]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/events/core.c
perf/x86/intel: Hide TSX events when RTM is not supported
[mirror_ubuntu-eoan-kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6
PZ
211
212 WARN_ON_ONCE(!irqs_disabled());
213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 WARN_ON_ONCE(!irqs_disabled());
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
9e630205
SE
433static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
e5d1367f
SE
585#ifdef CONFIG_CGROUP_PERF
586
e5d1367f
SE
587static inline bool
588perf_cgroup_match(struct perf_event *event)
589{
590 struct perf_event_context *ctx = event->ctx;
591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
ef824fa1
TH
593 /* @event doesn't care about cgroup */
594 if (!event->cgrp)
595 return true;
596
597 /* wants specific cgroup scope but @cpuctx isn't associated with any */
598 if (!cpuctx->cgrp)
599 return false;
600
601 /*
602 * Cgroup scoping is recursive. An event enabled for a cgroup is
603 * also enabled for all its descendant cgroups. If @cpuctx's
604 * cgroup is a descendant of @event's (the test covers identity
605 * case), it's a match.
606 */
607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608 event->cgrp->css.cgroup);
e5d1367f
SE
609}
610
e5d1367f
SE
611static inline void perf_detach_cgroup(struct perf_event *event)
612{
4e2ba650 613 css_put(&event->cgrp->css);
e5d1367f
SE
614 event->cgrp = NULL;
615}
616
617static inline int is_cgroup_event(struct perf_event *event)
618{
619 return event->cgrp != NULL;
620}
621
622static inline u64 perf_cgroup_event_time(struct perf_event *event)
623{
624 struct perf_cgroup_info *t;
625
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 return t->time;
628}
629
630static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631{
632 struct perf_cgroup_info *info;
633 u64 now;
634
635 now = perf_clock();
636
637 info = this_cpu_ptr(cgrp->info);
638
639 info->time += now - info->timestamp;
640 info->timestamp = now;
641}
642
643static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644{
645 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646 if (cgrp_out)
647 __update_cgrp_time(cgrp_out);
648}
649
650static inline void update_cgrp_time_from_event(struct perf_event *event)
651{
3f7cce3c
SE
652 struct perf_cgroup *cgrp;
653
e5d1367f 654 /*
3f7cce3c
SE
655 * ensure we access cgroup data only when needed and
656 * when we know the cgroup is pinned (css_get)
e5d1367f 657 */
3f7cce3c 658 if (!is_cgroup_event(event))
e5d1367f
SE
659 return;
660
614e4c4e 661 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
662 /*
663 * Do not update time when cgroup is not active
664 */
e6a52033 665 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 666 __update_cgrp_time(event->cgrp);
e5d1367f
SE
667}
668
669static inline void
3f7cce3c
SE
670perf_cgroup_set_timestamp(struct task_struct *task,
671 struct perf_event_context *ctx)
e5d1367f
SE
672{
673 struct perf_cgroup *cgrp;
674 struct perf_cgroup_info *info;
675
3f7cce3c
SE
676 /*
677 * ctx->lock held by caller
678 * ensure we do not access cgroup data
679 * unless we have the cgroup pinned (css_get)
680 */
681 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
682 return;
683
614e4c4e 684 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 685 info = this_cpu_ptr(cgrp->info);
3f7cce3c 686 info->timestamp = ctx->timestamp;
e5d1367f
SE
687}
688
058fe1c0
DCC
689static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
e5d1367f
SE
691#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
692#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
693
694/*
695 * reschedule events based on the cgroup constraint of task.
696 *
697 * mode SWOUT : schedule out everything
698 * mode SWIN : schedule in based on cgroup for next
699 */
18ab2cd3 700static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
701{
702 struct perf_cpu_context *cpuctx;
058fe1c0 703 struct list_head *list;
e5d1367f
SE
704 unsigned long flags;
705
706 /*
058fe1c0
DCC
707 * Disable interrupts and preemption to avoid this CPU's
708 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
709 */
710 local_irq_save(flags);
711
058fe1c0
DCC
712 list = this_cpu_ptr(&cgrp_cpuctx_list);
713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 715
058fe1c0
DCC
716 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 718
058fe1c0
DCC
719 if (mode & PERF_CGROUP_SWOUT) {
720 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721 /*
722 * must not be done before ctxswout due
723 * to event_filter_match() in event_sched_out()
724 */
725 cpuctx->cgrp = NULL;
726 }
e5d1367f 727
058fe1c0
DCC
728 if (mode & PERF_CGROUP_SWIN) {
729 WARN_ON_ONCE(cpuctx->cgrp);
730 /*
731 * set cgrp before ctxsw in to allow
732 * event_filter_match() to not have to pass
733 * task around
734 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 * because cgorup events are only per-cpu
736 */
737 cpuctx->cgrp = perf_cgroup_from_task(task,
738 &cpuctx->ctx);
739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 740 }
058fe1c0
DCC
741 perf_pmu_enable(cpuctx->ctx.pmu);
742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
743 }
744
e5d1367f
SE
745 local_irq_restore(flags);
746}
747
a8d757ef
SE
748static inline void perf_cgroup_sched_out(struct task_struct *task,
749 struct task_struct *next)
e5d1367f 750{
a8d757ef
SE
751 struct perf_cgroup *cgrp1;
752 struct perf_cgroup *cgrp2 = NULL;
753
ddaaf4e2 754 rcu_read_lock();
a8d757ef
SE
755 /*
756 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
757 * we do not need to pass the ctx here because we know
758 * we are holding the rcu lock
a8d757ef 759 */
614e4c4e 760 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 761 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
762
763 /*
764 * only schedule out current cgroup events if we know
765 * that we are switching to a different cgroup. Otherwise,
766 * do no touch the cgroup events.
767 */
768 if (cgrp1 != cgrp2)
769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
770
771 rcu_read_unlock();
e5d1367f
SE
772}
773
a8d757ef
SE
774static inline void perf_cgroup_sched_in(struct task_struct *prev,
775 struct task_struct *task)
e5d1367f 776{
a8d757ef
SE
777 struct perf_cgroup *cgrp1;
778 struct perf_cgroup *cgrp2 = NULL;
779
ddaaf4e2 780 rcu_read_lock();
a8d757ef
SE
781 /*
782 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
783 * we do not need to pass the ctx here because we know
784 * we are holding the rcu lock
a8d757ef 785 */
614e4c4e 786 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 787 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
788
789 /*
790 * only need to schedule in cgroup events if we are changing
791 * cgroup during ctxsw. Cgroup events were not scheduled
792 * out of ctxsw out if that was not the case.
793 */
794 if (cgrp1 != cgrp2)
795 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
796
797 rcu_read_unlock();
e5d1367f
SE
798}
799
800static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801 struct perf_event_attr *attr,
802 struct perf_event *group_leader)
803{
804 struct perf_cgroup *cgrp;
805 struct cgroup_subsys_state *css;
2903ff01
AV
806 struct fd f = fdget(fd);
807 int ret = 0;
e5d1367f 808
2903ff01 809 if (!f.file)
e5d1367f
SE
810 return -EBADF;
811
b583043e 812 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 813 &perf_event_cgrp_subsys);
3db272c0
LZ
814 if (IS_ERR(css)) {
815 ret = PTR_ERR(css);
816 goto out;
817 }
e5d1367f
SE
818
819 cgrp = container_of(css, struct perf_cgroup, css);
820 event->cgrp = cgrp;
821
822 /*
823 * all events in a group must monitor
824 * the same cgroup because a task belongs
825 * to only one perf cgroup at a time
826 */
827 if (group_leader && group_leader->cgrp != cgrp) {
828 perf_detach_cgroup(event);
829 ret = -EINVAL;
e5d1367f 830 }
3db272c0 831out:
2903ff01 832 fdput(f);
e5d1367f
SE
833 return ret;
834}
835
836static inline void
837perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838{
839 struct perf_cgroup_info *t;
840 t = per_cpu_ptr(event->cgrp->info, event->cpu);
841 event->shadow_ctx_time = now - t->timestamp;
842}
843
844static inline void
845perf_cgroup_defer_enabled(struct perf_event *event)
846{
847 /*
848 * when the current task's perf cgroup does not match
849 * the event's, we need to remember to call the
850 * perf_mark_enable() function the first time a task with
851 * a matching perf cgroup is scheduled in.
852 */
853 if (is_cgroup_event(event) && !perf_cgroup_match(event))
854 event->cgrp_defer_enabled = 1;
855}
856
857static inline void
858perf_cgroup_mark_enabled(struct perf_event *event,
859 struct perf_event_context *ctx)
860{
861 struct perf_event *sub;
862 u64 tstamp = perf_event_time(event);
863
864 if (!event->cgrp_defer_enabled)
865 return;
866
867 event->cgrp_defer_enabled = 0;
868
869 event->tstamp_enabled = tstamp - event->total_time_enabled;
870 list_for_each_entry(sub, &event->sibling_list, group_entry) {
871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873 sub->cgrp_defer_enabled = 0;
874 }
875 }
876}
db4a8356
DCC
877
878/*
879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880 * cleared when last cgroup event is removed.
881 */
882static inline void
883list_update_cgroup_event(struct perf_event *event,
884 struct perf_event_context *ctx, bool add)
885{
886 struct perf_cpu_context *cpuctx;
058fe1c0 887 struct list_head *cpuctx_entry;
db4a8356
DCC
888
889 if (!is_cgroup_event(event))
890 return;
891
892 if (add && ctx->nr_cgroups++)
893 return;
894 else if (!add && --ctx->nr_cgroups)
895 return;
896 /*
897 * Because cgroup events are always per-cpu events,
898 * this will always be called from the right CPU.
899 */
900 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903 if (add) {
be96b316
TH
904 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
905
058fe1c0 906 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
be96b316
TH
907 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
908 cpuctx->cgrp = cgrp;
058fe1c0
DCC
909 } else {
910 list_del(cpuctx_entry);
8fc31ce8 911 cpuctx->cgrp = NULL;
058fe1c0 912 }
db4a8356
DCC
913}
914
e5d1367f
SE
915#else /* !CONFIG_CGROUP_PERF */
916
917static inline bool
918perf_cgroup_match(struct perf_event *event)
919{
920 return true;
921}
922
923static inline void perf_detach_cgroup(struct perf_event *event)
924{}
925
926static inline int is_cgroup_event(struct perf_event *event)
927{
928 return 0;
929}
930
e5d1367f
SE
931static inline void update_cgrp_time_from_event(struct perf_event *event)
932{
933}
934
935static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
936{
937}
938
a8d757ef
SE
939static inline void perf_cgroup_sched_out(struct task_struct *task,
940 struct task_struct *next)
e5d1367f
SE
941{
942}
943
a8d757ef
SE
944static inline void perf_cgroup_sched_in(struct task_struct *prev,
945 struct task_struct *task)
e5d1367f
SE
946{
947}
948
949static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
950 struct perf_event_attr *attr,
951 struct perf_event *group_leader)
952{
953 return -EINVAL;
954}
955
956static inline void
3f7cce3c
SE
957perf_cgroup_set_timestamp(struct task_struct *task,
958 struct perf_event_context *ctx)
e5d1367f
SE
959{
960}
961
962void
963perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
964{
965}
966
967static inline void
968perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
969{
970}
971
972static inline u64 perf_cgroup_event_time(struct perf_event *event)
973{
974 return 0;
975}
976
977static inline void
978perf_cgroup_defer_enabled(struct perf_event *event)
979{
980}
981
982static inline void
983perf_cgroup_mark_enabled(struct perf_event *event,
984 struct perf_event_context *ctx)
985{
986}
db4a8356
DCC
987
988static inline void
989list_update_cgroup_event(struct perf_event *event,
990 struct perf_event_context *ctx, bool add)
991{
992}
993
e5d1367f
SE
994#endif
995
9e630205
SE
996/*
997 * set default to be dependent on timer tick just
998 * like original code
999 */
1000#define PERF_CPU_HRTIMER (1000 / HZ)
1001/*
8a1115ff 1002 * function must be called with interrupts disabled
9e630205 1003 */
272325c4 1004static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1005{
1006 struct perf_cpu_context *cpuctx;
9e630205
SE
1007 int rotations = 0;
1008
1009 WARN_ON(!irqs_disabled());
1010
1011 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1012 rotations = perf_rotate_context(cpuctx);
1013
4cfafd30
PZ
1014 raw_spin_lock(&cpuctx->hrtimer_lock);
1015 if (rotations)
9e630205 1016 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1017 else
1018 cpuctx->hrtimer_active = 0;
1019 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1020
4cfafd30 1021 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1022}
1023
272325c4 1024static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1025{
272325c4 1026 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1027 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1028 u64 interval;
9e630205
SE
1029
1030 /* no multiplexing needed for SW PMU */
1031 if (pmu->task_ctx_nr == perf_sw_context)
1032 return;
1033
62b85639
SE
1034 /*
1035 * check default is sane, if not set then force to
1036 * default interval (1/tick)
1037 */
272325c4
PZ
1038 interval = pmu->hrtimer_interval_ms;
1039 if (interval < 1)
1040 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1041
272325c4 1042 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1043
4cfafd30
PZ
1044 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1045 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1046 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1047}
1048
272325c4 1049static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1050{
272325c4 1051 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1052 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1053 unsigned long flags;
9e630205
SE
1054
1055 /* not for SW PMU */
1056 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1057 return 0;
9e630205 1058
4cfafd30
PZ
1059 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1060 if (!cpuctx->hrtimer_active) {
1061 cpuctx->hrtimer_active = 1;
1062 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1063 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1064 }
1065 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1066
272325c4 1067 return 0;
9e630205
SE
1068}
1069
33696fc0 1070void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1071{
33696fc0
PZ
1072 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1073 if (!(*count)++)
1074 pmu->pmu_disable(pmu);
9e35ad38 1075}
9e35ad38 1076
33696fc0 1077void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1078{
33696fc0
PZ
1079 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1080 if (!--(*count))
1081 pmu->pmu_enable(pmu);
9e35ad38 1082}
9e35ad38 1083
2fde4f94 1084static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1085
1086/*
2fde4f94
MR
1087 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1088 * perf_event_task_tick() are fully serialized because they're strictly cpu
1089 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1090 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1091 */
2fde4f94 1092static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1093{
2fde4f94 1094 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1095
e9d2b064 1096 WARN_ON(!irqs_disabled());
b5ab4cd5 1097
2fde4f94
MR
1098 WARN_ON(!list_empty(&ctx->active_ctx_list));
1099
1100 list_add(&ctx->active_ctx_list, head);
1101}
1102
1103static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1104{
1105 WARN_ON(!irqs_disabled());
1106
1107 WARN_ON(list_empty(&ctx->active_ctx_list));
1108
1109 list_del_init(&ctx->active_ctx_list);
9e35ad38 1110}
9e35ad38 1111
cdd6c482 1112static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1113{
e5289d4a 1114 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1115}
1116
4af57ef2
YZ
1117static void free_ctx(struct rcu_head *head)
1118{
1119 struct perf_event_context *ctx;
1120
1121 ctx = container_of(head, struct perf_event_context, rcu_head);
1122 kfree(ctx->task_ctx_data);
1123 kfree(ctx);
1124}
1125
cdd6c482 1126static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1127{
564c2b21
PM
1128 if (atomic_dec_and_test(&ctx->refcount)) {
1129 if (ctx->parent_ctx)
1130 put_ctx(ctx->parent_ctx);
63b6da39 1131 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1132 put_task_struct(ctx->task);
4af57ef2 1133 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1134 }
a63eaf34
PM
1135}
1136
f63a8daa
PZ
1137/*
1138 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1139 * perf_pmu_migrate_context() we need some magic.
1140 *
1141 * Those places that change perf_event::ctx will hold both
1142 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1143 *
8b10c5e2
PZ
1144 * Lock ordering is by mutex address. There are two other sites where
1145 * perf_event_context::mutex nests and those are:
1146 *
1147 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1148 * perf_event_exit_event()
1149 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1150 *
1151 * - perf_event_init_context() [ parent, 0 ]
1152 * inherit_task_group()
1153 * inherit_group()
1154 * inherit_event()
1155 * perf_event_alloc()
1156 * perf_init_event()
1157 * perf_try_init_event() [ child , 1 ]
1158 *
1159 * While it appears there is an obvious deadlock here -- the parent and child
1160 * nesting levels are inverted between the two. This is in fact safe because
1161 * life-time rules separate them. That is an exiting task cannot fork, and a
1162 * spawning task cannot (yet) exit.
1163 *
1164 * But remember that that these are parent<->child context relations, and
1165 * migration does not affect children, therefore these two orderings should not
1166 * interact.
f63a8daa
PZ
1167 *
1168 * The change in perf_event::ctx does not affect children (as claimed above)
1169 * because the sys_perf_event_open() case will install a new event and break
1170 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1171 * concerned with cpuctx and that doesn't have children.
1172 *
1173 * The places that change perf_event::ctx will issue:
1174 *
1175 * perf_remove_from_context();
1176 * synchronize_rcu();
1177 * perf_install_in_context();
1178 *
1179 * to affect the change. The remove_from_context() + synchronize_rcu() should
1180 * quiesce the event, after which we can install it in the new location. This
1181 * means that only external vectors (perf_fops, prctl) can perturb the event
1182 * while in transit. Therefore all such accessors should also acquire
1183 * perf_event_context::mutex to serialize against this.
1184 *
1185 * However; because event->ctx can change while we're waiting to acquire
1186 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1187 * function.
1188 *
1189 * Lock order:
79c9ce57 1190 * cred_guard_mutex
f63a8daa
PZ
1191 * task_struct::perf_event_mutex
1192 * perf_event_context::mutex
f63a8daa 1193 * perf_event::child_mutex;
07c4a776 1194 * perf_event_context::lock
f63a8daa
PZ
1195 * perf_event::mmap_mutex
1196 * mmap_sem
1197 */
a83fe28e
PZ
1198static struct perf_event_context *
1199perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1200{
1201 struct perf_event_context *ctx;
1202
1203again:
1204 rcu_read_lock();
1205 ctx = ACCESS_ONCE(event->ctx);
1206 if (!atomic_inc_not_zero(&ctx->refcount)) {
1207 rcu_read_unlock();
1208 goto again;
1209 }
1210 rcu_read_unlock();
1211
a83fe28e 1212 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1213 if (event->ctx != ctx) {
1214 mutex_unlock(&ctx->mutex);
1215 put_ctx(ctx);
1216 goto again;
1217 }
1218
1219 return ctx;
1220}
1221
a83fe28e
PZ
1222static inline struct perf_event_context *
1223perf_event_ctx_lock(struct perf_event *event)
1224{
1225 return perf_event_ctx_lock_nested(event, 0);
1226}
1227
f63a8daa
PZ
1228static void perf_event_ctx_unlock(struct perf_event *event,
1229 struct perf_event_context *ctx)
1230{
1231 mutex_unlock(&ctx->mutex);
1232 put_ctx(ctx);
1233}
1234
211de6eb
PZ
1235/*
1236 * This must be done under the ctx->lock, such as to serialize against
1237 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1238 * calling scheduler related locks and ctx->lock nests inside those.
1239 */
1240static __must_check struct perf_event_context *
1241unclone_ctx(struct perf_event_context *ctx)
71a851b4 1242{
211de6eb
PZ
1243 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1244
1245 lockdep_assert_held(&ctx->lock);
1246
1247 if (parent_ctx)
71a851b4 1248 ctx->parent_ctx = NULL;
5a3126d4 1249 ctx->generation++;
211de6eb
PZ
1250
1251 return parent_ctx;
71a851b4
PZ
1252}
1253
1d953111
ON
1254static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1255 enum pid_type type)
6844c09d 1256{
1d953111 1257 u32 nr;
6844c09d
ACM
1258 /*
1259 * only top level events have the pid namespace they were created in
1260 */
1261 if (event->parent)
1262 event = event->parent;
1263
1d953111
ON
1264 nr = __task_pid_nr_ns(p, type, event->ns);
1265 /* avoid -1 if it is idle thread or runs in another ns */
1266 if (!nr && !pid_alive(p))
1267 nr = -1;
1268 return nr;
6844c09d
ACM
1269}
1270
1d953111 1271static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1272{
1d953111
ON
1273 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1274}
6844c09d 1275
1d953111
ON
1276static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1277{
1278 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1279}
1280
7f453c24 1281/*
cdd6c482 1282 * If we inherit events we want to return the parent event id
7f453c24
PZ
1283 * to userspace.
1284 */
cdd6c482 1285static u64 primary_event_id(struct perf_event *event)
7f453c24 1286{
cdd6c482 1287 u64 id = event->id;
7f453c24 1288
cdd6c482
IM
1289 if (event->parent)
1290 id = event->parent->id;
7f453c24
PZ
1291
1292 return id;
1293}
1294
25346b93 1295/*
cdd6c482 1296 * Get the perf_event_context for a task and lock it.
63b6da39 1297 *
25346b93
PM
1298 * This has to cope with with the fact that until it is locked,
1299 * the context could get moved to another task.
1300 */
cdd6c482 1301static struct perf_event_context *
8dc85d54 1302perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1303{
cdd6c482 1304 struct perf_event_context *ctx;
25346b93 1305
9ed6060d 1306retry:
058ebd0e
PZ
1307 /*
1308 * One of the few rules of preemptible RCU is that one cannot do
1309 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1310 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1311 * rcu_read_unlock_special().
1312 *
1313 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1314 * side critical section has interrupts disabled.
058ebd0e 1315 */
2fd59077 1316 local_irq_save(*flags);
058ebd0e 1317 rcu_read_lock();
8dc85d54 1318 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1319 if (ctx) {
1320 /*
1321 * If this context is a clone of another, it might
1322 * get swapped for another underneath us by
cdd6c482 1323 * perf_event_task_sched_out, though the
25346b93
PM
1324 * rcu_read_lock() protects us from any context
1325 * getting freed. Lock the context and check if it
1326 * got swapped before we could get the lock, and retry
1327 * if so. If we locked the right context, then it
1328 * can't get swapped on us any more.
1329 */
2fd59077 1330 raw_spin_lock(&ctx->lock);
8dc85d54 1331 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1332 raw_spin_unlock(&ctx->lock);
058ebd0e 1333 rcu_read_unlock();
2fd59077 1334 local_irq_restore(*flags);
25346b93
PM
1335 goto retry;
1336 }
b49a9e7e 1337
63b6da39
PZ
1338 if (ctx->task == TASK_TOMBSTONE ||
1339 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1340 raw_spin_unlock(&ctx->lock);
b49a9e7e 1341 ctx = NULL;
828b6f0e
PZ
1342 } else {
1343 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1344 }
25346b93
PM
1345 }
1346 rcu_read_unlock();
2fd59077
PM
1347 if (!ctx)
1348 local_irq_restore(*flags);
25346b93
PM
1349 return ctx;
1350}
1351
1352/*
1353 * Get the context for a task and increment its pin_count so it
1354 * can't get swapped to another task. This also increments its
1355 * reference count so that the context can't get freed.
1356 */
8dc85d54
PZ
1357static struct perf_event_context *
1358perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1359{
cdd6c482 1360 struct perf_event_context *ctx;
25346b93
PM
1361 unsigned long flags;
1362
8dc85d54 1363 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1364 if (ctx) {
1365 ++ctx->pin_count;
e625cce1 1366 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1367 }
1368 return ctx;
1369}
1370
cdd6c482 1371static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1372{
1373 unsigned long flags;
1374
e625cce1 1375 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1376 --ctx->pin_count;
e625cce1 1377 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1378}
1379
f67218c3
PZ
1380/*
1381 * Update the record of the current time in a context.
1382 */
1383static void update_context_time(struct perf_event_context *ctx)
1384{
1385 u64 now = perf_clock();
1386
1387 ctx->time += now - ctx->timestamp;
1388 ctx->timestamp = now;
1389}
1390
4158755d
SE
1391static u64 perf_event_time(struct perf_event *event)
1392{
1393 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1394
1395 if (is_cgroup_event(event))
1396 return perf_cgroup_event_time(event);
1397
4158755d
SE
1398 return ctx ? ctx->time : 0;
1399}
1400
f67218c3
PZ
1401/*
1402 * Update the total_time_enabled and total_time_running fields for a event.
1403 */
1404static void update_event_times(struct perf_event *event)
1405{
1406 struct perf_event_context *ctx = event->ctx;
1407 u64 run_end;
1408
3cbaa590
PZ
1409 lockdep_assert_held(&ctx->lock);
1410
f67218c3
PZ
1411 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1412 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1413 return;
3cbaa590 1414
e5d1367f
SE
1415 /*
1416 * in cgroup mode, time_enabled represents
1417 * the time the event was enabled AND active
1418 * tasks were in the monitored cgroup. This is
1419 * independent of the activity of the context as
1420 * there may be a mix of cgroup and non-cgroup events.
1421 *
1422 * That is why we treat cgroup events differently
1423 * here.
1424 */
1425 if (is_cgroup_event(event))
46cd6a7f 1426 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1427 else if (ctx->is_active)
1428 run_end = ctx->time;
acd1d7c1
PZ
1429 else
1430 run_end = event->tstamp_stopped;
1431
1432 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1433
1434 if (event->state == PERF_EVENT_STATE_INACTIVE)
1435 run_end = event->tstamp_stopped;
1436 else
4158755d 1437 run_end = perf_event_time(event);
f67218c3
PZ
1438
1439 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1440
f67218c3
PZ
1441}
1442
96c21a46
PZ
1443/*
1444 * Update total_time_enabled and total_time_running for all events in a group.
1445 */
1446static void update_group_times(struct perf_event *leader)
1447{
1448 struct perf_event *event;
1449
1450 update_event_times(leader);
1451 list_for_each_entry(event, &leader->sibling_list, group_entry)
1452 update_event_times(event);
1453}
1454
487f05e1
AS
1455static enum event_type_t get_event_type(struct perf_event *event)
1456{
1457 struct perf_event_context *ctx = event->ctx;
1458 enum event_type_t event_type;
1459
1460 lockdep_assert_held(&ctx->lock);
1461
3bda69c1
AS
1462 /*
1463 * It's 'group type', really, because if our group leader is
1464 * pinned, so are we.
1465 */
1466 if (event->group_leader != event)
1467 event = event->group_leader;
1468
487f05e1
AS
1469 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1470 if (!ctx->task)
1471 event_type |= EVENT_CPU;
1472
1473 return event_type;
1474}
1475
889ff015
FW
1476static struct list_head *
1477ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1478{
1479 if (event->attr.pinned)
1480 return &ctx->pinned_groups;
1481 else
1482 return &ctx->flexible_groups;
1483}
1484
fccc714b 1485/*
cdd6c482 1486 * Add a event from the lists for its context.
fccc714b
PZ
1487 * Must be called with ctx->mutex and ctx->lock held.
1488 */
04289bb9 1489static void
cdd6c482 1490list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1491{
c994d613
PZ
1492 lockdep_assert_held(&ctx->lock);
1493
8a49542c
PZ
1494 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1495 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1496
1497 /*
8a49542c
PZ
1498 * If we're a stand alone event or group leader, we go to the context
1499 * list, group events are kept attached to the group so that
1500 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1501 */
8a49542c 1502 if (event->group_leader == event) {
889ff015
FW
1503 struct list_head *list;
1504
4ff6a8de 1505 event->group_caps = event->event_caps;
d6f962b5 1506
889ff015
FW
1507 list = ctx_group_list(event, ctx);
1508 list_add_tail(&event->group_entry, list);
5c148194 1509 }
592903cd 1510
db4a8356 1511 list_update_cgroup_event(event, ctx, true);
e5d1367f 1512
cdd6c482
IM
1513 list_add_rcu(&event->event_entry, &ctx->event_list);
1514 ctx->nr_events++;
1515 if (event->attr.inherit_stat)
bfbd3381 1516 ctx->nr_stat++;
5a3126d4
PZ
1517
1518 ctx->generation++;
04289bb9
IM
1519}
1520
0231bb53
JO
1521/*
1522 * Initialize event state based on the perf_event_attr::disabled.
1523 */
1524static inline void perf_event__state_init(struct perf_event *event)
1525{
1526 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1527 PERF_EVENT_STATE_INACTIVE;
1528}
1529
a723968c 1530static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1531{
1532 int entry = sizeof(u64); /* value */
1533 int size = 0;
1534 int nr = 1;
1535
1536 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1537 size += sizeof(u64);
1538
1539 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1540 size += sizeof(u64);
1541
1542 if (event->attr.read_format & PERF_FORMAT_ID)
1543 entry += sizeof(u64);
1544
1545 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1546 nr += nr_siblings;
c320c7b7
ACM
1547 size += sizeof(u64);
1548 }
1549
1550 size += entry * nr;
1551 event->read_size = size;
1552}
1553
a723968c 1554static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1555{
1556 struct perf_sample_data *data;
c320c7b7
ACM
1557 u16 size = 0;
1558
c320c7b7
ACM
1559 if (sample_type & PERF_SAMPLE_IP)
1560 size += sizeof(data->ip);
1561
6844c09d
ACM
1562 if (sample_type & PERF_SAMPLE_ADDR)
1563 size += sizeof(data->addr);
1564
1565 if (sample_type & PERF_SAMPLE_PERIOD)
1566 size += sizeof(data->period);
1567
c3feedf2
AK
1568 if (sample_type & PERF_SAMPLE_WEIGHT)
1569 size += sizeof(data->weight);
1570
6844c09d
ACM
1571 if (sample_type & PERF_SAMPLE_READ)
1572 size += event->read_size;
1573
d6be9ad6
SE
1574 if (sample_type & PERF_SAMPLE_DATA_SRC)
1575 size += sizeof(data->data_src.val);
1576
fdfbbd07
AK
1577 if (sample_type & PERF_SAMPLE_TRANSACTION)
1578 size += sizeof(data->txn);
1579
fc7ce9c7
KL
1580 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1581 size += sizeof(data->phys_addr);
1582
6844c09d
ACM
1583 event->header_size = size;
1584}
1585
a723968c
PZ
1586/*
1587 * Called at perf_event creation and when events are attached/detached from a
1588 * group.
1589 */
1590static void perf_event__header_size(struct perf_event *event)
1591{
1592 __perf_event_read_size(event,
1593 event->group_leader->nr_siblings);
1594 __perf_event_header_size(event, event->attr.sample_type);
1595}
1596
6844c09d
ACM
1597static void perf_event__id_header_size(struct perf_event *event)
1598{
1599 struct perf_sample_data *data;
1600 u64 sample_type = event->attr.sample_type;
1601 u16 size = 0;
1602
c320c7b7
ACM
1603 if (sample_type & PERF_SAMPLE_TID)
1604 size += sizeof(data->tid_entry);
1605
1606 if (sample_type & PERF_SAMPLE_TIME)
1607 size += sizeof(data->time);
1608
ff3d527c
AH
1609 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1610 size += sizeof(data->id);
1611
c320c7b7
ACM
1612 if (sample_type & PERF_SAMPLE_ID)
1613 size += sizeof(data->id);
1614
1615 if (sample_type & PERF_SAMPLE_STREAM_ID)
1616 size += sizeof(data->stream_id);
1617
1618 if (sample_type & PERF_SAMPLE_CPU)
1619 size += sizeof(data->cpu_entry);
1620
6844c09d 1621 event->id_header_size = size;
c320c7b7
ACM
1622}
1623
a723968c
PZ
1624static bool perf_event_validate_size(struct perf_event *event)
1625{
1626 /*
1627 * The values computed here will be over-written when we actually
1628 * attach the event.
1629 */
1630 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1631 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1632 perf_event__id_header_size(event);
1633
1634 /*
1635 * Sum the lot; should not exceed the 64k limit we have on records.
1636 * Conservative limit to allow for callchains and other variable fields.
1637 */
1638 if (event->read_size + event->header_size +
1639 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1640 return false;
1641
1642 return true;
1643}
1644
8a49542c
PZ
1645static void perf_group_attach(struct perf_event *event)
1646{
c320c7b7 1647 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1648
a76a82a3
PZ
1649 lockdep_assert_held(&event->ctx->lock);
1650
74c3337c
PZ
1651 /*
1652 * We can have double attach due to group movement in perf_event_open.
1653 */
1654 if (event->attach_state & PERF_ATTACH_GROUP)
1655 return;
1656
8a49542c
PZ
1657 event->attach_state |= PERF_ATTACH_GROUP;
1658
1659 if (group_leader == event)
1660 return;
1661
652884fe
PZ
1662 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1663
4ff6a8de 1664 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1665
1666 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1667 group_leader->nr_siblings++;
c320c7b7
ACM
1668
1669 perf_event__header_size(group_leader);
1670
1671 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1672 perf_event__header_size(pos);
8a49542c
PZ
1673}
1674
a63eaf34 1675/*
cdd6c482 1676 * Remove a event from the lists for its context.
fccc714b 1677 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1678 */
04289bb9 1679static void
cdd6c482 1680list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1681{
652884fe
PZ
1682 WARN_ON_ONCE(event->ctx != ctx);
1683 lockdep_assert_held(&ctx->lock);
1684
8a49542c
PZ
1685 /*
1686 * We can have double detach due to exit/hot-unplug + close.
1687 */
1688 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1689 return;
8a49542c
PZ
1690
1691 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1692
db4a8356 1693 list_update_cgroup_event(event, ctx, false);
e5d1367f 1694
cdd6c482
IM
1695 ctx->nr_events--;
1696 if (event->attr.inherit_stat)
bfbd3381 1697 ctx->nr_stat--;
8bc20959 1698
cdd6c482 1699 list_del_rcu(&event->event_entry);
04289bb9 1700
8a49542c
PZ
1701 if (event->group_leader == event)
1702 list_del_init(&event->group_entry);
5c148194 1703
96c21a46 1704 update_group_times(event);
b2e74a26
SE
1705
1706 /*
1707 * If event was in error state, then keep it
1708 * that way, otherwise bogus counts will be
1709 * returned on read(). The only way to get out
1710 * of error state is by explicit re-enabling
1711 * of the event
1712 */
1713 if (event->state > PERF_EVENT_STATE_OFF)
1714 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1715
1716 ctx->generation++;
050735b0
PZ
1717}
1718
8a49542c 1719static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1720{
1721 struct perf_event *sibling, *tmp;
8a49542c
PZ
1722 struct list_head *list = NULL;
1723
a76a82a3
PZ
1724 lockdep_assert_held(&event->ctx->lock);
1725
8a49542c
PZ
1726 /*
1727 * We can have double detach due to exit/hot-unplug + close.
1728 */
1729 if (!(event->attach_state & PERF_ATTACH_GROUP))
1730 return;
1731
1732 event->attach_state &= ~PERF_ATTACH_GROUP;
1733
1734 /*
1735 * If this is a sibling, remove it from its group.
1736 */
1737 if (event->group_leader != event) {
1738 list_del_init(&event->group_entry);
1739 event->group_leader->nr_siblings--;
c320c7b7 1740 goto out;
8a49542c
PZ
1741 }
1742
1743 if (!list_empty(&event->group_entry))
1744 list = &event->group_entry;
2e2af50b 1745
04289bb9 1746 /*
cdd6c482
IM
1747 * If this was a group event with sibling events then
1748 * upgrade the siblings to singleton events by adding them
8a49542c 1749 * to whatever list we are on.
04289bb9 1750 */
cdd6c482 1751 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1752 if (list)
1753 list_move_tail(&sibling->group_entry, list);
04289bb9 1754 sibling->group_leader = sibling;
d6f962b5
FW
1755
1756 /* Inherit group flags from the previous leader */
4ff6a8de 1757 sibling->group_caps = event->group_caps;
652884fe
PZ
1758
1759 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1760 }
c320c7b7
ACM
1761
1762out:
1763 perf_event__header_size(event->group_leader);
1764
1765 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1766 perf_event__header_size(tmp);
04289bb9
IM
1767}
1768
fadfe7be
JO
1769static bool is_orphaned_event(struct perf_event *event)
1770{
a69b0ca4 1771 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1772}
1773
2c81a647 1774static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1775{
1776 struct pmu *pmu = event->pmu;
1777 return pmu->filter_match ? pmu->filter_match(event) : 1;
1778}
1779
2c81a647
MR
1780/*
1781 * Check whether we should attempt to schedule an event group based on
1782 * PMU-specific filtering. An event group can consist of HW and SW events,
1783 * potentially with a SW leader, so we must check all the filters, to
1784 * determine whether a group is schedulable:
1785 */
1786static inline int pmu_filter_match(struct perf_event *event)
1787{
1788 struct perf_event *child;
1789
1790 if (!__pmu_filter_match(event))
1791 return 0;
1792
1793 list_for_each_entry(child, &event->sibling_list, group_entry) {
1794 if (!__pmu_filter_match(child))
1795 return 0;
1796 }
1797
1798 return 1;
1799}
1800
fa66f07a
SE
1801static inline int
1802event_filter_match(struct perf_event *event)
1803{
0b8f1e2e
PZ
1804 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1805 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1806}
1807
9ffcfa6f
SE
1808static void
1809event_sched_out(struct perf_event *event,
3b6f9e5c 1810 struct perf_cpu_context *cpuctx,
cdd6c482 1811 struct perf_event_context *ctx)
3b6f9e5c 1812{
4158755d 1813 u64 tstamp = perf_event_time(event);
fa66f07a 1814 u64 delta;
652884fe
PZ
1815
1816 WARN_ON_ONCE(event->ctx != ctx);
1817 lockdep_assert_held(&ctx->lock);
1818
fa66f07a
SE
1819 /*
1820 * An event which could not be activated because of
1821 * filter mismatch still needs to have its timings
1822 * maintained, otherwise bogus information is return
1823 * via read() for time_enabled, time_running:
1824 */
0b8f1e2e
PZ
1825 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1826 !event_filter_match(event)) {
e5d1367f 1827 delta = tstamp - event->tstamp_stopped;
fa66f07a 1828 event->tstamp_running += delta;
4158755d 1829 event->tstamp_stopped = tstamp;
fa66f07a
SE
1830 }
1831
cdd6c482 1832 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1833 return;
3b6f9e5c 1834
44377277
AS
1835 perf_pmu_disable(event->pmu);
1836
28a967c3
PZ
1837 event->tstamp_stopped = tstamp;
1838 event->pmu->del(event, 0);
1839 event->oncpu = -1;
cdd6c482
IM
1840 event->state = PERF_EVENT_STATE_INACTIVE;
1841 if (event->pending_disable) {
1842 event->pending_disable = 0;
1843 event->state = PERF_EVENT_STATE_OFF;
970892a9 1844 }
3b6f9e5c 1845
cdd6c482 1846 if (!is_software_event(event))
3b6f9e5c 1847 cpuctx->active_oncpu--;
2fde4f94
MR
1848 if (!--ctx->nr_active)
1849 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1850 if (event->attr.freq && event->attr.sample_freq)
1851 ctx->nr_freq--;
cdd6c482 1852 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1853 cpuctx->exclusive = 0;
44377277
AS
1854
1855 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1856}
1857
d859e29f 1858static void
cdd6c482 1859group_sched_out(struct perf_event *group_event,
d859e29f 1860 struct perf_cpu_context *cpuctx,
cdd6c482 1861 struct perf_event_context *ctx)
d859e29f 1862{
cdd6c482 1863 struct perf_event *event;
fa66f07a 1864 int state = group_event->state;
d859e29f 1865
3f005e7d
MR
1866 perf_pmu_disable(ctx->pmu);
1867
cdd6c482 1868 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1869
1870 /*
1871 * Schedule out siblings (if any):
1872 */
cdd6c482
IM
1873 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1874 event_sched_out(event, cpuctx, ctx);
d859e29f 1875
3f005e7d
MR
1876 perf_pmu_enable(ctx->pmu);
1877
fa66f07a 1878 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1879 cpuctx->exclusive = 0;
1880}
1881
45a0e07a 1882#define DETACH_GROUP 0x01UL
0017960f 1883
0793a61d 1884/*
cdd6c482 1885 * Cross CPU call to remove a performance event
0793a61d 1886 *
cdd6c482 1887 * We disable the event on the hardware level first. After that we
0793a61d
TG
1888 * remove it from the context list.
1889 */
fae3fde6
PZ
1890static void
1891__perf_remove_from_context(struct perf_event *event,
1892 struct perf_cpu_context *cpuctx,
1893 struct perf_event_context *ctx,
1894 void *info)
0793a61d 1895{
45a0e07a 1896 unsigned long flags = (unsigned long)info;
0793a61d 1897
cdd6c482 1898 event_sched_out(event, cpuctx, ctx);
45a0e07a 1899 if (flags & DETACH_GROUP)
46ce0fe9 1900 perf_group_detach(event);
cdd6c482 1901 list_del_event(event, ctx);
39a43640
PZ
1902
1903 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1904 ctx->is_active = 0;
39a43640
PZ
1905 if (ctx->task) {
1906 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1907 cpuctx->task_ctx = NULL;
1908 }
64ce3126 1909 }
0793a61d
TG
1910}
1911
0793a61d 1912/*
cdd6c482 1913 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1914 *
cdd6c482
IM
1915 * If event->ctx is a cloned context, callers must make sure that
1916 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1917 * remains valid. This is OK when called from perf_release since
1918 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1919 * When called from perf_event_exit_task, it's OK because the
c93f7669 1920 * context has been detached from its task.
0793a61d 1921 */
45a0e07a 1922static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1923{
a76a82a3
PZ
1924 struct perf_event_context *ctx = event->ctx;
1925
1926 lockdep_assert_held(&ctx->mutex);
0793a61d 1927
45a0e07a 1928 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1929
1930 /*
1931 * The above event_function_call() can NO-OP when it hits
1932 * TASK_TOMBSTONE. In that case we must already have been detached
1933 * from the context (by perf_event_exit_event()) but the grouping
1934 * might still be in-tact.
1935 */
1936 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1937 if ((flags & DETACH_GROUP) &&
1938 (event->attach_state & PERF_ATTACH_GROUP)) {
1939 /*
1940 * Since in that case we cannot possibly be scheduled, simply
1941 * detach now.
1942 */
1943 raw_spin_lock_irq(&ctx->lock);
1944 perf_group_detach(event);
1945 raw_spin_unlock_irq(&ctx->lock);
1946 }
0793a61d
TG
1947}
1948
d859e29f 1949/*
cdd6c482 1950 * Cross CPU call to disable a performance event
d859e29f 1951 */
fae3fde6
PZ
1952static void __perf_event_disable(struct perf_event *event,
1953 struct perf_cpu_context *cpuctx,
1954 struct perf_event_context *ctx,
1955 void *info)
7b648018 1956{
fae3fde6
PZ
1957 if (event->state < PERF_EVENT_STATE_INACTIVE)
1958 return;
7b648018 1959
fae3fde6
PZ
1960 update_context_time(ctx);
1961 update_cgrp_time_from_event(event);
1962 update_group_times(event);
1963 if (event == event->group_leader)
1964 group_sched_out(event, cpuctx, ctx);
1965 else
1966 event_sched_out(event, cpuctx, ctx);
1967 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1968}
1969
d859e29f 1970/*
cdd6c482 1971 * Disable a event.
c93f7669 1972 *
cdd6c482
IM
1973 * If event->ctx is a cloned context, callers must make sure that
1974 * every task struct that event->ctx->task could possibly point to
c93f7669 1975 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1976 * perf_event_for_each_child or perf_event_for_each because they
1977 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1978 * goes to exit will block in perf_event_exit_event().
1979 *
cdd6c482 1980 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1981 * is the current context on this CPU and preemption is disabled,
cdd6c482 1982 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1983 */
f63a8daa 1984static void _perf_event_disable(struct perf_event *event)
d859e29f 1985{
cdd6c482 1986 struct perf_event_context *ctx = event->ctx;
d859e29f 1987
e625cce1 1988 raw_spin_lock_irq(&ctx->lock);
7b648018 1989 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1990 raw_spin_unlock_irq(&ctx->lock);
7b648018 1991 return;
53cfbf59 1992 }
e625cce1 1993 raw_spin_unlock_irq(&ctx->lock);
7b648018 1994
fae3fde6
PZ
1995 event_function_call(event, __perf_event_disable, NULL);
1996}
1997
1998void perf_event_disable_local(struct perf_event *event)
1999{
2000 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2001}
f63a8daa
PZ
2002
2003/*
2004 * Strictly speaking kernel users cannot create groups and therefore this
2005 * interface does not need the perf_event_ctx_lock() magic.
2006 */
2007void perf_event_disable(struct perf_event *event)
2008{
2009 struct perf_event_context *ctx;
2010
2011 ctx = perf_event_ctx_lock(event);
2012 _perf_event_disable(event);
2013 perf_event_ctx_unlock(event, ctx);
2014}
dcfce4a0 2015EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2016
5aab90ce
JO
2017void perf_event_disable_inatomic(struct perf_event *event)
2018{
2019 event->pending_disable = 1;
2020 irq_work_queue(&event->pending);
2021}
2022
e5d1367f
SE
2023static void perf_set_shadow_time(struct perf_event *event,
2024 struct perf_event_context *ctx,
2025 u64 tstamp)
2026{
2027 /*
2028 * use the correct time source for the time snapshot
2029 *
2030 * We could get by without this by leveraging the
2031 * fact that to get to this function, the caller
2032 * has most likely already called update_context_time()
2033 * and update_cgrp_time_xx() and thus both timestamp
2034 * are identical (or very close). Given that tstamp is,
2035 * already adjusted for cgroup, we could say that:
2036 * tstamp - ctx->timestamp
2037 * is equivalent to
2038 * tstamp - cgrp->timestamp.
2039 *
2040 * Then, in perf_output_read(), the calculation would
2041 * work with no changes because:
2042 * - event is guaranteed scheduled in
2043 * - no scheduled out in between
2044 * - thus the timestamp would be the same
2045 *
2046 * But this is a bit hairy.
2047 *
2048 * So instead, we have an explicit cgroup call to remain
2049 * within the time time source all along. We believe it
2050 * is cleaner and simpler to understand.
2051 */
2052 if (is_cgroup_event(event))
2053 perf_cgroup_set_shadow_time(event, tstamp);
2054 else
2055 event->shadow_ctx_time = tstamp - ctx->timestamp;
2056}
2057
4fe757dd
PZ
2058#define MAX_INTERRUPTS (~0ULL)
2059
2060static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2061static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2062
235c7fc7 2063static int
9ffcfa6f 2064event_sched_in(struct perf_event *event,
235c7fc7 2065 struct perf_cpu_context *cpuctx,
6e37738a 2066 struct perf_event_context *ctx)
235c7fc7 2067{
4158755d 2068 u64 tstamp = perf_event_time(event);
44377277 2069 int ret = 0;
4158755d 2070
63342411
PZ
2071 lockdep_assert_held(&ctx->lock);
2072
cdd6c482 2073 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2074 return 0;
2075
95ff4ca2
AS
2076 WRITE_ONCE(event->oncpu, smp_processor_id());
2077 /*
2078 * Order event::oncpu write to happen before the ACTIVE state
2079 * is visible.
2080 */
2081 smp_wmb();
2082 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2083
2084 /*
2085 * Unthrottle events, since we scheduled we might have missed several
2086 * ticks already, also for a heavily scheduling task there is little
2087 * guarantee it'll get a tick in a timely manner.
2088 */
2089 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2090 perf_log_throttle(event, 1);
2091 event->hw.interrupts = 0;
2092 }
2093
235c7fc7
IM
2094 /*
2095 * The new state must be visible before we turn it on in the hardware:
2096 */
2097 smp_wmb();
2098
44377277
AS
2099 perf_pmu_disable(event->pmu);
2100
72f669c0
SL
2101 perf_set_shadow_time(event, ctx, tstamp);
2102
ec0d7729
AS
2103 perf_log_itrace_start(event);
2104
a4eaf7f1 2105 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2106 event->state = PERF_EVENT_STATE_INACTIVE;
2107 event->oncpu = -1;
44377277
AS
2108 ret = -EAGAIN;
2109 goto out;
235c7fc7
IM
2110 }
2111
00a2916f
PZ
2112 event->tstamp_running += tstamp - event->tstamp_stopped;
2113
cdd6c482 2114 if (!is_software_event(event))
3b6f9e5c 2115 cpuctx->active_oncpu++;
2fde4f94
MR
2116 if (!ctx->nr_active++)
2117 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2118 if (event->attr.freq && event->attr.sample_freq)
2119 ctx->nr_freq++;
235c7fc7 2120
cdd6c482 2121 if (event->attr.exclusive)
3b6f9e5c
PM
2122 cpuctx->exclusive = 1;
2123
44377277
AS
2124out:
2125 perf_pmu_enable(event->pmu);
2126
2127 return ret;
235c7fc7
IM
2128}
2129
6751b71e 2130static int
cdd6c482 2131group_sched_in(struct perf_event *group_event,
6751b71e 2132 struct perf_cpu_context *cpuctx,
6e37738a 2133 struct perf_event_context *ctx)
6751b71e 2134{
6bde9b6c 2135 struct perf_event *event, *partial_group = NULL;
4a234593 2136 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2137 u64 now = ctx->time;
2138 bool simulate = false;
6751b71e 2139
cdd6c482 2140 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2141 return 0;
2142
fbbe0701 2143 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2144
9ffcfa6f 2145 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2146 pmu->cancel_txn(pmu);
272325c4 2147 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2148 return -EAGAIN;
90151c35 2149 }
6751b71e
PM
2150
2151 /*
2152 * Schedule in siblings as one group (if any):
2153 */
cdd6c482 2154 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2155 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2156 partial_group = event;
6751b71e
PM
2157 goto group_error;
2158 }
2159 }
2160
9ffcfa6f 2161 if (!pmu->commit_txn(pmu))
6e85158c 2162 return 0;
9ffcfa6f 2163
6751b71e
PM
2164group_error:
2165 /*
2166 * Groups can be scheduled in as one unit only, so undo any
2167 * partial group before returning:
d7842da4
SE
2168 * The events up to the failed event are scheduled out normally,
2169 * tstamp_stopped will be updated.
2170 *
2171 * The failed events and the remaining siblings need to have
2172 * their timings updated as if they had gone thru event_sched_in()
2173 * and event_sched_out(). This is required to get consistent timings
2174 * across the group. This also takes care of the case where the group
2175 * could never be scheduled by ensuring tstamp_stopped is set to mark
2176 * the time the event was actually stopped, such that time delta
2177 * calculation in update_event_times() is correct.
6751b71e 2178 */
cdd6c482
IM
2179 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2180 if (event == partial_group)
d7842da4
SE
2181 simulate = true;
2182
2183 if (simulate) {
2184 event->tstamp_running += now - event->tstamp_stopped;
2185 event->tstamp_stopped = now;
2186 } else {
2187 event_sched_out(event, cpuctx, ctx);
2188 }
6751b71e 2189 }
9ffcfa6f 2190 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2191
ad5133b7 2192 pmu->cancel_txn(pmu);
90151c35 2193
272325c4 2194 perf_mux_hrtimer_restart(cpuctx);
9e630205 2195
6751b71e
PM
2196 return -EAGAIN;
2197}
2198
3b6f9e5c 2199/*
cdd6c482 2200 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2201 */
cdd6c482 2202static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2203 struct perf_cpu_context *cpuctx,
2204 int can_add_hw)
2205{
2206 /*
cdd6c482 2207 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2208 */
4ff6a8de 2209 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2210 return 1;
2211 /*
2212 * If an exclusive group is already on, no other hardware
cdd6c482 2213 * events can go on.
3b6f9e5c
PM
2214 */
2215 if (cpuctx->exclusive)
2216 return 0;
2217 /*
2218 * If this group is exclusive and there are already
cdd6c482 2219 * events on the CPU, it can't go on.
3b6f9e5c 2220 */
cdd6c482 2221 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2222 return 0;
2223 /*
2224 * Otherwise, try to add it if all previous groups were able
2225 * to go on.
2226 */
2227 return can_add_hw;
2228}
2229
9b231d9f
PZ
2230/*
2231 * Complement to update_event_times(). This computes the tstamp_* values to
2232 * continue 'enabled' state from @now, and effectively discards the time
2233 * between the prior tstamp_stopped and now (as we were in the OFF state, or
2234 * just switched (context) time base).
2235 *
2236 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2237 * cannot have been scheduled in yet. And going into INACTIVE state means
2238 * '@event->tstamp_stopped = @now'.
2239 *
2240 * Thus given the rules of update_event_times():
2241 *
2242 * total_time_enabled = tstamp_stopped - tstamp_enabled
2243 * total_time_running = tstamp_stopped - tstamp_running
2244 *
2245 * We can insert 'tstamp_stopped == now' and reverse them to compute new
2246 * tstamp_* values.
2247 */
2248static void __perf_event_enable_time(struct perf_event *event, u64 now)
2249{
2250 WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2251
2252 event->tstamp_stopped = now;
2253 event->tstamp_enabled = now - event->total_time_enabled;
2254 event->tstamp_running = now - event->total_time_running;
2255}
2256
cdd6c482
IM
2257static void add_event_to_ctx(struct perf_event *event,
2258 struct perf_event_context *ctx)
53cfbf59 2259{
4158755d
SE
2260 u64 tstamp = perf_event_time(event);
2261
cdd6c482 2262 list_add_event(event, ctx);
8a49542c 2263 perf_group_attach(event);
9b231d9f
PZ
2264 /*
2265 * We can be called with event->state == STATE_OFF when we create with
2266 * .disabled = 1. In that case the IOC_ENABLE will call this function.
2267 */
2268 if (event->state == PERF_EVENT_STATE_INACTIVE)
2269 __perf_event_enable_time(event, tstamp);
53cfbf59
PM
2270}
2271
bd2afa49
PZ
2272static void ctx_sched_out(struct perf_event_context *ctx,
2273 struct perf_cpu_context *cpuctx,
2274 enum event_type_t event_type);
2c29ef0f
PZ
2275static void
2276ctx_sched_in(struct perf_event_context *ctx,
2277 struct perf_cpu_context *cpuctx,
2278 enum event_type_t event_type,
2279 struct task_struct *task);
fe4b04fa 2280
bd2afa49 2281static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2282 struct perf_event_context *ctx,
2283 enum event_type_t event_type)
bd2afa49
PZ
2284{
2285 if (!cpuctx->task_ctx)
2286 return;
2287
2288 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2289 return;
2290
487f05e1 2291 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2292}
2293
dce5855b
PZ
2294static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2295 struct perf_event_context *ctx,
2296 struct task_struct *task)
2297{
2298 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2299 if (ctx)
2300 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2301 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2302 if (ctx)
2303 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2304}
2305
487f05e1
AS
2306/*
2307 * We want to maintain the following priority of scheduling:
2308 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2309 * - task pinned (EVENT_PINNED)
2310 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2311 * - task flexible (EVENT_FLEXIBLE).
2312 *
2313 * In order to avoid unscheduling and scheduling back in everything every
2314 * time an event is added, only do it for the groups of equal priority and
2315 * below.
2316 *
2317 * This can be called after a batch operation on task events, in which case
2318 * event_type is a bit mask of the types of events involved. For CPU events,
2319 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2320 */
3e349507 2321static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2322 struct perf_event_context *task_ctx,
2323 enum event_type_t event_type)
0017960f 2324{
487f05e1
AS
2325 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2326 bool cpu_event = !!(event_type & EVENT_CPU);
2327
2328 /*
2329 * If pinned groups are involved, flexible groups also need to be
2330 * scheduled out.
2331 */
2332 if (event_type & EVENT_PINNED)
2333 event_type |= EVENT_FLEXIBLE;
2334
3e349507
PZ
2335 perf_pmu_disable(cpuctx->ctx.pmu);
2336 if (task_ctx)
487f05e1
AS
2337 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2338
2339 /*
2340 * Decide which cpu ctx groups to schedule out based on the types
2341 * of events that caused rescheduling:
2342 * - EVENT_CPU: schedule out corresponding groups;
2343 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2344 * - otherwise, do nothing more.
2345 */
2346 if (cpu_event)
2347 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2348 else if (ctx_event_type & EVENT_PINNED)
2349 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2350
3e349507
PZ
2351 perf_event_sched_in(cpuctx, task_ctx, current);
2352 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2353}
2354
0793a61d 2355/*
cdd6c482 2356 * Cross CPU call to install and enable a performance event
682076ae 2357 *
a096309b
PZ
2358 * Very similar to remote_function() + event_function() but cannot assume that
2359 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2360 */
fe4b04fa 2361static int __perf_install_in_context(void *info)
0793a61d 2362{
a096309b
PZ
2363 struct perf_event *event = info;
2364 struct perf_event_context *ctx = event->ctx;
108b02cf 2365 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2366 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2367 bool reprogram = true;
a096309b 2368 int ret = 0;
0793a61d 2369
63b6da39 2370 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2371 if (ctx->task) {
b58f6b0d
PZ
2372 raw_spin_lock(&ctx->lock);
2373 task_ctx = ctx;
a096309b 2374
63cae12b 2375 reprogram = (ctx->task == current);
b58f6b0d 2376
39a43640 2377 /*
63cae12b
PZ
2378 * If the task is running, it must be running on this CPU,
2379 * otherwise we cannot reprogram things.
2380 *
2381 * If its not running, we don't care, ctx->lock will
2382 * serialize against it becoming runnable.
39a43640 2383 */
63cae12b
PZ
2384 if (task_curr(ctx->task) && !reprogram) {
2385 ret = -ESRCH;
2386 goto unlock;
2387 }
a096309b 2388
63cae12b 2389 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2390 } else if (task_ctx) {
2391 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2392 }
b58f6b0d 2393
63cae12b 2394 if (reprogram) {
a096309b
PZ
2395 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2396 add_event_to_ctx(event, ctx);
487f05e1 2397 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2398 } else {
2399 add_event_to_ctx(event, ctx);
2400 }
2401
63b6da39 2402unlock:
2c29ef0f 2403 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2404
a096309b 2405 return ret;
0793a61d
TG
2406}
2407
2408/*
a096309b
PZ
2409 * Attach a performance event to a context.
2410 *
2411 * Very similar to event_function_call, see comment there.
0793a61d
TG
2412 */
2413static void
cdd6c482
IM
2414perf_install_in_context(struct perf_event_context *ctx,
2415 struct perf_event *event,
0793a61d
TG
2416 int cpu)
2417{
a096309b 2418 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2419
fe4b04fa
PZ
2420 lockdep_assert_held(&ctx->mutex);
2421
0cda4c02
YZ
2422 if (event->cpu != -1)
2423 event->cpu = cpu;
c3f00c70 2424
0b8f1e2e
PZ
2425 /*
2426 * Ensures that if we can observe event->ctx, both the event and ctx
2427 * will be 'complete'. See perf_iterate_sb_cpu().
2428 */
2429 smp_store_release(&event->ctx, ctx);
2430
a096309b
PZ
2431 if (!task) {
2432 cpu_function_call(cpu, __perf_install_in_context, event);
2433 return;
2434 }
2435
2436 /*
2437 * Should not happen, we validate the ctx is still alive before calling.
2438 */
2439 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2440 return;
2441
39a43640
PZ
2442 /*
2443 * Installing events is tricky because we cannot rely on ctx->is_active
2444 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2445 *
2446 * Instead we use task_curr(), which tells us if the task is running.
2447 * However, since we use task_curr() outside of rq::lock, we can race
2448 * against the actual state. This means the result can be wrong.
2449 *
2450 * If we get a false positive, we retry, this is harmless.
2451 *
2452 * If we get a false negative, things are complicated. If we are after
2453 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2454 * value must be correct. If we're before, it doesn't matter since
2455 * perf_event_context_sched_in() will program the counter.
2456 *
2457 * However, this hinges on the remote context switch having observed
2458 * our task->perf_event_ctxp[] store, such that it will in fact take
2459 * ctx::lock in perf_event_context_sched_in().
2460 *
2461 * We do this by task_function_call(), if the IPI fails to hit the task
2462 * we know any future context switch of task must see the
2463 * perf_event_ctpx[] store.
39a43640 2464 */
63cae12b 2465
63b6da39 2466 /*
63cae12b
PZ
2467 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2468 * task_cpu() load, such that if the IPI then does not find the task
2469 * running, a future context switch of that task must observe the
2470 * store.
63b6da39 2471 */
63cae12b
PZ
2472 smp_mb();
2473again:
2474 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2475 return;
2476
2477 raw_spin_lock_irq(&ctx->lock);
2478 task = ctx->task;
84c4e620 2479 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2480 /*
2481 * Cannot happen because we already checked above (which also
2482 * cannot happen), and we hold ctx->mutex, which serializes us
2483 * against perf_event_exit_task_context().
2484 */
63b6da39
PZ
2485 raw_spin_unlock_irq(&ctx->lock);
2486 return;
2487 }
39a43640 2488 /*
63cae12b
PZ
2489 * If the task is not running, ctx->lock will avoid it becoming so,
2490 * thus we can safely install the event.
39a43640 2491 */
63cae12b
PZ
2492 if (task_curr(task)) {
2493 raw_spin_unlock_irq(&ctx->lock);
2494 goto again;
2495 }
2496 add_event_to_ctx(event, ctx);
2497 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2498}
2499
fa289bec 2500/*
cdd6c482 2501 * Put a event into inactive state and update time fields.
fa289bec
PM
2502 * Enabling the leader of a group effectively enables all
2503 * the group members that aren't explicitly disabled, so we
2504 * have to update their ->tstamp_enabled also.
2505 * Note: this works for group members as well as group leaders
2506 * since the non-leader members' sibling_lists will be empty.
2507 */
1d9b482e 2508static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2509{
cdd6c482 2510 struct perf_event *sub;
4158755d 2511 u64 tstamp = perf_event_time(event);
fa289bec 2512
cdd6c482 2513 event->state = PERF_EVENT_STATE_INACTIVE;
9b231d9f 2514 __perf_event_enable_time(event, tstamp);
9ed6060d 2515 list_for_each_entry(sub, &event->sibling_list, group_entry) {
9b231d9f 2516 /* XXX should not be > INACTIVE if event isn't */
4158755d 2517 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
9b231d9f 2518 __perf_event_enable_time(sub, tstamp);
9ed6060d 2519 }
fa289bec
PM
2520}
2521
d859e29f 2522/*
cdd6c482 2523 * Cross CPU call to enable a performance event
d859e29f 2524 */
fae3fde6
PZ
2525static void __perf_event_enable(struct perf_event *event,
2526 struct perf_cpu_context *cpuctx,
2527 struct perf_event_context *ctx,
2528 void *info)
04289bb9 2529{
cdd6c482 2530 struct perf_event *leader = event->group_leader;
fae3fde6 2531 struct perf_event_context *task_ctx;
04289bb9 2532
6e801e01
PZ
2533 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2534 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2535 return;
3cbed429 2536
bd2afa49
PZ
2537 if (ctx->is_active)
2538 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2539
1d9b482e 2540 __perf_event_mark_enabled(event);
04289bb9 2541
fae3fde6
PZ
2542 if (!ctx->is_active)
2543 return;
2544
e5d1367f 2545 if (!event_filter_match(event)) {
bd2afa49 2546 if (is_cgroup_event(event))
e5d1367f 2547 perf_cgroup_defer_enabled(event);
bd2afa49 2548 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2549 return;
e5d1367f 2550 }
f4c4176f 2551
04289bb9 2552 /*
cdd6c482 2553 * If the event is in a group and isn't the group leader,
d859e29f 2554 * then don't put it on unless the group is on.
04289bb9 2555 */
bd2afa49
PZ
2556 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2557 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2558 return;
bd2afa49 2559 }
fe4b04fa 2560
fae3fde6
PZ
2561 task_ctx = cpuctx->task_ctx;
2562 if (ctx->task)
2563 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2564
487f05e1 2565 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2566}
2567
d859e29f 2568/*
cdd6c482 2569 * Enable a event.
c93f7669 2570 *
cdd6c482
IM
2571 * If event->ctx is a cloned context, callers must make sure that
2572 * every task struct that event->ctx->task could possibly point to
c93f7669 2573 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2574 * perf_event_for_each_child or perf_event_for_each as described
2575 * for perf_event_disable.
d859e29f 2576 */
f63a8daa 2577static void _perf_event_enable(struct perf_event *event)
d859e29f 2578{
cdd6c482 2579 struct perf_event_context *ctx = event->ctx;
d859e29f 2580
7b648018 2581 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2582 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2583 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2584 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2585 return;
2586 }
2587
d859e29f 2588 /*
cdd6c482 2589 * If the event is in error state, clear that first.
7b648018
PZ
2590 *
2591 * That way, if we see the event in error state below, we know that it
2592 * has gone back into error state, as distinct from the task having
2593 * been scheduled away before the cross-call arrived.
d859e29f 2594 */
cdd6c482
IM
2595 if (event->state == PERF_EVENT_STATE_ERROR)
2596 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2597 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2598
fae3fde6 2599 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2600}
f63a8daa
PZ
2601
2602/*
2603 * See perf_event_disable();
2604 */
2605void perf_event_enable(struct perf_event *event)
2606{
2607 struct perf_event_context *ctx;
2608
2609 ctx = perf_event_ctx_lock(event);
2610 _perf_event_enable(event);
2611 perf_event_ctx_unlock(event, ctx);
2612}
dcfce4a0 2613EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2614
375637bc
AS
2615struct stop_event_data {
2616 struct perf_event *event;
2617 unsigned int restart;
2618};
2619
95ff4ca2
AS
2620static int __perf_event_stop(void *info)
2621{
375637bc
AS
2622 struct stop_event_data *sd = info;
2623 struct perf_event *event = sd->event;
95ff4ca2 2624
375637bc 2625 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2626 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2627 return 0;
2628
2629 /* matches smp_wmb() in event_sched_in() */
2630 smp_rmb();
2631
2632 /*
2633 * There is a window with interrupts enabled before we get here,
2634 * so we need to check again lest we try to stop another CPU's event.
2635 */
2636 if (READ_ONCE(event->oncpu) != smp_processor_id())
2637 return -EAGAIN;
2638
2639 event->pmu->stop(event, PERF_EF_UPDATE);
2640
375637bc
AS
2641 /*
2642 * May race with the actual stop (through perf_pmu_output_stop()),
2643 * but it is only used for events with AUX ring buffer, and such
2644 * events will refuse to restart because of rb::aux_mmap_count==0,
2645 * see comments in perf_aux_output_begin().
2646 *
2647 * Since this is happening on a event-local CPU, no trace is lost
2648 * while restarting.
2649 */
2650 if (sd->restart)
c9bbdd48 2651 event->pmu->start(event, 0);
375637bc 2652
95ff4ca2
AS
2653 return 0;
2654}
2655
767ae086 2656static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2657{
2658 struct stop_event_data sd = {
2659 .event = event,
767ae086 2660 .restart = restart,
375637bc
AS
2661 };
2662 int ret = 0;
2663
2664 do {
2665 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2666 return 0;
2667
2668 /* matches smp_wmb() in event_sched_in() */
2669 smp_rmb();
2670
2671 /*
2672 * We only want to restart ACTIVE events, so if the event goes
2673 * inactive here (event->oncpu==-1), there's nothing more to do;
2674 * fall through with ret==-ENXIO.
2675 */
2676 ret = cpu_function_call(READ_ONCE(event->oncpu),
2677 __perf_event_stop, &sd);
2678 } while (ret == -EAGAIN);
2679
2680 return ret;
2681}
2682
2683/*
2684 * In order to contain the amount of racy and tricky in the address filter
2685 * configuration management, it is a two part process:
2686 *
2687 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2688 * we update the addresses of corresponding vmas in
2689 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2690 * (p2) when an event is scheduled in (pmu::add), it calls
2691 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2692 * if the generation has changed since the previous call.
2693 *
2694 * If (p1) happens while the event is active, we restart it to force (p2).
2695 *
2696 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2697 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2698 * ioctl;
2699 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2700 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2701 * for reading;
2702 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2703 * of exec.
2704 */
2705void perf_event_addr_filters_sync(struct perf_event *event)
2706{
2707 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2708
2709 if (!has_addr_filter(event))
2710 return;
2711
2712 raw_spin_lock(&ifh->lock);
2713 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2714 event->pmu->addr_filters_sync(event);
2715 event->hw.addr_filters_gen = event->addr_filters_gen;
2716 }
2717 raw_spin_unlock(&ifh->lock);
2718}
2719EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2720
f63a8daa 2721static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2722{
2023b359 2723 /*
cdd6c482 2724 * not supported on inherited events
2023b359 2725 */
2e939d1d 2726 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2727 return -EINVAL;
2728
cdd6c482 2729 atomic_add(refresh, &event->event_limit);
f63a8daa 2730 _perf_event_enable(event);
2023b359
PZ
2731
2732 return 0;
79f14641 2733}
f63a8daa
PZ
2734
2735/*
2736 * See perf_event_disable()
2737 */
2738int perf_event_refresh(struct perf_event *event, int refresh)
2739{
2740 struct perf_event_context *ctx;
2741 int ret;
2742
2743 ctx = perf_event_ctx_lock(event);
2744 ret = _perf_event_refresh(event, refresh);
2745 perf_event_ctx_unlock(event, ctx);
2746
2747 return ret;
2748}
26ca5c11 2749EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2750
5b0311e1
FW
2751static void ctx_sched_out(struct perf_event_context *ctx,
2752 struct perf_cpu_context *cpuctx,
2753 enum event_type_t event_type)
235c7fc7 2754{
db24d33e 2755 int is_active = ctx->is_active;
c994d613 2756 struct perf_event *event;
235c7fc7 2757
c994d613 2758 lockdep_assert_held(&ctx->lock);
235c7fc7 2759
39a43640
PZ
2760 if (likely(!ctx->nr_events)) {
2761 /*
2762 * See __perf_remove_from_context().
2763 */
2764 WARN_ON_ONCE(ctx->is_active);
2765 if (ctx->task)
2766 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2767 return;
39a43640
PZ
2768 }
2769
db24d33e 2770 ctx->is_active &= ~event_type;
3cbaa590
PZ
2771 if (!(ctx->is_active & EVENT_ALL))
2772 ctx->is_active = 0;
2773
63e30d3e
PZ
2774 if (ctx->task) {
2775 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2776 if (!ctx->is_active)
2777 cpuctx->task_ctx = NULL;
2778 }
facc4307 2779
8fdc6539
PZ
2780 /*
2781 * Always update time if it was set; not only when it changes.
2782 * Otherwise we can 'forget' to update time for any but the last
2783 * context we sched out. For example:
2784 *
2785 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2786 * ctx_sched_out(.event_type = EVENT_PINNED)
2787 *
2788 * would only update time for the pinned events.
2789 */
3cbaa590
PZ
2790 if (is_active & EVENT_TIME) {
2791 /* update (and stop) ctx time */
2792 update_context_time(ctx);
2793 update_cgrp_time_from_cpuctx(cpuctx);
2794 }
2795
8fdc6539
PZ
2796 is_active ^= ctx->is_active; /* changed bits */
2797
3cbaa590 2798 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2799 return;
5b0311e1 2800
075e0b00 2801 perf_pmu_disable(ctx->pmu);
3cbaa590 2802 if (is_active & EVENT_PINNED) {
889ff015
FW
2803 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2804 group_sched_out(event, cpuctx, ctx);
9ed6060d 2805 }
889ff015 2806
3cbaa590 2807 if (is_active & EVENT_FLEXIBLE) {
889ff015 2808 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2809 group_sched_out(event, cpuctx, ctx);
9ed6060d 2810 }
1b9a644f 2811 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2812}
2813
564c2b21 2814/*
5a3126d4
PZ
2815 * Test whether two contexts are equivalent, i.e. whether they have both been
2816 * cloned from the same version of the same context.
2817 *
2818 * Equivalence is measured using a generation number in the context that is
2819 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2820 * and list_del_event().
564c2b21 2821 */
cdd6c482
IM
2822static int context_equiv(struct perf_event_context *ctx1,
2823 struct perf_event_context *ctx2)
564c2b21 2824{
211de6eb
PZ
2825 lockdep_assert_held(&ctx1->lock);
2826 lockdep_assert_held(&ctx2->lock);
2827
5a3126d4
PZ
2828 /* Pinning disables the swap optimization */
2829 if (ctx1->pin_count || ctx2->pin_count)
2830 return 0;
2831
2832 /* If ctx1 is the parent of ctx2 */
2833 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2834 return 1;
2835
2836 /* If ctx2 is the parent of ctx1 */
2837 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2838 return 1;
2839
2840 /*
2841 * If ctx1 and ctx2 have the same parent; we flatten the parent
2842 * hierarchy, see perf_event_init_context().
2843 */
2844 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2845 ctx1->parent_gen == ctx2->parent_gen)
2846 return 1;
2847
2848 /* Unmatched */
2849 return 0;
564c2b21
PM
2850}
2851
cdd6c482
IM
2852static void __perf_event_sync_stat(struct perf_event *event,
2853 struct perf_event *next_event)
bfbd3381
PZ
2854{
2855 u64 value;
2856
cdd6c482 2857 if (!event->attr.inherit_stat)
bfbd3381
PZ
2858 return;
2859
2860 /*
cdd6c482 2861 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2862 * because we're in the middle of a context switch and have IRQs
2863 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2864 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2865 * don't need to use it.
2866 */
cdd6c482
IM
2867 switch (event->state) {
2868 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2869 event->pmu->read(event);
2870 /* fall-through */
bfbd3381 2871
cdd6c482
IM
2872 case PERF_EVENT_STATE_INACTIVE:
2873 update_event_times(event);
bfbd3381
PZ
2874 break;
2875
2876 default:
2877 break;
2878 }
2879
2880 /*
cdd6c482 2881 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2882 * values when we flip the contexts.
2883 */
e7850595
PZ
2884 value = local64_read(&next_event->count);
2885 value = local64_xchg(&event->count, value);
2886 local64_set(&next_event->count, value);
bfbd3381 2887
cdd6c482
IM
2888 swap(event->total_time_enabled, next_event->total_time_enabled);
2889 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2890
bfbd3381 2891 /*
19d2e755 2892 * Since we swizzled the values, update the user visible data too.
bfbd3381 2893 */
cdd6c482
IM
2894 perf_event_update_userpage(event);
2895 perf_event_update_userpage(next_event);
bfbd3381
PZ
2896}
2897
cdd6c482
IM
2898static void perf_event_sync_stat(struct perf_event_context *ctx,
2899 struct perf_event_context *next_ctx)
bfbd3381 2900{
cdd6c482 2901 struct perf_event *event, *next_event;
bfbd3381
PZ
2902
2903 if (!ctx->nr_stat)
2904 return;
2905
02ffdbc8
PZ
2906 update_context_time(ctx);
2907
cdd6c482
IM
2908 event = list_first_entry(&ctx->event_list,
2909 struct perf_event, event_entry);
bfbd3381 2910
cdd6c482
IM
2911 next_event = list_first_entry(&next_ctx->event_list,
2912 struct perf_event, event_entry);
bfbd3381 2913
cdd6c482
IM
2914 while (&event->event_entry != &ctx->event_list &&
2915 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2916
cdd6c482 2917 __perf_event_sync_stat(event, next_event);
bfbd3381 2918
cdd6c482
IM
2919 event = list_next_entry(event, event_entry);
2920 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2921 }
2922}
2923
fe4b04fa
PZ
2924static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2925 struct task_struct *next)
0793a61d 2926{
8dc85d54 2927 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2928 struct perf_event_context *next_ctx;
5a3126d4 2929 struct perf_event_context *parent, *next_parent;
108b02cf 2930 struct perf_cpu_context *cpuctx;
c93f7669 2931 int do_switch = 1;
0793a61d 2932
108b02cf
PZ
2933 if (likely(!ctx))
2934 return;
10989fb2 2935
108b02cf
PZ
2936 cpuctx = __get_cpu_context(ctx);
2937 if (!cpuctx->task_ctx)
0793a61d
TG
2938 return;
2939
c93f7669 2940 rcu_read_lock();
8dc85d54 2941 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2942 if (!next_ctx)
2943 goto unlock;
2944
2945 parent = rcu_dereference(ctx->parent_ctx);
2946 next_parent = rcu_dereference(next_ctx->parent_ctx);
2947
2948 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2949 if (!parent && !next_parent)
5a3126d4
PZ
2950 goto unlock;
2951
2952 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2953 /*
2954 * Looks like the two contexts are clones, so we might be
2955 * able to optimize the context switch. We lock both
2956 * contexts and check that they are clones under the
2957 * lock (including re-checking that neither has been
2958 * uncloned in the meantime). It doesn't matter which
2959 * order we take the locks because no other cpu could
2960 * be trying to lock both of these tasks.
2961 */
e625cce1
TG
2962 raw_spin_lock(&ctx->lock);
2963 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2964 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2965 WRITE_ONCE(ctx->task, next);
2966 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2967
2968 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2969
63b6da39
PZ
2970 /*
2971 * RCU_INIT_POINTER here is safe because we've not
2972 * modified the ctx and the above modification of
2973 * ctx->task and ctx->task_ctx_data are immaterial
2974 * since those values are always verified under
2975 * ctx->lock which we're now holding.
2976 */
2977 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2978 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2979
c93f7669 2980 do_switch = 0;
bfbd3381 2981
cdd6c482 2982 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2983 }
e625cce1
TG
2984 raw_spin_unlock(&next_ctx->lock);
2985 raw_spin_unlock(&ctx->lock);
564c2b21 2986 }
5a3126d4 2987unlock:
c93f7669 2988 rcu_read_unlock();
564c2b21 2989
c93f7669 2990 if (do_switch) {
facc4307 2991 raw_spin_lock(&ctx->lock);
487f05e1 2992 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2993 raw_spin_unlock(&ctx->lock);
c93f7669 2994 }
0793a61d
TG
2995}
2996
e48c1788
PZ
2997static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2998
ba532500
YZ
2999void perf_sched_cb_dec(struct pmu *pmu)
3000{
e48c1788
PZ
3001 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3002
ba532500 3003 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3004
3005 if (!--cpuctx->sched_cb_usage)
3006 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3007}
3008
e48c1788 3009
ba532500
YZ
3010void perf_sched_cb_inc(struct pmu *pmu)
3011{
e48c1788
PZ
3012 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3013
3014 if (!cpuctx->sched_cb_usage++)
3015 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3016
ba532500
YZ
3017 this_cpu_inc(perf_sched_cb_usages);
3018}
3019
3020/*
3021 * This function provides the context switch callback to the lower code
3022 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3023 *
3024 * This callback is relevant even to per-cpu events; for example multi event
3025 * PEBS requires this to provide PID/TID information. This requires we flush
3026 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3027 */
3028static void perf_pmu_sched_task(struct task_struct *prev,
3029 struct task_struct *next,
3030 bool sched_in)
3031{
3032 struct perf_cpu_context *cpuctx;
3033 struct pmu *pmu;
ba532500
YZ
3034
3035 if (prev == next)
3036 return;
3037
e48c1788 3038 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3039 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3040
e48c1788
PZ
3041 if (WARN_ON_ONCE(!pmu->sched_task))
3042 continue;
ba532500 3043
e48c1788
PZ
3044 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3045 perf_pmu_disable(pmu);
ba532500 3046
e48c1788 3047 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3048
e48c1788
PZ
3049 perf_pmu_enable(pmu);
3050 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3051 }
ba532500
YZ
3052}
3053
45ac1403
AH
3054static void perf_event_switch(struct task_struct *task,
3055 struct task_struct *next_prev, bool sched_in);
3056
8dc85d54
PZ
3057#define for_each_task_context_nr(ctxn) \
3058 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3059
3060/*
3061 * Called from scheduler to remove the events of the current task,
3062 * with interrupts disabled.
3063 *
3064 * We stop each event and update the event value in event->count.
3065 *
3066 * This does not protect us against NMI, but disable()
3067 * sets the disabled bit in the control field of event _before_
3068 * accessing the event control register. If a NMI hits, then it will
3069 * not restart the event.
3070 */
ab0cce56
JO
3071void __perf_event_task_sched_out(struct task_struct *task,
3072 struct task_struct *next)
8dc85d54
PZ
3073{
3074 int ctxn;
3075
ba532500
YZ
3076 if (__this_cpu_read(perf_sched_cb_usages))
3077 perf_pmu_sched_task(task, next, false);
3078
45ac1403
AH
3079 if (atomic_read(&nr_switch_events))
3080 perf_event_switch(task, next, false);
3081
8dc85d54
PZ
3082 for_each_task_context_nr(ctxn)
3083 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3084
3085 /*
3086 * if cgroup events exist on this CPU, then we need
3087 * to check if we have to switch out PMU state.
3088 * cgroup event are system-wide mode only
3089 */
4a32fea9 3090 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3091 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3092}
3093
5b0311e1
FW
3094/*
3095 * Called with IRQs disabled
3096 */
3097static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3098 enum event_type_t event_type)
3099{
3100 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3101}
3102
235c7fc7 3103static void
5b0311e1 3104ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 3105 struct perf_cpu_context *cpuctx)
0793a61d 3106{
cdd6c482 3107 struct perf_event *event;
0793a61d 3108
889ff015
FW
3109 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3110 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3111 continue;
5632ab12 3112 if (!event_filter_match(event))
3b6f9e5c
PM
3113 continue;
3114
e5d1367f
SE
3115 /* may need to reset tstamp_enabled */
3116 if (is_cgroup_event(event))
3117 perf_cgroup_mark_enabled(event, ctx);
3118
8c9ed8e1 3119 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3120 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3121
3122 /*
3123 * If this pinned group hasn't been scheduled,
3124 * put it in error state.
3125 */
cdd6c482
IM
3126 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3127 update_group_times(event);
3128 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 3129 }
3b6f9e5c 3130 }
5b0311e1
FW
3131}
3132
3133static void
3134ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3135 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3136{
3137 struct perf_event *event;
3138 int can_add_hw = 1;
3b6f9e5c 3139
889ff015
FW
3140 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3141 /* Ignore events in OFF or ERROR state */
3142 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3143 continue;
04289bb9
IM
3144 /*
3145 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3146 * of events:
04289bb9 3147 */
5632ab12 3148 if (!event_filter_match(event))
0793a61d
TG
3149 continue;
3150
e5d1367f
SE
3151 /* may need to reset tstamp_enabled */
3152 if (is_cgroup_event(event))
3153 perf_cgroup_mark_enabled(event, ctx);
3154
9ed6060d 3155 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3156 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3157 can_add_hw = 0;
9ed6060d 3158 }
0793a61d 3159 }
5b0311e1
FW
3160}
3161
3162static void
3163ctx_sched_in(struct perf_event_context *ctx,
3164 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3165 enum event_type_t event_type,
3166 struct task_struct *task)
5b0311e1 3167{
db24d33e 3168 int is_active = ctx->is_active;
c994d613
PZ
3169 u64 now;
3170
3171 lockdep_assert_held(&ctx->lock);
e5d1367f 3172
5b0311e1 3173 if (likely(!ctx->nr_events))
facc4307 3174 return;
5b0311e1 3175
3cbaa590 3176 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3177 if (ctx->task) {
3178 if (!is_active)
3179 cpuctx->task_ctx = ctx;
3180 else
3181 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3182 }
3183
3cbaa590
PZ
3184 is_active ^= ctx->is_active; /* changed bits */
3185
3186 if (is_active & EVENT_TIME) {
3187 /* start ctx time */
3188 now = perf_clock();
3189 ctx->timestamp = now;
3190 perf_cgroup_set_timestamp(task, ctx);
3191 }
3192
5b0311e1
FW
3193 /*
3194 * First go through the list and put on any pinned groups
3195 * in order to give them the best chance of going on.
3196 */
3cbaa590 3197 if (is_active & EVENT_PINNED)
6e37738a 3198 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3199
3200 /* Then walk through the lower prio flexible groups */
3cbaa590 3201 if (is_active & EVENT_FLEXIBLE)
6e37738a 3202 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3203}
3204
329c0e01 3205static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3206 enum event_type_t event_type,
3207 struct task_struct *task)
329c0e01
FW
3208{
3209 struct perf_event_context *ctx = &cpuctx->ctx;
3210
e5d1367f 3211 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3212}
3213
e5d1367f
SE
3214static void perf_event_context_sched_in(struct perf_event_context *ctx,
3215 struct task_struct *task)
235c7fc7 3216{
108b02cf 3217 struct perf_cpu_context *cpuctx;
235c7fc7 3218
108b02cf 3219 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3220 if (cpuctx->task_ctx == ctx)
3221 return;
3222
facc4307 3223 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3224 /*
3225 * We must check ctx->nr_events while holding ctx->lock, such
3226 * that we serialize against perf_install_in_context().
3227 */
3228 if (!ctx->nr_events)
3229 goto unlock;
3230
1b9a644f 3231 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3232 /*
3233 * We want to keep the following priority order:
3234 * cpu pinned (that don't need to move), task pinned,
3235 * cpu flexible, task flexible.
fe45bafb
AS
3236 *
3237 * However, if task's ctx is not carrying any pinned
3238 * events, no need to flip the cpuctx's events around.
329c0e01 3239 */
fe45bafb
AS
3240 if (!list_empty(&ctx->pinned_groups))
3241 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3242 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3243 perf_pmu_enable(ctx->pmu);
fdccc3fb 3244
3245unlock:
facc4307 3246 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3247}
3248
8dc85d54
PZ
3249/*
3250 * Called from scheduler to add the events of the current task
3251 * with interrupts disabled.
3252 *
3253 * We restore the event value and then enable it.
3254 *
3255 * This does not protect us against NMI, but enable()
3256 * sets the enabled bit in the control field of event _before_
3257 * accessing the event control register. If a NMI hits, then it will
3258 * keep the event running.
3259 */
ab0cce56
JO
3260void __perf_event_task_sched_in(struct task_struct *prev,
3261 struct task_struct *task)
8dc85d54
PZ
3262{
3263 struct perf_event_context *ctx;
3264 int ctxn;
3265
7e41d177
PZ
3266 /*
3267 * If cgroup events exist on this CPU, then we need to check if we have
3268 * to switch in PMU state; cgroup event are system-wide mode only.
3269 *
3270 * Since cgroup events are CPU events, we must schedule these in before
3271 * we schedule in the task events.
3272 */
3273 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3274 perf_cgroup_sched_in(prev, task);
3275
8dc85d54
PZ
3276 for_each_task_context_nr(ctxn) {
3277 ctx = task->perf_event_ctxp[ctxn];
3278 if (likely(!ctx))
3279 continue;
3280
e5d1367f 3281 perf_event_context_sched_in(ctx, task);
8dc85d54 3282 }
d010b332 3283
45ac1403
AH
3284 if (atomic_read(&nr_switch_events))
3285 perf_event_switch(task, prev, true);
3286
ba532500
YZ
3287 if (__this_cpu_read(perf_sched_cb_usages))
3288 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3289}
3290
abd50713
PZ
3291static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3292{
3293 u64 frequency = event->attr.sample_freq;
3294 u64 sec = NSEC_PER_SEC;
3295 u64 divisor, dividend;
3296
3297 int count_fls, nsec_fls, frequency_fls, sec_fls;
3298
3299 count_fls = fls64(count);
3300 nsec_fls = fls64(nsec);
3301 frequency_fls = fls64(frequency);
3302 sec_fls = 30;
3303
3304 /*
3305 * We got @count in @nsec, with a target of sample_freq HZ
3306 * the target period becomes:
3307 *
3308 * @count * 10^9
3309 * period = -------------------
3310 * @nsec * sample_freq
3311 *
3312 */
3313
3314 /*
3315 * Reduce accuracy by one bit such that @a and @b converge
3316 * to a similar magnitude.
3317 */
fe4b04fa 3318#define REDUCE_FLS(a, b) \
abd50713
PZ
3319do { \
3320 if (a##_fls > b##_fls) { \
3321 a >>= 1; \
3322 a##_fls--; \
3323 } else { \
3324 b >>= 1; \
3325 b##_fls--; \
3326 } \
3327} while (0)
3328
3329 /*
3330 * Reduce accuracy until either term fits in a u64, then proceed with
3331 * the other, so that finally we can do a u64/u64 division.
3332 */
3333 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3334 REDUCE_FLS(nsec, frequency);
3335 REDUCE_FLS(sec, count);
3336 }
3337
3338 if (count_fls + sec_fls > 64) {
3339 divisor = nsec * frequency;
3340
3341 while (count_fls + sec_fls > 64) {
3342 REDUCE_FLS(count, sec);
3343 divisor >>= 1;
3344 }
3345
3346 dividend = count * sec;
3347 } else {
3348 dividend = count * sec;
3349
3350 while (nsec_fls + frequency_fls > 64) {
3351 REDUCE_FLS(nsec, frequency);
3352 dividend >>= 1;
3353 }
3354
3355 divisor = nsec * frequency;
3356 }
3357
f6ab91ad
PZ
3358 if (!divisor)
3359 return dividend;
3360
abd50713
PZ
3361 return div64_u64(dividend, divisor);
3362}
3363
e050e3f0
SE
3364static DEFINE_PER_CPU(int, perf_throttled_count);
3365static DEFINE_PER_CPU(u64, perf_throttled_seq);
3366
f39d47ff 3367static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3368{
cdd6c482 3369 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3370 s64 period, sample_period;
bd2b5b12
PZ
3371 s64 delta;
3372
abd50713 3373 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3374
3375 delta = (s64)(period - hwc->sample_period);
3376 delta = (delta + 7) / 8; /* low pass filter */
3377
3378 sample_period = hwc->sample_period + delta;
3379
3380 if (!sample_period)
3381 sample_period = 1;
3382
bd2b5b12 3383 hwc->sample_period = sample_period;
abd50713 3384
e7850595 3385 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3386 if (disable)
3387 event->pmu->stop(event, PERF_EF_UPDATE);
3388
e7850595 3389 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3390
3391 if (disable)
3392 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3393 }
bd2b5b12
PZ
3394}
3395
e050e3f0
SE
3396/*
3397 * combine freq adjustment with unthrottling to avoid two passes over the
3398 * events. At the same time, make sure, having freq events does not change
3399 * the rate of unthrottling as that would introduce bias.
3400 */
3401static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3402 int needs_unthr)
60db5e09 3403{
cdd6c482
IM
3404 struct perf_event *event;
3405 struct hw_perf_event *hwc;
e050e3f0 3406 u64 now, period = TICK_NSEC;
abd50713 3407 s64 delta;
60db5e09 3408
e050e3f0
SE
3409 /*
3410 * only need to iterate over all events iff:
3411 * - context have events in frequency mode (needs freq adjust)
3412 * - there are events to unthrottle on this cpu
3413 */
3414 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3415 return;
3416
e050e3f0 3417 raw_spin_lock(&ctx->lock);
f39d47ff 3418 perf_pmu_disable(ctx->pmu);
e050e3f0 3419
03541f8b 3420 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3421 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3422 continue;
3423
5632ab12 3424 if (!event_filter_match(event))
5d27c23d
PZ
3425 continue;
3426
44377277
AS
3427 perf_pmu_disable(event->pmu);
3428
cdd6c482 3429 hwc = &event->hw;
6a24ed6c 3430
ae23bff1 3431 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3432 hwc->interrupts = 0;
cdd6c482 3433 perf_log_throttle(event, 1);
a4eaf7f1 3434 event->pmu->start(event, 0);
a78ac325
PZ
3435 }
3436
cdd6c482 3437 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3438 goto next;
60db5e09 3439
e050e3f0
SE
3440 /*
3441 * stop the event and update event->count
3442 */
3443 event->pmu->stop(event, PERF_EF_UPDATE);
3444
e7850595 3445 now = local64_read(&event->count);
abd50713
PZ
3446 delta = now - hwc->freq_count_stamp;
3447 hwc->freq_count_stamp = now;
60db5e09 3448
e050e3f0
SE
3449 /*
3450 * restart the event
3451 * reload only if value has changed
f39d47ff
SE
3452 * we have stopped the event so tell that
3453 * to perf_adjust_period() to avoid stopping it
3454 * twice.
e050e3f0 3455 */
abd50713 3456 if (delta > 0)
f39d47ff 3457 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3458
3459 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3460 next:
3461 perf_pmu_enable(event->pmu);
60db5e09 3462 }
e050e3f0 3463
f39d47ff 3464 perf_pmu_enable(ctx->pmu);
e050e3f0 3465 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3466}
3467
235c7fc7 3468/*
cdd6c482 3469 * Round-robin a context's events:
235c7fc7 3470 */
cdd6c482 3471static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3472{
dddd3379
TG
3473 /*
3474 * Rotate the first entry last of non-pinned groups. Rotation might be
3475 * disabled by the inheritance code.
3476 */
3477 if (!ctx->rotate_disable)
3478 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3479}
3480
9e630205 3481static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3482{
8dc85d54 3483 struct perf_event_context *ctx = NULL;
2fde4f94 3484 int rotate = 0;
7fc23a53 3485
b5ab4cd5 3486 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3487 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3488 rotate = 1;
3489 }
235c7fc7 3490
8dc85d54 3491 ctx = cpuctx->task_ctx;
b5ab4cd5 3492 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3493 if (ctx->nr_events != ctx->nr_active)
3494 rotate = 1;
3495 }
9717e6cd 3496
e050e3f0 3497 if (!rotate)
0f5a2601
PZ
3498 goto done;
3499
facc4307 3500 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3501 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3502
e050e3f0
SE
3503 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3504 if (ctx)
3505 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3506
e050e3f0
SE
3507 rotate_ctx(&cpuctx->ctx);
3508 if (ctx)
3509 rotate_ctx(ctx);
235c7fc7 3510
e050e3f0 3511 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3512
0f5a2601
PZ
3513 perf_pmu_enable(cpuctx->ctx.pmu);
3514 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3515done:
9e630205
SE
3516
3517 return rotate;
e9d2b064
PZ
3518}
3519
3520void perf_event_task_tick(void)
3521{
2fde4f94
MR
3522 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3523 struct perf_event_context *ctx, *tmp;
e050e3f0 3524 int throttled;
b5ab4cd5 3525
e9d2b064
PZ
3526 WARN_ON(!irqs_disabled());
3527
e050e3f0
SE
3528 __this_cpu_inc(perf_throttled_seq);
3529 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3530 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3531
2fde4f94 3532 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3533 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3534}
3535
889ff015
FW
3536static int event_enable_on_exec(struct perf_event *event,
3537 struct perf_event_context *ctx)
3538{
3539 if (!event->attr.enable_on_exec)
3540 return 0;
3541
3542 event->attr.enable_on_exec = 0;
3543 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3544 return 0;
3545
1d9b482e 3546 __perf_event_mark_enabled(event);
889ff015
FW
3547
3548 return 1;
3549}
3550
57e7986e 3551/*
cdd6c482 3552 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3553 * This expects task == current.
3554 */
c1274499 3555static void perf_event_enable_on_exec(int ctxn)
57e7986e 3556{
c1274499 3557 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3558 enum event_type_t event_type = 0;
3e349507 3559 struct perf_cpu_context *cpuctx;
cdd6c482 3560 struct perf_event *event;
57e7986e
PM
3561 unsigned long flags;
3562 int enabled = 0;
3563
3564 local_irq_save(flags);
c1274499 3565 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3566 if (!ctx || !ctx->nr_events)
57e7986e
PM
3567 goto out;
3568
3e349507
PZ
3569 cpuctx = __get_cpu_context(ctx);
3570 perf_ctx_lock(cpuctx, ctx);
7fce2509 3571 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3572 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3573 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3574 event_type |= get_event_type(event);
3575 }
57e7986e
PM
3576
3577 /*
3e349507 3578 * Unclone and reschedule this context if we enabled any event.
57e7986e 3579 */
3e349507 3580 if (enabled) {
211de6eb 3581 clone_ctx = unclone_ctx(ctx);
487f05e1 3582 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3583 } else {
3584 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3585 }
3586 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3587
9ed6060d 3588out:
57e7986e 3589 local_irq_restore(flags);
211de6eb
PZ
3590
3591 if (clone_ctx)
3592 put_ctx(clone_ctx);
57e7986e
PM
3593}
3594
0492d4c5
PZ
3595struct perf_read_data {
3596 struct perf_event *event;
3597 bool group;
7d88962e 3598 int ret;
0492d4c5
PZ
3599};
3600
451d24d1 3601static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3602{
d6a2f903
DCC
3603 u16 local_pkg, event_pkg;
3604
3605 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3606 int local_cpu = smp_processor_id();
3607
3608 event_pkg = topology_physical_package_id(event_cpu);
3609 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3610
3611 if (event_pkg == local_pkg)
3612 return local_cpu;
3613 }
3614
3615 return event_cpu;
3616}
3617
0793a61d 3618/*
cdd6c482 3619 * Cross CPU call to read the hardware event
0793a61d 3620 */
cdd6c482 3621static void __perf_event_read(void *info)
0793a61d 3622{
0492d4c5
PZ
3623 struct perf_read_data *data = info;
3624 struct perf_event *sub, *event = data->event;
cdd6c482 3625 struct perf_event_context *ctx = event->ctx;
108b02cf 3626 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3627 struct pmu *pmu = event->pmu;
621a01ea 3628
e1ac3614
PM
3629 /*
3630 * If this is a task context, we need to check whether it is
3631 * the current task context of this cpu. If not it has been
3632 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3633 * event->count would have been updated to a recent sample
3634 * when the event was scheduled out.
e1ac3614
PM
3635 */
3636 if (ctx->task && cpuctx->task_ctx != ctx)
3637 return;
3638
e625cce1 3639 raw_spin_lock(&ctx->lock);
e5d1367f 3640 if (ctx->is_active) {
542e72fc 3641 update_context_time(ctx);
e5d1367f
SE
3642 update_cgrp_time_from_event(event);
3643 }
0492d4c5 3644
cdd6c482 3645 update_event_times(event);
4a00c16e
SB
3646 if (event->state != PERF_EVENT_STATE_ACTIVE)
3647 goto unlock;
0492d4c5 3648
4a00c16e
SB
3649 if (!data->group) {
3650 pmu->read(event);
3651 data->ret = 0;
0492d4c5 3652 goto unlock;
4a00c16e
SB
3653 }
3654
3655 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3656
3657 pmu->read(event);
0492d4c5
PZ
3658
3659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3660 update_event_times(sub);
4a00c16e
SB
3661 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3662 /*
3663 * Use sibling's PMU rather than @event's since
3664 * sibling could be on different (eg: software) PMU.
3665 */
0492d4c5 3666 sub->pmu->read(sub);
4a00c16e 3667 }
0492d4c5 3668 }
4a00c16e
SB
3669
3670 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3671
3672unlock:
e625cce1 3673 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3674}
3675
b5e58793
PZ
3676static inline u64 perf_event_count(struct perf_event *event)
3677{
c39a0e2c 3678 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3679}
3680
ffe8690c
KX
3681/*
3682 * NMI-safe method to read a local event, that is an event that
3683 * is:
3684 * - either for the current task, or for this CPU
3685 * - does not have inherit set, for inherited task events
3686 * will not be local and we cannot read them atomically
3687 * - must not have a pmu::count method
3688 */
f91840a3 3689int perf_event_read_local(struct perf_event *event, u64 *value)
ffe8690c
KX
3690{
3691 unsigned long flags;
f91840a3 3692 int ret = 0;
ffe8690c
KX
3693
3694 /*
3695 * Disabling interrupts avoids all counter scheduling (context
3696 * switches, timer based rotation and IPIs).
3697 */
3698 local_irq_save(flags);
3699
ffe8690c
KX
3700 /*
3701 * It must not be an event with inherit set, we cannot read
3702 * all child counters from atomic context.
3703 */
f91840a3
AS
3704 if (event->attr.inherit) {
3705 ret = -EOPNOTSUPP;
3706 goto out;
3707 }
ffe8690c 3708
f91840a3
AS
3709 /* If this is a per-task event, it must be for current */
3710 if ((event->attach_state & PERF_ATTACH_TASK) &&
3711 event->hw.target != current) {
3712 ret = -EINVAL;
3713 goto out;
3714 }
3715
3716 /* If this is a per-CPU event, it must be for this CPU */
3717 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3718 event->cpu != smp_processor_id()) {
3719 ret = -EINVAL;
3720 goto out;
3721 }
ffe8690c
KX
3722
3723 /*
3724 * If the event is currently on this CPU, its either a per-task event,
3725 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3726 * oncpu == -1).
3727 */
3728 if (event->oncpu == smp_processor_id())
3729 event->pmu->read(event);
3730
f91840a3
AS
3731 *value = local64_read(&event->count);
3732out:
ffe8690c
KX
3733 local_irq_restore(flags);
3734
f91840a3 3735 return ret;
ffe8690c
KX
3736}
3737
7d88962e 3738static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3739{
451d24d1 3740 int event_cpu, ret = 0;
7d88962e 3741
0793a61d 3742 /*
cdd6c482
IM
3743 * If event is enabled and currently active on a CPU, update the
3744 * value in the event structure:
0793a61d 3745 */
cdd6c482 3746 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3747 struct perf_read_data data = {
3748 .event = event,
3749 .group = group,
7d88962e 3750 .ret = 0,
0492d4c5 3751 };
d6a2f903 3752
451d24d1
PZ
3753 event_cpu = READ_ONCE(event->oncpu);
3754 if ((unsigned)event_cpu >= nr_cpu_ids)
3755 return 0;
3756
3757 preempt_disable();
3758 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3759
58763148
PZ
3760 /*
3761 * Purposely ignore the smp_call_function_single() return
3762 * value.
3763 *
451d24d1 3764 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3765 * scheduled out and that will have updated the event count.
3766 *
3767 * Therefore, either way, we'll have an up-to-date event count
3768 * after this.
3769 */
451d24d1
PZ
3770 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3771 preempt_enable();
58763148 3772 ret = data.ret;
cdd6c482 3773 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3774 struct perf_event_context *ctx = event->ctx;
3775 unsigned long flags;
3776
e625cce1 3777 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3778 /*
3779 * may read while context is not active
3780 * (e.g., thread is blocked), in that case
3781 * we cannot update context time
3782 */
e5d1367f 3783 if (ctx->is_active) {
c530ccd9 3784 update_context_time(ctx);
e5d1367f
SE
3785 update_cgrp_time_from_event(event);
3786 }
0492d4c5
PZ
3787 if (group)
3788 update_group_times(event);
3789 else
3790 update_event_times(event);
e625cce1 3791 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3792 }
7d88962e
SB
3793
3794 return ret;
0793a61d
TG
3795}
3796
a63eaf34 3797/*
cdd6c482 3798 * Initialize the perf_event context in a task_struct:
a63eaf34 3799 */
eb184479 3800static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3801{
e625cce1 3802 raw_spin_lock_init(&ctx->lock);
a63eaf34 3803 mutex_init(&ctx->mutex);
2fde4f94 3804 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3805 INIT_LIST_HEAD(&ctx->pinned_groups);
3806 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3807 INIT_LIST_HEAD(&ctx->event_list);
3808 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3809}
3810
3811static struct perf_event_context *
3812alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3813{
3814 struct perf_event_context *ctx;
3815
3816 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3817 if (!ctx)
3818 return NULL;
3819
3820 __perf_event_init_context(ctx);
3821 if (task) {
3822 ctx->task = task;
3823 get_task_struct(task);
0793a61d 3824 }
eb184479
PZ
3825 ctx->pmu = pmu;
3826
3827 return ctx;
a63eaf34
PM
3828}
3829
2ebd4ffb
MH
3830static struct task_struct *
3831find_lively_task_by_vpid(pid_t vpid)
3832{
3833 struct task_struct *task;
0793a61d
TG
3834
3835 rcu_read_lock();
2ebd4ffb 3836 if (!vpid)
0793a61d
TG
3837 task = current;
3838 else
2ebd4ffb 3839 task = find_task_by_vpid(vpid);
0793a61d
TG
3840 if (task)
3841 get_task_struct(task);
3842 rcu_read_unlock();
3843
3844 if (!task)
3845 return ERR_PTR(-ESRCH);
3846
2ebd4ffb 3847 return task;
2ebd4ffb
MH
3848}
3849
fe4b04fa
PZ
3850/*
3851 * Returns a matching context with refcount and pincount.
3852 */
108b02cf 3853static struct perf_event_context *
4af57ef2
YZ
3854find_get_context(struct pmu *pmu, struct task_struct *task,
3855 struct perf_event *event)
0793a61d 3856{
211de6eb 3857 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3858 struct perf_cpu_context *cpuctx;
4af57ef2 3859 void *task_ctx_data = NULL;
25346b93 3860 unsigned long flags;
8dc85d54 3861 int ctxn, err;
4af57ef2 3862 int cpu = event->cpu;
0793a61d 3863
22a4ec72 3864 if (!task) {
cdd6c482 3865 /* Must be root to operate on a CPU event: */
0764771d 3866 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3867 return ERR_PTR(-EACCES);
3868
108b02cf 3869 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3870 ctx = &cpuctx->ctx;
c93f7669 3871 get_ctx(ctx);
fe4b04fa 3872 ++ctx->pin_count;
0793a61d 3873
0793a61d
TG
3874 return ctx;
3875 }
3876
8dc85d54
PZ
3877 err = -EINVAL;
3878 ctxn = pmu->task_ctx_nr;
3879 if (ctxn < 0)
3880 goto errout;
3881
4af57ef2
YZ
3882 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3883 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3884 if (!task_ctx_data) {
3885 err = -ENOMEM;
3886 goto errout;
3887 }
3888 }
3889
9ed6060d 3890retry:
8dc85d54 3891 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3892 if (ctx) {
211de6eb 3893 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3894 ++ctx->pin_count;
4af57ef2
YZ
3895
3896 if (task_ctx_data && !ctx->task_ctx_data) {
3897 ctx->task_ctx_data = task_ctx_data;
3898 task_ctx_data = NULL;
3899 }
e625cce1 3900 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3901
3902 if (clone_ctx)
3903 put_ctx(clone_ctx);
9137fb28 3904 } else {
eb184479 3905 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3906 err = -ENOMEM;
3907 if (!ctx)
3908 goto errout;
eb184479 3909
4af57ef2
YZ
3910 if (task_ctx_data) {
3911 ctx->task_ctx_data = task_ctx_data;
3912 task_ctx_data = NULL;
3913 }
3914
dbe08d82
ON
3915 err = 0;
3916 mutex_lock(&task->perf_event_mutex);
3917 /*
3918 * If it has already passed perf_event_exit_task().
3919 * we must see PF_EXITING, it takes this mutex too.
3920 */
3921 if (task->flags & PF_EXITING)
3922 err = -ESRCH;
3923 else if (task->perf_event_ctxp[ctxn])
3924 err = -EAGAIN;
fe4b04fa 3925 else {
9137fb28 3926 get_ctx(ctx);
fe4b04fa 3927 ++ctx->pin_count;
dbe08d82 3928 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3929 }
dbe08d82
ON
3930 mutex_unlock(&task->perf_event_mutex);
3931
3932 if (unlikely(err)) {
9137fb28 3933 put_ctx(ctx);
dbe08d82
ON
3934
3935 if (err == -EAGAIN)
3936 goto retry;
3937 goto errout;
a63eaf34
PM
3938 }
3939 }
3940
4af57ef2 3941 kfree(task_ctx_data);
0793a61d 3942 return ctx;
c93f7669 3943
9ed6060d 3944errout:
4af57ef2 3945 kfree(task_ctx_data);
c93f7669 3946 return ERR_PTR(err);
0793a61d
TG
3947}
3948
6fb2915d 3949static void perf_event_free_filter(struct perf_event *event);
2541517c 3950static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3951
cdd6c482 3952static void free_event_rcu(struct rcu_head *head)
592903cd 3953{
cdd6c482 3954 struct perf_event *event;
592903cd 3955
cdd6c482
IM
3956 event = container_of(head, struct perf_event, rcu_head);
3957 if (event->ns)
3958 put_pid_ns(event->ns);
6fb2915d 3959 perf_event_free_filter(event);
cdd6c482 3960 kfree(event);
592903cd
PZ
3961}
3962
b69cf536
PZ
3963static void ring_buffer_attach(struct perf_event *event,
3964 struct ring_buffer *rb);
925d519a 3965
f2fb6bef
KL
3966static void detach_sb_event(struct perf_event *event)
3967{
3968 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3969
3970 raw_spin_lock(&pel->lock);
3971 list_del_rcu(&event->sb_list);
3972 raw_spin_unlock(&pel->lock);
3973}
3974
a4f144eb 3975static bool is_sb_event(struct perf_event *event)
f2fb6bef 3976{
a4f144eb
DCC
3977 struct perf_event_attr *attr = &event->attr;
3978
f2fb6bef 3979 if (event->parent)
a4f144eb 3980 return false;
f2fb6bef
KL
3981
3982 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3983 return false;
f2fb6bef 3984
a4f144eb
DCC
3985 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3986 attr->comm || attr->comm_exec ||
3987 attr->task ||
3988 attr->context_switch)
3989 return true;
3990 return false;
3991}
3992
3993static void unaccount_pmu_sb_event(struct perf_event *event)
3994{
3995 if (is_sb_event(event))
3996 detach_sb_event(event);
f2fb6bef
KL
3997}
3998
4beb31f3 3999static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4000{
4beb31f3
FW
4001 if (event->parent)
4002 return;
4003
4beb31f3
FW
4004 if (is_cgroup_event(event))
4005 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4006}
925d519a 4007
555e0c1e
FW
4008#ifdef CONFIG_NO_HZ_FULL
4009static DEFINE_SPINLOCK(nr_freq_lock);
4010#endif
4011
4012static void unaccount_freq_event_nohz(void)
4013{
4014#ifdef CONFIG_NO_HZ_FULL
4015 spin_lock(&nr_freq_lock);
4016 if (atomic_dec_and_test(&nr_freq_events))
4017 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4018 spin_unlock(&nr_freq_lock);
4019#endif
4020}
4021
4022static void unaccount_freq_event(void)
4023{
4024 if (tick_nohz_full_enabled())
4025 unaccount_freq_event_nohz();
4026 else
4027 atomic_dec(&nr_freq_events);
4028}
4029
4beb31f3
FW
4030static void unaccount_event(struct perf_event *event)
4031{
25432ae9
PZ
4032 bool dec = false;
4033
4beb31f3
FW
4034 if (event->parent)
4035 return;
4036
4037 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4038 dec = true;
4beb31f3
FW
4039 if (event->attr.mmap || event->attr.mmap_data)
4040 atomic_dec(&nr_mmap_events);
4041 if (event->attr.comm)
4042 atomic_dec(&nr_comm_events);
e4222673
HB
4043 if (event->attr.namespaces)
4044 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4045 if (event->attr.task)
4046 atomic_dec(&nr_task_events);
948b26b6 4047 if (event->attr.freq)
555e0c1e 4048 unaccount_freq_event();
45ac1403 4049 if (event->attr.context_switch) {
25432ae9 4050 dec = true;
45ac1403
AH
4051 atomic_dec(&nr_switch_events);
4052 }
4beb31f3 4053 if (is_cgroup_event(event))
25432ae9 4054 dec = true;
4beb31f3 4055 if (has_branch_stack(event))
25432ae9
PZ
4056 dec = true;
4057
9107c89e
PZ
4058 if (dec) {
4059 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4060 schedule_delayed_work(&perf_sched_work, HZ);
4061 }
4beb31f3
FW
4062
4063 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4064
4065 unaccount_pmu_sb_event(event);
4beb31f3 4066}
925d519a 4067
9107c89e
PZ
4068static void perf_sched_delayed(struct work_struct *work)
4069{
4070 mutex_lock(&perf_sched_mutex);
4071 if (atomic_dec_and_test(&perf_sched_count))
4072 static_branch_disable(&perf_sched_events);
4073 mutex_unlock(&perf_sched_mutex);
4074}
4075
bed5b25a
AS
4076/*
4077 * The following implement mutual exclusion of events on "exclusive" pmus
4078 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4079 * at a time, so we disallow creating events that might conflict, namely:
4080 *
4081 * 1) cpu-wide events in the presence of per-task events,
4082 * 2) per-task events in the presence of cpu-wide events,
4083 * 3) two matching events on the same context.
4084 *
4085 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4086 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4087 */
4088static int exclusive_event_init(struct perf_event *event)
4089{
4090 struct pmu *pmu = event->pmu;
4091
4092 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4093 return 0;
4094
4095 /*
4096 * Prevent co-existence of per-task and cpu-wide events on the
4097 * same exclusive pmu.
4098 *
4099 * Negative pmu::exclusive_cnt means there are cpu-wide
4100 * events on this "exclusive" pmu, positive means there are
4101 * per-task events.
4102 *
4103 * Since this is called in perf_event_alloc() path, event::ctx
4104 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4105 * to mean "per-task event", because unlike other attach states it
4106 * never gets cleared.
4107 */
4108 if (event->attach_state & PERF_ATTACH_TASK) {
4109 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4110 return -EBUSY;
4111 } else {
4112 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4113 return -EBUSY;
4114 }
4115
4116 return 0;
4117}
4118
4119static void exclusive_event_destroy(struct perf_event *event)
4120{
4121 struct pmu *pmu = event->pmu;
4122
4123 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4124 return;
4125
4126 /* see comment in exclusive_event_init() */
4127 if (event->attach_state & PERF_ATTACH_TASK)
4128 atomic_dec(&pmu->exclusive_cnt);
4129 else
4130 atomic_inc(&pmu->exclusive_cnt);
4131}
4132
4133static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4134{
3bf6215a 4135 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4136 (e1->cpu == e2->cpu ||
4137 e1->cpu == -1 ||
4138 e2->cpu == -1))
4139 return true;
4140 return false;
4141}
4142
4143/* Called under the same ctx::mutex as perf_install_in_context() */
4144static bool exclusive_event_installable(struct perf_event *event,
4145 struct perf_event_context *ctx)
4146{
4147 struct perf_event *iter_event;
4148 struct pmu *pmu = event->pmu;
4149
4150 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4151 return true;
4152
4153 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4154 if (exclusive_event_match(iter_event, event))
4155 return false;
4156 }
4157
4158 return true;
4159}
4160
375637bc
AS
4161static void perf_addr_filters_splice(struct perf_event *event,
4162 struct list_head *head);
4163
683ede43 4164static void _free_event(struct perf_event *event)
f1600952 4165{
e360adbe 4166 irq_work_sync(&event->pending);
925d519a 4167
4beb31f3 4168 unaccount_event(event);
9ee318a7 4169
76369139 4170 if (event->rb) {
9bb5d40c
PZ
4171 /*
4172 * Can happen when we close an event with re-directed output.
4173 *
4174 * Since we have a 0 refcount, perf_mmap_close() will skip
4175 * over us; possibly making our ring_buffer_put() the last.
4176 */
4177 mutex_lock(&event->mmap_mutex);
b69cf536 4178 ring_buffer_attach(event, NULL);
9bb5d40c 4179 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4180 }
4181
e5d1367f
SE
4182 if (is_cgroup_event(event))
4183 perf_detach_cgroup(event);
4184
a0733e69
PZ
4185 if (!event->parent) {
4186 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4187 put_callchain_buffers();
4188 }
4189
4190 perf_event_free_bpf_prog(event);
375637bc
AS
4191 perf_addr_filters_splice(event, NULL);
4192 kfree(event->addr_filters_offs);
a0733e69
PZ
4193
4194 if (event->destroy)
4195 event->destroy(event);
4196
4197 if (event->ctx)
4198 put_ctx(event->ctx);
4199
62a92c8f
AS
4200 exclusive_event_destroy(event);
4201 module_put(event->pmu->module);
a0733e69
PZ
4202
4203 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4204}
4205
683ede43
PZ
4206/*
4207 * Used to free events which have a known refcount of 1, such as in error paths
4208 * where the event isn't exposed yet and inherited events.
4209 */
4210static void free_event(struct perf_event *event)
0793a61d 4211{
683ede43
PZ
4212 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4213 "unexpected event refcount: %ld; ptr=%p\n",
4214 atomic_long_read(&event->refcount), event)) {
4215 /* leak to avoid use-after-free */
4216 return;
4217 }
0793a61d 4218
683ede43 4219 _free_event(event);
0793a61d
TG
4220}
4221
a66a3052 4222/*
f8697762 4223 * Remove user event from the owner task.
a66a3052 4224 */
f8697762 4225static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4226{
8882135b 4227 struct task_struct *owner;
fb0459d7 4228
8882135b 4229 rcu_read_lock();
8882135b 4230 /*
f47c02c0
PZ
4231 * Matches the smp_store_release() in perf_event_exit_task(). If we
4232 * observe !owner it means the list deletion is complete and we can
4233 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4234 * owner->perf_event_mutex.
4235 */
f47c02c0 4236 owner = lockless_dereference(event->owner);
8882135b
PZ
4237 if (owner) {
4238 /*
4239 * Since delayed_put_task_struct() also drops the last
4240 * task reference we can safely take a new reference
4241 * while holding the rcu_read_lock().
4242 */
4243 get_task_struct(owner);
4244 }
4245 rcu_read_unlock();
4246
4247 if (owner) {
f63a8daa
PZ
4248 /*
4249 * If we're here through perf_event_exit_task() we're already
4250 * holding ctx->mutex which would be an inversion wrt. the
4251 * normal lock order.
4252 *
4253 * However we can safely take this lock because its the child
4254 * ctx->mutex.
4255 */
4256 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4257
8882135b
PZ
4258 /*
4259 * We have to re-check the event->owner field, if it is cleared
4260 * we raced with perf_event_exit_task(), acquiring the mutex
4261 * ensured they're done, and we can proceed with freeing the
4262 * event.
4263 */
f47c02c0 4264 if (event->owner) {
8882135b 4265 list_del_init(&event->owner_entry);
f47c02c0
PZ
4266 smp_store_release(&event->owner, NULL);
4267 }
8882135b
PZ
4268 mutex_unlock(&owner->perf_event_mutex);
4269 put_task_struct(owner);
4270 }
f8697762
JO
4271}
4272
f8697762
JO
4273static void put_event(struct perf_event *event)
4274{
f8697762
JO
4275 if (!atomic_long_dec_and_test(&event->refcount))
4276 return;
4277
c6e5b732
PZ
4278 _free_event(event);
4279}
4280
4281/*
4282 * Kill an event dead; while event:refcount will preserve the event
4283 * object, it will not preserve its functionality. Once the last 'user'
4284 * gives up the object, we'll destroy the thing.
4285 */
4286int perf_event_release_kernel(struct perf_event *event)
4287{
a4f4bb6d 4288 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4289 struct perf_event *child, *tmp;
4290
a4f4bb6d
PZ
4291 /*
4292 * If we got here through err_file: fput(event_file); we will not have
4293 * attached to a context yet.
4294 */
4295 if (!ctx) {
4296 WARN_ON_ONCE(event->attach_state &
4297 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4298 goto no_ctx;
4299 }
4300
f8697762
JO
4301 if (!is_kernel_event(event))
4302 perf_remove_from_owner(event);
8882135b 4303
5fa7c8ec 4304 ctx = perf_event_ctx_lock(event);
a83fe28e 4305 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4306 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4307
a69b0ca4 4308 raw_spin_lock_irq(&ctx->lock);
683ede43 4309 /*
d8a8cfc7 4310 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4311 * anymore.
683ede43 4312 *
a69b0ca4
PZ
4313 * Anybody acquiring event->child_mutex after the below loop _must_
4314 * also see this, most importantly inherit_event() which will avoid
4315 * placing more children on the list.
683ede43 4316 *
c6e5b732
PZ
4317 * Thus this guarantees that we will in fact observe and kill _ALL_
4318 * child events.
683ede43 4319 */
a69b0ca4
PZ
4320 event->state = PERF_EVENT_STATE_DEAD;
4321 raw_spin_unlock_irq(&ctx->lock);
4322
4323 perf_event_ctx_unlock(event, ctx);
683ede43 4324
c6e5b732
PZ
4325again:
4326 mutex_lock(&event->child_mutex);
4327 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4328
c6e5b732
PZ
4329 /*
4330 * Cannot change, child events are not migrated, see the
4331 * comment with perf_event_ctx_lock_nested().
4332 */
4333 ctx = lockless_dereference(child->ctx);
4334 /*
4335 * Since child_mutex nests inside ctx::mutex, we must jump
4336 * through hoops. We start by grabbing a reference on the ctx.
4337 *
4338 * Since the event cannot get freed while we hold the
4339 * child_mutex, the context must also exist and have a !0
4340 * reference count.
4341 */
4342 get_ctx(ctx);
4343
4344 /*
4345 * Now that we have a ctx ref, we can drop child_mutex, and
4346 * acquire ctx::mutex without fear of it going away. Then we
4347 * can re-acquire child_mutex.
4348 */
4349 mutex_unlock(&event->child_mutex);
4350 mutex_lock(&ctx->mutex);
4351 mutex_lock(&event->child_mutex);
4352
4353 /*
4354 * Now that we hold ctx::mutex and child_mutex, revalidate our
4355 * state, if child is still the first entry, it didn't get freed
4356 * and we can continue doing so.
4357 */
4358 tmp = list_first_entry_or_null(&event->child_list,
4359 struct perf_event, child_list);
4360 if (tmp == child) {
4361 perf_remove_from_context(child, DETACH_GROUP);
4362 list_del(&child->child_list);
4363 free_event(child);
4364 /*
4365 * This matches the refcount bump in inherit_event();
4366 * this can't be the last reference.
4367 */
4368 put_event(event);
4369 }
4370
4371 mutex_unlock(&event->child_mutex);
4372 mutex_unlock(&ctx->mutex);
4373 put_ctx(ctx);
4374 goto again;
4375 }
4376 mutex_unlock(&event->child_mutex);
4377
a4f4bb6d
PZ
4378no_ctx:
4379 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4380 return 0;
4381}
4382EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4383
8b10c5e2
PZ
4384/*
4385 * Called when the last reference to the file is gone.
4386 */
a6fa941d
AV
4387static int perf_release(struct inode *inode, struct file *file)
4388{
c6e5b732 4389 perf_event_release_kernel(file->private_data);
a6fa941d 4390 return 0;
fb0459d7 4391}
fb0459d7 4392
59ed446f 4393u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4394{
cdd6c482 4395 struct perf_event *child;
e53c0994
PZ
4396 u64 total = 0;
4397
59ed446f
PZ
4398 *enabled = 0;
4399 *running = 0;
4400
6f10581a 4401 mutex_lock(&event->child_mutex);
01add3ea 4402
7d88962e 4403 (void)perf_event_read(event, false);
01add3ea
SB
4404 total += perf_event_count(event);
4405
59ed446f
PZ
4406 *enabled += event->total_time_enabled +
4407 atomic64_read(&event->child_total_time_enabled);
4408 *running += event->total_time_running +
4409 atomic64_read(&event->child_total_time_running);
4410
4411 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4412 (void)perf_event_read(child, false);
01add3ea 4413 total += perf_event_count(child);
59ed446f
PZ
4414 *enabled += child->total_time_enabled;
4415 *running += child->total_time_running;
4416 }
6f10581a 4417 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4418
4419 return total;
4420}
fb0459d7 4421EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4422
7d88962e 4423static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4424 u64 read_format, u64 *values)
3dab77fb 4425{
2aeb1883 4426 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4427 struct perf_event *sub;
2aeb1883 4428 unsigned long flags;
fa8c2693 4429 int n = 1; /* skip @nr */
7d88962e 4430 int ret;
f63a8daa 4431
7d88962e
SB
4432 ret = perf_event_read(leader, true);
4433 if (ret)
4434 return ret;
abf4868b 4435
fa8c2693
PZ
4436 /*
4437 * Since we co-schedule groups, {enabled,running} times of siblings
4438 * will be identical to those of the leader, so we only publish one
4439 * set.
4440 */
4441 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4442 values[n++] += leader->total_time_enabled +
4443 atomic64_read(&leader->child_total_time_enabled);
4444 }
3dab77fb 4445
fa8c2693
PZ
4446 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4447 values[n++] += leader->total_time_running +
4448 atomic64_read(&leader->child_total_time_running);
4449 }
4450
4451 /*
4452 * Write {count,id} tuples for every sibling.
4453 */
4454 values[n++] += perf_event_count(leader);
abf4868b
PZ
4455 if (read_format & PERF_FORMAT_ID)
4456 values[n++] = primary_event_id(leader);
3dab77fb 4457
2aeb1883
JO
4458 raw_spin_lock_irqsave(&ctx->lock, flags);
4459
fa8c2693
PZ
4460 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4461 values[n++] += perf_event_count(sub);
4462 if (read_format & PERF_FORMAT_ID)
4463 values[n++] = primary_event_id(sub);
4464 }
7d88962e 4465
2aeb1883 4466 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4467 return 0;
fa8c2693 4468}
3dab77fb 4469
fa8c2693
PZ
4470static int perf_read_group(struct perf_event *event,
4471 u64 read_format, char __user *buf)
4472{
4473 struct perf_event *leader = event->group_leader, *child;
4474 struct perf_event_context *ctx = leader->ctx;
7d88962e 4475 int ret;
fa8c2693 4476 u64 *values;
3dab77fb 4477
fa8c2693 4478 lockdep_assert_held(&ctx->mutex);
3dab77fb 4479
fa8c2693
PZ
4480 values = kzalloc(event->read_size, GFP_KERNEL);
4481 if (!values)
4482 return -ENOMEM;
3dab77fb 4483
fa8c2693
PZ
4484 values[0] = 1 + leader->nr_siblings;
4485
4486 /*
4487 * By locking the child_mutex of the leader we effectively
4488 * lock the child list of all siblings.. XXX explain how.
4489 */
4490 mutex_lock(&leader->child_mutex);
abf4868b 4491
7d88962e
SB
4492 ret = __perf_read_group_add(leader, read_format, values);
4493 if (ret)
4494 goto unlock;
4495
4496 list_for_each_entry(child, &leader->child_list, child_list) {
4497 ret = __perf_read_group_add(child, read_format, values);
4498 if (ret)
4499 goto unlock;
4500 }
abf4868b 4501
fa8c2693 4502 mutex_unlock(&leader->child_mutex);
abf4868b 4503
7d88962e 4504 ret = event->read_size;
fa8c2693
PZ
4505 if (copy_to_user(buf, values, event->read_size))
4506 ret = -EFAULT;
7d88962e 4507 goto out;
fa8c2693 4508
7d88962e
SB
4509unlock:
4510 mutex_unlock(&leader->child_mutex);
4511out:
fa8c2693 4512 kfree(values);
abf4868b 4513 return ret;
3dab77fb
PZ
4514}
4515
b15f495b 4516static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4517 u64 read_format, char __user *buf)
4518{
59ed446f 4519 u64 enabled, running;
3dab77fb
PZ
4520 u64 values[4];
4521 int n = 0;
4522
59ed446f
PZ
4523 values[n++] = perf_event_read_value(event, &enabled, &running);
4524 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4525 values[n++] = enabled;
4526 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4527 values[n++] = running;
3dab77fb 4528 if (read_format & PERF_FORMAT_ID)
cdd6c482 4529 values[n++] = primary_event_id(event);
3dab77fb
PZ
4530
4531 if (copy_to_user(buf, values, n * sizeof(u64)))
4532 return -EFAULT;
4533
4534 return n * sizeof(u64);
4535}
4536
dc633982
JO
4537static bool is_event_hup(struct perf_event *event)
4538{
4539 bool no_children;
4540
a69b0ca4 4541 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4542 return false;
4543
4544 mutex_lock(&event->child_mutex);
4545 no_children = list_empty(&event->child_list);
4546 mutex_unlock(&event->child_mutex);
4547 return no_children;
4548}
4549
0793a61d 4550/*
cdd6c482 4551 * Read the performance event - simple non blocking version for now
0793a61d
TG
4552 */
4553static ssize_t
b15f495b 4554__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4555{
cdd6c482 4556 u64 read_format = event->attr.read_format;
3dab77fb 4557 int ret;
0793a61d 4558
3b6f9e5c 4559 /*
cdd6c482 4560 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4561 * error state (i.e. because it was pinned but it couldn't be
4562 * scheduled on to the CPU at some point).
4563 */
cdd6c482 4564 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4565 return 0;
4566
c320c7b7 4567 if (count < event->read_size)
3dab77fb
PZ
4568 return -ENOSPC;
4569
cdd6c482 4570 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4571 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4572 ret = perf_read_group(event, read_format, buf);
3dab77fb 4573 else
b15f495b 4574 ret = perf_read_one(event, read_format, buf);
0793a61d 4575
3dab77fb 4576 return ret;
0793a61d
TG
4577}
4578
0793a61d
TG
4579static ssize_t
4580perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4581{
cdd6c482 4582 struct perf_event *event = file->private_data;
f63a8daa
PZ
4583 struct perf_event_context *ctx;
4584 int ret;
0793a61d 4585
f63a8daa 4586 ctx = perf_event_ctx_lock(event);
b15f495b 4587 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4588 perf_event_ctx_unlock(event, ctx);
4589
4590 return ret;
0793a61d
TG
4591}
4592
4593static unsigned int perf_poll(struct file *file, poll_table *wait)
4594{
cdd6c482 4595 struct perf_event *event = file->private_data;
76369139 4596 struct ring_buffer *rb;
61b67684 4597 unsigned int events = POLLHUP;
c7138f37 4598
e708d7ad 4599 poll_wait(file, &event->waitq, wait);
179033b3 4600
dc633982 4601 if (is_event_hup(event))
179033b3 4602 return events;
c7138f37 4603
10c6db11 4604 /*
9bb5d40c
PZ
4605 * Pin the event->rb by taking event->mmap_mutex; otherwise
4606 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4607 */
4608 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4609 rb = event->rb;
4610 if (rb)
76369139 4611 events = atomic_xchg(&rb->poll, 0);
10c6db11 4612 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4613 return events;
4614}
4615
f63a8daa 4616static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4617{
7d88962e 4618 (void)perf_event_read(event, false);
e7850595 4619 local64_set(&event->count, 0);
cdd6c482 4620 perf_event_update_userpage(event);
3df5edad
PZ
4621}
4622
c93f7669 4623/*
cdd6c482
IM
4624 * Holding the top-level event's child_mutex means that any
4625 * descendant process that has inherited this event will block
8ba289b8 4626 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4627 * task existence requirements of perf_event_enable/disable.
c93f7669 4628 */
cdd6c482
IM
4629static void perf_event_for_each_child(struct perf_event *event,
4630 void (*func)(struct perf_event *))
3df5edad 4631{
cdd6c482 4632 struct perf_event *child;
3df5edad 4633
cdd6c482 4634 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4635
cdd6c482
IM
4636 mutex_lock(&event->child_mutex);
4637 func(event);
4638 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4639 func(child);
cdd6c482 4640 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4641}
4642
cdd6c482
IM
4643static void perf_event_for_each(struct perf_event *event,
4644 void (*func)(struct perf_event *))
3df5edad 4645{
cdd6c482
IM
4646 struct perf_event_context *ctx = event->ctx;
4647 struct perf_event *sibling;
3df5edad 4648
f63a8daa
PZ
4649 lockdep_assert_held(&ctx->mutex);
4650
cdd6c482 4651 event = event->group_leader;
75f937f2 4652
cdd6c482 4653 perf_event_for_each_child(event, func);
cdd6c482 4654 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4655 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4656}
4657
fae3fde6
PZ
4658static void __perf_event_period(struct perf_event *event,
4659 struct perf_cpu_context *cpuctx,
4660 struct perf_event_context *ctx,
4661 void *info)
c7999c6f 4662{
fae3fde6 4663 u64 value = *((u64 *)info);
c7999c6f 4664 bool active;
08247e31 4665
cdd6c482 4666 if (event->attr.freq) {
cdd6c482 4667 event->attr.sample_freq = value;
08247e31 4668 } else {
cdd6c482
IM
4669 event->attr.sample_period = value;
4670 event->hw.sample_period = value;
08247e31 4671 }
bad7192b
PZ
4672
4673 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4674 if (active) {
4675 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4676 /*
4677 * We could be throttled; unthrottle now to avoid the tick
4678 * trying to unthrottle while we already re-started the event.
4679 */
4680 if (event->hw.interrupts == MAX_INTERRUPTS) {
4681 event->hw.interrupts = 0;
4682 perf_log_throttle(event, 1);
4683 }
bad7192b
PZ
4684 event->pmu->stop(event, PERF_EF_UPDATE);
4685 }
4686
4687 local64_set(&event->hw.period_left, 0);
4688
4689 if (active) {
4690 event->pmu->start(event, PERF_EF_RELOAD);
4691 perf_pmu_enable(ctx->pmu);
4692 }
c7999c6f
PZ
4693}
4694
4695static int perf_event_period(struct perf_event *event, u64 __user *arg)
4696{
c7999c6f
PZ
4697 u64 value;
4698
4699 if (!is_sampling_event(event))
4700 return -EINVAL;
4701
4702 if (copy_from_user(&value, arg, sizeof(value)))
4703 return -EFAULT;
4704
4705 if (!value)
4706 return -EINVAL;
4707
4708 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4709 return -EINVAL;
4710
fae3fde6 4711 event_function_call(event, __perf_event_period, &value);
08247e31 4712
c7999c6f 4713 return 0;
08247e31
PZ
4714}
4715
ac9721f3
PZ
4716static const struct file_operations perf_fops;
4717
2903ff01 4718static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4719{
2903ff01
AV
4720 struct fd f = fdget(fd);
4721 if (!f.file)
4722 return -EBADF;
ac9721f3 4723
2903ff01
AV
4724 if (f.file->f_op != &perf_fops) {
4725 fdput(f);
4726 return -EBADF;
ac9721f3 4727 }
2903ff01
AV
4728 *p = f;
4729 return 0;
ac9721f3
PZ
4730}
4731
4732static int perf_event_set_output(struct perf_event *event,
4733 struct perf_event *output_event);
6fb2915d 4734static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4735static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4736
f63a8daa 4737static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4738{
cdd6c482 4739 void (*func)(struct perf_event *);
3df5edad 4740 u32 flags = arg;
d859e29f
PM
4741
4742 switch (cmd) {
cdd6c482 4743 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4744 func = _perf_event_enable;
d859e29f 4745 break;
cdd6c482 4746 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4747 func = _perf_event_disable;
79f14641 4748 break;
cdd6c482 4749 case PERF_EVENT_IOC_RESET:
f63a8daa 4750 func = _perf_event_reset;
6de6a7b9 4751 break;
3df5edad 4752
cdd6c482 4753 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4754 return _perf_event_refresh(event, arg);
08247e31 4755
cdd6c482
IM
4756 case PERF_EVENT_IOC_PERIOD:
4757 return perf_event_period(event, (u64 __user *)arg);
08247e31 4758
cf4957f1
JO
4759 case PERF_EVENT_IOC_ID:
4760 {
4761 u64 id = primary_event_id(event);
4762
4763 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4764 return -EFAULT;
4765 return 0;
4766 }
4767
cdd6c482 4768 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4769 {
ac9721f3 4770 int ret;
ac9721f3 4771 if (arg != -1) {
2903ff01
AV
4772 struct perf_event *output_event;
4773 struct fd output;
4774 ret = perf_fget_light(arg, &output);
4775 if (ret)
4776 return ret;
4777 output_event = output.file->private_data;
4778 ret = perf_event_set_output(event, output_event);
4779 fdput(output);
4780 } else {
4781 ret = perf_event_set_output(event, NULL);
ac9721f3 4782 }
ac9721f3
PZ
4783 return ret;
4784 }
a4be7c27 4785
6fb2915d
LZ
4786 case PERF_EVENT_IOC_SET_FILTER:
4787 return perf_event_set_filter(event, (void __user *)arg);
4788
2541517c
AS
4789 case PERF_EVENT_IOC_SET_BPF:
4790 return perf_event_set_bpf_prog(event, arg);
4791
86e7972f
WN
4792 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4793 struct ring_buffer *rb;
4794
4795 rcu_read_lock();
4796 rb = rcu_dereference(event->rb);
4797 if (!rb || !rb->nr_pages) {
4798 rcu_read_unlock();
4799 return -EINVAL;
4800 }
4801 rb_toggle_paused(rb, !!arg);
4802 rcu_read_unlock();
4803 return 0;
4804 }
d859e29f 4805 default:
3df5edad 4806 return -ENOTTY;
d859e29f 4807 }
3df5edad
PZ
4808
4809 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4810 perf_event_for_each(event, func);
3df5edad 4811 else
cdd6c482 4812 perf_event_for_each_child(event, func);
3df5edad
PZ
4813
4814 return 0;
d859e29f
PM
4815}
4816
f63a8daa
PZ
4817static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4818{
4819 struct perf_event *event = file->private_data;
4820 struct perf_event_context *ctx;
4821 long ret;
4822
4823 ctx = perf_event_ctx_lock(event);
4824 ret = _perf_ioctl(event, cmd, arg);
4825 perf_event_ctx_unlock(event, ctx);
4826
4827 return ret;
4828}
4829
b3f20785
PM
4830#ifdef CONFIG_COMPAT
4831static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4832 unsigned long arg)
4833{
4834 switch (_IOC_NR(cmd)) {
4835 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4836 case _IOC_NR(PERF_EVENT_IOC_ID):
4837 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4838 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4839 cmd &= ~IOCSIZE_MASK;
4840 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4841 }
4842 break;
4843 }
4844 return perf_ioctl(file, cmd, arg);
4845}
4846#else
4847# define perf_compat_ioctl NULL
4848#endif
4849
cdd6c482 4850int perf_event_task_enable(void)
771d7cde 4851{
f63a8daa 4852 struct perf_event_context *ctx;
cdd6c482 4853 struct perf_event *event;
771d7cde 4854
cdd6c482 4855 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4856 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4857 ctx = perf_event_ctx_lock(event);
4858 perf_event_for_each_child(event, _perf_event_enable);
4859 perf_event_ctx_unlock(event, ctx);
4860 }
cdd6c482 4861 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4862
4863 return 0;
4864}
4865
cdd6c482 4866int perf_event_task_disable(void)
771d7cde 4867{
f63a8daa 4868 struct perf_event_context *ctx;
cdd6c482 4869 struct perf_event *event;
771d7cde 4870
cdd6c482 4871 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4872 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4873 ctx = perf_event_ctx_lock(event);
4874 perf_event_for_each_child(event, _perf_event_disable);
4875 perf_event_ctx_unlock(event, ctx);
4876 }
cdd6c482 4877 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4878
4879 return 0;
4880}
4881
cdd6c482 4882static int perf_event_index(struct perf_event *event)
194002b2 4883{
a4eaf7f1
PZ
4884 if (event->hw.state & PERF_HES_STOPPED)
4885 return 0;
4886
cdd6c482 4887 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4888 return 0;
4889
35edc2a5 4890 return event->pmu->event_idx(event);
194002b2
PZ
4891}
4892
c4794295 4893static void calc_timer_values(struct perf_event *event,
e3f3541c 4894 u64 *now,
7f310a5d
EM
4895 u64 *enabled,
4896 u64 *running)
c4794295 4897{
e3f3541c 4898 u64 ctx_time;
c4794295 4899
e3f3541c
PZ
4900 *now = perf_clock();
4901 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4902 *enabled = ctx_time - event->tstamp_enabled;
4903 *running = ctx_time - event->tstamp_running;
4904}
4905
fa731587
PZ
4906static void perf_event_init_userpage(struct perf_event *event)
4907{
4908 struct perf_event_mmap_page *userpg;
4909 struct ring_buffer *rb;
4910
4911 rcu_read_lock();
4912 rb = rcu_dereference(event->rb);
4913 if (!rb)
4914 goto unlock;
4915
4916 userpg = rb->user_page;
4917
4918 /* Allow new userspace to detect that bit 0 is deprecated */
4919 userpg->cap_bit0_is_deprecated = 1;
4920 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4921 userpg->data_offset = PAGE_SIZE;
4922 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4923
4924unlock:
4925 rcu_read_unlock();
4926}
4927
c1317ec2
AL
4928void __weak arch_perf_update_userpage(
4929 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4930{
4931}
4932
38ff667b
PZ
4933/*
4934 * Callers need to ensure there can be no nesting of this function, otherwise
4935 * the seqlock logic goes bad. We can not serialize this because the arch
4936 * code calls this from NMI context.
4937 */
cdd6c482 4938void perf_event_update_userpage(struct perf_event *event)
37d81828 4939{
cdd6c482 4940 struct perf_event_mmap_page *userpg;
76369139 4941 struct ring_buffer *rb;
e3f3541c 4942 u64 enabled, running, now;
38ff667b
PZ
4943
4944 rcu_read_lock();
5ec4c599
PZ
4945 rb = rcu_dereference(event->rb);
4946 if (!rb)
4947 goto unlock;
4948
0d641208
EM
4949 /*
4950 * compute total_time_enabled, total_time_running
4951 * based on snapshot values taken when the event
4952 * was last scheduled in.
4953 *
4954 * we cannot simply called update_context_time()
4955 * because of locking issue as we can be called in
4956 * NMI context
4957 */
e3f3541c 4958 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4959
76369139 4960 userpg = rb->user_page;
7b732a75
PZ
4961 /*
4962 * Disable preemption so as to not let the corresponding user-space
4963 * spin too long if we get preempted.
4964 */
4965 preempt_disable();
37d81828 4966 ++userpg->lock;
92f22a38 4967 barrier();
cdd6c482 4968 userpg->index = perf_event_index(event);
b5e58793 4969 userpg->offset = perf_event_count(event);
365a4038 4970 if (userpg->index)
e7850595 4971 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4972
0d641208 4973 userpg->time_enabled = enabled +
cdd6c482 4974 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4975
0d641208 4976 userpg->time_running = running +
cdd6c482 4977 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4978
c1317ec2 4979 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4980
92f22a38 4981 barrier();
37d81828 4982 ++userpg->lock;
7b732a75 4983 preempt_enable();
38ff667b 4984unlock:
7b732a75 4985 rcu_read_unlock();
37d81828
PM
4986}
4987
11bac800 4988static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 4989{
11bac800 4990 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 4991 struct ring_buffer *rb;
906010b2
PZ
4992 int ret = VM_FAULT_SIGBUS;
4993
4994 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4995 if (vmf->pgoff == 0)
4996 ret = 0;
4997 return ret;
4998 }
4999
5000 rcu_read_lock();
76369139
FW
5001 rb = rcu_dereference(event->rb);
5002 if (!rb)
906010b2
PZ
5003 goto unlock;
5004
5005 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5006 goto unlock;
5007
76369139 5008 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5009 if (!vmf->page)
5010 goto unlock;
5011
5012 get_page(vmf->page);
11bac800 5013 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5014 vmf->page->index = vmf->pgoff;
5015
5016 ret = 0;
5017unlock:
5018 rcu_read_unlock();
5019
5020 return ret;
5021}
5022
10c6db11
PZ
5023static void ring_buffer_attach(struct perf_event *event,
5024 struct ring_buffer *rb)
5025{
b69cf536 5026 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5027 unsigned long flags;
5028
b69cf536
PZ
5029 if (event->rb) {
5030 /*
5031 * Should be impossible, we set this when removing
5032 * event->rb_entry and wait/clear when adding event->rb_entry.
5033 */
5034 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5035
b69cf536 5036 old_rb = event->rb;
b69cf536
PZ
5037 spin_lock_irqsave(&old_rb->event_lock, flags);
5038 list_del_rcu(&event->rb_entry);
5039 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5040
2f993cf0
ON
5041 event->rcu_batches = get_state_synchronize_rcu();
5042 event->rcu_pending = 1;
b69cf536 5043 }
10c6db11 5044
b69cf536 5045 if (rb) {
2f993cf0
ON
5046 if (event->rcu_pending) {
5047 cond_synchronize_rcu(event->rcu_batches);
5048 event->rcu_pending = 0;
5049 }
5050
b69cf536
PZ
5051 spin_lock_irqsave(&rb->event_lock, flags);
5052 list_add_rcu(&event->rb_entry, &rb->event_list);
5053 spin_unlock_irqrestore(&rb->event_lock, flags);
5054 }
5055
767ae086
AS
5056 /*
5057 * Avoid racing with perf_mmap_close(AUX): stop the event
5058 * before swizzling the event::rb pointer; if it's getting
5059 * unmapped, its aux_mmap_count will be 0 and it won't
5060 * restart. See the comment in __perf_pmu_output_stop().
5061 *
5062 * Data will inevitably be lost when set_output is done in
5063 * mid-air, but then again, whoever does it like this is
5064 * not in for the data anyway.
5065 */
5066 if (has_aux(event))
5067 perf_event_stop(event, 0);
5068
b69cf536
PZ
5069 rcu_assign_pointer(event->rb, rb);
5070
5071 if (old_rb) {
5072 ring_buffer_put(old_rb);
5073 /*
5074 * Since we detached before setting the new rb, so that we
5075 * could attach the new rb, we could have missed a wakeup.
5076 * Provide it now.
5077 */
5078 wake_up_all(&event->waitq);
5079 }
10c6db11
PZ
5080}
5081
5082static void ring_buffer_wakeup(struct perf_event *event)
5083{
5084 struct ring_buffer *rb;
5085
5086 rcu_read_lock();
5087 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5088 if (rb) {
5089 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5090 wake_up_all(&event->waitq);
5091 }
10c6db11
PZ
5092 rcu_read_unlock();
5093}
5094
fdc26706 5095struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5096{
76369139 5097 struct ring_buffer *rb;
7b732a75 5098
ac9721f3 5099 rcu_read_lock();
76369139
FW
5100 rb = rcu_dereference(event->rb);
5101 if (rb) {
5102 if (!atomic_inc_not_zero(&rb->refcount))
5103 rb = NULL;
ac9721f3
PZ
5104 }
5105 rcu_read_unlock();
5106
76369139 5107 return rb;
ac9721f3
PZ
5108}
5109
fdc26706 5110void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5111{
76369139 5112 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5113 return;
7b732a75 5114
9bb5d40c 5115 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5116
76369139 5117 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5118}
5119
5120static void perf_mmap_open(struct vm_area_struct *vma)
5121{
cdd6c482 5122 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5123
cdd6c482 5124 atomic_inc(&event->mmap_count);
9bb5d40c 5125 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5126
45bfb2e5
PZ
5127 if (vma->vm_pgoff)
5128 atomic_inc(&event->rb->aux_mmap_count);
5129
1e0fb9ec 5130 if (event->pmu->event_mapped)
bfe33492 5131 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5132}
5133
95ff4ca2
AS
5134static void perf_pmu_output_stop(struct perf_event *event);
5135
9bb5d40c
PZ
5136/*
5137 * A buffer can be mmap()ed multiple times; either directly through the same
5138 * event, or through other events by use of perf_event_set_output().
5139 *
5140 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5141 * the buffer here, where we still have a VM context. This means we need
5142 * to detach all events redirecting to us.
5143 */
7b732a75
PZ
5144static void perf_mmap_close(struct vm_area_struct *vma)
5145{
cdd6c482 5146 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5147
b69cf536 5148 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5149 struct user_struct *mmap_user = rb->mmap_user;
5150 int mmap_locked = rb->mmap_locked;
5151 unsigned long size = perf_data_size(rb);
789f90fc 5152
1e0fb9ec 5153 if (event->pmu->event_unmapped)
bfe33492 5154 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5155
45bfb2e5
PZ
5156 /*
5157 * rb->aux_mmap_count will always drop before rb->mmap_count and
5158 * event->mmap_count, so it is ok to use event->mmap_mutex to
5159 * serialize with perf_mmap here.
5160 */
5161 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5162 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5163 /*
5164 * Stop all AUX events that are writing to this buffer,
5165 * so that we can free its AUX pages and corresponding PMU
5166 * data. Note that after rb::aux_mmap_count dropped to zero,
5167 * they won't start any more (see perf_aux_output_begin()).
5168 */
5169 perf_pmu_output_stop(event);
5170
5171 /* now it's safe to free the pages */
45bfb2e5
PZ
5172 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5173 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5174
95ff4ca2 5175 /* this has to be the last one */
45bfb2e5 5176 rb_free_aux(rb);
95ff4ca2
AS
5177 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5178
45bfb2e5
PZ
5179 mutex_unlock(&event->mmap_mutex);
5180 }
5181
9bb5d40c
PZ
5182 atomic_dec(&rb->mmap_count);
5183
5184 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5185 goto out_put;
9bb5d40c 5186
b69cf536 5187 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5188 mutex_unlock(&event->mmap_mutex);
5189
5190 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5191 if (atomic_read(&rb->mmap_count))
5192 goto out_put;
ac9721f3 5193
9bb5d40c
PZ
5194 /*
5195 * No other mmap()s, detach from all other events that might redirect
5196 * into the now unreachable buffer. Somewhat complicated by the
5197 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5198 */
5199again:
5200 rcu_read_lock();
5201 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5202 if (!atomic_long_inc_not_zero(&event->refcount)) {
5203 /*
5204 * This event is en-route to free_event() which will
5205 * detach it and remove it from the list.
5206 */
5207 continue;
5208 }
5209 rcu_read_unlock();
789f90fc 5210
9bb5d40c
PZ
5211 mutex_lock(&event->mmap_mutex);
5212 /*
5213 * Check we didn't race with perf_event_set_output() which can
5214 * swizzle the rb from under us while we were waiting to
5215 * acquire mmap_mutex.
5216 *
5217 * If we find a different rb; ignore this event, a next
5218 * iteration will no longer find it on the list. We have to
5219 * still restart the iteration to make sure we're not now
5220 * iterating the wrong list.
5221 */
b69cf536
PZ
5222 if (event->rb == rb)
5223 ring_buffer_attach(event, NULL);
5224
cdd6c482 5225 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5226 put_event(event);
ac9721f3 5227
9bb5d40c
PZ
5228 /*
5229 * Restart the iteration; either we're on the wrong list or
5230 * destroyed its integrity by doing a deletion.
5231 */
5232 goto again;
7b732a75 5233 }
9bb5d40c
PZ
5234 rcu_read_unlock();
5235
5236 /*
5237 * It could be there's still a few 0-ref events on the list; they'll
5238 * get cleaned up by free_event() -- they'll also still have their
5239 * ref on the rb and will free it whenever they are done with it.
5240 *
5241 * Aside from that, this buffer is 'fully' detached and unmapped,
5242 * undo the VM accounting.
5243 */
5244
5245 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5246 vma->vm_mm->pinned_vm -= mmap_locked;
5247 free_uid(mmap_user);
5248
b69cf536 5249out_put:
9bb5d40c 5250 ring_buffer_put(rb); /* could be last */
37d81828
PM
5251}
5252
f0f37e2f 5253static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5254 .open = perf_mmap_open,
45bfb2e5 5255 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5256 .fault = perf_mmap_fault,
5257 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5258};
5259
5260static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5261{
cdd6c482 5262 struct perf_event *event = file->private_data;
22a4f650 5263 unsigned long user_locked, user_lock_limit;
789f90fc 5264 struct user_struct *user = current_user();
22a4f650 5265 unsigned long locked, lock_limit;
45bfb2e5 5266 struct ring_buffer *rb = NULL;
7b732a75
PZ
5267 unsigned long vma_size;
5268 unsigned long nr_pages;
45bfb2e5 5269 long user_extra = 0, extra = 0;
d57e34fd 5270 int ret = 0, flags = 0;
37d81828 5271
c7920614
PZ
5272 /*
5273 * Don't allow mmap() of inherited per-task counters. This would
5274 * create a performance issue due to all children writing to the
76369139 5275 * same rb.
c7920614
PZ
5276 */
5277 if (event->cpu == -1 && event->attr.inherit)
5278 return -EINVAL;
5279
43a21ea8 5280 if (!(vma->vm_flags & VM_SHARED))
37d81828 5281 return -EINVAL;
7b732a75
PZ
5282
5283 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5284
5285 if (vma->vm_pgoff == 0) {
5286 nr_pages = (vma_size / PAGE_SIZE) - 1;
5287 } else {
5288 /*
5289 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5290 * mapped, all subsequent mappings should have the same size
5291 * and offset. Must be above the normal perf buffer.
5292 */
5293 u64 aux_offset, aux_size;
5294
5295 if (!event->rb)
5296 return -EINVAL;
5297
5298 nr_pages = vma_size / PAGE_SIZE;
5299
5300 mutex_lock(&event->mmap_mutex);
5301 ret = -EINVAL;
5302
5303 rb = event->rb;
5304 if (!rb)
5305 goto aux_unlock;
5306
5307 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5308 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5309
5310 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5311 goto aux_unlock;
5312
5313 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5314 goto aux_unlock;
5315
5316 /* already mapped with a different offset */
5317 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5318 goto aux_unlock;
5319
5320 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5321 goto aux_unlock;
5322
5323 /* already mapped with a different size */
5324 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5325 goto aux_unlock;
5326
5327 if (!is_power_of_2(nr_pages))
5328 goto aux_unlock;
5329
5330 if (!atomic_inc_not_zero(&rb->mmap_count))
5331 goto aux_unlock;
5332
5333 if (rb_has_aux(rb)) {
5334 atomic_inc(&rb->aux_mmap_count);
5335 ret = 0;
5336 goto unlock;
5337 }
5338
5339 atomic_set(&rb->aux_mmap_count, 1);
5340 user_extra = nr_pages;
5341
5342 goto accounting;
5343 }
7b732a75 5344
7730d865 5345 /*
76369139 5346 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5347 * can do bitmasks instead of modulo.
5348 */
2ed11312 5349 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5350 return -EINVAL;
5351
7b732a75 5352 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5353 return -EINVAL;
5354
cdd6c482 5355 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5356again:
cdd6c482 5357 mutex_lock(&event->mmap_mutex);
76369139 5358 if (event->rb) {
9bb5d40c 5359 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5360 ret = -EINVAL;
9bb5d40c
PZ
5361 goto unlock;
5362 }
5363
5364 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5365 /*
5366 * Raced against perf_mmap_close() through
5367 * perf_event_set_output(). Try again, hope for better
5368 * luck.
5369 */
5370 mutex_unlock(&event->mmap_mutex);
5371 goto again;
5372 }
5373
ebb3c4c4
PZ
5374 goto unlock;
5375 }
5376
789f90fc 5377 user_extra = nr_pages + 1;
45bfb2e5
PZ
5378
5379accounting:
cdd6c482 5380 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5381
5382 /*
5383 * Increase the limit linearly with more CPUs:
5384 */
5385 user_lock_limit *= num_online_cpus();
5386
789f90fc 5387 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5388
789f90fc
PZ
5389 if (user_locked > user_lock_limit)
5390 extra = user_locked - user_lock_limit;
7b732a75 5391
78d7d407 5392 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5393 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5394 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5395
459ec28a
IM
5396 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5397 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5398 ret = -EPERM;
5399 goto unlock;
5400 }
7b732a75 5401
45bfb2e5 5402 WARN_ON(!rb && event->rb);
906010b2 5403
d57e34fd 5404 if (vma->vm_flags & VM_WRITE)
76369139 5405 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5406
76369139 5407 if (!rb) {
45bfb2e5
PZ
5408 rb = rb_alloc(nr_pages,
5409 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5410 event->cpu, flags);
26cb63ad 5411
45bfb2e5
PZ
5412 if (!rb) {
5413 ret = -ENOMEM;
5414 goto unlock;
5415 }
43a21ea8 5416
45bfb2e5
PZ
5417 atomic_set(&rb->mmap_count, 1);
5418 rb->mmap_user = get_current_user();
5419 rb->mmap_locked = extra;
26cb63ad 5420
45bfb2e5 5421 ring_buffer_attach(event, rb);
ac9721f3 5422
45bfb2e5
PZ
5423 perf_event_init_userpage(event);
5424 perf_event_update_userpage(event);
5425 } else {
1a594131
AS
5426 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5427 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5428 if (!ret)
5429 rb->aux_mmap_locked = extra;
5430 }
9a0f05cb 5431
ebb3c4c4 5432unlock:
45bfb2e5
PZ
5433 if (!ret) {
5434 atomic_long_add(user_extra, &user->locked_vm);
5435 vma->vm_mm->pinned_vm += extra;
5436
ac9721f3 5437 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5438 } else if (rb) {
5439 atomic_dec(&rb->mmap_count);
5440 }
5441aux_unlock:
cdd6c482 5442 mutex_unlock(&event->mmap_mutex);
37d81828 5443
9bb5d40c
PZ
5444 /*
5445 * Since pinned accounting is per vm we cannot allow fork() to copy our
5446 * vma.
5447 */
26cb63ad 5448 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5449 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5450
1e0fb9ec 5451 if (event->pmu->event_mapped)
bfe33492 5452 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5453
7b732a75 5454 return ret;
37d81828
PM
5455}
5456
3c446b3d
PZ
5457static int perf_fasync(int fd, struct file *filp, int on)
5458{
496ad9aa 5459 struct inode *inode = file_inode(filp);
cdd6c482 5460 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5461 int retval;
5462
5955102c 5463 inode_lock(inode);
cdd6c482 5464 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5465 inode_unlock(inode);
3c446b3d
PZ
5466
5467 if (retval < 0)
5468 return retval;
5469
5470 return 0;
5471}
5472
0793a61d 5473static const struct file_operations perf_fops = {
3326c1ce 5474 .llseek = no_llseek,
0793a61d
TG
5475 .release = perf_release,
5476 .read = perf_read,
5477 .poll = perf_poll,
d859e29f 5478 .unlocked_ioctl = perf_ioctl,
b3f20785 5479 .compat_ioctl = perf_compat_ioctl,
37d81828 5480 .mmap = perf_mmap,
3c446b3d 5481 .fasync = perf_fasync,
0793a61d
TG
5482};
5483
925d519a 5484/*
cdd6c482 5485 * Perf event wakeup
925d519a
PZ
5486 *
5487 * If there's data, ensure we set the poll() state and publish everything
5488 * to user-space before waking everybody up.
5489 */
5490
fed66e2c
PZ
5491static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5492{
5493 /* only the parent has fasync state */
5494 if (event->parent)
5495 event = event->parent;
5496 return &event->fasync;
5497}
5498
cdd6c482 5499void perf_event_wakeup(struct perf_event *event)
925d519a 5500{
10c6db11 5501 ring_buffer_wakeup(event);
4c9e2542 5502
cdd6c482 5503 if (event->pending_kill) {
fed66e2c 5504 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5505 event->pending_kill = 0;
4c9e2542 5506 }
925d519a
PZ
5507}
5508
e360adbe 5509static void perf_pending_event(struct irq_work *entry)
79f14641 5510{
cdd6c482
IM
5511 struct perf_event *event = container_of(entry,
5512 struct perf_event, pending);
d525211f
PZ
5513 int rctx;
5514
5515 rctx = perf_swevent_get_recursion_context();
5516 /*
5517 * If we 'fail' here, that's OK, it means recursion is already disabled
5518 * and we won't recurse 'further'.
5519 */
79f14641 5520
cdd6c482
IM
5521 if (event->pending_disable) {
5522 event->pending_disable = 0;
fae3fde6 5523 perf_event_disable_local(event);
79f14641
PZ
5524 }
5525
cdd6c482
IM
5526 if (event->pending_wakeup) {
5527 event->pending_wakeup = 0;
5528 perf_event_wakeup(event);
79f14641 5529 }
d525211f
PZ
5530
5531 if (rctx >= 0)
5532 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5533}
5534
39447b38
ZY
5535/*
5536 * We assume there is only KVM supporting the callbacks.
5537 * Later on, we might change it to a list if there is
5538 * another virtualization implementation supporting the callbacks.
5539 */
5540struct perf_guest_info_callbacks *perf_guest_cbs;
5541
5542int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5543{
5544 perf_guest_cbs = cbs;
5545 return 0;
5546}
5547EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5548
5549int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5550{
5551 perf_guest_cbs = NULL;
5552 return 0;
5553}
5554EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5555
4018994f
JO
5556static void
5557perf_output_sample_regs(struct perf_output_handle *handle,
5558 struct pt_regs *regs, u64 mask)
5559{
5560 int bit;
29dd3288 5561 DECLARE_BITMAP(_mask, 64);
4018994f 5562
29dd3288
MS
5563 bitmap_from_u64(_mask, mask);
5564 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5565 u64 val;
5566
5567 val = perf_reg_value(regs, bit);
5568 perf_output_put(handle, val);
5569 }
5570}
5571
60e2364e 5572static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5573 struct pt_regs *regs,
5574 struct pt_regs *regs_user_copy)
4018994f 5575{
88a7c26a
AL
5576 if (user_mode(regs)) {
5577 regs_user->abi = perf_reg_abi(current);
2565711f 5578 regs_user->regs = regs;
88a7c26a
AL
5579 } else if (current->mm) {
5580 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5581 } else {
5582 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5583 regs_user->regs = NULL;
4018994f
JO
5584 }
5585}
5586
60e2364e
SE
5587static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5588 struct pt_regs *regs)
5589{
5590 regs_intr->regs = regs;
5591 regs_intr->abi = perf_reg_abi(current);
5592}
5593
5594
c5ebcedb
JO
5595/*
5596 * Get remaining task size from user stack pointer.
5597 *
5598 * It'd be better to take stack vma map and limit this more
5599 * precisly, but there's no way to get it safely under interrupt,
5600 * so using TASK_SIZE as limit.
5601 */
5602static u64 perf_ustack_task_size(struct pt_regs *regs)
5603{
5604 unsigned long addr = perf_user_stack_pointer(regs);
5605
5606 if (!addr || addr >= TASK_SIZE)
5607 return 0;
5608
5609 return TASK_SIZE - addr;
5610}
5611
5612static u16
5613perf_sample_ustack_size(u16 stack_size, u16 header_size,
5614 struct pt_regs *regs)
5615{
5616 u64 task_size;
5617
5618 /* No regs, no stack pointer, no dump. */
5619 if (!regs)
5620 return 0;
5621
5622 /*
5623 * Check if we fit in with the requested stack size into the:
5624 * - TASK_SIZE
5625 * If we don't, we limit the size to the TASK_SIZE.
5626 *
5627 * - remaining sample size
5628 * If we don't, we customize the stack size to
5629 * fit in to the remaining sample size.
5630 */
5631
5632 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5633 stack_size = min(stack_size, (u16) task_size);
5634
5635 /* Current header size plus static size and dynamic size. */
5636 header_size += 2 * sizeof(u64);
5637
5638 /* Do we fit in with the current stack dump size? */
5639 if ((u16) (header_size + stack_size) < header_size) {
5640 /*
5641 * If we overflow the maximum size for the sample,
5642 * we customize the stack dump size to fit in.
5643 */
5644 stack_size = USHRT_MAX - header_size - sizeof(u64);
5645 stack_size = round_up(stack_size, sizeof(u64));
5646 }
5647
5648 return stack_size;
5649}
5650
5651static void
5652perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5653 struct pt_regs *regs)
5654{
5655 /* Case of a kernel thread, nothing to dump */
5656 if (!regs) {
5657 u64 size = 0;
5658 perf_output_put(handle, size);
5659 } else {
5660 unsigned long sp;
5661 unsigned int rem;
5662 u64 dyn_size;
5663
5664 /*
5665 * We dump:
5666 * static size
5667 * - the size requested by user or the best one we can fit
5668 * in to the sample max size
5669 * data
5670 * - user stack dump data
5671 * dynamic size
5672 * - the actual dumped size
5673 */
5674
5675 /* Static size. */
5676 perf_output_put(handle, dump_size);
5677
5678 /* Data. */
5679 sp = perf_user_stack_pointer(regs);
5680 rem = __output_copy_user(handle, (void *) sp, dump_size);
5681 dyn_size = dump_size - rem;
5682
5683 perf_output_skip(handle, rem);
5684
5685 /* Dynamic size. */
5686 perf_output_put(handle, dyn_size);
5687 }
5688}
5689
c980d109
ACM
5690static void __perf_event_header__init_id(struct perf_event_header *header,
5691 struct perf_sample_data *data,
5692 struct perf_event *event)
6844c09d
ACM
5693{
5694 u64 sample_type = event->attr.sample_type;
5695
5696 data->type = sample_type;
5697 header->size += event->id_header_size;
5698
5699 if (sample_type & PERF_SAMPLE_TID) {
5700 /* namespace issues */
5701 data->tid_entry.pid = perf_event_pid(event, current);
5702 data->tid_entry.tid = perf_event_tid(event, current);
5703 }
5704
5705 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5706 data->time = perf_event_clock(event);
6844c09d 5707
ff3d527c 5708 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5709 data->id = primary_event_id(event);
5710
5711 if (sample_type & PERF_SAMPLE_STREAM_ID)
5712 data->stream_id = event->id;
5713
5714 if (sample_type & PERF_SAMPLE_CPU) {
5715 data->cpu_entry.cpu = raw_smp_processor_id();
5716 data->cpu_entry.reserved = 0;
5717 }
5718}
5719
76369139
FW
5720void perf_event_header__init_id(struct perf_event_header *header,
5721 struct perf_sample_data *data,
5722 struct perf_event *event)
c980d109
ACM
5723{
5724 if (event->attr.sample_id_all)
5725 __perf_event_header__init_id(header, data, event);
5726}
5727
5728static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5729 struct perf_sample_data *data)
5730{
5731 u64 sample_type = data->type;
5732
5733 if (sample_type & PERF_SAMPLE_TID)
5734 perf_output_put(handle, data->tid_entry);
5735
5736 if (sample_type & PERF_SAMPLE_TIME)
5737 perf_output_put(handle, data->time);
5738
5739 if (sample_type & PERF_SAMPLE_ID)
5740 perf_output_put(handle, data->id);
5741
5742 if (sample_type & PERF_SAMPLE_STREAM_ID)
5743 perf_output_put(handle, data->stream_id);
5744
5745 if (sample_type & PERF_SAMPLE_CPU)
5746 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5747
5748 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5749 perf_output_put(handle, data->id);
c980d109
ACM
5750}
5751
76369139
FW
5752void perf_event__output_id_sample(struct perf_event *event,
5753 struct perf_output_handle *handle,
5754 struct perf_sample_data *sample)
c980d109
ACM
5755{
5756 if (event->attr.sample_id_all)
5757 __perf_event__output_id_sample(handle, sample);
5758}
5759
3dab77fb 5760static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5761 struct perf_event *event,
5762 u64 enabled, u64 running)
3dab77fb 5763{
cdd6c482 5764 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5765 u64 values[4];
5766 int n = 0;
5767
b5e58793 5768 values[n++] = perf_event_count(event);
3dab77fb 5769 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5770 values[n++] = enabled +
cdd6c482 5771 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5772 }
5773 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5774 values[n++] = running +
cdd6c482 5775 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5776 }
5777 if (read_format & PERF_FORMAT_ID)
cdd6c482 5778 values[n++] = primary_event_id(event);
3dab77fb 5779
76369139 5780 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5781}
5782
3dab77fb 5783static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5784 struct perf_event *event,
5785 u64 enabled, u64 running)
3dab77fb 5786{
cdd6c482
IM
5787 struct perf_event *leader = event->group_leader, *sub;
5788 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5789 u64 values[5];
5790 int n = 0;
5791
5792 values[n++] = 1 + leader->nr_siblings;
5793
5794 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5795 values[n++] = enabled;
3dab77fb
PZ
5796
5797 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5798 values[n++] = running;
3dab77fb 5799
cdd6c482 5800 if (leader != event)
3dab77fb
PZ
5801 leader->pmu->read(leader);
5802
b5e58793 5803 values[n++] = perf_event_count(leader);
3dab77fb 5804 if (read_format & PERF_FORMAT_ID)
cdd6c482 5805 values[n++] = primary_event_id(leader);
3dab77fb 5806
76369139 5807 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5808
65abc865 5809 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5810 n = 0;
5811
6f5ab001
JO
5812 if ((sub != event) &&
5813 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5814 sub->pmu->read(sub);
5815
b5e58793 5816 values[n++] = perf_event_count(sub);
3dab77fb 5817 if (read_format & PERF_FORMAT_ID)
cdd6c482 5818 values[n++] = primary_event_id(sub);
3dab77fb 5819
76369139 5820 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5821 }
5822}
5823
eed01528
SE
5824#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5825 PERF_FORMAT_TOTAL_TIME_RUNNING)
5826
ba5213ae
PZ
5827/*
5828 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5829 *
5830 * The problem is that its both hard and excessively expensive to iterate the
5831 * child list, not to mention that its impossible to IPI the children running
5832 * on another CPU, from interrupt/NMI context.
5833 */
3dab77fb 5834static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5835 struct perf_event *event)
3dab77fb 5836{
e3f3541c 5837 u64 enabled = 0, running = 0, now;
eed01528
SE
5838 u64 read_format = event->attr.read_format;
5839
5840 /*
5841 * compute total_time_enabled, total_time_running
5842 * based on snapshot values taken when the event
5843 * was last scheduled in.
5844 *
5845 * we cannot simply called update_context_time()
5846 * because of locking issue as we are called in
5847 * NMI context
5848 */
c4794295 5849 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5850 calc_timer_values(event, &now, &enabled, &running);
eed01528 5851
cdd6c482 5852 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5853 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5854 else
eed01528 5855 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5856}
5857
5622f295
MM
5858void perf_output_sample(struct perf_output_handle *handle,
5859 struct perf_event_header *header,
5860 struct perf_sample_data *data,
cdd6c482 5861 struct perf_event *event)
5622f295
MM
5862{
5863 u64 sample_type = data->type;
5864
5865 perf_output_put(handle, *header);
5866
ff3d527c
AH
5867 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5868 perf_output_put(handle, data->id);
5869
5622f295
MM
5870 if (sample_type & PERF_SAMPLE_IP)
5871 perf_output_put(handle, data->ip);
5872
5873 if (sample_type & PERF_SAMPLE_TID)
5874 perf_output_put(handle, data->tid_entry);
5875
5876 if (sample_type & PERF_SAMPLE_TIME)
5877 perf_output_put(handle, data->time);
5878
5879 if (sample_type & PERF_SAMPLE_ADDR)
5880 perf_output_put(handle, data->addr);
5881
5882 if (sample_type & PERF_SAMPLE_ID)
5883 perf_output_put(handle, data->id);
5884
5885 if (sample_type & PERF_SAMPLE_STREAM_ID)
5886 perf_output_put(handle, data->stream_id);
5887
5888 if (sample_type & PERF_SAMPLE_CPU)
5889 perf_output_put(handle, data->cpu_entry);
5890
5891 if (sample_type & PERF_SAMPLE_PERIOD)
5892 perf_output_put(handle, data->period);
5893
5894 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5895 perf_output_read(handle, event);
5622f295
MM
5896
5897 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5898 if (data->callchain) {
5899 int size = 1;
5900
5901 if (data->callchain)
5902 size += data->callchain->nr;
5903
5904 size *= sizeof(u64);
5905
76369139 5906 __output_copy(handle, data->callchain, size);
5622f295
MM
5907 } else {
5908 u64 nr = 0;
5909 perf_output_put(handle, nr);
5910 }
5911 }
5912
5913 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5914 struct perf_raw_record *raw = data->raw;
5915
5916 if (raw) {
5917 struct perf_raw_frag *frag = &raw->frag;
5918
5919 perf_output_put(handle, raw->size);
5920 do {
5921 if (frag->copy) {
5922 __output_custom(handle, frag->copy,
5923 frag->data, frag->size);
5924 } else {
5925 __output_copy(handle, frag->data,
5926 frag->size);
5927 }
5928 if (perf_raw_frag_last(frag))
5929 break;
5930 frag = frag->next;
5931 } while (1);
5932 if (frag->pad)
5933 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5934 } else {
5935 struct {
5936 u32 size;
5937 u32 data;
5938 } raw = {
5939 .size = sizeof(u32),
5940 .data = 0,
5941 };
5942 perf_output_put(handle, raw);
5943 }
5944 }
a7ac67ea 5945
bce38cd5
SE
5946 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5947 if (data->br_stack) {
5948 size_t size;
5949
5950 size = data->br_stack->nr
5951 * sizeof(struct perf_branch_entry);
5952
5953 perf_output_put(handle, data->br_stack->nr);
5954 perf_output_copy(handle, data->br_stack->entries, size);
5955 } else {
5956 /*
5957 * we always store at least the value of nr
5958 */
5959 u64 nr = 0;
5960 perf_output_put(handle, nr);
5961 }
5962 }
4018994f
JO
5963
5964 if (sample_type & PERF_SAMPLE_REGS_USER) {
5965 u64 abi = data->regs_user.abi;
5966
5967 /*
5968 * If there are no regs to dump, notice it through
5969 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5970 */
5971 perf_output_put(handle, abi);
5972
5973 if (abi) {
5974 u64 mask = event->attr.sample_regs_user;
5975 perf_output_sample_regs(handle,
5976 data->regs_user.regs,
5977 mask);
5978 }
5979 }
c5ebcedb 5980
a5cdd40c 5981 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5982 perf_output_sample_ustack(handle,
5983 data->stack_user_size,
5984 data->regs_user.regs);
a5cdd40c 5985 }
c3feedf2
AK
5986
5987 if (sample_type & PERF_SAMPLE_WEIGHT)
5988 perf_output_put(handle, data->weight);
d6be9ad6
SE
5989
5990 if (sample_type & PERF_SAMPLE_DATA_SRC)
5991 perf_output_put(handle, data->data_src.val);
a5cdd40c 5992
fdfbbd07
AK
5993 if (sample_type & PERF_SAMPLE_TRANSACTION)
5994 perf_output_put(handle, data->txn);
5995
60e2364e
SE
5996 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5997 u64 abi = data->regs_intr.abi;
5998 /*
5999 * If there are no regs to dump, notice it through
6000 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6001 */
6002 perf_output_put(handle, abi);
6003
6004 if (abi) {
6005 u64 mask = event->attr.sample_regs_intr;
6006
6007 perf_output_sample_regs(handle,
6008 data->regs_intr.regs,
6009 mask);
6010 }
6011 }
6012
fc7ce9c7
KL
6013 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6014 perf_output_put(handle, data->phys_addr);
6015
a5cdd40c
PZ
6016 if (!event->attr.watermark) {
6017 int wakeup_events = event->attr.wakeup_events;
6018
6019 if (wakeup_events) {
6020 struct ring_buffer *rb = handle->rb;
6021 int events = local_inc_return(&rb->events);
6022
6023 if (events >= wakeup_events) {
6024 local_sub(wakeup_events, &rb->events);
6025 local_inc(&rb->wakeup);
6026 }
6027 }
6028 }
5622f295
MM
6029}
6030
fc7ce9c7
KL
6031static u64 perf_virt_to_phys(u64 virt)
6032{
6033 u64 phys_addr = 0;
6034 struct page *p = NULL;
6035
6036 if (!virt)
6037 return 0;
6038
6039 if (virt >= TASK_SIZE) {
6040 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6041 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6042 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6043 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6044 } else {
6045 /*
6046 * Walking the pages tables for user address.
6047 * Interrupts are disabled, so it prevents any tear down
6048 * of the page tables.
6049 * Try IRQ-safe __get_user_pages_fast first.
6050 * If failed, leave phys_addr as 0.
6051 */
6052 if ((current->mm != NULL) &&
6053 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6054 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6055
6056 if (p)
6057 put_page(p);
6058 }
6059
6060 return phys_addr;
6061}
6062
5622f295
MM
6063void perf_prepare_sample(struct perf_event_header *header,
6064 struct perf_sample_data *data,
cdd6c482 6065 struct perf_event *event,
5622f295 6066 struct pt_regs *regs)
7b732a75 6067{
cdd6c482 6068 u64 sample_type = event->attr.sample_type;
7b732a75 6069
cdd6c482 6070 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6071 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6072
6073 header->misc = 0;
6074 header->misc |= perf_misc_flags(regs);
6fab0192 6075
c980d109 6076 __perf_event_header__init_id(header, data, event);
6844c09d 6077
c320c7b7 6078 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6079 data->ip = perf_instruction_pointer(regs);
6080
b23f3325 6081 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6082 int size = 1;
394ee076 6083
e6dab5ff 6084 data->callchain = perf_callchain(event, regs);
5622f295
MM
6085
6086 if (data->callchain)
6087 size += data->callchain->nr;
6088
6089 header->size += size * sizeof(u64);
394ee076
PZ
6090 }
6091
3a43ce68 6092 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6093 struct perf_raw_record *raw = data->raw;
6094 int size;
6095
6096 if (raw) {
6097 struct perf_raw_frag *frag = &raw->frag;
6098 u32 sum = 0;
6099
6100 do {
6101 sum += frag->size;
6102 if (perf_raw_frag_last(frag))
6103 break;
6104 frag = frag->next;
6105 } while (1);
6106
6107 size = round_up(sum + sizeof(u32), sizeof(u64));
6108 raw->size = size - sizeof(u32);
6109 frag->pad = raw->size - sum;
6110 } else {
6111 size = sizeof(u64);
6112 }
a044560c 6113
7e3f977e 6114 header->size += size;
7f453c24 6115 }
bce38cd5
SE
6116
6117 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6118 int size = sizeof(u64); /* nr */
6119 if (data->br_stack) {
6120 size += data->br_stack->nr
6121 * sizeof(struct perf_branch_entry);
6122 }
6123 header->size += size;
6124 }
4018994f 6125
2565711f 6126 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6127 perf_sample_regs_user(&data->regs_user, regs,
6128 &data->regs_user_copy);
2565711f 6129
4018994f
JO
6130 if (sample_type & PERF_SAMPLE_REGS_USER) {
6131 /* regs dump ABI info */
6132 int size = sizeof(u64);
6133
4018994f
JO
6134 if (data->regs_user.regs) {
6135 u64 mask = event->attr.sample_regs_user;
6136 size += hweight64(mask) * sizeof(u64);
6137 }
6138
6139 header->size += size;
6140 }
c5ebcedb
JO
6141
6142 if (sample_type & PERF_SAMPLE_STACK_USER) {
6143 /*
6144 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6145 * processed as the last one or have additional check added
6146 * in case new sample type is added, because we could eat
6147 * up the rest of the sample size.
6148 */
c5ebcedb
JO
6149 u16 stack_size = event->attr.sample_stack_user;
6150 u16 size = sizeof(u64);
6151
c5ebcedb 6152 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6153 data->regs_user.regs);
c5ebcedb
JO
6154
6155 /*
6156 * If there is something to dump, add space for the dump
6157 * itself and for the field that tells the dynamic size,
6158 * which is how many have been actually dumped.
6159 */
6160 if (stack_size)
6161 size += sizeof(u64) + stack_size;
6162
6163 data->stack_user_size = stack_size;
6164 header->size += size;
6165 }
60e2364e
SE
6166
6167 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6168 /* regs dump ABI info */
6169 int size = sizeof(u64);
6170
6171 perf_sample_regs_intr(&data->regs_intr, regs);
6172
6173 if (data->regs_intr.regs) {
6174 u64 mask = event->attr.sample_regs_intr;
6175
6176 size += hweight64(mask) * sizeof(u64);
6177 }
6178
6179 header->size += size;
6180 }
fc7ce9c7
KL
6181
6182 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6183 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6184}
7f453c24 6185
9ecda41a
WN
6186static void __always_inline
6187__perf_event_output(struct perf_event *event,
6188 struct perf_sample_data *data,
6189 struct pt_regs *regs,
6190 int (*output_begin)(struct perf_output_handle *,
6191 struct perf_event *,
6192 unsigned int))
5622f295
MM
6193{
6194 struct perf_output_handle handle;
6195 struct perf_event_header header;
689802b2 6196
927c7a9e
FW
6197 /* protect the callchain buffers */
6198 rcu_read_lock();
6199
cdd6c482 6200 perf_prepare_sample(&header, data, event, regs);
5c148194 6201
9ecda41a 6202 if (output_begin(&handle, event, header.size))
927c7a9e 6203 goto exit;
0322cd6e 6204
cdd6c482 6205 perf_output_sample(&handle, &header, data, event);
f413cdb8 6206
8a057d84 6207 perf_output_end(&handle);
927c7a9e
FW
6208
6209exit:
6210 rcu_read_unlock();
0322cd6e
PZ
6211}
6212
9ecda41a
WN
6213void
6214perf_event_output_forward(struct perf_event *event,
6215 struct perf_sample_data *data,
6216 struct pt_regs *regs)
6217{
6218 __perf_event_output(event, data, regs, perf_output_begin_forward);
6219}
6220
6221void
6222perf_event_output_backward(struct perf_event *event,
6223 struct perf_sample_data *data,
6224 struct pt_regs *regs)
6225{
6226 __perf_event_output(event, data, regs, perf_output_begin_backward);
6227}
6228
6229void
6230perf_event_output(struct perf_event *event,
6231 struct perf_sample_data *data,
6232 struct pt_regs *regs)
6233{
6234 __perf_event_output(event, data, regs, perf_output_begin);
6235}
6236
38b200d6 6237/*
cdd6c482 6238 * read event_id
38b200d6
PZ
6239 */
6240
6241struct perf_read_event {
6242 struct perf_event_header header;
6243
6244 u32 pid;
6245 u32 tid;
38b200d6
PZ
6246};
6247
6248static void
cdd6c482 6249perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6250 struct task_struct *task)
6251{
6252 struct perf_output_handle handle;
c980d109 6253 struct perf_sample_data sample;
dfc65094 6254 struct perf_read_event read_event = {
38b200d6 6255 .header = {
cdd6c482 6256 .type = PERF_RECORD_READ,
38b200d6 6257 .misc = 0,
c320c7b7 6258 .size = sizeof(read_event) + event->read_size,
38b200d6 6259 },
cdd6c482
IM
6260 .pid = perf_event_pid(event, task),
6261 .tid = perf_event_tid(event, task),
38b200d6 6262 };
3dab77fb 6263 int ret;
38b200d6 6264
c980d109 6265 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6266 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6267 if (ret)
6268 return;
6269
dfc65094 6270 perf_output_put(&handle, read_event);
cdd6c482 6271 perf_output_read(&handle, event);
c980d109 6272 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6273
38b200d6
PZ
6274 perf_output_end(&handle);
6275}
6276
aab5b71e 6277typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6278
6279static void
aab5b71e
PZ
6280perf_iterate_ctx(struct perf_event_context *ctx,
6281 perf_iterate_f output,
b73e4fef 6282 void *data, bool all)
52d857a8
JO
6283{
6284 struct perf_event *event;
6285
6286 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6287 if (!all) {
6288 if (event->state < PERF_EVENT_STATE_INACTIVE)
6289 continue;
6290 if (!event_filter_match(event))
6291 continue;
6292 }
6293
67516844 6294 output(event, data);
52d857a8
JO
6295 }
6296}
6297
aab5b71e 6298static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6299{
6300 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6301 struct perf_event *event;
6302
6303 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6304 /*
6305 * Skip events that are not fully formed yet; ensure that
6306 * if we observe event->ctx, both event and ctx will be
6307 * complete enough. See perf_install_in_context().
6308 */
6309 if (!smp_load_acquire(&event->ctx))
6310 continue;
6311
f2fb6bef
KL
6312 if (event->state < PERF_EVENT_STATE_INACTIVE)
6313 continue;
6314 if (!event_filter_match(event))
6315 continue;
6316 output(event, data);
6317 }
6318}
6319
aab5b71e
PZ
6320/*
6321 * Iterate all events that need to receive side-band events.
6322 *
6323 * For new callers; ensure that account_pmu_sb_event() includes
6324 * your event, otherwise it might not get delivered.
6325 */
52d857a8 6326static void
aab5b71e 6327perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6328 struct perf_event_context *task_ctx)
6329{
52d857a8 6330 struct perf_event_context *ctx;
52d857a8
JO
6331 int ctxn;
6332
aab5b71e
PZ
6333 rcu_read_lock();
6334 preempt_disable();
6335
4e93ad60 6336 /*
aab5b71e
PZ
6337 * If we have task_ctx != NULL we only notify the task context itself.
6338 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6339 * context.
6340 */
6341 if (task_ctx) {
aab5b71e
PZ
6342 perf_iterate_ctx(task_ctx, output, data, false);
6343 goto done;
4e93ad60
JO
6344 }
6345
aab5b71e 6346 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6347
6348 for_each_task_context_nr(ctxn) {
52d857a8
JO
6349 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6350 if (ctx)
aab5b71e 6351 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6352 }
aab5b71e 6353done:
f2fb6bef 6354 preempt_enable();
52d857a8 6355 rcu_read_unlock();
95ff4ca2
AS
6356}
6357
375637bc
AS
6358/*
6359 * Clear all file-based filters at exec, they'll have to be
6360 * re-instated when/if these objects are mmapped again.
6361 */
6362static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6363{
6364 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6365 struct perf_addr_filter *filter;
6366 unsigned int restart = 0, count = 0;
6367 unsigned long flags;
6368
6369 if (!has_addr_filter(event))
6370 return;
6371
6372 raw_spin_lock_irqsave(&ifh->lock, flags);
6373 list_for_each_entry(filter, &ifh->list, entry) {
6374 if (filter->inode) {
6375 event->addr_filters_offs[count] = 0;
6376 restart++;
6377 }
6378
6379 count++;
6380 }
6381
6382 if (restart)
6383 event->addr_filters_gen++;
6384 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6385
6386 if (restart)
767ae086 6387 perf_event_stop(event, 1);
375637bc
AS
6388}
6389
6390void perf_event_exec(void)
6391{
6392 struct perf_event_context *ctx;
6393 int ctxn;
6394
6395 rcu_read_lock();
6396 for_each_task_context_nr(ctxn) {
6397 ctx = current->perf_event_ctxp[ctxn];
6398 if (!ctx)
6399 continue;
6400
6401 perf_event_enable_on_exec(ctxn);
6402
aab5b71e 6403 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6404 true);
6405 }
6406 rcu_read_unlock();
6407}
6408
95ff4ca2
AS
6409struct remote_output {
6410 struct ring_buffer *rb;
6411 int err;
6412};
6413
6414static void __perf_event_output_stop(struct perf_event *event, void *data)
6415{
6416 struct perf_event *parent = event->parent;
6417 struct remote_output *ro = data;
6418 struct ring_buffer *rb = ro->rb;
375637bc
AS
6419 struct stop_event_data sd = {
6420 .event = event,
6421 };
95ff4ca2
AS
6422
6423 if (!has_aux(event))
6424 return;
6425
6426 if (!parent)
6427 parent = event;
6428
6429 /*
6430 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6431 * ring-buffer, but it will be the child that's actually using it.
6432 *
6433 * We are using event::rb to determine if the event should be stopped,
6434 * however this may race with ring_buffer_attach() (through set_output),
6435 * which will make us skip the event that actually needs to be stopped.
6436 * So ring_buffer_attach() has to stop an aux event before re-assigning
6437 * its rb pointer.
95ff4ca2
AS
6438 */
6439 if (rcu_dereference(parent->rb) == rb)
375637bc 6440 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6441}
6442
6443static int __perf_pmu_output_stop(void *info)
6444{
6445 struct perf_event *event = info;
6446 struct pmu *pmu = event->pmu;
8b6a3fe8 6447 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6448 struct remote_output ro = {
6449 .rb = event->rb,
6450 };
6451
6452 rcu_read_lock();
aab5b71e 6453 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6454 if (cpuctx->task_ctx)
aab5b71e 6455 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6456 &ro, false);
95ff4ca2
AS
6457 rcu_read_unlock();
6458
6459 return ro.err;
6460}
6461
6462static void perf_pmu_output_stop(struct perf_event *event)
6463{
6464 struct perf_event *iter;
6465 int err, cpu;
6466
6467restart:
6468 rcu_read_lock();
6469 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6470 /*
6471 * For per-CPU events, we need to make sure that neither they
6472 * nor their children are running; for cpu==-1 events it's
6473 * sufficient to stop the event itself if it's active, since
6474 * it can't have children.
6475 */
6476 cpu = iter->cpu;
6477 if (cpu == -1)
6478 cpu = READ_ONCE(iter->oncpu);
6479
6480 if (cpu == -1)
6481 continue;
6482
6483 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6484 if (err == -EAGAIN) {
6485 rcu_read_unlock();
6486 goto restart;
6487 }
6488 }
6489 rcu_read_unlock();
52d857a8
JO
6490}
6491
60313ebe 6492/*
9f498cc5
PZ
6493 * task tracking -- fork/exit
6494 *
13d7a241 6495 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6496 */
6497
9f498cc5 6498struct perf_task_event {
3a80b4a3 6499 struct task_struct *task;
cdd6c482 6500 struct perf_event_context *task_ctx;
60313ebe
PZ
6501
6502 struct {
6503 struct perf_event_header header;
6504
6505 u32 pid;
6506 u32 ppid;
9f498cc5
PZ
6507 u32 tid;
6508 u32 ptid;
393b2ad8 6509 u64 time;
cdd6c482 6510 } event_id;
60313ebe
PZ
6511};
6512
67516844
JO
6513static int perf_event_task_match(struct perf_event *event)
6514{
13d7a241
SE
6515 return event->attr.comm || event->attr.mmap ||
6516 event->attr.mmap2 || event->attr.mmap_data ||
6517 event->attr.task;
67516844
JO
6518}
6519
cdd6c482 6520static void perf_event_task_output(struct perf_event *event,
52d857a8 6521 void *data)
60313ebe 6522{
52d857a8 6523 struct perf_task_event *task_event = data;
60313ebe 6524 struct perf_output_handle handle;
c980d109 6525 struct perf_sample_data sample;
9f498cc5 6526 struct task_struct *task = task_event->task;
c980d109 6527 int ret, size = task_event->event_id.header.size;
8bb39f9a 6528
67516844
JO
6529 if (!perf_event_task_match(event))
6530 return;
6531
c980d109 6532 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6533
c980d109 6534 ret = perf_output_begin(&handle, event,
a7ac67ea 6535 task_event->event_id.header.size);
ef60777c 6536 if (ret)
c980d109 6537 goto out;
60313ebe 6538
cdd6c482
IM
6539 task_event->event_id.pid = perf_event_pid(event, task);
6540 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6541
cdd6c482
IM
6542 task_event->event_id.tid = perf_event_tid(event, task);
6543 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6544
34f43927
PZ
6545 task_event->event_id.time = perf_event_clock(event);
6546
cdd6c482 6547 perf_output_put(&handle, task_event->event_id);
393b2ad8 6548
c980d109
ACM
6549 perf_event__output_id_sample(event, &handle, &sample);
6550
60313ebe 6551 perf_output_end(&handle);
c980d109
ACM
6552out:
6553 task_event->event_id.header.size = size;
60313ebe
PZ
6554}
6555
cdd6c482
IM
6556static void perf_event_task(struct task_struct *task,
6557 struct perf_event_context *task_ctx,
3a80b4a3 6558 int new)
60313ebe 6559{
9f498cc5 6560 struct perf_task_event task_event;
60313ebe 6561
cdd6c482
IM
6562 if (!atomic_read(&nr_comm_events) &&
6563 !atomic_read(&nr_mmap_events) &&
6564 !atomic_read(&nr_task_events))
60313ebe
PZ
6565 return;
6566
9f498cc5 6567 task_event = (struct perf_task_event){
3a80b4a3
PZ
6568 .task = task,
6569 .task_ctx = task_ctx,
cdd6c482 6570 .event_id = {
60313ebe 6571 .header = {
cdd6c482 6572 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6573 .misc = 0,
cdd6c482 6574 .size = sizeof(task_event.event_id),
60313ebe 6575 },
573402db
PZ
6576 /* .pid */
6577 /* .ppid */
9f498cc5
PZ
6578 /* .tid */
6579 /* .ptid */
34f43927 6580 /* .time */
60313ebe
PZ
6581 },
6582 };
6583
aab5b71e 6584 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6585 &task_event,
6586 task_ctx);
9f498cc5
PZ
6587}
6588
cdd6c482 6589void perf_event_fork(struct task_struct *task)
9f498cc5 6590{
cdd6c482 6591 perf_event_task(task, NULL, 1);
e4222673 6592 perf_event_namespaces(task);
60313ebe
PZ
6593}
6594
8d1b2d93
PZ
6595/*
6596 * comm tracking
6597 */
6598
6599struct perf_comm_event {
22a4f650
IM
6600 struct task_struct *task;
6601 char *comm;
8d1b2d93
PZ
6602 int comm_size;
6603
6604 struct {
6605 struct perf_event_header header;
6606
6607 u32 pid;
6608 u32 tid;
cdd6c482 6609 } event_id;
8d1b2d93
PZ
6610};
6611
67516844
JO
6612static int perf_event_comm_match(struct perf_event *event)
6613{
6614 return event->attr.comm;
6615}
6616
cdd6c482 6617static void perf_event_comm_output(struct perf_event *event,
52d857a8 6618 void *data)
8d1b2d93 6619{
52d857a8 6620 struct perf_comm_event *comm_event = data;
8d1b2d93 6621 struct perf_output_handle handle;
c980d109 6622 struct perf_sample_data sample;
cdd6c482 6623 int size = comm_event->event_id.header.size;
c980d109
ACM
6624 int ret;
6625
67516844
JO
6626 if (!perf_event_comm_match(event))
6627 return;
6628
c980d109
ACM
6629 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6630 ret = perf_output_begin(&handle, event,
a7ac67ea 6631 comm_event->event_id.header.size);
8d1b2d93
PZ
6632
6633 if (ret)
c980d109 6634 goto out;
8d1b2d93 6635
cdd6c482
IM
6636 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6637 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6638
cdd6c482 6639 perf_output_put(&handle, comm_event->event_id);
76369139 6640 __output_copy(&handle, comm_event->comm,
8d1b2d93 6641 comm_event->comm_size);
c980d109
ACM
6642
6643 perf_event__output_id_sample(event, &handle, &sample);
6644
8d1b2d93 6645 perf_output_end(&handle);
c980d109
ACM
6646out:
6647 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6648}
6649
cdd6c482 6650static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6651{
413ee3b4 6652 char comm[TASK_COMM_LEN];
8d1b2d93 6653 unsigned int size;
8d1b2d93 6654
413ee3b4 6655 memset(comm, 0, sizeof(comm));
96b02d78 6656 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6657 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6658
6659 comm_event->comm = comm;
6660 comm_event->comm_size = size;
6661
cdd6c482 6662 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6663
aab5b71e 6664 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6665 comm_event,
6666 NULL);
8d1b2d93
PZ
6667}
6668
82b89778 6669void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6670{
9ee318a7
PZ
6671 struct perf_comm_event comm_event;
6672
cdd6c482 6673 if (!atomic_read(&nr_comm_events))
9ee318a7 6674 return;
a63eaf34 6675
9ee318a7 6676 comm_event = (struct perf_comm_event){
8d1b2d93 6677 .task = task,
573402db
PZ
6678 /* .comm */
6679 /* .comm_size */
cdd6c482 6680 .event_id = {
573402db 6681 .header = {
cdd6c482 6682 .type = PERF_RECORD_COMM,
82b89778 6683 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6684 /* .size */
6685 },
6686 /* .pid */
6687 /* .tid */
8d1b2d93
PZ
6688 },
6689 };
6690
cdd6c482 6691 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6692}
6693
e4222673
HB
6694/*
6695 * namespaces tracking
6696 */
6697
6698struct perf_namespaces_event {
6699 struct task_struct *task;
6700
6701 struct {
6702 struct perf_event_header header;
6703
6704 u32 pid;
6705 u32 tid;
6706 u64 nr_namespaces;
6707 struct perf_ns_link_info link_info[NR_NAMESPACES];
6708 } event_id;
6709};
6710
6711static int perf_event_namespaces_match(struct perf_event *event)
6712{
6713 return event->attr.namespaces;
6714}
6715
6716static void perf_event_namespaces_output(struct perf_event *event,
6717 void *data)
6718{
6719 struct perf_namespaces_event *namespaces_event = data;
6720 struct perf_output_handle handle;
6721 struct perf_sample_data sample;
6722 int ret;
6723
6724 if (!perf_event_namespaces_match(event))
6725 return;
6726
6727 perf_event_header__init_id(&namespaces_event->event_id.header,
6728 &sample, event);
6729 ret = perf_output_begin(&handle, event,
6730 namespaces_event->event_id.header.size);
6731 if (ret)
6732 return;
6733
6734 namespaces_event->event_id.pid = perf_event_pid(event,
6735 namespaces_event->task);
6736 namespaces_event->event_id.tid = perf_event_tid(event,
6737 namespaces_event->task);
6738
6739 perf_output_put(&handle, namespaces_event->event_id);
6740
6741 perf_event__output_id_sample(event, &handle, &sample);
6742
6743 perf_output_end(&handle);
6744}
6745
6746static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6747 struct task_struct *task,
6748 const struct proc_ns_operations *ns_ops)
6749{
6750 struct path ns_path;
6751 struct inode *ns_inode;
6752 void *error;
6753
6754 error = ns_get_path(&ns_path, task, ns_ops);
6755 if (!error) {
6756 ns_inode = ns_path.dentry->d_inode;
6757 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6758 ns_link_info->ino = ns_inode->i_ino;
6759 }
6760}
6761
6762void perf_event_namespaces(struct task_struct *task)
6763{
6764 struct perf_namespaces_event namespaces_event;
6765 struct perf_ns_link_info *ns_link_info;
6766
6767 if (!atomic_read(&nr_namespaces_events))
6768 return;
6769
6770 namespaces_event = (struct perf_namespaces_event){
6771 .task = task,
6772 .event_id = {
6773 .header = {
6774 .type = PERF_RECORD_NAMESPACES,
6775 .misc = 0,
6776 .size = sizeof(namespaces_event.event_id),
6777 },
6778 /* .pid */
6779 /* .tid */
6780 .nr_namespaces = NR_NAMESPACES,
6781 /* .link_info[NR_NAMESPACES] */
6782 },
6783 };
6784
6785 ns_link_info = namespaces_event.event_id.link_info;
6786
6787 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6788 task, &mntns_operations);
6789
6790#ifdef CONFIG_USER_NS
6791 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6792 task, &userns_operations);
6793#endif
6794#ifdef CONFIG_NET_NS
6795 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6796 task, &netns_operations);
6797#endif
6798#ifdef CONFIG_UTS_NS
6799 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6800 task, &utsns_operations);
6801#endif
6802#ifdef CONFIG_IPC_NS
6803 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6804 task, &ipcns_operations);
6805#endif
6806#ifdef CONFIG_PID_NS
6807 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6808 task, &pidns_operations);
6809#endif
6810#ifdef CONFIG_CGROUPS
6811 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6812 task, &cgroupns_operations);
6813#endif
6814
6815 perf_iterate_sb(perf_event_namespaces_output,
6816 &namespaces_event,
6817 NULL);
6818}
6819
0a4a9391
PZ
6820/*
6821 * mmap tracking
6822 */
6823
6824struct perf_mmap_event {
089dd79d
PZ
6825 struct vm_area_struct *vma;
6826
6827 const char *file_name;
6828 int file_size;
13d7a241
SE
6829 int maj, min;
6830 u64 ino;
6831 u64 ino_generation;
f972eb63 6832 u32 prot, flags;
0a4a9391
PZ
6833
6834 struct {
6835 struct perf_event_header header;
6836
6837 u32 pid;
6838 u32 tid;
6839 u64 start;
6840 u64 len;
6841 u64 pgoff;
cdd6c482 6842 } event_id;
0a4a9391
PZ
6843};
6844
67516844
JO
6845static int perf_event_mmap_match(struct perf_event *event,
6846 void *data)
6847{
6848 struct perf_mmap_event *mmap_event = data;
6849 struct vm_area_struct *vma = mmap_event->vma;
6850 int executable = vma->vm_flags & VM_EXEC;
6851
6852 return (!executable && event->attr.mmap_data) ||
13d7a241 6853 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6854}
6855
cdd6c482 6856static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6857 void *data)
0a4a9391 6858{
52d857a8 6859 struct perf_mmap_event *mmap_event = data;
0a4a9391 6860 struct perf_output_handle handle;
c980d109 6861 struct perf_sample_data sample;
cdd6c482 6862 int size = mmap_event->event_id.header.size;
c980d109 6863 int ret;
0a4a9391 6864
67516844
JO
6865 if (!perf_event_mmap_match(event, data))
6866 return;
6867
13d7a241
SE
6868 if (event->attr.mmap2) {
6869 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6870 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6871 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6872 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6873 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6874 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6875 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6876 }
6877
c980d109
ACM
6878 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6879 ret = perf_output_begin(&handle, event,
a7ac67ea 6880 mmap_event->event_id.header.size);
0a4a9391 6881 if (ret)
c980d109 6882 goto out;
0a4a9391 6883
cdd6c482
IM
6884 mmap_event->event_id.pid = perf_event_pid(event, current);
6885 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6886
cdd6c482 6887 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6888
6889 if (event->attr.mmap2) {
6890 perf_output_put(&handle, mmap_event->maj);
6891 perf_output_put(&handle, mmap_event->min);
6892 perf_output_put(&handle, mmap_event->ino);
6893 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6894 perf_output_put(&handle, mmap_event->prot);
6895 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6896 }
6897
76369139 6898 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6899 mmap_event->file_size);
c980d109
ACM
6900
6901 perf_event__output_id_sample(event, &handle, &sample);
6902
78d613eb 6903 perf_output_end(&handle);
c980d109
ACM
6904out:
6905 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6906}
6907
cdd6c482 6908static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6909{
089dd79d
PZ
6910 struct vm_area_struct *vma = mmap_event->vma;
6911 struct file *file = vma->vm_file;
13d7a241
SE
6912 int maj = 0, min = 0;
6913 u64 ino = 0, gen = 0;
f972eb63 6914 u32 prot = 0, flags = 0;
0a4a9391
PZ
6915 unsigned int size;
6916 char tmp[16];
6917 char *buf = NULL;
2c42cfbf 6918 char *name;
413ee3b4 6919
0b3589be
PZ
6920 if (vma->vm_flags & VM_READ)
6921 prot |= PROT_READ;
6922 if (vma->vm_flags & VM_WRITE)
6923 prot |= PROT_WRITE;
6924 if (vma->vm_flags & VM_EXEC)
6925 prot |= PROT_EXEC;
6926
6927 if (vma->vm_flags & VM_MAYSHARE)
6928 flags = MAP_SHARED;
6929 else
6930 flags = MAP_PRIVATE;
6931
6932 if (vma->vm_flags & VM_DENYWRITE)
6933 flags |= MAP_DENYWRITE;
6934 if (vma->vm_flags & VM_MAYEXEC)
6935 flags |= MAP_EXECUTABLE;
6936 if (vma->vm_flags & VM_LOCKED)
6937 flags |= MAP_LOCKED;
6938 if (vma->vm_flags & VM_HUGETLB)
6939 flags |= MAP_HUGETLB;
6940
0a4a9391 6941 if (file) {
13d7a241
SE
6942 struct inode *inode;
6943 dev_t dev;
3ea2f2b9 6944
2c42cfbf 6945 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6946 if (!buf) {
c7e548b4
ON
6947 name = "//enomem";
6948 goto cpy_name;
0a4a9391 6949 }
413ee3b4 6950 /*
3ea2f2b9 6951 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6952 * need to add enough zero bytes after the string to handle
6953 * the 64bit alignment we do later.
6954 */
9bf39ab2 6955 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6956 if (IS_ERR(name)) {
c7e548b4
ON
6957 name = "//toolong";
6958 goto cpy_name;
0a4a9391 6959 }
13d7a241
SE
6960 inode = file_inode(vma->vm_file);
6961 dev = inode->i_sb->s_dev;
6962 ino = inode->i_ino;
6963 gen = inode->i_generation;
6964 maj = MAJOR(dev);
6965 min = MINOR(dev);
f972eb63 6966
c7e548b4 6967 goto got_name;
0a4a9391 6968 } else {
fbe26abe
JO
6969 if (vma->vm_ops && vma->vm_ops->name) {
6970 name = (char *) vma->vm_ops->name(vma);
6971 if (name)
6972 goto cpy_name;
6973 }
6974
2c42cfbf 6975 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6976 if (name)
6977 goto cpy_name;
089dd79d 6978
32c5fb7e 6979 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6980 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6981 name = "[heap]";
6982 goto cpy_name;
32c5fb7e
ON
6983 }
6984 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6985 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6986 name = "[stack]";
6987 goto cpy_name;
089dd79d
PZ
6988 }
6989
c7e548b4
ON
6990 name = "//anon";
6991 goto cpy_name;
0a4a9391
PZ
6992 }
6993
c7e548b4
ON
6994cpy_name:
6995 strlcpy(tmp, name, sizeof(tmp));
6996 name = tmp;
0a4a9391 6997got_name:
2c42cfbf
PZ
6998 /*
6999 * Since our buffer works in 8 byte units we need to align our string
7000 * size to a multiple of 8. However, we must guarantee the tail end is
7001 * zero'd out to avoid leaking random bits to userspace.
7002 */
7003 size = strlen(name)+1;
7004 while (!IS_ALIGNED(size, sizeof(u64)))
7005 name[size++] = '\0';
0a4a9391
PZ
7006
7007 mmap_event->file_name = name;
7008 mmap_event->file_size = size;
13d7a241
SE
7009 mmap_event->maj = maj;
7010 mmap_event->min = min;
7011 mmap_event->ino = ino;
7012 mmap_event->ino_generation = gen;
f972eb63
PZ
7013 mmap_event->prot = prot;
7014 mmap_event->flags = flags;
0a4a9391 7015
2fe85427
SE
7016 if (!(vma->vm_flags & VM_EXEC))
7017 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7018
cdd6c482 7019 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7020
aab5b71e 7021 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7022 mmap_event,
7023 NULL);
665c2142 7024
0a4a9391
PZ
7025 kfree(buf);
7026}
7027
375637bc
AS
7028/*
7029 * Check whether inode and address range match filter criteria.
7030 */
7031static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7032 struct file *file, unsigned long offset,
7033 unsigned long size)
7034{
45063097 7035 if (filter->inode != file_inode(file))
375637bc
AS
7036 return false;
7037
7038 if (filter->offset > offset + size)
7039 return false;
7040
7041 if (filter->offset + filter->size < offset)
7042 return false;
7043
7044 return true;
7045}
7046
7047static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7048{
7049 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7050 struct vm_area_struct *vma = data;
7051 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7052 struct file *file = vma->vm_file;
7053 struct perf_addr_filter *filter;
7054 unsigned int restart = 0, count = 0;
7055
7056 if (!has_addr_filter(event))
7057 return;
7058
7059 if (!file)
7060 return;
7061
7062 raw_spin_lock_irqsave(&ifh->lock, flags);
7063 list_for_each_entry(filter, &ifh->list, entry) {
7064 if (perf_addr_filter_match(filter, file, off,
7065 vma->vm_end - vma->vm_start)) {
7066 event->addr_filters_offs[count] = vma->vm_start;
7067 restart++;
7068 }
7069
7070 count++;
7071 }
7072
7073 if (restart)
7074 event->addr_filters_gen++;
7075 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7076
7077 if (restart)
767ae086 7078 perf_event_stop(event, 1);
375637bc
AS
7079}
7080
7081/*
7082 * Adjust all task's events' filters to the new vma
7083 */
7084static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7085{
7086 struct perf_event_context *ctx;
7087 int ctxn;
7088
12b40a23
MP
7089 /*
7090 * Data tracing isn't supported yet and as such there is no need
7091 * to keep track of anything that isn't related to executable code:
7092 */
7093 if (!(vma->vm_flags & VM_EXEC))
7094 return;
7095
375637bc
AS
7096 rcu_read_lock();
7097 for_each_task_context_nr(ctxn) {
7098 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7099 if (!ctx)
7100 continue;
7101
aab5b71e 7102 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7103 }
7104 rcu_read_unlock();
7105}
7106
3af9e859 7107void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7108{
9ee318a7
PZ
7109 struct perf_mmap_event mmap_event;
7110
cdd6c482 7111 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7112 return;
7113
7114 mmap_event = (struct perf_mmap_event){
089dd79d 7115 .vma = vma,
573402db
PZ
7116 /* .file_name */
7117 /* .file_size */
cdd6c482 7118 .event_id = {
573402db 7119 .header = {
cdd6c482 7120 .type = PERF_RECORD_MMAP,
39447b38 7121 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7122 /* .size */
7123 },
7124 /* .pid */
7125 /* .tid */
089dd79d
PZ
7126 .start = vma->vm_start,
7127 .len = vma->vm_end - vma->vm_start,
3a0304e9 7128 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7129 },
13d7a241
SE
7130 /* .maj (attr_mmap2 only) */
7131 /* .min (attr_mmap2 only) */
7132 /* .ino (attr_mmap2 only) */
7133 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7134 /* .prot (attr_mmap2 only) */
7135 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7136 };
7137
375637bc 7138 perf_addr_filters_adjust(vma);
cdd6c482 7139 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7140}
7141
68db7e98
AS
7142void perf_event_aux_event(struct perf_event *event, unsigned long head,
7143 unsigned long size, u64 flags)
7144{
7145 struct perf_output_handle handle;
7146 struct perf_sample_data sample;
7147 struct perf_aux_event {
7148 struct perf_event_header header;
7149 u64 offset;
7150 u64 size;
7151 u64 flags;
7152 } rec = {
7153 .header = {
7154 .type = PERF_RECORD_AUX,
7155 .misc = 0,
7156 .size = sizeof(rec),
7157 },
7158 .offset = head,
7159 .size = size,
7160 .flags = flags,
7161 };
7162 int ret;
7163
7164 perf_event_header__init_id(&rec.header, &sample, event);
7165 ret = perf_output_begin(&handle, event, rec.header.size);
7166
7167 if (ret)
7168 return;
7169
7170 perf_output_put(&handle, rec);
7171 perf_event__output_id_sample(event, &handle, &sample);
7172
7173 perf_output_end(&handle);
7174}
7175
f38b0dbb
KL
7176/*
7177 * Lost/dropped samples logging
7178 */
7179void perf_log_lost_samples(struct perf_event *event, u64 lost)
7180{
7181 struct perf_output_handle handle;
7182 struct perf_sample_data sample;
7183 int ret;
7184
7185 struct {
7186 struct perf_event_header header;
7187 u64 lost;
7188 } lost_samples_event = {
7189 .header = {
7190 .type = PERF_RECORD_LOST_SAMPLES,
7191 .misc = 0,
7192 .size = sizeof(lost_samples_event),
7193 },
7194 .lost = lost,
7195 };
7196
7197 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7198
7199 ret = perf_output_begin(&handle, event,
7200 lost_samples_event.header.size);
7201 if (ret)
7202 return;
7203
7204 perf_output_put(&handle, lost_samples_event);
7205 perf_event__output_id_sample(event, &handle, &sample);
7206 perf_output_end(&handle);
7207}
7208
45ac1403
AH
7209/*
7210 * context_switch tracking
7211 */
7212
7213struct perf_switch_event {
7214 struct task_struct *task;
7215 struct task_struct *next_prev;
7216
7217 struct {
7218 struct perf_event_header header;
7219 u32 next_prev_pid;
7220 u32 next_prev_tid;
7221 } event_id;
7222};
7223
7224static int perf_event_switch_match(struct perf_event *event)
7225{
7226 return event->attr.context_switch;
7227}
7228
7229static void perf_event_switch_output(struct perf_event *event, void *data)
7230{
7231 struct perf_switch_event *se = data;
7232 struct perf_output_handle handle;
7233 struct perf_sample_data sample;
7234 int ret;
7235
7236 if (!perf_event_switch_match(event))
7237 return;
7238
7239 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7240 if (event->ctx->task) {
7241 se->event_id.header.type = PERF_RECORD_SWITCH;
7242 se->event_id.header.size = sizeof(se->event_id.header);
7243 } else {
7244 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7245 se->event_id.header.size = sizeof(se->event_id);
7246 se->event_id.next_prev_pid =
7247 perf_event_pid(event, se->next_prev);
7248 se->event_id.next_prev_tid =
7249 perf_event_tid(event, se->next_prev);
7250 }
7251
7252 perf_event_header__init_id(&se->event_id.header, &sample, event);
7253
7254 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7255 if (ret)
7256 return;
7257
7258 if (event->ctx->task)
7259 perf_output_put(&handle, se->event_id.header);
7260 else
7261 perf_output_put(&handle, se->event_id);
7262
7263 perf_event__output_id_sample(event, &handle, &sample);
7264
7265 perf_output_end(&handle);
7266}
7267
7268static void perf_event_switch(struct task_struct *task,
7269 struct task_struct *next_prev, bool sched_in)
7270{
7271 struct perf_switch_event switch_event;
7272
7273 /* N.B. caller checks nr_switch_events != 0 */
7274
7275 switch_event = (struct perf_switch_event){
7276 .task = task,
7277 .next_prev = next_prev,
7278 .event_id = {
7279 .header = {
7280 /* .type */
7281 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7282 /* .size */
7283 },
7284 /* .next_prev_pid */
7285 /* .next_prev_tid */
7286 },
7287 };
7288
aab5b71e 7289 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7290 &switch_event,
7291 NULL);
7292}
7293
a78ac325
PZ
7294/*
7295 * IRQ throttle logging
7296 */
7297
cdd6c482 7298static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7299{
7300 struct perf_output_handle handle;
c980d109 7301 struct perf_sample_data sample;
a78ac325
PZ
7302 int ret;
7303
7304 struct {
7305 struct perf_event_header header;
7306 u64 time;
cca3f454 7307 u64 id;
7f453c24 7308 u64 stream_id;
a78ac325
PZ
7309 } throttle_event = {
7310 .header = {
cdd6c482 7311 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7312 .misc = 0,
7313 .size = sizeof(throttle_event),
7314 },
34f43927 7315 .time = perf_event_clock(event),
cdd6c482
IM
7316 .id = primary_event_id(event),
7317 .stream_id = event->id,
a78ac325
PZ
7318 };
7319
966ee4d6 7320 if (enable)
cdd6c482 7321 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7322
c980d109
ACM
7323 perf_event_header__init_id(&throttle_event.header, &sample, event);
7324
7325 ret = perf_output_begin(&handle, event,
a7ac67ea 7326 throttle_event.header.size);
a78ac325
PZ
7327 if (ret)
7328 return;
7329
7330 perf_output_put(&handle, throttle_event);
c980d109 7331 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7332 perf_output_end(&handle);
7333}
7334
8d4e6c4c
AS
7335void perf_event_itrace_started(struct perf_event *event)
7336{
7337 event->attach_state |= PERF_ATTACH_ITRACE;
7338}
7339
ec0d7729
AS
7340static void perf_log_itrace_start(struct perf_event *event)
7341{
7342 struct perf_output_handle handle;
7343 struct perf_sample_data sample;
7344 struct perf_aux_event {
7345 struct perf_event_header header;
7346 u32 pid;
7347 u32 tid;
7348 } rec;
7349 int ret;
7350
7351 if (event->parent)
7352 event = event->parent;
7353
7354 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7355 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7356 return;
7357
ec0d7729
AS
7358 rec.header.type = PERF_RECORD_ITRACE_START;
7359 rec.header.misc = 0;
7360 rec.header.size = sizeof(rec);
7361 rec.pid = perf_event_pid(event, current);
7362 rec.tid = perf_event_tid(event, current);
7363
7364 perf_event_header__init_id(&rec.header, &sample, event);
7365 ret = perf_output_begin(&handle, event, rec.header.size);
7366
7367 if (ret)
7368 return;
7369
7370 perf_output_put(&handle, rec);
7371 perf_event__output_id_sample(event, &handle, &sample);
7372
7373 perf_output_end(&handle);
7374}
7375
475113d9
JO
7376static int
7377__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7378{
cdd6c482 7379 struct hw_perf_event *hwc = &event->hw;
79f14641 7380 int ret = 0;
475113d9 7381 u64 seq;
96398826 7382
e050e3f0
SE
7383 seq = __this_cpu_read(perf_throttled_seq);
7384 if (seq != hwc->interrupts_seq) {
7385 hwc->interrupts_seq = seq;
7386 hwc->interrupts = 1;
7387 } else {
7388 hwc->interrupts++;
7389 if (unlikely(throttle
7390 && hwc->interrupts >= max_samples_per_tick)) {
7391 __this_cpu_inc(perf_throttled_count);
555e0c1e 7392 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7393 hwc->interrupts = MAX_INTERRUPTS;
7394 perf_log_throttle(event, 0);
a78ac325
PZ
7395 ret = 1;
7396 }
e050e3f0 7397 }
60db5e09 7398
cdd6c482 7399 if (event->attr.freq) {
def0a9b2 7400 u64 now = perf_clock();
abd50713 7401 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7402
abd50713 7403 hwc->freq_time_stamp = now;
bd2b5b12 7404
abd50713 7405 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7406 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7407 }
7408
475113d9
JO
7409 return ret;
7410}
7411
7412int perf_event_account_interrupt(struct perf_event *event)
7413{
7414 return __perf_event_account_interrupt(event, 1);
7415}
7416
7417/*
7418 * Generic event overflow handling, sampling.
7419 */
7420
7421static int __perf_event_overflow(struct perf_event *event,
7422 int throttle, struct perf_sample_data *data,
7423 struct pt_regs *regs)
7424{
7425 int events = atomic_read(&event->event_limit);
7426 int ret = 0;
7427
7428 /*
7429 * Non-sampling counters might still use the PMI to fold short
7430 * hardware counters, ignore those.
7431 */
7432 if (unlikely(!is_sampling_event(event)))
7433 return 0;
7434
7435 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7436
2023b359
PZ
7437 /*
7438 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7439 * events
2023b359
PZ
7440 */
7441
cdd6c482
IM
7442 event->pending_kill = POLL_IN;
7443 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7444 ret = 1;
cdd6c482 7445 event->pending_kill = POLL_HUP;
5aab90ce
JO
7446
7447 perf_event_disable_inatomic(event);
79f14641
PZ
7448 }
7449
aa6a5f3c 7450 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7451
fed66e2c 7452 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7453 event->pending_wakeup = 1;
7454 irq_work_queue(&event->pending);
f506b3dc
PZ
7455 }
7456
79f14641 7457 return ret;
f6c7d5fe
PZ
7458}
7459
a8b0ca17 7460int perf_event_overflow(struct perf_event *event,
5622f295
MM
7461 struct perf_sample_data *data,
7462 struct pt_regs *regs)
850bc73f 7463{
a8b0ca17 7464 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7465}
7466
15dbf27c 7467/*
cdd6c482 7468 * Generic software event infrastructure
15dbf27c
PZ
7469 */
7470
b28ab83c
PZ
7471struct swevent_htable {
7472 struct swevent_hlist *swevent_hlist;
7473 struct mutex hlist_mutex;
7474 int hlist_refcount;
7475
7476 /* Recursion avoidance in each contexts */
7477 int recursion[PERF_NR_CONTEXTS];
7478};
7479
7480static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7481
7b4b6658 7482/*
cdd6c482
IM
7483 * We directly increment event->count and keep a second value in
7484 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7485 * is kept in the range [-sample_period, 0] so that we can use the
7486 * sign as trigger.
7487 */
7488
ab573844 7489u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7490{
cdd6c482 7491 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7492 u64 period = hwc->last_period;
7493 u64 nr, offset;
7494 s64 old, val;
7495
7496 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7497
7498again:
e7850595 7499 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7500 if (val < 0)
7501 return 0;
15dbf27c 7502
7b4b6658
PZ
7503 nr = div64_u64(period + val, period);
7504 offset = nr * period;
7505 val -= offset;
e7850595 7506 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7507 goto again;
15dbf27c 7508
7b4b6658 7509 return nr;
15dbf27c
PZ
7510}
7511
0cff784a 7512static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7513 struct perf_sample_data *data,
5622f295 7514 struct pt_regs *regs)
15dbf27c 7515{
cdd6c482 7516 struct hw_perf_event *hwc = &event->hw;
850bc73f 7517 int throttle = 0;
15dbf27c 7518
0cff784a
PZ
7519 if (!overflow)
7520 overflow = perf_swevent_set_period(event);
15dbf27c 7521
7b4b6658
PZ
7522 if (hwc->interrupts == MAX_INTERRUPTS)
7523 return;
15dbf27c 7524
7b4b6658 7525 for (; overflow; overflow--) {
a8b0ca17 7526 if (__perf_event_overflow(event, throttle,
5622f295 7527 data, regs)) {
7b4b6658
PZ
7528 /*
7529 * We inhibit the overflow from happening when
7530 * hwc->interrupts == MAX_INTERRUPTS.
7531 */
7532 break;
7533 }
cf450a73 7534 throttle = 1;
7b4b6658 7535 }
15dbf27c
PZ
7536}
7537
a4eaf7f1 7538static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7539 struct perf_sample_data *data,
5622f295 7540 struct pt_regs *regs)
7b4b6658 7541{
cdd6c482 7542 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7543
e7850595 7544 local64_add(nr, &event->count);
d6d020e9 7545
0cff784a
PZ
7546 if (!regs)
7547 return;
7548
6c7e550f 7549 if (!is_sampling_event(event))
7b4b6658 7550 return;
d6d020e9 7551
5d81e5cf
AV
7552 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7553 data->period = nr;
7554 return perf_swevent_overflow(event, 1, data, regs);
7555 } else
7556 data->period = event->hw.last_period;
7557
0cff784a 7558 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7559 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7560
e7850595 7561 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7562 return;
df1a132b 7563
a8b0ca17 7564 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7565}
7566
f5ffe02e
FW
7567static int perf_exclude_event(struct perf_event *event,
7568 struct pt_regs *regs)
7569{
a4eaf7f1 7570 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7571 return 1;
a4eaf7f1 7572
f5ffe02e
FW
7573 if (regs) {
7574 if (event->attr.exclude_user && user_mode(regs))
7575 return 1;
7576
7577 if (event->attr.exclude_kernel && !user_mode(regs))
7578 return 1;
7579 }
7580
7581 return 0;
7582}
7583
cdd6c482 7584static int perf_swevent_match(struct perf_event *event,
1c432d89 7585 enum perf_type_id type,
6fb2915d
LZ
7586 u32 event_id,
7587 struct perf_sample_data *data,
7588 struct pt_regs *regs)
15dbf27c 7589{
cdd6c482 7590 if (event->attr.type != type)
a21ca2ca 7591 return 0;
f5ffe02e 7592
cdd6c482 7593 if (event->attr.config != event_id)
15dbf27c
PZ
7594 return 0;
7595
f5ffe02e
FW
7596 if (perf_exclude_event(event, regs))
7597 return 0;
15dbf27c
PZ
7598
7599 return 1;
7600}
7601
76e1d904
FW
7602static inline u64 swevent_hash(u64 type, u32 event_id)
7603{
7604 u64 val = event_id | (type << 32);
7605
7606 return hash_64(val, SWEVENT_HLIST_BITS);
7607}
7608
49f135ed
FW
7609static inline struct hlist_head *
7610__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7611{
49f135ed
FW
7612 u64 hash = swevent_hash(type, event_id);
7613
7614 return &hlist->heads[hash];
7615}
76e1d904 7616
49f135ed
FW
7617/* For the read side: events when they trigger */
7618static inline struct hlist_head *
b28ab83c 7619find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7620{
7621 struct swevent_hlist *hlist;
76e1d904 7622
b28ab83c 7623 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7624 if (!hlist)
7625 return NULL;
7626
49f135ed
FW
7627 return __find_swevent_head(hlist, type, event_id);
7628}
7629
7630/* For the event head insertion and removal in the hlist */
7631static inline struct hlist_head *
b28ab83c 7632find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7633{
7634 struct swevent_hlist *hlist;
7635 u32 event_id = event->attr.config;
7636 u64 type = event->attr.type;
7637
7638 /*
7639 * Event scheduling is always serialized against hlist allocation
7640 * and release. Which makes the protected version suitable here.
7641 * The context lock guarantees that.
7642 */
b28ab83c 7643 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7644 lockdep_is_held(&event->ctx->lock));
7645 if (!hlist)
7646 return NULL;
7647
7648 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7649}
7650
7651static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7652 u64 nr,
76e1d904
FW
7653 struct perf_sample_data *data,
7654 struct pt_regs *regs)
15dbf27c 7655{
4a32fea9 7656 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7657 struct perf_event *event;
76e1d904 7658 struct hlist_head *head;
15dbf27c 7659
76e1d904 7660 rcu_read_lock();
b28ab83c 7661 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7662 if (!head)
7663 goto end;
7664
b67bfe0d 7665 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7666 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7667 perf_swevent_event(event, nr, data, regs);
15dbf27c 7668 }
76e1d904
FW
7669end:
7670 rcu_read_unlock();
15dbf27c
PZ
7671}
7672
86038c5e
PZI
7673DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7674
4ed7c92d 7675int perf_swevent_get_recursion_context(void)
96f6d444 7676{
4a32fea9 7677 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7678
b28ab83c 7679 return get_recursion_context(swhash->recursion);
96f6d444 7680}
645e8cc0 7681EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7682
98b5c2c6 7683void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7684{
4a32fea9 7685 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7686
b28ab83c 7687 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7688}
15dbf27c 7689
86038c5e 7690void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7691{
a4234bfc 7692 struct perf_sample_data data;
4ed7c92d 7693
86038c5e 7694 if (WARN_ON_ONCE(!regs))
4ed7c92d 7695 return;
a4234bfc 7696
fd0d000b 7697 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7698 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7699}
7700
7701void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7702{
7703 int rctx;
7704
7705 preempt_disable_notrace();
7706 rctx = perf_swevent_get_recursion_context();
7707 if (unlikely(rctx < 0))
7708 goto fail;
7709
7710 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7711
7712 perf_swevent_put_recursion_context(rctx);
86038c5e 7713fail:
1c024eca 7714 preempt_enable_notrace();
b8e83514
PZ
7715}
7716
cdd6c482 7717static void perf_swevent_read(struct perf_event *event)
15dbf27c 7718{
15dbf27c
PZ
7719}
7720
a4eaf7f1 7721static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7722{
4a32fea9 7723 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7724 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7725 struct hlist_head *head;
7726
6c7e550f 7727 if (is_sampling_event(event)) {
7b4b6658 7728 hwc->last_period = hwc->sample_period;
cdd6c482 7729 perf_swevent_set_period(event);
7b4b6658 7730 }
76e1d904 7731
a4eaf7f1
PZ
7732 hwc->state = !(flags & PERF_EF_START);
7733
b28ab83c 7734 head = find_swevent_head(swhash, event);
12ca6ad2 7735 if (WARN_ON_ONCE(!head))
76e1d904
FW
7736 return -EINVAL;
7737
7738 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7739 perf_event_update_userpage(event);
76e1d904 7740
15dbf27c
PZ
7741 return 0;
7742}
7743
a4eaf7f1 7744static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7745{
76e1d904 7746 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7747}
7748
a4eaf7f1 7749static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7750{
a4eaf7f1 7751 event->hw.state = 0;
d6d020e9 7752}
aa9c4c0f 7753
a4eaf7f1 7754static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7755{
a4eaf7f1 7756 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7757}
7758
49f135ed
FW
7759/* Deref the hlist from the update side */
7760static inline struct swevent_hlist *
b28ab83c 7761swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7762{
b28ab83c
PZ
7763 return rcu_dereference_protected(swhash->swevent_hlist,
7764 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7765}
7766
b28ab83c 7767static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7768{
b28ab83c 7769 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7770
49f135ed 7771 if (!hlist)
76e1d904
FW
7772 return;
7773
70691d4a 7774 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7775 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7776}
7777
3b364d7b 7778static void swevent_hlist_put_cpu(int cpu)
76e1d904 7779{
b28ab83c 7780 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7781
b28ab83c 7782 mutex_lock(&swhash->hlist_mutex);
76e1d904 7783
b28ab83c
PZ
7784 if (!--swhash->hlist_refcount)
7785 swevent_hlist_release(swhash);
76e1d904 7786
b28ab83c 7787 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7788}
7789
3b364d7b 7790static void swevent_hlist_put(void)
76e1d904
FW
7791{
7792 int cpu;
7793
76e1d904 7794 for_each_possible_cpu(cpu)
3b364d7b 7795 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7796}
7797
3b364d7b 7798static int swevent_hlist_get_cpu(int cpu)
76e1d904 7799{
b28ab83c 7800 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7801 int err = 0;
7802
b28ab83c 7803 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
7804 if (!swevent_hlist_deref(swhash) &&
7805 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
7806 struct swevent_hlist *hlist;
7807
7808 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7809 if (!hlist) {
7810 err = -ENOMEM;
7811 goto exit;
7812 }
b28ab83c 7813 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7814 }
b28ab83c 7815 swhash->hlist_refcount++;
9ed6060d 7816exit:
b28ab83c 7817 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7818
7819 return err;
7820}
7821
3b364d7b 7822static int swevent_hlist_get(void)
76e1d904 7823{
3b364d7b 7824 int err, cpu, failed_cpu;
76e1d904 7825
a63fbed7 7826 mutex_lock(&pmus_lock);
76e1d904 7827 for_each_possible_cpu(cpu) {
3b364d7b 7828 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7829 if (err) {
7830 failed_cpu = cpu;
7831 goto fail;
7832 }
7833 }
a63fbed7 7834 mutex_unlock(&pmus_lock);
76e1d904 7835 return 0;
9ed6060d 7836fail:
76e1d904
FW
7837 for_each_possible_cpu(cpu) {
7838 if (cpu == failed_cpu)
7839 break;
3b364d7b 7840 swevent_hlist_put_cpu(cpu);
76e1d904 7841 }
a63fbed7 7842 mutex_unlock(&pmus_lock);
76e1d904
FW
7843 return err;
7844}
7845
c5905afb 7846struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7847
b0a873eb
PZ
7848static void sw_perf_event_destroy(struct perf_event *event)
7849{
7850 u64 event_id = event->attr.config;
95476b64 7851
b0a873eb
PZ
7852 WARN_ON(event->parent);
7853
c5905afb 7854 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7855 swevent_hlist_put();
b0a873eb
PZ
7856}
7857
7858static int perf_swevent_init(struct perf_event *event)
7859{
8176cced 7860 u64 event_id = event->attr.config;
b0a873eb
PZ
7861
7862 if (event->attr.type != PERF_TYPE_SOFTWARE)
7863 return -ENOENT;
7864
2481c5fa
SE
7865 /*
7866 * no branch sampling for software events
7867 */
7868 if (has_branch_stack(event))
7869 return -EOPNOTSUPP;
7870
b0a873eb
PZ
7871 switch (event_id) {
7872 case PERF_COUNT_SW_CPU_CLOCK:
7873 case PERF_COUNT_SW_TASK_CLOCK:
7874 return -ENOENT;
7875
7876 default:
7877 break;
7878 }
7879
ce677831 7880 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7881 return -ENOENT;
7882
7883 if (!event->parent) {
7884 int err;
7885
3b364d7b 7886 err = swevent_hlist_get();
b0a873eb
PZ
7887 if (err)
7888 return err;
7889
c5905afb 7890 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7891 event->destroy = sw_perf_event_destroy;
7892 }
7893
7894 return 0;
7895}
7896
7897static struct pmu perf_swevent = {
89a1e187 7898 .task_ctx_nr = perf_sw_context,
95476b64 7899
34f43927
PZ
7900 .capabilities = PERF_PMU_CAP_NO_NMI,
7901
b0a873eb 7902 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7903 .add = perf_swevent_add,
7904 .del = perf_swevent_del,
7905 .start = perf_swevent_start,
7906 .stop = perf_swevent_stop,
1c024eca 7907 .read = perf_swevent_read,
1c024eca
PZ
7908};
7909
b0a873eb
PZ
7910#ifdef CONFIG_EVENT_TRACING
7911
1c024eca
PZ
7912static int perf_tp_filter_match(struct perf_event *event,
7913 struct perf_sample_data *data)
7914{
7e3f977e 7915 void *record = data->raw->frag.data;
1c024eca 7916
b71b437e
PZ
7917 /* only top level events have filters set */
7918 if (event->parent)
7919 event = event->parent;
7920
1c024eca
PZ
7921 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7922 return 1;
7923 return 0;
7924}
7925
7926static int perf_tp_event_match(struct perf_event *event,
7927 struct perf_sample_data *data,
7928 struct pt_regs *regs)
7929{
a0f7d0f7
FW
7930 if (event->hw.state & PERF_HES_STOPPED)
7931 return 0;
580d607c
PZ
7932 /*
7933 * All tracepoints are from kernel-space.
7934 */
7935 if (event->attr.exclude_kernel)
1c024eca
PZ
7936 return 0;
7937
7938 if (!perf_tp_filter_match(event, data))
7939 return 0;
7940
7941 return 1;
7942}
7943
85b67bcb
AS
7944void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7945 struct trace_event_call *call, u64 count,
7946 struct pt_regs *regs, struct hlist_head *head,
7947 struct task_struct *task)
7948{
7949 struct bpf_prog *prog = call->prog;
7950
7951 if (prog) {
7952 *(struct pt_regs **)raw_data = regs;
7953 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7954 perf_swevent_put_recursion_context(rctx);
7955 return;
7956 }
7957 }
7958 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
75e83876 7959 rctx, task, NULL);
85b67bcb
AS
7960}
7961EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7962
1e1dcd93 7963void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 7964 struct pt_regs *regs, struct hlist_head *head, int rctx,
75e83876 7965 struct task_struct *task, struct perf_event *event)
95476b64
FW
7966{
7967 struct perf_sample_data data;
1c024eca 7968
95476b64 7969 struct perf_raw_record raw = {
7e3f977e
DB
7970 .frag = {
7971 .size = entry_size,
7972 .data = record,
7973 },
95476b64
FW
7974 };
7975
1e1dcd93 7976 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7977 data.raw = &raw;
7978
1e1dcd93
AS
7979 perf_trace_buf_update(record, event_type);
7980
75e83876
ZC
7981 /* Use the given event instead of the hlist */
7982 if (event) {
1c024eca 7983 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7984 perf_swevent_event(event, count, &data, regs);
75e83876
ZC
7985 } else {
7986 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7987 if (perf_tp_event_match(event, &data, regs))
7988 perf_swevent_event(event, count, &data, regs);
7989 }
4f41c013 7990 }
ecc55f84 7991
e6dab5ff
AV
7992 /*
7993 * If we got specified a target task, also iterate its context and
7994 * deliver this event there too.
7995 */
7996 if (task && task != current) {
7997 struct perf_event_context *ctx;
7998 struct trace_entry *entry = record;
7999
8000 rcu_read_lock();
8001 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8002 if (!ctx)
8003 goto unlock;
8004
8005 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8006 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8007 continue;
8008 if (event->attr.config != entry->type)
8009 continue;
8010 if (perf_tp_event_match(event, &data, regs))
8011 perf_swevent_event(event, count, &data, regs);
8012 }
8013unlock:
8014 rcu_read_unlock();
8015 }
8016
ecc55f84 8017 perf_swevent_put_recursion_context(rctx);
95476b64
FW
8018}
8019EXPORT_SYMBOL_GPL(perf_tp_event);
8020
cdd6c482 8021static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 8022{
1c024eca 8023 perf_trace_destroy(event);
e077df4f
PZ
8024}
8025
b0a873eb 8026static int perf_tp_event_init(struct perf_event *event)
e077df4f 8027{
76e1d904
FW
8028 int err;
8029
b0a873eb
PZ
8030 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8031 return -ENOENT;
8032
2481c5fa
SE
8033 /*
8034 * no branch sampling for tracepoint events
8035 */
8036 if (has_branch_stack(event))
8037 return -EOPNOTSUPP;
8038
1c024eca
PZ
8039 err = perf_trace_init(event);
8040 if (err)
b0a873eb 8041 return err;
e077df4f 8042
cdd6c482 8043 event->destroy = tp_perf_event_destroy;
e077df4f 8044
b0a873eb
PZ
8045 return 0;
8046}
8047
8048static struct pmu perf_tracepoint = {
89a1e187
PZ
8049 .task_ctx_nr = perf_sw_context,
8050
b0a873eb 8051 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
8052 .add = perf_trace_add,
8053 .del = perf_trace_del,
8054 .start = perf_swevent_start,
8055 .stop = perf_swevent_stop,
b0a873eb 8056 .read = perf_swevent_read,
b0a873eb
PZ
8057};
8058
8059static inline void perf_tp_register(void)
8060{
2e80a82a 8061 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 8062}
6fb2915d 8063
6fb2915d
LZ
8064static void perf_event_free_filter(struct perf_event *event)
8065{
8066 ftrace_profile_free_filter(event);
8067}
8068
aa6a5f3c
AS
8069#ifdef CONFIG_BPF_SYSCALL
8070static void bpf_overflow_handler(struct perf_event *event,
8071 struct perf_sample_data *data,
8072 struct pt_regs *regs)
8073{
8074 struct bpf_perf_event_data_kern ctx = {
8075 .data = data,
8076 .regs = regs,
8077 };
8078 int ret = 0;
8079
8080 preempt_disable();
8081 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8082 goto out;
8083 rcu_read_lock();
88575199 8084 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8085 rcu_read_unlock();
8086out:
8087 __this_cpu_dec(bpf_prog_active);
8088 preempt_enable();
8089 if (!ret)
8090 return;
8091
8092 event->orig_overflow_handler(event, data, regs);
8093}
8094
8095static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8096{
8097 struct bpf_prog *prog;
8098
8099 if (event->overflow_handler_context)
8100 /* hw breakpoint or kernel counter */
8101 return -EINVAL;
8102
8103 if (event->prog)
8104 return -EEXIST;
8105
8106 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8107 if (IS_ERR(prog))
8108 return PTR_ERR(prog);
8109
8110 event->prog = prog;
8111 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8112 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8113 return 0;
8114}
8115
8116static void perf_event_free_bpf_handler(struct perf_event *event)
8117{
8118 struct bpf_prog *prog = event->prog;
8119
8120 if (!prog)
8121 return;
8122
8123 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8124 event->prog = NULL;
8125 bpf_prog_put(prog);
8126}
8127#else
8128static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8129{
8130 return -EOPNOTSUPP;
8131}
8132static void perf_event_free_bpf_handler(struct perf_event *event)
8133{
8134}
8135#endif
8136
2541517c
AS
8137static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8138{
cf5f5cea 8139 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c
AS
8140 struct bpf_prog *prog;
8141
8142 if (event->attr.type != PERF_TYPE_TRACEPOINT)
f91840a3 8143 return perf_event_set_bpf_handler(event, prog_fd);
2541517c
AS
8144
8145 if (event->tp_event->prog)
8146 return -EEXIST;
8147
98b5c2c6
AS
8148 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8149 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8150 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8151 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8152 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8153 return -EINVAL;
8154
8155 prog = bpf_prog_get(prog_fd);
8156 if (IS_ERR(prog))
8157 return PTR_ERR(prog);
8158
98b5c2c6 8159 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8160 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8161 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8162 /* valid fd, but invalid bpf program type */
8163 bpf_prog_put(prog);
8164 return -EINVAL;
8165 }
8166
cf5f5cea 8167 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8168 int off = trace_event_get_offsets(event->tp_event);
8169
8170 if (prog->aux->max_ctx_offset > off) {
8171 bpf_prog_put(prog);
8172 return -EACCES;
8173 }
8174 }
2541517c 8175 event->tp_event->prog = prog;
ec9dd352 8176 event->tp_event->bpf_prog_owner = event;
2541517c
AS
8177
8178 return 0;
8179}
8180
8181static void perf_event_free_bpf_prog(struct perf_event *event)
8182{
8183 struct bpf_prog *prog;
8184
aa6a5f3c
AS
8185 perf_event_free_bpf_handler(event);
8186
2541517c
AS
8187 if (!event->tp_event)
8188 return;
8189
8190 prog = event->tp_event->prog;
ec9dd352 8191 if (prog && event->tp_event->bpf_prog_owner == event) {
2541517c 8192 event->tp_event->prog = NULL;
1aacde3d 8193 bpf_prog_put(prog);
2541517c
AS
8194 }
8195}
8196
e077df4f 8197#else
6fb2915d 8198
b0a873eb 8199static inline void perf_tp_register(void)
e077df4f 8200{
e077df4f 8201}
6fb2915d 8202
6fb2915d
LZ
8203static void perf_event_free_filter(struct perf_event *event)
8204{
8205}
8206
2541517c
AS
8207static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8208{
8209 return -ENOENT;
8210}
8211
8212static void perf_event_free_bpf_prog(struct perf_event *event)
8213{
8214}
07b139c8 8215#endif /* CONFIG_EVENT_TRACING */
e077df4f 8216
24f1e32c 8217#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8218void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8219{
f5ffe02e
FW
8220 struct perf_sample_data sample;
8221 struct pt_regs *regs = data;
8222
fd0d000b 8223 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8224
a4eaf7f1 8225 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8226 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8227}
8228#endif
8229
375637bc
AS
8230/*
8231 * Allocate a new address filter
8232 */
8233static struct perf_addr_filter *
8234perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8235{
8236 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8237 struct perf_addr_filter *filter;
8238
8239 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8240 if (!filter)
8241 return NULL;
8242
8243 INIT_LIST_HEAD(&filter->entry);
8244 list_add_tail(&filter->entry, filters);
8245
8246 return filter;
8247}
8248
8249static void free_filters_list(struct list_head *filters)
8250{
8251 struct perf_addr_filter *filter, *iter;
8252
8253 list_for_each_entry_safe(filter, iter, filters, entry) {
8254 if (filter->inode)
8255 iput(filter->inode);
8256 list_del(&filter->entry);
8257 kfree(filter);
8258 }
8259}
8260
8261/*
8262 * Free existing address filters and optionally install new ones
8263 */
8264static void perf_addr_filters_splice(struct perf_event *event,
8265 struct list_head *head)
8266{
8267 unsigned long flags;
8268 LIST_HEAD(list);
8269
8270 if (!has_addr_filter(event))
8271 return;
8272
8273 /* don't bother with children, they don't have their own filters */
8274 if (event->parent)
8275 return;
8276
8277 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8278
8279 list_splice_init(&event->addr_filters.list, &list);
8280 if (head)
8281 list_splice(head, &event->addr_filters.list);
8282
8283 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8284
8285 free_filters_list(&list);
8286}
8287
8288/*
8289 * Scan through mm's vmas and see if one of them matches the
8290 * @filter; if so, adjust filter's address range.
8291 * Called with mm::mmap_sem down for reading.
8292 */
8293static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8294 struct mm_struct *mm)
8295{
8296 struct vm_area_struct *vma;
8297
8298 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8299 struct file *file = vma->vm_file;
8300 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8301 unsigned long vma_size = vma->vm_end - vma->vm_start;
8302
8303 if (!file)
8304 continue;
8305
8306 if (!perf_addr_filter_match(filter, file, off, vma_size))
8307 continue;
8308
8309 return vma->vm_start;
8310 }
8311
8312 return 0;
8313}
8314
8315/*
8316 * Update event's address range filters based on the
8317 * task's existing mappings, if any.
8318 */
8319static void perf_event_addr_filters_apply(struct perf_event *event)
8320{
8321 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8322 struct task_struct *task = READ_ONCE(event->ctx->task);
8323 struct perf_addr_filter *filter;
8324 struct mm_struct *mm = NULL;
8325 unsigned int count = 0;
8326 unsigned long flags;
8327
8328 /*
8329 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8330 * will stop on the parent's child_mutex that our caller is also holding
8331 */
8332 if (task == TASK_TOMBSTONE)
8333 return;
8334
6ce77bfd
AS
8335 if (!ifh->nr_file_filters)
8336 return;
8337
375637bc
AS
8338 mm = get_task_mm(event->ctx->task);
8339 if (!mm)
8340 goto restart;
8341
8342 down_read(&mm->mmap_sem);
8343
8344 raw_spin_lock_irqsave(&ifh->lock, flags);
8345 list_for_each_entry(filter, &ifh->list, entry) {
8346 event->addr_filters_offs[count] = 0;
8347
99f5bc9b
MP
8348 /*
8349 * Adjust base offset if the filter is associated to a binary
8350 * that needs to be mapped:
8351 */
8352 if (filter->inode)
375637bc
AS
8353 event->addr_filters_offs[count] =
8354 perf_addr_filter_apply(filter, mm);
8355
8356 count++;
8357 }
8358
8359 event->addr_filters_gen++;
8360 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8361
8362 up_read(&mm->mmap_sem);
8363
8364 mmput(mm);
8365
8366restart:
767ae086 8367 perf_event_stop(event, 1);
375637bc
AS
8368}
8369
8370/*
8371 * Address range filtering: limiting the data to certain
8372 * instruction address ranges. Filters are ioctl()ed to us from
8373 * userspace as ascii strings.
8374 *
8375 * Filter string format:
8376 *
8377 * ACTION RANGE_SPEC
8378 * where ACTION is one of the
8379 * * "filter": limit the trace to this region
8380 * * "start": start tracing from this address
8381 * * "stop": stop tracing at this address/region;
8382 * RANGE_SPEC is
8383 * * for kernel addresses: <start address>[/<size>]
8384 * * for object files: <start address>[/<size>]@</path/to/object/file>
8385 *
8386 * if <size> is not specified, the range is treated as a single address.
8387 */
8388enum {
e96271f3 8389 IF_ACT_NONE = -1,
375637bc
AS
8390 IF_ACT_FILTER,
8391 IF_ACT_START,
8392 IF_ACT_STOP,
8393 IF_SRC_FILE,
8394 IF_SRC_KERNEL,
8395 IF_SRC_FILEADDR,
8396 IF_SRC_KERNELADDR,
8397};
8398
8399enum {
8400 IF_STATE_ACTION = 0,
8401 IF_STATE_SOURCE,
8402 IF_STATE_END,
8403};
8404
8405static const match_table_t if_tokens = {
8406 { IF_ACT_FILTER, "filter" },
8407 { IF_ACT_START, "start" },
8408 { IF_ACT_STOP, "stop" },
8409 { IF_SRC_FILE, "%u/%u@%s" },
8410 { IF_SRC_KERNEL, "%u/%u" },
8411 { IF_SRC_FILEADDR, "%u@%s" },
8412 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8413 { IF_ACT_NONE, NULL },
375637bc
AS
8414};
8415
8416/*
8417 * Address filter string parser
8418 */
8419static int
8420perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8421 struct list_head *filters)
8422{
8423 struct perf_addr_filter *filter = NULL;
8424 char *start, *orig, *filename = NULL;
8425 struct path path;
8426 substring_t args[MAX_OPT_ARGS];
8427 int state = IF_STATE_ACTION, token;
8428 unsigned int kernel = 0;
8429 int ret = -EINVAL;
8430
8431 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8432 if (!fstr)
8433 return -ENOMEM;
8434
8435 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8436 ret = -EINVAL;
8437
8438 if (!*start)
8439 continue;
8440
8441 /* filter definition begins */
8442 if (state == IF_STATE_ACTION) {
8443 filter = perf_addr_filter_new(event, filters);
8444 if (!filter)
8445 goto fail;
8446 }
8447
8448 token = match_token(start, if_tokens, args);
8449 switch (token) {
8450 case IF_ACT_FILTER:
8451 case IF_ACT_START:
8452 filter->filter = 1;
8453
8454 case IF_ACT_STOP:
8455 if (state != IF_STATE_ACTION)
8456 goto fail;
8457
8458 state = IF_STATE_SOURCE;
8459 break;
8460
8461 case IF_SRC_KERNELADDR:
8462 case IF_SRC_KERNEL:
8463 kernel = 1;
8464
8465 case IF_SRC_FILEADDR:
8466 case IF_SRC_FILE:
8467 if (state != IF_STATE_SOURCE)
8468 goto fail;
8469
8470 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8471 filter->range = 1;
8472
8473 *args[0].to = 0;
8474 ret = kstrtoul(args[0].from, 0, &filter->offset);
8475 if (ret)
8476 goto fail;
8477
8478 if (filter->range) {
8479 *args[1].to = 0;
8480 ret = kstrtoul(args[1].from, 0, &filter->size);
8481 if (ret)
8482 goto fail;
8483 }
8484
4059ffd0
MP
8485 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8486 int fpos = filter->range ? 2 : 1;
8487
8488 filename = match_strdup(&args[fpos]);
375637bc
AS
8489 if (!filename) {
8490 ret = -ENOMEM;
8491 goto fail;
8492 }
8493 }
8494
8495 state = IF_STATE_END;
8496 break;
8497
8498 default:
8499 goto fail;
8500 }
8501
8502 /*
8503 * Filter definition is fully parsed, validate and install it.
8504 * Make sure that it doesn't contradict itself or the event's
8505 * attribute.
8506 */
8507 if (state == IF_STATE_END) {
9ccbfbb1 8508 ret = -EINVAL;
375637bc
AS
8509 if (kernel && event->attr.exclude_kernel)
8510 goto fail;
8511
8512 if (!kernel) {
8513 if (!filename)
8514 goto fail;
8515
6ce77bfd
AS
8516 /*
8517 * For now, we only support file-based filters
8518 * in per-task events; doing so for CPU-wide
8519 * events requires additional context switching
8520 * trickery, since same object code will be
8521 * mapped at different virtual addresses in
8522 * different processes.
8523 */
8524 ret = -EOPNOTSUPP;
8525 if (!event->ctx->task)
8526 goto fail_free_name;
8527
375637bc
AS
8528 /* look up the path and grab its inode */
8529 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8530 if (ret)
8531 goto fail_free_name;
8532
8533 filter->inode = igrab(d_inode(path.dentry));
8534 path_put(&path);
8535 kfree(filename);
8536 filename = NULL;
8537
8538 ret = -EINVAL;
8539 if (!filter->inode ||
8540 !S_ISREG(filter->inode->i_mode))
8541 /* free_filters_list() will iput() */
8542 goto fail;
6ce77bfd
AS
8543
8544 event->addr_filters.nr_file_filters++;
375637bc
AS
8545 }
8546
8547 /* ready to consume more filters */
8548 state = IF_STATE_ACTION;
8549 filter = NULL;
8550 }
8551 }
8552
8553 if (state != IF_STATE_ACTION)
8554 goto fail;
8555
8556 kfree(orig);
8557
8558 return 0;
8559
8560fail_free_name:
8561 kfree(filename);
8562fail:
8563 free_filters_list(filters);
8564 kfree(orig);
8565
8566 return ret;
8567}
8568
8569static int
8570perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8571{
8572 LIST_HEAD(filters);
8573 int ret;
8574
8575 /*
8576 * Since this is called in perf_ioctl() path, we're already holding
8577 * ctx::mutex.
8578 */
8579 lockdep_assert_held(&event->ctx->mutex);
8580
8581 if (WARN_ON_ONCE(event->parent))
8582 return -EINVAL;
8583
375637bc
AS
8584 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8585 if (ret)
6ce77bfd 8586 goto fail_clear_files;
375637bc
AS
8587
8588 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8589 if (ret)
8590 goto fail_free_filters;
375637bc
AS
8591
8592 /* remove existing filters, if any */
8593 perf_addr_filters_splice(event, &filters);
8594
8595 /* install new filters */
8596 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8597
6ce77bfd
AS
8598 return ret;
8599
8600fail_free_filters:
8601 free_filters_list(&filters);
8602
8603fail_clear_files:
8604 event->addr_filters.nr_file_filters = 0;
8605
375637bc
AS
8606 return ret;
8607}
8608
c796bbbe
AS
8609static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8610{
8611 char *filter_str;
8612 int ret = -EINVAL;
8613
375637bc
AS
8614 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8615 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8616 !has_addr_filter(event))
c796bbbe
AS
8617 return -EINVAL;
8618
8619 filter_str = strndup_user(arg, PAGE_SIZE);
8620 if (IS_ERR(filter_str))
8621 return PTR_ERR(filter_str);
8622
8623 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8624 event->attr.type == PERF_TYPE_TRACEPOINT)
8625 ret = ftrace_profile_set_filter(event, event->attr.config,
8626 filter_str);
375637bc
AS
8627 else if (has_addr_filter(event))
8628 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8629
8630 kfree(filter_str);
8631 return ret;
8632}
8633
b0a873eb
PZ
8634/*
8635 * hrtimer based swevent callback
8636 */
f29ac756 8637
b0a873eb 8638static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8639{
b0a873eb
PZ
8640 enum hrtimer_restart ret = HRTIMER_RESTART;
8641 struct perf_sample_data data;
8642 struct pt_regs *regs;
8643 struct perf_event *event;
8644 u64 period;
f29ac756 8645
b0a873eb 8646 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8647
8648 if (event->state != PERF_EVENT_STATE_ACTIVE)
8649 return HRTIMER_NORESTART;
8650
b0a873eb 8651 event->pmu->read(event);
f344011c 8652
fd0d000b 8653 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8654 regs = get_irq_regs();
8655
8656 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8657 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8658 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8659 ret = HRTIMER_NORESTART;
8660 }
24f1e32c 8661
b0a873eb
PZ
8662 period = max_t(u64, 10000, event->hw.sample_period);
8663 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8664
b0a873eb 8665 return ret;
f29ac756
PZ
8666}
8667
b0a873eb 8668static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8669{
b0a873eb 8670 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8671 s64 period;
8672
8673 if (!is_sampling_event(event))
8674 return;
f5ffe02e 8675
5d508e82
FBH
8676 period = local64_read(&hwc->period_left);
8677 if (period) {
8678 if (period < 0)
8679 period = 10000;
fa407f35 8680
5d508e82
FBH
8681 local64_set(&hwc->period_left, 0);
8682 } else {
8683 period = max_t(u64, 10000, hwc->sample_period);
8684 }
3497d206
TG
8685 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8686 HRTIMER_MODE_REL_PINNED);
24f1e32c 8687}
b0a873eb
PZ
8688
8689static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8690{
b0a873eb
PZ
8691 struct hw_perf_event *hwc = &event->hw;
8692
6c7e550f 8693 if (is_sampling_event(event)) {
b0a873eb 8694 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8695 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8696
8697 hrtimer_cancel(&hwc->hrtimer);
8698 }
24f1e32c
FW
8699}
8700
ba3dd36c
PZ
8701static void perf_swevent_init_hrtimer(struct perf_event *event)
8702{
8703 struct hw_perf_event *hwc = &event->hw;
8704
8705 if (!is_sampling_event(event))
8706 return;
8707
8708 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8709 hwc->hrtimer.function = perf_swevent_hrtimer;
8710
8711 /*
8712 * Since hrtimers have a fixed rate, we can do a static freq->period
8713 * mapping and avoid the whole period adjust feedback stuff.
8714 */
8715 if (event->attr.freq) {
8716 long freq = event->attr.sample_freq;
8717
8718 event->attr.sample_period = NSEC_PER_SEC / freq;
8719 hwc->sample_period = event->attr.sample_period;
8720 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8721 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8722 event->attr.freq = 0;
8723 }
8724}
8725
b0a873eb
PZ
8726/*
8727 * Software event: cpu wall time clock
8728 */
8729
8730static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8731{
b0a873eb
PZ
8732 s64 prev;
8733 u64 now;
8734
a4eaf7f1 8735 now = local_clock();
b0a873eb
PZ
8736 prev = local64_xchg(&event->hw.prev_count, now);
8737 local64_add(now - prev, &event->count);
24f1e32c 8738}
24f1e32c 8739
a4eaf7f1 8740static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8741{
a4eaf7f1 8742 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8743 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8744}
8745
a4eaf7f1 8746static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8747{
b0a873eb
PZ
8748 perf_swevent_cancel_hrtimer(event);
8749 cpu_clock_event_update(event);
8750}
f29ac756 8751
a4eaf7f1
PZ
8752static int cpu_clock_event_add(struct perf_event *event, int flags)
8753{
8754 if (flags & PERF_EF_START)
8755 cpu_clock_event_start(event, flags);
6a694a60 8756 perf_event_update_userpage(event);
a4eaf7f1
PZ
8757
8758 return 0;
8759}
8760
8761static void cpu_clock_event_del(struct perf_event *event, int flags)
8762{
8763 cpu_clock_event_stop(event, flags);
8764}
8765
b0a873eb
PZ
8766static void cpu_clock_event_read(struct perf_event *event)
8767{
8768 cpu_clock_event_update(event);
8769}
f344011c 8770
b0a873eb
PZ
8771static int cpu_clock_event_init(struct perf_event *event)
8772{
8773 if (event->attr.type != PERF_TYPE_SOFTWARE)
8774 return -ENOENT;
8775
8776 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8777 return -ENOENT;
8778
2481c5fa
SE
8779 /*
8780 * no branch sampling for software events
8781 */
8782 if (has_branch_stack(event))
8783 return -EOPNOTSUPP;
8784
ba3dd36c
PZ
8785 perf_swevent_init_hrtimer(event);
8786
b0a873eb 8787 return 0;
f29ac756
PZ
8788}
8789
b0a873eb 8790static struct pmu perf_cpu_clock = {
89a1e187
PZ
8791 .task_ctx_nr = perf_sw_context,
8792
34f43927
PZ
8793 .capabilities = PERF_PMU_CAP_NO_NMI,
8794
b0a873eb 8795 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8796 .add = cpu_clock_event_add,
8797 .del = cpu_clock_event_del,
8798 .start = cpu_clock_event_start,
8799 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8800 .read = cpu_clock_event_read,
8801};
8802
8803/*
8804 * Software event: task time clock
8805 */
8806
8807static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8808{
b0a873eb
PZ
8809 u64 prev;
8810 s64 delta;
5c92d124 8811
b0a873eb
PZ
8812 prev = local64_xchg(&event->hw.prev_count, now);
8813 delta = now - prev;
8814 local64_add(delta, &event->count);
8815}
5c92d124 8816
a4eaf7f1 8817static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8818{
a4eaf7f1 8819 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8820 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8821}
8822
a4eaf7f1 8823static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8824{
8825 perf_swevent_cancel_hrtimer(event);
8826 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8827}
8828
8829static int task_clock_event_add(struct perf_event *event, int flags)
8830{
8831 if (flags & PERF_EF_START)
8832 task_clock_event_start(event, flags);
6a694a60 8833 perf_event_update_userpage(event);
b0a873eb 8834
a4eaf7f1
PZ
8835 return 0;
8836}
8837
8838static void task_clock_event_del(struct perf_event *event, int flags)
8839{
8840 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8841}
8842
8843static void task_clock_event_read(struct perf_event *event)
8844{
768a06e2
PZ
8845 u64 now = perf_clock();
8846 u64 delta = now - event->ctx->timestamp;
8847 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8848
8849 task_clock_event_update(event, time);
8850}
8851
8852static int task_clock_event_init(struct perf_event *event)
6fb2915d 8853{
b0a873eb
PZ
8854 if (event->attr.type != PERF_TYPE_SOFTWARE)
8855 return -ENOENT;
8856
8857 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8858 return -ENOENT;
8859
2481c5fa
SE
8860 /*
8861 * no branch sampling for software events
8862 */
8863 if (has_branch_stack(event))
8864 return -EOPNOTSUPP;
8865
ba3dd36c
PZ
8866 perf_swevent_init_hrtimer(event);
8867
b0a873eb 8868 return 0;
6fb2915d
LZ
8869}
8870
b0a873eb 8871static struct pmu perf_task_clock = {
89a1e187
PZ
8872 .task_ctx_nr = perf_sw_context,
8873
34f43927
PZ
8874 .capabilities = PERF_PMU_CAP_NO_NMI,
8875
b0a873eb 8876 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8877 .add = task_clock_event_add,
8878 .del = task_clock_event_del,
8879 .start = task_clock_event_start,
8880 .stop = task_clock_event_stop,
b0a873eb
PZ
8881 .read = task_clock_event_read,
8882};
6fb2915d 8883
ad5133b7 8884static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8885{
e077df4f 8886}
6fb2915d 8887
fbbe0701
SB
8888static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8889{
8890}
8891
ad5133b7 8892static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8893{
ad5133b7 8894 return 0;
6fb2915d
LZ
8895}
8896
18ab2cd3 8897static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8898
8899static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8900{
fbbe0701
SB
8901 __this_cpu_write(nop_txn_flags, flags);
8902
8903 if (flags & ~PERF_PMU_TXN_ADD)
8904 return;
8905
ad5133b7 8906 perf_pmu_disable(pmu);
6fb2915d
LZ
8907}
8908
ad5133b7
PZ
8909static int perf_pmu_commit_txn(struct pmu *pmu)
8910{
fbbe0701
SB
8911 unsigned int flags = __this_cpu_read(nop_txn_flags);
8912
8913 __this_cpu_write(nop_txn_flags, 0);
8914
8915 if (flags & ~PERF_PMU_TXN_ADD)
8916 return 0;
8917
ad5133b7
PZ
8918 perf_pmu_enable(pmu);
8919 return 0;
8920}
e077df4f 8921
ad5133b7 8922static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8923{
fbbe0701
SB
8924 unsigned int flags = __this_cpu_read(nop_txn_flags);
8925
8926 __this_cpu_write(nop_txn_flags, 0);
8927
8928 if (flags & ~PERF_PMU_TXN_ADD)
8929 return;
8930
ad5133b7 8931 perf_pmu_enable(pmu);
24f1e32c
FW
8932}
8933
35edc2a5
PZ
8934static int perf_event_idx_default(struct perf_event *event)
8935{
c719f560 8936 return 0;
35edc2a5
PZ
8937}
8938
8dc85d54
PZ
8939/*
8940 * Ensures all contexts with the same task_ctx_nr have the same
8941 * pmu_cpu_context too.
8942 */
9e317041 8943static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8944{
8dc85d54 8945 struct pmu *pmu;
b326e956 8946
8dc85d54
PZ
8947 if (ctxn < 0)
8948 return NULL;
24f1e32c 8949
8dc85d54
PZ
8950 list_for_each_entry(pmu, &pmus, entry) {
8951 if (pmu->task_ctx_nr == ctxn)
8952 return pmu->pmu_cpu_context;
8953 }
24f1e32c 8954
8dc85d54 8955 return NULL;
24f1e32c
FW
8956}
8957
51676957
PZ
8958static void free_pmu_context(struct pmu *pmu)
8959{
df0062b2
WD
8960 /*
8961 * Static contexts such as perf_sw_context have a global lifetime
8962 * and may be shared between different PMUs. Avoid freeing them
8963 * when a single PMU is going away.
8964 */
8965 if (pmu->task_ctx_nr > perf_invalid_context)
8966 return;
8967
8dc85d54 8968 mutex_lock(&pmus_lock);
51676957 8969 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8970 mutex_unlock(&pmus_lock);
24f1e32c 8971}
6e855cd4
AS
8972
8973/*
8974 * Let userspace know that this PMU supports address range filtering:
8975 */
8976static ssize_t nr_addr_filters_show(struct device *dev,
8977 struct device_attribute *attr,
8978 char *page)
8979{
8980 struct pmu *pmu = dev_get_drvdata(dev);
8981
8982 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8983}
8984DEVICE_ATTR_RO(nr_addr_filters);
8985
2e80a82a 8986static struct idr pmu_idr;
d6d020e9 8987
abe43400
PZ
8988static ssize_t
8989type_show(struct device *dev, struct device_attribute *attr, char *page)
8990{
8991 struct pmu *pmu = dev_get_drvdata(dev);
8992
8993 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8994}
90826ca7 8995static DEVICE_ATTR_RO(type);
abe43400 8996
62b85639
SE
8997static ssize_t
8998perf_event_mux_interval_ms_show(struct device *dev,
8999 struct device_attribute *attr,
9000 char *page)
9001{
9002 struct pmu *pmu = dev_get_drvdata(dev);
9003
9004 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9005}
9006
272325c4
PZ
9007static DEFINE_MUTEX(mux_interval_mutex);
9008
62b85639
SE
9009static ssize_t
9010perf_event_mux_interval_ms_store(struct device *dev,
9011 struct device_attribute *attr,
9012 const char *buf, size_t count)
9013{
9014 struct pmu *pmu = dev_get_drvdata(dev);
9015 int timer, cpu, ret;
9016
9017 ret = kstrtoint(buf, 0, &timer);
9018 if (ret)
9019 return ret;
9020
9021 if (timer < 1)
9022 return -EINVAL;
9023
9024 /* same value, noting to do */
9025 if (timer == pmu->hrtimer_interval_ms)
9026 return count;
9027
272325c4 9028 mutex_lock(&mux_interval_mutex);
62b85639
SE
9029 pmu->hrtimer_interval_ms = timer;
9030
9031 /* update all cpuctx for this PMU */
a63fbed7 9032 cpus_read_lock();
272325c4 9033 for_each_online_cpu(cpu) {
62b85639
SE
9034 struct perf_cpu_context *cpuctx;
9035 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9036 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9037
272325c4
PZ
9038 cpu_function_call(cpu,
9039 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 9040 }
a63fbed7 9041 cpus_read_unlock();
272325c4 9042 mutex_unlock(&mux_interval_mutex);
62b85639
SE
9043
9044 return count;
9045}
90826ca7 9046static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 9047
90826ca7
GKH
9048static struct attribute *pmu_dev_attrs[] = {
9049 &dev_attr_type.attr,
9050 &dev_attr_perf_event_mux_interval_ms.attr,
9051 NULL,
abe43400 9052};
90826ca7 9053ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9054
9055static int pmu_bus_running;
9056static struct bus_type pmu_bus = {
9057 .name = "event_source",
90826ca7 9058 .dev_groups = pmu_dev_groups,
abe43400
PZ
9059};
9060
9061static void pmu_dev_release(struct device *dev)
9062{
9063 kfree(dev);
9064}
9065
9066static int pmu_dev_alloc(struct pmu *pmu)
9067{
9068 int ret = -ENOMEM;
9069
9070 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9071 if (!pmu->dev)
9072 goto out;
9073
0c9d42ed 9074 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9075 device_initialize(pmu->dev);
9076 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9077 if (ret)
9078 goto free_dev;
9079
9080 dev_set_drvdata(pmu->dev, pmu);
9081 pmu->dev->bus = &pmu_bus;
9082 pmu->dev->release = pmu_dev_release;
9083 ret = device_add(pmu->dev);
9084 if (ret)
9085 goto free_dev;
9086
6e855cd4
AS
9087 /* For PMUs with address filters, throw in an extra attribute: */
9088 if (pmu->nr_addr_filters)
9089 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9090
9091 if (ret)
9092 goto del_dev;
9093
abe43400
PZ
9094out:
9095 return ret;
9096
6e855cd4
AS
9097del_dev:
9098 device_del(pmu->dev);
9099
abe43400
PZ
9100free_dev:
9101 put_device(pmu->dev);
9102 goto out;
9103}
9104
547e9fd7 9105static struct lock_class_key cpuctx_mutex;
facc4307 9106static struct lock_class_key cpuctx_lock;
547e9fd7 9107
03d8e80b 9108int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9109{
108b02cf 9110 int cpu, ret;
24f1e32c 9111
b0a873eb 9112 mutex_lock(&pmus_lock);
33696fc0
PZ
9113 ret = -ENOMEM;
9114 pmu->pmu_disable_count = alloc_percpu(int);
9115 if (!pmu->pmu_disable_count)
9116 goto unlock;
f29ac756 9117
2e80a82a
PZ
9118 pmu->type = -1;
9119 if (!name)
9120 goto skip_type;
9121 pmu->name = name;
9122
9123 if (type < 0) {
0e9c3be2
TH
9124 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9125 if (type < 0) {
9126 ret = type;
2e80a82a
PZ
9127 goto free_pdc;
9128 }
9129 }
9130 pmu->type = type;
9131
abe43400
PZ
9132 if (pmu_bus_running) {
9133 ret = pmu_dev_alloc(pmu);
9134 if (ret)
9135 goto free_idr;
9136 }
9137
2e80a82a 9138skip_type:
26657848
PZ
9139 if (pmu->task_ctx_nr == perf_hw_context) {
9140 static int hw_context_taken = 0;
9141
5101ef20
MR
9142 /*
9143 * Other than systems with heterogeneous CPUs, it never makes
9144 * sense for two PMUs to share perf_hw_context. PMUs which are
9145 * uncore must use perf_invalid_context.
9146 */
9147 if (WARN_ON_ONCE(hw_context_taken &&
9148 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9149 pmu->task_ctx_nr = perf_invalid_context;
9150
9151 hw_context_taken = 1;
9152 }
9153
8dc85d54
PZ
9154 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9155 if (pmu->pmu_cpu_context)
9156 goto got_cpu_context;
f29ac756 9157
c4814202 9158 ret = -ENOMEM;
108b02cf
PZ
9159 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9160 if (!pmu->pmu_cpu_context)
abe43400 9161 goto free_dev;
f344011c 9162
108b02cf
PZ
9163 for_each_possible_cpu(cpu) {
9164 struct perf_cpu_context *cpuctx;
9165
9166 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9167 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9168 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9169 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9170 cpuctx->ctx.pmu = pmu;
a63fbed7 9171 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9172
272325c4 9173 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9174 }
76e1d904 9175
8dc85d54 9176got_cpu_context:
ad5133b7
PZ
9177 if (!pmu->start_txn) {
9178 if (pmu->pmu_enable) {
9179 /*
9180 * If we have pmu_enable/pmu_disable calls, install
9181 * transaction stubs that use that to try and batch
9182 * hardware accesses.
9183 */
9184 pmu->start_txn = perf_pmu_start_txn;
9185 pmu->commit_txn = perf_pmu_commit_txn;
9186 pmu->cancel_txn = perf_pmu_cancel_txn;
9187 } else {
fbbe0701 9188 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9189 pmu->commit_txn = perf_pmu_nop_int;
9190 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9191 }
5c92d124 9192 }
15dbf27c 9193
ad5133b7
PZ
9194 if (!pmu->pmu_enable) {
9195 pmu->pmu_enable = perf_pmu_nop_void;
9196 pmu->pmu_disable = perf_pmu_nop_void;
9197 }
9198
35edc2a5
PZ
9199 if (!pmu->event_idx)
9200 pmu->event_idx = perf_event_idx_default;
9201
b0a873eb 9202 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9203 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9204 ret = 0;
9205unlock:
b0a873eb
PZ
9206 mutex_unlock(&pmus_lock);
9207
33696fc0 9208 return ret;
108b02cf 9209
abe43400
PZ
9210free_dev:
9211 device_del(pmu->dev);
9212 put_device(pmu->dev);
9213
2e80a82a
PZ
9214free_idr:
9215 if (pmu->type >= PERF_TYPE_MAX)
9216 idr_remove(&pmu_idr, pmu->type);
9217
108b02cf
PZ
9218free_pdc:
9219 free_percpu(pmu->pmu_disable_count);
9220 goto unlock;
f29ac756 9221}
c464c76e 9222EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9223
b0a873eb 9224void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9225{
0933840a
JO
9226 int remove_device;
9227
b0a873eb 9228 mutex_lock(&pmus_lock);
0933840a 9229 remove_device = pmu_bus_running;
b0a873eb
PZ
9230 list_del_rcu(&pmu->entry);
9231 mutex_unlock(&pmus_lock);
5c92d124 9232
0475f9ea 9233 /*
cde8e884
PZ
9234 * We dereference the pmu list under both SRCU and regular RCU, so
9235 * synchronize against both of those.
0475f9ea 9236 */
b0a873eb 9237 synchronize_srcu(&pmus_srcu);
cde8e884 9238 synchronize_rcu();
d6d020e9 9239
33696fc0 9240 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9241 if (pmu->type >= PERF_TYPE_MAX)
9242 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9243 if (remove_device) {
9244 if (pmu->nr_addr_filters)
9245 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9246 device_del(pmu->dev);
9247 put_device(pmu->dev);
9248 }
51676957 9249 free_pmu_context(pmu);
b0a873eb 9250}
c464c76e 9251EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9252
cc34b98b
MR
9253static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9254{
ccd41c86 9255 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9256 int ret;
9257
9258 if (!try_module_get(pmu->module))
9259 return -ENODEV;
ccd41c86
PZ
9260
9261 if (event->group_leader != event) {
8b10c5e2
PZ
9262 /*
9263 * This ctx->mutex can nest when we're called through
9264 * inheritance. See the perf_event_ctx_lock_nested() comment.
9265 */
9266 ctx = perf_event_ctx_lock_nested(event->group_leader,
9267 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9268 BUG_ON(!ctx);
9269 }
9270
cc34b98b
MR
9271 event->pmu = pmu;
9272 ret = pmu->event_init(event);
ccd41c86
PZ
9273
9274 if (ctx)
9275 perf_event_ctx_unlock(event->group_leader, ctx);
9276
cc34b98b
MR
9277 if (ret)
9278 module_put(pmu->module);
9279
9280 return ret;
9281}
9282
18ab2cd3 9283static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9284{
85c617ab 9285 struct pmu *pmu;
b0a873eb 9286 int idx;
940c5b29 9287 int ret;
b0a873eb
PZ
9288
9289 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9290
40999312
KL
9291 /* Try parent's PMU first: */
9292 if (event->parent && event->parent->pmu) {
9293 pmu = event->parent->pmu;
9294 ret = perf_try_init_event(pmu, event);
9295 if (!ret)
9296 goto unlock;
9297 }
9298
2e80a82a
PZ
9299 rcu_read_lock();
9300 pmu = idr_find(&pmu_idr, event->attr.type);
9301 rcu_read_unlock();
940c5b29 9302 if (pmu) {
cc34b98b 9303 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9304 if (ret)
9305 pmu = ERR_PTR(ret);
2e80a82a 9306 goto unlock;
940c5b29 9307 }
2e80a82a 9308
b0a873eb 9309 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9310 ret = perf_try_init_event(pmu, event);
b0a873eb 9311 if (!ret)
e5f4d339 9312 goto unlock;
76e1d904 9313
b0a873eb
PZ
9314 if (ret != -ENOENT) {
9315 pmu = ERR_PTR(ret);
e5f4d339 9316 goto unlock;
f344011c 9317 }
5c92d124 9318 }
e5f4d339
PZ
9319 pmu = ERR_PTR(-ENOENT);
9320unlock:
b0a873eb 9321 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9322
4aeb0b42 9323 return pmu;
5c92d124
IM
9324}
9325
f2fb6bef
KL
9326static void attach_sb_event(struct perf_event *event)
9327{
9328 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9329
9330 raw_spin_lock(&pel->lock);
9331 list_add_rcu(&event->sb_list, &pel->list);
9332 raw_spin_unlock(&pel->lock);
9333}
9334
aab5b71e
PZ
9335/*
9336 * We keep a list of all !task (and therefore per-cpu) events
9337 * that need to receive side-band records.
9338 *
9339 * This avoids having to scan all the various PMU per-cpu contexts
9340 * looking for them.
9341 */
f2fb6bef
KL
9342static void account_pmu_sb_event(struct perf_event *event)
9343{
a4f144eb 9344 if (is_sb_event(event))
f2fb6bef
KL
9345 attach_sb_event(event);
9346}
9347
4beb31f3
FW
9348static void account_event_cpu(struct perf_event *event, int cpu)
9349{
9350 if (event->parent)
9351 return;
9352
4beb31f3
FW
9353 if (is_cgroup_event(event))
9354 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9355}
9356
555e0c1e
FW
9357/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9358static void account_freq_event_nohz(void)
9359{
9360#ifdef CONFIG_NO_HZ_FULL
9361 /* Lock so we don't race with concurrent unaccount */
9362 spin_lock(&nr_freq_lock);
9363 if (atomic_inc_return(&nr_freq_events) == 1)
9364 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9365 spin_unlock(&nr_freq_lock);
9366#endif
9367}
9368
9369static void account_freq_event(void)
9370{
9371 if (tick_nohz_full_enabled())
9372 account_freq_event_nohz();
9373 else
9374 atomic_inc(&nr_freq_events);
9375}
9376
9377
766d6c07
FW
9378static void account_event(struct perf_event *event)
9379{
25432ae9
PZ
9380 bool inc = false;
9381
4beb31f3
FW
9382 if (event->parent)
9383 return;
9384
766d6c07 9385 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9386 inc = true;
766d6c07
FW
9387 if (event->attr.mmap || event->attr.mmap_data)
9388 atomic_inc(&nr_mmap_events);
9389 if (event->attr.comm)
9390 atomic_inc(&nr_comm_events);
e4222673
HB
9391 if (event->attr.namespaces)
9392 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9393 if (event->attr.task)
9394 atomic_inc(&nr_task_events);
555e0c1e
FW
9395 if (event->attr.freq)
9396 account_freq_event();
45ac1403
AH
9397 if (event->attr.context_switch) {
9398 atomic_inc(&nr_switch_events);
25432ae9 9399 inc = true;
45ac1403 9400 }
4beb31f3 9401 if (has_branch_stack(event))
25432ae9 9402 inc = true;
4beb31f3 9403 if (is_cgroup_event(event))
25432ae9
PZ
9404 inc = true;
9405
9107c89e
PZ
9406 if (inc) {
9407 if (atomic_inc_not_zero(&perf_sched_count))
9408 goto enabled;
9409
9410 mutex_lock(&perf_sched_mutex);
9411 if (!atomic_read(&perf_sched_count)) {
9412 static_branch_enable(&perf_sched_events);
9413 /*
9414 * Guarantee that all CPUs observe they key change and
9415 * call the perf scheduling hooks before proceeding to
9416 * install events that need them.
9417 */
9418 synchronize_sched();
9419 }
9420 /*
9421 * Now that we have waited for the sync_sched(), allow further
9422 * increments to by-pass the mutex.
9423 */
9424 atomic_inc(&perf_sched_count);
9425 mutex_unlock(&perf_sched_mutex);
9426 }
9427enabled:
4beb31f3
FW
9428
9429 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9430
9431 account_pmu_sb_event(event);
766d6c07
FW
9432}
9433
0793a61d 9434/*
cdd6c482 9435 * Allocate and initialize a event structure
0793a61d 9436 */
cdd6c482 9437static struct perf_event *
c3f00c70 9438perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9439 struct task_struct *task,
9440 struct perf_event *group_leader,
9441 struct perf_event *parent_event,
4dc0da86 9442 perf_overflow_handler_t overflow_handler,
79dff51e 9443 void *context, int cgroup_fd)
0793a61d 9444{
51b0fe39 9445 struct pmu *pmu;
cdd6c482
IM
9446 struct perf_event *event;
9447 struct hw_perf_event *hwc;
90983b16 9448 long err = -EINVAL;
0793a61d 9449
66832eb4
ON
9450 if ((unsigned)cpu >= nr_cpu_ids) {
9451 if (!task || cpu != -1)
9452 return ERR_PTR(-EINVAL);
9453 }
9454
c3f00c70 9455 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9456 if (!event)
d5d2bc0d 9457 return ERR_PTR(-ENOMEM);
0793a61d 9458
04289bb9 9459 /*
cdd6c482 9460 * Single events are their own group leaders, with an
04289bb9
IM
9461 * empty sibling list:
9462 */
9463 if (!group_leader)
cdd6c482 9464 group_leader = event;
04289bb9 9465
cdd6c482
IM
9466 mutex_init(&event->child_mutex);
9467 INIT_LIST_HEAD(&event->child_list);
fccc714b 9468
cdd6c482
IM
9469 INIT_LIST_HEAD(&event->group_entry);
9470 INIT_LIST_HEAD(&event->event_entry);
9471 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9472 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9473 INIT_LIST_HEAD(&event->active_entry);
375637bc 9474 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9475 INIT_HLIST_NODE(&event->hlist_entry);
9476
10c6db11 9477
cdd6c482 9478 init_waitqueue_head(&event->waitq);
e360adbe 9479 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9480
cdd6c482 9481 mutex_init(&event->mmap_mutex);
375637bc 9482 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9483
a6fa941d 9484 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9485 event->cpu = cpu;
9486 event->attr = *attr;
9487 event->group_leader = group_leader;
9488 event->pmu = NULL;
cdd6c482 9489 event->oncpu = -1;
a96bbc16 9490
cdd6c482 9491 event->parent = parent_event;
b84fbc9f 9492
17cf22c3 9493 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9494 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9495
cdd6c482 9496 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9497
d580ff86
PZ
9498 if (task) {
9499 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9500 /*
50f16a8b
PZ
9501 * XXX pmu::event_init needs to know what task to account to
9502 * and we cannot use the ctx information because we need the
9503 * pmu before we get a ctx.
d580ff86 9504 */
50f16a8b 9505 event->hw.target = task;
d580ff86
PZ
9506 }
9507
34f43927
PZ
9508 event->clock = &local_clock;
9509 if (parent_event)
9510 event->clock = parent_event->clock;
9511
4dc0da86 9512 if (!overflow_handler && parent_event) {
b326e956 9513 overflow_handler = parent_event->overflow_handler;
4dc0da86 9514 context = parent_event->overflow_handler_context;
f1e4ba5b 9515#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9516 if (overflow_handler == bpf_overflow_handler) {
9517 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9518
9519 if (IS_ERR(prog)) {
9520 err = PTR_ERR(prog);
9521 goto err_ns;
9522 }
9523 event->prog = prog;
9524 event->orig_overflow_handler =
9525 parent_event->orig_overflow_handler;
9526 }
9527#endif
4dc0da86 9528 }
66832eb4 9529
1879445d
WN
9530 if (overflow_handler) {
9531 event->overflow_handler = overflow_handler;
9532 event->overflow_handler_context = context;
9ecda41a
WN
9533 } else if (is_write_backward(event)){
9534 event->overflow_handler = perf_event_output_backward;
9535 event->overflow_handler_context = NULL;
1879445d 9536 } else {
9ecda41a 9537 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9538 event->overflow_handler_context = NULL;
9539 }
97eaf530 9540
0231bb53 9541 perf_event__state_init(event);
a86ed508 9542
4aeb0b42 9543 pmu = NULL;
b8e83514 9544
cdd6c482 9545 hwc = &event->hw;
bd2b5b12 9546 hwc->sample_period = attr->sample_period;
0d48696f 9547 if (attr->freq && attr->sample_freq)
bd2b5b12 9548 hwc->sample_period = 1;
eced1dfc 9549 hwc->last_period = hwc->sample_period;
bd2b5b12 9550
e7850595 9551 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9552
2023b359 9553 /*
ba5213ae
PZ
9554 * We currently do not support PERF_SAMPLE_READ on inherited events.
9555 * See perf_output_read().
2023b359 9556 */
ba5213ae 9557 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 9558 goto err_ns;
a46a2300
YZ
9559
9560 if (!has_branch_stack(event))
9561 event->attr.branch_sample_type = 0;
2023b359 9562
79dff51e
MF
9563 if (cgroup_fd != -1) {
9564 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9565 if (err)
9566 goto err_ns;
9567 }
9568
b0a873eb 9569 pmu = perf_init_event(event);
85c617ab 9570 if (IS_ERR(pmu)) {
4aeb0b42 9571 err = PTR_ERR(pmu);
90983b16 9572 goto err_ns;
621a01ea 9573 }
d5d2bc0d 9574
bed5b25a
AS
9575 err = exclusive_event_init(event);
9576 if (err)
9577 goto err_pmu;
9578
375637bc
AS
9579 if (has_addr_filter(event)) {
9580 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9581 sizeof(unsigned long),
9582 GFP_KERNEL);
36cc2b92
DC
9583 if (!event->addr_filters_offs) {
9584 err = -ENOMEM;
375637bc 9585 goto err_per_task;
36cc2b92 9586 }
375637bc
AS
9587
9588 /* force hw sync on the address filters */
9589 event->addr_filters_gen = 1;
9590 }
9591
cdd6c482 9592 if (!event->parent) {
927c7a9e 9593 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9594 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9595 if (err)
375637bc 9596 goto err_addr_filters;
d010b332 9597 }
f344011c 9598 }
9ee318a7 9599
927a5570
AS
9600 /* symmetric to unaccount_event() in _free_event() */
9601 account_event(event);
9602
cdd6c482 9603 return event;
90983b16 9604
375637bc
AS
9605err_addr_filters:
9606 kfree(event->addr_filters_offs);
9607
bed5b25a
AS
9608err_per_task:
9609 exclusive_event_destroy(event);
9610
90983b16
FW
9611err_pmu:
9612 if (event->destroy)
9613 event->destroy(event);
c464c76e 9614 module_put(pmu->module);
90983b16 9615err_ns:
79dff51e
MF
9616 if (is_cgroup_event(event))
9617 perf_detach_cgroup(event);
90983b16
FW
9618 if (event->ns)
9619 put_pid_ns(event->ns);
9620 kfree(event);
9621
9622 return ERR_PTR(err);
0793a61d
TG
9623}
9624
cdd6c482
IM
9625static int perf_copy_attr(struct perf_event_attr __user *uattr,
9626 struct perf_event_attr *attr)
974802ea 9627{
974802ea 9628 u32 size;
cdf8073d 9629 int ret;
974802ea
PZ
9630
9631 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9632 return -EFAULT;
9633
9634 /*
9635 * zero the full structure, so that a short copy will be nice.
9636 */
9637 memset(attr, 0, sizeof(*attr));
9638
9639 ret = get_user(size, &uattr->size);
9640 if (ret)
9641 return ret;
9642
9643 if (size > PAGE_SIZE) /* silly large */
9644 goto err_size;
9645
9646 if (!size) /* abi compat */
9647 size = PERF_ATTR_SIZE_VER0;
9648
9649 if (size < PERF_ATTR_SIZE_VER0)
9650 goto err_size;
9651
9652 /*
9653 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9654 * ensure all the unknown bits are 0 - i.e. new
9655 * user-space does not rely on any kernel feature
9656 * extensions we dont know about yet.
974802ea
PZ
9657 */
9658 if (size > sizeof(*attr)) {
cdf8073d
IS
9659 unsigned char __user *addr;
9660 unsigned char __user *end;
9661 unsigned char val;
974802ea 9662
cdf8073d
IS
9663 addr = (void __user *)uattr + sizeof(*attr);
9664 end = (void __user *)uattr + size;
974802ea 9665
cdf8073d 9666 for (; addr < end; addr++) {
974802ea
PZ
9667 ret = get_user(val, addr);
9668 if (ret)
9669 return ret;
9670 if (val)
9671 goto err_size;
9672 }
b3e62e35 9673 size = sizeof(*attr);
974802ea
PZ
9674 }
9675
9676 ret = copy_from_user(attr, uattr, size);
9677 if (ret)
9678 return -EFAULT;
9679
f12f42ac
MX
9680 attr->size = size;
9681
cd757645 9682 if (attr->__reserved_1)
974802ea
PZ
9683 return -EINVAL;
9684
9685 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9686 return -EINVAL;
9687
9688 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9689 return -EINVAL;
9690
bce38cd5
SE
9691 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9692 u64 mask = attr->branch_sample_type;
9693
9694 /* only using defined bits */
9695 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9696 return -EINVAL;
9697
9698 /* at least one branch bit must be set */
9699 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9700 return -EINVAL;
9701
bce38cd5
SE
9702 /* propagate priv level, when not set for branch */
9703 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9704
9705 /* exclude_kernel checked on syscall entry */
9706 if (!attr->exclude_kernel)
9707 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9708
9709 if (!attr->exclude_user)
9710 mask |= PERF_SAMPLE_BRANCH_USER;
9711
9712 if (!attr->exclude_hv)
9713 mask |= PERF_SAMPLE_BRANCH_HV;
9714 /*
9715 * adjust user setting (for HW filter setup)
9716 */
9717 attr->branch_sample_type = mask;
9718 }
e712209a
SE
9719 /* privileged levels capture (kernel, hv): check permissions */
9720 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9721 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9722 return -EACCES;
bce38cd5 9723 }
4018994f 9724
c5ebcedb 9725 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9726 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9727 if (ret)
9728 return ret;
9729 }
9730
9731 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9732 if (!arch_perf_have_user_stack_dump())
9733 return -ENOSYS;
9734
9735 /*
9736 * We have __u32 type for the size, but so far
9737 * we can only use __u16 as maximum due to the
9738 * __u16 sample size limit.
9739 */
9740 if (attr->sample_stack_user >= USHRT_MAX)
9741 ret = -EINVAL;
9742 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9743 ret = -EINVAL;
9744 }
4018994f 9745
60e2364e
SE
9746 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9747 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9748out:
9749 return ret;
9750
9751err_size:
9752 put_user(sizeof(*attr), &uattr->size);
9753 ret = -E2BIG;
9754 goto out;
9755}
9756
ac9721f3
PZ
9757static int
9758perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9759{
b69cf536 9760 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9761 int ret = -EINVAL;
9762
ac9721f3 9763 if (!output_event)
a4be7c27
PZ
9764 goto set;
9765
ac9721f3
PZ
9766 /* don't allow circular references */
9767 if (event == output_event)
a4be7c27
PZ
9768 goto out;
9769
0f139300
PZ
9770 /*
9771 * Don't allow cross-cpu buffers
9772 */
9773 if (output_event->cpu != event->cpu)
9774 goto out;
9775
9776 /*
76369139 9777 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9778 */
9779 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9780 goto out;
9781
34f43927
PZ
9782 /*
9783 * Mixing clocks in the same buffer is trouble you don't need.
9784 */
9785 if (output_event->clock != event->clock)
9786 goto out;
9787
9ecda41a
WN
9788 /*
9789 * Either writing ring buffer from beginning or from end.
9790 * Mixing is not allowed.
9791 */
9792 if (is_write_backward(output_event) != is_write_backward(event))
9793 goto out;
9794
45bfb2e5
PZ
9795 /*
9796 * If both events generate aux data, they must be on the same PMU
9797 */
9798 if (has_aux(event) && has_aux(output_event) &&
9799 event->pmu != output_event->pmu)
9800 goto out;
9801
a4be7c27 9802set:
cdd6c482 9803 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9804 /* Can't redirect output if we've got an active mmap() */
9805 if (atomic_read(&event->mmap_count))
9806 goto unlock;
a4be7c27 9807
ac9721f3 9808 if (output_event) {
76369139
FW
9809 /* get the rb we want to redirect to */
9810 rb = ring_buffer_get(output_event);
9811 if (!rb)
ac9721f3 9812 goto unlock;
a4be7c27
PZ
9813 }
9814
b69cf536 9815 ring_buffer_attach(event, rb);
9bb5d40c 9816
a4be7c27 9817 ret = 0;
ac9721f3
PZ
9818unlock:
9819 mutex_unlock(&event->mmap_mutex);
9820
a4be7c27 9821out:
a4be7c27
PZ
9822 return ret;
9823}
9824
f63a8daa
PZ
9825static void mutex_lock_double(struct mutex *a, struct mutex *b)
9826{
9827 if (b < a)
9828 swap(a, b);
9829
9830 mutex_lock(a);
9831 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9832}
9833
34f43927
PZ
9834static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9835{
9836 bool nmi_safe = false;
9837
9838 switch (clk_id) {
9839 case CLOCK_MONOTONIC:
9840 event->clock = &ktime_get_mono_fast_ns;
9841 nmi_safe = true;
9842 break;
9843
9844 case CLOCK_MONOTONIC_RAW:
9845 event->clock = &ktime_get_raw_fast_ns;
9846 nmi_safe = true;
9847 break;
9848
9849 case CLOCK_REALTIME:
9850 event->clock = &ktime_get_real_ns;
9851 break;
9852
9853 case CLOCK_BOOTTIME:
9854 event->clock = &ktime_get_boot_ns;
9855 break;
9856
9857 case CLOCK_TAI:
9858 event->clock = &ktime_get_tai_ns;
9859 break;
9860
9861 default:
9862 return -EINVAL;
9863 }
9864
9865 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9866 return -EINVAL;
9867
9868 return 0;
9869}
9870
321027c1
PZ
9871/*
9872 * Variation on perf_event_ctx_lock_nested(), except we take two context
9873 * mutexes.
9874 */
9875static struct perf_event_context *
9876__perf_event_ctx_lock_double(struct perf_event *group_leader,
9877 struct perf_event_context *ctx)
9878{
9879 struct perf_event_context *gctx;
9880
9881again:
9882 rcu_read_lock();
9883 gctx = READ_ONCE(group_leader->ctx);
9884 if (!atomic_inc_not_zero(&gctx->refcount)) {
9885 rcu_read_unlock();
9886 goto again;
9887 }
9888 rcu_read_unlock();
9889
9890 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9891
9892 if (group_leader->ctx != gctx) {
9893 mutex_unlock(&ctx->mutex);
9894 mutex_unlock(&gctx->mutex);
9895 put_ctx(gctx);
9896 goto again;
9897 }
9898
9899 return gctx;
9900}
9901
0793a61d 9902/**
cdd6c482 9903 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9904 *
cdd6c482 9905 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9906 * @pid: target pid
9f66a381 9907 * @cpu: target cpu
cdd6c482 9908 * @group_fd: group leader event fd
0793a61d 9909 */
cdd6c482
IM
9910SYSCALL_DEFINE5(perf_event_open,
9911 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9912 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9913{
b04243ef
PZ
9914 struct perf_event *group_leader = NULL, *output_event = NULL;
9915 struct perf_event *event, *sibling;
cdd6c482 9916 struct perf_event_attr attr;
f63a8daa 9917 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9918 struct file *event_file = NULL;
2903ff01 9919 struct fd group = {NULL, 0};
38a81da2 9920 struct task_struct *task = NULL;
89a1e187 9921 struct pmu *pmu;
ea635c64 9922 int event_fd;
b04243ef 9923 int move_group = 0;
dc86cabe 9924 int err;
a21b0b35 9925 int f_flags = O_RDWR;
79dff51e 9926 int cgroup_fd = -1;
0793a61d 9927
2743a5b0 9928 /* for future expandability... */
e5d1367f 9929 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9930 return -EINVAL;
9931
dc86cabe
IM
9932 err = perf_copy_attr(attr_uptr, &attr);
9933 if (err)
9934 return err;
eab656ae 9935
0764771d
PZ
9936 if (!attr.exclude_kernel) {
9937 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9938 return -EACCES;
9939 }
9940
e4222673
HB
9941 if (attr.namespaces) {
9942 if (!capable(CAP_SYS_ADMIN))
9943 return -EACCES;
9944 }
9945
df58ab24 9946 if (attr.freq) {
cdd6c482 9947 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9948 return -EINVAL;
0819b2e3
PZ
9949 } else {
9950 if (attr.sample_period & (1ULL << 63))
9951 return -EINVAL;
df58ab24
PZ
9952 }
9953
fc7ce9c7
KL
9954 /* Only privileged users can get physical addresses */
9955 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9956 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9957 return -EACCES;
9958
97c79a38
ACM
9959 if (!attr.sample_max_stack)
9960 attr.sample_max_stack = sysctl_perf_event_max_stack;
9961
e5d1367f
SE
9962 /*
9963 * In cgroup mode, the pid argument is used to pass the fd
9964 * opened to the cgroup directory in cgroupfs. The cpu argument
9965 * designates the cpu on which to monitor threads from that
9966 * cgroup.
9967 */
9968 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9969 return -EINVAL;
9970
a21b0b35
YD
9971 if (flags & PERF_FLAG_FD_CLOEXEC)
9972 f_flags |= O_CLOEXEC;
9973
9974 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9975 if (event_fd < 0)
9976 return event_fd;
9977
ac9721f3 9978 if (group_fd != -1) {
2903ff01
AV
9979 err = perf_fget_light(group_fd, &group);
9980 if (err)
d14b12d7 9981 goto err_fd;
2903ff01 9982 group_leader = group.file->private_data;
ac9721f3
PZ
9983 if (flags & PERF_FLAG_FD_OUTPUT)
9984 output_event = group_leader;
9985 if (flags & PERF_FLAG_FD_NO_GROUP)
9986 group_leader = NULL;
9987 }
9988
e5d1367f 9989 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9990 task = find_lively_task_by_vpid(pid);
9991 if (IS_ERR(task)) {
9992 err = PTR_ERR(task);
9993 goto err_group_fd;
9994 }
9995 }
9996
1f4ee503
PZ
9997 if (task && group_leader &&
9998 group_leader->attr.inherit != attr.inherit) {
9999 err = -EINVAL;
10000 goto err_task;
10001 }
10002
79c9ce57
PZ
10003 if (task) {
10004 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10005 if (err)
e5aeee51 10006 goto err_task;
79c9ce57
PZ
10007
10008 /*
10009 * Reuse ptrace permission checks for now.
10010 *
10011 * We must hold cred_guard_mutex across this and any potential
10012 * perf_install_in_context() call for this new event to
10013 * serialize against exec() altering our credentials (and the
10014 * perf_event_exit_task() that could imply).
10015 */
10016 err = -EACCES;
10017 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10018 goto err_cred;
10019 }
10020
79dff51e
MF
10021 if (flags & PERF_FLAG_PID_CGROUP)
10022 cgroup_fd = pid;
10023
4dc0da86 10024 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 10025 NULL, NULL, cgroup_fd);
d14b12d7
SE
10026 if (IS_ERR(event)) {
10027 err = PTR_ERR(event);
79c9ce57 10028 goto err_cred;
d14b12d7
SE
10029 }
10030
53b25335
VW
10031 if (is_sampling_event(event)) {
10032 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 10033 err = -EOPNOTSUPP;
53b25335
VW
10034 goto err_alloc;
10035 }
10036 }
10037
89a1e187
PZ
10038 /*
10039 * Special case software events and allow them to be part of
10040 * any hardware group.
10041 */
10042 pmu = event->pmu;
b04243ef 10043
34f43927
PZ
10044 if (attr.use_clockid) {
10045 err = perf_event_set_clock(event, attr.clockid);
10046 if (err)
10047 goto err_alloc;
10048 }
10049
4ff6a8de
DCC
10050 if (pmu->task_ctx_nr == perf_sw_context)
10051 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10052
b04243ef
PZ
10053 if (group_leader &&
10054 (is_software_event(event) != is_software_event(group_leader))) {
10055 if (is_software_event(event)) {
10056 /*
10057 * If event and group_leader are not both a software
10058 * event, and event is, then group leader is not.
10059 *
10060 * Allow the addition of software events to !software
10061 * groups, this is safe because software events never
10062 * fail to schedule.
10063 */
10064 pmu = group_leader->pmu;
10065 } else if (is_software_event(group_leader) &&
4ff6a8de 10066 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10067 /*
10068 * In case the group is a pure software group, and we
10069 * try to add a hardware event, move the whole group to
10070 * the hardware context.
10071 */
10072 move_group = 1;
10073 }
10074 }
89a1e187
PZ
10075
10076 /*
10077 * Get the target context (task or percpu):
10078 */
4af57ef2 10079 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10080 if (IS_ERR(ctx)) {
10081 err = PTR_ERR(ctx);
c6be5a5c 10082 goto err_alloc;
89a1e187
PZ
10083 }
10084
bed5b25a
AS
10085 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10086 err = -EBUSY;
10087 goto err_context;
10088 }
10089
ccff286d 10090 /*
cdd6c482 10091 * Look up the group leader (we will attach this event to it):
04289bb9 10092 */
ac9721f3 10093 if (group_leader) {
dc86cabe 10094 err = -EINVAL;
04289bb9 10095
04289bb9 10096 /*
ccff286d
IM
10097 * Do not allow a recursive hierarchy (this new sibling
10098 * becoming part of another group-sibling):
10099 */
10100 if (group_leader->group_leader != group_leader)
c3f00c70 10101 goto err_context;
34f43927
PZ
10102
10103 /* All events in a group should have the same clock */
10104 if (group_leader->clock != event->clock)
10105 goto err_context;
10106
ccff286d 10107 /*
64aee2a9
MR
10108 * Make sure we're both events for the same CPU;
10109 * grouping events for different CPUs is broken; since
10110 * you can never concurrently schedule them anyhow.
04289bb9 10111 */
64aee2a9
MR
10112 if (group_leader->cpu != event->cpu)
10113 goto err_context;
c3c87e77 10114
64aee2a9
MR
10115 /*
10116 * Make sure we're both on the same task, or both
10117 * per-CPU events.
10118 */
10119 if (group_leader->ctx->task != ctx->task)
10120 goto err_context;
10121
10122 /*
10123 * Do not allow to attach to a group in a different task
10124 * or CPU context. If we're moving SW events, we'll fix
10125 * this up later, so allow that.
10126 */
10127 if (!move_group && group_leader->ctx != ctx)
10128 goto err_context;
b04243ef 10129
3b6f9e5c
PM
10130 /*
10131 * Only a group leader can be exclusive or pinned
10132 */
0d48696f 10133 if (attr.exclusive || attr.pinned)
c3f00c70 10134 goto err_context;
ac9721f3
PZ
10135 }
10136
10137 if (output_event) {
10138 err = perf_event_set_output(event, output_event);
10139 if (err)
c3f00c70 10140 goto err_context;
ac9721f3 10141 }
0793a61d 10142
a21b0b35
YD
10143 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10144 f_flags);
ea635c64
AV
10145 if (IS_ERR(event_file)) {
10146 err = PTR_ERR(event_file);
201c2f85 10147 event_file = NULL;
c3f00c70 10148 goto err_context;
ea635c64 10149 }
9b51f66d 10150
b04243ef 10151 if (move_group) {
321027c1
PZ
10152 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10153
84c4e620
PZ
10154 if (gctx->task == TASK_TOMBSTONE) {
10155 err = -ESRCH;
10156 goto err_locked;
10157 }
321027c1
PZ
10158
10159 /*
10160 * Check if we raced against another sys_perf_event_open() call
10161 * moving the software group underneath us.
10162 */
10163 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10164 /*
10165 * If someone moved the group out from under us, check
10166 * if this new event wound up on the same ctx, if so
10167 * its the regular !move_group case, otherwise fail.
10168 */
10169 if (gctx != ctx) {
10170 err = -EINVAL;
10171 goto err_locked;
10172 } else {
10173 perf_event_ctx_unlock(group_leader, gctx);
10174 move_group = 0;
10175 }
10176 }
f55fc2a5
PZ
10177 } else {
10178 mutex_lock(&ctx->mutex);
10179 }
10180
84c4e620
PZ
10181 if (ctx->task == TASK_TOMBSTONE) {
10182 err = -ESRCH;
10183 goto err_locked;
10184 }
10185
a723968c
PZ
10186 if (!perf_event_validate_size(event)) {
10187 err = -E2BIG;
10188 goto err_locked;
10189 }
10190
a63fbed7
TG
10191 if (!task) {
10192 /*
10193 * Check if the @cpu we're creating an event for is online.
10194 *
10195 * We use the perf_cpu_context::ctx::mutex to serialize against
10196 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10197 */
10198 struct perf_cpu_context *cpuctx =
10199 container_of(ctx, struct perf_cpu_context, ctx);
10200
10201 if (!cpuctx->online) {
10202 err = -ENODEV;
10203 goto err_locked;
10204 }
10205 }
10206
10207
f55fc2a5
PZ
10208 /*
10209 * Must be under the same ctx::mutex as perf_install_in_context(),
10210 * because we need to serialize with concurrent event creation.
10211 */
10212 if (!exclusive_event_installable(event, ctx)) {
10213 /* exclusive and group stuff are assumed mutually exclusive */
10214 WARN_ON_ONCE(move_group);
f63a8daa 10215
f55fc2a5
PZ
10216 err = -EBUSY;
10217 goto err_locked;
10218 }
f63a8daa 10219
f55fc2a5
PZ
10220 WARN_ON_ONCE(ctx->parent_ctx);
10221
79c9ce57
PZ
10222 /*
10223 * This is the point on no return; we cannot fail hereafter. This is
10224 * where we start modifying current state.
10225 */
10226
f55fc2a5 10227 if (move_group) {
f63a8daa
PZ
10228 /*
10229 * See perf_event_ctx_lock() for comments on the details
10230 * of swizzling perf_event::ctx.
10231 */
45a0e07a 10232 perf_remove_from_context(group_leader, 0);
279b5165 10233 put_ctx(gctx);
0231bb53 10234
b04243ef
PZ
10235 list_for_each_entry(sibling, &group_leader->sibling_list,
10236 group_entry) {
45a0e07a 10237 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10238 put_ctx(gctx);
10239 }
b04243ef 10240
f63a8daa
PZ
10241 /*
10242 * Wait for everybody to stop referencing the events through
10243 * the old lists, before installing it on new lists.
10244 */
0cda4c02 10245 synchronize_rcu();
f63a8daa 10246
8f95b435
PZI
10247 /*
10248 * Install the group siblings before the group leader.
10249 *
10250 * Because a group leader will try and install the entire group
10251 * (through the sibling list, which is still in-tact), we can
10252 * end up with siblings installed in the wrong context.
10253 *
10254 * By installing siblings first we NO-OP because they're not
10255 * reachable through the group lists.
10256 */
b04243ef
PZ
10257 list_for_each_entry(sibling, &group_leader->sibling_list,
10258 group_entry) {
8f95b435 10259 perf_event__state_init(sibling);
9fc81d87 10260 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10261 get_ctx(ctx);
10262 }
8f95b435
PZI
10263
10264 /*
10265 * Removing from the context ends up with disabled
10266 * event. What we want here is event in the initial
10267 * startup state, ready to be add into new context.
10268 */
10269 perf_event__state_init(group_leader);
10270 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10271 get_ctx(ctx);
bed5b25a
AS
10272 }
10273
f73e22ab
PZ
10274 /*
10275 * Precalculate sample_data sizes; do while holding ctx::mutex such
10276 * that we're serialized against further additions and before
10277 * perf_install_in_context() which is the point the event is active and
10278 * can use these values.
10279 */
10280 perf_event__header_size(event);
10281 perf_event__id_header_size(event);
10282
78cd2c74
PZ
10283 event->owner = current;
10284
e2d37cd2 10285 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10286 perf_unpin_context(ctx);
f63a8daa 10287
f55fc2a5 10288 if (move_group)
321027c1 10289 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10290 mutex_unlock(&ctx->mutex);
9b51f66d 10291
79c9ce57
PZ
10292 if (task) {
10293 mutex_unlock(&task->signal->cred_guard_mutex);
10294 put_task_struct(task);
10295 }
10296
cdd6c482
IM
10297 mutex_lock(&current->perf_event_mutex);
10298 list_add_tail(&event->owner_entry, &current->perf_event_list);
10299 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10300
8a49542c
PZ
10301 /*
10302 * Drop the reference on the group_event after placing the
10303 * new event on the sibling_list. This ensures destruction
10304 * of the group leader will find the pointer to itself in
10305 * perf_group_detach().
10306 */
2903ff01 10307 fdput(group);
ea635c64
AV
10308 fd_install(event_fd, event_file);
10309 return event_fd;
0793a61d 10310
f55fc2a5
PZ
10311err_locked:
10312 if (move_group)
321027c1 10313 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10314 mutex_unlock(&ctx->mutex);
10315/* err_file: */
10316 fput(event_file);
c3f00c70 10317err_context:
fe4b04fa 10318 perf_unpin_context(ctx);
ea635c64 10319 put_ctx(ctx);
c6be5a5c 10320err_alloc:
13005627
PZ
10321 /*
10322 * If event_file is set, the fput() above will have called ->release()
10323 * and that will take care of freeing the event.
10324 */
10325 if (!event_file)
10326 free_event(event);
79c9ce57
PZ
10327err_cred:
10328 if (task)
10329 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10330err_task:
e7d0bc04
PZ
10331 if (task)
10332 put_task_struct(task);
89a1e187 10333err_group_fd:
2903ff01 10334 fdput(group);
ea635c64
AV
10335err_fd:
10336 put_unused_fd(event_fd);
dc86cabe 10337 return err;
0793a61d
TG
10338}
10339
fb0459d7
AV
10340/**
10341 * perf_event_create_kernel_counter
10342 *
10343 * @attr: attributes of the counter to create
10344 * @cpu: cpu in which the counter is bound
38a81da2 10345 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10346 */
10347struct perf_event *
10348perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10349 struct task_struct *task,
4dc0da86
AK
10350 perf_overflow_handler_t overflow_handler,
10351 void *context)
fb0459d7 10352{
fb0459d7 10353 struct perf_event_context *ctx;
c3f00c70 10354 struct perf_event *event;
fb0459d7 10355 int err;
d859e29f 10356
fb0459d7
AV
10357 /*
10358 * Get the target context (task or percpu):
10359 */
d859e29f 10360
4dc0da86 10361 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10362 overflow_handler, context, -1);
c3f00c70
PZ
10363 if (IS_ERR(event)) {
10364 err = PTR_ERR(event);
10365 goto err;
10366 }
d859e29f 10367
f8697762 10368 /* Mark owner so we could distinguish it from user events. */
63b6da39 10369 event->owner = TASK_TOMBSTONE;
f8697762 10370
4af57ef2 10371 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10372 if (IS_ERR(ctx)) {
10373 err = PTR_ERR(ctx);
c3f00c70 10374 goto err_free;
d859e29f 10375 }
fb0459d7 10376
fb0459d7
AV
10377 WARN_ON_ONCE(ctx->parent_ctx);
10378 mutex_lock(&ctx->mutex);
84c4e620
PZ
10379 if (ctx->task == TASK_TOMBSTONE) {
10380 err = -ESRCH;
10381 goto err_unlock;
10382 }
10383
a63fbed7
TG
10384 if (!task) {
10385 /*
10386 * Check if the @cpu we're creating an event for is online.
10387 *
10388 * We use the perf_cpu_context::ctx::mutex to serialize against
10389 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10390 */
10391 struct perf_cpu_context *cpuctx =
10392 container_of(ctx, struct perf_cpu_context, ctx);
10393 if (!cpuctx->online) {
10394 err = -ENODEV;
10395 goto err_unlock;
10396 }
10397 }
10398
bed5b25a 10399 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10400 err = -EBUSY;
84c4e620 10401 goto err_unlock;
bed5b25a
AS
10402 }
10403
fb0459d7 10404 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10405 perf_unpin_context(ctx);
fb0459d7
AV
10406 mutex_unlock(&ctx->mutex);
10407
fb0459d7
AV
10408 return event;
10409
84c4e620
PZ
10410err_unlock:
10411 mutex_unlock(&ctx->mutex);
10412 perf_unpin_context(ctx);
10413 put_ctx(ctx);
c3f00c70
PZ
10414err_free:
10415 free_event(event);
10416err:
c6567f64 10417 return ERR_PTR(err);
9b51f66d 10418}
fb0459d7 10419EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10420
0cda4c02
YZ
10421void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10422{
10423 struct perf_event_context *src_ctx;
10424 struct perf_event_context *dst_ctx;
10425 struct perf_event *event, *tmp;
10426 LIST_HEAD(events);
10427
10428 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10429 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10430
f63a8daa
PZ
10431 /*
10432 * See perf_event_ctx_lock() for comments on the details
10433 * of swizzling perf_event::ctx.
10434 */
10435 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10436 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10437 event_entry) {
45a0e07a 10438 perf_remove_from_context(event, 0);
9a545de0 10439 unaccount_event_cpu(event, src_cpu);
0cda4c02 10440 put_ctx(src_ctx);
9886167d 10441 list_add(&event->migrate_entry, &events);
0cda4c02 10442 }
0cda4c02 10443
8f95b435
PZI
10444 /*
10445 * Wait for the events to quiesce before re-instating them.
10446 */
0cda4c02
YZ
10447 synchronize_rcu();
10448
8f95b435
PZI
10449 /*
10450 * Re-instate events in 2 passes.
10451 *
10452 * Skip over group leaders and only install siblings on this first
10453 * pass, siblings will not get enabled without a leader, however a
10454 * leader will enable its siblings, even if those are still on the old
10455 * context.
10456 */
10457 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10458 if (event->group_leader == event)
10459 continue;
10460
10461 list_del(&event->migrate_entry);
10462 if (event->state >= PERF_EVENT_STATE_OFF)
10463 event->state = PERF_EVENT_STATE_INACTIVE;
10464 account_event_cpu(event, dst_cpu);
10465 perf_install_in_context(dst_ctx, event, dst_cpu);
10466 get_ctx(dst_ctx);
10467 }
10468
10469 /*
10470 * Once all the siblings are setup properly, install the group leaders
10471 * to make it go.
10472 */
9886167d
PZ
10473 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10474 list_del(&event->migrate_entry);
0cda4c02
YZ
10475 if (event->state >= PERF_EVENT_STATE_OFF)
10476 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10477 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10478 perf_install_in_context(dst_ctx, event, dst_cpu);
10479 get_ctx(dst_ctx);
10480 }
10481 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10482 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10483}
10484EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10485
cdd6c482 10486static void sync_child_event(struct perf_event *child_event,
38b200d6 10487 struct task_struct *child)
d859e29f 10488{
cdd6c482 10489 struct perf_event *parent_event = child_event->parent;
8bc20959 10490 u64 child_val;
d859e29f 10491
cdd6c482
IM
10492 if (child_event->attr.inherit_stat)
10493 perf_event_read_event(child_event, child);
38b200d6 10494
b5e58793 10495 child_val = perf_event_count(child_event);
d859e29f
PM
10496
10497 /*
10498 * Add back the child's count to the parent's count:
10499 */
a6e6dea6 10500 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10501 atomic64_add(child_event->total_time_enabled,
10502 &parent_event->child_total_time_enabled);
10503 atomic64_add(child_event->total_time_running,
10504 &parent_event->child_total_time_running);
d859e29f
PM
10505}
10506
9b51f66d 10507static void
8ba289b8
PZ
10508perf_event_exit_event(struct perf_event *child_event,
10509 struct perf_event_context *child_ctx,
10510 struct task_struct *child)
9b51f66d 10511{
8ba289b8
PZ
10512 struct perf_event *parent_event = child_event->parent;
10513
1903d50c
PZ
10514 /*
10515 * Do not destroy the 'original' grouping; because of the context
10516 * switch optimization the original events could've ended up in a
10517 * random child task.
10518 *
10519 * If we were to destroy the original group, all group related
10520 * operations would cease to function properly after this random
10521 * child dies.
10522 *
10523 * Do destroy all inherited groups, we don't care about those
10524 * and being thorough is better.
10525 */
32132a3d
PZ
10526 raw_spin_lock_irq(&child_ctx->lock);
10527 WARN_ON_ONCE(child_ctx->is_active);
10528
8ba289b8 10529 if (parent_event)
32132a3d
PZ
10530 perf_group_detach(child_event);
10531 list_del_event(child_event, child_ctx);
a69b0ca4 10532 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 10533 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10534
9b51f66d 10535 /*
8ba289b8 10536 * Parent events are governed by their filedesc, retain them.
9b51f66d 10537 */
8ba289b8 10538 if (!parent_event) {
179033b3 10539 perf_event_wakeup(child_event);
8ba289b8 10540 return;
4bcf349a 10541 }
8ba289b8
PZ
10542 /*
10543 * Child events can be cleaned up.
10544 */
10545
10546 sync_child_event(child_event, child);
10547
10548 /*
10549 * Remove this event from the parent's list
10550 */
10551 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10552 mutex_lock(&parent_event->child_mutex);
10553 list_del_init(&child_event->child_list);
10554 mutex_unlock(&parent_event->child_mutex);
10555
10556 /*
10557 * Kick perf_poll() for is_event_hup().
10558 */
10559 perf_event_wakeup(parent_event);
10560 free_event(child_event);
10561 put_event(parent_event);
9b51f66d
IM
10562}
10563
8dc85d54 10564static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10565{
211de6eb 10566 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10567 struct perf_event *child_event, *next;
63b6da39
PZ
10568
10569 WARN_ON_ONCE(child != current);
9b51f66d 10570
6a3351b6 10571 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10572 if (!child_ctx)
9b51f66d
IM
10573 return;
10574
ad3a37de 10575 /*
6a3351b6
PZ
10576 * In order to reduce the amount of tricky in ctx tear-down, we hold
10577 * ctx::mutex over the entire thing. This serializes against almost
10578 * everything that wants to access the ctx.
10579 *
10580 * The exception is sys_perf_event_open() /
10581 * perf_event_create_kernel_count() which does find_get_context()
10582 * without ctx::mutex (it cannot because of the move_group double mutex
10583 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10584 */
6a3351b6 10585 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10586
10587 /*
6a3351b6
PZ
10588 * In a single ctx::lock section, de-schedule the events and detach the
10589 * context from the task such that we cannot ever get it scheduled back
10590 * in.
c93f7669 10591 */
6a3351b6 10592 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10593 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10594
71a851b4 10595 /*
63b6da39
PZ
10596 * Now that the context is inactive, destroy the task <-> ctx relation
10597 * and mark the context dead.
71a851b4 10598 */
63b6da39
PZ
10599 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10600 put_ctx(child_ctx); /* cannot be last */
10601 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10602 put_task_struct(current); /* cannot be last */
4a1c0f26 10603
211de6eb 10604 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10605 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10606
211de6eb
PZ
10607 if (clone_ctx)
10608 put_ctx(clone_ctx);
4a1c0f26 10609
9f498cc5 10610 /*
cdd6c482
IM
10611 * Report the task dead after unscheduling the events so that we
10612 * won't get any samples after PERF_RECORD_EXIT. We can however still
10613 * get a few PERF_RECORD_READ events.
9f498cc5 10614 */
cdd6c482 10615 perf_event_task(child, child_ctx, 0);
a63eaf34 10616
ebf905fc 10617 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10618 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10619
a63eaf34
PM
10620 mutex_unlock(&child_ctx->mutex);
10621
10622 put_ctx(child_ctx);
9b51f66d
IM
10623}
10624
8dc85d54
PZ
10625/*
10626 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10627 *
10628 * Can be called with cred_guard_mutex held when called from
10629 * install_exec_creds().
8dc85d54
PZ
10630 */
10631void perf_event_exit_task(struct task_struct *child)
10632{
8882135b 10633 struct perf_event *event, *tmp;
8dc85d54
PZ
10634 int ctxn;
10635
8882135b
PZ
10636 mutex_lock(&child->perf_event_mutex);
10637 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10638 owner_entry) {
10639 list_del_init(&event->owner_entry);
10640
10641 /*
10642 * Ensure the list deletion is visible before we clear
10643 * the owner, closes a race against perf_release() where
10644 * we need to serialize on the owner->perf_event_mutex.
10645 */
f47c02c0 10646 smp_store_release(&event->owner, NULL);
8882135b
PZ
10647 }
10648 mutex_unlock(&child->perf_event_mutex);
10649
8dc85d54
PZ
10650 for_each_task_context_nr(ctxn)
10651 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10652
10653 /*
10654 * The perf_event_exit_task_context calls perf_event_task
10655 * with child's task_ctx, which generates EXIT events for
10656 * child contexts and sets child->perf_event_ctxp[] to NULL.
10657 * At this point we need to send EXIT events to cpu contexts.
10658 */
10659 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10660}
10661
889ff015
FW
10662static void perf_free_event(struct perf_event *event,
10663 struct perf_event_context *ctx)
10664{
10665 struct perf_event *parent = event->parent;
10666
10667 if (WARN_ON_ONCE(!parent))
10668 return;
10669
10670 mutex_lock(&parent->child_mutex);
10671 list_del_init(&event->child_list);
10672 mutex_unlock(&parent->child_mutex);
10673
a6fa941d 10674 put_event(parent);
889ff015 10675
652884fe 10676 raw_spin_lock_irq(&ctx->lock);
8a49542c 10677 perf_group_detach(event);
889ff015 10678 list_del_event(event, ctx);
652884fe 10679 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10680 free_event(event);
10681}
10682
bbbee908 10683/*
652884fe 10684 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10685 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10686 *
10687 * Not all locks are strictly required, but take them anyway to be nice and
10688 * help out with the lockdep assertions.
bbbee908 10689 */
cdd6c482 10690void perf_event_free_task(struct task_struct *task)
bbbee908 10691{
8dc85d54 10692 struct perf_event_context *ctx;
cdd6c482 10693 struct perf_event *event, *tmp;
8dc85d54 10694 int ctxn;
bbbee908 10695
8dc85d54
PZ
10696 for_each_task_context_nr(ctxn) {
10697 ctx = task->perf_event_ctxp[ctxn];
10698 if (!ctx)
10699 continue;
bbbee908 10700
8dc85d54 10701 mutex_lock(&ctx->mutex);
e552a838
PZ
10702 raw_spin_lock_irq(&ctx->lock);
10703 /*
10704 * Destroy the task <-> ctx relation and mark the context dead.
10705 *
10706 * This is important because even though the task hasn't been
10707 * exposed yet the context has been (through child_list).
10708 */
10709 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10710 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10711 put_task_struct(task); /* cannot be last */
10712 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10713
15121c78 10714 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 10715 perf_free_event(event, ctx);
bbbee908 10716
8dc85d54 10717 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
10718 put_ctx(ctx);
10719 }
889ff015
FW
10720}
10721
4e231c79
PZ
10722void perf_event_delayed_put(struct task_struct *task)
10723{
10724 int ctxn;
10725
10726 for_each_task_context_nr(ctxn)
10727 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10728}
10729
e03e7ee3 10730struct file *perf_event_get(unsigned int fd)
ffe8690c 10731{
e03e7ee3 10732 struct file *file;
ffe8690c 10733
e03e7ee3
AS
10734 file = fget_raw(fd);
10735 if (!file)
10736 return ERR_PTR(-EBADF);
ffe8690c 10737
e03e7ee3
AS
10738 if (file->f_op != &perf_fops) {
10739 fput(file);
10740 return ERR_PTR(-EBADF);
10741 }
ffe8690c 10742
e03e7ee3 10743 return file;
ffe8690c
KX
10744}
10745
10746const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10747{
10748 if (!event)
10749 return ERR_PTR(-EINVAL);
10750
10751 return &event->attr;
10752}
10753
97dee4f3 10754/*
d8a8cfc7
PZ
10755 * Inherit a event from parent task to child task.
10756 *
10757 * Returns:
10758 * - valid pointer on success
10759 * - NULL for orphaned events
10760 * - IS_ERR() on error
97dee4f3
PZ
10761 */
10762static struct perf_event *
10763inherit_event(struct perf_event *parent_event,
10764 struct task_struct *parent,
10765 struct perf_event_context *parent_ctx,
10766 struct task_struct *child,
10767 struct perf_event *group_leader,
10768 struct perf_event_context *child_ctx)
10769{
1929def9 10770 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10771 struct perf_event *child_event;
cee010ec 10772 unsigned long flags;
97dee4f3
PZ
10773
10774 /*
10775 * Instead of creating recursive hierarchies of events,
10776 * we link inherited events back to the original parent,
10777 * which has a filp for sure, which we use as the reference
10778 * count:
10779 */
10780 if (parent_event->parent)
10781 parent_event = parent_event->parent;
10782
10783 child_event = perf_event_alloc(&parent_event->attr,
10784 parent_event->cpu,
d580ff86 10785 child,
97dee4f3 10786 group_leader, parent_event,
79dff51e 10787 NULL, NULL, -1);
97dee4f3
PZ
10788 if (IS_ERR(child_event))
10789 return child_event;
a6fa941d 10790
c6e5b732
PZ
10791 /*
10792 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10793 * must be under the same lock in order to serialize against
10794 * perf_event_release_kernel(), such that either we must observe
10795 * is_orphaned_event() or they will observe us on the child_list.
10796 */
10797 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10798 if (is_orphaned_event(parent_event) ||
10799 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10800 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10801 free_event(child_event);
10802 return NULL;
10803 }
10804
97dee4f3
PZ
10805 get_ctx(child_ctx);
10806
10807 /*
10808 * Make the child state follow the state of the parent event,
10809 * not its attr.disabled bit. We hold the parent's mutex,
10810 * so we won't race with perf_event_{en, dis}able_family.
10811 */
1929def9 10812 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10813 child_event->state = PERF_EVENT_STATE_INACTIVE;
10814 else
10815 child_event->state = PERF_EVENT_STATE_OFF;
10816
10817 if (parent_event->attr.freq) {
10818 u64 sample_period = parent_event->hw.sample_period;
10819 struct hw_perf_event *hwc = &child_event->hw;
10820
10821 hwc->sample_period = sample_period;
10822 hwc->last_period = sample_period;
10823
10824 local64_set(&hwc->period_left, sample_period);
10825 }
10826
10827 child_event->ctx = child_ctx;
10828 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10829 child_event->overflow_handler_context
10830 = parent_event->overflow_handler_context;
97dee4f3 10831
614b6780
TG
10832 /*
10833 * Precalculate sample_data sizes
10834 */
10835 perf_event__header_size(child_event);
6844c09d 10836 perf_event__id_header_size(child_event);
614b6780 10837
97dee4f3
PZ
10838 /*
10839 * Link it up in the child's context:
10840 */
cee010ec 10841 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10842 add_event_to_ctx(child_event, child_ctx);
cee010ec 10843 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10844
97dee4f3
PZ
10845 /*
10846 * Link this into the parent event's child list
10847 */
97dee4f3
PZ
10848 list_add_tail(&child_event->child_list, &parent_event->child_list);
10849 mutex_unlock(&parent_event->child_mutex);
10850
10851 return child_event;
10852}
10853
d8a8cfc7
PZ
10854/*
10855 * Inherits an event group.
10856 *
10857 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10858 * This matches with perf_event_release_kernel() removing all child events.
10859 *
10860 * Returns:
10861 * - 0 on success
10862 * - <0 on error
10863 */
97dee4f3
PZ
10864static int inherit_group(struct perf_event *parent_event,
10865 struct task_struct *parent,
10866 struct perf_event_context *parent_ctx,
10867 struct task_struct *child,
10868 struct perf_event_context *child_ctx)
10869{
10870 struct perf_event *leader;
10871 struct perf_event *sub;
10872 struct perf_event *child_ctr;
10873
10874 leader = inherit_event(parent_event, parent, parent_ctx,
10875 child, NULL, child_ctx);
10876 if (IS_ERR(leader))
10877 return PTR_ERR(leader);
d8a8cfc7
PZ
10878 /*
10879 * @leader can be NULL here because of is_orphaned_event(). In this
10880 * case inherit_event() will create individual events, similar to what
10881 * perf_group_detach() would do anyway.
10882 */
97dee4f3
PZ
10883 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10884 child_ctr = inherit_event(sub, parent, parent_ctx,
10885 child, leader, child_ctx);
10886 if (IS_ERR(child_ctr))
10887 return PTR_ERR(child_ctr);
10888 }
10889 return 0;
889ff015
FW
10890}
10891
d8a8cfc7
PZ
10892/*
10893 * Creates the child task context and tries to inherit the event-group.
10894 *
10895 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10896 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10897 * consistent with perf_event_release_kernel() removing all child events.
10898 *
10899 * Returns:
10900 * - 0 on success
10901 * - <0 on error
10902 */
889ff015
FW
10903static int
10904inherit_task_group(struct perf_event *event, struct task_struct *parent,
10905 struct perf_event_context *parent_ctx,
8dc85d54 10906 struct task_struct *child, int ctxn,
889ff015
FW
10907 int *inherited_all)
10908{
10909 int ret;
8dc85d54 10910 struct perf_event_context *child_ctx;
889ff015
FW
10911
10912 if (!event->attr.inherit) {
10913 *inherited_all = 0;
10914 return 0;
bbbee908
PZ
10915 }
10916
fe4b04fa 10917 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10918 if (!child_ctx) {
10919 /*
10920 * This is executed from the parent task context, so
10921 * inherit events that have been marked for cloning.
10922 * First allocate and initialize a context for the
10923 * child.
10924 */
734df5ab 10925 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10926 if (!child_ctx)
10927 return -ENOMEM;
bbbee908 10928
8dc85d54 10929 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10930 }
10931
10932 ret = inherit_group(event, parent, parent_ctx,
10933 child, child_ctx);
10934
10935 if (ret)
10936 *inherited_all = 0;
10937
10938 return ret;
bbbee908
PZ
10939}
10940
9b51f66d 10941/*
cdd6c482 10942 * Initialize the perf_event context in task_struct
9b51f66d 10943 */
985c8dcb 10944static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10945{
889ff015 10946 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10947 struct perf_event_context *cloned_ctx;
10948 struct perf_event *event;
9b51f66d 10949 struct task_struct *parent = current;
564c2b21 10950 int inherited_all = 1;
dddd3379 10951 unsigned long flags;
6ab423e0 10952 int ret = 0;
9b51f66d 10953
8dc85d54 10954 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10955 return 0;
10956
ad3a37de 10957 /*
25346b93
PM
10958 * If the parent's context is a clone, pin it so it won't get
10959 * swapped under us.
ad3a37de 10960 */
8dc85d54 10961 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10962 if (!parent_ctx)
10963 return 0;
25346b93 10964
ad3a37de
PM
10965 /*
10966 * No need to check if parent_ctx != NULL here; since we saw
10967 * it non-NULL earlier, the only reason for it to become NULL
10968 * is if we exit, and since we're currently in the middle of
10969 * a fork we can't be exiting at the same time.
10970 */
ad3a37de 10971
9b51f66d
IM
10972 /*
10973 * Lock the parent list. No need to lock the child - not PID
10974 * hashed yet and not running, so nobody can access it.
10975 */
d859e29f 10976 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10977
10978 /*
10979 * We dont have to disable NMIs - we are only looking at
10980 * the list, not manipulating it:
10981 */
889ff015 10982 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10983 ret = inherit_task_group(event, parent, parent_ctx,
10984 child, ctxn, &inherited_all);
889ff015 10985 if (ret)
e7cc4865 10986 goto out_unlock;
889ff015 10987 }
b93f7978 10988
dddd3379
TG
10989 /*
10990 * We can't hold ctx->lock when iterating the ->flexible_group list due
10991 * to allocations, but we need to prevent rotation because
10992 * rotate_ctx() will change the list from interrupt context.
10993 */
10994 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10995 parent_ctx->rotate_disable = 1;
10996 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10997
889ff015 10998 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10999 ret = inherit_task_group(event, parent, parent_ctx,
11000 child, ctxn, &inherited_all);
889ff015 11001 if (ret)
e7cc4865 11002 goto out_unlock;
564c2b21
PM
11003 }
11004
dddd3379
TG
11005 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11006 parent_ctx->rotate_disable = 0;
dddd3379 11007
8dc85d54 11008 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 11009
05cbaa28 11010 if (child_ctx && inherited_all) {
564c2b21
PM
11011 /*
11012 * Mark the child context as a clone of the parent
11013 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
11014 *
11015 * Note that if the parent is a clone, the holding of
11016 * parent_ctx->lock avoids it from being uncloned.
564c2b21 11017 */
c5ed5145 11018 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
11019 if (cloned_ctx) {
11020 child_ctx->parent_ctx = cloned_ctx;
25346b93 11021 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
11022 } else {
11023 child_ctx->parent_ctx = parent_ctx;
11024 child_ctx->parent_gen = parent_ctx->generation;
11025 }
11026 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
11027 }
11028
c5ed5145 11029 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 11030out_unlock:
d859e29f 11031 mutex_unlock(&parent_ctx->mutex);
6ab423e0 11032
25346b93 11033 perf_unpin_context(parent_ctx);
fe4b04fa 11034 put_ctx(parent_ctx);
ad3a37de 11035
6ab423e0 11036 return ret;
9b51f66d
IM
11037}
11038
8dc85d54
PZ
11039/*
11040 * Initialize the perf_event context in task_struct
11041 */
11042int perf_event_init_task(struct task_struct *child)
11043{
11044 int ctxn, ret;
11045
8550d7cb
ON
11046 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11047 mutex_init(&child->perf_event_mutex);
11048 INIT_LIST_HEAD(&child->perf_event_list);
11049
8dc85d54
PZ
11050 for_each_task_context_nr(ctxn) {
11051 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
11052 if (ret) {
11053 perf_event_free_task(child);
8dc85d54 11054 return ret;
6c72e350 11055 }
8dc85d54
PZ
11056 }
11057
11058 return 0;
11059}
11060
220b140b
PM
11061static void __init perf_event_init_all_cpus(void)
11062{
b28ab83c 11063 struct swevent_htable *swhash;
220b140b 11064 int cpu;
220b140b 11065
a63fbed7
TG
11066 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11067
220b140b 11068 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11069 swhash = &per_cpu(swevent_htable, cpu);
11070 mutex_init(&swhash->hlist_mutex);
2fde4f94 11071 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11072
11073 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11074 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11075
058fe1c0
DCC
11076#ifdef CONFIG_CGROUP_PERF
11077 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11078#endif
e48c1788 11079 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11080 }
11081}
11082
a63fbed7 11083void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11084{
108b02cf 11085 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11086
b28ab83c 11087 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11088 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11089 struct swevent_hlist *hlist;
11090
b28ab83c
PZ
11091 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11092 WARN_ON(!hlist);
11093 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11094 }
b28ab83c 11095 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11096}
11097
2965faa5 11098#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11099static void __perf_event_exit_context(void *__info)
0793a61d 11100{
108b02cf 11101 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11102 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11103 struct perf_event *event;
0793a61d 11104
fae3fde6
PZ
11105 raw_spin_lock(&ctx->lock);
11106 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11107 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11108 raw_spin_unlock(&ctx->lock);
0793a61d 11109}
108b02cf
PZ
11110
11111static void perf_event_exit_cpu_context(int cpu)
11112{
a63fbed7 11113 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11114 struct perf_event_context *ctx;
11115 struct pmu *pmu;
108b02cf 11116
a63fbed7
TG
11117 mutex_lock(&pmus_lock);
11118 list_for_each_entry(pmu, &pmus, entry) {
11119 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11120 ctx = &cpuctx->ctx;
108b02cf
PZ
11121
11122 mutex_lock(&ctx->mutex);
11123 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11124 cpuctx->online = 0;
108b02cf
PZ
11125 mutex_unlock(&ctx->mutex);
11126 }
a63fbed7
TG
11127 cpumask_clear_cpu(cpu, perf_online_mask);
11128 mutex_unlock(&pmus_lock);
108b02cf 11129}
00e16c3d
TG
11130#else
11131
11132static void perf_event_exit_cpu_context(int cpu) { }
11133
11134#endif
108b02cf 11135
a63fbed7
TG
11136int perf_event_init_cpu(unsigned int cpu)
11137{
11138 struct perf_cpu_context *cpuctx;
11139 struct perf_event_context *ctx;
11140 struct pmu *pmu;
11141
11142 perf_swevent_init_cpu(cpu);
11143
11144 mutex_lock(&pmus_lock);
11145 cpumask_set_cpu(cpu, perf_online_mask);
11146 list_for_each_entry(pmu, &pmus, entry) {
11147 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11148 ctx = &cpuctx->ctx;
11149
11150 mutex_lock(&ctx->mutex);
11151 cpuctx->online = 1;
11152 mutex_unlock(&ctx->mutex);
11153 }
11154 mutex_unlock(&pmus_lock);
11155
11156 return 0;
11157}
11158
00e16c3d 11159int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11160{
e3703f8c 11161 perf_event_exit_cpu_context(cpu);
00e16c3d 11162 return 0;
0793a61d 11163}
0793a61d 11164
c277443c
PZ
11165static int
11166perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11167{
11168 int cpu;
11169
11170 for_each_online_cpu(cpu)
11171 perf_event_exit_cpu(cpu);
11172
11173 return NOTIFY_OK;
11174}
11175
11176/*
11177 * Run the perf reboot notifier at the very last possible moment so that
11178 * the generic watchdog code runs as long as possible.
11179 */
11180static struct notifier_block perf_reboot_notifier = {
11181 .notifier_call = perf_reboot,
11182 .priority = INT_MIN,
11183};
11184
cdd6c482 11185void __init perf_event_init(void)
0793a61d 11186{
3c502e7a
JW
11187 int ret;
11188
2e80a82a
PZ
11189 idr_init(&pmu_idr);
11190
220b140b 11191 perf_event_init_all_cpus();
b0a873eb 11192 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11193 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11194 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11195 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11196 perf_tp_register();
00e16c3d 11197 perf_event_init_cpu(smp_processor_id());
c277443c 11198 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11199
11200 ret = init_hw_breakpoint();
11201 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11202
b01c3a00
JO
11203 /*
11204 * Build time assertion that we keep the data_head at the intended
11205 * location. IOW, validation we got the __reserved[] size right.
11206 */
11207 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11208 != 1024);
0793a61d 11209}
abe43400 11210
fd979c01
CS
11211ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11212 char *page)
11213{
11214 struct perf_pmu_events_attr *pmu_attr =
11215 container_of(attr, struct perf_pmu_events_attr, attr);
11216
11217 if (pmu_attr->event_str)
11218 return sprintf(page, "%s\n", pmu_attr->event_str);
11219
11220 return 0;
11221}
675965b0 11222EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11223
abe43400
PZ
11224static int __init perf_event_sysfs_init(void)
11225{
11226 struct pmu *pmu;
11227 int ret;
11228
11229 mutex_lock(&pmus_lock);
11230
11231 ret = bus_register(&pmu_bus);
11232 if (ret)
11233 goto unlock;
11234
11235 list_for_each_entry(pmu, &pmus, entry) {
11236 if (!pmu->name || pmu->type < 0)
11237 continue;
11238
11239 ret = pmu_dev_alloc(pmu);
11240 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11241 }
11242 pmu_bus_running = 1;
11243 ret = 0;
11244
11245unlock:
11246 mutex_unlock(&pmus_lock);
11247
11248 return ret;
11249}
11250device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11251
11252#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11253static struct cgroup_subsys_state *
11254perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11255{
11256 struct perf_cgroup *jc;
e5d1367f 11257
1b15d055 11258 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11259 if (!jc)
11260 return ERR_PTR(-ENOMEM);
11261
e5d1367f
SE
11262 jc->info = alloc_percpu(struct perf_cgroup_info);
11263 if (!jc->info) {
11264 kfree(jc);
11265 return ERR_PTR(-ENOMEM);
11266 }
11267
e5d1367f
SE
11268 return &jc->css;
11269}
11270
eb95419b 11271static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11272{
eb95419b
TH
11273 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11274
e5d1367f
SE
11275 free_percpu(jc->info);
11276 kfree(jc);
11277}
11278
11279static int __perf_cgroup_move(void *info)
11280{
11281 struct task_struct *task = info;
ddaaf4e2 11282 rcu_read_lock();
e5d1367f 11283 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11284 rcu_read_unlock();
e5d1367f
SE
11285 return 0;
11286}
11287
1f7dd3e5 11288static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11289{
bb9d97b6 11290 struct task_struct *task;
1f7dd3e5 11291 struct cgroup_subsys_state *css;
bb9d97b6 11292
1f7dd3e5 11293 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11294 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11295}
11296
073219e9 11297struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11298 .css_alloc = perf_cgroup_css_alloc,
11299 .css_free = perf_cgroup_css_free,
bb9d97b6 11300 .attach = perf_cgroup_attach,
968ebff1
TH
11301 /*
11302 * Implicitly enable on dfl hierarchy so that perf events can
11303 * always be filtered by cgroup2 path as long as perf_event
11304 * controller is not mounted on a legacy hierarchy.
11305 */
11306 .implicit_on_dfl = true,
8cfd8147 11307 .threaded = true,
e5d1367f
SE
11308};
11309#endif /* CONFIG_CGROUP_PERF */