USHRT_MAX)
8204 ret = -EINVAL;
8205 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8206 ret = -EINVAL;
8207 }
4018994f 8208
60e2364e
SE
8209 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8210 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8211out:
8212 return ret;
8213
8214err_size:
8215 put_user(sizeof(*attr), &uattr->size);
8216 ret = -E2BIG;
8217 goto out;
8218}
8219
ac9721f3
PZ
8220static int
8221perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8222{
b69cf536 8223 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8224 int ret = -EINVAL;
8225
ac9721f3 8226 if (!output_event)
a4be7c27
PZ
8227 goto set;
8228
ac9721f3
PZ
8229 /* don't allow circular references */
8230 if (event == output_event)
a4be7c27
PZ
8231 goto out;
8232
0f139300
PZ
8233 /*
8234 * Don't allow cross-cpu buffers
8235 */
8236 if (output_event->cpu != event->cpu)
8237 goto out;
8238
8239 /*
76369139 8240 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8241 */
8242 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8243 goto out;
8244
34f43927
PZ
8245 /*
8246 * Mixing clocks in the same buffer is trouble you don't need.
8247 */
8248 if (output_event->clock != event->clock)
8249 goto out;
8250
45bfb2e5
PZ
8251 /*
8252 * If both events generate aux data, they must be on the same PMU
8253 */
8254 if (has_aux(event) && has_aux(output_event) &&
8255 event->pmu != output_event->pmu)
8256 goto out;
8257
a4be7c27 8258set:
cdd6c482 8259 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8260 /* Can't redirect output if we've got an active mmap() */
8261 if (atomic_read(&event->mmap_count))
8262 goto unlock;
a4be7c27 8263
ac9721f3 8264 if (output_event) {
76369139
FW
8265 /* get the rb we want to redirect to */
8266 rb = ring_buffer_get(output_event);
8267 if (!rb)
ac9721f3 8268 goto unlock;
a4be7c27
PZ
8269 }
8270
b69cf536 8271 ring_buffer_attach(event, rb);
9bb5d40c 8272
a4be7c27 8273 ret = 0;
ac9721f3
PZ
8274unlock:
8275 mutex_unlock(&event->mmap_mutex);
8276
a4be7c27 8277out:
a4be7c27
PZ
8278 return ret;
8279}
8280
f63a8daa
PZ
8281static void mutex_lock_double(struct mutex *a, struct mutex *b)
8282{
8283 if (b < a)
8284 swap(a, b);
8285
8286 mutex_lock(a);
8287 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8288}
8289
34f43927
PZ
8290static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8291{
8292 bool nmi_safe = false;
8293
8294 switch (clk_id) {
8295 case CLOCK_MONOTONIC:
8296 event->clock = &ktime_get_mono_fast_ns;
8297 nmi_safe = true;
8298 break;
8299
8300 case CLOCK_MONOTONIC_RAW:
8301 event->clock = &ktime_get_raw_fast_ns;
8302 nmi_safe = true;
8303 break;
8304
8305 case CLOCK_REALTIME:
8306 event->clock = &ktime_get_real_ns;
8307 break;
8308
8309 case CLOCK_BOOTTIME:
8310 event->clock = &ktime_get_boot_ns;
8311 break;
8312
8313 case CLOCK_TAI:
8314 event->clock = &ktime_get_tai_ns;
8315 break;
8316
8317 default:
8318 return -EINVAL;
8319 }
8320
8321 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8322 return -EINVAL;
8323
8324 return 0;
8325}
8326
0793a61d 8327/**
cdd6c482 8328 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8329 *
cdd6c482 8330 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8331 * @pid: target pid
9f66a381 8332 * @cpu: target cpu
cdd6c482 8333 * @group_fd: group leader event fd
0793a61d 8334 */
cdd6c482
IM
8335SYSCALL_DEFINE5(perf_event_open,
8336 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8337 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8338{
b04243ef
PZ
8339 struct perf_event *group_leader = NULL, *output_event = NULL;
8340 struct perf_event *event, *sibling;
cdd6c482 8341 struct perf_event_attr attr;
f63a8daa 8342 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8343 struct file *event_file = NULL;
2903ff01 8344 struct fd group = {NULL, 0};
38a81da2 8345 struct task_struct *task = NULL;
89a1e187 8346 struct pmu *pmu;
ea635c64 8347 int event_fd;
b04243ef 8348 int move_group = 0;
dc86cabe 8349 int err;
a21b0b35 8350 int f_flags = O_RDWR;
79dff51e 8351 int cgroup_fd = -1;
0793a61d 8352
2743a5b0 8353 /* for future expandability... */
e5d1367f 8354 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8355 return -EINVAL;
8356
dc86cabe
IM
8357 err = perf_copy_attr(attr_uptr, &attr);
8358 if (err)
8359 return err;
eab656ae 8360
0764771d
PZ
8361 if (!attr.exclude_kernel) {
8362 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8363 return -EACCES;
8364 }
8365
df58ab24 8366 if (attr.freq) {
cdd6c482 8367 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8368 return -EINVAL;
0819b2e3
PZ
8369 } else {
8370 if (attr.sample_period & (1ULL << 63))
8371 return -EINVAL;
df58ab24
PZ
8372 }
8373
e5d1367f
SE
8374 /*
8375 * In cgroup mode, the pid argument is used to pass the fd
8376 * opened to the cgroup directory in cgroupfs. The cpu argument
8377 * designates the cpu on which to monitor threads from that
8378 * cgroup.
8379 */
8380 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8381 return -EINVAL;
8382
a21b0b35
YD
8383 if (flags & PERF_FLAG_FD_CLOEXEC)
8384 f_flags |= O_CLOEXEC;
8385
8386 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8387 if (event_fd < 0)
8388 return event_fd;
8389
ac9721f3 8390 if (group_fd != -1) {
2903ff01
AV
8391 err = perf_fget_light(group_fd, &group);
8392 if (err)
d14b12d7 8393 goto err_fd;
2903ff01 8394 group_leader = group.file->private_data;
ac9721f3
PZ
8395 if (flags & PERF_FLAG_FD_OUTPUT)
8396 output_event = group_leader;
8397 if (flags & PERF_FLAG_FD_NO_GROUP)
8398 group_leader = NULL;
8399 }
8400
e5d1367f 8401 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8402 task = find_lively_task_by_vpid(pid);
8403 if (IS_ERR(task)) {
8404 err = PTR_ERR(task);
8405 goto err_group_fd;
8406 }
8407 }
8408
1f4ee503
PZ
8409 if (task && group_leader &&
8410 group_leader->attr.inherit != attr.inherit) {
8411 err = -EINVAL;
8412 goto err_task;
8413 }
8414
fbfc623f
YZ
8415 get_online_cpus();
8416
79dff51e
MF
8417 if (flags & PERF_FLAG_PID_CGROUP)
8418 cgroup_fd = pid;
8419
4dc0da86 8420 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8421 NULL, NULL, cgroup_fd);
d14b12d7
SE
8422 if (IS_ERR(event)) {
8423 err = PTR_ERR(event);
1f4ee503 8424 goto err_cpus;
d14b12d7
SE
8425 }
8426
53b25335
VW
8427 if (is_sampling_event(event)) {
8428 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8429 err = -ENOTSUPP;
8430 goto err_alloc;
8431 }
8432 }
8433
89a1e187
PZ
8434 /*
8435 * Special case software events and allow them to be part of
8436 * any hardware group.
8437 */
8438 pmu = event->pmu;
b04243ef 8439
34f43927
PZ
8440 if (attr.use_clockid) {
8441 err = perf_event_set_clock(event, attr.clockid);
8442 if (err)
8443 goto err_alloc;
8444 }
8445
b04243ef
PZ
8446 if (group_leader &&
8447 (is_software_event(event) != is_software_event(group_leader))) {
8448 if (is_software_event(event)) {
8449 /*
8450 * If event and group_leader are not both a software
8451 * event, and event is, then group leader is not.
8452 *
8453 * Allow the addition of software events to !software
8454 * groups, this is safe because software events never
8455 * fail to schedule.
8456 */
8457 pmu = group_leader->pmu;
8458 } else if (is_software_event(group_leader) &&
8459 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8460 /*
8461 * In case the group is a pure software group, and we
8462 * try to add a hardware event, move the whole group to
8463 * the hardware context.
8464 */
8465 move_group = 1;
8466 }
8467 }
89a1e187
PZ
8468
8469 /*
8470 * Get the target context (task or percpu):
8471 */
4af57ef2 8472 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8473 if (IS_ERR(ctx)) {
8474 err = PTR_ERR(ctx);
c6be5a5c 8475 goto err_alloc;
89a1e187
PZ
8476 }
8477
bed5b25a
AS
8478 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8479 err = -EBUSY;
8480 goto err_context;
8481 }
8482
fd1edb3a
PZ
8483 if (task) {
8484 put_task_struct(task);
8485 task = NULL;
8486 }
8487
ccff286d 8488 /*
cdd6c482 8489 * Look up the group leader (we will attach this event to it):
04289bb9 8490 */
ac9721f3 8491 if (group_leader) {
dc86cabe 8492 err = -EINVAL;
04289bb9 8493
04289bb9 8494 /*
ccff286d
IM
8495 * Do not allow a recursive hierarchy (this new sibling
8496 * becoming part of another group-sibling):
8497 */
8498 if (group_leader->group_leader != group_leader)
c3f00c70 8499 goto err_context;
34f43927
PZ
8500
8501 /* All events in a group should have the same clock */
8502 if (group_leader->clock != event->clock)
8503 goto err_context;
8504
ccff286d
IM
8505 /*
8506 * Do not allow to attach to a group in a different
8507 * task or CPU context:
04289bb9 8508 */
b04243ef 8509 if (move_group) {
c3c87e77
PZ
8510 /*
8511 * Make sure we're both on the same task, or both
8512 * per-cpu events.
8513 */
8514 if (group_leader->ctx->task != ctx->task)
8515 goto err_context;
8516
8517 /*
8518 * Make sure we're both events for the same CPU;
8519 * grouping events for different CPUs is broken; since
8520 * you can never concurrently schedule them anyhow.
8521 */
8522 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8523 goto err_context;
8524 } else {
8525 if (group_leader->ctx != ctx)
8526 goto err_context;
8527 }
8528
3b6f9e5c
PM
8529 /*
8530 * Only a group leader can be exclusive or pinned
8531 */
0d48696f 8532 if (attr.exclusive || attr.pinned)
c3f00c70 8533 goto err_context;
ac9721f3
PZ
8534 }
8535
8536 if (output_event) {
8537 err = perf_event_set_output(event, output_event);
8538 if (err)
c3f00c70 8539 goto err_context;
ac9721f3 8540 }
0793a61d 8541
a21b0b35
YD
8542 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8543 f_flags);
ea635c64
AV
8544 if (IS_ERR(event_file)) {
8545 err = PTR_ERR(event_file);
201c2f85 8546 event_file = NULL;
c3f00c70 8547 goto err_context;
ea635c64 8548 }
9b51f66d 8549
b04243ef 8550 if (move_group) {
f63a8daa 8551 gctx = group_leader->ctx;
f55fc2a5 8552 mutex_lock_double(&gctx->mutex, &ctx->mutex);
84c4e620
PZ
8553 if (gctx->task == TASK_TOMBSTONE) {
8554 err = -ESRCH;
8555 goto err_locked;
8556 }
f55fc2a5
PZ
8557 } else {
8558 mutex_lock(&ctx->mutex);
8559 }
8560
84c4e620
PZ
8561 if (ctx->task == TASK_TOMBSTONE) {
8562 err = -ESRCH;
8563 goto err_locked;
8564 }
8565
a723968c
PZ
8566 if (!perf_event_validate_size(event)) {
8567 err = -E2BIG;
8568 goto err_locked;
8569 }
8570
f55fc2a5
PZ
8571 /*
8572 * Must be under the same ctx::mutex as perf_install_in_context(),
8573 * because we need to serialize with concurrent event creation.
8574 */
8575 if (!exclusive_event_installable(event, ctx)) {
8576 /* exclusive and group stuff are assumed mutually exclusive */
8577 WARN_ON_ONCE(move_group);
f63a8daa 8578
f55fc2a5
PZ
8579 err = -EBUSY;
8580 goto err_locked;
8581 }
f63a8daa 8582
f55fc2a5
PZ
8583 WARN_ON_ONCE(ctx->parent_ctx);
8584
8585 if (move_group) {
f63a8daa
PZ
8586 /*
8587 * See perf_event_ctx_lock() for comments on the details
8588 * of swizzling perf_event::ctx.
8589 */
45a0e07a 8590 perf_remove_from_context(group_leader, 0);
0231bb53 8591
b04243ef
PZ
8592 list_for_each_entry(sibling, &group_leader->sibling_list,
8593 group_entry) {
45a0e07a 8594 perf_remove_from_context(sibling, 0);
b04243ef
PZ
8595 put_ctx(gctx);
8596 }
b04243ef 8597
f63a8daa
PZ
8598 /*
8599 * Wait for everybody to stop referencing the events through
8600 * the old lists, before installing it on new lists.
8601 */
0cda4c02 8602 synchronize_rcu();
f63a8daa 8603
8f95b435
PZI
8604 /*
8605 * Install the group siblings before the group leader.
8606 *
8607 * Because a group leader will try and install the entire group
8608 * (through the sibling list, which is still in-tact), we can
8609 * end up with siblings installed in the wrong context.
8610 *
8611 * By installing siblings first we NO-OP because they're not
8612 * reachable through the group lists.
8613 */
b04243ef
PZ
8614 list_for_each_entry(sibling, &group_leader->sibling_list,
8615 group_entry) {
8f95b435 8616 perf_event__state_init(sibling);
9fc81d87 8617 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8618 get_ctx(ctx);
8619 }
8f95b435
PZI
8620
8621 /*
8622 * Removing from the context ends up with disabled
8623 * event. What we want here is event in the initial
8624 * startup state, ready to be add into new context.
8625 */
8626 perf_event__state_init(group_leader);
8627 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8628 get_ctx(ctx);
b04243ef 8629
f55fc2a5
PZ
8630 /*
8631 * Now that all events are installed in @ctx, nothing
8632 * references @gctx anymore, so drop the last reference we have
8633 * on it.
8634 */
8635 put_ctx(gctx);
bed5b25a
AS
8636 }
8637
f73e22ab
PZ
8638 /*
8639 * Precalculate sample_data sizes; do while holding ctx::mutex such
8640 * that we're serialized against further additions and before
8641 * perf_install_in_context() which is the point the event is active and
8642 * can use these values.
8643 */
8644 perf_event__header_size(event);
8645 perf_event__id_header_size(event);
8646
78cd2c74
PZ
8647 event->owner = current;
8648
e2d37cd2 8649 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8650 perf_unpin_context(ctx);
f63a8daa 8651
f55fc2a5 8652 if (move_group)
f63a8daa 8653 mutex_unlock(&gctx->mutex);
d859e29f 8654 mutex_unlock(&ctx->mutex);
9b51f66d 8655
fbfc623f
YZ
8656 put_online_cpus();
8657
cdd6c482
IM
8658 mutex_lock(&current->perf_event_mutex);
8659 list_add_tail(&event->owner_entry, &current->perf_event_list);
8660 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8661
8a49542c
PZ
8662 /*
8663 * Drop the reference on the group_event after placing the
8664 * new event on the sibling_list. This ensures destruction
8665 * of the group leader will find the pointer to itself in
8666 * perf_group_detach().
8667 */
2903ff01 8668 fdput(group);
ea635c64
AV
8669 fd_install(event_fd, event_file);
8670 return event_fd;
0793a61d 8671
f55fc2a5
PZ
8672err_locked:
8673 if (move_group)
8674 mutex_unlock(&gctx->mutex);
8675 mutex_unlock(&ctx->mutex);
8676/* err_file: */
8677 fput(event_file);
c3f00c70 8678err_context:
fe4b04fa 8679 perf_unpin_context(ctx);
ea635c64 8680 put_ctx(ctx);
c6be5a5c 8681err_alloc:
13005627
PZ
8682 /*
8683 * If event_file is set, the fput() above will have called ->release()
8684 * and that will take care of freeing the event.
8685 */
8686 if (!event_file)
8687 free_event(event);
1f4ee503 8688err_cpus:
fbfc623f 8689 put_online_cpus();
1f4ee503 8690err_task:
e7d0bc04
PZ
8691 if (task)
8692 put_task_struct(task);
89a1e187 8693err_group_fd:
2903ff01 8694 fdput(group);
ea635c64
AV
8695err_fd:
8696 put_unused_fd(event_fd);
dc86cabe 8697 return err;
0793a61d
TG
8698}
8699
fb0459d7
AV
8700/**
8701 * perf_event_create_kernel_counter
8702 *
8703 * @attr: attributes of the counter to create
8704 * @cpu: cpu in which the counter is bound
38a81da2 8705 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8706 */
8707struct perf_event *
8708perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8709 struct task_struct *task,
4dc0da86
AK
8710 perf_overflow_handler_t overflow_handler,
8711 void *context)
fb0459d7 8712{
fb0459d7 8713 struct perf_event_context *ctx;
c3f00c70 8714 struct perf_event *event;
fb0459d7 8715 int err;
d859e29f 8716
fb0459d7
AV
8717 /*
8718 * Get the target context (task or percpu):
8719 */
d859e29f 8720
4dc0da86 8721 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8722 overflow_handler, context, -1);
c3f00c70
PZ
8723 if (IS_ERR(event)) {
8724 err = PTR_ERR(event);
8725 goto err;
8726 }
d859e29f 8727
f8697762 8728 /* Mark owner so we could distinguish it from user events. */
63b6da39 8729 event->owner = TASK_TOMBSTONE;
f8697762 8730
4af57ef2 8731 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8732 if (IS_ERR(ctx)) {
8733 err = PTR_ERR(ctx);
c3f00c70 8734 goto err_free;
d859e29f 8735 }
fb0459d7 8736
fb0459d7
AV
8737 WARN_ON_ONCE(ctx->parent_ctx);
8738 mutex_lock(&ctx->mutex);
84c4e620
PZ
8739 if (ctx->task == TASK_TOMBSTONE) {
8740 err = -ESRCH;
8741 goto err_unlock;
8742 }
8743
bed5b25a 8744 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 8745 err = -EBUSY;
84c4e620 8746 goto err_unlock;
bed5b25a
AS
8747 }
8748
fb0459d7 8749 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8750 perf_unpin_context(ctx);
fb0459d7
AV
8751 mutex_unlock(&ctx->mutex);
8752
fb0459d7
AV
8753 return event;
8754
84c4e620
PZ
8755err_unlock:
8756 mutex_unlock(&ctx->mutex);
8757 perf_unpin_context(ctx);
8758 put_ctx(ctx);
c3f00c70
PZ
8759err_free:
8760 free_event(event);
8761err:
c6567f64 8762 return ERR_PTR(err);
9b51f66d 8763}
fb0459d7 8764EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8765
0cda4c02
YZ
8766void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8767{
8768 struct perf_event_context *src_ctx;
8769 struct perf_event_context *dst_ctx;
8770 struct perf_event *event, *tmp;
8771 LIST_HEAD(events);
8772
8773 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8774 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8775
f63a8daa
PZ
8776 /*
8777 * See perf_event_ctx_lock() for comments on the details
8778 * of swizzling perf_event::ctx.
8779 */
8780 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8781 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8782 event_entry) {
45a0e07a 8783 perf_remove_from_context(event, 0);
9a545de0 8784 unaccount_event_cpu(event, src_cpu);
0cda4c02 8785 put_ctx(src_ctx);
9886167d 8786 list_add(&event->migrate_entry, &events);
0cda4c02 8787 }
0cda4c02 8788
8f95b435
PZI
8789 /*
8790 * Wait for the events to quiesce before re-instating them.
8791 */
0cda4c02
YZ
8792 synchronize_rcu();
8793
8f95b435
PZI
8794 /*
8795 * Re-instate events in 2 passes.
8796 *
8797 * Skip over group leaders and only install siblings on this first
8798 * pass, siblings will not get enabled without a leader, however a
8799 * leader will enable its siblings, even if those are still on the old
8800 * context.
8801 */
8802 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8803 if (event->group_leader == event)
8804 continue;
8805
8806 list_del(&event->migrate_entry);
8807 if (event->state >= PERF_EVENT_STATE_OFF)
8808 event->state = PERF_EVENT_STATE_INACTIVE;
8809 account_event_cpu(event, dst_cpu);
8810 perf_install_in_context(dst_ctx, event, dst_cpu);
8811 get_ctx(dst_ctx);
8812 }
8813
8814 /*
8815 * Once all the siblings are setup properly, install the group leaders
8816 * to make it go.
8817 */
9886167d
PZ
8818 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8819 list_del(&event->migrate_entry);
0cda4c02
YZ
8820 if (event->state >= PERF_EVENT_STATE_OFF)
8821 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8822 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8823 perf_install_in_context(dst_ctx, event, dst_cpu);
8824 get_ctx(dst_ctx);
8825 }
8826 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8827 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8828}
8829EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8830
cdd6c482 8831static void sync_child_event(struct perf_event *child_event,
38b200d6 8832 struct task_struct *child)
d859e29f 8833{
cdd6c482 8834 struct perf_event *parent_event = child_event->parent;
8bc20959 8835 u64 child_val;
d859e29f 8836
cdd6c482
IM
8837 if (child_event->attr.inherit_stat)
8838 perf_event_read_event(child_event, child);
38b200d6 8839
b5e58793 8840 child_val = perf_event_count(child_event);
d859e29f
PM
8841
8842 /*
8843 * Add back the child's count to the parent's count:
8844 */
a6e6dea6 8845 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8846 atomic64_add(child_event->total_time_enabled,
8847 &parent_event->child_total_time_enabled);
8848 atomic64_add(child_event->total_time_running,
8849 &parent_event->child_total_time_running);
d859e29f
PM
8850}
8851
9b51f66d 8852static void
8ba289b8
PZ
8853perf_event_exit_event(struct perf_event *child_event,
8854 struct perf_event_context *child_ctx,
8855 struct task_struct *child)
9b51f66d 8856{
8ba289b8
PZ
8857 struct perf_event *parent_event = child_event->parent;
8858
1903d50c
PZ
8859 /*
8860 * Do not destroy the 'original' grouping; because of the context
8861 * switch optimization the original events could've ended up in a
8862 * random child task.
8863 *
8864 * If we were to destroy the original group, all group related
8865 * operations would cease to function properly after this random
8866 * child dies.
8867 *
8868 * Do destroy all inherited groups, we don't care about those
8869 * and being thorough is better.
8870 */
32132a3d
PZ
8871 raw_spin_lock_irq(&child_ctx->lock);
8872 WARN_ON_ONCE(child_ctx->is_active);
8873
8ba289b8 8874 if (parent_event)
32132a3d
PZ
8875 perf_group_detach(child_event);
8876 list_del_event(child_event, child_ctx);
a69b0ca4 8877 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 8878 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 8879
9b51f66d 8880 /*
8ba289b8 8881 * Parent events are governed by their filedesc, retain them.
9b51f66d 8882 */
8ba289b8 8883 if (!parent_event) {
179033b3 8884 perf_event_wakeup(child_event);
8ba289b8 8885 return;
4bcf349a 8886 }
8ba289b8
PZ
8887 /*
8888 * Child events can be cleaned up.
8889 */
8890
8891 sync_child_event(child_event, child);
8892
8893 /*
8894 * Remove this event from the parent's list
8895 */
8896 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8897 mutex_lock(&parent_event->child_mutex);
8898 list_del_init(&child_event->child_list);
8899 mutex_unlock(&parent_event->child_mutex);
8900
8901 /*
8902 * Kick perf_poll() for is_event_hup().
8903 */
8904 perf_event_wakeup(parent_event);
8905 free_event(child_event);
8906 put_event(parent_event);
9b51f66d
IM
8907}
8908
8dc85d54 8909static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8910{
211de6eb 8911 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 8912 struct perf_event *child_event, *next;
63b6da39
PZ
8913
8914 WARN_ON_ONCE(child != current);
9b51f66d 8915
6a3351b6 8916 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 8917 if (!child_ctx)
9b51f66d
IM
8918 return;
8919
ad3a37de 8920 /*
6a3351b6
PZ
8921 * In order to reduce the amount of tricky in ctx tear-down, we hold
8922 * ctx::mutex over the entire thing. This serializes against almost
8923 * everything that wants to access the ctx.
8924 *
8925 * The exception is sys_perf_event_open() /
8926 * perf_event_create_kernel_count() which does find_get_context()
8927 * without ctx::mutex (it cannot because of the move_group double mutex
8928 * lock thing). See the comments in perf_install_in_context().
ad3a37de 8929 */
6a3351b6 8930 mutex_lock(&child_ctx->mutex);
c93f7669
PM
8931
8932 /*
6a3351b6
PZ
8933 * In a single ctx::lock section, de-schedule the events and detach the
8934 * context from the task such that we cannot ever get it scheduled back
8935 * in.
c93f7669 8936 */
6a3351b6 8937 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 8938 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
4a1c0f26 8939
71a851b4 8940 /*
63b6da39
PZ
8941 * Now that the context is inactive, destroy the task <-> ctx relation
8942 * and mark the context dead.
71a851b4 8943 */
63b6da39
PZ
8944 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8945 put_ctx(child_ctx); /* cannot be last */
8946 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8947 put_task_struct(current); /* cannot be last */
4a1c0f26 8948
211de6eb 8949 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 8950 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 8951
211de6eb
PZ
8952 if (clone_ctx)
8953 put_ctx(clone_ctx);
4a1c0f26 8954
9f498cc5 8955 /*
cdd6c482
IM
8956 * Report the task dead after unscheduling the events so that we
8957 * won't get any samples after PERF_RECORD_EXIT. We can however still
8958 * get a few PERF_RECORD_READ events.
9f498cc5 8959 */
cdd6c482 8960 perf_event_task(child, child_ctx, 0);
a63eaf34 8961
ebf905fc 8962 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 8963 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 8964
a63eaf34
PM
8965 mutex_unlock(&child_ctx->mutex);
8966
8967 put_ctx(child_ctx);
9b51f66d
IM
8968}
8969
8dc85d54
PZ
8970/*
8971 * When a child task exits, feed back event values to parent events.
8972 */
8973void perf_event_exit_task(struct task_struct *child)
8974{
8882135b 8975 struct perf_event *event, *tmp;
8dc85d54
PZ
8976 int ctxn;
8977
8882135b
PZ
8978 mutex_lock(&child->perf_event_mutex);
8979 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8980 owner_entry) {
8981 list_del_init(&event->owner_entry);
8982
8983 /*
8984 * Ensure the list deletion is visible before we clear
8985 * the owner, closes a race against perf_release() where
8986 * we need to serialize on the owner->perf_event_mutex.
8987 */
f47c02c0 8988 smp_store_release(&event->owner, NULL);
8882135b
PZ
8989 }
8990 mutex_unlock(&child->perf_event_mutex);
8991
8dc85d54
PZ
8992 for_each_task_context_nr(ctxn)
8993 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
8994
8995 /*
8996 * The perf_event_exit_task_context calls perf_event_task
8997 * with child's task_ctx, which generates EXIT events for
8998 * child contexts and sets child->perf_event_ctxp[] to NULL.
8999 * At this point we need to send EXIT events to cpu contexts.
9000 */
9001 perf_event_task(child, NULL, 0);
8dc85d54
PZ
9002}
9003
889ff015
FW
9004static void perf_free_event(struct perf_event *event,
9005 struct perf_event_context *ctx)
9006{
9007 struct perf_event *parent = event->parent;
9008
9009 if (WARN_ON_ONCE(!parent))
9010 return;
9011
9012 mutex_lock(&parent->child_mutex);
9013 list_del_init(&event->child_list);
9014 mutex_unlock(&parent->child_mutex);
9015
a6fa941d 9016 put_event(parent);
889ff015 9017
652884fe 9018 raw_spin_lock_irq(&ctx->lock);
8a49542c 9019 perf_group_detach(event);
889ff015 9020 list_del_event(event, ctx);
652884fe 9021 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
9022 free_event(event);
9023}
9024
bbbee908 9025/*
652884fe 9026 * Free an unexposed, unused context as created by inheritance by
8dc85d54 9027 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
9028 *
9029 * Not all locks are strictly required, but take them anyway to be nice and
9030 * help out with the lockdep assertions.
bbbee908 9031 */
cdd6c482 9032void perf_event_free_task(struct task_struct *task)
bbbee908 9033{
8dc85d54 9034 struct perf_event_context *ctx;
cdd6c482 9035 struct perf_event *event, *tmp;
8dc85d54 9036 int ctxn;
bbbee908 9037
8dc85d54
PZ
9038 for_each_task_context_nr(ctxn) {
9039 ctx = task->perf_event_ctxp[ctxn];
9040 if (!ctx)
9041 continue;
bbbee908 9042
8dc85d54 9043 mutex_lock(&ctx->mutex);
bbbee908 9044again:
8dc85d54
PZ
9045 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9046 group_entry)
9047 perf_free_event(event, ctx);
bbbee908 9048
8dc85d54
PZ
9049 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9050 group_entry)
9051 perf_free_event(event, ctx);
bbbee908 9052
8dc85d54
PZ
9053 if (!list_empty(&ctx->pinned_groups) ||
9054 !list_empty(&ctx->flexible_groups))
9055 goto again;
bbbee908 9056
8dc85d54 9057 mutex_unlock(&ctx->mutex);
bbbee908 9058
8dc85d54
PZ
9059 put_ctx(ctx);
9060 }
889ff015
FW
9061}
9062
4e231c79
PZ
9063void perf_event_delayed_put(struct task_struct *task)
9064{
9065 int ctxn;
9066
9067 for_each_task_context_nr(ctxn)
9068 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9069}
9070
e03e7ee3 9071struct file *perf_event_get(unsigned int fd)
ffe8690c 9072{
e03e7ee3 9073 struct file *file;
ffe8690c 9074
e03e7ee3
AS
9075 file = fget_raw(fd);
9076 if (!file)
9077 return ERR_PTR(-EBADF);
ffe8690c 9078
e03e7ee3
AS
9079 if (file->f_op != &perf_fops) {
9080 fput(file);
9081 return ERR_PTR(-EBADF);
9082 }
ffe8690c 9083
e03e7ee3 9084 return file;
ffe8690c
KX
9085}
9086
9087const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9088{
9089 if (!event)
9090 return ERR_PTR(-EINVAL);
9091
9092 return &event->attr;
9093}
9094
97dee4f3
PZ
9095/*
9096 * inherit a event from parent task to child task:
9097 */
9098static struct perf_event *
9099inherit_event(struct perf_event *parent_event,
9100 struct task_struct *parent,
9101 struct perf_event_context *parent_ctx,
9102 struct task_struct *child,
9103 struct perf_event *group_leader,
9104 struct perf_event_context *child_ctx)
9105{
1929def9 9106 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 9107 struct perf_event *child_event;
cee010ec 9108 unsigned long flags;
97dee4f3
PZ
9109
9110 /*
9111 * Instead of creating recursive hierarchies of events,
9112 * we link inherited events back to the original parent,
9113 * which has a filp for sure, which we use as the reference
9114 * count:
9115 */
9116 if (parent_event->parent)
9117 parent_event = parent_event->parent;
9118
9119 child_event = perf_event_alloc(&parent_event->attr,
9120 parent_event->cpu,
d580ff86 9121 child,
97dee4f3 9122 group_leader, parent_event,
79dff51e 9123 NULL, NULL, -1);
97dee4f3
PZ
9124 if (IS_ERR(child_event))
9125 return child_event;
a6fa941d 9126
c6e5b732
PZ
9127 /*
9128 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9129 * must be under the same lock in order to serialize against
9130 * perf_event_release_kernel(), such that either we must observe
9131 * is_orphaned_event() or they will observe us on the child_list.
9132 */
9133 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
9134 if (is_orphaned_event(parent_event) ||
9135 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 9136 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
9137 free_event(child_event);
9138 return NULL;
9139 }
9140
97dee4f3
PZ
9141 get_ctx(child_ctx);
9142
9143 /*
9144 * Make the child state follow the state of the parent event,
9145 * not its attr.disabled bit. We hold the parent's mutex,
9146 * so we won't race with perf_event_{en, dis}able_family.
9147 */
1929def9 9148 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
9149 child_event->state = PERF_EVENT_STATE_INACTIVE;
9150 else
9151 child_event->state = PERF_EVENT_STATE_OFF;
9152
9153 if (parent_event->attr.freq) {
9154 u64 sample_period = parent_event->hw.sample_period;
9155 struct hw_perf_event *hwc = &child_event->hw;
9156
9157 hwc->sample_period = sample_period;
9158 hwc->last_period = sample_period;
9159
9160 local64_set(&hwc->period_left, sample_period);
9161 }
9162
9163 child_event->ctx = child_ctx;
9164 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9165 child_event->overflow_handler_context
9166 = parent_event->overflow_handler_context;
97dee4f3 9167
614b6780
TG
9168 /*
9169 * Precalculate sample_data sizes
9170 */
9171 perf_event__header_size(child_event);
6844c09d 9172 perf_event__id_header_size(child_event);
614b6780 9173
97dee4f3
PZ
9174 /*
9175 * Link it up in the child's context:
9176 */
cee010ec 9177 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9178 add_event_to_ctx(child_event, child_ctx);
cee010ec 9179 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9180
97dee4f3
PZ
9181 /*
9182 * Link this into the parent event's child list
9183 */
97dee4f3
PZ
9184 list_add_tail(&child_event->child_list, &parent_event->child_list);
9185 mutex_unlock(&parent_event->child_mutex);
9186
9187 return child_event;
9188}
9189
9190static int inherit_group(struct perf_event *parent_event,
9191 struct task_struct *parent,
9192 struct perf_event_context *parent_ctx,
9193 struct task_struct *child,
9194 struct perf_event_context *child_ctx)
9195{
9196 struct perf_event *leader;
9197 struct perf_event *sub;
9198 struct perf_event *child_ctr;
9199
9200 leader = inherit_event(parent_event, parent, parent_ctx,
9201 child, NULL, child_ctx);
9202 if (IS_ERR(leader))
9203 return PTR_ERR(leader);
9204 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9205 child_ctr = inherit_event(sub, parent, parent_ctx,
9206 child, leader, child_ctx);
9207 if (IS_ERR(child_ctr))
9208 return PTR_ERR(child_ctr);
9209 }
9210 return 0;
889ff015
FW
9211}
9212
9213static int
9214inherit_task_group(struct perf_event *event, struct task_struct *parent,
9215 struct perf_event_context *parent_ctx,
8dc85d54 9216 struct task_struct *child, int ctxn,
889ff015
FW
9217 int *inherited_all)
9218{
9219 int ret;
8dc85d54 9220 struct perf_event_context *child_ctx;
889ff015
FW
9221
9222 if (!event->attr.inherit) {
9223 *inherited_all = 0;
9224 return 0;
bbbee908
PZ
9225 }
9226
fe4b04fa 9227 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9228 if (!child_ctx) {
9229 /*
9230 * This is executed from the parent task context, so
9231 * inherit events that have been marked for cloning.
9232 * First allocate and initialize a context for the
9233 * child.
9234 */
bbbee908 9235
734df5ab 9236 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9237 if (!child_ctx)
9238 return -ENOMEM;
bbbee908 9239
8dc85d54 9240 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9241 }
9242
9243 ret = inherit_group(event, parent, parent_ctx,
9244 child, child_ctx);
9245
9246 if (ret)
9247 *inherited_all = 0;
9248
9249 return ret;
bbbee908
PZ
9250}
9251
9b51f66d 9252/*
cdd6c482 9253 * Initialize the perf_event context in task_struct
9b51f66d 9254 */
985c8dcb 9255static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9256{
889ff015 9257 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9258 struct perf_event_context *cloned_ctx;
9259 struct perf_event *event;
9b51f66d 9260 struct task_struct *parent = current;
564c2b21 9261 int inherited_all = 1;
dddd3379 9262 unsigned long flags;
6ab423e0 9263 int ret = 0;
9b51f66d 9264
8dc85d54 9265 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9266 return 0;
9267
ad3a37de 9268 /*
25346b93
PM
9269 * If the parent's context is a clone, pin it so it won't get
9270 * swapped under us.
ad3a37de 9271 */
8dc85d54 9272 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9273 if (!parent_ctx)
9274 return 0;
25346b93 9275
ad3a37de
PM
9276 /*
9277 * No need to check if parent_ctx != NULL here; since we saw
9278 * it non-NULL earlier, the only reason for it to become NULL
9279 * is if we exit, and since we're currently in the middle of
9280 * a fork we can't be exiting at the same time.
9281 */
ad3a37de 9282
9b51f66d
IM
9283 /*
9284 * Lock the parent list. No need to lock the child - not PID
9285 * hashed yet and not running, so nobody can access it.
9286 */
d859e29f 9287 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9288
9289 /*
9290 * We dont have to disable NMIs - we are only looking at
9291 * the list, not manipulating it:
9292 */
889ff015 9293 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9294 ret = inherit_task_group(event, parent, parent_ctx,
9295 child, ctxn, &inherited_all);
889ff015
FW
9296 if (ret)
9297 break;
9298 }
b93f7978 9299
dddd3379
TG
9300 /*
9301 * We can't hold ctx->lock when iterating the ->flexible_group list due
9302 * to allocations, but we need to prevent rotation because
9303 * rotate_ctx() will change the list from interrupt context.
9304 */
9305 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9306 parent_ctx->rotate_disable = 1;
9307 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9308
889ff015 9309 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9310 ret = inherit_task_group(event, parent, parent_ctx,
9311 child, ctxn, &inherited_all);
889ff015 9312 if (ret)
9b51f66d 9313 break;
564c2b21
PM
9314 }
9315
dddd3379
TG
9316 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9317 parent_ctx->rotate_disable = 0;
dddd3379 9318
8dc85d54 9319 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9320
05cbaa28 9321 if (child_ctx && inherited_all) {
564c2b21
PM
9322 /*
9323 * Mark the child context as a clone of the parent
9324 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9325 *
9326 * Note that if the parent is a clone, the holding of
9327 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9328 */
c5ed5145 9329 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9330 if (cloned_ctx) {
9331 child_ctx->parent_ctx = cloned_ctx;
25346b93 9332 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9333 } else {
9334 child_ctx->parent_ctx = parent_ctx;
9335 child_ctx->parent_gen = parent_ctx->generation;
9336 }
9337 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9338 }
9339
c5ed5145 9340 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9341 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9342
25346b93 9343 perf_unpin_context(parent_ctx);
fe4b04fa 9344 put_ctx(parent_ctx);
ad3a37de 9345
6ab423e0 9346 return ret;
9b51f66d
IM
9347}
9348
8dc85d54
PZ
9349/*
9350 * Initialize the perf_event context in task_struct
9351 */
9352int perf_event_init_task(struct task_struct *child)
9353{
9354 int ctxn, ret;
9355
8550d7cb
ON
9356 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9357 mutex_init(&child->perf_event_mutex);
9358 INIT_LIST_HEAD(&child->perf_event_list);
9359
8dc85d54
PZ
9360 for_each_task_context_nr(ctxn) {
9361 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9362 if (ret) {
9363 perf_event_free_task(child);
8dc85d54 9364 return ret;
6c72e350 9365 }
8dc85d54
PZ
9366 }
9367
9368 return 0;
9369}
9370
220b140b
PM
9371static void __init perf_event_init_all_cpus(void)
9372{
b28ab83c 9373 struct swevent_htable *swhash;
220b140b 9374 int cpu;
220b140b
PM
9375
9376 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9377 swhash = &per_cpu(swevent_htable, cpu);
9378 mutex_init(&swhash->hlist_mutex);
2fde4f94 9379 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9380 }
9381}
9382
0db0628d 9383static void perf_event_init_cpu(int cpu)
0793a61d 9384{
108b02cf 9385 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9386
b28ab83c 9387 mutex_lock(&swhash->hlist_mutex);
059fcd8c 9388 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
9389 struct swevent_hlist *hlist;
9390
b28ab83c
PZ
9391 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9392 WARN_ON(!hlist);
9393 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9394 }
b28ab83c 9395 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9396}
9397
2965faa5 9398#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9399static void __perf_event_exit_context(void *__info)
0793a61d 9400{
108b02cf 9401 struct perf_event_context *ctx = __info;
fae3fde6
PZ
9402 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9403 struct perf_event *event;
0793a61d 9404
fae3fde6
PZ
9405 raw_spin_lock(&ctx->lock);
9406 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 9407 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 9408 raw_spin_unlock(&ctx->lock);
0793a61d 9409}
108b02cf
PZ
9410
9411static void perf_event_exit_cpu_context(int cpu)
9412{
9413 struct perf_event_context *ctx;
9414 struct pmu *pmu;
9415 int idx;
9416
9417 idx = srcu_read_lock(&pmus_srcu);
9418 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9419 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9420
9421 mutex_lock(&ctx->mutex);
9422 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9423 mutex_unlock(&ctx->mutex);
9424 }
9425 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9426}
9427
cdd6c482 9428static void perf_event_exit_cpu(int cpu)
0793a61d 9429{
e3703f8c 9430 perf_event_exit_cpu_context(cpu);
0793a61d
TG
9431}
9432#else
cdd6c482 9433static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9434#endif
9435
c277443c
PZ
9436static int
9437perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9438{
9439 int cpu;
9440
9441 for_each_online_cpu(cpu)
9442 perf_event_exit_cpu(cpu);
9443
9444 return NOTIFY_OK;
9445}
9446
9447/*
9448 * Run the perf reboot notifier at the very last possible moment so that
9449 * the generic watchdog code runs as long as possible.
9450 */
9451static struct notifier_block perf_reboot_notifier = {
9452 .notifier_call = perf_reboot,
9453 .priority = INT_MIN,
9454};
9455
0db0628d 9456static int
0793a61d
TG
9457perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9458{
9459 unsigned int cpu = (long)hcpu;
9460
4536e4d1 9461 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9462
9463 case CPU_UP_PREPARE:
1dcaac1c
PZ
9464 /*
9465 * This must be done before the CPU comes alive, because the
9466 * moment we can run tasks we can encounter (software) events.
9467 *
9468 * Specifically, someone can have inherited events on kthreadd
9469 * or a pre-existing worker thread that gets re-bound.
9470 */
cdd6c482 9471 perf_event_init_cpu(cpu);
0793a61d
TG
9472 break;
9473
9474 case CPU_DOWN_PREPARE:
1dcaac1c
PZ
9475 /*
9476 * This must be done before the CPU dies because after that an
9477 * active event might want to IPI the CPU and that'll not work
9478 * so great for dead CPUs.
9479 *
9480 * XXX smp_call_function_single() return -ENXIO without a warn
9481 * so we could possibly deal with this.
9482 *
9483 * This is safe against new events arriving because
9484 * sys_perf_event_open() serializes against hotplug using
9485 * get_online_cpus().
9486 */
cdd6c482 9487 perf_event_exit_cpu(cpu);
0793a61d 9488 break;
0793a61d
TG
9489 default:
9490 break;
9491 }
9492
9493 return NOTIFY_OK;
9494}
9495
cdd6c482 9496void __init perf_event_init(void)
0793a61d 9497{
3c502e7a
JW
9498 int ret;
9499
2e80a82a
PZ
9500 idr_init(&pmu_idr);
9501
220b140b 9502 perf_event_init_all_cpus();
b0a873eb 9503 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9504 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9505 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9506 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9507 perf_tp_register();
9508 perf_cpu_notifier(perf_cpu_notify);
c277443c 9509 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9510
9511 ret = init_hw_breakpoint();
9512 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 9513
b01c3a00
JO
9514 /*
9515 * Build time assertion that we keep the data_head at the intended
9516 * location. IOW, validation we got the __reserved[] size right.
9517 */
9518 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9519 != 1024);
0793a61d 9520}
abe43400 9521
fd979c01
CS
9522ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9523 char *page)
9524{
9525 struct perf_pmu_events_attr *pmu_attr =
9526 container_of(attr, struct perf_pmu_events_attr, attr);
9527
9528 if (pmu_attr->event_str)
9529 return sprintf(page, "%s\n", pmu_attr->event_str);
9530
9531 return 0;
9532}
675965b0 9533EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 9534
abe43400
PZ
9535static int __init perf_event_sysfs_init(void)
9536{
9537 struct pmu *pmu;
9538 int ret;
9539
9540 mutex_lock(&pmus_lock);
9541
9542 ret = bus_register(&pmu_bus);
9543 if (ret)
9544 goto unlock;
9545
9546 list_for_each_entry(pmu, &pmus, entry) {
9547 if (!pmu->name || pmu->type < 0)
9548 continue;
9549
9550 ret = pmu_dev_alloc(pmu);
9551 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9552 }
9553 pmu_bus_running = 1;
9554 ret = 0;
9555
9556unlock:
9557 mutex_unlock(&pmus_lock);
9558
9559 return ret;
9560}
9561device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9562
9563#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9564static struct cgroup_subsys_state *
9565perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9566{
9567 struct perf_cgroup *jc;
e5d1367f 9568
1b15d055 9569 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9570 if (!jc)
9571 return ERR_PTR(-ENOMEM);
9572
e5d1367f
SE
9573 jc->info = alloc_percpu(struct perf_cgroup_info);
9574 if (!jc->info) {
9575 kfree(jc);
9576 return ERR_PTR(-ENOMEM);
9577 }
9578
e5d1367f
SE
9579 return &jc->css;
9580}
9581
eb95419b 9582static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9583{
eb95419b
TH
9584 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9585
e5d1367f
SE
9586 free_percpu(jc->info);
9587 kfree(jc);
9588}
9589
9590static int __perf_cgroup_move(void *info)
9591{
9592 struct task_struct *task = info;
ddaaf4e2 9593 rcu_read_lock();
e5d1367f 9594 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9595 rcu_read_unlock();
e5d1367f
SE
9596 return 0;
9597}
9598
1f7dd3e5 9599static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 9600{
bb9d97b6 9601 struct task_struct *task;
1f7dd3e5 9602 struct cgroup_subsys_state *css;
bb9d97b6 9603
1f7dd3e5 9604 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9605 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9606}
9607
073219e9 9608struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9609 .css_alloc = perf_cgroup_css_alloc,
9610 .css_free = perf_cgroup_css_free,
bb9d97b6 9611 .attach = perf_cgroup_attach,
e5d1367f
SE
9612};
9613#endif /* CONFIG_CGROUP_PERF */