]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/events/core.c
perf: Return proper values for user stack errors
[mirror_ubuntu-bionic-kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6 211
16444645 212 lockdep_assert_irqs_disabled();
fae3fde6 213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
16444645 309 lockdep_assert_irqs_disabled();
cca20946
PZ
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
d48d0c64 400 * 3 - disallow all unpriv perf event use
0764771d 401 */
d48d0c64
BH
402#ifdef CONFIG_SECURITY_PERF_EVENTS_RESTRICT
403int sysctl_perf_event_paranoid __read_mostly = 3;
404#else
405int sysctl_perf_event_paranoid __read_mostly = 1;
406#endif
0764771d 407
20443384
FW
408/* Minimum for 512 kiB + 1 user control page */
409int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
410
411/*
cdd6c482 412 * max perf event sample rate
df58ab24 413 */
14c63f17
DH
414#define DEFAULT_MAX_SAMPLE_RATE 100000
415#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
416#define DEFAULT_CPU_TIME_MAX_PERCENT 25
417
418int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
419
420static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
421static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
422
d9494cb4
PZ
423static int perf_sample_allowed_ns __read_mostly =
424 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 425
18ab2cd3 426static void update_perf_cpu_limits(void)
14c63f17
DH
427{
428 u64 tmp = perf_sample_period_ns;
429
430 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
431 tmp = div_u64(tmp, 100);
432 if (!tmp)
433 tmp = 1;
434
435 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 436}
163ec435 437
9e630205
SE
438static int perf_rotate_context(struct perf_cpu_context *cpuctx);
439
163ec435
PZ
440int perf_proc_update_handler(struct ctl_table *table, int write,
441 void __user *buffer, size_t *lenp,
442 loff_t *ppos)
443{
723478c8 444 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
445
446 if (ret || !write)
447 return ret;
448
ab7fdefb
KL
449 /*
450 * If throttling is disabled don't allow the write:
451 */
452 if (sysctl_perf_cpu_time_max_percent == 100 ||
453 sysctl_perf_cpu_time_max_percent == 0)
454 return -EINVAL;
455
163ec435 456 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
457 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
458 update_perf_cpu_limits();
459
460 return 0;
461}
462
463int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
464
465int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
466 void __user *buffer, size_t *lenp,
467 loff_t *ppos)
468{
1572e45a 469 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
470
471 if (ret || !write)
472 return ret;
473
b303e7c1
PZ
474 if (sysctl_perf_cpu_time_max_percent == 100 ||
475 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
476 printk(KERN_WARNING
477 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
478 WRITE_ONCE(perf_sample_allowed_ns, 0);
479 } else {
480 update_perf_cpu_limits();
481 }
163ec435
PZ
482
483 return 0;
484}
1ccd1549 485
14c63f17
DH
486/*
487 * perf samples are done in some very critical code paths (NMIs).
488 * If they take too much CPU time, the system can lock up and not
489 * get any real work done. This will drop the sample rate when
490 * we detect that events are taking too long.
491 */
492#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 493static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 494
91a612ee
PZ
495static u64 __report_avg;
496static u64 __report_allowed;
497
6a02ad66 498static void perf_duration_warn(struct irq_work *w)
14c63f17 499{
0d87d7ec 500 printk_ratelimited(KERN_INFO
91a612ee
PZ
501 "perf: interrupt took too long (%lld > %lld), lowering "
502 "kernel.perf_event_max_sample_rate to %d\n",
503 __report_avg, __report_allowed,
504 sysctl_perf_event_sample_rate);
6a02ad66
PZ
505}
506
507static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
508
509void perf_sample_event_took(u64 sample_len_ns)
510{
91a612ee
PZ
511 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
512 u64 running_len;
513 u64 avg_len;
514 u32 max;
14c63f17 515
91a612ee 516 if (max_len == 0)
14c63f17
DH
517 return;
518
91a612ee
PZ
519 /* Decay the counter by 1 average sample. */
520 running_len = __this_cpu_read(running_sample_length);
521 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
522 running_len += sample_len_ns;
523 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
524
525 /*
91a612ee
PZ
526 * Note: this will be biased artifically low until we have
527 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
528 * from having to maintain a count.
529 */
91a612ee
PZ
530 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
531 if (avg_len <= max_len)
14c63f17
DH
532 return;
533
91a612ee
PZ
534 __report_avg = avg_len;
535 __report_allowed = max_len;
14c63f17 536
91a612ee
PZ
537 /*
538 * Compute a throttle threshold 25% below the current duration.
539 */
540 avg_len += avg_len / 4;
541 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
542 if (avg_len < max)
543 max /= (u32)avg_len;
544 else
545 max = 1;
14c63f17 546
91a612ee
PZ
547 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
548 WRITE_ONCE(max_samples_per_tick, max);
549
550 sysctl_perf_event_sample_rate = max * HZ;
551 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 552
cd578abb 553 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 554 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 555 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 556 __report_avg, __report_allowed,
cd578abb
PZ
557 sysctl_perf_event_sample_rate);
558 }
14c63f17
DH
559}
560
cdd6c482 561static atomic64_t perf_event_id;
a96bbc16 562
0b3fcf17
SE
563static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
564 enum event_type_t event_type);
565
566static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
567 enum event_type_t event_type,
568 struct task_struct *task);
569
570static void update_context_time(struct perf_event_context *ctx);
571static u64 perf_event_time(struct perf_event *event);
0b3fcf17 572
cdd6c482 573void __weak perf_event_print_debug(void) { }
0793a61d 574
84c79910 575extern __weak const char *perf_pmu_name(void)
0793a61d 576{
84c79910 577 return "pmu";
0793a61d
TG
578}
579
0b3fcf17
SE
580static inline u64 perf_clock(void)
581{
582 return local_clock();
583}
584
34f43927
PZ
585static inline u64 perf_event_clock(struct perf_event *event)
586{
587 return event->clock();
588}
589
0d3d73aa
PZ
590/*
591 * State based event timekeeping...
592 *
593 * The basic idea is to use event->state to determine which (if any) time
594 * fields to increment with the current delta. This means we only need to
595 * update timestamps when we change state or when they are explicitly requested
596 * (read).
597 *
598 * Event groups make things a little more complicated, but not terribly so. The
599 * rules for a group are that if the group leader is OFF the entire group is
600 * OFF, irrespecive of what the group member states are. This results in
601 * __perf_effective_state().
602 *
603 * A futher ramification is that when a group leader flips between OFF and
604 * !OFF, we need to update all group member times.
605 *
606 *
607 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
608 * need to make sure the relevant context time is updated before we try and
609 * update our timestamps.
610 */
611
612static __always_inline enum perf_event_state
613__perf_effective_state(struct perf_event *event)
614{
615 struct perf_event *leader = event->group_leader;
616
617 if (leader->state <= PERF_EVENT_STATE_OFF)
618 return leader->state;
619
620 return event->state;
621}
622
623static __always_inline void
624__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
625{
626 enum perf_event_state state = __perf_effective_state(event);
627 u64 delta = now - event->tstamp;
628
629 *enabled = event->total_time_enabled;
630 if (state >= PERF_EVENT_STATE_INACTIVE)
631 *enabled += delta;
632
633 *running = event->total_time_running;
634 if (state >= PERF_EVENT_STATE_ACTIVE)
635 *running += delta;
636}
637
638static void perf_event_update_time(struct perf_event *event)
639{
640 u64 now = perf_event_time(event);
641
642 __perf_update_times(event, now, &event->total_time_enabled,
643 &event->total_time_running);
644 event->tstamp = now;
645}
646
647static void perf_event_update_sibling_time(struct perf_event *leader)
648{
649 struct perf_event *sibling;
650
651 list_for_each_entry(sibling, &leader->sibling_list, group_entry)
652 perf_event_update_time(sibling);
653}
654
655static void
656perf_event_set_state(struct perf_event *event, enum perf_event_state state)
657{
658 if (event->state == state)
659 return;
660
661 perf_event_update_time(event);
662 /*
663 * If a group leader gets enabled/disabled all its siblings
664 * are affected too.
665 */
666 if ((event->state < 0) ^ (state < 0))
667 perf_event_update_sibling_time(event);
668
669 WRITE_ONCE(event->state, state);
670}
671
e5d1367f
SE
672#ifdef CONFIG_CGROUP_PERF
673
e5d1367f
SE
674static inline bool
675perf_cgroup_match(struct perf_event *event)
676{
677 struct perf_event_context *ctx = event->ctx;
678 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
679
ef824fa1
TH
680 /* @event doesn't care about cgroup */
681 if (!event->cgrp)
682 return true;
683
684 /* wants specific cgroup scope but @cpuctx isn't associated with any */
685 if (!cpuctx->cgrp)
686 return false;
687
688 /*
689 * Cgroup scoping is recursive. An event enabled for a cgroup is
690 * also enabled for all its descendant cgroups. If @cpuctx's
691 * cgroup is a descendant of @event's (the test covers identity
692 * case), it's a match.
693 */
694 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
695 event->cgrp->css.cgroup);
e5d1367f
SE
696}
697
e5d1367f
SE
698static inline void perf_detach_cgroup(struct perf_event *event)
699{
4e2ba650 700 css_put(&event->cgrp->css);
e5d1367f
SE
701 event->cgrp = NULL;
702}
703
704static inline int is_cgroup_event(struct perf_event *event)
705{
706 return event->cgrp != NULL;
707}
708
709static inline u64 perf_cgroup_event_time(struct perf_event *event)
710{
711 struct perf_cgroup_info *t;
712
713 t = per_cpu_ptr(event->cgrp->info, event->cpu);
714 return t->time;
715}
716
717static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
718{
719 struct perf_cgroup_info *info;
720 u64 now;
721
722 now = perf_clock();
723
724 info = this_cpu_ptr(cgrp->info);
725
726 info->time += now - info->timestamp;
727 info->timestamp = now;
728}
729
730static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
731{
732 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
733 if (cgrp_out)
734 __update_cgrp_time(cgrp_out);
735}
736
737static inline void update_cgrp_time_from_event(struct perf_event *event)
738{
3f7cce3c
SE
739 struct perf_cgroup *cgrp;
740
e5d1367f 741 /*
3f7cce3c
SE
742 * ensure we access cgroup data only when needed and
743 * when we know the cgroup is pinned (css_get)
e5d1367f 744 */
3f7cce3c 745 if (!is_cgroup_event(event))
e5d1367f
SE
746 return;
747
614e4c4e 748 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
749 /*
750 * Do not update time when cgroup is not active
751 */
e6a52033 752 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 753 __update_cgrp_time(event->cgrp);
e5d1367f
SE
754}
755
756static inline void
3f7cce3c
SE
757perf_cgroup_set_timestamp(struct task_struct *task,
758 struct perf_event_context *ctx)
e5d1367f
SE
759{
760 struct perf_cgroup *cgrp;
761 struct perf_cgroup_info *info;
762
3f7cce3c
SE
763 /*
764 * ctx->lock held by caller
765 * ensure we do not access cgroup data
766 * unless we have the cgroup pinned (css_get)
767 */
768 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
769 return;
770
614e4c4e 771 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 772 info = this_cpu_ptr(cgrp->info);
3f7cce3c 773 info->timestamp = ctx->timestamp;
e5d1367f
SE
774}
775
058fe1c0
DCC
776static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
777
e5d1367f
SE
778#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
779#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
780
781/*
782 * reschedule events based on the cgroup constraint of task.
783 *
784 * mode SWOUT : schedule out everything
785 * mode SWIN : schedule in based on cgroup for next
786 */
18ab2cd3 787static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
788{
789 struct perf_cpu_context *cpuctx;
058fe1c0 790 struct list_head *list;
e5d1367f
SE
791 unsigned long flags;
792
793 /*
058fe1c0
DCC
794 * Disable interrupts and preemption to avoid this CPU's
795 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
796 */
797 local_irq_save(flags);
798
058fe1c0
DCC
799 list = this_cpu_ptr(&cgrp_cpuctx_list);
800 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
801 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 802
058fe1c0
DCC
803 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
804 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 805
058fe1c0
DCC
806 if (mode & PERF_CGROUP_SWOUT) {
807 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
808 /*
809 * must not be done before ctxswout due
810 * to event_filter_match() in event_sched_out()
811 */
812 cpuctx->cgrp = NULL;
813 }
e5d1367f 814
058fe1c0
DCC
815 if (mode & PERF_CGROUP_SWIN) {
816 WARN_ON_ONCE(cpuctx->cgrp);
817 /*
818 * set cgrp before ctxsw in to allow
819 * event_filter_match() to not have to pass
820 * task around
821 * we pass the cpuctx->ctx to perf_cgroup_from_task()
822 * because cgorup events are only per-cpu
823 */
824 cpuctx->cgrp = perf_cgroup_from_task(task,
825 &cpuctx->ctx);
826 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 827 }
058fe1c0
DCC
828 perf_pmu_enable(cpuctx->ctx.pmu);
829 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
830 }
831
e5d1367f
SE
832 local_irq_restore(flags);
833}
834
a8d757ef
SE
835static inline void perf_cgroup_sched_out(struct task_struct *task,
836 struct task_struct *next)
e5d1367f 837{
a8d757ef
SE
838 struct perf_cgroup *cgrp1;
839 struct perf_cgroup *cgrp2 = NULL;
840
ddaaf4e2 841 rcu_read_lock();
a8d757ef
SE
842 /*
843 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
844 * we do not need to pass the ctx here because we know
845 * we are holding the rcu lock
a8d757ef 846 */
614e4c4e 847 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 848 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
849
850 /*
851 * only schedule out current cgroup events if we know
852 * that we are switching to a different cgroup. Otherwise,
853 * do no touch the cgroup events.
854 */
855 if (cgrp1 != cgrp2)
856 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
857
858 rcu_read_unlock();
e5d1367f
SE
859}
860
a8d757ef
SE
861static inline void perf_cgroup_sched_in(struct task_struct *prev,
862 struct task_struct *task)
e5d1367f 863{
a8d757ef
SE
864 struct perf_cgroup *cgrp1;
865 struct perf_cgroup *cgrp2 = NULL;
866
ddaaf4e2 867 rcu_read_lock();
a8d757ef
SE
868 /*
869 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
870 * we do not need to pass the ctx here because we know
871 * we are holding the rcu lock
a8d757ef 872 */
614e4c4e 873 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 874 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
875
876 /*
877 * only need to schedule in cgroup events if we are changing
878 * cgroup during ctxsw. Cgroup events were not scheduled
879 * out of ctxsw out if that was not the case.
880 */
881 if (cgrp1 != cgrp2)
882 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
883
884 rcu_read_unlock();
e5d1367f
SE
885}
886
887static inline int perf_cgroup_connect(int fd, struct perf_event *event,
888 struct perf_event_attr *attr,
889 struct perf_event *group_leader)
890{
891 struct perf_cgroup *cgrp;
892 struct cgroup_subsys_state *css;
2903ff01
AV
893 struct fd f = fdget(fd);
894 int ret = 0;
e5d1367f 895
2903ff01 896 if (!f.file)
e5d1367f
SE
897 return -EBADF;
898
b583043e 899 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 900 &perf_event_cgrp_subsys);
3db272c0
LZ
901 if (IS_ERR(css)) {
902 ret = PTR_ERR(css);
903 goto out;
904 }
e5d1367f
SE
905
906 cgrp = container_of(css, struct perf_cgroup, css);
907 event->cgrp = cgrp;
908
909 /*
910 * all events in a group must monitor
911 * the same cgroup because a task belongs
912 * to only one perf cgroup at a time
913 */
914 if (group_leader && group_leader->cgrp != cgrp) {
915 perf_detach_cgroup(event);
916 ret = -EINVAL;
e5d1367f 917 }
3db272c0 918out:
2903ff01 919 fdput(f);
e5d1367f
SE
920 return ret;
921}
922
923static inline void
924perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
925{
926 struct perf_cgroup_info *t;
927 t = per_cpu_ptr(event->cgrp->info, event->cpu);
928 event->shadow_ctx_time = now - t->timestamp;
929}
930
db4a8356
DCC
931/*
932 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
933 * cleared when last cgroup event is removed.
934 */
935static inline void
936list_update_cgroup_event(struct perf_event *event,
937 struct perf_event_context *ctx, bool add)
938{
939 struct perf_cpu_context *cpuctx;
058fe1c0 940 struct list_head *cpuctx_entry;
db4a8356
DCC
941
942 if (!is_cgroup_event(event))
943 return;
944
945 if (add && ctx->nr_cgroups++)
946 return;
947 else if (!add && --ctx->nr_cgroups)
948 return;
949 /*
950 * Because cgroup events are always per-cpu events,
951 * this will always be called from the right CPU.
952 */
953 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
954 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
955 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
956 if (add) {
be96b316
TH
957 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
958
058fe1c0 959 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
be96b316
TH
960 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
961 cpuctx->cgrp = cgrp;
058fe1c0
DCC
962 } else {
963 list_del(cpuctx_entry);
8fc31ce8 964 cpuctx->cgrp = NULL;
058fe1c0 965 }
db4a8356
DCC
966}
967
e5d1367f
SE
968#else /* !CONFIG_CGROUP_PERF */
969
970static inline bool
971perf_cgroup_match(struct perf_event *event)
972{
973 return true;
974}
975
976static inline void perf_detach_cgroup(struct perf_event *event)
977{}
978
979static inline int is_cgroup_event(struct perf_event *event)
980{
981 return 0;
982}
983
e5d1367f
SE
984static inline void update_cgrp_time_from_event(struct perf_event *event)
985{
986}
987
988static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
989{
990}
991
a8d757ef
SE
992static inline void perf_cgroup_sched_out(struct task_struct *task,
993 struct task_struct *next)
e5d1367f
SE
994{
995}
996
a8d757ef
SE
997static inline void perf_cgroup_sched_in(struct task_struct *prev,
998 struct task_struct *task)
e5d1367f
SE
999{
1000}
1001
1002static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1003 struct perf_event_attr *attr,
1004 struct perf_event *group_leader)
1005{
1006 return -EINVAL;
1007}
1008
1009static inline void
3f7cce3c
SE
1010perf_cgroup_set_timestamp(struct task_struct *task,
1011 struct perf_event_context *ctx)
e5d1367f
SE
1012{
1013}
1014
1015void
1016perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1017{
1018}
1019
1020static inline void
1021perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1022{
1023}
1024
1025static inline u64 perf_cgroup_event_time(struct perf_event *event)
1026{
1027 return 0;
1028}
1029
db4a8356
DCC
1030static inline void
1031list_update_cgroup_event(struct perf_event *event,
1032 struct perf_event_context *ctx, bool add)
1033{
1034}
1035
e5d1367f
SE
1036#endif
1037
9e630205
SE
1038/*
1039 * set default to be dependent on timer tick just
1040 * like original code
1041 */
1042#define PERF_CPU_HRTIMER (1000 / HZ)
1043/*
8a1115ff 1044 * function must be called with interrupts disabled
9e630205 1045 */
272325c4 1046static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1047{
1048 struct perf_cpu_context *cpuctx;
9e630205
SE
1049 int rotations = 0;
1050
16444645 1051 lockdep_assert_irqs_disabled();
9e630205
SE
1052
1053 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1054 rotations = perf_rotate_context(cpuctx);
1055
4cfafd30
PZ
1056 raw_spin_lock(&cpuctx->hrtimer_lock);
1057 if (rotations)
9e630205 1058 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1059 else
1060 cpuctx->hrtimer_active = 0;
1061 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1062
4cfafd30 1063 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1064}
1065
272325c4 1066static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1067{
272325c4 1068 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1069 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1070 u64 interval;
9e630205
SE
1071
1072 /* no multiplexing needed for SW PMU */
1073 if (pmu->task_ctx_nr == perf_sw_context)
1074 return;
1075
62b85639
SE
1076 /*
1077 * check default is sane, if not set then force to
1078 * default interval (1/tick)
1079 */
272325c4
PZ
1080 interval = pmu->hrtimer_interval_ms;
1081 if (interval < 1)
1082 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1083
272325c4 1084 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1085
4cfafd30
PZ
1086 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1087 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1088 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1089}
1090
272325c4 1091static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1092{
272325c4 1093 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1094 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1095 unsigned long flags;
9e630205
SE
1096
1097 /* not for SW PMU */
1098 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1099 return 0;
9e630205 1100
4cfafd30
PZ
1101 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1102 if (!cpuctx->hrtimer_active) {
1103 cpuctx->hrtimer_active = 1;
1104 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1105 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1106 }
1107 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1108
272325c4 1109 return 0;
9e630205
SE
1110}
1111
33696fc0 1112void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1113{
33696fc0
PZ
1114 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1115 if (!(*count)++)
1116 pmu->pmu_disable(pmu);
9e35ad38 1117}
9e35ad38 1118
33696fc0 1119void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1120{
33696fc0
PZ
1121 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1122 if (!--(*count))
1123 pmu->pmu_enable(pmu);
9e35ad38 1124}
9e35ad38 1125
2fde4f94 1126static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1127
1128/*
2fde4f94
MR
1129 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1130 * perf_event_task_tick() are fully serialized because they're strictly cpu
1131 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1132 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1133 */
2fde4f94 1134static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1135{
2fde4f94 1136 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1137
16444645 1138 lockdep_assert_irqs_disabled();
b5ab4cd5 1139
2fde4f94
MR
1140 WARN_ON(!list_empty(&ctx->active_ctx_list));
1141
1142 list_add(&ctx->active_ctx_list, head);
1143}
1144
1145static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1146{
16444645 1147 lockdep_assert_irqs_disabled();
2fde4f94
MR
1148
1149 WARN_ON(list_empty(&ctx->active_ctx_list));
1150
1151 list_del_init(&ctx->active_ctx_list);
9e35ad38 1152}
9e35ad38 1153
cdd6c482 1154static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1155{
e5289d4a 1156 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1157}
1158
4af57ef2
YZ
1159static void free_ctx(struct rcu_head *head)
1160{
1161 struct perf_event_context *ctx;
1162
1163 ctx = container_of(head, struct perf_event_context, rcu_head);
1164 kfree(ctx->task_ctx_data);
1165 kfree(ctx);
1166}
1167
cdd6c482 1168static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1169{
564c2b21
PM
1170 if (atomic_dec_and_test(&ctx->refcount)) {
1171 if (ctx->parent_ctx)
1172 put_ctx(ctx->parent_ctx);
63b6da39 1173 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1174 put_task_struct(ctx->task);
4af57ef2 1175 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1176 }
a63eaf34
PM
1177}
1178
f63a8daa
PZ
1179/*
1180 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1181 * perf_pmu_migrate_context() we need some magic.
1182 *
1183 * Those places that change perf_event::ctx will hold both
1184 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1185 *
8b10c5e2
PZ
1186 * Lock ordering is by mutex address. There are two other sites where
1187 * perf_event_context::mutex nests and those are:
1188 *
1189 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1190 * perf_event_exit_event()
1191 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1192 *
1193 * - perf_event_init_context() [ parent, 0 ]
1194 * inherit_task_group()
1195 * inherit_group()
1196 * inherit_event()
1197 * perf_event_alloc()
1198 * perf_init_event()
1199 * perf_try_init_event() [ child , 1 ]
1200 *
1201 * While it appears there is an obvious deadlock here -- the parent and child
1202 * nesting levels are inverted between the two. This is in fact safe because
1203 * life-time rules separate them. That is an exiting task cannot fork, and a
1204 * spawning task cannot (yet) exit.
1205 *
1206 * But remember that that these are parent<->child context relations, and
1207 * migration does not affect children, therefore these two orderings should not
1208 * interact.
f63a8daa
PZ
1209 *
1210 * The change in perf_event::ctx does not affect children (as claimed above)
1211 * because the sys_perf_event_open() case will install a new event and break
1212 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1213 * concerned with cpuctx and that doesn't have children.
1214 *
1215 * The places that change perf_event::ctx will issue:
1216 *
1217 * perf_remove_from_context();
1218 * synchronize_rcu();
1219 * perf_install_in_context();
1220 *
1221 * to affect the change. The remove_from_context() + synchronize_rcu() should
1222 * quiesce the event, after which we can install it in the new location. This
1223 * means that only external vectors (perf_fops, prctl) can perturb the event
1224 * while in transit. Therefore all such accessors should also acquire
1225 * perf_event_context::mutex to serialize against this.
1226 *
1227 * However; because event->ctx can change while we're waiting to acquire
1228 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1229 * function.
1230 *
1231 * Lock order:
79c9ce57 1232 * cred_guard_mutex
f63a8daa
PZ
1233 * task_struct::perf_event_mutex
1234 * perf_event_context::mutex
f63a8daa 1235 * perf_event::child_mutex;
07c4a776 1236 * perf_event_context::lock
f63a8daa
PZ
1237 * perf_event::mmap_mutex
1238 * mmap_sem
82d94856
PZ
1239 *
1240 * cpu_hotplug_lock
1241 * pmus_lock
1242 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1243 */
a83fe28e
PZ
1244static struct perf_event_context *
1245perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1246{
1247 struct perf_event_context *ctx;
1248
1249again:
1250 rcu_read_lock();
6aa7de05 1251 ctx = READ_ONCE(event->ctx);
f63a8daa
PZ
1252 if (!atomic_inc_not_zero(&ctx->refcount)) {
1253 rcu_read_unlock();
1254 goto again;
1255 }
1256 rcu_read_unlock();
1257
a83fe28e 1258 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1259 if (event->ctx != ctx) {
1260 mutex_unlock(&ctx->mutex);
1261 put_ctx(ctx);
1262 goto again;
1263 }
1264
1265 return ctx;
1266}
1267
a83fe28e
PZ
1268static inline struct perf_event_context *
1269perf_event_ctx_lock(struct perf_event *event)
1270{
1271 return perf_event_ctx_lock_nested(event, 0);
1272}
1273
f63a8daa
PZ
1274static void perf_event_ctx_unlock(struct perf_event *event,
1275 struct perf_event_context *ctx)
1276{
1277 mutex_unlock(&ctx->mutex);
1278 put_ctx(ctx);
1279}
1280
211de6eb
PZ
1281/*
1282 * This must be done under the ctx->lock, such as to serialize against
1283 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1284 * calling scheduler related locks and ctx->lock nests inside those.
1285 */
1286static __must_check struct perf_event_context *
1287unclone_ctx(struct perf_event_context *ctx)
71a851b4 1288{
211de6eb
PZ
1289 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1290
1291 lockdep_assert_held(&ctx->lock);
1292
1293 if (parent_ctx)
71a851b4 1294 ctx->parent_ctx = NULL;
5a3126d4 1295 ctx->generation++;
211de6eb
PZ
1296
1297 return parent_ctx;
71a851b4
PZ
1298}
1299
1d953111
ON
1300static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1301 enum pid_type type)
6844c09d 1302{
1d953111 1303 u32 nr;
6844c09d
ACM
1304 /*
1305 * only top level events have the pid namespace they were created in
1306 */
1307 if (event->parent)
1308 event = event->parent;
1309
1d953111
ON
1310 nr = __task_pid_nr_ns(p, type, event->ns);
1311 /* avoid -1 if it is idle thread or runs in another ns */
1312 if (!nr && !pid_alive(p))
1313 nr = -1;
1314 return nr;
6844c09d
ACM
1315}
1316
1d953111 1317static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1318{
1d953111
ON
1319 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1320}
6844c09d 1321
1d953111
ON
1322static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1323{
1324 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1325}
1326
7f453c24 1327/*
cdd6c482 1328 * If we inherit events we want to return the parent event id
7f453c24
PZ
1329 * to userspace.
1330 */
cdd6c482 1331static u64 primary_event_id(struct perf_event *event)
7f453c24 1332{
cdd6c482 1333 u64 id = event->id;
7f453c24 1334
cdd6c482
IM
1335 if (event->parent)
1336 id = event->parent->id;
7f453c24
PZ
1337
1338 return id;
1339}
1340
25346b93 1341/*
cdd6c482 1342 * Get the perf_event_context for a task and lock it.
63b6da39 1343 *
25346b93
PM
1344 * This has to cope with with the fact that until it is locked,
1345 * the context could get moved to another task.
1346 */
cdd6c482 1347static struct perf_event_context *
8dc85d54 1348perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1349{
cdd6c482 1350 struct perf_event_context *ctx;
25346b93 1351
9ed6060d 1352retry:
058ebd0e
PZ
1353 /*
1354 * One of the few rules of preemptible RCU is that one cannot do
1355 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1356 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1357 * rcu_read_unlock_special().
1358 *
1359 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1360 * side critical section has interrupts disabled.
058ebd0e 1361 */
2fd59077 1362 local_irq_save(*flags);
058ebd0e 1363 rcu_read_lock();
8dc85d54 1364 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1365 if (ctx) {
1366 /*
1367 * If this context is a clone of another, it might
1368 * get swapped for another underneath us by
cdd6c482 1369 * perf_event_task_sched_out, though the
25346b93
PM
1370 * rcu_read_lock() protects us from any context
1371 * getting freed. Lock the context and check if it
1372 * got swapped before we could get the lock, and retry
1373 * if so. If we locked the right context, then it
1374 * can't get swapped on us any more.
1375 */
2fd59077 1376 raw_spin_lock(&ctx->lock);
8dc85d54 1377 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1378 raw_spin_unlock(&ctx->lock);
058ebd0e 1379 rcu_read_unlock();
2fd59077 1380 local_irq_restore(*flags);
25346b93
PM
1381 goto retry;
1382 }
b49a9e7e 1383
63b6da39
PZ
1384 if (ctx->task == TASK_TOMBSTONE ||
1385 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1386 raw_spin_unlock(&ctx->lock);
b49a9e7e 1387 ctx = NULL;
828b6f0e
PZ
1388 } else {
1389 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1390 }
25346b93
PM
1391 }
1392 rcu_read_unlock();
2fd59077
PM
1393 if (!ctx)
1394 local_irq_restore(*flags);
25346b93
PM
1395 return ctx;
1396}
1397
1398/*
1399 * Get the context for a task and increment its pin_count so it
1400 * can't get swapped to another task. This also increments its
1401 * reference count so that the context can't get freed.
1402 */
8dc85d54
PZ
1403static struct perf_event_context *
1404perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1405{
cdd6c482 1406 struct perf_event_context *ctx;
25346b93
PM
1407 unsigned long flags;
1408
8dc85d54 1409 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1410 if (ctx) {
1411 ++ctx->pin_count;
e625cce1 1412 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1413 }
1414 return ctx;
1415}
1416
cdd6c482 1417static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1418{
1419 unsigned long flags;
1420
e625cce1 1421 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1422 --ctx->pin_count;
e625cce1 1423 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1424}
1425
f67218c3
PZ
1426/*
1427 * Update the record of the current time in a context.
1428 */
1429static void update_context_time(struct perf_event_context *ctx)
1430{
1431 u64 now = perf_clock();
1432
1433 ctx->time += now - ctx->timestamp;
1434 ctx->timestamp = now;
1435}
1436
4158755d
SE
1437static u64 perf_event_time(struct perf_event *event)
1438{
1439 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1440
1441 if (is_cgroup_event(event))
1442 return perf_cgroup_event_time(event);
1443
4158755d
SE
1444 return ctx ? ctx->time : 0;
1445}
1446
487f05e1
AS
1447static enum event_type_t get_event_type(struct perf_event *event)
1448{
1449 struct perf_event_context *ctx = event->ctx;
1450 enum event_type_t event_type;
1451
1452 lockdep_assert_held(&ctx->lock);
1453
3bda69c1
AS
1454 /*
1455 * It's 'group type', really, because if our group leader is
1456 * pinned, so are we.
1457 */
1458 if (event->group_leader != event)
1459 event = event->group_leader;
1460
487f05e1
AS
1461 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1462 if (!ctx->task)
1463 event_type |= EVENT_CPU;
1464
1465 return event_type;
1466}
1467
889ff015
FW
1468static struct list_head *
1469ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1470{
1471 if (event->attr.pinned)
1472 return &ctx->pinned_groups;
1473 else
1474 return &ctx->flexible_groups;
1475}
1476
fccc714b 1477/*
cdd6c482 1478 * Add a event from the lists for its context.
fccc714b
PZ
1479 * Must be called with ctx->mutex and ctx->lock held.
1480 */
04289bb9 1481static void
cdd6c482 1482list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1483{
c994d613
PZ
1484 lockdep_assert_held(&ctx->lock);
1485
8a49542c
PZ
1486 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1487 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1488
0d3d73aa
PZ
1489 event->tstamp = perf_event_time(event);
1490
04289bb9 1491 /*
8a49542c
PZ
1492 * If we're a stand alone event or group leader, we go to the context
1493 * list, group events are kept attached to the group so that
1494 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1495 */
8a49542c 1496 if (event->group_leader == event) {
889ff015
FW
1497 struct list_head *list;
1498
4ff6a8de 1499 event->group_caps = event->event_caps;
d6f962b5 1500
889ff015
FW
1501 list = ctx_group_list(event, ctx);
1502 list_add_tail(&event->group_entry, list);
5c148194 1503 }
592903cd 1504
db4a8356 1505 list_update_cgroup_event(event, ctx, true);
e5d1367f 1506
cdd6c482
IM
1507 list_add_rcu(&event->event_entry, &ctx->event_list);
1508 ctx->nr_events++;
1509 if (event->attr.inherit_stat)
bfbd3381 1510 ctx->nr_stat++;
5a3126d4
PZ
1511
1512 ctx->generation++;
04289bb9
IM
1513}
1514
0231bb53
JO
1515/*
1516 * Initialize event state based on the perf_event_attr::disabled.
1517 */
1518static inline void perf_event__state_init(struct perf_event *event)
1519{
1520 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1521 PERF_EVENT_STATE_INACTIVE;
1522}
1523
a723968c 1524static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1525{
1526 int entry = sizeof(u64); /* value */
1527 int size = 0;
1528 int nr = 1;
1529
1530 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1531 size += sizeof(u64);
1532
1533 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1534 size += sizeof(u64);
1535
1536 if (event->attr.read_format & PERF_FORMAT_ID)
1537 entry += sizeof(u64);
1538
1539 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1540 nr += nr_siblings;
c320c7b7
ACM
1541 size += sizeof(u64);
1542 }
1543
1544 size += entry * nr;
1545 event->read_size = size;
1546}
1547
a723968c 1548static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1549{
1550 struct perf_sample_data *data;
c320c7b7
ACM
1551 u16 size = 0;
1552
c320c7b7
ACM
1553 if (sample_type & PERF_SAMPLE_IP)
1554 size += sizeof(data->ip);
1555
6844c09d
ACM
1556 if (sample_type & PERF_SAMPLE_ADDR)
1557 size += sizeof(data->addr);
1558
1559 if (sample_type & PERF_SAMPLE_PERIOD)
1560 size += sizeof(data->period);
1561
c3feedf2
AK
1562 if (sample_type & PERF_SAMPLE_WEIGHT)
1563 size += sizeof(data->weight);
1564
6844c09d
ACM
1565 if (sample_type & PERF_SAMPLE_READ)
1566 size += event->read_size;
1567
d6be9ad6
SE
1568 if (sample_type & PERF_SAMPLE_DATA_SRC)
1569 size += sizeof(data->data_src.val);
1570
fdfbbd07
AK
1571 if (sample_type & PERF_SAMPLE_TRANSACTION)
1572 size += sizeof(data->txn);
1573
fc7ce9c7
KL
1574 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1575 size += sizeof(data->phys_addr);
1576
6844c09d
ACM
1577 event->header_size = size;
1578}
1579
a723968c
PZ
1580/*
1581 * Called at perf_event creation and when events are attached/detached from a
1582 * group.
1583 */
1584static void perf_event__header_size(struct perf_event *event)
1585{
1586 __perf_event_read_size(event,
1587 event->group_leader->nr_siblings);
1588 __perf_event_header_size(event, event->attr.sample_type);
1589}
1590
6844c09d
ACM
1591static void perf_event__id_header_size(struct perf_event *event)
1592{
1593 struct perf_sample_data *data;
1594 u64 sample_type = event->attr.sample_type;
1595 u16 size = 0;
1596
c320c7b7
ACM
1597 if (sample_type & PERF_SAMPLE_TID)
1598 size += sizeof(data->tid_entry);
1599
1600 if (sample_type & PERF_SAMPLE_TIME)
1601 size += sizeof(data->time);
1602
ff3d527c
AH
1603 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1604 size += sizeof(data->id);
1605
c320c7b7
ACM
1606 if (sample_type & PERF_SAMPLE_ID)
1607 size += sizeof(data->id);
1608
1609 if (sample_type & PERF_SAMPLE_STREAM_ID)
1610 size += sizeof(data->stream_id);
1611
1612 if (sample_type & PERF_SAMPLE_CPU)
1613 size += sizeof(data->cpu_entry);
1614
6844c09d 1615 event->id_header_size = size;
c320c7b7
ACM
1616}
1617
a723968c
PZ
1618static bool perf_event_validate_size(struct perf_event *event)
1619{
1620 /*
1621 * The values computed here will be over-written when we actually
1622 * attach the event.
1623 */
1624 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1625 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1626 perf_event__id_header_size(event);
1627
1628 /*
1629 * Sum the lot; should not exceed the 64k limit we have on records.
1630 * Conservative limit to allow for callchains and other variable fields.
1631 */
1632 if (event->read_size + event->header_size +
1633 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1634 return false;
1635
1636 return true;
1637}
1638
8a49542c
PZ
1639static void perf_group_attach(struct perf_event *event)
1640{
c320c7b7 1641 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1642
a76a82a3
PZ
1643 lockdep_assert_held(&event->ctx->lock);
1644
74c3337c
PZ
1645 /*
1646 * We can have double attach due to group movement in perf_event_open.
1647 */
1648 if (event->attach_state & PERF_ATTACH_GROUP)
1649 return;
1650
8a49542c
PZ
1651 event->attach_state |= PERF_ATTACH_GROUP;
1652
1653 if (group_leader == event)
1654 return;
1655
652884fe
PZ
1656 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1657
4ff6a8de 1658 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1659
1660 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1661 group_leader->nr_siblings++;
c320c7b7
ACM
1662
1663 perf_event__header_size(group_leader);
1664
1665 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1666 perf_event__header_size(pos);
8a49542c
PZ
1667}
1668
a63eaf34 1669/*
cdd6c482 1670 * Remove a event from the lists for its context.
fccc714b 1671 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1672 */
04289bb9 1673static void
cdd6c482 1674list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1675{
652884fe
PZ
1676 WARN_ON_ONCE(event->ctx != ctx);
1677 lockdep_assert_held(&ctx->lock);
1678
8a49542c
PZ
1679 /*
1680 * We can have double detach due to exit/hot-unplug + close.
1681 */
1682 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1683 return;
8a49542c
PZ
1684
1685 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1686
db4a8356 1687 list_update_cgroup_event(event, ctx, false);
e5d1367f 1688
cdd6c482
IM
1689 ctx->nr_events--;
1690 if (event->attr.inherit_stat)
bfbd3381 1691 ctx->nr_stat--;
8bc20959 1692
cdd6c482 1693 list_del_rcu(&event->event_entry);
04289bb9 1694
8a49542c
PZ
1695 if (event->group_leader == event)
1696 list_del_init(&event->group_entry);
5c148194 1697
b2e74a26
SE
1698 /*
1699 * If event was in error state, then keep it
1700 * that way, otherwise bogus counts will be
1701 * returned on read(). The only way to get out
1702 * of error state is by explicit re-enabling
1703 * of the event
1704 */
1705 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1706 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1707
1708 ctx->generation++;
050735b0
PZ
1709}
1710
8a49542c 1711static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1712{
1713 struct perf_event *sibling, *tmp;
8a49542c
PZ
1714 struct list_head *list = NULL;
1715
a76a82a3
PZ
1716 lockdep_assert_held(&event->ctx->lock);
1717
8a49542c
PZ
1718 /*
1719 * We can have double detach due to exit/hot-unplug + close.
1720 */
1721 if (!(event->attach_state & PERF_ATTACH_GROUP))
1722 return;
1723
1724 event->attach_state &= ~PERF_ATTACH_GROUP;
1725
1726 /*
1727 * If this is a sibling, remove it from its group.
1728 */
1729 if (event->group_leader != event) {
1730 list_del_init(&event->group_entry);
1731 event->group_leader->nr_siblings--;
c320c7b7 1732 goto out;
8a49542c
PZ
1733 }
1734
1735 if (!list_empty(&event->group_entry))
1736 list = &event->group_entry;
2e2af50b 1737
04289bb9 1738 /*
cdd6c482
IM
1739 * If this was a group event with sibling events then
1740 * upgrade the siblings to singleton events by adding them
8a49542c 1741 * to whatever list we are on.
04289bb9 1742 */
cdd6c482 1743 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1744 if (list)
1745 list_move_tail(&sibling->group_entry, list);
04289bb9 1746 sibling->group_leader = sibling;
d6f962b5
FW
1747
1748 /* Inherit group flags from the previous leader */
4ff6a8de 1749 sibling->group_caps = event->group_caps;
652884fe
PZ
1750
1751 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1752 }
c320c7b7
ACM
1753
1754out:
1755 perf_event__header_size(event->group_leader);
1756
1757 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1758 perf_event__header_size(tmp);
04289bb9
IM
1759}
1760
fadfe7be
JO
1761static bool is_orphaned_event(struct perf_event *event)
1762{
a69b0ca4 1763 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1764}
1765
2c81a647 1766static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1767{
1768 struct pmu *pmu = event->pmu;
1769 return pmu->filter_match ? pmu->filter_match(event) : 1;
1770}
1771
2c81a647
MR
1772/*
1773 * Check whether we should attempt to schedule an event group based on
1774 * PMU-specific filtering. An event group can consist of HW and SW events,
1775 * potentially with a SW leader, so we must check all the filters, to
1776 * determine whether a group is schedulable:
1777 */
1778static inline int pmu_filter_match(struct perf_event *event)
1779{
1780 struct perf_event *child;
1781
1782 if (!__pmu_filter_match(event))
1783 return 0;
1784
1785 list_for_each_entry(child, &event->sibling_list, group_entry) {
1786 if (!__pmu_filter_match(child))
1787 return 0;
1788 }
1789
1790 return 1;
1791}
1792
fa66f07a
SE
1793static inline int
1794event_filter_match(struct perf_event *event)
1795{
0b8f1e2e
PZ
1796 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1797 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1798}
1799
9ffcfa6f
SE
1800static void
1801event_sched_out(struct perf_event *event,
3b6f9e5c 1802 struct perf_cpu_context *cpuctx,
cdd6c482 1803 struct perf_event_context *ctx)
3b6f9e5c 1804{
0d3d73aa 1805 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
1806
1807 WARN_ON_ONCE(event->ctx != ctx);
1808 lockdep_assert_held(&ctx->lock);
1809
cdd6c482 1810 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1811 return;
3b6f9e5c 1812
44377277
AS
1813 perf_pmu_disable(event->pmu);
1814
28a967c3
PZ
1815 event->pmu->del(event, 0);
1816 event->oncpu = -1;
0d3d73aa 1817
cdd6c482
IM
1818 if (event->pending_disable) {
1819 event->pending_disable = 0;
0d3d73aa 1820 state = PERF_EVENT_STATE_OFF;
970892a9 1821 }
0d3d73aa 1822 perf_event_set_state(event, state);
3b6f9e5c 1823
cdd6c482 1824 if (!is_software_event(event))
3b6f9e5c 1825 cpuctx->active_oncpu--;
2fde4f94
MR
1826 if (!--ctx->nr_active)
1827 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1828 if (event->attr.freq && event->attr.sample_freq)
1829 ctx->nr_freq--;
cdd6c482 1830 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1831 cpuctx->exclusive = 0;
44377277
AS
1832
1833 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1834}
1835
d859e29f 1836static void
cdd6c482 1837group_sched_out(struct perf_event *group_event,
d859e29f 1838 struct perf_cpu_context *cpuctx,
cdd6c482 1839 struct perf_event_context *ctx)
d859e29f 1840{
cdd6c482 1841 struct perf_event *event;
0d3d73aa
PZ
1842
1843 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1844 return;
d859e29f 1845
3f005e7d
MR
1846 perf_pmu_disable(ctx->pmu);
1847
cdd6c482 1848 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1849
1850 /*
1851 * Schedule out siblings (if any):
1852 */
cdd6c482
IM
1853 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1854 event_sched_out(event, cpuctx, ctx);
d859e29f 1855
3f005e7d
MR
1856 perf_pmu_enable(ctx->pmu);
1857
0d3d73aa 1858 if (group_event->attr.exclusive)
d859e29f
PM
1859 cpuctx->exclusive = 0;
1860}
1861
45a0e07a 1862#define DETACH_GROUP 0x01UL
0017960f 1863
0793a61d 1864/*
cdd6c482 1865 * Cross CPU call to remove a performance event
0793a61d 1866 *
cdd6c482 1867 * We disable the event on the hardware level first. After that we
0793a61d
TG
1868 * remove it from the context list.
1869 */
fae3fde6
PZ
1870static void
1871__perf_remove_from_context(struct perf_event *event,
1872 struct perf_cpu_context *cpuctx,
1873 struct perf_event_context *ctx,
1874 void *info)
0793a61d 1875{
45a0e07a 1876 unsigned long flags = (unsigned long)info;
0793a61d 1877
3c5c8711
PZ
1878 if (ctx->is_active & EVENT_TIME) {
1879 update_context_time(ctx);
1880 update_cgrp_time_from_cpuctx(cpuctx);
1881 }
1882
cdd6c482 1883 event_sched_out(event, cpuctx, ctx);
45a0e07a 1884 if (flags & DETACH_GROUP)
46ce0fe9 1885 perf_group_detach(event);
cdd6c482 1886 list_del_event(event, ctx);
39a43640
PZ
1887
1888 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1889 ctx->is_active = 0;
39a43640
PZ
1890 if (ctx->task) {
1891 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1892 cpuctx->task_ctx = NULL;
1893 }
64ce3126 1894 }
0793a61d
TG
1895}
1896
0793a61d 1897/*
cdd6c482 1898 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1899 *
cdd6c482
IM
1900 * If event->ctx is a cloned context, callers must make sure that
1901 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1902 * remains valid. This is OK when called from perf_release since
1903 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1904 * When called from perf_event_exit_task, it's OK because the
c93f7669 1905 * context has been detached from its task.
0793a61d 1906 */
45a0e07a 1907static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1908{
a76a82a3
PZ
1909 struct perf_event_context *ctx = event->ctx;
1910
1911 lockdep_assert_held(&ctx->mutex);
0793a61d 1912
45a0e07a 1913 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1914
1915 /*
1916 * The above event_function_call() can NO-OP when it hits
1917 * TASK_TOMBSTONE. In that case we must already have been detached
1918 * from the context (by perf_event_exit_event()) but the grouping
1919 * might still be in-tact.
1920 */
1921 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1922 if ((flags & DETACH_GROUP) &&
1923 (event->attach_state & PERF_ATTACH_GROUP)) {
1924 /*
1925 * Since in that case we cannot possibly be scheduled, simply
1926 * detach now.
1927 */
1928 raw_spin_lock_irq(&ctx->lock);
1929 perf_group_detach(event);
1930 raw_spin_unlock_irq(&ctx->lock);
1931 }
0793a61d
TG
1932}
1933
d859e29f 1934/*
cdd6c482 1935 * Cross CPU call to disable a performance event
d859e29f 1936 */
fae3fde6
PZ
1937static void __perf_event_disable(struct perf_event *event,
1938 struct perf_cpu_context *cpuctx,
1939 struct perf_event_context *ctx,
1940 void *info)
7b648018 1941{
fae3fde6
PZ
1942 if (event->state < PERF_EVENT_STATE_INACTIVE)
1943 return;
7b648018 1944
3c5c8711
PZ
1945 if (ctx->is_active & EVENT_TIME) {
1946 update_context_time(ctx);
1947 update_cgrp_time_from_event(event);
1948 }
1949
fae3fde6
PZ
1950 if (event == event->group_leader)
1951 group_sched_out(event, cpuctx, ctx);
1952 else
1953 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
1954
1955 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
1956}
1957
d859e29f 1958/*
cdd6c482 1959 * Disable a event.
c93f7669 1960 *
cdd6c482
IM
1961 * If event->ctx is a cloned context, callers must make sure that
1962 * every task struct that event->ctx->task could possibly point to
c93f7669 1963 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1964 * perf_event_for_each_child or perf_event_for_each because they
1965 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1966 * goes to exit will block in perf_event_exit_event().
1967 *
cdd6c482 1968 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1969 * is the current context on this CPU and preemption is disabled,
cdd6c482 1970 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1971 */
f63a8daa 1972static void _perf_event_disable(struct perf_event *event)
d859e29f 1973{
cdd6c482 1974 struct perf_event_context *ctx = event->ctx;
d859e29f 1975
e625cce1 1976 raw_spin_lock_irq(&ctx->lock);
7b648018 1977 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1978 raw_spin_unlock_irq(&ctx->lock);
7b648018 1979 return;
53cfbf59 1980 }
e625cce1 1981 raw_spin_unlock_irq(&ctx->lock);
7b648018 1982
fae3fde6
PZ
1983 event_function_call(event, __perf_event_disable, NULL);
1984}
1985
1986void perf_event_disable_local(struct perf_event *event)
1987{
1988 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1989}
f63a8daa
PZ
1990
1991/*
1992 * Strictly speaking kernel users cannot create groups and therefore this
1993 * interface does not need the perf_event_ctx_lock() magic.
1994 */
1995void perf_event_disable(struct perf_event *event)
1996{
1997 struct perf_event_context *ctx;
1998
1999 ctx = perf_event_ctx_lock(event);
2000 _perf_event_disable(event);
2001 perf_event_ctx_unlock(event, ctx);
2002}
dcfce4a0 2003EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2004
5aab90ce
JO
2005void perf_event_disable_inatomic(struct perf_event *event)
2006{
2007 event->pending_disable = 1;
2008 irq_work_queue(&event->pending);
2009}
2010
e5d1367f 2011static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2012 struct perf_event_context *ctx)
e5d1367f
SE
2013{
2014 /*
2015 * use the correct time source for the time snapshot
2016 *
2017 * We could get by without this by leveraging the
2018 * fact that to get to this function, the caller
2019 * has most likely already called update_context_time()
2020 * and update_cgrp_time_xx() and thus both timestamp
2021 * are identical (or very close). Given that tstamp is,
2022 * already adjusted for cgroup, we could say that:
2023 * tstamp - ctx->timestamp
2024 * is equivalent to
2025 * tstamp - cgrp->timestamp.
2026 *
2027 * Then, in perf_output_read(), the calculation would
2028 * work with no changes because:
2029 * - event is guaranteed scheduled in
2030 * - no scheduled out in between
2031 * - thus the timestamp would be the same
2032 *
2033 * But this is a bit hairy.
2034 *
2035 * So instead, we have an explicit cgroup call to remain
2036 * within the time time source all along. We believe it
2037 * is cleaner and simpler to understand.
2038 */
2039 if (is_cgroup_event(event))
0d3d73aa 2040 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2041 else
0d3d73aa 2042 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2043}
2044
4fe757dd
PZ
2045#define MAX_INTERRUPTS (~0ULL)
2046
2047static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2048static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2049
235c7fc7 2050static int
9ffcfa6f 2051event_sched_in(struct perf_event *event,
235c7fc7 2052 struct perf_cpu_context *cpuctx,
6e37738a 2053 struct perf_event_context *ctx)
235c7fc7 2054{
44377277 2055 int ret = 0;
4158755d 2056
63342411
PZ
2057 lockdep_assert_held(&ctx->lock);
2058
cdd6c482 2059 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2060 return 0;
2061
95ff4ca2
AS
2062 WRITE_ONCE(event->oncpu, smp_processor_id());
2063 /*
0c1cbc18
PZ
2064 * Order event::oncpu write to happen before the ACTIVE state is
2065 * visible. This allows perf_event_{stop,read}() to observe the correct
2066 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2067 */
2068 smp_wmb();
0d3d73aa 2069 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2070
2071 /*
2072 * Unthrottle events, since we scheduled we might have missed several
2073 * ticks already, also for a heavily scheduling task there is little
2074 * guarantee it'll get a tick in a timely manner.
2075 */
2076 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2077 perf_log_throttle(event, 1);
2078 event->hw.interrupts = 0;
2079 }
2080
44377277
AS
2081 perf_pmu_disable(event->pmu);
2082
0d3d73aa 2083 perf_set_shadow_time(event, ctx);
72f669c0 2084
ec0d7729
AS
2085 perf_log_itrace_start(event);
2086
a4eaf7f1 2087 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2088 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2089 event->oncpu = -1;
44377277
AS
2090 ret = -EAGAIN;
2091 goto out;
235c7fc7
IM
2092 }
2093
cdd6c482 2094 if (!is_software_event(event))
3b6f9e5c 2095 cpuctx->active_oncpu++;
2fde4f94
MR
2096 if (!ctx->nr_active++)
2097 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2098 if (event->attr.freq && event->attr.sample_freq)
2099 ctx->nr_freq++;
235c7fc7 2100
cdd6c482 2101 if (event->attr.exclusive)
3b6f9e5c
PM
2102 cpuctx->exclusive = 1;
2103
44377277
AS
2104out:
2105 perf_pmu_enable(event->pmu);
2106
2107 return ret;
235c7fc7
IM
2108}
2109
6751b71e 2110static int
cdd6c482 2111group_sched_in(struct perf_event *group_event,
6751b71e 2112 struct perf_cpu_context *cpuctx,
6e37738a 2113 struct perf_event_context *ctx)
6751b71e 2114{
6bde9b6c 2115 struct perf_event *event, *partial_group = NULL;
4a234593 2116 struct pmu *pmu = ctx->pmu;
6751b71e 2117
cdd6c482 2118 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2119 return 0;
2120
fbbe0701 2121 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2122
9ffcfa6f 2123 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2124 pmu->cancel_txn(pmu);
272325c4 2125 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2126 return -EAGAIN;
90151c35 2127 }
6751b71e
PM
2128
2129 /*
2130 * Schedule in siblings as one group (if any):
2131 */
cdd6c482 2132 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2133 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2134 partial_group = event;
6751b71e
PM
2135 goto group_error;
2136 }
2137 }
2138
9ffcfa6f 2139 if (!pmu->commit_txn(pmu))
6e85158c 2140 return 0;
9ffcfa6f 2141
6751b71e
PM
2142group_error:
2143 /*
2144 * Groups can be scheduled in as one unit only, so undo any
2145 * partial group before returning:
0d3d73aa 2146 * The events up to the failed event are scheduled out normally.
6751b71e 2147 */
cdd6c482
IM
2148 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2149 if (event == partial_group)
0d3d73aa 2150 break;
d7842da4 2151
0d3d73aa 2152 event_sched_out(event, cpuctx, ctx);
6751b71e 2153 }
9ffcfa6f 2154 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2155
ad5133b7 2156 pmu->cancel_txn(pmu);
90151c35 2157
272325c4 2158 perf_mux_hrtimer_restart(cpuctx);
9e630205 2159
6751b71e
PM
2160 return -EAGAIN;
2161}
2162
3b6f9e5c 2163/*
cdd6c482 2164 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2165 */
cdd6c482 2166static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2167 struct perf_cpu_context *cpuctx,
2168 int can_add_hw)
2169{
2170 /*
cdd6c482 2171 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2172 */
4ff6a8de 2173 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2174 return 1;
2175 /*
2176 * If an exclusive group is already on, no other hardware
cdd6c482 2177 * events can go on.
3b6f9e5c
PM
2178 */
2179 if (cpuctx->exclusive)
2180 return 0;
2181 /*
2182 * If this group is exclusive and there are already
cdd6c482 2183 * events on the CPU, it can't go on.
3b6f9e5c 2184 */
cdd6c482 2185 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2186 return 0;
2187 /*
2188 * Otherwise, try to add it if all previous groups were able
2189 * to go on.
2190 */
2191 return can_add_hw;
2192}
2193
cdd6c482
IM
2194static void add_event_to_ctx(struct perf_event *event,
2195 struct perf_event_context *ctx)
53cfbf59 2196{
cdd6c482 2197 list_add_event(event, ctx);
8a49542c 2198 perf_group_attach(event);
53cfbf59
PM
2199}
2200
bd2afa49
PZ
2201static void ctx_sched_out(struct perf_event_context *ctx,
2202 struct perf_cpu_context *cpuctx,
2203 enum event_type_t event_type);
2c29ef0f
PZ
2204static void
2205ctx_sched_in(struct perf_event_context *ctx,
2206 struct perf_cpu_context *cpuctx,
2207 enum event_type_t event_type,
2208 struct task_struct *task);
fe4b04fa 2209
bd2afa49 2210static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2211 struct perf_event_context *ctx,
2212 enum event_type_t event_type)
bd2afa49
PZ
2213{
2214 if (!cpuctx->task_ctx)
2215 return;
2216
2217 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2218 return;
2219
487f05e1 2220 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2221}
2222
dce5855b
PZ
2223static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2224 struct perf_event_context *ctx,
2225 struct task_struct *task)
2226{
2227 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2228 if (ctx)
2229 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2230 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2231 if (ctx)
2232 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2233}
2234
487f05e1
AS
2235/*
2236 * We want to maintain the following priority of scheduling:
2237 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2238 * - task pinned (EVENT_PINNED)
2239 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2240 * - task flexible (EVENT_FLEXIBLE).
2241 *
2242 * In order to avoid unscheduling and scheduling back in everything every
2243 * time an event is added, only do it for the groups of equal priority and
2244 * below.
2245 *
2246 * This can be called after a batch operation on task events, in which case
2247 * event_type is a bit mask of the types of events involved. For CPU events,
2248 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2249 */
3e349507 2250static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2251 struct perf_event_context *task_ctx,
2252 enum event_type_t event_type)
0017960f 2253{
732fd871 2254 enum event_type_t ctx_event_type;
487f05e1
AS
2255 bool cpu_event = !!(event_type & EVENT_CPU);
2256
2257 /*
2258 * If pinned groups are involved, flexible groups also need to be
2259 * scheduled out.
2260 */
2261 if (event_type & EVENT_PINNED)
2262 event_type |= EVENT_FLEXIBLE;
2263
732fd871
SL
2264 ctx_event_type = event_type & EVENT_ALL;
2265
3e349507
PZ
2266 perf_pmu_disable(cpuctx->ctx.pmu);
2267 if (task_ctx)
487f05e1
AS
2268 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2269
2270 /*
2271 * Decide which cpu ctx groups to schedule out based on the types
2272 * of events that caused rescheduling:
2273 * - EVENT_CPU: schedule out corresponding groups;
2274 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2275 * - otherwise, do nothing more.
2276 */
2277 if (cpu_event)
2278 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2279 else if (ctx_event_type & EVENT_PINNED)
2280 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2281
3e349507
PZ
2282 perf_event_sched_in(cpuctx, task_ctx, current);
2283 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2284}
2285
0793a61d 2286/*
cdd6c482 2287 * Cross CPU call to install and enable a performance event
682076ae 2288 *
a096309b
PZ
2289 * Very similar to remote_function() + event_function() but cannot assume that
2290 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2291 */
fe4b04fa 2292static int __perf_install_in_context(void *info)
0793a61d 2293{
a096309b
PZ
2294 struct perf_event *event = info;
2295 struct perf_event_context *ctx = event->ctx;
108b02cf 2296 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2297 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2298 bool reprogram = true;
a096309b 2299 int ret = 0;
0793a61d 2300
63b6da39 2301 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2302 if (ctx->task) {
b58f6b0d
PZ
2303 raw_spin_lock(&ctx->lock);
2304 task_ctx = ctx;
a096309b 2305
63cae12b 2306 reprogram = (ctx->task == current);
b58f6b0d 2307
39a43640 2308 /*
63cae12b
PZ
2309 * If the task is running, it must be running on this CPU,
2310 * otherwise we cannot reprogram things.
2311 *
2312 * If its not running, we don't care, ctx->lock will
2313 * serialize against it becoming runnable.
39a43640 2314 */
63cae12b
PZ
2315 if (task_curr(ctx->task) && !reprogram) {
2316 ret = -ESRCH;
2317 goto unlock;
2318 }
a096309b 2319
63cae12b 2320 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2321 } else if (task_ctx) {
2322 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2323 }
b58f6b0d 2324
63cae12b 2325 if (reprogram) {
a096309b
PZ
2326 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2327 add_event_to_ctx(event, ctx);
487f05e1 2328 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2329 } else {
2330 add_event_to_ctx(event, ctx);
2331 }
2332
63b6da39 2333unlock:
2c29ef0f 2334 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2335
a096309b 2336 return ret;
0793a61d
TG
2337}
2338
2339/*
a096309b
PZ
2340 * Attach a performance event to a context.
2341 *
2342 * Very similar to event_function_call, see comment there.
0793a61d
TG
2343 */
2344static void
cdd6c482
IM
2345perf_install_in_context(struct perf_event_context *ctx,
2346 struct perf_event *event,
0793a61d
TG
2347 int cpu)
2348{
a096309b 2349 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2350
fe4b04fa
PZ
2351 lockdep_assert_held(&ctx->mutex);
2352
0cda4c02
YZ
2353 if (event->cpu != -1)
2354 event->cpu = cpu;
c3f00c70 2355
0b8f1e2e
PZ
2356 /*
2357 * Ensures that if we can observe event->ctx, both the event and ctx
2358 * will be 'complete'. See perf_iterate_sb_cpu().
2359 */
2360 smp_store_release(&event->ctx, ctx);
2361
a096309b
PZ
2362 if (!task) {
2363 cpu_function_call(cpu, __perf_install_in_context, event);
2364 return;
2365 }
2366
2367 /*
2368 * Should not happen, we validate the ctx is still alive before calling.
2369 */
2370 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2371 return;
2372
39a43640
PZ
2373 /*
2374 * Installing events is tricky because we cannot rely on ctx->is_active
2375 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2376 *
2377 * Instead we use task_curr(), which tells us if the task is running.
2378 * However, since we use task_curr() outside of rq::lock, we can race
2379 * against the actual state. This means the result can be wrong.
2380 *
2381 * If we get a false positive, we retry, this is harmless.
2382 *
2383 * If we get a false negative, things are complicated. If we are after
2384 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2385 * value must be correct. If we're before, it doesn't matter since
2386 * perf_event_context_sched_in() will program the counter.
2387 *
2388 * However, this hinges on the remote context switch having observed
2389 * our task->perf_event_ctxp[] store, such that it will in fact take
2390 * ctx::lock in perf_event_context_sched_in().
2391 *
2392 * We do this by task_function_call(), if the IPI fails to hit the task
2393 * we know any future context switch of task must see the
2394 * perf_event_ctpx[] store.
39a43640 2395 */
63cae12b 2396
63b6da39 2397 /*
63cae12b
PZ
2398 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2399 * task_cpu() load, such that if the IPI then does not find the task
2400 * running, a future context switch of that task must observe the
2401 * store.
63b6da39 2402 */
63cae12b
PZ
2403 smp_mb();
2404again:
2405 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2406 return;
2407
2408 raw_spin_lock_irq(&ctx->lock);
2409 task = ctx->task;
84c4e620 2410 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2411 /*
2412 * Cannot happen because we already checked above (which also
2413 * cannot happen), and we hold ctx->mutex, which serializes us
2414 * against perf_event_exit_task_context().
2415 */
63b6da39
PZ
2416 raw_spin_unlock_irq(&ctx->lock);
2417 return;
2418 }
39a43640 2419 /*
63cae12b
PZ
2420 * If the task is not running, ctx->lock will avoid it becoming so,
2421 * thus we can safely install the event.
39a43640 2422 */
63cae12b
PZ
2423 if (task_curr(task)) {
2424 raw_spin_unlock_irq(&ctx->lock);
2425 goto again;
2426 }
2427 add_event_to_ctx(event, ctx);
2428 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2429}
2430
d859e29f 2431/*
cdd6c482 2432 * Cross CPU call to enable a performance event
d859e29f 2433 */
fae3fde6
PZ
2434static void __perf_event_enable(struct perf_event *event,
2435 struct perf_cpu_context *cpuctx,
2436 struct perf_event_context *ctx,
2437 void *info)
04289bb9 2438{
cdd6c482 2439 struct perf_event *leader = event->group_leader;
fae3fde6 2440 struct perf_event_context *task_ctx;
04289bb9 2441
6e801e01
PZ
2442 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2443 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2444 return;
3cbed429 2445
bd2afa49
PZ
2446 if (ctx->is_active)
2447 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2448
0d3d73aa 2449 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2450
fae3fde6
PZ
2451 if (!ctx->is_active)
2452 return;
2453
e5d1367f 2454 if (!event_filter_match(event)) {
bd2afa49 2455 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2456 return;
e5d1367f 2457 }
f4c4176f 2458
04289bb9 2459 /*
cdd6c482 2460 * If the event is in a group and isn't the group leader,
d859e29f 2461 * then don't put it on unless the group is on.
04289bb9 2462 */
bd2afa49
PZ
2463 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2464 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2465 return;
bd2afa49 2466 }
fe4b04fa 2467
fae3fde6
PZ
2468 task_ctx = cpuctx->task_ctx;
2469 if (ctx->task)
2470 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2471
487f05e1 2472 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2473}
2474
d859e29f 2475/*
cdd6c482 2476 * Enable a event.
c93f7669 2477 *
cdd6c482
IM
2478 * If event->ctx is a cloned context, callers must make sure that
2479 * every task struct that event->ctx->task could possibly point to
c93f7669 2480 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2481 * perf_event_for_each_child or perf_event_for_each as described
2482 * for perf_event_disable.
d859e29f 2483 */
f63a8daa 2484static void _perf_event_enable(struct perf_event *event)
d859e29f 2485{
cdd6c482 2486 struct perf_event_context *ctx = event->ctx;
d859e29f 2487
7b648018 2488 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2489 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2490 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2491 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2492 return;
2493 }
2494
d859e29f 2495 /*
cdd6c482 2496 * If the event is in error state, clear that first.
7b648018
PZ
2497 *
2498 * That way, if we see the event in error state below, we know that it
2499 * has gone back into error state, as distinct from the task having
2500 * been scheduled away before the cross-call arrived.
d859e29f 2501 */
cdd6c482
IM
2502 if (event->state == PERF_EVENT_STATE_ERROR)
2503 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2504 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2505
fae3fde6 2506 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2507}
f63a8daa
PZ
2508
2509/*
2510 * See perf_event_disable();
2511 */
2512void perf_event_enable(struct perf_event *event)
2513{
2514 struct perf_event_context *ctx;
2515
2516 ctx = perf_event_ctx_lock(event);
2517 _perf_event_enable(event);
2518 perf_event_ctx_unlock(event, ctx);
2519}
dcfce4a0 2520EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2521
375637bc
AS
2522struct stop_event_data {
2523 struct perf_event *event;
2524 unsigned int restart;
2525};
2526
95ff4ca2
AS
2527static int __perf_event_stop(void *info)
2528{
375637bc
AS
2529 struct stop_event_data *sd = info;
2530 struct perf_event *event = sd->event;
95ff4ca2 2531
375637bc 2532 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2533 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2534 return 0;
2535
2536 /* matches smp_wmb() in event_sched_in() */
2537 smp_rmb();
2538
2539 /*
2540 * There is a window with interrupts enabled before we get here,
2541 * so we need to check again lest we try to stop another CPU's event.
2542 */
2543 if (READ_ONCE(event->oncpu) != smp_processor_id())
2544 return -EAGAIN;
2545
2546 event->pmu->stop(event, PERF_EF_UPDATE);
2547
375637bc
AS
2548 /*
2549 * May race with the actual stop (through perf_pmu_output_stop()),
2550 * but it is only used for events with AUX ring buffer, and such
2551 * events will refuse to restart because of rb::aux_mmap_count==0,
2552 * see comments in perf_aux_output_begin().
2553 *
2554 * Since this is happening on a event-local CPU, no trace is lost
2555 * while restarting.
2556 */
2557 if (sd->restart)
c9bbdd48 2558 event->pmu->start(event, 0);
375637bc 2559
95ff4ca2
AS
2560 return 0;
2561}
2562
767ae086 2563static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2564{
2565 struct stop_event_data sd = {
2566 .event = event,
767ae086 2567 .restart = restart,
375637bc
AS
2568 };
2569 int ret = 0;
2570
2571 do {
2572 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2573 return 0;
2574
2575 /* matches smp_wmb() in event_sched_in() */
2576 smp_rmb();
2577
2578 /*
2579 * We only want to restart ACTIVE events, so if the event goes
2580 * inactive here (event->oncpu==-1), there's nothing more to do;
2581 * fall through with ret==-ENXIO.
2582 */
2583 ret = cpu_function_call(READ_ONCE(event->oncpu),
2584 __perf_event_stop, &sd);
2585 } while (ret == -EAGAIN);
2586
2587 return ret;
2588}
2589
2590/*
2591 * In order to contain the amount of racy and tricky in the address filter
2592 * configuration management, it is a two part process:
2593 *
2594 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2595 * we update the addresses of corresponding vmas in
2596 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2597 * (p2) when an event is scheduled in (pmu::add), it calls
2598 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2599 * if the generation has changed since the previous call.
2600 *
2601 * If (p1) happens while the event is active, we restart it to force (p2).
2602 *
2603 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2604 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2605 * ioctl;
2606 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2607 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2608 * for reading;
2609 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2610 * of exec.
2611 */
2612void perf_event_addr_filters_sync(struct perf_event *event)
2613{
2614 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2615
2616 if (!has_addr_filter(event))
2617 return;
2618
2619 raw_spin_lock(&ifh->lock);
2620 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2621 event->pmu->addr_filters_sync(event);
2622 event->hw.addr_filters_gen = event->addr_filters_gen;
2623 }
2624 raw_spin_unlock(&ifh->lock);
2625}
2626EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2627
f63a8daa 2628static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2629{
2023b359 2630 /*
cdd6c482 2631 * not supported on inherited events
2023b359 2632 */
2e939d1d 2633 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2634 return -EINVAL;
2635
cdd6c482 2636 atomic_add(refresh, &event->event_limit);
f63a8daa 2637 _perf_event_enable(event);
2023b359
PZ
2638
2639 return 0;
79f14641 2640}
f63a8daa
PZ
2641
2642/*
2643 * See perf_event_disable()
2644 */
2645int perf_event_refresh(struct perf_event *event, int refresh)
2646{
2647 struct perf_event_context *ctx;
2648 int ret;
2649
2650 ctx = perf_event_ctx_lock(event);
2651 ret = _perf_event_refresh(event, refresh);
2652 perf_event_ctx_unlock(event, ctx);
2653
2654 return ret;
2655}
26ca5c11 2656EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2657
5b0311e1
FW
2658static void ctx_sched_out(struct perf_event_context *ctx,
2659 struct perf_cpu_context *cpuctx,
2660 enum event_type_t event_type)
235c7fc7 2661{
db24d33e 2662 int is_active = ctx->is_active;
c994d613 2663 struct perf_event *event;
235c7fc7 2664
c994d613 2665 lockdep_assert_held(&ctx->lock);
235c7fc7 2666
39a43640
PZ
2667 if (likely(!ctx->nr_events)) {
2668 /*
2669 * See __perf_remove_from_context().
2670 */
2671 WARN_ON_ONCE(ctx->is_active);
2672 if (ctx->task)
2673 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2674 return;
39a43640
PZ
2675 }
2676
db24d33e 2677 ctx->is_active &= ~event_type;
3cbaa590
PZ
2678 if (!(ctx->is_active & EVENT_ALL))
2679 ctx->is_active = 0;
2680
63e30d3e
PZ
2681 if (ctx->task) {
2682 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2683 if (!ctx->is_active)
2684 cpuctx->task_ctx = NULL;
2685 }
facc4307 2686
8fdc6539
PZ
2687 /*
2688 * Always update time if it was set; not only when it changes.
2689 * Otherwise we can 'forget' to update time for any but the last
2690 * context we sched out. For example:
2691 *
2692 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2693 * ctx_sched_out(.event_type = EVENT_PINNED)
2694 *
2695 * would only update time for the pinned events.
2696 */
3cbaa590
PZ
2697 if (is_active & EVENT_TIME) {
2698 /* update (and stop) ctx time */
2699 update_context_time(ctx);
2700 update_cgrp_time_from_cpuctx(cpuctx);
2701 }
2702
8fdc6539
PZ
2703 is_active ^= ctx->is_active; /* changed bits */
2704
3cbaa590 2705 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2706 return;
5b0311e1 2707
075e0b00 2708 perf_pmu_disable(ctx->pmu);
3cbaa590 2709 if (is_active & EVENT_PINNED) {
889ff015
FW
2710 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2711 group_sched_out(event, cpuctx, ctx);
9ed6060d 2712 }
889ff015 2713
3cbaa590 2714 if (is_active & EVENT_FLEXIBLE) {
889ff015 2715 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2716 group_sched_out(event, cpuctx, ctx);
9ed6060d 2717 }
1b9a644f 2718 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2719}
2720
564c2b21 2721/*
5a3126d4
PZ
2722 * Test whether two contexts are equivalent, i.e. whether they have both been
2723 * cloned from the same version of the same context.
2724 *
2725 * Equivalence is measured using a generation number in the context that is
2726 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2727 * and list_del_event().
564c2b21 2728 */
cdd6c482
IM
2729static int context_equiv(struct perf_event_context *ctx1,
2730 struct perf_event_context *ctx2)
564c2b21 2731{
211de6eb
PZ
2732 lockdep_assert_held(&ctx1->lock);
2733 lockdep_assert_held(&ctx2->lock);
2734
5a3126d4
PZ
2735 /* Pinning disables the swap optimization */
2736 if (ctx1->pin_count || ctx2->pin_count)
2737 return 0;
2738
2739 /* If ctx1 is the parent of ctx2 */
2740 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2741 return 1;
2742
2743 /* If ctx2 is the parent of ctx1 */
2744 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2745 return 1;
2746
2747 /*
2748 * If ctx1 and ctx2 have the same parent; we flatten the parent
2749 * hierarchy, see perf_event_init_context().
2750 */
2751 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2752 ctx1->parent_gen == ctx2->parent_gen)
2753 return 1;
2754
2755 /* Unmatched */
2756 return 0;
564c2b21
PM
2757}
2758
cdd6c482
IM
2759static void __perf_event_sync_stat(struct perf_event *event,
2760 struct perf_event *next_event)
bfbd3381
PZ
2761{
2762 u64 value;
2763
cdd6c482 2764 if (!event->attr.inherit_stat)
bfbd3381
PZ
2765 return;
2766
2767 /*
cdd6c482 2768 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2769 * because we're in the middle of a context switch and have IRQs
2770 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2771 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2772 * don't need to use it.
2773 */
0d3d73aa 2774 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 2775 event->pmu->read(event);
bfbd3381 2776
0d3d73aa 2777 perf_event_update_time(event);
bfbd3381
PZ
2778
2779 /*
cdd6c482 2780 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2781 * values when we flip the contexts.
2782 */
e7850595
PZ
2783 value = local64_read(&next_event->count);
2784 value = local64_xchg(&event->count, value);
2785 local64_set(&next_event->count, value);
bfbd3381 2786
cdd6c482
IM
2787 swap(event->total_time_enabled, next_event->total_time_enabled);
2788 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2789
bfbd3381 2790 /*
19d2e755 2791 * Since we swizzled the values, update the user visible data too.
bfbd3381 2792 */
cdd6c482
IM
2793 perf_event_update_userpage(event);
2794 perf_event_update_userpage(next_event);
bfbd3381
PZ
2795}
2796
cdd6c482
IM
2797static void perf_event_sync_stat(struct perf_event_context *ctx,
2798 struct perf_event_context *next_ctx)
bfbd3381 2799{
cdd6c482 2800 struct perf_event *event, *next_event;
bfbd3381
PZ
2801
2802 if (!ctx->nr_stat)
2803 return;
2804
02ffdbc8
PZ
2805 update_context_time(ctx);
2806
cdd6c482
IM
2807 event = list_first_entry(&ctx->event_list,
2808 struct perf_event, event_entry);
bfbd3381 2809
cdd6c482
IM
2810 next_event = list_first_entry(&next_ctx->event_list,
2811 struct perf_event, event_entry);
bfbd3381 2812
cdd6c482
IM
2813 while (&event->event_entry != &ctx->event_list &&
2814 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2815
cdd6c482 2816 __perf_event_sync_stat(event, next_event);
bfbd3381 2817
cdd6c482
IM
2818 event = list_next_entry(event, event_entry);
2819 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2820 }
2821}
2822
fe4b04fa
PZ
2823static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2824 struct task_struct *next)
0793a61d 2825{
8dc85d54 2826 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2827 struct perf_event_context *next_ctx;
5a3126d4 2828 struct perf_event_context *parent, *next_parent;
108b02cf 2829 struct perf_cpu_context *cpuctx;
c93f7669 2830 int do_switch = 1;
0793a61d 2831
108b02cf
PZ
2832 if (likely(!ctx))
2833 return;
10989fb2 2834
108b02cf
PZ
2835 cpuctx = __get_cpu_context(ctx);
2836 if (!cpuctx->task_ctx)
0793a61d
TG
2837 return;
2838
c93f7669 2839 rcu_read_lock();
8dc85d54 2840 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2841 if (!next_ctx)
2842 goto unlock;
2843
2844 parent = rcu_dereference(ctx->parent_ctx);
2845 next_parent = rcu_dereference(next_ctx->parent_ctx);
2846
2847 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2848 if (!parent && !next_parent)
5a3126d4
PZ
2849 goto unlock;
2850
2851 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2852 /*
2853 * Looks like the two contexts are clones, so we might be
2854 * able to optimize the context switch. We lock both
2855 * contexts and check that they are clones under the
2856 * lock (including re-checking that neither has been
2857 * uncloned in the meantime). It doesn't matter which
2858 * order we take the locks because no other cpu could
2859 * be trying to lock both of these tasks.
2860 */
e625cce1
TG
2861 raw_spin_lock(&ctx->lock);
2862 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2863 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2864 WRITE_ONCE(ctx->task, next);
2865 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2866
2867 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2868
63b6da39
PZ
2869 /*
2870 * RCU_INIT_POINTER here is safe because we've not
2871 * modified the ctx and the above modification of
2872 * ctx->task and ctx->task_ctx_data are immaterial
2873 * since those values are always verified under
2874 * ctx->lock which we're now holding.
2875 */
2876 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2877 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2878
c93f7669 2879 do_switch = 0;
bfbd3381 2880
cdd6c482 2881 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2882 }
e625cce1
TG
2883 raw_spin_unlock(&next_ctx->lock);
2884 raw_spin_unlock(&ctx->lock);
564c2b21 2885 }
5a3126d4 2886unlock:
c93f7669 2887 rcu_read_unlock();
564c2b21 2888
c93f7669 2889 if (do_switch) {
facc4307 2890 raw_spin_lock(&ctx->lock);
487f05e1 2891 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2892 raw_spin_unlock(&ctx->lock);
c93f7669 2893 }
0793a61d
TG
2894}
2895
e48c1788
PZ
2896static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2897
ba532500
YZ
2898void perf_sched_cb_dec(struct pmu *pmu)
2899{
e48c1788
PZ
2900 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2901
ba532500 2902 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2903
2904 if (!--cpuctx->sched_cb_usage)
2905 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2906}
2907
e48c1788 2908
ba532500
YZ
2909void perf_sched_cb_inc(struct pmu *pmu)
2910{
e48c1788
PZ
2911 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2912
2913 if (!cpuctx->sched_cb_usage++)
2914 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2915
ba532500
YZ
2916 this_cpu_inc(perf_sched_cb_usages);
2917}
2918
2919/*
2920 * This function provides the context switch callback to the lower code
2921 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
2922 *
2923 * This callback is relevant even to per-cpu events; for example multi event
2924 * PEBS requires this to provide PID/TID information. This requires we flush
2925 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
2926 */
2927static void perf_pmu_sched_task(struct task_struct *prev,
2928 struct task_struct *next,
2929 bool sched_in)
2930{
2931 struct perf_cpu_context *cpuctx;
2932 struct pmu *pmu;
ba532500
YZ
2933
2934 if (prev == next)
2935 return;
2936
e48c1788 2937 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 2938 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 2939
e48c1788
PZ
2940 if (WARN_ON_ONCE(!pmu->sched_task))
2941 continue;
ba532500 2942
e48c1788
PZ
2943 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2944 perf_pmu_disable(pmu);
ba532500 2945
e48c1788 2946 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 2947
e48c1788
PZ
2948 perf_pmu_enable(pmu);
2949 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 2950 }
ba532500
YZ
2951}
2952
45ac1403
AH
2953static void perf_event_switch(struct task_struct *task,
2954 struct task_struct *next_prev, bool sched_in);
2955
8dc85d54
PZ
2956#define for_each_task_context_nr(ctxn) \
2957 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2958
2959/*
2960 * Called from scheduler to remove the events of the current task,
2961 * with interrupts disabled.
2962 *
2963 * We stop each event and update the event value in event->count.
2964 *
2965 * This does not protect us against NMI, but disable()
2966 * sets the disabled bit in the control field of event _before_
2967 * accessing the event control register. If a NMI hits, then it will
2968 * not restart the event.
2969 */
ab0cce56
JO
2970void __perf_event_task_sched_out(struct task_struct *task,
2971 struct task_struct *next)
8dc85d54
PZ
2972{
2973 int ctxn;
2974
ba532500
YZ
2975 if (__this_cpu_read(perf_sched_cb_usages))
2976 perf_pmu_sched_task(task, next, false);
2977
45ac1403
AH
2978 if (atomic_read(&nr_switch_events))
2979 perf_event_switch(task, next, false);
2980
8dc85d54
PZ
2981 for_each_task_context_nr(ctxn)
2982 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2983
2984 /*
2985 * if cgroup events exist on this CPU, then we need
2986 * to check if we have to switch out PMU state.
2987 * cgroup event are system-wide mode only
2988 */
4a32fea9 2989 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2990 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2991}
2992
5b0311e1
FW
2993/*
2994 * Called with IRQs disabled
2995 */
2996static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2997 enum event_type_t event_type)
2998{
2999 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3000}
3001
235c7fc7 3002static void
5b0311e1 3003ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 3004 struct perf_cpu_context *cpuctx)
0793a61d 3005{
cdd6c482 3006 struct perf_event *event;
0793a61d 3007
889ff015
FW
3008 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3009 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3010 continue;
5632ab12 3011 if (!event_filter_match(event))
3b6f9e5c
PM
3012 continue;
3013
8c9ed8e1 3014 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3015 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3016
3017 /*
3018 * If this pinned group hasn't been scheduled,
3019 * put it in error state.
3020 */
0d3d73aa
PZ
3021 if (event->state == PERF_EVENT_STATE_INACTIVE)
3022 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3b6f9e5c 3023 }
5b0311e1
FW
3024}
3025
3026static void
3027ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3028 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3029{
3030 struct perf_event *event;
3031 int can_add_hw = 1;
3b6f9e5c 3032
889ff015
FW
3033 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3034 /* Ignore events in OFF or ERROR state */
3035 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3036 continue;
04289bb9
IM
3037 /*
3038 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3039 * of events:
04289bb9 3040 */
5632ab12 3041 if (!event_filter_match(event))
0793a61d
TG
3042 continue;
3043
9ed6060d 3044 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3045 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3046 can_add_hw = 0;
9ed6060d 3047 }
0793a61d 3048 }
5b0311e1
FW
3049}
3050
3051static void
3052ctx_sched_in(struct perf_event_context *ctx,
3053 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3054 enum event_type_t event_type,
3055 struct task_struct *task)
5b0311e1 3056{
db24d33e 3057 int is_active = ctx->is_active;
c994d613
PZ
3058 u64 now;
3059
3060 lockdep_assert_held(&ctx->lock);
e5d1367f 3061
5b0311e1 3062 if (likely(!ctx->nr_events))
facc4307 3063 return;
5b0311e1 3064
3cbaa590 3065 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3066 if (ctx->task) {
3067 if (!is_active)
3068 cpuctx->task_ctx = ctx;
3069 else
3070 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3071 }
3072
3cbaa590
PZ
3073 is_active ^= ctx->is_active; /* changed bits */
3074
3075 if (is_active & EVENT_TIME) {
3076 /* start ctx time */
3077 now = perf_clock();
3078 ctx->timestamp = now;
3079 perf_cgroup_set_timestamp(task, ctx);
3080 }
3081
5b0311e1
FW
3082 /*
3083 * First go through the list and put on any pinned groups
3084 * in order to give them the best chance of going on.
3085 */
3cbaa590 3086 if (is_active & EVENT_PINNED)
6e37738a 3087 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3088
3089 /* Then walk through the lower prio flexible groups */
3cbaa590 3090 if (is_active & EVENT_FLEXIBLE)
6e37738a 3091 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3092}
3093
329c0e01 3094static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3095 enum event_type_t event_type,
3096 struct task_struct *task)
329c0e01
FW
3097{
3098 struct perf_event_context *ctx = &cpuctx->ctx;
3099
e5d1367f 3100 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3101}
3102
e5d1367f
SE
3103static void perf_event_context_sched_in(struct perf_event_context *ctx,
3104 struct task_struct *task)
235c7fc7 3105{
108b02cf 3106 struct perf_cpu_context *cpuctx;
235c7fc7 3107
108b02cf 3108 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3109 if (cpuctx->task_ctx == ctx)
3110 return;
3111
facc4307 3112 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3113 /*
3114 * We must check ctx->nr_events while holding ctx->lock, such
3115 * that we serialize against perf_install_in_context().
3116 */
3117 if (!ctx->nr_events)
3118 goto unlock;
3119
1b9a644f 3120 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3121 /*
3122 * We want to keep the following priority order:
3123 * cpu pinned (that don't need to move), task pinned,
3124 * cpu flexible, task flexible.
fe45bafb
AS
3125 *
3126 * However, if task's ctx is not carrying any pinned
3127 * events, no need to flip the cpuctx's events around.
329c0e01 3128 */
fe45bafb
AS
3129 if (!list_empty(&ctx->pinned_groups))
3130 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3131 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3132 perf_pmu_enable(ctx->pmu);
fdccc3fb 3133
3134unlock:
facc4307 3135 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3136}
3137
8dc85d54
PZ
3138/*
3139 * Called from scheduler to add the events of the current task
3140 * with interrupts disabled.
3141 *
3142 * We restore the event value and then enable it.
3143 *
3144 * This does not protect us against NMI, but enable()
3145 * sets the enabled bit in the control field of event _before_
3146 * accessing the event control register. If a NMI hits, then it will
3147 * keep the event running.
3148 */
ab0cce56
JO
3149void __perf_event_task_sched_in(struct task_struct *prev,
3150 struct task_struct *task)
8dc85d54
PZ
3151{
3152 struct perf_event_context *ctx;
3153 int ctxn;
3154
7e41d177
PZ
3155 /*
3156 * If cgroup events exist on this CPU, then we need to check if we have
3157 * to switch in PMU state; cgroup event are system-wide mode only.
3158 *
3159 * Since cgroup events are CPU events, we must schedule these in before
3160 * we schedule in the task events.
3161 */
3162 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3163 perf_cgroup_sched_in(prev, task);
3164
8dc85d54
PZ
3165 for_each_task_context_nr(ctxn) {
3166 ctx = task->perf_event_ctxp[ctxn];
3167 if (likely(!ctx))
3168 continue;
3169
e5d1367f 3170 perf_event_context_sched_in(ctx, task);
8dc85d54 3171 }
d010b332 3172
45ac1403
AH
3173 if (atomic_read(&nr_switch_events))
3174 perf_event_switch(task, prev, true);
3175
ba532500
YZ
3176 if (__this_cpu_read(perf_sched_cb_usages))
3177 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3178}
3179
abd50713
PZ
3180static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3181{
3182 u64 frequency = event->attr.sample_freq;
3183 u64 sec = NSEC_PER_SEC;
3184 u64 divisor, dividend;
3185
3186 int count_fls, nsec_fls, frequency_fls, sec_fls;
3187
3188 count_fls = fls64(count);
3189 nsec_fls = fls64(nsec);
3190 frequency_fls = fls64(frequency);
3191 sec_fls = 30;
3192
3193 /*
3194 * We got @count in @nsec, with a target of sample_freq HZ
3195 * the target period becomes:
3196 *
3197 * @count * 10^9
3198 * period = -------------------
3199 * @nsec * sample_freq
3200 *
3201 */
3202
3203 /*
3204 * Reduce accuracy by one bit such that @a and @b converge
3205 * to a similar magnitude.
3206 */
fe4b04fa 3207#define REDUCE_FLS(a, b) \
abd50713
PZ
3208do { \
3209 if (a##_fls > b##_fls) { \
3210 a >>= 1; \
3211 a##_fls--; \
3212 } else { \
3213 b >>= 1; \
3214 b##_fls--; \
3215 } \
3216} while (0)
3217
3218 /*
3219 * Reduce accuracy until either term fits in a u64, then proceed with
3220 * the other, so that finally we can do a u64/u64 division.
3221 */
3222 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3223 REDUCE_FLS(nsec, frequency);
3224 REDUCE_FLS(sec, count);
3225 }
3226
3227 if (count_fls + sec_fls > 64) {
3228 divisor = nsec * frequency;
3229
3230 while (count_fls + sec_fls > 64) {
3231 REDUCE_FLS(count, sec);
3232 divisor >>= 1;
3233 }
3234
3235 dividend = count * sec;
3236 } else {
3237 dividend = count * sec;
3238
3239 while (nsec_fls + frequency_fls > 64) {
3240 REDUCE_FLS(nsec, frequency);
3241 dividend >>= 1;
3242 }
3243
3244 divisor = nsec * frequency;
3245 }
3246
f6ab91ad
PZ
3247 if (!divisor)
3248 return dividend;
3249
abd50713
PZ
3250 return div64_u64(dividend, divisor);
3251}
3252
e050e3f0
SE
3253static DEFINE_PER_CPU(int, perf_throttled_count);
3254static DEFINE_PER_CPU(u64, perf_throttled_seq);
3255
f39d47ff 3256static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3257{
cdd6c482 3258 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3259 s64 period, sample_period;
bd2b5b12
PZ
3260 s64 delta;
3261
abd50713 3262 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3263
3264 delta = (s64)(period - hwc->sample_period);
3265 delta = (delta + 7) / 8; /* low pass filter */
3266
3267 sample_period = hwc->sample_period + delta;
3268
3269 if (!sample_period)
3270 sample_period = 1;
3271
bd2b5b12 3272 hwc->sample_period = sample_period;
abd50713 3273
e7850595 3274 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3275 if (disable)
3276 event->pmu->stop(event, PERF_EF_UPDATE);
3277
e7850595 3278 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3279
3280 if (disable)
3281 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3282 }
bd2b5b12
PZ
3283}
3284
e050e3f0
SE
3285/*
3286 * combine freq adjustment with unthrottling to avoid two passes over the
3287 * events. At the same time, make sure, having freq events does not change
3288 * the rate of unthrottling as that would introduce bias.
3289 */
3290static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3291 int needs_unthr)
60db5e09 3292{
cdd6c482
IM
3293 struct perf_event *event;
3294 struct hw_perf_event *hwc;
e050e3f0 3295 u64 now, period = TICK_NSEC;
abd50713 3296 s64 delta;
60db5e09 3297
e050e3f0
SE
3298 /*
3299 * only need to iterate over all events iff:
3300 * - context have events in frequency mode (needs freq adjust)
3301 * - there are events to unthrottle on this cpu
3302 */
3303 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3304 return;
3305
e050e3f0 3306 raw_spin_lock(&ctx->lock);
f39d47ff 3307 perf_pmu_disable(ctx->pmu);
e050e3f0 3308
03541f8b 3309 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3310 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3311 continue;
3312
5632ab12 3313 if (!event_filter_match(event))
5d27c23d
PZ
3314 continue;
3315
44377277
AS
3316 perf_pmu_disable(event->pmu);
3317
cdd6c482 3318 hwc = &event->hw;
6a24ed6c 3319
ae23bff1 3320 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3321 hwc->interrupts = 0;
cdd6c482 3322 perf_log_throttle(event, 1);
a4eaf7f1 3323 event->pmu->start(event, 0);
a78ac325
PZ
3324 }
3325
cdd6c482 3326 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3327 goto next;
60db5e09 3328
e050e3f0
SE
3329 /*
3330 * stop the event and update event->count
3331 */
3332 event->pmu->stop(event, PERF_EF_UPDATE);
3333
e7850595 3334 now = local64_read(&event->count);
abd50713
PZ
3335 delta = now - hwc->freq_count_stamp;
3336 hwc->freq_count_stamp = now;
60db5e09 3337
e050e3f0
SE
3338 /*
3339 * restart the event
3340 * reload only if value has changed
f39d47ff
SE
3341 * we have stopped the event so tell that
3342 * to perf_adjust_period() to avoid stopping it
3343 * twice.
e050e3f0 3344 */
abd50713 3345 if (delta > 0)
f39d47ff 3346 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3347
3348 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3349 next:
3350 perf_pmu_enable(event->pmu);
60db5e09 3351 }
e050e3f0 3352
f39d47ff 3353 perf_pmu_enable(ctx->pmu);
e050e3f0 3354 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3355}
3356
235c7fc7 3357/*
cdd6c482 3358 * Round-robin a context's events:
235c7fc7 3359 */
cdd6c482 3360static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3361{
dddd3379
TG
3362 /*
3363 * Rotate the first entry last of non-pinned groups. Rotation might be
3364 * disabled by the inheritance code.
3365 */
3366 if (!ctx->rotate_disable)
3367 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3368}
3369
9e630205 3370static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3371{
8dc85d54 3372 struct perf_event_context *ctx = NULL;
2fde4f94 3373 int rotate = 0;
7fc23a53 3374
b5ab4cd5 3375 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3376 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3377 rotate = 1;
3378 }
235c7fc7 3379
8dc85d54 3380 ctx = cpuctx->task_ctx;
b5ab4cd5 3381 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3382 if (ctx->nr_events != ctx->nr_active)
3383 rotate = 1;
3384 }
9717e6cd 3385
e050e3f0 3386 if (!rotate)
0f5a2601
PZ
3387 goto done;
3388
facc4307 3389 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3390 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3391
e050e3f0
SE
3392 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3393 if (ctx)
3394 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3395
e050e3f0
SE
3396 rotate_ctx(&cpuctx->ctx);
3397 if (ctx)
3398 rotate_ctx(ctx);
235c7fc7 3399
e050e3f0 3400 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3401
0f5a2601
PZ
3402 perf_pmu_enable(cpuctx->ctx.pmu);
3403 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3404done:
9e630205
SE
3405
3406 return rotate;
e9d2b064
PZ
3407}
3408
3409void perf_event_task_tick(void)
3410{
2fde4f94
MR
3411 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3412 struct perf_event_context *ctx, *tmp;
e050e3f0 3413 int throttled;
b5ab4cd5 3414
16444645 3415 lockdep_assert_irqs_disabled();
e9d2b064 3416
e050e3f0
SE
3417 __this_cpu_inc(perf_throttled_seq);
3418 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3419 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3420
2fde4f94 3421 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3422 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3423}
3424
889ff015
FW
3425static int event_enable_on_exec(struct perf_event *event,
3426 struct perf_event_context *ctx)
3427{
3428 if (!event->attr.enable_on_exec)
3429 return 0;
3430
3431 event->attr.enable_on_exec = 0;
3432 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3433 return 0;
3434
0d3d73aa 3435 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3436
3437 return 1;
3438}
3439
57e7986e 3440/*
cdd6c482 3441 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3442 * This expects task == current.
3443 */
c1274499 3444static void perf_event_enable_on_exec(int ctxn)
57e7986e 3445{
c1274499 3446 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3447 enum event_type_t event_type = 0;
3e349507 3448 struct perf_cpu_context *cpuctx;
cdd6c482 3449 struct perf_event *event;
57e7986e
PM
3450 unsigned long flags;
3451 int enabled = 0;
3452
3453 local_irq_save(flags);
c1274499 3454 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3455 if (!ctx || !ctx->nr_events)
57e7986e
PM
3456 goto out;
3457
3e349507
PZ
3458 cpuctx = __get_cpu_context(ctx);
3459 perf_ctx_lock(cpuctx, ctx);
7fce2509 3460 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3461 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3462 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3463 event_type |= get_event_type(event);
3464 }
57e7986e
PM
3465
3466 /*
3e349507 3467 * Unclone and reschedule this context if we enabled any event.
57e7986e 3468 */
3e349507 3469 if (enabled) {
211de6eb 3470 clone_ctx = unclone_ctx(ctx);
487f05e1 3471 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3472 } else {
3473 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3474 }
3475 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3476
9ed6060d 3477out:
57e7986e 3478 local_irq_restore(flags);
211de6eb
PZ
3479
3480 if (clone_ctx)
3481 put_ctx(clone_ctx);
57e7986e
PM
3482}
3483
0492d4c5
PZ
3484struct perf_read_data {
3485 struct perf_event *event;
3486 bool group;
7d88962e 3487 int ret;
0492d4c5
PZ
3488};
3489
451d24d1 3490static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3491{
d6a2f903
DCC
3492 u16 local_pkg, event_pkg;
3493
3494 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3495 int local_cpu = smp_processor_id();
3496
3497 event_pkg = topology_physical_package_id(event_cpu);
3498 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3499
3500 if (event_pkg == local_pkg)
3501 return local_cpu;
3502 }
3503
3504 return event_cpu;
3505}
3506
0793a61d 3507/*
cdd6c482 3508 * Cross CPU call to read the hardware event
0793a61d 3509 */
cdd6c482 3510static void __perf_event_read(void *info)
0793a61d 3511{
0492d4c5
PZ
3512 struct perf_read_data *data = info;
3513 struct perf_event *sub, *event = data->event;
cdd6c482 3514 struct perf_event_context *ctx = event->ctx;
108b02cf 3515 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3516 struct pmu *pmu = event->pmu;
621a01ea 3517
e1ac3614
PM
3518 /*
3519 * If this is a task context, we need to check whether it is
3520 * the current task context of this cpu. If not it has been
3521 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3522 * event->count would have been updated to a recent sample
3523 * when the event was scheduled out.
e1ac3614
PM
3524 */
3525 if (ctx->task && cpuctx->task_ctx != ctx)
3526 return;
3527
e625cce1 3528 raw_spin_lock(&ctx->lock);
0c1cbc18 3529 if (ctx->is_active & EVENT_TIME) {
542e72fc 3530 update_context_time(ctx);
e5d1367f
SE
3531 update_cgrp_time_from_event(event);
3532 }
0492d4c5 3533
0d3d73aa
PZ
3534 perf_event_update_time(event);
3535 if (data->group)
3536 perf_event_update_sibling_time(event);
0c1cbc18 3537
4a00c16e
SB
3538 if (event->state != PERF_EVENT_STATE_ACTIVE)
3539 goto unlock;
0492d4c5 3540
4a00c16e
SB
3541 if (!data->group) {
3542 pmu->read(event);
3543 data->ret = 0;
0492d4c5 3544 goto unlock;
4a00c16e
SB
3545 }
3546
3547 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3548
3549 pmu->read(event);
0492d4c5
PZ
3550
3551 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4a00c16e
SB
3552 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3553 /*
3554 * Use sibling's PMU rather than @event's since
3555 * sibling could be on different (eg: software) PMU.
3556 */
0492d4c5 3557 sub->pmu->read(sub);
4a00c16e 3558 }
0492d4c5 3559 }
4a00c16e
SB
3560
3561 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3562
3563unlock:
e625cce1 3564 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3565}
3566
b5e58793
PZ
3567static inline u64 perf_event_count(struct perf_event *event)
3568{
c39a0e2c 3569 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3570}
3571
ffe8690c
KX
3572/*
3573 * NMI-safe method to read a local event, that is an event that
3574 * is:
3575 * - either for the current task, or for this CPU
3576 * - does not have inherit set, for inherited task events
3577 * will not be local and we cannot read them atomically
3578 * - must not have a pmu::count method
3579 */
7d9285e8
YS
3580int perf_event_read_local(struct perf_event *event, u64 *value,
3581 u64 *enabled, u64 *running)
ffe8690c
KX
3582{
3583 unsigned long flags;
f91840a3 3584 int ret = 0;
ffe8690c
KX
3585
3586 /*
3587 * Disabling interrupts avoids all counter scheduling (context
3588 * switches, timer based rotation and IPIs).
3589 */
3590 local_irq_save(flags);
3591
ffe8690c
KX
3592 /*
3593 * It must not be an event with inherit set, we cannot read
3594 * all child counters from atomic context.
3595 */
f91840a3
AS
3596 if (event->attr.inherit) {
3597 ret = -EOPNOTSUPP;
3598 goto out;
3599 }
ffe8690c 3600
f91840a3
AS
3601 /* If this is a per-task event, it must be for current */
3602 if ((event->attach_state & PERF_ATTACH_TASK) &&
3603 event->hw.target != current) {
3604 ret = -EINVAL;
3605 goto out;
3606 }
3607
3608 /* If this is a per-CPU event, it must be for this CPU */
3609 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3610 event->cpu != smp_processor_id()) {
3611 ret = -EINVAL;
3612 goto out;
3613 }
ffe8690c
KX
3614
3615 /*
3616 * If the event is currently on this CPU, its either a per-task event,
3617 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3618 * oncpu == -1).
3619 */
3620 if (event->oncpu == smp_processor_id())
3621 event->pmu->read(event);
3622
f91840a3 3623 *value = local64_read(&event->count);
0d3d73aa
PZ
3624 if (enabled || running) {
3625 u64 now = event->shadow_ctx_time + perf_clock();
3626 u64 __enabled, __running;
3627
3628 __perf_update_times(event, now, &__enabled, &__running);
3629 if (enabled)
3630 *enabled = __enabled;
3631 if (running)
3632 *running = __running;
3633 }
f91840a3 3634out:
ffe8690c
KX
3635 local_irq_restore(flags);
3636
f91840a3 3637 return ret;
ffe8690c
KX
3638}
3639
7d88962e 3640static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3641{
0c1cbc18 3642 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 3643 int event_cpu, ret = 0;
7d88962e 3644
0793a61d 3645 /*
cdd6c482
IM
3646 * If event is enabled and currently active on a CPU, update the
3647 * value in the event structure:
0793a61d 3648 */
0c1cbc18
PZ
3649again:
3650 if (state == PERF_EVENT_STATE_ACTIVE) {
3651 struct perf_read_data data;
3652
3653 /*
3654 * Orders the ->state and ->oncpu loads such that if we see
3655 * ACTIVE we must also see the right ->oncpu.
3656 *
3657 * Matches the smp_wmb() from event_sched_in().
3658 */
3659 smp_rmb();
d6a2f903 3660
451d24d1
PZ
3661 event_cpu = READ_ONCE(event->oncpu);
3662 if ((unsigned)event_cpu >= nr_cpu_ids)
3663 return 0;
3664
0c1cbc18
PZ
3665 data = (struct perf_read_data){
3666 .event = event,
3667 .group = group,
3668 .ret = 0,
3669 };
3670
451d24d1
PZ
3671 preempt_disable();
3672 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3673
58763148
PZ
3674 /*
3675 * Purposely ignore the smp_call_function_single() return
3676 * value.
3677 *
451d24d1 3678 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3679 * scheduled out and that will have updated the event count.
3680 *
3681 * Therefore, either way, we'll have an up-to-date event count
3682 * after this.
3683 */
451d24d1
PZ
3684 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3685 preempt_enable();
58763148 3686 ret = data.ret;
0c1cbc18
PZ
3687
3688 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3689 struct perf_event_context *ctx = event->ctx;
3690 unsigned long flags;
3691
e625cce1 3692 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
3693 state = event->state;
3694 if (state != PERF_EVENT_STATE_INACTIVE) {
3695 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3696 goto again;
3697 }
3698
c530ccd9 3699 /*
0c1cbc18
PZ
3700 * May read while context is not active (e.g., thread is
3701 * blocked), in that case we cannot update context time
c530ccd9 3702 */
0c1cbc18 3703 if (ctx->is_active & EVENT_TIME) {
c530ccd9 3704 update_context_time(ctx);
e5d1367f
SE
3705 update_cgrp_time_from_event(event);
3706 }
0c1cbc18 3707
0d3d73aa 3708 perf_event_update_time(event);
0492d4c5 3709 if (group)
0d3d73aa 3710 perf_event_update_sibling_time(event);
e625cce1 3711 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3712 }
7d88962e
SB
3713
3714 return ret;
0793a61d
TG
3715}
3716
a63eaf34 3717/*
cdd6c482 3718 * Initialize the perf_event context in a task_struct:
a63eaf34 3719 */
eb184479 3720static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3721{
e625cce1 3722 raw_spin_lock_init(&ctx->lock);
a63eaf34 3723 mutex_init(&ctx->mutex);
2fde4f94 3724 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3725 INIT_LIST_HEAD(&ctx->pinned_groups);
3726 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3727 INIT_LIST_HEAD(&ctx->event_list);
3728 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3729}
3730
3731static struct perf_event_context *
3732alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3733{
3734 struct perf_event_context *ctx;
3735
3736 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3737 if (!ctx)
3738 return NULL;
3739
3740 __perf_event_init_context(ctx);
3741 if (task) {
3742 ctx->task = task;
3743 get_task_struct(task);
0793a61d 3744 }
eb184479
PZ
3745 ctx->pmu = pmu;
3746
3747 return ctx;
a63eaf34
PM
3748}
3749
2ebd4ffb
MH
3750static struct task_struct *
3751find_lively_task_by_vpid(pid_t vpid)
3752{
3753 struct task_struct *task;
0793a61d
TG
3754
3755 rcu_read_lock();
2ebd4ffb 3756 if (!vpid)
0793a61d
TG
3757 task = current;
3758 else
2ebd4ffb 3759 task = find_task_by_vpid(vpid);
0793a61d
TG
3760 if (task)
3761 get_task_struct(task);
3762 rcu_read_unlock();
3763
3764 if (!task)
3765 return ERR_PTR(-ESRCH);
3766
2ebd4ffb 3767 return task;
2ebd4ffb
MH
3768}
3769
fe4b04fa
PZ
3770/*
3771 * Returns a matching context with refcount and pincount.
3772 */
108b02cf 3773static struct perf_event_context *
4af57ef2
YZ
3774find_get_context(struct pmu *pmu, struct task_struct *task,
3775 struct perf_event *event)
0793a61d 3776{
211de6eb 3777 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3778 struct perf_cpu_context *cpuctx;
4af57ef2 3779 void *task_ctx_data = NULL;
25346b93 3780 unsigned long flags;
8dc85d54 3781 int ctxn, err;
4af57ef2 3782 int cpu = event->cpu;
0793a61d 3783
22a4ec72 3784 if (!task) {
cdd6c482 3785 /* Must be root to operate on a CPU event: */
0764771d 3786 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3787 return ERR_PTR(-EACCES);
3788
108b02cf 3789 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3790 ctx = &cpuctx->ctx;
c93f7669 3791 get_ctx(ctx);
fe4b04fa 3792 ++ctx->pin_count;
0793a61d 3793
0793a61d
TG
3794 return ctx;
3795 }
3796
8dc85d54
PZ
3797 err = -EINVAL;
3798 ctxn = pmu->task_ctx_nr;
3799 if (ctxn < 0)
3800 goto errout;
3801
4af57ef2
YZ
3802 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3803 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3804 if (!task_ctx_data) {
3805 err = -ENOMEM;
3806 goto errout;
3807 }
3808 }
3809
9ed6060d 3810retry:
8dc85d54 3811 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3812 if (ctx) {
211de6eb 3813 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3814 ++ctx->pin_count;
4af57ef2
YZ
3815
3816 if (task_ctx_data && !ctx->task_ctx_data) {
3817 ctx->task_ctx_data = task_ctx_data;
3818 task_ctx_data = NULL;
3819 }
e625cce1 3820 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3821
3822 if (clone_ctx)
3823 put_ctx(clone_ctx);
9137fb28 3824 } else {
eb184479 3825 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3826 err = -ENOMEM;
3827 if (!ctx)
3828 goto errout;
eb184479 3829
4af57ef2
YZ
3830 if (task_ctx_data) {
3831 ctx->task_ctx_data = task_ctx_data;
3832 task_ctx_data = NULL;
3833 }
3834
dbe08d82
ON
3835 err = 0;
3836 mutex_lock(&task->perf_event_mutex);
3837 /*
3838 * If it has already passed perf_event_exit_task().
3839 * we must see PF_EXITING, it takes this mutex too.
3840 */
3841 if (task->flags & PF_EXITING)
3842 err = -ESRCH;
3843 else if (task->perf_event_ctxp[ctxn])
3844 err = -EAGAIN;
fe4b04fa 3845 else {
9137fb28 3846 get_ctx(ctx);
fe4b04fa 3847 ++ctx->pin_count;
dbe08d82 3848 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3849 }
dbe08d82
ON
3850 mutex_unlock(&task->perf_event_mutex);
3851
3852 if (unlikely(err)) {
9137fb28 3853 put_ctx(ctx);
dbe08d82
ON
3854
3855 if (err == -EAGAIN)
3856 goto retry;
3857 goto errout;
a63eaf34
PM
3858 }
3859 }
3860
4af57ef2 3861 kfree(task_ctx_data);
0793a61d 3862 return ctx;
c93f7669 3863
9ed6060d 3864errout:
4af57ef2 3865 kfree(task_ctx_data);
c93f7669 3866 return ERR_PTR(err);
0793a61d
TG
3867}
3868
6fb2915d 3869static void perf_event_free_filter(struct perf_event *event);
2541517c 3870static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3871
cdd6c482 3872static void free_event_rcu(struct rcu_head *head)
592903cd 3873{
cdd6c482 3874 struct perf_event *event;
592903cd 3875
cdd6c482
IM
3876 event = container_of(head, struct perf_event, rcu_head);
3877 if (event->ns)
3878 put_pid_ns(event->ns);
6fb2915d 3879 perf_event_free_filter(event);
cdd6c482 3880 kfree(event);
592903cd
PZ
3881}
3882
b69cf536
PZ
3883static void ring_buffer_attach(struct perf_event *event,
3884 struct ring_buffer *rb);
925d519a 3885
f2fb6bef
KL
3886static void detach_sb_event(struct perf_event *event)
3887{
3888 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3889
3890 raw_spin_lock(&pel->lock);
3891 list_del_rcu(&event->sb_list);
3892 raw_spin_unlock(&pel->lock);
3893}
3894
a4f144eb 3895static bool is_sb_event(struct perf_event *event)
f2fb6bef 3896{
a4f144eb
DCC
3897 struct perf_event_attr *attr = &event->attr;
3898
f2fb6bef 3899 if (event->parent)
a4f144eb 3900 return false;
f2fb6bef
KL
3901
3902 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3903 return false;
f2fb6bef 3904
a4f144eb
DCC
3905 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3906 attr->comm || attr->comm_exec ||
3907 attr->task ||
3908 attr->context_switch)
3909 return true;
3910 return false;
3911}
3912
3913static void unaccount_pmu_sb_event(struct perf_event *event)
3914{
3915 if (is_sb_event(event))
3916 detach_sb_event(event);
f2fb6bef
KL
3917}
3918
4beb31f3 3919static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3920{
4beb31f3
FW
3921 if (event->parent)
3922 return;
3923
4beb31f3
FW
3924 if (is_cgroup_event(event))
3925 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3926}
925d519a 3927
555e0c1e
FW
3928#ifdef CONFIG_NO_HZ_FULL
3929static DEFINE_SPINLOCK(nr_freq_lock);
3930#endif
3931
3932static void unaccount_freq_event_nohz(void)
3933{
3934#ifdef CONFIG_NO_HZ_FULL
3935 spin_lock(&nr_freq_lock);
3936 if (atomic_dec_and_test(&nr_freq_events))
3937 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3938 spin_unlock(&nr_freq_lock);
3939#endif
3940}
3941
3942static void unaccount_freq_event(void)
3943{
3944 if (tick_nohz_full_enabled())
3945 unaccount_freq_event_nohz();
3946 else
3947 atomic_dec(&nr_freq_events);
3948}
3949
4beb31f3
FW
3950static void unaccount_event(struct perf_event *event)
3951{
25432ae9
PZ
3952 bool dec = false;
3953
4beb31f3
FW
3954 if (event->parent)
3955 return;
3956
3957 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3958 dec = true;
4beb31f3
FW
3959 if (event->attr.mmap || event->attr.mmap_data)
3960 atomic_dec(&nr_mmap_events);
3961 if (event->attr.comm)
3962 atomic_dec(&nr_comm_events);
e4222673
HB
3963 if (event->attr.namespaces)
3964 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
3965 if (event->attr.task)
3966 atomic_dec(&nr_task_events);
948b26b6 3967 if (event->attr.freq)
555e0c1e 3968 unaccount_freq_event();
45ac1403 3969 if (event->attr.context_switch) {
25432ae9 3970 dec = true;
45ac1403
AH
3971 atomic_dec(&nr_switch_events);
3972 }
4beb31f3 3973 if (is_cgroup_event(event))
25432ae9 3974 dec = true;
4beb31f3 3975 if (has_branch_stack(event))
25432ae9
PZ
3976 dec = true;
3977
9107c89e
PZ
3978 if (dec) {
3979 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3980 schedule_delayed_work(&perf_sched_work, HZ);
3981 }
4beb31f3
FW
3982
3983 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
3984
3985 unaccount_pmu_sb_event(event);
4beb31f3 3986}
925d519a 3987
9107c89e
PZ
3988static void perf_sched_delayed(struct work_struct *work)
3989{
3990 mutex_lock(&perf_sched_mutex);
3991 if (atomic_dec_and_test(&perf_sched_count))
3992 static_branch_disable(&perf_sched_events);
3993 mutex_unlock(&perf_sched_mutex);
3994}
3995
bed5b25a
AS
3996/*
3997 * The following implement mutual exclusion of events on "exclusive" pmus
3998 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3999 * at a time, so we disallow creating events that might conflict, namely:
4000 *
4001 * 1) cpu-wide events in the presence of per-task events,
4002 * 2) per-task events in the presence of cpu-wide events,
4003 * 3) two matching events on the same context.
4004 *
4005 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4006 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4007 */
4008static int exclusive_event_init(struct perf_event *event)
4009{
4010 struct pmu *pmu = event->pmu;
4011
4012 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4013 return 0;
4014
4015 /*
4016 * Prevent co-existence of per-task and cpu-wide events on the
4017 * same exclusive pmu.
4018 *
4019 * Negative pmu::exclusive_cnt means there are cpu-wide
4020 * events on this "exclusive" pmu, positive means there are
4021 * per-task events.
4022 *
4023 * Since this is called in perf_event_alloc() path, event::ctx
4024 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4025 * to mean "per-task event", because unlike other attach states it
4026 * never gets cleared.
4027 */
4028 if (event->attach_state & PERF_ATTACH_TASK) {
4029 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4030 return -EBUSY;
4031 } else {
4032 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4033 return -EBUSY;
4034 }
4035
4036 return 0;
4037}
4038
4039static void exclusive_event_destroy(struct perf_event *event)
4040{
4041 struct pmu *pmu = event->pmu;
4042
4043 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4044 return;
4045
4046 /* see comment in exclusive_event_init() */
4047 if (event->attach_state & PERF_ATTACH_TASK)
4048 atomic_dec(&pmu->exclusive_cnt);
4049 else
4050 atomic_inc(&pmu->exclusive_cnt);
4051}
4052
4053static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4054{
3bf6215a 4055 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4056 (e1->cpu == e2->cpu ||
4057 e1->cpu == -1 ||
4058 e2->cpu == -1))
4059 return true;
4060 return false;
4061}
4062
4063/* Called under the same ctx::mutex as perf_install_in_context() */
4064static bool exclusive_event_installable(struct perf_event *event,
4065 struct perf_event_context *ctx)
4066{
4067 struct perf_event *iter_event;
4068 struct pmu *pmu = event->pmu;
4069
4070 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4071 return true;
4072
4073 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4074 if (exclusive_event_match(iter_event, event))
4075 return false;
4076 }
4077
4078 return true;
4079}
4080
375637bc
AS
4081static void perf_addr_filters_splice(struct perf_event *event,
4082 struct list_head *head);
4083
683ede43 4084static void _free_event(struct perf_event *event)
f1600952 4085{
e360adbe 4086 irq_work_sync(&event->pending);
925d519a 4087
4beb31f3 4088 unaccount_event(event);
9ee318a7 4089
76369139 4090 if (event->rb) {
9bb5d40c
PZ
4091 /*
4092 * Can happen when we close an event with re-directed output.
4093 *
4094 * Since we have a 0 refcount, perf_mmap_close() will skip
4095 * over us; possibly making our ring_buffer_put() the last.
4096 */
4097 mutex_lock(&event->mmap_mutex);
b69cf536 4098 ring_buffer_attach(event, NULL);
9bb5d40c 4099 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4100 }
4101
e5d1367f
SE
4102 if (is_cgroup_event(event))
4103 perf_detach_cgroup(event);
4104
a0733e69
PZ
4105 if (!event->parent) {
4106 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4107 put_callchain_buffers();
4108 }
4109
4110 perf_event_free_bpf_prog(event);
375637bc
AS
4111 perf_addr_filters_splice(event, NULL);
4112 kfree(event->addr_filters_offs);
a0733e69
PZ
4113
4114 if (event->destroy)
4115 event->destroy(event);
4116
4117 if (event->ctx)
4118 put_ctx(event->ctx);
4119
ae162419
PB
4120 if (event->hw.target)
4121 put_task_struct(event->hw.target);
4122
62a92c8f
AS
4123 exclusive_event_destroy(event);
4124 module_put(event->pmu->module);
a0733e69
PZ
4125
4126 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4127}
4128
683ede43
PZ
4129/*
4130 * Used to free events which have a known refcount of 1, such as in error paths
4131 * where the event isn't exposed yet and inherited events.
4132 */
4133static void free_event(struct perf_event *event)
0793a61d 4134{
683ede43
PZ
4135 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4136 "unexpected event refcount: %ld; ptr=%p\n",
4137 atomic_long_read(&event->refcount), event)) {
4138 /* leak to avoid use-after-free */
4139 return;
4140 }
0793a61d 4141
683ede43 4142 _free_event(event);
0793a61d
TG
4143}
4144
a66a3052 4145/*
f8697762 4146 * Remove user event from the owner task.
a66a3052 4147 */
f8697762 4148static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4149{
8882135b 4150 struct task_struct *owner;
fb0459d7 4151
8882135b 4152 rcu_read_lock();
8882135b 4153 /*
f47c02c0
PZ
4154 * Matches the smp_store_release() in perf_event_exit_task(). If we
4155 * observe !owner it means the list deletion is complete and we can
4156 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4157 * owner->perf_event_mutex.
4158 */
506458ef 4159 owner = READ_ONCE(event->owner);
8882135b
PZ
4160 if (owner) {
4161 /*
4162 * Since delayed_put_task_struct() also drops the last
4163 * task reference we can safely take a new reference
4164 * while holding the rcu_read_lock().
4165 */
4166 get_task_struct(owner);
4167 }
4168 rcu_read_unlock();
4169
4170 if (owner) {
f63a8daa
PZ
4171 /*
4172 * If we're here through perf_event_exit_task() we're already
4173 * holding ctx->mutex which would be an inversion wrt. the
4174 * normal lock order.
4175 *
4176 * However we can safely take this lock because its the child
4177 * ctx->mutex.
4178 */
4179 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4180
8882135b
PZ
4181 /*
4182 * We have to re-check the event->owner field, if it is cleared
4183 * we raced with perf_event_exit_task(), acquiring the mutex
4184 * ensured they're done, and we can proceed with freeing the
4185 * event.
4186 */
f47c02c0 4187 if (event->owner) {
8882135b 4188 list_del_init(&event->owner_entry);
f47c02c0
PZ
4189 smp_store_release(&event->owner, NULL);
4190 }
8882135b
PZ
4191 mutex_unlock(&owner->perf_event_mutex);
4192 put_task_struct(owner);
4193 }
f8697762
JO
4194}
4195
f8697762
JO
4196static void put_event(struct perf_event *event)
4197{
f8697762
JO
4198 if (!atomic_long_dec_and_test(&event->refcount))
4199 return;
4200
c6e5b732
PZ
4201 _free_event(event);
4202}
4203
4204/*
4205 * Kill an event dead; while event:refcount will preserve the event
4206 * object, it will not preserve its functionality. Once the last 'user'
4207 * gives up the object, we'll destroy the thing.
4208 */
4209int perf_event_release_kernel(struct perf_event *event)
4210{
a4f4bb6d 4211 struct perf_event_context *ctx = event->ctx;
c6e5b732 4212 struct perf_event *child, *tmp;
82d94856 4213 LIST_HEAD(free_list);
c6e5b732 4214
a4f4bb6d
PZ
4215 /*
4216 * If we got here through err_file: fput(event_file); we will not have
4217 * attached to a context yet.
4218 */
4219 if (!ctx) {
4220 WARN_ON_ONCE(event->attach_state &
4221 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4222 goto no_ctx;
4223 }
4224
f8697762
JO
4225 if (!is_kernel_event(event))
4226 perf_remove_from_owner(event);
8882135b 4227
5fa7c8ec 4228 ctx = perf_event_ctx_lock(event);
a83fe28e 4229 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4230 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4231
a69b0ca4 4232 raw_spin_lock_irq(&ctx->lock);
683ede43 4233 /*
d8a8cfc7 4234 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4235 * anymore.
683ede43 4236 *
a69b0ca4
PZ
4237 * Anybody acquiring event->child_mutex after the below loop _must_
4238 * also see this, most importantly inherit_event() which will avoid
4239 * placing more children on the list.
683ede43 4240 *
c6e5b732
PZ
4241 * Thus this guarantees that we will in fact observe and kill _ALL_
4242 * child events.
683ede43 4243 */
a69b0ca4
PZ
4244 event->state = PERF_EVENT_STATE_DEAD;
4245 raw_spin_unlock_irq(&ctx->lock);
4246
4247 perf_event_ctx_unlock(event, ctx);
683ede43 4248
c6e5b732
PZ
4249again:
4250 mutex_lock(&event->child_mutex);
4251 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4252
c6e5b732
PZ
4253 /*
4254 * Cannot change, child events are not migrated, see the
4255 * comment with perf_event_ctx_lock_nested().
4256 */
506458ef 4257 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4258 /*
4259 * Since child_mutex nests inside ctx::mutex, we must jump
4260 * through hoops. We start by grabbing a reference on the ctx.
4261 *
4262 * Since the event cannot get freed while we hold the
4263 * child_mutex, the context must also exist and have a !0
4264 * reference count.
4265 */
4266 get_ctx(ctx);
4267
4268 /*
4269 * Now that we have a ctx ref, we can drop child_mutex, and
4270 * acquire ctx::mutex without fear of it going away. Then we
4271 * can re-acquire child_mutex.
4272 */
4273 mutex_unlock(&event->child_mutex);
4274 mutex_lock(&ctx->mutex);
4275 mutex_lock(&event->child_mutex);
4276
4277 /*
4278 * Now that we hold ctx::mutex and child_mutex, revalidate our
4279 * state, if child is still the first entry, it didn't get freed
4280 * and we can continue doing so.
4281 */
4282 tmp = list_first_entry_or_null(&event->child_list,
4283 struct perf_event, child_list);
4284 if (tmp == child) {
4285 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4286 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4287 /*
4288 * This matches the refcount bump in inherit_event();
4289 * this can't be the last reference.
4290 */
4291 put_event(event);
4292 }
4293
4294 mutex_unlock(&event->child_mutex);
4295 mutex_unlock(&ctx->mutex);
4296 put_ctx(ctx);
4297 goto again;
4298 }
4299 mutex_unlock(&event->child_mutex);
4300
82d94856
PZ
4301 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4302 list_del(&child->child_list);
4303 free_event(child);
4304 }
4305
a4f4bb6d
PZ
4306no_ctx:
4307 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4308 return 0;
4309}
4310EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4311
8b10c5e2
PZ
4312/*
4313 * Called when the last reference to the file is gone.
4314 */
a6fa941d
AV
4315static int perf_release(struct inode *inode, struct file *file)
4316{
c6e5b732 4317 perf_event_release_kernel(file->private_data);
a6fa941d 4318 return 0;
fb0459d7 4319}
fb0459d7 4320
ca0dd44c 4321static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4322{
cdd6c482 4323 struct perf_event *child;
e53c0994
PZ
4324 u64 total = 0;
4325
59ed446f
PZ
4326 *enabled = 0;
4327 *running = 0;
4328
6f10581a 4329 mutex_lock(&event->child_mutex);
01add3ea 4330
7d88962e 4331 (void)perf_event_read(event, false);
01add3ea
SB
4332 total += perf_event_count(event);
4333
59ed446f
PZ
4334 *enabled += event->total_time_enabled +
4335 atomic64_read(&event->child_total_time_enabled);
4336 *running += event->total_time_running +
4337 atomic64_read(&event->child_total_time_running);
4338
4339 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4340 (void)perf_event_read(child, false);
01add3ea 4341 total += perf_event_count(child);
59ed446f
PZ
4342 *enabled += child->total_time_enabled;
4343 *running += child->total_time_running;
4344 }
6f10581a 4345 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4346
4347 return total;
4348}
ca0dd44c
PZ
4349
4350u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4351{
4352 struct perf_event_context *ctx;
4353 u64 count;
4354
4355 ctx = perf_event_ctx_lock(event);
4356 count = __perf_event_read_value(event, enabled, running);
4357 perf_event_ctx_unlock(event, ctx);
4358
4359 return count;
4360}
fb0459d7 4361EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4362
7d88962e 4363static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4364 u64 read_format, u64 *values)
3dab77fb 4365{
2aeb1883 4366 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4367 struct perf_event *sub;
2aeb1883 4368 unsigned long flags;
fa8c2693 4369 int n = 1; /* skip @nr */
7d88962e 4370 int ret;
f63a8daa 4371
7d88962e
SB
4372 ret = perf_event_read(leader, true);
4373 if (ret)
4374 return ret;
abf4868b 4375
a9cd8194
PZ
4376 raw_spin_lock_irqsave(&ctx->lock, flags);
4377
fa8c2693
PZ
4378 /*
4379 * Since we co-schedule groups, {enabled,running} times of siblings
4380 * will be identical to those of the leader, so we only publish one
4381 * set.
4382 */
4383 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4384 values[n++] += leader->total_time_enabled +
4385 atomic64_read(&leader->child_total_time_enabled);
4386 }
3dab77fb 4387
fa8c2693
PZ
4388 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4389 values[n++] += leader->total_time_running +
4390 atomic64_read(&leader->child_total_time_running);
4391 }
4392
4393 /*
4394 * Write {count,id} tuples for every sibling.
4395 */
4396 values[n++] += perf_event_count(leader);
abf4868b
PZ
4397 if (read_format & PERF_FORMAT_ID)
4398 values[n++] = primary_event_id(leader);
3dab77fb 4399
fa8c2693
PZ
4400 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4401 values[n++] += perf_event_count(sub);
4402 if (read_format & PERF_FORMAT_ID)
4403 values[n++] = primary_event_id(sub);
4404 }
7d88962e 4405
2aeb1883 4406 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4407 return 0;
fa8c2693 4408}
3dab77fb 4409
fa8c2693
PZ
4410static int perf_read_group(struct perf_event *event,
4411 u64 read_format, char __user *buf)
4412{
4413 struct perf_event *leader = event->group_leader, *child;
4414 struct perf_event_context *ctx = leader->ctx;
7d88962e 4415 int ret;
fa8c2693 4416 u64 *values;
3dab77fb 4417
fa8c2693 4418 lockdep_assert_held(&ctx->mutex);
3dab77fb 4419
fa8c2693
PZ
4420 values = kzalloc(event->read_size, GFP_KERNEL);
4421 if (!values)
4422 return -ENOMEM;
3dab77fb 4423
fa8c2693
PZ
4424 values[0] = 1 + leader->nr_siblings;
4425
4426 /*
4427 * By locking the child_mutex of the leader we effectively
4428 * lock the child list of all siblings.. XXX explain how.
4429 */
4430 mutex_lock(&leader->child_mutex);
abf4868b 4431
7d88962e
SB
4432 ret = __perf_read_group_add(leader, read_format, values);
4433 if (ret)
4434 goto unlock;
4435
4436 list_for_each_entry(child, &leader->child_list, child_list) {
4437 ret = __perf_read_group_add(child, read_format, values);
4438 if (ret)
4439 goto unlock;
4440 }
abf4868b 4441
fa8c2693 4442 mutex_unlock(&leader->child_mutex);
abf4868b 4443
7d88962e 4444 ret = event->read_size;
fa8c2693
PZ
4445 if (copy_to_user(buf, values, event->read_size))
4446 ret = -EFAULT;
7d88962e 4447 goto out;
fa8c2693 4448
7d88962e
SB
4449unlock:
4450 mutex_unlock(&leader->child_mutex);
4451out:
fa8c2693 4452 kfree(values);
abf4868b 4453 return ret;
3dab77fb
PZ
4454}
4455
b15f495b 4456static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4457 u64 read_format, char __user *buf)
4458{
59ed446f 4459 u64 enabled, running;
3dab77fb
PZ
4460 u64 values[4];
4461 int n = 0;
4462
ca0dd44c 4463 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4464 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4465 values[n++] = enabled;
4466 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4467 values[n++] = running;
3dab77fb 4468 if (read_format & PERF_FORMAT_ID)
cdd6c482 4469 values[n++] = primary_event_id(event);
3dab77fb
PZ
4470
4471 if (copy_to_user(buf, values, n * sizeof(u64)))
4472 return -EFAULT;
4473
4474 return n * sizeof(u64);
4475}
4476
dc633982
JO
4477static bool is_event_hup(struct perf_event *event)
4478{
4479 bool no_children;
4480
a69b0ca4 4481 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4482 return false;
4483
4484 mutex_lock(&event->child_mutex);
4485 no_children = list_empty(&event->child_list);
4486 mutex_unlock(&event->child_mutex);
4487 return no_children;
4488}
4489
0793a61d 4490/*
cdd6c482 4491 * Read the performance event - simple non blocking version for now
0793a61d
TG
4492 */
4493static ssize_t
b15f495b 4494__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4495{
cdd6c482 4496 u64 read_format = event->attr.read_format;
3dab77fb 4497 int ret;
0793a61d 4498
3b6f9e5c 4499 /*
cdd6c482 4500 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4501 * error state (i.e. because it was pinned but it couldn't be
4502 * scheduled on to the CPU at some point).
4503 */
cdd6c482 4504 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4505 return 0;
4506
c320c7b7 4507 if (count < event->read_size)
3dab77fb
PZ
4508 return -ENOSPC;
4509
cdd6c482 4510 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4511 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4512 ret = perf_read_group(event, read_format, buf);
3dab77fb 4513 else
b15f495b 4514 ret = perf_read_one(event, read_format, buf);
0793a61d 4515
3dab77fb 4516 return ret;
0793a61d
TG
4517}
4518
0793a61d
TG
4519static ssize_t
4520perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4521{
cdd6c482 4522 struct perf_event *event = file->private_data;
f63a8daa
PZ
4523 struct perf_event_context *ctx;
4524 int ret;
0793a61d 4525
f63a8daa 4526 ctx = perf_event_ctx_lock(event);
b15f495b 4527 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4528 perf_event_ctx_unlock(event, ctx);
4529
4530 return ret;
0793a61d
TG
4531}
4532
4533static unsigned int perf_poll(struct file *file, poll_table *wait)
4534{
cdd6c482 4535 struct perf_event *event = file->private_data;
76369139 4536 struct ring_buffer *rb;
61b67684 4537 unsigned int events = POLLHUP;
c7138f37 4538
e708d7ad 4539 poll_wait(file, &event->waitq, wait);
179033b3 4540
dc633982 4541 if (is_event_hup(event))
179033b3 4542 return events;
c7138f37 4543
10c6db11 4544 /*
9bb5d40c
PZ
4545 * Pin the event->rb by taking event->mmap_mutex; otherwise
4546 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4547 */
4548 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4549 rb = event->rb;
4550 if (rb)
76369139 4551 events = atomic_xchg(&rb->poll, 0);
10c6db11 4552 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4553 return events;
4554}
4555
f63a8daa 4556static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4557{
7d88962e 4558 (void)perf_event_read(event, false);
e7850595 4559 local64_set(&event->count, 0);
cdd6c482 4560 perf_event_update_userpage(event);
3df5edad
PZ
4561}
4562
c93f7669 4563/*
cdd6c482
IM
4564 * Holding the top-level event's child_mutex means that any
4565 * descendant process that has inherited this event will block
8ba289b8 4566 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4567 * task existence requirements of perf_event_enable/disable.
c93f7669 4568 */
cdd6c482
IM
4569static void perf_event_for_each_child(struct perf_event *event,
4570 void (*func)(struct perf_event *))
3df5edad 4571{
cdd6c482 4572 struct perf_event *child;
3df5edad 4573
cdd6c482 4574 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4575
cdd6c482
IM
4576 mutex_lock(&event->child_mutex);
4577 func(event);
4578 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4579 func(child);
cdd6c482 4580 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4581}
4582
cdd6c482
IM
4583static void perf_event_for_each(struct perf_event *event,
4584 void (*func)(struct perf_event *))
3df5edad 4585{
cdd6c482
IM
4586 struct perf_event_context *ctx = event->ctx;
4587 struct perf_event *sibling;
3df5edad 4588
f63a8daa
PZ
4589 lockdep_assert_held(&ctx->mutex);
4590
cdd6c482 4591 event = event->group_leader;
75f937f2 4592
cdd6c482 4593 perf_event_for_each_child(event, func);
cdd6c482 4594 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4595 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4596}
4597
fae3fde6
PZ
4598static void __perf_event_period(struct perf_event *event,
4599 struct perf_cpu_context *cpuctx,
4600 struct perf_event_context *ctx,
4601 void *info)
c7999c6f 4602{
fae3fde6 4603 u64 value = *((u64 *)info);
c7999c6f 4604 bool active;
08247e31 4605
cdd6c482 4606 if (event->attr.freq) {
cdd6c482 4607 event->attr.sample_freq = value;
08247e31 4608 } else {
cdd6c482
IM
4609 event->attr.sample_period = value;
4610 event->hw.sample_period = value;
08247e31 4611 }
bad7192b
PZ
4612
4613 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4614 if (active) {
4615 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4616 /*
4617 * We could be throttled; unthrottle now to avoid the tick
4618 * trying to unthrottle while we already re-started the event.
4619 */
4620 if (event->hw.interrupts == MAX_INTERRUPTS) {
4621 event->hw.interrupts = 0;
4622 perf_log_throttle(event, 1);
4623 }
bad7192b
PZ
4624 event->pmu->stop(event, PERF_EF_UPDATE);
4625 }
4626
4627 local64_set(&event->hw.period_left, 0);
4628
4629 if (active) {
4630 event->pmu->start(event, PERF_EF_RELOAD);
4631 perf_pmu_enable(ctx->pmu);
4632 }
c7999c6f
PZ
4633}
4634
4635static int perf_event_period(struct perf_event *event, u64 __user *arg)
4636{
c7999c6f
PZ
4637 u64 value;
4638
4639 if (!is_sampling_event(event))
4640 return -EINVAL;
4641
4642 if (copy_from_user(&value, arg, sizeof(value)))
4643 return -EFAULT;
4644
4645 if (!value)
4646 return -EINVAL;
4647
4648 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4649 return -EINVAL;
4650
fae3fde6 4651 event_function_call(event, __perf_event_period, &value);
08247e31 4652
c7999c6f 4653 return 0;
08247e31
PZ
4654}
4655
ac9721f3
PZ
4656static const struct file_operations perf_fops;
4657
2903ff01 4658static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4659{
2903ff01
AV
4660 struct fd f = fdget(fd);
4661 if (!f.file)
4662 return -EBADF;
ac9721f3 4663
2903ff01
AV
4664 if (f.file->f_op != &perf_fops) {
4665 fdput(f);
4666 return -EBADF;
ac9721f3 4667 }
2903ff01
AV
4668 *p = f;
4669 return 0;
ac9721f3
PZ
4670}
4671
4672static int perf_event_set_output(struct perf_event *event,
4673 struct perf_event *output_event);
6fb2915d 4674static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4675static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4676
f63a8daa 4677static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4678{
cdd6c482 4679 void (*func)(struct perf_event *);
3df5edad 4680 u32 flags = arg;
d859e29f
PM
4681
4682 switch (cmd) {
cdd6c482 4683 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4684 func = _perf_event_enable;
d859e29f 4685 break;
cdd6c482 4686 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4687 func = _perf_event_disable;
79f14641 4688 break;
cdd6c482 4689 case PERF_EVENT_IOC_RESET:
f63a8daa 4690 func = _perf_event_reset;
6de6a7b9 4691 break;
3df5edad 4692
cdd6c482 4693 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4694 return _perf_event_refresh(event, arg);
08247e31 4695
cdd6c482
IM
4696 case PERF_EVENT_IOC_PERIOD:
4697 return perf_event_period(event, (u64 __user *)arg);
08247e31 4698
cf4957f1
JO
4699 case PERF_EVENT_IOC_ID:
4700 {
4701 u64 id = primary_event_id(event);
4702
4703 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4704 return -EFAULT;
4705 return 0;
4706 }
4707
cdd6c482 4708 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4709 {
ac9721f3 4710 int ret;
ac9721f3 4711 if (arg != -1) {
2903ff01
AV
4712 struct perf_event *output_event;
4713 struct fd output;
4714 ret = perf_fget_light(arg, &output);
4715 if (ret)
4716 return ret;
4717 output_event = output.file->private_data;
4718 ret = perf_event_set_output(event, output_event);
4719 fdput(output);
4720 } else {
4721 ret = perf_event_set_output(event, NULL);
ac9721f3 4722 }
ac9721f3
PZ
4723 return ret;
4724 }
a4be7c27 4725
6fb2915d
LZ
4726 case PERF_EVENT_IOC_SET_FILTER:
4727 return perf_event_set_filter(event, (void __user *)arg);
4728
2541517c
AS
4729 case PERF_EVENT_IOC_SET_BPF:
4730 return perf_event_set_bpf_prog(event, arg);
4731
86e7972f
WN
4732 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4733 struct ring_buffer *rb;
4734
4735 rcu_read_lock();
4736 rb = rcu_dereference(event->rb);
4737 if (!rb || !rb->nr_pages) {
4738 rcu_read_unlock();
4739 return -EINVAL;
4740 }
4741 rb_toggle_paused(rb, !!arg);
4742 rcu_read_unlock();
4743 return 0;
4744 }
d859e29f 4745 default:
3df5edad 4746 return -ENOTTY;
d859e29f 4747 }
3df5edad
PZ
4748
4749 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4750 perf_event_for_each(event, func);
3df5edad 4751 else
cdd6c482 4752 perf_event_for_each_child(event, func);
3df5edad
PZ
4753
4754 return 0;
d859e29f
PM
4755}
4756
f63a8daa
PZ
4757static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4758{
4759 struct perf_event *event = file->private_data;
4760 struct perf_event_context *ctx;
4761 long ret;
4762
4763 ctx = perf_event_ctx_lock(event);
4764 ret = _perf_ioctl(event, cmd, arg);
4765 perf_event_ctx_unlock(event, ctx);
4766
4767 return ret;
4768}
4769
b3f20785
PM
4770#ifdef CONFIG_COMPAT
4771static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4772 unsigned long arg)
4773{
4774 switch (_IOC_NR(cmd)) {
4775 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4776 case _IOC_NR(PERF_EVENT_IOC_ID):
4777 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4778 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4779 cmd &= ~IOCSIZE_MASK;
4780 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4781 }
4782 break;
4783 }
4784 return perf_ioctl(file, cmd, arg);
4785}
4786#else
4787# define perf_compat_ioctl NULL
4788#endif
4789
cdd6c482 4790int perf_event_task_enable(void)
771d7cde 4791{
f63a8daa 4792 struct perf_event_context *ctx;
cdd6c482 4793 struct perf_event *event;
771d7cde 4794
cdd6c482 4795 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4796 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4797 ctx = perf_event_ctx_lock(event);
4798 perf_event_for_each_child(event, _perf_event_enable);
4799 perf_event_ctx_unlock(event, ctx);
4800 }
cdd6c482 4801 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4802
4803 return 0;
4804}
4805
cdd6c482 4806int perf_event_task_disable(void)
771d7cde 4807{
f63a8daa 4808 struct perf_event_context *ctx;
cdd6c482 4809 struct perf_event *event;
771d7cde 4810
cdd6c482 4811 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4812 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4813 ctx = perf_event_ctx_lock(event);
4814 perf_event_for_each_child(event, _perf_event_disable);
4815 perf_event_ctx_unlock(event, ctx);
4816 }
cdd6c482 4817 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4818
4819 return 0;
4820}
4821
cdd6c482 4822static int perf_event_index(struct perf_event *event)
194002b2 4823{
a4eaf7f1
PZ
4824 if (event->hw.state & PERF_HES_STOPPED)
4825 return 0;
4826
cdd6c482 4827 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4828 return 0;
4829
35edc2a5 4830 return event->pmu->event_idx(event);
194002b2
PZ
4831}
4832
c4794295 4833static void calc_timer_values(struct perf_event *event,
e3f3541c 4834 u64 *now,
7f310a5d
EM
4835 u64 *enabled,
4836 u64 *running)
c4794295 4837{
e3f3541c 4838 u64 ctx_time;
c4794295 4839
e3f3541c
PZ
4840 *now = perf_clock();
4841 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 4842 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
4843}
4844
fa731587
PZ
4845static void perf_event_init_userpage(struct perf_event *event)
4846{
4847 struct perf_event_mmap_page *userpg;
4848 struct ring_buffer *rb;
4849
4850 rcu_read_lock();
4851 rb = rcu_dereference(event->rb);
4852 if (!rb)
4853 goto unlock;
4854
4855 userpg = rb->user_page;
4856
4857 /* Allow new userspace to detect that bit 0 is deprecated */
4858 userpg->cap_bit0_is_deprecated = 1;
4859 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4860 userpg->data_offset = PAGE_SIZE;
4861 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4862
4863unlock:
4864 rcu_read_unlock();
4865}
4866
c1317ec2
AL
4867void __weak arch_perf_update_userpage(
4868 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4869{
4870}
4871
38ff667b
PZ
4872/*
4873 * Callers need to ensure there can be no nesting of this function, otherwise
4874 * the seqlock logic goes bad. We can not serialize this because the arch
4875 * code calls this from NMI context.
4876 */
cdd6c482 4877void perf_event_update_userpage(struct perf_event *event)
37d81828 4878{
cdd6c482 4879 struct perf_event_mmap_page *userpg;
76369139 4880 struct ring_buffer *rb;
e3f3541c 4881 u64 enabled, running, now;
38ff667b
PZ
4882
4883 rcu_read_lock();
5ec4c599
PZ
4884 rb = rcu_dereference(event->rb);
4885 if (!rb)
4886 goto unlock;
4887
0d641208
EM
4888 /*
4889 * compute total_time_enabled, total_time_running
4890 * based on snapshot values taken when the event
4891 * was last scheduled in.
4892 *
4893 * we cannot simply called update_context_time()
4894 * because of locking issue as we can be called in
4895 * NMI context
4896 */
e3f3541c 4897 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4898
76369139 4899 userpg = rb->user_page;
7b732a75
PZ
4900 /*
4901 * Disable preemption so as to not let the corresponding user-space
4902 * spin too long if we get preempted.
4903 */
4904 preempt_disable();
37d81828 4905 ++userpg->lock;
92f22a38 4906 barrier();
cdd6c482 4907 userpg->index = perf_event_index(event);
b5e58793 4908 userpg->offset = perf_event_count(event);
365a4038 4909 if (userpg->index)
e7850595 4910 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4911
0d641208 4912 userpg->time_enabled = enabled +
cdd6c482 4913 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4914
0d641208 4915 userpg->time_running = running +
cdd6c482 4916 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4917
c1317ec2 4918 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4919
92f22a38 4920 barrier();
37d81828 4921 ++userpg->lock;
7b732a75 4922 preempt_enable();
38ff667b 4923unlock:
7b732a75 4924 rcu_read_unlock();
37d81828
PM
4925}
4926
11bac800 4927static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 4928{
11bac800 4929 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 4930 struct ring_buffer *rb;
906010b2
PZ
4931 int ret = VM_FAULT_SIGBUS;
4932
4933 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4934 if (vmf->pgoff == 0)
4935 ret = 0;
4936 return ret;
4937 }
4938
4939 rcu_read_lock();
76369139
FW
4940 rb = rcu_dereference(event->rb);
4941 if (!rb)
906010b2
PZ
4942 goto unlock;
4943
4944 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4945 goto unlock;
4946
76369139 4947 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4948 if (!vmf->page)
4949 goto unlock;
4950
4951 get_page(vmf->page);
11bac800 4952 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
4953 vmf->page->index = vmf->pgoff;
4954
4955 ret = 0;
4956unlock:
4957 rcu_read_unlock();
4958
4959 return ret;
4960}
4961
10c6db11
PZ
4962static void ring_buffer_attach(struct perf_event *event,
4963 struct ring_buffer *rb)
4964{
b69cf536 4965 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4966 unsigned long flags;
4967
b69cf536
PZ
4968 if (event->rb) {
4969 /*
4970 * Should be impossible, we set this when removing
4971 * event->rb_entry and wait/clear when adding event->rb_entry.
4972 */
4973 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4974
b69cf536 4975 old_rb = event->rb;
b69cf536
PZ
4976 spin_lock_irqsave(&old_rb->event_lock, flags);
4977 list_del_rcu(&event->rb_entry);
4978 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4979
2f993cf0
ON
4980 event->rcu_batches = get_state_synchronize_rcu();
4981 event->rcu_pending = 1;
b69cf536 4982 }
10c6db11 4983
b69cf536 4984 if (rb) {
2f993cf0
ON
4985 if (event->rcu_pending) {
4986 cond_synchronize_rcu(event->rcu_batches);
4987 event->rcu_pending = 0;
4988 }
4989
b69cf536
PZ
4990 spin_lock_irqsave(&rb->event_lock, flags);
4991 list_add_rcu(&event->rb_entry, &rb->event_list);
4992 spin_unlock_irqrestore(&rb->event_lock, flags);
4993 }
4994
767ae086
AS
4995 /*
4996 * Avoid racing with perf_mmap_close(AUX): stop the event
4997 * before swizzling the event::rb pointer; if it's getting
4998 * unmapped, its aux_mmap_count will be 0 and it won't
4999 * restart. See the comment in __perf_pmu_output_stop().
5000 *
5001 * Data will inevitably be lost when set_output is done in
5002 * mid-air, but then again, whoever does it like this is
5003 * not in for the data anyway.
5004 */
5005 if (has_aux(event))
5006 perf_event_stop(event, 0);
5007
b69cf536
PZ
5008 rcu_assign_pointer(event->rb, rb);
5009
5010 if (old_rb) {
5011 ring_buffer_put(old_rb);
5012 /*
5013 * Since we detached before setting the new rb, so that we
5014 * could attach the new rb, we could have missed a wakeup.
5015 * Provide it now.
5016 */
5017 wake_up_all(&event->waitq);
5018 }
10c6db11
PZ
5019}
5020
5021static void ring_buffer_wakeup(struct perf_event *event)
5022{
5023 struct ring_buffer *rb;
5024
5025 rcu_read_lock();
5026 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5027 if (rb) {
5028 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5029 wake_up_all(&event->waitq);
5030 }
10c6db11
PZ
5031 rcu_read_unlock();
5032}
5033
fdc26706 5034struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5035{
76369139 5036 struct ring_buffer *rb;
7b732a75 5037
ac9721f3 5038 rcu_read_lock();
76369139
FW
5039 rb = rcu_dereference(event->rb);
5040 if (rb) {
5041 if (!atomic_inc_not_zero(&rb->refcount))
5042 rb = NULL;
ac9721f3
PZ
5043 }
5044 rcu_read_unlock();
5045
76369139 5046 return rb;
ac9721f3
PZ
5047}
5048
fdc26706 5049void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5050{
76369139 5051 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5052 return;
7b732a75 5053
9bb5d40c 5054 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5055
76369139 5056 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5057}
5058
5059static void perf_mmap_open(struct vm_area_struct *vma)
5060{
cdd6c482 5061 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5062
cdd6c482 5063 atomic_inc(&event->mmap_count);
9bb5d40c 5064 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5065
45bfb2e5
PZ
5066 if (vma->vm_pgoff)
5067 atomic_inc(&event->rb->aux_mmap_count);
5068
1e0fb9ec 5069 if (event->pmu->event_mapped)
bfe33492 5070 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5071}
5072
95ff4ca2
AS
5073static void perf_pmu_output_stop(struct perf_event *event);
5074
9bb5d40c
PZ
5075/*
5076 * A buffer can be mmap()ed multiple times; either directly through the same
5077 * event, or through other events by use of perf_event_set_output().
5078 *
5079 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5080 * the buffer here, where we still have a VM context. This means we need
5081 * to detach all events redirecting to us.
5082 */
7b732a75
PZ
5083static void perf_mmap_close(struct vm_area_struct *vma)
5084{
cdd6c482 5085 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5086
b69cf536 5087 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5088 struct user_struct *mmap_user = rb->mmap_user;
5089 int mmap_locked = rb->mmap_locked;
5090 unsigned long size = perf_data_size(rb);
789f90fc 5091
1e0fb9ec 5092 if (event->pmu->event_unmapped)
bfe33492 5093 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5094
45bfb2e5
PZ
5095 /*
5096 * rb->aux_mmap_count will always drop before rb->mmap_count and
5097 * event->mmap_count, so it is ok to use event->mmap_mutex to
5098 * serialize with perf_mmap here.
5099 */
5100 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5101 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5102 /*
5103 * Stop all AUX events that are writing to this buffer,
5104 * so that we can free its AUX pages and corresponding PMU
5105 * data. Note that after rb::aux_mmap_count dropped to zero,
5106 * they won't start any more (see perf_aux_output_begin()).
5107 */
5108 perf_pmu_output_stop(event);
5109
5110 /* now it's safe to free the pages */
45bfb2e5
PZ
5111 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5112 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5113
95ff4ca2 5114 /* this has to be the last one */
45bfb2e5 5115 rb_free_aux(rb);
95ff4ca2
AS
5116 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5117
45bfb2e5
PZ
5118 mutex_unlock(&event->mmap_mutex);
5119 }
5120
9bb5d40c
PZ
5121 atomic_dec(&rb->mmap_count);
5122
5123 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5124 goto out_put;
9bb5d40c 5125
b69cf536 5126 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5127 mutex_unlock(&event->mmap_mutex);
5128
5129 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5130 if (atomic_read(&rb->mmap_count))
5131 goto out_put;
ac9721f3 5132
9bb5d40c
PZ
5133 /*
5134 * No other mmap()s, detach from all other events that might redirect
5135 * into the now unreachable buffer. Somewhat complicated by the
5136 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5137 */
5138again:
5139 rcu_read_lock();
5140 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5141 if (!atomic_long_inc_not_zero(&event->refcount)) {
5142 /*
5143 * This event is en-route to free_event() which will
5144 * detach it and remove it from the list.
5145 */
5146 continue;
5147 }
5148 rcu_read_unlock();
789f90fc 5149
9bb5d40c
PZ
5150 mutex_lock(&event->mmap_mutex);
5151 /*
5152 * Check we didn't race with perf_event_set_output() which can
5153 * swizzle the rb from under us while we were waiting to
5154 * acquire mmap_mutex.
5155 *
5156 * If we find a different rb; ignore this event, a next
5157 * iteration will no longer find it on the list. We have to
5158 * still restart the iteration to make sure we're not now
5159 * iterating the wrong list.
5160 */
b69cf536
PZ
5161 if (event->rb == rb)
5162 ring_buffer_attach(event, NULL);
5163
cdd6c482 5164 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5165 put_event(event);
ac9721f3 5166
9bb5d40c
PZ
5167 /*
5168 * Restart the iteration; either we're on the wrong list or
5169 * destroyed its integrity by doing a deletion.
5170 */
5171 goto again;
7b732a75 5172 }
9bb5d40c
PZ
5173 rcu_read_unlock();
5174
5175 /*
5176 * It could be there's still a few 0-ref events on the list; they'll
5177 * get cleaned up by free_event() -- they'll also still have their
5178 * ref on the rb and will free it whenever they are done with it.
5179 *
5180 * Aside from that, this buffer is 'fully' detached and unmapped,
5181 * undo the VM accounting.
5182 */
5183
5184 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5185 vma->vm_mm->pinned_vm -= mmap_locked;
5186 free_uid(mmap_user);
5187
b69cf536 5188out_put:
9bb5d40c 5189 ring_buffer_put(rb); /* could be last */
37d81828
PM
5190}
5191
f0f37e2f 5192static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5193 .open = perf_mmap_open,
45bfb2e5 5194 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5195 .fault = perf_mmap_fault,
5196 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5197};
5198
5199static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5200{
cdd6c482 5201 struct perf_event *event = file->private_data;
22a4f650 5202 unsigned long user_locked, user_lock_limit;
789f90fc 5203 struct user_struct *user = current_user();
22a4f650 5204 unsigned long locked, lock_limit;
45bfb2e5 5205 struct ring_buffer *rb = NULL;
7b732a75
PZ
5206 unsigned long vma_size;
5207 unsigned long nr_pages;
45bfb2e5 5208 long user_extra = 0, extra = 0;
d57e34fd 5209 int ret = 0, flags = 0;
37d81828 5210
c7920614
PZ
5211 /*
5212 * Don't allow mmap() of inherited per-task counters. This would
5213 * create a performance issue due to all children writing to the
76369139 5214 * same rb.
c7920614
PZ
5215 */
5216 if (event->cpu == -1 && event->attr.inherit)
5217 return -EINVAL;
5218
43a21ea8 5219 if (!(vma->vm_flags & VM_SHARED))
37d81828 5220 return -EINVAL;
7b732a75
PZ
5221
5222 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5223
5224 if (vma->vm_pgoff == 0) {
5225 nr_pages = (vma_size / PAGE_SIZE) - 1;
5226 } else {
5227 /*
5228 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5229 * mapped, all subsequent mappings should have the same size
5230 * and offset. Must be above the normal perf buffer.
5231 */
5232 u64 aux_offset, aux_size;
5233
5234 if (!event->rb)
5235 return -EINVAL;
5236
5237 nr_pages = vma_size / PAGE_SIZE;
5238
5239 mutex_lock(&event->mmap_mutex);
5240 ret = -EINVAL;
5241
5242 rb = event->rb;
5243 if (!rb)
5244 goto aux_unlock;
5245
6aa7de05
MR
5246 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5247 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5248
5249 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5250 goto aux_unlock;
5251
5252 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5253 goto aux_unlock;
5254
5255 /* already mapped with a different offset */
5256 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5257 goto aux_unlock;
5258
5259 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5260 goto aux_unlock;
5261
5262 /* already mapped with a different size */
5263 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5264 goto aux_unlock;
5265
5266 if (!is_power_of_2(nr_pages))
5267 goto aux_unlock;
5268
5269 if (!atomic_inc_not_zero(&rb->mmap_count))
5270 goto aux_unlock;
5271
5272 if (rb_has_aux(rb)) {
5273 atomic_inc(&rb->aux_mmap_count);
5274 ret = 0;
5275 goto unlock;
5276 }
5277
5278 atomic_set(&rb->aux_mmap_count, 1);
5279 user_extra = nr_pages;
5280
5281 goto accounting;
5282 }
7b732a75 5283
7730d865 5284 /*
76369139 5285 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5286 * can do bitmasks instead of modulo.
5287 */
2ed11312 5288 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5289 return -EINVAL;
5290
7b732a75 5291 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5292 return -EINVAL;
5293
cdd6c482 5294 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5295again:
cdd6c482 5296 mutex_lock(&event->mmap_mutex);
76369139 5297 if (event->rb) {
9bb5d40c 5298 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5299 ret = -EINVAL;
9bb5d40c
PZ
5300 goto unlock;
5301 }
5302
5303 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5304 /*
5305 * Raced against perf_mmap_close() through
5306 * perf_event_set_output(). Try again, hope for better
5307 * luck.
5308 */
5309 mutex_unlock(&event->mmap_mutex);
5310 goto again;
5311 }
5312
ebb3c4c4
PZ
5313 goto unlock;
5314 }
5315
789f90fc 5316 user_extra = nr_pages + 1;
45bfb2e5
PZ
5317
5318accounting:
cdd6c482 5319 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5320
5321 /*
5322 * Increase the limit linearly with more CPUs:
5323 */
5324 user_lock_limit *= num_online_cpus();
5325
789f90fc 5326 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5327
789f90fc
PZ
5328 if (user_locked > user_lock_limit)
5329 extra = user_locked - user_lock_limit;
7b732a75 5330
78d7d407 5331 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5332 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5333 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5334
459ec28a
IM
5335 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5336 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5337 ret = -EPERM;
5338 goto unlock;
5339 }
7b732a75 5340
45bfb2e5 5341 WARN_ON(!rb && event->rb);
906010b2 5342
d57e34fd 5343 if (vma->vm_flags & VM_WRITE)
76369139 5344 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5345
76369139 5346 if (!rb) {
45bfb2e5
PZ
5347 rb = rb_alloc(nr_pages,
5348 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5349 event->cpu, flags);
26cb63ad 5350
45bfb2e5
PZ
5351 if (!rb) {
5352 ret = -ENOMEM;
5353 goto unlock;
5354 }
43a21ea8 5355
45bfb2e5
PZ
5356 atomic_set(&rb->mmap_count, 1);
5357 rb->mmap_user = get_current_user();
5358 rb->mmap_locked = extra;
26cb63ad 5359
45bfb2e5 5360 ring_buffer_attach(event, rb);
ac9721f3 5361
45bfb2e5
PZ
5362 perf_event_init_userpage(event);
5363 perf_event_update_userpage(event);
5364 } else {
1a594131
AS
5365 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5366 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5367 if (!ret)
5368 rb->aux_mmap_locked = extra;
5369 }
9a0f05cb 5370
ebb3c4c4 5371unlock:
45bfb2e5
PZ
5372 if (!ret) {
5373 atomic_long_add(user_extra, &user->locked_vm);
5374 vma->vm_mm->pinned_vm += extra;
5375
ac9721f3 5376 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5377 } else if (rb) {
5378 atomic_dec(&rb->mmap_count);
5379 }
5380aux_unlock:
cdd6c482 5381 mutex_unlock(&event->mmap_mutex);
37d81828 5382
9bb5d40c
PZ
5383 /*
5384 * Since pinned accounting is per vm we cannot allow fork() to copy our
5385 * vma.
5386 */
26cb63ad 5387 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5388 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5389
1e0fb9ec 5390 if (event->pmu->event_mapped)
bfe33492 5391 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5392
7b732a75 5393 return ret;
37d81828
PM
5394}
5395
3c446b3d
PZ
5396static int perf_fasync(int fd, struct file *filp, int on)
5397{
496ad9aa 5398 struct inode *inode = file_inode(filp);
cdd6c482 5399 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5400 int retval;
5401
5955102c 5402 inode_lock(inode);
cdd6c482 5403 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5404 inode_unlock(inode);
3c446b3d
PZ
5405
5406 if (retval < 0)
5407 return retval;
5408
5409 return 0;
5410}
5411
0793a61d 5412static const struct file_operations perf_fops = {
3326c1ce 5413 .llseek = no_llseek,
0793a61d
TG
5414 .release = perf_release,
5415 .read = perf_read,
5416 .poll = perf_poll,
d859e29f 5417 .unlocked_ioctl = perf_ioctl,
b3f20785 5418 .compat_ioctl = perf_compat_ioctl,
37d81828 5419 .mmap = perf_mmap,
3c446b3d 5420 .fasync = perf_fasync,
0793a61d
TG
5421};
5422
925d519a 5423/*
cdd6c482 5424 * Perf event wakeup
925d519a
PZ
5425 *
5426 * If there's data, ensure we set the poll() state and publish everything
5427 * to user-space before waking everybody up.
5428 */
5429
fed66e2c
PZ
5430static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5431{
5432 /* only the parent has fasync state */
5433 if (event->parent)
5434 event = event->parent;
5435 return &event->fasync;
5436}
5437
cdd6c482 5438void perf_event_wakeup(struct perf_event *event)
925d519a 5439{
10c6db11 5440 ring_buffer_wakeup(event);
4c9e2542 5441
cdd6c482 5442 if (event->pending_kill) {
fed66e2c 5443 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5444 event->pending_kill = 0;
4c9e2542 5445 }
925d519a
PZ
5446}
5447
e360adbe 5448static void perf_pending_event(struct irq_work *entry)
79f14641 5449{
cdd6c482
IM
5450 struct perf_event *event = container_of(entry,
5451 struct perf_event, pending);
d525211f
PZ
5452 int rctx;
5453
5454 rctx = perf_swevent_get_recursion_context();
5455 /*
5456 * If we 'fail' here, that's OK, it means recursion is already disabled
5457 * and we won't recurse 'further'.
5458 */
79f14641 5459
cdd6c482
IM
5460 if (event->pending_disable) {
5461 event->pending_disable = 0;
fae3fde6 5462 perf_event_disable_local(event);
79f14641
PZ
5463 }
5464
cdd6c482
IM
5465 if (event->pending_wakeup) {
5466 event->pending_wakeup = 0;
5467 perf_event_wakeup(event);
79f14641 5468 }
d525211f
PZ
5469
5470 if (rctx >= 0)
5471 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5472}
5473
39447b38
ZY
5474/*
5475 * We assume there is only KVM supporting the callbacks.
5476 * Later on, we might change it to a list if there is
5477 * another virtualization implementation supporting the callbacks.
5478 */
5479struct perf_guest_info_callbacks *perf_guest_cbs;
5480
5481int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5482{
5483 perf_guest_cbs = cbs;
5484 return 0;
5485}
5486EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5487
5488int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5489{
5490 perf_guest_cbs = NULL;
5491 return 0;
5492}
5493EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5494
4018994f
JO
5495static void
5496perf_output_sample_regs(struct perf_output_handle *handle,
5497 struct pt_regs *regs, u64 mask)
5498{
5499 int bit;
29dd3288 5500 DECLARE_BITMAP(_mask, 64);
4018994f 5501
29dd3288
MS
5502 bitmap_from_u64(_mask, mask);
5503 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5504 u64 val;
5505
5506 val = perf_reg_value(regs, bit);
5507 perf_output_put(handle, val);
5508 }
5509}
5510
60e2364e 5511static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5512 struct pt_regs *regs,
5513 struct pt_regs *regs_user_copy)
4018994f 5514{
88a7c26a
AL
5515 if (user_mode(regs)) {
5516 regs_user->abi = perf_reg_abi(current);
2565711f 5517 regs_user->regs = regs;
88a7c26a
AL
5518 } else if (current->mm) {
5519 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5520 } else {
5521 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5522 regs_user->regs = NULL;
4018994f
JO
5523 }
5524}
5525
60e2364e
SE
5526static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5527 struct pt_regs *regs)
5528{
5529 regs_intr->regs = regs;
5530 regs_intr->abi = perf_reg_abi(current);
5531}
5532
5533
c5ebcedb
JO
5534/*
5535 * Get remaining task size from user stack pointer.
5536 *
5537 * It'd be better to take stack vma map and limit this more
5538 * precisly, but there's no way to get it safely under interrupt,
5539 * so using TASK_SIZE as limit.
5540 */
5541static u64 perf_ustack_task_size(struct pt_regs *regs)
5542{
5543 unsigned long addr = perf_user_stack_pointer(regs);
5544
5545 if (!addr || addr >= TASK_SIZE)
5546 return 0;
5547
5548 return TASK_SIZE - addr;
5549}
5550
5551static u16
5552perf_sample_ustack_size(u16 stack_size, u16 header_size,
5553 struct pt_regs *regs)
5554{
5555 u64 task_size;
5556
5557 /* No regs, no stack pointer, no dump. */
5558 if (!regs)
5559 return 0;
5560
5561 /*
5562 * Check if we fit in with the requested stack size into the:
5563 * - TASK_SIZE
5564 * If we don't, we limit the size to the TASK_SIZE.
5565 *
5566 * - remaining sample size
5567 * If we don't, we customize the stack size to
5568 * fit in to the remaining sample size.
5569 */
5570
5571 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5572 stack_size = min(stack_size, (u16) task_size);
5573
5574 /* Current header size plus static size and dynamic size. */
5575 header_size += 2 * sizeof(u64);
5576
5577 /* Do we fit in with the current stack dump size? */
5578 if ((u16) (header_size + stack_size) < header_size) {
5579 /*
5580 * If we overflow the maximum size for the sample,
5581 * we customize the stack dump size to fit in.
5582 */
5583 stack_size = USHRT_MAX - header_size - sizeof(u64);
5584 stack_size = round_up(stack_size, sizeof(u64));
5585 }
5586
5587 return stack_size;
5588}
5589
5590static void
5591perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5592 struct pt_regs *regs)
5593{
5594 /* Case of a kernel thread, nothing to dump */
5595 if (!regs) {
5596 u64 size = 0;
5597 perf_output_put(handle, size);
5598 } else {
5599 unsigned long sp;
5600 unsigned int rem;
5601 u64 dyn_size;
5602
5603 /*
5604 * We dump:
5605 * static size
5606 * - the size requested by user or the best one we can fit
5607 * in to the sample max size
5608 * data
5609 * - user stack dump data
5610 * dynamic size
5611 * - the actual dumped size
5612 */
5613
5614 /* Static size. */
5615 perf_output_put(handle, dump_size);
5616
5617 /* Data. */
5618 sp = perf_user_stack_pointer(regs);
5619 rem = __output_copy_user(handle, (void *) sp, dump_size);
5620 dyn_size = dump_size - rem;
5621
5622 perf_output_skip(handle, rem);
5623
5624 /* Dynamic size. */
5625 perf_output_put(handle, dyn_size);
5626 }
5627}
5628
c980d109
ACM
5629static void __perf_event_header__init_id(struct perf_event_header *header,
5630 struct perf_sample_data *data,
5631 struct perf_event *event)
6844c09d
ACM
5632{
5633 u64 sample_type = event->attr.sample_type;
5634
5635 data->type = sample_type;
5636 header->size += event->id_header_size;
5637
5638 if (sample_type & PERF_SAMPLE_TID) {
5639 /* namespace issues */
5640 data->tid_entry.pid = perf_event_pid(event, current);
5641 data->tid_entry.tid = perf_event_tid(event, current);
5642 }
5643
5644 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5645 data->time = perf_event_clock(event);
6844c09d 5646
ff3d527c 5647 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5648 data->id = primary_event_id(event);
5649
5650 if (sample_type & PERF_SAMPLE_STREAM_ID)
5651 data->stream_id = event->id;
5652
5653 if (sample_type & PERF_SAMPLE_CPU) {
5654 data->cpu_entry.cpu = raw_smp_processor_id();
5655 data->cpu_entry.reserved = 0;
5656 }
5657}
5658
76369139
FW
5659void perf_event_header__init_id(struct perf_event_header *header,
5660 struct perf_sample_data *data,
5661 struct perf_event *event)
c980d109
ACM
5662{
5663 if (event->attr.sample_id_all)
5664 __perf_event_header__init_id(header, data, event);
5665}
5666
5667static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5668 struct perf_sample_data *data)
5669{
5670 u64 sample_type = data->type;
5671
5672 if (sample_type & PERF_SAMPLE_TID)
5673 perf_output_put(handle, data->tid_entry);
5674
5675 if (sample_type & PERF_SAMPLE_TIME)
5676 perf_output_put(handle, data->time);
5677
5678 if (sample_type & PERF_SAMPLE_ID)
5679 perf_output_put(handle, data->id);
5680
5681 if (sample_type & PERF_SAMPLE_STREAM_ID)
5682 perf_output_put(handle, data->stream_id);
5683
5684 if (sample_type & PERF_SAMPLE_CPU)
5685 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5686
5687 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5688 perf_output_put(handle, data->id);
c980d109
ACM
5689}
5690
76369139
FW
5691void perf_event__output_id_sample(struct perf_event *event,
5692 struct perf_output_handle *handle,
5693 struct perf_sample_data *sample)
c980d109
ACM
5694{
5695 if (event->attr.sample_id_all)
5696 __perf_event__output_id_sample(handle, sample);
5697}
5698
3dab77fb 5699static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5700 struct perf_event *event,
5701 u64 enabled, u64 running)
3dab77fb 5702{
cdd6c482 5703 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5704 u64 values[4];
5705 int n = 0;
5706
b5e58793 5707 values[n++] = perf_event_count(event);
3dab77fb 5708 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5709 values[n++] = enabled +
cdd6c482 5710 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5711 }
5712 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5713 values[n++] = running +
cdd6c482 5714 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5715 }
5716 if (read_format & PERF_FORMAT_ID)
cdd6c482 5717 values[n++] = primary_event_id(event);
3dab77fb 5718
76369139 5719 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5720}
5721
3dab77fb 5722static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5723 struct perf_event *event,
5724 u64 enabled, u64 running)
3dab77fb 5725{
cdd6c482
IM
5726 struct perf_event *leader = event->group_leader, *sub;
5727 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5728 u64 values[5];
5729 int n = 0;
5730
5731 values[n++] = 1 + leader->nr_siblings;
5732
5733 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5734 values[n++] = enabled;
3dab77fb
PZ
5735
5736 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5737 values[n++] = running;
3dab77fb 5738
cdd6c482 5739 if (leader != event)
3dab77fb
PZ
5740 leader->pmu->read(leader);
5741
b5e58793 5742 values[n++] = perf_event_count(leader);
3dab77fb 5743 if (read_format & PERF_FORMAT_ID)
cdd6c482 5744 values[n++] = primary_event_id(leader);
3dab77fb 5745
76369139 5746 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5747
65abc865 5748 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5749 n = 0;
5750
6f5ab001
JO
5751 if ((sub != event) &&
5752 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5753 sub->pmu->read(sub);
5754
b5e58793 5755 values[n++] = perf_event_count(sub);
3dab77fb 5756 if (read_format & PERF_FORMAT_ID)
cdd6c482 5757 values[n++] = primary_event_id(sub);
3dab77fb 5758
76369139 5759 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5760 }
5761}
5762
eed01528
SE
5763#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5764 PERF_FORMAT_TOTAL_TIME_RUNNING)
5765
ba5213ae
PZ
5766/*
5767 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5768 *
5769 * The problem is that its both hard and excessively expensive to iterate the
5770 * child list, not to mention that its impossible to IPI the children running
5771 * on another CPU, from interrupt/NMI context.
5772 */
3dab77fb 5773static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5774 struct perf_event *event)
3dab77fb 5775{
e3f3541c 5776 u64 enabled = 0, running = 0, now;
eed01528
SE
5777 u64 read_format = event->attr.read_format;
5778
5779 /*
5780 * compute total_time_enabled, total_time_running
5781 * based on snapshot values taken when the event
5782 * was last scheduled in.
5783 *
5784 * we cannot simply called update_context_time()
5785 * because of locking issue as we are called in
5786 * NMI context
5787 */
c4794295 5788 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5789 calc_timer_values(event, &now, &enabled, &running);
eed01528 5790
cdd6c482 5791 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5792 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5793 else
eed01528 5794 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5795}
5796
5622f295
MM
5797void perf_output_sample(struct perf_output_handle *handle,
5798 struct perf_event_header *header,
5799 struct perf_sample_data *data,
cdd6c482 5800 struct perf_event *event)
5622f295
MM
5801{
5802 u64 sample_type = data->type;
5803
5804 perf_output_put(handle, *header);
5805
ff3d527c
AH
5806 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5807 perf_output_put(handle, data->id);
5808
5622f295
MM
5809 if (sample_type & PERF_SAMPLE_IP)
5810 perf_output_put(handle, data->ip);
5811
5812 if (sample_type & PERF_SAMPLE_TID)
5813 perf_output_put(handle, data->tid_entry);
5814
5815 if (sample_type & PERF_SAMPLE_TIME)
5816 perf_output_put(handle, data->time);
5817
5818 if (sample_type & PERF_SAMPLE_ADDR)
5819 perf_output_put(handle, data->addr);
5820
5821 if (sample_type & PERF_SAMPLE_ID)
5822 perf_output_put(handle, data->id);
5823
5824 if (sample_type & PERF_SAMPLE_STREAM_ID)
5825 perf_output_put(handle, data->stream_id);
5826
5827 if (sample_type & PERF_SAMPLE_CPU)
5828 perf_output_put(handle, data->cpu_entry);
5829
5830 if (sample_type & PERF_SAMPLE_PERIOD)
5831 perf_output_put(handle, data->period);
5832
5833 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5834 perf_output_read(handle, event);
5622f295
MM
5835
5836 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5837 if (data->callchain) {
5838 int size = 1;
5839
5840 if (data->callchain)
5841 size += data->callchain->nr;
5842
5843 size *= sizeof(u64);
5844
76369139 5845 __output_copy(handle, data->callchain, size);
5622f295
MM
5846 } else {
5847 u64 nr = 0;
5848 perf_output_put(handle, nr);
5849 }
5850 }
5851
5852 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5853 struct perf_raw_record *raw = data->raw;
5854
5855 if (raw) {
5856 struct perf_raw_frag *frag = &raw->frag;
5857
5858 perf_output_put(handle, raw->size);
5859 do {
5860 if (frag->copy) {
5861 __output_custom(handle, frag->copy,
5862 frag->data, frag->size);
5863 } else {
5864 __output_copy(handle, frag->data,
5865 frag->size);
5866 }
5867 if (perf_raw_frag_last(frag))
5868 break;
5869 frag = frag->next;
5870 } while (1);
5871 if (frag->pad)
5872 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5873 } else {
5874 struct {
5875 u32 size;
5876 u32 data;
5877 } raw = {
5878 .size = sizeof(u32),
5879 .data = 0,
5880 };
5881 perf_output_put(handle, raw);
5882 }
5883 }
a7ac67ea 5884
bce38cd5
SE
5885 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5886 if (data->br_stack) {
5887 size_t size;
5888
5889 size = data->br_stack->nr
5890 * sizeof(struct perf_branch_entry);
5891
5892 perf_output_put(handle, data->br_stack->nr);
5893 perf_output_copy(handle, data->br_stack->entries, size);
5894 } else {
5895 /*
5896 * we always store at least the value of nr
5897 */
5898 u64 nr = 0;
5899 perf_output_put(handle, nr);
5900 }
5901 }
4018994f
JO
5902
5903 if (sample_type & PERF_SAMPLE_REGS_USER) {
5904 u64 abi = data->regs_user.abi;
5905
5906 /*
5907 * If there are no regs to dump, notice it through
5908 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5909 */
5910 perf_output_put(handle, abi);
5911
5912 if (abi) {
5913 u64 mask = event->attr.sample_regs_user;
5914 perf_output_sample_regs(handle,
5915 data->regs_user.regs,
5916 mask);
5917 }
5918 }
c5ebcedb 5919
a5cdd40c 5920 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5921 perf_output_sample_ustack(handle,
5922 data->stack_user_size,
5923 data->regs_user.regs);
a5cdd40c 5924 }
c3feedf2
AK
5925
5926 if (sample_type & PERF_SAMPLE_WEIGHT)
5927 perf_output_put(handle, data->weight);
d6be9ad6
SE
5928
5929 if (sample_type & PERF_SAMPLE_DATA_SRC)
5930 perf_output_put(handle, data->data_src.val);
a5cdd40c 5931
fdfbbd07
AK
5932 if (sample_type & PERF_SAMPLE_TRANSACTION)
5933 perf_output_put(handle, data->txn);
5934
60e2364e
SE
5935 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5936 u64 abi = data->regs_intr.abi;
5937 /*
5938 * If there are no regs to dump, notice it through
5939 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5940 */
5941 perf_output_put(handle, abi);
5942
5943 if (abi) {
5944 u64 mask = event->attr.sample_regs_intr;
5945
5946 perf_output_sample_regs(handle,
5947 data->regs_intr.regs,
5948 mask);
5949 }
5950 }
5951
fc7ce9c7
KL
5952 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5953 perf_output_put(handle, data->phys_addr);
5954
a5cdd40c
PZ
5955 if (!event->attr.watermark) {
5956 int wakeup_events = event->attr.wakeup_events;
5957
5958 if (wakeup_events) {
5959 struct ring_buffer *rb = handle->rb;
5960 int events = local_inc_return(&rb->events);
5961
5962 if (events >= wakeup_events) {
5963 local_sub(wakeup_events, &rb->events);
5964 local_inc(&rb->wakeup);
5965 }
5966 }
5967 }
5622f295
MM
5968}
5969
fc7ce9c7
KL
5970static u64 perf_virt_to_phys(u64 virt)
5971{
5972 u64 phys_addr = 0;
5973 struct page *p = NULL;
5974
5975 if (!virt)
5976 return 0;
5977
5978 if (virt >= TASK_SIZE) {
5979 /* If it's vmalloc()d memory, leave phys_addr as 0 */
5980 if (virt_addr_valid((void *)(uintptr_t)virt) &&
5981 !(virt >= VMALLOC_START && virt < VMALLOC_END))
5982 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5983 } else {
5984 /*
5985 * Walking the pages tables for user address.
5986 * Interrupts are disabled, so it prevents any tear down
5987 * of the page tables.
5988 * Try IRQ-safe __get_user_pages_fast first.
5989 * If failed, leave phys_addr as 0.
5990 */
5991 if ((current->mm != NULL) &&
5992 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5993 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5994
5995 if (p)
5996 put_page(p);
5997 }
5998
5999 return phys_addr;
6000}
6001
5622f295
MM
6002void perf_prepare_sample(struct perf_event_header *header,
6003 struct perf_sample_data *data,
cdd6c482 6004 struct perf_event *event,
5622f295 6005 struct pt_regs *regs)
7b732a75 6006{
cdd6c482 6007 u64 sample_type = event->attr.sample_type;
7b732a75 6008
cdd6c482 6009 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6010 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6011
6012 header->misc = 0;
6013 header->misc |= perf_misc_flags(regs);
6fab0192 6014
c980d109 6015 __perf_event_header__init_id(header, data, event);
6844c09d 6016
c320c7b7 6017 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6018 data->ip = perf_instruction_pointer(regs);
6019
b23f3325 6020 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6021 int size = 1;
394ee076 6022
e6dab5ff 6023 data->callchain = perf_callchain(event, regs);
5622f295
MM
6024
6025 if (data->callchain)
6026 size += data->callchain->nr;
6027
6028 header->size += size * sizeof(u64);
394ee076
PZ
6029 }
6030
3a43ce68 6031 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6032 struct perf_raw_record *raw = data->raw;
6033 int size;
6034
6035 if (raw) {
6036 struct perf_raw_frag *frag = &raw->frag;
6037 u32 sum = 0;
6038
6039 do {
6040 sum += frag->size;
6041 if (perf_raw_frag_last(frag))
6042 break;
6043 frag = frag->next;
6044 } while (1);
6045
6046 size = round_up(sum + sizeof(u32), sizeof(u64));
6047 raw->size = size - sizeof(u32);
6048 frag->pad = raw->size - sum;
6049 } else {
6050 size = sizeof(u64);
6051 }
a044560c 6052
7e3f977e 6053 header->size += size;
7f453c24 6054 }
bce38cd5
SE
6055
6056 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6057 int size = sizeof(u64); /* nr */
6058 if (data->br_stack) {
6059 size += data->br_stack->nr
6060 * sizeof(struct perf_branch_entry);
6061 }
6062 header->size += size;
6063 }
4018994f 6064
2565711f 6065 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6066 perf_sample_regs_user(&data->regs_user, regs,
6067 &data->regs_user_copy);
2565711f 6068
4018994f
JO
6069 if (sample_type & PERF_SAMPLE_REGS_USER) {
6070 /* regs dump ABI info */
6071 int size = sizeof(u64);
6072
4018994f
JO
6073 if (data->regs_user.regs) {
6074 u64 mask = event->attr.sample_regs_user;
6075 size += hweight64(mask) * sizeof(u64);
6076 }
6077
6078 header->size += size;
6079 }
c5ebcedb
JO
6080
6081 if (sample_type & PERF_SAMPLE_STACK_USER) {
6082 /*
6083 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6084 * processed as the last one or have additional check added
6085 * in case new sample type is added, because we could eat
6086 * up the rest of the sample size.
6087 */
c5ebcedb
JO
6088 u16 stack_size = event->attr.sample_stack_user;
6089 u16 size = sizeof(u64);
6090
c5ebcedb 6091 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6092 data->regs_user.regs);
c5ebcedb
JO
6093
6094 /*
6095 * If there is something to dump, add space for the dump
6096 * itself and for the field that tells the dynamic size,
6097 * which is how many have been actually dumped.
6098 */
6099 if (stack_size)
6100 size += sizeof(u64) + stack_size;
6101
6102 data->stack_user_size = stack_size;
6103 header->size += size;
6104 }
60e2364e
SE
6105
6106 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6107 /* regs dump ABI info */
6108 int size = sizeof(u64);
6109
6110 perf_sample_regs_intr(&data->regs_intr, regs);
6111
6112 if (data->regs_intr.regs) {
6113 u64 mask = event->attr.sample_regs_intr;
6114
6115 size += hweight64(mask) * sizeof(u64);
6116 }
6117
6118 header->size += size;
6119 }
fc7ce9c7
KL
6120
6121 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6122 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6123}
7f453c24 6124
9ecda41a
WN
6125static void __always_inline
6126__perf_event_output(struct perf_event *event,
6127 struct perf_sample_data *data,
6128 struct pt_regs *regs,
6129 int (*output_begin)(struct perf_output_handle *,
6130 struct perf_event *,
6131 unsigned int))
5622f295
MM
6132{
6133 struct perf_output_handle handle;
6134 struct perf_event_header header;
689802b2 6135
927c7a9e
FW
6136 /* protect the callchain buffers */
6137 rcu_read_lock();
6138
cdd6c482 6139 perf_prepare_sample(&header, data, event, regs);
5c148194 6140
9ecda41a 6141 if (output_begin(&handle, event, header.size))
927c7a9e 6142 goto exit;
0322cd6e 6143
cdd6c482 6144 perf_output_sample(&handle, &header, data, event);
f413cdb8 6145
8a057d84 6146 perf_output_end(&handle);
927c7a9e
FW
6147
6148exit:
6149 rcu_read_unlock();
0322cd6e
PZ
6150}
6151
9ecda41a
WN
6152void
6153perf_event_output_forward(struct perf_event *event,
6154 struct perf_sample_data *data,
6155 struct pt_regs *regs)
6156{
6157 __perf_event_output(event, data, regs, perf_output_begin_forward);
6158}
6159
6160void
6161perf_event_output_backward(struct perf_event *event,
6162 struct perf_sample_data *data,
6163 struct pt_regs *regs)
6164{
6165 __perf_event_output(event, data, regs, perf_output_begin_backward);
6166}
6167
6168void
6169perf_event_output(struct perf_event *event,
6170 struct perf_sample_data *data,
6171 struct pt_regs *regs)
6172{
6173 __perf_event_output(event, data, regs, perf_output_begin);
6174}
6175
38b200d6 6176/*
cdd6c482 6177 * read event_id
38b200d6
PZ
6178 */
6179
6180struct perf_read_event {
6181 struct perf_event_header header;
6182
6183 u32 pid;
6184 u32 tid;
38b200d6
PZ
6185};
6186
6187static void
cdd6c482 6188perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6189 struct task_struct *task)
6190{
6191 struct perf_output_handle handle;
c980d109 6192 struct perf_sample_data sample;
dfc65094 6193 struct perf_read_event read_event = {
38b200d6 6194 .header = {
cdd6c482 6195 .type = PERF_RECORD_READ,
38b200d6 6196 .misc = 0,
c320c7b7 6197 .size = sizeof(read_event) + event->read_size,
38b200d6 6198 },
cdd6c482
IM
6199 .pid = perf_event_pid(event, task),
6200 .tid = perf_event_tid(event, task),
38b200d6 6201 };
3dab77fb 6202 int ret;
38b200d6 6203
c980d109 6204 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6205 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6206 if (ret)
6207 return;
6208
dfc65094 6209 perf_output_put(&handle, read_event);
cdd6c482 6210 perf_output_read(&handle, event);
c980d109 6211 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6212
38b200d6
PZ
6213 perf_output_end(&handle);
6214}
6215
aab5b71e 6216typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6217
6218static void
aab5b71e
PZ
6219perf_iterate_ctx(struct perf_event_context *ctx,
6220 perf_iterate_f output,
b73e4fef 6221 void *data, bool all)
52d857a8
JO
6222{
6223 struct perf_event *event;
6224
6225 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6226 if (!all) {
6227 if (event->state < PERF_EVENT_STATE_INACTIVE)
6228 continue;
6229 if (!event_filter_match(event))
6230 continue;
6231 }
6232
67516844 6233 output(event, data);
52d857a8
JO
6234 }
6235}
6236
aab5b71e 6237static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6238{
6239 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6240 struct perf_event *event;
6241
6242 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6243 /*
6244 * Skip events that are not fully formed yet; ensure that
6245 * if we observe event->ctx, both event and ctx will be
6246 * complete enough. See perf_install_in_context().
6247 */
6248 if (!smp_load_acquire(&event->ctx))
6249 continue;
6250
f2fb6bef
KL
6251 if (event->state < PERF_EVENT_STATE_INACTIVE)
6252 continue;
6253 if (!event_filter_match(event))
6254 continue;
6255 output(event, data);
6256 }
6257}
6258
aab5b71e
PZ
6259/*
6260 * Iterate all events that need to receive side-band events.
6261 *
6262 * For new callers; ensure that account_pmu_sb_event() includes
6263 * your event, otherwise it might not get delivered.
6264 */
52d857a8 6265static void
aab5b71e 6266perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6267 struct perf_event_context *task_ctx)
6268{
52d857a8 6269 struct perf_event_context *ctx;
52d857a8
JO
6270 int ctxn;
6271
aab5b71e
PZ
6272 rcu_read_lock();
6273 preempt_disable();
6274
4e93ad60 6275 /*
aab5b71e
PZ
6276 * If we have task_ctx != NULL we only notify the task context itself.
6277 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6278 * context.
6279 */
6280 if (task_ctx) {
aab5b71e
PZ
6281 perf_iterate_ctx(task_ctx, output, data, false);
6282 goto done;
4e93ad60
JO
6283 }
6284
aab5b71e 6285 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6286
6287 for_each_task_context_nr(ctxn) {
52d857a8
JO
6288 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6289 if (ctx)
aab5b71e 6290 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6291 }
aab5b71e 6292done:
f2fb6bef 6293 preempt_enable();
52d857a8 6294 rcu_read_unlock();
95ff4ca2
AS
6295}
6296
375637bc
AS
6297/*
6298 * Clear all file-based filters at exec, they'll have to be
6299 * re-instated when/if these objects are mmapped again.
6300 */
6301static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6302{
6303 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6304 struct perf_addr_filter *filter;
6305 unsigned int restart = 0, count = 0;
6306 unsigned long flags;
6307
6308 if (!has_addr_filter(event))
6309 return;
6310
6311 raw_spin_lock_irqsave(&ifh->lock, flags);
6312 list_for_each_entry(filter, &ifh->list, entry) {
6313 if (filter->inode) {
6314 event->addr_filters_offs[count] = 0;
6315 restart++;
6316 }
6317
6318 count++;
6319 }
6320
6321 if (restart)
6322 event->addr_filters_gen++;
6323 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6324
6325 if (restart)
767ae086 6326 perf_event_stop(event, 1);
375637bc
AS
6327}
6328
6329void perf_event_exec(void)
6330{
6331 struct perf_event_context *ctx;
6332 int ctxn;
6333
6334 rcu_read_lock();
6335 for_each_task_context_nr(ctxn) {
6336 ctx = current->perf_event_ctxp[ctxn];
6337 if (!ctx)
6338 continue;
6339
6340 perf_event_enable_on_exec(ctxn);
6341
aab5b71e 6342 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6343 true);
6344 }
6345 rcu_read_unlock();
6346}
6347
95ff4ca2
AS
6348struct remote_output {
6349 struct ring_buffer *rb;
6350 int err;
6351};
6352
6353static void __perf_event_output_stop(struct perf_event *event, void *data)
6354{
6355 struct perf_event *parent = event->parent;
6356 struct remote_output *ro = data;
6357 struct ring_buffer *rb = ro->rb;
375637bc
AS
6358 struct stop_event_data sd = {
6359 .event = event,
6360 };
95ff4ca2
AS
6361
6362 if (!has_aux(event))
6363 return;
6364
6365 if (!parent)
6366 parent = event;
6367
6368 /*
6369 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6370 * ring-buffer, but it will be the child that's actually using it.
6371 *
6372 * We are using event::rb to determine if the event should be stopped,
6373 * however this may race with ring_buffer_attach() (through set_output),
6374 * which will make us skip the event that actually needs to be stopped.
6375 * So ring_buffer_attach() has to stop an aux event before re-assigning
6376 * its rb pointer.
95ff4ca2
AS
6377 */
6378 if (rcu_dereference(parent->rb) == rb)
375637bc 6379 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6380}
6381
6382static int __perf_pmu_output_stop(void *info)
6383{
6384 struct perf_event *event = info;
6385 struct pmu *pmu = event->pmu;
8b6a3fe8 6386 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6387 struct remote_output ro = {
6388 .rb = event->rb,
6389 };
6390
6391 rcu_read_lock();
aab5b71e 6392 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6393 if (cpuctx->task_ctx)
aab5b71e 6394 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6395 &ro, false);
95ff4ca2
AS
6396 rcu_read_unlock();
6397
6398 return ro.err;
6399}
6400
6401static void perf_pmu_output_stop(struct perf_event *event)
6402{
6403 struct perf_event *iter;
6404 int err, cpu;
6405
6406restart:
6407 rcu_read_lock();
6408 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6409 /*
6410 * For per-CPU events, we need to make sure that neither they
6411 * nor their children are running; for cpu==-1 events it's
6412 * sufficient to stop the event itself if it's active, since
6413 * it can't have children.
6414 */
6415 cpu = iter->cpu;
6416 if (cpu == -1)
6417 cpu = READ_ONCE(iter->oncpu);
6418
6419 if (cpu == -1)
6420 continue;
6421
6422 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6423 if (err == -EAGAIN) {
6424 rcu_read_unlock();
6425 goto restart;
6426 }
6427 }
6428 rcu_read_unlock();
52d857a8
JO
6429}
6430
60313ebe 6431/*
9f498cc5
PZ
6432 * task tracking -- fork/exit
6433 *
13d7a241 6434 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6435 */
6436
9f498cc5 6437struct perf_task_event {
3a80b4a3 6438 struct task_struct *task;
cdd6c482 6439 struct perf_event_context *task_ctx;
60313ebe
PZ
6440
6441 struct {
6442 struct perf_event_header header;
6443
6444 u32 pid;
6445 u32 ppid;
9f498cc5
PZ
6446 u32 tid;
6447 u32 ptid;
393b2ad8 6448 u64 time;
cdd6c482 6449 } event_id;
60313ebe
PZ
6450};
6451
67516844
JO
6452static int perf_event_task_match(struct perf_event *event)
6453{
13d7a241
SE
6454 return event->attr.comm || event->attr.mmap ||
6455 event->attr.mmap2 || event->attr.mmap_data ||
6456 event->attr.task;
67516844
JO
6457}
6458
cdd6c482 6459static void perf_event_task_output(struct perf_event *event,
52d857a8 6460 void *data)
60313ebe 6461{
52d857a8 6462 struct perf_task_event *task_event = data;
60313ebe 6463 struct perf_output_handle handle;
c980d109 6464 struct perf_sample_data sample;
9f498cc5 6465 struct task_struct *task = task_event->task;
c980d109 6466 int ret, size = task_event->event_id.header.size;
8bb39f9a 6467
67516844
JO
6468 if (!perf_event_task_match(event))
6469 return;
6470
c980d109 6471 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6472
c980d109 6473 ret = perf_output_begin(&handle, event,
a7ac67ea 6474 task_event->event_id.header.size);
ef60777c 6475 if (ret)
c980d109 6476 goto out;
60313ebe 6477
cdd6c482
IM
6478 task_event->event_id.pid = perf_event_pid(event, task);
6479 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6480
cdd6c482
IM
6481 task_event->event_id.tid = perf_event_tid(event, task);
6482 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6483
34f43927
PZ
6484 task_event->event_id.time = perf_event_clock(event);
6485
cdd6c482 6486 perf_output_put(&handle, task_event->event_id);
393b2ad8 6487
c980d109
ACM
6488 perf_event__output_id_sample(event, &handle, &sample);
6489
60313ebe 6490 perf_output_end(&handle);
c980d109
ACM
6491out:
6492 task_event->event_id.header.size = size;
60313ebe
PZ
6493}
6494
cdd6c482
IM
6495static void perf_event_task(struct task_struct *task,
6496 struct perf_event_context *task_ctx,
3a80b4a3 6497 int new)
60313ebe 6498{
9f498cc5 6499 struct perf_task_event task_event;
60313ebe 6500
cdd6c482
IM
6501 if (!atomic_read(&nr_comm_events) &&
6502 !atomic_read(&nr_mmap_events) &&
6503 !atomic_read(&nr_task_events))
60313ebe
PZ
6504 return;
6505
9f498cc5 6506 task_event = (struct perf_task_event){
3a80b4a3
PZ
6507 .task = task,
6508 .task_ctx = task_ctx,
cdd6c482 6509 .event_id = {
60313ebe 6510 .header = {
cdd6c482 6511 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6512 .misc = 0,
cdd6c482 6513 .size = sizeof(task_event.event_id),
60313ebe 6514 },
573402db
PZ
6515 /* .pid */
6516 /* .ppid */
9f498cc5
PZ
6517 /* .tid */
6518 /* .ptid */
34f43927 6519 /* .time */
60313ebe
PZ
6520 },
6521 };
6522
aab5b71e 6523 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6524 &task_event,
6525 task_ctx);
9f498cc5
PZ
6526}
6527
cdd6c482 6528void perf_event_fork(struct task_struct *task)
9f498cc5 6529{
cdd6c482 6530 perf_event_task(task, NULL, 1);
e4222673 6531 perf_event_namespaces(task);
60313ebe
PZ
6532}
6533
8d1b2d93
PZ
6534/*
6535 * comm tracking
6536 */
6537
6538struct perf_comm_event {
22a4f650
IM
6539 struct task_struct *task;
6540 char *comm;
8d1b2d93
PZ
6541 int comm_size;
6542
6543 struct {
6544 struct perf_event_header header;
6545
6546 u32 pid;
6547 u32 tid;
cdd6c482 6548 } event_id;
8d1b2d93
PZ
6549};
6550
67516844
JO
6551static int perf_event_comm_match(struct perf_event *event)
6552{
6553 return event->attr.comm;
6554}
6555
cdd6c482 6556static void perf_event_comm_output(struct perf_event *event,
52d857a8 6557 void *data)
8d1b2d93 6558{
52d857a8 6559 struct perf_comm_event *comm_event = data;
8d1b2d93 6560 struct perf_output_handle handle;
c980d109 6561 struct perf_sample_data sample;
cdd6c482 6562 int size = comm_event->event_id.header.size;
c980d109
ACM
6563 int ret;
6564
67516844
JO
6565 if (!perf_event_comm_match(event))
6566 return;
6567
c980d109
ACM
6568 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6569 ret = perf_output_begin(&handle, event,
a7ac67ea 6570 comm_event->event_id.header.size);
8d1b2d93
PZ
6571
6572 if (ret)
c980d109 6573 goto out;
8d1b2d93 6574
cdd6c482
IM
6575 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6576 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6577
cdd6c482 6578 perf_output_put(&handle, comm_event->event_id);
76369139 6579 __output_copy(&handle, comm_event->comm,
8d1b2d93 6580 comm_event->comm_size);
c980d109
ACM
6581
6582 perf_event__output_id_sample(event, &handle, &sample);
6583
8d1b2d93 6584 perf_output_end(&handle);
c980d109
ACM
6585out:
6586 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6587}
6588
cdd6c482 6589static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6590{
413ee3b4 6591 char comm[TASK_COMM_LEN];
8d1b2d93 6592 unsigned int size;
8d1b2d93 6593
413ee3b4 6594 memset(comm, 0, sizeof(comm));
96b02d78 6595 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6596 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6597
6598 comm_event->comm = comm;
6599 comm_event->comm_size = size;
6600
cdd6c482 6601 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6602
aab5b71e 6603 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6604 comm_event,
6605 NULL);
8d1b2d93
PZ
6606}
6607
82b89778 6608void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6609{
9ee318a7
PZ
6610 struct perf_comm_event comm_event;
6611
cdd6c482 6612 if (!atomic_read(&nr_comm_events))
9ee318a7 6613 return;
a63eaf34 6614
9ee318a7 6615 comm_event = (struct perf_comm_event){
8d1b2d93 6616 .task = task,
573402db
PZ
6617 /* .comm */
6618 /* .comm_size */
cdd6c482 6619 .event_id = {
573402db 6620 .header = {
cdd6c482 6621 .type = PERF_RECORD_COMM,
82b89778 6622 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6623 /* .size */
6624 },
6625 /* .pid */
6626 /* .tid */
8d1b2d93
PZ
6627 },
6628 };
6629
cdd6c482 6630 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6631}
6632
e4222673
HB
6633/*
6634 * namespaces tracking
6635 */
6636
6637struct perf_namespaces_event {
6638 struct task_struct *task;
6639
6640 struct {
6641 struct perf_event_header header;
6642
6643 u32 pid;
6644 u32 tid;
6645 u64 nr_namespaces;
6646 struct perf_ns_link_info link_info[NR_NAMESPACES];
6647 } event_id;
6648};
6649
6650static int perf_event_namespaces_match(struct perf_event *event)
6651{
6652 return event->attr.namespaces;
6653}
6654
6655static void perf_event_namespaces_output(struct perf_event *event,
6656 void *data)
6657{
6658 struct perf_namespaces_event *namespaces_event = data;
6659 struct perf_output_handle handle;
6660 struct perf_sample_data sample;
34900ec5 6661 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
6662 int ret;
6663
6664 if (!perf_event_namespaces_match(event))
6665 return;
6666
6667 perf_event_header__init_id(&namespaces_event->event_id.header,
6668 &sample, event);
6669 ret = perf_output_begin(&handle, event,
6670 namespaces_event->event_id.header.size);
6671 if (ret)
34900ec5 6672 goto out;
e4222673
HB
6673
6674 namespaces_event->event_id.pid = perf_event_pid(event,
6675 namespaces_event->task);
6676 namespaces_event->event_id.tid = perf_event_tid(event,
6677 namespaces_event->task);
6678
6679 perf_output_put(&handle, namespaces_event->event_id);
6680
6681 perf_event__output_id_sample(event, &handle, &sample);
6682
6683 perf_output_end(&handle);
34900ec5
JO
6684out:
6685 namespaces_event->event_id.header.size = header_size;
e4222673
HB
6686}
6687
6688static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6689 struct task_struct *task,
6690 const struct proc_ns_operations *ns_ops)
6691{
6692 struct path ns_path;
6693 struct inode *ns_inode;
6694 void *error;
6695
6696 error = ns_get_path(&ns_path, task, ns_ops);
6697 if (!error) {
6698 ns_inode = ns_path.dentry->d_inode;
6699 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6700 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 6701 path_put(&ns_path);
e4222673
HB
6702 }
6703}
6704
6705void perf_event_namespaces(struct task_struct *task)
6706{
6707 struct perf_namespaces_event namespaces_event;
6708 struct perf_ns_link_info *ns_link_info;
6709
6710 if (!atomic_read(&nr_namespaces_events))
6711 return;
6712
6713 namespaces_event = (struct perf_namespaces_event){
6714 .task = task,
6715 .event_id = {
6716 .header = {
6717 .type = PERF_RECORD_NAMESPACES,
6718 .misc = 0,
6719 .size = sizeof(namespaces_event.event_id),
6720 },
6721 /* .pid */
6722 /* .tid */
6723 .nr_namespaces = NR_NAMESPACES,
6724 /* .link_info[NR_NAMESPACES] */
6725 },
6726 };
6727
6728 ns_link_info = namespaces_event.event_id.link_info;
6729
6730 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6731 task, &mntns_operations);
6732
6733#ifdef CONFIG_USER_NS
6734 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6735 task, &userns_operations);
6736#endif
6737#ifdef CONFIG_NET_NS
6738 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6739 task, &netns_operations);
6740#endif
6741#ifdef CONFIG_UTS_NS
6742 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6743 task, &utsns_operations);
6744#endif
6745#ifdef CONFIG_IPC_NS
6746 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6747 task, &ipcns_operations);
6748#endif
6749#ifdef CONFIG_PID_NS
6750 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6751 task, &pidns_operations);
6752#endif
6753#ifdef CONFIG_CGROUPS
6754 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6755 task, &cgroupns_operations);
6756#endif
6757
6758 perf_iterate_sb(perf_event_namespaces_output,
6759 &namespaces_event,
6760 NULL);
6761}
6762
0a4a9391
PZ
6763/*
6764 * mmap tracking
6765 */
6766
6767struct perf_mmap_event {
089dd79d
PZ
6768 struct vm_area_struct *vma;
6769
6770 const char *file_name;
6771 int file_size;
13d7a241
SE
6772 int maj, min;
6773 u64 ino;
6774 u64 ino_generation;
f972eb63 6775 u32 prot, flags;
0a4a9391
PZ
6776
6777 struct {
6778 struct perf_event_header header;
6779
6780 u32 pid;
6781 u32 tid;
6782 u64 start;
6783 u64 len;
6784 u64 pgoff;
cdd6c482 6785 } event_id;
0a4a9391
PZ
6786};
6787
67516844
JO
6788static int perf_event_mmap_match(struct perf_event *event,
6789 void *data)
6790{
6791 struct perf_mmap_event *mmap_event = data;
6792 struct vm_area_struct *vma = mmap_event->vma;
6793 int executable = vma->vm_flags & VM_EXEC;
6794
6795 return (!executable && event->attr.mmap_data) ||
13d7a241 6796 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6797}
6798
cdd6c482 6799static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6800 void *data)
0a4a9391 6801{
52d857a8 6802 struct perf_mmap_event *mmap_event = data;
0a4a9391 6803 struct perf_output_handle handle;
c980d109 6804 struct perf_sample_data sample;
cdd6c482 6805 int size = mmap_event->event_id.header.size;
c980d109 6806 int ret;
0a4a9391 6807
67516844
JO
6808 if (!perf_event_mmap_match(event, data))
6809 return;
6810
13d7a241
SE
6811 if (event->attr.mmap2) {
6812 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6813 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6814 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6815 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6816 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6817 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6818 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6819 }
6820
c980d109
ACM
6821 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6822 ret = perf_output_begin(&handle, event,
a7ac67ea 6823 mmap_event->event_id.header.size);
0a4a9391 6824 if (ret)
c980d109 6825 goto out;
0a4a9391 6826
cdd6c482
IM
6827 mmap_event->event_id.pid = perf_event_pid(event, current);
6828 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6829
cdd6c482 6830 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6831
6832 if (event->attr.mmap2) {
6833 perf_output_put(&handle, mmap_event->maj);
6834 perf_output_put(&handle, mmap_event->min);
6835 perf_output_put(&handle, mmap_event->ino);
6836 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6837 perf_output_put(&handle, mmap_event->prot);
6838 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6839 }
6840
76369139 6841 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6842 mmap_event->file_size);
c980d109
ACM
6843
6844 perf_event__output_id_sample(event, &handle, &sample);
6845
78d613eb 6846 perf_output_end(&handle);
c980d109
ACM
6847out:
6848 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6849}
6850
cdd6c482 6851static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6852{
089dd79d
PZ
6853 struct vm_area_struct *vma = mmap_event->vma;
6854 struct file *file = vma->vm_file;
13d7a241
SE
6855 int maj = 0, min = 0;
6856 u64 ino = 0, gen = 0;
f972eb63 6857 u32 prot = 0, flags = 0;
0a4a9391
PZ
6858 unsigned int size;
6859 char tmp[16];
6860 char *buf = NULL;
2c42cfbf 6861 char *name;
413ee3b4 6862
0b3589be
PZ
6863 if (vma->vm_flags & VM_READ)
6864 prot |= PROT_READ;
6865 if (vma->vm_flags & VM_WRITE)
6866 prot |= PROT_WRITE;
6867 if (vma->vm_flags & VM_EXEC)
6868 prot |= PROT_EXEC;
6869
6870 if (vma->vm_flags & VM_MAYSHARE)
6871 flags = MAP_SHARED;
6872 else
6873 flags = MAP_PRIVATE;
6874
6875 if (vma->vm_flags & VM_DENYWRITE)
6876 flags |= MAP_DENYWRITE;
6877 if (vma->vm_flags & VM_MAYEXEC)
6878 flags |= MAP_EXECUTABLE;
6879 if (vma->vm_flags & VM_LOCKED)
6880 flags |= MAP_LOCKED;
6881 if (vma->vm_flags & VM_HUGETLB)
6882 flags |= MAP_HUGETLB;
6883
0a4a9391 6884 if (file) {
13d7a241
SE
6885 struct inode *inode;
6886 dev_t dev;
3ea2f2b9 6887
2c42cfbf 6888 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6889 if (!buf) {
c7e548b4
ON
6890 name = "//enomem";
6891 goto cpy_name;
0a4a9391 6892 }
413ee3b4 6893 /*
3ea2f2b9 6894 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6895 * need to add enough zero bytes after the string to handle
6896 * the 64bit alignment we do later.
6897 */
9bf39ab2 6898 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6899 if (IS_ERR(name)) {
c7e548b4
ON
6900 name = "//toolong";
6901 goto cpy_name;
0a4a9391 6902 }
13d7a241
SE
6903 inode = file_inode(vma->vm_file);
6904 dev = inode->i_sb->s_dev;
6905 ino = inode->i_ino;
6906 gen = inode->i_generation;
6907 maj = MAJOR(dev);
6908 min = MINOR(dev);
f972eb63 6909
c7e548b4 6910 goto got_name;
0a4a9391 6911 } else {
fbe26abe
JO
6912 if (vma->vm_ops && vma->vm_ops->name) {
6913 name = (char *) vma->vm_ops->name(vma);
6914 if (name)
6915 goto cpy_name;
6916 }
6917
2c42cfbf 6918 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6919 if (name)
6920 goto cpy_name;
089dd79d 6921
32c5fb7e 6922 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6923 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6924 name = "[heap]";
6925 goto cpy_name;
32c5fb7e
ON
6926 }
6927 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6928 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6929 name = "[stack]";
6930 goto cpy_name;
089dd79d
PZ
6931 }
6932
c7e548b4
ON
6933 name = "//anon";
6934 goto cpy_name;
0a4a9391
PZ
6935 }
6936
c7e548b4
ON
6937cpy_name:
6938 strlcpy(tmp, name, sizeof(tmp));
6939 name = tmp;
0a4a9391 6940got_name:
2c42cfbf
PZ
6941 /*
6942 * Since our buffer works in 8 byte units we need to align our string
6943 * size to a multiple of 8. However, we must guarantee the tail end is
6944 * zero'd out to avoid leaking random bits to userspace.
6945 */
6946 size = strlen(name)+1;
6947 while (!IS_ALIGNED(size, sizeof(u64)))
6948 name[size++] = '\0';
0a4a9391
PZ
6949
6950 mmap_event->file_name = name;
6951 mmap_event->file_size = size;
13d7a241
SE
6952 mmap_event->maj = maj;
6953 mmap_event->min = min;
6954 mmap_event->ino = ino;
6955 mmap_event->ino_generation = gen;
f972eb63
PZ
6956 mmap_event->prot = prot;
6957 mmap_event->flags = flags;
0a4a9391 6958
2fe85427
SE
6959 if (!(vma->vm_flags & VM_EXEC))
6960 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6961
cdd6c482 6962 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6963
aab5b71e 6964 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6965 mmap_event,
6966 NULL);
665c2142 6967
0a4a9391
PZ
6968 kfree(buf);
6969}
6970
375637bc
AS
6971/*
6972 * Check whether inode and address range match filter criteria.
6973 */
6974static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6975 struct file *file, unsigned long offset,
6976 unsigned long size)
6977{
45063097 6978 if (filter->inode != file_inode(file))
375637bc
AS
6979 return false;
6980
6981 if (filter->offset > offset + size)
6982 return false;
6983
6984 if (filter->offset + filter->size < offset)
6985 return false;
6986
6987 return true;
6988}
6989
6990static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6991{
6992 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6993 struct vm_area_struct *vma = data;
6994 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6995 struct file *file = vma->vm_file;
6996 struct perf_addr_filter *filter;
6997 unsigned int restart = 0, count = 0;
6998
6999 if (!has_addr_filter(event))
7000 return;
7001
7002 if (!file)
7003 return;
7004
7005 raw_spin_lock_irqsave(&ifh->lock, flags);
7006 list_for_each_entry(filter, &ifh->list, entry) {
7007 if (perf_addr_filter_match(filter, file, off,
7008 vma->vm_end - vma->vm_start)) {
7009 event->addr_filters_offs[count] = vma->vm_start;
7010 restart++;
7011 }
7012
7013 count++;
7014 }
7015
7016 if (restart)
7017 event->addr_filters_gen++;
7018 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7019
7020 if (restart)
767ae086 7021 perf_event_stop(event, 1);
375637bc
AS
7022}
7023
7024/*
7025 * Adjust all task's events' filters to the new vma
7026 */
7027static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7028{
7029 struct perf_event_context *ctx;
7030 int ctxn;
7031
12b40a23
MP
7032 /*
7033 * Data tracing isn't supported yet and as such there is no need
7034 * to keep track of anything that isn't related to executable code:
7035 */
7036 if (!(vma->vm_flags & VM_EXEC))
7037 return;
7038
375637bc
AS
7039 rcu_read_lock();
7040 for_each_task_context_nr(ctxn) {
7041 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7042 if (!ctx)
7043 continue;
7044
aab5b71e 7045 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7046 }
7047 rcu_read_unlock();
7048}
7049
3af9e859 7050void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7051{
9ee318a7
PZ
7052 struct perf_mmap_event mmap_event;
7053
cdd6c482 7054 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7055 return;
7056
7057 mmap_event = (struct perf_mmap_event){
089dd79d 7058 .vma = vma,
573402db
PZ
7059 /* .file_name */
7060 /* .file_size */
cdd6c482 7061 .event_id = {
573402db 7062 .header = {
cdd6c482 7063 .type = PERF_RECORD_MMAP,
39447b38 7064 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7065 /* .size */
7066 },
7067 /* .pid */
7068 /* .tid */
089dd79d
PZ
7069 .start = vma->vm_start,
7070 .len = vma->vm_end - vma->vm_start,
3a0304e9 7071 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7072 },
13d7a241
SE
7073 /* .maj (attr_mmap2 only) */
7074 /* .min (attr_mmap2 only) */
7075 /* .ino (attr_mmap2 only) */
7076 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7077 /* .prot (attr_mmap2 only) */
7078 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7079 };
7080
375637bc 7081 perf_addr_filters_adjust(vma);
cdd6c482 7082 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7083}
7084
68db7e98
AS
7085void perf_event_aux_event(struct perf_event *event, unsigned long head,
7086 unsigned long size, u64 flags)
7087{
7088 struct perf_output_handle handle;
7089 struct perf_sample_data sample;
7090 struct perf_aux_event {
7091 struct perf_event_header header;
7092 u64 offset;
7093 u64 size;
7094 u64 flags;
7095 } rec = {
7096 .header = {
7097 .type = PERF_RECORD_AUX,
7098 .misc = 0,
7099 .size = sizeof(rec),
7100 },
7101 .offset = head,
7102 .size = size,
7103 .flags = flags,
7104 };
7105 int ret;
7106
7107 perf_event_header__init_id(&rec.header, &sample, event);
7108 ret = perf_output_begin(&handle, event, rec.header.size);
7109
7110 if (ret)
7111 return;
7112
7113 perf_output_put(&handle, rec);
7114 perf_event__output_id_sample(event, &handle, &sample);
7115
7116 perf_output_end(&handle);
7117}
7118
f38b0dbb
KL
7119/*
7120 * Lost/dropped samples logging
7121 */
7122void perf_log_lost_samples(struct perf_event *event, u64 lost)
7123{
7124 struct perf_output_handle handle;
7125 struct perf_sample_data sample;
7126 int ret;
7127
7128 struct {
7129 struct perf_event_header header;
7130 u64 lost;
7131 } lost_samples_event = {
7132 .header = {
7133 .type = PERF_RECORD_LOST_SAMPLES,
7134 .misc = 0,
7135 .size = sizeof(lost_samples_event),
7136 },
7137 .lost = lost,
7138 };
7139
7140 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7141
7142 ret = perf_output_begin(&handle, event,
7143 lost_samples_event.header.size);
7144 if (ret)
7145 return;
7146
7147 perf_output_put(&handle, lost_samples_event);
7148 perf_event__output_id_sample(event, &handle, &sample);
7149 perf_output_end(&handle);
7150}
7151
45ac1403
AH
7152/*
7153 * context_switch tracking
7154 */
7155
7156struct perf_switch_event {
7157 struct task_struct *task;
7158 struct task_struct *next_prev;
7159
7160 struct {
7161 struct perf_event_header header;
7162 u32 next_prev_pid;
7163 u32 next_prev_tid;
7164 } event_id;
7165};
7166
7167static int perf_event_switch_match(struct perf_event *event)
7168{
7169 return event->attr.context_switch;
7170}
7171
7172static void perf_event_switch_output(struct perf_event *event, void *data)
7173{
7174 struct perf_switch_event *se = data;
7175 struct perf_output_handle handle;
7176 struct perf_sample_data sample;
7177 int ret;
7178
7179 if (!perf_event_switch_match(event))
7180 return;
7181
7182 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7183 if (event->ctx->task) {
7184 se->event_id.header.type = PERF_RECORD_SWITCH;
7185 se->event_id.header.size = sizeof(se->event_id.header);
7186 } else {
7187 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7188 se->event_id.header.size = sizeof(se->event_id);
7189 se->event_id.next_prev_pid =
7190 perf_event_pid(event, se->next_prev);
7191 se->event_id.next_prev_tid =
7192 perf_event_tid(event, se->next_prev);
7193 }
7194
7195 perf_event_header__init_id(&se->event_id.header, &sample, event);
7196
7197 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7198 if (ret)
7199 return;
7200
7201 if (event->ctx->task)
7202 perf_output_put(&handle, se->event_id.header);
7203 else
7204 perf_output_put(&handle, se->event_id);
7205
7206 perf_event__output_id_sample(event, &handle, &sample);
7207
7208 perf_output_end(&handle);
7209}
7210
7211static void perf_event_switch(struct task_struct *task,
7212 struct task_struct *next_prev, bool sched_in)
7213{
7214 struct perf_switch_event switch_event;
7215
7216 /* N.B. caller checks nr_switch_events != 0 */
7217
7218 switch_event = (struct perf_switch_event){
7219 .task = task,
7220 .next_prev = next_prev,
7221 .event_id = {
7222 .header = {
7223 /* .type */
7224 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7225 /* .size */
7226 },
7227 /* .next_prev_pid */
7228 /* .next_prev_tid */
7229 },
7230 };
7231
aab5b71e 7232 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7233 &switch_event,
7234 NULL);
7235}
7236
a78ac325
PZ
7237/*
7238 * IRQ throttle logging
7239 */
7240
cdd6c482 7241static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7242{
7243 struct perf_output_handle handle;
c980d109 7244 struct perf_sample_data sample;
a78ac325
PZ
7245 int ret;
7246
7247 struct {
7248 struct perf_event_header header;
7249 u64 time;
cca3f454 7250 u64 id;
7f453c24 7251 u64 stream_id;
a78ac325
PZ
7252 } throttle_event = {
7253 .header = {
cdd6c482 7254 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7255 .misc = 0,
7256 .size = sizeof(throttle_event),
7257 },
34f43927 7258 .time = perf_event_clock(event),
cdd6c482
IM
7259 .id = primary_event_id(event),
7260 .stream_id = event->id,
a78ac325
PZ
7261 };
7262
966ee4d6 7263 if (enable)
cdd6c482 7264 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7265
c980d109
ACM
7266 perf_event_header__init_id(&throttle_event.header, &sample, event);
7267
7268 ret = perf_output_begin(&handle, event,
a7ac67ea 7269 throttle_event.header.size);
a78ac325
PZ
7270 if (ret)
7271 return;
7272
7273 perf_output_put(&handle, throttle_event);
c980d109 7274 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7275 perf_output_end(&handle);
7276}
7277
8d4e6c4c
AS
7278void perf_event_itrace_started(struct perf_event *event)
7279{
7280 event->attach_state |= PERF_ATTACH_ITRACE;
7281}
7282
ec0d7729
AS
7283static void perf_log_itrace_start(struct perf_event *event)
7284{
7285 struct perf_output_handle handle;
7286 struct perf_sample_data sample;
7287 struct perf_aux_event {
7288 struct perf_event_header header;
7289 u32 pid;
7290 u32 tid;
7291 } rec;
7292 int ret;
7293
7294 if (event->parent)
7295 event = event->parent;
7296
7297 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7298 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7299 return;
7300
ec0d7729
AS
7301 rec.header.type = PERF_RECORD_ITRACE_START;
7302 rec.header.misc = 0;
7303 rec.header.size = sizeof(rec);
7304 rec.pid = perf_event_pid(event, current);
7305 rec.tid = perf_event_tid(event, current);
7306
7307 perf_event_header__init_id(&rec.header, &sample, event);
7308 ret = perf_output_begin(&handle, event, rec.header.size);
7309
7310 if (ret)
7311 return;
7312
7313 perf_output_put(&handle, rec);
7314 perf_event__output_id_sample(event, &handle, &sample);
7315
7316 perf_output_end(&handle);
7317}
7318
475113d9
JO
7319static int
7320__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7321{
cdd6c482 7322 struct hw_perf_event *hwc = &event->hw;
79f14641 7323 int ret = 0;
475113d9 7324 u64 seq;
96398826 7325
e050e3f0
SE
7326 seq = __this_cpu_read(perf_throttled_seq);
7327 if (seq != hwc->interrupts_seq) {
7328 hwc->interrupts_seq = seq;
7329 hwc->interrupts = 1;
7330 } else {
7331 hwc->interrupts++;
7332 if (unlikely(throttle
7333 && hwc->interrupts >= max_samples_per_tick)) {
7334 __this_cpu_inc(perf_throttled_count);
555e0c1e 7335 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7336 hwc->interrupts = MAX_INTERRUPTS;
7337 perf_log_throttle(event, 0);
a78ac325
PZ
7338 ret = 1;
7339 }
e050e3f0 7340 }
60db5e09 7341
cdd6c482 7342 if (event->attr.freq) {
def0a9b2 7343 u64 now = perf_clock();
abd50713 7344 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7345
abd50713 7346 hwc->freq_time_stamp = now;
bd2b5b12 7347
abd50713 7348 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7349 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7350 }
7351
475113d9
JO
7352 return ret;
7353}
7354
7355int perf_event_account_interrupt(struct perf_event *event)
7356{
7357 return __perf_event_account_interrupt(event, 1);
7358}
7359
7360/*
7361 * Generic event overflow handling, sampling.
7362 */
7363
7364static int __perf_event_overflow(struct perf_event *event,
7365 int throttle, struct perf_sample_data *data,
7366 struct pt_regs *regs)
7367{
7368 int events = atomic_read(&event->event_limit);
7369 int ret = 0;
7370
7371 /*
7372 * Non-sampling counters might still use the PMI to fold short
7373 * hardware counters, ignore those.
7374 */
7375 if (unlikely(!is_sampling_event(event)))
7376 return 0;
7377
7378 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7379
2023b359
PZ
7380 /*
7381 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7382 * events
2023b359
PZ
7383 */
7384
cdd6c482
IM
7385 event->pending_kill = POLL_IN;
7386 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7387 ret = 1;
cdd6c482 7388 event->pending_kill = POLL_HUP;
5aab90ce
JO
7389
7390 perf_event_disable_inatomic(event);
79f14641
PZ
7391 }
7392
aa6a5f3c 7393 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7394
fed66e2c 7395 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7396 event->pending_wakeup = 1;
7397 irq_work_queue(&event->pending);
f506b3dc
PZ
7398 }
7399
79f14641 7400 return ret;
f6c7d5fe
PZ
7401}
7402
a8b0ca17 7403int perf_event_overflow(struct perf_event *event,
5622f295
MM
7404 struct perf_sample_data *data,
7405 struct pt_regs *regs)
850bc73f 7406{
a8b0ca17 7407 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7408}
7409
15dbf27c 7410/*
cdd6c482 7411 * Generic software event infrastructure
15dbf27c
PZ
7412 */
7413
b28ab83c
PZ
7414struct swevent_htable {
7415 struct swevent_hlist *swevent_hlist;
7416 struct mutex hlist_mutex;
7417 int hlist_refcount;
7418
7419 /* Recursion avoidance in each contexts */
7420 int recursion[PERF_NR_CONTEXTS];
7421};
7422
7423static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7424
7b4b6658 7425/*
cdd6c482
IM
7426 * We directly increment event->count and keep a second value in
7427 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7428 * is kept in the range [-sample_period, 0] so that we can use the
7429 * sign as trigger.
7430 */
7431
ab573844 7432u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7433{
cdd6c482 7434 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7435 u64 period = hwc->last_period;
7436 u64 nr, offset;
7437 s64 old, val;
7438
7439 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7440
7441again:
e7850595 7442 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7443 if (val < 0)
7444 return 0;
15dbf27c 7445
7b4b6658
PZ
7446 nr = div64_u64(period + val, period);
7447 offset = nr * period;
7448 val -= offset;
e7850595 7449 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7450 goto again;
15dbf27c 7451
7b4b6658 7452 return nr;
15dbf27c
PZ
7453}
7454
0cff784a 7455static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7456 struct perf_sample_data *data,
5622f295 7457 struct pt_regs *regs)
15dbf27c 7458{
cdd6c482 7459 struct hw_perf_event *hwc = &event->hw;
850bc73f 7460 int throttle = 0;
15dbf27c 7461
0cff784a
PZ
7462 if (!overflow)
7463 overflow = perf_swevent_set_period(event);
15dbf27c 7464
7b4b6658
PZ
7465 if (hwc->interrupts == MAX_INTERRUPTS)
7466 return;
15dbf27c 7467
7b4b6658 7468 for (; overflow; overflow--) {
a8b0ca17 7469 if (__perf_event_overflow(event, throttle,
5622f295 7470 data, regs)) {
7b4b6658
PZ
7471 /*
7472 * We inhibit the overflow from happening when
7473 * hwc->interrupts == MAX_INTERRUPTS.
7474 */
7475 break;
7476 }
cf450a73 7477 throttle = 1;
7b4b6658 7478 }
15dbf27c
PZ
7479}
7480
a4eaf7f1 7481static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7482 struct perf_sample_data *data,
5622f295 7483 struct pt_regs *regs)
7b4b6658 7484{
cdd6c482 7485 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7486
e7850595 7487 local64_add(nr, &event->count);
d6d020e9 7488
0cff784a
PZ
7489 if (!regs)
7490 return;
7491
6c7e550f 7492 if (!is_sampling_event(event))
7b4b6658 7493 return;
d6d020e9 7494
5d81e5cf
AV
7495 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7496 data->period = nr;
7497 return perf_swevent_overflow(event, 1, data, regs);
7498 } else
7499 data->period = event->hw.last_period;
7500
0cff784a 7501 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7502 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7503
e7850595 7504 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7505 return;
df1a132b 7506
a8b0ca17 7507 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7508}
7509
f5ffe02e
FW
7510static int perf_exclude_event(struct perf_event *event,
7511 struct pt_regs *regs)
7512{
a4eaf7f1 7513 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7514 return 1;
a4eaf7f1 7515
f5ffe02e
FW
7516 if (regs) {
7517 if (event->attr.exclude_user && user_mode(regs))
7518 return 1;
7519
7520 if (event->attr.exclude_kernel && !user_mode(regs))
7521 return 1;
7522 }
7523
7524 return 0;
7525}
7526
cdd6c482 7527static int perf_swevent_match(struct perf_event *event,
1c432d89 7528 enum perf_type_id type,
6fb2915d
LZ
7529 u32 event_id,
7530 struct perf_sample_data *data,
7531 struct pt_regs *regs)
15dbf27c 7532{
cdd6c482 7533 if (event->attr.type != type)
a21ca2ca 7534 return 0;
f5ffe02e 7535
cdd6c482 7536 if (event->attr.config != event_id)
15dbf27c
PZ
7537 return 0;
7538
f5ffe02e
FW
7539 if (perf_exclude_event(event, regs))
7540 return 0;
15dbf27c
PZ
7541
7542 return 1;
7543}
7544
76e1d904
FW
7545static inline u64 swevent_hash(u64 type, u32 event_id)
7546{
7547 u64 val = event_id | (type << 32);
7548
7549 return hash_64(val, SWEVENT_HLIST_BITS);
7550}
7551
49f135ed
FW
7552static inline struct hlist_head *
7553__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7554{
49f135ed
FW
7555 u64 hash = swevent_hash(type, event_id);
7556
7557 return &hlist->heads[hash];
7558}
76e1d904 7559
49f135ed
FW
7560/* For the read side: events when they trigger */
7561static inline struct hlist_head *
b28ab83c 7562find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7563{
7564 struct swevent_hlist *hlist;
76e1d904 7565
b28ab83c 7566 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7567 if (!hlist)
7568 return NULL;
7569
49f135ed
FW
7570 return __find_swevent_head(hlist, type, event_id);
7571}
7572
7573/* For the event head insertion and removal in the hlist */
7574static inline struct hlist_head *
b28ab83c 7575find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7576{
7577 struct swevent_hlist *hlist;
7578 u32 event_id = event->attr.config;
7579 u64 type = event->attr.type;
7580
7581 /*
7582 * Event scheduling is always serialized against hlist allocation
7583 * and release. Which makes the protected version suitable here.
7584 * The context lock guarantees that.
7585 */
b28ab83c 7586 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7587 lockdep_is_held(&event->ctx->lock));
7588 if (!hlist)
7589 return NULL;
7590
7591 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7592}
7593
7594static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7595 u64 nr,
76e1d904
FW
7596 struct perf_sample_data *data,
7597 struct pt_regs *regs)
15dbf27c 7598{
4a32fea9 7599 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7600 struct perf_event *event;
76e1d904 7601 struct hlist_head *head;
15dbf27c 7602
76e1d904 7603 rcu_read_lock();
b28ab83c 7604 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7605 if (!head)
7606 goto end;
7607
b67bfe0d 7608 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7609 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7610 perf_swevent_event(event, nr, data, regs);
15dbf27c 7611 }
76e1d904
FW
7612end:
7613 rcu_read_unlock();
15dbf27c
PZ
7614}
7615
86038c5e
PZI
7616DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7617
4ed7c92d 7618int perf_swevent_get_recursion_context(void)
96f6d444 7619{
4a32fea9 7620 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7621
b28ab83c 7622 return get_recursion_context(swhash->recursion);
96f6d444 7623}
645e8cc0 7624EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7625
98b5c2c6 7626void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7627{
4a32fea9 7628 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7629
b28ab83c 7630 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7631}
15dbf27c 7632
86038c5e 7633void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7634{
a4234bfc 7635 struct perf_sample_data data;
4ed7c92d 7636
86038c5e 7637 if (WARN_ON_ONCE(!regs))
4ed7c92d 7638 return;
a4234bfc 7639
fd0d000b 7640 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7641 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7642}
7643
7644void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7645{
7646 int rctx;
7647
7648 preempt_disable_notrace();
7649 rctx = perf_swevent_get_recursion_context();
7650 if (unlikely(rctx < 0))
7651 goto fail;
7652
7653 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7654
7655 perf_swevent_put_recursion_context(rctx);
86038c5e 7656fail:
1c024eca 7657 preempt_enable_notrace();
b8e83514
PZ
7658}
7659
cdd6c482 7660static void perf_swevent_read(struct perf_event *event)
15dbf27c 7661{
15dbf27c
PZ
7662}
7663
a4eaf7f1 7664static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7665{
4a32fea9 7666 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7667 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7668 struct hlist_head *head;
7669
6c7e550f 7670 if (is_sampling_event(event)) {
7b4b6658 7671 hwc->last_period = hwc->sample_period;
cdd6c482 7672 perf_swevent_set_period(event);
7b4b6658 7673 }
76e1d904 7674
a4eaf7f1
PZ
7675 hwc->state = !(flags & PERF_EF_START);
7676
b28ab83c 7677 head = find_swevent_head(swhash, event);
12ca6ad2 7678 if (WARN_ON_ONCE(!head))
76e1d904
FW
7679 return -EINVAL;
7680
7681 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7682 perf_event_update_userpage(event);
76e1d904 7683
15dbf27c
PZ
7684 return 0;
7685}
7686
a4eaf7f1 7687static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7688{
76e1d904 7689 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7690}
7691
a4eaf7f1 7692static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7693{
a4eaf7f1 7694 event->hw.state = 0;
d6d020e9 7695}
aa9c4c0f 7696
a4eaf7f1 7697static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7698{
a4eaf7f1 7699 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7700}
7701
49f135ed
FW
7702/* Deref the hlist from the update side */
7703static inline struct swevent_hlist *
b28ab83c 7704swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7705{
b28ab83c
PZ
7706 return rcu_dereference_protected(swhash->swevent_hlist,
7707 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7708}
7709
b28ab83c 7710static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7711{
b28ab83c 7712 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7713
49f135ed 7714 if (!hlist)
76e1d904
FW
7715 return;
7716
70691d4a 7717 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7718 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7719}
7720
3b364d7b 7721static void swevent_hlist_put_cpu(int cpu)
76e1d904 7722{
b28ab83c 7723 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7724
b28ab83c 7725 mutex_lock(&swhash->hlist_mutex);
76e1d904 7726
b28ab83c
PZ
7727 if (!--swhash->hlist_refcount)
7728 swevent_hlist_release(swhash);
76e1d904 7729
b28ab83c 7730 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7731}
7732
3b364d7b 7733static void swevent_hlist_put(void)
76e1d904
FW
7734{
7735 int cpu;
7736
76e1d904 7737 for_each_possible_cpu(cpu)
3b364d7b 7738 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7739}
7740
3b364d7b 7741static int swevent_hlist_get_cpu(int cpu)
76e1d904 7742{
b28ab83c 7743 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7744 int err = 0;
7745
b28ab83c 7746 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
7747 if (!swevent_hlist_deref(swhash) &&
7748 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
7749 struct swevent_hlist *hlist;
7750
7751 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7752 if (!hlist) {
7753 err = -ENOMEM;
7754 goto exit;
7755 }
b28ab83c 7756 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7757 }
b28ab83c 7758 swhash->hlist_refcount++;
9ed6060d 7759exit:
b28ab83c 7760 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7761
7762 return err;
7763}
7764
3b364d7b 7765static int swevent_hlist_get(void)
76e1d904 7766{
3b364d7b 7767 int err, cpu, failed_cpu;
76e1d904 7768
a63fbed7 7769 mutex_lock(&pmus_lock);
76e1d904 7770 for_each_possible_cpu(cpu) {
3b364d7b 7771 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7772 if (err) {
7773 failed_cpu = cpu;
7774 goto fail;
7775 }
7776 }
a63fbed7 7777 mutex_unlock(&pmus_lock);
76e1d904 7778 return 0;
9ed6060d 7779fail:
76e1d904
FW
7780 for_each_possible_cpu(cpu) {
7781 if (cpu == failed_cpu)
7782 break;
3b364d7b 7783 swevent_hlist_put_cpu(cpu);
76e1d904 7784 }
a63fbed7 7785 mutex_unlock(&pmus_lock);
76e1d904
FW
7786 return err;
7787}
7788
c5905afb 7789struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7790
b0a873eb
PZ
7791static void sw_perf_event_destroy(struct perf_event *event)
7792{
7793 u64 event_id = event->attr.config;
95476b64 7794
b0a873eb
PZ
7795 WARN_ON(event->parent);
7796
c5905afb 7797 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7798 swevent_hlist_put();
b0a873eb
PZ
7799}
7800
7801static int perf_swevent_init(struct perf_event *event)
7802{
8176cced 7803 u64 event_id = event->attr.config;
b0a873eb
PZ
7804
7805 if (event->attr.type != PERF_TYPE_SOFTWARE)
7806 return -ENOENT;
7807
2481c5fa
SE
7808 /*
7809 * no branch sampling for software events
7810 */
7811 if (has_branch_stack(event))
7812 return -EOPNOTSUPP;
7813
b0a873eb
PZ
7814 switch (event_id) {
7815 case PERF_COUNT_SW_CPU_CLOCK:
7816 case PERF_COUNT_SW_TASK_CLOCK:
7817 return -ENOENT;
7818
7819 default:
7820 break;
7821 }
7822
ce677831 7823 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7824 return -ENOENT;
7825
7826 if (!event->parent) {
7827 int err;
7828
3b364d7b 7829 err = swevent_hlist_get();
b0a873eb
PZ
7830 if (err)
7831 return err;
7832
c5905afb 7833 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7834 event->destroy = sw_perf_event_destroy;
7835 }
7836
7837 return 0;
7838}
7839
7840static struct pmu perf_swevent = {
89a1e187 7841 .task_ctx_nr = perf_sw_context,
95476b64 7842
34f43927
PZ
7843 .capabilities = PERF_PMU_CAP_NO_NMI,
7844
b0a873eb 7845 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7846 .add = perf_swevent_add,
7847 .del = perf_swevent_del,
7848 .start = perf_swevent_start,
7849 .stop = perf_swevent_stop,
1c024eca 7850 .read = perf_swevent_read,
1c024eca
PZ
7851};
7852
b0a873eb
PZ
7853#ifdef CONFIG_EVENT_TRACING
7854
1c024eca
PZ
7855static int perf_tp_filter_match(struct perf_event *event,
7856 struct perf_sample_data *data)
7857{
7e3f977e 7858 void *record = data->raw->frag.data;
1c024eca 7859
b71b437e
PZ
7860 /* only top level events have filters set */
7861 if (event->parent)
7862 event = event->parent;
7863
1c024eca
PZ
7864 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7865 return 1;
7866 return 0;
7867}
7868
7869static int perf_tp_event_match(struct perf_event *event,
7870 struct perf_sample_data *data,
7871 struct pt_regs *regs)
7872{
a0f7d0f7
FW
7873 if (event->hw.state & PERF_HES_STOPPED)
7874 return 0;
580d607c
PZ
7875 /*
7876 * All tracepoints are from kernel-space.
7877 */
7878 if (event->attr.exclude_kernel)
1c024eca
PZ
7879 return 0;
7880
7881 if (!perf_tp_filter_match(event, data))
7882 return 0;
7883
7884 return 1;
7885}
7886
85b67bcb
AS
7887void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7888 struct trace_event_call *call, u64 count,
7889 struct pt_regs *regs, struct hlist_head *head,
7890 struct task_struct *task)
7891{
e87c6bc3 7892 if (bpf_prog_array_valid(call)) {
85b67bcb 7893 *(struct pt_regs **)raw_data = regs;
e87c6bc3 7894 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
7895 perf_swevent_put_recursion_context(rctx);
7896 return;
7897 }
7898 }
7899 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 7900 rctx, task);
85b67bcb
AS
7901}
7902EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7903
1e1dcd93 7904void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 7905 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 7906 struct task_struct *task)
95476b64
FW
7907{
7908 struct perf_sample_data data;
8fd0fbbe 7909 struct perf_event *event;
1c024eca 7910
95476b64 7911 struct perf_raw_record raw = {
7e3f977e
DB
7912 .frag = {
7913 .size = entry_size,
7914 .data = record,
7915 },
95476b64
FW
7916 };
7917
1e1dcd93 7918 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7919 data.raw = &raw;
7920
1e1dcd93
AS
7921 perf_trace_buf_update(record, event_type);
7922
8fd0fbbe 7923 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7924 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7925 perf_swevent_event(event, count, &data, regs);
4f41c013 7926 }
ecc55f84 7927
e6dab5ff
AV
7928 /*
7929 * If we got specified a target task, also iterate its context and
7930 * deliver this event there too.
7931 */
7932 if (task && task != current) {
7933 struct perf_event_context *ctx;
7934 struct trace_entry *entry = record;
7935
7936 rcu_read_lock();
7937 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7938 if (!ctx)
7939 goto unlock;
7940
7941 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7942 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7943 continue;
7944 if (event->attr.config != entry->type)
7945 continue;
7946 if (perf_tp_event_match(event, &data, regs))
7947 perf_swevent_event(event, count, &data, regs);
7948 }
7949unlock:
7950 rcu_read_unlock();
7951 }
7952
ecc55f84 7953 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7954}
7955EXPORT_SYMBOL_GPL(perf_tp_event);
7956
cdd6c482 7957static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7958{
1c024eca 7959 perf_trace_destroy(event);
e077df4f
PZ
7960}
7961
b0a873eb 7962static int perf_tp_event_init(struct perf_event *event)
e077df4f 7963{
76e1d904
FW
7964 int err;
7965
b0a873eb
PZ
7966 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7967 return -ENOENT;
7968
2481c5fa
SE
7969 /*
7970 * no branch sampling for tracepoint events
7971 */
7972 if (has_branch_stack(event))
7973 return -EOPNOTSUPP;
7974
1c024eca
PZ
7975 err = perf_trace_init(event);
7976 if (err)
b0a873eb 7977 return err;
e077df4f 7978
cdd6c482 7979 event->destroy = tp_perf_event_destroy;
e077df4f 7980
b0a873eb
PZ
7981 return 0;
7982}
7983
7984static struct pmu perf_tracepoint = {
89a1e187
PZ
7985 .task_ctx_nr = perf_sw_context,
7986
b0a873eb 7987 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7988 .add = perf_trace_add,
7989 .del = perf_trace_del,
7990 .start = perf_swevent_start,
7991 .stop = perf_swevent_stop,
b0a873eb 7992 .read = perf_swevent_read,
b0a873eb
PZ
7993};
7994
7995static inline void perf_tp_register(void)
7996{
2e80a82a 7997 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7998}
6fb2915d 7999
6fb2915d
LZ
8000static void perf_event_free_filter(struct perf_event *event)
8001{
8002 ftrace_profile_free_filter(event);
8003}
8004
aa6a5f3c
AS
8005#ifdef CONFIG_BPF_SYSCALL
8006static void bpf_overflow_handler(struct perf_event *event,
8007 struct perf_sample_data *data,
8008 struct pt_regs *regs)
8009{
8010 struct bpf_perf_event_data_kern ctx = {
8011 .data = data,
7d9285e8 8012 .event = event,
aa6a5f3c
AS
8013 };
8014 int ret = 0;
8015
c895f6f7 8016 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
8017 preempt_disable();
8018 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8019 goto out;
8020 rcu_read_lock();
88575199 8021 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8022 rcu_read_unlock();
8023out:
8024 __this_cpu_dec(bpf_prog_active);
8025 preempt_enable();
8026 if (!ret)
8027 return;
8028
8029 event->orig_overflow_handler(event, data, regs);
8030}
8031
8032static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8033{
8034 struct bpf_prog *prog;
8035
8036 if (event->overflow_handler_context)
8037 /* hw breakpoint or kernel counter */
8038 return -EINVAL;
8039
8040 if (event->prog)
8041 return -EEXIST;
8042
8043 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8044 if (IS_ERR(prog))
8045 return PTR_ERR(prog);
8046
8047 event->prog = prog;
8048 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8049 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8050 return 0;
8051}
8052
8053static void perf_event_free_bpf_handler(struct perf_event *event)
8054{
8055 struct bpf_prog *prog = event->prog;
8056
8057 if (!prog)
8058 return;
8059
8060 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8061 event->prog = NULL;
8062 bpf_prog_put(prog);
8063}
8064#else
8065static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8066{
8067 return -EOPNOTSUPP;
8068}
8069static void perf_event_free_bpf_handler(struct perf_event *event)
8070{
8071}
8072#endif
8073
2541517c
AS
8074static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8075{
cf5f5cea 8076 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 8077 struct bpf_prog *prog;
e87c6bc3 8078 int ret;
2541517c
AS
8079
8080 if (event->attr.type != PERF_TYPE_TRACEPOINT)
f91840a3 8081 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 8082
98b5c2c6
AS
8083 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8084 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8085 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8086 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8087 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8088 return -EINVAL;
8089
8090 prog = bpf_prog_get(prog_fd);
8091 if (IS_ERR(prog))
8092 return PTR_ERR(prog);
8093
98b5c2c6 8094 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8095 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8096 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8097 /* valid fd, but invalid bpf program type */
8098 bpf_prog_put(prog);
8099 return -EINVAL;
8100 }
8101
cf5f5cea 8102 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8103 int off = trace_event_get_offsets(event->tp_event);
8104
8105 if (prog->aux->max_ctx_offset > off) {
8106 bpf_prog_put(prog);
8107 return -EACCES;
8108 }
8109 }
2541517c 8110
e87c6bc3
YS
8111 ret = perf_event_attach_bpf_prog(event, prog);
8112 if (ret)
8113 bpf_prog_put(prog);
8114 return ret;
2541517c
AS
8115}
8116
8117static void perf_event_free_bpf_prog(struct perf_event *event)
8118{
0b4c6841
YS
8119 if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8120 perf_event_free_bpf_handler(event);
2541517c 8121 return;
2541517c 8122 }
e87c6bc3 8123 perf_event_detach_bpf_prog(event);
2541517c
AS
8124}
8125
e077df4f 8126#else
6fb2915d 8127
b0a873eb 8128static inline void perf_tp_register(void)
e077df4f 8129{
e077df4f 8130}
6fb2915d 8131
6fb2915d
LZ
8132static void perf_event_free_filter(struct perf_event *event)
8133{
8134}
8135
2541517c
AS
8136static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8137{
8138 return -ENOENT;
8139}
8140
8141static void perf_event_free_bpf_prog(struct perf_event *event)
8142{
8143}
07b139c8 8144#endif /* CONFIG_EVENT_TRACING */
e077df4f 8145
24f1e32c 8146#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8147void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8148{
f5ffe02e
FW
8149 struct perf_sample_data sample;
8150 struct pt_regs *regs = data;
8151
fd0d000b 8152 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8153
a4eaf7f1 8154 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8155 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8156}
8157#endif
8158
375637bc
AS
8159/*
8160 * Allocate a new address filter
8161 */
8162static struct perf_addr_filter *
8163perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8164{
8165 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8166 struct perf_addr_filter *filter;
8167
8168 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8169 if (!filter)
8170 return NULL;
8171
8172 INIT_LIST_HEAD(&filter->entry);
8173 list_add_tail(&filter->entry, filters);
8174
8175 return filter;
8176}
8177
8178static void free_filters_list(struct list_head *filters)
8179{
8180 struct perf_addr_filter *filter, *iter;
8181
8182 list_for_each_entry_safe(filter, iter, filters, entry) {
8183 if (filter->inode)
8184 iput(filter->inode);
8185 list_del(&filter->entry);
8186 kfree(filter);
8187 }
8188}
8189
8190/*
8191 * Free existing address filters and optionally install new ones
8192 */
8193static void perf_addr_filters_splice(struct perf_event *event,
8194 struct list_head *head)
8195{
8196 unsigned long flags;
8197 LIST_HEAD(list);
8198
8199 if (!has_addr_filter(event))
8200 return;
8201
8202 /* don't bother with children, they don't have their own filters */
8203 if (event->parent)
8204 return;
8205
8206 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8207
8208 list_splice_init(&event->addr_filters.list, &list);
8209 if (head)
8210 list_splice(head, &event->addr_filters.list);
8211
8212 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8213
8214 free_filters_list(&list);
8215}
8216
8217/*
8218 * Scan through mm's vmas and see if one of them matches the
8219 * @filter; if so, adjust filter's address range.
8220 * Called with mm::mmap_sem down for reading.
8221 */
8222static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8223 struct mm_struct *mm)
8224{
8225 struct vm_area_struct *vma;
8226
8227 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8228 struct file *file = vma->vm_file;
8229 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8230 unsigned long vma_size = vma->vm_end - vma->vm_start;
8231
8232 if (!file)
8233 continue;
8234
8235 if (!perf_addr_filter_match(filter, file, off, vma_size))
8236 continue;
8237
8238 return vma->vm_start;
8239 }
8240
8241 return 0;
8242}
8243
8244/*
8245 * Update event's address range filters based on the
8246 * task's existing mappings, if any.
8247 */
8248static void perf_event_addr_filters_apply(struct perf_event *event)
8249{
8250 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8251 struct task_struct *task = READ_ONCE(event->ctx->task);
8252 struct perf_addr_filter *filter;
8253 struct mm_struct *mm = NULL;
8254 unsigned int count = 0;
8255 unsigned long flags;
8256
8257 /*
8258 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8259 * will stop on the parent's child_mutex that our caller is also holding
8260 */
8261 if (task == TASK_TOMBSTONE)
8262 return;
8263
6ce77bfd
AS
8264 if (!ifh->nr_file_filters)
8265 return;
8266
375637bc
AS
8267 mm = get_task_mm(event->ctx->task);
8268 if (!mm)
8269 goto restart;
8270
8271 down_read(&mm->mmap_sem);
8272
8273 raw_spin_lock_irqsave(&ifh->lock, flags);
8274 list_for_each_entry(filter, &ifh->list, entry) {
8275 event->addr_filters_offs[count] = 0;
8276
99f5bc9b
MP
8277 /*
8278 * Adjust base offset if the filter is associated to a binary
8279 * that needs to be mapped:
8280 */
8281 if (filter->inode)
375637bc
AS
8282 event->addr_filters_offs[count] =
8283 perf_addr_filter_apply(filter, mm);
8284
8285 count++;
8286 }
8287
8288 event->addr_filters_gen++;
8289 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8290
8291 up_read(&mm->mmap_sem);
8292
8293 mmput(mm);
8294
8295restart:
767ae086 8296 perf_event_stop(event, 1);
375637bc
AS
8297}
8298
8299/*
8300 * Address range filtering: limiting the data to certain
8301 * instruction address ranges. Filters are ioctl()ed to us from
8302 * userspace as ascii strings.
8303 *
8304 * Filter string format:
8305 *
8306 * ACTION RANGE_SPEC
8307 * where ACTION is one of the
8308 * * "filter": limit the trace to this region
8309 * * "start": start tracing from this address
8310 * * "stop": stop tracing at this address/region;
8311 * RANGE_SPEC is
8312 * * for kernel addresses: <start address>[/<size>]
8313 * * for object files: <start address>[/<size>]@</path/to/object/file>
8314 *
8315 * if <size> is not specified, the range is treated as a single address.
8316 */
8317enum {
e96271f3 8318 IF_ACT_NONE = -1,
375637bc
AS
8319 IF_ACT_FILTER,
8320 IF_ACT_START,
8321 IF_ACT_STOP,
8322 IF_SRC_FILE,
8323 IF_SRC_KERNEL,
8324 IF_SRC_FILEADDR,
8325 IF_SRC_KERNELADDR,
8326};
8327
8328enum {
8329 IF_STATE_ACTION = 0,
8330 IF_STATE_SOURCE,
8331 IF_STATE_END,
8332};
8333
8334static const match_table_t if_tokens = {
8335 { IF_ACT_FILTER, "filter" },
8336 { IF_ACT_START, "start" },
8337 { IF_ACT_STOP, "stop" },
8338 { IF_SRC_FILE, "%u/%u@%s" },
8339 { IF_SRC_KERNEL, "%u/%u" },
8340 { IF_SRC_FILEADDR, "%u@%s" },
8341 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8342 { IF_ACT_NONE, NULL },
375637bc
AS
8343};
8344
8345/*
8346 * Address filter string parser
8347 */
8348static int
8349perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8350 struct list_head *filters)
8351{
8352 struct perf_addr_filter *filter = NULL;
8353 char *start, *orig, *filename = NULL;
8354 struct path path;
8355 substring_t args[MAX_OPT_ARGS];
8356 int state = IF_STATE_ACTION, token;
8357 unsigned int kernel = 0;
8358 int ret = -EINVAL;
8359
8360 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8361 if (!fstr)
8362 return -ENOMEM;
8363
8364 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8365 ret = -EINVAL;
8366
8367 if (!*start)
8368 continue;
8369
8370 /* filter definition begins */
8371 if (state == IF_STATE_ACTION) {
8372 filter = perf_addr_filter_new(event, filters);
8373 if (!filter)
8374 goto fail;
8375 }
8376
8377 token = match_token(start, if_tokens, args);
8378 switch (token) {
8379 case IF_ACT_FILTER:
8380 case IF_ACT_START:
8381 filter->filter = 1;
8382
8383 case IF_ACT_STOP:
8384 if (state != IF_STATE_ACTION)
8385 goto fail;
8386
8387 state = IF_STATE_SOURCE;
8388 break;
8389
8390 case IF_SRC_KERNELADDR:
8391 case IF_SRC_KERNEL:
8392 kernel = 1;
8393
8394 case IF_SRC_FILEADDR:
8395 case IF_SRC_FILE:
8396 if (state != IF_STATE_SOURCE)
8397 goto fail;
8398
8399 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8400 filter->range = 1;
8401
8402 *args[0].to = 0;
8403 ret = kstrtoul(args[0].from, 0, &filter->offset);
8404 if (ret)
8405 goto fail;
8406
8407 if (filter->range) {
8408 *args[1].to = 0;
8409 ret = kstrtoul(args[1].from, 0, &filter->size);
8410 if (ret)
8411 goto fail;
8412 }
8413
4059ffd0
MP
8414 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8415 int fpos = filter->range ? 2 : 1;
8416
8417 filename = match_strdup(&args[fpos]);
375637bc
AS
8418 if (!filename) {
8419 ret = -ENOMEM;
8420 goto fail;
8421 }
8422 }
8423
8424 state = IF_STATE_END;
8425 break;
8426
8427 default:
8428 goto fail;
8429 }
8430
8431 /*
8432 * Filter definition is fully parsed, validate and install it.
8433 * Make sure that it doesn't contradict itself or the event's
8434 * attribute.
8435 */
8436 if (state == IF_STATE_END) {
9ccbfbb1 8437 ret = -EINVAL;
375637bc
AS
8438 if (kernel && event->attr.exclude_kernel)
8439 goto fail;
8440
8441 if (!kernel) {
8442 if (!filename)
8443 goto fail;
8444
6ce77bfd
AS
8445 /*
8446 * For now, we only support file-based filters
8447 * in per-task events; doing so for CPU-wide
8448 * events requires additional context switching
8449 * trickery, since same object code will be
8450 * mapped at different virtual addresses in
8451 * different processes.
8452 */
8453 ret = -EOPNOTSUPP;
8454 if (!event->ctx->task)
8455 goto fail_free_name;
8456
375637bc
AS
8457 /* look up the path and grab its inode */
8458 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8459 if (ret)
8460 goto fail_free_name;
8461
8462 filter->inode = igrab(d_inode(path.dentry));
8463 path_put(&path);
8464 kfree(filename);
8465 filename = NULL;
8466
8467 ret = -EINVAL;
8468 if (!filter->inode ||
8469 !S_ISREG(filter->inode->i_mode))
8470 /* free_filters_list() will iput() */
8471 goto fail;
6ce77bfd
AS
8472
8473 event->addr_filters.nr_file_filters++;
375637bc
AS
8474 }
8475
8476 /* ready to consume more filters */
8477 state = IF_STATE_ACTION;
8478 filter = NULL;
8479 }
8480 }
8481
8482 if (state != IF_STATE_ACTION)
8483 goto fail;
8484
8485 kfree(orig);
8486
8487 return 0;
8488
8489fail_free_name:
8490 kfree(filename);
8491fail:
8492 free_filters_list(filters);
8493 kfree(orig);
8494
8495 return ret;
8496}
8497
8498static int
8499perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8500{
8501 LIST_HEAD(filters);
8502 int ret;
8503
8504 /*
8505 * Since this is called in perf_ioctl() path, we're already holding
8506 * ctx::mutex.
8507 */
8508 lockdep_assert_held(&event->ctx->mutex);
8509
8510 if (WARN_ON_ONCE(event->parent))
8511 return -EINVAL;
8512
375637bc
AS
8513 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8514 if (ret)
6ce77bfd 8515 goto fail_clear_files;
375637bc
AS
8516
8517 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8518 if (ret)
8519 goto fail_free_filters;
375637bc
AS
8520
8521 /* remove existing filters, if any */
8522 perf_addr_filters_splice(event, &filters);
8523
8524 /* install new filters */
8525 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8526
6ce77bfd
AS
8527 return ret;
8528
8529fail_free_filters:
8530 free_filters_list(&filters);
8531
8532fail_clear_files:
8533 event->addr_filters.nr_file_filters = 0;
8534
375637bc
AS
8535 return ret;
8536}
8537
43fa87f7
PZ
8538static int
8539perf_tracepoint_set_filter(struct perf_event *event, char *filter_str)
8540{
8541 struct perf_event_context *ctx = event->ctx;
8542 int ret;
8543
8544 /*
8545 * Beware, here be dragons!!
8546 *
8547 * the tracepoint muck will deadlock against ctx->mutex, but the tracepoint
8548 * stuff does not actually need it. So temporarily drop ctx->mutex. As per
8549 * perf_event_ctx_lock() we already have a reference on ctx.
8550 *
8551 * This can result in event getting moved to a different ctx, but that
8552 * does not affect the tracepoint state.
8553 */
8554 mutex_unlock(&ctx->mutex);
8555 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
8556 mutex_lock(&ctx->mutex);
8557
8558 return ret;
8559}
8560
c796bbbe
AS
8561static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8562{
8563 char *filter_str;
8564 int ret = -EINVAL;
8565
375637bc
AS
8566 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8567 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8568 !has_addr_filter(event))
c796bbbe
AS
8569 return -EINVAL;
8570
8571 filter_str = strndup_user(arg, PAGE_SIZE);
8572 if (IS_ERR(filter_str))
8573 return PTR_ERR(filter_str);
8574
8575 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8576 event->attr.type == PERF_TYPE_TRACEPOINT)
43fa87f7 8577 ret = perf_tracepoint_set_filter(event, filter_str);
375637bc
AS
8578 else if (has_addr_filter(event))
8579 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8580
8581 kfree(filter_str);
8582 return ret;
8583}
8584
b0a873eb
PZ
8585/*
8586 * hrtimer based swevent callback
8587 */
f29ac756 8588
b0a873eb 8589static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8590{
b0a873eb
PZ
8591 enum hrtimer_restart ret = HRTIMER_RESTART;
8592 struct perf_sample_data data;
8593 struct pt_regs *regs;
8594 struct perf_event *event;
8595 u64 period;
f29ac756 8596
b0a873eb 8597 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8598
8599 if (event->state != PERF_EVENT_STATE_ACTIVE)
8600 return HRTIMER_NORESTART;
8601
b0a873eb 8602 event->pmu->read(event);
f344011c 8603
fd0d000b 8604 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8605 regs = get_irq_regs();
8606
8607 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8608 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8609 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8610 ret = HRTIMER_NORESTART;
8611 }
24f1e32c 8612
b0a873eb
PZ
8613 period = max_t(u64, 10000, event->hw.sample_period);
8614 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8615
b0a873eb 8616 return ret;
f29ac756
PZ
8617}
8618
b0a873eb 8619static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8620{
b0a873eb 8621 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8622 s64 period;
8623
8624 if (!is_sampling_event(event))
8625 return;
f5ffe02e 8626
5d508e82
FBH
8627 period = local64_read(&hwc->period_left);
8628 if (period) {
8629 if (period < 0)
8630 period = 10000;
fa407f35 8631
5d508e82
FBH
8632 local64_set(&hwc->period_left, 0);
8633 } else {
8634 period = max_t(u64, 10000, hwc->sample_period);
8635 }
3497d206
TG
8636 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8637 HRTIMER_MODE_REL_PINNED);
24f1e32c 8638}
b0a873eb
PZ
8639
8640static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8641{
b0a873eb
PZ
8642 struct hw_perf_event *hwc = &event->hw;
8643
6c7e550f 8644 if (is_sampling_event(event)) {
b0a873eb 8645 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8646 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8647
8648 hrtimer_cancel(&hwc->hrtimer);
8649 }
24f1e32c
FW
8650}
8651
ba3dd36c
PZ
8652static void perf_swevent_init_hrtimer(struct perf_event *event)
8653{
8654 struct hw_perf_event *hwc = &event->hw;
8655
8656 if (!is_sampling_event(event))
8657 return;
8658
8659 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8660 hwc->hrtimer.function = perf_swevent_hrtimer;
8661
8662 /*
8663 * Since hrtimers have a fixed rate, we can do a static freq->period
8664 * mapping and avoid the whole period adjust feedback stuff.
8665 */
8666 if (event->attr.freq) {
8667 long freq = event->attr.sample_freq;
8668
8669 event->attr.sample_period = NSEC_PER_SEC / freq;
8670 hwc->sample_period = event->attr.sample_period;
8671 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8672 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8673 event->attr.freq = 0;
8674 }
8675}
8676
b0a873eb
PZ
8677/*
8678 * Software event: cpu wall time clock
8679 */
8680
8681static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8682{
b0a873eb
PZ
8683 s64 prev;
8684 u64 now;
8685
a4eaf7f1 8686 now = local_clock();
b0a873eb
PZ
8687 prev = local64_xchg(&event->hw.prev_count, now);
8688 local64_add(now - prev, &event->count);
24f1e32c 8689}
24f1e32c 8690
a4eaf7f1 8691static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8692{
a4eaf7f1 8693 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8694 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8695}
8696
a4eaf7f1 8697static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8698{
b0a873eb
PZ
8699 perf_swevent_cancel_hrtimer(event);
8700 cpu_clock_event_update(event);
8701}
f29ac756 8702
a4eaf7f1
PZ
8703static int cpu_clock_event_add(struct perf_event *event, int flags)
8704{
8705 if (flags & PERF_EF_START)
8706 cpu_clock_event_start(event, flags);
6a694a60 8707 perf_event_update_userpage(event);
a4eaf7f1
PZ
8708
8709 return 0;
8710}
8711
8712static void cpu_clock_event_del(struct perf_event *event, int flags)
8713{
8714 cpu_clock_event_stop(event, flags);
8715}
8716
b0a873eb
PZ
8717static void cpu_clock_event_read(struct perf_event *event)
8718{
8719 cpu_clock_event_update(event);
8720}
f344011c 8721
b0a873eb
PZ
8722static int cpu_clock_event_init(struct perf_event *event)
8723{
8724 if (event->attr.type != PERF_TYPE_SOFTWARE)
8725 return -ENOENT;
8726
8727 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8728 return -ENOENT;
8729
2481c5fa
SE
8730 /*
8731 * no branch sampling for software events
8732 */
8733 if (has_branch_stack(event))
8734 return -EOPNOTSUPP;
8735
ba3dd36c
PZ
8736 perf_swevent_init_hrtimer(event);
8737
b0a873eb 8738 return 0;
f29ac756
PZ
8739}
8740
b0a873eb 8741static struct pmu perf_cpu_clock = {
89a1e187
PZ
8742 .task_ctx_nr = perf_sw_context,
8743
34f43927
PZ
8744 .capabilities = PERF_PMU_CAP_NO_NMI,
8745
b0a873eb 8746 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8747 .add = cpu_clock_event_add,
8748 .del = cpu_clock_event_del,
8749 .start = cpu_clock_event_start,
8750 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8751 .read = cpu_clock_event_read,
8752};
8753
8754/*
8755 * Software event: task time clock
8756 */
8757
8758static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8759{
b0a873eb
PZ
8760 u64 prev;
8761 s64 delta;
5c92d124 8762
b0a873eb
PZ
8763 prev = local64_xchg(&event->hw.prev_count, now);
8764 delta = now - prev;
8765 local64_add(delta, &event->count);
8766}
5c92d124 8767
a4eaf7f1 8768static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8769{
a4eaf7f1 8770 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8771 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8772}
8773
a4eaf7f1 8774static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8775{
8776 perf_swevent_cancel_hrtimer(event);
8777 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8778}
8779
8780static int task_clock_event_add(struct perf_event *event, int flags)
8781{
8782 if (flags & PERF_EF_START)
8783 task_clock_event_start(event, flags);
6a694a60 8784 perf_event_update_userpage(event);
b0a873eb 8785
a4eaf7f1
PZ
8786 return 0;
8787}
8788
8789static void task_clock_event_del(struct perf_event *event, int flags)
8790{
8791 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8792}
8793
8794static void task_clock_event_read(struct perf_event *event)
8795{
768a06e2
PZ
8796 u64 now = perf_clock();
8797 u64 delta = now - event->ctx->timestamp;
8798 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8799
8800 task_clock_event_update(event, time);
8801}
8802
8803static int task_clock_event_init(struct perf_event *event)
6fb2915d 8804{
b0a873eb
PZ
8805 if (event->attr.type != PERF_TYPE_SOFTWARE)
8806 return -ENOENT;
8807
8808 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8809 return -ENOENT;
8810
2481c5fa
SE
8811 /*
8812 * no branch sampling for software events
8813 */
8814 if (has_branch_stack(event))
8815 return -EOPNOTSUPP;
8816
ba3dd36c
PZ
8817 perf_swevent_init_hrtimer(event);
8818
b0a873eb 8819 return 0;
6fb2915d
LZ
8820}
8821
b0a873eb 8822static struct pmu perf_task_clock = {
89a1e187
PZ
8823 .task_ctx_nr = perf_sw_context,
8824
34f43927
PZ
8825 .capabilities = PERF_PMU_CAP_NO_NMI,
8826
b0a873eb 8827 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8828 .add = task_clock_event_add,
8829 .del = task_clock_event_del,
8830 .start = task_clock_event_start,
8831 .stop = task_clock_event_stop,
b0a873eb
PZ
8832 .read = task_clock_event_read,
8833};
6fb2915d 8834
ad5133b7 8835static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8836{
e077df4f 8837}
6fb2915d 8838
fbbe0701
SB
8839static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8840{
8841}
8842
ad5133b7 8843static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8844{
ad5133b7 8845 return 0;
6fb2915d
LZ
8846}
8847
18ab2cd3 8848static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8849
8850static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8851{
fbbe0701
SB
8852 __this_cpu_write(nop_txn_flags, flags);
8853
8854 if (flags & ~PERF_PMU_TXN_ADD)
8855 return;
8856
ad5133b7 8857 perf_pmu_disable(pmu);
6fb2915d
LZ
8858}
8859
ad5133b7
PZ
8860static int perf_pmu_commit_txn(struct pmu *pmu)
8861{
fbbe0701
SB
8862 unsigned int flags = __this_cpu_read(nop_txn_flags);
8863
8864 __this_cpu_write(nop_txn_flags, 0);
8865
8866 if (flags & ~PERF_PMU_TXN_ADD)
8867 return 0;
8868
ad5133b7
PZ
8869 perf_pmu_enable(pmu);
8870 return 0;
8871}
e077df4f 8872
ad5133b7 8873static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8874{
fbbe0701
SB
8875 unsigned int flags = __this_cpu_read(nop_txn_flags);
8876
8877 __this_cpu_write(nop_txn_flags, 0);
8878
8879 if (flags & ~PERF_PMU_TXN_ADD)
8880 return;
8881
ad5133b7 8882 perf_pmu_enable(pmu);
24f1e32c
FW
8883}
8884
35edc2a5
PZ
8885static int perf_event_idx_default(struct perf_event *event)
8886{
c719f560 8887 return 0;
35edc2a5
PZ
8888}
8889
8dc85d54
PZ
8890/*
8891 * Ensures all contexts with the same task_ctx_nr have the same
8892 * pmu_cpu_context too.
8893 */
9e317041 8894static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8895{
8dc85d54 8896 struct pmu *pmu;
b326e956 8897
8dc85d54
PZ
8898 if (ctxn < 0)
8899 return NULL;
24f1e32c 8900
8dc85d54
PZ
8901 list_for_each_entry(pmu, &pmus, entry) {
8902 if (pmu->task_ctx_nr == ctxn)
8903 return pmu->pmu_cpu_context;
8904 }
24f1e32c 8905
8dc85d54 8906 return NULL;
24f1e32c
FW
8907}
8908
51676957
PZ
8909static void free_pmu_context(struct pmu *pmu)
8910{
df0062b2
WD
8911 /*
8912 * Static contexts such as perf_sw_context have a global lifetime
8913 * and may be shared between different PMUs. Avoid freeing them
8914 * when a single PMU is going away.
8915 */
8916 if (pmu->task_ctx_nr > perf_invalid_context)
8917 return;
8918
8dc85d54 8919 mutex_lock(&pmus_lock);
51676957 8920 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8921 mutex_unlock(&pmus_lock);
24f1e32c 8922}
6e855cd4
AS
8923
8924/*
8925 * Let userspace know that this PMU supports address range filtering:
8926 */
8927static ssize_t nr_addr_filters_show(struct device *dev,
8928 struct device_attribute *attr,
8929 char *page)
8930{
8931 struct pmu *pmu = dev_get_drvdata(dev);
8932
8933 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8934}
8935DEVICE_ATTR_RO(nr_addr_filters);
8936
2e80a82a 8937static struct idr pmu_idr;
d6d020e9 8938
abe43400
PZ
8939static ssize_t
8940type_show(struct device *dev, struct device_attribute *attr, char *page)
8941{
8942 struct pmu *pmu = dev_get_drvdata(dev);
8943
8944 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8945}
90826ca7 8946static DEVICE_ATTR_RO(type);
abe43400 8947
62b85639
SE
8948static ssize_t
8949perf_event_mux_interval_ms_show(struct device *dev,
8950 struct device_attribute *attr,
8951 char *page)
8952{
8953 struct pmu *pmu = dev_get_drvdata(dev);
8954
8955 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8956}
8957
272325c4
PZ
8958static DEFINE_MUTEX(mux_interval_mutex);
8959
62b85639
SE
8960static ssize_t
8961perf_event_mux_interval_ms_store(struct device *dev,
8962 struct device_attribute *attr,
8963 const char *buf, size_t count)
8964{
8965 struct pmu *pmu = dev_get_drvdata(dev);
8966 int timer, cpu, ret;
8967
8968 ret = kstrtoint(buf, 0, &timer);
8969 if (ret)
8970 return ret;
8971
8972 if (timer < 1)
8973 return -EINVAL;
8974
8975 /* same value, noting to do */
8976 if (timer == pmu->hrtimer_interval_ms)
8977 return count;
8978
272325c4 8979 mutex_lock(&mux_interval_mutex);
62b85639
SE
8980 pmu->hrtimer_interval_ms = timer;
8981
8982 /* update all cpuctx for this PMU */
a63fbed7 8983 cpus_read_lock();
272325c4 8984 for_each_online_cpu(cpu) {
62b85639
SE
8985 struct perf_cpu_context *cpuctx;
8986 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8987 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8988
272325c4
PZ
8989 cpu_function_call(cpu,
8990 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8991 }
a63fbed7 8992 cpus_read_unlock();
272325c4 8993 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8994
8995 return count;
8996}
90826ca7 8997static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8998
90826ca7
GKH
8999static struct attribute *pmu_dev_attrs[] = {
9000 &dev_attr_type.attr,
9001 &dev_attr_perf_event_mux_interval_ms.attr,
9002 NULL,
abe43400 9003};
90826ca7 9004ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9005
9006static int pmu_bus_running;
9007static struct bus_type pmu_bus = {
9008 .name = "event_source",
90826ca7 9009 .dev_groups = pmu_dev_groups,
abe43400
PZ
9010};
9011
9012static void pmu_dev_release(struct device *dev)
9013{
9014 kfree(dev);
9015}
9016
9017static int pmu_dev_alloc(struct pmu *pmu)
9018{
9019 int ret = -ENOMEM;
9020
9021 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9022 if (!pmu->dev)
9023 goto out;
9024
0c9d42ed 9025 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9026 device_initialize(pmu->dev);
9027 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9028 if (ret)
9029 goto free_dev;
9030
9031 dev_set_drvdata(pmu->dev, pmu);
9032 pmu->dev->bus = &pmu_bus;
9033 pmu->dev->release = pmu_dev_release;
9034 ret = device_add(pmu->dev);
9035 if (ret)
9036 goto free_dev;
9037
6e855cd4
AS
9038 /* For PMUs with address filters, throw in an extra attribute: */
9039 if (pmu->nr_addr_filters)
9040 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9041
9042 if (ret)
9043 goto del_dev;
9044
abe43400
PZ
9045out:
9046 return ret;
9047
6e855cd4
AS
9048del_dev:
9049 device_del(pmu->dev);
9050
abe43400
PZ
9051free_dev:
9052 put_device(pmu->dev);
9053 goto out;
9054}
9055
547e9fd7 9056static struct lock_class_key cpuctx_mutex;
facc4307 9057static struct lock_class_key cpuctx_lock;
547e9fd7 9058
03d8e80b 9059int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9060{
108b02cf 9061 int cpu, ret;
24f1e32c 9062
b0a873eb 9063 mutex_lock(&pmus_lock);
33696fc0
PZ
9064 ret = -ENOMEM;
9065 pmu->pmu_disable_count = alloc_percpu(int);
9066 if (!pmu->pmu_disable_count)
9067 goto unlock;
f29ac756 9068
2e80a82a
PZ
9069 pmu->type = -1;
9070 if (!name)
9071 goto skip_type;
9072 pmu->name = name;
9073
9074 if (type < 0) {
0e9c3be2
TH
9075 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9076 if (type < 0) {
9077 ret = type;
2e80a82a
PZ
9078 goto free_pdc;
9079 }
9080 }
9081 pmu->type = type;
9082
abe43400
PZ
9083 if (pmu_bus_running) {
9084 ret = pmu_dev_alloc(pmu);
9085 if (ret)
9086 goto free_idr;
9087 }
9088
2e80a82a 9089skip_type:
26657848
PZ
9090 if (pmu->task_ctx_nr == perf_hw_context) {
9091 static int hw_context_taken = 0;
9092
5101ef20
MR
9093 /*
9094 * Other than systems with heterogeneous CPUs, it never makes
9095 * sense for two PMUs to share perf_hw_context. PMUs which are
9096 * uncore must use perf_invalid_context.
9097 */
9098 if (WARN_ON_ONCE(hw_context_taken &&
9099 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9100 pmu->task_ctx_nr = perf_invalid_context;
9101
9102 hw_context_taken = 1;
9103 }
9104
8dc85d54
PZ
9105 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9106 if (pmu->pmu_cpu_context)
9107 goto got_cpu_context;
f29ac756 9108
c4814202 9109 ret = -ENOMEM;
108b02cf
PZ
9110 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9111 if (!pmu->pmu_cpu_context)
abe43400 9112 goto free_dev;
f344011c 9113
108b02cf
PZ
9114 for_each_possible_cpu(cpu) {
9115 struct perf_cpu_context *cpuctx;
9116
9117 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9118 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9119 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9120 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9121 cpuctx->ctx.pmu = pmu;
a63fbed7 9122 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9123
272325c4 9124 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9125 }
76e1d904 9126
8dc85d54 9127got_cpu_context:
ad5133b7
PZ
9128 if (!pmu->start_txn) {
9129 if (pmu->pmu_enable) {
9130 /*
9131 * If we have pmu_enable/pmu_disable calls, install
9132 * transaction stubs that use that to try and batch
9133 * hardware accesses.
9134 */
9135 pmu->start_txn = perf_pmu_start_txn;
9136 pmu->commit_txn = perf_pmu_commit_txn;
9137 pmu->cancel_txn = perf_pmu_cancel_txn;
9138 } else {
fbbe0701 9139 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9140 pmu->commit_txn = perf_pmu_nop_int;
9141 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9142 }
5c92d124 9143 }
15dbf27c 9144
ad5133b7
PZ
9145 if (!pmu->pmu_enable) {
9146 pmu->pmu_enable = perf_pmu_nop_void;
9147 pmu->pmu_disable = perf_pmu_nop_void;
9148 }
9149
35edc2a5
PZ
9150 if (!pmu->event_idx)
9151 pmu->event_idx = perf_event_idx_default;
9152
b0a873eb 9153 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9154 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9155 ret = 0;
9156unlock:
b0a873eb
PZ
9157 mutex_unlock(&pmus_lock);
9158
33696fc0 9159 return ret;
108b02cf 9160
abe43400
PZ
9161free_dev:
9162 device_del(pmu->dev);
9163 put_device(pmu->dev);
9164
2e80a82a
PZ
9165free_idr:
9166 if (pmu->type >= PERF_TYPE_MAX)
9167 idr_remove(&pmu_idr, pmu->type);
9168
108b02cf
PZ
9169free_pdc:
9170 free_percpu(pmu->pmu_disable_count);
9171 goto unlock;
f29ac756 9172}
c464c76e 9173EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9174
b0a873eb 9175void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9176{
0933840a
JO
9177 int remove_device;
9178
b0a873eb 9179 mutex_lock(&pmus_lock);
0933840a 9180 remove_device = pmu_bus_running;
b0a873eb
PZ
9181 list_del_rcu(&pmu->entry);
9182 mutex_unlock(&pmus_lock);
5c92d124 9183
0475f9ea 9184 /*
cde8e884
PZ
9185 * We dereference the pmu list under both SRCU and regular RCU, so
9186 * synchronize against both of those.
0475f9ea 9187 */
b0a873eb 9188 synchronize_srcu(&pmus_srcu);
cde8e884 9189 synchronize_rcu();
d6d020e9 9190
33696fc0 9191 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9192 if (pmu->type >= PERF_TYPE_MAX)
9193 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9194 if (remove_device) {
9195 if (pmu->nr_addr_filters)
9196 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9197 device_del(pmu->dev);
9198 put_device(pmu->dev);
9199 }
51676957 9200 free_pmu_context(pmu);
b0a873eb 9201}
c464c76e 9202EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9203
cc34b98b
MR
9204static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9205{
ccd41c86 9206 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9207 int ret;
9208
9209 if (!try_module_get(pmu->module))
9210 return -ENODEV;
ccd41c86 9211
0c7296ca
PZ
9212 /*
9213 * A number of pmu->event_init() methods iterate the sibling_list to,
9214 * for example, validate if the group fits on the PMU. Therefore,
9215 * if this is a sibling event, acquire the ctx->mutex to protect
9216 * the sibling_list.
9217 */
9218 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
9219 /*
9220 * This ctx->mutex can nest when we're called through
9221 * inheritance. See the perf_event_ctx_lock_nested() comment.
9222 */
9223 ctx = perf_event_ctx_lock_nested(event->group_leader,
9224 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9225 BUG_ON(!ctx);
9226 }
9227
cc34b98b
MR
9228 event->pmu = pmu;
9229 ret = pmu->event_init(event);
ccd41c86
PZ
9230
9231 if (ctx)
9232 perf_event_ctx_unlock(event->group_leader, ctx);
9233
cc34b98b
MR
9234 if (ret)
9235 module_put(pmu->module);
9236
9237 return ret;
9238}
9239
18ab2cd3 9240static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9241{
85c617ab 9242 struct pmu *pmu;
b0a873eb 9243 int idx;
940c5b29 9244 int ret;
b0a873eb
PZ
9245
9246 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9247
40999312
KL
9248 /* Try parent's PMU first: */
9249 if (event->parent && event->parent->pmu) {
9250 pmu = event->parent->pmu;
9251 ret = perf_try_init_event(pmu, event);
9252 if (!ret)
9253 goto unlock;
9254 }
9255
2e80a82a
PZ
9256 rcu_read_lock();
9257 pmu = idr_find(&pmu_idr, event->attr.type);
9258 rcu_read_unlock();
940c5b29 9259 if (pmu) {
cc34b98b 9260 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9261 if (ret)
9262 pmu = ERR_PTR(ret);
2e80a82a 9263 goto unlock;
940c5b29 9264 }
2e80a82a 9265
b0a873eb 9266 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9267 ret = perf_try_init_event(pmu, event);
b0a873eb 9268 if (!ret)
e5f4d339 9269 goto unlock;
76e1d904 9270
b0a873eb
PZ
9271 if (ret != -ENOENT) {
9272 pmu = ERR_PTR(ret);
e5f4d339 9273 goto unlock;
f344011c 9274 }
5c92d124 9275 }
e5f4d339
PZ
9276 pmu = ERR_PTR(-ENOENT);
9277unlock:
b0a873eb 9278 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9279
4aeb0b42 9280 return pmu;
5c92d124
IM
9281}
9282
f2fb6bef
KL
9283static void attach_sb_event(struct perf_event *event)
9284{
9285 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9286
9287 raw_spin_lock(&pel->lock);
9288 list_add_rcu(&event->sb_list, &pel->list);
9289 raw_spin_unlock(&pel->lock);
9290}
9291
aab5b71e
PZ
9292/*
9293 * We keep a list of all !task (and therefore per-cpu) events
9294 * that need to receive side-band records.
9295 *
9296 * This avoids having to scan all the various PMU per-cpu contexts
9297 * looking for them.
9298 */
f2fb6bef
KL
9299static void account_pmu_sb_event(struct perf_event *event)
9300{
a4f144eb 9301 if (is_sb_event(event))
f2fb6bef
KL
9302 attach_sb_event(event);
9303}
9304
4beb31f3
FW
9305static void account_event_cpu(struct perf_event *event, int cpu)
9306{
9307 if (event->parent)
9308 return;
9309
4beb31f3
FW
9310 if (is_cgroup_event(event))
9311 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9312}
9313
555e0c1e
FW
9314/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9315static void account_freq_event_nohz(void)
9316{
9317#ifdef CONFIG_NO_HZ_FULL
9318 /* Lock so we don't race with concurrent unaccount */
9319 spin_lock(&nr_freq_lock);
9320 if (atomic_inc_return(&nr_freq_events) == 1)
9321 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9322 spin_unlock(&nr_freq_lock);
9323#endif
9324}
9325
9326static void account_freq_event(void)
9327{
9328 if (tick_nohz_full_enabled())
9329 account_freq_event_nohz();
9330 else
9331 atomic_inc(&nr_freq_events);
9332}
9333
9334
766d6c07
FW
9335static void account_event(struct perf_event *event)
9336{
25432ae9
PZ
9337 bool inc = false;
9338
4beb31f3
FW
9339 if (event->parent)
9340 return;
9341
766d6c07 9342 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9343 inc = true;
766d6c07
FW
9344 if (event->attr.mmap || event->attr.mmap_data)
9345 atomic_inc(&nr_mmap_events);
9346 if (event->attr.comm)
9347 atomic_inc(&nr_comm_events);
e4222673
HB
9348 if (event->attr.namespaces)
9349 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9350 if (event->attr.task)
9351 atomic_inc(&nr_task_events);
555e0c1e
FW
9352 if (event->attr.freq)
9353 account_freq_event();
45ac1403
AH
9354 if (event->attr.context_switch) {
9355 atomic_inc(&nr_switch_events);
25432ae9 9356 inc = true;
45ac1403 9357 }
4beb31f3 9358 if (has_branch_stack(event))
25432ae9 9359 inc = true;
4beb31f3 9360 if (is_cgroup_event(event))
25432ae9
PZ
9361 inc = true;
9362
9107c89e 9363 if (inc) {
5bce9db1
AS
9364 /*
9365 * We need the mutex here because static_branch_enable()
9366 * must complete *before* the perf_sched_count increment
9367 * becomes visible.
9368 */
9107c89e
PZ
9369 if (atomic_inc_not_zero(&perf_sched_count))
9370 goto enabled;
9371
9372 mutex_lock(&perf_sched_mutex);
9373 if (!atomic_read(&perf_sched_count)) {
9374 static_branch_enable(&perf_sched_events);
9375 /*
9376 * Guarantee that all CPUs observe they key change and
9377 * call the perf scheduling hooks before proceeding to
9378 * install events that need them.
9379 */
9380 synchronize_sched();
9381 }
9382 /*
9383 * Now that we have waited for the sync_sched(), allow further
9384 * increments to by-pass the mutex.
9385 */
9386 atomic_inc(&perf_sched_count);
9387 mutex_unlock(&perf_sched_mutex);
9388 }
9389enabled:
4beb31f3
FW
9390
9391 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9392
9393 account_pmu_sb_event(event);
766d6c07
FW
9394}
9395
0793a61d 9396/*
cdd6c482 9397 * Allocate and initialize a event structure
0793a61d 9398 */
cdd6c482 9399static struct perf_event *
c3f00c70 9400perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9401 struct task_struct *task,
9402 struct perf_event *group_leader,
9403 struct perf_event *parent_event,
4dc0da86 9404 perf_overflow_handler_t overflow_handler,
79dff51e 9405 void *context, int cgroup_fd)
0793a61d 9406{
51b0fe39 9407 struct pmu *pmu;
cdd6c482
IM
9408 struct perf_event *event;
9409 struct hw_perf_event *hwc;
90983b16 9410 long err = -EINVAL;
0793a61d 9411
66832eb4
ON
9412 if ((unsigned)cpu >= nr_cpu_ids) {
9413 if (!task || cpu != -1)
9414 return ERR_PTR(-EINVAL);
9415 }
9416
c3f00c70 9417 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9418 if (!event)
d5d2bc0d 9419 return ERR_PTR(-ENOMEM);
0793a61d 9420
04289bb9 9421 /*
cdd6c482 9422 * Single events are their own group leaders, with an
04289bb9
IM
9423 * empty sibling list:
9424 */
9425 if (!group_leader)
cdd6c482 9426 group_leader = event;
04289bb9 9427
cdd6c482
IM
9428 mutex_init(&event->child_mutex);
9429 INIT_LIST_HEAD(&event->child_list);
fccc714b 9430
cdd6c482
IM
9431 INIT_LIST_HEAD(&event->group_entry);
9432 INIT_LIST_HEAD(&event->event_entry);
9433 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9434 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9435 INIT_LIST_HEAD(&event->active_entry);
375637bc 9436 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9437 INIT_HLIST_NODE(&event->hlist_entry);
9438
10c6db11 9439
cdd6c482 9440 init_waitqueue_head(&event->waitq);
e360adbe 9441 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9442
cdd6c482 9443 mutex_init(&event->mmap_mutex);
375637bc 9444 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9445
a6fa941d 9446 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9447 event->cpu = cpu;
9448 event->attr = *attr;
9449 event->group_leader = group_leader;
9450 event->pmu = NULL;
cdd6c482 9451 event->oncpu = -1;
a96bbc16 9452
cdd6c482 9453 event->parent = parent_event;
b84fbc9f 9454
17cf22c3 9455 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9456 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9457
cdd6c482 9458 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9459
d580ff86
PZ
9460 if (task) {
9461 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9462 /*
50f16a8b
PZ
9463 * XXX pmu::event_init needs to know what task to account to
9464 * and we cannot use the ctx information because we need the
9465 * pmu before we get a ctx.
d580ff86 9466 */
ae162419 9467 get_task_struct(task);
50f16a8b 9468 event->hw.target = task;
d580ff86
PZ
9469 }
9470
34f43927
PZ
9471 event->clock = &local_clock;
9472 if (parent_event)
9473 event->clock = parent_event->clock;
9474
4dc0da86 9475 if (!overflow_handler && parent_event) {
b326e956 9476 overflow_handler = parent_event->overflow_handler;
4dc0da86 9477 context = parent_event->overflow_handler_context;
f1e4ba5b 9478#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9479 if (overflow_handler == bpf_overflow_handler) {
9480 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9481
9482 if (IS_ERR(prog)) {
9483 err = PTR_ERR(prog);
9484 goto err_ns;
9485 }
9486 event->prog = prog;
9487 event->orig_overflow_handler =
9488 parent_event->orig_overflow_handler;
9489 }
9490#endif
4dc0da86 9491 }
66832eb4 9492
1879445d
WN
9493 if (overflow_handler) {
9494 event->overflow_handler = overflow_handler;
9495 event->overflow_handler_context = context;
9ecda41a
WN
9496 } else if (is_write_backward(event)){
9497 event->overflow_handler = perf_event_output_backward;
9498 event->overflow_handler_context = NULL;
1879445d 9499 } else {
9ecda41a 9500 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9501 event->overflow_handler_context = NULL;
9502 }
97eaf530 9503
0231bb53 9504 perf_event__state_init(event);
a86ed508 9505
4aeb0b42 9506 pmu = NULL;
b8e83514 9507
cdd6c482 9508 hwc = &event->hw;
bd2b5b12 9509 hwc->sample_period = attr->sample_period;
0d48696f 9510 if (attr->freq && attr->sample_freq)
bd2b5b12 9511 hwc->sample_period = 1;
eced1dfc 9512 hwc->last_period = hwc->sample_period;
bd2b5b12 9513
e7850595 9514 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9515
2023b359 9516 /*
ba5213ae
PZ
9517 * We currently do not support PERF_SAMPLE_READ on inherited events.
9518 * See perf_output_read().
2023b359 9519 */
ba5213ae 9520 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 9521 goto err_ns;
a46a2300
YZ
9522
9523 if (!has_branch_stack(event))
9524 event->attr.branch_sample_type = 0;
2023b359 9525
79dff51e
MF
9526 if (cgroup_fd != -1) {
9527 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9528 if (err)
9529 goto err_ns;
9530 }
9531
b0a873eb 9532 pmu = perf_init_event(event);
85c617ab 9533 if (IS_ERR(pmu)) {
4aeb0b42 9534 err = PTR_ERR(pmu);
90983b16 9535 goto err_ns;
621a01ea 9536 }
d5d2bc0d 9537
bed5b25a
AS
9538 err = exclusive_event_init(event);
9539 if (err)
9540 goto err_pmu;
9541
375637bc
AS
9542 if (has_addr_filter(event)) {
9543 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9544 sizeof(unsigned long),
9545 GFP_KERNEL);
36cc2b92
DC
9546 if (!event->addr_filters_offs) {
9547 err = -ENOMEM;
375637bc 9548 goto err_per_task;
36cc2b92 9549 }
375637bc
AS
9550
9551 /* force hw sync on the address filters */
9552 event->addr_filters_gen = 1;
9553 }
9554
cdd6c482 9555 if (!event->parent) {
927c7a9e 9556 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9557 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9558 if (err)
375637bc 9559 goto err_addr_filters;
d010b332 9560 }
f344011c 9561 }
9ee318a7 9562
927a5570
AS
9563 /* symmetric to unaccount_event() in _free_event() */
9564 account_event(event);
9565
cdd6c482 9566 return event;
90983b16 9567
375637bc
AS
9568err_addr_filters:
9569 kfree(event->addr_filters_offs);
9570
bed5b25a
AS
9571err_per_task:
9572 exclusive_event_destroy(event);
9573
90983b16
FW
9574err_pmu:
9575 if (event->destroy)
9576 event->destroy(event);
c464c76e 9577 module_put(pmu->module);
90983b16 9578err_ns:
79dff51e
MF
9579 if (is_cgroup_event(event))
9580 perf_detach_cgroup(event);
90983b16
FW
9581 if (event->ns)
9582 put_pid_ns(event->ns);
ae162419
PB
9583 if (event->hw.target)
9584 put_task_struct(event->hw.target);
90983b16
FW
9585 kfree(event);
9586
9587 return ERR_PTR(err);
0793a61d
TG
9588}
9589
cdd6c482
IM
9590static int perf_copy_attr(struct perf_event_attr __user *uattr,
9591 struct perf_event_attr *attr)
974802ea 9592{
974802ea 9593 u32 size;
cdf8073d 9594 int ret;
974802ea
PZ
9595
9596 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9597 return -EFAULT;
9598
9599 /*
9600 * zero the full structure, so that a short copy will be nice.
9601 */
9602 memset(attr, 0, sizeof(*attr));
9603
9604 ret = get_user(size, &uattr->size);
9605 if (ret)
9606 return ret;
9607
9608 if (size > PAGE_SIZE) /* silly large */
9609 goto err_size;
9610
9611 if (!size) /* abi compat */
9612 size = PERF_ATTR_SIZE_VER0;
9613
9614 if (size < PERF_ATTR_SIZE_VER0)
9615 goto err_size;
9616
9617 /*
9618 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9619 * ensure all the unknown bits are 0 - i.e. new
9620 * user-space does not rely on any kernel feature
9621 * extensions we dont know about yet.
974802ea
PZ
9622 */
9623 if (size > sizeof(*attr)) {
cdf8073d
IS
9624 unsigned char __user *addr;
9625 unsigned char __user *end;
9626 unsigned char val;
974802ea 9627
cdf8073d
IS
9628 addr = (void __user *)uattr + sizeof(*attr);
9629 end = (void __user *)uattr + size;
974802ea 9630
cdf8073d 9631 for (; addr < end; addr++) {
974802ea
PZ
9632 ret = get_user(val, addr);
9633 if (ret)
9634 return ret;
9635 if (val)
9636 goto err_size;
9637 }
b3e62e35 9638 size = sizeof(*attr);
974802ea
PZ
9639 }
9640
9641 ret = copy_from_user(attr, uattr, size);
9642 if (ret)
9643 return -EFAULT;
9644
f12f42ac
MX
9645 attr->size = size;
9646
cd757645 9647 if (attr->__reserved_1)
974802ea
PZ
9648 return -EINVAL;
9649
9650 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9651 return -EINVAL;
9652
9653 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9654 return -EINVAL;
9655
bce38cd5
SE
9656 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9657 u64 mask = attr->branch_sample_type;
9658
9659 /* only using defined bits */
9660 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9661 return -EINVAL;
9662
9663 /* at least one branch bit must be set */
9664 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9665 return -EINVAL;
9666
bce38cd5
SE
9667 /* propagate priv level, when not set for branch */
9668 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9669
9670 /* exclude_kernel checked on syscall entry */
9671 if (!attr->exclude_kernel)
9672 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9673
9674 if (!attr->exclude_user)
9675 mask |= PERF_SAMPLE_BRANCH_USER;
9676
9677 if (!attr->exclude_hv)
9678 mask |= PERF_SAMPLE_BRANCH_HV;
9679 /*
9680 * adjust user setting (for HW filter setup)
9681 */
9682 attr->branch_sample_type = mask;
9683 }
e712209a
SE
9684 /* privileged levels capture (kernel, hv): check permissions */
9685 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9686 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9687 return -EACCES;
bce38cd5 9688 }
4018994f 9689
c5ebcedb 9690 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9691 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9692 if (ret)
9693 return ret;
9694 }
9695
9696 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9697 if (!arch_perf_have_user_stack_dump())
9698 return -ENOSYS;
9699
9700 /*
9701 * We have __u32 type for the size, but so far
9702 * we can only use __u16 as maximum due to the
9703 * __u16 sample size limit.
9704 */
9705 if (attr->sample_stack_user >= USHRT_MAX)
0b105afa 9706 return -EINVAL;
c5ebcedb 9707 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
0b105afa 9708 return -EINVAL;
c5ebcedb 9709 }
4018994f 9710
60e2364e
SE
9711 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9712 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9713out:
9714 return ret;
9715
9716err_size:
9717 put_user(sizeof(*attr), &uattr->size);
9718 ret = -E2BIG;
9719 goto out;
9720}
9721
ac9721f3
PZ
9722static int
9723perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9724{
b69cf536 9725 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9726 int ret = -EINVAL;
9727
ac9721f3 9728 if (!output_event)
a4be7c27
PZ
9729 goto set;
9730
ac9721f3
PZ
9731 /* don't allow circular references */
9732 if (event == output_event)
a4be7c27
PZ
9733 goto out;
9734
0f139300
PZ
9735 /*
9736 * Don't allow cross-cpu buffers
9737 */
9738 if (output_event->cpu != event->cpu)
9739 goto out;
9740
9741 /*
76369139 9742 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9743 */
9744 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9745 goto out;
9746
34f43927
PZ
9747 /*
9748 * Mixing clocks in the same buffer is trouble you don't need.
9749 */
9750 if (output_event->clock != event->clock)
9751 goto out;
9752
9ecda41a
WN
9753 /*
9754 * Either writing ring buffer from beginning or from end.
9755 * Mixing is not allowed.
9756 */
9757 if (is_write_backward(output_event) != is_write_backward(event))
9758 goto out;
9759
45bfb2e5
PZ
9760 /*
9761 * If both events generate aux data, they must be on the same PMU
9762 */
9763 if (has_aux(event) && has_aux(output_event) &&
9764 event->pmu != output_event->pmu)
9765 goto out;
9766
a4be7c27 9767set:
cdd6c482 9768 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9769 /* Can't redirect output if we've got an active mmap() */
9770 if (atomic_read(&event->mmap_count))
9771 goto unlock;
a4be7c27 9772
ac9721f3 9773 if (output_event) {
76369139
FW
9774 /* get the rb we want to redirect to */
9775 rb = ring_buffer_get(output_event);
9776 if (!rb)
ac9721f3 9777 goto unlock;
a4be7c27
PZ
9778 }
9779
b69cf536 9780 ring_buffer_attach(event, rb);
9bb5d40c 9781
a4be7c27 9782 ret = 0;
ac9721f3
PZ
9783unlock:
9784 mutex_unlock(&event->mmap_mutex);
9785
a4be7c27 9786out:
a4be7c27
PZ
9787 return ret;
9788}
9789
f63a8daa
PZ
9790static void mutex_lock_double(struct mutex *a, struct mutex *b)
9791{
9792 if (b < a)
9793 swap(a, b);
9794
9795 mutex_lock(a);
9796 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9797}
9798
34f43927
PZ
9799static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9800{
9801 bool nmi_safe = false;
9802
9803 switch (clk_id) {
9804 case CLOCK_MONOTONIC:
9805 event->clock = &ktime_get_mono_fast_ns;
9806 nmi_safe = true;
9807 break;
9808
9809 case CLOCK_MONOTONIC_RAW:
9810 event->clock = &ktime_get_raw_fast_ns;
9811 nmi_safe = true;
9812 break;
9813
9814 case CLOCK_REALTIME:
9815 event->clock = &ktime_get_real_ns;
9816 break;
9817
9818 case CLOCK_BOOTTIME:
9819 event->clock = &ktime_get_boot_ns;
9820 break;
9821
9822 case CLOCK_TAI:
9823 event->clock = &ktime_get_tai_ns;
9824 break;
9825
9826 default:
9827 return -EINVAL;
9828 }
9829
9830 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9831 return -EINVAL;
9832
9833 return 0;
9834}
9835
321027c1
PZ
9836/*
9837 * Variation on perf_event_ctx_lock_nested(), except we take two context
9838 * mutexes.
9839 */
9840static struct perf_event_context *
9841__perf_event_ctx_lock_double(struct perf_event *group_leader,
9842 struct perf_event_context *ctx)
9843{
9844 struct perf_event_context *gctx;
9845
9846again:
9847 rcu_read_lock();
9848 gctx = READ_ONCE(group_leader->ctx);
9849 if (!atomic_inc_not_zero(&gctx->refcount)) {
9850 rcu_read_unlock();
9851 goto again;
9852 }
9853 rcu_read_unlock();
9854
9855 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9856
9857 if (group_leader->ctx != gctx) {
9858 mutex_unlock(&ctx->mutex);
9859 mutex_unlock(&gctx->mutex);
9860 put_ctx(gctx);
9861 goto again;
9862 }
9863
9864 return gctx;
9865}
9866
0793a61d 9867/**
cdd6c482 9868 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9869 *
cdd6c482 9870 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9871 * @pid: target pid
9f66a381 9872 * @cpu: target cpu
cdd6c482 9873 * @group_fd: group leader event fd
0793a61d 9874 */
cdd6c482
IM
9875SYSCALL_DEFINE5(perf_event_open,
9876 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9877 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9878{
b04243ef
PZ
9879 struct perf_event *group_leader = NULL, *output_event = NULL;
9880 struct perf_event *event, *sibling;
cdd6c482 9881 struct perf_event_attr attr;
f63a8daa 9882 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9883 struct file *event_file = NULL;
2903ff01 9884 struct fd group = {NULL, 0};
38a81da2 9885 struct task_struct *task = NULL;
89a1e187 9886 struct pmu *pmu;
ea635c64 9887 int event_fd;
b04243ef 9888 int move_group = 0;
dc86cabe 9889 int err;
a21b0b35 9890 int f_flags = O_RDWR;
79dff51e 9891 int cgroup_fd = -1;
0793a61d 9892
2743a5b0 9893 /* for future expandability... */
e5d1367f 9894 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9895 return -EINVAL;
9896
d48d0c64
BH
9897 if (perf_paranoid_any() && !capable(CAP_SYS_ADMIN))
9898 return -EACCES;
9899
dc86cabe
IM
9900 err = perf_copy_attr(attr_uptr, &attr);
9901 if (err)
9902 return err;
eab656ae 9903
0764771d
PZ
9904 if (!attr.exclude_kernel) {
9905 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9906 return -EACCES;
9907 }
9908
e4222673
HB
9909 if (attr.namespaces) {
9910 if (!capable(CAP_SYS_ADMIN))
9911 return -EACCES;
9912 }
9913
df58ab24 9914 if (attr.freq) {
cdd6c482 9915 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9916 return -EINVAL;
0819b2e3
PZ
9917 } else {
9918 if (attr.sample_period & (1ULL << 63))
9919 return -EINVAL;
df58ab24
PZ
9920 }
9921
fc7ce9c7
KL
9922 /* Only privileged users can get physical addresses */
9923 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9924 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9925 return -EACCES;
9926
97c79a38
ACM
9927 if (!attr.sample_max_stack)
9928 attr.sample_max_stack = sysctl_perf_event_max_stack;
9929
e5d1367f
SE
9930 /*
9931 * In cgroup mode, the pid argument is used to pass the fd
9932 * opened to the cgroup directory in cgroupfs. The cpu argument
9933 * designates the cpu on which to monitor threads from that
9934 * cgroup.
9935 */
9936 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9937 return -EINVAL;
9938
a21b0b35
YD
9939 if (flags & PERF_FLAG_FD_CLOEXEC)
9940 f_flags |= O_CLOEXEC;
9941
9942 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9943 if (event_fd < 0)
9944 return event_fd;
9945
ac9721f3 9946 if (group_fd != -1) {
2903ff01
AV
9947 err = perf_fget_light(group_fd, &group);
9948 if (err)
d14b12d7 9949 goto err_fd;
2903ff01 9950 group_leader = group.file->private_data;
ac9721f3
PZ
9951 if (flags & PERF_FLAG_FD_OUTPUT)
9952 output_event = group_leader;
9953 if (flags & PERF_FLAG_FD_NO_GROUP)
9954 group_leader = NULL;
9955 }
9956
e5d1367f 9957 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9958 task = find_lively_task_by_vpid(pid);
9959 if (IS_ERR(task)) {
9960 err = PTR_ERR(task);
9961 goto err_group_fd;
9962 }
9963 }
9964
1f4ee503
PZ
9965 if (task && group_leader &&
9966 group_leader->attr.inherit != attr.inherit) {
9967 err = -EINVAL;
9968 goto err_task;
9969 }
9970
79c9ce57
PZ
9971 if (task) {
9972 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9973 if (err)
e5aeee51 9974 goto err_task;
79c9ce57
PZ
9975
9976 /*
9977 * Reuse ptrace permission checks for now.
9978 *
9979 * We must hold cred_guard_mutex across this and any potential
9980 * perf_install_in_context() call for this new event to
9981 * serialize against exec() altering our credentials (and the
9982 * perf_event_exit_task() that could imply).
9983 */
9984 err = -EACCES;
9985 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9986 goto err_cred;
9987 }
9988
79dff51e
MF
9989 if (flags & PERF_FLAG_PID_CGROUP)
9990 cgroup_fd = pid;
9991
4dc0da86 9992 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9993 NULL, NULL, cgroup_fd);
d14b12d7
SE
9994 if (IS_ERR(event)) {
9995 err = PTR_ERR(event);
79c9ce57 9996 goto err_cred;
d14b12d7
SE
9997 }
9998
53b25335
VW
9999 if (is_sampling_event(event)) {
10000 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 10001 err = -EOPNOTSUPP;
53b25335
VW
10002 goto err_alloc;
10003 }
10004 }
10005
89a1e187
PZ
10006 /*
10007 * Special case software events and allow them to be part of
10008 * any hardware group.
10009 */
10010 pmu = event->pmu;
b04243ef 10011
34f43927
PZ
10012 if (attr.use_clockid) {
10013 err = perf_event_set_clock(event, attr.clockid);
10014 if (err)
10015 goto err_alloc;
10016 }
10017
4ff6a8de
DCC
10018 if (pmu->task_ctx_nr == perf_sw_context)
10019 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10020
b04243ef
PZ
10021 if (group_leader &&
10022 (is_software_event(event) != is_software_event(group_leader))) {
10023 if (is_software_event(event)) {
10024 /*
10025 * If event and group_leader are not both a software
10026 * event, and event is, then group leader is not.
10027 *
10028 * Allow the addition of software events to !software
10029 * groups, this is safe because software events never
10030 * fail to schedule.
10031 */
10032 pmu = group_leader->pmu;
10033 } else if (is_software_event(group_leader) &&
4ff6a8de 10034 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10035 /*
10036 * In case the group is a pure software group, and we
10037 * try to add a hardware event, move the whole group to
10038 * the hardware context.
10039 */
10040 move_group = 1;
10041 }
10042 }
89a1e187
PZ
10043
10044 /*
10045 * Get the target context (task or percpu):
10046 */
4af57ef2 10047 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10048 if (IS_ERR(ctx)) {
10049 err = PTR_ERR(ctx);
c6be5a5c 10050 goto err_alloc;
89a1e187
PZ
10051 }
10052
bed5b25a
AS
10053 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10054 err = -EBUSY;
10055 goto err_context;
10056 }
10057
ccff286d 10058 /*
cdd6c482 10059 * Look up the group leader (we will attach this event to it):
04289bb9 10060 */
ac9721f3 10061 if (group_leader) {
dc86cabe 10062 err = -EINVAL;
04289bb9 10063
04289bb9 10064 /*
ccff286d
IM
10065 * Do not allow a recursive hierarchy (this new sibling
10066 * becoming part of another group-sibling):
10067 */
10068 if (group_leader->group_leader != group_leader)
c3f00c70 10069 goto err_context;
34f43927
PZ
10070
10071 /* All events in a group should have the same clock */
10072 if (group_leader->clock != event->clock)
10073 goto err_context;
10074
ccff286d 10075 /*
64aee2a9
MR
10076 * Make sure we're both events for the same CPU;
10077 * grouping events for different CPUs is broken; since
10078 * you can never concurrently schedule them anyhow.
04289bb9 10079 */
64aee2a9
MR
10080 if (group_leader->cpu != event->cpu)
10081 goto err_context;
c3c87e77 10082
64aee2a9
MR
10083 /*
10084 * Make sure we're both on the same task, or both
10085 * per-CPU events.
10086 */
10087 if (group_leader->ctx->task != ctx->task)
10088 goto err_context;
10089
10090 /*
10091 * Do not allow to attach to a group in a different task
10092 * or CPU context. If we're moving SW events, we'll fix
10093 * this up later, so allow that.
10094 */
10095 if (!move_group && group_leader->ctx != ctx)
10096 goto err_context;
b04243ef 10097
3b6f9e5c
PM
10098 /*
10099 * Only a group leader can be exclusive or pinned
10100 */
0d48696f 10101 if (attr.exclusive || attr.pinned)
c3f00c70 10102 goto err_context;
ac9721f3
PZ
10103 }
10104
10105 if (output_event) {
10106 err = perf_event_set_output(event, output_event);
10107 if (err)
c3f00c70 10108 goto err_context;
ac9721f3 10109 }
0793a61d 10110
a21b0b35
YD
10111 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10112 f_flags);
ea635c64
AV
10113 if (IS_ERR(event_file)) {
10114 err = PTR_ERR(event_file);
201c2f85 10115 event_file = NULL;
c3f00c70 10116 goto err_context;
ea635c64 10117 }
9b51f66d 10118
b04243ef 10119 if (move_group) {
321027c1
PZ
10120 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10121
84c4e620
PZ
10122 if (gctx->task == TASK_TOMBSTONE) {
10123 err = -ESRCH;
10124 goto err_locked;
10125 }
321027c1
PZ
10126
10127 /*
10128 * Check if we raced against another sys_perf_event_open() call
10129 * moving the software group underneath us.
10130 */
10131 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10132 /*
10133 * If someone moved the group out from under us, check
10134 * if this new event wound up on the same ctx, if so
10135 * its the regular !move_group case, otherwise fail.
10136 */
10137 if (gctx != ctx) {
10138 err = -EINVAL;
10139 goto err_locked;
10140 } else {
10141 perf_event_ctx_unlock(group_leader, gctx);
10142 move_group = 0;
10143 }
10144 }
f55fc2a5
PZ
10145 } else {
10146 mutex_lock(&ctx->mutex);
10147 }
10148
84c4e620
PZ
10149 if (ctx->task == TASK_TOMBSTONE) {
10150 err = -ESRCH;
10151 goto err_locked;
10152 }
10153
a723968c
PZ
10154 if (!perf_event_validate_size(event)) {
10155 err = -E2BIG;
10156 goto err_locked;
10157 }
10158
a63fbed7
TG
10159 if (!task) {
10160 /*
10161 * Check if the @cpu we're creating an event for is online.
10162 *
10163 * We use the perf_cpu_context::ctx::mutex to serialize against
10164 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10165 */
10166 struct perf_cpu_context *cpuctx =
10167 container_of(ctx, struct perf_cpu_context, ctx);
10168
10169 if (!cpuctx->online) {
10170 err = -ENODEV;
10171 goto err_locked;
10172 }
10173 }
10174
10175
f55fc2a5
PZ
10176 /*
10177 * Must be under the same ctx::mutex as perf_install_in_context(),
10178 * because we need to serialize with concurrent event creation.
10179 */
10180 if (!exclusive_event_installable(event, ctx)) {
10181 /* exclusive and group stuff are assumed mutually exclusive */
10182 WARN_ON_ONCE(move_group);
f63a8daa 10183
f55fc2a5
PZ
10184 err = -EBUSY;
10185 goto err_locked;
10186 }
f63a8daa 10187
f55fc2a5
PZ
10188 WARN_ON_ONCE(ctx->parent_ctx);
10189
79c9ce57
PZ
10190 /*
10191 * This is the point on no return; we cannot fail hereafter. This is
10192 * where we start modifying current state.
10193 */
10194
f55fc2a5 10195 if (move_group) {
f63a8daa
PZ
10196 /*
10197 * See perf_event_ctx_lock() for comments on the details
10198 * of swizzling perf_event::ctx.
10199 */
45a0e07a 10200 perf_remove_from_context(group_leader, 0);
279b5165 10201 put_ctx(gctx);
0231bb53 10202
b04243ef
PZ
10203 list_for_each_entry(sibling, &group_leader->sibling_list,
10204 group_entry) {
45a0e07a 10205 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10206 put_ctx(gctx);
10207 }
b04243ef 10208
f63a8daa
PZ
10209 /*
10210 * Wait for everybody to stop referencing the events through
10211 * the old lists, before installing it on new lists.
10212 */
0cda4c02 10213 synchronize_rcu();
f63a8daa 10214
8f95b435
PZI
10215 /*
10216 * Install the group siblings before the group leader.
10217 *
10218 * Because a group leader will try and install the entire group
10219 * (through the sibling list, which is still in-tact), we can
10220 * end up with siblings installed in the wrong context.
10221 *
10222 * By installing siblings first we NO-OP because they're not
10223 * reachable through the group lists.
10224 */
b04243ef
PZ
10225 list_for_each_entry(sibling, &group_leader->sibling_list,
10226 group_entry) {
8f95b435 10227 perf_event__state_init(sibling);
9fc81d87 10228 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10229 get_ctx(ctx);
10230 }
8f95b435
PZI
10231
10232 /*
10233 * Removing from the context ends up with disabled
10234 * event. What we want here is event in the initial
10235 * startup state, ready to be add into new context.
10236 */
10237 perf_event__state_init(group_leader);
10238 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10239 get_ctx(ctx);
bed5b25a
AS
10240 }
10241
f73e22ab
PZ
10242 /*
10243 * Precalculate sample_data sizes; do while holding ctx::mutex such
10244 * that we're serialized against further additions and before
10245 * perf_install_in_context() which is the point the event is active and
10246 * can use these values.
10247 */
10248 perf_event__header_size(event);
10249 perf_event__id_header_size(event);
10250
78cd2c74
PZ
10251 event->owner = current;
10252
e2d37cd2 10253 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10254 perf_unpin_context(ctx);
f63a8daa 10255
f55fc2a5 10256 if (move_group)
321027c1 10257 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10258 mutex_unlock(&ctx->mutex);
9b51f66d 10259
79c9ce57
PZ
10260 if (task) {
10261 mutex_unlock(&task->signal->cred_guard_mutex);
10262 put_task_struct(task);
10263 }
10264
cdd6c482
IM
10265 mutex_lock(&current->perf_event_mutex);
10266 list_add_tail(&event->owner_entry, &current->perf_event_list);
10267 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10268
8a49542c
PZ
10269 /*
10270 * Drop the reference on the group_event after placing the
10271 * new event on the sibling_list. This ensures destruction
10272 * of the group leader will find the pointer to itself in
10273 * perf_group_detach().
10274 */
2903ff01 10275 fdput(group);
ea635c64
AV
10276 fd_install(event_fd, event_file);
10277 return event_fd;
0793a61d 10278
f55fc2a5
PZ
10279err_locked:
10280 if (move_group)
321027c1 10281 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10282 mutex_unlock(&ctx->mutex);
10283/* err_file: */
10284 fput(event_file);
c3f00c70 10285err_context:
fe4b04fa 10286 perf_unpin_context(ctx);
ea635c64 10287 put_ctx(ctx);
c6be5a5c 10288err_alloc:
13005627
PZ
10289 /*
10290 * If event_file is set, the fput() above will have called ->release()
10291 * and that will take care of freeing the event.
10292 */
10293 if (!event_file)
10294 free_event(event);
79c9ce57
PZ
10295err_cred:
10296 if (task)
10297 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10298err_task:
e7d0bc04
PZ
10299 if (task)
10300 put_task_struct(task);
89a1e187 10301err_group_fd:
2903ff01 10302 fdput(group);
ea635c64
AV
10303err_fd:
10304 put_unused_fd(event_fd);
dc86cabe 10305 return err;
0793a61d
TG
10306}
10307
fb0459d7
AV
10308/**
10309 * perf_event_create_kernel_counter
10310 *
10311 * @attr: attributes of the counter to create
10312 * @cpu: cpu in which the counter is bound
38a81da2 10313 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10314 */
10315struct perf_event *
10316perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10317 struct task_struct *task,
4dc0da86
AK
10318 perf_overflow_handler_t overflow_handler,
10319 void *context)
fb0459d7 10320{
fb0459d7 10321 struct perf_event_context *ctx;
c3f00c70 10322 struct perf_event *event;
fb0459d7 10323 int err;
d859e29f 10324
fb0459d7
AV
10325 /*
10326 * Get the target context (task or percpu):
10327 */
d859e29f 10328
4dc0da86 10329 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10330 overflow_handler, context, -1);
c3f00c70
PZ
10331 if (IS_ERR(event)) {
10332 err = PTR_ERR(event);
10333 goto err;
10334 }
d859e29f 10335
f8697762 10336 /* Mark owner so we could distinguish it from user events. */
63b6da39 10337 event->owner = TASK_TOMBSTONE;
f8697762 10338
4af57ef2 10339 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10340 if (IS_ERR(ctx)) {
10341 err = PTR_ERR(ctx);
c3f00c70 10342 goto err_free;
d859e29f 10343 }
fb0459d7 10344
fb0459d7
AV
10345 WARN_ON_ONCE(ctx->parent_ctx);
10346 mutex_lock(&ctx->mutex);
84c4e620
PZ
10347 if (ctx->task == TASK_TOMBSTONE) {
10348 err = -ESRCH;
10349 goto err_unlock;
10350 }
10351
a63fbed7
TG
10352 if (!task) {
10353 /*
10354 * Check if the @cpu we're creating an event for is online.
10355 *
10356 * We use the perf_cpu_context::ctx::mutex to serialize against
10357 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10358 */
10359 struct perf_cpu_context *cpuctx =
10360 container_of(ctx, struct perf_cpu_context, ctx);
10361 if (!cpuctx->online) {
10362 err = -ENODEV;
10363 goto err_unlock;
10364 }
10365 }
10366
bed5b25a 10367 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10368 err = -EBUSY;
84c4e620 10369 goto err_unlock;
bed5b25a
AS
10370 }
10371
fb0459d7 10372 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10373 perf_unpin_context(ctx);
fb0459d7
AV
10374 mutex_unlock(&ctx->mutex);
10375
fb0459d7
AV
10376 return event;
10377
84c4e620
PZ
10378err_unlock:
10379 mutex_unlock(&ctx->mutex);
10380 perf_unpin_context(ctx);
10381 put_ctx(ctx);
c3f00c70
PZ
10382err_free:
10383 free_event(event);
10384err:
c6567f64 10385 return ERR_PTR(err);
9b51f66d 10386}
fb0459d7 10387EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10388
0cda4c02
YZ
10389void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10390{
10391 struct perf_event_context *src_ctx;
10392 struct perf_event_context *dst_ctx;
10393 struct perf_event *event, *tmp;
10394 LIST_HEAD(events);
10395
10396 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10397 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10398
f63a8daa
PZ
10399 /*
10400 * See perf_event_ctx_lock() for comments on the details
10401 * of swizzling perf_event::ctx.
10402 */
10403 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10404 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10405 event_entry) {
45a0e07a 10406 perf_remove_from_context(event, 0);
9a545de0 10407 unaccount_event_cpu(event, src_cpu);
0cda4c02 10408 put_ctx(src_ctx);
9886167d 10409 list_add(&event->migrate_entry, &events);
0cda4c02 10410 }
0cda4c02 10411
8f95b435
PZI
10412 /*
10413 * Wait for the events to quiesce before re-instating them.
10414 */
0cda4c02
YZ
10415 synchronize_rcu();
10416
8f95b435
PZI
10417 /*
10418 * Re-instate events in 2 passes.
10419 *
10420 * Skip over group leaders and only install siblings on this first
10421 * pass, siblings will not get enabled without a leader, however a
10422 * leader will enable its siblings, even if those are still on the old
10423 * context.
10424 */
10425 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10426 if (event->group_leader == event)
10427 continue;
10428
10429 list_del(&event->migrate_entry);
10430 if (event->state >= PERF_EVENT_STATE_OFF)
10431 event->state = PERF_EVENT_STATE_INACTIVE;
10432 account_event_cpu(event, dst_cpu);
10433 perf_install_in_context(dst_ctx, event, dst_cpu);
10434 get_ctx(dst_ctx);
10435 }
10436
10437 /*
10438 * Once all the siblings are setup properly, install the group leaders
10439 * to make it go.
10440 */
9886167d
PZ
10441 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10442 list_del(&event->migrate_entry);
0cda4c02
YZ
10443 if (event->state >= PERF_EVENT_STATE_OFF)
10444 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10445 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10446 perf_install_in_context(dst_ctx, event, dst_cpu);
10447 get_ctx(dst_ctx);
10448 }
10449 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10450 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10451}
10452EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10453
cdd6c482 10454static void sync_child_event(struct perf_event *child_event,
38b200d6 10455 struct task_struct *child)
d859e29f 10456{
cdd6c482 10457 struct perf_event *parent_event = child_event->parent;
8bc20959 10458 u64 child_val;
d859e29f 10459
cdd6c482
IM
10460 if (child_event->attr.inherit_stat)
10461 perf_event_read_event(child_event, child);
38b200d6 10462
b5e58793 10463 child_val = perf_event_count(child_event);
d859e29f
PM
10464
10465 /*
10466 * Add back the child's count to the parent's count:
10467 */
a6e6dea6 10468 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10469 atomic64_add(child_event->total_time_enabled,
10470 &parent_event->child_total_time_enabled);
10471 atomic64_add(child_event->total_time_running,
10472 &parent_event->child_total_time_running);
d859e29f
PM
10473}
10474
9b51f66d 10475static void
8ba289b8
PZ
10476perf_event_exit_event(struct perf_event *child_event,
10477 struct perf_event_context *child_ctx,
10478 struct task_struct *child)
9b51f66d 10479{
8ba289b8
PZ
10480 struct perf_event *parent_event = child_event->parent;
10481
1903d50c
PZ
10482 /*
10483 * Do not destroy the 'original' grouping; because of the context
10484 * switch optimization the original events could've ended up in a
10485 * random child task.
10486 *
10487 * If we were to destroy the original group, all group related
10488 * operations would cease to function properly after this random
10489 * child dies.
10490 *
10491 * Do destroy all inherited groups, we don't care about those
10492 * and being thorough is better.
10493 */
32132a3d
PZ
10494 raw_spin_lock_irq(&child_ctx->lock);
10495 WARN_ON_ONCE(child_ctx->is_active);
10496
8ba289b8 10497 if (parent_event)
32132a3d
PZ
10498 perf_group_detach(child_event);
10499 list_del_event(child_event, child_ctx);
0d3d73aa 10500 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 10501 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10502
9b51f66d 10503 /*
8ba289b8 10504 * Parent events are governed by their filedesc, retain them.
9b51f66d 10505 */
8ba289b8 10506 if (!parent_event) {
179033b3 10507 perf_event_wakeup(child_event);
8ba289b8 10508 return;
4bcf349a 10509 }
8ba289b8
PZ
10510 /*
10511 * Child events can be cleaned up.
10512 */
10513
10514 sync_child_event(child_event, child);
10515
10516 /*
10517 * Remove this event from the parent's list
10518 */
10519 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10520 mutex_lock(&parent_event->child_mutex);
10521 list_del_init(&child_event->child_list);
10522 mutex_unlock(&parent_event->child_mutex);
10523
10524 /*
10525 * Kick perf_poll() for is_event_hup().
10526 */
10527 perf_event_wakeup(parent_event);
10528 free_event(child_event);
10529 put_event(parent_event);
9b51f66d
IM
10530}
10531
8dc85d54 10532static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10533{
211de6eb 10534 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10535 struct perf_event *child_event, *next;
63b6da39
PZ
10536
10537 WARN_ON_ONCE(child != current);
9b51f66d 10538
6a3351b6 10539 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10540 if (!child_ctx)
9b51f66d
IM
10541 return;
10542
ad3a37de 10543 /*
6a3351b6
PZ
10544 * In order to reduce the amount of tricky in ctx tear-down, we hold
10545 * ctx::mutex over the entire thing. This serializes against almost
10546 * everything that wants to access the ctx.
10547 *
10548 * The exception is sys_perf_event_open() /
10549 * perf_event_create_kernel_count() which does find_get_context()
10550 * without ctx::mutex (it cannot because of the move_group double mutex
10551 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10552 */
6a3351b6 10553 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10554
10555 /*
6a3351b6
PZ
10556 * In a single ctx::lock section, de-schedule the events and detach the
10557 * context from the task such that we cannot ever get it scheduled back
10558 * in.
c93f7669 10559 */
6a3351b6 10560 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10561 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10562
71a851b4 10563 /*
63b6da39
PZ
10564 * Now that the context is inactive, destroy the task <-> ctx relation
10565 * and mark the context dead.
71a851b4 10566 */
63b6da39
PZ
10567 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10568 put_ctx(child_ctx); /* cannot be last */
10569 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10570 put_task_struct(current); /* cannot be last */
4a1c0f26 10571
211de6eb 10572 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10573 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10574
211de6eb
PZ
10575 if (clone_ctx)
10576 put_ctx(clone_ctx);
4a1c0f26 10577
9f498cc5 10578 /*
cdd6c482
IM
10579 * Report the task dead after unscheduling the events so that we
10580 * won't get any samples after PERF_RECORD_EXIT. We can however still
10581 * get a few PERF_RECORD_READ events.
9f498cc5 10582 */
cdd6c482 10583 perf_event_task(child, child_ctx, 0);
a63eaf34 10584
ebf905fc 10585 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10586 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10587
a63eaf34
PM
10588 mutex_unlock(&child_ctx->mutex);
10589
10590 put_ctx(child_ctx);
9b51f66d
IM
10591}
10592
8dc85d54
PZ
10593/*
10594 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10595 *
10596 * Can be called with cred_guard_mutex held when called from
10597 * install_exec_creds().
8dc85d54
PZ
10598 */
10599void perf_event_exit_task(struct task_struct *child)
10600{
8882135b 10601 struct perf_event *event, *tmp;
8dc85d54
PZ
10602 int ctxn;
10603
8882135b
PZ
10604 mutex_lock(&child->perf_event_mutex);
10605 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10606 owner_entry) {
10607 list_del_init(&event->owner_entry);
10608
10609 /*
10610 * Ensure the list deletion is visible before we clear
10611 * the owner, closes a race against perf_release() where
10612 * we need to serialize on the owner->perf_event_mutex.
10613 */
f47c02c0 10614 smp_store_release(&event->owner, NULL);
8882135b
PZ
10615 }
10616 mutex_unlock(&child->perf_event_mutex);
10617
8dc85d54
PZ
10618 for_each_task_context_nr(ctxn)
10619 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10620
10621 /*
10622 * The perf_event_exit_task_context calls perf_event_task
10623 * with child's task_ctx, which generates EXIT events for
10624 * child contexts and sets child->perf_event_ctxp[] to NULL.
10625 * At this point we need to send EXIT events to cpu contexts.
10626 */
10627 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10628}
10629
889ff015
FW
10630static void perf_free_event(struct perf_event *event,
10631 struct perf_event_context *ctx)
10632{
10633 struct perf_event *parent = event->parent;
10634
10635 if (WARN_ON_ONCE(!parent))
10636 return;
10637
10638 mutex_lock(&parent->child_mutex);
10639 list_del_init(&event->child_list);
10640 mutex_unlock(&parent->child_mutex);
10641
a6fa941d 10642 put_event(parent);
889ff015 10643
652884fe 10644 raw_spin_lock_irq(&ctx->lock);
8a49542c 10645 perf_group_detach(event);
889ff015 10646 list_del_event(event, ctx);
652884fe 10647 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10648 free_event(event);
10649}
10650
bbbee908 10651/*
652884fe 10652 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10653 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10654 *
10655 * Not all locks are strictly required, but take them anyway to be nice and
10656 * help out with the lockdep assertions.
bbbee908 10657 */
cdd6c482 10658void perf_event_free_task(struct task_struct *task)
bbbee908 10659{
8dc85d54 10660 struct perf_event_context *ctx;
cdd6c482 10661 struct perf_event *event, *tmp;
8dc85d54 10662 int ctxn;
bbbee908 10663
8dc85d54
PZ
10664 for_each_task_context_nr(ctxn) {
10665 ctx = task->perf_event_ctxp[ctxn];
10666 if (!ctx)
10667 continue;
bbbee908 10668
8dc85d54 10669 mutex_lock(&ctx->mutex);
e552a838
PZ
10670 raw_spin_lock_irq(&ctx->lock);
10671 /*
10672 * Destroy the task <-> ctx relation and mark the context dead.
10673 *
10674 * This is important because even though the task hasn't been
10675 * exposed yet the context has been (through child_list).
10676 */
10677 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10678 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10679 put_task_struct(task); /* cannot be last */
10680 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10681
15121c78 10682 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 10683 perf_free_event(event, ctx);
bbbee908 10684
8dc85d54 10685 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
10686 put_ctx(ctx);
10687 }
889ff015
FW
10688}
10689
4e231c79
PZ
10690void perf_event_delayed_put(struct task_struct *task)
10691{
10692 int ctxn;
10693
10694 for_each_task_context_nr(ctxn)
10695 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10696}
10697
e03e7ee3 10698struct file *perf_event_get(unsigned int fd)
ffe8690c 10699{
e03e7ee3 10700 struct file *file;
ffe8690c 10701
e03e7ee3
AS
10702 file = fget_raw(fd);
10703 if (!file)
10704 return ERR_PTR(-EBADF);
ffe8690c 10705
e03e7ee3
AS
10706 if (file->f_op != &perf_fops) {
10707 fput(file);
10708 return ERR_PTR(-EBADF);
10709 }
ffe8690c 10710
e03e7ee3 10711 return file;
ffe8690c
KX
10712}
10713
10714const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10715{
10716 if (!event)
10717 return ERR_PTR(-EINVAL);
10718
10719 return &event->attr;
10720}
10721
97dee4f3 10722/*
d8a8cfc7
PZ
10723 * Inherit a event from parent task to child task.
10724 *
10725 * Returns:
10726 * - valid pointer on success
10727 * - NULL for orphaned events
10728 * - IS_ERR() on error
97dee4f3
PZ
10729 */
10730static struct perf_event *
10731inherit_event(struct perf_event *parent_event,
10732 struct task_struct *parent,
10733 struct perf_event_context *parent_ctx,
10734 struct task_struct *child,
10735 struct perf_event *group_leader,
10736 struct perf_event_context *child_ctx)
10737{
8ca2bd41 10738 enum perf_event_state parent_state = parent_event->state;
97dee4f3 10739 struct perf_event *child_event;
cee010ec 10740 unsigned long flags;
97dee4f3
PZ
10741
10742 /*
10743 * Instead of creating recursive hierarchies of events,
10744 * we link inherited events back to the original parent,
10745 * which has a filp for sure, which we use as the reference
10746 * count:
10747 */
10748 if (parent_event->parent)
10749 parent_event = parent_event->parent;
10750
10751 child_event = perf_event_alloc(&parent_event->attr,
10752 parent_event->cpu,
d580ff86 10753 child,
97dee4f3 10754 group_leader, parent_event,
79dff51e 10755 NULL, NULL, -1);
97dee4f3
PZ
10756 if (IS_ERR(child_event))
10757 return child_event;
a6fa941d 10758
c6e5b732
PZ
10759 /*
10760 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10761 * must be under the same lock in order to serialize against
10762 * perf_event_release_kernel(), such that either we must observe
10763 * is_orphaned_event() or they will observe us on the child_list.
10764 */
10765 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10766 if (is_orphaned_event(parent_event) ||
10767 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10768 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10769 free_event(child_event);
10770 return NULL;
10771 }
10772
97dee4f3
PZ
10773 get_ctx(child_ctx);
10774
10775 /*
10776 * Make the child state follow the state of the parent event,
10777 * not its attr.disabled bit. We hold the parent's mutex,
10778 * so we won't race with perf_event_{en, dis}able_family.
10779 */
1929def9 10780 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10781 child_event->state = PERF_EVENT_STATE_INACTIVE;
10782 else
10783 child_event->state = PERF_EVENT_STATE_OFF;
10784
10785 if (parent_event->attr.freq) {
10786 u64 sample_period = parent_event->hw.sample_period;
10787 struct hw_perf_event *hwc = &child_event->hw;
10788
10789 hwc->sample_period = sample_period;
10790 hwc->last_period = sample_period;
10791
10792 local64_set(&hwc->period_left, sample_period);
10793 }
10794
10795 child_event->ctx = child_ctx;
10796 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10797 child_event->overflow_handler_context
10798 = parent_event->overflow_handler_context;
97dee4f3 10799
614b6780
TG
10800 /*
10801 * Precalculate sample_data sizes
10802 */
10803 perf_event__header_size(child_event);
6844c09d 10804 perf_event__id_header_size(child_event);
614b6780 10805
97dee4f3
PZ
10806 /*
10807 * Link it up in the child's context:
10808 */
cee010ec 10809 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10810 add_event_to_ctx(child_event, child_ctx);
cee010ec 10811 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10812
97dee4f3
PZ
10813 /*
10814 * Link this into the parent event's child list
10815 */
97dee4f3
PZ
10816 list_add_tail(&child_event->child_list, &parent_event->child_list);
10817 mutex_unlock(&parent_event->child_mutex);
10818
10819 return child_event;
10820}
10821
d8a8cfc7
PZ
10822/*
10823 * Inherits an event group.
10824 *
10825 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10826 * This matches with perf_event_release_kernel() removing all child events.
10827 *
10828 * Returns:
10829 * - 0 on success
10830 * - <0 on error
10831 */
97dee4f3
PZ
10832static int inherit_group(struct perf_event *parent_event,
10833 struct task_struct *parent,
10834 struct perf_event_context *parent_ctx,
10835 struct task_struct *child,
10836 struct perf_event_context *child_ctx)
10837{
10838 struct perf_event *leader;
10839 struct perf_event *sub;
10840 struct perf_event *child_ctr;
10841
10842 leader = inherit_event(parent_event, parent, parent_ctx,
10843 child, NULL, child_ctx);
10844 if (IS_ERR(leader))
10845 return PTR_ERR(leader);
d8a8cfc7
PZ
10846 /*
10847 * @leader can be NULL here because of is_orphaned_event(). In this
10848 * case inherit_event() will create individual events, similar to what
10849 * perf_group_detach() would do anyway.
10850 */
97dee4f3
PZ
10851 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10852 child_ctr = inherit_event(sub, parent, parent_ctx,
10853 child, leader, child_ctx);
10854 if (IS_ERR(child_ctr))
10855 return PTR_ERR(child_ctr);
10856 }
10857 return 0;
889ff015
FW
10858}
10859
d8a8cfc7
PZ
10860/*
10861 * Creates the child task context and tries to inherit the event-group.
10862 *
10863 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10864 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10865 * consistent with perf_event_release_kernel() removing all child events.
10866 *
10867 * Returns:
10868 * - 0 on success
10869 * - <0 on error
10870 */
889ff015
FW
10871static int
10872inherit_task_group(struct perf_event *event, struct task_struct *parent,
10873 struct perf_event_context *parent_ctx,
8dc85d54 10874 struct task_struct *child, int ctxn,
889ff015
FW
10875 int *inherited_all)
10876{
10877 int ret;
8dc85d54 10878 struct perf_event_context *child_ctx;
889ff015
FW
10879
10880 if (!event->attr.inherit) {
10881 *inherited_all = 0;
10882 return 0;
bbbee908
PZ
10883 }
10884
fe4b04fa 10885 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10886 if (!child_ctx) {
10887 /*
10888 * This is executed from the parent task context, so
10889 * inherit events that have been marked for cloning.
10890 * First allocate and initialize a context for the
10891 * child.
10892 */
734df5ab 10893 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10894 if (!child_ctx)
10895 return -ENOMEM;
bbbee908 10896
8dc85d54 10897 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10898 }
10899
10900 ret = inherit_group(event, parent, parent_ctx,
10901 child, child_ctx);
10902
10903 if (ret)
10904 *inherited_all = 0;
10905
10906 return ret;
bbbee908
PZ
10907}
10908
9b51f66d 10909/*
cdd6c482 10910 * Initialize the perf_event context in task_struct
9b51f66d 10911 */
985c8dcb 10912static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10913{
889ff015 10914 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10915 struct perf_event_context *cloned_ctx;
10916 struct perf_event *event;
9b51f66d 10917 struct task_struct *parent = current;
564c2b21 10918 int inherited_all = 1;
dddd3379 10919 unsigned long flags;
6ab423e0 10920 int ret = 0;
9b51f66d 10921
8dc85d54 10922 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10923 return 0;
10924
ad3a37de 10925 /*
25346b93
PM
10926 * If the parent's context is a clone, pin it so it won't get
10927 * swapped under us.
ad3a37de 10928 */
8dc85d54 10929 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10930 if (!parent_ctx)
10931 return 0;
25346b93 10932
ad3a37de
PM
10933 /*
10934 * No need to check if parent_ctx != NULL here; since we saw
10935 * it non-NULL earlier, the only reason for it to become NULL
10936 * is if we exit, and since we're currently in the middle of
10937 * a fork we can't be exiting at the same time.
10938 */
ad3a37de 10939
9b51f66d
IM
10940 /*
10941 * Lock the parent list. No need to lock the child - not PID
10942 * hashed yet and not running, so nobody can access it.
10943 */
d859e29f 10944 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10945
10946 /*
10947 * We dont have to disable NMIs - we are only looking at
10948 * the list, not manipulating it:
10949 */
889ff015 10950 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10951 ret = inherit_task_group(event, parent, parent_ctx,
10952 child, ctxn, &inherited_all);
889ff015 10953 if (ret)
e7cc4865 10954 goto out_unlock;
889ff015 10955 }
b93f7978 10956
dddd3379
TG
10957 /*
10958 * We can't hold ctx->lock when iterating the ->flexible_group list due
10959 * to allocations, but we need to prevent rotation because
10960 * rotate_ctx() will change the list from interrupt context.
10961 */
10962 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10963 parent_ctx->rotate_disable = 1;
10964 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10965
889ff015 10966 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10967 ret = inherit_task_group(event, parent, parent_ctx,
10968 child, ctxn, &inherited_all);
889ff015 10969 if (ret)
e7cc4865 10970 goto out_unlock;
564c2b21
PM
10971 }
10972
dddd3379
TG
10973 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10974 parent_ctx->rotate_disable = 0;
dddd3379 10975
8dc85d54 10976 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10977
05cbaa28 10978 if (child_ctx && inherited_all) {
564c2b21
PM
10979 /*
10980 * Mark the child context as a clone of the parent
10981 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10982 *
10983 * Note that if the parent is a clone, the holding of
10984 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10985 */
c5ed5145 10986 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10987 if (cloned_ctx) {
10988 child_ctx->parent_ctx = cloned_ctx;
25346b93 10989 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10990 } else {
10991 child_ctx->parent_ctx = parent_ctx;
10992 child_ctx->parent_gen = parent_ctx->generation;
10993 }
10994 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10995 }
10996
c5ed5145 10997 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 10998out_unlock:
d859e29f 10999 mutex_unlock(&parent_ctx->mutex);
6ab423e0 11000
25346b93 11001 perf_unpin_context(parent_ctx);
fe4b04fa 11002 put_ctx(parent_ctx);
ad3a37de 11003
6ab423e0 11004 return ret;
9b51f66d
IM
11005}
11006
8dc85d54
PZ
11007/*
11008 * Initialize the perf_event context in task_struct
11009 */
11010int perf_event_init_task(struct task_struct *child)
11011{
11012 int ctxn, ret;
11013
8550d7cb
ON
11014 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11015 mutex_init(&child->perf_event_mutex);
11016 INIT_LIST_HEAD(&child->perf_event_list);
11017
8dc85d54
PZ
11018 for_each_task_context_nr(ctxn) {
11019 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
11020 if (ret) {
11021 perf_event_free_task(child);
8dc85d54 11022 return ret;
6c72e350 11023 }
8dc85d54
PZ
11024 }
11025
11026 return 0;
11027}
11028
220b140b
PM
11029static void __init perf_event_init_all_cpus(void)
11030{
b28ab83c 11031 struct swevent_htable *swhash;
220b140b 11032 int cpu;
220b140b 11033
a63fbed7
TG
11034 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11035
220b140b 11036 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11037 swhash = &per_cpu(swevent_htable, cpu);
11038 mutex_init(&swhash->hlist_mutex);
2fde4f94 11039 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11040
11041 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11042 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11043
058fe1c0
DCC
11044#ifdef CONFIG_CGROUP_PERF
11045 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11046#endif
e48c1788 11047 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11048 }
11049}
11050
a63fbed7 11051void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11052{
108b02cf 11053 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11054
b28ab83c 11055 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11056 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11057 struct swevent_hlist *hlist;
11058
b28ab83c
PZ
11059 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11060 WARN_ON(!hlist);
11061 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11062 }
b28ab83c 11063 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11064}
11065
2965faa5 11066#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11067static void __perf_event_exit_context(void *__info)
0793a61d 11068{
108b02cf 11069 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11070 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11071 struct perf_event *event;
0793a61d 11072
fae3fde6 11073 raw_spin_lock(&ctx->lock);
0ee098c9 11074 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 11075 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11076 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11077 raw_spin_unlock(&ctx->lock);
0793a61d 11078}
108b02cf
PZ
11079
11080static void perf_event_exit_cpu_context(int cpu)
11081{
a63fbed7 11082 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11083 struct perf_event_context *ctx;
11084 struct pmu *pmu;
108b02cf 11085
a63fbed7
TG
11086 mutex_lock(&pmus_lock);
11087 list_for_each_entry(pmu, &pmus, entry) {
11088 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11089 ctx = &cpuctx->ctx;
108b02cf
PZ
11090
11091 mutex_lock(&ctx->mutex);
11092 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11093 cpuctx->online = 0;
108b02cf
PZ
11094 mutex_unlock(&ctx->mutex);
11095 }
a63fbed7
TG
11096 cpumask_clear_cpu(cpu, perf_online_mask);
11097 mutex_unlock(&pmus_lock);
108b02cf 11098}
00e16c3d
TG
11099#else
11100
11101static void perf_event_exit_cpu_context(int cpu) { }
11102
11103#endif
108b02cf 11104
a63fbed7
TG
11105int perf_event_init_cpu(unsigned int cpu)
11106{
11107 struct perf_cpu_context *cpuctx;
11108 struct perf_event_context *ctx;
11109 struct pmu *pmu;
11110
11111 perf_swevent_init_cpu(cpu);
11112
11113 mutex_lock(&pmus_lock);
11114 cpumask_set_cpu(cpu, perf_online_mask);
11115 list_for_each_entry(pmu, &pmus, entry) {
11116 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11117 ctx = &cpuctx->ctx;
11118
11119 mutex_lock(&ctx->mutex);
11120 cpuctx->online = 1;
11121 mutex_unlock(&ctx->mutex);
11122 }
11123 mutex_unlock(&pmus_lock);
11124
11125 return 0;
11126}
11127
00e16c3d 11128int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11129{
e3703f8c 11130 perf_event_exit_cpu_context(cpu);
00e16c3d 11131 return 0;
0793a61d 11132}
0793a61d 11133
c277443c
PZ
11134static int
11135perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11136{
11137 int cpu;
11138
11139 for_each_online_cpu(cpu)
11140 perf_event_exit_cpu(cpu);
11141
11142 return NOTIFY_OK;
11143}
11144
11145/*
11146 * Run the perf reboot notifier at the very last possible moment so that
11147 * the generic watchdog code runs as long as possible.
11148 */
11149static struct notifier_block perf_reboot_notifier = {
11150 .notifier_call = perf_reboot,
11151 .priority = INT_MIN,
11152};
11153
cdd6c482 11154void __init perf_event_init(void)
0793a61d 11155{
3c502e7a
JW
11156 int ret;
11157
2e80a82a
PZ
11158 idr_init(&pmu_idr);
11159
220b140b 11160 perf_event_init_all_cpus();
b0a873eb 11161 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11162 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11163 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11164 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11165 perf_tp_register();
00e16c3d 11166 perf_event_init_cpu(smp_processor_id());
c277443c 11167 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11168
11169 ret = init_hw_breakpoint();
11170 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11171
b01c3a00
JO
11172 /*
11173 * Build time assertion that we keep the data_head at the intended
11174 * location. IOW, validation we got the __reserved[] size right.
11175 */
11176 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11177 != 1024);
0793a61d 11178}
abe43400 11179
fd979c01
CS
11180ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11181 char *page)
11182{
11183 struct perf_pmu_events_attr *pmu_attr =
11184 container_of(attr, struct perf_pmu_events_attr, attr);
11185
11186 if (pmu_attr->event_str)
11187 return sprintf(page, "%s\n", pmu_attr->event_str);
11188
11189 return 0;
11190}
675965b0 11191EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11192
abe43400
PZ
11193static int __init perf_event_sysfs_init(void)
11194{
11195 struct pmu *pmu;
11196 int ret;
11197
11198 mutex_lock(&pmus_lock);
11199
11200 ret = bus_register(&pmu_bus);
11201 if (ret)
11202 goto unlock;
11203
11204 list_for_each_entry(pmu, &pmus, entry) {
11205 if (!pmu->name || pmu->type < 0)
11206 continue;
11207
11208 ret = pmu_dev_alloc(pmu);
11209 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11210 }
11211 pmu_bus_running = 1;
11212 ret = 0;
11213
11214unlock:
11215 mutex_unlock(&pmus_lock);
11216
11217 return ret;
11218}
11219device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11220
11221#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11222static struct cgroup_subsys_state *
11223perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11224{
11225 struct perf_cgroup *jc;
e5d1367f 11226
1b15d055 11227 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11228 if (!jc)
11229 return ERR_PTR(-ENOMEM);
11230
e5d1367f
SE
11231 jc->info = alloc_percpu(struct perf_cgroup_info);
11232 if (!jc->info) {
11233 kfree(jc);
11234 return ERR_PTR(-ENOMEM);
11235 }
11236
e5d1367f
SE
11237 return &jc->css;
11238}
11239
eb95419b 11240static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11241{
eb95419b
TH
11242 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11243
e5d1367f
SE
11244 free_percpu(jc->info);
11245 kfree(jc);
11246}
11247
11248static int __perf_cgroup_move(void *info)
11249{
11250 struct task_struct *task = info;
ddaaf4e2 11251 rcu_read_lock();
e5d1367f 11252 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11253 rcu_read_unlock();
e5d1367f
SE
11254 return 0;
11255}
11256
1f7dd3e5 11257static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11258{
bb9d97b6 11259 struct task_struct *task;
1f7dd3e5 11260 struct cgroup_subsys_state *css;
bb9d97b6 11261
1f7dd3e5 11262 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11263 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11264}
11265
073219e9 11266struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11267 .css_alloc = perf_cgroup_css_alloc,
11268 .css_free = perf_cgroup_css_free,
bb9d97b6 11269 .attach = perf_cgroup_attach,
968ebff1
TH
11270 /*
11271 * Implicitly enable on dfl hierarchy so that perf events can
11272 * always be filtered by cgroup2 path as long as perf_event
11273 * controller is not mounted on a legacy hierarchy.
11274 */
11275 .implicit_on_dfl = true,
8cfd8147 11276 .threaded = true,
e5d1367f
SE
11277};
11278#endif /* CONFIG_CGROUP_PERF */