]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/events/core.c
Merge tag 'powerpc-4.13-8' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-artful-kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6
PZ
211
212 WARN_ON_ONCE(!irqs_disabled());
213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 WARN_ON_ONCE(!irqs_disabled());
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
9e630205
SE
433static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
e5d1367f
SE
585#ifdef CONFIG_CGROUP_PERF
586
e5d1367f
SE
587static inline bool
588perf_cgroup_match(struct perf_event *event)
589{
590 struct perf_event_context *ctx = event->ctx;
591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
ef824fa1
TH
593 /* @event doesn't care about cgroup */
594 if (!event->cgrp)
595 return true;
596
597 /* wants specific cgroup scope but @cpuctx isn't associated with any */
598 if (!cpuctx->cgrp)
599 return false;
600
601 /*
602 * Cgroup scoping is recursive. An event enabled for a cgroup is
603 * also enabled for all its descendant cgroups. If @cpuctx's
604 * cgroup is a descendant of @event's (the test covers identity
605 * case), it's a match.
606 */
607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608 event->cgrp->css.cgroup);
e5d1367f
SE
609}
610
e5d1367f
SE
611static inline void perf_detach_cgroup(struct perf_event *event)
612{
4e2ba650 613 css_put(&event->cgrp->css);
e5d1367f
SE
614 event->cgrp = NULL;
615}
616
617static inline int is_cgroup_event(struct perf_event *event)
618{
619 return event->cgrp != NULL;
620}
621
622static inline u64 perf_cgroup_event_time(struct perf_event *event)
623{
624 struct perf_cgroup_info *t;
625
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 return t->time;
628}
629
630static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631{
632 struct perf_cgroup_info *info;
633 u64 now;
634
635 now = perf_clock();
636
637 info = this_cpu_ptr(cgrp->info);
638
639 info->time += now - info->timestamp;
640 info->timestamp = now;
641}
642
643static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644{
645 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646 if (cgrp_out)
647 __update_cgrp_time(cgrp_out);
648}
649
650static inline void update_cgrp_time_from_event(struct perf_event *event)
651{
3f7cce3c
SE
652 struct perf_cgroup *cgrp;
653
e5d1367f 654 /*
3f7cce3c
SE
655 * ensure we access cgroup data only when needed and
656 * when we know the cgroup is pinned (css_get)
e5d1367f 657 */
3f7cce3c 658 if (!is_cgroup_event(event))
e5d1367f
SE
659 return;
660
614e4c4e 661 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
662 /*
663 * Do not update time when cgroup is not active
664 */
665 if (cgrp == event->cgrp)
666 __update_cgrp_time(event->cgrp);
e5d1367f
SE
667}
668
669static inline void
3f7cce3c
SE
670perf_cgroup_set_timestamp(struct task_struct *task,
671 struct perf_event_context *ctx)
e5d1367f
SE
672{
673 struct perf_cgroup *cgrp;
674 struct perf_cgroup_info *info;
675
3f7cce3c
SE
676 /*
677 * ctx->lock held by caller
678 * ensure we do not access cgroup data
679 * unless we have the cgroup pinned (css_get)
680 */
681 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
682 return;
683
614e4c4e 684 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 685 info = this_cpu_ptr(cgrp->info);
3f7cce3c 686 info->timestamp = ctx->timestamp;
e5d1367f
SE
687}
688
058fe1c0
DCC
689static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
e5d1367f
SE
691#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
692#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
693
694/*
695 * reschedule events based on the cgroup constraint of task.
696 *
697 * mode SWOUT : schedule out everything
698 * mode SWIN : schedule in based on cgroup for next
699 */
18ab2cd3 700static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
701{
702 struct perf_cpu_context *cpuctx;
058fe1c0 703 struct list_head *list;
e5d1367f
SE
704 unsigned long flags;
705
706 /*
058fe1c0
DCC
707 * Disable interrupts and preemption to avoid this CPU's
708 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
709 */
710 local_irq_save(flags);
711
058fe1c0
DCC
712 list = this_cpu_ptr(&cgrp_cpuctx_list);
713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 715
058fe1c0
DCC
716 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 718
058fe1c0
DCC
719 if (mode & PERF_CGROUP_SWOUT) {
720 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721 /*
722 * must not be done before ctxswout due
723 * to event_filter_match() in event_sched_out()
724 */
725 cpuctx->cgrp = NULL;
726 }
e5d1367f 727
058fe1c0
DCC
728 if (mode & PERF_CGROUP_SWIN) {
729 WARN_ON_ONCE(cpuctx->cgrp);
730 /*
731 * set cgrp before ctxsw in to allow
732 * event_filter_match() to not have to pass
733 * task around
734 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 * because cgorup events are only per-cpu
736 */
737 cpuctx->cgrp = perf_cgroup_from_task(task,
738 &cpuctx->ctx);
739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 740 }
058fe1c0
DCC
741 perf_pmu_enable(cpuctx->ctx.pmu);
742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
743 }
744
e5d1367f
SE
745 local_irq_restore(flags);
746}
747
a8d757ef
SE
748static inline void perf_cgroup_sched_out(struct task_struct *task,
749 struct task_struct *next)
e5d1367f 750{
a8d757ef
SE
751 struct perf_cgroup *cgrp1;
752 struct perf_cgroup *cgrp2 = NULL;
753
ddaaf4e2 754 rcu_read_lock();
a8d757ef
SE
755 /*
756 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
757 * we do not need to pass the ctx here because we know
758 * we are holding the rcu lock
a8d757ef 759 */
614e4c4e 760 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 761 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
762
763 /*
764 * only schedule out current cgroup events if we know
765 * that we are switching to a different cgroup. Otherwise,
766 * do no touch the cgroup events.
767 */
768 if (cgrp1 != cgrp2)
769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
770
771 rcu_read_unlock();
e5d1367f
SE
772}
773
a8d757ef
SE
774static inline void perf_cgroup_sched_in(struct task_struct *prev,
775 struct task_struct *task)
e5d1367f 776{
a8d757ef
SE
777 struct perf_cgroup *cgrp1;
778 struct perf_cgroup *cgrp2 = NULL;
779
ddaaf4e2 780 rcu_read_lock();
a8d757ef
SE
781 /*
782 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
783 * we do not need to pass the ctx here because we know
784 * we are holding the rcu lock
a8d757ef 785 */
614e4c4e 786 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 787 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
788
789 /*
790 * only need to schedule in cgroup events if we are changing
791 * cgroup during ctxsw. Cgroup events were not scheduled
792 * out of ctxsw out if that was not the case.
793 */
794 if (cgrp1 != cgrp2)
795 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
796
797 rcu_read_unlock();
e5d1367f
SE
798}
799
800static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801 struct perf_event_attr *attr,
802 struct perf_event *group_leader)
803{
804 struct perf_cgroup *cgrp;
805 struct cgroup_subsys_state *css;
2903ff01
AV
806 struct fd f = fdget(fd);
807 int ret = 0;
e5d1367f 808
2903ff01 809 if (!f.file)
e5d1367f
SE
810 return -EBADF;
811
b583043e 812 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 813 &perf_event_cgrp_subsys);
3db272c0
LZ
814 if (IS_ERR(css)) {
815 ret = PTR_ERR(css);
816 goto out;
817 }
e5d1367f
SE
818
819 cgrp = container_of(css, struct perf_cgroup, css);
820 event->cgrp = cgrp;
821
822 /*
823 * all events in a group must monitor
824 * the same cgroup because a task belongs
825 * to only one perf cgroup at a time
826 */
827 if (group_leader && group_leader->cgrp != cgrp) {
828 perf_detach_cgroup(event);
829 ret = -EINVAL;
e5d1367f 830 }
3db272c0 831out:
2903ff01 832 fdput(f);
e5d1367f
SE
833 return ret;
834}
835
836static inline void
837perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838{
839 struct perf_cgroup_info *t;
840 t = per_cpu_ptr(event->cgrp->info, event->cpu);
841 event->shadow_ctx_time = now - t->timestamp;
842}
843
844static inline void
845perf_cgroup_defer_enabled(struct perf_event *event)
846{
847 /*
848 * when the current task's perf cgroup does not match
849 * the event's, we need to remember to call the
850 * perf_mark_enable() function the first time a task with
851 * a matching perf cgroup is scheduled in.
852 */
853 if (is_cgroup_event(event) && !perf_cgroup_match(event))
854 event->cgrp_defer_enabled = 1;
855}
856
857static inline void
858perf_cgroup_mark_enabled(struct perf_event *event,
859 struct perf_event_context *ctx)
860{
861 struct perf_event *sub;
862 u64 tstamp = perf_event_time(event);
863
864 if (!event->cgrp_defer_enabled)
865 return;
866
867 event->cgrp_defer_enabled = 0;
868
869 event->tstamp_enabled = tstamp - event->total_time_enabled;
870 list_for_each_entry(sub, &event->sibling_list, group_entry) {
871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873 sub->cgrp_defer_enabled = 0;
874 }
875 }
876}
db4a8356
DCC
877
878/*
879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880 * cleared when last cgroup event is removed.
881 */
882static inline void
883list_update_cgroup_event(struct perf_event *event,
884 struct perf_event_context *ctx, bool add)
885{
886 struct perf_cpu_context *cpuctx;
058fe1c0 887 struct list_head *cpuctx_entry;
db4a8356
DCC
888
889 if (!is_cgroup_event(event))
890 return;
891
892 if (add && ctx->nr_cgroups++)
893 return;
894 else if (!add && --ctx->nr_cgroups)
895 return;
896 /*
897 * Because cgroup events are always per-cpu events,
898 * this will always be called from the right CPU.
899 */
900 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903 if (add) {
904 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906 cpuctx->cgrp = event->cgrp;
907 } else {
908 list_del(cpuctx_entry);
8fc31ce8 909 cpuctx->cgrp = NULL;
058fe1c0 910 }
db4a8356
DCC
911}
912
e5d1367f
SE
913#else /* !CONFIG_CGROUP_PERF */
914
915static inline bool
916perf_cgroup_match(struct perf_event *event)
917{
918 return true;
919}
920
921static inline void perf_detach_cgroup(struct perf_event *event)
922{}
923
924static inline int is_cgroup_event(struct perf_event *event)
925{
926 return 0;
927}
928
e5d1367f
SE
929static inline void update_cgrp_time_from_event(struct perf_event *event)
930{
931}
932
933static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934{
935}
936
a8d757ef
SE
937static inline void perf_cgroup_sched_out(struct task_struct *task,
938 struct task_struct *next)
e5d1367f
SE
939{
940}
941
a8d757ef
SE
942static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 struct task_struct *task)
e5d1367f
SE
944{
945}
946
947static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 struct perf_event_attr *attr,
949 struct perf_event *group_leader)
950{
951 return -EINVAL;
952}
953
954static inline void
3f7cce3c
SE
955perf_cgroup_set_timestamp(struct task_struct *task,
956 struct perf_event_context *ctx)
e5d1367f
SE
957{
958}
959
960void
961perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962{
963}
964
965static inline void
966perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967{
968}
969
970static inline u64 perf_cgroup_event_time(struct perf_event *event)
971{
972 return 0;
973}
974
975static inline void
976perf_cgroup_defer_enabled(struct perf_event *event)
977{
978}
979
980static inline void
981perf_cgroup_mark_enabled(struct perf_event *event,
982 struct perf_event_context *ctx)
983{
984}
db4a8356
DCC
985
986static inline void
987list_update_cgroup_event(struct perf_event *event,
988 struct perf_event_context *ctx, bool add)
989{
990}
991
e5d1367f
SE
992#endif
993
9e630205
SE
994/*
995 * set default to be dependent on timer tick just
996 * like original code
997 */
998#define PERF_CPU_HRTIMER (1000 / HZ)
999/*
8a1115ff 1000 * function must be called with interrupts disabled
9e630205 1001 */
272325c4 1002static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1003{
1004 struct perf_cpu_context *cpuctx;
9e630205
SE
1005 int rotations = 0;
1006
1007 WARN_ON(!irqs_disabled());
1008
1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1010 rotations = perf_rotate_context(cpuctx);
1011
4cfafd30
PZ
1012 raw_spin_lock(&cpuctx->hrtimer_lock);
1013 if (rotations)
9e630205 1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1015 else
1016 cpuctx->hrtimer_active = 0;
1017 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1018
4cfafd30 1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1020}
1021
272325c4 1022static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1023{
272325c4 1024 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1025 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1026 u64 interval;
9e630205
SE
1027
1028 /* no multiplexing needed for SW PMU */
1029 if (pmu->task_ctx_nr == perf_sw_context)
1030 return;
1031
62b85639
SE
1032 /*
1033 * check default is sane, if not set then force to
1034 * default interval (1/tick)
1035 */
272325c4
PZ
1036 interval = pmu->hrtimer_interval_ms;
1037 if (interval < 1)
1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1039
272325c4 1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1041
4cfafd30
PZ
1042 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1044 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1045}
1046
272325c4 1047static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1048{
272325c4 1049 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1050 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1051 unsigned long flags;
9e630205
SE
1052
1053 /* not for SW PMU */
1054 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1055 return 0;
9e630205 1056
4cfafd30
PZ
1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 if (!cpuctx->hrtimer_active) {
1059 cpuctx->hrtimer_active = 1;
1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 }
1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1064
272325c4 1065 return 0;
9e630205
SE
1066}
1067
33696fc0 1068void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1069{
33696fc0
PZ
1070 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 if (!(*count)++)
1072 pmu->pmu_disable(pmu);
9e35ad38 1073}
9e35ad38 1074
33696fc0 1075void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1076{
33696fc0
PZ
1077 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 if (!--(*count))
1079 pmu->pmu_enable(pmu);
9e35ad38 1080}
9e35ad38 1081
2fde4f94 1082static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1083
1084/*
2fde4f94
MR
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1089 */
2fde4f94 1090static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1091{
2fde4f94 1092 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1093
e9d2b064 1094 WARN_ON(!irqs_disabled());
b5ab4cd5 1095
2fde4f94
MR
1096 WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098 list_add(&ctx->active_ctx_list, head);
1099}
1100
1101static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102{
1103 WARN_ON(!irqs_disabled());
1104
1105 WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107 list_del_init(&ctx->active_ctx_list);
9e35ad38 1108}
9e35ad38 1109
cdd6c482 1110static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1111{
e5289d4a 1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1113}
1114
4af57ef2
YZ
1115static void free_ctx(struct rcu_head *head)
1116{
1117 struct perf_event_context *ctx;
1118
1119 ctx = container_of(head, struct perf_event_context, rcu_head);
1120 kfree(ctx->task_ctx_data);
1121 kfree(ctx);
1122}
1123
cdd6c482 1124static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1125{
564c2b21
PM
1126 if (atomic_dec_and_test(&ctx->refcount)) {
1127 if (ctx->parent_ctx)
1128 put_ctx(ctx->parent_ctx);
63b6da39 1129 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1130 put_task_struct(ctx->task);
4af57ef2 1131 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1132 }
a63eaf34
PM
1133}
1134
f63a8daa
PZ
1135/*
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1138 *
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141 *
8b10c5e2
PZ
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1144 *
1145 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1146 * perf_event_exit_event()
1147 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1148 *
1149 * - perf_event_init_context() [ parent, 0 ]
1150 * inherit_task_group()
1151 * inherit_group()
1152 * inherit_event()
1153 * perf_event_alloc()
1154 * perf_init_event()
1155 * perf_try_init_event() [ child , 1 ]
1156 *
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1161 *
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1164 * interact.
f63a8daa
PZ
1165 *
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1170 *
1171 * The places that change perf_event::ctx will issue:
1172 *
1173 * perf_remove_from_context();
1174 * synchronize_rcu();
1175 * perf_install_in_context();
1176 *
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1182 *
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185 * function.
1186 *
1187 * Lock order:
79c9ce57 1188 * cred_guard_mutex
f63a8daa
PZ
1189 * task_struct::perf_event_mutex
1190 * perf_event_context::mutex
f63a8daa 1191 * perf_event::child_mutex;
07c4a776 1192 * perf_event_context::lock
f63a8daa
PZ
1193 * perf_event::mmap_mutex
1194 * mmap_sem
1195 */
a83fe28e
PZ
1196static struct perf_event_context *
1197perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1198{
1199 struct perf_event_context *ctx;
1200
1201again:
1202 rcu_read_lock();
1203 ctx = ACCESS_ONCE(event->ctx);
1204 if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 rcu_read_unlock();
1206 goto again;
1207 }
1208 rcu_read_unlock();
1209
a83fe28e 1210 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1211 if (event->ctx != ctx) {
1212 mutex_unlock(&ctx->mutex);
1213 put_ctx(ctx);
1214 goto again;
1215 }
1216
1217 return ctx;
1218}
1219
a83fe28e
PZ
1220static inline struct perf_event_context *
1221perf_event_ctx_lock(struct perf_event *event)
1222{
1223 return perf_event_ctx_lock_nested(event, 0);
1224}
1225
f63a8daa
PZ
1226static void perf_event_ctx_unlock(struct perf_event *event,
1227 struct perf_event_context *ctx)
1228{
1229 mutex_unlock(&ctx->mutex);
1230 put_ctx(ctx);
1231}
1232
211de6eb
PZ
1233/*
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1237 */
1238static __must_check struct perf_event_context *
1239unclone_ctx(struct perf_event_context *ctx)
71a851b4 1240{
211de6eb
PZ
1241 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243 lockdep_assert_held(&ctx->lock);
1244
1245 if (parent_ctx)
71a851b4 1246 ctx->parent_ctx = NULL;
5a3126d4 1247 ctx->generation++;
211de6eb
PZ
1248
1249 return parent_ctx;
71a851b4
PZ
1250}
1251
6844c09d
ACM
1252static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253{
1254 /*
1255 * only top level events have the pid namespace they were created in
1256 */
1257 if (event->parent)
1258 event = event->parent;
1259
1260 return task_tgid_nr_ns(p, event->ns);
1261}
1262
1263static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264{
1265 /*
1266 * only top level events have the pid namespace they were created in
1267 */
1268 if (event->parent)
1269 event = event->parent;
1270
1271 return task_pid_nr_ns(p, event->ns);
1272}
1273
7f453c24 1274/*
cdd6c482 1275 * If we inherit events we want to return the parent event id
7f453c24
PZ
1276 * to userspace.
1277 */
cdd6c482 1278static u64 primary_event_id(struct perf_event *event)
7f453c24 1279{
cdd6c482 1280 u64 id = event->id;
7f453c24 1281
cdd6c482
IM
1282 if (event->parent)
1283 id = event->parent->id;
7f453c24
PZ
1284
1285 return id;
1286}
1287
25346b93 1288/*
cdd6c482 1289 * Get the perf_event_context for a task and lock it.
63b6da39 1290 *
25346b93
PM
1291 * This has to cope with with the fact that until it is locked,
1292 * the context could get moved to another task.
1293 */
cdd6c482 1294static struct perf_event_context *
8dc85d54 1295perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1296{
cdd6c482 1297 struct perf_event_context *ctx;
25346b93 1298
9ed6060d 1299retry:
058ebd0e
PZ
1300 /*
1301 * One of the few rules of preemptible RCU is that one cannot do
1302 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1303 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1304 * rcu_read_unlock_special().
1305 *
1306 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1307 * side critical section has interrupts disabled.
058ebd0e 1308 */
2fd59077 1309 local_irq_save(*flags);
058ebd0e 1310 rcu_read_lock();
8dc85d54 1311 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1312 if (ctx) {
1313 /*
1314 * If this context is a clone of another, it might
1315 * get swapped for another underneath us by
cdd6c482 1316 * perf_event_task_sched_out, though the
25346b93
PM
1317 * rcu_read_lock() protects us from any context
1318 * getting freed. Lock the context and check if it
1319 * got swapped before we could get the lock, and retry
1320 * if so. If we locked the right context, then it
1321 * can't get swapped on us any more.
1322 */
2fd59077 1323 raw_spin_lock(&ctx->lock);
8dc85d54 1324 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1325 raw_spin_unlock(&ctx->lock);
058ebd0e 1326 rcu_read_unlock();
2fd59077 1327 local_irq_restore(*flags);
25346b93
PM
1328 goto retry;
1329 }
b49a9e7e 1330
63b6da39
PZ
1331 if (ctx->task == TASK_TOMBSTONE ||
1332 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1333 raw_spin_unlock(&ctx->lock);
b49a9e7e 1334 ctx = NULL;
828b6f0e
PZ
1335 } else {
1336 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1337 }
25346b93
PM
1338 }
1339 rcu_read_unlock();
2fd59077
PM
1340 if (!ctx)
1341 local_irq_restore(*flags);
25346b93
PM
1342 return ctx;
1343}
1344
1345/*
1346 * Get the context for a task and increment its pin_count so it
1347 * can't get swapped to another task. This also increments its
1348 * reference count so that the context can't get freed.
1349 */
8dc85d54
PZ
1350static struct perf_event_context *
1351perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1352{
cdd6c482 1353 struct perf_event_context *ctx;
25346b93
PM
1354 unsigned long flags;
1355
8dc85d54 1356 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1357 if (ctx) {
1358 ++ctx->pin_count;
e625cce1 1359 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1360 }
1361 return ctx;
1362}
1363
cdd6c482 1364static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1365{
1366 unsigned long flags;
1367
e625cce1 1368 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1369 --ctx->pin_count;
e625cce1 1370 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1371}
1372
f67218c3
PZ
1373/*
1374 * Update the record of the current time in a context.
1375 */
1376static void update_context_time(struct perf_event_context *ctx)
1377{
1378 u64 now = perf_clock();
1379
1380 ctx->time += now - ctx->timestamp;
1381 ctx->timestamp = now;
1382}
1383
4158755d
SE
1384static u64 perf_event_time(struct perf_event *event)
1385{
1386 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1387
1388 if (is_cgroup_event(event))
1389 return perf_cgroup_event_time(event);
1390
4158755d
SE
1391 return ctx ? ctx->time : 0;
1392}
1393
f67218c3
PZ
1394/*
1395 * Update the total_time_enabled and total_time_running fields for a event.
1396 */
1397static void update_event_times(struct perf_event *event)
1398{
1399 struct perf_event_context *ctx = event->ctx;
1400 u64 run_end;
1401
3cbaa590
PZ
1402 lockdep_assert_held(&ctx->lock);
1403
f67218c3
PZ
1404 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406 return;
3cbaa590 1407
e5d1367f
SE
1408 /*
1409 * in cgroup mode, time_enabled represents
1410 * the time the event was enabled AND active
1411 * tasks were in the monitored cgroup. This is
1412 * independent of the activity of the context as
1413 * there may be a mix of cgroup and non-cgroup events.
1414 *
1415 * That is why we treat cgroup events differently
1416 * here.
1417 */
1418 if (is_cgroup_event(event))
46cd6a7f 1419 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1420 else if (ctx->is_active)
1421 run_end = ctx->time;
acd1d7c1
PZ
1422 else
1423 run_end = event->tstamp_stopped;
1424
1425 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1426
1427 if (event->state == PERF_EVENT_STATE_INACTIVE)
1428 run_end = event->tstamp_stopped;
1429 else
4158755d 1430 run_end = perf_event_time(event);
f67218c3
PZ
1431
1432 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1433
f67218c3
PZ
1434}
1435
96c21a46
PZ
1436/*
1437 * Update total_time_enabled and total_time_running for all events in a group.
1438 */
1439static void update_group_times(struct perf_event *leader)
1440{
1441 struct perf_event *event;
1442
1443 update_event_times(leader);
1444 list_for_each_entry(event, &leader->sibling_list, group_entry)
1445 update_event_times(event);
1446}
1447
487f05e1
AS
1448static enum event_type_t get_event_type(struct perf_event *event)
1449{
1450 struct perf_event_context *ctx = event->ctx;
1451 enum event_type_t event_type;
1452
1453 lockdep_assert_held(&ctx->lock);
1454
3bda69c1
AS
1455 /*
1456 * It's 'group type', really, because if our group leader is
1457 * pinned, so are we.
1458 */
1459 if (event->group_leader != event)
1460 event = event->group_leader;
1461
487f05e1
AS
1462 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1463 if (!ctx->task)
1464 event_type |= EVENT_CPU;
1465
1466 return event_type;
1467}
1468
889ff015
FW
1469static struct list_head *
1470ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1471{
1472 if (event->attr.pinned)
1473 return &ctx->pinned_groups;
1474 else
1475 return &ctx->flexible_groups;
1476}
1477
fccc714b 1478/*
cdd6c482 1479 * Add a event from the lists for its context.
fccc714b
PZ
1480 * Must be called with ctx->mutex and ctx->lock held.
1481 */
04289bb9 1482static void
cdd6c482 1483list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1484{
c994d613
PZ
1485 lockdep_assert_held(&ctx->lock);
1486
8a49542c
PZ
1487 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1488 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1489
1490 /*
8a49542c
PZ
1491 * If we're a stand alone event or group leader, we go to the context
1492 * list, group events are kept attached to the group so that
1493 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1494 */
8a49542c 1495 if (event->group_leader == event) {
889ff015
FW
1496 struct list_head *list;
1497
4ff6a8de 1498 event->group_caps = event->event_caps;
d6f962b5 1499
889ff015
FW
1500 list = ctx_group_list(event, ctx);
1501 list_add_tail(&event->group_entry, list);
5c148194 1502 }
592903cd 1503
db4a8356 1504 list_update_cgroup_event(event, ctx, true);
e5d1367f 1505
cdd6c482
IM
1506 list_add_rcu(&event->event_entry, &ctx->event_list);
1507 ctx->nr_events++;
1508 if (event->attr.inherit_stat)
bfbd3381 1509 ctx->nr_stat++;
5a3126d4
PZ
1510
1511 ctx->generation++;
04289bb9
IM
1512}
1513
0231bb53
JO
1514/*
1515 * Initialize event state based on the perf_event_attr::disabled.
1516 */
1517static inline void perf_event__state_init(struct perf_event *event)
1518{
1519 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1520 PERF_EVENT_STATE_INACTIVE;
1521}
1522
a723968c 1523static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1524{
1525 int entry = sizeof(u64); /* value */
1526 int size = 0;
1527 int nr = 1;
1528
1529 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1530 size += sizeof(u64);
1531
1532 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1533 size += sizeof(u64);
1534
1535 if (event->attr.read_format & PERF_FORMAT_ID)
1536 entry += sizeof(u64);
1537
1538 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1539 nr += nr_siblings;
c320c7b7
ACM
1540 size += sizeof(u64);
1541 }
1542
1543 size += entry * nr;
1544 event->read_size = size;
1545}
1546
a723968c 1547static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1548{
1549 struct perf_sample_data *data;
c320c7b7
ACM
1550 u16 size = 0;
1551
c320c7b7
ACM
1552 if (sample_type & PERF_SAMPLE_IP)
1553 size += sizeof(data->ip);
1554
6844c09d
ACM
1555 if (sample_type & PERF_SAMPLE_ADDR)
1556 size += sizeof(data->addr);
1557
1558 if (sample_type & PERF_SAMPLE_PERIOD)
1559 size += sizeof(data->period);
1560
c3feedf2
AK
1561 if (sample_type & PERF_SAMPLE_WEIGHT)
1562 size += sizeof(data->weight);
1563
6844c09d
ACM
1564 if (sample_type & PERF_SAMPLE_READ)
1565 size += event->read_size;
1566
d6be9ad6
SE
1567 if (sample_type & PERF_SAMPLE_DATA_SRC)
1568 size += sizeof(data->data_src.val);
1569
fdfbbd07
AK
1570 if (sample_type & PERF_SAMPLE_TRANSACTION)
1571 size += sizeof(data->txn);
1572
6844c09d
ACM
1573 event->header_size = size;
1574}
1575
a723968c
PZ
1576/*
1577 * Called at perf_event creation and when events are attached/detached from a
1578 * group.
1579 */
1580static void perf_event__header_size(struct perf_event *event)
1581{
1582 __perf_event_read_size(event,
1583 event->group_leader->nr_siblings);
1584 __perf_event_header_size(event, event->attr.sample_type);
1585}
1586
6844c09d
ACM
1587static void perf_event__id_header_size(struct perf_event *event)
1588{
1589 struct perf_sample_data *data;
1590 u64 sample_type = event->attr.sample_type;
1591 u16 size = 0;
1592
c320c7b7
ACM
1593 if (sample_type & PERF_SAMPLE_TID)
1594 size += sizeof(data->tid_entry);
1595
1596 if (sample_type & PERF_SAMPLE_TIME)
1597 size += sizeof(data->time);
1598
ff3d527c
AH
1599 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1600 size += sizeof(data->id);
1601
c320c7b7
ACM
1602 if (sample_type & PERF_SAMPLE_ID)
1603 size += sizeof(data->id);
1604
1605 if (sample_type & PERF_SAMPLE_STREAM_ID)
1606 size += sizeof(data->stream_id);
1607
1608 if (sample_type & PERF_SAMPLE_CPU)
1609 size += sizeof(data->cpu_entry);
1610
6844c09d 1611 event->id_header_size = size;
c320c7b7
ACM
1612}
1613
a723968c
PZ
1614static bool perf_event_validate_size(struct perf_event *event)
1615{
1616 /*
1617 * The values computed here will be over-written when we actually
1618 * attach the event.
1619 */
1620 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1621 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1622 perf_event__id_header_size(event);
1623
1624 /*
1625 * Sum the lot; should not exceed the 64k limit we have on records.
1626 * Conservative limit to allow for callchains and other variable fields.
1627 */
1628 if (event->read_size + event->header_size +
1629 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1630 return false;
1631
1632 return true;
1633}
1634
8a49542c
PZ
1635static void perf_group_attach(struct perf_event *event)
1636{
c320c7b7 1637 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1638
a76a82a3
PZ
1639 lockdep_assert_held(&event->ctx->lock);
1640
74c3337c
PZ
1641 /*
1642 * We can have double attach due to group movement in perf_event_open.
1643 */
1644 if (event->attach_state & PERF_ATTACH_GROUP)
1645 return;
1646
8a49542c
PZ
1647 event->attach_state |= PERF_ATTACH_GROUP;
1648
1649 if (group_leader == event)
1650 return;
1651
652884fe
PZ
1652 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1653
4ff6a8de 1654 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1655
1656 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1657 group_leader->nr_siblings++;
c320c7b7
ACM
1658
1659 perf_event__header_size(group_leader);
1660
1661 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1662 perf_event__header_size(pos);
8a49542c
PZ
1663}
1664
a63eaf34 1665/*
cdd6c482 1666 * Remove a event from the lists for its context.
fccc714b 1667 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1668 */
04289bb9 1669static void
cdd6c482 1670list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1671{
652884fe
PZ
1672 WARN_ON_ONCE(event->ctx != ctx);
1673 lockdep_assert_held(&ctx->lock);
1674
8a49542c
PZ
1675 /*
1676 * We can have double detach due to exit/hot-unplug + close.
1677 */
1678 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1679 return;
8a49542c
PZ
1680
1681 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1682
db4a8356 1683 list_update_cgroup_event(event, ctx, false);
e5d1367f 1684
cdd6c482
IM
1685 ctx->nr_events--;
1686 if (event->attr.inherit_stat)
bfbd3381 1687 ctx->nr_stat--;
8bc20959 1688
cdd6c482 1689 list_del_rcu(&event->event_entry);
04289bb9 1690
8a49542c
PZ
1691 if (event->group_leader == event)
1692 list_del_init(&event->group_entry);
5c148194 1693
96c21a46 1694 update_group_times(event);
b2e74a26
SE
1695
1696 /*
1697 * If event was in error state, then keep it
1698 * that way, otherwise bogus counts will be
1699 * returned on read(). The only way to get out
1700 * of error state is by explicit re-enabling
1701 * of the event
1702 */
1703 if (event->state > PERF_EVENT_STATE_OFF)
1704 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1705
1706 ctx->generation++;
050735b0
PZ
1707}
1708
8a49542c 1709static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1710{
1711 struct perf_event *sibling, *tmp;
8a49542c
PZ
1712 struct list_head *list = NULL;
1713
a76a82a3
PZ
1714 lockdep_assert_held(&event->ctx->lock);
1715
8a49542c
PZ
1716 /*
1717 * We can have double detach due to exit/hot-unplug + close.
1718 */
1719 if (!(event->attach_state & PERF_ATTACH_GROUP))
1720 return;
1721
1722 event->attach_state &= ~PERF_ATTACH_GROUP;
1723
1724 /*
1725 * If this is a sibling, remove it from its group.
1726 */
1727 if (event->group_leader != event) {
1728 list_del_init(&event->group_entry);
1729 event->group_leader->nr_siblings--;
c320c7b7 1730 goto out;
8a49542c
PZ
1731 }
1732
1733 if (!list_empty(&event->group_entry))
1734 list = &event->group_entry;
2e2af50b 1735
04289bb9 1736 /*
cdd6c482
IM
1737 * If this was a group event with sibling events then
1738 * upgrade the siblings to singleton events by adding them
8a49542c 1739 * to whatever list we are on.
04289bb9 1740 */
cdd6c482 1741 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1742 if (list)
1743 list_move_tail(&sibling->group_entry, list);
04289bb9 1744 sibling->group_leader = sibling;
d6f962b5
FW
1745
1746 /* Inherit group flags from the previous leader */
4ff6a8de 1747 sibling->group_caps = event->group_caps;
652884fe
PZ
1748
1749 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1750 }
c320c7b7
ACM
1751
1752out:
1753 perf_event__header_size(event->group_leader);
1754
1755 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1756 perf_event__header_size(tmp);
04289bb9
IM
1757}
1758
fadfe7be
JO
1759static bool is_orphaned_event(struct perf_event *event)
1760{
a69b0ca4 1761 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1762}
1763
2c81a647 1764static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1765{
1766 struct pmu *pmu = event->pmu;
1767 return pmu->filter_match ? pmu->filter_match(event) : 1;
1768}
1769
2c81a647
MR
1770/*
1771 * Check whether we should attempt to schedule an event group based on
1772 * PMU-specific filtering. An event group can consist of HW and SW events,
1773 * potentially with a SW leader, so we must check all the filters, to
1774 * determine whether a group is schedulable:
1775 */
1776static inline int pmu_filter_match(struct perf_event *event)
1777{
1778 struct perf_event *child;
1779
1780 if (!__pmu_filter_match(event))
1781 return 0;
1782
1783 list_for_each_entry(child, &event->sibling_list, group_entry) {
1784 if (!__pmu_filter_match(child))
1785 return 0;
1786 }
1787
1788 return 1;
1789}
1790
fa66f07a
SE
1791static inline int
1792event_filter_match(struct perf_event *event)
1793{
0b8f1e2e
PZ
1794 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1795 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1796}
1797
9ffcfa6f
SE
1798static void
1799event_sched_out(struct perf_event *event,
3b6f9e5c 1800 struct perf_cpu_context *cpuctx,
cdd6c482 1801 struct perf_event_context *ctx)
3b6f9e5c 1802{
4158755d 1803 u64 tstamp = perf_event_time(event);
fa66f07a 1804 u64 delta;
652884fe
PZ
1805
1806 WARN_ON_ONCE(event->ctx != ctx);
1807 lockdep_assert_held(&ctx->lock);
1808
fa66f07a
SE
1809 /*
1810 * An event which could not be activated because of
1811 * filter mismatch still needs to have its timings
1812 * maintained, otherwise bogus information is return
1813 * via read() for time_enabled, time_running:
1814 */
0b8f1e2e
PZ
1815 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1816 !event_filter_match(event)) {
e5d1367f 1817 delta = tstamp - event->tstamp_stopped;
fa66f07a 1818 event->tstamp_running += delta;
4158755d 1819 event->tstamp_stopped = tstamp;
fa66f07a
SE
1820 }
1821
cdd6c482 1822 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1823 return;
3b6f9e5c 1824
44377277
AS
1825 perf_pmu_disable(event->pmu);
1826
28a967c3
PZ
1827 event->tstamp_stopped = tstamp;
1828 event->pmu->del(event, 0);
1829 event->oncpu = -1;
cdd6c482
IM
1830 event->state = PERF_EVENT_STATE_INACTIVE;
1831 if (event->pending_disable) {
1832 event->pending_disable = 0;
1833 event->state = PERF_EVENT_STATE_OFF;
970892a9 1834 }
3b6f9e5c 1835
cdd6c482 1836 if (!is_software_event(event))
3b6f9e5c 1837 cpuctx->active_oncpu--;
2fde4f94
MR
1838 if (!--ctx->nr_active)
1839 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1840 if (event->attr.freq && event->attr.sample_freq)
1841 ctx->nr_freq--;
cdd6c482 1842 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1843 cpuctx->exclusive = 0;
44377277
AS
1844
1845 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1846}
1847
d859e29f 1848static void
cdd6c482 1849group_sched_out(struct perf_event *group_event,
d859e29f 1850 struct perf_cpu_context *cpuctx,
cdd6c482 1851 struct perf_event_context *ctx)
d859e29f 1852{
cdd6c482 1853 struct perf_event *event;
fa66f07a 1854 int state = group_event->state;
d859e29f 1855
3f005e7d
MR
1856 perf_pmu_disable(ctx->pmu);
1857
cdd6c482 1858 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1859
1860 /*
1861 * Schedule out siblings (if any):
1862 */
cdd6c482
IM
1863 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1864 event_sched_out(event, cpuctx, ctx);
d859e29f 1865
3f005e7d
MR
1866 perf_pmu_enable(ctx->pmu);
1867
fa66f07a 1868 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1869 cpuctx->exclusive = 0;
1870}
1871
45a0e07a 1872#define DETACH_GROUP 0x01UL
0017960f 1873
0793a61d 1874/*
cdd6c482 1875 * Cross CPU call to remove a performance event
0793a61d 1876 *
cdd6c482 1877 * We disable the event on the hardware level first. After that we
0793a61d
TG
1878 * remove it from the context list.
1879 */
fae3fde6
PZ
1880static void
1881__perf_remove_from_context(struct perf_event *event,
1882 struct perf_cpu_context *cpuctx,
1883 struct perf_event_context *ctx,
1884 void *info)
0793a61d 1885{
45a0e07a 1886 unsigned long flags = (unsigned long)info;
0793a61d 1887
cdd6c482 1888 event_sched_out(event, cpuctx, ctx);
45a0e07a 1889 if (flags & DETACH_GROUP)
46ce0fe9 1890 perf_group_detach(event);
cdd6c482 1891 list_del_event(event, ctx);
39a43640
PZ
1892
1893 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1894 ctx->is_active = 0;
39a43640
PZ
1895 if (ctx->task) {
1896 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1897 cpuctx->task_ctx = NULL;
1898 }
64ce3126 1899 }
0793a61d
TG
1900}
1901
0793a61d 1902/*
cdd6c482 1903 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1904 *
cdd6c482
IM
1905 * If event->ctx is a cloned context, callers must make sure that
1906 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1907 * remains valid. This is OK when called from perf_release since
1908 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1909 * When called from perf_event_exit_task, it's OK because the
c93f7669 1910 * context has been detached from its task.
0793a61d 1911 */
45a0e07a 1912static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1913{
a76a82a3
PZ
1914 struct perf_event_context *ctx = event->ctx;
1915
1916 lockdep_assert_held(&ctx->mutex);
0793a61d 1917
45a0e07a 1918 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1919
1920 /*
1921 * The above event_function_call() can NO-OP when it hits
1922 * TASK_TOMBSTONE. In that case we must already have been detached
1923 * from the context (by perf_event_exit_event()) but the grouping
1924 * might still be in-tact.
1925 */
1926 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1927 if ((flags & DETACH_GROUP) &&
1928 (event->attach_state & PERF_ATTACH_GROUP)) {
1929 /*
1930 * Since in that case we cannot possibly be scheduled, simply
1931 * detach now.
1932 */
1933 raw_spin_lock_irq(&ctx->lock);
1934 perf_group_detach(event);
1935 raw_spin_unlock_irq(&ctx->lock);
1936 }
0793a61d
TG
1937}
1938
d859e29f 1939/*
cdd6c482 1940 * Cross CPU call to disable a performance event
d859e29f 1941 */
fae3fde6
PZ
1942static void __perf_event_disable(struct perf_event *event,
1943 struct perf_cpu_context *cpuctx,
1944 struct perf_event_context *ctx,
1945 void *info)
7b648018 1946{
fae3fde6
PZ
1947 if (event->state < PERF_EVENT_STATE_INACTIVE)
1948 return;
7b648018 1949
fae3fde6
PZ
1950 update_context_time(ctx);
1951 update_cgrp_time_from_event(event);
1952 update_group_times(event);
1953 if (event == event->group_leader)
1954 group_sched_out(event, cpuctx, ctx);
1955 else
1956 event_sched_out(event, cpuctx, ctx);
1957 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1958}
1959
d859e29f 1960/*
cdd6c482 1961 * Disable a event.
c93f7669 1962 *
cdd6c482
IM
1963 * If event->ctx is a cloned context, callers must make sure that
1964 * every task struct that event->ctx->task could possibly point to
c93f7669 1965 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1966 * perf_event_for_each_child or perf_event_for_each because they
1967 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1968 * goes to exit will block in perf_event_exit_event().
1969 *
cdd6c482 1970 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1971 * is the current context on this CPU and preemption is disabled,
cdd6c482 1972 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1973 */
f63a8daa 1974static void _perf_event_disable(struct perf_event *event)
d859e29f 1975{
cdd6c482 1976 struct perf_event_context *ctx = event->ctx;
d859e29f 1977
e625cce1 1978 raw_spin_lock_irq(&ctx->lock);
7b648018 1979 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1980 raw_spin_unlock_irq(&ctx->lock);
7b648018 1981 return;
53cfbf59 1982 }
e625cce1 1983 raw_spin_unlock_irq(&ctx->lock);
7b648018 1984
fae3fde6
PZ
1985 event_function_call(event, __perf_event_disable, NULL);
1986}
1987
1988void perf_event_disable_local(struct perf_event *event)
1989{
1990 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1991}
f63a8daa
PZ
1992
1993/*
1994 * Strictly speaking kernel users cannot create groups and therefore this
1995 * interface does not need the perf_event_ctx_lock() magic.
1996 */
1997void perf_event_disable(struct perf_event *event)
1998{
1999 struct perf_event_context *ctx;
2000
2001 ctx = perf_event_ctx_lock(event);
2002 _perf_event_disable(event);
2003 perf_event_ctx_unlock(event, ctx);
2004}
dcfce4a0 2005EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2006
5aab90ce
JO
2007void perf_event_disable_inatomic(struct perf_event *event)
2008{
2009 event->pending_disable = 1;
2010 irq_work_queue(&event->pending);
2011}
2012
e5d1367f
SE
2013static void perf_set_shadow_time(struct perf_event *event,
2014 struct perf_event_context *ctx,
2015 u64 tstamp)
2016{
2017 /*
2018 * use the correct time source for the time snapshot
2019 *
2020 * We could get by without this by leveraging the
2021 * fact that to get to this function, the caller
2022 * has most likely already called update_context_time()
2023 * and update_cgrp_time_xx() and thus both timestamp
2024 * are identical (or very close). Given that tstamp is,
2025 * already adjusted for cgroup, we could say that:
2026 * tstamp - ctx->timestamp
2027 * is equivalent to
2028 * tstamp - cgrp->timestamp.
2029 *
2030 * Then, in perf_output_read(), the calculation would
2031 * work with no changes because:
2032 * - event is guaranteed scheduled in
2033 * - no scheduled out in between
2034 * - thus the timestamp would be the same
2035 *
2036 * But this is a bit hairy.
2037 *
2038 * So instead, we have an explicit cgroup call to remain
2039 * within the time time source all along. We believe it
2040 * is cleaner and simpler to understand.
2041 */
2042 if (is_cgroup_event(event))
2043 perf_cgroup_set_shadow_time(event, tstamp);
2044 else
2045 event->shadow_ctx_time = tstamp - ctx->timestamp;
2046}
2047
4fe757dd
PZ
2048#define MAX_INTERRUPTS (~0ULL)
2049
2050static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2051static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2052
235c7fc7 2053static int
9ffcfa6f 2054event_sched_in(struct perf_event *event,
235c7fc7 2055 struct perf_cpu_context *cpuctx,
6e37738a 2056 struct perf_event_context *ctx)
235c7fc7 2057{
4158755d 2058 u64 tstamp = perf_event_time(event);
44377277 2059 int ret = 0;
4158755d 2060
63342411
PZ
2061 lockdep_assert_held(&ctx->lock);
2062
cdd6c482 2063 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2064 return 0;
2065
95ff4ca2
AS
2066 WRITE_ONCE(event->oncpu, smp_processor_id());
2067 /*
2068 * Order event::oncpu write to happen before the ACTIVE state
2069 * is visible.
2070 */
2071 smp_wmb();
2072 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2073
2074 /*
2075 * Unthrottle events, since we scheduled we might have missed several
2076 * ticks already, also for a heavily scheduling task there is little
2077 * guarantee it'll get a tick in a timely manner.
2078 */
2079 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2080 perf_log_throttle(event, 1);
2081 event->hw.interrupts = 0;
2082 }
2083
235c7fc7
IM
2084 /*
2085 * The new state must be visible before we turn it on in the hardware:
2086 */
2087 smp_wmb();
2088
44377277
AS
2089 perf_pmu_disable(event->pmu);
2090
72f669c0
SL
2091 perf_set_shadow_time(event, ctx, tstamp);
2092
ec0d7729
AS
2093 perf_log_itrace_start(event);
2094
a4eaf7f1 2095 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2096 event->state = PERF_EVENT_STATE_INACTIVE;
2097 event->oncpu = -1;
44377277
AS
2098 ret = -EAGAIN;
2099 goto out;
235c7fc7
IM
2100 }
2101
00a2916f
PZ
2102 event->tstamp_running += tstamp - event->tstamp_stopped;
2103
cdd6c482 2104 if (!is_software_event(event))
3b6f9e5c 2105 cpuctx->active_oncpu++;
2fde4f94
MR
2106 if (!ctx->nr_active++)
2107 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2108 if (event->attr.freq && event->attr.sample_freq)
2109 ctx->nr_freq++;
235c7fc7 2110
cdd6c482 2111 if (event->attr.exclusive)
3b6f9e5c
PM
2112 cpuctx->exclusive = 1;
2113
44377277
AS
2114out:
2115 perf_pmu_enable(event->pmu);
2116
2117 return ret;
235c7fc7
IM
2118}
2119
6751b71e 2120static int
cdd6c482 2121group_sched_in(struct perf_event *group_event,
6751b71e 2122 struct perf_cpu_context *cpuctx,
6e37738a 2123 struct perf_event_context *ctx)
6751b71e 2124{
6bde9b6c 2125 struct perf_event *event, *partial_group = NULL;
4a234593 2126 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2127 u64 now = ctx->time;
2128 bool simulate = false;
6751b71e 2129
cdd6c482 2130 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2131 return 0;
2132
fbbe0701 2133 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2134
9ffcfa6f 2135 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2136 pmu->cancel_txn(pmu);
272325c4 2137 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2138 return -EAGAIN;
90151c35 2139 }
6751b71e
PM
2140
2141 /*
2142 * Schedule in siblings as one group (if any):
2143 */
cdd6c482 2144 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2145 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2146 partial_group = event;
6751b71e
PM
2147 goto group_error;
2148 }
2149 }
2150
9ffcfa6f 2151 if (!pmu->commit_txn(pmu))
6e85158c 2152 return 0;
9ffcfa6f 2153
6751b71e
PM
2154group_error:
2155 /*
2156 * Groups can be scheduled in as one unit only, so undo any
2157 * partial group before returning:
d7842da4
SE
2158 * The events up to the failed event are scheduled out normally,
2159 * tstamp_stopped will be updated.
2160 *
2161 * The failed events and the remaining siblings need to have
2162 * their timings updated as if they had gone thru event_sched_in()
2163 * and event_sched_out(). This is required to get consistent timings
2164 * across the group. This also takes care of the case where the group
2165 * could never be scheduled by ensuring tstamp_stopped is set to mark
2166 * the time the event was actually stopped, such that time delta
2167 * calculation in update_event_times() is correct.
6751b71e 2168 */
cdd6c482
IM
2169 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2170 if (event == partial_group)
d7842da4
SE
2171 simulate = true;
2172
2173 if (simulate) {
2174 event->tstamp_running += now - event->tstamp_stopped;
2175 event->tstamp_stopped = now;
2176 } else {
2177 event_sched_out(event, cpuctx, ctx);
2178 }
6751b71e 2179 }
9ffcfa6f 2180 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2181
ad5133b7 2182 pmu->cancel_txn(pmu);
90151c35 2183
272325c4 2184 perf_mux_hrtimer_restart(cpuctx);
9e630205 2185
6751b71e
PM
2186 return -EAGAIN;
2187}
2188
3b6f9e5c 2189/*
cdd6c482 2190 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2191 */
cdd6c482 2192static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2193 struct perf_cpu_context *cpuctx,
2194 int can_add_hw)
2195{
2196 /*
cdd6c482 2197 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2198 */
4ff6a8de 2199 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2200 return 1;
2201 /*
2202 * If an exclusive group is already on, no other hardware
cdd6c482 2203 * events can go on.
3b6f9e5c
PM
2204 */
2205 if (cpuctx->exclusive)
2206 return 0;
2207 /*
2208 * If this group is exclusive and there are already
cdd6c482 2209 * events on the CPU, it can't go on.
3b6f9e5c 2210 */
cdd6c482 2211 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2212 return 0;
2213 /*
2214 * Otherwise, try to add it if all previous groups were able
2215 * to go on.
2216 */
2217 return can_add_hw;
2218}
2219
9b231d9f
PZ
2220/*
2221 * Complement to update_event_times(). This computes the tstamp_* values to
2222 * continue 'enabled' state from @now, and effectively discards the time
2223 * between the prior tstamp_stopped and now (as we were in the OFF state, or
2224 * just switched (context) time base).
2225 *
2226 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2227 * cannot have been scheduled in yet. And going into INACTIVE state means
2228 * '@event->tstamp_stopped = @now'.
2229 *
2230 * Thus given the rules of update_event_times():
2231 *
2232 * total_time_enabled = tstamp_stopped - tstamp_enabled
2233 * total_time_running = tstamp_stopped - tstamp_running
2234 *
2235 * We can insert 'tstamp_stopped == now' and reverse them to compute new
2236 * tstamp_* values.
2237 */
2238static void __perf_event_enable_time(struct perf_event *event, u64 now)
2239{
2240 WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2241
2242 event->tstamp_stopped = now;
2243 event->tstamp_enabled = now - event->total_time_enabled;
2244 event->tstamp_running = now - event->total_time_running;
2245}
2246
cdd6c482
IM
2247static void add_event_to_ctx(struct perf_event *event,
2248 struct perf_event_context *ctx)
53cfbf59 2249{
4158755d
SE
2250 u64 tstamp = perf_event_time(event);
2251
cdd6c482 2252 list_add_event(event, ctx);
8a49542c 2253 perf_group_attach(event);
9b231d9f
PZ
2254 /*
2255 * We can be called with event->state == STATE_OFF when we create with
2256 * .disabled = 1. In that case the IOC_ENABLE will call this function.
2257 */
2258 if (event->state == PERF_EVENT_STATE_INACTIVE)
2259 __perf_event_enable_time(event, tstamp);
53cfbf59
PM
2260}
2261
bd2afa49
PZ
2262static void ctx_sched_out(struct perf_event_context *ctx,
2263 struct perf_cpu_context *cpuctx,
2264 enum event_type_t event_type);
2c29ef0f
PZ
2265static void
2266ctx_sched_in(struct perf_event_context *ctx,
2267 struct perf_cpu_context *cpuctx,
2268 enum event_type_t event_type,
2269 struct task_struct *task);
fe4b04fa 2270
bd2afa49 2271static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2272 struct perf_event_context *ctx,
2273 enum event_type_t event_type)
bd2afa49
PZ
2274{
2275 if (!cpuctx->task_ctx)
2276 return;
2277
2278 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2279 return;
2280
487f05e1 2281 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2282}
2283
dce5855b
PZ
2284static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2285 struct perf_event_context *ctx,
2286 struct task_struct *task)
2287{
2288 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2289 if (ctx)
2290 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2291 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2292 if (ctx)
2293 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2294}
2295
487f05e1
AS
2296/*
2297 * We want to maintain the following priority of scheduling:
2298 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2299 * - task pinned (EVENT_PINNED)
2300 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2301 * - task flexible (EVENT_FLEXIBLE).
2302 *
2303 * In order to avoid unscheduling and scheduling back in everything every
2304 * time an event is added, only do it for the groups of equal priority and
2305 * below.
2306 *
2307 * This can be called after a batch operation on task events, in which case
2308 * event_type is a bit mask of the types of events involved. For CPU events,
2309 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2310 */
3e349507 2311static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2312 struct perf_event_context *task_ctx,
2313 enum event_type_t event_type)
0017960f 2314{
487f05e1
AS
2315 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2316 bool cpu_event = !!(event_type & EVENT_CPU);
2317
2318 /*
2319 * If pinned groups are involved, flexible groups also need to be
2320 * scheduled out.
2321 */
2322 if (event_type & EVENT_PINNED)
2323 event_type |= EVENT_FLEXIBLE;
2324
3e349507
PZ
2325 perf_pmu_disable(cpuctx->ctx.pmu);
2326 if (task_ctx)
487f05e1
AS
2327 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2328
2329 /*
2330 * Decide which cpu ctx groups to schedule out based on the types
2331 * of events that caused rescheduling:
2332 * - EVENT_CPU: schedule out corresponding groups;
2333 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2334 * - otherwise, do nothing more.
2335 */
2336 if (cpu_event)
2337 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2338 else if (ctx_event_type & EVENT_PINNED)
2339 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2340
3e349507
PZ
2341 perf_event_sched_in(cpuctx, task_ctx, current);
2342 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2343}
2344
0793a61d 2345/*
cdd6c482 2346 * Cross CPU call to install and enable a performance event
682076ae 2347 *
a096309b
PZ
2348 * Very similar to remote_function() + event_function() but cannot assume that
2349 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2350 */
fe4b04fa 2351static int __perf_install_in_context(void *info)
0793a61d 2352{
a096309b
PZ
2353 struct perf_event *event = info;
2354 struct perf_event_context *ctx = event->ctx;
108b02cf 2355 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2356 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2357 bool reprogram = true;
a096309b 2358 int ret = 0;
0793a61d 2359
63b6da39 2360 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2361 if (ctx->task) {
b58f6b0d
PZ
2362 raw_spin_lock(&ctx->lock);
2363 task_ctx = ctx;
a096309b 2364
63cae12b 2365 reprogram = (ctx->task == current);
b58f6b0d 2366
39a43640 2367 /*
63cae12b
PZ
2368 * If the task is running, it must be running on this CPU,
2369 * otherwise we cannot reprogram things.
2370 *
2371 * If its not running, we don't care, ctx->lock will
2372 * serialize against it becoming runnable.
39a43640 2373 */
63cae12b
PZ
2374 if (task_curr(ctx->task) && !reprogram) {
2375 ret = -ESRCH;
2376 goto unlock;
2377 }
a096309b 2378
63cae12b 2379 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2380 } else if (task_ctx) {
2381 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2382 }
b58f6b0d 2383
63cae12b 2384 if (reprogram) {
a096309b
PZ
2385 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2386 add_event_to_ctx(event, ctx);
487f05e1 2387 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2388 } else {
2389 add_event_to_ctx(event, ctx);
2390 }
2391
63b6da39 2392unlock:
2c29ef0f 2393 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2394
a096309b 2395 return ret;
0793a61d
TG
2396}
2397
2398/*
a096309b
PZ
2399 * Attach a performance event to a context.
2400 *
2401 * Very similar to event_function_call, see comment there.
0793a61d
TG
2402 */
2403static void
cdd6c482
IM
2404perf_install_in_context(struct perf_event_context *ctx,
2405 struct perf_event *event,
0793a61d
TG
2406 int cpu)
2407{
a096309b 2408 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2409
fe4b04fa
PZ
2410 lockdep_assert_held(&ctx->mutex);
2411
0cda4c02
YZ
2412 if (event->cpu != -1)
2413 event->cpu = cpu;
c3f00c70 2414
0b8f1e2e
PZ
2415 /*
2416 * Ensures that if we can observe event->ctx, both the event and ctx
2417 * will be 'complete'. See perf_iterate_sb_cpu().
2418 */
2419 smp_store_release(&event->ctx, ctx);
2420
a096309b
PZ
2421 if (!task) {
2422 cpu_function_call(cpu, __perf_install_in_context, event);
2423 return;
2424 }
2425
2426 /*
2427 * Should not happen, we validate the ctx is still alive before calling.
2428 */
2429 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2430 return;
2431
39a43640
PZ
2432 /*
2433 * Installing events is tricky because we cannot rely on ctx->is_active
2434 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2435 *
2436 * Instead we use task_curr(), which tells us if the task is running.
2437 * However, since we use task_curr() outside of rq::lock, we can race
2438 * against the actual state. This means the result can be wrong.
2439 *
2440 * If we get a false positive, we retry, this is harmless.
2441 *
2442 * If we get a false negative, things are complicated. If we are after
2443 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2444 * value must be correct. If we're before, it doesn't matter since
2445 * perf_event_context_sched_in() will program the counter.
2446 *
2447 * However, this hinges on the remote context switch having observed
2448 * our task->perf_event_ctxp[] store, such that it will in fact take
2449 * ctx::lock in perf_event_context_sched_in().
2450 *
2451 * We do this by task_function_call(), if the IPI fails to hit the task
2452 * we know any future context switch of task must see the
2453 * perf_event_ctpx[] store.
39a43640 2454 */
63cae12b 2455
63b6da39 2456 /*
63cae12b
PZ
2457 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2458 * task_cpu() load, such that if the IPI then does not find the task
2459 * running, a future context switch of that task must observe the
2460 * store.
63b6da39 2461 */
63cae12b
PZ
2462 smp_mb();
2463again:
2464 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2465 return;
2466
2467 raw_spin_lock_irq(&ctx->lock);
2468 task = ctx->task;
84c4e620 2469 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2470 /*
2471 * Cannot happen because we already checked above (which also
2472 * cannot happen), and we hold ctx->mutex, which serializes us
2473 * against perf_event_exit_task_context().
2474 */
63b6da39
PZ
2475 raw_spin_unlock_irq(&ctx->lock);
2476 return;
2477 }
39a43640 2478 /*
63cae12b
PZ
2479 * If the task is not running, ctx->lock will avoid it becoming so,
2480 * thus we can safely install the event.
39a43640 2481 */
63cae12b
PZ
2482 if (task_curr(task)) {
2483 raw_spin_unlock_irq(&ctx->lock);
2484 goto again;
2485 }
2486 add_event_to_ctx(event, ctx);
2487 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2488}
2489
fa289bec 2490/*
cdd6c482 2491 * Put a event into inactive state and update time fields.
fa289bec
PM
2492 * Enabling the leader of a group effectively enables all
2493 * the group members that aren't explicitly disabled, so we
2494 * have to update their ->tstamp_enabled also.
2495 * Note: this works for group members as well as group leaders
2496 * since the non-leader members' sibling_lists will be empty.
2497 */
1d9b482e 2498static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2499{
cdd6c482 2500 struct perf_event *sub;
4158755d 2501 u64 tstamp = perf_event_time(event);
fa289bec 2502
cdd6c482 2503 event->state = PERF_EVENT_STATE_INACTIVE;
9b231d9f 2504 __perf_event_enable_time(event, tstamp);
9ed6060d 2505 list_for_each_entry(sub, &event->sibling_list, group_entry) {
9b231d9f 2506 /* XXX should not be > INACTIVE if event isn't */
4158755d 2507 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
9b231d9f 2508 __perf_event_enable_time(sub, tstamp);
9ed6060d 2509 }
fa289bec
PM
2510}
2511
d859e29f 2512/*
cdd6c482 2513 * Cross CPU call to enable a performance event
d859e29f 2514 */
fae3fde6
PZ
2515static void __perf_event_enable(struct perf_event *event,
2516 struct perf_cpu_context *cpuctx,
2517 struct perf_event_context *ctx,
2518 void *info)
04289bb9 2519{
cdd6c482 2520 struct perf_event *leader = event->group_leader;
fae3fde6 2521 struct perf_event_context *task_ctx;
04289bb9 2522
6e801e01
PZ
2523 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2524 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2525 return;
3cbed429 2526
bd2afa49
PZ
2527 if (ctx->is_active)
2528 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2529
1d9b482e 2530 __perf_event_mark_enabled(event);
04289bb9 2531
fae3fde6
PZ
2532 if (!ctx->is_active)
2533 return;
2534
e5d1367f 2535 if (!event_filter_match(event)) {
bd2afa49 2536 if (is_cgroup_event(event))
e5d1367f 2537 perf_cgroup_defer_enabled(event);
bd2afa49 2538 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2539 return;
e5d1367f 2540 }
f4c4176f 2541
04289bb9 2542 /*
cdd6c482 2543 * If the event is in a group and isn't the group leader,
d859e29f 2544 * then don't put it on unless the group is on.
04289bb9 2545 */
bd2afa49
PZ
2546 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2547 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2548 return;
bd2afa49 2549 }
fe4b04fa 2550
fae3fde6
PZ
2551 task_ctx = cpuctx->task_ctx;
2552 if (ctx->task)
2553 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2554
487f05e1 2555 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2556}
2557
d859e29f 2558/*
cdd6c482 2559 * Enable a event.
c93f7669 2560 *
cdd6c482
IM
2561 * If event->ctx is a cloned context, callers must make sure that
2562 * every task struct that event->ctx->task could possibly point to
c93f7669 2563 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2564 * perf_event_for_each_child or perf_event_for_each as described
2565 * for perf_event_disable.
d859e29f 2566 */
f63a8daa 2567static void _perf_event_enable(struct perf_event *event)
d859e29f 2568{
cdd6c482 2569 struct perf_event_context *ctx = event->ctx;
d859e29f 2570
7b648018 2571 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2572 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2573 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2574 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2575 return;
2576 }
2577
d859e29f 2578 /*
cdd6c482 2579 * If the event is in error state, clear that first.
7b648018
PZ
2580 *
2581 * That way, if we see the event in error state below, we know that it
2582 * has gone back into error state, as distinct from the task having
2583 * been scheduled away before the cross-call arrived.
d859e29f 2584 */
cdd6c482
IM
2585 if (event->state == PERF_EVENT_STATE_ERROR)
2586 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2587 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2588
fae3fde6 2589 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2590}
f63a8daa
PZ
2591
2592/*
2593 * See perf_event_disable();
2594 */
2595void perf_event_enable(struct perf_event *event)
2596{
2597 struct perf_event_context *ctx;
2598
2599 ctx = perf_event_ctx_lock(event);
2600 _perf_event_enable(event);
2601 perf_event_ctx_unlock(event, ctx);
2602}
dcfce4a0 2603EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2604
375637bc
AS
2605struct stop_event_data {
2606 struct perf_event *event;
2607 unsigned int restart;
2608};
2609
95ff4ca2
AS
2610static int __perf_event_stop(void *info)
2611{
375637bc
AS
2612 struct stop_event_data *sd = info;
2613 struct perf_event *event = sd->event;
95ff4ca2 2614
375637bc 2615 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2616 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2617 return 0;
2618
2619 /* matches smp_wmb() in event_sched_in() */
2620 smp_rmb();
2621
2622 /*
2623 * There is a window with interrupts enabled before we get here,
2624 * so we need to check again lest we try to stop another CPU's event.
2625 */
2626 if (READ_ONCE(event->oncpu) != smp_processor_id())
2627 return -EAGAIN;
2628
2629 event->pmu->stop(event, PERF_EF_UPDATE);
2630
375637bc
AS
2631 /*
2632 * May race with the actual stop (through perf_pmu_output_stop()),
2633 * but it is only used for events with AUX ring buffer, and such
2634 * events will refuse to restart because of rb::aux_mmap_count==0,
2635 * see comments in perf_aux_output_begin().
2636 *
2637 * Since this is happening on a event-local CPU, no trace is lost
2638 * while restarting.
2639 */
2640 if (sd->restart)
c9bbdd48 2641 event->pmu->start(event, 0);
375637bc 2642
95ff4ca2
AS
2643 return 0;
2644}
2645
767ae086 2646static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2647{
2648 struct stop_event_data sd = {
2649 .event = event,
767ae086 2650 .restart = restart,
375637bc
AS
2651 };
2652 int ret = 0;
2653
2654 do {
2655 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2656 return 0;
2657
2658 /* matches smp_wmb() in event_sched_in() */
2659 smp_rmb();
2660
2661 /*
2662 * We only want to restart ACTIVE events, so if the event goes
2663 * inactive here (event->oncpu==-1), there's nothing more to do;
2664 * fall through with ret==-ENXIO.
2665 */
2666 ret = cpu_function_call(READ_ONCE(event->oncpu),
2667 __perf_event_stop, &sd);
2668 } while (ret == -EAGAIN);
2669
2670 return ret;
2671}
2672
2673/*
2674 * In order to contain the amount of racy and tricky in the address filter
2675 * configuration management, it is a two part process:
2676 *
2677 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2678 * we update the addresses of corresponding vmas in
2679 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2680 * (p2) when an event is scheduled in (pmu::add), it calls
2681 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2682 * if the generation has changed since the previous call.
2683 *
2684 * If (p1) happens while the event is active, we restart it to force (p2).
2685 *
2686 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2687 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2688 * ioctl;
2689 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2690 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2691 * for reading;
2692 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2693 * of exec.
2694 */
2695void perf_event_addr_filters_sync(struct perf_event *event)
2696{
2697 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2698
2699 if (!has_addr_filter(event))
2700 return;
2701
2702 raw_spin_lock(&ifh->lock);
2703 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2704 event->pmu->addr_filters_sync(event);
2705 event->hw.addr_filters_gen = event->addr_filters_gen;
2706 }
2707 raw_spin_unlock(&ifh->lock);
2708}
2709EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2710
f63a8daa 2711static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2712{
2023b359 2713 /*
cdd6c482 2714 * not supported on inherited events
2023b359 2715 */
2e939d1d 2716 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2717 return -EINVAL;
2718
cdd6c482 2719 atomic_add(refresh, &event->event_limit);
f63a8daa 2720 _perf_event_enable(event);
2023b359
PZ
2721
2722 return 0;
79f14641 2723}
f63a8daa
PZ
2724
2725/*
2726 * See perf_event_disable()
2727 */
2728int perf_event_refresh(struct perf_event *event, int refresh)
2729{
2730 struct perf_event_context *ctx;
2731 int ret;
2732
2733 ctx = perf_event_ctx_lock(event);
2734 ret = _perf_event_refresh(event, refresh);
2735 perf_event_ctx_unlock(event, ctx);
2736
2737 return ret;
2738}
26ca5c11 2739EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2740
5b0311e1
FW
2741static void ctx_sched_out(struct perf_event_context *ctx,
2742 struct perf_cpu_context *cpuctx,
2743 enum event_type_t event_type)
235c7fc7 2744{
db24d33e 2745 int is_active = ctx->is_active;
c994d613 2746 struct perf_event *event;
235c7fc7 2747
c994d613 2748 lockdep_assert_held(&ctx->lock);
235c7fc7 2749
39a43640
PZ
2750 if (likely(!ctx->nr_events)) {
2751 /*
2752 * See __perf_remove_from_context().
2753 */
2754 WARN_ON_ONCE(ctx->is_active);
2755 if (ctx->task)
2756 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2757 return;
39a43640
PZ
2758 }
2759
db24d33e 2760 ctx->is_active &= ~event_type;
3cbaa590
PZ
2761 if (!(ctx->is_active & EVENT_ALL))
2762 ctx->is_active = 0;
2763
63e30d3e
PZ
2764 if (ctx->task) {
2765 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2766 if (!ctx->is_active)
2767 cpuctx->task_ctx = NULL;
2768 }
facc4307 2769
8fdc6539
PZ
2770 /*
2771 * Always update time if it was set; not only when it changes.
2772 * Otherwise we can 'forget' to update time for any but the last
2773 * context we sched out. For example:
2774 *
2775 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2776 * ctx_sched_out(.event_type = EVENT_PINNED)
2777 *
2778 * would only update time for the pinned events.
2779 */
3cbaa590
PZ
2780 if (is_active & EVENT_TIME) {
2781 /* update (and stop) ctx time */
2782 update_context_time(ctx);
2783 update_cgrp_time_from_cpuctx(cpuctx);
2784 }
2785
8fdc6539
PZ
2786 is_active ^= ctx->is_active; /* changed bits */
2787
3cbaa590 2788 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2789 return;
5b0311e1 2790
075e0b00 2791 perf_pmu_disable(ctx->pmu);
3cbaa590 2792 if (is_active & EVENT_PINNED) {
889ff015
FW
2793 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2794 group_sched_out(event, cpuctx, ctx);
9ed6060d 2795 }
889ff015 2796
3cbaa590 2797 if (is_active & EVENT_FLEXIBLE) {
889ff015 2798 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2799 group_sched_out(event, cpuctx, ctx);
9ed6060d 2800 }
1b9a644f 2801 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2802}
2803
564c2b21 2804/*
5a3126d4
PZ
2805 * Test whether two contexts are equivalent, i.e. whether they have both been
2806 * cloned from the same version of the same context.
2807 *
2808 * Equivalence is measured using a generation number in the context that is
2809 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2810 * and list_del_event().
564c2b21 2811 */
cdd6c482
IM
2812static int context_equiv(struct perf_event_context *ctx1,
2813 struct perf_event_context *ctx2)
564c2b21 2814{
211de6eb
PZ
2815 lockdep_assert_held(&ctx1->lock);
2816 lockdep_assert_held(&ctx2->lock);
2817
5a3126d4
PZ
2818 /* Pinning disables the swap optimization */
2819 if (ctx1->pin_count || ctx2->pin_count)
2820 return 0;
2821
2822 /* If ctx1 is the parent of ctx2 */
2823 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2824 return 1;
2825
2826 /* If ctx2 is the parent of ctx1 */
2827 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2828 return 1;
2829
2830 /*
2831 * If ctx1 and ctx2 have the same parent; we flatten the parent
2832 * hierarchy, see perf_event_init_context().
2833 */
2834 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2835 ctx1->parent_gen == ctx2->parent_gen)
2836 return 1;
2837
2838 /* Unmatched */
2839 return 0;
564c2b21
PM
2840}
2841
cdd6c482
IM
2842static void __perf_event_sync_stat(struct perf_event *event,
2843 struct perf_event *next_event)
bfbd3381
PZ
2844{
2845 u64 value;
2846
cdd6c482 2847 if (!event->attr.inherit_stat)
bfbd3381
PZ
2848 return;
2849
2850 /*
cdd6c482 2851 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2852 * because we're in the middle of a context switch and have IRQs
2853 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2854 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2855 * don't need to use it.
2856 */
cdd6c482
IM
2857 switch (event->state) {
2858 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2859 event->pmu->read(event);
2860 /* fall-through */
bfbd3381 2861
cdd6c482
IM
2862 case PERF_EVENT_STATE_INACTIVE:
2863 update_event_times(event);
bfbd3381
PZ
2864 break;
2865
2866 default:
2867 break;
2868 }
2869
2870 /*
cdd6c482 2871 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2872 * values when we flip the contexts.
2873 */
e7850595
PZ
2874 value = local64_read(&next_event->count);
2875 value = local64_xchg(&event->count, value);
2876 local64_set(&next_event->count, value);
bfbd3381 2877
cdd6c482
IM
2878 swap(event->total_time_enabled, next_event->total_time_enabled);
2879 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2880
bfbd3381 2881 /*
19d2e755 2882 * Since we swizzled the values, update the user visible data too.
bfbd3381 2883 */
cdd6c482
IM
2884 perf_event_update_userpage(event);
2885 perf_event_update_userpage(next_event);
bfbd3381
PZ
2886}
2887
cdd6c482
IM
2888static void perf_event_sync_stat(struct perf_event_context *ctx,
2889 struct perf_event_context *next_ctx)
bfbd3381 2890{
cdd6c482 2891 struct perf_event *event, *next_event;
bfbd3381
PZ
2892
2893 if (!ctx->nr_stat)
2894 return;
2895
02ffdbc8
PZ
2896 update_context_time(ctx);
2897
cdd6c482
IM
2898 event = list_first_entry(&ctx->event_list,
2899 struct perf_event, event_entry);
bfbd3381 2900
cdd6c482
IM
2901 next_event = list_first_entry(&next_ctx->event_list,
2902 struct perf_event, event_entry);
bfbd3381 2903
cdd6c482
IM
2904 while (&event->event_entry != &ctx->event_list &&
2905 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2906
cdd6c482 2907 __perf_event_sync_stat(event, next_event);
bfbd3381 2908
cdd6c482
IM
2909 event = list_next_entry(event, event_entry);
2910 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2911 }
2912}
2913
fe4b04fa
PZ
2914static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2915 struct task_struct *next)
0793a61d 2916{
8dc85d54 2917 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2918 struct perf_event_context *next_ctx;
5a3126d4 2919 struct perf_event_context *parent, *next_parent;
108b02cf 2920 struct perf_cpu_context *cpuctx;
c93f7669 2921 int do_switch = 1;
0793a61d 2922
108b02cf
PZ
2923 if (likely(!ctx))
2924 return;
10989fb2 2925
108b02cf
PZ
2926 cpuctx = __get_cpu_context(ctx);
2927 if (!cpuctx->task_ctx)
0793a61d
TG
2928 return;
2929
c93f7669 2930 rcu_read_lock();
8dc85d54 2931 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2932 if (!next_ctx)
2933 goto unlock;
2934
2935 parent = rcu_dereference(ctx->parent_ctx);
2936 next_parent = rcu_dereference(next_ctx->parent_ctx);
2937
2938 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2939 if (!parent && !next_parent)
5a3126d4
PZ
2940 goto unlock;
2941
2942 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2943 /*
2944 * Looks like the two contexts are clones, so we might be
2945 * able to optimize the context switch. We lock both
2946 * contexts and check that they are clones under the
2947 * lock (including re-checking that neither has been
2948 * uncloned in the meantime). It doesn't matter which
2949 * order we take the locks because no other cpu could
2950 * be trying to lock both of these tasks.
2951 */
e625cce1
TG
2952 raw_spin_lock(&ctx->lock);
2953 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2954 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2955 WRITE_ONCE(ctx->task, next);
2956 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2957
2958 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2959
63b6da39
PZ
2960 /*
2961 * RCU_INIT_POINTER here is safe because we've not
2962 * modified the ctx and the above modification of
2963 * ctx->task and ctx->task_ctx_data are immaterial
2964 * since those values are always verified under
2965 * ctx->lock which we're now holding.
2966 */
2967 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2968 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2969
c93f7669 2970 do_switch = 0;
bfbd3381 2971
cdd6c482 2972 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2973 }
e625cce1
TG
2974 raw_spin_unlock(&next_ctx->lock);
2975 raw_spin_unlock(&ctx->lock);
564c2b21 2976 }
5a3126d4 2977unlock:
c93f7669 2978 rcu_read_unlock();
564c2b21 2979
c93f7669 2980 if (do_switch) {
facc4307 2981 raw_spin_lock(&ctx->lock);
487f05e1 2982 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2983 raw_spin_unlock(&ctx->lock);
c93f7669 2984 }
0793a61d
TG
2985}
2986
e48c1788
PZ
2987static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2988
ba532500
YZ
2989void perf_sched_cb_dec(struct pmu *pmu)
2990{
e48c1788
PZ
2991 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2992
ba532500 2993 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2994
2995 if (!--cpuctx->sched_cb_usage)
2996 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2997}
2998
e48c1788 2999
ba532500
YZ
3000void perf_sched_cb_inc(struct pmu *pmu)
3001{
e48c1788
PZ
3002 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3003
3004 if (!cpuctx->sched_cb_usage++)
3005 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3006
ba532500
YZ
3007 this_cpu_inc(perf_sched_cb_usages);
3008}
3009
3010/*
3011 * This function provides the context switch callback to the lower code
3012 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3013 *
3014 * This callback is relevant even to per-cpu events; for example multi event
3015 * PEBS requires this to provide PID/TID information. This requires we flush
3016 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3017 */
3018static void perf_pmu_sched_task(struct task_struct *prev,
3019 struct task_struct *next,
3020 bool sched_in)
3021{
3022 struct perf_cpu_context *cpuctx;
3023 struct pmu *pmu;
ba532500
YZ
3024
3025 if (prev == next)
3026 return;
3027
e48c1788 3028 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3029 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3030
e48c1788
PZ
3031 if (WARN_ON_ONCE(!pmu->sched_task))
3032 continue;
ba532500 3033
e48c1788
PZ
3034 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3035 perf_pmu_disable(pmu);
ba532500 3036
e48c1788 3037 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3038
e48c1788
PZ
3039 perf_pmu_enable(pmu);
3040 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3041 }
ba532500
YZ
3042}
3043
45ac1403
AH
3044static void perf_event_switch(struct task_struct *task,
3045 struct task_struct *next_prev, bool sched_in);
3046
8dc85d54
PZ
3047#define for_each_task_context_nr(ctxn) \
3048 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3049
3050/*
3051 * Called from scheduler to remove the events of the current task,
3052 * with interrupts disabled.
3053 *
3054 * We stop each event and update the event value in event->count.
3055 *
3056 * This does not protect us against NMI, but disable()
3057 * sets the disabled bit in the control field of event _before_
3058 * accessing the event control register. If a NMI hits, then it will
3059 * not restart the event.
3060 */
ab0cce56
JO
3061void __perf_event_task_sched_out(struct task_struct *task,
3062 struct task_struct *next)
8dc85d54
PZ
3063{
3064 int ctxn;
3065
ba532500
YZ
3066 if (__this_cpu_read(perf_sched_cb_usages))
3067 perf_pmu_sched_task(task, next, false);
3068
45ac1403
AH
3069 if (atomic_read(&nr_switch_events))
3070 perf_event_switch(task, next, false);
3071
8dc85d54
PZ
3072 for_each_task_context_nr(ctxn)
3073 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3074
3075 /*
3076 * if cgroup events exist on this CPU, then we need
3077 * to check if we have to switch out PMU state.
3078 * cgroup event are system-wide mode only
3079 */
4a32fea9 3080 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3081 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3082}
3083
5b0311e1
FW
3084/*
3085 * Called with IRQs disabled
3086 */
3087static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3088 enum event_type_t event_type)
3089{
3090 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3091}
3092
235c7fc7 3093static void
5b0311e1 3094ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 3095 struct perf_cpu_context *cpuctx)
0793a61d 3096{
cdd6c482 3097 struct perf_event *event;
0793a61d 3098
889ff015
FW
3099 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3100 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3101 continue;
5632ab12 3102 if (!event_filter_match(event))
3b6f9e5c
PM
3103 continue;
3104
e5d1367f
SE
3105 /* may need to reset tstamp_enabled */
3106 if (is_cgroup_event(event))
3107 perf_cgroup_mark_enabled(event, ctx);
3108
8c9ed8e1 3109 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3110 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3111
3112 /*
3113 * If this pinned group hasn't been scheduled,
3114 * put it in error state.
3115 */
cdd6c482
IM
3116 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3117 update_group_times(event);
3118 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 3119 }
3b6f9e5c 3120 }
5b0311e1
FW
3121}
3122
3123static void
3124ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3125 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3126{
3127 struct perf_event *event;
3128 int can_add_hw = 1;
3b6f9e5c 3129
889ff015
FW
3130 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3131 /* Ignore events in OFF or ERROR state */
3132 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3133 continue;
04289bb9
IM
3134 /*
3135 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3136 * of events:
04289bb9 3137 */
5632ab12 3138 if (!event_filter_match(event))
0793a61d
TG
3139 continue;
3140
e5d1367f
SE
3141 /* may need to reset tstamp_enabled */
3142 if (is_cgroup_event(event))
3143 perf_cgroup_mark_enabled(event, ctx);
3144
9ed6060d 3145 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3146 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3147 can_add_hw = 0;
9ed6060d 3148 }
0793a61d 3149 }
5b0311e1
FW
3150}
3151
3152static void
3153ctx_sched_in(struct perf_event_context *ctx,
3154 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3155 enum event_type_t event_type,
3156 struct task_struct *task)
5b0311e1 3157{
db24d33e 3158 int is_active = ctx->is_active;
c994d613
PZ
3159 u64 now;
3160
3161 lockdep_assert_held(&ctx->lock);
e5d1367f 3162
5b0311e1 3163 if (likely(!ctx->nr_events))
facc4307 3164 return;
5b0311e1 3165
3cbaa590 3166 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3167 if (ctx->task) {
3168 if (!is_active)
3169 cpuctx->task_ctx = ctx;
3170 else
3171 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3172 }
3173
3cbaa590
PZ
3174 is_active ^= ctx->is_active; /* changed bits */
3175
3176 if (is_active & EVENT_TIME) {
3177 /* start ctx time */
3178 now = perf_clock();
3179 ctx->timestamp = now;
3180 perf_cgroup_set_timestamp(task, ctx);
3181 }
3182
5b0311e1
FW
3183 /*
3184 * First go through the list and put on any pinned groups
3185 * in order to give them the best chance of going on.
3186 */
3cbaa590 3187 if (is_active & EVENT_PINNED)
6e37738a 3188 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3189
3190 /* Then walk through the lower prio flexible groups */
3cbaa590 3191 if (is_active & EVENT_FLEXIBLE)
6e37738a 3192 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3193}
3194
329c0e01 3195static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3196 enum event_type_t event_type,
3197 struct task_struct *task)
329c0e01
FW
3198{
3199 struct perf_event_context *ctx = &cpuctx->ctx;
3200
e5d1367f 3201 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3202}
3203
e5d1367f
SE
3204static void perf_event_context_sched_in(struct perf_event_context *ctx,
3205 struct task_struct *task)
235c7fc7 3206{
108b02cf 3207 struct perf_cpu_context *cpuctx;
235c7fc7 3208
108b02cf 3209 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3210 if (cpuctx->task_ctx == ctx)
3211 return;
3212
facc4307 3213 perf_ctx_lock(cpuctx, ctx);
1b9a644f 3214 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3215 /*
3216 * We want to keep the following priority order:
3217 * cpu pinned (that don't need to move), task pinned,
3218 * cpu flexible, task flexible.
fe45bafb
AS
3219 *
3220 * However, if task's ctx is not carrying any pinned
3221 * events, no need to flip the cpuctx's events around.
329c0e01 3222 */
fe45bafb
AS
3223 if (!list_empty(&ctx->pinned_groups))
3224 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3225 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
3226 perf_pmu_enable(ctx->pmu);
3227 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3228}
3229
8dc85d54
PZ
3230/*
3231 * Called from scheduler to add the events of the current task
3232 * with interrupts disabled.
3233 *
3234 * We restore the event value and then enable it.
3235 *
3236 * This does not protect us against NMI, but enable()
3237 * sets the enabled bit in the control field of event _before_
3238 * accessing the event control register. If a NMI hits, then it will
3239 * keep the event running.
3240 */
ab0cce56
JO
3241void __perf_event_task_sched_in(struct task_struct *prev,
3242 struct task_struct *task)
8dc85d54
PZ
3243{
3244 struct perf_event_context *ctx;
3245 int ctxn;
3246
7e41d177
PZ
3247 /*
3248 * If cgroup events exist on this CPU, then we need to check if we have
3249 * to switch in PMU state; cgroup event are system-wide mode only.
3250 *
3251 * Since cgroup events are CPU events, we must schedule these in before
3252 * we schedule in the task events.
3253 */
3254 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3255 perf_cgroup_sched_in(prev, task);
3256
8dc85d54
PZ
3257 for_each_task_context_nr(ctxn) {
3258 ctx = task->perf_event_ctxp[ctxn];
3259 if (likely(!ctx))
3260 continue;
3261
e5d1367f 3262 perf_event_context_sched_in(ctx, task);
8dc85d54 3263 }
d010b332 3264
45ac1403
AH
3265 if (atomic_read(&nr_switch_events))
3266 perf_event_switch(task, prev, true);
3267
ba532500
YZ
3268 if (__this_cpu_read(perf_sched_cb_usages))
3269 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3270}
3271
abd50713
PZ
3272static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3273{
3274 u64 frequency = event->attr.sample_freq;
3275 u64 sec = NSEC_PER_SEC;
3276 u64 divisor, dividend;
3277
3278 int count_fls, nsec_fls, frequency_fls, sec_fls;
3279
3280 count_fls = fls64(count);
3281 nsec_fls = fls64(nsec);
3282 frequency_fls = fls64(frequency);
3283 sec_fls = 30;
3284
3285 /*
3286 * We got @count in @nsec, with a target of sample_freq HZ
3287 * the target period becomes:
3288 *
3289 * @count * 10^9
3290 * period = -------------------
3291 * @nsec * sample_freq
3292 *
3293 */
3294
3295 /*
3296 * Reduce accuracy by one bit such that @a and @b converge
3297 * to a similar magnitude.
3298 */
fe4b04fa 3299#define REDUCE_FLS(a, b) \
abd50713
PZ
3300do { \
3301 if (a##_fls > b##_fls) { \
3302 a >>= 1; \
3303 a##_fls--; \
3304 } else { \
3305 b >>= 1; \
3306 b##_fls--; \
3307 } \
3308} while (0)
3309
3310 /*
3311 * Reduce accuracy until either term fits in a u64, then proceed with
3312 * the other, so that finally we can do a u64/u64 division.
3313 */
3314 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3315 REDUCE_FLS(nsec, frequency);
3316 REDUCE_FLS(sec, count);
3317 }
3318
3319 if (count_fls + sec_fls > 64) {
3320 divisor = nsec * frequency;
3321
3322 while (count_fls + sec_fls > 64) {
3323 REDUCE_FLS(count, sec);
3324 divisor >>= 1;
3325 }
3326
3327 dividend = count * sec;
3328 } else {
3329 dividend = count * sec;
3330
3331 while (nsec_fls + frequency_fls > 64) {
3332 REDUCE_FLS(nsec, frequency);
3333 dividend >>= 1;
3334 }
3335
3336 divisor = nsec * frequency;
3337 }
3338
f6ab91ad
PZ
3339 if (!divisor)
3340 return dividend;
3341
abd50713
PZ
3342 return div64_u64(dividend, divisor);
3343}
3344
e050e3f0
SE
3345static DEFINE_PER_CPU(int, perf_throttled_count);
3346static DEFINE_PER_CPU(u64, perf_throttled_seq);
3347
f39d47ff 3348static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3349{
cdd6c482 3350 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3351 s64 period, sample_period;
bd2b5b12
PZ
3352 s64 delta;
3353
abd50713 3354 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3355
3356 delta = (s64)(period - hwc->sample_period);
3357 delta = (delta + 7) / 8; /* low pass filter */
3358
3359 sample_period = hwc->sample_period + delta;
3360
3361 if (!sample_period)
3362 sample_period = 1;
3363
bd2b5b12 3364 hwc->sample_period = sample_period;
abd50713 3365
e7850595 3366 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3367 if (disable)
3368 event->pmu->stop(event, PERF_EF_UPDATE);
3369
e7850595 3370 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3371
3372 if (disable)
3373 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3374 }
bd2b5b12
PZ
3375}
3376
e050e3f0
SE
3377/*
3378 * combine freq adjustment with unthrottling to avoid two passes over the
3379 * events. At the same time, make sure, having freq events does not change
3380 * the rate of unthrottling as that would introduce bias.
3381 */
3382static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3383 int needs_unthr)
60db5e09 3384{
cdd6c482
IM
3385 struct perf_event *event;
3386 struct hw_perf_event *hwc;
e050e3f0 3387 u64 now, period = TICK_NSEC;
abd50713 3388 s64 delta;
60db5e09 3389
e050e3f0
SE
3390 /*
3391 * only need to iterate over all events iff:
3392 * - context have events in frequency mode (needs freq adjust)
3393 * - there are events to unthrottle on this cpu
3394 */
3395 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3396 return;
3397
e050e3f0 3398 raw_spin_lock(&ctx->lock);
f39d47ff 3399 perf_pmu_disable(ctx->pmu);
e050e3f0 3400
03541f8b 3401 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3402 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3403 continue;
3404
5632ab12 3405 if (!event_filter_match(event))
5d27c23d
PZ
3406 continue;
3407
44377277
AS
3408 perf_pmu_disable(event->pmu);
3409
cdd6c482 3410 hwc = &event->hw;
6a24ed6c 3411
ae23bff1 3412 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3413 hwc->interrupts = 0;
cdd6c482 3414 perf_log_throttle(event, 1);
a4eaf7f1 3415 event->pmu->start(event, 0);
a78ac325
PZ
3416 }
3417
cdd6c482 3418 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3419 goto next;
60db5e09 3420
e050e3f0
SE
3421 /*
3422 * stop the event and update event->count
3423 */
3424 event->pmu->stop(event, PERF_EF_UPDATE);
3425
e7850595 3426 now = local64_read(&event->count);
abd50713
PZ
3427 delta = now - hwc->freq_count_stamp;
3428 hwc->freq_count_stamp = now;
60db5e09 3429
e050e3f0
SE
3430 /*
3431 * restart the event
3432 * reload only if value has changed
f39d47ff
SE
3433 * we have stopped the event so tell that
3434 * to perf_adjust_period() to avoid stopping it
3435 * twice.
e050e3f0 3436 */
abd50713 3437 if (delta > 0)
f39d47ff 3438 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3439
3440 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3441 next:
3442 perf_pmu_enable(event->pmu);
60db5e09 3443 }
e050e3f0 3444
f39d47ff 3445 perf_pmu_enable(ctx->pmu);
e050e3f0 3446 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3447}
3448
235c7fc7 3449/*
cdd6c482 3450 * Round-robin a context's events:
235c7fc7 3451 */
cdd6c482 3452static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3453{
dddd3379
TG
3454 /*
3455 * Rotate the first entry last of non-pinned groups. Rotation might be
3456 * disabled by the inheritance code.
3457 */
3458 if (!ctx->rotate_disable)
3459 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3460}
3461
9e630205 3462static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3463{
8dc85d54 3464 struct perf_event_context *ctx = NULL;
2fde4f94 3465 int rotate = 0;
7fc23a53 3466
b5ab4cd5 3467 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3468 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3469 rotate = 1;
3470 }
235c7fc7 3471
8dc85d54 3472 ctx = cpuctx->task_ctx;
b5ab4cd5 3473 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3474 if (ctx->nr_events != ctx->nr_active)
3475 rotate = 1;
3476 }
9717e6cd 3477
e050e3f0 3478 if (!rotate)
0f5a2601
PZ
3479 goto done;
3480
facc4307 3481 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3482 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3483
e050e3f0
SE
3484 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3485 if (ctx)
3486 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3487
e050e3f0
SE
3488 rotate_ctx(&cpuctx->ctx);
3489 if (ctx)
3490 rotate_ctx(ctx);
235c7fc7 3491
e050e3f0 3492 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3493
0f5a2601
PZ
3494 perf_pmu_enable(cpuctx->ctx.pmu);
3495 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3496done:
9e630205
SE
3497
3498 return rotate;
e9d2b064
PZ
3499}
3500
3501void perf_event_task_tick(void)
3502{
2fde4f94
MR
3503 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3504 struct perf_event_context *ctx, *tmp;
e050e3f0 3505 int throttled;
b5ab4cd5 3506
e9d2b064
PZ
3507 WARN_ON(!irqs_disabled());
3508
e050e3f0
SE
3509 __this_cpu_inc(perf_throttled_seq);
3510 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3511 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3512
2fde4f94 3513 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3514 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3515}
3516
889ff015
FW
3517static int event_enable_on_exec(struct perf_event *event,
3518 struct perf_event_context *ctx)
3519{
3520 if (!event->attr.enable_on_exec)
3521 return 0;
3522
3523 event->attr.enable_on_exec = 0;
3524 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3525 return 0;
3526
1d9b482e 3527 __perf_event_mark_enabled(event);
889ff015
FW
3528
3529 return 1;
3530}
3531
57e7986e 3532/*
cdd6c482 3533 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3534 * This expects task == current.
3535 */
c1274499 3536static void perf_event_enable_on_exec(int ctxn)
57e7986e 3537{
c1274499 3538 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3539 enum event_type_t event_type = 0;
3e349507 3540 struct perf_cpu_context *cpuctx;
cdd6c482 3541 struct perf_event *event;
57e7986e
PM
3542 unsigned long flags;
3543 int enabled = 0;
3544
3545 local_irq_save(flags);
c1274499 3546 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3547 if (!ctx || !ctx->nr_events)
57e7986e
PM
3548 goto out;
3549
3e349507
PZ
3550 cpuctx = __get_cpu_context(ctx);
3551 perf_ctx_lock(cpuctx, ctx);
7fce2509 3552 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3553 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3554 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3555 event_type |= get_event_type(event);
3556 }
57e7986e
PM
3557
3558 /*
3e349507 3559 * Unclone and reschedule this context if we enabled any event.
57e7986e 3560 */
3e349507 3561 if (enabled) {
211de6eb 3562 clone_ctx = unclone_ctx(ctx);
487f05e1 3563 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3564 } else {
3565 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3566 }
3567 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3568
9ed6060d 3569out:
57e7986e 3570 local_irq_restore(flags);
211de6eb
PZ
3571
3572 if (clone_ctx)
3573 put_ctx(clone_ctx);
57e7986e
PM
3574}
3575
0492d4c5
PZ
3576struct perf_read_data {
3577 struct perf_event *event;
3578 bool group;
7d88962e 3579 int ret;
0492d4c5
PZ
3580};
3581
451d24d1 3582static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3583{
d6a2f903
DCC
3584 u16 local_pkg, event_pkg;
3585
3586 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3587 int local_cpu = smp_processor_id();
3588
3589 event_pkg = topology_physical_package_id(event_cpu);
3590 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3591
3592 if (event_pkg == local_pkg)
3593 return local_cpu;
3594 }
3595
3596 return event_cpu;
3597}
3598
0793a61d 3599/*
cdd6c482 3600 * Cross CPU call to read the hardware event
0793a61d 3601 */
cdd6c482 3602static void __perf_event_read(void *info)
0793a61d 3603{
0492d4c5
PZ
3604 struct perf_read_data *data = info;
3605 struct perf_event *sub, *event = data->event;
cdd6c482 3606 struct perf_event_context *ctx = event->ctx;
108b02cf 3607 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3608 struct pmu *pmu = event->pmu;
621a01ea 3609
e1ac3614
PM
3610 /*
3611 * If this is a task context, we need to check whether it is
3612 * the current task context of this cpu. If not it has been
3613 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3614 * event->count would have been updated to a recent sample
3615 * when the event was scheduled out.
e1ac3614
PM
3616 */
3617 if (ctx->task && cpuctx->task_ctx != ctx)
3618 return;
3619
e625cce1 3620 raw_spin_lock(&ctx->lock);
e5d1367f 3621 if (ctx->is_active) {
542e72fc 3622 update_context_time(ctx);
e5d1367f
SE
3623 update_cgrp_time_from_event(event);
3624 }
0492d4c5 3625
cdd6c482 3626 update_event_times(event);
4a00c16e
SB
3627 if (event->state != PERF_EVENT_STATE_ACTIVE)
3628 goto unlock;
0492d4c5 3629
4a00c16e
SB
3630 if (!data->group) {
3631 pmu->read(event);
3632 data->ret = 0;
0492d4c5 3633 goto unlock;
4a00c16e
SB
3634 }
3635
3636 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3637
3638 pmu->read(event);
0492d4c5
PZ
3639
3640 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3641 update_event_times(sub);
4a00c16e
SB
3642 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3643 /*
3644 * Use sibling's PMU rather than @event's since
3645 * sibling could be on different (eg: software) PMU.
3646 */
0492d4c5 3647 sub->pmu->read(sub);
4a00c16e 3648 }
0492d4c5 3649 }
4a00c16e
SB
3650
3651 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3652
3653unlock:
e625cce1 3654 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3655}
3656
b5e58793
PZ
3657static inline u64 perf_event_count(struct perf_event *event)
3658{
eacd3ecc
MF
3659 if (event->pmu->count)
3660 return event->pmu->count(event);
3661
3662 return __perf_event_count(event);
b5e58793
PZ
3663}
3664
ffe8690c
KX
3665/*
3666 * NMI-safe method to read a local event, that is an event that
3667 * is:
3668 * - either for the current task, or for this CPU
3669 * - does not have inherit set, for inherited task events
3670 * will not be local and we cannot read them atomically
3671 * - must not have a pmu::count method
3672 */
f91840a3 3673int perf_event_read_local(struct perf_event *event, u64 *value)
ffe8690c
KX
3674{
3675 unsigned long flags;
f91840a3 3676 int ret = 0;
ffe8690c
KX
3677
3678 /*
3679 * Disabling interrupts avoids all counter scheduling (context
3680 * switches, timer based rotation and IPIs).
3681 */
3682 local_irq_save(flags);
3683
ffe8690c
KX
3684 /*
3685 * It must not be an event with inherit set, we cannot read
3686 * all child counters from atomic context.
3687 */
f91840a3
AS
3688 if (event->attr.inherit) {
3689 ret = -EOPNOTSUPP;
3690 goto out;
3691 }
ffe8690c
KX
3692
3693 /*
3694 * It must not have a pmu::count method, those are not
3695 * NMI safe.
3696 */
f91840a3
AS
3697 if (event->pmu->count) {
3698 ret = -EOPNOTSUPP;
3699 goto out;
3700 }
3701
3702 /* If this is a per-task event, it must be for current */
3703 if ((event->attach_state & PERF_ATTACH_TASK) &&
3704 event->hw.target != current) {
3705 ret = -EINVAL;
3706 goto out;
3707 }
3708
3709 /* If this is a per-CPU event, it must be for this CPU */
3710 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3711 event->cpu != smp_processor_id()) {
3712 ret = -EINVAL;
3713 goto out;
3714 }
ffe8690c
KX
3715
3716 /*
3717 * If the event is currently on this CPU, its either a per-task event,
3718 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3719 * oncpu == -1).
3720 */
3721 if (event->oncpu == smp_processor_id())
3722 event->pmu->read(event);
3723
f91840a3
AS
3724 *value = local64_read(&event->count);
3725out:
ffe8690c
KX
3726 local_irq_restore(flags);
3727
f91840a3 3728 return ret;
ffe8690c
KX
3729}
3730
7d88962e 3731static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3732{
451d24d1 3733 int event_cpu, ret = 0;
7d88962e 3734
0793a61d 3735 /*
cdd6c482
IM
3736 * If event is enabled and currently active on a CPU, update the
3737 * value in the event structure:
0793a61d 3738 */
cdd6c482 3739 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3740 struct perf_read_data data = {
3741 .event = event,
3742 .group = group,
7d88962e 3743 .ret = 0,
0492d4c5 3744 };
d6a2f903 3745
451d24d1
PZ
3746 event_cpu = READ_ONCE(event->oncpu);
3747 if ((unsigned)event_cpu >= nr_cpu_ids)
3748 return 0;
3749
3750 preempt_disable();
3751 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3752
58763148
PZ
3753 /*
3754 * Purposely ignore the smp_call_function_single() return
3755 * value.
3756 *
451d24d1 3757 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3758 * scheduled out and that will have updated the event count.
3759 *
3760 * Therefore, either way, we'll have an up-to-date event count
3761 * after this.
3762 */
451d24d1
PZ
3763 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3764 preempt_enable();
58763148 3765 ret = data.ret;
cdd6c482 3766 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3767 struct perf_event_context *ctx = event->ctx;
3768 unsigned long flags;
3769
e625cce1 3770 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3771 /*
3772 * may read while context is not active
3773 * (e.g., thread is blocked), in that case
3774 * we cannot update context time
3775 */
e5d1367f 3776 if (ctx->is_active) {
c530ccd9 3777 update_context_time(ctx);
e5d1367f
SE
3778 update_cgrp_time_from_event(event);
3779 }
0492d4c5
PZ
3780 if (group)
3781 update_group_times(event);
3782 else
3783 update_event_times(event);
e625cce1 3784 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3785 }
7d88962e
SB
3786
3787 return ret;
0793a61d
TG
3788}
3789
a63eaf34 3790/*
cdd6c482 3791 * Initialize the perf_event context in a task_struct:
a63eaf34 3792 */
eb184479 3793static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3794{
e625cce1 3795 raw_spin_lock_init(&ctx->lock);
a63eaf34 3796 mutex_init(&ctx->mutex);
2fde4f94 3797 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3798 INIT_LIST_HEAD(&ctx->pinned_groups);
3799 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3800 INIT_LIST_HEAD(&ctx->event_list);
3801 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3802}
3803
3804static struct perf_event_context *
3805alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3806{
3807 struct perf_event_context *ctx;
3808
3809 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3810 if (!ctx)
3811 return NULL;
3812
3813 __perf_event_init_context(ctx);
3814 if (task) {
3815 ctx->task = task;
3816 get_task_struct(task);
0793a61d 3817 }
eb184479
PZ
3818 ctx->pmu = pmu;
3819
3820 return ctx;
a63eaf34
PM
3821}
3822
2ebd4ffb
MH
3823static struct task_struct *
3824find_lively_task_by_vpid(pid_t vpid)
3825{
3826 struct task_struct *task;
0793a61d
TG
3827
3828 rcu_read_lock();
2ebd4ffb 3829 if (!vpid)
0793a61d
TG
3830 task = current;
3831 else
2ebd4ffb 3832 task = find_task_by_vpid(vpid);
0793a61d
TG
3833 if (task)
3834 get_task_struct(task);
3835 rcu_read_unlock();
3836
3837 if (!task)
3838 return ERR_PTR(-ESRCH);
3839
2ebd4ffb 3840 return task;
2ebd4ffb
MH
3841}
3842
fe4b04fa
PZ
3843/*
3844 * Returns a matching context with refcount and pincount.
3845 */
108b02cf 3846static struct perf_event_context *
4af57ef2
YZ
3847find_get_context(struct pmu *pmu, struct task_struct *task,
3848 struct perf_event *event)
0793a61d 3849{
211de6eb 3850 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3851 struct perf_cpu_context *cpuctx;
4af57ef2 3852 void *task_ctx_data = NULL;
25346b93 3853 unsigned long flags;
8dc85d54 3854 int ctxn, err;
4af57ef2 3855 int cpu = event->cpu;
0793a61d 3856
22a4ec72 3857 if (!task) {
cdd6c482 3858 /* Must be root to operate on a CPU event: */
0764771d 3859 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3860 return ERR_PTR(-EACCES);
3861
108b02cf 3862 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3863 ctx = &cpuctx->ctx;
c93f7669 3864 get_ctx(ctx);
fe4b04fa 3865 ++ctx->pin_count;
0793a61d 3866
0793a61d
TG
3867 return ctx;
3868 }
3869
8dc85d54
PZ
3870 err = -EINVAL;
3871 ctxn = pmu->task_ctx_nr;
3872 if (ctxn < 0)
3873 goto errout;
3874
4af57ef2
YZ
3875 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3876 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3877 if (!task_ctx_data) {
3878 err = -ENOMEM;
3879 goto errout;
3880 }
3881 }
3882
9ed6060d 3883retry:
8dc85d54 3884 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3885 if (ctx) {
211de6eb 3886 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3887 ++ctx->pin_count;
4af57ef2
YZ
3888
3889 if (task_ctx_data && !ctx->task_ctx_data) {
3890 ctx->task_ctx_data = task_ctx_data;
3891 task_ctx_data = NULL;
3892 }
e625cce1 3893 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3894
3895 if (clone_ctx)
3896 put_ctx(clone_ctx);
9137fb28 3897 } else {
eb184479 3898 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3899 err = -ENOMEM;
3900 if (!ctx)
3901 goto errout;
eb184479 3902
4af57ef2
YZ
3903 if (task_ctx_data) {
3904 ctx->task_ctx_data = task_ctx_data;
3905 task_ctx_data = NULL;
3906 }
3907
dbe08d82
ON
3908 err = 0;
3909 mutex_lock(&task->perf_event_mutex);
3910 /*
3911 * If it has already passed perf_event_exit_task().
3912 * we must see PF_EXITING, it takes this mutex too.
3913 */
3914 if (task->flags & PF_EXITING)
3915 err = -ESRCH;
3916 else if (task->perf_event_ctxp[ctxn])
3917 err = -EAGAIN;
fe4b04fa 3918 else {
9137fb28 3919 get_ctx(ctx);
fe4b04fa 3920 ++ctx->pin_count;
dbe08d82 3921 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3922 }
dbe08d82
ON
3923 mutex_unlock(&task->perf_event_mutex);
3924
3925 if (unlikely(err)) {
9137fb28 3926 put_ctx(ctx);
dbe08d82
ON
3927
3928 if (err == -EAGAIN)
3929 goto retry;
3930 goto errout;
a63eaf34
PM
3931 }
3932 }
3933
4af57ef2 3934 kfree(task_ctx_data);
0793a61d 3935 return ctx;
c93f7669 3936
9ed6060d 3937errout:
4af57ef2 3938 kfree(task_ctx_data);
c93f7669 3939 return ERR_PTR(err);
0793a61d
TG
3940}
3941
6fb2915d 3942static void perf_event_free_filter(struct perf_event *event);
2541517c 3943static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3944
cdd6c482 3945static void free_event_rcu(struct rcu_head *head)
592903cd 3946{
cdd6c482 3947 struct perf_event *event;
592903cd 3948
cdd6c482
IM
3949 event = container_of(head, struct perf_event, rcu_head);
3950 if (event->ns)
3951 put_pid_ns(event->ns);
6fb2915d 3952 perf_event_free_filter(event);
cdd6c482 3953 kfree(event);
592903cd
PZ
3954}
3955
b69cf536
PZ
3956static void ring_buffer_attach(struct perf_event *event,
3957 struct ring_buffer *rb);
925d519a 3958
f2fb6bef
KL
3959static void detach_sb_event(struct perf_event *event)
3960{
3961 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3962
3963 raw_spin_lock(&pel->lock);
3964 list_del_rcu(&event->sb_list);
3965 raw_spin_unlock(&pel->lock);
3966}
3967
a4f144eb 3968static bool is_sb_event(struct perf_event *event)
f2fb6bef 3969{
a4f144eb
DCC
3970 struct perf_event_attr *attr = &event->attr;
3971
f2fb6bef 3972 if (event->parent)
a4f144eb 3973 return false;
f2fb6bef
KL
3974
3975 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3976 return false;
f2fb6bef 3977
a4f144eb
DCC
3978 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3979 attr->comm || attr->comm_exec ||
3980 attr->task ||
3981 attr->context_switch)
3982 return true;
3983 return false;
3984}
3985
3986static void unaccount_pmu_sb_event(struct perf_event *event)
3987{
3988 if (is_sb_event(event))
3989 detach_sb_event(event);
f2fb6bef
KL
3990}
3991
4beb31f3 3992static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3993{
4beb31f3
FW
3994 if (event->parent)
3995 return;
3996
4beb31f3
FW
3997 if (is_cgroup_event(event))
3998 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3999}
925d519a 4000
555e0c1e
FW
4001#ifdef CONFIG_NO_HZ_FULL
4002static DEFINE_SPINLOCK(nr_freq_lock);
4003#endif
4004
4005static void unaccount_freq_event_nohz(void)
4006{
4007#ifdef CONFIG_NO_HZ_FULL
4008 spin_lock(&nr_freq_lock);
4009 if (atomic_dec_and_test(&nr_freq_events))
4010 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4011 spin_unlock(&nr_freq_lock);
4012#endif
4013}
4014
4015static void unaccount_freq_event(void)
4016{
4017 if (tick_nohz_full_enabled())
4018 unaccount_freq_event_nohz();
4019 else
4020 atomic_dec(&nr_freq_events);
4021}
4022
4beb31f3
FW
4023static void unaccount_event(struct perf_event *event)
4024{
25432ae9
PZ
4025 bool dec = false;
4026
4beb31f3
FW
4027 if (event->parent)
4028 return;
4029
4030 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4031 dec = true;
4beb31f3
FW
4032 if (event->attr.mmap || event->attr.mmap_data)
4033 atomic_dec(&nr_mmap_events);
4034 if (event->attr.comm)
4035 atomic_dec(&nr_comm_events);
e4222673
HB
4036 if (event->attr.namespaces)
4037 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4038 if (event->attr.task)
4039 atomic_dec(&nr_task_events);
948b26b6 4040 if (event->attr.freq)
555e0c1e 4041 unaccount_freq_event();
45ac1403 4042 if (event->attr.context_switch) {
25432ae9 4043 dec = true;
45ac1403
AH
4044 atomic_dec(&nr_switch_events);
4045 }
4beb31f3 4046 if (is_cgroup_event(event))
25432ae9 4047 dec = true;
4beb31f3 4048 if (has_branch_stack(event))
25432ae9
PZ
4049 dec = true;
4050
9107c89e
PZ
4051 if (dec) {
4052 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4053 schedule_delayed_work(&perf_sched_work, HZ);
4054 }
4beb31f3
FW
4055
4056 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4057
4058 unaccount_pmu_sb_event(event);
4beb31f3 4059}
925d519a 4060
9107c89e
PZ
4061static void perf_sched_delayed(struct work_struct *work)
4062{
4063 mutex_lock(&perf_sched_mutex);
4064 if (atomic_dec_and_test(&perf_sched_count))
4065 static_branch_disable(&perf_sched_events);
4066 mutex_unlock(&perf_sched_mutex);
4067}
4068
bed5b25a
AS
4069/*
4070 * The following implement mutual exclusion of events on "exclusive" pmus
4071 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4072 * at a time, so we disallow creating events that might conflict, namely:
4073 *
4074 * 1) cpu-wide events in the presence of per-task events,
4075 * 2) per-task events in the presence of cpu-wide events,
4076 * 3) two matching events on the same context.
4077 *
4078 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4079 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4080 */
4081static int exclusive_event_init(struct perf_event *event)
4082{
4083 struct pmu *pmu = event->pmu;
4084
4085 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4086 return 0;
4087
4088 /*
4089 * Prevent co-existence of per-task and cpu-wide events on the
4090 * same exclusive pmu.
4091 *
4092 * Negative pmu::exclusive_cnt means there are cpu-wide
4093 * events on this "exclusive" pmu, positive means there are
4094 * per-task events.
4095 *
4096 * Since this is called in perf_event_alloc() path, event::ctx
4097 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4098 * to mean "per-task event", because unlike other attach states it
4099 * never gets cleared.
4100 */
4101 if (event->attach_state & PERF_ATTACH_TASK) {
4102 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4103 return -EBUSY;
4104 } else {
4105 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4106 return -EBUSY;
4107 }
4108
4109 return 0;
4110}
4111
4112static void exclusive_event_destroy(struct perf_event *event)
4113{
4114 struct pmu *pmu = event->pmu;
4115
4116 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4117 return;
4118
4119 /* see comment in exclusive_event_init() */
4120 if (event->attach_state & PERF_ATTACH_TASK)
4121 atomic_dec(&pmu->exclusive_cnt);
4122 else
4123 atomic_inc(&pmu->exclusive_cnt);
4124}
4125
4126static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4127{
3bf6215a 4128 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4129 (e1->cpu == e2->cpu ||
4130 e1->cpu == -1 ||
4131 e2->cpu == -1))
4132 return true;
4133 return false;
4134}
4135
4136/* Called under the same ctx::mutex as perf_install_in_context() */
4137static bool exclusive_event_installable(struct perf_event *event,
4138 struct perf_event_context *ctx)
4139{
4140 struct perf_event *iter_event;
4141 struct pmu *pmu = event->pmu;
4142
4143 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4144 return true;
4145
4146 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4147 if (exclusive_event_match(iter_event, event))
4148 return false;
4149 }
4150
4151 return true;
4152}
4153
375637bc
AS
4154static void perf_addr_filters_splice(struct perf_event *event,
4155 struct list_head *head);
4156
683ede43 4157static void _free_event(struct perf_event *event)
f1600952 4158{
e360adbe 4159 irq_work_sync(&event->pending);
925d519a 4160
4beb31f3 4161 unaccount_event(event);
9ee318a7 4162
76369139 4163 if (event->rb) {
9bb5d40c
PZ
4164 /*
4165 * Can happen when we close an event with re-directed output.
4166 *
4167 * Since we have a 0 refcount, perf_mmap_close() will skip
4168 * over us; possibly making our ring_buffer_put() the last.
4169 */
4170 mutex_lock(&event->mmap_mutex);
b69cf536 4171 ring_buffer_attach(event, NULL);
9bb5d40c 4172 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4173 }
4174
e5d1367f
SE
4175 if (is_cgroup_event(event))
4176 perf_detach_cgroup(event);
4177
a0733e69
PZ
4178 if (!event->parent) {
4179 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4180 put_callchain_buffers();
4181 }
4182
4183 perf_event_free_bpf_prog(event);
375637bc
AS
4184 perf_addr_filters_splice(event, NULL);
4185 kfree(event->addr_filters_offs);
a0733e69
PZ
4186
4187 if (event->destroy)
4188 event->destroy(event);
4189
4190 if (event->ctx)
4191 put_ctx(event->ctx);
4192
62a92c8f
AS
4193 exclusive_event_destroy(event);
4194 module_put(event->pmu->module);
a0733e69
PZ
4195
4196 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4197}
4198
683ede43
PZ
4199/*
4200 * Used to free events which have a known refcount of 1, such as in error paths
4201 * where the event isn't exposed yet and inherited events.
4202 */
4203static void free_event(struct perf_event *event)
0793a61d 4204{
683ede43
PZ
4205 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4206 "unexpected event refcount: %ld; ptr=%p\n",
4207 atomic_long_read(&event->refcount), event)) {
4208 /* leak to avoid use-after-free */
4209 return;
4210 }
0793a61d 4211
683ede43 4212 _free_event(event);
0793a61d
TG
4213}
4214
a66a3052 4215/*
f8697762 4216 * Remove user event from the owner task.
a66a3052 4217 */
f8697762 4218static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4219{
8882135b 4220 struct task_struct *owner;
fb0459d7 4221
8882135b 4222 rcu_read_lock();
8882135b 4223 /*
f47c02c0
PZ
4224 * Matches the smp_store_release() in perf_event_exit_task(). If we
4225 * observe !owner it means the list deletion is complete and we can
4226 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4227 * owner->perf_event_mutex.
4228 */
f47c02c0 4229 owner = lockless_dereference(event->owner);
8882135b
PZ
4230 if (owner) {
4231 /*
4232 * Since delayed_put_task_struct() also drops the last
4233 * task reference we can safely take a new reference
4234 * while holding the rcu_read_lock().
4235 */
4236 get_task_struct(owner);
4237 }
4238 rcu_read_unlock();
4239
4240 if (owner) {
f63a8daa
PZ
4241 /*
4242 * If we're here through perf_event_exit_task() we're already
4243 * holding ctx->mutex which would be an inversion wrt. the
4244 * normal lock order.
4245 *
4246 * However we can safely take this lock because its the child
4247 * ctx->mutex.
4248 */
4249 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4250
8882135b
PZ
4251 /*
4252 * We have to re-check the event->owner field, if it is cleared
4253 * we raced with perf_event_exit_task(), acquiring the mutex
4254 * ensured they're done, and we can proceed with freeing the
4255 * event.
4256 */
f47c02c0 4257 if (event->owner) {
8882135b 4258 list_del_init(&event->owner_entry);
f47c02c0
PZ
4259 smp_store_release(&event->owner, NULL);
4260 }
8882135b
PZ
4261 mutex_unlock(&owner->perf_event_mutex);
4262 put_task_struct(owner);
4263 }
f8697762
JO
4264}
4265
f8697762
JO
4266static void put_event(struct perf_event *event)
4267{
f8697762
JO
4268 if (!atomic_long_dec_and_test(&event->refcount))
4269 return;
4270
c6e5b732
PZ
4271 _free_event(event);
4272}
4273
4274/*
4275 * Kill an event dead; while event:refcount will preserve the event
4276 * object, it will not preserve its functionality. Once the last 'user'
4277 * gives up the object, we'll destroy the thing.
4278 */
4279int perf_event_release_kernel(struct perf_event *event)
4280{
a4f4bb6d 4281 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4282 struct perf_event *child, *tmp;
4283
a4f4bb6d
PZ
4284 /*
4285 * If we got here through err_file: fput(event_file); we will not have
4286 * attached to a context yet.
4287 */
4288 if (!ctx) {
4289 WARN_ON_ONCE(event->attach_state &
4290 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4291 goto no_ctx;
4292 }
4293
f8697762
JO
4294 if (!is_kernel_event(event))
4295 perf_remove_from_owner(event);
8882135b 4296
5fa7c8ec 4297 ctx = perf_event_ctx_lock(event);
a83fe28e 4298 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4299 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4300
a69b0ca4 4301 raw_spin_lock_irq(&ctx->lock);
683ede43 4302 /*
d8a8cfc7 4303 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4304 * anymore.
683ede43 4305 *
a69b0ca4
PZ
4306 * Anybody acquiring event->child_mutex after the below loop _must_
4307 * also see this, most importantly inherit_event() which will avoid
4308 * placing more children on the list.
683ede43 4309 *
c6e5b732
PZ
4310 * Thus this guarantees that we will in fact observe and kill _ALL_
4311 * child events.
683ede43 4312 */
a69b0ca4
PZ
4313 event->state = PERF_EVENT_STATE_DEAD;
4314 raw_spin_unlock_irq(&ctx->lock);
4315
4316 perf_event_ctx_unlock(event, ctx);
683ede43 4317
c6e5b732
PZ
4318again:
4319 mutex_lock(&event->child_mutex);
4320 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4321
c6e5b732
PZ
4322 /*
4323 * Cannot change, child events are not migrated, see the
4324 * comment with perf_event_ctx_lock_nested().
4325 */
4326 ctx = lockless_dereference(child->ctx);
4327 /*
4328 * Since child_mutex nests inside ctx::mutex, we must jump
4329 * through hoops. We start by grabbing a reference on the ctx.
4330 *
4331 * Since the event cannot get freed while we hold the
4332 * child_mutex, the context must also exist and have a !0
4333 * reference count.
4334 */
4335 get_ctx(ctx);
4336
4337 /*
4338 * Now that we have a ctx ref, we can drop child_mutex, and
4339 * acquire ctx::mutex without fear of it going away. Then we
4340 * can re-acquire child_mutex.
4341 */
4342 mutex_unlock(&event->child_mutex);
4343 mutex_lock(&ctx->mutex);
4344 mutex_lock(&event->child_mutex);
4345
4346 /*
4347 * Now that we hold ctx::mutex and child_mutex, revalidate our
4348 * state, if child is still the first entry, it didn't get freed
4349 * and we can continue doing so.
4350 */
4351 tmp = list_first_entry_or_null(&event->child_list,
4352 struct perf_event, child_list);
4353 if (tmp == child) {
4354 perf_remove_from_context(child, DETACH_GROUP);
4355 list_del(&child->child_list);
4356 free_event(child);
4357 /*
4358 * This matches the refcount bump in inherit_event();
4359 * this can't be the last reference.
4360 */
4361 put_event(event);
4362 }
4363
4364 mutex_unlock(&event->child_mutex);
4365 mutex_unlock(&ctx->mutex);
4366 put_ctx(ctx);
4367 goto again;
4368 }
4369 mutex_unlock(&event->child_mutex);
4370
a4f4bb6d
PZ
4371no_ctx:
4372 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4373 return 0;
4374}
4375EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4376
8b10c5e2
PZ
4377/*
4378 * Called when the last reference to the file is gone.
4379 */
a6fa941d
AV
4380static int perf_release(struct inode *inode, struct file *file)
4381{
c6e5b732 4382 perf_event_release_kernel(file->private_data);
a6fa941d 4383 return 0;
fb0459d7 4384}
fb0459d7 4385
59ed446f 4386u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4387{
cdd6c482 4388 struct perf_event *child;
e53c0994
PZ
4389 u64 total = 0;
4390
59ed446f
PZ
4391 *enabled = 0;
4392 *running = 0;
4393
6f10581a 4394 mutex_lock(&event->child_mutex);
01add3ea 4395
7d88962e 4396 (void)perf_event_read(event, false);
01add3ea
SB
4397 total += perf_event_count(event);
4398
59ed446f
PZ
4399 *enabled += event->total_time_enabled +
4400 atomic64_read(&event->child_total_time_enabled);
4401 *running += event->total_time_running +
4402 atomic64_read(&event->child_total_time_running);
4403
4404 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4405 (void)perf_event_read(child, false);
01add3ea 4406 total += perf_event_count(child);
59ed446f
PZ
4407 *enabled += child->total_time_enabled;
4408 *running += child->total_time_running;
4409 }
6f10581a 4410 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4411
4412 return total;
4413}
fb0459d7 4414EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4415
7d88962e 4416static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4417 u64 read_format, u64 *values)
3dab77fb 4418{
2aeb1883 4419 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4420 struct perf_event *sub;
2aeb1883 4421 unsigned long flags;
fa8c2693 4422 int n = 1; /* skip @nr */
7d88962e 4423 int ret;
f63a8daa 4424
7d88962e
SB
4425 ret = perf_event_read(leader, true);
4426 if (ret)
4427 return ret;
abf4868b 4428
fa8c2693
PZ
4429 /*
4430 * Since we co-schedule groups, {enabled,running} times of siblings
4431 * will be identical to those of the leader, so we only publish one
4432 * set.
4433 */
4434 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4435 values[n++] += leader->total_time_enabled +
4436 atomic64_read(&leader->child_total_time_enabled);
4437 }
3dab77fb 4438
fa8c2693
PZ
4439 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4440 values[n++] += leader->total_time_running +
4441 atomic64_read(&leader->child_total_time_running);
4442 }
4443
4444 /*
4445 * Write {count,id} tuples for every sibling.
4446 */
4447 values[n++] += perf_event_count(leader);
abf4868b
PZ
4448 if (read_format & PERF_FORMAT_ID)
4449 values[n++] = primary_event_id(leader);
3dab77fb 4450
2aeb1883
JO
4451 raw_spin_lock_irqsave(&ctx->lock, flags);
4452
fa8c2693
PZ
4453 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4454 values[n++] += perf_event_count(sub);
4455 if (read_format & PERF_FORMAT_ID)
4456 values[n++] = primary_event_id(sub);
4457 }
7d88962e 4458
2aeb1883 4459 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4460 return 0;
fa8c2693 4461}
3dab77fb 4462
fa8c2693
PZ
4463static int perf_read_group(struct perf_event *event,
4464 u64 read_format, char __user *buf)
4465{
4466 struct perf_event *leader = event->group_leader, *child;
4467 struct perf_event_context *ctx = leader->ctx;
7d88962e 4468 int ret;
fa8c2693 4469 u64 *values;
3dab77fb 4470
fa8c2693 4471 lockdep_assert_held(&ctx->mutex);
3dab77fb 4472
fa8c2693
PZ
4473 values = kzalloc(event->read_size, GFP_KERNEL);
4474 if (!values)
4475 return -ENOMEM;
3dab77fb 4476
fa8c2693
PZ
4477 values[0] = 1 + leader->nr_siblings;
4478
4479 /*
4480 * By locking the child_mutex of the leader we effectively
4481 * lock the child list of all siblings.. XXX explain how.
4482 */
4483 mutex_lock(&leader->child_mutex);
abf4868b 4484
7d88962e
SB
4485 ret = __perf_read_group_add(leader, read_format, values);
4486 if (ret)
4487 goto unlock;
4488
4489 list_for_each_entry(child, &leader->child_list, child_list) {
4490 ret = __perf_read_group_add(child, read_format, values);
4491 if (ret)
4492 goto unlock;
4493 }
abf4868b 4494
fa8c2693 4495 mutex_unlock(&leader->child_mutex);
abf4868b 4496
7d88962e 4497 ret = event->read_size;
fa8c2693
PZ
4498 if (copy_to_user(buf, values, event->read_size))
4499 ret = -EFAULT;
7d88962e 4500 goto out;
fa8c2693 4501
7d88962e
SB
4502unlock:
4503 mutex_unlock(&leader->child_mutex);
4504out:
fa8c2693 4505 kfree(values);
abf4868b 4506 return ret;
3dab77fb
PZ
4507}
4508
b15f495b 4509static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4510 u64 read_format, char __user *buf)
4511{
59ed446f 4512 u64 enabled, running;
3dab77fb
PZ
4513 u64 values[4];
4514 int n = 0;
4515
59ed446f
PZ
4516 values[n++] = perf_event_read_value(event, &enabled, &running);
4517 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4518 values[n++] = enabled;
4519 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4520 values[n++] = running;
3dab77fb 4521 if (read_format & PERF_FORMAT_ID)
cdd6c482 4522 values[n++] = primary_event_id(event);
3dab77fb
PZ
4523
4524 if (copy_to_user(buf, values, n * sizeof(u64)))
4525 return -EFAULT;
4526
4527 return n * sizeof(u64);
4528}
4529
dc633982
JO
4530static bool is_event_hup(struct perf_event *event)
4531{
4532 bool no_children;
4533
a69b0ca4 4534 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4535 return false;
4536
4537 mutex_lock(&event->child_mutex);
4538 no_children = list_empty(&event->child_list);
4539 mutex_unlock(&event->child_mutex);
4540 return no_children;
4541}
4542
0793a61d 4543/*
cdd6c482 4544 * Read the performance event - simple non blocking version for now
0793a61d
TG
4545 */
4546static ssize_t
b15f495b 4547__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4548{
cdd6c482 4549 u64 read_format = event->attr.read_format;
3dab77fb 4550 int ret;
0793a61d 4551
3b6f9e5c 4552 /*
cdd6c482 4553 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4554 * error state (i.e. because it was pinned but it couldn't be
4555 * scheduled on to the CPU at some point).
4556 */
cdd6c482 4557 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4558 return 0;
4559
c320c7b7 4560 if (count < event->read_size)
3dab77fb
PZ
4561 return -ENOSPC;
4562
cdd6c482 4563 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4564 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4565 ret = perf_read_group(event, read_format, buf);
3dab77fb 4566 else
b15f495b 4567 ret = perf_read_one(event, read_format, buf);
0793a61d 4568
3dab77fb 4569 return ret;
0793a61d
TG
4570}
4571
0793a61d
TG
4572static ssize_t
4573perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4574{
cdd6c482 4575 struct perf_event *event = file->private_data;
f63a8daa
PZ
4576 struct perf_event_context *ctx;
4577 int ret;
0793a61d 4578
f63a8daa 4579 ctx = perf_event_ctx_lock(event);
b15f495b 4580 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4581 perf_event_ctx_unlock(event, ctx);
4582
4583 return ret;
0793a61d
TG
4584}
4585
4586static unsigned int perf_poll(struct file *file, poll_table *wait)
4587{
cdd6c482 4588 struct perf_event *event = file->private_data;
76369139 4589 struct ring_buffer *rb;
61b67684 4590 unsigned int events = POLLHUP;
c7138f37 4591
e708d7ad 4592 poll_wait(file, &event->waitq, wait);
179033b3 4593
dc633982 4594 if (is_event_hup(event))
179033b3 4595 return events;
c7138f37 4596
10c6db11 4597 /*
9bb5d40c
PZ
4598 * Pin the event->rb by taking event->mmap_mutex; otherwise
4599 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4600 */
4601 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4602 rb = event->rb;
4603 if (rb)
76369139 4604 events = atomic_xchg(&rb->poll, 0);
10c6db11 4605 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4606 return events;
4607}
4608
f63a8daa 4609static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4610{
7d88962e 4611 (void)perf_event_read(event, false);
e7850595 4612 local64_set(&event->count, 0);
cdd6c482 4613 perf_event_update_userpage(event);
3df5edad
PZ
4614}
4615
c93f7669 4616/*
cdd6c482
IM
4617 * Holding the top-level event's child_mutex means that any
4618 * descendant process that has inherited this event will block
8ba289b8 4619 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4620 * task existence requirements of perf_event_enable/disable.
c93f7669 4621 */
cdd6c482
IM
4622static void perf_event_for_each_child(struct perf_event *event,
4623 void (*func)(struct perf_event *))
3df5edad 4624{
cdd6c482 4625 struct perf_event *child;
3df5edad 4626
cdd6c482 4627 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4628
cdd6c482
IM
4629 mutex_lock(&event->child_mutex);
4630 func(event);
4631 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4632 func(child);
cdd6c482 4633 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4634}
4635
cdd6c482
IM
4636static void perf_event_for_each(struct perf_event *event,
4637 void (*func)(struct perf_event *))
3df5edad 4638{
cdd6c482
IM
4639 struct perf_event_context *ctx = event->ctx;
4640 struct perf_event *sibling;
3df5edad 4641
f63a8daa
PZ
4642 lockdep_assert_held(&ctx->mutex);
4643
cdd6c482 4644 event = event->group_leader;
75f937f2 4645
cdd6c482 4646 perf_event_for_each_child(event, func);
cdd6c482 4647 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4648 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4649}
4650
fae3fde6
PZ
4651static void __perf_event_period(struct perf_event *event,
4652 struct perf_cpu_context *cpuctx,
4653 struct perf_event_context *ctx,
4654 void *info)
c7999c6f 4655{
fae3fde6 4656 u64 value = *((u64 *)info);
c7999c6f 4657 bool active;
08247e31 4658
cdd6c482 4659 if (event->attr.freq) {
cdd6c482 4660 event->attr.sample_freq = value;
08247e31 4661 } else {
cdd6c482
IM
4662 event->attr.sample_period = value;
4663 event->hw.sample_period = value;
08247e31 4664 }
bad7192b
PZ
4665
4666 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4667 if (active) {
4668 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4669 /*
4670 * We could be throttled; unthrottle now to avoid the tick
4671 * trying to unthrottle while we already re-started the event.
4672 */
4673 if (event->hw.interrupts == MAX_INTERRUPTS) {
4674 event->hw.interrupts = 0;
4675 perf_log_throttle(event, 1);
4676 }
bad7192b
PZ
4677 event->pmu->stop(event, PERF_EF_UPDATE);
4678 }
4679
4680 local64_set(&event->hw.period_left, 0);
4681
4682 if (active) {
4683 event->pmu->start(event, PERF_EF_RELOAD);
4684 perf_pmu_enable(ctx->pmu);
4685 }
c7999c6f
PZ
4686}
4687
4688static int perf_event_period(struct perf_event *event, u64 __user *arg)
4689{
c7999c6f
PZ
4690 u64 value;
4691
4692 if (!is_sampling_event(event))
4693 return -EINVAL;
4694
4695 if (copy_from_user(&value, arg, sizeof(value)))
4696 return -EFAULT;
4697
4698 if (!value)
4699 return -EINVAL;
4700
4701 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4702 return -EINVAL;
4703
fae3fde6 4704 event_function_call(event, __perf_event_period, &value);
08247e31 4705
c7999c6f 4706 return 0;
08247e31
PZ
4707}
4708
ac9721f3
PZ
4709static const struct file_operations perf_fops;
4710
2903ff01 4711static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4712{
2903ff01
AV
4713 struct fd f = fdget(fd);
4714 if (!f.file)
4715 return -EBADF;
ac9721f3 4716
2903ff01
AV
4717 if (f.file->f_op != &perf_fops) {
4718 fdput(f);
4719 return -EBADF;
ac9721f3 4720 }
2903ff01
AV
4721 *p = f;
4722 return 0;
ac9721f3
PZ
4723}
4724
4725static int perf_event_set_output(struct perf_event *event,
4726 struct perf_event *output_event);
6fb2915d 4727static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4728static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4729
f63a8daa 4730static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4731{
cdd6c482 4732 void (*func)(struct perf_event *);
3df5edad 4733 u32 flags = arg;
d859e29f
PM
4734
4735 switch (cmd) {
cdd6c482 4736 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4737 func = _perf_event_enable;
d859e29f 4738 break;
cdd6c482 4739 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4740 func = _perf_event_disable;
79f14641 4741 break;
cdd6c482 4742 case PERF_EVENT_IOC_RESET:
f63a8daa 4743 func = _perf_event_reset;
6de6a7b9 4744 break;
3df5edad 4745
cdd6c482 4746 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4747 return _perf_event_refresh(event, arg);
08247e31 4748
cdd6c482
IM
4749 case PERF_EVENT_IOC_PERIOD:
4750 return perf_event_period(event, (u64 __user *)arg);
08247e31 4751
cf4957f1
JO
4752 case PERF_EVENT_IOC_ID:
4753 {
4754 u64 id = primary_event_id(event);
4755
4756 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4757 return -EFAULT;
4758 return 0;
4759 }
4760
cdd6c482 4761 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4762 {
ac9721f3 4763 int ret;
ac9721f3 4764 if (arg != -1) {
2903ff01
AV
4765 struct perf_event *output_event;
4766 struct fd output;
4767 ret = perf_fget_light(arg, &output);
4768 if (ret)
4769 return ret;
4770 output_event = output.file->private_data;
4771 ret = perf_event_set_output(event, output_event);
4772 fdput(output);
4773 } else {
4774 ret = perf_event_set_output(event, NULL);
ac9721f3 4775 }
ac9721f3
PZ
4776 return ret;
4777 }
a4be7c27 4778
6fb2915d
LZ
4779 case PERF_EVENT_IOC_SET_FILTER:
4780 return perf_event_set_filter(event, (void __user *)arg);
4781
2541517c
AS
4782 case PERF_EVENT_IOC_SET_BPF:
4783 return perf_event_set_bpf_prog(event, arg);
4784
86e7972f
WN
4785 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4786 struct ring_buffer *rb;
4787
4788 rcu_read_lock();
4789 rb = rcu_dereference(event->rb);
4790 if (!rb || !rb->nr_pages) {
4791 rcu_read_unlock();
4792 return -EINVAL;
4793 }
4794 rb_toggle_paused(rb, !!arg);
4795 rcu_read_unlock();
4796 return 0;
4797 }
d859e29f 4798 default:
3df5edad 4799 return -ENOTTY;
d859e29f 4800 }
3df5edad
PZ
4801
4802 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4803 perf_event_for_each(event, func);
3df5edad 4804 else
cdd6c482 4805 perf_event_for_each_child(event, func);
3df5edad
PZ
4806
4807 return 0;
d859e29f
PM
4808}
4809
f63a8daa
PZ
4810static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4811{
4812 struct perf_event *event = file->private_data;
4813 struct perf_event_context *ctx;
4814 long ret;
4815
4816 ctx = perf_event_ctx_lock(event);
4817 ret = _perf_ioctl(event, cmd, arg);
4818 perf_event_ctx_unlock(event, ctx);
4819
4820 return ret;
4821}
4822
b3f20785
PM
4823#ifdef CONFIG_COMPAT
4824static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4825 unsigned long arg)
4826{
4827 switch (_IOC_NR(cmd)) {
4828 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4829 case _IOC_NR(PERF_EVENT_IOC_ID):
4830 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4831 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4832 cmd &= ~IOCSIZE_MASK;
4833 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4834 }
4835 break;
4836 }
4837 return perf_ioctl(file, cmd, arg);
4838}
4839#else
4840# define perf_compat_ioctl NULL
4841#endif
4842
cdd6c482 4843int perf_event_task_enable(void)
771d7cde 4844{
f63a8daa 4845 struct perf_event_context *ctx;
cdd6c482 4846 struct perf_event *event;
771d7cde 4847
cdd6c482 4848 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4849 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4850 ctx = perf_event_ctx_lock(event);
4851 perf_event_for_each_child(event, _perf_event_enable);
4852 perf_event_ctx_unlock(event, ctx);
4853 }
cdd6c482 4854 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4855
4856 return 0;
4857}
4858
cdd6c482 4859int perf_event_task_disable(void)
771d7cde 4860{
f63a8daa 4861 struct perf_event_context *ctx;
cdd6c482 4862 struct perf_event *event;
771d7cde 4863
cdd6c482 4864 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4865 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4866 ctx = perf_event_ctx_lock(event);
4867 perf_event_for_each_child(event, _perf_event_disable);
4868 perf_event_ctx_unlock(event, ctx);
4869 }
cdd6c482 4870 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4871
4872 return 0;
4873}
4874
cdd6c482 4875static int perf_event_index(struct perf_event *event)
194002b2 4876{
a4eaf7f1
PZ
4877 if (event->hw.state & PERF_HES_STOPPED)
4878 return 0;
4879
cdd6c482 4880 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4881 return 0;
4882
35edc2a5 4883 return event->pmu->event_idx(event);
194002b2
PZ
4884}
4885
c4794295 4886static void calc_timer_values(struct perf_event *event,
e3f3541c 4887 u64 *now,
7f310a5d
EM
4888 u64 *enabled,
4889 u64 *running)
c4794295 4890{
e3f3541c 4891 u64 ctx_time;
c4794295 4892
e3f3541c
PZ
4893 *now = perf_clock();
4894 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4895 *enabled = ctx_time - event->tstamp_enabled;
4896 *running = ctx_time - event->tstamp_running;
4897}
4898
fa731587
PZ
4899static void perf_event_init_userpage(struct perf_event *event)
4900{
4901 struct perf_event_mmap_page *userpg;
4902 struct ring_buffer *rb;
4903
4904 rcu_read_lock();
4905 rb = rcu_dereference(event->rb);
4906 if (!rb)
4907 goto unlock;
4908
4909 userpg = rb->user_page;
4910
4911 /* Allow new userspace to detect that bit 0 is deprecated */
4912 userpg->cap_bit0_is_deprecated = 1;
4913 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4914 userpg->data_offset = PAGE_SIZE;
4915 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4916
4917unlock:
4918 rcu_read_unlock();
4919}
4920
c1317ec2
AL
4921void __weak arch_perf_update_userpage(
4922 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4923{
4924}
4925
38ff667b
PZ
4926/*
4927 * Callers need to ensure there can be no nesting of this function, otherwise
4928 * the seqlock logic goes bad. We can not serialize this because the arch
4929 * code calls this from NMI context.
4930 */
cdd6c482 4931void perf_event_update_userpage(struct perf_event *event)
37d81828 4932{
cdd6c482 4933 struct perf_event_mmap_page *userpg;
76369139 4934 struct ring_buffer *rb;
e3f3541c 4935 u64 enabled, running, now;
38ff667b
PZ
4936
4937 rcu_read_lock();
5ec4c599
PZ
4938 rb = rcu_dereference(event->rb);
4939 if (!rb)
4940 goto unlock;
4941
0d641208
EM
4942 /*
4943 * compute total_time_enabled, total_time_running
4944 * based on snapshot values taken when the event
4945 * was last scheduled in.
4946 *
4947 * we cannot simply called update_context_time()
4948 * because of locking issue as we can be called in
4949 * NMI context
4950 */
e3f3541c 4951 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4952
76369139 4953 userpg = rb->user_page;
7b732a75
PZ
4954 /*
4955 * Disable preemption so as to not let the corresponding user-space
4956 * spin too long if we get preempted.
4957 */
4958 preempt_disable();
37d81828 4959 ++userpg->lock;
92f22a38 4960 barrier();
cdd6c482 4961 userpg->index = perf_event_index(event);
b5e58793 4962 userpg->offset = perf_event_count(event);
365a4038 4963 if (userpg->index)
e7850595 4964 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4965
0d641208 4966 userpg->time_enabled = enabled +
cdd6c482 4967 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4968
0d641208 4969 userpg->time_running = running +
cdd6c482 4970 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4971
c1317ec2 4972 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4973
92f22a38 4974 barrier();
37d81828 4975 ++userpg->lock;
7b732a75 4976 preempt_enable();
38ff667b 4977unlock:
7b732a75 4978 rcu_read_unlock();
37d81828
PM
4979}
4980
11bac800 4981static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 4982{
11bac800 4983 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 4984 struct ring_buffer *rb;
906010b2
PZ
4985 int ret = VM_FAULT_SIGBUS;
4986
4987 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4988 if (vmf->pgoff == 0)
4989 ret = 0;
4990 return ret;
4991 }
4992
4993 rcu_read_lock();
76369139
FW
4994 rb = rcu_dereference(event->rb);
4995 if (!rb)
906010b2
PZ
4996 goto unlock;
4997
4998 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4999 goto unlock;
5000
76369139 5001 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5002 if (!vmf->page)
5003 goto unlock;
5004
5005 get_page(vmf->page);
11bac800 5006 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5007 vmf->page->index = vmf->pgoff;
5008
5009 ret = 0;
5010unlock:
5011 rcu_read_unlock();
5012
5013 return ret;
5014}
5015
10c6db11
PZ
5016static void ring_buffer_attach(struct perf_event *event,
5017 struct ring_buffer *rb)
5018{
b69cf536 5019 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5020 unsigned long flags;
5021
b69cf536
PZ
5022 if (event->rb) {
5023 /*
5024 * Should be impossible, we set this when removing
5025 * event->rb_entry and wait/clear when adding event->rb_entry.
5026 */
5027 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5028
b69cf536 5029 old_rb = event->rb;
b69cf536
PZ
5030 spin_lock_irqsave(&old_rb->event_lock, flags);
5031 list_del_rcu(&event->rb_entry);
5032 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5033
2f993cf0
ON
5034 event->rcu_batches = get_state_synchronize_rcu();
5035 event->rcu_pending = 1;
b69cf536 5036 }
10c6db11 5037
b69cf536 5038 if (rb) {
2f993cf0
ON
5039 if (event->rcu_pending) {
5040 cond_synchronize_rcu(event->rcu_batches);
5041 event->rcu_pending = 0;
5042 }
5043
b69cf536
PZ
5044 spin_lock_irqsave(&rb->event_lock, flags);
5045 list_add_rcu(&event->rb_entry, &rb->event_list);
5046 spin_unlock_irqrestore(&rb->event_lock, flags);
5047 }
5048
767ae086
AS
5049 /*
5050 * Avoid racing with perf_mmap_close(AUX): stop the event
5051 * before swizzling the event::rb pointer; if it's getting
5052 * unmapped, its aux_mmap_count will be 0 and it won't
5053 * restart. See the comment in __perf_pmu_output_stop().
5054 *
5055 * Data will inevitably be lost when set_output is done in
5056 * mid-air, but then again, whoever does it like this is
5057 * not in for the data anyway.
5058 */
5059 if (has_aux(event))
5060 perf_event_stop(event, 0);
5061
b69cf536
PZ
5062 rcu_assign_pointer(event->rb, rb);
5063
5064 if (old_rb) {
5065 ring_buffer_put(old_rb);
5066 /*
5067 * Since we detached before setting the new rb, so that we
5068 * could attach the new rb, we could have missed a wakeup.
5069 * Provide it now.
5070 */
5071 wake_up_all(&event->waitq);
5072 }
10c6db11
PZ
5073}
5074
5075static void ring_buffer_wakeup(struct perf_event *event)
5076{
5077 struct ring_buffer *rb;
5078
5079 rcu_read_lock();
5080 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5081 if (rb) {
5082 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5083 wake_up_all(&event->waitq);
5084 }
10c6db11
PZ
5085 rcu_read_unlock();
5086}
5087
fdc26706 5088struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5089{
76369139 5090 struct ring_buffer *rb;
7b732a75 5091
ac9721f3 5092 rcu_read_lock();
76369139
FW
5093 rb = rcu_dereference(event->rb);
5094 if (rb) {
5095 if (!atomic_inc_not_zero(&rb->refcount))
5096 rb = NULL;
ac9721f3
PZ
5097 }
5098 rcu_read_unlock();
5099
76369139 5100 return rb;
ac9721f3
PZ
5101}
5102
fdc26706 5103void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5104{
76369139 5105 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5106 return;
7b732a75 5107
9bb5d40c 5108 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5109
76369139 5110 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5111}
5112
5113static void perf_mmap_open(struct vm_area_struct *vma)
5114{
cdd6c482 5115 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5116
cdd6c482 5117 atomic_inc(&event->mmap_count);
9bb5d40c 5118 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5119
45bfb2e5
PZ
5120 if (vma->vm_pgoff)
5121 atomic_inc(&event->rb->aux_mmap_count);
5122
1e0fb9ec 5123 if (event->pmu->event_mapped)
bfe33492 5124 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5125}
5126
95ff4ca2
AS
5127static void perf_pmu_output_stop(struct perf_event *event);
5128
9bb5d40c
PZ
5129/*
5130 * A buffer can be mmap()ed multiple times; either directly through the same
5131 * event, or through other events by use of perf_event_set_output().
5132 *
5133 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5134 * the buffer here, where we still have a VM context. This means we need
5135 * to detach all events redirecting to us.
5136 */
7b732a75
PZ
5137static void perf_mmap_close(struct vm_area_struct *vma)
5138{
cdd6c482 5139 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5140
b69cf536 5141 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5142 struct user_struct *mmap_user = rb->mmap_user;
5143 int mmap_locked = rb->mmap_locked;
5144 unsigned long size = perf_data_size(rb);
789f90fc 5145
1e0fb9ec 5146 if (event->pmu->event_unmapped)
bfe33492 5147 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5148
45bfb2e5
PZ
5149 /*
5150 * rb->aux_mmap_count will always drop before rb->mmap_count and
5151 * event->mmap_count, so it is ok to use event->mmap_mutex to
5152 * serialize with perf_mmap here.
5153 */
5154 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5155 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5156 /*
5157 * Stop all AUX events that are writing to this buffer,
5158 * so that we can free its AUX pages and corresponding PMU
5159 * data. Note that after rb::aux_mmap_count dropped to zero,
5160 * they won't start any more (see perf_aux_output_begin()).
5161 */
5162 perf_pmu_output_stop(event);
5163
5164 /* now it's safe to free the pages */
45bfb2e5
PZ
5165 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5166 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5167
95ff4ca2 5168 /* this has to be the last one */
45bfb2e5 5169 rb_free_aux(rb);
95ff4ca2
AS
5170 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5171
45bfb2e5
PZ
5172 mutex_unlock(&event->mmap_mutex);
5173 }
5174
9bb5d40c
PZ
5175 atomic_dec(&rb->mmap_count);
5176
5177 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5178 goto out_put;
9bb5d40c 5179
b69cf536 5180 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5181 mutex_unlock(&event->mmap_mutex);
5182
5183 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5184 if (atomic_read(&rb->mmap_count))
5185 goto out_put;
ac9721f3 5186
9bb5d40c
PZ
5187 /*
5188 * No other mmap()s, detach from all other events that might redirect
5189 * into the now unreachable buffer. Somewhat complicated by the
5190 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5191 */
5192again:
5193 rcu_read_lock();
5194 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5195 if (!atomic_long_inc_not_zero(&event->refcount)) {
5196 /*
5197 * This event is en-route to free_event() which will
5198 * detach it and remove it from the list.
5199 */
5200 continue;
5201 }
5202 rcu_read_unlock();
789f90fc 5203
9bb5d40c
PZ
5204 mutex_lock(&event->mmap_mutex);
5205 /*
5206 * Check we didn't race with perf_event_set_output() which can
5207 * swizzle the rb from under us while we were waiting to
5208 * acquire mmap_mutex.
5209 *
5210 * If we find a different rb; ignore this event, a next
5211 * iteration will no longer find it on the list. We have to
5212 * still restart the iteration to make sure we're not now
5213 * iterating the wrong list.
5214 */
b69cf536
PZ
5215 if (event->rb == rb)
5216 ring_buffer_attach(event, NULL);
5217
cdd6c482 5218 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5219 put_event(event);
ac9721f3 5220
9bb5d40c
PZ
5221 /*
5222 * Restart the iteration; either we're on the wrong list or
5223 * destroyed its integrity by doing a deletion.
5224 */
5225 goto again;
7b732a75 5226 }
9bb5d40c
PZ
5227 rcu_read_unlock();
5228
5229 /*
5230 * It could be there's still a few 0-ref events on the list; they'll
5231 * get cleaned up by free_event() -- they'll also still have their
5232 * ref on the rb and will free it whenever they are done with it.
5233 *
5234 * Aside from that, this buffer is 'fully' detached and unmapped,
5235 * undo the VM accounting.
5236 */
5237
5238 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5239 vma->vm_mm->pinned_vm -= mmap_locked;
5240 free_uid(mmap_user);
5241
b69cf536 5242out_put:
9bb5d40c 5243 ring_buffer_put(rb); /* could be last */
37d81828
PM
5244}
5245
f0f37e2f 5246static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5247 .open = perf_mmap_open,
45bfb2e5 5248 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5249 .fault = perf_mmap_fault,
5250 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5251};
5252
5253static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5254{
cdd6c482 5255 struct perf_event *event = file->private_data;
22a4f650 5256 unsigned long user_locked, user_lock_limit;
789f90fc 5257 struct user_struct *user = current_user();
22a4f650 5258 unsigned long locked, lock_limit;
45bfb2e5 5259 struct ring_buffer *rb = NULL;
7b732a75
PZ
5260 unsigned long vma_size;
5261 unsigned long nr_pages;
45bfb2e5 5262 long user_extra = 0, extra = 0;
d57e34fd 5263 int ret = 0, flags = 0;
37d81828 5264
c7920614
PZ
5265 /*
5266 * Don't allow mmap() of inherited per-task counters. This would
5267 * create a performance issue due to all children writing to the
76369139 5268 * same rb.
c7920614
PZ
5269 */
5270 if (event->cpu == -1 && event->attr.inherit)
5271 return -EINVAL;
5272
43a21ea8 5273 if (!(vma->vm_flags & VM_SHARED))
37d81828 5274 return -EINVAL;
7b732a75
PZ
5275
5276 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5277
5278 if (vma->vm_pgoff == 0) {
5279 nr_pages = (vma_size / PAGE_SIZE) - 1;
5280 } else {
5281 /*
5282 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5283 * mapped, all subsequent mappings should have the same size
5284 * and offset. Must be above the normal perf buffer.
5285 */
5286 u64 aux_offset, aux_size;
5287
5288 if (!event->rb)
5289 return -EINVAL;
5290
5291 nr_pages = vma_size / PAGE_SIZE;
5292
5293 mutex_lock(&event->mmap_mutex);
5294 ret = -EINVAL;
5295
5296 rb = event->rb;
5297 if (!rb)
5298 goto aux_unlock;
5299
5300 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5301 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5302
5303 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5304 goto aux_unlock;
5305
5306 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5307 goto aux_unlock;
5308
5309 /* already mapped with a different offset */
5310 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5311 goto aux_unlock;
5312
5313 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5314 goto aux_unlock;
5315
5316 /* already mapped with a different size */
5317 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5318 goto aux_unlock;
5319
5320 if (!is_power_of_2(nr_pages))
5321 goto aux_unlock;
5322
5323 if (!atomic_inc_not_zero(&rb->mmap_count))
5324 goto aux_unlock;
5325
5326 if (rb_has_aux(rb)) {
5327 atomic_inc(&rb->aux_mmap_count);
5328 ret = 0;
5329 goto unlock;
5330 }
5331
5332 atomic_set(&rb->aux_mmap_count, 1);
5333 user_extra = nr_pages;
5334
5335 goto accounting;
5336 }
7b732a75 5337
7730d865 5338 /*
76369139 5339 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5340 * can do bitmasks instead of modulo.
5341 */
2ed11312 5342 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5343 return -EINVAL;
5344
7b732a75 5345 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5346 return -EINVAL;
5347
cdd6c482 5348 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5349again:
cdd6c482 5350 mutex_lock(&event->mmap_mutex);
76369139 5351 if (event->rb) {
9bb5d40c 5352 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5353 ret = -EINVAL;
9bb5d40c
PZ
5354 goto unlock;
5355 }
5356
5357 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5358 /*
5359 * Raced against perf_mmap_close() through
5360 * perf_event_set_output(). Try again, hope for better
5361 * luck.
5362 */
5363 mutex_unlock(&event->mmap_mutex);
5364 goto again;
5365 }
5366
ebb3c4c4
PZ
5367 goto unlock;
5368 }
5369
789f90fc 5370 user_extra = nr_pages + 1;
45bfb2e5
PZ
5371
5372accounting:
cdd6c482 5373 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5374
5375 /*
5376 * Increase the limit linearly with more CPUs:
5377 */
5378 user_lock_limit *= num_online_cpus();
5379
789f90fc 5380 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5381
789f90fc
PZ
5382 if (user_locked > user_lock_limit)
5383 extra = user_locked - user_lock_limit;
7b732a75 5384
78d7d407 5385 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5386 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5387 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5388
459ec28a
IM
5389 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5390 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5391 ret = -EPERM;
5392 goto unlock;
5393 }
7b732a75 5394
45bfb2e5 5395 WARN_ON(!rb && event->rb);
906010b2 5396
d57e34fd 5397 if (vma->vm_flags & VM_WRITE)
76369139 5398 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5399
76369139 5400 if (!rb) {
45bfb2e5
PZ
5401 rb = rb_alloc(nr_pages,
5402 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5403 event->cpu, flags);
26cb63ad 5404
45bfb2e5
PZ
5405 if (!rb) {
5406 ret = -ENOMEM;
5407 goto unlock;
5408 }
43a21ea8 5409
45bfb2e5
PZ
5410 atomic_set(&rb->mmap_count, 1);
5411 rb->mmap_user = get_current_user();
5412 rb->mmap_locked = extra;
26cb63ad 5413
45bfb2e5 5414 ring_buffer_attach(event, rb);
ac9721f3 5415
45bfb2e5
PZ
5416 perf_event_init_userpage(event);
5417 perf_event_update_userpage(event);
5418 } else {
1a594131
AS
5419 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5420 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5421 if (!ret)
5422 rb->aux_mmap_locked = extra;
5423 }
9a0f05cb 5424
ebb3c4c4 5425unlock:
45bfb2e5
PZ
5426 if (!ret) {
5427 atomic_long_add(user_extra, &user->locked_vm);
5428 vma->vm_mm->pinned_vm += extra;
5429
ac9721f3 5430 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5431 } else if (rb) {
5432 atomic_dec(&rb->mmap_count);
5433 }
5434aux_unlock:
cdd6c482 5435 mutex_unlock(&event->mmap_mutex);
37d81828 5436
9bb5d40c
PZ
5437 /*
5438 * Since pinned accounting is per vm we cannot allow fork() to copy our
5439 * vma.
5440 */
26cb63ad 5441 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5442 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5443
1e0fb9ec 5444 if (event->pmu->event_mapped)
bfe33492 5445 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5446
7b732a75 5447 return ret;
37d81828
PM
5448}
5449
3c446b3d
PZ
5450static int perf_fasync(int fd, struct file *filp, int on)
5451{
496ad9aa 5452 struct inode *inode = file_inode(filp);
cdd6c482 5453 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5454 int retval;
5455
5955102c 5456 inode_lock(inode);
cdd6c482 5457 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5458 inode_unlock(inode);
3c446b3d
PZ
5459
5460 if (retval < 0)
5461 return retval;
5462
5463 return 0;
5464}
5465
0793a61d 5466static const struct file_operations perf_fops = {
3326c1ce 5467 .llseek = no_llseek,
0793a61d
TG
5468 .release = perf_release,
5469 .read = perf_read,
5470 .poll = perf_poll,
d859e29f 5471 .unlocked_ioctl = perf_ioctl,
b3f20785 5472 .compat_ioctl = perf_compat_ioctl,
37d81828 5473 .mmap = perf_mmap,
3c446b3d 5474 .fasync = perf_fasync,
0793a61d
TG
5475};
5476
925d519a 5477/*
cdd6c482 5478 * Perf event wakeup
925d519a
PZ
5479 *
5480 * If there's data, ensure we set the poll() state and publish everything
5481 * to user-space before waking everybody up.
5482 */
5483
fed66e2c
PZ
5484static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5485{
5486 /* only the parent has fasync state */
5487 if (event->parent)
5488 event = event->parent;
5489 return &event->fasync;
5490}
5491
cdd6c482 5492void perf_event_wakeup(struct perf_event *event)
925d519a 5493{
10c6db11 5494 ring_buffer_wakeup(event);
4c9e2542 5495
cdd6c482 5496 if (event->pending_kill) {
fed66e2c 5497 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5498 event->pending_kill = 0;
4c9e2542 5499 }
925d519a
PZ
5500}
5501
e360adbe 5502static void perf_pending_event(struct irq_work *entry)
79f14641 5503{
cdd6c482
IM
5504 struct perf_event *event = container_of(entry,
5505 struct perf_event, pending);
d525211f
PZ
5506 int rctx;
5507
5508 rctx = perf_swevent_get_recursion_context();
5509 /*
5510 * If we 'fail' here, that's OK, it means recursion is already disabled
5511 * and we won't recurse 'further'.
5512 */
79f14641 5513
cdd6c482
IM
5514 if (event->pending_disable) {
5515 event->pending_disable = 0;
fae3fde6 5516 perf_event_disable_local(event);
79f14641
PZ
5517 }
5518
cdd6c482
IM
5519 if (event->pending_wakeup) {
5520 event->pending_wakeup = 0;
5521 perf_event_wakeup(event);
79f14641 5522 }
d525211f
PZ
5523
5524 if (rctx >= 0)
5525 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5526}
5527
39447b38
ZY
5528/*
5529 * We assume there is only KVM supporting the callbacks.
5530 * Later on, we might change it to a list if there is
5531 * another virtualization implementation supporting the callbacks.
5532 */
5533struct perf_guest_info_callbacks *perf_guest_cbs;
5534
5535int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5536{
5537 perf_guest_cbs = cbs;
5538 return 0;
5539}
5540EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5541
5542int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5543{
5544 perf_guest_cbs = NULL;
5545 return 0;
5546}
5547EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5548
4018994f
JO
5549static void
5550perf_output_sample_regs(struct perf_output_handle *handle,
5551 struct pt_regs *regs, u64 mask)
5552{
5553 int bit;
29dd3288 5554 DECLARE_BITMAP(_mask, 64);
4018994f 5555
29dd3288
MS
5556 bitmap_from_u64(_mask, mask);
5557 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5558 u64 val;
5559
5560 val = perf_reg_value(regs, bit);
5561 perf_output_put(handle, val);
5562 }
5563}
5564
60e2364e 5565static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5566 struct pt_regs *regs,
5567 struct pt_regs *regs_user_copy)
4018994f 5568{
88a7c26a
AL
5569 if (user_mode(regs)) {
5570 regs_user->abi = perf_reg_abi(current);
2565711f 5571 regs_user->regs = regs;
88a7c26a
AL
5572 } else if (current->mm) {
5573 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5574 } else {
5575 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5576 regs_user->regs = NULL;
4018994f
JO
5577 }
5578}
5579
60e2364e
SE
5580static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5581 struct pt_regs *regs)
5582{
5583 regs_intr->regs = regs;
5584 regs_intr->abi = perf_reg_abi(current);
5585}
5586
5587
c5ebcedb
JO
5588/*
5589 * Get remaining task size from user stack pointer.
5590 *
5591 * It'd be better to take stack vma map and limit this more
5592 * precisly, but there's no way to get it safely under interrupt,
5593 * so using TASK_SIZE as limit.
5594 */
5595static u64 perf_ustack_task_size(struct pt_regs *regs)
5596{
5597 unsigned long addr = perf_user_stack_pointer(regs);
5598
5599 if (!addr || addr >= TASK_SIZE)
5600 return 0;
5601
5602 return TASK_SIZE - addr;
5603}
5604
5605static u16
5606perf_sample_ustack_size(u16 stack_size, u16 header_size,
5607 struct pt_regs *regs)
5608{
5609 u64 task_size;
5610
5611 /* No regs, no stack pointer, no dump. */
5612 if (!regs)
5613 return 0;
5614
5615 /*
5616 * Check if we fit in with the requested stack size into the:
5617 * - TASK_SIZE
5618 * If we don't, we limit the size to the TASK_SIZE.
5619 *
5620 * - remaining sample size
5621 * If we don't, we customize the stack size to
5622 * fit in to the remaining sample size.
5623 */
5624
5625 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5626 stack_size = min(stack_size, (u16) task_size);
5627
5628 /* Current header size plus static size and dynamic size. */
5629 header_size += 2 * sizeof(u64);
5630
5631 /* Do we fit in with the current stack dump size? */
5632 if ((u16) (header_size + stack_size) < header_size) {
5633 /*
5634 * If we overflow the maximum size for the sample,
5635 * we customize the stack dump size to fit in.
5636 */
5637 stack_size = USHRT_MAX - header_size - sizeof(u64);
5638 stack_size = round_up(stack_size, sizeof(u64));
5639 }
5640
5641 return stack_size;
5642}
5643
5644static void
5645perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5646 struct pt_regs *regs)
5647{
5648 /* Case of a kernel thread, nothing to dump */
5649 if (!regs) {
5650 u64 size = 0;
5651 perf_output_put(handle, size);
5652 } else {
5653 unsigned long sp;
5654 unsigned int rem;
5655 u64 dyn_size;
5656
5657 /*
5658 * We dump:
5659 * static size
5660 * - the size requested by user or the best one we can fit
5661 * in to the sample max size
5662 * data
5663 * - user stack dump data
5664 * dynamic size
5665 * - the actual dumped size
5666 */
5667
5668 /* Static size. */
5669 perf_output_put(handle, dump_size);
5670
5671 /* Data. */
5672 sp = perf_user_stack_pointer(regs);
5673 rem = __output_copy_user(handle, (void *) sp, dump_size);
5674 dyn_size = dump_size - rem;
5675
5676 perf_output_skip(handle, rem);
5677
5678 /* Dynamic size. */
5679 perf_output_put(handle, dyn_size);
5680 }
5681}
5682
c980d109
ACM
5683static void __perf_event_header__init_id(struct perf_event_header *header,
5684 struct perf_sample_data *data,
5685 struct perf_event *event)
6844c09d
ACM
5686{
5687 u64 sample_type = event->attr.sample_type;
5688
5689 data->type = sample_type;
5690 header->size += event->id_header_size;
5691
5692 if (sample_type & PERF_SAMPLE_TID) {
5693 /* namespace issues */
5694 data->tid_entry.pid = perf_event_pid(event, current);
5695 data->tid_entry.tid = perf_event_tid(event, current);
5696 }
5697
5698 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5699 data->time = perf_event_clock(event);
6844c09d 5700
ff3d527c 5701 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5702 data->id = primary_event_id(event);
5703
5704 if (sample_type & PERF_SAMPLE_STREAM_ID)
5705 data->stream_id = event->id;
5706
5707 if (sample_type & PERF_SAMPLE_CPU) {
5708 data->cpu_entry.cpu = raw_smp_processor_id();
5709 data->cpu_entry.reserved = 0;
5710 }
5711}
5712
76369139
FW
5713void perf_event_header__init_id(struct perf_event_header *header,
5714 struct perf_sample_data *data,
5715 struct perf_event *event)
c980d109
ACM
5716{
5717 if (event->attr.sample_id_all)
5718 __perf_event_header__init_id(header, data, event);
5719}
5720
5721static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5722 struct perf_sample_data *data)
5723{
5724 u64 sample_type = data->type;
5725
5726 if (sample_type & PERF_SAMPLE_TID)
5727 perf_output_put(handle, data->tid_entry);
5728
5729 if (sample_type & PERF_SAMPLE_TIME)
5730 perf_output_put(handle, data->time);
5731
5732 if (sample_type & PERF_SAMPLE_ID)
5733 perf_output_put(handle, data->id);
5734
5735 if (sample_type & PERF_SAMPLE_STREAM_ID)
5736 perf_output_put(handle, data->stream_id);
5737
5738 if (sample_type & PERF_SAMPLE_CPU)
5739 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5740
5741 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5742 perf_output_put(handle, data->id);
c980d109
ACM
5743}
5744
76369139
FW
5745void perf_event__output_id_sample(struct perf_event *event,
5746 struct perf_output_handle *handle,
5747 struct perf_sample_data *sample)
c980d109
ACM
5748{
5749 if (event->attr.sample_id_all)
5750 __perf_event__output_id_sample(handle, sample);
5751}
5752
3dab77fb 5753static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5754 struct perf_event *event,
5755 u64 enabled, u64 running)
3dab77fb 5756{
cdd6c482 5757 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5758 u64 values[4];
5759 int n = 0;
5760
b5e58793 5761 values[n++] = perf_event_count(event);
3dab77fb 5762 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5763 values[n++] = enabled +
cdd6c482 5764 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5765 }
5766 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5767 values[n++] = running +
cdd6c482 5768 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5769 }
5770 if (read_format & PERF_FORMAT_ID)
cdd6c482 5771 values[n++] = primary_event_id(event);
3dab77fb 5772
76369139 5773 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5774}
5775
3dab77fb 5776static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5777 struct perf_event *event,
5778 u64 enabled, u64 running)
3dab77fb 5779{
cdd6c482
IM
5780 struct perf_event *leader = event->group_leader, *sub;
5781 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5782 u64 values[5];
5783 int n = 0;
5784
5785 values[n++] = 1 + leader->nr_siblings;
5786
5787 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5788 values[n++] = enabled;
3dab77fb
PZ
5789
5790 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5791 values[n++] = running;
3dab77fb 5792
cdd6c482 5793 if (leader != event)
3dab77fb
PZ
5794 leader->pmu->read(leader);
5795
b5e58793 5796 values[n++] = perf_event_count(leader);
3dab77fb 5797 if (read_format & PERF_FORMAT_ID)
cdd6c482 5798 values[n++] = primary_event_id(leader);
3dab77fb 5799
76369139 5800 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5801
65abc865 5802 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5803 n = 0;
5804
6f5ab001
JO
5805 if ((sub != event) &&
5806 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5807 sub->pmu->read(sub);
5808
b5e58793 5809 values[n++] = perf_event_count(sub);
3dab77fb 5810 if (read_format & PERF_FORMAT_ID)
cdd6c482 5811 values[n++] = primary_event_id(sub);
3dab77fb 5812
76369139 5813 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5814 }
5815}
5816
eed01528
SE
5817#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5818 PERF_FORMAT_TOTAL_TIME_RUNNING)
5819
ba5213ae
PZ
5820/*
5821 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5822 *
5823 * The problem is that its both hard and excessively expensive to iterate the
5824 * child list, not to mention that its impossible to IPI the children running
5825 * on another CPU, from interrupt/NMI context.
5826 */
3dab77fb 5827static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5828 struct perf_event *event)
3dab77fb 5829{
e3f3541c 5830 u64 enabled = 0, running = 0, now;
eed01528
SE
5831 u64 read_format = event->attr.read_format;
5832
5833 /*
5834 * compute total_time_enabled, total_time_running
5835 * based on snapshot values taken when the event
5836 * was last scheduled in.
5837 *
5838 * we cannot simply called update_context_time()
5839 * because of locking issue as we are called in
5840 * NMI context
5841 */
c4794295 5842 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5843 calc_timer_values(event, &now, &enabled, &running);
eed01528 5844
cdd6c482 5845 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5846 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5847 else
eed01528 5848 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5849}
5850
5622f295
MM
5851void perf_output_sample(struct perf_output_handle *handle,
5852 struct perf_event_header *header,
5853 struct perf_sample_data *data,
cdd6c482 5854 struct perf_event *event)
5622f295
MM
5855{
5856 u64 sample_type = data->type;
5857
5858 perf_output_put(handle, *header);
5859
ff3d527c
AH
5860 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5861 perf_output_put(handle, data->id);
5862
5622f295
MM
5863 if (sample_type & PERF_SAMPLE_IP)
5864 perf_output_put(handle, data->ip);
5865
5866 if (sample_type & PERF_SAMPLE_TID)
5867 perf_output_put(handle, data->tid_entry);
5868
5869 if (sample_type & PERF_SAMPLE_TIME)
5870 perf_output_put(handle, data->time);
5871
5872 if (sample_type & PERF_SAMPLE_ADDR)
5873 perf_output_put(handle, data->addr);
5874
5875 if (sample_type & PERF_SAMPLE_ID)
5876 perf_output_put(handle, data->id);
5877
5878 if (sample_type & PERF_SAMPLE_STREAM_ID)
5879 perf_output_put(handle, data->stream_id);
5880
5881 if (sample_type & PERF_SAMPLE_CPU)
5882 perf_output_put(handle, data->cpu_entry);
5883
5884 if (sample_type & PERF_SAMPLE_PERIOD)
5885 perf_output_put(handle, data->period);
5886
5887 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5888 perf_output_read(handle, event);
5622f295
MM
5889
5890 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5891 if (data->callchain) {
5892 int size = 1;
5893
5894 if (data->callchain)
5895 size += data->callchain->nr;
5896
5897 size *= sizeof(u64);
5898
76369139 5899 __output_copy(handle, data->callchain, size);
5622f295
MM
5900 } else {
5901 u64 nr = 0;
5902 perf_output_put(handle, nr);
5903 }
5904 }
5905
5906 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5907 struct perf_raw_record *raw = data->raw;
5908
5909 if (raw) {
5910 struct perf_raw_frag *frag = &raw->frag;
5911
5912 perf_output_put(handle, raw->size);
5913 do {
5914 if (frag->copy) {
5915 __output_custom(handle, frag->copy,
5916 frag->data, frag->size);
5917 } else {
5918 __output_copy(handle, frag->data,
5919 frag->size);
5920 }
5921 if (perf_raw_frag_last(frag))
5922 break;
5923 frag = frag->next;
5924 } while (1);
5925 if (frag->pad)
5926 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5927 } else {
5928 struct {
5929 u32 size;
5930 u32 data;
5931 } raw = {
5932 .size = sizeof(u32),
5933 .data = 0,
5934 };
5935 perf_output_put(handle, raw);
5936 }
5937 }
a7ac67ea 5938
bce38cd5
SE
5939 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5940 if (data->br_stack) {
5941 size_t size;
5942
5943 size = data->br_stack->nr
5944 * sizeof(struct perf_branch_entry);
5945
5946 perf_output_put(handle, data->br_stack->nr);
5947 perf_output_copy(handle, data->br_stack->entries, size);
5948 } else {
5949 /*
5950 * we always store at least the value of nr
5951 */
5952 u64 nr = 0;
5953 perf_output_put(handle, nr);
5954 }
5955 }
4018994f
JO
5956
5957 if (sample_type & PERF_SAMPLE_REGS_USER) {
5958 u64 abi = data->regs_user.abi;
5959
5960 /*
5961 * If there are no regs to dump, notice it through
5962 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5963 */
5964 perf_output_put(handle, abi);
5965
5966 if (abi) {
5967 u64 mask = event->attr.sample_regs_user;
5968 perf_output_sample_regs(handle,
5969 data->regs_user.regs,
5970 mask);
5971 }
5972 }
c5ebcedb 5973
a5cdd40c 5974 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5975 perf_output_sample_ustack(handle,
5976 data->stack_user_size,
5977 data->regs_user.regs);
a5cdd40c 5978 }
c3feedf2
AK
5979
5980 if (sample_type & PERF_SAMPLE_WEIGHT)
5981 perf_output_put(handle, data->weight);
d6be9ad6
SE
5982
5983 if (sample_type & PERF_SAMPLE_DATA_SRC)
5984 perf_output_put(handle, data->data_src.val);
a5cdd40c 5985
fdfbbd07
AK
5986 if (sample_type & PERF_SAMPLE_TRANSACTION)
5987 perf_output_put(handle, data->txn);
5988
60e2364e
SE
5989 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5990 u64 abi = data->regs_intr.abi;
5991 /*
5992 * If there are no regs to dump, notice it through
5993 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5994 */
5995 perf_output_put(handle, abi);
5996
5997 if (abi) {
5998 u64 mask = event->attr.sample_regs_intr;
5999
6000 perf_output_sample_regs(handle,
6001 data->regs_intr.regs,
6002 mask);
6003 }
6004 }
6005
a5cdd40c
PZ
6006 if (!event->attr.watermark) {
6007 int wakeup_events = event->attr.wakeup_events;
6008
6009 if (wakeup_events) {
6010 struct ring_buffer *rb = handle->rb;
6011 int events = local_inc_return(&rb->events);
6012
6013 if (events >= wakeup_events) {
6014 local_sub(wakeup_events, &rb->events);
6015 local_inc(&rb->wakeup);
6016 }
6017 }
6018 }
5622f295
MM
6019}
6020
6021void perf_prepare_sample(struct perf_event_header *header,
6022 struct perf_sample_data *data,
cdd6c482 6023 struct perf_event *event,
5622f295 6024 struct pt_regs *regs)
7b732a75 6025{
cdd6c482 6026 u64 sample_type = event->attr.sample_type;
7b732a75 6027
cdd6c482 6028 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6029 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6030
6031 header->misc = 0;
6032 header->misc |= perf_misc_flags(regs);
6fab0192 6033
c980d109 6034 __perf_event_header__init_id(header, data, event);
6844c09d 6035
c320c7b7 6036 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6037 data->ip = perf_instruction_pointer(regs);
6038
b23f3325 6039 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6040 int size = 1;
394ee076 6041
e6dab5ff 6042 data->callchain = perf_callchain(event, regs);
5622f295
MM
6043
6044 if (data->callchain)
6045 size += data->callchain->nr;
6046
6047 header->size += size * sizeof(u64);
394ee076
PZ
6048 }
6049
3a43ce68 6050 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6051 struct perf_raw_record *raw = data->raw;
6052 int size;
6053
6054 if (raw) {
6055 struct perf_raw_frag *frag = &raw->frag;
6056 u32 sum = 0;
6057
6058 do {
6059 sum += frag->size;
6060 if (perf_raw_frag_last(frag))
6061 break;
6062 frag = frag->next;
6063 } while (1);
6064
6065 size = round_up(sum + sizeof(u32), sizeof(u64));
6066 raw->size = size - sizeof(u32);
6067 frag->pad = raw->size - sum;
6068 } else {
6069 size = sizeof(u64);
6070 }
a044560c 6071
7e3f977e 6072 header->size += size;
7f453c24 6073 }
bce38cd5
SE
6074
6075 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6076 int size = sizeof(u64); /* nr */
6077 if (data->br_stack) {
6078 size += data->br_stack->nr
6079 * sizeof(struct perf_branch_entry);
6080 }
6081 header->size += size;
6082 }
4018994f 6083
2565711f 6084 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6085 perf_sample_regs_user(&data->regs_user, regs,
6086 &data->regs_user_copy);
2565711f 6087
4018994f
JO
6088 if (sample_type & PERF_SAMPLE_REGS_USER) {
6089 /* regs dump ABI info */
6090 int size = sizeof(u64);
6091
4018994f
JO
6092 if (data->regs_user.regs) {
6093 u64 mask = event->attr.sample_regs_user;
6094 size += hweight64(mask) * sizeof(u64);
6095 }
6096
6097 header->size += size;
6098 }
c5ebcedb
JO
6099
6100 if (sample_type & PERF_SAMPLE_STACK_USER) {
6101 /*
6102 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6103 * processed as the last one or have additional check added
6104 * in case new sample type is added, because we could eat
6105 * up the rest of the sample size.
6106 */
c5ebcedb
JO
6107 u16 stack_size = event->attr.sample_stack_user;
6108 u16 size = sizeof(u64);
6109
c5ebcedb 6110 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6111 data->regs_user.regs);
c5ebcedb
JO
6112
6113 /*
6114 * If there is something to dump, add space for the dump
6115 * itself and for the field that tells the dynamic size,
6116 * which is how many have been actually dumped.
6117 */
6118 if (stack_size)
6119 size += sizeof(u64) + stack_size;
6120
6121 data->stack_user_size = stack_size;
6122 header->size += size;
6123 }
60e2364e
SE
6124
6125 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6126 /* regs dump ABI info */
6127 int size = sizeof(u64);
6128
6129 perf_sample_regs_intr(&data->regs_intr, regs);
6130
6131 if (data->regs_intr.regs) {
6132 u64 mask = event->attr.sample_regs_intr;
6133
6134 size += hweight64(mask) * sizeof(u64);
6135 }
6136
6137 header->size += size;
6138 }
5622f295 6139}
7f453c24 6140
9ecda41a
WN
6141static void __always_inline
6142__perf_event_output(struct perf_event *event,
6143 struct perf_sample_data *data,
6144 struct pt_regs *regs,
6145 int (*output_begin)(struct perf_output_handle *,
6146 struct perf_event *,
6147 unsigned int))
5622f295
MM
6148{
6149 struct perf_output_handle handle;
6150 struct perf_event_header header;
689802b2 6151
927c7a9e
FW
6152 /* protect the callchain buffers */
6153 rcu_read_lock();
6154
cdd6c482 6155 perf_prepare_sample(&header, data, event, regs);
5c148194 6156
9ecda41a 6157 if (output_begin(&handle, event, header.size))
927c7a9e 6158 goto exit;
0322cd6e 6159
cdd6c482 6160 perf_output_sample(&handle, &header, data, event);
f413cdb8 6161
8a057d84 6162 perf_output_end(&handle);
927c7a9e
FW
6163
6164exit:
6165 rcu_read_unlock();
0322cd6e
PZ
6166}
6167
9ecda41a
WN
6168void
6169perf_event_output_forward(struct perf_event *event,
6170 struct perf_sample_data *data,
6171 struct pt_regs *regs)
6172{
6173 __perf_event_output(event, data, regs, perf_output_begin_forward);
6174}
6175
6176void
6177perf_event_output_backward(struct perf_event *event,
6178 struct perf_sample_data *data,
6179 struct pt_regs *regs)
6180{
6181 __perf_event_output(event, data, regs, perf_output_begin_backward);
6182}
6183
6184void
6185perf_event_output(struct perf_event *event,
6186 struct perf_sample_data *data,
6187 struct pt_regs *regs)
6188{
6189 __perf_event_output(event, data, regs, perf_output_begin);
6190}
6191
38b200d6 6192/*
cdd6c482 6193 * read event_id
38b200d6
PZ
6194 */
6195
6196struct perf_read_event {
6197 struct perf_event_header header;
6198
6199 u32 pid;
6200 u32 tid;
38b200d6
PZ
6201};
6202
6203static void
cdd6c482 6204perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6205 struct task_struct *task)
6206{
6207 struct perf_output_handle handle;
c980d109 6208 struct perf_sample_data sample;
dfc65094 6209 struct perf_read_event read_event = {
38b200d6 6210 .header = {
cdd6c482 6211 .type = PERF_RECORD_READ,
38b200d6 6212 .misc = 0,
c320c7b7 6213 .size = sizeof(read_event) + event->read_size,
38b200d6 6214 },
cdd6c482
IM
6215 .pid = perf_event_pid(event, task),
6216 .tid = perf_event_tid(event, task),
38b200d6 6217 };
3dab77fb 6218 int ret;
38b200d6 6219
c980d109 6220 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6221 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6222 if (ret)
6223 return;
6224
dfc65094 6225 perf_output_put(&handle, read_event);
cdd6c482 6226 perf_output_read(&handle, event);
c980d109 6227 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6228
38b200d6
PZ
6229 perf_output_end(&handle);
6230}
6231
aab5b71e 6232typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6233
6234static void
aab5b71e
PZ
6235perf_iterate_ctx(struct perf_event_context *ctx,
6236 perf_iterate_f output,
b73e4fef 6237 void *data, bool all)
52d857a8
JO
6238{
6239 struct perf_event *event;
6240
6241 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6242 if (!all) {
6243 if (event->state < PERF_EVENT_STATE_INACTIVE)
6244 continue;
6245 if (!event_filter_match(event))
6246 continue;
6247 }
6248
67516844 6249 output(event, data);
52d857a8
JO
6250 }
6251}
6252
aab5b71e 6253static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6254{
6255 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6256 struct perf_event *event;
6257
6258 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6259 /*
6260 * Skip events that are not fully formed yet; ensure that
6261 * if we observe event->ctx, both event and ctx will be
6262 * complete enough. See perf_install_in_context().
6263 */
6264 if (!smp_load_acquire(&event->ctx))
6265 continue;
6266
f2fb6bef
KL
6267 if (event->state < PERF_EVENT_STATE_INACTIVE)
6268 continue;
6269 if (!event_filter_match(event))
6270 continue;
6271 output(event, data);
6272 }
6273}
6274
aab5b71e
PZ
6275/*
6276 * Iterate all events that need to receive side-band events.
6277 *
6278 * For new callers; ensure that account_pmu_sb_event() includes
6279 * your event, otherwise it might not get delivered.
6280 */
52d857a8 6281static void
aab5b71e 6282perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6283 struct perf_event_context *task_ctx)
6284{
52d857a8 6285 struct perf_event_context *ctx;
52d857a8
JO
6286 int ctxn;
6287
aab5b71e
PZ
6288 rcu_read_lock();
6289 preempt_disable();
6290
4e93ad60 6291 /*
aab5b71e
PZ
6292 * If we have task_ctx != NULL we only notify the task context itself.
6293 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6294 * context.
6295 */
6296 if (task_ctx) {
aab5b71e
PZ
6297 perf_iterate_ctx(task_ctx, output, data, false);
6298 goto done;
4e93ad60
JO
6299 }
6300
aab5b71e 6301 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6302
6303 for_each_task_context_nr(ctxn) {
52d857a8
JO
6304 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6305 if (ctx)
aab5b71e 6306 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6307 }
aab5b71e 6308done:
f2fb6bef 6309 preempt_enable();
52d857a8 6310 rcu_read_unlock();
95ff4ca2
AS
6311}
6312
375637bc
AS
6313/*
6314 * Clear all file-based filters at exec, they'll have to be
6315 * re-instated when/if these objects are mmapped again.
6316 */
6317static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6318{
6319 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6320 struct perf_addr_filter *filter;
6321 unsigned int restart = 0, count = 0;
6322 unsigned long flags;
6323
6324 if (!has_addr_filter(event))
6325 return;
6326
6327 raw_spin_lock_irqsave(&ifh->lock, flags);
6328 list_for_each_entry(filter, &ifh->list, entry) {
6329 if (filter->inode) {
6330 event->addr_filters_offs[count] = 0;
6331 restart++;
6332 }
6333
6334 count++;
6335 }
6336
6337 if (restart)
6338 event->addr_filters_gen++;
6339 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6340
6341 if (restart)
767ae086 6342 perf_event_stop(event, 1);
375637bc
AS
6343}
6344
6345void perf_event_exec(void)
6346{
6347 struct perf_event_context *ctx;
6348 int ctxn;
6349
6350 rcu_read_lock();
6351 for_each_task_context_nr(ctxn) {
6352 ctx = current->perf_event_ctxp[ctxn];
6353 if (!ctx)
6354 continue;
6355
6356 perf_event_enable_on_exec(ctxn);
6357
aab5b71e 6358 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6359 true);
6360 }
6361 rcu_read_unlock();
6362}
6363
95ff4ca2
AS
6364struct remote_output {
6365 struct ring_buffer *rb;
6366 int err;
6367};
6368
6369static void __perf_event_output_stop(struct perf_event *event, void *data)
6370{
6371 struct perf_event *parent = event->parent;
6372 struct remote_output *ro = data;
6373 struct ring_buffer *rb = ro->rb;
375637bc
AS
6374 struct stop_event_data sd = {
6375 .event = event,
6376 };
95ff4ca2
AS
6377
6378 if (!has_aux(event))
6379 return;
6380
6381 if (!parent)
6382 parent = event;
6383
6384 /*
6385 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6386 * ring-buffer, but it will be the child that's actually using it.
6387 *
6388 * We are using event::rb to determine if the event should be stopped,
6389 * however this may race with ring_buffer_attach() (through set_output),
6390 * which will make us skip the event that actually needs to be stopped.
6391 * So ring_buffer_attach() has to stop an aux event before re-assigning
6392 * its rb pointer.
95ff4ca2
AS
6393 */
6394 if (rcu_dereference(parent->rb) == rb)
375637bc 6395 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6396}
6397
6398static int __perf_pmu_output_stop(void *info)
6399{
6400 struct perf_event *event = info;
6401 struct pmu *pmu = event->pmu;
8b6a3fe8 6402 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6403 struct remote_output ro = {
6404 .rb = event->rb,
6405 };
6406
6407 rcu_read_lock();
aab5b71e 6408 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6409 if (cpuctx->task_ctx)
aab5b71e 6410 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6411 &ro, false);
95ff4ca2
AS
6412 rcu_read_unlock();
6413
6414 return ro.err;
6415}
6416
6417static void perf_pmu_output_stop(struct perf_event *event)
6418{
6419 struct perf_event *iter;
6420 int err, cpu;
6421
6422restart:
6423 rcu_read_lock();
6424 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6425 /*
6426 * For per-CPU events, we need to make sure that neither they
6427 * nor their children are running; for cpu==-1 events it's
6428 * sufficient to stop the event itself if it's active, since
6429 * it can't have children.
6430 */
6431 cpu = iter->cpu;
6432 if (cpu == -1)
6433 cpu = READ_ONCE(iter->oncpu);
6434
6435 if (cpu == -1)
6436 continue;
6437
6438 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6439 if (err == -EAGAIN) {
6440 rcu_read_unlock();
6441 goto restart;
6442 }
6443 }
6444 rcu_read_unlock();
52d857a8
JO
6445}
6446
60313ebe 6447/*
9f498cc5
PZ
6448 * task tracking -- fork/exit
6449 *
13d7a241 6450 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6451 */
6452
9f498cc5 6453struct perf_task_event {
3a80b4a3 6454 struct task_struct *task;
cdd6c482 6455 struct perf_event_context *task_ctx;
60313ebe
PZ
6456
6457 struct {
6458 struct perf_event_header header;
6459
6460 u32 pid;
6461 u32 ppid;
9f498cc5
PZ
6462 u32 tid;
6463 u32 ptid;
393b2ad8 6464 u64 time;
cdd6c482 6465 } event_id;
60313ebe
PZ
6466};
6467
67516844
JO
6468static int perf_event_task_match(struct perf_event *event)
6469{
13d7a241
SE
6470 return event->attr.comm || event->attr.mmap ||
6471 event->attr.mmap2 || event->attr.mmap_data ||
6472 event->attr.task;
67516844
JO
6473}
6474
cdd6c482 6475static void perf_event_task_output(struct perf_event *event,
52d857a8 6476 void *data)
60313ebe 6477{
52d857a8 6478 struct perf_task_event *task_event = data;
60313ebe 6479 struct perf_output_handle handle;
c980d109 6480 struct perf_sample_data sample;
9f498cc5 6481 struct task_struct *task = task_event->task;
c980d109 6482 int ret, size = task_event->event_id.header.size;
8bb39f9a 6483
67516844
JO
6484 if (!perf_event_task_match(event))
6485 return;
6486
c980d109 6487 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6488
c980d109 6489 ret = perf_output_begin(&handle, event,
a7ac67ea 6490 task_event->event_id.header.size);
ef60777c 6491 if (ret)
c980d109 6492 goto out;
60313ebe 6493
cdd6c482
IM
6494 task_event->event_id.pid = perf_event_pid(event, task);
6495 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6496
cdd6c482
IM
6497 task_event->event_id.tid = perf_event_tid(event, task);
6498 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6499
34f43927
PZ
6500 task_event->event_id.time = perf_event_clock(event);
6501
cdd6c482 6502 perf_output_put(&handle, task_event->event_id);
393b2ad8 6503
c980d109
ACM
6504 perf_event__output_id_sample(event, &handle, &sample);
6505
60313ebe 6506 perf_output_end(&handle);
c980d109
ACM
6507out:
6508 task_event->event_id.header.size = size;
60313ebe
PZ
6509}
6510
cdd6c482
IM
6511static void perf_event_task(struct task_struct *task,
6512 struct perf_event_context *task_ctx,
3a80b4a3 6513 int new)
60313ebe 6514{
9f498cc5 6515 struct perf_task_event task_event;
60313ebe 6516
cdd6c482
IM
6517 if (!atomic_read(&nr_comm_events) &&
6518 !atomic_read(&nr_mmap_events) &&
6519 !atomic_read(&nr_task_events))
60313ebe
PZ
6520 return;
6521
9f498cc5 6522 task_event = (struct perf_task_event){
3a80b4a3
PZ
6523 .task = task,
6524 .task_ctx = task_ctx,
cdd6c482 6525 .event_id = {
60313ebe 6526 .header = {
cdd6c482 6527 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6528 .misc = 0,
cdd6c482 6529 .size = sizeof(task_event.event_id),
60313ebe 6530 },
573402db
PZ
6531 /* .pid */
6532 /* .ppid */
9f498cc5
PZ
6533 /* .tid */
6534 /* .ptid */
34f43927 6535 /* .time */
60313ebe
PZ
6536 },
6537 };
6538
aab5b71e 6539 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6540 &task_event,
6541 task_ctx);
9f498cc5
PZ
6542}
6543
cdd6c482 6544void perf_event_fork(struct task_struct *task)
9f498cc5 6545{
cdd6c482 6546 perf_event_task(task, NULL, 1);
e4222673 6547 perf_event_namespaces(task);
60313ebe
PZ
6548}
6549
8d1b2d93
PZ
6550/*
6551 * comm tracking
6552 */
6553
6554struct perf_comm_event {
22a4f650
IM
6555 struct task_struct *task;
6556 char *comm;
8d1b2d93
PZ
6557 int comm_size;
6558
6559 struct {
6560 struct perf_event_header header;
6561
6562 u32 pid;
6563 u32 tid;
cdd6c482 6564 } event_id;
8d1b2d93
PZ
6565};
6566
67516844
JO
6567static int perf_event_comm_match(struct perf_event *event)
6568{
6569 return event->attr.comm;
6570}
6571
cdd6c482 6572static void perf_event_comm_output(struct perf_event *event,
52d857a8 6573 void *data)
8d1b2d93 6574{
52d857a8 6575 struct perf_comm_event *comm_event = data;
8d1b2d93 6576 struct perf_output_handle handle;
c980d109 6577 struct perf_sample_data sample;
cdd6c482 6578 int size = comm_event->event_id.header.size;
c980d109
ACM
6579 int ret;
6580
67516844
JO
6581 if (!perf_event_comm_match(event))
6582 return;
6583
c980d109
ACM
6584 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6585 ret = perf_output_begin(&handle, event,
a7ac67ea 6586 comm_event->event_id.header.size);
8d1b2d93
PZ
6587
6588 if (ret)
c980d109 6589 goto out;
8d1b2d93 6590
cdd6c482
IM
6591 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6592 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6593
cdd6c482 6594 perf_output_put(&handle, comm_event->event_id);
76369139 6595 __output_copy(&handle, comm_event->comm,
8d1b2d93 6596 comm_event->comm_size);
c980d109
ACM
6597
6598 perf_event__output_id_sample(event, &handle, &sample);
6599
8d1b2d93 6600 perf_output_end(&handle);
c980d109
ACM
6601out:
6602 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6603}
6604
cdd6c482 6605static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6606{
413ee3b4 6607 char comm[TASK_COMM_LEN];
8d1b2d93 6608 unsigned int size;
8d1b2d93 6609
413ee3b4 6610 memset(comm, 0, sizeof(comm));
96b02d78 6611 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6612 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6613
6614 comm_event->comm = comm;
6615 comm_event->comm_size = size;
6616
cdd6c482 6617 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6618
aab5b71e 6619 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6620 comm_event,
6621 NULL);
8d1b2d93
PZ
6622}
6623
82b89778 6624void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6625{
9ee318a7
PZ
6626 struct perf_comm_event comm_event;
6627
cdd6c482 6628 if (!atomic_read(&nr_comm_events))
9ee318a7 6629 return;
a63eaf34 6630
9ee318a7 6631 comm_event = (struct perf_comm_event){
8d1b2d93 6632 .task = task,
573402db
PZ
6633 /* .comm */
6634 /* .comm_size */
cdd6c482 6635 .event_id = {
573402db 6636 .header = {
cdd6c482 6637 .type = PERF_RECORD_COMM,
82b89778 6638 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6639 /* .size */
6640 },
6641 /* .pid */
6642 /* .tid */
8d1b2d93
PZ
6643 },
6644 };
6645
cdd6c482 6646 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6647}
6648
e4222673
HB
6649/*
6650 * namespaces tracking
6651 */
6652
6653struct perf_namespaces_event {
6654 struct task_struct *task;
6655
6656 struct {
6657 struct perf_event_header header;
6658
6659 u32 pid;
6660 u32 tid;
6661 u64 nr_namespaces;
6662 struct perf_ns_link_info link_info[NR_NAMESPACES];
6663 } event_id;
6664};
6665
6666static int perf_event_namespaces_match(struct perf_event *event)
6667{
6668 return event->attr.namespaces;
6669}
6670
6671static void perf_event_namespaces_output(struct perf_event *event,
6672 void *data)
6673{
6674 struct perf_namespaces_event *namespaces_event = data;
6675 struct perf_output_handle handle;
6676 struct perf_sample_data sample;
6677 int ret;
6678
6679 if (!perf_event_namespaces_match(event))
6680 return;
6681
6682 perf_event_header__init_id(&namespaces_event->event_id.header,
6683 &sample, event);
6684 ret = perf_output_begin(&handle, event,
6685 namespaces_event->event_id.header.size);
6686 if (ret)
6687 return;
6688
6689 namespaces_event->event_id.pid = perf_event_pid(event,
6690 namespaces_event->task);
6691 namespaces_event->event_id.tid = perf_event_tid(event,
6692 namespaces_event->task);
6693
6694 perf_output_put(&handle, namespaces_event->event_id);
6695
6696 perf_event__output_id_sample(event, &handle, &sample);
6697
6698 perf_output_end(&handle);
6699}
6700
6701static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6702 struct task_struct *task,
6703 const struct proc_ns_operations *ns_ops)
6704{
6705 struct path ns_path;
6706 struct inode *ns_inode;
6707 void *error;
6708
6709 error = ns_get_path(&ns_path, task, ns_ops);
6710 if (!error) {
6711 ns_inode = ns_path.dentry->d_inode;
6712 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6713 ns_link_info->ino = ns_inode->i_ino;
6714 }
6715}
6716
6717void perf_event_namespaces(struct task_struct *task)
6718{
6719 struct perf_namespaces_event namespaces_event;
6720 struct perf_ns_link_info *ns_link_info;
6721
6722 if (!atomic_read(&nr_namespaces_events))
6723 return;
6724
6725 namespaces_event = (struct perf_namespaces_event){
6726 .task = task,
6727 .event_id = {
6728 .header = {
6729 .type = PERF_RECORD_NAMESPACES,
6730 .misc = 0,
6731 .size = sizeof(namespaces_event.event_id),
6732 },
6733 /* .pid */
6734 /* .tid */
6735 .nr_namespaces = NR_NAMESPACES,
6736 /* .link_info[NR_NAMESPACES] */
6737 },
6738 };
6739
6740 ns_link_info = namespaces_event.event_id.link_info;
6741
6742 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6743 task, &mntns_operations);
6744
6745#ifdef CONFIG_USER_NS
6746 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6747 task, &userns_operations);
6748#endif
6749#ifdef CONFIG_NET_NS
6750 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6751 task, &netns_operations);
6752#endif
6753#ifdef CONFIG_UTS_NS
6754 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6755 task, &utsns_operations);
6756#endif
6757#ifdef CONFIG_IPC_NS
6758 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6759 task, &ipcns_operations);
6760#endif
6761#ifdef CONFIG_PID_NS
6762 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6763 task, &pidns_operations);
6764#endif
6765#ifdef CONFIG_CGROUPS
6766 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6767 task, &cgroupns_operations);
6768#endif
6769
6770 perf_iterate_sb(perf_event_namespaces_output,
6771 &namespaces_event,
6772 NULL);
6773}
6774
0a4a9391
PZ
6775/*
6776 * mmap tracking
6777 */
6778
6779struct perf_mmap_event {
089dd79d
PZ
6780 struct vm_area_struct *vma;
6781
6782 const char *file_name;
6783 int file_size;
13d7a241
SE
6784 int maj, min;
6785 u64 ino;
6786 u64 ino_generation;
f972eb63 6787 u32 prot, flags;
0a4a9391
PZ
6788
6789 struct {
6790 struct perf_event_header header;
6791
6792 u32 pid;
6793 u32 tid;
6794 u64 start;
6795 u64 len;
6796 u64 pgoff;
cdd6c482 6797 } event_id;
0a4a9391
PZ
6798};
6799
67516844
JO
6800static int perf_event_mmap_match(struct perf_event *event,
6801 void *data)
6802{
6803 struct perf_mmap_event *mmap_event = data;
6804 struct vm_area_struct *vma = mmap_event->vma;
6805 int executable = vma->vm_flags & VM_EXEC;
6806
6807 return (!executable && event->attr.mmap_data) ||
13d7a241 6808 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6809}
6810
cdd6c482 6811static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6812 void *data)
0a4a9391 6813{
52d857a8 6814 struct perf_mmap_event *mmap_event = data;
0a4a9391 6815 struct perf_output_handle handle;
c980d109 6816 struct perf_sample_data sample;
cdd6c482 6817 int size = mmap_event->event_id.header.size;
c980d109 6818 int ret;
0a4a9391 6819
67516844
JO
6820 if (!perf_event_mmap_match(event, data))
6821 return;
6822
13d7a241
SE
6823 if (event->attr.mmap2) {
6824 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6825 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6826 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6827 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6828 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6829 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6830 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6831 }
6832
c980d109
ACM
6833 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6834 ret = perf_output_begin(&handle, event,
a7ac67ea 6835 mmap_event->event_id.header.size);
0a4a9391 6836 if (ret)
c980d109 6837 goto out;
0a4a9391 6838
cdd6c482
IM
6839 mmap_event->event_id.pid = perf_event_pid(event, current);
6840 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6841
cdd6c482 6842 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6843
6844 if (event->attr.mmap2) {
6845 perf_output_put(&handle, mmap_event->maj);
6846 perf_output_put(&handle, mmap_event->min);
6847 perf_output_put(&handle, mmap_event->ino);
6848 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6849 perf_output_put(&handle, mmap_event->prot);
6850 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6851 }
6852
76369139 6853 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6854 mmap_event->file_size);
c980d109
ACM
6855
6856 perf_event__output_id_sample(event, &handle, &sample);
6857
78d613eb 6858 perf_output_end(&handle);
c980d109
ACM
6859out:
6860 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6861}
6862
cdd6c482 6863static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6864{
089dd79d
PZ
6865 struct vm_area_struct *vma = mmap_event->vma;
6866 struct file *file = vma->vm_file;
13d7a241
SE
6867 int maj = 0, min = 0;
6868 u64 ino = 0, gen = 0;
f972eb63 6869 u32 prot = 0, flags = 0;
0a4a9391
PZ
6870 unsigned int size;
6871 char tmp[16];
6872 char *buf = NULL;
2c42cfbf 6873 char *name;
413ee3b4 6874
0b3589be
PZ
6875 if (vma->vm_flags & VM_READ)
6876 prot |= PROT_READ;
6877 if (vma->vm_flags & VM_WRITE)
6878 prot |= PROT_WRITE;
6879 if (vma->vm_flags & VM_EXEC)
6880 prot |= PROT_EXEC;
6881
6882 if (vma->vm_flags & VM_MAYSHARE)
6883 flags = MAP_SHARED;
6884 else
6885 flags = MAP_PRIVATE;
6886
6887 if (vma->vm_flags & VM_DENYWRITE)
6888 flags |= MAP_DENYWRITE;
6889 if (vma->vm_flags & VM_MAYEXEC)
6890 flags |= MAP_EXECUTABLE;
6891 if (vma->vm_flags & VM_LOCKED)
6892 flags |= MAP_LOCKED;
6893 if (vma->vm_flags & VM_HUGETLB)
6894 flags |= MAP_HUGETLB;
6895
0a4a9391 6896 if (file) {
13d7a241
SE
6897 struct inode *inode;
6898 dev_t dev;
3ea2f2b9 6899
2c42cfbf 6900 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6901 if (!buf) {
c7e548b4
ON
6902 name = "//enomem";
6903 goto cpy_name;
0a4a9391 6904 }
413ee3b4 6905 /*
3ea2f2b9 6906 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6907 * need to add enough zero bytes after the string to handle
6908 * the 64bit alignment we do later.
6909 */
9bf39ab2 6910 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6911 if (IS_ERR(name)) {
c7e548b4
ON
6912 name = "//toolong";
6913 goto cpy_name;
0a4a9391 6914 }
13d7a241
SE
6915 inode = file_inode(vma->vm_file);
6916 dev = inode->i_sb->s_dev;
6917 ino = inode->i_ino;
6918 gen = inode->i_generation;
6919 maj = MAJOR(dev);
6920 min = MINOR(dev);
f972eb63 6921
c7e548b4 6922 goto got_name;
0a4a9391 6923 } else {
fbe26abe
JO
6924 if (vma->vm_ops && vma->vm_ops->name) {
6925 name = (char *) vma->vm_ops->name(vma);
6926 if (name)
6927 goto cpy_name;
6928 }
6929
2c42cfbf 6930 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6931 if (name)
6932 goto cpy_name;
089dd79d 6933
32c5fb7e 6934 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6935 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6936 name = "[heap]";
6937 goto cpy_name;
32c5fb7e
ON
6938 }
6939 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6940 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6941 name = "[stack]";
6942 goto cpy_name;
089dd79d
PZ
6943 }
6944
c7e548b4
ON
6945 name = "//anon";
6946 goto cpy_name;
0a4a9391
PZ
6947 }
6948
c7e548b4
ON
6949cpy_name:
6950 strlcpy(tmp, name, sizeof(tmp));
6951 name = tmp;
0a4a9391 6952got_name:
2c42cfbf
PZ
6953 /*
6954 * Since our buffer works in 8 byte units we need to align our string
6955 * size to a multiple of 8. However, we must guarantee the tail end is
6956 * zero'd out to avoid leaking random bits to userspace.
6957 */
6958 size = strlen(name)+1;
6959 while (!IS_ALIGNED(size, sizeof(u64)))
6960 name[size++] = '\0';
0a4a9391
PZ
6961
6962 mmap_event->file_name = name;
6963 mmap_event->file_size = size;
13d7a241
SE
6964 mmap_event->maj = maj;
6965 mmap_event->min = min;
6966 mmap_event->ino = ino;
6967 mmap_event->ino_generation = gen;
f972eb63
PZ
6968 mmap_event->prot = prot;
6969 mmap_event->flags = flags;
0a4a9391 6970
2fe85427
SE
6971 if (!(vma->vm_flags & VM_EXEC))
6972 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6973
cdd6c482 6974 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6975
aab5b71e 6976 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6977 mmap_event,
6978 NULL);
665c2142 6979
0a4a9391
PZ
6980 kfree(buf);
6981}
6982
375637bc
AS
6983/*
6984 * Check whether inode and address range match filter criteria.
6985 */
6986static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6987 struct file *file, unsigned long offset,
6988 unsigned long size)
6989{
45063097 6990 if (filter->inode != file_inode(file))
375637bc
AS
6991 return false;
6992
6993 if (filter->offset > offset + size)
6994 return false;
6995
6996 if (filter->offset + filter->size < offset)
6997 return false;
6998
6999 return true;
7000}
7001
7002static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7003{
7004 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7005 struct vm_area_struct *vma = data;
7006 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7007 struct file *file = vma->vm_file;
7008 struct perf_addr_filter *filter;
7009 unsigned int restart = 0, count = 0;
7010
7011 if (!has_addr_filter(event))
7012 return;
7013
7014 if (!file)
7015 return;
7016
7017 raw_spin_lock_irqsave(&ifh->lock, flags);
7018 list_for_each_entry(filter, &ifh->list, entry) {
7019 if (perf_addr_filter_match(filter, file, off,
7020 vma->vm_end - vma->vm_start)) {
7021 event->addr_filters_offs[count] = vma->vm_start;
7022 restart++;
7023 }
7024
7025 count++;
7026 }
7027
7028 if (restart)
7029 event->addr_filters_gen++;
7030 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7031
7032 if (restart)
767ae086 7033 perf_event_stop(event, 1);
375637bc
AS
7034}
7035
7036/*
7037 * Adjust all task's events' filters to the new vma
7038 */
7039static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7040{
7041 struct perf_event_context *ctx;
7042 int ctxn;
7043
12b40a23
MP
7044 /*
7045 * Data tracing isn't supported yet and as such there is no need
7046 * to keep track of anything that isn't related to executable code:
7047 */
7048 if (!(vma->vm_flags & VM_EXEC))
7049 return;
7050
375637bc
AS
7051 rcu_read_lock();
7052 for_each_task_context_nr(ctxn) {
7053 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7054 if (!ctx)
7055 continue;
7056
aab5b71e 7057 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7058 }
7059 rcu_read_unlock();
7060}
7061
3af9e859 7062void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7063{
9ee318a7
PZ
7064 struct perf_mmap_event mmap_event;
7065
cdd6c482 7066 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7067 return;
7068
7069 mmap_event = (struct perf_mmap_event){
089dd79d 7070 .vma = vma,
573402db
PZ
7071 /* .file_name */
7072 /* .file_size */
cdd6c482 7073 .event_id = {
573402db 7074 .header = {
cdd6c482 7075 .type = PERF_RECORD_MMAP,
39447b38 7076 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7077 /* .size */
7078 },
7079 /* .pid */
7080 /* .tid */
089dd79d
PZ
7081 .start = vma->vm_start,
7082 .len = vma->vm_end - vma->vm_start,
3a0304e9 7083 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7084 },
13d7a241
SE
7085 /* .maj (attr_mmap2 only) */
7086 /* .min (attr_mmap2 only) */
7087 /* .ino (attr_mmap2 only) */
7088 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7089 /* .prot (attr_mmap2 only) */
7090 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7091 };
7092
375637bc 7093 perf_addr_filters_adjust(vma);
cdd6c482 7094 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7095}
7096
68db7e98
AS
7097void perf_event_aux_event(struct perf_event *event, unsigned long head,
7098 unsigned long size, u64 flags)
7099{
7100 struct perf_output_handle handle;
7101 struct perf_sample_data sample;
7102 struct perf_aux_event {
7103 struct perf_event_header header;
7104 u64 offset;
7105 u64 size;
7106 u64 flags;
7107 } rec = {
7108 .header = {
7109 .type = PERF_RECORD_AUX,
7110 .misc = 0,
7111 .size = sizeof(rec),
7112 },
7113 .offset = head,
7114 .size = size,
7115 .flags = flags,
7116 };
7117 int ret;
7118
7119 perf_event_header__init_id(&rec.header, &sample, event);
7120 ret = perf_output_begin(&handle, event, rec.header.size);
7121
7122 if (ret)
7123 return;
7124
7125 perf_output_put(&handle, rec);
7126 perf_event__output_id_sample(event, &handle, &sample);
7127
7128 perf_output_end(&handle);
7129}
7130
f38b0dbb
KL
7131/*
7132 * Lost/dropped samples logging
7133 */
7134void perf_log_lost_samples(struct perf_event *event, u64 lost)
7135{
7136 struct perf_output_handle handle;
7137 struct perf_sample_data sample;
7138 int ret;
7139
7140 struct {
7141 struct perf_event_header header;
7142 u64 lost;
7143 } lost_samples_event = {
7144 .header = {
7145 .type = PERF_RECORD_LOST_SAMPLES,
7146 .misc = 0,
7147 .size = sizeof(lost_samples_event),
7148 },
7149 .lost = lost,
7150 };
7151
7152 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7153
7154 ret = perf_output_begin(&handle, event,
7155 lost_samples_event.header.size);
7156 if (ret)
7157 return;
7158
7159 perf_output_put(&handle, lost_samples_event);
7160 perf_event__output_id_sample(event, &handle, &sample);
7161 perf_output_end(&handle);
7162}
7163
45ac1403
AH
7164/*
7165 * context_switch tracking
7166 */
7167
7168struct perf_switch_event {
7169 struct task_struct *task;
7170 struct task_struct *next_prev;
7171
7172 struct {
7173 struct perf_event_header header;
7174 u32 next_prev_pid;
7175 u32 next_prev_tid;
7176 } event_id;
7177};
7178
7179static int perf_event_switch_match(struct perf_event *event)
7180{
7181 return event->attr.context_switch;
7182}
7183
7184static void perf_event_switch_output(struct perf_event *event, void *data)
7185{
7186 struct perf_switch_event *se = data;
7187 struct perf_output_handle handle;
7188 struct perf_sample_data sample;
7189 int ret;
7190
7191 if (!perf_event_switch_match(event))
7192 return;
7193
7194 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7195 if (event->ctx->task) {
7196 se->event_id.header.type = PERF_RECORD_SWITCH;
7197 se->event_id.header.size = sizeof(se->event_id.header);
7198 } else {
7199 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7200 se->event_id.header.size = sizeof(se->event_id);
7201 se->event_id.next_prev_pid =
7202 perf_event_pid(event, se->next_prev);
7203 se->event_id.next_prev_tid =
7204 perf_event_tid(event, se->next_prev);
7205 }
7206
7207 perf_event_header__init_id(&se->event_id.header, &sample, event);
7208
7209 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7210 if (ret)
7211 return;
7212
7213 if (event->ctx->task)
7214 perf_output_put(&handle, se->event_id.header);
7215 else
7216 perf_output_put(&handle, se->event_id);
7217
7218 perf_event__output_id_sample(event, &handle, &sample);
7219
7220 perf_output_end(&handle);
7221}
7222
7223static void perf_event_switch(struct task_struct *task,
7224 struct task_struct *next_prev, bool sched_in)
7225{
7226 struct perf_switch_event switch_event;
7227
7228 /* N.B. caller checks nr_switch_events != 0 */
7229
7230 switch_event = (struct perf_switch_event){
7231 .task = task,
7232 .next_prev = next_prev,
7233 .event_id = {
7234 .header = {
7235 /* .type */
7236 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7237 /* .size */
7238 },
7239 /* .next_prev_pid */
7240 /* .next_prev_tid */
7241 },
7242 };
7243
aab5b71e 7244 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7245 &switch_event,
7246 NULL);
7247}
7248
a78ac325
PZ
7249/*
7250 * IRQ throttle logging
7251 */
7252
cdd6c482 7253static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7254{
7255 struct perf_output_handle handle;
c980d109 7256 struct perf_sample_data sample;
a78ac325
PZ
7257 int ret;
7258
7259 struct {
7260 struct perf_event_header header;
7261 u64 time;
cca3f454 7262 u64 id;
7f453c24 7263 u64 stream_id;
a78ac325
PZ
7264 } throttle_event = {
7265 .header = {
cdd6c482 7266 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7267 .misc = 0,
7268 .size = sizeof(throttle_event),
7269 },
34f43927 7270 .time = perf_event_clock(event),
cdd6c482
IM
7271 .id = primary_event_id(event),
7272 .stream_id = event->id,
a78ac325
PZ
7273 };
7274
966ee4d6 7275 if (enable)
cdd6c482 7276 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7277
c980d109
ACM
7278 perf_event_header__init_id(&throttle_event.header, &sample, event);
7279
7280 ret = perf_output_begin(&handle, event,
a7ac67ea 7281 throttle_event.header.size);
a78ac325
PZ
7282 if (ret)
7283 return;
7284
7285 perf_output_put(&handle, throttle_event);
c980d109 7286 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7287 perf_output_end(&handle);
7288}
7289
ec0d7729
AS
7290static void perf_log_itrace_start(struct perf_event *event)
7291{
7292 struct perf_output_handle handle;
7293 struct perf_sample_data sample;
7294 struct perf_aux_event {
7295 struct perf_event_header header;
7296 u32 pid;
7297 u32 tid;
7298 } rec;
7299 int ret;
7300
7301 if (event->parent)
7302 event = event->parent;
7303
7304 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7305 event->hw.itrace_started)
7306 return;
7307
ec0d7729
AS
7308 rec.header.type = PERF_RECORD_ITRACE_START;
7309 rec.header.misc = 0;
7310 rec.header.size = sizeof(rec);
7311 rec.pid = perf_event_pid(event, current);
7312 rec.tid = perf_event_tid(event, current);
7313
7314 perf_event_header__init_id(&rec.header, &sample, event);
7315 ret = perf_output_begin(&handle, event, rec.header.size);
7316
7317 if (ret)
7318 return;
7319
7320 perf_output_put(&handle, rec);
7321 perf_event__output_id_sample(event, &handle, &sample);
7322
7323 perf_output_end(&handle);
7324}
7325
475113d9
JO
7326static int
7327__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7328{
cdd6c482 7329 struct hw_perf_event *hwc = &event->hw;
79f14641 7330 int ret = 0;
475113d9 7331 u64 seq;
96398826 7332
e050e3f0
SE
7333 seq = __this_cpu_read(perf_throttled_seq);
7334 if (seq != hwc->interrupts_seq) {
7335 hwc->interrupts_seq = seq;
7336 hwc->interrupts = 1;
7337 } else {
7338 hwc->interrupts++;
7339 if (unlikely(throttle
7340 && hwc->interrupts >= max_samples_per_tick)) {
7341 __this_cpu_inc(perf_throttled_count);
555e0c1e 7342 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7343 hwc->interrupts = MAX_INTERRUPTS;
7344 perf_log_throttle(event, 0);
a78ac325
PZ
7345 ret = 1;
7346 }
e050e3f0 7347 }
60db5e09 7348
cdd6c482 7349 if (event->attr.freq) {
def0a9b2 7350 u64 now = perf_clock();
abd50713 7351 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7352
abd50713 7353 hwc->freq_time_stamp = now;
bd2b5b12 7354
abd50713 7355 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7356 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7357 }
7358
475113d9
JO
7359 return ret;
7360}
7361
7362int perf_event_account_interrupt(struct perf_event *event)
7363{
7364 return __perf_event_account_interrupt(event, 1);
7365}
7366
7367/*
7368 * Generic event overflow handling, sampling.
7369 */
7370
7371static int __perf_event_overflow(struct perf_event *event,
7372 int throttle, struct perf_sample_data *data,
7373 struct pt_regs *regs)
7374{
7375 int events = atomic_read(&event->event_limit);
7376 int ret = 0;
7377
7378 /*
7379 * Non-sampling counters might still use the PMI to fold short
7380 * hardware counters, ignore those.
7381 */
7382 if (unlikely(!is_sampling_event(event)))
7383 return 0;
7384
7385 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7386
2023b359
PZ
7387 /*
7388 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7389 * events
2023b359
PZ
7390 */
7391
cdd6c482
IM
7392 event->pending_kill = POLL_IN;
7393 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7394 ret = 1;
cdd6c482 7395 event->pending_kill = POLL_HUP;
5aab90ce
JO
7396
7397 perf_event_disable_inatomic(event);
79f14641
PZ
7398 }
7399
aa6a5f3c 7400 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7401
fed66e2c 7402 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7403 event->pending_wakeup = 1;
7404 irq_work_queue(&event->pending);
f506b3dc
PZ
7405 }
7406
79f14641 7407 return ret;
f6c7d5fe
PZ
7408}
7409
a8b0ca17 7410int perf_event_overflow(struct perf_event *event,
5622f295
MM
7411 struct perf_sample_data *data,
7412 struct pt_regs *regs)
850bc73f 7413{
a8b0ca17 7414 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7415}
7416
15dbf27c 7417/*
cdd6c482 7418 * Generic software event infrastructure
15dbf27c
PZ
7419 */
7420
b28ab83c
PZ
7421struct swevent_htable {
7422 struct swevent_hlist *swevent_hlist;
7423 struct mutex hlist_mutex;
7424 int hlist_refcount;
7425
7426 /* Recursion avoidance in each contexts */
7427 int recursion[PERF_NR_CONTEXTS];
7428};
7429
7430static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7431
7b4b6658 7432/*
cdd6c482
IM
7433 * We directly increment event->count and keep a second value in
7434 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7435 * is kept in the range [-sample_period, 0] so that we can use the
7436 * sign as trigger.
7437 */
7438
ab573844 7439u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7440{
cdd6c482 7441 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7442 u64 period = hwc->last_period;
7443 u64 nr, offset;
7444 s64 old, val;
7445
7446 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7447
7448again:
e7850595 7449 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7450 if (val < 0)
7451 return 0;
15dbf27c 7452
7b4b6658
PZ
7453 nr = div64_u64(period + val, period);
7454 offset = nr * period;
7455 val -= offset;
e7850595 7456 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7457 goto again;
15dbf27c 7458
7b4b6658 7459 return nr;
15dbf27c
PZ
7460}
7461
0cff784a 7462static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7463 struct perf_sample_data *data,
5622f295 7464 struct pt_regs *regs)
15dbf27c 7465{
cdd6c482 7466 struct hw_perf_event *hwc = &event->hw;
850bc73f 7467 int throttle = 0;
15dbf27c 7468
0cff784a
PZ
7469 if (!overflow)
7470 overflow = perf_swevent_set_period(event);
15dbf27c 7471
7b4b6658
PZ
7472 if (hwc->interrupts == MAX_INTERRUPTS)
7473 return;
15dbf27c 7474
7b4b6658 7475 for (; overflow; overflow--) {
a8b0ca17 7476 if (__perf_event_overflow(event, throttle,
5622f295 7477 data, regs)) {
7b4b6658
PZ
7478 /*
7479 * We inhibit the overflow from happening when
7480 * hwc->interrupts == MAX_INTERRUPTS.
7481 */
7482 break;
7483 }
cf450a73 7484 throttle = 1;
7b4b6658 7485 }
15dbf27c
PZ
7486}
7487
a4eaf7f1 7488static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7489 struct perf_sample_data *data,
5622f295 7490 struct pt_regs *regs)
7b4b6658 7491{
cdd6c482 7492 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7493
e7850595 7494 local64_add(nr, &event->count);
d6d020e9 7495
0cff784a
PZ
7496 if (!regs)
7497 return;
7498
6c7e550f 7499 if (!is_sampling_event(event))
7b4b6658 7500 return;
d6d020e9 7501
5d81e5cf
AV
7502 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7503 data->period = nr;
7504 return perf_swevent_overflow(event, 1, data, regs);
7505 } else
7506 data->period = event->hw.last_period;
7507
0cff784a 7508 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7509 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7510
e7850595 7511 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7512 return;
df1a132b 7513
a8b0ca17 7514 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7515}
7516
f5ffe02e
FW
7517static int perf_exclude_event(struct perf_event *event,
7518 struct pt_regs *regs)
7519{
a4eaf7f1 7520 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7521 return 1;
a4eaf7f1 7522
f5ffe02e
FW
7523 if (regs) {
7524 if (event->attr.exclude_user && user_mode(regs))
7525 return 1;
7526
7527 if (event->attr.exclude_kernel && !user_mode(regs))
7528 return 1;
7529 }
7530
7531 return 0;
7532}
7533
cdd6c482 7534static int perf_swevent_match(struct perf_event *event,
1c432d89 7535 enum perf_type_id type,
6fb2915d
LZ
7536 u32 event_id,
7537 struct perf_sample_data *data,
7538 struct pt_regs *regs)
15dbf27c 7539{
cdd6c482 7540 if (event->attr.type != type)
a21ca2ca 7541 return 0;
f5ffe02e 7542
cdd6c482 7543 if (event->attr.config != event_id)
15dbf27c
PZ
7544 return 0;
7545
f5ffe02e
FW
7546 if (perf_exclude_event(event, regs))
7547 return 0;
15dbf27c
PZ
7548
7549 return 1;
7550}
7551
76e1d904
FW
7552static inline u64 swevent_hash(u64 type, u32 event_id)
7553{
7554 u64 val = event_id | (type << 32);
7555
7556 return hash_64(val, SWEVENT_HLIST_BITS);
7557}
7558
49f135ed
FW
7559static inline struct hlist_head *
7560__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7561{
49f135ed
FW
7562 u64 hash = swevent_hash(type, event_id);
7563
7564 return &hlist->heads[hash];
7565}
76e1d904 7566
49f135ed
FW
7567/* For the read side: events when they trigger */
7568static inline struct hlist_head *
b28ab83c 7569find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7570{
7571 struct swevent_hlist *hlist;
76e1d904 7572
b28ab83c 7573 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7574 if (!hlist)
7575 return NULL;
7576
49f135ed
FW
7577 return __find_swevent_head(hlist, type, event_id);
7578}
7579
7580/* For the event head insertion and removal in the hlist */
7581static inline struct hlist_head *
b28ab83c 7582find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7583{
7584 struct swevent_hlist *hlist;
7585 u32 event_id = event->attr.config;
7586 u64 type = event->attr.type;
7587
7588 /*
7589 * Event scheduling is always serialized against hlist allocation
7590 * and release. Which makes the protected version suitable here.
7591 * The context lock guarantees that.
7592 */
b28ab83c 7593 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7594 lockdep_is_held(&event->ctx->lock));
7595 if (!hlist)
7596 return NULL;
7597
7598 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7599}
7600
7601static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7602 u64 nr,
76e1d904
FW
7603 struct perf_sample_data *data,
7604 struct pt_regs *regs)
15dbf27c 7605{
4a32fea9 7606 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7607 struct perf_event *event;
76e1d904 7608 struct hlist_head *head;
15dbf27c 7609
76e1d904 7610 rcu_read_lock();
b28ab83c 7611 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7612 if (!head)
7613 goto end;
7614
b67bfe0d 7615 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7616 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7617 perf_swevent_event(event, nr, data, regs);
15dbf27c 7618 }
76e1d904
FW
7619end:
7620 rcu_read_unlock();
15dbf27c
PZ
7621}
7622
86038c5e
PZI
7623DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7624
4ed7c92d 7625int perf_swevent_get_recursion_context(void)
96f6d444 7626{
4a32fea9 7627 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7628
b28ab83c 7629 return get_recursion_context(swhash->recursion);
96f6d444 7630}
645e8cc0 7631EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7632
98b5c2c6 7633void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7634{
4a32fea9 7635 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7636
b28ab83c 7637 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7638}
15dbf27c 7639
86038c5e 7640void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7641{
a4234bfc 7642 struct perf_sample_data data;
4ed7c92d 7643
86038c5e 7644 if (WARN_ON_ONCE(!regs))
4ed7c92d 7645 return;
a4234bfc 7646
fd0d000b 7647 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7648 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7649}
7650
7651void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7652{
7653 int rctx;
7654
7655 preempt_disable_notrace();
7656 rctx = perf_swevent_get_recursion_context();
7657 if (unlikely(rctx < 0))
7658 goto fail;
7659
7660 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7661
7662 perf_swevent_put_recursion_context(rctx);
86038c5e 7663fail:
1c024eca 7664 preempt_enable_notrace();
b8e83514
PZ
7665}
7666
cdd6c482 7667static void perf_swevent_read(struct perf_event *event)
15dbf27c 7668{
15dbf27c
PZ
7669}
7670
a4eaf7f1 7671static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7672{
4a32fea9 7673 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7674 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7675 struct hlist_head *head;
7676
6c7e550f 7677 if (is_sampling_event(event)) {
7b4b6658 7678 hwc->last_period = hwc->sample_period;
cdd6c482 7679 perf_swevent_set_period(event);
7b4b6658 7680 }
76e1d904 7681
a4eaf7f1
PZ
7682 hwc->state = !(flags & PERF_EF_START);
7683
b28ab83c 7684 head = find_swevent_head(swhash, event);
12ca6ad2 7685 if (WARN_ON_ONCE(!head))
76e1d904
FW
7686 return -EINVAL;
7687
7688 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7689 perf_event_update_userpage(event);
76e1d904 7690
15dbf27c
PZ
7691 return 0;
7692}
7693
a4eaf7f1 7694static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7695{
76e1d904 7696 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7697}
7698
a4eaf7f1 7699static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7700{
a4eaf7f1 7701 event->hw.state = 0;
d6d020e9 7702}
aa9c4c0f 7703
a4eaf7f1 7704static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7705{
a4eaf7f1 7706 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7707}
7708
49f135ed
FW
7709/* Deref the hlist from the update side */
7710static inline struct swevent_hlist *
b28ab83c 7711swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7712{
b28ab83c
PZ
7713 return rcu_dereference_protected(swhash->swevent_hlist,
7714 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7715}
7716
b28ab83c 7717static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7718{
b28ab83c 7719 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7720
49f135ed 7721 if (!hlist)
76e1d904
FW
7722 return;
7723
70691d4a 7724 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7725 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7726}
7727
3b364d7b 7728static void swevent_hlist_put_cpu(int cpu)
76e1d904 7729{
b28ab83c 7730 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7731
b28ab83c 7732 mutex_lock(&swhash->hlist_mutex);
76e1d904 7733
b28ab83c
PZ
7734 if (!--swhash->hlist_refcount)
7735 swevent_hlist_release(swhash);
76e1d904 7736
b28ab83c 7737 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7738}
7739
3b364d7b 7740static void swevent_hlist_put(void)
76e1d904
FW
7741{
7742 int cpu;
7743
76e1d904 7744 for_each_possible_cpu(cpu)
3b364d7b 7745 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7746}
7747
3b364d7b 7748static int swevent_hlist_get_cpu(int cpu)
76e1d904 7749{
b28ab83c 7750 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7751 int err = 0;
7752
b28ab83c 7753 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
7754 if (!swevent_hlist_deref(swhash) &&
7755 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
7756 struct swevent_hlist *hlist;
7757
7758 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7759 if (!hlist) {
7760 err = -ENOMEM;
7761 goto exit;
7762 }
b28ab83c 7763 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7764 }
b28ab83c 7765 swhash->hlist_refcount++;
9ed6060d 7766exit:
b28ab83c 7767 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7768
7769 return err;
7770}
7771
3b364d7b 7772static int swevent_hlist_get(void)
76e1d904 7773{
3b364d7b 7774 int err, cpu, failed_cpu;
76e1d904 7775
a63fbed7 7776 mutex_lock(&pmus_lock);
76e1d904 7777 for_each_possible_cpu(cpu) {
3b364d7b 7778 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7779 if (err) {
7780 failed_cpu = cpu;
7781 goto fail;
7782 }
7783 }
a63fbed7 7784 mutex_unlock(&pmus_lock);
76e1d904 7785 return 0;
9ed6060d 7786fail:
76e1d904
FW
7787 for_each_possible_cpu(cpu) {
7788 if (cpu == failed_cpu)
7789 break;
3b364d7b 7790 swevent_hlist_put_cpu(cpu);
76e1d904 7791 }
a63fbed7 7792 mutex_unlock(&pmus_lock);
76e1d904
FW
7793 return err;
7794}
7795
c5905afb 7796struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7797
b0a873eb
PZ
7798static void sw_perf_event_destroy(struct perf_event *event)
7799{
7800 u64 event_id = event->attr.config;
95476b64 7801
b0a873eb
PZ
7802 WARN_ON(event->parent);
7803
c5905afb 7804 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7805 swevent_hlist_put();
b0a873eb
PZ
7806}
7807
7808static int perf_swevent_init(struct perf_event *event)
7809{
8176cced 7810 u64 event_id = event->attr.config;
b0a873eb
PZ
7811
7812 if (event->attr.type != PERF_TYPE_SOFTWARE)
7813 return -ENOENT;
7814
2481c5fa
SE
7815 /*
7816 * no branch sampling for software events
7817 */
7818 if (has_branch_stack(event))
7819 return -EOPNOTSUPP;
7820
b0a873eb
PZ
7821 switch (event_id) {
7822 case PERF_COUNT_SW_CPU_CLOCK:
7823 case PERF_COUNT_SW_TASK_CLOCK:
7824 return -ENOENT;
7825
7826 default:
7827 break;
7828 }
7829
ce677831 7830 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7831 return -ENOENT;
7832
7833 if (!event->parent) {
7834 int err;
7835
3b364d7b 7836 err = swevent_hlist_get();
b0a873eb
PZ
7837 if (err)
7838 return err;
7839
c5905afb 7840 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7841 event->destroy = sw_perf_event_destroy;
7842 }
7843
7844 return 0;
7845}
7846
7847static struct pmu perf_swevent = {
89a1e187 7848 .task_ctx_nr = perf_sw_context,
95476b64 7849
34f43927
PZ
7850 .capabilities = PERF_PMU_CAP_NO_NMI,
7851
b0a873eb 7852 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7853 .add = perf_swevent_add,
7854 .del = perf_swevent_del,
7855 .start = perf_swevent_start,
7856 .stop = perf_swevent_stop,
1c024eca 7857 .read = perf_swevent_read,
1c024eca
PZ
7858};
7859
b0a873eb
PZ
7860#ifdef CONFIG_EVENT_TRACING
7861
1c024eca
PZ
7862static int perf_tp_filter_match(struct perf_event *event,
7863 struct perf_sample_data *data)
7864{
7e3f977e 7865 void *record = data->raw->frag.data;
1c024eca 7866
b71b437e
PZ
7867 /* only top level events have filters set */
7868 if (event->parent)
7869 event = event->parent;
7870
1c024eca
PZ
7871 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7872 return 1;
7873 return 0;
7874}
7875
7876static int perf_tp_event_match(struct perf_event *event,
7877 struct perf_sample_data *data,
7878 struct pt_regs *regs)
7879{
a0f7d0f7
FW
7880 if (event->hw.state & PERF_HES_STOPPED)
7881 return 0;
580d607c
PZ
7882 /*
7883 * All tracepoints are from kernel-space.
7884 */
7885 if (event->attr.exclude_kernel)
1c024eca
PZ
7886 return 0;
7887
7888 if (!perf_tp_filter_match(event, data))
7889 return 0;
7890
7891 return 1;
7892}
7893
85b67bcb
AS
7894void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7895 struct trace_event_call *call, u64 count,
7896 struct pt_regs *regs, struct hlist_head *head,
7897 struct task_struct *task)
7898{
7899 struct bpf_prog *prog = call->prog;
7900
7901 if (prog) {
7902 *(struct pt_regs **)raw_data = regs;
7903 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7904 perf_swevent_put_recursion_context(rctx);
7905 return;
7906 }
7907 }
7908 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7909 rctx, task);
7910}
7911EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7912
1e1dcd93 7913void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff
AV
7914 struct pt_regs *regs, struct hlist_head *head, int rctx,
7915 struct task_struct *task)
95476b64
FW
7916{
7917 struct perf_sample_data data;
1c024eca 7918 struct perf_event *event;
1c024eca 7919
95476b64 7920 struct perf_raw_record raw = {
7e3f977e
DB
7921 .frag = {
7922 .size = entry_size,
7923 .data = record,
7924 },
95476b64
FW
7925 };
7926
1e1dcd93 7927 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7928 data.raw = &raw;
7929
1e1dcd93
AS
7930 perf_trace_buf_update(record, event_type);
7931
b67bfe0d 7932 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7933 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7934 perf_swevent_event(event, count, &data, regs);
4f41c013 7935 }
ecc55f84 7936
e6dab5ff
AV
7937 /*
7938 * If we got specified a target task, also iterate its context and
7939 * deliver this event there too.
7940 */
7941 if (task && task != current) {
7942 struct perf_event_context *ctx;
7943 struct trace_entry *entry = record;
7944
7945 rcu_read_lock();
7946 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7947 if (!ctx)
7948 goto unlock;
7949
7950 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7951 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7952 continue;
7953 if (event->attr.config != entry->type)
7954 continue;
7955 if (perf_tp_event_match(event, &data, regs))
7956 perf_swevent_event(event, count, &data, regs);
7957 }
7958unlock:
7959 rcu_read_unlock();
7960 }
7961
ecc55f84 7962 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7963}
7964EXPORT_SYMBOL_GPL(perf_tp_event);
7965
cdd6c482 7966static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7967{
1c024eca 7968 perf_trace_destroy(event);
e077df4f
PZ
7969}
7970
b0a873eb 7971static int perf_tp_event_init(struct perf_event *event)
e077df4f 7972{
76e1d904
FW
7973 int err;
7974
b0a873eb
PZ
7975 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7976 return -ENOENT;
7977
2481c5fa
SE
7978 /*
7979 * no branch sampling for tracepoint events
7980 */
7981 if (has_branch_stack(event))
7982 return -EOPNOTSUPP;
7983
1c024eca
PZ
7984 err = perf_trace_init(event);
7985 if (err)
b0a873eb 7986 return err;
e077df4f 7987
cdd6c482 7988 event->destroy = tp_perf_event_destroy;
e077df4f 7989
b0a873eb
PZ
7990 return 0;
7991}
7992
7993static struct pmu perf_tracepoint = {
89a1e187
PZ
7994 .task_ctx_nr = perf_sw_context,
7995
b0a873eb 7996 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7997 .add = perf_trace_add,
7998 .del = perf_trace_del,
7999 .start = perf_swevent_start,
8000 .stop = perf_swevent_stop,
b0a873eb 8001 .read = perf_swevent_read,
b0a873eb
PZ
8002};
8003
8004static inline void perf_tp_register(void)
8005{
2e80a82a 8006 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 8007}
6fb2915d 8008
6fb2915d
LZ
8009static void perf_event_free_filter(struct perf_event *event)
8010{
8011 ftrace_profile_free_filter(event);
8012}
8013
aa6a5f3c
AS
8014#ifdef CONFIG_BPF_SYSCALL
8015static void bpf_overflow_handler(struct perf_event *event,
8016 struct perf_sample_data *data,
8017 struct pt_regs *regs)
8018{
8019 struct bpf_perf_event_data_kern ctx = {
8020 .data = data,
8021 .regs = regs,
8022 };
8023 int ret = 0;
8024
8025 preempt_disable();
8026 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8027 goto out;
8028 rcu_read_lock();
88575199 8029 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8030 rcu_read_unlock();
8031out:
8032 __this_cpu_dec(bpf_prog_active);
8033 preempt_enable();
8034 if (!ret)
8035 return;
8036
8037 event->orig_overflow_handler(event, data, regs);
8038}
8039
8040static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8041{
8042 struct bpf_prog *prog;
8043
8044 if (event->overflow_handler_context)
8045 /* hw breakpoint or kernel counter */
8046 return -EINVAL;
8047
8048 if (event->prog)
8049 return -EEXIST;
8050
8051 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8052 if (IS_ERR(prog))
8053 return PTR_ERR(prog);
8054
8055 event->prog = prog;
8056 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8057 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8058 return 0;
8059}
8060
8061static void perf_event_free_bpf_handler(struct perf_event *event)
8062{
8063 struct bpf_prog *prog = event->prog;
8064
8065 if (!prog)
8066 return;
8067
8068 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8069 event->prog = NULL;
8070 bpf_prog_put(prog);
8071}
8072#else
8073static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8074{
8075 return -EOPNOTSUPP;
8076}
8077static void perf_event_free_bpf_handler(struct perf_event *event)
8078{
8079}
8080#endif
8081
2541517c
AS
8082static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8083{
98b5c2c6 8084 bool is_kprobe, is_tracepoint;
2541517c
AS
8085 struct bpf_prog *prog;
8086
8087 if (event->attr.type != PERF_TYPE_TRACEPOINT)
f91840a3 8088 return perf_event_set_bpf_handler(event, prog_fd);
2541517c
AS
8089
8090 if (event->tp_event->prog)
8091 return -EEXIST;
8092
98b5c2c6
AS
8093 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8094 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8095 if (!is_kprobe && !is_tracepoint)
8096 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8097 return -EINVAL;
8098
8099 prog = bpf_prog_get(prog_fd);
8100 if (IS_ERR(prog))
8101 return PTR_ERR(prog);
8102
98b5c2c6
AS
8103 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8104 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8105 /* valid fd, but invalid bpf program type */
8106 bpf_prog_put(prog);
8107 return -EINVAL;
8108 }
8109
32bbe007
AS
8110 if (is_tracepoint) {
8111 int off = trace_event_get_offsets(event->tp_event);
8112
8113 if (prog->aux->max_ctx_offset > off) {
8114 bpf_prog_put(prog);
8115 return -EACCES;
8116 }
8117 }
2541517c
AS
8118 event->tp_event->prog = prog;
8119
8120 return 0;
8121}
8122
8123static void perf_event_free_bpf_prog(struct perf_event *event)
8124{
8125 struct bpf_prog *prog;
8126
aa6a5f3c
AS
8127 perf_event_free_bpf_handler(event);
8128
2541517c
AS
8129 if (!event->tp_event)
8130 return;
8131
8132 prog = event->tp_event->prog;
8133 if (prog) {
8134 event->tp_event->prog = NULL;
1aacde3d 8135 bpf_prog_put(prog);
2541517c
AS
8136 }
8137}
8138
e077df4f 8139#else
6fb2915d 8140
b0a873eb 8141static inline void perf_tp_register(void)
e077df4f 8142{
e077df4f 8143}
6fb2915d 8144
6fb2915d
LZ
8145static void perf_event_free_filter(struct perf_event *event)
8146{
8147}
8148
2541517c
AS
8149static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8150{
8151 return -ENOENT;
8152}
8153
8154static void perf_event_free_bpf_prog(struct perf_event *event)
8155{
8156}
07b139c8 8157#endif /* CONFIG_EVENT_TRACING */
e077df4f 8158
24f1e32c 8159#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8160void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8161{
f5ffe02e
FW
8162 struct perf_sample_data sample;
8163 struct pt_regs *regs = data;
8164
fd0d000b 8165 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8166
a4eaf7f1 8167 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8168 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8169}
8170#endif
8171
375637bc
AS
8172/*
8173 * Allocate a new address filter
8174 */
8175static struct perf_addr_filter *
8176perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8177{
8178 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8179 struct perf_addr_filter *filter;
8180
8181 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8182 if (!filter)
8183 return NULL;
8184
8185 INIT_LIST_HEAD(&filter->entry);
8186 list_add_tail(&filter->entry, filters);
8187
8188 return filter;
8189}
8190
8191static void free_filters_list(struct list_head *filters)
8192{
8193 struct perf_addr_filter *filter, *iter;
8194
8195 list_for_each_entry_safe(filter, iter, filters, entry) {
8196 if (filter->inode)
8197 iput(filter->inode);
8198 list_del(&filter->entry);
8199 kfree(filter);
8200 }
8201}
8202
8203/*
8204 * Free existing address filters and optionally install new ones
8205 */
8206static void perf_addr_filters_splice(struct perf_event *event,
8207 struct list_head *head)
8208{
8209 unsigned long flags;
8210 LIST_HEAD(list);
8211
8212 if (!has_addr_filter(event))
8213 return;
8214
8215 /* don't bother with children, they don't have their own filters */
8216 if (event->parent)
8217 return;
8218
8219 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8220
8221 list_splice_init(&event->addr_filters.list, &list);
8222 if (head)
8223 list_splice(head, &event->addr_filters.list);
8224
8225 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8226
8227 free_filters_list(&list);
8228}
8229
8230/*
8231 * Scan through mm's vmas and see if one of them matches the
8232 * @filter; if so, adjust filter's address range.
8233 * Called with mm::mmap_sem down for reading.
8234 */
8235static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8236 struct mm_struct *mm)
8237{
8238 struct vm_area_struct *vma;
8239
8240 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8241 struct file *file = vma->vm_file;
8242 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8243 unsigned long vma_size = vma->vm_end - vma->vm_start;
8244
8245 if (!file)
8246 continue;
8247
8248 if (!perf_addr_filter_match(filter, file, off, vma_size))
8249 continue;
8250
8251 return vma->vm_start;
8252 }
8253
8254 return 0;
8255}
8256
8257/*
8258 * Update event's address range filters based on the
8259 * task's existing mappings, if any.
8260 */
8261static void perf_event_addr_filters_apply(struct perf_event *event)
8262{
8263 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8264 struct task_struct *task = READ_ONCE(event->ctx->task);
8265 struct perf_addr_filter *filter;
8266 struct mm_struct *mm = NULL;
8267 unsigned int count = 0;
8268 unsigned long flags;
8269
8270 /*
8271 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8272 * will stop on the parent's child_mutex that our caller is also holding
8273 */
8274 if (task == TASK_TOMBSTONE)
8275 return;
8276
6ce77bfd
AS
8277 if (!ifh->nr_file_filters)
8278 return;
8279
375637bc
AS
8280 mm = get_task_mm(event->ctx->task);
8281 if (!mm)
8282 goto restart;
8283
8284 down_read(&mm->mmap_sem);
8285
8286 raw_spin_lock_irqsave(&ifh->lock, flags);
8287 list_for_each_entry(filter, &ifh->list, entry) {
8288 event->addr_filters_offs[count] = 0;
8289
99f5bc9b
MP
8290 /*
8291 * Adjust base offset if the filter is associated to a binary
8292 * that needs to be mapped:
8293 */
8294 if (filter->inode)
375637bc
AS
8295 event->addr_filters_offs[count] =
8296 perf_addr_filter_apply(filter, mm);
8297
8298 count++;
8299 }
8300
8301 event->addr_filters_gen++;
8302 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8303
8304 up_read(&mm->mmap_sem);
8305
8306 mmput(mm);
8307
8308restart:
767ae086 8309 perf_event_stop(event, 1);
375637bc
AS
8310}
8311
8312/*
8313 * Address range filtering: limiting the data to certain
8314 * instruction address ranges. Filters are ioctl()ed to us from
8315 * userspace as ascii strings.
8316 *
8317 * Filter string format:
8318 *
8319 * ACTION RANGE_SPEC
8320 * where ACTION is one of the
8321 * * "filter": limit the trace to this region
8322 * * "start": start tracing from this address
8323 * * "stop": stop tracing at this address/region;
8324 * RANGE_SPEC is
8325 * * for kernel addresses: <start address>[/<size>]
8326 * * for object files: <start address>[/<size>]@</path/to/object/file>
8327 *
8328 * if <size> is not specified, the range is treated as a single address.
8329 */
8330enum {
e96271f3 8331 IF_ACT_NONE = -1,
375637bc
AS
8332 IF_ACT_FILTER,
8333 IF_ACT_START,
8334 IF_ACT_STOP,
8335 IF_SRC_FILE,
8336 IF_SRC_KERNEL,
8337 IF_SRC_FILEADDR,
8338 IF_SRC_KERNELADDR,
8339};
8340
8341enum {
8342 IF_STATE_ACTION = 0,
8343 IF_STATE_SOURCE,
8344 IF_STATE_END,
8345};
8346
8347static const match_table_t if_tokens = {
8348 { IF_ACT_FILTER, "filter" },
8349 { IF_ACT_START, "start" },
8350 { IF_ACT_STOP, "stop" },
8351 { IF_SRC_FILE, "%u/%u@%s" },
8352 { IF_SRC_KERNEL, "%u/%u" },
8353 { IF_SRC_FILEADDR, "%u@%s" },
8354 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8355 { IF_ACT_NONE, NULL },
375637bc
AS
8356};
8357
8358/*
8359 * Address filter string parser
8360 */
8361static int
8362perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8363 struct list_head *filters)
8364{
8365 struct perf_addr_filter *filter = NULL;
8366 char *start, *orig, *filename = NULL;
8367 struct path path;
8368 substring_t args[MAX_OPT_ARGS];
8369 int state = IF_STATE_ACTION, token;
8370 unsigned int kernel = 0;
8371 int ret = -EINVAL;
8372
8373 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8374 if (!fstr)
8375 return -ENOMEM;
8376
8377 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8378 ret = -EINVAL;
8379
8380 if (!*start)
8381 continue;
8382
8383 /* filter definition begins */
8384 if (state == IF_STATE_ACTION) {
8385 filter = perf_addr_filter_new(event, filters);
8386 if (!filter)
8387 goto fail;
8388 }
8389
8390 token = match_token(start, if_tokens, args);
8391 switch (token) {
8392 case IF_ACT_FILTER:
8393 case IF_ACT_START:
8394 filter->filter = 1;
8395
8396 case IF_ACT_STOP:
8397 if (state != IF_STATE_ACTION)
8398 goto fail;
8399
8400 state = IF_STATE_SOURCE;
8401 break;
8402
8403 case IF_SRC_KERNELADDR:
8404 case IF_SRC_KERNEL:
8405 kernel = 1;
8406
8407 case IF_SRC_FILEADDR:
8408 case IF_SRC_FILE:
8409 if (state != IF_STATE_SOURCE)
8410 goto fail;
8411
8412 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8413 filter->range = 1;
8414
8415 *args[0].to = 0;
8416 ret = kstrtoul(args[0].from, 0, &filter->offset);
8417 if (ret)
8418 goto fail;
8419
8420 if (filter->range) {
8421 *args[1].to = 0;
8422 ret = kstrtoul(args[1].from, 0, &filter->size);
8423 if (ret)
8424 goto fail;
8425 }
8426
4059ffd0
MP
8427 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8428 int fpos = filter->range ? 2 : 1;
8429
8430 filename = match_strdup(&args[fpos]);
375637bc
AS
8431 if (!filename) {
8432 ret = -ENOMEM;
8433 goto fail;
8434 }
8435 }
8436
8437 state = IF_STATE_END;
8438 break;
8439
8440 default:
8441 goto fail;
8442 }
8443
8444 /*
8445 * Filter definition is fully parsed, validate and install it.
8446 * Make sure that it doesn't contradict itself or the event's
8447 * attribute.
8448 */
8449 if (state == IF_STATE_END) {
9ccbfbb1 8450 ret = -EINVAL;
375637bc
AS
8451 if (kernel && event->attr.exclude_kernel)
8452 goto fail;
8453
8454 if (!kernel) {
8455 if (!filename)
8456 goto fail;
8457
6ce77bfd
AS
8458 /*
8459 * For now, we only support file-based filters
8460 * in per-task events; doing so for CPU-wide
8461 * events requires additional context switching
8462 * trickery, since same object code will be
8463 * mapped at different virtual addresses in
8464 * different processes.
8465 */
8466 ret = -EOPNOTSUPP;
8467 if (!event->ctx->task)
8468 goto fail_free_name;
8469
375637bc
AS
8470 /* look up the path and grab its inode */
8471 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8472 if (ret)
8473 goto fail_free_name;
8474
8475 filter->inode = igrab(d_inode(path.dentry));
8476 path_put(&path);
8477 kfree(filename);
8478 filename = NULL;
8479
8480 ret = -EINVAL;
8481 if (!filter->inode ||
8482 !S_ISREG(filter->inode->i_mode))
8483 /* free_filters_list() will iput() */
8484 goto fail;
6ce77bfd
AS
8485
8486 event->addr_filters.nr_file_filters++;
375637bc
AS
8487 }
8488
8489 /* ready to consume more filters */
8490 state = IF_STATE_ACTION;
8491 filter = NULL;
8492 }
8493 }
8494
8495 if (state != IF_STATE_ACTION)
8496 goto fail;
8497
8498 kfree(orig);
8499
8500 return 0;
8501
8502fail_free_name:
8503 kfree(filename);
8504fail:
8505 free_filters_list(filters);
8506 kfree(orig);
8507
8508 return ret;
8509}
8510
8511static int
8512perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8513{
8514 LIST_HEAD(filters);
8515 int ret;
8516
8517 /*
8518 * Since this is called in perf_ioctl() path, we're already holding
8519 * ctx::mutex.
8520 */
8521 lockdep_assert_held(&event->ctx->mutex);
8522
8523 if (WARN_ON_ONCE(event->parent))
8524 return -EINVAL;
8525
375637bc
AS
8526 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8527 if (ret)
6ce77bfd 8528 goto fail_clear_files;
375637bc
AS
8529
8530 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8531 if (ret)
8532 goto fail_free_filters;
375637bc
AS
8533
8534 /* remove existing filters, if any */
8535 perf_addr_filters_splice(event, &filters);
8536
8537 /* install new filters */
8538 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8539
6ce77bfd
AS
8540 return ret;
8541
8542fail_free_filters:
8543 free_filters_list(&filters);
8544
8545fail_clear_files:
8546 event->addr_filters.nr_file_filters = 0;
8547
375637bc
AS
8548 return ret;
8549}
8550
c796bbbe
AS
8551static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8552{
8553 char *filter_str;
8554 int ret = -EINVAL;
8555
375637bc
AS
8556 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8557 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8558 !has_addr_filter(event))
c796bbbe
AS
8559 return -EINVAL;
8560
8561 filter_str = strndup_user(arg, PAGE_SIZE);
8562 if (IS_ERR(filter_str))
8563 return PTR_ERR(filter_str);
8564
8565 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8566 event->attr.type == PERF_TYPE_TRACEPOINT)
8567 ret = ftrace_profile_set_filter(event, event->attr.config,
8568 filter_str);
375637bc
AS
8569 else if (has_addr_filter(event))
8570 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8571
8572 kfree(filter_str);
8573 return ret;
8574}
8575
b0a873eb
PZ
8576/*
8577 * hrtimer based swevent callback
8578 */
f29ac756 8579
b0a873eb 8580static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8581{
b0a873eb
PZ
8582 enum hrtimer_restart ret = HRTIMER_RESTART;
8583 struct perf_sample_data data;
8584 struct pt_regs *regs;
8585 struct perf_event *event;
8586 u64 period;
f29ac756 8587
b0a873eb 8588 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8589
8590 if (event->state != PERF_EVENT_STATE_ACTIVE)
8591 return HRTIMER_NORESTART;
8592
b0a873eb 8593 event->pmu->read(event);
f344011c 8594
fd0d000b 8595 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8596 regs = get_irq_regs();
8597
8598 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8599 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8600 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8601 ret = HRTIMER_NORESTART;
8602 }
24f1e32c 8603
b0a873eb
PZ
8604 period = max_t(u64, 10000, event->hw.sample_period);
8605 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8606
b0a873eb 8607 return ret;
f29ac756
PZ
8608}
8609
b0a873eb 8610static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8611{
b0a873eb 8612 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8613 s64 period;
8614
8615 if (!is_sampling_event(event))
8616 return;
f5ffe02e 8617
5d508e82
FBH
8618 period = local64_read(&hwc->period_left);
8619 if (period) {
8620 if (period < 0)
8621 period = 10000;
fa407f35 8622
5d508e82
FBH
8623 local64_set(&hwc->period_left, 0);
8624 } else {
8625 period = max_t(u64, 10000, hwc->sample_period);
8626 }
3497d206
TG
8627 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8628 HRTIMER_MODE_REL_PINNED);
24f1e32c 8629}
b0a873eb
PZ
8630
8631static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8632{
b0a873eb
PZ
8633 struct hw_perf_event *hwc = &event->hw;
8634
6c7e550f 8635 if (is_sampling_event(event)) {
b0a873eb 8636 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8637 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8638
8639 hrtimer_cancel(&hwc->hrtimer);
8640 }
24f1e32c
FW
8641}
8642
ba3dd36c
PZ
8643static void perf_swevent_init_hrtimer(struct perf_event *event)
8644{
8645 struct hw_perf_event *hwc = &event->hw;
8646
8647 if (!is_sampling_event(event))
8648 return;
8649
8650 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8651 hwc->hrtimer.function = perf_swevent_hrtimer;
8652
8653 /*
8654 * Since hrtimers have a fixed rate, we can do a static freq->period
8655 * mapping and avoid the whole period adjust feedback stuff.
8656 */
8657 if (event->attr.freq) {
8658 long freq = event->attr.sample_freq;
8659
8660 event->attr.sample_period = NSEC_PER_SEC / freq;
8661 hwc->sample_period = event->attr.sample_period;
8662 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8663 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8664 event->attr.freq = 0;
8665 }
8666}
8667
b0a873eb
PZ
8668/*
8669 * Software event: cpu wall time clock
8670 */
8671
8672static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8673{
b0a873eb
PZ
8674 s64 prev;
8675 u64 now;
8676
a4eaf7f1 8677 now = local_clock();
b0a873eb
PZ
8678 prev = local64_xchg(&event->hw.prev_count, now);
8679 local64_add(now - prev, &event->count);
24f1e32c 8680}
24f1e32c 8681
a4eaf7f1 8682static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8683{
a4eaf7f1 8684 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8685 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8686}
8687
a4eaf7f1 8688static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8689{
b0a873eb
PZ
8690 perf_swevent_cancel_hrtimer(event);
8691 cpu_clock_event_update(event);
8692}
f29ac756 8693
a4eaf7f1
PZ
8694static int cpu_clock_event_add(struct perf_event *event, int flags)
8695{
8696 if (flags & PERF_EF_START)
8697 cpu_clock_event_start(event, flags);
6a694a60 8698 perf_event_update_userpage(event);
a4eaf7f1
PZ
8699
8700 return 0;
8701}
8702
8703static void cpu_clock_event_del(struct perf_event *event, int flags)
8704{
8705 cpu_clock_event_stop(event, flags);
8706}
8707
b0a873eb
PZ
8708static void cpu_clock_event_read(struct perf_event *event)
8709{
8710 cpu_clock_event_update(event);
8711}
f344011c 8712
b0a873eb
PZ
8713static int cpu_clock_event_init(struct perf_event *event)
8714{
8715 if (event->attr.type != PERF_TYPE_SOFTWARE)
8716 return -ENOENT;
8717
8718 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8719 return -ENOENT;
8720
2481c5fa
SE
8721 /*
8722 * no branch sampling for software events
8723 */
8724 if (has_branch_stack(event))
8725 return -EOPNOTSUPP;
8726
ba3dd36c
PZ
8727 perf_swevent_init_hrtimer(event);
8728
b0a873eb 8729 return 0;
f29ac756
PZ
8730}
8731
b0a873eb 8732static struct pmu perf_cpu_clock = {
89a1e187
PZ
8733 .task_ctx_nr = perf_sw_context,
8734
34f43927
PZ
8735 .capabilities = PERF_PMU_CAP_NO_NMI,
8736
b0a873eb 8737 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8738 .add = cpu_clock_event_add,
8739 .del = cpu_clock_event_del,
8740 .start = cpu_clock_event_start,
8741 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8742 .read = cpu_clock_event_read,
8743};
8744
8745/*
8746 * Software event: task time clock
8747 */
8748
8749static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8750{
b0a873eb
PZ
8751 u64 prev;
8752 s64 delta;
5c92d124 8753
b0a873eb
PZ
8754 prev = local64_xchg(&event->hw.prev_count, now);
8755 delta = now - prev;
8756 local64_add(delta, &event->count);
8757}
5c92d124 8758
a4eaf7f1 8759static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8760{
a4eaf7f1 8761 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8762 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8763}
8764
a4eaf7f1 8765static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8766{
8767 perf_swevent_cancel_hrtimer(event);
8768 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8769}
8770
8771static int task_clock_event_add(struct perf_event *event, int flags)
8772{
8773 if (flags & PERF_EF_START)
8774 task_clock_event_start(event, flags);
6a694a60 8775 perf_event_update_userpage(event);
b0a873eb 8776
a4eaf7f1
PZ
8777 return 0;
8778}
8779
8780static void task_clock_event_del(struct perf_event *event, int flags)
8781{
8782 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8783}
8784
8785static void task_clock_event_read(struct perf_event *event)
8786{
768a06e2
PZ
8787 u64 now = perf_clock();
8788 u64 delta = now - event->ctx->timestamp;
8789 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8790
8791 task_clock_event_update(event, time);
8792}
8793
8794static int task_clock_event_init(struct perf_event *event)
6fb2915d 8795{
b0a873eb
PZ
8796 if (event->attr.type != PERF_TYPE_SOFTWARE)
8797 return -ENOENT;
8798
8799 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8800 return -ENOENT;
8801
2481c5fa
SE
8802 /*
8803 * no branch sampling for software events
8804 */
8805 if (has_branch_stack(event))
8806 return -EOPNOTSUPP;
8807
ba3dd36c
PZ
8808 perf_swevent_init_hrtimer(event);
8809
b0a873eb 8810 return 0;
6fb2915d
LZ
8811}
8812
b0a873eb 8813static struct pmu perf_task_clock = {
89a1e187
PZ
8814 .task_ctx_nr = perf_sw_context,
8815
34f43927
PZ
8816 .capabilities = PERF_PMU_CAP_NO_NMI,
8817
b0a873eb 8818 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8819 .add = task_clock_event_add,
8820 .del = task_clock_event_del,
8821 .start = task_clock_event_start,
8822 .stop = task_clock_event_stop,
b0a873eb
PZ
8823 .read = task_clock_event_read,
8824};
6fb2915d 8825
ad5133b7 8826static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8827{
e077df4f 8828}
6fb2915d 8829
fbbe0701
SB
8830static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8831{
8832}
8833
ad5133b7 8834static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8835{
ad5133b7 8836 return 0;
6fb2915d
LZ
8837}
8838
18ab2cd3 8839static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8840
8841static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8842{
fbbe0701
SB
8843 __this_cpu_write(nop_txn_flags, flags);
8844
8845 if (flags & ~PERF_PMU_TXN_ADD)
8846 return;
8847
ad5133b7 8848 perf_pmu_disable(pmu);
6fb2915d
LZ
8849}
8850
ad5133b7
PZ
8851static int perf_pmu_commit_txn(struct pmu *pmu)
8852{
fbbe0701
SB
8853 unsigned int flags = __this_cpu_read(nop_txn_flags);
8854
8855 __this_cpu_write(nop_txn_flags, 0);
8856
8857 if (flags & ~PERF_PMU_TXN_ADD)
8858 return 0;
8859
ad5133b7
PZ
8860 perf_pmu_enable(pmu);
8861 return 0;
8862}
e077df4f 8863
ad5133b7 8864static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8865{
fbbe0701
SB
8866 unsigned int flags = __this_cpu_read(nop_txn_flags);
8867
8868 __this_cpu_write(nop_txn_flags, 0);
8869
8870 if (flags & ~PERF_PMU_TXN_ADD)
8871 return;
8872
ad5133b7 8873 perf_pmu_enable(pmu);
24f1e32c
FW
8874}
8875
35edc2a5
PZ
8876static int perf_event_idx_default(struct perf_event *event)
8877{
c719f560 8878 return 0;
35edc2a5
PZ
8879}
8880
8dc85d54
PZ
8881/*
8882 * Ensures all contexts with the same task_ctx_nr have the same
8883 * pmu_cpu_context too.
8884 */
9e317041 8885static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8886{
8dc85d54 8887 struct pmu *pmu;
b326e956 8888
8dc85d54
PZ
8889 if (ctxn < 0)
8890 return NULL;
24f1e32c 8891
8dc85d54
PZ
8892 list_for_each_entry(pmu, &pmus, entry) {
8893 if (pmu->task_ctx_nr == ctxn)
8894 return pmu->pmu_cpu_context;
8895 }
24f1e32c 8896
8dc85d54 8897 return NULL;
24f1e32c
FW
8898}
8899
51676957
PZ
8900static void free_pmu_context(struct pmu *pmu)
8901{
8dc85d54 8902 mutex_lock(&pmus_lock);
51676957 8903 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8904 mutex_unlock(&pmus_lock);
24f1e32c 8905}
6e855cd4
AS
8906
8907/*
8908 * Let userspace know that this PMU supports address range filtering:
8909 */
8910static ssize_t nr_addr_filters_show(struct device *dev,
8911 struct device_attribute *attr,
8912 char *page)
8913{
8914 struct pmu *pmu = dev_get_drvdata(dev);
8915
8916 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8917}
8918DEVICE_ATTR_RO(nr_addr_filters);
8919
2e80a82a 8920static struct idr pmu_idr;
d6d020e9 8921
abe43400
PZ
8922static ssize_t
8923type_show(struct device *dev, struct device_attribute *attr, char *page)
8924{
8925 struct pmu *pmu = dev_get_drvdata(dev);
8926
8927 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8928}
90826ca7 8929static DEVICE_ATTR_RO(type);
abe43400 8930
62b85639
SE
8931static ssize_t
8932perf_event_mux_interval_ms_show(struct device *dev,
8933 struct device_attribute *attr,
8934 char *page)
8935{
8936 struct pmu *pmu = dev_get_drvdata(dev);
8937
8938 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8939}
8940
272325c4
PZ
8941static DEFINE_MUTEX(mux_interval_mutex);
8942
62b85639
SE
8943static ssize_t
8944perf_event_mux_interval_ms_store(struct device *dev,
8945 struct device_attribute *attr,
8946 const char *buf, size_t count)
8947{
8948 struct pmu *pmu = dev_get_drvdata(dev);
8949 int timer, cpu, ret;
8950
8951 ret = kstrtoint(buf, 0, &timer);
8952 if (ret)
8953 return ret;
8954
8955 if (timer < 1)
8956 return -EINVAL;
8957
8958 /* same value, noting to do */
8959 if (timer == pmu->hrtimer_interval_ms)
8960 return count;
8961
272325c4 8962 mutex_lock(&mux_interval_mutex);
62b85639
SE
8963 pmu->hrtimer_interval_ms = timer;
8964
8965 /* update all cpuctx for this PMU */
a63fbed7 8966 cpus_read_lock();
272325c4 8967 for_each_online_cpu(cpu) {
62b85639
SE
8968 struct perf_cpu_context *cpuctx;
8969 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8970 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8971
272325c4
PZ
8972 cpu_function_call(cpu,
8973 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8974 }
a63fbed7 8975 cpus_read_unlock();
272325c4 8976 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8977
8978 return count;
8979}
90826ca7 8980static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8981
90826ca7
GKH
8982static struct attribute *pmu_dev_attrs[] = {
8983 &dev_attr_type.attr,
8984 &dev_attr_perf_event_mux_interval_ms.attr,
8985 NULL,
abe43400 8986};
90826ca7 8987ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8988
8989static int pmu_bus_running;
8990static struct bus_type pmu_bus = {
8991 .name = "event_source",
90826ca7 8992 .dev_groups = pmu_dev_groups,
abe43400
PZ
8993};
8994
8995static void pmu_dev_release(struct device *dev)
8996{
8997 kfree(dev);
8998}
8999
9000static int pmu_dev_alloc(struct pmu *pmu)
9001{
9002 int ret = -ENOMEM;
9003
9004 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9005 if (!pmu->dev)
9006 goto out;
9007
0c9d42ed 9008 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9009 device_initialize(pmu->dev);
9010 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9011 if (ret)
9012 goto free_dev;
9013
9014 dev_set_drvdata(pmu->dev, pmu);
9015 pmu->dev->bus = &pmu_bus;
9016 pmu->dev->release = pmu_dev_release;
9017 ret = device_add(pmu->dev);
9018 if (ret)
9019 goto free_dev;
9020
6e855cd4
AS
9021 /* For PMUs with address filters, throw in an extra attribute: */
9022 if (pmu->nr_addr_filters)
9023 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9024
9025 if (ret)
9026 goto del_dev;
9027
abe43400
PZ
9028out:
9029 return ret;
9030
6e855cd4
AS
9031del_dev:
9032 device_del(pmu->dev);
9033
abe43400
PZ
9034free_dev:
9035 put_device(pmu->dev);
9036 goto out;
9037}
9038
547e9fd7 9039static struct lock_class_key cpuctx_mutex;
facc4307 9040static struct lock_class_key cpuctx_lock;
547e9fd7 9041
03d8e80b 9042int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9043{
108b02cf 9044 int cpu, ret;
24f1e32c 9045
b0a873eb 9046 mutex_lock(&pmus_lock);
33696fc0
PZ
9047 ret = -ENOMEM;
9048 pmu->pmu_disable_count = alloc_percpu(int);
9049 if (!pmu->pmu_disable_count)
9050 goto unlock;
f29ac756 9051
2e80a82a
PZ
9052 pmu->type = -1;
9053 if (!name)
9054 goto skip_type;
9055 pmu->name = name;
9056
9057 if (type < 0) {
0e9c3be2
TH
9058 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9059 if (type < 0) {
9060 ret = type;
2e80a82a
PZ
9061 goto free_pdc;
9062 }
9063 }
9064 pmu->type = type;
9065
abe43400
PZ
9066 if (pmu_bus_running) {
9067 ret = pmu_dev_alloc(pmu);
9068 if (ret)
9069 goto free_idr;
9070 }
9071
2e80a82a 9072skip_type:
26657848
PZ
9073 if (pmu->task_ctx_nr == perf_hw_context) {
9074 static int hw_context_taken = 0;
9075
5101ef20
MR
9076 /*
9077 * Other than systems with heterogeneous CPUs, it never makes
9078 * sense for two PMUs to share perf_hw_context. PMUs which are
9079 * uncore must use perf_invalid_context.
9080 */
9081 if (WARN_ON_ONCE(hw_context_taken &&
9082 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9083 pmu->task_ctx_nr = perf_invalid_context;
9084
9085 hw_context_taken = 1;
9086 }
9087
8dc85d54
PZ
9088 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9089 if (pmu->pmu_cpu_context)
9090 goto got_cpu_context;
f29ac756 9091
c4814202 9092 ret = -ENOMEM;
108b02cf
PZ
9093 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9094 if (!pmu->pmu_cpu_context)
abe43400 9095 goto free_dev;
f344011c 9096
108b02cf
PZ
9097 for_each_possible_cpu(cpu) {
9098 struct perf_cpu_context *cpuctx;
9099
9100 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9101 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9102 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9103 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9104 cpuctx->ctx.pmu = pmu;
a63fbed7 9105 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9106
272325c4 9107 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9108 }
76e1d904 9109
8dc85d54 9110got_cpu_context:
ad5133b7
PZ
9111 if (!pmu->start_txn) {
9112 if (pmu->pmu_enable) {
9113 /*
9114 * If we have pmu_enable/pmu_disable calls, install
9115 * transaction stubs that use that to try and batch
9116 * hardware accesses.
9117 */
9118 pmu->start_txn = perf_pmu_start_txn;
9119 pmu->commit_txn = perf_pmu_commit_txn;
9120 pmu->cancel_txn = perf_pmu_cancel_txn;
9121 } else {
fbbe0701 9122 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9123 pmu->commit_txn = perf_pmu_nop_int;
9124 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9125 }
5c92d124 9126 }
15dbf27c 9127
ad5133b7
PZ
9128 if (!pmu->pmu_enable) {
9129 pmu->pmu_enable = perf_pmu_nop_void;
9130 pmu->pmu_disable = perf_pmu_nop_void;
9131 }
9132
35edc2a5
PZ
9133 if (!pmu->event_idx)
9134 pmu->event_idx = perf_event_idx_default;
9135
b0a873eb 9136 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9137 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9138 ret = 0;
9139unlock:
b0a873eb
PZ
9140 mutex_unlock(&pmus_lock);
9141
33696fc0 9142 return ret;
108b02cf 9143
abe43400
PZ
9144free_dev:
9145 device_del(pmu->dev);
9146 put_device(pmu->dev);
9147
2e80a82a
PZ
9148free_idr:
9149 if (pmu->type >= PERF_TYPE_MAX)
9150 idr_remove(&pmu_idr, pmu->type);
9151
108b02cf
PZ
9152free_pdc:
9153 free_percpu(pmu->pmu_disable_count);
9154 goto unlock;
f29ac756 9155}
c464c76e 9156EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9157
b0a873eb 9158void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9159{
0933840a
JO
9160 int remove_device;
9161
b0a873eb 9162 mutex_lock(&pmus_lock);
0933840a 9163 remove_device = pmu_bus_running;
b0a873eb
PZ
9164 list_del_rcu(&pmu->entry);
9165 mutex_unlock(&pmus_lock);
5c92d124 9166
0475f9ea 9167 /*
cde8e884
PZ
9168 * We dereference the pmu list under both SRCU and regular RCU, so
9169 * synchronize against both of those.
0475f9ea 9170 */
b0a873eb 9171 synchronize_srcu(&pmus_srcu);
cde8e884 9172 synchronize_rcu();
d6d020e9 9173
33696fc0 9174 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9175 if (pmu->type >= PERF_TYPE_MAX)
9176 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9177 if (remove_device) {
9178 if (pmu->nr_addr_filters)
9179 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9180 device_del(pmu->dev);
9181 put_device(pmu->dev);
9182 }
51676957 9183 free_pmu_context(pmu);
b0a873eb 9184}
c464c76e 9185EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9186
cc34b98b
MR
9187static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9188{
ccd41c86 9189 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9190 int ret;
9191
9192 if (!try_module_get(pmu->module))
9193 return -ENODEV;
ccd41c86
PZ
9194
9195 if (event->group_leader != event) {
8b10c5e2
PZ
9196 /*
9197 * This ctx->mutex can nest when we're called through
9198 * inheritance. See the perf_event_ctx_lock_nested() comment.
9199 */
9200 ctx = perf_event_ctx_lock_nested(event->group_leader,
9201 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9202 BUG_ON(!ctx);
9203 }
9204
cc34b98b
MR
9205 event->pmu = pmu;
9206 ret = pmu->event_init(event);
ccd41c86
PZ
9207
9208 if (ctx)
9209 perf_event_ctx_unlock(event->group_leader, ctx);
9210
cc34b98b
MR
9211 if (ret)
9212 module_put(pmu->module);
9213
9214 return ret;
9215}
9216
18ab2cd3 9217static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9218{
85c617ab 9219 struct pmu *pmu;
b0a873eb 9220 int idx;
940c5b29 9221 int ret;
b0a873eb
PZ
9222
9223 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9224
40999312
KL
9225 /* Try parent's PMU first: */
9226 if (event->parent && event->parent->pmu) {
9227 pmu = event->parent->pmu;
9228 ret = perf_try_init_event(pmu, event);
9229 if (!ret)
9230 goto unlock;
9231 }
9232
2e80a82a
PZ
9233 rcu_read_lock();
9234 pmu = idr_find(&pmu_idr, event->attr.type);
9235 rcu_read_unlock();
940c5b29 9236 if (pmu) {
cc34b98b 9237 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9238 if (ret)
9239 pmu = ERR_PTR(ret);
2e80a82a 9240 goto unlock;
940c5b29 9241 }
2e80a82a 9242
b0a873eb 9243 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9244 ret = perf_try_init_event(pmu, event);
b0a873eb 9245 if (!ret)
e5f4d339 9246 goto unlock;
76e1d904 9247
b0a873eb
PZ
9248 if (ret != -ENOENT) {
9249 pmu = ERR_PTR(ret);
e5f4d339 9250 goto unlock;
f344011c 9251 }
5c92d124 9252 }
e5f4d339
PZ
9253 pmu = ERR_PTR(-ENOENT);
9254unlock:
b0a873eb 9255 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9256
4aeb0b42 9257 return pmu;
5c92d124
IM
9258}
9259
f2fb6bef
KL
9260static void attach_sb_event(struct perf_event *event)
9261{
9262 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9263
9264 raw_spin_lock(&pel->lock);
9265 list_add_rcu(&event->sb_list, &pel->list);
9266 raw_spin_unlock(&pel->lock);
9267}
9268
aab5b71e
PZ
9269/*
9270 * We keep a list of all !task (and therefore per-cpu) events
9271 * that need to receive side-band records.
9272 *
9273 * This avoids having to scan all the various PMU per-cpu contexts
9274 * looking for them.
9275 */
f2fb6bef
KL
9276static void account_pmu_sb_event(struct perf_event *event)
9277{
a4f144eb 9278 if (is_sb_event(event))
f2fb6bef
KL
9279 attach_sb_event(event);
9280}
9281
4beb31f3
FW
9282static void account_event_cpu(struct perf_event *event, int cpu)
9283{
9284 if (event->parent)
9285 return;
9286
4beb31f3
FW
9287 if (is_cgroup_event(event))
9288 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9289}
9290
555e0c1e
FW
9291/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9292static void account_freq_event_nohz(void)
9293{
9294#ifdef CONFIG_NO_HZ_FULL
9295 /* Lock so we don't race with concurrent unaccount */
9296 spin_lock(&nr_freq_lock);
9297 if (atomic_inc_return(&nr_freq_events) == 1)
9298 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9299 spin_unlock(&nr_freq_lock);
9300#endif
9301}
9302
9303static void account_freq_event(void)
9304{
9305 if (tick_nohz_full_enabled())
9306 account_freq_event_nohz();
9307 else
9308 atomic_inc(&nr_freq_events);
9309}
9310
9311
766d6c07
FW
9312static void account_event(struct perf_event *event)
9313{
25432ae9
PZ
9314 bool inc = false;
9315
4beb31f3
FW
9316 if (event->parent)
9317 return;
9318
766d6c07 9319 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9320 inc = true;
766d6c07
FW
9321 if (event->attr.mmap || event->attr.mmap_data)
9322 atomic_inc(&nr_mmap_events);
9323 if (event->attr.comm)
9324 atomic_inc(&nr_comm_events);
e4222673
HB
9325 if (event->attr.namespaces)
9326 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9327 if (event->attr.task)
9328 atomic_inc(&nr_task_events);
555e0c1e
FW
9329 if (event->attr.freq)
9330 account_freq_event();
45ac1403
AH
9331 if (event->attr.context_switch) {
9332 atomic_inc(&nr_switch_events);
25432ae9 9333 inc = true;
45ac1403 9334 }
4beb31f3 9335 if (has_branch_stack(event))
25432ae9 9336 inc = true;
4beb31f3 9337 if (is_cgroup_event(event))
25432ae9
PZ
9338 inc = true;
9339
9107c89e
PZ
9340 if (inc) {
9341 if (atomic_inc_not_zero(&perf_sched_count))
9342 goto enabled;
9343
9344 mutex_lock(&perf_sched_mutex);
9345 if (!atomic_read(&perf_sched_count)) {
9346 static_branch_enable(&perf_sched_events);
9347 /*
9348 * Guarantee that all CPUs observe they key change and
9349 * call the perf scheduling hooks before proceeding to
9350 * install events that need them.
9351 */
9352 synchronize_sched();
9353 }
9354 /*
9355 * Now that we have waited for the sync_sched(), allow further
9356 * increments to by-pass the mutex.
9357 */
9358 atomic_inc(&perf_sched_count);
9359 mutex_unlock(&perf_sched_mutex);
9360 }
9361enabled:
4beb31f3
FW
9362
9363 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9364
9365 account_pmu_sb_event(event);
766d6c07
FW
9366}
9367
0793a61d 9368/*
cdd6c482 9369 * Allocate and initialize a event structure
0793a61d 9370 */
cdd6c482 9371static struct perf_event *
c3f00c70 9372perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9373 struct task_struct *task,
9374 struct perf_event *group_leader,
9375 struct perf_event *parent_event,
4dc0da86 9376 perf_overflow_handler_t overflow_handler,
79dff51e 9377 void *context, int cgroup_fd)
0793a61d 9378{
51b0fe39 9379 struct pmu *pmu;
cdd6c482
IM
9380 struct perf_event *event;
9381 struct hw_perf_event *hwc;
90983b16 9382 long err = -EINVAL;
0793a61d 9383
66832eb4
ON
9384 if ((unsigned)cpu >= nr_cpu_ids) {
9385 if (!task || cpu != -1)
9386 return ERR_PTR(-EINVAL);
9387 }
9388
c3f00c70 9389 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9390 if (!event)
d5d2bc0d 9391 return ERR_PTR(-ENOMEM);
0793a61d 9392
04289bb9 9393 /*
cdd6c482 9394 * Single events are their own group leaders, with an
04289bb9
IM
9395 * empty sibling list:
9396 */
9397 if (!group_leader)
cdd6c482 9398 group_leader = event;
04289bb9 9399
cdd6c482
IM
9400 mutex_init(&event->child_mutex);
9401 INIT_LIST_HEAD(&event->child_list);
fccc714b 9402
cdd6c482
IM
9403 INIT_LIST_HEAD(&event->group_entry);
9404 INIT_LIST_HEAD(&event->event_entry);
9405 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9406 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9407 INIT_LIST_HEAD(&event->active_entry);
375637bc 9408 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9409 INIT_HLIST_NODE(&event->hlist_entry);
9410
10c6db11 9411
cdd6c482 9412 init_waitqueue_head(&event->waitq);
e360adbe 9413 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9414
cdd6c482 9415 mutex_init(&event->mmap_mutex);
375637bc 9416 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9417
a6fa941d 9418 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9419 event->cpu = cpu;
9420 event->attr = *attr;
9421 event->group_leader = group_leader;
9422 event->pmu = NULL;
cdd6c482 9423 event->oncpu = -1;
a96bbc16 9424
cdd6c482 9425 event->parent = parent_event;
b84fbc9f 9426
17cf22c3 9427 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9428 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9429
cdd6c482 9430 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9431
d580ff86
PZ
9432 if (task) {
9433 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9434 /*
50f16a8b
PZ
9435 * XXX pmu::event_init needs to know what task to account to
9436 * and we cannot use the ctx information because we need the
9437 * pmu before we get a ctx.
d580ff86 9438 */
50f16a8b 9439 event->hw.target = task;
d580ff86
PZ
9440 }
9441
34f43927
PZ
9442 event->clock = &local_clock;
9443 if (parent_event)
9444 event->clock = parent_event->clock;
9445
4dc0da86 9446 if (!overflow_handler && parent_event) {
b326e956 9447 overflow_handler = parent_event->overflow_handler;
4dc0da86 9448 context = parent_event->overflow_handler_context;
f1e4ba5b 9449#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9450 if (overflow_handler == bpf_overflow_handler) {
9451 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9452
9453 if (IS_ERR(prog)) {
9454 err = PTR_ERR(prog);
9455 goto err_ns;
9456 }
9457 event->prog = prog;
9458 event->orig_overflow_handler =
9459 parent_event->orig_overflow_handler;
9460 }
9461#endif
4dc0da86 9462 }
66832eb4 9463
1879445d
WN
9464 if (overflow_handler) {
9465 event->overflow_handler = overflow_handler;
9466 event->overflow_handler_context = context;
9ecda41a
WN
9467 } else if (is_write_backward(event)){
9468 event->overflow_handler = perf_event_output_backward;
9469 event->overflow_handler_context = NULL;
1879445d 9470 } else {
9ecda41a 9471 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9472 event->overflow_handler_context = NULL;
9473 }
97eaf530 9474
0231bb53 9475 perf_event__state_init(event);
a86ed508 9476
4aeb0b42 9477 pmu = NULL;
b8e83514 9478
cdd6c482 9479 hwc = &event->hw;
bd2b5b12 9480 hwc->sample_period = attr->sample_period;
0d48696f 9481 if (attr->freq && attr->sample_freq)
bd2b5b12 9482 hwc->sample_period = 1;
eced1dfc 9483 hwc->last_period = hwc->sample_period;
bd2b5b12 9484
e7850595 9485 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9486
2023b359 9487 /*
ba5213ae
PZ
9488 * We currently do not support PERF_SAMPLE_READ on inherited events.
9489 * See perf_output_read().
2023b359 9490 */
ba5213ae 9491 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 9492 goto err_ns;
a46a2300
YZ
9493
9494 if (!has_branch_stack(event))
9495 event->attr.branch_sample_type = 0;
2023b359 9496
79dff51e
MF
9497 if (cgroup_fd != -1) {
9498 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9499 if (err)
9500 goto err_ns;
9501 }
9502
b0a873eb 9503 pmu = perf_init_event(event);
85c617ab 9504 if (IS_ERR(pmu)) {
4aeb0b42 9505 err = PTR_ERR(pmu);
90983b16 9506 goto err_ns;
621a01ea 9507 }
d5d2bc0d 9508
bed5b25a
AS
9509 err = exclusive_event_init(event);
9510 if (err)
9511 goto err_pmu;
9512
375637bc
AS
9513 if (has_addr_filter(event)) {
9514 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9515 sizeof(unsigned long),
9516 GFP_KERNEL);
36cc2b92
DC
9517 if (!event->addr_filters_offs) {
9518 err = -ENOMEM;
375637bc 9519 goto err_per_task;
36cc2b92 9520 }
375637bc
AS
9521
9522 /* force hw sync on the address filters */
9523 event->addr_filters_gen = 1;
9524 }
9525
cdd6c482 9526 if (!event->parent) {
927c7a9e 9527 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9528 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9529 if (err)
375637bc 9530 goto err_addr_filters;
d010b332 9531 }
f344011c 9532 }
9ee318a7 9533
927a5570
AS
9534 /* symmetric to unaccount_event() in _free_event() */
9535 account_event(event);
9536
cdd6c482 9537 return event;
90983b16 9538
375637bc
AS
9539err_addr_filters:
9540 kfree(event->addr_filters_offs);
9541
bed5b25a
AS
9542err_per_task:
9543 exclusive_event_destroy(event);
9544
90983b16
FW
9545err_pmu:
9546 if (event->destroy)
9547 event->destroy(event);
c464c76e 9548 module_put(pmu->module);
90983b16 9549err_ns:
79dff51e
MF
9550 if (is_cgroup_event(event))
9551 perf_detach_cgroup(event);
90983b16
FW
9552 if (event->ns)
9553 put_pid_ns(event->ns);
9554 kfree(event);
9555
9556 return ERR_PTR(err);
0793a61d
TG
9557}
9558
cdd6c482
IM
9559static int perf_copy_attr(struct perf_event_attr __user *uattr,
9560 struct perf_event_attr *attr)
974802ea 9561{
974802ea 9562 u32 size;
cdf8073d 9563 int ret;
974802ea
PZ
9564
9565 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9566 return -EFAULT;
9567
9568 /*
9569 * zero the full structure, so that a short copy will be nice.
9570 */
9571 memset(attr, 0, sizeof(*attr));
9572
9573 ret = get_user(size, &uattr->size);
9574 if (ret)
9575 return ret;
9576
9577 if (size > PAGE_SIZE) /* silly large */
9578 goto err_size;
9579
9580 if (!size) /* abi compat */
9581 size = PERF_ATTR_SIZE_VER0;
9582
9583 if (size < PERF_ATTR_SIZE_VER0)
9584 goto err_size;
9585
9586 /*
9587 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9588 * ensure all the unknown bits are 0 - i.e. new
9589 * user-space does not rely on any kernel feature
9590 * extensions we dont know about yet.
974802ea
PZ
9591 */
9592 if (size > sizeof(*attr)) {
cdf8073d
IS
9593 unsigned char __user *addr;
9594 unsigned char __user *end;
9595 unsigned char val;
974802ea 9596
cdf8073d
IS
9597 addr = (void __user *)uattr + sizeof(*attr);
9598 end = (void __user *)uattr + size;
974802ea 9599
cdf8073d 9600 for (; addr < end; addr++) {
974802ea
PZ
9601 ret = get_user(val, addr);
9602 if (ret)
9603 return ret;
9604 if (val)
9605 goto err_size;
9606 }
b3e62e35 9607 size = sizeof(*attr);
974802ea
PZ
9608 }
9609
9610 ret = copy_from_user(attr, uattr, size);
9611 if (ret)
9612 return -EFAULT;
9613
cd757645 9614 if (attr->__reserved_1)
974802ea
PZ
9615 return -EINVAL;
9616
9617 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9618 return -EINVAL;
9619
9620 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9621 return -EINVAL;
9622
bce38cd5
SE
9623 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9624 u64 mask = attr->branch_sample_type;
9625
9626 /* only using defined bits */
9627 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9628 return -EINVAL;
9629
9630 /* at least one branch bit must be set */
9631 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9632 return -EINVAL;
9633
bce38cd5
SE
9634 /* propagate priv level, when not set for branch */
9635 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9636
9637 /* exclude_kernel checked on syscall entry */
9638 if (!attr->exclude_kernel)
9639 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9640
9641 if (!attr->exclude_user)
9642 mask |= PERF_SAMPLE_BRANCH_USER;
9643
9644 if (!attr->exclude_hv)
9645 mask |= PERF_SAMPLE_BRANCH_HV;
9646 /*
9647 * adjust user setting (for HW filter setup)
9648 */
9649 attr->branch_sample_type = mask;
9650 }
e712209a
SE
9651 /* privileged levels capture (kernel, hv): check permissions */
9652 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9653 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9654 return -EACCES;
bce38cd5 9655 }
4018994f 9656
c5ebcedb 9657 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9658 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9659 if (ret)
9660 return ret;
9661 }
9662
9663 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9664 if (!arch_perf_have_user_stack_dump())
9665 return -ENOSYS;
9666
9667 /*
9668 * We have __u32 type for the size, but so far
9669 * we can only use __u16 as maximum due to the
9670 * __u16 sample size limit.
9671 */
9672 if (attr->sample_stack_user >= USHRT_MAX)
9673 ret = -EINVAL;
9674 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9675 ret = -EINVAL;
9676 }
4018994f 9677
60e2364e
SE
9678 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9679 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9680out:
9681 return ret;
9682
9683err_size:
9684 put_user(sizeof(*attr), &uattr->size);
9685 ret = -E2BIG;
9686 goto out;
9687}
9688
ac9721f3
PZ
9689static int
9690perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9691{
b69cf536 9692 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9693 int ret = -EINVAL;
9694
ac9721f3 9695 if (!output_event)
a4be7c27
PZ
9696 goto set;
9697
ac9721f3
PZ
9698 /* don't allow circular references */
9699 if (event == output_event)
a4be7c27
PZ
9700 goto out;
9701
0f139300
PZ
9702 /*
9703 * Don't allow cross-cpu buffers
9704 */
9705 if (output_event->cpu != event->cpu)
9706 goto out;
9707
9708 /*
76369139 9709 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9710 */
9711 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9712 goto out;
9713
34f43927
PZ
9714 /*
9715 * Mixing clocks in the same buffer is trouble you don't need.
9716 */
9717 if (output_event->clock != event->clock)
9718 goto out;
9719
9ecda41a
WN
9720 /*
9721 * Either writing ring buffer from beginning or from end.
9722 * Mixing is not allowed.
9723 */
9724 if (is_write_backward(output_event) != is_write_backward(event))
9725 goto out;
9726
45bfb2e5
PZ
9727 /*
9728 * If both events generate aux data, they must be on the same PMU
9729 */
9730 if (has_aux(event) && has_aux(output_event) &&
9731 event->pmu != output_event->pmu)
9732 goto out;
9733
a4be7c27 9734set:
cdd6c482 9735 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9736 /* Can't redirect output if we've got an active mmap() */
9737 if (atomic_read(&event->mmap_count))
9738 goto unlock;
a4be7c27 9739
ac9721f3 9740 if (output_event) {
76369139
FW
9741 /* get the rb we want to redirect to */
9742 rb = ring_buffer_get(output_event);
9743 if (!rb)
ac9721f3 9744 goto unlock;
a4be7c27
PZ
9745 }
9746
b69cf536 9747 ring_buffer_attach(event, rb);
9bb5d40c 9748
a4be7c27 9749 ret = 0;
ac9721f3
PZ
9750unlock:
9751 mutex_unlock(&event->mmap_mutex);
9752
a4be7c27 9753out:
a4be7c27
PZ
9754 return ret;
9755}
9756
f63a8daa
PZ
9757static void mutex_lock_double(struct mutex *a, struct mutex *b)
9758{
9759 if (b < a)
9760 swap(a, b);
9761
9762 mutex_lock(a);
9763 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9764}
9765
34f43927
PZ
9766static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9767{
9768 bool nmi_safe = false;
9769
9770 switch (clk_id) {
9771 case CLOCK_MONOTONIC:
9772 event->clock = &ktime_get_mono_fast_ns;
9773 nmi_safe = true;
9774 break;
9775
9776 case CLOCK_MONOTONIC_RAW:
9777 event->clock = &ktime_get_raw_fast_ns;
9778 nmi_safe = true;
9779 break;
9780
9781 case CLOCK_REALTIME:
9782 event->clock = &ktime_get_real_ns;
9783 break;
9784
9785 case CLOCK_BOOTTIME:
9786 event->clock = &ktime_get_boot_ns;
9787 break;
9788
9789 case CLOCK_TAI:
9790 event->clock = &ktime_get_tai_ns;
9791 break;
9792
9793 default:
9794 return -EINVAL;
9795 }
9796
9797 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9798 return -EINVAL;
9799
9800 return 0;
9801}
9802
321027c1
PZ
9803/*
9804 * Variation on perf_event_ctx_lock_nested(), except we take two context
9805 * mutexes.
9806 */
9807static struct perf_event_context *
9808__perf_event_ctx_lock_double(struct perf_event *group_leader,
9809 struct perf_event_context *ctx)
9810{
9811 struct perf_event_context *gctx;
9812
9813again:
9814 rcu_read_lock();
9815 gctx = READ_ONCE(group_leader->ctx);
9816 if (!atomic_inc_not_zero(&gctx->refcount)) {
9817 rcu_read_unlock();
9818 goto again;
9819 }
9820 rcu_read_unlock();
9821
9822 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9823
9824 if (group_leader->ctx != gctx) {
9825 mutex_unlock(&ctx->mutex);
9826 mutex_unlock(&gctx->mutex);
9827 put_ctx(gctx);
9828 goto again;
9829 }
9830
9831 return gctx;
9832}
9833
0793a61d 9834/**
cdd6c482 9835 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9836 *
cdd6c482 9837 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9838 * @pid: target pid
9f66a381 9839 * @cpu: target cpu
cdd6c482 9840 * @group_fd: group leader event fd
0793a61d 9841 */
cdd6c482
IM
9842SYSCALL_DEFINE5(perf_event_open,
9843 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9844 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9845{
b04243ef
PZ
9846 struct perf_event *group_leader = NULL, *output_event = NULL;
9847 struct perf_event *event, *sibling;
cdd6c482 9848 struct perf_event_attr attr;
f63a8daa 9849 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9850 struct file *event_file = NULL;
2903ff01 9851 struct fd group = {NULL, 0};
38a81da2 9852 struct task_struct *task = NULL;
89a1e187 9853 struct pmu *pmu;
ea635c64 9854 int event_fd;
b04243ef 9855 int move_group = 0;
dc86cabe 9856 int err;
a21b0b35 9857 int f_flags = O_RDWR;
79dff51e 9858 int cgroup_fd = -1;
0793a61d 9859
2743a5b0 9860 /* for future expandability... */
e5d1367f 9861 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9862 return -EINVAL;
9863
dc86cabe
IM
9864 err = perf_copy_attr(attr_uptr, &attr);
9865 if (err)
9866 return err;
eab656ae 9867
0764771d
PZ
9868 if (!attr.exclude_kernel) {
9869 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9870 return -EACCES;
9871 }
9872
e4222673
HB
9873 if (attr.namespaces) {
9874 if (!capable(CAP_SYS_ADMIN))
9875 return -EACCES;
9876 }
9877
df58ab24 9878 if (attr.freq) {
cdd6c482 9879 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9880 return -EINVAL;
0819b2e3
PZ
9881 } else {
9882 if (attr.sample_period & (1ULL << 63))
9883 return -EINVAL;
df58ab24
PZ
9884 }
9885
97c79a38
ACM
9886 if (!attr.sample_max_stack)
9887 attr.sample_max_stack = sysctl_perf_event_max_stack;
9888
e5d1367f
SE
9889 /*
9890 * In cgroup mode, the pid argument is used to pass the fd
9891 * opened to the cgroup directory in cgroupfs. The cpu argument
9892 * designates the cpu on which to monitor threads from that
9893 * cgroup.
9894 */
9895 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9896 return -EINVAL;
9897
a21b0b35
YD
9898 if (flags & PERF_FLAG_FD_CLOEXEC)
9899 f_flags |= O_CLOEXEC;
9900
9901 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9902 if (event_fd < 0)
9903 return event_fd;
9904
ac9721f3 9905 if (group_fd != -1) {
2903ff01
AV
9906 err = perf_fget_light(group_fd, &group);
9907 if (err)
d14b12d7 9908 goto err_fd;
2903ff01 9909 group_leader = group.file->private_data;
ac9721f3
PZ
9910 if (flags & PERF_FLAG_FD_OUTPUT)
9911 output_event = group_leader;
9912 if (flags & PERF_FLAG_FD_NO_GROUP)
9913 group_leader = NULL;
9914 }
9915
e5d1367f 9916 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9917 task = find_lively_task_by_vpid(pid);
9918 if (IS_ERR(task)) {
9919 err = PTR_ERR(task);
9920 goto err_group_fd;
9921 }
9922 }
9923
1f4ee503
PZ
9924 if (task && group_leader &&
9925 group_leader->attr.inherit != attr.inherit) {
9926 err = -EINVAL;
9927 goto err_task;
9928 }
9929
79c9ce57
PZ
9930 if (task) {
9931 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9932 if (err)
e5aeee51 9933 goto err_task;
79c9ce57
PZ
9934
9935 /*
9936 * Reuse ptrace permission checks for now.
9937 *
9938 * We must hold cred_guard_mutex across this and any potential
9939 * perf_install_in_context() call for this new event to
9940 * serialize against exec() altering our credentials (and the
9941 * perf_event_exit_task() that could imply).
9942 */
9943 err = -EACCES;
9944 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9945 goto err_cred;
9946 }
9947
79dff51e
MF
9948 if (flags & PERF_FLAG_PID_CGROUP)
9949 cgroup_fd = pid;
9950
4dc0da86 9951 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9952 NULL, NULL, cgroup_fd);
d14b12d7
SE
9953 if (IS_ERR(event)) {
9954 err = PTR_ERR(event);
79c9ce57 9955 goto err_cred;
d14b12d7
SE
9956 }
9957
53b25335
VW
9958 if (is_sampling_event(event)) {
9959 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 9960 err = -EOPNOTSUPP;
53b25335
VW
9961 goto err_alloc;
9962 }
9963 }
9964
89a1e187
PZ
9965 /*
9966 * Special case software events and allow them to be part of
9967 * any hardware group.
9968 */
9969 pmu = event->pmu;
b04243ef 9970
34f43927
PZ
9971 if (attr.use_clockid) {
9972 err = perf_event_set_clock(event, attr.clockid);
9973 if (err)
9974 goto err_alloc;
9975 }
9976
4ff6a8de
DCC
9977 if (pmu->task_ctx_nr == perf_sw_context)
9978 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9979
b04243ef
PZ
9980 if (group_leader &&
9981 (is_software_event(event) != is_software_event(group_leader))) {
9982 if (is_software_event(event)) {
9983 /*
9984 * If event and group_leader are not both a software
9985 * event, and event is, then group leader is not.
9986 *
9987 * Allow the addition of software events to !software
9988 * groups, this is safe because software events never
9989 * fail to schedule.
9990 */
9991 pmu = group_leader->pmu;
9992 } else if (is_software_event(group_leader) &&
4ff6a8de 9993 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
9994 /*
9995 * In case the group is a pure software group, and we
9996 * try to add a hardware event, move the whole group to
9997 * the hardware context.
9998 */
9999 move_group = 1;
10000 }
10001 }
89a1e187
PZ
10002
10003 /*
10004 * Get the target context (task or percpu):
10005 */
4af57ef2 10006 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10007 if (IS_ERR(ctx)) {
10008 err = PTR_ERR(ctx);
c6be5a5c 10009 goto err_alloc;
89a1e187
PZ
10010 }
10011
bed5b25a
AS
10012 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10013 err = -EBUSY;
10014 goto err_context;
10015 }
10016
ccff286d 10017 /*
cdd6c482 10018 * Look up the group leader (we will attach this event to it):
04289bb9 10019 */
ac9721f3 10020 if (group_leader) {
dc86cabe 10021 err = -EINVAL;
04289bb9 10022
04289bb9 10023 /*
ccff286d
IM
10024 * Do not allow a recursive hierarchy (this new sibling
10025 * becoming part of another group-sibling):
10026 */
10027 if (group_leader->group_leader != group_leader)
c3f00c70 10028 goto err_context;
34f43927
PZ
10029
10030 /* All events in a group should have the same clock */
10031 if (group_leader->clock != event->clock)
10032 goto err_context;
10033
ccff286d
IM
10034 /*
10035 * Do not allow to attach to a group in a different
10036 * task or CPU context:
04289bb9 10037 */
b04243ef 10038 if (move_group) {
c3c87e77
PZ
10039 /*
10040 * Make sure we're both on the same task, or both
10041 * per-cpu events.
10042 */
10043 if (group_leader->ctx->task != ctx->task)
10044 goto err_context;
10045
10046 /*
10047 * Make sure we're both events for the same CPU;
10048 * grouping events for different CPUs is broken; since
10049 * you can never concurrently schedule them anyhow.
10050 */
10051 if (group_leader->cpu != event->cpu)
b04243ef
PZ
10052 goto err_context;
10053 } else {
10054 if (group_leader->ctx != ctx)
10055 goto err_context;
10056 }
10057
3b6f9e5c
PM
10058 /*
10059 * Only a group leader can be exclusive or pinned
10060 */
0d48696f 10061 if (attr.exclusive || attr.pinned)
c3f00c70 10062 goto err_context;
ac9721f3
PZ
10063 }
10064
10065 if (output_event) {
10066 err = perf_event_set_output(event, output_event);
10067 if (err)
c3f00c70 10068 goto err_context;
ac9721f3 10069 }
0793a61d 10070
a21b0b35
YD
10071 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10072 f_flags);
ea635c64
AV
10073 if (IS_ERR(event_file)) {
10074 err = PTR_ERR(event_file);
201c2f85 10075 event_file = NULL;
c3f00c70 10076 goto err_context;
ea635c64 10077 }
9b51f66d 10078
b04243ef 10079 if (move_group) {
321027c1
PZ
10080 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10081
84c4e620
PZ
10082 if (gctx->task == TASK_TOMBSTONE) {
10083 err = -ESRCH;
10084 goto err_locked;
10085 }
321027c1
PZ
10086
10087 /*
10088 * Check if we raced against another sys_perf_event_open() call
10089 * moving the software group underneath us.
10090 */
10091 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10092 /*
10093 * If someone moved the group out from under us, check
10094 * if this new event wound up on the same ctx, if so
10095 * its the regular !move_group case, otherwise fail.
10096 */
10097 if (gctx != ctx) {
10098 err = -EINVAL;
10099 goto err_locked;
10100 } else {
10101 perf_event_ctx_unlock(group_leader, gctx);
10102 move_group = 0;
10103 }
10104 }
f55fc2a5
PZ
10105 } else {
10106 mutex_lock(&ctx->mutex);
10107 }
10108
84c4e620
PZ
10109 if (ctx->task == TASK_TOMBSTONE) {
10110 err = -ESRCH;
10111 goto err_locked;
10112 }
10113
a723968c
PZ
10114 if (!perf_event_validate_size(event)) {
10115 err = -E2BIG;
10116 goto err_locked;
10117 }
10118
a63fbed7
TG
10119 if (!task) {
10120 /*
10121 * Check if the @cpu we're creating an event for is online.
10122 *
10123 * We use the perf_cpu_context::ctx::mutex to serialize against
10124 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10125 */
10126 struct perf_cpu_context *cpuctx =
10127 container_of(ctx, struct perf_cpu_context, ctx);
10128
10129 if (!cpuctx->online) {
10130 err = -ENODEV;
10131 goto err_locked;
10132 }
10133 }
10134
10135
f55fc2a5
PZ
10136 /*
10137 * Must be under the same ctx::mutex as perf_install_in_context(),
10138 * because we need to serialize with concurrent event creation.
10139 */
10140 if (!exclusive_event_installable(event, ctx)) {
10141 /* exclusive and group stuff are assumed mutually exclusive */
10142 WARN_ON_ONCE(move_group);
f63a8daa 10143
f55fc2a5
PZ
10144 err = -EBUSY;
10145 goto err_locked;
10146 }
f63a8daa 10147
f55fc2a5
PZ
10148 WARN_ON_ONCE(ctx->parent_ctx);
10149
79c9ce57
PZ
10150 /*
10151 * This is the point on no return; we cannot fail hereafter. This is
10152 * where we start modifying current state.
10153 */
10154
f55fc2a5 10155 if (move_group) {
f63a8daa
PZ
10156 /*
10157 * See perf_event_ctx_lock() for comments on the details
10158 * of swizzling perf_event::ctx.
10159 */
45a0e07a 10160 perf_remove_from_context(group_leader, 0);
279b5165 10161 put_ctx(gctx);
0231bb53 10162
b04243ef
PZ
10163 list_for_each_entry(sibling, &group_leader->sibling_list,
10164 group_entry) {
45a0e07a 10165 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10166 put_ctx(gctx);
10167 }
b04243ef 10168
f63a8daa
PZ
10169 /*
10170 * Wait for everybody to stop referencing the events through
10171 * the old lists, before installing it on new lists.
10172 */
0cda4c02 10173 synchronize_rcu();
f63a8daa 10174
8f95b435
PZI
10175 /*
10176 * Install the group siblings before the group leader.
10177 *
10178 * Because a group leader will try and install the entire group
10179 * (through the sibling list, which is still in-tact), we can
10180 * end up with siblings installed in the wrong context.
10181 *
10182 * By installing siblings first we NO-OP because they're not
10183 * reachable through the group lists.
10184 */
b04243ef
PZ
10185 list_for_each_entry(sibling, &group_leader->sibling_list,
10186 group_entry) {
8f95b435 10187 perf_event__state_init(sibling);
9fc81d87 10188 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10189 get_ctx(ctx);
10190 }
8f95b435
PZI
10191
10192 /*
10193 * Removing from the context ends up with disabled
10194 * event. What we want here is event in the initial
10195 * startup state, ready to be add into new context.
10196 */
10197 perf_event__state_init(group_leader);
10198 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10199 get_ctx(ctx);
bed5b25a
AS
10200 }
10201
f73e22ab
PZ
10202 /*
10203 * Precalculate sample_data sizes; do while holding ctx::mutex such
10204 * that we're serialized against further additions and before
10205 * perf_install_in_context() which is the point the event is active and
10206 * can use these values.
10207 */
10208 perf_event__header_size(event);
10209 perf_event__id_header_size(event);
10210
78cd2c74
PZ
10211 event->owner = current;
10212
e2d37cd2 10213 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10214 perf_unpin_context(ctx);
f63a8daa 10215
f55fc2a5 10216 if (move_group)
321027c1 10217 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10218 mutex_unlock(&ctx->mutex);
9b51f66d 10219
79c9ce57
PZ
10220 if (task) {
10221 mutex_unlock(&task->signal->cred_guard_mutex);
10222 put_task_struct(task);
10223 }
10224
cdd6c482
IM
10225 mutex_lock(&current->perf_event_mutex);
10226 list_add_tail(&event->owner_entry, &current->perf_event_list);
10227 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10228
8a49542c
PZ
10229 /*
10230 * Drop the reference on the group_event after placing the
10231 * new event on the sibling_list. This ensures destruction
10232 * of the group leader will find the pointer to itself in
10233 * perf_group_detach().
10234 */
2903ff01 10235 fdput(group);
ea635c64
AV
10236 fd_install(event_fd, event_file);
10237 return event_fd;
0793a61d 10238
f55fc2a5
PZ
10239err_locked:
10240 if (move_group)
321027c1 10241 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10242 mutex_unlock(&ctx->mutex);
10243/* err_file: */
10244 fput(event_file);
c3f00c70 10245err_context:
fe4b04fa 10246 perf_unpin_context(ctx);
ea635c64 10247 put_ctx(ctx);
c6be5a5c 10248err_alloc:
13005627
PZ
10249 /*
10250 * If event_file is set, the fput() above will have called ->release()
10251 * and that will take care of freeing the event.
10252 */
10253 if (!event_file)
10254 free_event(event);
79c9ce57
PZ
10255err_cred:
10256 if (task)
10257 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10258err_task:
e7d0bc04
PZ
10259 if (task)
10260 put_task_struct(task);
89a1e187 10261err_group_fd:
2903ff01 10262 fdput(group);
ea635c64
AV
10263err_fd:
10264 put_unused_fd(event_fd);
dc86cabe 10265 return err;
0793a61d
TG
10266}
10267
fb0459d7
AV
10268/**
10269 * perf_event_create_kernel_counter
10270 *
10271 * @attr: attributes of the counter to create
10272 * @cpu: cpu in which the counter is bound
38a81da2 10273 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10274 */
10275struct perf_event *
10276perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10277 struct task_struct *task,
4dc0da86
AK
10278 perf_overflow_handler_t overflow_handler,
10279 void *context)
fb0459d7 10280{
fb0459d7 10281 struct perf_event_context *ctx;
c3f00c70 10282 struct perf_event *event;
fb0459d7 10283 int err;
d859e29f 10284
fb0459d7
AV
10285 /*
10286 * Get the target context (task or percpu):
10287 */
d859e29f 10288
4dc0da86 10289 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10290 overflow_handler, context, -1);
c3f00c70
PZ
10291 if (IS_ERR(event)) {
10292 err = PTR_ERR(event);
10293 goto err;
10294 }
d859e29f 10295
f8697762 10296 /* Mark owner so we could distinguish it from user events. */
63b6da39 10297 event->owner = TASK_TOMBSTONE;
f8697762 10298
4af57ef2 10299 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10300 if (IS_ERR(ctx)) {
10301 err = PTR_ERR(ctx);
c3f00c70 10302 goto err_free;
d859e29f 10303 }
fb0459d7 10304
fb0459d7
AV
10305 WARN_ON_ONCE(ctx->parent_ctx);
10306 mutex_lock(&ctx->mutex);
84c4e620
PZ
10307 if (ctx->task == TASK_TOMBSTONE) {
10308 err = -ESRCH;
10309 goto err_unlock;
10310 }
10311
a63fbed7
TG
10312 if (!task) {
10313 /*
10314 * Check if the @cpu we're creating an event for is online.
10315 *
10316 * We use the perf_cpu_context::ctx::mutex to serialize against
10317 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10318 */
10319 struct perf_cpu_context *cpuctx =
10320 container_of(ctx, struct perf_cpu_context, ctx);
10321 if (!cpuctx->online) {
10322 err = -ENODEV;
10323 goto err_unlock;
10324 }
10325 }
10326
bed5b25a 10327 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10328 err = -EBUSY;
84c4e620 10329 goto err_unlock;
bed5b25a
AS
10330 }
10331
fb0459d7 10332 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10333 perf_unpin_context(ctx);
fb0459d7
AV
10334 mutex_unlock(&ctx->mutex);
10335
fb0459d7
AV
10336 return event;
10337
84c4e620
PZ
10338err_unlock:
10339 mutex_unlock(&ctx->mutex);
10340 perf_unpin_context(ctx);
10341 put_ctx(ctx);
c3f00c70
PZ
10342err_free:
10343 free_event(event);
10344err:
c6567f64 10345 return ERR_PTR(err);
9b51f66d 10346}
fb0459d7 10347EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10348
0cda4c02
YZ
10349void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10350{
10351 struct perf_event_context *src_ctx;
10352 struct perf_event_context *dst_ctx;
10353 struct perf_event *event, *tmp;
10354 LIST_HEAD(events);
10355
10356 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10357 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10358
f63a8daa
PZ
10359 /*
10360 * See perf_event_ctx_lock() for comments on the details
10361 * of swizzling perf_event::ctx.
10362 */
10363 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10364 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10365 event_entry) {
45a0e07a 10366 perf_remove_from_context(event, 0);
9a545de0 10367 unaccount_event_cpu(event, src_cpu);
0cda4c02 10368 put_ctx(src_ctx);
9886167d 10369 list_add(&event->migrate_entry, &events);
0cda4c02 10370 }
0cda4c02 10371
8f95b435
PZI
10372 /*
10373 * Wait for the events to quiesce before re-instating them.
10374 */
0cda4c02
YZ
10375 synchronize_rcu();
10376
8f95b435
PZI
10377 /*
10378 * Re-instate events in 2 passes.
10379 *
10380 * Skip over group leaders and only install siblings on this first
10381 * pass, siblings will not get enabled without a leader, however a
10382 * leader will enable its siblings, even if those are still on the old
10383 * context.
10384 */
10385 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10386 if (event->group_leader == event)
10387 continue;
10388
10389 list_del(&event->migrate_entry);
10390 if (event->state >= PERF_EVENT_STATE_OFF)
10391 event->state = PERF_EVENT_STATE_INACTIVE;
10392 account_event_cpu(event, dst_cpu);
10393 perf_install_in_context(dst_ctx, event, dst_cpu);
10394 get_ctx(dst_ctx);
10395 }
10396
10397 /*
10398 * Once all the siblings are setup properly, install the group leaders
10399 * to make it go.
10400 */
9886167d
PZ
10401 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10402 list_del(&event->migrate_entry);
0cda4c02
YZ
10403 if (event->state >= PERF_EVENT_STATE_OFF)
10404 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10405 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10406 perf_install_in_context(dst_ctx, event, dst_cpu);
10407 get_ctx(dst_ctx);
10408 }
10409 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10410 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10411}
10412EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10413
cdd6c482 10414static void sync_child_event(struct perf_event *child_event,
38b200d6 10415 struct task_struct *child)
d859e29f 10416{
cdd6c482 10417 struct perf_event *parent_event = child_event->parent;
8bc20959 10418 u64 child_val;
d859e29f 10419
cdd6c482
IM
10420 if (child_event->attr.inherit_stat)
10421 perf_event_read_event(child_event, child);
38b200d6 10422
b5e58793 10423 child_val = perf_event_count(child_event);
d859e29f
PM
10424
10425 /*
10426 * Add back the child's count to the parent's count:
10427 */
a6e6dea6 10428 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10429 atomic64_add(child_event->total_time_enabled,
10430 &parent_event->child_total_time_enabled);
10431 atomic64_add(child_event->total_time_running,
10432 &parent_event->child_total_time_running);
d859e29f
PM
10433}
10434
9b51f66d 10435static void
8ba289b8
PZ
10436perf_event_exit_event(struct perf_event *child_event,
10437 struct perf_event_context *child_ctx,
10438 struct task_struct *child)
9b51f66d 10439{
8ba289b8
PZ
10440 struct perf_event *parent_event = child_event->parent;
10441
1903d50c
PZ
10442 /*
10443 * Do not destroy the 'original' grouping; because of the context
10444 * switch optimization the original events could've ended up in a
10445 * random child task.
10446 *
10447 * If we were to destroy the original group, all group related
10448 * operations would cease to function properly after this random
10449 * child dies.
10450 *
10451 * Do destroy all inherited groups, we don't care about those
10452 * and being thorough is better.
10453 */
32132a3d
PZ
10454 raw_spin_lock_irq(&child_ctx->lock);
10455 WARN_ON_ONCE(child_ctx->is_active);
10456
8ba289b8 10457 if (parent_event)
32132a3d
PZ
10458 perf_group_detach(child_event);
10459 list_del_event(child_event, child_ctx);
a69b0ca4 10460 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 10461 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10462
9b51f66d 10463 /*
8ba289b8 10464 * Parent events are governed by their filedesc, retain them.
9b51f66d 10465 */
8ba289b8 10466 if (!parent_event) {
179033b3 10467 perf_event_wakeup(child_event);
8ba289b8 10468 return;
4bcf349a 10469 }
8ba289b8
PZ
10470 /*
10471 * Child events can be cleaned up.
10472 */
10473
10474 sync_child_event(child_event, child);
10475
10476 /*
10477 * Remove this event from the parent's list
10478 */
10479 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10480 mutex_lock(&parent_event->child_mutex);
10481 list_del_init(&child_event->child_list);
10482 mutex_unlock(&parent_event->child_mutex);
10483
10484 /*
10485 * Kick perf_poll() for is_event_hup().
10486 */
10487 perf_event_wakeup(parent_event);
10488 free_event(child_event);
10489 put_event(parent_event);
9b51f66d
IM
10490}
10491
8dc85d54 10492static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10493{
211de6eb 10494 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10495 struct perf_event *child_event, *next;
63b6da39
PZ
10496
10497 WARN_ON_ONCE(child != current);
9b51f66d 10498
6a3351b6 10499 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10500 if (!child_ctx)
9b51f66d
IM
10501 return;
10502
ad3a37de 10503 /*
6a3351b6
PZ
10504 * In order to reduce the amount of tricky in ctx tear-down, we hold
10505 * ctx::mutex over the entire thing. This serializes against almost
10506 * everything that wants to access the ctx.
10507 *
10508 * The exception is sys_perf_event_open() /
10509 * perf_event_create_kernel_count() which does find_get_context()
10510 * without ctx::mutex (it cannot because of the move_group double mutex
10511 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10512 */
6a3351b6 10513 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10514
10515 /*
6a3351b6
PZ
10516 * In a single ctx::lock section, de-schedule the events and detach the
10517 * context from the task such that we cannot ever get it scheduled back
10518 * in.
c93f7669 10519 */
6a3351b6 10520 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10521 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10522
71a851b4 10523 /*
63b6da39
PZ
10524 * Now that the context is inactive, destroy the task <-> ctx relation
10525 * and mark the context dead.
71a851b4 10526 */
63b6da39
PZ
10527 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10528 put_ctx(child_ctx); /* cannot be last */
10529 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10530 put_task_struct(current); /* cannot be last */
4a1c0f26 10531
211de6eb 10532 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10533 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10534
211de6eb
PZ
10535 if (clone_ctx)
10536 put_ctx(clone_ctx);
4a1c0f26 10537
9f498cc5 10538 /*
cdd6c482
IM
10539 * Report the task dead after unscheduling the events so that we
10540 * won't get any samples after PERF_RECORD_EXIT. We can however still
10541 * get a few PERF_RECORD_READ events.
9f498cc5 10542 */
cdd6c482 10543 perf_event_task(child, child_ctx, 0);
a63eaf34 10544
ebf905fc 10545 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10546 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10547
a63eaf34
PM
10548 mutex_unlock(&child_ctx->mutex);
10549
10550 put_ctx(child_ctx);
9b51f66d
IM
10551}
10552
8dc85d54
PZ
10553/*
10554 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10555 *
10556 * Can be called with cred_guard_mutex held when called from
10557 * install_exec_creds().
8dc85d54
PZ
10558 */
10559void perf_event_exit_task(struct task_struct *child)
10560{
8882135b 10561 struct perf_event *event, *tmp;
8dc85d54
PZ
10562 int ctxn;
10563
8882135b
PZ
10564 mutex_lock(&child->perf_event_mutex);
10565 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10566 owner_entry) {
10567 list_del_init(&event->owner_entry);
10568
10569 /*
10570 * Ensure the list deletion is visible before we clear
10571 * the owner, closes a race against perf_release() where
10572 * we need to serialize on the owner->perf_event_mutex.
10573 */
f47c02c0 10574 smp_store_release(&event->owner, NULL);
8882135b
PZ
10575 }
10576 mutex_unlock(&child->perf_event_mutex);
10577
8dc85d54
PZ
10578 for_each_task_context_nr(ctxn)
10579 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10580
10581 /*
10582 * The perf_event_exit_task_context calls perf_event_task
10583 * with child's task_ctx, which generates EXIT events for
10584 * child contexts and sets child->perf_event_ctxp[] to NULL.
10585 * At this point we need to send EXIT events to cpu contexts.
10586 */
10587 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10588}
10589
889ff015
FW
10590static void perf_free_event(struct perf_event *event,
10591 struct perf_event_context *ctx)
10592{
10593 struct perf_event *parent = event->parent;
10594
10595 if (WARN_ON_ONCE(!parent))
10596 return;
10597
10598 mutex_lock(&parent->child_mutex);
10599 list_del_init(&event->child_list);
10600 mutex_unlock(&parent->child_mutex);
10601
a6fa941d 10602 put_event(parent);
889ff015 10603
652884fe 10604 raw_spin_lock_irq(&ctx->lock);
8a49542c 10605 perf_group_detach(event);
889ff015 10606 list_del_event(event, ctx);
652884fe 10607 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10608 free_event(event);
10609}
10610
bbbee908 10611/*
652884fe 10612 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10613 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10614 *
10615 * Not all locks are strictly required, but take them anyway to be nice and
10616 * help out with the lockdep assertions.
bbbee908 10617 */
cdd6c482 10618void perf_event_free_task(struct task_struct *task)
bbbee908 10619{
8dc85d54 10620 struct perf_event_context *ctx;
cdd6c482 10621 struct perf_event *event, *tmp;
8dc85d54 10622 int ctxn;
bbbee908 10623
8dc85d54
PZ
10624 for_each_task_context_nr(ctxn) {
10625 ctx = task->perf_event_ctxp[ctxn];
10626 if (!ctx)
10627 continue;
bbbee908 10628
8dc85d54 10629 mutex_lock(&ctx->mutex);
e552a838
PZ
10630 raw_spin_lock_irq(&ctx->lock);
10631 /*
10632 * Destroy the task <-> ctx relation and mark the context dead.
10633 *
10634 * This is important because even though the task hasn't been
10635 * exposed yet the context has been (through child_list).
10636 */
10637 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10638 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10639 put_task_struct(task); /* cannot be last */
10640 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10641
15121c78 10642 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 10643 perf_free_event(event, ctx);
bbbee908 10644
8dc85d54 10645 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
10646 put_ctx(ctx);
10647 }
889ff015
FW
10648}
10649
4e231c79
PZ
10650void perf_event_delayed_put(struct task_struct *task)
10651{
10652 int ctxn;
10653
10654 for_each_task_context_nr(ctxn)
10655 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10656}
10657
e03e7ee3 10658struct file *perf_event_get(unsigned int fd)
ffe8690c 10659{
e03e7ee3 10660 struct file *file;
ffe8690c 10661
e03e7ee3
AS
10662 file = fget_raw(fd);
10663 if (!file)
10664 return ERR_PTR(-EBADF);
ffe8690c 10665
e03e7ee3
AS
10666 if (file->f_op != &perf_fops) {
10667 fput(file);
10668 return ERR_PTR(-EBADF);
10669 }
ffe8690c 10670
e03e7ee3 10671 return file;
ffe8690c
KX
10672}
10673
10674const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10675{
10676 if (!event)
10677 return ERR_PTR(-EINVAL);
10678
10679 return &event->attr;
10680}
10681
97dee4f3 10682/*
d8a8cfc7
PZ
10683 * Inherit a event from parent task to child task.
10684 *
10685 * Returns:
10686 * - valid pointer on success
10687 * - NULL for orphaned events
10688 * - IS_ERR() on error
97dee4f3
PZ
10689 */
10690static struct perf_event *
10691inherit_event(struct perf_event *parent_event,
10692 struct task_struct *parent,
10693 struct perf_event_context *parent_ctx,
10694 struct task_struct *child,
10695 struct perf_event *group_leader,
10696 struct perf_event_context *child_ctx)
10697{
1929def9 10698 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10699 struct perf_event *child_event;
cee010ec 10700 unsigned long flags;
97dee4f3
PZ
10701
10702 /*
10703 * Instead of creating recursive hierarchies of events,
10704 * we link inherited events back to the original parent,
10705 * which has a filp for sure, which we use as the reference
10706 * count:
10707 */
10708 if (parent_event->parent)
10709 parent_event = parent_event->parent;
10710
10711 child_event = perf_event_alloc(&parent_event->attr,
10712 parent_event->cpu,
d580ff86 10713 child,
97dee4f3 10714 group_leader, parent_event,
79dff51e 10715 NULL, NULL, -1);
97dee4f3
PZ
10716 if (IS_ERR(child_event))
10717 return child_event;
a6fa941d 10718
c6e5b732
PZ
10719 /*
10720 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10721 * must be under the same lock in order to serialize against
10722 * perf_event_release_kernel(), such that either we must observe
10723 * is_orphaned_event() or they will observe us on the child_list.
10724 */
10725 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10726 if (is_orphaned_event(parent_event) ||
10727 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10728 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10729 free_event(child_event);
10730 return NULL;
10731 }
10732
97dee4f3
PZ
10733 get_ctx(child_ctx);
10734
10735 /*
10736 * Make the child state follow the state of the parent event,
10737 * not its attr.disabled bit. We hold the parent's mutex,
10738 * so we won't race with perf_event_{en, dis}able_family.
10739 */
1929def9 10740 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10741 child_event->state = PERF_EVENT_STATE_INACTIVE;
10742 else
10743 child_event->state = PERF_EVENT_STATE_OFF;
10744
10745 if (parent_event->attr.freq) {
10746 u64 sample_period = parent_event->hw.sample_period;
10747 struct hw_perf_event *hwc = &child_event->hw;
10748
10749 hwc->sample_period = sample_period;
10750 hwc->last_period = sample_period;
10751
10752 local64_set(&hwc->period_left, sample_period);
10753 }
10754
10755 child_event->ctx = child_ctx;
10756 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10757 child_event->overflow_handler_context
10758 = parent_event->overflow_handler_context;
97dee4f3 10759
614b6780
TG
10760 /*
10761 * Precalculate sample_data sizes
10762 */
10763 perf_event__header_size(child_event);
6844c09d 10764 perf_event__id_header_size(child_event);
614b6780 10765
97dee4f3
PZ
10766 /*
10767 * Link it up in the child's context:
10768 */
cee010ec 10769 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10770 add_event_to_ctx(child_event, child_ctx);
cee010ec 10771 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10772
97dee4f3
PZ
10773 /*
10774 * Link this into the parent event's child list
10775 */
97dee4f3
PZ
10776 list_add_tail(&child_event->child_list, &parent_event->child_list);
10777 mutex_unlock(&parent_event->child_mutex);
10778
10779 return child_event;
10780}
10781
d8a8cfc7
PZ
10782/*
10783 * Inherits an event group.
10784 *
10785 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10786 * This matches with perf_event_release_kernel() removing all child events.
10787 *
10788 * Returns:
10789 * - 0 on success
10790 * - <0 on error
10791 */
97dee4f3
PZ
10792static int inherit_group(struct perf_event *parent_event,
10793 struct task_struct *parent,
10794 struct perf_event_context *parent_ctx,
10795 struct task_struct *child,
10796 struct perf_event_context *child_ctx)
10797{
10798 struct perf_event *leader;
10799 struct perf_event *sub;
10800 struct perf_event *child_ctr;
10801
10802 leader = inherit_event(parent_event, parent, parent_ctx,
10803 child, NULL, child_ctx);
10804 if (IS_ERR(leader))
10805 return PTR_ERR(leader);
d8a8cfc7
PZ
10806 /*
10807 * @leader can be NULL here because of is_orphaned_event(). In this
10808 * case inherit_event() will create individual events, similar to what
10809 * perf_group_detach() would do anyway.
10810 */
97dee4f3
PZ
10811 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10812 child_ctr = inherit_event(sub, parent, parent_ctx,
10813 child, leader, child_ctx);
10814 if (IS_ERR(child_ctr))
10815 return PTR_ERR(child_ctr);
10816 }
10817 return 0;
889ff015
FW
10818}
10819
d8a8cfc7
PZ
10820/*
10821 * Creates the child task context and tries to inherit the event-group.
10822 *
10823 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10824 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10825 * consistent with perf_event_release_kernel() removing all child events.
10826 *
10827 * Returns:
10828 * - 0 on success
10829 * - <0 on error
10830 */
889ff015
FW
10831static int
10832inherit_task_group(struct perf_event *event, struct task_struct *parent,
10833 struct perf_event_context *parent_ctx,
8dc85d54 10834 struct task_struct *child, int ctxn,
889ff015
FW
10835 int *inherited_all)
10836{
10837 int ret;
8dc85d54 10838 struct perf_event_context *child_ctx;
889ff015
FW
10839
10840 if (!event->attr.inherit) {
10841 *inherited_all = 0;
10842 return 0;
bbbee908
PZ
10843 }
10844
fe4b04fa 10845 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10846 if (!child_ctx) {
10847 /*
10848 * This is executed from the parent task context, so
10849 * inherit events that have been marked for cloning.
10850 * First allocate and initialize a context for the
10851 * child.
10852 */
734df5ab 10853 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10854 if (!child_ctx)
10855 return -ENOMEM;
bbbee908 10856
8dc85d54 10857 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10858 }
10859
10860 ret = inherit_group(event, parent, parent_ctx,
10861 child, child_ctx);
10862
10863 if (ret)
10864 *inherited_all = 0;
10865
10866 return ret;
bbbee908
PZ
10867}
10868
9b51f66d 10869/*
cdd6c482 10870 * Initialize the perf_event context in task_struct
9b51f66d 10871 */
985c8dcb 10872static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10873{
889ff015 10874 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10875 struct perf_event_context *cloned_ctx;
10876 struct perf_event *event;
9b51f66d 10877 struct task_struct *parent = current;
564c2b21 10878 int inherited_all = 1;
dddd3379 10879 unsigned long flags;
6ab423e0 10880 int ret = 0;
9b51f66d 10881
8dc85d54 10882 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10883 return 0;
10884
ad3a37de 10885 /*
25346b93
PM
10886 * If the parent's context is a clone, pin it so it won't get
10887 * swapped under us.
ad3a37de 10888 */
8dc85d54 10889 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10890 if (!parent_ctx)
10891 return 0;
25346b93 10892
ad3a37de
PM
10893 /*
10894 * No need to check if parent_ctx != NULL here; since we saw
10895 * it non-NULL earlier, the only reason for it to become NULL
10896 * is if we exit, and since we're currently in the middle of
10897 * a fork we can't be exiting at the same time.
10898 */
ad3a37de 10899
9b51f66d
IM
10900 /*
10901 * Lock the parent list. No need to lock the child - not PID
10902 * hashed yet and not running, so nobody can access it.
10903 */
d859e29f 10904 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10905
10906 /*
10907 * We dont have to disable NMIs - we are only looking at
10908 * the list, not manipulating it:
10909 */
889ff015 10910 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10911 ret = inherit_task_group(event, parent, parent_ctx,
10912 child, ctxn, &inherited_all);
889ff015 10913 if (ret)
e7cc4865 10914 goto out_unlock;
889ff015 10915 }
b93f7978 10916
dddd3379
TG
10917 /*
10918 * We can't hold ctx->lock when iterating the ->flexible_group list due
10919 * to allocations, but we need to prevent rotation because
10920 * rotate_ctx() will change the list from interrupt context.
10921 */
10922 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10923 parent_ctx->rotate_disable = 1;
10924 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10925
889ff015 10926 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10927 ret = inherit_task_group(event, parent, parent_ctx,
10928 child, ctxn, &inherited_all);
889ff015 10929 if (ret)
e7cc4865 10930 goto out_unlock;
564c2b21
PM
10931 }
10932
dddd3379
TG
10933 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10934 parent_ctx->rotate_disable = 0;
dddd3379 10935
8dc85d54 10936 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10937
05cbaa28 10938 if (child_ctx && inherited_all) {
564c2b21
PM
10939 /*
10940 * Mark the child context as a clone of the parent
10941 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10942 *
10943 * Note that if the parent is a clone, the holding of
10944 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10945 */
c5ed5145 10946 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10947 if (cloned_ctx) {
10948 child_ctx->parent_ctx = cloned_ctx;
25346b93 10949 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10950 } else {
10951 child_ctx->parent_ctx = parent_ctx;
10952 child_ctx->parent_gen = parent_ctx->generation;
10953 }
10954 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10955 }
10956
c5ed5145 10957 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 10958out_unlock:
d859e29f 10959 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10960
25346b93 10961 perf_unpin_context(parent_ctx);
fe4b04fa 10962 put_ctx(parent_ctx);
ad3a37de 10963
6ab423e0 10964 return ret;
9b51f66d
IM
10965}
10966
8dc85d54
PZ
10967/*
10968 * Initialize the perf_event context in task_struct
10969 */
10970int perf_event_init_task(struct task_struct *child)
10971{
10972 int ctxn, ret;
10973
8550d7cb
ON
10974 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10975 mutex_init(&child->perf_event_mutex);
10976 INIT_LIST_HEAD(&child->perf_event_list);
10977
8dc85d54
PZ
10978 for_each_task_context_nr(ctxn) {
10979 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10980 if (ret) {
10981 perf_event_free_task(child);
8dc85d54 10982 return ret;
6c72e350 10983 }
8dc85d54
PZ
10984 }
10985
10986 return 0;
10987}
10988
220b140b
PM
10989static void __init perf_event_init_all_cpus(void)
10990{
b28ab83c 10991 struct swevent_htable *swhash;
220b140b 10992 int cpu;
220b140b 10993
a63fbed7
TG
10994 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
10995
220b140b 10996 for_each_possible_cpu(cpu) {
b28ab83c
PZ
10997 swhash = &per_cpu(swevent_htable, cpu);
10998 mutex_init(&swhash->hlist_mutex);
2fde4f94 10999 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11000
11001 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11002 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11003
058fe1c0
DCC
11004#ifdef CONFIG_CGROUP_PERF
11005 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11006#endif
e48c1788 11007 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11008 }
11009}
11010
a63fbed7 11011void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11012{
108b02cf 11013 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11014
b28ab83c 11015 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11016 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11017 struct swevent_hlist *hlist;
11018
b28ab83c
PZ
11019 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11020 WARN_ON(!hlist);
11021 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11022 }
b28ab83c 11023 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11024}
11025
2965faa5 11026#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11027static void __perf_event_exit_context(void *__info)
0793a61d 11028{
108b02cf 11029 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11030 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11031 struct perf_event *event;
0793a61d 11032
fae3fde6
PZ
11033 raw_spin_lock(&ctx->lock);
11034 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11035 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11036 raw_spin_unlock(&ctx->lock);
0793a61d 11037}
108b02cf
PZ
11038
11039static void perf_event_exit_cpu_context(int cpu)
11040{
a63fbed7 11041 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11042 struct perf_event_context *ctx;
11043 struct pmu *pmu;
108b02cf 11044
a63fbed7
TG
11045 mutex_lock(&pmus_lock);
11046 list_for_each_entry(pmu, &pmus, entry) {
11047 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11048 ctx = &cpuctx->ctx;
108b02cf
PZ
11049
11050 mutex_lock(&ctx->mutex);
11051 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11052 cpuctx->online = 0;
108b02cf
PZ
11053 mutex_unlock(&ctx->mutex);
11054 }
a63fbed7
TG
11055 cpumask_clear_cpu(cpu, perf_online_mask);
11056 mutex_unlock(&pmus_lock);
108b02cf 11057}
00e16c3d
TG
11058#else
11059
11060static void perf_event_exit_cpu_context(int cpu) { }
11061
11062#endif
108b02cf 11063
a63fbed7
TG
11064int perf_event_init_cpu(unsigned int cpu)
11065{
11066 struct perf_cpu_context *cpuctx;
11067 struct perf_event_context *ctx;
11068 struct pmu *pmu;
11069
11070 perf_swevent_init_cpu(cpu);
11071
11072 mutex_lock(&pmus_lock);
11073 cpumask_set_cpu(cpu, perf_online_mask);
11074 list_for_each_entry(pmu, &pmus, entry) {
11075 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11076 ctx = &cpuctx->ctx;
11077
11078 mutex_lock(&ctx->mutex);
11079 cpuctx->online = 1;
11080 mutex_unlock(&ctx->mutex);
11081 }
11082 mutex_unlock(&pmus_lock);
11083
11084 return 0;
11085}
11086
00e16c3d 11087int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11088{
e3703f8c 11089 perf_event_exit_cpu_context(cpu);
00e16c3d 11090 return 0;
0793a61d 11091}
0793a61d 11092
c277443c
PZ
11093static int
11094perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11095{
11096 int cpu;
11097
11098 for_each_online_cpu(cpu)
11099 perf_event_exit_cpu(cpu);
11100
11101 return NOTIFY_OK;
11102}
11103
11104/*
11105 * Run the perf reboot notifier at the very last possible moment so that
11106 * the generic watchdog code runs as long as possible.
11107 */
11108static struct notifier_block perf_reboot_notifier = {
11109 .notifier_call = perf_reboot,
11110 .priority = INT_MIN,
11111};
11112
cdd6c482 11113void __init perf_event_init(void)
0793a61d 11114{
3c502e7a
JW
11115 int ret;
11116
2e80a82a
PZ
11117 idr_init(&pmu_idr);
11118
220b140b 11119 perf_event_init_all_cpus();
b0a873eb 11120 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11121 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11122 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11123 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11124 perf_tp_register();
00e16c3d 11125 perf_event_init_cpu(smp_processor_id());
c277443c 11126 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11127
11128 ret = init_hw_breakpoint();
11129 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11130
b01c3a00
JO
11131 /*
11132 * Build time assertion that we keep the data_head at the intended
11133 * location. IOW, validation we got the __reserved[] size right.
11134 */
11135 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11136 != 1024);
0793a61d 11137}
abe43400 11138
fd979c01
CS
11139ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11140 char *page)
11141{
11142 struct perf_pmu_events_attr *pmu_attr =
11143 container_of(attr, struct perf_pmu_events_attr, attr);
11144
11145 if (pmu_attr->event_str)
11146 return sprintf(page, "%s\n", pmu_attr->event_str);
11147
11148 return 0;
11149}
675965b0 11150EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11151
abe43400
PZ
11152static int __init perf_event_sysfs_init(void)
11153{
11154 struct pmu *pmu;
11155 int ret;
11156
11157 mutex_lock(&pmus_lock);
11158
11159 ret = bus_register(&pmu_bus);
11160 if (ret)
11161 goto unlock;
11162
11163 list_for_each_entry(pmu, &pmus, entry) {
11164 if (!pmu->name || pmu->type < 0)
11165 continue;
11166
11167 ret = pmu_dev_alloc(pmu);
11168 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11169 }
11170 pmu_bus_running = 1;
11171 ret = 0;
11172
11173unlock:
11174 mutex_unlock(&pmus_lock);
11175
11176 return ret;
11177}
11178device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11179
11180#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11181static struct cgroup_subsys_state *
11182perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11183{
11184 struct perf_cgroup *jc;
e5d1367f 11185
1b15d055 11186 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11187 if (!jc)
11188 return ERR_PTR(-ENOMEM);
11189
e5d1367f
SE
11190 jc->info = alloc_percpu(struct perf_cgroup_info);
11191 if (!jc->info) {
11192 kfree(jc);
11193 return ERR_PTR(-ENOMEM);
11194 }
11195
e5d1367f
SE
11196 return &jc->css;
11197}
11198
eb95419b 11199static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11200{
eb95419b
TH
11201 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11202
e5d1367f
SE
11203 free_percpu(jc->info);
11204 kfree(jc);
11205}
11206
11207static int __perf_cgroup_move(void *info)
11208{
11209 struct task_struct *task = info;
ddaaf4e2 11210 rcu_read_lock();
e5d1367f 11211 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11212 rcu_read_unlock();
e5d1367f
SE
11213 return 0;
11214}
11215
1f7dd3e5 11216static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11217{
bb9d97b6 11218 struct task_struct *task;
1f7dd3e5 11219 struct cgroup_subsys_state *css;
bb9d97b6 11220
1f7dd3e5 11221 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11222 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11223}
11224
073219e9 11225struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11226 .css_alloc = perf_cgroup_css_alloc,
11227 .css_free = perf_cgroup_css_free,
bb9d97b6 11228 .attach = perf_cgroup_attach,
968ebff1
TH
11229 /*
11230 * Implicitly enable on dfl hierarchy so that perf events can
11231 * always be filtered by cgroup2 path as long as perf_event
11232 * controller is not mounted on a legacy hierarchy.
11233 */
11234 .implicit_on_dfl = true,
e5d1367f
SE
11235};
11236#endif /* CONFIG_CGROUP_PERF */