]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/events/core.c
perf/x86/intel: Avoid unnecessary PEBS_ENABLE MSR access in PMI
[mirror_ubuntu-jammy-kernel.git] / kernel / events / core.c
CommitLineData
8e86e015 1// SPDX-License-Identifier: GPL-2.0
0793a61d 2/*
57c0c15b 3 * Performance events core code:
0793a61d 4 *
98144511 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
2e80a82a 15#include <linux/idr.h>
04289bb9 16#include <linux/file.h>
0793a61d 17#include <linux/poll.h>
5a0e3ad6 18#include <linux/slab.h>
76e1d904 19#include <linux/hash.h>
12351ef8 20#include <linux/tick.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
39bed6cb 36#include <linux/cgroup.h>
cdd6c482 37#include <linux/perf_event.h>
af658dca 38#include <linux/trace_events.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
c464c76e 41#include <linux/module.h>
f972eb63 42#include <linux/mman.h>
b3f20785 43#include <linux/compat.h>
2541517c
AS
44#include <linux/bpf.h>
45#include <linux/filter.h>
375637bc
AS
46#include <linux/namei.h>
47#include <linux/parser.h>
e6017571 48#include <linux/sched/clock.h>
6e84f315 49#include <linux/sched/mm.h>
e4222673
HB
50#include <linux/proc_ns.h>
51#include <linux/mount.h>
0793a61d 52
76369139
FW
53#include "internal.h"
54
4e193bd4
TB
55#include <asm/irq_regs.h>
56
272325c4
PZ
57typedef int (*remote_function_f)(void *);
58
fe4b04fa 59struct remote_function_call {
e7e7ee2e 60 struct task_struct *p;
272325c4 61 remote_function_f func;
e7e7ee2e
IM
62 void *info;
63 int ret;
fe4b04fa
PZ
64};
65
66static void remote_function(void *data)
67{
68 struct remote_function_call *tfc = data;
69 struct task_struct *p = tfc->p;
70
71 if (p) {
0da4cf3e
PZ
72 /* -EAGAIN */
73 if (task_cpu(p) != smp_processor_id())
74 return;
75
76 /*
77 * Now that we're on right CPU with IRQs disabled, we can test
78 * if we hit the right task without races.
79 */
80
81 tfc->ret = -ESRCH; /* No such (running) process */
82 if (p != current)
fe4b04fa
PZ
83 return;
84 }
85
86 tfc->ret = tfc->func(tfc->info);
87}
88
89/**
90 * task_function_call - call a function on the cpu on which a task runs
91 * @p: the task to evaluate
92 * @func: the function to be called
93 * @info: the function call argument
94 *
95 * Calls the function @func when the task is currently running. This might
96 * be on the current CPU, which just calls the function directly
97 *
98 * returns: @func return value, or
99 * -ESRCH - when the process isn't running
100 * -EAGAIN - when the process moved away
101 */
102static int
272325c4 103task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
104{
105 struct remote_function_call data = {
e7e7ee2e
IM
106 .p = p,
107 .func = func,
108 .info = info,
0da4cf3e 109 .ret = -EAGAIN,
fe4b04fa 110 };
0da4cf3e 111 int ret;
fe4b04fa 112
0da4cf3e
PZ
113 do {
114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 if (!ret)
116 ret = data.ret;
117 } while (ret == -EAGAIN);
fe4b04fa 118
0da4cf3e 119 return ret;
fe4b04fa
PZ
120}
121
122/**
123 * cpu_function_call - call a function on the cpu
124 * @func: the function to be called
125 * @info: the function call argument
126 *
127 * Calls the function @func on the remote cpu.
128 *
129 * returns: @func return value or -ENXIO when the cpu is offline
130 */
272325c4 131static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
132{
133 struct remote_function_call data = {
e7e7ee2e
IM
134 .p = NULL,
135 .func = func,
136 .info = info,
137 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
138 };
139
140 smp_call_function_single(cpu, remote_function, &data, 1);
141
142 return data.ret;
143}
144
fae3fde6
PZ
145static inline struct perf_cpu_context *
146__get_cpu_context(struct perf_event_context *ctx)
147{
148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149}
150
151static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 struct perf_event_context *ctx)
0017960f 153{
fae3fde6
PZ
154 raw_spin_lock(&cpuctx->ctx.lock);
155 if (ctx)
156 raw_spin_lock(&ctx->lock);
157}
158
159static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
161{
162 if (ctx)
163 raw_spin_unlock(&ctx->lock);
164 raw_spin_unlock(&cpuctx->ctx.lock);
165}
166
63b6da39
PZ
167#define TASK_TOMBSTONE ((void *)-1L)
168
169static bool is_kernel_event(struct perf_event *event)
170{
f47c02c0 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
172}
173
39a43640
PZ
174/*
175 * On task ctx scheduling...
176 *
177 * When !ctx->nr_events a task context will not be scheduled. This means
178 * we can disable the scheduler hooks (for performance) without leaving
179 * pending task ctx state.
180 *
181 * This however results in two special cases:
182 *
183 * - removing the last event from a task ctx; this is relatively straight
184 * forward and is done in __perf_remove_from_context.
185 *
186 * - adding the first event to a task ctx; this is tricky because we cannot
187 * rely on ctx->is_active and therefore cannot use event_function_call().
188 * See perf_install_in_context().
189 *
39a43640
PZ
190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191 */
192
fae3fde6
PZ
193typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 struct perf_event_context *, void *);
195
196struct event_function_struct {
197 struct perf_event *event;
198 event_f func;
199 void *data;
200};
201
202static int event_function(void *info)
203{
204 struct event_function_struct *efs = info;
205 struct perf_event *event = efs->event;
0017960f 206 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 209 int ret = 0;
fae3fde6 210
16444645 211 lockdep_assert_irqs_disabled();
fae3fde6 212
63b6da39 213 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
214 /*
215 * Since we do the IPI call without holding ctx->lock things can have
216 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
217 */
218 if (ctx->task) {
63b6da39 219 if (ctx->task != current) {
0da4cf3e 220 ret = -ESRCH;
63b6da39
PZ
221 goto unlock;
222 }
fae3fde6 223
fae3fde6
PZ
224 /*
225 * We only use event_function_call() on established contexts,
226 * and event_function() is only ever called when active (or
227 * rather, we'll have bailed in task_function_call() or the
228 * above ctx->task != current test), therefore we must have
229 * ctx->is_active here.
230 */
231 WARN_ON_ONCE(!ctx->is_active);
232 /*
233 * And since we have ctx->is_active, cpuctx->task_ctx must
234 * match.
235 */
63b6da39
PZ
236 WARN_ON_ONCE(task_ctx != ctx);
237 } else {
238 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 239 }
63b6da39 240
fae3fde6 241 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 242unlock:
fae3fde6
PZ
243 perf_ctx_unlock(cpuctx, task_ctx);
244
63b6da39 245 return ret;
fae3fde6
PZ
246}
247
fae3fde6 248static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
249{
250 struct perf_event_context *ctx = event->ctx;
63b6da39 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
252 struct event_function_struct efs = {
253 .event = event,
254 .func = func,
255 .data = data,
256 };
0017960f 257
c97f4736
PZ
258 if (!event->parent) {
259 /*
260 * If this is a !child event, we must hold ctx::mutex to
261 * stabilize the the event->ctx relation. See
262 * perf_event_ctx_lock().
263 */
264 lockdep_assert_held(&ctx->mutex);
265 }
0017960f
PZ
266
267 if (!task) {
fae3fde6 268 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
269 return;
270 }
271
63b6da39
PZ
272 if (task == TASK_TOMBSTONE)
273 return;
274
a096309b 275again:
fae3fde6 276 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
277 return;
278
279 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
280 /*
281 * Reload the task pointer, it might have been changed by
282 * a concurrent perf_event_context_sched_out().
283 */
284 task = ctx->task;
a096309b
PZ
285 if (task == TASK_TOMBSTONE) {
286 raw_spin_unlock_irq(&ctx->lock);
287 return;
0017960f 288 }
a096309b
PZ
289 if (ctx->is_active) {
290 raw_spin_unlock_irq(&ctx->lock);
291 goto again;
292 }
293 func(event, NULL, ctx, data);
0017960f
PZ
294 raw_spin_unlock_irq(&ctx->lock);
295}
296
cca20946
PZ
297/*
298 * Similar to event_function_call() + event_function(), but hard assumes IRQs
299 * are already disabled and we're on the right CPU.
300 */
301static void event_function_local(struct perf_event *event, event_f func, void *data)
302{
303 struct perf_event_context *ctx = event->ctx;
304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 struct task_struct *task = READ_ONCE(ctx->task);
306 struct perf_event_context *task_ctx = NULL;
307
16444645 308 lockdep_assert_irqs_disabled();
cca20946
PZ
309
310 if (task) {
311 if (task == TASK_TOMBSTONE)
312 return;
313
314 task_ctx = ctx;
315 }
316
317 perf_ctx_lock(cpuctx, task_ctx);
318
319 task = ctx->task;
320 if (task == TASK_TOMBSTONE)
321 goto unlock;
322
323 if (task) {
324 /*
325 * We must be either inactive or active and the right task,
326 * otherwise we're screwed, since we cannot IPI to somewhere
327 * else.
328 */
329 if (ctx->is_active) {
330 if (WARN_ON_ONCE(task != current))
331 goto unlock;
332
333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 goto unlock;
335 }
336 } else {
337 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 }
339
340 func(event, cpuctx, ctx, data);
341unlock:
342 perf_ctx_unlock(cpuctx, task_ctx);
343}
344
e5d1367f
SE
345#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
347 PERF_FLAG_PID_CGROUP |\
348 PERF_FLAG_FD_CLOEXEC)
e5d1367f 349
bce38cd5
SE
350/*
351 * branch priv levels that need permission checks
352 */
353#define PERF_SAMPLE_BRANCH_PERM_PLM \
354 (PERF_SAMPLE_BRANCH_KERNEL |\
355 PERF_SAMPLE_BRANCH_HV)
356
0b3fcf17
SE
357enum event_type_t {
358 EVENT_FLEXIBLE = 0x1,
359 EVENT_PINNED = 0x2,
3cbaa590 360 EVENT_TIME = 0x4,
487f05e1
AS
361 /* see ctx_resched() for details */
362 EVENT_CPU = 0x8,
0b3fcf17
SE
363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364};
365
e5d1367f
SE
366/*
367 * perf_sched_events : >0 events exist
368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369 */
9107c89e
PZ
370
371static void perf_sched_delayed(struct work_struct *work);
372DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374static DEFINE_MUTEX(perf_sched_mutex);
375static atomic_t perf_sched_count;
376
e5d1367f 377static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 378static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 379static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 380
cdd6c482
IM
381static atomic_t nr_mmap_events __read_mostly;
382static atomic_t nr_comm_events __read_mostly;
e4222673 383static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 384static atomic_t nr_task_events __read_mostly;
948b26b6 385static atomic_t nr_freq_events __read_mostly;
45ac1403 386static atomic_t nr_switch_events __read_mostly;
76193a94 387static atomic_t nr_ksymbol_events __read_mostly;
6ee52e2a 388static atomic_t nr_bpf_events __read_mostly;
9ee318a7 389
108b02cf
PZ
390static LIST_HEAD(pmus);
391static DEFINE_MUTEX(pmus_lock);
392static struct srcu_struct pmus_srcu;
a63fbed7 393static cpumask_var_t perf_online_mask;
108b02cf 394
0764771d 395/*
cdd6c482 396 * perf event paranoia level:
0fbdea19
IM
397 * -1 - not paranoid at all
398 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 399 * 1 - disallow cpu events for unpriv
0fbdea19 400 * 2 - disallow kernel profiling for unpriv
0764771d 401 */
0161028b 402int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 403
20443384
FW
404/* Minimum for 512 kiB + 1 user control page */
405int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
406
407/*
cdd6c482 408 * max perf event sample rate
df58ab24 409 */
14c63f17
DH
410#define DEFAULT_MAX_SAMPLE_RATE 100000
411#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412#define DEFAULT_CPU_TIME_MAX_PERCENT 25
413
414int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
418
d9494cb4
PZ
419static int perf_sample_allowed_ns __read_mostly =
420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 421
18ab2cd3 422static void update_perf_cpu_limits(void)
14c63f17
DH
423{
424 u64 tmp = perf_sample_period_ns;
425
426 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
427 tmp = div_u64(tmp, 100);
428 if (!tmp)
429 tmp = 1;
430
431 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 432}
163ec435 433
8d5bce0c 434static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
9e630205 435
163ec435
PZ
436int perf_proc_update_handler(struct ctl_table *table, int write,
437 void __user *buffer, size_t *lenp,
438 loff_t *ppos)
439{
1a51c5da
SE
440 int ret;
441 int perf_cpu = sysctl_perf_cpu_time_max_percent;
ab7fdefb
KL
442 /*
443 * If throttling is disabled don't allow the write:
444 */
1a51c5da 445 if (write && (perf_cpu == 100 || perf_cpu == 0))
ab7fdefb
KL
446 return -EINVAL;
447
1a51c5da
SE
448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 if (ret || !write)
450 return ret;
451
163ec435 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 update_perf_cpu_limits();
455
456 return 0;
457}
458
459int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 void __user *buffer, size_t *lenp,
463 loff_t *ppos)
464{
1572e45a 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
466
467 if (ret || !write)
468 return ret;
469
b303e7c1
PZ
470 if (sysctl_perf_cpu_time_max_percent == 100 ||
471 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
472 printk(KERN_WARNING
473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 WRITE_ONCE(perf_sample_allowed_ns, 0);
475 } else {
476 update_perf_cpu_limits();
477 }
163ec435
PZ
478
479 return 0;
480}
1ccd1549 481
14c63f17
DH
482/*
483 * perf samples are done in some very critical code paths (NMIs).
484 * If they take too much CPU time, the system can lock up and not
485 * get any real work done. This will drop the sample rate when
486 * we detect that events are taking too long.
487 */
488#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 489static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 490
91a612ee
PZ
491static u64 __report_avg;
492static u64 __report_allowed;
493
6a02ad66 494static void perf_duration_warn(struct irq_work *w)
14c63f17 495{
0d87d7ec 496 printk_ratelimited(KERN_INFO
91a612ee
PZ
497 "perf: interrupt took too long (%lld > %lld), lowering "
498 "kernel.perf_event_max_sample_rate to %d\n",
499 __report_avg, __report_allowed,
500 sysctl_perf_event_sample_rate);
6a02ad66
PZ
501}
502
503static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505void perf_sample_event_took(u64 sample_len_ns)
506{
91a612ee
PZ
507 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 u64 running_len;
509 u64 avg_len;
510 u32 max;
14c63f17 511
91a612ee 512 if (max_len == 0)
14c63f17
DH
513 return;
514
91a612ee
PZ
515 /* Decay the counter by 1 average sample. */
516 running_len = __this_cpu_read(running_sample_length);
517 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 running_len += sample_len_ns;
519 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
520
521 /*
91a612ee
PZ
522 * Note: this will be biased artifically low until we have
523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
524 * from having to maintain a count.
525 */
91a612ee
PZ
526 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 if (avg_len <= max_len)
14c63f17
DH
528 return;
529
91a612ee
PZ
530 __report_avg = avg_len;
531 __report_allowed = max_len;
14c63f17 532
91a612ee
PZ
533 /*
534 * Compute a throttle threshold 25% below the current duration.
535 */
536 avg_len += avg_len / 4;
537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 if (avg_len < max)
539 max /= (u32)avg_len;
540 else
541 max = 1;
14c63f17 542
91a612ee
PZ
543 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 WRITE_ONCE(max_samples_per_tick, max);
545
546 sysctl_perf_event_sample_rate = max * HZ;
547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 548
cd578abb 549 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 551 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 552 __report_avg, __report_allowed,
cd578abb
PZ
553 sysctl_perf_event_sample_rate);
554 }
14c63f17
DH
555}
556
cdd6c482 557static atomic64_t perf_event_id;
a96bbc16 558
0b3fcf17
SE
559static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 enum event_type_t event_type);
561
562static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
563 enum event_type_t event_type,
564 struct task_struct *task);
565
566static void update_context_time(struct perf_event_context *ctx);
567static u64 perf_event_time(struct perf_event *event);
0b3fcf17 568
cdd6c482 569void __weak perf_event_print_debug(void) { }
0793a61d 570
84c79910 571extern __weak const char *perf_pmu_name(void)
0793a61d 572{
84c79910 573 return "pmu";
0793a61d
TG
574}
575
0b3fcf17
SE
576static inline u64 perf_clock(void)
577{
578 return local_clock();
579}
580
34f43927
PZ
581static inline u64 perf_event_clock(struct perf_event *event)
582{
583 return event->clock();
584}
585
0d3d73aa
PZ
586/*
587 * State based event timekeeping...
588 *
589 * The basic idea is to use event->state to determine which (if any) time
590 * fields to increment with the current delta. This means we only need to
591 * update timestamps when we change state or when they are explicitly requested
592 * (read).
593 *
594 * Event groups make things a little more complicated, but not terribly so. The
595 * rules for a group are that if the group leader is OFF the entire group is
596 * OFF, irrespecive of what the group member states are. This results in
597 * __perf_effective_state().
598 *
599 * A futher ramification is that when a group leader flips between OFF and
600 * !OFF, we need to update all group member times.
601 *
602 *
603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604 * need to make sure the relevant context time is updated before we try and
605 * update our timestamps.
606 */
607
608static __always_inline enum perf_event_state
609__perf_effective_state(struct perf_event *event)
610{
611 struct perf_event *leader = event->group_leader;
612
613 if (leader->state <= PERF_EVENT_STATE_OFF)
614 return leader->state;
615
616 return event->state;
617}
618
619static __always_inline void
620__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621{
622 enum perf_event_state state = __perf_effective_state(event);
623 u64 delta = now - event->tstamp;
624
625 *enabled = event->total_time_enabled;
626 if (state >= PERF_EVENT_STATE_INACTIVE)
627 *enabled += delta;
628
629 *running = event->total_time_running;
630 if (state >= PERF_EVENT_STATE_ACTIVE)
631 *running += delta;
632}
633
634static void perf_event_update_time(struct perf_event *event)
635{
636 u64 now = perf_event_time(event);
637
638 __perf_update_times(event, now, &event->total_time_enabled,
639 &event->total_time_running);
640 event->tstamp = now;
641}
642
643static void perf_event_update_sibling_time(struct perf_event *leader)
644{
645 struct perf_event *sibling;
646
edb39592 647 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
648 perf_event_update_time(sibling);
649}
650
651static void
652perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653{
654 if (event->state == state)
655 return;
656
657 perf_event_update_time(event);
658 /*
659 * If a group leader gets enabled/disabled all its siblings
660 * are affected too.
661 */
662 if ((event->state < 0) ^ (state < 0))
663 perf_event_update_sibling_time(event);
664
665 WRITE_ONCE(event->state, state);
666}
667
e5d1367f
SE
668#ifdef CONFIG_CGROUP_PERF
669
e5d1367f
SE
670static inline bool
671perf_cgroup_match(struct perf_event *event)
672{
673 struct perf_event_context *ctx = event->ctx;
674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
ef824fa1
TH
676 /* @event doesn't care about cgroup */
677 if (!event->cgrp)
678 return true;
679
680 /* wants specific cgroup scope but @cpuctx isn't associated with any */
681 if (!cpuctx->cgrp)
682 return false;
683
684 /*
685 * Cgroup scoping is recursive. An event enabled for a cgroup is
686 * also enabled for all its descendant cgroups. If @cpuctx's
687 * cgroup is a descendant of @event's (the test covers identity
688 * case), it's a match.
689 */
690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 event->cgrp->css.cgroup);
e5d1367f
SE
692}
693
e5d1367f
SE
694static inline void perf_detach_cgroup(struct perf_event *event)
695{
4e2ba650 696 css_put(&event->cgrp->css);
e5d1367f
SE
697 event->cgrp = NULL;
698}
699
700static inline int is_cgroup_event(struct perf_event *event)
701{
702 return event->cgrp != NULL;
703}
704
705static inline u64 perf_cgroup_event_time(struct perf_event *event)
706{
707 struct perf_cgroup_info *t;
708
709 t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 return t->time;
711}
712
713static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714{
715 struct perf_cgroup_info *info;
716 u64 now;
717
718 now = perf_clock();
719
720 info = this_cpu_ptr(cgrp->info);
721
722 info->time += now - info->timestamp;
723 info->timestamp = now;
724}
725
726static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727{
c917e0f2
SL
728 struct perf_cgroup *cgrp = cpuctx->cgrp;
729 struct cgroup_subsys_state *css;
730
731 if (cgrp) {
732 for (css = &cgrp->css; css; css = css->parent) {
733 cgrp = container_of(css, struct perf_cgroup, css);
734 __update_cgrp_time(cgrp);
735 }
736 }
e5d1367f
SE
737}
738
739static inline void update_cgrp_time_from_event(struct perf_event *event)
740{
3f7cce3c
SE
741 struct perf_cgroup *cgrp;
742
e5d1367f 743 /*
3f7cce3c
SE
744 * ensure we access cgroup data only when needed and
745 * when we know the cgroup is pinned (css_get)
e5d1367f 746 */
3f7cce3c 747 if (!is_cgroup_event(event))
e5d1367f
SE
748 return;
749
614e4c4e 750 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
751 /*
752 * Do not update time when cgroup is not active
753 */
28fa741c 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 755 __update_cgrp_time(event->cgrp);
e5d1367f
SE
756}
757
758static inline void
3f7cce3c
SE
759perf_cgroup_set_timestamp(struct task_struct *task,
760 struct perf_event_context *ctx)
e5d1367f
SE
761{
762 struct perf_cgroup *cgrp;
763 struct perf_cgroup_info *info;
c917e0f2 764 struct cgroup_subsys_state *css;
e5d1367f 765
3f7cce3c
SE
766 /*
767 * ctx->lock held by caller
768 * ensure we do not access cgroup data
769 * unless we have the cgroup pinned (css_get)
770 */
771 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
772 return;
773
614e4c4e 774 cgrp = perf_cgroup_from_task(task, ctx);
c917e0f2
SL
775
776 for (css = &cgrp->css; css; css = css->parent) {
777 cgrp = container_of(css, struct perf_cgroup, css);
778 info = this_cpu_ptr(cgrp->info);
779 info->timestamp = ctx->timestamp;
780 }
e5d1367f
SE
781}
782
058fe1c0
DCC
783static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
e5d1367f
SE
785#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
786#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
787
788/*
789 * reschedule events based on the cgroup constraint of task.
790 *
791 * mode SWOUT : schedule out everything
792 * mode SWIN : schedule in based on cgroup for next
793 */
18ab2cd3 794static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
795{
796 struct perf_cpu_context *cpuctx;
058fe1c0 797 struct list_head *list;
e5d1367f
SE
798 unsigned long flags;
799
800 /*
058fe1c0
DCC
801 * Disable interrupts and preemption to avoid this CPU's
802 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
803 */
804 local_irq_save(flags);
805
058fe1c0
DCC
806 list = this_cpu_ptr(&cgrp_cpuctx_list);
807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 809
058fe1c0
DCC
810 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 812
058fe1c0
DCC
813 if (mode & PERF_CGROUP_SWOUT) {
814 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 /*
816 * must not be done before ctxswout due
817 * to event_filter_match() in event_sched_out()
818 */
819 cpuctx->cgrp = NULL;
820 }
e5d1367f 821
058fe1c0
DCC
822 if (mode & PERF_CGROUP_SWIN) {
823 WARN_ON_ONCE(cpuctx->cgrp);
824 /*
825 * set cgrp before ctxsw in to allow
826 * event_filter_match() to not have to pass
827 * task around
828 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 * because cgorup events are only per-cpu
830 */
831 cpuctx->cgrp = perf_cgroup_from_task(task,
832 &cpuctx->ctx);
833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 834 }
058fe1c0
DCC
835 perf_pmu_enable(cpuctx->ctx.pmu);
836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
837 }
838
e5d1367f
SE
839 local_irq_restore(flags);
840}
841
a8d757ef
SE
842static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
e5d1367f 844{
a8d757ef
SE
845 struct perf_cgroup *cgrp1;
846 struct perf_cgroup *cgrp2 = NULL;
847
ddaaf4e2 848 rcu_read_lock();
a8d757ef
SE
849 /*
850 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
851 * we do not need to pass the ctx here because we know
852 * we are holding the rcu lock
a8d757ef 853 */
614e4c4e 854 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 855 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
856
857 /*
858 * only schedule out current cgroup events if we know
859 * that we are switching to a different cgroup. Otherwise,
860 * do no touch the cgroup events.
861 */
862 if (cgrp1 != cgrp2)
863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
864
865 rcu_read_unlock();
e5d1367f
SE
866}
867
a8d757ef
SE
868static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 struct task_struct *task)
e5d1367f 870{
a8d757ef
SE
871 struct perf_cgroup *cgrp1;
872 struct perf_cgroup *cgrp2 = NULL;
873
ddaaf4e2 874 rcu_read_lock();
a8d757ef
SE
875 /*
876 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
877 * we do not need to pass the ctx here because we know
878 * we are holding the rcu lock
a8d757ef 879 */
614e4c4e 880 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 881 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
882
883 /*
884 * only need to schedule in cgroup events if we are changing
885 * cgroup during ctxsw. Cgroup events were not scheduled
886 * out of ctxsw out if that was not the case.
887 */
888 if (cgrp1 != cgrp2)
889 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
890
891 rcu_read_unlock();
e5d1367f
SE
892}
893
894static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 struct perf_event_attr *attr,
896 struct perf_event *group_leader)
897{
898 struct perf_cgroup *cgrp;
899 struct cgroup_subsys_state *css;
2903ff01
AV
900 struct fd f = fdget(fd);
901 int ret = 0;
e5d1367f 902
2903ff01 903 if (!f.file)
e5d1367f
SE
904 return -EBADF;
905
b583043e 906 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 907 &perf_event_cgrp_subsys);
3db272c0
LZ
908 if (IS_ERR(css)) {
909 ret = PTR_ERR(css);
910 goto out;
911 }
e5d1367f
SE
912
913 cgrp = container_of(css, struct perf_cgroup, css);
914 event->cgrp = cgrp;
915
916 /*
917 * all events in a group must monitor
918 * the same cgroup because a task belongs
919 * to only one perf cgroup at a time
920 */
921 if (group_leader && group_leader->cgrp != cgrp) {
922 perf_detach_cgroup(event);
923 ret = -EINVAL;
e5d1367f 924 }
3db272c0 925out:
2903ff01 926 fdput(f);
e5d1367f
SE
927 return ret;
928}
929
930static inline void
931perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932{
933 struct perf_cgroup_info *t;
934 t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 event->shadow_ctx_time = now - t->timestamp;
936}
937
db4a8356
DCC
938/*
939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940 * cleared when last cgroup event is removed.
941 */
942static inline void
943list_update_cgroup_event(struct perf_event *event,
944 struct perf_event_context *ctx, bool add)
945{
946 struct perf_cpu_context *cpuctx;
058fe1c0 947 struct list_head *cpuctx_entry;
db4a8356
DCC
948
949 if (!is_cgroup_event(event))
950 return;
951
db4a8356
DCC
952 /*
953 * Because cgroup events are always per-cpu events,
07c59729 954 * @ctx == &cpuctx->ctx.
db4a8356 955 */
07c59729 956 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
33801b94 957
958 /*
959 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 * matching the event's cgroup, we must do this for every new event,
961 * because if the first would mismatch, the second would not try again
962 * and we would leave cpuctx->cgrp unset.
963 */
964 if (add && !cpuctx->cgrp) {
be96b316
TH
965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
be96b316
TH
967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 cpuctx->cgrp = cgrp;
058fe1c0 969 }
33801b94 970
971 if (add && ctx->nr_cgroups++)
972 return;
973 else if (!add && --ctx->nr_cgroups)
974 return;
975
976 /* no cgroup running */
977 if (!add)
978 cpuctx->cgrp = NULL;
979
980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 if (add)
07c59729
SL
982 list_add(cpuctx_entry,
983 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
33801b94 984 else
985 list_del(cpuctx_entry);
db4a8356
DCC
986}
987
e5d1367f
SE
988#else /* !CONFIG_CGROUP_PERF */
989
990static inline bool
991perf_cgroup_match(struct perf_event *event)
992{
993 return true;
994}
995
996static inline void perf_detach_cgroup(struct perf_event *event)
997{}
998
999static inline int is_cgroup_event(struct perf_event *event)
1000{
1001 return 0;
1002}
1003
e5d1367f
SE
1004static inline void update_cgrp_time_from_event(struct perf_event *event)
1005{
1006}
1007
1008static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1009{
1010}
1011
a8d757ef
SE
1012static inline void perf_cgroup_sched_out(struct task_struct *task,
1013 struct task_struct *next)
e5d1367f
SE
1014{
1015}
1016
a8d757ef
SE
1017static inline void perf_cgroup_sched_in(struct task_struct *prev,
1018 struct task_struct *task)
e5d1367f
SE
1019{
1020}
1021
1022static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1023 struct perf_event_attr *attr,
1024 struct perf_event *group_leader)
1025{
1026 return -EINVAL;
1027}
1028
1029static inline void
3f7cce3c
SE
1030perf_cgroup_set_timestamp(struct task_struct *task,
1031 struct perf_event_context *ctx)
e5d1367f
SE
1032{
1033}
1034
d00dbd29 1035static inline void
e5d1367f
SE
1036perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1037{
1038}
1039
1040static inline void
1041perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1042{
1043}
1044
1045static inline u64 perf_cgroup_event_time(struct perf_event *event)
1046{
1047 return 0;
1048}
1049
db4a8356
DCC
1050static inline void
1051list_update_cgroup_event(struct perf_event *event,
1052 struct perf_event_context *ctx, bool add)
1053{
1054}
1055
e5d1367f
SE
1056#endif
1057
9e630205
SE
1058/*
1059 * set default to be dependent on timer tick just
1060 * like original code
1061 */
1062#define PERF_CPU_HRTIMER (1000 / HZ)
1063/*
8a1115ff 1064 * function must be called with interrupts disabled
9e630205 1065 */
272325c4 1066static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1067{
1068 struct perf_cpu_context *cpuctx;
8d5bce0c 1069 bool rotations;
9e630205 1070
16444645 1071 lockdep_assert_irqs_disabled();
9e630205
SE
1072
1073 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1074 rotations = perf_rotate_context(cpuctx);
1075
4cfafd30
PZ
1076 raw_spin_lock(&cpuctx->hrtimer_lock);
1077 if (rotations)
9e630205 1078 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1079 else
1080 cpuctx->hrtimer_active = 0;
1081 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1082
4cfafd30 1083 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1084}
1085
272325c4 1086static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1087{
272325c4 1088 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1089 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1090 u64 interval;
9e630205
SE
1091
1092 /* no multiplexing needed for SW PMU */
1093 if (pmu->task_ctx_nr == perf_sw_context)
1094 return;
1095
62b85639
SE
1096 /*
1097 * check default is sane, if not set then force to
1098 * default interval (1/tick)
1099 */
272325c4
PZ
1100 interval = pmu->hrtimer_interval_ms;
1101 if (interval < 1)
1102 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1103
272325c4 1104 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1105
4cfafd30 1106 raw_spin_lock_init(&cpuctx->hrtimer_lock);
30f9028b 1107 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
272325c4 1108 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1109}
1110
272325c4 1111static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1112{
272325c4 1113 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1114 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1115 unsigned long flags;
9e630205
SE
1116
1117 /* not for SW PMU */
1118 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1119 return 0;
9e630205 1120
4cfafd30
PZ
1121 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1122 if (!cpuctx->hrtimer_active) {
1123 cpuctx->hrtimer_active = 1;
1124 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
30f9028b 1125 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
4cfafd30
PZ
1126 }
1127 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1128
272325c4 1129 return 0;
9e630205
SE
1130}
1131
33696fc0 1132void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1133{
33696fc0
PZ
1134 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1135 if (!(*count)++)
1136 pmu->pmu_disable(pmu);
9e35ad38 1137}
9e35ad38 1138
33696fc0 1139void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1140{
33696fc0
PZ
1141 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1142 if (!--(*count))
1143 pmu->pmu_enable(pmu);
9e35ad38 1144}
9e35ad38 1145
2fde4f94 1146static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1147
1148/*
2fde4f94
MR
1149 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1150 * perf_event_task_tick() are fully serialized because they're strictly cpu
1151 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1152 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1153 */
2fde4f94 1154static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1155{
2fde4f94 1156 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1157
16444645 1158 lockdep_assert_irqs_disabled();
b5ab4cd5 1159
2fde4f94
MR
1160 WARN_ON(!list_empty(&ctx->active_ctx_list));
1161
1162 list_add(&ctx->active_ctx_list, head);
1163}
1164
1165static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1166{
16444645 1167 lockdep_assert_irqs_disabled();
2fde4f94
MR
1168
1169 WARN_ON(list_empty(&ctx->active_ctx_list));
1170
1171 list_del_init(&ctx->active_ctx_list);
9e35ad38 1172}
9e35ad38 1173
cdd6c482 1174static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1175{
8c94abbb 1176 refcount_inc(&ctx->refcount);
a63eaf34
PM
1177}
1178
4af57ef2
YZ
1179static void free_ctx(struct rcu_head *head)
1180{
1181 struct perf_event_context *ctx;
1182
1183 ctx = container_of(head, struct perf_event_context, rcu_head);
1184 kfree(ctx->task_ctx_data);
1185 kfree(ctx);
1186}
1187
cdd6c482 1188static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1189{
8c94abbb 1190 if (refcount_dec_and_test(&ctx->refcount)) {
564c2b21
PM
1191 if (ctx->parent_ctx)
1192 put_ctx(ctx->parent_ctx);
63b6da39 1193 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1194 put_task_struct(ctx->task);
4af57ef2 1195 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1196 }
a63eaf34
PM
1197}
1198
f63a8daa
PZ
1199/*
1200 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1201 * perf_pmu_migrate_context() we need some magic.
1202 *
1203 * Those places that change perf_event::ctx will hold both
1204 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1205 *
8b10c5e2
PZ
1206 * Lock ordering is by mutex address. There are two other sites where
1207 * perf_event_context::mutex nests and those are:
1208 *
1209 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1210 * perf_event_exit_event()
1211 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1212 *
1213 * - perf_event_init_context() [ parent, 0 ]
1214 * inherit_task_group()
1215 * inherit_group()
1216 * inherit_event()
1217 * perf_event_alloc()
1218 * perf_init_event()
1219 * perf_try_init_event() [ child , 1 ]
1220 *
1221 * While it appears there is an obvious deadlock here -- the parent and child
1222 * nesting levels are inverted between the two. This is in fact safe because
1223 * life-time rules separate them. That is an exiting task cannot fork, and a
1224 * spawning task cannot (yet) exit.
1225 *
1226 * But remember that that these are parent<->child context relations, and
1227 * migration does not affect children, therefore these two orderings should not
1228 * interact.
f63a8daa
PZ
1229 *
1230 * The change in perf_event::ctx does not affect children (as claimed above)
1231 * because the sys_perf_event_open() case will install a new event and break
1232 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1233 * concerned with cpuctx and that doesn't have children.
1234 *
1235 * The places that change perf_event::ctx will issue:
1236 *
1237 * perf_remove_from_context();
1238 * synchronize_rcu();
1239 * perf_install_in_context();
1240 *
1241 * to affect the change. The remove_from_context() + synchronize_rcu() should
1242 * quiesce the event, after which we can install it in the new location. This
1243 * means that only external vectors (perf_fops, prctl) can perturb the event
1244 * while in transit. Therefore all such accessors should also acquire
1245 * perf_event_context::mutex to serialize against this.
1246 *
1247 * However; because event->ctx can change while we're waiting to acquire
1248 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1249 * function.
1250 *
1251 * Lock order:
79c9ce57 1252 * cred_guard_mutex
f63a8daa
PZ
1253 * task_struct::perf_event_mutex
1254 * perf_event_context::mutex
f63a8daa 1255 * perf_event::child_mutex;
07c4a776 1256 * perf_event_context::lock
f63a8daa
PZ
1257 * perf_event::mmap_mutex
1258 * mmap_sem
18736eef 1259 * perf_addr_filters_head::lock
82d94856
PZ
1260 *
1261 * cpu_hotplug_lock
1262 * pmus_lock
1263 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1264 */
a83fe28e
PZ
1265static struct perf_event_context *
1266perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1267{
1268 struct perf_event_context *ctx;
1269
1270again:
1271 rcu_read_lock();
6aa7de05 1272 ctx = READ_ONCE(event->ctx);
8c94abbb 1273 if (!refcount_inc_not_zero(&ctx->refcount)) {
f63a8daa
PZ
1274 rcu_read_unlock();
1275 goto again;
1276 }
1277 rcu_read_unlock();
1278
a83fe28e 1279 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1280 if (event->ctx != ctx) {
1281 mutex_unlock(&ctx->mutex);
1282 put_ctx(ctx);
1283 goto again;
1284 }
1285
1286 return ctx;
1287}
1288
a83fe28e
PZ
1289static inline struct perf_event_context *
1290perf_event_ctx_lock(struct perf_event *event)
1291{
1292 return perf_event_ctx_lock_nested(event, 0);
1293}
1294
f63a8daa
PZ
1295static void perf_event_ctx_unlock(struct perf_event *event,
1296 struct perf_event_context *ctx)
1297{
1298 mutex_unlock(&ctx->mutex);
1299 put_ctx(ctx);
1300}
1301
211de6eb
PZ
1302/*
1303 * This must be done under the ctx->lock, such as to serialize against
1304 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1305 * calling scheduler related locks and ctx->lock nests inside those.
1306 */
1307static __must_check struct perf_event_context *
1308unclone_ctx(struct perf_event_context *ctx)
71a851b4 1309{
211de6eb
PZ
1310 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1311
1312 lockdep_assert_held(&ctx->lock);
1313
1314 if (parent_ctx)
71a851b4 1315 ctx->parent_ctx = NULL;
5a3126d4 1316 ctx->generation++;
211de6eb
PZ
1317
1318 return parent_ctx;
71a851b4
PZ
1319}
1320
1d953111
ON
1321static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1322 enum pid_type type)
6844c09d 1323{
1d953111 1324 u32 nr;
6844c09d
ACM
1325 /*
1326 * only top level events have the pid namespace they were created in
1327 */
1328 if (event->parent)
1329 event = event->parent;
1330
1d953111
ON
1331 nr = __task_pid_nr_ns(p, type, event->ns);
1332 /* avoid -1 if it is idle thread or runs in another ns */
1333 if (!nr && !pid_alive(p))
1334 nr = -1;
1335 return nr;
6844c09d
ACM
1336}
1337
1d953111 1338static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1339{
6883f81a 1340 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1d953111 1341}
6844c09d 1342
1d953111
ON
1343static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1344{
1345 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1346}
1347
7f453c24 1348/*
cdd6c482 1349 * If we inherit events we want to return the parent event id
7f453c24
PZ
1350 * to userspace.
1351 */
cdd6c482 1352static u64 primary_event_id(struct perf_event *event)
7f453c24 1353{
cdd6c482 1354 u64 id = event->id;
7f453c24 1355
cdd6c482
IM
1356 if (event->parent)
1357 id = event->parent->id;
7f453c24
PZ
1358
1359 return id;
1360}
1361
25346b93 1362/*
cdd6c482 1363 * Get the perf_event_context for a task and lock it.
63b6da39 1364 *
25346b93
PM
1365 * This has to cope with with the fact that until it is locked,
1366 * the context could get moved to another task.
1367 */
cdd6c482 1368static struct perf_event_context *
8dc85d54 1369perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1370{
cdd6c482 1371 struct perf_event_context *ctx;
25346b93 1372
9ed6060d 1373retry:
058ebd0e
PZ
1374 /*
1375 * One of the few rules of preemptible RCU is that one cannot do
1376 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1377 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1378 * rcu_read_unlock_special().
1379 *
1380 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1381 * side critical section has interrupts disabled.
058ebd0e 1382 */
2fd59077 1383 local_irq_save(*flags);
058ebd0e 1384 rcu_read_lock();
8dc85d54 1385 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1386 if (ctx) {
1387 /*
1388 * If this context is a clone of another, it might
1389 * get swapped for another underneath us by
cdd6c482 1390 * perf_event_task_sched_out, though the
25346b93
PM
1391 * rcu_read_lock() protects us from any context
1392 * getting freed. Lock the context and check if it
1393 * got swapped before we could get the lock, and retry
1394 * if so. If we locked the right context, then it
1395 * can't get swapped on us any more.
1396 */
2fd59077 1397 raw_spin_lock(&ctx->lock);
8dc85d54 1398 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1399 raw_spin_unlock(&ctx->lock);
058ebd0e 1400 rcu_read_unlock();
2fd59077 1401 local_irq_restore(*flags);
25346b93
PM
1402 goto retry;
1403 }
b49a9e7e 1404
63b6da39 1405 if (ctx->task == TASK_TOMBSTONE ||
8c94abbb 1406 !refcount_inc_not_zero(&ctx->refcount)) {
2fd59077 1407 raw_spin_unlock(&ctx->lock);
b49a9e7e 1408 ctx = NULL;
828b6f0e
PZ
1409 } else {
1410 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1411 }
25346b93
PM
1412 }
1413 rcu_read_unlock();
2fd59077
PM
1414 if (!ctx)
1415 local_irq_restore(*flags);
25346b93
PM
1416 return ctx;
1417}
1418
1419/*
1420 * Get the context for a task and increment its pin_count so it
1421 * can't get swapped to another task. This also increments its
1422 * reference count so that the context can't get freed.
1423 */
8dc85d54
PZ
1424static struct perf_event_context *
1425perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1426{
cdd6c482 1427 struct perf_event_context *ctx;
25346b93
PM
1428 unsigned long flags;
1429
8dc85d54 1430 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1431 if (ctx) {
1432 ++ctx->pin_count;
e625cce1 1433 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1434 }
1435 return ctx;
1436}
1437
cdd6c482 1438static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1439{
1440 unsigned long flags;
1441
e625cce1 1442 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1443 --ctx->pin_count;
e625cce1 1444 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1445}
1446
f67218c3
PZ
1447/*
1448 * Update the record of the current time in a context.
1449 */
1450static void update_context_time(struct perf_event_context *ctx)
1451{
1452 u64 now = perf_clock();
1453
1454 ctx->time += now - ctx->timestamp;
1455 ctx->timestamp = now;
1456}
1457
4158755d
SE
1458static u64 perf_event_time(struct perf_event *event)
1459{
1460 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1461
1462 if (is_cgroup_event(event))
1463 return perf_cgroup_event_time(event);
1464
4158755d
SE
1465 return ctx ? ctx->time : 0;
1466}
1467
487f05e1
AS
1468static enum event_type_t get_event_type(struct perf_event *event)
1469{
1470 struct perf_event_context *ctx = event->ctx;
1471 enum event_type_t event_type;
1472
1473 lockdep_assert_held(&ctx->lock);
1474
3bda69c1
AS
1475 /*
1476 * It's 'group type', really, because if our group leader is
1477 * pinned, so are we.
1478 */
1479 if (event->group_leader != event)
1480 event = event->group_leader;
1481
487f05e1
AS
1482 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1483 if (!ctx->task)
1484 event_type |= EVENT_CPU;
1485
1486 return event_type;
1487}
1488
8e1a2031 1489/*
161c85fa 1490 * Helper function to initialize event group nodes.
8e1a2031 1491 */
161c85fa 1492static void init_event_group(struct perf_event *event)
8e1a2031
AB
1493{
1494 RB_CLEAR_NODE(&event->group_node);
1495 event->group_index = 0;
1496}
1497
1498/*
1499 * Extract pinned or flexible groups from the context
161c85fa 1500 * based on event attrs bits.
8e1a2031
AB
1501 */
1502static struct perf_event_groups *
1503get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1504{
1505 if (event->attr.pinned)
1506 return &ctx->pinned_groups;
1507 else
1508 return &ctx->flexible_groups;
1509}
1510
8e1a2031 1511/*
161c85fa 1512 * Helper function to initializes perf_event_group trees.
8e1a2031 1513 */
161c85fa 1514static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1515{
1516 groups->tree = RB_ROOT;
1517 groups->index = 0;
1518}
1519
1520/*
1521 * Compare function for event groups;
161c85fa
PZ
1522 *
1523 * Implements complex key that first sorts by CPU and then by virtual index
1524 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1525 */
161c85fa
PZ
1526static bool
1527perf_event_groups_less(struct perf_event *left, struct perf_event *right)
8e1a2031 1528{
161c85fa
PZ
1529 if (left->cpu < right->cpu)
1530 return true;
1531 if (left->cpu > right->cpu)
1532 return false;
1533
1534 if (left->group_index < right->group_index)
1535 return true;
1536 if (left->group_index > right->group_index)
1537 return false;
1538
1539 return false;
8e1a2031
AB
1540}
1541
1542/*
161c85fa
PZ
1543 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1544 * key (see perf_event_groups_less). This places it last inside the CPU
1545 * subtree.
8e1a2031
AB
1546 */
1547static void
1548perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1549 struct perf_event *event)
8e1a2031
AB
1550{
1551 struct perf_event *node_event;
1552 struct rb_node *parent;
1553 struct rb_node **node;
1554
1555 event->group_index = ++groups->index;
1556
1557 node = &groups->tree.rb_node;
1558 parent = *node;
1559
1560 while (*node) {
1561 parent = *node;
161c85fa 1562 node_event = container_of(*node, struct perf_event, group_node);
8e1a2031
AB
1563
1564 if (perf_event_groups_less(event, node_event))
1565 node = &parent->rb_left;
1566 else
1567 node = &parent->rb_right;
1568 }
1569
1570 rb_link_node(&event->group_node, parent, node);
1571 rb_insert_color(&event->group_node, &groups->tree);
1572}
1573
1574/*
161c85fa 1575 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1576 */
1577static void
1578add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1579{
1580 struct perf_event_groups *groups;
1581
1582 groups = get_event_groups(event, ctx);
1583 perf_event_groups_insert(groups, event);
1584}
1585
1586/*
161c85fa 1587 * Delete a group from a tree.
8e1a2031
AB
1588 */
1589static void
1590perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1591 struct perf_event *event)
8e1a2031 1592{
161c85fa
PZ
1593 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1594 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1595
161c85fa 1596 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1597 init_event_group(event);
1598}
1599
1600/*
161c85fa 1601 * Helper function to delete event from its groups.
8e1a2031
AB
1602 */
1603static void
1604del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1605{
1606 struct perf_event_groups *groups;
1607
1608 groups = get_event_groups(event, ctx);
1609 perf_event_groups_delete(groups, event);
1610}
1611
1612/*
161c85fa 1613 * Get the leftmost event in the @cpu subtree.
8e1a2031
AB
1614 */
1615static struct perf_event *
1616perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1617{
1618 struct perf_event *node_event = NULL, *match = NULL;
1619 struct rb_node *node = groups->tree.rb_node;
1620
1621 while (node) {
161c85fa 1622 node_event = container_of(node, struct perf_event, group_node);
8e1a2031
AB
1623
1624 if (cpu < node_event->cpu) {
1625 node = node->rb_left;
1626 } else if (cpu > node_event->cpu) {
1627 node = node->rb_right;
1628 } else {
1629 match = node_event;
1630 node = node->rb_left;
1631 }
1632 }
1633
1634 return match;
1635}
1636
1cac7b1a
PZ
1637/*
1638 * Like rb_entry_next_safe() for the @cpu subtree.
1639 */
1640static struct perf_event *
1641perf_event_groups_next(struct perf_event *event)
1642{
1643 struct perf_event *next;
1644
1645 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1646 if (next && next->cpu == event->cpu)
1647 return next;
1648
1649 return NULL;
1650}
1651
8e1a2031 1652/*
161c85fa 1653 * Iterate through the whole groups tree.
8e1a2031 1654 */
6e6804d2
PZ
1655#define perf_event_groups_for_each(event, groups) \
1656 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1657 typeof(*event), group_node); event; \
1658 event = rb_entry_safe(rb_next(&event->group_node), \
1659 typeof(*event), group_node))
8e1a2031 1660
fccc714b 1661/*
788faab7 1662 * Add an event from the lists for its context.
fccc714b
PZ
1663 * Must be called with ctx->mutex and ctx->lock held.
1664 */
04289bb9 1665static void
cdd6c482 1666list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1667{
c994d613
PZ
1668 lockdep_assert_held(&ctx->lock);
1669
8a49542c
PZ
1670 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1671 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1672
0d3d73aa
PZ
1673 event->tstamp = perf_event_time(event);
1674
04289bb9 1675 /*
8a49542c
PZ
1676 * If we're a stand alone event or group leader, we go to the context
1677 * list, group events are kept attached to the group so that
1678 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1679 */
8a49542c 1680 if (event->group_leader == event) {
4ff6a8de 1681 event->group_caps = event->event_caps;
8e1a2031 1682 add_event_to_groups(event, ctx);
5c148194 1683 }
592903cd 1684
db4a8356 1685 list_update_cgroup_event(event, ctx, true);
e5d1367f 1686
cdd6c482
IM
1687 list_add_rcu(&event->event_entry, &ctx->event_list);
1688 ctx->nr_events++;
1689 if (event->attr.inherit_stat)
bfbd3381 1690 ctx->nr_stat++;
5a3126d4
PZ
1691
1692 ctx->generation++;
04289bb9
IM
1693}
1694
0231bb53
JO
1695/*
1696 * Initialize event state based on the perf_event_attr::disabled.
1697 */
1698static inline void perf_event__state_init(struct perf_event *event)
1699{
1700 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1701 PERF_EVENT_STATE_INACTIVE;
1702}
1703
a723968c 1704static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1705{
1706 int entry = sizeof(u64); /* value */
1707 int size = 0;
1708 int nr = 1;
1709
1710 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1711 size += sizeof(u64);
1712
1713 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1714 size += sizeof(u64);
1715
1716 if (event->attr.read_format & PERF_FORMAT_ID)
1717 entry += sizeof(u64);
1718
1719 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1720 nr += nr_siblings;
c320c7b7
ACM
1721 size += sizeof(u64);
1722 }
1723
1724 size += entry * nr;
1725 event->read_size = size;
1726}
1727
a723968c 1728static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1729{
1730 struct perf_sample_data *data;
c320c7b7
ACM
1731 u16 size = 0;
1732
c320c7b7
ACM
1733 if (sample_type & PERF_SAMPLE_IP)
1734 size += sizeof(data->ip);
1735
6844c09d
ACM
1736 if (sample_type & PERF_SAMPLE_ADDR)
1737 size += sizeof(data->addr);
1738
1739 if (sample_type & PERF_SAMPLE_PERIOD)
1740 size += sizeof(data->period);
1741
c3feedf2
AK
1742 if (sample_type & PERF_SAMPLE_WEIGHT)
1743 size += sizeof(data->weight);
1744
6844c09d
ACM
1745 if (sample_type & PERF_SAMPLE_READ)
1746 size += event->read_size;
1747
d6be9ad6
SE
1748 if (sample_type & PERF_SAMPLE_DATA_SRC)
1749 size += sizeof(data->data_src.val);
1750
fdfbbd07
AK
1751 if (sample_type & PERF_SAMPLE_TRANSACTION)
1752 size += sizeof(data->txn);
1753
fc7ce9c7
KL
1754 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1755 size += sizeof(data->phys_addr);
1756
6844c09d
ACM
1757 event->header_size = size;
1758}
1759
a723968c
PZ
1760/*
1761 * Called at perf_event creation and when events are attached/detached from a
1762 * group.
1763 */
1764static void perf_event__header_size(struct perf_event *event)
1765{
1766 __perf_event_read_size(event,
1767 event->group_leader->nr_siblings);
1768 __perf_event_header_size(event, event->attr.sample_type);
1769}
1770
6844c09d
ACM
1771static void perf_event__id_header_size(struct perf_event *event)
1772{
1773 struct perf_sample_data *data;
1774 u64 sample_type = event->attr.sample_type;
1775 u16 size = 0;
1776
c320c7b7
ACM
1777 if (sample_type & PERF_SAMPLE_TID)
1778 size += sizeof(data->tid_entry);
1779
1780 if (sample_type & PERF_SAMPLE_TIME)
1781 size += sizeof(data->time);
1782
ff3d527c
AH
1783 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1784 size += sizeof(data->id);
1785
c320c7b7
ACM
1786 if (sample_type & PERF_SAMPLE_ID)
1787 size += sizeof(data->id);
1788
1789 if (sample_type & PERF_SAMPLE_STREAM_ID)
1790 size += sizeof(data->stream_id);
1791
1792 if (sample_type & PERF_SAMPLE_CPU)
1793 size += sizeof(data->cpu_entry);
1794
6844c09d 1795 event->id_header_size = size;
c320c7b7
ACM
1796}
1797
a723968c
PZ
1798static bool perf_event_validate_size(struct perf_event *event)
1799{
1800 /*
1801 * The values computed here will be over-written when we actually
1802 * attach the event.
1803 */
1804 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1805 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1806 perf_event__id_header_size(event);
1807
1808 /*
1809 * Sum the lot; should not exceed the 64k limit we have on records.
1810 * Conservative limit to allow for callchains and other variable fields.
1811 */
1812 if (event->read_size + event->header_size +
1813 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1814 return false;
1815
1816 return true;
1817}
1818
8a49542c
PZ
1819static void perf_group_attach(struct perf_event *event)
1820{
c320c7b7 1821 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1822
a76a82a3
PZ
1823 lockdep_assert_held(&event->ctx->lock);
1824
74c3337c
PZ
1825 /*
1826 * We can have double attach due to group movement in perf_event_open.
1827 */
1828 if (event->attach_state & PERF_ATTACH_GROUP)
1829 return;
1830
8a49542c
PZ
1831 event->attach_state |= PERF_ATTACH_GROUP;
1832
1833 if (group_leader == event)
1834 return;
1835
652884fe
PZ
1836 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1837
4ff6a8de 1838 group_leader->group_caps &= event->event_caps;
8a49542c 1839
8343aae6 1840 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1841 group_leader->nr_siblings++;
c320c7b7
ACM
1842
1843 perf_event__header_size(group_leader);
1844
edb39592 1845 for_each_sibling_event(pos, group_leader)
c320c7b7 1846 perf_event__header_size(pos);
8a49542c
PZ
1847}
1848
a63eaf34 1849/*
788faab7 1850 * Remove an event from the lists for its context.
fccc714b 1851 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1852 */
04289bb9 1853static void
cdd6c482 1854list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1855{
652884fe
PZ
1856 WARN_ON_ONCE(event->ctx != ctx);
1857 lockdep_assert_held(&ctx->lock);
1858
8a49542c
PZ
1859 /*
1860 * We can have double detach due to exit/hot-unplug + close.
1861 */
1862 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1863 return;
8a49542c
PZ
1864
1865 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1866
db4a8356 1867 list_update_cgroup_event(event, ctx, false);
e5d1367f 1868
cdd6c482
IM
1869 ctx->nr_events--;
1870 if (event->attr.inherit_stat)
bfbd3381 1871 ctx->nr_stat--;
8bc20959 1872
cdd6c482 1873 list_del_rcu(&event->event_entry);
04289bb9 1874
8a49542c 1875 if (event->group_leader == event)
8e1a2031 1876 del_event_from_groups(event, ctx);
5c148194 1877
b2e74a26
SE
1878 /*
1879 * If event was in error state, then keep it
1880 * that way, otherwise bogus counts will be
1881 * returned on read(). The only way to get out
1882 * of error state is by explicit re-enabling
1883 * of the event
1884 */
1885 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1886 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1887
1888 ctx->generation++;
050735b0
PZ
1889}
1890
ab43762e
AS
1891static int
1892perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1893{
1894 if (!has_aux(aux_event))
1895 return 0;
1896
1897 if (!event->pmu->aux_output_match)
1898 return 0;
1899
1900 return event->pmu->aux_output_match(aux_event);
1901}
1902
1903static void put_event(struct perf_event *event);
1904static void event_sched_out(struct perf_event *event,
1905 struct perf_cpu_context *cpuctx,
1906 struct perf_event_context *ctx);
1907
1908static void perf_put_aux_event(struct perf_event *event)
1909{
1910 struct perf_event_context *ctx = event->ctx;
1911 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1912 struct perf_event *iter;
1913
1914 /*
1915 * If event uses aux_event tear down the link
1916 */
1917 if (event->aux_event) {
1918 iter = event->aux_event;
1919 event->aux_event = NULL;
1920 put_event(iter);
1921 return;
1922 }
1923
1924 /*
1925 * If the event is an aux_event, tear down all links to
1926 * it from other events.
1927 */
1928 for_each_sibling_event(iter, event->group_leader) {
1929 if (iter->aux_event != event)
1930 continue;
1931
1932 iter->aux_event = NULL;
1933 put_event(event);
1934
1935 /*
1936 * If it's ACTIVE, schedule it out and put it into ERROR
1937 * state so that we don't try to schedule it again. Note
1938 * that perf_event_enable() will clear the ERROR status.
1939 */
1940 event_sched_out(iter, cpuctx, ctx);
1941 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1942 }
1943}
1944
a4faf00d
AS
1945static bool perf_need_aux_event(struct perf_event *event)
1946{
1947 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
1948}
1949
ab43762e
AS
1950static int perf_get_aux_event(struct perf_event *event,
1951 struct perf_event *group_leader)
1952{
1953 /*
1954 * Our group leader must be an aux event if we want to be
1955 * an aux_output. This way, the aux event will precede its
1956 * aux_output events in the group, and therefore will always
1957 * schedule first.
1958 */
1959 if (!group_leader)
1960 return 0;
1961
a4faf00d
AS
1962 /*
1963 * aux_output and aux_sample_size are mutually exclusive.
1964 */
1965 if (event->attr.aux_output && event->attr.aux_sample_size)
1966 return 0;
1967
1968 if (event->attr.aux_output &&
1969 !perf_aux_output_match(event, group_leader))
1970 return 0;
1971
1972 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
ab43762e
AS
1973 return 0;
1974
1975 if (!atomic_long_inc_not_zero(&group_leader->refcount))
1976 return 0;
1977
1978 /*
1979 * Link aux_outputs to their aux event; this is undone in
1980 * perf_group_detach() by perf_put_aux_event(). When the
1981 * group in torn down, the aux_output events loose their
1982 * link to the aux_event and can't schedule any more.
1983 */
1984 event->aux_event = group_leader;
1985
1986 return 1;
1987}
1988
8a49542c 1989static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1990{
1991 struct perf_event *sibling, *tmp;
6668128a 1992 struct perf_event_context *ctx = event->ctx;
8a49542c 1993
6668128a 1994 lockdep_assert_held(&ctx->lock);
a76a82a3 1995
8a49542c
PZ
1996 /*
1997 * We can have double detach due to exit/hot-unplug + close.
1998 */
1999 if (!(event->attach_state & PERF_ATTACH_GROUP))
2000 return;
2001
2002 event->attach_state &= ~PERF_ATTACH_GROUP;
2003
ab43762e
AS
2004 perf_put_aux_event(event);
2005
8a49542c
PZ
2006 /*
2007 * If this is a sibling, remove it from its group.
2008 */
2009 if (event->group_leader != event) {
8343aae6 2010 list_del_init(&event->sibling_list);
8a49542c 2011 event->group_leader->nr_siblings--;
c320c7b7 2012 goto out;
8a49542c
PZ
2013 }
2014
04289bb9 2015 /*
cdd6c482
IM
2016 * If this was a group event with sibling events then
2017 * upgrade the siblings to singleton events by adding them
8a49542c 2018 * to whatever list we are on.
04289bb9 2019 */
8343aae6 2020 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 2021
04289bb9 2022 sibling->group_leader = sibling;
24868367 2023 list_del_init(&sibling->sibling_list);
d6f962b5
FW
2024
2025 /* Inherit group flags from the previous leader */
4ff6a8de 2026 sibling->group_caps = event->group_caps;
652884fe 2027
8e1a2031 2028 if (!RB_EMPTY_NODE(&event->group_node)) {
8e1a2031 2029 add_event_to_groups(sibling, event->ctx);
6668128a
PZ
2030
2031 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2032 struct list_head *list = sibling->attr.pinned ?
2033 &ctx->pinned_active : &ctx->flexible_active;
2034
2035 list_add_tail(&sibling->active_list, list);
2036 }
8e1a2031
AB
2037 }
2038
652884fe 2039 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 2040 }
c320c7b7
ACM
2041
2042out:
2043 perf_event__header_size(event->group_leader);
2044
edb39592 2045 for_each_sibling_event(tmp, event->group_leader)
c320c7b7 2046 perf_event__header_size(tmp);
04289bb9
IM
2047}
2048
fadfe7be
JO
2049static bool is_orphaned_event(struct perf_event *event)
2050{
a69b0ca4 2051 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
2052}
2053
2c81a647 2054static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
2055{
2056 struct pmu *pmu = event->pmu;
2057 return pmu->filter_match ? pmu->filter_match(event) : 1;
2058}
2059
2c81a647
MR
2060/*
2061 * Check whether we should attempt to schedule an event group based on
2062 * PMU-specific filtering. An event group can consist of HW and SW events,
2063 * potentially with a SW leader, so we must check all the filters, to
2064 * determine whether a group is schedulable:
2065 */
2066static inline int pmu_filter_match(struct perf_event *event)
2067{
edb39592 2068 struct perf_event *sibling;
2c81a647
MR
2069
2070 if (!__pmu_filter_match(event))
2071 return 0;
2072
edb39592
PZ
2073 for_each_sibling_event(sibling, event) {
2074 if (!__pmu_filter_match(sibling))
2c81a647
MR
2075 return 0;
2076 }
2077
2078 return 1;
2079}
2080
fa66f07a
SE
2081static inline int
2082event_filter_match(struct perf_event *event)
2083{
0b8f1e2e
PZ
2084 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2085 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
2086}
2087
9ffcfa6f
SE
2088static void
2089event_sched_out(struct perf_event *event,
3b6f9e5c 2090 struct perf_cpu_context *cpuctx,
cdd6c482 2091 struct perf_event_context *ctx)
3b6f9e5c 2092{
0d3d73aa 2093 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
2094
2095 WARN_ON_ONCE(event->ctx != ctx);
2096 lockdep_assert_held(&ctx->lock);
2097
cdd6c482 2098 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 2099 return;
3b6f9e5c 2100
6668128a
PZ
2101 /*
2102 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2103 * we can schedule events _OUT_ individually through things like
2104 * __perf_remove_from_context().
2105 */
2106 list_del_init(&event->active_list);
2107
44377277
AS
2108 perf_pmu_disable(event->pmu);
2109
28a967c3
PZ
2110 event->pmu->del(event, 0);
2111 event->oncpu = -1;
0d3d73aa 2112
1d54ad94
PZ
2113 if (READ_ONCE(event->pending_disable) >= 0) {
2114 WRITE_ONCE(event->pending_disable, -1);
0d3d73aa 2115 state = PERF_EVENT_STATE_OFF;
970892a9 2116 }
0d3d73aa 2117 perf_event_set_state(event, state);
3b6f9e5c 2118
cdd6c482 2119 if (!is_software_event(event))
3b6f9e5c 2120 cpuctx->active_oncpu--;
2fde4f94
MR
2121 if (!--ctx->nr_active)
2122 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
2123 if (event->attr.freq && event->attr.sample_freq)
2124 ctx->nr_freq--;
cdd6c482 2125 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 2126 cpuctx->exclusive = 0;
44377277
AS
2127
2128 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2129}
2130
d859e29f 2131static void
cdd6c482 2132group_sched_out(struct perf_event *group_event,
d859e29f 2133 struct perf_cpu_context *cpuctx,
cdd6c482 2134 struct perf_event_context *ctx)
d859e29f 2135{
cdd6c482 2136 struct perf_event *event;
0d3d73aa
PZ
2137
2138 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2139 return;
d859e29f 2140
3f005e7d
MR
2141 perf_pmu_disable(ctx->pmu);
2142
cdd6c482 2143 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
2144
2145 /*
2146 * Schedule out siblings (if any):
2147 */
edb39592 2148 for_each_sibling_event(event, group_event)
cdd6c482 2149 event_sched_out(event, cpuctx, ctx);
d859e29f 2150
3f005e7d
MR
2151 perf_pmu_enable(ctx->pmu);
2152
0d3d73aa 2153 if (group_event->attr.exclusive)
d859e29f
PM
2154 cpuctx->exclusive = 0;
2155}
2156
45a0e07a 2157#define DETACH_GROUP 0x01UL
0017960f 2158
0793a61d 2159/*
cdd6c482 2160 * Cross CPU call to remove a performance event
0793a61d 2161 *
cdd6c482 2162 * We disable the event on the hardware level first. After that we
0793a61d
TG
2163 * remove it from the context list.
2164 */
fae3fde6
PZ
2165static void
2166__perf_remove_from_context(struct perf_event *event,
2167 struct perf_cpu_context *cpuctx,
2168 struct perf_event_context *ctx,
2169 void *info)
0793a61d 2170{
45a0e07a 2171 unsigned long flags = (unsigned long)info;
0793a61d 2172
3c5c8711
PZ
2173 if (ctx->is_active & EVENT_TIME) {
2174 update_context_time(ctx);
2175 update_cgrp_time_from_cpuctx(cpuctx);
2176 }
2177
cdd6c482 2178 event_sched_out(event, cpuctx, ctx);
45a0e07a 2179 if (flags & DETACH_GROUP)
46ce0fe9 2180 perf_group_detach(event);
cdd6c482 2181 list_del_event(event, ctx);
39a43640
PZ
2182
2183 if (!ctx->nr_events && ctx->is_active) {
64ce3126 2184 ctx->is_active = 0;
39a43640
PZ
2185 if (ctx->task) {
2186 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2187 cpuctx->task_ctx = NULL;
2188 }
64ce3126 2189 }
0793a61d
TG
2190}
2191
0793a61d 2192/*
cdd6c482 2193 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2194 *
cdd6c482
IM
2195 * If event->ctx is a cloned context, callers must make sure that
2196 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2197 * remains valid. This is OK when called from perf_release since
2198 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2199 * When called from perf_event_exit_task, it's OK because the
c93f7669 2200 * context has been detached from its task.
0793a61d 2201 */
45a0e07a 2202static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2203{
a76a82a3
PZ
2204 struct perf_event_context *ctx = event->ctx;
2205
2206 lockdep_assert_held(&ctx->mutex);
0793a61d 2207
45a0e07a 2208 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
2209
2210 /*
2211 * The above event_function_call() can NO-OP when it hits
2212 * TASK_TOMBSTONE. In that case we must already have been detached
2213 * from the context (by perf_event_exit_event()) but the grouping
2214 * might still be in-tact.
2215 */
2216 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2217 if ((flags & DETACH_GROUP) &&
2218 (event->attach_state & PERF_ATTACH_GROUP)) {
2219 /*
2220 * Since in that case we cannot possibly be scheduled, simply
2221 * detach now.
2222 */
2223 raw_spin_lock_irq(&ctx->lock);
2224 perf_group_detach(event);
2225 raw_spin_unlock_irq(&ctx->lock);
2226 }
0793a61d
TG
2227}
2228
d859e29f 2229/*
cdd6c482 2230 * Cross CPU call to disable a performance event
d859e29f 2231 */
fae3fde6
PZ
2232static void __perf_event_disable(struct perf_event *event,
2233 struct perf_cpu_context *cpuctx,
2234 struct perf_event_context *ctx,
2235 void *info)
7b648018 2236{
fae3fde6
PZ
2237 if (event->state < PERF_EVENT_STATE_INACTIVE)
2238 return;
7b648018 2239
3c5c8711
PZ
2240 if (ctx->is_active & EVENT_TIME) {
2241 update_context_time(ctx);
2242 update_cgrp_time_from_event(event);
2243 }
2244
fae3fde6
PZ
2245 if (event == event->group_leader)
2246 group_sched_out(event, cpuctx, ctx);
2247 else
2248 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
2249
2250 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
2251}
2252
d859e29f 2253/*
788faab7 2254 * Disable an event.
c93f7669 2255 *
cdd6c482
IM
2256 * If event->ctx is a cloned context, callers must make sure that
2257 * every task struct that event->ctx->task could possibly point to
9f014e3a 2258 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2259 * perf_event_for_each_child or perf_event_for_each because they
2260 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2261 * goes to exit will block in perf_event_exit_event().
2262 *
cdd6c482 2263 * When called from perf_pending_event it's OK because event->ctx
c93f7669 2264 * is the current context on this CPU and preemption is disabled,
cdd6c482 2265 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2266 */
f63a8daa 2267static void _perf_event_disable(struct perf_event *event)
d859e29f 2268{
cdd6c482 2269 struct perf_event_context *ctx = event->ctx;
d859e29f 2270
e625cce1 2271 raw_spin_lock_irq(&ctx->lock);
7b648018 2272 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2273 raw_spin_unlock_irq(&ctx->lock);
7b648018 2274 return;
53cfbf59 2275 }
e625cce1 2276 raw_spin_unlock_irq(&ctx->lock);
7b648018 2277
fae3fde6
PZ
2278 event_function_call(event, __perf_event_disable, NULL);
2279}
2280
2281void perf_event_disable_local(struct perf_event *event)
2282{
2283 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2284}
f63a8daa
PZ
2285
2286/*
2287 * Strictly speaking kernel users cannot create groups and therefore this
2288 * interface does not need the perf_event_ctx_lock() magic.
2289 */
2290void perf_event_disable(struct perf_event *event)
2291{
2292 struct perf_event_context *ctx;
2293
2294 ctx = perf_event_ctx_lock(event);
2295 _perf_event_disable(event);
2296 perf_event_ctx_unlock(event, ctx);
2297}
dcfce4a0 2298EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2299
5aab90ce
JO
2300void perf_event_disable_inatomic(struct perf_event *event)
2301{
1d54ad94
PZ
2302 WRITE_ONCE(event->pending_disable, smp_processor_id());
2303 /* can fail, see perf_pending_event_disable() */
5aab90ce
JO
2304 irq_work_queue(&event->pending);
2305}
2306
e5d1367f 2307static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2308 struct perf_event_context *ctx)
e5d1367f
SE
2309{
2310 /*
2311 * use the correct time source for the time snapshot
2312 *
2313 * We could get by without this by leveraging the
2314 * fact that to get to this function, the caller
2315 * has most likely already called update_context_time()
2316 * and update_cgrp_time_xx() and thus both timestamp
2317 * are identical (or very close). Given that tstamp is,
2318 * already adjusted for cgroup, we could say that:
2319 * tstamp - ctx->timestamp
2320 * is equivalent to
2321 * tstamp - cgrp->timestamp.
2322 *
2323 * Then, in perf_output_read(), the calculation would
2324 * work with no changes because:
2325 * - event is guaranteed scheduled in
2326 * - no scheduled out in between
2327 * - thus the timestamp would be the same
2328 *
2329 * But this is a bit hairy.
2330 *
2331 * So instead, we have an explicit cgroup call to remain
2332 * within the time time source all along. We believe it
2333 * is cleaner and simpler to understand.
2334 */
2335 if (is_cgroup_event(event))
0d3d73aa 2336 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2337 else
0d3d73aa 2338 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2339}
2340
4fe757dd
PZ
2341#define MAX_INTERRUPTS (~0ULL)
2342
2343static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2344static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2345
235c7fc7 2346static int
9ffcfa6f 2347event_sched_in(struct perf_event *event,
235c7fc7 2348 struct perf_cpu_context *cpuctx,
6e37738a 2349 struct perf_event_context *ctx)
235c7fc7 2350{
44377277 2351 int ret = 0;
4158755d 2352
63342411
PZ
2353 lockdep_assert_held(&ctx->lock);
2354
cdd6c482 2355 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2356 return 0;
2357
95ff4ca2
AS
2358 WRITE_ONCE(event->oncpu, smp_processor_id());
2359 /*
0c1cbc18
PZ
2360 * Order event::oncpu write to happen before the ACTIVE state is
2361 * visible. This allows perf_event_{stop,read}() to observe the correct
2362 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2363 */
2364 smp_wmb();
0d3d73aa 2365 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2366
2367 /*
2368 * Unthrottle events, since we scheduled we might have missed several
2369 * ticks already, also for a heavily scheduling task there is little
2370 * guarantee it'll get a tick in a timely manner.
2371 */
2372 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2373 perf_log_throttle(event, 1);
2374 event->hw.interrupts = 0;
2375 }
2376
44377277
AS
2377 perf_pmu_disable(event->pmu);
2378
0d3d73aa 2379 perf_set_shadow_time(event, ctx);
72f669c0 2380
ec0d7729
AS
2381 perf_log_itrace_start(event);
2382
a4eaf7f1 2383 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2384 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2385 event->oncpu = -1;
44377277
AS
2386 ret = -EAGAIN;
2387 goto out;
235c7fc7
IM
2388 }
2389
cdd6c482 2390 if (!is_software_event(event))
3b6f9e5c 2391 cpuctx->active_oncpu++;
2fde4f94
MR
2392 if (!ctx->nr_active++)
2393 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2394 if (event->attr.freq && event->attr.sample_freq)
2395 ctx->nr_freq++;
235c7fc7 2396
cdd6c482 2397 if (event->attr.exclusive)
3b6f9e5c
PM
2398 cpuctx->exclusive = 1;
2399
44377277
AS
2400out:
2401 perf_pmu_enable(event->pmu);
2402
2403 return ret;
235c7fc7
IM
2404}
2405
6751b71e 2406static int
cdd6c482 2407group_sched_in(struct perf_event *group_event,
6751b71e 2408 struct perf_cpu_context *cpuctx,
6e37738a 2409 struct perf_event_context *ctx)
6751b71e 2410{
6bde9b6c 2411 struct perf_event *event, *partial_group = NULL;
4a234593 2412 struct pmu *pmu = ctx->pmu;
6751b71e 2413
cdd6c482 2414 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2415 return 0;
2416
fbbe0701 2417 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2418
9ffcfa6f 2419 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2420 pmu->cancel_txn(pmu);
272325c4 2421 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2422 return -EAGAIN;
90151c35 2423 }
6751b71e
PM
2424
2425 /*
2426 * Schedule in siblings as one group (if any):
2427 */
edb39592 2428 for_each_sibling_event(event, group_event) {
9ffcfa6f 2429 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2430 partial_group = event;
6751b71e
PM
2431 goto group_error;
2432 }
2433 }
2434
9ffcfa6f 2435 if (!pmu->commit_txn(pmu))
6e85158c 2436 return 0;
9ffcfa6f 2437
6751b71e
PM
2438group_error:
2439 /*
2440 * Groups can be scheduled in as one unit only, so undo any
2441 * partial group before returning:
0d3d73aa 2442 * The events up to the failed event are scheduled out normally.
6751b71e 2443 */
edb39592 2444 for_each_sibling_event(event, group_event) {
cdd6c482 2445 if (event == partial_group)
0d3d73aa 2446 break;
d7842da4 2447
0d3d73aa 2448 event_sched_out(event, cpuctx, ctx);
6751b71e 2449 }
9ffcfa6f 2450 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2451
ad5133b7 2452 pmu->cancel_txn(pmu);
90151c35 2453
272325c4 2454 perf_mux_hrtimer_restart(cpuctx);
9e630205 2455
6751b71e
PM
2456 return -EAGAIN;
2457}
2458
3b6f9e5c 2459/*
cdd6c482 2460 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2461 */
cdd6c482 2462static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2463 struct perf_cpu_context *cpuctx,
2464 int can_add_hw)
2465{
2466 /*
cdd6c482 2467 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2468 */
4ff6a8de 2469 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2470 return 1;
2471 /*
2472 * If an exclusive group is already on, no other hardware
cdd6c482 2473 * events can go on.
3b6f9e5c
PM
2474 */
2475 if (cpuctx->exclusive)
2476 return 0;
2477 /*
2478 * If this group is exclusive and there are already
cdd6c482 2479 * events on the CPU, it can't go on.
3b6f9e5c 2480 */
cdd6c482 2481 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2482 return 0;
2483 /*
2484 * Otherwise, try to add it if all previous groups were able
2485 * to go on.
2486 */
2487 return can_add_hw;
2488}
2489
cdd6c482
IM
2490static void add_event_to_ctx(struct perf_event *event,
2491 struct perf_event_context *ctx)
53cfbf59 2492{
cdd6c482 2493 list_add_event(event, ctx);
8a49542c 2494 perf_group_attach(event);
53cfbf59
PM
2495}
2496
bd2afa49
PZ
2497static void ctx_sched_out(struct perf_event_context *ctx,
2498 struct perf_cpu_context *cpuctx,
2499 enum event_type_t event_type);
2c29ef0f
PZ
2500static void
2501ctx_sched_in(struct perf_event_context *ctx,
2502 struct perf_cpu_context *cpuctx,
2503 enum event_type_t event_type,
2504 struct task_struct *task);
fe4b04fa 2505
bd2afa49 2506static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2507 struct perf_event_context *ctx,
2508 enum event_type_t event_type)
bd2afa49
PZ
2509{
2510 if (!cpuctx->task_ctx)
2511 return;
2512
2513 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2514 return;
2515
487f05e1 2516 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2517}
2518
dce5855b
PZ
2519static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2520 struct perf_event_context *ctx,
2521 struct task_struct *task)
2522{
2523 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2524 if (ctx)
2525 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2526 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2527 if (ctx)
2528 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2529}
2530
487f05e1
AS
2531/*
2532 * We want to maintain the following priority of scheduling:
2533 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2534 * - task pinned (EVENT_PINNED)
2535 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2536 * - task flexible (EVENT_FLEXIBLE).
2537 *
2538 * In order to avoid unscheduling and scheduling back in everything every
2539 * time an event is added, only do it for the groups of equal priority and
2540 * below.
2541 *
2542 * This can be called after a batch operation on task events, in which case
2543 * event_type is a bit mask of the types of events involved. For CPU events,
2544 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2545 */
3e349507 2546static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2547 struct perf_event_context *task_ctx,
2548 enum event_type_t event_type)
0017960f 2549{
bd903afe 2550 enum event_type_t ctx_event_type;
487f05e1
AS
2551 bool cpu_event = !!(event_type & EVENT_CPU);
2552
2553 /*
2554 * If pinned groups are involved, flexible groups also need to be
2555 * scheduled out.
2556 */
2557 if (event_type & EVENT_PINNED)
2558 event_type |= EVENT_FLEXIBLE;
2559
bd903afe
SL
2560 ctx_event_type = event_type & EVENT_ALL;
2561
3e349507
PZ
2562 perf_pmu_disable(cpuctx->ctx.pmu);
2563 if (task_ctx)
487f05e1
AS
2564 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2565
2566 /*
2567 * Decide which cpu ctx groups to schedule out based on the types
2568 * of events that caused rescheduling:
2569 * - EVENT_CPU: schedule out corresponding groups;
2570 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2571 * - otherwise, do nothing more.
2572 */
2573 if (cpu_event)
2574 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2575 else if (ctx_event_type & EVENT_PINNED)
2576 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2577
3e349507
PZ
2578 perf_event_sched_in(cpuctx, task_ctx, current);
2579 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2580}
2581
c68d224e
SE
2582void perf_pmu_resched(struct pmu *pmu)
2583{
2584 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2585 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2586
2587 perf_ctx_lock(cpuctx, task_ctx);
2588 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2589 perf_ctx_unlock(cpuctx, task_ctx);
2590}
2591
0793a61d 2592/*
cdd6c482 2593 * Cross CPU call to install and enable a performance event
682076ae 2594 *
a096309b
PZ
2595 * Very similar to remote_function() + event_function() but cannot assume that
2596 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2597 */
fe4b04fa 2598static int __perf_install_in_context(void *info)
0793a61d 2599{
a096309b
PZ
2600 struct perf_event *event = info;
2601 struct perf_event_context *ctx = event->ctx;
108b02cf 2602 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2603 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2604 bool reprogram = true;
a096309b 2605 int ret = 0;
0793a61d 2606
63b6da39 2607 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2608 if (ctx->task) {
b58f6b0d
PZ
2609 raw_spin_lock(&ctx->lock);
2610 task_ctx = ctx;
a096309b 2611
63cae12b 2612 reprogram = (ctx->task == current);
b58f6b0d 2613
39a43640 2614 /*
63cae12b
PZ
2615 * If the task is running, it must be running on this CPU,
2616 * otherwise we cannot reprogram things.
2617 *
2618 * If its not running, we don't care, ctx->lock will
2619 * serialize against it becoming runnable.
39a43640 2620 */
63cae12b
PZ
2621 if (task_curr(ctx->task) && !reprogram) {
2622 ret = -ESRCH;
2623 goto unlock;
2624 }
a096309b 2625
63cae12b 2626 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2627 } else if (task_ctx) {
2628 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2629 }
b58f6b0d 2630
33801b94 2631#ifdef CONFIG_CGROUP_PERF
2632 if (is_cgroup_event(event)) {
2633 /*
2634 * If the current cgroup doesn't match the event's
2635 * cgroup, we should not try to schedule it.
2636 */
2637 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2638 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2639 event->cgrp->css.cgroup);
2640 }
2641#endif
2642
63cae12b 2643 if (reprogram) {
a096309b
PZ
2644 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2645 add_event_to_ctx(event, ctx);
487f05e1 2646 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2647 } else {
2648 add_event_to_ctx(event, ctx);
2649 }
2650
63b6da39 2651unlock:
2c29ef0f 2652 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2653
a096309b 2654 return ret;
0793a61d
TG
2655}
2656
8a58ddae
AS
2657static bool exclusive_event_installable(struct perf_event *event,
2658 struct perf_event_context *ctx);
2659
0793a61d 2660/*
a096309b
PZ
2661 * Attach a performance event to a context.
2662 *
2663 * Very similar to event_function_call, see comment there.
0793a61d
TG
2664 */
2665static void
cdd6c482
IM
2666perf_install_in_context(struct perf_event_context *ctx,
2667 struct perf_event *event,
0793a61d
TG
2668 int cpu)
2669{
a096309b 2670 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2671
fe4b04fa
PZ
2672 lockdep_assert_held(&ctx->mutex);
2673
8a58ddae
AS
2674 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2675
0cda4c02
YZ
2676 if (event->cpu != -1)
2677 event->cpu = cpu;
c3f00c70 2678
0b8f1e2e
PZ
2679 /*
2680 * Ensures that if we can observe event->ctx, both the event and ctx
2681 * will be 'complete'. See perf_iterate_sb_cpu().
2682 */
2683 smp_store_release(&event->ctx, ctx);
2684
db0503e4
PZ
2685 /*
2686 * perf_event_attr::disabled events will not run and can be initialized
2687 * without IPI. Except when this is the first event for the context, in
2688 * that case we need the magic of the IPI to set ctx->is_active.
2689 *
2690 * The IOC_ENABLE that is sure to follow the creation of a disabled
2691 * event will issue the IPI and reprogram the hardware.
2692 */
2693 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2694 raw_spin_lock_irq(&ctx->lock);
2695 if (ctx->task == TASK_TOMBSTONE) {
2696 raw_spin_unlock_irq(&ctx->lock);
2697 return;
2698 }
2699 add_event_to_ctx(event, ctx);
2700 raw_spin_unlock_irq(&ctx->lock);
2701 return;
2702 }
2703
a096309b
PZ
2704 if (!task) {
2705 cpu_function_call(cpu, __perf_install_in_context, event);
2706 return;
2707 }
2708
2709 /*
2710 * Should not happen, we validate the ctx is still alive before calling.
2711 */
2712 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2713 return;
2714
39a43640
PZ
2715 /*
2716 * Installing events is tricky because we cannot rely on ctx->is_active
2717 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2718 *
2719 * Instead we use task_curr(), which tells us if the task is running.
2720 * However, since we use task_curr() outside of rq::lock, we can race
2721 * against the actual state. This means the result can be wrong.
2722 *
2723 * If we get a false positive, we retry, this is harmless.
2724 *
2725 * If we get a false negative, things are complicated. If we are after
2726 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2727 * value must be correct. If we're before, it doesn't matter since
2728 * perf_event_context_sched_in() will program the counter.
2729 *
2730 * However, this hinges on the remote context switch having observed
2731 * our task->perf_event_ctxp[] store, such that it will in fact take
2732 * ctx::lock in perf_event_context_sched_in().
2733 *
2734 * We do this by task_function_call(), if the IPI fails to hit the task
2735 * we know any future context switch of task must see the
2736 * perf_event_ctpx[] store.
39a43640 2737 */
63cae12b 2738
63b6da39 2739 /*
63cae12b
PZ
2740 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2741 * task_cpu() load, such that if the IPI then does not find the task
2742 * running, a future context switch of that task must observe the
2743 * store.
63b6da39 2744 */
63cae12b
PZ
2745 smp_mb();
2746again:
2747 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2748 return;
2749
2750 raw_spin_lock_irq(&ctx->lock);
2751 task = ctx->task;
84c4e620 2752 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2753 /*
2754 * Cannot happen because we already checked above (which also
2755 * cannot happen), and we hold ctx->mutex, which serializes us
2756 * against perf_event_exit_task_context().
2757 */
63b6da39
PZ
2758 raw_spin_unlock_irq(&ctx->lock);
2759 return;
2760 }
39a43640 2761 /*
63cae12b
PZ
2762 * If the task is not running, ctx->lock will avoid it becoming so,
2763 * thus we can safely install the event.
39a43640 2764 */
63cae12b
PZ
2765 if (task_curr(task)) {
2766 raw_spin_unlock_irq(&ctx->lock);
2767 goto again;
2768 }
2769 add_event_to_ctx(event, ctx);
2770 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2771}
2772
d859e29f 2773/*
cdd6c482 2774 * Cross CPU call to enable a performance event
d859e29f 2775 */
fae3fde6
PZ
2776static void __perf_event_enable(struct perf_event *event,
2777 struct perf_cpu_context *cpuctx,
2778 struct perf_event_context *ctx,
2779 void *info)
04289bb9 2780{
cdd6c482 2781 struct perf_event *leader = event->group_leader;
fae3fde6 2782 struct perf_event_context *task_ctx;
04289bb9 2783
6e801e01
PZ
2784 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2785 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2786 return;
3cbed429 2787
bd2afa49
PZ
2788 if (ctx->is_active)
2789 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2790
0d3d73aa 2791 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2792
fae3fde6
PZ
2793 if (!ctx->is_active)
2794 return;
2795
e5d1367f 2796 if (!event_filter_match(event)) {
bd2afa49 2797 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2798 return;
e5d1367f 2799 }
f4c4176f 2800
04289bb9 2801 /*
cdd6c482 2802 * If the event is in a group and isn't the group leader,
d859e29f 2803 * then don't put it on unless the group is on.
04289bb9 2804 */
bd2afa49
PZ
2805 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2806 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2807 return;
bd2afa49 2808 }
fe4b04fa 2809
fae3fde6
PZ
2810 task_ctx = cpuctx->task_ctx;
2811 if (ctx->task)
2812 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2813
487f05e1 2814 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2815}
2816
d859e29f 2817/*
788faab7 2818 * Enable an event.
c93f7669 2819 *
cdd6c482
IM
2820 * If event->ctx is a cloned context, callers must make sure that
2821 * every task struct that event->ctx->task could possibly point to
c93f7669 2822 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2823 * perf_event_for_each_child or perf_event_for_each as described
2824 * for perf_event_disable.
d859e29f 2825 */
f63a8daa 2826static void _perf_event_enable(struct perf_event *event)
d859e29f 2827{
cdd6c482 2828 struct perf_event_context *ctx = event->ctx;
d859e29f 2829
7b648018 2830 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2831 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2832 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2833 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2834 return;
2835 }
2836
d859e29f 2837 /*
cdd6c482 2838 * If the event is in error state, clear that first.
7b648018
PZ
2839 *
2840 * That way, if we see the event in error state below, we know that it
2841 * has gone back into error state, as distinct from the task having
2842 * been scheduled away before the cross-call arrived.
d859e29f 2843 */
cdd6c482
IM
2844 if (event->state == PERF_EVENT_STATE_ERROR)
2845 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2846 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2847
fae3fde6 2848 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2849}
f63a8daa
PZ
2850
2851/*
2852 * See perf_event_disable();
2853 */
2854void perf_event_enable(struct perf_event *event)
2855{
2856 struct perf_event_context *ctx;
2857
2858 ctx = perf_event_ctx_lock(event);
2859 _perf_event_enable(event);
2860 perf_event_ctx_unlock(event, ctx);
2861}
dcfce4a0 2862EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2863
375637bc
AS
2864struct stop_event_data {
2865 struct perf_event *event;
2866 unsigned int restart;
2867};
2868
95ff4ca2
AS
2869static int __perf_event_stop(void *info)
2870{
375637bc
AS
2871 struct stop_event_data *sd = info;
2872 struct perf_event *event = sd->event;
95ff4ca2 2873
375637bc 2874 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2875 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2876 return 0;
2877
2878 /* matches smp_wmb() in event_sched_in() */
2879 smp_rmb();
2880
2881 /*
2882 * There is a window with interrupts enabled before we get here,
2883 * so we need to check again lest we try to stop another CPU's event.
2884 */
2885 if (READ_ONCE(event->oncpu) != smp_processor_id())
2886 return -EAGAIN;
2887
2888 event->pmu->stop(event, PERF_EF_UPDATE);
2889
375637bc
AS
2890 /*
2891 * May race with the actual stop (through perf_pmu_output_stop()),
2892 * but it is only used for events with AUX ring buffer, and such
2893 * events will refuse to restart because of rb::aux_mmap_count==0,
2894 * see comments in perf_aux_output_begin().
2895 *
788faab7 2896 * Since this is happening on an event-local CPU, no trace is lost
375637bc
AS
2897 * while restarting.
2898 */
2899 if (sd->restart)
c9bbdd48 2900 event->pmu->start(event, 0);
375637bc 2901
95ff4ca2
AS
2902 return 0;
2903}
2904
767ae086 2905static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2906{
2907 struct stop_event_data sd = {
2908 .event = event,
767ae086 2909 .restart = restart,
375637bc
AS
2910 };
2911 int ret = 0;
2912
2913 do {
2914 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2915 return 0;
2916
2917 /* matches smp_wmb() in event_sched_in() */
2918 smp_rmb();
2919
2920 /*
2921 * We only want to restart ACTIVE events, so if the event goes
2922 * inactive here (event->oncpu==-1), there's nothing more to do;
2923 * fall through with ret==-ENXIO.
2924 */
2925 ret = cpu_function_call(READ_ONCE(event->oncpu),
2926 __perf_event_stop, &sd);
2927 } while (ret == -EAGAIN);
2928
2929 return ret;
2930}
2931
2932/*
2933 * In order to contain the amount of racy and tricky in the address filter
2934 * configuration management, it is a two part process:
2935 *
2936 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2937 * we update the addresses of corresponding vmas in
c60f83b8 2938 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
375637bc
AS
2939 * (p2) when an event is scheduled in (pmu::add), it calls
2940 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2941 * if the generation has changed since the previous call.
2942 *
2943 * If (p1) happens while the event is active, we restart it to force (p2).
2944 *
2945 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2946 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2947 * ioctl;
2948 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2949 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2950 * for reading;
2951 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2952 * of exec.
2953 */
2954void perf_event_addr_filters_sync(struct perf_event *event)
2955{
2956 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2957
2958 if (!has_addr_filter(event))
2959 return;
2960
2961 raw_spin_lock(&ifh->lock);
2962 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2963 event->pmu->addr_filters_sync(event);
2964 event->hw.addr_filters_gen = event->addr_filters_gen;
2965 }
2966 raw_spin_unlock(&ifh->lock);
2967}
2968EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2969
f63a8daa 2970static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2971{
2023b359 2972 /*
cdd6c482 2973 * not supported on inherited events
2023b359 2974 */
2e939d1d 2975 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2976 return -EINVAL;
2977
cdd6c482 2978 atomic_add(refresh, &event->event_limit);
f63a8daa 2979 _perf_event_enable(event);
2023b359
PZ
2980
2981 return 0;
79f14641 2982}
f63a8daa
PZ
2983
2984/*
2985 * See perf_event_disable()
2986 */
2987int perf_event_refresh(struct perf_event *event, int refresh)
2988{
2989 struct perf_event_context *ctx;
2990 int ret;
2991
2992 ctx = perf_event_ctx_lock(event);
2993 ret = _perf_event_refresh(event, refresh);
2994 perf_event_ctx_unlock(event, ctx);
2995
2996 return ret;
2997}
26ca5c11 2998EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2999
32ff77e8
MC
3000static int perf_event_modify_breakpoint(struct perf_event *bp,
3001 struct perf_event_attr *attr)
3002{
3003 int err;
3004
3005 _perf_event_disable(bp);
3006
3007 err = modify_user_hw_breakpoint_check(bp, attr, true);
32ff77e8 3008
bf06278c 3009 if (!bp->attr.disabled)
32ff77e8 3010 _perf_event_enable(bp);
bf06278c
JO
3011
3012 return err;
32ff77e8
MC
3013}
3014
3015static int perf_event_modify_attr(struct perf_event *event,
3016 struct perf_event_attr *attr)
3017{
3018 if (event->attr.type != attr->type)
3019 return -EINVAL;
3020
3021 switch (event->attr.type) {
3022 case PERF_TYPE_BREAKPOINT:
3023 return perf_event_modify_breakpoint(event, attr);
3024 default:
3025 /* Place holder for future additions. */
3026 return -EOPNOTSUPP;
3027 }
3028}
3029
5b0311e1
FW
3030static void ctx_sched_out(struct perf_event_context *ctx,
3031 struct perf_cpu_context *cpuctx,
3032 enum event_type_t event_type)
235c7fc7 3033{
6668128a 3034 struct perf_event *event, *tmp;
db24d33e 3035 int is_active = ctx->is_active;
235c7fc7 3036
c994d613 3037 lockdep_assert_held(&ctx->lock);
235c7fc7 3038
39a43640
PZ
3039 if (likely(!ctx->nr_events)) {
3040 /*
3041 * See __perf_remove_from_context().
3042 */
3043 WARN_ON_ONCE(ctx->is_active);
3044 if (ctx->task)
3045 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 3046 return;
39a43640
PZ
3047 }
3048
db24d33e 3049 ctx->is_active &= ~event_type;
3cbaa590
PZ
3050 if (!(ctx->is_active & EVENT_ALL))
3051 ctx->is_active = 0;
3052
63e30d3e
PZ
3053 if (ctx->task) {
3054 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3055 if (!ctx->is_active)
3056 cpuctx->task_ctx = NULL;
3057 }
facc4307 3058
8fdc6539
PZ
3059 /*
3060 * Always update time if it was set; not only when it changes.
3061 * Otherwise we can 'forget' to update time for any but the last
3062 * context we sched out. For example:
3063 *
3064 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3065 * ctx_sched_out(.event_type = EVENT_PINNED)
3066 *
3067 * would only update time for the pinned events.
3068 */
3cbaa590
PZ
3069 if (is_active & EVENT_TIME) {
3070 /* update (and stop) ctx time */
3071 update_context_time(ctx);
3072 update_cgrp_time_from_cpuctx(cpuctx);
3073 }
3074
8fdc6539
PZ
3075 is_active ^= ctx->is_active; /* changed bits */
3076
3cbaa590 3077 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 3078 return;
5b0311e1 3079
fd7d5517
IR
3080 /*
3081 * If we had been multiplexing, no rotations are necessary, now no events
3082 * are active.
3083 */
3084 ctx->rotate_necessary = 0;
3085
075e0b00 3086 perf_pmu_disable(ctx->pmu);
3cbaa590 3087 if (is_active & EVENT_PINNED) {
6668128a 3088 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
889ff015 3089 group_sched_out(event, cpuctx, ctx);
9ed6060d 3090 }
889ff015 3091
3cbaa590 3092 if (is_active & EVENT_FLEXIBLE) {
6668128a 3093 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
8c9ed8e1 3094 group_sched_out(event, cpuctx, ctx);
9ed6060d 3095 }
1b9a644f 3096 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
3097}
3098
564c2b21 3099/*
5a3126d4
PZ
3100 * Test whether two contexts are equivalent, i.e. whether they have both been
3101 * cloned from the same version of the same context.
3102 *
3103 * Equivalence is measured using a generation number in the context that is
3104 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3105 * and list_del_event().
564c2b21 3106 */
cdd6c482
IM
3107static int context_equiv(struct perf_event_context *ctx1,
3108 struct perf_event_context *ctx2)
564c2b21 3109{
211de6eb
PZ
3110 lockdep_assert_held(&ctx1->lock);
3111 lockdep_assert_held(&ctx2->lock);
3112
5a3126d4
PZ
3113 /* Pinning disables the swap optimization */
3114 if (ctx1->pin_count || ctx2->pin_count)
3115 return 0;
3116
3117 /* If ctx1 is the parent of ctx2 */
3118 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3119 return 1;
3120
3121 /* If ctx2 is the parent of ctx1 */
3122 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3123 return 1;
3124
3125 /*
3126 * If ctx1 and ctx2 have the same parent; we flatten the parent
3127 * hierarchy, see perf_event_init_context().
3128 */
3129 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3130 ctx1->parent_gen == ctx2->parent_gen)
3131 return 1;
3132
3133 /* Unmatched */
3134 return 0;
564c2b21
PM
3135}
3136
cdd6c482
IM
3137static void __perf_event_sync_stat(struct perf_event *event,
3138 struct perf_event *next_event)
bfbd3381
PZ
3139{
3140 u64 value;
3141
cdd6c482 3142 if (!event->attr.inherit_stat)
bfbd3381
PZ
3143 return;
3144
3145 /*
cdd6c482 3146 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3147 * because we're in the middle of a context switch and have IRQs
3148 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3149 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3150 * don't need to use it.
3151 */
0d3d73aa 3152 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3153 event->pmu->read(event);
bfbd3381 3154
0d3d73aa 3155 perf_event_update_time(event);
bfbd3381
PZ
3156
3157 /*
cdd6c482 3158 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3159 * values when we flip the contexts.
3160 */
e7850595
PZ
3161 value = local64_read(&next_event->count);
3162 value = local64_xchg(&event->count, value);
3163 local64_set(&next_event->count, value);
bfbd3381 3164
cdd6c482
IM
3165 swap(event->total_time_enabled, next_event->total_time_enabled);
3166 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3167
bfbd3381 3168 /*
19d2e755 3169 * Since we swizzled the values, update the user visible data too.
bfbd3381 3170 */
cdd6c482
IM
3171 perf_event_update_userpage(event);
3172 perf_event_update_userpage(next_event);
bfbd3381
PZ
3173}
3174
cdd6c482
IM
3175static void perf_event_sync_stat(struct perf_event_context *ctx,
3176 struct perf_event_context *next_ctx)
bfbd3381 3177{
cdd6c482 3178 struct perf_event *event, *next_event;
bfbd3381
PZ
3179
3180 if (!ctx->nr_stat)
3181 return;
3182
02ffdbc8
PZ
3183 update_context_time(ctx);
3184
cdd6c482
IM
3185 event = list_first_entry(&ctx->event_list,
3186 struct perf_event, event_entry);
bfbd3381 3187
cdd6c482
IM
3188 next_event = list_first_entry(&next_ctx->event_list,
3189 struct perf_event, event_entry);
bfbd3381 3190
cdd6c482
IM
3191 while (&event->event_entry != &ctx->event_list &&
3192 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3193
cdd6c482 3194 __perf_event_sync_stat(event, next_event);
bfbd3381 3195
cdd6c482
IM
3196 event = list_next_entry(event, event_entry);
3197 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3198 }
3199}
3200
fe4b04fa
PZ
3201static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3202 struct task_struct *next)
0793a61d 3203{
8dc85d54 3204 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 3205 struct perf_event_context *next_ctx;
5a3126d4 3206 struct perf_event_context *parent, *next_parent;
108b02cf 3207 struct perf_cpu_context *cpuctx;
c93f7669 3208 int do_switch = 1;
0793a61d 3209
108b02cf
PZ
3210 if (likely(!ctx))
3211 return;
10989fb2 3212
108b02cf
PZ
3213 cpuctx = __get_cpu_context(ctx);
3214 if (!cpuctx->task_ctx)
0793a61d
TG
3215 return;
3216
c93f7669 3217 rcu_read_lock();
8dc85d54 3218 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
3219 if (!next_ctx)
3220 goto unlock;
3221
3222 parent = rcu_dereference(ctx->parent_ctx);
3223 next_parent = rcu_dereference(next_ctx->parent_ctx);
3224
3225 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3226 if (!parent && !next_parent)
5a3126d4
PZ
3227 goto unlock;
3228
3229 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3230 /*
3231 * Looks like the two contexts are clones, so we might be
3232 * able to optimize the context switch. We lock both
3233 * contexts and check that they are clones under the
3234 * lock (including re-checking that neither has been
3235 * uncloned in the meantime). It doesn't matter which
3236 * order we take the locks because no other cpu could
3237 * be trying to lock both of these tasks.
3238 */
e625cce1
TG
3239 raw_spin_lock(&ctx->lock);
3240 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3241 if (context_equiv(ctx, next_ctx)) {
c2b98a86
AB
3242 struct pmu *pmu = ctx->pmu;
3243
63b6da39
PZ
3244 WRITE_ONCE(ctx->task, next);
3245 WRITE_ONCE(next_ctx->task, task);
5a158c3c 3246
c2b98a86
AB
3247 /*
3248 * PMU specific parts of task perf context can require
3249 * additional synchronization. As an example of such
3250 * synchronization see implementation details of Intel
3251 * LBR call stack data profiling;
3252 */
3253 if (pmu->swap_task_ctx)
3254 pmu->swap_task_ctx(ctx, next_ctx);
3255 else
3256 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
5a158c3c 3257
63b6da39
PZ
3258 /*
3259 * RCU_INIT_POINTER here is safe because we've not
3260 * modified the ctx and the above modification of
3261 * ctx->task and ctx->task_ctx_data are immaterial
3262 * since those values are always verified under
3263 * ctx->lock which we're now holding.
3264 */
3265 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3266 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3267
c93f7669 3268 do_switch = 0;
bfbd3381 3269
cdd6c482 3270 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3271 }
e625cce1
TG
3272 raw_spin_unlock(&next_ctx->lock);
3273 raw_spin_unlock(&ctx->lock);
564c2b21 3274 }
5a3126d4 3275unlock:
c93f7669 3276 rcu_read_unlock();
564c2b21 3277
c93f7669 3278 if (do_switch) {
facc4307 3279 raw_spin_lock(&ctx->lock);
487f05e1 3280 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 3281 raw_spin_unlock(&ctx->lock);
c93f7669 3282 }
0793a61d
TG
3283}
3284
e48c1788
PZ
3285static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3286
ba532500
YZ
3287void perf_sched_cb_dec(struct pmu *pmu)
3288{
e48c1788
PZ
3289 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3290
ba532500 3291 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3292
3293 if (!--cpuctx->sched_cb_usage)
3294 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3295}
3296
e48c1788 3297
ba532500
YZ
3298void perf_sched_cb_inc(struct pmu *pmu)
3299{
e48c1788
PZ
3300 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3301
3302 if (!cpuctx->sched_cb_usage++)
3303 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3304
ba532500
YZ
3305 this_cpu_inc(perf_sched_cb_usages);
3306}
3307
3308/*
3309 * This function provides the context switch callback to the lower code
3310 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3311 *
3312 * This callback is relevant even to per-cpu events; for example multi event
3313 * PEBS requires this to provide PID/TID information. This requires we flush
3314 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3315 */
3316static void perf_pmu_sched_task(struct task_struct *prev,
3317 struct task_struct *next,
3318 bool sched_in)
3319{
3320 struct perf_cpu_context *cpuctx;
3321 struct pmu *pmu;
ba532500
YZ
3322
3323 if (prev == next)
3324 return;
3325
e48c1788 3326 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3327 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3328
e48c1788
PZ
3329 if (WARN_ON_ONCE(!pmu->sched_task))
3330 continue;
ba532500 3331
e48c1788
PZ
3332 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3333 perf_pmu_disable(pmu);
ba532500 3334
e48c1788 3335 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3336
e48c1788
PZ
3337 perf_pmu_enable(pmu);
3338 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3339 }
ba532500
YZ
3340}
3341
45ac1403
AH
3342static void perf_event_switch(struct task_struct *task,
3343 struct task_struct *next_prev, bool sched_in);
3344
8dc85d54
PZ
3345#define for_each_task_context_nr(ctxn) \
3346 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3347
3348/*
3349 * Called from scheduler to remove the events of the current task,
3350 * with interrupts disabled.
3351 *
3352 * We stop each event and update the event value in event->count.
3353 *
3354 * This does not protect us against NMI, but disable()
3355 * sets the disabled bit in the control field of event _before_
3356 * accessing the event control register. If a NMI hits, then it will
3357 * not restart the event.
3358 */
ab0cce56
JO
3359void __perf_event_task_sched_out(struct task_struct *task,
3360 struct task_struct *next)
8dc85d54
PZ
3361{
3362 int ctxn;
3363
ba532500
YZ
3364 if (__this_cpu_read(perf_sched_cb_usages))
3365 perf_pmu_sched_task(task, next, false);
3366
45ac1403
AH
3367 if (atomic_read(&nr_switch_events))
3368 perf_event_switch(task, next, false);
3369
8dc85d54
PZ
3370 for_each_task_context_nr(ctxn)
3371 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3372
3373 /*
3374 * if cgroup events exist on this CPU, then we need
3375 * to check if we have to switch out PMU state.
3376 * cgroup event are system-wide mode only
3377 */
4a32fea9 3378 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3379 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3380}
3381
5b0311e1
FW
3382/*
3383 * Called with IRQs disabled
3384 */
3385static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3386 enum event_type_t event_type)
3387{
3388 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3389}
3390
1cac7b1a
PZ
3391static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3392 int (*func)(struct perf_event *, void *), void *data)
0793a61d 3393{
1cac7b1a
PZ
3394 struct perf_event **evt, *evt1, *evt2;
3395 int ret;
8e1a2031 3396
1cac7b1a
PZ
3397 evt1 = perf_event_groups_first(groups, -1);
3398 evt2 = perf_event_groups_first(groups, cpu);
3399
3400 while (evt1 || evt2) {
3401 if (evt1 && evt2) {
3402 if (evt1->group_index < evt2->group_index)
3403 evt = &evt1;
3404 else
3405 evt = &evt2;
3406 } else if (evt1) {
3407 evt = &evt1;
3408 } else {
3409 evt = &evt2;
8e1a2031 3410 }
1cac7b1a
PZ
3411
3412 ret = func(*evt, data);
3413 if (ret)
3414 return ret;
3415
3416 *evt = perf_event_groups_next(*evt);
8e1a2031 3417 }
0793a61d 3418
1cac7b1a
PZ
3419 return 0;
3420}
3421
3422struct sched_in_data {
3423 struct perf_event_context *ctx;
3424 struct perf_cpu_context *cpuctx;
3425 int can_add_hw;
3426};
3427
3428static int pinned_sched_in(struct perf_event *event, void *data)
3429{
3430 struct sched_in_data *sid = data;
3431
3432 if (event->state <= PERF_EVENT_STATE_OFF)
3433 return 0;
3434
3435 if (!event_filter_match(event))
3436 return 0;
3437
6668128a
PZ
3438 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3439 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3440 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3441 }
1cac7b1a
PZ
3442
3443 /*
3444 * If this pinned group hasn't been scheduled,
3445 * put it in error state.
3446 */
3447 if (event->state == PERF_EVENT_STATE_INACTIVE)
3448 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3449
3450 return 0;
3451}
3452
3453static int flexible_sched_in(struct perf_event *event, void *data)
3454{
3455 struct sched_in_data *sid = data;
3456
3457 if (event->state <= PERF_EVENT_STATE_OFF)
3458 return 0;
3459
3460 if (!event_filter_match(event))
3461 return 0;
3462
3463 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
fd7d5517
IR
3464 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3465 if (ret) {
1cac7b1a 3466 sid->can_add_hw = 0;
fd7d5517
IR
3467 sid->ctx->rotate_necessary = 1;
3468 return 0;
3469 }
3470 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3b6f9e5c 3471 }
1cac7b1a
PZ
3472
3473 return 0;
5b0311e1
FW
3474}
3475
3476static void
1cac7b1a
PZ
3477ctx_pinned_sched_in(struct perf_event_context *ctx,
3478 struct perf_cpu_context *cpuctx)
5b0311e1 3479{
1cac7b1a
PZ
3480 struct sched_in_data sid = {
3481 .ctx = ctx,
3482 .cpuctx = cpuctx,
3483 .can_add_hw = 1,
3484 };
3b6f9e5c 3485
1cac7b1a
PZ
3486 visit_groups_merge(&ctx->pinned_groups,
3487 smp_processor_id(),
3488 pinned_sched_in, &sid);
3489}
8e1a2031 3490
1cac7b1a
PZ
3491static void
3492ctx_flexible_sched_in(struct perf_event_context *ctx,
3493 struct perf_cpu_context *cpuctx)
3494{
3495 struct sched_in_data sid = {
3496 .ctx = ctx,
3497 .cpuctx = cpuctx,
3498 .can_add_hw = 1,
3499 };
0793a61d 3500
1cac7b1a
PZ
3501 visit_groups_merge(&ctx->flexible_groups,
3502 smp_processor_id(),
3503 flexible_sched_in, &sid);
5b0311e1
FW
3504}
3505
3506static void
3507ctx_sched_in(struct perf_event_context *ctx,
3508 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3509 enum event_type_t event_type,
3510 struct task_struct *task)
5b0311e1 3511{
db24d33e 3512 int is_active = ctx->is_active;
c994d613
PZ
3513 u64 now;
3514
3515 lockdep_assert_held(&ctx->lock);
e5d1367f 3516
5b0311e1 3517 if (likely(!ctx->nr_events))
facc4307 3518 return;
5b0311e1 3519
3cbaa590 3520 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3521 if (ctx->task) {
3522 if (!is_active)
3523 cpuctx->task_ctx = ctx;
3524 else
3525 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3526 }
3527
3cbaa590
PZ
3528 is_active ^= ctx->is_active; /* changed bits */
3529
3530 if (is_active & EVENT_TIME) {
3531 /* start ctx time */
3532 now = perf_clock();
3533 ctx->timestamp = now;
3534 perf_cgroup_set_timestamp(task, ctx);
3535 }
3536
5b0311e1
FW
3537 /*
3538 * First go through the list and put on any pinned groups
3539 * in order to give them the best chance of going on.
3540 */
3cbaa590 3541 if (is_active & EVENT_PINNED)
6e37738a 3542 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3543
3544 /* Then walk through the lower prio flexible groups */
3cbaa590 3545 if (is_active & EVENT_FLEXIBLE)
6e37738a 3546 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3547}
3548
329c0e01 3549static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3550 enum event_type_t event_type,
3551 struct task_struct *task)
329c0e01
FW
3552{
3553 struct perf_event_context *ctx = &cpuctx->ctx;
3554
e5d1367f 3555 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3556}
3557
e5d1367f
SE
3558static void perf_event_context_sched_in(struct perf_event_context *ctx,
3559 struct task_struct *task)
235c7fc7 3560{
108b02cf 3561 struct perf_cpu_context *cpuctx;
235c7fc7 3562
108b02cf 3563 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3564 if (cpuctx->task_ctx == ctx)
3565 return;
3566
facc4307 3567 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3568 /*
3569 * We must check ctx->nr_events while holding ctx->lock, such
3570 * that we serialize against perf_install_in_context().
3571 */
3572 if (!ctx->nr_events)
3573 goto unlock;
3574
1b9a644f 3575 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3576 /*
3577 * We want to keep the following priority order:
3578 * cpu pinned (that don't need to move), task pinned,
3579 * cpu flexible, task flexible.
fe45bafb
AS
3580 *
3581 * However, if task's ctx is not carrying any pinned
3582 * events, no need to flip the cpuctx's events around.
329c0e01 3583 */
8e1a2031 3584 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
fe45bafb 3585 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3586 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3587 perf_pmu_enable(ctx->pmu);
fdccc3fb 3588
3589unlock:
facc4307 3590 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3591}
3592
8dc85d54
PZ
3593/*
3594 * Called from scheduler to add the events of the current task
3595 * with interrupts disabled.
3596 *
3597 * We restore the event value and then enable it.
3598 *
3599 * This does not protect us against NMI, but enable()
3600 * sets the enabled bit in the control field of event _before_
3601 * accessing the event control register. If a NMI hits, then it will
3602 * keep the event running.
3603 */
ab0cce56
JO
3604void __perf_event_task_sched_in(struct task_struct *prev,
3605 struct task_struct *task)
8dc85d54
PZ
3606{
3607 struct perf_event_context *ctx;
3608 int ctxn;
3609
7e41d177
PZ
3610 /*
3611 * If cgroup events exist on this CPU, then we need to check if we have
3612 * to switch in PMU state; cgroup event are system-wide mode only.
3613 *
3614 * Since cgroup events are CPU events, we must schedule these in before
3615 * we schedule in the task events.
3616 */
3617 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3618 perf_cgroup_sched_in(prev, task);
3619
8dc85d54
PZ
3620 for_each_task_context_nr(ctxn) {
3621 ctx = task->perf_event_ctxp[ctxn];
3622 if (likely(!ctx))
3623 continue;
3624
e5d1367f 3625 perf_event_context_sched_in(ctx, task);
8dc85d54 3626 }
d010b332 3627
45ac1403
AH
3628 if (atomic_read(&nr_switch_events))
3629 perf_event_switch(task, prev, true);
3630
ba532500
YZ
3631 if (__this_cpu_read(perf_sched_cb_usages))
3632 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3633}
3634
abd50713
PZ
3635static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3636{
3637 u64 frequency = event->attr.sample_freq;
3638 u64 sec = NSEC_PER_SEC;
3639 u64 divisor, dividend;
3640
3641 int count_fls, nsec_fls, frequency_fls, sec_fls;
3642
3643 count_fls = fls64(count);
3644 nsec_fls = fls64(nsec);
3645 frequency_fls = fls64(frequency);
3646 sec_fls = 30;
3647
3648 /*
3649 * We got @count in @nsec, with a target of sample_freq HZ
3650 * the target period becomes:
3651 *
3652 * @count * 10^9
3653 * period = -------------------
3654 * @nsec * sample_freq
3655 *
3656 */
3657
3658 /*
3659 * Reduce accuracy by one bit such that @a and @b converge
3660 * to a similar magnitude.
3661 */
fe4b04fa 3662#define REDUCE_FLS(a, b) \
abd50713
PZ
3663do { \
3664 if (a##_fls > b##_fls) { \
3665 a >>= 1; \
3666 a##_fls--; \
3667 } else { \
3668 b >>= 1; \
3669 b##_fls--; \
3670 } \
3671} while (0)
3672
3673 /*
3674 * Reduce accuracy until either term fits in a u64, then proceed with
3675 * the other, so that finally we can do a u64/u64 division.
3676 */
3677 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3678 REDUCE_FLS(nsec, frequency);
3679 REDUCE_FLS(sec, count);
3680 }
3681
3682 if (count_fls + sec_fls > 64) {
3683 divisor = nsec * frequency;
3684
3685 while (count_fls + sec_fls > 64) {
3686 REDUCE_FLS(count, sec);
3687 divisor >>= 1;
3688 }
3689
3690 dividend = count * sec;
3691 } else {
3692 dividend = count * sec;
3693
3694 while (nsec_fls + frequency_fls > 64) {
3695 REDUCE_FLS(nsec, frequency);
3696 dividend >>= 1;
3697 }
3698
3699 divisor = nsec * frequency;
3700 }
3701
f6ab91ad
PZ
3702 if (!divisor)
3703 return dividend;
3704
abd50713
PZ
3705 return div64_u64(dividend, divisor);
3706}
3707
e050e3f0
SE
3708static DEFINE_PER_CPU(int, perf_throttled_count);
3709static DEFINE_PER_CPU(u64, perf_throttled_seq);
3710
f39d47ff 3711static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3712{
cdd6c482 3713 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3714 s64 period, sample_period;
bd2b5b12
PZ
3715 s64 delta;
3716
abd50713 3717 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3718
3719 delta = (s64)(period - hwc->sample_period);
3720 delta = (delta + 7) / 8; /* low pass filter */
3721
3722 sample_period = hwc->sample_period + delta;
3723
3724 if (!sample_period)
3725 sample_period = 1;
3726
bd2b5b12 3727 hwc->sample_period = sample_period;
abd50713 3728
e7850595 3729 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3730 if (disable)
3731 event->pmu->stop(event, PERF_EF_UPDATE);
3732
e7850595 3733 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3734
3735 if (disable)
3736 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3737 }
bd2b5b12
PZ
3738}
3739
e050e3f0
SE
3740/*
3741 * combine freq adjustment with unthrottling to avoid two passes over the
3742 * events. At the same time, make sure, having freq events does not change
3743 * the rate of unthrottling as that would introduce bias.
3744 */
3745static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3746 int needs_unthr)
60db5e09 3747{
cdd6c482
IM
3748 struct perf_event *event;
3749 struct hw_perf_event *hwc;
e050e3f0 3750 u64 now, period = TICK_NSEC;
abd50713 3751 s64 delta;
60db5e09 3752
e050e3f0
SE
3753 /*
3754 * only need to iterate over all events iff:
3755 * - context have events in frequency mode (needs freq adjust)
3756 * - there are events to unthrottle on this cpu
3757 */
3758 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3759 return;
3760
e050e3f0 3761 raw_spin_lock(&ctx->lock);
f39d47ff 3762 perf_pmu_disable(ctx->pmu);
e050e3f0 3763
03541f8b 3764 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3765 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3766 continue;
3767
5632ab12 3768 if (!event_filter_match(event))
5d27c23d
PZ
3769 continue;
3770
44377277
AS
3771 perf_pmu_disable(event->pmu);
3772
cdd6c482 3773 hwc = &event->hw;
6a24ed6c 3774
ae23bff1 3775 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3776 hwc->interrupts = 0;
cdd6c482 3777 perf_log_throttle(event, 1);
a4eaf7f1 3778 event->pmu->start(event, 0);
a78ac325
PZ
3779 }
3780
cdd6c482 3781 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3782 goto next;
60db5e09 3783
e050e3f0
SE
3784 /*
3785 * stop the event and update event->count
3786 */
3787 event->pmu->stop(event, PERF_EF_UPDATE);
3788
e7850595 3789 now = local64_read(&event->count);
abd50713
PZ
3790 delta = now - hwc->freq_count_stamp;
3791 hwc->freq_count_stamp = now;
60db5e09 3792
e050e3f0
SE
3793 /*
3794 * restart the event
3795 * reload only if value has changed
f39d47ff
SE
3796 * we have stopped the event so tell that
3797 * to perf_adjust_period() to avoid stopping it
3798 * twice.
e050e3f0 3799 */
abd50713 3800 if (delta > 0)
f39d47ff 3801 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3802
3803 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3804 next:
3805 perf_pmu_enable(event->pmu);
60db5e09 3806 }
e050e3f0 3807
f39d47ff 3808 perf_pmu_enable(ctx->pmu);
e050e3f0 3809 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3810}
3811
235c7fc7 3812/*
8703a7cf 3813 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 3814 */
8703a7cf 3815static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 3816{
dddd3379
TG
3817 /*
3818 * Rotate the first entry last of non-pinned groups. Rotation might be
3819 * disabled by the inheritance code.
3820 */
8703a7cf
PZ
3821 if (ctx->rotate_disable)
3822 return;
8e1a2031 3823
8703a7cf
PZ
3824 perf_event_groups_delete(&ctx->flexible_groups, event);
3825 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
3826}
3827
7fa343b7 3828/* pick an event from the flexible_groups to rotate */
8d5bce0c 3829static inline struct perf_event *
7fa343b7 3830ctx_event_to_rotate(struct perf_event_context *ctx)
235c7fc7 3831{
7fa343b7
SL
3832 struct perf_event *event;
3833
3834 /* pick the first active flexible event */
3835 event = list_first_entry_or_null(&ctx->flexible_active,
3836 struct perf_event, active_list);
3837
3838 /* if no active flexible event, pick the first event */
3839 if (!event) {
3840 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3841 typeof(*event), group_node);
3842 }
3843
3844 return event;
8d5bce0c
PZ
3845}
3846
3847static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3848{
3849 struct perf_event *cpu_event = NULL, *task_event = NULL;
fd7d5517
IR
3850 struct perf_event_context *task_ctx = NULL;
3851 int cpu_rotate, task_rotate;
8d5bce0c
PZ
3852
3853 /*
3854 * Since we run this from IRQ context, nobody can install new
3855 * events, thus the event count values are stable.
3856 */
7fc23a53 3857
fd7d5517
IR
3858 cpu_rotate = cpuctx->ctx.rotate_necessary;
3859 task_ctx = cpuctx->task_ctx;
3860 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
9717e6cd 3861
8d5bce0c
PZ
3862 if (!(cpu_rotate || task_rotate))
3863 return false;
0f5a2601 3864
facc4307 3865 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3866 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3867
8d5bce0c 3868 if (task_rotate)
7fa343b7 3869 task_event = ctx_event_to_rotate(task_ctx);
8d5bce0c 3870 if (cpu_rotate)
7fa343b7 3871 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
8703a7cf 3872
8d5bce0c
PZ
3873 /*
3874 * As per the order given at ctx_resched() first 'pop' task flexible
3875 * and then, if needed CPU flexible.
3876 */
fd7d5517
IR
3877 if (task_event || (task_ctx && cpu_event))
3878 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
8d5bce0c
PZ
3879 if (cpu_event)
3880 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
0793a61d 3881
8d5bce0c 3882 if (task_event)
fd7d5517 3883 rotate_ctx(task_ctx, task_event);
8d5bce0c
PZ
3884 if (cpu_event)
3885 rotate_ctx(&cpuctx->ctx, cpu_event);
235c7fc7 3886
fd7d5517 3887 perf_event_sched_in(cpuctx, task_ctx, current);
235c7fc7 3888
0f5a2601
PZ
3889 perf_pmu_enable(cpuctx->ctx.pmu);
3890 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 3891
8d5bce0c 3892 return true;
e9d2b064
PZ
3893}
3894
3895void perf_event_task_tick(void)
3896{
2fde4f94
MR
3897 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3898 struct perf_event_context *ctx, *tmp;
e050e3f0 3899 int throttled;
b5ab4cd5 3900
16444645 3901 lockdep_assert_irqs_disabled();
e9d2b064 3902
e050e3f0
SE
3903 __this_cpu_inc(perf_throttled_seq);
3904 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3905 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3906
2fde4f94 3907 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3908 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3909}
3910
889ff015
FW
3911static int event_enable_on_exec(struct perf_event *event,
3912 struct perf_event_context *ctx)
3913{
3914 if (!event->attr.enable_on_exec)
3915 return 0;
3916
3917 event->attr.enable_on_exec = 0;
3918 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3919 return 0;
3920
0d3d73aa 3921 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3922
3923 return 1;
3924}
3925
57e7986e 3926/*
cdd6c482 3927 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3928 * This expects task == current.
3929 */
c1274499 3930static void perf_event_enable_on_exec(int ctxn)
57e7986e 3931{
c1274499 3932 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3933 enum event_type_t event_type = 0;
3e349507 3934 struct perf_cpu_context *cpuctx;
cdd6c482 3935 struct perf_event *event;
57e7986e
PM
3936 unsigned long flags;
3937 int enabled = 0;
3938
3939 local_irq_save(flags);
c1274499 3940 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3941 if (!ctx || !ctx->nr_events)
57e7986e
PM
3942 goto out;
3943
3e349507
PZ
3944 cpuctx = __get_cpu_context(ctx);
3945 perf_ctx_lock(cpuctx, ctx);
7fce2509 3946 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3947 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3948 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3949 event_type |= get_event_type(event);
3950 }
57e7986e
PM
3951
3952 /*
3e349507 3953 * Unclone and reschedule this context if we enabled any event.
57e7986e 3954 */
3e349507 3955 if (enabled) {
211de6eb 3956 clone_ctx = unclone_ctx(ctx);
487f05e1 3957 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3958 } else {
3959 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3960 }
3961 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3962
9ed6060d 3963out:
57e7986e 3964 local_irq_restore(flags);
211de6eb
PZ
3965
3966 if (clone_ctx)
3967 put_ctx(clone_ctx);
57e7986e
PM
3968}
3969
0492d4c5
PZ
3970struct perf_read_data {
3971 struct perf_event *event;
3972 bool group;
7d88962e 3973 int ret;
0492d4c5
PZ
3974};
3975
451d24d1 3976static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3977{
d6a2f903
DCC
3978 u16 local_pkg, event_pkg;
3979
3980 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3981 int local_cpu = smp_processor_id();
3982
3983 event_pkg = topology_physical_package_id(event_cpu);
3984 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3985
3986 if (event_pkg == local_pkg)
3987 return local_cpu;
3988 }
3989
3990 return event_cpu;
3991}
3992
0793a61d 3993/*
cdd6c482 3994 * Cross CPU call to read the hardware event
0793a61d 3995 */
cdd6c482 3996static void __perf_event_read(void *info)
0793a61d 3997{
0492d4c5
PZ
3998 struct perf_read_data *data = info;
3999 struct perf_event *sub, *event = data->event;
cdd6c482 4000 struct perf_event_context *ctx = event->ctx;
108b02cf 4001 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 4002 struct pmu *pmu = event->pmu;
621a01ea 4003
e1ac3614
PM
4004 /*
4005 * If this is a task context, we need to check whether it is
4006 * the current task context of this cpu. If not it has been
4007 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
4008 * event->count would have been updated to a recent sample
4009 * when the event was scheduled out.
e1ac3614
PM
4010 */
4011 if (ctx->task && cpuctx->task_ctx != ctx)
4012 return;
4013
e625cce1 4014 raw_spin_lock(&ctx->lock);
0c1cbc18 4015 if (ctx->is_active & EVENT_TIME) {
542e72fc 4016 update_context_time(ctx);
e5d1367f
SE
4017 update_cgrp_time_from_event(event);
4018 }
0492d4c5 4019
0d3d73aa
PZ
4020 perf_event_update_time(event);
4021 if (data->group)
4022 perf_event_update_sibling_time(event);
0c1cbc18 4023
4a00c16e
SB
4024 if (event->state != PERF_EVENT_STATE_ACTIVE)
4025 goto unlock;
0492d4c5 4026
4a00c16e
SB
4027 if (!data->group) {
4028 pmu->read(event);
4029 data->ret = 0;
0492d4c5 4030 goto unlock;
4a00c16e
SB
4031 }
4032
4033 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4034
4035 pmu->read(event);
0492d4c5 4036
edb39592 4037 for_each_sibling_event(sub, event) {
4a00c16e
SB
4038 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4039 /*
4040 * Use sibling's PMU rather than @event's since
4041 * sibling could be on different (eg: software) PMU.
4042 */
0492d4c5 4043 sub->pmu->read(sub);
4a00c16e 4044 }
0492d4c5 4045 }
4a00c16e
SB
4046
4047 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
4048
4049unlock:
e625cce1 4050 raw_spin_unlock(&ctx->lock);
0793a61d
TG
4051}
4052
b5e58793
PZ
4053static inline u64 perf_event_count(struct perf_event *event)
4054{
c39a0e2c 4055 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
4056}
4057
ffe8690c
KX
4058/*
4059 * NMI-safe method to read a local event, that is an event that
4060 * is:
4061 * - either for the current task, or for this CPU
4062 * - does not have inherit set, for inherited task events
4063 * will not be local and we cannot read them atomically
4064 * - must not have a pmu::count method
4065 */
7d9285e8
YS
4066int perf_event_read_local(struct perf_event *event, u64 *value,
4067 u64 *enabled, u64 *running)
ffe8690c
KX
4068{
4069 unsigned long flags;
f91840a3 4070 int ret = 0;
ffe8690c
KX
4071
4072 /*
4073 * Disabling interrupts avoids all counter scheduling (context
4074 * switches, timer based rotation and IPIs).
4075 */
4076 local_irq_save(flags);
4077
ffe8690c
KX
4078 /*
4079 * It must not be an event with inherit set, we cannot read
4080 * all child counters from atomic context.
4081 */
f91840a3
AS
4082 if (event->attr.inherit) {
4083 ret = -EOPNOTSUPP;
4084 goto out;
4085 }
ffe8690c 4086
f91840a3
AS
4087 /* If this is a per-task event, it must be for current */
4088 if ((event->attach_state & PERF_ATTACH_TASK) &&
4089 event->hw.target != current) {
4090 ret = -EINVAL;
4091 goto out;
4092 }
4093
4094 /* If this is a per-CPU event, it must be for this CPU */
4095 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4096 event->cpu != smp_processor_id()) {
4097 ret = -EINVAL;
4098 goto out;
4099 }
ffe8690c 4100
befb1b3c
RC
4101 /* If this is a pinned event it must be running on this CPU */
4102 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4103 ret = -EBUSY;
4104 goto out;
4105 }
4106
ffe8690c
KX
4107 /*
4108 * If the event is currently on this CPU, its either a per-task event,
4109 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4110 * oncpu == -1).
4111 */
4112 if (event->oncpu == smp_processor_id())
4113 event->pmu->read(event);
4114
f91840a3 4115 *value = local64_read(&event->count);
0d3d73aa
PZ
4116 if (enabled || running) {
4117 u64 now = event->shadow_ctx_time + perf_clock();
4118 u64 __enabled, __running;
4119
4120 __perf_update_times(event, now, &__enabled, &__running);
4121 if (enabled)
4122 *enabled = __enabled;
4123 if (running)
4124 *running = __running;
4125 }
f91840a3 4126out:
ffe8690c
KX
4127 local_irq_restore(flags);
4128
f91840a3 4129 return ret;
ffe8690c
KX
4130}
4131
7d88962e 4132static int perf_event_read(struct perf_event *event, bool group)
0793a61d 4133{
0c1cbc18 4134 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 4135 int event_cpu, ret = 0;
7d88962e 4136
0793a61d 4137 /*
cdd6c482
IM
4138 * If event is enabled and currently active on a CPU, update the
4139 * value in the event structure:
0793a61d 4140 */
0c1cbc18
PZ
4141again:
4142 if (state == PERF_EVENT_STATE_ACTIVE) {
4143 struct perf_read_data data;
4144
4145 /*
4146 * Orders the ->state and ->oncpu loads such that if we see
4147 * ACTIVE we must also see the right ->oncpu.
4148 *
4149 * Matches the smp_wmb() from event_sched_in().
4150 */
4151 smp_rmb();
d6a2f903 4152
451d24d1
PZ
4153 event_cpu = READ_ONCE(event->oncpu);
4154 if ((unsigned)event_cpu >= nr_cpu_ids)
4155 return 0;
4156
0c1cbc18
PZ
4157 data = (struct perf_read_data){
4158 .event = event,
4159 .group = group,
4160 .ret = 0,
4161 };
4162
451d24d1
PZ
4163 preempt_disable();
4164 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4165
58763148
PZ
4166 /*
4167 * Purposely ignore the smp_call_function_single() return
4168 * value.
4169 *
451d24d1 4170 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4171 * scheduled out and that will have updated the event count.
4172 *
4173 * Therefore, either way, we'll have an up-to-date event count
4174 * after this.
4175 */
451d24d1
PZ
4176 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4177 preempt_enable();
58763148 4178 ret = data.ret;
0c1cbc18
PZ
4179
4180 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4181 struct perf_event_context *ctx = event->ctx;
4182 unsigned long flags;
4183
e625cce1 4184 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4185 state = event->state;
4186 if (state != PERF_EVENT_STATE_INACTIVE) {
4187 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4188 goto again;
4189 }
4190
c530ccd9 4191 /*
0c1cbc18
PZ
4192 * May read while context is not active (e.g., thread is
4193 * blocked), in that case we cannot update context time
c530ccd9 4194 */
0c1cbc18 4195 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4196 update_context_time(ctx);
e5d1367f
SE
4197 update_cgrp_time_from_event(event);
4198 }
0c1cbc18 4199
0d3d73aa 4200 perf_event_update_time(event);
0492d4c5 4201 if (group)
0d3d73aa 4202 perf_event_update_sibling_time(event);
e625cce1 4203 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4204 }
7d88962e
SB
4205
4206 return ret;
0793a61d
TG
4207}
4208
a63eaf34 4209/*
cdd6c482 4210 * Initialize the perf_event context in a task_struct:
a63eaf34 4211 */
eb184479 4212static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4213{
e625cce1 4214 raw_spin_lock_init(&ctx->lock);
a63eaf34 4215 mutex_init(&ctx->mutex);
2fde4f94 4216 INIT_LIST_HEAD(&ctx->active_ctx_list);
8e1a2031
AB
4217 perf_event_groups_init(&ctx->pinned_groups);
4218 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4219 INIT_LIST_HEAD(&ctx->event_list);
6668128a
PZ
4220 INIT_LIST_HEAD(&ctx->pinned_active);
4221 INIT_LIST_HEAD(&ctx->flexible_active);
8c94abbb 4222 refcount_set(&ctx->refcount, 1);
eb184479
PZ
4223}
4224
4225static struct perf_event_context *
4226alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4227{
4228 struct perf_event_context *ctx;
4229
4230 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4231 if (!ctx)
4232 return NULL;
4233
4234 __perf_event_init_context(ctx);
7b3c92b8
MWO
4235 if (task)
4236 ctx->task = get_task_struct(task);
eb184479
PZ
4237 ctx->pmu = pmu;
4238
4239 return ctx;
a63eaf34
PM
4240}
4241
2ebd4ffb
MH
4242static struct task_struct *
4243find_lively_task_by_vpid(pid_t vpid)
4244{
4245 struct task_struct *task;
0793a61d
TG
4246
4247 rcu_read_lock();
2ebd4ffb 4248 if (!vpid)
0793a61d
TG
4249 task = current;
4250 else
2ebd4ffb 4251 task = find_task_by_vpid(vpid);
0793a61d
TG
4252 if (task)
4253 get_task_struct(task);
4254 rcu_read_unlock();
4255
4256 if (!task)
4257 return ERR_PTR(-ESRCH);
4258
2ebd4ffb 4259 return task;
2ebd4ffb
MH
4260}
4261
fe4b04fa
PZ
4262/*
4263 * Returns a matching context with refcount and pincount.
4264 */
108b02cf 4265static struct perf_event_context *
4af57ef2
YZ
4266find_get_context(struct pmu *pmu, struct task_struct *task,
4267 struct perf_event *event)
0793a61d 4268{
211de6eb 4269 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4270 struct perf_cpu_context *cpuctx;
4af57ef2 4271 void *task_ctx_data = NULL;
25346b93 4272 unsigned long flags;
8dc85d54 4273 int ctxn, err;
4af57ef2 4274 int cpu = event->cpu;
0793a61d 4275
22a4ec72 4276 if (!task) {
cdd6c482 4277 /* Must be root to operate on a CPU event: */
da97e184
JFG
4278 err = perf_allow_cpu(&event->attr);
4279 if (err)
4280 return ERR_PTR(err);
0793a61d 4281
108b02cf 4282 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 4283 ctx = &cpuctx->ctx;
c93f7669 4284 get_ctx(ctx);
fe4b04fa 4285 ++ctx->pin_count;
0793a61d 4286
0793a61d
TG
4287 return ctx;
4288 }
4289
8dc85d54
PZ
4290 err = -EINVAL;
4291 ctxn = pmu->task_ctx_nr;
4292 if (ctxn < 0)
4293 goto errout;
4294
4af57ef2
YZ
4295 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4296 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4297 if (!task_ctx_data) {
4298 err = -ENOMEM;
4299 goto errout;
4300 }
4301 }
4302
9ed6060d 4303retry:
8dc85d54 4304 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 4305 if (ctx) {
211de6eb 4306 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4307 ++ctx->pin_count;
4af57ef2
YZ
4308
4309 if (task_ctx_data && !ctx->task_ctx_data) {
4310 ctx->task_ctx_data = task_ctx_data;
4311 task_ctx_data = NULL;
4312 }
e625cce1 4313 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4314
4315 if (clone_ctx)
4316 put_ctx(clone_ctx);
9137fb28 4317 } else {
eb184479 4318 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
4319 err = -ENOMEM;
4320 if (!ctx)
4321 goto errout;
eb184479 4322
4af57ef2
YZ
4323 if (task_ctx_data) {
4324 ctx->task_ctx_data = task_ctx_data;
4325 task_ctx_data = NULL;
4326 }
4327
dbe08d82
ON
4328 err = 0;
4329 mutex_lock(&task->perf_event_mutex);
4330 /*
4331 * If it has already passed perf_event_exit_task().
4332 * we must see PF_EXITING, it takes this mutex too.
4333 */
4334 if (task->flags & PF_EXITING)
4335 err = -ESRCH;
4336 else if (task->perf_event_ctxp[ctxn])
4337 err = -EAGAIN;
fe4b04fa 4338 else {
9137fb28 4339 get_ctx(ctx);
fe4b04fa 4340 ++ctx->pin_count;
dbe08d82 4341 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 4342 }
dbe08d82
ON
4343 mutex_unlock(&task->perf_event_mutex);
4344
4345 if (unlikely(err)) {
9137fb28 4346 put_ctx(ctx);
dbe08d82
ON
4347
4348 if (err == -EAGAIN)
4349 goto retry;
4350 goto errout;
a63eaf34
PM
4351 }
4352 }
4353
4af57ef2 4354 kfree(task_ctx_data);
0793a61d 4355 return ctx;
c93f7669 4356
9ed6060d 4357errout:
4af57ef2 4358 kfree(task_ctx_data);
c93f7669 4359 return ERR_PTR(err);
0793a61d
TG
4360}
4361
6fb2915d 4362static void perf_event_free_filter(struct perf_event *event);
2541517c 4363static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 4364
cdd6c482 4365static void free_event_rcu(struct rcu_head *head)
592903cd 4366{
cdd6c482 4367 struct perf_event *event;
592903cd 4368
cdd6c482
IM
4369 event = container_of(head, struct perf_event, rcu_head);
4370 if (event->ns)
4371 put_pid_ns(event->ns);
6fb2915d 4372 perf_event_free_filter(event);
cdd6c482 4373 kfree(event);
592903cd
PZ
4374}
4375
b69cf536 4376static void ring_buffer_attach(struct perf_event *event,
56de4e8f 4377 struct perf_buffer *rb);
925d519a 4378
f2fb6bef
KL
4379static void detach_sb_event(struct perf_event *event)
4380{
4381 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4382
4383 raw_spin_lock(&pel->lock);
4384 list_del_rcu(&event->sb_list);
4385 raw_spin_unlock(&pel->lock);
4386}
4387
a4f144eb 4388static bool is_sb_event(struct perf_event *event)
f2fb6bef 4389{
a4f144eb
DCC
4390 struct perf_event_attr *attr = &event->attr;
4391
f2fb6bef 4392 if (event->parent)
a4f144eb 4393 return false;
f2fb6bef
KL
4394
4395 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4396 return false;
f2fb6bef 4397
a4f144eb
DCC
4398 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4399 attr->comm || attr->comm_exec ||
76193a94 4400 attr->task || attr->ksymbol ||
21038f2b
SL
4401 attr->context_switch ||
4402 attr->bpf_event)
a4f144eb
DCC
4403 return true;
4404 return false;
4405}
4406
4407static void unaccount_pmu_sb_event(struct perf_event *event)
4408{
4409 if (is_sb_event(event))
4410 detach_sb_event(event);
f2fb6bef
KL
4411}
4412
4beb31f3 4413static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4414{
4beb31f3
FW
4415 if (event->parent)
4416 return;
4417
4beb31f3
FW
4418 if (is_cgroup_event(event))
4419 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4420}
925d519a 4421
555e0c1e
FW
4422#ifdef CONFIG_NO_HZ_FULL
4423static DEFINE_SPINLOCK(nr_freq_lock);
4424#endif
4425
4426static void unaccount_freq_event_nohz(void)
4427{
4428#ifdef CONFIG_NO_HZ_FULL
4429 spin_lock(&nr_freq_lock);
4430 if (atomic_dec_and_test(&nr_freq_events))
4431 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4432 spin_unlock(&nr_freq_lock);
4433#endif
4434}
4435
4436static void unaccount_freq_event(void)
4437{
4438 if (tick_nohz_full_enabled())
4439 unaccount_freq_event_nohz();
4440 else
4441 atomic_dec(&nr_freq_events);
4442}
4443
4beb31f3
FW
4444static void unaccount_event(struct perf_event *event)
4445{
25432ae9
PZ
4446 bool dec = false;
4447
4beb31f3
FW
4448 if (event->parent)
4449 return;
4450
4451 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4452 dec = true;
4beb31f3
FW
4453 if (event->attr.mmap || event->attr.mmap_data)
4454 atomic_dec(&nr_mmap_events);
4455 if (event->attr.comm)
4456 atomic_dec(&nr_comm_events);
e4222673
HB
4457 if (event->attr.namespaces)
4458 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4459 if (event->attr.task)
4460 atomic_dec(&nr_task_events);
948b26b6 4461 if (event->attr.freq)
555e0c1e 4462 unaccount_freq_event();
45ac1403 4463 if (event->attr.context_switch) {
25432ae9 4464 dec = true;
45ac1403
AH
4465 atomic_dec(&nr_switch_events);
4466 }
4beb31f3 4467 if (is_cgroup_event(event))
25432ae9 4468 dec = true;
4beb31f3 4469 if (has_branch_stack(event))
25432ae9 4470 dec = true;
76193a94
SL
4471 if (event->attr.ksymbol)
4472 atomic_dec(&nr_ksymbol_events);
6ee52e2a
SL
4473 if (event->attr.bpf_event)
4474 atomic_dec(&nr_bpf_events);
25432ae9 4475
9107c89e
PZ
4476 if (dec) {
4477 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4478 schedule_delayed_work(&perf_sched_work, HZ);
4479 }
4beb31f3
FW
4480
4481 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4482
4483 unaccount_pmu_sb_event(event);
4beb31f3 4484}
925d519a 4485
9107c89e
PZ
4486static void perf_sched_delayed(struct work_struct *work)
4487{
4488 mutex_lock(&perf_sched_mutex);
4489 if (atomic_dec_and_test(&perf_sched_count))
4490 static_branch_disable(&perf_sched_events);
4491 mutex_unlock(&perf_sched_mutex);
4492}
4493
bed5b25a
AS
4494/*
4495 * The following implement mutual exclusion of events on "exclusive" pmus
4496 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4497 * at a time, so we disallow creating events that might conflict, namely:
4498 *
4499 * 1) cpu-wide events in the presence of per-task events,
4500 * 2) per-task events in the presence of cpu-wide events,
4501 * 3) two matching events on the same context.
4502 *
4503 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4504 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4505 */
4506static int exclusive_event_init(struct perf_event *event)
4507{
4508 struct pmu *pmu = event->pmu;
4509
8a58ddae 4510 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4511 return 0;
4512
4513 /*
4514 * Prevent co-existence of per-task and cpu-wide events on the
4515 * same exclusive pmu.
4516 *
4517 * Negative pmu::exclusive_cnt means there are cpu-wide
4518 * events on this "exclusive" pmu, positive means there are
4519 * per-task events.
4520 *
4521 * Since this is called in perf_event_alloc() path, event::ctx
4522 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4523 * to mean "per-task event", because unlike other attach states it
4524 * never gets cleared.
4525 */
4526 if (event->attach_state & PERF_ATTACH_TASK) {
4527 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4528 return -EBUSY;
4529 } else {
4530 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4531 return -EBUSY;
4532 }
4533
4534 return 0;
4535}
4536
4537static void exclusive_event_destroy(struct perf_event *event)
4538{
4539 struct pmu *pmu = event->pmu;
4540
8a58ddae 4541 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4542 return;
4543
4544 /* see comment in exclusive_event_init() */
4545 if (event->attach_state & PERF_ATTACH_TASK)
4546 atomic_dec(&pmu->exclusive_cnt);
4547 else
4548 atomic_inc(&pmu->exclusive_cnt);
4549}
4550
4551static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4552{
3bf6215a 4553 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4554 (e1->cpu == e2->cpu ||
4555 e1->cpu == -1 ||
4556 e2->cpu == -1))
4557 return true;
4558 return false;
4559}
4560
bed5b25a
AS
4561static bool exclusive_event_installable(struct perf_event *event,
4562 struct perf_event_context *ctx)
4563{
4564 struct perf_event *iter_event;
4565 struct pmu *pmu = event->pmu;
4566
8a58ddae
AS
4567 lockdep_assert_held(&ctx->mutex);
4568
4569 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4570 return true;
4571
4572 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4573 if (exclusive_event_match(iter_event, event))
4574 return false;
4575 }
4576
4577 return true;
4578}
4579
375637bc
AS
4580static void perf_addr_filters_splice(struct perf_event *event,
4581 struct list_head *head);
4582
683ede43 4583static void _free_event(struct perf_event *event)
f1600952 4584{
e360adbe 4585 irq_work_sync(&event->pending);
925d519a 4586
4beb31f3 4587 unaccount_event(event);
9ee318a7 4588
da97e184
JFG
4589 security_perf_event_free(event);
4590
76369139 4591 if (event->rb) {
9bb5d40c
PZ
4592 /*
4593 * Can happen when we close an event with re-directed output.
4594 *
4595 * Since we have a 0 refcount, perf_mmap_close() will skip
4596 * over us; possibly making our ring_buffer_put() the last.
4597 */
4598 mutex_lock(&event->mmap_mutex);
b69cf536 4599 ring_buffer_attach(event, NULL);
9bb5d40c 4600 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4601 }
4602
e5d1367f
SE
4603 if (is_cgroup_event(event))
4604 perf_detach_cgroup(event);
4605
a0733e69
PZ
4606 if (!event->parent) {
4607 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4608 put_callchain_buffers();
4609 }
4610
4611 perf_event_free_bpf_prog(event);
375637bc 4612 perf_addr_filters_splice(event, NULL);
c60f83b8 4613 kfree(event->addr_filter_ranges);
a0733e69
PZ
4614
4615 if (event->destroy)
4616 event->destroy(event);
4617
1cf8dfe8
PZ
4618 /*
4619 * Must be after ->destroy(), due to uprobe_perf_close() using
4620 * hw.target.
4621 */
621b6d2e
PB
4622 if (event->hw.target)
4623 put_task_struct(event->hw.target);
4624
1cf8dfe8
PZ
4625 /*
4626 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4627 * all task references must be cleaned up.
4628 */
4629 if (event->ctx)
4630 put_ctx(event->ctx);
4631
62a92c8f
AS
4632 exclusive_event_destroy(event);
4633 module_put(event->pmu->module);
a0733e69
PZ
4634
4635 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4636}
4637
683ede43
PZ
4638/*
4639 * Used to free events which have a known refcount of 1, such as in error paths
4640 * where the event isn't exposed yet and inherited events.
4641 */
4642static void free_event(struct perf_event *event)
0793a61d 4643{
683ede43
PZ
4644 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4645 "unexpected event refcount: %ld; ptr=%p\n",
4646 atomic_long_read(&event->refcount), event)) {
4647 /* leak to avoid use-after-free */
4648 return;
4649 }
0793a61d 4650
683ede43 4651 _free_event(event);
0793a61d
TG
4652}
4653
a66a3052 4654/*
f8697762 4655 * Remove user event from the owner task.
a66a3052 4656 */
f8697762 4657static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4658{
8882135b 4659 struct task_struct *owner;
fb0459d7 4660
8882135b 4661 rcu_read_lock();
8882135b 4662 /*
f47c02c0
PZ
4663 * Matches the smp_store_release() in perf_event_exit_task(). If we
4664 * observe !owner it means the list deletion is complete and we can
4665 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4666 * owner->perf_event_mutex.
4667 */
506458ef 4668 owner = READ_ONCE(event->owner);
8882135b
PZ
4669 if (owner) {
4670 /*
4671 * Since delayed_put_task_struct() also drops the last
4672 * task reference we can safely take a new reference
4673 * while holding the rcu_read_lock().
4674 */
4675 get_task_struct(owner);
4676 }
4677 rcu_read_unlock();
4678
4679 if (owner) {
f63a8daa
PZ
4680 /*
4681 * If we're here through perf_event_exit_task() we're already
4682 * holding ctx->mutex which would be an inversion wrt. the
4683 * normal lock order.
4684 *
4685 * However we can safely take this lock because its the child
4686 * ctx->mutex.
4687 */
4688 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4689
8882135b
PZ
4690 /*
4691 * We have to re-check the event->owner field, if it is cleared
4692 * we raced with perf_event_exit_task(), acquiring the mutex
4693 * ensured they're done, and we can proceed with freeing the
4694 * event.
4695 */
f47c02c0 4696 if (event->owner) {
8882135b 4697 list_del_init(&event->owner_entry);
f47c02c0
PZ
4698 smp_store_release(&event->owner, NULL);
4699 }
8882135b
PZ
4700 mutex_unlock(&owner->perf_event_mutex);
4701 put_task_struct(owner);
4702 }
f8697762
JO
4703}
4704
f8697762
JO
4705static void put_event(struct perf_event *event)
4706{
f8697762
JO
4707 if (!atomic_long_dec_and_test(&event->refcount))
4708 return;
4709
c6e5b732
PZ
4710 _free_event(event);
4711}
4712
4713/*
4714 * Kill an event dead; while event:refcount will preserve the event
4715 * object, it will not preserve its functionality. Once the last 'user'
4716 * gives up the object, we'll destroy the thing.
4717 */
4718int perf_event_release_kernel(struct perf_event *event)
4719{
a4f4bb6d 4720 struct perf_event_context *ctx = event->ctx;
c6e5b732 4721 struct perf_event *child, *tmp;
82d94856 4722 LIST_HEAD(free_list);
c6e5b732 4723
a4f4bb6d
PZ
4724 /*
4725 * If we got here through err_file: fput(event_file); we will not have
4726 * attached to a context yet.
4727 */
4728 if (!ctx) {
4729 WARN_ON_ONCE(event->attach_state &
4730 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4731 goto no_ctx;
4732 }
4733
f8697762
JO
4734 if (!is_kernel_event(event))
4735 perf_remove_from_owner(event);
8882135b 4736
5fa7c8ec 4737 ctx = perf_event_ctx_lock(event);
a83fe28e 4738 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4739 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4740
a69b0ca4 4741 raw_spin_lock_irq(&ctx->lock);
683ede43 4742 /*
d8a8cfc7 4743 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4744 * anymore.
683ede43 4745 *
a69b0ca4
PZ
4746 * Anybody acquiring event->child_mutex after the below loop _must_
4747 * also see this, most importantly inherit_event() which will avoid
4748 * placing more children on the list.
683ede43 4749 *
c6e5b732
PZ
4750 * Thus this guarantees that we will in fact observe and kill _ALL_
4751 * child events.
683ede43 4752 */
a69b0ca4
PZ
4753 event->state = PERF_EVENT_STATE_DEAD;
4754 raw_spin_unlock_irq(&ctx->lock);
4755
4756 perf_event_ctx_unlock(event, ctx);
683ede43 4757
c6e5b732
PZ
4758again:
4759 mutex_lock(&event->child_mutex);
4760 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4761
c6e5b732
PZ
4762 /*
4763 * Cannot change, child events are not migrated, see the
4764 * comment with perf_event_ctx_lock_nested().
4765 */
506458ef 4766 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4767 /*
4768 * Since child_mutex nests inside ctx::mutex, we must jump
4769 * through hoops. We start by grabbing a reference on the ctx.
4770 *
4771 * Since the event cannot get freed while we hold the
4772 * child_mutex, the context must also exist and have a !0
4773 * reference count.
4774 */
4775 get_ctx(ctx);
4776
4777 /*
4778 * Now that we have a ctx ref, we can drop child_mutex, and
4779 * acquire ctx::mutex without fear of it going away. Then we
4780 * can re-acquire child_mutex.
4781 */
4782 mutex_unlock(&event->child_mutex);
4783 mutex_lock(&ctx->mutex);
4784 mutex_lock(&event->child_mutex);
4785
4786 /*
4787 * Now that we hold ctx::mutex and child_mutex, revalidate our
4788 * state, if child is still the first entry, it didn't get freed
4789 * and we can continue doing so.
4790 */
4791 tmp = list_first_entry_or_null(&event->child_list,
4792 struct perf_event, child_list);
4793 if (tmp == child) {
4794 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4795 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4796 /*
4797 * This matches the refcount bump in inherit_event();
4798 * this can't be the last reference.
4799 */
4800 put_event(event);
4801 }
4802
4803 mutex_unlock(&event->child_mutex);
4804 mutex_unlock(&ctx->mutex);
4805 put_ctx(ctx);
4806 goto again;
4807 }
4808 mutex_unlock(&event->child_mutex);
4809
82d94856 4810 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
1cf8dfe8
PZ
4811 void *var = &child->ctx->refcount;
4812
82d94856
PZ
4813 list_del(&child->child_list);
4814 free_event(child);
1cf8dfe8
PZ
4815
4816 /*
4817 * Wake any perf_event_free_task() waiting for this event to be
4818 * freed.
4819 */
4820 smp_mb(); /* pairs with wait_var_event() */
4821 wake_up_var(var);
82d94856
PZ
4822 }
4823
a4f4bb6d
PZ
4824no_ctx:
4825 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4826 return 0;
4827}
4828EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4829
8b10c5e2
PZ
4830/*
4831 * Called when the last reference to the file is gone.
4832 */
a6fa941d
AV
4833static int perf_release(struct inode *inode, struct file *file)
4834{
c6e5b732 4835 perf_event_release_kernel(file->private_data);
a6fa941d 4836 return 0;
fb0459d7 4837}
fb0459d7 4838
ca0dd44c 4839static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4840{
cdd6c482 4841 struct perf_event *child;
e53c0994
PZ
4842 u64 total = 0;
4843
59ed446f
PZ
4844 *enabled = 0;
4845 *running = 0;
4846
6f10581a 4847 mutex_lock(&event->child_mutex);
01add3ea 4848
7d88962e 4849 (void)perf_event_read(event, false);
01add3ea
SB
4850 total += perf_event_count(event);
4851
59ed446f
PZ
4852 *enabled += event->total_time_enabled +
4853 atomic64_read(&event->child_total_time_enabled);
4854 *running += event->total_time_running +
4855 atomic64_read(&event->child_total_time_running);
4856
4857 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4858 (void)perf_event_read(child, false);
01add3ea 4859 total += perf_event_count(child);
59ed446f
PZ
4860 *enabled += child->total_time_enabled;
4861 *running += child->total_time_running;
4862 }
6f10581a 4863 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4864
4865 return total;
4866}
ca0dd44c
PZ
4867
4868u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4869{
4870 struct perf_event_context *ctx;
4871 u64 count;
4872
4873 ctx = perf_event_ctx_lock(event);
4874 count = __perf_event_read_value(event, enabled, running);
4875 perf_event_ctx_unlock(event, ctx);
4876
4877 return count;
4878}
fb0459d7 4879EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4880
7d88962e 4881static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4882 u64 read_format, u64 *values)
3dab77fb 4883{
2aeb1883 4884 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4885 struct perf_event *sub;
2aeb1883 4886 unsigned long flags;
fa8c2693 4887 int n = 1; /* skip @nr */
7d88962e 4888 int ret;
f63a8daa 4889
7d88962e
SB
4890 ret = perf_event_read(leader, true);
4891 if (ret)
4892 return ret;
abf4868b 4893
a9cd8194
PZ
4894 raw_spin_lock_irqsave(&ctx->lock, flags);
4895
fa8c2693
PZ
4896 /*
4897 * Since we co-schedule groups, {enabled,running} times of siblings
4898 * will be identical to those of the leader, so we only publish one
4899 * set.
4900 */
4901 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4902 values[n++] += leader->total_time_enabled +
4903 atomic64_read(&leader->child_total_time_enabled);
4904 }
3dab77fb 4905
fa8c2693
PZ
4906 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4907 values[n++] += leader->total_time_running +
4908 atomic64_read(&leader->child_total_time_running);
4909 }
4910
4911 /*
4912 * Write {count,id} tuples for every sibling.
4913 */
4914 values[n++] += perf_event_count(leader);
abf4868b
PZ
4915 if (read_format & PERF_FORMAT_ID)
4916 values[n++] = primary_event_id(leader);
3dab77fb 4917
edb39592 4918 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
4919 values[n++] += perf_event_count(sub);
4920 if (read_format & PERF_FORMAT_ID)
4921 values[n++] = primary_event_id(sub);
4922 }
7d88962e 4923
2aeb1883 4924 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4925 return 0;
fa8c2693 4926}
3dab77fb 4927
fa8c2693
PZ
4928static int perf_read_group(struct perf_event *event,
4929 u64 read_format, char __user *buf)
4930{
4931 struct perf_event *leader = event->group_leader, *child;
4932 struct perf_event_context *ctx = leader->ctx;
7d88962e 4933 int ret;
fa8c2693 4934 u64 *values;
3dab77fb 4935
fa8c2693 4936 lockdep_assert_held(&ctx->mutex);
3dab77fb 4937
fa8c2693
PZ
4938 values = kzalloc(event->read_size, GFP_KERNEL);
4939 if (!values)
4940 return -ENOMEM;
3dab77fb 4941
fa8c2693
PZ
4942 values[0] = 1 + leader->nr_siblings;
4943
4944 /*
4945 * By locking the child_mutex of the leader we effectively
4946 * lock the child list of all siblings.. XXX explain how.
4947 */
4948 mutex_lock(&leader->child_mutex);
abf4868b 4949
7d88962e
SB
4950 ret = __perf_read_group_add(leader, read_format, values);
4951 if (ret)
4952 goto unlock;
4953
4954 list_for_each_entry(child, &leader->child_list, child_list) {
4955 ret = __perf_read_group_add(child, read_format, values);
4956 if (ret)
4957 goto unlock;
4958 }
abf4868b 4959
fa8c2693 4960 mutex_unlock(&leader->child_mutex);
abf4868b 4961
7d88962e 4962 ret = event->read_size;
fa8c2693
PZ
4963 if (copy_to_user(buf, values, event->read_size))
4964 ret = -EFAULT;
7d88962e 4965 goto out;
fa8c2693 4966
7d88962e
SB
4967unlock:
4968 mutex_unlock(&leader->child_mutex);
4969out:
fa8c2693 4970 kfree(values);
abf4868b 4971 return ret;
3dab77fb
PZ
4972}
4973
b15f495b 4974static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4975 u64 read_format, char __user *buf)
4976{
59ed446f 4977 u64 enabled, running;
3dab77fb
PZ
4978 u64 values[4];
4979 int n = 0;
4980
ca0dd44c 4981 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4982 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4983 values[n++] = enabled;
4984 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4985 values[n++] = running;
3dab77fb 4986 if (read_format & PERF_FORMAT_ID)
cdd6c482 4987 values[n++] = primary_event_id(event);
3dab77fb
PZ
4988
4989 if (copy_to_user(buf, values, n * sizeof(u64)))
4990 return -EFAULT;
4991
4992 return n * sizeof(u64);
4993}
4994
dc633982
JO
4995static bool is_event_hup(struct perf_event *event)
4996{
4997 bool no_children;
4998
a69b0ca4 4999 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
5000 return false;
5001
5002 mutex_lock(&event->child_mutex);
5003 no_children = list_empty(&event->child_list);
5004 mutex_unlock(&event->child_mutex);
5005 return no_children;
5006}
5007
0793a61d 5008/*
cdd6c482 5009 * Read the performance event - simple non blocking version for now
0793a61d
TG
5010 */
5011static ssize_t
b15f495b 5012__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 5013{
cdd6c482 5014 u64 read_format = event->attr.read_format;
3dab77fb 5015 int ret;
0793a61d 5016
3b6f9e5c 5017 /*
788faab7 5018 * Return end-of-file for a read on an event that is in
3b6f9e5c
PM
5019 * error state (i.e. because it was pinned but it couldn't be
5020 * scheduled on to the CPU at some point).
5021 */
cdd6c482 5022 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
5023 return 0;
5024
c320c7b7 5025 if (count < event->read_size)
3dab77fb
PZ
5026 return -ENOSPC;
5027
cdd6c482 5028 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 5029 if (read_format & PERF_FORMAT_GROUP)
b15f495b 5030 ret = perf_read_group(event, read_format, buf);
3dab77fb 5031 else
b15f495b 5032 ret = perf_read_one(event, read_format, buf);
0793a61d 5033
3dab77fb 5034 return ret;
0793a61d
TG
5035}
5036
0793a61d
TG
5037static ssize_t
5038perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5039{
cdd6c482 5040 struct perf_event *event = file->private_data;
f63a8daa
PZ
5041 struct perf_event_context *ctx;
5042 int ret;
0793a61d 5043
da97e184
JFG
5044 ret = security_perf_event_read(event);
5045 if (ret)
5046 return ret;
5047
f63a8daa 5048 ctx = perf_event_ctx_lock(event);
b15f495b 5049 ret = __perf_read(event, buf, count);
f63a8daa
PZ
5050 perf_event_ctx_unlock(event, ctx);
5051
5052 return ret;
0793a61d
TG
5053}
5054
9dd95748 5055static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 5056{
cdd6c482 5057 struct perf_event *event = file->private_data;
56de4e8f 5058 struct perf_buffer *rb;
a9a08845 5059 __poll_t events = EPOLLHUP;
c7138f37 5060
e708d7ad 5061 poll_wait(file, &event->waitq, wait);
179033b3 5062
dc633982 5063 if (is_event_hup(event))
179033b3 5064 return events;
c7138f37 5065
10c6db11 5066 /*
9bb5d40c
PZ
5067 * Pin the event->rb by taking event->mmap_mutex; otherwise
5068 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
5069 */
5070 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
5071 rb = event->rb;
5072 if (rb)
76369139 5073 events = atomic_xchg(&rb->poll, 0);
10c6db11 5074 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
5075 return events;
5076}
5077
f63a8daa 5078static void _perf_event_reset(struct perf_event *event)
6de6a7b9 5079{
7d88962e 5080 (void)perf_event_read(event, false);
e7850595 5081 local64_set(&event->count, 0);
cdd6c482 5082 perf_event_update_userpage(event);
3df5edad
PZ
5083}
5084
52ba4b0b
LX
5085/* Assume it's not an event with inherit set. */
5086u64 perf_event_pause(struct perf_event *event, bool reset)
5087{
5088 struct perf_event_context *ctx;
5089 u64 count;
5090
5091 ctx = perf_event_ctx_lock(event);
5092 WARN_ON_ONCE(event->attr.inherit);
5093 _perf_event_disable(event);
5094 count = local64_read(&event->count);
5095 if (reset)
5096 local64_set(&event->count, 0);
5097 perf_event_ctx_unlock(event, ctx);
5098
5099 return count;
5100}
5101EXPORT_SYMBOL_GPL(perf_event_pause);
5102
c93f7669 5103/*
cdd6c482
IM
5104 * Holding the top-level event's child_mutex means that any
5105 * descendant process that has inherited this event will block
8ba289b8 5106 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 5107 * task existence requirements of perf_event_enable/disable.
c93f7669 5108 */
cdd6c482
IM
5109static void perf_event_for_each_child(struct perf_event *event,
5110 void (*func)(struct perf_event *))
3df5edad 5111{
cdd6c482 5112 struct perf_event *child;
3df5edad 5113
cdd6c482 5114 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 5115
cdd6c482
IM
5116 mutex_lock(&event->child_mutex);
5117 func(event);
5118 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 5119 func(child);
cdd6c482 5120 mutex_unlock(&event->child_mutex);
3df5edad
PZ
5121}
5122
cdd6c482
IM
5123static void perf_event_for_each(struct perf_event *event,
5124 void (*func)(struct perf_event *))
3df5edad 5125{
cdd6c482
IM
5126 struct perf_event_context *ctx = event->ctx;
5127 struct perf_event *sibling;
3df5edad 5128
f63a8daa
PZ
5129 lockdep_assert_held(&ctx->mutex);
5130
cdd6c482 5131 event = event->group_leader;
75f937f2 5132
cdd6c482 5133 perf_event_for_each_child(event, func);
edb39592 5134 for_each_sibling_event(sibling, event)
724b6daa 5135 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
5136}
5137
fae3fde6
PZ
5138static void __perf_event_period(struct perf_event *event,
5139 struct perf_cpu_context *cpuctx,
5140 struct perf_event_context *ctx,
5141 void *info)
c7999c6f 5142{
fae3fde6 5143 u64 value = *((u64 *)info);
c7999c6f 5144 bool active;
08247e31 5145
cdd6c482 5146 if (event->attr.freq) {
cdd6c482 5147 event->attr.sample_freq = value;
08247e31 5148 } else {
cdd6c482
IM
5149 event->attr.sample_period = value;
5150 event->hw.sample_period = value;
08247e31 5151 }
bad7192b
PZ
5152
5153 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5154 if (active) {
5155 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
5156 /*
5157 * We could be throttled; unthrottle now to avoid the tick
5158 * trying to unthrottle while we already re-started the event.
5159 */
5160 if (event->hw.interrupts == MAX_INTERRUPTS) {
5161 event->hw.interrupts = 0;
5162 perf_log_throttle(event, 1);
5163 }
bad7192b
PZ
5164 event->pmu->stop(event, PERF_EF_UPDATE);
5165 }
5166
5167 local64_set(&event->hw.period_left, 0);
5168
5169 if (active) {
5170 event->pmu->start(event, PERF_EF_RELOAD);
5171 perf_pmu_enable(ctx->pmu);
5172 }
c7999c6f
PZ
5173}
5174
81ec3f3c
JO
5175static int perf_event_check_period(struct perf_event *event, u64 value)
5176{
5177 return event->pmu->check_period(event, value);
5178}
5179
3ca270fc 5180static int _perf_event_period(struct perf_event *event, u64 value)
c7999c6f 5181{
c7999c6f
PZ
5182 if (!is_sampling_event(event))
5183 return -EINVAL;
5184
c7999c6f
PZ
5185 if (!value)
5186 return -EINVAL;
5187
5188 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5189 return -EINVAL;
5190
81ec3f3c
JO
5191 if (perf_event_check_period(event, value))
5192 return -EINVAL;
5193
913a90bc
RB
5194 if (!event->attr.freq && (value & (1ULL << 63)))
5195 return -EINVAL;
5196
fae3fde6 5197 event_function_call(event, __perf_event_period, &value);
08247e31 5198
c7999c6f 5199 return 0;
08247e31
PZ
5200}
5201
3ca270fc
LX
5202int perf_event_period(struct perf_event *event, u64 value)
5203{
5204 struct perf_event_context *ctx;
5205 int ret;
5206
5207 ctx = perf_event_ctx_lock(event);
5208 ret = _perf_event_period(event, value);
5209 perf_event_ctx_unlock(event, ctx);
5210
5211 return ret;
5212}
5213EXPORT_SYMBOL_GPL(perf_event_period);
5214
ac9721f3
PZ
5215static const struct file_operations perf_fops;
5216
2903ff01 5217static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 5218{
2903ff01
AV
5219 struct fd f = fdget(fd);
5220 if (!f.file)
5221 return -EBADF;
ac9721f3 5222
2903ff01
AV
5223 if (f.file->f_op != &perf_fops) {
5224 fdput(f);
5225 return -EBADF;
ac9721f3 5226 }
2903ff01
AV
5227 *p = f;
5228 return 0;
ac9721f3
PZ
5229}
5230
5231static int perf_event_set_output(struct perf_event *event,
5232 struct perf_event *output_event);
6fb2915d 5233static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 5234static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
32ff77e8
MC
5235static int perf_copy_attr(struct perf_event_attr __user *uattr,
5236 struct perf_event_attr *attr);
a4be7c27 5237
f63a8daa 5238static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5239{
cdd6c482 5240 void (*func)(struct perf_event *);
3df5edad 5241 u32 flags = arg;
d859e29f
PM
5242
5243 switch (cmd) {
cdd6c482 5244 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5245 func = _perf_event_enable;
d859e29f 5246 break;
cdd6c482 5247 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5248 func = _perf_event_disable;
79f14641 5249 break;
cdd6c482 5250 case PERF_EVENT_IOC_RESET:
f63a8daa 5251 func = _perf_event_reset;
6de6a7b9 5252 break;
3df5edad 5253
cdd6c482 5254 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5255 return _perf_event_refresh(event, arg);
08247e31 5256
cdd6c482 5257 case PERF_EVENT_IOC_PERIOD:
3ca270fc
LX
5258 {
5259 u64 value;
08247e31 5260
3ca270fc
LX
5261 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5262 return -EFAULT;
08247e31 5263
3ca270fc
LX
5264 return _perf_event_period(event, value);
5265 }
cf4957f1
JO
5266 case PERF_EVENT_IOC_ID:
5267 {
5268 u64 id = primary_event_id(event);
5269
5270 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5271 return -EFAULT;
5272 return 0;
5273 }
5274
cdd6c482 5275 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5276 {
ac9721f3 5277 int ret;
ac9721f3 5278 if (arg != -1) {
2903ff01
AV
5279 struct perf_event *output_event;
5280 struct fd output;
5281 ret = perf_fget_light(arg, &output);
5282 if (ret)
5283 return ret;
5284 output_event = output.file->private_data;
5285 ret = perf_event_set_output(event, output_event);
5286 fdput(output);
5287 } else {
5288 ret = perf_event_set_output(event, NULL);
ac9721f3 5289 }
ac9721f3
PZ
5290 return ret;
5291 }
a4be7c27 5292
6fb2915d
LZ
5293 case PERF_EVENT_IOC_SET_FILTER:
5294 return perf_event_set_filter(event, (void __user *)arg);
5295
2541517c
AS
5296 case PERF_EVENT_IOC_SET_BPF:
5297 return perf_event_set_bpf_prog(event, arg);
5298
86e7972f 5299 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
56de4e8f 5300 struct perf_buffer *rb;
86e7972f
WN
5301
5302 rcu_read_lock();
5303 rb = rcu_dereference(event->rb);
5304 if (!rb || !rb->nr_pages) {
5305 rcu_read_unlock();
5306 return -EINVAL;
5307 }
5308 rb_toggle_paused(rb, !!arg);
5309 rcu_read_unlock();
5310 return 0;
5311 }
f371b304
YS
5312
5313 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5314 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5315
5316 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5317 struct perf_event_attr new_attr;
5318 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5319 &new_attr);
5320
5321 if (err)
5322 return err;
5323
5324 return perf_event_modify_attr(event, &new_attr);
5325 }
d859e29f 5326 default:
3df5edad 5327 return -ENOTTY;
d859e29f 5328 }
3df5edad
PZ
5329
5330 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5331 perf_event_for_each(event, func);
3df5edad 5332 else
cdd6c482 5333 perf_event_for_each_child(event, func);
3df5edad
PZ
5334
5335 return 0;
d859e29f
PM
5336}
5337
f63a8daa
PZ
5338static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5339{
5340 struct perf_event *event = file->private_data;
5341 struct perf_event_context *ctx;
5342 long ret;
5343
da97e184
JFG
5344 /* Treat ioctl like writes as it is likely a mutating operation. */
5345 ret = security_perf_event_write(event);
5346 if (ret)
5347 return ret;
5348
f63a8daa
PZ
5349 ctx = perf_event_ctx_lock(event);
5350 ret = _perf_ioctl(event, cmd, arg);
5351 perf_event_ctx_unlock(event, ctx);
5352
5353 return ret;
5354}
5355
b3f20785
PM
5356#ifdef CONFIG_COMPAT
5357static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5358 unsigned long arg)
5359{
5360 switch (_IOC_NR(cmd)) {
5361 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5362 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
5363 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5364 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
5365 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5366 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5367 cmd &= ~IOCSIZE_MASK;
5368 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5369 }
5370 break;
5371 }
5372 return perf_ioctl(file, cmd, arg);
5373}
5374#else
5375# define perf_compat_ioctl NULL
5376#endif
5377
cdd6c482 5378int perf_event_task_enable(void)
771d7cde 5379{
f63a8daa 5380 struct perf_event_context *ctx;
cdd6c482 5381 struct perf_event *event;
771d7cde 5382
cdd6c482 5383 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5384 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5385 ctx = perf_event_ctx_lock(event);
5386 perf_event_for_each_child(event, _perf_event_enable);
5387 perf_event_ctx_unlock(event, ctx);
5388 }
cdd6c482 5389 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5390
5391 return 0;
5392}
5393
cdd6c482 5394int perf_event_task_disable(void)
771d7cde 5395{
f63a8daa 5396 struct perf_event_context *ctx;
cdd6c482 5397 struct perf_event *event;
771d7cde 5398
cdd6c482 5399 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5400 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5401 ctx = perf_event_ctx_lock(event);
5402 perf_event_for_each_child(event, _perf_event_disable);
5403 perf_event_ctx_unlock(event, ctx);
5404 }
cdd6c482 5405 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5406
5407 return 0;
5408}
5409
cdd6c482 5410static int perf_event_index(struct perf_event *event)
194002b2 5411{
a4eaf7f1
PZ
5412 if (event->hw.state & PERF_HES_STOPPED)
5413 return 0;
5414
cdd6c482 5415 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
5416 return 0;
5417
35edc2a5 5418 return event->pmu->event_idx(event);
194002b2
PZ
5419}
5420
c4794295 5421static void calc_timer_values(struct perf_event *event,
e3f3541c 5422 u64 *now,
7f310a5d
EM
5423 u64 *enabled,
5424 u64 *running)
c4794295 5425{
e3f3541c 5426 u64 ctx_time;
c4794295 5427
e3f3541c
PZ
5428 *now = perf_clock();
5429 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 5430 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
5431}
5432
fa731587
PZ
5433static void perf_event_init_userpage(struct perf_event *event)
5434{
5435 struct perf_event_mmap_page *userpg;
56de4e8f 5436 struct perf_buffer *rb;
fa731587
PZ
5437
5438 rcu_read_lock();
5439 rb = rcu_dereference(event->rb);
5440 if (!rb)
5441 goto unlock;
5442
5443 userpg = rb->user_page;
5444
5445 /* Allow new userspace to detect that bit 0 is deprecated */
5446 userpg->cap_bit0_is_deprecated = 1;
5447 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
5448 userpg->data_offset = PAGE_SIZE;
5449 userpg->data_size = perf_data_size(rb);
fa731587
PZ
5450
5451unlock:
5452 rcu_read_unlock();
5453}
5454
c1317ec2
AL
5455void __weak arch_perf_update_userpage(
5456 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
5457{
5458}
5459
38ff667b
PZ
5460/*
5461 * Callers need to ensure there can be no nesting of this function, otherwise
5462 * the seqlock logic goes bad. We can not serialize this because the arch
5463 * code calls this from NMI context.
5464 */
cdd6c482 5465void perf_event_update_userpage(struct perf_event *event)
37d81828 5466{
cdd6c482 5467 struct perf_event_mmap_page *userpg;
56de4e8f 5468 struct perf_buffer *rb;
e3f3541c 5469 u64 enabled, running, now;
38ff667b
PZ
5470
5471 rcu_read_lock();
5ec4c599
PZ
5472 rb = rcu_dereference(event->rb);
5473 if (!rb)
5474 goto unlock;
5475
0d641208
EM
5476 /*
5477 * compute total_time_enabled, total_time_running
5478 * based on snapshot values taken when the event
5479 * was last scheduled in.
5480 *
5481 * we cannot simply called update_context_time()
5482 * because of locking issue as we can be called in
5483 * NMI context
5484 */
e3f3541c 5485 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5486
76369139 5487 userpg = rb->user_page;
7b732a75 5488 /*
9d2dcc8f
MF
5489 * Disable preemption to guarantee consistent time stamps are stored to
5490 * the user page.
7b732a75
PZ
5491 */
5492 preempt_disable();
37d81828 5493 ++userpg->lock;
92f22a38 5494 barrier();
cdd6c482 5495 userpg->index = perf_event_index(event);
b5e58793 5496 userpg->offset = perf_event_count(event);
365a4038 5497 if (userpg->index)
e7850595 5498 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5499
0d641208 5500 userpg->time_enabled = enabled +
cdd6c482 5501 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5502
0d641208 5503 userpg->time_running = running +
cdd6c482 5504 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5505
c1317ec2 5506 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5507
92f22a38 5508 barrier();
37d81828 5509 ++userpg->lock;
7b732a75 5510 preempt_enable();
38ff667b 5511unlock:
7b732a75 5512 rcu_read_unlock();
37d81828 5513}
82975c46 5514EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 5515
9e3ed2d7 5516static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
906010b2 5517{
11bac800 5518 struct perf_event *event = vmf->vma->vm_file->private_data;
56de4e8f 5519 struct perf_buffer *rb;
9e3ed2d7 5520 vm_fault_t ret = VM_FAULT_SIGBUS;
906010b2
PZ
5521
5522 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5523 if (vmf->pgoff == 0)
5524 ret = 0;
5525 return ret;
5526 }
5527
5528 rcu_read_lock();
76369139
FW
5529 rb = rcu_dereference(event->rb);
5530 if (!rb)
906010b2
PZ
5531 goto unlock;
5532
5533 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5534 goto unlock;
5535
76369139 5536 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5537 if (!vmf->page)
5538 goto unlock;
5539
5540 get_page(vmf->page);
11bac800 5541 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5542 vmf->page->index = vmf->pgoff;
5543
5544 ret = 0;
5545unlock:
5546 rcu_read_unlock();
5547
5548 return ret;
5549}
5550
10c6db11 5551static void ring_buffer_attach(struct perf_event *event,
56de4e8f 5552 struct perf_buffer *rb)
10c6db11 5553{
56de4e8f 5554 struct perf_buffer *old_rb = NULL;
10c6db11
PZ
5555 unsigned long flags;
5556
b69cf536
PZ
5557 if (event->rb) {
5558 /*
5559 * Should be impossible, we set this when removing
5560 * event->rb_entry and wait/clear when adding event->rb_entry.
5561 */
5562 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5563
b69cf536 5564 old_rb = event->rb;
b69cf536
PZ
5565 spin_lock_irqsave(&old_rb->event_lock, flags);
5566 list_del_rcu(&event->rb_entry);
5567 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5568
2f993cf0
ON
5569 event->rcu_batches = get_state_synchronize_rcu();
5570 event->rcu_pending = 1;
b69cf536 5571 }
10c6db11 5572
b69cf536 5573 if (rb) {
2f993cf0
ON
5574 if (event->rcu_pending) {
5575 cond_synchronize_rcu(event->rcu_batches);
5576 event->rcu_pending = 0;
5577 }
5578
b69cf536
PZ
5579 spin_lock_irqsave(&rb->event_lock, flags);
5580 list_add_rcu(&event->rb_entry, &rb->event_list);
5581 spin_unlock_irqrestore(&rb->event_lock, flags);
5582 }
5583
767ae086
AS
5584 /*
5585 * Avoid racing with perf_mmap_close(AUX): stop the event
5586 * before swizzling the event::rb pointer; if it's getting
5587 * unmapped, its aux_mmap_count will be 0 and it won't
5588 * restart. See the comment in __perf_pmu_output_stop().
5589 *
5590 * Data will inevitably be lost when set_output is done in
5591 * mid-air, but then again, whoever does it like this is
5592 * not in for the data anyway.
5593 */
5594 if (has_aux(event))
5595 perf_event_stop(event, 0);
5596
b69cf536
PZ
5597 rcu_assign_pointer(event->rb, rb);
5598
5599 if (old_rb) {
5600 ring_buffer_put(old_rb);
5601 /*
5602 * Since we detached before setting the new rb, so that we
5603 * could attach the new rb, we could have missed a wakeup.
5604 * Provide it now.
5605 */
5606 wake_up_all(&event->waitq);
5607 }
10c6db11
PZ
5608}
5609
5610static void ring_buffer_wakeup(struct perf_event *event)
5611{
56de4e8f 5612 struct perf_buffer *rb;
10c6db11
PZ
5613
5614 rcu_read_lock();
5615 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5616 if (rb) {
5617 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5618 wake_up_all(&event->waitq);
5619 }
10c6db11
PZ
5620 rcu_read_unlock();
5621}
5622
56de4e8f 5623struct perf_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5624{
56de4e8f 5625 struct perf_buffer *rb;
7b732a75 5626
ac9721f3 5627 rcu_read_lock();
76369139
FW
5628 rb = rcu_dereference(event->rb);
5629 if (rb) {
fecb8ed2 5630 if (!refcount_inc_not_zero(&rb->refcount))
76369139 5631 rb = NULL;
ac9721f3
PZ
5632 }
5633 rcu_read_unlock();
5634
76369139 5635 return rb;
ac9721f3
PZ
5636}
5637
56de4e8f 5638void ring_buffer_put(struct perf_buffer *rb)
ac9721f3 5639{
fecb8ed2 5640 if (!refcount_dec_and_test(&rb->refcount))
ac9721f3 5641 return;
7b732a75 5642
9bb5d40c 5643 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5644
76369139 5645 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5646}
5647
5648static void perf_mmap_open(struct vm_area_struct *vma)
5649{
cdd6c482 5650 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5651
cdd6c482 5652 atomic_inc(&event->mmap_count);
9bb5d40c 5653 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5654
45bfb2e5
PZ
5655 if (vma->vm_pgoff)
5656 atomic_inc(&event->rb->aux_mmap_count);
5657
1e0fb9ec 5658 if (event->pmu->event_mapped)
bfe33492 5659 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5660}
5661
95ff4ca2
AS
5662static void perf_pmu_output_stop(struct perf_event *event);
5663
9bb5d40c
PZ
5664/*
5665 * A buffer can be mmap()ed multiple times; either directly through the same
5666 * event, or through other events by use of perf_event_set_output().
5667 *
5668 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5669 * the buffer here, where we still have a VM context. This means we need
5670 * to detach all events redirecting to us.
5671 */
7b732a75
PZ
5672static void perf_mmap_close(struct vm_area_struct *vma)
5673{
cdd6c482 5674 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5675
56de4e8f 5676 struct perf_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5677 struct user_struct *mmap_user = rb->mmap_user;
5678 int mmap_locked = rb->mmap_locked;
5679 unsigned long size = perf_data_size(rb);
789f90fc 5680
1e0fb9ec 5681 if (event->pmu->event_unmapped)
bfe33492 5682 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5683
45bfb2e5
PZ
5684 /*
5685 * rb->aux_mmap_count will always drop before rb->mmap_count and
5686 * event->mmap_count, so it is ok to use event->mmap_mutex to
5687 * serialize with perf_mmap here.
5688 */
5689 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5690 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5691 /*
5692 * Stop all AUX events that are writing to this buffer,
5693 * so that we can free its AUX pages and corresponding PMU
5694 * data. Note that after rb::aux_mmap_count dropped to zero,
5695 * they won't start any more (see perf_aux_output_begin()).
5696 */
5697 perf_pmu_output_stop(event);
5698
5699 /* now it's safe to free the pages */
36b3db03
AS
5700 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5701 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
45bfb2e5 5702
95ff4ca2 5703 /* this has to be the last one */
45bfb2e5 5704 rb_free_aux(rb);
ca3bb3d0 5705 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
95ff4ca2 5706
45bfb2e5
PZ
5707 mutex_unlock(&event->mmap_mutex);
5708 }
5709
9bb5d40c
PZ
5710 atomic_dec(&rb->mmap_count);
5711
5712 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5713 goto out_put;
9bb5d40c 5714
b69cf536 5715 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5716 mutex_unlock(&event->mmap_mutex);
5717
5718 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5719 if (atomic_read(&rb->mmap_count))
5720 goto out_put;
ac9721f3 5721
9bb5d40c
PZ
5722 /*
5723 * No other mmap()s, detach from all other events that might redirect
5724 * into the now unreachable buffer. Somewhat complicated by the
5725 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5726 */
5727again:
5728 rcu_read_lock();
5729 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5730 if (!atomic_long_inc_not_zero(&event->refcount)) {
5731 /*
5732 * This event is en-route to free_event() which will
5733 * detach it and remove it from the list.
5734 */
5735 continue;
5736 }
5737 rcu_read_unlock();
789f90fc 5738
9bb5d40c
PZ
5739 mutex_lock(&event->mmap_mutex);
5740 /*
5741 * Check we didn't race with perf_event_set_output() which can
5742 * swizzle the rb from under us while we were waiting to
5743 * acquire mmap_mutex.
5744 *
5745 * If we find a different rb; ignore this event, a next
5746 * iteration will no longer find it on the list. We have to
5747 * still restart the iteration to make sure we're not now
5748 * iterating the wrong list.
5749 */
b69cf536
PZ
5750 if (event->rb == rb)
5751 ring_buffer_attach(event, NULL);
5752
cdd6c482 5753 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5754 put_event(event);
ac9721f3 5755
9bb5d40c
PZ
5756 /*
5757 * Restart the iteration; either we're on the wrong list or
5758 * destroyed its integrity by doing a deletion.
5759 */
5760 goto again;
7b732a75 5761 }
9bb5d40c
PZ
5762 rcu_read_unlock();
5763
5764 /*
5765 * It could be there's still a few 0-ref events on the list; they'll
5766 * get cleaned up by free_event() -- they'll also still have their
5767 * ref on the rb and will free it whenever they are done with it.
5768 *
5769 * Aside from that, this buffer is 'fully' detached and unmapped,
5770 * undo the VM accounting.
5771 */
5772
d44248a4
SL
5773 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5774 &mmap_user->locked_vm);
70f8a3ca 5775 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
9bb5d40c
PZ
5776 free_uid(mmap_user);
5777
b69cf536 5778out_put:
9bb5d40c 5779 ring_buffer_put(rb); /* could be last */
37d81828
PM
5780}
5781
f0f37e2f 5782static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5783 .open = perf_mmap_open,
fca0c116 5784 .close = perf_mmap_close, /* non mergeable */
43a21ea8
PZ
5785 .fault = perf_mmap_fault,
5786 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5787};
5788
5789static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5790{
cdd6c482 5791 struct perf_event *event = file->private_data;
22a4f650 5792 unsigned long user_locked, user_lock_limit;
789f90fc 5793 struct user_struct *user = current_user();
56de4e8f 5794 struct perf_buffer *rb = NULL;
22a4f650 5795 unsigned long locked, lock_limit;
7b732a75
PZ
5796 unsigned long vma_size;
5797 unsigned long nr_pages;
45bfb2e5 5798 long user_extra = 0, extra = 0;
d57e34fd 5799 int ret = 0, flags = 0;
37d81828 5800
c7920614
PZ
5801 /*
5802 * Don't allow mmap() of inherited per-task counters. This would
5803 * create a performance issue due to all children writing to the
76369139 5804 * same rb.
c7920614
PZ
5805 */
5806 if (event->cpu == -1 && event->attr.inherit)
5807 return -EINVAL;
5808
43a21ea8 5809 if (!(vma->vm_flags & VM_SHARED))
37d81828 5810 return -EINVAL;
7b732a75 5811
da97e184
JFG
5812 ret = security_perf_event_read(event);
5813 if (ret)
5814 return ret;
5815
7b732a75 5816 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5817
5818 if (vma->vm_pgoff == 0) {
5819 nr_pages = (vma_size / PAGE_SIZE) - 1;
5820 } else {
5821 /*
5822 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5823 * mapped, all subsequent mappings should have the same size
5824 * and offset. Must be above the normal perf buffer.
5825 */
5826 u64 aux_offset, aux_size;
5827
5828 if (!event->rb)
5829 return -EINVAL;
5830
5831 nr_pages = vma_size / PAGE_SIZE;
5832
5833 mutex_lock(&event->mmap_mutex);
5834 ret = -EINVAL;
5835
5836 rb = event->rb;
5837 if (!rb)
5838 goto aux_unlock;
5839
6aa7de05
MR
5840 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5841 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5842
5843 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5844 goto aux_unlock;
5845
5846 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5847 goto aux_unlock;
5848
5849 /* already mapped with a different offset */
5850 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5851 goto aux_unlock;
5852
5853 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5854 goto aux_unlock;
5855
5856 /* already mapped with a different size */
5857 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5858 goto aux_unlock;
5859
5860 if (!is_power_of_2(nr_pages))
5861 goto aux_unlock;
5862
5863 if (!atomic_inc_not_zero(&rb->mmap_count))
5864 goto aux_unlock;
5865
5866 if (rb_has_aux(rb)) {
5867 atomic_inc(&rb->aux_mmap_count);
5868 ret = 0;
5869 goto unlock;
5870 }
5871
5872 atomic_set(&rb->aux_mmap_count, 1);
5873 user_extra = nr_pages;
5874
5875 goto accounting;
5876 }
7b732a75 5877
7730d865 5878 /*
76369139 5879 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5880 * can do bitmasks instead of modulo.
5881 */
2ed11312 5882 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5883 return -EINVAL;
5884
7b732a75 5885 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5886 return -EINVAL;
5887
cdd6c482 5888 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5889again:
cdd6c482 5890 mutex_lock(&event->mmap_mutex);
76369139 5891 if (event->rb) {
9bb5d40c 5892 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5893 ret = -EINVAL;
9bb5d40c
PZ
5894 goto unlock;
5895 }
5896
5897 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5898 /*
5899 * Raced against perf_mmap_close() through
5900 * perf_event_set_output(). Try again, hope for better
5901 * luck.
5902 */
5903 mutex_unlock(&event->mmap_mutex);
5904 goto again;
5905 }
5906
ebb3c4c4
PZ
5907 goto unlock;
5908 }
5909
789f90fc 5910 user_extra = nr_pages + 1;
45bfb2e5
PZ
5911
5912accounting:
cdd6c482 5913 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5914
5915 /*
5916 * Increase the limit linearly with more CPUs:
5917 */
5918 user_lock_limit *= num_online_cpus();
5919
00346155
SL
5920 user_locked = atomic_long_read(&user->locked_vm);
5921
5922 /*
5923 * sysctl_perf_event_mlock may have changed, so that
5924 * user->locked_vm > user_lock_limit
5925 */
5926 if (user_locked > user_lock_limit)
5927 user_locked = user_lock_limit;
5928 user_locked += user_extra;
c5078f78 5929
c4b75479 5930 if (user_locked > user_lock_limit) {
d44248a4
SL
5931 /*
5932 * charge locked_vm until it hits user_lock_limit;
5933 * charge the rest from pinned_vm
5934 */
789f90fc 5935 extra = user_locked - user_lock_limit;
d44248a4
SL
5936 user_extra -= extra;
5937 }
7b732a75 5938
78d7d407 5939 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5940 lock_limit >>= PAGE_SHIFT;
70f8a3ca 5941 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
7b732a75 5942
da97e184 5943 if ((locked > lock_limit) && perf_is_paranoid() &&
459ec28a 5944 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5945 ret = -EPERM;
5946 goto unlock;
5947 }
7b732a75 5948
45bfb2e5 5949 WARN_ON(!rb && event->rb);
906010b2 5950
d57e34fd 5951 if (vma->vm_flags & VM_WRITE)
76369139 5952 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5953
76369139 5954 if (!rb) {
45bfb2e5
PZ
5955 rb = rb_alloc(nr_pages,
5956 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5957 event->cpu, flags);
26cb63ad 5958
45bfb2e5
PZ
5959 if (!rb) {
5960 ret = -ENOMEM;
5961 goto unlock;
5962 }
43a21ea8 5963
45bfb2e5
PZ
5964 atomic_set(&rb->mmap_count, 1);
5965 rb->mmap_user = get_current_user();
5966 rb->mmap_locked = extra;
26cb63ad 5967
45bfb2e5 5968 ring_buffer_attach(event, rb);
ac9721f3 5969
45bfb2e5
PZ
5970 perf_event_init_userpage(event);
5971 perf_event_update_userpage(event);
5972 } else {
1a594131
AS
5973 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5974 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5975 if (!ret)
5976 rb->aux_mmap_locked = extra;
5977 }
9a0f05cb 5978
ebb3c4c4 5979unlock:
45bfb2e5
PZ
5980 if (!ret) {
5981 atomic_long_add(user_extra, &user->locked_vm);
70f8a3ca 5982 atomic64_add(extra, &vma->vm_mm->pinned_vm);
45bfb2e5 5983
ac9721f3 5984 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5985 } else if (rb) {
5986 atomic_dec(&rb->mmap_count);
5987 }
5988aux_unlock:
cdd6c482 5989 mutex_unlock(&event->mmap_mutex);
37d81828 5990
9bb5d40c
PZ
5991 /*
5992 * Since pinned accounting is per vm we cannot allow fork() to copy our
5993 * vma.
5994 */
26cb63ad 5995 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5996 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5997
1e0fb9ec 5998 if (event->pmu->event_mapped)
bfe33492 5999 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 6000
7b732a75 6001 return ret;
37d81828
PM
6002}
6003
3c446b3d
PZ
6004static int perf_fasync(int fd, struct file *filp, int on)
6005{
496ad9aa 6006 struct inode *inode = file_inode(filp);
cdd6c482 6007 struct perf_event *event = filp->private_data;
3c446b3d
PZ
6008 int retval;
6009
5955102c 6010 inode_lock(inode);
cdd6c482 6011 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 6012 inode_unlock(inode);
3c446b3d
PZ
6013
6014 if (retval < 0)
6015 return retval;
6016
6017 return 0;
6018}
6019
0793a61d 6020static const struct file_operations perf_fops = {
3326c1ce 6021 .llseek = no_llseek,
0793a61d
TG
6022 .release = perf_release,
6023 .read = perf_read,
6024 .poll = perf_poll,
d859e29f 6025 .unlocked_ioctl = perf_ioctl,
b3f20785 6026 .compat_ioctl = perf_compat_ioctl,
37d81828 6027 .mmap = perf_mmap,
3c446b3d 6028 .fasync = perf_fasync,
0793a61d
TG
6029};
6030
925d519a 6031/*
cdd6c482 6032 * Perf event wakeup
925d519a
PZ
6033 *
6034 * If there's data, ensure we set the poll() state and publish everything
6035 * to user-space before waking everybody up.
6036 */
6037
fed66e2c
PZ
6038static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6039{
6040 /* only the parent has fasync state */
6041 if (event->parent)
6042 event = event->parent;
6043 return &event->fasync;
6044}
6045
cdd6c482 6046void perf_event_wakeup(struct perf_event *event)
925d519a 6047{
10c6db11 6048 ring_buffer_wakeup(event);
4c9e2542 6049
cdd6c482 6050 if (event->pending_kill) {
fed66e2c 6051 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 6052 event->pending_kill = 0;
4c9e2542 6053 }
925d519a
PZ
6054}
6055
1d54ad94
PZ
6056static void perf_pending_event_disable(struct perf_event *event)
6057{
6058 int cpu = READ_ONCE(event->pending_disable);
6059
6060 if (cpu < 0)
6061 return;
6062
6063 if (cpu == smp_processor_id()) {
6064 WRITE_ONCE(event->pending_disable, -1);
6065 perf_event_disable_local(event);
6066 return;
6067 }
6068
6069 /*
6070 * CPU-A CPU-B
6071 *
6072 * perf_event_disable_inatomic()
6073 * @pending_disable = CPU-A;
6074 * irq_work_queue();
6075 *
6076 * sched-out
6077 * @pending_disable = -1;
6078 *
6079 * sched-in
6080 * perf_event_disable_inatomic()
6081 * @pending_disable = CPU-B;
6082 * irq_work_queue(); // FAILS
6083 *
6084 * irq_work_run()
6085 * perf_pending_event()
6086 *
6087 * But the event runs on CPU-B and wants disabling there.
6088 */
6089 irq_work_queue_on(&event->pending, cpu);
6090}
6091
e360adbe 6092static void perf_pending_event(struct irq_work *entry)
79f14641 6093{
1d54ad94 6094 struct perf_event *event = container_of(entry, struct perf_event, pending);
d525211f
PZ
6095 int rctx;
6096
6097 rctx = perf_swevent_get_recursion_context();
6098 /*
6099 * If we 'fail' here, that's OK, it means recursion is already disabled
6100 * and we won't recurse 'further'.
6101 */
79f14641 6102
1d54ad94 6103 perf_pending_event_disable(event);
79f14641 6104
cdd6c482
IM
6105 if (event->pending_wakeup) {
6106 event->pending_wakeup = 0;
6107 perf_event_wakeup(event);
79f14641 6108 }
d525211f
PZ
6109
6110 if (rctx >= 0)
6111 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
6112}
6113
39447b38
ZY
6114/*
6115 * We assume there is only KVM supporting the callbacks.
6116 * Later on, we might change it to a list if there is
6117 * another virtualization implementation supporting the callbacks.
6118 */
6119struct perf_guest_info_callbacks *perf_guest_cbs;
6120
6121int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6122{
6123 perf_guest_cbs = cbs;
6124 return 0;
6125}
6126EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6127
6128int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6129{
6130 perf_guest_cbs = NULL;
6131 return 0;
6132}
6133EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6134
4018994f
JO
6135static void
6136perf_output_sample_regs(struct perf_output_handle *handle,
6137 struct pt_regs *regs, u64 mask)
6138{
6139 int bit;
29dd3288 6140 DECLARE_BITMAP(_mask, 64);
4018994f 6141
29dd3288
MS
6142 bitmap_from_u64(_mask, mask);
6143 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
6144 u64 val;
6145
6146 val = perf_reg_value(regs, bit);
6147 perf_output_put(handle, val);
6148 }
6149}
6150
60e2364e 6151static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
6152 struct pt_regs *regs,
6153 struct pt_regs *regs_user_copy)
4018994f 6154{
88a7c26a
AL
6155 if (user_mode(regs)) {
6156 regs_user->abi = perf_reg_abi(current);
2565711f 6157 regs_user->regs = regs;
085ebfe9 6158 } else if (!(current->flags & PF_KTHREAD)) {
88a7c26a 6159 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
6160 } else {
6161 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6162 regs_user->regs = NULL;
4018994f
JO
6163 }
6164}
6165
60e2364e
SE
6166static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6167 struct pt_regs *regs)
6168{
6169 regs_intr->regs = regs;
6170 regs_intr->abi = perf_reg_abi(current);
6171}
6172
6173
c5ebcedb
JO
6174/*
6175 * Get remaining task size from user stack pointer.
6176 *
6177 * It'd be better to take stack vma map and limit this more
9f014e3a 6178 * precisely, but there's no way to get it safely under interrupt,
c5ebcedb
JO
6179 * so using TASK_SIZE as limit.
6180 */
6181static u64 perf_ustack_task_size(struct pt_regs *regs)
6182{
6183 unsigned long addr = perf_user_stack_pointer(regs);
6184
6185 if (!addr || addr >= TASK_SIZE)
6186 return 0;
6187
6188 return TASK_SIZE - addr;
6189}
6190
6191static u16
6192perf_sample_ustack_size(u16 stack_size, u16 header_size,
6193 struct pt_regs *regs)
6194{
6195 u64 task_size;
6196
6197 /* No regs, no stack pointer, no dump. */
6198 if (!regs)
6199 return 0;
6200
6201 /*
6202 * Check if we fit in with the requested stack size into the:
6203 * - TASK_SIZE
6204 * If we don't, we limit the size to the TASK_SIZE.
6205 *
6206 * - remaining sample size
6207 * If we don't, we customize the stack size to
6208 * fit in to the remaining sample size.
6209 */
6210
6211 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6212 stack_size = min(stack_size, (u16) task_size);
6213
6214 /* Current header size plus static size and dynamic size. */
6215 header_size += 2 * sizeof(u64);
6216
6217 /* Do we fit in with the current stack dump size? */
6218 if ((u16) (header_size + stack_size) < header_size) {
6219 /*
6220 * If we overflow the maximum size for the sample,
6221 * we customize the stack dump size to fit in.
6222 */
6223 stack_size = USHRT_MAX - header_size - sizeof(u64);
6224 stack_size = round_up(stack_size, sizeof(u64));
6225 }
6226
6227 return stack_size;
6228}
6229
6230static void
6231perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6232 struct pt_regs *regs)
6233{
6234 /* Case of a kernel thread, nothing to dump */
6235 if (!regs) {
6236 u64 size = 0;
6237 perf_output_put(handle, size);
6238 } else {
6239 unsigned long sp;
6240 unsigned int rem;
6241 u64 dyn_size;
02e18447 6242 mm_segment_t fs;
c5ebcedb
JO
6243
6244 /*
6245 * We dump:
6246 * static size
6247 * - the size requested by user or the best one we can fit
6248 * in to the sample max size
6249 * data
6250 * - user stack dump data
6251 * dynamic size
6252 * - the actual dumped size
6253 */
6254
6255 /* Static size. */
6256 perf_output_put(handle, dump_size);
6257
6258 /* Data. */
6259 sp = perf_user_stack_pointer(regs);
02e18447
YC
6260 fs = get_fs();
6261 set_fs(USER_DS);
c5ebcedb 6262 rem = __output_copy_user(handle, (void *) sp, dump_size);
02e18447 6263 set_fs(fs);
c5ebcedb
JO
6264 dyn_size = dump_size - rem;
6265
6266 perf_output_skip(handle, rem);
6267
6268 /* Dynamic size. */
6269 perf_output_put(handle, dyn_size);
6270 }
6271}
6272
a4faf00d
AS
6273static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6274 struct perf_sample_data *data,
6275 size_t size)
6276{
6277 struct perf_event *sampler = event->aux_event;
56de4e8f 6278 struct perf_buffer *rb;
a4faf00d
AS
6279
6280 data->aux_size = 0;
6281
6282 if (!sampler)
6283 goto out;
6284
6285 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6286 goto out;
6287
6288 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6289 goto out;
6290
6291 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6292 if (!rb)
6293 goto out;
6294
6295 /*
6296 * If this is an NMI hit inside sampling code, don't take
6297 * the sample. See also perf_aux_sample_output().
6298 */
6299 if (READ_ONCE(rb->aux_in_sampling)) {
6300 data->aux_size = 0;
6301 } else {
6302 size = min_t(size_t, size, perf_aux_size(rb));
6303 data->aux_size = ALIGN(size, sizeof(u64));
6304 }
6305 ring_buffer_put(rb);
6306
6307out:
6308 return data->aux_size;
6309}
6310
56de4e8f 6311long perf_pmu_snapshot_aux(struct perf_buffer *rb,
a4faf00d
AS
6312 struct perf_event *event,
6313 struct perf_output_handle *handle,
6314 unsigned long size)
6315{
6316 unsigned long flags;
6317 long ret;
6318
6319 /*
6320 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6321 * paths. If we start calling them in NMI context, they may race with
6322 * the IRQ ones, that is, for example, re-starting an event that's just
6323 * been stopped, which is why we're using a separate callback that
6324 * doesn't change the event state.
6325 *
6326 * IRQs need to be disabled to prevent IPIs from racing with us.
6327 */
6328 local_irq_save(flags);
6329 /*
6330 * Guard against NMI hits inside the critical section;
6331 * see also perf_prepare_sample_aux().
6332 */
6333 WRITE_ONCE(rb->aux_in_sampling, 1);
6334 barrier();
6335
6336 ret = event->pmu->snapshot_aux(event, handle, size);
6337
6338 barrier();
6339 WRITE_ONCE(rb->aux_in_sampling, 0);
6340 local_irq_restore(flags);
6341
6342 return ret;
6343}
6344
6345static void perf_aux_sample_output(struct perf_event *event,
6346 struct perf_output_handle *handle,
6347 struct perf_sample_data *data)
6348{
6349 struct perf_event *sampler = event->aux_event;
56de4e8f 6350 struct perf_buffer *rb;
a4faf00d 6351 unsigned long pad;
a4faf00d
AS
6352 long size;
6353
6354 if (WARN_ON_ONCE(!sampler || !data->aux_size))
6355 return;
6356
6357 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6358 if (!rb)
6359 return;
6360
6361 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6362
6363 /*
6364 * An error here means that perf_output_copy() failed (returned a
6365 * non-zero surplus that it didn't copy), which in its current
6366 * enlightened implementation is not possible. If that changes, we'd
6367 * like to know.
6368 */
6369 if (WARN_ON_ONCE(size < 0))
6370 goto out_put;
6371
6372 /*
6373 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6374 * perf_prepare_sample_aux(), so should not be more than that.
6375 */
6376 pad = data->aux_size - size;
6377 if (WARN_ON_ONCE(pad >= sizeof(u64)))
6378 pad = 8;
6379
6380 if (pad) {
6381 u64 zero = 0;
6382 perf_output_copy(handle, &zero, pad);
6383 }
6384
6385out_put:
6386 ring_buffer_put(rb);
6387}
6388
c980d109
ACM
6389static void __perf_event_header__init_id(struct perf_event_header *header,
6390 struct perf_sample_data *data,
6391 struct perf_event *event)
6844c09d
ACM
6392{
6393 u64 sample_type = event->attr.sample_type;
6394
6395 data->type = sample_type;
6396 header->size += event->id_header_size;
6397
6398 if (sample_type & PERF_SAMPLE_TID) {
6399 /* namespace issues */
6400 data->tid_entry.pid = perf_event_pid(event, current);
6401 data->tid_entry.tid = perf_event_tid(event, current);
6402 }
6403
6404 if (sample_type & PERF_SAMPLE_TIME)
34f43927 6405 data->time = perf_event_clock(event);
6844c09d 6406
ff3d527c 6407 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
6408 data->id = primary_event_id(event);
6409
6410 if (sample_type & PERF_SAMPLE_STREAM_ID)
6411 data->stream_id = event->id;
6412
6413 if (sample_type & PERF_SAMPLE_CPU) {
6414 data->cpu_entry.cpu = raw_smp_processor_id();
6415 data->cpu_entry.reserved = 0;
6416 }
6417}
6418
76369139
FW
6419void perf_event_header__init_id(struct perf_event_header *header,
6420 struct perf_sample_data *data,
6421 struct perf_event *event)
c980d109
ACM
6422{
6423 if (event->attr.sample_id_all)
6424 __perf_event_header__init_id(header, data, event);
6425}
6426
6427static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6428 struct perf_sample_data *data)
6429{
6430 u64 sample_type = data->type;
6431
6432 if (sample_type & PERF_SAMPLE_TID)
6433 perf_output_put(handle, data->tid_entry);
6434
6435 if (sample_type & PERF_SAMPLE_TIME)
6436 perf_output_put(handle, data->time);
6437
6438 if (sample_type & PERF_SAMPLE_ID)
6439 perf_output_put(handle, data->id);
6440
6441 if (sample_type & PERF_SAMPLE_STREAM_ID)
6442 perf_output_put(handle, data->stream_id);
6443
6444 if (sample_type & PERF_SAMPLE_CPU)
6445 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
6446
6447 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6448 perf_output_put(handle, data->id);
c980d109
ACM
6449}
6450
76369139
FW
6451void perf_event__output_id_sample(struct perf_event *event,
6452 struct perf_output_handle *handle,
6453 struct perf_sample_data *sample)
c980d109
ACM
6454{
6455 if (event->attr.sample_id_all)
6456 __perf_event__output_id_sample(handle, sample);
6457}
6458
3dab77fb 6459static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
6460 struct perf_event *event,
6461 u64 enabled, u64 running)
3dab77fb 6462{
cdd6c482 6463 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6464 u64 values[4];
6465 int n = 0;
6466
b5e58793 6467 values[n++] = perf_event_count(event);
3dab77fb 6468 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 6469 values[n++] = enabled +
cdd6c482 6470 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
6471 }
6472 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 6473 values[n++] = running +
cdd6c482 6474 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
6475 }
6476 if (read_format & PERF_FORMAT_ID)
cdd6c482 6477 values[n++] = primary_event_id(event);
3dab77fb 6478
76369139 6479 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6480}
6481
3dab77fb 6482static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
6483 struct perf_event *event,
6484 u64 enabled, u64 running)
3dab77fb 6485{
cdd6c482
IM
6486 struct perf_event *leader = event->group_leader, *sub;
6487 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6488 u64 values[5];
6489 int n = 0;
6490
6491 values[n++] = 1 + leader->nr_siblings;
6492
6493 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 6494 values[n++] = enabled;
3dab77fb
PZ
6495
6496 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 6497 values[n++] = running;
3dab77fb 6498
9e5b127d
PZ
6499 if ((leader != event) &&
6500 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6501 leader->pmu->read(leader);
6502
b5e58793 6503 values[n++] = perf_event_count(leader);
3dab77fb 6504 if (read_format & PERF_FORMAT_ID)
cdd6c482 6505 values[n++] = primary_event_id(leader);
3dab77fb 6506
76369139 6507 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 6508
edb39592 6509 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
6510 n = 0;
6511
6f5ab001
JO
6512 if ((sub != event) &&
6513 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6514 sub->pmu->read(sub);
6515
b5e58793 6516 values[n++] = perf_event_count(sub);
3dab77fb 6517 if (read_format & PERF_FORMAT_ID)
cdd6c482 6518 values[n++] = primary_event_id(sub);
3dab77fb 6519
76369139 6520 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6521 }
6522}
6523
eed01528
SE
6524#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6525 PERF_FORMAT_TOTAL_TIME_RUNNING)
6526
ba5213ae
PZ
6527/*
6528 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6529 *
6530 * The problem is that its both hard and excessively expensive to iterate the
6531 * child list, not to mention that its impossible to IPI the children running
6532 * on another CPU, from interrupt/NMI context.
6533 */
3dab77fb 6534static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 6535 struct perf_event *event)
3dab77fb 6536{
e3f3541c 6537 u64 enabled = 0, running = 0, now;
eed01528
SE
6538 u64 read_format = event->attr.read_format;
6539
6540 /*
6541 * compute total_time_enabled, total_time_running
6542 * based on snapshot values taken when the event
6543 * was last scheduled in.
6544 *
6545 * we cannot simply called update_context_time()
6546 * because of locking issue as we are called in
6547 * NMI context
6548 */
c4794295 6549 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 6550 calc_timer_values(event, &now, &enabled, &running);
eed01528 6551
cdd6c482 6552 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 6553 perf_output_read_group(handle, event, enabled, running);
3dab77fb 6554 else
eed01528 6555 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
6556}
6557
5622f295
MM
6558void perf_output_sample(struct perf_output_handle *handle,
6559 struct perf_event_header *header,
6560 struct perf_sample_data *data,
cdd6c482 6561 struct perf_event *event)
5622f295
MM
6562{
6563 u64 sample_type = data->type;
6564
6565 perf_output_put(handle, *header);
6566
ff3d527c
AH
6567 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6568 perf_output_put(handle, data->id);
6569
5622f295
MM
6570 if (sample_type & PERF_SAMPLE_IP)
6571 perf_output_put(handle, data->ip);
6572
6573 if (sample_type & PERF_SAMPLE_TID)
6574 perf_output_put(handle, data->tid_entry);
6575
6576 if (sample_type & PERF_SAMPLE_TIME)
6577 perf_output_put(handle, data->time);
6578
6579 if (sample_type & PERF_SAMPLE_ADDR)
6580 perf_output_put(handle, data->addr);
6581
6582 if (sample_type & PERF_SAMPLE_ID)
6583 perf_output_put(handle, data->id);
6584
6585 if (sample_type & PERF_SAMPLE_STREAM_ID)
6586 perf_output_put(handle, data->stream_id);
6587
6588 if (sample_type & PERF_SAMPLE_CPU)
6589 perf_output_put(handle, data->cpu_entry);
6590
6591 if (sample_type & PERF_SAMPLE_PERIOD)
6592 perf_output_put(handle, data->period);
6593
6594 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 6595 perf_output_read(handle, event);
5622f295
MM
6596
6597 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 6598 int size = 1;
5622f295 6599
99e818cc
JO
6600 size += data->callchain->nr;
6601 size *= sizeof(u64);
6602 __output_copy(handle, data->callchain, size);
5622f295
MM
6603 }
6604
6605 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6606 struct perf_raw_record *raw = data->raw;
6607
6608 if (raw) {
6609 struct perf_raw_frag *frag = &raw->frag;
6610
6611 perf_output_put(handle, raw->size);
6612 do {
6613 if (frag->copy) {
6614 __output_custom(handle, frag->copy,
6615 frag->data, frag->size);
6616 } else {
6617 __output_copy(handle, frag->data,
6618 frag->size);
6619 }
6620 if (perf_raw_frag_last(frag))
6621 break;
6622 frag = frag->next;
6623 } while (1);
6624 if (frag->pad)
6625 __output_skip(handle, NULL, frag->pad);
5622f295
MM
6626 } else {
6627 struct {
6628 u32 size;
6629 u32 data;
6630 } raw = {
6631 .size = sizeof(u32),
6632 .data = 0,
6633 };
6634 perf_output_put(handle, raw);
6635 }
6636 }
a7ac67ea 6637
bce38cd5
SE
6638 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6639 if (data->br_stack) {
6640 size_t size;
6641
6642 size = data->br_stack->nr
6643 * sizeof(struct perf_branch_entry);
6644
6645 perf_output_put(handle, data->br_stack->nr);
6646 perf_output_copy(handle, data->br_stack->entries, size);
6647 } else {
6648 /*
6649 * we always store at least the value of nr
6650 */
6651 u64 nr = 0;
6652 perf_output_put(handle, nr);
6653 }
6654 }
4018994f
JO
6655
6656 if (sample_type & PERF_SAMPLE_REGS_USER) {
6657 u64 abi = data->regs_user.abi;
6658
6659 /*
6660 * If there are no regs to dump, notice it through
6661 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6662 */
6663 perf_output_put(handle, abi);
6664
6665 if (abi) {
6666 u64 mask = event->attr.sample_regs_user;
6667 perf_output_sample_regs(handle,
6668 data->regs_user.regs,
6669 mask);
6670 }
6671 }
c5ebcedb 6672
a5cdd40c 6673 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6674 perf_output_sample_ustack(handle,
6675 data->stack_user_size,
6676 data->regs_user.regs);
a5cdd40c 6677 }
c3feedf2
AK
6678
6679 if (sample_type & PERF_SAMPLE_WEIGHT)
6680 perf_output_put(handle, data->weight);
d6be9ad6
SE
6681
6682 if (sample_type & PERF_SAMPLE_DATA_SRC)
6683 perf_output_put(handle, data->data_src.val);
a5cdd40c 6684
fdfbbd07
AK
6685 if (sample_type & PERF_SAMPLE_TRANSACTION)
6686 perf_output_put(handle, data->txn);
6687
60e2364e
SE
6688 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6689 u64 abi = data->regs_intr.abi;
6690 /*
6691 * If there are no regs to dump, notice it through
6692 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6693 */
6694 perf_output_put(handle, abi);
6695
6696 if (abi) {
6697 u64 mask = event->attr.sample_regs_intr;
6698
6699 perf_output_sample_regs(handle,
6700 data->regs_intr.regs,
6701 mask);
6702 }
6703 }
6704
fc7ce9c7
KL
6705 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6706 perf_output_put(handle, data->phys_addr);
6707
a4faf00d
AS
6708 if (sample_type & PERF_SAMPLE_AUX) {
6709 perf_output_put(handle, data->aux_size);
6710
6711 if (data->aux_size)
6712 perf_aux_sample_output(event, handle, data);
6713 }
6714
a5cdd40c
PZ
6715 if (!event->attr.watermark) {
6716 int wakeup_events = event->attr.wakeup_events;
6717
6718 if (wakeup_events) {
56de4e8f 6719 struct perf_buffer *rb = handle->rb;
a5cdd40c
PZ
6720 int events = local_inc_return(&rb->events);
6721
6722 if (events >= wakeup_events) {
6723 local_sub(wakeup_events, &rb->events);
6724 local_inc(&rb->wakeup);
6725 }
6726 }
6727 }
5622f295
MM
6728}
6729
fc7ce9c7
KL
6730static u64 perf_virt_to_phys(u64 virt)
6731{
6732 u64 phys_addr = 0;
6733 struct page *p = NULL;
6734
6735 if (!virt)
6736 return 0;
6737
6738 if (virt >= TASK_SIZE) {
6739 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6740 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6741 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6742 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6743 } else {
6744 /*
6745 * Walking the pages tables for user address.
6746 * Interrupts are disabled, so it prevents any tear down
6747 * of the page tables.
6748 * Try IRQ-safe __get_user_pages_fast first.
6749 * If failed, leave phys_addr as 0.
6750 */
6751 if ((current->mm != NULL) &&
6752 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6753 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6754
6755 if (p)
6756 put_page(p);
6757 }
6758
6759 return phys_addr;
6760}
6761
99e818cc
JO
6762static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6763
6cbc304f 6764struct perf_callchain_entry *
8cf7e0e2
JO
6765perf_callchain(struct perf_event *event, struct pt_regs *regs)
6766{
6767 bool kernel = !event->attr.exclude_callchain_kernel;
6768 bool user = !event->attr.exclude_callchain_user;
6769 /* Disallow cross-task user callchains. */
6770 bool crosstask = event->ctx->task && event->ctx->task != current;
6771 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 6772 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6773
6774 if (!kernel && !user)
99e818cc 6775 return &__empty_callchain;
8cf7e0e2 6776
99e818cc
JO
6777 callchain = get_perf_callchain(regs, 0, kernel, user,
6778 max_stack, crosstask, true);
6779 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6780}
6781
5622f295
MM
6782void perf_prepare_sample(struct perf_event_header *header,
6783 struct perf_sample_data *data,
cdd6c482 6784 struct perf_event *event,
5622f295 6785 struct pt_regs *regs)
7b732a75 6786{
cdd6c482 6787 u64 sample_type = event->attr.sample_type;
7b732a75 6788
cdd6c482 6789 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6790 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6791
6792 header->misc = 0;
6793 header->misc |= perf_misc_flags(regs);
6fab0192 6794
c980d109 6795 __perf_event_header__init_id(header, data, event);
6844c09d 6796
c320c7b7 6797 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6798 data->ip = perf_instruction_pointer(regs);
6799
b23f3325 6800 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6801 int size = 1;
394ee076 6802
6cbc304f
PZ
6803 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6804 data->callchain = perf_callchain(event, regs);
6805
99e818cc 6806 size += data->callchain->nr;
5622f295
MM
6807
6808 header->size += size * sizeof(u64);
394ee076
PZ
6809 }
6810
3a43ce68 6811 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6812 struct perf_raw_record *raw = data->raw;
6813 int size;
6814
6815 if (raw) {
6816 struct perf_raw_frag *frag = &raw->frag;
6817 u32 sum = 0;
6818
6819 do {
6820 sum += frag->size;
6821 if (perf_raw_frag_last(frag))
6822 break;
6823 frag = frag->next;
6824 } while (1);
6825
6826 size = round_up(sum + sizeof(u32), sizeof(u64));
6827 raw->size = size - sizeof(u32);
6828 frag->pad = raw->size - sum;
6829 } else {
6830 size = sizeof(u64);
6831 }
a044560c 6832
7e3f977e 6833 header->size += size;
7f453c24 6834 }
bce38cd5
SE
6835
6836 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6837 int size = sizeof(u64); /* nr */
6838 if (data->br_stack) {
6839 size += data->br_stack->nr
6840 * sizeof(struct perf_branch_entry);
6841 }
6842 header->size += size;
6843 }
4018994f 6844
2565711f 6845 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6846 perf_sample_regs_user(&data->regs_user, regs,
6847 &data->regs_user_copy);
2565711f 6848
4018994f
JO
6849 if (sample_type & PERF_SAMPLE_REGS_USER) {
6850 /* regs dump ABI info */
6851 int size = sizeof(u64);
6852
4018994f
JO
6853 if (data->regs_user.regs) {
6854 u64 mask = event->attr.sample_regs_user;
6855 size += hweight64(mask) * sizeof(u64);
6856 }
6857
6858 header->size += size;
6859 }
c5ebcedb
JO
6860
6861 if (sample_type & PERF_SAMPLE_STACK_USER) {
6862 /*
9f014e3a 6863 * Either we need PERF_SAMPLE_STACK_USER bit to be always
c5ebcedb
JO
6864 * processed as the last one or have additional check added
6865 * in case new sample type is added, because we could eat
6866 * up the rest of the sample size.
6867 */
c5ebcedb
JO
6868 u16 stack_size = event->attr.sample_stack_user;
6869 u16 size = sizeof(u64);
6870
c5ebcedb 6871 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6872 data->regs_user.regs);
c5ebcedb
JO
6873
6874 /*
6875 * If there is something to dump, add space for the dump
6876 * itself and for the field that tells the dynamic size,
6877 * which is how many have been actually dumped.
6878 */
6879 if (stack_size)
6880 size += sizeof(u64) + stack_size;
6881
6882 data->stack_user_size = stack_size;
6883 header->size += size;
6884 }
60e2364e
SE
6885
6886 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6887 /* regs dump ABI info */
6888 int size = sizeof(u64);
6889
6890 perf_sample_regs_intr(&data->regs_intr, regs);
6891
6892 if (data->regs_intr.regs) {
6893 u64 mask = event->attr.sample_regs_intr;
6894
6895 size += hweight64(mask) * sizeof(u64);
6896 }
6897
6898 header->size += size;
6899 }
fc7ce9c7
KL
6900
6901 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6902 data->phys_addr = perf_virt_to_phys(data->addr);
a4faf00d
AS
6903
6904 if (sample_type & PERF_SAMPLE_AUX) {
6905 u64 size;
6906
6907 header->size += sizeof(u64); /* size */
6908
6909 /*
6910 * Given the 16bit nature of header::size, an AUX sample can
6911 * easily overflow it, what with all the preceding sample bits.
6912 * Make sure this doesn't happen by using up to U16_MAX bytes
6913 * per sample in total (rounded down to 8 byte boundary).
6914 */
6915 size = min_t(size_t, U16_MAX - header->size,
6916 event->attr.aux_sample_size);
6917 size = rounddown(size, 8);
6918 size = perf_prepare_sample_aux(event, data, size);
6919
6920 WARN_ON_ONCE(size + header->size > U16_MAX);
6921 header->size += size;
6922 }
6923 /*
6924 * If you're adding more sample types here, you likely need to do
6925 * something about the overflowing header::size, like repurpose the
6926 * lowest 3 bits of size, which should be always zero at the moment.
6927 * This raises a more important question, do we really need 512k sized
6928 * samples and why, so good argumentation is in order for whatever you
6929 * do here next.
6930 */
6931 WARN_ON_ONCE(header->size & 7);
5622f295 6932}
7f453c24 6933
56201969 6934static __always_inline int
9ecda41a
WN
6935__perf_event_output(struct perf_event *event,
6936 struct perf_sample_data *data,
6937 struct pt_regs *regs,
6938 int (*output_begin)(struct perf_output_handle *,
6939 struct perf_event *,
6940 unsigned int))
5622f295
MM
6941{
6942 struct perf_output_handle handle;
6943 struct perf_event_header header;
56201969 6944 int err;
689802b2 6945
927c7a9e
FW
6946 /* protect the callchain buffers */
6947 rcu_read_lock();
6948
cdd6c482 6949 perf_prepare_sample(&header, data, event, regs);
5c148194 6950
56201969
ACM
6951 err = output_begin(&handle, event, header.size);
6952 if (err)
927c7a9e 6953 goto exit;
0322cd6e 6954
cdd6c482 6955 perf_output_sample(&handle, &header, data, event);
f413cdb8 6956
8a057d84 6957 perf_output_end(&handle);
927c7a9e
FW
6958
6959exit:
6960 rcu_read_unlock();
56201969 6961 return err;
0322cd6e
PZ
6962}
6963
9ecda41a
WN
6964void
6965perf_event_output_forward(struct perf_event *event,
6966 struct perf_sample_data *data,
6967 struct pt_regs *regs)
6968{
6969 __perf_event_output(event, data, regs, perf_output_begin_forward);
6970}
6971
6972void
6973perf_event_output_backward(struct perf_event *event,
6974 struct perf_sample_data *data,
6975 struct pt_regs *regs)
6976{
6977 __perf_event_output(event, data, regs, perf_output_begin_backward);
6978}
6979
56201969 6980int
9ecda41a
WN
6981perf_event_output(struct perf_event *event,
6982 struct perf_sample_data *data,
6983 struct pt_regs *regs)
6984{
56201969 6985 return __perf_event_output(event, data, regs, perf_output_begin);
9ecda41a
WN
6986}
6987
38b200d6 6988/*
cdd6c482 6989 * read event_id
38b200d6
PZ
6990 */
6991
6992struct perf_read_event {
6993 struct perf_event_header header;
6994
6995 u32 pid;
6996 u32 tid;
38b200d6
PZ
6997};
6998
6999static void
cdd6c482 7000perf_event_read_event(struct perf_event *event,
38b200d6
PZ
7001 struct task_struct *task)
7002{
7003 struct perf_output_handle handle;
c980d109 7004 struct perf_sample_data sample;
dfc65094 7005 struct perf_read_event read_event = {
38b200d6 7006 .header = {
cdd6c482 7007 .type = PERF_RECORD_READ,
38b200d6 7008 .misc = 0,
c320c7b7 7009 .size = sizeof(read_event) + event->read_size,
38b200d6 7010 },
cdd6c482
IM
7011 .pid = perf_event_pid(event, task),
7012 .tid = perf_event_tid(event, task),
38b200d6 7013 };
3dab77fb 7014 int ret;
38b200d6 7015
c980d109 7016 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 7017 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
7018 if (ret)
7019 return;
7020
dfc65094 7021 perf_output_put(&handle, read_event);
cdd6c482 7022 perf_output_read(&handle, event);
c980d109 7023 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 7024
38b200d6
PZ
7025 perf_output_end(&handle);
7026}
7027
aab5b71e 7028typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
7029
7030static void
aab5b71e
PZ
7031perf_iterate_ctx(struct perf_event_context *ctx,
7032 perf_iterate_f output,
b73e4fef 7033 void *data, bool all)
52d857a8
JO
7034{
7035 struct perf_event *event;
7036
7037 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
7038 if (!all) {
7039 if (event->state < PERF_EVENT_STATE_INACTIVE)
7040 continue;
7041 if (!event_filter_match(event))
7042 continue;
7043 }
7044
67516844 7045 output(event, data);
52d857a8
JO
7046 }
7047}
7048
aab5b71e 7049static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
7050{
7051 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7052 struct perf_event *event;
7053
7054 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
7055 /*
7056 * Skip events that are not fully formed yet; ensure that
7057 * if we observe event->ctx, both event and ctx will be
7058 * complete enough. See perf_install_in_context().
7059 */
7060 if (!smp_load_acquire(&event->ctx))
7061 continue;
7062
f2fb6bef
KL
7063 if (event->state < PERF_EVENT_STATE_INACTIVE)
7064 continue;
7065 if (!event_filter_match(event))
7066 continue;
7067 output(event, data);
7068 }
7069}
7070
aab5b71e
PZ
7071/*
7072 * Iterate all events that need to receive side-band events.
7073 *
7074 * For new callers; ensure that account_pmu_sb_event() includes
7075 * your event, otherwise it might not get delivered.
7076 */
52d857a8 7077static void
aab5b71e 7078perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
7079 struct perf_event_context *task_ctx)
7080{
52d857a8 7081 struct perf_event_context *ctx;
52d857a8
JO
7082 int ctxn;
7083
aab5b71e
PZ
7084 rcu_read_lock();
7085 preempt_disable();
7086
4e93ad60 7087 /*
aab5b71e
PZ
7088 * If we have task_ctx != NULL we only notify the task context itself.
7089 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
7090 * context.
7091 */
7092 if (task_ctx) {
aab5b71e
PZ
7093 perf_iterate_ctx(task_ctx, output, data, false);
7094 goto done;
4e93ad60
JO
7095 }
7096
aab5b71e 7097 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
7098
7099 for_each_task_context_nr(ctxn) {
52d857a8
JO
7100 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7101 if (ctx)
aab5b71e 7102 perf_iterate_ctx(ctx, output, data, false);
52d857a8 7103 }
aab5b71e 7104done:
f2fb6bef 7105 preempt_enable();
52d857a8 7106 rcu_read_unlock();
95ff4ca2
AS
7107}
7108
375637bc
AS
7109/*
7110 * Clear all file-based filters at exec, they'll have to be
7111 * re-instated when/if these objects are mmapped again.
7112 */
7113static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7114{
7115 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7116 struct perf_addr_filter *filter;
7117 unsigned int restart = 0, count = 0;
7118 unsigned long flags;
7119
7120 if (!has_addr_filter(event))
7121 return;
7122
7123 raw_spin_lock_irqsave(&ifh->lock, flags);
7124 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 7125 if (filter->path.dentry) {
c60f83b8
AS
7126 event->addr_filter_ranges[count].start = 0;
7127 event->addr_filter_ranges[count].size = 0;
375637bc
AS
7128 restart++;
7129 }
7130
7131 count++;
7132 }
7133
7134 if (restart)
7135 event->addr_filters_gen++;
7136 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7137
7138 if (restart)
767ae086 7139 perf_event_stop(event, 1);
375637bc
AS
7140}
7141
7142void perf_event_exec(void)
7143{
7144 struct perf_event_context *ctx;
7145 int ctxn;
7146
7147 rcu_read_lock();
7148 for_each_task_context_nr(ctxn) {
7149 ctx = current->perf_event_ctxp[ctxn];
7150 if (!ctx)
7151 continue;
7152
7153 perf_event_enable_on_exec(ctxn);
7154
aab5b71e 7155 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
7156 true);
7157 }
7158 rcu_read_unlock();
7159}
7160
95ff4ca2 7161struct remote_output {
56de4e8f 7162 struct perf_buffer *rb;
95ff4ca2
AS
7163 int err;
7164};
7165
7166static void __perf_event_output_stop(struct perf_event *event, void *data)
7167{
7168 struct perf_event *parent = event->parent;
7169 struct remote_output *ro = data;
56de4e8f 7170 struct perf_buffer *rb = ro->rb;
375637bc
AS
7171 struct stop_event_data sd = {
7172 .event = event,
7173 };
95ff4ca2
AS
7174
7175 if (!has_aux(event))
7176 return;
7177
7178 if (!parent)
7179 parent = event;
7180
7181 /*
7182 * In case of inheritance, it will be the parent that links to the
767ae086
AS
7183 * ring-buffer, but it will be the child that's actually using it.
7184 *
7185 * We are using event::rb to determine if the event should be stopped,
7186 * however this may race with ring_buffer_attach() (through set_output),
7187 * which will make us skip the event that actually needs to be stopped.
7188 * So ring_buffer_attach() has to stop an aux event before re-assigning
7189 * its rb pointer.
95ff4ca2
AS
7190 */
7191 if (rcu_dereference(parent->rb) == rb)
375637bc 7192 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
7193}
7194
7195static int __perf_pmu_output_stop(void *info)
7196{
7197 struct perf_event *event = info;
f3a519e4 7198 struct pmu *pmu = event->ctx->pmu;
8b6a3fe8 7199 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
7200 struct remote_output ro = {
7201 .rb = event->rb,
7202 };
7203
7204 rcu_read_lock();
aab5b71e 7205 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 7206 if (cpuctx->task_ctx)
aab5b71e 7207 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 7208 &ro, false);
95ff4ca2
AS
7209 rcu_read_unlock();
7210
7211 return ro.err;
7212}
7213
7214static void perf_pmu_output_stop(struct perf_event *event)
7215{
7216 struct perf_event *iter;
7217 int err, cpu;
7218
7219restart:
7220 rcu_read_lock();
7221 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7222 /*
7223 * For per-CPU events, we need to make sure that neither they
7224 * nor their children are running; for cpu==-1 events it's
7225 * sufficient to stop the event itself if it's active, since
7226 * it can't have children.
7227 */
7228 cpu = iter->cpu;
7229 if (cpu == -1)
7230 cpu = READ_ONCE(iter->oncpu);
7231
7232 if (cpu == -1)
7233 continue;
7234
7235 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7236 if (err == -EAGAIN) {
7237 rcu_read_unlock();
7238 goto restart;
7239 }
7240 }
7241 rcu_read_unlock();
52d857a8
JO
7242}
7243
60313ebe 7244/*
9f498cc5
PZ
7245 * task tracking -- fork/exit
7246 *
13d7a241 7247 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
7248 */
7249
9f498cc5 7250struct perf_task_event {
3a80b4a3 7251 struct task_struct *task;
cdd6c482 7252 struct perf_event_context *task_ctx;
60313ebe
PZ
7253
7254 struct {
7255 struct perf_event_header header;
7256
7257 u32 pid;
7258 u32 ppid;
9f498cc5
PZ
7259 u32 tid;
7260 u32 ptid;
393b2ad8 7261 u64 time;
cdd6c482 7262 } event_id;
60313ebe
PZ
7263};
7264
67516844
JO
7265static int perf_event_task_match(struct perf_event *event)
7266{
13d7a241
SE
7267 return event->attr.comm || event->attr.mmap ||
7268 event->attr.mmap2 || event->attr.mmap_data ||
7269 event->attr.task;
67516844
JO
7270}
7271
cdd6c482 7272static void perf_event_task_output(struct perf_event *event,
52d857a8 7273 void *data)
60313ebe 7274{
52d857a8 7275 struct perf_task_event *task_event = data;
60313ebe 7276 struct perf_output_handle handle;
c980d109 7277 struct perf_sample_data sample;
9f498cc5 7278 struct task_struct *task = task_event->task;
c980d109 7279 int ret, size = task_event->event_id.header.size;
8bb39f9a 7280
67516844
JO
7281 if (!perf_event_task_match(event))
7282 return;
7283
c980d109 7284 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 7285
c980d109 7286 ret = perf_output_begin(&handle, event,
a7ac67ea 7287 task_event->event_id.header.size);
ef60777c 7288 if (ret)
c980d109 7289 goto out;
60313ebe 7290
cdd6c482
IM
7291 task_event->event_id.pid = perf_event_pid(event, task);
7292 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 7293
cdd6c482
IM
7294 task_event->event_id.tid = perf_event_tid(event, task);
7295 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 7296
34f43927
PZ
7297 task_event->event_id.time = perf_event_clock(event);
7298
cdd6c482 7299 perf_output_put(&handle, task_event->event_id);
393b2ad8 7300
c980d109
ACM
7301 perf_event__output_id_sample(event, &handle, &sample);
7302
60313ebe 7303 perf_output_end(&handle);
c980d109
ACM
7304out:
7305 task_event->event_id.header.size = size;
60313ebe
PZ
7306}
7307
cdd6c482
IM
7308static void perf_event_task(struct task_struct *task,
7309 struct perf_event_context *task_ctx,
3a80b4a3 7310 int new)
60313ebe 7311{
9f498cc5 7312 struct perf_task_event task_event;
60313ebe 7313
cdd6c482
IM
7314 if (!atomic_read(&nr_comm_events) &&
7315 !atomic_read(&nr_mmap_events) &&
7316 !atomic_read(&nr_task_events))
60313ebe
PZ
7317 return;
7318
9f498cc5 7319 task_event = (struct perf_task_event){
3a80b4a3
PZ
7320 .task = task,
7321 .task_ctx = task_ctx,
cdd6c482 7322 .event_id = {
60313ebe 7323 .header = {
cdd6c482 7324 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 7325 .misc = 0,
cdd6c482 7326 .size = sizeof(task_event.event_id),
60313ebe 7327 },
573402db
PZ
7328 /* .pid */
7329 /* .ppid */
9f498cc5
PZ
7330 /* .tid */
7331 /* .ptid */
34f43927 7332 /* .time */
60313ebe
PZ
7333 },
7334 };
7335
aab5b71e 7336 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
7337 &task_event,
7338 task_ctx);
9f498cc5
PZ
7339}
7340
cdd6c482 7341void perf_event_fork(struct task_struct *task)
9f498cc5 7342{
cdd6c482 7343 perf_event_task(task, NULL, 1);
e4222673 7344 perf_event_namespaces(task);
60313ebe
PZ
7345}
7346
8d1b2d93
PZ
7347/*
7348 * comm tracking
7349 */
7350
7351struct perf_comm_event {
22a4f650
IM
7352 struct task_struct *task;
7353 char *comm;
8d1b2d93
PZ
7354 int comm_size;
7355
7356 struct {
7357 struct perf_event_header header;
7358
7359 u32 pid;
7360 u32 tid;
cdd6c482 7361 } event_id;
8d1b2d93
PZ
7362};
7363
67516844
JO
7364static int perf_event_comm_match(struct perf_event *event)
7365{
7366 return event->attr.comm;
7367}
7368
cdd6c482 7369static void perf_event_comm_output(struct perf_event *event,
52d857a8 7370 void *data)
8d1b2d93 7371{
52d857a8 7372 struct perf_comm_event *comm_event = data;
8d1b2d93 7373 struct perf_output_handle handle;
c980d109 7374 struct perf_sample_data sample;
cdd6c482 7375 int size = comm_event->event_id.header.size;
c980d109
ACM
7376 int ret;
7377
67516844
JO
7378 if (!perf_event_comm_match(event))
7379 return;
7380
c980d109
ACM
7381 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7382 ret = perf_output_begin(&handle, event,
a7ac67ea 7383 comm_event->event_id.header.size);
8d1b2d93
PZ
7384
7385 if (ret)
c980d109 7386 goto out;
8d1b2d93 7387
cdd6c482
IM
7388 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7389 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 7390
cdd6c482 7391 perf_output_put(&handle, comm_event->event_id);
76369139 7392 __output_copy(&handle, comm_event->comm,
8d1b2d93 7393 comm_event->comm_size);
c980d109
ACM
7394
7395 perf_event__output_id_sample(event, &handle, &sample);
7396
8d1b2d93 7397 perf_output_end(&handle);
c980d109
ACM
7398out:
7399 comm_event->event_id.header.size = size;
8d1b2d93
PZ
7400}
7401
cdd6c482 7402static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 7403{
413ee3b4 7404 char comm[TASK_COMM_LEN];
8d1b2d93 7405 unsigned int size;
8d1b2d93 7406
413ee3b4 7407 memset(comm, 0, sizeof(comm));
96b02d78 7408 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 7409 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
7410
7411 comm_event->comm = comm;
7412 comm_event->comm_size = size;
7413
cdd6c482 7414 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 7415
aab5b71e 7416 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
7417 comm_event,
7418 NULL);
8d1b2d93
PZ
7419}
7420
82b89778 7421void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 7422{
9ee318a7
PZ
7423 struct perf_comm_event comm_event;
7424
cdd6c482 7425 if (!atomic_read(&nr_comm_events))
9ee318a7 7426 return;
a63eaf34 7427
9ee318a7 7428 comm_event = (struct perf_comm_event){
8d1b2d93 7429 .task = task,
573402db
PZ
7430 /* .comm */
7431 /* .comm_size */
cdd6c482 7432 .event_id = {
573402db 7433 .header = {
cdd6c482 7434 .type = PERF_RECORD_COMM,
82b89778 7435 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
7436 /* .size */
7437 },
7438 /* .pid */
7439 /* .tid */
8d1b2d93
PZ
7440 },
7441 };
7442
cdd6c482 7443 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
7444}
7445
e4222673
HB
7446/*
7447 * namespaces tracking
7448 */
7449
7450struct perf_namespaces_event {
7451 struct task_struct *task;
7452
7453 struct {
7454 struct perf_event_header header;
7455
7456 u32 pid;
7457 u32 tid;
7458 u64 nr_namespaces;
7459 struct perf_ns_link_info link_info[NR_NAMESPACES];
7460 } event_id;
7461};
7462
7463static int perf_event_namespaces_match(struct perf_event *event)
7464{
7465 return event->attr.namespaces;
7466}
7467
7468static void perf_event_namespaces_output(struct perf_event *event,
7469 void *data)
7470{
7471 struct perf_namespaces_event *namespaces_event = data;
7472 struct perf_output_handle handle;
7473 struct perf_sample_data sample;
34900ec5 7474 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
7475 int ret;
7476
7477 if (!perf_event_namespaces_match(event))
7478 return;
7479
7480 perf_event_header__init_id(&namespaces_event->event_id.header,
7481 &sample, event);
7482 ret = perf_output_begin(&handle, event,
7483 namespaces_event->event_id.header.size);
7484 if (ret)
34900ec5 7485 goto out;
e4222673
HB
7486
7487 namespaces_event->event_id.pid = perf_event_pid(event,
7488 namespaces_event->task);
7489 namespaces_event->event_id.tid = perf_event_tid(event,
7490 namespaces_event->task);
7491
7492 perf_output_put(&handle, namespaces_event->event_id);
7493
7494 perf_event__output_id_sample(event, &handle, &sample);
7495
7496 perf_output_end(&handle);
34900ec5
JO
7497out:
7498 namespaces_event->event_id.header.size = header_size;
e4222673
HB
7499}
7500
7501static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7502 struct task_struct *task,
7503 const struct proc_ns_operations *ns_ops)
7504{
7505 struct path ns_path;
7506 struct inode *ns_inode;
ce623f89 7507 int error;
e4222673
HB
7508
7509 error = ns_get_path(&ns_path, task, ns_ops);
7510 if (!error) {
7511 ns_inode = ns_path.dentry->d_inode;
7512 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7513 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 7514 path_put(&ns_path);
e4222673
HB
7515 }
7516}
7517
7518void perf_event_namespaces(struct task_struct *task)
7519{
7520 struct perf_namespaces_event namespaces_event;
7521 struct perf_ns_link_info *ns_link_info;
7522
7523 if (!atomic_read(&nr_namespaces_events))
7524 return;
7525
7526 namespaces_event = (struct perf_namespaces_event){
7527 .task = task,
7528 .event_id = {
7529 .header = {
7530 .type = PERF_RECORD_NAMESPACES,
7531 .misc = 0,
7532 .size = sizeof(namespaces_event.event_id),
7533 },
7534 /* .pid */
7535 /* .tid */
7536 .nr_namespaces = NR_NAMESPACES,
7537 /* .link_info[NR_NAMESPACES] */
7538 },
7539 };
7540
7541 ns_link_info = namespaces_event.event_id.link_info;
7542
7543 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7544 task, &mntns_operations);
7545
7546#ifdef CONFIG_USER_NS
7547 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7548 task, &userns_operations);
7549#endif
7550#ifdef CONFIG_NET_NS
7551 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7552 task, &netns_operations);
7553#endif
7554#ifdef CONFIG_UTS_NS
7555 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7556 task, &utsns_operations);
7557#endif
7558#ifdef CONFIG_IPC_NS
7559 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7560 task, &ipcns_operations);
7561#endif
7562#ifdef CONFIG_PID_NS
7563 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7564 task, &pidns_operations);
7565#endif
7566#ifdef CONFIG_CGROUPS
7567 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7568 task, &cgroupns_operations);
7569#endif
7570
7571 perf_iterate_sb(perf_event_namespaces_output,
7572 &namespaces_event,
7573 NULL);
7574}
7575
0a4a9391
PZ
7576/*
7577 * mmap tracking
7578 */
7579
7580struct perf_mmap_event {
089dd79d
PZ
7581 struct vm_area_struct *vma;
7582
7583 const char *file_name;
7584 int file_size;
13d7a241
SE
7585 int maj, min;
7586 u64 ino;
7587 u64 ino_generation;
f972eb63 7588 u32 prot, flags;
0a4a9391
PZ
7589
7590 struct {
7591 struct perf_event_header header;
7592
7593 u32 pid;
7594 u32 tid;
7595 u64 start;
7596 u64 len;
7597 u64 pgoff;
cdd6c482 7598 } event_id;
0a4a9391
PZ
7599};
7600
67516844
JO
7601static int perf_event_mmap_match(struct perf_event *event,
7602 void *data)
7603{
7604 struct perf_mmap_event *mmap_event = data;
7605 struct vm_area_struct *vma = mmap_event->vma;
7606 int executable = vma->vm_flags & VM_EXEC;
7607
7608 return (!executable && event->attr.mmap_data) ||
13d7a241 7609 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
7610}
7611
cdd6c482 7612static void perf_event_mmap_output(struct perf_event *event,
52d857a8 7613 void *data)
0a4a9391 7614{
52d857a8 7615 struct perf_mmap_event *mmap_event = data;
0a4a9391 7616 struct perf_output_handle handle;
c980d109 7617 struct perf_sample_data sample;
cdd6c482 7618 int size = mmap_event->event_id.header.size;
d9c1bb2f 7619 u32 type = mmap_event->event_id.header.type;
c980d109 7620 int ret;
0a4a9391 7621
67516844
JO
7622 if (!perf_event_mmap_match(event, data))
7623 return;
7624
13d7a241
SE
7625 if (event->attr.mmap2) {
7626 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7627 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7628 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7629 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 7630 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
7631 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7632 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
7633 }
7634
c980d109
ACM
7635 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7636 ret = perf_output_begin(&handle, event,
a7ac67ea 7637 mmap_event->event_id.header.size);
0a4a9391 7638 if (ret)
c980d109 7639 goto out;
0a4a9391 7640
cdd6c482
IM
7641 mmap_event->event_id.pid = perf_event_pid(event, current);
7642 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 7643
cdd6c482 7644 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
7645
7646 if (event->attr.mmap2) {
7647 perf_output_put(&handle, mmap_event->maj);
7648 perf_output_put(&handle, mmap_event->min);
7649 perf_output_put(&handle, mmap_event->ino);
7650 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
7651 perf_output_put(&handle, mmap_event->prot);
7652 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
7653 }
7654
76369139 7655 __output_copy(&handle, mmap_event->file_name,
0a4a9391 7656 mmap_event->file_size);
c980d109
ACM
7657
7658 perf_event__output_id_sample(event, &handle, &sample);
7659
78d613eb 7660 perf_output_end(&handle);
c980d109
ACM
7661out:
7662 mmap_event->event_id.header.size = size;
d9c1bb2f 7663 mmap_event->event_id.header.type = type;
0a4a9391
PZ
7664}
7665
cdd6c482 7666static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 7667{
089dd79d
PZ
7668 struct vm_area_struct *vma = mmap_event->vma;
7669 struct file *file = vma->vm_file;
13d7a241
SE
7670 int maj = 0, min = 0;
7671 u64 ino = 0, gen = 0;
f972eb63 7672 u32 prot = 0, flags = 0;
0a4a9391
PZ
7673 unsigned int size;
7674 char tmp[16];
7675 char *buf = NULL;
2c42cfbf 7676 char *name;
413ee3b4 7677
0b3589be
PZ
7678 if (vma->vm_flags & VM_READ)
7679 prot |= PROT_READ;
7680 if (vma->vm_flags & VM_WRITE)
7681 prot |= PROT_WRITE;
7682 if (vma->vm_flags & VM_EXEC)
7683 prot |= PROT_EXEC;
7684
7685 if (vma->vm_flags & VM_MAYSHARE)
7686 flags = MAP_SHARED;
7687 else
7688 flags = MAP_PRIVATE;
7689
7690 if (vma->vm_flags & VM_DENYWRITE)
7691 flags |= MAP_DENYWRITE;
7692 if (vma->vm_flags & VM_MAYEXEC)
7693 flags |= MAP_EXECUTABLE;
7694 if (vma->vm_flags & VM_LOCKED)
7695 flags |= MAP_LOCKED;
7696 if (vma->vm_flags & VM_HUGETLB)
7697 flags |= MAP_HUGETLB;
7698
0a4a9391 7699 if (file) {
13d7a241
SE
7700 struct inode *inode;
7701 dev_t dev;
3ea2f2b9 7702
2c42cfbf 7703 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 7704 if (!buf) {
c7e548b4
ON
7705 name = "//enomem";
7706 goto cpy_name;
0a4a9391 7707 }
413ee3b4 7708 /*
3ea2f2b9 7709 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
7710 * need to add enough zero bytes after the string to handle
7711 * the 64bit alignment we do later.
7712 */
9bf39ab2 7713 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 7714 if (IS_ERR(name)) {
c7e548b4
ON
7715 name = "//toolong";
7716 goto cpy_name;
0a4a9391 7717 }
13d7a241
SE
7718 inode = file_inode(vma->vm_file);
7719 dev = inode->i_sb->s_dev;
7720 ino = inode->i_ino;
7721 gen = inode->i_generation;
7722 maj = MAJOR(dev);
7723 min = MINOR(dev);
f972eb63 7724
c7e548b4 7725 goto got_name;
0a4a9391 7726 } else {
fbe26abe
JO
7727 if (vma->vm_ops && vma->vm_ops->name) {
7728 name = (char *) vma->vm_ops->name(vma);
7729 if (name)
7730 goto cpy_name;
7731 }
7732
2c42cfbf 7733 name = (char *)arch_vma_name(vma);
c7e548b4
ON
7734 if (name)
7735 goto cpy_name;
089dd79d 7736
32c5fb7e 7737 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 7738 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
7739 name = "[heap]";
7740 goto cpy_name;
32c5fb7e
ON
7741 }
7742 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 7743 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
7744 name = "[stack]";
7745 goto cpy_name;
089dd79d
PZ
7746 }
7747
c7e548b4
ON
7748 name = "//anon";
7749 goto cpy_name;
0a4a9391
PZ
7750 }
7751
c7e548b4
ON
7752cpy_name:
7753 strlcpy(tmp, name, sizeof(tmp));
7754 name = tmp;
0a4a9391 7755got_name:
2c42cfbf
PZ
7756 /*
7757 * Since our buffer works in 8 byte units we need to align our string
7758 * size to a multiple of 8. However, we must guarantee the tail end is
7759 * zero'd out to avoid leaking random bits to userspace.
7760 */
7761 size = strlen(name)+1;
7762 while (!IS_ALIGNED(size, sizeof(u64)))
7763 name[size++] = '\0';
0a4a9391
PZ
7764
7765 mmap_event->file_name = name;
7766 mmap_event->file_size = size;
13d7a241
SE
7767 mmap_event->maj = maj;
7768 mmap_event->min = min;
7769 mmap_event->ino = ino;
7770 mmap_event->ino_generation = gen;
f972eb63
PZ
7771 mmap_event->prot = prot;
7772 mmap_event->flags = flags;
0a4a9391 7773
2fe85427
SE
7774 if (!(vma->vm_flags & VM_EXEC))
7775 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7776
cdd6c482 7777 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7778
aab5b71e 7779 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7780 mmap_event,
7781 NULL);
665c2142 7782
0a4a9391
PZ
7783 kfree(buf);
7784}
7785
375637bc
AS
7786/*
7787 * Check whether inode and address range match filter criteria.
7788 */
7789static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7790 struct file *file, unsigned long offset,
7791 unsigned long size)
7792{
7f635ff1
MP
7793 /* d_inode(NULL) won't be equal to any mapped user-space file */
7794 if (!filter->path.dentry)
7795 return false;
7796
9511bce9 7797 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
7798 return false;
7799
7800 if (filter->offset > offset + size)
7801 return false;
7802
7803 if (filter->offset + filter->size < offset)
7804 return false;
7805
7806 return true;
7807}
7808
c60f83b8
AS
7809static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7810 struct vm_area_struct *vma,
7811 struct perf_addr_filter_range *fr)
7812{
7813 unsigned long vma_size = vma->vm_end - vma->vm_start;
7814 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7815 struct file *file = vma->vm_file;
7816
7817 if (!perf_addr_filter_match(filter, file, off, vma_size))
7818 return false;
7819
7820 if (filter->offset < off) {
7821 fr->start = vma->vm_start;
7822 fr->size = min(vma_size, filter->size - (off - filter->offset));
7823 } else {
7824 fr->start = vma->vm_start + filter->offset - off;
7825 fr->size = min(vma->vm_end - fr->start, filter->size);
7826 }
7827
7828 return true;
7829}
7830
375637bc
AS
7831static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7832{
7833 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7834 struct vm_area_struct *vma = data;
375637bc
AS
7835 struct perf_addr_filter *filter;
7836 unsigned int restart = 0, count = 0;
c60f83b8 7837 unsigned long flags;
375637bc
AS
7838
7839 if (!has_addr_filter(event))
7840 return;
7841
c60f83b8 7842 if (!vma->vm_file)
375637bc
AS
7843 return;
7844
7845 raw_spin_lock_irqsave(&ifh->lock, flags);
7846 list_for_each_entry(filter, &ifh->list, entry) {
c60f83b8
AS
7847 if (perf_addr_filter_vma_adjust(filter, vma,
7848 &event->addr_filter_ranges[count]))
375637bc 7849 restart++;
375637bc
AS
7850
7851 count++;
7852 }
7853
7854 if (restart)
7855 event->addr_filters_gen++;
7856 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7857
7858 if (restart)
767ae086 7859 perf_event_stop(event, 1);
375637bc
AS
7860}
7861
7862/*
7863 * Adjust all task's events' filters to the new vma
7864 */
7865static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7866{
7867 struct perf_event_context *ctx;
7868 int ctxn;
7869
12b40a23
MP
7870 /*
7871 * Data tracing isn't supported yet and as such there is no need
7872 * to keep track of anything that isn't related to executable code:
7873 */
7874 if (!(vma->vm_flags & VM_EXEC))
7875 return;
7876
375637bc
AS
7877 rcu_read_lock();
7878 for_each_task_context_nr(ctxn) {
7879 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7880 if (!ctx)
7881 continue;
7882
aab5b71e 7883 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7884 }
7885 rcu_read_unlock();
7886}
7887
3af9e859 7888void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7889{
9ee318a7
PZ
7890 struct perf_mmap_event mmap_event;
7891
cdd6c482 7892 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7893 return;
7894
7895 mmap_event = (struct perf_mmap_event){
089dd79d 7896 .vma = vma,
573402db
PZ
7897 /* .file_name */
7898 /* .file_size */
cdd6c482 7899 .event_id = {
573402db 7900 .header = {
cdd6c482 7901 .type = PERF_RECORD_MMAP,
39447b38 7902 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7903 /* .size */
7904 },
7905 /* .pid */
7906 /* .tid */
089dd79d
PZ
7907 .start = vma->vm_start,
7908 .len = vma->vm_end - vma->vm_start,
3a0304e9 7909 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7910 },
13d7a241
SE
7911 /* .maj (attr_mmap2 only) */
7912 /* .min (attr_mmap2 only) */
7913 /* .ino (attr_mmap2 only) */
7914 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7915 /* .prot (attr_mmap2 only) */
7916 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7917 };
7918
375637bc 7919 perf_addr_filters_adjust(vma);
cdd6c482 7920 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7921}
7922
68db7e98
AS
7923void perf_event_aux_event(struct perf_event *event, unsigned long head,
7924 unsigned long size, u64 flags)
7925{
7926 struct perf_output_handle handle;
7927 struct perf_sample_data sample;
7928 struct perf_aux_event {
7929 struct perf_event_header header;
7930 u64 offset;
7931 u64 size;
7932 u64 flags;
7933 } rec = {
7934 .header = {
7935 .type = PERF_RECORD_AUX,
7936 .misc = 0,
7937 .size = sizeof(rec),
7938 },
7939 .offset = head,
7940 .size = size,
7941 .flags = flags,
7942 };
7943 int ret;
7944
7945 perf_event_header__init_id(&rec.header, &sample, event);
7946 ret = perf_output_begin(&handle, event, rec.header.size);
7947
7948 if (ret)
7949 return;
7950
7951 perf_output_put(&handle, rec);
7952 perf_event__output_id_sample(event, &handle, &sample);
7953
7954 perf_output_end(&handle);
7955}
7956
f38b0dbb
KL
7957/*
7958 * Lost/dropped samples logging
7959 */
7960void perf_log_lost_samples(struct perf_event *event, u64 lost)
7961{
7962 struct perf_output_handle handle;
7963 struct perf_sample_data sample;
7964 int ret;
7965
7966 struct {
7967 struct perf_event_header header;
7968 u64 lost;
7969 } lost_samples_event = {
7970 .header = {
7971 .type = PERF_RECORD_LOST_SAMPLES,
7972 .misc = 0,
7973 .size = sizeof(lost_samples_event),
7974 },
7975 .lost = lost,
7976 };
7977
7978 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7979
7980 ret = perf_output_begin(&handle, event,
7981 lost_samples_event.header.size);
7982 if (ret)
7983 return;
7984
7985 perf_output_put(&handle, lost_samples_event);
7986 perf_event__output_id_sample(event, &handle, &sample);
7987 perf_output_end(&handle);
7988}
7989
45ac1403
AH
7990/*
7991 * context_switch tracking
7992 */
7993
7994struct perf_switch_event {
7995 struct task_struct *task;
7996 struct task_struct *next_prev;
7997
7998 struct {
7999 struct perf_event_header header;
8000 u32 next_prev_pid;
8001 u32 next_prev_tid;
8002 } event_id;
8003};
8004
8005static int perf_event_switch_match(struct perf_event *event)
8006{
8007 return event->attr.context_switch;
8008}
8009
8010static void perf_event_switch_output(struct perf_event *event, void *data)
8011{
8012 struct perf_switch_event *se = data;
8013 struct perf_output_handle handle;
8014 struct perf_sample_data sample;
8015 int ret;
8016
8017 if (!perf_event_switch_match(event))
8018 return;
8019
8020 /* Only CPU-wide events are allowed to see next/prev pid/tid */
8021 if (event->ctx->task) {
8022 se->event_id.header.type = PERF_RECORD_SWITCH;
8023 se->event_id.header.size = sizeof(se->event_id.header);
8024 } else {
8025 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8026 se->event_id.header.size = sizeof(se->event_id);
8027 se->event_id.next_prev_pid =
8028 perf_event_pid(event, se->next_prev);
8029 se->event_id.next_prev_tid =
8030 perf_event_tid(event, se->next_prev);
8031 }
8032
8033 perf_event_header__init_id(&se->event_id.header, &sample, event);
8034
8035 ret = perf_output_begin(&handle, event, se->event_id.header.size);
8036 if (ret)
8037 return;
8038
8039 if (event->ctx->task)
8040 perf_output_put(&handle, se->event_id.header);
8041 else
8042 perf_output_put(&handle, se->event_id);
8043
8044 perf_event__output_id_sample(event, &handle, &sample);
8045
8046 perf_output_end(&handle);
8047}
8048
8049static void perf_event_switch(struct task_struct *task,
8050 struct task_struct *next_prev, bool sched_in)
8051{
8052 struct perf_switch_event switch_event;
8053
8054 /* N.B. caller checks nr_switch_events != 0 */
8055
8056 switch_event = (struct perf_switch_event){
8057 .task = task,
8058 .next_prev = next_prev,
8059 .event_id = {
8060 .header = {
8061 /* .type */
8062 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8063 /* .size */
8064 },
8065 /* .next_prev_pid */
8066 /* .next_prev_tid */
8067 },
8068 };
8069
101592b4
AB
8070 if (!sched_in && task->state == TASK_RUNNING)
8071 switch_event.event_id.header.misc |=
8072 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8073
aab5b71e 8074 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
8075 &switch_event,
8076 NULL);
8077}
8078
a78ac325
PZ
8079/*
8080 * IRQ throttle logging
8081 */
8082
cdd6c482 8083static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
8084{
8085 struct perf_output_handle handle;
c980d109 8086 struct perf_sample_data sample;
a78ac325
PZ
8087 int ret;
8088
8089 struct {
8090 struct perf_event_header header;
8091 u64 time;
cca3f454 8092 u64 id;
7f453c24 8093 u64 stream_id;
a78ac325
PZ
8094 } throttle_event = {
8095 .header = {
cdd6c482 8096 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
8097 .misc = 0,
8098 .size = sizeof(throttle_event),
8099 },
34f43927 8100 .time = perf_event_clock(event),
cdd6c482
IM
8101 .id = primary_event_id(event),
8102 .stream_id = event->id,
a78ac325
PZ
8103 };
8104
966ee4d6 8105 if (enable)
cdd6c482 8106 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 8107
c980d109
ACM
8108 perf_event_header__init_id(&throttle_event.header, &sample, event);
8109
8110 ret = perf_output_begin(&handle, event,
a7ac67ea 8111 throttle_event.header.size);
a78ac325
PZ
8112 if (ret)
8113 return;
8114
8115 perf_output_put(&handle, throttle_event);
c980d109 8116 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
8117 perf_output_end(&handle);
8118}
8119
76193a94
SL
8120/*
8121 * ksymbol register/unregister tracking
8122 */
8123
8124struct perf_ksymbol_event {
8125 const char *name;
8126 int name_len;
8127 struct {
8128 struct perf_event_header header;
8129 u64 addr;
8130 u32 len;
8131 u16 ksym_type;
8132 u16 flags;
8133 } event_id;
8134};
8135
8136static int perf_event_ksymbol_match(struct perf_event *event)
8137{
8138 return event->attr.ksymbol;
8139}
8140
8141static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8142{
8143 struct perf_ksymbol_event *ksymbol_event = data;
8144 struct perf_output_handle handle;
8145 struct perf_sample_data sample;
8146 int ret;
8147
8148 if (!perf_event_ksymbol_match(event))
8149 return;
8150
8151 perf_event_header__init_id(&ksymbol_event->event_id.header,
8152 &sample, event);
8153 ret = perf_output_begin(&handle, event,
8154 ksymbol_event->event_id.header.size);
8155 if (ret)
8156 return;
8157
8158 perf_output_put(&handle, ksymbol_event->event_id);
8159 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8160 perf_event__output_id_sample(event, &handle, &sample);
8161
8162 perf_output_end(&handle);
8163}
8164
8165void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8166 const char *sym)
8167{
8168 struct perf_ksymbol_event ksymbol_event;
8169 char name[KSYM_NAME_LEN];
8170 u16 flags = 0;
8171 int name_len;
8172
8173 if (!atomic_read(&nr_ksymbol_events))
8174 return;
8175
8176 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8177 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8178 goto err;
8179
8180 strlcpy(name, sym, KSYM_NAME_LEN);
8181 name_len = strlen(name) + 1;
8182 while (!IS_ALIGNED(name_len, sizeof(u64)))
8183 name[name_len++] = '\0';
8184 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8185
8186 if (unregister)
8187 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8188
8189 ksymbol_event = (struct perf_ksymbol_event){
8190 .name = name,
8191 .name_len = name_len,
8192 .event_id = {
8193 .header = {
8194 .type = PERF_RECORD_KSYMBOL,
8195 .size = sizeof(ksymbol_event.event_id) +
8196 name_len,
8197 },
8198 .addr = addr,
8199 .len = len,
8200 .ksym_type = ksym_type,
8201 .flags = flags,
8202 },
8203 };
8204
8205 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8206 return;
8207err:
8208 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8209}
8210
6ee52e2a
SL
8211/*
8212 * bpf program load/unload tracking
8213 */
8214
8215struct perf_bpf_event {
8216 struct bpf_prog *prog;
8217 struct {
8218 struct perf_event_header header;
8219 u16 type;
8220 u16 flags;
8221 u32 id;
8222 u8 tag[BPF_TAG_SIZE];
8223 } event_id;
8224};
8225
8226static int perf_event_bpf_match(struct perf_event *event)
8227{
8228 return event->attr.bpf_event;
8229}
8230
8231static void perf_event_bpf_output(struct perf_event *event, void *data)
8232{
8233 struct perf_bpf_event *bpf_event = data;
8234 struct perf_output_handle handle;
8235 struct perf_sample_data sample;
8236 int ret;
8237
8238 if (!perf_event_bpf_match(event))
8239 return;
8240
8241 perf_event_header__init_id(&bpf_event->event_id.header,
8242 &sample, event);
8243 ret = perf_output_begin(&handle, event,
8244 bpf_event->event_id.header.size);
8245 if (ret)
8246 return;
8247
8248 perf_output_put(&handle, bpf_event->event_id);
8249 perf_event__output_id_sample(event, &handle, &sample);
8250
8251 perf_output_end(&handle);
8252}
8253
8254static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8255 enum perf_bpf_event_type type)
8256{
8257 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8258 char sym[KSYM_NAME_LEN];
8259 int i;
8260
8261 if (prog->aux->func_cnt == 0) {
8262 bpf_get_prog_name(prog, sym);
8263 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8264 (u64)(unsigned long)prog->bpf_func,
8265 prog->jited_len, unregister, sym);
8266 } else {
8267 for (i = 0; i < prog->aux->func_cnt; i++) {
8268 struct bpf_prog *subprog = prog->aux->func[i];
8269
8270 bpf_get_prog_name(subprog, sym);
8271 perf_event_ksymbol(
8272 PERF_RECORD_KSYMBOL_TYPE_BPF,
8273 (u64)(unsigned long)subprog->bpf_func,
8274 subprog->jited_len, unregister, sym);
8275 }
8276 }
8277}
8278
8279void perf_event_bpf_event(struct bpf_prog *prog,
8280 enum perf_bpf_event_type type,
8281 u16 flags)
8282{
8283 struct perf_bpf_event bpf_event;
8284
8285 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8286 type >= PERF_BPF_EVENT_MAX)
8287 return;
8288
8289 switch (type) {
8290 case PERF_BPF_EVENT_PROG_LOAD:
8291 case PERF_BPF_EVENT_PROG_UNLOAD:
8292 if (atomic_read(&nr_ksymbol_events))
8293 perf_event_bpf_emit_ksymbols(prog, type);
8294 break;
8295 default:
8296 break;
8297 }
8298
8299 if (!atomic_read(&nr_bpf_events))
8300 return;
8301
8302 bpf_event = (struct perf_bpf_event){
8303 .prog = prog,
8304 .event_id = {
8305 .header = {
8306 .type = PERF_RECORD_BPF_EVENT,
8307 .size = sizeof(bpf_event.event_id),
8308 },
8309 .type = type,
8310 .flags = flags,
8311 .id = prog->aux->id,
8312 },
8313 };
8314
8315 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8316
8317 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8318 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8319}
8320
8d4e6c4c
AS
8321void perf_event_itrace_started(struct perf_event *event)
8322{
8323 event->attach_state |= PERF_ATTACH_ITRACE;
8324}
8325
ec0d7729
AS
8326static void perf_log_itrace_start(struct perf_event *event)
8327{
8328 struct perf_output_handle handle;
8329 struct perf_sample_data sample;
8330 struct perf_aux_event {
8331 struct perf_event_header header;
8332 u32 pid;
8333 u32 tid;
8334 } rec;
8335 int ret;
8336
8337 if (event->parent)
8338 event = event->parent;
8339
8340 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 8341 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
8342 return;
8343
ec0d7729
AS
8344 rec.header.type = PERF_RECORD_ITRACE_START;
8345 rec.header.misc = 0;
8346 rec.header.size = sizeof(rec);
8347 rec.pid = perf_event_pid(event, current);
8348 rec.tid = perf_event_tid(event, current);
8349
8350 perf_event_header__init_id(&rec.header, &sample, event);
8351 ret = perf_output_begin(&handle, event, rec.header.size);
8352
8353 if (ret)
8354 return;
8355
8356 perf_output_put(&handle, rec);
8357 perf_event__output_id_sample(event, &handle, &sample);
8358
8359 perf_output_end(&handle);
8360}
8361
475113d9
JO
8362static int
8363__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 8364{
cdd6c482 8365 struct hw_perf_event *hwc = &event->hw;
79f14641 8366 int ret = 0;
475113d9 8367 u64 seq;
96398826 8368
e050e3f0
SE
8369 seq = __this_cpu_read(perf_throttled_seq);
8370 if (seq != hwc->interrupts_seq) {
8371 hwc->interrupts_seq = seq;
8372 hwc->interrupts = 1;
8373 } else {
8374 hwc->interrupts++;
8375 if (unlikely(throttle
8376 && hwc->interrupts >= max_samples_per_tick)) {
8377 __this_cpu_inc(perf_throttled_count);
555e0c1e 8378 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
8379 hwc->interrupts = MAX_INTERRUPTS;
8380 perf_log_throttle(event, 0);
a78ac325
PZ
8381 ret = 1;
8382 }
e050e3f0 8383 }
60db5e09 8384
cdd6c482 8385 if (event->attr.freq) {
def0a9b2 8386 u64 now = perf_clock();
abd50713 8387 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 8388
abd50713 8389 hwc->freq_time_stamp = now;
bd2b5b12 8390
abd50713 8391 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 8392 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
8393 }
8394
475113d9
JO
8395 return ret;
8396}
8397
8398int perf_event_account_interrupt(struct perf_event *event)
8399{
8400 return __perf_event_account_interrupt(event, 1);
8401}
8402
8403/*
8404 * Generic event overflow handling, sampling.
8405 */
8406
8407static int __perf_event_overflow(struct perf_event *event,
8408 int throttle, struct perf_sample_data *data,
8409 struct pt_regs *regs)
8410{
8411 int events = atomic_read(&event->event_limit);
8412 int ret = 0;
8413
8414 /*
8415 * Non-sampling counters might still use the PMI to fold short
8416 * hardware counters, ignore those.
8417 */
8418 if (unlikely(!is_sampling_event(event)))
8419 return 0;
8420
8421 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 8422
2023b359
PZ
8423 /*
8424 * XXX event_limit might not quite work as expected on inherited
cdd6c482 8425 * events
2023b359
PZ
8426 */
8427
cdd6c482
IM
8428 event->pending_kill = POLL_IN;
8429 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 8430 ret = 1;
cdd6c482 8431 event->pending_kill = POLL_HUP;
5aab90ce
JO
8432
8433 perf_event_disable_inatomic(event);
79f14641
PZ
8434 }
8435
aa6a5f3c 8436 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 8437
fed66e2c 8438 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
8439 event->pending_wakeup = 1;
8440 irq_work_queue(&event->pending);
f506b3dc
PZ
8441 }
8442
79f14641 8443 return ret;
f6c7d5fe
PZ
8444}
8445
a8b0ca17 8446int perf_event_overflow(struct perf_event *event,
5622f295
MM
8447 struct perf_sample_data *data,
8448 struct pt_regs *regs)
850bc73f 8449{
a8b0ca17 8450 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
8451}
8452
15dbf27c 8453/*
cdd6c482 8454 * Generic software event infrastructure
15dbf27c
PZ
8455 */
8456
b28ab83c
PZ
8457struct swevent_htable {
8458 struct swevent_hlist *swevent_hlist;
8459 struct mutex hlist_mutex;
8460 int hlist_refcount;
8461
8462 /* Recursion avoidance in each contexts */
8463 int recursion[PERF_NR_CONTEXTS];
8464};
8465
8466static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8467
7b4b6658 8468/*
cdd6c482
IM
8469 * We directly increment event->count and keep a second value in
8470 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
8471 * is kept in the range [-sample_period, 0] so that we can use the
8472 * sign as trigger.
8473 */
8474
ab573844 8475u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 8476{
cdd6c482 8477 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
8478 u64 period = hwc->last_period;
8479 u64 nr, offset;
8480 s64 old, val;
8481
8482 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
8483
8484again:
e7850595 8485 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
8486 if (val < 0)
8487 return 0;
15dbf27c 8488
7b4b6658
PZ
8489 nr = div64_u64(period + val, period);
8490 offset = nr * period;
8491 val -= offset;
e7850595 8492 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 8493 goto again;
15dbf27c 8494
7b4b6658 8495 return nr;
15dbf27c
PZ
8496}
8497
0cff784a 8498static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 8499 struct perf_sample_data *data,
5622f295 8500 struct pt_regs *regs)
15dbf27c 8501{
cdd6c482 8502 struct hw_perf_event *hwc = &event->hw;
850bc73f 8503 int throttle = 0;
15dbf27c 8504
0cff784a
PZ
8505 if (!overflow)
8506 overflow = perf_swevent_set_period(event);
15dbf27c 8507
7b4b6658
PZ
8508 if (hwc->interrupts == MAX_INTERRUPTS)
8509 return;
15dbf27c 8510
7b4b6658 8511 for (; overflow; overflow--) {
a8b0ca17 8512 if (__perf_event_overflow(event, throttle,
5622f295 8513 data, regs)) {
7b4b6658
PZ
8514 /*
8515 * We inhibit the overflow from happening when
8516 * hwc->interrupts == MAX_INTERRUPTS.
8517 */
8518 break;
8519 }
cf450a73 8520 throttle = 1;
7b4b6658 8521 }
15dbf27c
PZ
8522}
8523
a4eaf7f1 8524static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 8525 struct perf_sample_data *data,
5622f295 8526 struct pt_regs *regs)
7b4b6658 8527{
cdd6c482 8528 struct hw_perf_event *hwc = &event->hw;
d6d020e9 8529
e7850595 8530 local64_add(nr, &event->count);
d6d020e9 8531
0cff784a
PZ
8532 if (!regs)
8533 return;
8534
6c7e550f 8535 if (!is_sampling_event(event))
7b4b6658 8536 return;
d6d020e9 8537
5d81e5cf
AV
8538 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8539 data->period = nr;
8540 return perf_swevent_overflow(event, 1, data, regs);
8541 } else
8542 data->period = event->hw.last_period;
8543
0cff784a 8544 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 8545 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 8546
e7850595 8547 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 8548 return;
df1a132b 8549
a8b0ca17 8550 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
8551}
8552
f5ffe02e
FW
8553static int perf_exclude_event(struct perf_event *event,
8554 struct pt_regs *regs)
8555{
a4eaf7f1 8556 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 8557 return 1;
a4eaf7f1 8558
f5ffe02e
FW
8559 if (regs) {
8560 if (event->attr.exclude_user && user_mode(regs))
8561 return 1;
8562
8563 if (event->attr.exclude_kernel && !user_mode(regs))
8564 return 1;
8565 }
8566
8567 return 0;
8568}
8569
cdd6c482 8570static int perf_swevent_match(struct perf_event *event,
1c432d89 8571 enum perf_type_id type,
6fb2915d
LZ
8572 u32 event_id,
8573 struct perf_sample_data *data,
8574 struct pt_regs *regs)
15dbf27c 8575{
cdd6c482 8576 if (event->attr.type != type)
a21ca2ca 8577 return 0;
f5ffe02e 8578
cdd6c482 8579 if (event->attr.config != event_id)
15dbf27c
PZ
8580 return 0;
8581
f5ffe02e
FW
8582 if (perf_exclude_event(event, regs))
8583 return 0;
15dbf27c
PZ
8584
8585 return 1;
8586}
8587
76e1d904
FW
8588static inline u64 swevent_hash(u64 type, u32 event_id)
8589{
8590 u64 val = event_id | (type << 32);
8591
8592 return hash_64(val, SWEVENT_HLIST_BITS);
8593}
8594
49f135ed
FW
8595static inline struct hlist_head *
8596__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 8597{
49f135ed
FW
8598 u64 hash = swevent_hash(type, event_id);
8599
8600 return &hlist->heads[hash];
8601}
76e1d904 8602
49f135ed
FW
8603/* For the read side: events when they trigger */
8604static inline struct hlist_head *
b28ab83c 8605find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
8606{
8607 struct swevent_hlist *hlist;
76e1d904 8608
b28ab83c 8609 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
8610 if (!hlist)
8611 return NULL;
8612
49f135ed
FW
8613 return __find_swevent_head(hlist, type, event_id);
8614}
8615
8616/* For the event head insertion and removal in the hlist */
8617static inline struct hlist_head *
b28ab83c 8618find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
8619{
8620 struct swevent_hlist *hlist;
8621 u32 event_id = event->attr.config;
8622 u64 type = event->attr.type;
8623
8624 /*
8625 * Event scheduling is always serialized against hlist allocation
8626 * and release. Which makes the protected version suitable here.
8627 * The context lock guarantees that.
8628 */
b28ab83c 8629 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
8630 lockdep_is_held(&event->ctx->lock));
8631 if (!hlist)
8632 return NULL;
8633
8634 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
8635}
8636
8637static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 8638 u64 nr,
76e1d904
FW
8639 struct perf_sample_data *data,
8640 struct pt_regs *regs)
15dbf27c 8641{
4a32fea9 8642 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8643 struct perf_event *event;
76e1d904 8644 struct hlist_head *head;
15dbf27c 8645
76e1d904 8646 rcu_read_lock();
b28ab83c 8647 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
8648 if (!head)
8649 goto end;
8650
b67bfe0d 8651 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 8652 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 8653 perf_swevent_event(event, nr, data, regs);
15dbf27c 8654 }
76e1d904
FW
8655end:
8656 rcu_read_unlock();
15dbf27c
PZ
8657}
8658
86038c5e
PZI
8659DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8660
4ed7c92d 8661int perf_swevent_get_recursion_context(void)
96f6d444 8662{
4a32fea9 8663 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 8664
b28ab83c 8665 return get_recursion_context(swhash->recursion);
96f6d444 8666}
645e8cc0 8667EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 8668
98b5c2c6 8669void perf_swevent_put_recursion_context(int rctx)
15dbf27c 8670{
4a32fea9 8671 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 8672
b28ab83c 8673 put_recursion_context(swhash->recursion, rctx);
ce71b9df 8674}
15dbf27c 8675
86038c5e 8676void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 8677{
a4234bfc 8678 struct perf_sample_data data;
4ed7c92d 8679
86038c5e 8680 if (WARN_ON_ONCE(!regs))
4ed7c92d 8681 return;
a4234bfc 8682
fd0d000b 8683 perf_sample_data_init(&data, addr, 0);
a8b0ca17 8684 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
8685}
8686
8687void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8688{
8689 int rctx;
8690
8691 preempt_disable_notrace();
8692 rctx = perf_swevent_get_recursion_context();
8693 if (unlikely(rctx < 0))
8694 goto fail;
8695
8696 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
8697
8698 perf_swevent_put_recursion_context(rctx);
86038c5e 8699fail:
1c024eca 8700 preempt_enable_notrace();
b8e83514
PZ
8701}
8702
cdd6c482 8703static void perf_swevent_read(struct perf_event *event)
15dbf27c 8704{
15dbf27c
PZ
8705}
8706
a4eaf7f1 8707static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 8708{
4a32fea9 8709 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8710 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
8711 struct hlist_head *head;
8712
6c7e550f 8713 if (is_sampling_event(event)) {
7b4b6658 8714 hwc->last_period = hwc->sample_period;
cdd6c482 8715 perf_swevent_set_period(event);
7b4b6658 8716 }
76e1d904 8717
a4eaf7f1
PZ
8718 hwc->state = !(flags & PERF_EF_START);
8719
b28ab83c 8720 head = find_swevent_head(swhash, event);
12ca6ad2 8721 if (WARN_ON_ONCE(!head))
76e1d904
FW
8722 return -EINVAL;
8723
8724 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 8725 perf_event_update_userpage(event);
76e1d904 8726
15dbf27c
PZ
8727 return 0;
8728}
8729
a4eaf7f1 8730static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 8731{
76e1d904 8732 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
8733}
8734
a4eaf7f1 8735static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 8736{
a4eaf7f1 8737 event->hw.state = 0;
d6d020e9 8738}
aa9c4c0f 8739
a4eaf7f1 8740static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 8741{
a4eaf7f1 8742 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
8743}
8744
49f135ed
FW
8745/* Deref the hlist from the update side */
8746static inline struct swevent_hlist *
b28ab83c 8747swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 8748{
b28ab83c
PZ
8749 return rcu_dereference_protected(swhash->swevent_hlist,
8750 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
8751}
8752
b28ab83c 8753static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 8754{
b28ab83c 8755 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 8756
49f135ed 8757 if (!hlist)
76e1d904
FW
8758 return;
8759
70691d4a 8760 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 8761 kfree_rcu(hlist, rcu_head);
76e1d904
FW
8762}
8763
3b364d7b 8764static void swevent_hlist_put_cpu(int cpu)
76e1d904 8765{
b28ab83c 8766 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 8767
b28ab83c 8768 mutex_lock(&swhash->hlist_mutex);
76e1d904 8769
b28ab83c
PZ
8770 if (!--swhash->hlist_refcount)
8771 swevent_hlist_release(swhash);
76e1d904 8772
b28ab83c 8773 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8774}
8775
3b364d7b 8776static void swevent_hlist_put(void)
76e1d904
FW
8777{
8778 int cpu;
8779
76e1d904 8780 for_each_possible_cpu(cpu)
3b364d7b 8781 swevent_hlist_put_cpu(cpu);
76e1d904
FW
8782}
8783
3b364d7b 8784static int swevent_hlist_get_cpu(int cpu)
76e1d904 8785{
b28ab83c 8786 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
8787 int err = 0;
8788
b28ab83c 8789 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
8790 if (!swevent_hlist_deref(swhash) &&
8791 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
8792 struct swevent_hlist *hlist;
8793
8794 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8795 if (!hlist) {
8796 err = -ENOMEM;
8797 goto exit;
8798 }
b28ab83c 8799 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8800 }
b28ab83c 8801 swhash->hlist_refcount++;
9ed6060d 8802exit:
b28ab83c 8803 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8804
8805 return err;
8806}
8807
3b364d7b 8808static int swevent_hlist_get(void)
76e1d904 8809{
3b364d7b 8810 int err, cpu, failed_cpu;
76e1d904 8811
a63fbed7 8812 mutex_lock(&pmus_lock);
76e1d904 8813 for_each_possible_cpu(cpu) {
3b364d7b 8814 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
8815 if (err) {
8816 failed_cpu = cpu;
8817 goto fail;
8818 }
8819 }
a63fbed7 8820 mutex_unlock(&pmus_lock);
76e1d904 8821 return 0;
9ed6060d 8822fail:
76e1d904
FW
8823 for_each_possible_cpu(cpu) {
8824 if (cpu == failed_cpu)
8825 break;
3b364d7b 8826 swevent_hlist_put_cpu(cpu);
76e1d904 8827 }
a63fbed7 8828 mutex_unlock(&pmus_lock);
76e1d904
FW
8829 return err;
8830}
8831
c5905afb 8832struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 8833
b0a873eb
PZ
8834static void sw_perf_event_destroy(struct perf_event *event)
8835{
8836 u64 event_id = event->attr.config;
95476b64 8837
b0a873eb
PZ
8838 WARN_ON(event->parent);
8839
c5905afb 8840 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 8841 swevent_hlist_put();
b0a873eb
PZ
8842}
8843
8844static int perf_swevent_init(struct perf_event *event)
8845{
8176cced 8846 u64 event_id = event->attr.config;
b0a873eb
PZ
8847
8848 if (event->attr.type != PERF_TYPE_SOFTWARE)
8849 return -ENOENT;
8850
2481c5fa
SE
8851 /*
8852 * no branch sampling for software events
8853 */
8854 if (has_branch_stack(event))
8855 return -EOPNOTSUPP;
8856
b0a873eb
PZ
8857 switch (event_id) {
8858 case PERF_COUNT_SW_CPU_CLOCK:
8859 case PERF_COUNT_SW_TASK_CLOCK:
8860 return -ENOENT;
8861
8862 default:
8863 break;
8864 }
8865
ce677831 8866 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
8867 return -ENOENT;
8868
8869 if (!event->parent) {
8870 int err;
8871
3b364d7b 8872 err = swevent_hlist_get();
b0a873eb
PZ
8873 if (err)
8874 return err;
8875
c5905afb 8876 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
8877 event->destroy = sw_perf_event_destroy;
8878 }
8879
8880 return 0;
8881}
8882
8883static struct pmu perf_swevent = {
89a1e187 8884 .task_ctx_nr = perf_sw_context,
95476b64 8885
34f43927
PZ
8886 .capabilities = PERF_PMU_CAP_NO_NMI,
8887
b0a873eb 8888 .event_init = perf_swevent_init,
a4eaf7f1
PZ
8889 .add = perf_swevent_add,
8890 .del = perf_swevent_del,
8891 .start = perf_swevent_start,
8892 .stop = perf_swevent_stop,
1c024eca 8893 .read = perf_swevent_read,
1c024eca
PZ
8894};
8895
b0a873eb
PZ
8896#ifdef CONFIG_EVENT_TRACING
8897
1c024eca
PZ
8898static int perf_tp_filter_match(struct perf_event *event,
8899 struct perf_sample_data *data)
8900{
7e3f977e 8901 void *record = data->raw->frag.data;
1c024eca 8902
b71b437e
PZ
8903 /* only top level events have filters set */
8904 if (event->parent)
8905 event = event->parent;
8906
1c024eca
PZ
8907 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8908 return 1;
8909 return 0;
8910}
8911
8912static int perf_tp_event_match(struct perf_event *event,
8913 struct perf_sample_data *data,
8914 struct pt_regs *regs)
8915{
a0f7d0f7
FW
8916 if (event->hw.state & PERF_HES_STOPPED)
8917 return 0;
580d607c 8918 /*
9fd2e48b 8919 * If exclude_kernel, only trace user-space tracepoints (uprobes)
580d607c 8920 */
9fd2e48b 8921 if (event->attr.exclude_kernel && !user_mode(regs))
1c024eca
PZ
8922 return 0;
8923
8924 if (!perf_tp_filter_match(event, data))
8925 return 0;
8926
8927 return 1;
8928}
8929
85b67bcb
AS
8930void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8931 struct trace_event_call *call, u64 count,
8932 struct pt_regs *regs, struct hlist_head *head,
8933 struct task_struct *task)
8934{
e87c6bc3 8935 if (bpf_prog_array_valid(call)) {
85b67bcb 8936 *(struct pt_regs **)raw_data = regs;
e87c6bc3 8937 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
8938 perf_swevent_put_recursion_context(rctx);
8939 return;
8940 }
8941 }
8942 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 8943 rctx, task);
85b67bcb
AS
8944}
8945EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8946
1e1dcd93 8947void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 8948 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 8949 struct task_struct *task)
95476b64
FW
8950{
8951 struct perf_sample_data data;
8fd0fbbe 8952 struct perf_event *event;
1c024eca 8953
95476b64 8954 struct perf_raw_record raw = {
7e3f977e
DB
8955 .frag = {
8956 .size = entry_size,
8957 .data = record,
8958 },
95476b64
FW
8959 };
8960
1e1dcd93 8961 perf_sample_data_init(&data, 0, 0);
95476b64
FW
8962 data.raw = &raw;
8963
1e1dcd93
AS
8964 perf_trace_buf_update(record, event_type);
8965
8fd0fbbe 8966 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 8967 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 8968 perf_swevent_event(event, count, &data, regs);
4f41c013 8969 }
ecc55f84 8970
e6dab5ff
AV
8971 /*
8972 * If we got specified a target task, also iterate its context and
8973 * deliver this event there too.
8974 */
8975 if (task && task != current) {
8976 struct perf_event_context *ctx;
8977 struct trace_entry *entry = record;
8978
8979 rcu_read_lock();
8980 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8981 if (!ctx)
8982 goto unlock;
8983
8984 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cd6fb677
JO
8985 if (event->cpu != smp_processor_id())
8986 continue;
e6dab5ff
AV
8987 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8988 continue;
8989 if (event->attr.config != entry->type)
8990 continue;
8991 if (perf_tp_event_match(event, &data, regs))
8992 perf_swevent_event(event, count, &data, regs);
8993 }
8994unlock:
8995 rcu_read_unlock();
8996 }
8997
ecc55f84 8998 perf_swevent_put_recursion_context(rctx);
95476b64
FW
8999}
9000EXPORT_SYMBOL_GPL(perf_tp_event);
9001
cdd6c482 9002static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 9003{
1c024eca 9004 perf_trace_destroy(event);
e077df4f
PZ
9005}
9006
b0a873eb 9007static int perf_tp_event_init(struct perf_event *event)
e077df4f 9008{
76e1d904
FW
9009 int err;
9010
b0a873eb
PZ
9011 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9012 return -ENOENT;
9013
2481c5fa
SE
9014 /*
9015 * no branch sampling for tracepoint events
9016 */
9017 if (has_branch_stack(event))
9018 return -EOPNOTSUPP;
9019
1c024eca
PZ
9020 err = perf_trace_init(event);
9021 if (err)
b0a873eb 9022 return err;
e077df4f 9023
cdd6c482 9024 event->destroy = tp_perf_event_destroy;
e077df4f 9025
b0a873eb
PZ
9026 return 0;
9027}
9028
9029static struct pmu perf_tracepoint = {
89a1e187
PZ
9030 .task_ctx_nr = perf_sw_context,
9031
b0a873eb 9032 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
9033 .add = perf_trace_add,
9034 .del = perf_trace_del,
9035 .start = perf_swevent_start,
9036 .stop = perf_swevent_stop,
b0a873eb 9037 .read = perf_swevent_read,
b0a873eb
PZ
9038};
9039
33ea4b24 9040#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
9041/*
9042 * Flags in config, used by dynamic PMU kprobe and uprobe
9043 * The flags should match following PMU_FORMAT_ATTR().
9044 *
9045 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9046 * if not set, create kprobe/uprobe
a6ca88b2
SL
9047 *
9048 * The following values specify a reference counter (or semaphore in the
9049 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9050 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9051 *
9052 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
9053 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
e12f03d7
SL
9054 */
9055enum perf_probe_config {
9056 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
a6ca88b2
SL
9057 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9058 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
e12f03d7
SL
9059};
9060
9061PMU_FORMAT_ATTR(retprobe, "config:0");
a6ca88b2 9062#endif
e12f03d7 9063
a6ca88b2
SL
9064#ifdef CONFIG_KPROBE_EVENTS
9065static struct attribute *kprobe_attrs[] = {
e12f03d7
SL
9066 &format_attr_retprobe.attr,
9067 NULL,
9068};
9069
a6ca88b2 9070static struct attribute_group kprobe_format_group = {
e12f03d7 9071 .name = "format",
a6ca88b2 9072 .attrs = kprobe_attrs,
e12f03d7
SL
9073};
9074
a6ca88b2
SL
9075static const struct attribute_group *kprobe_attr_groups[] = {
9076 &kprobe_format_group,
e12f03d7
SL
9077 NULL,
9078};
9079
9080static int perf_kprobe_event_init(struct perf_event *event);
9081static struct pmu perf_kprobe = {
9082 .task_ctx_nr = perf_sw_context,
9083 .event_init = perf_kprobe_event_init,
9084 .add = perf_trace_add,
9085 .del = perf_trace_del,
9086 .start = perf_swevent_start,
9087 .stop = perf_swevent_stop,
9088 .read = perf_swevent_read,
a6ca88b2 9089 .attr_groups = kprobe_attr_groups,
e12f03d7
SL
9090};
9091
9092static int perf_kprobe_event_init(struct perf_event *event)
9093{
9094 int err;
9095 bool is_retprobe;
9096
9097 if (event->attr.type != perf_kprobe.type)
9098 return -ENOENT;
32e6e967
SL
9099
9100 if (!capable(CAP_SYS_ADMIN))
9101 return -EACCES;
9102
e12f03d7
SL
9103 /*
9104 * no branch sampling for probe events
9105 */
9106 if (has_branch_stack(event))
9107 return -EOPNOTSUPP;
9108
9109 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9110 err = perf_kprobe_init(event, is_retprobe);
9111 if (err)
9112 return err;
9113
9114 event->destroy = perf_kprobe_destroy;
9115
9116 return 0;
9117}
9118#endif /* CONFIG_KPROBE_EVENTS */
9119
33ea4b24 9120#ifdef CONFIG_UPROBE_EVENTS
a6ca88b2
SL
9121PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9122
9123static struct attribute *uprobe_attrs[] = {
9124 &format_attr_retprobe.attr,
9125 &format_attr_ref_ctr_offset.attr,
9126 NULL,
9127};
9128
9129static struct attribute_group uprobe_format_group = {
9130 .name = "format",
9131 .attrs = uprobe_attrs,
9132};
9133
9134static const struct attribute_group *uprobe_attr_groups[] = {
9135 &uprobe_format_group,
9136 NULL,
9137};
9138
33ea4b24
SL
9139static int perf_uprobe_event_init(struct perf_event *event);
9140static struct pmu perf_uprobe = {
9141 .task_ctx_nr = perf_sw_context,
9142 .event_init = perf_uprobe_event_init,
9143 .add = perf_trace_add,
9144 .del = perf_trace_del,
9145 .start = perf_swevent_start,
9146 .stop = perf_swevent_stop,
9147 .read = perf_swevent_read,
a6ca88b2 9148 .attr_groups = uprobe_attr_groups,
33ea4b24
SL
9149};
9150
9151static int perf_uprobe_event_init(struct perf_event *event)
9152{
9153 int err;
a6ca88b2 9154 unsigned long ref_ctr_offset;
33ea4b24
SL
9155 bool is_retprobe;
9156
9157 if (event->attr.type != perf_uprobe.type)
9158 return -ENOENT;
32e6e967
SL
9159
9160 if (!capable(CAP_SYS_ADMIN))
9161 return -EACCES;
9162
33ea4b24
SL
9163 /*
9164 * no branch sampling for probe events
9165 */
9166 if (has_branch_stack(event))
9167 return -EOPNOTSUPP;
9168
9169 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
a6ca88b2
SL
9170 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9171 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
33ea4b24
SL
9172 if (err)
9173 return err;
9174
9175 event->destroy = perf_uprobe_destroy;
9176
9177 return 0;
9178}
9179#endif /* CONFIG_UPROBE_EVENTS */
9180
b0a873eb
PZ
9181static inline void perf_tp_register(void)
9182{
2e80a82a 9183 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
9184#ifdef CONFIG_KPROBE_EVENTS
9185 perf_pmu_register(&perf_kprobe, "kprobe", -1);
9186#endif
33ea4b24
SL
9187#ifdef CONFIG_UPROBE_EVENTS
9188 perf_pmu_register(&perf_uprobe, "uprobe", -1);
9189#endif
e077df4f 9190}
6fb2915d 9191
6fb2915d
LZ
9192static void perf_event_free_filter(struct perf_event *event)
9193{
9194 ftrace_profile_free_filter(event);
9195}
9196
aa6a5f3c
AS
9197#ifdef CONFIG_BPF_SYSCALL
9198static void bpf_overflow_handler(struct perf_event *event,
9199 struct perf_sample_data *data,
9200 struct pt_regs *regs)
9201{
9202 struct bpf_perf_event_data_kern ctx = {
9203 .data = data,
7d9285e8 9204 .event = event,
aa6a5f3c
AS
9205 };
9206 int ret = 0;
9207
c895f6f7 9208 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
9209 preempt_disable();
9210 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9211 goto out;
9212 rcu_read_lock();
88575199 9213 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
9214 rcu_read_unlock();
9215out:
9216 __this_cpu_dec(bpf_prog_active);
9217 preempt_enable();
9218 if (!ret)
9219 return;
9220
9221 event->orig_overflow_handler(event, data, regs);
9222}
9223
9224static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9225{
9226 struct bpf_prog *prog;
9227
9228 if (event->overflow_handler_context)
9229 /* hw breakpoint or kernel counter */
9230 return -EINVAL;
9231
9232 if (event->prog)
9233 return -EEXIST;
9234
9235 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9236 if (IS_ERR(prog))
9237 return PTR_ERR(prog);
9238
9239 event->prog = prog;
9240 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9241 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9242 return 0;
9243}
9244
9245static void perf_event_free_bpf_handler(struct perf_event *event)
9246{
9247 struct bpf_prog *prog = event->prog;
9248
9249 if (!prog)
9250 return;
9251
9252 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9253 event->prog = NULL;
9254 bpf_prog_put(prog);
9255}
9256#else
9257static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9258{
9259 return -EOPNOTSUPP;
9260}
9261static void perf_event_free_bpf_handler(struct perf_event *event)
9262{
9263}
9264#endif
9265
e12f03d7
SL
9266/*
9267 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9268 * with perf_event_open()
9269 */
9270static inline bool perf_event_is_tracing(struct perf_event *event)
9271{
9272 if (event->pmu == &perf_tracepoint)
9273 return true;
9274#ifdef CONFIG_KPROBE_EVENTS
9275 if (event->pmu == &perf_kprobe)
9276 return true;
33ea4b24
SL
9277#endif
9278#ifdef CONFIG_UPROBE_EVENTS
9279 if (event->pmu == &perf_uprobe)
9280 return true;
e12f03d7
SL
9281#endif
9282 return false;
9283}
9284
2541517c
AS
9285static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9286{
cf5f5cea 9287 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 9288 struct bpf_prog *prog;
e87c6bc3 9289 int ret;
2541517c 9290
e12f03d7 9291 if (!perf_event_is_tracing(event))
f91840a3 9292 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 9293
98b5c2c6
AS
9294 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9295 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
9296 is_syscall_tp = is_syscall_trace_event(event->tp_event);
9297 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 9298 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
9299 return -EINVAL;
9300
9301 prog = bpf_prog_get(prog_fd);
9302 if (IS_ERR(prog))
9303 return PTR_ERR(prog);
9304
98b5c2c6 9305 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
9306 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9307 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
9308 /* valid fd, but invalid bpf program type */
9309 bpf_prog_put(prog);
9310 return -EINVAL;
9311 }
9312
9802d865
JB
9313 /* Kprobe override only works for kprobes, not uprobes. */
9314 if (prog->kprobe_override &&
9315 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9316 bpf_prog_put(prog);
9317 return -EINVAL;
9318 }
9319
cf5f5cea 9320 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
9321 int off = trace_event_get_offsets(event->tp_event);
9322
9323 if (prog->aux->max_ctx_offset > off) {
9324 bpf_prog_put(prog);
9325 return -EACCES;
9326 }
9327 }
2541517c 9328
e87c6bc3
YS
9329 ret = perf_event_attach_bpf_prog(event, prog);
9330 if (ret)
9331 bpf_prog_put(prog);
9332 return ret;
2541517c
AS
9333}
9334
9335static void perf_event_free_bpf_prog(struct perf_event *event)
9336{
e12f03d7 9337 if (!perf_event_is_tracing(event)) {
0b4c6841 9338 perf_event_free_bpf_handler(event);
2541517c 9339 return;
2541517c 9340 }
e87c6bc3 9341 perf_event_detach_bpf_prog(event);
2541517c
AS
9342}
9343
e077df4f 9344#else
6fb2915d 9345
b0a873eb 9346static inline void perf_tp_register(void)
e077df4f 9347{
e077df4f 9348}
6fb2915d 9349
6fb2915d
LZ
9350static void perf_event_free_filter(struct perf_event *event)
9351{
9352}
9353
2541517c
AS
9354static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9355{
9356 return -ENOENT;
9357}
9358
9359static void perf_event_free_bpf_prog(struct perf_event *event)
9360{
9361}
07b139c8 9362#endif /* CONFIG_EVENT_TRACING */
e077df4f 9363
24f1e32c 9364#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 9365void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 9366{
f5ffe02e
FW
9367 struct perf_sample_data sample;
9368 struct pt_regs *regs = data;
9369
fd0d000b 9370 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 9371
a4eaf7f1 9372 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 9373 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
9374}
9375#endif
9376
375637bc
AS
9377/*
9378 * Allocate a new address filter
9379 */
9380static struct perf_addr_filter *
9381perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9382{
9383 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9384 struct perf_addr_filter *filter;
9385
9386 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9387 if (!filter)
9388 return NULL;
9389
9390 INIT_LIST_HEAD(&filter->entry);
9391 list_add_tail(&filter->entry, filters);
9392
9393 return filter;
9394}
9395
9396static void free_filters_list(struct list_head *filters)
9397{
9398 struct perf_addr_filter *filter, *iter;
9399
9400 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 9401 path_put(&filter->path);
375637bc
AS
9402 list_del(&filter->entry);
9403 kfree(filter);
9404 }
9405}
9406
9407/*
9408 * Free existing address filters and optionally install new ones
9409 */
9410static void perf_addr_filters_splice(struct perf_event *event,
9411 struct list_head *head)
9412{
9413 unsigned long flags;
9414 LIST_HEAD(list);
9415
9416 if (!has_addr_filter(event))
9417 return;
9418
9419 /* don't bother with children, they don't have their own filters */
9420 if (event->parent)
9421 return;
9422
9423 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9424
9425 list_splice_init(&event->addr_filters.list, &list);
9426 if (head)
9427 list_splice(head, &event->addr_filters.list);
9428
9429 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9430
9431 free_filters_list(&list);
9432}
9433
9434/*
9435 * Scan through mm's vmas and see if one of them matches the
9436 * @filter; if so, adjust filter's address range.
9437 * Called with mm::mmap_sem down for reading.
9438 */
c60f83b8
AS
9439static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9440 struct mm_struct *mm,
9441 struct perf_addr_filter_range *fr)
375637bc
AS
9442{
9443 struct vm_area_struct *vma;
9444
9445 for (vma = mm->mmap; vma; vma = vma->vm_next) {
c60f83b8 9446 if (!vma->vm_file)
375637bc
AS
9447 continue;
9448
c60f83b8
AS
9449 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9450 return;
375637bc 9451 }
375637bc
AS
9452}
9453
9454/*
9455 * Update event's address range filters based on the
9456 * task's existing mappings, if any.
9457 */
9458static void perf_event_addr_filters_apply(struct perf_event *event)
9459{
9460 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9461 struct task_struct *task = READ_ONCE(event->ctx->task);
9462 struct perf_addr_filter *filter;
9463 struct mm_struct *mm = NULL;
9464 unsigned int count = 0;
9465 unsigned long flags;
9466
9467 /*
9468 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9469 * will stop on the parent's child_mutex that our caller is also holding
9470 */
9471 if (task == TASK_TOMBSTONE)
9472 return;
9473
52a44f83
AS
9474 if (ifh->nr_file_filters) {
9475 mm = get_task_mm(event->ctx->task);
9476 if (!mm)
9477 goto restart;
375637bc 9478
52a44f83
AS
9479 down_read(&mm->mmap_sem);
9480 }
375637bc
AS
9481
9482 raw_spin_lock_irqsave(&ifh->lock, flags);
9483 list_for_each_entry(filter, &ifh->list, entry) {
52a44f83
AS
9484 if (filter->path.dentry) {
9485 /*
9486 * Adjust base offset if the filter is associated to a
9487 * binary that needs to be mapped:
9488 */
9489 event->addr_filter_ranges[count].start = 0;
9490 event->addr_filter_ranges[count].size = 0;
375637bc 9491
c60f83b8 9492 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
52a44f83
AS
9493 } else {
9494 event->addr_filter_ranges[count].start = filter->offset;
9495 event->addr_filter_ranges[count].size = filter->size;
9496 }
375637bc
AS
9497
9498 count++;
9499 }
9500
9501 event->addr_filters_gen++;
9502 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9503
52a44f83
AS
9504 if (ifh->nr_file_filters) {
9505 up_read(&mm->mmap_sem);
375637bc 9506
52a44f83
AS
9507 mmput(mm);
9508 }
375637bc
AS
9509
9510restart:
767ae086 9511 perf_event_stop(event, 1);
375637bc
AS
9512}
9513
9514/*
9515 * Address range filtering: limiting the data to certain
9516 * instruction address ranges. Filters are ioctl()ed to us from
9517 * userspace as ascii strings.
9518 *
9519 * Filter string format:
9520 *
9521 * ACTION RANGE_SPEC
9522 * where ACTION is one of the
9523 * * "filter": limit the trace to this region
9524 * * "start": start tracing from this address
9525 * * "stop": stop tracing at this address/region;
9526 * RANGE_SPEC is
9527 * * for kernel addresses: <start address>[/<size>]
9528 * * for object files: <start address>[/<size>]@</path/to/object/file>
9529 *
6ed70cf3
AS
9530 * if <size> is not specified or is zero, the range is treated as a single
9531 * address; not valid for ACTION=="filter".
375637bc
AS
9532 */
9533enum {
e96271f3 9534 IF_ACT_NONE = -1,
375637bc
AS
9535 IF_ACT_FILTER,
9536 IF_ACT_START,
9537 IF_ACT_STOP,
9538 IF_SRC_FILE,
9539 IF_SRC_KERNEL,
9540 IF_SRC_FILEADDR,
9541 IF_SRC_KERNELADDR,
9542};
9543
9544enum {
9545 IF_STATE_ACTION = 0,
9546 IF_STATE_SOURCE,
9547 IF_STATE_END,
9548};
9549
9550static const match_table_t if_tokens = {
9551 { IF_ACT_FILTER, "filter" },
9552 { IF_ACT_START, "start" },
9553 { IF_ACT_STOP, "stop" },
9554 { IF_SRC_FILE, "%u/%u@%s" },
9555 { IF_SRC_KERNEL, "%u/%u" },
9556 { IF_SRC_FILEADDR, "%u@%s" },
9557 { IF_SRC_KERNELADDR, "%u" },
e96271f3 9558 { IF_ACT_NONE, NULL },
375637bc
AS
9559};
9560
9561/*
9562 * Address filter string parser
9563 */
9564static int
9565perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9566 struct list_head *filters)
9567{
9568 struct perf_addr_filter *filter = NULL;
9569 char *start, *orig, *filename = NULL;
375637bc
AS
9570 substring_t args[MAX_OPT_ARGS];
9571 int state = IF_STATE_ACTION, token;
9572 unsigned int kernel = 0;
9573 int ret = -EINVAL;
9574
9575 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9576 if (!fstr)
9577 return -ENOMEM;
9578
9579 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
9580 static const enum perf_addr_filter_action_t actions[] = {
9581 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9582 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9583 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9584 };
375637bc
AS
9585 ret = -EINVAL;
9586
9587 if (!*start)
9588 continue;
9589
9590 /* filter definition begins */
9591 if (state == IF_STATE_ACTION) {
9592 filter = perf_addr_filter_new(event, filters);
9593 if (!filter)
9594 goto fail;
9595 }
9596
9597 token = match_token(start, if_tokens, args);
9598 switch (token) {
9599 case IF_ACT_FILTER:
9600 case IF_ACT_START:
375637bc
AS
9601 case IF_ACT_STOP:
9602 if (state != IF_STATE_ACTION)
9603 goto fail;
9604
6ed70cf3 9605 filter->action = actions[token];
375637bc
AS
9606 state = IF_STATE_SOURCE;
9607 break;
9608
9609 case IF_SRC_KERNELADDR:
9610 case IF_SRC_KERNEL:
9611 kernel = 1;
10c3405f 9612 /* fall through */
375637bc
AS
9613
9614 case IF_SRC_FILEADDR:
9615 case IF_SRC_FILE:
9616 if (state != IF_STATE_SOURCE)
9617 goto fail;
9618
375637bc
AS
9619 *args[0].to = 0;
9620 ret = kstrtoul(args[0].from, 0, &filter->offset);
9621 if (ret)
9622 goto fail;
9623
6ed70cf3 9624 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
9625 *args[1].to = 0;
9626 ret = kstrtoul(args[1].from, 0, &filter->size);
9627 if (ret)
9628 goto fail;
9629 }
9630
4059ffd0 9631 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 9632 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0
MP
9633
9634 filename = match_strdup(&args[fpos]);
375637bc
AS
9635 if (!filename) {
9636 ret = -ENOMEM;
9637 goto fail;
9638 }
9639 }
9640
9641 state = IF_STATE_END;
9642 break;
9643
9644 default:
9645 goto fail;
9646 }
9647
9648 /*
9649 * Filter definition is fully parsed, validate and install it.
9650 * Make sure that it doesn't contradict itself or the event's
9651 * attribute.
9652 */
9653 if (state == IF_STATE_END) {
9ccbfbb1 9654 ret = -EINVAL;
375637bc
AS
9655 if (kernel && event->attr.exclude_kernel)
9656 goto fail;
9657
6ed70cf3
AS
9658 /*
9659 * ACTION "filter" must have a non-zero length region
9660 * specified.
9661 */
9662 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9663 !filter->size)
9664 goto fail;
9665
375637bc
AS
9666 if (!kernel) {
9667 if (!filename)
9668 goto fail;
9669
6ce77bfd
AS
9670 /*
9671 * For now, we only support file-based filters
9672 * in per-task events; doing so for CPU-wide
9673 * events requires additional context switching
9674 * trickery, since same object code will be
9675 * mapped at different virtual addresses in
9676 * different processes.
9677 */
9678 ret = -EOPNOTSUPP;
9679 if (!event->ctx->task)
9680 goto fail_free_name;
9681
375637bc 9682 /* look up the path and grab its inode */
9511bce9
SL
9683 ret = kern_path(filename, LOOKUP_FOLLOW,
9684 &filter->path);
375637bc
AS
9685 if (ret)
9686 goto fail_free_name;
9687
375637bc
AS
9688 kfree(filename);
9689 filename = NULL;
9690
9691 ret = -EINVAL;
9511bce9
SL
9692 if (!filter->path.dentry ||
9693 !S_ISREG(d_inode(filter->path.dentry)
9694 ->i_mode))
375637bc 9695 goto fail;
6ce77bfd
AS
9696
9697 event->addr_filters.nr_file_filters++;
375637bc
AS
9698 }
9699
9700 /* ready to consume more filters */
9701 state = IF_STATE_ACTION;
9702 filter = NULL;
9703 }
9704 }
9705
9706 if (state != IF_STATE_ACTION)
9707 goto fail;
9708
9709 kfree(orig);
9710
9711 return 0;
9712
9713fail_free_name:
9714 kfree(filename);
9715fail:
9716 free_filters_list(filters);
9717 kfree(orig);
9718
9719 return ret;
9720}
9721
9722static int
9723perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9724{
9725 LIST_HEAD(filters);
9726 int ret;
9727
9728 /*
9729 * Since this is called in perf_ioctl() path, we're already holding
9730 * ctx::mutex.
9731 */
9732 lockdep_assert_held(&event->ctx->mutex);
9733
9734 if (WARN_ON_ONCE(event->parent))
9735 return -EINVAL;
9736
375637bc
AS
9737 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9738 if (ret)
6ce77bfd 9739 goto fail_clear_files;
375637bc
AS
9740
9741 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
9742 if (ret)
9743 goto fail_free_filters;
375637bc
AS
9744
9745 /* remove existing filters, if any */
9746 perf_addr_filters_splice(event, &filters);
9747
9748 /* install new filters */
9749 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9750
6ce77bfd
AS
9751 return ret;
9752
9753fail_free_filters:
9754 free_filters_list(&filters);
9755
9756fail_clear_files:
9757 event->addr_filters.nr_file_filters = 0;
9758
375637bc
AS
9759 return ret;
9760}
9761
c796bbbe
AS
9762static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9763{
c796bbbe 9764 int ret = -EINVAL;
e12f03d7 9765 char *filter_str;
c796bbbe
AS
9766
9767 filter_str = strndup_user(arg, PAGE_SIZE);
9768 if (IS_ERR(filter_str))
9769 return PTR_ERR(filter_str);
9770
e12f03d7
SL
9771#ifdef CONFIG_EVENT_TRACING
9772 if (perf_event_is_tracing(event)) {
9773 struct perf_event_context *ctx = event->ctx;
9774
9775 /*
9776 * Beware, here be dragons!!
9777 *
9778 * the tracepoint muck will deadlock against ctx->mutex, but
9779 * the tracepoint stuff does not actually need it. So
9780 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9781 * already have a reference on ctx.
9782 *
9783 * This can result in event getting moved to a different ctx,
9784 * but that does not affect the tracepoint state.
9785 */
9786 mutex_unlock(&ctx->mutex);
9787 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9788 mutex_lock(&ctx->mutex);
9789 } else
9790#endif
9791 if (has_addr_filter(event))
375637bc 9792 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
9793
9794 kfree(filter_str);
9795 return ret;
9796}
9797
b0a873eb
PZ
9798/*
9799 * hrtimer based swevent callback
9800 */
f29ac756 9801
b0a873eb 9802static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 9803{
b0a873eb
PZ
9804 enum hrtimer_restart ret = HRTIMER_RESTART;
9805 struct perf_sample_data data;
9806 struct pt_regs *regs;
9807 struct perf_event *event;
9808 u64 period;
f29ac756 9809
b0a873eb 9810 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
9811
9812 if (event->state != PERF_EVENT_STATE_ACTIVE)
9813 return HRTIMER_NORESTART;
9814
b0a873eb 9815 event->pmu->read(event);
f344011c 9816
fd0d000b 9817 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
9818 regs = get_irq_regs();
9819
9820 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 9821 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 9822 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
9823 ret = HRTIMER_NORESTART;
9824 }
24f1e32c 9825
b0a873eb
PZ
9826 period = max_t(u64, 10000, event->hw.sample_period);
9827 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 9828
b0a873eb 9829 return ret;
f29ac756
PZ
9830}
9831
b0a873eb 9832static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 9833{
b0a873eb 9834 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
9835 s64 period;
9836
9837 if (!is_sampling_event(event))
9838 return;
f5ffe02e 9839
5d508e82
FBH
9840 period = local64_read(&hwc->period_left);
9841 if (period) {
9842 if (period < 0)
9843 period = 10000;
fa407f35 9844
5d508e82
FBH
9845 local64_set(&hwc->period_left, 0);
9846 } else {
9847 period = max_t(u64, 10000, hwc->sample_period);
9848 }
3497d206 9849 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
30f9028b 9850 HRTIMER_MODE_REL_PINNED_HARD);
24f1e32c 9851}
b0a873eb
PZ
9852
9853static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 9854{
b0a873eb
PZ
9855 struct hw_perf_event *hwc = &event->hw;
9856
6c7e550f 9857 if (is_sampling_event(event)) {
b0a873eb 9858 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 9859 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
9860
9861 hrtimer_cancel(&hwc->hrtimer);
9862 }
24f1e32c
FW
9863}
9864
ba3dd36c
PZ
9865static void perf_swevent_init_hrtimer(struct perf_event *event)
9866{
9867 struct hw_perf_event *hwc = &event->hw;
9868
9869 if (!is_sampling_event(event))
9870 return;
9871
30f9028b 9872 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
ba3dd36c
PZ
9873 hwc->hrtimer.function = perf_swevent_hrtimer;
9874
9875 /*
9876 * Since hrtimers have a fixed rate, we can do a static freq->period
9877 * mapping and avoid the whole period adjust feedback stuff.
9878 */
9879 if (event->attr.freq) {
9880 long freq = event->attr.sample_freq;
9881
9882 event->attr.sample_period = NSEC_PER_SEC / freq;
9883 hwc->sample_period = event->attr.sample_period;
9884 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 9885 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
9886 event->attr.freq = 0;
9887 }
9888}
9889
b0a873eb
PZ
9890/*
9891 * Software event: cpu wall time clock
9892 */
9893
9894static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 9895{
b0a873eb
PZ
9896 s64 prev;
9897 u64 now;
9898
a4eaf7f1 9899 now = local_clock();
b0a873eb
PZ
9900 prev = local64_xchg(&event->hw.prev_count, now);
9901 local64_add(now - prev, &event->count);
24f1e32c 9902}
24f1e32c 9903
a4eaf7f1 9904static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9905{
a4eaf7f1 9906 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 9907 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9908}
9909
a4eaf7f1 9910static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 9911{
b0a873eb
PZ
9912 perf_swevent_cancel_hrtimer(event);
9913 cpu_clock_event_update(event);
9914}
f29ac756 9915
a4eaf7f1
PZ
9916static int cpu_clock_event_add(struct perf_event *event, int flags)
9917{
9918 if (flags & PERF_EF_START)
9919 cpu_clock_event_start(event, flags);
6a694a60 9920 perf_event_update_userpage(event);
a4eaf7f1
PZ
9921
9922 return 0;
9923}
9924
9925static void cpu_clock_event_del(struct perf_event *event, int flags)
9926{
9927 cpu_clock_event_stop(event, flags);
9928}
9929
b0a873eb
PZ
9930static void cpu_clock_event_read(struct perf_event *event)
9931{
9932 cpu_clock_event_update(event);
9933}
f344011c 9934
b0a873eb
PZ
9935static int cpu_clock_event_init(struct perf_event *event)
9936{
9937 if (event->attr.type != PERF_TYPE_SOFTWARE)
9938 return -ENOENT;
9939
9940 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9941 return -ENOENT;
9942
2481c5fa
SE
9943 /*
9944 * no branch sampling for software events
9945 */
9946 if (has_branch_stack(event))
9947 return -EOPNOTSUPP;
9948
ba3dd36c
PZ
9949 perf_swevent_init_hrtimer(event);
9950
b0a873eb 9951 return 0;
f29ac756
PZ
9952}
9953
b0a873eb 9954static struct pmu perf_cpu_clock = {
89a1e187
PZ
9955 .task_ctx_nr = perf_sw_context,
9956
34f43927
PZ
9957 .capabilities = PERF_PMU_CAP_NO_NMI,
9958
b0a873eb 9959 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
9960 .add = cpu_clock_event_add,
9961 .del = cpu_clock_event_del,
9962 .start = cpu_clock_event_start,
9963 .stop = cpu_clock_event_stop,
b0a873eb
PZ
9964 .read = cpu_clock_event_read,
9965};
9966
9967/*
9968 * Software event: task time clock
9969 */
9970
9971static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 9972{
b0a873eb
PZ
9973 u64 prev;
9974 s64 delta;
5c92d124 9975
b0a873eb
PZ
9976 prev = local64_xchg(&event->hw.prev_count, now);
9977 delta = now - prev;
9978 local64_add(delta, &event->count);
9979}
5c92d124 9980
a4eaf7f1 9981static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9982{
a4eaf7f1 9983 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 9984 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9985}
9986
a4eaf7f1 9987static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
9988{
9989 perf_swevent_cancel_hrtimer(event);
9990 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
9991}
9992
9993static int task_clock_event_add(struct perf_event *event, int flags)
9994{
9995 if (flags & PERF_EF_START)
9996 task_clock_event_start(event, flags);
6a694a60 9997 perf_event_update_userpage(event);
b0a873eb 9998
a4eaf7f1
PZ
9999 return 0;
10000}
10001
10002static void task_clock_event_del(struct perf_event *event, int flags)
10003{
10004 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
10005}
10006
10007static void task_clock_event_read(struct perf_event *event)
10008{
768a06e2
PZ
10009 u64 now = perf_clock();
10010 u64 delta = now - event->ctx->timestamp;
10011 u64 time = event->ctx->time + delta;
b0a873eb
PZ
10012
10013 task_clock_event_update(event, time);
10014}
10015
10016static int task_clock_event_init(struct perf_event *event)
6fb2915d 10017{
b0a873eb
PZ
10018 if (event->attr.type != PERF_TYPE_SOFTWARE)
10019 return -ENOENT;
10020
10021 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10022 return -ENOENT;
10023
2481c5fa
SE
10024 /*
10025 * no branch sampling for software events
10026 */
10027 if (has_branch_stack(event))
10028 return -EOPNOTSUPP;
10029
ba3dd36c
PZ
10030 perf_swevent_init_hrtimer(event);
10031
b0a873eb 10032 return 0;
6fb2915d
LZ
10033}
10034
b0a873eb 10035static struct pmu perf_task_clock = {
89a1e187
PZ
10036 .task_ctx_nr = perf_sw_context,
10037
34f43927
PZ
10038 .capabilities = PERF_PMU_CAP_NO_NMI,
10039
b0a873eb 10040 .event_init = task_clock_event_init,
a4eaf7f1
PZ
10041 .add = task_clock_event_add,
10042 .del = task_clock_event_del,
10043 .start = task_clock_event_start,
10044 .stop = task_clock_event_stop,
b0a873eb
PZ
10045 .read = task_clock_event_read,
10046};
6fb2915d 10047
ad5133b7 10048static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 10049{
e077df4f 10050}
6fb2915d 10051
fbbe0701
SB
10052static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10053{
10054}
10055
ad5133b7 10056static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 10057{
ad5133b7 10058 return 0;
6fb2915d
LZ
10059}
10060
81ec3f3c
JO
10061static int perf_event_nop_int(struct perf_event *event, u64 value)
10062{
10063 return 0;
10064}
10065
18ab2cd3 10066static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
10067
10068static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 10069{
fbbe0701
SB
10070 __this_cpu_write(nop_txn_flags, flags);
10071
10072 if (flags & ~PERF_PMU_TXN_ADD)
10073 return;
10074
ad5133b7 10075 perf_pmu_disable(pmu);
6fb2915d
LZ
10076}
10077
ad5133b7
PZ
10078static int perf_pmu_commit_txn(struct pmu *pmu)
10079{
fbbe0701
SB
10080 unsigned int flags = __this_cpu_read(nop_txn_flags);
10081
10082 __this_cpu_write(nop_txn_flags, 0);
10083
10084 if (flags & ~PERF_PMU_TXN_ADD)
10085 return 0;
10086
ad5133b7
PZ
10087 perf_pmu_enable(pmu);
10088 return 0;
10089}
e077df4f 10090
ad5133b7 10091static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 10092{
fbbe0701
SB
10093 unsigned int flags = __this_cpu_read(nop_txn_flags);
10094
10095 __this_cpu_write(nop_txn_flags, 0);
10096
10097 if (flags & ~PERF_PMU_TXN_ADD)
10098 return;
10099
ad5133b7 10100 perf_pmu_enable(pmu);
24f1e32c
FW
10101}
10102
35edc2a5
PZ
10103static int perf_event_idx_default(struct perf_event *event)
10104{
c719f560 10105 return 0;
35edc2a5
PZ
10106}
10107
8dc85d54
PZ
10108/*
10109 * Ensures all contexts with the same task_ctx_nr have the same
10110 * pmu_cpu_context too.
10111 */
9e317041 10112static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 10113{
8dc85d54 10114 struct pmu *pmu;
b326e956 10115
8dc85d54
PZ
10116 if (ctxn < 0)
10117 return NULL;
24f1e32c 10118
8dc85d54
PZ
10119 list_for_each_entry(pmu, &pmus, entry) {
10120 if (pmu->task_ctx_nr == ctxn)
10121 return pmu->pmu_cpu_context;
10122 }
24f1e32c 10123
8dc85d54 10124 return NULL;
24f1e32c
FW
10125}
10126
51676957
PZ
10127static void free_pmu_context(struct pmu *pmu)
10128{
df0062b2
WD
10129 /*
10130 * Static contexts such as perf_sw_context have a global lifetime
10131 * and may be shared between different PMUs. Avoid freeing them
10132 * when a single PMU is going away.
10133 */
10134 if (pmu->task_ctx_nr > perf_invalid_context)
10135 return;
10136
51676957 10137 free_percpu(pmu->pmu_cpu_context);
24f1e32c 10138}
6e855cd4
AS
10139
10140/*
10141 * Let userspace know that this PMU supports address range filtering:
10142 */
10143static ssize_t nr_addr_filters_show(struct device *dev,
10144 struct device_attribute *attr,
10145 char *page)
10146{
10147 struct pmu *pmu = dev_get_drvdata(dev);
10148
10149 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10150}
10151DEVICE_ATTR_RO(nr_addr_filters);
10152
2e80a82a 10153static struct idr pmu_idr;
d6d020e9 10154
abe43400
PZ
10155static ssize_t
10156type_show(struct device *dev, struct device_attribute *attr, char *page)
10157{
10158 struct pmu *pmu = dev_get_drvdata(dev);
10159
10160 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10161}
90826ca7 10162static DEVICE_ATTR_RO(type);
abe43400 10163
62b85639
SE
10164static ssize_t
10165perf_event_mux_interval_ms_show(struct device *dev,
10166 struct device_attribute *attr,
10167 char *page)
10168{
10169 struct pmu *pmu = dev_get_drvdata(dev);
10170
10171 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10172}
10173
272325c4
PZ
10174static DEFINE_MUTEX(mux_interval_mutex);
10175
62b85639
SE
10176static ssize_t
10177perf_event_mux_interval_ms_store(struct device *dev,
10178 struct device_attribute *attr,
10179 const char *buf, size_t count)
10180{
10181 struct pmu *pmu = dev_get_drvdata(dev);
10182 int timer, cpu, ret;
10183
10184 ret = kstrtoint(buf, 0, &timer);
10185 if (ret)
10186 return ret;
10187
10188 if (timer < 1)
10189 return -EINVAL;
10190
10191 /* same value, noting to do */
10192 if (timer == pmu->hrtimer_interval_ms)
10193 return count;
10194
272325c4 10195 mutex_lock(&mux_interval_mutex);
62b85639
SE
10196 pmu->hrtimer_interval_ms = timer;
10197
10198 /* update all cpuctx for this PMU */
a63fbed7 10199 cpus_read_lock();
272325c4 10200 for_each_online_cpu(cpu) {
62b85639
SE
10201 struct perf_cpu_context *cpuctx;
10202 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10203 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10204
272325c4
PZ
10205 cpu_function_call(cpu,
10206 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 10207 }
a63fbed7 10208 cpus_read_unlock();
272325c4 10209 mutex_unlock(&mux_interval_mutex);
62b85639
SE
10210
10211 return count;
10212}
90826ca7 10213static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 10214
90826ca7
GKH
10215static struct attribute *pmu_dev_attrs[] = {
10216 &dev_attr_type.attr,
10217 &dev_attr_perf_event_mux_interval_ms.attr,
10218 NULL,
abe43400 10219};
90826ca7 10220ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
10221
10222static int pmu_bus_running;
10223static struct bus_type pmu_bus = {
10224 .name = "event_source",
90826ca7 10225 .dev_groups = pmu_dev_groups,
abe43400
PZ
10226};
10227
10228static void pmu_dev_release(struct device *dev)
10229{
10230 kfree(dev);
10231}
10232
10233static int pmu_dev_alloc(struct pmu *pmu)
10234{
10235 int ret = -ENOMEM;
10236
10237 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10238 if (!pmu->dev)
10239 goto out;
10240
0c9d42ed 10241 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
10242 device_initialize(pmu->dev);
10243 ret = dev_set_name(pmu->dev, "%s", pmu->name);
10244 if (ret)
10245 goto free_dev;
10246
10247 dev_set_drvdata(pmu->dev, pmu);
10248 pmu->dev->bus = &pmu_bus;
10249 pmu->dev->release = pmu_dev_release;
10250 ret = device_add(pmu->dev);
10251 if (ret)
10252 goto free_dev;
10253
6e855cd4
AS
10254 /* For PMUs with address filters, throw in an extra attribute: */
10255 if (pmu->nr_addr_filters)
10256 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10257
10258 if (ret)
10259 goto del_dev;
10260
f3a3a825
JO
10261 if (pmu->attr_update)
10262 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10263
10264 if (ret)
10265 goto del_dev;
10266
abe43400
PZ
10267out:
10268 return ret;
10269
6e855cd4
AS
10270del_dev:
10271 device_del(pmu->dev);
10272
abe43400
PZ
10273free_dev:
10274 put_device(pmu->dev);
10275 goto out;
10276}
10277
547e9fd7 10278static struct lock_class_key cpuctx_mutex;
facc4307 10279static struct lock_class_key cpuctx_lock;
547e9fd7 10280
03d8e80b 10281int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 10282{
66d258c5 10283 int cpu, ret, max = PERF_TYPE_MAX;
24f1e32c 10284
b0a873eb 10285 mutex_lock(&pmus_lock);
33696fc0
PZ
10286 ret = -ENOMEM;
10287 pmu->pmu_disable_count = alloc_percpu(int);
10288 if (!pmu->pmu_disable_count)
10289 goto unlock;
f29ac756 10290
2e80a82a
PZ
10291 pmu->type = -1;
10292 if (!name)
10293 goto skip_type;
10294 pmu->name = name;
10295
66d258c5
PZ
10296 if (type != PERF_TYPE_SOFTWARE) {
10297 if (type >= 0)
10298 max = type;
10299
10300 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10301 if (ret < 0)
2e80a82a 10302 goto free_pdc;
66d258c5
PZ
10303
10304 WARN_ON(type >= 0 && ret != type);
10305
10306 type = ret;
2e80a82a
PZ
10307 }
10308 pmu->type = type;
10309
abe43400
PZ
10310 if (pmu_bus_running) {
10311 ret = pmu_dev_alloc(pmu);
10312 if (ret)
10313 goto free_idr;
10314 }
10315
2e80a82a 10316skip_type:
26657848
PZ
10317 if (pmu->task_ctx_nr == perf_hw_context) {
10318 static int hw_context_taken = 0;
10319
5101ef20
MR
10320 /*
10321 * Other than systems with heterogeneous CPUs, it never makes
10322 * sense for two PMUs to share perf_hw_context. PMUs which are
10323 * uncore must use perf_invalid_context.
10324 */
10325 if (WARN_ON_ONCE(hw_context_taken &&
10326 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
10327 pmu->task_ctx_nr = perf_invalid_context;
10328
10329 hw_context_taken = 1;
10330 }
10331
8dc85d54
PZ
10332 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10333 if (pmu->pmu_cpu_context)
10334 goto got_cpu_context;
f29ac756 10335
c4814202 10336 ret = -ENOMEM;
108b02cf
PZ
10337 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10338 if (!pmu->pmu_cpu_context)
abe43400 10339 goto free_dev;
f344011c 10340
108b02cf
PZ
10341 for_each_possible_cpu(cpu) {
10342 struct perf_cpu_context *cpuctx;
10343
10344 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 10345 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 10346 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 10347 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 10348 cpuctx->ctx.pmu = pmu;
a63fbed7 10349 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 10350
272325c4 10351 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 10352 }
76e1d904 10353
8dc85d54 10354got_cpu_context:
ad5133b7
PZ
10355 if (!pmu->start_txn) {
10356 if (pmu->pmu_enable) {
10357 /*
10358 * If we have pmu_enable/pmu_disable calls, install
10359 * transaction stubs that use that to try and batch
10360 * hardware accesses.
10361 */
10362 pmu->start_txn = perf_pmu_start_txn;
10363 pmu->commit_txn = perf_pmu_commit_txn;
10364 pmu->cancel_txn = perf_pmu_cancel_txn;
10365 } else {
fbbe0701 10366 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
10367 pmu->commit_txn = perf_pmu_nop_int;
10368 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 10369 }
5c92d124 10370 }
15dbf27c 10371
ad5133b7
PZ
10372 if (!pmu->pmu_enable) {
10373 pmu->pmu_enable = perf_pmu_nop_void;
10374 pmu->pmu_disable = perf_pmu_nop_void;
10375 }
10376
81ec3f3c
JO
10377 if (!pmu->check_period)
10378 pmu->check_period = perf_event_nop_int;
10379
35edc2a5
PZ
10380 if (!pmu->event_idx)
10381 pmu->event_idx = perf_event_idx_default;
10382
d44f821b
LK
10383 /*
10384 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10385 * since these cannot be in the IDR. This way the linear search
10386 * is fast, provided a valid software event is provided.
10387 */
10388 if (type == PERF_TYPE_SOFTWARE || !name)
10389 list_add_rcu(&pmu->entry, &pmus);
10390 else
10391 list_add_tail_rcu(&pmu->entry, &pmus);
10392
bed5b25a 10393 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
10394 ret = 0;
10395unlock:
b0a873eb
PZ
10396 mutex_unlock(&pmus_lock);
10397
33696fc0 10398 return ret;
108b02cf 10399
abe43400
PZ
10400free_dev:
10401 device_del(pmu->dev);
10402 put_device(pmu->dev);
10403
2e80a82a 10404free_idr:
66d258c5 10405 if (pmu->type != PERF_TYPE_SOFTWARE)
2e80a82a
PZ
10406 idr_remove(&pmu_idr, pmu->type);
10407
108b02cf
PZ
10408free_pdc:
10409 free_percpu(pmu->pmu_disable_count);
10410 goto unlock;
f29ac756 10411}
c464c76e 10412EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 10413
b0a873eb 10414void perf_pmu_unregister(struct pmu *pmu)
5c92d124 10415{
b0a873eb
PZ
10416 mutex_lock(&pmus_lock);
10417 list_del_rcu(&pmu->entry);
5c92d124 10418
0475f9ea 10419 /*
cde8e884
PZ
10420 * We dereference the pmu list under both SRCU and regular RCU, so
10421 * synchronize against both of those.
0475f9ea 10422 */
b0a873eb 10423 synchronize_srcu(&pmus_srcu);
cde8e884 10424 synchronize_rcu();
d6d020e9 10425
33696fc0 10426 free_percpu(pmu->pmu_disable_count);
66d258c5 10427 if (pmu->type != PERF_TYPE_SOFTWARE)
2e80a82a 10428 idr_remove(&pmu_idr, pmu->type);
a9f97721 10429 if (pmu_bus_running) {
0933840a
JO
10430 if (pmu->nr_addr_filters)
10431 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10432 device_del(pmu->dev);
10433 put_device(pmu->dev);
10434 }
51676957 10435 free_pmu_context(pmu);
a9f97721 10436 mutex_unlock(&pmus_lock);
b0a873eb 10437}
c464c76e 10438EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 10439
e321d02d
KL
10440static inline bool has_extended_regs(struct perf_event *event)
10441{
10442 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10443 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10444}
10445
cc34b98b
MR
10446static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10447{
ccd41c86 10448 struct perf_event_context *ctx = NULL;
cc34b98b
MR
10449 int ret;
10450
10451 if (!try_module_get(pmu->module))
10452 return -ENODEV;
ccd41c86 10453
0c7296ca
PZ
10454 /*
10455 * A number of pmu->event_init() methods iterate the sibling_list to,
10456 * for example, validate if the group fits on the PMU. Therefore,
10457 * if this is a sibling event, acquire the ctx->mutex to protect
10458 * the sibling_list.
10459 */
10460 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
10461 /*
10462 * This ctx->mutex can nest when we're called through
10463 * inheritance. See the perf_event_ctx_lock_nested() comment.
10464 */
10465 ctx = perf_event_ctx_lock_nested(event->group_leader,
10466 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
10467 BUG_ON(!ctx);
10468 }
10469
cc34b98b
MR
10470 event->pmu = pmu;
10471 ret = pmu->event_init(event);
ccd41c86
PZ
10472
10473 if (ctx)
10474 perf_event_ctx_unlock(event->group_leader, ctx);
10475
cc6795ae 10476 if (!ret) {
e321d02d
KL
10477 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10478 has_extended_regs(event))
10479 ret = -EOPNOTSUPP;
10480
cc6795ae 10481 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
e321d02d 10482 event_has_any_exclude_flag(event))
cc6795ae 10483 ret = -EINVAL;
e321d02d
KL
10484
10485 if (ret && event->destroy)
10486 event->destroy(event);
cc6795ae
AM
10487 }
10488
cc34b98b
MR
10489 if (ret)
10490 module_put(pmu->module);
10491
10492 return ret;
10493}
10494
18ab2cd3 10495static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 10496{
66d258c5 10497 int idx, type, ret;
85c617ab 10498 struct pmu *pmu;
b0a873eb
PZ
10499
10500 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 10501
40999312
KL
10502 /* Try parent's PMU first: */
10503 if (event->parent && event->parent->pmu) {
10504 pmu = event->parent->pmu;
10505 ret = perf_try_init_event(pmu, event);
10506 if (!ret)
10507 goto unlock;
10508 }
10509
66d258c5
PZ
10510 /*
10511 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10512 * are often aliases for PERF_TYPE_RAW.
10513 */
10514 type = event->attr.type;
10515 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10516 type = PERF_TYPE_RAW;
10517
10518again:
2e80a82a 10519 rcu_read_lock();
66d258c5 10520 pmu = idr_find(&pmu_idr, type);
2e80a82a 10521 rcu_read_unlock();
940c5b29 10522 if (pmu) {
cc34b98b 10523 ret = perf_try_init_event(pmu, event);
66d258c5
PZ
10524 if (ret == -ENOENT && event->attr.type != type) {
10525 type = event->attr.type;
10526 goto again;
10527 }
10528
940c5b29
LM
10529 if (ret)
10530 pmu = ERR_PTR(ret);
66d258c5 10531
2e80a82a 10532 goto unlock;
940c5b29 10533 }
2e80a82a 10534
9f0bff11 10535 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
cc34b98b 10536 ret = perf_try_init_event(pmu, event);
b0a873eb 10537 if (!ret)
e5f4d339 10538 goto unlock;
76e1d904 10539
b0a873eb
PZ
10540 if (ret != -ENOENT) {
10541 pmu = ERR_PTR(ret);
e5f4d339 10542 goto unlock;
f344011c 10543 }
5c92d124 10544 }
e5f4d339
PZ
10545 pmu = ERR_PTR(-ENOENT);
10546unlock:
b0a873eb 10547 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 10548
4aeb0b42 10549 return pmu;
5c92d124
IM
10550}
10551
f2fb6bef
KL
10552static void attach_sb_event(struct perf_event *event)
10553{
10554 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10555
10556 raw_spin_lock(&pel->lock);
10557 list_add_rcu(&event->sb_list, &pel->list);
10558 raw_spin_unlock(&pel->lock);
10559}
10560
aab5b71e
PZ
10561/*
10562 * We keep a list of all !task (and therefore per-cpu) events
10563 * that need to receive side-band records.
10564 *
10565 * This avoids having to scan all the various PMU per-cpu contexts
10566 * looking for them.
10567 */
f2fb6bef
KL
10568static void account_pmu_sb_event(struct perf_event *event)
10569{
a4f144eb 10570 if (is_sb_event(event))
f2fb6bef
KL
10571 attach_sb_event(event);
10572}
10573
4beb31f3
FW
10574static void account_event_cpu(struct perf_event *event, int cpu)
10575{
10576 if (event->parent)
10577 return;
10578
4beb31f3
FW
10579 if (is_cgroup_event(event))
10580 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10581}
10582
555e0c1e
FW
10583/* Freq events need the tick to stay alive (see perf_event_task_tick). */
10584static void account_freq_event_nohz(void)
10585{
10586#ifdef CONFIG_NO_HZ_FULL
10587 /* Lock so we don't race with concurrent unaccount */
10588 spin_lock(&nr_freq_lock);
10589 if (atomic_inc_return(&nr_freq_events) == 1)
10590 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10591 spin_unlock(&nr_freq_lock);
10592#endif
10593}
10594
10595static void account_freq_event(void)
10596{
10597 if (tick_nohz_full_enabled())
10598 account_freq_event_nohz();
10599 else
10600 atomic_inc(&nr_freq_events);
10601}
10602
10603
766d6c07
FW
10604static void account_event(struct perf_event *event)
10605{
25432ae9
PZ
10606 bool inc = false;
10607
4beb31f3
FW
10608 if (event->parent)
10609 return;
10610
766d6c07 10611 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 10612 inc = true;
766d6c07
FW
10613 if (event->attr.mmap || event->attr.mmap_data)
10614 atomic_inc(&nr_mmap_events);
10615 if (event->attr.comm)
10616 atomic_inc(&nr_comm_events);
e4222673
HB
10617 if (event->attr.namespaces)
10618 atomic_inc(&nr_namespaces_events);
766d6c07
FW
10619 if (event->attr.task)
10620 atomic_inc(&nr_task_events);
555e0c1e
FW
10621 if (event->attr.freq)
10622 account_freq_event();
45ac1403
AH
10623 if (event->attr.context_switch) {
10624 atomic_inc(&nr_switch_events);
25432ae9 10625 inc = true;
45ac1403 10626 }
4beb31f3 10627 if (has_branch_stack(event))
25432ae9 10628 inc = true;
4beb31f3 10629 if (is_cgroup_event(event))
25432ae9 10630 inc = true;
76193a94
SL
10631 if (event->attr.ksymbol)
10632 atomic_inc(&nr_ksymbol_events);
6ee52e2a
SL
10633 if (event->attr.bpf_event)
10634 atomic_inc(&nr_bpf_events);
25432ae9 10635
9107c89e 10636 if (inc) {
5bce9db1
AS
10637 /*
10638 * We need the mutex here because static_branch_enable()
10639 * must complete *before* the perf_sched_count increment
10640 * becomes visible.
10641 */
9107c89e
PZ
10642 if (atomic_inc_not_zero(&perf_sched_count))
10643 goto enabled;
10644
10645 mutex_lock(&perf_sched_mutex);
10646 if (!atomic_read(&perf_sched_count)) {
10647 static_branch_enable(&perf_sched_events);
10648 /*
10649 * Guarantee that all CPUs observe they key change and
10650 * call the perf scheduling hooks before proceeding to
10651 * install events that need them.
10652 */
0809d954 10653 synchronize_rcu();
9107c89e
PZ
10654 }
10655 /*
10656 * Now that we have waited for the sync_sched(), allow further
10657 * increments to by-pass the mutex.
10658 */
10659 atomic_inc(&perf_sched_count);
10660 mutex_unlock(&perf_sched_mutex);
10661 }
10662enabled:
4beb31f3
FW
10663
10664 account_event_cpu(event, event->cpu);
f2fb6bef
KL
10665
10666 account_pmu_sb_event(event);
766d6c07
FW
10667}
10668
0793a61d 10669/*
788faab7 10670 * Allocate and initialize an event structure
0793a61d 10671 */
cdd6c482 10672static struct perf_event *
c3f00c70 10673perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
10674 struct task_struct *task,
10675 struct perf_event *group_leader,
10676 struct perf_event *parent_event,
4dc0da86 10677 perf_overflow_handler_t overflow_handler,
79dff51e 10678 void *context, int cgroup_fd)
0793a61d 10679{
51b0fe39 10680 struct pmu *pmu;
cdd6c482
IM
10681 struct perf_event *event;
10682 struct hw_perf_event *hwc;
90983b16 10683 long err = -EINVAL;
0793a61d 10684
66832eb4
ON
10685 if ((unsigned)cpu >= nr_cpu_ids) {
10686 if (!task || cpu != -1)
10687 return ERR_PTR(-EINVAL);
10688 }
10689
c3f00c70 10690 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 10691 if (!event)
d5d2bc0d 10692 return ERR_PTR(-ENOMEM);
0793a61d 10693
04289bb9 10694 /*
cdd6c482 10695 * Single events are their own group leaders, with an
04289bb9
IM
10696 * empty sibling list:
10697 */
10698 if (!group_leader)
cdd6c482 10699 group_leader = event;
04289bb9 10700
cdd6c482
IM
10701 mutex_init(&event->child_mutex);
10702 INIT_LIST_HEAD(&event->child_list);
fccc714b 10703
cdd6c482
IM
10704 INIT_LIST_HEAD(&event->event_entry);
10705 INIT_LIST_HEAD(&event->sibling_list);
6668128a 10706 INIT_LIST_HEAD(&event->active_list);
8e1a2031 10707 init_event_group(event);
10c6db11 10708 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 10709 INIT_LIST_HEAD(&event->active_entry);
375637bc 10710 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
10711 INIT_HLIST_NODE(&event->hlist_entry);
10712
10c6db11 10713
cdd6c482 10714 init_waitqueue_head(&event->waitq);
1d54ad94 10715 event->pending_disable = -1;
e360adbe 10716 init_irq_work(&event->pending, perf_pending_event);
0793a61d 10717
cdd6c482 10718 mutex_init(&event->mmap_mutex);
375637bc 10719 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 10720
a6fa941d 10721 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
10722 event->cpu = cpu;
10723 event->attr = *attr;
10724 event->group_leader = group_leader;
10725 event->pmu = NULL;
cdd6c482 10726 event->oncpu = -1;
a96bbc16 10727
cdd6c482 10728 event->parent = parent_event;
b84fbc9f 10729
17cf22c3 10730 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 10731 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 10732
cdd6c482 10733 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 10734
d580ff86
PZ
10735 if (task) {
10736 event->attach_state = PERF_ATTACH_TASK;
d580ff86 10737 /*
50f16a8b
PZ
10738 * XXX pmu::event_init needs to know what task to account to
10739 * and we cannot use the ctx information because we need the
10740 * pmu before we get a ctx.
d580ff86 10741 */
7b3c92b8 10742 event->hw.target = get_task_struct(task);
d580ff86
PZ
10743 }
10744
34f43927
PZ
10745 event->clock = &local_clock;
10746 if (parent_event)
10747 event->clock = parent_event->clock;
10748
4dc0da86 10749 if (!overflow_handler && parent_event) {
b326e956 10750 overflow_handler = parent_event->overflow_handler;
4dc0da86 10751 context = parent_event->overflow_handler_context;
f1e4ba5b 10752#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c 10753 if (overflow_handler == bpf_overflow_handler) {
85192dbf 10754 struct bpf_prog *prog = parent_event->prog;
aa6a5f3c 10755
85192dbf 10756 bpf_prog_inc(prog);
aa6a5f3c
AS
10757 event->prog = prog;
10758 event->orig_overflow_handler =
10759 parent_event->orig_overflow_handler;
10760 }
10761#endif
4dc0da86 10762 }
66832eb4 10763
1879445d
WN
10764 if (overflow_handler) {
10765 event->overflow_handler = overflow_handler;
10766 event->overflow_handler_context = context;
9ecda41a
WN
10767 } else if (is_write_backward(event)){
10768 event->overflow_handler = perf_event_output_backward;
10769 event->overflow_handler_context = NULL;
1879445d 10770 } else {
9ecda41a 10771 event->overflow_handler = perf_event_output_forward;
1879445d
WN
10772 event->overflow_handler_context = NULL;
10773 }
97eaf530 10774
0231bb53 10775 perf_event__state_init(event);
a86ed508 10776
4aeb0b42 10777 pmu = NULL;
b8e83514 10778
cdd6c482 10779 hwc = &event->hw;
bd2b5b12 10780 hwc->sample_period = attr->sample_period;
0d48696f 10781 if (attr->freq && attr->sample_freq)
bd2b5b12 10782 hwc->sample_period = 1;
eced1dfc 10783 hwc->last_period = hwc->sample_period;
bd2b5b12 10784
e7850595 10785 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 10786
2023b359 10787 /*
ba5213ae
PZ
10788 * We currently do not support PERF_SAMPLE_READ on inherited events.
10789 * See perf_output_read().
2023b359 10790 */
ba5213ae 10791 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 10792 goto err_ns;
a46a2300
YZ
10793
10794 if (!has_branch_stack(event))
10795 event->attr.branch_sample_type = 0;
2023b359 10796
79dff51e
MF
10797 if (cgroup_fd != -1) {
10798 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10799 if (err)
10800 goto err_ns;
10801 }
10802
b0a873eb 10803 pmu = perf_init_event(event);
85c617ab 10804 if (IS_ERR(pmu)) {
4aeb0b42 10805 err = PTR_ERR(pmu);
90983b16 10806 goto err_ns;
621a01ea 10807 }
d5d2bc0d 10808
09f4e8f0
PZ
10809 /*
10810 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10811 * be different on other CPUs in the uncore mask.
10812 */
10813 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
10814 err = -EINVAL;
10815 goto err_pmu;
10816 }
10817
ab43762e
AS
10818 if (event->attr.aux_output &&
10819 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10820 err = -EOPNOTSUPP;
10821 goto err_pmu;
10822 }
10823
bed5b25a
AS
10824 err = exclusive_event_init(event);
10825 if (err)
10826 goto err_pmu;
10827
375637bc 10828 if (has_addr_filter(event)) {
c60f83b8
AS
10829 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10830 sizeof(struct perf_addr_filter_range),
10831 GFP_KERNEL);
10832 if (!event->addr_filter_ranges) {
36cc2b92 10833 err = -ENOMEM;
375637bc 10834 goto err_per_task;
36cc2b92 10835 }
375637bc 10836
18736eef
AS
10837 /*
10838 * Clone the parent's vma offsets: they are valid until exec()
10839 * even if the mm is not shared with the parent.
10840 */
10841 if (event->parent) {
10842 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10843
10844 raw_spin_lock_irq(&ifh->lock);
c60f83b8
AS
10845 memcpy(event->addr_filter_ranges,
10846 event->parent->addr_filter_ranges,
10847 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
18736eef
AS
10848 raw_spin_unlock_irq(&ifh->lock);
10849 }
10850
375637bc
AS
10851 /* force hw sync on the address filters */
10852 event->addr_filters_gen = 1;
10853 }
10854
cdd6c482 10855 if (!event->parent) {
927c7a9e 10856 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 10857 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 10858 if (err)
375637bc 10859 goto err_addr_filters;
d010b332 10860 }
f344011c 10861 }
9ee318a7 10862
da97e184
JFG
10863 err = security_perf_event_alloc(event);
10864 if (err)
10865 goto err_callchain_buffer;
10866
927a5570
AS
10867 /* symmetric to unaccount_event() in _free_event() */
10868 account_event(event);
10869
cdd6c482 10870 return event;
90983b16 10871
da97e184
JFG
10872err_callchain_buffer:
10873 if (!event->parent) {
10874 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
10875 put_callchain_buffers();
10876 }
375637bc 10877err_addr_filters:
c60f83b8 10878 kfree(event->addr_filter_ranges);
375637bc 10879
bed5b25a
AS
10880err_per_task:
10881 exclusive_event_destroy(event);
10882
90983b16
FW
10883err_pmu:
10884 if (event->destroy)
10885 event->destroy(event);
c464c76e 10886 module_put(pmu->module);
90983b16 10887err_ns:
79dff51e
MF
10888 if (is_cgroup_event(event))
10889 perf_detach_cgroup(event);
90983b16
FW
10890 if (event->ns)
10891 put_pid_ns(event->ns);
621b6d2e
PB
10892 if (event->hw.target)
10893 put_task_struct(event->hw.target);
90983b16
FW
10894 kfree(event);
10895
10896 return ERR_PTR(err);
0793a61d
TG
10897}
10898
cdd6c482
IM
10899static int perf_copy_attr(struct perf_event_attr __user *uattr,
10900 struct perf_event_attr *attr)
974802ea 10901{
974802ea 10902 u32 size;
cdf8073d 10903 int ret;
974802ea 10904
c2ba8f41 10905 /* Zero the full structure, so that a short copy will be nice. */
974802ea
PZ
10906 memset(attr, 0, sizeof(*attr));
10907
10908 ret = get_user(size, &uattr->size);
10909 if (ret)
10910 return ret;
10911
c2ba8f41
AS
10912 /* ABI compatibility quirk: */
10913 if (!size)
974802ea 10914 size = PERF_ATTR_SIZE_VER0;
c2ba8f41 10915 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
974802ea
PZ
10916 goto err_size;
10917
c2ba8f41
AS
10918 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10919 if (ret) {
10920 if (ret == -E2BIG)
10921 goto err_size;
10922 return ret;
974802ea
PZ
10923 }
10924
f12f42ac
MX
10925 attr->size = size;
10926
a4faf00d 10927 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
974802ea
PZ
10928 return -EINVAL;
10929
10930 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10931 return -EINVAL;
10932
10933 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10934 return -EINVAL;
10935
bce38cd5
SE
10936 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10937 u64 mask = attr->branch_sample_type;
10938
10939 /* only using defined bits */
10940 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10941 return -EINVAL;
10942
10943 /* at least one branch bit must be set */
10944 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10945 return -EINVAL;
10946
bce38cd5
SE
10947 /* propagate priv level, when not set for branch */
10948 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10949
10950 /* exclude_kernel checked on syscall entry */
10951 if (!attr->exclude_kernel)
10952 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10953
10954 if (!attr->exclude_user)
10955 mask |= PERF_SAMPLE_BRANCH_USER;
10956
10957 if (!attr->exclude_hv)
10958 mask |= PERF_SAMPLE_BRANCH_HV;
10959 /*
10960 * adjust user setting (for HW filter setup)
10961 */
10962 attr->branch_sample_type = mask;
10963 }
e712209a 10964 /* privileged levels capture (kernel, hv): check permissions */
da97e184
JFG
10965 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
10966 ret = perf_allow_kernel(attr);
10967 if (ret)
10968 return ret;
10969 }
bce38cd5 10970 }
4018994f 10971
c5ebcedb 10972 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 10973 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
10974 if (ret)
10975 return ret;
10976 }
10977
10978 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10979 if (!arch_perf_have_user_stack_dump())
10980 return -ENOSYS;
10981
10982 /*
10983 * We have __u32 type for the size, but so far
10984 * we can only use __u16 as maximum due to the
10985 * __u16 sample size limit.
10986 */
10987 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 10988 return -EINVAL;
c5ebcedb 10989 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 10990 return -EINVAL;
c5ebcedb 10991 }
4018994f 10992
5f970521
JO
10993 if (!attr->sample_max_stack)
10994 attr->sample_max_stack = sysctl_perf_event_max_stack;
10995
60e2364e
SE
10996 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10997 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
10998out:
10999 return ret;
11000
11001err_size:
11002 put_user(sizeof(*attr), &uattr->size);
11003 ret = -E2BIG;
11004 goto out;
11005}
11006
ac9721f3
PZ
11007static int
11008perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 11009{
56de4e8f 11010 struct perf_buffer *rb = NULL;
a4be7c27
PZ
11011 int ret = -EINVAL;
11012
ac9721f3 11013 if (!output_event)
a4be7c27
PZ
11014 goto set;
11015
ac9721f3
PZ
11016 /* don't allow circular references */
11017 if (event == output_event)
a4be7c27
PZ
11018 goto out;
11019
0f139300
PZ
11020 /*
11021 * Don't allow cross-cpu buffers
11022 */
11023 if (output_event->cpu != event->cpu)
11024 goto out;
11025
11026 /*
76369139 11027 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
11028 */
11029 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11030 goto out;
11031
34f43927
PZ
11032 /*
11033 * Mixing clocks in the same buffer is trouble you don't need.
11034 */
11035 if (output_event->clock != event->clock)
11036 goto out;
11037
9ecda41a
WN
11038 /*
11039 * Either writing ring buffer from beginning or from end.
11040 * Mixing is not allowed.
11041 */
11042 if (is_write_backward(output_event) != is_write_backward(event))
11043 goto out;
11044
45bfb2e5
PZ
11045 /*
11046 * If both events generate aux data, they must be on the same PMU
11047 */
11048 if (has_aux(event) && has_aux(output_event) &&
11049 event->pmu != output_event->pmu)
11050 goto out;
11051
a4be7c27 11052set:
cdd6c482 11053 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
11054 /* Can't redirect output if we've got an active mmap() */
11055 if (atomic_read(&event->mmap_count))
11056 goto unlock;
a4be7c27 11057
ac9721f3 11058 if (output_event) {
76369139
FW
11059 /* get the rb we want to redirect to */
11060 rb = ring_buffer_get(output_event);
11061 if (!rb)
ac9721f3 11062 goto unlock;
a4be7c27
PZ
11063 }
11064
b69cf536 11065 ring_buffer_attach(event, rb);
9bb5d40c 11066
a4be7c27 11067 ret = 0;
ac9721f3
PZ
11068unlock:
11069 mutex_unlock(&event->mmap_mutex);
11070
a4be7c27 11071out:
a4be7c27
PZ
11072 return ret;
11073}
11074
f63a8daa
PZ
11075static void mutex_lock_double(struct mutex *a, struct mutex *b)
11076{
11077 if (b < a)
11078 swap(a, b);
11079
11080 mutex_lock(a);
11081 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11082}
11083
34f43927
PZ
11084static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11085{
11086 bool nmi_safe = false;
11087
11088 switch (clk_id) {
11089 case CLOCK_MONOTONIC:
11090 event->clock = &ktime_get_mono_fast_ns;
11091 nmi_safe = true;
11092 break;
11093
11094 case CLOCK_MONOTONIC_RAW:
11095 event->clock = &ktime_get_raw_fast_ns;
11096 nmi_safe = true;
11097 break;
11098
11099 case CLOCK_REALTIME:
11100 event->clock = &ktime_get_real_ns;
11101 break;
11102
11103 case CLOCK_BOOTTIME:
9285ec4c 11104 event->clock = &ktime_get_boottime_ns;
34f43927
PZ
11105 break;
11106
11107 case CLOCK_TAI:
9285ec4c 11108 event->clock = &ktime_get_clocktai_ns;
34f43927
PZ
11109 break;
11110
11111 default:
11112 return -EINVAL;
11113 }
11114
11115 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11116 return -EINVAL;
11117
11118 return 0;
11119}
11120
321027c1
PZ
11121/*
11122 * Variation on perf_event_ctx_lock_nested(), except we take two context
11123 * mutexes.
11124 */
11125static struct perf_event_context *
11126__perf_event_ctx_lock_double(struct perf_event *group_leader,
11127 struct perf_event_context *ctx)
11128{
11129 struct perf_event_context *gctx;
11130
11131again:
11132 rcu_read_lock();
11133 gctx = READ_ONCE(group_leader->ctx);
8c94abbb 11134 if (!refcount_inc_not_zero(&gctx->refcount)) {
321027c1
PZ
11135 rcu_read_unlock();
11136 goto again;
11137 }
11138 rcu_read_unlock();
11139
11140 mutex_lock_double(&gctx->mutex, &ctx->mutex);
11141
11142 if (group_leader->ctx != gctx) {
11143 mutex_unlock(&ctx->mutex);
11144 mutex_unlock(&gctx->mutex);
11145 put_ctx(gctx);
11146 goto again;
11147 }
11148
11149 return gctx;
11150}
11151
0793a61d 11152/**
cdd6c482 11153 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 11154 *
cdd6c482 11155 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 11156 * @pid: target pid
9f66a381 11157 * @cpu: target cpu
cdd6c482 11158 * @group_fd: group leader event fd
0793a61d 11159 */
cdd6c482
IM
11160SYSCALL_DEFINE5(perf_event_open,
11161 struct perf_event_attr __user *, attr_uptr,
2743a5b0 11162 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 11163{
b04243ef
PZ
11164 struct perf_event *group_leader = NULL, *output_event = NULL;
11165 struct perf_event *event, *sibling;
cdd6c482 11166 struct perf_event_attr attr;
f63a8daa 11167 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 11168 struct file *event_file = NULL;
2903ff01 11169 struct fd group = {NULL, 0};
38a81da2 11170 struct task_struct *task = NULL;
89a1e187 11171 struct pmu *pmu;
ea635c64 11172 int event_fd;
b04243ef 11173 int move_group = 0;
dc86cabe 11174 int err;
a21b0b35 11175 int f_flags = O_RDWR;
79dff51e 11176 int cgroup_fd = -1;
0793a61d 11177
2743a5b0 11178 /* for future expandability... */
e5d1367f 11179 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
11180 return -EINVAL;
11181
da97e184
JFG
11182 /* Do we allow access to perf_event_open(2) ? */
11183 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11184 if (err)
11185 return err;
11186
dc86cabe
IM
11187 err = perf_copy_attr(attr_uptr, &attr);
11188 if (err)
11189 return err;
eab656ae 11190
0764771d 11191 if (!attr.exclude_kernel) {
da97e184
JFG
11192 err = perf_allow_kernel(&attr);
11193 if (err)
11194 return err;
0764771d
PZ
11195 }
11196
e4222673
HB
11197 if (attr.namespaces) {
11198 if (!capable(CAP_SYS_ADMIN))
11199 return -EACCES;
11200 }
11201
df58ab24 11202 if (attr.freq) {
cdd6c482 11203 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 11204 return -EINVAL;
0819b2e3
PZ
11205 } else {
11206 if (attr.sample_period & (1ULL << 63))
11207 return -EINVAL;
df58ab24
PZ
11208 }
11209
fc7ce9c7 11210 /* Only privileged users can get physical addresses */
da97e184
JFG
11211 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11212 err = perf_allow_kernel(&attr);
11213 if (err)
11214 return err;
11215 }
fc7ce9c7 11216
b0c8fdc7
DH
11217 err = security_locked_down(LOCKDOWN_PERF);
11218 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11219 /* REGS_INTR can leak data, lockdown must prevent this */
11220 return err;
11221
11222 err = 0;
11223
e5d1367f
SE
11224 /*
11225 * In cgroup mode, the pid argument is used to pass the fd
11226 * opened to the cgroup directory in cgroupfs. The cpu argument
11227 * designates the cpu on which to monitor threads from that
11228 * cgroup.
11229 */
11230 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11231 return -EINVAL;
11232
a21b0b35
YD
11233 if (flags & PERF_FLAG_FD_CLOEXEC)
11234 f_flags |= O_CLOEXEC;
11235
11236 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
11237 if (event_fd < 0)
11238 return event_fd;
11239
ac9721f3 11240 if (group_fd != -1) {
2903ff01
AV
11241 err = perf_fget_light(group_fd, &group);
11242 if (err)
d14b12d7 11243 goto err_fd;
2903ff01 11244 group_leader = group.file->private_data;
ac9721f3
PZ
11245 if (flags & PERF_FLAG_FD_OUTPUT)
11246 output_event = group_leader;
11247 if (flags & PERF_FLAG_FD_NO_GROUP)
11248 group_leader = NULL;
11249 }
11250
e5d1367f 11251 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
11252 task = find_lively_task_by_vpid(pid);
11253 if (IS_ERR(task)) {
11254 err = PTR_ERR(task);
11255 goto err_group_fd;
11256 }
11257 }
11258
1f4ee503
PZ
11259 if (task && group_leader &&
11260 group_leader->attr.inherit != attr.inherit) {
11261 err = -EINVAL;
11262 goto err_task;
11263 }
11264
79c9ce57
PZ
11265 if (task) {
11266 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
11267 if (err)
e5aeee51 11268 goto err_task;
79c9ce57
PZ
11269
11270 /*
11271 * Reuse ptrace permission checks for now.
11272 *
11273 * We must hold cred_guard_mutex across this and any potential
11274 * perf_install_in_context() call for this new event to
11275 * serialize against exec() altering our credentials (and the
11276 * perf_event_exit_task() that could imply).
11277 */
11278 err = -EACCES;
11279 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11280 goto err_cred;
11281 }
11282
79dff51e
MF
11283 if (flags & PERF_FLAG_PID_CGROUP)
11284 cgroup_fd = pid;
11285
4dc0da86 11286 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 11287 NULL, NULL, cgroup_fd);
d14b12d7
SE
11288 if (IS_ERR(event)) {
11289 err = PTR_ERR(event);
79c9ce57 11290 goto err_cred;
d14b12d7
SE
11291 }
11292
53b25335
VW
11293 if (is_sampling_event(event)) {
11294 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 11295 err = -EOPNOTSUPP;
53b25335
VW
11296 goto err_alloc;
11297 }
11298 }
11299
89a1e187
PZ
11300 /*
11301 * Special case software events and allow them to be part of
11302 * any hardware group.
11303 */
11304 pmu = event->pmu;
b04243ef 11305
34f43927
PZ
11306 if (attr.use_clockid) {
11307 err = perf_event_set_clock(event, attr.clockid);
11308 if (err)
11309 goto err_alloc;
11310 }
11311
4ff6a8de
DCC
11312 if (pmu->task_ctx_nr == perf_sw_context)
11313 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11314
a1150c20
SL
11315 if (group_leader) {
11316 if (is_software_event(event) &&
11317 !in_software_context(group_leader)) {
b04243ef 11318 /*
a1150c20
SL
11319 * If the event is a sw event, but the group_leader
11320 * is on hw context.
b04243ef 11321 *
a1150c20
SL
11322 * Allow the addition of software events to hw
11323 * groups, this is safe because software events
11324 * never fail to schedule.
b04243ef 11325 */
a1150c20
SL
11326 pmu = group_leader->ctx->pmu;
11327 } else if (!is_software_event(event) &&
11328 is_software_event(group_leader) &&
4ff6a8de 11329 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
11330 /*
11331 * In case the group is a pure software group, and we
11332 * try to add a hardware event, move the whole group to
11333 * the hardware context.
11334 */
11335 move_group = 1;
11336 }
11337 }
89a1e187
PZ
11338
11339 /*
11340 * Get the target context (task or percpu):
11341 */
4af57ef2 11342 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
11343 if (IS_ERR(ctx)) {
11344 err = PTR_ERR(ctx);
c6be5a5c 11345 goto err_alloc;
89a1e187
PZ
11346 }
11347
ccff286d 11348 /*
cdd6c482 11349 * Look up the group leader (we will attach this event to it):
04289bb9 11350 */
ac9721f3 11351 if (group_leader) {
dc86cabe 11352 err = -EINVAL;
04289bb9 11353
04289bb9 11354 /*
ccff286d
IM
11355 * Do not allow a recursive hierarchy (this new sibling
11356 * becoming part of another group-sibling):
11357 */
11358 if (group_leader->group_leader != group_leader)
c3f00c70 11359 goto err_context;
34f43927
PZ
11360
11361 /* All events in a group should have the same clock */
11362 if (group_leader->clock != event->clock)
11363 goto err_context;
11364
ccff286d 11365 /*
64aee2a9
MR
11366 * Make sure we're both events for the same CPU;
11367 * grouping events for different CPUs is broken; since
11368 * you can never concurrently schedule them anyhow.
04289bb9 11369 */
64aee2a9
MR
11370 if (group_leader->cpu != event->cpu)
11371 goto err_context;
c3c87e77 11372
64aee2a9
MR
11373 /*
11374 * Make sure we're both on the same task, or both
11375 * per-CPU events.
11376 */
11377 if (group_leader->ctx->task != ctx->task)
11378 goto err_context;
11379
11380 /*
11381 * Do not allow to attach to a group in a different task
11382 * or CPU context. If we're moving SW events, we'll fix
11383 * this up later, so allow that.
11384 */
11385 if (!move_group && group_leader->ctx != ctx)
11386 goto err_context;
b04243ef 11387
3b6f9e5c
PM
11388 /*
11389 * Only a group leader can be exclusive or pinned
11390 */
0d48696f 11391 if (attr.exclusive || attr.pinned)
c3f00c70 11392 goto err_context;
ac9721f3
PZ
11393 }
11394
11395 if (output_event) {
11396 err = perf_event_set_output(event, output_event);
11397 if (err)
c3f00c70 11398 goto err_context;
ac9721f3 11399 }
0793a61d 11400
a21b0b35
YD
11401 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11402 f_flags);
ea635c64
AV
11403 if (IS_ERR(event_file)) {
11404 err = PTR_ERR(event_file);
201c2f85 11405 event_file = NULL;
c3f00c70 11406 goto err_context;
ea635c64 11407 }
9b51f66d 11408
b04243ef 11409 if (move_group) {
321027c1
PZ
11410 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11411
84c4e620
PZ
11412 if (gctx->task == TASK_TOMBSTONE) {
11413 err = -ESRCH;
11414 goto err_locked;
11415 }
321027c1
PZ
11416
11417 /*
11418 * Check if we raced against another sys_perf_event_open() call
11419 * moving the software group underneath us.
11420 */
11421 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11422 /*
11423 * If someone moved the group out from under us, check
11424 * if this new event wound up on the same ctx, if so
11425 * its the regular !move_group case, otherwise fail.
11426 */
11427 if (gctx != ctx) {
11428 err = -EINVAL;
11429 goto err_locked;
11430 } else {
11431 perf_event_ctx_unlock(group_leader, gctx);
11432 move_group = 0;
11433 }
11434 }
8a58ddae
AS
11435
11436 /*
11437 * Failure to create exclusive events returns -EBUSY.
11438 */
11439 err = -EBUSY;
11440 if (!exclusive_event_installable(group_leader, ctx))
11441 goto err_locked;
11442
11443 for_each_sibling_event(sibling, group_leader) {
11444 if (!exclusive_event_installable(sibling, ctx))
11445 goto err_locked;
11446 }
f55fc2a5
PZ
11447 } else {
11448 mutex_lock(&ctx->mutex);
11449 }
11450
84c4e620
PZ
11451 if (ctx->task == TASK_TOMBSTONE) {
11452 err = -ESRCH;
11453 goto err_locked;
11454 }
11455
a723968c
PZ
11456 if (!perf_event_validate_size(event)) {
11457 err = -E2BIG;
11458 goto err_locked;
11459 }
11460
a63fbed7
TG
11461 if (!task) {
11462 /*
11463 * Check if the @cpu we're creating an event for is online.
11464 *
11465 * We use the perf_cpu_context::ctx::mutex to serialize against
11466 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11467 */
11468 struct perf_cpu_context *cpuctx =
11469 container_of(ctx, struct perf_cpu_context, ctx);
11470
11471 if (!cpuctx->online) {
11472 err = -ENODEV;
11473 goto err_locked;
11474 }
11475 }
11476
da9ec3d3
MR
11477 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11478 err = -EINVAL;
ab43762e 11479 goto err_locked;
da9ec3d3 11480 }
a63fbed7 11481
f55fc2a5
PZ
11482 /*
11483 * Must be under the same ctx::mutex as perf_install_in_context(),
11484 * because we need to serialize with concurrent event creation.
11485 */
11486 if (!exclusive_event_installable(event, ctx)) {
f55fc2a5
PZ
11487 err = -EBUSY;
11488 goto err_locked;
11489 }
f63a8daa 11490
f55fc2a5
PZ
11491 WARN_ON_ONCE(ctx->parent_ctx);
11492
79c9ce57
PZ
11493 /*
11494 * This is the point on no return; we cannot fail hereafter. This is
11495 * where we start modifying current state.
11496 */
11497
f55fc2a5 11498 if (move_group) {
f63a8daa
PZ
11499 /*
11500 * See perf_event_ctx_lock() for comments on the details
11501 * of swizzling perf_event::ctx.
11502 */
45a0e07a 11503 perf_remove_from_context(group_leader, 0);
279b5165 11504 put_ctx(gctx);
0231bb53 11505
edb39592 11506 for_each_sibling_event(sibling, group_leader) {
45a0e07a 11507 perf_remove_from_context(sibling, 0);
b04243ef
PZ
11508 put_ctx(gctx);
11509 }
b04243ef 11510
f63a8daa
PZ
11511 /*
11512 * Wait for everybody to stop referencing the events through
11513 * the old lists, before installing it on new lists.
11514 */
0cda4c02 11515 synchronize_rcu();
f63a8daa 11516
8f95b435
PZI
11517 /*
11518 * Install the group siblings before the group leader.
11519 *
11520 * Because a group leader will try and install the entire group
11521 * (through the sibling list, which is still in-tact), we can
11522 * end up with siblings installed in the wrong context.
11523 *
11524 * By installing siblings first we NO-OP because they're not
11525 * reachable through the group lists.
11526 */
edb39592 11527 for_each_sibling_event(sibling, group_leader) {
8f95b435 11528 perf_event__state_init(sibling);
9fc81d87 11529 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
11530 get_ctx(ctx);
11531 }
8f95b435
PZI
11532
11533 /*
11534 * Removing from the context ends up with disabled
11535 * event. What we want here is event in the initial
11536 * startup state, ready to be add into new context.
11537 */
11538 perf_event__state_init(group_leader);
11539 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11540 get_ctx(ctx);
bed5b25a
AS
11541 }
11542
f73e22ab
PZ
11543 /*
11544 * Precalculate sample_data sizes; do while holding ctx::mutex such
11545 * that we're serialized against further additions and before
11546 * perf_install_in_context() which is the point the event is active and
11547 * can use these values.
11548 */
11549 perf_event__header_size(event);
11550 perf_event__id_header_size(event);
11551
78cd2c74
PZ
11552 event->owner = current;
11553
e2d37cd2 11554 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11555 perf_unpin_context(ctx);
f63a8daa 11556
f55fc2a5 11557 if (move_group)
321027c1 11558 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 11559 mutex_unlock(&ctx->mutex);
9b51f66d 11560
79c9ce57
PZ
11561 if (task) {
11562 mutex_unlock(&task->signal->cred_guard_mutex);
11563 put_task_struct(task);
11564 }
11565
cdd6c482
IM
11566 mutex_lock(&current->perf_event_mutex);
11567 list_add_tail(&event->owner_entry, &current->perf_event_list);
11568 mutex_unlock(&current->perf_event_mutex);
082ff5a2 11569
8a49542c
PZ
11570 /*
11571 * Drop the reference on the group_event after placing the
11572 * new event on the sibling_list. This ensures destruction
11573 * of the group leader will find the pointer to itself in
11574 * perf_group_detach().
11575 */
2903ff01 11576 fdput(group);
ea635c64
AV
11577 fd_install(event_fd, event_file);
11578 return event_fd;
0793a61d 11579
f55fc2a5
PZ
11580err_locked:
11581 if (move_group)
321027c1 11582 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
11583 mutex_unlock(&ctx->mutex);
11584/* err_file: */
11585 fput(event_file);
c3f00c70 11586err_context:
fe4b04fa 11587 perf_unpin_context(ctx);
ea635c64 11588 put_ctx(ctx);
c6be5a5c 11589err_alloc:
13005627
PZ
11590 /*
11591 * If event_file is set, the fput() above will have called ->release()
11592 * and that will take care of freeing the event.
11593 */
11594 if (!event_file)
11595 free_event(event);
79c9ce57
PZ
11596err_cred:
11597 if (task)
11598 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 11599err_task:
e7d0bc04
PZ
11600 if (task)
11601 put_task_struct(task);
89a1e187 11602err_group_fd:
2903ff01 11603 fdput(group);
ea635c64
AV
11604err_fd:
11605 put_unused_fd(event_fd);
dc86cabe 11606 return err;
0793a61d
TG
11607}
11608
fb0459d7
AV
11609/**
11610 * perf_event_create_kernel_counter
11611 *
11612 * @attr: attributes of the counter to create
11613 * @cpu: cpu in which the counter is bound
38a81da2 11614 * @task: task to profile (NULL for percpu)
fb0459d7
AV
11615 */
11616struct perf_event *
11617perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 11618 struct task_struct *task,
4dc0da86
AK
11619 perf_overflow_handler_t overflow_handler,
11620 void *context)
fb0459d7 11621{
fb0459d7 11622 struct perf_event_context *ctx;
c3f00c70 11623 struct perf_event *event;
fb0459d7 11624 int err;
d859e29f 11625
dce5affb
AS
11626 /*
11627 * Grouping is not supported for kernel events, neither is 'AUX',
11628 * make sure the caller's intentions are adjusted.
11629 */
11630 if (attr->aux_output)
11631 return ERR_PTR(-EINVAL);
11632
4dc0da86 11633 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 11634 overflow_handler, context, -1);
c3f00c70
PZ
11635 if (IS_ERR(event)) {
11636 err = PTR_ERR(event);
11637 goto err;
11638 }
d859e29f 11639
f8697762 11640 /* Mark owner so we could distinguish it from user events. */
63b6da39 11641 event->owner = TASK_TOMBSTONE;
f8697762 11642
f25d8ba9
AS
11643 /*
11644 * Get the target context (task or percpu):
11645 */
4af57ef2 11646 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
11647 if (IS_ERR(ctx)) {
11648 err = PTR_ERR(ctx);
c3f00c70 11649 goto err_free;
d859e29f 11650 }
fb0459d7 11651
fb0459d7
AV
11652 WARN_ON_ONCE(ctx->parent_ctx);
11653 mutex_lock(&ctx->mutex);
84c4e620
PZ
11654 if (ctx->task == TASK_TOMBSTONE) {
11655 err = -ESRCH;
11656 goto err_unlock;
11657 }
11658
a63fbed7
TG
11659 if (!task) {
11660 /*
11661 * Check if the @cpu we're creating an event for is online.
11662 *
11663 * We use the perf_cpu_context::ctx::mutex to serialize against
11664 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11665 */
11666 struct perf_cpu_context *cpuctx =
11667 container_of(ctx, struct perf_cpu_context, ctx);
11668 if (!cpuctx->online) {
11669 err = -ENODEV;
11670 goto err_unlock;
11671 }
11672 }
11673
bed5b25a 11674 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 11675 err = -EBUSY;
84c4e620 11676 goto err_unlock;
bed5b25a
AS
11677 }
11678
4ce54af8 11679 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11680 perf_unpin_context(ctx);
fb0459d7
AV
11681 mutex_unlock(&ctx->mutex);
11682
fb0459d7
AV
11683 return event;
11684
84c4e620
PZ
11685err_unlock:
11686 mutex_unlock(&ctx->mutex);
11687 perf_unpin_context(ctx);
11688 put_ctx(ctx);
c3f00c70
PZ
11689err_free:
11690 free_event(event);
11691err:
c6567f64 11692 return ERR_PTR(err);
9b51f66d 11693}
fb0459d7 11694EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 11695
0cda4c02
YZ
11696void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11697{
11698 struct perf_event_context *src_ctx;
11699 struct perf_event_context *dst_ctx;
11700 struct perf_event *event, *tmp;
11701 LIST_HEAD(events);
11702
11703 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11704 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11705
f63a8daa
PZ
11706 /*
11707 * See perf_event_ctx_lock() for comments on the details
11708 * of swizzling perf_event::ctx.
11709 */
11710 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
11711 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11712 event_entry) {
45a0e07a 11713 perf_remove_from_context(event, 0);
9a545de0 11714 unaccount_event_cpu(event, src_cpu);
0cda4c02 11715 put_ctx(src_ctx);
9886167d 11716 list_add(&event->migrate_entry, &events);
0cda4c02 11717 }
0cda4c02 11718
8f95b435
PZI
11719 /*
11720 * Wait for the events to quiesce before re-instating them.
11721 */
0cda4c02
YZ
11722 synchronize_rcu();
11723
8f95b435
PZI
11724 /*
11725 * Re-instate events in 2 passes.
11726 *
11727 * Skip over group leaders and only install siblings on this first
11728 * pass, siblings will not get enabled without a leader, however a
11729 * leader will enable its siblings, even if those are still on the old
11730 * context.
11731 */
11732 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11733 if (event->group_leader == event)
11734 continue;
11735
11736 list_del(&event->migrate_entry);
11737 if (event->state >= PERF_EVENT_STATE_OFF)
11738 event->state = PERF_EVENT_STATE_INACTIVE;
11739 account_event_cpu(event, dst_cpu);
11740 perf_install_in_context(dst_ctx, event, dst_cpu);
11741 get_ctx(dst_ctx);
11742 }
11743
11744 /*
11745 * Once all the siblings are setup properly, install the group leaders
11746 * to make it go.
11747 */
9886167d
PZ
11748 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11749 list_del(&event->migrate_entry);
0cda4c02
YZ
11750 if (event->state >= PERF_EVENT_STATE_OFF)
11751 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 11752 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
11753 perf_install_in_context(dst_ctx, event, dst_cpu);
11754 get_ctx(dst_ctx);
11755 }
11756 mutex_unlock(&dst_ctx->mutex);
f63a8daa 11757 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
11758}
11759EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11760
cdd6c482 11761static void sync_child_event(struct perf_event *child_event,
38b200d6 11762 struct task_struct *child)
d859e29f 11763{
cdd6c482 11764 struct perf_event *parent_event = child_event->parent;
8bc20959 11765 u64 child_val;
d859e29f 11766
cdd6c482
IM
11767 if (child_event->attr.inherit_stat)
11768 perf_event_read_event(child_event, child);
38b200d6 11769
b5e58793 11770 child_val = perf_event_count(child_event);
d859e29f
PM
11771
11772 /*
11773 * Add back the child's count to the parent's count:
11774 */
a6e6dea6 11775 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
11776 atomic64_add(child_event->total_time_enabled,
11777 &parent_event->child_total_time_enabled);
11778 atomic64_add(child_event->total_time_running,
11779 &parent_event->child_total_time_running);
d859e29f
PM
11780}
11781
9b51f66d 11782static void
8ba289b8
PZ
11783perf_event_exit_event(struct perf_event *child_event,
11784 struct perf_event_context *child_ctx,
11785 struct task_struct *child)
9b51f66d 11786{
8ba289b8
PZ
11787 struct perf_event *parent_event = child_event->parent;
11788
1903d50c
PZ
11789 /*
11790 * Do not destroy the 'original' grouping; because of the context
11791 * switch optimization the original events could've ended up in a
11792 * random child task.
11793 *
11794 * If we were to destroy the original group, all group related
11795 * operations would cease to function properly after this random
11796 * child dies.
11797 *
11798 * Do destroy all inherited groups, we don't care about those
11799 * and being thorough is better.
11800 */
32132a3d
PZ
11801 raw_spin_lock_irq(&child_ctx->lock);
11802 WARN_ON_ONCE(child_ctx->is_active);
11803
8ba289b8 11804 if (parent_event)
32132a3d
PZ
11805 perf_group_detach(child_event);
11806 list_del_event(child_event, child_ctx);
0d3d73aa 11807 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 11808 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 11809
9b51f66d 11810 /*
8ba289b8 11811 * Parent events are governed by their filedesc, retain them.
9b51f66d 11812 */
8ba289b8 11813 if (!parent_event) {
179033b3 11814 perf_event_wakeup(child_event);
8ba289b8 11815 return;
4bcf349a 11816 }
8ba289b8
PZ
11817 /*
11818 * Child events can be cleaned up.
11819 */
11820
11821 sync_child_event(child_event, child);
11822
11823 /*
11824 * Remove this event from the parent's list
11825 */
11826 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11827 mutex_lock(&parent_event->child_mutex);
11828 list_del_init(&child_event->child_list);
11829 mutex_unlock(&parent_event->child_mutex);
11830
11831 /*
11832 * Kick perf_poll() for is_event_hup().
11833 */
11834 perf_event_wakeup(parent_event);
11835 free_event(child_event);
11836 put_event(parent_event);
9b51f66d
IM
11837}
11838
8dc85d54 11839static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 11840{
211de6eb 11841 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 11842 struct perf_event *child_event, *next;
63b6da39
PZ
11843
11844 WARN_ON_ONCE(child != current);
9b51f66d 11845
6a3351b6 11846 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 11847 if (!child_ctx)
9b51f66d
IM
11848 return;
11849
ad3a37de 11850 /*
6a3351b6
PZ
11851 * In order to reduce the amount of tricky in ctx tear-down, we hold
11852 * ctx::mutex over the entire thing. This serializes against almost
11853 * everything that wants to access the ctx.
11854 *
11855 * The exception is sys_perf_event_open() /
11856 * perf_event_create_kernel_count() which does find_get_context()
11857 * without ctx::mutex (it cannot because of the move_group double mutex
11858 * lock thing). See the comments in perf_install_in_context().
ad3a37de 11859 */
6a3351b6 11860 mutex_lock(&child_ctx->mutex);
c93f7669
PM
11861
11862 /*
6a3351b6
PZ
11863 * In a single ctx::lock section, de-schedule the events and detach the
11864 * context from the task such that we cannot ever get it scheduled back
11865 * in.
c93f7669 11866 */
6a3351b6 11867 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 11868 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 11869
71a851b4 11870 /*
63b6da39
PZ
11871 * Now that the context is inactive, destroy the task <-> ctx relation
11872 * and mark the context dead.
71a851b4 11873 */
63b6da39
PZ
11874 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11875 put_ctx(child_ctx); /* cannot be last */
11876 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11877 put_task_struct(current); /* cannot be last */
4a1c0f26 11878
211de6eb 11879 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 11880 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 11881
211de6eb
PZ
11882 if (clone_ctx)
11883 put_ctx(clone_ctx);
4a1c0f26 11884
9f498cc5 11885 /*
cdd6c482
IM
11886 * Report the task dead after unscheduling the events so that we
11887 * won't get any samples after PERF_RECORD_EXIT. We can however still
11888 * get a few PERF_RECORD_READ events.
9f498cc5 11889 */
cdd6c482 11890 perf_event_task(child, child_ctx, 0);
a63eaf34 11891
ebf905fc 11892 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 11893 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 11894
a63eaf34
PM
11895 mutex_unlock(&child_ctx->mutex);
11896
11897 put_ctx(child_ctx);
9b51f66d
IM
11898}
11899
8dc85d54
PZ
11900/*
11901 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
11902 *
11903 * Can be called with cred_guard_mutex held when called from
11904 * install_exec_creds().
8dc85d54
PZ
11905 */
11906void perf_event_exit_task(struct task_struct *child)
11907{
8882135b 11908 struct perf_event *event, *tmp;
8dc85d54
PZ
11909 int ctxn;
11910
8882135b
PZ
11911 mutex_lock(&child->perf_event_mutex);
11912 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11913 owner_entry) {
11914 list_del_init(&event->owner_entry);
11915
11916 /*
11917 * Ensure the list deletion is visible before we clear
11918 * the owner, closes a race against perf_release() where
11919 * we need to serialize on the owner->perf_event_mutex.
11920 */
f47c02c0 11921 smp_store_release(&event->owner, NULL);
8882135b
PZ
11922 }
11923 mutex_unlock(&child->perf_event_mutex);
11924
8dc85d54
PZ
11925 for_each_task_context_nr(ctxn)
11926 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
11927
11928 /*
11929 * The perf_event_exit_task_context calls perf_event_task
11930 * with child's task_ctx, which generates EXIT events for
11931 * child contexts and sets child->perf_event_ctxp[] to NULL.
11932 * At this point we need to send EXIT events to cpu contexts.
11933 */
11934 perf_event_task(child, NULL, 0);
8dc85d54
PZ
11935}
11936
889ff015
FW
11937static void perf_free_event(struct perf_event *event,
11938 struct perf_event_context *ctx)
11939{
11940 struct perf_event *parent = event->parent;
11941
11942 if (WARN_ON_ONCE(!parent))
11943 return;
11944
11945 mutex_lock(&parent->child_mutex);
11946 list_del_init(&event->child_list);
11947 mutex_unlock(&parent->child_mutex);
11948
a6fa941d 11949 put_event(parent);
889ff015 11950
652884fe 11951 raw_spin_lock_irq(&ctx->lock);
8a49542c 11952 perf_group_detach(event);
889ff015 11953 list_del_event(event, ctx);
652884fe 11954 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
11955 free_event(event);
11956}
11957
bbbee908 11958/*
1cf8dfe8
PZ
11959 * Free a context as created by inheritance by perf_event_init_task() below,
11960 * used by fork() in case of fail.
652884fe 11961 *
1cf8dfe8
PZ
11962 * Even though the task has never lived, the context and events have been
11963 * exposed through the child_list, so we must take care tearing it all down.
bbbee908 11964 */
cdd6c482 11965void perf_event_free_task(struct task_struct *task)
bbbee908 11966{
8dc85d54 11967 struct perf_event_context *ctx;
cdd6c482 11968 struct perf_event *event, *tmp;
8dc85d54 11969 int ctxn;
bbbee908 11970
8dc85d54
PZ
11971 for_each_task_context_nr(ctxn) {
11972 ctx = task->perf_event_ctxp[ctxn];
11973 if (!ctx)
11974 continue;
bbbee908 11975
8dc85d54 11976 mutex_lock(&ctx->mutex);
e552a838
PZ
11977 raw_spin_lock_irq(&ctx->lock);
11978 /*
11979 * Destroy the task <-> ctx relation and mark the context dead.
11980 *
11981 * This is important because even though the task hasn't been
11982 * exposed yet the context has been (through child_list).
11983 */
11984 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11985 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11986 put_task_struct(task); /* cannot be last */
11987 raw_spin_unlock_irq(&ctx->lock);
bbbee908 11988
15121c78 11989 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 11990 perf_free_event(event, ctx);
bbbee908 11991
8dc85d54 11992 mutex_unlock(&ctx->mutex);
1cf8dfe8
PZ
11993
11994 /*
11995 * perf_event_release_kernel() could've stolen some of our
11996 * child events and still have them on its free_list. In that
11997 * case we must wait for these events to have been freed (in
11998 * particular all their references to this task must've been
11999 * dropped).
12000 *
12001 * Without this copy_process() will unconditionally free this
12002 * task (irrespective of its reference count) and
12003 * _free_event()'s put_task_struct(event->hw.target) will be a
12004 * use-after-free.
12005 *
12006 * Wait for all events to drop their context reference.
12007 */
12008 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12009 put_ctx(ctx); /* must be last */
8dc85d54 12010 }
889ff015
FW
12011}
12012
4e231c79
PZ
12013void perf_event_delayed_put(struct task_struct *task)
12014{
12015 int ctxn;
12016
12017 for_each_task_context_nr(ctxn)
12018 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12019}
12020
e03e7ee3 12021struct file *perf_event_get(unsigned int fd)
ffe8690c 12022{
02e5ad97 12023 struct file *file = fget(fd);
e03e7ee3
AS
12024 if (!file)
12025 return ERR_PTR(-EBADF);
ffe8690c 12026
e03e7ee3
AS
12027 if (file->f_op != &perf_fops) {
12028 fput(file);
12029 return ERR_PTR(-EBADF);
12030 }
ffe8690c 12031
e03e7ee3 12032 return file;
ffe8690c
KX
12033}
12034
f8d959a5
YS
12035const struct perf_event *perf_get_event(struct file *file)
12036{
12037 if (file->f_op != &perf_fops)
12038 return ERR_PTR(-EINVAL);
12039
12040 return file->private_data;
12041}
12042
ffe8690c
KX
12043const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12044{
12045 if (!event)
12046 return ERR_PTR(-EINVAL);
12047
12048 return &event->attr;
12049}
12050
97dee4f3 12051/*
788faab7 12052 * Inherit an event from parent task to child task.
d8a8cfc7
PZ
12053 *
12054 * Returns:
12055 * - valid pointer on success
12056 * - NULL for orphaned events
12057 * - IS_ERR() on error
97dee4f3
PZ
12058 */
12059static struct perf_event *
12060inherit_event(struct perf_event *parent_event,
12061 struct task_struct *parent,
12062 struct perf_event_context *parent_ctx,
12063 struct task_struct *child,
12064 struct perf_event *group_leader,
12065 struct perf_event_context *child_ctx)
12066{
8ca2bd41 12067 enum perf_event_state parent_state = parent_event->state;
97dee4f3 12068 struct perf_event *child_event;
cee010ec 12069 unsigned long flags;
97dee4f3
PZ
12070
12071 /*
12072 * Instead of creating recursive hierarchies of events,
12073 * we link inherited events back to the original parent,
12074 * which has a filp for sure, which we use as the reference
12075 * count:
12076 */
12077 if (parent_event->parent)
12078 parent_event = parent_event->parent;
12079
12080 child_event = perf_event_alloc(&parent_event->attr,
12081 parent_event->cpu,
d580ff86 12082 child,
97dee4f3 12083 group_leader, parent_event,
79dff51e 12084 NULL, NULL, -1);
97dee4f3
PZ
12085 if (IS_ERR(child_event))
12086 return child_event;
a6fa941d 12087
313ccb96
JO
12088
12089 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12090 !child_ctx->task_ctx_data) {
12091 struct pmu *pmu = child_event->pmu;
12092
12093 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12094 GFP_KERNEL);
12095 if (!child_ctx->task_ctx_data) {
12096 free_event(child_event);
697d8778 12097 return ERR_PTR(-ENOMEM);
313ccb96
JO
12098 }
12099 }
12100
c6e5b732
PZ
12101 /*
12102 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12103 * must be under the same lock in order to serialize against
12104 * perf_event_release_kernel(), such that either we must observe
12105 * is_orphaned_event() or they will observe us on the child_list.
12106 */
12107 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
12108 if (is_orphaned_event(parent_event) ||
12109 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 12110 mutex_unlock(&parent_event->child_mutex);
313ccb96 12111 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
12112 free_event(child_event);
12113 return NULL;
12114 }
12115
97dee4f3
PZ
12116 get_ctx(child_ctx);
12117
12118 /*
12119 * Make the child state follow the state of the parent event,
12120 * not its attr.disabled bit. We hold the parent's mutex,
12121 * so we won't race with perf_event_{en, dis}able_family.
12122 */
1929def9 12123 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
12124 child_event->state = PERF_EVENT_STATE_INACTIVE;
12125 else
12126 child_event->state = PERF_EVENT_STATE_OFF;
12127
12128 if (parent_event->attr.freq) {
12129 u64 sample_period = parent_event->hw.sample_period;
12130 struct hw_perf_event *hwc = &child_event->hw;
12131
12132 hwc->sample_period = sample_period;
12133 hwc->last_period = sample_period;
12134
12135 local64_set(&hwc->period_left, sample_period);
12136 }
12137
12138 child_event->ctx = child_ctx;
12139 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
12140 child_event->overflow_handler_context
12141 = parent_event->overflow_handler_context;
97dee4f3 12142
614b6780
TG
12143 /*
12144 * Precalculate sample_data sizes
12145 */
12146 perf_event__header_size(child_event);
6844c09d 12147 perf_event__id_header_size(child_event);
614b6780 12148
97dee4f3
PZ
12149 /*
12150 * Link it up in the child's context:
12151 */
cee010ec 12152 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 12153 add_event_to_ctx(child_event, child_ctx);
cee010ec 12154 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 12155
97dee4f3
PZ
12156 /*
12157 * Link this into the parent event's child list
12158 */
97dee4f3
PZ
12159 list_add_tail(&child_event->child_list, &parent_event->child_list);
12160 mutex_unlock(&parent_event->child_mutex);
12161
12162 return child_event;
12163}
12164
d8a8cfc7
PZ
12165/*
12166 * Inherits an event group.
12167 *
12168 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12169 * This matches with perf_event_release_kernel() removing all child events.
12170 *
12171 * Returns:
12172 * - 0 on success
12173 * - <0 on error
12174 */
97dee4f3
PZ
12175static int inherit_group(struct perf_event *parent_event,
12176 struct task_struct *parent,
12177 struct perf_event_context *parent_ctx,
12178 struct task_struct *child,
12179 struct perf_event_context *child_ctx)
12180{
12181 struct perf_event *leader;
12182 struct perf_event *sub;
12183 struct perf_event *child_ctr;
12184
12185 leader = inherit_event(parent_event, parent, parent_ctx,
12186 child, NULL, child_ctx);
12187 if (IS_ERR(leader))
12188 return PTR_ERR(leader);
d8a8cfc7
PZ
12189 /*
12190 * @leader can be NULL here because of is_orphaned_event(). In this
12191 * case inherit_event() will create individual events, similar to what
12192 * perf_group_detach() would do anyway.
12193 */
edb39592 12194 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
12195 child_ctr = inherit_event(sub, parent, parent_ctx,
12196 child, leader, child_ctx);
12197 if (IS_ERR(child_ctr))
12198 return PTR_ERR(child_ctr);
f733c6b5 12199
00496fe5 12200 if (sub->aux_event == parent_event && child_ctr &&
f733c6b5
AS
12201 !perf_get_aux_event(child_ctr, leader))
12202 return -EINVAL;
97dee4f3
PZ
12203 }
12204 return 0;
889ff015
FW
12205}
12206
d8a8cfc7
PZ
12207/*
12208 * Creates the child task context and tries to inherit the event-group.
12209 *
12210 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12211 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12212 * consistent with perf_event_release_kernel() removing all child events.
12213 *
12214 * Returns:
12215 * - 0 on success
12216 * - <0 on error
12217 */
889ff015
FW
12218static int
12219inherit_task_group(struct perf_event *event, struct task_struct *parent,
12220 struct perf_event_context *parent_ctx,
8dc85d54 12221 struct task_struct *child, int ctxn,
889ff015
FW
12222 int *inherited_all)
12223{
12224 int ret;
8dc85d54 12225 struct perf_event_context *child_ctx;
889ff015
FW
12226
12227 if (!event->attr.inherit) {
12228 *inherited_all = 0;
12229 return 0;
bbbee908
PZ
12230 }
12231
fe4b04fa 12232 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
12233 if (!child_ctx) {
12234 /*
12235 * This is executed from the parent task context, so
12236 * inherit events that have been marked for cloning.
12237 * First allocate and initialize a context for the
12238 * child.
12239 */
734df5ab 12240 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
12241 if (!child_ctx)
12242 return -ENOMEM;
bbbee908 12243
8dc85d54 12244 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
12245 }
12246
12247 ret = inherit_group(event, parent, parent_ctx,
12248 child, child_ctx);
12249
12250 if (ret)
12251 *inherited_all = 0;
12252
12253 return ret;
bbbee908
PZ
12254}
12255
9b51f66d 12256/*
cdd6c482 12257 * Initialize the perf_event context in task_struct
9b51f66d 12258 */
985c8dcb 12259static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 12260{
889ff015 12261 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
12262 struct perf_event_context *cloned_ctx;
12263 struct perf_event *event;
9b51f66d 12264 struct task_struct *parent = current;
564c2b21 12265 int inherited_all = 1;
dddd3379 12266 unsigned long flags;
6ab423e0 12267 int ret = 0;
9b51f66d 12268
8dc85d54 12269 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
12270 return 0;
12271
ad3a37de 12272 /*
25346b93
PM
12273 * If the parent's context is a clone, pin it so it won't get
12274 * swapped under us.
ad3a37de 12275 */
8dc85d54 12276 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
12277 if (!parent_ctx)
12278 return 0;
25346b93 12279
ad3a37de
PM
12280 /*
12281 * No need to check if parent_ctx != NULL here; since we saw
12282 * it non-NULL earlier, the only reason for it to become NULL
12283 * is if we exit, and since we're currently in the middle of
12284 * a fork we can't be exiting at the same time.
12285 */
ad3a37de 12286
9b51f66d
IM
12287 /*
12288 * Lock the parent list. No need to lock the child - not PID
12289 * hashed yet and not running, so nobody can access it.
12290 */
d859e29f 12291 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
12292
12293 /*
12294 * We dont have to disable NMIs - we are only looking at
12295 * the list, not manipulating it:
12296 */
6e6804d2 12297 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54
PZ
12298 ret = inherit_task_group(event, parent, parent_ctx,
12299 child, ctxn, &inherited_all);
889ff015 12300 if (ret)
e7cc4865 12301 goto out_unlock;
889ff015 12302 }
b93f7978 12303
dddd3379
TG
12304 /*
12305 * We can't hold ctx->lock when iterating the ->flexible_group list due
12306 * to allocations, but we need to prevent rotation because
12307 * rotate_ctx() will change the list from interrupt context.
12308 */
12309 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12310 parent_ctx->rotate_disable = 1;
12311 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12312
6e6804d2 12313 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54
PZ
12314 ret = inherit_task_group(event, parent, parent_ctx,
12315 child, ctxn, &inherited_all);
889ff015 12316 if (ret)
e7cc4865 12317 goto out_unlock;
564c2b21
PM
12318 }
12319
dddd3379
TG
12320 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12321 parent_ctx->rotate_disable = 0;
dddd3379 12322
8dc85d54 12323 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 12324
05cbaa28 12325 if (child_ctx && inherited_all) {
564c2b21
PM
12326 /*
12327 * Mark the child context as a clone of the parent
12328 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
12329 *
12330 * Note that if the parent is a clone, the holding of
12331 * parent_ctx->lock avoids it from being uncloned.
564c2b21 12332 */
c5ed5145 12333 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
12334 if (cloned_ctx) {
12335 child_ctx->parent_ctx = cloned_ctx;
25346b93 12336 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
12337 } else {
12338 child_ctx->parent_ctx = parent_ctx;
12339 child_ctx->parent_gen = parent_ctx->generation;
12340 }
12341 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
12342 }
12343
c5ed5145 12344 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 12345out_unlock:
d859e29f 12346 mutex_unlock(&parent_ctx->mutex);
6ab423e0 12347
25346b93 12348 perf_unpin_context(parent_ctx);
fe4b04fa 12349 put_ctx(parent_ctx);
ad3a37de 12350
6ab423e0 12351 return ret;
9b51f66d
IM
12352}
12353
8dc85d54
PZ
12354/*
12355 * Initialize the perf_event context in task_struct
12356 */
12357int perf_event_init_task(struct task_struct *child)
12358{
12359 int ctxn, ret;
12360
8550d7cb
ON
12361 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12362 mutex_init(&child->perf_event_mutex);
12363 INIT_LIST_HEAD(&child->perf_event_list);
12364
8dc85d54
PZ
12365 for_each_task_context_nr(ctxn) {
12366 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
12367 if (ret) {
12368 perf_event_free_task(child);
8dc85d54 12369 return ret;
6c72e350 12370 }
8dc85d54
PZ
12371 }
12372
12373 return 0;
12374}
12375
220b140b
PM
12376static void __init perf_event_init_all_cpus(void)
12377{
b28ab83c 12378 struct swevent_htable *swhash;
220b140b 12379 int cpu;
220b140b 12380
a63fbed7
TG
12381 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12382
220b140b 12383 for_each_possible_cpu(cpu) {
b28ab83c
PZ
12384 swhash = &per_cpu(swevent_htable, cpu);
12385 mutex_init(&swhash->hlist_mutex);
2fde4f94 12386 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
12387
12388 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12389 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 12390
058fe1c0
DCC
12391#ifdef CONFIG_CGROUP_PERF
12392 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12393#endif
e48c1788 12394 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
12395 }
12396}
12397
d18bf422 12398static void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 12399{
108b02cf 12400 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 12401
b28ab83c 12402 mutex_lock(&swhash->hlist_mutex);
059fcd8c 12403 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
12404 struct swevent_hlist *hlist;
12405
b28ab83c
PZ
12406 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12407 WARN_ON(!hlist);
12408 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 12409 }
b28ab83c 12410 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
12411}
12412
2965faa5 12413#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 12414static void __perf_event_exit_context(void *__info)
0793a61d 12415{
108b02cf 12416 struct perf_event_context *ctx = __info;
fae3fde6
PZ
12417 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12418 struct perf_event *event;
0793a61d 12419
fae3fde6 12420 raw_spin_lock(&ctx->lock);
0ee098c9 12421 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 12422 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 12423 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 12424 raw_spin_unlock(&ctx->lock);
0793a61d 12425}
108b02cf
PZ
12426
12427static void perf_event_exit_cpu_context(int cpu)
12428{
a63fbed7 12429 struct perf_cpu_context *cpuctx;
108b02cf
PZ
12430 struct perf_event_context *ctx;
12431 struct pmu *pmu;
108b02cf 12432
a63fbed7
TG
12433 mutex_lock(&pmus_lock);
12434 list_for_each_entry(pmu, &pmus, entry) {
12435 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12436 ctx = &cpuctx->ctx;
108b02cf
PZ
12437
12438 mutex_lock(&ctx->mutex);
12439 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 12440 cpuctx->online = 0;
108b02cf
PZ
12441 mutex_unlock(&ctx->mutex);
12442 }
a63fbed7
TG
12443 cpumask_clear_cpu(cpu, perf_online_mask);
12444 mutex_unlock(&pmus_lock);
108b02cf 12445}
00e16c3d
TG
12446#else
12447
12448static void perf_event_exit_cpu_context(int cpu) { }
12449
12450#endif
108b02cf 12451
a63fbed7
TG
12452int perf_event_init_cpu(unsigned int cpu)
12453{
12454 struct perf_cpu_context *cpuctx;
12455 struct perf_event_context *ctx;
12456 struct pmu *pmu;
12457
12458 perf_swevent_init_cpu(cpu);
12459
12460 mutex_lock(&pmus_lock);
12461 cpumask_set_cpu(cpu, perf_online_mask);
12462 list_for_each_entry(pmu, &pmus, entry) {
12463 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12464 ctx = &cpuctx->ctx;
12465
12466 mutex_lock(&ctx->mutex);
12467 cpuctx->online = 1;
12468 mutex_unlock(&ctx->mutex);
12469 }
12470 mutex_unlock(&pmus_lock);
12471
12472 return 0;
12473}
12474
00e16c3d 12475int perf_event_exit_cpu(unsigned int cpu)
0793a61d 12476{
e3703f8c 12477 perf_event_exit_cpu_context(cpu);
00e16c3d 12478 return 0;
0793a61d 12479}
0793a61d 12480
c277443c
PZ
12481static int
12482perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12483{
12484 int cpu;
12485
12486 for_each_online_cpu(cpu)
12487 perf_event_exit_cpu(cpu);
12488
12489 return NOTIFY_OK;
12490}
12491
12492/*
12493 * Run the perf reboot notifier at the very last possible moment so that
12494 * the generic watchdog code runs as long as possible.
12495 */
12496static struct notifier_block perf_reboot_notifier = {
12497 .notifier_call = perf_reboot,
12498 .priority = INT_MIN,
12499};
12500
cdd6c482 12501void __init perf_event_init(void)
0793a61d 12502{
3c502e7a
JW
12503 int ret;
12504
2e80a82a
PZ
12505 idr_init(&pmu_idr);
12506
220b140b 12507 perf_event_init_all_cpus();
b0a873eb 12508 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
12509 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12510 perf_pmu_register(&perf_cpu_clock, NULL, -1);
12511 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 12512 perf_tp_register();
00e16c3d 12513 perf_event_init_cpu(smp_processor_id());
c277443c 12514 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
12515
12516 ret = init_hw_breakpoint();
12517 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 12518
b01c3a00
JO
12519 /*
12520 * Build time assertion that we keep the data_head at the intended
12521 * location. IOW, validation we got the __reserved[] size right.
12522 */
12523 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12524 != 1024);
0793a61d 12525}
abe43400 12526
fd979c01
CS
12527ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12528 char *page)
12529{
12530 struct perf_pmu_events_attr *pmu_attr =
12531 container_of(attr, struct perf_pmu_events_attr, attr);
12532
12533 if (pmu_attr->event_str)
12534 return sprintf(page, "%s\n", pmu_attr->event_str);
12535
12536 return 0;
12537}
675965b0 12538EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 12539
abe43400
PZ
12540static int __init perf_event_sysfs_init(void)
12541{
12542 struct pmu *pmu;
12543 int ret;
12544
12545 mutex_lock(&pmus_lock);
12546
12547 ret = bus_register(&pmu_bus);
12548 if (ret)
12549 goto unlock;
12550
12551 list_for_each_entry(pmu, &pmus, entry) {
12552 if (!pmu->name || pmu->type < 0)
12553 continue;
12554
12555 ret = pmu_dev_alloc(pmu);
12556 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12557 }
12558 pmu_bus_running = 1;
12559 ret = 0;
12560
12561unlock:
12562 mutex_unlock(&pmus_lock);
12563
12564 return ret;
12565}
12566device_initcall(perf_event_sysfs_init);
e5d1367f
SE
12567
12568#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
12569static struct cgroup_subsys_state *
12570perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
12571{
12572 struct perf_cgroup *jc;
e5d1367f 12573
1b15d055 12574 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
12575 if (!jc)
12576 return ERR_PTR(-ENOMEM);
12577
e5d1367f
SE
12578 jc->info = alloc_percpu(struct perf_cgroup_info);
12579 if (!jc->info) {
12580 kfree(jc);
12581 return ERR_PTR(-ENOMEM);
12582 }
12583
e5d1367f
SE
12584 return &jc->css;
12585}
12586
eb95419b 12587static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 12588{
eb95419b
TH
12589 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12590
e5d1367f
SE
12591 free_percpu(jc->info);
12592 kfree(jc);
12593}
12594
12595static int __perf_cgroup_move(void *info)
12596{
12597 struct task_struct *task = info;
ddaaf4e2 12598 rcu_read_lock();
e5d1367f 12599 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 12600 rcu_read_unlock();
e5d1367f
SE
12601 return 0;
12602}
12603
1f7dd3e5 12604static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 12605{
bb9d97b6 12606 struct task_struct *task;
1f7dd3e5 12607 struct cgroup_subsys_state *css;
bb9d97b6 12608
1f7dd3e5 12609 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 12610 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
12611}
12612
073219e9 12613struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
12614 .css_alloc = perf_cgroup_css_alloc,
12615 .css_free = perf_cgroup_css_free,
bb9d97b6 12616 .attach = perf_cgroup_attach,
968ebff1
TH
12617 /*
12618 * Implicitly enable on dfl hierarchy so that perf events can
12619 * always be filtered by cgroup2 path as long as perf_event
12620 * controller is not mounted on a legacy hierarchy.
12621 */
12622 .implicit_on_dfl = true,
8cfd8147 12623 .threaded = true,
e5d1367f
SE
12624};
12625#endif /* CONFIG_CGROUP_PERF */