]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/events/core.c
exec: Rename the flag called_exec_mmap point_of_no_return
[mirror_ubuntu-hirsute-kernel.git] / kernel / events / core.c
CommitLineData
8e86e015 1// SPDX-License-Identifier: GPL-2.0
0793a61d 2/*
57c0c15b 3 * Performance events core code:
0793a61d 4 *
98144511 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
2e80a82a 15#include <linux/idr.h>
04289bb9 16#include <linux/file.h>
0793a61d 17#include <linux/poll.h>
5a0e3ad6 18#include <linux/slab.h>
76e1d904 19#include <linux/hash.h>
12351ef8 20#include <linux/tick.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b 30#include <linux/hardirq.h>
03911132 31#include <linux/hugetlb.h>
b9cacc7b 32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
6eef8a71 53#include <linux/min_heap.h>
0793a61d 54
76369139
FW
55#include "internal.h"
56
4e193bd4
TB
57#include <asm/irq_regs.h>
58
272325c4
PZ
59typedef int (*remote_function_f)(void *);
60
fe4b04fa 61struct remote_function_call {
e7e7ee2e 62 struct task_struct *p;
272325c4 63 remote_function_f func;
e7e7ee2e
IM
64 void *info;
65 int ret;
fe4b04fa
PZ
66};
67
68static void remote_function(void *data)
69{
70 struct remote_function_call *tfc = data;
71 struct task_struct *p = tfc->p;
72
73 if (p) {
0da4cf3e
PZ
74 /* -EAGAIN */
75 if (task_cpu(p) != smp_processor_id())
76 return;
77
78 /*
79 * Now that we're on right CPU with IRQs disabled, we can test
80 * if we hit the right task without races.
81 */
82
83 tfc->ret = -ESRCH; /* No such (running) process */
84 if (p != current)
fe4b04fa
PZ
85 return;
86 }
87
88 tfc->ret = tfc->func(tfc->info);
89}
90
91/**
92 * task_function_call - call a function on the cpu on which a task runs
93 * @p: the task to evaluate
94 * @func: the function to be called
95 * @info: the function call argument
96 *
97 * Calls the function @func when the task is currently running. This might
98 * be on the current CPU, which just calls the function directly
99 *
100 * returns: @func return value, or
101 * -ESRCH - when the process isn't running
102 * -EAGAIN - when the process moved away
103 */
104static int
272325c4 105task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
106{
107 struct remote_function_call data = {
e7e7ee2e
IM
108 .p = p,
109 .func = func,
110 .info = info,
0da4cf3e 111 .ret = -EAGAIN,
fe4b04fa 112 };
0da4cf3e 113 int ret;
fe4b04fa 114
0da4cf3e
PZ
115 do {
116 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
117 if (!ret)
118 ret = data.ret;
119 } while (ret == -EAGAIN);
fe4b04fa 120
0da4cf3e 121 return ret;
fe4b04fa
PZ
122}
123
124/**
125 * cpu_function_call - call a function on the cpu
126 * @func: the function to be called
127 * @info: the function call argument
128 *
129 * Calls the function @func on the remote cpu.
130 *
131 * returns: @func return value or -ENXIO when the cpu is offline
132 */
272325c4 133static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
134{
135 struct remote_function_call data = {
e7e7ee2e
IM
136 .p = NULL,
137 .func = func,
138 .info = info,
139 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
140 };
141
142 smp_call_function_single(cpu, remote_function, &data, 1);
143
144 return data.ret;
145}
146
fae3fde6
PZ
147static inline struct perf_cpu_context *
148__get_cpu_context(struct perf_event_context *ctx)
149{
150 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
151}
152
153static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
154 struct perf_event_context *ctx)
0017960f 155{
fae3fde6
PZ
156 raw_spin_lock(&cpuctx->ctx.lock);
157 if (ctx)
158 raw_spin_lock(&ctx->lock);
159}
160
161static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
162 struct perf_event_context *ctx)
163{
164 if (ctx)
165 raw_spin_unlock(&ctx->lock);
166 raw_spin_unlock(&cpuctx->ctx.lock);
167}
168
63b6da39
PZ
169#define TASK_TOMBSTONE ((void *)-1L)
170
171static bool is_kernel_event(struct perf_event *event)
172{
f47c02c0 173 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
174}
175
39a43640
PZ
176/*
177 * On task ctx scheduling...
178 *
179 * When !ctx->nr_events a task context will not be scheduled. This means
180 * we can disable the scheduler hooks (for performance) without leaving
181 * pending task ctx state.
182 *
183 * This however results in two special cases:
184 *
185 * - removing the last event from a task ctx; this is relatively straight
186 * forward and is done in __perf_remove_from_context.
187 *
188 * - adding the first event to a task ctx; this is tricky because we cannot
189 * rely on ctx->is_active and therefore cannot use event_function_call().
190 * See perf_install_in_context().
191 *
39a43640
PZ
192 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
193 */
194
fae3fde6
PZ
195typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
196 struct perf_event_context *, void *);
197
198struct event_function_struct {
199 struct perf_event *event;
200 event_f func;
201 void *data;
202};
203
204static int event_function(void *info)
205{
206 struct event_function_struct *efs = info;
207 struct perf_event *event = efs->event;
0017960f 208 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
209 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
210 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 211 int ret = 0;
fae3fde6 212
16444645 213 lockdep_assert_irqs_disabled();
fae3fde6 214
63b6da39 215 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
216 /*
217 * Since we do the IPI call without holding ctx->lock things can have
218 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
219 */
220 if (ctx->task) {
63b6da39 221 if (ctx->task != current) {
0da4cf3e 222 ret = -ESRCH;
63b6da39
PZ
223 goto unlock;
224 }
fae3fde6 225
fae3fde6
PZ
226 /*
227 * We only use event_function_call() on established contexts,
228 * and event_function() is only ever called when active (or
229 * rather, we'll have bailed in task_function_call() or the
230 * above ctx->task != current test), therefore we must have
231 * ctx->is_active here.
232 */
233 WARN_ON_ONCE(!ctx->is_active);
234 /*
235 * And since we have ctx->is_active, cpuctx->task_ctx must
236 * match.
237 */
63b6da39
PZ
238 WARN_ON_ONCE(task_ctx != ctx);
239 } else {
240 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 241 }
63b6da39 242
fae3fde6 243 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 244unlock:
fae3fde6
PZ
245 perf_ctx_unlock(cpuctx, task_ctx);
246
63b6da39 247 return ret;
fae3fde6
PZ
248}
249
fae3fde6 250static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
251{
252 struct perf_event_context *ctx = event->ctx;
63b6da39 253 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
254 struct event_function_struct efs = {
255 .event = event,
256 .func = func,
257 .data = data,
258 };
0017960f 259
c97f4736
PZ
260 if (!event->parent) {
261 /*
262 * If this is a !child event, we must hold ctx::mutex to
263 * stabilize the the event->ctx relation. See
264 * perf_event_ctx_lock().
265 */
266 lockdep_assert_held(&ctx->mutex);
267 }
0017960f
PZ
268
269 if (!task) {
fae3fde6 270 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
271 return;
272 }
273
63b6da39
PZ
274 if (task == TASK_TOMBSTONE)
275 return;
276
a096309b 277again:
fae3fde6 278 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
279 return;
280
281 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
282 /*
283 * Reload the task pointer, it might have been changed by
284 * a concurrent perf_event_context_sched_out().
285 */
286 task = ctx->task;
a096309b
PZ
287 if (task == TASK_TOMBSTONE) {
288 raw_spin_unlock_irq(&ctx->lock);
289 return;
0017960f 290 }
a096309b
PZ
291 if (ctx->is_active) {
292 raw_spin_unlock_irq(&ctx->lock);
293 goto again;
294 }
295 func(event, NULL, ctx, data);
0017960f
PZ
296 raw_spin_unlock_irq(&ctx->lock);
297}
298
cca20946
PZ
299/*
300 * Similar to event_function_call() + event_function(), but hard assumes IRQs
301 * are already disabled and we're on the right CPU.
302 */
303static void event_function_local(struct perf_event *event, event_f func, void *data)
304{
305 struct perf_event_context *ctx = event->ctx;
306 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
307 struct task_struct *task = READ_ONCE(ctx->task);
308 struct perf_event_context *task_ctx = NULL;
309
16444645 310 lockdep_assert_irqs_disabled();
cca20946
PZ
311
312 if (task) {
313 if (task == TASK_TOMBSTONE)
314 return;
315
316 task_ctx = ctx;
317 }
318
319 perf_ctx_lock(cpuctx, task_ctx);
320
321 task = ctx->task;
322 if (task == TASK_TOMBSTONE)
323 goto unlock;
324
325 if (task) {
326 /*
327 * We must be either inactive or active and the right task,
328 * otherwise we're screwed, since we cannot IPI to somewhere
329 * else.
330 */
331 if (ctx->is_active) {
332 if (WARN_ON_ONCE(task != current))
333 goto unlock;
334
335 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
336 goto unlock;
337 }
338 } else {
339 WARN_ON_ONCE(&cpuctx->ctx != ctx);
340 }
341
342 func(event, cpuctx, ctx, data);
343unlock:
344 perf_ctx_unlock(cpuctx, task_ctx);
345}
346
e5d1367f
SE
347#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
348 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
349 PERF_FLAG_PID_CGROUP |\
350 PERF_FLAG_FD_CLOEXEC)
e5d1367f 351
bce38cd5
SE
352/*
353 * branch priv levels that need permission checks
354 */
355#define PERF_SAMPLE_BRANCH_PERM_PLM \
356 (PERF_SAMPLE_BRANCH_KERNEL |\
357 PERF_SAMPLE_BRANCH_HV)
358
0b3fcf17
SE
359enum event_type_t {
360 EVENT_FLEXIBLE = 0x1,
361 EVENT_PINNED = 0x2,
3cbaa590 362 EVENT_TIME = 0x4,
487f05e1
AS
363 /* see ctx_resched() for details */
364 EVENT_CPU = 0x8,
0b3fcf17
SE
365 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
366};
367
e5d1367f
SE
368/*
369 * perf_sched_events : >0 events exist
370 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
371 */
9107c89e
PZ
372
373static void perf_sched_delayed(struct work_struct *work);
374DEFINE_STATIC_KEY_FALSE(perf_sched_events);
375static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
376static DEFINE_MUTEX(perf_sched_mutex);
377static atomic_t perf_sched_count;
378
e5d1367f 379static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 380static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 381static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 382
cdd6c482
IM
383static atomic_t nr_mmap_events __read_mostly;
384static atomic_t nr_comm_events __read_mostly;
e4222673 385static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 386static atomic_t nr_task_events __read_mostly;
948b26b6 387static atomic_t nr_freq_events __read_mostly;
45ac1403 388static atomic_t nr_switch_events __read_mostly;
76193a94 389static atomic_t nr_ksymbol_events __read_mostly;
6ee52e2a 390static atomic_t nr_bpf_events __read_mostly;
96aaab68 391static atomic_t nr_cgroup_events __read_mostly;
9ee318a7 392
108b02cf
PZ
393static LIST_HEAD(pmus);
394static DEFINE_MUTEX(pmus_lock);
395static struct srcu_struct pmus_srcu;
a63fbed7 396static cpumask_var_t perf_online_mask;
108b02cf 397
0764771d 398/*
cdd6c482 399 * perf event paranoia level:
0fbdea19
IM
400 * -1 - not paranoid at all
401 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 402 * 1 - disallow cpu events for unpriv
0fbdea19 403 * 2 - disallow kernel profiling for unpriv
0764771d 404 */
0161028b 405int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 406
20443384
FW
407/* Minimum for 512 kiB + 1 user control page */
408int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
409
410/*
cdd6c482 411 * max perf event sample rate
df58ab24 412 */
14c63f17
DH
413#define DEFAULT_MAX_SAMPLE_RATE 100000
414#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
415#define DEFAULT_CPU_TIME_MAX_PERCENT 25
416
417int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
418
419static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
420static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
421
d9494cb4
PZ
422static int perf_sample_allowed_ns __read_mostly =
423 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 424
18ab2cd3 425static void update_perf_cpu_limits(void)
14c63f17
DH
426{
427 u64 tmp = perf_sample_period_ns;
428
429 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
430 tmp = div_u64(tmp, 100);
431 if (!tmp)
432 tmp = 1;
433
434 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 435}
163ec435 436
8d5bce0c 437static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
9e630205 438
163ec435
PZ
439int perf_proc_update_handler(struct ctl_table *table, int write,
440 void __user *buffer, size_t *lenp,
441 loff_t *ppos)
442{
1a51c5da
SE
443 int ret;
444 int perf_cpu = sysctl_perf_cpu_time_max_percent;
ab7fdefb
KL
445 /*
446 * If throttling is disabled don't allow the write:
447 */
1a51c5da 448 if (write && (perf_cpu == 100 || perf_cpu == 0))
ab7fdefb
KL
449 return -EINVAL;
450
1a51c5da
SE
451 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
452 if (ret || !write)
453 return ret;
454
163ec435 455 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
456 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
457 update_perf_cpu_limits();
458
459 return 0;
460}
461
462int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
463
464int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
465 void __user *buffer, size_t *lenp,
466 loff_t *ppos)
467{
1572e45a 468 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
469
470 if (ret || !write)
471 return ret;
472
b303e7c1
PZ
473 if (sysctl_perf_cpu_time_max_percent == 100 ||
474 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
475 printk(KERN_WARNING
476 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
477 WRITE_ONCE(perf_sample_allowed_ns, 0);
478 } else {
479 update_perf_cpu_limits();
480 }
163ec435
PZ
481
482 return 0;
483}
1ccd1549 484
14c63f17
DH
485/*
486 * perf samples are done in some very critical code paths (NMIs).
487 * If they take too much CPU time, the system can lock up and not
488 * get any real work done. This will drop the sample rate when
489 * we detect that events are taking too long.
490 */
491#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 492static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 493
91a612ee
PZ
494static u64 __report_avg;
495static u64 __report_allowed;
496
6a02ad66 497static void perf_duration_warn(struct irq_work *w)
14c63f17 498{
0d87d7ec 499 printk_ratelimited(KERN_INFO
91a612ee
PZ
500 "perf: interrupt took too long (%lld > %lld), lowering "
501 "kernel.perf_event_max_sample_rate to %d\n",
502 __report_avg, __report_allowed,
503 sysctl_perf_event_sample_rate);
6a02ad66
PZ
504}
505
506static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
507
508void perf_sample_event_took(u64 sample_len_ns)
509{
91a612ee
PZ
510 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
511 u64 running_len;
512 u64 avg_len;
513 u32 max;
14c63f17 514
91a612ee 515 if (max_len == 0)
14c63f17
DH
516 return;
517
91a612ee
PZ
518 /* Decay the counter by 1 average sample. */
519 running_len = __this_cpu_read(running_sample_length);
520 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
521 running_len += sample_len_ns;
522 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
523
524 /*
91a612ee
PZ
525 * Note: this will be biased artifically low until we have
526 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
527 * from having to maintain a count.
528 */
91a612ee
PZ
529 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
530 if (avg_len <= max_len)
14c63f17
DH
531 return;
532
91a612ee
PZ
533 __report_avg = avg_len;
534 __report_allowed = max_len;
14c63f17 535
91a612ee
PZ
536 /*
537 * Compute a throttle threshold 25% below the current duration.
538 */
539 avg_len += avg_len / 4;
540 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
541 if (avg_len < max)
542 max /= (u32)avg_len;
543 else
544 max = 1;
14c63f17 545
91a612ee
PZ
546 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
547 WRITE_ONCE(max_samples_per_tick, max);
548
549 sysctl_perf_event_sample_rate = max * HZ;
550 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 551
cd578abb 552 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 553 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 554 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 555 __report_avg, __report_allowed,
cd578abb
PZ
556 sysctl_perf_event_sample_rate);
557 }
14c63f17
DH
558}
559
cdd6c482 560static atomic64_t perf_event_id;
a96bbc16 561
0b3fcf17
SE
562static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
563 enum event_type_t event_type);
564
565static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
566 enum event_type_t event_type,
567 struct task_struct *task);
568
569static void update_context_time(struct perf_event_context *ctx);
570static u64 perf_event_time(struct perf_event *event);
0b3fcf17 571
cdd6c482 572void __weak perf_event_print_debug(void) { }
0793a61d 573
84c79910 574extern __weak const char *perf_pmu_name(void)
0793a61d 575{
84c79910 576 return "pmu";
0793a61d
TG
577}
578
0b3fcf17
SE
579static inline u64 perf_clock(void)
580{
581 return local_clock();
582}
583
34f43927
PZ
584static inline u64 perf_event_clock(struct perf_event *event)
585{
586 return event->clock();
587}
588
0d3d73aa
PZ
589/*
590 * State based event timekeeping...
591 *
592 * The basic idea is to use event->state to determine which (if any) time
593 * fields to increment with the current delta. This means we only need to
594 * update timestamps when we change state or when they are explicitly requested
595 * (read).
596 *
597 * Event groups make things a little more complicated, but not terribly so. The
598 * rules for a group are that if the group leader is OFF the entire group is
599 * OFF, irrespecive of what the group member states are. This results in
600 * __perf_effective_state().
601 *
602 * A futher ramification is that when a group leader flips between OFF and
603 * !OFF, we need to update all group member times.
604 *
605 *
606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607 * need to make sure the relevant context time is updated before we try and
608 * update our timestamps.
609 */
610
611static __always_inline enum perf_event_state
612__perf_effective_state(struct perf_event *event)
613{
614 struct perf_event *leader = event->group_leader;
615
616 if (leader->state <= PERF_EVENT_STATE_OFF)
617 return leader->state;
618
619 return event->state;
620}
621
622static __always_inline void
623__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624{
625 enum perf_event_state state = __perf_effective_state(event);
626 u64 delta = now - event->tstamp;
627
628 *enabled = event->total_time_enabled;
629 if (state >= PERF_EVENT_STATE_INACTIVE)
630 *enabled += delta;
631
632 *running = event->total_time_running;
633 if (state >= PERF_EVENT_STATE_ACTIVE)
634 *running += delta;
635}
636
637static void perf_event_update_time(struct perf_event *event)
638{
639 u64 now = perf_event_time(event);
640
641 __perf_update_times(event, now, &event->total_time_enabled,
642 &event->total_time_running);
643 event->tstamp = now;
644}
645
646static void perf_event_update_sibling_time(struct perf_event *leader)
647{
648 struct perf_event *sibling;
649
edb39592 650 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
651 perf_event_update_time(sibling);
652}
653
654static void
655perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656{
657 if (event->state == state)
658 return;
659
660 perf_event_update_time(event);
661 /*
662 * If a group leader gets enabled/disabled all its siblings
663 * are affected too.
664 */
665 if ((event->state < 0) ^ (state < 0))
666 perf_event_update_sibling_time(event);
667
668 WRITE_ONCE(event->state, state);
669}
670
e5d1367f
SE
671#ifdef CONFIG_CGROUP_PERF
672
e5d1367f
SE
673static inline bool
674perf_cgroup_match(struct perf_event *event)
675{
676 struct perf_event_context *ctx = event->ctx;
677 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
678
ef824fa1
TH
679 /* @event doesn't care about cgroup */
680 if (!event->cgrp)
681 return true;
682
683 /* wants specific cgroup scope but @cpuctx isn't associated with any */
684 if (!cpuctx->cgrp)
685 return false;
686
687 /*
688 * Cgroup scoping is recursive. An event enabled for a cgroup is
689 * also enabled for all its descendant cgroups. If @cpuctx's
690 * cgroup is a descendant of @event's (the test covers identity
691 * case), it's a match.
692 */
693 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
694 event->cgrp->css.cgroup);
e5d1367f
SE
695}
696
e5d1367f
SE
697static inline void perf_detach_cgroup(struct perf_event *event)
698{
4e2ba650 699 css_put(&event->cgrp->css);
e5d1367f
SE
700 event->cgrp = NULL;
701}
702
703static inline int is_cgroup_event(struct perf_event *event)
704{
705 return event->cgrp != NULL;
706}
707
708static inline u64 perf_cgroup_event_time(struct perf_event *event)
709{
710 struct perf_cgroup_info *t;
711
712 t = per_cpu_ptr(event->cgrp->info, event->cpu);
713 return t->time;
714}
715
716static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
717{
718 struct perf_cgroup_info *info;
719 u64 now;
720
721 now = perf_clock();
722
723 info = this_cpu_ptr(cgrp->info);
724
725 info->time += now - info->timestamp;
726 info->timestamp = now;
727}
728
729static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
730{
c917e0f2
SL
731 struct perf_cgroup *cgrp = cpuctx->cgrp;
732 struct cgroup_subsys_state *css;
733
734 if (cgrp) {
735 for (css = &cgrp->css; css; css = css->parent) {
736 cgrp = container_of(css, struct perf_cgroup, css);
737 __update_cgrp_time(cgrp);
738 }
739 }
e5d1367f
SE
740}
741
742static inline void update_cgrp_time_from_event(struct perf_event *event)
743{
3f7cce3c
SE
744 struct perf_cgroup *cgrp;
745
e5d1367f 746 /*
3f7cce3c
SE
747 * ensure we access cgroup data only when needed and
748 * when we know the cgroup is pinned (css_get)
e5d1367f 749 */
3f7cce3c 750 if (!is_cgroup_event(event))
e5d1367f
SE
751 return;
752
614e4c4e 753 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
754 /*
755 * Do not update time when cgroup is not active
756 */
28fa741c 757 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 758 __update_cgrp_time(event->cgrp);
e5d1367f
SE
759}
760
761static inline void
3f7cce3c
SE
762perf_cgroup_set_timestamp(struct task_struct *task,
763 struct perf_event_context *ctx)
e5d1367f
SE
764{
765 struct perf_cgroup *cgrp;
766 struct perf_cgroup_info *info;
c917e0f2 767 struct cgroup_subsys_state *css;
e5d1367f 768
3f7cce3c
SE
769 /*
770 * ctx->lock held by caller
771 * ensure we do not access cgroup data
772 * unless we have the cgroup pinned (css_get)
773 */
774 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
775 return;
776
614e4c4e 777 cgrp = perf_cgroup_from_task(task, ctx);
c917e0f2
SL
778
779 for (css = &cgrp->css; css; css = css->parent) {
780 cgrp = container_of(css, struct perf_cgroup, css);
781 info = this_cpu_ptr(cgrp->info);
782 info->timestamp = ctx->timestamp;
783 }
e5d1367f
SE
784}
785
058fe1c0
DCC
786static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
787
e5d1367f
SE
788#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
789#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
790
791/*
792 * reschedule events based on the cgroup constraint of task.
793 *
794 * mode SWOUT : schedule out everything
795 * mode SWIN : schedule in based on cgroup for next
796 */
18ab2cd3 797static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
798{
799 struct perf_cpu_context *cpuctx;
058fe1c0 800 struct list_head *list;
e5d1367f
SE
801 unsigned long flags;
802
803 /*
058fe1c0
DCC
804 * Disable interrupts and preemption to avoid this CPU's
805 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
806 */
807 local_irq_save(flags);
808
058fe1c0
DCC
809 list = this_cpu_ptr(&cgrp_cpuctx_list);
810 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
811 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 812
058fe1c0
DCC
813 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
814 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 815
058fe1c0
DCC
816 if (mode & PERF_CGROUP_SWOUT) {
817 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
818 /*
819 * must not be done before ctxswout due
820 * to event_filter_match() in event_sched_out()
821 */
822 cpuctx->cgrp = NULL;
823 }
e5d1367f 824
058fe1c0
DCC
825 if (mode & PERF_CGROUP_SWIN) {
826 WARN_ON_ONCE(cpuctx->cgrp);
827 /*
828 * set cgrp before ctxsw in to allow
829 * event_filter_match() to not have to pass
830 * task around
831 * we pass the cpuctx->ctx to perf_cgroup_from_task()
832 * because cgorup events are only per-cpu
833 */
834 cpuctx->cgrp = perf_cgroup_from_task(task,
835 &cpuctx->ctx);
836 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 837 }
058fe1c0
DCC
838 perf_pmu_enable(cpuctx->ctx.pmu);
839 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
840 }
841
e5d1367f
SE
842 local_irq_restore(flags);
843}
844
a8d757ef
SE
845static inline void perf_cgroup_sched_out(struct task_struct *task,
846 struct task_struct *next)
e5d1367f 847{
a8d757ef
SE
848 struct perf_cgroup *cgrp1;
849 struct perf_cgroup *cgrp2 = NULL;
850
ddaaf4e2 851 rcu_read_lock();
a8d757ef
SE
852 /*
853 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
854 * we do not need to pass the ctx here because we know
855 * we are holding the rcu lock
a8d757ef 856 */
614e4c4e 857 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 858 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
859
860 /*
861 * only schedule out current cgroup events if we know
862 * that we are switching to a different cgroup. Otherwise,
863 * do no touch the cgroup events.
864 */
865 if (cgrp1 != cgrp2)
866 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
867
868 rcu_read_unlock();
e5d1367f
SE
869}
870
a8d757ef
SE
871static inline void perf_cgroup_sched_in(struct task_struct *prev,
872 struct task_struct *task)
e5d1367f 873{
a8d757ef
SE
874 struct perf_cgroup *cgrp1;
875 struct perf_cgroup *cgrp2 = NULL;
876
ddaaf4e2 877 rcu_read_lock();
a8d757ef
SE
878 /*
879 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
880 * we do not need to pass the ctx here because we know
881 * we are holding the rcu lock
a8d757ef 882 */
614e4c4e 883 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 884 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
885
886 /*
887 * only need to schedule in cgroup events if we are changing
888 * cgroup during ctxsw. Cgroup events were not scheduled
889 * out of ctxsw out if that was not the case.
890 */
891 if (cgrp1 != cgrp2)
892 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
893
894 rcu_read_unlock();
e5d1367f
SE
895}
896
c2283c93
IR
897static int perf_cgroup_ensure_storage(struct perf_event *event,
898 struct cgroup_subsys_state *css)
899{
900 struct perf_cpu_context *cpuctx;
901 struct perf_event **storage;
902 int cpu, heap_size, ret = 0;
903
904 /*
905 * Allow storage to have sufficent space for an iterator for each
906 * possibly nested cgroup plus an iterator for events with no cgroup.
907 */
908 for (heap_size = 1; css; css = css->parent)
909 heap_size++;
910
911 for_each_possible_cpu(cpu) {
912 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
913 if (heap_size <= cpuctx->heap_size)
914 continue;
915
916 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
917 GFP_KERNEL, cpu_to_node(cpu));
918 if (!storage) {
919 ret = -ENOMEM;
920 break;
921 }
922
923 raw_spin_lock_irq(&cpuctx->ctx.lock);
924 if (cpuctx->heap_size < heap_size) {
925 swap(cpuctx->heap, storage);
926 if (storage == cpuctx->heap_default)
927 storage = NULL;
928 cpuctx->heap_size = heap_size;
929 }
930 raw_spin_unlock_irq(&cpuctx->ctx.lock);
931
932 kfree(storage);
933 }
934
935 return ret;
936}
937
e5d1367f
SE
938static inline int perf_cgroup_connect(int fd, struct perf_event *event,
939 struct perf_event_attr *attr,
940 struct perf_event *group_leader)
941{
942 struct perf_cgroup *cgrp;
943 struct cgroup_subsys_state *css;
2903ff01
AV
944 struct fd f = fdget(fd);
945 int ret = 0;
e5d1367f 946
2903ff01 947 if (!f.file)
e5d1367f
SE
948 return -EBADF;
949
b583043e 950 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 951 &perf_event_cgrp_subsys);
3db272c0
LZ
952 if (IS_ERR(css)) {
953 ret = PTR_ERR(css);
954 goto out;
955 }
e5d1367f 956
c2283c93
IR
957 ret = perf_cgroup_ensure_storage(event, css);
958 if (ret)
959 goto out;
960
e5d1367f
SE
961 cgrp = container_of(css, struct perf_cgroup, css);
962 event->cgrp = cgrp;
963
964 /*
965 * all events in a group must monitor
966 * the same cgroup because a task belongs
967 * to only one perf cgroup at a time
968 */
969 if (group_leader && group_leader->cgrp != cgrp) {
970 perf_detach_cgroup(event);
971 ret = -EINVAL;
e5d1367f 972 }
3db272c0 973out:
2903ff01 974 fdput(f);
e5d1367f
SE
975 return ret;
976}
977
978static inline void
979perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
980{
981 struct perf_cgroup_info *t;
982 t = per_cpu_ptr(event->cgrp->info, event->cpu);
983 event->shadow_ctx_time = now - t->timestamp;
984}
985
db4a8356 986static inline void
33238c50 987perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
db4a8356
DCC
988{
989 struct perf_cpu_context *cpuctx;
990
991 if (!is_cgroup_event(event))
992 return;
993
db4a8356
DCC
994 /*
995 * Because cgroup events are always per-cpu events,
07c59729 996 * @ctx == &cpuctx->ctx.
db4a8356 997 */
07c59729 998 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
33801b94 999
1000 /*
1001 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1002 * matching the event's cgroup, we must do this for every new event,
1003 * because if the first would mismatch, the second would not try again
1004 * and we would leave cpuctx->cgrp unset.
1005 */
33238c50 1006 if (ctx->is_active && !cpuctx->cgrp) {
be96b316
TH
1007 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1008
be96b316
TH
1009 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1010 cpuctx->cgrp = cgrp;
058fe1c0 1011 }
33801b94 1012
33238c50 1013 if (ctx->nr_cgroups++)
33801b94 1014 return;
33238c50
PZ
1015
1016 list_add(&cpuctx->cgrp_cpuctx_entry,
1017 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1018}
1019
1020static inline void
1021perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1022{
1023 struct perf_cpu_context *cpuctx;
1024
1025 if (!is_cgroup_event(event))
33801b94 1026 return;
1027
33238c50
PZ
1028 /*
1029 * Because cgroup events are always per-cpu events,
1030 * @ctx == &cpuctx->ctx.
1031 */
1032 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1033
1034 if (--ctx->nr_cgroups)
1035 return;
1036
1037 if (ctx->is_active && cpuctx->cgrp)
33801b94 1038 cpuctx->cgrp = NULL;
1039
33238c50 1040 list_del(&cpuctx->cgrp_cpuctx_entry);
db4a8356
DCC
1041}
1042
e5d1367f
SE
1043#else /* !CONFIG_CGROUP_PERF */
1044
1045static inline bool
1046perf_cgroup_match(struct perf_event *event)
1047{
1048 return true;
1049}
1050
1051static inline void perf_detach_cgroup(struct perf_event *event)
1052{}
1053
1054static inline int is_cgroup_event(struct perf_event *event)
1055{
1056 return 0;
1057}
1058
e5d1367f
SE
1059static inline void update_cgrp_time_from_event(struct perf_event *event)
1060{
1061}
1062
1063static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1064{
1065}
1066
a8d757ef
SE
1067static inline void perf_cgroup_sched_out(struct task_struct *task,
1068 struct task_struct *next)
e5d1367f
SE
1069{
1070}
1071
a8d757ef
SE
1072static inline void perf_cgroup_sched_in(struct task_struct *prev,
1073 struct task_struct *task)
e5d1367f
SE
1074{
1075}
1076
1077static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1078 struct perf_event_attr *attr,
1079 struct perf_event *group_leader)
1080{
1081 return -EINVAL;
1082}
1083
1084static inline void
3f7cce3c
SE
1085perf_cgroup_set_timestamp(struct task_struct *task,
1086 struct perf_event_context *ctx)
e5d1367f
SE
1087{
1088}
1089
d00dbd29 1090static inline void
e5d1367f
SE
1091perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1092{
1093}
1094
1095static inline void
1096perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1097{
1098}
1099
1100static inline u64 perf_cgroup_event_time(struct perf_event *event)
1101{
1102 return 0;
1103}
1104
db4a8356 1105static inline void
33238c50 1106perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
db4a8356
DCC
1107{
1108}
1109
33238c50
PZ
1110static inline void
1111perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1112{
1113}
e5d1367f
SE
1114#endif
1115
9e630205
SE
1116/*
1117 * set default to be dependent on timer tick just
1118 * like original code
1119 */
1120#define PERF_CPU_HRTIMER (1000 / HZ)
1121/*
8a1115ff 1122 * function must be called with interrupts disabled
9e630205 1123 */
272325c4 1124static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1125{
1126 struct perf_cpu_context *cpuctx;
8d5bce0c 1127 bool rotations;
9e630205 1128
16444645 1129 lockdep_assert_irqs_disabled();
9e630205
SE
1130
1131 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1132 rotations = perf_rotate_context(cpuctx);
1133
4cfafd30
PZ
1134 raw_spin_lock(&cpuctx->hrtimer_lock);
1135 if (rotations)
9e630205 1136 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1137 else
1138 cpuctx->hrtimer_active = 0;
1139 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1140
4cfafd30 1141 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1142}
1143
272325c4 1144static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1145{
272325c4 1146 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1147 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1148 u64 interval;
9e630205
SE
1149
1150 /* no multiplexing needed for SW PMU */
1151 if (pmu->task_ctx_nr == perf_sw_context)
1152 return;
1153
62b85639
SE
1154 /*
1155 * check default is sane, if not set then force to
1156 * default interval (1/tick)
1157 */
272325c4
PZ
1158 interval = pmu->hrtimer_interval_ms;
1159 if (interval < 1)
1160 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1161
272325c4 1162 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1163
4cfafd30 1164 raw_spin_lock_init(&cpuctx->hrtimer_lock);
30f9028b 1165 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
272325c4 1166 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1167}
1168
272325c4 1169static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1170{
272325c4 1171 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1172 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1173 unsigned long flags;
9e630205
SE
1174
1175 /* not for SW PMU */
1176 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1177 return 0;
9e630205 1178
4cfafd30
PZ
1179 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1180 if (!cpuctx->hrtimer_active) {
1181 cpuctx->hrtimer_active = 1;
1182 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
30f9028b 1183 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
4cfafd30
PZ
1184 }
1185 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1186
272325c4 1187 return 0;
9e630205
SE
1188}
1189
33696fc0 1190void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1191{
33696fc0
PZ
1192 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1193 if (!(*count)++)
1194 pmu->pmu_disable(pmu);
9e35ad38 1195}
9e35ad38 1196
33696fc0 1197void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1198{
33696fc0
PZ
1199 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1200 if (!--(*count))
1201 pmu->pmu_enable(pmu);
9e35ad38 1202}
9e35ad38 1203
2fde4f94 1204static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1205
1206/*
2fde4f94
MR
1207 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1208 * perf_event_task_tick() are fully serialized because they're strictly cpu
1209 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1210 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1211 */
2fde4f94 1212static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1213{
2fde4f94 1214 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1215
16444645 1216 lockdep_assert_irqs_disabled();
b5ab4cd5 1217
2fde4f94
MR
1218 WARN_ON(!list_empty(&ctx->active_ctx_list));
1219
1220 list_add(&ctx->active_ctx_list, head);
1221}
1222
1223static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1224{
16444645 1225 lockdep_assert_irqs_disabled();
2fde4f94
MR
1226
1227 WARN_ON(list_empty(&ctx->active_ctx_list));
1228
1229 list_del_init(&ctx->active_ctx_list);
9e35ad38 1230}
9e35ad38 1231
cdd6c482 1232static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1233{
8c94abbb 1234 refcount_inc(&ctx->refcount);
a63eaf34
PM
1235}
1236
4af57ef2
YZ
1237static void free_ctx(struct rcu_head *head)
1238{
1239 struct perf_event_context *ctx;
1240
1241 ctx = container_of(head, struct perf_event_context, rcu_head);
1242 kfree(ctx->task_ctx_data);
1243 kfree(ctx);
1244}
1245
cdd6c482 1246static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1247{
8c94abbb 1248 if (refcount_dec_and_test(&ctx->refcount)) {
564c2b21
PM
1249 if (ctx->parent_ctx)
1250 put_ctx(ctx->parent_ctx);
63b6da39 1251 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1252 put_task_struct(ctx->task);
4af57ef2 1253 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1254 }
a63eaf34
PM
1255}
1256
f63a8daa
PZ
1257/*
1258 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1259 * perf_pmu_migrate_context() we need some magic.
1260 *
1261 * Those places that change perf_event::ctx will hold both
1262 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1263 *
8b10c5e2
PZ
1264 * Lock ordering is by mutex address. There are two other sites where
1265 * perf_event_context::mutex nests and those are:
1266 *
1267 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1268 * perf_event_exit_event()
1269 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1270 *
1271 * - perf_event_init_context() [ parent, 0 ]
1272 * inherit_task_group()
1273 * inherit_group()
1274 * inherit_event()
1275 * perf_event_alloc()
1276 * perf_init_event()
1277 * perf_try_init_event() [ child , 1 ]
1278 *
1279 * While it appears there is an obvious deadlock here -- the parent and child
1280 * nesting levels are inverted between the two. This is in fact safe because
1281 * life-time rules separate them. That is an exiting task cannot fork, and a
1282 * spawning task cannot (yet) exit.
1283 *
1284 * But remember that that these are parent<->child context relations, and
1285 * migration does not affect children, therefore these two orderings should not
1286 * interact.
f63a8daa
PZ
1287 *
1288 * The change in perf_event::ctx does not affect children (as claimed above)
1289 * because the sys_perf_event_open() case will install a new event and break
1290 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1291 * concerned with cpuctx and that doesn't have children.
1292 *
1293 * The places that change perf_event::ctx will issue:
1294 *
1295 * perf_remove_from_context();
1296 * synchronize_rcu();
1297 * perf_install_in_context();
1298 *
1299 * to affect the change. The remove_from_context() + synchronize_rcu() should
1300 * quiesce the event, after which we can install it in the new location. This
1301 * means that only external vectors (perf_fops, prctl) can perturb the event
1302 * while in transit. Therefore all such accessors should also acquire
1303 * perf_event_context::mutex to serialize against this.
1304 *
1305 * However; because event->ctx can change while we're waiting to acquire
1306 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1307 * function.
1308 *
1309 * Lock order:
69143038 1310 * exec_update_mutex
f63a8daa
PZ
1311 * task_struct::perf_event_mutex
1312 * perf_event_context::mutex
f63a8daa 1313 * perf_event::child_mutex;
07c4a776 1314 * perf_event_context::lock
f63a8daa
PZ
1315 * perf_event::mmap_mutex
1316 * mmap_sem
18736eef 1317 * perf_addr_filters_head::lock
82d94856
PZ
1318 *
1319 * cpu_hotplug_lock
1320 * pmus_lock
1321 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1322 */
a83fe28e
PZ
1323static struct perf_event_context *
1324perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1325{
1326 struct perf_event_context *ctx;
1327
1328again:
1329 rcu_read_lock();
6aa7de05 1330 ctx = READ_ONCE(event->ctx);
8c94abbb 1331 if (!refcount_inc_not_zero(&ctx->refcount)) {
f63a8daa
PZ
1332 rcu_read_unlock();
1333 goto again;
1334 }
1335 rcu_read_unlock();
1336
a83fe28e 1337 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1338 if (event->ctx != ctx) {
1339 mutex_unlock(&ctx->mutex);
1340 put_ctx(ctx);
1341 goto again;
1342 }
1343
1344 return ctx;
1345}
1346
a83fe28e
PZ
1347static inline struct perf_event_context *
1348perf_event_ctx_lock(struct perf_event *event)
1349{
1350 return perf_event_ctx_lock_nested(event, 0);
1351}
1352
f63a8daa
PZ
1353static void perf_event_ctx_unlock(struct perf_event *event,
1354 struct perf_event_context *ctx)
1355{
1356 mutex_unlock(&ctx->mutex);
1357 put_ctx(ctx);
1358}
1359
211de6eb
PZ
1360/*
1361 * This must be done under the ctx->lock, such as to serialize against
1362 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1363 * calling scheduler related locks and ctx->lock nests inside those.
1364 */
1365static __must_check struct perf_event_context *
1366unclone_ctx(struct perf_event_context *ctx)
71a851b4 1367{
211de6eb
PZ
1368 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1369
1370 lockdep_assert_held(&ctx->lock);
1371
1372 if (parent_ctx)
71a851b4 1373 ctx->parent_ctx = NULL;
5a3126d4 1374 ctx->generation++;
211de6eb
PZ
1375
1376 return parent_ctx;
71a851b4
PZ
1377}
1378
1d953111
ON
1379static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1380 enum pid_type type)
6844c09d 1381{
1d953111 1382 u32 nr;
6844c09d
ACM
1383 /*
1384 * only top level events have the pid namespace they were created in
1385 */
1386 if (event->parent)
1387 event = event->parent;
1388
1d953111
ON
1389 nr = __task_pid_nr_ns(p, type, event->ns);
1390 /* avoid -1 if it is idle thread or runs in another ns */
1391 if (!nr && !pid_alive(p))
1392 nr = -1;
1393 return nr;
6844c09d
ACM
1394}
1395
1d953111 1396static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1397{
6883f81a 1398 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1d953111 1399}
6844c09d 1400
1d953111
ON
1401static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1402{
1403 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1404}
1405
7f453c24 1406/*
cdd6c482 1407 * If we inherit events we want to return the parent event id
7f453c24
PZ
1408 * to userspace.
1409 */
cdd6c482 1410static u64 primary_event_id(struct perf_event *event)
7f453c24 1411{
cdd6c482 1412 u64 id = event->id;
7f453c24 1413
cdd6c482
IM
1414 if (event->parent)
1415 id = event->parent->id;
7f453c24
PZ
1416
1417 return id;
1418}
1419
25346b93 1420/*
cdd6c482 1421 * Get the perf_event_context for a task and lock it.
63b6da39 1422 *
25346b93
PM
1423 * This has to cope with with the fact that until it is locked,
1424 * the context could get moved to another task.
1425 */
cdd6c482 1426static struct perf_event_context *
8dc85d54 1427perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1428{
cdd6c482 1429 struct perf_event_context *ctx;
25346b93 1430
9ed6060d 1431retry:
058ebd0e
PZ
1432 /*
1433 * One of the few rules of preemptible RCU is that one cannot do
1434 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1435 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1436 * rcu_read_unlock_special().
1437 *
1438 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1439 * side critical section has interrupts disabled.
058ebd0e 1440 */
2fd59077 1441 local_irq_save(*flags);
058ebd0e 1442 rcu_read_lock();
8dc85d54 1443 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1444 if (ctx) {
1445 /*
1446 * If this context is a clone of another, it might
1447 * get swapped for another underneath us by
cdd6c482 1448 * perf_event_task_sched_out, though the
25346b93
PM
1449 * rcu_read_lock() protects us from any context
1450 * getting freed. Lock the context and check if it
1451 * got swapped before we could get the lock, and retry
1452 * if so. If we locked the right context, then it
1453 * can't get swapped on us any more.
1454 */
2fd59077 1455 raw_spin_lock(&ctx->lock);
8dc85d54 1456 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1457 raw_spin_unlock(&ctx->lock);
058ebd0e 1458 rcu_read_unlock();
2fd59077 1459 local_irq_restore(*flags);
25346b93
PM
1460 goto retry;
1461 }
b49a9e7e 1462
63b6da39 1463 if (ctx->task == TASK_TOMBSTONE ||
8c94abbb 1464 !refcount_inc_not_zero(&ctx->refcount)) {
2fd59077 1465 raw_spin_unlock(&ctx->lock);
b49a9e7e 1466 ctx = NULL;
828b6f0e
PZ
1467 } else {
1468 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1469 }
25346b93
PM
1470 }
1471 rcu_read_unlock();
2fd59077
PM
1472 if (!ctx)
1473 local_irq_restore(*flags);
25346b93
PM
1474 return ctx;
1475}
1476
1477/*
1478 * Get the context for a task and increment its pin_count so it
1479 * can't get swapped to another task. This also increments its
1480 * reference count so that the context can't get freed.
1481 */
8dc85d54
PZ
1482static struct perf_event_context *
1483perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1484{
cdd6c482 1485 struct perf_event_context *ctx;
25346b93
PM
1486 unsigned long flags;
1487
8dc85d54 1488 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1489 if (ctx) {
1490 ++ctx->pin_count;
e625cce1 1491 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1492 }
1493 return ctx;
1494}
1495
cdd6c482 1496static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1497{
1498 unsigned long flags;
1499
e625cce1 1500 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1501 --ctx->pin_count;
e625cce1 1502 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1503}
1504
f67218c3
PZ
1505/*
1506 * Update the record of the current time in a context.
1507 */
1508static void update_context_time(struct perf_event_context *ctx)
1509{
1510 u64 now = perf_clock();
1511
1512 ctx->time += now - ctx->timestamp;
1513 ctx->timestamp = now;
1514}
1515
4158755d
SE
1516static u64 perf_event_time(struct perf_event *event)
1517{
1518 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1519
1520 if (is_cgroup_event(event))
1521 return perf_cgroup_event_time(event);
1522
4158755d
SE
1523 return ctx ? ctx->time : 0;
1524}
1525
487f05e1
AS
1526static enum event_type_t get_event_type(struct perf_event *event)
1527{
1528 struct perf_event_context *ctx = event->ctx;
1529 enum event_type_t event_type;
1530
1531 lockdep_assert_held(&ctx->lock);
1532
3bda69c1
AS
1533 /*
1534 * It's 'group type', really, because if our group leader is
1535 * pinned, so are we.
1536 */
1537 if (event->group_leader != event)
1538 event = event->group_leader;
1539
487f05e1
AS
1540 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1541 if (!ctx->task)
1542 event_type |= EVENT_CPU;
1543
1544 return event_type;
1545}
1546
8e1a2031 1547/*
161c85fa 1548 * Helper function to initialize event group nodes.
8e1a2031 1549 */
161c85fa 1550static void init_event_group(struct perf_event *event)
8e1a2031
AB
1551{
1552 RB_CLEAR_NODE(&event->group_node);
1553 event->group_index = 0;
1554}
1555
1556/*
1557 * Extract pinned or flexible groups from the context
161c85fa 1558 * based on event attrs bits.
8e1a2031
AB
1559 */
1560static struct perf_event_groups *
1561get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1562{
1563 if (event->attr.pinned)
1564 return &ctx->pinned_groups;
1565 else
1566 return &ctx->flexible_groups;
1567}
1568
8e1a2031 1569/*
161c85fa 1570 * Helper function to initializes perf_event_group trees.
8e1a2031 1571 */
161c85fa 1572static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1573{
1574 groups->tree = RB_ROOT;
1575 groups->index = 0;
1576}
1577
1578/*
1579 * Compare function for event groups;
161c85fa
PZ
1580 *
1581 * Implements complex key that first sorts by CPU and then by virtual index
1582 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1583 */
161c85fa
PZ
1584static bool
1585perf_event_groups_less(struct perf_event *left, struct perf_event *right)
8e1a2031 1586{
161c85fa
PZ
1587 if (left->cpu < right->cpu)
1588 return true;
1589 if (left->cpu > right->cpu)
1590 return false;
1591
95ed6c70
IR
1592#ifdef CONFIG_CGROUP_PERF
1593 if (left->cgrp != right->cgrp) {
1594 if (!left->cgrp || !left->cgrp->css.cgroup) {
1595 /*
1596 * Left has no cgroup but right does, no cgroups come
1597 * first.
1598 */
1599 return true;
1600 }
a6763625 1601 if (!right->cgrp || !right->cgrp->css.cgroup) {
95ed6c70
IR
1602 /*
1603 * Right has no cgroup but left does, no cgroups come
1604 * first.
1605 */
1606 return false;
1607 }
1608 /* Two dissimilar cgroups, order by id. */
1609 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1610 return true;
1611
1612 return false;
1613 }
1614#endif
1615
161c85fa
PZ
1616 if (left->group_index < right->group_index)
1617 return true;
1618 if (left->group_index > right->group_index)
1619 return false;
1620
1621 return false;
8e1a2031
AB
1622}
1623
1624/*
161c85fa
PZ
1625 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1626 * key (see perf_event_groups_less). This places it last inside the CPU
1627 * subtree.
8e1a2031
AB
1628 */
1629static void
1630perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1631 struct perf_event *event)
8e1a2031
AB
1632{
1633 struct perf_event *node_event;
1634 struct rb_node *parent;
1635 struct rb_node **node;
1636
1637 event->group_index = ++groups->index;
1638
1639 node = &groups->tree.rb_node;
1640 parent = *node;
1641
1642 while (*node) {
1643 parent = *node;
161c85fa 1644 node_event = container_of(*node, struct perf_event, group_node);
8e1a2031
AB
1645
1646 if (perf_event_groups_less(event, node_event))
1647 node = &parent->rb_left;
1648 else
1649 node = &parent->rb_right;
1650 }
1651
1652 rb_link_node(&event->group_node, parent, node);
1653 rb_insert_color(&event->group_node, &groups->tree);
1654}
1655
1656/*
161c85fa 1657 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1658 */
1659static void
1660add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1661{
1662 struct perf_event_groups *groups;
1663
1664 groups = get_event_groups(event, ctx);
1665 perf_event_groups_insert(groups, event);
1666}
1667
1668/*
161c85fa 1669 * Delete a group from a tree.
8e1a2031
AB
1670 */
1671static void
1672perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1673 struct perf_event *event)
8e1a2031 1674{
161c85fa
PZ
1675 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1676 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1677
161c85fa 1678 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1679 init_event_group(event);
1680}
1681
1682/*
161c85fa 1683 * Helper function to delete event from its groups.
8e1a2031
AB
1684 */
1685static void
1686del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1687{
1688 struct perf_event_groups *groups;
1689
1690 groups = get_event_groups(event, ctx);
1691 perf_event_groups_delete(groups, event);
1692}
1693
1694/*
95ed6c70 1695 * Get the leftmost event in the cpu/cgroup subtree.
8e1a2031
AB
1696 */
1697static struct perf_event *
95ed6c70
IR
1698perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1699 struct cgroup *cgrp)
8e1a2031
AB
1700{
1701 struct perf_event *node_event = NULL, *match = NULL;
1702 struct rb_node *node = groups->tree.rb_node;
95ed6c70
IR
1703#ifdef CONFIG_CGROUP_PERF
1704 u64 node_cgrp_id, cgrp_id = 0;
1705
1706 if (cgrp)
1707 cgrp_id = cgrp->kn->id;
1708#endif
8e1a2031
AB
1709
1710 while (node) {
161c85fa 1711 node_event = container_of(node, struct perf_event, group_node);
8e1a2031
AB
1712
1713 if (cpu < node_event->cpu) {
1714 node = node->rb_left;
95ed6c70
IR
1715 continue;
1716 }
1717 if (cpu > node_event->cpu) {
8e1a2031 1718 node = node->rb_right;
95ed6c70
IR
1719 continue;
1720 }
1721#ifdef CONFIG_CGROUP_PERF
1722 node_cgrp_id = 0;
1723 if (node_event->cgrp && node_event->cgrp->css.cgroup)
1724 node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1725
1726 if (cgrp_id < node_cgrp_id) {
8e1a2031 1727 node = node->rb_left;
95ed6c70
IR
1728 continue;
1729 }
1730 if (cgrp_id > node_cgrp_id) {
1731 node = node->rb_right;
1732 continue;
8e1a2031 1733 }
95ed6c70
IR
1734#endif
1735 match = node_event;
1736 node = node->rb_left;
8e1a2031
AB
1737 }
1738
1739 return match;
1740}
1741
1cac7b1a
PZ
1742/*
1743 * Like rb_entry_next_safe() for the @cpu subtree.
1744 */
1745static struct perf_event *
1746perf_event_groups_next(struct perf_event *event)
1747{
1748 struct perf_event *next;
95ed6c70
IR
1749#ifdef CONFIG_CGROUP_PERF
1750 u64 curr_cgrp_id = 0;
1751 u64 next_cgrp_id = 0;
1752#endif
1cac7b1a
PZ
1753
1754 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
95ed6c70
IR
1755 if (next == NULL || next->cpu != event->cpu)
1756 return NULL;
1757
1758#ifdef CONFIG_CGROUP_PERF
1759 if (event->cgrp && event->cgrp->css.cgroup)
1760 curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1cac7b1a 1761
95ed6c70
IR
1762 if (next->cgrp && next->cgrp->css.cgroup)
1763 next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1764
1765 if (curr_cgrp_id != next_cgrp_id)
1766 return NULL;
1767#endif
1768 return next;
1cac7b1a
PZ
1769}
1770
8e1a2031 1771/*
161c85fa 1772 * Iterate through the whole groups tree.
8e1a2031 1773 */
6e6804d2
PZ
1774#define perf_event_groups_for_each(event, groups) \
1775 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1776 typeof(*event), group_node); event; \
1777 event = rb_entry_safe(rb_next(&event->group_node), \
1778 typeof(*event), group_node))
8e1a2031 1779
fccc714b 1780/*
788faab7 1781 * Add an event from the lists for its context.
fccc714b
PZ
1782 * Must be called with ctx->mutex and ctx->lock held.
1783 */
04289bb9 1784static void
cdd6c482 1785list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1786{
c994d613
PZ
1787 lockdep_assert_held(&ctx->lock);
1788
8a49542c
PZ
1789 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1790 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1791
0d3d73aa
PZ
1792 event->tstamp = perf_event_time(event);
1793
04289bb9 1794 /*
8a49542c
PZ
1795 * If we're a stand alone event or group leader, we go to the context
1796 * list, group events are kept attached to the group so that
1797 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1798 */
8a49542c 1799 if (event->group_leader == event) {
4ff6a8de 1800 event->group_caps = event->event_caps;
8e1a2031 1801 add_event_to_groups(event, ctx);
5c148194 1802 }
592903cd 1803
cdd6c482
IM
1804 list_add_rcu(&event->event_entry, &ctx->event_list);
1805 ctx->nr_events++;
1806 if (event->attr.inherit_stat)
bfbd3381 1807 ctx->nr_stat++;
5a3126d4 1808
33238c50
PZ
1809 if (event->state > PERF_EVENT_STATE_OFF)
1810 perf_cgroup_event_enable(event, ctx);
1811
5a3126d4 1812 ctx->generation++;
04289bb9
IM
1813}
1814
0231bb53
JO
1815/*
1816 * Initialize event state based on the perf_event_attr::disabled.
1817 */
1818static inline void perf_event__state_init(struct perf_event *event)
1819{
1820 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1821 PERF_EVENT_STATE_INACTIVE;
1822}
1823
a723968c 1824static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1825{
1826 int entry = sizeof(u64); /* value */
1827 int size = 0;
1828 int nr = 1;
1829
1830 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1831 size += sizeof(u64);
1832
1833 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1834 size += sizeof(u64);
1835
1836 if (event->attr.read_format & PERF_FORMAT_ID)
1837 entry += sizeof(u64);
1838
1839 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1840 nr += nr_siblings;
c320c7b7
ACM
1841 size += sizeof(u64);
1842 }
1843
1844 size += entry * nr;
1845 event->read_size = size;
1846}
1847
a723968c 1848static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1849{
1850 struct perf_sample_data *data;
c320c7b7
ACM
1851 u16 size = 0;
1852
c320c7b7
ACM
1853 if (sample_type & PERF_SAMPLE_IP)
1854 size += sizeof(data->ip);
1855
6844c09d
ACM
1856 if (sample_type & PERF_SAMPLE_ADDR)
1857 size += sizeof(data->addr);
1858
1859 if (sample_type & PERF_SAMPLE_PERIOD)
1860 size += sizeof(data->period);
1861
c3feedf2
AK
1862 if (sample_type & PERF_SAMPLE_WEIGHT)
1863 size += sizeof(data->weight);
1864
6844c09d
ACM
1865 if (sample_type & PERF_SAMPLE_READ)
1866 size += event->read_size;
1867
d6be9ad6
SE
1868 if (sample_type & PERF_SAMPLE_DATA_SRC)
1869 size += sizeof(data->data_src.val);
1870
fdfbbd07
AK
1871 if (sample_type & PERF_SAMPLE_TRANSACTION)
1872 size += sizeof(data->txn);
1873
fc7ce9c7
KL
1874 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1875 size += sizeof(data->phys_addr);
1876
6546b19f
NK
1877 if (sample_type & PERF_SAMPLE_CGROUP)
1878 size += sizeof(data->cgroup);
1879
6844c09d
ACM
1880 event->header_size = size;
1881}
1882
a723968c
PZ
1883/*
1884 * Called at perf_event creation and when events are attached/detached from a
1885 * group.
1886 */
1887static void perf_event__header_size(struct perf_event *event)
1888{
1889 __perf_event_read_size(event,
1890 event->group_leader->nr_siblings);
1891 __perf_event_header_size(event, event->attr.sample_type);
1892}
1893
6844c09d
ACM
1894static void perf_event__id_header_size(struct perf_event *event)
1895{
1896 struct perf_sample_data *data;
1897 u64 sample_type = event->attr.sample_type;
1898 u16 size = 0;
1899
c320c7b7
ACM
1900 if (sample_type & PERF_SAMPLE_TID)
1901 size += sizeof(data->tid_entry);
1902
1903 if (sample_type & PERF_SAMPLE_TIME)
1904 size += sizeof(data->time);
1905
ff3d527c
AH
1906 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1907 size += sizeof(data->id);
1908
c320c7b7
ACM
1909 if (sample_type & PERF_SAMPLE_ID)
1910 size += sizeof(data->id);
1911
1912 if (sample_type & PERF_SAMPLE_STREAM_ID)
1913 size += sizeof(data->stream_id);
1914
1915 if (sample_type & PERF_SAMPLE_CPU)
1916 size += sizeof(data->cpu_entry);
1917
6844c09d 1918 event->id_header_size = size;
c320c7b7
ACM
1919}
1920
a723968c
PZ
1921static bool perf_event_validate_size(struct perf_event *event)
1922{
1923 /*
1924 * The values computed here will be over-written when we actually
1925 * attach the event.
1926 */
1927 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1928 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1929 perf_event__id_header_size(event);
1930
1931 /*
1932 * Sum the lot; should not exceed the 64k limit we have on records.
1933 * Conservative limit to allow for callchains and other variable fields.
1934 */
1935 if (event->read_size + event->header_size +
1936 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1937 return false;
1938
1939 return true;
1940}
1941
8a49542c
PZ
1942static void perf_group_attach(struct perf_event *event)
1943{
c320c7b7 1944 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1945
a76a82a3
PZ
1946 lockdep_assert_held(&event->ctx->lock);
1947
74c3337c
PZ
1948 /*
1949 * We can have double attach due to group movement in perf_event_open.
1950 */
1951 if (event->attach_state & PERF_ATTACH_GROUP)
1952 return;
1953
8a49542c
PZ
1954 event->attach_state |= PERF_ATTACH_GROUP;
1955
1956 if (group_leader == event)
1957 return;
1958
652884fe
PZ
1959 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1960
4ff6a8de 1961 group_leader->group_caps &= event->event_caps;
8a49542c 1962
8343aae6 1963 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1964 group_leader->nr_siblings++;
c320c7b7
ACM
1965
1966 perf_event__header_size(group_leader);
1967
edb39592 1968 for_each_sibling_event(pos, group_leader)
c320c7b7 1969 perf_event__header_size(pos);
8a49542c
PZ
1970}
1971
a63eaf34 1972/*
788faab7 1973 * Remove an event from the lists for its context.
fccc714b 1974 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1975 */
04289bb9 1976static void
cdd6c482 1977list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1978{
652884fe
PZ
1979 WARN_ON_ONCE(event->ctx != ctx);
1980 lockdep_assert_held(&ctx->lock);
1981
8a49542c
PZ
1982 /*
1983 * We can have double detach due to exit/hot-unplug + close.
1984 */
1985 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1986 return;
8a49542c
PZ
1987
1988 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1989
cdd6c482
IM
1990 ctx->nr_events--;
1991 if (event->attr.inherit_stat)
bfbd3381 1992 ctx->nr_stat--;
8bc20959 1993
cdd6c482 1994 list_del_rcu(&event->event_entry);
04289bb9 1995
8a49542c 1996 if (event->group_leader == event)
8e1a2031 1997 del_event_from_groups(event, ctx);
5c148194 1998
b2e74a26
SE
1999 /*
2000 * If event was in error state, then keep it
2001 * that way, otherwise bogus counts will be
2002 * returned on read(). The only way to get out
2003 * of error state is by explicit re-enabling
2004 * of the event
2005 */
33238c50
PZ
2006 if (event->state > PERF_EVENT_STATE_OFF) {
2007 perf_cgroup_event_disable(event, ctx);
0d3d73aa 2008 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
33238c50 2009 }
5a3126d4
PZ
2010
2011 ctx->generation++;
050735b0
PZ
2012}
2013
ab43762e
AS
2014static int
2015perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2016{
2017 if (!has_aux(aux_event))
2018 return 0;
2019
2020 if (!event->pmu->aux_output_match)
2021 return 0;
2022
2023 return event->pmu->aux_output_match(aux_event);
2024}
2025
2026static void put_event(struct perf_event *event);
2027static void event_sched_out(struct perf_event *event,
2028 struct perf_cpu_context *cpuctx,
2029 struct perf_event_context *ctx);
2030
2031static void perf_put_aux_event(struct perf_event *event)
2032{
2033 struct perf_event_context *ctx = event->ctx;
2034 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2035 struct perf_event *iter;
2036
2037 /*
2038 * If event uses aux_event tear down the link
2039 */
2040 if (event->aux_event) {
2041 iter = event->aux_event;
2042 event->aux_event = NULL;
2043 put_event(iter);
2044 return;
2045 }
2046
2047 /*
2048 * If the event is an aux_event, tear down all links to
2049 * it from other events.
2050 */
2051 for_each_sibling_event(iter, event->group_leader) {
2052 if (iter->aux_event != event)
2053 continue;
2054
2055 iter->aux_event = NULL;
2056 put_event(event);
2057
2058 /*
2059 * If it's ACTIVE, schedule it out and put it into ERROR
2060 * state so that we don't try to schedule it again. Note
2061 * that perf_event_enable() will clear the ERROR status.
2062 */
2063 event_sched_out(iter, cpuctx, ctx);
2064 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2065 }
2066}
2067
a4faf00d
AS
2068static bool perf_need_aux_event(struct perf_event *event)
2069{
2070 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2071}
2072
ab43762e
AS
2073static int perf_get_aux_event(struct perf_event *event,
2074 struct perf_event *group_leader)
2075{
2076 /*
2077 * Our group leader must be an aux event if we want to be
2078 * an aux_output. This way, the aux event will precede its
2079 * aux_output events in the group, and therefore will always
2080 * schedule first.
2081 */
2082 if (!group_leader)
2083 return 0;
2084
a4faf00d
AS
2085 /*
2086 * aux_output and aux_sample_size are mutually exclusive.
2087 */
2088 if (event->attr.aux_output && event->attr.aux_sample_size)
2089 return 0;
2090
2091 if (event->attr.aux_output &&
2092 !perf_aux_output_match(event, group_leader))
2093 return 0;
2094
2095 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
ab43762e
AS
2096 return 0;
2097
2098 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2099 return 0;
2100
2101 /*
2102 * Link aux_outputs to their aux event; this is undone in
2103 * perf_group_detach() by perf_put_aux_event(). When the
2104 * group in torn down, the aux_output events loose their
2105 * link to the aux_event and can't schedule any more.
2106 */
2107 event->aux_event = group_leader;
2108
2109 return 1;
2110}
2111
ab6f824c
PZ
2112static inline struct list_head *get_event_list(struct perf_event *event)
2113{
2114 struct perf_event_context *ctx = event->ctx;
2115 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2116}
2117
8a49542c 2118static void perf_group_detach(struct perf_event *event)
050735b0
PZ
2119{
2120 struct perf_event *sibling, *tmp;
6668128a 2121 struct perf_event_context *ctx = event->ctx;
8a49542c 2122
6668128a 2123 lockdep_assert_held(&ctx->lock);
a76a82a3 2124
8a49542c
PZ
2125 /*
2126 * We can have double detach due to exit/hot-unplug + close.
2127 */
2128 if (!(event->attach_state & PERF_ATTACH_GROUP))
2129 return;
2130
2131 event->attach_state &= ~PERF_ATTACH_GROUP;
2132
ab43762e
AS
2133 perf_put_aux_event(event);
2134
8a49542c
PZ
2135 /*
2136 * If this is a sibling, remove it from its group.
2137 */
2138 if (event->group_leader != event) {
8343aae6 2139 list_del_init(&event->sibling_list);
8a49542c 2140 event->group_leader->nr_siblings--;
c320c7b7 2141 goto out;
8a49542c
PZ
2142 }
2143
04289bb9 2144 /*
cdd6c482
IM
2145 * If this was a group event with sibling events then
2146 * upgrade the siblings to singleton events by adding them
8a49542c 2147 * to whatever list we are on.
04289bb9 2148 */
8343aae6 2149 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 2150
04289bb9 2151 sibling->group_leader = sibling;
24868367 2152 list_del_init(&sibling->sibling_list);
d6f962b5
FW
2153
2154 /* Inherit group flags from the previous leader */
4ff6a8de 2155 sibling->group_caps = event->group_caps;
652884fe 2156
8e1a2031 2157 if (!RB_EMPTY_NODE(&event->group_node)) {
8e1a2031 2158 add_event_to_groups(sibling, event->ctx);
6668128a 2159
ab6f824c
PZ
2160 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2161 list_add_tail(&sibling->active_list, get_event_list(sibling));
8e1a2031
AB
2162 }
2163
652884fe 2164 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 2165 }
c320c7b7
ACM
2166
2167out:
2168 perf_event__header_size(event->group_leader);
2169
edb39592 2170 for_each_sibling_event(tmp, event->group_leader)
c320c7b7 2171 perf_event__header_size(tmp);
04289bb9
IM
2172}
2173
fadfe7be
JO
2174static bool is_orphaned_event(struct perf_event *event)
2175{
a69b0ca4 2176 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
2177}
2178
2c81a647 2179static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
2180{
2181 struct pmu *pmu = event->pmu;
2182 return pmu->filter_match ? pmu->filter_match(event) : 1;
2183}
2184
2c81a647
MR
2185/*
2186 * Check whether we should attempt to schedule an event group based on
2187 * PMU-specific filtering. An event group can consist of HW and SW events,
2188 * potentially with a SW leader, so we must check all the filters, to
2189 * determine whether a group is schedulable:
2190 */
2191static inline int pmu_filter_match(struct perf_event *event)
2192{
edb39592 2193 struct perf_event *sibling;
2c81a647
MR
2194
2195 if (!__pmu_filter_match(event))
2196 return 0;
2197
edb39592
PZ
2198 for_each_sibling_event(sibling, event) {
2199 if (!__pmu_filter_match(sibling))
2c81a647
MR
2200 return 0;
2201 }
2202
2203 return 1;
2204}
2205
fa66f07a
SE
2206static inline int
2207event_filter_match(struct perf_event *event)
2208{
0b8f1e2e
PZ
2209 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2210 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
2211}
2212
9ffcfa6f
SE
2213static void
2214event_sched_out(struct perf_event *event,
3b6f9e5c 2215 struct perf_cpu_context *cpuctx,
cdd6c482 2216 struct perf_event_context *ctx)
3b6f9e5c 2217{
0d3d73aa 2218 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
2219
2220 WARN_ON_ONCE(event->ctx != ctx);
2221 lockdep_assert_held(&ctx->lock);
2222
cdd6c482 2223 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 2224 return;
3b6f9e5c 2225
6668128a
PZ
2226 /*
2227 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2228 * we can schedule events _OUT_ individually through things like
2229 * __perf_remove_from_context().
2230 */
2231 list_del_init(&event->active_list);
2232
44377277
AS
2233 perf_pmu_disable(event->pmu);
2234
28a967c3
PZ
2235 event->pmu->del(event, 0);
2236 event->oncpu = -1;
0d3d73aa 2237
1d54ad94
PZ
2238 if (READ_ONCE(event->pending_disable) >= 0) {
2239 WRITE_ONCE(event->pending_disable, -1);
33238c50 2240 perf_cgroup_event_disable(event, ctx);
0d3d73aa 2241 state = PERF_EVENT_STATE_OFF;
970892a9 2242 }
0d3d73aa 2243 perf_event_set_state(event, state);
3b6f9e5c 2244
cdd6c482 2245 if (!is_software_event(event))
3b6f9e5c 2246 cpuctx->active_oncpu--;
2fde4f94
MR
2247 if (!--ctx->nr_active)
2248 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
2249 if (event->attr.freq && event->attr.sample_freq)
2250 ctx->nr_freq--;
cdd6c482 2251 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 2252 cpuctx->exclusive = 0;
44377277
AS
2253
2254 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2255}
2256
d859e29f 2257static void
cdd6c482 2258group_sched_out(struct perf_event *group_event,
d859e29f 2259 struct perf_cpu_context *cpuctx,
cdd6c482 2260 struct perf_event_context *ctx)
d859e29f 2261{
cdd6c482 2262 struct perf_event *event;
0d3d73aa
PZ
2263
2264 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2265 return;
d859e29f 2266
3f005e7d
MR
2267 perf_pmu_disable(ctx->pmu);
2268
cdd6c482 2269 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
2270
2271 /*
2272 * Schedule out siblings (if any):
2273 */
edb39592 2274 for_each_sibling_event(event, group_event)
cdd6c482 2275 event_sched_out(event, cpuctx, ctx);
d859e29f 2276
3f005e7d
MR
2277 perf_pmu_enable(ctx->pmu);
2278
0d3d73aa 2279 if (group_event->attr.exclusive)
d859e29f
PM
2280 cpuctx->exclusive = 0;
2281}
2282
45a0e07a 2283#define DETACH_GROUP 0x01UL
0017960f 2284
0793a61d 2285/*
cdd6c482 2286 * Cross CPU call to remove a performance event
0793a61d 2287 *
cdd6c482 2288 * We disable the event on the hardware level first. After that we
0793a61d
TG
2289 * remove it from the context list.
2290 */
fae3fde6
PZ
2291static void
2292__perf_remove_from_context(struct perf_event *event,
2293 struct perf_cpu_context *cpuctx,
2294 struct perf_event_context *ctx,
2295 void *info)
0793a61d 2296{
45a0e07a 2297 unsigned long flags = (unsigned long)info;
0793a61d 2298
3c5c8711
PZ
2299 if (ctx->is_active & EVENT_TIME) {
2300 update_context_time(ctx);
2301 update_cgrp_time_from_cpuctx(cpuctx);
2302 }
2303
cdd6c482 2304 event_sched_out(event, cpuctx, ctx);
45a0e07a 2305 if (flags & DETACH_GROUP)
46ce0fe9 2306 perf_group_detach(event);
cdd6c482 2307 list_del_event(event, ctx);
39a43640
PZ
2308
2309 if (!ctx->nr_events && ctx->is_active) {
64ce3126 2310 ctx->is_active = 0;
90c91dfb 2311 ctx->rotate_necessary = 0;
39a43640
PZ
2312 if (ctx->task) {
2313 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2314 cpuctx->task_ctx = NULL;
2315 }
64ce3126 2316 }
0793a61d
TG
2317}
2318
0793a61d 2319/*
cdd6c482 2320 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2321 *
cdd6c482
IM
2322 * If event->ctx is a cloned context, callers must make sure that
2323 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2324 * remains valid. This is OK when called from perf_release since
2325 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2326 * When called from perf_event_exit_task, it's OK because the
c93f7669 2327 * context has been detached from its task.
0793a61d 2328 */
45a0e07a 2329static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2330{
a76a82a3
PZ
2331 struct perf_event_context *ctx = event->ctx;
2332
2333 lockdep_assert_held(&ctx->mutex);
0793a61d 2334
45a0e07a 2335 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
2336
2337 /*
2338 * The above event_function_call() can NO-OP when it hits
2339 * TASK_TOMBSTONE. In that case we must already have been detached
2340 * from the context (by perf_event_exit_event()) but the grouping
2341 * might still be in-tact.
2342 */
2343 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2344 if ((flags & DETACH_GROUP) &&
2345 (event->attach_state & PERF_ATTACH_GROUP)) {
2346 /*
2347 * Since in that case we cannot possibly be scheduled, simply
2348 * detach now.
2349 */
2350 raw_spin_lock_irq(&ctx->lock);
2351 perf_group_detach(event);
2352 raw_spin_unlock_irq(&ctx->lock);
2353 }
0793a61d
TG
2354}
2355
d859e29f 2356/*
cdd6c482 2357 * Cross CPU call to disable a performance event
d859e29f 2358 */
fae3fde6
PZ
2359static void __perf_event_disable(struct perf_event *event,
2360 struct perf_cpu_context *cpuctx,
2361 struct perf_event_context *ctx,
2362 void *info)
7b648018 2363{
fae3fde6
PZ
2364 if (event->state < PERF_EVENT_STATE_INACTIVE)
2365 return;
7b648018 2366
3c5c8711
PZ
2367 if (ctx->is_active & EVENT_TIME) {
2368 update_context_time(ctx);
2369 update_cgrp_time_from_event(event);
2370 }
2371
fae3fde6
PZ
2372 if (event == event->group_leader)
2373 group_sched_out(event, cpuctx, ctx);
2374 else
2375 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
2376
2377 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
33238c50 2378 perf_cgroup_event_disable(event, ctx);
7b648018
PZ
2379}
2380
d859e29f 2381/*
788faab7 2382 * Disable an event.
c93f7669 2383 *
cdd6c482
IM
2384 * If event->ctx is a cloned context, callers must make sure that
2385 * every task struct that event->ctx->task could possibly point to
9f014e3a 2386 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2387 * perf_event_for_each_child or perf_event_for_each because they
2388 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2389 * goes to exit will block in perf_event_exit_event().
2390 *
cdd6c482 2391 * When called from perf_pending_event it's OK because event->ctx
c93f7669 2392 * is the current context on this CPU and preemption is disabled,
cdd6c482 2393 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2394 */
f63a8daa 2395static void _perf_event_disable(struct perf_event *event)
d859e29f 2396{
cdd6c482 2397 struct perf_event_context *ctx = event->ctx;
d859e29f 2398
e625cce1 2399 raw_spin_lock_irq(&ctx->lock);
7b648018 2400 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2401 raw_spin_unlock_irq(&ctx->lock);
7b648018 2402 return;
53cfbf59 2403 }
e625cce1 2404 raw_spin_unlock_irq(&ctx->lock);
7b648018 2405
fae3fde6
PZ
2406 event_function_call(event, __perf_event_disable, NULL);
2407}
2408
2409void perf_event_disable_local(struct perf_event *event)
2410{
2411 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2412}
f63a8daa
PZ
2413
2414/*
2415 * Strictly speaking kernel users cannot create groups and therefore this
2416 * interface does not need the perf_event_ctx_lock() magic.
2417 */
2418void perf_event_disable(struct perf_event *event)
2419{
2420 struct perf_event_context *ctx;
2421
2422 ctx = perf_event_ctx_lock(event);
2423 _perf_event_disable(event);
2424 perf_event_ctx_unlock(event, ctx);
2425}
dcfce4a0 2426EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2427
5aab90ce
JO
2428void perf_event_disable_inatomic(struct perf_event *event)
2429{
1d54ad94
PZ
2430 WRITE_ONCE(event->pending_disable, smp_processor_id());
2431 /* can fail, see perf_pending_event_disable() */
5aab90ce
JO
2432 irq_work_queue(&event->pending);
2433}
2434
e5d1367f 2435static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2436 struct perf_event_context *ctx)
e5d1367f
SE
2437{
2438 /*
2439 * use the correct time source for the time snapshot
2440 *
2441 * We could get by without this by leveraging the
2442 * fact that to get to this function, the caller
2443 * has most likely already called update_context_time()
2444 * and update_cgrp_time_xx() and thus both timestamp
2445 * are identical (or very close). Given that tstamp is,
2446 * already adjusted for cgroup, we could say that:
2447 * tstamp - ctx->timestamp
2448 * is equivalent to
2449 * tstamp - cgrp->timestamp.
2450 *
2451 * Then, in perf_output_read(), the calculation would
2452 * work with no changes because:
2453 * - event is guaranteed scheduled in
2454 * - no scheduled out in between
2455 * - thus the timestamp would be the same
2456 *
2457 * But this is a bit hairy.
2458 *
2459 * So instead, we have an explicit cgroup call to remain
2460 * within the time time source all along. We believe it
2461 * is cleaner and simpler to understand.
2462 */
2463 if (is_cgroup_event(event))
0d3d73aa 2464 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2465 else
0d3d73aa 2466 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2467}
2468
4fe757dd
PZ
2469#define MAX_INTERRUPTS (~0ULL)
2470
2471static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2472static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2473
235c7fc7 2474static int
9ffcfa6f 2475event_sched_in(struct perf_event *event,
235c7fc7 2476 struct perf_cpu_context *cpuctx,
6e37738a 2477 struct perf_event_context *ctx)
235c7fc7 2478{
44377277 2479 int ret = 0;
4158755d 2480
ab6f824c
PZ
2481 WARN_ON_ONCE(event->ctx != ctx);
2482
63342411
PZ
2483 lockdep_assert_held(&ctx->lock);
2484
cdd6c482 2485 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2486 return 0;
2487
95ff4ca2
AS
2488 WRITE_ONCE(event->oncpu, smp_processor_id());
2489 /*
0c1cbc18
PZ
2490 * Order event::oncpu write to happen before the ACTIVE state is
2491 * visible. This allows perf_event_{stop,read}() to observe the correct
2492 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2493 */
2494 smp_wmb();
0d3d73aa 2495 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2496
2497 /*
2498 * Unthrottle events, since we scheduled we might have missed several
2499 * ticks already, also for a heavily scheduling task there is little
2500 * guarantee it'll get a tick in a timely manner.
2501 */
2502 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2503 perf_log_throttle(event, 1);
2504 event->hw.interrupts = 0;
2505 }
2506
44377277
AS
2507 perf_pmu_disable(event->pmu);
2508
0d3d73aa 2509 perf_set_shadow_time(event, ctx);
72f669c0 2510
ec0d7729
AS
2511 perf_log_itrace_start(event);
2512
a4eaf7f1 2513 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2514 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2515 event->oncpu = -1;
44377277
AS
2516 ret = -EAGAIN;
2517 goto out;
235c7fc7
IM
2518 }
2519
cdd6c482 2520 if (!is_software_event(event))
3b6f9e5c 2521 cpuctx->active_oncpu++;
2fde4f94
MR
2522 if (!ctx->nr_active++)
2523 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2524 if (event->attr.freq && event->attr.sample_freq)
2525 ctx->nr_freq++;
235c7fc7 2526
cdd6c482 2527 if (event->attr.exclusive)
3b6f9e5c
PM
2528 cpuctx->exclusive = 1;
2529
44377277
AS
2530out:
2531 perf_pmu_enable(event->pmu);
2532
2533 return ret;
235c7fc7
IM
2534}
2535
6751b71e 2536static int
cdd6c482 2537group_sched_in(struct perf_event *group_event,
6751b71e 2538 struct perf_cpu_context *cpuctx,
6e37738a 2539 struct perf_event_context *ctx)
6751b71e 2540{
6bde9b6c 2541 struct perf_event *event, *partial_group = NULL;
4a234593 2542 struct pmu *pmu = ctx->pmu;
6751b71e 2543
cdd6c482 2544 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2545 return 0;
2546
fbbe0701 2547 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2548
9ffcfa6f 2549 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2550 pmu->cancel_txn(pmu);
272325c4 2551 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2552 return -EAGAIN;
90151c35 2553 }
6751b71e
PM
2554
2555 /*
2556 * Schedule in siblings as one group (if any):
2557 */
edb39592 2558 for_each_sibling_event(event, group_event) {
9ffcfa6f 2559 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2560 partial_group = event;
6751b71e
PM
2561 goto group_error;
2562 }
2563 }
2564
9ffcfa6f 2565 if (!pmu->commit_txn(pmu))
6e85158c 2566 return 0;
9ffcfa6f 2567
6751b71e
PM
2568group_error:
2569 /*
2570 * Groups can be scheduled in as one unit only, so undo any
2571 * partial group before returning:
0d3d73aa 2572 * The events up to the failed event are scheduled out normally.
6751b71e 2573 */
edb39592 2574 for_each_sibling_event(event, group_event) {
cdd6c482 2575 if (event == partial_group)
0d3d73aa 2576 break;
d7842da4 2577
0d3d73aa 2578 event_sched_out(event, cpuctx, ctx);
6751b71e 2579 }
9ffcfa6f 2580 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2581
ad5133b7 2582 pmu->cancel_txn(pmu);
90151c35 2583
272325c4 2584 perf_mux_hrtimer_restart(cpuctx);
9e630205 2585
6751b71e
PM
2586 return -EAGAIN;
2587}
2588
3b6f9e5c 2589/*
cdd6c482 2590 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2591 */
cdd6c482 2592static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2593 struct perf_cpu_context *cpuctx,
2594 int can_add_hw)
2595{
2596 /*
cdd6c482 2597 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2598 */
4ff6a8de 2599 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2600 return 1;
2601 /*
2602 * If an exclusive group is already on, no other hardware
cdd6c482 2603 * events can go on.
3b6f9e5c
PM
2604 */
2605 if (cpuctx->exclusive)
2606 return 0;
2607 /*
2608 * If this group is exclusive and there are already
cdd6c482 2609 * events on the CPU, it can't go on.
3b6f9e5c 2610 */
cdd6c482 2611 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2612 return 0;
2613 /*
2614 * Otherwise, try to add it if all previous groups were able
2615 * to go on.
2616 */
2617 return can_add_hw;
2618}
2619
cdd6c482
IM
2620static void add_event_to_ctx(struct perf_event *event,
2621 struct perf_event_context *ctx)
53cfbf59 2622{
cdd6c482 2623 list_add_event(event, ctx);
8a49542c 2624 perf_group_attach(event);
53cfbf59
PM
2625}
2626
bd2afa49
PZ
2627static void ctx_sched_out(struct perf_event_context *ctx,
2628 struct perf_cpu_context *cpuctx,
2629 enum event_type_t event_type);
2c29ef0f
PZ
2630static void
2631ctx_sched_in(struct perf_event_context *ctx,
2632 struct perf_cpu_context *cpuctx,
2633 enum event_type_t event_type,
2634 struct task_struct *task);
fe4b04fa 2635
bd2afa49 2636static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2637 struct perf_event_context *ctx,
2638 enum event_type_t event_type)
bd2afa49
PZ
2639{
2640 if (!cpuctx->task_ctx)
2641 return;
2642
2643 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2644 return;
2645
487f05e1 2646 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2647}
2648
dce5855b
PZ
2649static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2650 struct perf_event_context *ctx,
2651 struct task_struct *task)
2652{
2653 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2654 if (ctx)
2655 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2656 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2657 if (ctx)
2658 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2659}
2660
487f05e1
AS
2661/*
2662 * We want to maintain the following priority of scheduling:
2663 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2664 * - task pinned (EVENT_PINNED)
2665 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2666 * - task flexible (EVENT_FLEXIBLE).
2667 *
2668 * In order to avoid unscheduling and scheduling back in everything every
2669 * time an event is added, only do it for the groups of equal priority and
2670 * below.
2671 *
2672 * This can be called after a batch operation on task events, in which case
2673 * event_type is a bit mask of the types of events involved. For CPU events,
2674 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2675 */
3e349507 2676static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2677 struct perf_event_context *task_ctx,
2678 enum event_type_t event_type)
0017960f 2679{
bd903afe 2680 enum event_type_t ctx_event_type;
487f05e1
AS
2681 bool cpu_event = !!(event_type & EVENT_CPU);
2682
2683 /*
2684 * If pinned groups are involved, flexible groups also need to be
2685 * scheduled out.
2686 */
2687 if (event_type & EVENT_PINNED)
2688 event_type |= EVENT_FLEXIBLE;
2689
bd903afe
SL
2690 ctx_event_type = event_type & EVENT_ALL;
2691
3e349507
PZ
2692 perf_pmu_disable(cpuctx->ctx.pmu);
2693 if (task_ctx)
487f05e1
AS
2694 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2695
2696 /*
2697 * Decide which cpu ctx groups to schedule out based on the types
2698 * of events that caused rescheduling:
2699 * - EVENT_CPU: schedule out corresponding groups;
2700 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2701 * - otherwise, do nothing more.
2702 */
2703 if (cpu_event)
2704 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2705 else if (ctx_event_type & EVENT_PINNED)
2706 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2707
3e349507
PZ
2708 perf_event_sched_in(cpuctx, task_ctx, current);
2709 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2710}
2711
c68d224e
SE
2712void perf_pmu_resched(struct pmu *pmu)
2713{
2714 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2715 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2716
2717 perf_ctx_lock(cpuctx, task_ctx);
2718 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2719 perf_ctx_unlock(cpuctx, task_ctx);
2720}
2721
0793a61d 2722/*
cdd6c482 2723 * Cross CPU call to install and enable a performance event
682076ae 2724 *
a096309b
PZ
2725 * Very similar to remote_function() + event_function() but cannot assume that
2726 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2727 */
fe4b04fa 2728static int __perf_install_in_context(void *info)
0793a61d 2729{
a096309b
PZ
2730 struct perf_event *event = info;
2731 struct perf_event_context *ctx = event->ctx;
108b02cf 2732 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2733 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2734 bool reprogram = true;
a096309b 2735 int ret = 0;
0793a61d 2736
63b6da39 2737 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2738 if (ctx->task) {
b58f6b0d
PZ
2739 raw_spin_lock(&ctx->lock);
2740 task_ctx = ctx;
a096309b 2741
63cae12b 2742 reprogram = (ctx->task == current);
b58f6b0d 2743
39a43640 2744 /*
63cae12b
PZ
2745 * If the task is running, it must be running on this CPU,
2746 * otherwise we cannot reprogram things.
2747 *
2748 * If its not running, we don't care, ctx->lock will
2749 * serialize against it becoming runnable.
39a43640 2750 */
63cae12b
PZ
2751 if (task_curr(ctx->task) && !reprogram) {
2752 ret = -ESRCH;
2753 goto unlock;
2754 }
a096309b 2755
63cae12b 2756 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2757 } else if (task_ctx) {
2758 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2759 }
b58f6b0d 2760
33801b94 2761#ifdef CONFIG_CGROUP_PERF
33238c50 2762 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
33801b94 2763 /*
2764 * If the current cgroup doesn't match the event's
2765 * cgroup, we should not try to schedule it.
2766 */
2767 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2768 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2769 event->cgrp->css.cgroup);
2770 }
2771#endif
2772
63cae12b 2773 if (reprogram) {
a096309b
PZ
2774 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2775 add_event_to_ctx(event, ctx);
487f05e1 2776 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2777 } else {
2778 add_event_to_ctx(event, ctx);
2779 }
2780
63b6da39 2781unlock:
2c29ef0f 2782 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2783
a096309b 2784 return ret;
0793a61d
TG
2785}
2786
8a58ddae
AS
2787static bool exclusive_event_installable(struct perf_event *event,
2788 struct perf_event_context *ctx);
2789
0793a61d 2790/*
a096309b
PZ
2791 * Attach a performance event to a context.
2792 *
2793 * Very similar to event_function_call, see comment there.
0793a61d
TG
2794 */
2795static void
cdd6c482
IM
2796perf_install_in_context(struct perf_event_context *ctx,
2797 struct perf_event *event,
0793a61d
TG
2798 int cpu)
2799{
a096309b 2800 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2801
fe4b04fa
PZ
2802 lockdep_assert_held(&ctx->mutex);
2803
8a58ddae
AS
2804 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2805
0cda4c02
YZ
2806 if (event->cpu != -1)
2807 event->cpu = cpu;
c3f00c70 2808
0b8f1e2e
PZ
2809 /*
2810 * Ensures that if we can observe event->ctx, both the event and ctx
2811 * will be 'complete'. See perf_iterate_sb_cpu().
2812 */
2813 smp_store_release(&event->ctx, ctx);
2814
db0503e4
PZ
2815 /*
2816 * perf_event_attr::disabled events will not run and can be initialized
2817 * without IPI. Except when this is the first event for the context, in
2818 * that case we need the magic of the IPI to set ctx->is_active.
2819 *
2820 * The IOC_ENABLE that is sure to follow the creation of a disabled
2821 * event will issue the IPI and reprogram the hardware.
2822 */
2823 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2824 raw_spin_lock_irq(&ctx->lock);
2825 if (ctx->task == TASK_TOMBSTONE) {
2826 raw_spin_unlock_irq(&ctx->lock);
2827 return;
2828 }
2829 add_event_to_ctx(event, ctx);
2830 raw_spin_unlock_irq(&ctx->lock);
2831 return;
2832 }
2833
a096309b
PZ
2834 if (!task) {
2835 cpu_function_call(cpu, __perf_install_in_context, event);
2836 return;
2837 }
2838
2839 /*
2840 * Should not happen, we validate the ctx is still alive before calling.
2841 */
2842 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2843 return;
2844
39a43640
PZ
2845 /*
2846 * Installing events is tricky because we cannot rely on ctx->is_active
2847 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2848 *
2849 * Instead we use task_curr(), which tells us if the task is running.
2850 * However, since we use task_curr() outside of rq::lock, we can race
2851 * against the actual state. This means the result can be wrong.
2852 *
2853 * If we get a false positive, we retry, this is harmless.
2854 *
2855 * If we get a false negative, things are complicated. If we are after
2856 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2857 * value must be correct. If we're before, it doesn't matter since
2858 * perf_event_context_sched_in() will program the counter.
2859 *
2860 * However, this hinges on the remote context switch having observed
2861 * our task->perf_event_ctxp[] store, such that it will in fact take
2862 * ctx::lock in perf_event_context_sched_in().
2863 *
2864 * We do this by task_function_call(), if the IPI fails to hit the task
2865 * we know any future context switch of task must see the
2866 * perf_event_ctpx[] store.
39a43640 2867 */
63cae12b 2868
63b6da39 2869 /*
63cae12b
PZ
2870 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2871 * task_cpu() load, such that if the IPI then does not find the task
2872 * running, a future context switch of that task must observe the
2873 * store.
63b6da39 2874 */
63cae12b
PZ
2875 smp_mb();
2876again:
2877 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2878 return;
2879
2880 raw_spin_lock_irq(&ctx->lock);
2881 task = ctx->task;
84c4e620 2882 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2883 /*
2884 * Cannot happen because we already checked above (which also
2885 * cannot happen), and we hold ctx->mutex, which serializes us
2886 * against perf_event_exit_task_context().
2887 */
63b6da39
PZ
2888 raw_spin_unlock_irq(&ctx->lock);
2889 return;
2890 }
39a43640 2891 /*
63cae12b
PZ
2892 * If the task is not running, ctx->lock will avoid it becoming so,
2893 * thus we can safely install the event.
39a43640 2894 */
63cae12b
PZ
2895 if (task_curr(task)) {
2896 raw_spin_unlock_irq(&ctx->lock);
2897 goto again;
2898 }
2899 add_event_to_ctx(event, ctx);
2900 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2901}
2902
d859e29f 2903/*
cdd6c482 2904 * Cross CPU call to enable a performance event
d859e29f 2905 */
fae3fde6
PZ
2906static void __perf_event_enable(struct perf_event *event,
2907 struct perf_cpu_context *cpuctx,
2908 struct perf_event_context *ctx,
2909 void *info)
04289bb9 2910{
cdd6c482 2911 struct perf_event *leader = event->group_leader;
fae3fde6 2912 struct perf_event_context *task_ctx;
04289bb9 2913
6e801e01
PZ
2914 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2915 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2916 return;
3cbed429 2917
bd2afa49
PZ
2918 if (ctx->is_active)
2919 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2920
0d3d73aa 2921 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
33238c50 2922 perf_cgroup_event_enable(event, ctx);
04289bb9 2923
fae3fde6
PZ
2924 if (!ctx->is_active)
2925 return;
2926
e5d1367f 2927 if (!event_filter_match(event)) {
bd2afa49 2928 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2929 return;
e5d1367f 2930 }
f4c4176f 2931
04289bb9 2932 /*
cdd6c482 2933 * If the event is in a group and isn't the group leader,
d859e29f 2934 * then don't put it on unless the group is on.
04289bb9 2935 */
bd2afa49
PZ
2936 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2937 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2938 return;
bd2afa49 2939 }
fe4b04fa 2940
fae3fde6
PZ
2941 task_ctx = cpuctx->task_ctx;
2942 if (ctx->task)
2943 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2944
487f05e1 2945 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2946}
2947
d859e29f 2948/*
788faab7 2949 * Enable an event.
c93f7669 2950 *
cdd6c482
IM
2951 * If event->ctx is a cloned context, callers must make sure that
2952 * every task struct that event->ctx->task could possibly point to
c93f7669 2953 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2954 * perf_event_for_each_child or perf_event_for_each as described
2955 * for perf_event_disable.
d859e29f 2956 */
f63a8daa 2957static void _perf_event_enable(struct perf_event *event)
d859e29f 2958{
cdd6c482 2959 struct perf_event_context *ctx = event->ctx;
d859e29f 2960
7b648018 2961 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2962 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2963 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2964 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2965 return;
2966 }
2967
d859e29f 2968 /*
cdd6c482 2969 * If the event is in error state, clear that first.
7b648018
PZ
2970 *
2971 * That way, if we see the event in error state below, we know that it
2972 * has gone back into error state, as distinct from the task having
2973 * been scheduled away before the cross-call arrived.
d859e29f 2974 */
cdd6c482
IM
2975 if (event->state == PERF_EVENT_STATE_ERROR)
2976 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2977 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2978
fae3fde6 2979 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2980}
f63a8daa
PZ
2981
2982/*
2983 * See perf_event_disable();
2984 */
2985void perf_event_enable(struct perf_event *event)
2986{
2987 struct perf_event_context *ctx;
2988
2989 ctx = perf_event_ctx_lock(event);
2990 _perf_event_enable(event);
2991 perf_event_ctx_unlock(event, ctx);
2992}
dcfce4a0 2993EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2994
375637bc
AS
2995struct stop_event_data {
2996 struct perf_event *event;
2997 unsigned int restart;
2998};
2999
95ff4ca2
AS
3000static int __perf_event_stop(void *info)
3001{
375637bc
AS
3002 struct stop_event_data *sd = info;
3003 struct perf_event *event = sd->event;
95ff4ca2 3004
375637bc 3005 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
3006 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3007 return 0;
3008
3009 /* matches smp_wmb() in event_sched_in() */
3010 smp_rmb();
3011
3012 /*
3013 * There is a window with interrupts enabled before we get here,
3014 * so we need to check again lest we try to stop another CPU's event.
3015 */
3016 if (READ_ONCE(event->oncpu) != smp_processor_id())
3017 return -EAGAIN;
3018
3019 event->pmu->stop(event, PERF_EF_UPDATE);
3020
375637bc
AS
3021 /*
3022 * May race with the actual stop (through perf_pmu_output_stop()),
3023 * but it is only used for events with AUX ring buffer, and such
3024 * events will refuse to restart because of rb::aux_mmap_count==0,
3025 * see comments in perf_aux_output_begin().
3026 *
788faab7 3027 * Since this is happening on an event-local CPU, no trace is lost
375637bc
AS
3028 * while restarting.
3029 */
3030 if (sd->restart)
c9bbdd48 3031 event->pmu->start(event, 0);
375637bc 3032
95ff4ca2
AS
3033 return 0;
3034}
3035
767ae086 3036static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
3037{
3038 struct stop_event_data sd = {
3039 .event = event,
767ae086 3040 .restart = restart,
375637bc
AS
3041 };
3042 int ret = 0;
3043
3044 do {
3045 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3046 return 0;
3047
3048 /* matches smp_wmb() in event_sched_in() */
3049 smp_rmb();
3050
3051 /*
3052 * We only want to restart ACTIVE events, so if the event goes
3053 * inactive here (event->oncpu==-1), there's nothing more to do;
3054 * fall through with ret==-ENXIO.
3055 */
3056 ret = cpu_function_call(READ_ONCE(event->oncpu),
3057 __perf_event_stop, &sd);
3058 } while (ret == -EAGAIN);
3059
3060 return ret;
3061}
3062
3063/*
3064 * In order to contain the amount of racy and tricky in the address filter
3065 * configuration management, it is a two part process:
3066 *
3067 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3068 * we update the addresses of corresponding vmas in
c60f83b8 3069 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
375637bc
AS
3070 * (p2) when an event is scheduled in (pmu::add), it calls
3071 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3072 * if the generation has changed since the previous call.
3073 *
3074 * If (p1) happens while the event is active, we restart it to force (p2).
3075 *
3076 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3077 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3078 * ioctl;
3079 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3080 * registered mapping, called for every new mmap(), with mm::mmap_sem down
3081 * for reading;
3082 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3083 * of exec.
3084 */
3085void perf_event_addr_filters_sync(struct perf_event *event)
3086{
3087 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3088
3089 if (!has_addr_filter(event))
3090 return;
3091
3092 raw_spin_lock(&ifh->lock);
3093 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3094 event->pmu->addr_filters_sync(event);
3095 event->hw.addr_filters_gen = event->addr_filters_gen;
3096 }
3097 raw_spin_unlock(&ifh->lock);
3098}
3099EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3100
f63a8daa 3101static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 3102{
2023b359 3103 /*
cdd6c482 3104 * not supported on inherited events
2023b359 3105 */
2e939d1d 3106 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
3107 return -EINVAL;
3108
cdd6c482 3109 atomic_add(refresh, &event->event_limit);
f63a8daa 3110 _perf_event_enable(event);
2023b359
PZ
3111
3112 return 0;
79f14641 3113}
f63a8daa
PZ
3114
3115/*
3116 * See perf_event_disable()
3117 */
3118int perf_event_refresh(struct perf_event *event, int refresh)
3119{
3120 struct perf_event_context *ctx;
3121 int ret;
3122
3123 ctx = perf_event_ctx_lock(event);
3124 ret = _perf_event_refresh(event, refresh);
3125 perf_event_ctx_unlock(event, ctx);
3126
3127 return ret;
3128}
26ca5c11 3129EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 3130
32ff77e8
MC
3131static int perf_event_modify_breakpoint(struct perf_event *bp,
3132 struct perf_event_attr *attr)
3133{
3134 int err;
3135
3136 _perf_event_disable(bp);
3137
3138 err = modify_user_hw_breakpoint_check(bp, attr, true);
32ff77e8 3139
bf06278c 3140 if (!bp->attr.disabled)
32ff77e8 3141 _perf_event_enable(bp);
bf06278c
JO
3142
3143 return err;
32ff77e8
MC
3144}
3145
3146static int perf_event_modify_attr(struct perf_event *event,
3147 struct perf_event_attr *attr)
3148{
3149 if (event->attr.type != attr->type)
3150 return -EINVAL;
3151
3152 switch (event->attr.type) {
3153 case PERF_TYPE_BREAKPOINT:
3154 return perf_event_modify_breakpoint(event, attr);
3155 default:
3156 /* Place holder for future additions. */
3157 return -EOPNOTSUPP;
3158 }
3159}
3160
5b0311e1
FW
3161static void ctx_sched_out(struct perf_event_context *ctx,
3162 struct perf_cpu_context *cpuctx,
3163 enum event_type_t event_type)
235c7fc7 3164{
6668128a 3165 struct perf_event *event, *tmp;
db24d33e 3166 int is_active = ctx->is_active;
235c7fc7 3167
c994d613 3168 lockdep_assert_held(&ctx->lock);
235c7fc7 3169
39a43640
PZ
3170 if (likely(!ctx->nr_events)) {
3171 /*
3172 * See __perf_remove_from_context().
3173 */
3174 WARN_ON_ONCE(ctx->is_active);
3175 if (ctx->task)
3176 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 3177 return;
39a43640
PZ
3178 }
3179
db24d33e 3180 ctx->is_active &= ~event_type;
3cbaa590
PZ
3181 if (!(ctx->is_active & EVENT_ALL))
3182 ctx->is_active = 0;
3183
63e30d3e
PZ
3184 if (ctx->task) {
3185 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3186 if (!ctx->is_active)
3187 cpuctx->task_ctx = NULL;
3188 }
facc4307 3189
8fdc6539
PZ
3190 /*
3191 * Always update time if it was set; not only when it changes.
3192 * Otherwise we can 'forget' to update time for any but the last
3193 * context we sched out. For example:
3194 *
3195 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3196 * ctx_sched_out(.event_type = EVENT_PINNED)
3197 *
3198 * would only update time for the pinned events.
3199 */
3cbaa590
PZ
3200 if (is_active & EVENT_TIME) {
3201 /* update (and stop) ctx time */
3202 update_context_time(ctx);
3203 update_cgrp_time_from_cpuctx(cpuctx);
3204 }
3205
8fdc6539
PZ
3206 is_active ^= ctx->is_active; /* changed bits */
3207
3cbaa590 3208 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 3209 return;
5b0311e1 3210
075e0b00 3211 perf_pmu_disable(ctx->pmu);
3cbaa590 3212 if (is_active & EVENT_PINNED) {
6668128a 3213 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
889ff015 3214 group_sched_out(event, cpuctx, ctx);
9ed6060d 3215 }
889ff015 3216
3cbaa590 3217 if (is_active & EVENT_FLEXIBLE) {
6668128a 3218 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
8c9ed8e1 3219 group_sched_out(event, cpuctx, ctx);
90c91dfb
PZ
3220
3221 /*
3222 * Since we cleared EVENT_FLEXIBLE, also clear
3223 * rotate_necessary, is will be reset by
3224 * ctx_flexible_sched_in() when needed.
3225 */
3226 ctx->rotate_necessary = 0;
9ed6060d 3227 }
1b9a644f 3228 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
3229}
3230
564c2b21 3231/*
5a3126d4
PZ
3232 * Test whether two contexts are equivalent, i.e. whether they have both been
3233 * cloned from the same version of the same context.
3234 *
3235 * Equivalence is measured using a generation number in the context that is
3236 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3237 * and list_del_event().
564c2b21 3238 */
cdd6c482
IM
3239static int context_equiv(struct perf_event_context *ctx1,
3240 struct perf_event_context *ctx2)
564c2b21 3241{
211de6eb
PZ
3242 lockdep_assert_held(&ctx1->lock);
3243 lockdep_assert_held(&ctx2->lock);
3244
5a3126d4
PZ
3245 /* Pinning disables the swap optimization */
3246 if (ctx1->pin_count || ctx2->pin_count)
3247 return 0;
3248
3249 /* If ctx1 is the parent of ctx2 */
3250 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3251 return 1;
3252
3253 /* If ctx2 is the parent of ctx1 */
3254 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3255 return 1;
3256
3257 /*
3258 * If ctx1 and ctx2 have the same parent; we flatten the parent
3259 * hierarchy, see perf_event_init_context().
3260 */
3261 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3262 ctx1->parent_gen == ctx2->parent_gen)
3263 return 1;
3264
3265 /* Unmatched */
3266 return 0;
564c2b21
PM
3267}
3268
cdd6c482
IM
3269static void __perf_event_sync_stat(struct perf_event *event,
3270 struct perf_event *next_event)
bfbd3381
PZ
3271{
3272 u64 value;
3273
cdd6c482 3274 if (!event->attr.inherit_stat)
bfbd3381
PZ
3275 return;
3276
3277 /*
cdd6c482 3278 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3279 * because we're in the middle of a context switch and have IRQs
3280 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3281 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3282 * don't need to use it.
3283 */
0d3d73aa 3284 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3285 event->pmu->read(event);
bfbd3381 3286
0d3d73aa 3287 perf_event_update_time(event);
bfbd3381
PZ
3288
3289 /*
cdd6c482 3290 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3291 * values when we flip the contexts.
3292 */
e7850595
PZ
3293 value = local64_read(&next_event->count);
3294 value = local64_xchg(&event->count, value);
3295 local64_set(&next_event->count, value);
bfbd3381 3296
cdd6c482
IM
3297 swap(event->total_time_enabled, next_event->total_time_enabled);
3298 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3299
bfbd3381 3300 /*
19d2e755 3301 * Since we swizzled the values, update the user visible data too.
bfbd3381 3302 */
cdd6c482
IM
3303 perf_event_update_userpage(event);
3304 perf_event_update_userpage(next_event);
bfbd3381
PZ
3305}
3306
cdd6c482
IM
3307static void perf_event_sync_stat(struct perf_event_context *ctx,
3308 struct perf_event_context *next_ctx)
bfbd3381 3309{
cdd6c482 3310 struct perf_event *event, *next_event;
bfbd3381
PZ
3311
3312 if (!ctx->nr_stat)
3313 return;
3314
02ffdbc8
PZ
3315 update_context_time(ctx);
3316
cdd6c482
IM
3317 event = list_first_entry(&ctx->event_list,
3318 struct perf_event, event_entry);
bfbd3381 3319
cdd6c482
IM
3320 next_event = list_first_entry(&next_ctx->event_list,
3321 struct perf_event, event_entry);
bfbd3381 3322
cdd6c482
IM
3323 while (&event->event_entry != &ctx->event_list &&
3324 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3325
cdd6c482 3326 __perf_event_sync_stat(event, next_event);
bfbd3381 3327
cdd6c482
IM
3328 event = list_next_entry(event, event_entry);
3329 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3330 }
3331}
3332
fe4b04fa
PZ
3333static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3334 struct task_struct *next)
0793a61d 3335{
8dc85d54 3336 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 3337 struct perf_event_context *next_ctx;
5a3126d4 3338 struct perf_event_context *parent, *next_parent;
108b02cf 3339 struct perf_cpu_context *cpuctx;
c93f7669 3340 int do_switch = 1;
0793a61d 3341
108b02cf
PZ
3342 if (likely(!ctx))
3343 return;
10989fb2 3344
108b02cf
PZ
3345 cpuctx = __get_cpu_context(ctx);
3346 if (!cpuctx->task_ctx)
0793a61d
TG
3347 return;
3348
c93f7669 3349 rcu_read_lock();
8dc85d54 3350 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
3351 if (!next_ctx)
3352 goto unlock;
3353
3354 parent = rcu_dereference(ctx->parent_ctx);
3355 next_parent = rcu_dereference(next_ctx->parent_ctx);
3356
3357 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3358 if (!parent && !next_parent)
5a3126d4
PZ
3359 goto unlock;
3360
3361 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3362 /*
3363 * Looks like the two contexts are clones, so we might be
3364 * able to optimize the context switch. We lock both
3365 * contexts and check that they are clones under the
3366 * lock (including re-checking that neither has been
3367 * uncloned in the meantime). It doesn't matter which
3368 * order we take the locks because no other cpu could
3369 * be trying to lock both of these tasks.
3370 */
e625cce1
TG
3371 raw_spin_lock(&ctx->lock);
3372 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3373 if (context_equiv(ctx, next_ctx)) {
c2b98a86
AB
3374 struct pmu *pmu = ctx->pmu;
3375
63b6da39
PZ
3376 WRITE_ONCE(ctx->task, next);
3377 WRITE_ONCE(next_ctx->task, task);
5a158c3c 3378
c2b98a86
AB
3379 /*
3380 * PMU specific parts of task perf context can require
3381 * additional synchronization. As an example of such
3382 * synchronization see implementation details of Intel
3383 * LBR call stack data profiling;
3384 */
3385 if (pmu->swap_task_ctx)
3386 pmu->swap_task_ctx(ctx, next_ctx);
3387 else
3388 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
5a158c3c 3389
63b6da39
PZ
3390 /*
3391 * RCU_INIT_POINTER here is safe because we've not
3392 * modified the ctx and the above modification of
3393 * ctx->task and ctx->task_ctx_data are immaterial
3394 * since those values are always verified under
3395 * ctx->lock which we're now holding.
3396 */
3397 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3398 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3399
c93f7669 3400 do_switch = 0;
bfbd3381 3401
cdd6c482 3402 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3403 }
e625cce1
TG
3404 raw_spin_unlock(&next_ctx->lock);
3405 raw_spin_unlock(&ctx->lock);
564c2b21 3406 }
5a3126d4 3407unlock:
c93f7669 3408 rcu_read_unlock();
564c2b21 3409
c93f7669 3410 if (do_switch) {
facc4307 3411 raw_spin_lock(&ctx->lock);
487f05e1 3412 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 3413 raw_spin_unlock(&ctx->lock);
c93f7669 3414 }
0793a61d
TG
3415}
3416
e48c1788
PZ
3417static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3418
ba532500
YZ
3419void perf_sched_cb_dec(struct pmu *pmu)
3420{
e48c1788
PZ
3421 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3422
ba532500 3423 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3424
3425 if (!--cpuctx->sched_cb_usage)
3426 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3427}
3428
e48c1788 3429
ba532500
YZ
3430void perf_sched_cb_inc(struct pmu *pmu)
3431{
e48c1788
PZ
3432 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3433
3434 if (!cpuctx->sched_cb_usage++)
3435 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3436
ba532500
YZ
3437 this_cpu_inc(perf_sched_cb_usages);
3438}
3439
3440/*
3441 * This function provides the context switch callback to the lower code
3442 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3443 *
3444 * This callback is relevant even to per-cpu events; for example multi event
3445 * PEBS requires this to provide PID/TID information. This requires we flush
3446 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3447 */
3448static void perf_pmu_sched_task(struct task_struct *prev,
3449 struct task_struct *next,
3450 bool sched_in)
3451{
3452 struct perf_cpu_context *cpuctx;
3453 struct pmu *pmu;
ba532500
YZ
3454
3455 if (prev == next)
3456 return;
3457
e48c1788 3458 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3459 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3460
e48c1788
PZ
3461 if (WARN_ON_ONCE(!pmu->sched_task))
3462 continue;
ba532500 3463
e48c1788
PZ
3464 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3465 perf_pmu_disable(pmu);
ba532500 3466
e48c1788 3467 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3468
e48c1788
PZ
3469 perf_pmu_enable(pmu);
3470 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3471 }
ba532500
YZ
3472}
3473
45ac1403
AH
3474static void perf_event_switch(struct task_struct *task,
3475 struct task_struct *next_prev, bool sched_in);
3476
8dc85d54
PZ
3477#define for_each_task_context_nr(ctxn) \
3478 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3479
3480/*
3481 * Called from scheduler to remove the events of the current task,
3482 * with interrupts disabled.
3483 *
3484 * We stop each event and update the event value in event->count.
3485 *
3486 * This does not protect us against NMI, but disable()
3487 * sets the disabled bit in the control field of event _before_
3488 * accessing the event control register. If a NMI hits, then it will
3489 * not restart the event.
3490 */
ab0cce56
JO
3491void __perf_event_task_sched_out(struct task_struct *task,
3492 struct task_struct *next)
8dc85d54
PZ
3493{
3494 int ctxn;
3495
ba532500
YZ
3496 if (__this_cpu_read(perf_sched_cb_usages))
3497 perf_pmu_sched_task(task, next, false);
3498
45ac1403
AH
3499 if (atomic_read(&nr_switch_events))
3500 perf_event_switch(task, next, false);
3501
8dc85d54
PZ
3502 for_each_task_context_nr(ctxn)
3503 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3504
3505 /*
3506 * if cgroup events exist on this CPU, then we need
3507 * to check if we have to switch out PMU state.
3508 * cgroup event are system-wide mode only
3509 */
4a32fea9 3510 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3511 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3512}
3513
5b0311e1
FW
3514/*
3515 * Called with IRQs disabled
3516 */
3517static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3518 enum event_type_t event_type)
3519{
3520 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3521}
3522
6eef8a71 3523static bool perf_less_group_idx(const void *l, const void *r)
0793a61d 3524{
24fb6b8e
IR
3525 const struct perf_event *le = *(const struct perf_event **)l;
3526 const struct perf_event *re = *(const struct perf_event **)r;
6eef8a71
IR
3527
3528 return le->group_index < re->group_index;
3529}
3530
3531static void swap_ptr(void *l, void *r)
3532{
3533 void **lp = l, **rp = r;
3534
3535 swap(*lp, *rp);
3536}
3537
3538static const struct min_heap_callbacks perf_min_heap = {
3539 .elem_size = sizeof(struct perf_event *),
3540 .less = perf_less_group_idx,
3541 .swp = swap_ptr,
3542};
3543
3544static void __heap_add(struct min_heap *heap, struct perf_event *event)
3545{
3546 struct perf_event **itrs = heap->data;
3547
3548 if (event) {
3549 itrs[heap->nr] = event;
3550 heap->nr++;
3551 }
3552}
3553
836196be
IR
3554static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3555 struct perf_event_groups *groups, int cpu,
6eef8a71
IR
3556 int (*func)(struct perf_event *, void *),
3557 void *data)
3558{
95ed6c70
IR
3559#ifdef CONFIG_CGROUP_PERF
3560 struct cgroup_subsys_state *css = NULL;
3561#endif
6eef8a71
IR
3562 /* Space for per CPU and/or any CPU event iterators. */
3563 struct perf_event *itrs[2];
836196be
IR
3564 struct min_heap event_heap;
3565 struct perf_event **evt;
1cac7b1a 3566 int ret;
8e1a2031 3567
836196be
IR
3568 if (cpuctx) {
3569 event_heap = (struct min_heap){
3570 .data = cpuctx->heap,
3571 .nr = 0,
3572 .size = cpuctx->heap_size,
3573 };
c2283c93
IR
3574
3575 lockdep_assert_held(&cpuctx->ctx.lock);
95ed6c70
IR
3576
3577#ifdef CONFIG_CGROUP_PERF
3578 if (cpuctx->cgrp)
3579 css = &cpuctx->cgrp->css;
3580#endif
836196be
IR
3581 } else {
3582 event_heap = (struct min_heap){
3583 .data = itrs,
3584 .nr = 0,
3585 .size = ARRAY_SIZE(itrs),
3586 };
3587 /* Events not within a CPU context may be on any CPU. */
95ed6c70 3588 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
836196be
IR
3589 }
3590 evt = event_heap.data;
3591
95ed6c70
IR
3592 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3593
3594#ifdef CONFIG_CGROUP_PERF
3595 for (; css; css = css->parent)
3596 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3597#endif
1cac7b1a 3598
6eef8a71 3599 min_heapify_all(&event_heap, &perf_min_heap);
1cac7b1a 3600
6eef8a71 3601 while (event_heap.nr) {
1cac7b1a
PZ
3602 ret = func(*evt, data);
3603 if (ret)
3604 return ret;
3605
3606 *evt = perf_event_groups_next(*evt);
6eef8a71
IR
3607 if (*evt)
3608 min_heapify(&event_heap, 0, &perf_min_heap);
3609 else
3610 min_heap_pop(&event_heap, &perf_min_heap);
8e1a2031 3611 }
0793a61d 3612
1cac7b1a
PZ
3613 return 0;
3614}
3615
ab6f824c 3616static int merge_sched_in(struct perf_event *event, void *data)
1cac7b1a 3617{
2c2366c7
PZ
3618 struct perf_event_context *ctx = event->ctx;
3619 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3620 int *can_add_hw = data;
ab6f824c 3621
1cac7b1a
PZ
3622 if (event->state <= PERF_EVENT_STATE_OFF)
3623 return 0;
3624
3625 if (!event_filter_match(event))
3626 return 0;
3627
2c2366c7
PZ
3628 if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3629 if (!group_sched_in(event, cpuctx, ctx))
ab6f824c 3630 list_add_tail(&event->active_list, get_event_list(event));
6668128a 3631 }
1cac7b1a 3632
ab6f824c 3633 if (event->state == PERF_EVENT_STATE_INACTIVE) {
33238c50
PZ
3634 if (event->attr.pinned) {
3635 perf_cgroup_event_disable(event, ctx);
ab6f824c 3636 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
33238c50 3637 }
1cac7b1a 3638
2c2366c7
PZ
3639 *can_add_hw = 0;
3640 ctx->rotate_necessary = 1;
3b6f9e5c 3641 }
1cac7b1a
PZ
3642
3643 return 0;
5b0311e1
FW
3644}
3645
3646static void
1cac7b1a
PZ
3647ctx_pinned_sched_in(struct perf_event_context *ctx,
3648 struct perf_cpu_context *cpuctx)
5b0311e1 3649{
2c2366c7 3650 int can_add_hw = 1;
3b6f9e5c 3651
836196be
IR
3652 if (ctx != &cpuctx->ctx)
3653 cpuctx = NULL;
3654
3655 visit_groups_merge(cpuctx, &ctx->pinned_groups,
1cac7b1a 3656 smp_processor_id(),
2c2366c7 3657 merge_sched_in, &can_add_hw);
1cac7b1a 3658}
8e1a2031 3659
1cac7b1a
PZ
3660static void
3661ctx_flexible_sched_in(struct perf_event_context *ctx,
3662 struct perf_cpu_context *cpuctx)
3663{
2c2366c7 3664 int can_add_hw = 1;
0793a61d 3665
836196be
IR
3666 if (ctx != &cpuctx->ctx)
3667 cpuctx = NULL;
3668
3669 visit_groups_merge(cpuctx, &ctx->flexible_groups,
1cac7b1a 3670 smp_processor_id(),
2c2366c7 3671 merge_sched_in, &can_add_hw);
5b0311e1
FW
3672}
3673
3674static void
3675ctx_sched_in(struct perf_event_context *ctx,
3676 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3677 enum event_type_t event_type,
3678 struct task_struct *task)
5b0311e1 3679{
db24d33e 3680 int is_active = ctx->is_active;
c994d613
PZ
3681 u64 now;
3682
3683 lockdep_assert_held(&ctx->lock);
e5d1367f 3684
5b0311e1 3685 if (likely(!ctx->nr_events))
facc4307 3686 return;
5b0311e1 3687
3cbaa590 3688 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3689 if (ctx->task) {
3690 if (!is_active)
3691 cpuctx->task_ctx = ctx;
3692 else
3693 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3694 }
3695
3cbaa590
PZ
3696 is_active ^= ctx->is_active; /* changed bits */
3697
3698 if (is_active & EVENT_TIME) {
3699 /* start ctx time */
3700 now = perf_clock();
3701 ctx->timestamp = now;
3702 perf_cgroup_set_timestamp(task, ctx);
3703 }
3704
5b0311e1
FW
3705 /*
3706 * First go through the list and put on any pinned groups
3707 * in order to give them the best chance of going on.
3708 */
3cbaa590 3709 if (is_active & EVENT_PINNED)
6e37738a 3710 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3711
3712 /* Then walk through the lower prio flexible groups */
3cbaa590 3713 if (is_active & EVENT_FLEXIBLE)
6e37738a 3714 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3715}
3716
329c0e01 3717static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3718 enum event_type_t event_type,
3719 struct task_struct *task)
329c0e01
FW
3720{
3721 struct perf_event_context *ctx = &cpuctx->ctx;
3722
e5d1367f 3723 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3724}
3725
e5d1367f
SE
3726static void perf_event_context_sched_in(struct perf_event_context *ctx,
3727 struct task_struct *task)
235c7fc7 3728{
108b02cf 3729 struct perf_cpu_context *cpuctx;
235c7fc7 3730
108b02cf 3731 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3732 if (cpuctx->task_ctx == ctx)
3733 return;
3734
facc4307 3735 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3736 /*
3737 * We must check ctx->nr_events while holding ctx->lock, such
3738 * that we serialize against perf_install_in_context().
3739 */
3740 if (!ctx->nr_events)
3741 goto unlock;
3742
1b9a644f 3743 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3744 /*
3745 * We want to keep the following priority order:
3746 * cpu pinned (that don't need to move), task pinned,
3747 * cpu flexible, task flexible.
fe45bafb
AS
3748 *
3749 * However, if task's ctx is not carrying any pinned
3750 * events, no need to flip the cpuctx's events around.
329c0e01 3751 */
8e1a2031 3752 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
fe45bafb 3753 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3754 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3755 perf_pmu_enable(ctx->pmu);
fdccc3fb 3756
3757unlock:
facc4307 3758 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3759}
3760
8dc85d54
PZ
3761/*
3762 * Called from scheduler to add the events of the current task
3763 * with interrupts disabled.
3764 *
3765 * We restore the event value and then enable it.
3766 *
3767 * This does not protect us against NMI, but enable()
3768 * sets the enabled bit in the control field of event _before_
3769 * accessing the event control register. If a NMI hits, then it will
3770 * keep the event running.
3771 */
ab0cce56
JO
3772void __perf_event_task_sched_in(struct task_struct *prev,
3773 struct task_struct *task)
8dc85d54
PZ
3774{
3775 struct perf_event_context *ctx;
3776 int ctxn;
3777
7e41d177
PZ
3778 /*
3779 * If cgroup events exist on this CPU, then we need to check if we have
3780 * to switch in PMU state; cgroup event are system-wide mode only.
3781 *
3782 * Since cgroup events are CPU events, we must schedule these in before
3783 * we schedule in the task events.
3784 */
3785 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3786 perf_cgroup_sched_in(prev, task);
3787
8dc85d54
PZ
3788 for_each_task_context_nr(ctxn) {
3789 ctx = task->perf_event_ctxp[ctxn];
3790 if (likely(!ctx))
3791 continue;
3792
e5d1367f 3793 perf_event_context_sched_in(ctx, task);
8dc85d54 3794 }
d010b332 3795
45ac1403
AH
3796 if (atomic_read(&nr_switch_events))
3797 perf_event_switch(task, prev, true);
3798
ba532500
YZ
3799 if (__this_cpu_read(perf_sched_cb_usages))
3800 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3801}
3802
abd50713
PZ
3803static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3804{
3805 u64 frequency = event->attr.sample_freq;
3806 u64 sec = NSEC_PER_SEC;
3807 u64 divisor, dividend;
3808
3809 int count_fls, nsec_fls, frequency_fls, sec_fls;
3810
3811 count_fls = fls64(count);
3812 nsec_fls = fls64(nsec);
3813 frequency_fls = fls64(frequency);
3814 sec_fls = 30;
3815
3816 /*
3817 * We got @count in @nsec, with a target of sample_freq HZ
3818 * the target period becomes:
3819 *
3820 * @count * 10^9
3821 * period = -------------------
3822 * @nsec * sample_freq
3823 *
3824 */
3825
3826 /*
3827 * Reduce accuracy by one bit such that @a and @b converge
3828 * to a similar magnitude.
3829 */
fe4b04fa 3830#define REDUCE_FLS(a, b) \
abd50713
PZ
3831do { \
3832 if (a##_fls > b##_fls) { \
3833 a >>= 1; \
3834 a##_fls--; \
3835 } else { \
3836 b >>= 1; \
3837 b##_fls--; \
3838 } \
3839} while (0)
3840
3841 /*
3842 * Reduce accuracy until either term fits in a u64, then proceed with
3843 * the other, so that finally we can do a u64/u64 division.
3844 */
3845 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3846 REDUCE_FLS(nsec, frequency);
3847 REDUCE_FLS(sec, count);
3848 }
3849
3850 if (count_fls + sec_fls > 64) {
3851 divisor = nsec * frequency;
3852
3853 while (count_fls + sec_fls > 64) {
3854 REDUCE_FLS(count, sec);
3855 divisor >>= 1;
3856 }
3857
3858 dividend = count * sec;
3859 } else {
3860 dividend = count * sec;
3861
3862 while (nsec_fls + frequency_fls > 64) {
3863 REDUCE_FLS(nsec, frequency);
3864 dividend >>= 1;
3865 }
3866
3867 divisor = nsec * frequency;
3868 }
3869
f6ab91ad
PZ
3870 if (!divisor)
3871 return dividend;
3872
abd50713
PZ
3873 return div64_u64(dividend, divisor);
3874}
3875
e050e3f0
SE
3876static DEFINE_PER_CPU(int, perf_throttled_count);
3877static DEFINE_PER_CPU(u64, perf_throttled_seq);
3878
f39d47ff 3879static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3880{
cdd6c482 3881 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3882 s64 period, sample_period;
bd2b5b12
PZ
3883 s64 delta;
3884
abd50713 3885 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3886
3887 delta = (s64)(period - hwc->sample_period);
3888 delta = (delta + 7) / 8; /* low pass filter */
3889
3890 sample_period = hwc->sample_period + delta;
3891
3892 if (!sample_period)
3893 sample_period = 1;
3894
bd2b5b12 3895 hwc->sample_period = sample_period;
abd50713 3896
e7850595 3897 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3898 if (disable)
3899 event->pmu->stop(event, PERF_EF_UPDATE);
3900
e7850595 3901 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3902
3903 if (disable)
3904 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3905 }
bd2b5b12
PZ
3906}
3907
e050e3f0
SE
3908/*
3909 * combine freq adjustment with unthrottling to avoid two passes over the
3910 * events. At the same time, make sure, having freq events does not change
3911 * the rate of unthrottling as that would introduce bias.
3912 */
3913static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3914 int needs_unthr)
60db5e09 3915{
cdd6c482
IM
3916 struct perf_event *event;
3917 struct hw_perf_event *hwc;
e050e3f0 3918 u64 now, period = TICK_NSEC;
abd50713 3919 s64 delta;
60db5e09 3920
e050e3f0
SE
3921 /*
3922 * only need to iterate over all events iff:
3923 * - context have events in frequency mode (needs freq adjust)
3924 * - there are events to unthrottle on this cpu
3925 */
3926 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3927 return;
3928
e050e3f0 3929 raw_spin_lock(&ctx->lock);
f39d47ff 3930 perf_pmu_disable(ctx->pmu);
e050e3f0 3931
03541f8b 3932 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3933 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3934 continue;
3935
5632ab12 3936 if (!event_filter_match(event))
5d27c23d
PZ
3937 continue;
3938
44377277
AS
3939 perf_pmu_disable(event->pmu);
3940
cdd6c482 3941 hwc = &event->hw;
6a24ed6c 3942
ae23bff1 3943 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3944 hwc->interrupts = 0;
cdd6c482 3945 perf_log_throttle(event, 1);
a4eaf7f1 3946 event->pmu->start(event, 0);
a78ac325
PZ
3947 }
3948
cdd6c482 3949 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3950 goto next;
60db5e09 3951
e050e3f0
SE
3952 /*
3953 * stop the event and update event->count
3954 */
3955 event->pmu->stop(event, PERF_EF_UPDATE);
3956
e7850595 3957 now = local64_read(&event->count);
abd50713
PZ
3958 delta = now - hwc->freq_count_stamp;
3959 hwc->freq_count_stamp = now;
60db5e09 3960
e050e3f0
SE
3961 /*
3962 * restart the event
3963 * reload only if value has changed
f39d47ff
SE
3964 * we have stopped the event so tell that
3965 * to perf_adjust_period() to avoid stopping it
3966 * twice.
e050e3f0 3967 */
abd50713 3968 if (delta > 0)
f39d47ff 3969 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3970
3971 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3972 next:
3973 perf_pmu_enable(event->pmu);
60db5e09 3974 }
e050e3f0 3975
f39d47ff 3976 perf_pmu_enable(ctx->pmu);
e050e3f0 3977 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3978}
3979
235c7fc7 3980/*
8703a7cf 3981 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 3982 */
8703a7cf 3983static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 3984{
dddd3379
TG
3985 /*
3986 * Rotate the first entry last of non-pinned groups. Rotation might be
3987 * disabled by the inheritance code.
3988 */
8703a7cf
PZ
3989 if (ctx->rotate_disable)
3990 return;
8e1a2031 3991
8703a7cf
PZ
3992 perf_event_groups_delete(&ctx->flexible_groups, event);
3993 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
3994}
3995
7fa343b7 3996/* pick an event from the flexible_groups to rotate */
8d5bce0c 3997static inline struct perf_event *
7fa343b7 3998ctx_event_to_rotate(struct perf_event_context *ctx)
235c7fc7 3999{
7fa343b7
SL
4000 struct perf_event *event;
4001
4002 /* pick the first active flexible event */
4003 event = list_first_entry_or_null(&ctx->flexible_active,
4004 struct perf_event, active_list);
4005
4006 /* if no active flexible event, pick the first event */
4007 if (!event) {
4008 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4009 typeof(*event), group_node);
4010 }
4011
90c91dfb
PZ
4012 /*
4013 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4014 * finds there are unschedulable events, it will set it again.
4015 */
4016 ctx->rotate_necessary = 0;
4017
7fa343b7 4018 return event;
8d5bce0c
PZ
4019}
4020
4021static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4022{
4023 struct perf_event *cpu_event = NULL, *task_event = NULL;
fd7d5517
IR
4024 struct perf_event_context *task_ctx = NULL;
4025 int cpu_rotate, task_rotate;
8d5bce0c
PZ
4026
4027 /*
4028 * Since we run this from IRQ context, nobody can install new
4029 * events, thus the event count values are stable.
4030 */
7fc23a53 4031
fd7d5517
IR
4032 cpu_rotate = cpuctx->ctx.rotate_necessary;
4033 task_ctx = cpuctx->task_ctx;
4034 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
9717e6cd 4035
8d5bce0c
PZ
4036 if (!(cpu_rotate || task_rotate))
4037 return false;
0f5a2601 4038
facc4307 4039 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 4040 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 4041
8d5bce0c 4042 if (task_rotate)
7fa343b7 4043 task_event = ctx_event_to_rotate(task_ctx);
8d5bce0c 4044 if (cpu_rotate)
7fa343b7 4045 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
8703a7cf 4046
8d5bce0c
PZ
4047 /*
4048 * As per the order given at ctx_resched() first 'pop' task flexible
4049 * and then, if needed CPU flexible.
4050 */
fd7d5517
IR
4051 if (task_event || (task_ctx && cpu_event))
4052 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
8d5bce0c
PZ
4053 if (cpu_event)
4054 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
0793a61d 4055
8d5bce0c 4056 if (task_event)
fd7d5517 4057 rotate_ctx(task_ctx, task_event);
8d5bce0c
PZ
4058 if (cpu_event)
4059 rotate_ctx(&cpuctx->ctx, cpu_event);
235c7fc7 4060
fd7d5517 4061 perf_event_sched_in(cpuctx, task_ctx, current);
235c7fc7 4062
0f5a2601
PZ
4063 perf_pmu_enable(cpuctx->ctx.pmu);
4064 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 4065
8d5bce0c 4066 return true;
e9d2b064
PZ
4067}
4068
4069void perf_event_task_tick(void)
4070{
2fde4f94
MR
4071 struct list_head *head = this_cpu_ptr(&active_ctx_list);
4072 struct perf_event_context *ctx, *tmp;
e050e3f0 4073 int throttled;
b5ab4cd5 4074
16444645 4075 lockdep_assert_irqs_disabled();
e9d2b064 4076
e050e3f0
SE
4077 __this_cpu_inc(perf_throttled_seq);
4078 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 4079 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 4080
2fde4f94 4081 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 4082 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
4083}
4084
889ff015
FW
4085static int event_enable_on_exec(struct perf_event *event,
4086 struct perf_event_context *ctx)
4087{
4088 if (!event->attr.enable_on_exec)
4089 return 0;
4090
4091 event->attr.enable_on_exec = 0;
4092 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4093 return 0;
4094
0d3d73aa 4095 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
4096
4097 return 1;
4098}
4099
57e7986e 4100/*
cdd6c482 4101 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
4102 * This expects task == current.
4103 */
c1274499 4104static void perf_event_enable_on_exec(int ctxn)
57e7986e 4105{
c1274499 4106 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 4107 enum event_type_t event_type = 0;
3e349507 4108 struct perf_cpu_context *cpuctx;
cdd6c482 4109 struct perf_event *event;
57e7986e
PM
4110 unsigned long flags;
4111 int enabled = 0;
4112
4113 local_irq_save(flags);
c1274499 4114 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 4115 if (!ctx || !ctx->nr_events)
57e7986e
PM
4116 goto out;
4117
3e349507
PZ
4118 cpuctx = __get_cpu_context(ctx);
4119 perf_ctx_lock(cpuctx, ctx);
7fce2509 4120 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 4121 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 4122 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
4123 event_type |= get_event_type(event);
4124 }
57e7986e
PM
4125
4126 /*
3e349507 4127 * Unclone and reschedule this context if we enabled any event.
57e7986e 4128 */
3e349507 4129 if (enabled) {
211de6eb 4130 clone_ctx = unclone_ctx(ctx);
487f05e1 4131 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
4132 } else {
4133 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
4134 }
4135 perf_ctx_unlock(cpuctx, ctx);
57e7986e 4136
9ed6060d 4137out:
57e7986e 4138 local_irq_restore(flags);
211de6eb
PZ
4139
4140 if (clone_ctx)
4141 put_ctx(clone_ctx);
57e7986e
PM
4142}
4143
0492d4c5
PZ
4144struct perf_read_data {
4145 struct perf_event *event;
4146 bool group;
7d88962e 4147 int ret;
0492d4c5
PZ
4148};
4149
451d24d1 4150static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 4151{
d6a2f903
DCC
4152 u16 local_pkg, event_pkg;
4153
4154 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
4155 int local_cpu = smp_processor_id();
4156
4157 event_pkg = topology_physical_package_id(event_cpu);
4158 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
4159
4160 if (event_pkg == local_pkg)
4161 return local_cpu;
4162 }
4163
4164 return event_cpu;
4165}
4166
0793a61d 4167/*
cdd6c482 4168 * Cross CPU call to read the hardware event
0793a61d 4169 */
cdd6c482 4170static void __perf_event_read(void *info)
0793a61d 4171{
0492d4c5
PZ
4172 struct perf_read_data *data = info;
4173 struct perf_event *sub, *event = data->event;
cdd6c482 4174 struct perf_event_context *ctx = event->ctx;
108b02cf 4175 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 4176 struct pmu *pmu = event->pmu;
621a01ea 4177
e1ac3614
PM
4178 /*
4179 * If this is a task context, we need to check whether it is
4180 * the current task context of this cpu. If not it has been
4181 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
4182 * event->count would have been updated to a recent sample
4183 * when the event was scheduled out.
e1ac3614
PM
4184 */
4185 if (ctx->task && cpuctx->task_ctx != ctx)
4186 return;
4187
e625cce1 4188 raw_spin_lock(&ctx->lock);
0c1cbc18 4189 if (ctx->is_active & EVENT_TIME) {
542e72fc 4190 update_context_time(ctx);
e5d1367f
SE
4191 update_cgrp_time_from_event(event);
4192 }
0492d4c5 4193
0d3d73aa
PZ
4194 perf_event_update_time(event);
4195 if (data->group)
4196 perf_event_update_sibling_time(event);
0c1cbc18 4197
4a00c16e
SB
4198 if (event->state != PERF_EVENT_STATE_ACTIVE)
4199 goto unlock;
0492d4c5 4200
4a00c16e
SB
4201 if (!data->group) {
4202 pmu->read(event);
4203 data->ret = 0;
0492d4c5 4204 goto unlock;
4a00c16e
SB
4205 }
4206
4207 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4208
4209 pmu->read(event);
0492d4c5 4210
edb39592 4211 for_each_sibling_event(sub, event) {
4a00c16e
SB
4212 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4213 /*
4214 * Use sibling's PMU rather than @event's since
4215 * sibling could be on different (eg: software) PMU.
4216 */
0492d4c5 4217 sub->pmu->read(sub);
4a00c16e 4218 }
0492d4c5 4219 }
4a00c16e
SB
4220
4221 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
4222
4223unlock:
e625cce1 4224 raw_spin_unlock(&ctx->lock);
0793a61d
TG
4225}
4226
b5e58793
PZ
4227static inline u64 perf_event_count(struct perf_event *event)
4228{
c39a0e2c 4229 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
4230}
4231
ffe8690c
KX
4232/*
4233 * NMI-safe method to read a local event, that is an event that
4234 * is:
4235 * - either for the current task, or for this CPU
4236 * - does not have inherit set, for inherited task events
4237 * will not be local and we cannot read them atomically
4238 * - must not have a pmu::count method
4239 */
7d9285e8
YS
4240int perf_event_read_local(struct perf_event *event, u64 *value,
4241 u64 *enabled, u64 *running)
ffe8690c
KX
4242{
4243 unsigned long flags;
f91840a3 4244 int ret = 0;
ffe8690c
KX
4245
4246 /*
4247 * Disabling interrupts avoids all counter scheduling (context
4248 * switches, timer based rotation and IPIs).
4249 */
4250 local_irq_save(flags);
4251
ffe8690c
KX
4252 /*
4253 * It must not be an event with inherit set, we cannot read
4254 * all child counters from atomic context.
4255 */
f91840a3
AS
4256 if (event->attr.inherit) {
4257 ret = -EOPNOTSUPP;
4258 goto out;
4259 }
ffe8690c 4260
f91840a3
AS
4261 /* If this is a per-task event, it must be for current */
4262 if ((event->attach_state & PERF_ATTACH_TASK) &&
4263 event->hw.target != current) {
4264 ret = -EINVAL;
4265 goto out;
4266 }
4267
4268 /* If this is a per-CPU event, it must be for this CPU */
4269 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4270 event->cpu != smp_processor_id()) {
4271 ret = -EINVAL;
4272 goto out;
4273 }
ffe8690c 4274
befb1b3c
RC
4275 /* If this is a pinned event it must be running on this CPU */
4276 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4277 ret = -EBUSY;
4278 goto out;
4279 }
4280
ffe8690c
KX
4281 /*
4282 * If the event is currently on this CPU, its either a per-task event,
4283 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4284 * oncpu == -1).
4285 */
4286 if (event->oncpu == smp_processor_id())
4287 event->pmu->read(event);
4288
f91840a3 4289 *value = local64_read(&event->count);
0d3d73aa
PZ
4290 if (enabled || running) {
4291 u64 now = event->shadow_ctx_time + perf_clock();
4292 u64 __enabled, __running;
4293
4294 __perf_update_times(event, now, &__enabled, &__running);
4295 if (enabled)
4296 *enabled = __enabled;
4297 if (running)
4298 *running = __running;
4299 }
f91840a3 4300out:
ffe8690c
KX
4301 local_irq_restore(flags);
4302
f91840a3 4303 return ret;
ffe8690c
KX
4304}
4305
7d88962e 4306static int perf_event_read(struct perf_event *event, bool group)
0793a61d 4307{
0c1cbc18 4308 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 4309 int event_cpu, ret = 0;
7d88962e 4310
0793a61d 4311 /*
cdd6c482
IM
4312 * If event is enabled and currently active on a CPU, update the
4313 * value in the event structure:
0793a61d 4314 */
0c1cbc18
PZ
4315again:
4316 if (state == PERF_EVENT_STATE_ACTIVE) {
4317 struct perf_read_data data;
4318
4319 /*
4320 * Orders the ->state and ->oncpu loads such that if we see
4321 * ACTIVE we must also see the right ->oncpu.
4322 *
4323 * Matches the smp_wmb() from event_sched_in().
4324 */
4325 smp_rmb();
d6a2f903 4326
451d24d1
PZ
4327 event_cpu = READ_ONCE(event->oncpu);
4328 if ((unsigned)event_cpu >= nr_cpu_ids)
4329 return 0;
4330
0c1cbc18
PZ
4331 data = (struct perf_read_data){
4332 .event = event,
4333 .group = group,
4334 .ret = 0,
4335 };
4336
451d24d1
PZ
4337 preempt_disable();
4338 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4339
58763148
PZ
4340 /*
4341 * Purposely ignore the smp_call_function_single() return
4342 * value.
4343 *
451d24d1 4344 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4345 * scheduled out and that will have updated the event count.
4346 *
4347 * Therefore, either way, we'll have an up-to-date event count
4348 * after this.
4349 */
451d24d1
PZ
4350 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4351 preempt_enable();
58763148 4352 ret = data.ret;
0c1cbc18
PZ
4353
4354 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4355 struct perf_event_context *ctx = event->ctx;
4356 unsigned long flags;
4357
e625cce1 4358 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4359 state = event->state;
4360 if (state != PERF_EVENT_STATE_INACTIVE) {
4361 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4362 goto again;
4363 }
4364
c530ccd9 4365 /*
0c1cbc18
PZ
4366 * May read while context is not active (e.g., thread is
4367 * blocked), in that case we cannot update context time
c530ccd9 4368 */
0c1cbc18 4369 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4370 update_context_time(ctx);
e5d1367f
SE
4371 update_cgrp_time_from_event(event);
4372 }
0c1cbc18 4373
0d3d73aa 4374 perf_event_update_time(event);
0492d4c5 4375 if (group)
0d3d73aa 4376 perf_event_update_sibling_time(event);
e625cce1 4377 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4378 }
7d88962e
SB
4379
4380 return ret;
0793a61d
TG
4381}
4382
a63eaf34 4383/*
cdd6c482 4384 * Initialize the perf_event context in a task_struct:
a63eaf34 4385 */
eb184479 4386static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4387{
e625cce1 4388 raw_spin_lock_init(&ctx->lock);
a63eaf34 4389 mutex_init(&ctx->mutex);
2fde4f94 4390 INIT_LIST_HEAD(&ctx->active_ctx_list);
8e1a2031
AB
4391 perf_event_groups_init(&ctx->pinned_groups);
4392 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4393 INIT_LIST_HEAD(&ctx->event_list);
6668128a
PZ
4394 INIT_LIST_HEAD(&ctx->pinned_active);
4395 INIT_LIST_HEAD(&ctx->flexible_active);
8c94abbb 4396 refcount_set(&ctx->refcount, 1);
eb184479
PZ
4397}
4398
4399static struct perf_event_context *
4400alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4401{
4402 struct perf_event_context *ctx;
4403
4404 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4405 if (!ctx)
4406 return NULL;
4407
4408 __perf_event_init_context(ctx);
7b3c92b8
MWO
4409 if (task)
4410 ctx->task = get_task_struct(task);
eb184479
PZ
4411 ctx->pmu = pmu;
4412
4413 return ctx;
a63eaf34
PM
4414}
4415
2ebd4ffb
MH
4416static struct task_struct *
4417find_lively_task_by_vpid(pid_t vpid)
4418{
4419 struct task_struct *task;
0793a61d
TG
4420
4421 rcu_read_lock();
2ebd4ffb 4422 if (!vpid)
0793a61d
TG
4423 task = current;
4424 else
2ebd4ffb 4425 task = find_task_by_vpid(vpid);
0793a61d
TG
4426 if (task)
4427 get_task_struct(task);
4428 rcu_read_unlock();
4429
4430 if (!task)
4431 return ERR_PTR(-ESRCH);
4432
2ebd4ffb 4433 return task;
2ebd4ffb
MH
4434}
4435
fe4b04fa
PZ
4436/*
4437 * Returns a matching context with refcount and pincount.
4438 */
108b02cf 4439static struct perf_event_context *
4af57ef2
YZ
4440find_get_context(struct pmu *pmu, struct task_struct *task,
4441 struct perf_event *event)
0793a61d 4442{
211de6eb 4443 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4444 struct perf_cpu_context *cpuctx;
4af57ef2 4445 void *task_ctx_data = NULL;
25346b93 4446 unsigned long flags;
8dc85d54 4447 int ctxn, err;
4af57ef2 4448 int cpu = event->cpu;
0793a61d 4449
22a4ec72 4450 if (!task) {
cdd6c482 4451 /* Must be root to operate on a CPU event: */
da97e184
JFG
4452 err = perf_allow_cpu(&event->attr);
4453 if (err)
4454 return ERR_PTR(err);
0793a61d 4455
108b02cf 4456 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 4457 ctx = &cpuctx->ctx;
c93f7669 4458 get_ctx(ctx);
fe4b04fa 4459 ++ctx->pin_count;
0793a61d 4460
0793a61d
TG
4461 return ctx;
4462 }
4463
8dc85d54
PZ
4464 err = -EINVAL;
4465 ctxn = pmu->task_ctx_nr;
4466 if (ctxn < 0)
4467 goto errout;
4468
4af57ef2
YZ
4469 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4470 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4471 if (!task_ctx_data) {
4472 err = -ENOMEM;
4473 goto errout;
4474 }
4475 }
4476
9ed6060d 4477retry:
8dc85d54 4478 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 4479 if (ctx) {
211de6eb 4480 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4481 ++ctx->pin_count;
4af57ef2
YZ
4482
4483 if (task_ctx_data && !ctx->task_ctx_data) {
4484 ctx->task_ctx_data = task_ctx_data;
4485 task_ctx_data = NULL;
4486 }
e625cce1 4487 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4488
4489 if (clone_ctx)
4490 put_ctx(clone_ctx);
9137fb28 4491 } else {
eb184479 4492 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
4493 err = -ENOMEM;
4494 if (!ctx)
4495 goto errout;
eb184479 4496
4af57ef2
YZ
4497 if (task_ctx_data) {
4498 ctx->task_ctx_data = task_ctx_data;
4499 task_ctx_data = NULL;
4500 }
4501
dbe08d82
ON
4502 err = 0;
4503 mutex_lock(&task->perf_event_mutex);
4504 /*
4505 * If it has already passed perf_event_exit_task().
4506 * we must see PF_EXITING, it takes this mutex too.
4507 */
4508 if (task->flags & PF_EXITING)
4509 err = -ESRCH;
4510 else if (task->perf_event_ctxp[ctxn])
4511 err = -EAGAIN;
fe4b04fa 4512 else {
9137fb28 4513 get_ctx(ctx);
fe4b04fa 4514 ++ctx->pin_count;
dbe08d82 4515 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 4516 }
dbe08d82
ON
4517 mutex_unlock(&task->perf_event_mutex);
4518
4519 if (unlikely(err)) {
9137fb28 4520 put_ctx(ctx);
dbe08d82
ON
4521
4522 if (err == -EAGAIN)
4523 goto retry;
4524 goto errout;
a63eaf34
PM
4525 }
4526 }
4527
4af57ef2 4528 kfree(task_ctx_data);
0793a61d 4529 return ctx;
c93f7669 4530
9ed6060d 4531errout:
4af57ef2 4532 kfree(task_ctx_data);
c93f7669 4533 return ERR_PTR(err);
0793a61d
TG
4534}
4535
6fb2915d 4536static void perf_event_free_filter(struct perf_event *event);
2541517c 4537static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 4538
cdd6c482 4539static void free_event_rcu(struct rcu_head *head)
592903cd 4540{
cdd6c482 4541 struct perf_event *event;
592903cd 4542
cdd6c482
IM
4543 event = container_of(head, struct perf_event, rcu_head);
4544 if (event->ns)
4545 put_pid_ns(event->ns);
6fb2915d 4546 perf_event_free_filter(event);
cdd6c482 4547 kfree(event);
592903cd
PZ
4548}
4549
b69cf536 4550static void ring_buffer_attach(struct perf_event *event,
56de4e8f 4551 struct perf_buffer *rb);
925d519a 4552
f2fb6bef
KL
4553static void detach_sb_event(struct perf_event *event)
4554{
4555 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4556
4557 raw_spin_lock(&pel->lock);
4558 list_del_rcu(&event->sb_list);
4559 raw_spin_unlock(&pel->lock);
4560}
4561
a4f144eb 4562static bool is_sb_event(struct perf_event *event)
f2fb6bef 4563{
a4f144eb
DCC
4564 struct perf_event_attr *attr = &event->attr;
4565
f2fb6bef 4566 if (event->parent)
a4f144eb 4567 return false;
f2fb6bef
KL
4568
4569 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4570 return false;
f2fb6bef 4571
a4f144eb
DCC
4572 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4573 attr->comm || attr->comm_exec ||
76193a94 4574 attr->task || attr->ksymbol ||
21038f2b
SL
4575 attr->context_switch ||
4576 attr->bpf_event)
a4f144eb
DCC
4577 return true;
4578 return false;
4579}
4580
4581static void unaccount_pmu_sb_event(struct perf_event *event)
4582{
4583 if (is_sb_event(event))
4584 detach_sb_event(event);
f2fb6bef
KL
4585}
4586
4beb31f3 4587static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4588{
4beb31f3
FW
4589 if (event->parent)
4590 return;
4591
4beb31f3
FW
4592 if (is_cgroup_event(event))
4593 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4594}
925d519a 4595
555e0c1e
FW
4596#ifdef CONFIG_NO_HZ_FULL
4597static DEFINE_SPINLOCK(nr_freq_lock);
4598#endif
4599
4600static void unaccount_freq_event_nohz(void)
4601{
4602#ifdef CONFIG_NO_HZ_FULL
4603 spin_lock(&nr_freq_lock);
4604 if (atomic_dec_and_test(&nr_freq_events))
4605 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4606 spin_unlock(&nr_freq_lock);
4607#endif
4608}
4609
4610static void unaccount_freq_event(void)
4611{
4612 if (tick_nohz_full_enabled())
4613 unaccount_freq_event_nohz();
4614 else
4615 atomic_dec(&nr_freq_events);
4616}
4617
4beb31f3
FW
4618static void unaccount_event(struct perf_event *event)
4619{
25432ae9
PZ
4620 bool dec = false;
4621
4beb31f3
FW
4622 if (event->parent)
4623 return;
4624
4625 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4626 dec = true;
4beb31f3
FW
4627 if (event->attr.mmap || event->attr.mmap_data)
4628 atomic_dec(&nr_mmap_events);
4629 if (event->attr.comm)
4630 atomic_dec(&nr_comm_events);
e4222673
HB
4631 if (event->attr.namespaces)
4632 atomic_dec(&nr_namespaces_events);
96aaab68
NK
4633 if (event->attr.cgroup)
4634 atomic_dec(&nr_cgroup_events);
4beb31f3
FW
4635 if (event->attr.task)
4636 atomic_dec(&nr_task_events);
948b26b6 4637 if (event->attr.freq)
555e0c1e 4638 unaccount_freq_event();
45ac1403 4639 if (event->attr.context_switch) {
25432ae9 4640 dec = true;
45ac1403
AH
4641 atomic_dec(&nr_switch_events);
4642 }
4beb31f3 4643 if (is_cgroup_event(event))
25432ae9 4644 dec = true;
4beb31f3 4645 if (has_branch_stack(event))
25432ae9 4646 dec = true;
76193a94
SL
4647 if (event->attr.ksymbol)
4648 atomic_dec(&nr_ksymbol_events);
6ee52e2a
SL
4649 if (event->attr.bpf_event)
4650 atomic_dec(&nr_bpf_events);
25432ae9 4651
9107c89e
PZ
4652 if (dec) {
4653 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4654 schedule_delayed_work(&perf_sched_work, HZ);
4655 }
4beb31f3
FW
4656
4657 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4658
4659 unaccount_pmu_sb_event(event);
4beb31f3 4660}
925d519a 4661
9107c89e
PZ
4662static void perf_sched_delayed(struct work_struct *work)
4663{
4664 mutex_lock(&perf_sched_mutex);
4665 if (atomic_dec_and_test(&perf_sched_count))
4666 static_branch_disable(&perf_sched_events);
4667 mutex_unlock(&perf_sched_mutex);
4668}
4669
bed5b25a
AS
4670/*
4671 * The following implement mutual exclusion of events on "exclusive" pmus
4672 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4673 * at a time, so we disallow creating events that might conflict, namely:
4674 *
4675 * 1) cpu-wide events in the presence of per-task events,
4676 * 2) per-task events in the presence of cpu-wide events,
4677 * 3) two matching events on the same context.
4678 *
4679 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4680 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4681 */
4682static int exclusive_event_init(struct perf_event *event)
4683{
4684 struct pmu *pmu = event->pmu;
4685
8a58ddae 4686 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4687 return 0;
4688
4689 /*
4690 * Prevent co-existence of per-task and cpu-wide events on the
4691 * same exclusive pmu.
4692 *
4693 * Negative pmu::exclusive_cnt means there are cpu-wide
4694 * events on this "exclusive" pmu, positive means there are
4695 * per-task events.
4696 *
4697 * Since this is called in perf_event_alloc() path, event::ctx
4698 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4699 * to mean "per-task event", because unlike other attach states it
4700 * never gets cleared.
4701 */
4702 if (event->attach_state & PERF_ATTACH_TASK) {
4703 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4704 return -EBUSY;
4705 } else {
4706 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4707 return -EBUSY;
4708 }
4709
4710 return 0;
4711}
4712
4713static void exclusive_event_destroy(struct perf_event *event)
4714{
4715 struct pmu *pmu = event->pmu;
4716
8a58ddae 4717 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4718 return;
4719
4720 /* see comment in exclusive_event_init() */
4721 if (event->attach_state & PERF_ATTACH_TASK)
4722 atomic_dec(&pmu->exclusive_cnt);
4723 else
4724 atomic_inc(&pmu->exclusive_cnt);
4725}
4726
4727static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4728{
3bf6215a 4729 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4730 (e1->cpu == e2->cpu ||
4731 e1->cpu == -1 ||
4732 e2->cpu == -1))
4733 return true;
4734 return false;
4735}
4736
bed5b25a
AS
4737static bool exclusive_event_installable(struct perf_event *event,
4738 struct perf_event_context *ctx)
4739{
4740 struct perf_event *iter_event;
4741 struct pmu *pmu = event->pmu;
4742
8a58ddae
AS
4743 lockdep_assert_held(&ctx->mutex);
4744
4745 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4746 return true;
4747
4748 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4749 if (exclusive_event_match(iter_event, event))
4750 return false;
4751 }
4752
4753 return true;
4754}
4755
375637bc
AS
4756static void perf_addr_filters_splice(struct perf_event *event,
4757 struct list_head *head);
4758
683ede43 4759static void _free_event(struct perf_event *event)
f1600952 4760{
e360adbe 4761 irq_work_sync(&event->pending);
925d519a 4762
4beb31f3 4763 unaccount_event(event);
9ee318a7 4764
da97e184
JFG
4765 security_perf_event_free(event);
4766
76369139 4767 if (event->rb) {
9bb5d40c
PZ
4768 /*
4769 * Can happen when we close an event with re-directed output.
4770 *
4771 * Since we have a 0 refcount, perf_mmap_close() will skip
4772 * over us; possibly making our ring_buffer_put() the last.
4773 */
4774 mutex_lock(&event->mmap_mutex);
b69cf536 4775 ring_buffer_attach(event, NULL);
9bb5d40c 4776 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4777 }
4778
e5d1367f
SE
4779 if (is_cgroup_event(event))
4780 perf_detach_cgroup(event);
4781
a0733e69
PZ
4782 if (!event->parent) {
4783 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4784 put_callchain_buffers();
4785 }
4786
4787 perf_event_free_bpf_prog(event);
375637bc 4788 perf_addr_filters_splice(event, NULL);
c60f83b8 4789 kfree(event->addr_filter_ranges);
a0733e69
PZ
4790
4791 if (event->destroy)
4792 event->destroy(event);
4793
1cf8dfe8
PZ
4794 /*
4795 * Must be after ->destroy(), due to uprobe_perf_close() using
4796 * hw.target.
4797 */
621b6d2e
PB
4798 if (event->hw.target)
4799 put_task_struct(event->hw.target);
4800
1cf8dfe8
PZ
4801 /*
4802 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4803 * all task references must be cleaned up.
4804 */
4805 if (event->ctx)
4806 put_ctx(event->ctx);
4807
62a92c8f
AS
4808 exclusive_event_destroy(event);
4809 module_put(event->pmu->module);
a0733e69
PZ
4810
4811 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4812}
4813
683ede43
PZ
4814/*
4815 * Used to free events which have a known refcount of 1, such as in error paths
4816 * where the event isn't exposed yet and inherited events.
4817 */
4818static void free_event(struct perf_event *event)
0793a61d 4819{
683ede43
PZ
4820 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4821 "unexpected event refcount: %ld; ptr=%p\n",
4822 atomic_long_read(&event->refcount), event)) {
4823 /* leak to avoid use-after-free */
4824 return;
4825 }
0793a61d 4826
683ede43 4827 _free_event(event);
0793a61d
TG
4828}
4829
a66a3052 4830/*
f8697762 4831 * Remove user event from the owner task.
a66a3052 4832 */
f8697762 4833static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4834{
8882135b 4835 struct task_struct *owner;
fb0459d7 4836
8882135b 4837 rcu_read_lock();
8882135b 4838 /*
f47c02c0
PZ
4839 * Matches the smp_store_release() in perf_event_exit_task(). If we
4840 * observe !owner it means the list deletion is complete and we can
4841 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4842 * owner->perf_event_mutex.
4843 */
506458ef 4844 owner = READ_ONCE(event->owner);
8882135b
PZ
4845 if (owner) {
4846 /*
4847 * Since delayed_put_task_struct() also drops the last
4848 * task reference we can safely take a new reference
4849 * while holding the rcu_read_lock().
4850 */
4851 get_task_struct(owner);
4852 }
4853 rcu_read_unlock();
4854
4855 if (owner) {
f63a8daa
PZ
4856 /*
4857 * If we're here through perf_event_exit_task() we're already
4858 * holding ctx->mutex which would be an inversion wrt. the
4859 * normal lock order.
4860 *
4861 * However we can safely take this lock because its the child
4862 * ctx->mutex.
4863 */
4864 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4865
8882135b
PZ
4866 /*
4867 * We have to re-check the event->owner field, if it is cleared
4868 * we raced with perf_event_exit_task(), acquiring the mutex
4869 * ensured they're done, and we can proceed with freeing the
4870 * event.
4871 */
f47c02c0 4872 if (event->owner) {
8882135b 4873 list_del_init(&event->owner_entry);
f47c02c0
PZ
4874 smp_store_release(&event->owner, NULL);
4875 }
8882135b
PZ
4876 mutex_unlock(&owner->perf_event_mutex);
4877 put_task_struct(owner);
4878 }
f8697762
JO
4879}
4880
f8697762
JO
4881static void put_event(struct perf_event *event)
4882{
f8697762
JO
4883 if (!atomic_long_dec_and_test(&event->refcount))
4884 return;
4885
c6e5b732
PZ
4886 _free_event(event);
4887}
4888
4889/*
4890 * Kill an event dead; while event:refcount will preserve the event
4891 * object, it will not preserve its functionality. Once the last 'user'
4892 * gives up the object, we'll destroy the thing.
4893 */
4894int perf_event_release_kernel(struct perf_event *event)
4895{
a4f4bb6d 4896 struct perf_event_context *ctx = event->ctx;
c6e5b732 4897 struct perf_event *child, *tmp;
82d94856 4898 LIST_HEAD(free_list);
c6e5b732 4899
a4f4bb6d
PZ
4900 /*
4901 * If we got here through err_file: fput(event_file); we will not have
4902 * attached to a context yet.
4903 */
4904 if (!ctx) {
4905 WARN_ON_ONCE(event->attach_state &
4906 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4907 goto no_ctx;
4908 }
4909
f8697762
JO
4910 if (!is_kernel_event(event))
4911 perf_remove_from_owner(event);
8882135b 4912
5fa7c8ec 4913 ctx = perf_event_ctx_lock(event);
a83fe28e 4914 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4915 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4916
a69b0ca4 4917 raw_spin_lock_irq(&ctx->lock);
683ede43 4918 /*
d8a8cfc7 4919 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4920 * anymore.
683ede43 4921 *
a69b0ca4
PZ
4922 * Anybody acquiring event->child_mutex after the below loop _must_
4923 * also see this, most importantly inherit_event() which will avoid
4924 * placing more children on the list.
683ede43 4925 *
c6e5b732
PZ
4926 * Thus this guarantees that we will in fact observe and kill _ALL_
4927 * child events.
683ede43 4928 */
a69b0ca4
PZ
4929 event->state = PERF_EVENT_STATE_DEAD;
4930 raw_spin_unlock_irq(&ctx->lock);
4931
4932 perf_event_ctx_unlock(event, ctx);
683ede43 4933
c6e5b732
PZ
4934again:
4935 mutex_lock(&event->child_mutex);
4936 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4937
c6e5b732
PZ
4938 /*
4939 * Cannot change, child events are not migrated, see the
4940 * comment with perf_event_ctx_lock_nested().
4941 */
506458ef 4942 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4943 /*
4944 * Since child_mutex nests inside ctx::mutex, we must jump
4945 * through hoops. We start by grabbing a reference on the ctx.
4946 *
4947 * Since the event cannot get freed while we hold the
4948 * child_mutex, the context must also exist and have a !0
4949 * reference count.
4950 */
4951 get_ctx(ctx);
4952
4953 /*
4954 * Now that we have a ctx ref, we can drop child_mutex, and
4955 * acquire ctx::mutex without fear of it going away. Then we
4956 * can re-acquire child_mutex.
4957 */
4958 mutex_unlock(&event->child_mutex);
4959 mutex_lock(&ctx->mutex);
4960 mutex_lock(&event->child_mutex);
4961
4962 /*
4963 * Now that we hold ctx::mutex and child_mutex, revalidate our
4964 * state, if child is still the first entry, it didn't get freed
4965 * and we can continue doing so.
4966 */
4967 tmp = list_first_entry_or_null(&event->child_list,
4968 struct perf_event, child_list);
4969 if (tmp == child) {
4970 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4971 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4972 /*
4973 * This matches the refcount bump in inherit_event();
4974 * this can't be the last reference.
4975 */
4976 put_event(event);
4977 }
4978
4979 mutex_unlock(&event->child_mutex);
4980 mutex_unlock(&ctx->mutex);
4981 put_ctx(ctx);
4982 goto again;
4983 }
4984 mutex_unlock(&event->child_mutex);
4985
82d94856 4986 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
1cf8dfe8
PZ
4987 void *var = &child->ctx->refcount;
4988
82d94856
PZ
4989 list_del(&child->child_list);
4990 free_event(child);
1cf8dfe8
PZ
4991
4992 /*
4993 * Wake any perf_event_free_task() waiting for this event to be
4994 * freed.
4995 */
4996 smp_mb(); /* pairs with wait_var_event() */
4997 wake_up_var(var);
82d94856
PZ
4998 }
4999
a4f4bb6d
PZ
5000no_ctx:
5001 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
5002 return 0;
5003}
5004EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5005
8b10c5e2
PZ
5006/*
5007 * Called when the last reference to the file is gone.
5008 */
a6fa941d
AV
5009static int perf_release(struct inode *inode, struct file *file)
5010{
c6e5b732 5011 perf_event_release_kernel(file->private_data);
a6fa941d 5012 return 0;
fb0459d7 5013}
fb0459d7 5014
ca0dd44c 5015static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 5016{
cdd6c482 5017 struct perf_event *child;
e53c0994
PZ
5018 u64 total = 0;
5019
59ed446f
PZ
5020 *enabled = 0;
5021 *running = 0;
5022
6f10581a 5023 mutex_lock(&event->child_mutex);
01add3ea 5024
7d88962e 5025 (void)perf_event_read(event, false);
01add3ea
SB
5026 total += perf_event_count(event);
5027
59ed446f
PZ
5028 *enabled += event->total_time_enabled +
5029 atomic64_read(&event->child_total_time_enabled);
5030 *running += event->total_time_running +
5031 atomic64_read(&event->child_total_time_running);
5032
5033 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 5034 (void)perf_event_read(child, false);
01add3ea 5035 total += perf_event_count(child);
59ed446f
PZ
5036 *enabled += child->total_time_enabled;
5037 *running += child->total_time_running;
5038 }
6f10581a 5039 mutex_unlock(&event->child_mutex);
e53c0994
PZ
5040
5041 return total;
5042}
ca0dd44c
PZ
5043
5044u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5045{
5046 struct perf_event_context *ctx;
5047 u64 count;
5048
5049 ctx = perf_event_ctx_lock(event);
5050 count = __perf_event_read_value(event, enabled, running);
5051 perf_event_ctx_unlock(event, ctx);
5052
5053 return count;
5054}
fb0459d7 5055EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 5056
7d88962e 5057static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 5058 u64 read_format, u64 *values)
3dab77fb 5059{
2aeb1883 5060 struct perf_event_context *ctx = leader->ctx;
fa8c2693 5061 struct perf_event *sub;
2aeb1883 5062 unsigned long flags;
fa8c2693 5063 int n = 1; /* skip @nr */
7d88962e 5064 int ret;
f63a8daa 5065
7d88962e
SB
5066 ret = perf_event_read(leader, true);
5067 if (ret)
5068 return ret;
abf4868b 5069
a9cd8194
PZ
5070 raw_spin_lock_irqsave(&ctx->lock, flags);
5071
fa8c2693
PZ
5072 /*
5073 * Since we co-schedule groups, {enabled,running} times of siblings
5074 * will be identical to those of the leader, so we only publish one
5075 * set.
5076 */
5077 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5078 values[n++] += leader->total_time_enabled +
5079 atomic64_read(&leader->child_total_time_enabled);
5080 }
3dab77fb 5081
fa8c2693
PZ
5082 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5083 values[n++] += leader->total_time_running +
5084 atomic64_read(&leader->child_total_time_running);
5085 }
5086
5087 /*
5088 * Write {count,id} tuples for every sibling.
5089 */
5090 values[n++] += perf_event_count(leader);
abf4868b
PZ
5091 if (read_format & PERF_FORMAT_ID)
5092 values[n++] = primary_event_id(leader);
3dab77fb 5093
edb39592 5094 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
5095 values[n++] += perf_event_count(sub);
5096 if (read_format & PERF_FORMAT_ID)
5097 values[n++] = primary_event_id(sub);
5098 }
7d88962e 5099
2aeb1883 5100 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 5101 return 0;
fa8c2693 5102}
3dab77fb 5103
fa8c2693
PZ
5104static int perf_read_group(struct perf_event *event,
5105 u64 read_format, char __user *buf)
5106{
5107 struct perf_event *leader = event->group_leader, *child;
5108 struct perf_event_context *ctx = leader->ctx;
7d88962e 5109 int ret;
fa8c2693 5110 u64 *values;
3dab77fb 5111
fa8c2693 5112 lockdep_assert_held(&ctx->mutex);
3dab77fb 5113
fa8c2693
PZ
5114 values = kzalloc(event->read_size, GFP_KERNEL);
5115 if (!values)
5116 return -ENOMEM;
3dab77fb 5117
fa8c2693
PZ
5118 values[0] = 1 + leader->nr_siblings;
5119
5120 /*
5121 * By locking the child_mutex of the leader we effectively
5122 * lock the child list of all siblings.. XXX explain how.
5123 */
5124 mutex_lock(&leader->child_mutex);
abf4868b 5125
7d88962e
SB
5126 ret = __perf_read_group_add(leader, read_format, values);
5127 if (ret)
5128 goto unlock;
5129
5130 list_for_each_entry(child, &leader->child_list, child_list) {
5131 ret = __perf_read_group_add(child, read_format, values);
5132 if (ret)
5133 goto unlock;
5134 }
abf4868b 5135
fa8c2693 5136 mutex_unlock(&leader->child_mutex);
abf4868b 5137
7d88962e 5138 ret = event->read_size;
fa8c2693
PZ
5139 if (copy_to_user(buf, values, event->read_size))
5140 ret = -EFAULT;
7d88962e 5141 goto out;
fa8c2693 5142
7d88962e
SB
5143unlock:
5144 mutex_unlock(&leader->child_mutex);
5145out:
fa8c2693 5146 kfree(values);
abf4868b 5147 return ret;
3dab77fb
PZ
5148}
5149
b15f495b 5150static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
5151 u64 read_format, char __user *buf)
5152{
59ed446f 5153 u64 enabled, running;
3dab77fb
PZ
5154 u64 values[4];
5155 int n = 0;
5156
ca0dd44c 5157 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
5158 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5159 values[n++] = enabled;
5160 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5161 values[n++] = running;
3dab77fb 5162 if (read_format & PERF_FORMAT_ID)
cdd6c482 5163 values[n++] = primary_event_id(event);
3dab77fb
PZ
5164
5165 if (copy_to_user(buf, values, n * sizeof(u64)))
5166 return -EFAULT;
5167
5168 return n * sizeof(u64);
5169}
5170
dc633982
JO
5171static bool is_event_hup(struct perf_event *event)
5172{
5173 bool no_children;
5174
a69b0ca4 5175 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
5176 return false;
5177
5178 mutex_lock(&event->child_mutex);
5179 no_children = list_empty(&event->child_list);
5180 mutex_unlock(&event->child_mutex);
5181 return no_children;
5182}
5183
0793a61d 5184/*
cdd6c482 5185 * Read the performance event - simple non blocking version for now
0793a61d
TG
5186 */
5187static ssize_t
b15f495b 5188__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 5189{
cdd6c482 5190 u64 read_format = event->attr.read_format;
3dab77fb 5191 int ret;
0793a61d 5192
3b6f9e5c 5193 /*
788faab7 5194 * Return end-of-file for a read on an event that is in
3b6f9e5c
PM
5195 * error state (i.e. because it was pinned but it couldn't be
5196 * scheduled on to the CPU at some point).
5197 */
cdd6c482 5198 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
5199 return 0;
5200
c320c7b7 5201 if (count < event->read_size)
3dab77fb
PZ
5202 return -ENOSPC;
5203
cdd6c482 5204 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 5205 if (read_format & PERF_FORMAT_GROUP)
b15f495b 5206 ret = perf_read_group(event, read_format, buf);
3dab77fb 5207 else
b15f495b 5208 ret = perf_read_one(event, read_format, buf);
0793a61d 5209
3dab77fb 5210 return ret;
0793a61d
TG
5211}
5212
0793a61d
TG
5213static ssize_t
5214perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5215{
cdd6c482 5216 struct perf_event *event = file->private_data;
f63a8daa
PZ
5217 struct perf_event_context *ctx;
5218 int ret;
0793a61d 5219
da97e184
JFG
5220 ret = security_perf_event_read(event);
5221 if (ret)
5222 return ret;
5223
f63a8daa 5224 ctx = perf_event_ctx_lock(event);
b15f495b 5225 ret = __perf_read(event, buf, count);
f63a8daa
PZ
5226 perf_event_ctx_unlock(event, ctx);
5227
5228 return ret;
0793a61d
TG
5229}
5230
9dd95748 5231static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 5232{
cdd6c482 5233 struct perf_event *event = file->private_data;
56de4e8f 5234 struct perf_buffer *rb;
a9a08845 5235 __poll_t events = EPOLLHUP;
c7138f37 5236
e708d7ad 5237 poll_wait(file, &event->waitq, wait);
179033b3 5238
dc633982 5239 if (is_event_hup(event))
179033b3 5240 return events;
c7138f37 5241
10c6db11 5242 /*
9bb5d40c
PZ
5243 * Pin the event->rb by taking event->mmap_mutex; otherwise
5244 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
5245 */
5246 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
5247 rb = event->rb;
5248 if (rb)
76369139 5249 events = atomic_xchg(&rb->poll, 0);
10c6db11 5250 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
5251 return events;
5252}
5253
f63a8daa 5254static void _perf_event_reset(struct perf_event *event)
6de6a7b9 5255{
7d88962e 5256 (void)perf_event_read(event, false);
e7850595 5257 local64_set(&event->count, 0);
cdd6c482 5258 perf_event_update_userpage(event);
3df5edad
PZ
5259}
5260
52ba4b0b
LX
5261/* Assume it's not an event with inherit set. */
5262u64 perf_event_pause(struct perf_event *event, bool reset)
5263{
5264 struct perf_event_context *ctx;
5265 u64 count;
5266
5267 ctx = perf_event_ctx_lock(event);
5268 WARN_ON_ONCE(event->attr.inherit);
5269 _perf_event_disable(event);
5270 count = local64_read(&event->count);
5271 if (reset)
5272 local64_set(&event->count, 0);
5273 perf_event_ctx_unlock(event, ctx);
5274
5275 return count;
5276}
5277EXPORT_SYMBOL_GPL(perf_event_pause);
5278
c93f7669 5279/*
cdd6c482
IM
5280 * Holding the top-level event's child_mutex means that any
5281 * descendant process that has inherited this event will block
8ba289b8 5282 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 5283 * task existence requirements of perf_event_enable/disable.
c93f7669 5284 */
cdd6c482
IM
5285static void perf_event_for_each_child(struct perf_event *event,
5286 void (*func)(struct perf_event *))
3df5edad 5287{
cdd6c482 5288 struct perf_event *child;
3df5edad 5289
cdd6c482 5290 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 5291
cdd6c482
IM
5292 mutex_lock(&event->child_mutex);
5293 func(event);
5294 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 5295 func(child);
cdd6c482 5296 mutex_unlock(&event->child_mutex);
3df5edad
PZ
5297}
5298
cdd6c482
IM
5299static void perf_event_for_each(struct perf_event *event,
5300 void (*func)(struct perf_event *))
3df5edad 5301{
cdd6c482
IM
5302 struct perf_event_context *ctx = event->ctx;
5303 struct perf_event *sibling;
3df5edad 5304
f63a8daa
PZ
5305 lockdep_assert_held(&ctx->mutex);
5306
cdd6c482 5307 event = event->group_leader;
75f937f2 5308
cdd6c482 5309 perf_event_for_each_child(event, func);
edb39592 5310 for_each_sibling_event(sibling, event)
724b6daa 5311 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
5312}
5313
fae3fde6
PZ
5314static void __perf_event_period(struct perf_event *event,
5315 struct perf_cpu_context *cpuctx,
5316 struct perf_event_context *ctx,
5317 void *info)
c7999c6f 5318{
fae3fde6 5319 u64 value = *((u64 *)info);
c7999c6f 5320 bool active;
08247e31 5321
cdd6c482 5322 if (event->attr.freq) {
cdd6c482 5323 event->attr.sample_freq = value;
08247e31 5324 } else {
cdd6c482
IM
5325 event->attr.sample_period = value;
5326 event->hw.sample_period = value;
08247e31 5327 }
bad7192b
PZ
5328
5329 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5330 if (active) {
5331 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
5332 /*
5333 * We could be throttled; unthrottle now to avoid the tick
5334 * trying to unthrottle while we already re-started the event.
5335 */
5336 if (event->hw.interrupts == MAX_INTERRUPTS) {
5337 event->hw.interrupts = 0;
5338 perf_log_throttle(event, 1);
5339 }
bad7192b
PZ
5340 event->pmu->stop(event, PERF_EF_UPDATE);
5341 }
5342
5343 local64_set(&event->hw.period_left, 0);
5344
5345 if (active) {
5346 event->pmu->start(event, PERF_EF_RELOAD);
5347 perf_pmu_enable(ctx->pmu);
5348 }
c7999c6f
PZ
5349}
5350
81ec3f3c
JO
5351static int perf_event_check_period(struct perf_event *event, u64 value)
5352{
5353 return event->pmu->check_period(event, value);
5354}
5355
3ca270fc 5356static int _perf_event_period(struct perf_event *event, u64 value)
c7999c6f 5357{
c7999c6f
PZ
5358 if (!is_sampling_event(event))
5359 return -EINVAL;
5360
c7999c6f
PZ
5361 if (!value)
5362 return -EINVAL;
5363
5364 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5365 return -EINVAL;
5366
81ec3f3c
JO
5367 if (perf_event_check_period(event, value))
5368 return -EINVAL;
5369
913a90bc
RB
5370 if (!event->attr.freq && (value & (1ULL << 63)))
5371 return -EINVAL;
5372
fae3fde6 5373 event_function_call(event, __perf_event_period, &value);
08247e31 5374
c7999c6f 5375 return 0;
08247e31
PZ
5376}
5377
3ca270fc
LX
5378int perf_event_period(struct perf_event *event, u64 value)
5379{
5380 struct perf_event_context *ctx;
5381 int ret;
5382
5383 ctx = perf_event_ctx_lock(event);
5384 ret = _perf_event_period(event, value);
5385 perf_event_ctx_unlock(event, ctx);
5386
5387 return ret;
5388}
5389EXPORT_SYMBOL_GPL(perf_event_period);
5390
ac9721f3
PZ
5391static const struct file_operations perf_fops;
5392
2903ff01 5393static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 5394{
2903ff01
AV
5395 struct fd f = fdget(fd);
5396 if (!f.file)
5397 return -EBADF;
ac9721f3 5398
2903ff01
AV
5399 if (f.file->f_op != &perf_fops) {
5400 fdput(f);
5401 return -EBADF;
ac9721f3 5402 }
2903ff01
AV
5403 *p = f;
5404 return 0;
ac9721f3
PZ
5405}
5406
5407static int perf_event_set_output(struct perf_event *event,
5408 struct perf_event *output_event);
6fb2915d 5409static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 5410static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
32ff77e8
MC
5411static int perf_copy_attr(struct perf_event_attr __user *uattr,
5412 struct perf_event_attr *attr);
a4be7c27 5413
f63a8daa 5414static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5415{
cdd6c482 5416 void (*func)(struct perf_event *);
3df5edad 5417 u32 flags = arg;
d859e29f
PM
5418
5419 switch (cmd) {
cdd6c482 5420 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5421 func = _perf_event_enable;
d859e29f 5422 break;
cdd6c482 5423 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5424 func = _perf_event_disable;
79f14641 5425 break;
cdd6c482 5426 case PERF_EVENT_IOC_RESET:
f63a8daa 5427 func = _perf_event_reset;
6de6a7b9 5428 break;
3df5edad 5429
cdd6c482 5430 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5431 return _perf_event_refresh(event, arg);
08247e31 5432
cdd6c482 5433 case PERF_EVENT_IOC_PERIOD:
3ca270fc
LX
5434 {
5435 u64 value;
08247e31 5436
3ca270fc
LX
5437 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5438 return -EFAULT;
08247e31 5439
3ca270fc
LX
5440 return _perf_event_period(event, value);
5441 }
cf4957f1
JO
5442 case PERF_EVENT_IOC_ID:
5443 {
5444 u64 id = primary_event_id(event);
5445
5446 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5447 return -EFAULT;
5448 return 0;
5449 }
5450
cdd6c482 5451 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5452 {
ac9721f3 5453 int ret;
ac9721f3 5454 if (arg != -1) {
2903ff01
AV
5455 struct perf_event *output_event;
5456 struct fd output;
5457 ret = perf_fget_light(arg, &output);
5458 if (ret)
5459 return ret;
5460 output_event = output.file->private_data;
5461 ret = perf_event_set_output(event, output_event);
5462 fdput(output);
5463 } else {
5464 ret = perf_event_set_output(event, NULL);
ac9721f3 5465 }
ac9721f3
PZ
5466 return ret;
5467 }
a4be7c27 5468
6fb2915d
LZ
5469 case PERF_EVENT_IOC_SET_FILTER:
5470 return perf_event_set_filter(event, (void __user *)arg);
5471
2541517c
AS
5472 case PERF_EVENT_IOC_SET_BPF:
5473 return perf_event_set_bpf_prog(event, arg);
5474
86e7972f 5475 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
56de4e8f 5476 struct perf_buffer *rb;
86e7972f
WN
5477
5478 rcu_read_lock();
5479 rb = rcu_dereference(event->rb);
5480 if (!rb || !rb->nr_pages) {
5481 rcu_read_unlock();
5482 return -EINVAL;
5483 }
5484 rb_toggle_paused(rb, !!arg);
5485 rcu_read_unlock();
5486 return 0;
5487 }
f371b304
YS
5488
5489 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5490 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5491
5492 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5493 struct perf_event_attr new_attr;
5494 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5495 &new_attr);
5496
5497 if (err)
5498 return err;
5499
5500 return perf_event_modify_attr(event, &new_attr);
5501 }
d859e29f 5502 default:
3df5edad 5503 return -ENOTTY;
d859e29f 5504 }
3df5edad
PZ
5505
5506 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5507 perf_event_for_each(event, func);
3df5edad 5508 else
cdd6c482 5509 perf_event_for_each_child(event, func);
3df5edad
PZ
5510
5511 return 0;
d859e29f
PM
5512}
5513
f63a8daa
PZ
5514static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5515{
5516 struct perf_event *event = file->private_data;
5517 struct perf_event_context *ctx;
5518 long ret;
5519
da97e184
JFG
5520 /* Treat ioctl like writes as it is likely a mutating operation. */
5521 ret = security_perf_event_write(event);
5522 if (ret)
5523 return ret;
5524
f63a8daa
PZ
5525 ctx = perf_event_ctx_lock(event);
5526 ret = _perf_ioctl(event, cmd, arg);
5527 perf_event_ctx_unlock(event, ctx);
5528
5529 return ret;
5530}
5531
b3f20785
PM
5532#ifdef CONFIG_COMPAT
5533static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5534 unsigned long arg)
5535{
5536 switch (_IOC_NR(cmd)) {
5537 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5538 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
5539 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5540 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
5541 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5542 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5543 cmd &= ~IOCSIZE_MASK;
5544 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5545 }
5546 break;
5547 }
5548 return perf_ioctl(file, cmd, arg);
5549}
5550#else
5551# define perf_compat_ioctl NULL
5552#endif
5553
cdd6c482 5554int perf_event_task_enable(void)
771d7cde 5555{
f63a8daa 5556 struct perf_event_context *ctx;
cdd6c482 5557 struct perf_event *event;
771d7cde 5558
cdd6c482 5559 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5560 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5561 ctx = perf_event_ctx_lock(event);
5562 perf_event_for_each_child(event, _perf_event_enable);
5563 perf_event_ctx_unlock(event, ctx);
5564 }
cdd6c482 5565 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5566
5567 return 0;
5568}
5569
cdd6c482 5570int perf_event_task_disable(void)
771d7cde 5571{
f63a8daa 5572 struct perf_event_context *ctx;
cdd6c482 5573 struct perf_event *event;
771d7cde 5574
cdd6c482 5575 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5576 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5577 ctx = perf_event_ctx_lock(event);
5578 perf_event_for_each_child(event, _perf_event_disable);
5579 perf_event_ctx_unlock(event, ctx);
5580 }
cdd6c482 5581 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5582
5583 return 0;
5584}
5585
cdd6c482 5586static int perf_event_index(struct perf_event *event)
194002b2 5587{
a4eaf7f1
PZ
5588 if (event->hw.state & PERF_HES_STOPPED)
5589 return 0;
5590
cdd6c482 5591 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
5592 return 0;
5593
35edc2a5 5594 return event->pmu->event_idx(event);
194002b2
PZ
5595}
5596
c4794295 5597static void calc_timer_values(struct perf_event *event,
e3f3541c 5598 u64 *now,
7f310a5d
EM
5599 u64 *enabled,
5600 u64 *running)
c4794295 5601{
e3f3541c 5602 u64 ctx_time;
c4794295 5603
e3f3541c
PZ
5604 *now = perf_clock();
5605 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 5606 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
5607}
5608
fa731587
PZ
5609static void perf_event_init_userpage(struct perf_event *event)
5610{
5611 struct perf_event_mmap_page *userpg;
56de4e8f 5612 struct perf_buffer *rb;
fa731587
PZ
5613
5614 rcu_read_lock();
5615 rb = rcu_dereference(event->rb);
5616 if (!rb)
5617 goto unlock;
5618
5619 userpg = rb->user_page;
5620
5621 /* Allow new userspace to detect that bit 0 is deprecated */
5622 userpg->cap_bit0_is_deprecated = 1;
5623 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
5624 userpg->data_offset = PAGE_SIZE;
5625 userpg->data_size = perf_data_size(rb);
fa731587
PZ
5626
5627unlock:
5628 rcu_read_unlock();
5629}
5630
c1317ec2
AL
5631void __weak arch_perf_update_userpage(
5632 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
5633{
5634}
5635
38ff667b
PZ
5636/*
5637 * Callers need to ensure there can be no nesting of this function, otherwise
5638 * the seqlock logic goes bad. We can not serialize this because the arch
5639 * code calls this from NMI context.
5640 */
cdd6c482 5641void perf_event_update_userpage(struct perf_event *event)
37d81828 5642{
cdd6c482 5643 struct perf_event_mmap_page *userpg;
56de4e8f 5644 struct perf_buffer *rb;
e3f3541c 5645 u64 enabled, running, now;
38ff667b
PZ
5646
5647 rcu_read_lock();
5ec4c599
PZ
5648 rb = rcu_dereference(event->rb);
5649 if (!rb)
5650 goto unlock;
5651
0d641208
EM
5652 /*
5653 * compute total_time_enabled, total_time_running
5654 * based on snapshot values taken when the event
5655 * was last scheduled in.
5656 *
5657 * we cannot simply called update_context_time()
5658 * because of locking issue as we can be called in
5659 * NMI context
5660 */
e3f3541c 5661 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5662
76369139 5663 userpg = rb->user_page;
7b732a75 5664 /*
9d2dcc8f
MF
5665 * Disable preemption to guarantee consistent time stamps are stored to
5666 * the user page.
7b732a75
PZ
5667 */
5668 preempt_disable();
37d81828 5669 ++userpg->lock;
92f22a38 5670 barrier();
cdd6c482 5671 userpg->index = perf_event_index(event);
b5e58793 5672 userpg->offset = perf_event_count(event);
365a4038 5673 if (userpg->index)
e7850595 5674 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5675
0d641208 5676 userpg->time_enabled = enabled +
cdd6c482 5677 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5678
0d641208 5679 userpg->time_running = running +
cdd6c482 5680 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5681
c1317ec2 5682 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5683
92f22a38 5684 barrier();
37d81828 5685 ++userpg->lock;
7b732a75 5686 preempt_enable();
38ff667b 5687unlock:
7b732a75 5688 rcu_read_unlock();
37d81828 5689}
82975c46 5690EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 5691
9e3ed2d7 5692static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
906010b2 5693{
11bac800 5694 struct perf_event *event = vmf->vma->vm_file->private_data;
56de4e8f 5695 struct perf_buffer *rb;
9e3ed2d7 5696 vm_fault_t ret = VM_FAULT_SIGBUS;
906010b2
PZ
5697
5698 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5699 if (vmf->pgoff == 0)
5700 ret = 0;
5701 return ret;
5702 }
5703
5704 rcu_read_lock();
76369139
FW
5705 rb = rcu_dereference(event->rb);
5706 if (!rb)
906010b2
PZ
5707 goto unlock;
5708
5709 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5710 goto unlock;
5711
76369139 5712 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5713 if (!vmf->page)
5714 goto unlock;
5715
5716 get_page(vmf->page);
11bac800 5717 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5718 vmf->page->index = vmf->pgoff;
5719
5720 ret = 0;
5721unlock:
5722 rcu_read_unlock();
5723
5724 return ret;
5725}
5726
10c6db11 5727static void ring_buffer_attach(struct perf_event *event,
56de4e8f 5728 struct perf_buffer *rb)
10c6db11 5729{
56de4e8f 5730 struct perf_buffer *old_rb = NULL;
10c6db11
PZ
5731 unsigned long flags;
5732
b69cf536
PZ
5733 if (event->rb) {
5734 /*
5735 * Should be impossible, we set this when removing
5736 * event->rb_entry and wait/clear when adding event->rb_entry.
5737 */
5738 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5739
b69cf536 5740 old_rb = event->rb;
b69cf536
PZ
5741 spin_lock_irqsave(&old_rb->event_lock, flags);
5742 list_del_rcu(&event->rb_entry);
5743 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5744
2f993cf0
ON
5745 event->rcu_batches = get_state_synchronize_rcu();
5746 event->rcu_pending = 1;
b69cf536 5747 }
10c6db11 5748
b69cf536 5749 if (rb) {
2f993cf0
ON
5750 if (event->rcu_pending) {
5751 cond_synchronize_rcu(event->rcu_batches);
5752 event->rcu_pending = 0;
5753 }
5754
b69cf536
PZ
5755 spin_lock_irqsave(&rb->event_lock, flags);
5756 list_add_rcu(&event->rb_entry, &rb->event_list);
5757 spin_unlock_irqrestore(&rb->event_lock, flags);
5758 }
5759
767ae086
AS
5760 /*
5761 * Avoid racing with perf_mmap_close(AUX): stop the event
5762 * before swizzling the event::rb pointer; if it's getting
5763 * unmapped, its aux_mmap_count will be 0 and it won't
5764 * restart. See the comment in __perf_pmu_output_stop().
5765 *
5766 * Data will inevitably be lost when set_output is done in
5767 * mid-air, but then again, whoever does it like this is
5768 * not in for the data anyway.
5769 */
5770 if (has_aux(event))
5771 perf_event_stop(event, 0);
5772
b69cf536
PZ
5773 rcu_assign_pointer(event->rb, rb);
5774
5775 if (old_rb) {
5776 ring_buffer_put(old_rb);
5777 /*
5778 * Since we detached before setting the new rb, so that we
5779 * could attach the new rb, we could have missed a wakeup.
5780 * Provide it now.
5781 */
5782 wake_up_all(&event->waitq);
5783 }
10c6db11
PZ
5784}
5785
5786static void ring_buffer_wakeup(struct perf_event *event)
5787{
56de4e8f 5788 struct perf_buffer *rb;
10c6db11
PZ
5789
5790 rcu_read_lock();
5791 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5792 if (rb) {
5793 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5794 wake_up_all(&event->waitq);
5795 }
10c6db11
PZ
5796 rcu_read_unlock();
5797}
5798
56de4e8f 5799struct perf_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5800{
56de4e8f 5801 struct perf_buffer *rb;
7b732a75 5802
ac9721f3 5803 rcu_read_lock();
76369139
FW
5804 rb = rcu_dereference(event->rb);
5805 if (rb) {
fecb8ed2 5806 if (!refcount_inc_not_zero(&rb->refcount))
76369139 5807 rb = NULL;
ac9721f3
PZ
5808 }
5809 rcu_read_unlock();
5810
76369139 5811 return rb;
ac9721f3
PZ
5812}
5813
56de4e8f 5814void ring_buffer_put(struct perf_buffer *rb)
ac9721f3 5815{
fecb8ed2 5816 if (!refcount_dec_and_test(&rb->refcount))
ac9721f3 5817 return;
7b732a75 5818
9bb5d40c 5819 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5820
76369139 5821 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5822}
5823
5824static void perf_mmap_open(struct vm_area_struct *vma)
5825{
cdd6c482 5826 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5827
cdd6c482 5828 atomic_inc(&event->mmap_count);
9bb5d40c 5829 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5830
45bfb2e5
PZ
5831 if (vma->vm_pgoff)
5832 atomic_inc(&event->rb->aux_mmap_count);
5833
1e0fb9ec 5834 if (event->pmu->event_mapped)
bfe33492 5835 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5836}
5837
95ff4ca2
AS
5838static void perf_pmu_output_stop(struct perf_event *event);
5839
9bb5d40c
PZ
5840/*
5841 * A buffer can be mmap()ed multiple times; either directly through the same
5842 * event, or through other events by use of perf_event_set_output().
5843 *
5844 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5845 * the buffer here, where we still have a VM context. This means we need
5846 * to detach all events redirecting to us.
5847 */
7b732a75
PZ
5848static void perf_mmap_close(struct vm_area_struct *vma)
5849{
cdd6c482 5850 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5851
56de4e8f 5852 struct perf_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5853 struct user_struct *mmap_user = rb->mmap_user;
5854 int mmap_locked = rb->mmap_locked;
5855 unsigned long size = perf_data_size(rb);
789f90fc 5856
1e0fb9ec 5857 if (event->pmu->event_unmapped)
bfe33492 5858 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5859
45bfb2e5
PZ
5860 /*
5861 * rb->aux_mmap_count will always drop before rb->mmap_count and
5862 * event->mmap_count, so it is ok to use event->mmap_mutex to
5863 * serialize with perf_mmap here.
5864 */
5865 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5866 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5867 /*
5868 * Stop all AUX events that are writing to this buffer,
5869 * so that we can free its AUX pages and corresponding PMU
5870 * data. Note that after rb::aux_mmap_count dropped to zero,
5871 * they won't start any more (see perf_aux_output_begin()).
5872 */
5873 perf_pmu_output_stop(event);
5874
5875 /* now it's safe to free the pages */
36b3db03
AS
5876 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5877 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
45bfb2e5 5878
95ff4ca2 5879 /* this has to be the last one */
45bfb2e5 5880 rb_free_aux(rb);
ca3bb3d0 5881 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
95ff4ca2 5882
45bfb2e5
PZ
5883 mutex_unlock(&event->mmap_mutex);
5884 }
5885
9bb5d40c
PZ
5886 atomic_dec(&rb->mmap_count);
5887
5888 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5889 goto out_put;
9bb5d40c 5890
b69cf536 5891 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5892 mutex_unlock(&event->mmap_mutex);
5893
5894 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5895 if (atomic_read(&rb->mmap_count))
5896 goto out_put;
ac9721f3 5897
9bb5d40c
PZ
5898 /*
5899 * No other mmap()s, detach from all other events that might redirect
5900 * into the now unreachable buffer. Somewhat complicated by the
5901 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5902 */
5903again:
5904 rcu_read_lock();
5905 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5906 if (!atomic_long_inc_not_zero(&event->refcount)) {
5907 /*
5908 * This event is en-route to free_event() which will
5909 * detach it and remove it from the list.
5910 */
5911 continue;
5912 }
5913 rcu_read_unlock();
789f90fc 5914
9bb5d40c
PZ
5915 mutex_lock(&event->mmap_mutex);
5916 /*
5917 * Check we didn't race with perf_event_set_output() which can
5918 * swizzle the rb from under us while we were waiting to
5919 * acquire mmap_mutex.
5920 *
5921 * If we find a different rb; ignore this event, a next
5922 * iteration will no longer find it on the list. We have to
5923 * still restart the iteration to make sure we're not now
5924 * iterating the wrong list.
5925 */
b69cf536
PZ
5926 if (event->rb == rb)
5927 ring_buffer_attach(event, NULL);
5928
cdd6c482 5929 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5930 put_event(event);
ac9721f3 5931
9bb5d40c
PZ
5932 /*
5933 * Restart the iteration; either we're on the wrong list or
5934 * destroyed its integrity by doing a deletion.
5935 */
5936 goto again;
7b732a75 5937 }
9bb5d40c
PZ
5938 rcu_read_unlock();
5939
5940 /*
5941 * It could be there's still a few 0-ref events on the list; they'll
5942 * get cleaned up by free_event() -- they'll also still have their
5943 * ref on the rb and will free it whenever they are done with it.
5944 *
5945 * Aside from that, this buffer is 'fully' detached and unmapped,
5946 * undo the VM accounting.
5947 */
5948
d44248a4
SL
5949 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5950 &mmap_user->locked_vm);
70f8a3ca 5951 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
9bb5d40c
PZ
5952 free_uid(mmap_user);
5953
b69cf536 5954out_put:
9bb5d40c 5955 ring_buffer_put(rb); /* could be last */
37d81828
PM
5956}
5957
f0f37e2f 5958static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5959 .open = perf_mmap_open,
fca0c116 5960 .close = perf_mmap_close, /* non mergeable */
43a21ea8
PZ
5961 .fault = perf_mmap_fault,
5962 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5963};
5964
5965static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5966{
cdd6c482 5967 struct perf_event *event = file->private_data;
22a4f650 5968 unsigned long user_locked, user_lock_limit;
789f90fc 5969 struct user_struct *user = current_user();
56de4e8f 5970 struct perf_buffer *rb = NULL;
22a4f650 5971 unsigned long locked, lock_limit;
7b732a75
PZ
5972 unsigned long vma_size;
5973 unsigned long nr_pages;
45bfb2e5 5974 long user_extra = 0, extra = 0;
d57e34fd 5975 int ret = 0, flags = 0;
37d81828 5976
c7920614
PZ
5977 /*
5978 * Don't allow mmap() of inherited per-task counters. This would
5979 * create a performance issue due to all children writing to the
76369139 5980 * same rb.
c7920614
PZ
5981 */
5982 if (event->cpu == -1 && event->attr.inherit)
5983 return -EINVAL;
5984
43a21ea8 5985 if (!(vma->vm_flags & VM_SHARED))
37d81828 5986 return -EINVAL;
7b732a75 5987
da97e184
JFG
5988 ret = security_perf_event_read(event);
5989 if (ret)
5990 return ret;
5991
7b732a75 5992 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5993
5994 if (vma->vm_pgoff == 0) {
5995 nr_pages = (vma_size / PAGE_SIZE) - 1;
5996 } else {
5997 /*
5998 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5999 * mapped, all subsequent mappings should have the same size
6000 * and offset. Must be above the normal perf buffer.
6001 */
6002 u64 aux_offset, aux_size;
6003
6004 if (!event->rb)
6005 return -EINVAL;
6006
6007 nr_pages = vma_size / PAGE_SIZE;
6008
6009 mutex_lock(&event->mmap_mutex);
6010 ret = -EINVAL;
6011
6012 rb = event->rb;
6013 if (!rb)
6014 goto aux_unlock;
6015
6aa7de05
MR
6016 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6017 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
6018
6019 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6020 goto aux_unlock;
6021
6022 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6023 goto aux_unlock;
6024
6025 /* already mapped with a different offset */
6026 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6027 goto aux_unlock;
6028
6029 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6030 goto aux_unlock;
6031
6032 /* already mapped with a different size */
6033 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6034 goto aux_unlock;
6035
6036 if (!is_power_of_2(nr_pages))
6037 goto aux_unlock;
6038
6039 if (!atomic_inc_not_zero(&rb->mmap_count))
6040 goto aux_unlock;
6041
6042 if (rb_has_aux(rb)) {
6043 atomic_inc(&rb->aux_mmap_count);
6044 ret = 0;
6045 goto unlock;
6046 }
6047
6048 atomic_set(&rb->aux_mmap_count, 1);
6049 user_extra = nr_pages;
6050
6051 goto accounting;
6052 }
7b732a75 6053
7730d865 6054 /*
76369139 6055 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
6056 * can do bitmasks instead of modulo.
6057 */
2ed11312 6058 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
6059 return -EINVAL;
6060
7b732a75 6061 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
6062 return -EINVAL;
6063
cdd6c482 6064 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 6065again:
cdd6c482 6066 mutex_lock(&event->mmap_mutex);
76369139 6067 if (event->rb) {
9bb5d40c 6068 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 6069 ret = -EINVAL;
9bb5d40c
PZ
6070 goto unlock;
6071 }
6072
6073 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6074 /*
6075 * Raced against perf_mmap_close() through
6076 * perf_event_set_output(). Try again, hope for better
6077 * luck.
6078 */
6079 mutex_unlock(&event->mmap_mutex);
6080 goto again;
6081 }
6082
ebb3c4c4
PZ
6083 goto unlock;
6084 }
6085
789f90fc 6086 user_extra = nr_pages + 1;
45bfb2e5
PZ
6087
6088accounting:
cdd6c482 6089 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
6090
6091 /*
6092 * Increase the limit linearly with more CPUs:
6093 */
6094 user_lock_limit *= num_online_cpus();
6095
00346155
SL
6096 user_locked = atomic_long_read(&user->locked_vm);
6097
6098 /*
6099 * sysctl_perf_event_mlock may have changed, so that
6100 * user->locked_vm > user_lock_limit
6101 */
6102 if (user_locked > user_lock_limit)
6103 user_locked = user_lock_limit;
6104 user_locked += user_extra;
c5078f78 6105
c4b75479 6106 if (user_locked > user_lock_limit) {
d44248a4
SL
6107 /*
6108 * charge locked_vm until it hits user_lock_limit;
6109 * charge the rest from pinned_vm
6110 */
789f90fc 6111 extra = user_locked - user_lock_limit;
d44248a4
SL
6112 user_extra -= extra;
6113 }
7b732a75 6114
78d7d407 6115 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 6116 lock_limit >>= PAGE_SHIFT;
70f8a3ca 6117 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
7b732a75 6118
da97e184 6119 if ((locked > lock_limit) && perf_is_paranoid() &&
459ec28a 6120 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
6121 ret = -EPERM;
6122 goto unlock;
6123 }
7b732a75 6124
45bfb2e5 6125 WARN_ON(!rb && event->rb);
906010b2 6126
d57e34fd 6127 if (vma->vm_flags & VM_WRITE)
76369139 6128 flags |= RING_BUFFER_WRITABLE;
d57e34fd 6129
76369139 6130 if (!rb) {
45bfb2e5
PZ
6131 rb = rb_alloc(nr_pages,
6132 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6133 event->cpu, flags);
26cb63ad 6134
45bfb2e5
PZ
6135 if (!rb) {
6136 ret = -ENOMEM;
6137 goto unlock;
6138 }
43a21ea8 6139
45bfb2e5
PZ
6140 atomic_set(&rb->mmap_count, 1);
6141 rb->mmap_user = get_current_user();
6142 rb->mmap_locked = extra;
26cb63ad 6143
45bfb2e5 6144 ring_buffer_attach(event, rb);
ac9721f3 6145
45bfb2e5
PZ
6146 perf_event_init_userpage(event);
6147 perf_event_update_userpage(event);
6148 } else {
1a594131
AS
6149 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6150 event->attr.aux_watermark, flags);
45bfb2e5
PZ
6151 if (!ret)
6152 rb->aux_mmap_locked = extra;
6153 }
9a0f05cb 6154
ebb3c4c4 6155unlock:
45bfb2e5
PZ
6156 if (!ret) {
6157 atomic_long_add(user_extra, &user->locked_vm);
70f8a3ca 6158 atomic64_add(extra, &vma->vm_mm->pinned_vm);
45bfb2e5 6159
ac9721f3 6160 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
6161 } else if (rb) {
6162 atomic_dec(&rb->mmap_count);
6163 }
6164aux_unlock:
cdd6c482 6165 mutex_unlock(&event->mmap_mutex);
37d81828 6166
9bb5d40c
PZ
6167 /*
6168 * Since pinned accounting is per vm we cannot allow fork() to copy our
6169 * vma.
6170 */
26cb63ad 6171 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 6172 vma->vm_ops = &perf_mmap_vmops;
7b732a75 6173
1e0fb9ec 6174 if (event->pmu->event_mapped)
bfe33492 6175 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 6176
7b732a75 6177 return ret;
37d81828
PM
6178}
6179
3c446b3d
PZ
6180static int perf_fasync(int fd, struct file *filp, int on)
6181{
496ad9aa 6182 struct inode *inode = file_inode(filp);
cdd6c482 6183 struct perf_event *event = filp->private_data;
3c446b3d
PZ
6184 int retval;
6185
5955102c 6186 inode_lock(inode);
cdd6c482 6187 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 6188 inode_unlock(inode);
3c446b3d
PZ
6189
6190 if (retval < 0)
6191 return retval;
6192
6193 return 0;
6194}
6195
0793a61d 6196static const struct file_operations perf_fops = {
3326c1ce 6197 .llseek = no_llseek,
0793a61d
TG
6198 .release = perf_release,
6199 .read = perf_read,
6200 .poll = perf_poll,
d859e29f 6201 .unlocked_ioctl = perf_ioctl,
b3f20785 6202 .compat_ioctl = perf_compat_ioctl,
37d81828 6203 .mmap = perf_mmap,
3c446b3d 6204 .fasync = perf_fasync,
0793a61d
TG
6205};
6206
925d519a 6207/*
cdd6c482 6208 * Perf event wakeup
925d519a
PZ
6209 *
6210 * If there's data, ensure we set the poll() state and publish everything
6211 * to user-space before waking everybody up.
6212 */
6213
fed66e2c
PZ
6214static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6215{
6216 /* only the parent has fasync state */
6217 if (event->parent)
6218 event = event->parent;
6219 return &event->fasync;
6220}
6221
cdd6c482 6222void perf_event_wakeup(struct perf_event *event)
925d519a 6223{
10c6db11 6224 ring_buffer_wakeup(event);
4c9e2542 6225
cdd6c482 6226 if (event->pending_kill) {
fed66e2c 6227 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 6228 event->pending_kill = 0;
4c9e2542 6229 }
925d519a
PZ
6230}
6231
1d54ad94
PZ
6232static void perf_pending_event_disable(struct perf_event *event)
6233{
6234 int cpu = READ_ONCE(event->pending_disable);
6235
6236 if (cpu < 0)
6237 return;
6238
6239 if (cpu == smp_processor_id()) {
6240 WRITE_ONCE(event->pending_disable, -1);
6241 perf_event_disable_local(event);
6242 return;
6243 }
6244
6245 /*
6246 * CPU-A CPU-B
6247 *
6248 * perf_event_disable_inatomic()
6249 * @pending_disable = CPU-A;
6250 * irq_work_queue();
6251 *
6252 * sched-out
6253 * @pending_disable = -1;
6254 *
6255 * sched-in
6256 * perf_event_disable_inatomic()
6257 * @pending_disable = CPU-B;
6258 * irq_work_queue(); // FAILS
6259 *
6260 * irq_work_run()
6261 * perf_pending_event()
6262 *
6263 * But the event runs on CPU-B and wants disabling there.
6264 */
6265 irq_work_queue_on(&event->pending, cpu);
6266}
6267
e360adbe 6268static void perf_pending_event(struct irq_work *entry)
79f14641 6269{
1d54ad94 6270 struct perf_event *event = container_of(entry, struct perf_event, pending);
d525211f
PZ
6271 int rctx;
6272
6273 rctx = perf_swevent_get_recursion_context();
6274 /*
6275 * If we 'fail' here, that's OK, it means recursion is already disabled
6276 * and we won't recurse 'further'.
6277 */
79f14641 6278
1d54ad94 6279 perf_pending_event_disable(event);
79f14641 6280
cdd6c482
IM
6281 if (event->pending_wakeup) {
6282 event->pending_wakeup = 0;
6283 perf_event_wakeup(event);
79f14641 6284 }
d525211f
PZ
6285
6286 if (rctx >= 0)
6287 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
6288}
6289
39447b38
ZY
6290/*
6291 * We assume there is only KVM supporting the callbacks.
6292 * Later on, we might change it to a list if there is
6293 * another virtualization implementation supporting the callbacks.
6294 */
6295struct perf_guest_info_callbacks *perf_guest_cbs;
6296
6297int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6298{
6299 perf_guest_cbs = cbs;
6300 return 0;
6301}
6302EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6303
6304int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6305{
6306 perf_guest_cbs = NULL;
6307 return 0;
6308}
6309EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6310
4018994f
JO
6311static void
6312perf_output_sample_regs(struct perf_output_handle *handle,
6313 struct pt_regs *regs, u64 mask)
6314{
6315 int bit;
29dd3288 6316 DECLARE_BITMAP(_mask, 64);
4018994f 6317
29dd3288
MS
6318 bitmap_from_u64(_mask, mask);
6319 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
6320 u64 val;
6321
6322 val = perf_reg_value(regs, bit);
6323 perf_output_put(handle, val);
6324 }
6325}
6326
60e2364e 6327static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
6328 struct pt_regs *regs,
6329 struct pt_regs *regs_user_copy)
4018994f 6330{
88a7c26a
AL
6331 if (user_mode(regs)) {
6332 regs_user->abi = perf_reg_abi(current);
2565711f 6333 regs_user->regs = regs;
085ebfe9 6334 } else if (!(current->flags & PF_KTHREAD)) {
88a7c26a 6335 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
6336 } else {
6337 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6338 regs_user->regs = NULL;
4018994f
JO
6339 }
6340}
6341
60e2364e
SE
6342static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6343 struct pt_regs *regs)
6344{
6345 regs_intr->regs = regs;
6346 regs_intr->abi = perf_reg_abi(current);
6347}
6348
6349
c5ebcedb
JO
6350/*
6351 * Get remaining task size from user stack pointer.
6352 *
6353 * It'd be better to take stack vma map and limit this more
9f014e3a 6354 * precisely, but there's no way to get it safely under interrupt,
c5ebcedb
JO
6355 * so using TASK_SIZE as limit.
6356 */
6357static u64 perf_ustack_task_size(struct pt_regs *regs)
6358{
6359 unsigned long addr = perf_user_stack_pointer(regs);
6360
6361 if (!addr || addr >= TASK_SIZE)
6362 return 0;
6363
6364 return TASK_SIZE - addr;
6365}
6366
6367static u16
6368perf_sample_ustack_size(u16 stack_size, u16 header_size,
6369 struct pt_regs *regs)
6370{
6371 u64 task_size;
6372
6373 /* No regs, no stack pointer, no dump. */
6374 if (!regs)
6375 return 0;
6376
6377 /*
6378 * Check if we fit in with the requested stack size into the:
6379 * - TASK_SIZE
6380 * If we don't, we limit the size to the TASK_SIZE.
6381 *
6382 * - remaining sample size
6383 * If we don't, we customize the stack size to
6384 * fit in to the remaining sample size.
6385 */
6386
6387 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6388 stack_size = min(stack_size, (u16) task_size);
6389
6390 /* Current header size plus static size and dynamic size. */
6391 header_size += 2 * sizeof(u64);
6392
6393 /* Do we fit in with the current stack dump size? */
6394 if ((u16) (header_size + stack_size) < header_size) {
6395 /*
6396 * If we overflow the maximum size for the sample,
6397 * we customize the stack dump size to fit in.
6398 */
6399 stack_size = USHRT_MAX - header_size - sizeof(u64);
6400 stack_size = round_up(stack_size, sizeof(u64));
6401 }
6402
6403 return stack_size;
6404}
6405
6406static void
6407perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6408 struct pt_regs *regs)
6409{
6410 /* Case of a kernel thread, nothing to dump */
6411 if (!regs) {
6412 u64 size = 0;
6413 perf_output_put(handle, size);
6414 } else {
6415 unsigned long sp;
6416 unsigned int rem;
6417 u64 dyn_size;
02e18447 6418 mm_segment_t fs;
c5ebcedb
JO
6419
6420 /*
6421 * We dump:
6422 * static size
6423 * - the size requested by user or the best one we can fit
6424 * in to the sample max size
6425 * data
6426 * - user stack dump data
6427 * dynamic size
6428 * - the actual dumped size
6429 */
6430
6431 /* Static size. */
6432 perf_output_put(handle, dump_size);
6433
6434 /* Data. */
6435 sp = perf_user_stack_pointer(regs);
02e18447
YC
6436 fs = get_fs();
6437 set_fs(USER_DS);
c5ebcedb 6438 rem = __output_copy_user(handle, (void *) sp, dump_size);
02e18447 6439 set_fs(fs);
c5ebcedb
JO
6440 dyn_size = dump_size - rem;
6441
6442 perf_output_skip(handle, rem);
6443
6444 /* Dynamic size. */
6445 perf_output_put(handle, dyn_size);
6446 }
6447}
6448
a4faf00d
AS
6449static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6450 struct perf_sample_data *data,
6451 size_t size)
6452{
6453 struct perf_event *sampler = event->aux_event;
56de4e8f 6454 struct perf_buffer *rb;
a4faf00d
AS
6455
6456 data->aux_size = 0;
6457
6458 if (!sampler)
6459 goto out;
6460
6461 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6462 goto out;
6463
6464 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6465 goto out;
6466
6467 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6468 if (!rb)
6469 goto out;
6470
6471 /*
6472 * If this is an NMI hit inside sampling code, don't take
6473 * the sample. See also perf_aux_sample_output().
6474 */
6475 if (READ_ONCE(rb->aux_in_sampling)) {
6476 data->aux_size = 0;
6477 } else {
6478 size = min_t(size_t, size, perf_aux_size(rb));
6479 data->aux_size = ALIGN(size, sizeof(u64));
6480 }
6481 ring_buffer_put(rb);
6482
6483out:
6484 return data->aux_size;
6485}
6486
56de4e8f 6487long perf_pmu_snapshot_aux(struct perf_buffer *rb,
a4faf00d
AS
6488 struct perf_event *event,
6489 struct perf_output_handle *handle,
6490 unsigned long size)
6491{
6492 unsigned long flags;
6493 long ret;
6494
6495 /*
6496 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6497 * paths. If we start calling them in NMI context, they may race with
6498 * the IRQ ones, that is, for example, re-starting an event that's just
6499 * been stopped, which is why we're using a separate callback that
6500 * doesn't change the event state.
6501 *
6502 * IRQs need to be disabled to prevent IPIs from racing with us.
6503 */
6504 local_irq_save(flags);
6505 /*
6506 * Guard against NMI hits inside the critical section;
6507 * see also perf_prepare_sample_aux().
6508 */
6509 WRITE_ONCE(rb->aux_in_sampling, 1);
6510 barrier();
6511
6512 ret = event->pmu->snapshot_aux(event, handle, size);
6513
6514 barrier();
6515 WRITE_ONCE(rb->aux_in_sampling, 0);
6516 local_irq_restore(flags);
6517
6518 return ret;
6519}
6520
6521static void perf_aux_sample_output(struct perf_event *event,
6522 struct perf_output_handle *handle,
6523 struct perf_sample_data *data)
6524{
6525 struct perf_event *sampler = event->aux_event;
56de4e8f 6526 struct perf_buffer *rb;
a4faf00d 6527 unsigned long pad;
a4faf00d
AS
6528 long size;
6529
6530 if (WARN_ON_ONCE(!sampler || !data->aux_size))
6531 return;
6532
6533 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6534 if (!rb)
6535 return;
6536
6537 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6538
6539 /*
6540 * An error here means that perf_output_copy() failed (returned a
6541 * non-zero surplus that it didn't copy), which in its current
6542 * enlightened implementation is not possible. If that changes, we'd
6543 * like to know.
6544 */
6545 if (WARN_ON_ONCE(size < 0))
6546 goto out_put;
6547
6548 /*
6549 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6550 * perf_prepare_sample_aux(), so should not be more than that.
6551 */
6552 pad = data->aux_size - size;
6553 if (WARN_ON_ONCE(pad >= sizeof(u64)))
6554 pad = 8;
6555
6556 if (pad) {
6557 u64 zero = 0;
6558 perf_output_copy(handle, &zero, pad);
6559 }
6560
6561out_put:
6562 ring_buffer_put(rb);
6563}
6564
c980d109
ACM
6565static void __perf_event_header__init_id(struct perf_event_header *header,
6566 struct perf_sample_data *data,
6567 struct perf_event *event)
6844c09d
ACM
6568{
6569 u64 sample_type = event->attr.sample_type;
6570
6571 data->type = sample_type;
6572 header->size += event->id_header_size;
6573
6574 if (sample_type & PERF_SAMPLE_TID) {
6575 /* namespace issues */
6576 data->tid_entry.pid = perf_event_pid(event, current);
6577 data->tid_entry.tid = perf_event_tid(event, current);
6578 }
6579
6580 if (sample_type & PERF_SAMPLE_TIME)
34f43927 6581 data->time = perf_event_clock(event);
6844c09d 6582
ff3d527c 6583 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
6584 data->id = primary_event_id(event);
6585
6586 if (sample_type & PERF_SAMPLE_STREAM_ID)
6587 data->stream_id = event->id;
6588
6589 if (sample_type & PERF_SAMPLE_CPU) {
6590 data->cpu_entry.cpu = raw_smp_processor_id();
6591 data->cpu_entry.reserved = 0;
6592 }
6593}
6594
76369139
FW
6595void perf_event_header__init_id(struct perf_event_header *header,
6596 struct perf_sample_data *data,
6597 struct perf_event *event)
c980d109
ACM
6598{
6599 if (event->attr.sample_id_all)
6600 __perf_event_header__init_id(header, data, event);
6601}
6602
6603static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6604 struct perf_sample_data *data)
6605{
6606 u64 sample_type = data->type;
6607
6608 if (sample_type & PERF_SAMPLE_TID)
6609 perf_output_put(handle, data->tid_entry);
6610
6611 if (sample_type & PERF_SAMPLE_TIME)
6612 perf_output_put(handle, data->time);
6613
6614 if (sample_type & PERF_SAMPLE_ID)
6615 perf_output_put(handle, data->id);
6616
6617 if (sample_type & PERF_SAMPLE_STREAM_ID)
6618 perf_output_put(handle, data->stream_id);
6619
6620 if (sample_type & PERF_SAMPLE_CPU)
6621 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
6622
6623 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6624 perf_output_put(handle, data->id);
c980d109
ACM
6625}
6626
76369139
FW
6627void perf_event__output_id_sample(struct perf_event *event,
6628 struct perf_output_handle *handle,
6629 struct perf_sample_data *sample)
c980d109
ACM
6630{
6631 if (event->attr.sample_id_all)
6632 __perf_event__output_id_sample(handle, sample);
6633}
6634
3dab77fb 6635static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
6636 struct perf_event *event,
6637 u64 enabled, u64 running)
3dab77fb 6638{
cdd6c482 6639 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6640 u64 values[4];
6641 int n = 0;
6642
b5e58793 6643 values[n++] = perf_event_count(event);
3dab77fb 6644 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 6645 values[n++] = enabled +
cdd6c482 6646 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
6647 }
6648 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 6649 values[n++] = running +
cdd6c482 6650 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
6651 }
6652 if (read_format & PERF_FORMAT_ID)
cdd6c482 6653 values[n++] = primary_event_id(event);
3dab77fb 6654
76369139 6655 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6656}
6657
3dab77fb 6658static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
6659 struct perf_event *event,
6660 u64 enabled, u64 running)
3dab77fb 6661{
cdd6c482
IM
6662 struct perf_event *leader = event->group_leader, *sub;
6663 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6664 u64 values[5];
6665 int n = 0;
6666
6667 values[n++] = 1 + leader->nr_siblings;
6668
6669 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 6670 values[n++] = enabled;
3dab77fb
PZ
6671
6672 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 6673 values[n++] = running;
3dab77fb 6674
9e5b127d
PZ
6675 if ((leader != event) &&
6676 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6677 leader->pmu->read(leader);
6678
b5e58793 6679 values[n++] = perf_event_count(leader);
3dab77fb 6680 if (read_format & PERF_FORMAT_ID)
cdd6c482 6681 values[n++] = primary_event_id(leader);
3dab77fb 6682
76369139 6683 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 6684
edb39592 6685 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
6686 n = 0;
6687
6f5ab001
JO
6688 if ((sub != event) &&
6689 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6690 sub->pmu->read(sub);
6691
b5e58793 6692 values[n++] = perf_event_count(sub);
3dab77fb 6693 if (read_format & PERF_FORMAT_ID)
cdd6c482 6694 values[n++] = primary_event_id(sub);
3dab77fb 6695
76369139 6696 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6697 }
6698}
6699
eed01528
SE
6700#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6701 PERF_FORMAT_TOTAL_TIME_RUNNING)
6702
ba5213ae
PZ
6703/*
6704 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6705 *
6706 * The problem is that its both hard and excessively expensive to iterate the
6707 * child list, not to mention that its impossible to IPI the children running
6708 * on another CPU, from interrupt/NMI context.
6709 */
3dab77fb 6710static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 6711 struct perf_event *event)
3dab77fb 6712{
e3f3541c 6713 u64 enabled = 0, running = 0, now;
eed01528
SE
6714 u64 read_format = event->attr.read_format;
6715
6716 /*
6717 * compute total_time_enabled, total_time_running
6718 * based on snapshot values taken when the event
6719 * was last scheduled in.
6720 *
6721 * we cannot simply called update_context_time()
6722 * because of locking issue as we are called in
6723 * NMI context
6724 */
c4794295 6725 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 6726 calc_timer_values(event, &now, &enabled, &running);
eed01528 6727
cdd6c482 6728 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 6729 perf_output_read_group(handle, event, enabled, running);
3dab77fb 6730 else
eed01528 6731 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
6732}
6733
bbfd5e4f
KL
6734static inline bool perf_sample_save_hw_index(struct perf_event *event)
6735{
6736 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6737}
6738
5622f295
MM
6739void perf_output_sample(struct perf_output_handle *handle,
6740 struct perf_event_header *header,
6741 struct perf_sample_data *data,
cdd6c482 6742 struct perf_event *event)
5622f295
MM
6743{
6744 u64 sample_type = data->type;
6745
6746 perf_output_put(handle, *header);
6747
ff3d527c
AH
6748 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6749 perf_output_put(handle, data->id);
6750
5622f295
MM
6751 if (sample_type & PERF_SAMPLE_IP)
6752 perf_output_put(handle, data->ip);
6753
6754 if (sample_type & PERF_SAMPLE_TID)
6755 perf_output_put(handle, data->tid_entry);
6756
6757 if (sample_type & PERF_SAMPLE_TIME)
6758 perf_output_put(handle, data->time);
6759
6760 if (sample_type & PERF_SAMPLE_ADDR)
6761 perf_output_put(handle, data->addr);
6762
6763 if (sample_type & PERF_SAMPLE_ID)
6764 perf_output_put(handle, data->id);
6765
6766 if (sample_type & PERF_SAMPLE_STREAM_ID)
6767 perf_output_put(handle, data->stream_id);
6768
6769 if (sample_type & PERF_SAMPLE_CPU)
6770 perf_output_put(handle, data->cpu_entry);
6771
6772 if (sample_type & PERF_SAMPLE_PERIOD)
6773 perf_output_put(handle, data->period);
6774
6775 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 6776 perf_output_read(handle, event);
5622f295
MM
6777
6778 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 6779 int size = 1;
5622f295 6780
99e818cc
JO
6781 size += data->callchain->nr;
6782 size *= sizeof(u64);
6783 __output_copy(handle, data->callchain, size);
5622f295
MM
6784 }
6785
6786 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6787 struct perf_raw_record *raw = data->raw;
6788
6789 if (raw) {
6790 struct perf_raw_frag *frag = &raw->frag;
6791
6792 perf_output_put(handle, raw->size);
6793 do {
6794 if (frag->copy) {
6795 __output_custom(handle, frag->copy,
6796 frag->data, frag->size);
6797 } else {
6798 __output_copy(handle, frag->data,
6799 frag->size);
6800 }
6801 if (perf_raw_frag_last(frag))
6802 break;
6803 frag = frag->next;
6804 } while (1);
6805 if (frag->pad)
6806 __output_skip(handle, NULL, frag->pad);
5622f295
MM
6807 } else {
6808 struct {
6809 u32 size;
6810 u32 data;
6811 } raw = {
6812 .size = sizeof(u32),
6813 .data = 0,
6814 };
6815 perf_output_put(handle, raw);
6816 }
6817 }
a7ac67ea 6818
bce38cd5
SE
6819 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6820 if (data->br_stack) {
6821 size_t size;
6822
6823 size = data->br_stack->nr
6824 * sizeof(struct perf_branch_entry);
6825
6826 perf_output_put(handle, data->br_stack->nr);
bbfd5e4f
KL
6827 if (perf_sample_save_hw_index(event))
6828 perf_output_put(handle, data->br_stack->hw_idx);
bce38cd5
SE
6829 perf_output_copy(handle, data->br_stack->entries, size);
6830 } else {
6831 /*
6832 * we always store at least the value of nr
6833 */
6834 u64 nr = 0;
6835 perf_output_put(handle, nr);
6836 }
6837 }
4018994f
JO
6838
6839 if (sample_type & PERF_SAMPLE_REGS_USER) {
6840 u64 abi = data->regs_user.abi;
6841
6842 /*
6843 * If there are no regs to dump, notice it through
6844 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6845 */
6846 perf_output_put(handle, abi);
6847
6848 if (abi) {
6849 u64 mask = event->attr.sample_regs_user;
6850 perf_output_sample_regs(handle,
6851 data->regs_user.regs,
6852 mask);
6853 }
6854 }
c5ebcedb 6855
a5cdd40c 6856 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6857 perf_output_sample_ustack(handle,
6858 data->stack_user_size,
6859 data->regs_user.regs);
a5cdd40c 6860 }
c3feedf2
AK
6861
6862 if (sample_type & PERF_SAMPLE_WEIGHT)
6863 perf_output_put(handle, data->weight);
d6be9ad6
SE
6864
6865 if (sample_type & PERF_SAMPLE_DATA_SRC)
6866 perf_output_put(handle, data->data_src.val);
a5cdd40c 6867
fdfbbd07
AK
6868 if (sample_type & PERF_SAMPLE_TRANSACTION)
6869 perf_output_put(handle, data->txn);
6870
60e2364e
SE
6871 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6872 u64 abi = data->regs_intr.abi;
6873 /*
6874 * If there are no regs to dump, notice it through
6875 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6876 */
6877 perf_output_put(handle, abi);
6878
6879 if (abi) {
6880 u64 mask = event->attr.sample_regs_intr;
6881
6882 perf_output_sample_regs(handle,
6883 data->regs_intr.regs,
6884 mask);
6885 }
6886 }
6887
fc7ce9c7
KL
6888 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6889 perf_output_put(handle, data->phys_addr);
6890
6546b19f
NK
6891 if (sample_type & PERF_SAMPLE_CGROUP)
6892 perf_output_put(handle, data->cgroup);
6893
a4faf00d
AS
6894 if (sample_type & PERF_SAMPLE_AUX) {
6895 perf_output_put(handle, data->aux_size);
6896
6897 if (data->aux_size)
6898 perf_aux_sample_output(event, handle, data);
6899 }
6900
a5cdd40c
PZ
6901 if (!event->attr.watermark) {
6902 int wakeup_events = event->attr.wakeup_events;
6903
6904 if (wakeup_events) {
56de4e8f 6905 struct perf_buffer *rb = handle->rb;
a5cdd40c
PZ
6906 int events = local_inc_return(&rb->events);
6907
6908 if (events >= wakeup_events) {
6909 local_sub(wakeup_events, &rb->events);
6910 local_inc(&rb->wakeup);
6911 }
6912 }
6913 }
5622f295
MM
6914}
6915
fc7ce9c7
KL
6916static u64 perf_virt_to_phys(u64 virt)
6917{
6918 u64 phys_addr = 0;
6919 struct page *p = NULL;
6920
6921 if (!virt)
6922 return 0;
6923
6924 if (virt >= TASK_SIZE) {
6925 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6926 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6927 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6928 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6929 } else {
6930 /*
6931 * Walking the pages tables for user address.
6932 * Interrupts are disabled, so it prevents any tear down
6933 * of the page tables.
6934 * Try IRQ-safe __get_user_pages_fast first.
6935 * If failed, leave phys_addr as 0.
6936 */
d3296fb3
JO
6937 if (current->mm != NULL) {
6938 pagefault_disable();
6939 if (__get_user_pages_fast(virt, 1, 0, &p) == 1)
6940 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6941 pagefault_enable();
6942 }
fc7ce9c7
KL
6943
6944 if (p)
6945 put_page(p);
6946 }
6947
6948 return phys_addr;
6949}
6950
99e818cc
JO
6951static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6952
6cbc304f 6953struct perf_callchain_entry *
8cf7e0e2
JO
6954perf_callchain(struct perf_event *event, struct pt_regs *regs)
6955{
6956 bool kernel = !event->attr.exclude_callchain_kernel;
6957 bool user = !event->attr.exclude_callchain_user;
6958 /* Disallow cross-task user callchains. */
6959 bool crosstask = event->ctx->task && event->ctx->task != current;
6960 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 6961 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6962
6963 if (!kernel && !user)
99e818cc 6964 return &__empty_callchain;
8cf7e0e2 6965
99e818cc
JO
6966 callchain = get_perf_callchain(regs, 0, kernel, user,
6967 max_stack, crosstask, true);
6968 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6969}
6970
5622f295
MM
6971void perf_prepare_sample(struct perf_event_header *header,
6972 struct perf_sample_data *data,
cdd6c482 6973 struct perf_event *event,
5622f295 6974 struct pt_regs *regs)
7b732a75 6975{
cdd6c482 6976 u64 sample_type = event->attr.sample_type;
7b732a75 6977
cdd6c482 6978 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6979 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6980
6981 header->misc = 0;
6982 header->misc |= perf_misc_flags(regs);
6fab0192 6983
c980d109 6984 __perf_event_header__init_id(header, data, event);
6844c09d 6985
c320c7b7 6986 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6987 data->ip = perf_instruction_pointer(regs);
6988
b23f3325 6989 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6990 int size = 1;
394ee076 6991
6cbc304f
PZ
6992 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6993 data->callchain = perf_callchain(event, regs);
6994
99e818cc 6995 size += data->callchain->nr;
5622f295
MM
6996
6997 header->size += size * sizeof(u64);
394ee076
PZ
6998 }
6999
3a43ce68 7000 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
7001 struct perf_raw_record *raw = data->raw;
7002 int size;
7003
7004 if (raw) {
7005 struct perf_raw_frag *frag = &raw->frag;
7006 u32 sum = 0;
7007
7008 do {
7009 sum += frag->size;
7010 if (perf_raw_frag_last(frag))
7011 break;
7012 frag = frag->next;
7013 } while (1);
7014
7015 size = round_up(sum + sizeof(u32), sizeof(u64));
7016 raw->size = size - sizeof(u32);
7017 frag->pad = raw->size - sum;
7018 } else {
7019 size = sizeof(u64);
7020 }
a044560c 7021
7e3f977e 7022 header->size += size;
7f453c24 7023 }
bce38cd5
SE
7024
7025 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7026 int size = sizeof(u64); /* nr */
7027 if (data->br_stack) {
bbfd5e4f
KL
7028 if (perf_sample_save_hw_index(event))
7029 size += sizeof(u64);
7030
bce38cd5
SE
7031 size += data->br_stack->nr
7032 * sizeof(struct perf_branch_entry);
7033 }
7034 header->size += size;
7035 }
4018994f 7036
2565711f 7037 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
7038 perf_sample_regs_user(&data->regs_user, regs,
7039 &data->regs_user_copy);
2565711f 7040
4018994f
JO
7041 if (sample_type & PERF_SAMPLE_REGS_USER) {
7042 /* regs dump ABI info */
7043 int size = sizeof(u64);
7044
4018994f
JO
7045 if (data->regs_user.regs) {
7046 u64 mask = event->attr.sample_regs_user;
7047 size += hweight64(mask) * sizeof(u64);
7048 }
7049
7050 header->size += size;
7051 }
c5ebcedb
JO
7052
7053 if (sample_type & PERF_SAMPLE_STACK_USER) {
7054 /*
9f014e3a 7055 * Either we need PERF_SAMPLE_STACK_USER bit to be always
c5ebcedb
JO
7056 * processed as the last one or have additional check added
7057 * in case new sample type is added, because we could eat
7058 * up the rest of the sample size.
7059 */
c5ebcedb
JO
7060 u16 stack_size = event->attr.sample_stack_user;
7061 u16 size = sizeof(u64);
7062
c5ebcedb 7063 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 7064 data->regs_user.regs);
c5ebcedb
JO
7065
7066 /*
7067 * If there is something to dump, add space for the dump
7068 * itself and for the field that tells the dynamic size,
7069 * which is how many have been actually dumped.
7070 */
7071 if (stack_size)
7072 size += sizeof(u64) + stack_size;
7073
7074 data->stack_user_size = stack_size;
7075 header->size += size;
7076 }
60e2364e
SE
7077
7078 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7079 /* regs dump ABI info */
7080 int size = sizeof(u64);
7081
7082 perf_sample_regs_intr(&data->regs_intr, regs);
7083
7084 if (data->regs_intr.regs) {
7085 u64 mask = event->attr.sample_regs_intr;
7086
7087 size += hweight64(mask) * sizeof(u64);
7088 }
7089
7090 header->size += size;
7091 }
fc7ce9c7
KL
7092
7093 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7094 data->phys_addr = perf_virt_to_phys(data->addr);
a4faf00d 7095
6546b19f
NK
7096#ifdef CONFIG_CGROUP_PERF
7097 if (sample_type & PERF_SAMPLE_CGROUP) {
7098 struct cgroup *cgrp;
7099
7100 /* protected by RCU */
7101 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7102 data->cgroup = cgroup_id(cgrp);
7103 }
7104#endif
7105
a4faf00d
AS
7106 if (sample_type & PERF_SAMPLE_AUX) {
7107 u64 size;
7108
7109 header->size += sizeof(u64); /* size */
7110
7111 /*
7112 * Given the 16bit nature of header::size, an AUX sample can
7113 * easily overflow it, what with all the preceding sample bits.
7114 * Make sure this doesn't happen by using up to U16_MAX bytes
7115 * per sample in total (rounded down to 8 byte boundary).
7116 */
7117 size = min_t(size_t, U16_MAX - header->size,
7118 event->attr.aux_sample_size);
7119 size = rounddown(size, 8);
7120 size = perf_prepare_sample_aux(event, data, size);
7121
7122 WARN_ON_ONCE(size + header->size > U16_MAX);
7123 header->size += size;
7124 }
7125 /*
7126 * If you're adding more sample types here, you likely need to do
7127 * something about the overflowing header::size, like repurpose the
7128 * lowest 3 bits of size, which should be always zero at the moment.
7129 * This raises a more important question, do we really need 512k sized
7130 * samples and why, so good argumentation is in order for whatever you
7131 * do here next.
7132 */
7133 WARN_ON_ONCE(header->size & 7);
5622f295 7134}
7f453c24 7135
56201969 7136static __always_inline int
9ecda41a
WN
7137__perf_event_output(struct perf_event *event,
7138 struct perf_sample_data *data,
7139 struct pt_regs *regs,
7140 int (*output_begin)(struct perf_output_handle *,
7141 struct perf_event *,
7142 unsigned int))
5622f295
MM
7143{
7144 struct perf_output_handle handle;
7145 struct perf_event_header header;
56201969 7146 int err;
689802b2 7147
927c7a9e
FW
7148 /* protect the callchain buffers */
7149 rcu_read_lock();
7150
cdd6c482 7151 perf_prepare_sample(&header, data, event, regs);
5c148194 7152
56201969
ACM
7153 err = output_begin(&handle, event, header.size);
7154 if (err)
927c7a9e 7155 goto exit;
0322cd6e 7156
cdd6c482 7157 perf_output_sample(&handle, &header, data, event);
f413cdb8 7158
8a057d84 7159 perf_output_end(&handle);
927c7a9e
FW
7160
7161exit:
7162 rcu_read_unlock();
56201969 7163 return err;
0322cd6e
PZ
7164}
7165
9ecda41a
WN
7166void
7167perf_event_output_forward(struct perf_event *event,
7168 struct perf_sample_data *data,
7169 struct pt_regs *regs)
7170{
7171 __perf_event_output(event, data, regs, perf_output_begin_forward);
7172}
7173
7174void
7175perf_event_output_backward(struct perf_event *event,
7176 struct perf_sample_data *data,
7177 struct pt_regs *regs)
7178{
7179 __perf_event_output(event, data, regs, perf_output_begin_backward);
7180}
7181
56201969 7182int
9ecda41a
WN
7183perf_event_output(struct perf_event *event,
7184 struct perf_sample_data *data,
7185 struct pt_regs *regs)
7186{
56201969 7187 return __perf_event_output(event, data, regs, perf_output_begin);
9ecda41a
WN
7188}
7189
38b200d6 7190/*
cdd6c482 7191 * read event_id
38b200d6
PZ
7192 */
7193
7194struct perf_read_event {
7195 struct perf_event_header header;
7196
7197 u32 pid;
7198 u32 tid;
38b200d6
PZ
7199};
7200
7201static void
cdd6c482 7202perf_event_read_event(struct perf_event *event,
38b200d6
PZ
7203 struct task_struct *task)
7204{
7205 struct perf_output_handle handle;
c980d109 7206 struct perf_sample_data sample;
dfc65094 7207 struct perf_read_event read_event = {
38b200d6 7208 .header = {
cdd6c482 7209 .type = PERF_RECORD_READ,
38b200d6 7210 .misc = 0,
c320c7b7 7211 .size = sizeof(read_event) + event->read_size,
38b200d6 7212 },
cdd6c482
IM
7213 .pid = perf_event_pid(event, task),
7214 .tid = perf_event_tid(event, task),
38b200d6 7215 };
3dab77fb 7216 int ret;
38b200d6 7217
c980d109 7218 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 7219 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
7220 if (ret)
7221 return;
7222
dfc65094 7223 perf_output_put(&handle, read_event);
cdd6c482 7224 perf_output_read(&handle, event);
c980d109 7225 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 7226
38b200d6
PZ
7227 perf_output_end(&handle);
7228}
7229
aab5b71e 7230typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
7231
7232static void
aab5b71e
PZ
7233perf_iterate_ctx(struct perf_event_context *ctx,
7234 perf_iterate_f output,
b73e4fef 7235 void *data, bool all)
52d857a8
JO
7236{
7237 struct perf_event *event;
7238
7239 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
7240 if (!all) {
7241 if (event->state < PERF_EVENT_STATE_INACTIVE)
7242 continue;
7243 if (!event_filter_match(event))
7244 continue;
7245 }
7246
67516844 7247 output(event, data);
52d857a8
JO
7248 }
7249}
7250
aab5b71e 7251static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
7252{
7253 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7254 struct perf_event *event;
7255
7256 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
7257 /*
7258 * Skip events that are not fully formed yet; ensure that
7259 * if we observe event->ctx, both event and ctx will be
7260 * complete enough. See perf_install_in_context().
7261 */
7262 if (!smp_load_acquire(&event->ctx))
7263 continue;
7264
f2fb6bef
KL
7265 if (event->state < PERF_EVENT_STATE_INACTIVE)
7266 continue;
7267 if (!event_filter_match(event))
7268 continue;
7269 output(event, data);
7270 }
7271}
7272
aab5b71e
PZ
7273/*
7274 * Iterate all events that need to receive side-band events.
7275 *
7276 * For new callers; ensure that account_pmu_sb_event() includes
7277 * your event, otherwise it might not get delivered.
7278 */
52d857a8 7279static void
aab5b71e 7280perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
7281 struct perf_event_context *task_ctx)
7282{
52d857a8 7283 struct perf_event_context *ctx;
52d857a8
JO
7284 int ctxn;
7285
aab5b71e
PZ
7286 rcu_read_lock();
7287 preempt_disable();
7288
4e93ad60 7289 /*
aab5b71e
PZ
7290 * If we have task_ctx != NULL we only notify the task context itself.
7291 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
7292 * context.
7293 */
7294 if (task_ctx) {
aab5b71e
PZ
7295 perf_iterate_ctx(task_ctx, output, data, false);
7296 goto done;
4e93ad60
JO
7297 }
7298
aab5b71e 7299 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
7300
7301 for_each_task_context_nr(ctxn) {
52d857a8
JO
7302 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7303 if (ctx)
aab5b71e 7304 perf_iterate_ctx(ctx, output, data, false);
52d857a8 7305 }
aab5b71e 7306done:
f2fb6bef 7307 preempt_enable();
52d857a8 7308 rcu_read_unlock();
95ff4ca2
AS
7309}
7310
375637bc
AS
7311/*
7312 * Clear all file-based filters at exec, they'll have to be
7313 * re-instated when/if these objects are mmapped again.
7314 */
7315static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7316{
7317 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7318 struct perf_addr_filter *filter;
7319 unsigned int restart = 0, count = 0;
7320 unsigned long flags;
7321
7322 if (!has_addr_filter(event))
7323 return;
7324
7325 raw_spin_lock_irqsave(&ifh->lock, flags);
7326 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 7327 if (filter->path.dentry) {
c60f83b8
AS
7328 event->addr_filter_ranges[count].start = 0;
7329 event->addr_filter_ranges[count].size = 0;
375637bc
AS
7330 restart++;
7331 }
7332
7333 count++;
7334 }
7335
7336 if (restart)
7337 event->addr_filters_gen++;
7338 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7339
7340 if (restart)
767ae086 7341 perf_event_stop(event, 1);
375637bc
AS
7342}
7343
7344void perf_event_exec(void)
7345{
7346 struct perf_event_context *ctx;
7347 int ctxn;
7348
7349 rcu_read_lock();
7350 for_each_task_context_nr(ctxn) {
7351 ctx = current->perf_event_ctxp[ctxn];
7352 if (!ctx)
7353 continue;
7354
7355 perf_event_enable_on_exec(ctxn);
7356
aab5b71e 7357 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
7358 true);
7359 }
7360 rcu_read_unlock();
7361}
7362
95ff4ca2 7363struct remote_output {
56de4e8f 7364 struct perf_buffer *rb;
95ff4ca2
AS
7365 int err;
7366};
7367
7368static void __perf_event_output_stop(struct perf_event *event, void *data)
7369{
7370 struct perf_event *parent = event->parent;
7371 struct remote_output *ro = data;
56de4e8f 7372 struct perf_buffer *rb = ro->rb;
375637bc
AS
7373 struct stop_event_data sd = {
7374 .event = event,
7375 };
95ff4ca2
AS
7376
7377 if (!has_aux(event))
7378 return;
7379
7380 if (!parent)
7381 parent = event;
7382
7383 /*
7384 * In case of inheritance, it will be the parent that links to the
767ae086
AS
7385 * ring-buffer, but it will be the child that's actually using it.
7386 *
7387 * We are using event::rb to determine if the event should be stopped,
7388 * however this may race with ring_buffer_attach() (through set_output),
7389 * which will make us skip the event that actually needs to be stopped.
7390 * So ring_buffer_attach() has to stop an aux event before re-assigning
7391 * its rb pointer.
95ff4ca2
AS
7392 */
7393 if (rcu_dereference(parent->rb) == rb)
375637bc 7394 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
7395}
7396
7397static int __perf_pmu_output_stop(void *info)
7398{
7399 struct perf_event *event = info;
f3a519e4 7400 struct pmu *pmu = event->ctx->pmu;
8b6a3fe8 7401 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
7402 struct remote_output ro = {
7403 .rb = event->rb,
7404 };
7405
7406 rcu_read_lock();
aab5b71e 7407 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 7408 if (cpuctx->task_ctx)
aab5b71e 7409 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 7410 &ro, false);
95ff4ca2
AS
7411 rcu_read_unlock();
7412
7413 return ro.err;
7414}
7415
7416static void perf_pmu_output_stop(struct perf_event *event)
7417{
7418 struct perf_event *iter;
7419 int err, cpu;
7420
7421restart:
7422 rcu_read_lock();
7423 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7424 /*
7425 * For per-CPU events, we need to make sure that neither they
7426 * nor their children are running; for cpu==-1 events it's
7427 * sufficient to stop the event itself if it's active, since
7428 * it can't have children.
7429 */
7430 cpu = iter->cpu;
7431 if (cpu == -1)
7432 cpu = READ_ONCE(iter->oncpu);
7433
7434 if (cpu == -1)
7435 continue;
7436
7437 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7438 if (err == -EAGAIN) {
7439 rcu_read_unlock();
7440 goto restart;
7441 }
7442 }
7443 rcu_read_unlock();
52d857a8
JO
7444}
7445
60313ebe 7446/*
9f498cc5
PZ
7447 * task tracking -- fork/exit
7448 *
13d7a241 7449 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
7450 */
7451
9f498cc5 7452struct perf_task_event {
3a80b4a3 7453 struct task_struct *task;
cdd6c482 7454 struct perf_event_context *task_ctx;
60313ebe
PZ
7455
7456 struct {
7457 struct perf_event_header header;
7458
7459 u32 pid;
7460 u32 ppid;
9f498cc5
PZ
7461 u32 tid;
7462 u32 ptid;
393b2ad8 7463 u64 time;
cdd6c482 7464 } event_id;
60313ebe
PZ
7465};
7466
67516844
JO
7467static int perf_event_task_match(struct perf_event *event)
7468{
13d7a241
SE
7469 return event->attr.comm || event->attr.mmap ||
7470 event->attr.mmap2 || event->attr.mmap_data ||
7471 event->attr.task;
67516844
JO
7472}
7473
cdd6c482 7474static void perf_event_task_output(struct perf_event *event,
52d857a8 7475 void *data)
60313ebe 7476{
52d857a8 7477 struct perf_task_event *task_event = data;
60313ebe 7478 struct perf_output_handle handle;
c980d109 7479 struct perf_sample_data sample;
9f498cc5 7480 struct task_struct *task = task_event->task;
c980d109 7481 int ret, size = task_event->event_id.header.size;
8bb39f9a 7482
67516844
JO
7483 if (!perf_event_task_match(event))
7484 return;
7485
c980d109 7486 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 7487
c980d109 7488 ret = perf_output_begin(&handle, event,
a7ac67ea 7489 task_event->event_id.header.size);
ef60777c 7490 if (ret)
c980d109 7491 goto out;
60313ebe 7492
cdd6c482 7493 task_event->event_id.pid = perf_event_pid(event, task);
cdd6c482 7494 task_event->event_id.tid = perf_event_tid(event, task);
f3bed55e
IR
7495
7496 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7497 task_event->event_id.ppid = perf_event_pid(event,
7498 task->real_parent);
7499 task_event->event_id.ptid = perf_event_pid(event,
7500 task->real_parent);
7501 } else { /* PERF_RECORD_FORK */
7502 task_event->event_id.ppid = perf_event_pid(event, current);
7503 task_event->event_id.ptid = perf_event_tid(event, current);
7504 }
9f498cc5 7505
34f43927
PZ
7506 task_event->event_id.time = perf_event_clock(event);
7507
cdd6c482 7508 perf_output_put(&handle, task_event->event_id);
393b2ad8 7509
c980d109
ACM
7510 perf_event__output_id_sample(event, &handle, &sample);
7511
60313ebe 7512 perf_output_end(&handle);
c980d109
ACM
7513out:
7514 task_event->event_id.header.size = size;
60313ebe
PZ
7515}
7516
cdd6c482
IM
7517static void perf_event_task(struct task_struct *task,
7518 struct perf_event_context *task_ctx,
3a80b4a3 7519 int new)
60313ebe 7520{
9f498cc5 7521 struct perf_task_event task_event;
60313ebe 7522
cdd6c482
IM
7523 if (!atomic_read(&nr_comm_events) &&
7524 !atomic_read(&nr_mmap_events) &&
7525 !atomic_read(&nr_task_events))
60313ebe
PZ
7526 return;
7527
9f498cc5 7528 task_event = (struct perf_task_event){
3a80b4a3
PZ
7529 .task = task,
7530 .task_ctx = task_ctx,
cdd6c482 7531 .event_id = {
60313ebe 7532 .header = {
cdd6c482 7533 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 7534 .misc = 0,
cdd6c482 7535 .size = sizeof(task_event.event_id),
60313ebe 7536 },
573402db
PZ
7537 /* .pid */
7538 /* .ppid */
9f498cc5
PZ
7539 /* .tid */
7540 /* .ptid */
34f43927 7541 /* .time */
60313ebe
PZ
7542 },
7543 };
7544
aab5b71e 7545 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
7546 &task_event,
7547 task_ctx);
9f498cc5
PZ
7548}
7549
cdd6c482 7550void perf_event_fork(struct task_struct *task)
9f498cc5 7551{
cdd6c482 7552 perf_event_task(task, NULL, 1);
e4222673 7553 perf_event_namespaces(task);
60313ebe
PZ
7554}
7555
8d1b2d93
PZ
7556/*
7557 * comm tracking
7558 */
7559
7560struct perf_comm_event {
22a4f650
IM
7561 struct task_struct *task;
7562 char *comm;
8d1b2d93
PZ
7563 int comm_size;
7564
7565 struct {
7566 struct perf_event_header header;
7567
7568 u32 pid;
7569 u32 tid;
cdd6c482 7570 } event_id;
8d1b2d93
PZ
7571};
7572
67516844
JO
7573static int perf_event_comm_match(struct perf_event *event)
7574{
7575 return event->attr.comm;
7576}
7577
cdd6c482 7578static void perf_event_comm_output(struct perf_event *event,
52d857a8 7579 void *data)
8d1b2d93 7580{
52d857a8 7581 struct perf_comm_event *comm_event = data;
8d1b2d93 7582 struct perf_output_handle handle;
c980d109 7583 struct perf_sample_data sample;
cdd6c482 7584 int size = comm_event->event_id.header.size;
c980d109
ACM
7585 int ret;
7586
67516844
JO
7587 if (!perf_event_comm_match(event))
7588 return;
7589
c980d109
ACM
7590 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7591 ret = perf_output_begin(&handle, event,
a7ac67ea 7592 comm_event->event_id.header.size);
8d1b2d93
PZ
7593
7594 if (ret)
c980d109 7595 goto out;
8d1b2d93 7596
cdd6c482
IM
7597 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7598 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 7599
cdd6c482 7600 perf_output_put(&handle, comm_event->event_id);
76369139 7601 __output_copy(&handle, comm_event->comm,
8d1b2d93 7602 comm_event->comm_size);
c980d109
ACM
7603
7604 perf_event__output_id_sample(event, &handle, &sample);
7605
8d1b2d93 7606 perf_output_end(&handle);
c980d109
ACM
7607out:
7608 comm_event->event_id.header.size = size;
8d1b2d93
PZ
7609}
7610
cdd6c482 7611static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 7612{
413ee3b4 7613 char comm[TASK_COMM_LEN];
8d1b2d93 7614 unsigned int size;
8d1b2d93 7615
413ee3b4 7616 memset(comm, 0, sizeof(comm));
96b02d78 7617 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 7618 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
7619
7620 comm_event->comm = comm;
7621 comm_event->comm_size = size;
7622
cdd6c482 7623 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 7624
aab5b71e 7625 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
7626 comm_event,
7627 NULL);
8d1b2d93
PZ
7628}
7629
82b89778 7630void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 7631{
9ee318a7
PZ
7632 struct perf_comm_event comm_event;
7633
cdd6c482 7634 if (!atomic_read(&nr_comm_events))
9ee318a7 7635 return;
a63eaf34 7636
9ee318a7 7637 comm_event = (struct perf_comm_event){
8d1b2d93 7638 .task = task,
573402db
PZ
7639 /* .comm */
7640 /* .comm_size */
cdd6c482 7641 .event_id = {
573402db 7642 .header = {
cdd6c482 7643 .type = PERF_RECORD_COMM,
82b89778 7644 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
7645 /* .size */
7646 },
7647 /* .pid */
7648 /* .tid */
8d1b2d93
PZ
7649 },
7650 };
7651
cdd6c482 7652 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
7653}
7654
e4222673
HB
7655/*
7656 * namespaces tracking
7657 */
7658
7659struct perf_namespaces_event {
7660 struct task_struct *task;
7661
7662 struct {
7663 struct perf_event_header header;
7664
7665 u32 pid;
7666 u32 tid;
7667 u64 nr_namespaces;
7668 struct perf_ns_link_info link_info[NR_NAMESPACES];
7669 } event_id;
7670};
7671
7672static int perf_event_namespaces_match(struct perf_event *event)
7673{
7674 return event->attr.namespaces;
7675}
7676
7677static void perf_event_namespaces_output(struct perf_event *event,
7678 void *data)
7679{
7680 struct perf_namespaces_event *namespaces_event = data;
7681 struct perf_output_handle handle;
7682 struct perf_sample_data sample;
34900ec5 7683 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
7684 int ret;
7685
7686 if (!perf_event_namespaces_match(event))
7687 return;
7688
7689 perf_event_header__init_id(&namespaces_event->event_id.header,
7690 &sample, event);
7691 ret = perf_output_begin(&handle, event,
7692 namespaces_event->event_id.header.size);
7693 if (ret)
34900ec5 7694 goto out;
e4222673
HB
7695
7696 namespaces_event->event_id.pid = perf_event_pid(event,
7697 namespaces_event->task);
7698 namespaces_event->event_id.tid = perf_event_tid(event,
7699 namespaces_event->task);
7700
7701 perf_output_put(&handle, namespaces_event->event_id);
7702
7703 perf_event__output_id_sample(event, &handle, &sample);
7704
7705 perf_output_end(&handle);
34900ec5
JO
7706out:
7707 namespaces_event->event_id.header.size = header_size;
e4222673
HB
7708}
7709
7710static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7711 struct task_struct *task,
7712 const struct proc_ns_operations *ns_ops)
7713{
7714 struct path ns_path;
7715 struct inode *ns_inode;
ce623f89 7716 int error;
e4222673
HB
7717
7718 error = ns_get_path(&ns_path, task, ns_ops);
7719 if (!error) {
7720 ns_inode = ns_path.dentry->d_inode;
7721 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7722 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 7723 path_put(&ns_path);
e4222673
HB
7724 }
7725}
7726
7727void perf_event_namespaces(struct task_struct *task)
7728{
7729 struct perf_namespaces_event namespaces_event;
7730 struct perf_ns_link_info *ns_link_info;
7731
7732 if (!atomic_read(&nr_namespaces_events))
7733 return;
7734
7735 namespaces_event = (struct perf_namespaces_event){
7736 .task = task,
7737 .event_id = {
7738 .header = {
7739 .type = PERF_RECORD_NAMESPACES,
7740 .misc = 0,
7741 .size = sizeof(namespaces_event.event_id),
7742 },
7743 /* .pid */
7744 /* .tid */
7745 .nr_namespaces = NR_NAMESPACES,
7746 /* .link_info[NR_NAMESPACES] */
7747 },
7748 };
7749
7750 ns_link_info = namespaces_event.event_id.link_info;
7751
7752 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7753 task, &mntns_operations);
7754
7755#ifdef CONFIG_USER_NS
7756 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7757 task, &userns_operations);
7758#endif
7759#ifdef CONFIG_NET_NS
7760 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7761 task, &netns_operations);
7762#endif
7763#ifdef CONFIG_UTS_NS
7764 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7765 task, &utsns_operations);
7766#endif
7767#ifdef CONFIG_IPC_NS
7768 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7769 task, &ipcns_operations);
7770#endif
7771#ifdef CONFIG_PID_NS
7772 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7773 task, &pidns_operations);
7774#endif
7775#ifdef CONFIG_CGROUPS
7776 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7777 task, &cgroupns_operations);
7778#endif
7779
7780 perf_iterate_sb(perf_event_namespaces_output,
7781 &namespaces_event,
7782 NULL);
7783}
7784
96aaab68
NK
7785/*
7786 * cgroup tracking
7787 */
7788#ifdef CONFIG_CGROUP_PERF
7789
7790struct perf_cgroup_event {
7791 char *path;
7792 int path_size;
7793 struct {
7794 struct perf_event_header header;
7795 u64 id;
7796 char path[];
7797 } event_id;
7798};
7799
7800static int perf_event_cgroup_match(struct perf_event *event)
7801{
7802 return event->attr.cgroup;
7803}
7804
7805static void perf_event_cgroup_output(struct perf_event *event, void *data)
7806{
7807 struct perf_cgroup_event *cgroup_event = data;
7808 struct perf_output_handle handle;
7809 struct perf_sample_data sample;
7810 u16 header_size = cgroup_event->event_id.header.size;
7811 int ret;
7812
7813 if (!perf_event_cgroup_match(event))
7814 return;
7815
7816 perf_event_header__init_id(&cgroup_event->event_id.header,
7817 &sample, event);
7818 ret = perf_output_begin(&handle, event,
7819 cgroup_event->event_id.header.size);
7820 if (ret)
7821 goto out;
7822
7823 perf_output_put(&handle, cgroup_event->event_id);
7824 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7825
7826 perf_event__output_id_sample(event, &handle, &sample);
7827
7828 perf_output_end(&handle);
7829out:
7830 cgroup_event->event_id.header.size = header_size;
7831}
7832
7833static void perf_event_cgroup(struct cgroup *cgrp)
7834{
7835 struct perf_cgroup_event cgroup_event;
7836 char path_enomem[16] = "//enomem";
7837 char *pathname;
7838 size_t size;
7839
7840 if (!atomic_read(&nr_cgroup_events))
7841 return;
7842
7843 cgroup_event = (struct perf_cgroup_event){
7844 .event_id = {
7845 .header = {
7846 .type = PERF_RECORD_CGROUP,
7847 .misc = 0,
7848 .size = sizeof(cgroup_event.event_id),
7849 },
7850 .id = cgroup_id(cgrp),
7851 },
7852 };
7853
7854 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
7855 if (pathname == NULL) {
7856 cgroup_event.path = path_enomem;
7857 } else {
7858 /* just to be sure to have enough space for alignment */
7859 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
7860 cgroup_event.path = pathname;
7861 }
7862
7863 /*
7864 * Since our buffer works in 8 byte units we need to align our string
7865 * size to a multiple of 8. However, we must guarantee the tail end is
7866 * zero'd out to avoid leaking random bits to userspace.
7867 */
7868 size = strlen(cgroup_event.path) + 1;
7869 while (!IS_ALIGNED(size, sizeof(u64)))
7870 cgroup_event.path[size++] = '\0';
7871
7872 cgroup_event.event_id.header.size += size;
7873 cgroup_event.path_size = size;
7874
7875 perf_iterate_sb(perf_event_cgroup_output,
7876 &cgroup_event,
7877 NULL);
7878
7879 kfree(pathname);
7880}
7881
7882#endif
7883
0a4a9391
PZ
7884/*
7885 * mmap tracking
7886 */
7887
7888struct perf_mmap_event {
089dd79d
PZ
7889 struct vm_area_struct *vma;
7890
7891 const char *file_name;
7892 int file_size;
13d7a241
SE
7893 int maj, min;
7894 u64 ino;
7895 u64 ino_generation;
f972eb63 7896 u32 prot, flags;
0a4a9391
PZ
7897
7898 struct {
7899 struct perf_event_header header;
7900
7901 u32 pid;
7902 u32 tid;
7903 u64 start;
7904 u64 len;
7905 u64 pgoff;
cdd6c482 7906 } event_id;
0a4a9391
PZ
7907};
7908
67516844
JO
7909static int perf_event_mmap_match(struct perf_event *event,
7910 void *data)
7911{
7912 struct perf_mmap_event *mmap_event = data;
7913 struct vm_area_struct *vma = mmap_event->vma;
7914 int executable = vma->vm_flags & VM_EXEC;
7915
7916 return (!executable && event->attr.mmap_data) ||
13d7a241 7917 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
7918}
7919
cdd6c482 7920static void perf_event_mmap_output(struct perf_event *event,
52d857a8 7921 void *data)
0a4a9391 7922{
52d857a8 7923 struct perf_mmap_event *mmap_event = data;
0a4a9391 7924 struct perf_output_handle handle;
c980d109 7925 struct perf_sample_data sample;
cdd6c482 7926 int size = mmap_event->event_id.header.size;
d9c1bb2f 7927 u32 type = mmap_event->event_id.header.type;
c980d109 7928 int ret;
0a4a9391 7929
67516844
JO
7930 if (!perf_event_mmap_match(event, data))
7931 return;
7932
13d7a241
SE
7933 if (event->attr.mmap2) {
7934 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7935 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7936 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7937 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 7938 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
7939 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7940 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
7941 }
7942
c980d109
ACM
7943 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7944 ret = perf_output_begin(&handle, event,
a7ac67ea 7945 mmap_event->event_id.header.size);
0a4a9391 7946 if (ret)
c980d109 7947 goto out;
0a4a9391 7948
cdd6c482
IM
7949 mmap_event->event_id.pid = perf_event_pid(event, current);
7950 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 7951
cdd6c482 7952 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
7953
7954 if (event->attr.mmap2) {
7955 perf_output_put(&handle, mmap_event->maj);
7956 perf_output_put(&handle, mmap_event->min);
7957 perf_output_put(&handle, mmap_event->ino);
7958 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
7959 perf_output_put(&handle, mmap_event->prot);
7960 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
7961 }
7962
76369139 7963 __output_copy(&handle, mmap_event->file_name,
0a4a9391 7964 mmap_event->file_size);
c980d109
ACM
7965
7966 perf_event__output_id_sample(event, &handle, &sample);
7967
78d613eb 7968 perf_output_end(&handle);
c980d109
ACM
7969out:
7970 mmap_event->event_id.header.size = size;
d9c1bb2f 7971 mmap_event->event_id.header.type = type;
0a4a9391
PZ
7972}
7973
cdd6c482 7974static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 7975{
089dd79d
PZ
7976 struct vm_area_struct *vma = mmap_event->vma;
7977 struct file *file = vma->vm_file;
13d7a241
SE
7978 int maj = 0, min = 0;
7979 u64 ino = 0, gen = 0;
f972eb63 7980 u32 prot = 0, flags = 0;
0a4a9391
PZ
7981 unsigned int size;
7982 char tmp[16];
7983 char *buf = NULL;
2c42cfbf 7984 char *name;
413ee3b4 7985
0b3589be
PZ
7986 if (vma->vm_flags & VM_READ)
7987 prot |= PROT_READ;
7988 if (vma->vm_flags & VM_WRITE)
7989 prot |= PROT_WRITE;
7990 if (vma->vm_flags & VM_EXEC)
7991 prot |= PROT_EXEC;
7992
7993 if (vma->vm_flags & VM_MAYSHARE)
7994 flags = MAP_SHARED;
7995 else
7996 flags = MAP_PRIVATE;
7997
7998 if (vma->vm_flags & VM_DENYWRITE)
7999 flags |= MAP_DENYWRITE;
8000 if (vma->vm_flags & VM_MAYEXEC)
8001 flags |= MAP_EXECUTABLE;
8002 if (vma->vm_flags & VM_LOCKED)
8003 flags |= MAP_LOCKED;
03911132 8004 if (is_vm_hugetlb_page(vma))
0b3589be
PZ
8005 flags |= MAP_HUGETLB;
8006
0a4a9391 8007 if (file) {
13d7a241
SE
8008 struct inode *inode;
8009 dev_t dev;
3ea2f2b9 8010
2c42cfbf 8011 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 8012 if (!buf) {
c7e548b4
ON
8013 name = "//enomem";
8014 goto cpy_name;
0a4a9391 8015 }
413ee3b4 8016 /*
3ea2f2b9 8017 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
8018 * need to add enough zero bytes after the string to handle
8019 * the 64bit alignment we do later.
8020 */
9bf39ab2 8021 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 8022 if (IS_ERR(name)) {
c7e548b4
ON
8023 name = "//toolong";
8024 goto cpy_name;
0a4a9391 8025 }
13d7a241
SE
8026 inode = file_inode(vma->vm_file);
8027 dev = inode->i_sb->s_dev;
8028 ino = inode->i_ino;
8029 gen = inode->i_generation;
8030 maj = MAJOR(dev);
8031 min = MINOR(dev);
f972eb63 8032
c7e548b4 8033 goto got_name;
0a4a9391 8034 } else {
fbe26abe
JO
8035 if (vma->vm_ops && vma->vm_ops->name) {
8036 name = (char *) vma->vm_ops->name(vma);
8037 if (name)
8038 goto cpy_name;
8039 }
8040
2c42cfbf 8041 name = (char *)arch_vma_name(vma);
c7e548b4
ON
8042 if (name)
8043 goto cpy_name;
089dd79d 8044
32c5fb7e 8045 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 8046 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
8047 name = "[heap]";
8048 goto cpy_name;
32c5fb7e
ON
8049 }
8050 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 8051 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
8052 name = "[stack]";
8053 goto cpy_name;
089dd79d
PZ
8054 }
8055
c7e548b4
ON
8056 name = "//anon";
8057 goto cpy_name;
0a4a9391
PZ
8058 }
8059
c7e548b4
ON
8060cpy_name:
8061 strlcpy(tmp, name, sizeof(tmp));
8062 name = tmp;
0a4a9391 8063got_name:
2c42cfbf
PZ
8064 /*
8065 * Since our buffer works in 8 byte units we need to align our string
8066 * size to a multiple of 8. However, we must guarantee the tail end is
8067 * zero'd out to avoid leaking random bits to userspace.
8068 */
8069 size = strlen(name)+1;
8070 while (!IS_ALIGNED(size, sizeof(u64)))
8071 name[size++] = '\0';
0a4a9391
PZ
8072
8073 mmap_event->file_name = name;
8074 mmap_event->file_size = size;
13d7a241
SE
8075 mmap_event->maj = maj;
8076 mmap_event->min = min;
8077 mmap_event->ino = ino;
8078 mmap_event->ino_generation = gen;
f972eb63
PZ
8079 mmap_event->prot = prot;
8080 mmap_event->flags = flags;
0a4a9391 8081
2fe85427
SE
8082 if (!(vma->vm_flags & VM_EXEC))
8083 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8084
cdd6c482 8085 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 8086
aab5b71e 8087 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
8088 mmap_event,
8089 NULL);
665c2142 8090
0a4a9391
PZ
8091 kfree(buf);
8092}
8093
375637bc
AS
8094/*
8095 * Check whether inode and address range match filter criteria.
8096 */
8097static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8098 struct file *file, unsigned long offset,
8099 unsigned long size)
8100{
7f635ff1
MP
8101 /* d_inode(NULL) won't be equal to any mapped user-space file */
8102 if (!filter->path.dentry)
8103 return false;
8104
9511bce9 8105 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
8106 return false;
8107
8108 if (filter->offset > offset + size)
8109 return false;
8110
8111 if (filter->offset + filter->size < offset)
8112 return false;
8113
8114 return true;
8115}
8116
c60f83b8
AS
8117static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8118 struct vm_area_struct *vma,
8119 struct perf_addr_filter_range *fr)
8120{
8121 unsigned long vma_size = vma->vm_end - vma->vm_start;
8122 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8123 struct file *file = vma->vm_file;
8124
8125 if (!perf_addr_filter_match(filter, file, off, vma_size))
8126 return false;
8127
8128 if (filter->offset < off) {
8129 fr->start = vma->vm_start;
8130 fr->size = min(vma_size, filter->size - (off - filter->offset));
8131 } else {
8132 fr->start = vma->vm_start + filter->offset - off;
8133 fr->size = min(vma->vm_end - fr->start, filter->size);
8134 }
8135
8136 return true;
8137}
8138
375637bc
AS
8139static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8140{
8141 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8142 struct vm_area_struct *vma = data;
375637bc
AS
8143 struct perf_addr_filter *filter;
8144 unsigned int restart = 0, count = 0;
c60f83b8 8145 unsigned long flags;
375637bc
AS
8146
8147 if (!has_addr_filter(event))
8148 return;
8149
c60f83b8 8150 if (!vma->vm_file)
375637bc
AS
8151 return;
8152
8153 raw_spin_lock_irqsave(&ifh->lock, flags);
8154 list_for_each_entry(filter, &ifh->list, entry) {
c60f83b8
AS
8155 if (perf_addr_filter_vma_adjust(filter, vma,
8156 &event->addr_filter_ranges[count]))
375637bc 8157 restart++;
375637bc
AS
8158
8159 count++;
8160 }
8161
8162 if (restart)
8163 event->addr_filters_gen++;
8164 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8165
8166 if (restart)
767ae086 8167 perf_event_stop(event, 1);
375637bc
AS
8168}
8169
8170/*
8171 * Adjust all task's events' filters to the new vma
8172 */
8173static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8174{
8175 struct perf_event_context *ctx;
8176 int ctxn;
8177
12b40a23
MP
8178 /*
8179 * Data tracing isn't supported yet and as such there is no need
8180 * to keep track of anything that isn't related to executable code:
8181 */
8182 if (!(vma->vm_flags & VM_EXEC))
8183 return;
8184
375637bc
AS
8185 rcu_read_lock();
8186 for_each_task_context_nr(ctxn) {
8187 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8188 if (!ctx)
8189 continue;
8190
aab5b71e 8191 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
8192 }
8193 rcu_read_unlock();
8194}
8195
3af9e859 8196void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 8197{
9ee318a7
PZ
8198 struct perf_mmap_event mmap_event;
8199
cdd6c482 8200 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
8201 return;
8202
8203 mmap_event = (struct perf_mmap_event){
089dd79d 8204 .vma = vma,
573402db
PZ
8205 /* .file_name */
8206 /* .file_size */
cdd6c482 8207 .event_id = {
573402db 8208 .header = {
cdd6c482 8209 .type = PERF_RECORD_MMAP,
39447b38 8210 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
8211 /* .size */
8212 },
8213 /* .pid */
8214 /* .tid */
089dd79d
PZ
8215 .start = vma->vm_start,
8216 .len = vma->vm_end - vma->vm_start,
3a0304e9 8217 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 8218 },
13d7a241
SE
8219 /* .maj (attr_mmap2 only) */
8220 /* .min (attr_mmap2 only) */
8221 /* .ino (attr_mmap2 only) */
8222 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
8223 /* .prot (attr_mmap2 only) */
8224 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
8225 };
8226
375637bc 8227 perf_addr_filters_adjust(vma);
cdd6c482 8228 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
8229}
8230
68db7e98
AS
8231void perf_event_aux_event(struct perf_event *event, unsigned long head,
8232 unsigned long size, u64 flags)
8233{
8234 struct perf_output_handle handle;
8235 struct perf_sample_data sample;
8236 struct perf_aux_event {
8237 struct perf_event_header header;
8238 u64 offset;
8239 u64 size;
8240 u64 flags;
8241 } rec = {
8242 .header = {
8243 .type = PERF_RECORD_AUX,
8244 .misc = 0,
8245 .size = sizeof(rec),
8246 },
8247 .offset = head,
8248 .size = size,
8249 .flags = flags,
8250 };
8251 int ret;
8252
8253 perf_event_header__init_id(&rec.header, &sample, event);
8254 ret = perf_output_begin(&handle, event, rec.header.size);
8255
8256 if (ret)
8257 return;
8258
8259 perf_output_put(&handle, rec);
8260 perf_event__output_id_sample(event, &handle, &sample);
8261
8262 perf_output_end(&handle);
8263}
8264
f38b0dbb
KL
8265/*
8266 * Lost/dropped samples logging
8267 */
8268void perf_log_lost_samples(struct perf_event *event, u64 lost)
8269{
8270 struct perf_output_handle handle;
8271 struct perf_sample_data sample;
8272 int ret;
8273
8274 struct {
8275 struct perf_event_header header;
8276 u64 lost;
8277 } lost_samples_event = {
8278 .header = {
8279 .type = PERF_RECORD_LOST_SAMPLES,
8280 .misc = 0,
8281 .size = sizeof(lost_samples_event),
8282 },
8283 .lost = lost,
8284 };
8285
8286 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8287
8288 ret = perf_output_begin(&handle, event,
8289 lost_samples_event.header.size);
8290 if (ret)
8291 return;
8292
8293 perf_output_put(&handle, lost_samples_event);
8294 perf_event__output_id_sample(event, &handle, &sample);
8295 perf_output_end(&handle);
8296}
8297
45ac1403
AH
8298/*
8299 * context_switch tracking
8300 */
8301
8302struct perf_switch_event {
8303 struct task_struct *task;
8304 struct task_struct *next_prev;
8305
8306 struct {
8307 struct perf_event_header header;
8308 u32 next_prev_pid;
8309 u32 next_prev_tid;
8310 } event_id;
8311};
8312
8313static int perf_event_switch_match(struct perf_event *event)
8314{
8315 return event->attr.context_switch;
8316}
8317
8318static void perf_event_switch_output(struct perf_event *event, void *data)
8319{
8320 struct perf_switch_event *se = data;
8321 struct perf_output_handle handle;
8322 struct perf_sample_data sample;
8323 int ret;
8324
8325 if (!perf_event_switch_match(event))
8326 return;
8327
8328 /* Only CPU-wide events are allowed to see next/prev pid/tid */
8329 if (event->ctx->task) {
8330 se->event_id.header.type = PERF_RECORD_SWITCH;
8331 se->event_id.header.size = sizeof(se->event_id.header);
8332 } else {
8333 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8334 se->event_id.header.size = sizeof(se->event_id);
8335 se->event_id.next_prev_pid =
8336 perf_event_pid(event, se->next_prev);
8337 se->event_id.next_prev_tid =
8338 perf_event_tid(event, se->next_prev);
8339 }
8340
8341 perf_event_header__init_id(&se->event_id.header, &sample, event);
8342
8343 ret = perf_output_begin(&handle, event, se->event_id.header.size);
8344 if (ret)
8345 return;
8346
8347 if (event->ctx->task)
8348 perf_output_put(&handle, se->event_id.header);
8349 else
8350 perf_output_put(&handle, se->event_id);
8351
8352 perf_event__output_id_sample(event, &handle, &sample);
8353
8354 perf_output_end(&handle);
8355}
8356
8357static void perf_event_switch(struct task_struct *task,
8358 struct task_struct *next_prev, bool sched_in)
8359{
8360 struct perf_switch_event switch_event;
8361
8362 /* N.B. caller checks nr_switch_events != 0 */
8363
8364 switch_event = (struct perf_switch_event){
8365 .task = task,
8366 .next_prev = next_prev,
8367 .event_id = {
8368 .header = {
8369 /* .type */
8370 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8371 /* .size */
8372 },
8373 /* .next_prev_pid */
8374 /* .next_prev_tid */
8375 },
8376 };
8377
101592b4
AB
8378 if (!sched_in && task->state == TASK_RUNNING)
8379 switch_event.event_id.header.misc |=
8380 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8381
aab5b71e 8382 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
8383 &switch_event,
8384 NULL);
8385}
8386
a78ac325
PZ
8387/*
8388 * IRQ throttle logging
8389 */
8390
cdd6c482 8391static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
8392{
8393 struct perf_output_handle handle;
c980d109 8394 struct perf_sample_data sample;
a78ac325
PZ
8395 int ret;
8396
8397 struct {
8398 struct perf_event_header header;
8399 u64 time;
cca3f454 8400 u64 id;
7f453c24 8401 u64 stream_id;
a78ac325
PZ
8402 } throttle_event = {
8403 .header = {
cdd6c482 8404 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
8405 .misc = 0,
8406 .size = sizeof(throttle_event),
8407 },
34f43927 8408 .time = perf_event_clock(event),
cdd6c482
IM
8409 .id = primary_event_id(event),
8410 .stream_id = event->id,
a78ac325
PZ
8411 };
8412
966ee4d6 8413 if (enable)
cdd6c482 8414 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 8415
c980d109
ACM
8416 perf_event_header__init_id(&throttle_event.header, &sample, event);
8417
8418 ret = perf_output_begin(&handle, event,
a7ac67ea 8419 throttle_event.header.size);
a78ac325
PZ
8420 if (ret)
8421 return;
8422
8423 perf_output_put(&handle, throttle_event);
c980d109 8424 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
8425 perf_output_end(&handle);
8426}
8427
76193a94
SL
8428/*
8429 * ksymbol register/unregister tracking
8430 */
8431
8432struct perf_ksymbol_event {
8433 const char *name;
8434 int name_len;
8435 struct {
8436 struct perf_event_header header;
8437 u64 addr;
8438 u32 len;
8439 u16 ksym_type;
8440 u16 flags;
8441 } event_id;
8442};
8443
8444static int perf_event_ksymbol_match(struct perf_event *event)
8445{
8446 return event->attr.ksymbol;
8447}
8448
8449static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8450{
8451 struct perf_ksymbol_event *ksymbol_event = data;
8452 struct perf_output_handle handle;
8453 struct perf_sample_data sample;
8454 int ret;
8455
8456 if (!perf_event_ksymbol_match(event))
8457 return;
8458
8459 perf_event_header__init_id(&ksymbol_event->event_id.header,
8460 &sample, event);
8461 ret = perf_output_begin(&handle, event,
8462 ksymbol_event->event_id.header.size);
8463 if (ret)
8464 return;
8465
8466 perf_output_put(&handle, ksymbol_event->event_id);
8467 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8468 perf_event__output_id_sample(event, &handle, &sample);
8469
8470 perf_output_end(&handle);
8471}
8472
8473void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8474 const char *sym)
8475{
8476 struct perf_ksymbol_event ksymbol_event;
8477 char name[KSYM_NAME_LEN];
8478 u16 flags = 0;
8479 int name_len;
8480
8481 if (!atomic_read(&nr_ksymbol_events))
8482 return;
8483
8484 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8485 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8486 goto err;
8487
8488 strlcpy(name, sym, KSYM_NAME_LEN);
8489 name_len = strlen(name) + 1;
8490 while (!IS_ALIGNED(name_len, sizeof(u64)))
8491 name[name_len++] = '\0';
8492 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8493
8494 if (unregister)
8495 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8496
8497 ksymbol_event = (struct perf_ksymbol_event){
8498 .name = name,
8499 .name_len = name_len,
8500 .event_id = {
8501 .header = {
8502 .type = PERF_RECORD_KSYMBOL,
8503 .size = sizeof(ksymbol_event.event_id) +
8504 name_len,
8505 },
8506 .addr = addr,
8507 .len = len,
8508 .ksym_type = ksym_type,
8509 .flags = flags,
8510 },
8511 };
8512
8513 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8514 return;
8515err:
8516 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8517}
8518
6ee52e2a
SL
8519/*
8520 * bpf program load/unload tracking
8521 */
8522
8523struct perf_bpf_event {
8524 struct bpf_prog *prog;
8525 struct {
8526 struct perf_event_header header;
8527 u16 type;
8528 u16 flags;
8529 u32 id;
8530 u8 tag[BPF_TAG_SIZE];
8531 } event_id;
8532};
8533
8534static int perf_event_bpf_match(struct perf_event *event)
8535{
8536 return event->attr.bpf_event;
8537}
8538
8539static void perf_event_bpf_output(struct perf_event *event, void *data)
8540{
8541 struct perf_bpf_event *bpf_event = data;
8542 struct perf_output_handle handle;
8543 struct perf_sample_data sample;
8544 int ret;
8545
8546 if (!perf_event_bpf_match(event))
8547 return;
8548
8549 perf_event_header__init_id(&bpf_event->event_id.header,
8550 &sample, event);
8551 ret = perf_output_begin(&handle, event,
8552 bpf_event->event_id.header.size);
8553 if (ret)
8554 return;
8555
8556 perf_output_put(&handle, bpf_event->event_id);
8557 perf_event__output_id_sample(event, &handle, &sample);
8558
8559 perf_output_end(&handle);
8560}
8561
8562static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8563 enum perf_bpf_event_type type)
8564{
8565 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
6ee52e2a
SL
8566 int i;
8567
8568 if (prog->aux->func_cnt == 0) {
6ee52e2a
SL
8569 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8570 (u64)(unsigned long)prog->bpf_func,
bfea9a85
JO
8571 prog->jited_len, unregister,
8572 prog->aux->ksym.name);
6ee52e2a
SL
8573 } else {
8574 for (i = 0; i < prog->aux->func_cnt; i++) {
8575 struct bpf_prog *subprog = prog->aux->func[i];
8576
6ee52e2a
SL
8577 perf_event_ksymbol(
8578 PERF_RECORD_KSYMBOL_TYPE_BPF,
8579 (u64)(unsigned long)subprog->bpf_func,
bfea9a85
JO
8580 subprog->jited_len, unregister,
8581 prog->aux->ksym.name);
6ee52e2a
SL
8582 }
8583 }
8584}
8585
8586void perf_event_bpf_event(struct bpf_prog *prog,
8587 enum perf_bpf_event_type type,
8588 u16 flags)
8589{
8590 struct perf_bpf_event bpf_event;
8591
8592 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8593 type >= PERF_BPF_EVENT_MAX)
8594 return;
8595
8596 switch (type) {
8597 case PERF_BPF_EVENT_PROG_LOAD:
8598 case PERF_BPF_EVENT_PROG_UNLOAD:
8599 if (atomic_read(&nr_ksymbol_events))
8600 perf_event_bpf_emit_ksymbols(prog, type);
8601 break;
8602 default:
8603 break;
8604 }
8605
8606 if (!atomic_read(&nr_bpf_events))
8607 return;
8608
8609 bpf_event = (struct perf_bpf_event){
8610 .prog = prog,
8611 .event_id = {
8612 .header = {
8613 .type = PERF_RECORD_BPF_EVENT,
8614 .size = sizeof(bpf_event.event_id),
8615 },
8616 .type = type,
8617 .flags = flags,
8618 .id = prog->aux->id,
8619 },
8620 };
8621
8622 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8623
8624 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8625 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8626}
8627
8d4e6c4c
AS
8628void perf_event_itrace_started(struct perf_event *event)
8629{
8630 event->attach_state |= PERF_ATTACH_ITRACE;
8631}
8632
ec0d7729
AS
8633static void perf_log_itrace_start(struct perf_event *event)
8634{
8635 struct perf_output_handle handle;
8636 struct perf_sample_data sample;
8637 struct perf_aux_event {
8638 struct perf_event_header header;
8639 u32 pid;
8640 u32 tid;
8641 } rec;
8642 int ret;
8643
8644 if (event->parent)
8645 event = event->parent;
8646
8647 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 8648 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
8649 return;
8650
ec0d7729
AS
8651 rec.header.type = PERF_RECORD_ITRACE_START;
8652 rec.header.misc = 0;
8653 rec.header.size = sizeof(rec);
8654 rec.pid = perf_event_pid(event, current);
8655 rec.tid = perf_event_tid(event, current);
8656
8657 perf_event_header__init_id(&rec.header, &sample, event);
8658 ret = perf_output_begin(&handle, event, rec.header.size);
8659
8660 if (ret)
8661 return;
8662
8663 perf_output_put(&handle, rec);
8664 perf_event__output_id_sample(event, &handle, &sample);
8665
8666 perf_output_end(&handle);
8667}
8668
475113d9
JO
8669static int
8670__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 8671{
cdd6c482 8672 struct hw_perf_event *hwc = &event->hw;
79f14641 8673 int ret = 0;
475113d9 8674 u64 seq;
96398826 8675
e050e3f0
SE
8676 seq = __this_cpu_read(perf_throttled_seq);
8677 if (seq != hwc->interrupts_seq) {
8678 hwc->interrupts_seq = seq;
8679 hwc->interrupts = 1;
8680 } else {
8681 hwc->interrupts++;
8682 if (unlikely(throttle
8683 && hwc->interrupts >= max_samples_per_tick)) {
8684 __this_cpu_inc(perf_throttled_count);
555e0c1e 8685 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
8686 hwc->interrupts = MAX_INTERRUPTS;
8687 perf_log_throttle(event, 0);
a78ac325
PZ
8688 ret = 1;
8689 }
e050e3f0 8690 }
60db5e09 8691
cdd6c482 8692 if (event->attr.freq) {
def0a9b2 8693 u64 now = perf_clock();
abd50713 8694 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 8695
abd50713 8696 hwc->freq_time_stamp = now;
bd2b5b12 8697
abd50713 8698 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 8699 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
8700 }
8701
475113d9
JO
8702 return ret;
8703}
8704
8705int perf_event_account_interrupt(struct perf_event *event)
8706{
8707 return __perf_event_account_interrupt(event, 1);
8708}
8709
8710/*
8711 * Generic event overflow handling, sampling.
8712 */
8713
8714static int __perf_event_overflow(struct perf_event *event,
8715 int throttle, struct perf_sample_data *data,
8716 struct pt_regs *regs)
8717{
8718 int events = atomic_read(&event->event_limit);
8719 int ret = 0;
8720
8721 /*
8722 * Non-sampling counters might still use the PMI to fold short
8723 * hardware counters, ignore those.
8724 */
8725 if (unlikely(!is_sampling_event(event)))
8726 return 0;
8727
8728 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 8729
2023b359
PZ
8730 /*
8731 * XXX event_limit might not quite work as expected on inherited
cdd6c482 8732 * events
2023b359
PZ
8733 */
8734
cdd6c482
IM
8735 event->pending_kill = POLL_IN;
8736 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 8737 ret = 1;
cdd6c482 8738 event->pending_kill = POLL_HUP;
5aab90ce
JO
8739
8740 perf_event_disable_inatomic(event);
79f14641
PZ
8741 }
8742
aa6a5f3c 8743 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 8744
fed66e2c 8745 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
8746 event->pending_wakeup = 1;
8747 irq_work_queue(&event->pending);
f506b3dc
PZ
8748 }
8749
79f14641 8750 return ret;
f6c7d5fe
PZ
8751}
8752
a8b0ca17 8753int perf_event_overflow(struct perf_event *event,
5622f295
MM
8754 struct perf_sample_data *data,
8755 struct pt_regs *regs)
850bc73f 8756{
a8b0ca17 8757 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
8758}
8759
15dbf27c 8760/*
cdd6c482 8761 * Generic software event infrastructure
15dbf27c
PZ
8762 */
8763
b28ab83c
PZ
8764struct swevent_htable {
8765 struct swevent_hlist *swevent_hlist;
8766 struct mutex hlist_mutex;
8767 int hlist_refcount;
8768
8769 /* Recursion avoidance in each contexts */
8770 int recursion[PERF_NR_CONTEXTS];
8771};
8772
8773static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8774
7b4b6658 8775/*
cdd6c482
IM
8776 * We directly increment event->count and keep a second value in
8777 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
8778 * is kept in the range [-sample_period, 0] so that we can use the
8779 * sign as trigger.
8780 */
8781
ab573844 8782u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 8783{
cdd6c482 8784 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
8785 u64 period = hwc->last_period;
8786 u64 nr, offset;
8787 s64 old, val;
8788
8789 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
8790
8791again:
e7850595 8792 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
8793 if (val < 0)
8794 return 0;
15dbf27c 8795
7b4b6658
PZ
8796 nr = div64_u64(period + val, period);
8797 offset = nr * period;
8798 val -= offset;
e7850595 8799 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 8800 goto again;
15dbf27c 8801
7b4b6658 8802 return nr;
15dbf27c
PZ
8803}
8804
0cff784a 8805static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 8806 struct perf_sample_data *data,
5622f295 8807 struct pt_regs *regs)
15dbf27c 8808{
cdd6c482 8809 struct hw_perf_event *hwc = &event->hw;
850bc73f 8810 int throttle = 0;
15dbf27c 8811
0cff784a
PZ
8812 if (!overflow)
8813 overflow = perf_swevent_set_period(event);
15dbf27c 8814
7b4b6658
PZ
8815 if (hwc->interrupts == MAX_INTERRUPTS)
8816 return;
15dbf27c 8817
7b4b6658 8818 for (; overflow; overflow--) {
a8b0ca17 8819 if (__perf_event_overflow(event, throttle,
5622f295 8820 data, regs)) {
7b4b6658
PZ
8821 /*
8822 * We inhibit the overflow from happening when
8823 * hwc->interrupts == MAX_INTERRUPTS.
8824 */
8825 break;
8826 }
cf450a73 8827 throttle = 1;
7b4b6658 8828 }
15dbf27c
PZ
8829}
8830
a4eaf7f1 8831static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 8832 struct perf_sample_data *data,
5622f295 8833 struct pt_regs *regs)
7b4b6658 8834{
cdd6c482 8835 struct hw_perf_event *hwc = &event->hw;
d6d020e9 8836
e7850595 8837 local64_add(nr, &event->count);
d6d020e9 8838
0cff784a
PZ
8839 if (!regs)
8840 return;
8841
6c7e550f 8842 if (!is_sampling_event(event))
7b4b6658 8843 return;
d6d020e9 8844
5d81e5cf
AV
8845 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8846 data->period = nr;
8847 return perf_swevent_overflow(event, 1, data, regs);
8848 } else
8849 data->period = event->hw.last_period;
8850
0cff784a 8851 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 8852 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 8853
e7850595 8854 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 8855 return;
df1a132b 8856
a8b0ca17 8857 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
8858}
8859
f5ffe02e
FW
8860static int perf_exclude_event(struct perf_event *event,
8861 struct pt_regs *regs)
8862{
a4eaf7f1 8863 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 8864 return 1;
a4eaf7f1 8865
f5ffe02e
FW
8866 if (regs) {
8867 if (event->attr.exclude_user && user_mode(regs))
8868 return 1;
8869
8870 if (event->attr.exclude_kernel && !user_mode(regs))
8871 return 1;
8872 }
8873
8874 return 0;
8875}
8876
cdd6c482 8877static int perf_swevent_match(struct perf_event *event,
1c432d89 8878 enum perf_type_id type,
6fb2915d
LZ
8879 u32 event_id,
8880 struct perf_sample_data *data,
8881 struct pt_regs *regs)
15dbf27c 8882{
cdd6c482 8883 if (event->attr.type != type)
a21ca2ca 8884 return 0;
f5ffe02e 8885
cdd6c482 8886 if (event->attr.config != event_id)
15dbf27c
PZ
8887 return 0;
8888
f5ffe02e
FW
8889 if (perf_exclude_event(event, regs))
8890 return 0;
15dbf27c
PZ
8891
8892 return 1;
8893}
8894
76e1d904
FW
8895static inline u64 swevent_hash(u64 type, u32 event_id)
8896{
8897 u64 val = event_id | (type << 32);
8898
8899 return hash_64(val, SWEVENT_HLIST_BITS);
8900}
8901
49f135ed
FW
8902static inline struct hlist_head *
8903__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 8904{
49f135ed
FW
8905 u64 hash = swevent_hash(type, event_id);
8906
8907 return &hlist->heads[hash];
8908}
76e1d904 8909
49f135ed
FW
8910/* For the read side: events when they trigger */
8911static inline struct hlist_head *
b28ab83c 8912find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
8913{
8914 struct swevent_hlist *hlist;
76e1d904 8915
b28ab83c 8916 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
8917 if (!hlist)
8918 return NULL;
8919
49f135ed
FW
8920 return __find_swevent_head(hlist, type, event_id);
8921}
8922
8923/* For the event head insertion and removal in the hlist */
8924static inline struct hlist_head *
b28ab83c 8925find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
8926{
8927 struct swevent_hlist *hlist;
8928 u32 event_id = event->attr.config;
8929 u64 type = event->attr.type;
8930
8931 /*
8932 * Event scheduling is always serialized against hlist allocation
8933 * and release. Which makes the protected version suitable here.
8934 * The context lock guarantees that.
8935 */
b28ab83c 8936 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
8937 lockdep_is_held(&event->ctx->lock));
8938 if (!hlist)
8939 return NULL;
8940
8941 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
8942}
8943
8944static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 8945 u64 nr,
76e1d904
FW
8946 struct perf_sample_data *data,
8947 struct pt_regs *regs)
15dbf27c 8948{
4a32fea9 8949 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8950 struct perf_event *event;
76e1d904 8951 struct hlist_head *head;
15dbf27c 8952
76e1d904 8953 rcu_read_lock();
b28ab83c 8954 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
8955 if (!head)
8956 goto end;
8957
b67bfe0d 8958 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 8959 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 8960 perf_swevent_event(event, nr, data, regs);
15dbf27c 8961 }
76e1d904
FW
8962end:
8963 rcu_read_unlock();
15dbf27c
PZ
8964}
8965
86038c5e
PZI
8966DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8967
4ed7c92d 8968int perf_swevent_get_recursion_context(void)
96f6d444 8969{
4a32fea9 8970 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 8971
b28ab83c 8972 return get_recursion_context(swhash->recursion);
96f6d444 8973}
645e8cc0 8974EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 8975
98b5c2c6 8976void perf_swevent_put_recursion_context(int rctx)
15dbf27c 8977{
4a32fea9 8978 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 8979
b28ab83c 8980 put_recursion_context(swhash->recursion, rctx);
ce71b9df 8981}
15dbf27c 8982
86038c5e 8983void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 8984{
a4234bfc 8985 struct perf_sample_data data;
4ed7c92d 8986
86038c5e 8987 if (WARN_ON_ONCE(!regs))
4ed7c92d 8988 return;
a4234bfc 8989
fd0d000b 8990 perf_sample_data_init(&data, addr, 0);
a8b0ca17 8991 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
8992}
8993
8994void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8995{
8996 int rctx;
8997
8998 preempt_disable_notrace();
8999 rctx = perf_swevent_get_recursion_context();
9000 if (unlikely(rctx < 0))
9001 goto fail;
9002
9003 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
9004
9005 perf_swevent_put_recursion_context(rctx);
86038c5e 9006fail:
1c024eca 9007 preempt_enable_notrace();
b8e83514
PZ
9008}
9009
cdd6c482 9010static void perf_swevent_read(struct perf_event *event)
15dbf27c 9011{
15dbf27c
PZ
9012}
9013
a4eaf7f1 9014static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 9015{
4a32fea9 9016 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 9017 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
9018 struct hlist_head *head;
9019
6c7e550f 9020 if (is_sampling_event(event)) {
7b4b6658 9021 hwc->last_period = hwc->sample_period;
cdd6c482 9022 perf_swevent_set_period(event);
7b4b6658 9023 }
76e1d904 9024
a4eaf7f1
PZ
9025 hwc->state = !(flags & PERF_EF_START);
9026
b28ab83c 9027 head = find_swevent_head(swhash, event);
12ca6ad2 9028 if (WARN_ON_ONCE(!head))
76e1d904
FW
9029 return -EINVAL;
9030
9031 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 9032 perf_event_update_userpage(event);
76e1d904 9033
15dbf27c
PZ
9034 return 0;
9035}
9036
a4eaf7f1 9037static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 9038{
76e1d904 9039 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
9040}
9041
a4eaf7f1 9042static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 9043{
a4eaf7f1 9044 event->hw.state = 0;
d6d020e9 9045}
aa9c4c0f 9046
a4eaf7f1 9047static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 9048{
a4eaf7f1 9049 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
9050}
9051
49f135ed
FW
9052/* Deref the hlist from the update side */
9053static inline struct swevent_hlist *
b28ab83c 9054swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 9055{
b28ab83c
PZ
9056 return rcu_dereference_protected(swhash->swevent_hlist,
9057 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
9058}
9059
b28ab83c 9060static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 9061{
b28ab83c 9062 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 9063
49f135ed 9064 if (!hlist)
76e1d904
FW
9065 return;
9066
70691d4a 9067 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 9068 kfree_rcu(hlist, rcu_head);
76e1d904
FW
9069}
9070
3b364d7b 9071static void swevent_hlist_put_cpu(int cpu)
76e1d904 9072{
b28ab83c 9073 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 9074
b28ab83c 9075 mutex_lock(&swhash->hlist_mutex);
76e1d904 9076
b28ab83c
PZ
9077 if (!--swhash->hlist_refcount)
9078 swevent_hlist_release(swhash);
76e1d904 9079
b28ab83c 9080 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
9081}
9082
3b364d7b 9083static void swevent_hlist_put(void)
76e1d904
FW
9084{
9085 int cpu;
9086
76e1d904 9087 for_each_possible_cpu(cpu)
3b364d7b 9088 swevent_hlist_put_cpu(cpu);
76e1d904
FW
9089}
9090
3b364d7b 9091static int swevent_hlist_get_cpu(int cpu)
76e1d904 9092{
b28ab83c 9093 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
9094 int err = 0;
9095
b28ab83c 9096 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
9097 if (!swevent_hlist_deref(swhash) &&
9098 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
9099 struct swevent_hlist *hlist;
9100
9101 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9102 if (!hlist) {
9103 err = -ENOMEM;
9104 goto exit;
9105 }
b28ab83c 9106 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9107 }
b28ab83c 9108 swhash->hlist_refcount++;
9ed6060d 9109exit:
b28ab83c 9110 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
9111
9112 return err;
9113}
9114
3b364d7b 9115static int swevent_hlist_get(void)
76e1d904 9116{
3b364d7b 9117 int err, cpu, failed_cpu;
76e1d904 9118
a63fbed7 9119 mutex_lock(&pmus_lock);
76e1d904 9120 for_each_possible_cpu(cpu) {
3b364d7b 9121 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
9122 if (err) {
9123 failed_cpu = cpu;
9124 goto fail;
9125 }
9126 }
a63fbed7 9127 mutex_unlock(&pmus_lock);
76e1d904 9128 return 0;
9ed6060d 9129fail:
76e1d904
FW
9130 for_each_possible_cpu(cpu) {
9131 if (cpu == failed_cpu)
9132 break;
3b364d7b 9133 swevent_hlist_put_cpu(cpu);
76e1d904 9134 }
a63fbed7 9135 mutex_unlock(&pmus_lock);
76e1d904
FW
9136 return err;
9137}
9138
c5905afb 9139struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 9140
b0a873eb
PZ
9141static void sw_perf_event_destroy(struct perf_event *event)
9142{
9143 u64 event_id = event->attr.config;
95476b64 9144
b0a873eb
PZ
9145 WARN_ON(event->parent);
9146
c5905afb 9147 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 9148 swevent_hlist_put();
b0a873eb
PZ
9149}
9150
9151static int perf_swevent_init(struct perf_event *event)
9152{
8176cced 9153 u64 event_id = event->attr.config;
b0a873eb
PZ
9154
9155 if (event->attr.type != PERF_TYPE_SOFTWARE)
9156 return -ENOENT;
9157
2481c5fa
SE
9158 /*
9159 * no branch sampling for software events
9160 */
9161 if (has_branch_stack(event))
9162 return -EOPNOTSUPP;
9163
b0a873eb
PZ
9164 switch (event_id) {
9165 case PERF_COUNT_SW_CPU_CLOCK:
9166 case PERF_COUNT_SW_TASK_CLOCK:
9167 return -ENOENT;
9168
9169 default:
9170 break;
9171 }
9172
ce677831 9173 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
9174 return -ENOENT;
9175
9176 if (!event->parent) {
9177 int err;
9178
3b364d7b 9179 err = swevent_hlist_get();
b0a873eb
PZ
9180 if (err)
9181 return err;
9182
c5905afb 9183 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
9184 event->destroy = sw_perf_event_destroy;
9185 }
9186
9187 return 0;
9188}
9189
9190static struct pmu perf_swevent = {
89a1e187 9191 .task_ctx_nr = perf_sw_context,
95476b64 9192
34f43927
PZ
9193 .capabilities = PERF_PMU_CAP_NO_NMI,
9194
b0a873eb 9195 .event_init = perf_swevent_init,
a4eaf7f1
PZ
9196 .add = perf_swevent_add,
9197 .del = perf_swevent_del,
9198 .start = perf_swevent_start,
9199 .stop = perf_swevent_stop,
1c024eca 9200 .read = perf_swevent_read,
1c024eca
PZ
9201};
9202
b0a873eb
PZ
9203#ifdef CONFIG_EVENT_TRACING
9204
1c024eca
PZ
9205static int perf_tp_filter_match(struct perf_event *event,
9206 struct perf_sample_data *data)
9207{
7e3f977e 9208 void *record = data->raw->frag.data;
1c024eca 9209
b71b437e
PZ
9210 /* only top level events have filters set */
9211 if (event->parent)
9212 event = event->parent;
9213
1c024eca
PZ
9214 if (likely(!event->filter) || filter_match_preds(event->filter, record))
9215 return 1;
9216 return 0;
9217}
9218
9219static int perf_tp_event_match(struct perf_event *event,
9220 struct perf_sample_data *data,
9221 struct pt_regs *regs)
9222{
a0f7d0f7
FW
9223 if (event->hw.state & PERF_HES_STOPPED)
9224 return 0;
580d607c 9225 /*
9fd2e48b 9226 * If exclude_kernel, only trace user-space tracepoints (uprobes)
580d607c 9227 */
9fd2e48b 9228 if (event->attr.exclude_kernel && !user_mode(regs))
1c024eca
PZ
9229 return 0;
9230
9231 if (!perf_tp_filter_match(event, data))
9232 return 0;
9233
9234 return 1;
9235}
9236
85b67bcb
AS
9237void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9238 struct trace_event_call *call, u64 count,
9239 struct pt_regs *regs, struct hlist_head *head,
9240 struct task_struct *task)
9241{
e87c6bc3 9242 if (bpf_prog_array_valid(call)) {
85b67bcb 9243 *(struct pt_regs **)raw_data = regs;
e87c6bc3 9244 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
9245 perf_swevent_put_recursion_context(rctx);
9246 return;
9247 }
9248 }
9249 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 9250 rctx, task);
85b67bcb
AS
9251}
9252EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9253
1e1dcd93 9254void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 9255 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 9256 struct task_struct *task)
95476b64
FW
9257{
9258 struct perf_sample_data data;
8fd0fbbe 9259 struct perf_event *event;
1c024eca 9260
95476b64 9261 struct perf_raw_record raw = {
7e3f977e
DB
9262 .frag = {
9263 .size = entry_size,
9264 .data = record,
9265 },
95476b64
FW
9266 };
9267
1e1dcd93 9268 perf_sample_data_init(&data, 0, 0);
95476b64
FW
9269 data.raw = &raw;
9270
1e1dcd93
AS
9271 perf_trace_buf_update(record, event_type);
9272
8fd0fbbe 9273 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 9274 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 9275 perf_swevent_event(event, count, &data, regs);
4f41c013 9276 }
ecc55f84 9277
e6dab5ff
AV
9278 /*
9279 * If we got specified a target task, also iterate its context and
9280 * deliver this event there too.
9281 */
9282 if (task && task != current) {
9283 struct perf_event_context *ctx;
9284 struct trace_entry *entry = record;
9285
9286 rcu_read_lock();
9287 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9288 if (!ctx)
9289 goto unlock;
9290
9291 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cd6fb677
JO
9292 if (event->cpu != smp_processor_id())
9293 continue;
e6dab5ff
AV
9294 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9295 continue;
9296 if (event->attr.config != entry->type)
9297 continue;
9298 if (perf_tp_event_match(event, &data, regs))
9299 perf_swevent_event(event, count, &data, regs);
9300 }
9301unlock:
9302 rcu_read_unlock();
9303 }
9304
ecc55f84 9305 perf_swevent_put_recursion_context(rctx);
95476b64
FW
9306}
9307EXPORT_SYMBOL_GPL(perf_tp_event);
9308
cdd6c482 9309static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 9310{
1c024eca 9311 perf_trace_destroy(event);
e077df4f
PZ
9312}
9313
b0a873eb 9314static int perf_tp_event_init(struct perf_event *event)
e077df4f 9315{
76e1d904
FW
9316 int err;
9317
b0a873eb
PZ
9318 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9319 return -ENOENT;
9320
2481c5fa
SE
9321 /*
9322 * no branch sampling for tracepoint events
9323 */
9324 if (has_branch_stack(event))
9325 return -EOPNOTSUPP;
9326
1c024eca
PZ
9327 err = perf_trace_init(event);
9328 if (err)
b0a873eb 9329 return err;
e077df4f 9330
cdd6c482 9331 event->destroy = tp_perf_event_destroy;
e077df4f 9332
b0a873eb
PZ
9333 return 0;
9334}
9335
9336static struct pmu perf_tracepoint = {
89a1e187
PZ
9337 .task_ctx_nr = perf_sw_context,
9338
b0a873eb 9339 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
9340 .add = perf_trace_add,
9341 .del = perf_trace_del,
9342 .start = perf_swevent_start,
9343 .stop = perf_swevent_stop,
b0a873eb 9344 .read = perf_swevent_read,
b0a873eb
PZ
9345};
9346
33ea4b24 9347#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
9348/*
9349 * Flags in config, used by dynamic PMU kprobe and uprobe
9350 * The flags should match following PMU_FORMAT_ATTR().
9351 *
9352 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9353 * if not set, create kprobe/uprobe
a6ca88b2
SL
9354 *
9355 * The following values specify a reference counter (or semaphore in the
9356 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9357 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9358 *
9359 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
9360 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
e12f03d7
SL
9361 */
9362enum perf_probe_config {
9363 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
a6ca88b2
SL
9364 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9365 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
e12f03d7
SL
9366};
9367
9368PMU_FORMAT_ATTR(retprobe, "config:0");
a6ca88b2 9369#endif
e12f03d7 9370
a6ca88b2
SL
9371#ifdef CONFIG_KPROBE_EVENTS
9372static struct attribute *kprobe_attrs[] = {
e12f03d7
SL
9373 &format_attr_retprobe.attr,
9374 NULL,
9375};
9376
a6ca88b2 9377static struct attribute_group kprobe_format_group = {
e12f03d7 9378 .name = "format",
a6ca88b2 9379 .attrs = kprobe_attrs,
e12f03d7
SL
9380};
9381
a6ca88b2
SL
9382static const struct attribute_group *kprobe_attr_groups[] = {
9383 &kprobe_format_group,
e12f03d7
SL
9384 NULL,
9385};
9386
9387static int perf_kprobe_event_init(struct perf_event *event);
9388static struct pmu perf_kprobe = {
9389 .task_ctx_nr = perf_sw_context,
9390 .event_init = perf_kprobe_event_init,
9391 .add = perf_trace_add,
9392 .del = perf_trace_del,
9393 .start = perf_swevent_start,
9394 .stop = perf_swevent_stop,
9395 .read = perf_swevent_read,
a6ca88b2 9396 .attr_groups = kprobe_attr_groups,
e12f03d7
SL
9397};
9398
9399static int perf_kprobe_event_init(struct perf_event *event)
9400{
9401 int err;
9402 bool is_retprobe;
9403
9404 if (event->attr.type != perf_kprobe.type)
9405 return -ENOENT;
32e6e967
SL
9406
9407 if (!capable(CAP_SYS_ADMIN))
9408 return -EACCES;
9409
e12f03d7
SL
9410 /*
9411 * no branch sampling for probe events
9412 */
9413 if (has_branch_stack(event))
9414 return -EOPNOTSUPP;
9415
9416 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9417 err = perf_kprobe_init(event, is_retprobe);
9418 if (err)
9419 return err;
9420
9421 event->destroy = perf_kprobe_destroy;
9422
9423 return 0;
9424}
9425#endif /* CONFIG_KPROBE_EVENTS */
9426
33ea4b24 9427#ifdef CONFIG_UPROBE_EVENTS
a6ca88b2
SL
9428PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9429
9430static struct attribute *uprobe_attrs[] = {
9431 &format_attr_retprobe.attr,
9432 &format_attr_ref_ctr_offset.attr,
9433 NULL,
9434};
9435
9436static struct attribute_group uprobe_format_group = {
9437 .name = "format",
9438 .attrs = uprobe_attrs,
9439};
9440
9441static const struct attribute_group *uprobe_attr_groups[] = {
9442 &uprobe_format_group,
9443 NULL,
9444};
9445
33ea4b24
SL
9446static int perf_uprobe_event_init(struct perf_event *event);
9447static struct pmu perf_uprobe = {
9448 .task_ctx_nr = perf_sw_context,
9449 .event_init = perf_uprobe_event_init,
9450 .add = perf_trace_add,
9451 .del = perf_trace_del,
9452 .start = perf_swevent_start,
9453 .stop = perf_swevent_stop,
9454 .read = perf_swevent_read,
a6ca88b2 9455 .attr_groups = uprobe_attr_groups,
33ea4b24
SL
9456};
9457
9458static int perf_uprobe_event_init(struct perf_event *event)
9459{
9460 int err;
a6ca88b2 9461 unsigned long ref_ctr_offset;
33ea4b24
SL
9462 bool is_retprobe;
9463
9464 if (event->attr.type != perf_uprobe.type)
9465 return -ENOENT;
32e6e967
SL
9466
9467 if (!capable(CAP_SYS_ADMIN))
9468 return -EACCES;
9469
33ea4b24
SL
9470 /*
9471 * no branch sampling for probe events
9472 */
9473 if (has_branch_stack(event))
9474 return -EOPNOTSUPP;
9475
9476 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
a6ca88b2
SL
9477 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9478 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
33ea4b24
SL
9479 if (err)
9480 return err;
9481
9482 event->destroy = perf_uprobe_destroy;
9483
9484 return 0;
9485}
9486#endif /* CONFIG_UPROBE_EVENTS */
9487
b0a873eb
PZ
9488static inline void perf_tp_register(void)
9489{
2e80a82a 9490 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
9491#ifdef CONFIG_KPROBE_EVENTS
9492 perf_pmu_register(&perf_kprobe, "kprobe", -1);
9493#endif
33ea4b24
SL
9494#ifdef CONFIG_UPROBE_EVENTS
9495 perf_pmu_register(&perf_uprobe, "uprobe", -1);
9496#endif
e077df4f 9497}
6fb2915d 9498
6fb2915d
LZ
9499static void perf_event_free_filter(struct perf_event *event)
9500{
9501 ftrace_profile_free_filter(event);
9502}
9503
aa6a5f3c
AS
9504#ifdef CONFIG_BPF_SYSCALL
9505static void bpf_overflow_handler(struct perf_event *event,
9506 struct perf_sample_data *data,
9507 struct pt_regs *regs)
9508{
9509 struct bpf_perf_event_data_kern ctx = {
9510 .data = data,
7d9285e8 9511 .event = event,
aa6a5f3c
AS
9512 };
9513 int ret = 0;
9514
c895f6f7 9515 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
9516 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9517 goto out;
9518 rcu_read_lock();
88575199 9519 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
9520 rcu_read_unlock();
9521out:
9522 __this_cpu_dec(bpf_prog_active);
aa6a5f3c
AS
9523 if (!ret)
9524 return;
9525
9526 event->orig_overflow_handler(event, data, regs);
9527}
9528
9529static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9530{
9531 struct bpf_prog *prog;
9532
9533 if (event->overflow_handler_context)
9534 /* hw breakpoint or kernel counter */
9535 return -EINVAL;
9536
9537 if (event->prog)
9538 return -EEXIST;
9539
9540 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9541 if (IS_ERR(prog))
9542 return PTR_ERR(prog);
9543
9544 event->prog = prog;
9545 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9546 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9547 return 0;
9548}
9549
9550static void perf_event_free_bpf_handler(struct perf_event *event)
9551{
9552 struct bpf_prog *prog = event->prog;
9553
9554 if (!prog)
9555 return;
9556
9557 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9558 event->prog = NULL;
9559 bpf_prog_put(prog);
9560}
9561#else
9562static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9563{
9564 return -EOPNOTSUPP;
9565}
9566static void perf_event_free_bpf_handler(struct perf_event *event)
9567{
9568}
9569#endif
9570
e12f03d7
SL
9571/*
9572 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9573 * with perf_event_open()
9574 */
9575static inline bool perf_event_is_tracing(struct perf_event *event)
9576{
9577 if (event->pmu == &perf_tracepoint)
9578 return true;
9579#ifdef CONFIG_KPROBE_EVENTS
9580 if (event->pmu == &perf_kprobe)
9581 return true;
33ea4b24
SL
9582#endif
9583#ifdef CONFIG_UPROBE_EVENTS
9584 if (event->pmu == &perf_uprobe)
9585 return true;
e12f03d7
SL
9586#endif
9587 return false;
9588}
9589
2541517c
AS
9590static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9591{
cf5f5cea 9592 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 9593 struct bpf_prog *prog;
e87c6bc3 9594 int ret;
2541517c 9595
e12f03d7 9596 if (!perf_event_is_tracing(event))
f91840a3 9597 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 9598
98b5c2c6
AS
9599 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9600 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
9601 is_syscall_tp = is_syscall_trace_event(event->tp_event);
9602 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 9603 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
9604 return -EINVAL;
9605
9606 prog = bpf_prog_get(prog_fd);
9607 if (IS_ERR(prog))
9608 return PTR_ERR(prog);
9609
98b5c2c6 9610 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
9611 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9612 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
9613 /* valid fd, but invalid bpf program type */
9614 bpf_prog_put(prog);
9615 return -EINVAL;
9616 }
9617
9802d865
JB
9618 /* Kprobe override only works for kprobes, not uprobes. */
9619 if (prog->kprobe_override &&
9620 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9621 bpf_prog_put(prog);
9622 return -EINVAL;
9623 }
9624
cf5f5cea 9625 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
9626 int off = trace_event_get_offsets(event->tp_event);
9627
9628 if (prog->aux->max_ctx_offset > off) {
9629 bpf_prog_put(prog);
9630 return -EACCES;
9631 }
9632 }
2541517c 9633
e87c6bc3
YS
9634 ret = perf_event_attach_bpf_prog(event, prog);
9635 if (ret)
9636 bpf_prog_put(prog);
9637 return ret;
2541517c
AS
9638}
9639
9640static void perf_event_free_bpf_prog(struct perf_event *event)
9641{
e12f03d7 9642 if (!perf_event_is_tracing(event)) {
0b4c6841 9643 perf_event_free_bpf_handler(event);
2541517c 9644 return;
2541517c 9645 }
e87c6bc3 9646 perf_event_detach_bpf_prog(event);
2541517c
AS
9647}
9648
e077df4f 9649#else
6fb2915d 9650
b0a873eb 9651static inline void perf_tp_register(void)
e077df4f 9652{
e077df4f 9653}
6fb2915d 9654
6fb2915d
LZ
9655static void perf_event_free_filter(struct perf_event *event)
9656{
9657}
9658
2541517c
AS
9659static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9660{
9661 return -ENOENT;
9662}
9663
9664static void perf_event_free_bpf_prog(struct perf_event *event)
9665{
9666}
07b139c8 9667#endif /* CONFIG_EVENT_TRACING */
e077df4f 9668
24f1e32c 9669#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 9670void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 9671{
f5ffe02e
FW
9672 struct perf_sample_data sample;
9673 struct pt_regs *regs = data;
9674
fd0d000b 9675 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 9676
a4eaf7f1 9677 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 9678 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
9679}
9680#endif
9681
375637bc
AS
9682/*
9683 * Allocate a new address filter
9684 */
9685static struct perf_addr_filter *
9686perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9687{
9688 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9689 struct perf_addr_filter *filter;
9690
9691 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9692 if (!filter)
9693 return NULL;
9694
9695 INIT_LIST_HEAD(&filter->entry);
9696 list_add_tail(&filter->entry, filters);
9697
9698 return filter;
9699}
9700
9701static void free_filters_list(struct list_head *filters)
9702{
9703 struct perf_addr_filter *filter, *iter;
9704
9705 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 9706 path_put(&filter->path);
375637bc
AS
9707 list_del(&filter->entry);
9708 kfree(filter);
9709 }
9710}
9711
9712/*
9713 * Free existing address filters and optionally install new ones
9714 */
9715static void perf_addr_filters_splice(struct perf_event *event,
9716 struct list_head *head)
9717{
9718 unsigned long flags;
9719 LIST_HEAD(list);
9720
9721 if (!has_addr_filter(event))
9722 return;
9723
9724 /* don't bother with children, they don't have their own filters */
9725 if (event->parent)
9726 return;
9727
9728 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9729
9730 list_splice_init(&event->addr_filters.list, &list);
9731 if (head)
9732 list_splice(head, &event->addr_filters.list);
9733
9734 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9735
9736 free_filters_list(&list);
9737}
9738
9739/*
9740 * Scan through mm's vmas and see if one of them matches the
9741 * @filter; if so, adjust filter's address range.
9742 * Called with mm::mmap_sem down for reading.
9743 */
c60f83b8
AS
9744static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9745 struct mm_struct *mm,
9746 struct perf_addr_filter_range *fr)
375637bc
AS
9747{
9748 struct vm_area_struct *vma;
9749
9750 for (vma = mm->mmap; vma; vma = vma->vm_next) {
c60f83b8 9751 if (!vma->vm_file)
375637bc
AS
9752 continue;
9753
c60f83b8
AS
9754 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9755 return;
375637bc 9756 }
375637bc
AS
9757}
9758
9759/*
9760 * Update event's address range filters based on the
9761 * task's existing mappings, if any.
9762 */
9763static void perf_event_addr_filters_apply(struct perf_event *event)
9764{
9765 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9766 struct task_struct *task = READ_ONCE(event->ctx->task);
9767 struct perf_addr_filter *filter;
9768 struct mm_struct *mm = NULL;
9769 unsigned int count = 0;
9770 unsigned long flags;
9771
9772 /*
9773 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9774 * will stop on the parent's child_mutex that our caller is also holding
9775 */
9776 if (task == TASK_TOMBSTONE)
9777 return;
9778
52a44f83
AS
9779 if (ifh->nr_file_filters) {
9780 mm = get_task_mm(event->ctx->task);
9781 if (!mm)
9782 goto restart;
375637bc 9783
52a44f83
AS
9784 down_read(&mm->mmap_sem);
9785 }
375637bc
AS
9786
9787 raw_spin_lock_irqsave(&ifh->lock, flags);
9788 list_for_each_entry(filter, &ifh->list, entry) {
52a44f83
AS
9789 if (filter->path.dentry) {
9790 /*
9791 * Adjust base offset if the filter is associated to a
9792 * binary that needs to be mapped:
9793 */
9794 event->addr_filter_ranges[count].start = 0;
9795 event->addr_filter_ranges[count].size = 0;
375637bc 9796
c60f83b8 9797 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
52a44f83
AS
9798 } else {
9799 event->addr_filter_ranges[count].start = filter->offset;
9800 event->addr_filter_ranges[count].size = filter->size;
9801 }
375637bc
AS
9802
9803 count++;
9804 }
9805
9806 event->addr_filters_gen++;
9807 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9808
52a44f83
AS
9809 if (ifh->nr_file_filters) {
9810 up_read(&mm->mmap_sem);
375637bc 9811
52a44f83
AS
9812 mmput(mm);
9813 }
375637bc
AS
9814
9815restart:
767ae086 9816 perf_event_stop(event, 1);
375637bc
AS
9817}
9818
9819/*
9820 * Address range filtering: limiting the data to certain
9821 * instruction address ranges. Filters are ioctl()ed to us from
9822 * userspace as ascii strings.
9823 *
9824 * Filter string format:
9825 *
9826 * ACTION RANGE_SPEC
9827 * where ACTION is one of the
9828 * * "filter": limit the trace to this region
9829 * * "start": start tracing from this address
9830 * * "stop": stop tracing at this address/region;
9831 * RANGE_SPEC is
9832 * * for kernel addresses: <start address>[/<size>]
9833 * * for object files: <start address>[/<size>]@</path/to/object/file>
9834 *
6ed70cf3
AS
9835 * if <size> is not specified or is zero, the range is treated as a single
9836 * address; not valid for ACTION=="filter".
375637bc
AS
9837 */
9838enum {
e96271f3 9839 IF_ACT_NONE = -1,
375637bc
AS
9840 IF_ACT_FILTER,
9841 IF_ACT_START,
9842 IF_ACT_STOP,
9843 IF_SRC_FILE,
9844 IF_SRC_KERNEL,
9845 IF_SRC_FILEADDR,
9846 IF_SRC_KERNELADDR,
9847};
9848
9849enum {
9850 IF_STATE_ACTION = 0,
9851 IF_STATE_SOURCE,
9852 IF_STATE_END,
9853};
9854
9855static const match_table_t if_tokens = {
9856 { IF_ACT_FILTER, "filter" },
9857 { IF_ACT_START, "start" },
9858 { IF_ACT_STOP, "stop" },
9859 { IF_SRC_FILE, "%u/%u@%s" },
9860 { IF_SRC_KERNEL, "%u/%u" },
9861 { IF_SRC_FILEADDR, "%u@%s" },
9862 { IF_SRC_KERNELADDR, "%u" },
e96271f3 9863 { IF_ACT_NONE, NULL },
375637bc
AS
9864};
9865
9866/*
9867 * Address filter string parser
9868 */
9869static int
9870perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9871 struct list_head *filters)
9872{
9873 struct perf_addr_filter *filter = NULL;
9874 char *start, *orig, *filename = NULL;
375637bc
AS
9875 substring_t args[MAX_OPT_ARGS];
9876 int state = IF_STATE_ACTION, token;
9877 unsigned int kernel = 0;
9878 int ret = -EINVAL;
9879
9880 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9881 if (!fstr)
9882 return -ENOMEM;
9883
9884 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
9885 static const enum perf_addr_filter_action_t actions[] = {
9886 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9887 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9888 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9889 };
375637bc
AS
9890 ret = -EINVAL;
9891
9892 if (!*start)
9893 continue;
9894
9895 /* filter definition begins */
9896 if (state == IF_STATE_ACTION) {
9897 filter = perf_addr_filter_new(event, filters);
9898 if (!filter)
9899 goto fail;
9900 }
9901
9902 token = match_token(start, if_tokens, args);
9903 switch (token) {
9904 case IF_ACT_FILTER:
9905 case IF_ACT_START:
375637bc
AS
9906 case IF_ACT_STOP:
9907 if (state != IF_STATE_ACTION)
9908 goto fail;
9909
6ed70cf3 9910 filter->action = actions[token];
375637bc
AS
9911 state = IF_STATE_SOURCE;
9912 break;
9913
9914 case IF_SRC_KERNELADDR:
9915 case IF_SRC_KERNEL:
9916 kernel = 1;
10c3405f 9917 /* fall through */
375637bc
AS
9918
9919 case IF_SRC_FILEADDR:
9920 case IF_SRC_FILE:
9921 if (state != IF_STATE_SOURCE)
9922 goto fail;
9923
375637bc
AS
9924 *args[0].to = 0;
9925 ret = kstrtoul(args[0].from, 0, &filter->offset);
9926 if (ret)
9927 goto fail;
9928
6ed70cf3 9929 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
9930 *args[1].to = 0;
9931 ret = kstrtoul(args[1].from, 0, &filter->size);
9932 if (ret)
9933 goto fail;
9934 }
9935
4059ffd0 9936 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 9937 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0
MP
9938
9939 filename = match_strdup(&args[fpos]);
375637bc
AS
9940 if (!filename) {
9941 ret = -ENOMEM;
9942 goto fail;
9943 }
9944 }
9945
9946 state = IF_STATE_END;
9947 break;
9948
9949 default:
9950 goto fail;
9951 }
9952
9953 /*
9954 * Filter definition is fully parsed, validate and install it.
9955 * Make sure that it doesn't contradict itself or the event's
9956 * attribute.
9957 */
9958 if (state == IF_STATE_END) {
9ccbfbb1 9959 ret = -EINVAL;
375637bc
AS
9960 if (kernel && event->attr.exclude_kernel)
9961 goto fail;
9962
6ed70cf3
AS
9963 /*
9964 * ACTION "filter" must have a non-zero length region
9965 * specified.
9966 */
9967 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9968 !filter->size)
9969 goto fail;
9970
375637bc
AS
9971 if (!kernel) {
9972 if (!filename)
9973 goto fail;
9974
6ce77bfd
AS
9975 /*
9976 * For now, we only support file-based filters
9977 * in per-task events; doing so for CPU-wide
9978 * events requires additional context switching
9979 * trickery, since same object code will be
9980 * mapped at different virtual addresses in
9981 * different processes.
9982 */
9983 ret = -EOPNOTSUPP;
9984 if (!event->ctx->task)
9985 goto fail_free_name;
9986
375637bc 9987 /* look up the path and grab its inode */
9511bce9
SL
9988 ret = kern_path(filename, LOOKUP_FOLLOW,
9989 &filter->path);
375637bc
AS
9990 if (ret)
9991 goto fail_free_name;
9992
375637bc
AS
9993 kfree(filename);
9994 filename = NULL;
9995
9996 ret = -EINVAL;
9511bce9
SL
9997 if (!filter->path.dentry ||
9998 !S_ISREG(d_inode(filter->path.dentry)
9999 ->i_mode))
375637bc 10000 goto fail;
6ce77bfd
AS
10001
10002 event->addr_filters.nr_file_filters++;
375637bc
AS
10003 }
10004
10005 /* ready to consume more filters */
10006 state = IF_STATE_ACTION;
10007 filter = NULL;
10008 }
10009 }
10010
10011 if (state != IF_STATE_ACTION)
10012 goto fail;
10013
10014 kfree(orig);
10015
10016 return 0;
10017
10018fail_free_name:
10019 kfree(filename);
10020fail:
10021 free_filters_list(filters);
10022 kfree(orig);
10023
10024 return ret;
10025}
10026
10027static int
10028perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10029{
10030 LIST_HEAD(filters);
10031 int ret;
10032
10033 /*
10034 * Since this is called in perf_ioctl() path, we're already holding
10035 * ctx::mutex.
10036 */
10037 lockdep_assert_held(&event->ctx->mutex);
10038
10039 if (WARN_ON_ONCE(event->parent))
10040 return -EINVAL;
10041
375637bc
AS
10042 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10043 if (ret)
6ce77bfd 10044 goto fail_clear_files;
375637bc
AS
10045
10046 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
10047 if (ret)
10048 goto fail_free_filters;
375637bc
AS
10049
10050 /* remove existing filters, if any */
10051 perf_addr_filters_splice(event, &filters);
10052
10053 /* install new filters */
10054 perf_event_for_each_child(event, perf_event_addr_filters_apply);
10055
6ce77bfd
AS
10056 return ret;
10057
10058fail_free_filters:
10059 free_filters_list(&filters);
10060
10061fail_clear_files:
10062 event->addr_filters.nr_file_filters = 0;
10063
375637bc
AS
10064 return ret;
10065}
10066
c796bbbe
AS
10067static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10068{
c796bbbe 10069 int ret = -EINVAL;
e12f03d7 10070 char *filter_str;
c796bbbe
AS
10071
10072 filter_str = strndup_user(arg, PAGE_SIZE);
10073 if (IS_ERR(filter_str))
10074 return PTR_ERR(filter_str);
10075
e12f03d7
SL
10076#ifdef CONFIG_EVENT_TRACING
10077 if (perf_event_is_tracing(event)) {
10078 struct perf_event_context *ctx = event->ctx;
10079
10080 /*
10081 * Beware, here be dragons!!
10082 *
10083 * the tracepoint muck will deadlock against ctx->mutex, but
10084 * the tracepoint stuff does not actually need it. So
10085 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10086 * already have a reference on ctx.
10087 *
10088 * This can result in event getting moved to a different ctx,
10089 * but that does not affect the tracepoint state.
10090 */
10091 mutex_unlock(&ctx->mutex);
10092 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10093 mutex_lock(&ctx->mutex);
10094 } else
10095#endif
10096 if (has_addr_filter(event))
375637bc 10097 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
10098
10099 kfree(filter_str);
10100 return ret;
10101}
10102
b0a873eb
PZ
10103/*
10104 * hrtimer based swevent callback
10105 */
f29ac756 10106
b0a873eb 10107static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 10108{
b0a873eb
PZ
10109 enum hrtimer_restart ret = HRTIMER_RESTART;
10110 struct perf_sample_data data;
10111 struct pt_regs *regs;
10112 struct perf_event *event;
10113 u64 period;
f29ac756 10114
b0a873eb 10115 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
10116
10117 if (event->state != PERF_EVENT_STATE_ACTIVE)
10118 return HRTIMER_NORESTART;
10119
b0a873eb 10120 event->pmu->read(event);
f344011c 10121
fd0d000b 10122 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
10123 regs = get_irq_regs();
10124
10125 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 10126 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 10127 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
10128 ret = HRTIMER_NORESTART;
10129 }
24f1e32c 10130
b0a873eb
PZ
10131 period = max_t(u64, 10000, event->hw.sample_period);
10132 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 10133
b0a873eb 10134 return ret;
f29ac756
PZ
10135}
10136
b0a873eb 10137static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 10138{
b0a873eb 10139 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
10140 s64 period;
10141
10142 if (!is_sampling_event(event))
10143 return;
f5ffe02e 10144
5d508e82
FBH
10145 period = local64_read(&hwc->period_left);
10146 if (period) {
10147 if (period < 0)
10148 period = 10000;
fa407f35 10149
5d508e82
FBH
10150 local64_set(&hwc->period_left, 0);
10151 } else {
10152 period = max_t(u64, 10000, hwc->sample_period);
10153 }
3497d206 10154 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
30f9028b 10155 HRTIMER_MODE_REL_PINNED_HARD);
24f1e32c 10156}
b0a873eb
PZ
10157
10158static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 10159{
b0a873eb
PZ
10160 struct hw_perf_event *hwc = &event->hw;
10161
6c7e550f 10162 if (is_sampling_event(event)) {
b0a873eb 10163 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 10164 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
10165
10166 hrtimer_cancel(&hwc->hrtimer);
10167 }
24f1e32c
FW
10168}
10169
ba3dd36c
PZ
10170static void perf_swevent_init_hrtimer(struct perf_event *event)
10171{
10172 struct hw_perf_event *hwc = &event->hw;
10173
10174 if (!is_sampling_event(event))
10175 return;
10176
30f9028b 10177 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
ba3dd36c
PZ
10178 hwc->hrtimer.function = perf_swevent_hrtimer;
10179
10180 /*
10181 * Since hrtimers have a fixed rate, we can do a static freq->period
10182 * mapping and avoid the whole period adjust feedback stuff.
10183 */
10184 if (event->attr.freq) {
10185 long freq = event->attr.sample_freq;
10186
10187 event->attr.sample_period = NSEC_PER_SEC / freq;
10188 hwc->sample_period = event->attr.sample_period;
10189 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 10190 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
10191 event->attr.freq = 0;
10192 }
10193}
10194
b0a873eb
PZ
10195/*
10196 * Software event: cpu wall time clock
10197 */
10198
10199static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 10200{
b0a873eb
PZ
10201 s64 prev;
10202 u64 now;
10203
a4eaf7f1 10204 now = local_clock();
b0a873eb
PZ
10205 prev = local64_xchg(&event->hw.prev_count, now);
10206 local64_add(now - prev, &event->count);
24f1e32c 10207}
24f1e32c 10208
a4eaf7f1 10209static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 10210{
a4eaf7f1 10211 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 10212 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
10213}
10214
a4eaf7f1 10215static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 10216{
b0a873eb
PZ
10217 perf_swevent_cancel_hrtimer(event);
10218 cpu_clock_event_update(event);
10219}
f29ac756 10220
a4eaf7f1
PZ
10221static int cpu_clock_event_add(struct perf_event *event, int flags)
10222{
10223 if (flags & PERF_EF_START)
10224 cpu_clock_event_start(event, flags);
6a694a60 10225 perf_event_update_userpage(event);
a4eaf7f1
PZ
10226
10227 return 0;
10228}
10229
10230static void cpu_clock_event_del(struct perf_event *event, int flags)
10231{
10232 cpu_clock_event_stop(event, flags);
10233}
10234
b0a873eb
PZ
10235static void cpu_clock_event_read(struct perf_event *event)
10236{
10237 cpu_clock_event_update(event);
10238}
f344011c 10239
b0a873eb
PZ
10240static int cpu_clock_event_init(struct perf_event *event)
10241{
10242 if (event->attr.type != PERF_TYPE_SOFTWARE)
10243 return -ENOENT;
10244
10245 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10246 return -ENOENT;
10247
2481c5fa
SE
10248 /*
10249 * no branch sampling for software events
10250 */
10251 if (has_branch_stack(event))
10252 return -EOPNOTSUPP;
10253
ba3dd36c
PZ
10254 perf_swevent_init_hrtimer(event);
10255
b0a873eb 10256 return 0;
f29ac756
PZ
10257}
10258
b0a873eb 10259static struct pmu perf_cpu_clock = {
89a1e187
PZ
10260 .task_ctx_nr = perf_sw_context,
10261
34f43927
PZ
10262 .capabilities = PERF_PMU_CAP_NO_NMI,
10263
b0a873eb 10264 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
10265 .add = cpu_clock_event_add,
10266 .del = cpu_clock_event_del,
10267 .start = cpu_clock_event_start,
10268 .stop = cpu_clock_event_stop,
b0a873eb
PZ
10269 .read = cpu_clock_event_read,
10270};
10271
10272/*
10273 * Software event: task time clock
10274 */
10275
10276static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 10277{
b0a873eb
PZ
10278 u64 prev;
10279 s64 delta;
5c92d124 10280
b0a873eb
PZ
10281 prev = local64_xchg(&event->hw.prev_count, now);
10282 delta = now - prev;
10283 local64_add(delta, &event->count);
10284}
5c92d124 10285
a4eaf7f1 10286static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 10287{
a4eaf7f1 10288 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 10289 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
10290}
10291
a4eaf7f1 10292static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
10293{
10294 perf_swevent_cancel_hrtimer(event);
10295 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
10296}
10297
10298static int task_clock_event_add(struct perf_event *event, int flags)
10299{
10300 if (flags & PERF_EF_START)
10301 task_clock_event_start(event, flags);
6a694a60 10302 perf_event_update_userpage(event);
b0a873eb 10303
a4eaf7f1
PZ
10304 return 0;
10305}
10306
10307static void task_clock_event_del(struct perf_event *event, int flags)
10308{
10309 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
10310}
10311
10312static void task_clock_event_read(struct perf_event *event)
10313{
768a06e2
PZ
10314 u64 now = perf_clock();
10315 u64 delta = now - event->ctx->timestamp;
10316 u64 time = event->ctx->time + delta;
b0a873eb
PZ
10317
10318 task_clock_event_update(event, time);
10319}
10320
10321static int task_clock_event_init(struct perf_event *event)
6fb2915d 10322{
b0a873eb
PZ
10323 if (event->attr.type != PERF_TYPE_SOFTWARE)
10324 return -ENOENT;
10325
10326 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10327 return -ENOENT;
10328
2481c5fa
SE
10329 /*
10330 * no branch sampling for software events
10331 */
10332 if (has_branch_stack(event))
10333 return -EOPNOTSUPP;
10334
ba3dd36c
PZ
10335 perf_swevent_init_hrtimer(event);
10336
b0a873eb 10337 return 0;
6fb2915d
LZ
10338}
10339
b0a873eb 10340static struct pmu perf_task_clock = {
89a1e187
PZ
10341 .task_ctx_nr = perf_sw_context,
10342
34f43927
PZ
10343 .capabilities = PERF_PMU_CAP_NO_NMI,
10344
b0a873eb 10345 .event_init = task_clock_event_init,
a4eaf7f1
PZ
10346 .add = task_clock_event_add,
10347 .del = task_clock_event_del,
10348 .start = task_clock_event_start,
10349 .stop = task_clock_event_stop,
b0a873eb
PZ
10350 .read = task_clock_event_read,
10351};
6fb2915d 10352
ad5133b7 10353static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 10354{
e077df4f 10355}
6fb2915d 10356
fbbe0701
SB
10357static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10358{
10359}
10360
ad5133b7 10361static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 10362{
ad5133b7 10363 return 0;
6fb2915d
LZ
10364}
10365
81ec3f3c
JO
10366static int perf_event_nop_int(struct perf_event *event, u64 value)
10367{
10368 return 0;
10369}
10370
18ab2cd3 10371static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
10372
10373static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 10374{
fbbe0701
SB
10375 __this_cpu_write(nop_txn_flags, flags);
10376
10377 if (flags & ~PERF_PMU_TXN_ADD)
10378 return;
10379
ad5133b7 10380 perf_pmu_disable(pmu);
6fb2915d
LZ
10381}
10382
ad5133b7
PZ
10383static int perf_pmu_commit_txn(struct pmu *pmu)
10384{
fbbe0701
SB
10385 unsigned int flags = __this_cpu_read(nop_txn_flags);
10386
10387 __this_cpu_write(nop_txn_flags, 0);
10388
10389 if (flags & ~PERF_PMU_TXN_ADD)
10390 return 0;
10391
ad5133b7
PZ
10392 perf_pmu_enable(pmu);
10393 return 0;
10394}
e077df4f 10395
ad5133b7 10396static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 10397{
fbbe0701
SB
10398 unsigned int flags = __this_cpu_read(nop_txn_flags);
10399
10400 __this_cpu_write(nop_txn_flags, 0);
10401
10402 if (flags & ~PERF_PMU_TXN_ADD)
10403 return;
10404
ad5133b7 10405 perf_pmu_enable(pmu);
24f1e32c
FW
10406}
10407
35edc2a5
PZ
10408static int perf_event_idx_default(struct perf_event *event)
10409{
c719f560 10410 return 0;
35edc2a5
PZ
10411}
10412
8dc85d54
PZ
10413/*
10414 * Ensures all contexts with the same task_ctx_nr have the same
10415 * pmu_cpu_context too.
10416 */
9e317041 10417static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 10418{
8dc85d54 10419 struct pmu *pmu;
b326e956 10420
8dc85d54
PZ
10421 if (ctxn < 0)
10422 return NULL;
24f1e32c 10423
8dc85d54
PZ
10424 list_for_each_entry(pmu, &pmus, entry) {
10425 if (pmu->task_ctx_nr == ctxn)
10426 return pmu->pmu_cpu_context;
10427 }
24f1e32c 10428
8dc85d54 10429 return NULL;
24f1e32c
FW
10430}
10431
51676957
PZ
10432static void free_pmu_context(struct pmu *pmu)
10433{
df0062b2
WD
10434 /*
10435 * Static contexts such as perf_sw_context have a global lifetime
10436 * and may be shared between different PMUs. Avoid freeing them
10437 * when a single PMU is going away.
10438 */
10439 if (pmu->task_ctx_nr > perf_invalid_context)
10440 return;
10441
51676957 10442 free_percpu(pmu->pmu_cpu_context);
24f1e32c 10443}
6e855cd4
AS
10444
10445/*
10446 * Let userspace know that this PMU supports address range filtering:
10447 */
10448static ssize_t nr_addr_filters_show(struct device *dev,
10449 struct device_attribute *attr,
10450 char *page)
10451{
10452 struct pmu *pmu = dev_get_drvdata(dev);
10453
10454 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10455}
10456DEVICE_ATTR_RO(nr_addr_filters);
10457
2e80a82a 10458static struct idr pmu_idr;
d6d020e9 10459
abe43400
PZ
10460static ssize_t
10461type_show(struct device *dev, struct device_attribute *attr, char *page)
10462{
10463 struct pmu *pmu = dev_get_drvdata(dev);
10464
10465 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10466}
90826ca7 10467static DEVICE_ATTR_RO(type);
abe43400 10468
62b85639
SE
10469static ssize_t
10470perf_event_mux_interval_ms_show(struct device *dev,
10471 struct device_attribute *attr,
10472 char *page)
10473{
10474 struct pmu *pmu = dev_get_drvdata(dev);
10475
10476 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10477}
10478
272325c4
PZ
10479static DEFINE_MUTEX(mux_interval_mutex);
10480
62b85639
SE
10481static ssize_t
10482perf_event_mux_interval_ms_store(struct device *dev,
10483 struct device_attribute *attr,
10484 const char *buf, size_t count)
10485{
10486 struct pmu *pmu = dev_get_drvdata(dev);
10487 int timer, cpu, ret;
10488
10489 ret = kstrtoint(buf, 0, &timer);
10490 if (ret)
10491 return ret;
10492
10493 if (timer < 1)
10494 return -EINVAL;
10495
10496 /* same value, noting to do */
10497 if (timer == pmu->hrtimer_interval_ms)
10498 return count;
10499
272325c4 10500 mutex_lock(&mux_interval_mutex);
62b85639
SE
10501 pmu->hrtimer_interval_ms = timer;
10502
10503 /* update all cpuctx for this PMU */
a63fbed7 10504 cpus_read_lock();
272325c4 10505 for_each_online_cpu(cpu) {
62b85639
SE
10506 struct perf_cpu_context *cpuctx;
10507 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10508 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10509
272325c4
PZ
10510 cpu_function_call(cpu,
10511 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 10512 }
a63fbed7 10513 cpus_read_unlock();
272325c4 10514 mutex_unlock(&mux_interval_mutex);
62b85639
SE
10515
10516 return count;
10517}
90826ca7 10518static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 10519
90826ca7
GKH
10520static struct attribute *pmu_dev_attrs[] = {
10521 &dev_attr_type.attr,
10522 &dev_attr_perf_event_mux_interval_ms.attr,
10523 NULL,
abe43400 10524};
90826ca7 10525ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
10526
10527static int pmu_bus_running;
10528static struct bus_type pmu_bus = {
10529 .name = "event_source",
90826ca7 10530 .dev_groups = pmu_dev_groups,
abe43400
PZ
10531};
10532
10533static void pmu_dev_release(struct device *dev)
10534{
10535 kfree(dev);
10536}
10537
10538static int pmu_dev_alloc(struct pmu *pmu)
10539{
10540 int ret = -ENOMEM;
10541
10542 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10543 if (!pmu->dev)
10544 goto out;
10545
0c9d42ed 10546 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
10547 device_initialize(pmu->dev);
10548 ret = dev_set_name(pmu->dev, "%s", pmu->name);
10549 if (ret)
10550 goto free_dev;
10551
10552 dev_set_drvdata(pmu->dev, pmu);
10553 pmu->dev->bus = &pmu_bus;
10554 pmu->dev->release = pmu_dev_release;
10555 ret = device_add(pmu->dev);
10556 if (ret)
10557 goto free_dev;
10558
6e855cd4
AS
10559 /* For PMUs with address filters, throw in an extra attribute: */
10560 if (pmu->nr_addr_filters)
10561 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10562
10563 if (ret)
10564 goto del_dev;
10565
f3a3a825
JO
10566 if (pmu->attr_update)
10567 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10568
10569 if (ret)
10570 goto del_dev;
10571
abe43400
PZ
10572out:
10573 return ret;
10574
6e855cd4
AS
10575del_dev:
10576 device_del(pmu->dev);
10577
abe43400
PZ
10578free_dev:
10579 put_device(pmu->dev);
10580 goto out;
10581}
10582
547e9fd7 10583static struct lock_class_key cpuctx_mutex;
facc4307 10584static struct lock_class_key cpuctx_lock;
547e9fd7 10585
03d8e80b 10586int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 10587{
66d258c5 10588 int cpu, ret, max = PERF_TYPE_MAX;
24f1e32c 10589
b0a873eb 10590 mutex_lock(&pmus_lock);
33696fc0
PZ
10591 ret = -ENOMEM;
10592 pmu->pmu_disable_count = alloc_percpu(int);
10593 if (!pmu->pmu_disable_count)
10594 goto unlock;
f29ac756 10595
2e80a82a
PZ
10596 pmu->type = -1;
10597 if (!name)
10598 goto skip_type;
10599 pmu->name = name;
10600
66d258c5
PZ
10601 if (type != PERF_TYPE_SOFTWARE) {
10602 if (type >= 0)
10603 max = type;
10604
10605 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10606 if (ret < 0)
2e80a82a 10607 goto free_pdc;
66d258c5
PZ
10608
10609 WARN_ON(type >= 0 && ret != type);
10610
10611 type = ret;
2e80a82a
PZ
10612 }
10613 pmu->type = type;
10614
abe43400
PZ
10615 if (pmu_bus_running) {
10616 ret = pmu_dev_alloc(pmu);
10617 if (ret)
10618 goto free_idr;
10619 }
10620
2e80a82a 10621skip_type:
26657848
PZ
10622 if (pmu->task_ctx_nr == perf_hw_context) {
10623 static int hw_context_taken = 0;
10624
5101ef20
MR
10625 /*
10626 * Other than systems with heterogeneous CPUs, it never makes
10627 * sense for two PMUs to share perf_hw_context. PMUs which are
10628 * uncore must use perf_invalid_context.
10629 */
10630 if (WARN_ON_ONCE(hw_context_taken &&
10631 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
10632 pmu->task_ctx_nr = perf_invalid_context;
10633
10634 hw_context_taken = 1;
10635 }
10636
8dc85d54
PZ
10637 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10638 if (pmu->pmu_cpu_context)
10639 goto got_cpu_context;
f29ac756 10640
c4814202 10641 ret = -ENOMEM;
108b02cf
PZ
10642 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10643 if (!pmu->pmu_cpu_context)
abe43400 10644 goto free_dev;
f344011c 10645
108b02cf
PZ
10646 for_each_possible_cpu(cpu) {
10647 struct perf_cpu_context *cpuctx;
10648
10649 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 10650 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 10651 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 10652 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 10653 cpuctx->ctx.pmu = pmu;
a63fbed7 10654 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 10655
272325c4 10656 __perf_mux_hrtimer_init(cpuctx, cpu);
836196be
IR
10657
10658 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10659 cpuctx->heap = cpuctx->heap_default;
108b02cf 10660 }
76e1d904 10661
8dc85d54 10662got_cpu_context:
ad5133b7
PZ
10663 if (!pmu->start_txn) {
10664 if (pmu->pmu_enable) {
10665 /*
10666 * If we have pmu_enable/pmu_disable calls, install
10667 * transaction stubs that use that to try and batch
10668 * hardware accesses.
10669 */
10670 pmu->start_txn = perf_pmu_start_txn;
10671 pmu->commit_txn = perf_pmu_commit_txn;
10672 pmu->cancel_txn = perf_pmu_cancel_txn;
10673 } else {
fbbe0701 10674 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
10675 pmu->commit_txn = perf_pmu_nop_int;
10676 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 10677 }
5c92d124 10678 }
15dbf27c 10679
ad5133b7
PZ
10680 if (!pmu->pmu_enable) {
10681 pmu->pmu_enable = perf_pmu_nop_void;
10682 pmu->pmu_disable = perf_pmu_nop_void;
10683 }
10684
81ec3f3c
JO
10685 if (!pmu->check_period)
10686 pmu->check_period = perf_event_nop_int;
10687
35edc2a5
PZ
10688 if (!pmu->event_idx)
10689 pmu->event_idx = perf_event_idx_default;
10690
d44f821b
LK
10691 /*
10692 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10693 * since these cannot be in the IDR. This way the linear search
10694 * is fast, provided a valid software event is provided.
10695 */
10696 if (type == PERF_TYPE_SOFTWARE || !name)
10697 list_add_rcu(&pmu->entry, &pmus);
10698 else
10699 list_add_tail_rcu(&pmu->entry, &pmus);
10700
bed5b25a 10701 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
10702 ret = 0;
10703unlock:
b0a873eb
PZ
10704 mutex_unlock(&pmus_lock);
10705
33696fc0 10706 return ret;
108b02cf 10707
abe43400
PZ
10708free_dev:
10709 device_del(pmu->dev);
10710 put_device(pmu->dev);
10711
2e80a82a 10712free_idr:
66d258c5 10713 if (pmu->type != PERF_TYPE_SOFTWARE)
2e80a82a
PZ
10714 idr_remove(&pmu_idr, pmu->type);
10715
108b02cf
PZ
10716free_pdc:
10717 free_percpu(pmu->pmu_disable_count);
10718 goto unlock;
f29ac756 10719}
c464c76e 10720EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 10721
b0a873eb 10722void perf_pmu_unregister(struct pmu *pmu)
5c92d124 10723{
b0a873eb
PZ
10724 mutex_lock(&pmus_lock);
10725 list_del_rcu(&pmu->entry);
5c92d124 10726
0475f9ea 10727 /*
cde8e884
PZ
10728 * We dereference the pmu list under both SRCU and regular RCU, so
10729 * synchronize against both of those.
0475f9ea 10730 */
b0a873eb 10731 synchronize_srcu(&pmus_srcu);
cde8e884 10732 synchronize_rcu();
d6d020e9 10733
33696fc0 10734 free_percpu(pmu->pmu_disable_count);
66d258c5 10735 if (pmu->type != PERF_TYPE_SOFTWARE)
2e80a82a 10736 idr_remove(&pmu_idr, pmu->type);
a9f97721 10737 if (pmu_bus_running) {
0933840a
JO
10738 if (pmu->nr_addr_filters)
10739 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10740 device_del(pmu->dev);
10741 put_device(pmu->dev);
10742 }
51676957 10743 free_pmu_context(pmu);
a9f97721 10744 mutex_unlock(&pmus_lock);
b0a873eb 10745}
c464c76e 10746EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 10747
e321d02d
KL
10748static inline bool has_extended_regs(struct perf_event *event)
10749{
10750 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10751 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10752}
10753
cc34b98b
MR
10754static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10755{
ccd41c86 10756 struct perf_event_context *ctx = NULL;
cc34b98b
MR
10757 int ret;
10758
10759 if (!try_module_get(pmu->module))
10760 return -ENODEV;
ccd41c86 10761
0c7296ca
PZ
10762 /*
10763 * A number of pmu->event_init() methods iterate the sibling_list to,
10764 * for example, validate if the group fits on the PMU. Therefore,
10765 * if this is a sibling event, acquire the ctx->mutex to protect
10766 * the sibling_list.
10767 */
10768 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
10769 /*
10770 * This ctx->mutex can nest when we're called through
10771 * inheritance. See the perf_event_ctx_lock_nested() comment.
10772 */
10773 ctx = perf_event_ctx_lock_nested(event->group_leader,
10774 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
10775 BUG_ON(!ctx);
10776 }
10777
cc34b98b
MR
10778 event->pmu = pmu;
10779 ret = pmu->event_init(event);
ccd41c86
PZ
10780
10781 if (ctx)
10782 perf_event_ctx_unlock(event->group_leader, ctx);
10783
cc6795ae 10784 if (!ret) {
e321d02d
KL
10785 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10786 has_extended_regs(event))
10787 ret = -EOPNOTSUPP;
10788
cc6795ae 10789 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
e321d02d 10790 event_has_any_exclude_flag(event))
cc6795ae 10791 ret = -EINVAL;
e321d02d
KL
10792
10793 if (ret && event->destroy)
10794 event->destroy(event);
cc6795ae
AM
10795 }
10796
cc34b98b
MR
10797 if (ret)
10798 module_put(pmu->module);
10799
10800 return ret;
10801}
10802
18ab2cd3 10803static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 10804{
66d258c5 10805 int idx, type, ret;
85c617ab 10806 struct pmu *pmu;
b0a873eb
PZ
10807
10808 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 10809
40999312
KL
10810 /* Try parent's PMU first: */
10811 if (event->parent && event->parent->pmu) {
10812 pmu = event->parent->pmu;
10813 ret = perf_try_init_event(pmu, event);
10814 if (!ret)
10815 goto unlock;
10816 }
10817
66d258c5
PZ
10818 /*
10819 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10820 * are often aliases for PERF_TYPE_RAW.
10821 */
10822 type = event->attr.type;
10823 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10824 type = PERF_TYPE_RAW;
10825
10826again:
2e80a82a 10827 rcu_read_lock();
66d258c5 10828 pmu = idr_find(&pmu_idr, type);
2e80a82a 10829 rcu_read_unlock();
940c5b29 10830 if (pmu) {
cc34b98b 10831 ret = perf_try_init_event(pmu, event);
66d258c5
PZ
10832 if (ret == -ENOENT && event->attr.type != type) {
10833 type = event->attr.type;
10834 goto again;
10835 }
10836
940c5b29
LM
10837 if (ret)
10838 pmu = ERR_PTR(ret);
66d258c5 10839
2e80a82a 10840 goto unlock;
940c5b29 10841 }
2e80a82a 10842
9f0bff11 10843 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
cc34b98b 10844 ret = perf_try_init_event(pmu, event);
b0a873eb 10845 if (!ret)
e5f4d339 10846 goto unlock;
76e1d904 10847
b0a873eb
PZ
10848 if (ret != -ENOENT) {
10849 pmu = ERR_PTR(ret);
e5f4d339 10850 goto unlock;
f344011c 10851 }
5c92d124 10852 }
e5f4d339
PZ
10853 pmu = ERR_PTR(-ENOENT);
10854unlock:
b0a873eb 10855 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 10856
4aeb0b42 10857 return pmu;
5c92d124
IM
10858}
10859
f2fb6bef
KL
10860static void attach_sb_event(struct perf_event *event)
10861{
10862 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10863
10864 raw_spin_lock(&pel->lock);
10865 list_add_rcu(&event->sb_list, &pel->list);
10866 raw_spin_unlock(&pel->lock);
10867}
10868
aab5b71e
PZ
10869/*
10870 * We keep a list of all !task (and therefore per-cpu) events
10871 * that need to receive side-band records.
10872 *
10873 * This avoids having to scan all the various PMU per-cpu contexts
10874 * looking for them.
10875 */
f2fb6bef
KL
10876static void account_pmu_sb_event(struct perf_event *event)
10877{
a4f144eb 10878 if (is_sb_event(event))
f2fb6bef
KL
10879 attach_sb_event(event);
10880}
10881
4beb31f3
FW
10882static void account_event_cpu(struct perf_event *event, int cpu)
10883{
10884 if (event->parent)
10885 return;
10886
4beb31f3
FW
10887 if (is_cgroup_event(event))
10888 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10889}
10890
555e0c1e
FW
10891/* Freq events need the tick to stay alive (see perf_event_task_tick). */
10892static void account_freq_event_nohz(void)
10893{
10894#ifdef CONFIG_NO_HZ_FULL
10895 /* Lock so we don't race with concurrent unaccount */
10896 spin_lock(&nr_freq_lock);
10897 if (atomic_inc_return(&nr_freq_events) == 1)
10898 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10899 spin_unlock(&nr_freq_lock);
10900#endif
10901}
10902
10903static void account_freq_event(void)
10904{
10905 if (tick_nohz_full_enabled())
10906 account_freq_event_nohz();
10907 else
10908 atomic_inc(&nr_freq_events);
10909}
10910
10911
766d6c07
FW
10912static void account_event(struct perf_event *event)
10913{
25432ae9
PZ
10914 bool inc = false;
10915
4beb31f3
FW
10916 if (event->parent)
10917 return;
10918
766d6c07 10919 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 10920 inc = true;
766d6c07
FW
10921 if (event->attr.mmap || event->attr.mmap_data)
10922 atomic_inc(&nr_mmap_events);
10923 if (event->attr.comm)
10924 atomic_inc(&nr_comm_events);
e4222673
HB
10925 if (event->attr.namespaces)
10926 atomic_inc(&nr_namespaces_events);
96aaab68
NK
10927 if (event->attr.cgroup)
10928 atomic_inc(&nr_cgroup_events);
766d6c07
FW
10929 if (event->attr.task)
10930 atomic_inc(&nr_task_events);
555e0c1e
FW
10931 if (event->attr.freq)
10932 account_freq_event();
45ac1403
AH
10933 if (event->attr.context_switch) {
10934 atomic_inc(&nr_switch_events);
25432ae9 10935 inc = true;
45ac1403 10936 }
4beb31f3 10937 if (has_branch_stack(event))
25432ae9 10938 inc = true;
4beb31f3 10939 if (is_cgroup_event(event))
25432ae9 10940 inc = true;
76193a94
SL
10941 if (event->attr.ksymbol)
10942 atomic_inc(&nr_ksymbol_events);
6ee52e2a
SL
10943 if (event->attr.bpf_event)
10944 atomic_inc(&nr_bpf_events);
25432ae9 10945
9107c89e 10946 if (inc) {
5bce9db1
AS
10947 /*
10948 * We need the mutex here because static_branch_enable()
10949 * must complete *before* the perf_sched_count increment
10950 * becomes visible.
10951 */
9107c89e
PZ
10952 if (atomic_inc_not_zero(&perf_sched_count))
10953 goto enabled;
10954
10955 mutex_lock(&perf_sched_mutex);
10956 if (!atomic_read(&perf_sched_count)) {
10957 static_branch_enable(&perf_sched_events);
10958 /*
10959 * Guarantee that all CPUs observe they key change and
10960 * call the perf scheduling hooks before proceeding to
10961 * install events that need them.
10962 */
0809d954 10963 synchronize_rcu();
9107c89e
PZ
10964 }
10965 /*
10966 * Now that we have waited for the sync_sched(), allow further
10967 * increments to by-pass the mutex.
10968 */
10969 atomic_inc(&perf_sched_count);
10970 mutex_unlock(&perf_sched_mutex);
10971 }
10972enabled:
4beb31f3
FW
10973
10974 account_event_cpu(event, event->cpu);
f2fb6bef
KL
10975
10976 account_pmu_sb_event(event);
766d6c07
FW
10977}
10978
0793a61d 10979/*
788faab7 10980 * Allocate and initialize an event structure
0793a61d 10981 */
cdd6c482 10982static struct perf_event *
c3f00c70 10983perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
10984 struct task_struct *task,
10985 struct perf_event *group_leader,
10986 struct perf_event *parent_event,
4dc0da86 10987 perf_overflow_handler_t overflow_handler,
79dff51e 10988 void *context, int cgroup_fd)
0793a61d 10989{
51b0fe39 10990 struct pmu *pmu;
cdd6c482
IM
10991 struct perf_event *event;
10992 struct hw_perf_event *hwc;
90983b16 10993 long err = -EINVAL;
0793a61d 10994
66832eb4
ON
10995 if ((unsigned)cpu >= nr_cpu_ids) {
10996 if (!task || cpu != -1)
10997 return ERR_PTR(-EINVAL);
10998 }
10999
c3f00c70 11000 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 11001 if (!event)
d5d2bc0d 11002 return ERR_PTR(-ENOMEM);
0793a61d 11003
04289bb9 11004 /*
cdd6c482 11005 * Single events are their own group leaders, with an
04289bb9
IM
11006 * empty sibling list:
11007 */
11008 if (!group_leader)
cdd6c482 11009 group_leader = event;
04289bb9 11010
cdd6c482
IM
11011 mutex_init(&event->child_mutex);
11012 INIT_LIST_HEAD(&event->child_list);
fccc714b 11013
cdd6c482
IM
11014 INIT_LIST_HEAD(&event->event_entry);
11015 INIT_LIST_HEAD(&event->sibling_list);
6668128a 11016 INIT_LIST_HEAD(&event->active_list);
8e1a2031 11017 init_event_group(event);
10c6db11 11018 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 11019 INIT_LIST_HEAD(&event->active_entry);
375637bc 11020 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
11021 INIT_HLIST_NODE(&event->hlist_entry);
11022
10c6db11 11023
cdd6c482 11024 init_waitqueue_head(&event->waitq);
1d54ad94 11025 event->pending_disable = -1;
e360adbe 11026 init_irq_work(&event->pending, perf_pending_event);
0793a61d 11027
cdd6c482 11028 mutex_init(&event->mmap_mutex);
375637bc 11029 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 11030
a6fa941d 11031 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
11032 event->cpu = cpu;
11033 event->attr = *attr;
11034 event->group_leader = group_leader;
11035 event->pmu = NULL;
cdd6c482 11036 event->oncpu = -1;
a96bbc16 11037
cdd6c482 11038 event->parent = parent_event;
b84fbc9f 11039
17cf22c3 11040 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 11041 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 11042
cdd6c482 11043 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 11044
d580ff86
PZ
11045 if (task) {
11046 event->attach_state = PERF_ATTACH_TASK;
d580ff86 11047 /*
50f16a8b
PZ
11048 * XXX pmu::event_init needs to know what task to account to
11049 * and we cannot use the ctx information because we need the
11050 * pmu before we get a ctx.
d580ff86 11051 */
7b3c92b8 11052 event->hw.target = get_task_struct(task);
d580ff86
PZ
11053 }
11054
34f43927
PZ
11055 event->clock = &local_clock;
11056 if (parent_event)
11057 event->clock = parent_event->clock;
11058
4dc0da86 11059 if (!overflow_handler && parent_event) {
b326e956 11060 overflow_handler = parent_event->overflow_handler;
4dc0da86 11061 context = parent_event->overflow_handler_context;
f1e4ba5b 11062#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c 11063 if (overflow_handler == bpf_overflow_handler) {
85192dbf 11064 struct bpf_prog *prog = parent_event->prog;
aa6a5f3c 11065
85192dbf 11066 bpf_prog_inc(prog);
aa6a5f3c
AS
11067 event->prog = prog;
11068 event->orig_overflow_handler =
11069 parent_event->orig_overflow_handler;
11070 }
11071#endif
4dc0da86 11072 }
66832eb4 11073
1879445d
WN
11074 if (overflow_handler) {
11075 event->overflow_handler = overflow_handler;
11076 event->overflow_handler_context = context;
9ecda41a
WN
11077 } else if (is_write_backward(event)){
11078 event->overflow_handler = perf_event_output_backward;
11079 event->overflow_handler_context = NULL;
1879445d 11080 } else {
9ecda41a 11081 event->overflow_handler = perf_event_output_forward;
1879445d
WN
11082 event->overflow_handler_context = NULL;
11083 }
97eaf530 11084
0231bb53 11085 perf_event__state_init(event);
a86ed508 11086
4aeb0b42 11087 pmu = NULL;
b8e83514 11088
cdd6c482 11089 hwc = &event->hw;
bd2b5b12 11090 hwc->sample_period = attr->sample_period;
0d48696f 11091 if (attr->freq && attr->sample_freq)
bd2b5b12 11092 hwc->sample_period = 1;
eced1dfc 11093 hwc->last_period = hwc->sample_period;
bd2b5b12 11094
e7850595 11095 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 11096
2023b359 11097 /*
ba5213ae
PZ
11098 * We currently do not support PERF_SAMPLE_READ on inherited events.
11099 * See perf_output_read().
2023b359 11100 */
ba5213ae 11101 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 11102 goto err_ns;
a46a2300
YZ
11103
11104 if (!has_branch_stack(event))
11105 event->attr.branch_sample_type = 0;
2023b359 11106
b0a873eb 11107 pmu = perf_init_event(event);
85c617ab 11108 if (IS_ERR(pmu)) {
4aeb0b42 11109 err = PTR_ERR(pmu);
90983b16 11110 goto err_ns;
621a01ea 11111 }
d5d2bc0d 11112
09f4e8f0
PZ
11113 /*
11114 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11115 * be different on other CPUs in the uncore mask.
11116 */
11117 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11118 err = -EINVAL;
11119 goto err_pmu;
11120 }
11121
ab43762e
AS
11122 if (event->attr.aux_output &&
11123 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11124 err = -EOPNOTSUPP;
11125 goto err_pmu;
11126 }
11127
98add2af
PZ
11128 if (cgroup_fd != -1) {
11129 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11130 if (err)
11131 goto err_pmu;
11132 }
11133
bed5b25a
AS
11134 err = exclusive_event_init(event);
11135 if (err)
11136 goto err_pmu;
11137
375637bc 11138 if (has_addr_filter(event)) {
c60f83b8
AS
11139 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11140 sizeof(struct perf_addr_filter_range),
11141 GFP_KERNEL);
11142 if (!event->addr_filter_ranges) {
36cc2b92 11143 err = -ENOMEM;
375637bc 11144 goto err_per_task;
36cc2b92 11145 }
375637bc 11146
18736eef
AS
11147 /*
11148 * Clone the parent's vma offsets: they are valid until exec()
11149 * even if the mm is not shared with the parent.
11150 */
11151 if (event->parent) {
11152 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11153
11154 raw_spin_lock_irq(&ifh->lock);
c60f83b8
AS
11155 memcpy(event->addr_filter_ranges,
11156 event->parent->addr_filter_ranges,
11157 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
18736eef
AS
11158 raw_spin_unlock_irq(&ifh->lock);
11159 }
11160
375637bc
AS
11161 /* force hw sync on the address filters */
11162 event->addr_filters_gen = 1;
11163 }
11164
cdd6c482 11165 if (!event->parent) {
927c7a9e 11166 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 11167 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 11168 if (err)
375637bc 11169 goto err_addr_filters;
d010b332 11170 }
f344011c 11171 }
9ee318a7 11172
da97e184
JFG
11173 err = security_perf_event_alloc(event);
11174 if (err)
11175 goto err_callchain_buffer;
11176
927a5570
AS
11177 /* symmetric to unaccount_event() in _free_event() */
11178 account_event(event);
11179
cdd6c482 11180 return event;
90983b16 11181
da97e184
JFG
11182err_callchain_buffer:
11183 if (!event->parent) {
11184 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11185 put_callchain_buffers();
11186 }
375637bc 11187err_addr_filters:
c60f83b8 11188 kfree(event->addr_filter_ranges);
375637bc 11189
bed5b25a
AS
11190err_per_task:
11191 exclusive_event_destroy(event);
11192
90983b16 11193err_pmu:
98add2af
PZ
11194 if (is_cgroup_event(event))
11195 perf_detach_cgroup(event);
90983b16
FW
11196 if (event->destroy)
11197 event->destroy(event);
c464c76e 11198 module_put(pmu->module);
90983b16
FW
11199err_ns:
11200 if (event->ns)
11201 put_pid_ns(event->ns);
621b6d2e
PB
11202 if (event->hw.target)
11203 put_task_struct(event->hw.target);
90983b16
FW
11204 kfree(event);
11205
11206 return ERR_PTR(err);
0793a61d
TG
11207}
11208
cdd6c482
IM
11209static int perf_copy_attr(struct perf_event_attr __user *uattr,
11210 struct perf_event_attr *attr)
974802ea 11211{
974802ea 11212 u32 size;
cdf8073d 11213 int ret;
974802ea 11214
c2ba8f41 11215 /* Zero the full structure, so that a short copy will be nice. */
974802ea
PZ
11216 memset(attr, 0, sizeof(*attr));
11217
11218 ret = get_user(size, &uattr->size);
11219 if (ret)
11220 return ret;
11221
c2ba8f41
AS
11222 /* ABI compatibility quirk: */
11223 if (!size)
974802ea 11224 size = PERF_ATTR_SIZE_VER0;
c2ba8f41 11225 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
974802ea
PZ
11226 goto err_size;
11227
c2ba8f41
AS
11228 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11229 if (ret) {
11230 if (ret == -E2BIG)
11231 goto err_size;
11232 return ret;
974802ea
PZ
11233 }
11234
f12f42ac
MX
11235 attr->size = size;
11236
a4faf00d 11237 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
974802ea
PZ
11238 return -EINVAL;
11239
11240 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11241 return -EINVAL;
11242
11243 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11244 return -EINVAL;
11245
bce38cd5
SE
11246 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11247 u64 mask = attr->branch_sample_type;
11248
11249 /* only using defined bits */
11250 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11251 return -EINVAL;
11252
11253 /* at least one branch bit must be set */
11254 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11255 return -EINVAL;
11256
bce38cd5
SE
11257 /* propagate priv level, when not set for branch */
11258 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11259
11260 /* exclude_kernel checked on syscall entry */
11261 if (!attr->exclude_kernel)
11262 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11263
11264 if (!attr->exclude_user)
11265 mask |= PERF_SAMPLE_BRANCH_USER;
11266
11267 if (!attr->exclude_hv)
11268 mask |= PERF_SAMPLE_BRANCH_HV;
11269 /*
11270 * adjust user setting (for HW filter setup)
11271 */
11272 attr->branch_sample_type = mask;
11273 }
e712209a 11274 /* privileged levels capture (kernel, hv): check permissions */
da97e184
JFG
11275 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11276 ret = perf_allow_kernel(attr);
11277 if (ret)
11278 return ret;
11279 }
bce38cd5 11280 }
4018994f 11281
c5ebcedb 11282 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 11283 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
11284 if (ret)
11285 return ret;
11286 }
11287
11288 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11289 if (!arch_perf_have_user_stack_dump())
11290 return -ENOSYS;
11291
11292 /*
11293 * We have __u32 type for the size, but so far
11294 * we can only use __u16 as maximum due to the
11295 * __u16 sample size limit.
11296 */
11297 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 11298 return -EINVAL;
c5ebcedb 11299 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 11300 return -EINVAL;
c5ebcedb 11301 }
4018994f 11302
5f970521
JO
11303 if (!attr->sample_max_stack)
11304 attr->sample_max_stack = sysctl_perf_event_max_stack;
11305
60e2364e
SE
11306 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11307 ret = perf_reg_validate(attr->sample_regs_intr);
6546b19f
NK
11308
11309#ifndef CONFIG_CGROUP_PERF
11310 if (attr->sample_type & PERF_SAMPLE_CGROUP)
11311 return -EINVAL;
11312#endif
11313
974802ea
PZ
11314out:
11315 return ret;
11316
11317err_size:
11318 put_user(sizeof(*attr), &uattr->size);
11319 ret = -E2BIG;
11320 goto out;
11321}
11322
ac9721f3
PZ
11323static int
11324perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 11325{
56de4e8f 11326 struct perf_buffer *rb = NULL;
a4be7c27
PZ
11327 int ret = -EINVAL;
11328
ac9721f3 11329 if (!output_event)
a4be7c27
PZ
11330 goto set;
11331
ac9721f3
PZ
11332 /* don't allow circular references */
11333 if (event == output_event)
a4be7c27
PZ
11334 goto out;
11335
0f139300
PZ
11336 /*
11337 * Don't allow cross-cpu buffers
11338 */
11339 if (output_event->cpu != event->cpu)
11340 goto out;
11341
11342 /*
76369139 11343 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
11344 */
11345 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11346 goto out;
11347
34f43927
PZ
11348 /*
11349 * Mixing clocks in the same buffer is trouble you don't need.
11350 */
11351 if (output_event->clock != event->clock)
11352 goto out;
11353
9ecda41a
WN
11354 /*
11355 * Either writing ring buffer from beginning or from end.
11356 * Mixing is not allowed.
11357 */
11358 if (is_write_backward(output_event) != is_write_backward(event))
11359 goto out;
11360
45bfb2e5
PZ
11361 /*
11362 * If both events generate aux data, they must be on the same PMU
11363 */
11364 if (has_aux(event) && has_aux(output_event) &&
11365 event->pmu != output_event->pmu)
11366 goto out;
11367
a4be7c27 11368set:
cdd6c482 11369 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
11370 /* Can't redirect output if we've got an active mmap() */
11371 if (atomic_read(&event->mmap_count))
11372 goto unlock;
a4be7c27 11373
ac9721f3 11374 if (output_event) {
76369139
FW
11375 /* get the rb we want to redirect to */
11376 rb = ring_buffer_get(output_event);
11377 if (!rb)
ac9721f3 11378 goto unlock;
a4be7c27
PZ
11379 }
11380
b69cf536 11381 ring_buffer_attach(event, rb);
9bb5d40c 11382
a4be7c27 11383 ret = 0;
ac9721f3
PZ
11384unlock:
11385 mutex_unlock(&event->mmap_mutex);
11386
a4be7c27 11387out:
a4be7c27
PZ
11388 return ret;
11389}
11390
f63a8daa
PZ
11391static void mutex_lock_double(struct mutex *a, struct mutex *b)
11392{
11393 if (b < a)
11394 swap(a, b);
11395
11396 mutex_lock(a);
11397 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11398}
11399
34f43927
PZ
11400static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11401{
11402 bool nmi_safe = false;
11403
11404 switch (clk_id) {
11405 case CLOCK_MONOTONIC:
11406 event->clock = &ktime_get_mono_fast_ns;
11407 nmi_safe = true;
11408 break;
11409
11410 case CLOCK_MONOTONIC_RAW:
11411 event->clock = &ktime_get_raw_fast_ns;
11412 nmi_safe = true;
11413 break;
11414
11415 case CLOCK_REALTIME:
11416 event->clock = &ktime_get_real_ns;
11417 break;
11418
11419 case CLOCK_BOOTTIME:
9285ec4c 11420 event->clock = &ktime_get_boottime_ns;
34f43927
PZ
11421 break;
11422
11423 case CLOCK_TAI:
9285ec4c 11424 event->clock = &ktime_get_clocktai_ns;
34f43927
PZ
11425 break;
11426
11427 default:
11428 return -EINVAL;
11429 }
11430
11431 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11432 return -EINVAL;
11433
11434 return 0;
11435}
11436
321027c1
PZ
11437/*
11438 * Variation on perf_event_ctx_lock_nested(), except we take two context
11439 * mutexes.
11440 */
11441static struct perf_event_context *
11442__perf_event_ctx_lock_double(struct perf_event *group_leader,
11443 struct perf_event_context *ctx)
11444{
11445 struct perf_event_context *gctx;
11446
11447again:
11448 rcu_read_lock();
11449 gctx = READ_ONCE(group_leader->ctx);
8c94abbb 11450 if (!refcount_inc_not_zero(&gctx->refcount)) {
321027c1
PZ
11451 rcu_read_unlock();
11452 goto again;
11453 }
11454 rcu_read_unlock();
11455
11456 mutex_lock_double(&gctx->mutex, &ctx->mutex);
11457
11458 if (group_leader->ctx != gctx) {
11459 mutex_unlock(&ctx->mutex);
11460 mutex_unlock(&gctx->mutex);
11461 put_ctx(gctx);
11462 goto again;
11463 }
11464
11465 return gctx;
11466}
11467
0793a61d 11468/**
cdd6c482 11469 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 11470 *
cdd6c482 11471 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 11472 * @pid: target pid
9f66a381 11473 * @cpu: target cpu
cdd6c482 11474 * @group_fd: group leader event fd
0793a61d 11475 */
cdd6c482
IM
11476SYSCALL_DEFINE5(perf_event_open,
11477 struct perf_event_attr __user *, attr_uptr,
2743a5b0 11478 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 11479{
b04243ef
PZ
11480 struct perf_event *group_leader = NULL, *output_event = NULL;
11481 struct perf_event *event, *sibling;
cdd6c482 11482 struct perf_event_attr attr;
f63a8daa 11483 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 11484 struct file *event_file = NULL;
2903ff01 11485 struct fd group = {NULL, 0};
38a81da2 11486 struct task_struct *task = NULL;
89a1e187 11487 struct pmu *pmu;
ea635c64 11488 int event_fd;
b04243ef 11489 int move_group = 0;
dc86cabe 11490 int err;
a21b0b35 11491 int f_flags = O_RDWR;
79dff51e 11492 int cgroup_fd = -1;
0793a61d 11493
2743a5b0 11494 /* for future expandability... */
e5d1367f 11495 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
11496 return -EINVAL;
11497
da97e184
JFG
11498 /* Do we allow access to perf_event_open(2) ? */
11499 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11500 if (err)
11501 return err;
11502
dc86cabe
IM
11503 err = perf_copy_attr(attr_uptr, &attr);
11504 if (err)
11505 return err;
eab656ae 11506
0764771d 11507 if (!attr.exclude_kernel) {
da97e184
JFG
11508 err = perf_allow_kernel(&attr);
11509 if (err)
11510 return err;
0764771d
PZ
11511 }
11512
e4222673
HB
11513 if (attr.namespaces) {
11514 if (!capable(CAP_SYS_ADMIN))
11515 return -EACCES;
11516 }
11517
df58ab24 11518 if (attr.freq) {
cdd6c482 11519 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 11520 return -EINVAL;
0819b2e3
PZ
11521 } else {
11522 if (attr.sample_period & (1ULL << 63))
11523 return -EINVAL;
df58ab24
PZ
11524 }
11525
fc7ce9c7 11526 /* Only privileged users can get physical addresses */
da97e184
JFG
11527 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11528 err = perf_allow_kernel(&attr);
11529 if (err)
11530 return err;
11531 }
fc7ce9c7 11532
b0c8fdc7
DH
11533 err = security_locked_down(LOCKDOWN_PERF);
11534 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11535 /* REGS_INTR can leak data, lockdown must prevent this */
11536 return err;
11537
11538 err = 0;
11539
e5d1367f
SE
11540 /*
11541 * In cgroup mode, the pid argument is used to pass the fd
11542 * opened to the cgroup directory in cgroupfs. The cpu argument
11543 * designates the cpu on which to monitor threads from that
11544 * cgroup.
11545 */
11546 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11547 return -EINVAL;
11548
a21b0b35
YD
11549 if (flags & PERF_FLAG_FD_CLOEXEC)
11550 f_flags |= O_CLOEXEC;
11551
11552 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
11553 if (event_fd < 0)
11554 return event_fd;
11555
ac9721f3 11556 if (group_fd != -1) {
2903ff01
AV
11557 err = perf_fget_light(group_fd, &group);
11558 if (err)
d14b12d7 11559 goto err_fd;
2903ff01 11560 group_leader = group.file->private_data;
ac9721f3
PZ
11561 if (flags & PERF_FLAG_FD_OUTPUT)
11562 output_event = group_leader;
11563 if (flags & PERF_FLAG_FD_NO_GROUP)
11564 group_leader = NULL;
11565 }
11566
e5d1367f 11567 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
11568 task = find_lively_task_by_vpid(pid);
11569 if (IS_ERR(task)) {
11570 err = PTR_ERR(task);
11571 goto err_group_fd;
11572 }
11573 }
11574
1f4ee503
PZ
11575 if (task && group_leader &&
11576 group_leader->attr.inherit != attr.inherit) {
11577 err = -EINVAL;
11578 goto err_task;
11579 }
11580
79c9ce57 11581 if (task) {
69143038 11582 err = mutex_lock_interruptible(&task->signal->exec_update_mutex);
79c9ce57 11583 if (err)
e5aeee51 11584 goto err_task;
79c9ce57
PZ
11585
11586 /*
11587 * Reuse ptrace permission checks for now.
11588 *
69143038 11589 * We must hold exec_update_mutex across this and any potential
79c9ce57
PZ
11590 * perf_install_in_context() call for this new event to
11591 * serialize against exec() altering our credentials (and the
11592 * perf_event_exit_task() that could imply).
11593 */
11594 err = -EACCES;
11595 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11596 goto err_cred;
11597 }
11598
79dff51e
MF
11599 if (flags & PERF_FLAG_PID_CGROUP)
11600 cgroup_fd = pid;
11601
4dc0da86 11602 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 11603 NULL, NULL, cgroup_fd);
d14b12d7
SE
11604 if (IS_ERR(event)) {
11605 err = PTR_ERR(event);
79c9ce57 11606 goto err_cred;
d14b12d7
SE
11607 }
11608
53b25335
VW
11609 if (is_sampling_event(event)) {
11610 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 11611 err = -EOPNOTSUPP;
53b25335
VW
11612 goto err_alloc;
11613 }
11614 }
11615
89a1e187
PZ
11616 /*
11617 * Special case software events and allow them to be part of
11618 * any hardware group.
11619 */
11620 pmu = event->pmu;
b04243ef 11621
34f43927
PZ
11622 if (attr.use_clockid) {
11623 err = perf_event_set_clock(event, attr.clockid);
11624 if (err)
11625 goto err_alloc;
11626 }
11627
4ff6a8de
DCC
11628 if (pmu->task_ctx_nr == perf_sw_context)
11629 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11630
a1150c20
SL
11631 if (group_leader) {
11632 if (is_software_event(event) &&
11633 !in_software_context(group_leader)) {
b04243ef 11634 /*
a1150c20
SL
11635 * If the event is a sw event, but the group_leader
11636 * is on hw context.
b04243ef 11637 *
a1150c20
SL
11638 * Allow the addition of software events to hw
11639 * groups, this is safe because software events
11640 * never fail to schedule.
b04243ef 11641 */
a1150c20
SL
11642 pmu = group_leader->ctx->pmu;
11643 } else if (!is_software_event(event) &&
11644 is_software_event(group_leader) &&
4ff6a8de 11645 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
11646 /*
11647 * In case the group is a pure software group, and we
11648 * try to add a hardware event, move the whole group to
11649 * the hardware context.
11650 */
11651 move_group = 1;
11652 }
11653 }
89a1e187
PZ
11654
11655 /*
11656 * Get the target context (task or percpu):
11657 */
4af57ef2 11658 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
11659 if (IS_ERR(ctx)) {
11660 err = PTR_ERR(ctx);
c6be5a5c 11661 goto err_alloc;
89a1e187
PZ
11662 }
11663
ccff286d 11664 /*
cdd6c482 11665 * Look up the group leader (we will attach this event to it):
04289bb9 11666 */
ac9721f3 11667 if (group_leader) {
dc86cabe 11668 err = -EINVAL;
04289bb9 11669
04289bb9 11670 /*
ccff286d
IM
11671 * Do not allow a recursive hierarchy (this new sibling
11672 * becoming part of another group-sibling):
11673 */
11674 if (group_leader->group_leader != group_leader)
c3f00c70 11675 goto err_context;
34f43927
PZ
11676
11677 /* All events in a group should have the same clock */
11678 if (group_leader->clock != event->clock)
11679 goto err_context;
11680
ccff286d 11681 /*
64aee2a9
MR
11682 * Make sure we're both events for the same CPU;
11683 * grouping events for different CPUs is broken; since
11684 * you can never concurrently schedule them anyhow.
04289bb9 11685 */
64aee2a9
MR
11686 if (group_leader->cpu != event->cpu)
11687 goto err_context;
c3c87e77 11688
64aee2a9
MR
11689 /*
11690 * Make sure we're both on the same task, or both
11691 * per-CPU events.
11692 */
11693 if (group_leader->ctx->task != ctx->task)
11694 goto err_context;
11695
11696 /*
11697 * Do not allow to attach to a group in a different task
11698 * or CPU context. If we're moving SW events, we'll fix
11699 * this up later, so allow that.
11700 */
11701 if (!move_group && group_leader->ctx != ctx)
11702 goto err_context;
b04243ef 11703
3b6f9e5c
PM
11704 /*
11705 * Only a group leader can be exclusive or pinned
11706 */
0d48696f 11707 if (attr.exclusive || attr.pinned)
c3f00c70 11708 goto err_context;
ac9721f3
PZ
11709 }
11710
11711 if (output_event) {
11712 err = perf_event_set_output(event, output_event);
11713 if (err)
c3f00c70 11714 goto err_context;
ac9721f3 11715 }
0793a61d 11716
a21b0b35
YD
11717 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11718 f_flags);
ea635c64
AV
11719 if (IS_ERR(event_file)) {
11720 err = PTR_ERR(event_file);
201c2f85 11721 event_file = NULL;
c3f00c70 11722 goto err_context;
ea635c64 11723 }
9b51f66d 11724
b04243ef 11725 if (move_group) {
321027c1
PZ
11726 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11727
84c4e620
PZ
11728 if (gctx->task == TASK_TOMBSTONE) {
11729 err = -ESRCH;
11730 goto err_locked;
11731 }
321027c1
PZ
11732
11733 /*
11734 * Check if we raced against another sys_perf_event_open() call
11735 * moving the software group underneath us.
11736 */
11737 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11738 /*
11739 * If someone moved the group out from under us, check
11740 * if this new event wound up on the same ctx, if so
11741 * its the regular !move_group case, otherwise fail.
11742 */
11743 if (gctx != ctx) {
11744 err = -EINVAL;
11745 goto err_locked;
11746 } else {
11747 perf_event_ctx_unlock(group_leader, gctx);
11748 move_group = 0;
11749 }
11750 }
8a58ddae
AS
11751
11752 /*
11753 * Failure to create exclusive events returns -EBUSY.
11754 */
11755 err = -EBUSY;
11756 if (!exclusive_event_installable(group_leader, ctx))
11757 goto err_locked;
11758
11759 for_each_sibling_event(sibling, group_leader) {
11760 if (!exclusive_event_installable(sibling, ctx))
11761 goto err_locked;
11762 }
f55fc2a5
PZ
11763 } else {
11764 mutex_lock(&ctx->mutex);
11765 }
11766
84c4e620
PZ
11767 if (ctx->task == TASK_TOMBSTONE) {
11768 err = -ESRCH;
11769 goto err_locked;
11770 }
11771
a723968c
PZ
11772 if (!perf_event_validate_size(event)) {
11773 err = -E2BIG;
11774 goto err_locked;
11775 }
11776
a63fbed7
TG
11777 if (!task) {
11778 /*
11779 * Check if the @cpu we're creating an event for is online.
11780 *
11781 * We use the perf_cpu_context::ctx::mutex to serialize against
11782 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11783 */
11784 struct perf_cpu_context *cpuctx =
11785 container_of(ctx, struct perf_cpu_context, ctx);
11786
11787 if (!cpuctx->online) {
11788 err = -ENODEV;
11789 goto err_locked;
11790 }
11791 }
11792
da9ec3d3
MR
11793 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11794 err = -EINVAL;
ab43762e 11795 goto err_locked;
da9ec3d3 11796 }
a63fbed7 11797
f55fc2a5
PZ
11798 /*
11799 * Must be under the same ctx::mutex as perf_install_in_context(),
11800 * because we need to serialize with concurrent event creation.
11801 */
11802 if (!exclusive_event_installable(event, ctx)) {
f55fc2a5
PZ
11803 err = -EBUSY;
11804 goto err_locked;
11805 }
f63a8daa 11806
f55fc2a5
PZ
11807 WARN_ON_ONCE(ctx->parent_ctx);
11808
79c9ce57
PZ
11809 /*
11810 * This is the point on no return; we cannot fail hereafter. This is
11811 * where we start modifying current state.
11812 */
11813
f55fc2a5 11814 if (move_group) {
f63a8daa
PZ
11815 /*
11816 * See perf_event_ctx_lock() for comments on the details
11817 * of swizzling perf_event::ctx.
11818 */
45a0e07a 11819 perf_remove_from_context(group_leader, 0);
279b5165 11820 put_ctx(gctx);
0231bb53 11821
edb39592 11822 for_each_sibling_event(sibling, group_leader) {
45a0e07a 11823 perf_remove_from_context(sibling, 0);
b04243ef
PZ
11824 put_ctx(gctx);
11825 }
b04243ef 11826
f63a8daa
PZ
11827 /*
11828 * Wait for everybody to stop referencing the events through
11829 * the old lists, before installing it on new lists.
11830 */
0cda4c02 11831 synchronize_rcu();
f63a8daa 11832
8f95b435
PZI
11833 /*
11834 * Install the group siblings before the group leader.
11835 *
11836 * Because a group leader will try and install the entire group
11837 * (through the sibling list, which is still in-tact), we can
11838 * end up with siblings installed in the wrong context.
11839 *
11840 * By installing siblings first we NO-OP because they're not
11841 * reachable through the group lists.
11842 */
edb39592 11843 for_each_sibling_event(sibling, group_leader) {
8f95b435 11844 perf_event__state_init(sibling);
9fc81d87 11845 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
11846 get_ctx(ctx);
11847 }
8f95b435
PZI
11848
11849 /*
11850 * Removing from the context ends up with disabled
11851 * event. What we want here is event in the initial
11852 * startup state, ready to be add into new context.
11853 */
11854 perf_event__state_init(group_leader);
11855 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11856 get_ctx(ctx);
bed5b25a
AS
11857 }
11858
f73e22ab
PZ
11859 /*
11860 * Precalculate sample_data sizes; do while holding ctx::mutex such
11861 * that we're serialized against further additions and before
11862 * perf_install_in_context() which is the point the event is active and
11863 * can use these values.
11864 */
11865 perf_event__header_size(event);
11866 perf_event__id_header_size(event);
11867
78cd2c74
PZ
11868 event->owner = current;
11869
e2d37cd2 11870 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11871 perf_unpin_context(ctx);
f63a8daa 11872
f55fc2a5 11873 if (move_group)
321027c1 11874 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 11875 mutex_unlock(&ctx->mutex);
9b51f66d 11876
79c9ce57 11877 if (task) {
69143038 11878 mutex_unlock(&task->signal->exec_update_mutex);
79c9ce57
PZ
11879 put_task_struct(task);
11880 }
11881
cdd6c482
IM
11882 mutex_lock(&current->perf_event_mutex);
11883 list_add_tail(&event->owner_entry, &current->perf_event_list);
11884 mutex_unlock(&current->perf_event_mutex);
082ff5a2 11885
8a49542c
PZ
11886 /*
11887 * Drop the reference on the group_event after placing the
11888 * new event on the sibling_list. This ensures destruction
11889 * of the group leader will find the pointer to itself in
11890 * perf_group_detach().
11891 */
2903ff01 11892 fdput(group);
ea635c64
AV
11893 fd_install(event_fd, event_file);
11894 return event_fd;
0793a61d 11895
f55fc2a5
PZ
11896err_locked:
11897 if (move_group)
321027c1 11898 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
11899 mutex_unlock(&ctx->mutex);
11900/* err_file: */
11901 fput(event_file);
c3f00c70 11902err_context:
fe4b04fa 11903 perf_unpin_context(ctx);
ea635c64 11904 put_ctx(ctx);
c6be5a5c 11905err_alloc:
13005627
PZ
11906 /*
11907 * If event_file is set, the fput() above will have called ->release()
11908 * and that will take care of freeing the event.
11909 */
11910 if (!event_file)
11911 free_event(event);
79c9ce57
PZ
11912err_cred:
11913 if (task)
69143038 11914 mutex_unlock(&task->signal->exec_update_mutex);
1f4ee503 11915err_task:
e7d0bc04
PZ
11916 if (task)
11917 put_task_struct(task);
89a1e187 11918err_group_fd:
2903ff01 11919 fdput(group);
ea635c64
AV
11920err_fd:
11921 put_unused_fd(event_fd);
dc86cabe 11922 return err;
0793a61d
TG
11923}
11924
fb0459d7
AV
11925/**
11926 * perf_event_create_kernel_counter
11927 *
11928 * @attr: attributes of the counter to create
11929 * @cpu: cpu in which the counter is bound
38a81da2 11930 * @task: task to profile (NULL for percpu)
fb0459d7
AV
11931 */
11932struct perf_event *
11933perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 11934 struct task_struct *task,
4dc0da86
AK
11935 perf_overflow_handler_t overflow_handler,
11936 void *context)
fb0459d7 11937{
fb0459d7 11938 struct perf_event_context *ctx;
c3f00c70 11939 struct perf_event *event;
fb0459d7 11940 int err;
d859e29f 11941
dce5affb
AS
11942 /*
11943 * Grouping is not supported for kernel events, neither is 'AUX',
11944 * make sure the caller's intentions are adjusted.
11945 */
11946 if (attr->aux_output)
11947 return ERR_PTR(-EINVAL);
11948
4dc0da86 11949 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 11950 overflow_handler, context, -1);
c3f00c70
PZ
11951 if (IS_ERR(event)) {
11952 err = PTR_ERR(event);
11953 goto err;
11954 }
d859e29f 11955
f8697762 11956 /* Mark owner so we could distinguish it from user events. */
63b6da39 11957 event->owner = TASK_TOMBSTONE;
f8697762 11958
f25d8ba9
AS
11959 /*
11960 * Get the target context (task or percpu):
11961 */
4af57ef2 11962 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
11963 if (IS_ERR(ctx)) {
11964 err = PTR_ERR(ctx);
c3f00c70 11965 goto err_free;
d859e29f 11966 }
fb0459d7 11967
fb0459d7
AV
11968 WARN_ON_ONCE(ctx->parent_ctx);
11969 mutex_lock(&ctx->mutex);
84c4e620
PZ
11970 if (ctx->task == TASK_TOMBSTONE) {
11971 err = -ESRCH;
11972 goto err_unlock;
11973 }
11974
a63fbed7
TG
11975 if (!task) {
11976 /*
11977 * Check if the @cpu we're creating an event for is online.
11978 *
11979 * We use the perf_cpu_context::ctx::mutex to serialize against
11980 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11981 */
11982 struct perf_cpu_context *cpuctx =
11983 container_of(ctx, struct perf_cpu_context, ctx);
11984 if (!cpuctx->online) {
11985 err = -ENODEV;
11986 goto err_unlock;
11987 }
11988 }
11989
bed5b25a 11990 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 11991 err = -EBUSY;
84c4e620 11992 goto err_unlock;
bed5b25a
AS
11993 }
11994
4ce54af8 11995 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11996 perf_unpin_context(ctx);
fb0459d7
AV
11997 mutex_unlock(&ctx->mutex);
11998
fb0459d7
AV
11999 return event;
12000
84c4e620
PZ
12001err_unlock:
12002 mutex_unlock(&ctx->mutex);
12003 perf_unpin_context(ctx);
12004 put_ctx(ctx);
c3f00c70
PZ
12005err_free:
12006 free_event(event);
12007err:
c6567f64 12008 return ERR_PTR(err);
9b51f66d 12009}
fb0459d7 12010EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 12011
0cda4c02
YZ
12012void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12013{
12014 struct perf_event_context *src_ctx;
12015 struct perf_event_context *dst_ctx;
12016 struct perf_event *event, *tmp;
12017 LIST_HEAD(events);
12018
12019 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12020 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12021
f63a8daa
PZ
12022 /*
12023 * See perf_event_ctx_lock() for comments on the details
12024 * of swizzling perf_event::ctx.
12025 */
12026 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
12027 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12028 event_entry) {
45a0e07a 12029 perf_remove_from_context(event, 0);
9a545de0 12030 unaccount_event_cpu(event, src_cpu);
0cda4c02 12031 put_ctx(src_ctx);
9886167d 12032 list_add(&event->migrate_entry, &events);
0cda4c02 12033 }
0cda4c02 12034
8f95b435
PZI
12035 /*
12036 * Wait for the events to quiesce before re-instating them.
12037 */
0cda4c02
YZ
12038 synchronize_rcu();
12039
8f95b435
PZI
12040 /*
12041 * Re-instate events in 2 passes.
12042 *
12043 * Skip over group leaders and only install siblings on this first
12044 * pass, siblings will not get enabled without a leader, however a
12045 * leader will enable its siblings, even if those are still on the old
12046 * context.
12047 */
12048 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12049 if (event->group_leader == event)
12050 continue;
12051
12052 list_del(&event->migrate_entry);
12053 if (event->state >= PERF_EVENT_STATE_OFF)
12054 event->state = PERF_EVENT_STATE_INACTIVE;
12055 account_event_cpu(event, dst_cpu);
12056 perf_install_in_context(dst_ctx, event, dst_cpu);
12057 get_ctx(dst_ctx);
12058 }
12059
12060 /*
12061 * Once all the siblings are setup properly, install the group leaders
12062 * to make it go.
12063 */
9886167d
PZ
12064 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12065 list_del(&event->migrate_entry);
0cda4c02
YZ
12066 if (event->state >= PERF_EVENT_STATE_OFF)
12067 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 12068 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
12069 perf_install_in_context(dst_ctx, event, dst_cpu);
12070 get_ctx(dst_ctx);
12071 }
12072 mutex_unlock(&dst_ctx->mutex);
f63a8daa 12073 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
12074}
12075EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12076
cdd6c482 12077static void sync_child_event(struct perf_event *child_event,
38b200d6 12078 struct task_struct *child)
d859e29f 12079{
cdd6c482 12080 struct perf_event *parent_event = child_event->parent;
8bc20959 12081 u64 child_val;
d859e29f 12082
cdd6c482
IM
12083 if (child_event->attr.inherit_stat)
12084 perf_event_read_event(child_event, child);
38b200d6 12085
b5e58793 12086 child_val = perf_event_count(child_event);
d859e29f
PM
12087
12088 /*
12089 * Add back the child's count to the parent's count:
12090 */
a6e6dea6 12091 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
12092 atomic64_add(child_event->total_time_enabled,
12093 &parent_event->child_total_time_enabled);
12094 atomic64_add(child_event->total_time_running,
12095 &parent_event->child_total_time_running);
d859e29f
PM
12096}
12097
9b51f66d 12098static void
8ba289b8
PZ
12099perf_event_exit_event(struct perf_event *child_event,
12100 struct perf_event_context *child_ctx,
12101 struct task_struct *child)
9b51f66d 12102{
8ba289b8
PZ
12103 struct perf_event *parent_event = child_event->parent;
12104
1903d50c
PZ
12105 /*
12106 * Do not destroy the 'original' grouping; because of the context
12107 * switch optimization the original events could've ended up in a
12108 * random child task.
12109 *
12110 * If we were to destroy the original group, all group related
12111 * operations would cease to function properly after this random
12112 * child dies.
12113 *
12114 * Do destroy all inherited groups, we don't care about those
12115 * and being thorough is better.
12116 */
32132a3d
PZ
12117 raw_spin_lock_irq(&child_ctx->lock);
12118 WARN_ON_ONCE(child_ctx->is_active);
12119
8ba289b8 12120 if (parent_event)
32132a3d
PZ
12121 perf_group_detach(child_event);
12122 list_del_event(child_event, child_ctx);
0d3d73aa 12123 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 12124 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 12125
9b51f66d 12126 /*
8ba289b8 12127 * Parent events are governed by their filedesc, retain them.
9b51f66d 12128 */
8ba289b8 12129 if (!parent_event) {
179033b3 12130 perf_event_wakeup(child_event);
8ba289b8 12131 return;
4bcf349a 12132 }
8ba289b8
PZ
12133 /*
12134 * Child events can be cleaned up.
12135 */
12136
12137 sync_child_event(child_event, child);
12138
12139 /*
12140 * Remove this event from the parent's list
12141 */
12142 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12143 mutex_lock(&parent_event->child_mutex);
12144 list_del_init(&child_event->child_list);
12145 mutex_unlock(&parent_event->child_mutex);
12146
12147 /*
12148 * Kick perf_poll() for is_event_hup().
12149 */
12150 perf_event_wakeup(parent_event);
12151 free_event(child_event);
12152 put_event(parent_event);
9b51f66d
IM
12153}
12154
8dc85d54 12155static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 12156{
211de6eb 12157 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 12158 struct perf_event *child_event, *next;
63b6da39
PZ
12159
12160 WARN_ON_ONCE(child != current);
9b51f66d 12161
6a3351b6 12162 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 12163 if (!child_ctx)
9b51f66d
IM
12164 return;
12165
ad3a37de 12166 /*
6a3351b6
PZ
12167 * In order to reduce the amount of tricky in ctx tear-down, we hold
12168 * ctx::mutex over the entire thing. This serializes against almost
12169 * everything that wants to access the ctx.
12170 *
12171 * The exception is sys_perf_event_open() /
12172 * perf_event_create_kernel_count() which does find_get_context()
12173 * without ctx::mutex (it cannot because of the move_group double mutex
12174 * lock thing). See the comments in perf_install_in_context().
ad3a37de 12175 */
6a3351b6 12176 mutex_lock(&child_ctx->mutex);
c93f7669
PM
12177
12178 /*
6a3351b6
PZ
12179 * In a single ctx::lock section, de-schedule the events and detach the
12180 * context from the task such that we cannot ever get it scheduled back
12181 * in.
c93f7669 12182 */
6a3351b6 12183 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 12184 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 12185
71a851b4 12186 /*
63b6da39
PZ
12187 * Now that the context is inactive, destroy the task <-> ctx relation
12188 * and mark the context dead.
71a851b4 12189 */
63b6da39
PZ
12190 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12191 put_ctx(child_ctx); /* cannot be last */
12192 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12193 put_task_struct(current); /* cannot be last */
4a1c0f26 12194
211de6eb 12195 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 12196 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 12197
211de6eb
PZ
12198 if (clone_ctx)
12199 put_ctx(clone_ctx);
4a1c0f26 12200
9f498cc5 12201 /*
cdd6c482
IM
12202 * Report the task dead after unscheduling the events so that we
12203 * won't get any samples after PERF_RECORD_EXIT. We can however still
12204 * get a few PERF_RECORD_READ events.
9f498cc5 12205 */
cdd6c482 12206 perf_event_task(child, child_ctx, 0);
a63eaf34 12207
ebf905fc 12208 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 12209 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 12210
a63eaf34
PM
12211 mutex_unlock(&child_ctx->mutex);
12212
12213 put_ctx(child_ctx);
9b51f66d
IM
12214}
12215
8dc85d54
PZ
12216/*
12217 * When a child task exits, feed back event values to parent events.
79c9ce57 12218 *
69143038 12219 * Can be called with exec_update_mutex held when called from
79c9ce57 12220 * install_exec_creds().
8dc85d54
PZ
12221 */
12222void perf_event_exit_task(struct task_struct *child)
12223{
8882135b 12224 struct perf_event *event, *tmp;
8dc85d54
PZ
12225 int ctxn;
12226
8882135b
PZ
12227 mutex_lock(&child->perf_event_mutex);
12228 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12229 owner_entry) {
12230 list_del_init(&event->owner_entry);
12231
12232 /*
12233 * Ensure the list deletion is visible before we clear
12234 * the owner, closes a race against perf_release() where
12235 * we need to serialize on the owner->perf_event_mutex.
12236 */
f47c02c0 12237 smp_store_release(&event->owner, NULL);
8882135b
PZ
12238 }
12239 mutex_unlock(&child->perf_event_mutex);
12240
8dc85d54
PZ
12241 for_each_task_context_nr(ctxn)
12242 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
12243
12244 /*
12245 * The perf_event_exit_task_context calls perf_event_task
12246 * with child's task_ctx, which generates EXIT events for
12247 * child contexts and sets child->perf_event_ctxp[] to NULL.
12248 * At this point we need to send EXIT events to cpu contexts.
12249 */
12250 perf_event_task(child, NULL, 0);
8dc85d54
PZ
12251}
12252
889ff015
FW
12253static void perf_free_event(struct perf_event *event,
12254 struct perf_event_context *ctx)
12255{
12256 struct perf_event *parent = event->parent;
12257
12258 if (WARN_ON_ONCE(!parent))
12259 return;
12260
12261 mutex_lock(&parent->child_mutex);
12262 list_del_init(&event->child_list);
12263 mutex_unlock(&parent->child_mutex);
12264
a6fa941d 12265 put_event(parent);
889ff015 12266
652884fe 12267 raw_spin_lock_irq(&ctx->lock);
8a49542c 12268 perf_group_detach(event);
889ff015 12269 list_del_event(event, ctx);
652884fe 12270 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
12271 free_event(event);
12272}
12273
bbbee908 12274/*
1cf8dfe8
PZ
12275 * Free a context as created by inheritance by perf_event_init_task() below,
12276 * used by fork() in case of fail.
652884fe 12277 *
1cf8dfe8
PZ
12278 * Even though the task has never lived, the context and events have been
12279 * exposed through the child_list, so we must take care tearing it all down.
bbbee908 12280 */
cdd6c482 12281void perf_event_free_task(struct task_struct *task)
bbbee908 12282{
8dc85d54 12283 struct perf_event_context *ctx;
cdd6c482 12284 struct perf_event *event, *tmp;
8dc85d54 12285 int ctxn;
bbbee908 12286
8dc85d54
PZ
12287 for_each_task_context_nr(ctxn) {
12288 ctx = task->perf_event_ctxp[ctxn];
12289 if (!ctx)
12290 continue;
bbbee908 12291
8dc85d54 12292 mutex_lock(&ctx->mutex);
e552a838
PZ
12293 raw_spin_lock_irq(&ctx->lock);
12294 /*
12295 * Destroy the task <-> ctx relation and mark the context dead.
12296 *
12297 * This is important because even though the task hasn't been
12298 * exposed yet the context has been (through child_list).
12299 */
12300 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12301 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12302 put_task_struct(task); /* cannot be last */
12303 raw_spin_unlock_irq(&ctx->lock);
bbbee908 12304
15121c78 12305 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 12306 perf_free_event(event, ctx);
bbbee908 12307
8dc85d54 12308 mutex_unlock(&ctx->mutex);
1cf8dfe8
PZ
12309
12310 /*
12311 * perf_event_release_kernel() could've stolen some of our
12312 * child events and still have them on its free_list. In that
12313 * case we must wait for these events to have been freed (in
12314 * particular all their references to this task must've been
12315 * dropped).
12316 *
12317 * Without this copy_process() will unconditionally free this
12318 * task (irrespective of its reference count) and
12319 * _free_event()'s put_task_struct(event->hw.target) will be a
12320 * use-after-free.
12321 *
12322 * Wait for all events to drop their context reference.
12323 */
12324 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12325 put_ctx(ctx); /* must be last */
8dc85d54 12326 }
889ff015
FW
12327}
12328
4e231c79
PZ
12329void perf_event_delayed_put(struct task_struct *task)
12330{
12331 int ctxn;
12332
12333 for_each_task_context_nr(ctxn)
12334 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12335}
12336
e03e7ee3 12337struct file *perf_event_get(unsigned int fd)
ffe8690c 12338{
02e5ad97 12339 struct file *file = fget(fd);
e03e7ee3
AS
12340 if (!file)
12341 return ERR_PTR(-EBADF);
ffe8690c 12342
e03e7ee3
AS
12343 if (file->f_op != &perf_fops) {
12344 fput(file);
12345 return ERR_PTR(-EBADF);
12346 }
ffe8690c 12347
e03e7ee3 12348 return file;
ffe8690c
KX
12349}
12350
f8d959a5
YS
12351const struct perf_event *perf_get_event(struct file *file)
12352{
12353 if (file->f_op != &perf_fops)
12354 return ERR_PTR(-EINVAL);
12355
12356 return file->private_data;
12357}
12358
ffe8690c
KX
12359const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12360{
12361 if (!event)
12362 return ERR_PTR(-EINVAL);
12363
12364 return &event->attr;
12365}
12366
97dee4f3 12367/*
788faab7 12368 * Inherit an event from parent task to child task.
d8a8cfc7
PZ
12369 *
12370 * Returns:
12371 * - valid pointer on success
12372 * - NULL for orphaned events
12373 * - IS_ERR() on error
97dee4f3
PZ
12374 */
12375static struct perf_event *
12376inherit_event(struct perf_event *parent_event,
12377 struct task_struct *parent,
12378 struct perf_event_context *parent_ctx,
12379 struct task_struct *child,
12380 struct perf_event *group_leader,
12381 struct perf_event_context *child_ctx)
12382{
8ca2bd41 12383 enum perf_event_state parent_state = parent_event->state;
97dee4f3 12384 struct perf_event *child_event;
cee010ec 12385 unsigned long flags;
97dee4f3
PZ
12386
12387 /*
12388 * Instead of creating recursive hierarchies of events,
12389 * we link inherited events back to the original parent,
12390 * which has a filp for sure, which we use as the reference
12391 * count:
12392 */
12393 if (parent_event->parent)
12394 parent_event = parent_event->parent;
12395
12396 child_event = perf_event_alloc(&parent_event->attr,
12397 parent_event->cpu,
d580ff86 12398 child,
97dee4f3 12399 group_leader, parent_event,
79dff51e 12400 NULL, NULL, -1);
97dee4f3
PZ
12401 if (IS_ERR(child_event))
12402 return child_event;
a6fa941d 12403
313ccb96
JO
12404
12405 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12406 !child_ctx->task_ctx_data) {
12407 struct pmu *pmu = child_event->pmu;
12408
12409 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12410 GFP_KERNEL);
12411 if (!child_ctx->task_ctx_data) {
12412 free_event(child_event);
697d8778 12413 return ERR_PTR(-ENOMEM);
313ccb96
JO
12414 }
12415 }
12416
c6e5b732
PZ
12417 /*
12418 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12419 * must be under the same lock in order to serialize against
12420 * perf_event_release_kernel(), such that either we must observe
12421 * is_orphaned_event() or they will observe us on the child_list.
12422 */
12423 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
12424 if (is_orphaned_event(parent_event) ||
12425 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 12426 mutex_unlock(&parent_event->child_mutex);
313ccb96 12427 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
12428 free_event(child_event);
12429 return NULL;
12430 }
12431
97dee4f3
PZ
12432 get_ctx(child_ctx);
12433
12434 /*
12435 * Make the child state follow the state of the parent event,
12436 * not its attr.disabled bit. We hold the parent's mutex,
12437 * so we won't race with perf_event_{en, dis}able_family.
12438 */
1929def9 12439 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
12440 child_event->state = PERF_EVENT_STATE_INACTIVE;
12441 else
12442 child_event->state = PERF_EVENT_STATE_OFF;
12443
12444 if (parent_event->attr.freq) {
12445 u64 sample_period = parent_event->hw.sample_period;
12446 struct hw_perf_event *hwc = &child_event->hw;
12447
12448 hwc->sample_period = sample_period;
12449 hwc->last_period = sample_period;
12450
12451 local64_set(&hwc->period_left, sample_period);
12452 }
12453
12454 child_event->ctx = child_ctx;
12455 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
12456 child_event->overflow_handler_context
12457 = parent_event->overflow_handler_context;
97dee4f3 12458
614b6780
TG
12459 /*
12460 * Precalculate sample_data sizes
12461 */
12462 perf_event__header_size(child_event);
6844c09d 12463 perf_event__id_header_size(child_event);
614b6780 12464
97dee4f3
PZ
12465 /*
12466 * Link it up in the child's context:
12467 */
cee010ec 12468 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 12469 add_event_to_ctx(child_event, child_ctx);
cee010ec 12470 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 12471
97dee4f3
PZ
12472 /*
12473 * Link this into the parent event's child list
12474 */
97dee4f3
PZ
12475 list_add_tail(&child_event->child_list, &parent_event->child_list);
12476 mutex_unlock(&parent_event->child_mutex);
12477
12478 return child_event;
12479}
12480
d8a8cfc7
PZ
12481/*
12482 * Inherits an event group.
12483 *
12484 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12485 * This matches with perf_event_release_kernel() removing all child events.
12486 *
12487 * Returns:
12488 * - 0 on success
12489 * - <0 on error
12490 */
97dee4f3
PZ
12491static int inherit_group(struct perf_event *parent_event,
12492 struct task_struct *parent,
12493 struct perf_event_context *parent_ctx,
12494 struct task_struct *child,
12495 struct perf_event_context *child_ctx)
12496{
12497 struct perf_event *leader;
12498 struct perf_event *sub;
12499 struct perf_event *child_ctr;
12500
12501 leader = inherit_event(parent_event, parent, parent_ctx,
12502 child, NULL, child_ctx);
12503 if (IS_ERR(leader))
12504 return PTR_ERR(leader);
d8a8cfc7
PZ
12505 /*
12506 * @leader can be NULL here because of is_orphaned_event(). In this
12507 * case inherit_event() will create individual events, similar to what
12508 * perf_group_detach() would do anyway.
12509 */
edb39592 12510 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
12511 child_ctr = inherit_event(sub, parent, parent_ctx,
12512 child, leader, child_ctx);
12513 if (IS_ERR(child_ctr))
12514 return PTR_ERR(child_ctr);
f733c6b5 12515
00496fe5 12516 if (sub->aux_event == parent_event && child_ctr &&
f733c6b5
AS
12517 !perf_get_aux_event(child_ctr, leader))
12518 return -EINVAL;
97dee4f3
PZ
12519 }
12520 return 0;
889ff015
FW
12521}
12522
d8a8cfc7
PZ
12523/*
12524 * Creates the child task context and tries to inherit the event-group.
12525 *
12526 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12527 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12528 * consistent with perf_event_release_kernel() removing all child events.
12529 *
12530 * Returns:
12531 * - 0 on success
12532 * - <0 on error
12533 */
889ff015
FW
12534static int
12535inherit_task_group(struct perf_event *event, struct task_struct *parent,
12536 struct perf_event_context *parent_ctx,
8dc85d54 12537 struct task_struct *child, int ctxn,
889ff015
FW
12538 int *inherited_all)
12539{
12540 int ret;
8dc85d54 12541 struct perf_event_context *child_ctx;
889ff015
FW
12542
12543 if (!event->attr.inherit) {
12544 *inherited_all = 0;
12545 return 0;
bbbee908
PZ
12546 }
12547
fe4b04fa 12548 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
12549 if (!child_ctx) {
12550 /*
12551 * This is executed from the parent task context, so
12552 * inherit events that have been marked for cloning.
12553 * First allocate and initialize a context for the
12554 * child.
12555 */
734df5ab 12556 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
12557 if (!child_ctx)
12558 return -ENOMEM;
bbbee908 12559
8dc85d54 12560 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
12561 }
12562
12563 ret = inherit_group(event, parent, parent_ctx,
12564 child, child_ctx);
12565
12566 if (ret)
12567 *inherited_all = 0;
12568
12569 return ret;
bbbee908
PZ
12570}
12571
9b51f66d 12572/*
cdd6c482 12573 * Initialize the perf_event context in task_struct
9b51f66d 12574 */
985c8dcb 12575static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 12576{
889ff015 12577 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
12578 struct perf_event_context *cloned_ctx;
12579 struct perf_event *event;
9b51f66d 12580 struct task_struct *parent = current;
564c2b21 12581 int inherited_all = 1;
dddd3379 12582 unsigned long flags;
6ab423e0 12583 int ret = 0;
9b51f66d 12584
8dc85d54 12585 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
12586 return 0;
12587
ad3a37de 12588 /*
25346b93
PM
12589 * If the parent's context is a clone, pin it so it won't get
12590 * swapped under us.
ad3a37de 12591 */
8dc85d54 12592 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
12593 if (!parent_ctx)
12594 return 0;
25346b93 12595
ad3a37de
PM
12596 /*
12597 * No need to check if parent_ctx != NULL here; since we saw
12598 * it non-NULL earlier, the only reason for it to become NULL
12599 * is if we exit, and since we're currently in the middle of
12600 * a fork we can't be exiting at the same time.
12601 */
ad3a37de 12602
9b51f66d
IM
12603 /*
12604 * Lock the parent list. No need to lock the child - not PID
12605 * hashed yet and not running, so nobody can access it.
12606 */
d859e29f 12607 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
12608
12609 /*
12610 * We dont have to disable NMIs - we are only looking at
12611 * the list, not manipulating it:
12612 */
6e6804d2 12613 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54
PZ
12614 ret = inherit_task_group(event, parent, parent_ctx,
12615 child, ctxn, &inherited_all);
889ff015 12616 if (ret)
e7cc4865 12617 goto out_unlock;
889ff015 12618 }
b93f7978 12619
dddd3379
TG
12620 /*
12621 * We can't hold ctx->lock when iterating the ->flexible_group list due
12622 * to allocations, but we need to prevent rotation because
12623 * rotate_ctx() will change the list from interrupt context.
12624 */
12625 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12626 parent_ctx->rotate_disable = 1;
12627 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12628
6e6804d2 12629 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54
PZ
12630 ret = inherit_task_group(event, parent, parent_ctx,
12631 child, ctxn, &inherited_all);
889ff015 12632 if (ret)
e7cc4865 12633 goto out_unlock;
564c2b21
PM
12634 }
12635
dddd3379
TG
12636 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12637 parent_ctx->rotate_disable = 0;
dddd3379 12638
8dc85d54 12639 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 12640
05cbaa28 12641 if (child_ctx && inherited_all) {
564c2b21
PM
12642 /*
12643 * Mark the child context as a clone of the parent
12644 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
12645 *
12646 * Note that if the parent is a clone, the holding of
12647 * parent_ctx->lock avoids it from being uncloned.
564c2b21 12648 */
c5ed5145 12649 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
12650 if (cloned_ctx) {
12651 child_ctx->parent_ctx = cloned_ctx;
25346b93 12652 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
12653 } else {
12654 child_ctx->parent_ctx = parent_ctx;
12655 child_ctx->parent_gen = parent_ctx->generation;
12656 }
12657 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
12658 }
12659
c5ed5145 12660 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 12661out_unlock:
d859e29f 12662 mutex_unlock(&parent_ctx->mutex);
6ab423e0 12663
25346b93 12664 perf_unpin_context(parent_ctx);
fe4b04fa 12665 put_ctx(parent_ctx);
ad3a37de 12666
6ab423e0 12667 return ret;
9b51f66d
IM
12668}
12669
8dc85d54
PZ
12670/*
12671 * Initialize the perf_event context in task_struct
12672 */
12673int perf_event_init_task(struct task_struct *child)
12674{
12675 int ctxn, ret;
12676
8550d7cb
ON
12677 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12678 mutex_init(&child->perf_event_mutex);
12679 INIT_LIST_HEAD(&child->perf_event_list);
12680
8dc85d54
PZ
12681 for_each_task_context_nr(ctxn) {
12682 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
12683 if (ret) {
12684 perf_event_free_task(child);
8dc85d54 12685 return ret;
6c72e350 12686 }
8dc85d54
PZ
12687 }
12688
12689 return 0;
12690}
12691
220b140b
PM
12692static void __init perf_event_init_all_cpus(void)
12693{
b28ab83c 12694 struct swevent_htable *swhash;
220b140b 12695 int cpu;
220b140b 12696
a63fbed7
TG
12697 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12698
220b140b 12699 for_each_possible_cpu(cpu) {
b28ab83c
PZ
12700 swhash = &per_cpu(swevent_htable, cpu);
12701 mutex_init(&swhash->hlist_mutex);
2fde4f94 12702 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
12703
12704 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12705 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 12706
058fe1c0
DCC
12707#ifdef CONFIG_CGROUP_PERF
12708 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12709#endif
e48c1788 12710 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
12711 }
12712}
12713
d18bf422 12714static void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 12715{
108b02cf 12716 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 12717
b28ab83c 12718 mutex_lock(&swhash->hlist_mutex);
059fcd8c 12719 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
12720 struct swevent_hlist *hlist;
12721
b28ab83c
PZ
12722 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12723 WARN_ON(!hlist);
12724 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 12725 }
b28ab83c 12726 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
12727}
12728
2965faa5 12729#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 12730static void __perf_event_exit_context(void *__info)
0793a61d 12731{
108b02cf 12732 struct perf_event_context *ctx = __info;
fae3fde6
PZ
12733 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12734 struct perf_event *event;
0793a61d 12735
fae3fde6 12736 raw_spin_lock(&ctx->lock);
0ee098c9 12737 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 12738 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 12739 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 12740 raw_spin_unlock(&ctx->lock);
0793a61d 12741}
108b02cf
PZ
12742
12743static void perf_event_exit_cpu_context(int cpu)
12744{
a63fbed7 12745 struct perf_cpu_context *cpuctx;
108b02cf
PZ
12746 struct perf_event_context *ctx;
12747 struct pmu *pmu;
108b02cf 12748
a63fbed7
TG
12749 mutex_lock(&pmus_lock);
12750 list_for_each_entry(pmu, &pmus, entry) {
12751 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12752 ctx = &cpuctx->ctx;
108b02cf
PZ
12753
12754 mutex_lock(&ctx->mutex);
12755 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 12756 cpuctx->online = 0;
108b02cf
PZ
12757 mutex_unlock(&ctx->mutex);
12758 }
a63fbed7
TG
12759 cpumask_clear_cpu(cpu, perf_online_mask);
12760 mutex_unlock(&pmus_lock);
108b02cf 12761}
00e16c3d
TG
12762#else
12763
12764static void perf_event_exit_cpu_context(int cpu) { }
12765
12766#endif
108b02cf 12767
a63fbed7
TG
12768int perf_event_init_cpu(unsigned int cpu)
12769{
12770 struct perf_cpu_context *cpuctx;
12771 struct perf_event_context *ctx;
12772 struct pmu *pmu;
12773
12774 perf_swevent_init_cpu(cpu);
12775
12776 mutex_lock(&pmus_lock);
12777 cpumask_set_cpu(cpu, perf_online_mask);
12778 list_for_each_entry(pmu, &pmus, entry) {
12779 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12780 ctx = &cpuctx->ctx;
12781
12782 mutex_lock(&ctx->mutex);
12783 cpuctx->online = 1;
12784 mutex_unlock(&ctx->mutex);
12785 }
12786 mutex_unlock(&pmus_lock);
12787
12788 return 0;
12789}
12790
00e16c3d 12791int perf_event_exit_cpu(unsigned int cpu)
0793a61d 12792{
e3703f8c 12793 perf_event_exit_cpu_context(cpu);
00e16c3d 12794 return 0;
0793a61d 12795}
0793a61d 12796
c277443c
PZ
12797static int
12798perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12799{
12800 int cpu;
12801
12802 for_each_online_cpu(cpu)
12803 perf_event_exit_cpu(cpu);
12804
12805 return NOTIFY_OK;
12806}
12807
12808/*
12809 * Run the perf reboot notifier at the very last possible moment so that
12810 * the generic watchdog code runs as long as possible.
12811 */
12812static struct notifier_block perf_reboot_notifier = {
12813 .notifier_call = perf_reboot,
12814 .priority = INT_MIN,
12815};
12816
cdd6c482 12817void __init perf_event_init(void)
0793a61d 12818{
3c502e7a
JW
12819 int ret;
12820
2e80a82a
PZ
12821 idr_init(&pmu_idr);
12822
220b140b 12823 perf_event_init_all_cpus();
b0a873eb 12824 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
12825 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12826 perf_pmu_register(&perf_cpu_clock, NULL, -1);
12827 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 12828 perf_tp_register();
00e16c3d 12829 perf_event_init_cpu(smp_processor_id());
c277443c 12830 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
12831
12832 ret = init_hw_breakpoint();
12833 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 12834
b01c3a00
JO
12835 /*
12836 * Build time assertion that we keep the data_head at the intended
12837 * location. IOW, validation we got the __reserved[] size right.
12838 */
12839 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12840 != 1024);
0793a61d 12841}
abe43400 12842
fd979c01
CS
12843ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12844 char *page)
12845{
12846 struct perf_pmu_events_attr *pmu_attr =
12847 container_of(attr, struct perf_pmu_events_attr, attr);
12848
12849 if (pmu_attr->event_str)
12850 return sprintf(page, "%s\n", pmu_attr->event_str);
12851
12852 return 0;
12853}
675965b0 12854EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 12855
abe43400
PZ
12856static int __init perf_event_sysfs_init(void)
12857{
12858 struct pmu *pmu;
12859 int ret;
12860
12861 mutex_lock(&pmus_lock);
12862
12863 ret = bus_register(&pmu_bus);
12864 if (ret)
12865 goto unlock;
12866
12867 list_for_each_entry(pmu, &pmus, entry) {
12868 if (!pmu->name || pmu->type < 0)
12869 continue;
12870
12871 ret = pmu_dev_alloc(pmu);
12872 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12873 }
12874 pmu_bus_running = 1;
12875 ret = 0;
12876
12877unlock:
12878 mutex_unlock(&pmus_lock);
12879
12880 return ret;
12881}
12882device_initcall(perf_event_sysfs_init);
e5d1367f
SE
12883
12884#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
12885static struct cgroup_subsys_state *
12886perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
12887{
12888 struct perf_cgroup *jc;
e5d1367f 12889
1b15d055 12890 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
12891 if (!jc)
12892 return ERR_PTR(-ENOMEM);
12893
e5d1367f
SE
12894 jc->info = alloc_percpu(struct perf_cgroup_info);
12895 if (!jc->info) {
12896 kfree(jc);
12897 return ERR_PTR(-ENOMEM);
12898 }
12899
e5d1367f
SE
12900 return &jc->css;
12901}
12902
eb95419b 12903static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 12904{
eb95419b
TH
12905 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12906
e5d1367f
SE
12907 free_percpu(jc->info);
12908 kfree(jc);
12909}
12910
96aaab68
NK
12911static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
12912{
12913 perf_event_cgroup(css->cgroup);
12914 return 0;
12915}
12916
e5d1367f
SE
12917static int __perf_cgroup_move(void *info)
12918{
12919 struct task_struct *task = info;
ddaaf4e2 12920 rcu_read_lock();
e5d1367f 12921 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 12922 rcu_read_unlock();
e5d1367f
SE
12923 return 0;
12924}
12925
1f7dd3e5 12926static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 12927{
bb9d97b6 12928 struct task_struct *task;
1f7dd3e5 12929 struct cgroup_subsys_state *css;
bb9d97b6 12930
1f7dd3e5 12931 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 12932 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
12933}
12934
073219e9 12935struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
12936 .css_alloc = perf_cgroup_css_alloc,
12937 .css_free = perf_cgroup_css_free,
96aaab68 12938 .css_online = perf_cgroup_css_online,
bb9d97b6 12939 .attach = perf_cgroup_attach,
968ebff1
TH
12940 /*
12941 * Implicitly enable on dfl hierarchy so that perf events can
12942 * always be filtered by cgroup2 path as long as perf_event
12943 * controller is not mounted on a legacy hierarchy.
12944 */
12945 .implicit_on_dfl = true,
8cfd8147 12946 .threaded = true,
e5d1367f
SE
12947};
12948#endif /* CONFIG_CGROUP_PERF */