]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/events/core.c
hw_breakpoint: Add perf_event_attr fields check in __modify_user_hw_breakpoint()
[mirror_ubuntu-hirsute-kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6 211
16444645 212 lockdep_assert_irqs_disabled();
fae3fde6 213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
16444645 309 lockdep_assert_irqs_disabled();
cca20946
PZ
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
8d5bce0c 433static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
9e630205 434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
0d3d73aa
PZ
585/*
586 * State based event timekeeping...
587 *
588 * The basic idea is to use event->state to determine which (if any) time
589 * fields to increment with the current delta. This means we only need to
590 * update timestamps when we change state or when they are explicitly requested
591 * (read).
592 *
593 * Event groups make things a little more complicated, but not terribly so. The
594 * rules for a group are that if the group leader is OFF the entire group is
595 * OFF, irrespecive of what the group member states are. This results in
596 * __perf_effective_state().
597 *
598 * A futher ramification is that when a group leader flips between OFF and
599 * !OFF, we need to update all group member times.
600 *
601 *
602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603 * need to make sure the relevant context time is updated before we try and
604 * update our timestamps.
605 */
606
607static __always_inline enum perf_event_state
608__perf_effective_state(struct perf_event *event)
609{
610 struct perf_event *leader = event->group_leader;
611
612 if (leader->state <= PERF_EVENT_STATE_OFF)
613 return leader->state;
614
615 return event->state;
616}
617
618static __always_inline void
619__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620{
621 enum perf_event_state state = __perf_effective_state(event);
622 u64 delta = now - event->tstamp;
623
624 *enabled = event->total_time_enabled;
625 if (state >= PERF_EVENT_STATE_INACTIVE)
626 *enabled += delta;
627
628 *running = event->total_time_running;
629 if (state >= PERF_EVENT_STATE_ACTIVE)
630 *running += delta;
631}
632
633static void perf_event_update_time(struct perf_event *event)
634{
635 u64 now = perf_event_time(event);
636
637 __perf_update_times(event, now, &event->total_time_enabled,
638 &event->total_time_running);
639 event->tstamp = now;
640}
641
642static void perf_event_update_sibling_time(struct perf_event *leader)
643{
644 struct perf_event *sibling;
645
8343aae6 646 list_for_each_entry(sibling, &leader->sibling_list, sibling_list)
0d3d73aa
PZ
647 perf_event_update_time(sibling);
648}
649
650static void
651perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652{
653 if (event->state == state)
654 return;
655
656 perf_event_update_time(event);
657 /*
658 * If a group leader gets enabled/disabled all its siblings
659 * are affected too.
660 */
661 if ((event->state < 0) ^ (state < 0))
662 perf_event_update_sibling_time(event);
663
664 WRITE_ONCE(event->state, state);
665}
666
e5d1367f
SE
667#ifdef CONFIG_CGROUP_PERF
668
e5d1367f
SE
669static inline bool
670perf_cgroup_match(struct perf_event *event)
671{
672 struct perf_event_context *ctx = event->ctx;
673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
ef824fa1
TH
675 /* @event doesn't care about cgroup */
676 if (!event->cgrp)
677 return true;
678
679 /* wants specific cgroup scope but @cpuctx isn't associated with any */
680 if (!cpuctx->cgrp)
681 return false;
682
683 /*
684 * Cgroup scoping is recursive. An event enabled for a cgroup is
685 * also enabled for all its descendant cgroups. If @cpuctx's
686 * cgroup is a descendant of @event's (the test covers identity
687 * case), it's a match.
688 */
689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 event->cgrp->css.cgroup);
e5d1367f
SE
691}
692
e5d1367f
SE
693static inline void perf_detach_cgroup(struct perf_event *event)
694{
4e2ba650 695 css_put(&event->cgrp->css);
e5d1367f
SE
696 event->cgrp = NULL;
697}
698
699static inline int is_cgroup_event(struct perf_event *event)
700{
701 return event->cgrp != NULL;
702}
703
704static inline u64 perf_cgroup_event_time(struct perf_event *event)
705{
706 struct perf_cgroup_info *t;
707
708 t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 return t->time;
710}
711
712static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713{
714 struct perf_cgroup_info *info;
715 u64 now;
716
717 now = perf_clock();
718
719 info = this_cpu_ptr(cgrp->info);
720
721 info->time += now - info->timestamp;
722 info->timestamp = now;
723}
724
725static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726{
727 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728 if (cgrp_out)
729 __update_cgrp_time(cgrp_out);
730}
731
732static inline void update_cgrp_time_from_event(struct perf_event *event)
733{
3f7cce3c
SE
734 struct perf_cgroup *cgrp;
735
e5d1367f 736 /*
3f7cce3c
SE
737 * ensure we access cgroup data only when needed and
738 * when we know the cgroup is pinned (css_get)
e5d1367f 739 */
3f7cce3c 740 if (!is_cgroup_event(event))
e5d1367f
SE
741 return;
742
614e4c4e 743 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
744 /*
745 * Do not update time when cgroup is not active
746 */
e6a52033 747 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 748 __update_cgrp_time(event->cgrp);
e5d1367f
SE
749}
750
751static inline void
3f7cce3c
SE
752perf_cgroup_set_timestamp(struct task_struct *task,
753 struct perf_event_context *ctx)
e5d1367f
SE
754{
755 struct perf_cgroup *cgrp;
756 struct perf_cgroup_info *info;
757
3f7cce3c
SE
758 /*
759 * ctx->lock held by caller
760 * ensure we do not access cgroup data
761 * unless we have the cgroup pinned (css_get)
762 */
763 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
764 return;
765
614e4c4e 766 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 767 info = this_cpu_ptr(cgrp->info);
3f7cce3c 768 info->timestamp = ctx->timestamp;
e5d1367f
SE
769}
770
058fe1c0
DCC
771static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
772
e5d1367f
SE
773#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
774#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
775
776/*
777 * reschedule events based on the cgroup constraint of task.
778 *
779 * mode SWOUT : schedule out everything
780 * mode SWIN : schedule in based on cgroup for next
781 */
18ab2cd3 782static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
783{
784 struct perf_cpu_context *cpuctx;
058fe1c0 785 struct list_head *list;
e5d1367f
SE
786 unsigned long flags;
787
788 /*
058fe1c0
DCC
789 * Disable interrupts and preemption to avoid this CPU's
790 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
791 */
792 local_irq_save(flags);
793
058fe1c0
DCC
794 list = this_cpu_ptr(&cgrp_cpuctx_list);
795 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 797
058fe1c0
DCC
798 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 800
058fe1c0
DCC
801 if (mode & PERF_CGROUP_SWOUT) {
802 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
803 /*
804 * must not be done before ctxswout due
805 * to event_filter_match() in event_sched_out()
806 */
807 cpuctx->cgrp = NULL;
808 }
e5d1367f 809
058fe1c0
DCC
810 if (mode & PERF_CGROUP_SWIN) {
811 WARN_ON_ONCE(cpuctx->cgrp);
812 /*
813 * set cgrp before ctxsw in to allow
814 * event_filter_match() to not have to pass
815 * task around
816 * we pass the cpuctx->ctx to perf_cgroup_from_task()
817 * because cgorup events are only per-cpu
818 */
819 cpuctx->cgrp = perf_cgroup_from_task(task,
820 &cpuctx->ctx);
821 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 822 }
058fe1c0
DCC
823 perf_pmu_enable(cpuctx->ctx.pmu);
824 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
825 }
826
e5d1367f
SE
827 local_irq_restore(flags);
828}
829
a8d757ef
SE
830static inline void perf_cgroup_sched_out(struct task_struct *task,
831 struct task_struct *next)
e5d1367f 832{
a8d757ef
SE
833 struct perf_cgroup *cgrp1;
834 struct perf_cgroup *cgrp2 = NULL;
835
ddaaf4e2 836 rcu_read_lock();
a8d757ef
SE
837 /*
838 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
839 * we do not need to pass the ctx here because we know
840 * we are holding the rcu lock
a8d757ef 841 */
614e4c4e 842 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 843 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
844
845 /*
846 * only schedule out current cgroup events if we know
847 * that we are switching to a different cgroup. Otherwise,
848 * do no touch the cgroup events.
849 */
850 if (cgrp1 != cgrp2)
851 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
852
853 rcu_read_unlock();
e5d1367f
SE
854}
855
a8d757ef
SE
856static inline void perf_cgroup_sched_in(struct task_struct *prev,
857 struct task_struct *task)
e5d1367f 858{
a8d757ef
SE
859 struct perf_cgroup *cgrp1;
860 struct perf_cgroup *cgrp2 = NULL;
861
ddaaf4e2 862 rcu_read_lock();
a8d757ef
SE
863 /*
864 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
865 * we do not need to pass the ctx here because we know
866 * we are holding the rcu lock
a8d757ef 867 */
614e4c4e 868 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 869 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
870
871 /*
872 * only need to schedule in cgroup events if we are changing
873 * cgroup during ctxsw. Cgroup events were not scheduled
874 * out of ctxsw out if that was not the case.
875 */
876 if (cgrp1 != cgrp2)
877 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
878
879 rcu_read_unlock();
e5d1367f
SE
880}
881
882static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883 struct perf_event_attr *attr,
884 struct perf_event *group_leader)
885{
886 struct perf_cgroup *cgrp;
887 struct cgroup_subsys_state *css;
2903ff01
AV
888 struct fd f = fdget(fd);
889 int ret = 0;
e5d1367f 890
2903ff01 891 if (!f.file)
e5d1367f
SE
892 return -EBADF;
893
b583043e 894 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 895 &perf_event_cgrp_subsys);
3db272c0
LZ
896 if (IS_ERR(css)) {
897 ret = PTR_ERR(css);
898 goto out;
899 }
e5d1367f
SE
900
901 cgrp = container_of(css, struct perf_cgroup, css);
902 event->cgrp = cgrp;
903
904 /*
905 * all events in a group must monitor
906 * the same cgroup because a task belongs
907 * to only one perf cgroup at a time
908 */
909 if (group_leader && group_leader->cgrp != cgrp) {
910 perf_detach_cgroup(event);
911 ret = -EINVAL;
e5d1367f 912 }
3db272c0 913out:
2903ff01 914 fdput(f);
e5d1367f
SE
915 return ret;
916}
917
918static inline void
919perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
920{
921 struct perf_cgroup_info *t;
922 t = per_cpu_ptr(event->cgrp->info, event->cpu);
923 event->shadow_ctx_time = now - t->timestamp;
924}
925
db4a8356
DCC
926/*
927 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928 * cleared when last cgroup event is removed.
929 */
930static inline void
931list_update_cgroup_event(struct perf_event *event,
932 struct perf_event_context *ctx, bool add)
933{
934 struct perf_cpu_context *cpuctx;
058fe1c0 935 struct list_head *cpuctx_entry;
db4a8356
DCC
936
937 if (!is_cgroup_event(event))
938 return;
939
db4a8356
DCC
940 /*
941 * Because cgroup events are always per-cpu events,
942 * this will always be called from the right CPU.
943 */
944 cpuctx = __get_cpu_context(ctx);
33801b94 945
946 /*
947 * Since setting cpuctx->cgrp is conditional on the current @cgrp
948 * matching the event's cgroup, we must do this for every new event,
949 * because if the first would mismatch, the second would not try again
950 * and we would leave cpuctx->cgrp unset.
951 */
952 if (add && !cpuctx->cgrp) {
be96b316
TH
953 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
954
be96b316
TH
955 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956 cpuctx->cgrp = cgrp;
058fe1c0 957 }
33801b94 958
959 if (add && ctx->nr_cgroups++)
960 return;
961 else if (!add && --ctx->nr_cgroups)
962 return;
963
964 /* no cgroup running */
965 if (!add)
966 cpuctx->cgrp = NULL;
967
968 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
969 if (add)
970 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
971 else
972 list_del(cpuctx_entry);
db4a8356
DCC
973}
974
e5d1367f
SE
975#else /* !CONFIG_CGROUP_PERF */
976
977static inline bool
978perf_cgroup_match(struct perf_event *event)
979{
980 return true;
981}
982
983static inline void perf_detach_cgroup(struct perf_event *event)
984{}
985
986static inline int is_cgroup_event(struct perf_event *event)
987{
988 return 0;
989}
990
e5d1367f
SE
991static inline void update_cgrp_time_from_event(struct perf_event *event)
992{
993}
994
995static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
996{
997}
998
a8d757ef
SE
999static inline void perf_cgroup_sched_out(struct task_struct *task,
1000 struct task_struct *next)
e5d1367f
SE
1001{
1002}
1003
a8d757ef
SE
1004static inline void perf_cgroup_sched_in(struct task_struct *prev,
1005 struct task_struct *task)
e5d1367f
SE
1006{
1007}
1008
1009static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1010 struct perf_event_attr *attr,
1011 struct perf_event *group_leader)
1012{
1013 return -EINVAL;
1014}
1015
1016static inline void
3f7cce3c
SE
1017perf_cgroup_set_timestamp(struct task_struct *task,
1018 struct perf_event_context *ctx)
e5d1367f
SE
1019{
1020}
1021
1022void
1023perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1024{
1025}
1026
1027static inline void
1028perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1029{
1030}
1031
1032static inline u64 perf_cgroup_event_time(struct perf_event *event)
1033{
1034 return 0;
1035}
1036
db4a8356
DCC
1037static inline void
1038list_update_cgroup_event(struct perf_event *event,
1039 struct perf_event_context *ctx, bool add)
1040{
1041}
1042
e5d1367f
SE
1043#endif
1044
9e630205
SE
1045/*
1046 * set default to be dependent on timer tick just
1047 * like original code
1048 */
1049#define PERF_CPU_HRTIMER (1000 / HZ)
1050/*
8a1115ff 1051 * function must be called with interrupts disabled
9e630205 1052 */
272325c4 1053static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1054{
1055 struct perf_cpu_context *cpuctx;
8d5bce0c 1056 bool rotations;
9e630205 1057
16444645 1058 lockdep_assert_irqs_disabled();
9e630205
SE
1059
1060 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1061 rotations = perf_rotate_context(cpuctx);
1062
4cfafd30
PZ
1063 raw_spin_lock(&cpuctx->hrtimer_lock);
1064 if (rotations)
9e630205 1065 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1066 else
1067 cpuctx->hrtimer_active = 0;
1068 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1069
4cfafd30 1070 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1071}
1072
272325c4 1073static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1074{
272325c4 1075 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1076 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1077 u64 interval;
9e630205
SE
1078
1079 /* no multiplexing needed for SW PMU */
1080 if (pmu->task_ctx_nr == perf_sw_context)
1081 return;
1082
62b85639
SE
1083 /*
1084 * check default is sane, if not set then force to
1085 * default interval (1/tick)
1086 */
272325c4
PZ
1087 interval = pmu->hrtimer_interval_ms;
1088 if (interval < 1)
1089 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1090
272325c4 1091 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1092
4cfafd30
PZ
1093 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1094 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1095 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1096}
1097
272325c4 1098static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1099{
272325c4 1100 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1101 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1102 unsigned long flags;
9e630205
SE
1103
1104 /* not for SW PMU */
1105 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1106 return 0;
9e630205 1107
4cfafd30
PZ
1108 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1109 if (!cpuctx->hrtimer_active) {
1110 cpuctx->hrtimer_active = 1;
1111 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1112 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1113 }
1114 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1115
272325c4 1116 return 0;
9e630205
SE
1117}
1118
33696fc0 1119void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1120{
33696fc0
PZ
1121 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1122 if (!(*count)++)
1123 pmu->pmu_disable(pmu);
9e35ad38 1124}
9e35ad38 1125
33696fc0 1126void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1127{
33696fc0
PZ
1128 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1129 if (!--(*count))
1130 pmu->pmu_enable(pmu);
9e35ad38 1131}
9e35ad38 1132
2fde4f94 1133static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1134
1135/*
2fde4f94
MR
1136 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1137 * perf_event_task_tick() are fully serialized because they're strictly cpu
1138 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1139 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1140 */
2fde4f94 1141static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1142{
2fde4f94 1143 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1144
16444645 1145 lockdep_assert_irqs_disabled();
b5ab4cd5 1146
2fde4f94
MR
1147 WARN_ON(!list_empty(&ctx->active_ctx_list));
1148
1149 list_add(&ctx->active_ctx_list, head);
1150}
1151
1152static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1153{
16444645 1154 lockdep_assert_irqs_disabled();
2fde4f94
MR
1155
1156 WARN_ON(list_empty(&ctx->active_ctx_list));
1157
1158 list_del_init(&ctx->active_ctx_list);
9e35ad38 1159}
9e35ad38 1160
cdd6c482 1161static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1162{
e5289d4a 1163 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1164}
1165
4af57ef2
YZ
1166static void free_ctx(struct rcu_head *head)
1167{
1168 struct perf_event_context *ctx;
1169
1170 ctx = container_of(head, struct perf_event_context, rcu_head);
1171 kfree(ctx->task_ctx_data);
1172 kfree(ctx);
1173}
1174
cdd6c482 1175static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1176{
564c2b21
PM
1177 if (atomic_dec_and_test(&ctx->refcount)) {
1178 if (ctx->parent_ctx)
1179 put_ctx(ctx->parent_ctx);
63b6da39 1180 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1181 put_task_struct(ctx->task);
4af57ef2 1182 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1183 }
a63eaf34
PM
1184}
1185
f63a8daa
PZ
1186/*
1187 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1188 * perf_pmu_migrate_context() we need some magic.
1189 *
1190 * Those places that change perf_event::ctx will hold both
1191 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1192 *
8b10c5e2
PZ
1193 * Lock ordering is by mutex address. There are two other sites where
1194 * perf_event_context::mutex nests and those are:
1195 *
1196 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1197 * perf_event_exit_event()
1198 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1199 *
1200 * - perf_event_init_context() [ parent, 0 ]
1201 * inherit_task_group()
1202 * inherit_group()
1203 * inherit_event()
1204 * perf_event_alloc()
1205 * perf_init_event()
1206 * perf_try_init_event() [ child , 1 ]
1207 *
1208 * While it appears there is an obvious deadlock here -- the parent and child
1209 * nesting levels are inverted between the two. This is in fact safe because
1210 * life-time rules separate them. That is an exiting task cannot fork, and a
1211 * spawning task cannot (yet) exit.
1212 *
1213 * But remember that that these are parent<->child context relations, and
1214 * migration does not affect children, therefore these two orderings should not
1215 * interact.
f63a8daa
PZ
1216 *
1217 * The change in perf_event::ctx does not affect children (as claimed above)
1218 * because the sys_perf_event_open() case will install a new event and break
1219 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1220 * concerned with cpuctx and that doesn't have children.
1221 *
1222 * The places that change perf_event::ctx will issue:
1223 *
1224 * perf_remove_from_context();
1225 * synchronize_rcu();
1226 * perf_install_in_context();
1227 *
1228 * to affect the change. The remove_from_context() + synchronize_rcu() should
1229 * quiesce the event, after which we can install it in the new location. This
1230 * means that only external vectors (perf_fops, prctl) can perturb the event
1231 * while in transit. Therefore all such accessors should also acquire
1232 * perf_event_context::mutex to serialize against this.
1233 *
1234 * However; because event->ctx can change while we're waiting to acquire
1235 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1236 * function.
1237 *
1238 * Lock order:
79c9ce57 1239 * cred_guard_mutex
f63a8daa
PZ
1240 * task_struct::perf_event_mutex
1241 * perf_event_context::mutex
f63a8daa 1242 * perf_event::child_mutex;
07c4a776 1243 * perf_event_context::lock
f63a8daa
PZ
1244 * perf_event::mmap_mutex
1245 * mmap_sem
82d94856
PZ
1246 *
1247 * cpu_hotplug_lock
1248 * pmus_lock
1249 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1250 */
a83fe28e
PZ
1251static struct perf_event_context *
1252perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1253{
1254 struct perf_event_context *ctx;
1255
1256again:
1257 rcu_read_lock();
6aa7de05 1258 ctx = READ_ONCE(event->ctx);
f63a8daa
PZ
1259 if (!atomic_inc_not_zero(&ctx->refcount)) {
1260 rcu_read_unlock();
1261 goto again;
1262 }
1263 rcu_read_unlock();
1264
a83fe28e 1265 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1266 if (event->ctx != ctx) {
1267 mutex_unlock(&ctx->mutex);
1268 put_ctx(ctx);
1269 goto again;
1270 }
1271
1272 return ctx;
1273}
1274
a83fe28e
PZ
1275static inline struct perf_event_context *
1276perf_event_ctx_lock(struct perf_event *event)
1277{
1278 return perf_event_ctx_lock_nested(event, 0);
1279}
1280
f63a8daa
PZ
1281static void perf_event_ctx_unlock(struct perf_event *event,
1282 struct perf_event_context *ctx)
1283{
1284 mutex_unlock(&ctx->mutex);
1285 put_ctx(ctx);
1286}
1287
211de6eb
PZ
1288/*
1289 * This must be done under the ctx->lock, such as to serialize against
1290 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1291 * calling scheduler related locks and ctx->lock nests inside those.
1292 */
1293static __must_check struct perf_event_context *
1294unclone_ctx(struct perf_event_context *ctx)
71a851b4 1295{
211de6eb
PZ
1296 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1297
1298 lockdep_assert_held(&ctx->lock);
1299
1300 if (parent_ctx)
71a851b4 1301 ctx->parent_ctx = NULL;
5a3126d4 1302 ctx->generation++;
211de6eb
PZ
1303
1304 return parent_ctx;
71a851b4
PZ
1305}
1306
1d953111
ON
1307static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1308 enum pid_type type)
6844c09d 1309{
1d953111 1310 u32 nr;
6844c09d
ACM
1311 /*
1312 * only top level events have the pid namespace they were created in
1313 */
1314 if (event->parent)
1315 event = event->parent;
1316
1d953111
ON
1317 nr = __task_pid_nr_ns(p, type, event->ns);
1318 /* avoid -1 if it is idle thread or runs in another ns */
1319 if (!nr && !pid_alive(p))
1320 nr = -1;
1321 return nr;
6844c09d
ACM
1322}
1323
1d953111 1324static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1325{
1d953111
ON
1326 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1327}
6844c09d 1328
1d953111
ON
1329static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1330{
1331 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1332}
1333
7f453c24 1334/*
cdd6c482 1335 * If we inherit events we want to return the parent event id
7f453c24
PZ
1336 * to userspace.
1337 */
cdd6c482 1338static u64 primary_event_id(struct perf_event *event)
7f453c24 1339{
cdd6c482 1340 u64 id = event->id;
7f453c24 1341
cdd6c482
IM
1342 if (event->parent)
1343 id = event->parent->id;
7f453c24
PZ
1344
1345 return id;
1346}
1347
25346b93 1348/*
cdd6c482 1349 * Get the perf_event_context for a task and lock it.
63b6da39 1350 *
25346b93
PM
1351 * This has to cope with with the fact that until it is locked,
1352 * the context could get moved to another task.
1353 */
cdd6c482 1354static struct perf_event_context *
8dc85d54 1355perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1356{
cdd6c482 1357 struct perf_event_context *ctx;
25346b93 1358
9ed6060d 1359retry:
058ebd0e
PZ
1360 /*
1361 * One of the few rules of preemptible RCU is that one cannot do
1362 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1363 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1364 * rcu_read_unlock_special().
1365 *
1366 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1367 * side critical section has interrupts disabled.
058ebd0e 1368 */
2fd59077 1369 local_irq_save(*flags);
058ebd0e 1370 rcu_read_lock();
8dc85d54 1371 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1372 if (ctx) {
1373 /*
1374 * If this context is a clone of another, it might
1375 * get swapped for another underneath us by
cdd6c482 1376 * perf_event_task_sched_out, though the
25346b93
PM
1377 * rcu_read_lock() protects us from any context
1378 * getting freed. Lock the context and check if it
1379 * got swapped before we could get the lock, and retry
1380 * if so. If we locked the right context, then it
1381 * can't get swapped on us any more.
1382 */
2fd59077 1383 raw_spin_lock(&ctx->lock);
8dc85d54 1384 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1385 raw_spin_unlock(&ctx->lock);
058ebd0e 1386 rcu_read_unlock();
2fd59077 1387 local_irq_restore(*flags);
25346b93
PM
1388 goto retry;
1389 }
b49a9e7e 1390
63b6da39
PZ
1391 if (ctx->task == TASK_TOMBSTONE ||
1392 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1393 raw_spin_unlock(&ctx->lock);
b49a9e7e 1394 ctx = NULL;
828b6f0e
PZ
1395 } else {
1396 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1397 }
25346b93
PM
1398 }
1399 rcu_read_unlock();
2fd59077
PM
1400 if (!ctx)
1401 local_irq_restore(*flags);
25346b93
PM
1402 return ctx;
1403}
1404
1405/*
1406 * Get the context for a task and increment its pin_count so it
1407 * can't get swapped to another task. This also increments its
1408 * reference count so that the context can't get freed.
1409 */
8dc85d54
PZ
1410static struct perf_event_context *
1411perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1412{
cdd6c482 1413 struct perf_event_context *ctx;
25346b93
PM
1414 unsigned long flags;
1415
8dc85d54 1416 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1417 if (ctx) {
1418 ++ctx->pin_count;
e625cce1 1419 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1420 }
1421 return ctx;
1422}
1423
cdd6c482 1424static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1425{
1426 unsigned long flags;
1427
e625cce1 1428 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1429 --ctx->pin_count;
e625cce1 1430 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1431}
1432
f67218c3
PZ
1433/*
1434 * Update the record of the current time in a context.
1435 */
1436static void update_context_time(struct perf_event_context *ctx)
1437{
1438 u64 now = perf_clock();
1439
1440 ctx->time += now - ctx->timestamp;
1441 ctx->timestamp = now;
1442}
1443
4158755d
SE
1444static u64 perf_event_time(struct perf_event *event)
1445{
1446 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1447
1448 if (is_cgroup_event(event))
1449 return perf_cgroup_event_time(event);
1450
4158755d
SE
1451 return ctx ? ctx->time : 0;
1452}
1453
487f05e1
AS
1454static enum event_type_t get_event_type(struct perf_event *event)
1455{
1456 struct perf_event_context *ctx = event->ctx;
1457 enum event_type_t event_type;
1458
1459 lockdep_assert_held(&ctx->lock);
1460
3bda69c1
AS
1461 /*
1462 * It's 'group type', really, because if our group leader is
1463 * pinned, so are we.
1464 */
1465 if (event->group_leader != event)
1466 event = event->group_leader;
1467
487f05e1
AS
1468 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1469 if (!ctx->task)
1470 event_type |= EVENT_CPU;
1471
1472 return event_type;
1473}
1474
8e1a2031 1475/*
161c85fa 1476 * Helper function to initialize event group nodes.
8e1a2031 1477 */
161c85fa 1478static void init_event_group(struct perf_event *event)
8e1a2031
AB
1479{
1480 RB_CLEAR_NODE(&event->group_node);
1481 event->group_index = 0;
1482}
1483
1484/*
1485 * Extract pinned or flexible groups from the context
161c85fa 1486 * based on event attrs bits.
8e1a2031
AB
1487 */
1488static struct perf_event_groups *
1489get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1490{
1491 if (event->attr.pinned)
1492 return &ctx->pinned_groups;
1493 else
1494 return &ctx->flexible_groups;
1495}
1496
8e1a2031 1497/*
161c85fa 1498 * Helper function to initializes perf_event_group trees.
8e1a2031 1499 */
161c85fa 1500static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1501{
1502 groups->tree = RB_ROOT;
1503 groups->index = 0;
1504}
1505
1506/*
1507 * Compare function for event groups;
161c85fa
PZ
1508 *
1509 * Implements complex key that first sorts by CPU and then by virtual index
1510 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1511 */
161c85fa
PZ
1512static bool
1513perf_event_groups_less(struct perf_event *left, struct perf_event *right)
8e1a2031 1514{
161c85fa
PZ
1515 if (left->cpu < right->cpu)
1516 return true;
1517 if (left->cpu > right->cpu)
1518 return false;
1519
1520 if (left->group_index < right->group_index)
1521 return true;
1522 if (left->group_index > right->group_index)
1523 return false;
1524
1525 return false;
8e1a2031
AB
1526}
1527
1528/*
161c85fa
PZ
1529 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1530 * key (see perf_event_groups_less). This places it last inside the CPU
1531 * subtree.
8e1a2031
AB
1532 */
1533static void
1534perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1535 struct perf_event *event)
8e1a2031
AB
1536{
1537 struct perf_event *node_event;
1538 struct rb_node *parent;
1539 struct rb_node **node;
1540
1541 event->group_index = ++groups->index;
1542
1543 node = &groups->tree.rb_node;
1544 parent = *node;
1545
1546 while (*node) {
1547 parent = *node;
161c85fa 1548 node_event = container_of(*node, struct perf_event, group_node);
8e1a2031
AB
1549
1550 if (perf_event_groups_less(event, node_event))
1551 node = &parent->rb_left;
1552 else
1553 node = &parent->rb_right;
1554 }
1555
1556 rb_link_node(&event->group_node, parent, node);
1557 rb_insert_color(&event->group_node, &groups->tree);
1558}
1559
1560/*
161c85fa 1561 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1562 */
1563static void
1564add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1565{
1566 struct perf_event_groups *groups;
1567
1568 groups = get_event_groups(event, ctx);
1569 perf_event_groups_insert(groups, event);
1570}
1571
1572/*
161c85fa 1573 * Delete a group from a tree.
8e1a2031
AB
1574 */
1575static void
1576perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1577 struct perf_event *event)
8e1a2031 1578{
161c85fa
PZ
1579 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1580 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1581
161c85fa 1582 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1583 init_event_group(event);
1584}
1585
1586/*
161c85fa 1587 * Helper function to delete event from its groups.
8e1a2031
AB
1588 */
1589static void
1590del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1591{
1592 struct perf_event_groups *groups;
1593
1594 groups = get_event_groups(event, ctx);
1595 perf_event_groups_delete(groups, event);
1596}
1597
1598/*
161c85fa 1599 * Get the leftmost event in the @cpu subtree.
8e1a2031
AB
1600 */
1601static struct perf_event *
1602perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1603{
1604 struct perf_event *node_event = NULL, *match = NULL;
1605 struct rb_node *node = groups->tree.rb_node;
1606
1607 while (node) {
161c85fa 1608 node_event = container_of(node, struct perf_event, group_node);
8e1a2031
AB
1609
1610 if (cpu < node_event->cpu) {
1611 node = node->rb_left;
1612 } else if (cpu > node_event->cpu) {
1613 node = node->rb_right;
1614 } else {
1615 match = node_event;
1616 node = node->rb_left;
1617 }
1618 }
1619
1620 return match;
1621}
1622
1cac7b1a
PZ
1623/*
1624 * Like rb_entry_next_safe() for the @cpu subtree.
1625 */
1626static struct perf_event *
1627perf_event_groups_next(struct perf_event *event)
1628{
1629 struct perf_event *next;
1630
1631 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1632 if (next && next->cpu == event->cpu)
1633 return next;
1634
1635 return NULL;
1636}
1637
8e1a2031 1638/*
161c85fa 1639 * Iterate through the whole groups tree.
8e1a2031 1640 */
6e6804d2
PZ
1641#define perf_event_groups_for_each(event, groups) \
1642 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1643 typeof(*event), group_node); event; \
1644 event = rb_entry_safe(rb_next(&event->group_node), \
1645 typeof(*event), group_node))
8e1a2031 1646
fccc714b 1647/*
cdd6c482 1648 * Add a event from the lists for its context.
fccc714b
PZ
1649 * Must be called with ctx->mutex and ctx->lock held.
1650 */
04289bb9 1651static void
cdd6c482 1652list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1653{
c994d613
PZ
1654 lockdep_assert_held(&ctx->lock);
1655
8a49542c
PZ
1656 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1657 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1658
0d3d73aa
PZ
1659 event->tstamp = perf_event_time(event);
1660
04289bb9 1661 /*
8a49542c
PZ
1662 * If we're a stand alone event or group leader, we go to the context
1663 * list, group events are kept attached to the group so that
1664 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1665 */
8a49542c 1666 if (event->group_leader == event) {
4ff6a8de 1667 event->group_caps = event->event_caps;
8e1a2031 1668 add_event_to_groups(event, ctx);
5c148194 1669 }
592903cd 1670
db4a8356 1671 list_update_cgroup_event(event, ctx, true);
e5d1367f 1672
cdd6c482
IM
1673 list_add_rcu(&event->event_entry, &ctx->event_list);
1674 ctx->nr_events++;
1675 if (event->attr.inherit_stat)
bfbd3381 1676 ctx->nr_stat++;
5a3126d4
PZ
1677
1678 ctx->generation++;
04289bb9
IM
1679}
1680
0231bb53
JO
1681/*
1682 * Initialize event state based on the perf_event_attr::disabled.
1683 */
1684static inline void perf_event__state_init(struct perf_event *event)
1685{
1686 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1687 PERF_EVENT_STATE_INACTIVE;
1688}
1689
a723968c 1690static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1691{
1692 int entry = sizeof(u64); /* value */
1693 int size = 0;
1694 int nr = 1;
1695
1696 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1697 size += sizeof(u64);
1698
1699 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1700 size += sizeof(u64);
1701
1702 if (event->attr.read_format & PERF_FORMAT_ID)
1703 entry += sizeof(u64);
1704
1705 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1706 nr += nr_siblings;
c320c7b7
ACM
1707 size += sizeof(u64);
1708 }
1709
1710 size += entry * nr;
1711 event->read_size = size;
1712}
1713
a723968c 1714static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1715{
1716 struct perf_sample_data *data;
c320c7b7
ACM
1717 u16 size = 0;
1718
c320c7b7
ACM
1719 if (sample_type & PERF_SAMPLE_IP)
1720 size += sizeof(data->ip);
1721
6844c09d
ACM
1722 if (sample_type & PERF_SAMPLE_ADDR)
1723 size += sizeof(data->addr);
1724
1725 if (sample_type & PERF_SAMPLE_PERIOD)
1726 size += sizeof(data->period);
1727
c3feedf2
AK
1728 if (sample_type & PERF_SAMPLE_WEIGHT)
1729 size += sizeof(data->weight);
1730
6844c09d
ACM
1731 if (sample_type & PERF_SAMPLE_READ)
1732 size += event->read_size;
1733
d6be9ad6
SE
1734 if (sample_type & PERF_SAMPLE_DATA_SRC)
1735 size += sizeof(data->data_src.val);
1736
fdfbbd07
AK
1737 if (sample_type & PERF_SAMPLE_TRANSACTION)
1738 size += sizeof(data->txn);
1739
fc7ce9c7
KL
1740 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1741 size += sizeof(data->phys_addr);
1742
6844c09d
ACM
1743 event->header_size = size;
1744}
1745
a723968c
PZ
1746/*
1747 * Called at perf_event creation and when events are attached/detached from a
1748 * group.
1749 */
1750static void perf_event__header_size(struct perf_event *event)
1751{
1752 __perf_event_read_size(event,
1753 event->group_leader->nr_siblings);
1754 __perf_event_header_size(event, event->attr.sample_type);
1755}
1756
6844c09d
ACM
1757static void perf_event__id_header_size(struct perf_event *event)
1758{
1759 struct perf_sample_data *data;
1760 u64 sample_type = event->attr.sample_type;
1761 u16 size = 0;
1762
c320c7b7
ACM
1763 if (sample_type & PERF_SAMPLE_TID)
1764 size += sizeof(data->tid_entry);
1765
1766 if (sample_type & PERF_SAMPLE_TIME)
1767 size += sizeof(data->time);
1768
ff3d527c
AH
1769 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1770 size += sizeof(data->id);
1771
c320c7b7
ACM
1772 if (sample_type & PERF_SAMPLE_ID)
1773 size += sizeof(data->id);
1774
1775 if (sample_type & PERF_SAMPLE_STREAM_ID)
1776 size += sizeof(data->stream_id);
1777
1778 if (sample_type & PERF_SAMPLE_CPU)
1779 size += sizeof(data->cpu_entry);
1780
6844c09d 1781 event->id_header_size = size;
c320c7b7
ACM
1782}
1783
a723968c
PZ
1784static bool perf_event_validate_size(struct perf_event *event)
1785{
1786 /*
1787 * The values computed here will be over-written when we actually
1788 * attach the event.
1789 */
1790 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1791 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1792 perf_event__id_header_size(event);
1793
1794 /*
1795 * Sum the lot; should not exceed the 64k limit we have on records.
1796 * Conservative limit to allow for callchains and other variable fields.
1797 */
1798 if (event->read_size + event->header_size +
1799 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1800 return false;
1801
1802 return true;
1803}
1804
8a49542c
PZ
1805static void perf_group_attach(struct perf_event *event)
1806{
c320c7b7 1807 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1808
a76a82a3
PZ
1809 lockdep_assert_held(&event->ctx->lock);
1810
74c3337c
PZ
1811 /*
1812 * We can have double attach due to group movement in perf_event_open.
1813 */
1814 if (event->attach_state & PERF_ATTACH_GROUP)
1815 return;
1816
8a49542c
PZ
1817 event->attach_state |= PERF_ATTACH_GROUP;
1818
1819 if (group_leader == event)
1820 return;
1821
652884fe
PZ
1822 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1823
4ff6a8de 1824 group_leader->group_caps &= event->event_caps;
8a49542c 1825
8343aae6 1826 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1827 group_leader->nr_siblings++;
c320c7b7
ACM
1828
1829 perf_event__header_size(group_leader);
1830
8343aae6 1831 list_for_each_entry(pos, &group_leader->sibling_list, sibling_list)
c320c7b7 1832 perf_event__header_size(pos);
8a49542c
PZ
1833}
1834
a63eaf34 1835/*
cdd6c482 1836 * Remove a event from the lists for its context.
fccc714b 1837 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1838 */
04289bb9 1839static void
cdd6c482 1840list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1841{
652884fe
PZ
1842 WARN_ON_ONCE(event->ctx != ctx);
1843 lockdep_assert_held(&ctx->lock);
1844
8a49542c
PZ
1845 /*
1846 * We can have double detach due to exit/hot-unplug + close.
1847 */
1848 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1849 return;
8a49542c
PZ
1850
1851 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1852
db4a8356 1853 list_update_cgroup_event(event, ctx, false);
e5d1367f 1854
cdd6c482
IM
1855 ctx->nr_events--;
1856 if (event->attr.inherit_stat)
bfbd3381 1857 ctx->nr_stat--;
8bc20959 1858
cdd6c482 1859 list_del_rcu(&event->event_entry);
04289bb9 1860
8a49542c 1861 if (event->group_leader == event)
8e1a2031 1862 del_event_from_groups(event, ctx);
5c148194 1863
b2e74a26
SE
1864 /*
1865 * If event was in error state, then keep it
1866 * that way, otherwise bogus counts will be
1867 * returned on read(). The only way to get out
1868 * of error state is by explicit re-enabling
1869 * of the event
1870 */
1871 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1872 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1873
1874 ctx->generation++;
050735b0
PZ
1875}
1876
8a49542c 1877static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1878{
1879 struct perf_event *sibling, *tmp;
6668128a 1880 struct perf_event_context *ctx = event->ctx;
8a49542c 1881
6668128a 1882 lockdep_assert_held(&ctx->lock);
a76a82a3 1883
8a49542c
PZ
1884 /*
1885 * We can have double detach due to exit/hot-unplug + close.
1886 */
1887 if (!(event->attach_state & PERF_ATTACH_GROUP))
1888 return;
1889
1890 event->attach_state &= ~PERF_ATTACH_GROUP;
1891
1892 /*
1893 * If this is a sibling, remove it from its group.
1894 */
1895 if (event->group_leader != event) {
8343aae6 1896 list_del_init(&event->sibling_list);
8a49542c 1897 event->group_leader->nr_siblings--;
c320c7b7 1898 goto out;
8a49542c
PZ
1899 }
1900
04289bb9 1901 /*
cdd6c482
IM
1902 * If this was a group event with sibling events then
1903 * upgrade the siblings to singleton events by adding them
8a49542c 1904 * to whatever list we are on.
04289bb9 1905 */
8343aae6 1906 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 1907
04289bb9 1908 sibling->group_leader = sibling;
d6f962b5
FW
1909
1910 /* Inherit group flags from the previous leader */
4ff6a8de 1911 sibling->group_caps = event->group_caps;
652884fe 1912
8e1a2031 1913 if (!RB_EMPTY_NODE(&event->group_node)) {
8343aae6 1914 list_del_init(&sibling->sibling_list);
8e1a2031 1915 add_event_to_groups(sibling, event->ctx);
6668128a
PZ
1916
1917 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1918 struct list_head *list = sibling->attr.pinned ?
1919 &ctx->pinned_active : &ctx->flexible_active;
1920
1921 list_add_tail(&sibling->active_list, list);
1922 }
8e1a2031
AB
1923 }
1924
652884fe 1925 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1926 }
c320c7b7
ACM
1927
1928out:
1929 perf_event__header_size(event->group_leader);
1930
8343aae6 1931 list_for_each_entry(tmp, &event->group_leader->sibling_list, sibling_list)
c320c7b7 1932 perf_event__header_size(tmp);
04289bb9
IM
1933}
1934
fadfe7be
JO
1935static bool is_orphaned_event(struct perf_event *event)
1936{
a69b0ca4 1937 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1938}
1939
2c81a647 1940static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1941{
1942 struct pmu *pmu = event->pmu;
1943 return pmu->filter_match ? pmu->filter_match(event) : 1;
1944}
1945
2c81a647
MR
1946/*
1947 * Check whether we should attempt to schedule an event group based on
1948 * PMU-specific filtering. An event group can consist of HW and SW events,
1949 * potentially with a SW leader, so we must check all the filters, to
1950 * determine whether a group is schedulable:
1951 */
1952static inline int pmu_filter_match(struct perf_event *event)
1953{
1954 struct perf_event *child;
1955
1956 if (!__pmu_filter_match(event))
1957 return 0;
1958
8343aae6 1959 list_for_each_entry(child, &event->sibling_list, sibling_list) {
2c81a647
MR
1960 if (!__pmu_filter_match(child))
1961 return 0;
1962 }
1963
1964 return 1;
1965}
1966
fa66f07a
SE
1967static inline int
1968event_filter_match(struct perf_event *event)
1969{
0b8f1e2e
PZ
1970 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1971 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1972}
1973
9ffcfa6f
SE
1974static void
1975event_sched_out(struct perf_event *event,
3b6f9e5c 1976 struct perf_cpu_context *cpuctx,
cdd6c482 1977 struct perf_event_context *ctx)
3b6f9e5c 1978{
0d3d73aa 1979 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
1980
1981 WARN_ON_ONCE(event->ctx != ctx);
1982 lockdep_assert_held(&ctx->lock);
1983
cdd6c482 1984 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1985 return;
3b6f9e5c 1986
6668128a
PZ
1987 /*
1988 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
1989 * we can schedule events _OUT_ individually through things like
1990 * __perf_remove_from_context().
1991 */
1992 list_del_init(&event->active_list);
1993
44377277
AS
1994 perf_pmu_disable(event->pmu);
1995
28a967c3
PZ
1996 event->pmu->del(event, 0);
1997 event->oncpu = -1;
0d3d73aa 1998
cdd6c482
IM
1999 if (event->pending_disable) {
2000 event->pending_disable = 0;
0d3d73aa 2001 state = PERF_EVENT_STATE_OFF;
970892a9 2002 }
0d3d73aa 2003 perf_event_set_state(event, state);
3b6f9e5c 2004
cdd6c482 2005 if (!is_software_event(event))
3b6f9e5c 2006 cpuctx->active_oncpu--;
2fde4f94
MR
2007 if (!--ctx->nr_active)
2008 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
2009 if (event->attr.freq && event->attr.sample_freq)
2010 ctx->nr_freq--;
cdd6c482 2011 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 2012 cpuctx->exclusive = 0;
44377277
AS
2013
2014 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2015}
2016
d859e29f 2017static void
cdd6c482 2018group_sched_out(struct perf_event *group_event,
d859e29f 2019 struct perf_cpu_context *cpuctx,
cdd6c482 2020 struct perf_event_context *ctx)
d859e29f 2021{
cdd6c482 2022 struct perf_event *event;
0d3d73aa
PZ
2023
2024 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2025 return;
d859e29f 2026
3f005e7d
MR
2027 perf_pmu_disable(ctx->pmu);
2028
cdd6c482 2029 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
2030
2031 /*
2032 * Schedule out siblings (if any):
2033 */
8343aae6 2034 list_for_each_entry(event, &group_event->sibling_list, sibling_list)
cdd6c482 2035 event_sched_out(event, cpuctx, ctx);
d859e29f 2036
3f005e7d
MR
2037 perf_pmu_enable(ctx->pmu);
2038
0d3d73aa 2039 if (group_event->attr.exclusive)
d859e29f
PM
2040 cpuctx->exclusive = 0;
2041}
2042
45a0e07a 2043#define DETACH_GROUP 0x01UL
0017960f 2044
0793a61d 2045/*
cdd6c482 2046 * Cross CPU call to remove a performance event
0793a61d 2047 *
cdd6c482 2048 * We disable the event on the hardware level first. After that we
0793a61d
TG
2049 * remove it from the context list.
2050 */
fae3fde6
PZ
2051static void
2052__perf_remove_from_context(struct perf_event *event,
2053 struct perf_cpu_context *cpuctx,
2054 struct perf_event_context *ctx,
2055 void *info)
0793a61d 2056{
45a0e07a 2057 unsigned long flags = (unsigned long)info;
0793a61d 2058
3c5c8711
PZ
2059 if (ctx->is_active & EVENT_TIME) {
2060 update_context_time(ctx);
2061 update_cgrp_time_from_cpuctx(cpuctx);
2062 }
2063
cdd6c482 2064 event_sched_out(event, cpuctx, ctx);
45a0e07a 2065 if (flags & DETACH_GROUP)
46ce0fe9 2066 perf_group_detach(event);
cdd6c482 2067 list_del_event(event, ctx);
39a43640
PZ
2068
2069 if (!ctx->nr_events && ctx->is_active) {
64ce3126 2070 ctx->is_active = 0;
39a43640
PZ
2071 if (ctx->task) {
2072 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2073 cpuctx->task_ctx = NULL;
2074 }
64ce3126 2075 }
0793a61d
TG
2076}
2077
0793a61d 2078/*
cdd6c482 2079 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2080 *
cdd6c482
IM
2081 * If event->ctx is a cloned context, callers must make sure that
2082 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2083 * remains valid. This is OK when called from perf_release since
2084 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2085 * When called from perf_event_exit_task, it's OK because the
c93f7669 2086 * context has been detached from its task.
0793a61d 2087 */
45a0e07a 2088static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2089{
a76a82a3
PZ
2090 struct perf_event_context *ctx = event->ctx;
2091
2092 lockdep_assert_held(&ctx->mutex);
0793a61d 2093
45a0e07a 2094 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
2095
2096 /*
2097 * The above event_function_call() can NO-OP when it hits
2098 * TASK_TOMBSTONE. In that case we must already have been detached
2099 * from the context (by perf_event_exit_event()) but the grouping
2100 * might still be in-tact.
2101 */
2102 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2103 if ((flags & DETACH_GROUP) &&
2104 (event->attach_state & PERF_ATTACH_GROUP)) {
2105 /*
2106 * Since in that case we cannot possibly be scheduled, simply
2107 * detach now.
2108 */
2109 raw_spin_lock_irq(&ctx->lock);
2110 perf_group_detach(event);
2111 raw_spin_unlock_irq(&ctx->lock);
2112 }
0793a61d
TG
2113}
2114
d859e29f 2115/*
cdd6c482 2116 * Cross CPU call to disable a performance event
d859e29f 2117 */
fae3fde6
PZ
2118static void __perf_event_disable(struct perf_event *event,
2119 struct perf_cpu_context *cpuctx,
2120 struct perf_event_context *ctx,
2121 void *info)
7b648018 2122{
fae3fde6
PZ
2123 if (event->state < PERF_EVENT_STATE_INACTIVE)
2124 return;
7b648018 2125
3c5c8711
PZ
2126 if (ctx->is_active & EVENT_TIME) {
2127 update_context_time(ctx);
2128 update_cgrp_time_from_event(event);
2129 }
2130
fae3fde6
PZ
2131 if (event == event->group_leader)
2132 group_sched_out(event, cpuctx, ctx);
2133 else
2134 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
2135
2136 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
2137}
2138
d859e29f 2139/*
cdd6c482 2140 * Disable a event.
c93f7669 2141 *
cdd6c482
IM
2142 * If event->ctx is a cloned context, callers must make sure that
2143 * every task struct that event->ctx->task could possibly point to
c93f7669 2144 * remains valid. This condition is satisifed when called through
cdd6c482
IM
2145 * perf_event_for_each_child or perf_event_for_each because they
2146 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2147 * goes to exit will block in perf_event_exit_event().
2148 *
cdd6c482 2149 * When called from perf_pending_event it's OK because event->ctx
c93f7669 2150 * is the current context on this CPU and preemption is disabled,
cdd6c482 2151 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2152 */
f63a8daa 2153static void _perf_event_disable(struct perf_event *event)
d859e29f 2154{
cdd6c482 2155 struct perf_event_context *ctx = event->ctx;
d859e29f 2156
e625cce1 2157 raw_spin_lock_irq(&ctx->lock);
7b648018 2158 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2159 raw_spin_unlock_irq(&ctx->lock);
7b648018 2160 return;
53cfbf59 2161 }
e625cce1 2162 raw_spin_unlock_irq(&ctx->lock);
7b648018 2163
fae3fde6
PZ
2164 event_function_call(event, __perf_event_disable, NULL);
2165}
2166
2167void perf_event_disable_local(struct perf_event *event)
2168{
2169 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2170}
f63a8daa
PZ
2171
2172/*
2173 * Strictly speaking kernel users cannot create groups and therefore this
2174 * interface does not need the perf_event_ctx_lock() magic.
2175 */
2176void perf_event_disable(struct perf_event *event)
2177{
2178 struct perf_event_context *ctx;
2179
2180 ctx = perf_event_ctx_lock(event);
2181 _perf_event_disable(event);
2182 perf_event_ctx_unlock(event, ctx);
2183}
dcfce4a0 2184EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2185
5aab90ce
JO
2186void perf_event_disable_inatomic(struct perf_event *event)
2187{
2188 event->pending_disable = 1;
2189 irq_work_queue(&event->pending);
2190}
2191
e5d1367f 2192static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2193 struct perf_event_context *ctx)
e5d1367f
SE
2194{
2195 /*
2196 * use the correct time source for the time snapshot
2197 *
2198 * We could get by without this by leveraging the
2199 * fact that to get to this function, the caller
2200 * has most likely already called update_context_time()
2201 * and update_cgrp_time_xx() and thus both timestamp
2202 * are identical (or very close). Given that tstamp is,
2203 * already adjusted for cgroup, we could say that:
2204 * tstamp - ctx->timestamp
2205 * is equivalent to
2206 * tstamp - cgrp->timestamp.
2207 *
2208 * Then, in perf_output_read(), the calculation would
2209 * work with no changes because:
2210 * - event is guaranteed scheduled in
2211 * - no scheduled out in between
2212 * - thus the timestamp would be the same
2213 *
2214 * But this is a bit hairy.
2215 *
2216 * So instead, we have an explicit cgroup call to remain
2217 * within the time time source all along. We believe it
2218 * is cleaner and simpler to understand.
2219 */
2220 if (is_cgroup_event(event))
0d3d73aa 2221 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2222 else
0d3d73aa 2223 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2224}
2225
4fe757dd
PZ
2226#define MAX_INTERRUPTS (~0ULL)
2227
2228static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2229static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2230
235c7fc7 2231static int
9ffcfa6f 2232event_sched_in(struct perf_event *event,
235c7fc7 2233 struct perf_cpu_context *cpuctx,
6e37738a 2234 struct perf_event_context *ctx)
235c7fc7 2235{
44377277 2236 int ret = 0;
4158755d 2237
63342411
PZ
2238 lockdep_assert_held(&ctx->lock);
2239
cdd6c482 2240 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2241 return 0;
2242
95ff4ca2
AS
2243 WRITE_ONCE(event->oncpu, smp_processor_id());
2244 /*
0c1cbc18
PZ
2245 * Order event::oncpu write to happen before the ACTIVE state is
2246 * visible. This allows perf_event_{stop,read}() to observe the correct
2247 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2248 */
2249 smp_wmb();
0d3d73aa 2250 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2251
2252 /*
2253 * Unthrottle events, since we scheduled we might have missed several
2254 * ticks already, also for a heavily scheduling task there is little
2255 * guarantee it'll get a tick in a timely manner.
2256 */
2257 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2258 perf_log_throttle(event, 1);
2259 event->hw.interrupts = 0;
2260 }
2261
44377277
AS
2262 perf_pmu_disable(event->pmu);
2263
0d3d73aa 2264 perf_set_shadow_time(event, ctx);
72f669c0 2265
ec0d7729
AS
2266 perf_log_itrace_start(event);
2267
a4eaf7f1 2268 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2269 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2270 event->oncpu = -1;
44377277
AS
2271 ret = -EAGAIN;
2272 goto out;
235c7fc7
IM
2273 }
2274
cdd6c482 2275 if (!is_software_event(event))
3b6f9e5c 2276 cpuctx->active_oncpu++;
2fde4f94
MR
2277 if (!ctx->nr_active++)
2278 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2279 if (event->attr.freq && event->attr.sample_freq)
2280 ctx->nr_freq++;
235c7fc7 2281
cdd6c482 2282 if (event->attr.exclusive)
3b6f9e5c
PM
2283 cpuctx->exclusive = 1;
2284
44377277
AS
2285out:
2286 perf_pmu_enable(event->pmu);
2287
2288 return ret;
235c7fc7
IM
2289}
2290
6751b71e 2291static int
cdd6c482 2292group_sched_in(struct perf_event *group_event,
6751b71e 2293 struct perf_cpu_context *cpuctx,
6e37738a 2294 struct perf_event_context *ctx)
6751b71e 2295{
6bde9b6c 2296 struct perf_event *event, *partial_group = NULL;
4a234593 2297 struct pmu *pmu = ctx->pmu;
6751b71e 2298
cdd6c482 2299 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2300 return 0;
2301
fbbe0701 2302 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2303
9ffcfa6f 2304 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2305 pmu->cancel_txn(pmu);
272325c4 2306 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2307 return -EAGAIN;
90151c35 2308 }
6751b71e
PM
2309
2310 /*
2311 * Schedule in siblings as one group (if any):
2312 */
8343aae6 2313 list_for_each_entry(event, &group_event->sibling_list, sibling_list) {
9ffcfa6f 2314 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2315 partial_group = event;
6751b71e
PM
2316 goto group_error;
2317 }
2318 }
2319
9ffcfa6f 2320 if (!pmu->commit_txn(pmu))
6e85158c 2321 return 0;
9ffcfa6f 2322
6751b71e
PM
2323group_error:
2324 /*
2325 * Groups can be scheduled in as one unit only, so undo any
2326 * partial group before returning:
0d3d73aa 2327 * The events up to the failed event are scheduled out normally.
6751b71e 2328 */
8343aae6 2329 list_for_each_entry(event, &group_event->sibling_list, sibling_list) {
cdd6c482 2330 if (event == partial_group)
0d3d73aa 2331 break;
d7842da4 2332
0d3d73aa 2333 event_sched_out(event, cpuctx, ctx);
6751b71e 2334 }
9ffcfa6f 2335 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2336
ad5133b7 2337 pmu->cancel_txn(pmu);
90151c35 2338
272325c4 2339 perf_mux_hrtimer_restart(cpuctx);
9e630205 2340
6751b71e
PM
2341 return -EAGAIN;
2342}
2343
3b6f9e5c 2344/*
cdd6c482 2345 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2346 */
cdd6c482 2347static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2348 struct perf_cpu_context *cpuctx,
2349 int can_add_hw)
2350{
2351 /*
cdd6c482 2352 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2353 */
4ff6a8de 2354 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2355 return 1;
2356 /*
2357 * If an exclusive group is already on, no other hardware
cdd6c482 2358 * events can go on.
3b6f9e5c
PM
2359 */
2360 if (cpuctx->exclusive)
2361 return 0;
2362 /*
2363 * If this group is exclusive and there are already
cdd6c482 2364 * events on the CPU, it can't go on.
3b6f9e5c 2365 */
cdd6c482 2366 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2367 return 0;
2368 /*
2369 * Otherwise, try to add it if all previous groups were able
2370 * to go on.
2371 */
2372 return can_add_hw;
2373}
2374
cdd6c482
IM
2375static void add_event_to_ctx(struct perf_event *event,
2376 struct perf_event_context *ctx)
53cfbf59 2377{
cdd6c482 2378 list_add_event(event, ctx);
8a49542c 2379 perf_group_attach(event);
53cfbf59
PM
2380}
2381
bd2afa49
PZ
2382static void ctx_sched_out(struct perf_event_context *ctx,
2383 struct perf_cpu_context *cpuctx,
2384 enum event_type_t event_type);
2c29ef0f
PZ
2385static void
2386ctx_sched_in(struct perf_event_context *ctx,
2387 struct perf_cpu_context *cpuctx,
2388 enum event_type_t event_type,
2389 struct task_struct *task);
fe4b04fa 2390
bd2afa49 2391static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2392 struct perf_event_context *ctx,
2393 enum event_type_t event_type)
bd2afa49
PZ
2394{
2395 if (!cpuctx->task_ctx)
2396 return;
2397
2398 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2399 return;
2400
487f05e1 2401 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2402}
2403
dce5855b
PZ
2404static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2405 struct perf_event_context *ctx,
2406 struct task_struct *task)
2407{
2408 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2409 if (ctx)
2410 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2411 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2412 if (ctx)
2413 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2414}
2415
487f05e1
AS
2416/*
2417 * We want to maintain the following priority of scheduling:
2418 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2419 * - task pinned (EVENT_PINNED)
2420 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2421 * - task flexible (EVENT_FLEXIBLE).
2422 *
2423 * In order to avoid unscheduling and scheduling back in everything every
2424 * time an event is added, only do it for the groups of equal priority and
2425 * below.
2426 *
2427 * This can be called after a batch operation on task events, in which case
2428 * event_type is a bit mask of the types of events involved. For CPU events,
2429 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2430 */
3e349507 2431static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2432 struct perf_event_context *task_ctx,
2433 enum event_type_t event_type)
0017960f 2434{
487f05e1
AS
2435 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2436 bool cpu_event = !!(event_type & EVENT_CPU);
2437
2438 /*
2439 * If pinned groups are involved, flexible groups also need to be
2440 * scheduled out.
2441 */
2442 if (event_type & EVENT_PINNED)
2443 event_type |= EVENT_FLEXIBLE;
2444
3e349507
PZ
2445 perf_pmu_disable(cpuctx->ctx.pmu);
2446 if (task_ctx)
487f05e1
AS
2447 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2448
2449 /*
2450 * Decide which cpu ctx groups to schedule out based on the types
2451 * of events that caused rescheduling:
2452 * - EVENT_CPU: schedule out corresponding groups;
2453 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2454 * - otherwise, do nothing more.
2455 */
2456 if (cpu_event)
2457 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2458 else if (ctx_event_type & EVENT_PINNED)
2459 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2460
3e349507
PZ
2461 perf_event_sched_in(cpuctx, task_ctx, current);
2462 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2463}
2464
0793a61d 2465/*
cdd6c482 2466 * Cross CPU call to install and enable a performance event
682076ae 2467 *
a096309b
PZ
2468 * Very similar to remote_function() + event_function() but cannot assume that
2469 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2470 */
fe4b04fa 2471static int __perf_install_in_context(void *info)
0793a61d 2472{
a096309b
PZ
2473 struct perf_event *event = info;
2474 struct perf_event_context *ctx = event->ctx;
108b02cf 2475 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2476 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2477 bool reprogram = true;
a096309b 2478 int ret = 0;
0793a61d 2479
63b6da39 2480 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2481 if (ctx->task) {
b58f6b0d
PZ
2482 raw_spin_lock(&ctx->lock);
2483 task_ctx = ctx;
a096309b 2484
63cae12b 2485 reprogram = (ctx->task == current);
b58f6b0d 2486
39a43640 2487 /*
63cae12b
PZ
2488 * If the task is running, it must be running on this CPU,
2489 * otherwise we cannot reprogram things.
2490 *
2491 * If its not running, we don't care, ctx->lock will
2492 * serialize against it becoming runnable.
39a43640 2493 */
63cae12b
PZ
2494 if (task_curr(ctx->task) && !reprogram) {
2495 ret = -ESRCH;
2496 goto unlock;
2497 }
a096309b 2498
63cae12b 2499 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2500 } else if (task_ctx) {
2501 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2502 }
b58f6b0d 2503
33801b94 2504#ifdef CONFIG_CGROUP_PERF
2505 if (is_cgroup_event(event)) {
2506 /*
2507 * If the current cgroup doesn't match the event's
2508 * cgroup, we should not try to schedule it.
2509 */
2510 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2511 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2512 event->cgrp->css.cgroup);
2513 }
2514#endif
2515
63cae12b 2516 if (reprogram) {
a096309b
PZ
2517 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2518 add_event_to_ctx(event, ctx);
487f05e1 2519 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2520 } else {
2521 add_event_to_ctx(event, ctx);
2522 }
2523
63b6da39 2524unlock:
2c29ef0f 2525 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2526
a096309b 2527 return ret;
0793a61d
TG
2528}
2529
2530/*
a096309b
PZ
2531 * Attach a performance event to a context.
2532 *
2533 * Very similar to event_function_call, see comment there.
0793a61d
TG
2534 */
2535static void
cdd6c482
IM
2536perf_install_in_context(struct perf_event_context *ctx,
2537 struct perf_event *event,
0793a61d
TG
2538 int cpu)
2539{
a096309b 2540 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2541
fe4b04fa
PZ
2542 lockdep_assert_held(&ctx->mutex);
2543
0cda4c02
YZ
2544 if (event->cpu != -1)
2545 event->cpu = cpu;
c3f00c70 2546
0b8f1e2e
PZ
2547 /*
2548 * Ensures that if we can observe event->ctx, both the event and ctx
2549 * will be 'complete'. See perf_iterate_sb_cpu().
2550 */
2551 smp_store_release(&event->ctx, ctx);
2552
a096309b
PZ
2553 if (!task) {
2554 cpu_function_call(cpu, __perf_install_in_context, event);
2555 return;
2556 }
2557
2558 /*
2559 * Should not happen, we validate the ctx is still alive before calling.
2560 */
2561 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2562 return;
2563
39a43640
PZ
2564 /*
2565 * Installing events is tricky because we cannot rely on ctx->is_active
2566 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2567 *
2568 * Instead we use task_curr(), which tells us if the task is running.
2569 * However, since we use task_curr() outside of rq::lock, we can race
2570 * against the actual state. This means the result can be wrong.
2571 *
2572 * If we get a false positive, we retry, this is harmless.
2573 *
2574 * If we get a false negative, things are complicated. If we are after
2575 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2576 * value must be correct. If we're before, it doesn't matter since
2577 * perf_event_context_sched_in() will program the counter.
2578 *
2579 * However, this hinges on the remote context switch having observed
2580 * our task->perf_event_ctxp[] store, such that it will in fact take
2581 * ctx::lock in perf_event_context_sched_in().
2582 *
2583 * We do this by task_function_call(), if the IPI fails to hit the task
2584 * we know any future context switch of task must see the
2585 * perf_event_ctpx[] store.
39a43640 2586 */
63cae12b 2587
63b6da39 2588 /*
63cae12b
PZ
2589 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2590 * task_cpu() load, such that if the IPI then does not find the task
2591 * running, a future context switch of that task must observe the
2592 * store.
63b6da39 2593 */
63cae12b
PZ
2594 smp_mb();
2595again:
2596 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2597 return;
2598
2599 raw_spin_lock_irq(&ctx->lock);
2600 task = ctx->task;
84c4e620 2601 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2602 /*
2603 * Cannot happen because we already checked above (which also
2604 * cannot happen), and we hold ctx->mutex, which serializes us
2605 * against perf_event_exit_task_context().
2606 */
63b6da39
PZ
2607 raw_spin_unlock_irq(&ctx->lock);
2608 return;
2609 }
39a43640 2610 /*
63cae12b
PZ
2611 * If the task is not running, ctx->lock will avoid it becoming so,
2612 * thus we can safely install the event.
39a43640 2613 */
63cae12b
PZ
2614 if (task_curr(task)) {
2615 raw_spin_unlock_irq(&ctx->lock);
2616 goto again;
2617 }
2618 add_event_to_ctx(event, ctx);
2619 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2620}
2621
d859e29f 2622/*
cdd6c482 2623 * Cross CPU call to enable a performance event
d859e29f 2624 */
fae3fde6
PZ
2625static void __perf_event_enable(struct perf_event *event,
2626 struct perf_cpu_context *cpuctx,
2627 struct perf_event_context *ctx,
2628 void *info)
04289bb9 2629{
cdd6c482 2630 struct perf_event *leader = event->group_leader;
fae3fde6 2631 struct perf_event_context *task_ctx;
04289bb9 2632
6e801e01
PZ
2633 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2634 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2635 return;
3cbed429 2636
bd2afa49
PZ
2637 if (ctx->is_active)
2638 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2639
0d3d73aa 2640 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2641
fae3fde6
PZ
2642 if (!ctx->is_active)
2643 return;
2644
e5d1367f 2645 if (!event_filter_match(event)) {
bd2afa49 2646 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2647 return;
e5d1367f 2648 }
f4c4176f 2649
04289bb9 2650 /*
cdd6c482 2651 * If the event is in a group and isn't the group leader,
d859e29f 2652 * then don't put it on unless the group is on.
04289bb9 2653 */
bd2afa49
PZ
2654 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2655 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2656 return;
bd2afa49 2657 }
fe4b04fa 2658
fae3fde6
PZ
2659 task_ctx = cpuctx->task_ctx;
2660 if (ctx->task)
2661 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2662
487f05e1 2663 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2664}
2665
d859e29f 2666/*
cdd6c482 2667 * Enable a event.
c93f7669 2668 *
cdd6c482
IM
2669 * If event->ctx is a cloned context, callers must make sure that
2670 * every task struct that event->ctx->task could possibly point to
c93f7669 2671 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2672 * perf_event_for_each_child or perf_event_for_each as described
2673 * for perf_event_disable.
d859e29f 2674 */
f63a8daa 2675static void _perf_event_enable(struct perf_event *event)
d859e29f 2676{
cdd6c482 2677 struct perf_event_context *ctx = event->ctx;
d859e29f 2678
7b648018 2679 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2680 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2681 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2682 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2683 return;
2684 }
2685
d859e29f 2686 /*
cdd6c482 2687 * If the event is in error state, clear that first.
7b648018
PZ
2688 *
2689 * That way, if we see the event in error state below, we know that it
2690 * has gone back into error state, as distinct from the task having
2691 * been scheduled away before the cross-call arrived.
d859e29f 2692 */
cdd6c482
IM
2693 if (event->state == PERF_EVENT_STATE_ERROR)
2694 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2695 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2696
fae3fde6 2697 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2698}
f63a8daa
PZ
2699
2700/*
2701 * See perf_event_disable();
2702 */
2703void perf_event_enable(struct perf_event *event)
2704{
2705 struct perf_event_context *ctx;
2706
2707 ctx = perf_event_ctx_lock(event);
2708 _perf_event_enable(event);
2709 perf_event_ctx_unlock(event, ctx);
2710}
dcfce4a0 2711EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2712
375637bc
AS
2713struct stop_event_data {
2714 struct perf_event *event;
2715 unsigned int restart;
2716};
2717
95ff4ca2
AS
2718static int __perf_event_stop(void *info)
2719{
375637bc
AS
2720 struct stop_event_data *sd = info;
2721 struct perf_event *event = sd->event;
95ff4ca2 2722
375637bc 2723 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2724 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2725 return 0;
2726
2727 /* matches smp_wmb() in event_sched_in() */
2728 smp_rmb();
2729
2730 /*
2731 * There is a window with interrupts enabled before we get here,
2732 * so we need to check again lest we try to stop another CPU's event.
2733 */
2734 if (READ_ONCE(event->oncpu) != smp_processor_id())
2735 return -EAGAIN;
2736
2737 event->pmu->stop(event, PERF_EF_UPDATE);
2738
375637bc
AS
2739 /*
2740 * May race with the actual stop (through perf_pmu_output_stop()),
2741 * but it is only used for events with AUX ring buffer, and such
2742 * events will refuse to restart because of rb::aux_mmap_count==0,
2743 * see comments in perf_aux_output_begin().
2744 *
2745 * Since this is happening on a event-local CPU, no trace is lost
2746 * while restarting.
2747 */
2748 if (sd->restart)
c9bbdd48 2749 event->pmu->start(event, 0);
375637bc 2750
95ff4ca2
AS
2751 return 0;
2752}
2753
767ae086 2754static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2755{
2756 struct stop_event_data sd = {
2757 .event = event,
767ae086 2758 .restart = restart,
375637bc
AS
2759 };
2760 int ret = 0;
2761
2762 do {
2763 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2764 return 0;
2765
2766 /* matches smp_wmb() in event_sched_in() */
2767 smp_rmb();
2768
2769 /*
2770 * We only want to restart ACTIVE events, so if the event goes
2771 * inactive here (event->oncpu==-1), there's nothing more to do;
2772 * fall through with ret==-ENXIO.
2773 */
2774 ret = cpu_function_call(READ_ONCE(event->oncpu),
2775 __perf_event_stop, &sd);
2776 } while (ret == -EAGAIN);
2777
2778 return ret;
2779}
2780
2781/*
2782 * In order to contain the amount of racy and tricky in the address filter
2783 * configuration management, it is a two part process:
2784 *
2785 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2786 * we update the addresses of corresponding vmas in
2787 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2788 * (p2) when an event is scheduled in (pmu::add), it calls
2789 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2790 * if the generation has changed since the previous call.
2791 *
2792 * If (p1) happens while the event is active, we restart it to force (p2).
2793 *
2794 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2795 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2796 * ioctl;
2797 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2798 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2799 * for reading;
2800 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2801 * of exec.
2802 */
2803void perf_event_addr_filters_sync(struct perf_event *event)
2804{
2805 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2806
2807 if (!has_addr_filter(event))
2808 return;
2809
2810 raw_spin_lock(&ifh->lock);
2811 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2812 event->pmu->addr_filters_sync(event);
2813 event->hw.addr_filters_gen = event->addr_filters_gen;
2814 }
2815 raw_spin_unlock(&ifh->lock);
2816}
2817EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2818
f63a8daa 2819static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2820{
2023b359 2821 /*
cdd6c482 2822 * not supported on inherited events
2023b359 2823 */
2e939d1d 2824 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2825 return -EINVAL;
2826
cdd6c482 2827 atomic_add(refresh, &event->event_limit);
f63a8daa 2828 _perf_event_enable(event);
2023b359
PZ
2829
2830 return 0;
79f14641 2831}
f63a8daa
PZ
2832
2833/*
2834 * See perf_event_disable()
2835 */
2836int perf_event_refresh(struct perf_event *event, int refresh)
2837{
2838 struct perf_event_context *ctx;
2839 int ret;
2840
2841 ctx = perf_event_ctx_lock(event);
2842 ret = _perf_event_refresh(event, refresh);
2843 perf_event_ctx_unlock(event, ctx);
2844
2845 return ret;
2846}
26ca5c11 2847EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2848
5b0311e1
FW
2849static void ctx_sched_out(struct perf_event_context *ctx,
2850 struct perf_cpu_context *cpuctx,
2851 enum event_type_t event_type)
235c7fc7 2852{
6668128a 2853 struct perf_event *event, *tmp;
db24d33e 2854 int is_active = ctx->is_active;
235c7fc7 2855
c994d613 2856 lockdep_assert_held(&ctx->lock);
235c7fc7 2857
39a43640
PZ
2858 if (likely(!ctx->nr_events)) {
2859 /*
2860 * See __perf_remove_from_context().
2861 */
2862 WARN_ON_ONCE(ctx->is_active);
2863 if (ctx->task)
2864 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2865 return;
39a43640
PZ
2866 }
2867
db24d33e 2868 ctx->is_active &= ~event_type;
3cbaa590
PZ
2869 if (!(ctx->is_active & EVENT_ALL))
2870 ctx->is_active = 0;
2871
63e30d3e
PZ
2872 if (ctx->task) {
2873 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2874 if (!ctx->is_active)
2875 cpuctx->task_ctx = NULL;
2876 }
facc4307 2877
8fdc6539
PZ
2878 /*
2879 * Always update time if it was set; not only when it changes.
2880 * Otherwise we can 'forget' to update time for any but the last
2881 * context we sched out. For example:
2882 *
2883 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2884 * ctx_sched_out(.event_type = EVENT_PINNED)
2885 *
2886 * would only update time for the pinned events.
2887 */
3cbaa590
PZ
2888 if (is_active & EVENT_TIME) {
2889 /* update (and stop) ctx time */
2890 update_context_time(ctx);
2891 update_cgrp_time_from_cpuctx(cpuctx);
2892 }
2893
8fdc6539
PZ
2894 is_active ^= ctx->is_active; /* changed bits */
2895
3cbaa590 2896 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2897 return;
5b0311e1 2898
075e0b00 2899 perf_pmu_disable(ctx->pmu);
3cbaa590 2900 if (is_active & EVENT_PINNED) {
6668128a 2901 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
889ff015 2902 group_sched_out(event, cpuctx, ctx);
9ed6060d 2903 }
889ff015 2904
3cbaa590 2905 if (is_active & EVENT_FLEXIBLE) {
6668128a 2906 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
8c9ed8e1 2907 group_sched_out(event, cpuctx, ctx);
9ed6060d 2908 }
1b9a644f 2909 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2910}
2911
564c2b21 2912/*
5a3126d4
PZ
2913 * Test whether two contexts are equivalent, i.e. whether they have both been
2914 * cloned from the same version of the same context.
2915 *
2916 * Equivalence is measured using a generation number in the context that is
2917 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2918 * and list_del_event().
564c2b21 2919 */
cdd6c482
IM
2920static int context_equiv(struct perf_event_context *ctx1,
2921 struct perf_event_context *ctx2)
564c2b21 2922{
211de6eb
PZ
2923 lockdep_assert_held(&ctx1->lock);
2924 lockdep_assert_held(&ctx2->lock);
2925
5a3126d4
PZ
2926 /* Pinning disables the swap optimization */
2927 if (ctx1->pin_count || ctx2->pin_count)
2928 return 0;
2929
2930 /* If ctx1 is the parent of ctx2 */
2931 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2932 return 1;
2933
2934 /* If ctx2 is the parent of ctx1 */
2935 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2936 return 1;
2937
2938 /*
2939 * If ctx1 and ctx2 have the same parent; we flatten the parent
2940 * hierarchy, see perf_event_init_context().
2941 */
2942 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2943 ctx1->parent_gen == ctx2->parent_gen)
2944 return 1;
2945
2946 /* Unmatched */
2947 return 0;
564c2b21
PM
2948}
2949
cdd6c482
IM
2950static void __perf_event_sync_stat(struct perf_event *event,
2951 struct perf_event *next_event)
bfbd3381
PZ
2952{
2953 u64 value;
2954
cdd6c482 2955 if (!event->attr.inherit_stat)
bfbd3381
PZ
2956 return;
2957
2958 /*
cdd6c482 2959 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2960 * because we're in the middle of a context switch and have IRQs
2961 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2962 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2963 * don't need to use it.
2964 */
0d3d73aa 2965 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 2966 event->pmu->read(event);
bfbd3381 2967
0d3d73aa 2968 perf_event_update_time(event);
bfbd3381
PZ
2969
2970 /*
cdd6c482 2971 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2972 * values when we flip the contexts.
2973 */
e7850595
PZ
2974 value = local64_read(&next_event->count);
2975 value = local64_xchg(&event->count, value);
2976 local64_set(&next_event->count, value);
bfbd3381 2977
cdd6c482
IM
2978 swap(event->total_time_enabled, next_event->total_time_enabled);
2979 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2980
bfbd3381 2981 /*
19d2e755 2982 * Since we swizzled the values, update the user visible data too.
bfbd3381 2983 */
cdd6c482
IM
2984 perf_event_update_userpage(event);
2985 perf_event_update_userpage(next_event);
bfbd3381
PZ
2986}
2987
cdd6c482
IM
2988static void perf_event_sync_stat(struct perf_event_context *ctx,
2989 struct perf_event_context *next_ctx)
bfbd3381 2990{
cdd6c482 2991 struct perf_event *event, *next_event;
bfbd3381
PZ
2992
2993 if (!ctx->nr_stat)
2994 return;
2995
02ffdbc8
PZ
2996 update_context_time(ctx);
2997
cdd6c482
IM
2998 event = list_first_entry(&ctx->event_list,
2999 struct perf_event, event_entry);
bfbd3381 3000
cdd6c482
IM
3001 next_event = list_first_entry(&next_ctx->event_list,
3002 struct perf_event, event_entry);
bfbd3381 3003
cdd6c482
IM
3004 while (&event->event_entry != &ctx->event_list &&
3005 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3006
cdd6c482 3007 __perf_event_sync_stat(event, next_event);
bfbd3381 3008
cdd6c482
IM
3009 event = list_next_entry(event, event_entry);
3010 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3011 }
3012}
3013
fe4b04fa
PZ
3014static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3015 struct task_struct *next)
0793a61d 3016{
8dc85d54 3017 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 3018 struct perf_event_context *next_ctx;
5a3126d4 3019 struct perf_event_context *parent, *next_parent;
108b02cf 3020 struct perf_cpu_context *cpuctx;
c93f7669 3021 int do_switch = 1;
0793a61d 3022
108b02cf
PZ
3023 if (likely(!ctx))
3024 return;
10989fb2 3025
108b02cf
PZ
3026 cpuctx = __get_cpu_context(ctx);
3027 if (!cpuctx->task_ctx)
0793a61d
TG
3028 return;
3029
c93f7669 3030 rcu_read_lock();
8dc85d54 3031 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
3032 if (!next_ctx)
3033 goto unlock;
3034
3035 parent = rcu_dereference(ctx->parent_ctx);
3036 next_parent = rcu_dereference(next_ctx->parent_ctx);
3037
3038 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3039 if (!parent && !next_parent)
5a3126d4
PZ
3040 goto unlock;
3041
3042 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3043 /*
3044 * Looks like the two contexts are clones, so we might be
3045 * able to optimize the context switch. We lock both
3046 * contexts and check that they are clones under the
3047 * lock (including re-checking that neither has been
3048 * uncloned in the meantime). It doesn't matter which
3049 * order we take the locks because no other cpu could
3050 * be trying to lock both of these tasks.
3051 */
e625cce1
TG
3052 raw_spin_lock(&ctx->lock);
3053 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3054 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
3055 WRITE_ONCE(ctx->task, next);
3056 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
3057
3058 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3059
63b6da39
PZ
3060 /*
3061 * RCU_INIT_POINTER here is safe because we've not
3062 * modified the ctx and the above modification of
3063 * ctx->task and ctx->task_ctx_data are immaterial
3064 * since those values are always verified under
3065 * ctx->lock which we're now holding.
3066 */
3067 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3068 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3069
c93f7669 3070 do_switch = 0;
bfbd3381 3071
cdd6c482 3072 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3073 }
e625cce1
TG
3074 raw_spin_unlock(&next_ctx->lock);
3075 raw_spin_unlock(&ctx->lock);
564c2b21 3076 }
5a3126d4 3077unlock:
c93f7669 3078 rcu_read_unlock();
564c2b21 3079
c93f7669 3080 if (do_switch) {
facc4307 3081 raw_spin_lock(&ctx->lock);
487f05e1 3082 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 3083 raw_spin_unlock(&ctx->lock);
c93f7669 3084 }
0793a61d
TG
3085}
3086
e48c1788
PZ
3087static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3088
ba532500
YZ
3089void perf_sched_cb_dec(struct pmu *pmu)
3090{
e48c1788
PZ
3091 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3092
ba532500 3093 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3094
3095 if (!--cpuctx->sched_cb_usage)
3096 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3097}
3098
e48c1788 3099
ba532500
YZ
3100void perf_sched_cb_inc(struct pmu *pmu)
3101{
e48c1788
PZ
3102 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3103
3104 if (!cpuctx->sched_cb_usage++)
3105 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3106
ba532500
YZ
3107 this_cpu_inc(perf_sched_cb_usages);
3108}
3109
3110/*
3111 * This function provides the context switch callback to the lower code
3112 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3113 *
3114 * This callback is relevant even to per-cpu events; for example multi event
3115 * PEBS requires this to provide PID/TID information. This requires we flush
3116 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3117 */
3118static void perf_pmu_sched_task(struct task_struct *prev,
3119 struct task_struct *next,
3120 bool sched_in)
3121{
3122 struct perf_cpu_context *cpuctx;
3123 struct pmu *pmu;
ba532500
YZ
3124
3125 if (prev == next)
3126 return;
3127
e48c1788 3128 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3129 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3130
e48c1788
PZ
3131 if (WARN_ON_ONCE(!pmu->sched_task))
3132 continue;
ba532500 3133
e48c1788
PZ
3134 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3135 perf_pmu_disable(pmu);
ba532500 3136
e48c1788 3137 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3138
e48c1788
PZ
3139 perf_pmu_enable(pmu);
3140 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3141 }
ba532500
YZ
3142}
3143
45ac1403
AH
3144static void perf_event_switch(struct task_struct *task,
3145 struct task_struct *next_prev, bool sched_in);
3146
8dc85d54
PZ
3147#define for_each_task_context_nr(ctxn) \
3148 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3149
3150/*
3151 * Called from scheduler to remove the events of the current task,
3152 * with interrupts disabled.
3153 *
3154 * We stop each event and update the event value in event->count.
3155 *
3156 * This does not protect us against NMI, but disable()
3157 * sets the disabled bit in the control field of event _before_
3158 * accessing the event control register. If a NMI hits, then it will
3159 * not restart the event.
3160 */
ab0cce56
JO
3161void __perf_event_task_sched_out(struct task_struct *task,
3162 struct task_struct *next)
8dc85d54
PZ
3163{
3164 int ctxn;
3165
ba532500
YZ
3166 if (__this_cpu_read(perf_sched_cb_usages))
3167 perf_pmu_sched_task(task, next, false);
3168
45ac1403
AH
3169 if (atomic_read(&nr_switch_events))
3170 perf_event_switch(task, next, false);
3171
8dc85d54
PZ
3172 for_each_task_context_nr(ctxn)
3173 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3174
3175 /*
3176 * if cgroup events exist on this CPU, then we need
3177 * to check if we have to switch out PMU state.
3178 * cgroup event are system-wide mode only
3179 */
4a32fea9 3180 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3181 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3182}
3183
5b0311e1
FW
3184/*
3185 * Called with IRQs disabled
3186 */
3187static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3188 enum event_type_t event_type)
3189{
3190 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3191}
3192
1cac7b1a
PZ
3193static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3194 int (*func)(struct perf_event *, void *), void *data)
0793a61d 3195{
1cac7b1a
PZ
3196 struct perf_event **evt, *evt1, *evt2;
3197 int ret;
8e1a2031 3198
1cac7b1a
PZ
3199 evt1 = perf_event_groups_first(groups, -1);
3200 evt2 = perf_event_groups_first(groups, cpu);
3201
3202 while (evt1 || evt2) {
3203 if (evt1 && evt2) {
3204 if (evt1->group_index < evt2->group_index)
3205 evt = &evt1;
3206 else
3207 evt = &evt2;
3208 } else if (evt1) {
3209 evt = &evt1;
3210 } else {
3211 evt = &evt2;
8e1a2031 3212 }
1cac7b1a
PZ
3213
3214 ret = func(*evt, data);
3215 if (ret)
3216 return ret;
3217
3218 *evt = perf_event_groups_next(*evt);
8e1a2031 3219 }
0793a61d 3220
1cac7b1a
PZ
3221 return 0;
3222}
3223
3224struct sched_in_data {
3225 struct perf_event_context *ctx;
3226 struct perf_cpu_context *cpuctx;
3227 int can_add_hw;
3228};
3229
3230static int pinned_sched_in(struct perf_event *event, void *data)
3231{
3232 struct sched_in_data *sid = data;
3233
3234 if (event->state <= PERF_EVENT_STATE_OFF)
3235 return 0;
3236
3237 if (!event_filter_match(event))
3238 return 0;
3239
6668128a
PZ
3240 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3241 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3242 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3243 }
1cac7b1a
PZ
3244
3245 /*
3246 * If this pinned group hasn't been scheduled,
3247 * put it in error state.
3248 */
3249 if (event->state == PERF_EVENT_STATE_INACTIVE)
3250 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3251
3252 return 0;
3253}
3254
3255static int flexible_sched_in(struct perf_event *event, void *data)
3256{
3257 struct sched_in_data *sid = data;
3258
3259 if (event->state <= PERF_EVENT_STATE_OFF)
3260 return 0;
3261
3262 if (!event_filter_match(event))
3263 return 0;
3264
3265 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
6668128a
PZ
3266 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3267 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3268 else
1cac7b1a 3269 sid->can_add_hw = 0;
3b6f9e5c 3270 }
1cac7b1a
PZ
3271
3272 return 0;
5b0311e1
FW
3273}
3274
3275static void
1cac7b1a
PZ
3276ctx_pinned_sched_in(struct perf_event_context *ctx,
3277 struct perf_cpu_context *cpuctx)
5b0311e1 3278{
1cac7b1a
PZ
3279 struct sched_in_data sid = {
3280 .ctx = ctx,
3281 .cpuctx = cpuctx,
3282 .can_add_hw = 1,
3283 };
3b6f9e5c 3284
1cac7b1a
PZ
3285 visit_groups_merge(&ctx->pinned_groups,
3286 smp_processor_id(),
3287 pinned_sched_in, &sid);
3288}
8e1a2031 3289
1cac7b1a
PZ
3290static void
3291ctx_flexible_sched_in(struct perf_event_context *ctx,
3292 struct perf_cpu_context *cpuctx)
3293{
3294 struct sched_in_data sid = {
3295 .ctx = ctx,
3296 .cpuctx = cpuctx,
3297 .can_add_hw = 1,
3298 };
0793a61d 3299
1cac7b1a
PZ
3300 visit_groups_merge(&ctx->flexible_groups,
3301 smp_processor_id(),
3302 flexible_sched_in, &sid);
5b0311e1
FW
3303}
3304
3305static void
3306ctx_sched_in(struct perf_event_context *ctx,
3307 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3308 enum event_type_t event_type,
3309 struct task_struct *task)
5b0311e1 3310{
db24d33e 3311 int is_active = ctx->is_active;
c994d613
PZ
3312 u64 now;
3313
3314 lockdep_assert_held(&ctx->lock);
e5d1367f 3315
5b0311e1 3316 if (likely(!ctx->nr_events))
facc4307 3317 return;
5b0311e1 3318
3cbaa590 3319 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3320 if (ctx->task) {
3321 if (!is_active)
3322 cpuctx->task_ctx = ctx;
3323 else
3324 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3325 }
3326
3cbaa590
PZ
3327 is_active ^= ctx->is_active; /* changed bits */
3328
3329 if (is_active & EVENT_TIME) {
3330 /* start ctx time */
3331 now = perf_clock();
3332 ctx->timestamp = now;
3333 perf_cgroup_set_timestamp(task, ctx);
3334 }
3335
5b0311e1
FW
3336 /*
3337 * First go through the list and put on any pinned groups
3338 * in order to give them the best chance of going on.
3339 */
3cbaa590 3340 if (is_active & EVENT_PINNED)
6e37738a 3341 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3342
3343 /* Then walk through the lower prio flexible groups */
3cbaa590 3344 if (is_active & EVENT_FLEXIBLE)
6e37738a 3345 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3346}
3347
329c0e01 3348static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3349 enum event_type_t event_type,
3350 struct task_struct *task)
329c0e01
FW
3351{
3352 struct perf_event_context *ctx = &cpuctx->ctx;
3353
e5d1367f 3354 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3355}
3356
e5d1367f
SE
3357static void perf_event_context_sched_in(struct perf_event_context *ctx,
3358 struct task_struct *task)
235c7fc7 3359{
108b02cf 3360 struct perf_cpu_context *cpuctx;
235c7fc7 3361
108b02cf 3362 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3363 if (cpuctx->task_ctx == ctx)
3364 return;
3365
facc4307 3366 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3367 /*
3368 * We must check ctx->nr_events while holding ctx->lock, such
3369 * that we serialize against perf_install_in_context().
3370 */
3371 if (!ctx->nr_events)
3372 goto unlock;
3373
1b9a644f 3374 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3375 /*
3376 * We want to keep the following priority order:
3377 * cpu pinned (that don't need to move), task pinned,
3378 * cpu flexible, task flexible.
fe45bafb
AS
3379 *
3380 * However, if task's ctx is not carrying any pinned
3381 * events, no need to flip the cpuctx's events around.
329c0e01 3382 */
8e1a2031 3383 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
fe45bafb 3384 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3385 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3386 perf_pmu_enable(ctx->pmu);
fdccc3fb 3387
3388unlock:
facc4307 3389 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3390}
3391
8dc85d54
PZ
3392/*
3393 * Called from scheduler to add the events of the current task
3394 * with interrupts disabled.
3395 *
3396 * We restore the event value and then enable it.
3397 *
3398 * This does not protect us against NMI, but enable()
3399 * sets the enabled bit in the control field of event _before_
3400 * accessing the event control register. If a NMI hits, then it will
3401 * keep the event running.
3402 */
ab0cce56
JO
3403void __perf_event_task_sched_in(struct task_struct *prev,
3404 struct task_struct *task)
8dc85d54
PZ
3405{
3406 struct perf_event_context *ctx;
3407 int ctxn;
3408
7e41d177
PZ
3409 /*
3410 * If cgroup events exist on this CPU, then we need to check if we have
3411 * to switch in PMU state; cgroup event are system-wide mode only.
3412 *
3413 * Since cgroup events are CPU events, we must schedule these in before
3414 * we schedule in the task events.
3415 */
3416 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3417 perf_cgroup_sched_in(prev, task);
3418
8dc85d54
PZ
3419 for_each_task_context_nr(ctxn) {
3420 ctx = task->perf_event_ctxp[ctxn];
3421 if (likely(!ctx))
3422 continue;
3423
e5d1367f 3424 perf_event_context_sched_in(ctx, task);
8dc85d54 3425 }
d010b332 3426
45ac1403
AH
3427 if (atomic_read(&nr_switch_events))
3428 perf_event_switch(task, prev, true);
3429
ba532500
YZ
3430 if (__this_cpu_read(perf_sched_cb_usages))
3431 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3432}
3433
abd50713
PZ
3434static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3435{
3436 u64 frequency = event->attr.sample_freq;
3437 u64 sec = NSEC_PER_SEC;
3438 u64 divisor, dividend;
3439
3440 int count_fls, nsec_fls, frequency_fls, sec_fls;
3441
3442 count_fls = fls64(count);
3443 nsec_fls = fls64(nsec);
3444 frequency_fls = fls64(frequency);
3445 sec_fls = 30;
3446
3447 /*
3448 * We got @count in @nsec, with a target of sample_freq HZ
3449 * the target period becomes:
3450 *
3451 * @count * 10^9
3452 * period = -------------------
3453 * @nsec * sample_freq
3454 *
3455 */
3456
3457 /*
3458 * Reduce accuracy by one bit such that @a and @b converge
3459 * to a similar magnitude.
3460 */
fe4b04fa 3461#define REDUCE_FLS(a, b) \
abd50713
PZ
3462do { \
3463 if (a##_fls > b##_fls) { \
3464 a >>= 1; \
3465 a##_fls--; \
3466 } else { \
3467 b >>= 1; \
3468 b##_fls--; \
3469 } \
3470} while (0)
3471
3472 /*
3473 * Reduce accuracy until either term fits in a u64, then proceed with
3474 * the other, so that finally we can do a u64/u64 division.
3475 */
3476 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3477 REDUCE_FLS(nsec, frequency);
3478 REDUCE_FLS(sec, count);
3479 }
3480
3481 if (count_fls + sec_fls > 64) {
3482 divisor = nsec * frequency;
3483
3484 while (count_fls + sec_fls > 64) {
3485 REDUCE_FLS(count, sec);
3486 divisor >>= 1;
3487 }
3488
3489 dividend = count * sec;
3490 } else {
3491 dividend = count * sec;
3492
3493 while (nsec_fls + frequency_fls > 64) {
3494 REDUCE_FLS(nsec, frequency);
3495 dividend >>= 1;
3496 }
3497
3498 divisor = nsec * frequency;
3499 }
3500
f6ab91ad
PZ
3501 if (!divisor)
3502 return dividend;
3503
abd50713
PZ
3504 return div64_u64(dividend, divisor);
3505}
3506
e050e3f0
SE
3507static DEFINE_PER_CPU(int, perf_throttled_count);
3508static DEFINE_PER_CPU(u64, perf_throttled_seq);
3509
f39d47ff 3510static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3511{
cdd6c482 3512 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3513 s64 period, sample_period;
bd2b5b12
PZ
3514 s64 delta;
3515
abd50713 3516 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3517
3518 delta = (s64)(period - hwc->sample_period);
3519 delta = (delta + 7) / 8; /* low pass filter */
3520
3521 sample_period = hwc->sample_period + delta;
3522
3523 if (!sample_period)
3524 sample_period = 1;
3525
bd2b5b12 3526 hwc->sample_period = sample_period;
abd50713 3527
e7850595 3528 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3529 if (disable)
3530 event->pmu->stop(event, PERF_EF_UPDATE);
3531
e7850595 3532 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3533
3534 if (disable)
3535 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3536 }
bd2b5b12
PZ
3537}
3538
e050e3f0
SE
3539/*
3540 * combine freq adjustment with unthrottling to avoid two passes over the
3541 * events. At the same time, make sure, having freq events does not change
3542 * the rate of unthrottling as that would introduce bias.
3543 */
3544static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3545 int needs_unthr)
60db5e09 3546{
cdd6c482
IM
3547 struct perf_event *event;
3548 struct hw_perf_event *hwc;
e050e3f0 3549 u64 now, period = TICK_NSEC;
abd50713 3550 s64 delta;
60db5e09 3551
e050e3f0
SE
3552 /*
3553 * only need to iterate over all events iff:
3554 * - context have events in frequency mode (needs freq adjust)
3555 * - there are events to unthrottle on this cpu
3556 */
3557 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3558 return;
3559
e050e3f0 3560 raw_spin_lock(&ctx->lock);
f39d47ff 3561 perf_pmu_disable(ctx->pmu);
e050e3f0 3562
03541f8b 3563 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3564 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3565 continue;
3566
5632ab12 3567 if (!event_filter_match(event))
5d27c23d
PZ
3568 continue;
3569
44377277
AS
3570 perf_pmu_disable(event->pmu);
3571
cdd6c482 3572 hwc = &event->hw;
6a24ed6c 3573
ae23bff1 3574 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3575 hwc->interrupts = 0;
cdd6c482 3576 perf_log_throttle(event, 1);
a4eaf7f1 3577 event->pmu->start(event, 0);
a78ac325
PZ
3578 }
3579
cdd6c482 3580 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3581 goto next;
60db5e09 3582
e050e3f0
SE
3583 /*
3584 * stop the event and update event->count
3585 */
3586 event->pmu->stop(event, PERF_EF_UPDATE);
3587
e7850595 3588 now = local64_read(&event->count);
abd50713
PZ
3589 delta = now - hwc->freq_count_stamp;
3590 hwc->freq_count_stamp = now;
60db5e09 3591
e050e3f0
SE
3592 /*
3593 * restart the event
3594 * reload only if value has changed
f39d47ff
SE
3595 * we have stopped the event so tell that
3596 * to perf_adjust_period() to avoid stopping it
3597 * twice.
e050e3f0 3598 */
abd50713 3599 if (delta > 0)
f39d47ff 3600 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3601
3602 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3603 next:
3604 perf_pmu_enable(event->pmu);
60db5e09 3605 }
e050e3f0 3606
f39d47ff 3607 perf_pmu_enable(ctx->pmu);
e050e3f0 3608 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3609}
3610
235c7fc7 3611/*
8703a7cf 3612 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 3613 */
8703a7cf 3614static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 3615{
dddd3379
TG
3616 /*
3617 * Rotate the first entry last of non-pinned groups. Rotation might be
3618 * disabled by the inheritance code.
3619 */
8703a7cf
PZ
3620 if (ctx->rotate_disable)
3621 return;
8e1a2031 3622
8703a7cf
PZ
3623 perf_event_groups_delete(&ctx->flexible_groups, event);
3624 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
3625}
3626
8d5bce0c
PZ
3627static inline struct perf_event *
3628ctx_first_active(struct perf_event_context *ctx)
235c7fc7 3629{
8d5bce0c
PZ
3630 return list_first_entry_or_null(&ctx->flexible_active,
3631 struct perf_event, active_list);
3632}
3633
3634static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3635{
3636 struct perf_event *cpu_event = NULL, *task_event = NULL;
3637 bool cpu_rotate = false, task_rotate = false;
8dc85d54 3638 struct perf_event_context *ctx = NULL;
8d5bce0c
PZ
3639
3640 /*
3641 * Since we run this from IRQ context, nobody can install new
3642 * events, thus the event count values are stable.
3643 */
7fc23a53 3644
b5ab4cd5 3645 if (cpuctx->ctx.nr_events) {
b5ab4cd5 3646 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
8d5bce0c 3647 cpu_rotate = true;
b5ab4cd5 3648 }
235c7fc7 3649
8dc85d54 3650 ctx = cpuctx->task_ctx;
b5ab4cd5 3651 if (ctx && ctx->nr_events) {
b5ab4cd5 3652 if (ctx->nr_events != ctx->nr_active)
8d5bce0c 3653 task_rotate = true;
b5ab4cd5 3654 }
9717e6cd 3655
8d5bce0c
PZ
3656 if (!(cpu_rotate || task_rotate))
3657 return false;
0f5a2601 3658
facc4307 3659 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3660 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3661
8d5bce0c
PZ
3662 if (task_rotate)
3663 task_event = ctx_first_active(ctx);
3664 if (cpu_rotate)
3665 cpu_event = ctx_first_active(&cpuctx->ctx);
8703a7cf 3666
8d5bce0c
PZ
3667 /*
3668 * As per the order given at ctx_resched() first 'pop' task flexible
3669 * and then, if needed CPU flexible.
3670 */
3671 if (task_event || (ctx && cpu_event))
e050e3f0 3672 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
8d5bce0c
PZ
3673 if (cpu_event)
3674 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
0793a61d 3675
8d5bce0c
PZ
3676 if (task_event)
3677 rotate_ctx(ctx, task_event);
3678 if (cpu_event)
3679 rotate_ctx(&cpuctx->ctx, cpu_event);
235c7fc7 3680
e050e3f0 3681 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3682
0f5a2601
PZ
3683 perf_pmu_enable(cpuctx->ctx.pmu);
3684 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 3685
8d5bce0c 3686 return true;
e9d2b064
PZ
3687}
3688
3689void perf_event_task_tick(void)
3690{
2fde4f94
MR
3691 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3692 struct perf_event_context *ctx, *tmp;
e050e3f0 3693 int throttled;
b5ab4cd5 3694
16444645 3695 lockdep_assert_irqs_disabled();
e9d2b064 3696
e050e3f0
SE
3697 __this_cpu_inc(perf_throttled_seq);
3698 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3699 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3700
2fde4f94 3701 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3702 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3703}
3704
889ff015
FW
3705static int event_enable_on_exec(struct perf_event *event,
3706 struct perf_event_context *ctx)
3707{
3708 if (!event->attr.enable_on_exec)
3709 return 0;
3710
3711 event->attr.enable_on_exec = 0;
3712 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3713 return 0;
3714
0d3d73aa 3715 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3716
3717 return 1;
3718}
3719
57e7986e 3720/*
cdd6c482 3721 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3722 * This expects task == current.
3723 */
c1274499 3724static void perf_event_enable_on_exec(int ctxn)
57e7986e 3725{
c1274499 3726 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3727 enum event_type_t event_type = 0;
3e349507 3728 struct perf_cpu_context *cpuctx;
cdd6c482 3729 struct perf_event *event;
57e7986e
PM
3730 unsigned long flags;
3731 int enabled = 0;
3732
3733 local_irq_save(flags);
c1274499 3734 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3735 if (!ctx || !ctx->nr_events)
57e7986e
PM
3736 goto out;
3737
3e349507
PZ
3738 cpuctx = __get_cpu_context(ctx);
3739 perf_ctx_lock(cpuctx, ctx);
7fce2509 3740 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3741 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3742 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3743 event_type |= get_event_type(event);
3744 }
57e7986e
PM
3745
3746 /*
3e349507 3747 * Unclone and reschedule this context if we enabled any event.
57e7986e 3748 */
3e349507 3749 if (enabled) {
211de6eb 3750 clone_ctx = unclone_ctx(ctx);
487f05e1 3751 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3752 } else {
3753 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3754 }
3755 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3756
9ed6060d 3757out:
57e7986e 3758 local_irq_restore(flags);
211de6eb
PZ
3759
3760 if (clone_ctx)
3761 put_ctx(clone_ctx);
57e7986e
PM
3762}
3763
0492d4c5
PZ
3764struct perf_read_data {
3765 struct perf_event *event;
3766 bool group;
7d88962e 3767 int ret;
0492d4c5
PZ
3768};
3769
451d24d1 3770static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3771{
d6a2f903
DCC
3772 u16 local_pkg, event_pkg;
3773
3774 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3775 int local_cpu = smp_processor_id();
3776
3777 event_pkg = topology_physical_package_id(event_cpu);
3778 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3779
3780 if (event_pkg == local_pkg)
3781 return local_cpu;
3782 }
3783
3784 return event_cpu;
3785}
3786
0793a61d 3787/*
cdd6c482 3788 * Cross CPU call to read the hardware event
0793a61d 3789 */
cdd6c482 3790static void __perf_event_read(void *info)
0793a61d 3791{
0492d4c5
PZ
3792 struct perf_read_data *data = info;
3793 struct perf_event *sub, *event = data->event;
cdd6c482 3794 struct perf_event_context *ctx = event->ctx;
108b02cf 3795 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3796 struct pmu *pmu = event->pmu;
621a01ea 3797
e1ac3614
PM
3798 /*
3799 * If this is a task context, we need to check whether it is
3800 * the current task context of this cpu. If not it has been
3801 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3802 * event->count would have been updated to a recent sample
3803 * when the event was scheduled out.
e1ac3614
PM
3804 */
3805 if (ctx->task && cpuctx->task_ctx != ctx)
3806 return;
3807
e625cce1 3808 raw_spin_lock(&ctx->lock);
0c1cbc18 3809 if (ctx->is_active & EVENT_TIME) {
542e72fc 3810 update_context_time(ctx);
e5d1367f
SE
3811 update_cgrp_time_from_event(event);
3812 }
0492d4c5 3813
0d3d73aa
PZ
3814 perf_event_update_time(event);
3815 if (data->group)
3816 perf_event_update_sibling_time(event);
0c1cbc18 3817
4a00c16e
SB
3818 if (event->state != PERF_EVENT_STATE_ACTIVE)
3819 goto unlock;
0492d4c5 3820
4a00c16e
SB
3821 if (!data->group) {
3822 pmu->read(event);
3823 data->ret = 0;
0492d4c5 3824 goto unlock;
4a00c16e
SB
3825 }
3826
3827 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3828
3829 pmu->read(event);
0492d4c5 3830
8343aae6 3831 list_for_each_entry(sub, &event->sibling_list, sibling_list) {
4a00c16e
SB
3832 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3833 /*
3834 * Use sibling's PMU rather than @event's since
3835 * sibling could be on different (eg: software) PMU.
3836 */
0492d4c5 3837 sub->pmu->read(sub);
4a00c16e 3838 }
0492d4c5 3839 }
4a00c16e
SB
3840
3841 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3842
3843unlock:
e625cce1 3844 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3845}
3846
b5e58793
PZ
3847static inline u64 perf_event_count(struct perf_event *event)
3848{
c39a0e2c 3849 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3850}
3851
ffe8690c
KX
3852/*
3853 * NMI-safe method to read a local event, that is an event that
3854 * is:
3855 * - either for the current task, or for this CPU
3856 * - does not have inherit set, for inherited task events
3857 * will not be local and we cannot read them atomically
3858 * - must not have a pmu::count method
3859 */
7d9285e8
YS
3860int perf_event_read_local(struct perf_event *event, u64 *value,
3861 u64 *enabled, u64 *running)
ffe8690c
KX
3862{
3863 unsigned long flags;
f91840a3 3864 int ret = 0;
ffe8690c
KX
3865
3866 /*
3867 * Disabling interrupts avoids all counter scheduling (context
3868 * switches, timer based rotation and IPIs).
3869 */
3870 local_irq_save(flags);
3871
ffe8690c
KX
3872 /*
3873 * It must not be an event with inherit set, we cannot read
3874 * all child counters from atomic context.
3875 */
f91840a3
AS
3876 if (event->attr.inherit) {
3877 ret = -EOPNOTSUPP;
3878 goto out;
3879 }
ffe8690c 3880
f91840a3
AS
3881 /* If this is a per-task event, it must be for current */
3882 if ((event->attach_state & PERF_ATTACH_TASK) &&
3883 event->hw.target != current) {
3884 ret = -EINVAL;
3885 goto out;
3886 }
3887
3888 /* If this is a per-CPU event, it must be for this CPU */
3889 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3890 event->cpu != smp_processor_id()) {
3891 ret = -EINVAL;
3892 goto out;
3893 }
ffe8690c
KX
3894
3895 /*
3896 * If the event is currently on this CPU, its either a per-task event,
3897 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3898 * oncpu == -1).
3899 */
3900 if (event->oncpu == smp_processor_id())
3901 event->pmu->read(event);
3902
f91840a3 3903 *value = local64_read(&event->count);
0d3d73aa
PZ
3904 if (enabled || running) {
3905 u64 now = event->shadow_ctx_time + perf_clock();
3906 u64 __enabled, __running;
3907
3908 __perf_update_times(event, now, &__enabled, &__running);
3909 if (enabled)
3910 *enabled = __enabled;
3911 if (running)
3912 *running = __running;
3913 }
f91840a3 3914out:
ffe8690c
KX
3915 local_irq_restore(flags);
3916
f91840a3 3917 return ret;
ffe8690c
KX
3918}
3919
7d88962e 3920static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3921{
0c1cbc18 3922 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 3923 int event_cpu, ret = 0;
7d88962e 3924
0793a61d 3925 /*
cdd6c482
IM
3926 * If event is enabled and currently active on a CPU, update the
3927 * value in the event structure:
0793a61d 3928 */
0c1cbc18
PZ
3929again:
3930 if (state == PERF_EVENT_STATE_ACTIVE) {
3931 struct perf_read_data data;
3932
3933 /*
3934 * Orders the ->state and ->oncpu loads such that if we see
3935 * ACTIVE we must also see the right ->oncpu.
3936 *
3937 * Matches the smp_wmb() from event_sched_in().
3938 */
3939 smp_rmb();
d6a2f903 3940
451d24d1
PZ
3941 event_cpu = READ_ONCE(event->oncpu);
3942 if ((unsigned)event_cpu >= nr_cpu_ids)
3943 return 0;
3944
0c1cbc18
PZ
3945 data = (struct perf_read_data){
3946 .event = event,
3947 .group = group,
3948 .ret = 0,
3949 };
3950
451d24d1
PZ
3951 preempt_disable();
3952 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3953
58763148
PZ
3954 /*
3955 * Purposely ignore the smp_call_function_single() return
3956 * value.
3957 *
451d24d1 3958 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3959 * scheduled out and that will have updated the event count.
3960 *
3961 * Therefore, either way, we'll have an up-to-date event count
3962 * after this.
3963 */
451d24d1
PZ
3964 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3965 preempt_enable();
58763148 3966 ret = data.ret;
0c1cbc18
PZ
3967
3968 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3969 struct perf_event_context *ctx = event->ctx;
3970 unsigned long flags;
3971
e625cce1 3972 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
3973 state = event->state;
3974 if (state != PERF_EVENT_STATE_INACTIVE) {
3975 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3976 goto again;
3977 }
3978
c530ccd9 3979 /*
0c1cbc18
PZ
3980 * May read while context is not active (e.g., thread is
3981 * blocked), in that case we cannot update context time
c530ccd9 3982 */
0c1cbc18 3983 if (ctx->is_active & EVENT_TIME) {
c530ccd9 3984 update_context_time(ctx);
e5d1367f
SE
3985 update_cgrp_time_from_event(event);
3986 }
0c1cbc18 3987
0d3d73aa 3988 perf_event_update_time(event);
0492d4c5 3989 if (group)
0d3d73aa 3990 perf_event_update_sibling_time(event);
e625cce1 3991 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3992 }
7d88962e
SB
3993
3994 return ret;
0793a61d
TG
3995}
3996
a63eaf34 3997/*
cdd6c482 3998 * Initialize the perf_event context in a task_struct:
a63eaf34 3999 */
eb184479 4000static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4001{
e625cce1 4002 raw_spin_lock_init(&ctx->lock);
a63eaf34 4003 mutex_init(&ctx->mutex);
2fde4f94 4004 INIT_LIST_HEAD(&ctx->active_ctx_list);
8e1a2031
AB
4005 perf_event_groups_init(&ctx->pinned_groups);
4006 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4007 INIT_LIST_HEAD(&ctx->event_list);
6668128a
PZ
4008 INIT_LIST_HEAD(&ctx->pinned_active);
4009 INIT_LIST_HEAD(&ctx->flexible_active);
a63eaf34 4010 atomic_set(&ctx->refcount, 1);
eb184479
PZ
4011}
4012
4013static struct perf_event_context *
4014alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4015{
4016 struct perf_event_context *ctx;
4017
4018 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4019 if (!ctx)
4020 return NULL;
4021
4022 __perf_event_init_context(ctx);
4023 if (task) {
4024 ctx->task = task;
4025 get_task_struct(task);
0793a61d 4026 }
eb184479
PZ
4027 ctx->pmu = pmu;
4028
4029 return ctx;
a63eaf34
PM
4030}
4031
2ebd4ffb
MH
4032static struct task_struct *
4033find_lively_task_by_vpid(pid_t vpid)
4034{
4035 struct task_struct *task;
0793a61d
TG
4036
4037 rcu_read_lock();
2ebd4ffb 4038 if (!vpid)
0793a61d
TG
4039 task = current;
4040 else
2ebd4ffb 4041 task = find_task_by_vpid(vpid);
0793a61d
TG
4042 if (task)
4043 get_task_struct(task);
4044 rcu_read_unlock();
4045
4046 if (!task)
4047 return ERR_PTR(-ESRCH);
4048
2ebd4ffb 4049 return task;
2ebd4ffb
MH
4050}
4051
fe4b04fa
PZ
4052/*
4053 * Returns a matching context with refcount and pincount.
4054 */
108b02cf 4055static struct perf_event_context *
4af57ef2
YZ
4056find_get_context(struct pmu *pmu, struct task_struct *task,
4057 struct perf_event *event)
0793a61d 4058{
211de6eb 4059 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4060 struct perf_cpu_context *cpuctx;
4af57ef2 4061 void *task_ctx_data = NULL;
25346b93 4062 unsigned long flags;
8dc85d54 4063 int ctxn, err;
4af57ef2 4064 int cpu = event->cpu;
0793a61d 4065
22a4ec72 4066 if (!task) {
cdd6c482 4067 /* Must be root to operate on a CPU event: */
0764771d 4068 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
4069 return ERR_PTR(-EACCES);
4070
108b02cf 4071 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 4072 ctx = &cpuctx->ctx;
c93f7669 4073 get_ctx(ctx);
fe4b04fa 4074 ++ctx->pin_count;
0793a61d 4075
0793a61d
TG
4076 return ctx;
4077 }
4078
8dc85d54
PZ
4079 err = -EINVAL;
4080 ctxn = pmu->task_ctx_nr;
4081 if (ctxn < 0)
4082 goto errout;
4083
4af57ef2
YZ
4084 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4085 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4086 if (!task_ctx_data) {
4087 err = -ENOMEM;
4088 goto errout;
4089 }
4090 }
4091
9ed6060d 4092retry:
8dc85d54 4093 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 4094 if (ctx) {
211de6eb 4095 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4096 ++ctx->pin_count;
4af57ef2
YZ
4097
4098 if (task_ctx_data && !ctx->task_ctx_data) {
4099 ctx->task_ctx_data = task_ctx_data;
4100 task_ctx_data = NULL;
4101 }
e625cce1 4102 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4103
4104 if (clone_ctx)
4105 put_ctx(clone_ctx);
9137fb28 4106 } else {
eb184479 4107 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
4108 err = -ENOMEM;
4109 if (!ctx)
4110 goto errout;
eb184479 4111
4af57ef2
YZ
4112 if (task_ctx_data) {
4113 ctx->task_ctx_data = task_ctx_data;
4114 task_ctx_data = NULL;
4115 }
4116
dbe08d82
ON
4117 err = 0;
4118 mutex_lock(&task->perf_event_mutex);
4119 /*
4120 * If it has already passed perf_event_exit_task().
4121 * we must see PF_EXITING, it takes this mutex too.
4122 */
4123 if (task->flags & PF_EXITING)
4124 err = -ESRCH;
4125 else if (task->perf_event_ctxp[ctxn])
4126 err = -EAGAIN;
fe4b04fa 4127 else {
9137fb28 4128 get_ctx(ctx);
fe4b04fa 4129 ++ctx->pin_count;
dbe08d82 4130 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 4131 }
dbe08d82
ON
4132 mutex_unlock(&task->perf_event_mutex);
4133
4134 if (unlikely(err)) {
9137fb28 4135 put_ctx(ctx);
dbe08d82
ON
4136
4137 if (err == -EAGAIN)
4138 goto retry;
4139 goto errout;
a63eaf34
PM
4140 }
4141 }
4142
4af57ef2 4143 kfree(task_ctx_data);
0793a61d 4144 return ctx;
c93f7669 4145
9ed6060d 4146errout:
4af57ef2 4147 kfree(task_ctx_data);
c93f7669 4148 return ERR_PTR(err);
0793a61d
TG
4149}
4150
6fb2915d 4151static void perf_event_free_filter(struct perf_event *event);
2541517c 4152static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 4153
cdd6c482 4154static void free_event_rcu(struct rcu_head *head)
592903cd 4155{
cdd6c482 4156 struct perf_event *event;
592903cd 4157
cdd6c482
IM
4158 event = container_of(head, struct perf_event, rcu_head);
4159 if (event->ns)
4160 put_pid_ns(event->ns);
6fb2915d 4161 perf_event_free_filter(event);
cdd6c482 4162 kfree(event);
592903cd
PZ
4163}
4164
b69cf536
PZ
4165static void ring_buffer_attach(struct perf_event *event,
4166 struct ring_buffer *rb);
925d519a 4167
f2fb6bef
KL
4168static void detach_sb_event(struct perf_event *event)
4169{
4170 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4171
4172 raw_spin_lock(&pel->lock);
4173 list_del_rcu(&event->sb_list);
4174 raw_spin_unlock(&pel->lock);
4175}
4176
a4f144eb 4177static bool is_sb_event(struct perf_event *event)
f2fb6bef 4178{
a4f144eb
DCC
4179 struct perf_event_attr *attr = &event->attr;
4180
f2fb6bef 4181 if (event->parent)
a4f144eb 4182 return false;
f2fb6bef
KL
4183
4184 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4185 return false;
f2fb6bef 4186
a4f144eb
DCC
4187 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4188 attr->comm || attr->comm_exec ||
4189 attr->task ||
4190 attr->context_switch)
4191 return true;
4192 return false;
4193}
4194
4195static void unaccount_pmu_sb_event(struct perf_event *event)
4196{
4197 if (is_sb_event(event))
4198 detach_sb_event(event);
f2fb6bef
KL
4199}
4200
4beb31f3 4201static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4202{
4beb31f3
FW
4203 if (event->parent)
4204 return;
4205
4beb31f3
FW
4206 if (is_cgroup_event(event))
4207 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4208}
925d519a 4209
555e0c1e
FW
4210#ifdef CONFIG_NO_HZ_FULL
4211static DEFINE_SPINLOCK(nr_freq_lock);
4212#endif
4213
4214static void unaccount_freq_event_nohz(void)
4215{
4216#ifdef CONFIG_NO_HZ_FULL
4217 spin_lock(&nr_freq_lock);
4218 if (atomic_dec_and_test(&nr_freq_events))
4219 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4220 spin_unlock(&nr_freq_lock);
4221#endif
4222}
4223
4224static void unaccount_freq_event(void)
4225{
4226 if (tick_nohz_full_enabled())
4227 unaccount_freq_event_nohz();
4228 else
4229 atomic_dec(&nr_freq_events);
4230}
4231
4beb31f3
FW
4232static void unaccount_event(struct perf_event *event)
4233{
25432ae9
PZ
4234 bool dec = false;
4235
4beb31f3
FW
4236 if (event->parent)
4237 return;
4238
4239 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4240 dec = true;
4beb31f3
FW
4241 if (event->attr.mmap || event->attr.mmap_data)
4242 atomic_dec(&nr_mmap_events);
4243 if (event->attr.comm)
4244 atomic_dec(&nr_comm_events);
e4222673
HB
4245 if (event->attr.namespaces)
4246 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4247 if (event->attr.task)
4248 atomic_dec(&nr_task_events);
948b26b6 4249 if (event->attr.freq)
555e0c1e 4250 unaccount_freq_event();
45ac1403 4251 if (event->attr.context_switch) {
25432ae9 4252 dec = true;
45ac1403
AH
4253 atomic_dec(&nr_switch_events);
4254 }
4beb31f3 4255 if (is_cgroup_event(event))
25432ae9 4256 dec = true;
4beb31f3 4257 if (has_branch_stack(event))
25432ae9
PZ
4258 dec = true;
4259
9107c89e
PZ
4260 if (dec) {
4261 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4262 schedule_delayed_work(&perf_sched_work, HZ);
4263 }
4beb31f3
FW
4264
4265 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4266
4267 unaccount_pmu_sb_event(event);
4beb31f3 4268}
925d519a 4269
9107c89e
PZ
4270static void perf_sched_delayed(struct work_struct *work)
4271{
4272 mutex_lock(&perf_sched_mutex);
4273 if (atomic_dec_and_test(&perf_sched_count))
4274 static_branch_disable(&perf_sched_events);
4275 mutex_unlock(&perf_sched_mutex);
4276}
4277
bed5b25a
AS
4278/*
4279 * The following implement mutual exclusion of events on "exclusive" pmus
4280 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4281 * at a time, so we disallow creating events that might conflict, namely:
4282 *
4283 * 1) cpu-wide events in the presence of per-task events,
4284 * 2) per-task events in the presence of cpu-wide events,
4285 * 3) two matching events on the same context.
4286 *
4287 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4288 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4289 */
4290static int exclusive_event_init(struct perf_event *event)
4291{
4292 struct pmu *pmu = event->pmu;
4293
4294 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4295 return 0;
4296
4297 /*
4298 * Prevent co-existence of per-task and cpu-wide events on the
4299 * same exclusive pmu.
4300 *
4301 * Negative pmu::exclusive_cnt means there are cpu-wide
4302 * events on this "exclusive" pmu, positive means there are
4303 * per-task events.
4304 *
4305 * Since this is called in perf_event_alloc() path, event::ctx
4306 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4307 * to mean "per-task event", because unlike other attach states it
4308 * never gets cleared.
4309 */
4310 if (event->attach_state & PERF_ATTACH_TASK) {
4311 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4312 return -EBUSY;
4313 } else {
4314 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4315 return -EBUSY;
4316 }
4317
4318 return 0;
4319}
4320
4321static void exclusive_event_destroy(struct perf_event *event)
4322{
4323 struct pmu *pmu = event->pmu;
4324
4325 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4326 return;
4327
4328 /* see comment in exclusive_event_init() */
4329 if (event->attach_state & PERF_ATTACH_TASK)
4330 atomic_dec(&pmu->exclusive_cnt);
4331 else
4332 atomic_inc(&pmu->exclusive_cnt);
4333}
4334
4335static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4336{
3bf6215a 4337 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4338 (e1->cpu == e2->cpu ||
4339 e1->cpu == -1 ||
4340 e2->cpu == -1))
4341 return true;
4342 return false;
4343}
4344
4345/* Called under the same ctx::mutex as perf_install_in_context() */
4346static bool exclusive_event_installable(struct perf_event *event,
4347 struct perf_event_context *ctx)
4348{
4349 struct perf_event *iter_event;
4350 struct pmu *pmu = event->pmu;
4351
4352 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4353 return true;
4354
4355 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4356 if (exclusive_event_match(iter_event, event))
4357 return false;
4358 }
4359
4360 return true;
4361}
4362
375637bc
AS
4363static void perf_addr_filters_splice(struct perf_event *event,
4364 struct list_head *head);
4365
683ede43 4366static void _free_event(struct perf_event *event)
f1600952 4367{
e360adbe 4368 irq_work_sync(&event->pending);
925d519a 4369
4beb31f3 4370 unaccount_event(event);
9ee318a7 4371
76369139 4372 if (event->rb) {
9bb5d40c
PZ
4373 /*
4374 * Can happen when we close an event with re-directed output.
4375 *
4376 * Since we have a 0 refcount, perf_mmap_close() will skip
4377 * over us; possibly making our ring_buffer_put() the last.
4378 */
4379 mutex_lock(&event->mmap_mutex);
b69cf536 4380 ring_buffer_attach(event, NULL);
9bb5d40c 4381 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4382 }
4383
e5d1367f
SE
4384 if (is_cgroup_event(event))
4385 perf_detach_cgroup(event);
4386
a0733e69
PZ
4387 if (!event->parent) {
4388 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4389 put_callchain_buffers();
4390 }
4391
4392 perf_event_free_bpf_prog(event);
375637bc
AS
4393 perf_addr_filters_splice(event, NULL);
4394 kfree(event->addr_filters_offs);
a0733e69
PZ
4395
4396 if (event->destroy)
4397 event->destroy(event);
4398
4399 if (event->ctx)
4400 put_ctx(event->ctx);
4401
62a92c8f
AS
4402 exclusive_event_destroy(event);
4403 module_put(event->pmu->module);
a0733e69
PZ
4404
4405 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4406}
4407
683ede43
PZ
4408/*
4409 * Used to free events which have a known refcount of 1, such as in error paths
4410 * where the event isn't exposed yet and inherited events.
4411 */
4412static void free_event(struct perf_event *event)
0793a61d 4413{
683ede43
PZ
4414 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4415 "unexpected event refcount: %ld; ptr=%p\n",
4416 atomic_long_read(&event->refcount), event)) {
4417 /* leak to avoid use-after-free */
4418 return;
4419 }
0793a61d 4420
683ede43 4421 _free_event(event);
0793a61d
TG
4422}
4423
a66a3052 4424/*
f8697762 4425 * Remove user event from the owner task.
a66a3052 4426 */
f8697762 4427static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4428{
8882135b 4429 struct task_struct *owner;
fb0459d7 4430
8882135b 4431 rcu_read_lock();
8882135b 4432 /*
f47c02c0
PZ
4433 * Matches the smp_store_release() in perf_event_exit_task(). If we
4434 * observe !owner it means the list deletion is complete and we can
4435 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4436 * owner->perf_event_mutex.
4437 */
506458ef 4438 owner = READ_ONCE(event->owner);
8882135b
PZ
4439 if (owner) {
4440 /*
4441 * Since delayed_put_task_struct() also drops the last
4442 * task reference we can safely take a new reference
4443 * while holding the rcu_read_lock().
4444 */
4445 get_task_struct(owner);
4446 }
4447 rcu_read_unlock();
4448
4449 if (owner) {
f63a8daa
PZ
4450 /*
4451 * If we're here through perf_event_exit_task() we're already
4452 * holding ctx->mutex which would be an inversion wrt. the
4453 * normal lock order.
4454 *
4455 * However we can safely take this lock because its the child
4456 * ctx->mutex.
4457 */
4458 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4459
8882135b
PZ
4460 /*
4461 * We have to re-check the event->owner field, if it is cleared
4462 * we raced with perf_event_exit_task(), acquiring the mutex
4463 * ensured they're done, and we can proceed with freeing the
4464 * event.
4465 */
f47c02c0 4466 if (event->owner) {
8882135b 4467 list_del_init(&event->owner_entry);
f47c02c0
PZ
4468 smp_store_release(&event->owner, NULL);
4469 }
8882135b
PZ
4470 mutex_unlock(&owner->perf_event_mutex);
4471 put_task_struct(owner);
4472 }
f8697762
JO
4473}
4474
f8697762
JO
4475static void put_event(struct perf_event *event)
4476{
f8697762
JO
4477 if (!atomic_long_dec_and_test(&event->refcount))
4478 return;
4479
c6e5b732
PZ
4480 _free_event(event);
4481}
4482
4483/*
4484 * Kill an event dead; while event:refcount will preserve the event
4485 * object, it will not preserve its functionality. Once the last 'user'
4486 * gives up the object, we'll destroy the thing.
4487 */
4488int perf_event_release_kernel(struct perf_event *event)
4489{
a4f4bb6d 4490 struct perf_event_context *ctx = event->ctx;
c6e5b732 4491 struct perf_event *child, *tmp;
82d94856 4492 LIST_HEAD(free_list);
c6e5b732 4493
a4f4bb6d
PZ
4494 /*
4495 * If we got here through err_file: fput(event_file); we will not have
4496 * attached to a context yet.
4497 */
4498 if (!ctx) {
4499 WARN_ON_ONCE(event->attach_state &
4500 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4501 goto no_ctx;
4502 }
4503
f8697762
JO
4504 if (!is_kernel_event(event))
4505 perf_remove_from_owner(event);
8882135b 4506
5fa7c8ec 4507 ctx = perf_event_ctx_lock(event);
a83fe28e 4508 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4509 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4510
a69b0ca4 4511 raw_spin_lock_irq(&ctx->lock);
683ede43 4512 /*
d8a8cfc7 4513 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4514 * anymore.
683ede43 4515 *
a69b0ca4
PZ
4516 * Anybody acquiring event->child_mutex after the below loop _must_
4517 * also see this, most importantly inherit_event() which will avoid
4518 * placing more children on the list.
683ede43 4519 *
c6e5b732
PZ
4520 * Thus this guarantees that we will in fact observe and kill _ALL_
4521 * child events.
683ede43 4522 */
a69b0ca4
PZ
4523 event->state = PERF_EVENT_STATE_DEAD;
4524 raw_spin_unlock_irq(&ctx->lock);
4525
4526 perf_event_ctx_unlock(event, ctx);
683ede43 4527
c6e5b732
PZ
4528again:
4529 mutex_lock(&event->child_mutex);
4530 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4531
c6e5b732
PZ
4532 /*
4533 * Cannot change, child events are not migrated, see the
4534 * comment with perf_event_ctx_lock_nested().
4535 */
506458ef 4536 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4537 /*
4538 * Since child_mutex nests inside ctx::mutex, we must jump
4539 * through hoops. We start by grabbing a reference on the ctx.
4540 *
4541 * Since the event cannot get freed while we hold the
4542 * child_mutex, the context must also exist and have a !0
4543 * reference count.
4544 */
4545 get_ctx(ctx);
4546
4547 /*
4548 * Now that we have a ctx ref, we can drop child_mutex, and
4549 * acquire ctx::mutex without fear of it going away. Then we
4550 * can re-acquire child_mutex.
4551 */
4552 mutex_unlock(&event->child_mutex);
4553 mutex_lock(&ctx->mutex);
4554 mutex_lock(&event->child_mutex);
4555
4556 /*
4557 * Now that we hold ctx::mutex and child_mutex, revalidate our
4558 * state, if child is still the first entry, it didn't get freed
4559 * and we can continue doing so.
4560 */
4561 tmp = list_first_entry_or_null(&event->child_list,
4562 struct perf_event, child_list);
4563 if (tmp == child) {
4564 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4565 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4566 /*
4567 * This matches the refcount bump in inherit_event();
4568 * this can't be the last reference.
4569 */
4570 put_event(event);
4571 }
4572
4573 mutex_unlock(&event->child_mutex);
4574 mutex_unlock(&ctx->mutex);
4575 put_ctx(ctx);
4576 goto again;
4577 }
4578 mutex_unlock(&event->child_mutex);
4579
82d94856
PZ
4580 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4581 list_del(&child->child_list);
4582 free_event(child);
4583 }
4584
a4f4bb6d
PZ
4585no_ctx:
4586 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4587 return 0;
4588}
4589EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4590
8b10c5e2
PZ
4591/*
4592 * Called when the last reference to the file is gone.
4593 */
a6fa941d
AV
4594static int perf_release(struct inode *inode, struct file *file)
4595{
c6e5b732 4596 perf_event_release_kernel(file->private_data);
a6fa941d 4597 return 0;
fb0459d7 4598}
fb0459d7 4599
ca0dd44c 4600static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4601{
cdd6c482 4602 struct perf_event *child;
e53c0994
PZ
4603 u64 total = 0;
4604
59ed446f
PZ
4605 *enabled = 0;
4606 *running = 0;
4607
6f10581a 4608 mutex_lock(&event->child_mutex);
01add3ea 4609
7d88962e 4610 (void)perf_event_read(event, false);
01add3ea
SB
4611 total += perf_event_count(event);
4612
59ed446f
PZ
4613 *enabled += event->total_time_enabled +
4614 atomic64_read(&event->child_total_time_enabled);
4615 *running += event->total_time_running +
4616 atomic64_read(&event->child_total_time_running);
4617
4618 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4619 (void)perf_event_read(child, false);
01add3ea 4620 total += perf_event_count(child);
59ed446f
PZ
4621 *enabled += child->total_time_enabled;
4622 *running += child->total_time_running;
4623 }
6f10581a 4624 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4625
4626 return total;
4627}
ca0dd44c
PZ
4628
4629u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4630{
4631 struct perf_event_context *ctx;
4632 u64 count;
4633
4634 ctx = perf_event_ctx_lock(event);
4635 count = __perf_event_read_value(event, enabled, running);
4636 perf_event_ctx_unlock(event, ctx);
4637
4638 return count;
4639}
fb0459d7 4640EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4641
7d88962e 4642static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4643 u64 read_format, u64 *values)
3dab77fb 4644{
2aeb1883 4645 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4646 struct perf_event *sub;
2aeb1883 4647 unsigned long flags;
fa8c2693 4648 int n = 1; /* skip @nr */
7d88962e 4649 int ret;
f63a8daa 4650
7d88962e
SB
4651 ret = perf_event_read(leader, true);
4652 if (ret)
4653 return ret;
abf4868b 4654
a9cd8194
PZ
4655 raw_spin_lock_irqsave(&ctx->lock, flags);
4656
fa8c2693
PZ
4657 /*
4658 * Since we co-schedule groups, {enabled,running} times of siblings
4659 * will be identical to those of the leader, so we only publish one
4660 * set.
4661 */
4662 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4663 values[n++] += leader->total_time_enabled +
4664 atomic64_read(&leader->child_total_time_enabled);
4665 }
3dab77fb 4666
fa8c2693
PZ
4667 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4668 values[n++] += leader->total_time_running +
4669 atomic64_read(&leader->child_total_time_running);
4670 }
4671
4672 /*
4673 * Write {count,id} tuples for every sibling.
4674 */
4675 values[n++] += perf_event_count(leader);
abf4868b
PZ
4676 if (read_format & PERF_FORMAT_ID)
4677 values[n++] = primary_event_id(leader);
3dab77fb 4678
8343aae6 4679 list_for_each_entry(sub, &leader->sibling_list, sibling_list) {
fa8c2693
PZ
4680 values[n++] += perf_event_count(sub);
4681 if (read_format & PERF_FORMAT_ID)
4682 values[n++] = primary_event_id(sub);
4683 }
7d88962e 4684
2aeb1883 4685 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4686 return 0;
fa8c2693 4687}
3dab77fb 4688
fa8c2693
PZ
4689static int perf_read_group(struct perf_event *event,
4690 u64 read_format, char __user *buf)
4691{
4692 struct perf_event *leader = event->group_leader, *child;
4693 struct perf_event_context *ctx = leader->ctx;
7d88962e 4694 int ret;
fa8c2693 4695 u64 *values;
3dab77fb 4696
fa8c2693 4697 lockdep_assert_held(&ctx->mutex);
3dab77fb 4698
fa8c2693
PZ
4699 values = kzalloc(event->read_size, GFP_KERNEL);
4700 if (!values)
4701 return -ENOMEM;
3dab77fb 4702
fa8c2693
PZ
4703 values[0] = 1 + leader->nr_siblings;
4704
4705 /*
4706 * By locking the child_mutex of the leader we effectively
4707 * lock the child list of all siblings.. XXX explain how.
4708 */
4709 mutex_lock(&leader->child_mutex);
abf4868b 4710
7d88962e
SB
4711 ret = __perf_read_group_add(leader, read_format, values);
4712 if (ret)
4713 goto unlock;
4714
4715 list_for_each_entry(child, &leader->child_list, child_list) {
4716 ret = __perf_read_group_add(child, read_format, values);
4717 if (ret)
4718 goto unlock;
4719 }
abf4868b 4720
fa8c2693 4721 mutex_unlock(&leader->child_mutex);
abf4868b 4722
7d88962e 4723 ret = event->read_size;
fa8c2693
PZ
4724 if (copy_to_user(buf, values, event->read_size))
4725 ret = -EFAULT;
7d88962e 4726 goto out;
fa8c2693 4727
7d88962e
SB
4728unlock:
4729 mutex_unlock(&leader->child_mutex);
4730out:
fa8c2693 4731 kfree(values);
abf4868b 4732 return ret;
3dab77fb
PZ
4733}
4734
b15f495b 4735static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4736 u64 read_format, char __user *buf)
4737{
59ed446f 4738 u64 enabled, running;
3dab77fb
PZ
4739 u64 values[4];
4740 int n = 0;
4741
ca0dd44c 4742 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4743 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4744 values[n++] = enabled;
4745 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4746 values[n++] = running;
3dab77fb 4747 if (read_format & PERF_FORMAT_ID)
cdd6c482 4748 values[n++] = primary_event_id(event);
3dab77fb
PZ
4749
4750 if (copy_to_user(buf, values, n * sizeof(u64)))
4751 return -EFAULT;
4752
4753 return n * sizeof(u64);
4754}
4755
dc633982
JO
4756static bool is_event_hup(struct perf_event *event)
4757{
4758 bool no_children;
4759
a69b0ca4 4760 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4761 return false;
4762
4763 mutex_lock(&event->child_mutex);
4764 no_children = list_empty(&event->child_list);
4765 mutex_unlock(&event->child_mutex);
4766 return no_children;
4767}
4768
0793a61d 4769/*
cdd6c482 4770 * Read the performance event - simple non blocking version for now
0793a61d
TG
4771 */
4772static ssize_t
b15f495b 4773__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4774{
cdd6c482 4775 u64 read_format = event->attr.read_format;
3dab77fb 4776 int ret;
0793a61d 4777
3b6f9e5c 4778 /*
cdd6c482 4779 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4780 * error state (i.e. because it was pinned but it couldn't be
4781 * scheduled on to the CPU at some point).
4782 */
cdd6c482 4783 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4784 return 0;
4785
c320c7b7 4786 if (count < event->read_size)
3dab77fb
PZ
4787 return -ENOSPC;
4788
cdd6c482 4789 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4790 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4791 ret = perf_read_group(event, read_format, buf);
3dab77fb 4792 else
b15f495b 4793 ret = perf_read_one(event, read_format, buf);
0793a61d 4794
3dab77fb 4795 return ret;
0793a61d
TG
4796}
4797
0793a61d
TG
4798static ssize_t
4799perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4800{
cdd6c482 4801 struct perf_event *event = file->private_data;
f63a8daa
PZ
4802 struct perf_event_context *ctx;
4803 int ret;
0793a61d 4804
f63a8daa 4805 ctx = perf_event_ctx_lock(event);
b15f495b 4806 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4807 perf_event_ctx_unlock(event, ctx);
4808
4809 return ret;
0793a61d
TG
4810}
4811
9dd95748 4812static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 4813{
cdd6c482 4814 struct perf_event *event = file->private_data;
76369139 4815 struct ring_buffer *rb;
a9a08845 4816 __poll_t events = EPOLLHUP;
c7138f37 4817
e708d7ad 4818 poll_wait(file, &event->waitq, wait);
179033b3 4819
dc633982 4820 if (is_event_hup(event))
179033b3 4821 return events;
c7138f37 4822
10c6db11 4823 /*
9bb5d40c
PZ
4824 * Pin the event->rb by taking event->mmap_mutex; otherwise
4825 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4826 */
4827 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4828 rb = event->rb;
4829 if (rb)
76369139 4830 events = atomic_xchg(&rb->poll, 0);
10c6db11 4831 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4832 return events;
4833}
4834
f63a8daa 4835static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4836{
7d88962e 4837 (void)perf_event_read(event, false);
e7850595 4838 local64_set(&event->count, 0);
cdd6c482 4839 perf_event_update_userpage(event);
3df5edad
PZ
4840}
4841
c93f7669 4842/*
cdd6c482
IM
4843 * Holding the top-level event's child_mutex means that any
4844 * descendant process that has inherited this event will block
8ba289b8 4845 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4846 * task existence requirements of perf_event_enable/disable.
c93f7669 4847 */
cdd6c482
IM
4848static void perf_event_for_each_child(struct perf_event *event,
4849 void (*func)(struct perf_event *))
3df5edad 4850{
cdd6c482 4851 struct perf_event *child;
3df5edad 4852
cdd6c482 4853 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4854
cdd6c482
IM
4855 mutex_lock(&event->child_mutex);
4856 func(event);
4857 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4858 func(child);
cdd6c482 4859 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4860}
4861
cdd6c482
IM
4862static void perf_event_for_each(struct perf_event *event,
4863 void (*func)(struct perf_event *))
3df5edad 4864{
cdd6c482
IM
4865 struct perf_event_context *ctx = event->ctx;
4866 struct perf_event *sibling;
3df5edad 4867
f63a8daa
PZ
4868 lockdep_assert_held(&ctx->mutex);
4869
cdd6c482 4870 event = event->group_leader;
75f937f2 4871
cdd6c482 4872 perf_event_for_each_child(event, func);
8343aae6 4873 list_for_each_entry(sibling, &event->sibling_list, sibling_list)
724b6daa 4874 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4875}
4876
fae3fde6
PZ
4877static void __perf_event_period(struct perf_event *event,
4878 struct perf_cpu_context *cpuctx,
4879 struct perf_event_context *ctx,
4880 void *info)
c7999c6f 4881{
fae3fde6 4882 u64 value = *((u64 *)info);
c7999c6f 4883 bool active;
08247e31 4884
cdd6c482 4885 if (event->attr.freq) {
cdd6c482 4886 event->attr.sample_freq = value;
08247e31 4887 } else {
cdd6c482
IM
4888 event->attr.sample_period = value;
4889 event->hw.sample_period = value;
08247e31 4890 }
bad7192b
PZ
4891
4892 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4893 if (active) {
4894 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4895 /*
4896 * We could be throttled; unthrottle now to avoid the tick
4897 * trying to unthrottle while we already re-started the event.
4898 */
4899 if (event->hw.interrupts == MAX_INTERRUPTS) {
4900 event->hw.interrupts = 0;
4901 perf_log_throttle(event, 1);
4902 }
bad7192b
PZ
4903 event->pmu->stop(event, PERF_EF_UPDATE);
4904 }
4905
4906 local64_set(&event->hw.period_left, 0);
4907
4908 if (active) {
4909 event->pmu->start(event, PERF_EF_RELOAD);
4910 perf_pmu_enable(ctx->pmu);
4911 }
c7999c6f
PZ
4912}
4913
4914static int perf_event_period(struct perf_event *event, u64 __user *arg)
4915{
c7999c6f
PZ
4916 u64 value;
4917
4918 if (!is_sampling_event(event))
4919 return -EINVAL;
4920
4921 if (copy_from_user(&value, arg, sizeof(value)))
4922 return -EFAULT;
4923
4924 if (!value)
4925 return -EINVAL;
4926
4927 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4928 return -EINVAL;
4929
fae3fde6 4930 event_function_call(event, __perf_event_period, &value);
08247e31 4931
c7999c6f 4932 return 0;
08247e31
PZ
4933}
4934
ac9721f3
PZ
4935static const struct file_operations perf_fops;
4936
2903ff01 4937static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4938{
2903ff01
AV
4939 struct fd f = fdget(fd);
4940 if (!f.file)
4941 return -EBADF;
ac9721f3 4942
2903ff01
AV
4943 if (f.file->f_op != &perf_fops) {
4944 fdput(f);
4945 return -EBADF;
ac9721f3 4946 }
2903ff01
AV
4947 *p = f;
4948 return 0;
ac9721f3
PZ
4949}
4950
4951static int perf_event_set_output(struct perf_event *event,
4952 struct perf_event *output_event);
6fb2915d 4953static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4954static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4955
f63a8daa 4956static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4957{
cdd6c482 4958 void (*func)(struct perf_event *);
3df5edad 4959 u32 flags = arg;
d859e29f
PM
4960
4961 switch (cmd) {
cdd6c482 4962 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4963 func = _perf_event_enable;
d859e29f 4964 break;
cdd6c482 4965 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4966 func = _perf_event_disable;
79f14641 4967 break;
cdd6c482 4968 case PERF_EVENT_IOC_RESET:
f63a8daa 4969 func = _perf_event_reset;
6de6a7b9 4970 break;
3df5edad 4971
cdd6c482 4972 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4973 return _perf_event_refresh(event, arg);
08247e31 4974
cdd6c482
IM
4975 case PERF_EVENT_IOC_PERIOD:
4976 return perf_event_period(event, (u64 __user *)arg);
08247e31 4977
cf4957f1
JO
4978 case PERF_EVENT_IOC_ID:
4979 {
4980 u64 id = primary_event_id(event);
4981
4982 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4983 return -EFAULT;
4984 return 0;
4985 }
4986
cdd6c482 4987 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4988 {
ac9721f3 4989 int ret;
ac9721f3 4990 if (arg != -1) {
2903ff01
AV
4991 struct perf_event *output_event;
4992 struct fd output;
4993 ret = perf_fget_light(arg, &output);
4994 if (ret)
4995 return ret;
4996 output_event = output.file->private_data;
4997 ret = perf_event_set_output(event, output_event);
4998 fdput(output);
4999 } else {
5000 ret = perf_event_set_output(event, NULL);
ac9721f3 5001 }
ac9721f3
PZ
5002 return ret;
5003 }
a4be7c27 5004
6fb2915d
LZ
5005 case PERF_EVENT_IOC_SET_FILTER:
5006 return perf_event_set_filter(event, (void __user *)arg);
5007
2541517c
AS
5008 case PERF_EVENT_IOC_SET_BPF:
5009 return perf_event_set_bpf_prog(event, arg);
5010
86e7972f
WN
5011 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5012 struct ring_buffer *rb;
5013
5014 rcu_read_lock();
5015 rb = rcu_dereference(event->rb);
5016 if (!rb || !rb->nr_pages) {
5017 rcu_read_unlock();
5018 return -EINVAL;
5019 }
5020 rb_toggle_paused(rb, !!arg);
5021 rcu_read_unlock();
5022 return 0;
5023 }
f371b304
YS
5024
5025 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5026 return perf_event_query_prog_array(event, (void __user *)arg);
d859e29f 5027 default:
3df5edad 5028 return -ENOTTY;
d859e29f 5029 }
3df5edad
PZ
5030
5031 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5032 perf_event_for_each(event, func);
3df5edad 5033 else
cdd6c482 5034 perf_event_for_each_child(event, func);
3df5edad
PZ
5035
5036 return 0;
d859e29f
PM
5037}
5038
f63a8daa
PZ
5039static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5040{
5041 struct perf_event *event = file->private_data;
5042 struct perf_event_context *ctx;
5043 long ret;
5044
5045 ctx = perf_event_ctx_lock(event);
5046 ret = _perf_ioctl(event, cmd, arg);
5047 perf_event_ctx_unlock(event, ctx);
5048
5049 return ret;
5050}
5051
b3f20785
PM
5052#ifdef CONFIG_COMPAT
5053static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5054 unsigned long arg)
5055{
5056 switch (_IOC_NR(cmd)) {
5057 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5058 case _IOC_NR(PERF_EVENT_IOC_ID):
5059 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5060 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5061 cmd &= ~IOCSIZE_MASK;
5062 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5063 }
5064 break;
5065 }
5066 return perf_ioctl(file, cmd, arg);
5067}
5068#else
5069# define perf_compat_ioctl NULL
5070#endif
5071
cdd6c482 5072int perf_event_task_enable(void)
771d7cde 5073{
f63a8daa 5074 struct perf_event_context *ctx;
cdd6c482 5075 struct perf_event *event;
771d7cde 5076
cdd6c482 5077 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5078 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5079 ctx = perf_event_ctx_lock(event);
5080 perf_event_for_each_child(event, _perf_event_enable);
5081 perf_event_ctx_unlock(event, ctx);
5082 }
cdd6c482 5083 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5084
5085 return 0;
5086}
5087
cdd6c482 5088int perf_event_task_disable(void)
771d7cde 5089{
f63a8daa 5090 struct perf_event_context *ctx;
cdd6c482 5091 struct perf_event *event;
771d7cde 5092
cdd6c482 5093 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5094 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5095 ctx = perf_event_ctx_lock(event);
5096 perf_event_for_each_child(event, _perf_event_disable);
5097 perf_event_ctx_unlock(event, ctx);
5098 }
cdd6c482 5099 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5100
5101 return 0;
5102}
5103
cdd6c482 5104static int perf_event_index(struct perf_event *event)
194002b2 5105{
a4eaf7f1
PZ
5106 if (event->hw.state & PERF_HES_STOPPED)
5107 return 0;
5108
cdd6c482 5109 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
5110 return 0;
5111
35edc2a5 5112 return event->pmu->event_idx(event);
194002b2
PZ
5113}
5114
c4794295 5115static void calc_timer_values(struct perf_event *event,
e3f3541c 5116 u64 *now,
7f310a5d
EM
5117 u64 *enabled,
5118 u64 *running)
c4794295 5119{
e3f3541c 5120 u64 ctx_time;
c4794295 5121
e3f3541c
PZ
5122 *now = perf_clock();
5123 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 5124 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
5125}
5126
fa731587
PZ
5127static void perf_event_init_userpage(struct perf_event *event)
5128{
5129 struct perf_event_mmap_page *userpg;
5130 struct ring_buffer *rb;
5131
5132 rcu_read_lock();
5133 rb = rcu_dereference(event->rb);
5134 if (!rb)
5135 goto unlock;
5136
5137 userpg = rb->user_page;
5138
5139 /* Allow new userspace to detect that bit 0 is deprecated */
5140 userpg->cap_bit0_is_deprecated = 1;
5141 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
5142 userpg->data_offset = PAGE_SIZE;
5143 userpg->data_size = perf_data_size(rb);
fa731587
PZ
5144
5145unlock:
5146 rcu_read_unlock();
5147}
5148
c1317ec2
AL
5149void __weak arch_perf_update_userpage(
5150 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
5151{
5152}
5153
38ff667b
PZ
5154/*
5155 * Callers need to ensure there can be no nesting of this function, otherwise
5156 * the seqlock logic goes bad. We can not serialize this because the arch
5157 * code calls this from NMI context.
5158 */
cdd6c482 5159void perf_event_update_userpage(struct perf_event *event)
37d81828 5160{
cdd6c482 5161 struct perf_event_mmap_page *userpg;
76369139 5162 struct ring_buffer *rb;
e3f3541c 5163 u64 enabled, running, now;
38ff667b
PZ
5164
5165 rcu_read_lock();
5ec4c599
PZ
5166 rb = rcu_dereference(event->rb);
5167 if (!rb)
5168 goto unlock;
5169
0d641208
EM
5170 /*
5171 * compute total_time_enabled, total_time_running
5172 * based on snapshot values taken when the event
5173 * was last scheduled in.
5174 *
5175 * we cannot simply called update_context_time()
5176 * because of locking issue as we can be called in
5177 * NMI context
5178 */
e3f3541c 5179 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5180
76369139 5181 userpg = rb->user_page;
7b732a75
PZ
5182 /*
5183 * Disable preemption so as to not let the corresponding user-space
5184 * spin too long if we get preempted.
5185 */
5186 preempt_disable();
37d81828 5187 ++userpg->lock;
92f22a38 5188 barrier();
cdd6c482 5189 userpg->index = perf_event_index(event);
b5e58793 5190 userpg->offset = perf_event_count(event);
365a4038 5191 if (userpg->index)
e7850595 5192 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5193
0d641208 5194 userpg->time_enabled = enabled +
cdd6c482 5195 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5196
0d641208 5197 userpg->time_running = running +
cdd6c482 5198 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5199
c1317ec2 5200 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5201
92f22a38 5202 barrier();
37d81828 5203 ++userpg->lock;
7b732a75 5204 preempt_enable();
38ff667b 5205unlock:
7b732a75 5206 rcu_read_unlock();
37d81828 5207}
82975c46 5208EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 5209
11bac800 5210static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 5211{
11bac800 5212 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 5213 struct ring_buffer *rb;
906010b2
PZ
5214 int ret = VM_FAULT_SIGBUS;
5215
5216 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5217 if (vmf->pgoff == 0)
5218 ret = 0;
5219 return ret;
5220 }
5221
5222 rcu_read_lock();
76369139
FW
5223 rb = rcu_dereference(event->rb);
5224 if (!rb)
906010b2
PZ
5225 goto unlock;
5226
5227 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5228 goto unlock;
5229
76369139 5230 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5231 if (!vmf->page)
5232 goto unlock;
5233
5234 get_page(vmf->page);
11bac800 5235 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5236 vmf->page->index = vmf->pgoff;
5237
5238 ret = 0;
5239unlock:
5240 rcu_read_unlock();
5241
5242 return ret;
5243}
5244
10c6db11
PZ
5245static void ring_buffer_attach(struct perf_event *event,
5246 struct ring_buffer *rb)
5247{
b69cf536 5248 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5249 unsigned long flags;
5250
b69cf536
PZ
5251 if (event->rb) {
5252 /*
5253 * Should be impossible, we set this when removing
5254 * event->rb_entry and wait/clear when adding event->rb_entry.
5255 */
5256 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5257
b69cf536 5258 old_rb = event->rb;
b69cf536
PZ
5259 spin_lock_irqsave(&old_rb->event_lock, flags);
5260 list_del_rcu(&event->rb_entry);
5261 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5262
2f993cf0
ON
5263 event->rcu_batches = get_state_synchronize_rcu();
5264 event->rcu_pending = 1;
b69cf536 5265 }
10c6db11 5266
b69cf536 5267 if (rb) {
2f993cf0
ON
5268 if (event->rcu_pending) {
5269 cond_synchronize_rcu(event->rcu_batches);
5270 event->rcu_pending = 0;
5271 }
5272
b69cf536
PZ
5273 spin_lock_irqsave(&rb->event_lock, flags);
5274 list_add_rcu(&event->rb_entry, &rb->event_list);
5275 spin_unlock_irqrestore(&rb->event_lock, flags);
5276 }
5277
767ae086
AS
5278 /*
5279 * Avoid racing with perf_mmap_close(AUX): stop the event
5280 * before swizzling the event::rb pointer; if it's getting
5281 * unmapped, its aux_mmap_count will be 0 and it won't
5282 * restart. See the comment in __perf_pmu_output_stop().
5283 *
5284 * Data will inevitably be lost when set_output is done in
5285 * mid-air, but then again, whoever does it like this is
5286 * not in for the data anyway.
5287 */
5288 if (has_aux(event))
5289 perf_event_stop(event, 0);
5290
b69cf536
PZ
5291 rcu_assign_pointer(event->rb, rb);
5292
5293 if (old_rb) {
5294 ring_buffer_put(old_rb);
5295 /*
5296 * Since we detached before setting the new rb, so that we
5297 * could attach the new rb, we could have missed a wakeup.
5298 * Provide it now.
5299 */
5300 wake_up_all(&event->waitq);
5301 }
10c6db11
PZ
5302}
5303
5304static void ring_buffer_wakeup(struct perf_event *event)
5305{
5306 struct ring_buffer *rb;
5307
5308 rcu_read_lock();
5309 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5310 if (rb) {
5311 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5312 wake_up_all(&event->waitq);
5313 }
10c6db11
PZ
5314 rcu_read_unlock();
5315}
5316
fdc26706 5317struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5318{
76369139 5319 struct ring_buffer *rb;
7b732a75 5320
ac9721f3 5321 rcu_read_lock();
76369139
FW
5322 rb = rcu_dereference(event->rb);
5323 if (rb) {
5324 if (!atomic_inc_not_zero(&rb->refcount))
5325 rb = NULL;
ac9721f3
PZ
5326 }
5327 rcu_read_unlock();
5328
76369139 5329 return rb;
ac9721f3
PZ
5330}
5331
fdc26706 5332void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5333{
76369139 5334 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5335 return;
7b732a75 5336
9bb5d40c 5337 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5338
76369139 5339 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5340}
5341
5342static void perf_mmap_open(struct vm_area_struct *vma)
5343{
cdd6c482 5344 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5345
cdd6c482 5346 atomic_inc(&event->mmap_count);
9bb5d40c 5347 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5348
45bfb2e5
PZ
5349 if (vma->vm_pgoff)
5350 atomic_inc(&event->rb->aux_mmap_count);
5351
1e0fb9ec 5352 if (event->pmu->event_mapped)
bfe33492 5353 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5354}
5355
95ff4ca2
AS
5356static void perf_pmu_output_stop(struct perf_event *event);
5357
9bb5d40c
PZ
5358/*
5359 * A buffer can be mmap()ed multiple times; either directly through the same
5360 * event, or through other events by use of perf_event_set_output().
5361 *
5362 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5363 * the buffer here, where we still have a VM context. This means we need
5364 * to detach all events redirecting to us.
5365 */
7b732a75
PZ
5366static void perf_mmap_close(struct vm_area_struct *vma)
5367{
cdd6c482 5368 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5369
b69cf536 5370 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5371 struct user_struct *mmap_user = rb->mmap_user;
5372 int mmap_locked = rb->mmap_locked;
5373 unsigned long size = perf_data_size(rb);
789f90fc 5374
1e0fb9ec 5375 if (event->pmu->event_unmapped)
bfe33492 5376 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5377
45bfb2e5
PZ
5378 /*
5379 * rb->aux_mmap_count will always drop before rb->mmap_count and
5380 * event->mmap_count, so it is ok to use event->mmap_mutex to
5381 * serialize with perf_mmap here.
5382 */
5383 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5384 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5385 /*
5386 * Stop all AUX events that are writing to this buffer,
5387 * so that we can free its AUX pages and corresponding PMU
5388 * data. Note that after rb::aux_mmap_count dropped to zero,
5389 * they won't start any more (see perf_aux_output_begin()).
5390 */
5391 perf_pmu_output_stop(event);
5392
5393 /* now it's safe to free the pages */
45bfb2e5
PZ
5394 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5395 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5396
95ff4ca2 5397 /* this has to be the last one */
45bfb2e5 5398 rb_free_aux(rb);
95ff4ca2
AS
5399 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5400
45bfb2e5
PZ
5401 mutex_unlock(&event->mmap_mutex);
5402 }
5403
9bb5d40c
PZ
5404 atomic_dec(&rb->mmap_count);
5405
5406 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5407 goto out_put;
9bb5d40c 5408
b69cf536 5409 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5410 mutex_unlock(&event->mmap_mutex);
5411
5412 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5413 if (atomic_read(&rb->mmap_count))
5414 goto out_put;
ac9721f3 5415
9bb5d40c
PZ
5416 /*
5417 * No other mmap()s, detach from all other events that might redirect
5418 * into the now unreachable buffer. Somewhat complicated by the
5419 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5420 */
5421again:
5422 rcu_read_lock();
5423 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5424 if (!atomic_long_inc_not_zero(&event->refcount)) {
5425 /*
5426 * This event is en-route to free_event() which will
5427 * detach it and remove it from the list.
5428 */
5429 continue;
5430 }
5431 rcu_read_unlock();
789f90fc 5432
9bb5d40c
PZ
5433 mutex_lock(&event->mmap_mutex);
5434 /*
5435 * Check we didn't race with perf_event_set_output() which can
5436 * swizzle the rb from under us while we were waiting to
5437 * acquire mmap_mutex.
5438 *
5439 * If we find a different rb; ignore this event, a next
5440 * iteration will no longer find it on the list. We have to
5441 * still restart the iteration to make sure we're not now
5442 * iterating the wrong list.
5443 */
b69cf536
PZ
5444 if (event->rb == rb)
5445 ring_buffer_attach(event, NULL);
5446
cdd6c482 5447 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5448 put_event(event);
ac9721f3 5449
9bb5d40c
PZ
5450 /*
5451 * Restart the iteration; either we're on the wrong list or
5452 * destroyed its integrity by doing a deletion.
5453 */
5454 goto again;
7b732a75 5455 }
9bb5d40c
PZ
5456 rcu_read_unlock();
5457
5458 /*
5459 * It could be there's still a few 0-ref events on the list; they'll
5460 * get cleaned up by free_event() -- they'll also still have their
5461 * ref on the rb and will free it whenever they are done with it.
5462 *
5463 * Aside from that, this buffer is 'fully' detached and unmapped,
5464 * undo the VM accounting.
5465 */
5466
5467 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5468 vma->vm_mm->pinned_vm -= mmap_locked;
5469 free_uid(mmap_user);
5470
b69cf536 5471out_put:
9bb5d40c 5472 ring_buffer_put(rb); /* could be last */
37d81828
PM
5473}
5474
f0f37e2f 5475static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5476 .open = perf_mmap_open,
45bfb2e5 5477 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5478 .fault = perf_mmap_fault,
5479 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5480};
5481
5482static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5483{
cdd6c482 5484 struct perf_event *event = file->private_data;
22a4f650 5485 unsigned long user_locked, user_lock_limit;
789f90fc 5486 struct user_struct *user = current_user();
22a4f650 5487 unsigned long locked, lock_limit;
45bfb2e5 5488 struct ring_buffer *rb = NULL;
7b732a75
PZ
5489 unsigned long vma_size;
5490 unsigned long nr_pages;
45bfb2e5 5491 long user_extra = 0, extra = 0;
d57e34fd 5492 int ret = 0, flags = 0;
37d81828 5493
c7920614
PZ
5494 /*
5495 * Don't allow mmap() of inherited per-task counters. This would
5496 * create a performance issue due to all children writing to the
76369139 5497 * same rb.
c7920614
PZ
5498 */
5499 if (event->cpu == -1 && event->attr.inherit)
5500 return -EINVAL;
5501
43a21ea8 5502 if (!(vma->vm_flags & VM_SHARED))
37d81828 5503 return -EINVAL;
7b732a75
PZ
5504
5505 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5506
5507 if (vma->vm_pgoff == 0) {
5508 nr_pages = (vma_size / PAGE_SIZE) - 1;
5509 } else {
5510 /*
5511 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5512 * mapped, all subsequent mappings should have the same size
5513 * and offset. Must be above the normal perf buffer.
5514 */
5515 u64 aux_offset, aux_size;
5516
5517 if (!event->rb)
5518 return -EINVAL;
5519
5520 nr_pages = vma_size / PAGE_SIZE;
5521
5522 mutex_lock(&event->mmap_mutex);
5523 ret = -EINVAL;
5524
5525 rb = event->rb;
5526 if (!rb)
5527 goto aux_unlock;
5528
6aa7de05
MR
5529 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5530 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5531
5532 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5533 goto aux_unlock;
5534
5535 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5536 goto aux_unlock;
5537
5538 /* already mapped with a different offset */
5539 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5540 goto aux_unlock;
5541
5542 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5543 goto aux_unlock;
5544
5545 /* already mapped with a different size */
5546 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5547 goto aux_unlock;
5548
5549 if (!is_power_of_2(nr_pages))
5550 goto aux_unlock;
5551
5552 if (!atomic_inc_not_zero(&rb->mmap_count))
5553 goto aux_unlock;
5554
5555 if (rb_has_aux(rb)) {
5556 atomic_inc(&rb->aux_mmap_count);
5557 ret = 0;
5558 goto unlock;
5559 }
5560
5561 atomic_set(&rb->aux_mmap_count, 1);
5562 user_extra = nr_pages;
5563
5564 goto accounting;
5565 }
7b732a75 5566
7730d865 5567 /*
76369139 5568 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5569 * can do bitmasks instead of modulo.
5570 */
2ed11312 5571 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5572 return -EINVAL;
5573
7b732a75 5574 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5575 return -EINVAL;
5576
cdd6c482 5577 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5578again:
cdd6c482 5579 mutex_lock(&event->mmap_mutex);
76369139 5580 if (event->rb) {
9bb5d40c 5581 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5582 ret = -EINVAL;
9bb5d40c
PZ
5583 goto unlock;
5584 }
5585
5586 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5587 /*
5588 * Raced against perf_mmap_close() through
5589 * perf_event_set_output(). Try again, hope for better
5590 * luck.
5591 */
5592 mutex_unlock(&event->mmap_mutex);
5593 goto again;
5594 }
5595
ebb3c4c4
PZ
5596 goto unlock;
5597 }
5598
789f90fc 5599 user_extra = nr_pages + 1;
45bfb2e5
PZ
5600
5601accounting:
cdd6c482 5602 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5603
5604 /*
5605 * Increase the limit linearly with more CPUs:
5606 */
5607 user_lock_limit *= num_online_cpus();
5608
789f90fc 5609 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5610
789f90fc
PZ
5611 if (user_locked > user_lock_limit)
5612 extra = user_locked - user_lock_limit;
7b732a75 5613
78d7d407 5614 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5615 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5616 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5617
459ec28a
IM
5618 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5619 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5620 ret = -EPERM;
5621 goto unlock;
5622 }
7b732a75 5623
45bfb2e5 5624 WARN_ON(!rb && event->rb);
906010b2 5625
d57e34fd 5626 if (vma->vm_flags & VM_WRITE)
76369139 5627 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5628
76369139 5629 if (!rb) {
45bfb2e5
PZ
5630 rb = rb_alloc(nr_pages,
5631 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5632 event->cpu, flags);
26cb63ad 5633
45bfb2e5
PZ
5634 if (!rb) {
5635 ret = -ENOMEM;
5636 goto unlock;
5637 }
43a21ea8 5638
45bfb2e5
PZ
5639 atomic_set(&rb->mmap_count, 1);
5640 rb->mmap_user = get_current_user();
5641 rb->mmap_locked = extra;
26cb63ad 5642
45bfb2e5 5643 ring_buffer_attach(event, rb);
ac9721f3 5644
45bfb2e5
PZ
5645 perf_event_init_userpage(event);
5646 perf_event_update_userpage(event);
5647 } else {
1a594131
AS
5648 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5649 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5650 if (!ret)
5651 rb->aux_mmap_locked = extra;
5652 }
9a0f05cb 5653
ebb3c4c4 5654unlock:
45bfb2e5
PZ
5655 if (!ret) {
5656 atomic_long_add(user_extra, &user->locked_vm);
5657 vma->vm_mm->pinned_vm += extra;
5658
ac9721f3 5659 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5660 } else if (rb) {
5661 atomic_dec(&rb->mmap_count);
5662 }
5663aux_unlock:
cdd6c482 5664 mutex_unlock(&event->mmap_mutex);
37d81828 5665
9bb5d40c
PZ
5666 /*
5667 * Since pinned accounting is per vm we cannot allow fork() to copy our
5668 * vma.
5669 */
26cb63ad 5670 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5671 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5672
1e0fb9ec 5673 if (event->pmu->event_mapped)
bfe33492 5674 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5675
7b732a75 5676 return ret;
37d81828
PM
5677}
5678
3c446b3d
PZ
5679static int perf_fasync(int fd, struct file *filp, int on)
5680{
496ad9aa 5681 struct inode *inode = file_inode(filp);
cdd6c482 5682 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5683 int retval;
5684
5955102c 5685 inode_lock(inode);
cdd6c482 5686 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5687 inode_unlock(inode);
3c446b3d
PZ
5688
5689 if (retval < 0)
5690 return retval;
5691
5692 return 0;
5693}
5694
0793a61d 5695static const struct file_operations perf_fops = {
3326c1ce 5696 .llseek = no_llseek,
0793a61d
TG
5697 .release = perf_release,
5698 .read = perf_read,
5699 .poll = perf_poll,
d859e29f 5700 .unlocked_ioctl = perf_ioctl,
b3f20785 5701 .compat_ioctl = perf_compat_ioctl,
37d81828 5702 .mmap = perf_mmap,
3c446b3d 5703 .fasync = perf_fasync,
0793a61d
TG
5704};
5705
925d519a 5706/*
cdd6c482 5707 * Perf event wakeup
925d519a
PZ
5708 *
5709 * If there's data, ensure we set the poll() state and publish everything
5710 * to user-space before waking everybody up.
5711 */
5712
fed66e2c
PZ
5713static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5714{
5715 /* only the parent has fasync state */
5716 if (event->parent)
5717 event = event->parent;
5718 return &event->fasync;
5719}
5720
cdd6c482 5721void perf_event_wakeup(struct perf_event *event)
925d519a 5722{
10c6db11 5723 ring_buffer_wakeup(event);
4c9e2542 5724
cdd6c482 5725 if (event->pending_kill) {
fed66e2c 5726 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5727 event->pending_kill = 0;
4c9e2542 5728 }
925d519a
PZ
5729}
5730
e360adbe 5731static void perf_pending_event(struct irq_work *entry)
79f14641 5732{
cdd6c482
IM
5733 struct perf_event *event = container_of(entry,
5734 struct perf_event, pending);
d525211f
PZ
5735 int rctx;
5736
5737 rctx = perf_swevent_get_recursion_context();
5738 /*
5739 * If we 'fail' here, that's OK, it means recursion is already disabled
5740 * and we won't recurse 'further'.
5741 */
79f14641 5742
cdd6c482
IM
5743 if (event->pending_disable) {
5744 event->pending_disable = 0;
fae3fde6 5745 perf_event_disable_local(event);
79f14641
PZ
5746 }
5747
cdd6c482
IM
5748 if (event->pending_wakeup) {
5749 event->pending_wakeup = 0;
5750 perf_event_wakeup(event);
79f14641 5751 }
d525211f
PZ
5752
5753 if (rctx >= 0)
5754 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5755}
5756
39447b38
ZY
5757/*
5758 * We assume there is only KVM supporting the callbacks.
5759 * Later on, we might change it to a list if there is
5760 * another virtualization implementation supporting the callbacks.
5761 */
5762struct perf_guest_info_callbacks *perf_guest_cbs;
5763
5764int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5765{
5766 perf_guest_cbs = cbs;
5767 return 0;
5768}
5769EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5770
5771int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5772{
5773 perf_guest_cbs = NULL;
5774 return 0;
5775}
5776EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5777
4018994f
JO
5778static void
5779perf_output_sample_regs(struct perf_output_handle *handle,
5780 struct pt_regs *regs, u64 mask)
5781{
5782 int bit;
29dd3288 5783 DECLARE_BITMAP(_mask, 64);
4018994f 5784
29dd3288
MS
5785 bitmap_from_u64(_mask, mask);
5786 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5787 u64 val;
5788
5789 val = perf_reg_value(regs, bit);
5790 perf_output_put(handle, val);
5791 }
5792}
5793
60e2364e 5794static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5795 struct pt_regs *regs,
5796 struct pt_regs *regs_user_copy)
4018994f 5797{
88a7c26a
AL
5798 if (user_mode(regs)) {
5799 regs_user->abi = perf_reg_abi(current);
2565711f 5800 regs_user->regs = regs;
88a7c26a
AL
5801 } else if (current->mm) {
5802 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5803 } else {
5804 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5805 regs_user->regs = NULL;
4018994f
JO
5806 }
5807}
5808
60e2364e
SE
5809static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5810 struct pt_regs *regs)
5811{
5812 regs_intr->regs = regs;
5813 regs_intr->abi = perf_reg_abi(current);
5814}
5815
5816
c5ebcedb
JO
5817/*
5818 * Get remaining task size from user stack pointer.
5819 *
5820 * It'd be better to take stack vma map and limit this more
5821 * precisly, but there's no way to get it safely under interrupt,
5822 * so using TASK_SIZE as limit.
5823 */
5824static u64 perf_ustack_task_size(struct pt_regs *regs)
5825{
5826 unsigned long addr = perf_user_stack_pointer(regs);
5827
5828 if (!addr || addr >= TASK_SIZE)
5829 return 0;
5830
5831 return TASK_SIZE - addr;
5832}
5833
5834static u16
5835perf_sample_ustack_size(u16 stack_size, u16 header_size,
5836 struct pt_regs *regs)
5837{
5838 u64 task_size;
5839
5840 /* No regs, no stack pointer, no dump. */
5841 if (!regs)
5842 return 0;
5843
5844 /*
5845 * Check if we fit in with the requested stack size into the:
5846 * - TASK_SIZE
5847 * If we don't, we limit the size to the TASK_SIZE.
5848 *
5849 * - remaining sample size
5850 * If we don't, we customize the stack size to
5851 * fit in to the remaining sample size.
5852 */
5853
5854 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5855 stack_size = min(stack_size, (u16) task_size);
5856
5857 /* Current header size plus static size and dynamic size. */
5858 header_size += 2 * sizeof(u64);
5859
5860 /* Do we fit in with the current stack dump size? */
5861 if ((u16) (header_size + stack_size) < header_size) {
5862 /*
5863 * If we overflow the maximum size for the sample,
5864 * we customize the stack dump size to fit in.
5865 */
5866 stack_size = USHRT_MAX - header_size - sizeof(u64);
5867 stack_size = round_up(stack_size, sizeof(u64));
5868 }
5869
5870 return stack_size;
5871}
5872
5873static void
5874perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5875 struct pt_regs *regs)
5876{
5877 /* Case of a kernel thread, nothing to dump */
5878 if (!regs) {
5879 u64 size = 0;
5880 perf_output_put(handle, size);
5881 } else {
5882 unsigned long sp;
5883 unsigned int rem;
5884 u64 dyn_size;
5885
5886 /*
5887 * We dump:
5888 * static size
5889 * - the size requested by user or the best one we can fit
5890 * in to the sample max size
5891 * data
5892 * - user stack dump data
5893 * dynamic size
5894 * - the actual dumped size
5895 */
5896
5897 /* Static size. */
5898 perf_output_put(handle, dump_size);
5899
5900 /* Data. */
5901 sp = perf_user_stack_pointer(regs);
5902 rem = __output_copy_user(handle, (void *) sp, dump_size);
5903 dyn_size = dump_size - rem;
5904
5905 perf_output_skip(handle, rem);
5906
5907 /* Dynamic size. */
5908 perf_output_put(handle, dyn_size);
5909 }
5910}
5911
c980d109
ACM
5912static void __perf_event_header__init_id(struct perf_event_header *header,
5913 struct perf_sample_data *data,
5914 struct perf_event *event)
6844c09d
ACM
5915{
5916 u64 sample_type = event->attr.sample_type;
5917
5918 data->type = sample_type;
5919 header->size += event->id_header_size;
5920
5921 if (sample_type & PERF_SAMPLE_TID) {
5922 /* namespace issues */
5923 data->tid_entry.pid = perf_event_pid(event, current);
5924 data->tid_entry.tid = perf_event_tid(event, current);
5925 }
5926
5927 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5928 data->time = perf_event_clock(event);
6844c09d 5929
ff3d527c 5930 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5931 data->id = primary_event_id(event);
5932
5933 if (sample_type & PERF_SAMPLE_STREAM_ID)
5934 data->stream_id = event->id;
5935
5936 if (sample_type & PERF_SAMPLE_CPU) {
5937 data->cpu_entry.cpu = raw_smp_processor_id();
5938 data->cpu_entry.reserved = 0;
5939 }
5940}
5941
76369139
FW
5942void perf_event_header__init_id(struct perf_event_header *header,
5943 struct perf_sample_data *data,
5944 struct perf_event *event)
c980d109
ACM
5945{
5946 if (event->attr.sample_id_all)
5947 __perf_event_header__init_id(header, data, event);
5948}
5949
5950static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5951 struct perf_sample_data *data)
5952{
5953 u64 sample_type = data->type;
5954
5955 if (sample_type & PERF_SAMPLE_TID)
5956 perf_output_put(handle, data->tid_entry);
5957
5958 if (sample_type & PERF_SAMPLE_TIME)
5959 perf_output_put(handle, data->time);
5960
5961 if (sample_type & PERF_SAMPLE_ID)
5962 perf_output_put(handle, data->id);
5963
5964 if (sample_type & PERF_SAMPLE_STREAM_ID)
5965 perf_output_put(handle, data->stream_id);
5966
5967 if (sample_type & PERF_SAMPLE_CPU)
5968 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5969
5970 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5971 perf_output_put(handle, data->id);
c980d109
ACM
5972}
5973
76369139
FW
5974void perf_event__output_id_sample(struct perf_event *event,
5975 struct perf_output_handle *handle,
5976 struct perf_sample_data *sample)
c980d109
ACM
5977{
5978 if (event->attr.sample_id_all)
5979 __perf_event__output_id_sample(handle, sample);
5980}
5981
3dab77fb 5982static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5983 struct perf_event *event,
5984 u64 enabled, u64 running)
3dab77fb 5985{
cdd6c482 5986 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5987 u64 values[4];
5988 int n = 0;
5989
b5e58793 5990 values[n++] = perf_event_count(event);
3dab77fb 5991 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5992 values[n++] = enabled +
cdd6c482 5993 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5994 }
5995 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5996 values[n++] = running +
cdd6c482 5997 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5998 }
5999 if (read_format & PERF_FORMAT_ID)
cdd6c482 6000 values[n++] = primary_event_id(event);
3dab77fb 6001
76369139 6002 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6003}
6004
3dab77fb 6005static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
6006 struct perf_event *event,
6007 u64 enabled, u64 running)
3dab77fb 6008{
cdd6c482
IM
6009 struct perf_event *leader = event->group_leader, *sub;
6010 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6011 u64 values[5];
6012 int n = 0;
6013
6014 values[n++] = 1 + leader->nr_siblings;
6015
6016 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 6017 values[n++] = enabled;
3dab77fb
PZ
6018
6019 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 6020 values[n++] = running;
3dab77fb 6021
9e5b127d
PZ
6022 if ((leader != event) &&
6023 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6024 leader->pmu->read(leader);
6025
b5e58793 6026 values[n++] = perf_event_count(leader);
3dab77fb 6027 if (read_format & PERF_FORMAT_ID)
cdd6c482 6028 values[n++] = primary_event_id(leader);
3dab77fb 6029
76369139 6030 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 6031
8343aae6 6032 list_for_each_entry(sub, &leader->sibling_list, sibling_list) {
3dab77fb
PZ
6033 n = 0;
6034
6f5ab001
JO
6035 if ((sub != event) &&
6036 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6037 sub->pmu->read(sub);
6038
b5e58793 6039 values[n++] = perf_event_count(sub);
3dab77fb 6040 if (read_format & PERF_FORMAT_ID)
cdd6c482 6041 values[n++] = primary_event_id(sub);
3dab77fb 6042
76369139 6043 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6044 }
6045}
6046
eed01528
SE
6047#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6048 PERF_FORMAT_TOTAL_TIME_RUNNING)
6049
ba5213ae
PZ
6050/*
6051 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6052 *
6053 * The problem is that its both hard and excessively expensive to iterate the
6054 * child list, not to mention that its impossible to IPI the children running
6055 * on another CPU, from interrupt/NMI context.
6056 */
3dab77fb 6057static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 6058 struct perf_event *event)
3dab77fb 6059{
e3f3541c 6060 u64 enabled = 0, running = 0, now;
eed01528
SE
6061 u64 read_format = event->attr.read_format;
6062
6063 /*
6064 * compute total_time_enabled, total_time_running
6065 * based on snapshot values taken when the event
6066 * was last scheduled in.
6067 *
6068 * we cannot simply called update_context_time()
6069 * because of locking issue as we are called in
6070 * NMI context
6071 */
c4794295 6072 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 6073 calc_timer_values(event, &now, &enabled, &running);
eed01528 6074
cdd6c482 6075 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 6076 perf_output_read_group(handle, event, enabled, running);
3dab77fb 6077 else
eed01528 6078 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
6079}
6080
5622f295
MM
6081void perf_output_sample(struct perf_output_handle *handle,
6082 struct perf_event_header *header,
6083 struct perf_sample_data *data,
cdd6c482 6084 struct perf_event *event)
5622f295
MM
6085{
6086 u64 sample_type = data->type;
6087
6088 perf_output_put(handle, *header);
6089
ff3d527c
AH
6090 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6091 perf_output_put(handle, data->id);
6092
5622f295
MM
6093 if (sample_type & PERF_SAMPLE_IP)
6094 perf_output_put(handle, data->ip);
6095
6096 if (sample_type & PERF_SAMPLE_TID)
6097 perf_output_put(handle, data->tid_entry);
6098
6099 if (sample_type & PERF_SAMPLE_TIME)
6100 perf_output_put(handle, data->time);
6101
6102 if (sample_type & PERF_SAMPLE_ADDR)
6103 perf_output_put(handle, data->addr);
6104
6105 if (sample_type & PERF_SAMPLE_ID)
6106 perf_output_put(handle, data->id);
6107
6108 if (sample_type & PERF_SAMPLE_STREAM_ID)
6109 perf_output_put(handle, data->stream_id);
6110
6111 if (sample_type & PERF_SAMPLE_CPU)
6112 perf_output_put(handle, data->cpu_entry);
6113
6114 if (sample_type & PERF_SAMPLE_PERIOD)
6115 perf_output_put(handle, data->period);
6116
6117 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 6118 perf_output_read(handle, event);
5622f295
MM
6119
6120 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 6121 int size = 1;
5622f295 6122
99e818cc
JO
6123 size += data->callchain->nr;
6124 size *= sizeof(u64);
6125 __output_copy(handle, data->callchain, size);
5622f295
MM
6126 }
6127
6128 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6129 struct perf_raw_record *raw = data->raw;
6130
6131 if (raw) {
6132 struct perf_raw_frag *frag = &raw->frag;
6133
6134 perf_output_put(handle, raw->size);
6135 do {
6136 if (frag->copy) {
6137 __output_custom(handle, frag->copy,
6138 frag->data, frag->size);
6139 } else {
6140 __output_copy(handle, frag->data,
6141 frag->size);
6142 }
6143 if (perf_raw_frag_last(frag))
6144 break;
6145 frag = frag->next;
6146 } while (1);
6147 if (frag->pad)
6148 __output_skip(handle, NULL, frag->pad);
5622f295
MM
6149 } else {
6150 struct {
6151 u32 size;
6152 u32 data;
6153 } raw = {
6154 .size = sizeof(u32),
6155 .data = 0,
6156 };
6157 perf_output_put(handle, raw);
6158 }
6159 }
a7ac67ea 6160
bce38cd5
SE
6161 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6162 if (data->br_stack) {
6163 size_t size;
6164
6165 size = data->br_stack->nr
6166 * sizeof(struct perf_branch_entry);
6167
6168 perf_output_put(handle, data->br_stack->nr);
6169 perf_output_copy(handle, data->br_stack->entries, size);
6170 } else {
6171 /*
6172 * we always store at least the value of nr
6173 */
6174 u64 nr = 0;
6175 perf_output_put(handle, nr);
6176 }
6177 }
4018994f
JO
6178
6179 if (sample_type & PERF_SAMPLE_REGS_USER) {
6180 u64 abi = data->regs_user.abi;
6181
6182 /*
6183 * If there are no regs to dump, notice it through
6184 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6185 */
6186 perf_output_put(handle, abi);
6187
6188 if (abi) {
6189 u64 mask = event->attr.sample_regs_user;
6190 perf_output_sample_regs(handle,
6191 data->regs_user.regs,
6192 mask);
6193 }
6194 }
c5ebcedb 6195
a5cdd40c 6196 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6197 perf_output_sample_ustack(handle,
6198 data->stack_user_size,
6199 data->regs_user.regs);
a5cdd40c 6200 }
c3feedf2
AK
6201
6202 if (sample_type & PERF_SAMPLE_WEIGHT)
6203 perf_output_put(handle, data->weight);
d6be9ad6
SE
6204
6205 if (sample_type & PERF_SAMPLE_DATA_SRC)
6206 perf_output_put(handle, data->data_src.val);
a5cdd40c 6207
fdfbbd07
AK
6208 if (sample_type & PERF_SAMPLE_TRANSACTION)
6209 perf_output_put(handle, data->txn);
6210
60e2364e
SE
6211 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6212 u64 abi = data->regs_intr.abi;
6213 /*
6214 * If there are no regs to dump, notice it through
6215 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6216 */
6217 perf_output_put(handle, abi);
6218
6219 if (abi) {
6220 u64 mask = event->attr.sample_regs_intr;
6221
6222 perf_output_sample_regs(handle,
6223 data->regs_intr.regs,
6224 mask);
6225 }
6226 }
6227
fc7ce9c7
KL
6228 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6229 perf_output_put(handle, data->phys_addr);
6230
a5cdd40c
PZ
6231 if (!event->attr.watermark) {
6232 int wakeup_events = event->attr.wakeup_events;
6233
6234 if (wakeup_events) {
6235 struct ring_buffer *rb = handle->rb;
6236 int events = local_inc_return(&rb->events);
6237
6238 if (events >= wakeup_events) {
6239 local_sub(wakeup_events, &rb->events);
6240 local_inc(&rb->wakeup);
6241 }
6242 }
6243 }
5622f295
MM
6244}
6245
fc7ce9c7
KL
6246static u64 perf_virt_to_phys(u64 virt)
6247{
6248 u64 phys_addr = 0;
6249 struct page *p = NULL;
6250
6251 if (!virt)
6252 return 0;
6253
6254 if (virt >= TASK_SIZE) {
6255 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6256 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6257 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6258 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6259 } else {
6260 /*
6261 * Walking the pages tables for user address.
6262 * Interrupts are disabled, so it prevents any tear down
6263 * of the page tables.
6264 * Try IRQ-safe __get_user_pages_fast first.
6265 * If failed, leave phys_addr as 0.
6266 */
6267 if ((current->mm != NULL) &&
6268 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6269 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6270
6271 if (p)
6272 put_page(p);
6273 }
6274
6275 return phys_addr;
6276}
6277
99e818cc
JO
6278static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6279
8cf7e0e2
JO
6280static struct perf_callchain_entry *
6281perf_callchain(struct perf_event *event, struct pt_regs *regs)
6282{
6283 bool kernel = !event->attr.exclude_callchain_kernel;
6284 bool user = !event->attr.exclude_callchain_user;
6285 /* Disallow cross-task user callchains. */
6286 bool crosstask = event->ctx->task && event->ctx->task != current;
6287 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 6288 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6289
6290 if (!kernel && !user)
99e818cc 6291 return &__empty_callchain;
8cf7e0e2 6292
99e818cc
JO
6293 callchain = get_perf_callchain(regs, 0, kernel, user,
6294 max_stack, crosstask, true);
6295 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6296}
6297
5622f295
MM
6298void perf_prepare_sample(struct perf_event_header *header,
6299 struct perf_sample_data *data,
cdd6c482 6300 struct perf_event *event,
5622f295 6301 struct pt_regs *regs)
7b732a75 6302{
cdd6c482 6303 u64 sample_type = event->attr.sample_type;
7b732a75 6304
cdd6c482 6305 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6306 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6307
6308 header->misc = 0;
6309 header->misc |= perf_misc_flags(regs);
6fab0192 6310
c980d109 6311 __perf_event_header__init_id(header, data, event);
6844c09d 6312
c320c7b7 6313 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6314 data->ip = perf_instruction_pointer(regs);
6315
b23f3325 6316 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6317 int size = 1;
394ee076 6318
e6dab5ff 6319 data->callchain = perf_callchain(event, regs);
99e818cc 6320 size += data->callchain->nr;
5622f295
MM
6321
6322 header->size += size * sizeof(u64);
394ee076
PZ
6323 }
6324
3a43ce68 6325 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6326 struct perf_raw_record *raw = data->raw;
6327 int size;
6328
6329 if (raw) {
6330 struct perf_raw_frag *frag = &raw->frag;
6331 u32 sum = 0;
6332
6333 do {
6334 sum += frag->size;
6335 if (perf_raw_frag_last(frag))
6336 break;
6337 frag = frag->next;
6338 } while (1);
6339
6340 size = round_up(sum + sizeof(u32), sizeof(u64));
6341 raw->size = size - sizeof(u32);
6342 frag->pad = raw->size - sum;
6343 } else {
6344 size = sizeof(u64);
6345 }
a044560c 6346
7e3f977e 6347 header->size += size;
7f453c24 6348 }
bce38cd5
SE
6349
6350 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6351 int size = sizeof(u64); /* nr */
6352 if (data->br_stack) {
6353 size += data->br_stack->nr
6354 * sizeof(struct perf_branch_entry);
6355 }
6356 header->size += size;
6357 }
4018994f 6358
2565711f 6359 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6360 perf_sample_regs_user(&data->regs_user, regs,
6361 &data->regs_user_copy);
2565711f 6362
4018994f
JO
6363 if (sample_type & PERF_SAMPLE_REGS_USER) {
6364 /* regs dump ABI info */
6365 int size = sizeof(u64);
6366
4018994f
JO
6367 if (data->regs_user.regs) {
6368 u64 mask = event->attr.sample_regs_user;
6369 size += hweight64(mask) * sizeof(u64);
6370 }
6371
6372 header->size += size;
6373 }
c5ebcedb
JO
6374
6375 if (sample_type & PERF_SAMPLE_STACK_USER) {
6376 /*
6377 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6378 * processed as the last one or have additional check added
6379 * in case new sample type is added, because we could eat
6380 * up the rest of the sample size.
6381 */
c5ebcedb
JO
6382 u16 stack_size = event->attr.sample_stack_user;
6383 u16 size = sizeof(u64);
6384
c5ebcedb 6385 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6386 data->regs_user.regs);
c5ebcedb
JO
6387
6388 /*
6389 * If there is something to dump, add space for the dump
6390 * itself and for the field that tells the dynamic size,
6391 * which is how many have been actually dumped.
6392 */
6393 if (stack_size)
6394 size += sizeof(u64) + stack_size;
6395
6396 data->stack_user_size = stack_size;
6397 header->size += size;
6398 }
60e2364e
SE
6399
6400 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6401 /* regs dump ABI info */
6402 int size = sizeof(u64);
6403
6404 perf_sample_regs_intr(&data->regs_intr, regs);
6405
6406 if (data->regs_intr.regs) {
6407 u64 mask = event->attr.sample_regs_intr;
6408
6409 size += hweight64(mask) * sizeof(u64);
6410 }
6411
6412 header->size += size;
6413 }
fc7ce9c7
KL
6414
6415 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6416 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6417}
7f453c24 6418
9ecda41a
WN
6419static void __always_inline
6420__perf_event_output(struct perf_event *event,
6421 struct perf_sample_data *data,
6422 struct pt_regs *regs,
6423 int (*output_begin)(struct perf_output_handle *,
6424 struct perf_event *,
6425 unsigned int))
5622f295
MM
6426{
6427 struct perf_output_handle handle;
6428 struct perf_event_header header;
689802b2 6429
927c7a9e
FW
6430 /* protect the callchain buffers */
6431 rcu_read_lock();
6432
cdd6c482 6433 perf_prepare_sample(&header, data, event, regs);
5c148194 6434
9ecda41a 6435 if (output_begin(&handle, event, header.size))
927c7a9e 6436 goto exit;
0322cd6e 6437
cdd6c482 6438 perf_output_sample(&handle, &header, data, event);
f413cdb8 6439
8a057d84 6440 perf_output_end(&handle);
927c7a9e
FW
6441
6442exit:
6443 rcu_read_unlock();
0322cd6e
PZ
6444}
6445
9ecda41a
WN
6446void
6447perf_event_output_forward(struct perf_event *event,
6448 struct perf_sample_data *data,
6449 struct pt_regs *regs)
6450{
6451 __perf_event_output(event, data, regs, perf_output_begin_forward);
6452}
6453
6454void
6455perf_event_output_backward(struct perf_event *event,
6456 struct perf_sample_data *data,
6457 struct pt_regs *regs)
6458{
6459 __perf_event_output(event, data, regs, perf_output_begin_backward);
6460}
6461
6462void
6463perf_event_output(struct perf_event *event,
6464 struct perf_sample_data *data,
6465 struct pt_regs *regs)
6466{
6467 __perf_event_output(event, data, regs, perf_output_begin);
6468}
6469
38b200d6 6470/*
cdd6c482 6471 * read event_id
38b200d6
PZ
6472 */
6473
6474struct perf_read_event {
6475 struct perf_event_header header;
6476
6477 u32 pid;
6478 u32 tid;
38b200d6
PZ
6479};
6480
6481static void
cdd6c482 6482perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6483 struct task_struct *task)
6484{
6485 struct perf_output_handle handle;
c980d109 6486 struct perf_sample_data sample;
dfc65094 6487 struct perf_read_event read_event = {
38b200d6 6488 .header = {
cdd6c482 6489 .type = PERF_RECORD_READ,
38b200d6 6490 .misc = 0,
c320c7b7 6491 .size = sizeof(read_event) + event->read_size,
38b200d6 6492 },
cdd6c482
IM
6493 .pid = perf_event_pid(event, task),
6494 .tid = perf_event_tid(event, task),
38b200d6 6495 };
3dab77fb 6496 int ret;
38b200d6 6497
c980d109 6498 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6499 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6500 if (ret)
6501 return;
6502
dfc65094 6503 perf_output_put(&handle, read_event);
cdd6c482 6504 perf_output_read(&handle, event);
c980d109 6505 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6506
38b200d6
PZ
6507 perf_output_end(&handle);
6508}
6509
aab5b71e 6510typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6511
6512static void
aab5b71e
PZ
6513perf_iterate_ctx(struct perf_event_context *ctx,
6514 perf_iterate_f output,
b73e4fef 6515 void *data, bool all)
52d857a8
JO
6516{
6517 struct perf_event *event;
6518
6519 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6520 if (!all) {
6521 if (event->state < PERF_EVENT_STATE_INACTIVE)
6522 continue;
6523 if (!event_filter_match(event))
6524 continue;
6525 }
6526
67516844 6527 output(event, data);
52d857a8
JO
6528 }
6529}
6530
aab5b71e 6531static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6532{
6533 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6534 struct perf_event *event;
6535
6536 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6537 /*
6538 * Skip events that are not fully formed yet; ensure that
6539 * if we observe event->ctx, both event and ctx will be
6540 * complete enough. See perf_install_in_context().
6541 */
6542 if (!smp_load_acquire(&event->ctx))
6543 continue;
6544
f2fb6bef
KL
6545 if (event->state < PERF_EVENT_STATE_INACTIVE)
6546 continue;
6547 if (!event_filter_match(event))
6548 continue;
6549 output(event, data);
6550 }
6551}
6552
aab5b71e
PZ
6553/*
6554 * Iterate all events that need to receive side-band events.
6555 *
6556 * For new callers; ensure that account_pmu_sb_event() includes
6557 * your event, otherwise it might not get delivered.
6558 */
52d857a8 6559static void
aab5b71e 6560perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6561 struct perf_event_context *task_ctx)
6562{
52d857a8 6563 struct perf_event_context *ctx;
52d857a8
JO
6564 int ctxn;
6565
aab5b71e
PZ
6566 rcu_read_lock();
6567 preempt_disable();
6568
4e93ad60 6569 /*
aab5b71e
PZ
6570 * If we have task_ctx != NULL we only notify the task context itself.
6571 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6572 * context.
6573 */
6574 if (task_ctx) {
aab5b71e
PZ
6575 perf_iterate_ctx(task_ctx, output, data, false);
6576 goto done;
4e93ad60
JO
6577 }
6578
aab5b71e 6579 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6580
6581 for_each_task_context_nr(ctxn) {
52d857a8
JO
6582 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6583 if (ctx)
aab5b71e 6584 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6585 }
aab5b71e 6586done:
f2fb6bef 6587 preempt_enable();
52d857a8 6588 rcu_read_unlock();
95ff4ca2
AS
6589}
6590
375637bc
AS
6591/*
6592 * Clear all file-based filters at exec, they'll have to be
6593 * re-instated when/if these objects are mmapped again.
6594 */
6595static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6596{
6597 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6598 struct perf_addr_filter *filter;
6599 unsigned int restart = 0, count = 0;
6600 unsigned long flags;
6601
6602 if (!has_addr_filter(event))
6603 return;
6604
6605 raw_spin_lock_irqsave(&ifh->lock, flags);
6606 list_for_each_entry(filter, &ifh->list, entry) {
6607 if (filter->inode) {
6608 event->addr_filters_offs[count] = 0;
6609 restart++;
6610 }
6611
6612 count++;
6613 }
6614
6615 if (restart)
6616 event->addr_filters_gen++;
6617 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6618
6619 if (restart)
767ae086 6620 perf_event_stop(event, 1);
375637bc
AS
6621}
6622
6623void perf_event_exec(void)
6624{
6625 struct perf_event_context *ctx;
6626 int ctxn;
6627
6628 rcu_read_lock();
6629 for_each_task_context_nr(ctxn) {
6630 ctx = current->perf_event_ctxp[ctxn];
6631 if (!ctx)
6632 continue;
6633
6634 perf_event_enable_on_exec(ctxn);
6635
aab5b71e 6636 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6637 true);
6638 }
6639 rcu_read_unlock();
6640}
6641
95ff4ca2
AS
6642struct remote_output {
6643 struct ring_buffer *rb;
6644 int err;
6645};
6646
6647static void __perf_event_output_stop(struct perf_event *event, void *data)
6648{
6649 struct perf_event *parent = event->parent;
6650 struct remote_output *ro = data;
6651 struct ring_buffer *rb = ro->rb;
375637bc
AS
6652 struct stop_event_data sd = {
6653 .event = event,
6654 };
95ff4ca2
AS
6655
6656 if (!has_aux(event))
6657 return;
6658
6659 if (!parent)
6660 parent = event;
6661
6662 /*
6663 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6664 * ring-buffer, but it will be the child that's actually using it.
6665 *
6666 * We are using event::rb to determine if the event should be stopped,
6667 * however this may race with ring_buffer_attach() (through set_output),
6668 * which will make us skip the event that actually needs to be stopped.
6669 * So ring_buffer_attach() has to stop an aux event before re-assigning
6670 * its rb pointer.
95ff4ca2
AS
6671 */
6672 if (rcu_dereference(parent->rb) == rb)
375637bc 6673 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6674}
6675
6676static int __perf_pmu_output_stop(void *info)
6677{
6678 struct perf_event *event = info;
6679 struct pmu *pmu = event->pmu;
8b6a3fe8 6680 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6681 struct remote_output ro = {
6682 .rb = event->rb,
6683 };
6684
6685 rcu_read_lock();
aab5b71e 6686 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6687 if (cpuctx->task_ctx)
aab5b71e 6688 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6689 &ro, false);
95ff4ca2
AS
6690 rcu_read_unlock();
6691
6692 return ro.err;
6693}
6694
6695static void perf_pmu_output_stop(struct perf_event *event)
6696{
6697 struct perf_event *iter;
6698 int err, cpu;
6699
6700restart:
6701 rcu_read_lock();
6702 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6703 /*
6704 * For per-CPU events, we need to make sure that neither they
6705 * nor their children are running; for cpu==-1 events it's
6706 * sufficient to stop the event itself if it's active, since
6707 * it can't have children.
6708 */
6709 cpu = iter->cpu;
6710 if (cpu == -1)
6711 cpu = READ_ONCE(iter->oncpu);
6712
6713 if (cpu == -1)
6714 continue;
6715
6716 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6717 if (err == -EAGAIN) {
6718 rcu_read_unlock();
6719 goto restart;
6720 }
6721 }
6722 rcu_read_unlock();
52d857a8
JO
6723}
6724
60313ebe 6725/*
9f498cc5
PZ
6726 * task tracking -- fork/exit
6727 *
13d7a241 6728 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6729 */
6730
9f498cc5 6731struct perf_task_event {
3a80b4a3 6732 struct task_struct *task;
cdd6c482 6733 struct perf_event_context *task_ctx;
60313ebe
PZ
6734
6735 struct {
6736 struct perf_event_header header;
6737
6738 u32 pid;
6739 u32 ppid;
9f498cc5
PZ
6740 u32 tid;
6741 u32 ptid;
393b2ad8 6742 u64 time;
cdd6c482 6743 } event_id;
60313ebe
PZ
6744};
6745
67516844
JO
6746static int perf_event_task_match(struct perf_event *event)
6747{
13d7a241
SE
6748 return event->attr.comm || event->attr.mmap ||
6749 event->attr.mmap2 || event->attr.mmap_data ||
6750 event->attr.task;
67516844
JO
6751}
6752
cdd6c482 6753static void perf_event_task_output(struct perf_event *event,
52d857a8 6754 void *data)
60313ebe 6755{
52d857a8 6756 struct perf_task_event *task_event = data;
60313ebe 6757 struct perf_output_handle handle;
c980d109 6758 struct perf_sample_data sample;
9f498cc5 6759 struct task_struct *task = task_event->task;
c980d109 6760 int ret, size = task_event->event_id.header.size;
8bb39f9a 6761
67516844
JO
6762 if (!perf_event_task_match(event))
6763 return;
6764
c980d109 6765 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6766
c980d109 6767 ret = perf_output_begin(&handle, event,
a7ac67ea 6768 task_event->event_id.header.size);
ef60777c 6769 if (ret)
c980d109 6770 goto out;
60313ebe 6771
cdd6c482
IM
6772 task_event->event_id.pid = perf_event_pid(event, task);
6773 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6774
cdd6c482
IM
6775 task_event->event_id.tid = perf_event_tid(event, task);
6776 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6777
34f43927
PZ
6778 task_event->event_id.time = perf_event_clock(event);
6779
cdd6c482 6780 perf_output_put(&handle, task_event->event_id);
393b2ad8 6781
c980d109
ACM
6782 perf_event__output_id_sample(event, &handle, &sample);
6783
60313ebe 6784 perf_output_end(&handle);
c980d109
ACM
6785out:
6786 task_event->event_id.header.size = size;
60313ebe
PZ
6787}
6788
cdd6c482
IM
6789static void perf_event_task(struct task_struct *task,
6790 struct perf_event_context *task_ctx,
3a80b4a3 6791 int new)
60313ebe 6792{
9f498cc5 6793 struct perf_task_event task_event;
60313ebe 6794
cdd6c482
IM
6795 if (!atomic_read(&nr_comm_events) &&
6796 !atomic_read(&nr_mmap_events) &&
6797 !atomic_read(&nr_task_events))
60313ebe
PZ
6798 return;
6799
9f498cc5 6800 task_event = (struct perf_task_event){
3a80b4a3
PZ
6801 .task = task,
6802 .task_ctx = task_ctx,
cdd6c482 6803 .event_id = {
60313ebe 6804 .header = {
cdd6c482 6805 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6806 .misc = 0,
cdd6c482 6807 .size = sizeof(task_event.event_id),
60313ebe 6808 },
573402db
PZ
6809 /* .pid */
6810 /* .ppid */
9f498cc5
PZ
6811 /* .tid */
6812 /* .ptid */
34f43927 6813 /* .time */
60313ebe
PZ
6814 },
6815 };
6816
aab5b71e 6817 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6818 &task_event,
6819 task_ctx);
9f498cc5
PZ
6820}
6821
cdd6c482 6822void perf_event_fork(struct task_struct *task)
9f498cc5 6823{
cdd6c482 6824 perf_event_task(task, NULL, 1);
e4222673 6825 perf_event_namespaces(task);
60313ebe
PZ
6826}
6827
8d1b2d93
PZ
6828/*
6829 * comm tracking
6830 */
6831
6832struct perf_comm_event {
22a4f650
IM
6833 struct task_struct *task;
6834 char *comm;
8d1b2d93
PZ
6835 int comm_size;
6836
6837 struct {
6838 struct perf_event_header header;
6839
6840 u32 pid;
6841 u32 tid;
cdd6c482 6842 } event_id;
8d1b2d93
PZ
6843};
6844
67516844
JO
6845static int perf_event_comm_match(struct perf_event *event)
6846{
6847 return event->attr.comm;
6848}
6849
cdd6c482 6850static void perf_event_comm_output(struct perf_event *event,
52d857a8 6851 void *data)
8d1b2d93 6852{
52d857a8 6853 struct perf_comm_event *comm_event = data;
8d1b2d93 6854 struct perf_output_handle handle;
c980d109 6855 struct perf_sample_data sample;
cdd6c482 6856 int size = comm_event->event_id.header.size;
c980d109
ACM
6857 int ret;
6858
67516844
JO
6859 if (!perf_event_comm_match(event))
6860 return;
6861
c980d109
ACM
6862 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6863 ret = perf_output_begin(&handle, event,
a7ac67ea 6864 comm_event->event_id.header.size);
8d1b2d93
PZ
6865
6866 if (ret)
c980d109 6867 goto out;
8d1b2d93 6868
cdd6c482
IM
6869 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6870 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6871
cdd6c482 6872 perf_output_put(&handle, comm_event->event_id);
76369139 6873 __output_copy(&handle, comm_event->comm,
8d1b2d93 6874 comm_event->comm_size);
c980d109
ACM
6875
6876 perf_event__output_id_sample(event, &handle, &sample);
6877
8d1b2d93 6878 perf_output_end(&handle);
c980d109
ACM
6879out:
6880 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6881}
6882
cdd6c482 6883static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6884{
413ee3b4 6885 char comm[TASK_COMM_LEN];
8d1b2d93 6886 unsigned int size;
8d1b2d93 6887
413ee3b4 6888 memset(comm, 0, sizeof(comm));
96b02d78 6889 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6890 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6891
6892 comm_event->comm = comm;
6893 comm_event->comm_size = size;
6894
cdd6c482 6895 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6896
aab5b71e 6897 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6898 comm_event,
6899 NULL);
8d1b2d93
PZ
6900}
6901
82b89778 6902void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6903{
9ee318a7
PZ
6904 struct perf_comm_event comm_event;
6905
cdd6c482 6906 if (!atomic_read(&nr_comm_events))
9ee318a7 6907 return;
a63eaf34 6908
9ee318a7 6909 comm_event = (struct perf_comm_event){
8d1b2d93 6910 .task = task,
573402db
PZ
6911 /* .comm */
6912 /* .comm_size */
cdd6c482 6913 .event_id = {
573402db 6914 .header = {
cdd6c482 6915 .type = PERF_RECORD_COMM,
82b89778 6916 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6917 /* .size */
6918 },
6919 /* .pid */
6920 /* .tid */
8d1b2d93
PZ
6921 },
6922 };
6923
cdd6c482 6924 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6925}
6926
e4222673
HB
6927/*
6928 * namespaces tracking
6929 */
6930
6931struct perf_namespaces_event {
6932 struct task_struct *task;
6933
6934 struct {
6935 struct perf_event_header header;
6936
6937 u32 pid;
6938 u32 tid;
6939 u64 nr_namespaces;
6940 struct perf_ns_link_info link_info[NR_NAMESPACES];
6941 } event_id;
6942};
6943
6944static int perf_event_namespaces_match(struct perf_event *event)
6945{
6946 return event->attr.namespaces;
6947}
6948
6949static void perf_event_namespaces_output(struct perf_event *event,
6950 void *data)
6951{
6952 struct perf_namespaces_event *namespaces_event = data;
6953 struct perf_output_handle handle;
6954 struct perf_sample_data sample;
34900ec5 6955 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
6956 int ret;
6957
6958 if (!perf_event_namespaces_match(event))
6959 return;
6960
6961 perf_event_header__init_id(&namespaces_event->event_id.header,
6962 &sample, event);
6963 ret = perf_output_begin(&handle, event,
6964 namespaces_event->event_id.header.size);
6965 if (ret)
34900ec5 6966 goto out;
e4222673
HB
6967
6968 namespaces_event->event_id.pid = perf_event_pid(event,
6969 namespaces_event->task);
6970 namespaces_event->event_id.tid = perf_event_tid(event,
6971 namespaces_event->task);
6972
6973 perf_output_put(&handle, namespaces_event->event_id);
6974
6975 perf_event__output_id_sample(event, &handle, &sample);
6976
6977 perf_output_end(&handle);
34900ec5
JO
6978out:
6979 namespaces_event->event_id.header.size = header_size;
e4222673
HB
6980}
6981
6982static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6983 struct task_struct *task,
6984 const struct proc_ns_operations *ns_ops)
6985{
6986 struct path ns_path;
6987 struct inode *ns_inode;
6988 void *error;
6989
6990 error = ns_get_path(&ns_path, task, ns_ops);
6991 if (!error) {
6992 ns_inode = ns_path.dentry->d_inode;
6993 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6994 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 6995 path_put(&ns_path);
e4222673
HB
6996 }
6997}
6998
6999void perf_event_namespaces(struct task_struct *task)
7000{
7001 struct perf_namespaces_event namespaces_event;
7002 struct perf_ns_link_info *ns_link_info;
7003
7004 if (!atomic_read(&nr_namespaces_events))
7005 return;
7006
7007 namespaces_event = (struct perf_namespaces_event){
7008 .task = task,
7009 .event_id = {
7010 .header = {
7011 .type = PERF_RECORD_NAMESPACES,
7012 .misc = 0,
7013 .size = sizeof(namespaces_event.event_id),
7014 },
7015 /* .pid */
7016 /* .tid */
7017 .nr_namespaces = NR_NAMESPACES,
7018 /* .link_info[NR_NAMESPACES] */
7019 },
7020 };
7021
7022 ns_link_info = namespaces_event.event_id.link_info;
7023
7024 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7025 task, &mntns_operations);
7026
7027#ifdef CONFIG_USER_NS
7028 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7029 task, &userns_operations);
7030#endif
7031#ifdef CONFIG_NET_NS
7032 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7033 task, &netns_operations);
7034#endif
7035#ifdef CONFIG_UTS_NS
7036 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7037 task, &utsns_operations);
7038#endif
7039#ifdef CONFIG_IPC_NS
7040 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7041 task, &ipcns_operations);
7042#endif
7043#ifdef CONFIG_PID_NS
7044 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7045 task, &pidns_operations);
7046#endif
7047#ifdef CONFIG_CGROUPS
7048 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7049 task, &cgroupns_operations);
7050#endif
7051
7052 perf_iterate_sb(perf_event_namespaces_output,
7053 &namespaces_event,
7054 NULL);
7055}
7056
0a4a9391
PZ
7057/*
7058 * mmap tracking
7059 */
7060
7061struct perf_mmap_event {
089dd79d
PZ
7062 struct vm_area_struct *vma;
7063
7064 const char *file_name;
7065 int file_size;
13d7a241
SE
7066 int maj, min;
7067 u64 ino;
7068 u64 ino_generation;
f972eb63 7069 u32 prot, flags;
0a4a9391
PZ
7070
7071 struct {
7072 struct perf_event_header header;
7073
7074 u32 pid;
7075 u32 tid;
7076 u64 start;
7077 u64 len;
7078 u64 pgoff;
cdd6c482 7079 } event_id;
0a4a9391
PZ
7080};
7081
67516844
JO
7082static int perf_event_mmap_match(struct perf_event *event,
7083 void *data)
7084{
7085 struct perf_mmap_event *mmap_event = data;
7086 struct vm_area_struct *vma = mmap_event->vma;
7087 int executable = vma->vm_flags & VM_EXEC;
7088
7089 return (!executable && event->attr.mmap_data) ||
13d7a241 7090 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
7091}
7092
cdd6c482 7093static void perf_event_mmap_output(struct perf_event *event,
52d857a8 7094 void *data)
0a4a9391 7095{
52d857a8 7096 struct perf_mmap_event *mmap_event = data;
0a4a9391 7097 struct perf_output_handle handle;
c980d109 7098 struct perf_sample_data sample;
cdd6c482 7099 int size = mmap_event->event_id.header.size;
c980d109 7100 int ret;
0a4a9391 7101
67516844
JO
7102 if (!perf_event_mmap_match(event, data))
7103 return;
7104
13d7a241
SE
7105 if (event->attr.mmap2) {
7106 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7107 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7108 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7109 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 7110 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
7111 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7112 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
7113 }
7114
c980d109
ACM
7115 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7116 ret = perf_output_begin(&handle, event,
a7ac67ea 7117 mmap_event->event_id.header.size);
0a4a9391 7118 if (ret)
c980d109 7119 goto out;
0a4a9391 7120
cdd6c482
IM
7121 mmap_event->event_id.pid = perf_event_pid(event, current);
7122 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 7123
cdd6c482 7124 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
7125
7126 if (event->attr.mmap2) {
7127 perf_output_put(&handle, mmap_event->maj);
7128 perf_output_put(&handle, mmap_event->min);
7129 perf_output_put(&handle, mmap_event->ino);
7130 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
7131 perf_output_put(&handle, mmap_event->prot);
7132 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
7133 }
7134
76369139 7135 __output_copy(&handle, mmap_event->file_name,
0a4a9391 7136 mmap_event->file_size);
c980d109
ACM
7137
7138 perf_event__output_id_sample(event, &handle, &sample);
7139
78d613eb 7140 perf_output_end(&handle);
c980d109
ACM
7141out:
7142 mmap_event->event_id.header.size = size;
0a4a9391
PZ
7143}
7144
cdd6c482 7145static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 7146{
089dd79d
PZ
7147 struct vm_area_struct *vma = mmap_event->vma;
7148 struct file *file = vma->vm_file;
13d7a241
SE
7149 int maj = 0, min = 0;
7150 u64 ino = 0, gen = 0;
f972eb63 7151 u32 prot = 0, flags = 0;
0a4a9391
PZ
7152 unsigned int size;
7153 char tmp[16];
7154 char *buf = NULL;
2c42cfbf 7155 char *name;
413ee3b4 7156
0b3589be
PZ
7157 if (vma->vm_flags & VM_READ)
7158 prot |= PROT_READ;
7159 if (vma->vm_flags & VM_WRITE)
7160 prot |= PROT_WRITE;
7161 if (vma->vm_flags & VM_EXEC)
7162 prot |= PROT_EXEC;
7163
7164 if (vma->vm_flags & VM_MAYSHARE)
7165 flags = MAP_SHARED;
7166 else
7167 flags = MAP_PRIVATE;
7168
7169 if (vma->vm_flags & VM_DENYWRITE)
7170 flags |= MAP_DENYWRITE;
7171 if (vma->vm_flags & VM_MAYEXEC)
7172 flags |= MAP_EXECUTABLE;
7173 if (vma->vm_flags & VM_LOCKED)
7174 flags |= MAP_LOCKED;
7175 if (vma->vm_flags & VM_HUGETLB)
7176 flags |= MAP_HUGETLB;
7177
0a4a9391 7178 if (file) {
13d7a241
SE
7179 struct inode *inode;
7180 dev_t dev;
3ea2f2b9 7181
2c42cfbf 7182 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 7183 if (!buf) {
c7e548b4
ON
7184 name = "//enomem";
7185 goto cpy_name;
0a4a9391 7186 }
413ee3b4 7187 /*
3ea2f2b9 7188 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
7189 * need to add enough zero bytes after the string to handle
7190 * the 64bit alignment we do later.
7191 */
9bf39ab2 7192 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 7193 if (IS_ERR(name)) {
c7e548b4
ON
7194 name = "//toolong";
7195 goto cpy_name;
0a4a9391 7196 }
13d7a241
SE
7197 inode = file_inode(vma->vm_file);
7198 dev = inode->i_sb->s_dev;
7199 ino = inode->i_ino;
7200 gen = inode->i_generation;
7201 maj = MAJOR(dev);
7202 min = MINOR(dev);
f972eb63 7203
c7e548b4 7204 goto got_name;
0a4a9391 7205 } else {
fbe26abe
JO
7206 if (vma->vm_ops && vma->vm_ops->name) {
7207 name = (char *) vma->vm_ops->name(vma);
7208 if (name)
7209 goto cpy_name;
7210 }
7211
2c42cfbf 7212 name = (char *)arch_vma_name(vma);
c7e548b4
ON
7213 if (name)
7214 goto cpy_name;
089dd79d 7215
32c5fb7e 7216 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 7217 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
7218 name = "[heap]";
7219 goto cpy_name;
32c5fb7e
ON
7220 }
7221 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 7222 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
7223 name = "[stack]";
7224 goto cpy_name;
089dd79d
PZ
7225 }
7226
c7e548b4
ON
7227 name = "//anon";
7228 goto cpy_name;
0a4a9391
PZ
7229 }
7230
c7e548b4
ON
7231cpy_name:
7232 strlcpy(tmp, name, sizeof(tmp));
7233 name = tmp;
0a4a9391 7234got_name:
2c42cfbf
PZ
7235 /*
7236 * Since our buffer works in 8 byte units we need to align our string
7237 * size to a multiple of 8. However, we must guarantee the tail end is
7238 * zero'd out to avoid leaking random bits to userspace.
7239 */
7240 size = strlen(name)+1;
7241 while (!IS_ALIGNED(size, sizeof(u64)))
7242 name[size++] = '\0';
0a4a9391
PZ
7243
7244 mmap_event->file_name = name;
7245 mmap_event->file_size = size;
13d7a241
SE
7246 mmap_event->maj = maj;
7247 mmap_event->min = min;
7248 mmap_event->ino = ino;
7249 mmap_event->ino_generation = gen;
f972eb63
PZ
7250 mmap_event->prot = prot;
7251 mmap_event->flags = flags;
0a4a9391 7252
2fe85427
SE
7253 if (!(vma->vm_flags & VM_EXEC))
7254 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7255
cdd6c482 7256 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7257
aab5b71e 7258 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7259 mmap_event,
7260 NULL);
665c2142 7261
0a4a9391
PZ
7262 kfree(buf);
7263}
7264
375637bc
AS
7265/*
7266 * Check whether inode and address range match filter criteria.
7267 */
7268static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7269 struct file *file, unsigned long offset,
7270 unsigned long size)
7271{
45063097 7272 if (filter->inode != file_inode(file))
375637bc
AS
7273 return false;
7274
7275 if (filter->offset > offset + size)
7276 return false;
7277
7278 if (filter->offset + filter->size < offset)
7279 return false;
7280
7281 return true;
7282}
7283
7284static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7285{
7286 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7287 struct vm_area_struct *vma = data;
7288 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7289 struct file *file = vma->vm_file;
7290 struct perf_addr_filter *filter;
7291 unsigned int restart = 0, count = 0;
7292
7293 if (!has_addr_filter(event))
7294 return;
7295
7296 if (!file)
7297 return;
7298
7299 raw_spin_lock_irqsave(&ifh->lock, flags);
7300 list_for_each_entry(filter, &ifh->list, entry) {
7301 if (perf_addr_filter_match(filter, file, off,
7302 vma->vm_end - vma->vm_start)) {
7303 event->addr_filters_offs[count] = vma->vm_start;
7304 restart++;
7305 }
7306
7307 count++;
7308 }
7309
7310 if (restart)
7311 event->addr_filters_gen++;
7312 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7313
7314 if (restart)
767ae086 7315 perf_event_stop(event, 1);
375637bc
AS
7316}
7317
7318/*
7319 * Adjust all task's events' filters to the new vma
7320 */
7321static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7322{
7323 struct perf_event_context *ctx;
7324 int ctxn;
7325
12b40a23
MP
7326 /*
7327 * Data tracing isn't supported yet and as such there is no need
7328 * to keep track of anything that isn't related to executable code:
7329 */
7330 if (!(vma->vm_flags & VM_EXEC))
7331 return;
7332
375637bc
AS
7333 rcu_read_lock();
7334 for_each_task_context_nr(ctxn) {
7335 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7336 if (!ctx)
7337 continue;
7338
aab5b71e 7339 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7340 }
7341 rcu_read_unlock();
7342}
7343
3af9e859 7344void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7345{
9ee318a7
PZ
7346 struct perf_mmap_event mmap_event;
7347
cdd6c482 7348 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7349 return;
7350
7351 mmap_event = (struct perf_mmap_event){
089dd79d 7352 .vma = vma,
573402db
PZ
7353 /* .file_name */
7354 /* .file_size */
cdd6c482 7355 .event_id = {
573402db 7356 .header = {
cdd6c482 7357 .type = PERF_RECORD_MMAP,
39447b38 7358 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7359 /* .size */
7360 },
7361 /* .pid */
7362 /* .tid */
089dd79d
PZ
7363 .start = vma->vm_start,
7364 .len = vma->vm_end - vma->vm_start,
3a0304e9 7365 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7366 },
13d7a241
SE
7367 /* .maj (attr_mmap2 only) */
7368 /* .min (attr_mmap2 only) */
7369 /* .ino (attr_mmap2 only) */
7370 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7371 /* .prot (attr_mmap2 only) */
7372 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7373 };
7374
375637bc 7375 perf_addr_filters_adjust(vma);
cdd6c482 7376 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7377}
7378
68db7e98
AS
7379void perf_event_aux_event(struct perf_event *event, unsigned long head,
7380 unsigned long size, u64 flags)
7381{
7382 struct perf_output_handle handle;
7383 struct perf_sample_data sample;
7384 struct perf_aux_event {
7385 struct perf_event_header header;
7386 u64 offset;
7387 u64 size;
7388 u64 flags;
7389 } rec = {
7390 .header = {
7391 .type = PERF_RECORD_AUX,
7392 .misc = 0,
7393 .size = sizeof(rec),
7394 },
7395 .offset = head,
7396 .size = size,
7397 .flags = flags,
7398 };
7399 int ret;
7400
7401 perf_event_header__init_id(&rec.header, &sample, event);
7402 ret = perf_output_begin(&handle, event, rec.header.size);
7403
7404 if (ret)
7405 return;
7406
7407 perf_output_put(&handle, rec);
7408 perf_event__output_id_sample(event, &handle, &sample);
7409
7410 perf_output_end(&handle);
7411}
7412
f38b0dbb
KL
7413/*
7414 * Lost/dropped samples logging
7415 */
7416void perf_log_lost_samples(struct perf_event *event, u64 lost)
7417{
7418 struct perf_output_handle handle;
7419 struct perf_sample_data sample;
7420 int ret;
7421
7422 struct {
7423 struct perf_event_header header;
7424 u64 lost;
7425 } lost_samples_event = {
7426 .header = {
7427 .type = PERF_RECORD_LOST_SAMPLES,
7428 .misc = 0,
7429 .size = sizeof(lost_samples_event),
7430 },
7431 .lost = lost,
7432 };
7433
7434 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7435
7436 ret = perf_output_begin(&handle, event,
7437 lost_samples_event.header.size);
7438 if (ret)
7439 return;
7440
7441 perf_output_put(&handle, lost_samples_event);
7442 perf_event__output_id_sample(event, &handle, &sample);
7443 perf_output_end(&handle);
7444}
7445
45ac1403
AH
7446/*
7447 * context_switch tracking
7448 */
7449
7450struct perf_switch_event {
7451 struct task_struct *task;
7452 struct task_struct *next_prev;
7453
7454 struct {
7455 struct perf_event_header header;
7456 u32 next_prev_pid;
7457 u32 next_prev_tid;
7458 } event_id;
7459};
7460
7461static int perf_event_switch_match(struct perf_event *event)
7462{
7463 return event->attr.context_switch;
7464}
7465
7466static void perf_event_switch_output(struct perf_event *event, void *data)
7467{
7468 struct perf_switch_event *se = data;
7469 struct perf_output_handle handle;
7470 struct perf_sample_data sample;
7471 int ret;
7472
7473 if (!perf_event_switch_match(event))
7474 return;
7475
7476 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7477 if (event->ctx->task) {
7478 se->event_id.header.type = PERF_RECORD_SWITCH;
7479 se->event_id.header.size = sizeof(se->event_id.header);
7480 } else {
7481 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7482 se->event_id.header.size = sizeof(se->event_id);
7483 se->event_id.next_prev_pid =
7484 perf_event_pid(event, se->next_prev);
7485 se->event_id.next_prev_tid =
7486 perf_event_tid(event, se->next_prev);
7487 }
7488
7489 perf_event_header__init_id(&se->event_id.header, &sample, event);
7490
7491 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7492 if (ret)
7493 return;
7494
7495 if (event->ctx->task)
7496 perf_output_put(&handle, se->event_id.header);
7497 else
7498 perf_output_put(&handle, se->event_id);
7499
7500 perf_event__output_id_sample(event, &handle, &sample);
7501
7502 perf_output_end(&handle);
7503}
7504
7505static void perf_event_switch(struct task_struct *task,
7506 struct task_struct *next_prev, bool sched_in)
7507{
7508 struct perf_switch_event switch_event;
7509
7510 /* N.B. caller checks nr_switch_events != 0 */
7511
7512 switch_event = (struct perf_switch_event){
7513 .task = task,
7514 .next_prev = next_prev,
7515 .event_id = {
7516 .header = {
7517 /* .type */
7518 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7519 /* .size */
7520 },
7521 /* .next_prev_pid */
7522 /* .next_prev_tid */
7523 },
7524 };
7525
aab5b71e 7526 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7527 &switch_event,
7528 NULL);
7529}
7530
a78ac325
PZ
7531/*
7532 * IRQ throttle logging
7533 */
7534
cdd6c482 7535static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7536{
7537 struct perf_output_handle handle;
c980d109 7538 struct perf_sample_data sample;
a78ac325
PZ
7539 int ret;
7540
7541 struct {
7542 struct perf_event_header header;
7543 u64 time;
cca3f454 7544 u64 id;
7f453c24 7545 u64 stream_id;
a78ac325
PZ
7546 } throttle_event = {
7547 .header = {
cdd6c482 7548 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7549 .misc = 0,
7550 .size = sizeof(throttle_event),
7551 },
34f43927 7552 .time = perf_event_clock(event),
cdd6c482
IM
7553 .id = primary_event_id(event),
7554 .stream_id = event->id,
a78ac325
PZ
7555 };
7556
966ee4d6 7557 if (enable)
cdd6c482 7558 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7559
c980d109
ACM
7560 perf_event_header__init_id(&throttle_event.header, &sample, event);
7561
7562 ret = perf_output_begin(&handle, event,
a7ac67ea 7563 throttle_event.header.size);
a78ac325
PZ
7564 if (ret)
7565 return;
7566
7567 perf_output_put(&handle, throttle_event);
c980d109 7568 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7569 perf_output_end(&handle);
7570}
7571
8d4e6c4c
AS
7572void perf_event_itrace_started(struct perf_event *event)
7573{
7574 event->attach_state |= PERF_ATTACH_ITRACE;
7575}
7576
ec0d7729
AS
7577static void perf_log_itrace_start(struct perf_event *event)
7578{
7579 struct perf_output_handle handle;
7580 struct perf_sample_data sample;
7581 struct perf_aux_event {
7582 struct perf_event_header header;
7583 u32 pid;
7584 u32 tid;
7585 } rec;
7586 int ret;
7587
7588 if (event->parent)
7589 event = event->parent;
7590
7591 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7592 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7593 return;
7594
ec0d7729
AS
7595 rec.header.type = PERF_RECORD_ITRACE_START;
7596 rec.header.misc = 0;
7597 rec.header.size = sizeof(rec);
7598 rec.pid = perf_event_pid(event, current);
7599 rec.tid = perf_event_tid(event, current);
7600
7601 perf_event_header__init_id(&rec.header, &sample, event);
7602 ret = perf_output_begin(&handle, event, rec.header.size);
7603
7604 if (ret)
7605 return;
7606
7607 perf_output_put(&handle, rec);
7608 perf_event__output_id_sample(event, &handle, &sample);
7609
7610 perf_output_end(&handle);
7611}
7612
475113d9
JO
7613static int
7614__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7615{
cdd6c482 7616 struct hw_perf_event *hwc = &event->hw;
79f14641 7617 int ret = 0;
475113d9 7618 u64 seq;
96398826 7619
e050e3f0
SE
7620 seq = __this_cpu_read(perf_throttled_seq);
7621 if (seq != hwc->interrupts_seq) {
7622 hwc->interrupts_seq = seq;
7623 hwc->interrupts = 1;
7624 } else {
7625 hwc->interrupts++;
7626 if (unlikely(throttle
7627 && hwc->interrupts >= max_samples_per_tick)) {
7628 __this_cpu_inc(perf_throttled_count);
555e0c1e 7629 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7630 hwc->interrupts = MAX_INTERRUPTS;
7631 perf_log_throttle(event, 0);
a78ac325
PZ
7632 ret = 1;
7633 }
e050e3f0 7634 }
60db5e09 7635
cdd6c482 7636 if (event->attr.freq) {
def0a9b2 7637 u64 now = perf_clock();
abd50713 7638 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7639
abd50713 7640 hwc->freq_time_stamp = now;
bd2b5b12 7641
abd50713 7642 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7643 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7644 }
7645
475113d9
JO
7646 return ret;
7647}
7648
7649int perf_event_account_interrupt(struct perf_event *event)
7650{
7651 return __perf_event_account_interrupt(event, 1);
7652}
7653
7654/*
7655 * Generic event overflow handling, sampling.
7656 */
7657
7658static int __perf_event_overflow(struct perf_event *event,
7659 int throttle, struct perf_sample_data *data,
7660 struct pt_regs *regs)
7661{
7662 int events = atomic_read(&event->event_limit);
7663 int ret = 0;
7664
7665 /*
7666 * Non-sampling counters might still use the PMI to fold short
7667 * hardware counters, ignore those.
7668 */
7669 if (unlikely(!is_sampling_event(event)))
7670 return 0;
7671
7672 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7673
2023b359
PZ
7674 /*
7675 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7676 * events
2023b359
PZ
7677 */
7678
cdd6c482
IM
7679 event->pending_kill = POLL_IN;
7680 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7681 ret = 1;
cdd6c482 7682 event->pending_kill = POLL_HUP;
5aab90ce
JO
7683
7684 perf_event_disable_inatomic(event);
79f14641
PZ
7685 }
7686
aa6a5f3c 7687 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7688
fed66e2c 7689 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7690 event->pending_wakeup = 1;
7691 irq_work_queue(&event->pending);
f506b3dc
PZ
7692 }
7693
79f14641 7694 return ret;
f6c7d5fe
PZ
7695}
7696
a8b0ca17 7697int perf_event_overflow(struct perf_event *event,
5622f295
MM
7698 struct perf_sample_data *data,
7699 struct pt_regs *regs)
850bc73f 7700{
a8b0ca17 7701 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7702}
7703
15dbf27c 7704/*
cdd6c482 7705 * Generic software event infrastructure
15dbf27c
PZ
7706 */
7707
b28ab83c
PZ
7708struct swevent_htable {
7709 struct swevent_hlist *swevent_hlist;
7710 struct mutex hlist_mutex;
7711 int hlist_refcount;
7712
7713 /* Recursion avoidance in each contexts */
7714 int recursion[PERF_NR_CONTEXTS];
7715};
7716
7717static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7718
7b4b6658 7719/*
cdd6c482
IM
7720 * We directly increment event->count and keep a second value in
7721 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7722 * is kept in the range [-sample_period, 0] so that we can use the
7723 * sign as trigger.
7724 */
7725
ab573844 7726u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7727{
cdd6c482 7728 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7729 u64 period = hwc->last_period;
7730 u64 nr, offset;
7731 s64 old, val;
7732
7733 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7734
7735again:
e7850595 7736 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7737 if (val < 0)
7738 return 0;
15dbf27c 7739
7b4b6658
PZ
7740 nr = div64_u64(period + val, period);
7741 offset = nr * period;
7742 val -= offset;
e7850595 7743 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7744 goto again;
15dbf27c 7745
7b4b6658 7746 return nr;
15dbf27c
PZ
7747}
7748
0cff784a 7749static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7750 struct perf_sample_data *data,
5622f295 7751 struct pt_regs *regs)
15dbf27c 7752{
cdd6c482 7753 struct hw_perf_event *hwc = &event->hw;
850bc73f 7754 int throttle = 0;
15dbf27c 7755
0cff784a
PZ
7756 if (!overflow)
7757 overflow = perf_swevent_set_period(event);
15dbf27c 7758
7b4b6658
PZ
7759 if (hwc->interrupts == MAX_INTERRUPTS)
7760 return;
15dbf27c 7761
7b4b6658 7762 for (; overflow; overflow--) {
a8b0ca17 7763 if (__perf_event_overflow(event, throttle,
5622f295 7764 data, regs)) {
7b4b6658
PZ
7765 /*
7766 * We inhibit the overflow from happening when
7767 * hwc->interrupts == MAX_INTERRUPTS.
7768 */
7769 break;
7770 }
cf450a73 7771 throttle = 1;
7b4b6658 7772 }
15dbf27c
PZ
7773}
7774
a4eaf7f1 7775static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7776 struct perf_sample_data *data,
5622f295 7777 struct pt_regs *regs)
7b4b6658 7778{
cdd6c482 7779 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7780
e7850595 7781 local64_add(nr, &event->count);
d6d020e9 7782
0cff784a
PZ
7783 if (!regs)
7784 return;
7785
6c7e550f 7786 if (!is_sampling_event(event))
7b4b6658 7787 return;
d6d020e9 7788
5d81e5cf
AV
7789 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7790 data->period = nr;
7791 return perf_swevent_overflow(event, 1, data, regs);
7792 } else
7793 data->period = event->hw.last_period;
7794
0cff784a 7795 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7796 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7797
e7850595 7798 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7799 return;
df1a132b 7800
a8b0ca17 7801 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7802}
7803
f5ffe02e
FW
7804static int perf_exclude_event(struct perf_event *event,
7805 struct pt_regs *regs)
7806{
a4eaf7f1 7807 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7808 return 1;
a4eaf7f1 7809
f5ffe02e
FW
7810 if (regs) {
7811 if (event->attr.exclude_user && user_mode(regs))
7812 return 1;
7813
7814 if (event->attr.exclude_kernel && !user_mode(regs))
7815 return 1;
7816 }
7817
7818 return 0;
7819}
7820
cdd6c482 7821static int perf_swevent_match(struct perf_event *event,
1c432d89 7822 enum perf_type_id type,
6fb2915d
LZ
7823 u32 event_id,
7824 struct perf_sample_data *data,
7825 struct pt_regs *regs)
15dbf27c 7826{
cdd6c482 7827 if (event->attr.type != type)
a21ca2ca 7828 return 0;
f5ffe02e 7829
cdd6c482 7830 if (event->attr.config != event_id)
15dbf27c
PZ
7831 return 0;
7832
f5ffe02e
FW
7833 if (perf_exclude_event(event, regs))
7834 return 0;
15dbf27c
PZ
7835
7836 return 1;
7837}
7838
76e1d904
FW
7839static inline u64 swevent_hash(u64 type, u32 event_id)
7840{
7841 u64 val = event_id | (type << 32);
7842
7843 return hash_64(val, SWEVENT_HLIST_BITS);
7844}
7845
49f135ed
FW
7846static inline struct hlist_head *
7847__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7848{
49f135ed
FW
7849 u64 hash = swevent_hash(type, event_id);
7850
7851 return &hlist->heads[hash];
7852}
76e1d904 7853
49f135ed
FW
7854/* For the read side: events when they trigger */
7855static inline struct hlist_head *
b28ab83c 7856find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7857{
7858 struct swevent_hlist *hlist;
76e1d904 7859
b28ab83c 7860 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7861 if (!hlist)
7862 return NULL;
7863
49f135ed
FW
7864 return __find_swevent_head(hlist, type, event_id);
7865}
7866
7867/* For the event head insertion and removal in the hlist */
7868static inline struct hlist_head *
b28ab83c 7869find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7870{
7871 struct swevent_hlist *hlist;
7872 u32 event_id = event->attr.config;
7873 u64 type = event->attr.type;
7874
7875 /*
7876 * Event scheduling is always serialized against hlist allocation
7877 * and release. Which makes the protected version suitable here.
7878 * The context lock guarantees that.
7879 */
b28ab83c 7880 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7881 lockdep_is_held(&event->ctx->lock));
7882 if (!hlist)
7883 return NULL;
7884
7885 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7886}
7887
7888static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7889 u64 nr,
76e1d904
FW
7890 struct perf_sample_data *data,
7891 struct pt_regs *regs)
15dbf27c 7892{
4a32fea9 7893 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7894 struct perf_event *event;
76e1d904 7895 struct hlist_head *head;
15dbf27c 7896
76e1d904 7897 rcu_read_lock();
b28ab83c 7898 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7899 if (!head)
7900 goto end;
7901
b67bfe0d 7902 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7903 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7904 perf_swevent_event(event, nr, data, regs);
15dbf27c 7905 }
76e1d904
FW
7906end:
7907 rcu_read_unlock();
15dbf27c
PZ
7908}
7909
86038c5e
PZI
7910DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7911
4ed7c92d 7912int perf_swevent_get_recursion_context(void)
96f6d444 7913{
4a32fea9 7914 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7915
b28ab83c 7916 return get_recursion_context(swhash->recursion);
96f6d444 7917}
645e8cc0 7918EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7919
98b5c2c6 7920void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7921{
4a32fea9 7922 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7923
b28ab83c 7924 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7925}
15dbf27c 7926
86038c5e 7927void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7928{
a4234bfc 7929 struct perf_sample_data data;
4ed7c92d 7930
86038c5e 7931 if (WARN_ON_ONCE(!regs))
4ed7c92d 7932 return;
a4234bfc 7933
fd0d000b 7934 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7935 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7936}
7937
7938void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7939{
7940 int rctx;
7941
7942 preempt_disable_notrace();
7943 rctx = perf_swevent_get_recursion_context();
7944 if (unlikely(rctx < 0))
7945 goto fail;
7946
7947 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7948
7949 perf_swevent_put_recursion_context(rctx);
86038c5e 7950fail:
1c024eca 7951 preempt_enable_notrace();
b8e83514
PZ
7952}
7953
cdd6c482 7954static void perf_swevent_read(struct perf_event *event)
15dbf27c 7955{
15dbf27c
PZ
7956}
7957
a4eaf7f1 7958static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7959{
4a32fea9 7960 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7961 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7962 struct hlist_head *head;
7963
6c7e550f 7964 if (is_sampling_event(event)) {
7b4b6658 7965 hwc->last_period = hwc->sample_period;
cdd6c482 7966 perf_swevent_set_period(event);
7b4b6658 7967 }
76e1d904 7968
a4eaf7f1
PZ
7969 hwc->state = !(flags & PERF_EF_START);
7970
b28ab83c 7971 head = find_swevent_head(swhash, event);
12ca6ad2 7972 if (WARN_ON_ONCE(!head))
76e1d904
FW
7973 return -EINVAL;
7974
7975 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7976 perf_event_update_userpage(event);
76e1d904 7977
15dbf27c
PZ
7978 return 0;
7979}
7980
a4eaf7f1 7981static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7982{
76e1d904 7983 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7984}
7985
a4eaf7f1 7986static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7987{
a4eaf7f1 7988 event->hw.state = 0;
d6d020e9 7989}
aa9c4c0f 7990
a4eaf7f1 7991static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7992{
a4eaf7f1 7993 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7994}
7995
49f135ed
FW
7996/* Deref the hlist from the update side */
7997static inline struct swevent_hlist *
b28ab83c 7998swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7999{
b28ab83c
PZ
8000 return rcu_dereference_protected(swhash->swevent_hlist,
8001 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
8002}
8003
b28ab83c 8004static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 8005{
b28ab83c 8006 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 8007
49f135ed 8008 if (!hlist)
76e1d904
FW
8009 return;
8010
70691d4a 8011 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 8012 kfree_rcu(hlist, rcu_head);
76e1d904
FW
8013}
8014
3b364d7b 8015static void swevent_hlist_put_cpu(int cpu)
76e1d904 8016{
b28ab83c 8017 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 8018
b28ab83c 8019 mutex_lock(&swhash->hlist_mutex);
76e1d904 8020
b28ab83c
PZ
8021 if (!--swhash->hlist_refcount)
8022 swevent_hlist_release(swhash);
76e1d904 8023
b28ab83c 8024 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8025}
8026
3b364d7b 8027static void swevent_hlist_put(void)
76e1d904
FW
8028{
8029 int cpu;
8030
76e1d904 8031 for_each_possible_cpu(cpu)
3b364d7b 8032 swevent_hlist_put_cpu(cpu);
76e1d904
FW
8033}
8034
3b364d7b 8035static int swevent_hlist_get_cpu(int cpu)
76e1d904 8036{
b28ab83c 8037 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
8038 int err = 0;
8039
b28ab83c 8040 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
8041 if (!swevent_hlist_deref(swhash) &&
8042 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
8043 struct swevent_hlist *hlist;
8044
8045 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8046 if (!hlist) {
8047 err = -ENOMEM;
8048 goto exit;
8049 }
b28ab83c 8050 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8051 }
b28ab83c 8052 swhash->hlist_refcount++;
9ed6060d 8053exit:
b28ab83c 8054 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8055
8056 return err;
8057}
8058
3b364d7b 8059static int swevent_hlist_get(void)
76e1d904 8060{
3b364d7b 8061 int err, cpu, failed_cpu;
76e1d904 8062
a63fbed7 8063 mutex_lock(&pmus_lock);
76e1d904 8064 for_each_possible_cpu(cpu) {
3b364d7b 8065 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
8066 if (err) {
8067 failed_cpu = cpu;
8068 goto fail;
8069 }
8070 }
a63fbed7 8071 mutex_unlock(&pmus_lock);
76e1d904 8072 return 0;
9ed6060d 8073fail:
76e1d904
FW
8074 for_each_possible_cpu(cpu) {
8075 if (cpu == failed_cpu)
8076 break;
3b364d7b 8077 swevent_hlist_put_cpu(cpu);
76e1d904 8078 }
a63fbed7 8079 mutex_unlock(&pmus_lock);
76e1d904
FW
8080 return err;
8081}
8082
c5905afb 8083struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 8084
b0a873eb
PZ
8085static void sw_perf_event_destroy(struct perf_event *event)
8086{
8087 u64 event_id = event->attr.config;
95476b64 8088
b0a873eb
PZ
8089 WARN_ON(event->parent);
8090
c5905afb 8091 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 8092 swevent_hlist_put();
b0a873eb
PZ
8093}
8094
8095static int perf_swevent_init(struct perf_event *event)
8096{
8176cced 8097 u64 event_id = event->attr.config;
b0a873eb
PZ
8098
8099 if (event->attr.type != PERF_TYPE_SOFTWARE)
8100 return -ENOENT;
8101
2481c5fa
SE
8102 /*
8103 * no branch sampling for software events
8104 */
8105 if (has_branch_stack(event))
8106 return -EOPNOTSUPP;
8107
b0a873eb
PZ
8108 switch (event_id) {
8109 case PERF_COUNT_SW_CPU_CLOCK:
8110 case PERF_COUNT_SW_TASK_CLOCK:
8111 return -ENOENT;
8112
8113 default:
8114 break;
8115 }
8116
ce677831 8117 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
8118 return -ENOENT;
8119
8120 if (!event->parent) {
8121 int err;
8122
3b364d7b 8123 err = swevent_hlist_get();
b0a873eb
PZ
8124 if (err)
8125 return err;
8126
c5905afb 8127 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
8128 event->destroy = sw_perf_event_destroy;
8129 }
8130
8131 return 0;
8132}
8133
8134static struct pmu perf_swevent = {
89a1e187 8135 .task_ctx_nr = perf_sw_context,
95476b64 8136
34f43927
PZ
8137 .capabilities = PERF_PMU_CAP_NO_NMI,
8138
b0a873eb 8139 .event_init = perf_swevent_init,
a4eaf7f1
PZ
8140 .add = perf_swevent_add,
8141 .del = perf_swevent_del,
8142 .start = perf_swevent_start,
8143 .stop = perf_swevent_stop,
1c024eca 8144 .read = perf_swevent_read,
1c024eca
PZ
8145};
8146
b0a873eb
PZ
8147#ifdef CONFIG_EVENT_TRACING
8148
1c024eca
PZ
8149static int perf_tp_filter_match(struct perf_event *event,
8150 struct perf_sample_data *data)
8151{
7e3f977e 8152 void *record = data->raw->frag.data;
1c024eca 8153
b71b437e
PZ
8154 /* only top level events have filters set */
8155 if (event->parent)
8156 event = event->parent;
8157
1c024eca
PZ
8158 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8159 return 1;
8160 return 0;
8161}
8162
8163static int perf_tp_event_match(struct perf_event *event,
8164 struct perf_sample_data *data,
8165 struct pt_regs *regs)
8166{
a0f7d0f7
FW
8167 if (event->hw.state & PERF_HES_STOPPED)
8168 return 0;
580d607c
PZ
8169 /*
8170 * All tracepoints are from kernel-space.
8171 */
8172 if (event->attr.exclude_kernel)
1c024eca
PZ
8173 return 0;
8174
8175 if (!perf_tp_filter_match(event, data))
8176 return 0;
8177
8178 return 1;
8179}
8180
85b67bcb
AS
8181void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8182 struct trace_event_call *call, u64 count,
8183 struct pt_regs *regs, struct hlist_head *head,
8184 struct task_struct *task)
8185{
e87c6bc3 8186 if (bpf_prog_array_valid(call)) {
85b67bcb 8187 *(struct pt_regs **)raw_data = regs;
e87c6bc3 8188 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
8189 perf_swevent_put_recursion_context(rctx);
8190 return;
8191 }
8192 }
8193 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 8194 rctx, task);
85b67bcb
AS
8195}
8196EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8197
1e1dcd93 8198void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 8199 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 8200 struct task_struct *task)
95476b64
FW
8201{
8202 struct perf_sample_data data;
8fd0fbbe 8203 struct perf_event *event;
1c024eca 8204
95476b64 8205 struct perf_raw_record raw = {
7e3f977e
DB
8206 .frag = {
8207 .size = entry_size,
8208 .data = record,
8209 },
95476b64
FW
8210 };
8211
1e1dcd93 8212 perf_sample_data_init(&data, 0, 0);
95476b64
FW
8213 data.raw = &raw;
8214
1e1dcd93
AS
8215 perf_trace_buf_update(record, event_type);
8216
8fd0fbbe 8217 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 8218 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 8219 perf_swevent_event(event, count, &data, regs);
4f41c013 8220 }
ecc55f84 8221
e6dab5ff
AV
8222 /*
8223 * If we got specified a target task, also iterate its context and
8224 * deliver this event there too.
8225 */
8226 if (task && task != current) {
8227 struct perf_event_context *ctx;
8228 struct trace_entry *entry = record;
8229
8230 rcu_read_lock();
8231 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8232 if (!ctx)
8233 goto unlock;
8234
8235 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8236 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8237 continue;
8238 if (event->attr.config != entry->type)
8239 continue;
8240 if (perf_tp_event_match(event, &data, regs))
8241 perf_swevent_event(event, count, &data, regs);
8242 }
8243unlock:
8244 rcu_read_unlock();
8245 }
8246
ecc55f84 8247 perf_swevent_put_recursion_context(rctx);
95476b64
FW
8248}
8249EXPORT_SYMBOL_GPL(perf_tp_event);
8250
cdd6c482 8251static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 8252{
1c024eca 8253 perf_trace_destroy(event);
e077df4f
PZ
8254}
8255
b0a873eb 8256static int perf_tp_event_init(struct perf_event *event)
e077df4f 8257{
76e1d904
FW
8258 int err;
8259
b0a873eb
PZ
8260 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8261 return -ENOENT;
8262
2481c5fa
SE
8263 /*
8264 * no branch sampling for tracepoint events
8265 */
8266 if (has_branch_stack(event))
8267 return -EOPNOTSUPP;
8268
1c024eca
PZ
8269 err = perf_trace_init(event);
8270 if (err)
b0a873eb 8271 return err;
e077df4f 8272
cdd6c482 8273 event->destroy = tp_perf_event_destroy;
e077df4f 8274
b0a873eb
PZ
8275 return 0;
8276}
8277
8278static struct pmu perf_tracepoint = {
89a1e187
PZ
8279 .task_ctx_nr = perf_sw_context,
8280
b0a873eb 8281 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
8282 .add = perf_trace_add,
8283 .del = perf_trace_del,
8284 .start = perf_swevent_start,
8285 .stop = perf_swevent_stop,
b0a873eb 8286 .read = perf_swevent_read,
b0a873eb
PZ
8287};
8288
33ea4b24 8289#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
8290/*
8291 * Flags in config, used by dynamic PMU kprobe and uprobe
8292 * The flags should match following PMU_FORMAT_ATTR().
8293 *
8294 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8295 * if not set, create kprobe/uprobe
8296 */
8297enum perf_probe_config {
8298 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
8299};
8300
8301PMU_FORMAT_ATTR(retprobe, "config:0");
8302
8303static struct attribute *probe_attrs[] = {
8304 &format_attr_retprobe.attr,
8305 NULL,
8306};
8307
8308static struct attribute_group probe_format_group = {
8309 .name = "format",
8310 .attrs = probe_attrs,
8311};
8312
8313static const struct attribute_group *probe_attr_groups[] = {
8314 &probe_format_group,
8315 NULL,
8316};
33ea4b24 8317#endif
e12f03d7 8318
33ea4b24 8319#ifdef CONFIG_KPROBE_EVENTS
e12f03d7
SL
8320static int perf_kprobe_event_init(struct perf_event *event);
8321static struct pmu perf_kprobe = {
8322 .task_ctx_nr = perf_sw_context,
8323 .event_init = perf_kprobe_event_init,
8324 .add = perf_trace_add,
8325 .del = perf_trace_del,
8326 .start = perf_swevent_start,
8327 .stop = perf_swevent_stop,
8328 .read = perf_swevent_read,
8329 .attr_groups = probe_attr_groups,
8330};
8331
8332static int perf_kprobe_event_init(struct perf_event *event)
8333{
8334 int err;
8335 bool is_retprobe;
8336
8337 if (event->attr.type != perf_kprobe.type)
8338 return -ENOENT;
8339 /*
8340 * no branch sampling for probe events
8341 */
8342 if (has_branch_stack(event))
8343 return -EOPNOTSUPP;
8344
8345 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8346 err = perf_kprobe_init(event, is_retprobe);
8347 if (err)
8348 return err;
8349
8350 event->destroy = perf_kprobe_destroy;
8351
8352 return 0;
8353}
8354#endif /* CONFIG_KPROBE_EVENTS */
8355
33ea4b24
SL
8356#ifdef CONFIG_UPROBE_EVENTS
8357static int perf_uprobe_event_init(struct perf_event *event);
8358static struct pmu perf_uprobe = {
8359 .task_ctx_nr = perf_sw_context,
8360 .event_init = perf_uprobe_event_init,
8361 .add = perf_trace_add,
8362 .del = perf_trace_del,
8363 .start = perf_swevent_start,
8364 .stop = perf_swevent_stop,
8365 .read = perf_swevent_read,
8366 .attr_groups = probe_attr_groups,
8367};
8368
8369static int perf_uprobe_event_init(struct perf_event *event)
8370{
8371 int err;
8372 bool is_retprobe;
8373
8374 if (event->attr.type != perf_uprobe.type)
8375 return -ENOENT;
8376 /*
8377 * no branch sampling for probe events
8378 */
8379 if (has_branch_stack(event))
8380 return -EOPNOTSUPP;
8381
8382 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8383 err = perf_uprobe_init(event, is_retprobe);
8384 if (err)
8385 return err;
8386
8387 event->destroy = perf_uprobe_destroy;
8388
8389 return 0;
8390}
8391#endif /* CONFIG_UPROBE_EVENTS */
8392
b0a873eb
PZ
8393static inline void perf_tp_register(void)
8394{
2e80a82a 8395 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
8396#ifdef CONFIG_KPROBE_EVENTS
8397 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8398#endif
33ea4b24
SL
8399#ifdef CONFIG_UPROBE_EVENTS
8400 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8401#endif
e077df4f 8402}
6fb2915d 8403
6fb2915d
LZ
8404static void perf_event_free_filter(struct perf_event *event)
8405{
8406 ftrace_profile_free_filter(event);
8407}
8408
aa6a5f3c
AS
8409#ifdef CONFIG_BPF_SYSCALL
8410static void bpf_overflow_handler(struct perf_event *event,
8411 struct perf_sample_data *data,
8412 struct pt_regs *regs)
8413{
8414 struct bpf_perf_event_data_kern ctx = {
8415 .data = data,
7d9285e8 8416 .event = event,
aa6a5f3c
AS
8417 };
8418 int ret = 0;
8419
c895f6f7 8420 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
8421 preempt_disable();
8422 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8423 goto out;
8424 rcu_read_lock();
88575199 8425 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8426 rcu_read_unlock();
8427out:
8428 __this_cpu_dec(bpf_prog_active);
8429 preempt_enable();
8430 if (!ret)
8431 return;
8432
8433 event->orig_overflow_handler(event, data, regs);
8434}
8435
8436static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8437{
8438 struct bpf_prog *prog;
8439
8440 if (event->overflow_handler_context)
8441 /* hw breakpoint or kernel counter */
8442 return -EINVAL;
8443
8444 if (event->prog)
8445 return -EEXIST;
8446
8447 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8448 if (IS_ERR(prog))
8449 return PTR_ERR(prog);
8450
8451 event->prog = prog;
8452 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8453 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8454 return 0;
8455}
8456
8457static void perf_event_free_bpf_handler(struct perf_event *event)
8458{
8459 struct bpf_prog *prog = event->prog;
8460
8461 if (!prog)
8462 return;
8463
8464 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8465 event->prog = NULL;
8466 bpf_prog_put(prog);
8467}
8468#else
8469static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8470{
8471 return -EOPNOTSUPP;
8472}
8473static void perf_event_free_bpf_handler(struct perf_event *event)
8474{
8475}
8476#endif
8477
e12f03d7
SL
8478/*
8479 * returns true if the event is a tracepoint, or a kprobe/upprobe created
8480 * with perf_event_open()
8481 */
8482static inline bool perf_event_is_tracing(struct perf_event *event)
8483{
8484 if (event->pmu == &perf_tracepoint)
8485 return true;
8486#ifdef CONFIG_KPROBE_EVENTS
8487 if (event->pmu == &perf_kprobe)
8488 return true;
33ea4b24
SL
8489#endif
8490#ifdef CONFIG_UPROBE_EVENTS
8491 if (event->pmu == &perf_uprobe)
8492 return true;
e12f03d7
SL
8493#endif
8494 return false;
8495}
8496
2541517c
AS
8497static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8498{
cf5f5cea 8499 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 8500 struct bpf_prog *prog;
e87c6bc3 8501 int ret;
2541517c 8502
e12f03d7 8503 if (!perf_event_is_tracing(event))
f91840a3 8504 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 8505
98b5c2c6
AS
8506 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8507 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8508 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8509 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8510 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8511 return -EINVAL;
8512
8513 prog = bpf_prog_get(prog_fd);
8514 if (IS_ERR(prog))
8515 return PTR_ERR(prog);
8516
98b5c2c6 8517 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8518 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8519 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8520 /* valid fd, but invalid bpf program type */
8521 bpf_prog_put(prog);
8522 return -EINVAL;
8523 }
8524
9802d865
JB
8525 /* Kprobe override only works for kprobes, not uprobes. */
8526 if (prog->kprobe_override &&
8527 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8528 bpf_prog_put(prog);
8529 return -EINVAL;
8530 }
8531
cf5f5cea 8532 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8533 int off = trace_event_get_offsets(event->tp_event);
8534
8535 if (prog->aux->max_ctx_offset > off) {
8536 bpf_prog_put(prog);
8537 return -EACCES;
8538 }
8539 }
2541517c 8540
e87c6bc3
YS
8541 ret = perf_event_attach_bpf_prog(event, prog);
8542 if (ret)
8543 bpf_prog_put(prog);
8544 return ret;
2541517c
AS
8545}
8546
8547static void perf_event_free_bpf_prog(struct perf_event *event)
8548{
e12f03d7 8549 if (!perf_event_is_tracing(event)) {
0b4c6841 8550 perf_event_free_bpf_handler(event);
2541517c 8551 return;
2541517c 8552 }
e87c6bc3 8553 perf_event_detach_bpf_prog(event);
2541517c
AS
8554}
8555
e077df4f 8556#else
6fb2915d 8557
b0a873eb 8558static inline void perf_tp_register(void)
e077df4f 8559{
e077df4f 8560}
6fb2915d 8561
6fb2915d
LZ
8562static void perf_event_free_filter(struct perf_event *event)
8563{
8564}
8565
2541517c
AS
8566static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8567{
8568 return -ENOENT;
8569}
8570
8571static void perf_event_free_bpf_prog(struct perf_event *event)
8572{
8573}
07b139c8 8574#endif /* CONFIG_EVENT_TRACING */
e077df4f 8575
24f1e32c 8576#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8577void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8578{
f5ffe02e
FW
8579 struct perf_sample_data sample;
8580 struct pt_regs *regs = data;
8581
fd0d000b 8582 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8583
a4eaf7f1 8584 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8585 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8586}
8587#endif
8588
375637bc
AS
8589/*
8590 * Allocate a new address filter
8591 */
8592static struct perf_addr_filter *
8593perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8594{
8595 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8596 struct perf_addr_filter *filter;
8597
8598 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8599 if (!filter)
8600 return NULL;
8601
8602 INIT_LIST_HEAD(&filter->entry);
8603 list_add_tail(&filter->entry, filters);
8604
8605 return filter;
8606}
8607
8608static void free_filters_list(struct list_head *filters)
8609{
8610 struct perf_addr_filter *filter, *iter;
8611
8612 list_for_each_entry_safe(filter, iter, filters, entry) {
8613 if (filter->inode)
8614 iput(filter->inode);
8615 list_del(&filter->entry);
8616 kfree(filter);
8617 }
8618}
8619
8620/*
8621 * Free existing address filters and optionally install new ones
8622 */
8623static void perf_addr_filters_splice(struct perf_event *event,
8624 struct list_head *head)
8625{
8626 unsigned long flags;
8627 LIST_HEAD(list);
8628
8629 if (!has_addr_filter(event))
8630 return;
8631
8632 /* don't bother with children, they don't have their own filters */
8633 if (event->parent)
8634 return;
8635
8636 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8637
8638 list_splice_init(&event->addr_filters.list, &list);
8639 if (head)
8640 list_splice(head, &event->addr_filters.list);
8641
8642 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8643
8644 free_filters_list(&list);
8645}
8646
8647/*
8648 * Scan through mm's vmas and see if one of them matches the
8649 * @filter; if so, adjust filter's address range.
8650 * Called with mm::mmap_sem down for reading.
8651 */
8652static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8653 struct mm_struct *mm)
8654{
8655 struct vm_area_struct *vma;
8656
8657 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8658 struct file *file = vma->vm_file;
8659 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8660 unsigned long vma_size = vma->vm_end - vma->vm_start;
8661
8662 if (!file)
8663 continue;
8664
8665 if (!perf_addr_filter_match(filter, file, off, vma_size))
8666 continue;
8667
8668 return vma->vm_start;
8669 }
8670
8671 return 0;
8672}
8673
8674/*
8675 * Update event's address range filters based on the
8676 * task's existing mappings, if any.
8677 */
8678static void perf_event_addr_filters_apply(struct perf_event *event)
8679{
8680 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8681 struct task_struct *task = READ_ONCE(event->ctx->task);
8682 struct perf_addr_filter *filter;
8683 struct mm_struct *mm = NULL;
8684 unsigned int count = 0;
8685 unsigned long flags;
8686
8687 /*
8688 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8689 * will stop on the parent's child_mutex that our caller is also holding
8690 */
8691 if (task == TASK_TOMBSTONE)
8692 return;
8693
6ce77bfd
AS
8694 if (!ifh->nr_file_filters)
8695 return;
8696
375637bc
AS
8697 mm = get_task_mm(event->ctx->task);
8698 if (!mm)
8699 goto restart;
8700
8701 down_read(&mm->mmap_sem);
8702
8703 raw_spin_lock_irqsave(&ifh->lock, flags);
8704 list_for_each_entry(filter, &ifh->list, entry) {
8705 event->addr_filters_offs[count] = 0;
8706
99f5bc9b
MP
8707 /*
8708 * Adjust base offset if the filter is associated to a binary
8709 * that needs to be mapped:
8710 */
8711 if (filter->inode)
375637bc
AS
8712 event->addr_filters_offs[count] =
8713 perf_addr_filter_apply(filter, mm);
8714
8715 count++;
8716 }
8717
8718 event->addr_filters_gen++;
8719 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8720
8721 up_read(&mm->mmap_sem);
8722
8723 mmput(mm);
8724
8725restart:
767ae086 8726 perf_event_stop(event, 1);
375637bc
AS
8727}
8728
8729/*
8730 * Address range filtering: limiting the data to certain
8731 * instruction address ranges. Filters are ioctl()ed to us from
8732 * userspace as ascii strings.
8733 *
8734 * Filter string format:
8735 *
8736 * ACTION RANGE_SPEC
8737 * where ACTION is one of the
8738 * * "filter": limit the trace to this region
8739 * * "start": start tracing from this address
8740 * * "stop": stop tracing at this address/region;
8741 * RANGE_SPEC is
8742 * * for kernel addresses: <start address>[/<size>]
8743 * * for object files: <start address>[/<size>]@</path/to/object/file>
8744 *
8745 * if <size> is not specified, the range is treated as a single address.
8746 */
8747enum {
e96271f3 8748 IF_ACT_NONE = -1,
375637bc
AS
8749 IF_ACT_FILTER,
8750 IF_ACT_START,
8751 IF_ACT_STOP,
8752 IF_SRC_FILE,
8753 IF_SRC_KERNEL,
8754 IF_SRC_FILEADDR,
8755 IF_SRC_KERNELADDR,
8756};
8757
8758enum {
8759 IF_STATE_ACTION = 0,
8760 IF_STATE_SOURCE,
8761 IF_STATE_END,
8762};
8763
8764static const match_table_t if_tokens = {
8765 { IF_ACT_FILTER, "filter" },
8766 { IF_ACT_START, "start" },
8767 { IF_ACT_STOP, "stop" },
8768 { IF_SRC_FILE, "%u/%u@%s" },
8769 { IF_SRC_KERNEL, "%u/%u" },
8770 { IF_SRC_FILEADDR, "%u@%s" },
8771 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8772 { IF_ACT_NONE, NULL },
375637bc
AS
8773};
8774
8775/*
8776 * Address filter string parser
8777 */
8778static int
8779perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8780 struct list_head *filters)
8781{
8782 struct perf_addr_filter *filter = NULL;
8783 char *start, *orig, *filename = NULL;
8784 struct path path;
8785 substring_t args[MAX_OPT_ARGS];
8786 int state = IF_STATE_ACTION, token;
8787 unsigned int kernel = 0;
8788 int ret = -EINVAL;
8789
8790 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8791 if (!fstr)
8792 return -ENOMEM;
8793
8794 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8795 ret = -EINVAL;
8796
8797 if (!*start)
8798 continue;
8799
8800 /* filter definition begins */
8801 if (state == IF_STATE_ACTION) {
8802 filter = perf_addr_filter_new(event, filters);
8803 if (!filter)
8804 goto fail;
8805 }
8806
8807 token = match_token(start, if_tokens, args);
8808 switch (token) {
8809 case IF_ACT_FILTER:
8810 case IF_ACT_START:
8811 filter->filter = 1;
8812
8813 case IF_ACT_STOP:
8814 if (state != IF_STATE_ACTION)
8815 goto fail;
8816
8817 state = IF_STATE_SOURCE;
8818 break;
8819
8820 case IF_SRC_KERNELADDR:
8821 case IF_SRC_KERNEL:
8822 kernel = 1;
8823
8824 case IF_SRC_FILEADDR:
8825 case IF_SRC_FILE:
8826 if (state != IF_STATE_SOURCE)
8827 goto fail;
8828
8829 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8830 filter->range = 1;
8831
8832 *args[0].to = 0;
8833 ret = kstrtoul(args[0].from, 0, &filter->offset);
8834 if (ret)
8835 goto fail;
8836
8837 if (filter->range) {
8838 *args[1].to = 0;
8839 ret = kstrtoul(args[1].from, 0, &filter->size);
8840 if (ret)
8841 goto fail;
8842 }
8843
4059ffd0
MP
8844 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8845 int fpos = filter->range ? 2 : 1;
8846
8847 filename = match_strdup(&args[fpos]);
375637bc
AS
8848 if (!filename) {
8849 ret = -ENOMEM;
8850 goto fail;
8851 }
8852 }
8853
8854 state = IF_STATE_END;
8855 break;
8856
8857 default:
8858 goto fail;
8859 }
8860
8861 /*
8862 * Filter definition is fully parsed, validate and install it.
8863 * Make sure that it doesn't contradict itself or the event's
8864 * attribute.
8865 */
8866 if (state == IF_STATE_END) {
9ccbfbb1 8867 ret = -EINVAL;
375637bc
AS
8868 if (kernel && event->attr.exclude_kernel)
8869 goto fail;
8870
8871 if (!kernel) {
8872 if (!filename)
8873 goto fail;
8874
6ce77bfd
AS
8875 /*
8876 * For now, we only support file-based filters
8877 * in per-task events; doing so for CPU-wide
8878 * events requires additional context switching
8879 * trickery, since same object code will be
8880 * mapped at different virtual addresses in
8881 * different processes.
8882 */
8883 ret = -EOPNOTSUPP;
8884 if (!event->ctx->task)
8885 goto fail_free_name;
8886
375637bc
AS
8887 /* look up the path and grab its inode */
8888 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8889 if (ret)
8890 goto fail_free_name;
8891
8892 filter->inode = igrab(d_inode(path.dentry));
8893 path_put(&path);
8894 kfree(filename);
8895 filename = NULL;
8896
8897 ret = -EINVAL;
8898 if (!filter->inode ||
8899 !S_ISREG(filter->inode->i_mode))
8900 /* free_filters_list() will iput() */
8901 goto fail;
6ce77bfd
AS
8902
8903 event->addr_filters.nr_file_filters++;
375637bc
AS
8904 }
8905
8906 /* ready to consume more filters */
8907 state = IF_STATE_ACTION;
8908 filter = NULL;
8909 }
8910 }
8911
8912 if (state != IF_STATE_ACTION)
8913 goto fail;
8914
8915 kfree(orig);
8916
8917 return 0;
8918
8919fail_free_name:
8920 kfree(filename);
8921fail:
8922 free_filters_list(filters);
8923 kfree(orig);
8924
8925 return ret;
8926}
8927
8928static int
8929perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8930{
8931 LIST_HEAD(filters);
8932 int ret;
8933
8934 /*
8935 * Since this is called in perf_ioctl() path, we're already holding
8936 * ctx::mutex.
8937 */
8938 lockdep_assert_held(&event->ctx->mutex);
8939
8940 if (WARN_ON_ONCE(event->parent))
8941 return -EINVAL;
8942
375637bc
AS
8943 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8944 if (ret)
6ce77bfd 8945 goto fail_clear_files;
375637bc
AS
8946
8947 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8948 if (ret)
8949 goto fail_free_filters;
375637bc
AS
8950
8951 /* remove existing filters, if any */
8952 perf_addr_filters_splice(event, &filters);
8953
8954 /* install new filters */
8955 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8956
6ce77bfd
AS
8957 return ret;
8958
8959fail_free_filters:
8960 free_filters_list(&filters);
8961
8962fail_clear_files:
8963 event->addr_filters.nr_file_filters = 0;
8964
375637bc
AS
8965 return ret;
8966}
8967
c796bbbe
AS
8968static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8969{
c796bbbe 8970 int ret = -EINVAL;
e12f03d7 8971 char *filter_str;
c796bbbe
AS
8972
8973 filter_str = strndup_user(arg, PAGE_SIZE);
8974 if (IS_ERR(filter_str))
8975 return PTR_ERR(filter_str);
8976
e12f03d7
SL
8977#ifdef CONFIG_EVENT_TRACING
8978 if (perf_event_is_tracing(event)) {
8979 struct perf_event_context *ctx = event->ctx;
8980
8981 /*
8982 * Beware, here be dragons!!
8983 *
8984 * the tracepoint muck will deadlock against ctx->mutex, but
8985 * the tracepoint stuff does not actually need it. So
8986 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
8987 * already have a reference on ctx.
8988 *
8989 * This can result in event getting moved to a different ctx,
8990 * but that does not affect the tracepoint state.
8991 */
8992 mutex_unlock(&ctx->mutex);
8993 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
8994 mutex_lock(&ctx->mutex);
8995 } else
8996#endif
8997 if (has_addr_filter(event))
375637bc 8998 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8999
9000 kfree(filter_str);
9001 return ret;
9002}
9003
b0a873eb
PZ
9004/*
9005 * hrtimer based swevent callback
9006 */
f29ac756 9007
b0a873eb 9008static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 9009{
b0a873eb
PZ
9010 enum hrtimer_restart ret = HRTIMER_RESTART;
9011 struct perf_sample_data data;
9012 struct pt_regs *regs;
9013 struct perf_event *event;
9014 u64 period;
f29ac756 9015
b0a873eb 9016 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
9017
9018 if (event->state != PERF_EVENT_STATE_ACTIVE)
9019 return HRTIMER_NORESTART;
9020
b0a873eb 9021 event->pmu->read(event);
f344011c 9022
fd0d000b 9023 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
9024 regs = get_irq_regs();
9025
9026 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 9027 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 9028 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
9029 ret = HRTIMER_NORESTART;
9030 }
24f1e32c 9031
b0a873eb
PZ
9032 period = max_t(u64, 10000, event->hw.sample_period);
9033 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 9034
b0a873eb 9035 return ret;
f29ac756
PZ
9036}
9037
b0a873eb 9038static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 9039{
b0a873eb 9040 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
9041 s64 period;
9042
9043 if (!is_sampling_event(event))
9044 return;
f5ffe02e 9045
5d508e82
FBH
9046 period = local64_read(&hwc->period_left);
9047 if (period) {
9048 if (period < 0)
9049 period = 10000;
fa407f35 9050
5d508e82
FBH
9051 local64_set(&hwc->period_left, 0);
9052 } else {
9053 period = max_t(u64, 10000, hwc->sample_period);
9054 }
3497d206
TG
9055 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9056 HRTIMER_MODE_REL_PINNED);
24f1e32c 9057}
b0a873eb
PZ
9058
9059static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 9060{
b0a873eb
PZ
9061 struct hw_perf_event *hwc = &event->hw;
9062
6c7e550f 9063 if (is_sampling_event(event)) {
b0a873eb 9064 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 9065 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
9066
9067 hrtimer_cancel(&hwc->hrtimer);
9068 }
24f1e32c
FW
9069}
9070
ba3dd36c
PZ
9071static void perf_swevent_init_hrtimer(struct perf_event *event)
9072{
9073 struct hw_perf_event *hwc = &event->hw;
9074
9075 if (!is_sampling_event(event))
9076 return;
9077
9078 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9079 hwc->hrtimer.function = perf_swevent_hrtimer;
9080
9081 /*
9082 * Since hrtimers have a fixed rate, we can do a static freq->period
9083 * mapping and avoid the whole period adjust feedback stuff.
9084 */
9085 if (event->attr.freq) {
9086 long freq = event->attr.sample_freq;
9087
9088 event->attr.sample_period = NSEC_PER_SEC / freq;
9089 hwc->sample_period = event->attr.sample_period;
9090 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 9091 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
9092 event->attr.freq = 0;
9093 }
9094}
9095
b0a873eb
PZ
9096/*
9097 * Software event: cpu wall time clock
9098 */
9099
9100static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 9101{
b0a873eb
PZ
9102 s64 prev;
9103 u64 now;
9104
a4eaf7f1 9105 now = local_clock();
b0a873eb
PZ
9106 prev = local64_xchg(&event->hw.prev_count, now);
9107 local64_add(now - prev, &event->count);
24f1e32c 9108}
24f1e32c 9109
a4eaf7f1 9110static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9111{
a4eaf7f1 9112 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 9113 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9114}
9115
a4eaf7f1 9116static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 9117{
b0a873eb
PZ
9118 perf_swevent_cancel_hrtimer(event);
9119 cpu_clock_event_update(event);
9120}
f29ac756 9121
a4eaf7f1
PZ
9122static int cpu_clock_event_add(struct perf_event *event, int flags)
9123{
9124 if (flags & PERF_EF_START)
9125 cpu_clock_event_start(event, flags);
6a694a60 9126 perf_event_update_userpage(event);
a4eaf7f1
PZ
9127
9128 return 0;
9129}
9130
9131static void cpu_clock_event_del(struct perf_event *event, int flags)
9132{
9133 cpu_clock_event_stop(event, flags);
9134}
9135
b0a873eb
PZ
9136static void cpu_clock_event_read(struct perf_event *event)
9137{
9138 cpu_clock_event_update(event);
9139}
f344011c 9140
b0a873eb
PZ
9141static int cpu_clock_event_init(struct perf_event *event)
9142{
9143 if (event->attr.type != PERF_TYPE_SOFTWARE)
9144 return -ENOENT;
9145
9146 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9147 return -ENOENT;
9148
2481c5fa
SE
9149 /*
9150 * no branch sampling for software events
9151 */
9152 if (has_branch_stack(event))
9153 return -EOPNOTSUPP;
9154
ba3dd36c
PZ
9155 perf_swevent_init_hrtimer(event);
9156
b0a873eb 9157 return 0;
f29ac756
PZ
9158}
9159
b0a873eb 9160static struct pmu perf_cpu_clock = {
89a1e187
PZ
9161 .task_ctx_nr = perf_sw_context,
9162
34f43927
PZ
9163 .capabilities = PERF_PMU_CAP_NO_NMI,
9164
b0a873eb 9165 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
9166 .add = cpu_clock_event_add,
9167 .del = cpu_clock_event_del,
9168 .start = cpu_clock_event_start,
9169 .stop = cpu_clock_event_stop,
b0a873eb
PZ
9170 .read = cpu_clock_event_read,
9171};
9172
9173/*
9174 * Software event: task time clock
9175 */
9176
9177static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 9178{
b0a873eb
PZ
9179 u64 prev;
9180 s64 delta;
5c92d124 9181
b0a873eb
PZ
9182 prev = local64_xchg(&event->hw.prev_count, now);
9183 delta = now - prev;
9184 local64_add(delta, &event->count);
9185}
5c92d124 9186
a4eaf7f1 9187static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9188{
a4eaf7f1 9189 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 9190 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9191}
9192
a4eaf7f1 9193static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
9194{
9195 perf_swevent_cancel_hrtimer(event);
9196 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
9197}
9198
9199static int task_clock_event_add(struct perf_event *event, int flags)
9200{
9201 if (flags & PERF_EF_START)
9202 task_clock_event_start(event, flags);
6a694a60 9203 perf_event_update_userpage(event);
b0a873eb 9204
a4eaf7f1
PZ
9205 return 0;
9206}
9207
9208static void task_clock_event_del(struct perf_event *event, int flags)
9209{
9210 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
9211}
9212
9213static void task_clock_event_read(struct perf_event *event)
9214{
768a06e2
PZ
9215 u64 now = perf_clock();
9216 u64 delta = now - event->ctx->timestamp;
9217 u64 time = event->ctx->time + delta;
b0a873eb
PZ
9218
9219 task_clock_event_update(event, time);
9220}
9221
9222static int task_clock_event_init(struct perf_event *event)
6fb2915d 9223{
b0a873eb
PZ
9224 if (event->attr.type != PERF_TYPE_SOFTWARE)
9225 return -ENOENT;
9226
9227 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9228 return -ENOENT;
9229
2481c5fa
SE
9230 /*
9231 * no branch sampling for software events
9232 */
9233 if (has_branch_stack(event))
9234 return -EOPNOTSUPP;
9235
ba3dd36c
PZ
9236 perf_swevent_init_hrtimer(event);
9237
b0a873eb 9238 return 0;
6fb2915d
LZ
9239}
9240
b0a873eb 9241static struct pmu perf_task_clock = {
89a1e187
PZ
9242 .task_ctx_nr = perf_sw_context,
9243
34f43927
PZ
9244 .capabilities = PERF_PMU_CAP_NO_NMI,
9245
b0a873eb 9246 .event_init = task_clock_event_init,
a4eaf7f1
PZ
9247 .add = task_clock_event_add,
9248 .del = task_clock_event_del,
9249 .start = task_clock_event_start,
9250 .stop = task_clock_event_stop,
b0a873eb
PZ
9251 .read = task_clock_event_read,
9252};
6fb2915d 9253
ad5133b7 9254static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 9255{
e077df4f 9256}
6fb2915d 9257
fbbe0701
SB
9258static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9259{
9260}
9261
ad5133b7 9262static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 9263{
ad5133b7 9264 return 0;
6fb2915d
LZ
9265}
9266
18ab2cd3 9267static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
9268
9269static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 9270{
fbbe0701
SB
9271 __this_cpu_write(nop_txn_flags, flags);
9272
9273 if (flags & ~PERF_PMU_TXN_ADD)
9274 return;
9275
ad5133b7 9276 perf_pmu_disable(pmu);
6fb2915d
LZ
9277}
9278
ad5133b7
PZ
9279static int perf_pmu_commit_txn(struct pmu *pmu)
9280{
fbbe0701
SB
9281 unsigned int flags = __this_cpu_read(nop_txn_flags);
9282
9283 __this_cpu_write(nop_txn_flags, 0);
9284
9285 if (flags & ~PERF_PMU_TXN_ADD)
9286 return 0;
9287
ad5133b7
PZ
9288 perf_pmu_enable(pmu);
9289 return 0;
9290}
e077df4f 9291
ad5133b7 9292static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 9293{
fbbe0701
SB
9294 unsigned int flags = __this_cpu_read(nop_txn_flags);
9295
9296 __this_cpu_write(nop_txn_flags, 0);
9297
9298 if (flags & ~PERF_PMU_TXN_ADD)
9299 return;
9300
ad5133b7 9301 perf_pmu_enable(pmu);
24f1e32c
FW
9302}
9303
35edc2a5
PZ
9304static int perf_event_idx_default(struct perf_event *event)
9305{
c719f560 9306 return 0;
35edc2a5
PZ
9307}
9308
8dc85d54
PZ
9309/*
9310 * Ensures all contexts with the same task_ctx_nr have the same
9311 * pmu_cpu_context too.
9312 */
9e317041 9313static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 9314{
8dc85d54 9315 struct pmu *pmu;
b326e956 9316
8dc85d54
PZ
9317 if (ctxn < 0)
9318 return NULL;
24f1e32c 9319
8dc85d54
PZ
9320 list_for_each_entry(pmu, &pmus, entry) {
9321 if (pmu->task_ctx_nr == ctxn)
9322 return pmu->pmu_cpu_context;
9323 }
24f1e32c 9324
8dc85d54 9325 return NULL;
24f1e32c
FW
9326}
9327
51676957
PZ
9328static void free_pmu_context(struct pmu *pmu)
9329{
df0062b2
WD
9330 /*
9331 * Static contexts such as perf_sw_context have a global lifetime
9332 * and may be shared between different PMUs. Avoid freeing them
9333 * when a single PMU is going away.
9334 */
9335 if (pmu->task_ctx_nr > perf_invalid_context)
9336 return;
9337
8dc85d54 9338 mutex_lock(&pmus_lock);
51676957 9339 free_percpu(pmu->pmu_cpu_context);
8dc85d54 9340 mutex_unlock(&pmus_lock);
24f1e32c 9341}
6e855cd4
AS
9342
9343/*
9344 * Let userspace know that this PMU supports address range filtering:
9345 */
9346static ssize_t nr_addr_filters_show(struct device *dev,
9347 struct device_attribute *attr,
9348 char *page)
9349{
9350 struct pmu *pmu = dev_get_drvdata(dev);
9351
9352 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9353}
9354DEVICE_ATTR_RO(nr_addr_filters);
9355
2e80a82a 9356static struct idr pmu_idr;
d6d020e9 9357
abe43400
PZ
9358static ssize_t
9359type_show(struct device *dev, struct device_attribute *attr, char *page)
9360{
9361 struct pmu *pmu = dev_get_drvdata(dev);
9362
9363 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9364}
90826ca7 9365static DEVICE_ATTR_RO(type);
abe43400 9366
62b85639
SE
9367static ssize_t
9368perf_event_mux_interval_ms_show(struct device *dev,
9369 struct device_attribute *attr,
9370 char *page)
9371{
9372 struct pmu *pmu = dev_get_drvdata(dev);
9373
9374 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9375}
9376
272325c4
PZ
9377static DEFINE_MUTEX(mux_interval_mutex);
9378
62b85639
SE
9379static ssize_t
9380perf_event_mux_interval_ms_store(struct device *dev,
9381 struct device_attribute *attr,
9382 const char *buf, size_t count)
9383{
9384 struct pmu *pmu = dev_get_drvdata(dev);
9385 int timer, cpu, ret;
9386
9387 ret = kstrtoint(buf, 0, &timer);
9388 if (ret)
9389 return ret;
9390
9391 if (timer < 1)
9392 return -EINVAL;
9393
9394 /* same value, noting to do */
9395 if (timer == pmu->hrtimer_interval_ms)
9396 return count;
9397
272325c4 9398 mutex_lock(&mux_interval_mutex);
62b85639
SE
9399 pmu->hrtimer_interval_ms = timer;
9400
9401 /* update all cpuctx for this PMU */
a63fbed7 9402 cpus_read_lock();
272325c4 9403 for_each_online_cpu(cpu) {
62b85639
SE
9404 struct perf_cpu_context *cpuctx;
9405 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9406 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9407
272325c4
PZ
9408 cpu_function_call(cpu,
9409 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 9410 }
a63fbed7 9411 cpus_read_unlock();
272325c4 9412 mutex_unlock(&mux_interval_mutex);
62b85639
SE
9413
9414 return count;
9415}
90826ca7 9416static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 9417
90826ca7
GKH
9418static struct attribute *pmu_dev_attrs[] = {
9419 &dev_attr_type.attr,
9420 &dev_attr_perf_event_mux_interval_ms.attr,
9421 NULL,
abe43400 9422};
90826ca7 9423ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9424
9425static int pmu_bus_running;
9426static struct bus_type pmu_bus = {
9427 .name = "event_source",
90826ca7 9428 .dev_groups = pmu_dev_groups,
abe43400
PZ
9429};
9430
9431static void pmu_dev_release(struct device *dev)
9432{
9433 kfree(dev);
9434}
9435
9436static int pmu_dev_alloc(struct pmu *pmu)
9437{
9438 int ret = -ENOMEM;
9439
9440 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9441 if (!pmu->dev)
9442 goto out;
9443
0c9d42ed 9444 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9445 device_initialize(pmu->dev);
9446 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9447 if (ret)
9448 goto free_dev;
9449
9450 dev_set_drvdata(pmu->dev, pmu);
9451 pmu->dev->bus = &pmu_bus;
9452 pmu->dev->release = pmu_dev_release;
9453 ret = device_add(pmu->dev);
9454 if (ret)
9455 goto free_dev;
9456
6e855cd4
AS
9457 /* For PMUs with address filters, throw in an extra attribute: */
9458 if (pmu->nr_addr_filters)
9459 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9460
9461 if (ret)
9462 goto del_dev;
9463
abe43400
PZ
9464out:
9465 return ret;
9466
6e855cd4
AS
9467del_dev:
9468 device_del(pmu->dev);
9469
abe43400
PZ
9470free_dev:
9471 put_device(pmu->dev);
9472 goto out;
9473}
9474
547e9fd7 9475static struct lock_class_key cpuctx_mutex;
facc4307 9476static struct lock_class_key cpuctx_lock;
547e9fd7 9477
03d8e80b 9478int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9479{
108b02cf 9480 int cpu, ret;
24f1e32c 9481
b0a873eb 9482 mutex_lock(&pmus_lock);
33696fc0
PZ
9483 ret = -ENOMEM;
9484 pmu->pmu_disable_count = alloc_percpu(int);
9485 if (!pmu->pmu_disable_count)
9486 goto unlock;
f29ac756 9487
2e80a82a
PZ
9488 pmu->type = -1;
9489 if (!name)
9490 goto skip_type;
9491 pmu->name = name;
9492
9493 if (type < 0) {
0e9c3be2
TH
9494 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9495 if (type < 0) {
9496 ret = type;
2e80a82a
PZ
9497 goto free_pdc;
9498 }
9499 }
9500 pmu->type = type;
9501
abe43400
PZ
9502 if (pmu_bus_running) {
9503 ret = pmu_dev_alloc(pmu);
9504 if (ret)
9505 goto free_idr;
9506 }
9507
2e80a82a 9508skip_type:
26657848
PZ
9509 if (pmu->task_ctx_nr == perf_hw_context) {
9510 static int hw_context_taken = 0;
9511
5101ef20
MR
9512 /*
9513 * Other than systems with heterogeneous CPUs, it never makes
9514 * sense for two PMUs to share perf_hw_context. PMUs which are
9515 * uncore must use perf_invalid_context.
9516 */
9517 if (WARN_ON_ONCE(hw_context_taken &&
9518 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9519 pmu->task_ctx_nr = perf_invalid_context;
9520
9521 hw_context_taken = 1;
9522 }
9523
8dc85d54
PZ
9524 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9525 if (pmu->pmu_cpu_context)
9526 goto got_cpu_context;
f29ac756 9527
c4814202 9528 ret = -ENOMEM;
108b02cf
PZ
9529 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9530 if (!pmu->pmu_cpu_context)
abe43400 9531 goto free_dev;
f344011c 9532
108b02cf
PZ
9533 for_each_possible_cpu(cpu) {
9534 struct perf_cpu_context *cpuctx;
9535
9536 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9537 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9538 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9539 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9540 cpuctx->ctx.pmu = pmu;
a63fbed7 9541 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9542
272325c4 9543 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9544 }
76e1d904 9545
8dc85d54 9546got_cpu_context:
ad5133b7
PZ
9547 if (!pmu->start_txn) {
9548 if (pmu->pmu_enable) {
9549 /*
9550 * If we have pmu_enable/pmu_disable calls, install
9551 * transaction stubs that use that to try and batch
9552 * hardware accesses.
9553 */
9554 pmu->start_txn = perf_pmu_start_txn;
9555 pmu->commit_txn = perf_pmu_commit_txn;
9556 pmu->cancel_txn = perf_pmu_cancel_txn;
9557 } else {
fbbe0701 9558 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9559 pmu->commit_txn = perf_pmu_nop_int;
9560 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9561 }
5c92d124 9562 }
15dbf27c 9563
ad5133b7
PZ
9564 if (!pmu->pmu_enable) {
9565 pmu->pmu_enable = perf_pmu_nop_void;
9566 pmu->pmu_disable = perf_pmu_nop_void;
9567 }
9568
35edc2a5
PZ
9569 if (!pmu->event_idx)
9570 pmu->event_idx = perf_event_idx_default;
9571
b0a873eb 9572 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9573 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9574 ret = 0;
9575unlock:
b0a873eb
PZ
9576 mutex_unlock(&pmus_lock);
9577
33696fc0 9578 return ret;
108b02cf 9579
abe43400
PZ
9580free_dev:
9581 device_del(pmu->dev);
9582 put_device(pmu->dev);
9583
2e80a82a
PZ
9584free_idr:
9585 if (pmu->type >= PERF_TYPE_MAX)
9586 idr_remove(&pmu_idr, pmu->type);
9587
108b02cf
PZ
9588free_pdc:
9589 free_percpu(pmu->pmu_disable_count);
9590 goto unlock;
f29ac756 9591}
c464c76e 9592EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9593
b0a873eb 9594void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9595{
0933840a
JO
9596 int remove_device;
9597
b0a873eb 9598 mutex_lock(&pmus_lock);
0933840a 9599 remove_device = pmu_bus_running;
b0a873eb
PZ
9600 list_del_rcu(&pmu->entry);
9601 mutex_unlock(&pmus_lock);
5c92d124 9602
0475f9ea 9603 /*
cde8e884
PZ
9604 * We dereference the pmu list under both SRCU and regular RCU, so
9605 * synchronize against both of those.
0475f9ea 9606 */
b0a873eb 9607 synchronize_srcu(&pmus_srcu);
cde8e884 9608 synchronize_rcu();
d6d020e9 9609
33696fc0 9610 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9611 if (pmu->type >= PERF_TYPE_MAX)
9612 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9613 if (remove_device) {
9614 if (pmu->nr_addr_filters)
9615 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9616 device_del(pmu->dev);
9617 put_device(pmu->dev);
9618 }
51676957 9619 free_pmu_context(pmu);
b0a873eb 9620}
c464c76e 9621EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9622
cc34b98b
MR
9623static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9624{
ccd41c86 9625 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9626 int ret;
9627
9628 if (!try_module_get(pmu->module))
9629 return -ENODEV;
ccd41c86 9630
0c7296ca
PZ
9631 /*
9632 * A number of pmu->event_init() methods iterate the sibling_list to,
9633 * for example, validate if the group fits on the PMU. Therefore,
9634 * if this is a sibling event, acquire the ctx->mutex to protect
9635 * the sibling_list.
9636 */
9637 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
9638 /*
9639 * This ctx->mutex can nest when we're called through
9640 * inheritance. See the perf_event_ctx_lock_nested() comment.
9641 */
9642 ctx = perf_event_ctx_lock_nested(event->group_leader,
9643 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9644 BUG_ON(!ctx);
9645 }
9646
cc34b98b
MR
9647 event->pmu = pmu;
9648 ret = pmu->event_init(event);
ccd41c86
PZ
9649
9650 if (ctx)
9651 perf_event_ctx_unlock(event->group_leader, ctx);
9652
cc34b98b
MR
9653 if (ret)
9654 module_put(pmu->module);
9655
9656 return ret;
9657}
9658
18ab2cd3 9659static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9660{
85c617ab 9661 struct pmu *pmu;
b0a873eb 9662 int idx;
940c5b29 9663 int ret;
b0a873eb
PZ
9664
9665 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9666
40999312
KL
9667 /* Try parent's PMU first: */
9668 if (event->parent && event->parent->pmu) {
9669 pmu = event->parent->pmu;
9670 ret = perf_try_init_event(pmu, event);
9671 if (!ret)
9672 goto unlock;
9673 }
9674
2e80a82a
PZ
9675 rcu_read_lock();
9676 pmu = idr_find(&pmu_idr, event->attr.type);
9677 rcu_read_unlock();
940c5b29 9678 if (pmu) {
cc34b98b 9679 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9680 if (ret)
9681 pmu = ERR_PTR(ret);
2e80a82a 9682 goto unlock;
940c5b29 9683 }
2e80a82a 9684
b0a873eb 9685 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9686 ret = perf_try_init_event(pmu, event);
b0a873eb 9687 if (!ret)
e5f4d339 9688 goto unlock;
76e1d904 9689
b0a873eb
PZ
9690 if (ret != -ENOENT) {
9691 pmu = ERR_PTR(ret);
e5f4d339 9692 goto unlock;
f344011c 9693 }
5c92d124 9694 }
e5f4d339
PZ
9695 pmu = ERR_PTR(-ENOENT);
9696unlock:
b0a873eb 9697 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9698
4aeb0b42 9699 return pmu;
5c92d124
IM
9700}
9701
f2fb6bef
KL
9702static void attach_sb_event(struct perf_event *event)
9703{
9704 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9705
9706 raw_spin_lock(&pel->lock);
9707 list_add_rcu(&event->sb_list, &pel->list);
9708 raw_spin_unlock(&pel->lock);
9709}
9710
aab5b71e
PZ
9711/*
9712 * We keep a list of all !task (and therefore per-cpu) events
9713 * that need to receive side-band records.
9714 *
9715 * This avoids having to scan all the various PMU per-cpu contexts
9716 * looking for them.
9717 */
f2fb6bef
KL
9718static void account_pmu_sb_event(struct perf_event *event)
9719{
a4f144eb 9720 if (is_sb_event(event))
f2fb6bef
KL
9721 attach_sb_event(event);
9722}
9723
4beb31f3
FW
9724static void account_event_cpu(struct perf_event *event, int cpu)
9725{
9726 if (event->parent)
9727 return;
9728
4beb31f3
FW
9729 if (is_cgroup_event(event))
9730 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9731}
9732
555e0c1e
FW
9733/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9734static void account_freq_event_nohz(void)
9735{
9736#ifdef CONFIG_NO_HZ_FULL
9737 /* Lock so we don't race with concurrent unaccount */
9738 spin_lock(&nr_freq_lock);
9739 if (atomic_inc_return(&nr_freq_events) == 1)
9740 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9741 spin_unlock(&nr_freq_lock);
9742#endif
9743}
9744
9745static void account_freq_event(void)
9746{
9747 if (tick_nohz_full_enabled())
9748 account_freq_event_nohz();
9749 else
9750 atomic_inc(&nr_freq_events);
9751}
9752
9753
766d6c07
FW
9754static void account_event(struct perf_event *event)
9755{
25432ae9
PZ
9756 bool inc = false;
9757
4beb31f3
FW
9758 if (event->parent)
9759 return;
9760
766d6c07 9761 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9762 inc = true;
766d6c07
FW
9763 if (event->attr.mmap || event->attr.mmap_data)
9764 atomic_inc(&nr_mmap_events);
9765 if (event->attr.comm)
9766 atomic_inc(&nr_comm_events);
e4222673
HB
9767 if (event->attr.namespaces)
9768 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9769 if (event->attr.task)
9770 atomic_inc(&nr_task_events);
555e0c1e
FW
9771 if (event->attr.freq)
9772 account_freq_event();
45ac1403
AH
9773 if (event->attr.context_switch) {
9774 atomic_inc(&nr_switch_events);
25432ae9 9775 inc = true;
45ac1403 9776 }
4beb31f3 9777 if (has_branch_stack(event))
25432ae9 9778 inc = true;
4beb31f3 9779 if (is_cgroup_event(event))
25432ae9
PZ
9780 inc = true;
9781
9107c89e 9782 if (inc) {
5bce9db1
AS
9783 /*
9784 * We need the mutex here because static_branch_enable()
9785 * must complete *before* the perf_sched_count increment
9786 * becomes visible.
9787 */
9107c89e
PZ
9788 if (atomic_inc_not_zero(&perf_sched_count))
9789 goto enabled;
9790
9791 mutex_lock(&perf_sched_mutex);
9792 if (!atomic_read(&perf_sched_count)) {
9793 static_branch_enable(&perf_sched_events);
9794 /*
9795 * Guarantee that all CPUs observe they key change and
9796 * call the perf scheduling hooks before proceeding to
9797 * install events that need them.
9798 */
9799 synchronize_sched();
9800 }
9801 /*
9802 * Now that we have waited for the sync_sched(), allow further
9803 * increments to by-pass the mutex.
9804 */
9805 atomic_inc(&perf_sched_count);
9806 mutex_unlock(&perf_sched_mutex);
9807 }
9808enabled:
4beb31f3
FW
9809
9810 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9811
9812 account_pmu_sb_event(event);
766d6c07
FW
9813}
9814
0793a61d 9815/*
cdd6c482 9816 * Allocate and initialize a event structure
0793a61d 9817 */
cdd6c482 9818static struct perf_event *
c3f00c70 9819perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9820 struct task_struct *task,
9821 struct perf_event *group_leader,
9822 struct perf_event *parent_event,
4dc0da86 9823 perf_overflow_handler_t overflow_handler,
79dff51e 9824 void *context, int cgroup_fd)
0793a61d 9825{
51b0fe39 9826 struct pmu *pmu;
cdd6c482
IM
9827 struct perf_event *event;
9828 struct hw_perf_event *hwc;
90983b16 9829 long err = -EINVAL;
0793a61d 9830
66832eb4
ON
9831 if ((unsigned)cpu >= nr_cpu_ids) {
9832 if (!task || cpu != -1)
9833 return ERR_PTR(-EINVAL);
9834 }
9835
c3f00c70 9836 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9837 if (!event)
d5d2bc0d 9838 return ERR_PTR(-ENOMEM);
0793a61d 9839
04289bb9 9840 /*
cdd6c482 9841 * Single events are their own group leaders, with an
04289bb9
IM
9842 * empty sibling list:
9843 */
9844 if (!group_leader)
cdd6c482 9845 group_leader = event;
04289bb9 9846
cdd6c482
IM
9847 mutex_init(&event->child_mutex);
9848 INIT_LIST_HEAD(&event->child_list);
fccc714b 9849
cdd6c482
IM
9850 INIT_LIST_HEAD(&event->event_entry);
9851 INIT_LIST_HEAD(&event->sibling_list);
6668128a 9852 INIT_LIST_HEAD(&event->active_list);
8e1a2031 9853 init_event_group(event);
10c6db11 9854 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9855 INIT_LIST_HEAD(&event->active_entry);
375637bc 9856 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9857 INIT_HLIST_NODE(&event->hlist_entry);
9858
10c6db11 9859
cdd6c482 9860 init_waitqueue_head(&event->waitq);
e360adbe 9861 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9862
cdd6c482 9863 mutex_init(&event->mmap_mutex);
375637bc 9864 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9865
a6fa941d 9866 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9867 event->cpu = cpu;
9868 event->attr = *attr;
9869 event->group_leader = group_leader;
9870 event->pmu = NULL;
cdd6c482 9871 event->oncpu = -1;
a96bbc16 9872
cdd6c482 9873 event->parent = parent_event;
b84fbc9f 9874
17cf22c3 9875 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9876 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9877
cdd6c482 9878 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9879
d580ff86
PZ
9880 if (task) {
9881 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9882 /*
50f16a8b
PZ
9883 * XXX pmu::event_init needs to know what task to account to
9884 * and we cannot use the ctx information because we need the
9885 * pmu before we get a ctx.
d580ff86 9886 */
50f16a8b 9887 event->hw.target = task;
d580ff86
PZ
9888 }
9889
34f43927
PZ
9890 event->clock = &local_clock;
9891 if (parent_event)
9892 event->clock = parent_event->clock;
9893
4dc0da86 9894 if (!overflow_handler && parent_event) {
b326e956 9895 overflow_handler = parent_event->overflow_handler;
4dc0da86 9896 context = parent_event->overflow_handler_context;
f1e4ba5b 9897#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9898 if (overflow_handler == bpf_overflow_handler) {
9899 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9900
9901 if (IS_ERR(prog)) {
9902 err = PTR_ERR(prog);
9903 goto err_ns;
9904 }
9905 event->prog = prog;
9906 event->orig_overflow_handler =
9907 parent_event->orig_overflow_handler;
9908 }
9909#endif
4dc0da86 9910 }
66832eb4 9911
1879445d
WN
9912 if (overflow_handler) {
9913 event->overflow_handler = overflow_handler;
9914 event->overflow_handler_context = context;
9ecda41a
WN
9915 } else if (is_write_backward(event)){
9916 event->overflow_handler = perf_event_output_backward;
9917 event->overflow_handler_context = NULL;
1879445d 9918 } else {
9ecda41a 9919 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9920 event->overflow_handler_context = NULL;
9921 }
97eaf530 9922
0231bb53 9923 perf_event__state_init(event);
a86ed508 9924
4aeb0b42 9925 pmu = NULL;
b8e83514 9926
cdd6c482 9927 hwc = &event->hw;
bd2b5b12 9928 hwc->sample_period = attr->sample_period;
0d48696f 9929 if (attr->freq && attr->sample_freq)
bd2b5b12 9930 hwc->sample_period = 1;
eced1dfc 9931 hwc->last_period = hwc->sample_period;
bd2b5b12 9932
e7850595 9933 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9934
2023b359 9935 /*
ba5213ae
PZ
9936 * We currently do not support PERF_SAMPLE_READ on inherited events.
9937 * See perf_output_read().
2023b359 9938 */
ba5213ae 9939 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 9940 goto err_ns;
a46a2300
YZ
9941
9942 if (!has_branch_stack(event))
9943 event->attr.branch_sample_type = 0;
2023b359 9944
79dff51e
MF
9945 if (cgroup_fd != -1) {
9946 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9947 if (err)
9948 goto err_ns;
9949 }
9950
b0a873eb 9951 pmu = perf_init_event(event);
85c617ab 9952 if (IS_ERR(pmu)) {
4aeb0b42 9953 err = PTR_ERR(pmu);
90983b16 9954 goto err_ns;
621a01ea 9955 }
d5d2bc0d 9956
bed5b25a
AS
9957 err = exclusive_event_init(event);
9958 if (err)
9959 goto err_pmu;
9960
375637bc
AS
9961 if (has_addr_filter(event)) {
9962 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9963 sizeof(unsigned long),
9964 GFP_KERNEL);
36cc2b92
DC
9965 if (!event->addr_filters_offs) {
9966 err = -ENOMEM;
375637bc 9967 goto err_per_task;
36cc2b92 9968 }
375637bc
AS
9969
9970 /* force hw sync on the address filters */
9971 event->addr_filters_gen = 1;
9972 }
9973
cdd6c482 9974 if (!event->parent) {
927c7a9e 9975 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9976 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9977 if (err)
375637bc 9978 goto err_addr_filters;
d010b332 9979 }
f344011c 9980 }
9ee318a7 9981
927a5570
AS
9982 /* symmetric to unaccount_event() in _free_event() */
9983 account_event(event);
9984
cdd6c482 9985 return event;
90983b16 9986
375637bc
AS
9987err_addr_filters:
9988 kfree(event->addr_filters_offs);
9989
bed5b25a
AS
9990err_per_task:
9991 exclusive_event_destroy(event);
9992
90983b16
FW
9993err_pmu:
9994 if (event->destroy)
9995 event->destroy(event);
c464c76e 9996 module_put(pmu->module);
90983b16 9997err_ns:
79dff51e
MF
9998 if (is_cgroup_event(event))
9999 perf_detach_cgroup(event);
90983b16
FW
10000 if (event->ns)
10001 put_pid_ns(event->ns);
10002 kfree(event);
10003
10004 return ERR_PTR(err);
0793a61d
TG
10005}
10006
cdd6c482
IM
10007static int perf_copy_attr(struct perf_event_attr __user *uattr,
10008 struct perf_event_attr *attr)
974802ea 10009{
974802ea 10010 u32 size;
cdf8073d 10011 int ret;
974802ea
PZ
10012
10013 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10014 return -EFAULT;
10015
10016 /*
10017 * zero the full structure, so that a short copy will be nice.
10018 */
10019 memset(attr, 0, sizeof(*attr));
10020
10021 ret = get_user(size, &uattr->size);
10022 if (ret)
10023 return ret;
10024
10025 if (size > PAGE_SIZE) /* silly large */
10026 goto err_size;
10027
10028 if (!size) /* abi compat */
10029 size = PERF_ATTR_SIZE_VER0;
10030
10031 if (size < PERF_ATTR_SIZE_VER0)
10032 goto err_size;
10033
10034 /*
10035 * If we're handed a bigger struct than we know of,
cdf8073d
IS
10036 * ensure all the unknown bits are 0 - i.e. new
10037 * user-space does not rely on any kernel feature
10038 * extensions we dont know about yet.
974802ea
PZ
10039 */
10040 if (size > sizeof(*attr)) {
cdf8073d
IS
10041 unsigned char __user *addr;
10042 unsigned char __user *end;
10043 unsigned char val;
974802ea 10044
cdf8073d
IS
10045 addr = (void __user *)uattr + sizeof(*attr);
10046 end = (void __user *)uattr + size;
974802ea 10047
cdf8073d 10048 for (; addr < end; addr++) {
974802ea
PZ
10049 ret = get_user(val, addr);
10050 if (ret)
10051 return ret;
10052 if (val)
10053 goto err_size;
10054 }
b3e62e35 10055 size = sizeof(*attr);
974802ea
PZ
10056 }
10057
10058 ret = copy_from_user(attr, uattr, size);
10059 if (ret)
10060 return -EFAULT;
10061
f12f42ac
MX
10062 attr->size = size;
10063
cd757645 10064 if (attr->__reserved_1)
974802ea
PZ
10065 return -EINVAL;
10066
10067 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10068 return -EINVAL;
10069
10070 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10071 return -EINVAL;
10072
bce38cd5
SE
10073 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10074 u64 mask = attr->branch_sample_type;
10075
10076 /* only using defined bits */
10077 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10078 return -EINVAL;
10079
10080 /* at least one branch bit must be set */
10081 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10082 return -EINVAL;
10083
bce38cd5
SE
10084 /* propagate priv level, when not set for branch */
10085 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10086
10087 /* exclude_kernel checked on syscall entry */
10088 if (!attr->exclude_kernel)
10089 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10090
10091 if (!attr->exclude_user)
10092 mask |= PERF_SAMPLE_BRANCH_USER;
10093
10094 if (!attr->exclude_hv)
10095 mask |= PERF_SAMPLE_BRANCH_HV;
10096 /*
10097 * adjust user setting (for HW filter setup)
10098 */
10099 attr->branch_sample_type = mask;
10100 }
e712209a
SE
10101 /* privileged levels capture (kernel, hv): check permissions */
10102 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
10103 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10104 return -EACCES;
bce38cd5 10105 }
4018994f 10106
c5ebcedb 10107 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 10108 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
10109 if (ret)
10110 return ret;
10111 }
10112
10113 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10114 if (!arch_perf_have_user_stack_dump())
10115 return -ENOSYS;
10116
10117 /*
10118 * We have __u32 type for the size, but so far
10119 * we can only use __u16 as maximum due to the
10120 * __u16 sample size limit.
10121 */
10122 if (attr->sample_stack_user >= USHRT_MAX)
10123 ret = -EINVAL;
10124 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10125 ret = -EINVAL;
10126 }
4018994f 10127
60e2364e
SE
10128 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10129 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
10130out:
10131 return ret;
10132
10133err_size:
10134 put_user(sizeof(*attr), &uattr->size);
10135 ret = -E2BIG;
10136 goto out;
10137}
10138
ac9721f3
PZ
10139static int
10140perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 10141{
b69cf536 10142 struct ring_buffer *rb = NULL;
a4be7c27
PZ
10143 int ret = -EINVAL;
10144
ac9721f3 10145 if (!output_event)
a4be7c27
PZ
10146 goto set;
10147
ac9721f3
PZ
10148 /* don't allow circular references */
10149 if (event == output_event)
a4be7c27
PZ
10150 goto out;
10151
0f139300
PZ
10152 /*
10153 * Don't allow cross-cpu buffers
10154 */
10155 if (output_event->cpu != event->cpu)
10156 goto out;
10157
10158 /*
76369139 10159 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
10160 */
10161 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10162 goto out;
10163
34f43927
PZ
10164 /*
10165 * Mixing clocks in the same buffer is trouble you don't need.
10166 */
10167 if (output_event->clock != event->clock)
10168 goto out;
10169
9ecda41a
WN
10170 /*
10171 * Either writing ring buffer from beginning or from end.
10172 * Mixing is not allowed.
10173 */
10174 if (is_write_backward(output_event) != is_write_backward(event))
10175 goto out;
10176
45bfb2e5
PZ
10177 /*
10178 * If both events generate aux data, they must be on the same PMU
10179 */
10180 if (has_aux(event) && has_aux(output_event) &&
10181 event->pmu != output_event->pmu)
10182 goto out;
10183
a4be7c27 10184set:
cdd6c482 10185 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
10186 /* Can't redirect output if we've got an active mmap() */
10187 if (atomic_read(&event->mmap_count))
10188 goto unlock;
a4be7c27 10189
ac9721f3 10190 if (output_event) {
76369139
FW
10191 /* get the rb we want to redirect to */
10192 rb = ring_buffer_get(output_event);
10193 if (!rb)
ac9721f3 10194 goto unlock;
a4be7c27
PZ
10195 }
10196
b69cf536 10197 ring_buffer_attach(event, rb);
9bb5d40c 10198
a4be7c27 10199 ret = 0;
ac9721f3
PZ
10200unlock:
10201 mutex_unlock(&event->mmap_mutex);
10202
a4be7c27 10203out:
a4be7c27
PZ
10204 return ret;
10205}
10206
f63a8daa
PZ
10207static void mutex_lock_double(struct mutex *a, struct mutex *b)
10208{
10209 if (b < a)
10210 swap(a, b);
10211
10212 mutex_lock(a);
10213 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10214}
10215
34f43927
PZ
10216static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10217{
10218 bool nmi_safe = false;
10219
10220 switch (clk_id) {
10221 case CLOCK_MONOTONIC:
10222 event->clock = &ktime_get_mono_fast_ns;
10223 nmi_safe = true;
10224 break;
10225
10226 case CLOCK_MONOTONIC_RAW:
10227 event->clock = &ktime_get_raw_fast_ns;
10228 nmi_safe = true;
10229 break;
10230
10231 case CLOCK_REALTIME:
10232 event->clock = &ktime_get_real_ns;
10233 break;
10234
10235 case CLOCK_BOOTTIME:
10236 event->clock = &ktime_get_boot_ns;
10237 break;
10238
10239 case CLOCK_TAI:
10240 event->clock = &ktime_get_tai_ns;
10241 break;
10242
10243 default:
10244 return -EINVAL;
10245 }
10246
10247 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10248 return -EINVAL;
10249
10250 return 0;
10251}
10252
321027c1
PZ
10253/*
10254 * Variation on perf_event_ctx_lock_nested(), except we take two context
10255 * mutexes.
10256 */
10257static struct perf_event_context *
10258__perf_event_ctx_lock_double(struct perf_event *group_leader,
10259 struct perf_event_context *ctx)
10260{
10261 struct perf_event_context *gctx;
10262
10263again:
10264 rcu_read_lock();
10265 gctx = READ_ONCE(group_leader->ctx);
10266 if (!atomic_inc_not_zero(&gctx->refcount)) {
10267 rcu_read_unlock();
10268 goto again;
10269 }
10270 rcu_read_unlock();
10271
10272 mutex_lock_double(&gctx->mutex, &ctx->mutex);
10273
10274 if (group_leader->ctx != gctx) {
10275 mutex_unlock(&ctx->mutex);
10276 mutex_unlock(&gctx->mutex);
10277 put_ctx(gctx);
10278 goto again;
10279 }
10280
10281 return gctx;
10282}
10283
0793a61d 10284/**
cdd6c482 10285 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 10286 *
cdd6c482 10287 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 10288 * @pid: target pid
9f66a381 10289 * @cpu: target cpu
cdd6c482 10290 * @group_fd: group leader event fd
0793a61d 10291 */
cdd6c482
IM
10292SYSCALL_DEFINE5(perf_event_open,
10293 struct perf_event_attr __user *, attr_uptr,
2743a5b0 10294 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 10295{
b04243ef
PZ
10296 struct perf_event *group_leader = NULL, *output_event = NULL;
10297 struct perf_event *event, *sibling;
cdd6c482 10298 struct perf_event_attr attr;
f63a8daa 10299 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 10300 struct file *event_file = NULL;
2903ff01 10301 struct fd group = {NULL, 0};
38a81da2 10302 struct task_struct *task = NULL;
89a1e187 10303 struct pmu *pmu;
ea635c64 10304 int event_fd;
b04243ef 10305 int move_group = 0;
dc86cabe 10306 int err;
a21b0b35 10307 int f_flags = O_RDWR;
79dff51e 10308 int cgroup_fd = -1;
0793a61d 10309
2743a5b0 10310 /* for future expandability... */
e5d1367f 10311 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
10312 return -EINVAL;
10313
dc86cabe
IM
10314 err = perf_copy_attr(attr_uptr, &attr);
10315 if (err)
10316 return err;
eab656ae 10317
0764771d
PZ
10318 if (!attr.exclude_kernel) {
10319 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10320 return -EACCES;
10321 }
10322
e4222673
HB
10323 if (attr.namespaces) {
10324 if (!capable(CAP_SYS_ADMIN))
10325 return -EACCES;
10326 }
10327
df58ab24 10328 if (attr.freq) {
cdd6c482 10329 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 10330 return -EINVAL;
0819b2e3
PZ
10331 } else {
10332 if (attr.sample_period & (1ULL << 63))
10333 return -EINVAL;
df58ab24
PZ
10334 }
10335
fc7ce9c7
KL
10336 /* Only privileged users can get physical addresses */
10337 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10338 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10339 return -EACCES;
10340
97c79a38
ACM
10341 if (!attr.sample_max_stack)
10342 attr.sample_max_stack = sysctl_perf_event_max_stack;
10343
e5d1367f
SE
10344 /*
10345 * In cgroup mode, the pid argument is used to pass the fd
10346 * opened to the cgroup directory in cgroupfs. The cpu argument
10347 * designates the cpu on which to monitor threads from that
10348 * cgroup.
10349 */
10350 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10351 return -EINVAL;
10352
a21b0b35
YD
10353 if (flags & PERF_FLAG_FD_CLOEXEC)
10354 f_flags |= O_CLOEXEC;
10355
10356 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
10357 if (event_fd < 0)
10358 return event_fd;
10359
ac9721f3 10360 if (group_fd != -1) {
2903ff01
AV
10361 err = perf_fget_light(group_fd, &group);
10362 if (err)
d14b12d7 10363 goto err_fd;
2903ff01 10364 group_leader = group.file->private_data;
ac9721f3
PZ
10365 if (flags & PERF_FLAG_FD_OUTPUT)
10366 output_event = group_leader;
10367 if (flags & PERF_FLAG_FD_NO_GROUP)
10368 group_leader = NULL;
10369 }
10370
e5d1367f 10371 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
10372 task = find_lively_task_by_vpid(pid);
10373 if (IS_ERR(task)) {
10374 err = PTR_ERR(task);
10375 goto err_group_fd;
10376 }
10377 }
10378
1f4ee503
PZ
10379 if (task && group_leader &&
10380 group_leader->attr.inherit != attr.inherit) {
10381 err = -EINVAL;
10382 goto err_task;
10383 }
10384
79c9ce57
PZ
10385 if (task) {
10386 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10387 if (err)
e5aeee51 10388 goto err_task;
79c9ce57
PZ
10389
10390 /*
10391 * Reuse ptrace permission checks for now.
10392 *
10393 * We must hold cred_guard_mutex across this and any potential
10394 * perf_install_in_context() call for this new event to
10395 * serialize against exec() altering our credentials (and the
10396 * perf_event_exit_task() that could imply).
10397 */
10398 err = -EACCES;
10399 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10400 goto err_cred;
10401 }
10402
79dff51e
MF
10403 if (flags & PERF_FLAG_PID_CGROUP)
10404 cgroup_fd = pid;
10405
4dc0da86 10406 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 10407 NULL, NULL, cgroup_fd);
d14b12d7
SE
10408 if (IS_ERR(event)) {
10409 err = PTR_ERR(event);
79c9ce57 10410 goto err_cred;
d14b12d7
SE
10411 }
10412
53b25335
VW
10413 if (is_sampling_event(event)) {
10414 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 10415 err = -EOPNOTSUPP;
53b25335
VW
10416 goto err_alloc;
10417 }
10418 }
10419
89a1e187
PZ
10420 /*
10421 * Special case software events and allow them to be part of
10422 * any hardware group.
10423 */
10424 pmu = event->pmu;
b04243ef 10425
34f43927
PZ
10426 if (attr.use_clockid) {
10427 err = perf_event_set_clock(event, attr.clockid);
10428 if (err)
10429 goto err_alloc;
10430 }
10431
4ff6a8de
DCC
10432 if (pmu->task_ctx_nr == perf_sw_context)
10433 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10434
b04243ef
PZ
10435 if (group_leader &&
10436 (is_software_event(event) != is_software_event(group_leader))) {
10437 if (is_software_event(event)) {
10438 /*
10439 * If event and group_leader are not both a software
10440 * event, and event is, then group leader is not.
10441 *
10442 * Allow the addition of software events to !software
10443 * groups, this is safe because software events never
10444 * fail to schedule.
10445 */
10446 pmu = group_leader->pmu;
10447 } else if (is_software_event(group_leader) &&
4ff6a8de 10448 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10449 /*
10450 * In case the group is a pure software group, and we
10451 * try to add a hardware event, move the whole group to
10452 * the hardware context.
10453 */
10454 move_group = 1;
10455 }
10456 }
89a1e187
PZ
10457
10458 /*
10459 * Get the target context (task or percpu):
10460 */
4af57ef2 10461 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10462 if (IS_ERR(ctx)) {
10463 err = PTR_ERR(ctx);
c6be5a5c 10464 goto err_alloc;
89a1e187
PZ
10465 }
10466
bed5b25a
AS
10467 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10468 err = -EBUSY;
10469 goto err_context;
10470 }
10471
ccff286d 10472 /*
cdd6c482 10473 * Look up the group leader (we will attach this event to it):
04289bb9 10474 */
ac9721f3 10475 if (group_leader) {
dc86cabe 10476 err = -EINVAL;
04289bb9 10477
04289bb9 10478 /*
ccff286d
IM
10479 * Do not allow a recursive hierarchy (this new sibling
10480 * becoming part of another group-sibling):
10481 */
10482 if (group_leader->group_leader != group_leader)
c3f00c70 10483 goto err_context;
34f43927
PZ
10484
10485 /* All events in a group should have the same clock */
10486 if (group_leader->clock != event->clock)
10487 goto err_context;
10488
ccff286d 10489 /*
64aee2a9
MR
10490 * Make sure we're both events for the same CPU;
10491 * grouping events for different CPUs is broken; since
10492 * you can never concurrently schedule them anyhow.
04289bb9 10493 */
64aee2a9
MR
10494 if (group_leader->cpu != event->cpu)
10495 goto err_context;
c3c87e77 10496
64aee2a9
MR
10497 /*
10498 * Make sure we're both on the same task, or both
10499 * per-CPU events.
10500 */
10501 if (group_leader->ctx->task != ctx->task)
10502 goto err_context;
10503
10504 /*
10505 * Do not allow to attach to a group in a different task
10506 * or CPU context. If we're moving SW events, we'll fix
10507 * this up later, so allow that.
10508 */
10509 if (!move_group && group_leader->ctx != ctx)
10510 goto err_context;
b04243ef 10511
3b6f9e5c
PM
10512 /*
10513 * Only a group leader can be exclusive or pinned
10514 */
0d48696f 10515 if (attr.exclusive || attr.pinned)
c3f00c70 10516 goto err_context;
ac9721f3
PZ
10517 }
10518
10519 if (output_event) {
10520 err = perf_event_set_output(event, output_event);
10521 if (err)
c3f00c70 10522 goto err_context;
ac9721f3 10523 }
0793a61d 10524
a21b0b35
YD
10525 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10526 f_flags);
ea635c64
AV
10527 if (IS_ERR(event_file)) {
10528 err = PTR_ERR(event_file);
201c2f85 10529 event_file = NULL;
c3f00c70 10530 goto err_context;
ea635c64 10531 }
9b51f66d 10532
b04243ef 10533 if (move_group) {
321027c1
PZ
10534 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10535
84c4e620
PZ
10536 if (gctx->task == TASK_TOMBSTONE) {
10537 err = -ESRCH;
10538 goto err_locked;
10539 }
321027c1
PZ
10540
10541 /*
10542 * Check if we raced against another sys_perf_event_open() call
10543 * moving the software group underneath us.
10544 */
10545 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10546 /*
10547 * If someone moved the group out from under us, check
10548 * if this new event wound up on the same ctx, if so
10549 * its the regular !move_group case, otherwise fail.
10550 */
10551 if (gctx != ctx) {
10552 err = -EINVAL;
10553 goto err_locked;
10554 } else {
10555 perf_event_ctx_unlock(group_leader, gctx);
10556 move_group = 0;
10557 }
10558 }
f55fc2a5
PZ
10559 } else {
10560 mutex_lock(&ctx->mutex);
10561 }
10562
84c4e620
PZ
10563 if (ctx->task == TASK_TOMBSTONE) {
10564 err = -ESRCH;
10565 goto err_locked;
10566 }
10567
a723968c
PZ
10568 if (!perf_event_validate_size(event)) {
10569 err = -E2BIG;
10570 goto err_locked;
10571 }
10572
a63fbed7
TG
10573 if (!task) {
10574 /*
10575 * Check if the @cpu we're creating an event for is online.
10576 *
10577 * We use the perf_cpu_context::ctx::mutex to serialize against
10578 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10579 */
10580 struct perf_cpu_context *cpuctx =
10581 container_of(ctx, struct perf_cpu_context, ctx);
10582
10583 if (!cpuctx->online) {
10584 err = -ENODEV;
10585 goto err_locked;
10586 }
10587 }
10588
10589
f55fc2a5
PZ
10590 /*
10591 * Must be under the same ctx::mutex as perf_install_in_context(),
10592 * because we need to serialize with concurrent event creation.
10593 */
10594 if (!exclusive_event_installable(event, ctx)) {
10595 /* exclusive and group stuff are assumed mutually exclusive */
10596 WARN_ON_ONCE(move_group);
f63a8daa 10597
f55fc2a5
PZ
10598 err = -EBUSY;
10599 goto err_locked;
10600 }
f63a8daa 10601
f55fc2a5
PZ
10602 WARN_ON_ONCE(ctx->parent_ctx);
10603
79c9ce57
PZ
10604 /*
10605 * This is the point on no return; we cannot fail hereafter. This is
10606 * where we start modifying current state.
10607 */
10608
f55fc2a5 10609 if (move_group) {
f63a8daa
PZ
10610 /*
10611 * See perf_event_ctx_lock() for comments on the details
10612 * of swizzling perf_event::ctx.
10613 */
45a0e07a 10614 perf_remove_from_context(group_leader, 0);
279b5165 10615 put_ctx(gctx);
0231bb53 10616
b04243ef 10617 list_for_each_entry(sibling, &group_leader->sibling_list,
8343aae6 10618 sibling_list) {
45a0e07a 10619 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10620 put_ctx(gctx);
10621 }
b04243ef 10622
f63a8daa
PZ
10623 /*
10624 * Wait for everybody to stop referencing the events through
10625 * the old lists, before installing it on new lists.
10626 */
0cda4c02 10627 synchronize_rcu();
f63a8daa 10628
8f95b435
PZI
10629 /*
10630 * Install the group siblings before the group leader.
10631 *
10632 * Because a group leader will try and install the entire group
10633 * (through the sibling list, which is still in-tact), we can
10634 * end up with siblings installed in the wrong context.
10635 *
10636 * By installing siblings first we NO-OP because they're not
10637 * reachable through the group lists.
10638 */
b04243ef 10639 list_for_each_entry(sibling, &group_leader->sibling_list,
8343aae6 10640 sibling_list) {
8f95b435 10641 perf_event__state_init(sibling);
9fc81d87 10642 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10643 get_ctx(ctx);
10644 }
8f95b435
PZI
10645
10646 /*
10647 * Removing from the context ends up with disabled
10648 * event. What we want here is event in the initial
10649 * startup state, ready to be add into new context.
10650 */
10651 perf_event__state_init(group_leader);
10652 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10653 get_ctx(ctx);
bed5b25a
AS
10654 }
10655
f73e22ab
PZ
10656 /*
10657 * Precalculate sample_data sizes; do while holding ctx::mutex such
10658 * that we're serialized against further additions and before
10659 * perf_install_in_context() which is the point the event is active and
10660 * can use these values.
10661 */
10662 perf_event__header_size(event);
10663 perf_event__id_header_size(event);
10664
78cd2c74
PZ
10665 event->owner = current;
10666
e2d37cd2 10667 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10668 perf_unpin_context(ctx);
f63a8daa 10669
f55fc2a5 10670 if (move_group)
321027c1 10671 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10672 mutex_unlock(&ctx->mutex);
9b51f66d 10673
79c9ce57
PZ
10674 if (task) {
10675 mutex_unlock(&task->signal->cred_guard_mutex);
10676 put_task_struct(task);
10677 }
10678
cdd6c482
IM
10679 mutex_lock(&current->perf_event_mutex);
10680 list_add_tail(&event->owner_entry, &current->perf_event_list);
10681 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10682
8a49542c
PZ
10683 /*
10684 * Drop the reference on the group_event after placing the
10685 * new event on the sibling_list. This ensures destruction
10686 * of the group leader will find the pointer to itself in
10687 * perf_group_detach().
10688 */
2903ff01 10689 fdput(group);
ea635c64
AV
10690 fd_install(event_fd, event_file);
10691 return event_fd;
0793a61d 10692
f55fc2a5
PZ
10693err_locked:
10694 if (move_group)
321027c1 10695 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10696 mutex_unlock(&ctx->mutex);
10697/* err_file: */
10698 fput(event_file);
c3f00c70 10699err_context:
fe4b04fa 10700 perf_unpin_context(ctx);
ea635c64 10701 put_ctx(ctx);
c6be5a5c 10702err_alloc:
13005627
PZ
10703 /*
10704 * If event_file is set, the fput() above will have called ->release()
10705 * and that will take care of freeing the event.
10706 */
10707 if (!event_file)
10708 free_event(event);
79c9ce57
PZ
10709err_cred:
10710 if (task)
10711 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10712err_task:
e7d0bc04
PZ
10713 if (task)
10714 put_task_struct(task);
89a1e187 10715err_group_fd:
2903ff01 10716 fdput(group);
ea635c64
AV
10717err_fd:
10718 put_unused_fd(event_fd);
dc86cabe 10719 return err;
0793a61d
TG
10720}
10721
fb0459d7
AV
10722/**
10723 * perf_event_create_kernel_counter
10724 *
10725 * @attr: attributes of the counter to create
10726 * @cpu: cpu in which the counter is bound
38a81da2 10727 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10728 */
10729struct perf_event *
10730perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10731 struct task_struct *task,
4dc0da86
AK
10732 perf_overflow_handler_t overflow_handler,
10733 void *context)
fb0459d7 10734{
fb0459d7 10735 struct perf_event_context *ctx;
c3f00c70 10736 struct perf_event *event;
fb0459d7 10737 int err;
d859e29f 10738
fb0459d7
AV
10739 /*
10740 * Get the target context (task or percpu):
10741 */
d859e29f 10742
4dc0da86 10743 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10744 overflow_handler, context, -1);
c3f00c70
PZ
10745 if (IS_ERR(event)) {
10746 err = PTR_ERR(event);
10747 goto err;
10748 }
d859e29f 10749
f8697762 10750 /* Mark owner so we could distinguish it from user events. */
63b6da39 10751 event->owner = TASK_TOMBSTONE;
f8697762 10752
4af57ef2 10753 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10754 if (IS_ERR(ctx)) {
10755 err = PTR_ERR(ctx);
c3f00c70 10756 goto err_free;
d859e29f 10757 }
fb0459d7 10758
fb0459d7
AV
10759 WARN_ON_ONCE(ctx->parent_ctx);
10760 mutex_lock(&ctx->mutex);
84c4e620
PZ
10761 if (ctx->task == TASK_TOMBSTONE) {
10762 err = -ESRCH;
10763 goto err_unlock;
10764 }
10765
a63fbed7
TG
10766 if (!task) {
10767 /*
10768 * Check if the @cpu we're creating an event for is online.
10769 *
10770 * We use the perf_cpu_context::ctx::mutex to serialize against
10771 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10772 */
10773 struct perf_cpu_context *cpuctx =
10774 container_of(ctx, struct perf_cpu_context, ctx);
10775 if (!cpuctx->online) {
10776 err = -ENODEV;
10777 goto err_unlock;
10778 }
10779 }
10780
bed5b25a 10781 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10782 err = -EBUSY;
84c4e620 10783 goto err_unlock;
bed5b25a
AS
10784 }
10785
fb0459d7 10786 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10787 perf_unpin_context(ctx);
fb0459d7
AV
10788 mutex_unlock(&ctx->mutex);
10789
fb0459d7
AV
10790 return event;
10791
84c4e620
PZ
10792err_unlock:
10793 mutex_unlock(&ctx->mutex);
10794 perf_unpin_context(ctx);
10795 put_ctx(ctx);
c3f00c70
PZ
10796err_free:
10797 free_event(event);
10798err:
c6567f64 10799 return ERR_PTR(err);
9b51f66d 10800}
fb0459d7 10801EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10802
0cda4c02
YZ
10803void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10804{
10805 struct perf_event_context *src_ctx;
10806 struct perf_event_context *dst_ctx;
10807 struct perf_event *event, *tmp;
10808 LIST_HEAD(events);
10809
10810 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10811 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10812
f63a8daa
PZ
10813 /*
10814 * See perf_event_ctx_lock() for comments on the details
10815 * of swizzling perf_event::ctx.
10816 */
10817 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10818 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10819 event_entry) {
45a0e07a 10820 perf_remove_from_context(event, 0);
9a545de0 10821 unaccount_event_cpu(event, src_cpu);
0cda4c02 10822 put_ctx(src_ctx);
9886167d 10823 list_add(&event->migrate_entry, &events);
0cda4c02 10824 }
0cda4c02 10825
8f95b435
PZI
10826 /*
10827 * Wait for the events to quiesce before re-instating them.
10828 */
0cda4c02
YZ
10829 synchronize_rcu();
10830
8f95b435
PZI
10831 /*
10832 * Re-instate events in 2 passes.
10833 *
10834 * Skip over group leaders and only install siblings on this first
10835 * pass, siblings will not get enabled without a leader, however a
10836 * leader will enable its siblings, even if those are still on the old
10837 * context.
10838 */
10839 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10840 if (event->group_leader == event)
10841 continue;
10842
10843 list_del(&event->migrate_entry);
10844 if (event->state >= PERF_EVENT_STATE_OFF)
10845 event->state = PERF_EVENT_STATE_INACTIVE;
10846 account_event_cpu(event, dst_cpu);
10847 perf_install_in_context(dst_ctx, event, dst_cpu);
10848 get_ctx(dst_ctx);
10849 }
10850
10851 /*
10852 * Once all the siblings are setup properly, install the group leaders
10853 * to make it go.
10854 */
9886167d
PZ
10855 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10856 list_del(&event->migrate_entry);
0cda4c02
YZ
10857 if (event->state >= PERF_EVENT_STATE_OFF)
10858 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10859 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10860 perf_install_in_context(dst_ctx, event, dst_cpu);
10861 get_ctx(dst_ctx);
10862 }
10863 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10864 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10865}
10866EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10867
cdd6c482 10868static void sync_child_event(struct perf_event *child_event,
38b200d6 10869 struct task_struct *child)
d859e29f 10870{
cdd6c482 10871 struct perf_event *parent_event = child_event->parent;
8bc20959 10872 u64 child_val;
d859e29f 10873
cdd6c482
IM
10874 if (child_event->attr.inherit_stat)
10875 perf_event_read_event(child_event, child);
38b200d6 10876
b5e58793 10877 child_val = perf_event_count(child_event);
d859e29f
PM
10878
10879 /*
10880 * Add back the child's count to the parent's count:
10881 */
a6e6dea6 10882 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10883 atomic64_add(child_event->total_time_enabled,
10884 &parent_event->child_total_time_enabled);
10885 atomic64_add(child_event->total_time_running,
10886 &parent_event->child_total_time_running);
d859e29f
PM
10887}
10888
9b51f66d 10889static void
8ba289b8
PZ
10890perf_event_exit_event(struct perf_event *child_event,
10891 struct perf_event_context *child_ctx,
10892 struct task_struct *child)
9b51f66d 10893{
8ba289b8
PZ
10894 struct perf_event *parent_event = child_event->parent;
10895
1903d50c
PZ
10896 /*
10897 * Do not destroy the 'original' grouping; because of the context
10898 * switch optimization the original events could've ended up in a
10899 * random child task.
10900 *
10901 * If we were to destroy the original group, all group related
10902 * operations would cease to function properly after this random
10903 * child dies.
10904 *
10905 * Do destroy all inherited groups, we don't care about those
10906 * and being thorough is better.
10907 */
32132a3d
PZ
10908 raw_spin_lock_irq(&child_ctx->lock);
10909 WARN_ON_ONCE(child_ctx->is_active);
10910
8ba289b8 10911 if (parent_event)
32132a3d
PZ
10912 perf_group_detach(child_event);
10913 list_del_event(child_event, child_ctx);
0d3d73aa 10914 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 10915 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10916
9b51f66d 10917 /*
8ba289b8 10918 * Parent events are governed by their filedesc, retain them.
9b51f66d 10919 */
8ba289b8 10920 if (!parent_event) {
179033b3 10921 perf_event_wakeup(child_event);
8ba289b8 10922 return;
4bcf349a 10923 }
8ba289b8
PZ
10924 /*
10925 * Child events can be cleaned up.
10926 */
10927
10928 sync_child_event(child_event, child);
10929
10930 /*
10931 * Remove this event from the parent's list
10932 */
10933 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10934 mutex_lock(&parent_event->child_mutex);
10935 list_del_init(&child_event->child_list);
10936 mutex_unlock(&parent_event->child_mutex);
10937
10938 /*
10939 * Kick perf_poll() for is_event_hup().
10940 */
10941 perf_event_wakeup(parent_event);
10942 free_event(child_event);
10943 put_event(parent_event);
9b51f66d
IM
10944}
10945
8dc85d54 10946static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10947{
211de6eb 10948 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10949 struct perf_event *child_event, *next;
63b6da39
PZ
10950
10951 WARN_ON_ONCE(child != current);
9b51f66d 10952
6a3351b6 10953 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10954 if (!child_ctx)
9b51f66d
IM
10955 return;
10956
ad3a37de 10957 /*
6a3351b6
PZ
10958 * In order to reduce the amount of tricky in ctx tear-down, we hold
10959 * ctx::mutex over the entire thing. This serializes against almost
10960 * everything that wants to access the ctx.
10961 *
10962 * The exception is sys_perf_event_open() /
10963 * perf_event_create_kernel_count() which does find_get_context()
10964 * without ctx::mutex (it cannot because of the move_group double mutex
10965 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10966 */
6a3351b6 10967 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10968
10969 /*
6a3351b6
PZ
10970 * In a single ctx::lock section, de-schedule the events and detach the
10971 * context from the task such that we cannot ever get it scheduled back
10972 * in.
c93f7669 10973 */
6a3351b6 10974 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10975 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10976
71a851b4 10977 /*
63b6da39
PZ
10978 * Now that the context is inactive, destroy the task <-> ctx relation
10979 * and mark the context dead.
71a851b4 10980 */
63b6da39
PZ
10981 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10982 put_ctx(child_ctx); /* cannot be last */
10983 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10984 put_task_struct(current); /* cannot be last */
4a1c0f26 10985
211de6eb 10986 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10987 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10988
211de6eb
PZ
10989 if (clone_ctx)
10990 put_ctx(clone_ctx);
4a1c0f26 10991
9f498cc5 10992 /*
cdd6c482
IM
10993 * Report the task dead after unscheduling the events so that we
10994 * won't get any samples after PERF_RECORD_EXIT. We can however still
10995 * get a few PERF_RECORD_READ events.
9f498cc5 10996 */
cdd6c482 10997 perf_event_task(child, child_ctx, 0);
a63eaf34 10998
ebf905fc 10999 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 11000 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 11001
a63eaf34
PM
11002 mutex_unlock(&child_ctx->mutex);
11003
11004 put_ctx(child_ctx);
9b51f66d
IM
11005}
11006
8dc85d54
PZ
11007/*
11008 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
11009 *
11010 * Can be called with cred_guard_mutex held when called from
11011 * install_exec_creds().
8dc85d54
PZ
11012 */
11013void perf_event_exit_task(struct task_struct *child)
11014{
8882135b 11015 struct perf_event *event, *tmp;
8dc85d54
PZ
11016 int ctxn;
11017
8882135b
PZ
11018 mutex_lock(&child->perf_event_mutex);
11019 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11020 owner_entry) {
11021 list_del_init(&event->owner_entry);
11022
11023 /*
11024 * Ensure the list deletion is visible before we clear
11025 * the owner, closes a race against perf_release() where
11026 * we need to serialize on the owner->perf_event_mutex.
11027 */
f47c02c0 11028 smp_store_release(&event->owner, NULL);
8882135b
PZ
11029 }
11030 mutex_unlock(&child->perf_event_mutex);
11031
8dc85d54
PZ
11032 for_each_task_context_nr(ctxn)
11033 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
11034
11035 /*
11036 * The perf_event_exit_task_context calls perf_event_task
11037 * with child's task_ctx, which generates EXIT events for
11038 * child contexts and sets child->perf_event_ctxp[] to NULL.
11039 * At this point we need to send EXIT events to cpu contexts.
11040 */
11041 perf_event_task(child, NULL, 0);
8dc85d54
PZ
11042}
11043
889ff015
FW
11044static void perf_free_event(struct perf_event *event,
11045 struct perf_event_context *ctx)
11046{
11047 struct perf_event *parent = event->parent;
11048
11049 if (WARN_ON_ONCE(!parent))
11050 return;
11051
11052 mutex_lock(&parent->child_mutex);
11053 list_del_init(&event->child_list);
11054 mutex_unlock(&parent->child_mutex);
11055
a6fa941d 11056 put_event(parent);
889ff015 11057
652884fe 11058 raw_spin_lock_irq(&ctx->lock);
8a49542c 11059 perf_group_detach(event);
889ff015 11060 list_del_event(event, ctx);
652884fe 11061 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
11062 free_event(event);
11063}
11064
bbbee908 11065/*
652884fe 11066 * Free an unexposed, unused context as created by inheritance by
8dc85d54 11067 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
11068 *
11069 * Not all locks are strictly required, but take them anyway to be nice and
11070 * help out with the lockdep assertions.
bbbee908 11071 */
cdd6c482 11072void perf_event_free_task(struct task_struct *task)
bbbee908 11073{
8dc85d54 11074 struct perf_event_context *ctx;
cdd6c482 11075 struct perf_event *event, *tmp;
8dc85d54 11076 int ctxn;
bbbee908 11077
8dc85d54
PZ
11078 for_each_task_context_nr(ctxn) {
11079 ctx = task->perf_event_ctxp[ctxn];
11080 if (!ctx)
11081 continue;
bbbee908 11082
8dc85d54 11083 mutex_lock(&ctx->mutex);
e552a838
PZ
11084 raw_spin_lock_irq(&ctx->lock);
11085 /*
11086 * Destroy the task <-> ctx relation and mark the context dead.
11087 *
11088 * This is important because even though the task hasn't been
11089 * exposed yet the context has been (through child_list).
11090 */
11091 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11092 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11093 put_task_struct(task); /* cannot be last */
11094 raw_spin_unlock_irq(&ctx->lock);
bbbee908 11095
15121c78 11096 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 11097 perf_free_event(event, ctx);
bbbee908 11098
8dc85d54 11099 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
11100 put_ctx(ctx);
11101 }
889ff015
FW
11102}
11103
4e231c79
PZ
11104void perf_event_delayed_put(struct task_struct *task)
11105{
11106 int ctxn;
11107
11108 for_each_task_context_nr(ctxn)
11109 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11110}
11111
e03e7ee3 11112struct file *perf_event_get(unsigned int fd)
ffe8690c 11113{
e03e7ee3 11114 struct file *file;
ffe8690c 11115
e03e7ee3
AS
11116 file = fget_raw(fd);
11117 if (!file)
11118 return ERR_PTR(-EBADF);
ffe8690c 11119
e03e7ee3
AS
11120 if (file->f_op != &perf_fops) {
11121 fput(file);
11122 return ERR_PTR(-EBADF);
11123 }
ffe8690c 11124
e03e7ee3 11125 return file;
ffe8690c
KX
11126}
11127
11128const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11129{
11130 if (!event)
11131 return ERR_PTR(-EINVAL);
11132
11133 return &event->attr;
11134}
11135
97dee4f3 11136/*
d8a8cfc7
PZ
11137 * Inherit a event from parent task to child task.
11138 *
11139 * Returns:
11140 * - valid pointer on success
11141 * - NULL for orphaned events
11142 * - IS_ERR() on error
97dee4f3
PZ
11143 */
11144static struct perf_event *
11145inherit_event(struct perf_event *parent_event,
11146 struct task_struct *parent,
11147 struct perf_event_context *parent_ctx,
11148 struct task_struct *child,
11149 struct perf_event *group_leader,
11150 struct perf_event_context *child_ctx)
11151{
8ca2bd41 11152 enum perf_event_state parent_state = parent_event->state;
97dee4f3 11153 struct perf_event *child_event;
cee010ec 11154 unsigned long flags;
97dee4f3
PZ
11155
11156 /*
11157 * Instead of creating recursive hierarchies of events,
11158 * we link inherited events back to the original parent,
11159 * which has a filp for sure, which we use as the reference
11160 * count:
11161 */
11162 if (parent_event->parent)
11163 parent_event = parent_event->parent;
11164
11165 child_event = perf_event_alloc(&parent_event->attr,
11166 parent_event->cpu,
d580ff86 11167 child,
97dee4f3 11168 group_leader, parent_event,
79dff51e 11169 NULL, NULL, -1);
97dee4f3
PZ
11170 if (IS_ERR(child_event))
11171 return child_event;
a6fa941d 11172
313ccb96
JO
11173
11174 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11175 !child_ctx->task_ctx_data) {
11176 struct pmu *pmu = child_event->pmu;
11177
11178 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11179 GFP_KERNEL);
11180 if (!child_ctx->task_ctx_data) {
11181 free_event(child_event);
11182 return NULL;
11183 }
11184 }
11185
c6e5b732
PZ
11186 /*
11187 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11188 * must be under the same lock in order to serialize against
11189 * perf_event_release_kernel(), such that either we must observe
11190 * is_orphaned_event() or they will observe us on the child_list.
11191 */
11192 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
11193 if (is_orphaned_event(parent_event) ||
11194 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 11195 mutex_unlock(&parent_event->child_mutex);
313ccb96 11196 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
11197 free_event(child_event);
11198 return NULL;
11199 }
11200
97dee4f3
PZ
11201 get_ctx(child_ctx);
11202
11203 /*
11204 * Make the child state follow the state of the parent event,
11205 * not its attr.disabled bit. We hold the parent's mutex,
11206 * so we won't race with perf_event_{en, dis}able_family.
11207 */
1929def9 11208 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
11209 child_event->state = PERF_EVENT_STATE_INACTIVE;
11210 else
11211 child_event->state = PERF_EVENT_STATE_OFF;
11212
11213 if (parent_event->attr.freq) {
11214 u64 sample_period = parent_event->hw.sample_period;
11215 struct hw_perf_event *hwc = &child_event->hw;
11216
11217 hwc->sample_period = sample_period;
11218 hwc->last_period = sample_period;
11219
11220 local64_set(&hwc->period_left, sample_period);
11221 }
11222
11223 child_event->ctx = child_ctx;
11224 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
11225 child_event->overflow_handler_context
11226 = parent_event->overflow_handler_context;
97dee4f3 11227
614b6780
TG
11228 /*
11229 * Precalculate sample_data sizes
11230 */
11231 perf_event__header_size(child_event);
6844c09d 11232 perf_event__id_header_size(child_event);
614b6780 11233
97dee4f3
PZ
11234 /*
11235 * Link it up in the child's context:
11236 */
cee010ec 11237 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 11238 add_event_to_ctx(child_event, child_ctx);
cee010ec 11239 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 11240
97dee4f3
PZ
11241 /*
11242 * Link this into the parent event's child list
11243 */
97dee4f3
PZ
11244 list_add_tail(&child_event->child_list, &parent_event->child_list);
11245 mutex_unlock(&parent_event->child_mutex);
11246
11247 return child_event;
11248}
11249
d8a8cfc7
PZ
11250/*
11251 * Inherits an event group.
11252 *
11253 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11254 * This matches with perf_event_release_kernel() removing all child events.
11255 *
11256 * Returns:
11257 * - 0 on success
11258 * - <0 on error
11259 */
97dee4f3
PZ
11260static int inherit_group(struct perf_event *parent_event,
11261 struct task_struct *parent,
11262 struct perf_event_context *parent_ctx,
11263 struct task_struct *child,
11264 struct perf_event_context *child_ctx)
11265{
11266 struct perf_event *leader;
11267 struct perf_event *sub;
11268 struct perf_event *child_ctr;
11269
11270 leader = inherit_event(parent_event, parent, parent_ctx,
11271 child, NULL, child_ctx);
11272 if (IS_ERR(leader))
11273 return PTR_ERR(leader);
d8a8cfc7
PZ
11274 /*
11275 * @leader can be NULL here because of is_orphaned_event(). In this
11276 * case inherit_event() will create individual events, similar to what
11277 * perf_group_detach() would do anyway.
11278 */
8343aae6 11279 list_for_each_entry(sub, &parent_event->sibling_list, sibling_list) {
97dee4f3
PZ
11280 child_ctr = inherit_event(sub, parent, parent_ctx,
11281 child, leader, child_ctx);
11282 if (IS_ERR(child_ctr))
11283 return PTR_ERR(child_ctr);
11284 }
11285 return 0;
889ff015
FW
11286}
11287
d8a8cfc7
PZ
11288/*
11289 * Creates the child task context and tries to inherit the event-group.
11290 *
11291 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11292 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11293 * consistent with perf_event_release_kernel() removing all child events.
11294 *
11295 * Returns:
11296 * - 0 on success
11297 * - <0 on error
11298 */
889ff015
FW
11299static int
11300inherit_task_group(struct perf_event *event, struct task_struct *parent,
11301 struct perf_event_context *parent_ctx,
8dc85d54 11302 struct task_struct *child, int ctxn,
889ff015
FW
11303 int *inherited_all)
11304{
11305 int ret;
8dc85d54 11306 struct perf_event_context *child_ctx;
889ff015
FW
11307
11308 if (!event->attr.inherit) {
11309 *inherited_all = 0;
11310 return 0;
bbbee908
PZ
11311 }
11312
fe4b04fa 11313 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
11314 if (!child_ctx) {
11315 /*
11316 * This is executed from the parent task context, so
11317 * inherit events that have been marked for cloning.
11318 * First allocate and initialize a context for the
11319 * child.
11320 */
734df5ab 11321 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
11322 if (!child_ctx)
11323 return -ENOMEM;
bbbee908 11324
8dc85d54 11325 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
11326 }
11327
11328 ret = inherit_group(event, parent, parent_ctx,
11329 child, child_ctx);
11330
11331 if (ret)
11332 *inherited_all = 0;
11333
11334 return ret;
bbbee908
PZ
11335}
11336
9b51f66d 11337/*
cdd6c482 11338 * Initialize the perf_event context in task_struct
9b51f66d 11339 */
985c8dcb 11340static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 11341{
889ff015 11342 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
11343 struct perf_event_context *cloned_ctx;
11344 struct perf_event *event;
9b51f66d 11345 struct task_struct *parent = current;
564c2b21 11346 int inherited_all = 1;
dddd3379 11347 unsigned long flags;
6ab423e0 11348 int ret = 0;
9b51f66d 11349
8dc85d54 11350 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
11351 return 0;
11352
ad3a37de 11353 /*
25346b93
PM
11354 * If the parent's context is a clone, pin it so it won't get
11355 * swapped under us.
ad3a37de 11356 */
8dc85d54 11357 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
11358 if (!parent_ctx)
11359 return 0;
25346b93 11360
ad3a37de
PM
11361 /*
11362 * No need to check if parent_ctx != NULL here; since we saw
11363 * it non-NULL earlier, the only reason for it to become NULL
11364 * is if we exit, and since we're currently in the middle of
11365 * a fork we can't be exiting at the same time.
11366 */
ad3a37de 11367
9b51f66d
IM
11368 /*
11369 * Lock the parent list. No need to lock the child - not PID
11370 * hashed yet and not running, so nobody can access it.
11371 */
d859e29f 11372 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
11373
11374 /*
11375 * We dont have to disable NMIs - we are only looking at
11376 * the list, not manipulating it:
11377 */
6e6804d2 11378 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54
PZ
11379 ret = inherit_task_group(event, parent, parent_ctx,
11380 child, ctxn, &inherited_all);
889ff015 11381 if (ret)
e7cc4865 11382 goto out_unlock;
889ff015 11383 }
b93f7978 11384
dddd3379
TG
11385 /*
11386 * We can't hold ctx->lock when iterating the ->flexible_group list due
11387 * to allocations, but we need to prevent rotation because
11388 * rotate_ctx() will change the list from interrupt context.
11389 */
11390 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11391 parent_ctx->rotate_disable = 1;
11392 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11393
6e6804d2 11394 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54
PZ
11395 ret = inherit_task_group(event, parent, parent_ctx,
11396 child, ctxn, &inherited_all);
889ff015 11397 if (ret)
e7cc4865 11398 goto out_unlock;
564c2b21
PM
11399 }
11400
dddd3379
TG
11401 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11402 parent_ctx->rotate_disable = 0;
dddd3379 11403
8dc85d54 11404 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 11405
05cbaa28 11406 if (child_ctx && inherited_all) {
564c2b21
PM
11407 /*
11408 * Mark the child context as a clone of the parent
11409 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
11410 *
11411 * Note that if the parent is a clone, the holding of
11412 * parent_ctx->lock avoids it from being uncloned.
564c2b21 11413 */
c5ed5145 11414 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
11415 if (cloned_ctx) {
11416 child_ctx->parent_ctx = cloned_ctx;
25346b93 11417 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
11418 } else {
11419 child_ctx->parent_ctx = parent_ctx;
11420 child_ctx->parent_gen = parent_ctx->generation;
11421 }
11422 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
11423 }
11424
c5ed5145 11425 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 11426out_unlock:
d859e29f 11427 mutex_unlock(&parent_ctx->mutex);
6ab423e0 11428
25346b93 11429 perf_unpin_context(parent_ctx);
fe4b04fa 11430 put_ctx(parent_ctx);
ad3a37de 11431
6ab423e0 11432 return ret;
9b51f66d
IM
11433}
11434
8dc85d54
PZ
11435/*
11436 * Initialize the perf_event context in task_struct
11437 */
11438int perf_event_init_task(struct task_struct *child)
11439{
11440 int ctxn, ret;
11441
8550d7cb
ON
11442 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11443 mutex_init(&child->perf_event_mutex);
11444 INIT_LIST_HEAD(&child->perf_event_list);
11445
8dc85d54
PZ
11446 for_each_task_context_nr(ctxn) {
11447 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
11448 if (ret) {
11449 perf_event_free_task(child);
8dc85d54 11450 return ret;
6c72e350 11451 }
8dc85d54
PZ
11452 }
11453
11454 return 0;
11455}
11456
220b140b
PM
11457static void __init perf_event_init_all_cpus(void)
11458{
b28ab83c 11459 struct swevent_htable *swhash;
220b140b 11460 int cpu;
220b140b 11461
a63fbed7
TG
11462 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11463
220b140b 11464 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11465 swhash = &per_cpu(swevent_htable, cpu);
11466 mutex_init(&swhash->hlist_mutex);
2fde4f94 11467 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11468
11469 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11470 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11471
058fe1c0
DCC
11472#ifdef CONFIG_CGROUP_PERF
11473 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11474#endif
e48c1788 11475 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11476 }
11477}
11478
a63fbed7 11479void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11480{
108b02cf 11481 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11482
b28ab83c 11483 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11484 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11485 struct swevent_hlist *hlist;
11486
b28ab83c
PZ
11487 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11488 WARN_ON(!hlist);
11489 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11490 }
b28ab83c 11491 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11492}
11493
2965faa5 11494#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11495static void __perf_event_exit_context(void *__info)
0793a61d 11496{
108b02cf 11497 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11498 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11499 struct perf_event *event;
0793a61d 11500
fae3fde6 11501 raw_spin_lock(&ctx->lock);
0ee098c9 11502 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 11503 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11504 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11505 raw_spin_unlock(&ctx->lock);
0793a61d 11506}
108b02cf
PZ
11507
11508static void perf_event_exit_cpu_context(int cpu)
11509{
a63fbed7 11510 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11511 struct perf_event_context *ctx;
11512 struct pmu *pmu;
108b02cf 11513
a63fbed7
TG
11514 mutex_lock(&pmus_lock);
11515 list_for_each_entry(pmu, &pmus, entry) {
11516 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11517 ctx = &cpuctx->ctx;
108b02cf
PZ
11518
11519 mutex_lock(&ctx->mutex);
11520 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11521 cpuctx->online = 0;
108b02cf
PZ
11522 mutex_unlock(&ctx->mutex);
11523 }
a63fbed7
TG
11524 cpumask_clear_cpu(cpu, perf_online_mask);
11525 mutex_unlock(&pmus_lock);
108b02cf 11526}
00e16c3d
TG
11527#else
11528
11529static void perf_event_exit_cpu_context(int cpu) { }
11530
11531#endif
108b02cf 11532
a63fbed7
TG
11533int perf_event_init_cpu(unsigned int cpu)
11534{
11535 struct perf_cpu_context *cpuctx;
11536 struct perf_event_context *ctx;
11537 struct pmu *pmu;
11538
11539 perf_swevent_init_cpu(cpu);
11540
11541 mutex_lock(&pmus_lock);
11542 cpumask_set_cpu(cpu, perf_online_mask);
11543 list_for_each_entry(pmu, &pmus, entry) {
11544 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11545 ctx = &cpuctx->ctx;
11546
11547 mutex_lock(&ctx->mutex);
11548 cpuctx->online = 1;
11549 mutex_unlock(&ctx->mutex);
11550 }
11551 mutex_unlock(&pmus_lock);
11552
11553 return 0;
11554}
11555
00e16c3d 11556int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11557{
e3703f8c 11558 perf_event_exit_cpu_context(cpu);
00e16c3d 11559 return 0;
0793a61d 11560}
0793a61d 11561
c277443c
PZ
11562static int
11563perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11564{
11565 int cpu;
11566
11567 for_each_online_cpu(cpu)
11568 perf_event_exit_cpu(cpu);
11569
11570 return NOTIFY_OK;
11571}
11572
11573/*
11574 * Run the perf reboot notifier at the very last possible moment so that
11575 * the generic watchdog code runs as long as possible.
11576 */
11577static struct notifier_block perf_reboot_notifier = {
11578 .notifier_call = perf_reboot,
11579 .priority = INT_MIN,
11580};
11581
cdd6c482 11582void __init perf_event_init(void)
0793a61d 11583{
3c502e7a
JW
11584 int ret;
11585
2e80a82a
PZ
11586 idr_init(&pmu_idr);
11587
220b140b 11588 perf_event_init_all_cpus();
b0a873eb 11589 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11590 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11591 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11592 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11593 perf_tp_register();
00e16c3d 11594 perf_event_init_cpu(smp_processor_id());
c277443c 11595 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11596
11597 ret = init_hw_breakpoint();
11598 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11599
b01c3a00
JO
11600 /*
11601 * Build time assertion that we keep the data_head at the intended
11602 * location. IOW, validation we got the __reserved[] size right.
11603 */
11604 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11605 != 1024);
0793a61d 11606}
abe43400 11607
fd979c01
CS
11608ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11609 char *page)
11610{
11611 struct perf_pmu_events_attr *pmu_attr =
11612 container_of(attr, struct perf_pmu_events_attr, attr);
11613
11614 if (pmu_attr->event_str)
11615 return sprintf(page, "%s\n", pmu_attr->event_str);
11616
11617 return 0;
11618}
675965b0 11619EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11620
abe43400
PZ
11621static int __init perf_event_sysfs_init(void)
11622{
11623 struct pmu *pmu;
11624 int ret;
11625
11626 mutex_lock(&pmus_lock);
11627
11628 ret = bus_register(&pmu_bus);
11629 if (ret)
11630 goto unlock;
11631
11632 list_for_each_entry(pmu, &pmus, entry) {
11633 if (!pmu->name || pmu->type < 0)
11634 continue;
11635
11636 ret = pmu_dev_alloc(pmu);
11637 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11638 }
11639 pmu_bus_running = 1;
11640 ret = 0;
11641
11642unlock:
11643 mutex_unlock(&pmus_lock);
11644
11645 return ret;
11646}
11647device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11648
11649#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11650static struct cgroup_subsys_state *
11651perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11652{
11653 struct perf_cgroup *jc;
e5d1367f 11654
1b15d055 11655 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11656 if (!jc)
11657 return ERR_PTR(-ENOMEM);
11658
e5d1367f
SE
11659 jc->info = alloc_percpu(struct perf_cgroup_info);
11660 if (!jc->info) {
11661 kfree(jc);
11662 return ERR_PTR(-ENOMEM);
11663 }
11664
e5d1367f
SE
11665 return &jc->css;
11666}
11667
eb95419b 11668static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11669{
eb95419b
TH
11670 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11671
e5d1367f
SE
11672 free_percpu(jc->info);
11673 kfree(jc);
11674}
11675
11676static int __perf_cgroup_move(void *info)
11677{
11678 struct task_struct *task = info;
ddaaf4e2 11679 rcu_read_lock();
e5d1367f 11680 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11681 rcu_read_unlock();
e5d1367f
SE
11682 return 0;
11683}
11684
1f7dd3e5 11685static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11686{
bb9d97b6 11687 struct task_struct *task;
1f7dd3e5 11688 struct cgroup_subsys_state *css;
bb9d97b6 11689
1f7dd3e5 11690 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11691 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11692}
11693
073219e9 11694struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11695 .css_alloc = perf_cgroup_css_alloc,
11696 .css_free = perf_cgroup_css_free,
bb9d97b6 11697 .attach = perf_cgroup_attach,
968ebff1
TH
11698 /*
11699 * Implicitly enable on dfl hierarchy so that perf events can
11700 * always be filtered by cgroup2 path as long as perf_event
11701 * controller is not mounted on a legacy hierarchy.
11702 */
11703 .implicit_on_dfl = true,
8cfd8147 11704 .threaded = true,
e5d1367f
SE
11705};
11706#endif /* CONFIG_CGROUP_PERF */