]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/events/core.c
perf/core: Fix the mlock accounting, again
[mirror_ubuntu-jammy-kernel.git] / kernel / events / core.c
CommitLineData
8e86e015 1// SPDX-License-Identifier: GPL-2.0
0793a61d 2/*
57c0c15b 3 * Performance events core code:
0793a61d 4 *
98144511 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
2e80a82a 15#include <linux/idr.h>
04289bb9 16#include <linux/file.h>
0793a61d 17#include <linux/poll.h>
5a0e3ad6 18#include <linux/slab.h>
76e1d904 19#include <linux/hash.h>
12351ef8 20#include <linux/tick.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
39bed6cb 36#include <linux/cgroup.h>
cdd6c482 37#include <linux/perf_event.h>
af658dca 38#include <linux/trace_events.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
c464c76e 41#include <linux/module.h>
f972eb63 42#include <linux/mman.h>
b3f20785 43#include <linux/compat.h>
2541517c
AS
44#include <linux/bpf.h>
45#include <linux/filter.h>
375637bc
AS
46#include <linux/namei.h>
47#include <linux/parser.h>
e6017571 48#include <linux/sched/clock.h>
6e84f315 49#include <linux/sched/mm.h>
e4222673
HB
50#include <linux/proc_ns.h>
51#include <linux/mount.h>
0793a61d 52
76369139
FW
53#include "internal.h"
54
4e193bd4
TB
55#include <asm/irq_regs.h>
56
272325c4
PZ
57typedef int (*remote_function_f)(void *);
58
fe4b04fa 59struct remote_function_call {
e7e7ee2e 60 struct task_struct *p;
272325c4 61 remote_function_f func;
e7e7ee2e
IM
62 void *info;
63 int ret;
fe4b04fa
PZ
64};
65
66static void remote_function(void *data)
67{
68 struct remote_function_call *tfc = data;
69 struct task_struct *p = tfc->p;
70
71 if (p) {
0da4cf3e
PZ
72 /* -EAGAIN */
73 if (task_cpu(p) != smp_processor_id())
74 return;
75
76 /*
77 * Now that we're on right CPU with IRQs disabled, we can test
78 * if we hit the right task without races.
79 */
80
81 tfc->ret = -ESRCH; /* No such (running) process */
82 if (p != current)
fe4b04fa
PZ
83 return;
84 }
85
86 tfc->ret = tfc->func(tfc->info);
87}
88
89/**
90 * task_function_call - call a function on the cpu on which a task runs
91 * @p: the task to evaluate
92 * @func: the function to be called
93 * @info: the function call argument
94 *
95 * Calls the function @func when the task is currently running. This might
96 * be on the current CPU, which just calls the function directly
97 *
98 * returns: @func return value, or
99 * -ESRCH - when the process isn't running
100 * -EAGAIN - when the process moved away
101 */
102static int
272325c4 103task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
104{
105 struct remote_function_call data = {
e7e7ee2e
IM
106 .p = p,
107 .func = func,
108 .info = info,
0da4cf3e 109 .ret = -EAGAIN,
fe4b04fa 110 };
0da4cf3e 111 int ret;
fe4b04fa 112
0da4cf3e
PZ
113 do {
114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 if (!ret)
116 ret = data.ret;
117 } while (ret == -EAGAIN);
fe4b04fa 118
0da4cf3e 119 return ret;
fe4b04fa
PZ
120}
121
122/**
123 * cpu_function_call - call a function on the cpu
124 * @func: the function to be called
125 * @info: the function call argument
126 *
127 * Calls the function @func on the remote cpu.
128 *
129 * returns: @func return value or -ENXIO when the cpu is offline
130 */
272325c4 131static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
132{
133 struct remote_function_call data = {
e7e7ee2e
IM
134 .p = NULL,
135 .func = func,
136 .info = info,
137 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
138 };
139
140 smp_call_function_single(cpu, remote_function, &data, 1);
141
142 return data.ret;
143}
144
fae3fde6
PZ
145static inline struct perf_cpu_context *
146__get_cpu_context(struct perf_event_context *ctx)
147{
148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149}
150
151static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 struct perf_event_context *ctx)
0017960f 153{
fae3fde6
PZ
154 raw_spin_lock(&cpuctx->ctx.lock);
155 if (ctx)
156 raw_spin_lock(&ctx->lock);
157}
158
159static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
161{
162 if (ctx)
163 raw_spin_unlock(&ctx->lock);
164 raw_spin_unlock(&cpuctx->ctx.lock);
165}
166
63b6da39
PZ
167#define TASK_TOMBSTONE ((void *)-1L)
168
169static bool is_kernel_event(struct perf_event *event)
170{
f47c02c0 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
172}
173
39a43640
PZ
174/*
175 * On task ctx scheduling...
176 *
177 * When !ctx->nr_events a task context will not be scheduled. This means
178 * we can disable the scheduler hooks (for performance) without leaving
179 * pending task ctx state.
180 *
181 * This however results in two special cases:
182 *
183 * - removing the last event from a task ctx; this is relatively straight
184 * forward and is done in __perf_remove_from_context.
185 *
186 * - adding the first event to a task ctx; this is tricky because we cannot
187 * rely on ctx->is_active and therefore cannot use event_function_call().
188 * See perf_install_in_context().
189 *
39a43640
PZ
190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191 */
192
fae3fde6
PZ
193typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 struct perf_event_context *, void *);
195
196struct event_function_struct {
197 struct perf_event *event;
198 event_f func;
199 void *data;
200};
201
202static int event_function(void *info)
203{
204 struct event_function_struct *efs = info;
205 struct perf_event *event = efs->event;
0017960f 206 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 209 int ret = 0;
fae3fde6 210
16444645 211 lockdep_assert_irqs_disabled();
fae3fde6 212
63b6da39 213 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
214 /*
215 * Since we do the IPI call without holding ctx->lock things can have
216 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
217 */
218 if (ctx->task) {
63b6da39 219 if (ctx->task != current) {
0da4cf3e 220 ret = -ESRCH;
63b6da39
PZ
221 goto unlock;
222 }
fae3fde6 223
fae3fde6
PZ
224 /*
225 * We only use event_function_call() on established contexts,
226 * and event_function() is only ever called when active (or
227 * rather, we'll have bailed in task_function_call() or the
228 * above ctx->task != current test), therefore we must have
229 * ctx->is_active here.
230 */
231 WARN_ON_ONCE(!ctx->is_active);
232 /*
233 * And since we have ctx->is_active, cpuctx->task_ctx must
234 * match.
235 */
63b6da39
PZ
236 WARN_ON_ONCE(task_ctx != ctx);
237 } else {
238 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 239 }
63b6da39 240
fae3fde6 241 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 242unlock:
fae3fde6
PZ
243 perf_ctx_unlock(cpuctx, task_ctx);
244
63b6da39 245 return ret;
fae3fde6
PZ
246}
247
fae3fde6 248static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
249{
250 struct perf_event_context *ctx = event->ctx;
63b6da39 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
252 struct event_function_struct efs = {
253 .event = event,
254 .func = func,
255 .data = data,
256 };
0017960f 257
c97f4736
PZ
258 if (!event->parent) {
259 /*
260 * If this is a !child event, we must hold ctx::mutex to
261 * stabilize the the event->ctx relation. See
262 * perf_event_ctx_lock().
263 */
264 lockdep_assert_held(&ctx->mutex);
265 }
0017960f
PZ
266
267 if (!task) {
fae3fde6 268 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
269 return;
270 }
271
63b6da39
PZ
272 if (task == TASK_TOMBSTONE)
273 return;
274
a096309b 275again:
fae3fde6 276 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
277 return;
278
279 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
280 /*
281 * Reload the task pointer, it might have been changed by
282 * a concurrent perf_event_context_sched_out().
283 */
284 task = ctx->task;
a096309b
PZ
285 if (task == TASK_TOMBSTONE) {
286 raw_spin_unlock_irq(&ctx->lock);
287 return;
0017960f 288 }
a096309b
PZ
289 if (ctx->is_active) {
290 raw_spin_unlock_irq(&ctx->lock);
291 goto again;
292 }
293 func(event, NULL, ctx, data);
0017960f
PZ
294 raw_spin_unlock_irq(&ctx->lock);
295}
296
cca20946
PZ
297/*
298 * Similar to event_function_call() + event_function(), but hard assumes IRQs
299 * are already disabled and we're on the right CPU.
300 */
301static void event_function_local(struct perf_event *event, event_f func, void *data)
302{
303 struct perf_event_context *ctx = event->ctx;
304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 struct task_struct *task = READ_ONCE(ctx->task);
306 struct perf_event_context *task_ctx = NULL;
307
16444645 308 lockdep_assert_irqs_disabled();
cca20946
PZ
309
310 if (task) {
311 if (task == TASK_TOMBSTONE)
312 return;
313
314 task_ctx = ctx;
315 }
316
317 perf_ctx_lock(cpuctx, task_ctx);
318
319 task = ctx->task;
320 if (task == TASK_TOMBSTONE)
321 goto unlock;
322
323 if (task) {
324 /*
325 * We must be either inactive or active and the right task,
326 * otherwise we're screwed, since we cannot IPI to somewhere
327 * else.
328 */
329 if (ctx->is_active) {
330 if (WARN_ON_ONCE(task != current))
331 goto unlock;
332
333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 goto unlock;
335 }
336 } else {
337 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 }
339
340 func(event, cpuctx, ctx, data);
341unlock:
342 perf_ctx_unlock(cpuctx, task_ctx);
343}
344
e5d1367f
SE
345#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
347 PERF_FLAG_PID_CGROUP |\
348 PERF_FLAG_FD_CLOEXEC)
e5d1367f 349
bce38cd5
SE
350/*
351 * branch priv levels that need permission checks
352 */
353#define PERF_SAMPLE_BRANCH_PERM_PLM \
354 (PERF_SAMPLE_BRANCH_KERNEL |\
355 PERF_SAMPLE_BRANCH_HV)
356
0b3fcf17
SE
357enum event_type_t {
358 EVENT_FLEXIBLE = 0x1,
359 EVENT_PINNED = 0x2,
3cbaa590 360 EVENT_TIME = 0x4,
487f05e1
AS
361 /* see ctx_resched() for details */
362 EVENT_CPU = 0x8,
0b3fcf17
SE
363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364};
365
e5d1367f
SE
366/*
367 * perf_sched_events : >0 events exist
368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369 */
9107c89e
PZ
370
371static void perf_sched_delayed(struct work_struct *work);
372DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374static DEFINE_MUTEX(perf_sched_mutex);
375static atomic_t perf_sched_count;
376
e5d1367f 377static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 378static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 379static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 380
cdd6c482
IM
381static atomic_t nr_mmap_events __read_mostly;
382static atomic_t nr_comm_events __read_mostly;
e4222673 383static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 384static atomic_t nr_task_events __read_mostly;
948b26b6 385static atomic_t nr_freq_events __read_mostly;
45ac1403 386static atomic_t nr_switch_events __read_mostly;
76193a94 387static atomic_t nr_ksymbol_events __read_mostly;
6ee52e2a 388static atomic_t nr_bpf_events __read_mostly;
9ee318a7 389
108b02cf
PZ
390static LIST_HEAD(pmus);
391static DEFINE_MUTEX(pmus_lock);
392static struct srcu_struct pmus_srcu;
a63fbed7 393static cpumask_var_t perf_online_mask;
108b02cf 394
0764771d 395/*
cdd6c482 396 * perf event paranoia level:
0fbdea19
IM
397 * -1 - not paranoid at all
398 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 399 * 1 - disallow cpu events for unpriv
0fbdea19 400 * 2 - disallow kernel profiling for unpriv
0764771d 401 */
0161028b 402int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 403
20443384
FW
404/* Minimum for 512 kiB + 1 user control page */
405int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
406
407/*
cdd6c482 408 * max perf event sample rate
df58ab24 409 */
14c63f17
DH
410#define DEFAULT_MAX_SAMPLE_RATE 100000
411#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412#define DEFAULT_CPU_TIME_MAX_PERCENT 25
413
414int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
418
d9494cb4
PZ
419static int perf_sample_allowed_ns __read_mostly =
420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 421
18ab2cd3 422static void update_perf_cpu_limits(void)
14c63f17
DH
423{
424 u64 tmp = perf_sample_period_ns;
425
426 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
427 tmp = div_u64(tmp, 100);
428 if (!tmp)
429 tmp = 1;
430
431 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 432}
163ec435 433
8d5bce0c 434static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
9e630205 435
163ec435
PZ
436int perf_proc_update_handler(struct ctl_table *table, int write,
437 void __user *buffer, size_t *lenp,
438 loff_t *ppos)
439{
1a51c5da
SE
440 int ret;
441 int perf_cpu = sysctl_perf_cpu_time_max_percent;
ab7fdefb
KL
442 /*
443 * If throttling is disabled don't allow the write:
444 */
1a51c5da 445 if (write && (perf_cpu == 100 || perf_cpu == 0))
ab7fdefb
KL
446 return -EINVAL;
447
1a51c5da
SE
448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 if (ret || !write)
450 return ret;
451
163ec435 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 update_perf_cpu_limits();
455
456 return 0;
457}
458
459int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 void __user *buffer, size_t *lenp,
463 loff_t *ppos)
464{
1572e45a 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
466
467 if (ret || !write)
468 return ret;
469
b303e7c1
PZ
470 if (sysctl_perf_cpu_time_max_percent == 100 ||
471 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
472 printk(KERN_WARNING
473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 WRITE_ONCE(perf_sample_allowed_ns, 0);
475 } else {
476 update_perf_cpu_limits();
477 }
163ec435
PZ
478
479 return 0;
480}
1ccd1549 481
14c63f17
DH
482/*
483 * perf samples are done in some very critical code paths (NMIs).
484 * If they take too much CPU time, the system can lock up and not
485 * get any real work done. This will drop the sample rate when
486 * we detect that events are taking too long.
487 */
488#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 489static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 490
91a612ee
PZ
491static u64 __report_avg;
492static u64 __report_allowed;
493
6a02ad66 494static void perf_duration_warn(struct irq_work *w)
14c63f17 495{
0d87d7ec 496 printk_ratelimited(KERN_INFO
91a612ee
PZ
497 "perf: interrupt took too long (%lld > %lld), lowering "
498 "kernel.perf_event_max_sample_rate to %d\n",
499 __report_avg, __report_allowed,
500 sysctl_perf_event_sample_rate);
6a02ad66
PZ
501}
502
503static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505void perf_sample_event_took(u64 sample_len_ns)
506{
91a612ee
PZ
507 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 u64 running_len;
509 u64 avg_len;
510 u32 max;
14c63f17 511
91a612ee 512 if (max_len == 0)
14c63f17
DH
513 return;
514
91a612ee
PZ
515 /* Decay the counter by 1 average sample. */
516 running_len = __this_cpu_read(running_sample_length);
517 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 running_len += sample_len_ns;
519 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
520
521 /*
91a612ee
PZ
522 * Note: this will be biased artifically low until we have
523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
524 * from having to maintain a count.
525 */
91a612ee
PZ
526 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 if (avg_len <= max_len)
14c63f17
DH
528 return;
529
91a612ee
PZ
530 __report_avg = avg_len;
531 __report_allowed = max_len;
14c63f17 532
91a612ee
PZ
533 /*
534 * Compute a throttle threshold 25% below the current duration.
535 */
536 avg_len += avg_len / 4;
537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 if (avg_len < max)
539 max /= (u32)avg_len;
540 else
541 max = 1;
14c63f17 542
91a612ee
PZ
543 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 WRITE_ONCE(max_samples_per_tick, max);
545
546 sysctl_perf_event_sample_rate = max * HZ;
547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 548
cd578abb 549 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 551 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 552 __report_avg, __report_allowed,
cd578abb
PZ
553 sysctl_perf_event_sample_rate);
554 }
14c63f17
DH
555}
556
cdd6c482 557static atomic64_t perf_event_id;
a96bbc16 558
0b3fcf17
SE
559static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 enum event_type_t event_type);
561
562static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
563 enum event_type_t event_type,
564 struct task_struct *task);
565
566static void update_context_time(struct perf_event_context *ctx);
567static u64 perf_event_time(struct perf_event *event);
0b3fcf17 568
cdd6c482 569void __weak perf_event_print_debug(void) { }
0793a61d 570
84c79910 571extern __weak const char *perf_pmu_name(void)
0793a61d 572{
84c79910 573 return "pmu";
0793a61d
TG
574}
575
0b3fcf17
SE
576static inline u64 perf_clock(void)
577{
578 return local_clock();
579}
580
34f43927
PZ
581static inline u64 perf_event_clock(struct perf_event *event)
582{
583 return event->clock();
584}
585
0d3d73aa
PZ
586/*
587 * State based event timekeeping...
588 *
589 * The basic idea is to use event->state to determine which (if any) time
590 * fields to increment with the current delta. This means we only need to
591 * update timestamps when we change state or when they are explicitly requested
592 * (read).
593 *
594 * Event groups make things a little more complicated, but not terribly so. The
595 * rules for a group are that if the group leader is OFF the entire group is
596 * OFF, irrespecive of what the group member states are. This results in
597 * __perf_effective_state().
598 *
599 * A futher ramification is that when a group leader flips between OFF and
600 * !OFF, we need to update all group member times.
601 *
602 *
603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604 * need to make sure the relevant context time is updated before we try and
605 * update our timestamps.
606 */
607
608static __always_inline enum perf_event_state
609__perf_effective_state(struct perf_event *event)
610{
611 struct perf_event *leader = event->group_leader;
612
613 if (leader->state <= PERF_EVENT_STATE_OFF)
614 return leader->state;
615
616 return event->state;
617}
618
619static __always_inline void
620__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621{
622 enum perf_event_state state = __perf_effective_state(event);
623 u64 delta = now - event->tstamp;
624
625 *enabled = event->total_time_enabled;
626 if (state >= PERF_EVENT_STATE_INACTIVE)
627 *enabled += delta;
628
629 *running = event->total_time_running;
630 if (state >= PERF_EVENT_STATE_ACTIVE)
631 *running += delta;
632}
633
634static void perf_event_update_time(struct perf_event *event)
635{
636 u64 now = perf_event_time(event);
637
638 __perf_update_times(event, now, &event->total_time_enabled,
639 &event->total_time_running);
640 event->tstamp = now;
641}
642
643static void perf_event_update_sibling_time(struct perf_event *leader)
644{
645 struct perf_event *sibling;
646
edb39592 647 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
648 perf_event_update_time(sibling);
649}
650
651static void
652perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653{
654 if (event->state == state)
655 return;
656
657 perf_event_update_time(event);
658 /*
659 * If a group leader gets enabled/disabled all its siblings
660 * are affected too.
661 */
662 if ((event->state < 0) ^ (state < 0))
663 perf_event_update_sibling_time(event);
664
665 WRITE_ONCE(event->state, state);
666}
667
e5d1367f
SE
668#ifdef CONFIG_CGROUP_PERF
669
e5d1367f
SE
670static inline bool
671perf_cgroup_match(struct perf_event *event)
672{
673 struct perf_event_context *ctx = event->ctx;
674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
ef824fa1
TH
676 /* @event doesn't care about cgroup */
677 if (!event->cgrp)
678 return true;
679
680 /* wants specific cgroup scope but @cpuctx isn't associated with any */
681 if (!cpuctx->cgrp)
682 return false;
683
684 /*
685 * Cgroup scoping is recursive. An event enabled for a cgroup is
686 * also enabled for all its descendant cgroups. If @cpuctx's
687 * cgroup is a descendant of @event's (the test covers identity
688 * case), it's a match.
689 */
690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 event->cgrp->css.cgroup);
e5d1367f
SE
692}
693
e5d1367f
SE
694static inline void perf_detach_cgroup(struct perf_event *event)
695{
4e2ba650 696 css_put(&event->cgrp->css);
e5d1367f
SE
697 event->cgrp = NULL;
698}
699
700static inline int is_cgroup_event(struct perf_event *event)
701{
702 return event->cgrp != NULL;
703}
704
705static inline u64 perf_cgroup_event_time(struct perf_event *event)
706{
707 struct perf_cgroup_info *t;
708
709 t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 return t->time;
711}
712
713static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714{
715 struct perf_cgroup_info *info;
716 u64 now;
717
718 now = perf_clock();
719
720 info = this_cpu_ptr(cgrp->info);
721
722 info->time += now - info->timestamp;
723 info->timestamp = now;
724}
725
726static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727{
c917e0f2
SL
728 struct perf_cgroup *cgrp = cpuctx->cgrp;
729 struct cgroup_subsys_state *css;
730
731 if (cgrp) {
732 for (css = &cgrp->css; css; css = css->parent) {
733 cgrp = container_of(css, struct perf_cgroup, css);
734 __update_cgrp_time(cgrp);
735 }
736 }
e5d1367f
SE
737}
738
739static inline void update_cgrp_time_from_event(struct perf_event *event)
740{
3f7cce3c
SE
741 struct perf_cgroup *cgrp;
742
e5d1367f 743 /*
3f7cce3c
SE
744 * ensure we access cgroup data only when needed and
745 * when we know the cgroup is pinned (css_get)
e5d1367f 746 */
3f7cce3c 747 if (!is_cgroup_event(event))
e5d1367f
SE
748 return;
749
614e4c4e 750 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
751 /*
752 * Do not update time when cgroup is not active
753 */
28fa741c 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 755 __update_cgrp_time(event->cgrp);
e5d1367f
SE
756}
757
758static inline void
3f7cce3c
SE
759perf_cgroup_set_timestamp(struct task_struct *task,
760 struct perf_event_context *ctx)
e5d1367f
SE
761{
762 struct perf_cgroup *cgrp;
763 struct perf_cgroup_info *info;
c917e0f2 764 struct cgroup_subsys_state *css;
e5d1367f 765
3f7cce3c
SE
766 /*
767 * ctx->lock held by caller
768 * ensure we do not access cgroup data
769 * unless we have the cgroup pinned (css_get)
770 */
771 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
772 return;
773
614e4c4e 774 cgrp = perf_cgroup_from_task(task, ctx);
c917e0f2
SL
775
776 for (css = &cgrp->css; css; css = css->parent) {
777 cgrp = container_of(css, struct perf_cgroup, css);
778 info = this_cpu_ptr(cgrp->info);
779 info->timestamp = ctx->timestamp;
780 }
e5d1367f
SE
781}
782
058fe1c0
DCC
783static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
e5d1367f
SE
785#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
786#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
787
788/*
789 * reschedule events based on the cgroup constraint of task.
790 *
791 * mode SWOUT : schedule out everything
792 * mode SWIN : schedule in based on cgroup for next
793 */
18ab2cd3 794static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
795{
796 struct perf_cpu_context *cpuctx;
058fe1c0 797 struct list_head *list;
e5d1367f
SE
798 unsigned long flags;
799
800 /*
058fe1c0
DCC
801 * Disable interrupts and preemption to avoid this CPU's
802 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
803 */
804 local_irq_save(flags);
805
058fe1c0
DCC
806 list = this_cpu_ptr(&cgrp_cpuctx_list);
807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 809
058fe1c0
DCC
810 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 812
058fe1c0
DCC
813 if (mode & PERF_CGROUP_SWOUT) {
814 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 /*
816 * must not be done before ctxswout due
817 * to event_filter_match() in event_sched_out()
818 */
819 cpuctx->cgrp = NULL;
820 }
e5d1367f 821
058fe1c0
DCC
822 if (mode & PERF_CGROUP_SWIN) {
823 WARN_ON_ONCE(cpuctx->cgrp);
824 /*
825 * set cgrp before ctxsw in to allow
826 * event_filter_match() to not have to pass
827 * task around
828 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 * because cgorup events are only per-cpu
830 */
831 cpuctx->cgrp = perf_cgroup_from_task(task,
832 &cpuctx->ctx);
833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 834 }
058fe1c0
DCC
835 perf_pmu_enable(cpuctx->ctx.pmu);
836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
837 }
838
e5d1367f
SE
839 local_irq_restore(flags);
840}
841
a8d757ef
SE
842static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
e5d1367f 844{
a8d757ef
SE
845 struct perf_cgroup *cgrp1;
846 struct perf_cgroup *cgrp2 = NULL;
847
ddaaf4e2 848 rcu_read_lock();
a8d757ef
SE
849 /*
850 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
851 * we do not need to pass the ctx here because we know
852 * we are holding the rcu lock
a8d757ef 853 */
614e4c4e 854 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 855 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
856
857 /*
858 * only schedule out current cgroup events if we know
859 * that we are switching to a different cgroup. Otherwise,
860 * do no touch the cgroup events.
861 */
862 if (cgrp1 != cgrp2)
863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
864
865 rcu_read_unlock();
e5d1367f
SE
866}
867
a8d757ef
SE
868static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 struct task_struct *task)
e5d1367f 870{
a8d757ef
SE
871 struct perf_cgroup *cgrp1;
872 struct perf_cgroup *cgrp2 = NULL;
873
ddaaf4e2 874 rcu_read_lock();
a8d757ef
SE
875 /*
876 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
877 * we do not need to pass the ctx here because we know
878 * we are holding the rcu lock
a8d757ef 879 */
614e4c4e 880 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 881 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
882
883 /*
884 * only need to schedule in cgroup events if we are changing
885 * cgroup during ctxsw. Cgroup events were not scheduled
886 * out of ctxsw out if that was not the case.
887 */
888 if (cgrp1 != cgrp2)
889 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
890
891 rcu_read_unlock();
e5d1367f
SE
892}
893
894static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 struct perf_event_attr *attr,
896 struct perf_event *group_leader)
897{
898 struct perf_cgroup *cgrp;
899 struct cgroup_subsys_state *css;
2903ff01
AV
900 struct fd f = fdget(fd);
901 int ret = 0;
e5d1367f 902
2903ff01 903 if (!f.file)
e5d1367f
SE
904 return -EBADF;
905
b583043e 906 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 907 &perf_event_cgrp_subsys);
3db272c0
LZ
908 if (IS_ERR(css)) {
909 ret = PTR_ERR(css);
910 goto out;
911 }
e5d1367f
SE
912
913 cgrp = container_of(css, struct perf_cgroup, css);
914 event->cgrp = cgrp;
915
916 /*
917 * all events in a group must monitor
918 * the same cgroup because a task belongs
919 * to only one perf cgroup at a time
920 */
921 if (group_leader && group_leader->cgrp != cgrp) {
922 perf_detach_cgroup(event);
923 ret = -EINVAL;
e5d1367f 924 }
3db272c0 925out:
2903ff01 926 fdput(f);
e5d1367f
SE
927 return ret;
928}
929
930static inline void
931perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932{
933 struct perf_cgroup_info *t;
934 t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 event->shadow_ctx_time = now - t->timestamp;
936}
937
db4a8356
DCC
938/*
939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940 * cleared when last cgroup event is removed.
941 */
942static inline void
943list_update_cgroup_event(struct perf_event *event,
944 struct perf_event_context *ctx, bool add)
945{
946 struct perf_cpu_context *cpuctx;
058fe1c0 947 struct list_head *cpuctx_entry;
db4a8356
DCC
948
949 if (!is_cgroup_event(event))
950 return;
951
db4a8356
DCC
952 /*
953 * Because cgroup events are always per-cpu events,
954 * this will always be called from the right CPU.
955 */
956 cpuctx = __get_cpu_context(ctx);
33801b94 957
958 /*
959 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 * matching the event's cgroup, we must do this for every new event,
961 * because if the first would mismatch, the second would not try again
962 * and we would leave cpuctx->cgrp unset.
963 */
964 if (add && !cpuctx->cgrp) {
be96b316
TH
965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
be96b316
TH
967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 cpuctx->cgrp = cgrp;
058fe1c0 969 }
33801b94 970
971 if (add && ctx->nr_cgroups++)
972 return;
973 else if (!add && --ctx->nr_cgroups)
974 return;
975
976 /* no cgroup running */
977 if (!add)
978 cpuctx->cgrp = NULL;
979
980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 if (add)
982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 else
984 list_del(cpuctx_entry);
db4a8356
DCC
985}
986
e5d1367f
SE
987#else /* !CONFIG_CGROUP_PERF */
988
989static inline bool
990perf_cgroup_match(struct perf_event *event)
991{
992 return true;
993}
994
995static inline void perf_detach_cgroup(struct perf_event *event)
996{}
997
998static inline int is_cgroup_event(struct perf_event *event)
999{
1000 return 0;
1001}
1002
e5d1367f
SE
1003static inline void update_cgrp_time_from_event(struct perf_event *event)
1004{
1005}
1006
1007static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008{
1009}
1010
a8d757ef
SE
1011static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 struct task_struct *next)
e5d1367f
SE
1013{
1014}
1015
a8d757ef
SE
1016static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 struct task_struct *task)
e5d1367f
SE
1018{
1019}
1020
1021static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 struct perf_event_attr *attr,
1023 struct perf_event *group_leader)
1024{
1025 return -EINVAL;
1026}
1027
1028static inline void
3f7cce3c
SE
1029perf_cgroup_set_timestamp(struct task_struct *task,
1030 struct perf_event_context *ctx)
e5d1367f
SE
1031{
1032}
1033
d00dbd29 1034static inline void
e5d1367f
SE
1035perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036{
1037}
1038
1039static inline void
1040perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041{
1042}
1043
1044static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045{
1046 return 0;
1047}
1048
db4a8356
DCC
1049static inline void
1050list_update_cgroup_event(struct perf_event *event,
1051 struct perf_event_context *ctx, bool add)
1052{
1053}
1054
e5d1367f
SE
1055#endif
1056
9e630205
SE
1057/*
1058 * set default to be dependent on timer tick just
1059 * like original code
1060 */
1061#define PERF_CPU_HRTIMER (1000 / HZ)
1062/*
8a1115ff 1063 * function must be called with interrupts disabled
9e630205 1064 */
272325c4 1065static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1066{
1067 struct perf_cpu_context *cpuctx;
8d5bce0c 1068 bool rotations;
9e630205 1069
16444645 1070 lockdep_assert_irqs_disabled();
9e630205
SE
1071
1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1073 rotations = perf_rotate_context(cpuctx);
1074
4cfafd30
PZ
1075 raw_spin_lock(&cpuctx->hrtimer_lock);
1076 if (rotations)
9e630205 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1078 else
1079 cpuctx->hrtimer_active = 0;
1080 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1081
4cfafd30 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1083}
1084
272325c4 1085static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1086{
272325c4 1087 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1088 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1089 u64 interval;
9e630205
SE
1090
1091 /* no multiplexing needed for SW PMU */
1092 if (pmu->task_ctx_nr == perf_sw_context)
1093 return;
1094
62b85639
SE
1095 /*
1096 * check default is sane, if not set then force to
1097 * default interval (1/tick)
1098 */
272325c4
PZ
1099 interval = pmu->hrtimer_interval_ms;
1100 if (interval < 1)
1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1102
272325c4 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1104
4cfafd30 1105 raw_spin_lock_init(&cpuctx->hrtimer_lock);
30f9028b 1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
272325c4 1107 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1108}
1109
272325c4 1110static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1111{
272325c4 1112 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1113 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1114 unsigned long flags;
9e630205
SE
1115
1116 /* not for SW PMU */
1117 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1118 return 0;
9e630205 1119
4cfafd30
PZ
1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 if (!cpuctx->hrtimer_active) {
1122 cpuctx->hrtimer_active = 1;
1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
30f9028b 1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
4cfafd30
PZ
1125 }
1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1127
272325c4 1128 return 0;
9e630205
SE
1129}
1130
33696fc0 1131void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1132{
33696fc0
PZ
1133 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 if (!(*count)++)
1135 pmu->pmu_disable(pmu);
9e35ad38 1136}
9e35ad38 1137
33696fc0 1138void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1139{
33696fc0
PZ
1140 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 if (!--(*count))
1142 pmu->pmu_enable(pmu);
9e35ad38 1143}
9e35ad38 1144
2fde4f94 1145static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1146
1147/*
2fde4f94
MR
1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149 * perf_event_task_tick() are fully serialized because they're strictly cpu
1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1152 */
2fde4f94 1153static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1154{
2fde4f94 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1156
16444645 1157 lockdep_assert_irqs_disabled();
b5ab4cd5 1158
2fde4f94
MR
1159 WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161 list_add(&ctx->active_ctx_list, head);
1162}
1163
1164static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165{
16444645 1166 lockdep_assert_irqs_disabled();
2fde4f94
MR
1167
1168 WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170 list_del_init(&ctx->active_ctx_list);
9e35ad38 1171}
9e35ad38 1172
cdd6c482 1173static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1174{
8c94abbb 1175 refcount_inc(&ctx->refcount);
a63eaf34
PM
1176}
1177
4af57ef2
YZ
1178static void free_ctx(struct rcu_head *head)
1179{
1180 struct perf_event_context *ctx;
1181
1182 ctx = container_of(head, struct perf_event_context, rcu_head);
1183 kfree(ctx->task_ctx_data);
1184 kfree(ctx);
1185}
1186
cdd6c482 1187static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1188{
8c94abbb 1189 if (refcount_dec_and_test(&ctx->refcount)) {
564c2b21
PM
1190 if (ctx->parent_ctx)
1191 put_ctx(ctx->parent_ctx);
63b6da39 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1193 put_task_struct(ctx->task);
4af57ef2 1194 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1195 }
a63eaf34
PM
1196}
1197
f63a8daa
PZ
1198/*
1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200 * perf_pmu_migrate_context() we need some magic.
1201 *
1202 * Those places that change perf_event::ctx will hold both
1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204 *
8b10c5e2
PZ
1205 * Lock ordering is by mutex address. There are two other sites where
1206 * perf_event_context::mutex nests and those are:
1207 *
1208 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1209 * perf_event_exit_event()
1210 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1211 *
1212 * - perf_event_init_context() [ parent, 0 ]
1213 * inherit_task_group()
1214 * inherit_group()
1215 * inherit_event()
1216 * perf_event_alloc()
1217 * perf_init_event()
1218 * perf_try_init_event() [ child , 1 ]
1219 *
1220 * While it appears there is an obvious deadlock here -- the parent and child
1221 * nesting levels are inverted between the two. This is in fact safe because
1222 * life-time rules separate them. That is an exiting task cannot fork, and a
1223 * spawning task cannot (yet) exit.
1224 *
1225 * But remember that that these are parent<->child context relations, and
1226 * migration does not affect children, therefore these two orderings should not
1227 * interact.
f63a8daa
PZ
1228 *
1229 * The change in perf_event::ctx does not affect children (as claimed above)
1230 * because the sys_perf_event_open() case will install a new event and break
1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232 * concerned with cpuctx and that doesn't have children.
1233 *
1234 * The places that change perf_event::ctx will issue:
1235 *
1236 * perf_remove_from_context();
1237 * synchronize_rcu();
1238 * perf_install_in_context();
1239 *
1240 * to affect the change. The remove_from_context() + synchronize_rcu() should
1241 * quiesce the event, after which we can install it in the new location. This
1242 * means that only external vectors (perf_fops, prctl) can perturb the event
1243 * while in transit. Therefore all such accessors should also acquire
1244 * perf_event_context::mutex to serialize against this.
1245 *
1246 * However; because event->ctx can change while we're waiting to acquire
1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248 * function.
1249 *
1250 * Lock order:
79c9ce57 1251 * cred_guard_mutex
f63a8daa
PZ
1252 * task_struct::perf_event_mutex
1253 * perf_event_context::mutex
f63a8daa 1254 * perf_event::child_mutex;
07c4a776 1255 * perf_event_context::lock
f63a8daa
PZ
1256 * perf_event::mmap_mutex
1257 * mmap_sem
18736eef 1258 * perf_addr_filters_head::lock
82d94856
PZ
1259 *
1260 * cpu_hotplug_lock
1261 * pmus_lock
1262 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1263 */
a83fe28e
PZ
1264static struct perf_event_context *
1265perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1266{
1267 struct perf_event_context *ctx;
1268
1269again:
1270 rcu_read_lock();
6aa7de05 1271 ctx = READ_ONCE(event->ctx);
8c94abbb 1272 if (!refcount_inc_not_zero(&ctx->refcount)) {
f63a8daa
PZ
1273 rcu_read_unlock();
1274 goto again;
1275 }
1276 rcu_read_unlock();
1277
a83fe28e 1278 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1279 if (event->ctx != ctx) {
1280 mutex_unlock(&ctx->mutex);
1281 put_ctx(ctx);
1282 goto again;
1283 }
1284
1285 return ctx;
1286}
1287
a83fe28e
PZ
1288static inline struct perf_event_context *
1289perf_event_ctx_lock(struct perf_event *event)
1290{
1291 return perf_event_ctx_lock_nested(event, 0);
1292}
1293
f63a8daa
PZ
1294static void perf_event_ctx_unlock(struct perf_event *event,
1295 struct perf_event_context *ctx)
1296{
1297 mutex_unlock(&ctx->mutex);
1298 put_ctx(ctx);
1299}
1300
211de6eb
PZ
1301/*
1302 * This must be done under the ctx->lock, such as to serialize against
1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304 * calling scheduler related locks and ctx->lock nests inside those.
1305 */
1306static __must_check struct perf_event_context *
1307unclone_ctx(struct perf_event_context *ctx)
71a851b4 1308{
211de6eb
PZ
1309 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311 lockdep_assert_held(&ctx->lock);
1312
1313 if (parent_ctx)
71a851b4 1314 ctx->parent_ctx = NULL;
5a3126d4 1315 ctx->generation++;
211de6eb
PZ
1316
1317 return parent_ctx;
71a851b4
PZ
1318}
1319
1d953111
ON
1320static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 enum pid_type type)
6844c09d 1322{
1d953111 1323 u32 nr;
6844c09d
ACM
1324 /*
1325 * only top level events have the pid namespace they were created in
1326 */
1327 if (event->parent)
1328 event = event->parent;
1329
1d953111
ON
1330 nr = __task_pid_nr_ns(p, type, event->ns);
1331 /* avoid -1 if it is idle thread or runs in another ns */
1332 if (!nr && !pid_alive(p))
1333 nr = -1;
1334 return nr;
6844c09d
ACM
1335}
1336
1d953111 1337static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1338{
6883f81a 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1d953111 1340}
6844c09d 1341
1d953111
ON
1342static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343{
1344 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1345}
1346
7f453c24 1347/*
cdd6c482 1348 * If we inherit events we want to return the parent event id
7f453c24
PZ
1349 * to userspace.
1350 */
cdd6c482 1351static u64 primary_event_id(struct perf_event *event)
7f453c24 1352{
cdd6c482 1353 u64 id = event->id;
7f453c24 1354
cdd6c482
IM
1355 if (event->parent)
1356 id = event->parent->id;
7f453c24
PZ
1357
1358 return id;
1359}
1360
25346b93 1361/*
cdd6c482 1362 * Get the perf_event_context for a task and lock it.
63b6da39 1363 *
25346b93
PM
1364 * This has to cope with with the fact that until it is locked,
1365 * the context could get moved to another task.
1366 */
cdd6c482 1367static struct perf_event_context *
8dc85d54 1368perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1369{
cdd6c482 1370 struct perf_event_context *ctx;
25346b93 1371
9ed6060d 1372retry:
058ebd0e
PZ
1373 /*
1374 * One of the few rules of preemptible RCU is that one cannot do
1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1376 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1377 * rcu_read_unlock_special().
1378 *
1379 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1380 * side critical section has interrupts disabled.
058ebd0e 1381 */
2fd59077 1382 local_irq_save(*flags);
058ebd0e 1383 rcu_read_lock();
8dc85d54 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1385 if (ctx) {
1386 /*
1387 * If this context is a clone of another, it might
1388 * get swapped for another underneath us by
cdd6c482 1389 * perf_event_task_sched_out, though the
25346b93
PM
1390 * rcu_read_lock() protects us from any context
1391 * getting freed. Lock the context and check if it
1392 * got swapped before we could get the lock, and retry
1393 * if so. If we locked the right context, then it
1394 * can't get swapped on us any more.
1395 */
2fd59077 1396 raw_spin_lock(&ctx->lock);
8dc85d54 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1398 raw_spin_unlock(&ctx->lock);
058ebd0e 1399 rcu_read_unlock();
2fd59077 1400 local_irq_restore(*flags);
25346b93
PM
1401 goto retry;
1402 }
b49a9e7e 1403
63b6da39 1404 if (ctx->task == TASK_TOMBSTONE ||
8c94abbb 1405 !refcount_inc_not_zero(&ctx->refcount)) {
2fd59077 1406 raw_spin_unlock(&ctx->lock);
b49a9e7e 1407 ctx = NULL;
828b6f0e
PZ
1408 } else {
1409 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1410 }
25346b93
PM
1411 }
1412 rcu_read_unlock();
2fd59077
PM
1413 if (!ctx)
1414 local_irq_restore(*flags);
25346b93
PM
1415 return ctx;
1416}
1417
1418/*
1419 * Get the context for a task and increment its pin_count so it
1420 * can't get swapped to another task. This also increments its
1421 * reference count so that the context can't get freed.
1422 */
8dc85d54
PZ
1423static struct perf_event_context *
1424perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1425{
cdd6c482 1426 struct perf_event_context *ctx;
25346b93
PM
1427 unsigned long flags;
1428
8dc85d54 1429 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1430 if (ctx) {
1431 ++ctx->pin_count;
e625cce1 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1433 }
1434 return ctx;
1435}
1436
cdd6c482 1437static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1438{
1439 unsigned long flags;
1440
e625cce1 1441 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1442 --ctx->pin_count;
e625cce1 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1444}
1445
f67218c3
PZ
1446/*
1447 * Update the record of the current time in a context.
1448 */
1449static void update_context_time(struct perf_event_context *ctx)
1450{
1451 u64 now = perf_clock();
1452
1453 ctx->time += now - ctx->timestamp;
1454 ctx->timestamp = now;
1455}
1456
4158755d
SE
1457static u64 perf_event_time(struct perf_event *event)
1458{
1459 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1460
1461 if (is_cgroup_event(event))
1462 return perf_cgroup_event_time(event);
1463
4158755d
SE
1464 return ctx ? ctx->time : 0;
1465}
1466
487f05e1
AS
1467static enum event_type_t get_event_type(struct perf_event *event)
1468{
1469 struct perf_event_context *ctx = event->ctx;
1470 enum event_type_t event_type;
1471
1472 lockdep_assert_held(&ctx->lock);
1473
3bda69c1
AS
1474 /*
1475 * It's 'group type', really, because if our group leader is
1476 * pinned, so are we.
1477 */
1478 if (event->group_leader != event)
1479 event = event->group_leader;
1480
487f05e1
AS
1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 if (!ctx->task)
1483 event_type |= EVENT_CPU;
1484
1485 return event_type;
1486}
1487
8e1a2031 1488/*
161c85fa 1489 * Helper function to initialize event group nodes.
8e1a2031 1490 */
161c85fa 1491static void init_event_group(struct perf_event *event)
8e1a2031
AB
1492{
1493 RB_CLEAR_NODE(&event->group_node);
1494 event->group_index = 0;
1495}
1496
1497/*
1498 * Extract pinned or flexible groups from the context
161c85fa 1499 * based on event attrs bits.
8e1a2031
AB
1500 */
1501static struct perf_event_groups *
1502get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1503{
1504 if (event->attr.pinned)
1505 return &ctx->pinned_groups;
1506 else
1507 return &ctx->flexible_groups;
1508}
1509
8e1a2031 1510/*
161c85fa 1511 * Helper function to initializes perf_event_group trees.
8e1a2031 1512 */
161c85fa 1513static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1514{
1515 groups->tree = RB_ROOT;
1516 groups->index = 0;
1517}
1518
1519/*
1520 * Compare function for event groups;
161c85fa
PZ
1521 *
1522 * Implements complex key that first sorts by CPU and then by virtual index
1523 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1524 */
161c85fa
PZ
1525static bool
1526perf_event_groups_less(struct perf_event *left, struct perf_event *right)
8e1a2031 1527{
161c85fa
PZ
1528 if (left->cpu < right->cpu)
1529 return true;
1530 if (left->cpu > right->cpu)
1531 return false;
1532
1533 if (left->group_index < right->group_index)
1534 return true;
1535 if (left->group_index > right->group_index)
1536 return false;
1537
1538 return false;
8e1a2031
AB
1539}
1540
1541/*
161c85fa
PZ
1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543 * key (see perf_event_groups_less). This places it last inside the CPU
1544 * subtree.
8e1a2031
AB
1545 */
1546static void
1547perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1548 struct perf_event *event)
8e1a2031
AB
1549{
1550 struct perf_event *node_event;
1551 struct rb_node *parent;
1552 struct rb_node **node;
1553
1554 event->group_index = ++groups->index;
1555
1556 node = &groups->tree.rb_node;
1557 parent = *node;
1558
1559 while (*node) {
1560 parent = *node;
161c85fa 1561 node_event = container_of(*node, struct perf_event, group_node);
8e1a2031
AB
1562
1563 if (perf_event_groups_less(event, node_event))
1564 node = &parent->rb_left;
1565 else
1566 node = &parent->rb_right;
1567 }
1568
1569 rb_link_node(&event->group_node, parent, node);
1570 rb_insert_color(&event->group_node, &groups->tree);
1571}
1572
1573/*
161c85fa 1574 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1575 */
1576static void
1577add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578{
1579 struct perf_event_groups *groups;
1580
1581 groups = get_event_groups(event, ctx);
1582 perf_event_groups_insert(groups, event);
1583}
1584
1585/*
161c85fa 1586 * Delete a group from a tree.
8e1a2031
AB
1587 */
1588static void
1589perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1590 struct perf_event *event)
8e1a2031 1591{
161c85fa
PZ
1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1594
161c85fa 1595 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1596 init_event_group(event);
1597}
1598
1599/*
161c85fa 1600 * Helper function to delete event from its groups.
8e1a2031
AB
1601 */
1602static void
1603del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604{
1605 struct perf_event_groups *groups;
1606
1607 groups = get_event_groups(event, ctx);
1608 perf_event_groups_delete(groups, event);
1609}
1610
1611/*
161c85fa 1612 * Get the leftmost event in the @cpu subtree.
8e1a2031
AB
1613 */
1614static struct perf_event *
1615perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616{
1617 struct perf_event *node_event = NULL, *match = NULL;
1618 struct rb_node *node = groups->tree.rb_node;
1619
1620 while (node) {
161c85fa 1621 node_event = container_of(node, struct perf_event, group_node);
8e1a2031
AB
1622
1623 if (cpu < node_event->cpu) {
1624 node = node->rb_left;
1625 } else if (cpu > node_event->cpu) {
1626 node = node->rb_right;
1627 } else {
1628 match = node_event;
1629 node = node->rb_left;
1630 }
1631 }
1632
1633 return match;
1634}
1635
1cac7b1a
PZ
1636/*
1637 * Like rb_entry_next_safe() for the @cpu subtree.
1638 */
1639static struct perf_event *
1640perf_event_groups_next(struct perf_event *event)
1641{
1642 struct perf_event *next;
1643
1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 if (next && next->cpu == event->cpu)
1646 return next;
1647
1648 return NULL;
1649}
1650
8e1a2031 1651/*
161c85fa 1652 * Iterate through the whole groups tree.
8e1a2031 1653 */
6e6804d2
PZ
1654#define perf_event_groups_for_each(event, groups) \
1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1656 typeof(*event), group_node); event; \
1657 event = rb_entry_safe(rb_next(&event->group_node), \
1658 typeof(*event), group_node))
8e1a2031 1659
fccc714b 1660/*
788faab7 1661 * Add an event from the lists for its context.
fccc714b
PZ
1662 * Must be called with ctx->mutex and ctx->lock held.
1663 */
04289bb9 1664static void
cdd6c482 1665list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1666{
c994d613
PZ
1667 lockdep_assert_held(&ctx->lock);
1668
8a49542c
PZ
1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1671
0d3d73aa
PZ
1672 event->tstamp = perf_event_time(event);
1673
04289bb9 1674 /*
8a49542c
PZ
1675 * If we're a stand alone event or group leader, we go to the context
1676 * list, group events are kept attached to the group so that
1677 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1678 */
8a49542c 1679 if (event->group_leader == event) {
4ff6a8de 1680 event->group_caps = event->event_caps;
8e1a2031 1681 add_event_to_groups(event, ctx);
5c148194 1682 }
592903cd 1683
db4a8356 1684 list_update_cgroup_event(event, ctx, true);
e5d1367f 1685
cdd6c482
IM
1686 list_add_rcu(&event->event_entry, &ctx->event_list);
1687 ctx->nr_events++;
1688 if (event->attr.inherit_stat)
bfbd3381 1689 ctx->nr_stat++;
5a3126d4
PZ
1690
1691 ctx->generation++;
04289bb9
IM
1692}
1693
0231bb53
JO
1694/*
1695 * Initialize event state based on the perf_event_attr::disabled.
1696 */
1697static inline void perf_event__state_init(struct perf_event *event)
1698{
1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 PERF_EVENT_STATE_INACTIVE;
1701}
1702
a723968c 1703static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1704{
1705 int entry = sizeof(u64); /* value */
1706 int size = 0;
1707 int nr = 1;
1708
1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 size += sizeof(u64);
1711
1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 size += sizeof(u64);
1714
1715 if (event->attr.read_format & PERF_FORMAT_ID)
1716 entry += sizeof(u64);
1717
1718 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1719 nr += nr_siblings;
c320c7b7
ACM
1720 size += sizeof(u64);
1721 }
1722
1723 size += entry * nr;
1724 event->read_size = size;
1725}
1726
a723968c 1727static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1728{
1729 struct perf_sample_data *data;
c320c7b7
ACM
1730 u16 size = 0;
1731
c320c7b7
ACM
1732 if (sample_type & PERF_SAMPLE_IP)
1733 size += sizeof(data->ip);
1734
6844c09d
ACM
1735 if (sample_type & PERF_SAMPLE_ADDR)
1736 size += sizeof(data->addr);
1737
1738 if (sample_type & PERF_SAMPLE_PERIOD)
1739 size += sizeof(data->period);
1740
c3feedf2
AK
1741 if (sample_type & PERF_SAMPLE_WEIGHT)
1742 size += sizeof(data->weight);
1743
6844c09d
ACM
1744 if (sample_type & PERF_SAMPLE_READ)
1745 size += event->read_size;
1746
d6be9ad6
SE
1747 if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 size += sizeof(data->data_src.val);
1749
fdfbbd07
AK
1750 if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 size += sizeof(data->txn);
1752
fc7ce9c7
KL
1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 size += sizeof(data->phys_addr);
1755
6844c09d
ACM
1756 event->header_size = size;
1757}
1758
a723968c
PZ
1759/*
1760 * Called at perf_event creation and when events are attached/detached from a
1761 * group.
1762 */
1763static void perf_event__header_size(struct perf_event *event)
1764{
1765 __perf_event_read_size(event,
1766 event->group_leader->nr_siblings);
1767 __perf_event_header_size(event, event->attr.sample_type);
1768}
1769
6844c09d
ACM
1770static void perf_event__id_header_size(struct perf_event *event)
1771{
1772 struct perf_sample_data *data;
1773 u64 sample_type = event->attr.sample_type;
1774 u16 size = 0;
1775
c320c7b7
ACM
1776 if (sample_type & PERF_SAMPLE_TID)
1777 size += sizeof(data->tid_entry);
1778
1779 if (sample_type & PERF_SAMPLE_TIME)
1780 size += sizeof(data->time);
1781
ff3d527c
AH
1782 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 size += sizeof(data->id);
1784
c320c7b7
ACM
1785 if (sample_type & PERF_SAMPLE_ID)
1786 size += sizeof(data->id);
1787
1788 if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 size += sizeof(data->stream_id);
1790
1791 if (sample_type & PERF_SAMPLE_CPU)
1792 size += sizeof(data->cpu_entry);
1793
6844c09d 1794 event->id_header_size = size;
c320c7b7
ACM
1795}
1796
a723968c
PZ
1797static bool perf_event_validate_size(struct perf_event *event)
1798{
1799 /*
1800 * The values computed here will be over-written when we actually
1801 * attach the event.
1802 */
1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 perf_event__id_header_size(event);
1806
1807 /*
1808 * Sum the lot; should not exceed the 64k limit we have on records.
1809 * Conservative limit to allow for callchains and other variable fields.
1810 */
1811 if (event->read_size + event->header_size +
1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 return false;
1814
1815 return true;
1816}
1817
8a49542c
PZ
1818static void perf_group_attach(struct perf_event *event)
1819{
c320c7b7 1820 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1821
a76a82a3
PZ
1822 lockdep_assert_held(&event->ctx->lock);
1823
74c3337c
PZ
1824 /*
1825 * We can have double attach due to group movement in perf_event_open.
1826 */
1827 if (event->attach_state & PERF_ATTACH_GROUP)
1828 return;
1829
8a49542c
PZ
1830 event->attach_state |= PERF_ATTACH_GROUP;
1831
1832 if (group_leader == event)
1833 return;
1834
652884fe
PZ
1835 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
4ff6a8de 1837 group_leader->group_caps &= event->event_caps;
8a49542c 1838
8343aae6 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1840 group_leader->nr_siblings++;
c320c7b7
ACM
1841
1842 perf_event__header_size(group_leader);
1843
edb39592 1844 for_each_sibling_event(pos, group_leader)
c320c7b7 1845 perf_event__header_size(pos);
8a49542c
PZ
1846}
1847
a63eaf34 1848/*
788faab7 1849 * Remove an event from the lists for its context.
fccc714b 1850 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1851 */
04289bb9 1852static void
cdd6c482 1853list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1854{
652884fe
PZ
1855 WARN_ON_ONCE(event->ctx != ctx);
1856 lockdep_assert_held(&ctx->lock);
1857
8a49542c
PZ
1858 /*
1859 * We can have double detach due to exit/hot-unplug + close.
1860 */
1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1862 return;
8a49542c
PZ
1863
1864 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
db4a8356 1866 list_update_cgroup_event(event, ctx, false);
e5d1367f 1867
cdd6c482
IM
1868 ctx->nr_events--;
1869 if (event->attr.inherit_stat)
bfbd3381 1870 ctx->nr_stat--;
8bc20959 1871
cdd6c482 1872 list_del_rcu(&event->event_entry);
04289bb9 1873
8a49542c 1874 if (event->group_leader == event)
8e1a2031 1875 del_event_from_groups(event, ctx);
5c148194 1876
b2e74a26
SE
1877 /*
1878 * If event was in error state, then keep it
1879 * that way, otherwise bogus counts will be
1880 * returned on read(). The only way to get out
1881 * of error state is by explicit re-enabling
1882 * of the event
1883 */
1884 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1886
1887 ctx->generation++;
050735b0
PZ
1888}
1889
ab43762e
AS
1890static int
1891perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1892{
1893 if (!has_aux(aux_event))
1894 return 0;
1895
1896 if (!event->pmu->aux_output_match)
1897 return 0;
1898
1899 return event->pmu->aux_output_match(aux_event);
1900}
1901
1902static void put_event(struct perf_event *event);
1903static void event_sched_out(struct perf_event *event,
1904 struct perf_cpu_context *cpuctx,
1905 struct perf_event_context *ctx);
1906
1907static void perf_put_aux_event(struct perf_event *event)
1908{
1909 struct perf_event_context *ctx = event->ctx;
1910 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1911 struct perf_event *iter;
1912
1913 /*
1914 * If event uses aux_event tear down the link
1915 */
1916 if (event->aux_event) {
1917 iter = event->aux_event;
1918 event->aux_event = NULL;
1919 put_event(iter);
1920 return;
1921 }
1922
1923 /*
1924 * If the event is an aux_event, tear down all links to
1925 * it from other events.
1926 */
1927 for_each_sibling_event(iter, event->group_leader) {
1928 if (iter->aux_event != event)
1929 continue;
1930
1931 iter->aux_event = NULL;
1932 put_event(event);
1933
1934 /*
1935 * If it's ACTIVE, schedule it out and put it into ERROR
1936 * state so that we don't try to schedule it again. Note
1937 * that perf_event_enable() will clear the ERROR status.
1938 */
1939 event_sched_out(iter, cpuctx, ctx);
1940 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1941 }
1942}
1943
1944static int perf_get_aux_event(struct perf_event *event,
1945 struct perf_event *group_leader)
1946{
1947 /*
1948 * Our group leader must be an aux event if we want to be
1949 * an aux_output. This way, the aux event will precede its
1950 * aux_output events in the group, and therefore will always
1951 * schedule first.
1952 */
1953 if (!group_leader)
1954 return 0;
1955
1956 if (!perf_aux_output_match(event, group_leader))
1957 return 0;
1958
1959 if (!atomic_long_inc_not_zero(&group_leader->refcount))
1960 return 0;
1961
1962 /*
1963 * Link aux_outputs to their aux event; this is undone in
1964 * perf_group_detach() by perf_put_aux_event(). When the
1965 * group in torn down, the aux_output events loose their
1966 * link to the aux_event and can't schedule any more.
1967 */
1968 event->aux_event = group_leader;
1969
1970 return 1;
1971}
1972
8a49542c 1973static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1974{
1975 struct perf_event *sibling, *tmp;
6668128a 1976 struct perf_event_context *ctx = event->ctx;
8a49542c 1977
6668128a 1978 lockdep_assert_held(&ctx->lock);
a76a82a3 1979
8a49542c
PZ
1980 /*
1981 * We can have double detach due to exit/hot-unplug + close.
1982 */
1983 if (!(event->attach_state & PERF_ATTACH_GROUP))
1984 return;
1985
1986 event->attach_state &= ~PERF_ATTACH_GROUP;
1987
ab43762e
AS
1988 perf_put_aux_event(event);
1989
8a49542c
PZ
1990 /*
1991 * If this is a sibling, remove it from its group.
1992 */
1993 if (event->group_leader != event) {
8343aae6 1994 list_del_init(&event->sibling_list);
8a49542c 1995 event->group_leader->nr_siblings--;
c320c7b7 1996 goto out;
8a49542c
PZ
1997 }
1998
04289bb9 1999 /*
cdd6c482
IM
2000 * If this was a group event with sibling events then
2001 * upgrade the siblings to singleton events by adding them
8a49542c 2002 * to whatever list we are on.
04289bb9 2003 */
8343aae6 2004 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 2005
04289bb9 2006 sibling->group_leader = sibling;
24868367 2007 list_del_init(&sibling->sibling_list);
d6f962b5
FW
2008
2009 /* Inherit group flags from the previous leader */
4ff6a8de 2010 sibling->group_caps = event->group_caps;
652884fe 2011
8e1a2031 2012 if (!RB_EMPTY_NODE(&event->group_node)) {
8e1a2031 2013 add_event_to_groups(sibling, event->ctx);
6668128a
PZ
2014
2015 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2016 struct list_head *list = sibling->attr.pinned ?
2017 &ctx->pinned_active : &ctx->flexible_active;
2018
2019 list_add_tail(&sibling->active_list, list);
2020 }
8e1a2031
AB
2021 }
2022
652884fe 2023 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 2024 }
c320c7b7
ACM
2025
2026out:
2027 perf_event__header_size(event->group_leader);
2028
edb39592 2029 for_each_sibling_event(tmp, event->group_leader)
c320c7b7 2030 perf_event__header_size(tmp);
04289bb9
IM
2031}
2032
fadfe7be
JO
2033static bool is_orphaned_event(struct perf_event *event)
2034{
a69b0ca4 2035 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
2036}
2037
2c81a647 2038static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
2039{
2040 struct pmu *pmu = event->pmu;
2041 return pmu->filter_match ? pmu->filter_match(event) : 1;
2042}
2043
2c81a647
MR
2044/*
2045 * Check whether we should attempt to schedule an event group based on
2046 * PMU-specific filtering. An event group can consist of HW and SW events,
2047 * potentially with a SW leader, so we must check all the filters, to
2048 * determine whether a group is schedulable:
2049 */
2050static inline int pmu_filter_match(struct perf_event *event)
2051{
edb39592 2052 struct perf_event *sibling;
2c81a647
MR
2053
2054 if (!__pmu_filter_match(event))
2055 return 0;
2056
edb39592
PZ
2057 for_each_sibling_event(sibling, event) {
2058 if (!__pmu_filter_match(sibling))
2c81a647
MR
2059 return 0;
2060 }
2061
2062 return 1;
2063}
2064
fa66f07a
SE
2065static inline int
2066event_filter_match(struct perf_event *event)
2067{
0b8f1e2e
PZ
2068 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2069 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
2070}
2071
9ffcfa6f
SE
2072static void
2073event_sched_out(struct perf_event *event,
3b6f9e5c 2074 struct perf_cpu_context *cpuctx,
cdd6c482 2075 struct perf_event_context *ctx)
3b6f9e5c 2076{
0d3d73aa 2077 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
2078
2079 WARN_ON_ONCE(event->ctx != ctx);
2080 lockdep_assert_held(&ctx->lock);
2081
cdd6c482 2082 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 2083 return;
3b6f9e5c 2084
6668128a
PZ
2085 /*
2086 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2087 * we can schedule events _OUT_ individually through things like
2088 * __perf_remove_from_context().
2089 */
2090 list_del_init(&event->active_list);
2091
44377277
AS
2092 perf_pmu_disable(event->pmu);
2093
28a967c3
PZ
2094 event->pmu->del(event, 0);
2095 event->oncpu = -1;
0d3d73aa 2096
1d54ad94
PZ
2097 if (READ_ONCE(event->pending_disable) >= 0) {
2098 WRITE_ONCE(event->pending_disable, -1);
0d3d73aa 2099 state = PERF_EVENT_STATE_OFF;
970892a9 2100 }
0d3d73aa 2101 perf_event_set_state(event, state);
3b6f9e5c 2102
cdd6c482 2103 if (!is_software_event(event))
3b6f9e5c 2104 cpuctx->active_oncpu--;
2fde4f94
MR
2105 if (!--ctx->nr_active)
2106 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
2107 if (event->attr.freq && event->attr.sample_freq)
2108 ctx->nr_freq--;
cdd6c482 2109 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 2110 cpuctx->exclusive = 0;
44377277
AS
2111
2112 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2113}
2114
d859e29f 2115static void
cdd6c482 2116group_sched_out(struct perf_event *group_event,
d859e29f 2117 struct perf_cpu_context *cpuctx,
cdd6c482 2118 struct perf_event_context *ctx)
d859e29f 2119{
cdd6c482 2120 struct perf_event *event;
0d3d73aa
PZ
2121
2122 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2123 return;
d859e29f 2124
3f005e7d
MR
2125 perf_pmu_disable(ctx->pmu);
2126
cdd6c482 2127 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
2128
2129 /*
2130 * Schedule out siblings (if any):
2131 */
edb39592 2132 for_each_sibling_event(event, group_event)
cdd6c482 2133 event_sched_out(event, cpuctx, ctx);
d859e29f 2134
3f005e7d
MR
2135 perf_pmu_enable(ctx->pmu);
2136
0d3d73aa 2137 if (group_event->attr.exclusive)
d859e29f
PM
2138 cpuctx->exclusive = 0;
2139}
2140
45a0e07a 2141#define DETACH_GROUP 0x01UL
0017960f 2142
0793a61d 2143/*
cdd6c482 2144 * Cross CPU call to remove a performance event
0793a61d 2145 *
cdd6c482 2146 * We disable the event on the hardware level first. After that we
0793a61d
TG
2147 * remove it from the context list.
2148 */
fae3fde6
PZ
2149static void
2150__perf_remove_from_context(struct perf_event *event,
2151 struct perf_cpu_context *cpuctx,
2152 struct perf_event_context *ctx,
2153 void *info)
0793a61d 2154{
45a0e07a 2155 unsigned long flags = (unsigned long)info;
0793a61d 2156
3c5c8711
PZ
2157 if (ctx->is_active & EVENT_TIME) {
2158 update_context_time(ctx);
2159 update_cgrp_time_from_cpuctx(cpuctx);
2160 }
2161
cdd6c482 2162 event_sched_out(event, cpuctx, ctx);
45a0e07a 2163 if (flags & DETACH_GROUP)
46ce0fe9 2164 perf_group_detach(event);
cdd6c482 2165 list_del_event(event, ctx);
39a43640
PZ
2166
2167 if (!ctx->nr_events && ctx->is_active) {
64ce3126 2168 ctx->is_active = 0;
39a43640
PZ
2169 if (ctx->task) {
2170 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2171 cpuctx->task_ctx = NULL;
2172 }
64ce3126 2173 }
0793a61d
TG
2174}
2175
0793a61d 2176/*
cdd6c482 2177 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2178 *
cdd6c482
IM
2179 * If event->ctx is a cloned context, callers must make sure that
2180 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2181 * remains valid. This is OK when called from perf_release since
2182 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2183 * When called from perf_event_exit_task, it's OK because the
c93f7669 2184 * context has been detached from its task.
0793a61d 2185 */
45a0e07a 2186static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2187{
a76a82a3
PZ
2188 struct perf_event_context *ctx = event->ctx;
2189
2190 lockdep_assert_held(&ctx->mutex);
0793a61d 2191
45a0e07a 2192 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
2193
2194 /*
2195 * The above event_function_call() can NO-OP when it hits
2196 * TASK_TOMBSTONE. In that case we must already have been detached
2197 * from the context (by perf_event_exit_event()) but the grouping
2198 * might still be in-tact.
2199 */
2200 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2201 if ((flags & DETACH_GROUP) &&
2202 (event->attach_state & PERF_ATTACH_GROUP)) {
2203 /*
2204 * Since in that case we cannot possibly be scheduled, simply
2205 * detach now.
2206 */
2207 raw_spin_lock_irq(&ctx->lock);
2208 perf_group_detach(event);
2209 raw_spin_unlock_irq(&ctx->lock);
2210 }
0793a61d
TG
2211}
2212
d859e29f 2213/*
cdd6c482 2214 * Cross CPU call to disable a performance event
d859e29f 2215 */
fae3fde6
PZ
2216static void __perf_event_disable(struct perf_event *event,
2217 struct perf_cpu_context *cpuctx,
2218 struct perf_event_context *ctx,
2219 void *info)
7b648018 2220{
fae3fde6
PZ
2221 if (event->state < PERF_EVENT_STATE_INACTIVE)
2222 return;
7b648018 2223
3c5c8711
PZ
2224 if (ctx->is_active & EVENT_TIME) {
2225 update_context_time(ctx);
2226 update_cgrp_time_from_event(event);
2227 }
2228
fae3fde6
PZ
2229 if (event == event->group_leader)
2230 group_sched_out(event, cpuctx, ctx);
2231 else
2232 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
2233
2234 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
2235}
2236
d859e29f 2237/*
788faab7 2238 * Disable an event.
c93f7669 2239 *
cdd6c482
IM
2240 * If event->ctx is a cloned context, callers must make sure that
2241 * every task struct that event->ctx->task could possibly point to
9f014e3a 2242 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2243 * perf_event_for_each_child or perf_event_for_each because they
2244 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2245 * goes to exit will block in perf_event_exit_event().
2246 *
cdd6c482 2247 * When called from perf_pending_event it's OK because event->ctx
c93f7669 2248 * is the current context on this CPU and preemption is disabled,
cdd6c482 2249 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2250 */
f63a8daa 2251static void _perf_event_disable(struct perf_event *event)
d859e29f 2252{
cdd6c482 2253 struct perf_event_context *ctx = event->ctx;
d859e29f 2254
e625cce1 2255 raw_spin_lock_irq(&ctx->lock);
7b648018 2256 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2257 raw_spin_unlock_irq(&ctx->lock);
7b648018 2258 return;
53cfbf59 2259 }
e625cce1 2260 raw_spin_unlock_irq(&ctx->lock);
7b648018 2261
fae3fde6
PZ
2262 event_function_call(event, __perf_event_disable, NULL);
2263}
2264
2265void perf_event_disable_local(struct perf_event *event)
2266{
2267 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2268}
f63a8daa
PZ
2269
2270/*
2271 * Strictly speaking kernel users cannot create groups and therefore this
2272 * interface does not need the perf_event_ctx_lock() magic.
2273 */
2274void perf_event_disable(struct perf_event *event)
2275{
2276 struct perf_event_context *ctx;
2277
2278 ctx = perf_event_ctx_lock(event);
2279 _perf_event_disable(event);
2280 perf_event_ctx_unlock(event, ctx);
2281}
dcfce4a0 2282EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2283
5aab90ce
JO
2284void perf_event_disable_inatomic(struct perf_event *event)
2285{
1d54ad94
PZ
2286 WRITE_ONCE(event->pending_disable, smp_processor_id());
2287 /* can fail, see perf_pending_event_disable() */
5aab90ce
JO
2288 irq_work_queue(&event->pending);
2289}
2290
e5d1367f 2291static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2292 struct perf_event_context *ctx)
e5d1367f
SE
2293{
2294 /*
2295 * use the correct time source for the time snapshot
2296 *
2297 * We could get by without this by leveraging the
2298 * fact that to get to this function, the caller
2299 * has most likely already called update_context_time()
2300 * and update_cgrp_time_xx() and thus both timestamp
2301 * are identical (or very close). Given that tstamp is,
2302 * already adjusted for cgroup, we could say that:
2303 * tstamp - ctx->timestamp
2304 * is equivalent to
2305 * tstamp - cgrp->timestamp.
2306 *
2307 * Then, in perf_output_read(), the calculation would
2308 * work with no changes because:
2309 * - event is guaranteed scheduled in
2310 * - no scheduled out in between
2311 * - thus the timestamp would be the same
2312 *
2313 * But this is a bit hairy.
2314 *
2315 * So instead, we have an explicit cgroup call to remain
2316 * within the time time source all along. We believe it
2317 * is cleaner and simpler to understand.
2318 */
2319 if (is_cgroup_event(event))
0d3d73aa 2320 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2321 else
0d3d73aa 2322 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2323}
2324
4fe757dd
PZ
2325#define MAX_INTERRUPTS (~0ULL)
2326
2327static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2328static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2329
235c7fc7 2330static int
9ffcfa6f 2331event_sched_in(struct perf_event *event,
235c7fc7 2332 struct perf_cpu_context *cpuctx,
6e37738a 2333 struct perf_event_context *ctx)
235c7fc7 2334{
44377277 2335 int ret = 0;
4158755d 2336
63342411
PZ
2337 lockdep_assert_held(&ctx->lock);
2338
cdd6c482 2339 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2340 return 0;
2341
95ff4ca2
AS
2342 WRITE_ONCE(event->oncpu, smp_processor_id());
2343 /*
0c1cbc18
PZ
2344 * Order event::oncpu write to happen before the ACTIVE state is
2345 * visible. This allows perf_event_{stop,read}() to observe the correct
2346 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2347 */
2348 smp_wmb();
0d3d73aa 2349 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2350
2351 /*
2352 * Unthrottle events, since we scheduled we might have missed several
2353 * ticks already, also for a heavily scheduling task there is little
2354 * guarantee it'll get a tick in a timely manner.
2355 */
2356 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2357 perf_log_throttle(event, 1);
2358 event->hw.interrupts = 0;
2359 }
2360
44377277
AS
2361 perf_pmu_disable(event->pmu);
2362
0d3d73aa 2363 perf_set_shadow_time(event, ctx);
72f669c0 2364
ec0d7729
AS
2365 perf_log_itrace_start(event);
2366
a4eaf7f1 2367 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2368 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2369 event->oncpu = -1;
44377277
AS
2370 ret = -EAGAIN;
2371 goto out;
235c7fc7
IM
2372 }
2373
cdd6c482 2374 if (!is_software_event(event))
3b6f9e5c 2375 cpuctx->active_oncpu++;
2fde4f94
MR
2376 if (!ctx->nr_active++)
2377 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2378 if (event->attr.freq && event->attr.sample_freq)
2379 ctx->nr_freq++;
235c7fc7 2380
cdd6c482 2381 if (event->attr.exclusive)
3b6f9e5c
PM
2382 cpuctx->exclusive = 1;
2383
44377277
AS
2384out:
2385 perf_pmu_enable(event->pmu);
2386
2387 return ret;
235c7fc7
IM
2388}
2389
6751b71e 2390static int
cdd6c482 2391group_sched_in(struct perf_event *group_event,
6751b71e 2392 struct perf_cpu_context *cpuctx,
6e37738a 2393 struct perf_event_context *ctx)
6751b71e 2394{
6bde9b6c 2395 struct perf_event *event, *partial_group = NULL;
4a234593 2396 struct pmu *pmu = ctx->pmu;
6751b71e 2397
cdd6c482 2398 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2399 return 0;
2400
fbbe0701 2401 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2402
9ffcfa6f 2403 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2404 pmu->cancel_txn(pmu);
272325c4 2405 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2406 return -EAGAIN;
90151c35 2407 }
6751b71e
PM
2408
2409 /*
2410 * Schedule in siblings as one group (if any):
2411 */
edb39592 2412 for_each_sibling_event(event, group_event) {
9ffcfa6f 2413 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2414 partial_group = event;
6751b71e
PM
2415 goto group_error;
2416 }
2417 }
2418
9ffcfa6f 2419 if (!pmu->commit_txn(pmu))
6e85158c 2420 return 0;
9ffcfa6f 2421
6751b71e
PM
2422group_error:
2423 /*
2424 * Groups can be scheduled in as one unit only, so undo any
2425 * partial group before returning:
0d3d73aa 2426 * The events up to the failed event are scheduled out normally.
6751b71e 2427 */
edb39592 2428 for_each_sibling_event(event, group_event) {
cdd6c482 2429 if (event == partial_group)
0d3d73aa 2430 break;
d7842da4 2431
0d3d73aa 2432 event_sched_out(event, cpuctx, ctx);
6751b71e 2433 }
9ffcfa6f 2434 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2435
ad5133b7 2436 pmu->cancel_txn(pmu);
90151c35 2437
272325c4 2438 perf_mux_hrtimer_restart(cpuctx);
9e630205 2439
6751b71e
PM
2440 return -EAGAIN;
2441}
2442
3b6f9e5c 2443/*
cdd6c482 2444 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2445 */
cdd6c482 2446static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2447 struct perf_cpu_context *cpuctx,
2448 int can_add_hw)
2449{
2450 /*
cdd6c482 2451 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2452 */
4ff6a8de 2453 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2454 return 1;
2455 /*
2456 * If an exclusive group is already on, no other hardware
cdd6c482 2457 * events can go on.
3b6f9e5c
PM
2458 */
2459 if (cpuctx->exclusive)
2460 return 0;
2461 /*
2462 * If this group is exclusive and there are already
cdd6c482 2463 * events on the CPU, it can't go on.
3b6f9e5c 2464 */
cdd6c482 2465 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2466 return 0;
2467 /*
2468 * Otherwise, try to add it if all previous groups were able
2469 * to go on.
2470 */
2471 return can_add_hw;
2472}
2473
cdd6c482
IM
2474static void add_event_to_ctx(struct perf_event *event,
2475 struct perf_event_context *ctx)
53cfbf59 2476{
cdd6c482 2477 list_add_event(event, ctx);
8a49542c 2478 perf_group_attach(event);
53cfbf59
PM
2479}
2480
bd2afa49
PZ
2481static void ctx_sched_out(struct perf_event_context *ctx,
2482 struct perf_cpu_context *cpuctx,
2483 enum event_type_t event_type);
2c29ef0f
PZ
2484static void
2485ctx_sched_in(struct perf_event_context *ctx,
2486 struct perf_cpu_context *cpuctx,
2487 enum event_type_t event_type,
2488 struct task_struct *task);
fe4b04fa 2489
bd2afa49 2490static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2491 struct perf_event_context *ctx,
2492 enum event_type_t event_type)
bd2afa49
PZ
2493{
2494 if (!cpuctx->task_ctx)
2495 return;
2496
2497 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2498 return;
2499
487f05e1 2500 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2501}
2502
dce5855b
PZ
2503static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2504 struct perf_event_context *ctx,
2505 struct task_struct *task)
2506{
2507 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2508 if (ctx)
2509 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2510 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2511 if (ctx)
2512 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2513}
2514
487f05e1
AS
2515/*
2516 * We want to maintain the following priority of scheduling:
2517 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2518 * - task pinned (EVENT_PINNED)
2519 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2520 * - task flexible (EVENT_FLEXIBLE).
2521 *
2522 * In order to avoid unscheduling and scheduling back in everything every
2523 * time an event is added, only do it for the groups of equal priority and
2524 * below.
2525 *
2526 * This can be called after a batch operation on task events, in which case
2527 * event_type is a bit mask of the types of events involved. For CPU events,
2528 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2529 */
3e349507 2530static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2531 struct perf_event_context *task_ctx,
2532 enum event_type_t event_type)
0017960f 2533{
bd903afe 2534 enum event_type_t ctx_event_type;
487f05e1
AS
2535 bool cpu_event = !!(event_type & EVENT_CPU);
2536
2537 /*
2538 * If pinned groups are involved, flexible groups also need to be
2539 * scheduled out.
2540 */
2541 if (event_type & EVENT_PINNED)
2542 event_type |= EVENT_FLEXIBLE;
2543
bd903afe
SL
2544 ctx_event_type = event_type & EVENT_ALL;
2545
3e349507
PZ
2546 perf_pmu_disable(cpuctx->ctx.pmu);
2547 if (task_ctx)
487f05e1
AS
2548 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2549
2550 /*
2551 * Decide which cpu ctx groups to schedule out based on the types
2552 * of events that caused rescheduling:
2553 * - EVENT_CPU: schedule out corresponding groups;
2554 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2555 * - otherwise, do nothing more.
2556 */
2557 if (cpu_event)
2558 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2559 else if (ctx_event_type & EVENT_PINNED)
2560 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2561
3e349507
PZ
2562 perf_event_sched_in(cpuctx, task_ctx, current);
2563 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2564}
2565
c68d224e
SE
2566void perf_pmu_resched(struct pmu *pmu)
2567{
2568 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2569 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2570
2571 perf_ctx_lock(cpuctx, task_ctx);
2572 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2573 perf_ctx_unlock(cpuctx, task_ctx);
2574}
2575
0793a61d 2576/*
cdd6c482 2577 * Cross CPU call to install and enable a performance event
682076ae 2578 *
a096309b
PZ
2579 * Very similar to remote_function() + event_function() but cannot assume that
2580 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2581 */
fe4b04fa 2582static int __perf_install_in_context(void *info)
0793a61d 2583{
a096309b
PZ
2584 struct perf_event *event = info;
2585 struct perf_event_context *ctx = event->ctx;
108b02cf 2586 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2587 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2588 bool reprogram = true;
a096309b 2589 int ret = 0;
0793a61d 2590
63b6da39 2591 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2592 if (ctx->task) {
b58f6b0d
PZ
2593 raw_spin_lock(&ctx->lock);
2594 task_ctx = ctx;
a096309b 2595
63cae12b 2596 reprogram = (ctx->task == current);
b58f6b0d 2597
39a43640 2598 /*
63cae12b
PZ
2599 * If the task is running, it must be running on this CPU,
2600 * otherwise we cannot reprogram things.
2601 *
2602 * If its not running, we don't care, ctx->lock will
2603 * serialize against it becoming runnable.
39a43640 2604 */
63cae12b
PZ
2605 if (task_curr(ctx->task) && !reprogram) {
2606 ret = -ESRCH;
2607 goto unlock;
2608 }
a096309b 2609
63cae12b 2610 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2611 } else if (task_ctx) {
2612 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2613 }
b58f6b0d 2614
33801b94 2615#ifdef CONFIG_CGROUP_PERF
2616 if (is_cgroup_event(event)) {
2617 /*
2618 * If the current cgroup doesn't match the event's
2619 * cgroup, we should not try to schedule it.
2620 */
2621 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2622 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2623 event->cgrp->css.cgroup);
2624 }
2625#endif
2626
63cae12b 2627 if (reprogram) {
a096309b
PZ
2628 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2629 add_event_to_ctx(event, ctx);
487f05e1 2630 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2631 } else {
2632 add_event_to_ctx(event, ctx);
2633 }
2634
63b6da39 2635unlock:
2c29ef0f 2636 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2637
a096309b 2638 return ret;
0793a61d
TG
2639}
2640
8a58ddae
AS
2641static bool exclusive_event_installable(struct perf_event *event,
2642 struct perf_event_context *ctx);
2643
0793a61d 2644/*
a096309b
PZ
2645 * Attach a performance event to a context.
2646 *
2647 * Very similar to event_function_call, see comment there.
0793a61d
TG
2648 */
2649static void
cdd6c482
IM
2650perf_install_in_context(struct perf_event_context *ctx,
2651 struct perf_event *event,
0793a61d
TG
2652 int cpu)
2653{
a096309b 2654 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2655
fe4b04fa
PZ
2656 lockdep_assert_held(&ctx->mutex);
2657
8a58ddae
AS
2658 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2659
0cda4c02
YZ
2660 if (event->cpu != -1)
2661 event->cpu = cpu;
c3f00c70 2662
0b8f1e2e
PZ
2663 /*
2664 * Ensures that if we can observe event->ctx, both the event and ctx
2665 * will be 'complete'. See perf_iterate_sb_cpu().
2666 */
2667 smp_store_release(&event->ctx, ctx);
2668
a096309b
PZ
2669 if (!task) {
2670 cpu_function_call(cpu, __perf_install_in_context, event);
2671 return;
2672 }
2673
2674 /*
2675 * Should not happen, we validate the ctx is still alive before calling.
2676 */
2677 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2678 return;
2679
39a43640
PZ
2680 /*
2681 * Installing events is tricky because we cannot rely on ctx->is_active
2682 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2683 *
2684 * Instead we use task_curr(), which tells us if the task is running.
2685 * However, since we use task_curr() outside of rq::lock, we can race
2686 * against the actual state. This means the result can be wrong.
2687 *
2688 * If we get a false positive, we retry, this is harmless.
2689 *
2690 * If we get a false negative, things are complicated. If we are after
2691 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2692 * value must be correct. If we're before, it doesn't matter since
2693 * perf_event_context_sched_in() will program the counter.
2694 *
2695 * However, this hinges on the remote context switch having observed
2696 * our task->perf_event_ctxp[] store, such that it will in fact take
2697 * ctx::lock in perf_event_context_sched_in().
2698 *
2699 * We do this by task_function_call(), if the IPI fails to hit the task
2700 * we know any future context switch of task must see the
2701 * perf_event_ctpx[] store.
39a43640 2702 */
63cae12b 2703
63b6da39 2704 /*
63cae12b
PZ
2705 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2706 * task_cpu() load, such that if the IPI then does not find the task
2707 * running, a future context switch of that task must observe the
2708 * store.
63b6da39 2709 */
63cae12b
PZ
2710 smp_mb();
2711again:
2712 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2713 return;
2714
2715 raw_spin_lock_irq(&ctx->lock);
2716 task = ctx->task;
84c4e620 2717 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2718 /*
2719 * Cannot happen because we already checked above (which also
2720 * cannot happen), and we hold ctx->mutex, which serializes us
2721 * against perf_event_exit_task_context().
2722 */
63b6da39
PZ
2723 raw_spin_unlock_irq(&ctx->lock);
2724 return;
2725 }
39a43640 2726 /*
63cae12b
PZ
2727 * If the task is not running, ctx->lock will avoid it becoming so,
2728 * thus we can safely install the event.
39a43640 2729 */
63cae12b
PZ
2730 if (task_curr(task)) {
2731 raw_spin_unlock_irq(&ctx->lock);
2732 goto again;
2733 }
2734 add_event_to_ctx(event, ctx);
2735 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2736}
2737
d859e29f 2738/*
cdd6c482 2739 * Cross CPU call to enable a performance event
d859e29f 2740 */
fae3fde6
PZ
2741static void __perf_event_enable(struct perf_event *event,
2742 struct perf_cpu_context *cpuctx,
2743 struct perf_event_context *ctx,
2744 void *info)
04289bb9 2745{
cdd6c482 2746 struct perf_event *leader = event->group_leader;
fae3fde6 2747 struct perf_event_context *task_ctx;
04289bb9 2748
6e801e01
PZ
2749 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2750 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2751 return;
3cbed429 2752
bd2afa49
PZ
2753 if (ctx->is_active)
2754 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2755
0d3d73aa 2756 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2757
fae3fde6
PZ
2758 if (!ctx->is_active)
2759 return;
2760
e5d1367f 2761 if (!event_filter_match(event)) {
bd2afa49 2762 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2763 return;
e5d1367f 2764 }
f4c4176f 2765
04289bb9 2766 /*
cdd6c482 2767 * If the event is in a group and isn't the group leader,
d859e29f 2768 * then don't put it on unless the group is on.
04289bb9 2769 */
bd2afa49
PZ
2770 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2771 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2772 return;
bd2afa49 2773 }
fe4b04fa 2774
fae3fde6
PZ
2775 task_ctx = cpuctx->task_ctx;
2776 if (ctx->task)
2777 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2778
487f05e1 2779 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2780}
2781
d859e29f 2782/*
788faab7 2783 * Enable an event.
c93f7669 2784 *
cdd6c482
IM
2785 * If event->ctx is a cloned context, callers must make sure that
2786 * every task struct that event->ctx->task could possibly point to
c93f7669 2787 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2788 * perf_event_for_each_child or perf_event_for_each as described
2789 * for perf_event_disable.
d859e29f 2790 */
f63a8daa 2791static void _perf_event_enable(struct perf_event *event)
d859e29f 2792{
cdd6c482 2793 struct perf_event_context *ctx = event->ctx;
d859e29f 2794
7b648018 2795 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2796 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2797 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2798 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2799 return;
2800 }
2801
d859e29f 2802 /*
cdd6c482 2803 * If the event is in error state, clear that first.
7b648018
PZ
2804 *
2805 * That way, if we see the event in error state below, we know that it
2806 * has gone back into error state, as distinct from the task having
2807 * been scheduled away before the cross-call arrived.
d859e29f 2808 */
cdd6c482
IM
2809 if (event->state == PERF_EVENT_STATE_ERROR)
2810 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2811 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2812
fae3fde6 2813 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2814}
f63a8daa
PZ
2815
2816/*
2817 * See perf_event_disable();
2818 */
2819void perf_event_enable(struct perf_event *event)
2820{
2821 struct perf_event_context *ctx;
2822
2823 ctx = perf_event_ctx_lock(event);
2824 _perf_event_enable(event);
2825 perf_event_ctx_unlock(event, ctx);
2826}
dcfce4a0 2827EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2828
375637bc
AS
2829struct stop_event_data {
2830 struct perf_event *event;
2831 unsigned int restart;
2832};
2833
95ff4ca2
AS
2834static int __perf_event_stop(void *info)
2835{
375637bc
AS
2836 struct stop_event_data *sd = info;
2837 struct perf_event *event = sd->event;
95ff4ca2 2838
375637bc 2839 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2840 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2841 return 0;
2842
2843 /* matches smp_wmb() in event_sched_in() */
2844 smp_rmb();
2845
2846 /*
2847 * There is a window with interrupts enabled before we get here,
2848 * so we need to check again lest we try to stop another CPU's event.
2849 */
2850 if (READ_ONCE(event->oncpu) != smp_processor_id())
2851 return -EAGAIN;
2852
2853 event->pmu->stop(event, PERF_EF_UPDATE);
2854
375637bc
AS
2855 /*
2856 * May race with the actual stop (through perf_pmu_output_stop()),
2857 * but it is only used for events with AUX ring buffer, and such
2858 * events will refuse to restart because of rb::aux_mmap_count==0,
2859 * see comments in perf_aux_output_begin().
2860 *
788faab7 2861 * Since this is happening on an event-local CPU, no trace is lost
375637bc
AS
2862 * while restarting.
2863 */
2864 if (sd->restart)
c9bbdd48 2865 event->pmu->start(event, 0);
375637bc 2866
95ff4ca2
AS
2867 return 0;
2868}
2869
767ae086 2870static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2871{
2872 struct stop_event_data sd = {
2873 .event = event,
767ae086 2874 .restart = restart,
375637bc
AS
2875 };
2876 int ret = 0;
2877
2878 do {
2879 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2880 return 0;
2881
2882 /* matches smp_wmb() in event_sched_in() */
2883 smp_rmb();
2884
2885 /*
2886 * We only want to restart ACTIVE events, so if the event goes
2887 * inactive here (event->oncpu==-1), there's nothing more to do;
2888 * fall through with ret==-ENXIO.
2889 */
2890 ret = cpu_function_call(READ_ONCE(event->oncpu),
2891 __perf_event_stop, &sd);
2892 } while (ret == -EAGAIN);
2893
2894 return ret;
2895}
2896
2897/*
2898 * In order to contain the amount of racy and tricky in the address filter
2899 * configuration management, it is a two part process:
2900 *
2901 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2902 * we update the addresses of corresponding vmas in
c60f83b8 2903 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
375637bc
AS
2904 * (p2) when an event is scheduled in (pmu::add), it calls
2905 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2906 * if the generation has changed since the previous call.
2907 *
2908 * If (p1) happens while the event is active, we restart it to force (p2).
2909 *
2910 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2911 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2912 * ioctl;
2913 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2914 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2915 * for reading;
2916 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2917 * of exec.
2918 */
2919void perf_event_addr_filters_sync(struct perf_event *event)
2920{
2921 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2922
2923 if (!has_addr_filter(event))
2924 return;
2925
2926 raw_spin_lock(&ifh->lock);
2927 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2928 event->pmu->addr_filters_sync(event);
2929 event->hw.addr_filters_gen = event->addr_filters_gen;
2930 }
2931 raw_spin_unlock(&ifh->lock);
2932}
2933EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2934
f63a8daa 2935static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2936{
2023b359 2937 /*
cdd6c482 2938 * not supported on inherited events
2023b359 2939 */
2e939d1d 2940 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2941 return -EINVAL;
2942
cdd6c482 2943 atomic_add(refresh, &event->event_limit);
f63a8daa 2944 _perf_event_enable(event);
2023b359
PZ
2945
2946 return 0;
79f14641 2947}
f63a8daa
PZ
2948
2949/*
2950 * See perf_event_disable()
2951 */
2952int perf_event_refresh(struct perf_event *event, int refresh)
2953{
2954 struct perf_event_context *ctx;
2955 int ret;
2956
2957 ctx = perf_event_ctx_lock(event);
2958 ret = _perf_event_refresh(event, refresh);
2959 perf_event_ctx_unlock(event, ctx);
2960
2961 return ret;
2962}
26ca5c11 2963EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2964
32ff77e8
MC
2965static int perf_event_modify_breakpoint(struct perf_event *bp,
2966 struct perf_event_attr *attr)
2967{
2968 int err;
2969
2970 _perf_event_disable(bp);
2971
2972 err = modify_user_hw_breakpoint_check(bp, attr, true);
32ff77e8 2973
bf06278c 2974 if (!bp->attr.disabled)
32ff77e8 2975 _perf_event_enable(bp);
bf06278c
JO
2976
2977 return err;
32ff77e8
MC
2978}
2979
2980static int perf_event_modify_attr(struct perf_event *event,
2981 struct perf_event_attr *attr)
2982{
2983 if (event->attr.type != attr->type)
2984 return -EINVAL;
2985
2986 switch (event->attr.type) {
2987 case PERF_TYPE_BREAKPOINT:
2988 return perf_event_modify_breakpoint(event, attr);
2989 default:
2990 /* Place holder for future additions. */
2991 return -EOPNOTSUPP;
2992 }
2993}
2994
5b0311e1
FW
2995static void ctx_sched_out(struct perf_event_context *ctx,
2996 struct perf_cpu_context *cpuctx,
2997 enum event_type_t event_type)
235c7fc7 2998{
6668128a 2999 struct perf_event *event, *tmp;
db24d33e 3000 int is_active = ctx->is_active;
235c7fc7 3001
c994d613 3002 lockdep_assert_held(&ctx->lock);
235c7fc7 3003
39a43640
PZ
3004 if (likely(!ctx->nr_events)) {
3005 /*
3006 * See __perf_remove_from_context().
3007 */
3008 WARN_ON_ONCE(ctx->is_active);
3009 if (ctx->task)
3010 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 3011 return;
39a43640
PZ
3012 }
3013
db24d33e 3014 ctx->is_active &= ~event_type;
3cbaa590
PZ
3015 if (!(ctx->is_active & EVENT_ALL))
3016 ctx->is_active = 0;
3017
63e30d3e
PZ
3018 if (ctx->task) {
3019 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3020 if (!ctx->is_active)
3021 cpuctx->task_ctx = NULL;
3022 }
facc4307 3023
8fdc6539
PZ
3024 /*
3025 * Always update time if it was set; not only when it changes.
3026 * Otherwise we can 'forget' to update time for any but the last
3027 * context we sched out. For example:
3028 *
3029 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3030 * ctx_sched_out(.event_type = EVENT_PINNED)
3031 *
3032 * would only update time for the pinned events.
3033 */
3cbaa590
PZ
3034 if (is_active & EVENT_TIME) {
3035 /* update (and stop) ctx time */
3036 update_context_time(ctx);
3037 update_cgrp_time_from_cpuctx(cpuctx);
3038 }
3039
8fdc6539
PZ
3040 is_active ^= ctx->is_active; /* changed bits */
3041
3cbaa590 3042 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 3043 return;
5b0311e1 3044
fd7d5517
IR
3045 /*
3046 * If we had been multiplexing, no rotations are necessary, now no events
3047 * are active.
3048 */
3049 ctx->rotate_necessary = 0;
3050
075e0b00 3051 perf_pmu_disable(ctx->pmu);
3cbaa590 3052 if (is_active & EVENT_PINNED) {
6668128a 3053 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
889ff015 3054 group_sched_out(event, cpuctx, ctx);
9ed6060d 3055 }
889ff015 3056
3cbaa590 3057 if (is_active & EVENT_FLEXIBLE) {
6668128a 3058 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
8c9ed8e1 3059 group_sched_out(event, cpuctx, ctx);
9ed6060d 3060 }
1b9a644f 3061 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
3062}
3063
564c2b21 3064/*
5a3126d4
PZ
3065 * Test whether two contexts are equivalent, i.e. whether they have both been
3066 * cloned from the same version of the same context.
3067 *
3068 * Equivalence is measured using a generation number in the context that is
3069 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3070 * and list_del_event().
564c2b21 3071 */
cdd6c482
IM
3072static int context_equiv(struct perf_event_context *ctx1,
3073 struct perf_event_context *ctx2)
564c2b21 3074{
211de6eb
PZ
3075 lockdep_assert_held(&ctx1->lock);
3076 lockdep_assert_held(&ctx2->lock);
3077
5a3126d4
PZ
3078 /* Pinning disables the swap optimization */
3079 if (ctx1->pin_count || ctx2->pin_count)
3080 return 0;
3081
3082 /* If ctx1 is the parent of ctx2 */
3083 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3084 return 1;
3085
3086 /* If ctx2 is the parent of ctx1 */
3087 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3088 return 1;
3089
3090 /*
3091 * If ctx1 and ctx2 have the same parent; we flatten the parent
3092 * hierarchy, see perf_event_init_context().
3093 */
3094 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3095 ctx1->parent_gen == ctx2->parent_gen)
3096 return 1;
3097
3098 /* Unmatched */
3099 return 0;
564c2b21
PM
3100}
3101
cdd6c482
IM
3102static void __perf_event_sync_stat(struct perf_event *event,
3103 struct perf_event *next_event)
bfbd3381
PZ
3104{
3105 u64 value;
3106
cdd6c482 3107 if (!event->attr.inherit_stat)
bfbd3381
PZ
3108 return;
3109
3110 /*
cdd6c482 3111 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3112 * because we're in the middle of a context switch and have IRQs
3113 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3114 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3115 * don't need to use it.
3116 */
0d3d73aa 3117 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3118 event->pmu->read(event);
bfbd3381 3119
0d3d73aa 3120 perf_event_update_time(event);
bfbd3381
PZ
3121
3122 /*
cdd6c482 3123 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3124 * values when we flip the contexts.
3125 */
e7850595
PZ
3126 value = local64_read(&next_event->count);
3127 value = local64_xchg(&event->count, value);
3128 local64_set(&next_event->count, value);
bfbd3381 3129
cdd6c482
IM
3130 swap(event->total_time_enabled, next_event->total_time_enabled);
3131 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3132
bfbd3381 3133 /*
19d2e755 3134 * Since we swizzled the values, update the user visible data too.
bfbd3381 3135 */
cdd6c482
IM
3136 perf_event_update_userpage(event);
3137 perf_event_update_userpage(next_event);
bfbd3381
PZ
3138}
3139
cdd6c482
IM
3140static void perf_event_sync_stat(struct perf_event_context *ctx,
3141 struct perf_event_context *next_ctx)
bfbd3381 3142{
cdd6c482 3143 struct perf_event *event, *next_event;
bfbd3381
PZ
3144
3145 if (!ctx->nr_stat)
3146 return;
3147
02ffdbc8
PZ
3148 update_context_time(ctx);
3149
cdd6c482
IM
3150 event = list_first_entry(&ctx->event_list,
3151 struct perf_event, event_entry);
bfbd3381 3152
cdd6c482
IM
3153 next_event = list_first_entry(&next_ctx->event_list,
3154 struct perf_event, event_entry);
bfbd3381 3155
cdd6c482
IM
3156 while (&event->event_entry != &ctx->event_list &&
3157 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3158
cdd6c482 3159 __perf_event_sync_stat(event, next_event);
bfbd3381 3160
cdd6c482
IM
3161 event = list_next_entry(event, event_entry);
3162 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3163 }
3164}
3165
fe4b04fa
PZ
3166static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3167 struct task_struct *next)
0793a61d 3168{
8dc85d54 3169 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 3170 struct perf_event_context *next_ctx;
5a3126d4 3171 struct perf_event_context *parent, *next_parent;
108b02cf 3172 struct perf_cpu_context *cpuctx;
c93f7669 3173 int do_switch = 1;
0793a61d 3174
108b02cf
PZ
3175 if (likely(!ctx))
3176 return;
10989fb2 3177
108b02cf
PZ
3178 cpuctx = __get_cpu_context(ctx);
3179 if (!cpuctx->task_ctx)
0793a61d
TG
3180 return;
3181
c93f7669 3182 rcu_read_lock();
8dc85d54 3183 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
3184 if (!next_ctx)
3185 goto unlock;
3186
3187 parent = rcu_dereference(ctx->parent_ctx);
3188 next_parent = rcu_dereference(next_ctx->parent_ctx);
3189
3190 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3191 if (!parent && !next_parent)
5a3126d4
PZ
3192 goto unlock;
3193
3194 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3195 /*
3196 * Looks like the two contexts are clones, so we might be
3197 * able to optimize the context switch. We lock both
3198 * contexts and check that they are clones under the
3199 * lock (including re-checking that neither has been
3200 * uncloned in the meantime). It doesn't matter which
3201 * order we take the locks because no other cpu could
3202 * be trying to lock both of these tasks.
3203 */
e625cce1
TG
3204 raw_spin_lock(&ctx->lock);
3205 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3206 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
3207 WRITE_ONCE(ctx->task, next);
3208 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
3209
3210 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3211
63b6da39
PZ
3212 /*
3213 * RCU_INIT_POINTER here is safe because we've not
3214 * modified the ctx and the above modification of
3215 * ctx->task and ctx->task_ctx_data are immaterial
3216 * since those values are always verified under
3217 * ctx->lock which we're now holding.
3218 */
3219 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3220 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3221
c93f7669 3222 do_switch = 0;
bfbd3381 3223
cdd6c482 3224 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3225 }
e625cce1
TG
3226 raw_spin_unlock(&next_ctx->lock);
3227 raw_spin_unlock(&ctx->lock);
564c2b21 3228 }
5a3126d4 3229unlock:
c93f7669 3230 rcu_read_unlock();
564c2b21 3231
c93f7669 3232 if (do_switch) {
facc4307 3233 raw_spin_lock(&ctx->lock);
487f05e1 3234 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 3235 raw_spin_unlock(&ctx->lock);
c93f7669 3236 }
0793a61d
TG
3237}
3238
e48c1788
PZ
3239static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3240
ba532500
YZ
3241void perf_sched_cb_dec(struct pmu *pmu)
3242{
e48c1788
PZ
3243 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3244
ba532500 3245 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3246
3247 if (!--cpuctx->sched_cb_usage)
3248 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3249}
3250
e48c1788 3251
ba532500
YZ
3252void perf_sched_cb_inc(struct pmu *pmu)
3253{
e48c1788
PZ
3254 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3255
3256 if (!cpuctx->sched_cb_usage++)
3257 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3258
ba532500
YZ
3259 this_cpu_inc(perf_sched_cb_usages);
3260}
3261
3262/*
3263 * This function provides the context switch callback to the lower code
3264 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3265 *
3266 * This callback is relevant even to per-cpu events; for example multi event
3267 * PEBS requires this to provide PID/TID information. This requires we flush
3268 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3269 */
3270static void perf_pmu_sched_task(struct task_struct *prev,
3271 struct task_struct *next,
3272 bool sched_in)
3273{
3274 struct perf_cpu_context *cpuctx;
3275 struct pmu *pmu;
ba532500
YZ
3276
3277 if (prev == next)
3278 return;
3279
e48c1788 3280 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3281 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3282
e48c1788
PZ
3283 if (WARN_ON_ONCE(!pmu->sched_task))
3284 continue;
ba532500 3285
e48c1788
PZ
3286 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3287 perf_pmu_disable(pmu);
ba532500 3288
e48c1788 3289 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3290
e48c1788
PZ
3291 perf_pmu_enable(pmu);
3292 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3293 }
ba532500
YZ
3294}
3295
45ac1403
AH
3296static void perf_event_switch(struct task_struct *task,
3297 struct task_struct *next_prev, bool sched_in);
3298
8dc85d54
PZ
3299#define for_each_task_context_nr(ctxn) \
3300 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3301
3302/*
3303 * Called from scheduler to remove the events of the current task,
3304 * with interrupts disabled.
3305 *
3306 * We stop each event and update the event value in event->count.
3307 *
3308 * This does not protect us against NMI, but disable()
3309 * sets the disabled bit in the control field of event _before_
3310 * accessing the event control register. If a NMI hits, then it will
3311 * not restart the event.
3312 */
ab0cce56
JO
3313void __perf_event_task_sched_out(struct task_struct *task,
3314 struct task_struct *next)
8dc85d54
PZ
3315{
3316 int ctxn;
3317
ba532500
YZ
3318 if (__this_cpu_read(perf_sched_cb_usages))
3319 perf_pmu_sched_task(task, next, false);
3320
45ac1403
AH
3321 if (atomic_read(&nr_switch_events))
3322 perf_event_switch(task, next, false);
3323
8dc85d54
PZ
3324 for_each_task_context_nr(ctxn)
3325 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3326
3327 /*
3328 * if cgroup events exist on this CPU, then we need
3329 * to check if we have to switch out PMU state.
3330 * cgroup event are system-wide mode only
3331 */
4a32fea9 3332 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3333 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3334}
3335
5b0311e1
FW
3336/*
3337 * Called with IRQs disabled
3338 */
3339static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3340 enum event_type_t event_type)
3341{
3342 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3343}
3344
1cac7b1a
PZ
3345static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3346 int (*func)(struct perf_event *, void *), void *data)
0793a61d 3347{
1cac7b1a
PZ
3348 struct perf_event **evt, *evt1, *evt2;
3349 int ret;
8e1a2031 3350
1cac7b1a
PZ
3351 evt1 = perf_event_groups_first(groups, -1);
3352 evt2 = perf_event_groups_first(groups, cpu);
3353
3354 while (evt1 || evt2) {
3355 if (evt1 && evt2) {
3356 if (evt1->group_index < evt2->group_index)
3357 evt = &evt1;
3358 else
3359 evt = &evt2;
3360 } else if (evt1) {
3361 evt = &evt1;
3362 } else {
3363 evt = &evt2;
8e1a2031 3364 }
1cac7b1a
PZ
3365
3366 ret = func(*evt, data);
3367 if (ret)
3368 return ret;
3369
3370 *evt = perf_event_groups_next(*evt);
8e1a2031 3371 }
0793a61d 3372
1cac7b1a
PZ
3373 return 0;
3374}
3375
3376struct sched_in_data {
3377 struct perf_event_context *ctx;
3378 struct perf_cpu_context *cpuctx;
3379 int can_add_hw;
3380};
3381
3382static int pinned_sched_in(struct perf_event *event, void *data)
3383{
3384 struct sched_in_data *sid = data;
3385
3386 if (event->state <= PERF_EVENT_STATE_OFF)
3387 return 0;
3388
3389 if (!event_filter_match(event))
3390 return 0;
3391
6668128a
PZ
3392 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3393 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3394 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3395 }
1cac7b1a
PZ
3396
3397 /*
3398 * If this pinned group hasn't been scheduled,
3399 * put it in error state.
3400 */
3401 if (event->state == PERF_EVENT_STATE_INACTIVE)
3402 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3403
3404 return 0;
3405}
3406
3407static int flexible_sched_in(struct perf_event *event, void *data)
3408{
3409 struct sched_in_data *sid = data;
3410
3411 if (event->state <= PERF_EVENT_STATE_OFF)
3412 return 0;
3413
3414 if (!event_filter_match(event))
3415 return 0;
3416
3417 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
fd7d5517
IR
3418 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3419 if (ret) {
1cac7b1a 3420 sid->can_add_hw = 0;
fd7d5517
IR
3421 sid->ctx->rotate_necessary = 1;
3422 return 0;
3423 }
3424 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3b6f9e5c 3425 }
1cac7b1a
PZ
3426
3427 return 0;
5b0311e1
FW
3428}
3429
3430static void
1cac7b1a
PZ
3431ctx_pinned_sched_in(struct perf_event_context *ctx,
3432 struct perf_cpu_context *cpuctx)
5b0311e1 3433{
1cac7b1a
PZ
3434 struct sched_in_data sid = {
3435 .ctx = ctx,
3436 .cpuctx = cpuctx,
3437 .can_add_hw = 1,
3438 };
3b6f9e5c 3439
1cac7b1a
PZ
3440 visit_groups_merge(&ctx->pinned_groups,
3441 smp_processor_id(),
3442 pinned_sched_in, &sid);
3443}
8e1a2031 3444
1cac7b1a
PZ
3445static void
3446ctx_flexible_sched_in(struct perf_event_context *ctx,
3447 struct perf_cpu_context *cpuctx)
3448{
3449 struct sched_in_data sid = {
3450 .ctx = ctx,
3451 .cpuctx = cpuctx,
3452 .can_add_hw = 1,
3453 };
0793a61d 3454
1cac7b1a
PZ
3455 visit_groups_merge(&ctx->flexible_groups,
3456 smp_processor_id(),
3457 flexible_sched_in, &sid);
5b0311e1
FW
3458}
3459
3460static void
3461ctx_sched_in(struct perf_event_context *ctx,
3462 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3463 enum event_type_t event_type,
3464 struct task_struct *task)
5b0311e1 3465{
db24d33e 3466 int is_active = ctx->is_active;
c994d613
PZ
3467 u64 now;
3468
3469 lockdep_assert_held(&ctx->lock);
e5d1367f 3470
5b0311e1 3471 if (likely(!ctx->nr_events))
facc4307 3472 return;
5b0311e1 3473
3cbaa590 3474 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3475 if (ctx->task) {
3476 if (!is_active)
3477 cpuctx->task_ctx = ctx;
3478 else
3479 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3480 }
3481
3cbaa590
PZ
3482 is_active ^= ctx->is_active; /* changed bits */
3483
3484 if (is_active & EVENT_TIME) {
3485 /* start ctx time */
3486 now = perf_clock();
3487 ctx->timestamp = now;
3488 perf_cgroup_set_timestamp(task, ctx);
3489 }
3490
5b0311e1
FW
3491 /*
3492 * First go through the list and put on any pinned groups
3493 * in order to give them the best chance of going on.
3494 */
3cbaa590 3495 if (is_active & EVENT_PINNED)
6e37738a 3496 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3497
3498 /* Then walk through the lower prio flexible groups */
3cbaa590 3499 if (is_active & EVENT_FLEXIBLE)
6e37738a 3500 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3501}
3502
329c0e01 3503static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3504 enum event_type_t event_type,
3505 struct task_struct *task)
329c0e01
FW
3506{
3507 struct perf_event_context *ctx = &cpuctx->ctx;
3508
e5d1367f 3509 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3510}
3511
e5d1367f
SE
3512static void perf_event_context_sched_in(struct perf_event_context *ctx,
3513 struct task_struct *task)
235c7fc7 3514{
108b02cf 3515 struct perf_cpu_context *cpuctx;
235c7fc7 3516
108b02cf 3517 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3518 if (cpuctx->task_ctx == ctx)
3519 return;
3520
facc4307 3521 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3522 /*
3523 * We must check ctx->nr_events while holding ctx->lock, such
3524 * that we serialize against perf_install_in_context().
3525 */
3526 if (!ctx->nr_events)
3527 goto unlock;
3528
1b9a644f 3529 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3530 /*
3531 * We want to keep the following priority order:
3532 * cpu pinned (that don't need to move), task pinned,
3533 * cpu flexible, task flexible.
fe45bafb
AS
3534 *
3535 * However, if task's ctx is not carrying any pinned
3536 * events, no need to flip the cpuctx's events around.
329c0e01 3537 */
8e1a2031 3538 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
fe45bafb 3539 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3540 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3541 perf_pmu_enable(ctx->pmu);
fdccc3fb 3542
3543unlock:
facc4307 3544 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3545}
3546
8dc85d54
PZ
3547/*
3548 * Called from scheduler to add the events of the current task
3549 * with interrupts disabled.
3550 *
3551 * We restore the event value and then enable it.
3552 *
3553 * This does not protect us against NMI, but enable()
3554 * sets the enabled bit in the control field of event _before_
3555 * accessing the event control register. If a NMI hits, then it will
3556 * keep the event running.
3557 */
ab0cce56
JO
3558void __perf_event_task_sched_in(struct task_struct *prev,
3559 struct task_struct *task)
8dc85d54
PZ
3560{
3561 struct perf_event_context *ctx;
3562 int ctxn;
3563
7e41d177
PZ
3564 /*
3565 * If cgroup events exist on this CPU, then we need to check if we have
3566 * to switch in PMU state; cgroup event are system-wide mode only.
3567 *
3568 * Since cgroup events are CPU events, we must schedule these in before
3569 * we schedule in the task events.
3570 */
3571 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3572 perf_cgroup_sched_in(prev, task);
3573
8dc85d54
PZ
3574 for_each_task_context_nr(ctxn) {
3575 ctx = task->perf_event_ctxp[ctxn];
3576 if (likely(!ctx))
3577 continue;
3578
e5d1367f 3579 perf_event_context_sched_in(ctx, task);
8dc85d54 3580 }
d010b332 3581
45ac1403
AH
3582 if (atomic_read(&nr_switch_events))
3583 perf_event_switch(task, prev, true);
3584
ba532500
YZ
3585 if (__this_cpu_read(perf_sched_cb_usages))
3586 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3587}
3588
abd50713
PZ
3589static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3590{
3591 u64 frequency = event->attr.sample_freq;
3592 u64 sec = NSEC_PER_SEC;
3593 u64 divisor, dividend;
3594
3595 int count_fls, nsec_fls, frequency_fls, sec_fls;
3596
3597 count_fls = fls64(count);
3598 nsec_fls = fls64(nsec);
3599 frequency_fls = fls64(frequency);
3600 sec_fls = 30;
3601
3602 /*
3603 * We got @count in @nsec, with a target of sample_freq HZ
3604 * the target period becomes:
3605 *
3606 * @count * 10^9
3607 * period = -------------------
3608 * @nsec * sample_freq
3609 *
3610 */
3611
3612 /*
3613 * Reduce accuracy by one bit such that @a and @b converge
3614 * to a similar magnitude.
3615 */
fe4b04fa 3616#define REDUCE_FLS(a, b) \
abd50713
PZ
3617do { \
3618 if (a##_fls > b##_fls) { \
3619 a >>= 1; \
3620 a##_fls--; \
3621 } else { \
3622 b >>= 1; \
3623 b##_fls--; \
3624 } \
3625} while (0)
3626
3627 /*
3628 * Reduce accuracy until either term fits in a u64, then proceed with
3629 * the other, so that finally we can do a u64/u64 division.
3630 */
3631 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3632 REDUCE_FLS(nsec, frequency);
3633 REDUCE_FLS(sec, count);
3634 }
3635
3636 if (count_fls + sec_fls > 64) {
3637 divisor = nsec * frequency;
3638
3639 while (count_fls + sec_fls > 64) {
3640 REDUCE_FLS(count, sec);
3641 divisor >>= 1;
3642 }
3643
3644 dividend = count * sec;
3645 } else {
3646 dividend = count * sec;
3647
3648 while (nsec_fls + frequency_fls > 64) {
3649 REDUCE_FLS(nsec, frequency);
3650 dividend >>= 1;
3651 }
3652
3653 divisor = nsec * frequency;
3654 }
3655
f6ab91ad
PZ
3656 if (!divisor)
3657 return dividend;
3658
abd50713
PZ
3659 return div64_u64(dividend, divisor);
3660}
3661
e050e3f0
SE
3662static DEFINE_PER_CPU(int, perf_throttled_count);
3663static DEFINE_PER_CPU(u64, perf_throttled_seq);
3664
f39d47ff 3665static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3666{
cdd6c482 3667 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3668 s64 period, sample_period;
bd2b5b12
PZ
3669 s64 delta;
3670
abd50713 3671 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3672
3673 delta = (s64)(period - hwc->sample_period);
3674 delta = (delta + 7) / 8; /* low pass filter */
3675
3676 sample_period = hwc->sample_period + delta;
3677
3678 if (!sample_period)
3679 sample_period = 1;
3680
bd2b5b12 3681 hwc->sample_period = sample_period;
abd50713 3682
e7850595 3683 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3684 if (disable)
3685 event->pmu->stop(event, PERF_EF_UPDATE);
3686
e7850595 3687 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3688
3689 if (disable)
3690 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3691 }
bd2b5b12
PZ
3692}
3693
e050e3f0
SE
3694/*
3695 * combine freq adjustment with unthrottling to avoid two passes over the
3696 * events. At the same time, make sure, having freq events does not change
3697 * the rate of unthrottling as that would introduce bias.
3698 */
3699static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3700 int needs_unthr)
60db5e09 3701{
cdd6c482
IM
3702 struct perf_event *event;
3703 struct hw_perf_event *hwc;
e050e3f0 3704 u64 now, period = TICK_NSEC;
abd50713 3705 s64 delta;
60db5e09 3706
e050e3f0
SE
3707 /*
3708 * only need to iterate over all events iff:
3709 * - context have events in frequency mode (needs freq adjust)
3710 * - there are events to unthrottle on this cpu
3711 */
3712 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3713 return;
3714
e050e3f0 3715 raw_spin_lock(&ctx->lock);
f39d47ff 3716 perf_pmu_disable(ctx->pmu);
e050e3f0 3717
03541f8b 3718 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3719 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3720 continue;
3721
5632ab12 3722 if (!event_filter_match(event))
5d27c23d
PZ
3723 continue;
3724
44377277
AS
3725 perf_pmu_disable(event->pmu);
3726
cdd6c482 3727 hwc = &event->hw;
6a24ed6c 3728
ae23bff1 3729 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3730 hwc->interrupts = 0;
cdd6c482 3731 perf_log_throttle(event, 1);
a4eaf7f1 3732 event->pmu->start(event, 0);
a78ac325
PZ
3733 }
3734
cdd6c482 3735 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3736 goto next;
60db5e09 3737
e050e3f0
SE
3738 /*
3739 * stop the event and update event->count
3740 */
3741 event->pmu->stop(event, PERF_EF_UPDATE);
3742
e7850595 3743 now = local64_read(&event->count);
abd50713
PZ
3744 delta = now - hwc->freq_count_stamp;
3745 hwc->freq_count_stamp = now;
60db5e09 3746
e050e3f0
SE
3747 /*
3748 * restart the event
3749 * reload only if value has changed
f39d47ff
SE
3750 * we have stopped the event so tell that
3751 * to perf_adjust_period() to avoid stopping it
3752 * twice.
e050e3f0 3753 */
abd50713 3754 if (delta > 0)
f39d47ff 3755 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3756
3757 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3758 next:
3759 perf_pmu_enable(event->pmu);
60db5e09 3760 }
e050e3f0 3761
f39d47ff 3762 perf_pmu_enable(ctx->pmu);
e050e3f0 3763 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3764}
3765
235c7fc7 3766/*
8703a7cf 3767 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 3768 */
8703a7cf 3769static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 3770{
dddd3379
TG
3771 /*
3772 * Rotate the first entry last of non-pinned groups. Rotation might be
3773 * disabled by the inheritance code.
3774 */
8703a7cf
PZ
3775 if (ctx->rotate_disable)
3776 return;
8e1a2031 3777
8703a7cf
PZ
3778 perf_event_groups_delete(&ctx->flexible_groups, event);
3779 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
3780}
3781
7fa343b7 3782/* pick an event from the flexible_groups to rotate */
8d5bce0c 3783static inline struct perf_event *
7fa343b7 3784ctx_event_to_rotate(struct perf_event_context *ctx)
235c7fc7 3785{
7fa343b7
SL
3786 struct perf_event *event;
3787
3788 /* pick the first active flexible event */
3789 event = list_first_entry_or_null(&ctx->flexible_active,
3790 struct perf_event, active_list);
3791
3792 /* if no active flexible event, pick the first event */
3793 if (!event) {
3794 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3795 typeof(*event), group_node);
3796 }
3797
3798 return event;
8d5bce0c
PZ
3799}
3800
3801static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3802{
3803 struct perf_event *cpu_event = NULL, *task_event = NULL;
fd7d5517
IR
3804 struct perf_event_context *task_ctx = NULL;
3805 int cpu_rotate, task_rotate;
8d5bce0c
PZ
3806
3807 /*
3808 * Since we run this from IRQ context, nobody can install new
3809 * events, thus the event count values are stable.
3810 */
7fc23a53 3811
fd7d5517
IR
3812 cpu_rotate = cpuctx->ctx.rotate_necessary;
3813 task_ctx = cpuctx->task_ctx;
3814 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
9717e6cd 3815
8d5bce0c
PZ
3816 if (!(cpu_rotate || task_rotate))
3817 return false;
0f5a2601 3818
facc4307 3819 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3820 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3821
8d5bce0c 3822 if (task_rotate)
7fa343b7 3823 task_event = ctx_event_to_rotate(task_ctx);
8d5bce0c 3824 if (cpu_rotate)
7fa343b7 3825 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
8703a7cf 3826
8d5bce0c
PZ
3827 /*
3828 * As per the order given at ctx_resched() first 'pop' task flexible
3829 * and then, if needed CPU flexible.
3830 */
fd7d5517
IR
3831 if (task_event || (task_ctx && cpu_event))
3832 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
8d5bce0c
PZ
3833 if (cpu_event)
3834 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
0793a61d 3835
8d5bce0c 3836 if (task_event)
fd7d5517 3837 rotate_ctx(task_ctx, task_event);
8d5bce0c
PZ
3838 if (cpu_event)
3839 rotate_ctx(&cpuctx->ctx, cpu_event);
235c7fc7 3840
fd7d5517 3841 perf_event_sched_in(cpuctx, task_ctx, current);
235c7fc7 3842
0f5a2601
PZ
3843 perf_pmu_enable(cpuctx->ctx.pmu);
3844 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 3845
8d5bce0c 3846 return true;
e9d2b064
PZ
3847}
3848
3849void perf_event_task_tick(void)
3850{
2fde4f94
MR
3851 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3852 struct perf_event_context *ctx, *tmp;
e050e3f0 3853 int throttled;
b5ab4cd5 3854
16444645 3855 lockdep_assert_irqs_disabled();
e9d2b064 3856
e050e3f0
SE
3857 __this_cpu_inc(perf_throttled_seq);
3858 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3859 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3860
2fde4f94 3861 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3862 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3863}
3864
889ff015
FW
3865static int event_enable_on_exec(struct perf_event *event,
3866 struct perf_event_context *ctx)
3867{
3868 if (!event->attr.enable_on_exec)
3869 return 0;
3870
3871 event->attr.enable_on_exec = 0;
3872 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3873 return 0;
3874
0d3d73aa 3875 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3876
3877 return 1;
3878}
3879
57e7986e 3880/*
cdd6c482 3881 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3882 * This expects task == current.
3883 */
c1274499 3884static void perf_event_enable_on_exec(int ctxn)
57e7986e 3885{
c1274499 3886 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3887 enum event_type_t event_type = 0;
3e349507 3888 struct perf_cpu_context *cpuctx;
cdd6c482 3889 struct perf_event *event;
57e7986e
PM
3890 unsigned long flags;
3891 int enabled = 0;
3892
3893 local_irq_save(flags);
c1274499 3894 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3895 if (!ctx || !ctx->nr_events)
57e7986e
PM
3896 goto out;
3897
3e349507
PZ
3898 cpuctx = __get_cpu_context(ctx);
3899 perf_ctx_lock(cpuctx, ctx);
7fce2509 3900 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3901 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3902 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3903 event_type |= get_event_type(event);
3904 }
57e7986e
PM
3905
3906 /*
3e349507 3907 * Unclone and reschedule this context if we enabled any event.
57e7986e 3908 */
3e349507 3909 if (enabled) {
211de6eb 3910 clone_ctx = unclone_ctx(ctx);
487f05e1 3911 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3912 } else {
3913 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3914 }
3915 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3916
9ed6060d 3917out:
57e7986e 3918 local_irq_restore(flags);
211de6eb
PZ
3919
3920 if (clone_ctx)
3921 put_ctx(clone_ctx);
57e7986e
PM
3922}
3923
0492d4c5
PZ
3924struct perf_read_data {
3925 struct perf_event *event;
3926 bool group;
7d88962e 3927 int ret;
0492d4c5
PZ
3928};
3929
451d24d1 3930static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3931{
d6a2f903
DCC
3932 u16 local_pkg, event_pkg;
3933
3934 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3935 int local_cpu = smp_processor_id();
3936
3937 event_pkg = topology_physical_package_id(event_cpu);
3938 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3939
3940 if (event_pkg == local_pkg)
3941 return local_cpu;
3942 }
3943
3944 return event_cpu;
3945}
3946
0793a61d 3947/*
cdd6c482 3948 * Cross CPU call to read the hardware event
0793a61d 3949 */
cdd6c482 3950static void __perf_event_read(void *info)
0793a61d 3951{
0492d4c5
PZ
3952 struct perf_read_data *data = info;
3953 struct perf_event *sub, *event = data->event;
cdd6c482 3954 struct perf_event_context *ctx = event->ctx;
108b02cf 3955 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3956 struct pmu *pmu = event->pmu;
621a01ea 3957
e1ac3614
PM
3958 /*
3959 * If this is a task context, we need to check whether it is
3960 * the current task context of this cpu. If not it has been
3961 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3962 * event->count would have been updated to a recent sample
3963 * when the event was scheduled out.
e1ac3614
PM
3964 */
3965 if (ctx->task && cpuctx->task_ctx != ctx)
3966 return;
3967
e625cce1 3968 raw_spin_lock(&ctx->lock);
0c1cbc18 3969 if (ctx->is_active & EVENT_TIME) {
542e72fc 3970 update_context_time(ctx);
e5d1367f
SE
3971 update_cgrp_time_from_event(event);
3972 }
0492d4c5 3973
0d3d73aa
PZ
3974 perf_event_update_time(event);
3975 if (data->group)
3976 perf_event_update_sibling_time(event);
0c1cbc18 3977
4a00c16e
SB
3978 if (event->state != PERF_EVENT_STATE_ACTIVE)
3979 goto unlock;
0492d4c5 3980
4a00c16e
SB
3981 if (!data->group) {
3982 pmu->read(event);
3983 data->ret = 0;
0492d4c5 3984 goto unlock;
4a00c16e
SB
3985 }
3986
3987 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3988
3989 pmu->read(event);
0492d4c5 3990
edb39592 3991 for_each_sibling_event(sub, event) {
4a00c16e
SB
3992 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3993 /*
3994 * Use sibling's PMU rather than @event's since
3995 * sibling could be on different (eg: software) PMU.
3996 */
0492d4c5 3997 sub->pmu->read(sub);
4a00c16e 3998 }
0492d4c5 3999 }
4a00c16e
SB
4000
4001 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
4002
4003unlock:
e625cce1 4004 raw_spin_unlock(&ctx->lock);
0793a61d
TG
4005}
4006
b5e58793
PZ
4007static inline u64 perf_event_count(struct perf_event *event)
4008{
c39a0e2c 4009 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
4010}
4011
ffe8690c
KX
4012/*
4013 * NMI-safe method to read a local event, that is an event that
4014 * is:
4015 * - either for the current task, or for this CPU
4016 * - does not have inherit set, for inherited task events
4017 * will not be local and we cannot read them atomically
4018 * - must not have a pmu::count method
4019 */
7d9285e8
YS
4020int perf_event_read_local(struct perf_event *event, u64 *value,
4021 u64 *enabled, u64 *running)
ffe8690c
KX
4022{
4023 unsigned long flags;
f91840a3 4024 int ret = 0;
ffe8690c
KX
4025
4026 /*
4027 * Disabling interrupts avoids all counter scheduling (context
4028 * switches, timer based rotation and IPIs).
4029 */
4030 local_irq_save(flags);
4031
ffe8690c
KX
4032 /*
4033 * It must not be an event with inherit set, we cannot read
4034 * all child counters from atomic context.
4035 */
f91840a3
AS
4036 if (event->attr.inherit) {
4037 ret = -EOPNOTSUPP;
4038 goto out;
4039 }
ffe8690c 4040
f91840a3
AS
4041 /* If this is a per-task event, it must be for current */
4042 if ((event->attach_state & PERF_ATTACH_TASK) &&
4043 event->hw.target != current) {
4044 ret = -EINVAL;
4045 goto out;
4046 }
4047
4048 /* If this is a per-CPU event, it must be for this CPU */
4049 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4050 event->cpu != smp_processor_id()) {
4051 ret = -EINVAL;
4052 goto out;
4053 }
ffe8690c 4054
befb1b3c
RC
4055 /* If this is a pinned event it must be running on this CPU */
4056 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4057 ret = -EBUSY;
4058 goto out;
4059 }
4060
ffe8690c
KX
4061 /*
4062 * If the event is currently on this CPU, its either a per-task event,
4063 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4064 * oncpu == -1).
4065 */
4066 if (event->oncpu == smp_processor_id())
4067 event->pmu->read(event);
4068
f91840a3 4069 *value = local64_read(&event->count);
0d3d73aa
PZ
4070 if (enabled || running) {
4071 u64 now = event->shadow_ctx_time + perf_clock();
4072 u64 __enabled, __running;
4073
4074 __perf_update_times(event, now, &__enabled, &__running);
4075 if (enabled)
4076 *enabled = __enabled;
4077 if (running)
4078 *running = __running;
4079 }
f91840a3 4080out:
ffe8690c
KX
4081 local_irq_restore(flags);
4082
f91840a3 4083 return ret;
ffe8690c
KX
4084}
4085
7d88962e 4086static int perf_event_read(struct perf_event *event, bool group)
0793a61d 4087{
0c1cbc18 4088 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 4089 int event_cpu, ret = 0;
7d88962e 4090
0793a61d 4091 /*
cdd6c482
IM
4092 * If event is enabled and currently active on a CPU, update the
4093 * value in the event structure:
0793a61d 4094 */
0c1cbc18
PZ
4095again:
4096 if (state == PERF_EVENT_STATE_ACTIVE) {
4097 struct perf_read_data data;
4098
4099 /*
4100 * Orders the ->state and ->oncpu loads such that if we see
4101 * ACTIVE we must also see the right ->oncpu.
4102 *
4103 * Matches the smp_wmb() from event_sched_in().
4104 */
4105 smp_rmb();
d6a2f903 4106
451d24d1
PZ
4107 event_cpu = READ_ONCE(event->oncpu);
4108 if ((unsigned)event_cpu >= nr_cpu_ids)
4109 return 0;
4110
0c1cbc18
PZ
4111 data = (struct perf_read_data){
4112 .event = event,
4113 .group = group,
4114 .ret = 0,
4115 };
4116
451d24d1
PZ
4117 preempt_disable();
4118 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4119
58763148
PZ
4120 /*
4121 * Purposely ignore the smp_call_function_single() return
4122 * value.
4123 *
451d24d1 4124 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4125 * scheduled out and that will have updated the event count.
4126 *
4127 * Therefore, either way, we'll have an up-to-date event count
4128 * after this.
4129 */
451d24d1
PZ
4130 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4131 preempt_enable();
58763148 4132 ret = data.ret;
0c1cbc18
PZ
4133
4134 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4135 struct perf_event_context *ctx = event->ctx;
4136 unsigned long flags;
4137
e625cce1 4138 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4139 state = event->state;
4140 if (state != PERF_EVENT_STATE_INACTIVE) {
4141 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4142 goto again;
4143 }
4144
c530ccd9 4145 /*
0c1cbc18
PZ
4146 * May read while context is not active (e.g., thread is
4147 * blocked), in that case we cannot update context time
c530ccd9 4148 */
0c1cbc18 4149 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4150 update_context_time(ctx);
e5d1367f
SE
4151 update_cgrp_time_from_event(event);
4152 }
0c1cbc18 4153
0d3d73aa 4154 perf_event_update_time(event);
0492d4c5 4155 if (group)
0d3d73aa 4156 perf_event_update_sibling_time(event);
e625cce1 4157 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4158 }
7d88962e
SB
4159
4160 return ret;
0793a61d
TG
4161}
4162
a63eaf34 4163/*
cdd6c482 4164 * Initialize the perf_event context in a task_struct:
a63eaf34 4165 */
eb184479 4166static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4167{
e625cce1 4168 raw_spin_lock_init(&ctx->lock);
a63eaf34 4169 mutex_init(&ctx->mutex);
2fde4f94 4170 INIT_LIST_HEAD(&ctx->active_ctx_list);
8e1a2031
AB
4171 perf_event_groups_init(&ctx->pinned_groups);
4172 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4173 INIT_LIST_HEAD(&ctx->event_list);
6668128a
PZ
4174 INIT_LIST_HEAD(&ctx->pinned_active);
4175 INIT_LIST_HEAD(&ctx->flexible_active);
8c94abbb 4176 refcount_set(&ctx->refcount, 1);
eb184479
PZ
4177}
4178
4179static struct perf_event_context *
4180alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4181{
4182 struct perf_event_context *ctx;
4183
4184 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4185 if (!ctx)
4186 return NULL;
4187
4188 __perf_event_init_context(ctx);
7b3c92b8
MWO
4189 if (task)
4190 ctx->task = get_task_struct(task);
eb184479
PZ
4191 ctx->pmu = pmu;
4192
4193 return ctx;
a63eaf34
PM
4194}
4195
2ebd4ffb
MH
4196static struct task_struct *
4197find_lively_task_by_vpid(pid_t vpid)
4198{
4199 struct task_struct *task;
0793a61d
TG
4200
4201 rcu_read_lock();
2ebd4ffb 4202 if (!vpid)
0793a61d
TG
4203 task = current;
4204 else
2ebd4ffb 4205 task = find_task_by_vpid(vpid);
0793a61d
TG
4206 if (task)
4207 get_task_struct(task);
4208 rcu_read_unlock();
4209
4210 if (!task)
4211 return ERR_PTR(-ESRCH);
4212
2ebd4ffb 4213 return task;
2ebd4ffb
MH
4214}
4215
fe4b04fa
PZ
4216/*
4217 * Returns a matching context with refcount and pincount.
4218 */
108b02cf 4219static struct perf_event_context *
4af57ef2
YZ
4220find_get_context(struct pmu *pmu, struct task_struct *task,
4221 struct perf_event *event)
0793a61d 4222{
211de6eb 4223 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4224 struct perf_cpu_context *cpuctx;
4af57ef2 4225 void *task_ctx_data = NULL;
25346b93 4226 unsigned long flags;
8dc85d54 4227 int ctxn, err;
4af57ef2 4228 int cpu = event->cpu;
0793a61d 4229
22a4ec72 4230 if (!task) {
cdd6c482 4231 /* Must be root to operate on a CPU event: */
0764771d 4232 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
4233 return ERR_PTR(-EACCES);
4234
108b02cf 4235 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 4236 ctx = &cpuctx->ctx;
c93f7669 4237 get_ctx(ctx);
fe4b04fa 4238 ++ctx->pin_count;
0793a61d 4239
0793a61d
TG
4240 return ctx;
4241 }
4242
8dc85d54
PZ
4243 err = -EINVAL;
4244 ctxn = pmu->task_ctx_nr;
4245 if (ctxn < 0)
4246 goto errout;
4247
4af57ef2
YZ
4248 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4249 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4250 if (!task_ctx_data) {
4251 err = -ENOMEM;
4252 goto errout;
4253 }
4254 }
4255
9ed6060d 4256retry:
8dc85d54 4257 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 4258 if (ctx) {
211de6eb 4259 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4260 ++ctx->pin_count;
4af57ef2
YZ
4261
4262 if (task_ctx_data && !ctx->task_ctx_data) {
4263 ctx->task_ctx_data = task_ctx_data;
4264 task_ctx_data = NULL;
4265 }
e625cce1 4266 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4267
4268 if (clone_ctx)
4269 put_ctx(clone_ctx);
9137fb28 4270 } else {
eb184479 4271 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
4272 err = -ENOMEM;
4273 if (!ctx)
4274 goto errout;
eb184479 4275
4af57ef2
YZ
4276 if (task_ctx_data) {
4277 ctx->task_ctx_data = task_ctx_data;
4278 task_ctx_data = NULL;
4279 }
4280
dbe08d82
ON
4281 err = 0;
4282 mutex_lock(&task->perf_event_mutex);
4283 /*
4284 * If it has already passed perf_event_exit_task().
4285 * we must see PF_EXITING, it takes this mutex too.
4286 */
4287 if (task->flags & PF_EXITING)
4288 err = -ESRCH;
4289 else if (task->perf_event_ctxp[ctxn])
4290 err = -EAGAIN;
fe4b04fa 4291 else {
9137fb28 4292 get_ctx(ctx);
fe4b04fa 4293 ++ctx->pin_count;
dbe08d82 4294 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 4295 }
dbe08d82
ON
4296 mutex_unlock(&task->perf_event_mutex);
4297
4298 if (unlikely(err)) {
9137fb28 4299 put_ctx(ctx);
dbe08d82
ON
4300
4301 if (err == -EAGAIN)
4302 goto retry;
4303 goto errout;
a63eaf34
PM
4304 }
4305 }
4306
4af57ef2 4307 kfree(task_ctx_data);
0793a61d 4308 return ctx;
c93f7669 4309
9ed6060d 4310errout:
4af57ef2 4311 kfree(task_ctx_data);
c93f7669 4312 return ERR_PTR(err);
0793a61d
TG
4313}
4314
6fb2915d 4315static void perf_event_free_filter(struct perf_event *event);
2541517c 4316static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 4317
cdd6c482 4318static void free_event_rcu(struct rcu_head *head)
592903cd 4319{
cdd6c482 4320 struct perf_event *event;
592903cd 4321
cdd6c482
IM
4322 event = container_of(head, struct perf_event, rcu_head);
4323 if (event->ns)
4324 put_pid_ns(event->ns);
6fb2915d 4325 perf_event_free_filter(event);
cdd6c482 4326 kfree(event);
592903cd
PZ
4327}
4328
b69cf536
PZ
4329static void ring_buffer_attach(struct perf_event *event,
4330 struct ring_buffer *rb);
925d519a 4331
f2fb6bef
KL
4332static void detach_sb_event(struct perf_event *event)
4333{
4334 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4335
4336 raw_spin_lock(&pel->lock);
4337 list_del_rcu(&event->sb_list);
4338 raw_spin_unlock(&pel->lock);
4339}
4340
a4f144eb 4341static bool is_sb_event(struct perf_event *event)
f2fb6bef 4342{
a4f144eb
DCC
4343 struct perf_event_attr *attr = &event->attr;
4344
f2fb6bef 4345 if (event->parent)
a4f144eb 4346 return false;
f2fb6bef
KL
4347
4348 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4349 return false;
f2fb6bef 4350
a4f144eb
DCC
4351 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4352 attr->comm || attr->comm_exec ||
76193a94 4353 attr->task || attr->ksymbol ||
21038f2b
SL
4354 attr->context_switch ||
4355 attr->bpf_event)
a4f144eb
DCC
4356 return true;
4357 return false;
4358}
4359
4360static void unaccount_pmu_sb_event(struct perf_event *event)
4361{
4362 if (is_sb_event(event))
4363 detach_sb_event(event);
f2fb6bef
KL
4364}
4365
4beb31f3 4366static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4367{
4beb31f3
FW
4368 if (event->parent)
4369 return;
4370
4beb31f3
FW
4371 if (is_cgroup_event(event))
4372 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4373}
925d519a 4374
555e0c1e
FW
4375#ifdef CONFIG_NO_HZ_FULL
4376static DEFINE_SPINLOCK(nr_freq_lock);
4377#endif
4378
4379static void unaccount_freq_event_nohz(void)
4380{
4381#ifdef CONFIG_NO_HZ_FULL
4382 spin_lock(&nr_freq_lock);
4383 if (atomic_dec_and_test(&nr_freq_events))
4384 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4385 spin_unlock(&nr_freq_lock);
4386#endif
4387}
4388
4389static void unaccount_freq_event(void)
4390{
4391 if (tick_nohz_full_enabled())
4392 unaccount_freq_event_nohz();
4393 else
4394 atomic_dec(&nr_freq_events);
4395}
4396
4beb31f3
FW
4397static void unaccount_event(struct perf_event *event)
4398{
25432ae9
PZ
4399 bool dec = false;
4400
4beb31f3
FW
4401 if (event->parent)
4402 return;
4403
4404 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4405 dec = true;
4beb31f3
FW
4406 if (event->attr.mmap || event->attr.mmap_data)
4407 atomic_dec(&nr_mmap_events);
4408 if (event->attr.comm)
4409 atomic_dec(&nr_comm_events);
e4222673
HB
4410 if (event->attr.namespaces)
4411 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4412 if (event->attr.task)
4413 atomic_dec(&nr_task_events);
948b26b6 4414 if (event->attr.freq)
555e0c1e 4415 unaccount_freq_event();
45ac1403 4416 if (event->attr.context_switch) {
25432ae9 4417 dec = true;
45ac1403
AH
4418 atomic_dec(&nr_switch_events);
4419 }
4beb31f3 4420 if (is_cgroup_event(event))
25432ae9 4421 dec = true;
4beb31f3 4422 if (has_branch_stack(event))
25432ae9 4423 dec = true;
76193a94
SL
4424 if (event->attr.ksymbol)
4425 atomic_dec(&nr_ksymbol_events);
6ee52e2a
SL
4426 if (event->attr.bpf_event)
4427 atomic_dec(&nr_bpf_events);
25432ae9 4428
9107c89e
PZ
4429 if (dec) {
4430 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4431 schedule_delayed_work(&perf_sched_work, HZ);
4432 }
4beb31f3
FW
4433
4434 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4435
4436 unaccount_pmu_sb_event(event);
4beb31f3 4437}
925d519a 4438
9107c89e
PZ
4439static void perf_sched_delayed(struct work_struct *work)
4440{
4441 mutex_lock(&perf_sched_mutex);
4442 if (atomic_dec_and_test(&perf_sched_count))
4443 static_branch_disable(&perf_sched_events);
4444 mutex_unlock(&perf_sched_mutex);
4445}
4446
bed5b25a
AS
4447/*
4448 * The following implement mutual exclusion of events on "exclusive" pmus
4449 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4450 * at a time, so we disallow creating events that might conflict, namely:
4451 *
4452 * 1) cpu-wide events in the presence of per-task events,
4453 * 2) per-task events in the presence of cpu-wide events,
4454 * 3) two matching events on the same context.
4455 *
4456 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4457 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4458 */
4459static int exclusive_event_init(struct perf_event *event)
4460{
4461 struct pmu *pmu = event->pmu;
4462
8a58ddae 4463 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4464 return 0;
4465
4466 /*
4467 * Prevent co-existence of per-task and cpu-wide events on the
4468 * same exclusive pmu.
4469 *
4470 * Negative pmu::exclusive_cnt means there are cpu-wide
4471 * events on this "exclusive" pmu, positive means there are
4472 * per-task events.
4473 *
4474 * Since this is called in perf_event_alloc() path, event::ctx
4475 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4476 * to mean "per-task event", because unlike other attach states it
4477 * never gets cleared.
4478 */
4479 if (event->attach_state & PERF_ATTACH_TASK) {
4480 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4481 return -EBUSY;
4482 } else {
4483 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4484 return -EBUSY;
4485 }
4486
4487 return 0;
4488}
4489
4490static void exclusive_event_destroy(struct perf_event *event)
4491{
4492 struct pmu *pmu = event->pmu;
4493
8a58ddae 4494 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4495 return;
4496
4497 /* see comment in exclusive_event_init() */
4498 if (event->attach_state & PERF_ATTACH_TASK)
4499 atomic_dec(&pmu->exclusive_cnt);
4500 else
4501 atomic_inc(&pmu->exclusive_cnt);
4502}
4503
4504static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4505{
3bf6215a 4506 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4507 (e1->cpu == e2->cpu ||
4508 e1->cpu == -1 ||
4509 e2->cpu == -1))
4510 return true;
4511 return false;
4512}
4513
bed5b25a
AS
4514static bool exclusive_event_installable(struct perf_event *event,
4515 struct perf_event_context *ctx)
4516{
4517 struct perf_event *iter_event;
4518 struct pmu *pmu = event->pmu;
4519
8a58ddae
AS
4520 lockdep_assert_held(&ctx->mutex);
4521
4522 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4523 return true;
4524
4525 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4526 if (exclusive_event_match(iter_event, event))
4527 return false;
4528 }
4529
4530 return true;
4531}
4532
375637bc
AS
4533static void perf_addr_filters_splice(struct perf_event *event,
4534 struct list_head *head);
4535
683ede43 4536static void _free_event(struct perf_event *event)
f1600952 4537{
e360adbe 4538 irq_work_sync(&event->pending);
925d519a 4539
4beb31f3 4540 unaccount_event(event);
9ee318a7 4541
76369139 4542 if (event->rb) {
9bb5d40c
PZ
4543 /*
4544 * Can happen when we close an event with re-directed output.
4545 *
4546 * Since we have a 0 refcount, perf_mmap_close() will skip
4547 * over us; possibly making our ring_buffer_put() the last.
4548 */
4549 mutex_lock(&event->mmap_mutex);
b69cf536 4550 ring_buffer_attach(event, NULL);
9bb5d40c 4551 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4552 }
4553
e5d1367f
SE
4554 if (is_cgroup_event(event))
4555 perf_detach_cgroup(event);
4556
a0733e69
PZ
4557 if (!event->parent) {
4558 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4559 put_callchain_buffers();
4560 }
4561
4562 perf_event_free_bpf_prog(event);
375637bc 4563 perf_addr_filters_splice(event, NULL);
c60f83b8 4564 kfree(event->addr_filter_ranges);
a0733e69
PZ
4565
4566 if (event->destroy)
4567 event->destroy(event);
4568
1cf8dfe8
PZ
4569 /*
4570 * Must be after ->destroy(), due to uprobe_perf_close() using
4571 * hw.target.
4572 */
621b6d2e
PB
4573 if (event->hw.target)
4574 put_task_struct(event->hw.target);
4575
1cf8dfe8
PZ
4576 /*
4577 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4578 * all task references must be cleaned up.
4579 */
4580 if (event->ctx)
4581 put_ctx(event->ctx);
4582
62a92c8f
AS
4583 exclusive_event_destroy(event);
4584 module_put(event->pmu->module);
a0733e69
PZ
4585
4586 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4587}
4588
683ede43
PZ
4589/*
4590 * Used to free events which have a known refcount of 1, such as in error paths
4591 * where the event isn't exposed yet and inherited events.
4592 */
4593static void free_event(struct perf_event *event)
0793a61d 4594{
683ede43
PZ
4595 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4596 "unexpected event refcount: %ld; ptr=%p\n",
4597 atomic_long_read(&event->refcount), event)) {
4598 /* leak to avoid use-after-free */
4599 return;
4600 }
0793a61d 4601
683ede43 4602 _free_event(event);
0793a61d
TG
4603}
4604
a66a3052 4605/*
f8697762 4606 * Remove user event from the owner task.
a66a3052 4607 */
f8697762 4608static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4609{
8882135b 4610 struct task_struct *owner;
fb0459d7 4611
8882135b 4612 rcu_read_lock();
8882135b 4613 /*
f47c02c0
PZ
4614 * Matches the smp_store_release() in perf_event_exit_task(). If we
4615 * observe !owner it means the list deletion is complete and we can
4616 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4617 * owner->perf_event_mutex.
4618 */
506458ef 4619 owner = READ_ONCE(event->owner);
8882135b
PZ
4620 if (owner) {
4621 /*
4622 * Since delayed_put_task_struct() also drops the last
4623 * task reference we can safely take a new reference
4624 * while holding the rcu_read_lock().
4625 */
4626 get_task_struct(owner);
4627 }
4628 rcu_read_unlock();
4629
4630 if (owner) {
f63a8daa
PZ
4631 /*
4632 * If we're here through perf_event_exit_task() we're already
4633 * holding ctx->mutex which would be an inversion wrt. the
4634 * normal lock order.
4635 *
4636 * However we can safely take this lock because its the child
4637 * ctx->mutex.
4638 */
4639 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4640
8882135b
PZ
4641 /*
4642 * We have to re-check the event->owner field, if it is cleared
4643 * we raced with perf_event_exit_task(), acquiring the mutex
4644 * ensured they're done, and we can proceed with freeing the
4645 * event.
4646 */
f47c02c0 4647 if (event->owner) {
8882135b 4648 list_del_init(&event->owner_entry);
f47c02c0
PZ
4649 smp_store_release(&event->owner, NULL);
4650 }
8882135b
PZ
4651 mutex_unlock(&owner->perf_event_mutex);
4652 put_task_struct(owner);
4653 }
f8697762
JO
4654}
4655
f8697762
JO
4656static void put_event(struct perf_event *event)
4657{
f8697762
JO
4658 if (!atomic_long_dec_and_test(&event->refcount))
4659 return;
4660
c6e5b732
PZ
4661 _free_event(event);
4662}
4663
4664/*
4665 * Kill an event dead; while event:refcount will preserve the event
4666 * object, it will not preserve its functionality. Once the last 'user'
4667 * gives up the object, we'll destroy the thing.
4668 */
4669int perf_event_release_kernel(struct perf_event *event)
4670{
a4f4bb6d 4671 struct perf_event_context *ctx = event->ctx;
c6e5b732 4672 struct perf_event *child, *tmp;
82d94856 4673 LIST_HEAD(free_list);
c6e5b732 4674
a4f4bb6d
PZ
4675 /*
4676 * If we got here through err_file: fput(event_file); we will not have
4677 * attached to a context yet.
4678 */
4679 if (!ctx) {
4680 WARN_ON_ONCE(event->attach_state &
4681 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4682 goto no_ctx;
4683 }
4684
f8697762
JO
4685 if (!is_kernel_event(event))
4686 perf_remove_from_owner(event);
8882135b 4687
5fa7c8ec 4688 ctx = perf_event_ctx_lock(event);
a83fe28e 4689 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4690 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4691
a69b0ca4 4692 raw_spin_lock_irq(&ctx->lock);
683ede43 4693 /*
d8a8cfc7 4694 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4695 * anymore.
683ede43 4696 *
a69b0ca4
PZ
4697 * Anybody acquiring event->child_mutex after the below loop _must_
4698 * also see this, most importantly inherit_event() which will avoid
4699 * placing more children on the list.
683ede43 4700 *
c6e5b732
PZ
4701 * Thus this guarantees that we will in fact observe and kill _ALL_
4702 * child events.
683ede43 4703 */
a69b0ca4
PZ
4704 event->state = PERF_EVENT_STATE_DEAD;
4705 raw_spin_unlock_irq(&ctx->lock);
4706
4707 perf_event_ctx_unlock(event, ctx);
683ede43 4708
c6e5b732
PZ
4709again:
4710 mutex_lock(&event->child_mutex);
4711 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4712
c6e5b732
PZ
4713 /*
4714 * Cannot change, child events are not migrated, see the
4715 * comment with perf_event_ctx_lock_nested().
4716 */
506458ef 4717 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4718 /*
4719 * Since child_mutex nests inside ctx::mutex, we must jump
4720 * through hoops. We start by grabbing a reference on the ctx.
4721 *
4722 * Since the event cannot get freed while we hold the
4723 * child_mutex, the context must also exist and have a !0
4724 * reference count.
4725 */
4726 get_ctx(ctx);
4727
4728 /*
4729 * Now that we have a ctx ref, we can drop child_mutex, and
4730 * acquire ctx::mutex without fear of it going away. Then we
4731 * can re-acquire child_mutex.
4732 */
4733 mutex_unlock(&event->child_mutex);
4734 mutex_lock(&ctx->mutex);
4735 mutex_lock(&event->child_mutex);
4736
4737 /*
4738 * Now that we hold ctx::mutex and child_mutex, revalidate our
4739 * state, if child is still the first entry, it didn't get freed
4740 * and we can continue doing so.
4741 */
4742 tmp = list_first_entry_or_null(&event->child_list,
4743 struct perf_event, child_list);
4744 if (tmp == child) {
4745 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4746 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4747 /*
4748 * This matches the refcount bump in inherit_event();
4749 * this can't be the last reference.
4750 */
4751 put_event(event);
4752 }
4753
4754 mutex_unlock(&event->child_mutex);
4755 mutex_unlock(&ctx->mutex);
4756 put_ctx(ctx);
4757 goto again;
4758 }
4759 mutex_unlock(&event->child_mutex);
4760
82d94856 4761 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
1cf8dfe8
PZ
4762 void *var = &child->ctx->refcount;
4763
82d94856
PZ
4764 list_del(&child->child_list);
4765 free_event(child);
1cf8dfe8
PZ
4766
4767 /*
4768 * Wake any perf_event_free_task() waiting for this event to be
4769 * freed.
4770 */
4771 smp_mb(); /* pairs with wait_var_event() */
4772 wake_up_var(var);
82d94856
PZ
4773 }
4774
a4f4bb6d
PZ
4775no_ctx:
4776 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4777 return 0;
4778}
4779EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4780
8b10c5e2
PZ
4781/*
4782 * Called when the last reference to the file is gone.
4783 */
a6fa941d
AV
4784static int perf_release(struct inode *inode, struct file *file)
4785{
c6e5b732 4786 perf_event_release_kernel(file->private_data);
a6fa941d 4787 return 0;
fb0459d7 4788}
fb0459d7 4789
ca0dd44c 4790static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4791{
cdd6c482 4792 struct perf_event *child;
e53c0994
PZ
4793 u64 total = 0;
4794
59ed446f
PZ
4795 *enabled = 0;
4796 *running = 0;
4797
6f10581a 4798 mutex_lock(&event->child_mutex);
01add3ea 4799
7d88962e 4800 (void)perf_event_read(event, false);
01add3ea
SB
4801 total += perf_event_count(event);
4802
59ed446f
PZ
4803 *enabled += event->total_time_enabled +
4804 atomic64_read(&event->child_total_time_enabled);
4805 *running += event->total_time_running +
4806 atomic64_read(&event->child_total_time_running);
4807
4808 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4809 (void)perf_event_read(child, false);
01add3ea 4810 total += perf_event_count(child);
59ed446f
PZ
4811 *enabled += child->total_time_enabled;
4812 *running += child->total_time_running;
4813 }
6f10581a 4814 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4815
4816 return total;
4817}
ca0dd44c
PZ
4818
4819u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4820{
4821 struct perf_event_context *ctx;
4822 u64 count;
4823
4824 ctx = perf_event_ctx_lock(event);
4825 count = __perf_event_read_value(event, enabled, running);
4826 perf_event_ctx_unlock(event, ctx);
4827
4828 return count;
4829}
fb0459d7 4830EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4831
7d88962e 4832static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4833 u64 read_format, u64 *values)
3dab77fb 4834{
2aeb1883 4835 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4836 struct perf_event *sub;
2aeb1883 4837 unsigned long flags;
fa8c2693 4838 int n = 1; /* skip @nr */
7d88962e 4839 int ret;
f63a8daa 4840
7d88962e
SB
4841 ret = perf_event_read(leader, true);
4842 if (ret)
4843 return ret;
abf4868b 4844
a9cd8194
PZ
4845 raw_spin_lock_irqsave(&ctx->lock, flags);
4846
fa8c2693
PZ
4847 /*
4848 * Since we co-schedule groups, {enabled,running} times of siblings
4849 * will be identical to those of the leader, so we only publish one
4850 * set.
4851 */
4852 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4853 values[n++] += leader->total_time_enabled +
4854 atomic64_read(&leader->child_total_time_enabled);
4855 }
3dab77fb 4856
fa8c2693
PZ
4857 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4858 values[n++] += leader->total_time_running +
4859 atomic64_read(&leader->child_total_time_running);
4860 }
4861
4862 /*
4863 * Write {count,id} tuples for every sibling.
4864 */
4865 values[n++] += perf_event_count(leader);
abf4868b
PZ
4866 if (read_format & PERF_FORMAT_ID)
4867 values[n++] = primary_event_id(leader);
3dab77fb 4868
edb39592 4869 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
4870 values[n++] += perf_event_count(sub);
4871 if (read_format & PERF_FORMAT_ID)
4872 values[n++] = primary_event_id(sub);
4873 }
7d88962e 4874
2aeb1883 4875 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4876 return 0;
fa8c2693 4877}
3dab77fb 4878
fa8c2693
PZ
4879static int perf_read_group(struct perf_event *event,
4880 u64 read_format, char __user *buf)
4881{
4882 struct perf_event *leader = event->group_leader, *child;
4883 struct perf_event_context *ctx = leader->ctx;
7d88962e 4884 int ret;
fa8c2693 4885 u64 *values;
3dab77fb 4886
fa8c2693 4887 lockdep_assert_held(&ctx->mutex);
3dab77fb 4888
fa8c2693
PZ
4889 values = kzalloc(event->read_size, GFP_KERNEL);
4890 if (!values)
4891 return -ENOMEM;
3dab77fb 4892
fa8c2693
PZ
4893 values[0] = 1 + leader->nr_siblings;
4894
4895 /*
4896 * By locking the child_mutex of the leader we effectively
4897 * lock the child list of all siblings.. XXX explain how.
4898 */
4899 mutex_lock(&leader->child_mutex);
abf4868b 4900
7d88962e
SB
4901 ret = __perf_read_group_add(leader, read_format, values);
4902 if (ret)
4903 goto unlock;
4904
4905 list_for_each_entry(child, &leader->child_list, child_list) {
4906 ret = __perf_read_group_add(child, read_format, values);
4907 if (ret)
4908 goto unlock;
4909 }
abf4868b 4910
fa8c2693 4911 mutex_unlock(&leader->child_mutex);
abf4868b 4912
7d88962e 4913 ret = event->read_size;
fa8c2693
PZ
4914 if (copy_to_user(buf, values, event->read_size))
4915 ret = -EFAULT;
7d88962e 4916 goto out;
fa8c2693 4917
7d88962e
SB
4918unlock:
4919 mutex_unlock(&leader->child_mutex);
4920out:
fa8c2693 4921 kfree(values);
abf4868b 4922 return ret;
3dab77fb
PZ
4923}
4924
b15f495b 4925static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4926 u64 read_format, char __user *buf)
4927{
59ed446f 4928 u64 enabled, running;
3dab77fb
PZ
4929 u64 values[4];
4930 int n = 0;
4931
ca0dd44c 4932 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4933 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4934 values[n++] = enabled;
4935 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4936 values[n++] = running;
3dab77fb 4937 if (read_format & PERF_FORMAT_ID)
cdd6c482 4938 values[n++] = primary_event_id(event);
3dab77fb
PZ
4939
4940 if (copy_to_user(buf, values, n * sizeof(u64)))
4941 return -EFAULT;
4942
4943 return n * sizeof(u64);
4944}
4945
dc633982
JO
4946static bool is_event_hup(struct perf_event *event)
4947{
4948 bool no_children;
4949
a69b0ca4 4950 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4951 return false;
4952
4953 mutex_lock(&event->child_mutex);
4954 no_children = list_empty(&event->child_list);
4955 mutex_unlock(&event->child_mutex);
4956 return no_children;
4957}
4958
0793a61d 4959/*
cdd6c482 4960 * Read the performance event - simple non blocking version for now
0793a61d
TG
4961 */
4962static ssize_t
b15f495b 4963__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4964{
cdd6c482 4965 u64 read_format = event->attr.read_format;
3dab77fb 4966 int ret;
0793a61d 4967
3b6f9e5c 4968 /*
788faab7 4969 * Return end-of-file for a read on an event that is in
3b6f9e5c
PM
4970 * error state (i.e. because it was pinned but it couldn't be
4971 * scheduled on to the CPU at some point).
4972 */
cdd6c482 4973 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4974 return 0;
4975
c320c7b7 4976 if (count < event->read_size)
3dab77fb
PZ
4977 return -ENOSPC;
4978
cdd6c482 4979 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4980 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4981 ret = perf_read_group(event, read_format, buf);
3dab77fb 4982 else
b15f495b 4983 ret = perf_read_one(event, read_format, buf);
0793a61d 4984
3dab77fb 4985 return ret;
0793a61d
TG
4986}
4987
0793a61d
TG
4988static ssize_t
4989perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4990{
cdd6c482 4991 struct perf_event *event = file->private_data;
f63a8daa
PZ
4992 struct perf_event_context *ctx;
4993 int ret;
0793a61d 4994
f63a8daa 4995 ctx = perf_event_ctx_lock(event);
b15f495b 4996 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4997 perf_event_ctx_unlock(event, ctx);
4998
4999 return ret;
0793a61d
TG
5000}
5001
9dd95748 5002static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 5003{
cdd6c482 5004 struct perf_event *event = file->private_data;
76369139 5005 struct ring_buffer *rb;
a9a08845 5006 __poll_t events = EPOLLHUP;
c7138f37 5007
e708d7ad 5008 poll_wait(file, &event->waitq, wait);
179033b3 5009
dc633982 5010 if (is_event_hup(event))
179033b3 5011 return events;
c7138f37 5012
10c6db11 5013 /*
9bb5d40c
PZ
5014 * Pin the event->rb by taking event->mmap_mutex; otherwise
5015 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
5016 */
5017 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
5018 rb = event->rb;
5019 if (rb)
76369139 5020 events = atomic_xchg(&rb->poll, 0);
10c6db11 5021 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
5022 return events;
5023}
5024
f63a8daa 5025static void _perf_event_reset(struct perf_event *event)
6de6a7b9 5026{
7d88962e 5027 (void)perf_event_read(event, false);
e7850595 5028 local64_set(&event->count, 0);
cdd6c482 5029 perf_event_update_userpage(event);
3df5edad
PZ
5030}
5031
c93f7669 5032/*
cdd6c482
IM
5033 * Holding the top-level event's child_mutex means that any
5034 * descendant process that has inherited this event will block
8ba289b8 5035 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 5036 * task existence requirements of perf_event_enable/disable.
c93f7669 5037 */
cdd6c482
IM
5038static void perf_event_for_each_child(struct perf_event *event,
5039 void (*func)(struct perf_event *))
3df5edad 5040{
cdd6c482 5041 struct perf_event *child;
3df5edad 5042
cdd6c482 5043 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 5044
cdd6c482
IM
5045 mutex_lock(&event->child_mutex);
5046 func(event);
5047 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 5048 func(child);
cdd6c482 5049 mutex_unlock(&event->child_mutex);
3df5edad
PZ
5050}
5051
cdd6c482
IM
5052static void perf_event_for_each(struct perf_event *event,
5053 void (*func)(struct perf_event *))
3df5edad 5054{
cdd6c482
IM
5055 struct perf_event_context *ctx = event->ctx;
5056 struct perf_event *sibling;
3df5edad 5057
f63a8daa
PZ
5058 lockdep_assert_held(&ctx->mutex);
5059
cdd6c482 5060 event = event->group_leader;
75f937f2 5061
cdd6c482 5062 perf_event_for_each_child(event, func);
edb39592 5063 for_each_sibling_event(sibling, event)
724b6daa 5064 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
5065}
5066
fae3fde6
PZ
5067static void __perf_event_period(struct perf_event *event,
5068 struct perf_cpu_context *cpuctx,
5069 struct perf_event_context *ctx,
5070 void *info)
c7999c6f 5071{
fae3fde6 5072 u64 value = *((u64 *)info);
c7999c6f 5073 bool active;
08247e31 5074
cdd6c482 5075 if (event->attr.freq) {
cdd6c482 5076 event->attr.sample_freq = value;
08247e31 5077 } else {
cdd6c482
IM
5078 event->attr.sample_period = value;
5079 event->hw.sample_period = value;
08247e31 5080 }
bad7192b
PZ
5081
5082 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5083 if (active) {
5084 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
5085 /*
5086 * We could be throttled; unthrottle now to avoid the tick
5087 * trying to unthrottle while we already re-started the event.
5088 */
5089 if (event->hw.interrupts == MAX_INTERRUPTS) {
5090 event->hw.interrupts = 0;
5091 perf_log_throttle(event, 1);
5092 }
bad7192b
PZ
5093 event->pmu->stop(event, PERF_EF_UPDATE);
5094 }
5095
5096 local64_set(&event->hw.period_left, 0);
5097
5098 if (active) {
5099 event->pmu->start(event, PERF_EF_RELOAD);
5100 perf_pmu_enable(ctx->pmu);
5101 }
c7999c6f
PZ
5102}
5103
81ec3f3c
JO
5104static int perf_event_check_period(struct perf_event *event, u64 value)
5105{
5106 return event->pmu->check_period(event, value);
5107}
5108
c7999c6f
PZ
5109static int perf_event_period(struct perf_event *event, u64 __user *arg)
5110{
c7999c6f
PZ
5111 u64 value;
5112
5113 if (!is_sampling_event(event))
5114 return -EINVAL;
5115
5116 if (copy_from_user(&value, arg, sizeof(value)))
5117 return -EFAULT;
5118
5119 if (!value)
5120 return -EINVAL;
5121
5122 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5123 return -EINVAL;
5124
81ec3f3c
JO
5125 if (perf_event_check_period(event, value))
5126 return -EINVAL;
5127
913a90bc
RB
5128 if (!event->attr.freq && (value & (1ULL << 63)))
5129 return -EINVAL;
5130
fae3fde6 5131 event_function_call(event, __perf_event_period, &value);
08247e31 5132
c7999c6f 5133 return 0;
08247e31
PZ
5134}
5135
ac9721f3
PZ
5136static const struct file_operations perf_fops;
5137
2903ff01 5138static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 5139{
2903ff01
AV
5140 struct fd f = fdget(fd);
5141 if (!f.file)
5142 return -EBADF;
ac9721f3 5143
2903ff01
AV
5144 if (f.file->f_op != &perf_fops) {
5145 fdput(f);
5146 return -EBADF;
ac9721f3 5147 }
2903ff01
AV
5148 *p = f;
5149 return 0;
ac9721f3
PZ
5150}
5151
5152static int perf_event_set_output(struct perf_event *event,
5153 struct perf_event *output_event);
6fb2915d 5154static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 5155static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
32ff77e8
MC
5156static int perf_copy_attr(struct perf_event_attr __user *uattr,
5157 struct perf_event_attr *attr);
a4be7c27 5158
f63a8daa 5159static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5160{
cdd6c482 5161 void (*func)(struct perf_event *);
3df5edad 5162 u32 flags = arg;
d859e29f
PM
5163
5164 switch (cmd) {
cdd6c482 5165 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5166 func = _perf_event_enable;
d859e29f 5167 break;
cdd6c482 5168 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5169 func = _perf_event_disable;
79f14641 5170 break;
cdd6c482 5171 case PERF_EVENT_IOC_RESET:
f63a8daa 5172 func = _perf_event_reset;
6de6a7b9 5173 break;
3df5edad 5174
cdd6c482 5175 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5176 return _perf_event_refresh(event, arg);
08247e31 5177
cdd6c482
IM
5178 case PERF_EVENT_IOC_PERIOD:
5179 return perf_event_period(event, (u64 __user *)arg);
08247e31 5180
cf4957f1
JO
5181 case PERF_EVENT_IOC_ID:
5182 {
5183 u64 id = primary_event_id(event);
5184
5185 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5186 return -EFAULT;
5187 return 0;
5188 }
5189
cdd6c482 5190 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5191 {
ac9721f3 5192 int ret;
ac9721f3 5193 if (arg != -1) {
2903ff01
AV
5194 struct perf_event *output_event;
5195 struct fd output;
5196 ret = perf_fget_light(arg, &output);
5197 if (ret)
5198 return ret;
5199 output_event = output.file->private_data;
5200 ret = perf_event_set_output(event, output_event);
5201 fdput(output);
5202 } else {
5203 ret = perf_event_set_output(event, NULL);
ac9721f3 5204 }
ac9721f3
PZ
5205 return ret;
5206 }
a4be7c27 5207
6fb2915d
LZ
5208 case PERF_EVENT_IOC_SET_FILTER:
5209 return perf_event_set_filter(event, (void __user *)arg);
5210
2541517c
AS
5211 case PERF_EVENT_IOC_SET_BPF:
5212 return perf_event_set_bpf_prog(event, arg);
5213
86e7972f
WN
5214 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5215 struct ring_buffer *rb;
5216
5217 rcu_read_lock();
5218 rb = rcu_dereference(event->rb);
5219 if (!rb || !rb->nr_pages) {
5220 rcu_read_unlock();
5221 return -EINVAL;
5222 }
5223 rb_toggle_paused(rb, !!arg);
5224 rcu_read_unlock();
5225 return 0;
5226 }
f371b304
YS
5227
5228 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5229 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5230
5231 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5232 struct perf_event_attr new_attr;
5233 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5234 &new_attr);
5235
5236 if (err)
5237 return err;
5238
5239 return perf_event_modify_attr(event, &new_attr);
5240 }
d859e29f 5241 default:
3df5edad 5242 return -ENOTTY;
d859e29f 5243 }
3df5edad
PZ
5244
5245 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5246 perf_event_for_each(event, func);
3df5edad 5247 else
cdd6c482 5248 perf_event_for_each_child(event, func);
3df5edad
PZ
5249
5250 return 0;
d859e29f
PM
5251}
5252
f63a8daa
PZ
5253static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5254{
5255 struct perf_event *event = file->private_data;
5256 struct perf_event_context *ctx;
5257 long ret;
5258
5259 ctx = perf_event_ctx_lock(event);
5260 ret = _perf_ioctl(event, cmd, arg);
5261 perf_event_ctx_unlock(event, ctx);
5262
5263 return ret;
5264}
5265
b3f20785
PM
5266#ifdef CONFIG_COMPAT
5267static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5268 unsigned long arg)
5269{
5270 switch (_IOC_NR(cmd)) {
5271 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5272 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
5273 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5274 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
5275 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5276 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5277 cmd &= ~IOCSIZE_MASK;
5278 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5279 }
5280 break;
5281 }
5282 return perf_ioctl(file, cmd, arg);
5283}
5284#else
5285# define perf_compat_ioctl NULL
5286#endif
5287
cdd6c482 5288int perf_event_task_enable(void)
771d7cde 5289{
f63a8daa 5290 struct perf_event_context *ctx;
cdd6c482 5291 struct perf_event *event;
771d7cde 5292
cdd6c482 5293 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5294 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5295 ctx = perf_event_ctx_lock(event);
5296 perf_event_for_each_child(event, _perf_event_enable);
5297 perf_event_ctx_unlock(event, ctx);
5298 }
cdd6c482 5299 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5300
5301 return 0;
5302}
5303
cdd6c482 5304int perf_event_task_disable(void)
771d7cde 5305{
f63a8daa 5306 struct perf_event_context *ctx;
cdd6c482 5307 struct perf_event *event;
771d7cde 5308
cdd6c482 5309 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5310 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5311 ctx = perf_event_ctx_lock(event);
5312 perf_event_for_each_child(event, _perf_event_disable);
5313 perf_event_ctx_unlock(event, ctx);
5314 }
cdd6c482 5315 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5316
5317 return 0;
5318}
5319
cdd6c482 5320static int perf_event_index(struct perf_event *event)
194002b2 5321{
a4eaf7f1
PZ
5322 if (event->hw.state & PERF_HES_STOPPED)
5323 return 0;
5324
cdd6c482 5325 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
5326 return 0;
5327
35edc2a5 5328 return event->pmu->event_idx(event);
194002b2
PZ
5329}
5330
c4794295 5331static void calc_timer_values(struct perf_event *event,
e3f3541c 5332 u64 *now,
7f310a5d
EM
5333 u64 *enabled,
5334 u64 *running)
c4794295 5335{
e3f3541c 5336 u64 ctx_time;
c4794295 5337
e3f3541c
PZ
5338 *now = perf_clock();
5339 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 5340 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
5341}
5342
fa731587
PZ
5343static void perf_event_init_userpage(struct perf_event *event)
5344{
5345 struct perf_event_mmap_page *userpg;
5346 struct ring_buffer *rb;
5347
5348 rcu_read_lock();
5349 rb = rcu_dereference(event->rb);
5350 if (!rb)
5351 goto unlock;
5352
5353 userpg = rb->user_page;
5354
5355 /* Allow new userspace to detect that bit 0 is deprecated */
5356 userpg->cap_bit0_is_deprecated = 1;
5357 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
5358 userpg->data_offset = PAGE_SIZE;
5359 userpg->data_size = perf_data_size(rb);
fa731587
PZ
5360
5361unlock:
5362 rcu_read_unlock();
5363}
5364
c1317ec2
AL
5365void __weak arch_perf_update_userpage(
5366 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
5367{
5368}
5369
38ff667b
PZ
5370/*
5371 * Callers need to ensure there can be no nesting of this function, otherwise
5372 * the seqlock logic goes bad. We can not serialize this because the arch
5373 * code calls this from NMI context.
5374 */
cdd6c482 5375void perf_event_update_userpage(struct perf_event *event)
37d81828 5376{
cdd6c482 5377 struct perf_event_mmap_page *userpg;
76369139 5378 struct ring_buffer *rb;
e3f3541c 5379 u64 enabled, running, now;
38ff667b
PZ
5380
5381 rcu_read_lock();
5ec4c599
PZ
5382 rb = rcu_dereference(event->rb);
5383 if (!rb)
5384 goto unlock;
5385
0d641208
EM
5386 /*
5387 * compute total_time_enabled, total_time_running
5388 * based on snapshot values taken when the event
5389 * was last scheduled in.
5390 *
5391 * we cannot simply called update_context_time()
5392 * because of locking issue as we can be called in
5393 * NMI context
5394 */
e3f3541c 5395 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5396
76369139 5397 userpg = rb->user_page;
7b732a75 5398 /*
9d2dcc8f
MF
5399 * Disable preemption to guarantee consistent time stamps are stored to
5400 * the user page.
7b732a75
PZ
5401 */
5402 preempt_disable();
37d81828 5403 ++userpg->lock;
92f22a38 5404 barrier();
cdd6c482 5405 userpg->index = perf_event_index(event);
b5e58793 5406 userpg->offset = perf_event_count(event);
365a4038 5407 if (userpg->index)
e7850595 5408 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5409
0d641208 5410 userpg->time_enabled = enabled +
cdd6c482 5411 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5412
0d641208 5413 userpg->time_running = running +
cdd6c482 5414 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5415
c1317ec2 5416 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5417
92f22a38 5418 barrier();
37d81828 5419 ++userpg->lock;
7b732a75 5420 preempt_enable();
38ff667b 5421unlock:
7b732a75 5422 rcu_read_unlock();
37d81828 5423}
82975c46 5424EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 5425
9e3ed2d7 5426static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
906010b2 5427{
11bac800 5428 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 5429 struct ring_buffer *rb;
9e3ed2d7 5430 vm_fault_t ret = VM_FAULT_SIGBUS;
906010b2
PZ
5431
5432 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5433 if (vmf->pgoff == 0)
5434 ret = 0;
5435 return ret;
5436 }
5437
5438 rcu_read_lock();
76369139
FW
5439 rb = rcu_dereference(event->rb);
5440 if (!rb)
906010b2
PZ
5441 goto unlock;
5442
5443 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5444 goto unlock;
5445
76369139 5446 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5447 if (!vmf->page)
5448 goto unlock;
5449
5450 get_page(vmf->page);
11bac800 5451 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5452 vmf->page->index = vmf->pgoff;
5453
5454 ret = 0;
5455unlock:
5456 rcu_read_unlock();
5457
5458 return ret;
5459}
5460
10c6db11
PZ
5461static void ring_buffer_attach(struct perf_event *event,
5462 struct ring_buffer *rb)
5463{
b69cf536 5464 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5465 unsigned long flags;
5466
b69cf536
PZ
5467 if (event->rb) {
5468 /*
5469 * Should be impossible, we set this when removing
5470 * event->rb_entry and wait/clear when adding event->rb_entry.
5471 */
5472 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5473
b69cf536 5474 old_rb = event->rb;
b69cf536
PZ
5475 spin_lock_irqsave(&old_rb->event_lock, flags);
5476 list_del_rcu(&event->rb_entry);
5477 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5478
2f993cf0
ON
5479 event->rcu_batches = get_state_synchronize_rcu();
5480 event->rcu_pending = 1;
b69cf536 5481 }
10c6db11 5482
b69cf536 5483 if (rb) {
2f993cf0
ON
5484 if (event->rcu_pending) {
5485 cond_synchronize_rcu(event->rcu_batches);
5486 event->rcu_pending = 0;
5487 }
5488
b69cf536
PZ
5489 spin_lock_irqsave(&rb->event_lock, flags);
5490 list_add_rcu(&event->rb_entry, &rb->event_list);
5491 spin_unlock_irqrestore(&rb->event_lock, flags);
5492 }
5493
767ae086
AS
5494 /*
5495 * Avoid racing with perf_mmap_close(AUX): stop the event
5496 * before swizzling the event::rb pointer; if it's getting
5497 * unmapped, its aux_mmap_count will be 0 and it won't
5498 * restart. See the comment in __perf_pmu_output_stop().
5499 *
5500 * Data will inevitably be lost when set_output is done in
5501 * mid-air, but then again, whoever does it like this is
5502 * not in for the data anyway.
5503 */
5504 if (has_aux(event))
5505 perf_event_stop(event, 0);
5506
b69cf536
PZ
5507 rcu_assign_pointer(event->rb, rb);
5508
5509 if (old_rb) {
5510 ring_buffer_put(old_rb);
5511 /*
5512 * Since we detached before setting the new rb, so that we
5513 * could attach the new rb, we could have missed a wakeup.
5514 * Provide it now.
5515 */
5516 wake_up_all(&event->waitq);
5517 }
10c6db11
PZ
5518}
5519
5520static void ring_buffer_wakeup(struct perf_event *event)
5521{
5522 struct ring_buffer *rb;
5523
5524 rcu_read_lock();
5525 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5526 if (rb) {
5527 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5528 wake_up_all(&event->waitq);
5529 }
10c6db11
PZ
5530 rcu_read_unlock();
5531}
5532
fdc26706 5533struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5534{
76369139 5535 struct ring_buffer *rb;
7b732a75 5536
ac9721f3 5537 rcu_read_lock();
76369139
FW
5538 rb = rcu_dereference(event->rb);
5539 if (rb) {
fecb8ed2 5540 if (!refcount_inc_not_zero(&rb->refcount))
76369139 5541 rb = NULL;
ac9721f3
PZ
5542 }
5543 rcu_read_unlock();
5544
76369139 5545 return rb;
ac9721f3
PZ
5546}
5547
fdc26706 5548void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5549{
fecb8ed2 5550 if (!refcount_dec_and_test(&rb->refcount))
ac9721f3 5551 return;
7b732a75 5552
9bb5d40c 5553 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5554
76369139 5555 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5556}
5557
5558static void perf_mmap_open(struct vm_area_struct *vma)
5559{
cdd6c482 5560 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5561
cdd6c482 5562 atomic_inc(&event->mmap_count);
9bb5d40c 5563 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5564
45bfb2e5
PZ
5565 if (vma->vm_pgoff)
5566 atomic_inc(&event->rb->aux_mmap_count);
5567
1e0fb9ec 5568 if (event->pmu->event_mapped)
bfe33492 5569 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5570}
5571
95ff4ca2
AS
5572static void perf_pmu_output_stop(struct perf_event *event);
5573
9bb5d40c
PZ
5574/*
5575 * A buffer can be mmap()ed multiple times; either directly through the same
5576 * event, or through other events by use of perf_event_set_output().
5577 *
5578 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5579 * the buffer here, where we still have a VM context. This means we need
5580 * to detach all events redirecting to us.
5581 */
7b732a75
PZ
5582static void perf_mmap_close(struct vm_area_struct *vma)
5583{
cdd6c482 5584 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5585
b69cf536 5586 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5587 struct user_struct *mmap_user = rb->mmap_user;
5588 int mmap_locked = rb->mmap_locked;
5589 unsigned long size = perf_data_size(rb);
789f90fc 5590
1e0fb9ec 5591 if (event->pmu->event_unmapped)
bfe33492 5592 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5593
45bfb2e5
PZ
5594 /*
5595 * rb->aux_mmap_count will always drop before rb->mmap_count and
5596 * event->mmap_count, so it is ok to use event->mmap_mutex to
5597 * serialize with perf_mmap here.
5598 */
5599 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5600 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5601 /*
5602 * Stop all AUX events that are writing to this buffer,
5603 * so that we can free its AUX pages and corresponding PMU
5604 * data. Note that after rb::aux_mmap_count dropped to zero,
5605 * they won't start any more (see perf_aux_output_begin()).
5606 */
5607 perf_pmu_output_stop(event);
5608
5609 /* now it's safe to free the pages */
36b3db03
AS
5610 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5611 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
45bfb2e5 5612
95ff4ca2 5613 /* this has to be the last one */
45bfb2e5 5614 rb_free_aux(rb);
ca3bb3d0 5615 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
95ff4ca2 5616
45bfb2e5
PZ
5617 mutex_unlock(&event->mmap_mutex);
5618 }
5619
9bb5d40c
PZ
5620 atomic_dec(&rb->mmap_count);
5621
5622 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5623 goto out_put;
9bb5d40c 5624
b69cf536 5625 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5626 mutex_unlock(&event->mmap_mutex);
5627
5628 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5629 if (atomic_read(&rb->mmap_count))
5630 goto out_put;
ac9721f3 5631
9bb5d40c
PZ
5632 /*
5633 * No other mmap()s, detach from all other events that might redirect
5634 * into the now unreachable buffer. Somewhat complicated by the
5635 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5636 */
5637again:
5638 rcu_read_lock();
5639 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5640 if (!atomic_long_inc_not_zero(&event->refcount)) {
5641 /*
5642 * This event is en-route to free_event() which will
5643 * detach it and remove it from the list.
5644 */
5645 continue;
5646 }
5647 rcu_read_unlock();
789f90fc 5648
9bb5d40c
PZ
5649 mutex_lock(&event->mmap_mutex);
5650 /*
5651 * Check we didn't race with perf_event_set_output() which can
5652 * swizzle the rb from under us while we were waiting to
5653 * acquire mmap_mutex.
5654 *
5655 * If we find a different rb; ignore this event, a next
5656 * iteration will no longer find it on the list. We have to
5657 * still restart the iteration to make sure we're not now
5658 * iterating the wrong list.
5659 */
b69cf536
PZ
5660 if (event->rb == rb)
5661 ring_buffer_attach(event, NULL);
5662
cdd6c482 5663 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5664 put_event(event);
ac9721f3 5665
9bb5d40c
PZ
5666 /*
5667 * Restart the iteration; either we're on the wrong list or
5668 * destroyed its integrity by doing a deletion.
5669 */
5670 goto again;
7b732a75 5671 }
9bb5d40c
PZ
5672 rcu_read_unlock();
5673
5674 /*
5675 * It could be there's still a few 0-ref events on the list; they'll
5676 * get cleaned up by free_event() -- they'll also still have their
5677 * ref on the rb and will free it whenever they are done with it.
5678 *
5679 * Aside from that, this buffer is 'fully' detached and unmapped,
5680 * undo the VM accounting.
5681 */
5682
d44248a4
SL
5683 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5684 &mmap_user->locked_vm);
70f8a3ca 5685 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
9bb5d40c
PZ
5686 free_uid(mmap_user);
5687
b69cf536 5688out_put:
9bb5d40c 5689 ring_buffer_put(rb); /* could be last */
37d81828
PM
5690}
5691
f0f37e2f 5692static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5693 .open = perf_mmap_open,
fca0c116 5694 .close = perf_mmap_close, /* non mergeable */
43a21ea8
PZ
5695 .fault = perf_mmap_fault,
5696 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5697};
5698
5699static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5700{
cdd6c482 5701 struct perf_event *event = file->private_data;
22a4f650 5702 unsigned long user_locked, user_lock_limit;
789f90fc 5703 struct user_struct *user = current_user();
22a4f650 5704 unsigned long locked, lock_limit;
45bfb2e5 5705 struct ring_buffer *rb = NULL;
7b732a75
PZ
5706 unsigned long vma_size;
5707 unsigned long nr_pages;
45bfb2e5 5708 long user_extra = 0, extra = 0;
d57e34fd 5709 int ret = 0, flags = 0;
37d81828 5710
c7920614
PZ
5711 /*
5712 * Don't allow mmap() of inherited per-task counters. This would
5713 * create a performance issue due to all children writing to the
76369139 5714 * same rb.
c7920614
PZ
5715 */
5716 if (event->cpu == -1 && event->attr.inherit)
5717 return -EINVAL;
5718
43a21ea8 5719 if (!(vma->vm_flags & VM_SHARED))
37d81828 5720 return -EINVAL;
7b732a75
PZ
5721
5722 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5723
5724 if (vma->vm_pgoff == 0) {
5725 nr_pages = (vma_size / PAGE_SIZE) - 1;
5726 } else {
5727 /*
5728 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5729 * mapped, all subsequent mappings should have the same size
5730 * and offset. Must be above the normal perf buffer.
5731 */
5732 u64 aux_offset, aux_size;
5733
5734 if (!event->rb)
5735 return -EINVAL;
5736
5737 nr_pages = vma_size / PAGE_SIZE;
5738
5739 mutex_lock(&event->mmap_mutex);
5740 ret = -EINVAL;
5741
5742 rb = event->rb;
5743 if (!rb)
5744 goto aux_unlock;
5745
6aa7de05
MR
5746 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5747 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5748
5749 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5750 goto aux_unlock;
5751
5752 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5753 goto aux_unlock;
5754
5755 /* already mapped with a different offset */
5756 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5757 goto aux_unlock;
5758
5759 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5760 goto aux_unlock;
5761
5762 /* already mapped with a different size */
5763 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5764 goto aux_unlock;
5765
5766 if (!is_power_of_2(nr_pages))
5767 goto aux_unlock;
5768
5769 if (!atomic_inc_not_zero(&rb->mmap_count))
5770 goto aux_unlock;
5771
5772 if (rb_has_aux(rb)) {
5773 atomic_inc(&rb->aux_mmap_count);
5774 ret = 0;
5775 goto unlock;
5776 }
5777
5778 atomic_set(&rb->aux_mmap_count, 1);
5779 user_extra = nr_pages;
5780
5781 goto accounting;
5782 }
7b732a75 5783
7730d865 5784 /*
76369139 5785 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5786 * can do bitmasks instead of modulo.
5787 */
2ed11312 5788 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5789 return -EINVAL;
5790
7b732a75 5791 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5792 return -EINVAL;
5793
cdd6c482 5794 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5795again:
cdd6c482 5796 mutex_lock(&event->mmap_mutex);
76369139 5797 if (event->rb) {
9bb5d40c 5798 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5799 ret = -EINVAL;
9bb5d40c
PZ
5800 goto unlock;
5801 }
5802
5803 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5804 /*
5805 * Raced against perf_mmap_close() through
5806 * perf_event_set_output(). Try again, hope for better
5807 * luck.
5808 */
5809 mutex_unlock(&event->mmap_mutex);
5810 goto again;
5811 }
5812
ebb3c4c4
PZ
5813 goto unlock;
5814 }
5815
789f90fc 5816 user_extra = nr_pages + 1;
45bfb2e5
PZ
5817
5818accounting:
cdd6c482 5819 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5820
5821 /*
5822 * Increase the limit linearly with more CPUs:
5823 */
5824 user_lock_limit *= num_online_cpus();
5825
789f90fc 5826 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5827
d44248a4
SL
5828 if (user_locked <= user_lock_limit) {
5829 /* charge all to locked_vm */
5830 } else if (atomic_long_read(&user->locked_vm) >= user_lock_limit) {
5831 /* charge all to pinned_vm */
5832 extra = user_extra;
5833 user_extra = 0;
5834 } else {
5835 /*
5836 * charge locked_vm until it hits user_lock_limit;
5837 * charge the rest from pinned_vm
5838 */
789f90fc 5839 extra = user_locked - user_lock_limit;
d44248a4
SL
5840 user_extra -= extra;
5841 }
7b732a75 5842
78d7d407 5843 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5844 lock_limit >>= PAGE_SHIFT;
70f8a3ca 5845 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
7b732a75 5846
459ec28a
IM
5847 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5848 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5849 ret = -EPERM;
5850 goto unlock;
5851 }
7b732a75 5852
45bfb2e5 5853 WARN_ON(!rb && event->rb);
906010b2 5854
d57e34fd 5855 if (vma->vm_flags & VM_WRITE)
76369139 5856 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5857
76369139 5858 if (!rb) {
45bfb2e5
PZ
5859 rb = rb_alloc(nr_pages,
5860 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5861 event->cpu, flags);
26cb63ad 5862
45bfb2e5
PZ
5863 if (!rb) {
5864 ret = -ENOMEM;
5865 goto unlock;
5866 }
43a21ea8 5867
45bfb2e5
PZ
5868 atomic_set(&rb->mmap_count, 1);
5869 rb->mmap_user = get_current_user();
5870 rb->mmap_locked = extra;
26cb63ad 5871
45bfb2e5 5872 ring_buffer_attach(event, rb);
ac9721f3 5873
45bfb2e5
PZ
5874 perf_event_init_userpage(event);
5875 perf_event_update_userpage(event);
5876 } else {
1a594131
AS
5877 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5878 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5879 if (!ret)
5880 rb->aux_mmap_locked = extra;
5881 }
9a0f05cb 5882
ebb3c4c4 5883unlock:
45bfb2e5
PZ
5884 if (!ret) {
5885 atomic_long_add(user_extra, &user->locked_vm);
70f8a3ca 5886 atomic64_add(extra, &vma->vm_mm->pinned_vm);
45bfb2e5 5887
ac9721f3 5888 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5889 } else if (rb) {
5890 atomic_dec(&rb->mmap_count);
5891 }
5892aux_unlock:
cdd6c482 5893 mutex_unlock(&event->mmap_mutex);
37d81828 5894
9bb5d40c
PZ
5895 /*
5896 * Since pinned accounting is per vm we cannot allow fork() to copy our
5897 * vma.
5898 */
26cb63ad 5899 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5900 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5901
1e0fb9ec 5902 if (event->pmu->event_mapped)
bfe33492 5903 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5904
7b732a75 5905 return ret;
37d81828
PM
5906}
5907
3c446b3d
PZ
5908static int perf_fasync(int fd, struct file *filp, int on)
5909{
496ad9aa 5910 struct inode *inode = file_inode(filp);
cdd6c482 5911 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5912 int retval;
5913
5955102c 5914 inode_lock(inode);
cdd6c482 5915 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5916 inode_unlock(inode);
3c446b3d
PZ
5917
5918 if (retval < 0)
5919 return retval;
5920
5921 return 0;
5922}
5923
0793a61d 5924static const struct file_operations perf_fops = {
3326c1ce 5925 .llseek = no_llseek,
0793a61d
TG
5926 .release = perf_release,
5927 .read = perf_read,
5928 .poll = perf_poll,
d859e29f 5929 .unlocked_ioctl = perf_ioctl,
b3f20785 5930 .compat_ioctl = perf_compat_ioctl,
37d81828 5931 .mmap = perf_mmap,
3c446b3d 5932 .fasync = perf_fasync,
0793a61d
TG
5933};
5934
925d519a 5935/*
cdd6c482 5936 * Perf event wakeup
925d519a
PZ
5937 *
5938 * If there's data, ensure we set the poll() state and publish everything
5939 * to user-space before waking everybody up.
5940 */
5941
fed66e2c
PZ
5942static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5943{
5944 /* only the parent has fasync state */
5945 if (event->parent)
5946 event = event->parent;
5947 return &event->fasync;
5948}
5949
cdd6c482 5950void perf_event_wakeup(struct perf_event *event)
925d519a 5951{
10c6db11 5952 ring_buffer_wakeup(event);
4c9e2542 5953
cdd6c482 5954 if (event->pending_kill) {
fed66e2c 5955 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5956 event->pending_kill = 0;
4c9e2542 5957 }
925d519a
PZ
5958}
5959
1d54ad94
PZ
5960static void perf_pending_event_disable(struct perf_event *event)
5961{
5962 int cpu = READ_ONCE(event->pending_disable);
5963
5964 if (cpu < 0)
5965 return;
5966
5967 if (cpu == smp_processor_id()) {
5968 WRITE_ONCE(event->pending_disable, -1);
5969 perf_event_disable_local(event);
5970 return;
5971 }
5972
5973 /*
5974 * CPU-A CPU-B
5975 *
5976 * perf_event_disable_inatomic()
5977 * @pending_disable = CPU-A;
5978 * irq_work_queue();
5979 *
5980 * sched-out
5981 * @pending_disable = -1;
5982 *
5983 * sched-in
5984 * perf_event_disable_inatomic()
5985 * @pending_disable = CPU-B;
5986 * irq_work_queue(); // FAILS
5987 *
5988 * irq_work_run()
5989 * perf_pending_event()
5990 *
5991 * But the event runs on CPU-B and wants disabling there.
5992 */
5993 irq_work_queue_on(&event->pending, cpu);
5994}
5995
e360adbe 5996static void perf_pending_event(struct irq_work *entry)
79f14641 5997{
1d54ad94 5998 struct perf_event *event = container_of(entry, struct perf_event, pending);
d525211f
PZ
5999 int rctx;
6000
6001 rctx = perf_swevent_get_recursion_context();
6002 /*
6003 * If we 'fail' here, that's OK, it means recursion is already disabled
6004 * and we won't recurse 'further'.
6005 */
79f14641 6006
1d54ad94 6007 perf_pending_event_disable(event);
79f14641 6008
cdd6c482
IM
6009 if (event->pending_wakeup) {
6010 event->pending_wakeup = 0;
6011 perf_event_wakeup(event);
79f14641 6012 }
d525211f
PZ
6013
6014 if (rctx >= 0)
6015 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
6016}
6017
39447b38
ZY
6018/*
6019 * We assume there is only KVM supporting the callbacks.
6020 * Later on, we might change it to a list if there is
6021 * another virtualization implementation supporting the callbacks.
6022 */
6023struct perf_guest_info_callbacks *perf_guest_cbs;
6024
6025int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6026{
6027 perf_guest_cbs = cbs;
6028 return 0;
6029}
6030EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6031
6032int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6033{
6034 perf_guest_cbs = NULL;
6035 return 0;
6036}
6037EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6038
4018994f
JO
6039static void
6040perf_output_sample_regs(struct perf_output_handle *handle,
6041 struct pt_regs *regs, u64 mask)
6042{
6043 int bit;
29dd3288 6044 DECLARE_BITMAP(_mask, 64);
4018994f 6045
29dd3288
MS
6046 bitmap_from_u64(_mask, mask);
6047 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
6048 u64 val;
6049
6050 val = perf_reg_value(regs, bit);
6051 perf_output_put(handle, val);
6052 }
6053}
6054
60e2364e 6055static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
6056 struct pt_regs *regs,
6057 struct pt_regs *regs_user_copy)
4018994f 6058{
88a7c26a
AL
6059 if (user_mode(regs)) {
6060 regs_user->abi = perf_reg_abi(current);
2565711f 6061 regs_user->regs = regs;
085ebfe9 6062 } else if (!(current->flags & PF_KTHREAD)) {
88a7c26a 6063 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
6064 } else {
6065 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6066 regs_user->regs = NULL;
4018994f
JO
6067 }
6068}
6069
60e2364e
SE
6070static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6071 struct pt_regs *regs)
6072{
6073 regs_intr->regs = regs;
6074 regs_intr->abi = perf_reg_abi(current);
6075}
6076
6077
c5ebcedb
JO
6078/*
6079 * Get remaining task size from user stack pointer.
6080 *
6081 * It'd be better to take stack vma map and limit this more
9f014e3a 6082 * precisely, but there's no way to get it safely under interrupt,
c5ebcedb
JO
6083 * so using TASK_SIZE as limit.
6084 */
6085static u64 perf_ustack_task_size(struct pt_regs *regs)
6086{
6087 unsigned long addr = perf_user_stack_pointer(regs);
6088
6089 if (!addr || addr >= TASK_SIZE)
6090 return 0;
6091
6092 return TASK_SIZE - addr;
6093}
6094
6095static u16
6096perf_sample_ustack_size(u16 stack_size, u16 header_size,
6097 struct pt_regs *regs)
6098{
6099 u64 task_size;
6100
6101 /* No regs, no stack pointer, no dump. */
6102 if (!regs)
6103 return 0;
6104
6105 /*
6106 * Check if we fit in with the requested stack size into the:
6107 * - TASK_SIZE
6108 * If we don't, we limit the size to the TASK_SIZE.
6109 *
6110 * - remaining sample size
6111 * If we don't, we customize the stack size to
6112 * fit in to the remaining sample size.
6113 */
6114
6115 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6116 stack_size = min(stack_size, (u16) task_size);
6117
6118 /* Current header size plus static size and dynamic size. */
6119 header_size += 2 * sizeof(u64);
6120
6121 /* Do we fit in with the current stack dump size? */
6122 if ((u16) (header_size + stack_size) < header_size) {
6123 /*
6124 * If we overflow the maximum size for the sample,
6125 * we customize the stack dump size to fit in.
6126 */
6127 stack_size = USHRT_MAX - header_size - sizeof(u64);
6128 stack_size = round_up(stack_size, sizeof(u64));
6129 }
6130
6131 return stack_size;
6132}
6133
6134static void
6135perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6136 struct pt_regs *regs)
6137{
6138 /* Case of a kernel thread, nothing to dump */
6139 if (!regs) {
6140 u64 size = 0;
6141 perf_output_put(handle, size);
6142 } else {
6143 unsigned long sp;
6144 unsigned int rem;
6145 u64 dyn_size;
02e18447 6146 mm_segment_t fs;
c5ebcedb
JO
6147
6148 /*
6149 * We dump:
6150 * static size
6151 * - the size requested by user or the best one we can fit
6152 * in to the sample max size
6153 * data
6154 * - user stack dump data
6155 * dynamic size
6156 * - the actual dumped size
6157 */
6158
6159 /* Static size. */
6160 perf_output_put(handle, dump_size);
6161
6162 /* Data. */
6163 sp = perf_user_stack_pointer(regs);
02e18447
YC
6164 fs = get_fs();
6165 set_fs(USER_DS);
c5ebcedb 6166 rem = __output_copy_user(handle, (void *) sp, dump_size);
02e18447 6167 set_fs(fs);
c5ebcedb
JO
6168 dyn_size = dump_size - rem;
6169
6170 perf_output_skip(handle, rem);
6171
6172 /* Dynamic size. */
6173 perf_output_put(handle, dyn_size);
6174 }
6175}
6176
c980d109
ACM
6177static void __perf_event_header__init_id(struct perf_event_header *header,
6178 struct perf_sample_data *data,
6179 struct perf_event *event)
6844c09d
ACM
6180{
6181 u64 sample_type = event->attr.sample_type;
6182
6183 data->type = sample_type;
6184 header->size += event->id_header_size;
6185
6186 if (sample_type & PERF_SAMPLE_TID) {
6187 /* namespace issues */
6188 data->tid_entry.pid = perf_event_pid(event, current);
6189 data->tid_entry.tid = perf_event_tid(event, current);
6190 }
6191
6192 if (sample_type & PERF_SAMPLE_TIME)
34f43927 6193 data->time = perf_event_clock(event);
6844c09d 6194
ff3d527c 6195 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
6196 data->id = primary_event_id(event);
6197
6198 if (sample_type & PERF_SAMPLE_STREAM_ID)
6199 data->stream_id = event->id;
6200
6201 if (sample_type & PERF_SAMPLE_CPU) {
6202 data->cpu_entry.cpu = raw_smp_processor_id();
6203 data->cpu_entry.reserved = 0;
6204 }
6205}
6206
76369139
FW
6207void perf_event_header__init_id(struct perf_event_header *header,
6208 struct perf_sample_data *data,
6209 struct perf_event *event)
c980d109
ACM
6210{
6211 if (event->attr.sample_id_all)
6212 __perf_event_header__init_id(header, data, event);
6213}
6214
6215static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6216 struct perf_sample_data *data)
6217{
6218 u64 sample_type = data->type;
6219
6220 if (sample_type & PERF_SAMPLE_TID)
6221 perf_output_put(handle, data->tid_entry);
6222
6223 if (sample_type & PERF_SAMPLE_TIME)
6224 perf_output_put(handle, data->time);
6225
6226 if (sample_type & PERF_SAMPLE_ID)
6227 perf_output_put(handle, data->id);
6228
6229 if (sample_type & PERF_SAMPLE_STREAM_ID)
6230 perf_output_put(handle, data->stream_id);
6231
6232 if (sample_type & PERF_SAMPLE_CPU)
6233 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
6234
6235 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6236 perf_output_put(handle, data->id);
c980d109
ACM
6237}
6238
76369139
FW
6239void perf_event__output_id_sample(struct perf_event *event,
6240 struct perf_output_handle *handle,
6241 struct perf_sample_data *sample)
c980d109
ACM
6242{
6243 if (event->attr.sample_id_all)
6244 __perf_event__output_id_sample(handle, sample);
6245}
6246
3dab77fb 6247static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
6248 struct perf_event *event,
6249 u64 enabled, u64 running)
3dab77fb 6250{
cdd6c482 6251 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6252 u64 values[4];
6253 int n = 0;
6254
b5e58793 6255 values[n++] = perf_event_count(event);
3dab77fb 6256 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 6257 values[n++] = enabled +
cdd6c482 6258 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
6259 }
6260 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 6261 values[n++] = running +
cdd6c482 6262 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
6263 }
6264 if (read_format & PERF_FORMAT_ID)
cdd6c482 6265 values[n++] = primary_event_id(event);
3dab77fb 6266
76369139 6267 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6268}
6269
3dab77fb 6270static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
6271 struct perf_event *event,
6272 u64 enabled, u64 running)
3dab77fb 6273{
cdd6c482
IM
6274 struct perf_event *leader = event->group_leader, *sub;
6275 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6276 u64 values[5];
6277 int n = 0;
6278
6279 values[n++] = 1 + leader->nr_siblings;
6280
6281 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 6282 values[n++] = enabled;
3dab77fb
PZ
6283
6284 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 6285 values[n++] = running;
3dab77fb 6286
9e5b127d
PZ
6287 if ((leader != event) &&
6288 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6289 leader->pmu->read(leader);
6290
b5e58793 6291 values[n++] = perf_event_count(leader);
3dab77fb 6292 if (read_format & PERF_FORMAT_ID)
cdd6c482 6293 values[n++] = primary_event_id(leader);
3dab77fb 6294
76369139 6295 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 6296
edb39592 6297 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
6298 n = 0;
6299
6f5ab001
JO
6300 if ((sub != event) &&
6301 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6302 sub->pmu->read(sub);
6303
b5e58793 6304 values[n++] = perf_event_count(sub);
3dab77fb 6305 if (read_format & PERF_FORMAT_ID)
cdd6c482 6306 values[n++] = primary_event_id(sub);
3dab77fb 6307
76369139 6308 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6309 }
6310}
6311
eed01528
SE
6312#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6313 PERF_FORMAT_TOTAL_TIME_RUNNING)
6314
ba5213ae
PZ
6315/*
6316 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6317 *
6318 * The problem is that its both hard and excessively expensive to iterate the
6319 * child list, not to mention that its impossible to IPI the children running
6320 * on another CPU, from interrupt/NMI context.
6321 */
3dab77fb 6322static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 6323 struct perf_event *event)
3dab77fb 6324{
e3f3541c 6325 u64 enabled = 0, running = 0, now;
eed01528
SE
6326 u64 read_format = event->attr.read_format;
6327
6328 /*
6329 * compute total_time_enabled, total_time_running
6330 * based on snapshot values taken when the event
6331 * was last scheduled in.
6332 *
6333 * we cannot simply called update_context_time()
6334 * because of locking issue as we are called in
6335 * NMI context
6336 */
c4794295 6337 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 6338 calc_timer_values(event, &now, &enabled, &running);
eed01528 6339
cdd6c482 6340 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 6341 perf_output_read_group(handle, event, enabled, running);
3dab77fb 6342 else
eed01528 6343 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
6344}
6345
5622f295
MM
6346void perf_output_sample(struct perf_output_handle *handle,
6347 struct perf_event_header *header,
6348 struct perf_sample_data *data,
cdd6c482 6349 struct perf_event *event)
5622f295
MM
6350{
6351 u64 sample_type = data->type;
6352
6353 perf_output_put(handle, *header);
6354
ff3d527c
AH
6355 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6356 perf_output_put(handle, data->id);
6357
5622f295
MM
6358 if (sample_type & PERF_SAMPLE_IP)
6359 perf_output_put(handle, data->ip);
6360
6361 if (sample_type & PERF_SAMPLE_TID)
6362 perf_output_put(handle, data->tid_entry);
6363
6364 if (sample_type & PERF_SAMPLE_TIME)
6365 perf_output_put(handle, data->time);
6366
6367 if (sample_type & PERF_SAMPLE_ADDR)
6368 perf_output_put(handle, data->addr);
6369
6370 if (sample_type & PERF_SAMPLE_ID)
6371 perf_output_put(handle, data->id);
6372
6373 if (sample_type & PERF_SAMPLE_STREAM_ID)
6374 perf_output_put(handle, data->stream_id);
6375
6376 if (sample_type & PERF_SAMPLE_CPU)
6377 perf_output_put(handle, data->cpu_entry);
6378
6379 if (sample_type & PERF_SAMPLE_PERIOD)
6380 perf_output_put(handle, data->period);
6381
6382 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 6383 perf_output_read(handle, event);
5622f295
MM
6384
6385 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 6386 int size = 1;
5622f295 6387
99e818cc
JO
6388 size += data->callchain->nr;
6389 size *= sizeof(u64);
6390 __output_copy(handle, data->callchain, size);
5622f295
MM
6391 }
6392
6393 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6394 struct perf_raw_record *raw = data->raw;
6395
6396 if (raw) {
6397 struct perf_raw_frag *frag = &raw->frag;
6398
6399 perf_output_put(handle, raw->size);
6400 do {
6401 if (frag->copy) {
6402 __output_custom(handle, frag->copy,
6403 frag->data, frag->size);
6404 } else {
6405 __output_copy(handle, frag->data,
6406 frag->size);
6407 }
6408 if (perf_raw_frag_last(frag))
6409 break;
6410 frag = frag->next;
6411 } while (1);
6412 if (frag->pad)
6413 __output_skip(handle, NULL, frag->pad);
5622f295
MM
6414 } else {
6415 struct {
6416 u32 size;
6417 u32 data;
6418 } raw = {
6419 .size = sizeof(u32),
6420 .data = 0,
6421 };
6422 perf_output_put(handle, raw);
6423 }
6424 }
a7ac67ea 6425
bce38cd5
SE
6426 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6427 if (data->br_stack) {
6428 size_t size;
6429
6430 size = data->br_stack->nr
6431 * sizeof(struct perf_branch_entry);
6432
6433 perf_output_put(handle, data->br_stack->nr);
6434 perf_output_copy(handle, data->br_stack->entries, size);
6435 } else {
6436 /*
6437 * we always store at least the value of nr
6438 */
6439 u64 nr = 0;
6440 perf_output_put(handle, nr);
6441 }
6442 }
4018994f
JO
6443
6444 if (sample_type & PERF_SAMPLE_REGS_USER) {
6445 u64 abi = data->regs_user.abi;
6446
6447 /*
6448 * If there are no regs to dump, notice it through
6449 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6450 */
6451 perf_output_put(handle, abi);
6452
6453 if (abi) {
6454 u64 mask = event->attr.sample_regs_user;
6455 perf_output_sample_regs(handle,
6456 data->regs_user.regs,
6457 mask);
6458 }
6459 }
c5ebcedb 6460
a5cdd40c 6461 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6462 perf_output_sample_ustack(handle,
6463 data->stack_user_size,
6464 data->regs_user.regs);
a5cdd40c 6465 }
c3feedf2
AK
6466
6467 if (sample_type & PERF_SAMPLE_WEIGHT)
6468 perf_output_put(handle, data->weight);
d6be9ad6
SE
6469
6470 if (sample_type & PERF_SAMPLE_DATA_SRC)
6471 perf_output_put(handle, data->data_src.val);
a5cdd40c 6472
fdfbbd07
AK
6473 if (sample_type & PERF_SAMPLE_TRANSACTION)
6474 perf_output_put(handle, data->txn);
6475
60e2364e
SE
6476 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6477 u64 abi = data->regs_intr.abi;
6478 /*
6479 * If there are no regs to dump, notice it through
6480 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6481 */
6482 perf_output_put(handle, abi);
6483
6484 if (abi) {
6485 u64 mask = event->attr.sample_regs_intr;
6486
6487 perf_output_sample_regs(handle,
6488 data->regs_intr.regs,
6489 mask);
6490 }
6491 }
6492
fc7ce9c7
KL
6493 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6494 perf_output_put(handle, data->phys_addr);
6495
a5cdd40c
PZ
6496 if (!event->attr.watermark) {
6497 int wakeup_events = event->attr.wakeup_events;
6498
6499 if (wakeup_events) {
6500 struct ring_buffer *rb = handle->rb;
6501 int events = local_inc_return(&rb->events);
6502
6503 if (events >= wakeup_events) {
6504 local_sub(wakeup_events, &rb->events);
6505 local_inc(&rb->wakeup);
6506 }
6507 }
6508 }
5622f295
MM
6509}
6510
fc7ce9c7
KL
6511static u64 perf_virt_to_phys(u64 virt)
6512{
6513 u64 phys_addr = 0;
6514 struct page *p = NULL;
6515
6516 if (!virt)
6517 return 0;
6518
6519 if (virt >= TASK_SIZE) {
6520 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6521 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6522 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6523 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6524 } else {
6525 /*
6526 * Walking the pages tables for user address.
6527 * Interrupts are disabled, so it prevents any tear down
6528 * of the page tables.
6529 * Try IRQ-safe __get_user_pages_fast first.
6530 * If failed, leave phys_addr as 0.
6531 */
6532 if ((current->mm != NULL) &&
6533 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6534 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6535
6536 if (p)
6537 put_page(p);
6538 }
6539
6540 return phys_addr;
6541}
6542
99e818cc
JO
6543static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6544
6cbc304f 6545struct perf_callchain_entry *
8cf7e0e2
JO
6546perf_callchain(struct perf_event *event, struct pt_regs *regs)
6547{
6548 bool kernel = !event->attr.exclude_callchain_kernel;
6549 bool user = !event->attr.exclude_callchain_user;
6550 /* Disallow cross-task user callchains. */
6551 bool crosstask = event->ctx->task && event->ctx->task != current;
6552 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 6553 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6554
6555 if (!kernel && !user)
99e818cc 6556 return &__empty_callchain;
8cf7e0e2 6557
99e818cc
JO
6558 callchain = get_perf_callchain(regs, 0, kernel, user,
6559 max_stack, crosstask, true);
6560 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6561}
6562
5622f295
MM
6563void perf_prepare_sample(struct perf_event_header *header,
6564 struct perf_sample_data *data,
cdd6c482 6565 struct perf_event *event,
5622f295 6566 struct pt_regs *regs)
7b732a75 6567{
cdd6c482 6568 u64 sample_type = event->attr.sample_type;
7b732a75 6569
cdd6c482 6570 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6571 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6572
6573 header->misc = 0;
6574 header->misc |= perf_misc_flags(regs);
6fab0192 6575
c980d109 6576 __perf_event_header__init_id(header, data, event);
6844c09d 6577
c320c7b7 6578 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6579 data->ip = perf_instruction_pointer(regs);
6580
b23f3325 6581 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6582 int size = 1;
394ee076 6583
6cbc304f
PZ
6584 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6585 data->callchain = perf_callchain(event, regs);
6586
99e818cc 6587 size += data->callchain->nr;
5622f295
MM
6588
6589 header->size += size * sizeof(u64);
394ee076
PZ
6590 }
6591
3a43ce68 6592 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6593 struct perf_raw_record *raw = data->raw;
6594 int size;
6595
6596 if (raw) {
6597 struct perf_raw_frag *frag = &raw->frag;
6598 u32 sum = 0;
6599
6600 do {
6601 sum += frag->size;
6602 if (perf_raw_frag_last(frag))
6603 break;
6604 frag = frag->next;
6605 } while (1);
6606
6607 size = round_up(sum + sizeof(u32), sizeof(u64));
6608 raw->size = size - sizeof(u32);
6609 frag->pad = raw->size - sum;
6610 } else {
6611 size = sizeof(u64);
6612 }
a044560c 6613
7e3f977e 6614 header->size += size;
7f453c24 6615 }
bce38cd5
SE
6616
6617 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6618 int size = sizeof(u64); /* nr */
6619 if (data->br_stack) {
6620 size += data->br_stack->nr
6621 * sizeof(struct perf_branch_entry);
6622 }
6623 header->size += size;
6624 }
4018994f 6625
2565711f 6626 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6627 perf_sample_regs_user(&data->regs_user, regs,
6628 &data->regs_user_copy);
2565711f 6629
4018994f
JO
6630 if (sample_type & PERF_SAMPLE_REGS_USER) {
6631 /* regs dump ABI info */
6632 int size = sizeof(u64);
6633
4018994f
JO
6634 if (data->regs_user.regs) {
6635 u64 mask = event->attr.sample_regs_user;
6636 size += hweight64(mask) * sizeof(u64);
6637 }
6638
6639 header->size += size;
6640 }
c5ebcedb
JO
6641
6642 if (sample_type & PERF_SAMPLE_STACK_USER) {
6643 /*
9f014e3a 6644 * Either we need PERF_SAMPLE_STACK_USER bit to be always
c5ebcedb
JO
6645 * processed as the last one or have additional check added
6646 * in case new sample type is added, because we could eat
6647 * up the rest of the sample size.
6648 */
c5ebcedb
JO
6649 u16 stack_size = event->attr.sample_stack_user;
6650 u16 size = sizeof(u64);
6651
c5ebcedb 6652 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6653 data->regs_user.regs);
c5ebcedb
JO
6654
6655 /*
6656 * If there is something to dump, add space for the dump
6657 * itself and for the field that tells the dynamic size,
6658 * which is how many have been actually dumped.
6659 */
6660 if (stack_size)
6661 size += sizeof(u64) + stack_size;
6662
6663 data->stack_user_size = stack_size;
6664 header->size += size;
6665 }
60e2364e
SE
6666
6667 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6668 /* regs dump ABI info */
6669 int size = sizeof(u64);
6670
6671 perf_sample_regs_intr(&data->regs_intr, regs);
6672
6673 if (data->regs_intr.regs) {
6674 u64 mask = event->attr.sample_regs_intr;
6675
6676 size += hweight64(mask) * sizeof(u64);
6677 }
6678
6679 header->size += size;
6680 }
fc7ce9c7
KL
6681
6682 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6683 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6684}
7f453c24 6685
56201969 6686static __always_inline int
9ecda41a
WN
6687__perf_event_output(struct perf_event *event,
6688 struct perf_sample_data *data,
6689 struct pt_regs *regs,
6690 int (*output_begin)(struct perf_output_handle *,
6691 struct perf_event *,
6692 unsigned int))
5622f295
MM
6693{
6694 struct perf_output_handle handle;
6695 struct perf_event_header header;
56201969 6696 int err;
689802b2 6697
927c7a9e
FW
6698 /* protect the callchain buffers */
6699 rcu_read_lock();
6700
cdd6c482 6701 perf_prepare_sample(&header, data, event, regs);
5c148194 6702
56201969
ACM
6703 err = output_begin(&handle, event, header.size);
6704 if (err)
927c7a9e 6705 goto exit;
0322cd6e 6706
cdd6c482 6707 perf_output_sample(&handle, &header, data, event);
f413cdb8 6708
8a057d84 6709 perf_output_end(&handle);
927c7a9e
FW
6710
6711exit:
6712 rcu_read_unlock();
56201969 6713 return err;
0322cd6e
PZ
6714}
6715
9ecda41a
WN
6716void
6717perf_event_output_forward(struct perf_event *event,
6718 struct perf_sample_data *data,
6719 struct pt_regs *regs)
6720{
6721 __perf_event_output(event, data, regs, perf_output_begin_forward);
6722}
6723
6724void
6725perf_event_output_backward(struct perf_event *event,
6726 struct perf_sample_data *data,
6727 struct pt_regs *regs)
6728{
6729 __perf_event_output(event, data, regs, perf_output_begin_backward);
6730}
6731
56201969 6732int
9ecda41a
WN
6733perf_event_output(struct perf_event *event,
6734 struct perf_sample_data *data,
6735 struct pt_regs *regs)
6736{
56201969 6737 return __perf_event_output(event, data, regs, perf_output_begin);
9ecda41a
WN
6738}
6739
38b200d6 6740/*
cdd6c482 6741 * read event_id
38b200d6
PZ
6742 */
6743
6744struct perf_read_event {
6745 struct perf_event_header header;
6746
6747 u32 pid;
6748 u32 tid;
38b200d6
PZ
6749};
6750
6751static void
cdd6c482 6752perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6753 struct task_struct *task)
6754{
6755 struct perf_output_handle handle;
c980d109 6756 struct perf_sample_data sample;
dfc65094 6757 struct perf_read_event read_event = {
38b200d6 6758 .header = {
cdd6c482 6759 .type = PERF_RECORD_READ,
38b200d6 6760 .misc = 0,
c320c7b7 6761 .size = sizeof(read_event) + event->read_size,
38b200d6 6762 },
cdd6c482
IM
6763 .pid = perf_event_pid(event, task),
6764 .tid = perf_event_tid(event, task),
38b200d6 6765 };
3dab77fb 6766 int ret;
38b200d6 6767
c980d109 6768 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6769 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6770 if (ret)
6771 return;
6772
dfc65094 6773 perf_output_put(&handle, read_event);
cdd6c482 6774 perf_output_read(&handle, event);
c980d109 6775 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6776
38b200d6
PZ
6777 perf_output_end(&handle);
6778}
6779
aab5b71e 6780typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6781
6782static void
aab5b71e
PZ
6783perf_iterate_ctx(struct perf_event_context *ctx,
6784 perf_iterate_f output,
b73e4fef 6785 void *data, bool all)
52d857a8
JO
6786{
6787 struct perf_event *event;
6788
6789 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6790 if (!all) {
6791 if (event->state < PERF_EVENT_STATE_INACTIVE)
6792 continue;
6793 if (!event_filter_match(event))
6794 continue;
6795 }
6796
67516844 6797 output(event, data);
52d857a8
JO
6798 }
6799}
6800
aab5b71e 6801static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6802{
6803 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6804 struct perf_event *event;
6805
6806 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6807 /*
6808 * Skip events that are not fully formed yet; ensure that
6809 * if we observe event->ctx, both event and ctx will be
6810 * complete enough. See perf_install_in_context().
6811 */
6812 if (!smp_load_acquire(&event->ctx))
6813 continue;
6814
f2fb6bef
KL
6815 if (event->state < PERF_EVENT_STATE_INACTIVE)
6816 continue;
6817 if (!event_filter_match(event))
6818 continue;
6819 output(event, data);
6820 }
6821}
6822
aab5b71e
PZ
6823/*
6824 * Iterate all events that need to receive side-band events.
6825 *
6826 * For new callers; ensure that account_pmu_sb_event() includes
6827 * your event, otherwise it might not get delivered.
6828 */
52d857a8 6829static void
aab5b71e 6830perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6831 struct perf_event_context *task_ctx)
6832{
52d857a8 6833 struct perf_event_context *ctx;
52d857a8
JO
6834 int ctxn;
6835
aab5b71e
PZ
6836 rcu_read_lock();
6837 preempt_disable();
6838
4e93ad60 6839 /*
aab5b71e
PZ
6840 * If we have task_ctx != NULL we only notify the task context itself.
6841 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6842 * context.
6843 */
6844 if (task_ctx) {
aab5b71e
PZ
6845 perf_iterate_ctx(task_ctx, output, data, false);
6846 goto done;
4e93ad60
JO
6847 }
6848
aab5b71e 6849 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6850
6851 for_each_task_context_nr(ctxn) {
52d857a8
JO
6852 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6853 if (ctx)
aab5b71e 6854 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6855 }
aab5b71e 6856done:
f2fb6bef 6857 preempt_enable();
52d857a8 6858 rcu_read_unlock();
95ff4ca2
AS
6859}
6860
375637bc
AS
6861/*
6862 * Clear all file-based filters at exec, they'll have to be
6863 * re-instated when/if these objects are mmapped again.
6864 */
6865static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6866{
6867 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6868 struct perf_addr_filter *filter;
6869 unsigned int restart = 0, count = 0;
6870 unsigned long flags;
6871
6872 if (!has_addr_filter(event))
6873 return;
6874
6875 raw_spin_lock_irqsave(&ifh->lock, flags);
6876 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 6877 if (filter->path.dentry) {
c60f83b8
AS
6878 event->addr_filter_ranges[count].start = 0;
6879 event->addr_filter_ranges[count].size = 0;
375637bc
AS
6880 restart++;
6881 }
6882
6883 count++;
6884 }
6885
6886 if (restart)
6887 event->addr_filters_gen++;
6888 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6889
6890 if (restart)
767ae086 6891 perf_event_stop(event, 1);
375637bc
AS
6892}
6893
6894void perf_event_exec(void)
6895{
6896 struct perf_event_context *ctx;
6897 int ctxn;
6898
6899 rcu_read_lock();
6900 for_each_task_context_nr(ctxn) {
6901 ctx = current->perf_event_ctxp[ctxn];
6902 if (!ctx)
6903 continue;
6904
6905 perf_event_enable_on_exec(ctxn);
6906
aab5b71e 6907 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6908 true);
6909 }
6910 rcu_read_unlock();
6911}
6912
95ff4ca2
AS
6913struct remote_output {
6914 struct ring_buffer *rb;
6915 int err;
6916};
6917
6918static void __perf_event_output_stop(struct perf_event *event, void *data)
6919{
6920 struct perf_event *parent = event->parent;
6921 struct remote_output *ro = data;
6922 struct ring_buffer *rb = ro->rb;
375637bc
AS
6923 struct stop_event_data sd = {
6924 .event = event,
6925 };
95ff4ca2
AS
6926
6927 if (!has_aux(event))
6928 return;
6929
6930 if (!parent)
6931 parent = event;
6932
6933 /*
6934 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6935 * ring-buffer, but it will be the child that's actually using it.
6936 *
6937 * We are using event::rb to determine if the event should be stopped,
6938 * however this may race with ring_buffer_attach() (through set_output),
6939 * which will make us skip the event that actually needs to be stopped.
6940 * So ring_buffer_attach() has to stop an aux event before re-assigning
6941 * its rb pointer.
95ff4ca2
AS
6942 */
6943 if (rcu_dereference(parent->rb) == rb)
375637bc 6944 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6945}
6946
6947static int __perf_pmu_output_stop(void *info)
6948{
6949 struct perf_event *event = info;
f3a519e4 6950 struct pmu *pmu = event->ctx->pmu;
8b6a3fe8 6951 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6952 struct remote_output ro = {
6953 .rb = event->rb,
6954 };
6955
6956 rcu_read_lock();
aab5b71e 6957 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6958 if (cpuctx->task_ctx)
aab5b71e 6959 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6960 &ro, false);
95ff4ca2
AS
6961 rcu_read_unlock();
6962
6963 return ro.err;
6964}
6965
6966static void perf_pmu_output_stop(struct perf_event *event)
6967{
6968 struct perf_event *iter;
6969 int err, cpu;
6970
6971restart:
6972 rcu_read_lock();
6973 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6974 /*
6975 * For per-CPU events, we need to make sure that neither they
6976 * nor their children are running; for cpu==-1 events it's
6977 * sufficient to stop the event itself if it's active, since
6978 * it can't have children.
6979 */
6980 cpu = iter->cpu;
6981 if (cpu == -1)
6982 cpu = READ_ONCE(iter->oncpu);
6983
6984 if (cpu == -1)
6985 continue;
6986
6987 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6988 if (err == -EAGAIN) {
6989 rcu_read_unlock();
6990 goto restart;
6991 }
6992 }
6993 rcu_read_unlock();
52d857a8
JO
6994}
6995
60313ebe 6996/*
9f498cc5
PZ
6997 * task tracking -- fork/exit
6998 *
13d7a241 6999 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
7000 */
7001
9f498cc5 7002struct perf_task_event {
3a80b4a3 7003 struct task_struct *task;
cdd6c482 7004 struct perf_event_context *task_ctx;
60313ebe
PZ
7005
7006 struct {
7007 struct perf_event_header header;
7008
7009 u32 pid;
7010 u32 ppid;
9f498cc5
PZ
7011 u32 tid;
7012 u32 ptid;
393b2ad8 7013 u64 time;
cdd6c482 7014 } event_id;
60313ebe
PZ
7015};
7016
67516844
JO
7017static int perf_event_task_match(struct perf_event *event)
7018{
13d7a241
SE
7019 return event->attr.comm || event->attr.mmap ||
7020 event->attr.mmap2 || event->attr.mmap_data ||
7021 event->attr.task;
67516844
JO
7022}
7023
cdd6c482 7024static void perf_event_task_output(struct perf_event *event,
52d857a8 7025 void *data)
60313ebe 7026{
52d857a8 7027 struct perf_task_event *task_event = data;
60313ebe 7028 struct perf_output_handle handle;
c980d109 7029 struct perf_sample_data sample;
9f498cc5 7030 struct task_struct *task = task_event->task;
c980d109 7031 int ret, size = task_event->event_id.header.size;
8bb39f9a 7032
67516844
JO
7033 if (!perf_event_task_match(event))
7034 return;
7035
c980d109 7036 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 7037
c980d109 7038 ret = perf_output_begin(&handle, event,
a7ac67ea 7039 task_event->event_id.header.size);
ef60777c 7040 if (ret)
c980d109 7041 goto out;
60313ebe 7042
cdd6c482
IM
7043 task_event->event_id.pid = perf_event_pid(event, task);
7044 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 7045
cdd6c482
IM
7046 task_event->event_id.tid = perf_event_tid(event, task);
7047 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 7048
34f43927
PZ
7049 task_event->event_id.time = perf_event_clock(event);
7050
cdd6c482 7051 perf_output_put(&handle, task_event->event_id);
393b2ad8 7052
c980d109
ACM
7053 perf_event__output_id_sample(event, &handle, &sample);
7054
60313ebe 7055 perf_output_end(&handle);
c980d109
ACM
7056out:
7057 task_event->event_id.header.size = size;
60313ebe
PZ
7058}
7059
cdd6c482
IM
7060static void perf_event_task(struct task_struct *task,
7061 struct perf_event_context *task_ctx,
3a80b4a3 7062 int new)
60313ebe 7063{
9f498cc5 7064 struct perf_task_event task_event;
60313ebe 7065
cdd6c482
IM
7066 if (!atomic_read(&nr_comm_events) &&
7067 !atomic_read(&nr_mmap_events) &&
7068 !atomic_read(&nr_task_events))
60313ebe
PZ
7069 return;
7070
9f498cc5 7071 task_event = (struct perf_task_event){
3a80b4a3
PZ
7072 .task = task,
7073 .task_ctx = task_ctx,
cdd6c482 7074 .event_id = {
60313ebe 7075 .header = {
cdd6c482 7076 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 7077 .misc = 0,
cdd6c482 7078 .size = sizeof(task_event.event_id),
60313ebe 7079 },
573402db
PZ
7080 /* .pid */
7081 /* .ppid */
9f498cc5
PZ
7082 /* .tid */
7083 /* .ptid */
34f43927 7084 /* .time */
60313ebe
PZ
7085 },
7086 };
7087
aab5b71e 7088 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
7089 &task_event,
7090 task_ctx);
9f498cc5
PZ
7091}
7092
cdd6c482 7093void perf_event_fork(struct task_struct *task)
9f498cc5 7094{
cdd6c482 7095 perf_event_task(task, NULL, 1);
e4222673 7096 perf_event_namespaces(task);
60313ebe
PZ
7097}
7098
8d1b2d93
PZ
7099/*
7100 * comm tracking
7101 */
7102
7103struct perf_comm_event {
22a4f650
IM
7104 struct task_struct *task;
7105 char *comm;
8d1b2d93
PZ
7106 int comm_size;
7107
7108 struct {
7109 struct perf_event_header header;
7110
7111 u32 pid;
7112 u32 tid;
cdd6c482 7113 } event_id;
8d1b2d93
PZ
7114};
7115
67516844
JO
7116static int perf_event_comm_match(struct perf_event *event)
7117{
7118 return event->attr.comm;
7119}
7120
cdd6c482 7121static void perf_event_comm_output(struct perf_event *event,
52d857a8 7122 void *data)
8d1b2d93 7123{
52d857a8 7124 struct perf_comm_event *comm_event = data;
8d1b2d93 7125 struct perf_output_handle handle;
c980d109 7126 struct perf_sample_data sample;
cdd6c482 7127 int size = comm_event->event_id.header.size;
c980d109
ACM
7128 int ret;
7129
67516844
JO
7130 if (!perf_event_comm_match(event))
7131 return;
7132
c980d109
ACM
7133 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7134 ret = perf_output_begin(&handle, event,
a7ac67ea 7135 comm_event->event_id.header.size);
8d1b2d93
PZ
7136
7137 if (ret)
c980d109 7138 goto out;
8d1b2d93 7139
cdd6c482
IM
7140 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7141 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 7142
cdd6c482 7143 perf_output_put(&handle, comm_event->event_id);
76369139 7144 __output_copy(&handle, comm_event->comm,
8d1b2d93 7145 comm_event->comm_size);
c980d109
ACM
7146
7147 perf_event__output_id_sample(event, &handle, &sample);
7148
8d1b2d93 7149 perf_output_end(&handle);
c980d109
ACM
7150out:
7151 comm_event->event_id.header.size = size;
8d1b2d93
PZ
7152}
7153
cdd6c482 7154static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 7155{
413ee3b4 7156 char comm[TASK_COMM_LEN];
8d1b2d93 7157 unsigned int size;
8d1b2d93 7158
413ee3b4 7159 memset(comm, 0, sizeof(comm));
96b02d78 7160 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 7161 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
7162
7163 comm_event->comm = comm;
7164 comm_event->comm_size = size;
7165
cdd6c482 7166 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 7167
aab5b71e 7168 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
7169 comm_event,
7170 NULL);
8d1b2d93
PZ
7171}
7172
82b89778 7173void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 7174{
9ee318a7
PZ
7175 struct perf_comm_event comm_event;
7176
cdd6c482 7177 if (!atomic_read(&nr_comm_events))
9ee318a7 7178 return;
a63eaf34 7179
9ee318a7 7180 comm_event = (struct perf_comm_event){
8d1b2d93 7181 .task = task,
573402db
PZ
7182 /* .comm */
7183 /* .comm_size */
cdd6c482 7184 .event_id = {
573402db 7185 .header = {
cdd6c482 7186 .type = PERF_RECORD_COMM,
82b89778 7187 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
7188 /* .size */
7189 },
7190 /* .pid */
7191 /* .tid */
8d1b2d93
PZ
7192 },
7193 };
7194
cdd6c482 7195 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
7196}
7197
e4222673
HB
7198/*
7199 * namespaces tracking
7200 */
7201
7202struct perf_namespaces_event {
7203 struct task_struct *task;
7204
7205 struct {
7206 struct perf_event_header header;
7207
7208 u32 pid;
7209 u32 tid;
7210 u64 nr_namespaces;
7211 struct perf_ns_link_info link_info[NR_NAMESPACES];
7212 } event_id;
7213};
7214
7215static int perf_event_namespaces_match(struct perf_event *event)
7216{
7217 return event->attr.namespaces;
7218}
7219
7220static void perf_event_namespaces_output(struct perf_event *event,
7221 void *data)
7222{
7223 struct perf_namespaces_event *namespaces_event = data;
7224 struct perf_output_handle handle;
7225 struct perf_sample_data sample;
34900ec5 7226 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
7227 int ret;
7228
7229 if (!perf_event_namespaces_match(event))
7230 return;
7231
7232 perf_event_header__init_id(&namespaces_event->event_id.header,
7233 &sample, event);
7234 ret = perf_output_begin(&handle, event,
7235 namespaces_event->event_id.header.size);
7236 if (ret)
34900ec5 7237 goto out;
e4222673
HB
7238
7239 namespaces_event->event_id.pid = perf_event_pid(event,
7240 namespaces_event->task);
7241 namespaces_event->event_id.tid = perf_event_tid(event,
7242 namespaces_event->task);
7243
7244 perf_output_put(&handle, namespaces_event->event_id);
7245
7246 perf_event__output_id_sample(event, &handle, &sample);
7247
7248 perf_output_end(&handle);
34900ec5
JO
7249out:
7250 namespaces_event->event_id.header.size = header_size;
e4222673
HB
7251}
7252
7253static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7254 struct task_struct *task,
7255 const struct proc_ns_operations *ns_ops)
7256{
7257 struct path ns_path;
7258 struct inode *ns_inode;
7259 void *error;
7260
7261 error = ns_get_path(&ns_path, task, ns_ops);
7262 if (!error) {
7263 ns_inode = ns_path.dentry->d_inode;
7264 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7265 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 7266 path_put(&ns_path);
e4222673
HB
7267 }
7268}
7269
7270void perf_event_namespaces(struct task_struct *task)
7271{
7272 struct perf_namespaces_event namespaces_event;
7273 struct perf_ns_link_info *ns_link_info;
7274
7275 if (!atomic_read(&nr_namespaces_events))
7276 return;
7277
7278 namespaces_event = (struct perf_namespaces_event){
7279 .task = task,
7280 .event_id = {
7281 .header = {
7282 .type = PERF_RECORD_NAMESPACES,
7283 .misc = 0,
7284 .size = sizeof(namespaces_event.event_id),
7285 },
7286 /* .pid */
7287 /* .tid */
7288 .nr_namespaces = NR_NAMESPACES,
7289 /* .link_info[NR_NAMESPACES] */
7290 },
7291 };
7292
7293 ns_link_info = namespaces_event.event_id.link_info;
7294
7295 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7296 task, &mntns_operations);
7297
7298#ifdef CONFIG_USER_NS
7299 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7300 task, &userns_operations);
7301#endif
7302#ifdef CONFIG_NET_NS
7303 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7304 task, &netns_operations);
7305#endif
7306#ifdef CONFIG_UTS_NS
7307 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7308 task, &utsns_operations);
7309#endif
7310#ifdef CONFIG_IPC_NS
7311 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7312 task, &ipcns_operations);
7313#endif
7314#ifdef CONFIG_PID_NS
7315 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7316 task, &pidns_operations);
7317#endif
7318#ifdef CONFIG_CGROUPS
7319 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7320 task, &cgroupns_operations);
7321#endif
7322
7323 perf_iterate_sb(perf_event_namespaces_output,
7324 &namespaces_event,
7325 NULL);
7326}
7327
0a4a9391
PZ
7328/*
7329 * mmap tracking
7330 */
7331
7332struct perf_mmap_event {
089dd79d
PZ
7333 struct vm_area_struct *vma;
7334
7335 const char *file_name;
7336 int file_size;
13d7a241
SE
7337 int maj, min;
7338 u64 ino;
7339 u64 ino_generation;
f972eb63 7340 u32 prot, flags;
0a4a9391
PZ
7341
7342 struct {
7343 struct perf_event_header header;
7344
7345 u32 pid;
7346 u32 tid;
7347 u64 start;
7348 u64 len;
7349 u64 pgoff;
cdd6c482 7350 } event_id;
0a4a9391
PZ
7351};
7352
67516844
JO
7353static int perf_event_mmap_match(struct perf_event *event,
7354 void *data)
7355{
7356 struct perf_mmap_event *mmap_event = data;
7357 struct vm_area_struct *vma = mmap_event->vma;
7358 int executable = vma->vm_flags & VM_EXEC;
7359
7360 return (!executable && event->attr.mmap_data) ||
13d7a241 7361 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
7362}
7363
cdd6c482 7364static void perf_event_mmap_output(struct perf_event *event,
52d857a8 7365 void *data)
0a4a9391 7366{
52d857a8 7367 struct perf_mmap_event *mmap_event = data;
0a4a9391 7368 struct perf_output_handle handle;
c980d109 7369 struct perf_sample_data sample;
cdd6c482 7370 int size = mmap_event->event_id.header.size;
d9c1bb2f 7371 u32 type = mmap_event->event_id.header.type;
c980d109 7372 int ret;
0a4a9391 7373
67516844
JO
7374 if (!perf_event_mmap_match(event, data))
7375 return;
7376
13d7a241
SE
7377 if (event->attr.mmap2) {
7378 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7379 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7380 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7381 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 7382 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
7383 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7384 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
7385 }
7386
c980d109
ACM
7387 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7388 ret = perf_output_begin(&handle, event,
a7ac67ea 7389 mmap_event->event_id.header.size);
0a4a9391 7390 if (ret)
c980d109 7391 goto out;
0a4a9391 7392
cdd6c482
IM
7393 mmap_event->event_id.pid = perf_event_pid(event, current);
7394 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 7395
cdd6c482 7396 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
7397
7398 if (event->attr.mmap2) {
7399 perf_output_put(&handle, mmap_event->maj);
7400 perf_output_put(&handle, mmap_event->min);
7401 perf_output_put(&handle, mmap_event->ino);
7402 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
7403 perf_output_put(&handle, mmap_event->prot);
7404 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
7405 }
7406
76369139 7407 __output_copy(&handle, mmap_event->file_name,
0a4a9391 7408 mmap_event->file_size);
c980d109
ACM
7409
7410 perf_event__output_id_sample(event, &handle, &sample);
7411
78d613eb 7412 perf_output_end(&handle);
c980d109
ACM
7413out:
7414 mmap_event->event_id.header.size = size;
d9c1bb2f 7415 mmap_event->event_id.header.type = type;
0a4a9391
PZ
7416}
7417
cdd6c482 7418static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 7419{
089dd79d
PZ
7420 struct vm_area_struct *vma = mmap_event->vma;
7421 struct file *file = vma->vm_file;
13d7a241
SE
7422 int maj = 0, min = 0;
7423 u64 ino = 0, gen = 0;
f972eb63 7424 u32 prot = 0, flags = 0;
0a4a9391
PZ
7425 unsigned int size;
7426 char tmp[16];
7427 char *buf = NULL;
2c42cfbf 7428 char *name;
413ee3b4 7429
0b3589be
PZ
7430 if (vma->vm_flags & VM_READ)
7431 prot |= PROT_READ;
7432 if (vma->vm_flags & VM_WRITE)
7433 prot |= PROT_WRITE;
7434 if (vma->vm_flags & VM_EXEC)
7435 prot |= PROT_EXEC;
7436
7437 if (vma->vm_flags & VM_MAYSHARE)
7438 flags = MAP_SHARED;
7439 else
7440 flags = MAP_PRIVATE;
7441
7442 if (vma->vm_flags & VM_DENYWRITE)
7443 flags |= MAP_DENYWRITE;
7444 if (vma->vm_flags & VM_MAYEXEC)
7445 flags |= MAP_EXECUTABLE;
7446 if (vma->vm_flags & VM_LOCKED)
7447 flags |= MAP_LOCKED;
7448 if (vma->vm_flags & VM_HUGETLB)
7449 flags |= MAP_HUGETLB;
7450
0a4a9391 7451 if (file) {
13d7a241
SE
7452 struct inode *inode;
7453 dev_t dev;
3ea2f2b9 7454
2c42cfbf 7455 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 7456 if (!buf) {
c7e548b4
ON
7457 name = "//enomem";
7458 goto cpy_name;
0a4a9391 7459 }
413ee3b4 7460 /*
3ea2f2b9 7461 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
7462 * need to add enough zero bytes after the string to handle
7463 * the 64bit alignment we do later.
7464 */
9bf39ab2 7465 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 7466 if (IS_ERR(name)) {
c7e548b4
ON
7467 name = "//toolong";
7468 goto cpy_name;
0a4a9391 7469 }
13d7a241
SE
7470 inode = file_inode(vma->vm_file);
7471 dev = inode->i_sb->s_dev;
7472 ino = inode->i_ino;
7473 gen = inode->i_generation;
7474 maj = MAJOR(dev);
7475 min = MINOR(dev);
f972eb63 7476
c7e548b4 7477 goto got_name;
0a4a9391 7478 } else {
fbe26abe
JO
7479 if (vma->vm_ops && vma->vm_ops->name) {
7480 name = (char *) vma->vm_ops->name(vma);
7481 if (name)
7482 goto cpy_name;
7483 }
7484
2c42cfbf 7485 name = (char *)arch_vma_name(vma);
c7e548b4
ON
7486 if (name)
7487 goto cpy_name;
089dd79d 7488
32c5fb7e 7489 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 7490 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
7491 name = "[heap]";
7492 goto cpy_name;
32c5fb7e
ON
7493 }
7494 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 7495 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
7496 name = "[stack]";
7497 goto cpy_name;
089dd79d
PZ
7498 }
7499
c7e548b4
ON
7500 name = "//anon";
7501 goto cpy_name;
0a4a9391
PZ
7502 }
7503
c7e548b4
ON
7504cpy_name:
7505 strlcpy(tmp, name, sizeof(tmp));
7506 name = tmp;
0a4a9391 7507got_name:
2c42cfbf
PZ
7508 /*
7509 * Since our buffer works in 8 byte units we need to align our string
7510 * size to a multiple of 8. However, we must guarantee the tail end is
7511 * zero'd out to avoid leaking random bits to userspace.
7512 */
7513 size = strlen(name)+1;
7514 while (!IS_ALIGNED(size, sizeof(u64)))
7515 name[size++] = '\0';
0a4a9391
PZ
7516
7517 mmap_event->file_name = name;
7518 mmap_event->file_size = size;
13d7a241
SE
7519 mmap_event->maj = maj;
7520 mmap_event->min = min;
7521 mmap_event->ino = ino;
7522 mmap_event->ino_generation = gen;
f972eb63
PZ
7523 mmap_event->prot = prot;
7524 mmap_event->flags = flags;
0a4a9391 7525
2fe85427
SE
7526 if (!(vma->vm_flags & VM_EXEC))
7527 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7528
cdd6c482 7529 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7530
aab5b71e 7531 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7532 mmap_event,
7533 NULL);
665c2142 7534
0a4a9391
PZ
7535 kfree(buf);
7536}
7537
375637bc
AS
7538/*
7539 * Check whether inode and address range match filter criteria.
7540 */
7541static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7542 struct file *file, unsigned long offset,
7543 unsigned long size)
7544{
7f635ff1
MP
7545 /* d_inode(NULL) won't be equal to any mapped user-space file */
7546 if (!filter->path.dentry)
7547 return false;
7548
9511bce9 7549 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
7550 return false;
7551
7552 if (filter->offset > offset + size)
7553 return false;
7554
7555 if (filter->offset + filter->size < offset)
7556 return false;
7557
7558 return true;
7559}
7560
c60f83b8
AS
7561static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7562 struct vm_area_struct *vma,
7563 struct perf_addr_filter_range *fr)
7564{
7565 unsigned long vma_size = vma->vm_end - vma->vm_start;
7566 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7567 struct file *file = vma->vm_file;
7568
7569 if (!perf_addr_filter_match(filter, file, off, vma_size))
7570 return false;
7571
7572 if (filter->offset < off) {
7573 fr->start = vma->vm_start;
7574 fr->size = min(vma_size, filter->size - (off - filter->offset));
7575 } else {
7576 fr->start = vma->vm_start + filter->offset - off;
7577 fr->size = min(vma->vm_end - fr->start, filter->size);
7578 }
7579
7580 return true;
7581}
7582
375637bc
AS
7583static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7584{
7585 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7586 struct vm_area_struct *vma = data;
375637bc
AS
7587 struct perf_addr_filter *filter;
7588 unsigned int restart = 0, count = 0;
c60f83b8 7589 unsigned long flags;
375637bc
AS
7590
7591 if (!has_addr_filter(event))
7592 return;
7593
c60f83b8 7594 if (!vma->vm_file)
375637bc
AS
7595 return;
7596
7597 raw_spin_lock_irqsave(&ifh->lock, flags);
7598 list_for_each_entry(filter, &ifh->list, entry) {
c60f83b8
AS
7599 if (perf_addr_filter_vma_adjust(filter, vma,
7600 &event->addr_filter_ranges[count]))
375637bc 7601 restart++;
375637bc
AS
7602
7603 count++;
7604 }
7605
7606 if (restart)
7607 event->addr_filters_gen++;
7608 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7609
7610 if (restart)
767ae086 7611 perf_event_stop(event, 1);
375637bc
AS
7612}
7613
7614/*
7615 * Adjust all task's events' filters to the new vma
7616 */
7617static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7618{
7619 struct perf_event_context *ctx;
7620 int ctxn;
7621
12b40a23
MP
7622 /*
7623 * Data tracing isn't supported yet and as such there is no need
7624 * to keep track of anything that isn't related to executable code:
7625 */
7626 if (!(vma->vm_flags & VM_EXEC))
7627 return;
7628
375637bc
AS
7629 rcu_read_lock();
7630 for_each_task_context_nr(ctxn) {
7631 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7632 if (!ctx)
7633 continue;
7634
aab5b71e 7635 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7636 }
7637 rcu_read_unlock();
7638}
7639
3af9e859 7640void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7641{
9ee318a7
PZ
7642 struct perf_mmap_event mmap_event;
7643
cdd6c482 7644 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7645 return;
7646
7647 mmap_event = (struct perf_mmap_event){
089dd79d 7648 .vma = vma,
573402db
PZ
7649 /* .file_name */
7650 /* .file_size */
cdd6c482 7651 .event_id = {
573402db 7652 .header = {
cdd6c482 7653 .type = PERF_RECORD_MMAP,
39447b38 7654 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7655 /* .size */
7656 },
7657 /* .pid */
7658 /* .tid */
089dd79d
PZ
7659 .start = vma->vm_start,
7660 .len = vma->vm_end - vma->vm_start,
3a0304e9 7661 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7662 },
13d7a241
SE
7663 /* .maj (attr_mmap2 only) */
7664 /* .min (attr_mmap2 only) */
7665 /* .ino (attr_mmap2 only) */
7666 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7667 /* .prot (attr_mmap2 only) */
7668 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7669 };
7670
375637bc 7671 perf_addr_filters_adjust(vma);
cdd6c482 7672 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7673}
7674
68db7e98
AS
7675void perf_event_aux_event(struct perf_event *event, unsigned long head,
7676 unsigned long size, u64 flags)
7677{
7678 struct perf_output_handle handle;
7679 struct perf_sample_data sample;
7680 struct perf_aux_event {
7681 struct perf_event_header header;
7682 u64 offset;
7683 u64 size;
7684 u64 flags;
7685 } rec = {
7686 .header = {
7687 .type = PERF_RECORD_AUX,
7688 .misc = 0,
7689 .size = sizeof(rec),
7690 },
7691 .offset = head,
7692 .size = size,
7693 .flags = flags,
7694 };
7695 int ret;
7696
7697 perf_event_header__init_id(&rec.header, &sample, event);
7698 ret = perf_output_begin(&handle, event, rec.header.size);
7699
7700 if (ret)
7701 return;
7702
7703 perf_output_put(&handle, rec);
7704 perf_event__output_id_sample(event, &handle, &sample);
7705
7706 perf_output_end(&handle);
7707}
7708
f38b0dbb
KL
7709/*
7710 * Lost/dropped samples logging
7711 */
7712void perf_log_lost_samples(struct perf_event *event, u64 lost)
7713{
7714 struct perf_output_handle handle;
7715 struct perf_sample_data sample;
7716 int ret;
7717
7718 struct {
7719 struct perf_event_header header;
7720 u64 lost;
7721 } lost_samples_event = {
7722 .header = {
7723 .type = PERF_RECORD_LOST_SAMPLES,
7724 .misc = 0,
7725 .size = sizeof(lost_samples_event),
7726 },
7727 .lost = lost,
7728 };
7729
7730 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7731
7732 ret = perf_output_begin(&handle, event,
7733 lost_samples_event.header.size);
7734 if (ret)
7735 return;
7736
7737 perf_output_put(&handle, lost_samples_event);
7738 perf_event__output_id_sample(event, &handle, &sample);
7739 perf_output_end(&handle);
7740}
7741
45ac1403
AH
7742/*
7743 * context_switch tracking
7744 */
7745
7746struct perf_switch_event {
7747 struct task_struct *task;
7748 struct task_struct *next_prev;
7749
7750 struct {
7751 struct perf_event_header header;
7752 u32 next_prev_pid;
7753 u32 next_prev_tid;
7754 } event_id;
7755};
7756
7757static int perf_event_switch_match(struct perf_event *event)
7758{
7759 return event->attr.context_switch;
7760}
7761
7762static void perf_event_switch_output(struct perf_event *event, void *data)
7763{
7764 struct perf_switch_event *se = data;
7765 struct perf_output_handle handle;
7766 struct perf_sample_data sample;
7767 int ret;
7768
7769 if (!perf_event_switch_match(event))
7770 return;
7771
7772 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7773 if (event->ctx->task) {
7774 se->event_id.header.type = PERF_RECORD_SWITCH;
7775 se->event_id.header.size = sizeof(se->event_id.header);
7776 } else {
7777 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7778 se->event_id.header.size = sizeof(se->event_id);
7779 se->event_id.next_prev_pid =
7780 perf_event_pid(event, se->next_prev);
7781 se->event_id.next_prev_tid =
7782 perf_event_tid(event, se->next_prev);
7783 }
7784
7785 perf_event_header__init_id(&se->event_id.header, &sample, event);
7786
7787 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7788 if (ret)
7789 return;
7790
7791 if (event->ctx->task)
7792 perf_output_put(&handle, se->event_id.header);
7793 else
7794 perf_output_put(&handle, se->event_id);
7795
7796 perf_event__output_id_sample(event, &handle, &sample);
7797
7798 perf_output_end(&handle);
7799}
7800
7801static void perf_event_switch(struct task_struct *task,
7802 struct task_struct *next_prev, bool sched_in)
7803{
7804 struct perf_switch_event switch_event;
7805
7806 /* N.B. caller checks nr_switch_events != 0 */
7807
7808 switch_event = (struct perf_switch_event){
7809 .task = task,
7810 .next_prev = next_prev,
7811 .event_id = {
7812 .header = {
7813 /* .type */
7814 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7815 /* .size */
7816 },
7817 /* .next_prev_pid */
7818 /* .next_prev_tid */
7819 },
7820 };
7821
101592b4
AB
7822 if (!sched_in && task->state == TASK_RUNNING)
7823 switch_event.event_id.header.misc |=
7824 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7825
aab5b71e 7826 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7827 &switch_event,
7828 NULL);
7829}
7830
a78ac325
PZ
7831/*
7832 * IRQ throttle logging
7833 */
7834
cdd6c482 7835static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7836{
7837 struct perf_output_handle handle;
c980d109 7838 struct perf_sample_data sample;
a78ac325
PZ
7839 int ret;
7840
7841 struct {
7842 struct perf_event_header header;
7843 u64 time;
cca3f454 7844 u64 id;
7f453c24 7845 u64 stream_id;
a78ac325
PZ
7846 } throttle_event = {
7847 .header = {
cdd6c482 7848 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7849 .misc = 0,
7850 .size = sizeof(throttle_event),
7851 },
34f43927 7852 .time = perf_event_clock(event),
cdd6c482
IM
7853 .id = primary_event_id(event),
7854 .stream_id = event->id,
a78ac325
PZ
7855 };
7856
966ee4d6 7857 if (enable)
cdd6c482 7858 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7859
c980d109
ACM
7860 perf_event_header__init_id(&throttle_event.header, &sample, event);
7861
7862 ret = perf_output_begin(&handle, event,
a7ac67ea 7863 throttle_event.header.size);
a78ac325
PZ
7864 if (ret)
7865 return;
7866
7867 perf_output_put(&handle, throttle_event);
c980d109 7868 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7869 perf_output_end(&handle);
7870}
7871
76193a94
SL
7872/*
7873 * ksymbol register/unregister tracking
7874 */
7875
7876struct perf_ksymbol_event {
7877 const char *name;
7878 int name_len;
7879 struct {
7880 struct perf_event_header header;
7881 u64 addr;
7882 u32 len;
7883 u16 ksym_type;
7884 u16 flags;
7885 } event_id;
7886};
7887
7888static int perf_event_ksymbol_match(struct perf_event *event)
7889{
7890 return event->attr.ksymbol;
7891}
7892
7893static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7894{
7895 struct perf_ksymbol_event *ksymbol_event = data;
7896 struct perf_output_handle handle;
7897 struct perf_sample_data sample;
7898 int ret;
7899
7900 if (!perf_event_ksymbol_match(event))
7901 return;
7902
7903 perf_event_header__init_id(&ksymbol_event->event_id.header,
7904 &sample, event);
7905 ret = perf_output_begin(&handle, event,
7906 ksymbol_event->event_id.header.size);
7907 if (ret)
7908 return;
7909
7910 perf_output_put(&handle, ksymbol_event->event_id);
7911 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7912 perf_event__output_id_sample(event, &handle, &sample);
7913
7914 perf_output_end(&handle);
7915}
7916
7917void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7918 const char *sym)
7919{
7920 struct perf_ksymbol_event ksymbol_event;
7921 char name[KSYM_NAME_LEN];
7922 u16 flags = 0;
7923 int name_len;
7924
7925 if (!atomic_read(&nr_ksymbol_events))
7926 return;
7927
7928 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7929 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7930 goto err;
7931
7932 strlcpy(name, sym, KSYM_NAME_LEN);
7933 name_len = strlen(name) + 1;
7934 while (!IS_ALIGNED(name_len, sizeof(u64)))
7935 name[name_len++] = '\0';
7936 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7937
7938 if (unregister)
7939 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7940
7941 ksymbol_event = (struct perf_ksymbol_event){
7942 .name = name,
7943 .name_len = name_len,
7944 .event_id = {
7945 .header = {
7946 .type = PERF_RECORD_KSYMBOL,
7947 .size = sizeof(ksymbol_event.event_id) +
7948 name_len,
7949 },
7950 .addr = addr,
7951 .len = len,
7952 .ksym_type = ksym_type,
7953 .flags = flags,
7954 },
7955 };
7956
7957 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7958 return;
7959err:
7960 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7961}
7962
6ee52e2a
SL
7963/*
7964 * bpf program load/unload tracking
7965 */
7966
7967struct perf_bpf_event {
7968 struct bpf_prog *prog;
7969 struct {
7970 struct perf_event_header header;
7971 u16 type;
7972 u16 flags;
7973 u32 id;
7974 u8 tag[BPF_TAG_SIZE];
7975 } event_id;
7976};
7977
7978static int perf_event_bpf_match(struct perf_event *event)
7979{
7980 return event->attr.bpf_event;
7981}
7982
7983static void perf_event_bpf_output(struct perf_event *event, void *data)
7984{
7985 struct perf_bpf_event *bpf_event = data;
7986 struct perf_output_handle handle;
7987 struct perf_sample_data sample;
7988 int ret;
7989
7990 if (!perf_event_bpf_match(event))
7991 return;
7992
7993 perf_event_header__init_id(&bpf_event->event_id.header,
7994 &sample, event);
7995 ret = perf_output_begin(&handle, event,
7996 bpf_event->event_id.header.size);
7997 if (ret)
7998 return;
7999
8000 perf_output_put(&handle, bpf_event->event_id);
8001 perf_event__output_id_sample(event, &handle, &sample);
8002
8003 perf_output_end(&handle);
8004}
8005
8006static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8007 enum perf_bpf_event_type type)
8008{
8009 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8010 char sym[KSYM_NAME_LEN];
8011 int i;
8012
8013 if (prog->aux->func_cnt == 0) {
8014 bpf_get_prog_name(prog, sym);
8015 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8016 (u64)(unsigned long)prog->bpf_func,
8017 prog->jited_len, unregister, sym);
8018 } else {
8019 for (i = 0; i < prog->aux->func_cnt; i++) {
8020 struct bpf_prog *subprog = prog->aux->func[i];
8021
8022 bpf_get_prog_name(subprog, sym);
8023 perf_event_ksymbol(
8024 PERF_RECORD_KSYMBOL_TYPE_BPF,
8025 (u64)(unsigned long)subprog->bpf_func,
8026 subprog->jited_len, unregister, sym);
8027 }
8028 }
8029}
8030
8031void perf_event_bpf_event(struct bpf_prog *prog,
8032 enum perf_bpf_event_type type,
8033 u16 flags)
8034{
8035 struct perf_bpf_event bpf_event;
8036
8037 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8038 type >= PERF_BPF_EVENT_MAX)
8039 return;
8040
8041 switch (type) {
8042 case PERF_BPF_EVENT_PROG_LOAD:
8043 case PERF_BPF_EVENT_PROG_UNLOAD:
8044 if (atomic_read(&nr_ksymbol_events))
8045 perf_event_bpf_emit_ksymbols(prog, type);
8046 break;
8047 default:
8048 break;
8049 }
8050
8051 if (!atomic_read(&nr_bpf_events))
8052 return;
8053
8054 bpf_event = (struct perf_bpf_event){
8055 .prog = prog,
8056 .event_id = {
8057 .header = {
8058 .type = PERF_RECORD_BPF_EVENT,
8059 .size = sizeof(bpf_event.event_id),
8060 },
8061 .type = type,
8062 .flags = flags,
8063 .id = prog->aux->id,
8064 },
8065 };
8066
8067 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8068
8069 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8070 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8071}
8072
8d4e6c4c
AS
8073void perf_event_itrace_started(struct perf_event *event)
8074{
8075 event->attach_state |= PERF_ATTACH_ITRACE;
8076}
8077
ec0d7729
AS
8078static void perf_log_itrace_start(struct perf_event *event)
8079{
8080 struct perf_output_handle handle;
8081 struct perf_sample_data sample;
8082 struct perf_aux_event {
8083 struct perf_event_header header;
8084 u32 pid;
8085 u32 tid;
8086 } rec;
8087 int ret;
8088
8089 if (event->parent)
8090 event = event->parent;
8091
8092 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 8093 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
8094 return;
8095
ec0d7729
AS
8096 rec.header.type = PERF_RECORD_ITRACE_START;
8097 rec.header.misc = 0;
8098 rec.header.size = sizeof(rec);
8099 rec.pid = perf_event_pid(event, current);
8100 rec.tid = perf_event_tid(event, current);
8101
8102 perf_event_header__init_id(&rec.header, &sample, event);
8103 ret = perf_output_begin(&handle, event, rec.header.size);
8104
8105 if (ret)
8106 return;
8107
8108 perf_output_put(&handle, rec);
8109 perf_event__output_id_sample(event, &handle, &sample);
8110
8111 perf_output_end(&handle);
8112}
8113
475113d9
JO
8114static int
8115__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 8116{
cdd6c482 8117 struct hw_perf_event *hwc = &event->hw;
79f14641 8118 int ret = 0;
475113d9 8119 u64 seq;
96398826 8120
e050e3f0
SE
8121 seq = __this_cpu_read(perf_throttled_seq);
8122 if (seq != hwc->interrupts_seq) {
8123 hwc->interrupts_seq = seq;
8124 hwc->interrupts = 1;
8125 } else {
8126 hwc->interrupts++;
8127 if (unlikely(throttle
8128 && hwc->interrupts >= max_samples_per_tick)) {
8129 __this_cpu_inc(perf_throttled_count);
555e0c1e 8130 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
8131 hwc->interrupts = MAX_INTERRUPTS;
8132 perf_log_throttle(event, 0);
a78ac325
PZ
8133 ret = 1;
8134 }
e050e3f0 8135 }
60db5e09 8136
cdd6c482 8137 if (event->attr.freq) {
def0a9b2 8138 u64 now = perf_clock();
abd50713 8139 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 8140
abd50713 8141 hwc->freq_time_stamp = now;
bd2b5b12 8142
abd50713 8143 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 8144 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
8145 }
8146
475113d9
JO
8147 return ret;
8148}
8149
8150int perf_event_account_interrupt(struct perf_event *event)
8151{
8152 return __perf_event_account_interrupt(event, 1);
8153}
8154
8155/*
8156 * Generic event overflow handling, sampling.
8157 */
8158
8159static int __perf_event_overflow(struct perf_event *event,
8160 int throttle, struct perf_sample_data *data,
8161 struct pt_regs *regs)
8162{
8163 int events = atomic_read(&event->event_limit);
8164 int ret = 0;
8165
8166 /*
8167 * Non-sampling counters might still use the PMI to fold short
8168 * hardware counters, ignore those.
8169 */
8170 if (unlikely(!is_sampling_event(event)))
8171 return 0;
8172
8173 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 8174
2023b359
PZ
8175 /*
8176 * XXX event_limit might not quite work as expected on inherited
cdd6c482 8177 * events
2023b359
PZ
8178 */
8179
cdd6c482
IM
8180 event->pending_kill = POLL_IN;
8181 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 8182 ret = 1;
cdd6c482 8183 event->pending_kill = POLL_HUP;
5aab90ce
JO
8184
8185 perf_event_disable_inatomic(event);
79f14641
PZ
8186 }
8187
aa6a5f3c 8188 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 8189
fed66e2c 8190 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
8191 event->pending_wakeup = 1;
8192 irq_work_queue(&event->pending);
f506b3dc
PZ
8193 }
8194
79f14641 8195 return ret;
f6c7d5fe
PZ
8196}
8197
a8b0ca17 8198int perf_event_overflow(struct perf_event *event,
5622f295
MM
8199 struct perf_sample_data *data,
8200 struct pt_regs *regs)
850bc73f 8201{
a8b0ca17 8202 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
8203}
8204
15dbf27c 8205/*
cdd6c482 8206 * Generic software event infrastructure
15dbf27c
PZ
8207 */
8208
b28ab83c
PZ
8209struct swevent_htable {
8210 struct swevent_hlist *swevent_hlist;
8211 struct mutex hlist_mutex;
8212 int hlist_refcount;
8213
8214 /* Recursion avoidance in each contexts */
8215 int recursion[PERF_NR_CONTEXTS];
8216};
8217
8218static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8219
7b4b6658 8220/*
cdd6c482
IM
8221 * We directly increment event->count and keep a second value in
8222 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
8223 * is kept in the range [-sample_period, 0] so that we can use the
8224 * sign as trigger.
8225 */
8226
ab573844 8227u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 8228{
cdd6c482 8229 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
8230 u64 period = hwc->last_period;
8231 u64 nr, offset;
8232 s64 old, val;
8233
8234 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
8235
8236again:
e7850595 8237 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
8238 if (val < 0)
8239 return 0;
15dbf27c 8240
7b4b6658
PZ
8241 nr = div64_u64(period + val, period);
8242 offset = nr * period;
8243 val -= offset;
e7850595 8244 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 8245 goto again;
15dbf27c 8246
7b4b6658 8247 return nr;
15dbf27c
PZ
8248}
8249
0cff784a 8250static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 8251 struct perf_sample_data *data,
5622f295 8252 struct pt_regs *regs)
15dbf27c 8253{
cdd6c482 8254 struct hw_perf_event *hwc = &event->hw;
850bc73f 8255 int throttle = 0;
15dbf27c 8256
0cff784a
PZ
8257 if (!overflow)
8258 overflow = perf_swevent_set_period(event);
15dbf27c 8259
7b4b6658
PZ
8260 if (hwc->interrupts == MAX_INTERRUPTS)
8261 return;
15dbf27c 8262
7b4b6658 8263 for (; overflow; overflow--) {
a8b0ca17 8264 if (__perf_event_overflow(event, throttle,
5622f295 8265 data, regs)) {
7b4b6658
PZ
8266 /*
8267 * We inhibit the overflow from happening when
8268 * hwc->interrupts == MAX_INTERRUPTS.
8269 */
8270 break;
8271 }
cf450a73 8272 throttle = 1;
7b4b6658 8273 }
15dbf27c
PZ
8274}
8275
a4eaf7f1 8276static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 8277 struct perf_sample_data *data,
5622f295 8278 struct pt_regs *regs)
7b4b6658 8279{
cdd6c482 8280 struct hw_perf_event *hwc = &event->hw;
d6d020e9 8281
e7850595 8282 local64_add(nr, &event->count);
d6d020e9 8283
0cff784a
PZ
8284 if (!regs)
8285 return;
8286
6c7e550f 8287 if (!is_sampling_event(event))
7b4b6658 8288 return;
d6d020e9 8289
5d81e5cf
AV
8290 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8291 data->period = nr;
8292 return perf_swevent_overflow(event, 1, data, regs);
8293 } else
8294 data->period = event->hw.last_period;
8295
0cff784a 8296 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 8297 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 8298
e7850595 8299 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 8300 return;
df1a132b 8301
a8b0ca17 8302 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
8303}
8304
f5ffe02e
FW
8305static int perf_exclude_event(struct perf_event *event,
8306 struct pt_regs *regs)
8307{
a4eaf7f1 8308 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 8309 return 1;
a4eaf7f1 8310
f5ffe02e
FW
8311 if (regs) {
8312 if (event->attr.exclude_user && user_mode(regs))
8313 return 1;
8314
8315 if (event->attr.exclude_kernel && !user_mode(regs))
8316 return 1;
8317 }
8318
8319 return 0;
8320}
8321
cdd6c482 8322static int perf_swevent_match(struct perf_event *event,
1c432d89 8323 enum perf_type_id type,
6fb2915d
LZ
8324 u32 event_id,
8325 struct perf_sample_data *data,
8326 struct pt_regs *regs)
15dbf27c 8327{
cdd6c482 8328 if (event->attr.type != type)
a21ca2ca 8329 return 0;
f5ffe02e 8330
cdd6c482 8331 if (event->attr.config != event_id)
15dbf27c
PZ
8332 return 0;
8333
f5ffe02e
FW
8334 if (perf_exclude_event(event, regs))
8335 return 0;
15dbf27c
PZ
8336
8337 return 1;
8338}
8339
76e1d904
FW
8340static inline u64 swevent_hash(u64 type, u32 event_id)
8341{
8342 u64 val = event_id | (type << 32);
8343
8344 return hash_64(val, SWEVENT_HLIST_BITS);
8345}
8346
49f135ed
FW
8347static inline struct hlist_head *
8348__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 8349{
49f135ed
FW
8350 u64 hash = swevent_hash(type, event_id);
8351
8352 return &hlist->heads[hash];
8353}
76e1d904 8354
49f135ed
FW
8355/* For the read side: events when they trigger */
8356static inline struct hlist_head *
b28ab83c 8357find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
8358{
8359 struct swevent_hlist *hlist;
76e1d904 8360
b28ab83c 8361 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
8362 if (!hlist)
8363 return NULL;
8364
49f135ed
FW
8365 return __find_swevent_head(hlist, type, event_id);
8366}
8367
8368/* For the event head insertion and removal in the hlist */
8369static inline struct hlist_head *
b28ab83c 8370find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
8371{
8372 struct swevent_hlist *hlist;
8373 u32 event_id = event->attr.config;
8374 u64 type = event->attr.type;
8375
8376 /*
8377 * Event scheduling is always serialized against hlist allocation
8378 * and release. Which makes the protected version suitable here.
8379 * The context lock guarantees that.
8380 */
b28ab83c 8381 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
8382 lockdep_is_held(&event->ctx->lock));
8383 if (!hlist)
8384 return NULL;
8385
8386 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
8387}
8388
8389static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 8390 u64 nr,
76e1d904
FW
8391 struct perf_sample_data *data,
8392 struct pt_regs *regs)
15dbf27c 8393{
4a32fea9 8394 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8395 struct perf_event *event;
76e1d904 8396 struct hlist_head *head;
15dbf27c 8397
76e1d904 8398 rcu_read_lock();
b28ab83c 8399 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
8400 if (!head)
8401 goto end;
8402
b67bfe0d 8403 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 8404 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 8405 perf_swevent_event(event, nr, data, regs);
15dbf27c 8406 }
76e1d904
FW
8407end:
8408 rcu_read_unlock();
15dbf27c
PZ
8409}
8410
86038c5e
PZI
8411DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8412
4ed7c92d 8413int perf_swevent_get_recursion_context(void)
96f6d444 8414{
4a32fea9 8415 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 8416
b28ab83c 8417 return get_recursion_context(swhash->recursion);
96f6d444 8418}
645e8cc0 8419EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 8420
98b5c2c6 8421void perf_swevent_put_recursion_context(int rctx)
15dbf27c 8422{
4a32fea9 8423 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 8424
b28ab83c 8425 put_recursion_context(swhash->recursion, rctx);
ce71b9df 8426}
15dbf27c 8427
86038c5e 8428void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 8429{
a4234bfc 8430 struct perf_sample_data data;
4ed7c92d 8431
86038c5e 8432 if (WARN_ON_ONCE(!regs))
4ed7c92d 8433 return;
a4234bfc 8434
fd0d000b 8435 perf_sample_data_init(&data, addr, 0);
a8b0ca17 8436 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
8437}
8438
8439void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8440{
8441 int rctx;
8442
8443 preempt_disable_notrace();
8444 rctx = perf_swevent_get_recursion_context();
8445 if (unlikely(rctx < 0))
8446 goto fail;
8447
8448 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
8449
8450 perf_swevent_put_recursion_context(rctx);
86038c5e 8451fail:
1c024eca 8452 preempt_enable_notrace();
b8e83514
PZ
8453}
8454
cdd6c482 8455static void perf_swevent_read(struct perf_event *event)
15dbf27c 8456{
15dbf27c
PZ
8457}
8458
a4eaf7f1 8459static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 8460{
4a32fea9 8461 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8462 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
8463 struct hlist_head *head;
8464
6c7e550f 8465 if (is_sampling_event(event)) {
7b4b6658 8466 hwc->last_period = hwc->sample_period;
cdd6c482 8467 perf_swevent_set_period(event);
7b4b6658 8468 }
76e1d904 8469
a4eaf7f1
PZ
8470 hwc->state = !(flags & PERF_EF_START);
8471
b28ab83c 8472 head = find_swevent_head(swhash, event);
12ca6ad2 8473 if (WARN_ON_ONCE(!head))
76e1d904
FW
8474 return -EINVAL;
8475
8476 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 8477 perf_event_update_userpage(event);
76e1d904 8478
15dbf27c
PZ
8479 return 0;
8480}
8481
a4eaf7f1 8482static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 8483{
76e1d904 8484 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
8485}
8486
a4eaf7f1 8487static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 8488{
a4eaf7f1 8489 event->hw.state = 0;
d6d020e9 8490}
aa9c4c0f 8491
a4eaf7f1 8492static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 8493{
a4eaf7f1 8494 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
8495}
8496
49f135ed
FW
8497/* Deref the hlist from the update side */
8498static inline struct swevent_hlist *
b28ab83c 8499swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 8500{
b28ab83c
PZ
8501 return rcu_dereference_protected(swhash->swevent_hlist,
8502 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
8503}
8504
b28ab83c 8505static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 8506{
b28ab83c 8507 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 8508
49f135ed 8509 if (!hlist)
76e1d904
FW
8510 return;
8511
70691d4a 8512 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 8513 kfree_rcu(hlist, rcu_head);
76e1d904
FW
8514}
8515
3b364d7b 8516static void swevent_hlist_put_cpu(int cpu)
76e1d904 8517{
b28ab83c 8518 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 8519
b28ab83c 8520 mutex_lock(&swhash->hlist_mutex);
76e1d904 8521
b28ab83c
PZ
8522 if (!--swhash->hlist_refcount)
8523 swevent_hlist_release(swhash);
76e1d904 8524
b28ab83c 8525 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8526}
8527
3b364d7b 8528static void swevent_hlist_put(void)
76e1d904
FW
8529{
8530 int cpu;
8531
76e1d904 8532 for_each_possible_cpu(cpu)
3b364d7b 8533 swevent_hlist_put_cpu(cpu);
76e1d904
FW
8534}
8535
3b364d7b 8536static int swevent_hlist_get_cpu(int cpu)
76e1d904 8537{
b28ab83c 8538 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
8539 int err = 0;
8540
b28ab83c 8541 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
8542 if (!swevent_hlist_deref(swhash) &&
8543 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
8544 struct swevent_hlist *hlist;
8545
8546 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8547 if (!hlist) {
8548 err = -ENOMEM;
8549 goto exit;
8550 }
b28ab83c 8551 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8552 }
b28ab83c 8553 swhash->hlist_refcount++;
9ed6060d 8554exit:
b28ab83c 8555 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8556
8557 return err;
8558}
8559
3b364d7b 8560static int swevent_hlist_get(void)
76e1d904 8561{
3b364d7b 8562 int err, cpu, failed_cpu;
76e1d904 8563
a63fbed7 8564 mutex_lock(&pmus_lock);
76e1d904 8565 for_each_possible_cpu(cpu) {
3b364d7b 8566 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
8567 if (err) {
8568 failed_cpu = cpu;
8569 goto fail;
8570 }
8571 }
a63fbed7 8572 mutex_unlock(&pmus_lock);
76e1d904 8573 return 0;
9ed6060d 8574fail:
76e1d904
FW
8575 for_each_possible_cpu(cpu) {
8576 if (cpu == failed_cpu)
8577 break;
3b364d7b 8578 swevent_hlist_put_cpu(cpu);
76e1d904 8579 }
a63fbed7 8580 mutex_unlock(&pmus_lock);
76e1d904
FW
8581 return err;
8582}
8583
c5905afb 8584struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 8585
b0a873eb
PZ
8586static void sw_perf_event_destroy(struct perf_event *event)
8587{
8588 u64 event_id = event->attr.config;
95476b64 8589
b0a873eb
PZ
8590 WARN_ON(event->parent);
8591
c5905afb 8592 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 8593 swevent_hlist_put();
b0a873eb
PZ
8594}
8595
8596static int perf_swevent_init(struct perf_event *event)
8597{
8176cced 8598 u64 event_id = event->attr.config;
b0a873eb
PZ
8599
8600 if (event->attr.type != PERF_TYPE_SOFTWARE)
8601 return -ENOENT;
8602
2481c5fa
SE
8603 /*
8604 * no branch sampling for software events
8605 */
8606 if (has_branch_stack(event))
8607 return -EOPNOTSUPP;
8608
b0a873eb
PZ
8609 switch (event_id) {
8610 case PERF_COUNT_SW_CPU_CLOCK:
8611 case PERF_COUNT_SW_TASK_CLOCK:
8612 return -ENOENT;
8613
8614 default:
8615 break;
8616 }
8617
ce677831 8618 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
8619 return -ENOENT;
8620
8621 if (!event->parent) {
8622 int err;
8623
3b364d7b 8624 err = swevent_hlist_get();
b0a873eb
PZ
8625 if (err)
8626 return err;
8627
c5905afb 8628 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
8629 event->destroy = sw_perf_event_destroy;
8630 }
8631
8632 return 0;
8633}
8634
8635static struct pmu perf_swevent = {
89a1e187 8636 .task_ctx_nr = perf_sw_context,
95476b64 8637
34f43927
PZ
8638 .capabilities = PERF_PMU_CAP_NO_NMI,
8639
b0a873eb 8640 .event_init = perf_swevent_init,
a4eaf7f1
PZ
8641 .add = perf_swevent_add,
8642 .del = perf_swevent_del,
8643 .start = perf_swevent_start,
8644 .stop = perf_swevent_stop,
1c024eca 8645 .read = perf_swevent_read,
1c024eca
PZ
8646};
8647
b0a873eb
PZ
8648#ifdef CONFIG_EVENT_TRACING
8649
1c024eca
PZ
8650static int perf_tp_filter_match(struct perf_event *event,
8651 struct perf_sample_data *data)
8652{
7e3f977e 8653 void *record = data->raw->frag.data;
1c024eca 8654
b71b437e
PZ
8655 /* only top level events have filters set */
8656 if (event->parent)
8657 event = event->parent;
8658
1c024eca
PZ
8659 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8660 return 1;
8661 return 0;
8662}
8663
8664static int perf_tp_event_match(struct perf_event *event,
8665 struct perf_sample_data *data,
8666 struct pt_regs *regs)
8667{
a0f7d0f7
FW
8668 if (event->hw.state & PERF_HES_STOPPED)
8669 return 0;
580d607c 8670 /*
9fd2e48b 8671 * If exclude_kernel, only trace user-space tracepoints (uprobes)
580d607c 8672 */
9fd2e48b 8673 if (event->attr.exclude_kernel && !user_mode(regs))
1c024eca
PZ
8674 return 0;
8675
8676 if (!perf_tp_filter_match(event, data))
8677 return 0;
8678
8679 return 1;
8680}
8681
85b67bcb
AS
8682void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8683 struct trace_event_call *call, u64 count,
8684 struct pt_regs *regs, struct hlist_head *head,
8685 struct task_struct *task)
8686{
e87c6bc3 8687 if (bpf_prog_array_valid(call)) {
85b67bcb 8688 *(struct pt_regs **)raw_data = regs;
e87c6bc3 8689 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
8690 perf_swevent_put_recursion_context(rctx);
8691 return;
8692 }
8693 }
8694 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 8695 rctx, task);
85b67bcb
AS
8696}
8697EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8698
1e1dcd93 8699void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 8700 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 8701 struct task_struct *task)
95476b64
FW
8702{
8703 struct perf_sample_data data;
8fd0fbbe 8704 struct perf_event *event;
1c024eca 8705
95476b64 8706 struct perf_raw_record raw = {
7e3f977e
DB
8707 .frag = {
8708 .size = entry_size,
8709 .data = record,
8710 },
95476b64
FW
8711 };
8712
1e1dcd93 8713 perf_sample_data_init(&data, 0, 0);
95476b64
FW
8714 data.raw = &raw;
8715
1e1dcd93
AS
8716 perf_trace_buf_update(record, event_type);
8717
8fd0fbbe 8718 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 8719 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 8720 perf_swevent_event(event, count, &data, regs);
4f41c013 8721 }
ecc55f84 8722
e6dab5ff
AV
8723 /*
8724 * If we got specified a target task, also iterate its context and
8725 * deliver this event there too.
8726 */
8727 if (task && task != current) {
8728 struct perf_event_context *ctx;
8729 struct trace_entry *entry = record;
8730
8731 rcu_read_lock();
8732 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8733 if (!ctx)
8734 goto unlock;
8735
8736 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cd6fb677
JO
8737 if (event->cpu != smp_processor_id())
8738 continue;
e6dab5ff
AV
8739 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8740 continue;
8741 if (event->attr.config != entry->type)
8742 continue;
8743 if (perf_tp_event_match(event, &data, regs))
8744 perf_swevent_event(event, count, &data, regs);
8745 }
8746unlock:
8747 rcu_read_unlock();
8748 }
8749
ecc55f84 8750 perf_swevent_put_recursion_context(rctx);
95476b64
FW
8751}
8752EXPORT_SYMBOL_GPL(perf_tp_event);
8753
cdd6c482 8754static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 8755{
1c024eca 8756 perf_trace_destroy(event);
e077df4f
PZ
8757}
8758
b0a873eb 8759static int perf_tp_event_init(struct perf_event *event)
e077df4f 8760{
76e1d904
FW
8761 int err;
8762
b0a873eb
PZ
8763 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8764 return -ENOENT;
8765
2481c5fa
SE
8766 /*
8767 * no branch sampling for tracepoint events
8768 */
8769 if (has_branch_stack(event))
8770 return -EOPNOTSUPP;
8771
1c024eca
PZ
8772 err = perf_trace_init(event);
8773 if (err)
b0a873eb 8774 return err;
e077df4f 8775
cdd6c482 8776 event->destroy = tp_perf_event_destroy;
e077df4f 8777
b0a873eb
PZ
8778 return 0;
8779}
8780
8781static struct pmu perf_tracepoint = {
89a1e187
PZ
8782 .task_ctx_nr = perf_sw_context,
8783
b0a873eb 8784 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
8785 .add = perf_trace_add,
8786 .del = perf_trace_del,
8787 .start = perf_swevent_start,
8788 .stop = perf_swevent_stop,
b0a873eb 8789 .read = perf_swevent_read,
b0a873eb
PZ
8790};
8791
33ea4b24 8792#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
8793/*
8794 * Flags in config, used by dynamic PMU kprobe and uprobe
8795 * The flags should match following PMU_FORMAT_ATTR().
8796 *
8797 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8798 * if not set, create kprobe/uprobe
a6ca88b2
SL
8799 *
8800 * The following values specify a reference counter (or semaphore in the
8801 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8802 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8803 *
8804 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
8805 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
e12f03d7
SL
8806 */
8807enum perf_probe_config {
8808 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
a6ca88b2
SL
8809 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8810 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
e12f03d7
SL
8811};
8812
8813PMU_FORMAT_ATTR(retprobe, "config:0");
a6ca88b2 8814#endif
e12f03d7 8815
a6ca88b2
SL
8816#ifdef CONFIG_KPROBE_EVENTS
8817static struct attribute *kprobe_attrs[] = {
e12f03d7
SL
8818 &format_attr_retprobe.attr,
8819 NULL,
8820};
8821
a6ca88b2 8822static struct attribute_group kprobe_format_group = {
e12f03d7 8823 .name = "format",
a6ca88b2 8824 .attrs = kprobe_attrs,
e12f03d7
SL
8825};
8826
a6ca88b2
SL
8827static const struct attribute_group *kprobe_attr_groups[] = {
8828 &kprobe_format_group,
e12f03d7
SL
8829 NULL,
8830};
8831
8832static int perf_kprobe_event_init(struct perf_event *event);
8833static struct pmu perf_kprobe = {
8834 .task_ctx_nr = perf_sw_context,
8835 .event_init = perf_kprobe_event_init,
8836 .add = perf_trace_add,
8837 .del = perf_trace_del,
8838 .start = perf_swevent_start,
8839 .stop = perf_swevent_stop,
8840 .read = perf_swevent_read,
a6ca88b2 8841 .attr_groups = kprobe_attr_groups,
e12f03d7
SL
8842};
8843
8844static int perf_kprobe_event_init(struct perf_event *event)
8845{
8846 int err;
8847 bool is_retprobe;
8848
8849 if (event->attr.type != perf_kprobe.type)
8850 return -ENOENT;
32e6e967
SL
8851
8852 if (!capable(CAP_SYS_ADMIN))
8853 return -EACCES;
8854
e12f03d7
SL
8855 /*
8856 * no branch sampling for probe events
8857 */
8858 if (has_branch_stack(event))
8859 return -EOPNOTSUPP;
8860
8861 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8862 err = perf_kprobe_init(event, is_retprobe);
8863 if (err)
8864 return err;
8865
8866 event->destroy = perf_kprobe_destroy;
8867
8868 return 0;
8869}
8870#endif /* CONFIG_KPROBE_EVENTS */
8871
33ea4b24 8872#ifdef CONFIG_UPROBE_EVENTS
a6ca88b2
SL
8873PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8874
8875static struct attribute *uprobe_attrs[] = {
8876 &format_attr_retprobe.attr,
8877 &format_attr_ref_ctr_offset.attr,
8878 NULL,
8879};
8880
8881static struct attribute_group uprobe_format_group = {
8882 .name = "format",
8883 .attrs = uprobe_attrs,
8884};
8885
8886static const struct attribute_group *uprobe_attr_groups[] = {
8887 &uprobe_format_group,
8888 NULL,
8889};
8890
33ea4b24
SL
8891static int perf_uprobe_event_init(struct perf_event *event);
8892static struct pmu perf_uprobe = {
8893 .task_ctx_nr = perf_sw_context,
8894 .event_init = perf_uprobe_event_init,
8895 .add = perf_trace_add,
8896 .del = perf_trace_del,
8897 .start = perf_swevent_start,
8898 .stop = perf_swevent_stop,
8899 .read = perf_swevent_read,
a6ca88b2 8900 .attr_groups = uprobe_attr_groups,
33ea4b24
SL
8901};
8902
8903static int perf_uprobe_event_init(struct perf_event *event)
8904{
8905 int err;
a6ca88b2 8906 unsigned long ref_ctr_offset;
33ea4b24
SL
8907 bool is_retprobe;
8908
8909 if (event->attr.type != perf_uprobe.type)
8910 return -ENOENT;
32e6e967
SL
8911
8912 if (!capable(CAP_SYS_ADMIN))
8913 return -EACCES;
8914
33ea4b24
SL
8915 /*
8916 * no branch sampling for probe events
8917 */
8918 if (has_branch_stack(event))
8919 return -EOPNOTSUPP;
8920
8921 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
a6ca88b2
SL
8922 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8923 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
33ea4b24
SL
8924 if (err)
8925 return err;
8926
8927 event->destroy = perf_uprobe_destroy;
8928
8929 return 0;
8930}
8931#endif /* CONFIG_UPROBE_EVENTS */
8932
b0a873eb
PZ
8933static inline void perf_tp_register(void)
8934{
2e80a82a 8935 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
8936#ifdef CONFIG_KPROBE_EVENTS
8937 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8938#endif
33ea4b24
SL
8939#ifdef CONFIG_UPROBE_EVENTS
8940 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8941#endif
e077df4f 8942}
6fb2915d 8943
6fb2915d
LZ
8944static void perf_event_free_filter(struct perf_event *event)
8945{
8946 ftrace_profile_free_filter(event);
8947}
8948
aa6a5f3c
AS
8949#ifdef CONFIG_BPF_SYSCALL
8950static void bpf_overflow_handler(struct perf_event *event,
8951 struct perf_sample_data *data,
8952 struct pt_regs *regs)
8953{
8954 struct bpf_perf_event_data_kern ctx = {
8955 .data = data,
7d9285e8 8956 .event = event,
aa6a5f3c
AS
8957 };
8958 int ret = 0;
8959
c895f6f7 8960 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
8961 preempt_disable();
8962 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8963 goto out;
8964 rcu_read_lock();
88575199 8965 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8966 rcu_read_unlock();
8967out:
8968 __this_cpu_dec(bpf_prog_active);
8969 preempt_enable();
8970 if (!ret)
8971 return;
8972
8973 event->orig_overflow_handler(event, data, regs);
8974}
8975
8976static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8977{
8978 struct bpf_prog *prog;
8979
8980 if (event->overflow_handler_context)
8981 /* hw breakpoint or kernel counter */
8982 return -EINVAL;
8983
8984 if (event->prog)
8985 return -EEXIST;
8986
8987 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8988 if (IS_ERR(prog))
8989 return PTR_ERR(prog);
8990
8991 event->prog = prog;
8992 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8993 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8994 return 0;
8995}
8996
8997static void perf_event_free_bpf_handler(struct perf_event *event)
8998{
8999 struct bpf_prog *prog = event->prog;
9000
9001 if (!prog)
9002 return;
9003
9004 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9005 event->prog = NULL;
9006 bpf_prog_put(prog);
9007}
9008#else
9009static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9010{
9011 return -EOPNOTSUPP;
9012}
9013static void perf_event_free_bpf_handler(struct perf_event *event)
9014{
9015}
9016#endif
9017
e12f03d7
SL
9018/*
9019 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9020 * with perf_event_open()
9021 */
9022static inline bool perf_event_is_tracing(struct perf_event *event)
9023{
9024 if (event->pmu == &perf_tracepoint)
9025 return true;
9026#ifdef CONFIG_KPROBE_EVENTS
9027 if (event->pmu == &perf_kprobe)
9028 return true;
33ea4b24
SL
9029#endif
9030#ifdef CONFIG_UPROBE_EVENTS
9031 if (event->pmu == &perf_uprobe)
9032 return true;
e12f03d7
SL
9033#endif
9034 return false;
9035}
9036
2541517c
AS
9037static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9038{
cf5f5cea 9039 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 9040 struct bpf_prog *prog;
e87c6bc3 9041 int ret;
2541517c 9042
e12f03d7 9043 if (!perf_event_is_tracing(event))
f91840a3 9044 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 9045
98b5c2c6
AS
9046 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9047 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
9048 is_syscall_tp = is_syscall_trace_event(event->tp_event);
9049 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 9050 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
9051 return -EINVAL;
9052
9053 prog = bpf_prog_get(prog_fd);
9054 if (IS_ERR(prog))
9055 return PTR_ERR(prog);
9056
98b5c2c6 9057 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
9058 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9059 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
9060 /* valid fd, but invalid bpf program type */
9061 bpf_prog_put(prog);
9062 return -EINVAL;
9063 }
9064
9802d865
JB
9065 /* Kprobe override only works for kprobes, not uprobes. */
9066 if (prog->kprobe_override &&
9067 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9068 bpf_prog_put(prog);
9069 return -EINVAL;
9070 }
9071
cf5f5cea 9072 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
9073 int off = trace_event_get_offsets(event->tp_event);
9074
9075 if (prog->aux->max_ctx_offset > off) {
9076 bpf_prog_put(prog);
9077 return -EACCES;
9078 }
9079 }
2541517c 9080
e87c6bc3
YS
9081 ret = perf_event_attach_bpf_prog(event, prog);
9082 if (ret)
9083 bpf_prog_put(prog);
9084 return ret;
2541517c
AS
9085}
9086
9087static void perf_event_free_bpf_prog(struct perf_event *event)
9088{
e12f03d7 9089 if (!perf_event_is_tracing(event)) {
0b4c6841 9090 perf_event_free_bpf_handler(event);
2541517c 9091 return;
2541517c 9092 }
e87c6bc3 9093 perf_event_detach_bpf_prog(event);
2541517c
AS
9094}
9095
e077df4f 9096#else
6fb2915d 9097
b0a873eb 9098static inline void perf_tp_register(void)
e077df4f 9099{
e077df4f 9100}
6fb2915d 9101
6fb2915d
LZ
9102static void perf_event_free_filter(struct perf_event *event)
9103{
9104}
9105
2541517c
AS
9106static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9107{
9108 return -ENOENT;
9109}
9110
9111static void perf_event_free_bpf_prog(struct perf_event *event)
9112{
9113}
07b139c8 9114#endif /* CONFIG_EVENT_TRACING */
e077df4f 9115
24f1e32c 9116#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 9117void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 9118{
f5ffe02e
FW
9119 struct perf_sample_data sample;
9120 struct pt_regs *regs = data;
9121
fd0d000b 9122 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 9123
a4eaf7f1 9124 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 9125 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
9126}
9127#endif
9128
375637bc
AS
9129/*
9130 * Allocate a new address filter
9131 */
9132static struct perf_addr_filter *
9133perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9134{
9135 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9136 struct perf_addr_filter *filter;
9137
9138 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9139 if (!filter)
9140 return NULL;
9141
9142 INIT_LIST_HEAD(&filter->entry);
9143 list_add_tail(&filter->entry, filters);
9144
9145 return filter;
9146}
9147
9148static void free_filters_list(struct list_head *filters)
9149{
9150 struct perf_addr_filter *filter, *iter;
9151
9152 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 9153 path_put(&filter->path);
375637bc
AS
9154 list_del(&filter->entry);
9155 kfree(filter);
9156 }
9157}
9158
9159/*
9160 * Free existing address filters and optionally install new ones
9161 */
9162static void perf_addr_filters_splice(struct perf_event *event,
9163 struct list_head *head)
9164{
9165 unsigned long flags;
9166 LIST_HEAD(list);
9167
9168 if (!has_addr_filter(event))
9169 return;
9170
9171 /* don't bother with children, they don't have their own filters */
9172 if (event->parent)
9173 return;
9174
9175 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9176
9177 list_splice_init(&event->addr_filters.list, &list);
9178 if (head)
9179 list_splice(head, &event->addr_filters.list);
9180
9181 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9182
9183 free_filters_list(&list);
9184}
9185
9186/*
9187 * Scan through mm's vmas and see if one of them matches the
9188 * @filter; if so, adjust filter's address range.
9189 * Called with mm::mmap_sem down for reading.
9190 */
c60f83b8
AS
9191static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9192 struct mm_struct *mm,
9193 struct perf_addr_filter_range *fr)
375637bc
AS
9194{
9195 struct vm_area_struct *vma;
9196
9197 for (vma = mm->mmap; vma; vma = vma->vm_next) {
c60f83b8 9198 if (!vma->vm_file)
375637bc
AS
9199 continue;
9200
c60f83b8
AS
9201 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9202 return;
375637bc 9203 }
375637bc
AS
9204}
9205
9206/*
9207 * Update event's address range filters based on the
9208 * task's existing mappings, if any.
9209 */
9210static void perf_event_addr_filters_apply(struct perf_event *event)
9211{
9212 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9213 struct task_struct *task = READ_ONCE(event->ctx->task);
9214 struct perf_addr_filter *filter;
9215 struct mm_struct *mm = NULL;
9216 unsigned int count = 0;
9217 unsigned long flags;
9218
9219 /*
9220 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9221 * will stop on the parent's child_mutex that our caller is also holding
9222 */
9223 if (task == TASK_TOMBSTONE)
9224 return;
9225
52a44f83
AS
9226 if (ifh->nr_file_filters) {
9227 mm = get_task_mm(event->ctx->task);
9228 if (!mm)
9229 goto restart;
375637bc 9230
52a44f83
AS
9231 down_read(&mm->mmap_sem);
9232 }
375637bc
AS
9233
9234 raw_spin_lock_irqsave(&ifh->lock, flags);
9235 list_for_each_entry(filter, &ifh->list, entry) {
52a44f83
AS
9236 if (filter->path.dentry) {
9237 /*
9238 * Adjust base offset if the filter is associated to a
9239 * binary that needs to be mapped:
9240 */
9241 event->addr_filter_ranges[count].start = 0;
9242 event->addr_filter_ranges[count].size = 0;
375637bc 9243
c60f83b8 9244 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
52a44f83
AS
9245 } else {
9246 event->addr_filter_ranges[count].start = filter->offset;
9247 event->addr_filter_ranges[count].size = filter->size;
9248 }
375637bc
AS
9249
9250 count++;
9251 }
9252
9253 event->addr_filters_gen++;
9254 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9255
52a44f83
AS
9256 if (ifh->nr_file_filters) {
9257 up_read(&mm->mmap_sem);
375637bc 9258
52a44f83
AS
9259 mmput(mm);
9260 }
375637bc
AS
9261
9262restart:
767ae086 9263 perf_event_stop(event, 1);
375637bc
AS
9264}
9265
9266/*
9267 * Address range filtering: limiting the data to certain
9268 * instruction address ranges. Filters are ioctl()ed to us from
9269 * userspace as ascii strings.
9270 *
9271 * Filter string format:
9272 *
9273 * ACTION RANGE_SPEC
9274 * where ACTION is one of the
9275 * * "filter": limit the trace to this region
9276 * * "start": start tracing from this address
9277 * * "stop": stop tracing at this address/region;
9278 * RANGE_SPEC is
9279 * * for kernel addresses: <start address>[/<size>]
9280 * * for object files: <start address>[/<size>]@</path/to/object/file>
9281 *
6ed70cf3
AS
9282 * if <size> is not specified or is zero, the range is treated as a single
9283 * address; not valid for ACTION=="filter".
375637bc
AS
9284 */
9285enum {
e96271f3 9286 IF_ACT_NONE = -1,
375637bc
AS
9287 IF_ACT_FILTER,
9288 IF_ACT_START,
9289 IF_ACT_STOP,
9290 IF_SRC_FILE,
9291 IF_SRC_KERNEL,
9292 IF_SRC_FILEADDR,
9293 IF_SRC_KERNELADDR,
9294};
9295
9296enum {
9297 IF_STATE_ACTION = 0,
9298 IF_STATE_SOURCE,
9299 IF_STATE_END,
9300};
9301
9302static const match_table_t if_tokens = {
9303 { IF_ACT_FILTER, "filter" },
9304 { IF_ACT_START, "start" },
9305 { IF_ACT_STOP, "stop" },
9306 { IF_SRC_FILE, "%u/%u@%s" },
9307 { IF_SRC_KERNEL, "%u/%u" },
9308 { IF_SRC_FILEADDR, "%u@%s" },
9309 { IF_SRC_KERNELADDR, "%u" },
e96271f3 9310 { IF_ACT_NONE, NULL },
375637bc
AS
9311};
9312
9313/*
9314 * Address filter string parser
9315 */
9316static int
9317perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9318 struct list_head *filters)
9319{
9320 struct perf_addr_filter *filter = NULL;
9321 char *start, *orig, *filename = NULL;
375637bc
AS
9322 substring_t args[MAX_OPT_ARGS];
9323 int state = IF_STATE_ACTION, token;
9324 unsigned int kernel = 0;
9325 int ret = -EINVAL;
9326
9327 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9328 if (!fstr)
9329 return -ENOMEM;
9330
9331 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
9332 static const enum perf_addr_filter_action_t actions[] = {
9333 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9334 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9335 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9336 };
375637bc
AS
9337 ret = -EINVAL;
9338
9339 if (!*start)
9340 continue;
9341
9342 /* filter definition begins */
9343 if (state == IF_STATE_ACTION) {
9344 filter = perf_addr_filter_new(event, filters);
9345 if (!filter)
9346 goto fail;
9347 }
9348
9349 token = match_token(start, if_tokens, args);
9350 switch (token) {
9351 case IF_ACT_FILTER:
9352 case IF_ACT_START:
375637bc
AS
9353 case IF_ACT_STOP:
9354 if (state != IF_STATE_ACTION)
9355 goto fail;
9356
6ed70cf3 9357 filter->action = actions[token];
375637bc
AS
9358 state = IF_STATE_SOURCE;
9359 break;
9360
9361 case IF_SRC_KERNELADDR:
9362 case IF_SRC_KERNEL:
9363 kernel = 1;
10c3405f 9364 /* fall through */
375637bc
AS
9365
9366 case IF_SRC_FILEADDR:
9367 case IF_SRC_FILE:
9368 if (state != IF_STATE_SOURCE)
9369 goto fail;
9370
375637bc
AS
9371 *args[0].to = 0;
9372 ret = kstrtoul(args[0].from, 0, &filter->offset);
9373 if (ret)
9374 goto fail;
9375
6ed70cf3 9376 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
9377 *args[1].to = 0;
9378 ret = kstrtoul(args[1].from, 0, &filter->size);
9379 if (ret)
9380 goto fail;
9381 }
9382
4059ffd0 9383 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 9384 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0
MP
9385
9386 filename = match_strdup(&args[fpos]);
375637bc
AS
9387 if (!filename) {
9388 ret = -ENOMEM;
9389 goto fail;
9390 }
9391 }
9392
9393 state = IF_STATE_END;
9394 break;
9395
9396 default:
9397 goto fail;
9398 }
9399
9400 /*
9401 * Filter definition is fully parsed, validate and install it.
9402 * Make sure that it doesn't contradict itself or the event's
9403 * attribute.
9404 */
9405 if (state == IF_STATE_END) {
9ccbfbb1 9406 ret = -EINVAL;
375637bc
AS
9407 if (kernel && event->attr.exclude_kernel)
9408 goto fail;
9409
6ed70cf3
AS
9410 /*
9411 * ACTION "filter" must have a non-zero length region
9412 * specified.
9413 */
9414 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9415 !filter->size)
9416 goto fail;
9417
375637bc
AS
9418 if (!kernel) {
9419 if (!filename)
9420 goto fail;
9421
6ce77bfd
AS
9422 /*
9423 * For now, we only support file-based filters
9424 * in per-task events; doing so for CPU-wide
9425 * events requires additional context switching
9426 * trickery, since same object code will be
9427 * mapped at different virtual addresses in
9428 * different processes.
9429 */
9430 ret = -EOPNOTSUPP;
9431 if (!event->ctx->task)
9432 goto fail_free_name;
9433
375637bc 9434 /* look up the path and grab its inode */
9511bce9
SL
9435 ret = kern_path(filename, LOOKUP_FOLLOW,
9436 &filter->path);
375637bc
AS
9437 if (ret)
9438 goto fail_free_name;
9439
375637bc
AS
9440 kfree(filename);
9441 filename = NULL;
9442
9443 ret = -EINVAL;
9511bce9
SL
9444 if (!filter->path.dentry ||
9445 !S_ISREG(d_inode(filter->path.dentry)
9446 ->i_mode))
375637bc 9447 goto fail;
6ce77bfd
AS
9448
9449 event->addr_filters.nr_file_filters++;
375637bc
AS
9450 }
9451
9452 /* ready to consume more filters */
9453 state = IF_STATE_ACTION;
9454 filter = NULL;
9455 }
9456 }
9457
9458 if (state != IF_STATE_ACTION)
9459 goto fail;
9460
9461 kfree(orig);
9462
9463 return 0;
9464
9465fail_free_name:
9466 kfree(filename);
9467fail:
9468 free_filters_list(filters);
9469 kfree(orig);
9470
9471 return ret;
9472}
9473
9474static int
9475perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9476{
9477 LIST_HEAD(filters);
9478 int ret;
9479
9480 /*
9481 * Since this is called in perf_ioctl() path, we're already holding
9482 * ctx::mutex.
9483 */
9484 lockdep_assert_held(&event->ctx->mutex);
9485
9486 if (WARN_ON_ONCE(event->parent))
9487 return -EINVAL;
9488
375637bc
AS
9489 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9490 if (ret)
6ce77bfd 9491 goto fail_clear_files;
375637bc
AS
9492
9493 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
9494 if (ret)
9495 goto fail_free_filters;
375637bc
AS
9496
9497 /* remove existing filters, if any */
9498 perf_addr_filters_splice(event, &filters);
9499
9500 /* install new filters */
9501 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9502
6ce77bfd
AS
9503 return ret;
9504
9505fail_free_filters:
9506 free_filters_list(&filters);
9507
9508fail_clear_files:
9509 event->addr_filters.nr_file_filters = 0;
9510
375637bc
AS
9511 return ret;
9512}
9513
c796bbbe
AS
9514static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9515{
c796bbbe 9516 int ret = -EINVAL;
e12f03d7 9517 char *filter_str;
c796bbbe
AS
9518
9519 filter_str = strndup_user(arg, PAGE_SIZE);
9520 if (IS_ERR(filter_str))
9521 return PTR_ERR(filter_str);
9522
e12f03d7
SL
9523#ifdef CONFIG_EVENT_TRACING
9524 if (perf_event_is_tracing(event)) {
9525 struct perf_event_context *ctx = event->ctx;
9526
9527 /*
9528 * Beware, here be dragons!!
9529 *
9530 * the tracepoint muck will deadlock against ctx->mutex, but
9531 * the tracepoint stuff does not actually need it. So
9532 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9533 * already have a reference on ctx.
9534 *
9535 * This can result in event getting moved to a different ctx,
9536 * but that does not affect the tracepoint state.
9537 */
9538 mutex_unlock(&ctx->mutex);
9539 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9540 mutex_lock(&ctx->mutex);
9541 } else
9542#endif
9543 if (has_addr_filter(event))
375637bc 9544 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
9545
9546 kfree(filter_str);
9547 return ret;
9548}
9549
b0a873eb
PZ
9550/*
9551 * hrtimer based swevent callback
9552 */
f29ac756 9553
b0a873eb 9554static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 9555{
b0a873eb
PZ
9556 enum hrtimer_restart ret = HRTIMER_RESTART;
9557 struct perf_sample_data data;
9558 struct pt_regs *regs;
9559 struct perf_event *event;
9560 u64 period;
f29ac756 9561
b0a873eb 9562 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
9563
9564 if (event->state != PERF_EVENT_STATE_ACTIVE)
9565 return HRTIMER_NORESTART;
9566
b0a873eb 9567 event->pmu->read(event);
f344011c 9568
fd0d000b 9569 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
9570 regs = get_irq_regs();
9571
9572 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 9573 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 9574 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
9575 ret = HRTIMER_NORESTART;
9576 }
24f1e32c 9577
b0a873eb
PZ
9578 period = max_t(u64, 10000, event->hw.sample_period);
9579 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 9580
b0a873eb 9581 return ret;
f29ac756
PZ
9582}
9583
b0a873eb 9584static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 9585{
b0a873eb 9586 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
9587 s64 period;
9588
9589 if (!is_sampling_event(event))
9590 return;
f5ffe02e 9591
5d508e82
FBH
9592 period = local64_read(&hwc->period_left);
9593 if (period) {
9594 if (period < 0)
9595 period = 10000;
fa407f35 9596
5d508e82
FBH
9597 local64_set(&hwc->period_left, 0);
9598 } else {
9599 period = max_t(u64, 10000, hwc->sample_period);
9600 }
3497d206 9601 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
30f9028b 9602 HRTIMER_MODE_REL_PINNED_HARD);
24f1e32c 9603}
b0a873eb
PZ
9604
9605static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 9606{
b0a873eb
PZ
9607 struct hw_perf_event *hwc = &event->hw;
9608
6c7e550f 9609 if (is_sampling_event(event)) {
b0a873eb 9610 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 9611 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
9612
9613 hrtimer_cancel(&hwc->hrtimer);
9614 }
24f1e32c
FW
9615}
9616
ba3dd36c
PZ
9617static void perf_swevent_init_hrtimer(struct perf_event *event)
9618{
9619 struct hw_perf_event *hwc = &event->hw;
9620
9621 if (!is_sampling_event(event))
9622 return;
9623
30f9028b 9624 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
ba3dd36c
PZ
9625 hwc->hrtimer.function = perf_swevent_hrtimer;
9626
9627 /*
9628 * Since hrtimers have a fixed rate, we can do a static freq->period
9629 * mapping and avoid the whole period adjust feedback stuff.
9630 */
9631 if (event->attr.freq) {
9632 long freq = event->attr.sample_freq;
9633
9634 event->attr.sample_period = NSEC_PER_SEC / freq;
9635 hwc->sample_period = event->attr.sample_period;
9636 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 9637 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
9638 event->attr.freq = 0;
9639 }
9640}
9641
b0a873eb
PZ
9642/*
9643 * Software event: cpu wall time clock
9644 */
9645
9646static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 9647{
b0a873eb
PZ
9648 s64 prev;
9649 u64 now;
9650
a4eaf7f1 9651 now = local_clock();
b0a873eb
PZ
9652 prev = local64_xchg(&event->hw.prev_count, now);
9653 local64_add(now - prev, &event->count);
24f1e32c 9654}
24f1e32c 9655
a4eaf7f1 9656static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9657{
a4eaf7f1 9658 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 9659 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9660}
9661
a4eaf7f1 9662static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 9663{
b0a873eb
PZ
9664 perf_swevent_cancel_hrtimer(event);
9665 cpu_clock_event_update(event);
9666}
f29ac756 9667
a4eaf7f1
PZ
9668static int cpu_clock_event_add(struct perf_event *event, int flags)
9669{
9670 if (flags & PERF_EF_START)
9671 cpu_clock_event_start(event, flags);
6a694a60 9672 perf_event_update_userpage(event);
a4eaf7f1
PZ
9673
9674 return 0;
9675}
9676
9677static void cpu_clock_event_del(struct perf_event *event, int flags)
9678{
9679 cpu_clock_event_stop(event, flags);
9680}
9681
b0a873eb
PZ
9682static void cpu_clock_event_read(struct perf_event *event)
9683{
9684 cpu_clock_event_update(event);
9685}
f344011c 9686
b0a873eb
PZ
9687static int cpu_clock_event_init(struct perf_event *event)
9688{
9689 if (event->attr.type != PERF_TYPE_SOFTWARE)
9690 return -ENOENT;
9691
9692 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9693 return -ENOENT;
9694
2481c5fa
SE
9695 /*
9696 * no branch sampling for software events
9697 */
9698 if (has_branch_stack(event))
9699 return -EOPNOTSUPP;
9700
ba3dd36c
PZ
9701 perf_swevent_init_hrtimer(event);
9702
b0a873eb 9703 return 0;
f29ac756
PZ
9704}
9705
b0a873eb 9706static struct pmu perf_cpu_clock = {
89a1e187
PZ
9707 .task_ctx_nr = perf_sw_context,
9708
34f43927
PZ
9709 .capabilities = PERF_PMU_CAP_NO_NMI,
9710
b0a873eb 9711 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
9712 .add = cpu_clock_event_add,
9713 .del = cpu_clock_event_del,
9714 .start = cpu_clock_event_start,
9715 .stop = cpu_clock_event_stop,
b0a873eb
PZ
9716 .read = cpu_clock_event_read,
9717};
9718
9719/*
9720 * Software event: task time clock
9721 */
9722
9723static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 9724{
b0a873eb
PZ
9725 u64 prev;
9726 s64 delta;
5c92d124 9727
b0a873eb
PZ
9728 prev = local64_xchg(&event->hw.prev_count, now);
9729 delta = now - prev;
9730 local64_add(delta, &event->count);
9731}
5c92d124 9732
a4eaf7f1 9733static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9734{
a4eaf7f1 9735 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 9736 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9737}
9738
a4eaf7f1 9739static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
9740{
9741 perf_swevent_cancel_hrtimer(event);
9742 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
9743}
9744
9745static int task_clock_event_add(struct perf_event *event, int flags)
9746{
9747 if (flags & PERF_EF_START)
9748 task_clock_event_start(event, flags);
6a694a60 9749 perf_event_update_userpage(event);
b0a873eb 9750
a4eaf7f1
PZ
9751 return 0;
9752}
9753
9754static void task_clock_event_del(struct perf_event *event, int flags)
9755{
9756 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
9757}
9758
9759static void task_clock_event_read(struct perf_event *event)
9760{
768a06e2
PZ
9761 u64 now = perf_clock();
9762 u64 delta = now - event->ctx->timestamp;
9763 u64 time = event->ctx->time + delta;
b0a873eb
PZ
9764
9765 task_clock_event_update(event, time);
9766}
9767
9768static int task_clock_event_init(struct perf_event *event)
6fb2915d 9769{
b0a873eb
PZ
9770 if (event->attr.type != PERF_TYPE_SOFTWARE)
9771 return -ENOENT;
9772
9773 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9774 return -ENOENT;
9775
2481c5fa
SE
9776 /*
9777 * no branch sampling for software events
9778 */
9779 if (has_branch_stack(event))
9780 return -EOPNOTSUPP;
9781
ba3dd36c
PZ
9782 perf_swevent_init_hrtimer(event);
9783
b0a873eb 9784 return 0;
6fb2915d
LZ
9785}
9786
b0a873eb 9787static struct pmu perf_task_clock = {
89a1e187
PZ
9788 .task_ctx_nr = perf_sw_context,
9789
34f43927
PZ
9790 .capabilities = PERF_PMU_CAP_NO_NMI,
9791
b0a873eb 9792 .event_init = task_clock_event_init,
a4eaf7f1
PZ
9793 .add = task_clock_event_add,
9794 .del = task_clock_event_del,
9795 .start = task_clock_event_start,
9796 .stop = task_clock_event_stop,
b0a873eb
PZ
9797 .read = task_clock_event_read,
9798};
6fb2915d 9799
ad5133b7 9800static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 9801{
e077df4f 9802}
6fb2915d 9803
fbbe0701
SB
9804static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9805{
9806}
9807
ad5133b7 9808static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 9809{
ad5133b7 9810 return 0;
6fb2915d
LZ
9811}
9812
81ec3f3c
JO
9813static int perf_event_nop_int(struct perf_event *event, u64 value)
9814{
9815 return 0;
9816}
9817
18ab2cd3 9818static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
9819
9820static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 9821{
fbbe0701
SB
9822 __this_cpu_write(nop_txn_flags, flags);
9823
9824 if (flags & ~PERF_PMU_TXN_ADD)
9825 return;
9826
ad5133b7 9827 perf_pmu_disable(pmu);
6fb2915d
LZ
9828}
9829
ad5133b7
PZ
9830static int perf_pmu_commit_txn(struct pmu *pmu)
9831{
fbbe0701
SB
9832 unsigned int flags = __this_cpu_read(nop_txn_flags);
9833
9834 __this_cpu_write(nop_txn_flags, 0);
9835
9836 if (flags & ~PERF_PMU_TXN_ADD)
9837 return 0;
9838
ad5133b7
PZ
9839 perf_pmu_enable(pmu);
9840 return 0;
9841}
e077df4f 9842
ad5133b7 9843static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 9844{
fbbe0701
SB
9845 unsigned int flags = __this_cpu_read(nop_txn_flags);
9846
9847 __this_cpu_write(nop_txn_flags, 0);
9848
9849 if (flags & ~PERF_PMU_TXN_ADD)
9850 return;
9851
ad5133b7 9852 perf_pmu_enable(pmu);
24f1e32c
FW
9853}
9854
35edc2a5
PZ
9855static int perf_event_idx_default(struct perf_event *event)
9856{
c719f560 9857 return 0;
35edc2a5
PZ
9858}
9859
8dc85d54
PZ
9860/*
9861 * Ensures all contexts with the same task_ctx_nr have the same
9862 * pmu_cpu_context too.
9863 */
9e317041 9864static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 9865{
8dc85d54 9866 struct pmu *pmu;
b326e956 9867
8dc85d54
PZ
9868 if (ctxn < 0)
9869 return NULL;
24f1e32c 9870
8dc85d54
PZ
9871 list_for_each_entry(pmu, &pmus, entry) {
9872 if (pmu->task_ctx_nr == ctxn)
9873 return pmu->pmu_cpu_context;
9874 }
24f1e32c 9875
8dc85d54 9876 return NULL;
24f1e32c
FW
9877}
9878
51676957
PZ
9879static void free_pmu_context(struct pmu *pmu)
9880{
df0062b2
WD
9881 /*
9882 * Static contexts such as perf_sw_context have a global lifetime
9883 * and may be shared between different PMUs. Avoid freeing them
9884 * when a single PMU is going away.
9885 */
9886 if (pmu->task_ctx_nr > perf_invalid_context)
9887 return;
9888
51676957 9889 free_percpu(pmu->pmu_cpu_context);
24f1e32c 9890}
6e855cd4
AS
9891
9892/*
9893 * Let userspace know that this PMU supports address range filtering:
9894 */
9895static ssize_t nr_addr_filters_show(struct device *dev,
9896 struct device_attribute *attr,
9897 char *page)
9898{
9899 struct pmu *pmu = dev_get_drvdata(dev);
9900
9901 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9902}
9903DEVICE_ATTR_RO(nr_addr_filters);
9904
2e80a82a 9905static struct idr pmu_idr;
d6d020e9 9906
abe43400
PZ
9907static ssize_t
9908type_show(struct device *dev, struct device_attribute *attr, char *page)
9909{
9910 struct pmu *pmu = dev_get_drvdata(dev);
9911
9912 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9913}
90826ca7 9914static DEVICE_ATTR_RO(type);
abe43400 9915
62b85639
SE
9916static ssize_t
9917perf_event_mux_interval_ms_show(struct device *dev,
9918 struct device_attribute *attr,
9919 char *page)
9920{
9921 struct pmu *pmu = dev_get_drvdata(dev);
9922
9923 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9924}
9925
272325c4
PZ
9926static DEFINE_MUTEX(mux_interval_mutex);
9927
62b85639
SE
9928static ssize_t
9929perf_event_mux_interval_ms_store(struct device *dev,
9930 struct device_attribute *attr,
9931 const char *buf, size_t count)
9932{
9933 struct pmu *pmu = dev_get_drvdata(dev);
9934 int timer, cpu, ret;
9935
9936 ret = kstrtoint(buf, 0, &timer);
9937 if (ret)
9938 return ret;
9939
9940 if (timer < 1)
9941 return -EINVAL;
9942
9943 /* same value, noting to do */
9944 if (timer == pmu->hrtimer_interval_ms)
9945 return count;
9946
272325c4 9947 mutex_lock(&mux_interval_mutex);
62b85639
SE
9948 pmu->hrtimer_interval_ms = timer;
9949
9950 /* update all cpuctx for this PMU */
a63fbed7 9951 cpus_read_lock();
272325c4 9952 for_each_online_cpu(cpu) {
62b85639
SE
9953 struct perf_cpu_context *cpuctx;
9954 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9955 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9956
272325c4
PZ
9957 cpu_function_call(cpu,
9958 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 9959 }
a63fbed7 9960 cpus_read_unlock();
272325c4 9961 mutex_unlock(&mux_interval_mutex);
62b85639
SE
9962
9963 return count;
9964}
90826ca7 9965static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 9966
90826ca7
GKH
9967static struct attribute *pmu_dev_attrs[] = {
9968 &dev_attr_type.attr,
9969 &dev_attr_perf_event_mux_interval_ms.attr,
9970 NULL,
abe43400 9971};
90826ca7 9972ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9973
9974static int pmu_bus_running;
9975static struct bus_type pmu_bus = {
9976 .name = "event_source",
90826ca7 9977 .dev_groups = pmu_dev_groups,
abe43400
PZ
9978};
9979
9980static void pmu_dev_release(struct device *dev)
9981{
9982 kfree(dev);
9983}
9984
9985static int pmu_dev_alloc(struct pmu *pmu)
9986{
9987 int ret = -ENOMEM;
9988
9989 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9990 if (!pmu->dev)
9991 goto out;
9992
0c9d42ed 9993 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9994 device_initialize(pmu->dev);
9995 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9996 if (ret)
9997 goto free_dev;
9998
9999 dev_set_drvdata(pmu->dev, pmu);
10000 pmu->dev->bus = &pmu_bus;
10001 pmu->dev->release = pmu_dev_release;
10002 ret = device_add(pmu->dev);
10003 if (ret)
10004 goto free_dev;
10005
6e855cd4
AS
10006 /* For PMUs with address filters, throw in an extra attribute: */
10007 if (pmu->nr_addr_filters)
10008 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10009
10010 if (ret)
10011 goto del_dev;
10012
f3a3a825
JO
10013 if (pmu->attr_update)
10014 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10015
10016 if (ret)
10017 goto del_dev;
10018
abe43400
PZ
10019out:
10020 return ret;
10021
6e855cd4
AS
10022del_dev:
10023 device_del(pmu->dev);
10024
abe43400
PZ
10025free_dev:
10026 put_device(pmu->dev);
10027 goto out;
10028}
10029
547e9fd7 10030static struct lock_class_key cpuctx_mutex;
facc4307 10031static struct lock_class_key cpuctx_lock;
547e9fd7 10032
03d8e80b 10033int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 10034{
108b02cf 10035 int cpu, ret;
24f1e32c 10036
b0a873eb 10037 mutex_lock(&pmus_lock);
33696fc0
PZ
10038 ret = -ENOMEM;
10039 pmu->pmu_disable_count = alloc_percpu(int);
10040 if (!pmu->pmu_disable_count)
10041 goto unlock;
f29ac756 10042
2e80a82a
PZ
10043 pmu->type = -1;
10044 if (!name)
10045 goto skip_type;
10046 pmu->name = name;
10047
10048 if (type < 0) {
0e9c3be2
TH
10049 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
10050 if (type < 0) {
10051 ret = type;
2e80a82a
PZ
10052 goto free_pdc;
10053 }
10054 }
10055 pmu->type = type;
10056
abe43400
PZ
10057 if (pmu_bus_running) {
10058 ret = pmu_dev_alloc(pmu);
10059 if (ret)
10060 goto free_idr;
10061 }
10062
2e80a82a 10063skip_type:
26657848
PZ
10064 if (pmu->task_ctx_nr == perf_hw_context) {
10065 static int hw_context_taken = 0;
10066
5101ef20
MR
10067 /*
10068 * Other than systems with heterogeneous CPUs, it never makes
10069 * sense for two PMUs to share perf_hw_context. PMUs which are
10070 * uncore must use perf_invalid_context.
10071 */
10072 if (WARN_ON_ONCE(hw_context_taken &&
10073 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
10074 pmu->task_ctx_nr = perf_invalid_context;
10075
10076 hw_context_taken = 1;
10077 }
10078
8dc85d54
PZ
10079 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10080 if (pmu->pmu_cpu_context)
10081 goto got_cpu_context;
f29ac756 10082
c4814202 10083 ret = -ENOMEM;
108b02cf
PZ
10084 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10085 if (!pmu->pmu_cpu_context)
abe43400 10086 goto free_dev;
f344011c 10087
108b02cf
PZ
10088 for_each_possible_cpu(cpu) {
10089 struct perf_cpu_context *cpuctx;
10090
10091 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 10092 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 10093 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 10094 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 10095 cpuctx->ctx.pmu = pmu;
a63fbed7 10096 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 10097
272325c4 10098 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 10099 }
76e1d904 10100
8dc85d54 10101got_cpu_context:
ad5133b7
PZ
10102 if (!pmu->start_txn) {
10103 if (pmu->pmu_enable) {
10104 /*
10105 * If we have pmu_enable/pmu_disable calls, install
10106 * transaction stubs that use that to try and batch
10107 * hardware accesses.
10108 */
10109 pmu->start_txn = perf_pmu_start_txn;
10110 pmu->commit_txn = perf_pmu_commit_txn;
10111 pmu->cancel_txn = perf_pmu_cancel_txn;
10112 } else {
fbbe0701 10113 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
10114 pmu->commit_txn = perf_pmu_nop_int;
10115 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 10116 }
5c92d124 10117 }
15dbf27c 10118
ad5133b7
PZ
10119 if (!pmu->pmu_enable) {
10120 pmu->pmu_enable = perf_pmu_nop_void;
10121 pmu->pmu_disable = perf_pmu_nop_void;
10122 }
10123
81ec3f3c
JO
10124 if (!pmu->check_period)
10125 pmu->check_period = perf_event_nop_int;
10126
35edc2a5
PZ
10127 if (!pmu->event_idx)
10128 pmu->event_idx = perf_event_idx_default;
10129
b0a873eb 10130 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 10131 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
10132 ret = 0;
10133unlock:
b0a873eb
PZ
10134 mutex_unlock(&pmus_lock);
10135
33696fc0 10136 return ret;
108b02cf 10137
abe43400
PZ
10138free_dev:
10139 device_del(pmu->dev);
10140 put_device(pmu->dev);
10141
2e80a82a
PZ
10142free_idr:
10143 if (pmu->type >= PERF_TYPE_MAX)
10144 idr_remove(&pmu_idr, pmu->type);
10145
108b02cf
PZ
10146free_pdc:
10147 free_percpu(pmu->pmu_disable_count);
10148 goto unlock;
f29ac756 10149}
c464c76e 10150EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 10151
b0a873eb 10152void perf_pmu_unregister(struct pmu *pmu)
5c92d124 10153{
b0a873eb
PZ
10154 mutex_lock(&pmus_lock);
10155 list_del_rcu(&pmu->entry);
5c92d124 10156
0475f9ea 10157 /*
cde8e884
PZ
10158 * We dereference the pmu list under both SRCU and regular RCU, so
10159 * synchronize against both of those.
0475f9ea 10160 */
b0a873eb 10161 synchronize_srcu(&pmus_srcu);
cde8e884 10162 synchronize_rcu();
d6d020e9 10163
33696fc0 10164 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
10165 if (pmu->type >= PERF_TYPE_MAX)
10166 idr_remove(&pmu_idr, pmu->type);
a9f97721 10167 if (pmu_bus_running) {
0933840a
JO
10168 if (pmu->nr_addr_filters)
10169 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10170 device_del(pmu->dev);
10171 put_device(pmu->dev);
10172 }
51676957 10173 free_pmu_context(pmu);
a9f97721 10174 mutex_unlock(&pmus_lock);
b0a873eb 10175}
c464c76e 10176EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 10177
e321d02d
KL
10178static inline bool has_extended_regs(struct perf_event *event)
10179{
10180 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10181 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10182}
10183
cc34b98b
MR
10184static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10185{
ccd41c86 10186 struct perf_event_context *ctx = NULL;
cc34b98b
MR
10187 int ret;
10188
10189 if (!try_module_get(pmu->module))
10190 return -ENODEV;
ccd41c86 10191
0c7296ca
PZ
10192 /*
10193 * A number of pmu->event_init() methods iterate the sibling_list to,
10194 * for example, validate if the group fits on the PMU. Therefore,
10195 * if this is a sibling event, acquire the ctx->mutex to protect
10196 * the sibling_list.
10197 */
10198 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
10199 /*
10200 * This ctx->mutex can nest when we're called through
10201 * inheritance. See the perf_event_ctx_lock_nested() comment.
10202 */
10203 ctx = perf_event_ctx_lock_nested(event->group_leader,
10204 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
10205 BUG_ON(!ctx);
10206 }
10207
cc34b98b
MR
10208 event->pmu = pmu;
10209 ret = pmu->event_init(event);
ccd41c86
PZ
10210
10211 if (ctx)
10212 perf_event_ctx_unlock(event->group_leader, ctx);
10213
cc6795ae 10214 if (!ret) {
e321d02d
KL
10215 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10216 has_extended_regs(event))
10217 ret = -EOPNOTSUPP;
10218
cc6795ae 10219 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
e321d02d 10220 event_has_any_exclude_flag(event))
cc6795ae 10221 ret = -EINVAL;
e321d02d
KL
10222
10223 if (ret && event->destroy)
10224 event->destroy(event);
cc6795ae
AM
10225 }
10226
cc34b98b
MR
10227 if (ret)
10228 module_put(pmu->module);
10229
10230 return ret;
10231}
10232
18ab2cd3 10233static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 10234{
85c617ab 10235 struct pmu *pmu;
b0a873eb 10236 int idx;
940c5b29 10237 int ret;
b0a873eb
PZ
10238
10239 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 10240
40999312
KL
10241 /* Try parent's PMU first: */
10242 if (event->parent && event->parent->pmu) {
10243 pmu = event->parent->pmu;
10244 ret = perf_try_init_event(pmu, event);
10245 if (!ret)
10246 goto unlock;
10247 }
10248
2e80a82a
PZ
10249 rcu_read_lock();
10250 pmu = idr_find(&pmu_idr, event->attr.type);
10251 rcu_read_unlock();
940c5b29 10252 if (pmu) {
cc34b98b 10253 ret = perf_try_init_event(pmu, event);
940c5b29
LM
10254 if (ret)
10255 pmu = ERR_PTR(ret);
2e80a82a 10256 goto unlock;
940c5b29 10257 }
2e80a82a 10258
b0a873eb 10259 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 10260 ret = perf_try_init_event(pmu, event);
b0a873eb 10261 if (!ret)
e5f4d339 10262 goto unlock;
76e1d904 10263
b0a873eb
PZ
10264 if (ret != -ENOENT) {
10265 pmu = ERR_PTR(ret);
e5f4d339 10266 goto unlock;
f344011c 10267 }
5c92d124 10268 }
e5f4d339
PZ
10269 pmu = ERR_PTR(-ENOENT);
10270unlock:
b0a873eb 10271 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 10272
4aeb0b42 10273 return pmu;
5c92d124
IM
10274}
10275
f2fb6bef
KL
10276static void attach_sb_event(struct perf_event *event)
10277{
10278 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10279
10280 raw_spin_lock(&pel->lock);
10281 list_add_rcu(&event->sb_list, &pel->list);
10282 raw_spin_unlock(&pel->lock);
10283}
10284
aab5b71e
PZ
10285/*
10286 * We keep a list of all !task (and therefore per-cpu) events
10287 * that need to receive side-band records.
10288 *
10289 * This avoids having to scan all the various PMU per-cpu contexts
10290 * looking for them.
10291 */
f2fb6bef
KL
10292static void account_pmu_sb_event(struct perf_event *event)
10293{
a4f144eb 10294 if (is_sb_event(event))
f2fb6bef
KL
10295 attach_sb_event(event);
10296}
10297
4beb31f3
FW
10298static void account_event_cpu(struct perf_event *event, int cpu)
10299{
10300 if (event->parent)
10301 return;
10302
4beb31f3
FW
10303 if (is_cgroup_event(event))
10304 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10305}
10306
555e0c1e
FW
10307/* Freq events need the tick to stay alive (see perf_event_task_tick). */
10308static void account_freq_event_nohz(void)
10309{
10310#ifdef CONFIG_NO_HZ_FULL
10311 /* Lock so we don't race with concurrent unaccount */
10312 spin_lock(&nr_freq_lock);
10313 if (atomic_inc_return(&nr_freq_events) == 1)
10314 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10315 spin_unlock(&nr_freq_lock);
10316#endif
10317}
10318
10319static void account_freq_event(void)
10320{
10321 if (tick_nohz_full_enabled())
10322 account_freq_event_nohz();
10323 else
10324 atomic_inc(&nr_freq_events);
10325}
10326
10327
766d6c07
FW
10328static void account_event(struct perf_event *event)
10329{
25432ae9
PZ
10330 bool inc = false;
10331
4beb31f3
FW
10332 if (event->parent)
10333 return;
10334
766d6c07 10335 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 10336 inc = true;
766d6c07
FW
10337 if (event->attr.mmap || event->attr.mmap_data)
10338 atomic_inc(&nr_mmap_events);
10339 if (event->attr.comm)
10340 atomic_inc(&nr_comm_events);
e4222673
HB
10341 if (event->attr.namespaces)
10342 atomic_inc(&nr_namespaces_events);
766d6c07
FW
10343 if (event->attr.task)
10344 atomic_inc(&nr_task_events);
555e0c1e
FW
10345 if (event->attr.freq)
10346 account_freq_event();
45ac1403
AH
10347 if (event->attr.context_switch) {
10348 atomic_inc(&nr_switch_events);
25432ae9 10349 inc = true;
45ac1403 10350 }
4beb31f3 10351 if (has_branch_stack(event))
25432ae9 10352 inc = true;
4beb31f3 10353 if (is_cgroup_event(event))
25432ae9 10354 inc = true;
76193a94
SL
10355 if (event->attr.ksymbol)
10356 atomic_inc(&nr_ksymbol_events);
6ee52e2a
SL
10357 if (event->attr.bpf_event)
10358 atomic_inc(&nr_bpf_events);
25432ae9 10359
9107c89e 10360 if (inc) {
5bce9db1
AS
10361 /*
10362 * We need the mutex here because static_branch_enable()
10363 * must complete *before* the perf_sched_count increment
10364 * becomes visible.
10365 */
9107c89e
PZ
10366 if (atomic_inc_not_zero(&perf_sched_count))
10367 goto enabled;
10368
10369 mutex_lock(&perf_sched_mutex);
10370 if (!atomic_read(&perf_sched_count)) {
10371 static_branch_enable(&perf_sched_events);
10372 /*
10373 * Guarantee that all CPUs observe they key change and
10374 * call the perf scheduling hooks before proceeding to
10375 * install events that need them.
10376 */
0809d954 10377 synchronize_rcu();
9107c89e
PZ
10378 }
10379 /*
10380 * Now that we have waited for the sync_sched(), allow further
10381 * increments to by-pass the mutex.
10382 */
10383 atomic_inc(&perf_sched_count);
10384 mutex_unlock(&perf_sched_mutex);
10385 }
10386enabled:
4beb31f3
FW
10387
10388 account_event_cpu(event, event->cpu);
f2fb6bef
KL
10389
10390 account_pmu_sb_event(event);
766d6c07
FW
10391}
10392
0793a61d 10393/*
788faab7 10394 * Allocate and initialize an event structure
0793a61d 10395 */
cdd6c482 10396static struct perf_event *
c3f00c70 10397perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
10398 struct task_struct *task,
10399 struct perf_event *group_leader,
10400 struct perf_event *parent_event,
4dc0da86 10401 perf_overflow_handler_t overflow_handler,
79dff51e 10402 void *context, int cgroup_fd)
0793a61d 10403{
51b0fe39 10404 struct pmu *pmu;
cdd6c482
IM
10405 struct perf_event *event;
10406 struct hw_perf_event *hwc;
90983b16 10407 long err = -EINVAL;
0793a61d 10408
66832eb4
ON
10409 if ((unsigned)cpu >= nr_cpu_ids) {
10410 if (!task || cpu != -1)
10411 return ERR_PTR(-EINVAL);
10412 }
10413
c3f00c70 10414 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 10415 if (!event)
d5d2bc0d 10416 return ERR_PTR(-ENOMEM);
0793a61d 10417
04289bb9 10418 /*
cdd6c482 10419 * Single events are their own group leaders, with an
04289bb9
IM
10420 * empty sibling list:
10421 */
10422 if (!group_leader)
cdd6c482 10423 group_leader = event;
04289bb9 10424
cdd6c482
IM
10425 mutex_init(&event->child_mutex);
10426 INIT_LIST_HEAD(&event->child_list);
fccc714b 10427
cdd6c482
IM
10428 INIT_LIST_HEAD(&event->event_entry);
10429 INIT_LIST_HEAD(&event->sibling_list);
6668128a 10430 INIT_LIST_HEAD(&event->active_list);
8e1a2031 10431 init_event_group(event);
10c6db11 10432 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 10433 INIT_LIST_HEAD(&event->active_entry);
375637bc 10434 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
10435 INIT_HLIST_NODE(&event->hlist_entry);
10436
10c6db11 10437
cdd6c482 10438 init_waitqueue_head(&event->waitq);
1d54ad94 10439 event->pending_disable = -1;
e360adbe 10440 init_irq_work(&event->pending, perf_pending_event);
0793a61d 10441
cdd6c482 10442 mutex_init(&event->mmap_mutex);
375637bc 10443 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 10444
a6fa941d 10445 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
10446 event->cpu = cpu;
10447 event->attr = *attr;
10448 event->group_leader = group_leader;
10449 event->pmu = NULL;
cdd6c482 10450 event->oncpu = -1;
a96bbc16 10451
cdd6c482 10452 event->parent = parent_event;
b84fbc9f 10453
17cf22c3 10454 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 10455 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 10456
cdd6c482 10457 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 10458
d580ff86
PZ
10459 if (task) {
10460 event->attach_state = PERF_ATTACH_TASK;
d580ff86 10461 /*
50f16a8b
PZ
10462 * XXX pmu::event_init needs to know what task to account to
10463 * and we cannot use the ctx information because we need the
10464 * pmu before we get a ctx.
d580ff86 10465 */
7b3c92b8 10466 event->hw.target = get_task_struct(task);
d580ff86
PZ
10467 }
10468
34f43927
PZ
10469 event->clock = &local_clock;
10470 if (parent_event)
10471 event->clock = parent_event->clock;
10472
4dc0da86 10473 if (!overflow_handler && parent_event) {
b326e956 10474 overflow_handler = parent_event->overflow_handler;
4dc0da86 10475 context = parent_event->overflow_handler_context;
f1e4ba5b 10476#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
10477 if (overflow_handler == bpf_overflow_handler) {
10478 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10479
10480 if (IS_ERR(prog)) {
10481 err = PTR_ERR(prog);
10482 goto err_ns;
10483 }
10484 event->prog = prog;
10485 event->orig_overflow_handler =
10486 parent_event->orig_overflow_handler;
10487 }
10488#endif
4dc0da86 10489 }
66832eb4 10490
1879445d
WN
10491 if (overflow_handler) {
10492 event->overflow_handler = overflow_handler;
10493 event->overflow_handler_context = context;
9ecda41a
WN
10494 } else if (is_write_backward(event)){
10495 event->overflow_handler = perf_event_output_backward;
10496 event->overflow_handler_context = NULL;
1879445d 10497 } else {
9ecda41a 10498 event->overflow_handler = perf_event_output_forward;
1879445d
WN
10499 event->overflow_handler_context = NULL;
10500 }
97eaf530 10501
0231bb53 10502 perf_event__state_init(event);
a86ed508 10503
4aeb0b42 10504 pmu = NULL;
b8e83514 10505
cdd6c482 10506 hwc = &event->hw;
bd2b5b12 10507 hwc->sample_period = attr->sample_period;
0d48696f 10508 if (attr->freq && attr->sample_freq)
bd2b5b12 10509 hwc->sample_period = 1;
eced1dfc 10510 hwc->last_period = hwc->sample_period;
bd2b5b12 10511
e7850595 10512 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 10513
2023b359 10514 /*
ba5213ae
PZ
10515 * We currently do not support PERF_SAMPLE_READ on inherited events.
10516 * See perf_output_read().
2023b359 10517 */
ba5213ae 10518 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 10519 goto err_ns;
a46a2300
YZ
10520
10521 if (!has_branch_stack(event))
10522 event->attr.branch_sample_type = 0;
2023b359 10523
79dff51e
MF
10524 if (cgroup_fd != -1) {
10525 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10526 if (err)
10527 goto err_ns;
10528 }
10529
b0a873eb 10530 pmu = perf_init_event(event);
85c617ab 10531 if (IS_ERR(pmu)) {
4aeb0b42 10532 err = PTR_ERR(pmu);
90983b16 10533 goto err_ns;
621a01ea 10534 }
d5d2bc0d 10535
09f4e8f0
PZ
10536 /*
10537 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10538 * be different on other CPUs in the uncore mask.
10539 */
10540 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
10541 err = -EINVAL;
10542 goto err_pmu;
10543 }
10544
ab43762e
AS
10545 if (event->attr.aux_output &&
10546 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10547 err = -EOPNOTSUPP;
10548 goto err_pmu;
10549 }
10550
bed5b25a
AS
10551 err = exclusive_event_init(event);
10552 if (err)
10553 goto err_pmu;
10554
375637bc 10555 if (has_addr_filter(event)) {
c60f83b8
AS
10556 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10557 sizeof(struct perf_addr_filter_range),
10558 GFP_KERNEL);
10559 if (!event->addr_filter_ranges) {
36cc2b92 10560 err = -ENOMEM;
375637bc 10561 goto err_per_task;
36cc2b92 10562 }
375637bc 10563
18736eef
AS
10564 /*
10565 * Clone the parent's vma offsets: they are valid until exec()
10566 * even if the mm is not shared with the parent.
10567 */
10568 if (event->parent) {
10569 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10570
10571 raw_spin_lock_irq(&ifh->lock);
c60f83b8
AS
10572 memcpy(event->addr_filter_ranges,
10573 event->parent->addr_filter_ranges,
10574 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
18736eef
AS
10575 raw_spin_unlock_irq(&ifh->lock);
10576 }
10577
375637bc
AS
10578 /* force hw sync on the address filters */
10579 event->addr_filters_gen = 1;
10580 }
10581
cdd6c482 10582 if (!event->parent) {
927c7a9e 10583 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 10584 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 10585 if (err)
375637bc 10586 goto err_addr_filters;
d010b332 10587 }
f344011c 10588 }
9ee318a7 10589
927a5570
AS
10590 /* symmetric to unaccount_event() in _free_event() */
10591 account_event(event);
10592
cdd6c482 10593 return event;
90983b16 10594
375637bc 10595err_addr_filters:
c60f83b8 10596 kfree(event->addr_filter_ranges);
375637bc 10597
bed5b25a
AS
10598err_per_task:
10599 exclusive_event_destroy(event);
10600
90983b16
FW
10601err_pmu:
10602 if (event->destroy)
10603 event->destroy(event);
c464c76e 10604 module_put(pmu->module);
90983b16 10605err_ns:
79dff51e
MF
10606 if (is_cgroup_event(event))
10607 perf_detach_cgroup(event);
90983b16
FW
10608 if (event->ns)
10609 put_pid_ns(event->ns);
621b6d2e
PB
10610 if (event->hw.target)
10611 put_task_struct(event->hw.target);
90983b16
FW
10612 kfree(event);
10613
10614 return ERR_PTR(err);
0793a61d
TG
10615}
10616
cdd6c482
IM
10617static int perf_copy_attr(struct perf_event_attr __user *uattr,
10618 struct perf_event_attr *attr)
974802ea 10619{
974802ea 10620 u32 size;
cdf8073d 10621 int ret;
974802ea 10622
c2ba8f41 10623 /* Zero the full structure, so that a short copy will be nice. */
974802ea
PZ
10624 memset(attr, 0, sizeof(*attr));
10625
10626 ret = get_user(size, &uattr->size);
10627 if (ret)
10628 return ret;
10629
c2ba8f41
AS
10630 /* ABI compatibility quirk: */
10631 if (!size)
974802ea 10632 size = PERF_ATTR_SIZE_VER0;
c2ba8f41 10633 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
974802ea
PZ
10634 goto err_size;
10635
c2ba8f41
AS
10636 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10637 if (ret) {
10638 if (ret == -E2BIG)
10639 goto err_size;
10640 return ret;
974802ea
PZ
10641 }
10642
f12f42ac
MX
10643 attr->size = size;
10644
8c7e9756 10645 if (attr->__reserved_1 || attr->__reserved_2)
974802ea
PZ
10646 return -EINVAL;
10647
10648 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10649 return -EINVAL;
10650
10651 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10652 return -EINVAL;
10653
bce38cd5
SE
10654 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10655 u64 mask = attr->branch_sample_type;
10656
10657 /* only using defined bits */
10658 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10659 return -EINVAL;
10660
10661 /* at least one branch bit must be set */
10662 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10663 return -EINVAL;
10664
bce38cd5
SE
10665 /* propagate priv level, when not set for branch */
10666 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10667
10668 /* exclude_kernel checked on syscall entry */
10669 if (!attr->exclude_kernel)
10670 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10671
10672 if (!attr->exclude_user)
10673 mask |= PERF_SAMPLE_BRANCH_USER;
10674
10675 if (!attr->exclude_hv)
10676 mask |= PERF_SAMPLE_BRANCH_HV;
10677 /*
10678 * adjust user setting (for HW filter setup)
10679 */
10680 attr->branch_sample_type = mask;
10681 }
e712209a
SE
10682 /* privileged levels capture (kernel, hv): check permissions */
10683 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
10684 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10685 return -EACCES;
bce38cd5 10686 }
4018994f 10687
c5ebcedb 10688 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 10689 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
10690 if (ret)
10691 return ret;
10692 }
10693
10694 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10695 if (!arch_perf_have_user_stack_dump())
10696 return -ENOSYS;
10697
10698 /*
10699 * We have __u32 type for the size, but so far
10700 * we can only use __u16 as maximum due to the
10701 * __u16 sample size limit.
10702 */
10703 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 10704 return -EINVAL;
c5ebcedb 10705 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 10706 return -EINVAL;
c5ebcedb 10707 }
4018994f 10708
5f970521
JO
10709 if (!attr->sample_max_stack)
10710 attr->sample_max_stack = sysctl_perf_event_max_stack;
10711
60e2364e
SE
10712 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10713 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
10714out:
10715 return ret;
10716
10717err_size:
10718 put_user(sizeof(*attr), &uattr->size);
10719 ret = -E2BIG;
10720 goto out;
10721}
10722
ac9721f3
PZ
10723static int
10724perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 10725{
b69cf536 10726 struct ring_buffer *rb = NULL;
a4be7c27
PZ
10727 int ret = -EINVAL;
10728
ac9721f3 10729 if (!output_event)
a4be7c27
PZ
10730 goto set;
10731
ac9721f3
PZ
10732 /* don't allow circular references */
10733 if (event == output_event)
a4be7c27
PZ
10734 goto out;
10735
0f139300
PZ
10736 /*
10737 * Don't allow cross-cpu buffers
10738 */
10739 if (output_event->cpu != event->cpu)
10740 goto out;
10741
10742 /*
76369139 10743 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
10744 */
10745 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10746 goto out;
10747
34f43927
PZ
10748 /*
10749 * Mixing clocks in the same buffer is trouble you don't need.
10750 */
10751 if (output_event->clock != event->clock)
10752 goto out;
10753
9ecda41a
WN
10754 /*
10755 * Either writing ring buffer from beginning or from end.
10756 * Mixing is not allowed.
10757 */
10758 if (is_write_backward(output_event) != is_write_backward(event))
10759 goto out;
10760
45bfb2e5
PZ
10761 /*
10762 * If both events generate aux data, they must be on the same PMU
10763 */
10764 if (has_aux(event) && has_aux(output_event) &&
10765 event->pmu != output_event->pmu)
10766 goto out;
10767
a4be7c27 10768set:
cdd6c482 10769 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
10770 /* Can't redirect output if we've got an active mmap() */
10771 if (atomic_read(&event->mmap_count))
10772 goto unlock;
a4be7c27 10773
ac9721f3 10774 if (output_event) {
76369139
FW
10775 /* get the rb we want to redirect to */
10776 rb = ring_buffer_get(output_event);
10777 if (!rb)
ac9721f3 10778 goto unlock;
a4be7c27
PZ
10779 }
10780
b69cf536 10781 ring_buffer_attach(event, rb);
9bb5d40c 10782
a4be7c27 10783 ret = 0;
ac9721f3
PZ
10784unlock:
10785 mutex_unlock(&event->mmap_mutex);
10786
a4be7c27 10787out:
a4be7c27
PZ
10788 return ret;
10789}
10790
f63a8daa
PZ
10791static void mutex_lock_double(struct mutex *a, struct mutex *b)
10792{
10793 if (b < a)
10794 swap(a, b);
10795
10796 mutex_lock(a);
10797 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10798}
10799
34f43927
PZ
10800static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10801{
10802 bool nmi_safe = false;
10803
10804 switch (clk_id) {
10805 case CLOCK_MONOTONIC:
10806 event->clock = &ktime_get_mono_fast_ns;
10807 nmi_safe = true;
10808 break;
10809
10810 case CLOCK_MONOTONIC_RAW:
10811 event->clock = &ktime_get_raw_fast_ns;
10812 nmi_safe = true;
10813 break;
10814
10815 case CLOCK_REALTIME:
10816 event->clock = &ktime_get_real_ns;
10817 break;
10818
10819 case CLOCK_BOOTTIME:
9285ec4c 10820 event->clock = &ktime_get_boottime_ns;
34f43927
PZ
10821 break;
10822
10823 case CLOCK_TAI:
9285ec4c 10824 event->clock = &ktime_get_clocktai_ns;
34f43927
PZ
10825 break;
10826
10827 default:
10828 return -EINVAL;
10829 }
10830
10831 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10832 return -EINVAL;
10833
10834 return 0;
10835}
10836
321027c1
PZ
10837/*
10838 * Variation on perf_event_ctx_lock_nested(), except we take two context
10839 * mutexes.
10840 */
10841static struct perf_event_context *
10842__perf_event_ctx_lock_double(struct perf_event *group_leader,
10843 struct perf_event_context *ctx)
10844{
10845 struct perf_event_context *gctx;
10846
10847again:
10848 rcu_read_lock();
10849 gctx = READ_ONCE(group_leader->ctx);
8c94abbb 10850 if (!refcount_inc_not_zero(&gctx->refcount)) {
321027c1
PZ
10851 rcu_read_unlock();
10852 goto again;
10853 }
10854 rcu_read_unlock();
10855
10856 mutex_lock_double(&gctx->mutex, &ctx->mutex);
10857
10858 if (group_leader->ctx != gctx) {
10859 mutex_unlock(&ctx->mutex);
10860 mutex_unlock(&gctx->mutex);
10861 put_ctx(gctx);
10862 goto again;
10863 }
10864
10865 return gctx;
10866}
10867
0793a61d 10868/**
cdd6c482 10869 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 10870 *
cdd6c482 10871 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 10872 * @pid: target pid
9f66a381 10873 * @cpu: target cpu
cdd6c482 10874 * @group_fd: group leader event fd
0793a61d 10875 */
cdd6c482
IM
10876SYSCALL_DEFINE5(perf_event_open,
10877 struct perf_event_attr __user *, attr_uptr,
2743a5b0 10878 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 10879{
b04243ef
PZ
10880 struct perf_event *group_leader = NULL, *output_event = NULL;
10881 struct perf_event *event, *sibling;
cdd6c482 10882 struct perf_event_attr attr;
f63a8daa 10883 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 10884 struct file *event_file = NULL;
2903ff01 10885 struct fd group = {NULL, 0};
38a81da2 10886 struct task_struct *task = NULL;
89a1e187 10887 struct pmu *pmu;
ea635c64 10888 int event_fd;
b04243ef 10889 int move_group = 0;
dc86cabe 10890 int err;
a21b0b35 10891 int f_flags = O_RDWR;
79dff51e 10892 int cgroup_fd = -1;
0793a61d 10893
2743a5b0 10894 /* for future expandability... */
e5d1367f 10895 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
10896 return -EINVAL;
10897
dc86cabe
IM
10898 err = perf_copy_attr(attr_uptr, &attr);
10899 if (err)
10900 return err;
eab656ae 10901
0764771d
PZ
10902 if (!attr.exclude_kernel) {
10903 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10904 return -EACCES;
10905 }
10906
e4222673
HB
10907 if (attr.namespaces) {
10908 if (!capable(CAP_SYS_ADMIN))
10909 return -EACCES;
10910 }
10911
df58ab24 10912 if (attr.freq) {
cdd6c482 10913 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 10914 return -EINVAL;
0819b2e3
PZ
10915 } else {
10916 if (attr.sample_period & (1ULL << 63))
10917 return -EINVAL;
df58ab24
PZ
10918 }
10919
fc7ce9c7
KL
10920 /* Only privileged users can get physical addresses */
10921 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10922 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10923 return -EACCES;
10924
b0c8fdc7
DH
10925 err = security_locked_down(LOCKDOWN_PERF);
10926 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
10927 /* REGS_INTR can leak data, lockdown must prevent this */
10928 return err;
10929
10930 err = 0;
10931
e5d1367f
SE
10932 /*
10933 * In cgroup mode, the pid argument is used to pass the fd
10934 * opened to the cgroup directory in cgroupfs. The cpu argument
10935 * designates the cpu on which to monitor threads from that
10936 * cgroup.
10937 */
10938 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10939 return -EINVAL;
10940
a21b0b35
YD
10941 if (flags & PERF_FLAG_FD_CLOEXEC)
10942 f_flags |= O_CLOEXEC;
10943
10944 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
10945 if (event_fd < 0)
10946 return event_fd;
10947
ac9721f3 10948 if (group_fd != -1) {
2903ff01
AV
10949 err = perf_fget_light(group_fd, &group);
10950 if (err)
d14b12d7 10951 goto err_fd;
2903ff01 10952 group_leader = group.file->private_data;
ac9721f3
PZ
10953 if (flags & PERF_FLAG_FD_OUTPUT)
10954 output_event = group_leader;
10955 if (flags & PERF_FLAG_FD_NO_GROUP)
10956 group_leader = NULL;
10957 }
10958
e5d1367f 10959 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
10960 task = find_lively_task_by_vpid(pid);
10961 if (IS_ERR(task)) {
10962 err = PTR_ERR(task);
10963 goto err_group_fd;
10964 }
10965 }
10966
1f4ee503
PZ
10967 if (task && group_leader &&
10968 group_leader->attr.inherit != attr.inherit) {
10969 err = -EINVAL;
10970 goto err_task;
10971 }
10972
79c9ce57
PZ
10973 if (task) {
10974 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10975 if (err)
e5aeee51 10976 goto err_task;
79c9ce57
PZ
10977
10978 /*
10979 * Reuse ptrace permission checks for now.
10980 *
10981 * We must hold cred_guard_mutex across this and any potential
10982 * perf_install_in_context() call for this new event to
10983 * serialize against exec() altering our credentials (and the
10984 * perf_event_exit_task() that could imply).
10985 */
10986 err = -EACCES;
10987 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10988 goto err_cred;
10989 }
10990
79dff51e
MF
10991 if (flags & PERF_FLAG_PID_CGROUP)
10992 cgroup_fd = pid;
10993
4dc0da86 10994 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 10995 NULL, NULL, cgroup_fd);
d14b12d7
SE
10996 if (IS_ERR(event)) {
10997 err = PTR_ERR(event);
79c9ce57 10998 goto err_cred;
d14b12d7
SE
10999 }
11000
53b25335
VW
11001 if (is_sampling_event(event)) {
11002 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 11003 err = -EOPNOTSUPP;
53b25335
VW
11004 goto err_alloc;
11005 }
11006 }
11007
89a1e187
PZ
11008 /*
11009 * Special case software events and allow them to be part of
11010 * any hardware group.
11011 */
11012 pmu = event->pmu;
b04243ef 11013
34f43927
PZ
11014 if (attr.use_clockid) {
11015 err = perf_event_set_clock(event, attr.clockid);
11016 if (err)
11017 goto err_alloc;
11018 }
11019
4ff6a8de
DCC
11020 if (pmu->task_ctx_nr == perf_sw_context)
11021 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11022
a1150c20
SL
11023 if (group_leader) {
11024 if (is_software_event(event) &&
11025 !in_software_context(group_leader)) {
b04243ef 11026 /*
a1150c20
SL
11027 * If the event is a sw event, but the group_leader
11028 * is on hw context.
b04243ef 11029 *
a1150c20
SL
11030 * Allow the addition of software events to hw
11031 * groups, this is safe because software events
11032 * never fail to schedule.
b04243ef 11033 */
a1150c20
SL
11034 pmu = group_leader->ctx->pmu;
11035 } else if (!is_software_event(event) &&
11036 is_software_event(group_leader) &&
4ff6a8de 11037 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
11038 /*
11039 * In case the group is a pure software group, and we
11040 * try to add a hardware event, move the whole group to
11041 * the hardware context.
11042 */
11043 move_group = 1;
11044 }
11045 }
89a1e187
PZ
11046
11047 /*
11048 * Get the target context (task or percpu):
11049 */
4af57ef2 11050 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
11051 if (IS_ERR(ctx)) {
11052 err = PTR_ERR(ctx);
c6be5a5c 11053 goto err_alloc;
89a1e187
PZ
11054 }
11055
ccff286d 11056 /*
cdd6c482 11057 * Look up the group leader (we will attach this event to it):
04289bb9 11058 */
ac9721f3 11059 if (group_leader) {
dc86cabe 11060 err = -EINVAL;
04289bb9 11061
04289bb9 11062 /*
ccff286d
IM
11063 * Do not allow a recursive hierarchy (this new sibling
11064 * becoming part of another group-sibling):
11065 */
11066 if (group_leader->group_leader != group_leader)
c3f00c70 11067 goto err_context;
34f43927
PZ
11068
11069 /* All events in a group should have the same clock */
11070 if (group_leader->clock != event->clock)
11071 goto err_context;
11072
ccff286d 11073 /*
64aee2a9
MR
11074 * Make sure we're both events for the same CPU;
11075 * grouping events for different CPUs is broken; since
11076 * you can never concurrently schedule them anyhow.
04289bb9 11077 */
64aee2a9
MR
11078 if (group_leader->cpu != event->cpu)
11079 goto err_context;
c3c87e77 11080
64aee2a9
MR
11081 /*
11082 * Make sure we're both on the same task, or both
11083 * per-CPU events.
11084 */
11085 if (group_leader->ctx->task != ctx->task)
11086 goto err_context;
11087
11088 /*
11089 * Do not allow to attach to a group in a different task
11090 * or CPU context. If we're moving SW events, we'll fix
11091 * this up later, so allow that.
11092 */
11093 if (!move_group && group_leader->ctx != ctx)
11094 goto err_context;
b04243ef 11095
3b6f9e5c
PM
11096 /*
11097 * Only a group leader can be exclusive or pinned
11098 */
0d48696f 11099 if (attr.exclusive || attr.pinned)
c3f00c70 11100 goto err_context;
ac9721f3
PZ
11101 }
11102
11103 if (output_event) {
11104 err = perf_event_set_output(event, output_event);
11105 if (err)
c3f00c70 11106 goto err_context;
ac9721f3 11107 }
0793a61d 11108
a21b0b35
YD
11109 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11110 f_flags);
ea635c64
AV
11111 if (IS_ERR(event_file)) {
11112 err = PTR_ERR(event_file);
201c2f85 11113 event_file = NULL;
c3f00c70 11114 goto err_context;
ea635c64 11115 }
9b51f66d 11116
b04243ef 11117 if (move_group) {
321027c1
PZ
11118 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11119
84c4e620
PZ
11120 if (gctx->task == TASK_TOMBSTONE) {
11121 err = -ESRCH;
11122 goto err_locked;
11123 }
321027c1
PZ
11124
11125 /*
11126 * Check if we raced against another sys_perf_event_open() call
11127 * moving the software group underneath us.
11128 */
11129 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11130 /*
11131 * If someone moved the group out from under us, check
11132 * if this new event wound up on the same ctx, if so
11133 * its the regular !move_group case, otherwise fail.
11134 */
11135 if (gctx != ctx) {
11136 err = -EINVAL;
11137 goto err_locked;
11138 } else {
11139 perf_event_ctx_unlock(group_leader, gctx);
11140 move_group = 0;
11141 }
11142 }
8a58ddae
AS
11143
11144 /*
11145 * Failure to create exclusive events returns -EBUSY.
11146 */
11147 err = -EBUSY;
11148 if (!exclusive_event_installable(group_leader, ctx))
11149 goto err_locked;
11150
11151 for_each_sibling_event(sibling, group_leader) {
11152 if (!exclusive_event_installable(sibling, ctx))
11153 goto err_locked;
11154 }
f55fc2a5
PZ
11155 } else {
11156 mutex_lock(&ctx->mutex);
11157 }
11158
84c4e620
PZ
11159 if (ctx->task == TASK_TOMBSTONE) {
11160 err = -ESRCH;
11161 goto err_locked;
11162 }
11163
a723968c
PZ
11164 if (!perf_event_validate_size(event)) {
11165 err = -E2BIG;
11166 goto err_locked;
11167 }
11168
a63fbed7
TG
11169 if (!task) {
11170 /*
11171 * Check if the @cpu we're creating an event for is online.
11172 *
11173 * We use the perf_cpu_context::ctx::mutex to serialize against
11174 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11175 */
11176 struct perf_cpu_context *cpuctx =
11177 container_of(ctx, struct perf_cpu_context, ctx);
11178
11179 if (!cpuctx->online) {
11180 err = -ENODEV;
11181 goto err_locked;
11182 }
11183 }
11184
ab43762e
AS
11185 if (event->attr.aux_output && !perf_get_aux_event(event, group_leader))
11186 goto err_locked;
a63fbed7 11187
f55fc2a5
PZ
11188 /*
11189 * Must be under the same ctx::mutex as perf_install_in_context(),
11190 * because we need to serialize with concurrent event creation.
11191 */
11192 if (!exclusive_event_installable(event, ctx)) {
f55fc2a5
PZ
11193 err = -EBUSY;
11194 goto err_locked;
11195 }
f63a8daa 11196
f55fc2a5
PZ
11197 WARN_ON_ONCE(ctx->parent_ctx);
11198
79c9ce57
PZ
11199 /*
11200 * This is the point on no return; we cannot fail hereafter. This is
11201 * where we start modifying current state.
11202 */
11203
f55fc2a5 11204 if (move_group) {
f63a8daa
PZ
11205 /*
11206 * See perf_event_ctx_lock() for comments on the details
11207 * of swizzling perf_event::ctx.
11208 */
45a0e07a 11209 perf_remove_from_context(group_leader, 0);
279b5165 11210 put_ctx(gctx);
0231bb53 11211
edb39592 11212 for_each_sibling_event(sibling, group_leader) {
45a0e07a 11213 perf_remove_from_context(sibling, 0);
b04243ef
PZ
11214 put_ctx(gctx);
11215 }
b04243ef 11216
f63a8daa
PZ
11217 /*
11218 * Wait for everybody to stop referencing the events through
11219 * the old lists, before installing it on new lists.
11220 */
0cda4c02 11221 synchronize_rcu();
f63a8daa 11222
8f95b435
PZI
11223 /*
11224 * Install the group siblings before the group leader.
11225 *
11226 * Because a group leader will try and install the entire group
11227 * (through the sibling list, which is still in-tact), we can
11228 * end up with siblings installed in the wrong context.
11229 *
11230 * By installing siblings first we NO-OP because they're not
11231 * reachable through the group lists.
11232 */
edb39592 11233 for_each_sibling_event(sibling, group_leader) {
8f95b435 11234 perf_event__state_init(sibling);
9fc81d87 11235 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
11236 get_ctx(ctx);
11237 }
8f95b435
PZI
11238
11239 /*
11240 * Removing from the context ends up with disabled
11241 * event. What we want here is event in the initial
11242 * startup state, ready to be add into new context.
11243 */
11244 perf_event__state_init(group_leader);
11245 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11246 get_ctx(ctx);
bed5b25a
AS
11247 }
11248
f73e22ab
PZ
11249 /*
11250 * Precalculate sample_data sizes; do while holding ctx::mutex such
11251 * that we're serialized against further additions and before
11252 * perf_install_in_context() which is the point the event is active and
11253 * can use these values.
11254 */
11255 perf_event__header_size(event);
11256 perf_event__id_header_size(event);
11257
78cd2c74
PZ
11258 event->owner = current;
11259
e2d37cd2 11260 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11261 perf_unpin_context(ctx);
f63a8daa 11262
f55fc2a5 11263 if (move_group)
321027c1 11264 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 11265 mutex_unlock(&ctx->mutex);
9b51f66d 11266
79c9ce57
PZ
11267 if (task) {
11268 mutex_unlock(&task->signal->cred_guard_mutex);
11269 put_task_struct(task);
11270 }
11271
cdd6c482
IM
11272 mutex_lock(&current->perf_event_mutex);
11273 list_add_tail(&event->owner_entry, &current->perf_event_list);
11274 mutex_unlock(&current->perf_event_mutex);
082ff5a2 11275
8a49542c
PZ
11276 /*
11277 * Drop the reference on the group_event after placing the
11278 * new event on the sibling_list. This ensures destruction
11279 * of the group leader will find the pointer to itself in
11280 * perf_group_detach().
11281 */
2903ff01 11282 fdput(group);
ea635c64
AV
11283 fd_install(event_fd, event_file);
11284 return event_fd;
0793a61d 11285
f55fc2a5
PZ
11286err_locked:
11287 if (move_group)
321027c1 11288 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
11289 mutex_unlock(&ctx->mutex);
11290/* err_file: */
11291 fput(event_file);
c3f00c70 11292err_context:
fe4b04fa 11293 perf_unpin_context(ctx);
ea635c64 11294 put_ctx(ctx);
c6be5a5c 11295err_alloc:
13005627
PZ
11296 /*
11297 * If event_file is set, the fput() above will have called ->release()
11298 * and that will take care of freeing the event.
11299 */
11300 if (!event_file)
11301 free_event(event);
79c9ce57
PZ
11302err_cred:
11303 if (task)
11304 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 11305err_task:
e7d0bc04
PZ
11306 if (task)
11307 put_task_struct(task);
89a1e187 11308err_group_fd:
2903ff01 11309 fdput(group);
ea635c64
AV
11310err_fd:
11311 put_unused_fd(event_fd);
dc86cabe 11312 return err;
0793a61d
TG
11313}
11314
fb0459d7
AV
11315/**
11316 * perf_event_create_kernel_counter
11317 *
11318 * @attr: attributes of the counter to create
11319 * @cpu: cpu in which the counter is bound
38a81da2 11320 * @task: task to profile (NULL for percpu)
fb0459d7
AV
11321 */
11322struct perf_event *
11323perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 11324 struct task_struct *task,
4dc0da86
AK
11325 perf_overflow_handler_t overflow_handler,
11326 void *context)
fb0459d7 11327{
fb0459d7 11328 struct perf_event_context *ctx;
c3f00c70 11329 struct perf_event *event;
fb0459d7 11330 int err;
d859e29f 11331
dce5affb
AS
11332 /*
11333 * Grouping is not supported for kernel events, neither is 'AUX',
11334 * make sure the caller's intentions are adjusted.
11335 */
11336 if (attr->aux_output)
11337 return ERR_PTR(-EINVAL);
11338
4dc0da86 11339 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 11340 overflow_handler, context, -1);
c3f00c70
PZ
11341 if (IS_ERR(event)) {
11342 err = PTR_ERR(event);
11343 goto err;
11344 }
d859e29f 11345
f8697762 11346 /* Mark owner so we could distinguish it from user events. */
63b6da39 11347 event->owner = TASK_TOMBSTONE;
f8697762 11348
f25d8ba9
AS
11349 /*
11350 * Get the target context (task or percpu):
11351 */
4af57ef2 11352 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
11353 if (IS_ERR(ctx)) {
11354 err = PTR_ERR(ctx);
c3f00c70 11355 goto err_free;
d859e29f 11356 }
fb0459d7 11357
fb0459d7
AV
11358 WARN_ON_ONCE(ctx->parent_ctx);
11359 mutex_lock(&ctx->mutex);
84c4e620
PZ
11360 if (ctx->task == TASK_TOMBSTONE) {
11361 err = -ESRCH;
11362 goto err_unlock;
11363 }
11364
a63fbed7
TG
11365 if (!task) {
11366 /*
11367 * Check if the @cpu we're creating an event for is online.
11368 *
11369 * We use the perf_cpu_context::ctx::mutex to serialize against
11370 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11371 */
11372 struct perf_cpu_context *cpuctx =
11373 container_of(ctx, struct perf_cpu_context, ctx);
11374 if (!cpuctx->online) {
11375 err = -ENODEV;
11376 goto err_unlock;
11377 }
11378 }
11379
bed5b25a 11380 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 11381 err = -EBUSY;
84c4e620 11382 goto err_unlock;
bed5b25a
AS
11383 }
11384
4ce54af8 11385 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11386 perf_unpin_context(ctx);
fb0459d7
AV
11387 mutex_unlock(&ctx->mutex);
11388
fb0459d7
AV
11389 return event;
11390
84c4e620
PZ
11391err_unlock:
11392 mutex_unlock(&ctx->mutex);
11393 perf_unpin_context(ctx);
11394 put_ctx(ctx);
c3f00c70
PZ
11395err_free:
11396 free_event(event);
11397err:
c6567f64 11398 return ERR_PTR(err);
9b51f66d 11399}
fb0459d7 11400EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 11401
0cda4c02
YZ
11402void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11403{
11404 struct perf_event_context *src_ctx;
11405 struct perf_event_context *dst_ctx;
11406 struct perf_event *event, *tmp;
11407 LIST_HEAD(events);
11408
11409 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11410 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11411
f63a8daa
PZ
11412 /*
11413 * See perf_event_ctx_lock() for comments on the details
11414 * of swizzling perf_event::ctx.
11415 */
11416 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
11417 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11418 event_entry) {
45a0e07a 11419 perf_remove_from_context(event, 0);
9a545de0 11420 unaccount_event_cpu(event, src_cpu);
0cda4c02 11421 put_ctx(src_ctx);
9886167d 11422 list_add(&event->migrate_entry, &events);
0cda4c02 11423 }
0cda4c02 11424
8f95b435
PZI
11425 /*
11426 * Wait for the events to quiesce before re-instating them.
11427 */
0cda4c02
YZ
11428 synchronize_rcu();
11429
8f95b435
PZI
11430 /*
11431 * Re-instate events in 2 passes.
11432 *
11433 * Skip over group leaders and only install siblings on this first
11434 * pass, siblings will not get enabled without a leader, however a
11435 * leader will enable its siblings, even if those are still on the old
11436 * context.
11437 */
11438 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11439 if (event->group_leader == event)
11440 continue;
11441
11442 list_del(&event->migrate_entry);
11443 if (event->state >= PERF_EVENT_STATE_OFF)
11444 event->state = PERF_EVENT_STATE_INACTIVE;
11445 account_event_cpu(event, dst_cpu);
11446 perf_install_in_context(dst_ctx, event, dst_cpu);
11447 get_ctx(dst_ctx);
11448 }
11449
11450 /*
11451 * Once all the siblings are setup properly, install the group leaders
11452 * to make it go.
11453 */
9886167d
PZ
11454 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11455 list_del(&event->migrate_entry);
0cda4c02
YZ
11456 if (event->state >= PERF_EVENT_STATE_OFF)
11457 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 11458 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
11459 perf_install_in_context(dst_ctx, event, dst_cpu);
11460 get_ctx(dst_ctx);
11461 }
11462 mutex_unlock(&dst_ctx->mutex);
f63a8daa 11463 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
11464}
11465EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11466
cdd6c482 11467static void sync_child_event(struct perf_event *child_event,
38b200d6 11468 struct task_struct *child)
d859e29f 11469{
cdd6c482 11470 struct perf_event *parent_event = child_event->parent;
8bc20959 11471 u64 child_val;
d859e29f 11472
cdd6c482
IM
11473 if (child_event->attr.inherit_stat)
11474 perf_event_read_event(child_event, child);
38b200d6 11475
b5e58793 11476 child_val = perf_event_count(child_event);
d859e29f
PM
11477
11478 /*
11479 * Add back the child's count to the parent's count:
11480 */
a6e6dea6 11481 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
11482 atomic64_add(child_event->total_time_enabled,
11483 &parent_event->child_total_time_enabled);
11484 atomic64_add(child_event->total_time_running,
11485 &parent_event->child_total_time_running);
d859e29f
PM
11486}
11487
9b51f66d 11488static void
8ba289b8
PZ
11489perf_event_exit_event(struct perf_event *child_event,
11490 struct perf_event_context *child_ctx,
11491 struct task_struct *child)
9b51f66d 11492{
8ba289b8
PZ
11493 struct perf_event *parent_event = child_event->parent;
11494
1903d50c
PZ
11495 /*
11496 * Do not destroy the 'original' grouping; because of the context
11497 * switch optimization the original events could've ended up in a
11498 * random child task.
11499 *
11500 * If we were to destroy the original group, all group related
11501 * operations would cease to function properly after this random
11502 * child dies.
11503 *
11504 * Do destroy all inherited groups, we don't care about those
11505 * and being thorough is better.
11506 */
32132a3d
PZ
11507 raw_spin_lock_irq(&child_ctx->lock);
11508 WARN_ON_ONCE(child_ctx->is_active);
11509
8ba289b8 11510 if (parent_event)
32132a3d
PZ
11511 perf_group_detach(child_event);
11512 list_del_event(child_event, child_ctx);
0d3d73aa 11513 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 11514 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 11515
9b51f66d 11516 /*
8ba289b8 11517 * Parent events are governed by their filedesc, retain them.
9b51f66d 11518 */
8ba289b8 11519 if (!parent_event) {
179033b3 11520 perf_event_wakeup(child_event);
8ba289b8 11521 return;
4bcf349a 11522 }
8ba289b8
PZ
11523 /*
11524 * Child events can be cleaned up.
11525 */
11526
11527 sync_child_event(child_event, child);
11528
11529 /*
11530 * Remove this event from the parent's list
11531 */
11532 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11533 mutex_lock(&parent_event->child_mutex);
11534 list_del_init(&child_event->child_list);
11535 mutex_unlock(&parent_event->child_mutex);
11536
11537 /*
11538 * Kick perf_poll() for is_event_hup().
11539 */
11540 perf_event_wakeup(parent_event);
11541 free_event(child_event);
11542 put_event(parent_event);
9b51f66d
IM
11543}
11544
8dc85d54 11545static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 11546{
211de6eb 11547 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 11548 struct perf_event *child_event, *next;
63b6da39
PZ
11549
11550 WARN_ON_ONCE(child != current);
9b51f66d 11551
6a3351b6 11552 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 11553 if (!child_ctx)
9b51f66d
IM
11554 return;
11555
ad3a37de 11556 /*
6a3351b6
PZ
11557 * In order to reduce the amount of tricky in ctx tear-down, we hold
11558 * ctx::mutex over the entire thing. This serializes against almost
11559 * everything that wants to access the ctx.
11560 *
11561 * The exception is sys_perf_event_open() /
11562 * perf_event_create_kernel_count() which does find_get_context()
11563 * without ctx::mutex (it cannot because of the move_group double mutex
11564 * lock thing). See the comments in perf_install_in_context().
ad3a37de 11565 */
6a3351b6 11566 mutex_lock(&child_ctx->mutex);
c93f7669
PM
11567
11568 /*
6a3351b6
PZ
11569 * In a single ctx::lock section, de-schedule the events and detach the
11570 * context from the task such that we cannot ever get it scheduled back
11571 * in.
c93f7669 11572 */
6a3351b6 11573 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 11574 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 11575
71a851b4 11576 /*
63b6da39
PZ
11577 * Now that the context is inactive, destroy the task <-> ctx relation
11578 * and mark the context dead.
71a851b4 11579 */
63b6da39
PZ
11580 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11581 put_ctx(child_ctx); /* cannot be last */
11582 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11583 put_task_struct(current); /* cannot be last */
4a1c0f26 11584
211de6eb 11585 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 11586 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 11587
211de6eb
PZ
11588 if (clone_ctx)
11589 put_ctx(clone_ctx);
4a1c0f26 11590
9f498cc5 11591 /*
cdd6c482
IM
11592 * Report the task dead after unscheduling the events so that we
11593 * won't get any samples after PERF_RECORD_EXIT. We can however still
11594 * get a few PERF_RECORD_READ events.
9f498cc5 11595 */
cdd6c482 11596 perf_event_task(child, child_ctx, 0);
a63eaf34 11597
ebf905fc 11598 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 11599 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 11600
a63eaf34
PM
11601 mutex_unlock(&child_ctx->mutex);
11602
11603 put_ctx(child_ctx);
9b51f66d
IM
11604}
11605
8dc85d54
PZ
11606/*
11607 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
11608 *
11609 * Can be called with cred_guard_mutex held when called from
11610 * install_exec_creds().
8dc85d54
PZ
11611 */
11612void perf_event_exit_task(struct task_struct *child)
11613{
8882135b 11614 struct perf_event *event, *tmp;
8dc85d54
PZ
11615 int ctxn;
11616
8882135b
PZ
11617 mutex_lock(&child->perf_event_mutex);
11618 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11619 owner_entry) {
11620 list_del_init(&event->owner_entry);
11621
11622 /*
11623 * Ensure the list deletion is visible before we clear
11624 * the owner, closes a race against perf_release() where
11625 * we need to serialize on the owner->perf_event_mutex.
11626 */
f47c02c0 11627 smp_store_release(&event->owner, NULL);
8882135b
PZ
11628 }
11629 mutex_unlock(&child->perf_event_mutex);
11630
8dc85d54
PZ
11631 for_each_task_context_nr(ctxn)
11632 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
11633
11634 /*
11635 * The perf_event_exit_task_context calls perf_event_task
11636 * with child's task_ctx, which generates EXIT events for
11637 * child contexts and sets child->perf_event_ctxp[] to NULL.
11638 * At this point we need to send EXIT events to cpu contexts.
11639 */
11640 perf_event_task(child, NULL, 0);
8dc85d54
PZ
11641}
11642
889ff015
FW
11643static void perf_free_event(struct perf_event *event,
11644 struct perf_event_context *ctx)
11645{
11646 struct perf_event *parent = event->parent;
11647
11648 if (WARN_ON_ONCE(!parent))
11649 return;
11650
11651 mutex_lock(&parent->child_mutex);
11652 list_del_init(&event->child_list);
11653 mutex_unlock(&parent->child_mutex);
11654
a6fa941d 11655 put_event(parent);
889ff015 11656
652884fe 11657 raw_spin_lock_irq(&ctx->lock);
8a49542c 11658 perf_group_detach(event);
889ff015 11659 list_del_event(event, ctx);
652884fe 11660 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
11661 free_event(event);
11662}
11663
bbbee908 11664/*
1cf8dfe8
PZ
11665 * Free a context as created by inheritance by perf_event_init_task() below,
11666 * used by fork() in case of fail.
652884fe 11667 *
1cf8dfe8
PZ
11668 * Even though the task has never lived, the context and events have been
11669 * exposed through the child_list, so we must take care tearing it all down.
bbbee908 11670 */
cdd6c482 11671void perf_event_free_task(struct task_struct *task)
bbbee908 11672{
8dc85d54 11673 struct perf_event_context *ctx;
cdd6c482 11674 struct perf_event *event, *tmp;
8dc85d54 11675 int ctxn;
bbbee908 11676
8dc85d54
PZ
11677 for_each_task_context_nr(ctxn) {
11678 ctx = task->perf_event_ctxp[ctxn];
11679 if (!ctx)
11680 continue;
bbbee908 11681
8dc85d54 11682 mutex_lock(&ctx->mutex);
e552a838
PZ
11683 raw_spin_lock_irq(&ctx->lock);
11684 /*
11685 * Destroy the task <-> ctx relation and mark the context dead.
11686 *
11687 * This is important because even though the task hasn't been
11688 * exposed yet the context has been (through child_list).
11689 */
11690 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11691 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11692 put_task_struct(task); /* cannot be last */
11693 raw_spin_unlock_irq(&ctx->lock);
bbbee908 11694
15121c78 11695 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 11696 perf_free_event(event, ctx);
bbbee908 11697
8dc85d54 11698 mutex_unlock(&ctx->mutex);
1cf8dfe8
PZ
11699
11700 /*
11701 * perf_event_release_kernel() could've stolen some of our
11702 * child events and still have them on its free_list. In that
11703 * case we must wait for these events to have been freed (in
11704 * particular all their references to this task must've been
11705 * dropped).
11706 *
11707 * Without this copy_process() will unconditionally free this
11708 * task (irrespective of its reference count) and
11709 * _free_event()'s put_task_struct(event->hw.target) will be a
11710 * use-after-free.
11711 *
11712 * Wait for all events to drop their context reference.
11713 */
11714 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11715 put_ctx(ctx); /* must be last */
8dc85d54 11716 }
889ff015
FW
11717}
11718
4e231c79
PZ
11719void perf_event_delayed_put(struct task_struct *task)
11720{
11721 int ctxn;
11722
11723 for_each_task_context_nr(ctxn)
11724 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11725}
11726
e03e7ee3 11727struct file *perf_event_get(unsigned int fd)
ffe8690c 11728{
02e5ad97 11729 struct file *file = fget(fd);
e03e7ee3
AS
11730 if (!file)
11731 return ERR_PTR(-EBADF);
ffe8690c 11732
e03e7ee3
AS
11733 if (file->f_op != &perf_fops) {
11734 fput(file);
11735 return ERR_PTR(-EBADF);
11736 }
ffe8690c 11737
e03e7ee3 11738 return file;
ffe8690c
KX
11739}
11740
f8d959a5
YS
11741const struct perf_event *perf_get_event(struct file *file)
11742{
11743 if (file->f_op != &perf_fops)
11744 return ERR_PTR(-EINVAL);
11745
11746 return file->private_data;
11747}
11748
ffe8690c
KX
11749const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11750{
11751 if (!event)
11752 return ERR_PTR(-EINVAL);
11753
11754 return &event->attr;
11755}
11756
97dee4f3 11757/*
788faab7 11758 * Inherit an event from parent task to child task.
d8a8cfc7
PZ
11759 *
11760 * Returns:
11761 * - valid pointer on success
11762 * - NULL for orphaned events
11763 * - IS_ERR() on error
97dee4f3
PZ
11764 */
11765static struct perf_event *
11766inherit_event(struct perf_event *parent_event,
11767 struct task_struct *parent,
11768 struct perf_event_context *parent_ctx,
11769 struct task_struct *child,
11770 struct perf_event *group_leader,
11771 struct perf_event_context *child_ctx)
11772{
8ca2bd41 11773 enum perf_event_state parent_state = parent_event->state;
97dee4f3 11774 struct perf_event *child_event;
cee010ec 11775 unsigned long flags;
97dee4f3
PZ
11776
11777 /*
11778 * Instead of creating recursive hierarchies of events,
11779 * we link inherited events back to the original parent,
11780 * which has a filp for sure, which we use as the reference
11781 * count:
11782 */
11783 if (parent_event->parent)
11784 parent_event = parent_event->parent;
11785
11786 child_event = perf_event_alloc(&parent_event->attr,
11787 parent_event->cpu,
d580ff86 11788 child,
97dee4f3 11789 group_leader, parent_event,
79dff51e 11790 NULL, NULL, -1);
97dee4f3
PZ
11791 if (IS_ERR(child_event))
11792 return child_event;
a6fa941d 11793
313ccb96
JO
11794
11795 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11796 !child_ctx->task_ctx_data) {
11797 struct pmu *pmu = child_event->pmu;
11798
11799 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11800 GFP_KERNEL);
11801 if (!child_ctx->task_ctx_data) {
11802 free_event(child_event);
697d8778 11803 return ERR_PTR(-ENOMEM);
313ccb96
JO
11804 }
11805 }
11806
c6e5b732
PZ
11807 /*
11808 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11809 * must be under the same lock in order to serialize against
11810 * perf_event_release_kernel(), such that either we must observe
11811 * is_orphaned_event() or they will observe us on the child_list.
11812 */
11813 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
11814 if (is_orphaned_event(parent_event) ||
11815 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 11816 mutex_unlock(&parent_event->child_mutex);
313ccb96 11817 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
11818 free_event(child_event);
11819 return NULL;
11820 }
11821
97dee4f3
PZ
11822 get_ctx(child_ctx);
11823
11824 /*
11825 * Make the child state follow the state of the parent event,
11826 * not its attr.disabled bit. We hold the parent's mutex,
11827 * so we won't race with perf_event_{en, dis}able_family.
11828 */
1929def9 11829 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
11830 child_event->state = PERF_EVENT_STATE_INACTIVE;
11831 else
11832 child_event->state = PERF_EVENT_STATE_OFF;
11833
11834 if (parent_event->attr.freq) {
11835 u64 sample_period = parent_event->hw.sample_period;
11836 struct hw_perf_event *hwc = &child_event->hw;
11837
11838 hwc->sample_period = sample_period;
11839 hwc->last_period = sample_period;
11840
11841 local64_set(&hwc->period_left, sample_period);
11842 }
11843
11844 child_event->ctx = child_ctx;
11845 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
11846 child_event->overflow_handler_context
11847 = parent_event->overflow_handler_context;
97dee4f3 11848
614b6780
TG
11849 /*
11850 * Precalculate sample_data sizes
11851 */
11852 perf_event__header_size(child_event);
6844c09d 11853 perf_event__id_header_size(child_event);
614b6780 11854
97dee4f3
PZ
11855 /*
11856 * Link it up in the child's context:
11857 */
cee010ec 11858 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 11859 add_event_to_ctx(child_event, child_ctx);
cee010ec 11860 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 11861
97dee4f3
PZ
11862 /*
11863 * Link this into the parent event's child list
11864 */
97dee4f3
PZ
11865 list_add_tail(&child_event->child_list, &parent_event->child_list);
11866 mutex_unlock(&parent_event->child_mutex);
11867
11868 return child_event;
11869}
11870
d8a8cfc7
PZ
11871/*
11872 * Inherits an event group.
11873 *
11874 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11875 * This matches with perf_event_release_kernel() removing all child events.
11876 *
11877 * Returns:
11878 * - 0 on success
11879 * - <0 on error
11880 */
97dee4f3
PZ
11881static int inherit_group(struct perf_event *parent_event,
11882 struct task_struct *parent,
11883 struct perf_event_context *parent_ctx,
11884 struct task_struct *child,
11885 struct perf_event_context *child_ctx)
11886{
11887 struct perf_event *leader;
11888 struct perf_event *sub;
11889 struct perf_event *child_ctr;
11890
11891 leader = inherit_event(parent_event, parent, parent_ctx,
11892 child, NULL, child_ctx);
11893 if (IS_ERR(leader))
11894 return PTR_ERR(leader);
d8a8cfc7
PZ
11895 /*
11896 * @leader can be NULL here because of is_orphaned_event(). In this
11897 * case inherit_event() will create individual events, similar to what
11898 * perf_group_detach() would do anyway.
11899 */
edb39592 11900 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
11901 child_ctr = inherit_event(sub, parent, parent_ctx,
11902 child, leader, child_ctx);
11903 if (IS_ERR(child_ctr))
11904 return PTR_ERR(child_ctr);
f733c6b5 11905
00496fe5 11906 if (sub->aux_event == parent_event && child_ctr &&
f733c6b5
AS
11907 !perf_get_aux_event(child_ctr, leader))
11908 return -EINVAL;
97dee4f3
PZ
11909 }
11910 return 0;
889ff015
FW
11911}
11912
d8a8cfc7
PZ
11913/*
11914 * Creates the child task context and tries to inherit the event-group.
11915 *
11916 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11917 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11918 * consistent with perf_event_release_kernel() removing all child events.
11919 *
11920 * Returns:
11921 * - 0 on success
11922 * - <0 on error
11923 */
889ff015
FW
11924static int
11925inherit_task_group(struct perf_event *event, struct task_struct *parent,
11926 struct perf_event_context *parent_ctx,
8dc85d54 11927 struct task_struct *child, int ctxn,
889ff015
FW
11928 int *inherited_all)
11929{
11930 int ret;
8dc85d54 11931 struct perf_event_context *child_ctx;
889ff015
FW
11932
11933 if (!event->attr.inherit) {
11934 *inherited_all = 0;
11935 return 0;
bbbee908
PZ
11936 }
11937
fe4b04fa 11938 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
11939 if (!child_ctx) {
11940 /*
11941 * This is executed from the parent task context, so
11942 * inherit events that have been marked for cloning.
11943 * First allocate and initialize a context for the
11944 * child.
11945 */
734df5ab 11946 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
11947 if (!child_ctx)
11948 return -ENOMEM;
bbbee908 11949
8dc85d54 11950 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
11951 }
11952
11953 ret = inherit_group(event, parent, parent_ctx,
11954 child, child_ctx);
11955
11956 if (ret)
11957 *inherited_all = 0;
11958
11959 return ret;
bbbee908
PZ
11960}
11961
9b51f66d 11962/*
cdd6c482 11963 * Initialize the perf_event context in task_struct
9b51f66d 11964 */
985c8dcb 11965static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 11966{
889ff015 11967 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
11968 struct perf_event_context *cloned_ctx;
11969 struct perf_event *event;
9b51f66d 11970 struct task_struct *parent = current;
564c2b21 11971 int inherited_all = 1;
dddd3379 11972 unsigned long flags;
6ab423e0 11973 int ret = 0;
9b51f66d 11974
8dc85d54 11975 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
11976 return 0;
11977
ad3a37de 11978 /*
25346b93
PM
11979 * If the parent's context is a clone, pin it so it won't get
11980 * swapped under us.
ad3a37de 11981 */
8dc85d54 11982 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
11983 if (!parent_ctx)
11984 return 0;
25346b93 11985
ad3a37de
PM
11986 /*
11987 * No need to check if parent_ctx != NULL here; since we saw
11988 * it non-NULL earlier, the only reason for it to become NULL
11989 * is if we exit, and since we're currently in the middle of
11990 * a fork we can't be exiting at the same time.
11991 */
ad3a37de 11992
9b51f66d
IM
11993 /*
11994 * Lock the parent list. No need to lock the child - not PID
11995 * hashed yet and not running, so nobody can access it.
11996 */
d859e29f 11997 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
11998
11999 /*
12000 * We dont have to disable NMIs - we are only looking at
12001 * the list, not manipulating it:
12002 */
6e6804d2 12003 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54
PZ
12004 ret = inherit_task_group(event, parent, parent_ctx,
12005 child, ctxn, &inherited_all);
889ff015 12006 if (ret)
e7cc4865 12007 goto out_unlock;
889ff015 12008 }
b93f7978 12009
dddd3379
TG
12010 /*
12011 * We can't hold ctx->lock when iterating the ->flexible_group list due
12012 * to allocations, but we need to prevent rotation because
12013 * rotate_ctx() will change the list from interrupt context.
12014 */
12015 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12016 parent_ctx->rotate_disable = 1;
12017 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12018
6e6804d2 12019 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54
PZ
12020 ret = inherit_task_group(event, parent, parent_ctx,
12021 child, ctxn, &inherited_all);
889ff015 12022 if (ret)
e7cc4865 12023 goto out_unlock;
564c2b21
PM
12024 }
12025
dddd3379
TG
12026 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12027 parent_ctx->rotate_disable = 0;
dddd3379 12028
8dc85d54 12029 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 12030
05cbaa28 12031 if (child_ctx && inherited_all) {
564c2b21
PM
12032 /*
12033 * Mark the child context as a clone of the parent
12034 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
12035 *
12036 * Note that if the parent is a clone, the holding of
12037 * parent_ctx->lock avoids it from being uncloned.
564c2b21 12038 */
c5ed5145 12039 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
12040 if (cloned_ctx) {
12041 child_ctx->parent_ctx = cloned_ctx;
25346b93 12042 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
12043 } else {
12044 child_ctx->parent_ctx = parent_ctx;
12045 child_ctx->parent_gen = parent_ctx->generation;
12046 }
12047 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
12048 }
12049
c5ed5145 12050 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 12051out_unlock:
d859e29f 12052 mutex_unlock(&parent_ctx->mutex);
6ab423e0 12053
25346b93 12054 perf_unpin_context(parent_ctx);
fe4b04fa 12055 put_ctx(parent_ctx);
ad3a37de 12056
6ab423e0 12057 return ret;
9b51f66d
IM
12058}
12059
8dc85d54
PZ
12060/*
12061 * Initialize the perf_event context in task_struct
12062 */
12063int perf_event_init_task(struct task_struct *child)
12064{
12065 int ctxn, ret;
12066
8550d7cb
ON
12067 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12068 mutex_init(&child->perf_event_mutex);
12069 INIT_LIST_HEAD(&child->perf_event_list);
12070
8dc85d54
PZ
12071 for_each_task_context_nr(ctxn) {
12072 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
12073 if (ret) {
12074 perf_event_free_task(child);
8dc85d54 12075 return ret;
6c72e350 12076 }
8dc85d54
PZ
12077 }
12078
12079 return 0;
12080}
12081
220b140b
PM
12082static void __init perf_event_init_all_cpus(void)
12083{
b28ab83c 12084 struct swevent_htable *swhash;
220b140b 12085 int cpu;
220b140b 12086
a63fbed7
TG
12087 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12088
220b140b 12089 for_each_possible_cpu(cpu) {
b28ab83c
PZ
12090 swhash = &per_cpu(swevent_htable, cpu);
12091 mutex_init(&swhash->hlist_mutex);
2fde4f94 12092 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
12093
12094 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12095 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 12096
058fe1c0
DCC
12097#ifdef CONFIG_CGROUP_PERF
12098 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12099#endif
e48c1788 12100 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
12101 }
12102}
12103
d18bf422 12104static void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 12105{
108b02cf 12106 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 12107
b28ab83c 12108 mutex_lock(&swhash->hlist_mutex);
059fcd8c 12109 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
12110 struct swevent_hlist *hlist;
12111
b28ab83c
PZ
12112 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12113 WARN_ON(!hlist);
12114 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 12115 }
b28ab83c 12116 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
12117}
12118
2965faa5 12119#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 12120static void __perf_event_exit_context(void *__info)
0793a61d 12121{
108b02cf 12122 struct perf_event_context *ctx = __info;
fae3fde6
PZ
12123 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12124 struct perf_event *event;
0793a61d 12125
fae3fde6 12126 raw_spin_lock(&ctx->lock);
0ee098c9 12127 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 12128 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 12129 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 12130 raw_spin_unlock(&ctx->lock);
0793a61d 12131}
108b02cf
PZ
12132
12133static void perf_event_exit_cpu_context(int cpu)
12134{
a63fbed7 12135 struct perf_cpu_context *cpuctx;
108b02cf
PZ
12136 struct perf_event_context *ctx;
12137 struct pmu *pmu;
108b02cf 12138
a63fbed7
TG
12139 mutex_lock(&pmus_lock);
12140 list_for_each_entry(pmu, &pmus, entry) {
12141 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12142 ctx = &cpuctx->ctx;
108b02cf
PZ
12143
12144 mutex_lock(&ctx->mutex);
12145 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 12146 cpuctx->online = 0;
108b02cf
PZ
12147 mutex_unlock(&ctx->mutex);
12148 }
a63fbed7
TG
12149 cpumask_clear_cpu(cpu, perf_online_mask);
12150 mutex_unlock(&pmus_lock);
108b02cf 12151}
00e16c3d
TG
12152#else
12153
12154static void perf_event_exit_cpu_context(int cpu) { }
12155
12156#endif
108b02cf 12157
a63fbed7
TG
12158int perf_event_init_cpu(unsigned int cpu)
12159{
12160 struct perf_cpu_context *cpuctx;
12161 struct perf_event_context *ctx;
12162 struct pmu *pmu;
12163
12164 perf_swevent_init_cpu(cpu);
12165
12166 mutex_lock(&pmus_lock);
12167 cpumask_set_cpu(cpu, perf_online_mask);
12168 list_for_each_entry(pmu, &pmus, entry) {
12169 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12170 ctx = &cpuctx->ctx;
12171
12172 mutex_lock(&ctx->mutex);
12173 cpuctx->online = 1;
12174 mutex_unlock(&ctx->mutex);
12175 }
12176 mutex_unlock(&pmus_lock);
12177
12178 return 0;
12179}
12180
00e16c3d 12181int perf_event_exit_cpu(unsigned int cpu)
0793a61d 12182{
e3703f8c 12183 perf_event_exit_cpu_context(cpu);
00e16c3d 12184 return 0;
0793a61d 12185}
0793a61d 12186
c277443c
PZ
12187static int
12188perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12189{
12190 int cpu;
12191
12192 for_each_online_cpu(cpu)
12193 perf_event_exit_cpu(cpu);
12194
12195 return NOTIFY_OK;
12196}
12197
12198/*
12199 * Run the perf reboot notifier at the very last possible moment so that
12200 * the generic watchdog code runs as long as possible.
12201 */
12202static struct notifier_block perf_reboot_notifier = {
12203 .notifier_call = perf_reboot,
12204 .priority = INT_MIN,
12205};
12206
cdd6c482 12207void __init perf_event_init(void)
0793a61d 12208{
3c502e7a
JW
12209 int ret;
12210
2e80a82a
PZ
12211 idr_init(&pmu_idr);
12212
220b140b 12213 perf_event_init_all_cpus();
b0a873eb 12214 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
12215 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12216 perf_pmu_register(&perf_cpu_clock, NULL, -1);
12217 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 12218 perf_tp_register();
00e16c3d 12219 perf_event_init_cpu(smp_processor_id());
c277443c 12220 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
12221
12222 ret = init_hw_breakpoint();
12223 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 12224
b01c3a00
JO
12225 /*
12226 * Build time assertion that we keep the data_head at the intended
12227 * location. IOW, validation we got the __reserved[] size right.
12228 */
12229 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12230 != 1024);
0793a61d 12231}
abe43400 12232
fd979c01
CS
12233ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12234 char *page)
12235{
12236 struct perf_pmu_events_attr *pmu_attr =
12237 container_of(attr, struct perf_pmu_events_attr, attr);
12238
12239 if (pmu_attr->event_str)
12240 return sprintf(page, "%s\n", pmu_attr->event_str);
12241
12242 return 0;
12243}
675965b0 12244EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 12245
abe43400
PZ
12246static int __init perf_event_sysfs_init(void)
12247{
12248 struct pmu *pmu;
12249 int ret;
12250
12251 mutex_lock(&pmus_lock);
12252
12253 ret = bus_register(&pmu_bus);
12254 if (ret)
12255 goto unlock;
12256
12257 list_for_each_entry(pmu, &pmus, entry) {
12258 if (!pmu->name || pmu->type < 0)
12259 continue;
12260
12261 ret = pmu_dev_alloc(pmu);
12262 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12263 }
12264 pmu_bus_running = 1;
12265 ret = 0;
12266
12267unlock:
12268 mutex_unlock(&pmus_lock);
12269
12270 return ret;
12271}
12272device_initcall(perf_event_sysfs_init);
e5d1367f
SE
12273
12274#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
12275static struct cgroup_subsys_state *
12276perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
12277{
12278 struct perf_cgroup *jc;
e5d1367f 12279
1b15d055 12280 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
12281 if (!jc)
12282 return ERR_PTR(-ENOMEM);
12283
e5d1367f
SE
12284 jc->info = alloc_percpu(struct perf_cgroup_info);
12285 if (!jc->info) {
12286 kfree(jc);
12287 return ERR_PTR(-ENOMEM);
12288 }
12289
e5d1367f
SE
12290 return &jc->css;
12291}
12292
eb95419b 12293static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 12294{
eb95419b
TH
12295 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12296
e5d1367f
SE
12297 free_percpu(jc->info);
12298 kfree(jc);
12299}
12300
12301static int __perf_cgroup_move(void *info)
12302{
12303 struct task_struct *task = info;
ddaaf4e2 12304 rcu_read_lock();
e5d1367f 12305 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 12306 rcu_read_unlock();
e5d1367f
SE
12307 return 0;
12308}
12309
1f7dd3e5 12310static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 12311{
bb9d97b6 12312 struct task_struct *task;
1f7dd3e5 12313 struct cgroup_subsys_state *css;
bb9d97b6 12314
1f7dd3e5 12315 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 12316 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
12317}
12318
073219e9 12319struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
12320 .css_alloc = perf_cgroup_css_alloc,
12321 .css_free = perf_cgroup_css_free,
bb9d97b6 12322 .attach = perf_cgroup_attach,
968ebff1
TH
12323 /*
12324 * Implicitly enable on dfl hierarchy so that perf events can
12325 * always be filtered by cgroup2 path as long as perf_event
12326 * controller is not mounted on a legacy hierarchy.
12327 */
12328 .implicit_on_dfl = true,
8cfd8147 12329 .threaded = true,
e5d1367f
SE
12330};
12331#endif /* CONFIG_CGROUP_PERF */