]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/events/core.c
cpuhotplug: Link lock stacks for hotplug callbacks
[mirror_ubuntu-jammy-kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6
PZ
211
212 WARN_ON_ONCE(!irqs_disabled());
213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 WARN_ON_ONCE(!irqs_disabled());
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
9e630205
SE
433static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
e5d1367f
SE
585#ifdef CONFIG_CGROUP_PERF
586
e5d1367f
SE
587static inline bool
588perf_cgroup_match(struct perf_event *event)
589{
590 struct perf_event_context *ctx = event->ctx;
591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
ef824fa1
TH
593 /* @event doesn't care about cgroup */
594 if (!event->cgrp)
595 return true;
596
597 /* wants specific cgroup scope but @cpuctx isn't associated with any */
598 if (!cpuctx->cgrp)
599 return false;
600
601 /*
602 * Cgroup scoping is recursive. An event enabled for a cgroup is
603 * also enabled for all its descendant cgroups. If @cpuctx's
604 * cgroup is a descendant of @event's (the test covers identity
605 * case), it's a match.
606 */
607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608 event->cgrp->css.cgroup);
e5d1367f
SE
609}
610
e5d1367f
SE
611static inline void perf_detach_cgroup(struct perf_event *event)
612{
4e2ba650 613 css_put(&event->cgrp->css);
e5d1367f
SE
614 event->cgrp = NULL;
615}
616
617static inline int is_cgroup_event(struct perf_event *event)
618{
619 return event->cgrp != NULL;
620}
621
622static inline u64 perf_cgroup_event_time(struct perf_event *event)
623{
624 struct perf_cgroup_info *t;
625
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 return t->time;
628}
629
630static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631{
632 struct perf_cgroup_info *info;
633 u64 now;
634
635 now = perf_clock();
636
637 info = this_cpu_ptr(cgrp->info);
638
639 info->time += now - info->timestamp;
640 info->timestamp = now;
641}
642
643static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644{
645 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646 if (cgrp_out)
647 __update_cgrp_time(cgrp_out);
648}
649
650static inline void update_cgrp_time_from_event(struct perf_event *event)
651{
3f7cce3c
SE
652 struct perf_cgroup *cgrp;
653
e5d1367f 654 /*
3f7cce3c
SE
655 * ensure we access cgroup data only when needed and
656 * when we know the cgroup is pinned (css_get)
e5d1367f 657 */
3f7cce3c 658 if (!is_cgroup_event(event))
e5d1367f
SE
659 return;
660
614e4c4e 661 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
662 /*
663 * Do not update time when cgroup is not active
664 */
665 if (cgrp == event->cgrp)
666 __update_cgrp_time(event->cgrp);
e5d1367f
SE
667}
668
669static inline void
3f7cce3c
SE
670perf_cgroup_set_timestamp(struct task_struct *task,
671 struct perf_event_context *ctx)
e5d1367f
SE
672{
673 struct perf_cgroup *cgrp;
674 struct perf_cgroup_info *info;
675
3f7cce3c
SE
676 /*
677 * ctx->lock held by caller
678 * ensure we do not access cgroup data
679 * unless we have the cgroup pinned (css_get)
680 */
681 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
682 return;
683
614e4c4e 684 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 685 info = this_cpu_ptr(cgrp->info);
3f7cce3c 686 info->timestamp = ctx->timestamp;
e5d1367f
SE
687}
688
058fe1c0
DCC
689static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
e5d1367f
SE
691#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
692#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
693
694/*
695 * reschedule events based on the cgroup constraint of task.
696 *
697 * mode SWOUT : schedule out everything
698 * mode SWIN : schedule in based on cgroup for next
699 */
18ab2cd3 700static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
701{
702 struct perf_cpu_context *cpuctx;
058fe1c0 703 struct list_head *list;
e5d1367f
SE
704 unsigned long flags;
705
706 /*
058fe1c0
DCC
707 * Disable interrupts and preemption to avoid this CPU's
708 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
709 */
710 local_irq_save(flags);
711
058fe1c0
DCC
712 list = this_cpu_ptr(&cgrp_cpuctx_list);
713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 715
058fe1c0
DCC
716 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 718
058fe1c0
DCC
719 if (mode & PERF_CGROUP_SWOUT) {
720 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721 /*
722 * must not be done before ctxswout due
723 * to event_filter_match() in event_sched_out()
724 */
725 cpuctx->cgrp = NULL;
726 }
e5d1367f 727
058fe1c0
DCC
728 if (mode & PERF_CGROUP_SWIN) {
729 WARN_ON_ONCE(cpuctx->cgrp);
730 /*
731 * set cgrp before ctxsw in to allow
732 * event_filter_match() to not have to pass
733 * task around
734 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 * because cgorup events are only per-cpu
736 */
737 cpuctx->cgrp = perf_cgroup_from_task(task,
738 &cpuctx->ctx);
739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 740 }
058fe1c0
DCC
741 perf_pmu_enable(cpuctx->ctx.pmu);
742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
743 }
744
e5d1367f
SE
745 local_irq_restore(flags);
746}
747
a8d757ef
SE
748static inline void perf_cgroup_sched_out(struct task_struct *task,
749 struct task_struct *next)
e5d1367f 750{
a8d757ef
SE
751 struct perf_cgroup *cgrp1;
752 struct perf_cgroup *cgrp2 = NULL;
753
ddaaf4e2 754 rcu_read_lock();
a8d757ef
SE
755 /*
756 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
757 * we do not need to pass the ctx here because we know
758 * we are holding the rcu lock
a8d757ef 759 */
614e4c4e 760 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 761 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
762
763 /*
764 * only schedule out current cgroup events if we know
765 * that we are switching to a different cgroup. Otherwise,
766 * do no touch the cgroup events.
767 */
768 if (cgrp1 != cgrp2)
769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
770
771 rcu_read_unlock();
e5d1367f
SE
772}
773
a8d757ef
SE
774static inline void perf_cgroup_sched_in(struct task_struct *prev,
775 struct task_struct *task)
e5d1367f 776{
a8d757ef
SE
777 struct perf_cgroup *cgrp1;
778 struct perf_cgroup *cgrp2 = NULL;
779
ddaaf4e2 780 rcu_read_lock();
a8d757ef
SE
781 /*
782 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
783 * we do not need to pass the ctx here because we know
784 * we are holding the rcu lock
a8d757ef 785 */
614e4c4e 786 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 787 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
788
789 /*
790 * only need to schedule in cgroup events if we are changing
791 * cgroup during ctxsw. Cgroup events were not scheduled
792 * out of ctxsw out if that was not the case.
793 */
794 if (cgrp1 != cgrp2)
795 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
796
797 rcu_read_unlock();
e5d1367f
SE
798}
799
800static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801 struct perf_event_attr *attr,
802 struct perf_event *group_leader)
803{
804 struct perf_cgroup *cgrp;
805 struct cgroup_subsys_state *css;
2903ff01
AV
806 struct fd f = fdget(fd);
807 int ret = 0;
e5d1367f 808
2903ff01 809 if (!f.file)
e5d1367f
SE
810 return -EBADF;
811
b583043e 812 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 813 &perf_event_cgrp_subsys);
3db272c0
LZ
814 if (IS_ERR(css)) {
815 ret = PTR_ERR(css);
816 goto out;
817 }
e5d1367f
SE
818
819 cgrp = container_of(css, struct perf_cgroup, css);
820 event->cgrp = cgrp;
821
822 /*
823 * all events in a group must monitor
824 * the same cgroup because a task belongs
825 * to only one perf cgroup at a time
826 */
827 if (group_leader && group_leader->cgrp != cgrp) {
828 perf_detach_cgroup(event);
829 ret = -EINVAL;
e5d1367f 830 }
3db272c0 831out:
2903ff01 832 fdput(f);
e5d1367f
SE
833 return ret;
834}
835
836static inline void
837perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838{
839 struct perf_cgroup_info *t;
840 t = per_cpu_ptr(event->cgrp->info, event->cpu);
841 event->shadow_ctx_time = now - t->timestamp;
842}
843
844static inline void
845perf_cgroup_defer_enabled(struct perf_event *event)
846{
847 /*
848 * when the current task's perf cgroup does not match
849 * the event's, we need to remember to call the
850 * perf_mark_enable() function the first time a task with
851 * a matching perf cgroup is scheduled in.
852 */
853 if (is_cgroup_event(event) && !perf_cgroup_match(event))
854 event->cgrp_defer_enabled = 1;
855}
856
857static inline void
858perf_cgroup_mark_enabled(struct perf_event *event,
859 struct perf_event_context *ctx)
860{
861 struct perf_event *sub;
862 u64 tstamp = perf_event_time(event);
863
864 if (!event->cgrp_defer_enabled)
865 return;
866
867 event->cgrp_defer_enabled = 0;
868
869 event->tstamp_enabled = tstamp - event->total_time_enabled;
870 list_for_each_entry(sub, &event->sibling_list, group_entry) {
871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873 sub->cgrp_defer_enabled = 0;
874 }
875 }
876}
db4a8356
DCC
877
878/*
879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880 * cleared when last cgroup event is removed.
881 */
882static inline void
883list_update_cgroup_event(struct perf_event *event,
884 struct perf_event_context *ctx, bool add)
885{
886 struct perf_cpu_context *cpuctx;
058fe1c0 887 struct list_head *cpuctx_entry;
db4a8356
DCC
888
889 if (!is_cgroup_event(event))
890 return;
891
892 if (add && ctx->nr_cgroups++)
893 return;
894 else if (!add && --ctx->nr_cgroups)
895 return;
896 /*
897 * Because cgroup events are always per-cpu events,
898 * this will always be called from the right CPU.
899 */
900 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903 if (add) {
904 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906 cpuctx->cgrp = event->cgrp;
907 } else {
908 list_del(cpuctx_entry);
8fc31ce8 909 cpuctx->cgrp = NULL;
058fe1c0 910 }
db4a8356
DCC
911}
912
e5d1367f
SE
913#else /* !CONFIG_CGROUP_PERF */
914
915static inline bool
916perf_cgroup_match(struct perf_event *event)
917{
918 return true;
919}
920
921static inline void perf_detach_cgroup(struct perf_event *event)
922{}
923
924static inline int is_cgroup_event(struct perf_event *event)
925{
926 return 0;
927}
928
929static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
930{
931 return 0;
932}
933
934static inline void update_cgrp_time_from_event(struct perf_event *event)
935{
936}
937
938static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
939{
940}
941
a8d757ef
SE
942static inline void perf_cgroup_sched_out(struct task_struct *task,
943 struct task_struct *next)
e5d1367f
SE
944{
945}
946
a8d757ef
SE
947static inline void perf_cgroup_sched_in(struct task_struct *prev,
948 struct task_struct *task)
e5d1367f
SE
949{
950}
951
952static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
953 struct perf_event_attr *attr,
954 struct perf_event *group_leader)
955{
956 return -EINVAL;
957}
958
959static inline void
3f7cce3c
SE
960perf_cgroup_set_timestamp(struct task_struct *task,
961 struct perf_event_context *ctx)
e5d1367f
SE
962{
963}
964
965void
966perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
967{
968}
969
970static inline void
971perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
972{
973}
974
975static inline u64 perf_cgroup_event_time(struct perf_event *event)
976{
977 return 0;
978}
979
980static inline void
981perf_cgroup_defer_enabled(struct perf_event *event)
982{
983}
984
985static inline void
986perf_cgroup_mark_enabled(struct perf_event *event,
987 struct perf_event_context *ctx)
988{
989}
db4a8356
DCC
990
991static inline void
992list_update_cgroup_event(struct perf_event *event,
993 struct perf_event_context *ctx, bool add)
994{
995}
996
e5d1367f
SE
997#endif
998
9e630205
SE
999/*
1000 * set default to be dependent on timer tick just
1001 * like original code
1002 */
1003#define PERF_CPU_HRTIMER (1000 / HZ)
1004/*
8a1115ff 1005 * function must be called with interrupts disabled
9e630205 1006 */
272325c4 1007static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1008{
1009 struct perf_cpu_context *cpuctx;
9e630205
SE
1010 int rotations = 0;
1011
1012 WARN_ON(!irqs_disabled());
1013
1014 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1015 rotations = perf_rotate_context(cpuctx);
1016
4cfafd30
PZ
1017 raw_spin_lock(&cpuctx->hrtimer_lock);
1018 if (rotations)
9e630205 1019 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1020 else
1021 cpuctx->hrtimer_active = 0;
1022 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1023
4cfafd30 1024 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1025}
1026
272325c4 1027static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1028{
272325c4 1029 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1030 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1031 u64 interval;
9e630205
SE
1032
1033 /* no multiplexing needed for SW PMU */
1034 if (pmu->task_ctx_nr == perf_sw_context)
1035 return;
1036
62b85639
SE
1037 /*
1038 * check default is sane, if not set then force to
1039 * default interval (1/tick)
1040 */
272325c4
PZ
1041 interval = pmu->hrtimer_interval_ms;
1042 if (interval < 1)
1043 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1044
272325c4 1045 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1046
4cfafd30
PZ
1047 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1048 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1049 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1050}
1051
272325c4 1052static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1053{
272325c4 1054 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1055 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1056 unsigned long flags;
9e630205
SE
1057
1058 /* not for SW PMU */
1059 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1060 return 0;
9e630205 1061
4cfafd30
PZ
1062 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1063 if (!cpuctx->hrtimer_active) {
1064 cpuctx->hrtimer_active = 1;
1065 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1066 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1067 }
1068 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1069
272325c4 1070 return 0;
9e630205
SE
1071}
1072
33696fc0 1073void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1074{
33696fc0
PZ
1075 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1076 if (!(*count)++)
1077 pmu->pmu_disable(pmu);
9e35ad38 1078}
9e35ad38 1079
33696fc0 1080void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1081{
33696fc0
PZ
1082 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1083 if (!--(*count))
1084 pmu->pmu_enable(pmu);
9e35ad38 1085}
9e35ad38 1086
2fde4f94 1087static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1088
1089/*
2fde4f94
MR
1090 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1091 * perf_event_task_tick() are fully serialized because they're strictly cpu
1092 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1093 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1094 */
2fde4f94 1095static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1096{
2fde4f94 1097 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1098
e9d2b064 1099 WARN_ON(!irqs_disabled());
b5ab4cd5 1100
2fde4f94
MR
1101 WARN_ON(!list_empty(&ctx->active_ctx_list));
1102
1103 list_add(&ctx->active_ctx_list, head);
1104}
1105
1106static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1107{
1108 WARN_ON(!irqs_disabled());
1109
1110 WARN_ON(list_empty(&ctx->active_ctx_list));
1111
1112 list_del_init(&ctx->active_ctx_list);
9e35ad38 1113}
9e35ad38 1114
cdd6c482 1115static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1116{
e5289d4a 1117 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1118}
1119
4af57ef2
YZ
1120static void free_ctx(struct rcu_head *head)
1121{
1122 struct perf_event_context *ctx;
1123
1124 ctx = container_of(head, struct perf_event_context, rcu_head);
1125 kfree(ctx->task_ctx_data);
1126 kfree(ctx);
1127}
1128
cdd6c482 1129static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1130{
564c2b21
PM
1131 if (atomic_dec_and_test(&ctx->refcount)) {
1132 if (ctx->parent_ctx)
1133 put_ctx(ctx->parent_ctx);
63b6da39 1134 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1135 put_task_struct(ctx->task);
4af57ef2 1136 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1137 }
a63eaf34
PM
1138}
1139
f63a8daa
PZ
1140/*
1141 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1142 * perf_pmu_migrate_context() we need some magic.
1143 *
1144 * Those places that change perf_event::ctx will hold both
1145 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1146 *
8b10c5e2
PZ
1147 * Lock ordering is by mutex address. There are two other sites where
1148 * perf_event_context::mutex nests and those are:
1149 *
1150 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1151 * perf_event_exit_event()
1152 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1153 *
1154 * - perf_event_init_context() [ parent, 0 ]
1155 * inherit_task_group()
1156 * inherit_group()
1157 * inherit_event()
1158 * perf_event_alloc()
1159 * perf_init_event()
1160 * perf_try_init_event() [ child , 1 ]
1161 *
1162 * While it appears there is an obvious deadlock here -- the parent and child
1163 * nesting levels are inverted between the two. This is in fact safe because
1164 * life-time rules separate them. That is an exiting task cannot fork, and a
1165 * spawning task cannot (yet) exit.
1166 *
1167 * But remember that that these are parent<->child context relations, and
1168 * migration does not affect children, therefore these two orderings should not
1169 * interact.
f63a8daa
PZ
1170 *
1171 * The change in perf_event::ctx does not affect children (as claimed above)
1172 * because the sys_perf_event_open() case will install a new event and break
1173 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1174 * concerned with cpuctx and that doesn't have children.
1175 *
1176 * The places that change perf_event::ctx will issue:
1177 *
1178 * perf_remove_from_context();
1179 * synchronize_rcu();
1180 * perf_install_in_context();
1181 *
1182 * to affect the change. The remove_from_context() + synchronize_rcu() should
1183 * quiesce the event, after which we can install it in the new location. This
1184 * means that only external vectors (perf_fops, prctl) can perturb the event
1185 * while in transit. Therefore all such accessors should also acquire
1186 * perf_event_context::mutex to serialize against this.
1187 *
1188 * However; because event->ctx can change while we're waiting to acquire
1189 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1190 * function.
1191 *
1192 * Lock order:
79c9ce57 1193 * cred_guard_mutex
f63a8daa
PZ
1194 * task_struct::perf_event_mutex
1195 * perf_event_context::mutex
f63a8daa 1196 * perf_event::child_mutex;
07c4a776 1197 * perf_event_context::lock
f63a8daa
PZ
1198 * perf_event::mmap_mutex
1199 * mmap_sem
1200 */
a83fe28e
PZ
1201static struct perf_event_context *
1202perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1203{
1204 struct perf_event_context *ctx;
1205
1206again:
1207 rcu_read_lock();
1208 ctx = ACCESS_ONCE(event->ctx);
1209 if (!atomic_inc_not_zero(&ctx->refcount)) {
1210 rcu_read_unlock();
1211 goto again;
1212 }
1213 rcu_read_unlock();
1214
a83fe28e 1215 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1216 if (event->ctx != ctx) {
1217 mutex_unlock(&ctx->mutex);
1218 put_ctx(ctx);
1219 goto again;
1220 }
1221
1222 return ctx;
1223}
1224
a83fe28e
PZ
1225static inline struct perf_event_context *
1226perf_event_ctx_lock(struct perf_event *event)
1227{
1228 return perf_event_ctx_lock_nested(event, 0);
1229}
1230
f63a8daa
PZ
1231static void perf_event_ctx_unlock(struct perf_event *event,
1232 struct perf_event_context *ctx)
1233{
1234 mutex_unlock(&ctx->mutex);
1235 put_ctx(ctx);
1236}
1237
211de6eb
PZ
1238/*
1239 * This must be done under the ctx->lock, such as to serialize against
1240 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1241 * calling scheduler related locks and ctx->lock nests inside those.
1242 */
1243static __must_check struct perf_event_context *
1244unclone_ctx(struct perf_event_context *ctx)
71a851b4 1245{
211de6eb
PZ
1246 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1247
1248 lockdep_assert_held(&ctx->lock);
1249
1250 if (parent_ctx)
71a851b4 1251 ctx->parent_ctx = NULL;
5a3126d4 1252 ctx->generation++;
211de6eb
PZ
1253
1254 return parent_ctx;
71a851b4
PZ
1255}
1256
6844c09d
ACM
1257static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1258{
1259 /*
1260 * only top level events have the pid namespace they were created in
1261 */
1262 if (event->parent)
1263 event = event->parent;
1264
1265 return task_tgid_nr_ns(p, event->ns);
1266}
1267
1268static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1269{
1270 /*
1271 * only top level events have the pid namespace they were created in
1272 */
1273 if (event->parent)
1274 event = event->parent;
1275
1276 return task_pid_nr_ns(p, event->ns);
1277}
1278
7f453c24 1279/*
cdd6c482 1280 * If we inherit events we want to return the parent event id
7f453c24
PZ
1281 * to userspace.
1282 */
cdd6c482 1283static u64 primary_event_id(struct perf_event *event)
7f453c24 1284{
cdd6c482 1285 u64 id = event->id;
7f453c24 1286
cdd6c482
IM
1287 if (event->parent)
1288 id = event->parent->id;
7f453c24
PZ
1289
1290 return id;
1291}
1292
25346b93 1293/*
cdd6c482 1294 * Get the perf_event_context for a task and lock it.
63b6da39 1295 *
25346b93
PM
1296 * This has to cope with with the fact that until it is locked,
1297 * the context could get moved to another task.
1298 */
cdd6c482 1299static struct perf_event_context *
8dc85d54 1300perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1301{
cdd6c482 1302 struct perf_event_context *ctx;
25346b93 1303
9ed6060d 1304retry:
058ebd0e
PZ
1305 /*
1306 * One of the few rules of preemptible RCU is that one cannot do
1307 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1308 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1309 * rcu_read_unlock_special().
1310 *
1311 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1312 * side critical section has interrupts disabled.
058ebd0e 1313 */
2fd59077 1314 local_irq_save(*flags);
058ebd0e 1315 rcu_read_lock();
8dc85d54 1316 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1317 if (ctx) {
1318 /*
1319 * If this context is a clone of another, it might
1320 * get swapped for another underneath us by
cdd6c482 1321 * perf_event_task_sched_out, though the
25346b93
PM
1322 * rcu_read_lock() protects us from any context
1323 * getting freed. Lock the context and check if it
1324 * got swapped before we could get the lock, and retry
1325 * if so. If we locked the right context, then it
1326 * can't get swapped on us any more.
1327 */
2fd59077 1328 raw_spin_lock(&ctx->lock);
8dc85d54 1329 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1330 raw_spin_unlock(&ctx->lock);
058ebd0e 1331 rcu_read_unlock();
2fd59077 1332 local_irq_restore(*flags);
25346b93
PM
1333 goto retry;
1334 }
b49a9e7e 1335
63b6da39
PZ
1336 if (ctx->task == TASK_TOMBSTONE ||
1337 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1338 raw_spin_unlock(&ctx->lock);
b49a9e7e 1339 ctx = NULL;
828b6f0e
PZ
1340 } else {
1341 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1342 }
25346b93
PM
1343 }
1344 rcu_read_unlock();
2fd59077
PM
1345 if (!ctx)
1346 local_irq_restore(*flags);
25346b93
PM
1347 return ctx;
1348}
1349
1350/*
1351 * Get the context for a task and increment its pin_count so it
1352 * can't get swapped to another task. This also increments its
1353 * reference count so that the context can't get freed.
1354 */
8dc85d54
PZ
1355static struct perf_event_context *
1356perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1357{
cdd6c482 1358 struct perf_event_context *ctx;
25346b93
PM
1359 unsigned long flags;
1360
8dc85d54 1361 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1362 if (ctx) {
1363 ++ctx->pin_count;
e625cce1 1364 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1365 }
1366 return ctx;
1367}
1368
cdd6c482 1369static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1370{
1371 unsigned long flags;
1372
e625cce1 1373 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1374 --ctx->pin_count;
e625cce1 1375 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1376}
1377
f67218c3
PZ
1378/*
1379 * Update the record of the current time in a context.
1380 */
1381static void update_context_time(struct perf_event_context *ctx)
1382{
1383 u64 now = perf_clock();
1384
1385 ctx->time += now - ctx->timestamp;
1386 ctx->timestamp = now;
1387}
1388
4158755d
SE
1389static u64 perf_event_time(struct perf_event *event)
1390{
1391 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1392
1393 if (is_cgroup_event(event))
1394 return perf_cgroup_event_time(event);
1395
4158755d
SE
1396 return ctx ? ctx->time : 0;
1397}
1398
f67218c3
PZ
1399/*
1400 * Update the total_time_enabled and total_time_running fields for a event.
1401 */
1402static void update_event_times(struct perf_event *event)
1403{
1404 struct perf_event_context *ctx = event->ctx;
1405 u64 run_end;
1406
3cbaa590
PZ
1407 lockdep_assert_held(&ctx->lock);
1408
f67218c3
PZ
1409 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1410 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1411 return;
3cbaa590 1412
e5d1367f
SE
1413 /*
1414 * in cgroup mode, time_enabled represents
1415 * the time the event was enabled AND active
1416 * tasks were in the monitored cgroup. This is
1417 * independent of the activity of the context as
1418 * there may be a mix of cgroup and non-cgroup events.
1419 *
1420 * That is why we treat cgroup events differently
1421 * here.
1422 */
1423 if (is_cgroup_event(event))
46cd6a7f 1424 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1425 else if (ctx->is_active)
1426 run_end = ctx->time;
acd1d7c1
PZ
1427 else
1428 run_end = event->tstamp_stopped;
1429
1430 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1431
1432 if (event->state == PERF_EVENT_STATE_INACTIVE)
1433 run_end = event->tstamp_stopped;
1434 else
4158755d 1435 run_end = perf_event_time(event);
f67218c3
PZ
1436
1437 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1438
f67218c3
PZ
1439}
1440
96c21a46
PZ
1441/*
1442 * Update total_time_enabled and total_time_running for all events in a group.
1443 */
1444static void update_group_times(struct perf_event *leader)
1445{
1446 struct perf_event *event;
1447
1448 update_event_times(leader);
1449 list_for_each_entry(event, &leader->sibling_list, group_entry)
1450 update_event_times(event);
1451}
1452
487f05e1
AS
1453static enum event_type_t get_event_type(struct perf_event *event)
1454{
1455 struct perf_event_context *ctx = event->ctx;
1456 enum event_type_t event_type;
1457
1458 lockdep_assert_held(&ctx->lock);
1459
1460 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1461 if (!ctx->task)
1462 event_type |= EVENT_CPU;
1463
1464 return event_type;
1465}
1466
889ff015
FW
1467static struct list_head *
1468ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1469{
1470 if (event->attr.pinned)
1471 return &ctx->pinned_groups;
1472 else
1473 return &ctx->flexible_groups;
1474}
1475
fccc714b 1476/*
cdd6c482 1477 * Add a event from the lists for its context.
fccc714b
PZ
1478 * Must be called with ctx->mutex and ctx->lock held.
1479 */
04289bb9 1480static void
cdd6c482 1481list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1482{
c994d613
PZ
1483 lockdep_assert_held(&ctx->lock);
1484
8a49542c
PZ
1485 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1486 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1487
1488 /*
8a49542c
PZ
1489 * If we're a stand alone event or group leader, we go to the context
1490 * list, group events are kept attached to the group so that
1491 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1492 */
8a49542c 1493 if (event->group_leader == event) {
889ff015
FW
1494 struct list_head *list;
1495
4ff6a8de 1496 event->group_caps = event->event_caps;
d6f962b5 1497
889ff015
FW
1498 list = ctx_group_list(event, ctx);
1499 list_add_tail(&event->group_entry, list);
5c148194 1500 }
592903cd 1501
db4a8356 1502 list_update_cgroup_event(event, ctx, true);
e5d1367f 1503
cdd6c482
IM
1504 list_add_rcu(&event->event_entry, &ctx->event_list);
1505 ctx->nr_events++;
1506 if (event->attr.inherit_stat)
bfbd3381 1507 ctx->nr_stat++;
5a3126d4
PZ
1508
1509 ctx->generation++;
04289bb9
IM
1510}
1511
0231bb53
JO
1512/*
1513 * Initialize event state based on the perf_event_attr::disabled.
1514 */
1515static inline void perf_event__state_init(struct perf_event *event)
1516{
1517 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1518 PERF_EVENT_STATE_INACTIVE;
1519}
1520
a723968c 1521static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1522{
1523 int entry = sizeof(u64); /* value */
1524 int size = 0;
1525 int nr = 1;
1526
1527 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1528 size += sizeof(u64);
1529
1530 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1531 size += sizeof(u64);
1532
1533 if (event->attr.read_format & PERF_FORMAT_ID)
1534 entry += sizeof(u64);
1535
1536 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1537 nr += nr_siblings;
c320c7b7
ACM
1538 size += sizeof(u64);
1539 }
1540
1541 size += entry * nr;
1542 event->read_size = size;
1543}
1544
a723968c 1545static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1546{
1547 struct perf_sample_data *data;
c320c7b7
ACM
1548 u16 size = 0;
1549
c320c7b7
ACM
1550 if (sample_type & PERF_SAMPLE_IP)
1551 size += sizeof(data->ip);
1552
6844c09d
ACM
1553 if (sample_type & PERF_SAMPLE_ADDR)
1554 size += sizeof(data->addr);
1555
1556 if (sample_type & PERF_SAMPLE_PERIOD)
1557 size += sizeof(data->period);
1558
c3feedf2
AK
1559 if (sample_type & PERF_SAMPLE_WEIGHT)
1560 size += sizeof(data->weight);
1561
6844c09d
ACM
1562 if (sample_type & PERF_SAMPLE_READ)
1563 size += event->read_size;
1564
d6be9ad6
SE
1565 if (sample_type & PERF_SAMPLE_DATA_SRC)
1566 size += sizeof(data->data_src.val);
1567
fdfbbd07
AK
1568 if (sample_type & PERF_SAMPLE_TRANSACTION)
1569 size += sizeof(data->txn);
1570
6844c09d
ACM
1571 event->header_size = size;
1572}
1573
a723968c
PZ
1574/*
1575 * Called at perf_event creation and when events are attached/detached from a
1576 * group.
1577 */
1578static void perf_event__header_size(struct perf_event *event)
1579{
1580 __perf_event_read_size(event,
1581 event->group_leader->nr_siblings);
1582 __perf_event_header_size(event, event->attr.sample_type);
1583}
1584
6844c09d
ACM
1585static void perf_event__id_header_size(struct perf_event *event)
1586{
1587 struct perf_sample_data *data;
1588 u64 sample_type = event->attr.sample_type;
1589 u16 size = 0;
1590
c320c7b7
ACM
1591 if (sample_type & PERF_SAMPLE_TID)
1592 size += sizeof(data->tid_entry);
1593
1594 if (sample_type & PERF_SAMPLE_TIME)
1595 size += sizeof(data->time);
1596
ff3d527c
AH
1597 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1598 size += sizeof(data->id);
1599
c320c7b7
ACM
1600 if (sample_type & PERF_SAMPLE_ID)
1601 size += sizeof(data->id);
1602
1603 if (sample_type & PERF_SAMPLE_STREAM_ID)
1604 size += sizeof(data->stream_id);
1605
1606 if (sample_type & PERF_SAMPLE_CPU)
1607 size += sizeof(data->cpu_entry);
1608
6844c09d 1609 event->id_header_size = size;
c320c7b7
ACM
1610}
1611
a723968c
PZ
1612static bool perf_event_validate_size(struct perf_event *event)
1613{
1614 /*
1615 * The values computed here will be over-written when we actually
1616 * attach the event.
1617 */
1618 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1619 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1620 perf_event__id_header_size(event);
1621
1622 /*
1623 * Sum the lot; should not exceed the 64k limit we have on records.
1624 * Conservative limit to allow for callchains and other variable fields.
1625 */
1626 if (event->read_size + event->header_size +
1627 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1628 return false;
1629
1630 return true;
1631}
1632
8a49542c
PZ
1633static void perf_group_attach(struct perf_event *event)
1634{
c320c7b7 1635 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1636
a76a82a3
PZ
1637 lockdep_assert_held(&event->ctx->lock);
1638
74c3337c
PZ
1639 /*
1640 * We can have double attach due to group movement in perf_event_open.
1641 */
1642 if (event->attach_state & PERF_ATTACH_GROUP)
1643 return;
1644
8a49542c
PZ
1645 event->attach_state |= PERF_ATTACH_GROUP;
1646
1647 if (group_leader == event)
1648 return;
1649
652884fe
PZ
1650 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1651
4ff6a8de 1652 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1653
1654 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1655 group_leader->nr_siblings++;
c320c7b7
ACM
1656
1657 perf_event__header_size(group_leader);
1658
1659 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1660 perf_event__header_size(pos);
8a49542c
PZ
1661}
1662
a63eaf34 1663/*
cdd6c482 1664 * Remove a event from the lists for its context.
fccc714b 1665 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1666 */
04289bb9 1667static void
cdd6c482 1668list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1669{
652884fe
PZ
1670 WARN_ON_ONCE(event->ctx != ctx);
1671 lockdep_assert_held(&ctx->lock);
1672
8a49542c
PZ
1673 /*
1674 * We can have double detach due to exit/hot-unplug + close.
1675 */
1676 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1677 return;
8a49542c
PZ
1678
1679 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1680
db4a8356 1681 list_update_cgroup_event(event, ctx, false);
e5d1367f 1682
cdd6c482
IM
1683 ctx->nr_events--;
1684 if (event->attr.inherit_stat)
bfbd3381 1685 ctx->nr_stat--;
8bc20959 1686
cdd6c482 1687 list_del_rcu(&event->event_entry);
04289bb9 1688
8a49542c
PZ
1689 if (event->group_leader == event)
1690 list_del_init(&event->group_entry);
5c148194 1691
96c21a46 1692 update_group_times(event);
b2e74a26
SE
1693
1694 /*
1695 * If event was in error state, then keep it
1696 * that way, otherwise bogus counts will be
1697 * returned on read(). The only way to get out
1698 * of error state is by explicit re-enabling
1699 * of the event
1700 */
1701 if (event->state > PERF_EVENT_STATE_OFF)
1702 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1703
1704 ctx->generation++;
050735b0
PZ
1705}
1706
8a49542c 1707static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1708{
1709 struct perf_event *sibling, *tmp;
8a49542c
PZ
1710 struct list_head *list = NULL;
1711
a76a82a3
PZ
1712 lockdep_assert_held(&event->ctx->lock);
1713
8a49542c
PZ
1714 /*
1715 * We can have double detach due to exit/hot-unplug + close.
1716 */
1717 if (!(event->attach_state & PERF_ATTACH_GROUP))
1718 return;
1719
1720 event->attach_state &= ~PERF_ATTACH_GROUP;
1721
1722 /*
1723 * If this is a sibling, remove it from its group.
1724 */
1725 if (event->group_leader != event) {
1726 list_del_init(&event->group_entry);
1727 event->group_leader->nr_siblings--;
c320c7b7 1728 goto out;
8a49542c
PZ
1729 }
1730
1731 if (!list_empty(&event->group_entry))
1732 list = &event->group_entry;
2e2af50b 1733
04289bb9 1734 /*
cdd6c482
IM
1735 * If this was a group event with sibling events then
1736 * upgrade the siblings to singleton events by adding them
8a49542c 1737 * to whatever list we are on.
04289bb9 1738 */
cdd6c482 1739 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1740 if (list)
1741 list_move_tail(&sibling->group_entry, list);
04289bb9 1742 sibling->group_leader = sibling;
d6f962b5
FW
1743
1744 /* Inherit group flags from the previous leader */
4ff6a8de 1745 sibling->group_caps = event->group_caps;
652884fe
PZ
1746
1747 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1748 }
c320c7b7
ACM
1749
1750out:
1751 perf_event__header_size(event->group_leader);
1752
1753 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1754 perf_event__header_size(tmp);
04289bb9
IM
1755}
1756
fadfe7be
JO
1757static bool is_orphaned_event(struct perf_event *event)
1758{
a69b0ca4 1759 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1760}
1761
2c81a647 1762static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1763{
1764 struct pmu *pmu = event->pmu;
1765 return pmu->filter_match ? pmu->filter_match(event) : 1;
1766}
1767
2c81a647
MR
1768/*
1769 * Check whether we should attempt to schedule an event group based on
1770 * PMU-specific filtering. An event group can consist of HW and SW events,
1771 * potentially with a SW leader, so we must check all the filters, to
1772 * determine whether a group is schedulable:
1773 */
1774static inline int pmu_filter_match(struct perf_event *event)
1775{
1776 struct perf_event *child;
1777
1778 if (!__pmu_filter_match(event))
1779 return 0;
1780
1781 list_for_each_entry(child, &event->sibling_list, group_entry) {
1782 if (!__pmu_filter_match(child))
1783 return 0;
1784 }
1785
1786 return 1;
1787}
1788
fa66f07a
SE
1789static inline int
1790event_filter_match(struct perf_event *event)
1791{
0b8f1e2e
PZ
1792 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1793 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1794}
1795
9ffcfa6f
SE
1796static void
1797event_sched_out(struct perf_event *event,
3b6f9e5c 1798 struct perf_cpu_context *cpuctx,
cdd6c482 1799 struct perf_event_context *ctx)
3b6f9e5c 1800{
4158755d 1801 u64 tstamp = perf_event_time(event);
fa66f07a 1802 u64 delta;
652884fe
PZ
1803
1804 WARN_ON_ONCE(event->ctx != ctx);
1805 lockdep_assert_held(&ctx->lock);
1806
fa66f07a
SE
1807 /*
1808 * An event which could not be activated because of
1809 * filter mismatch still needs to have its timings
1810 * maintained, otherwise bogus information is return
1811 * via read() for time_enabled, time_running:
1812 */
0b8f1e2e
PZ
1813 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1814 !event_filter_match(event)) {
e5d1367f 1815 delta = tstamp - event->tstamp_stopped;
fa66f07a 1816 event->tstamp_running += delta;
4158755d 1817 event->tstamp_stopped = tstamp;
fa66f07a
SE
1818 }
1819
cdd6c482 1820 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1821 return;
3b6f9e5c 1822
44377277
AS
1823 perf_pmu_disable(event->pmu);
1824
28a967c3
PZ
1825 event->tstamp_stopped = tstamp;
1826 event->pmu->del(event, 0);
1827 event->oncpu = -1;
cdd6c482
IM
1828 event->state = PERF_EVENT_STATE_INACTIVE;
1829 if (event->pending_disable) {
1830 event->pending_disable = 0;
1831 event->state = PERF_EVENT_STATE_OFF;
970892a9 1832 }
3b6f9e5c 1833
cdd6c482 1834 if (!is_software_event(event))
3b6f9e5c 1835 cpuctx->active_oncpu--;
2fde4f94
MR
1836 if (!--ctx->nr_active)
1837 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1838 if (event->attr.freq && event->attr.sample_freq)
1839 ctx->nr_freq--;
cdd6c482 1840 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1841 cpuctx->exclusive = 0;
44377277
AS
1842
1843 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1844}
1845
d859e29f 1846static void
cdd6c482 1847group_sched_out(struct perf_event *group_event,
d859e29f 1848 struct perf_cpu_context *cpuctx,
cdd6c482 1849 struct perf_event_context *ctx)
d859e29f 1850{
cdd6c482 1851 struct perf_event *event;
fa66f07a 1852 int state = group_event->state;
d859e29f 1853
3f005e7d
MR
1854 perf_pmu_disable(ctx->pmu);
1855
cdd6c482 1856 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1857
1858 /*
1859 * Schedule out siblings (if any):
1860 */
cdd6c482
IM
1861 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1862 event_sched_out(event, cpuctx, ctx);
d859e29f 1863
3f005e7d
MR
1864 perf_pmu_enable(ctx->pmu);
1865
fa66f07a 1866 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1867 cpuctx->exclusive = 0;
1868}
1869
45a0e07a 1870#define DETACH_GROUP 0x01UL
0017960f 1871
0793a61d 1872/*
cdd6c482 1873 * Cross CPU call to remove a performance event
0793a61d 1874 *
cdd6c482 1875 * We disable the event on the hardware level first. After that we
0793a61d
TG
1876 * remove it from the context list.
1877 */
fae3fde6
PZ
1878static void
1879__perf_remove_from_context(struct perf_event *event,
1880 struct perf_cpu_context *cpuctx,
1881 struct perf_event_context *ctx,
1882 void *info)
0793a61d 1883{
45a0e07a 1884 unsigned long flags = (unsigned long)info;
0793a61d 1885
cdd6c482 1886 event_sched_out(event, cpuctx, ctx);
45a0e07a 1887 if (flags & DETACH_GROUP)
46ce0fe9 1888 perf_group_detach(event);
cdd6c482 1889 list_del_event(event, ctx);
39a43640
PZ
1890
1891 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1892 ctx->is_active = 0;
39a43640
PZ
1893 if (ctx->task) {
1894 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1895 cpuctx->task_ctx = NULL;
1896 }
64ce3126 1897 }
0793a61d
TG
1898}
1899
0793a61d 1900/*
cdd6c482 1901 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1902 *
cdd6c482
IM
1903 * If event->ctx is a cloned context, callers must make sure that
1904 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1905 * remains valid. This is OK when called from perf_release since
1906 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1907 * When called from perf_event_exit_task, it's OK because the
c93f7669 1908 * context has been detached from its task.
0793a61d 1909 */
45a0e07a 1910static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1911{
a76a82a3
PZ
1912 struct perf_event_context *ctx = event->ctx;
1913
1914 lockdep_assert_held(&ctx->mutex);
0793a61d 1915
45a0e07a 1916 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1917
1918 /*
1919 * The above event_function_call() can NO-OP when it hits
1920 * TASK_TOMBSTONE. In that case we must already have been detached
1921 * from the context (by perf_event_exit_event()) but the grouping
1922 * might still be in-tact.
1923 */
1924 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1925 if ((flags & DETACH_GROUP) &&
1926 (event->attach_state & PERF_ATTACH_GROUP)) {
1927 /*
1928 * Since in that case we cannot possibly be scheduled, simply
1929 * detach now.
1930 */
1931 raw_spin_lock_irq(&ctx->lock);
1932 perf_group_detach(event);
1933 raw_spin_unlock_irq(&ctx->lock);
1934 }
0793a61d
TG
1935}
1936
d859e29f 1937/*
cdd6c482 1938 * Cross CPU call to disable a performance event
d859e29f 1939 */
fae3fde6
PZ
1940static void __perf_event_disable(struct perf_event *event,
1941 struct perf_cpu_context *cpuctx,
1942 struct perf_event_context *ctx,
1943 void *info)
7b648018 1944{
fae3fde6
PZ
1945 if (event->state < PERF_EVENT_STATE_INACTIVE)
1946 return;
7b648018 1947
fae3fde6
PZ
1948 update_context_time(ctx);
1949 update_cgrp_time_from_event(event);
1950 update_group_times(event);
1951 if (event == event->group_leader)
1952 group_sched_out(event, cpuctx, ctx);
1953 else
1954 event_sched_out(event, cpuctx, ctx);
1955 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1956}
1957
d859e29f 1958/*
cdd6c482 1959 * Disable a event.
c93f7669 1960 *
cdd6c482
IM
1961 * If event->ctx is a cloned context, callers must make sure that
1962 * every task struct that event->ctx->task could possibly point to
c93f7669 1963 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1964 * perf_event_for_each_child or perf_event_for_each because they
1965 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1966 * goes to exit will block in perf_event_exit_event().
1967 *
cdd6c482 1968 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1969 * is the current context on this CPU and preemption is disabled,
cdd6c482 1970 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1971 */
f63a8daa 1972static void _perf_event_disable(struct perf_event *event)
d859e29f 1973{
cdd6c482 1974 struct perf_event_context *ctx = event->ctx;
d859e29f 1975
e625cce1 1976 raw_spin_lock_irq(&ctx->lock);
7b648018 1977 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1978 raw_spin_unlock_irq(&ctx->lock);
7b648018 1979 return;
53cfbf59 1980 }
e625cce1 1981 raw_spin_unlock_irq(&ctx->lock);
7b648018 1982
fae3fde6
PZ
1983 event_function_call(event, __perf_event_disable, NULL);
1984}
1985
1986void perf_event_disable_local(struct perf_event *event)
1987{
1988 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1989}
f63a8daa
PZ
1990
1991/*
1992 * Strictly speaking kernel users cannot create groups and therefore this
1993 * interface does not need the perf_event_ctx_lock() magic.
1994 */
1995void perf_event_disable(struct perf_event *event)
1996{
1997 struct perf_event_context *ctx;
1998
1999 ctx = perf_event_ctx_lock(event);
2000 _perf_event_disable(event);
2001 perf_event_ctx_unlock(event, ctx);
2002}
dcfce4a0 2003EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2004
5aab90ce
JO
2005void perf_event_disable_inatomic(struct perf_event *event)
2006{
2007 event->pending_disable = 1;
2008 irq_work_queue(&event->pending);
2009}
2010
e5d1367f
SE
2011static void perf_set_shadow_time(struct perf_event *event,
2012 struct perf_event_context *ctx,
2013 u64 tstamp)
2014{
2015 /*
2016 * use the correct time source for the time snapshot
2017 *
2018 * We could get by without this by leveraging the
2019 * fact that to get to this function, the caller
2020 * has most likely already called update_context_time()
2021 * and update_cgrp_time_xx() and thus both timestamp
2022 * are identical (or very close). Given that tstamp is,
2023 * already adjusted for cgroup, we could say that:
2024 * tstamp - ctx->timestamp
2025 * is equivalent to
2026 * tstamp - cgrp->timestamp.
2027 *
2028 * Then, in perf_output_read(), the calculation would
2029 * work with no changes because:
2030 * - event is guaranteed scheduled in
2031 * - no scheduled out in between
2032 * - thus the timestamp would be the same
2033 *
2034 * But this is a bit hairy.
2035 *
2036 * So instead, we have an explicit cgroup call to remain
2037 * within the time time source all along. We believe it
2038 * is cleaner and simpler to understand.
2039 */
2040 if (is_cgroup_event(event))
2041 perf_cgroup_set_shadow_time(event, tstamp);
2042 else
2043 event->shadow_ctx_time = tstamp - ctx->timestamp;
2044}
2045
4fe757dd
PZ
2046#define MAX_INTERRUPTS (~0ULL)
2047
2048static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2049static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2050
235c7fc7 2051static int
9ffcfa6f 2052event_sched_in(struct perf_event *event,
235c7fc7 2053 struct perf_cpu_context *cpuctx,
6e37738a 2054 struct perf_event_context *ctx)
235c7fc7 2055{
4158755d 2056 u64 tstamp = perf_event_time(event);
44377277 2057 int ret = 0;
4158755d 2058
63342411
PZ
2059 lockdep_assert_held(&ctx->lock);
2060
cdd6c482 2061 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2062 return 0;
2063
95ff4ca2
AS
2064 WRITE_ONCE(event->oncpu, smp_processor_id());
2065 /*
2066 * Order event::oncpu write to happen before the ACTIVE state
2067 * is visible.
2068 */
2069 smp_wmb();
2070 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2071
2072 /*
2073 * Unthrottle events, since we scheduled we might have missed several
2074 * ticks already, also for a heavily scheduling task there is little
2075 * guarantee it'll get a tick in a timely manner.
2076 */
2077 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2078 perf_log_throttle(event, 1);
2079 event->hw.interrupts = 0;
2080 }
2081
235c7fc7
IM
2082 /*
2083 * The new state must be visible before we turn it on in the hardware:
2084 */
2085 smp_wmb();
2086
44377277
AS
2087 perf_pmu_disable(event->pmu);
2088
72f669c0
SL
2089 perf_set_shadow_time(event, ctx, tstamp);
2090
ec0d7729
AS
2091 perf_log_itrace_start(event);
2092
a4eaf7f1 2093 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2094 event->state = PERF_EVENT_STATE_INACTIVE;
2095 event->oncpu = -1;
44377277
AS
2096 ret = -EAGAIN;
2097 goto out;
235c7fc7
IM
2098 }
2099
00a2916f
PZ
2100 event->tstamp_running += tstamp - event->tstamp_stopped;
2101
cdd6c482 2102 if (!is_software_event(event))
3b6f9e5c 2103 cpuctx->active_oncpu++;
2fde4f94
MR
2104 if (!ctx->nr_active++)
2105 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2106 if (event->attr.freq && event->attr.sample_freq)
2107 ctx->nr_freq++;
235c7fc7 2108
cdd6c482 2109 if (event->attr.exclusive)
3b6f9e5c
PM
2110 cpuctx->exclusive = 1;
2111
44377277
AS
2112out:
2113 perf_pmu_enable(event->pmu);
2114
2115 return ret;
235c7fc7
IM
2116}
2117
6751b71e 2118static int
cdd6c482 2119group_sched_in(struct perf_event *group_event,
6751b71e 2120 struct perf_cpu_context *cpuctx,
6e37738a 2121 struct perf_event_context *ctx)
6751b71e 2122{
6bde9b6c 2123 struct perf_event *event, *partial_group = NULL;
4a234593 2124 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2125 u64 now = ctx->time;
2126 bool simulate = false;
6751b71e 2127
cdd6c482 2128 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2129 return 0;
2130
fbbe0701 2131 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2132
9ffcfa6f 2133 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2134 pmu->cancel_txn(pmu);
272325c4 2135 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2136 return -EAGAIN;
90151c35 2137 }
6751b71e
PM
2138
2139 /*
2140 * Schedule in siblings as one group (if any):
2141 */
cdd6c482 2142 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2143 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2144 partial_group = event;
6751b71e
PM
2145 goto group_error;
2146 }
2147 }
2148
9ffcfa6f 2149 if (!pmu->commit_txn(pmu))
6e85158c 2150 return 0;
9ffcfa6f 2151
6751b71e
PM
2152group_error:
2153 /*
2154 * Groups can be scheduled in as one unit only, so undo any
2155 * partial group before returning:
d7842da4
SE
2156 * The events up to the failed event are scheduled out normally,
2157 * tstamp_stopped will be updated.
2158 *
2159 * The failed events and the remaining siblings need to have
2160 * their timings updated as if they had gone thru event_sched_in()
2161 * and event_sched_out(). This is required to get consistent timings
2162 * across the group. This also takes care of the case where the group
2163 * could never be scheduled by ensuring tstamp_stopped is set to mark
2164 * the time the event was actually stopped, such that time delta
2165 * calculation in update_event_times() is correct.
6751b71e 2166 */
cdd6c482
IM
2167 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2168 if (event == partial_group)
d7842da4
SE
2169 simulate = true;
2170
2171 if (simulate) {
2172 event->tstamp_running += now - event->tstamp_stopped;
2173 event->tstamp_stopped = now;
2174 } else {
2175 event_sched_out(event, cpuctx, ctx);
2176 }
6751b71e 2177 }
9ffcfa6f 2178 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2179
ad5133b7 2180 pmu->cancel_txn(pmu);
90151c35 2181
272325c4 2182 perf_mux_hrtimer_restart(cpuctx);
9e630205 2183
6751b71e
PM
2184 return -EAGAIN;
2185}
2186
3b6f9e5c 2187/*
cdd6c482 2188 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2189 */
cdd6c482 2190static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2191 struct perf_cpu_context *cpuctx,
2192 int can_add_hw)
2193{
2194 /*
cdd6c482 2195 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2196 */
4ff6a8de 2197 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2198 return 1;
2199 /*
2200 * If an exclusive group is already on, no other hardware
cdd6c482 2201 * events can go on.
3b6f9e5c
PM
2202 */
2203 if (cpuctx->exclusive)
2204 return 0;
2205 /*
2206 * If this group is exclusive and there are already
cdd6c482 2207 * events on the CPU, it can't go on.
3b6f9e5c 2208 */
cdd6c482 2209 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2210 return 0;
2211 /*
2212 * Otherwise, try to add it if all previous groups were able
2213 * to go on.
2214 */
2215 return can_add_hw;
2216}
2217
cdd6c482
IM
2218static void add_event_to_ctx(struct perf_event *event,
2219 struct perf_event_context *ctx)
53cfbf59 2220{
4158755d
SE
2221 u64 tstamp = perf_event_time(event);
2222
cdd6c482 2223 list_add_event(event, ctx);
8a49542c 2224 perf_group_attach(event);
4158755d
SE
2225 event->tstamp_enabled = tstamp;
2226 event->tstamp_running = tstamp;
2227 event->tstamp_stopped = tstamp;
53cfbf59
PM
2228}
2229
bd2afa49
PZ
2230static void ctx_sched_out(struct perf_event_context *ctx,
2231 struct perf_cpu_context *cpuctx,
2232 enum event_type_t event_type);
2c29ef0f
PZ
2233static void
2234ctx_sched_in(struct perf_event_context *ctx,
2235 struct perf_cpu_context *cpuctx,
2236 enum event_type_t event_type,
2237 struct task_struct *task);
fe4b04fa 2238
bd2afa49 2239static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2240 struct perf_event_context *ctx,
2241 enum event_type_t event_type)
bd2afa49
PZ
2242{
2243 if (!cpuctx->task_ctx)
2244 return;
2245
2246 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2247 return;
2248
487f05e1 2249 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2250}
2251
dce5855b
PZ
2252static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2253 struct perf_event_context *ctx,
2254 struct task_struct *task)
2255{
2256 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2257 if (ctx)
2258 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2259 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2260 if (ctx)
2261 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2262}
2263
487f05e1
AS
2264/*
2265 * We want to maintain the following priority of scheduling:
2266 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2267 * - task pinned (EVENT_PINNED)
2268 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2269 * - task flexible (EVENT_FLEXIBLE).
2270 *
2271 * In order to avoid unscheduling and scheduling back in everything every
2272 * time an event is added, only do it for the groups of equal priority and
2273 * below.
2274 *
2275 * This can be called after a batch operation on task events, in which case
2276 * event_type is a bit mask of the types of events involved. For CPU events,
2277 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2278 */
3e349507 2279static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2280 struct perf_event_context *task_ctx,
2281 enum event_type_t event_type)
0017960f 2282{
487f05e1
AS
2283 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2284 bool cpu_event = !!(event_type & EVENT_CPU);
2285
2286 /*
2287 * If pinned groups are involved, flexible groups also need to be
2288 * scheduled out.
2289 */
2290 if (event_type & EVENT_PINNED)
2291 event_type |= EVENT_FLEXIBLE;
2292
3e349507
PZ
2293 perf_pmu_disable(cpuctx->ctx.pmu);
2294 if (task_ctx)
487f05e1
AS
2295 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2296
2297 /*
2298 * Decide which cpu ctx groups to schedule out based on the types
2299 * of events that caused rescheduling:
2300 * - EVENT_CPU: schedule out corresponding groups;
2301 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2302 * - otherwise, do nothing more.
2303 */
2304 if (cpu_event)
2305 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2306 else if (ctx_event_type & EVENT_PINNED)
2307 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2308
3e349507
PZ
2309 perf_event_sched_in(cpuctx, task_ctx, current);
2310 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2311}
2312
0793a61d 2313/*
cdd6c482 2314 * Cross CPU call to install and enable a performance event
682076ae 2315 *
a096309b
PZ
2316 * Very similar to remote_function() + event_function() but cannot assume that
2317 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2318 */
fe4b04fa 2319static int __perf_install_in_context(void *info)
0793a61d 2320{
a096309b
PZ
2321 struct perf_event *event = info;
2322 struct perf_event_context *ctx = event->ctx;
108b02cf 2323 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2324 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2325 bool reprogram = true;
a096309b 2326 int ret = 0;
0793a61d 2327
63b6da39 2328 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2329 if (ctx->task) {
b58f6b0d
PZ
2330 raw_spin_lock(&ctx->lock);
2331 task_ctx = ctx;
a096309b 2332
63cae12b 2333 reprogram = (ctx->task == current);
b58f6b0d 2334
39a43640 2335 /*
63cae12b
PZ
2336 * If the task is running, it must be running on this CPU,
2337 * otherwise we cannot reprogram things.
2338 *
2339 * If its not running, we don't care, ctx->lock will
2340 * serialize against it becoming runnable.
39a43640 2341 */
63cae12b
PZ
2342 if (task_curr(ctx->task) && !reprogram) {
2343 ret = -ESRCH;
2344 goto unlock;
2345 }
a096309b 2346
63cae12b 2347 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2348 } else if (task_ctx) {
2349 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2350 }
b58f6b0d 2351
63cae12b 2352 if (reprogram) {
a096309b
PZ
2353 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2354 add_event_to_ctx(event, ctx);
487f05e1 2355 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2356 } else {
2357 add_event_to_ctx(event, ctx);
2358 }
2359
63b6da39 2360unlock:
2c29ef0f 2361 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2362
a096309b 2363 return ret;
0793a61d
TG
2364}
2365
2366/*
a096309b
PZ
2367 * Attach a performance event to a context.
2368 *
2369 * Very similar to event_function_call, see comment there.
0793a61d
TG
2370 */
2371static void
cdd6c482
IM
2372perf_install_in_context(struct perf_event_context *ctx,
2373 struct perf_event *event,
0793a61d
TG
2374 int cpu)
2375{
a096309b 2376 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2377
fe4b04fa
PZ
2378 lockdep_assert_held(&ctx->mutex);
2379
0cda4c02
YZ
2380 if (event->cpu != -1)
2381 event->cpu = cpu;
c3f00c70 2382
0b8f1e2e
PZ
2383 /*
2384 * Ensures that if we can observe event->ctx, both the event and ctx
2385 * will be 'complete'. See perf_iterate_sb_cpu().
2386 */
2387 smp_store_release(&event->ctx, ctx);
2388
a096309b
PZ
2389 if (!task) {
2390 cpu_function_call(cpu, __perf_install_in_context, event);
2391 return;
2392 }
2393
2394 /*
2395 * Should not happen, we validate the ctx is still alive before calling.
2396 */
2397 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2398 return;
2399
39a43640
PZ
2400 /*
2401 * Installing events is tricky because we cannot rely on ctx->is_active
2402 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2403 *
2404 * Instead we use task_curr(), which tells us if the task is running.
2405 * However, since we use task_curr() outside of rq::lock, we can race
2406 * against the actual state. This means the result can be wrong.
2407 *
2408 * If we get a false positive, we retry, this is harmless.
2409 *
2410 * If we get a false negative, things are complicated. If we are after
2411 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2412 * value must be correct. If we're before, it doesn't matter since
2413 * perf_event_context_sched_in() will program the counter.
2414 *
2415 * However, this hinges on the remote context switch having observed
2416 * our task->perf_event_ctxp[] store, such that it will in fact take
2417 * ctx::lock in perf_event_context_sched_in().
2418 *
2419 * We do this by task_function_call(), if the IPI fails to hit the task
2420 * we know any future context switch of task must see the
2421 * perf_event_ctpx[] store.
39a43640 2422 */
63cae12b 2423
63b6da39 2424 /*
63cae12b
PZ
2425 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2426 * task_cpu() load, such that if the IPI then does not find the task
2427 * running, a future context switch of that task must observe the
2428 * store.
63b6da39 2429 */
63cae12b
PZ
2430 smp_mb();
2431again:
2432 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2433 return;
2434
2435 raw_spin_lock_irq(&ctx->lock);
2436 task = ctx->task;
84c4e620 2437 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2438 /*
2439 * Cannot happen because we already checked above (which also
2440 * cannot happen), and we hold ctx->mutex, which serializes us
2441 * against perf_event_exit_task_context().
2442 */
63b6da39
PZ
2443 raw_spin_unlock_irq(&ctx->lock);
2444 return;
2445 }
39a43640 2446 /*
63cae12b
PZ
2447 * If the task is not running, ctx->lock will avoid it becoming so,
2448 * thus we can safely install the event.
39a43640 2449 */
63cae12b
PZ
2450 if (task_curr(task)) {
2451 raw_spin_unlock_irq(&ctx->lock);
2452 goto again;
2453 }
2454 add_event_to_ctx(event, ctx);
2455 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2456}
2457
fa289bec 2458/*
cdd6c482 2459 * Put a event into inactive state and update time fields.
fa289bec
PM
2460 * Enabling the leader of a group effectively enables all
2461 * the group members that aren't explicitly disabled, so we
2462 * have to update their ->tstamp_enabled also.
2463 * Note: this works for group members as well as group leaders
2464 * since the non-leader members' sibling_lists will be empty.
2465 */
1d9b482e 2466static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2467{
cdd6c482 2468 struct perf_event *sub;
4158755d 2469 u64 tstamp = perf_event_time(event);
fa289bec 2470
cdd6c482 2471 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2472 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2473 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2474 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2475 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2476 }
fa289bec
PM
2477}
2478
d859e29f 2479/*
cdd6c482 2480 * Cross CPU call to enable a performance event
d859e29f 2481 */
fae3fde6
PZ
2482static void __perf_event_enable(struct perf_event *event,
2483 struct perf_cpu_context *cpuctx,
2484 struct perf_event_context *ctx,
2485 void *info)
04289bb9 2486{
cdd6c482 2487 struct perf_event *leader = event->group_leader;
fae3fde6 2488 struct perf_event_context *task_ctx;
04289bb9 2489
6e801e01
PZ
2490 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2491 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2492 return;
3cbed429 2493
bd2afa49
PZ
2494 if (ctx->is_active)
2495 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2496
1d9b482e 2497 __perf_event_mark_enabled(event);
04289bb9 2498
fae3fde6
PZ
2499 if (!ctx->is_active)
2500 return;
2501
e5d1367f 2502 if (!event_filter_match(event)) {
bd2afa49 2503 if (is_cgroup_event(event))
e5d1367f 2504 perf_cgroup_defer_enabled(event);
bd2afa49 2505 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2506 return;
e5d1367f 2507 }
f4c4176f 2508
04289bb9 2509 /*
cdd6c482 2510 * If the event is in a group and isn't the group leader,
d859e29f 2511 * then don't put it on unless the group is on.
04289bb9 2512 */
bd2afa49
PZ
2513 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2514 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2515 return;
bd2afa49 2516 }
fe4b04fa 2517
fae3fde6
PZ
2518 task_ctx = cpuctx->task_ctx;
2519 if (ctx->task)
2520 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2521
487f05e1 2522 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2523}
2524
d859e29f 2525/*
cdd6c482 2526 * Enable a event.
c93f7669 2527 *
cdd6c482
IM
2528 * If event->ctx is a cloned context, callers must make sure that
2529 * every task struct that event->ctx->task could possibly point to
c93f7669 2530 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2531 * perf_event_for_each_child or perf_event_for_each as described
2532 * for perf_event_disable.
d859e29f 2533 */
f63a8daa 2534static void _perf_event_enable(struct perf_event *event)
d859e29f 2535{
cdd6c482 2536 struct perf_event_context *ctx = event->ctx;
d859e29f 2537
7b648018 2538 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2539 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2540 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2541 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2542 return;
2543 }
2544
d859e29f 2545 /*
cdd6c482 2546 * If the event is in error state, clear that first.
7b648018
PZ
2547 *
2548 * That way, if we see the event in error state below, we know that it
2549 * has gone back into error state, as distinct from the task having
2550 * been scheduled away before the cross-call arrived.
d859e29f 2551 */
cdd6c482
IM
2552 if (event->state == PERF_EVENT_STATE_ERROR)
2553 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2554 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2555
fae3fde6 2556 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2557}
f63a8daa
PZ
2558
2559/*
2560 * See perf_event_disable();
2561 */
2562void perf_event_enable(struct perf_event *event)
2563{
2564 struct perf_event_context *ctx;
2565
2566 ctx = perf_event_ctx_lock(event);
2567 _perf_event_enable(event);
2568 perf_event_ctx_unlock(event, ctx);
2569}
dcfce4a0 2570EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2571
375637bc
AS
2572struct stop_event_data {
2573 struct perf_event *event;
2574 unsigned int restart;
2575};
2576
95ff4ca2
AS
2577static int __perf_event_stop(void *info)
2578{
375637bc
AS
2579 struct stop_event_data *sd = info;
2580 struct perf_event *event = sd->event;
95ff4ca2 2581
375637bc 2582 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2583 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2584 return 0;
2585
2586 /* matches smp_wmb() in event_sched_in() */
2587 smp_rmb();
2588
2589 /*
2590 * There is a window with interrupts enabled before we get here,
2591 * so we need to check again lest we try to stop another CPU's event.
2592 */
2593 if (READ_ONCE(event->oncpu) != smp_processor_id())
2594 return -EAGAIN;
2595
2596 event->pmu->stop(event, PERF_EF_UPDATE);
2597
375637bc
AS
2598 /*
2599 * May race with the actual stop (through perf_pmu_output_stop()),
2600 * but it is only used for events with AUX ring buffer, and such
2601 * events will refuse to restart because of rb::aux_mmap_count==0,
2602 * see comments in perf_aux_output_begin().
2603 *
2604 * Since this is happening on a event-local CPU, no trace is lost
2605 * while restarting.
2606 */
2607 if (sd->restart)
c9bbdd48 2608 event->pmu->start(event, 0);
375637bc 2609
95ff4ca2
AS
2610 return 0;
2611}
2612
767ae086 2613static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2614{
2615 struct stop_event_data sd = {
2616 .event = event,
767ae086 2617 .restart = restart,
375637bc
AS
2618 };
2619 int ret = 0;
2620
2621 do {
2622 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2623 return 0;
2624
2625 /* matches smp_wmb() in event_sched_in() */
2626 smp_rmb();
2627
2628 /*
2629 * We only want to restart ACTIVE events, so if the event goes
2630 * inactive here (event->oncpu==-1), there's nothing more to do;
2631 * fall through with ret==-ENXIO.
2632 */
2633 ret = cpu_function_call(READ_ONCE(event->oncpu),
2634 __perf_event_stop, &sd);
2635 } while (ret == -EAGAIN);
2636
2637 return ret;
2638}
2639
2640/*
2641 * In order to contain the amount of racy and tricky in the address filter
2642 * configuration management, it is a two part process:
2643 *
2644 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2645 * we update the addresses of corresponding vmas in
2646 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2647 * (p2) when an event is scheduled in (pmu::add), it calls
2648 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2649 * if the generation has changed since the previous call.
2650 *
2651 * If (p1) happens while the event is active, we restart it to force (p2).
2652 *
2653 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2654 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2655 * ioctl;
2656 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2657 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2658 * for reading;
2659 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2660 * of exec.
2661 */
2662void perf_event_addr_filters_sync(struct perf_event *event)
2663{
2664 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2665
2666 if (!has_addr_filter(event))
2667 return;
2668
2669 raw_spin_lock(&ifh->lock);
2670 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2671 event->pmu->addr_filters_sync(event);
2672 event->hw.addr_filters_gen = event->addr_filters_gen;
2673 }
2674 raw_spin_unlock(&ifh->lock);
2675}
2676EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2677
f63a8daa 2678static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2679{
2023b359 2680 /*
cdd6c482 2681 * not supported on inherited events
2023b359 2682 */
2e939d1d 2683 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2684 return -EINVAL;
2685
cdd6c482 2686 atomic_add(refresh, &event->event_limit);
f63a8daa 2687 _perf_event_enable(event);
2023b359
PZ
2688
2689 return 0;
79f14641 2690}
f63a8daa
PZ
2691
2692/*
2693 * See perf_event_disable()
2694 */
2695int perf_event_refresh(struct perf_event *event, int refresh)
2696{
2697 struct perf_event_context *ctx;
2698 int ret;
2699
2700 ctx = perf_event_ctx_lock(event);
2701 ret = _perf_event_refresh(event, refresh);
2702 perf_event_ctx_unlock(event, ctx);
2703
2704 return ret;
2705}
26ca5c11 2706EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2707
5b0311e1
FW
2708static void ctx_sched_out(struct perf_event_context *ctx,
2709 struct perf_cpu_context *cpuctx,
2710 enum event_type_t event_type)
235c7fc7 2711{
db24d33e 2712 int is_active = ctx->is_active;
c994d613 2713 struct perf_event *event;
235c7fc7 2714
c994d613 2715 lockdep_assert_held(&ctx->lock);
235c7fc7 2716
39a43640
PZ
2717 if (likely(!ctx->nr_events)) {
2718 /*
2719 * See __perf_remove_from_context().
2720 */
2721 WARN_ON_ONCE(ctx->is_active);
2722 if (ctx->task)
2723 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2724 return;
39a43640
PZ
2725 }
2726
db24d33e 2727 ctx->is_active &= ~event_type;
3cbaa590
PZ
2728 if (!(ctx->is_active & EVENT_ALL))
2729 ctx->is_active = 0;
2730
63e30d3e
PZ
2731 if (ctx->task) {
2732 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2733 if (!ctx->is_active)
2734 cpuctx->task_ctx = NULL;
2735 }
facc4307 2736
8fdc6539
PZ
2737 /*
2738 * Always update time if it was set; not only when it changes.
2739 * Otherwise we can 'forget' to update time for any but the last
2740 * context we sched out. For example:
2741 *
2742 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2743 * ctx_sched_out(.event_type = EVENT_PINNED)
2744 *
2745 * would only update time for the pinned events.
2746 */
3cbaa590
PZ
2747 if (is_active & EVENT_TIME) {
2748 /* update (and stop) ctx time */
2749 update_context_time(ctx);
2750 update_cgrp_time_from_cpuctx(cpuctx);
2751 }
2752
8fdc6539
PZ
2753 is_active ^= ctx->is_active; /* changed bits */
2754
3cbaa590 2755 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2756 return;
5b0311e1 2757
075e0b00 2758 perf_pmu_disable(ctx->pmu);
3cbaa590 2759 if (is_active & EVENT_PINNED) {
889ff015
FW
2760 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2761 group_sched_out(event, cpuctx, ctx);
9ed6060d 2762 }
889ff015 2763
3cbaa590 2764 if (is_active & EVENT_FLEXIBLE) {
889ff015 2765 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2766 group_sched_out(event, cpuctx, ctx);
9ed6060d 2767 }
1b9a644f 2768 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2769}
2770
564c2b21 2771/*
5a3126d4
PZ
2772 * Test whether two contexts are equivalent, i.e. whether they have both been
2773 * cloned from the same version of the same context.
2774 *
2775 * Equivalence is measured using a generation number in the context that is
2776 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2777 * and list_del_event().
564c2b21 2778 */
cdd6c482
IM
2779static int context_equiv(struct perf_event_context *ctx1,
2780 struct perf_event_context *ctx2)
564c2b21 2781{
211de6eb
PZ
2782 lockdep_assert_held(&ctx1->lock);
2783 lockdep_assert_held(&ctx2->lock);
2784
5a3126d4
PZ
2785 /* Pinning disables the swap optimization */
2786 if (ctx1->pin_count || ctx2->pin_count)
2787 return 0;
2788
2789 /* If ctx1 is the parent of ctx2 */
2790 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2791 return 1;
2792
2793 /* If ctx2 is the parent of ctx1 */
2794 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2795 return 1;
2796
2797 /*
2798 * If ctx1 and ctx2 have the same parent; we flatten the parent
2799 * hierarchy, see perf_event_init_context().
2800 */
2801 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2802 ctx1->parent_gen == ctx2->parent_gen)
2803 return 1;
2804
2805 /* Unmatched */
2806 return 0;
564c2b21
PM
2807}
2808
cdd6c482
IM
2809static void __perf_event_sync_stat(struct perf_event *event,
2810 struct perf_event *next_event)
bfbd3381
PZ
2811{
2812 u64 value;
2813
cdd6c482 2814 if (!event->attr.inherit_stat)
bfbd3381
PZ
2815 return;
2816
2817 /*
cdd6c482 2818 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2819 * because we're in the middle of a context switch and have IRQs
2820 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2821 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2822 * don't need to use it.
2823 */
cdd6c482
IM
2824 switch (event->state) {
2825 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2826 event->pmu->read(event);
2827 /* fall-through */
bfbd3381 2828
cdd6c482
IM
2829 case PERF_EVENT_STATE_INACTIVE:
2830 update_event_times(event);
bfbd3381
PZ
2831 break;
2832
2833 default:
2834 break;
2835 }
2836
2837 /*
cdd6c482 2838 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2839 * values when we flip the contexts.
2840 */
e7850595
PZ
2841 value = local64_read(&next_event->count);
2842 value = local64_xchg(&event->count, value);
2843 local64_set(&next_event->count, value);
bfbd3381 2844
cdd6c482
IM
2845 swap(event->total_time_enabled, next_event->total_time_enabled);
2846 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2847
bfbd3381 2848 /*
19d2e755 2849 * Since we swizzled the values, update the user visible data too.
bfbd3381 2850 */
cdd6c482
IM
2851 perf_event_update_userpage(event);
2852 perf_event_update_userpage(next_event);
bfbd3381
PZ
2853}
2854
cdd6c482
IM
2855static void perf_event_sync_stat(struct perf_event_context *ctx,
2856 struct perf_event_context *next_ctx)
bfbd3381 2857{
cdd6c482 2858 struct perf_event *event, *next_event;
bfbd3381
PZ
2859
2860 if (!ctx->nr_stat)
2861 return;
2862
02ffdbc8
PZ
2863 update_context_time(ctx);
2864
cdd6c482
IM
2865 event = list_first_entry(&ctx->event_list,
2866 struct perf_event, event_entry);
bfbd3381 2867
cdd6c482
IM
2868 next_event = list_first_entry(&next_ctx->event_list,
2869 struct perf_event, event_entry);
bfbd3381 2870
cdd6c482
IM
2871 while (&event->event_entry != &ctx->event_list &&
2872 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2873
cdd6c482 2874 __perf_event_sync_stat(event, next_event);
bfbd3381 2875
cdd6c482
IM
2876 event = list_next_entry(event, event_entry);
2877 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2878 }
2879}
2880
fe4b04fa
PZ
2881static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2882 struct task_struct *next)
0793a61d 2883{
8dc85d54 2884 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2885 struct perf_event_context *next_ctx;
5a3126d4 2886 struct perf_event_context *parent, *next_parent;
108b02cf 2887 struct perf_cpu_context *cpuctx;
c93f7669 2888 int do_switch = 1;
0793a61d 2889
108b02cf
PZ
2890 if (likely(!ctx))
2891 return;
10989fb2 2892
108b02cf
PZ
2893 cpuctx = __get_cpu_context(ctx);
2894 if (!cpuctx->task_ctx)
0793a61d
TG
2895 return;
2896
c93f7669 2897 rcu_read_lock();
8dc85d54 2898 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2899 if (!next_ctx)
2900 goto unlock;
2901
2902 parent = rcu_dereference(ctx->parent_ctx);
2903 next_parent = rcu_dereference(next_ctx->parent_ctx);
2904
2905 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2906 if (!parent && !next_parent)
5a3126d4
PZ
2907 goto unlock;
2908
2909 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2910 /*
2911 * Looks like the two contexts are clones, so we might be
2912 * able to optimize the context switch. We lock both
2913 * contexts and check that they are clones under the
2914 * lock (including re-checking that neither has been
2915 * uncloned in the meantime). It doesn't matter which
2916 * order we take the locks because no other cpu could
2917 * be trying to lock both of these tasks.
2918 */
e625cce1
TG
2919 raw_spin_lock(&ctx->lock);
2920 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2921 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2922 WRITE_ONCE(ctx->task, next);
2923 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2924
2925 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2926
63b6da39
PZ
2927 /*
2928 * RCU_INIT_POINTER here is safe because we've not
2929 * modified the ctx and the above modification of
2930 * ctx->task and ctx->task_ctx_data are immaterial
2931 * since those values are always verified under
2932 * ctx->lock which we're now holding.
2933 */
2934 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2935 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2936
c93f7669 2937 do_switch = 0;
bfbd3381 2938
cdd6c482 2939 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2940 }
e625cce1
TG
2941 raw_spin_unlock(&next_ctx->lock);
2942 raw_spin_unlock(&ctx->lock);
564c2b21 2943 }
5a3126d4 2944unlock:
c93f7669 2945 rcu_read_unlock();
564c2b21 2946
c93f7669 2947 if (do_switch) {
facc4307 2948 raw_spin_lock(&ctx->lock);
487f05e1 2949 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2950 raw_spin_unlock(&ctx->lock);
c93f7669 2951 }
0793a61d
TG
2952}
2953
e48c1788
PZ
2954static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2955
ba532500
YZ
2956void perf_sched_cb_dec(struct pmu *pmu)
2957{
e48c1788
PZ
2958 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2959
ba532500 2960 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2961
2962 if (!--cpuctx->sched_cb_usage)
2963 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2964}
2965
e48c1788 2966
ba532500
YZ
2967void perf_sched_cb_inc(struct pmu *pmu)
2968{
e48c1788
PZ
2969 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2970
2971 if (!cpuctx->sched_cb_usage++)
2972 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2973
ba532500
YZ
2974 this_cpu_inc(perf_sched_cb_usages);
2975}
2976
2977/*
2978 * This function provides the context switch callback to the lower code
2979 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
2980 *
2981 * This callback is relevant even to per-cpu events; for example multi event
2982 * PEBS requires this to provide PID/TID information. This requires we flush
2983 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
2984 */
2985static void perf_pmu_sched_task(struct task_struct *prev,
2986 struct task_struct *next,
2987 bool sched_in)
2988{
2989 struct perf_cpu_context *cpuctx;
2990 struct pmu *pmu;
ba532500
YZ
2991
2992 if (prev == next)
2993 return;
2994
e48c1788 2995 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 2996 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 2997
e48c1788
PZ
2998 if (WARN_ON_ONCE(!pmu->sched_task))
2999 continue;
ba532500 3000
e48c1788
PZ
3001 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3002 perf_pmu_disable(pmu);
ba532500 3003
e48c1788 3004 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3005
e48c1788
PZ
3006 perf_pmu_enable(pmu);
3007 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3008 }
ba532500
YZ
3009}
3010
45ac1403
AH
3011static void perf_event_switch(struct task_struct *task,
3012 struct task_struct *next_prev, bool sched_in);
3013
8dc85d54
PZ
3014#define for_each_task_context_nr(ctxn) \
3015 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3016
3017/*
3018 * Called from scheduler to remove the events of the current task,
3019 * with interrupts disabled.
3020 *
3021 * We stop each event and update the event value in event->count.
3022 *
3023 * This does not protect us against NMI, but disable()
3024 * sets the disabled bit in the control field of event _before_
3025 * accessing the event control register. If a NMI hits, then it will
3026 * not restart the event.
3027 */
ab0cce56
JO
3028void __perf_event_task_sched_out(struct task_struct *task,
3029 struct task_struct *next)
8dc85d54
PZ
3030{
3031 int ctxn;
3032
ba532500
YZ
3033 if (__this_cpu_read(perf_sched_cb_usages))
3034 perf_pmu_sched_task(task, next, false);
3035
45ac1403
AH
3036 if (atomic_read(&nr_switch_events))
3037 perf_event_switch(task, next, false);
3038
8dc85d54
PZ
3039 for_each_task_context_nr(ctxn)
3040 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3041
3042 /*
3043 * if cgroup events exist on this CPU, then we need
3044 * to check if we have to switch out PMU state.
3045 * cgroup event are system-wide mode only
3046 */
4a32fea9 3047 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3048 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3049}
3050
5b0311e1
FW
3051/*
3052 * Called with IRQs disabled
3053 */
3054static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3055 enum event_type_t event_type)
3056{
3057 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3058}
3059
235c7fc7 3060static void
5b0311e1 3061ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 3062 struct perf_cpu_context *cpuctx)
0793a61d 3063{
cdd6c482 3064 struct perf_event *event;
0793a61d 3065
889ff015
FW
3066 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3067 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3068 continue;
5632ab12 3069 if (!event_filter_match(event))
3b6f9e5c
PM
3070 continue;
3071
e5d1367f
SE
3072 /* may need to reset tstamp_enabled */
3073 if (is_cgroup_event(event))
3074 perf_cgroup_mark_enabled(event, ctx);
3075
8c9ed8e1 3076 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3077 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3078
3079 /*
3080 * If this pinned group hasn't been scheduled,
3081 * put it in error state.
3082 */
cdd6c482
IM
3083 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3084 update_group_times(event);
3085 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 3086 }
3b6f9e5c 3087 }
5b0311e1
FW
3088}
3089
3090static void
3091ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3092 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3093{
3094 struct perf_event *event;
3095 int can_add_hw = 1;
3b6f9e5c 3096
889ff015
FW
3097 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3098 /* Ignore events in OFF or ERROR state */
3099 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3100 continue;
04289bb9
IM
3101 /*
3102 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3103 * of events:
04289bb9 3104 */
5632ab12 3105 if (!event_filter_match(event))
0793a61d
TG
3106 continue;
3107
e5d1367f
SE
3108 /* may need to reset tstamp_enabled */
3109 if (is_cgroup_event(event))
3110 perf_cgroup_mark_enabled(event, ctx);
3111
9ed6060d 3112 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3113 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3114 can_add_hw = 0;
9ed6060d 3115 }
0793a61d 3116 }
5b0311e1
FW
3117}
3118
3119static void
3120ctx_sched_in(struct perf_event_context *ctx,
3121 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3122 enum event_type_t event_type,
3123 struct task_struct *task)
5b0311e1 3124{
db24d33e 3125 int is_active = ctx->is_active;
c994d613
PZ
3126 u64 now;
3127
3128 lockdep_assert_held(&ctx->lock);
e5d1367f 3129
5b0311e1 3130 if (likely(!ctx->nr_events))
facc4307 3131 return;
5b0311e1 3132
3cbaa590 3133 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3134 if (ctx->task) {
3135 if (!is_active)
3136 cpuctx->task_ctx = ctx;
3137 else
3138 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3139 }
3140
3cbaa590
PZ
3141 is_active ^= ctx->is_active; /* changed bits */
3142
3143 if (is_active & EVENT_TIME) {
3144 /* start ctx time */
3145 now = perf_clock();
3146 ctx->timestamp = now;
3147 perf_cgroup_set_timestamp(task, ctx);
3148 }
3149
5b0311e1
FW
3150 /*
3151 * First go through the list and put on any pinned groups
3152 * in order to give them the best chance of going on.
3153 */
3cbaa590 3154 if (is_active & EVENT_PINNED)
6e37738a 3155 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3156
3157 /* Then walk through the lower prio flexible groups */
3cbaa590 3158 if (is_active & EVENT_FLEXIBLE)
6e37738a 3159 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3160}
3161
329c0e01 3162static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3163 enum event_type_t event_type,
3164 struct task_struct *task)
329c0e01
FW
3165{
3166 struct perf_event_context *ctx = &cpuctx->ctx;
3167
e5d1367f 3168 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3169}
3170
e5d1367f
SE
3171static void perf_event_context_sched_in(struct perf_event_context *ctx,
3172 struct task_struct *task)
235c7fc7 3173{
108b02cf 3174 struct perf_cpu_context *cpuctx;
235c7fc7 3175
108b02cf 3176 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3177 if (cpuctx->task_ctx == ctx)
3178 return;
3179
facc4307 3180 perf_ctx_lock(cpuctx, ctx);
1b9a644f 3181 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3182 /*
3183 * We want to keep the following priority order:
3184 * cpu pinned (that don't need to move), task pinned,
3185 * cpu flexible, task flexible.
fe45bafb
AS
3186 *
3187 * However, if task's ctx is not carrying any pinned
3188 * events, no need to flip the cpuctx's events around.
329c0e01 3189 */
fe45bafb
AS
3190 if (!list_empty(&ctx->pinned_groups))
3191 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3192 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
3193 perf_pmu_enable(ctx->pmu);
3194 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3195}
3196
8dc85d54
PZ
3197/*
3198 * Called from scheduler to add the events of the current task
3199 * with interrupts disabled.
3200 *
3201 * We restore the event value and then enable it.
3202 *
3203 * This does not protect us against NMI, but enable()
3204 * sets the enabled bit in the control field of event _before_
3205 * accessing the event control register. If a NMI hits, then it will
3206 * keep the event running.
3207 */
ab0cce56
JO
3208void __perf_event_task_sched_in(struct task_struct *prev,
3209 struct task_struct *task)
8dc85d54
PZ
3210{
3211 struct perf_event_context *ctx;
3212 int ctxn;
3213
7e41d177
PZ
3214 /*
3215 * If cgroup events exist on this CPU, then we need to check if we have
3216 * to switch in PMU state; cgroup event are system-wide mode only.
3217 *
3218 * Since cgroup events are CPU events, we must schedule these in before
3219 * we schedule in the task events.
3220 */
3221 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3222 perf_cgroup_sched_in(prev, task);
3223
8dc85d54
PZ
3224 for_each_task_context_nr(ctxn) {
3225 ctx = task->perf_event_ctxp[ctxn];
3226 if (likely(!ctx))
3227 continue;
3228
e5d1367f 3229 perf_event_context_sched_in(ctx, task);
8dc85d54 3230 }
d010b332 3231
45ac1403
AH
3232 if (atomic_read(&nr_switch_events))
3233 perf_event_switch(task, prev, true);
3234
ba532500
YZ
3235 if (__this_cpu_read(perf_sched_cb_usages))
3236 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3237}
3238
abd50713
PZ
3239static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3240{
3241 u64 frequency = event->attr.sample_freq;
3242 u64 sec = NSEC_PER_SEC;
3243 u64 divisor, dividend;
3244
3245 int count_fls, nsec_fls, frequency_fls, sec_fls;
3246
3247 count_fls = fls64(count);
3248 nsec_fls = fls64(nsec);
3249 frequency_fls = fls64(frequency);
3250 sec_fls = 30;
3251
3252 /*
3253 * We got @count in @nsec, with a target of sample_freq HZ
3254 * the target period becomes:
3255 *
3256 * @count * 10^9
3257 * period = -------------------
3258 * @nsec * sample_freq
3259 *
3260 */
3261
3262 /*
3263 * Reduce accuracy by one bit such that @a and @b converge
3264 * to a similar magnitude.
3265 */
fe4b04fa 3266#define REDUCE_FLS(a, b) \
abd50713
PZ
3267do { \
3268 if (a##_fls > b##_fls) { \
3269 a >>= 1; \
3270 a##_fls--; \
3271 } else { \
3272 b >>= 1; \
3273 b##_fls--; \
3274 } \
3275} while (0)
3276
3277 /*
3278 * Reduce accuracy until either term fits in a u64, then proceed with
3279 * the other, so that finally we can do a u64/u64 division.
3280 */
3281 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3282 REDUCE_FLS(nsec, frequency);
3283 REDUCE_FLS(sec, count);
3284 }
3285
3286 if (count_fls + sec_fls > 64) {
3287 divisor = nsec * frequency;
3288
3289 while (count_fls + sec_fls > 64) {
3290 REDUCE_FLS(count, sec);
3291 divisor >>= 1;
3292 }
3293
3294 dividend = count * sec;
3295 } else {
3296 dividend = count * sec;
3297
3298 while (nsec_fls + frequency_fls > 64) {
3299 REDUCE_FLS(nsec, frequency);
3300 dividend >>= 1;
3301 }
3302
3303 divisor = nsec * frequency;
3304 }
3305
f6ab91ad
PZ
3306 if (!divisor)
3307 return dividend;
3308
abd50713
PZ
3309 return div64_u64(dividend, divisor);
3310}
3311
e050e3f0
SE
3312static DEFINE_PER_CPU(int, perf_throttled_count);
3313static DEFINE_PER_CPU(u64, perf_throttled_seq);
3314
f39d47ff 3315static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3316{
cdd6c482 3317 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3318 s64 period, sample_period;
bd2b5b12
PZ
3319 s64 delta;
3320
abd50713 3321 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3322
3323 delta = (s64)(period - hwc->sample_period);
3324 delta = (delta + 7) / 8; /* low pass filter */
3325
3326 sample_period = hwc->sample_period + delta;
3327
3328 if (!sample_period)
3329 sample_period = 1;
3330
bd2b5b12 3331 hwc->sample_period = sample_period;
abd50713 3332
e7850595 3333 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3334 if (disable)
3335 event->pmu->stop(event, PERF_EF_UPDATE);
3336
e7850595 3337 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3338
3339 if (disable)
3340 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3341 }
bd2b5b12
PZ
3342}
3343
e050e3f0
SE
3344/*
3345 * combine freq adjustment with unthrottling to avoid two passes over the
3346 * events. At the same time, make sure, having freq events does not change
3347 * the rate of unthrottling as that would introduce bias.
3348 */
3349static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3350 int needs_unthr)
60db5e09 3351{
cdd6c482
IM
3352 struct perf_event *event;
3353 struct hw_perf_event *hwc;
e050e3f0 3354 u64 now, period = TICK_NSEC;
abd50713 3355 s64 delta;
60db5e09 3356
e050e3f0
SE
3357 /*
3358 * only need to iterate over all events iff:
3359 * - context have events in frequency mode (needs freq adjust)
3360 * - there are events to unthrottle on this cpu
3361 */
3362 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3363 return;
3364
e050e3f0 3365 raw_spin_lock(&ctx->lock);
f39d47ff 3366 perf_pmu_disable(ctx->pmu);
e050e3f0 3367
03541f8b 3368 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3369 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3370 continue;
3371
5632ab12 3372 if (!event_filter_match(event))
5d27c23d
PZ
3373 continue;
3374
44377277
AS
3375 perf_pmu_disable(event->pmu);
3376
cdd6c482 3377 hwc = &event->hw;
6a24ed6c 3378
ae23bff1 3379 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3380 hwc->interrupts = 0;
cdd6c482 3381 perf_log_throttle(event, 1);
a4eaf7f1 3382 event->pmu->start(event, 0);
a78ac325
PZ
3383 }
3384
cdd6c482 3385 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3386 goto next;
60db5e09 3387
e050e3f0
SE
3388 /*
3389 * stop the event and update event->count
3390 */
3391 event->pmu->stop(event, PERF_EF_UPDATE);
3392
e7850595 3393 now = local64_read(&event->count);
abd50713
PZ
3394 delta = now - hwc->freq_count_stamp;
3395 hwc->freq_count_stamp = now;
60db5e09 3396
e050e3f0
SE
3397 /*
3398 * restart the event
3399 * reload only if value has changed
f39d47ff
SE
3400 * we have stopped the event so tell that
3401 * to perf_adjust_period() to avoid stopping it
3402 * twice.
e050e3f0 3403 */
abd50713 3404 if (delta > 0)
f39d47ff 3405 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3406
3407 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3408 next:
3409 perf_pmu_enable(event->pmu);
60db5e09 3410 }
e050e3f0 3411
f39d47ff 3412 perf_pmu_enable(ctx->pmu);
e050e3f0 3413 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3414}
3415
235c7fc7 3416/*
cdd6c482 3417 * Round-robin a context's events:
235c7fc7 3418 */
cdd6c482 3419static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3420{
dddd3379
TG
3421 /*
3422 * Rotate the first entry last of non-pinned groups. Rotation might be
3423 * disabled by the inheritance code.
3424 */
3425 if (!ctx->rotate_disable)
3426 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3427}
3428
9e630205 3429static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3430{
8dc85d54 3431 struct perf_event_context *ctx = NULL;
2fde4f94 3432 int rotate = 0;
7fc23a53 3433
b5ab4cd5 3434 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3435 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3436 rotate = 1;
3437 }
235c7fc7 3438
8dc85d54 3439 ctx = cpuctx->task_ctx;
b5ab4cd5 3440 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3441 if (ctx->nr_events != ctx->nr_active)
3442 rotate = 1;
3443 }
9717e6cd 3444
e050e3f0 3445 if (!rotate)
0f5a2601
PZ
3446 goto done;
3447
facc4307 3448 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3449 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3450
e050e3f0
SE
3451 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3452 if (ctx)
3453 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3454
e050e3f0
SE
3455 rotate_ctx(&cpuctx->ctx);
3456 if (ctx)
3457 rotate_ctx(ctx);
235c7fc7 3458
e050e3f0 3459 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3460
0f5a2601
PZ
3461 perf_pmu_enable(cpuctx->ctx.pmu);
3462 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3463done:
9e630205
SE
3464
3465 return rotate;
e9d2b064
PZ
3466}
3467
3468void perf_event_task_tick(void)
3469{
2fde4f94
MR
3470 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3471 struct perf_event_context *ctx, *tmp;
e050e3f0 3472 int throttled;
b5ab4cd5 3473
e9d2b064
PZ
3474 WARN_ON(!irqs_disabled());
3475
e050e3f0
SE
3476 __this_cpu_inc(perf_throttled_seq);
3477 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3478 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3479
2fde4f94 3480 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3481 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3482}
3483
889ff015
FW
3484static int event_enable_on_exec(struct perf_event *event,
3485 struct perf_event_context *ctx)
3486{
3487 if (!event->attr.enable_on_exec)
3488 return 0;
3489
3490 event->attr.enable_on_exec = 0;
3491 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3492 return 0;
3493
1d9b482e 3494 __perf_event_mark_enabled(event);
889ff015
FW
3495
3496 return 1;
3497}
3498
57e7986e 3499/*
cdd6c482 3500 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3501 * This expects task == current.
3502 */
c1274499 3503static void perf_event_enable_on_exec(int ctxn)
57e7986e 3504{
c1274499 3505 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3506 enum event_type_t event_type = 0;
3e349507 3507 struct perf_cpu_context *cpuctx;
cdd6c482 3508 struct perf_event *event;
57e7986e
PM
3509 unsigned long flags;
3510 int enabled = 0;
3511
3512 local_irq_save(flags);
c1274499 3513 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3514 if (!ctx || !ctx->nr_events)
57e7986e
PM
3515 goto out;
3516
3e349507
PZ
3517 cpuctx = __get_cpu_context(ctx);
3518 perf_ctx_lock(cpuctx, ctx);
7fce2509 3519 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3520 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3521 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3522 event_type |= get_event_type(event);
3523 }
57e7986e
PM
3524
3525 /*
3e349507 3526 * Unclone and reschedule this context if we enabled any event.
57e7986e 3527 */
3e349507 3528 if (enabled) {
211de6eb 3529 clone_ctx = unclone_ctx(ctx);
487f05e1 3530 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3531 } else {
3532 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3533 }
3534 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3535
9ed6060d 3536out:
57e7986e 3537 local_irq_restore(flags);
211de6eb
PZ
3538
3539 if (clone_ctx)
3540 put_ctx(clone_ctx);
57e7986e
PM
3541}
3542
0492d4c5
PZ
3543struct perf_read_data {
3544 struct perf_event *event;
3545 bool group;
7d88962e 3546 int ret;
0492d4c5
PZ
3547};
3548
451d24d1 3549static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3550{
d6a2f903
DCC
3551 u16 local_pkg, event_pkg;
3552
3553 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3554 int local_cpu = smp_processor_id();
3555
3556 event_pkg = topology_physical_package_id(event_cpu);
3557 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3558
3559 if (event_pkg == local_pkg)
3560 return local_cpu;
3561 }
3562
3563 return event_cpu;
3564}
3565
0793a61d 3566/*
cdd6c482 3567 * Cross CPU call to read the hardware event
0793a61d 3568 */
cdd6c482 3569static void __perf_event_read(void *info)
0793a61d 3570{
0492d4c5
PZ
3571 struct perf_read_data *data = info;
3572 struct perf_event *sub, *event = data->event;
cdd6c482 3573 struct perf_event_context *ctx = event->ctx;
108b02cf 3574 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3575 struct pmu *pmu = event->pmu;
621a01ea 3576
e1ac3614
PM
3577 /*
3578 * If this is a task context, we need to check whether it is
3579 * the current task context of this cpu. If not it has been
3580 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3581 * event->count would have been updated to a recent sample
3582 * when the event was scheduled out.
e1ac3614
PM
3583 */
3584 if (ctx->task && cpuctx->task_ctx != ctx)
3585 return;
3586
e625cce1 3587 raw_spin_lock(&ctx->lock);
e5d1367f 3588 if (ctx->is_active) {
542e72fc 3589 update_context_time(ctx);
e5d1367f
SE
3590 update_cgrp_time_from_event(event);
3591 }
0492d4c5 3592
cdd6c482 3593 update_event_times(event);
4a00c16e
SB
3594 if (event->state != PERF_EVENT_STATE_ACTIVE)
3595 goto unlock;
0492d4c5 3596
4a00c16e
SB
3597 if (!data->group) {
3598 pmu->read(event);
3599 data->ret = 0;
0492d4c5 3600 goto unlock;
4a00c16e
SB
3601 }
3602
3603 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3604
3605 pmu->read(event);
0492d4c5
PZ
3606
3607 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3608 update_event_times(sub);
4a00c16e
SB
3609 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3610 /*
3611 * Use sibling's PMU rather than @event's since
3612 * sibling could be on different (eg: software) PMU.
3613 */
0492d4c5 3614 sub->pmu->read(sub);
4a00c16e 3615 }
0492d4c5 3616 }
4a00c16e
SB
3617
3618 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3619
3620unlock:
e625cce1 3621 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3622}
3623
b5e58793
PZ
3624static inline u64 perf_event_count(struct perf_event *event)
3625{
eacd3ecc
MF
3626 if (event->pmu->count)
3627 return event->pmu->count(event);
3628
3629 return __perf_event_count(event);
b5e58793
PZ
3630}
3631
ffe8690c
KX
3632/*
3633 * NMI-safe method to read a local event, that is an event that
3634 * is:
3635 * - either for the current task, or for this CPU
3636 * - does not have inherit set, for inherited task events
3637 * will not be local and we cannot read them atomically
3638 * - must not have a pmu::count method
3639 */
3640u64 perf_event_read_local(struct perf_event *event)
3641{
3642 unsigned long flags;
3643 u64 val;
3644
3645 /*
3646 * Disabling interrupts avoids all counter scheduling (context
3647 * switches, timer based rotation and IPIs).
3648 */
3649 local_irq_save(flags);
3650
3651 /* If this is a per-task event, it must be for current */
3652 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3653 event->hw.target != current);
3654
3655 /* If this is a per-CPU event, it must be for this CPU */
3656 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3657 event->cpu != smp_processor_id());
3658
3659 /*
3660 * It must not be an event with inherit set, we cannot read
3661 * all child counters from atomic context.
3662 */
3663 WARN_ON_ONCE(event->attr.inherit);
3664
3665 /*
3666 * It must not have a pmu::count method, those are not
3667 * NMI safe.
3668 */
3669 WARN_ON_ONCE(event->pmu->count);
3670
3671 /*
3672 * If the event is currently on this CPU, its either a per-task event,
3673 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3674 * oncpu == -1).
3675 */
3676 if (event->oncpu == smp_processor_id())
3677 event->pmu->read(event);
3678
3679 val = local64_read(&event->count);
3680 local_irq_restore(flags);
3681
3682 return val;
3683}
3684
7d88962e 3685static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3686{
451d24d1 3687 int event_cpu, ret = 0;
7d88962e 3688
0793a61d 3689 /*
cdd6c482
IM
3690 * If event is enabled and currently active on a CPU, update the
3691 * value in the event structure:
0793a61d 3692 */
cdd6c482 3693 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3694 struct perf_read_data data = {
3695 .event = event,
3696 .group = group,
7d88962e 3697 .ret = 0,
0492d4c5 3698 };
d6a2f903 3699
451d24d1
PZ
3700 event_cpu = READ_ONCE(event->oncpu);
3701 if ((unsigned)event_cpu >= nr_cpu_ids)
3702 return 0;
3703
3704 preempt_disable();
3705 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3706
58763148
PZ
3707 /*
3708 * Purposely ignore the smp_call_function_single() return
3709 * value.
3710 *
451d24d1 3711 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3712 * scheduled out and that will have updated the event count.
3713 *
3714 * Therefore, either way, we'll have an up-to-date event count
3715 * after this.
3716 */
451d24d1
PZ
3717 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3718 preempt_enable();
58763148 3719 ret = data.ret;
cdd6c482 3720 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3721 struct perf_event_context *ctx = event->ctx;
3722 unsigned long flags;
3723
e625cce1 3724 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3725 /*
3726 * may read while context is not active
3727 * (e.g., thread is blocked), in that case
3728 * we cannot update context time
3729 */
e5d1367f 3730 if (ctx->is_active) {
c530ccd9 3731 update_context_time(ctx);
e5d1367f
SE
3732 update_cgrp_time_from_event(event);
3733 }
0492d4c5
PZ
3734 if (group)
3735 update_group_times(event);
3736 else
3737 update_event_times(event);
e625cce1 3738 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3739 }
7d88962e
SB
3740
3741 return ret;
0793a61d
TG
3742}
3743
a63eaf34 3744/*
cdd6c482 3745 * Initialize the perf_event context in a task_struct:
a63eaf34 3746 */
eb184479 3747static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3748{
e625cce1 3749 raw_spin_lock_init(&ctx->lock);
a63eaf34 3750 mutex_init(&ctx->mutex);
2fde4f94 3751 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3752 INIT_LIST_HEAD(&ctx->pinned_groups);
3753 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3754 INIT_LIST_HEAD(&ctx->event_list);
3755 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3756}
3757
3758static struct perf_event_context *
3759alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3760{
3761 struct perf_event_context *ctx;
3762
3763 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3764 if (!ctx)
3765 return NULL;
3766
3767 __perf_event_init_context(ctx);
3768 if (task) {
3769 ctx->task = task;
3770 get_task_struct(task);
0793a61d 3771 }
eb184479
PZ
3772 ctx->pmu = pmu;
3773
3774 return ctx;
a63eaf34
PM
3775}
3776
2ebd4ffb
MH
3777static struct task_struct *
3778find_lively_task_by_vpid(pid_t vpid)
3779{
3780 struct task_struct *task;
0793a61d
TG
3781
3782 rcu_read_lock();
2ebd4ffb 3783 if (!vpid)
0793a61d
TG
3784 task = current;
3785 else
2ebd4ffb 3786 task = find_task_by_vpid(vpid);
0793a61d
TG
3787 if (task)
3788 get_task_struct(task);
3789 rcu_read_unlock();
3790
3791 if (!task)
3792 return ERR_PTR(-ESRCH);
3793
2ebd4ffb 3794 return task;
2ebd4ffb
MH
3795}
3796
fe4b04fa
PZ
3797/*
3798 * Returns a matching context with refcount and pincount.
3799 */
108b02cf 3800static struct perf_event_context *
4af57ef2
YZ
3801find_get_context(struct pmu *pmu, struct task_struct *task,
3802 struct perf_event *event)
0793a61d 3803{
211de6eb 3804 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3805 struct perf_cpu_context *cpuctx;
4af57ef2 3806 void *task_ctx_data = NULL;
25346b93 3807 unsigned long flags;
8dc85d54 3808 int ctxn, err;
4af57ef2 3809 int cpu = event->cpu;
0793a61d 3810
22a4ec72 3811 if (!task) {
cdd6c482 3812 /* Must be root to operate on a CPU event: */
0764771d 3813 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3814 return ERR_PTR(-EACCES);
3815
108b02cf 3816 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3817 ctx = &cpuctx->ctx;
c93f7669 3818 get_ctx(ctx);
fe4b04fa 3819 ++ctx->pin_count;
0793a61d 3820
0793a61d
TG
3821 return ctx;
3822 }
3823
8dc85d54
PZ
3824 err = -EINVAL;
3825 ctxn = pmu->task_ctx_nr;
3826 if (ctxn < 0)
3827 goto errout;
3828
4af57ef2
YZ
3829 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3830 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3831 if (!task_ctx_data) {
3832 err = -ENOMEM;
3833 goto errout;
3834 }
3835 }
3836
9ed6060d 3837retry:
8dc85d54 3838 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3839 if (ctx) {
211de6eb 3840 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3841 ++ctx->pin_count;
4af57ef2
YZ
3842
3843 if (task_ctx_data && !ctx->task_ctx_data) {
3844 ctx->task_ctx_data = task_ctx_data;
3845 task_ctx_data = NULL;
3846 }
e625cce1 3847 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3848
3849 if (clone_ctx)
3850 put_ctx(clone_ctx);
9137fb28 3851 } else {
eb184479 3852 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3853 err = -ENOMEM;
3854 if (!ctx)
3855 goto errout;
eb184479 3856
4af57ef2
YZ
3857 if (task_ctx_data) {
3858 ctx->task_ctx_data = task_ctx_data;
3859 task_ctx_data = NULL;
3860 }
3861
dbe08d82
ON
3862 err = 0;
3863 mutex_lock(&task->perf_event_mutex);
3864 /*
3865 * If it has already passed perf_event_exit_task().
3866 * we must see PF_EXITING, it takes this mutex too.
3867 */
3868 if (task->flags & PF_EXITING)
3869 err = -ESRCH;
3870 else if (task->perf_event_ctxp[ctxn])
3871 err = -EAGAIN;
fe4b04fa 3872 else {
9137fb28 3873 get_ctx(ctx);
fe4b04fa 3874 ++ctx->pin_count;
dbe08d82 3875 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3876 }
dbe08d82
ON
3877 mutex_unlock(&task->perf_event_mutex);
3878
3879 if (unlikely(err)) {
9137fb28 3880 put_ctx(ctx);
dbe08d82
ON
3881
3882 if (err == -EAGAIN)
3883 goto retry;
3884 goto errout;
a63eaf34
PM
3885 }
3886 }
3887
4af57ef2 3888 kfree(task_ctx_data);
0793a61d 3889 return ctx;
c93f7669 3890
9ed6060d 3891errout:
4af57ef2 3892 kfree(task_ctx_data);
c93f7669 3893 return ERR_PTR(err);
0793a61d
TG
3894}
3895
6fb2915d 3896static void perf_event_free_filter(struct perf_event *event);
2541517c 3897static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3898
cdd6c482 3899static void free_event_rcu(struct rcu_head *head)
592903cd 3900{
cdd6c482 3901 struct perf_event *event;
592903cd 3902
cdd6c482
IM
3903 event = container_of(head, struct perf_event, rcu_head);
3904 if (event->ns)
3905 put_pid_ns(event->ns);
6fb2915d 3906 perf_event_free_filter(event);
cdd6c482 3907 kfree(event);
592903cd
PZ
3908}
3909
b69cf536
PZ
3910static void ring_buffer_attach(struct perf_event *event,
3911 struct ring_buffer *rb);
925d519a 3912
f2fb6bef
KL
3913static void detach_sb_event(struct perf_event *event)
3914{
3915 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3916
3917 raw_spin_lock(&pel->lock);
3918 list_del_rcu(&event->sb_list);
3919 raw_spin_unlock(&pel->lock);
3920}
3921
a4f144eb 3922static bool is_sb_event(struct perf_event *event)
f2fb6bef 3923{
a4f144eb
DCC
3924 struct perf_event_attr *attr = &event->attr;
3925
f2fb6bef 3926 if (event->parent)
a4f144eb 3927 return false;
f2fb6bef
KL
3928
3929 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3930 return false;
f2fb6bef 3931
a4f144eb
DCC
3932 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3933 attr->comm || attr->comm_exec ||
3934 attr->task ||
3935 attr->context_switch)
3936 return true;
3937 return false;
3938}
3939
3940static void unaccount_pmu_sb_event(struct perf_event *event)
3941{
3942 if (is_sb_event(event))
3943 detach_sb_event(event);
f2fb6bef
KL
3944}
3945
4beb31f3 3946static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3947{
4beb31f3
FW
3948 if (event->parent)
3949 return;
3950
4beb31f3
FW
3951 if (is_cgroup_event(event))
3952 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3953}
925d519a 3954
555e0c1e
FW
3955#ifdef CONFIG_NO_HZ_FULL
3956static DEFINE_SPINLOCK(nr_freq_lock);
3957#endif
3958
3959static void unaccount_freq_event_nohz(void)
3960{
3961#ifdef CONFIG_NO_HZ_FULL
3962 spin_lock(&nr_freq_lock);
3963 if (atomic_dec_and_test(&nr_freq_events))
3964 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3965 spin_unlock(&nr_freq_lock);
3966#endif
3967}
3968
3969static void unaccount_freq_event(void)
3970{
3971 if (tick_nohz_full_enabled())
3972 unaccount_freq_event_nohz();
3973 else
3974 atomic_dec(&nr_freq_events);
3975}
3976
4beb31f3
FW
3977static void unaccount_event(struct perf_event *event)
3978{
25432ae9
PZ
3979 bool dec = false;
3980
4beb31f3
FW
3981 if (event->parent)
3982 return;
3983
3984 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3985 dec = true;
4beb31f3
FW
3986 if (event->attr.mmap || event->attr.mmap_data)
3987 atomic_dec(&nr_mmap_events);
3988 if (event->attr.comm)
3989 atomic_dec(&nr_comm_events);
e4222673
HB
3990 if (event->attr.namespaces)
3991 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
3992 if (event->attr.task)
3993 atomic_dec(&nr_task_events);
948b26b6 3994 if (event->attr.freq)
555e0c1e 3995 unaccount_freq_event();
45ac1403 3996 if (event->attr.context_switch) {
25432ae9 3997 dec = true;
45ac1403
AH
3998 atomic_dec(&nr_switch_events);
3999 }
4beb31f3 4000 if (is_cgroup_event(event))
25432ae9 4001 dec = true;
4beb31f3 4002 if (has_branch_stack(event))
25432ae9
PZ
4003 dec = true;
4004
9107c89e
PZ
4005 if (dec) {
4006 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4007 schedule_delayed_work(&perf_sched_work, HZ);
4008 }
4beb31f3
FW
4009
4010 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4011
4012 unaccount_pmu_sb_event(event);
4beb31f3 4013}
925d519a 4014
9107c89e
PZ
4015static void perf_sched_delayed(struct work_struct *work)
4016{
4017 mutex_lock(&perf_sched_mutex);
4018 if (atomic_dec_and_test(&perf_sched_count))
4019 static_branch_disable(&perf_sched_events);
4020 mutex_unlock(&perf_sched_mutex);
4021}
4022
bed5b25a
AS
4023/*
4024 * The following implement mutual exclusion of events on "exclusive" pmus
4025 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4026 * at a time, so we disallow creating events that might conflict, namely:
4027 *
4028 * 1) cpu-wide events in the presence of per-task events,
4029 * 2) per-task events in the presence of cpu-wide events,
4030 * 3) two matching events on the same context.
4031 *
4032 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4033 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4034 */
4035static int exclusive_event_init(struct perf_event *event)
4036{
4037 struct pmu *pmu = event->pmu;
4038
4039 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4040 return 0;
4041
4042 /*
4043 * Prevent co-existence of per-task and cpu-wide events on the
4044 * same exclusive pmu.
4045 *
4046 * Negative pmu::exclusive_cnt means there are cpu-wide
4047 * events on this "exclusive" pmu, positive means there are
4048 * per-task events.
4049 *
4050 * Since this is called in perf_event_alloc() path, event::ctx
4051 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4052 * to mean "per-task event", because unlike other attach states it
4053 * never gets cleared.
4054 */
4055 if (event->attach_state & PERF_ATTACH_TASK) {
4056 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4057 return -EBUSY;
4058 } else {
4059 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4060 return -EBUSY;
4061 }
4062
4063 return 0;
4064}
4065
4066static void exclusive_event_destroy(struct perf_event *event)
4067{
4068 struct pmu *pmu = event->pmu;
4069
4070 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4071 return;
4072
4073 /* see comment in exclusive_event_init() */
4074 if (event->attach_state & PERF_ATTACH_TASK)
4075 atomic_dec(&pmu->exclusive_cnt);
4076 else
4077 atomic_inc(&pmu->exclusive_cnt);
4078}
4079
4080static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4081{
3bf6215a 4082 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4083 (e1->cpu == e2->cpu ||
4084 e1->cpu == -1 ||
4085 e2->cpu == -1))
4086 return true;
4087 return false;
4088}
4089
4090/* Called under the same ctx::mutex as perf_install_in_context() */
4091static bool exclusive_event_installable(struct perf_event *event,
4092 struct perf_event_context *ctx)
4093{
4094 struct perf_event *iter_event;
4095 struct pmu *pmu = event->pmu;
4096
4097 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4098 return true;
4099
4100 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4101 if (exclusive_event_match(iter_event, event))
4102 return false;
4103 }
4104
4105 return true;
4106}
4107
375637bc
AS
4108static void perf_addr_filters_splice(struct perf_event *event,
4109 struct list_head *head);
4110
683ede43 4111static void _free_event(struct perf_event *event)
f1600952 4112{
e360adbe 4113 irq_work_sync(&event->pending);
925d519a 4114
4beb31f3 4115 unaccount_event(event);
9ee318a7 4116
76369139 4117 if (event->rb) {
9bb5d40c
PZ
4118 /*
4119 * Can happen when we close an event with re-directed output.
4120 *
4121 * Since we have a 0 refcount, perf_mmap_close() will skip
4122 * over us; possibly making our ring_buffer_put() the last.
4123 */
4124 mutex_lock(&event->mmap_mutex);
b69cf536 4125 ring_buffer_attach(event, NULL);
9bb5d40c 4126 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4127 }
4128
e5d1367f
SE
4129 if (is_cgroup_event(event))
4130 perf_detach_cgroup(event);
4131
a0733e69
PZ
4132 if (!event->parent) {
4133 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4134 put_callchain_buffers();
4135 }
4136
4137 perf_event_free_bpf_prog(event);
375637bc
AS
4138 perf_addr_filters_splice(event, NULL);
4139 kfree(event->addr_filters_offs);
a0733e69
PZ
4140
4141 if (event->destroy)
4142 event->destroy(event);
4143
4144 if (event->ctx)
4145 put_ctx(event->ctx);
4146
62a92c8f
AS
4147 exclusive_event_destroy(event);
4148 module_put(event->pmu->module);
a0733e69
PZ
4149
4150 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4151}
4152
683ede43
PZ
4153/*
4154 * Used to free events which have a known refcount of 1, such as in error paths
4155 * where the event isn't exposed yet and inherited events.
4156 */
4157static void free_event(struct perf_event *event)
0793a61d 4158{
683ede43
PZ
4159 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4160 "unexpected event refcount: %ld; ptr=%p\n",
4161 atomic_long_read(&event->refcount), event)) {
4162 /* leak to avoid use-after-free */
4163 return;
4164 }
0793a61d 4165
683ede43 4166 _free_event(event);
0793a61d
TG
4167}
4168
a66a3052 4169/*
f8697762 4170 * Remove user event from the owner task.
a66a3052 4171 */
f8697762 4172static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4173{
8882135b 4174 struct task_struct *owner;
fb0459d7 4175
8882135b 4176 rcu_read_lock();
8882135b 4177 /*
f47c02c0
PZ
4178 * Matches the smp_store_release() in perf_event_exit_task(). If we
4179 * observe !owner it means the list deletion is complete and we can
4180 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4181 * owner->perf_event_mutex.
4182 */
f47c02c0 4183 owner = lockless_dereference(event->owner);
8882135b
PZ
4184 if (owner) {
4185 /*
4186 * Since delayed_put_task_struct() also drops the last
4187 * task reference we can safely take a new reference
4188 * while holding the rcu_read_lock().
4189 */
4190 get_task_struct(owner);
4191 }
4192 rcu_read_unlock();
4193
4194 if (owner) {
f63a8daa
PZ
4195 /*
4196 * If we're here through perf_event_exit_task() we're already
4197 * holding ctx->mutex which would be an inversion wrt. the
4198 * normal lock order.
4199 *
4200 * However we can safely take this lock because its the child
4201 * ctx->mutex.
4202 */
4203 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4204
8882135b
PZ
4205 /*
4206 * We have to re-check the event->owner field, if it is cleared
4207 * we raced with perf_event_exit_task(), acquiring the mutex
4208 * ensured they're done, and we can proceed with freeing the
4209 * event.
4210 */
f47c02c0 4211 if (event->owner) {
8882135b 4212 list_del_init(&event->owner_entry);
f47c02c0
PZ
4213 smp_store_release(&event->owner, NULL);
4214 }
8882135b
PZ
4215 mutex_unlock(&owner->perf_event_mutex);
4216 put_task_struct(owner);
4217 }
f8697762
JO
4218}
4219
f8697762
JO
4220static void put_event(struct perf_event *event)
4221{
f8697762
JO
4222 if (!atomic_long_dec_and_test(&event->refcount))
4223 return;
4224
c6e5b732
PZ
4225 _free_event(event);
4226}
4227
4228/*
4229 * Kill an event dead; while event:refcount will preserve the event
4230 * object, it will not preserve its functionality. Once the last 'user'
4231 * gives up the object, we'll destroy the thing.
4232 */
4233int perf_event_release_kernel(struct perf_event *event)
4234{
a4f4bb6d 4235 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4236 struct perf_event *child, *tmp;
4237
a4f4bb6d
PZ
4238 /*
4239 * If we got here through err_file: fput(event_file); we will not have
4240 * attached to a context yet.
4241 */
4242 if (!ctx) {
4243 WARN_ON_ONCE(event->attach_state &
4244 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4245 goto no_ctx;
4246 }
4247
f8697762
JO
4248 if (!is_kernel_event(event))
4249 perf_remove_from_owner(event);
8882135b 4250
5fa7c8ec 4251 ctx = perf_event_ctx_lock(event);
a83fe28e 4252 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4253 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4254
a69b0ca4 4255 raw_spin_lock_irq(&ctx->lock);
683ede43 4256 /*
d8a8cfc7 4257 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4258 * anymore.
683ede43 4259 *
a69b0ca4
PZ
4260 * Anybody acquiring event->child_mutex after the below loop _must_
4261 * also see this, most importantly inherit_event() which will avoid
4262 * placing more children on the list.
683ede43 4263 *
c6e5b732
PZ
4264 * Thus this guarantees that we will in fact observe and kill _ALL_
4265 * child events.
683ede43 4266 */
a69b0ca4
PZ
4267 event->state = PERF_EVENT_STATE_DEAD;
4268 raw_spin_unlock_irq(&ctx->lock);
4269
4270 perf_event_ctx_unlock(event, ctx);
683ede43 4271
c6e5b732
PZ
4272again:
4273 mutex_lock(&event->child_mutex);
4274 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4275
c6e5b732
PZ
4276 /*
4277 * Cannot change, child events are not migrated, see the
4278 * comment with perf_event_ctx_lock_nested().
4279 */
4280 ctx = lockless_dereference(child->ctx);
4281 /*
4282 * Since child_mutex nests inside ctx::mutex, we must jump
4283 * through hoops. We start by grabbing a reference on the ctx.
4284 *
4285 * Since the event cannot get freed while we hold the
4286 * child_mutex, the context must also exist and have a !0
4287 * reference count.
4288 */
4289 get_ctx(ctx);
4290
4291 /*
4292 * Now that we have a ctx ref, we can drop child_mutex, and
4293 * acquire ctx::mutex without fear of it going away. Then we
4294 * can re-acquire child_mutex.
4295 */
4296 mutex_unlock(&event->child_mutex);
4297 mutex_lock(&ctx->mutex);
4298 mutex_lock(&event->child_mutex);
4299
4300 /*
4301 * Now that we hold ctx::mutex and child_mutex, revalidate our
4302 * state, if child is still the first entry, it didn't get freed
4303 * and we can continue doing so.
4304 */
4305 tmp = list_first_entry_or_null(&event->child_list,
4306 struct perf_event, child_list);
4307 if (tmp == child) {
4308 perf_remove_from_context(child, DETACH_GROUP);
4309 list_del(&child->child_list);
4310 free_event(child);
4311 /*
4312 * This matches the refcount bump in inherit_event();
4313 * this can't be the last reference.
4314 */
4315 put_event(event);
4316 }
4317
4318 mutex_unlock(&event->child_mutex);
4319 mutex_unlock(&ctx->mutex);
4320 put_ctx(ctx);
4321 goto again;
4322 }
4323 mutex_unlock(&event->child_mutex);
4324
a4f4bb6d
PZ
4325no_ctx:
4326 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4327 return 0;
4328}
4329EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4330
8b10c5e2
PZ
4331/*
4332 * Called when the last reference to the file is gone.
4333 */
a6fa941d
AV
4334static int perf_release(struct inode *inode, struct file *file)
4335{
c6e5b732 4336 perf_event_release_kernel(file->private_data);
a6fa941d 4337 return 0;
fb0459d7 4338}
fb0459d7 4339
59ed446f 4340u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4341{
cdd6c482 4342 struct perf_event *child;
e53c0994
PZ
4343 u64 total = 0;
4344
59ed446f
PZ
4345 *enabled = 0;
4346 *running = 0;
4347
6f10581a 4348 mutex_lock(&event->child_mutex);
01add3ea 4349
7d88962e 4350 (void)perf_event_read(event, false);
01add3ea
SB
4351 total += perf_event_count(event);
4352
59ed446f
PZ
4353 *enabled += event->total_time_enabled +
4354 atomic64_read(&event->child_total_time_enabled);
4355 *running += event->total_time_running +
4356 atomic64_read(&event->child_total_time_running);
4357
4358 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4359 (void)perf_event_read(child, false);
01add3ea 4360 total += perf_event_count(child);
59ed446f
PZ
4361 *enabled += child->total_time_enabled;
4362 *running += child->total_time_running;
4363 }
6f10581a 4364 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4365
4366 return total;
4367}
fb0459d7 4368EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4369
7d88962e 4370static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4371 u64 read_format, u64 *values)
3dab77fb 4372{
fa8c2693
PZ
4373 struct perf_event *sub;
4374 int n = 1; /* skip @nr */
7d88962e 4375 int ret;
f63a8daa 4376
7d88962e
SB
4377 ret = perf_event_read(leader, true);
4378 if (ret)
4379 return ret;
abf4868b 4380
fa8c2693
PZ
4381 /*
4382 * Since we co-schedule groups, {enabled,running} times of siblings
4383 * will be identical to those of the leader, so we only publish one
4384 * set.
4385 */
4386 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4387 values[n++] += leader->total_time_enabled +
4388 atomic64_read(&leader->child_total_time_enabled);
4389 }
3dab77fb 4390
fa8c2693
PZ
4391 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4392 values[n++] += leader->total_time_running +
4393 atomic64_read(&leader->child_total_time_running);
4394 }
4395
4396 /*
4397 * Write {count,id} tuples for every sibling.
4398 */
4399 values[n++] += perf_event_count(leader);
abf4868b
PZ
4400 if (read_format & PERF_FORMAT_ID)
4401 values[n++] = primary_event_id(leader);
3dab77fb 4402
fa8c2693
PZ
4403 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4404 values[n++] += perf_event_count(sub);
4405 if (read_format & PERF_FORMAT_ID)
4406 values[n++] = primary_event_id(sub);
4407 }
7d88962e
SB
4408
4409 return 0;
fa8c2693 4410}
3dab77fb 4411
fa8c2693
PZ
4412static int perf_read_group(struct perf_event *event,
4413 u64 read_format, char __user *buf)
4414{
4415 struct perf_event *leader = event->group_leader, *child;
4416 struct perf_event_context *ctx = leader->ctx;
7d88962e 4417 int ret;
fa8c2693 4418 u64 *values;
3dab77fb 4419
fa8c2693 4420 lockdep_assert_held(&ctx->mutex);
3dab77fb 4421
fa8c2693
PZ
4422 values = kzalloc(event->read_size, GFP_KERNEL);
4423 if (!values)
4424 return -ENOMEM;
3dab77fb 4425
fa8c2693
PZ
4426 values[0] = 1 + leader->nr_siblings;
4427
4428 /*
4429 * By locking the child_mutex of the leader we effectively
4430 * lock the child list of all siblings.. XXX explain how.
4431 */
4432 mutex_lock(&leader->child_mutex);
abf4868b 4433
7d88962e
SB
4434 ret = __perf_read_group_add(leader, read_format, values);
4435 if (ret)
4436 goto unlock;
4437
4438 list_for_each_entry(child, &leader->child_list, child_list) {
4439 ret = __perf_read_group_add(child, read_format, values);
4440 if (ret)
4441 goto unlock;
4442 }
abf4868b 4443
fa8c2693 4444 mutex_unlock(&leader->child_mutex);
abf4868b 4445
7d88962e 4446 ret = event->read_size;
fa8c2693
PZ
4447 if (copy_to_user(buf, values, event->read_size))
4448 ret = -EFAULT;
7d88962e 4449 goto out;
fa8c2693 4450
7d88962e
SB
4451unlock:
4452 mutex_unlock(&leader->child_mutex);
4453out:
fa8c2693 4454 kfree(values);
abf4868b 4455 return ret;
3dab77fb
PZ
4456}
4457
b15f495b 4458static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4459 u64 read_format, char __user *buf)
4460{
59ed446f 4461 u64 enabled, running;
3dab77fb
PZ
4462 u64 values[4];
4463 int n = 0;
4464
59ed446f
PZ
4465 values[n++] = perf_event_read_value(event, &enabled, &running);
4466 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4467 values[n++] = enabled;
4468 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4469 values[n++] = running;
3dab77fb 4470 if (read_format & PERF_FORMAT_ID)
cdd6c482 4471 values[n++] = primary_event_id(event);
3dab77fb
PZ
4472
4473 if (copy_to_user(buf, values, n * sizeof(u64)))
4474 return -EFAULT;
4475
4476 return n * sizeof(u64);
4477}
4478
dc633982
JO
4479static bool is_event_hup(struct perf_event *event)
4480{
4481 bool no_children;
4482
a69b0ca4 4483 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4484 return false;
4485
4486 mutex_lock(&event->child_mutex);
4487 no_children = list_empty(&event->child_list);
4488 mutex_unlock(&event->child_mutex);
4489 return no_children;
4490}
4491
0793a61d 4492/*
cdd6c482 4493 * Read the performance event - simple non blocking version for now
0793a61d
TG
4494 */
4495static ssize_t
b15f495b 4496__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4497{
cdd6c482 4498 u64 read_format = event->attr.read_format;
3dab77fb 4499 int ret;
0793a61d 4500
3b6f9e5c 4501 /*
cdd6c482 4502 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4503 * error state (i.e. because it was pinned but it couldn't be
4504 * scheduled on to the CPU at some point).
4505 */
cdd6c482 4506 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4507 return 0;
4508
c320c7b7 4509 if (count < event->read_size)
3dab77fb
PZ
4510 return -ENOSPC;
4511
cdd6c482 4512 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4513 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4514 ret = perf_read_group(event, read_format, buf);
3dab77fb 4515 else
b15f495b 4516 ret = perf_read_one(event, read_format, buf);
0793a61d 4517
3dab77fb 4518 return ret;
0793a61d
TG
4519}
4520
0793a61d
TG
4521static ssize_t
4522perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4523{
cdd6c482 4524 struct perf_event *event = file->private_data;
f63a8daa
PZ
4525 struct perf_event_context *ctx;
4526 int ret;
0793a61d 4527
f63a8daa 4528 ctx = perf_event_ctx_lock(event);
b15f495b 4529 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4530 perf_event_ctx_unlock(event, ctx);
4531
4532 return ret;
0793a61d
TG
4533}
4534
4535static unsigned int perf_poll(struct file *file, poll_table *wait)
4536{
cdd6c482 4537 struct perf_event *event = file->private_data;
76369139 4538 struct ring_buffer *rb;
61b67684 4539 unsigned int events = POLLHUP;
c7138f37 4540
e708d7ad 4541 poll_wait(file, &event->waitq, wait);
179033b3 4542
dc633982 4543 if (is_event_hup(event))
179033b3 4544 return events;
c7138f37 4545
10c6db11 4546 /*
9bb5d40c
PZ
4547 * Pin the event->rb by taking event->mmap_mutex; otherwise
4548 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4549 */
4550 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4551 rb = event->rb;
4552 if (rb)
76369139 4553 events = atomic_xchg(&rb->poll, 0);
10c6db11 4554 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4555 return events;
4556}
4557
f63a8daa 4558static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4559{
7d88962e 4560 (void)perf_event_read(event, false);
e7850595 4561 local64_set(&event->count, 0);
cdd6c482 4562 perf_event_update_userpage(event);
3df5edad
PZ
4563}
4564
c93f7669 4565/*
cdd6c482
IM
4566 * Holding the top-level event's child_mutex means that any
4567 * descendant process that has inherited this event will block
8ba289b8 4568 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4569 * task existence requirements of perf_event_enable/disable.
c93f7669 4570 */
cdd6c482
IM
4571static void perf_event_for_each_child(struct perf_event *event,
4572 void (*func)(struct perf_event *))
3df5edad 4573{
cdd6c482 4574 struct perf_event *child;
3df5edad 4575
cdd6c482 4576 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4577
cdd6c482
IM
4578 mutex_lock(&event->child_mutex);
4579 func(event);
4580 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4581 func(child);
cdd6c482 4582 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4583}
4584
cdd6c482
IM
4585static void perf_event_for_each(struct perf_event *event,
4586 void (*func)(struct perf_event *))
3df5edad 4587{
cdd6c482
IM
4588 struct perf_event_context *ctx = event->ctx;
4589 struct perf_event *sibling;
3df5edad 4590
f63a8daa
PZ
4591 lockdep_assert_held(&ctx->mutex);
4592
cdd6c482 4593 event = event->group_leader;
75f937f2 4594
cdd6c482 4595 perf_event_for_each_child(event, func);
cdd6c482 4596 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4597 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4598}
4599
fae3fde6
PZ
4600static void __perf_event_period(struct perf_event *event,
4601 struct perf_cpu_context *cpuctx,
4602 struct perf_event_context *ctx,
4603 void *info)
c7999c6f 4604{
fae3fde6 4605 u64 value = *((u64 *)info);
c7999c6f 4606 bool active;
08247e31 4607
cdd6c482 4608 if (event->attr.freq) {
cdd6c482 4609 event->attr.sample_freq = value;
08247e31 4610 } else {
cdd6c482
IM
4611 event->attr.sample_period = value;
4612 event->hw.sample_period = value;
08247e31 4613 }
bad7192b
PZ
4614
4615 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4616 if (active) {
4617 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4618 /*
4619 * We could be throttled; unthrottle now to avoid the tick
4620 * trying to unthrottle while we already re-started the event.
4621 */
4622 if (event->hw.interrupts == MAX_INTERRUPTS) {
4623 event->hw.interrupts = 0;
4624 perf_log_throttle(event, 1);
4625 }
bad7192b
PZ
4626 event->pmu->stop(event, PERF_EF_UPDATE);
4627 }
4628
4629 local64_set(&event->hw.period_left, 0);
4630
4631 if (active) {
4632 event->pmu->start(event, PERF_EF_RELOAD);
4633 perf_pmu_enable(ctx->pmu);
4634 }
c7999c6f
PZ
4635}
4636
4637static int perf_event_period(struct perf_event *event, u64 __user *arg)
4638{
c7999c6f
PZ
4639 u64 value;
4640
4641 if (!is_sampling_event(event))
4642 return -EINVAL;
4643
4644 if (copy_from_user(&value, arg, sizeof(value)))
4645 return -EFAULT;
4646
4647 if (!value)
4648 return -EINVAL;
4649
4650 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4651 return -EINVAL;
4652
fae3fde6 4653 event_function_call(event, __perf_event_period, &value);
08247e31 4654
c7999c6f 4655 return 0;
08247e31
PZ
4656}
4657
ac9721f3
PZ
4658static const struct file_operations perf_fops;
4659
2903ff01 4660static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4661{
2903ff01
AV
4662 struct fd f = fdget(fd);
4663 if (!f.file)
4664 return -EBADF;
ac9721f3 4665
2903ff01
AV
4666 if (f.file->f_op != &perf_fops) {
4667 fdput(f);
4668 return -EBADF;
ac9721f3 4669 }
2903ff01
AV
4670 *p = f;
4671 return 0;
ac9721f3
PZ
4672}
4673
4674static int perf_event_set_output(struct perf_event *event,
4675 struct perf_event *output_event);
6fb2915d 4676static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4677static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4678
f63a8daa 4679static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4680{
cdd6c482 4681 void (*func)(struct perf_event *);
3df5edad 4682 u32 flags = arg;
d859e29f
PM
4683
4684 switch (cmd) {
cdd6c482 4685 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4686 func = _perf_event_enable;
d859e29f 4687 break;
cdd6c482 4688 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4689 func = _perf_event_disable;
79f14641 4690 break;
cdd6c482 4691 case PERF_EVENT_IOC_RESET:
f63a8daa 4692 func = _perf_event_reset;
6de6a7b9 4693 break;
3df5edad 4694
cdd6c482 4695 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4696 return _perf_event_refresh(event, arg);
08247e31 4697
cdd6c482
IM
4698 case PERF_EVENT_IOC_PERIOD:
4699 return perf_event_period(event, (u64 __user *)arg);
08247e31 4700
cf4957f1
JO
4701 case PERF_EVENT_IOC_ID:
4702 {
4703 u64 id = primary_event_id(event);
4704
4705 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4706 return -EFAULT;
4707 return 0;
4708 }
4709
cdd6c482 4710 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4711 {
ac9721f3 4712 int ret;
ac9721f3 4713 if (arg != -1) {
2903ff01
AV
4714 struct perf_event *output_event;
4715 struct fd output;
4716 ret = perf_fget_light(arg, &output);
4717 if (ret)
4718 return ret;
4719 output_event = output.file->private_data;
4720 ret = perf_event_set_output(event, output_event);
4721 fdput(output);
4722 } else {
4723 ret = perf_event_set_output(event, NULL);
ac9721f3 4724 }
ac9721f3
PZ
4725 return ret;
4726 }
a4be7c27 4727
6fb2915d
LZ
4728 case PERF_EVENT_IOC_SET_FILTER:
4729 return perf_event_set_filter(event, (void __user *)arg);
4730
2541517c
AS
4731 case PERF_EVENT_IOC_SET_BPF:
4732 return perf_event_set_bpf_prog(event, arg);
4733
86e7972f
WN
4734 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4735 struct ring_buffer *rb;
4736
4737 rcu_read_lock();
4738 rb = rcu_dereference(event->rb);
4739 if (!rb || !rb->nr_pages) {
4740 rcu_read_unlock();
4741 return -EINVAL;
4742 }
4743 rb_toggle_paused(rb, !!arg);
4744 rcu_read_unlock();
4745 return 0;
4746 }
d859e29f 4747 default:
3df5edad 4748 return -ENOTTY;
d859e29f 4749 }
3df5edad
PZ
4750
4751 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4752 perf_event_for_each(event, func);
3df5edad 4753 else
cdd6c482 4754 perf_event_for_each_child(event, func);
3df5edad
PZ
4755
4756 return 0;
d859e29f
PM
4757}
4758
f63a8daa
PZ
4759static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4760{
4761 struct perf_event *event = file->private_data;
4762 struct perf_event_context *ctx;
4763 long ret;
4764
4765 ctx = perf_event_ctx_lock(event);
4766 ret = _perf_ioctl(event, cmd, arg);
4767 perf_event_ctx_unlock(event, ctx);
4768
4769 return ret;
4770}
4771
b3f20785
PM
4772#ifdef CONFIG_COMPAT
4773static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4774 unsigned long arg)
4775{
4776 switch (_IOC_NR(cmd)) {
4777 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4778 case _IOC_NR(PERF_EVENT_IOC_ID):
4779 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4780 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4781 cmd &= ~IOCSIZE_MASK;
4782 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4783 }
4784 break;
4785 }
4786 return perf_ioctl(file, cmd, arg);
4787}
4788#else
4789# define perf_compat_ioctl NULL
4790#endif
4791
cdd6c482 4792int perf_event_task_enable(void)
771d7cde 4793{
f63a8daa 4794 struct perf_event_context *ctx;
cdd6c482 4795 struct perf_event *event;
771d7cde 4796
cdd6c482 4797 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4798 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4799 ctx = perf_event_ctx_lock(event);
4800 perf_event_for_each_child(event, _perf_event_enable);
4801 perf_event_ctx_unlock(event, ctx);
4802 }
cdd6c482 4803 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4804
4805 return 0;
4806}
4807
cdd6c482 4808int perf_event_task_disable(void)
771d7cde 4809{
f63a8daa 4810 struct perf_event_context *ctx;
cdd6c482 4811 struct perf_event *event;
771d7cde 4812
cdd6c482 4813 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4814 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4815 ctx = perf_event_ctx_lock(event);
4816 perf_event_for_each_child(event, _perf_event_disable);
4817 perf_event_ctx_unlock(event, ctx);
4818 }
cdd6c482 4819 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4820
4821 return 0;
4822}
4823
cdd6c482 4824static int perf_event_index(struct perf_event *event)
194002b2 4825{
a4eaf7f1
PZ
4826 if (event->hw.state & PERF_HES_STOPPED)
4827 return 0;
4828
cdd6c482 4829 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4830 return 0;
4831
35edc2a5 4832 return event->pmu->event_idx(event);
194002b2
PZ
4833}
4834
c4794295 4835static void calc_timer_values(struct perf_event *event,
e3f3541c 4836 u64 *now,
7f310a5d
EM
4837 u64 *enabled,
4838 u64 *running)
c4794295 4839{
e3f3541c 4840 u64 ctx_time;
c4794295 4841
e3f3541c
PZ
4842 *now = perf_clock();
4843 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4844 *enabled = ctx_time - event->tstamp_enabled;
4845 *running = ctx_time - event->tstamp_running;
4846}
4847
fa731587
PZ
4848static void perf_event_init_userpage(struct perf_event *event)
4849{
4850 struct perf_event_mmap_page *userpg;
4851 struct ring_buffer *rb;
4852
4853 rcu_read_lock();
4854 rb = rcu_dereference(event->rb);
4855 if (!rb)
4856 goto unlock;
4857
4858 userpg = rb->user_page;
4859
4860 /* Allow new userspace to detect that bit 0 is deprecated */
4861 userpg->cap_bit0_is_deprecated = 1;
4862 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4863 userpg->data_offset = PAGE_SIZE;
4864 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4865
4866unlock:
4867 rcu_read_unlock();
4868}
4869
c1317ec2
AL
4870void __weak arch_perf_update_userpage(
4871 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4872{
4873}
4874
38ff667b
PZ
4875/*
4876 * Callers need to ensure there can be no nesting of this function, otherwise
4877 * the seqlock logic goes bad. We can not serialize this because the arch
4878 * code calls this from NMI context.
4879 */
cdd6c482 4880void perf_event_update_userpage(struct perf_event *event)
37d81828 4881{
cdd6c482 4882 struct perf_event_mmap_page *userpg;
76369139 4883 struct ring_buffer *rb;
e3f3541c 4884 u64 enabled, running, now;
38ff667b
PZ
4885
4886 rcu_read_lock();
5ec4c599
PZ
4887 rb = rcu_dereference(event->rb);
4888 if (!rb)
4889 goto unlock;
4890
0d641208
EM
4891 /*
4892 * compute total_time_enabled, total_time_running
4893 * based on snapshot values taken when the event
4894 * was last scheduled in.
4895 *
4896 * we cannot simply called update_context_time()
4897 * because of locking issue as we can be called in
4898 * NMI context
4899 */
e3f3541c 4900 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4901
76369139 4902 userpg = rb->user_page;
7b732a75
PZ
4903 /*
4904 * Disable preemption so as to not let the corresponding user-space
4905 * spin too long if we get preempted.
4906 */
4907 preempt_disable();
37d81828 4908 ++userpg->lock;
92f22a38 4909 barrier();
cdd6c482 4910 userpg->index = perf_event_index(event);
b5e58793 4911 userpg->offset = perf_event_count(event);
365a4038 4912 if (userpg->index)
e7850595 4913 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4914
0d641208 4915 userpg->time_enabled = enabled +
cdd6c482 4916 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4917
0d641208 4918 userpg->time_running = running +
cdd6c482 4919 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4920
c1317ec2 4921 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4922
92f22a38 4923 barrier();
37d81828 4924 ++userpg->lock;
7b732a75 4925 preempt_enable();
38ff667b 4926unlock:
7b732a75 4927 rcu_read_unlock();
37d81828
PM
4928}
4929
11bac800 4930static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 4931{
11bac800 4932 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 4933 struct ring_buffer *rb;
906010b2
PZ
4934 int ret = VM_FAULT_SIGBUS;
4935
4936 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4937 if (vmf->pgoff == 0)
4938 ret = 0;
4939 return ret;
4940 }
4941
4942 rcu_read_lock();
76369139
FW
4943 rb = rcu_dereference(event->rb);
4944 if (!rb)
906010b2
PZ
4945 goto unlock;
4946
4947 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4948 goto unlock;
4949
76369139 4950 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4951 if (!vmf->page)
4952 goto unlock;
4953
4954 get_page(vmf->page);
11bac800 4955 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
4956 vmf->page->index = vmf->pgoff;
4957
4958 ret = 0;
4959unlock:
4960 rcu_read_unlock();
4961
4962 return ret;
4963}
4964
10c6db11
PZ
4965static void ring_buffer_attach(struct perf_event *event,
4966 struct ring_buffer *rb)
4967{
b69cf536 4968 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4969 unsigned long flags;
4970
b69cf536
PZ
4971 if (event->rb) {
4972 /*
4973 * Should be impossible, we set this when removing
4974 * event->rb_entry and wait/clear when adding event->rb_entry.
4975 */
4976 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4977
b69cf536 4978 old_rb = event->rb;
b69cf536
PZ
4979 spin_lock_irqsave(&old_rb->event_lock, flags);
4980 list_del_rcu(&event->rb_entry);
4981 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4982
2f993cf0
ON
4983 event->rcu_batches = get_state_synchronize_rcu();
4984 event->rcu_pending = 1;
b69cf536 4985 }
10c6db11 4986
b69cf536 4987 if (rb) {
2f993cf0
ON
4988 if (event->rcu_pending) {
4989 cond_synchronize_rcu(event->rcu_batches);
4990 event->rcu_pending = 0;
4991 }
4992
b69cf536
PZ
4993 spin_lock_irqsave(&rb->event_lock, flags);
4994 list_add_rcu(&event->rb_entry, &rb->event_list);
4995 spin_unlock_irqrestore(&rb->event_lock, flags);
4996 }
4997
767ae086
AS
4998 /*
4999 * Avoid racing with perf_mmap_close(AUX): stop the event
5000 * before swizzling the event::rb pointer; if it's getting
5001 * unmapped, its aux_mmap_count will be 0 and it won't
5002 * restart. See the comment in __perf_pmu_output_stop().
5003 *
5004 * Data will inevitably be lost when set_output is done in
5005 * mid-air, but then again, whoever does it like this is
5006 * not in for the data anyway.
5007 */
5008 if (has_aux(event))
5009 perf_event_stop(event, 0);
5010
b69cf536
PZ
5011 rcu_assign_pointer(event->rb, rb);
5012
5013 if (old_rb) {
5014 ring_buffer_put(old_rb);
5015 /*
5016 * Since we detached before setting the new rb, so that we
5017 * could attach the new rb, we could have missed a wakeup.
5018 * Provide it now.
5019 */
5020 wake_up_all(&event->waitq);
5021 }
10c6db11
PZ
5022}
5023
5024static void ring_buffer_wakeup(struct perf_event *event)
5025{
5026 struct ring_buffer *rb;
5027
5028 rcu_read_lock();
5029 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5030 if (rb) {
5031 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5032 wake_up_all(&event->waitq);
5033 }
10c6db11
PZ
5034 rcu_read_unlock();
5035}
5036
fdc26706 5037struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5038{
76369139 5039 struct ring_buffer *rb;
7b732a75 5040
ac9721f3 5041 rcu_read_lock();
76369139
FW
5042 rb = rcu_dereference(event->rb);
5043 if (rb) {
5044 if (!atomic_inc_not_zero(&rb->refcount))
5045 rb = NULL;
ac9721f3
PZ
5046 }
5047 rcu_read_unlock();
5048
76369139 5049 return rb;
ac9721f3
PZ
5050}
5051
fdc26706 5052void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5053{
76369139 5054 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5055 return;
7b732a75 5056
9bb5d40c 5057 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5058
76369139 5059 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5060}
5061
5062static void perf_mmap_open(struct vm_area_struct *vma)
5063{
cdd6c482 5064 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5065
cdd6c482 5066 atomic_inc(&event->mmap_count);
9bb5d40c 5067 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5068
45bfb2e5
PZ
5069 if (vma->vm_pgoff)
5070 atomic_inc(&event->rb->aux_mmap_count);
5071
1e0fb9ec
AL
5072 if (event->pmu->event_mapped)
5073 event->pmu->event_mapped(event);
7b732a75
PZ
5074}
5075
95ff4ca2
AS
5076static void perf_pmu_output_stop(struct perf_event *event);
5077
9bb5d40c
PZ
5078/*
5079 * A buffer can be mmap()ed multiple times; either directly through the same
5080 * event, or through other events by use of perf_event_set_output().
5081 *
5082 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5083 * the buffer here, where we still have a VM context. This means we need
5084 * to detach all events redirecting to us.
5085 */
7b732a75
PZ
5086static void perf_mmap_close(struct vm_area_struct *vma)
5087{
cdd6c482 5088 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5089
b69cf536 5090 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5091 struct user_struct *mmap_user = rb->mmap_user;
5092 int mmap_locked = rb->mmap_locked;
5093 unsigned long size = perf_data_size(rb);
789f90fc 5094
1e0fb9ec
AL
5095 if (event->pmu->event_unmapped)
5096 event->pmu->event_unmapped(event);
5097
45bfb2e5
PZ
5098 /*
5099 * rb->aux_mmap_count will always drop before rb->mmap_count and
5100 * event->mmap_count, so it is ok to use event->mmap_mutex to
5101 * serialize with perf_mmap here.
5102 */
5103 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5104 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5105 /*
5106 * Stop all AUX events that are writing to this buffer,
5107 * so that we can free its AUX pages and corresponding PMU
5108 * data. Note that after rb::aux_mmap_count dropped to zero,
5109 * they won't start any more (see perf_aux_output_begin()).
5110 */
5111 perf_pmu_output_stop(event);
5112
5113 /* now it's safe to free the pages */
45bfb2e5
PZ
5114 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5115 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5116
95ff4ca2 5117 /* this has to be the last one */
45bfb2e5 5118 rb_free_aux(rb);
95ff4ca2
AS
5119 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5120
45bfb2e5
PZ
5121 mutex_unlock(&event->mmap_mutex);
5122 }
5123
9bb5d40c
PZ
5124 atomic_dec(&rb->mmap_count);
5125
5126 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5127 goto out_put;
9bb5d40c 5128
b69cf536 5129 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5130 mutex_unlock(&event->mmap_mutex);
5131
5132 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5133 if (atomic_read(&rb->mmap_count))
5134 goto out_put;
ac9721f3 5135
9bb5d40c
PZ
5136 /*
5137 * No other mmap()s, detach from all other events that might redirect
5138 * into the now unreachable buffer. Somewhat complicated by the
5139 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5140 */
5141again:
5142 rcu_read_lock();
5143 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5144 if (!atomic_long_inc_not_zero(&event->refcount)) {
5145 /*
5146 * This event is en-route to free_event() which will
5147 * detach it and remove it from the list.
5148 */
5149 continue;
5150 }
5151 rcu_read_unlock();
789f90fc 5152
9bb5d40c
PZ
5153 mutex_lock(&event->mmap_mutex);
5154 /*
5155 * Check we didn't race with perf_event_set_output() which can
5156 * swizzle the rb from under us while we were waiting to
5157 * acquire mmap_mutex.
5158 *
5159 * If we find a different rb; ignore this event, a next
5160 * iteration will no longer find it on the list. We have to
5161 * still restart the iteration to make sure we're not now
5162 * iterating the wrong list.
5163 */
b69cf536
PZ
5164 if (event->rb == rb)
5165 ring_buffer_attach(event, NULL);
5166
cdd6c482 5167 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5168 put_event(event);
ac9721f3 5169
9bb5d40c
PZ
5170 /*
5171 * Restart the iteration; either we're on the wrong list or
5172 * destroyed its integrity by doing a deletion.
5173 */
5174 goto again;
7b732a75 5175 }
9bb5d40c
PZ
5176 rcu_read_unlock();
5177
5178 /*
5179 * It could be there's still a few 0-ref events on the list; they'll
5180 * get cleaned up by free_event() -- they'll also still have their
5181 * ref on the rb and will free it whenever they are done with it.
5182 *
5183 * Aside from that, this buffer is 'fully' detached and unmapped,
5184 * undo the VM accounting.
5185 */
5186
5187 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5188 vma->vm_mm->pinned_vm -= mmap_locked;
5189 free_uid(mmap_user);
5190
b69cf536 5191out_put:
9bb5d40c 5192 ring_buffer_put(rb); /* could be last */
37d81828
PM
5193}
5194
f0f37e2f 5195static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5196 .open = perf_mmap_open,
45bfb2e5 5197 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5198 .fault = perf_mmap_fault,
5199 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5200};
5201
5202static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5203{
cdd6c482 5204 struct perf_event *event = file->private_data;
22a4f650 5205 unsigned long user_locked, user_lock_limit;
789f90fc 5206 struct user_struct *user = current_user();
22a4f650 5207 unsigned long locked, lock_limit;
45bfb2e5 5208 struct ring_buffer *rb = NULL;
7b732a75
PZ
5209 unsigned long vma_size;
5210 unsigned long nr_pages;
45bfb2e5 5211 long user_extra = 0, extra = 0;
d57e34fd 5212 int ret = 0, flags = 0;
37d81828 5213
c7920614
PZ
5214 /*
5215 * Don't allow mmap() of inherited per-task counters. This would
5216 * create a performance issue due to all children writing to the
76369139 5217 * same rb.
c7920614
PZ
5218 */
5219 if (event->cpu == -1 && event->attr.inherit)
5220 return -EINVAL;
5221
43a21ea8 5222 if (!(vma->vm_flags & VM_SHARED))
37d81828 5223 return -EINVAL;
7b732a75
PZ
5224
5225 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5226
5227 if (vma->vm_pgoff == 0) {
5228 nr_pages = (vma_size / PAGE_SIZE) - 1;
5229 } else {
5230 /*
5231 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5232 * mapped, all subsequent mappings should have the same size
5233 * and offset. Must be above the normal perf buffer.
5234 */
5235 u64 aux_offset, aux_size;
5236
5237 if (!event->rb)
5238 return -EINVAL;
5239
5240 nr_pages = vma_size / PAGE_SIZE;
5241
5242 mutex_lock(&event->mmap_mutex);
5243 ret = -EINVAL;
5244
5245 rb = event->rb;
5246 if (!rb)
5247 goto aux_unlock;
5248
5249 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5250 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5251
5252 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5253 goto aux_unlock;
5254
5255 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5256 goto aux_unlock;
5257
5258 /* already mapped with a different offset */
5259 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5260 goto aux_unlock;
5261
5262 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5263 goto aux_unlock;
5264
5265 /* already mapped with a different size */
5266 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5267 goto aux_unlock;
5268
5269 if (!is_power_of_2(nr_pages))
5270 goto aux_unlock;
5271
5272 if (!atomic_inc_not_zero(&rb->mmap_count))
5273 goto aux_unlock;
5274
5275 if (rb_has_aux(rb)) {
5276 atomic_inc(&rb->aux_mmap_count);
5277 ret = 0;
5278 goto unlock;
5279 }
5280
5281 atomic_set(&rb->aux_mmap_count, 1);
5282 user_extra = nr_pages;
5283
5284 goto accounting;
5285 }
7b732a75 5286
7730d865 5287 /*
76369139 5288 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5289 * can do bitmasks instead of modulo.
5290 */
2ed11312 5291 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5292 return -EINVAL;
5293
7b732a75 5294 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5295 return -EINVAL;
5296
cdd6c482 5297 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5298again:
cdd6c482 5299 mutex_lock(&event->mmap_mutex);
76369139 5300 if (event->rb) {
9bb5d40c 5301 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5302 ret = -EINVAL;
9bb5d40c
PZ
5303 goto unlock;
5304 }
5305
5306 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5307 /*
5308 * Raced against perf_mmap_close() through
5309 * perf_event_set_output(). Try again, hope for better
5310 * luck.
5311 */
5312 mutex_unlock(&event->mmap_mutex);
5313 goto again;
5314 }
5315
ebb3c4c4
PZ
5316 goto unlock;
5317 }
5318
789f90fc 5319 user_extra = nr_pages + 1;
45bfb2e5
PZ
5320
5321accounting:
cdd6c482 5322 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5323
5324 /*
5325 * Increase the limit linearly with more CPUs:
5326 */
5327 user_lock_limit *= num_online_cpus();
5328
789f90fc 5329 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5330
789f90fc
PZ
5331 if (user_locked > user_lock_limit)
5332 extra = user_locked - user_lock_limit;
7b732a75 5333
78d7d407 5334 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5335 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5336 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5337
459ec28a
IM
5338 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5339 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5340 ret = -EPERM;
5341 goto unlock;
5342 }
7b732a75 5343
45bfb2e5 5344 WARN_ON(!rb && event->rb);
906010b2 5345
d57e34fd 5346 if (vma->vm_flags & VM_WRITE)
76369139 5347 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5348
76369139 5349 if (!rb) {
45bfb2e5
PZ
5350 rb = rb_alloc(nr_pages,
5351 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5352 event->cpu, flags);
26cb63ad 5353
45bfb2e5
PZ
5354 if (!rb) {
5355 ret = -ENOMEM;
5356 goto unlock;
5357 }
43a21ea8 5358
45bfb2e5
PZ
5359 atomic_set(&rb->mmap_count, 1);
5360 rb->mmap_user = get_current_user();
5361 rb->mmap_locked = extra;
26cb63ad 5362
45bfb2e5 5363 ring_buffer_attach(event, rb);
ac9721f3 5364
45bfb2e5
PZ
5365 perf_event_init_userpage(event);
5366 perf_event_update_userpage(event);
5367 } else {
1a594131
AS
5368 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5369 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5370 if (!ret)
5371 rb->aux_mmap_locked = extra;
5372 }
9a0f05cb 5373
ebb3c4c4 5374unlock:
45bfb2e5
PZ
5375 if (!ret) {
5376 atomic_long_add(user_extra, &user->locked_vm);
5377 vma->vm_mm->pinned_vm += extra;
5378
ac9721f3 5379 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5380 } else if (rb) {
5381 atomic_dec(&rb->mmap_count);
5382 }
5383aux_unlock:
cdd6c482 5384 mutex_unlock(&event->mmap_mutex);
37d81828 5385
9bb5d40c
PZ
5386 /*
5387 * Since pinned accounting is per vm we cannot allow fork() to copy our
5388 * vma.
5389 */
26cb63ad 5390 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5391 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5392
1e0fb9ec
AL
5393 if (event->pmu->event_mapped)
5394 event->pmu->event_mapped(event);
5395
7b732a75 5396 return ret;
37d81828
PM
5397}
5398
3c446b3d
PZ
5399static int perf_fasync(int fd, struct file *filp, int on)
5400{
496ad9aa 5401 struct inode *inode = file_inode(filp);
cdd6c482 5402 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5403 int retval;
5404
5955102c 5405 inode_lock(inode);
cdd6c482 5406 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5407 inode_unlock(inode);
3c446b3d
PZ
5408
5409 if (retval < 0)
5410 return retval;
5411
5412 return 0;
5413}
5414
0793a61d 5415static const struct file_operations perf_fops = {
3326c1ce 5416 .llseek = no_llseek,
0793a61d
TG
5417 .release = perf_release,
5418 .read = perf_read,
5419 .poll = perf_poll,
d859e29f 5420 .unlocked_ioctl = perf_ioctl,
b3f20785 5421 .compat_ioctl = perf_compat_ioctl,
37d81828 5422 .mmap = perf_mmap,
3c446b3d 5423 .fasync = perf_fasync,
0793a61d
TG
5424};
5425
925d519a 5426/*
cdd6c482 5427 * Perf event wakeup
925d519a
PZ
5428 *
5429 * If there's data, ensure we set the poll() state and publish everything
5430 * to user-space before waking everybody up.
5431 */
5432
fed66e2c
PZ
5433static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5434{
5435 /* only the parent has fasync state */
5436 if (event->parent)
5437 event = event->parent;
5438 return &event->fasync;
5439}
5440
cdd6c482 5441void perf_event_wakeup(struct perf_event *event)
925d519a 5442{
10c6db11 5443 ring_buffer_wakeup(event);
4c9e2542 5444
cdd6c482 5445 if (event->pending_kill) {
fed66e2c 5446 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5447 event->pending_kill = 0;
4c9e2542 5448 }
925d519a
PZ
5449}
5450
e360adbe 5451static void perf_pending_event(struct irq_work *entry)
79f14641 5452{
cdd6c482
IM
5453 struct perf_event *event = container_of(entry,
5454 struct perf_event, pending);
d525211f
PZ
5455 int rctx;
5456
5457 rctx = perf_swevent_get_recursion_context();
5458 /*
5459 * If we 'fail' here, that's OK, it means recursion is already disabled
5460 * and we won't recurse 'further'.
5461 */
79f14641 5462
cdd6c482
IM
5463 if (event->pending_disable) {
5464 event->pending_disable = 0;
fae3fde6 5465 perf_event_disable_local(event);
79f14641
PZ
5466 }
5467
cdd6c482
IM
5468 if (event->pending_wakeup) {
5469 event->pending_wakeup = 0;
5470 perf_event_wakeup(event);
79f14641 5471 }
d525211f
PZ
5472
5473 if (rctx >= 0)
5474 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5475}
5476
39447b38
ZY
5477/*
5478 * We assume there is only KVM supporting the callbacks.
5479 * Later on, we might change it to a list if there is
5480 * another virtualization implementation supporting the callbacks.
5481 */
5482struct perf_guest_info_callbacks *perf_guest_cbs;
5483
5484int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5485{
5486 perf_guest_cbs = cbs;
5487 return 0;
5488}
5489EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5490
5491int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5492{
5493 perf_guest_cbs = NULL;
5494 return 0;
5495}
5496EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5497
4018994f
JO
5498static void
5499perf_output_sample_regs(struct perf_output_handle *handle,
5500 struct pt_regs *regs, u64 mask)
5501{
5502 int bit;
29dd3288 5503 DECLARE_BITMAP(_mask, 64);
4018994f 5504
29dd3288
MS
5505 bitmap_from_u64(_mask, mask);
5506 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5507 u64 val;
5508
5509 val = perf_reg_value(regs, bit);
5510 perf_output_put(handle, val);
5511 }
5512}
5513
60e2364e 5514static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5515 struct pt_regs *regs,
5516 struct pt_regs *regs_user_copy)
4018994f 5517{
88a7c26a
AL
5518 if (user_mode(regs)) {
5519 regs_user->abi = perf_reg_abi(current);
2565711f 5520 regs_user->regs = regs;
88a7c26a
AL
5521 } else if (current->mm) {
5522 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5523 } else {
5524 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5525 regs_user->regs = NULL;
4018994f
JO
5526 }
5527}
5528
60e2364e
SE
5529static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5530 struct pt_regs *regs)
5531{
5532 regs_intr->regs = regs;
5533 regs_intr->abi = perf_reg_abi(current);
5534}
5535
5536
c5ebcedb
JO
5537/*
5538 * Get remaining task size from user stack pointer.
5539 *
5540 * It'd be better to take stack vma map and limit this more
5541 * precisly, but there's no way to get it safely under interrupt,
5542 * so using TASK_SIZE as limit.
5543 */
5544static u64 perf_ustack_task_size(struct pt_regs *regs)
5545{
5546 unsigned long addr = perf_user_stack_pointer(regs);
5547
5548 if (!addr || addr >= TASK_SIZE)
5549 return 0;
5550
5551 return TASK_SIZE - addr;
5552}
5553
5554static u16
5555perf_sample_ustack_size(u16 stack_size, u16 header_size,
5556 struct pt_regs *regs)
5557{
5558 u64 task_size;
5559
5560 /* No regs, no stack pointer, no dump. */
5561 if (!regs)
5562 return 0;
5563
5564 /*
5565 * Check if we fit in with the requested stack size into the:
5566 * - TASK_SIZE
5567 * If we don't, we limit the size to the TASK_SIZE.
5568 *
5569 * - remaining sample size
5570 * If we don't, we customize the stack size to
5571 * fit in to the remaining sample size.
5572 */
5573
5574 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5575 stack_size = min(stack_size, (u16) task_size);
5576
5577 /* Current header size plus static size and dynamic size. */
5578 header_size += 2 * sizeof(u64);
5579
5580 /* Do we fit in with the current stack dump size? */
5581 if ((u16) (header_size + stack_size) < header_size) {
5582 /*
5583 * If we overflow the maximum size for the sample,
5584 * we customize the stack dump size to fit in.
5585 */
5586 stack_size = USHRT_MAX - header_size - sizeof(u64);
5587 stack_size = round_up(stack_size, sizeof(u64));
5588 }
5589
5590 return stack_size;
5591}
5592
5593static void
5594perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5595 struct pt_regs *regs)
5596{
5597 /* Case of a kernel thread, nothing to dump */
5598 if (!regs) {
5599 u64 size = 0;
5600 perf_output_put(handle, size);
5601 } else {
5602 unsigned long sp;
5603 unsigned int rem;
5604 u64 dyn_size;
5605
5606 /*
5607 * We dump:
5608 * static size
5609 * - the size requested by user or the best one we can fit
5610 * in to the sample max size
5611 * data
5612 * - user stack dump data
5613 * dynamic size
5614 * - the actual dumped size
5615 */
5616
5617 /* Static size. */
5618 perf_output_put(handle, dump_size);
5619
5620 /* Data. */
5621 sp = perf_user_stack_pointer(regs);
5622 rem = __output_copy_user(handle, (void *) sp, dump_size);
5623 dyn_size = dump_size - rem;
5624
5625 perf_output_skip(handle, rem);
5626
5627 /* Dynamic size. */
5628 perf_output_put(handle, dyn_size);
5629 }
5630}
5631
c980d109
ACM
5632static void __perf_event_header__init_id(struct perf_event_header *header,
5633 struct perf_sample_data *data,
5634 struct perf_event *event)
6844c09d
ACM
5635{
5636 u64 sample_type = event->attr.sample_type;
5637
5638 data->type = sample_type;
5639 header->size += event->id_header_size;
5640
5641 if (sample_type & PERF_SAMPLE_TID) {
5642 /* namespace issues */
5643 data->tid_entry.pid = perf_event_pid(event, current);
5644 data->tid_entry.tid = perf_event_tid(event, current);
5645 }
5646
5647 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5648 data->time = perf_event_clock(event);
6844c09d 5649
ff3d527c 5650 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5651 data->id = primary_event_id(event);
5652
5653 if (sample_type & PERF_SAMPLE_STREAM_ID)
5654 data->stream_id = event->id;
5655
5656 if (sample_type & PERF_SAMPLE_CPU) {
5657 data->cpu_entry.cpu = raw_smp_processor_id();
5658 data->cpu_entry.reserved = 0;
5659 }
5660}
5661
76369139
FW
5662void perf_event_header__init_id(struct perf_event_header *header,
5663 struct perf_sample_data *data,
5664 struct perf_event *event)
c980d109
ACM
5665{
5666 if (event->attr.sample_id_all)
5667 __perf_event_header__init_id(header, data, event);
5668}
5669
5670static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5671 struct perf_sample_data *data)
5672{
5673 u64 sample_type = data->type;
5674
5675 if (sample_type & PERF_SAMPLE_TID)
5676 perf_output_put(handle, data->tid_entry);
5677
5678 if (sample_type & PERF_SAMPLE_TIME)
5679 perf_output_put(handle, data->time);
5680
5681 if (sample_type & PERF_SAMPLE_ID)
5682 perf_output_put(handle, data->id);
5683
5684 if (sample_type & PERF_SAMPLE_STREAM_ID)
5685 perf_output_put(handle, data->stream_id);
5686
5687 if (sample_type & PERF_SAMPLE_CPU)
5688 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5689
5690 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5691 perf_output_put(handle, data->id);
c980d109
ACM
5692}
5693
76369139
FW
5694void perf_event__output_id_sample(struct perf_event *event,
5695 struct perf_output_handle *handle,
5696 struct perf_sample_data *sample)
c980d109
ACM
5697{
5698 if (event->attr.sample_id_all)
5699 __perf_event__output_id_sample(handle, sample);
5700}
5701
3dab77fb 5702static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5703 struct perf_event *event,
5704 u64 enabled, u64 running)
3dab77fb 5705{
cdd6c482 5706 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5707 u64 values[4];
5708 int n = 0;
5709
b5e58793 5710 values[n++] = perf_event_count(event);
3dab77fb 5711 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5712 values[n++] = enabled +
cdd6c482 5713 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5714 }
5715 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5716 values[n++] = running +
cdd6c482 5717 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5718 }
5719 if (read_format & PERF_FORMAT_ID)
cdd6c482 5720 values[n++] = primary_event_id(event);
3dab77fb 5721
76369139 5722 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5723}
5724
5725/*
cdd6c482 5726 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5727 */
5728static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5729 struct perf_event *event,
5730 u64 enabled, u64 running)
3dab77fb 5731{
cdd6c482
IM
5732 struct perf_event *leader = event->group_leader, *sub;
5733 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5734 u64 values[5];
5735 int n = 0;
5736
5737 values[n++] = 1 + leader->nr_siblings;
5738
5739 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5740 values[n++] = enabled;
3dab77fb
PZ
5741
5742 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5743 values[n++] = running;
3dab77fb 5744
cdd6c482 5745 if (leader != event)
3dab77fb
PZ
5746 leader->pmu->read(leader);
5747
b5e58793 5748 values[n++] = perf_event_count(leader);
3dab77fb 5749 if (read_format & PERF_FORMAT_ID)
cdd6c482 5750 values[n++] = primary_event_id(leader);
3dab77fb 5751
76369139 5752 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5753
65abc865 5754 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5755 n = 0;
5756
6f5ab001
JO
5757 if ((sub != event) &&
5758 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5759 sub->pmu->read(sub);
5760
b5e58793 5761 values[n++] = perf_event_count(sub);
3dab77fb 5762 if (read_format & PERF_FORMAT_ID)
cdd6c482 5763 values[n++] = primary_event_id(sub);
3dab77fb 5764
76369139 5765 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5766 }
5767}
5768
eed01528
SE
5769#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5770 PERF_FORMAT_TOTAL_TIME_RUNNING)
5771
3dab77fb 5772static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5773 struct perf_event *event)
3dab77fb 5774{
e3f3541c 5775 u64 enabled = 0, running = 0, now;
eed01528
SE
5776 u64 read_format = event->attr.read_format;
5777
5778 /*
5779 * compute total_time_enabled, total_time_running
5780 * based on snapshot values taken when the event
5781 * was last scheduled in.
5782 *
5783 * we cannot simply called update_context_time()
5784 * because of locking issue as we are called in
5785 * NMI context
5786 */
c4794295 5787 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5788 calc_timer_values(event, &now, &enabled, &running);
eed01528 5789
cdd6c482 5790 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5791 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5792 else
eed01528 5793 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5794}
5795
5622f295
MM
5796void perf_output_sample(struct perf_output_handle *handle,
5797 struct perf_event_header *header,
5798 struct perf_sample_data *data,
cdd6c482 5799 struct perf_event *event)
5622f295
MM
5800{
5801 u64 sample_type = data->type;
5802
5803 perf_output_put(handle, *header);
5804
ff3d527c
AH
5805 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5806 perf_output_put(handle, data->id);
5807
5622f295
MM
5808 if (sample_type & PERF_SAMPLE_IP)
5809 perf_output_put(handle, data->ip);
5810
5811 if (sample_type & PERF_SAMPLE_TID)
5812 perf_output_put(handle, data->tid_entry);
5813
5814 if (sample_type & PERF_SAMPLE_TIME)
5815 perf_output_put(handle, data->time);
5816
5817 if (sample_type & PERF_SAMPLE_ADDR)
5818 perf_output_put(handle, data->addr);
5819
5820 if (sample_type & PERF_SAMPLE_ID)
5821 perf_output_put(handle, data->id);
5822
5823 if (sample_type & PERF_SAMPLE_STREAM_ID)
5824 perf_output_put(handle, data->stream_id);
5825
5826 if (sample_type & PERF_SAMPLE_CPU)
5827 perf_output_put(handle, data->cpu_entry);
5828
5829 if (sample_type & PERF_SAMPLE_PERIOD)
5830 perf_output_put(handle, data->period);
5831
5832 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5833 perf_output_read(handle, event);
5622f295
MM
5834
5835 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5836 if (data->callchain) {
5837 int size = 1;
5838
5839 if (data->callchain)
5840 size += data->callchain->nr;
5841
5842 size *= sizeof(u64);
5843
76369139 5844 __output_copy(handle, data->callchain, size);
5622f295
MM
5845 } else {
5846 u64 nr = 0;
5847 perf_output_put(handle, nr);
5848 }
5849 }
5850
5851 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5852 struct perf_raw_record *raw = data->raw;
5853
5854 if (raw) {
5855 struct perf_raw_frag *frag = &raw->frag;
5856
5857 perf_output_put(handle, raw->size);
5858 do {
5859 if (frag->copy) {
5860 __output_custom(handle, frag->copy,
5861 frag->data, frag->size);
5862 } else {
5863 __output_copy(handle, frag->data,
5864 frag->size);
5865 }
5866 if (perf_raw_frag_last(frag))
5867 break;
5868 frag = frag->next;
5869 } while (1);
5870 if (frag->pad)
5871 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5872 } else {
5873 struct {
5874 u32 size;
5875 u32 data;
5876 } raw = {
5877 .size = sizeof(u32),
5878 .data = 0,
5879 };
5880 perf_output_put(handle, raw);
5881 }
5882 }
a7ac67ea 5883
bce38cd5
SE
5884 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5885 if (data->br_stack) {
5886 size_t size;
5887
5888 size = data->br_stack->nr
5889 * sizeof(struct perf_branch_entry);
5890
5891 perf_output_put(handle, data->br_stack->nr);
5892 perf_output_copy(handle, data->br_stack->entries, size);
5893 } else {
5894 /*
5895 * we always store at least the value of nr
5896 */
5897 u64 nr = 0;
5898 perf_output_put(handle, nr);
5899 }
5900 }
4018994f
JO
5901
5902 if (sample_type & PERF_SAMPLE_REGS_USER) {
5903 u64 abi = data->regs_user.abi;
5904
5905 /*
5906 * If there are no regs to dump, notice it through
5907 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5908 */
5909 perf_output_put(handle, abi);
5910
5911 if (abi) {
5912 u64 mask = event->attr.sample_regs_user;
5913 perf_output_sample_regs(handle,
5914 data->regs_user.regs,
5915 mask);
5916 }
5917 }
c5ebcedb 5918
a5cdd40c 5919 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5920 perf_output_sample_ustack(handle,
5921 data->stack_user_size,
5922 data->regs_user.regs);
a5cdd40c 5923 }
c3feedf2
AK
5924
5925 if (sample_type & PERF_SAMPLE_WEIGHT)
5926 perf_output_put(handle, data->weight);
d6be9ad6
SE
5927
5928 if (sample_type & PERF_SAMPLE_DATA_SRC)
5929 perf_output_put(handle, data->data_src.val);
a5cdd40c 5930
fdfbbd07
AK
5931 if (sample_type & PERF_SAMPLE_TRANSACTION)
5932 perf_output_put(handle, data->txn);
5933
60e2364e
SE
5934 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5935 u64 abi = data->regs_intr.abi;
5936 /*
5937 * If there are no regs to dump, notice it through
5938 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5939 */
5940 perf_output_put(handle, abi);
5941
5942 if (abi) {
5943 u64 mask = event->attr.sample_regs_intr;
5944
5945 perf_output_sample_regs(handle,
5946 data->regs_intr.regs,
5947 mask);
5948 }
5949 }
5950
a5cdd40c
PZ
5951 if (!event->attr.watermark) {
5952 int wakeup_events = event->attr.wakeup_events;
5953
5954 if (wakeup_events) {
5955 struct ring_buffer *rb = handle->rb;
5956 int events = local_inc_return(&rb->events);
5957
5958 if (events >= wakeup_events) {
5959 local_sub(wakeup_events, &rb->events);
5960 local_inc(&rb->wakeup);
5961 }
5962 }
5963 }
5622f295
MM
5964}
5965
5966void perf_prepare_sample(struct perf_event_header *header,
5967 struct perf_sample_data *data,
cdd6c482 5968 struct perf_event *event,
5622f295 5969 struct pt_regs *regs)
7b732a75 5970{
cdd6c482 5971 u64 sample_type = event->attr.sample_type;
7b732a75 5972
cdd6c482 5973 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5974 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5975
5976 header->misc = 0;
5977 header->misc |= perf_misc_flags(regs);
6fab0192 5978
c980d109 5979 __perf_event_header__init_id(header, data, event);
6844c09d 5980
c320c7b7 5981 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5982 data->ip = perf_instruction_pointer(regs);
5983
b23f3325 5984 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5985 int size = 1;
394ee076 5986
e6dab5ff 5987 data->callchain = perf_callchain(event, regs);
5622f295
MM
5988
5989 if (data->callchain)
5990 size += data->callchain->nr;
5991
5992 header->size += size * sizeof(u64);
394ee076
PZ
5993 }
5994
3a43ce68 5995 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5996 struct perf_raw_record *raw = data->raw;
5997 int size;
5998
5999 if (raw) {
6000 struct perf_raw_frag *frag = &raw->frag;
6001 u32 sum = 0;
6002
6003 do {
6004 sum += frag->size;
6005 if (perf_raw_frag_last(frag))
6006 break;
6007 frag = frag->next;
6008 } while (1);
6009
6010 size = round_up(sum + sizeof(u32), sizeof(u64));
6011 raw->size = size - sizeof(u32);
6012 frag->pad = raw->size - sum;
6013 } else {
6014 size = sizeof(u64);
6015 }
a044560c 6016
7e3f977e 6017 header->size += size;
7f453c24 6018 }
bce38cd5
SE
6019
6020 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6021 int size = sizeof(u64); /* nr */
6022 if (data->br_stack) {
6023 size += data->br_stack->nr
6024 * sizeof(struct perf_branch_entry);
6025 }
6026 header->size += size;
6027 }
4018994f 6028
2565711f 6029 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6030 perf_sample_regs_user(&data->regs_user, regs,
6031 &data->regs_user_copy);
2565711f 6032
4018994f
JO
6033 if (sample_type & PERF_SAMPLE_REGS_USER) {
6034 /* regs dump ABI info */
6035 int size = sizeof(u64);
6036
4018994f
JO
6037 if (data->regs_user.regs) {
6038 u64 mask = event->attr.sample_regs_user;
6039 size += hweight64(mask) * sizeof(u64);
6040 }
6041
6042 header->size += size;
6043 }
c5ebcedb
JO
6044
6045 if (sample_type & PERF_SAMPLE_STACK_USER) {
6046 /*
6047 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6048 * processed as the last one or have additional check added
6049 * in case new sample type is added, because we could eat
6050 * up the rest of the sample size.
6051 */
c5ebcedb
JO
6052 u16 stack_size = event->attr.sample_stack_user;
6053 u16 size = sizeof(u64);
6054
c5ebcedb 6055 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6056 data->regs_user.regs);
c5ebcedb
JO
6057
6058 /*
6059 * If there is something to dump, add space for the dump
6060 * itself and for the field that tells the dynamic size,
6061 * which is how many have been actually dumped.
6062 */
6063 if (stack_size)
6064 size += sizeof(u64) + stack_size;
6065
6066 data->stack_user_size = stack_size;
6067 header->size += size;
6068 }
60e2364e
SE
6069
6070 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6071 /* regs dump ABI info */
6072 int size = sizeof(u64);
6073
6074 perf_sample_regs_intr(&data->regs_intr, regs);
6075
6076 if (data->regs_intr.regs) {
6077 u64 mask = event->attr.sample_regs_intr;
6078
6079 size += hweight64(mask) * sizeof(u64);
6080 }
6081
6082 header->size += size;
6083 }
5622f295 6084}
7f453c24 6085
9ecda41a
WN
6086static void __always_inline
6087__perf_event_output(struct perf_event *event,
6088 struct perf_sample_data *data,
6089 struct pt_regs *regs,
6090 int (*output_begin)(struct perf_output_handle *,
6091 struct perf_event *,
6092 unsigned int))
5622f295
MM
6093{
6094 struct perf_output_handle handle;
6095 struct perf_event_header header;
689802b2 6096
927c7a9e
FW
6097 /* protect the callchain buffers */
6098 rcu_read_lock();
6099
cdd6c482 6100 perf_prepare_sample(&header, data, event, regs);
5c148194 6101
9ecda41a 6102 if (output_begin(&handle, event, header.size))
927c7a9e 6103 goto exit;
0322cd6e 6104
cdd6c482 6105 perf_output_sample(&handle, &header, data, event);
f413cdb8 6106
8a057d84 6107 perf_output_end(&handle);
927c7a9e
FW
6108
6109exit:
6110 rcu_read_unlock();
0322cd6e
PZ
6111}
6112
9ecda41a
WN
6113void
6114perf_event_output_forward(struct perf_event *event,
6115 struct perf_sample_data *data,
6116 struct pt_regs *regs)
6117{
6118 __perf_event_output(event, data, regs, perf_output_begin_forward);
6119}
6120
6121void
6122perf_event_output_backward(struct perf_event *event,
6123 struct perf_sample_data *data,
6124 struct pt_regs *regs)
6125{
6126 __perf_event_output(event, data, regs, perf_output_begin_backward);
6127}
6128
6129void
6130perf_event_output(struct perf_event *event,
6131 struct perf_sample_data *data,
6132 struct pt_regs *regs)
6133{
6134 __perf_event_output(event, data, regs, perf_output_begin);
6135}
6136
38b200d6 6137/*
cdd6c482 6138 * read event_id
38b200d6
PZ
6139 */
6140
6141struct perf_read_event {
6142 struct perf_event_header header;
6143
6144 u32 pid;
6145 u32 tid;
38b200d6
PZ
6146};
6147
6148static void
cdd6c482 6149perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6150 struct task_struct *task)
6151{
6152 struct perf_output_handle handle;
c980d109 6153 struct perf_sample_data sample;
dfc65094 6154 struct perf_read_event read_event = {
38b200d6 6155 .header = {
cdd6c482 6156 .type = PERF_RECORD_READ,
38b200d6 6157 .misc = 0,
c320c7b7 6158 .size = sizeof(read_event) + event->read_size,
38b200d6 6159 },
cdd6c482
IM
6160 .pid = perf_event_pid(event, task),
6161 .tid = perf_event_tid(event, task),
38b200d6 6162 };
3dab77fb 6163 int ret;
38b200d6 6164
c980d109 6165 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6166 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6167 if (ret)
6168 return;
6169
dfc65094 6170 perf_output_put(&handle, read_event);
cdd6c482 6171 perf_output_read(&handle, event);
c980d109 6172 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6173
38b200d6
PZ
6174 perf_output_end(&handle);
6175}
6176
aab5b71e 6177typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6178
6179static void
aab5b71e
PZ
6180perf_iterate_ctx(struct perf_event_context *ctx,
6181 perf_iterate_f output,
b73e4fef 6182 void *data, bool all)
52d857a8
JO
6183{
6184 struct perf_event *event;
6185
6186 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6187 if (!all) {
6188 if (event->state < PERF_EVENT_STATE_INACTIVE)
6189 continue;
6190 if (!event_filter_match(event))
6191 continue;
6192 }
6193
67516844 6194 output(event, data);
52d857a8
JO
6195 }
6196}
6197
aab5b71e 6198static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6199{
6200 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6201 struct perf_event *event;
6202
6203 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6204 /*
6205 * Skip events that are not fully formed yet; ensure that
6206 * if we observe event->ctx, both event and ctx will be
6207 * complete enough. See perf_install_in_context().
6208 */
6209 if (!smp_load_acquire(&event->ctx))
6210 continue;
6211
f2fb6bef
KL
6212 if (event->state < PERF_EVENT_STATE_INACTIVE)
6213 continue;
6214 if (!event_filter_match(event))
6215 continue;
6216 output(event, data);
6217 }
6218}
6219
aab5b71e
PZ
6220/*
6221 * Iterate all events that need to receive side-band events.
6222 *
6223 * For new callers; ensure that account_pmu_sb_event() includes
6224 * your event, otherwise it might not get delivered.
6225 */
52d857a8 6226static void
aab5b71e 6227perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6228 struct perf_event_context *task_ctx)
6229{
52d857a8 6230 struct perf_event_context *ctx;
52d857a8
JO
6231 int ctxn;
6232
aab5b71e
PZ
6233 rcu_read_lock();
6234 preempt_disable();
6235
4e93ad60 6236 /*
aab5b71e
PZ
6237 * If we have task_ctx != NULL we only notify the task context itself.
6238 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6239 * context.
6240 */
6241 if (task_ctx) {
aab5b71e
PZ
6242 perf_iterate_ctx(task_ctx, output, data, false);
6243 goto done;
4e93ad60
JO
6244 }
6245
aab5b71e 6246 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6247
6248 for_each_task_context_nr(ctxn) {
52d857a8
JO
6249 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6250 if (ctx)
aab5b71e 6251 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6252 }
aab5b71e 6253done:
f2fb6bef 6254 preempt_enable();
52d857a8 6255 rcu_read_unlock();
95ff4ca2
AS
6256}
6257
375637bc
AS
6258/*
6259 * Clear all file-based filters at exec, they'll have to be
6260 * re-instated when/if these objects are mmapped again.
6261 */
6262static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6263{
6264 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6265 struct perf_addr_filter *filter;
6266 unsigned int restart = 0, count = 0;
6267 unsigned long flags;
6268
6269 if (!has_addr_filter(event))
6270 return;
6271
6272 raw_spin_lock_irqsave(&ifh->lock, flags);
6273 list_for_each_entry(filter, &ifh->list, entry) {
6274 if (filter->inode) {
6275 event->addr_filters_offs[count] = 0;
6276 restart++;
6277 }
6278
6279 count++;
6280 }
6281
6282 if (restart)
6283 event->addr_filters_gen++;
6284 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6285
6286 if (restart)
767ae086 6287 perf_event_stop(event, 1);
375637bc
AS
6288}
6289
6290void perf_event_exec(void)
6291{
6292 struct perf_event_context *ctx;
6293 int ctxn;
6294
6295 rcu_read_lock();
6296 for_each_task_context_nr(ctxn) {
6297 ctx = current->perf_event_ctxp[ctxn];
6298 if (!ctx)
6299 continue;
6300
6301 perf_event_enable_on_exec(ctxn);
6302
aab5b71e 6303 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6304 true);
6305 }
6306 rcu_read_unlock();
6307}
6308
95ff4ca2
AS
6309struct remote_output {
6310 struct ring_buffer *rb;
6311 int err;
6312};
6313
6314static void __perf_event_output_stop(struct perf_event *event, void *data)
6315{
6316 struct perf_event *parent = event->parent;
6317 struct remote_output *ro = data;
6318 struct ring_buffer *rb = ro->rb;
375637bc
AS
6319 struct stop_event_data sd = {
6320 .event = event,
6321 };
95ff4ca2
AS
6322
6323 if (!has_aux(event))
6324 return;
6325
6326 if (!parent)
6327 parent = event;
6328
6329 /*
6330 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6331 * ring-buffer, but it will be the child that's actually using it.
6332 *
6333 * We are using event::rb to determine if the event should be stopped,
6334 * however this may race with ring_buffer_attach() (through set_output),
6335 * which will make us skip the event that actually needs to be stopped.
6336 * So ring_buffer_attach() has to stop an aux event before re-assigning
6337 * its rb pointer.
95ff4ca2
AS
6338 */
6339 if (rcu_dereference(parent->rb) == rb)
375637bc 6340 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6341}
6342
6343static int __perf_pmu_output_stop(void *info)
6344{
6345 struct perf_event *event = info;
6346 struct pmu *pmu = event->pmu;
8b6a3fe8 6347 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6348 struct remote_output ro = {
6349 .rb = event->rb,
6350 };
6351
6352 rcu_read_lock();
aab5b71e 6353 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6354 if (cpuctx->task_ctx)
aab5b71e 6355 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6356 &ro, false);
95ff4ca2
AS
6357 rcu_read_unlock();
6358
6359 return ro.err;
6360}
6361
6362static void perf_pmu_output_stop(struct perf_event *event)
6363{
6364 struct perf_event *iter;
6365 int err, cpu;
6366
6367restart:
6368 rcu_read_lock();
6369 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6370 /*
6371 * For per-CPU events, we need to make sure that neither they
6372 * nor their children are running; for cpu==-1 events it's
6373 * sufficient to stop the event itself if it's active, since
6374 * it can't have children.
6375 */
6376 cpu = iter->cpu;
6377 if (cpu == -1)
6378 cpu = READ_ONCE(iter->oncpu);
6379
6380 if (cpu == -1)
6381 continue;
6382
6383 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6384 if (err == -EAGAIN) {
6385 rcu_read_unlock();
6386 goto restart;
6387 }
6388 }
6389 rcu_read_unlock();
52d857a8
JO
6390}
6391
60313ebe 6392/*
9f498cc5
PZ
6393 * task tracking -- fork/exit
6394 *
13d7a241 6395 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6396 */
6397
9f498cc5 6398struct perf_task_event {
3a80b4a3 6399 struct task_struct *task;
cdd6c482 6400 struct perf_event_context *task_ctx;
60313ebe
PZ
6401
6402 struct {
6403 struct perf_event_header header;
6404
6405 u32 pid;
6406 u32 ppid;
9f498cc5
PZ
6407 u32 tid;
6408 u32 ptid;
393b2ad8 6409 u64 time;
cdd6c482 6410 } event_id;
60313ebe
PZ
6411};
6412
67516844
JO
6413static int perf_event_task_match(struct perf_event *event)
6414{
13d7a241
SE
6415 return event->attr.comm || event->attr.mmap ||
6416 event->attr.mmap2 || event->attr.mmap_data ||
6417 event->attr.task;
67516844
JO
6418}
6419
cdd6c482 6420static void perf_event_task_output(struct perf_event *event,
52d857a8 6421 void *data)
60313ebe 6422{
52d857a8 6423 struct perf_task_event *task_event = data;
60313ebe 6424 struct perf_output_handle handle;
c980d109 6425 struct perf_sample_data sample;
9f498cc5 6426 struct task_struct *task = task_event->task;
c980d109 6427 int ret, size = task_event->event_id.header.size;
8bb39f9a 6428
67516844
JO
6429 if (!perf_event_task_match(event))
6430 return;
6431
c980d109 6432 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6433
c980d109 6434 ret = perf_output_begin(&handle, event,
a7ac67ea 6435 task_event->event_id.header.size);
ef60777c 6436 if (ret)
c980d109 6437 goto out;
60313ebe 6438
cdd6c482
IM
6439 task_event->event_id.pid = perf_event_pid(event, task);
6440 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6441
cdd6c482
IM
6442 task_event->event_id.tid = perf_event_tid(event, task);
6443 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6444
34f43927
PZ
6445 task_event->event_id.time = perf_event_clock(event);
6446
cdd6c482 6447 perf_output_put(&handle, task_event->event_id);
393b2ad8 6448
c980d109
ACM
6449 perf_event__output_id_sample(event, &handle, &sample);
6450
60313ebe 6451 perf_output_end(&handle);
c980d109
ACM
6452out:
6453 task_event->event_id.header.size = size;
60313ebe
PZ
6454}
6455
cdd6c482
IM
6456static void perf_event_task(struct task_struct *task,
6457 struct perf_event_context *task_ctx,
3a80b4a3 6458 int new)
60313ebe 6459{
9f498cc5 6460 struct perf_task_event task_event;
60313ebe 6461
cdd6c482
IM
6462 if (!atomic_read(&nr_comm_events) &&
6463 !atomic_read(&nr_mmap_events) &&
6464 !atomic_read(&nr_task_events))
60313ebe
PZ
6465 return;
6466
9f498cc5 6467 task_event = (struct perf_task_event){
3a80b4a3
PZ
6468 .task = task,
6469 .task_ctx = task_ctx,
cdd6c482 6470 .event_id = {
60313ebe 6471 .header = {
cdd6c482 6472 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6473 .misc = 0,
cdd6c482 6474 .size = sizeof(task_event.event_id),
60313ebe 6475 },
573402db
PZ
6476 /* .pid */
6477 /* .ppid */
9f498cc5
PZ
6478 /* .tid */
6479 /* .ptid */
34f43927 6480 /* .time */
60313ebe
PZ
6481 },
6482 };
6483
aab5b71e 6484 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6485 &task_event,
6486 task_ctx);
9f498cc5
PZ
6487}
6488
cdd6c482 6489void perf_event_fork(struct task_struct *task)
9f498cc5 6490{
cdd6c482 6491 perf_event_task(task, NULL, 1);
e4222673 6492 perf_event_namespaces(task);
60313ebe
PZ
6493}
6494
8d1b2d93
PZ
6495/*
6496 * comm tracking
6497 */
6498
6499struct perf_comm_event {
22a4f650
IM
6500 struct task_struct *task;
6501 char *comm;
8d1b2d93
PZ
6502 int comm_size;
6503
6504 struct {
6505 struct perf_event_header header;
6506
6507 u32 pid;
6508 u32 tid;
cdd6c482 6509 } event_id;
8d1b2d93
PZ
6510};
6511
67516844
JO
6512static int perf_event_comm_match(struct perf_event *event)
6513{
6514 return event->attr.comm;
6515}
6516
cdd6c482 6517static void perf_event_comm_output(struct perf_event *event,
52d857a8 6518 void *data)
8d1b2d93 6519{
52d857a8 6520 struct perf_comm_event *comm_event = data;
8d1b2d93 6521 struct perf_output_handle handle;
c980d109 6522 struct perf_sample_data sample;
cdd6c482 6523 int size = comm_event->event_id.header.size;
c980d109
ACM
6524 int ret;
6525
67516844
JO
6526 if (!perf_event_comm_match(event))
6527 return;
6528
c980d109
ACM
6529 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6530 ret = perf_output_begin(&handle, event,
a7ac67ea 6531 comm_event->event_id.header.size);
8d1b2d93
PZ
6532
6533 if (ret)
c980d109 6534 goto out;
8d1b2d93 6535
cdd6c482
IM
6536 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6537 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6538
cdd6c482 6539 perf_output_put(&handle, comm_event->event_id);
76369139 6540 __output_copy(&handle, comm_event->comm,
8d1b2d93 6541 comm_event->comm_size);
c980d109
ACM
6542
6543 perf_event__output_id_sample(event, &handle, &sample);
6544
8d1b2d93 6545 perf_output_end(&handle);
c980d109
ACM
6546out:
6547 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6548}
6549
cdd6c482 6550static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6551{
413ee3b4 6552 char comm[TASK_COMM_LEN];
8d1b2d93 6553 unsigned int size;
8d1b2d93 6554
413ee3b4 6555 memset(comm, 0, sizeof(comm));
96b02d78 6556 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6557 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6558
6559 comm_event->comm = comm;
6560 comm_event->comm_size = size;
6561
cdd6c482 6562 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6563
aab5b71e 6564 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6565 comm_event,
6566 NULL);
8d1b2d93
PZ
6567}
6568
82b89778 6569void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6570{
9ee318a7
PZ
6571 struct perf_comm_event comm_event;
6572
cdd6c482 6573 if (!atomic_read(&nr_comm_events))
9ee318a7 6574 return;
a63eaf34 6575
9ee318a7 6576 comm_event = (struct perf_comm_event){
8d1b2d93 6577 .task = task,
573402db
PZ
6578 /* .comm */
6579 /* .comm_size */
cdd6c482 6580 .event_id = {
573402db 6581 .header = {
cdd6c482 6582 .type = PERF_RECORD_COMM,
82b89778 6583 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6584 /* .size */
6585 },
6586 /* .pid */
6587 /* .tid */
8d1b2d93
PZ
6588 },
6589 };
6590
cdd6c482 6591 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6592}
6593
e4222673
HB
6594/*
6595 * namespaces tracking
6596 */
6597
6598struct perf_namespaces_event {
6599 struct task_struct *task;
6600
6601 struct {
6602 struct perf_event_header header;
6603
6604 u32 pid;
6605 u32 tid;
6606 u64 nr_namespaces;
6607 struct perf_ns_link_info link_info[NR_NAMESPACES];
6608 } event_id;
6609};
6610
6611static int perf_event_namespaces_match(struct perf_event *event)
6612{
6613 return event->attr.namespaces;
6614}
6615
6616static void perf_event_namespaces_output(struct perf_event *event,
6617 void *data)
6618{
6619 struct perf_namespaces_event *namespaces_event = data;
6620 struct perf_output_handle handle;
6621 struct perf_sample_data sample;
6622 int ret;
6623
6624 if (!perf_event_namespaces_match(event))
6625 return;
6626
6627 perf_event_header__init_id(&namespaces_event->event_id.header,
6628 &sample, event);
6629 ret = perf_output_begin(&handle, event,
6630 namespaces_event->event_id.header.size);
6631 if (ret)
6632 return;
6633
6634 namespaces_event->event_id.pid = perf_event_pid(event,
6635 namespaces_event->task);
6636 namespaces_event->event_id.tid = perf_event_tid(event,
6637 namespaces_event->task);
6638
6639 perf_output_put(&handle, namespaces_event->event_id);
6640
6641 perf_event__output_id_sample(event, &handle, &sample);
6642
6643 perf_output_end(&handle);
6644}
6645
6646static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6647 struct task_struct *task,
6648 const struct proc_ns_operations *ns_ops)
6649{
6650 struct path ns_path;
6651 struct inode *ns_inode;
6652 void *error;
6653
6654 error = ns_get_path(&ns_path, task, ns_ops);
6655 if (!error) {
6656 ns_inode = ns_path.dentry->d_inode;
6657 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6658 ns_link_info->ino = ns_inode->i_ino;
6659 }
6660}
6661
6662void perf_event_namespaces(struct task_struct *task)
6663{
6664 struct perf_namespaces_event namespaces_event;
6665 struct perf_ns_link_info *ns_link_info;
6666
6667 if (!atomic_read(&nr_namespaces_events))
6668 return;
6669
6670 namespaces_event = (struct perf_namespaces_event){
6671 .task = task,
6672 .event_id = {
6673 .header = {
6674 .type = PERF_RECORD_NAMESPACES,
6675 .misc = 0,
6676 .size = sizeof(namespaces_event.event_id),
6677 },
6678 /* .pid */
6679 /* .tid */
6680 .nr_namespaces = NR_NAMESPACES,
6681 /* .link_info[NR_NAMESPACES] */
6682 },
6683 };
6684
6685 ns_link_info = namespaces_event.event_id.link_info;
6686
6687 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6688 task, &mntns_operations);
6689
6690#ifdef CONFIG_USER_NS
6691 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6692 task, &userns_operations);
6693#endif
6694#ifdef CONFIG_NET_NS
6695 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6696 task, &netns_operations);
6697#endif
6698#ifdef CONFIG_UTS_NS
6699 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6700 task, &utsns_operations);
6701#endif
6702#ifdef CONFIG_IPC_NS
6703 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6704 task, &ipcns_operations);
6705#endif
6706#ifdef CONFIG_PID_NS
6707 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6708 task, &pidns_operations);
6709#endif
6710#ifdef CONFIG_CGROUPS
6711 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6712 task, &cgroupns_operations);
6713#endif
6714
6715 perf_iterate_sb(perf_event_namespaces_output,
6716 &namespaces_event,
6717 NULL);
6718}
6719
0a4a9391
PZ
6720/*
6721 * mmap tracking
6722 */
6723
6724struct perf_mmap_event {
089dd79d
PZ
6725 struct vm_area_struct *vma;
6726
6727 const char *file_name;
6728 int file_size;
13d7a241
SE
6729 int maj, min;
6730 u64 ino;
6731 u64 ino_generation;
f972eb63 6732 u32 prot, flags;
0a4a9391
PZ
6733
6734 struct {
6735 struct perf_event_header header;
6736
6737 u32 pid;
6738 u32 tid;
6739 u64 start;
6740 u64 len;
6741 u64 pgoff;
cdd6c482 6742 } event_id;
0a4a9391
PZ
6743};
6744
67516844
JO
6745static int perf_event_mmap_match(struct perf_event *event,
6746 void *data)
6747{
6748 struct perf_mmap_event *mmap_event = data;
6749 struct vm_area_struct *vma = mmap_event->vma;
6750 int executable = vma->vm_flags & VM_EXEC;
6751
6752 return (!executable && event->attr.mmap_data) ||
13d7a241 6753 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6754}
6755
cdd6c482 6756static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6757 void *data)
0a4a9391 6758{
52d857a8 6759 struct perf_mmap_event *mmap_event = data;
0a4a9391 6760 struct perf_output_handle handle;
c980d109 6761 struct perf_sample_data sample;
cdd6c482 6762 int size = mmap_event->event_id.header.size;
c980d109 6763 int ret;
0a4a9391 6764
67516844
JO
6765 if (!perf_event_mmap_match(event, data))
6766 return;
6767
13d7a241
SE
6768 if (event->attr.mmap2) {
6769 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6770 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6771 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6772 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6773 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6774 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6775 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6776 }
6777
c980d109
ACM
6778 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6779 ret = perf_output_begin(&handle, event,
a7ac67ea 6780 mmap_event->event_id.header.size);
0a4a9391 6781 if (ret)
c980d109 6782 goto out;
0a4a9391 6783
cdd6c482
IM
6784 mmap_event->event_id.pid = perf_event_pid(event, current);
6785 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6786
cdd6c482 6787 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6788
6789 if (event->attr.mmap2) {
6790 perf_output_put(&handle, mmap_event->maj);
6791 perf_output_put(&handle, mmap_event->min);
6792 perf_output_put(&handle, mmap_event->ino);
6793 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6794 perf_output_put(&handle, mmap_event->prot);
6795 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6796 }
6797
76369139 6798 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6799 mmap_event->file_size);
c980d109
ACM
6800
6801 perf_event__output_id_sample(event, &handle, &sample);
6802
78d613eb 6803 perf_output_end(&handle);
c980d109
ACM
6804out:
6805 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6806}
6807
cdd6c482 6808static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6809{
089dd79d
PZ
6810 struct vm_area_struct *vma = mmap_event->vma;
6811 struct file *file = vma->vm_file;
13d7a241
SE
6812 int maj = 0, min = 0;
6813 u64 ino = 0, gen = 0;
f972eb63 6814 u32 prot = 0, flags = 0;
0a4a9391
PZ
6815 unsigned int size;
6816 char tmp[16];
6817 char *buf = NULL;
2c42cfbf 6818 char *name;
413ee3b4 6819
0b3589be
PZ
6820 if (vma->vm_flags & VM_READ)
6821 prot |= PROT_READ;
6822 if (vma->vm_flags & VM_WRITE)
6823 prot |= PROT_WRITE;
6824 if (vma->vm_flags & VM_EXEC)
6825 prot |= PROT_EXEC;
6826
6827 if (vma->vm_flags & VM_MAYSHARE)
6828 flags = MAP_SHARED;
6829 else
6830 flags = MAP_PRIVATE;
6831
6832 if (vma->vm_flags & VM_DENYWRITE)
6833 flags |= MAP_DENYWRITE;
6834 if (vma->vm_flags & VM_MAYEXEC)
6835 flags |= MAP_EXECUTABLE;
6836 if (vma->vm_flags & VM_LOCKED)
6837 flags |= MAP_LOCKED;
6838 if (vma->vm_flags & VM_HUGETLB)
6839 flags |= MAP_HUGETLB;
6840
0a4a9391 6841 if (file) {
13d7a241
SE
6842 struct inode *inode;
6843 dev_t dev;
3ea2f2b9 6844
2c42cfbf 6845 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6846 if (!buf) {
c7e548b4
ON
6847 name = "//enomem";
6848 goto cpy_name;
0a4a9391 6849 }
413ee3b4 6850 /*
3ea2f2b9 6851 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6852 * need to add enough zero bytes after the string to handle
6853 * the 64bit alignment we do later.
6854 */
9bf39ab2 6855 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6856 if (IS_ERR(name)) {
c7e548b4
ON
6857 name = "//toolong";
6858 goto cpy_name;
0a4a9391 6859 }
13d7a241
SE
6860 inode = file_inode(vma->vm_file);
6861 dev = inode->i_sb->s_dev;
6862 ino = inode->i_ino;
6863 gen = inode->i_generation;
6864 maj = MAJOR(dev);
6865 min = MINOR(dev);
f972eb63 6866
c7e548b4 6867 goto got_name;
0a4a9391 6868 } else {
fbe26abe
JO
6869 if (vma->vm_ops && vma->vm_ops->name) {
6870 name = (char *) vma->vm_ops->name(vma);
6871 if (name)
6872 goto cpy_name;
6873 }
6874
2c42cfbf 6875 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6876 if (name)
6877 goto cpy_name;
089dd79d 6878
32c5fb7e 6879 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6880 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6881 name = "[heap]";
6882 goto cpy_name;
32c5fb7e
ON
6883 }
6884 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6885 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6886 name = "[stack]";
6887 goto cpy_name;
089dd79d
PZ
6888 }
6889
c7e548b4
ON
6890 name = "//anon";
6891 goto cpy_name;
0a4a9391
PZ
6892 }
6893
c7e548b4
ON
6894cpy_name:
6895 strlcpy(tmp, name, sizeof(tmp));
6896 name = tmp;
0a4a9391 6897got_name:
2c42cfbf
PZ
6898 /*
6899 * Since our buffer works in 8 byte units we need to align our string
6900 * size to a multiple of 8. However, we must guarantee the tail end is
6901 * zero'd out to avoid leaking random bits to userspace.
6902 */
6903 size = strlen(name)+1;
6904 while (!IS_ALIGNED(size, sizeof(u64)))
6905 name[size++] = '\0';
0a4a9391
PZ
6906
6907 mmap_event->file_name = name;
6908 mmap_event->file_size = size;
13d7a241
SE
6909 mmap_event->maj = maj;
6910 mmap_event->min = min;
6911 mmap_event->ino = ino;
6912 mmap_event->ino_generation = gen;
f972eb63
PZ
6913 mmap_event->prot = prot;
6914 mmap_event->flags = flags;
0a4a9391 6915
2fe85427
SE
6916 if (!(vma->vm_flags & VM_EXEC))
6917 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6918
cdd6c482 6919 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6920
aab5b71e 6921 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6922 mmap_event,
6923 NULL);
665c2142 6924
0a4a9391
PZ
6925 kfree(buf);
6926}
6927
375637bc
AS
6928/*
6929 * Check whether inode and address range match filter criteria.
6930 */
6931static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6932 struct file *file, unsigned long offset,
6933 unsigned long size)
6934{
45063097 6935 if (filter->inode != file_inode(file))
375637bc
AS
6936 return false;
6937
6938 if (filter->offset > offset + size)
6939 return false;
6940
6941 if (filter->offset + filter->size < offset)
6942 return false;
6943
6944 return true;
6945}
6946
6947static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6948{
6949 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6950 struct vm_area_struct *vma = data;
6951 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6952 struct file *file = vma->vm_file;
6953 struct perf_addr_filter *filter;
6954 unsigned int restart = 0, count = 0;
6955
6956 if (!has_addr_filter(event))
6957 return;
6958
6959 if (!file)
6960 return;
6961
6962 raw_spin_lock_irqsave(&ifh->lock, flags);
6963 list_for_each_entry(filter, &ifh->list, entry) {
6964 if (perf_addr_filter_match(filter, file, off,
6965 vma->vm_end - vma->vm_start)) {
6966 event->addr_filters_offs[count] = vma->vm_start;
6967 restart++;
6968 }
6969
6970 count++;
6971 }
6972
6973 if (restart)
6974 event->addr_filters_gen++;
6975 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6976
6977 if (restart)
767ae086 6978 perf_event_stop(event, 1);
375637bc
AS
6979}
6980
6981/*
6982 * Adjust all task's events' filters to the new vma
6983 */
6984static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6985{
6986 struct perf_event_context *ctx;
6987 int ctxn;
6988
12b40a23
MP
6989 /*
6990 * Data tracing isn't supported yet and as such there is no need
6991 * to keep track of anything that isn't related to executable code:
6992 */
6993 if (!(vma->vm_flags & VM_EXEC))
6994 return;
6995
375637bc
AS
6996 rcu_read_lock();
6997 for_each_task_context_nr(ctxn) {
6998 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6999 if (!ctx)
7000 continue;
7001
aab5b71e 7002 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7003 }
7004 rcu_read_unlock();
7005}
7006
3af9e859 7007void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7008{
9ee318a7
PZ
7009 struct perf_mmap_event mmap_event;
7010
cdd6c482 7011 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7012 return;
7013
7014 mmap_event = (struct perf_mmap_event){
089dd79d 7015 .vma = vma,
573402db
PZ
7016 /* .file_name */
7017 /* .file_size */
cdd6c482 7018 .event_id = {
573402db 7019 .header = {
cdd6c482 7020 .type = PERF_RECORD_MMAP,
39447b38 7021 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7022 /* .size */
7023 },
7024 /* .pid */
7025 /* .tid */
089dd79d
PZ
7026 .start = vma->vm_start,
7027 .len = vma->vm_end - vma->vm_start,
3a0304e9 7028 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7029 },
13d7a241
SE
7030 /* .maj (attr_mmap2 only) */
7031 /* .min (attr_mmap2 only) */
7032 /* .ino (attr_mmap2 only) */
7033 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7034 /* .prot (attr_mmap2 only) */
7035 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7036 };
7037
375637bc 7038 perf_addr_filters_adjust(vma);
cdd6c482 7039 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7040}
7041
68db7e98
AS
7042void perf_event_aux_event(struct perf_event *event, unsigned long head,
7043 unsigned long size, u64 flags)
7044{
7045 struct perf_output_handle handle;
7046 struct perf_sample_data sample;
7047 struct perf_aux_event {
7048 struct perf_event_header header;
7049 u64 offset;
7050 u64 size;
7051 u64 flags;
7052 } rec = {
7053 .header = {
7054 .type = PERF_RECORD_AUX,
7055 .misc = 0,
7056 .size = sizeof(rec),
7057 },
7058 .offset = head,
7059 .size = size,
7060 .flags = flags,
7061 };
7062 int ret;
7063
7064 perf_event_header__init_id(&rec.header, &sample, event);
7065 ret = perf_output_begin(&handle, event, rec.header.size);
7066
7067 if (ret)
7068 return;
7069
7070 perf_output_put(&handle, rec);
7071 perf_event__output_id_sample(event, &handle, &sample);
7072
7073 perf_output_end(&handle);
7074}
7075
f38b0dbb
KL
7076/*
7077 * Lost/dropped samples logging
7078 */
7079void perf_log_lost_samples(struct perf_event *event, u64 lost)
7080{
7081 struct perf_output_handle handle;
7082 struct perf_sample_data sample;
7083 int ret;
7084
7085 struct {
7086 struct perf_event_header header;
7087 u64 lost;
7088 } lost_samples_event = {
7089 .header = {
7090 .type = PERF_RECORD_LOST_SAMPLES,
7091 .misc = 0,
7092 .size = sizeof(lost_samples_event),
7093 },
7094 .lost = lost,
7095 };
7096
7097 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7098
7099 ret = perf_output_begin(&handle, event,
7100 lost_samples_event.header.size);
7101 if (ret)
7102 return;
7103
7104 perf_output_put(&handle, lost_samples_event);
7105 perf_event__output_id_sample(event, &handle, &sample);
7106 perf_output_end(&handle);
7107}
7108
45ac1403
AH
7109/*
7110 * context_switch tracking
7111 */
7112
7113struct perf_switch_event {
7114 struct task_struct *task;
7115 struct task_struct *next_prev;
7116
7117 struct {
7118 struct perf_event_header header;
7119 u32 next_prev_pid;
7120 u32 next_prev_tid;
7121 } event_id;
7122};
7123
7124static int perf_event_switch_match(struct perf_event *event)
7125{
7126 return event->attr.context_switch;
7127}
7128
7129static void perf_event_switch_output(struct perf_event *event, void *data)
7130{
7131 struct perf_switch_event *se = data;
7132 struct perf_output_handle handle;
7133 struct perf_sample_data sample;
7134 int ret;
7135
7136 if (!perf_event_switch_match(event))
7137 return;
7138
7139 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7140 if (event->ctx->task) {
7141 se->event_id.header.type = PERF_RECORD_SWITCH;
7142 se->event_id.header.size = sizeof(se->event_id.header);
7143 } else {
7144 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7145 se->event_id.header.size = sizeof(se->event_id);
7146 se->event_id.next_prev_pid =
7147 perf_event_pid(event, se->next_prev);
7148 se->event_id.next_prev_tid =
7149 perf_event_tid(event, se->next_prev);
7150 }
7151
7152 perf_event_header__init_id(&se->event_id.header, &sample, event);
7153
7154 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7155 if (ret)
7156 return;
7157
7158 if (event->ctx->task)
7159 perf_output_put(&handle, se->event_id.header);
7160 else
7161 perf_output_put(&handle, se->event_id);
7162
7163 perf_event__output_id_sample(event, &handle, &sample);
7164
7165 perf_output_end(&handle);
7166}
7167
7168static void perf_event_switch(struct task_struct *task,
7169 struct task_struct *next_prev, bool sched_in)
7170{
7171 struct perf_switch_event switch_event;
7172
7173 /* N.B. caller checks nr_switch_events != 0 */
7174
7175 switch_event = (struct perf_switch_event){
7176 .task = task,
7177 .next_prev = next_prev,
7178 .event_id = {
7179 .header = {
7180 /* .type */
7181 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7182 /* .size */
7183 },
7184 /* .next_prev_pid */
7185 /* .next_prev_tid */
7186 },
7187 };
7188
aab5b71e 7189 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7190 &switch_event,
7191 NULL);
7192}
7193
a78ac325
PZ
7194/*
7195 * IRQ throttle logging
7196 */
7197
cdd6c482 7198static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7199{
7200 struct perf_output_handle handle;
c980d109 7201 struct perf_sample_data sample;
a78ac325
PZ
7202 int ret;
7203
7204 struct {
7205 struct perf_event_header header;
7206 u64 time;
cca3f454 7207 u64 id;
7f453c24 7208 u64 stream_id;
a78ac325
PZ
7209 } throttle_event = {
7210 .header = {
cdd6c482 7211 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7212 .misc = 0,
7213 .size = sizeof(throttle_event),
7214 },
34f43927 7215 .time = perf_event_clock(event),
cdd6c482
IM
7216 .id = primary_event_id(event),
7217 .stream_id = event->id,
a78ac325
PZ
7218 };
7219
966ee4d6 7220 if (enable)
cdd6c482 7221 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7222
c980d109
ACM
7223 perf_event_header__init_id(&throttle_event.header, &sample, event);
7224
7225 ret = perf_output_begin(&handle, event,
a7ac67ea 7226 throttle_event.header.size);
a78ac325
PZ
7227 if (ret)
7228 return;
7229
7230 perf_output_put(&handle, throttle_event);
c980d109 7231 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7232 perf_output_end(&handle);
7233}
7234
ec0d7729
AS
7235static void perf_log_itrace_start(struct perf_event *event)
7236{
7237 struct perf_output_handle handle;
7238 struct perf_sample_data sample;
7239 struct perf_aux_event {
7240 struct perf_event_header header;
7241 u32 pid;
7242 u32 tid;
7243 } rec;
7244 int ret;
7245
7246 if (event->parent)
7247 event = event->parent;
7248
7249 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7250 event->hw.itrace_started)
7251 return;
7252
ec0d7729
AS
7253 rec.header.type = PERF_RECORD_ITRACE_START;
7254 rec.header.misc = 0;
7255 rec.header.size = sizeof(rec);
7256 rec.pid = perf_event_pid(event, current);
7257 rec.tid = perf_event_tid(event, current);
7258
7259 perf_event_header__init_id(&rec.header, &sample, event);
7260 ret = perf_output_begin(&handle, event, rec.header.size);
7261
7262 if (ret)
7263 return;
7264
7265 perf_output_put(&handle, rec);
7266 perf_event__output_id_sample(event, &handle, &sample);
7267
7268 perf_output_end(&handle);
7269}
7270
475113d9
JO
7271static int
7272__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7273{
cdd6c482 7274 struct hw_perf_event *hwc = &event->hw;
79f14641 7275 int ret = 0;
475113d9 7276 u64 seq;
96398826 7277
e050e3f0
SE
7278 seq = __this_cpu_read(perf_throttled_seq);
7279 if (seq != hwc->interrupts_seq) {
7280 hwc->interrupts_seq = seq;
7281 hwc->interrupts = 1;
7282 } else {
7283 hwc->interrupts++;
7284 if (unlikely(throttle
7285 && hwc->interrupts >= max_samples_per_tick)) {
7286 __this_cpu_inc(perf_throttled_count);
555e0c1e 7287 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7288 hwc->interrupts = MAX_INTERRUPTS;
7289 perf_log_throttle(event, 0);
a78ac325
PZ
7290 ret = 1;
7291 }
e050e3f0 7292 }
60db5e09 7293
cdd6c482 7294 if (event->attr.freq) {
def0a9b2 7295 u64 now = perf_clock();
abd50713 7296 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7297
abd50713 7298 hwc->freq_time_stamp = now;
bd2b5b12 7299
abd50713 7300 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7301 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7302 }
7303
475113d9
JO
7304 return ret;
7305}
7306
7307int perf_event_account_interrupt(struct perf_event *event)
7308{
7309 return __perf_event_account_interrupt(event, 1);
7310}
7311
7312/*
7313 * Generic event overflow handling, sampling.
7314 */
7315
7316static int __perf_event_overflow(struct perf_event *event,
7317 int throttle, struct perf_sample_data *data,
7318 struct pt_regs *regs)
7319{
7320 int events = atomic_read(&event->event_limit);
7321 int ret = 0;
7322
7323 /*
7324 * Non-sampling counters might still use the PMI to fold short
7325 * hardware counters, ignore those.
7326 */
7327 if (unlikely(!is_sampling_event(event)))
7328 return 0;
7329
7330 ret = __perf_event_account_interrupt(event, throttle);
7331
2023b359
PZ
7332 /*
7333 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7334 * events
2023b359
PZ
7335 */
7336
cdd6c482
IM
7337 event->pending_kill = POLL_IN;
7338 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7339 ret = 1;
cdd6c482 7340 event->pending_kill = POLL_HUP;
5aab90ce
JO
7341
7342 perf_event_disable_inatomic(event);
79f14641
PZ
7343 }
7344
aa6a5f3c 7345 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7346
fed66e2c 7347 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7348 event->pending_wakeup = 1;
7349 irq_work_queue(&event->pending);
f506b3dc
PZ
7350 }
7351
79f14641 7352 return ret;
f6c7d5fe
PZ
7353}
7354
a8b0ca17 7355int perf_event_overflow(struct perf_event *event,
5622f295
MM
7356 struct perf_sample_data *data,
7357 struct pt_regs *regs)
850bc73f 7358{
a8b0ca17 7359 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7360}
7361
15dbf27c 7362/*
cdd6c482 7363 * Generic software event infrastructure
15dbf27c
PZ
7364 */
7365
b28ab83c
PZ
7366struct swevent_htable {
7367 struct swevent_hlist *swevent_hlist;
7368 struct mutex hlist_mutex;
7369 int hlist_refcount;
7370
7371 /* Recursion avoidance in each contexts */
7372 int recursion[PERF_NR_CONTEXTS];
7373};
7374
7375static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7376
7b4b6658 7377/*
cdd6c482
IM
7378 * We directly increment event->count and keep a second value in
7379 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7380 * is kept in the range [-sample_period, 0] so that we can use the
7381 * sign as trigger.
7382 */
7383
ab573844 7384u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7385{
cdd6c482 7386 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7387 u64 period = hwc->last_period;
7388 u64 nr, offset;
7389 s64 old, val;
7390
7391 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7392
7393again:
e7850595 7394 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7395 if (val < 0)
7396 return 0;
15dbf27c 7397
7b4b6658
PZ
7398 nr = div64_u64(period + val, period);
7399 offset = nr * period;
7400 val -= offset;
e7850595 7401 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7402 goto again;
15dbf27c 7403
7b4b6658 7404 return nr;
15dbf27c
PZ
7405}
7406
0cff784a 7407static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7408 struct perf_sample_data *data,
5622f295 7409 struct pt_regs *regs)
15dbf27c 7410{
cdd6c482 7411 struct hw_perf_event *hwc = &event->hw;
850bc73f 7412 int throttle = 0;
15dbf27c 7413
0cff784a
PZ
7414 if (!overflow)
7415 overflow = perf_swevent_set_period(event);
15dbf27c 7416
7b4b6658
PZ
7417 if (hwc->interrupts == MAX_INTERRUPTS)
7418 return;
15dbf27c 7419
7b4b6658 7420 for (; overflow; overflow--) {
a8b0ca17 7421 if (__perf_event_overflow(event, throttle,
5622f295 7422 data, regs)) {
7b4b6658
PZ
7423 /*
7424 * We inhibit the overflow from happening when
7425 * hwc->interrupts == MAX_INTERRUPTS.
7426 */
7427 break;
7428 }
cf450a73 7429 throttle = 1;
7b4b6658 7430 }
15dbf27c
PZ
7431}
7432
a4eaf7f1 7433static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7434 struct perf_sample_data *data,
5622f295 7435 struct pt_regs *regs)
7b4b6658 7436{
cdd6c482 7437 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7438
e7850595 7439 local64_add(nr, &event->count);
d6d020e9 7440
0cff784a
PZ
7441 if (!regs)
7442 return;
7443
6c7e550f 7444 if (!is_sampling_event(event))
7b4b6658 7445 return;
d6d020e9 7446
5d81e5cf
AV
7447 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7448 data->period = nr;
7449 return perf_swevent_overflow(event, 1, data, regs);
7450 } else
7451 data->period = event->hw.last_period;
7452
0cff784a 7453 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7454 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7455
e7850595 7456 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7457 return;
df1a132b 7458
a8b0ca17 7459 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7460}
7461
f5ffe02e
FW
7462static int perf_exclude_event(struct perf_event *event,
7463 struct pt_regs *regs)
7464{
a4eaf7f1 7465 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7466 return 1;
a4eaf7f1 7467
f5ffe02e
FW
7468 if (regs) {
7469 if (event->attr.exclude_user && user_mode(regs))
7470 return 1;
7471
7472 if (event->attr.exclude_kernel && !user_mode(regs))
7473 return 1;
7474 }
7475
7476 return 0;
7477}
7478
cdd6c482 7479static int perf_swevent_match(struct perf_event *event,
1c432d89 7480 enum perf_type_id type,
6fb2915d
LZ
7481 u32 event_id,
7482 struct perf_sample_data *data,
7483 struct pt_regs *regs)
15dbf27c 7484{
cdd6c482 7485 if (event->attr.type != type)
a21ca2ca 7486 return 0;
f5ffe02e 7487
cdd6c482 7488 if (event->attr.config != event_id)
15dbf27c
PZ
7489 return 0;
7490
f5ffe02e
FW
7491 if (perf_exclude_event(event, regs))
7492 return 0;
15dbf27c
PZ
7493
7494 return 1;
7495}
7496
76e1d904
FW
7497static inline u64 swevent_hash(u64 type, u32 event_id)
7498{
7499 u64 val = event_id | (type << 32);
7500
7501 return hash_64(val, SWEVENT_HLIST_BITS);
7502}
7503
49f135ed
FW
7504static inline struct hlist_head *
7505__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7506{
49f135ed
FW
7507 u64 hash = swevent_hash(type, event_id);
7508
7509 return &hlist->heads[hash];
7510}
76e1d904 7511
49f135ed
FW
7512/* For the read side: events when they trigger */
7513static inline struct hlist_head *
b28ab83c 7514find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7515{
7516 struct swevent_hlist *hlist;
76e1d904 7517
b28ab83c 7518 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7519 if (!hlist)
7520 return NULL;
7521
49f135ed
FW
7522 return __find_swevent_head(hlist, type, event_id);
7523}
7524
7525/* For the event head insertion and removal in the hlist */
7526static inline struct hlist_head *
b28ab83c 7527find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7528{
7529 struct swevent_hlist *hlist;
7530 u32 event_id = event->attr.config;
7531 u64 type = event->attr.type;
7532
7533 /*
7534 * Event scheduling is always serialized against hlist allocation
7535 * and release. Which makes the protected version suitable here.
7536 * The context lock guarantees that.
7537 */
b28ab83c 7538 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7539 lockdep_is_held(&event->ctx->lock));
7540 if (!hlist)
7541 return NULL;
7542
7543 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7544}
7545
7546static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7547 u64 nr,
76e1d904
FW
7548 struct perf_sample_data *data,
7549 struct pt_regs *regs)
15dbf27c 7550{
4a32fea9 7551 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7552 struct perf_event *event;
76e1d904 7553 struct hlist_head *head;
15dbf27c 7554
76e1d904 7555 rcu_read_lock();
b28ab83c 7556 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7557 if (!head)
7558 goto end;
7559
b67bfe0d 7560 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7561 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7562 perf_swevent_event(event, nr, data, regs);
15dbf27c 7563 }
76e1d904
FW
7564end:
7565 rcu_read_unlock();
15dbf27c
PZ
7566}
7567
86038c5e
PZI
7568DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7569
4ed7c92d 7570int perf_swevent_get_recursion_context(void)
96f6d444 7571{
4a32fea9 7572 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7573
b28ab83c 7574 return get_recursion_context(swhash->recursion);
96f6d444 7575}
645e8cc0 7576EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7577
98b5c2c6 7578void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7579{
4a32fea9 7580 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7581
b28ab83c 7582 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7583}
15dbf27c 7584
86038c5e 7585void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7586{
a4234bfc 7587 struct perf_sample_data data;
4ed7c92d 7588
86038c5e 7589 if (WARN_ON_ONCE(!regs))
4ed7c92d 7590 return;
a4234bfc 7591
fd0d000b 7592 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7593 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7594}
7595
7596void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7597{
7598 int rctx;
7599
7600 preempt_disable_notrace();
7601 rctx = perf_swevent_get_recursion_context();
7602 if (unlikely(rctx < 0))
7603 goto fail;
7604
7605 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7606
7607 perf_swevent_put_recursion_context(rctx);
86038c5e 7608fail:
1c024eca 7609 preempt_enable_notrace();
b8e83514
PZ
7610}
7611
cdd6c482 7612static void perf_swevent_read(struct perf_event *event)
15dbf27c 7613{
15dbf27c
PZ
7614}
7615
a4eaf7f1 7616static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7617{
4a32fea9 7618 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7619 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7620 struct hlist_head *head;
7621
6c7e550f 7622 if (is_sampling_event(event)) {
7b4b6658 7623 hwc->last_period = hwc->sample_period;
cdd6c482 7624 perf_swevent_set_period(event);
7b4b6658 7625 }
76e1d904 7626
a4eaf7f1
PZ
7627 hwc->state = !(flags & PERF_EF_START);
7628
b28ab83c 7629 head = find_swevent_head(swhash, event);
12ca6ad2 7630 if (WARN_ON_ONCE(!head))
76e1d904
FW
7631 return -EINVAL;
7632
7633 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7634 perf_event_update_userpage(event);
76e1d904 7635
15dbf27c
PZ
7636 return 0;
7637}
7638
a4eaf7f1 7639static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7640{
76e1d904 7641 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7642}
7643
a4eaf7f1 7644static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7645{
a4eaf7f1 7646 event->hw.state = 0;
d6d020e9 7647}
aa9c4c0f 7648
a4eaf7f1 7649static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7650{
a4eaf7f1 7651 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7652}
7653
49f135ed
FW
7654/* Deref the hlist from the update side */
7655static inline struct swevent_hlist *
b28ab83c 7656swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7657{
b28ab83c
PZ
7658 return rcu_dereference_protected(swhash->swevent_hlist,
7659 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7660}
7661
b28ab83c 7662static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7663{
b28ab83c 7664 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7665
49f135ed 7666 if (!hlist)
76e1d904
FW
7667 return;
7668
70691d4a 7669 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7670 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7671}
7672
3b364d7b 7673static void swevent_hlist_put_cpu(int cpu)
76e1d904 7674{
b28ab83c 7675 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7676
b28ab83c 7677 mutex_lock(&swhash->hlist_mutex);
76e1d904 7678
b28ab83c
PZ
7679 if (!--swhash->hlist_refcount)
7680 swevent_hlist_release(swhash);
76e1d904 7681
b28ab83c 7682 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7683}
7684
3b364d7b 7685static void swevent_hlist_put(void)
76e1d904
FW
7686{
7687 int cpu;
7688
76e1d904 7689 for_each_possible_cpu(cpu)
3b364d7b 7690 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7691}
7692
3b364d7b 7693static int swevent_hlist_get_cpu(int cpu)
76e1d904 7694{
b28ab83c 7695 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7696 int err = 0;
7697
b28ab83c 7698 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
7699 if (!swevent_hlist_deref(swhash) &&
7700 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
7701 struct swevent_hlist *hlist;
7702
7703 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7704 if (!hlist) {
7705 err = -ENOMEM;
7706 goto exit;
7707 }
b28ab83c 7708 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7709 }
b28ab83c 7710 swhash->hlist_refcount++;
9ed6060d 7711exit:
b28ab83c 7712 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7713
7714 return err;
7715}
7716
3b364d7b 7717static int swevent_hlist_get(void)
76e1d904 7718{
3b364d7b 7719 int err, cpu, failed_cpu;
76e1d904 7720
a63fbed7 7721 mutex_lock(&pmus_lock);
76e1d904 7722 for_each_possible_cpu(cpu) {
3b364d7b 7723 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7724 if (err) {
7725 failed_cpu = cpu;
7726 goto fail;
7727 }
7728 }
a63fbed7 7729 mutex_unlock(&pmus_lock);
76e1d904 7730 return 0;
9ed6060d 7731fail:
76e1d904
FW
7732 for_each_possible_cpu(cpu) {
7733 if (cpu == failed_cpu)
7734 break;
3b364d7b 7735 swevent_hlist_put_cpu(cpu);
76e1d904 7736 }
a63fbed7 7737 mutex_unlock(&pmus_lock);
76e1d904
FW
7738 return err;
7739}
7740
c5905afb 7741struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7742
b0a873eb
PZ
7743static void sw_perf_event_destroy(struct perf_event *event)
7744{
7745 u64 event_id = event->attr.config;
95476b64 7746
b0a873eb
PZ
7747 WARN_ON(event->parent);
7748
c5905afb 7749 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7750 swevent_hlist_put();
b0a873eb
PZ
7751}
7752
7753static int perf_swevent_init(struct perf_event *event)
7754{
8176cced 7755 u64 event_id = event->attr.config;
b0a873eb
PZ
7756
7757 if (event->attr.type != PERF_TYPE_SOFTWARE)
7758 return -ENOENT;
7759
2481c5fa
SE
7760 /*
7761 * no branch sampling for software events
7762 */
7763 if (has_branch_stack(event))
7764 return -EOPNOTSUPP;
7765
b0a873eb
PZ
7766 switch (event_id) {
7767 case PERF_COUNT_SW_CPU_CLOCK:
7768 case PERF_COUNT_SW_TASK_CLOCK:
7769 return -ENOENT;
7770
7771 default:
7772 break;
7773 }
7774
ce677831 7775 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7776 return -ENOENT;
7777
7778 if (!event->parent) {
7779 int err;
7780
3b364d7b 7781 err = swevent_hlist_get();
b0a873eb
PZ
7782 if (err)
7783 return err;
7784
c5905afb 7785 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7786 event->destroy = sw_perf_event_destroy;
7787 }
7788
7789 return 0;
7790}
7791
7792static struct pmu perf_swevent = {
89a1e187 7793 .task_ctx_nr = perf_sw_context,
95476b64 7794
34f43927
PZ
7795 .capabilities = PERF_PMU_CAP_NO_NMI,
7796
b0a873eb 7797 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7798 .add = perf_swevent_add,
7799 .del = perf_swevent_del,
7800 .start = perf_swevent_start,
7801 .stop = perf_swevent_stop,
1c024eca 7802 .read = perf_swevent_read,
1c024eca
PZ
7803};
7804
b0a873eb
PZ
7805#ifdef CONFIG_EVENT_TRACING
7806
1c024eca
PZ
7807static int perf_tp_filter_match(struct perf_event *event,
7808 struct perf_sample_data *data)
7809{
7e3f977e 7810 void *record = data->raw->frag.data;
1c024eca 7811
b71b437e
PZ
7812 /* only top level events have filters set */
7813 if (event->parent)
7814 event = event->parent;
7815
1c024eca
PZ
7816 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7817 return 1;
7818 return 0;
7819}
7820
7821static int perf_tp_event_match(struct perf_event *event,
7822 struct perf_sample_data *data,
7823 struct pt_regs *regs)
7824{
a0f7d0f7
FW
7825 if (event->hw.state & PERF_HES_STOPPED)
7826 return 0;
580d607c
PZ
7827 /*
7828 * All tracepoints are from kernel-space.
7829 */
7830 if (event->attr.exclude_kernel)
1c024eca
PZ
7831 return 0;
7832
7833 if (!perf_tp_filter_match(event, data))
7834 return 0;
7835
7836 return 1;
7837}
7838
85b67bcb
AS
7839void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7840 struct trace_event_call *call, u64 count,
7841 struct pt_regs *regs, struct hlist_head *head,
7842 struct task_struct *task)
7843{
7844 struct bpf_prog *prog = call->prog;
7845
7846 if (prog) {
7847 *(struct pt_regs **)raw_data = regs;
7848 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7849 perf_swevent_put_recursion_context(rctx);
7850 return;
7851 }
7852 }
7853 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7854 rctx, task);
7855}
7856EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7857
1e1dcd93 7858void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff
AV
7859 struct pt_regs *regs, struct hlist_head *head, int rctx,
7860 struct task_struct *task)
95476b64
FW
7861{
7862 struct perf_sample_data data;
1c024eca 7863 struct perf_event *event;
1c024eca 7864
95476b64 7865 struct perf_raw_record raw = {
7e3f977e
DB
7866 .frag = {
7867 .size = entry_size,
7868 .data = record,
7869 },
95476b64
FW
7870 };
7871
1e1dcd93 7872 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7873 data.raw = &raw;
7874
1e1dcd93
AS
7875 perf_trace_buf_update(record, event_type);
7876
b67bfe0d 7877 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7878 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7879 perf_swevent_event(event, count, &data, regs);
4f41c013 7880 }
ecc55f84 7881
e6dab5ff
AV
7882 /*
7883 * If we got specified a target task, also iterate its context and
7884 * deliver this event there too.
7885 */
7886 if (task && task != current) {
7887 struct perf_event_context *ctx;
7888 struct trace_entry *entry = record;
7889
7890 rcu_read_lock();
7891 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7892 if (!ctx)
7893 goto unlock;
7894
7895 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7896 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7897 continue;
7898 if (event->attr.config != entry->type)
7899 continue;
7900 if (perf_tp_event_match(event, &data, regs))
7901 perf_swevent_event(event, count, &data, regs);
7902 }
7903unlock:
7904 rcu_read_unlock();
7905 }
7906
ecc55f84 7907 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7908}
7909EXPORT_SYMBOL_GPL(perf_tp_event);
7910
cdd6c482 7911static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7912{
1c024eca 7913 perf_trace_destroy(event);
e077df4f
PZ
7914}
7915
b0a873eb 7916static int perf_tp_event_init(struct perf_event *event)
e077df4f 7917{
76e1d904
FW
7918 int err;
7919
b0a873eb
PZ
7920 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7921 return -ENOENT;
7922
2481c5fa
SE
7923 /*
7924 * no branch sampling for tracepoint events
7925 */
7926 if (has_branch_stack(event))
7927 return -EOPNOTSUPP;
7928
1c024eca
PZ
7929 err = perf_trace_init(event);
7930 if (err)
b0a873eb 7931 return err;
e077df4f 7932
cdd6c482 7933 event->destroy = tp_perf_event_destroy;
e077df4f 7934
b0a873eb
PZ
7935 return 0;
7936}
7937
7938static struct pmu perf_tracepoint = {
89a1e187
PZ
7939 .task_ctx_nr = perf_sw_context,
7940
b0a873eb 7941 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7942 .add = perf_trace_add,
7943 .del = perf_trace_del,
7944 .start = perf_swevent_start,
7945 .stop = perf_swevent_stop,
b0a873eb 7946 .read = perf_swevent_read,
b0a873eb
PZ
7947};
7948
7949static inline void perf_tp_register(void)
7950{
2e80a82a 7951 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7952}
6fb2915d 7953
6fb2915d
LZ
7954static void perf_event_free_filter(struct perf_event *event)
7955{
7956 ftrace_profile_free_filter(event);
7957}
7958
aa6a5f3c
AS
7959#ifdef CONFIG_BPF_SYSCALL
7960static void bpf_overflow_handler(struct perf_event *event,
7961 struct perf_sample_data *data,
7962 struct pt_regs *regs)
7963{
7964 struct bpf_perf_event_data_kern ctx = {
7965 .data = data,
7966 .regs = regs,
7967 };
7968 int ret = 0;
7969
7970 preempt_disable();
7971 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7972 goto out;
7973 rcu_read_lock();
88575199 7974 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
7975 rcu_read_unlock();
7976out:
7977 __this_cpu_dec(bpf_prog_active);
7978 preempt_enable();
7979 if (!ret)
7980 return;
7981
7982 event->orig_overflow_handler(event, data, regs);
7983}
7984
7985static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7986{
7987 struct bpf_prog *prog;
7988
7989 if (event->overflow_handler_context)
7990 /* hw breakpoint or kernel counter */
7991 return -EINVAL;
7992
7993 if (event->prog)
7994 return -EEXIST;
7995
7996 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7997 if (IS_ERR(prog))
7998 return PTR_ERR(prog);
7999
8000 event->prog = prog;
8001 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8002 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8003 return 0;
8004}
8005
8006static void perf_event_free_bpf_handler(struct perf_event *event)
8007{
8008 struct bpf_prog *prog = event->prog;
8009
8010 if (!prog)
8011 return;
8012
8013 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8014 event->prog = NULL;
8015 bpf_prog_put(prog);
8016}
8017#else
8018static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8019{
8020 return -EOPNOTSUPP;
8021}
8022static void perf_event_free_bpf_handler(struct perf_event *event)
8023{
8024}
8025#endif
8026
2541517c
AS
8027static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8028{
98b5c2c6 8029 bool is_kprobe, is_tracepoint;
2541517c
AS
8030 struct bpf_prog *prog;
8031
aa6a5f3c
AS
8032 if (event->attr.type == PERF_TYPE_HARDWARE ||
8033 event->attr.type == PERF_TYPE_SOFTWARE)
8034 return perf_event_set_bpf_handler(event, prog_fd);
8035
2541517c
AS
8036 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8037 return -EINVAL;
8038
8039 if (event->tp_event->prog)
8040 return -EEXIST;
8041
98b5c2c6
AS
8042 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8043 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8044 if (!is_kprobe && !is_tracepoint)
8045 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8046 return -EINVAL;
8047
8048 prog = bpf_prog_get(prog_fd);
8049 if (IS_ERR(prog))
8050 return PTR_ERR(prog);
8051
98b5c2c6
AS
8052 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8053 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8054 /* valid fd, but invalid bpf program type */
8055 bpf_prog_put(prog);
8056 return -EINVAL;
8057 }
8058
32bbe007
AS
8059 if (is_tracepoint) {
8060 int off = trace_event_get_offsets(event->tp_event);
8061
8062 if (prog->aux->max_ctx_offset > off) {
8063 bpf_prog_put(prog);
8064 return -EACCES;
8065 }
8066 }
2541517c
AS
8067 event->tp_event->prog = prog;
8068
8069 return 0;
8070}
8071
8072static void perf_event_free_bpf_prog(struct perf_event *event)
8073{
8074 struct bpf_prog *prog;
8075
aa6a5f3c
AS
8076 perf_event_free_bpf_handler(event);
8077
2541517c
AS
8078 if (!event->tp_event)
8079 return;
8080
8081 prog = event->tp_event->prog;
8082 if (prog) {
8083 event->tp_event->prog = NULL;
1aacde3d 8084 bpf_prog_put(prog);
2541517c
AS
8085 }
8086}
8087
e077df4f 8088#else
6fb2915d 8089
b0a873eb 8090static inline void perf_tp_register(void)
e077df4f 8091{
e077df4f 8092}
6fb2915d 8093
6fb2915d
LZ
8094static void perf_event_free_filter(struct perf_event *event)
8095{
8096}
8097
2541517c
AS
8098static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8099{
8100 return -ENOENT;
8101}
8102
8103static void perf_event_free_bpf_prog(struct perf_event *event)
8104{
8105}
07b139c8 8106#endif /* CONFIG_EVENT_TRACING */
e077df4f 8107
24f1e32c 8108#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8109void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8110{
f5ffe02e
FW
8111 struct perf_sample_data sample;
8112 struct pt_regs *regs = data;
8113
fd0d000b 8114 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8115
a4eaf7f1 8116 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8117 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8118}
8119#endif
8120
375637bc
AS
8121/*
8122 * Allocate a new address filter
8123 */
8124static struct perf_addr_filter *
8125perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8126{
8127 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8128 struct perf_addr_filter *filter;
8129
8130 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8131 if (!filter)
8132 return NULL;
8133
8134 INIT_LIST_HEAD(&filter->entry);
8135 list_add_tail(&filter->entry, filters);
8136
8137 return filter;
8138}
8139
8140static void free_filters_list(struct list_head *filters)
8141{
8142 struct perf_addr_filter *filter, *iter;
8143
8144 list_for_each_entry_safe(filter, iter, filters, entry) {
8145 if (filter->inode)
8146 iput(filter->inode);
8147 list_del(&filter->entry);
8148 kfree(filter);
8149 }
8150}
8151
8152/*
8153 * Free existing address filters and optionally install new ones
8154 */
8155static void perf_addr_filters_splice(struct perf_event *event,
8156 struct list_head *head)
8157{
8158 unsigned long flags;
8159 LIST_HEAD(list);
8160
8161 if (!has_addr_filter(event))
8162 return;
8163
8164 /* don't bother with children, they don't have their own filters */
8165 if (event->parent)
8166 return;
8167
8168 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8169
8170 list_splice_init(&event->addr_filters.list, &list);
8171 if (head)
8172 list_splice(head, &event->addr_filters.list);
8173
8174 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8175
8176 free_filters_list(&list);
8177}
8178
8179/*
8180 * Scan through mm's vmas and see if one of them matches the
8181 * @filter; if so, adjust filter's address range.
8182 * Called with mm::mmap_sem down for reading.
8183 */
8184static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8185 struct mm_struct *mm)
8186{
8187 struct vm_area_struct *vma;
8188
8189 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8190 struct file *file = vma->vm_file;
8191 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8192 unsigned long vma_size = vma->vm_end - vma->vm_start;
8193
8194 if (!file)
8195 continue;
8196
8197 if (!perf_addr_filter_match(filter, file, off, vma_size))
8198 continue;
8199
8200 return vma->vm_start;
8201 }
8202
8203 return 0;
8204}
8205
8206/*
8207 * Update event's address range filters based on the
8208 * task's existing mappings, if any.
8209 */
8210static void perf_event_addr_filters_apply(struct perf_event *event)
8211{
8212 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8213 struct task_struct *task = READ_ONCE(event->ctx->task);
8214 struct perf_addr_filter *filter;
8215 struct mm_struct *mm = NULL;
8216 unsigned int count = 0;
8217 unsigned long flags;
8218
8219 /*
8220 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8221 * will stop on the parent's child_mutex that our caller is also holding
8222 */
8223 if (task == TASK_TOMBSTONE)
8224 return;
8225
6ce77bfd
AS
8226 if (!ifh->nr_file_filters)
8227 return;
8228
375637bc
AS
8229 mm = get_task_mm(event->ctx->task);
8230 if (!mm)
8231 goto restart;
8232
8233 down_read(&mm->mmap_sem);
8234
8235 raw_spin_lock_irqsave(&ifh->lock, flags);
8236 list_for_each_entry(filter, &ifh->list, entry) {
8237 event->addr_filters_offs[count] = 0;
8238
99f5bc9b
MP
8239 /*
8240 * Adjust base offset if the filter is associated to a binary
8241 * that needs to be mapped:
8242 */
8243 if (filter->inode)
375637bc
AS
8244 event->addr_filters_offs[count] =
8245 perf_addr_filter_apply(filter, mm);
8246
8247 count++;
8248 }
8249
8250 event->addr_filters_gen++;
8251 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8252
8253 up_read(&mm->mmap_sem);
8254
8255 mmput(mm);
8256
8257restart:
767ae086 8258 perf_event_stop(event, 1);
375637bc
AS
8259}
8260
8261/*
8262 * Address range filtering: limiting the data to certain
8263 * instruction address ranges. Filters are ioctl()ed to us from
8264 * userspace as ascii strings.
8265 *
8266 * Filter string format:
8267 *
8268 * ACTION RANGE_SPEC
8269 * where ACTION is one of the
8270 * * "filter": limit the trace to this region
8271 * * "start": start tracing from this address
8272 * * "stop": stop tracing at this address/region;
8273 * RANGE_SPEC is
8274 * * for kernel addresses: <start address>[/<size>]
8275 * * for object files: <start address>[/<size>]@</path/to/object/file>
8276 *
8277 * if <size> is not specified, the range is treated as a single address.
8278 */
8279enum {
e96271f3 8280 IF_ACT_NONE = -1,
375637bc
AS
8281 IF_ACT_FILTER,
8282 IF_ACT_START,
8283 IF_ACT_STOP,
8284 IF_SRC_FILE,
8285 IF_SRC_KERNEL,
8286 IF_SRC_FILEADDR,
8287 IF_SRC_KERNELADDR,
8288};
8289
8290enum {
8291 IF_STATE_ACTION = 0,
8292 IF_STATE_SOURCE,
8293 IF_STATE_END,
8294};
8295
8296static const match_table_t if_tokens = {
8297 { IF_ACT_FILTER, "filter" },
8298 { IF_ACT_START, "start" },
8299 { IF_ACT_STOP, "stop" },
8300 { IF_SRC_FILE, "%u/%u@%s" },
8301 { IF_SRC_KERNEL, "%u/%u" },
8302 { IF_SRC_FILEADDR, "%u@%s" },
8303 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8304 { IF_ACT_NONE, NULL },
375637bc
AS
8305};
8306
8307/*
8308 * Address filter string parser
8309 */
8310static int
8311perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8312 struct list_head *filters)
8313{
8314 struct perf_addr_filter *filter = NULL;
8315 char *start, *orig, *filename = NULL;
8316 struct path path;
8317 substring_t args[MAX_OPT_ARGS];
8318 int state = IF_STATE_ACTION, token;
8319 unsigned int kernel = 0;
8320 int ret = -EINVAL;
8321
8322 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8323 if (!fstr)
8324 return -ENOMEM;
8325
8326 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8327 ret = -EINVAL;
8328
8329 if (!*start)
8330 continue;
8331
8332 /* filter definition begins */
8333 if (state == IF_STATE_ACTION) {
8334 filter = perf_addr_filter_new(event, filters);
8335 if (!filter)
8336 goto fail;
8337 }
8338
8339 token = match_token(start, if_tokens, args);
8340 switch (token) {
8341 case IF_ACT_FILTER:
8342 case IF_ACT_START:
8343 filter->filter = 1;
8344
8345 case IF_ACT_STOP:
8346 if (state != IF_STATE_ACTION)
8347 goto fail;
8348
8349 state = IF_STATE_SOURCE;
8350 break;
8351
8352 case IF_SRC_KERNELADDR:
8353 case IF_SRC_KERNEL:
8354 kernel = 1;
8355
8356 case IF_SRC_FILEADDR:
8357 case IF_SRC_FILE:
8358 if (state != IF_STATE_SOURCE)
8359 goto fail;
8360
8361 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8362 filter->range = 1;
8363
8364 *args[0].to = 0;
8365 ret = kstrtoul(args[0].from, 0, &filter->offset);
8366 if (ret)
8367 goto fail;
8368
8369 if (filter->range) {
8370 *args[1].to = 0;
8371 ret = kstrtoul(args[1].from, 0, &filter->size);
8372 if (ret)
8373 goto fail;
8374 }
8375
4059ffd0
MP
8376 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8377 int fpos = filter->range ? 2 : 1;
8378
8379 filename = match_strdup(&args[fpos]);
375637bc
AS
8380 if (!filename) {
8381 ret = -ENOMEM;
8382 goto fail;
8383 }
8384 }
8385
8386 state = IF_STATE_END;
8387 break;
8388
8389 default:
8390 goto fail;
8391 }
8392
8393 /*
8394 * Filter definition is fully parsed, validate and install it.
8395 * Make sure that it doesn't contradict itself or the event's
8396 * attribute.
8397 */
8398 if (state == IF_STATE_END) {
9ccbfbb1 8399 ret = -EINVAL;
375637bc
AS
8400 if (kernel && event->attr.exclude_kernel)
8401 goto fail;
8402
8403 if (!kernel) {
8404 if (!filename)
8405 goto fail;
8406
6ce77bfd
AS
8407 /*
8408 * For now, we only support file-based filters
8409 * in per-task events; doing so for CPU-wide
8410 * events requires additional context switching
8411 * trickery, since same object code will be
8412 * mapped at different virtual addresses in
8413 * different processes.
8414 */
8415 ret = -EOPNOTSUPP;
8416 if (!event->ctx->task)
8417 goto fail_free_name;
8418
375637bc
AS
8419 /* look up the path and grab its inode */
8420 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8421 if (ret)
8422 goto fail_free_name;
8423
8424 filter->inode = igrab(d_inode(path.dentry));
8425 path_put(&path);
8426 kfree(filename);
8427 filename = NULL;
8428
8429 ret = -EINVAL;
8430 if (!filter->inode ||
8431 !S_ISREG(filter->inode->i_mode))
8432 /* free_filters_list() will iput() */
8433 goto fail;
6ce77bfd
AS
8434
8435 event->addr_filters.nr_file_filters++;
375637bc
AS
8436 }
8437
8438 /* ready to consume more filters */
8439 state = IF_STATE_ACTION;
8440 filter = NULL;
8441 }
8442 }
8443
8444 if (state != IF_STATE_ACTION)
8445 goto fail;
8446
8447 kfree(orig);
8448
8449 return 0;
8450
8451fail_free_name:
8452 kfree(filename);
8453fail:
8454 free_filters_list(filters);
8455 kfree(orig);
8456
8457 return ret;
8458}
8459
8460static int
8461perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8462{
8463 LIST_HEAD(filters);
8464 int ret;
8465
8466 /*
8467 * Since this is called in perf_ioctl() path, we're already holding
8468 * ctx::mutex.
8469 */
8470 lockdep_assert_held(&event->ctx->mutex);
8471
8472 if (WARN_ON_ONCE(event->parent))
8473 return -EINVAL;
8474
375637bc
AS
8475 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8476 if (ret)
6ce77bfd 8477 goto fail_clear_files;
375637bc
AS
8478
8479 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8480 if (ret)
8481 goto fail_free_filters;
375637bc
AS
8482
8483 /* remove existing filters, if any */
8484 perf_addr_filters_splice(event, &filters);
8485
8486 /* install new filters */
8487 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8488
6ce77bfd
AS
8489 return ret;
8490
8491fail_free_filters:
8492 free_filters_list(&filters);
8493
8494fail_clear_files:
8495 event->addr_filters.nr_file_filters = 0;
8496
375637bc
AS
8497 return ret;
8498}
8499
c796bbbe
AS
8500static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8501{
8502 char *filter_str;
8503 int ret = -EINVAL;
8504
375637bc
AS
8505 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8506 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8507 !has_addr_filter(event))
c796bbbe
AS
8508 return -EINVAL;
8509
8510 filter_str = strndup_user(arg, PAGE_SIZE);
8511 if (IS_ERR(filter_str))
8512 return PTR_ERR(filter_str);
8513
8514 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8515 event->attr.type == PERF_TYPE_TRACEPOINT)
8516 ret = ftrace_profile_set_filter(event, event->attr.config,
8517 filter_str);
375637bc
AS
8518 else if (has_addr_filter(event))
8519 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8520
8521 kfree(filter_str);
8522 return ret;
8523}
8524
b0a873eb
PZ
8525/*
8526 * hrtimer based swevent callback
8527 */
f29ac756 8528
b0a873eb 8529static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8530{
b0a873eb
PZ
8531 enum hrtimer_restart ret = HRTIMER_RESTART;
8532 struct perf_sample_data data;
8533 struct pt_regs *regs;
8534 struct perf_event *event;
8535 u64 period;
f29ac756 8536
b0a873eb 8537 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8538
8539 if (event->state != PERF_EVENT_STATE_ACTIVE)
8540 return HRTIMER_NORESTART;
8541
b0a873eb 8542 event->pmu->read(event);
f344011c 8543
fd0d000b 8544 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8545 regs = get_irq_regs();
8546
8547 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8548 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8549 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8550 ret = HRTIMER_NORESTART;
8551 }
24f1e32c 8552
b0a873eb
PZ
8553 period = max_t(u64, 10000, event->hw.sample_period);
8554 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8555
b0a873eb 8556 return ret;
f29ac756
PZ
8557}
8558
b0a873eb 8559static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8560{
b0a873eb 8561 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8562 s64 period;
8563
8564 if (!is_sampling_event(event))
8565 return;
f5ffe02e 8566
5d508e82
FBH
8567 period = local64_read(&hwc->period_left);
8568 if (period) {
8569 if (period < 0)
8570 period = 10000;
fa407f35 8571
5d508e82
FBH
8572 local64_set(&hwc->period_left, 0);
8573 } else {
8574 period = max_t(u64, 10000, hwc->sample_period);
8575 }
3497d206
TG
8576 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8577 HRTIMER_MODE_REL_PINNED);
24f1e32c 8578}
b0a873eb
PZ
8579
8580static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8581{
b0a873eb
PZ
8582 struct hw_perf_event *hwc = &event->hw;
8583
6c7e550f 8584 if (is_sampling_event(event)) {
b0a873eb 8585 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8586 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8587
8588 hrtimer_cancel(&hwc->hrtimer);
8589 }
24f1e32c
FW
8590}
8591
ba3dd36c
PZ
8592static void perf_swevent_init_hrtimer(struct perf_event *event)
8593{
8594 struct hw_perf_event *hwc = &event->hw;
8595
8596 if (!is_sampling_event(event))
8597 return;
8598
8599 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8600 hwc->hrtimer.function = perf_swevent_hrtimer;
8601
8602 /*
8603 * Since hrtimers have a fixed rate, we can do a static freq->period
8604 * mapping and avoid the whole period adjust feedback stuff.
8605 */
8606 if (event->attr.freq) {
8607 long freq = event->attr.sample_freq;
8608
8609 event->attr.sample_period = NSEC_PER_SEC / freq;
8610 hwc->sample_period = event->attr.sample_period;
8611 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8612 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8613 event->attr.freq = 0;
8614 }
8615}
8616
b0a873eb
PZ
8617/*
8618 * Software event: cpu wall time clock
8619 */
8620
8621static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8622{
b0a873eb
PZ
8623 s64 prev;
8624 u64 now;
8625
a4eaf7f1 8626 now = local_clock();
b0a873eb
PZ
8627 prev = local64_xchg(&event->hw.prev_count, now);
8628 local64_add(now - prev, &event->count);
24f1e32c 8629}
24f1e32c 8630
a4eaf7f1 8631static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8632{
a4eaf7f1 8633 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8634 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8635}
8636
a4eaf7f1 8637static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8638{
b0a873eb
PZ
8639 perf_swevent_cancel_hrtimer(event);
8640 cpu_clock_event_update(event);
8641}
f29ac756 8642
a4eaf7f1
PZ
8643static int cpu_clock_event_add(struct perf_event *event, int flags)
8644{
8645 if (flags & PERF_EF_START)
8646 cpu_clock_event_start(event, flags);
6a694a60 8647 perf_event_update_userpage(event);
a4eaf7f1
PZ
8648
8649 return 0;
8650}
8651
8652static void cpu_clock_event_del(struct perf_event *event, int flags)
8653{
8654 cpu_clock_event_stop(event, flags);
8655}
8656
b0a873eb
PZ
8657static void cpu_clock_event_read(struct perf_event *event)
8658{
8659 cpu_clock_event_update(event);
8660}
f344011c 8661
b0a873eb
PZ
8662static int cpu_clock_event_init(struct perf_event *event)
8663{
8664 if (event->attr.type != PERF_TYPE_SOFTWARE)
8665 return -ENOENT;
8666
8667 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8668 return -ENOENT;
8669
2481c5fa
SE
8670 /*
8671 * no branch sampling for software events
8672 */
8673 if (has_branch_stack(event))
8674 return -EOPNOTSUPP;
8675
ba3dd36c
PZ
8676 perf_swevent_init_hrtimer(event);
8677
b0a873eb 8678 return 0;
f29ac756
PZ
8679}
8680
b0a873eb 8681static struct pmu perf_cpu_clock = {
89a1e187
PZ
8682 .task_ctx_nr = perf_sw_context,
8683
34f43927
PZ
8684 .capabilities = PERF_PMU_CAP_NO_NMI,
8685
b0a873eb 8686 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8687 .add = cpu_clock_event_add,
8688 .del = cpu_clock_event_del,
8689 .start = cpu_clock_event_start,
8690 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8691 .read = cpu_clock_event_read,
8692};
8693
8694/*
8695 * Software event: task time clock
8696 */
8697
8698static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8699{
b0a873eb
PZ
8700 u64 prev;
8701 s64 delta;
5c92d124 8702
b0a873eb
PZ
8703 prev = local64_xchg(&event->hw.prev_count, now);
8704 delta = now - prev;
8705 local64_add(delta, &event->count);
8706}
5c92d124 8707
a4eaf7f1 8708static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8709{
a4eaf7f1 8710 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8711 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8712}
8713
a4eaf7f1 8714static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8715{
8716 perf_swevent_cancel_hrtimer(event);
8717 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8718}
8719
8720static int task_clock_event_add(struct perf_event *event, int flags)
8721{
8722 if (flags & PERF_EF_START)
8723 task_clock_event_start(event, flags);
6a694a60 8724 perf_event_update_userpage(event);
b0a873eb 8725
a4eaf7f1
PZ
8726 return 0;
8727}
8728
8729static void task_clock_event_del(struct perf_event *event, int flags)
8730{
8731 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8732}
8733
8734static void task_clock_event_read(struct perf_event *event)
8735{
768a06e2
PZ
8736 u64 now = perf_clock();
8737 u64 delta = now - event->ctx->timestamp;
8738 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8739
8740 task_clock_event_update(event, time);
8741}
8742
8743static int task_clock_event_init(struct perf_event *event)
6fb2915d 8744{
b0a873eb
PZ
8745 if (event->attr.type != PERF_TYPE_SOFTWARE)
8746 return -ENOENT;
8747
8748 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8749 return -ENOENT;
8750
2481c5fa
SE
8751 /*
8752 * no branch sampling for software events
8753 */
8754 if (has_branch_stack(event))
8755 return -EOPNOTSUPP;
8756
ba3dd36c
PZ
8757 perf_swevent_init_hrtimer(event);
8758
b0a873eb 8759 return 0;
6fb2915d
LZ
8760}
8761
b0a873eb 8762static struct pmu perf_task_clock = {
89a1e187
PZ
8763 .task_ctx_nr = perf_sw_context,
8764
34f43927
PZ
8765 .capabilities = PERF_PMU_CAP_NO_NMI,
8766
b0a873eb 8767 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8768 .add = task_clock_event_add,
8769 .del = task_clock_event_del,
8770 .start = task_clock_event_start,
8771 .stop = task_clock_event_stop,
b0a873eb
PZ
8772 .read = task_clock_event_read,
8773};
6fb2915d 8774
ad5133b7 8775static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8776{
e077df4f 8777}
6fb2915d 8778
fbbe0701
SB
8779static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8780{
8781}
8782
ad5133b7 8783static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8784{
ad5133b7 8785 return 0;
6fb2915d
LZ
8786}
8787
18ab2cd3 8788static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8789
8790static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8791{
fbbe0701
SB
8792 __this_cpu_write(nop_txn_flags, flags);
8793
8794 if (flags & ~PERF_PMU_TXN_ADD)
8795 return;
8796
ad5133b7 8797 perf_pmu_disable(pmu);
6fb2915d
LZ
8798}
8799
ad5133b7
PZ
8800static int perf_pmu_commit_txn(struct pmu *pmu)
8801{
fbbe0701
SB
8802 unsigned int flags = __this_cpu_read(nop_txn_flags);
8803
8804 __this_cpu_write(nop_txn_flags, 0);
8805
8806 if (flags & ~PERF_PMU_TXN_ADD)
8807 return 0;
8808
ad5133b7
PZ
8809 perf_pmu_enable(pmu);
8810 return 0;
8811}
e077df4f 8812
ad5133b7 8813static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8814{
fbbe0701
SB
8815 unsigned int flags = __this_cpu_read(nop_txn_flags);
8816
8817 __this_cpu_write(nop_txn_flags, 0);
8818
8819 if (flags & ~PERF_PMU_TXN_ADD)
8820 return;
8821
ad5133b7 8822 perf_pmu_enable(pmu);
24f1e32c
FW
8823}
8824
35edc2a5
PZ
8825static int perf_event_idx_default(struct perf_event *event)
8826{
c719f560 8827 return 0;
35edc2a5
PZ
8828}
8829
8dc85d54
PZ
8830/*
8831 * Ensures all contexts with the same task_ctx_nr have the same
8832 * pmu_cpu_context too.
8833 */
9e317041 8834static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8835{
8dc85d54 8836 struct pmu *pmu;
b326e956 8837
8dc85d54
PZ
8838 if (ctxn < 0)
8839 return NULL;
24f1e32c 8840
8dc85d54
PZ
8841 list_for_each_entry(pmu, &pmus, entry) {
8842 if (pmu->task_ctx_nr == ctxn)
8843 return pmu->pmu_cpu_context;
8844 }
24f1e32c 8845
8dc85d54 8846 return NULL;
24f1e32c
FW
8847}
8848
51676957
PZ
8849static void free_pmu_context(struct pmu *pmu)
8850{
8dc85d54 8851 mutex_lock(&pmus_lock);
51676957 8852 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8853 mutex_unlock(&pmus_lock);
24f1e32c 8854}
6e855cd4
AS
8855
8856/*
8857 * Let userspace know that this PMU supports address range filtering:
8858 */
8859static ssize_t nr_addr_filters_show(struct device *dev,
8860 struct device_attribute *attr,
8861 char *page)
8862{
8863 struct pmu *pmu = dev_get_drvdata(dev);
8864
8865 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8866}
8867DEVICE_ATTR_RO(nr_addr_filters);
8868
2e80a82a 8869static struct idr pmu_idr;
d6d020e9 8870
abe43400
PZ
8871static ssize_t
8872type_show(struct device *dev, struct device_attribute *attr, char *page)
8873{
8874 struct pmu *pmu = dev_get_drvdata(dev);
8875
8876 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8877}
90826ca7 8878static DEVICE_ATTR_RO(type);
abe43400 8879
62b85639
SE
8880static ssize_t
8881perf_event_mux_interval_ms_show(struct device *dev,
8882 struct device_attribute *attr,
8883 char *page)
8884{
8885 struct pmu *pmu = dev_get_drvdata(dev);
8886
8887 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8888}
8889
272325c4
PZ
8890static DEFINE_MUTEX(mux_interval_mutex);
8891
62b85639
SE
8892static ssize_t
8893perf_event_mux_interval_ms_store(struct device *dev,
8894 struct device_attribute *attr,
8895 const char *buf, size_t count)
8896{
8897 struct pmu *pmu = dev_get_drvdata(dev);
8898 int timer, cpu, ret;
8899
8900 ret = kstrtoint(buf, 0, &timer);
8901 if (ret)
8902 return ret;
8903
8904 if (timer < 1)
8905 return -EINVAL;
8906
8907 /* same value, noting to do */
8908 if (timer == pmu->hrtimer_interval_ms)
8909 return count;
8910
272325c4 8911 mutex_lock(&mux_interval_mutex);
62b85639
SE
8912 pmu->hrtimer_interval_ms = timer;
8913
8914 /* update all cpuctx for this PMU */
a63fbed7 8915 cpus_read_lock();
272325c4 8916 for_each_online_cpu(cpu) {
62b85639
SE
8917 struct perf_cpu_context *cpuctx;
8918 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8919 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8920
272325c4
PZ
8921 cpu_function_call(cpu,
8922 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8923 }
a63fbed7 8924 cpus_read_unlock();
272325c4 8925 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8926
8927 return count;
8928}
90826ca7 8929static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8930
90826ca7
GKH
8931static struct attribute *pmu_dev_attrs[] = {
8932 &dev_attr_type.attr,
8933 &dev_attr_perf_event_mux_interval_ms.attr,
8934 NULL,
abe43400 8935};
90826ca7 8936ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8937
8938static int pmu_bus_running;
8939static struct bus_type pmu_bus = {
8940 .name = "event_source",
90826ca7 8941 .dev_groups = pmu_dev_groups,
abe43400
PZ
8942};
8943
8944static void pmu_dev_release(struct device *dev)
8945{
8946 kfree(dev);
8947}
8948
8949static int pmu_dev_alloc(struct pmu *pmu)
8950{
8951 int ret = -ENOMEM;
8952
8953 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8954 if (!pmu->dev)
8955 goto out;
8956
0c9d42ed 8957 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
8958 device_initialize(pmu->dev);
8959 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8960 if (ret)
8961 goto free_dev;
8962
8963 dev_set_drvdata(pmu->dev, pmu);
8964 pmu->dev->bus = &pmu_bus;
8965 pmu->dev->release = pmu_dev_release;
8966 ret = device_add(pmu->dev);
8967 if (ret)
8968 goto free_dev;
8969
6e855cd4
AS
8970 /* For PMUs with address filters, throw in an extra attribute: */
8971 if (pmu->nr_addr_filters)
8972 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8973
8974 if (ret)
8975 goto del_dev;
8976
abe43400
PZ
8977out:
8978 return ret;
8979
6e855cd4
AS
8980del_dev:
8981 device_del(pmu->dev);
8982
abe43400
PZ
8983free_dev:
8984 put_device(pmu->dev);
8985 goto out;
8986}
8987
547e9fd7 8988static struct lock_class_key cpuctx_mutex;
facc4307 8989static struct lock_class_key cpuctx_lock;
547e9fd7 8990
03d8e80b 8991int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 8992{
108b02cf 8993 int cpu, ret;
24f1e32c 8994
b0a873eb 8995 mutex_lock(&pmus_lock);
33696fc0
PZ
8996 ret = -ENOMEM;
8997 pmu->pmu_disable_count = alloc_percpu(int);
8998 if (!pmu->pmu_disable_count)
8999 goto unlock;
f29ac756 9000
2e80a82a
PZ
9001 pmu->type = -1;
9002 if (!name)
9003 goto skip_type;
9004 pmu->name = name;
9005
9006 if (type < 0) {
0e9c3be2
TH
9007 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9008 if (type < 0) {
9009 ret = type;
2e80a82a
PZ
9010 goto free_pdc;
9011 }
9012 }
9013 pmu->type = type;
9014
abe43400
PZ
9015 if (pmu_bus_running) {
9016 ret = pmu_dev_alloc(pmu);
9017 if (ret)
9018 goto free_idr;
9019 }
9020
2e80a82a 9021skip_type:
26657848
PZ
9022 if (pmu->task_ctx_nr == perf_hw_context) {
9023 static int hw_context_taken = 0;
9024
5101ef20
MR
9025 /*
9026 * Other than systems with heterogeneous CPUs, it never makes
9027 * sense for two PMUs to share perf_hw_context. PMUs which are
9028 * uncore must use perf_invalid_context.
9029 */
9030 if (WARN_ON_ONCE(hw_context_taken &&
9031 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9032 pmu->task_ctx_nr = perf_invalid_context;
9033
9034 hw_context_taken = 1;
9035 }
9036
8dc85d54
PZ
9037 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9038 if (pmu->pmu_cpu_context)
9039 goto got_cpu_context;
f29ac756 9040
c4814202 9041 ret = -ENOMEM;
108b02cf
PZ
9042 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9043 if (!pmu->pmu_cpu_context)
abe43400 9044 goto free_dev;
f344011c 9045
108b02cf
PZ
9046 for_each_possible_cpu(cpu) {
9047 struct perf_cpu_context *cpuctx;
9048
9049 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9050 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9051 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9052 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9053 cpuctx->ctx.pmu = pmu;
a63fbed7 9054 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9055
272325c4 9056 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9057 }
76e1d904 9058
8dc85d54 9059got_cpu_context:
ad5133b7
PZ
9060 if (!pmu->start_txn) {
9061 if (pmu->pmu_enable) {
9062 /*
9063 * If we have pmu_enable/pmu_disable calls, install
9064 * transaction stubs that use that to try and batch
9065 * hardware accesses.
9066 */
9067 pmu->start_txn = perf_pmu_start_txn;
9068 pmu->commit_txn = perf_pmu_commit_txn;
9069 pmu->cancel_txn = perf_pmu_cancel_txn;
9070 } else {
fbbe0701 9071 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9072 pmu->commit_txn = perf_pmu_nop_int;
9073 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9074 }
5c92d124 9075 }
15dbf27c 9076
ad5133b7
PZ
9077 if (!pmu->pmu_enable) {
9078 pmu->pmu_enable = perf_pmu_nop_void;
9079 pmu->pmu_disable = perf_pmu_nop_void;
9080 }
9081
35edc2a5
PZ
9082 if (!pmu->event_idx)
9083 pmu->event_idx = perf_event_idx_default;
9084
b0a873eb 9085 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9086 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9087 ret = 0;
9088unlock:
b0a873eb
PZ
9089 mutex_unlock(&pmus_lock);
9090
33696fc0 9091 return ret;
108b02cf 9092
abe43400
PZ
9093free_dev:
9094 device_del(pmu->dev);
9095 put_device(pmu->dev);
9096
2e80a82a
PZ
9097free_idr:
9098 if (pmu->type >= PERF_TYPE_MAX)
9099 idr_remove(&pmu_idr, pmu->type);
9100
108b02cf
PZ
9101free_pdc:
9102 free_percpu(pmu->pmu_disable_count);
9103 goto unlock;
f29ac756 9104}
c464c76e 9105EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9106
b0a873eb 9107void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9108{
0933840a
JO
9109 int remove_device;
9110
b0a873eb 9111 mutex_lock(&pmus_lock);
0933840a 9112 remove_device = pmu_bus_running;
b0a873eb
PZ
9113 list_del_rcu(&pmu->entry);
9114 mutex_unlock(&pmus_lock);
5c92d124 9115
0475f9ea 9116 /*
cde8e884
PZ
9117 * We dereference the pmu list under both SRCU and regular RCU, so
9118 * synchronize against both of those.
0475f9ea 9119 */
b0a873eb 9120 synchronize_srcu(&pmus_srcu);
cde8e884 9121 synchronize_rcu();
d6d020e9 9122
33696fc0 9123 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9124 if (pmu->type >= PERF_TYPE_MAX)
9125 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9126 if (remove_device) {
9127 if (pmu->nr_addr_filters)
9128 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9129 device_del(pmu->dev);
9130 put_device(pmu->dev);
9131 }
51676957 9132 free_pmu_context(pmu);
b0a873eb 9133}
c464c76e 9134EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9135
cc34b98b
MR
9136static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9137{
ccd41c86 9138 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9139 int ret;
9140
9141 if (!try_module_get(pmu->module))
9142 return -ENODEV;
ccd41c86
PZ
9143
9144 if (event->group_leader != event) {
8b10c5e2
PZ
9145 /*
9146 * This ctx->mutex can nest when we're called through
9147 * inheritance. See the perf_event_ctx_lock_nested() comment.
9148 */
9149 ctx = perf_event_ctx_lock_nested(event->group_leader,
9150 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9151 BUG_ON(!ctx);
9152 }
9153
cc34b98b
MR
9154 event->pmu = pmu;
9155 ret = pmu->event_init(event);
ccd41c86
PZ
9156
9157 if (ctx)
9158 perf_event_ctx_unlock(event->group_leader, ctx);
9159
cc34b98b
MR
9160 if (ret)
9161 module_put(pmu->module);
9162
9163 return ret;
9164}
9165
18ab2cd3 9166static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
9167{
9168 struct pmu *pmu = NULL;
9169 int idx;
940c5b29 9170 int ret;
b0a873eb
PZ
9171
9172 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9173
40999312
KL
9174 /* Try parent's PMU first: */
9175 if (event->parent && event->parent->pmu) {
9176 pmu = event->parent->pmu;
9177 ret = perf_try_init_event(pmu, event);
9178 if (!ret)
9179 goto unlock;
9180 }
9181
2e80a82a
PZ
9182 rcu_read_lock();
9183 pmu = idr_find(&pmu_idr, event->attr.type);
9184 rcu_read_unlock();
940c5b29 9185 if (pmu) {
cc34b98b 9186 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9187 if (ret)
9188 pmu = ERR_PTR(ret);
2e80a82a 9189 goto unlock;
940c5b29 9190 }
2e80a82a 9191
b0a873eb 9192 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9193 ret = perf_try_init_event(pmu, event);
b0a873eb 9194 if (!ret)
e5f4d339 9195 goto unlock;
76e1d904 9196
b0a873eb
PZ
9197 if (ret != -ENOENT) {
9198 pmu = ERR_PTR(ret);
e5f4d339 9199 goto unlock;
f344011c 9200 }
5c92d124 9201 }
e5f4d339
PZ
9202 pmu = ERR_PTR(-ENOENT);
9203unlock:
b0a873eb 9204 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9205
4aeb0b42 9206 return pmu;
5c92d124
IM
9207}
9208
f2fb6bef
KL
9209static void attach_sb_event(struct perf_event *event)
9210{
9211 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9212
9213 raw_spin_lock(&pel->lock);
9214 list_add_rcu(&event->sb_list, &pel->list);
9215 raw_spin_unlock(&pel->lock);
9216}
9217
aab5b71e
PZ
9218/*
9219 * We keep a list of all !task (and therefore per-cpu) events
9220 * that need to receive side-band records.
9221 *
9222 * This avoids having to scan all the various PMU per-cpu contexts
9223 * looking for them.
9224 */
f2fb6bef
KL
9225static void account_pmu_sb_event(struct perf_event *event)
9226{
a4f144eb 9227 if (is_sb_event(event))
f2fb6bef
KL
9228 attach_sb_event(event);
9229}
9230
4beb31f3
FW
9231static void account_event_cpu(struct perf_event *event, int cpu)
9232{
9233 if (event->parent)
9234 return;
9235
4beb31f3
FW
9236 if (is_cgroup_event(event))
9237 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9238}
9239
555e0c1e
FW
9240/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9241static void account_freq_event_nohz(void)
9242{
9243#ifdef CONFIG_NO_HZ_FULL
9244 /* Lock so we don't race with concurrent unaccount */
9245 spin_lock(&nr_freq_lock);
9246 if (atomic_inc_return(&nr_freq_events) == 1)
9247 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9248 spin_unlock(&nr_freq_lock);
9249#endif
9250}
9251
9252static void account_freq_event(void)
9253{
9254 if (tick_nohz_full_enabled())
9255 account_freq_event_nohz();
9256 else
9257 atomic_inc(&nr_freq_events);
9258}
9259
9260
766d6c07
FW
9261static void account_event(struct perf_event *event)
9262{
25432ae9
PZ
9263 bool inc = false;
9264
4beb31f3
FW
9265 if (event->parent)
9266 return;
9267
766d6c07 9268 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9269 inc = true;
766d6c07
FW
9270 if (event->attr.mmap || event->attr.mmap_data)
9271 atomic_inc(&nr_mmap_events);
9272 if (event->attr.comm)
9273 atomic_inc(&nr_comm_events);
e4222673
HB
9274 if (event->attr.namespaces)
9275 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9276 if (event->attr.task)
9277 atomic_inc(&nr_task_events);
555e0c1e
FW
9278 if (event->attr.freq)
9279 account_freq_event();
45ac1403
AH
9280 if (event->attr.context_switch) {
9281 atomic_inc(&nr_switch_events);
25432ae9 9282 inc = true;
45ac1403 9283 }
4beb31f3 9284 if (has_branch_stack(event))
25432ae9 9285 inc = true;
4beb31f3 9286 if (is_cgroup_event(event))
25432ae9
PZ
9287 inc = true;
9288
9107c89e
PZ
9289 if (inc) {
9290 if (atomic_inc_not_zero(&perf_sched_count))
9291 goto enabled;
9292
9293 mutex_lock(&perf_sched_mutex);
9294 if (!atomic_read(&perf_sched_count)) {
9295 static_branch_enable(&perf_sched_events);
9296 /*
9297 * Guarantee that all CPUs observe they key change and
9298 * call the perf scheduling hooks before proceeding to
9299 * install events that need them.
9300 */
9301 synchronize_sched();
9302 }
9303 /*
9304 * Now that we have waited for the sync_sched(), allow further
9305 * increments to by-pass the mutex.
9306 */
9307 atomic_inc(&perf_sched_count);
9308 mutex_unlock(&perf_sched_mutex);
9309 }
9310enabled:
4beb31f3
FW
9311
9312 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9313
9314 account_pmu_sb_event(event);
766d6c07
FW
9315}
9316
0793a61d 9317/*
cdd6c482 9318 * Allocate and initialize a event structure
0793a61d 9319 */
cdd6c482 9320static struct perf_event *
c3f00c70 9321perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9322 struct task_struct *task,
9323 struct perf_event *group_leader,
9324 struct perf_event *parent_event,
4dc0da86 9325 perf_overflow_handler_t overflow_handler,
79dff51e 9326 void *context, int cgroup_fd)
0793a61d 9327{
51b0fe39 9328 struct pmu *pmu;
cdd6c482
IM
9329 struct perf_event *event;
9330 struct hw_perf_event *hwc;
90983b16 9331 long err = -EINVAL;
0793a61d 9332
66832eb4
ON
9333 if ((unsigned)cpu >= nr_cpu_ids) {
9334 if (!task || cpu != -1)
9335 return ERR_PTR(-EINVAL);
9336 }
9337
c3f00c70 9338 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9339 if (!event)
d5d2bc0d 9340 return ERR_PTR(-ENOMEM);
0793a61d 9341
04289bb9 9342 /*
cdd6c482 9343 * Single events are their own group leaders, with an
04289bb9
IM
9344 * empty sibling list:
9345 */
9346 if (!group_leader)
cdd6c482 9347 group_leader = event;
04289bb9 9348
cdd6c482
IM
9349 mutex_init(&event->child_mutex);
9350 INIT_LIST_HEAD(&event->child_list);
fccc714b 9351
cdd6c482
IM
9352 INIT_LIST_HEAD(&event->group_entry);
9353 INIT_LIST_HEAD(&event->event_entry);
9354 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9355 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9356 INIT_LIST_HEAD(&event->active_entry);
375637bc 9357 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9358 INIT_HLIST_NODE(&event->hlist_entry);
9359
10c6db11 9360
cdd6c482 9361 init_waitqueue_head(&event->waitq);
e360adbe 9362 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9363
cdd6c482 9364 mutex_init(&event->mmap_mutex);
375637bc 9365 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9366
a6fa941d 9367 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9368 event->cpu = cpu;
9369 event->attr = *attr;
9370 event->group_leader = group_leader;
9371 event->pmu = NULL;
cdd6c482 9372 event->oncpu = -1;
a96bbc16 9373
cdd6c482 9374 event->parent = parent_event;
b84fbc9f 9375
17cf22c3 9376 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9377 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9378
cdd6c482 9379 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9380
d580ff86
PZ
9381 if (task) {
9382 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9383 /*
50f16a8b
PZ
9384 * XXX pmu::event_init needs to know what task to account to
9385 * and we cannot use the ctx information because we need the
9386 * pmu before we get a ctx.
d580ff86 9387 */
50f16a8b 9388 event->hw.target = task;
d580ff86
PZ
9389 }
9390
34f43927
PZ
9391 event->clock = &local_clock;
9392 if (parent_event)
9393 event->clock = parent_event->clock;
9394
4dc0da86 9395 if (!overflow_handler && parent_event) {
b326e956 9396 overflow_handler = parent_event->overflow_handler;
4dc0da86 9397 context = parent_event->overflow_handler_context;
f1e4ba5b 9398#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9399 if (overflow_handler == bpf_overflow_handler) {
9400 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9401
9402 if (IS_ERR(prog)) {
9403 err = PTR_ERR(prog);
9404 goto err_ns;
9405 }
9406 event->prog = prog;
9407 event->orig_overflow_handler =
9408 parent_event->orig_overflow_handler;
9409 }
9410#endif
4dc0da86 9411 }
66832eb4 9412
1879445d
WN
9413 if (overflow_handler) {
9414 event->overflow_handler = overflow_handler;
9415 event->overflow_handler_context = context;
9ecda41a
WN
9416 } else if (is_write_backward(event)){
9417 event->overflow_handler = perf_event_output_backward;
9418 event->overflow_handler_context = NULL;
1879445d 9419 } else {
9ecda41a 9420 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9421 event->overflow_handler_context = NULL;
9422 }
97eaf530 9423
0231bb53 9424 perf_event__state_init(event);
a86ed508 9425
4aeb0b42 9426 pmu = NULL;
b8e83514 9427
cdd6c482 9428 hwc = &event->hw;
bd2b5b12 9429 hwc->sample_period = attr->sample_period;
0d48696f 9430 if (attr->freq && attr->sample_freq)
bd2b5b12 9431 hwc->sample_period = 1;
eced1dfc 9432 hwc->last_period = hwc->sample_period;
bd2b5b12 9433
e7850595 9434 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9435
2023b359 9436 /*
cdd6c482 9437 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 9438 */
3dab77fb 9439 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 9440 goto err_ns;
a46a2300
YZ
9441
9442 if (!has_branch_stack(event))
9443 event->attr.branch_sample_type = 0;
2023b359 9444
79dff51e
MF
9445 if (cgroup_fd != -1) {
9446 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9447 if (err)
9448 goto err_ns;
9449 }
9450
b0a873eb 9451 pmu = perf_init_event(event);
4aeb0b42 9452 if (!pmu)
90983b16
FW
9453 goto err_ns;
9454 else if (IS_ERR(pmu)) {
4aeb0b42 9455 err = PTR_ERR(pmu);
90983b16 9456 goto err_ns;
621a01ea 9457 }
d5d2bc0d 9458
bed5b25a
AS
9459 err = exclusive_event_init(event);
9460 if (err)
9461 goto err_pmu;
9462
375637bc
AS
9463 if (has_addr_filter(event)) {
9464 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9465 sizeof(unsigned long),
9466 GFP_KERNEL);
9467 if (!event->addr_filters_offs)
9468 goto err_per_task;
9469
9470 /* force hw sync on the address filters */
9471 event->addr_filters_gen = 1;
9472 }
9473
cdd6c482 9474 if (!event->parent) {
927c7a9e 9475 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9476 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9477 if (err)
375637bc 9478 goto err_addr_filters;
d010b332 9479 }
f344011c 9480 }
9ee318a7 9481
927a5570
AS
9482 /* symmetric to unaccount_event() in _free_event() */
9483 account_event(event);
9484
cdd6c482 9485 return event;
90983b16 9486
375637bc
AS
9487err_addr_filters:
9488 kfree(event->addr_filters_offs);
9489
bed5b25a
AS
9490err_per_task:
9491 exclusive_event_destroy(event);
9492
90983b16
FW
9493err_pmu:
9494 if (event->destroy)
9495 event->destroy(event);
c464c76e 9496 module_put(pmu->module);
90983b16 9497err_ns:
79dff51e
MF
9498 if (is_cgroup_event(event))
9499 perf_detach_cgroup(event);
90983b16
FW
9500 if (event->ns)
9501 put_pid_ns(event->ns);
9502 kfree(event);
9503
9504 return ERR_PTR(err);
0793a61d
TG
9505}
9506
cdd6c482
IM
9507static int perf_copy_attr(struct perf_event_attr __user *uattr,
9508 struct perf_event_attr *attr)
974802ea 9509{
974802ea 9510 u32 size;
cdf8073d 9511 int ret;
974802ea
PZ
9512
9513 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9514 return -EFAULT;
9515
9516 /*
9517 * zero the full structure, so that a short copy will be nice.
9518 */
9519 memset(attr, 0, sizeof(*attr));
9520
9521 ret = get_user(size, &uattr->size);
9522 if (ret)
9523 return ret;
9524
9525 if (size > PAGE_SIZE) /* silly large */
9526 goto err_size;
9527
9528 if (!size) /* abi compat */
9529 size = PERF_ATTR_SIZE_VER0;
9530
9531 if (size < PERF_ATTR_SIZE_VER0)
9532 goto err_size;
9533
9534 /*
9535 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9536 * ensure all the unknown bits are 0 - i.e. new
9537 * user-space does not rely on any kernel feature
9538 * extensions we dont know about yet.
974802ea
PZ
9539 */
9540 if (size > sizeof(*attr)) {
cdf8073d
IS
9541 unsigned char __user *addr;
9542 unsigned char __user *end;
9543 unsigned char val;
974802ea 9544
cdf8073d
IS
9545 addr = (void __user *)uattr + sizeof(*attr);
9546 end = (void __user *)uattr + size;
974802ea 9547
cdf8073d 9548 for (; addr < end; addr++) {
974802ea
PZ
9549 ret = get_user(val, addr);
9550 if (ret)
9551 return ret;
9552 if (val)
9553 goto err_size;
9554 }
b3e62e35 9555 size = sizeof(*attr);
974802ea
PZ
9556 }
9557
9558 ret = copy_from_user(attr, uattr, size);
9559 if (ret)
9560 return -EFAULT;
9561
cd757645 9562 if (attr->__reserved_1)
974802ea
PZ
9563 return -EINVAL;
9564
9565 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9566 return -EINVAL;
9567
9568 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9569 return -EINVAL;
9570
bce38cd5
SE
9571 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9572 u64 mask = attr->branch_sample_type;
9573
9574 /* only using defined bits */
9575 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9576 return -EINVAL;
9577
9578 /* at least one branch bit must be set */
9579 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9580 return -EINVAL;
9581
bce38cd5
SE
9582 /* propagate priv level, when not set for branch */
9583 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9584
9585 /* exclude_kernel checked on syscall entry */
9586 if (!attr->exclude_kernel)
9587 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9588
9589 if (!attr->exclude_user)
9590 mask |= PERF_SAMPLE_BRANCH_USER;
9591
9592 if (!attr->exclude_hv)
9593 mask |= PERF_SAMPLE_BRANCH_HV;
9594 /*
9595 * adjust user setting (for HW filter setup)
9596 */
9597 attr->branch_sample_type = mask;
9598 }
e712209a
SE
9599 /* privileged levels capture (kernel, hv): check permissions */
9600 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9601 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9602 return -EACCES;
bce38cd5 9603 }
4018994f 9604
c5ebcedb 9605 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9606 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9607 if (ret)
9608 return ret;
9609 }
9610
9611 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9612 if (!arch_perf_have_user_stack_dump())
9613 return -ENOSYS;
9614
9615 /*
9616 * We have __u32 type for the size, but so far
9617 * we can only use __u16 as maximum due to the
9618 * __u16 sample size limit.
9619 */
9620 if (attr->sample_stack_user >= USHRT_MAX)
9621 ret = -EINVAL;
9622 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9623 ret = -EINVAL;
9624 }
4018994f 9625
60e2364e
SE
9626 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9627 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9628out:
9629 return ret;
9630
9631err_size:
9632 put_user(sizeof(*attr), &uattr->size);
9633 ret = -E2BIG;
9634 goto out;
9635}
9636
ac9721f3
PZ
9637static int
9638perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9639{
b69cf536 9640 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9641 int ret = -EINVAL;
9642
ac9721f3 9643 if (!output_event)
a4be7c27
PZ
9644 goto set;
9645
ac9721f3
PZ
9646 /* don't allow circular references */
9647 if (event == output_event)
a4be7c27
PZ
9648 goto out;
9649
0f139300
PZ
9650 /*
9651 * Don't allow cross-cpu buffers
9652 */
9653 if (output_event->cpu != event->cpu)
9654 goto out;
9655
9656 /*
76369139 9657 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9658 */
9659 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9660 goto out;
9661
34f43927
PZ
9662 /*
9663 * Mixing clocks in the same buffer is trouble you don't need.
9664 */
9665 if (output_event->clock != event->clock)
9666 goto out;
9667
9ecda41a
WN
9668 /*
9669 * Either writing ring buffer from beginning or from end.
9670 * Mixing is not allowed.
9671 */
9672 if (is_write_backward(output_event) != is_write_backward(event))
9673 goto out;
9674
45bfb2e5
PZ
9675 /*
9676 * If both events generate aux data, they must be on the same PMU
9677 */
9678 if (has_aux(event) && has_aux(output_event) &&
9679 event->pmu != output_event->pmu)
9680 goto out;
9681
a4be7c27 9682set:
cdd6c482 9683 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9684 /* Can't redirect output if we've got an active mmap() */
9685 if (atomic_read(&event->mmap_count))
9686 goto unlock;
a4be7c27 9687
ac9721f3 9688 if (output_event) {
76369139
FW
9689 /* get the rb we want to redirect to */
9690 rb = ring_buffer_get(output_event);
9691 if (!rb)
ac9721f3 9692 goto unlock;
a4be7c27
PZ
9693 }
9694
b69cf536 9695 ring_buffer_attach(event, rb);
9bb5d40c 9696
a4be7c27 9697 ret = 0;
ac9721f3
PZ
9698unlock:
9699 mutex_unlock(&event->mmap_mutex);
9700
a4be7c27 9701out:
a4be7c27
PZ
9702 return ret;
9703}
9704
f63a8daa
PZ
9705static void mutex_lock_double(struct mutex *a, struct mutex *b)
9706{
9707 if (b < a)
9708 swap(a, b);
9709
9710 mutex_lock(a);
9711 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9712}
9713
34f43927
PZ
9714static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9715{
9716 bool nmi_safe = false;
9717
9718 switch (clk_id) {
9719 case CLOCK_MONOTONIC:
9720 event->clock = &ktime_get_mono_fast_ns;
9721 nmi_safe = true;
9722 break;
9723
9724 case CLOCK_MONOTONIC_RAW:
9725 event->clock = &ktime_get_raw_fast_ns;
9726 nmi_safe = true;
9727 break;
9728
9729 case CLOCK_REALTIME:
9730 event->clock = &ktime_get_real_ns;
9731 break;
9732
9733 case CLOCK_BOOTTIME:
9734 event->clock = &ktime_get_boot_ns;
9735 break;
9736
9737 case CLOCK_TAI:
9738 event->clock = &ktime_get_tai_ns;
9739 break;
9740
9741 default:
9742 return -EINVAL;
9743 }
9744
9745 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9746 return -EINVAL;
9747
9748 return 0;
9749}
9750
321027c1
PZ
9751/*
9752 * Variation on perf_event_ctx_lock_nested(), except we take two context
9753 * mutexes.
9754 */
9755static struct perf_event_context *
9756__perf_event_ctx_lock_double(struct perf_event *group_leader,
9757 struct perf_event_context *ctx)
9758{
9759 struct perf_event_context *gctx;
9760
9761again:
9762 rcu_read_lock();
9763 gctx = READ_ONCE(group_leader->ctx);
9764 if (!atomic_inc_not_zero(&gctx->refcount)) {
9765 rcu_read_unlock();
9766 goto again;
9767 }
9768 rcu_read_unlock();
9769
9770 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9771
9772 if (group_leader->ctx != gctx) {
9773 mutex_unlock(&ctx->mutex);
9774 mutex_unlock(&gctx->mutex);
9775 put_ctx(gctx);
9776 goto again;
9777 }
9778
9779 return gctx;
9780}
9781
0793a61d 9782/**
cdd6c482 9783 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9784 *
cdd6c482 9785 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9786 * @pid: target pid
9f66a381 9787 * @cpu: target cpu
cdd6c482 9788 * @group_fd: group leader event fd
0793a61d 9789 */
cdd6c482
IM
9790SYSCALL_DEFINE5(perf_event_open,
9791 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9792 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9793{
b04243ef
PZ
9794 struct perf_event *group_leader = NULL, *output_event = NULL;
9795 struct perf_event *event, *sibling;
cdd6c482 9796 struct perf_event_attr attr;
f63a8daa 9797 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9798 struct file *event_file = NULL;
2903ff01 9799 struct fd group = {NULL, 0};
38a81da2 9800 struct task_struct *task = NULL;
89a1e187 9801 struct pmu *pmu;
ea635c64 9802 int event_fd;
b04243ef 9803 int move_group = 0;
dc86cabe 9804 int err;
a21b0b35 9805 int f_flags = O_RDWR;
79dff51e 9806 int cgroup_fd = -1;
0793a61d 9807
2743a5b0 9808 /* for future expandability... */
e5d1367f 9809 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9810 return -EINVAL;
9811
dc86cabe
IM
9812 err = perf_copy_attr(attr_uptr, &attr);
9813 if (err)
9814 return err;
eab656ae 9815
0764771d
PZ
9816 if (!attr.exclude_kernel) {
9817 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9818 return -EACCES;
9819 }
9820
e4222673
HB
9821 if (attr.namespaces) {
9822 if (!capable(CAP_SYS_ADMIN))
9823 return -EACCES;
9824 }
9825
df58ab24 9826 if (attr.freq) {
cdd6c482 9827 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9828 return -EINVAL;
0819b2e3
PZ
9829 } else {
9830 if (attr.sample_period & (1ULL << 63))
9831 return -EINVAL;
df58ab24
PZ
9832 }
9833
97c79a38
ACM
9834 if (!attr.sample_max_stack)
9835 attr.sample_max_stack = sysctl_perf_event_max_stack;
9836
e5d1367f
SE
9837 /*
9838 * In cgroup mode, the pid argument is used to pass the fd
9839 * opened to the cgroup directory in cgroupfs. The cpu argument
9840 * designates the cpu on which to monitor threads from that
9841 * cgroup.
9842 */
9843 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9844 return -EINVAL;
9845
a21b0b35
YD
9846 if (flags & PERF_FLAG_FD_CLOEXEC)
9847 f_flags |= O_CLOEXEC;
9848
9849 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9850 if (event_fd < 0)
9851 return event_fd;
9852
ac9721f3 9853 if (group_fd != -1) {
2903ff01
AV
9854 err = perf_fget_light(group_fd, &group);
9855 if (err)
d14b12d7 9856 goto err_fd;
2903ff01 9857 group_leader = group.file->private_data;
ac9721f3
PZ
9858 if (flags & PERF_FLAG_FD_OUTPUT)
9859 output_event = group_leader;
9860 if (flags & PERF_FLAG_FD_NO_GROUP)
9861 group_leader = NULL;
9862 }
9863
e5d1367f 9864 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9865 task = find_lively_task_by_vpid(pid);
9866 if (IS_ERR(task)) {
9867 err = PTR_ERR(task);
9868 goto err_group_fd;
9869 }
9870 }
9871
1f4ee503
PZ
9872 if (task && group_leader &&
9873 group_leader->attr.inherit != attr.inherit) {
9874 err = -EINVAL;
9875 goto err_task;
9876 }
9877
79c9ce57
PZ
9878 if (task) {
9879 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9880 if (err)
a63fbed7 9881 goto err_cred;
79c9ce57
PZ
9882
9883 /*
9884 * Reuse ptrace permission checks for now.
9885 *
9886 * We must hold cred_guard_mutex across this and any potential
9887 * perf_install_in_context() call for this new event to
9888 * serialize against exec() altering our credentials (and the
9889 * perf_event_exit_task() that could imply).
9890 */
9891 err = -EACCES;
9892 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9893 goto err_cred;
9894 }
9895
79dff51e
MF
9896 if (flags & PERF_FLAG_PID_CGROUP)
9897 cgroup_fd = pid;
9898
4dc0da86 9899 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9900 NULL, NULL, cgroup_fd);
d14b12d7
SE
9901 if (IS_ERR(event)) {
9902 err = PTR_ERR(event);
79c9ce57 9903 goto err_cred;
d14b12d7
SE
9904 }
9905
53b25335
VW
9906 if (is_sampling_event(event)) {
9907 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 9908 err = -EOPNOTSUPP;
53b25335
VW
9909 goto err_alloc;
9910 }
9911 }
9912
89a1e187
PZ
9913 /*
9914 * Special case software events and allow them to be part of
9915 * any hardware group.
9916 */
9917 pmu = event->pmu;
b04243ef 9918
34f43927
PZ
9919 if (attr.use_clockid) {
9920 err = perf_event_set_clock(event, attr.clockid);
9921 if (err)
9922 goto err_alloc;
9923 }
9924
4ff6a8de
DCC
9925 if (pmu->task_ctx_nr == perf_sw_context)
9926 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9927
b04243ef
PZ
9928 if (group_leader &&
9929 (is_software_event(event) != is_software_event(group_leader))) {
9930 if (is_software_event(event)) {
9931 /*
9932 * If event and group_leader are not both a software
9933 * event, and event is, then group leader is not.
9934 *
9935 * Allow the addition of software events to !software
9936 * groups, this is safe because software events never
9937 * fail to schedule.
9938 */
9939 pmu = group_leader->pmu;
9940 } else if (is_software_event(group_leader) &&
4ff6a8de 9941 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
9942 /*
9943 * In case the group is a pure software group, and we
9944 * try to add a hardware event, move the whole group to
9945 * the hardware context.
9946 */
9947 move_group = 1;
9948 }
9949 }
89a1e187
PZ
9950
9951 /*
9952 * Get the target context (task or percpu):
9953 */
4af57ef2 9954 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
9955 if (IS_ERR(ctx)) {
9956 err = PTR_ERR(ctx);
c6be5a5c 9957 goto err_alloc;
89a1e187
PZ
9958 }
9959
bed5b25a
AS
9960 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9961 err = -EBUSY;
9962 goto err_context;
9963 }
9964
ccff286d 9965 /*
cdd6c482 9966 * Look up the group leader (we will attach this event to it):
04289bb9 9967 */
ac9721f3 9968 if (group_leader) {
dc86cabe 9969 err = -EINVAL;
04289bb9 9970
04289bb9 9971 /*
ccff286d
IM
9972 * Do not allow a recursive hierarchy (this new sibling
9973 * becoming part of another group-sibling):
9974 */
9975 if (group_leader->group_leader != group_leader)
c3f00c70 9976 goto err_context;
34f43927
PZ
9977
9978 /* All events in a group should have the same clock */
9979 if (group_leader->clock != event->clock)
9980 goto err_context;
9981
ccff286d
IM
9982 /*
9983 * Do not allow to attach to a group in a different
9984 * task or CPU context:
04289bb9 9985 */
b04243ef 9986 if (move_group) {
c3c87e77
PZ
9987 /*
9988 * Make sure we're both on the same task, or both
9989 * per-cpu events.
9990 */
9991 if (group_leader->ctx->task != ctx->task)
9992 goto err_context;
9993
9994 /*
9995 * Make sure we're both events for the same CPU;
9996 * grouping events for different CPUs is broken; since
9997 * you can never concurrently schedule them anyhow.
9998 */
9999 if (group_leader->cpu != event->cpu)
b04243ef
PZ
10000 goto err_context;
10001 } else {
10002 if (group_leader->ctx != ctx)
10003 goto err_context;
10004 }
10005
3b6f9e5c
PM
10006 /*
10007 * Only a group leader can be exclusive or pinned
10008 */
0d48696f 10009 if (attr.exclusive || attr.pinned)
c3f00c70 10010 goto err_context;
ac9721f3
PZ
10011 }
10012
10013 if (output_event) {
10014 err = perf_event_set_output(event, output_event);
10015 if (err)
c3f00c70 10016 goto err_context;
ac9721f3 10017 }
0793a61d 10018
a21b0b35
YD
10019 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10020 f_flags);
ea635c64
AV
10021 if (IS_ERR(event_file)) {
10022 err = PTR_ERR(event_file);
201c2f85 10023 event_file = NULL;
c3f00c70 10024 goto err_context;
ea635c64 10025 }
9b51f66d 10026
b04243ef 10027 if (move_group) {
321027c1
PZ
10028 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10029
84c4e620
PZ
10030 if (gctx->task == TASK_TOMBSTONE) {
10031 err = -ESRCH;
10032 goto err_locked;
10033 }
321027c1
PZ
10034
10035 /*
10036 * Check if we raced against another sys_perf_event_open() call
10037 * moving the software group underneath us.
10038 */
10039 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10040 /*
10041 * If someone moved the group out from under us, check
10042 * if this new event wound up on the same ctx, if so
10043 * its the regular !move_group case, otherwise fail.
10044 */
10045 if (gctx != ctx) {
10046 err = -EINVAL;
10047 goto err_locked;
10048 } else {
10049 perf_event_ctx_unlock(group_leader, gctx);
10050 move_group = 0;
10051 }
10052 }
f55fc2a5
PZ
10053 } else {
10054 mutex_lock(&ctx->mutex);
10055 }
10056
84c4e620
PZ
10057 if (ctx->task == TASK_TOMBSTONE) {
10058 err = -ESRCH;
10059 goto err_locked;
10060 }
10061
a723968c
PZ
10062 if (!perf_event_validate_size(event)) {
10063 err = -E2BIG;
10064 goto err_locked;
10065 }
10066
a63fbed7
TG
10067 if (!task) {
10068 /*
10069 * Check if the @cpu we're creating an event for is online.
10070 *
10071 * We use the perf_cpu_context::ctx::mutex to serialize against
10072 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10073 */
10074 struct perf_cpu_context *cpuctx =
10075 container_of(ctx, struct perf_cpu_context, ctx);
10076
10077 if (!cpuctx->online) {
10078 err = -ENODEV;
10079 goto err_locked;
10080 }
10081 }
10082
10083
f55fc2a5
PZ
10084 /*
10085 * Must be under the same ctx::mutex as perf_install_in_context(),
10086 * because we need to serialize with concurrent event creation.
10087 */
10088 if (!exclusive_event_installable(event, ctx)) {
10089 /* exclusive and group stuff are assumed mutually exclusive */
10090 WARN_ON_ONCE(move_group);
f63a8daa 10091
f55fc2a5
PZ
10092 err = -EBUSY;
10093 goto err_locked;
10094 }
f63a8daa 10095
f55fc2a5
PZ
10096 WARN_ON_ONCE(ctx->parent_ctx);
10097
79c9ce57
PZ
10098 /*
10099 * This is the point on no return; we cannot fail hereafter. This is
10100 * where we start modifying current state.
10101 */
10102
f55fc2a5 10103 if (move_group) {
f63a8daa
PZ
10104 /*
10105 * See perf_event_ctx_lock() for comments on the details
10106 * of swizzling perf_event::ctx.
10107 */
45a0e07a 10108 perf_remove_from_context(group_leader, 0);
279b5165 10109 put_ctx(gctx);
0231bb53 10110
b04243ef
PZ
10111 list_for_each_entry(sibling, &group_leader->sibling_list,
10112 group_entry) {
45a0e07a 10113 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10114 put_ctx(gctx);
10115 }
b04243ef 10116
f63a8daa
PZ
10117 /*
10118 * Wait for everybody to stop referencing the events through
10119 * the old lists, before installing it on new lists.
10120 */
0cda4c02 10121 synchronize_rcu();
f63a8daa 10122
8f95b435
PZI
10123 /*
10124 * Install the group siblings before the group leader.
10125 *
10126 * Because a group leader will try and install the entire group
10127 * (through the sibling list, which is still in-tact), we can
10128 * end up with siblings installed in the wrong context.
10129 *
10130 * By installing siblings first we NO-OP because they're not
10131 * reachable through the group lists.
10132 */
b04243ef
PZ
10133 list_for_each_entry(sibling, &group_leader->sibling_list,
10134 group_entry) {
8f95b435 10135 perf_event__state_init(sibling);
9fc81d87 10136 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10137 get_ctx(ctx);
10138 }
8f95b435
PZI
10139
10140 /*
10141 * Removing from the context ends up with disabled
10142 * event. What we want here is event in the initial
10143 * startup state, ready to be add into new context.
10144 */
10145 perf_event__state_init(group_leader);
10146 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10147 get_ctx(ctx);
bed5b25a
AS
10148 }
10149
f73e22ab
PZ
10150 /*
10151 * Precalculate sample_data sizes; do while holding ctx::mutex such
10152 * that we're serialized against further additions and before
10153 * perf_install_in_context() which is the point the event is active and
10154 * can use these values.
10155 */
10156 perf_event__header_size(event);
10157 perf_event__id_header_size(event);
10158
78cd2c74
PZ
10159 event->owner = current;
10160
e2d37cd2 10161 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10162 perf_unpin_context(ctx);
f63a8daa 10163
f55fc2a5 10164 if (move_group)
321027c1 10165 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10166 mutex_unlock(&ctx->mutex);
9b51f66d 10167
79c9ce57
PZ
10168 if (task) {
10169 mutex_unlock(&task->signal->cred_guard_mutex);
10170 put_task_struct(task);
10171 }
10172
cdd6c482
IM
10173 mutex_lock(&current->perf_event_mutex);
10174 list_add_tail(&event->owner_entry, &current->perf_event_list);
10175 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10176
8a49542c
PZ
10177 /*
10178 * Drop the reference on the group_event after placing the
10179 * new event on the sibling_list. This ensures destruction
10180 * of the group leader will find the pointer to itself in
10181 * perf_group_detach().
10182 */
2903ff01 10183 fdput(group);
ea635c64
AV
10184 fd_install(event_fd, event_file);
10185 return event_fd;
0793a61d 10186
f55fc2a5
PZ
10187err_locked:
10188 if (move_group)
321027c1 10189 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10190 mutex_unlock(&ctx->mutex);
10191/* err_file: */
10192 fput(event_file);
c3f00c70 10193err_context:
fe4b04fa 10194 perf_unpin_context(ctx);
ea635c64 10195 put_ctx(ctx);
c6be5a5c 10196err_alloc:
13005627
PZ
10197 /*
10198 * If event_file is set, the fput() above will have called ->release()
10199 * and that will take care of freeing the event.
10200 */
10201 if (!event_file)
10202 free_event(event);
79c9ce57
PZ
10203err_cred:
10204 if (task)
10205 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10206err_task:
e7d0bc04
PZ
10207 if (task)
10208 put_task_struct(task);
89a1e187 10209err_group_fd:
2903ff01 10210 fdput(group);
ea635c64
AV
10211err_fd:
10212 put_unused_fd(event_fd);
dc86cabe 10213 return err;
0793a61d
TG
10214}
10215
fb0459d7
AV
10216/**
10217 * perf_event_create_kernel_counter
10218 *
10219 * @attr: attributes of the counter to create
10220 * @cpu: cpu in which the counter is bound
38a81da2 10221 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10222 */
10223struct perf_event *
10224perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10225 struct task_struct *task,
4dc0da86
AK
10226 perf_overflow_handler_t overflow_handler,
10227 void *context)
fb0459d7 10228{
fb0459d7 10229 struct perf_event_context *ctx;
c3f00c70 10230 struct perf_event *event;
fb0459d7 10231 int err;
d859e29f 10232
fb0459d7
AV
10233 /*
10234 * Get the target context (task or percpu):
10235 */
d859e29f 10236
4dc0da86 10237 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10238 overflow_handler, context, -1);
c3f00c70
PZ
10239 if (IS_ERR(event)) {
10240 err = PTR_ERR(event);
10241 goto err;
10242 }
d859e29f 10243
f8697762 10244 /* Mark owner so we could distinguish it from user events. */
63b6da39 10245 event->owner = TASK_TOMBSTONE;
f8697762 10246
4af57ef2 10247 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10248 if (IS_ERR(ctx)) {
10249 err = PTR_ERR(ctx);
c3f00c70 10250 goto err_free;
d859e29f 10251 }
fb0459d7 10252
fb0459d7
AV
10253 WARN_ON_ONCE(ctx->parent_ctx);
10254 mutex_lock(&ctx->mutex);
84c4e620
PZ
10255 if (ctx->task == TASK_TOMBSTONE) {
10256 err = -ESRCH;
10257 goto err_unlock;
10258 }
10259
a63fbed7
TG
10260 if (!task) {
10261 /*
10262 * Check if the @cpu we're creating an event for is online.
10263 *
10264 * We use the perf_cpu_context::ctx::mutex to serialize against
10265 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10266 */
10267 struct perf_cpu_context *cpuctx =
10268 container_of(ctx, struct perf_cpu_context, ctx);
10269 if (!cpuctx->online) {
10270 err = -ENODEV;
10271 goto err_unlock;
10272 }
10273 }
10274
bed5b25a 10275 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10276 err = -EBUSY;
84c4e620 10277 goto err_unlock;
bed5b25a
AS
10278 }
10279
fb0459d7 10280 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10281 perf_unpin_context(ctx);
fb0459d7
AV
10282 mutex_unlock(&ctx->mutex);
10283
fb0459d7
AV
10284 return event;
10285
84c4e620
PZ
10286err_unlock:
10287 mutex_unlock(&ctx->mutex);
10288 perf_unpin_context(ctx);
10289 put_ctx(ctx);
c3f00c70
PZ
10290err_free:
10291 free_event(event);
10292err:
c6567f64 10293 return ERR_PTR(err);
9b51f66d 10294}
fb0459d7 10295EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10296
0cda4c02
YZ
10297void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10298{
10299 struct perf_event_context *src_ctx;
10300 struct perf_event_context *dst_ctx;
10301 struct perf_event *event, *tmp;
10302 LIST_HEAD(events);
10303
10304 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10305 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10306
f63a8daa
PZ
10307 /*
10308 * See perf_event_ctx_lock() for comments on the details
10309 * of swizzling perf_event::ctx.
10310 */
10311 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10312 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10313 event_entry) {
45a0e07a 10314 perf_remove_from_context(event, 0);
9a545de0 10315 unaccount_event_cpu(event, src_cpu);
0cda4c02 10316 put_ctx(src_ctx);
9886167d 10317 list_add(&event->migrate_entry, &events);
0cda4c02 10318 }
0cda4c02 10319
8f95b435
PZI
10320 /*
10321 * Wait for the events to quiesce before re-instating them.
10322 */
0cda4c02
YZ
10323 synchronize_rcu();
10324
8f95b435
PZI
10325 /*
10326 * Re-instate events in 2 passes.
10327 *
10328 * Skip over group leaders and only install siblings on this first
10329 * pass, siblings will not get enabled without a leader, however a
10330 * leader will enable its siblings, even if those are still on the old
10331 * context.
10332 */
10333 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10334 if (event->group_leader == event)
10335 continue;
10336
10337 list_del(&event->migrate_entry);
10338 if (event->state >= PERF_EVENT_STATE_OFF)
10339 event->state = PERF_EVENT_STATE_INACTIVE;
10340 account_event_cpu(event, dst_cpu);
10341 perf_install_in_context(dst_ctx, event, dst_cpu);
10342 get_ctx(dst_ctx);
10343 }
10344
10345 /*
10346 * Once all the siblings are setup properly, install the group leaders
10347 * to make it go.
10348 */
9886167d
PZ
10349 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10350 list_del(&event->migrate_entry);
0cda4c02
YZ
10351 if (event->state >= PERF_EVENT_STATE_OFF)
10352 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10353 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10354 perf_install_in_context(dst_ctx, event, dst_cpu);
10355 get_ctx(dst_ctx);
10356 }
10357 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10358 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10359}
10360EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10361
cdd6c482 10362static void sync_child_event(struct perf_event *child_event,
38b200d6 10363 struct task_struct *child)
d859e29f 10364{
cdd6c482 10365 struct perf_event *parent_event = child_event->parent;
8bc20959 10366 u64 child_val;
d859e29f 10367
cdd6c482
IM
10368 if (child_event->attr.inherit_stat)
10369 perf_event_read_event(child_event, child);
38b200d6 10370
b5e58793 10371 child_val = perf_event_count(child_event);
d859e29f
PM
10372
10373 /*
10374 * Add back the child's count to the parent's count:
10375 */
a6e6dea6 10376 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10377 atomic64_add(child_event->total_time_enabled,
10378 &parent_event->child_total_time_enabled);
10379 atomic64_add(child_event->total_time_running,
10380 &parent_event->child_total_time_running);
d859e29f
PM
10381}
10382
9b51f66d 10383static void
8ba289b8
PZ
10384perf_event_exit_event(struct perf_event *child_event,
10385 struct perf_event_context *child_ctx,
10386 struct task_struct *child)
9b51f66d 10387{
8ba289b8
PZ
10388 struct perf_event *parent_event = child_event->parent;
10389
1903d50c
PZ
10390 /*
10391 * Do not destroy the 'original' grouping; because of the context
10392 * switch optimization the original events could've ended up in a
10393 * random child task.
10394 *
10395 * If we were to destroy the original group, all group related
10396 * operations would cease to function properly after this random
10397 * child dies.
10398 *
10399 * Do destroy all inherited groups, we don't care about those
10400 * and being thorough is better.
10401 */
32132a3d
PZ
10402 raw_spin_lock_irq(&child_ctx->lock);
10403 WARN_ON_ONCE(child_ctx->is_active);
10404
8ba289b8 10405 if (parent_event)
32132a3d
PZ
10406 perf_group_detach(child_event);
10407 list_del_event(child_event, child_ctx);
a69b0ca4 10408 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 10409 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10410
9b51f66d 10411 /*
8ba289b8 10412 * Parent events are governed by their filedesc, retain them.
9b51f66d 10413 */
8ba289b8 10414 if (!parent_event) {
179033b3 10415 perf_event_wakeup(child_event);
8ba289b8 10416 return;
4bcf349a 10417 }
8ba289b8
PZ
10418 /*
10419 * Child events can be cleaned up.
10420 */
10421
10422 sync_child_event(child_event, child);
10423
10424 /*
10425 * Remove this event from the parent's list
10426 */
10427 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10428 mutex_lock(&parent_event->child_mutex);
10429 list_del_init(&child_event->child_list);
10430 mutex_unlock(&parent_event->child_mutex);
10431
10432 /*
10433 * Kick perf_poll() for is_event_hup().
10434 */
10435 perf_event_wakeup(parent_event);
10436 free_event(child_event);
10437 put_event(parent_event);
9b51f66d
IM
10438}
10439
8dc85d54 10440static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10441{
211de6eb 10442 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10443 struct perf_event *child_event, *next;
63b6da39
PZ
10444
10445 WARN_ON_ONCE(child != current);
9b51f66d 10446
6a3351b6 10447 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10448 if (!child_ctx)
9b51f66d
IM
10449 return;
10450
ad3a37de 10451 /*
6a3351b6
PZ
10452 * In order to reduce the amount of tricky in ctx tear-down, we hold
10453 * ctx::mutex over the entire thing. This serializes against almost
10454 * everything that wants to access the ctx.
10455 *
10456 * The exception is sys_perf_event_open() /
10457 * perf_event_create_kernel_count() which does find_get_context()
10458 * without ctx::mutex (it cannot because of the move_group double mutex
10459 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10460 */
6a3351b6 10461 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10462
10463 /*
6a3351b6
PZ
10464 * In a single ctx::lock section, de-schedule the events and detach the
10465 * context from the task such that we cannot ever get it scheduled back
10466 * in.
c93f7669 10467 */
6a3351b6 10468 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10469 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10470
71a851b4 10471 /*
63b6da39
PZ
10472 * Now that the context is inactive, destroy the task <-> ctx relation
10473 * and mark the context dead.
71a851b4 10474 */
63b6da39
PZ
10475 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10476 put_ctx(child_ctx); /* cannot be last */
10477 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10478 put_task_struct(current); /* cannot be last */
4a1c0f26 10479
211de6eb 10480 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10481 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10482
211de6eb
PZ
10483 if (clone_ctx)
10484 put_ctx(clone_ctx);
4a1c0f26 10485
9f498cc5 10486 /*
cdd6c482
IM
10487 * Report the task dead after unscheduling the events so that we
10488 * won't get any samples after PERF_RECORD_EXIT. We can however still
10489 * get a few PERF_RECORD_READ events.
9f498cc5 10490 */
cdd6c482 10491 perf_event_task(child, child_ctx, 0);
a63eaf34 10492
ebf905fc 10493 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10494 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10495
a63eaf34
PM
10496 mutex_unlock(&child_ctx->mutex);
10497
10498 put_ctx(child_ctx);
9b51f66d
IM
10499}
10500
8dc85d54
PZ
10501/*
10502 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10503 *
10504 * Can be called with cred_guard_mutex held when called from
10505 * install_exec_creds().
8dc85d54
PZ
10506 */
10507void perf_event_exit_task(struct task_struct *child)
10508{
8882135b 10509 struct perf_event *event, *tmp;
8dc85d54
PZ
10510 int ctxn;
10511
8882135b
PZ
10512 mutex_lock(&child->perf_event_mutex);
10513 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10514 owner_entry) {
10515 list_del_init(&event->owner_entry);
10516
10517 /*
10518 * Ensure the list deletion is visible before we clear
10519 * the owner, closes a race against perf_release() where
10520 * we need to serialize on the owner->perf_event_mutex.
10521 */
f47c02c0 10522 smp_store_release(&event->owner, NULL);
8882135b
PZ
10523 }
10524 mutex_unlock(&child->perf_event_mutex);
10525
8dc85d54
PZ
10526 for_each_task_context_nr(ctxn)
10527 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10528
10529 /*
10530 * The perf_event_exit_task_context calls perf_event_task
10531 * with child's task_ctx, which generates EXIT events for
10532 * child contexts and sets child->perf_event_ctxp[] to NULL.
10533 * At this point we need to send EXIT events to cpu contexts.
10534 */
10535 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10536}
10537
889ff015
FW
10538static void perf_free_event(struct perf_event *event,
10539 struct perf_event_context *ctx)
10540{
10541 struct perf_event *parent = event->parent;
10542
10543 if (WARN_ON_ONCE(!parent))
10544 return;
10545
10546 mutex_lock(&parent->child_mutex);
10547 list_del_init(&event->child_list);
10548 mutex_unlock(&parent->child_mutex);
10549
a6fa941d 10550 put_event(parent);
889ff015 10551
652884fe 10552 raw_spin_lock_irq(&ctx->lock);
8a49542c 10553 perf_group_detach(event);
889ff015 10554 list_del_event(event, ctx);
652884fe 10555 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10556 free_event(event);
10557}
10558
bbbee908 10559/*
652884fe 10560 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10561 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10562 *
10563 * Not all locks are strictly required, but take them anyway to be nice and
10564 * help out with the lockdep assertions.
bbbee908 10565 */
cdd6c482 10566void perf_event_free_task(struct task_struct *task)
bbbee908 10567{
8dc85d54 10568 struct perf_event_context *ctx;
cdd6c482 10569 struct perf_event *event, *tmp;
8dc85d54 10570 int ctxn;
bbbee908 10571
8dc85d54
PZ
10572 for_each_task_context_nr(ctxn) {
10573 ctx = task->perf_event_ctxp[ctxn];
10574 if (!ctx)
10575 continue;
bbbee908 10576
8dc85d54 10577 mutex_lock(&ctx->mutex);
e552a838
PZ
10578 raw_spin_lock_irq(&ctx->lock);
10579 /*
10580 * Destroy the task <-> ctx relation and mark the context dead.
10581 *
10582 * This is important because even though the task hasn't been
10583 * exposed yet the context has been (through child_list).
10584 */
10585 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10586 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10587 put_task_struct(task); /* cannot be last */
10588 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10589
15121c78 10590 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 10591 perf_free_event(event, ctx);
bbbee908 10592
8dc85d54 10593 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
10594 put_ctx(ctx);
10595 }
889ff015
FW
10596}
10597
4e231c79
PZ
10598void perf_event_delayed_put(struct task_struct *task)
10599{
10600 int ctxn;
10601
10602 for_each_task_context_nr(ctxn)
10603 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10604}
10605
e03e7ee3 10606struct file *perf_event_get(unsigned int fd)
ffe8690c 10607{
e03e7ee3 10608 struct file *file;
ffe8690c 10609
e03e7ee3
AS
10610 file = fget_raw(fd);
10611 if (!file)
10612 return ERR_PTR(-EBADF);
ffe8690c 10613
e03e7ee3
AS
10614 if (file->f_op != &perf_fops) {
10615 fput(file);
10616 return ERR_PTR(-EBADF);
10617 }
ffe8690c 10618
e03e7ee3 10619 return file;
ffe8690c
KX
10620}
10621
10622const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10623{
10624 if (!event)
10625 return ERR_PTR(-EINVAL);
10626
10627 return &event->attr;
10628}
10629
97dee4f3 10630/*
d8a8cfc7
PZ
10631 * Inherit a event from parent task to child task.
10632 *
10633 * Returns:
10634 * - valid pointer on success
10635 * - NULL for orphaned events
10636 * - IS_ERR() on error
97dee4f3
PZ
10637 */
10638static struct perf_event *
10639inherit_event(struct perf_event *parent_event,
10640 struct task_struct *parent,
10641 struct perf_event_context *parent_ctx,
10642 struct task_struct *child,
10643 struct perf_event *group_leader,
10644 struct perf_event_context *child_ctx)
10645{
1929def9 10646 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10647 struct perf_event *child_event;
cee010ec 10648 unsigned long flags;
97dee4f3
PZ
10649
10650 /*
10651 * Instead of creating recursive hierarchies of events,
10652 * we link inherited events back to the original parent,
10653 * which has a filp for sure, which we use as the reference
10654 * count:
10655 */
10656 if (parent_event->parent)
10657 parent_event = parent_event->parent;
10658
10659 child_event = perf_event_alloc(&parent_event->attr,
10660 parent_event->cpu,
d580ff86 10661 child,
97dee4f3 10662 group_leader, parent_event,
79dff51e 10663 NULL, NULL, -1);
97dee4f3
PZ
10664 if (IS_ERR(child_event))
10665 return child_event;
a6fa941d 10666
c6e5b732
PZ
10667 /*
10668 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10669 * must be under the same lock in order to serialize against
10670 * perf_event_release_kernel(), such that either we must observe
10671 * is_orphaned_event() or they will observe us on the child_list.
10672 */
10673 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10674 if (is_orphaned_event(parent_event) ||
10675 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10676 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10677 free_event(child_event);
10678 return NULL;
10679 }
10680
97dee4f3
PZ
10681 get_ctx(child_ctx);
10682
10683 /*
10684 * Make the child state follow the state of the parent event,
10685 * not its attr.disabled bit. We hold the parent's mutex,
10686 * so we won't race with perf_event_{en, dis}able_family.
10687 */
1929def9 10688 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10689 child_event->state = PERF_EVENT_STATE_INACTIVE;
10690 else
10691 child_event->state = PERF_EVENT_STATE_OFF;
10692
10693 if (parent_event->attr.freq) {
10694 u64 sample_period = parent_event->hw.sample_period;
10695 struct hw_perf_event *hwc = &child_event->hw;
10696
10697 hwc->sample_period = sample_period;
10698 hwc->last_period = sample_period;
10699
10700 local64_set(&hwc->period_left, sample_period);
10701 }
10702
10703 child_event->ctx = child_ctx;
10704 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10705 child_event->overflow_handler_context
10706 = parent_event->overflow_handler_context;
97dee4f3 10707
614b6780
TG
10708 /*
10709 * Precalculate sample_data sizes
10710 */
10711 perf_event__header_size(child_event);
6844c09d 10712 perf_event__id_header_size(child_event);
614b6780 10713
97dee4f3
PZ
10714 /*
10715 * Link it up in the child's context:
10716 */
cee010ec 10717 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10718 add_event_to_ctx(child_event, child_ctx);
cee010ec 10719 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10720
97dee4f3
PZ
10721 /*
10722 * Link this into the parent event's child list
10723 */
97dee4f3
PZ
10724 list_add_tail(&child_event->child_list, &parent_event->child_list);
10725 mutex_unlock(&parent_event->child_mutex);
10726
10727 return child_event;
10728}
10729
d8a8cfc7
PZ
10730/*
10731 * Inherits an event group.
10732 *
10733 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10734 * This matches with perf_event_release_kernel() removing all child events.
10735 *
10736 * Returns:
10737 * - 0 on success
10738 * - <0 on error
10739 */
97dee4f3
PZ
10740static int inherit_group(struct perf_event *parent_event,
10741 struct task_struct *parent,
10742 struct perf_event_context *parent_ctx,
10743 struct task_struct *child,
10744 struct perf_event_context *child_ctx)
10745{
10746 struct perf_event *leader;
10747 struct perf_event *sub;
10748 struct perf_event *child_ctr;
10749
10750 leader = inherit_event(parent_event, parent, parent_ctx,
10751 child, NULL, child_ctx);
10752 if (IS_ERR(leader))
10753 return PTR_ERR(leader);
d8a8cfc7
PZ
10754 /*
10755 * @leader can be NULL here because of is_orphaned_event(). In this
10756 * case inherit_event() will create individual events, similar to what
10757 * perf_group_detach() would do anyway.
10758 */
97dee4f3
PZ
10759 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10760 child_ctr = inherit_event(sub, parent, parent_ctx,
10761 child, leader, child_ctx);
10762 if (IS_ERR(child_ctr))
10763 return PTR_ERR(child_ctr);
10764 }
10765 return 0;
889ff015
FW
10766}
10767
d8a8cfc7
PZ
10768/*
10769 * Creates the child task context and tries to inherit the event-group.
10770 *
10771 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10772 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10773 * consistent with perf_event_release_kernel() removing all child events.
10774 *
10775 * Returns:
10776 * - 0 on success
10777 * - <0 on error
10778 */
889ff015
FW
10779static int
10780inherit_task_group(struct perf_event *event, struct task_struct *parent,
10781 struct perf_event_context *parent_ctx,
8dc85d54 10782 struct task_struct *child, int ctxn,
889ff015
FW
10783 int *inherited_all)
10784{
10785 int ret;
8dc85d54 10786 struct perf_event_context *child_ctx;
889ff015
FW
10787
10788 if (!event->attr.inherit) {
10789 *inherited_all = 0;
10790 return 0;
bbbee908
PZ
10791 }
10792
fe4b04fa 10793 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10794 if (!child_ctx) {
10795 /*
10796 * This is executed from the parent task context, so
10797 * inherit events that have been marked for cloning.
10798 * First allocate and initialize a context for the
10799 * child.
10800 */
734df5ab 10801 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10802 if (!child_ctx)
10803 return -ENOMEM;
bbbee908 10804
8dc85d54 10805 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10806 }
10807
10808 ret = inherit_group(event, parent, parent_ctx,
10809 child, child_ctx);
10810
10811 if (ret)
10812 *inherited_all = 0;
10813
10814 return ret;
bbbee908
PZ
10815}
10816
9b51f66d 10817/*
cdd6c482 10818 * Initialize the perf_event context in task_struct
9b51f66d 10819 */
985c8dcb 10820static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10821{
889ff015 10822 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10823 struct perf_event_context *cloned_ctx;
10824 struct perf_event *event;
9b51f66d 10825 struct task_struct *parent = current;
564c2b21 10826 int inherited_all = 1;
dddd3379 10827 unsigned long flags;
6ab423e0 10828 int ret = 0;
9b51f66d 10829
8dc85d54 10830 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10831 return 0;
10832
ad3a37de 10833 /*
25346b93
PM
10834 * If the parent's context is a clone, pin it so it won't get
10835 * swapped under us.
ad3a37de 10836 */
8dc85d54 10837 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10838 if (!parent_ctx)
10839 return 0;
25346b93 10840
ad3a37de
PM
10841 /*
10842 * No need to check if parent_ctx != NULL here; since we saw
10843 * it non-NULL earlier, the only reason for it to become NULL
10844 * is if we exit, and since we're currently in the middle of
10845 * a fork we can't be exiting at the same time.
10846 */
ad3a37de 10847
9b51f66d
IM
10848 /*
10849 * Lock the parent list. No need to lock the child - not PID
10850 * hashed yet and not running, so nobody can access it.
10851 */
d859e29f 10852 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10853
10854 /*
10855 * We dont have to disable NMIs - we are only looking at
10856 * the list, not manipulating it:
10857 */
889ff015 10858 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10859 ret = inherit_task_group(event, parent, parent_ctx,
10860 child, ctxn, &inherited_all);
889ff015 10861 if (ret)
e7cc4865 10862 goto out_unlock;
889ff015 10863 }
b93f7978 10864
dddd3379
TG
10865 /*
10866 * We can't hold ctx->lock when iterating the ->flexible_group list due
10867 * to allocations, but we need to prevent rotation because
10868 * rotate_ctx() will change the list from interrupt context.
10869 */
10870 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10871 parent_ctx->rotate_disable = 1;
10872 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10873
889ff015 10874 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10875 ret = inherit_task_group(event, parent, parent_ctx,
10876 child, ctxn, &inherited_all);
889ff015 10877 if (ret)
e7cc4865 10878 goto out_unlock;
564c2b21
PM
10879 }
10880
dddd3379
TG
10881 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10882 parent_ctx->rotate_disable = 0;
dddd3379 10883
8dc85d54 10884 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10885
05cbaa28 10886 if (child_ctx && inherited_all) {
564c2b21
PM
10887 /*
10888 * Mark the child context as a clone of the parent
10889 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10890 *
10891 * Note that if the parent is a clone, the holding of
10892 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10893 */
c5ed5145 10894 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10895 if (cloned_ctx) {
10896 child_ctx->parent_ctx = cloned_ctx;
25346b93 10897 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10898 } else {
10899 child_ctx->parent_ctx = parent_ctx;
10900 child_ctx->parent_gen = parent_ctx->generation;
10901 }
10902 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10903 }
10904
c5ed5145 10905 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 10906out_unlock:
d859e29f 10907 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10908
25346b93 10909 perf_unpin_context(parent_ctx);
fe4b04fa 10910 put_ctx(parent_ctx);
ad3a37de 10911
6ab423e0 10912 return ret;
9b51f66d
IM
10913}
10914
8dc85d54
PZ
10915/*
10916 * Initialize the perf_event context in task_struct
10917 */
10918int perf_event_init_task(struct task_struct *child)
10919{
10920 int ctxn, ret;
10921
8550d7cb
ON
10922 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10923 mutex_init(&child->perf_event_mutex);
10924 INIT_LIST_HEAD(&child->perf_event_list);
10925
8dc85d54
PZ
10926 for_each_task_context_nr(ctxn) {
10927 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10928 if (ret) {
10929 perf_event_free_task(child);
8dc85d54 10930 return ret;
6c72e350 10931 }
8dc85d54
PZ
10932 }
10933
10934 return 0;
10935}
10936
220b140b
PM
10937static void __init perf_event_init_all_cpus(void)
10938{
b28ab83c 10939 struct swevent_htable *swhash;
220b140b 10940 int cpu;
220b140b 10941
a63fbed7
TG
10942 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
10943
220b140b 10944 for_each_possible_cpu(cpu) {
b28ab83c
PZ
10945 swhash = &per_cpu(swevent_htable, cpu);
10946 mutex_init(&swhash->hlist_mutex);
2fde4f94 10947 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
10948
10949 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10950 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 10951
058fe1c0
DCC
10952#ifdef CONFIG_CGROUP_PERF
10953 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10954#endif
e48c1788 10955 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
10956 }
10957}
10958
a63fbed7 10959void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 10960{
108b02cf 10961 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 10962
b28ab83c 10963 mutex_lock(&swhash->hlist_mutex);
059fcd8c 10964 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
10965 struct swevent_hlist *hlist;
10966
b28ab83c
PZ
10967 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10968 WARN_ON(!hlist);
10969 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 10970 }
b28ab83c 10971 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
10972}
10973
2965faa5 10974#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 10975static void __perf_event_exit_context(void *__info)
0793a61d 10976{
108b02cf 10977 struct perf_event_context *ctx = __info;
fae3fde6
PZ
10978 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10979 struct perf_event *event;
0793a61d 10980
fae3fde6
PZ
10981 raw_spin_lock(&ctx->lock);
10982 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 10983 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 10984 raw_spin_unlock(&ctx->lock);
0793a61d 10985}
108b02cf
PZ
10986
10987static void perf_event_exit_cpu_context(int cpu)
10988{
a63fbed7 10989 struct perf_cpu_context *cpuctx;
108b02cf
PZ
10990 struct perf_event_context *ctx;
10991 struct pmu *pmu;
108b02cf 10992
a63fbed7
TG
10993 mutex_lock(&pmus_lock);
10994 list_for_each_entry(pmu, &pmus, entry) {
10995 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10996 ctx = &cpuctx->ctx;
108b02cf
PZ
10997
10998 mutex_lock(&ctx->mutex);
10999 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11000 cpuctx->online = 0;
108b02cf
PZ
11001 mutex_unlock(&ctx->mutex);
11002 }
a63fbed7
TG
11003 cpumask_clear_cpu(cpu, perf_online_mask);
11004 mutex_unlock(&pmus_lock);
108b02cf 11005}
00e16c3d
TG
11006#else
11007
11008static void perf_event_exit_cpu_context(int cpu) { }
11009
11010#endif
108b02cf 11011
a63fbed7
TG
11012int perf_event_init_cpu(unsigned int cpu)
11013{
11014 struct perf_cpu_context *cpuctx;
11015 struct perf_event_context *ctx;
11016 struct pmu *pmu;
11017
11018 perf_swevent_init_cpu(cpu);
11019
11020 mutex_lock(&pmus_lock);
11021 cpumask_set_cpu(cpu, perf_online_mask);
11022 list_for_each_entry(pmu, &pmus, entry) {
11023 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11024 ctx = &cpuctx->ctx;
11025
11026 mutex_lock(&ctx->mutex);
11027 cpuctx->online = 1;
11028 mutex_unlock(&ctx->mutex);
11029 }
11030 mutex_unlock(&pmus_lock);
11031
11032 return 0;
11033}
11034
00e16c3d 11035int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11036{
e3703f8c 11037 perf_event_exit_cpu_context(cpu);
00e16c3d 11038 return 0;
0793a61d 11039}
0793a61d 11040
c277443c
PZ
11041static int
11042perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11043{
11044 int cpu;
11045
11046 for_each_online_cpu(cpu)
11047 perf_event_exit_cpu(cpu);
11048
11049 return NOTIFY_OK;
11050}
11051
11052/*
11053 * Run the perf reboot notifier at the very last possible moment so that
11054 * the generic watchdog code runs as long as possible.
11055 */
11056static struct notifier_block perf_reboot_notifier = {
11057 .notifier_call = perf_reboot,
11058 .priority = INT_MIN,
11059};
11060
cdd6c482 11061void __init perf_event_init(void)
0793a61d 11062{
3c502e7a
JW
11063 int ret;
11064
2e80a82a
PZ
11065 idr_init(&pmu_idr);
11066
220b140b 11067 perf_event_init_all_cpus();
b0a873eb 11068 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11069 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11070 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11071 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11072 perf_tp_register();
00e16c3d 11073 perf_event_init_cpu(smp_processor_id());
c277443c 11074 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11075
11076 ret = init_hw_breakpoint();
11077 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11078
b01c3a00
JO
11079 /*
11080 * Build time assertion that we keep the data_head at the intended
11081 * location. IOW, validation we got the __reserved[] size right.
11082 */
11083 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11084 != 1024);
0793a61d 11085}
abe43400 11086
fd979c01
CS
11087ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11088 char *page)
11089{
11090 struct perf_pmu_events_attr *pmu_attr =
11091 container_of(attr, struct perf_pmu_events_attr, attr);
11092
11093 if (pmu_attr->event_str)
11094 return sprintf(page, "%s\n", pmu_attr->event_str);
11095
11096 return 0;
11097}
675965b0 11098EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11099
abe43400
PZ
11100static int __init perf_event_sysfs_init(void)
11101{
11102 struct pmu *pmu;
11103 int ret;
11104
11105 mutex_lock(&pmus_lock);
11106
11107 ret = bus_register(&pmu_bus);
11108 if (ret)
11109 goto unlock;
11110
11111 list_for_each_entry(pmu, &pmus, entry) {
11112 if (!pmu->name || pmu->type < 0)
11113 continue;
11114
11115 ret = pmu_dev_alloc(pmu);
11116 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11117 }
11118 pmu_bus_running = 1;
11119 ret = 0;
11120
11121unlock:
11122 mutex_unlock(&pmus_lock);
11123
11124 return ret;
11125}
11126device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11127
11128#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11129static struct cgroup_subsys_state *
11130perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11131{
11132 struct perf_cgroup *jc;
e5d1367f 11133
1b15d055 11134 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11135 if (!jc)
11136 return ERR_PTR(-ENOMEM);
11137
e5d1367f
SE
11138 jc->info = alloc_percpu(struct perf_cgroup_info);
11139 if (!jc->info) {
11140 kfree(jc);
11141 return ERR_PTR(-ENOMEM);
11142 }
11143
e5d1367f
SE
11144 return &jc->css;
11145}
11146
eb95419b 11147static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11148{
eb95419b
TH
11149 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11150
e5d1367f
SE
11151 free_percpu(jc->info);
11152 kfree(jc);
11153}
11154
11155static int __perf_cgroup_move(void *info)
11156{
11157 struct task_struct *task = info;
ddaaf4e2 11158 rcu_read_lock();
e5d1367f 11159 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11160 rcu_read_unlock();
e5d1367f
SE
11161 return 0;
11162}
11163
1f7dd3e5 11164static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11165{
bb9d97b6 11166 struct task_struct *task;
1f7dd3e5 11167 struct cgroup_subsys_state *css;
bb9d97b6 11168
1f7dd3e5 11169 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11170 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11171}
11172
073219e9 11173struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11174 .css_alloc = perf_cgroup_css_alloc,
11175 .css_free = perf_cgroup_css_free,
bb9d97b6 11176 .attach = perf_cgroup_attach,
968ebff1
TH
11177 /*
11178 * Implicitly enable on dfl hierarchy so that perf events can
11179 * always be filtered by cgroup2 path as long as perf_event
11180 * controller is not mounted on a legacy hierarchy.
11181 */
11182 .implicit_on_dfl = true,
e5d1367f
SE
11183};
11184#endif /* CONFIG_CGROUP_PERF */