]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/events/core.c
tools lib traceevent: Fix buffer overflow in arg_eval
[mirror_ubuntu-jammy-kernel.git] / kernel / events / core.c
CommitLineData
8e86e015 1// SPDX-License-Identifier: GPL-2.0
0793a61d 2/*
57c0c15b 3 * Performance events core code:
0793a61d 4 *
98144511 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
2e80a82a 15#include <linux/idr.h>
04289bb9 16#include <linux/file.h>
0793a61d 17#include <linux/poll.h>
5a0e3ad6 18#include <linux/slab.h>
76e1d904 19#include <linux/hash.h>
12351ef8 20#include <linux/tick.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
39bed6cb 36#include <linux/cgroup.h>
cdd6c482 37#include <linux/perf_event.h>
af658dca 38#include <linux/trace_events.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
c464c76e 41#include <linux/module.h>
f972eb63 42#include <linux/mman.h>
b3f20785 43#include <linux/compat.h>
2541517c
AS
44#include <linux/bpf.h>
45#include <linux/filter.h>
375637bc
AS
46#include <linux/namei.h>
47#include <linux/parser.h>
e6017571 48#include <linux/sched/clock.h>
6e84f315 49#include <linux/sched/mm.h>
e4222673
HB
50#include <linux/proc_ns.h>
51#include <linux/mount.h>
0793a61d 52
76369139
FW
53#include "internal.h"
54
4e193bd4
TB
55#include <asm/irq_regs.h>
56
272325c4
PZ
57typedef int (*remote_function_f)(void *);
58
fe4b04fa 59struct remote_function_call {
e7e7ee2e 60 struct task_struct *p;
272325c4 61 remote_function_f func;
e7e7ee2e
IM
62 void *info;
63 int ret;
fe4b04fa
PZ
64};
65
66static void remote_function(void *data)
67{
68 struct remote_function_call *tfc = data;
69 struct task_struct *p = tfc->p;
70
71 if (p) {
0da4cf3e
PZ
72 /* -EAGAIN */
73 if (task_cpu(p) != smp_processor_id())
74 return;
75
76 /*
77 * Now that we're on right CPU with IRQs disabled, we can test
78 * if we hit the right task without races.
79 */
80
81 tfc->ret = -ESRCH; /* No such (running) process */
82 if (p != current)
fe4b04fa
PZ
83 return;
84 }
85
86 tfc->ret = tfc->func(tfc->info);
87}
88
89/**
90 * task_function_call - call a function on the cpu on which a task runs
91 * @p: the task to evaluate
92 * @func: the function to be called
93 * @info: the function call argument
94 *
95 * Calls the function @func when the task is currently running. This might
96 * be on the current CPU, which just calls the function directly
97 *
98 * returns: @func return value, or
99 * -ESRCH - when the process isn't running
100 * -EAGAIN - when the process moved away
101 */
102static int
272325c4 103task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
104{
105 struct remote_function_call data = {
e7e7ee2e
IM
106 .p = p,
107 .func = func,
108 .info = info,
0da4cf3e 109 .ret = -EAGAIN,
fe4b04fa 110 };
0da4cf3e 111 int ret;
fe4b04fa 112
0da4cf3e
PZ
113 do {
114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 if (!ret)
116 ret = data.ret;
117 } while (ret == -EAGAIN);
fe4b04fa 118
0da4cf3e 119 return ret;
fe4b04fa
PZ
120}
121
122/**
123 * cpu_function_call - call a function on the cpu
124 * @func: the function to be called
125 * @info: the function call argument
126 *
127 * Calls the function @func on the remote cpu.
128 *
129 * returns: @func return value or -ENXIO when the cpu is offline
130 */
272325c4 131static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
132{
133 struct remote_function_call data = {
e7e7ee2e
IM
134 .p = NULL,
135 .func = func,
136 .info = info,
137 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
138 };
139
140 smp_call_function_single(cpu, remote_function, &data, 1);
141
142 return data.ret;
143}
144
fae3fde6
PZ
145static inline struct perf_cpu_context *
146__get_cpu_context(struct perf_event_context *ctx)
147{
148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149}
150
151static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 struct perf_event_context *ctx)
0017960f 153{
fae3fde6
PZ
154 raw_spin_lock(&cpuctx->ctx.lock);
155 if (ctx)
156 raw_spin_lock(&ctx->lock);
157}
158
159static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
161{
162 if (ctx)
163 raw_spin_unlock(&ctx->lock);
164 raw_spin_unlock(&cpuctx->ctx.lock);
165}
166
63b6da39
PZ
167#define TASK_TOMBSTONE ((void *)-1L)
168
169static bool is_kernel_event(struct perf_event *event)
170{
f47c02c0 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
172}
173
39a43640
PZ
174/*
175 * On task ctx scheduling...
176 *
177 * When !ctx->nr_events a task context will not be scheduled. This means
178 * we can disable the scheduler hooks (for performance) without leaving
179 * pending task ctx state.
180 *
181 * This however results in two special cases:
182 *
183 * - removing the last event from a task ctx; this is relatively straight
184 * forward and is done in __perf_remove_from_context.
185 *
186 * - adding the first event to a task ctx; this is tricky because we cannot
187 * rely on ctx->is_active and therefore cannot use event_function_call().
188 * See perf_install_in_context().
189 *
39a43640
PZ
190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191 */
192
fae3fde6
PZ
193typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 struct perf_event_context *, void *);
195
196struct event_function_struct {
197 struct perf_event *event;
198 event_f func;
199 void *data;
200};
201
202static int event_function(void *info)
203{
204 struct event_function_struct *efs = info;
205 struct perf_event *event = efs->event;
0017960f 206 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 209 int ret = 0;
fae3fde6 210
16444645 211 lockdep_assert_irqs_disabled();
fae3fde6 212
63b6da39 213 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
214 /*
215 * Since we do the IPI call without holding ctx->lock things can have
216 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
217 */
218 if (ctx->task) {
63b6da39 219 if (ctx->task != current) {
0da4cf3e 220 ret = -ESRCH;
63b6da39
PZ
221 goto unlock;
222 }
fae3fde6 223
fae3fde6
PZ
224 /*
225 * We only use event_function_call() on established contexts,
226 * and event_function() is only ever called when active (or
227 * rather, we'll have bailed in task_function_call() or the
228 * above ctx->task != current test), therefore we must have
229 * ctx->is_active here.
230 */
231 WARN_ON_ONCE(!ctx->is_active);
232 /*
233 * And since we have ctx->is_active, cpuctx->task_ctx must
234 * match.
235 */
63b6da39
PZ
236 WARN_ON_ONCE(task_ctx != ctx);
237 } else {
238 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 239 }
63b6da39 240
fae3fde6 241 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 242unlock:
fae3fde6
PZ
243 perf_ctx_unlock(cpuctx, task_ctx);
244
63b6da39 245 return ret;
fae3fde6
PZ
246}
247
fae3fde6 248static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
249{
250 struct perf_event_context *ctx = event->ctx;
63b6da39 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
252 struct event_function_struct efs = {
253 .event = event,
254 .func = func,
255 .data = data,
256 };
0017960f 257
c97f4736
PZ
258 if (!event->parent) {
259 /*
260 * If this is a !child event, we must hold ctx::mutex to
261 * stabilize the the event->ctx relation. See
262 * perf_event_ctx_lock().
263 */
264 lockdep_assert_held(&ctx->mutex);
265 }
0017960f
PZ
266
267 if (!task) {
fae3fde6 268 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
269 return;
270 }
271
63b6da39
PZ
272 if (task == TASK_TOMBSTONE)
273 return;
274
a096309b 275again:
fae3fde6 276 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
277 return;
278
279 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
280 /*
281 * Reload the task pointer, it might have been changed by
282 * a concurrent perf_event_context_sched_out().
283 */
284 task = ctx->task;
a096309b
PZ
285 if (task == TASK_TOMBSTONE) {
286 raw_spin_unlock_irq(&ctx->lock);
287 return;
0017960f 288 }
a096309b
PZ
289 if (ctx->is_active) {
290 raw_spin_unlock_irq(&ctx->lock);
291 goto again;
292 }
293 func(event, NULL, ctx, data);
0017960f
PZ
294 raw_spin_unlock_irq(&ctx->lock);
295}
296
cca20946
PZ
297/*
298 * Similar to event_function_call() + event_function(), but hard assumes IRQs
299 * are already disabled and we're on the right CPU.
300 */
301static void event_function_local(struct perf_event *event, event_f func, void *data)
302{
303 struct perf_event_context *ctx = event->ctx;
304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 struct task_struct *task = READ_ONCE(ctx->task);
306 struct perf_event_context *task_ctx = NULL;
307
16444645 308 lockdep_assert_irqs_disabled();
cca20946
PZ
309
310 if (task) {
311 if (task == TASK_TOMBSTONE)
312 return;
313
314 task_ctx = ctx;
315 }
316
317 perf_ctx_lock(cpuctx, task_ctx);
318
319 task = ctx->task;
320 if (task == TASK_TOMBSTONE)
321 goto unlock;
322
323 if (task) {
324 /*
325 * We must be either inactive or active and the right task,
326 * otherwise we're screwed, since we cannot IPI to somewhere
327 * else.
328 */
329 if (ctx->is_active) {
330 if (WARN_ON_ONCE(task != current))
331 goto unlock;
332
333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 goto unlock;
335 }
336 } else {
337 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 }
339
340 func(event, cpuctx, ctx, data);
341unlock:
342 perf_ctx_unlock(cpuctx, task_ctx);
343}
344
e5d1367f
SE
345#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
347 PERF_FLAG_PID_CGROUP |\
348 PERF_FLAG_FD_CLOEXEC)
e5d1367f 349
bce38cd5
SE
350/*
351 * branch priv levels that need permission checks
352 */
353#define PERF_SAMPLE_BRANCH_PERM_PLM \
354 (PERF_SAMPLE_BRANCH_KERNEL |\
355 PERF_SAMPLE_BRANCH_HV)
356
0b3fcf17
SE
357enum event_type_t {
358 EVENT_FLEXIBLE = 0x1,
359 EVENT_PINNED = 0x2,
3cbaa590 360 EVENT_TIME = 0x4,
487f05e1
AS
361 /* see ctx_resched() for details */
362 EVENT_CPU = 0x8,
0b3fcf17
SE
363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364};
365
e5d1367f
SE
366/*
367 * perf_sched_events : >0 events exist
368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369 */
9107c89e
PZ
370
371static void perf_sched_delayed(struct work_struct *work);
372DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374static DEFINE_MUTEX(perf_sched_mutex);
375static atomic_t perf_sched_count;
376
e5d1367f 377static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 378static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 379static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 380
cdd6c482
IM
381static atomic_t nr_mmap_events __read_mostly;
382static atomic_t nr_comm_events __read_mostly;
e4222673 383static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 384static atomic_t nr_task_events __read_mostly;
948b26b6 385static atomic_t nr_freq_events __read_mostly;
45ac1403 386static atomic_t nr_switch_events __read_mostly;
76193a94 387static atomic_t nr_ksymbol_events __read_mostly;
6ee52e2a 388static atomic_t nr_bpf_events __read_mostly;
9ee318a7 389
108b02cf
PZ
390static LIST_HEAD(pmus);
391static DEFINE_MUTEX(pmus_lock);
392static struct srcu_struct pmus_srcu;
a63fbed7 393static cpumask_var_t perf_online_mask;
108b02cf 394
0764771d 395/*
cdd6c482 396 * perf event paranoia level:
0fbdea19
IM
397 * -1 - not paranoid at all
398 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 399 * 1 - disallow cpu events for unpriv
0fbdea19 400 * 2 - disallow kernel profiling for unpriv
0764771d 401 */
0161028b 402int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 403
20443384
FW
404/* Minimum for 512 kiB + 1 user control page */
405int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
406
407/*
cdd6c482 408 * max perf event sample rate
df58ab24 409 */
14c63f17
DH
410#define DEFAULT_MAX_SAMPLE_RATE 100000
411#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412#define DEFAULT_CPU_TIME_MAX_PERCENT 25
413
414int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
418
d9494cb4
PZ
419static int perf_sample_allowed_ns __read_mostly =
420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 421
18ab2cd3 422static void update_perf_cpu_limits(void)
14c63f17
DH
423{
424 u64 tmp = perf_sample_period_ns;
425
426 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
427 tmp = div_u64(tmp, 100);
428 if (!tmp)
429 tmp = 1;
430
431 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 432}
163ec435 433
8d5bce0c 434static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
9e630205 435
163ec435
PZ
436int perf_proc_update_handler(struct ctl_table *table, int write,
437 void __user *buffer, size_t *lenp,
438 loff_t *ppos)
439{
1a51c5da
SE
440 int ret;
441 int perf_cpu = sysctl_perf_cpu_time_max_percent;
ab7fdefb
KL
442 /*
443 * If throttling is disabled don't allow the write:
444 */
1a51c5da 445 if (write && (perf_cpu == 100 || perf_cpu == 0))
ab7fdefb
KL
446 return -EINVAL;
447
1a51c5da
SE
448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 if (ret || !write)
450 return ret;
451
163ec435 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 update_perf_cpu_limits();
455
456 return 0;
457}
458
459int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 void __user *buffer, size_t *lenp,
463 loff_t *ppos)
464{
1572e45a 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
466
467 if (ret || !write)
468 return ret;
469
b303e7c1
PZ
470 if (sysctl_perf_cpu_time_max_percent == 100 ||
471 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
472 printk(KERN_WARNING
473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 WRITE_ONCE(perf_sample_allowed_ns, 0);
475 } else {
476 update_perf_cpu_limits();
477 }
163ec435
PZ
478
479 return 0;
480}
1ccd1549 481
14c63f17
DH
482/*
483 * perf samples are done in some very critical code paths (NMIs).
484 * If they take too much CPU time, the system can lock up and not
485 * get any real work done. This will drop the sample rate when
486 * we detect that events are taking too long.
487 */
488#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 489static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 490
91a612ee
PZ
491static u64 __report_avg;
492static u64 __report_allowed;
493
6a02ad66 494static void perf_duration_warn(struct irq_work *w)
14c63f17 495{
0d87d7ec 496 printk_ratelimited(KERN_INFO
91a612ee
PZ
497 "perf: interrupt took too long (%lld > %lld), lowering "
498 "kernel.perf_event_max_sample_rate to %d\n",
499 __report_avg, __report_allowed,
500 sysctl_perf_event_sample_rate);
6a02ad66
PZ
501}
502
503static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505void perf_sample_event_took(u64 sample_len_ns)
506{
91a612ee
PZ
507 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 u64 running_len;
509 u64 avg_len;
510 u32 max;
14c63f17 511
91a612ee 512 if (max_len == 0)
14c63f17
DH
513 return;
514
91a612ee
PZ
515 /* Decay the counter by 1 average sample. */
516 running_len = __this_cpu_read(running_sample_length);
517 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 running_len += sample_len_ns;
519 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
520
521 /*
91a612ee
PZ
522 * Note: this will be biased artifically low until we have
523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
524 * from having to maintain a count.
525 */
91a612ee
PZ
526 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 if (avg_len <= max_len)
14c63f17
DH
528 return;
529
91a612ee
PZ
530 __report_avg = avg_len;
531 __report_allowed = max_len;
14c63f17 532
91a612ee
PZ
533 /*
534 * Compute a throttle threshold 25% below the current duration.
535 */
536 avg_len += avg_len / 4;
537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 if (avg_len < max)
539 max /= (u32)avg_len;
540 else
541 max = 1;
14c63f17 542
91a612ee
PZ
543 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 WRITE_ONCE(max_samples_per_tick, max);
545
546 sysctl_perf_event_sample_rate = max * HZ;
547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 548
cd578abb 549 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 551 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 552 __report_avg, __report_allowed,
cd578abb
PZ
553 sysctl_perf_event_sample_rate);
554 }
14c63f17
DH
555}
556
cdd6c482 557static atomic64_t perf_event_id;
a96bbc16 558
0b3fcf17
SE
559static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 enum event_type_t event_type);
561
562static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
563 enum event_type_t event_type,
564 struct task_struct *task);
565
566static void update_context_time(struct perf_event_context *ctx);
567static u64 perf_event_time(struct perf_event *event);
0b3fcf17 568
cdd6c482 569void __weak perf_event_print_debug(void) { }
0793a61d 570
84c79910 571extern __weak const char *perf_pmu_name(void)
0793a61d 572{
84c79910 573 return "pmu";
0793a61d
TG
574}
575
0b3fcf17
SE
576static inline u64 perf_clock(void)
577{
578 return local_clock();
579}
580
34f43927
PZ
581static inline u64 perf_event_clock(struct perf_event *event)
582{
583 return event->clock();
584}
585
0d3d73aa
PZ
586/*
587 * State based event timekeeping...
588 *
589 * The basic idea is to use event->state to determine which (if any) time
590 * fields to increment with the current delta. This means we only need to
591 * update timestamps when we change state or when they are explicitly requested
592 * (read).
593 *
594 * Event groups make things a little more complicated, but not terribly so. The
595 * rules for a group are that if the group leader is OFF the entire group is
596 * OFF, irrespecive of what the group member states are. This results in
597 * __perf_effective_state().
598 *
599 * A futher ramification is that when a group leader flips between OFF and
600 * !OFF, we need to update all group member times.
601 *
602 *
603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604 * need to make sure the relevant context time is updated before we try and
605 * update our timestamps.
606 */
607
608static __always_inline enum perf_event_state
609__perf_effective_state(struct perf_event *event)
610{
611 struct perf_event *leader = event->group_leader;
612
613 if (leader->state <= PERF_EVENT_STATE_OFF)
614 return leader->state;
615
616 return event->state;
617}
618
619static __always_inline void
620__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621{
622 enum perf_event_state state = __perf_effective_state(event);
623 u64 delta = now - event->tstamp;
624
625 *enabled = event->total_time_enabled;
626 if (state >= PERF_EVENT_STATE_INACTIVE)
627 *enabled += delta;
628
629 *running = event->total_time_running;
630 if (state >= PERF_EVENT_STATE_ACTIVE)
631 *running += delta;
632}
633
634static void perf_event_update_time(struct perf_event *event)
635{
636 u64 now = perf_event_time(event);
637
638 __perf_update_times(event, now, &event->total_time_enabled,
639 &event->total_time_running);
640 event->tstamp = now;
641}
642
643static void perf_event_update_sibling_time(struct perf_event *leader)
644{
645 struct perf_event *sibling;
646
edb39592 647 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
648 perf_event_update_time(sibling);
649}
650
651static void
652perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653{
654 if (event->state == state)
655 return;
656
657 perf_event_update_time(event);
658 /*
659 * If a group leader gets enabled/disabled all its siblings
660 * are affected too.
661 */
662 if ((event->state < 0) ^ (state < 0))
663 perf_event_update_sibling_time(event);
664
665 WRITE_ONCE(event->state, state);
666}
667
e5d1367f
SE
668#ifdef CONFIG_CGROUP_PERF
669
e5d1367f
SE
670static inline bool
671perf_cgroup_match(struct perf_event *event)
672{
673 struct perf_event_context *ctx = event->ctx;
674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
ef824fa1
TH
676 /* @event doesn't care about cgroup */
677 if (!event->cgrp)
678 return true;
679
680 /* wants specific cgroup scope but @cpuctx isn't associated with any */
681 if (!cpuctx->cgrp)
682 return false;
683
684 /*
685 * Cgroup scoping is recursive. An event enabled for a cgroup is
686 * also enabled for all its descendant cgroups. If @cpuctx's
687 * cgroup is a descendant of @event's (the test covers identity
688 * case), it's a match.
689 */
690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 event->cgrp->css.cgroup);
e5d1367f
SE
692}
693
e5d1367f
SE
694static inline void perf_detach_cgroup(struct perf_event *event)
695{
4e2ba650 696 css_put(&event->cgrp->css);
e5d1367f
SE
697 event->cgrp = NULL;
698}
699
700static inline int is_cgroup_event(struct perf_event *event)
701{
702 return event->cgrp != NULL;
703}
704
705static inline u64 perf_cgroup_event_time(struct perf_event *event)
706{
707 struct perf_cgroup_info *t;
708
709 t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 return t->time;
711}
712
713static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714{
715 struct perf_cgroup_info *info;
716 u64 now;
717
718 now = perf_clock();
719
720 info = this_cpu_ptr(cgrp->info);
721
722 info->time += now - info->timestamp;
723 info->timestamp = now;
724}
725
726static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727{
c917e0f2
SL
728 struct perf_cgroup *cgrp = cpuctx->cgrp;
729 struct cgroup_subsys_state *css;
730
731 if (cgrp) {
732 for (css = &cgrp->css; css; css = css->parent) {
733 cgrp = container_of(css, struct perf_cgroup, css);
734 __update_cgrp_time(cgrp);
735 }
736 }
e5d1367f
SE
737}
738
739static inline void update_cgrp_time_from_event(struct perf_event *event)
740{
3f7cce3c
SE
741 struct perf_cgroup *cgrp;
742
e5d1367f 743 /*
3f7cce3c
SE
744 * ensure we access cgroup data only when needed and
745 * when we know the cgroup is pinned (css_get)
e5d1367f 746 */
3f7cce3c 747 if (!is_cgroup_event(event))
e5d1367f
SE
748 return;
749
614e4c4e 750 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
751 /*
752 * Do not update time when cgroup is not active
753 */
28fa741c 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 755 __update_cgrp_time(event->cgrp);
e5d1367f
SE
756}
757
758static inline void
3f7cce3c
SE
759perf_cgroup_set_timestamp(struct task_struct *task,
760 struct perf_event_context *ctx)
e5d1367f
SE
761{
762 struct perf_cgroup *cgrp;
763 struct perf_cgroup_info *info;
c917e0f2 764 struct cgroup_subsys_state *css;
e5d1367f 765
3f7cce3c
SE
766 /*
767 * ctx->lock held by caller
768 * ensure we do not access cgroup data
769 * unless we have the cgroup pinned (css_get)
770 */
771 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
772 return;
773
614e4c4e 774 cgrp = perf_cgroup_from_task(task, ctx);
c917e0f2
SL
775
776 for (css = &cgrp->css; css; css = css->parent) {
777 cgrp = container_of(css, struct perf_cgroup, css);
778 info = this_cpu_ptr(cgrp->info);
779 info->timestamp = ctx->timestamp;
780 }
e5d1367f
SE
781}
782
058fe1c0
DCC
783static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
e5d1367f
SE
785#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
786#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
787
788/*
789 * reschedule events based on the cgroup constraint of task.
790 *
791 * mode SWOUT : schedule out everything
792 * mode SWIN : schedule in based on cgroup for next
793 */
18ab2cd3 794static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
795{
796 struct perf_cpu_context *cpuctx;
058fe1c0 797 struct list_head *list;
e5d1367f
SE
798 unsigned long flags;
799
800 /*
058fe1c0
DCC
801 * Disable interrupts and preemption to avoid this CPU's
802 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
803 */
804 local_irq_save(flags);
805
058fe1c0
DCC
806 list = this_cpu_ptr(&cgrp_cpuctx_list);
807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 809
058fe1c0
DCC
810 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 812
058fe1c0
DCC
813 if (mode & PERF_CGROUP_SWOUT) {
814 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 /*
816 * must not be done before ctxswout due
817 * to event_filter_match() in event_sched_out()
818 */
819 cpuctx->cgrp = NULL;
820 }
e5d1367f 821
058fe1c0
DCC
822 if (mode & PERF_CGROUP_SWIN) {
823 WARN_ON_ONCE(cpuctx->cgrp);
824 /*
825 * set cgrp before ctxsw in to allow
826 * event_filter_match() to not have to pass
827 * task around
828 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 * because cgorup events are only per-cpu
830 */
831 cpuctx->cgrp = perf_cgroup_from_task(task,
832 &cpuctx->ctx);
833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 834 }
058fe1c0
DCC
835 perf_pmu_enable(cpuctx->ctx.pmu);
836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
837 }
838
e5d1367f
SE
839 local_irq_restore(flags);
840}
841
a8d757ef
SE
842static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
e5d1367f 844{
a8d757ef
SE
845 struct perf_cgroup *cgrp1;
846 struct perf_cgroup *cgrp2 = NULL;
847
ddaaf4e2 848 rcu_read_lock();
a8d757ef
SE
849 /*
850 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
851 * we do not need to pass the ctx here because we know
852 * we are holding the rcu lock
a8d757ef 853 */
614e4c4e 854 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 855 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
856
857 /*
858 * only schedule out current cgroup events if we know
859 * that we are switching to a different cgroup. Otherwise,
860 * do no touch the cgroup events.
861 */
862 if (cgrp1 != cgrp2)
863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
864
865 rcu_read_unlock();
e5d1367f
SE
866}
867
a8d757ef
SE
868static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 struct task_struct *task)
e5d1367f 870{
a8d757ef
SE
871 struct perf_cgroup *cgrp1;
872 struct perf_cgroup *cgrp2 = NULL;
873
ddaaf4e2 874 rcu_read_lock();
a8d757ef
SE
875 /*
876 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
877 * we do not need to pass the ctx here because we know
878 * we are holding the rcu lock
a8d757ef 879 */
614e4c4e 880 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 881 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
882
883 /*
884 * only need to schedule in cgroup events if we are changing
885 * cgroup during ctxsw. Cgroup events were not scheduled
886 * out of ctxsw out if that was not the case.
887 */
888 if (cgrp1 != cgrp2)
889 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
890
891 rcu_read_unlock();
e5d1367f
SE
892}
893
894static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 struct perf_event_attr *attr,
896 struct perf_event *group_leader)
897{
898 struct perf_cgroup *cgrp;
899 struct cgroup_subsys_state *css;
2903ff01
AV
900 struct fd f = fdget(fd);
901 int ret = 0;
e5d1367f 902
2903ff01 903 if (!f.file)
e5d1367f
SE
904 return -EBADF;
905
b583043e 906 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 907 &perf_event_cgrp_subsys);
3db272c0
LZ
908 if (IS_ERR(css)) {
909 ret = PTR_ERR(css);
910 goto out;
911 }
e5d1367f
SE
912
913 cgrp = container_of(css, struct perf_cgroup, css);
914 event->cgrp = cgrp;
915
916 /*
917 * all events in a group must monitor
918 * the same cgroup because a task belongs
919 * to only one perf cgroup at a time
920 */
921 if (group_leader && group_leader->cgrp != cgrp) {
922 perf_detach_cgroup(event);
923 ret = -EINVAL;
e5d1367f 924 }
3db272c0 925out:
2903ff01 926 fdput(f);
e5d1367f
SE
927 return ret;
928}
929
930static inline void
931perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932{
933 struct perf_cgroup_info *t;
934 t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 event->shadow_ctx_time = now - t->timestamp;
936}
937
db4a8356
DCC
938/*
939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940 * cleared when last cgroup event is removed.
941 */
942static inline void
943list_update_cgroup_event(struct perf_event *event,
944 struct perf_event_context *ctx, bool add)
945{
946 struct perf_cpu_context *cpuctx;
058fe1c0 947 struct list_head *cpuctx_entry;
db4a8356
DCC
948
949 if (!is_cgroup_event(event))
950 return;
951
db4a8356
DCC
952 /*
953 * Because cgroup events are always per-cpu events,
954 * this will always be called from the right CPU.
955 */
956 cpuctx = __get_cpu_context(ctx);
33801b94 957
958 /*
959 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 * matching the event's cgroup, we must do this for every new event,
961 * because if the first would mismatch, the second would not try again
962 * and we would leave cpuctx->cgrp unset.
963 */
964 if (add && !cpuctx->cgrp) {
be96b316
TH
965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
be96b316
TH
967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 cpuctx->cgrp = cgrp;
058fe1c0 969 }
33801b94 970
971 if (add && ctx->nr_cgroups++)
972 return;
973 else if (!add && --ctx->nr_cgroups)
974 return;
975
976 /* no cgroup running */
977 if (!add)
978 cpuctx->cgrp = NULL;
979
980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 if (add)
982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 else
984 list_del(cpuctx_entry);
db4a8356
DCC
985}
986
e5d1367f
SE
987#else /* !CONFIG_CGROUP_PERF */
988
989static inline bool
990perf_cgroup_match(struct perf_event *event)
991{
992 return true;
993}
994
995static inline void perf_detach_cgroup(struct perf_event *event)
996{}
997
998static inline int is_cgroup_event(struct perf_event *event)
999{
1000 return 0;
1001}
1002
e5d1367f
SE
1003static inline void update_cgrp_time_from_event(struct perf_event *event)
1004{
1005}
1006
1007static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008{
1009}
1010
a8d757ef
SE
1011static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 struct task_struct *next)
e5d1367f
SE
1013{
1014}
1015
a8d757ef
SE
1016static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 struct task_struct *task)
e5d1367f
SE
1018{
1019}
1020
1021static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 struct perf_event_attr *attr,
1023 struct perf_event *group_leader)
1024{
1025 return -EINVAL;
1026}
1027
1028static inline void
3f7cce3c
SE
1029perf_cgroup_set_timestamp(struct task_struct *task,
1030 struct perf_event_context *ctx)
e5d1367f
SE
1031{
1032}
1033
1034void
1035perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036{
1037}
1038
1039static inline void
1040perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041{
1042}
1043
1044static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045{
1046 return 0;
1047}
1048
db4a8356
DCC
1049static inline void
1050list_update_cgroup_event(struct perf_event *event,
1051 struct perf_event_context *ctx, bool add)
1052{
1053}
1054
e5d1367f
SE
1055#endif
1056
9e630205
SE
1057/*
1058 * set default to be dependent on timer tick just
1059 * like original code
1060 */
1061#define PERF_CPU_HRTIMER (1000 / HZ)
1062/*
8a1115ff 1063 * function must be called with interrupts disabled
9e630205 1064 */
272325c4 1065static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1066{
1067 struct perf_cpu_context *cpuctx;
8d5bce0c 1068 bool rotations;
9e630205 1069
16444645 1070 lockdep_assert_irqs_disabled();
9e630205
SE
1071
1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1073 rotations = perf_rotate_context(cpuctx);
1074
4cfafd30
PZ
1075 raw_spin_lock(&cpuctx->hrtimer_lock);
1076 if (rotations)
9e630205 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1078 else
1079 cpuctx->hrtimer_active = 0;
1080 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1081
4cfafd30 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1083}
1084
272325c4 1085static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1086{
272325c4 1087 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1088 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1089 u64 interval;
9e630205
SE
1090
1091 /* no multiplexing needed for SW PMU */
1092 if (pmu->task_ctx_nr == perf_sw_context)
1093 return;
1094
62b85639
SE
1095 /*
1096 * check default is sane, if not set then force to
1097 * default interval (1/tick)
1098 */
272325c4
PZ
1099 interval = pmu->hrtimer_interval_ms;
1100 if (interval < 1)
1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1102
272325c4 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1104
4cfafd30
PZ
1105 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1107 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1108}
1109
272325c4 1110static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1111{
272325c4 1112 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1113 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1114 unsigned long flags;
9e630205
SE
1115
1116 /* not for SW PMU */
1117 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1118 return 0;
9e630205 1119
4cfafd30
PZ
1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 if (!cpuctx->hrtimer_active) {
1122 cpuctx->hrtimer_active = 1;
1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125 }
1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1127
272325c4 1128 return 0;
9e630205
SE
1129}
1130
33696fc0 1131void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1132{
33696fc0
PZ
1133 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 if (!(*count)++)
1135 pmu->pmu_disable(pmu);
9e35ad38 1136}
9e35ad38 1137
33696fc0 1138void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1139{
33696fc0
PZ
1140 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 if (!--(*count))
1142 pmu->pmu_enable(pmu);
9e35ad38 1143}
9e35ad38 1144
2fde4f94 1145static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1146
1147/*
2fde4f94
MR
1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149 * perf_event_task_tick() are fully serialized because they're strictly cpu
1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1152 */
2fde4f94 1153static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1154{
2fde4f94 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1156
16444645 1157 lockdep_assert_irqs_disabled();
b5ab4cd5 1158
2fde4f94
MR
1159 WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161 list_add(&ctx->active_ctx_list, head);
1162}
1163
1164static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165{
16444645 1166 lockdep_assert_irqs_disabled();
2fde4f94
MR
1167
1168 WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170 list_del_init(&ctx->active_ctx_list);
9e35ad38 1171}
9e35ad38 1172
cdd6c482 1173static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1174{
8c94abbb 1175 refcount_inc(&ctx->refcount);
a63eaf34
PM
1176}
1177
4af57ef2
YZ
1178static void free_ctx(struct rcu_head *head)
1179{
1180 struct perf_event_context *ctx;
1181
1182 ctx = container_of(head, struct perf_event_context, rcu_head);
1183 kfree(ctx->task_ctx_data);
1184 kfree(ctx);
1185}
1186
cdd6c482 1187static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1188{
8c94abbb 1189 if (refcount_dec_and_test(&ctx->refcount)) {
564c2b21
PM
1190 if (ctx->parent_ctx)
1191 put_ctx(ctx->parent_ctx);
63b6da39 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1193 put_task_struct(ctx->task);
4af57ef2 1194 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1195 }
a63eaf34
PM
1196}
1197
f63a8daa
PZ
1198/*
1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200 * perf_pmu_migrate_context() we need some magic.
1201 *
1202 * Those places that change perf_event::ctx will hold both
1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204 *
8b10c5e2
PZ
1205 * Lock ordering is by mutex address. There are two other sites where
1206 * perf_event_context::mutex nests and those are:
1207 *
1208 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1209 * perf_event_exit_event()
1210 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1211 *
1212 * - perf_event_init_context() [ parent, 0 ]
1213 * inherit_task_group()
1214 * inherit_group()
1215 * inherit_event()
1216 * perf_event_alloc()
1217 * perf_init_event()
1218 * perf_try_init_event() [ child , 1 ]
1219 *
1220 * While it appears there is an obvious deadlock here -- the parent and child
1221 * nesting levels are inverted between the two. This is in fact safe because
1222 * life-time rules separate them. That is an exiting task cannot fork, and a
1223 * spawning task cannot (yet) exit.
1224 *
1225 * But remember that that these are parent<->child context relations, and
1226 * migration does not affect children, therefore these two orderings should not
1227 * interact.
f63a8daa
PZ
1228 *
1229 * The change in perf_event::ctx does not affect children (as claimed above)
1230 * because the sys_perf_event_open() case will install a new event and break
1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232 * concerned with cpuctx and that doesn't have children.
1233 *
1234 * The places that change perf_event::ctx will issue:
1235 *
1236 * perf_remove_from_context();
1237 * synchronize_rcu();
1238 * perf_install_in_context();
1239 *
1240 * to affect the change. The remove_from_context() + synchronize_rcu() should
1241 * quiesce the event, after which we can install it in the new location. This
1242 * means that only external vectors (perf_fops, prctl) can perturb the event
1243 * while in transit. Therefore all such accessors should also acquire
1244 * perf_event_context::mutex to serialize against this.
1245 *
1246 * However; because event->ctx can change while we're waiting to acquire
1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248 * function.
1249 *
1250 * Lock order:
79c9ce57 1251 * cred_guard_mutex
f63a8daa
PZ
1252 * task_struct::perf_event_mutex
1253 * perf_event_context::mutex
f63a8daa 1254 * perf_event::child_mutex;
07c4a776 1255 * perf_event_context::lock
f63a8daa
PZ
1256 * perf_event::mmap_mutex
1257 * mmap_sem
18736eef 1258 * perf_addr_filters_head::lock
82d94856
PZ
1259 *
1260 * cpu_hotplug_lock
1261 * pmus_lock
1262 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1263 */
a83fe28e
PZ
1264static struct perf_event_context *
1265perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1266{
1267 struct perf_event_context *ctx;
1268
1269again:
1270 rcu_read_lock();
6aa7de05 1271 ctx = READ_ONCE(event->ctx);
8c94abbb 1272 if (!refcount_inc_not_zero(&ctx->refcount)) {
f63a8daa
PZ
1273 rcu_read_unlock();
1274 goto again;
1275 }
1276 rcu_read_unlock();
1277
a83fe28e 1278 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1279 if (event->ctx != ctx) {
1280 mutex_unlock(&ctx->mutex);
1281 put_ctx(ctx);
1282 goto again;
1283 }
1284
1285 return ctx;
1286}
1287
a83fe28e
PZ
1288static inline struct perf_event_context *
1289perf_event_ctx_lock(struct perf_event *event)
1290{
1291 return perf_event_ctx_lock_nested(event, 0);
1292}
1293
f63a8daa
PZ
1294static void perf_event_ctx_unlock(struct perf_event *event,
1295 struct perf_event_context *ctx)
1296{
1297 mutex_unlock(&ctx->mutex);
1298 put_ctx(ctx);
1299}
1300
211de6eb
PZ
1301/*
1302 * This must be done under the ctx->lock, such as to serialize against
1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304 * calling scheduler related locks and ctx->lock nests inside those.
1305 */
1306static __must_check struct perf_event_context *
1307unclone_ctx(struct perf_event_context *ctx)
71a851b4 1308{
211de6eb
PZ
1309 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311 lockdep_assert_held(&ctx->lock);
1312
1313 if (parent_ctx)
71a851b4 1314 ctx->parent_ctx = NULL;
5a3126d4 1315 ctx->generation++;
211de6eb
PZ
1316
1317 return parent_ctx;
71a851b4
PZ
1318}
1319
1d953111
ON
1320static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 enum pid_type type)
6844c09d 1322{
1d953111 1323 u32 nr;
6844c09d
ACM
1324 /*
1325 * only top level events have the pid namespace they were created in
1326 */
1327 if (event->parent)
1328 event = event->parent;
1329
1d953111
ON
1330 nr = __task_pid_nr_ns(p, type, event->ns);
1331 /* avoid -1 if it is idle thread or runs in another ns */
1332 if (!nr && !pid_alive(p))
1333 nr = -1;
1334 return nr;
6844c09d
ACM
1335}
1336
1d953111 1337static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1338{
6883f81a 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1d953111 1340}
6844c09d 1341
1d953111
ON
1342static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343{
1344 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1345}
1346
7f453c24 1347/*
cdd6c482 1348 * If we inherit events we want to return the parent event id
7f453c24
PZ
1349 * to userspace.
1350 */
cdd6c482 1351static u64 primary_event_id(struct perf_event *event)
7f453c24 1352{
cdd6c482 1353 u64 id = event->id;
7f453c24 1354
cdd6c482
IM
1355 if (event->parent)
1356 id = event->parent->id;
7f453c24
PZ
1357
1358 return id;
1359}
1360
25346b93 1361/*
cdd6c482 1362 * Get the perf_event_context for a task and lock it.
63b6da39 1363 *
25346b93
PM
1364 * This has to cope with with the fact that until it is locked,
1365 * the context could get moved to another task.
1366 */
cdd6c482 1367static struct perf_event_context *
8dc85d54 1368perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1369{
cdd6c482 1370 struct perf_event_context *ctx;
25346b93 1371
9ed6060d 1372retry:
058ebd0e
PZ
1373 /*
1374 * One of the few rules of preemptible RCU is that one cannot do
1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1376 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1377 * rcu_read_unlock_special().
1378 *
1379 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1380 * side critical section has interrupts disabled.
058ebd0e 1381 */
2fd59077 1382 local_irq_save(*flags);
058ebd0e 1383 rcu_read_lock();
8dc85d54 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1385 if (ctx) {
1386 /*
1387 * If this context is a clone of another, it might
1388 * get swapped for another underneath us by
cdd6c482 1389 * perf_event_task_sched_out, though the
25346b93
PM
1390 * rcu_read_lock() protects us from any context
1391 * getting freed. Lock the context and check if it
1392 * got swapped before we could get the lock, and retry
1393 * if so. If we locked the right context, then it
1394 * can't get swapped on us any more.
1395 */
2fd59077 1396 raw_spin_lock(&ctx->lock);
8dc85d54 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1398 raw_spin_unlock(&ctx->lock);
058ebd0e 1399 rcu_read_unlock();
2fd59077 1400 local_irq_restore(*flags);
25346b93
PM
1401 goto retry;
1402 }
b49a9e7e 1403
63b6da39 1404 if (ctx->task == TASK_TOMBSTONE ||
8c94abbb 1405 !refcount_inc_not_zero(&ctx->refcount)) {
2fd59077 1406 raw_spin_unlock(&ctx->lock);
b49a9e7e 1407 ctx = NULL;
828b6f0e
PZ
1408 } else {
1409 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1410 }
25346b93
PM
1411 }
1412 rcu_read_unlock();
2fd59077
PM
1413 if (!ctx)
1414 local_irq_restore(*flags);
25346b93
PM
1415 return ctx;
1416}
1417
1418/*
1419 * Get the context for a task and increment its pin_count so it
1420 * can't get swapped to another task. This also increments its
1421 * reference count so that the context can't get freed.
1422 */
8dc85d54
PZ
1423static struct perf_event_context *
1424perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1425{
cdd6c482 1426 struct perf_event_context *ctx;
25346b93
PM
1427 unsigned long flags;
1428
8dc85d54 1429 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1430 if (ctx) {
1431 ++ctx->pin_count;
e625cce1 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1433 }
1434 return ctx;
1435}
1436
cdd6c482 1437static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1438{
1439 unsigned long flags;
1440
e625cce1 1441 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1442 --ctx->pin_count;
e625cce1 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1444}
1445
f67218c3
PZ
1446/*
1447 * Update the record of the current time in a context.
1448 */
1449static void update_context_time(struct perf_event_context *ctx)
1450{
1451 u64 now = perf_clock();
1452
1453 ctx->time += now - ctx->timestamp;
1454 ctx->timestamp = now;
1455}
1456
4158755d
SE
1457static u64 perf_event_time(struct perf_event *event)
1458{
1459 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1460
1461 if (is_cgroup_event(event))
1462 return perf_cgroup_event_time(event);
1463
4158755d
SE
1464 return ctx ? ctx->time : 0;
1465}
1466
487f05e1
AS
1467static enum event_type_t get_event_type(struct perf_event *event)
1468{
1469 struct perf_event_context *ctx = event->ctx;
1470 enum event_type_t event_type;
1471
1472 lockdep_assert_held(&ctx->lock);
1473
3bda69c1
AS
1474 /*
1475 * It's 'group type', really, because if our group leader is
1476 * pinned, so are we.
1477 */
1478 if (event->group_leader != event)
1479 event = event->group_leader;
1480
487f05e1
AS
1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 if (!ctx->task)
1483 event_type |= EVENT_CPU;
1484
1485 return event_type;
1486}
1487
8e1a2031 1488/*
161c85fa 1489 * Helper function to initialize event group nodes.
8e1a2031 1490 */
161c85fa 1491static void init_event_group(struct perf_event *event)
8e1a2031
AB
1492{
1493 RB_CLEAR_NODE(&event->group_node);
1494 event->group_index = 0;
1495}
1496
1497/*
1498 * Extract pinned or flexible groups from the context
161c85fa 1499 * based on event attrs bits.
8e1a2031
AB
1500 */
1501static struct perf_event_groups *
1502get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1503{
1504 if (event->attr.pinned)
1505 return &ctx->pinned_groups;
1506 else
1507 return &ctx->flexible_groups;
1508}
1509
8e1a2031 1510/*
161c85fa 1511 * Helper function to initializes perf_event_group trees.
8e1a2031 1512 */
161c85fa 1513static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1514{
1515 groups->tree = RB_ROOT;
1516 groups->index = 0;
1517}
1518
1519/*
1520 * Compare function for event groups;
161c85fa
PZ
1521 *
1522 * Implements complex key that first sorts by CPU and then by virtual index
1523 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1524 */
161c85fa
PZ
1525static bool
1526perf_event_groups_less(struct perf_event *left, struct perf_event *right)
8e1a2031 1527{
161c85fa
PZ
1528 if (left->cpu < right->cpu)
1529 return true;
1530 if (left->cpu > right->cpu)
1531 return false;
1532
1533 if (left->group_index < right->group_index)
1534 return true;
1535 if (left->group_index > right->group_index)
1536 return false;
1537
1538 return false;
8e1a2031
AB
1539}
1540
1541/*
161c85fa
PZ
1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543 * key (see perf_event_groups_less). This places it last inside the CPU
1544 * subtree.
8e1a2031
AB
1545 */
1546static void
1547perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1548 struct perf_event *event)
8e1a2031
AB
1549{
1550 struct perf_event *node_event;
1551 struct rb_node *parent;
1552 struct rb_node **node;
1553
1554 event->group_index = ++groups->index;
1555
1556 node = &groups->tree.rb_node;
1557 parent = *node;
1558
1559 while (*node) {
1560 parent = *node;
161c85fa 1561 node_event = container_of(*node, struct perf_event, group_node);
8e1a2031
AB
1562
1563 if (perf_event_groups_less(event, node_event))
1564 node = &parent->rb_left;
1565 else
1566 node = &parent->rb_right;
1567 }
1568
1569 rb_link_node(&event->group_node, parent, node);
1570 rb_insert_color(&event->group_node, &groups->tree);
1571}
1572
1573/*
161c85fa 1574 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1575 */
1576static void
1577add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578{
1579 struct perf_event_groups *groups;
1580
1581 groups = get_event_groups(event, ctx);
1582 perf_event_groups_insert(groups, event);
1583}
1584
1585/*
161c85fa 1586 * Delete a group from a tree.
8e1a2031
AB
1587 */
1588static void
1589perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1590 struct perf_event *event)
8e1a2031 1591{
161c85fa
PZ
1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1594
161c85fa 1595 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1596 init_event_group(event);
1597}
1598
1599/*
161c85fa 1600 * Helper function to delete event from its groups.
8e1a2031
AB
1601 */
1602static void
1603del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604{
1605 struct perf_event_groups *groups;
1606
1607 groups = get_event_groups(event, ctx);
1608 perf_event_groups_delete(groups, event);
1609}
1610
1611/*
161c85fa 1612 * Get the leftmost event in the @cpu subtree.
8e1a2031
AB
1613 */
1614static struct perf_event *
1615perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616{
1617 struct perf_event *node_event = NULL, *match = NULL;
1618 struct rb_node *node = groups->tree.rb_node;
1619
1620 while (node) {
161c85fa 1621 node_event = container_of(node, struct perf_event, group_node);
8e1a2031
AB
1622
1623 if (cpu < node_event->cpu) {
1624 node = node->rb_left;
1625 } else if (cpu > node_event->cpu) {
1626 node = node->rb_right;
1627 } else {
1628 match = node_event;
1629 node = node->rb_left;
1630 }
1631 }
1632
1633 return match;
1634}
1635
1cac7b1a
PZ
1636/*
1637 * Like rb_entry_next_safe() for the @cpu subtree.
1638 */
1639static struct perf_event *
1640perf_event_groups_next(struct perf_event *event)
1641{
1642 struct perf_event *next;
1643
1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 if (next && next->cpu == event->cpu)
1646 return next;
1647
1648 return NULL;
1649}
1650
8e1a2031 1651/*
161c85fa 1652 * Iterate through the whole groups tree.
8e1a2031 1653 */
6e6804d2
PZ
1654#define perf_event_groups_for_each(event, groups) \
1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1656 typeof(*event), group_node); event; \
1657 event = rb_entry_safe(rb_next(&event->group_node), \
1658 typeof(*event), group_node))
8e1a2031 1659
fccc714b 1660/*
788faab7 1661 * Add an event from the lists for its context.
fccc714b
PZ
1662 * Must be called with ctx->mutex and ctx->lock held.
1663 */
04289bb9 1664static void
cdd6c482 1665list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1666{
c994d613
PZ
1667 lockdep_assert_held(&ctx->lock);
1668
8a49542c
PZ
1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1671
0d3d73aa
PZ
1672 event->tstamp = perf_event_time(event);
1673
04289bb9 1674 /*
8a49542c
PZ
1675 * If we're a stand alone event or group leader, we go to the context
1676 * list, group events are kept attached to the group so that
1677 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1678 */
8a49542c 1679 if (event->group_leader == event) {
4ff6a8de 1680 event->group_caps = event->event_caps;
8e1a2031 1681 add_event_to_groups(event, ctx);
5c148194 1682 }
592903cd 1683
db4a8356 1684 list_update_cgroup_event(event, ctx, true);
e5d1367f 1685
cdd6c482
IM
1686 list_add_rcu(&event->event_entry, &ctx->event_list);
1687 ctx->nr_events++;
1688 if (event->attr.inherit_stat)
bfbd3381 1689 ctx->nr_stat++;
5a3126d4
PZ
1690
1691 ctx->generation++;
04289bb9
IM
1692}
1693
0231bb53
JO
1694/*
1695 * Initialize event state based on the perf_event_attr::disabled.
1696 */
1697static inline void perf_event__state_init(struct perf_event *event)
1698{
1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 PERF_EVENT_STATE_INACTIVE;
1701}
1702
a723968c 1703static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1704{
1705 int entry = sizeof(u64); /* value */
1706 int size = 0;
1707 int nr = 1;
1708
1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 size += sizeof(u64);
1711
1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 size += sizeof(u64);
1714
1715 if (event->attr.read_format & PERF_FORMAT_ID)
1716 entry += sizeof(u64);
1717
1718 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1719 nr += nr_siblings;
c320c7b7
ACM
1720 size += sizeof(u64);
1721 }
1722
1723 size += entry * nr;
1724 event->read_size = size;
1725}
1726
a723968c 1727static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1728{
1729 struct perf_sample_data *data;
c320c7b7
ACM
1730 u16 size = 0;
1731
c320c7b7
ACM
1732 if (sample_type & PERF_SAMPLE_IP)
1733 size += sizeof(data->ip);
1734
6844c09d
ACM
1735 if (sample_type & PERF_SAMPLE_ADDR)
1736 size += sizeof(data->addr);
1737
1738 if (sample_type & PERF_SAMPLE_PERIOD)
1739 size += sizeof(data->period);
1740
c3feedf2
AK
1741 if (sample_type & PERF_SAMPLE_WEIGHT)
1742 size += sizeof(data->weight);
1743
6844c09d
ACM
1744 if (sample_type & PERF_SAMPLE_READ)
1745 size += event->read_size;
1746
d6be9ad6
SE
1747 if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 size += sizeof(data->data_src.val);
1749
fdfbbd07
AK
1750 if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 size += sizeof(data->txn);
1752
fc7ce9c7
KL
1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 size += sizeof(data->phys_addr);
1755
6844c09d
ACM
1756 event->header_size = size;
1757}
1758
a723968c
PZ
1759/*
1760 * Called at perf_event creation and when events are attached/detached from a
1761 * group.
1762 */
1763static void perf_event__header_size(struct perf_event *event)
1764{
1765 __perf_event_read_size(event,
1766 event->group_leader->nr_siblings);
1767 __perf_event_header_size(event, event->attr.sample_type);
1768}
1769
6844c09d
ACM
1770static void perf_event__id_header_size(struct perf_event *event)
1771{
1772 struct perf_sample_data *data;
1773 u64 sample_type = event->attr.sample_type;
1774 u16 size = 0;
1775
c320c7b7
ACM
1776 if (sample_type & PERF_SAMPLE_TID)
1777 size += sizeof(data->tid_entry);
1778
1779 if (sample_type & PERF_SAMPLE_TIME)
1780 size += sizeof(data->time);
1781
ff3d527c
AH
1782 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 size += sizeof(data->id);
1784
c320c7b7
ACM
1785 if (sample_type & PERF_SAMPLE_ID)
1786 size += sizeof(data->id);
1787
1788 if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 size += sizeof(data->stream_id);
1790
1791 if (sample_type & PERF_SAMPLE_CPU)
1792 size += sizeof(data->cpu_entry);
1793
6844c09d 1794 event->id_header_size = size;
c320c7b7
ACM
1795}
1796
a723968c
PZ
1797static bool perf_event_validate_size(struct perf_event *event)
1798{
1799 /*
1800 * The values computed here will be over-written when we actually
1801 * attach the event.
1802 */
1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 perf_event__id_header_size(event);
1806
1807 /*
1808 * Sum the lot; should not exceed the 64k limit we have on records.
1809 * Conservative limit to allow for callchains and other variable fields.
1810 */
1811 if (event->read_size + event->header_size +
1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 return false;
1814
1815 return true;
1816}
1817
8a49542c
PZ
1818static void perf_group_attach(struct perf_event *event)
1819{
c320c7b7 1820 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1821
a76a82a3
PZ
1822 lockdep_assert_held(&event->ctx->lock);
1823
74c3337c
PZ
1824 /*
1825 * We can have double attach due to group movement in perf_event_open.
1826 */
1827 if (event->attach_state & PERF_ATTACH_GROUP)
1828 return;
1829
8a49542c
PZ
1830 event->attach_state |= PERF_ATTACH_GROUP;
1831
1832 if (group_leader == event)
1833 return;
1834
652884fe
PZ
1835 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
4ff6a8de 1837 group_leader->group_caps &= event->event_caps;
8a49542c 1838
8343aae6 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1840 group_leader->nr_siblings++;
c320c7b7
ACM
1841
1842 perf_event__header_size(group_leader);
1843
edb39592 1844 for_each_sibling_event(pos, group_leader)
c320c7b7 1845 perf_event__header_size(pos);
8a49542c
PZ
1846}
1847
a63eaf34 1848/*
788faab7 1849 * Remove an event from the lists for its context.
fccc714b 1850 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1851 */
04289bb9 1852static void
cdd6c482 1853list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1854{
652884fe
PZ
1855 WARN_ON_ONCE(event->ctx != ctx);
1856 lockdep_assert_held(&ctx->lock);
1857
8a49542c
PZ
1858 /*
1859 * We can have double detach due to exit/hot-unplug + close.
1860 */
1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1862 return;
8a49542c
PZ
1863
1864 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
db4a8356 1866 list_update_cgroup_event(event, ctx, false);
e5d1367f 1867
cdd6c482
IM
1868 ctx->nr_events--;
1869 if (event->attr.inherit_stat)
bfbd3381 1870 ctx->nr_stat--;
8bc20959 1871
cdd6c482 1872 list_del_rcu(&event->event_entry);
04289bb9 1873
8a49542c 1874 if (event->group_leader == event)
8e1a2031 1875 del_event_from_groups(event, ctx);
5c148194 1876
b2e74a26
SE
1877 /*
1878 * If event was in error state, then keep it
1879 * that way, otherwise bogus counts will be
1880 * returned on read(). The only way to get out
1881 * of error state is by explicit re-enabling
1882 * of the event
1883 */
1884 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1886
1887 ctx->generation++;
050735b0
PZ
1888}
1889
8a49542c 1890static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1891{
1892 struct perf_event *sibling, *tmp;
6668128a 1893 struct perf_event_context *ctx = event->ctx;
8a49542c 1894
6668128a 1895 lockdep_assert_held(&ctx->lock);
a76a82a3 1896
8a49542c
PZ
1897 /*
1898 * We can have double detach due to exit/hot-unplug + close.
1899 */
1900 if (!(event->attach_state & PERF_ATTACH_GROUP))
1901 return;
1902
1903 event->attach_state &= ~PERF_ATTACH_GROUP;
1904
1905 /*
1906 * If this is a sibling, remove it from its group.
1907 */
1908 if (event->group_leader != event) {
8343aae6 1909 list_del_init(&event->sibling_list);
8a49542c 1910 event->group_leader->nr_siblings--;
c320c7b7 1911 goto out;
8a49542c
PZ
1912 }
1913
04289bb9 1914 /*
cdd6c482
IM
1915 * If this was a group event with sibling events then
1916 * upgrade the siblings to singleton events by adding them
8a49542c 1917 * to whatever list we are on.
04289bb9 1918 */
8343aae6 1919 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 1920
04289bb9 1921 sibling->group_leader = sibling;
24868367 1922 list_del_init(&sibling->sibling_list);
d6f962b5
FW
1923
1924 /* Inherit group flags from the previous leader */
4ff6a8de 1925 sibling->group_caps = event->group_caps;
652884fe 1926
8e1a2031 1927 if (!RB_EMPTY_NODE(&event->group_node)) {
8e1a2031 1928 add_event_to_groups(sibling, event->ctx);
6668128a
PZ
1929
1930 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1931 struct list_head *list = sibling->attr.pinned ?
1932 &ctx->pinned_active : &ctx->flexible_active;
1933
1934 list_add_tail(&sibling->active_list, list);
1935 }
8e1a2031
AB
1936 }
1937
652884fe 1938 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1939 }
c320c7b7
ACM
1940
1941out:
1942 perf_event__header_size(event->group_leader);
1943
edb39592 1944 for_each_sibling_event(tmp, event->group_leader)
c320c7b7 1945 perf_event__header_size(tmp);
04289bb9
IM
1946}
1947
fadfe7be
JO
1948static bool is_orphaned_event(struct perf_event *event)
1949{
a69b0ca4 1950 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1951}
1952
2c81a647 1953static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1954{
1955 struct pmu *pmu = event->pmu;
1956 return pmu->filter_match ? pmu->filter_match(event) : 1;
1957}
1958
2c81a647
MR
1959/*
1960 * Check whether we should attempt to schedule an event group based on
1961 * PMU-specific filtering. An event group can consist of HW and SW events,
1962 * potentially with a SW leader, so we must check all the filters, to
1963 * determine whether a group is schedulable:
1964 */
1965static inline int pmu_filter_match(struct perf_event *event)
1966{
edb39592 1967 struct perf_event *sibling;
2c81a647
MR
1968
1969 if (!__pmu_filter_match(event))
1970 return 0;
1971
edb39592
PZ
1972 for_each_sibling_event(sibling, event) {
1973 if (!__pmu_filter_match(sibling))
2c81a647
MR
1974 return 0;
1975 }
1976
1977 return 1;
1978}
1979
fa66f07a
SE
1980static inline int
1981event_filter_match(struct perf_event *event)
1982{
0b8f1e2e
PZ
1983 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1984 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1985}
1986
9ffcfa6f
SE
1987static void
1988event_sched_out(struct perf_event *event,
3b6f9e5c 1989 struct perf_cpu_context *cpuctx,
cdd6c482 1990 struct perf_event_context *ctx)
3b6f9e5c 1991{
0d3d73aa 1992 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
1993
1994 WARN_ON_ONCE(event->ctx != ctx);
1995 lockdep_assert_held(&ctx->lock);
1996
cdd6c482 1997 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1998 return;
3b6f9e5c 1999
6668128a
PZ
2000 /*
2001 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2002 * we can schedule events _OUT_ individually through things like
2003 * __perf_remove_from_context().
2004 */
2005 list_del_init(&event->active_list);
2006
44377277
AS
2007 perf_pmu_disable(event->pmu);
2008
28a967c3
PZ
2009 event->pmu->del(event, 0);
2010 event->oncpu = -1;
0d3d73aa 2011
cdd6c482
IM
2012 if (event->pending_disable) {
2013 event->pending_disable = 0;
0d3d73aa 2014 state = PERF_EVENT_STATE_OFF;
970892a9 2015 }
0d3d73aa 2016 perf_event_set_state(event, state);
3b6f9e5c 2017
cdd6c482 2018 if (!is_software_event(event))
3b6f9e5c 2019 cpuctx->active_oncpu--;
2fde4f94
MR
2020 if (!--ctx->nr_active)
2021 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
2022 if (event->attr.freq && event->attr.sample_freq)
2023 ctx->nr_freq--;
cdd6c482 2024 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 2025 cpuctx->exclusive = 0;
44377277
AS
2026
2027 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2028}
2029
d859e29f 2030static void
cdd6c482 2031group_sched_out(struct perf_event *group_event,
d859e29f 2032 struct perf_cpu_context *cpuctx,
cdd6c482 2033 struct perf_event_context *ctx)
d859e29f 2034{
cdd6c482 2035 struct perf_event *event;
0d3d73aa
PZ
2036
2037 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2038 return;
d859e29f 2039
3f005e7d
MR
2040 perf_pmu_disable(ctx->pmu);
2041
cdd6c482 2042 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
2043
2044 /*
2045 * Schedule out siblings (if any):
2046 */
edb39592 2047 for_each_sibling_event(event, group_event)
cdd6c482 2048 event_sched_out(event, cpuctx, ctx);
d859e29f 2049
3f005e7d
MR
2050 perf_pmu_enable(ctx->pmu);
2051
0d3d73aa 2052 if (group_event->attr.exclusive)
d859e29f
PM
2053 cpuctx->exclusive = 0;
2054}
2055
45a0e07a 2056#define DETACH_GROUP 0x01UL
0017960f 2057
0793a61d 2058/*
cdd6c482 2059 * Cross CPU call to remove a performance event
0793a61d 2060 *
cdd6c482 2061 * We disable the event on the hardware level first. After that we
0793a61d
TG
2062 * remove it from the context list.
2063 */
fae3fde6
PZ
2064static void
2065__perf_remove_from_context(struct perf_event *event,
2066 struct perf_cpu_context *cpuctx,
2067 struct perf_event_context *ctx,
2068 void *info)
0793a61d 2069{
45a0e07a 2070 unsigned long flags = (unsigned long)info;
0793a61d 2071
3c5c8711
PZ
2072 if (ctx->is_active & EVENT_TIME) {
2073 update_context_time(ctx);
2074 update_cgrp_time_from_cpuctx(cpuctx);
2075 }
2076
cdd6c482 2077 event_sched_out(event, cpuctx, ctx);
45a0e07a 2078 if (flags & DETACH_GROUP)
46ce0fe9 2079 perf_group_detach(event);
cdd6c482 2080 list_del_event(event, ctx);
39a43640
PZ
2081
2082 if (!ctx->nr_events && ctx->is_active) {
64ce3126 2083 ctx->is_active = 0;
39a43640
PZ
2084 if (ctx->task) {
2085 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2086 cpuctx->task_ctx = NULL;
2087 }
64ce3126 2088 }
0793a61d
TG
2089}
2090
0793a61d 2091/*
cdd6c482 2092 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2093 *
cdd6c482
IM
2094 * If event->ctx is a cloned context, callers must make sure that
2095 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2096 * remains valid. This is OK when called from perf_release since
2097 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2098 * When called from perf_event_exit_task, it's OK because the
c93f7669 2099 * context has been detached from its task.
0793a61d 2100 */
45a0e07a 2101static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2102{
a76a82a3
PZ
2103 struct perf_event_context *ctx = event->ctx;
2104
2105 lockdep_assert_held(&ctx->mutex);
0793a61d 2106
45a0e07a 2107 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
2108
2109 /*
2110 * The above event_function_call() can NO-OP when it hits
2111 * TASK_TOMBSTONE. In that case we must already have been detached
2112 * from the context (by perf_event_exit_event()) but the grouping
2113 * might still be in-tact.
2114 */
2115 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2116 if ((flags & DETACH_GROUP) &&
2117 (event->attach_state & PERF_ATTACH_GROUP)) {
2118 /*
2119 * Since in that case we cannot possibly be scheduled, simply
2120 * detach now.
2121 */
2122 raw_spin_lock_irq(&ctx->lock);
2123 perf_group_detach(event);
2124 raw_spin_unlock_irq(&ctx->lock);
2125 }
0793a61d
TG
2126}
2127
d859e29f 2128/*
cdd6c482 2129 * Cross CPU call to disable a performance event
d859e29f 2130 */
fae3fde6
PZ
2131static void __perf_event_disable(struct perf_event *event,
2132 struct perf_cpu_context *cpuctx,
2133 struct perf_event_context *ctx,
2134 void *info)
7b648018 2135{
fae3fde6
PZ
2136 if (event->state < PERF_EVENT_STATE_INACTIVE)
2137 return;
7b648018 2138
3c5c8711
PZ
2139 if (ctx->is_active & EVENT_TIME) {
2140 update_context_time(ctx);
2141 update_cgrp_time_from_event(event);
2142 }
2143
fae3fde6
PZ
2144 if (event == event->group_leader)
2145 group_sched_out(event, cpuctx, ctx);
2146 else
2147 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
2148
2149 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
2150}
2151
d859e29f 2152/*
788faab7 2153 * Disable an event.
c93f7669 2154 *
cdd6c482
IM
2155 * If event->ctx is a cloned context, callers must make sure that
2156 * every task struct that event->ctx->task could possibly point to
c93f7669 2157 * remains valid. This condition is satisifed when called through
cdd6c482
IM
2158 * perf_event_for_each_child or perf_event_for_each because they
2159 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2160 * goes to exit will block in perf_event_exit_event().
2161 *
cdd6c482 2162 * When called from perf_pending_event it's OK because event->ctx
c93f7669 2163 * is the current context on this CPU and preemption is disabled,
cdd6c482 2164 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2165 */
f63a8daa 2166static void _perf_event_disable(struct perf_event *event)
d859e29f 2167{
cdd6c482 2168 struct perf_event_context *ctx = event->ctx;
d859e29f 2169
e625cce1 2170 raw_spin_lock_irq(&ctx->lock);
7b648018 2171 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2172 raw_spin_unlock_irq(&ctx->lock);
7b648018 2173 return;
53cfbf59 2174 }
e625cce1 2175 raw_spin_unlock_irq(&ctx->lock);
7b648018 2176
fae3fde6
PZ
2177 event_function_call(event, __perf_event_disable, NULL);
2178}
2179
2180void perf_event_disable_local(struct perf_event *event)
2181{
2182 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2183}
f63a8daa
PZ
2184
2185/*
2186 * Strictly speaking kernel users cannot create groups and therefore this
2187 * interface does not need the perf_event_ctx_lock() magic.
2188 */
2189void perf_event_disable(struct perf_event *event)
2190{
2191 struct perf_event_context *ctx;
2192
2193 ctx = perf_event_ctx_lock(event);
2194 _perf_event_disable(event);
2195 perf_event_ctx_unlock(event, ctx);
2196}
dcfce4a0 2197EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2198
5aab90ce
JO
2199void perf_event_disable_inatomic(struct perf_event *event)
2200{
2201 event->pending_disable = 1;
2202 irq_work_queue(&event->pending);
2203}
2204
e5d1367f 2205static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2206 struct perf_event_context *ctx)
e5d1367f
SE
2207{
2208 /*
2209 * use the correct time source for the time snapshot
2210 *
2211 * We could get by without this by leveraging the
2212 * fact that to get to this function, the caller
2213 * has most likely already called update_context_time()
2214 * and update_cgrp_time_xx() and thus both timestamp
2215 * are identical (or very close). Given that tstamp is,
2216 * already adjusted for cgroup, we could say that:
2217 * tstamp - ctx->timestamp
2218 * is equivalent to
2219 * tstamp - cgrp->timestamp.
2220 *
2221 * Then, in perf_output_read(), the calculation would
2222 * work with no changes because:
2223 * - event is guaranteed scheduled in
2224 * - no scheduled out in between
2225 * - thus the timestamp would be the same
2226 *
2227 * But this is a bit hairy.
2228 *
2229 * So instead, we have an explicit cgroup call to remain
2230 * within the time time source all along. We believe it
2231 * is cleaner and simpler to understand.
2232 */
2233 if (is_cgroup_event(event))
0d3d73aa 2234 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2235 else
0d3d73aa 2236 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2237}
2238
4fe757dd
PZ
2239#define MAX_INTERRUPTS (~0ULL)
2240
2241static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2242static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2243
235c7fc7 2244static int
9ffcfa6f 2245event_sched_in(struct perf_event *event,
235c7fc7 2246 struct perf_cpu_context *cpuctx,
6e37738a 2247 struct perf_event_context *ctx)
235c7fc7 2248{
44377277 2249 int ret = 0;
4158755d 2250
63342411
PZ
2251 lockdep_assert_held(&ctx->lock);
2252
cdd6c482 2253 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2254 return 0;
2255
95ff4ca2
AS
2256 WRITE_ONCE(event->oncpu, smp_processor_id());
2257 /*
0c1cbc18
PZ
2258 * Order event::oncpu write to happen before the ACTIVE state is
2259 * visible. This allows perf_event_{stop,read}() to observe the correct
2260 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2261 */
2262 smp_wmb();
0d3d73aa 2263 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2264
2265 /*
2266 * Unthrottle events, since we scheduled we might have missed several
2267 * ticks already, also for a heavily scheduling task there is little
2268 * guarantee it'll get a tick in a timely manner.
2269 */
2270 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2271 perf_log_throttle(event, 1);
2272 event->hw.interrupts = 0;
2273 }
2274
44377277
AS
2275 perf_pmu_disable(event->pmu);
2276
0d3d73aa 2277 perf_set_shadow_time(event, ctx);
72f669c0 2278
ec0d7729
AS
2279 perf_log_itrace_start(event);
2280
a4eaf7f1 2281 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2282 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2283 event->oncpu = -1;
44377277
AS
2284 ret = -EAGAIN;
2285 goto out;
235c7fc7
IM
2286 }
2287
cdd6c482 2288 if (!is_software_event(event))
3b6f9e5c 2289 cpuctx->active_oncpu++;
2fde4f94
MR
2290 if (!ctx->nr_active++)
2291 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2292 if (event->attr.freq && event->attr.sample_freq)
2293 ctx->nr_freq++;
235c7fc7 2294
cdd6c482 2295 if (event->attr.exclusive)
3b6f9e5c
PM
2296 cpuctx->exclusive = 1;
2297
44377277
AS
2298out:
2299 perf_pmu_enable(event->pmu);
2300
2301 return ret;
235c7fc7
IM
2302}
2303
6751b71e 2304static int
cdd6c482 2305group_sched_in(struct perf_event *group_event,
6751b71e 2306 struct perf_cpu_context *cpuctx,
6e37738a 2307 struct perf_event_context *ctx)
6751b71e 2308{
6bde9b6c 2309 struct perf_event *event, *partial_group = NULL;
4a234593 2310 struct pmu *pmu = ctx->pmu;
6751b71e 2311
cdd6c482 2312 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2313 return 0;
2314
fbbe0701 2315 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2316
9ffcfa6f 2317 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2318 pmu->cancel_txn(pmu);
272325c4 2319 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2320 return -EAGAIN;
90151c35 2321 }
6751b71e
PM
2322
2323 /*
2324 * Schedule in siblings as one group (if any):
2325 */
edb39592 2326 for_each_sibling_event(event, group_event) {
9ffcfa6f 2327 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2328 partial_group = event;
6751b71e
PM
2329 goto group_error;
2330 }
2331 }
2332
9ffcfa6f 2333 if (!pmu->commit_txn(pmu))
6e85158c 2334 return 0;
9ffcfa6f 2335
6751b71e
PM
2336group_error:
2337 /*
2338 * Groups can be scheduled in as one unit only, so undo any
2339 * partial group before returning:
0d3d73aa 2340 * The events up to the failed event are scheduled out normally.
6751b71e 2341 */
edb39592 2342 for_each_sibling_event(event, group_event) {
cdd6c482 2343 if (event == partial_group)
0d3d73aa 2344 break;
d7842da4 2345
0d3d73aa 2346 event_sched_out(event, cpuctx, ctx);
6751b71e 2347 }
9ffcfa6f 2348 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2349
ad5133b7 2350 pmu->cancel_txn(pmu);
90151c35 2351
272325c4 2352 perf_mux_hrtimer_restart(cpuctx);
9e630205 2353
6751b71e
PM
2354 return -EAGAIN;
2355}
2356
3b6f9e5c 2357/*
cdd6c482 2358 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2359 */
cdd6c482 2360static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2361 struct perf_cpu_context *cpuctx,
2362 int can_add_hw)
2363{
2364 /*
cdd6c482 2365 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2366 */
4ff6a8de 2367 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2368 return 1;
2369 /*
2370 * If an exclusive group is already on, no other hardware
cdd6c482 2371 * events can go on.
3b6f9e5c
PM
2372 */
2373 if (cpuctx->exclusive)
2374 return 0;
2375 /*
2376 * If this group is exclusive and there are already
cdd6c482 2377 * events on the CPU, it can't go on.
3b6f9e5c 2378 */
cdd6c482 2379 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2380 return 0;
2381 /*
2382 * Otherwise, try to add it if all previous groups were able
2383 * to go on.
2384 */
2385 return can_add_hw;
2386}
2387
cdd6c482
IM
2388static void add_event_to_ctx(struct perf_event *event,
2389 struct perf_event_context *ctx)
53cfbf59 2390{
cdd6c482 2391 list_add_event(event, ctx);
8a49542c 2392 perf_group_attach(event);
53cfbf59
PM
2393}
2394
bd2afa49
PZ
2395static void ctx_sched_out(struct perf_event_context *ctx,
2396 struct perf_cpu_context *cpuctx,
2397 enum event_type_t event_type);
2c29ef0f
PZ
2398static void
2399ctx_sched_in(struct perf_event_context *ctx,
2400 struct perf_cpu_context *cpuctx,
2401 enum event_type_t event_type,
2402 struct task_struct *task);
fe4b04fa 2403
bd2afa49 2404static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2405 struct perf_event_context *ctx,
2406 enum event_type_t event_type)
bd2afa49
PZ
2407{
2408 if (!cpuctx->task_ctx)
2409 return;
2410
2411 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2412 return;
2413
487f05e1 2414 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2415}
2416
dce5855b
PZ
2417static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2418 struct perf_event_context *ctx,
2419 struct task_struct *task)
2420{
2421 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2422 if (ctx)
2423 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2424 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2425 if (ctx)
2426 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2427}
2428
487f05e1
AS
2429/*
2430 * We want to maintain the following priority of scheduling:
2431 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2432 * - task pinned (EVENT_PINNED)
2433 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2434 * - task flexible (EVENT_FLEXIBLE).
2435 *
2436 * In order to avoid unscheduling and scheduling back in everything every
2437 * time an event is added, only do it for the groups of equal priority and
2438 * below.
2439 *
2440 * This can be called after a batch operation on task events, in which case
2441 * event_type is a bit mask of the types of events involved. For CPU events,
2442 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2443 */
3e349507 2444static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2445 struct perf_event_context *task_ctx,
2446 enum event_type_t event_type)
0017960f 2447{
bd903afe 2448 enum event_type_t ctx_event_type;
487f05e1
AS
2449 bool cpu_event = !!(event_type & EVENT_CPU);
2450
2451 /*
2452 * If pinned groups are involved, flexible groups also need to be
2453 * scheduled out.
2454 */
2455 if (event_type & EVENT_PINNED)
2456 event_type |= EVENT_FLEXIBLE;
2457
bd903afe
SL
2458 ctx_event_type = event_type & EVENT_ALL;
2459
3e349507
PZ
2460 perf_pmu_disable(cpuctx->ctx.pmu);
2461 if (task_ctx)
487f05e1
AS
2462 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2463
2464 /*
2465 * Decide which cpu ctx groups to schedule out based on the types
2466 * of events that caused rescheduling:
2467 * - EVENT_CPU: schedule out corresponding groups;
2468 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2469 * - otherwise, do nothing more.
2470 */
2471 if (cpu_event)
2472 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2473 else if (ctx_event_type & EVENT_PINNED)
2474 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2475
3e349507
PZ
2476 perf_event_sched_in(cpuctx, task_ctx, current);
2477 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2478}
2479
0793a61d 2480/*
cdd6c482 2481 * Cross CPU call to install and enable a performance event
682076ae 2482 *
a096309b
PZ
2483 * Very similar to remote_function() + event_function() but cannot assume that
2484 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2485 */
fe4b04fa 2486static int __perf_install_in_context(void *info)
0793a61d 2487{
a096309b
PZ
2488 struct perf_event *event = info;
2489 struct perf_event_context *ctx = event->ctx;
108b02cf 2490 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2491 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2492 bool reprogram = true;
a096309b 2493 int ret = 0;
0793a61d 2494
63b6da39 2495 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2496 if (ctx->task) {
b58f6b0d
PZ
2497 raw_spin_lock(&ctx->lock);
2498 task_ctx = ctx;
a096309b 2499
63cae12b 2500 reprogram = (ctx->task == current);
b58f6b0d 2501
39a43640 2502 /*
63cae12b
PZ
2503 * If the task is running, it must be running on this CPU,
2504 * otherwise we cannot reprogram things.
2505 *
2506 * If its not running, we don't care, ctx->lock will
2507 * serialize against it becoming runnable.
39a43640 2508 */
63cae12b
PZ
2509 if (task_curr(ctx->task) && !reprogram) {
2510 ret = -ESRCH;
2511 goto unlock;
2512 }
a096309b 2513
63cae12b 2514 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2515 } else if (task_ctx) {
2516 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2517 }
b58f6b0d 2518
33801b94 2519#ifdef CONFIG_CGROUP_PERF
2520 if (is_cgroup_event(event)) {
2521 /*
2522 * If the current cgroup doesn't match the event's
2523 * cgroup, we should not try to schedule it.
2524 */
2525 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2526 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2527 event->cgrp->css.cgroup);
2528 }
2529#endif
2530
63cae12b 2531 if (reprogram) {
a096309b
PZ
2532 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2533 add_event_to_ctx(event, ctx);
487f05e1 2534 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2535 } else {
2536 add_event_to_ctx(event, ctx);
2537 }
2538
63b6da39 2539unlock:
2c29ef0f 2540 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2541
a096309b 2542 return ret;
0793a61d
TG
2543}
2544
2545/*
a096309b
PZ
2546 * Attach a performance event to a context.
2547 *
2548 * Very similar to event_function_call, see comment there.
0793a61d
TG
2549 */
2550static void
cdd6c482
IM
2551perf_install_in_context(struct perf_event_context *ctx,
2552 struct perf_event *event,
0793a61d
TG
2553 int cpu)
2554{
a096309b 2555 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2556
fe4b04fa
PZ
2557 lockdep_assert_held(&ctx->mutex);
2558
0cda4c02
YZ
2559 if (event->cpu != -1)
2560 event->cpu = cpu;
c3f00c70 2561
0b8f1e2e
PZ
2562 /*
2563 * Ensures that if we can observe event->ctx, both the event and ctx
2564 * will be 'complete'. See perf_iterate_sb_cpu().
2565 */
2566 smp_store_release(&event->ctx, ctx);
2567
a096309b
PZ
2568 if (!task) {
2569 cpu_function_call(cpu, __perf_install_in_context, event);
2570 return;
2571 }
2572
2573 /*
2574 * Should not happen, we validate the ctx is still alive before calling.
2575 */
2576 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2577 return;
2578
39a43640
PZ
2579 /*
2580 * Installing events is tricky because we cannot rely on ctx->is_active
2581 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2582 *
2583 * Instead we use task_curr(), which tells us if the task is running.
2584 * However, since we use task_curr() outside of rq::lock, we can race
2585 * against the actual state. This means the result can be wrong.
2586 *
2587 * If we get a false positive, we retry, this is harmless.
2588 *
2589 * If we get a false negative, things are complicated. If we are after
2590 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2591 * value must be correct. If we're before, it doesn't matter since
2592 * perf_event_context_sched_in() will program the counter.
2593 *
2594 * However, this hinges on the remote context switch having observed
2595 * our task->perf_event_ctxp[] store, such that it will in fact take
2596 * ctx::lock in perf_event_context_sched_in().
2597 *
2598 * We do this by task_function_call(), if the IPI fails to hit the task
2599 * we know any future context switch of task must see the
2600 * perf_event_ctpx[] store.
39a43640 2601 */
63cae12b 2602
63b6da39 2603 /*
63cae12b
PZ
2604 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2605 * task_cpu() load, such that if the IPI then does not find the task
2606 * running, a future context switch of that task must observe the
2607 * store.
63b6da39 2608 */
63cae12b
PZ
2609 smp_mb();
2610again:
2611 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2612 return;
2613
2614 raw_spin_lock_irq(&ctx->lock);
2615 task = ctx->task;
84c4e620 2616 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2617 /*
2618 * Cannot happen because we already checked above (which also
2619 * cannot happen), and we hold ctx->mutex, which serializes us
2620 * against perf_event_exit_task_context().
2621 */
63b6da39
PZ
2622 raw_spin_unlock_irq(&ctx->lock);
2623 return;
2624 }
39a43640 2625 /*
63cae12b
PZ
2626 * If the task is not running, ctx->lock will avoid it becoming so,
2627 * thus we can safely install the event.
39a43640 2628 */
63cae12b
PZ
2629 if (task_curr(task)) {
2630 raw_spin_unlock_irq(&ctx->lock);
2631 goto again;
2632 }
2633 add_event_to_ctx(event, ctx);
2634 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2635}
2636
d859e29f 2637/*
cdd6c482 2638 * Cross CPU call to enable a performance event
d859e29f 2639 */
fae3fde6
PZ
2640static void __perf_event_enable(struct perf_event *event,
2641 struct perf_cpu_context *cpuctx,
2642 struct perf_event_context *ctx,
2643 void *info)
04289bb9 2644{
cdd6c482 2645 struct perf_event *leader = event->group_leader;
fae3fde6 2646 struct perf_event_context *task_ctx;
04289bb9 2647
6e801e01
PZ
2648 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2649 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2650 return;
3cbed429 2651
bd2afa49
PZ
2652 if (ctx->is_active)
2653 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2654
0d3d73aa 2655 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2656
fae3fde6
PZ
2657 if (!ctx->is_active)
2658 return;
2659
e5d1367f 2660 if (!event_filter_match(event)) {
bd2afa49 2661 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2662 return;
e5d1367f 2663 }
f4c4176f 2664
04289bb9 2665 /*
cdd6c482 2666 * If the event is in a group and isn't the group leader,
d859e29f 2667 * then don't put it on unless the group is on.
04289bb9 2668 */
bd2afa49
PZ
2669 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2670 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2671 return;
bd2afa49 2672 }
fe4b04fa 2673
fae3fde6
PZ
2674 task_ctx = cpuctx->task_ctx;
2675 if (ctx->task)
2676 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2677
487f05e1 2678 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2679}
2680
d859e29f 2681/*
788faab7 2682 * Enable an event.
c93f7669 2683 *
cdd6c482
IM
2684 * If event->ctx is a cloned context, callers must make sure that
2685 * every task struct that event->ctx->task could possibly point to
c93f7669 2686 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2687 * perf_event_for_each_child or perf_event_for_each as described
2688 * for perf_event_disable.
d859e29f 2689 */
f63a8daa 2690static void _perf_event_enable(struct perf_event *event)
d859e29f 2691{
cdd6c482 2692 struct perf_event_context *ctx = event->ctx;
d859e29f 2693
7b648018 2694 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2695 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2696 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2697 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2698 return;
2699 }
2700
d859e29f 2701 /*
cdd6c482 2702 * If the event is in error state, clear that first.
7b648018
PZ
2703 *
2704 * That way, if we see the event in error state below, we know that it
2705 * has gone back into error state, as distinct from the task having
2706 * been scheduled away before the cross-call arrived.
d859e29f 2707 */
cdd6c482
IM
2708 if (event->state == PERF_EVENT_STATE_ERROR)
2709 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2710 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2711
fae3fde6 2712 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2713}
f63a8daa
PZ
2714
2715/*
2716 * See perf_event_disable();
2717 */
2718void perf_event_enable(struct perf_event *event)
2719{
2720 struct perf_event_context *ctx;
2721
2722 ctx = perf_event_ctx_lock(event);
2723 _perf_event_enable(event);
2724 perf_event_ctx_unlock(event, ctx);
2725}
dcfce4a0 2726EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2727
375637bc
AS
2728struct stop_event_data {
2729 struct perf_event *event;
2730 unsigned int restart;
2731};
2732
95ff4ca2
AS
2733static int __perf_event_stop(void *info)
2734{
375637bc
AS
2735 struct stop_event_data *sd = info;
2736 struct perf_event *event = sd->event;
95ff4ca2 2737
375637bc 2738 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2739 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2740 return 0;
2741
2742 /* matches smp_wmb() in event_sched_in() */
2743 smp_rmb();
2744
2745 /*
2746 * There is a window with interrupts enabled before we get here,
2747 * so we need to check again lest we try to stop another CPU's event.
2748 */
2749 if (READ_ONCE(event->oncpu) != smp_processor_id())
2750 return -EAGAIN;
2751
2752 event->pmu->stop(event, PERF_EF_UPDATE);
2753
375637bc
AS
2754 /*
2755 * May race with the actual stop (through perf_pmu_output_stop()),
2756 * but it is only used for events with AUX ring buffer, and such
2757 * events will refuse to restart because of rb::aux_mmap_count==0,
2758 * see comments in perf_aux_output_begin().
2759 *
788faab7 2760 * Since this is happening on an event-local CPU, no trace is lost
375637bc
AS
2761 * while restarting.
2762 */
2763 if (sd->restart)
c9bbdd48 2764 event->pmu->start(event, 0);
375637bc 2765
95ff4ca2
AS
2766 return 0;
2767}
2768
767ae086 2769static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2770{
2771 struct stop_event_data sd = {
2772 .event = event,
767ae086 2773 .restart = restart,
375637bc
AS
2774 };
2775 int ret = 0;
2776
2777 do {
2778 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2779 return 0;
2780
2781 /* matches smp_wmb() in event_sched_in() */
2782 smp_rmb();
2783
2784 /*
2785 * We only want to restart ACTIVE events, so if the event goes
2786 * inactive here (event->oncpu==-1), there's nothing more to do;
2787 * fall through with ret==-ENXIO.
2788 */
2789 ret = cpu_function_call(READ_ONCE(event->oncpu),
2790 __perf_event_stop, &sd);
2791 } while (ret == -EAGAIN);
2792
2793 return ret;
2794}
2795
2796/*
2797 * In order to contain the amount of racy and tricky in the address filter
2798 * configuration management, it is a two part process:
2799 *
2800 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2801 * we update the addresses of corresponding vmas in
c60f83b8 2802 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
375637bc
AS
2803 * (p2) when an event is scheduled in (pmu::add), it calls
2804 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2805 * if the generation has changed since the previous call.
2806 *
2807 * If (p1) happens while the event is active, we restart it to force (p2).
2808 *
2809 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2810 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2811 * ioctl;
2812 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2813 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2814 * for reading;
2815 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2816 * of exec.
2817 */
2818void perf_event_addr_filters_sync(struct perf_event *event)
2819{
2820 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2821
2822 if (!has_addr_filter(event))
2823 return;
2824
2825 raw_spin_lock(&ifh->lock);
2826 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2827 event->pmu->addr_filters_sync(event);
2828 event->hw.addr_filters_gen = event->addr_filters_gen;
2829 }
2830 raw_spin_unlock(&ifh->lock);
2831}
2832EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2833
f63a8daa 2834static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2835{
2023b359 2836 /*
cdd6c482 2837 * not supported on inherited events
2023b359 2838 */
2e939d1d 2839 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2840 return -EINVAL;
2841
cdd6c482 2842 atomic_add(refresh, &event->event_limit);
f63a8daa 2843 _perf_event_enable(event);
2023b359
PZ
2844
2845 return 0;
79f14641 2846}
f63a8daa
PZ
2847
2848/*
2849 * See perf_event_disable()
2850 */
2851int perf_event_refresh(struct perf_event *event, int refresh)
2852{
2853 struct perf_event_context *ctx;
2854 int ret;
2855
2856 ctx = perf_event_ctx_lock(event);
2857 ret = _perf_event_refresh(event, refresh);
2858 perf_event_ctx_unlock(event, ctx);
2859
2860 return ret;
2861}
26ca5c11 2862EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2863
32ff77e8
MC
2864static int perf_event_modify_breakpoint(struct perf_event *bp,
2865 struct perf_event_attr *attr)
2866{
2867 int err;
2868
2869 _perf_event_disable(bp);
2870
2871 err = modify_user_hw_breakpoint_check(bp, attr, true);
32ff77e8 2872
bf06278c 2873 if (!bp->attr.disabled)
32ff77e8 2874 _perf_event_enable(bp);
bf06278c
JO
2875
2876 return err;
32ff77e8
MC
2877}
2878
2879static int perf_event_modify_attr(struct perf_event *event,
2880 struct perf_event_attr *attr)
2881{
2882 if (event->attr.type != attr->type)
2883 return -EINVAL;
2884
2885 switch (event->attr.type) {
2886 case PERF_TYPE_BREAKPOINT:
2887 return perf_event_modify_breakpoint(event, attr);
2888 default:
2889 /* Place holder for future additions. */
2890 return -EOPNOTSUPP;
2891 }
2892}
2893
5b0311e1
FW
2894static void ctx_sched_out(struct perf_event_context *ctx,
2895 struct perf_cpu_context *cpuctx,
2896 enum event_type_t event_type)
235c7fc7 2897{
6668128a 2898 struct perf_event *event, *tmp;
db24d33e 2899 int is_active = ctx->is_active;
235c7fc7 2900
c994d613 2901 lockdep_assert_held(&ctx->lock);
235c7fc7 2902
39a43640
PZ
2903 if (likely(!ctx->nr_events)) {
2904 /*
2905 * See __perf_remove_from_context().
2906 */
2907 WARN_ON_ONCE(ctx->is_active);
2908 if (ctx->task)
2909 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2910 return;
39a43640
PZ
2911 }
2912
db24d33e 2913 ctx->is_active &= ~event_type;
3cbaa590
PZ
2914 if (!(ctx->is_active & EVENT_ALL))
2915 ctx->is_active = 0;
2916
63e30d3e
PZ
2917 if (ctx->task) {
2918 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2919 if (!ctx->is_active)
2920 cpuctx->task_ctx = NULL;
2921 }
facc4307 2922
8fdc6539
PZ
2923 /*
2924 * Always update time if it was set; not only when it changes.
2925 * Otherwise we can 'forget' to update time for any but the last
2926 * context we sched out. For example:
2927 *
2928 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2929 * ctx_sched_out(.event_type = EVENT_PINNED)
2930 *
2931 * would only update time for the pinned events.
2932 */
3cbaa590
PZ
2933 if (is_active & EVENT_TIME) {
2934 /* update (and stop) ctx time */
2935 update_context_time(ctx);
2936 update_cgrp_time_from_cpuctx(cpuctx);
2937 }
2938
8fdc6539
PZ
2939 is_active ^= ctx->is_active; /* changed bits */
2940
3cbaa590 2941 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2942 return;
5b0311e1 2943
075e0b00 2944 perf_pmu_disable(ctx->pmu);
3cbaa590 2945 if (is_active & EVENT_PINNED) {
6668128a 2946 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
889ff015 2947 group_sched_out(event, cpuctx, ctx);
9ed6060d 2948 }
889ff015 2949
3cbaa590 2950 if (is_active & EVENT_FLEXIBLE) {
6668128a 2951 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
8c9ed8e1 2952 group_sched_out(event, cpuctx, ctx);
9ed6060d 2953 }
1b9a644f 2954 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2955}
2956
564c2b21 2957/*
5a3126d4
PZ
2958 * Test whether two contexts are equivalent, i.e. whether they have both been
2959 * cloned from the same version of the same context.
2960 *
2961 * Equivalence is measured using a generation number in the context that is
2962 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2963 * and list_del_event().
564c2b21 2964 */
cdd6c482
IM
2965static int context_equiv(struct perf_event_context *ctx1,
2966 struct perf_event_context *ctx2)
564c2b21 2967{
211de6eb
PZ
2968 lockdep_assert_held(&ctx1->lock);
2969 lockdep_assert_held(&ctx2->lock);
2970
5a3126d4
PZ
2971 /* Pinning disables the swap optimization */
2972 if (ctx1->pin_count || ctx2->pin_count)
2973 return 0;
2974
2975 /* If ctx1 is the parent of ctx2 */
2976 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2977 return 1;
2978
2979 /* If ctx2 is the parent of ctx1 */
2980 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2981 return 1;
2982
2983 /*
2984 * If ctx1 and ctx2 have the same parent; we flatten the parent
2985 * hierarchy, see perf_event_init_context().
2986 */
2987 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2988 ctx1->parent_gen == ctx2->parent_gen)
2989 return 1;
2990
2991 /* Unmatched */
2992 return 0;
564c2b21
PM
2993}
2994
cdd6c482
IM
2995static void __perf_event_sync_stat(struct perf_event *event,
2996 struct perf_event *next_event)
bfbd3381
PZ
2997{
2998 u64 value;
2999
cdd6c482 3000 if (!event->attr.inherit_stat)
bfbd3381
PZ
3001 return;
3002
3003 /*
cdd6c482 3004 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3005 * because we're in the middle of a context switch and have IRQs
3006 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3007 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3008 * don't need to use it.
3009 */
0d3d73aa 3010 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3011 event->pmu->read(event);
bfbd3381 3012
0d3d73aa 3013 perf_event_update_time(event);
bfbd3381
PZ
3014
3015 /*
cdd6c482 3016 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3017 * values when we flip the contexts.
3018 */
e7850595
PZ
3019 value = local64_read(&next_event->count);
3020 value = local64_xchg(&event->count, value);
3021 local64_set(&next_event->count, value);
bfbd3381 3022
cdd6c482
IM
3023 swap(event->total_time_enabled, next_event->total_time_enabled);
3024 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3025
bfbd3381 3026 /*
19d2e755 3027 * Since we swizzled the values, update the user visible data too.
bfbd3381 3028 */
cdd6c482
IM
3029 perf_event_update_userpage(event);
3030 perf_event_update_userpage(next_event);
bfbd3381
PZ
3031}
3032
cdd6c482
IM
3033static void perf_event_sync_stat(struct perf_event_context *ctx,
3034 struct perf_event_context *next_ctx)
bfbd3381 3035{
cdd6c482 3036 struct perf_event *event, *next_event;
bfbd3381
PZ
3037
3038 if (!ctx->nr_stat)
3039 return;
3040
02ffdbc8
PZ
3041 update_context_time(ctx);
3042
cdd6c482
IM
3043 event = list_first_entry(&ctx->event_list,
3044 struct perf_event, event_entry);
bfbd3381 3045
cdd6c482
IM
3046 next_event = list_first_entry(&next_ctx->event_list,
3047 struct perf_event, event_entry);
bfbd3381 3048
cdd6c482
IM
3049 while (&event->event_entry != &ctx->event_list &&
3050 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3051
cdd6c482 3052 __perf_event_sync_stat(event, next_event);
bfbd3381 3053
cdd6c482
IM
3054 event = list_next_entry(event, event_entry);
3055 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3056 }
3057}
3058
fe4b04fa
PZ
3059static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3060 struct task_struct *next)
0793a61d 3061{
8dc85d54 3062 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 3063 struct perf_event_context *next_ctx;
5a3126d4 3064 struct perf_event_context *parent, *next_parent;
108b02cf 3065 struct perf_cpu_context *cpuctx;
c93f7669 3066 int do_switch = 1;
0793a61d 3067
108b02cf
PZ
3068 if (likely(!ctx))
3069 return;
10989fb2 3070
108b02cf
PZ
3071 cpuctx = __get_cpu_context(ctx);
3072 if (!cpuctx->task_ctx)
0793a61d
TG
3073 return;
3074
c93f7669 3075 rcu_read_lock();
8dc85d54 3076 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
3077 if (!next_ctx)
3078 goto unlock;
3079
3080 parent = rcu_dereference(ctx->parent_ctx);
3081 next_parent = rcu_dereference(next_ctx->parent_ctx);
3082
3083 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3084 if (!parent && !next_parent)
5a3126d4
PZ
3085 goto unlock;
3086
3087 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3088 /*
3089 * Looks like the two contexts are clones, so we might be
3090 * able to optimize the context switch. We lock both
3091 * contexts and check that they are clones under the
3092 * lock (including re-checking that neither has been
3093 * uncloned in the meantime). It doesn't matter which
3094 * order we take the locks because no other cpu could
3095 * be trying to lock both of these tasks.
3096 */
e625cce1
TG
3097 raw_spin_lock(&ctx->lock);
3098 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3099 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
3100 WRITE_ONCE(ctx->task, next);
3101 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
3102
3103 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3104
63b6da39
PZ
3105 /*
3106 * RCU_INIT_POINTER here is safe because we've not
3107 * modified the ctx and the above modification of
3108 * ctx->task and ctx->task_ctx_data are immaterial
3109 * since those values are always verified under
3110 * ctx->lock which we're now holding.
3111 */
3112 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3113 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3114
c93f7669 3115 do_switch = 0;
bfbd3381 3116
cdd6c482 3117 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3118 }
e625cce1
TG
3119 raw_spin_unlock(&next_ctx->lock);
3120 raw_spin_unlock(&ctx->lock);
564c2b21 3121 }
5a3126d4 3122unlock:
c93f7669 3123 rcu_read_unlock();
564c2b21 3124
c93f7669 3125 if (do_switch) {
facc4307 3126 raw_spin_lock(&ctx->lock);
487f05e1 3127 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 3128 raw_spin_unlock(&ctx->lock);
c93f7669 3129 }
0793a61d
TG
3130}
3131
e48c1788
PZ
3132static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3133
ba532500
YZ
3134void perf_sched_cb_dec(struct pmu *pmu)
3135{
e48c1788
PZ
3136 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3137
ba532500 3138 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3139
3140 if (!--cpuctx->sched_cb_usage)
3141 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3142}
3143
e48c1788 3144
ba532500
YZ
3145void perf_sched_cb_inc(struct pmu *pmu)
3146{
e48c1788
PZ
3147 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3148
3149 if (!cpuctx->sched_cb_usage++)
3150 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3151
ba532500
YZ
3152 this_cpu_inc(perf_sched_cb_usages);
3153}
3154
3155/*
3156 * This function provides the context switch callback to the lower code
3157 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3158 *
3159 * This callback is relevant even to per-cpu events; for example multi event
3160 * PEBS requires this to provide PID/TID information. This requires we flush
3161 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3162 */
3163static void perf_pmu_sched_task(struct task_struct *prev,
3164 struct task_struct *next,
3165 bool sched_in)
3166{
3167 struct perf_cpu_context *cpuctx;
3168 struct pmu *pmu;
ba532500
YZ
3169
3170 if (prev == next)
3171 return;
3172
e48c1788 3173 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3174 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3175
e48c1788
PZ
3176 if (WARN_ON_ONCE(!pmu->sched_task))
3177 continue;
ba532500 3178
e48c1788
PZ
3179 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3180 perf_pmu_disable(pmu);
ba532500 3181
e48c1788 3182 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3183
e48c1788
PZ
3184 perf_pmu_enable(pmu);
3185 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3186 }
ba532500
YZ
3187}
3188
45ac1403
AH
3189static void perf_event_switch(struct task_struct *task,
3190 struct task_struct *next_prev, bool sched_in);
3191
8dc85d54
PZ
3192#define for_each_task_context_nr(ctxn) \
3193 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3194
3195/*
3196 * Called from scheduler to remove the events of the current task,
3197 * with interrupts disabled.
3198 *
3199 * We stop each event and update the event value in event->count.
3200 *
3201 * This does not protect us against NMI, but disable()
3202 * sets the disabled bit in the control field of event _before_
3203 * accessing the event control register. If a NMI hits, then it will
3204 * not restart the event.
3205 */
ab0cce56
JO
3206void __perf_event_task_sched_out(struct task_struct *task,
3207 struct task_struct *next)
8dc85d54
PZ
3208{
3209 int ctxn;
3210
ba532500
YZ
3211 if (__this_cpu_read(perf_sched_cb_usages))
3212 perf_pmu_sched_task(task, next, false);
3213
45ac1403
AH
3214 if (atomic_read(&nr_switch_events))
3215 perf_event_switch(task, next, false);
3216
8dc85d54
PZ
3217 for_each_task_context_nr(ctxn)
3218 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3219
3220 /*
3221 * if cgroup events exist on this CPU, then we need
3222 * to check if we have to switch out PMU state.
3223 * cgroup event are system-wide mode only
3224 */
4a32fea9 3225 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3226 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3227}
3228
5b0311e1
FW
3229/*
3230 * Called with IRQs disabled
3231 */
3232static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3233 enum event_type_t event_type)
3234{
3235 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3236}
3237
1cac7b1a
PZ
3238static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3239 int (*func)(struct perf_event *, void *), void *data)
0793a61d 3240{
1cac7b1a
PZ
3241 struct perf_event **evt, *evt1, *evt2;
3242 int ret;
8e1a2031 3243
1cac7b1a
PZ
3244 evt1 = perf_event_groups_first(groups, -1);
3245 evt2 = perf_event_groups_first(groups, cpu);
3246
3247 while (evt1 || evt2) {
3248 if (evt1 && evt2) {
3249 if (evt1->group_index < evt2->group_index)
3250 evt = &evt1;
3251 else
3252 evt = &evt2;
3253 } else if (evt1) {
3254 evt = &evt1;
3255 } else {
3256 evt = &evt2;
8e1a2031 3257 }
1cac7b1a
PZ
3258
3259 ret = func(*evt, data);
3260 if (ret)
3261 return ret;
3262
3263 *evt = perf_event_groups_next(*evt);
8e1a2031 3264 }
0793a61d 3265
1cac7b1a
PZ
3266 return 0;
3267}
3268
3269struct sched_in_data {
3270 struct perf_event_context *ctx;
3271 struct perf_cpu_context *cpuctx;
3272 int can_add_hw;
3273};
3274
3275static int pinned_sched_in(struct perf_event *event, void *data)
3276{
3277 struct sched_in_data *sid = data;
3278
3279 if (event->state <= PERF_EVENT_STATE_OFF)
3280 return 0;
3281
3282 if (!event_filter_match(event))
3283 return 0;
3284
6668128a
PZ
3285 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3286 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3287 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3288 }
1cac7b1a
PZ
3289
3290 /*
3291 * If this pinned group hasn't been scheduled,
3292 * put it in error state.
3293 */
3294 if (event->state == PERF_EVENT_STATE_INACTIVE)
3295 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3296
3297 return 0;
3298}
3299
3300static int flexible_sched_in(struct perf_event *event, void *data)
3301{
3302 struct sched_in_data *sid = data;
3303
3304 if (event->state <= PERF_EVENT_STATE_OFF)
3305 return 0;
3306
3307 if (!event_filter_match(event))
3308 return 0;
3309
3310 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
6668128a
PZ
3311 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3312 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3313 else
1cac7b1a 3314 sid->can_add_hw = 0;
3b6f9e5c 3315 }
1cac7b1a
PZ
3316
3317 return 0;
5b0311e1
FW
3318}
3319
3320static void
1cac7b1a
PZ
3321ctx_pinned_sched_in(struct perf_event_context *ctx,
3322 struct perf_cpu_context *cpuctx)
5b0311e1 3323{
1cac7b1a
PZ
3324 struct sched_in_data sid = {
3325 .ctx = ctx,
3326 .cpuctx = cpuctx,
3327 .can_add_hw = 1,
3328 };
3b6f9e5c 3329
1cac7b1a
PZ
3330 visit_groups_merge(&ctx->pinned_groups,
3331 smp_processor_id(),
3332 pinned_sched_in, &sid);
3333}
8e1a2031 3334
1cac7b1a
PZ
3335static void
3336ctx_flexible_sched_in(struct perf_event_context *ctx,
3337 struct perf_cpu_context *cpuctx)
3338{
3339 struct sched_in_data sid = {
3340 .ctx = ctx,
3341 .cpuctx = cpuctx,
3342 .can_add_hw = 1,
3343 };
0793a61d 3344
1cac7b1a
PZ
3345 visit_groups_merge(&ctx->flexible_groups,
3346 smp_processor_id(),
3347 flexible_sched_in, &sid);
5b0311e1
FW
3348}
3349
3350static void
3351ctx_sched_in(struct perf_event_context *ctx,
3352 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3353 enum event_type_t event_type,
3354 struct task_struct *task)
5b0311e1 3355{
db24d33e 3356 int is_active = ctx->is_active;
c994d613
PZ
3357 u64 now;
3358
3359 lockdep_assert_held(&ctx->lock);
e5d1367f 3360
5b0311e1 3361 if (likely(!ctx->nr_events))
facc4307 3362 return;
5b0311e1 3363
3cbaa590 3364 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3365 if (ctx->task) {
3366 if (!is_active)
3367 cpuctx->task_ctx = ctx;
3368 else
3369 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3370 }
3371
3cbaa590
PZ
3372 is_active ^= ctx->is_active; /* changed bits */
3373
3374 if (is_active & EVENT_TIME) {
3375 /* start ctx time */
3376 now = perf_clock();
3377 ctx->timestamp = now;
3378 perf_cgroup_set_timestamp(task, ctx);
3379 }
3380
5b0311e1
FW
3381 /*
3382 * First go through the list and put on any pinned groups
3383 * in order to give them the best chance of going on.
3384 */
3cbaa590 3385 if (is_active & EVENT_PINNED)
6e37738a 3386 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3387
3388 /* Then walk through the lower prio flexible groups */
3cbaa590 3389 if (is_active & EVENT_FLEXIBLE)
6e37738a 3390 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3391}
3392
329c0e01 3393static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3394 enum event_type_t event_type,
3395 struct task_struct *task)
329c0e01
FW
3396{
3397 struct perf_event_context *ctx = &cpuctx->ctx;
3398
e5d1367f 3399 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3400}
3401
e5d1367f
SE
3402static void perf_event_context_sched_in(struct perf_event_context *ctx,
3403 struct task_struct *task)
235c7fc7 3404{
108b02cf 3405 struct perf_cpu_context *cpuctx;
235c7fc7 3406
108b02cf 3407 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3408 if (cpuctx->task_ctx == ctx)
3409 return;
3410
facc4307 3411 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3412 /*
3413 * We must check ctx->nr_events while holding ctx->lock, such
3414 * that we serialize against perf_install_in_context().
3415 */
3416 if (!ctx->nr_events)
3417 goto unlock;
3418
1b9a644f 3419 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3420 /*
3421 * We want to keep the following priority order:
3422 * cpu pinned (that don't need to move), task pinned,
3423 * cpu flexible, task flexible.
fe45bafb
AS
3424 *
3425 * However, if task's ctx is not carrying any pinned
3426 * events, no need to flip the cpuctx's events around.
329c0e01 3427 */
8e1a2031 3428 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
fe45bafb 3429 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3430 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3431 perf_pmu_enable(ctx->pmu);
fdccc3fb 3432
3433unlock:
facc4307 3434 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3435}
3436
8dc85d54
PZ
3437/*
3438 * Called from scheduler to add the events of the current task
3439 * with interrupts disabled.
3440 *
3441 * We restore the event value and then enable it.
3442 *
3443 * This does not protect us against NMI, but enable()
3444 * sets the enabled bit in the control field of event _before_
3445 * accessing the event control register. If a NMI hits, then it will
3446 * keep the event running.
3447 */
ab0cce56
JO
3448void __perf_event_task_sched_in(struct task_struct *prev,
3449 struct task_struct *task)
8dc85d54
PZ
3450{
3451 struct perf_event_context *ctx;
3452 int ctxn;
3453
7e41d177
PZ
3454 /*
3455 * If cgroup events exist on this CPU, then we need to check if we have
3456 * to switch in PMU state; cgroup event are system-wide mode only.
3457 *
3458 * Since cgroup events are CPU events, we must schedule these in before
3459 * we schedule in the task events.
3460 */
3461 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3462 perf_cgroup_sched_in(prev, task);
3463
8dc85d54
PZ
3464 for_each_task_context_nr(ctxn) {
3465 ctx = task->perf_event_ctxp[ctxn];
3466 if (likely(!ctx))
3467 continue;
3468
e5d1367f 3469 perf_event_context_sched_in(ctx, task);
8dc85d54 3470 }
d010b332 3471
45ac1403
AH
3472 if (atomic_read(&nr_switch_events))
3473 perf_event_switch(task, prev, true);
3474
ba532500
YZ
3475 if (__this_cpu_read(perf_sched_cb_usages))
3476 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3477}
3478
abd50713
PZ
3479static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3480{
3481 u64 frequency = event->attr.sample_freq;
3482 u64 sec = NSEC_PER_SEC;
3483 u64 divisor, dividend;
3484
3485 int count_fls, nsec_fls, frequency_fls, sec_fls;
3486
3487 count_fls = fls64(count);
3488 nsec_fls = fls64(nsec);
3489 frequency_fls = fls64(frequency);
3490 sec_fls = 30;
3491
3492 /*
3493 * We got @count in @nsec, with a target of sample_freq HZ
3494 * the target period becomes:
3495 *
3496 * @count * 10^9
3497 * period = -------------------
3498 * @nsec * sample_freq
3499 *
3500 */
3501
3502 /*
3503 * Reduce accuracy by one bit such that @a and @b converge
3504 * to a similar magnitude.
3505 */
fe4b04fa 3506#define REDUCE_FLS(a, b) \
abd50713
PZ
3507do { \
3508 if (a##_fls > b##_fls) { \
3509 a >>= 1; \
3510 a##_fls--; \
3511 } else { \
3512 b >>= 1; \
3513 b##_fls--; \
3514 } \
3515} while (0)
3516
3517 /*
3518 * Reduce accuracy until either term fits in a u64, then proceed with
3519 * the other, so that finally we can do a u64/u64 division.
3520 */
3521 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3522 REDUCE_FLS(nsec, frequency);
3523 REDUCE_FLS(sec, count);
3524 }
3525
3526 if (count_fls + sec_fls > 64) {
3527 divisor = nsec * frequency;
3528
3529 while (count_fls + sec_fls > 64) {
3530 REDUCE_FLS(count, sec);
3531 divisor >>= 1;
3532 }
3533
3534 dividend = count * sec;
3535 } else {
3536 dividend = count * sec;
3537
3538 while (nsec_fls + frequency_fls > 64) {
3539 REDUCE_FLS(nsec, frequency);
3540 dividend >>= 1;
3541 }
3542
3543 divisor = nsec * frequency;
3544 }
3545
f6ab91ad
PZ
3546 if (!divisor)
3547 return dividend;
3548
abd50713
PZ
3549 return div64_u64(dividend, divisor);
3550}
3551
e050e3f0
SE
3552static DEFINE_PER_CPU(int, perf_throttled_count);
3553static DEFINE_PER_CPU(u64, perf_throttled_seq);
3554
f39d47ff 3555static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3556{
cdd6c482 3557 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3558 s64 period, sample_period;
bd2b5b12
PZ
3559 s64 delta;
3560
abd50713 3561 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3562
3563 delta = (s64)(period - hwc->sample_period);
3564 delta = (delta + 7) / 8; /* low pass filter */
3565
3566 sample_period = hwc->sample_period + delta;
3567
3568 if (!sample_period)
3569 sample_period = 1;
3570
bd2b5b12 3571 hwc->sample_period = sample_period;
abd50713 3572
e7850595 3573 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3574 if (disable)
3575 event->pmu->stop(event, PERF_EF_UPDATE);
3576
e7850595 3577 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3578
3579 if (disable)
3580 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3581 }
bd2b5b12
PZ
3582}
3583
e050e3f0
SE
3584/*
3585 * combine freq adjustment with unthrottling to avoid two passes over the
3586 * events. At the same time, make sure, having freq events does not change
3587 * the rate of unthrottling as that would introduce bias.
3588 */
3589static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3590 int needs_unthr)
60db5e09 3591{
cdd6c482
IM
3592 struct perf_event *event;
3593 struct hw_perf_event *hwc;
e050e3f0 3594 u64 now, period = TICK_NSEC;
abd50713 3595 s64 delta;
60db5e09 3596
e050e3f0
SE
3597 /*
3598 * only need to iterate over all events iff:
3599 * - context have events in frequency mode (needs freq adjust)
3600 * - there are events to unthrottle on this cpu
3601 */
3602 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3603 return;
3604
e050e3f0 3605 raw_spin_lock(&ctx->lock);
f39d47ff 3606 perf_pmu_disable(ctx->pmu);
e050e3f0 3607
03541f8b 3608 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3609 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3610 continue;
3611
5632ab12 3612 if (!event_filter_match(event))
5d27c23d
PZ
3613 continue;
3614
44377277
AS
3615 perf_pmu_disable(event->pmu);
3616
cdd6c482 3617 hwc = &event->hw;
6a24ed6c 3618
ae23bff1 3619 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3620 hwc->interrupts = 0;
cdd6c482 3621 perf_log_throttle(event, 1);
a4eaf7f1 3622 event->pmu->start(event, 0);
a78ac325
PZ
3623 }
3624
cdd6c482 3625 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3626 goto next;
60db5e09 3627
e050e3f0
SE
3628 /*
3629 * stop the event and update event->count
3630 */
3631 event->pmu->stop(event, PERF_EF_UPDATE);
3632
e7850595 3633 now = local64_read(&event->count);
abd50713
PZ
3634 delta = now - hwc->freq_count_stamp;
3635 hwc->freq_count_stamp = now;
60db5e09 3636
e050e3f0
SE
3637 /*
3638 * restart the event
3639 * reload only if value has changed
f39d47ff
SE
3640 * we have stopped the event so tell that
3641 * to perf_adjust_period() to avoid stopping it
3642 * twice.
e050e3f0 3643 */
abd50713 3644 if (delta > 0)
f39d47ff 3645 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3646
3647 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3648 next:
3649 perf_pmu_enable(event->pmu);
60db5e09 3650 }
e050e3f0 3651
f39d47ff 3652 perf_pmu_enable(ctx->pmu);
e050e3f0 3653 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3654}
3655
235c7fc7 3656/*
8703a7cf 3657 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 3658 */
8703a7cf 3659static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 3660{
dddd3379
TG
3661 /*
3662 * Rotate the first entry last of non-pinned groups. Rotation might be
3663 * disabled by the inheritance code.
3664 */
8703a7cf
PZ
3665 if (ctx->rotate_disable)
3666 return;
8e1a2031 3667
8703a7cf
PZ
3668 perf_event_groups_delete(&ctx->flexible_groups, event);
3669 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
3670}
3671
8d5bce0c
PZ
3672static inline struct perf_event *
3673ctx_first_active(struct perf_event_context *ctx)
235c7fc7 3674{
8d5bce0c
PZ
3675 return list_first_entry_or_null(&ctx->flexible_active,
3676 struct perf_event, active_list);
3677}
3678
3679static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3680{
3681 struct perf_event *cpu_event = NULL, *task_event = NULL;
3682 bool cpu_rotate = false, task_rotate = false;
8dc85d54 3683 struct perf_event_context *ctx = NULL;
8d5bce0c
PZ
3684
3685 /*
3686 * Since we run this from IRQ context, nobody can install new
3687 * events, thus the event count values are stable.
3688 */
7fc23a53 3689
b5ab4cd5 3690 if (cpuctx->ctx.nr_events) {
b5ab4cd5 3691 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
8d5bce0c 3692 cpu_rotate = true;
b5ab4cd5 3693 }
235c7fc7 3694
8dc85d54 3695 ctx = cpuctx->task_ctx;
b5ab4cd5 3696 if (ctx && ctx->nr_events) {
b5ab4cd5 3697 if (ctx->nr_events != ctx->nr_active)
8d5bce0c 3698 task_rotate = true;
b5ab4cd5 3699 }
9717e6cd 3700
8d5bce0c
PZ
3701 if (!(cpu_rotate || task_rotate))
3702 return false;
0f5a2601 3703
facc4307 3704 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3705 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3706
8d5bce0c
PZ
3707 if (task_rotate)
3708 task_event = ctx_first_active(ctx);
3709 if (cpu_rotate)
3710 cpu_event = ctx_first_active(&cpuctx->ctx);
8703a7cf 3711
8d5bce0c
PZ
3712 /*
3713 * As per the order given at ctx_resched() first 'pop' task flexible
3714 * and then, if needed CPU flexible.
3715 */
3716 if (task_event || (ctx && cpu_event))
e050e3f0 3717 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
8d5bce0c
PZ
3718 if (cpu_event)
3719 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
0793a61d 3720
8d5bce0c
PZ
3721 if (task_event)
3722 rotate_ctx(ctx, task_event);
3723 if (cpu_event)
3724 rotate_ctx(&cpuctx->ctx, cpu_event);
235c7fc7 3725
e050e3f0 3726 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3727
0f5a2601
PZ
3728 perf_pmu_enable(cpuctx->ctx.pmu);
3729 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 3730
8d5bce0c 3731 return true;
e9d2b064
PZ
3732}
3733
3734void perf_event_task_tick(void)
3735{
2fde4f94
MR
3736 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3737 struct perf_event_context *ctx, *tmp;
e050e3f0 3738 int throttled;
b5ab4cd5 3739
16444645 3740 lockdep_assert_irqs_disabled();
e9d2b064 3741
e050e3f0
SE
3742 __this_cpu_inc(perf_throttled_seq);
3743 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3744 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3745
2fde4f94 3746 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3747 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3748}
3749
889ff015
FW
3750static int event_enable_on_exec(struct perf_event *event,
3751 struct perf_event_context *ctx)
3752{
3753 if (!event->attr.enable_on_exec)
3754 return 0;
3755
3756 event->attr.enable_on_exec = 0;
3757 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3758 return 0;
3759
0d3d73aa 3760 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3761
3762 return 1;
3763}
3764
57e7986e 3765/*
cdd6c482 3766 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3767 * This expects task == current.
3768 */
c1274499 3769static void perf_event_enable_on_exec(int ctxn)
57e7986e 3770{
c1274499 3771 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3772 enum event_type_t event_type = 0;
3e349507 3773 struct perf_cpu_context *cpuctx;
cdd6c482 3774 struct perf_event *event;
57e7986e
PM
3775 unsigned long flags;
3776 int enabled = 0;
3777
3778 local_irq_save(flags);
c1274499 3779 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3780 if (!ctx || !ctx->nr_events)
57e7986e
PM
3781 goto out;
3782
3e349507
PZ
3783 cpuctx = __get_cpu_context(ctx);
3784 perf_ctx_lock(cpuctx, ctx);
7fce2509 3785 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3786 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3787 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3788 event_type |= get_event_type(event);
3789 }
57e7986e
PM
3790
3791 /*
3e349507 3792 * Unclone and reschedule this context if we enabled any event.
57e7986e 3793 */
3e349507 3794 if (enabled) {
211de6eb 3795 clone_ctx = unclone_ctx(ctx);
487f05e1 3796 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3797 } else {
3798 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3799 }
3800 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3801
9ed6060d 3802out:
57e7986e 3803 local_irq_restore(flags);
211de6eb
PZ
3804
3805 if (clone_ctx)
3806 put_ctx(clone_ctx);
57e7986e
PM
3807}
3808
0492d4c5
PZ
3809struct perf_read_data {
3810 struct perf_event *event;
3811 bool group;
7d88962e 3812 int ret;
0492d4c5
PZ
3813};
3814
451d24d1 3815static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3816{
d6a2f903
DCC
3817 u16 local_pkg, event_pkg;
3818
3819 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3820 int local_cpu = smp_processor_id();
3821
3822 event_pkg = topology_physical_package_id(event_cpu);
3823 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3824
3825 if (event_pkg == local_pkg)
3826 return local_cpu;
3827 }
3828
3829 return event_cpu;
3830}
3831
0793a61d 3832/*
cdd6c482 3833 * Cross CPU call to read the hardware event
0793a61d 3834 */
cdd6c482 3835static void __perf_event_read(void *info)
0793a61d 3836{
0492d4c5
PZ
3837 struct perf_read_data *data = info;
3838 struct perf_event *sub, *event = data->event;
cdd6c482 3839 struct perf_event_context *ctx = event->ctx;
108b02cf 3840 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3841 struct pmu *pmu = event->pmu;
621a01ea 3842
e1ac3614
PM
3843 /*
3844 * If this is a task context, we need to check whether it is
3845 * the current task context of this cpu. If not it has been
3846 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3847 * event->count would have been updated to a recent sample
3848 * when the event was scheduled out.
e1ac3614
PM
3849 */
3850 if (ctx->task && cpuctx->task_ctx != ctx)
3851 return;
3852
e625cce1 3853 raw_spin_lock(&ctx->lock);
0c1cbc18 3854 if (ctx->is_active & EVENT_TIME) {
542e72fc 3855 update_context_time(ctx);
e5d1367f
SE
3856 update_cgrp_time_from_event(event);
3857 }
0492d4c5 3858
0d3d73aa
PZ
3859 perf_event_update_time(event);
3860 if (data->group)
3861 perf_event_update_sibling_time(event);
0c1cbc18 3862
4a00c16e
SB
3863 if (event->state != PERF_EVENT_STATE_ACTIVE)
3864 goto unlock;
0492d4c5 3865
4a00c16e
SB
3866 if (!data->group) {
3867 pmu->read(event);
3868 data->ret = 0;
0492d4c5 3869 goto unlock;
4a00c16e
SB
3870 }
3871
3872 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3873
3874 pmu->read(event);
0492d4c5 3875
edb39592 3876 for_each_sibling_event(sub, event) {
4a00c16e
SB
3877 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3878 /*
3879 * Use sibling's PMU rather than @event's since
3880 * sibling could be on different (eg: software) PMU.
3881 */
0492d4c5 3882 sub->pmu->read(sub);
4a00c16e 3883 }
0492d4c5 3884 }
4a00c16e
SB
3885
3886 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3887
3888unlock:
e625cce1 3889 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3890}
3891
b5e58793
PZ
3892static inline u64 perf_event_count(struct perf_event *event)
3893{
c39a0e2c 3894 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3895}
3896
ffe8690c
KX
3897/*
3898 * NMI-safe method to read a local event, that is an event that
3899 * is:
3900 * - either for the current task, or for this CPU
3901 * - does not have inherit set, for inherited task events
3902 * will not be local and we cannot read them atomically
3903 * - must not have a pmu::count method
3904 */
7d9285e8
YS
3905int perf_event_read_local(struct perf_event *event, u64 *value,
3906 u64 *enabled, u64 *running)
ffe8690c
KX
3907{
3908 unsigned long flags;
f91840a3 3909 int ret = 0;
ffe8690c
KX
3910
3911 /*
3912 * Disabling interrupts avoids all counter scheduling (context
3913 * switches, timer based rotation and IPIs).
3914 */
3915 local_irq_save(flags);
3916
ffe8690c
KX
3917 /*
3918 * It must not be an event with inherit set, we cannot read
3919 * all child counters from atomic context.
3920 */
f91840a3
AS
3921 if (event->attr.inherit) {
3922 ret = -EOPNOTSUPP;
3923 goto out;
3924 }
ffe8690c 3925
f91840a3
AS
3926 /* If this is a per-task event, it must be for current */
3927 if ((event->attach_state & PERF_ATTACH_TASK) &&
3928 event->hw.target != current) {
3929 ret = -EINVAL;
3930 goto out;
3931 }
3932
3933 /* If this is a per-CPU event, it must be for this CPU */
3934 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3935 event->cpu != smp_processor_id()) {
3936 ret = -EINVAL;
3937 goto out;
3938 }
ffe8690c 3939
befb1b3c
RC
3940 /* If this is a pinned event it must be running on this CPU */
3941 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3942 ret = -EBUSY;
3943 goto out;
3944 }
3945
ffe8690c
KX
3946 /*
3947 * If the event is currently on this CPU, its either a per-task event,
3948 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3949 * oncpu == -1).
3950 */
3951 if (event->oncpu == smp_processor_id())
3952 event->pmu->read(event);
3953
f91840a3 3954 *value = local64_read(&event->count);
0d3d73aa
PZ
3955 if (enabled || running) {
3956 u64 now = event->shadow_ctx_time + perf_clock();
3957 u64 __enabled, __running;
3958
3959 __perf_update_times(event, now, &__enabled, &__running);
3960 if (enabled)
3961 *enabled = __enabled;
3962 if (running)
3963 *running = __running;
3964 }
f91840a3 3965out:
ffe8690c
KX
3966 local_irq_restore(flags);
3967
f91840a3 3968 return ret;
ffe8690c
KX
3969}
3970
7d88962e 3971static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3972{
0c1cbc18 3973 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 3974 int event_cpu, ret = 0;
7d88962e 3975
0793a61d 3976 /*
cdd6c482
IM
3977 * If event is enabled and currently active on a CPU, update the
3978 * value in the event structure:
0793a61d 3979 */
0c1cbc18
PZ
3980again:
3981 if (state == PERF_EVENT_STATE_ACTIVE) {
3982 struct perf_read_data data;
3983
3984 /*
3985 * Orders the ->state and ->oncpu loads such that if we see
3986 * ACTIVE we must also see the right ->oncpu.
3987 *
3988 * Matches the smp_wmb() from event_sched_in().
3989 */
3990 smp_rmb();
d6a2f903 3991
451d24d1
PZ
3992 event_cpu = READ_ONCE(event->oncpu);
3993 if ((unsigned)event_cpu >= nr_cpu_ids)
3994 return 0;
3995
0c1cbc18
PZ
3996 data = (struct perf_read_data){
3997 .event = event,
3998 .group = group,
3999 .ret = 0,
4000 };
4001
451d24d1
PZ
4002 preempt_disable();
4003 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4004
58763148
PZ
4005 /*
4006 * Purposely ignore the smp_call_function_single() return
4007 * value.
4008 *
451d24d1 4009 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4010 * scheduled out and that will have updated the event count.
4011 *
4012 * Therefore, either way, we'll have an up-to-date event count
4013 * after this.
4014 */
451d24d1
PZ
4015 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4016 preempt_enable();
58763148 4017 ret = data.ret;
0c1cbc18
PZ
4018
4019 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4020 struct perf_event_context *ctx = event->ctx;
4021 unsigned long flags;
4022
e625cce1 4023 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4024 state = event->state;
4025 if (state != PERF_EVENT_STATE_INACTIVE) {
4026 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4027 goto again;
4028 }
4029
c530ccd9 4030 /*
0c1cbc18
PZ
4031 * May read while context is not active (e.g., thread is
4032 * blocked), in that case we cannot update context time
c530ccd9 4033 */
0c1cbc18 4034 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4035 update_context_time(ctx);
e5d1367f
SE
4036 update_cgrp_time_from_event(event);
4037 }
0c1cbc18 4038
0d3d73aa 4039 perf_event_update_time(event);
0492d4c5 4040 if (group)
0d3d73aa 4041 perf_event_update_sibling_time(event);
e625cce1 4042 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4043 }
7d88962e
SB
4044
4045 return ret;
0793a61d
TG
4046}
4047
a63eaf34 4048/*
cdd6c482 4049 * Initialize the perf_event context in a task_struct:
a63eaf34 4050 */
eb184479 4051static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4052{
e625cce1 4053 raw_spin_lock_init(&ctx->lock);
a63eaf34 4054 mutex_init(&ctx->mutex);
2fde4f94 4055 INIT_LIST_HEAD(&ctx->active_ctx_list);
8e1a2031
AB
4056 perf_event_groups_init(&ctx->pinned_groups);
4057 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4058 INIT_LIST_HEAD(&ctx->event_list);
6668128a
PZ
4059 INIT_LIST_HEAD(&ctx->pinned_active);
4060 INIT_LIST_HEAD(&ctx->flexible_active);
8c94abbb 4061 refcount_set(&ctx->refcount, 1);
eb184479
PZ
4062}
4063
4064static struct perf_event_context *
4065alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4066{
4067 struct perf_event_context *ctx;
4068
4069 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4070 if (!ctx)
4071 return NULL;
4072
4073 __perf_event_init_context(ctx);
4074 if (task) {
4075 ctx->task = task;
4076 get_task_struct(task);
0793a61d 4077 }
eb184479
PZ
4078 ctx->pmu = pmu;
4079
4080 return ctx;
a63eaf34
PM
4081}
4082
2ebd4ffb
MH
4083static struct task_struct *
4084find_lively_task_by_vpid(pid_t vpid)
4085{
4086 struct task_struct *task;
0793a61d
TG
4087
4088 rcu_read_lock();
2ebd4ffb 4089 if (!vpid)
0793a61d
TG
4090 task = current;
4091 else
2ebd4ffb 4092 task = find_task_by_vpid(vpid);
0793a61d
TG
4093 if (task)
4094 get_task_struct(task);
4095 rcu_read_unlock();
4096
4097 if (!task)
4098 return ERR_PTR(-ESRCH);
4099
2ebd4ffb 4100 return task;
2ebd4ffb
MH
4101}
4102
fe4b04fa
PZ
4103/*
4104 * Returns a matching context with refcount and pincount.
4105 */
108b02cf 4106static struct perf_event_context *
4af57ef2
YZ
4107find_get_context(struct pmu *pmu, struct task_struct *task,
4108 struct perf_event *event)
0793a61d 4109{
211de6eb 4110 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4111 struct perf_cpu_context *cpuctx;
4af57ef2 4112 void *task_ctx_data = NULL;
25346b93 4113 unsigned long flags;
8dc85d54 4114 int ctxn, err;
4af57ef2 4115 int cpu = event->cpu;
0793a61d 4116
22a4ec72 4117 if (!task) {
cdd6c482 4118 /* Must be root to operate on a CPU event: */
0764771d 4119 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
4120 return ERR_PTR(-EACCES);
4121
108b02cf 4122 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 4123 ctx = &cpuctx->ctx;
c93f7669 4124 get_ctx(ctx);
fe4b04fa 4125 ++ctx->pin_count;
0793a61d 4126
0793a61d
TG
4127 return ctx;
4128 }
4129
8dc85d54
PZ
4130 err = -EINVAL;
4131 ctxn = pmu->task_ctx_nr;
4132 if (ctxn < 0)
4133 goto errout;
4134
4af57ef2
YZ
4135 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4136 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4137 if (!task_ctx_data) {
4138 err = -ENOMEM;
4139 goto errout;
4140 }
4141 }
4142
9ed6060d 4143retry:
8dc85d54 4144 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 4145 if (ctx) {
211de6eb 4146 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4147 ++ctx->pin_count;
4af57ef2
YZ
4148
4149 if (task_ctx_data && !ctx->task_ctx_data) {
4150 ctx->task_ctx_data = task_ctx_data;
4151 task_ctx_data = NULL;
4152 }
e625cce1 4153 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4154
4155 if (clone_ctx)
4156 put_ctx(clone_ctx);
9137fb28 4157 } else {
eb184479 4158 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
4159 err = -ENOMEM;
4160 if (!ctx)
4161 goto errout;
eb184479 4162
4af57ef2
YZ
4163 if (task_ctx_data) {
4164 ctx->task_ctx_data = task_ctx_data;
4165 task_ctx_data = NULL;
4166 }
4167
dbe08d82
ON
4168 err = 0;
4169 mutex_lock(&task->perf_event_mutex);
4170 /*
4171 * If it has already passed perf_event_exit_task().
4172 * we must see PF_EXITING, it takes this mutex too.
4173 */
4174 if (task->flags & PF_EXITING)
4175 err = -ESRCH;
4176 else if (task->perf_event_ctxp[ctxn])
4177 err = -EAGAIN;
fe4b04fa 4178 else {
9137fb28 4179 get_ctx(ctx);
fe4b04fa 4180 ++ctx->pin_count;
dbe08d82 4181 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 4182 }
dbe08d82
ON
4183 mutex_unlock(&task->perf_event_mutex);
4184
4185 if (unlikely(err)) {
9137fb28 4186 put_ctx(ctx);
dbe08d82
ON
4187
4188 if (err == -EAGAIN)
4189 goto retry;
4190 goto errout;
a63eaf34
PM
4191 }
4192 }
4193
4af57ef2 4194 kfree(task_ctx_data);
0793a61d 4195 return ctx;
c93f7669 4196
9ed6060d 4197errout:
4af57ef2 4198 kfree(task_ctx_data);
c93f7669 4199 return ERR_PTR(err);
0793a61d
TG
4200}
4201
6fb2915d 4202static void perf_event_free_filter(struct perf_event *event);
2541517c 4203static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 4204
cdd6c482 4205static void free_event_rcu(struct rcu_head *head)
592903cd 4206{
cdd6c482 4207 struct perf_event *event;
592903cd 4208
cdd6c482
IM
4209 event = container_of(head, struct perf_event, rcu_head);
4210 if (event->ns)
4211 put_pid_ns(event->ns);
6fb2915d 4212 perf_event_free_filter(event);
cdd6c482 4213 kfree(event);
592903cd
PZ
4214}
4215
b69cf536
PZ
4216static void ring_buffer_attach(struct perf_event *event,
4217 struct ring_buffer *rb);
925d519a 4218
f2fb6bef
KL
4219static void detach_sb_event(struct perf_event *event)
4220{
4221 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4222
4223 raw_spin_lock(&pel->lock);
4224 list_del_rcu(&event->sb_list);
4225 raw_spin_unlock(&pel->lock);
4226}
4227
a4f144eb 4228static bool is_sb_event(struct perf_event *event)
f2fb6bef 4229{
a4f144eb
DCC
4230 struct perf_event_attr *attr = &event->attr;
4231
f2fb6bef 4232 if (event->parent)
a4f144eb 4233 return false;
f2fb6bef
KL
4234
4235 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4236 return false;
f2fb6bef 4237
a4f144eb
DCC
4238 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4239 attr->comm || attr->comm_exec ||
76193a94 4240 attr->task || attr->ksymbol ||
21038f2b
SL
4241 attr->context_switch ||
4242 attr->bpf_event)
a4f144eb
DCC
4243 return true;
4244 return false;
4245}
4246
4247static void unaccount_pmu_sb_event(struct perf_event *event)
4248{
4249 if (is_sb_event(event))
4250 detach_sb_event(event);
f2fb6bef
KL
4251}
4252
4beb31f3 4253static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4254{
4beb31f3
FW
4255 if (event->parent)
4256 return;
4257
4beb31f3
FW
4258 if (is_cgroup_event(event))
4259 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4260}
925d519a 4261
555e0c1e
FW
4262#ifdef CONFIG_NO_HZ_FULL
4263static DEFINE_SPINLOCK(nr_freq_lock);
4264#endif
4265
4266static void unaccount_freq_event_nohz(void)
4267{
4268#ifdef CONFIG_NO_HZ_FULL
4269 spin_lock(&nr_freq_lock);
4270 if (atomic_dec_and_test(&nr_freq_events))
4271 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4272 spin_unlock(&nr_freq_lock);
4273#endif
4274}
4275
4276static void unaccount_freq_event(void)
4277{
4278 if (tick_nohz_full_enabled())
4279 unaccount_freq_event_nohz();
4280 else
4281 atomic_dec(&nr_freq_events);
4282}
4283
4beb31f3
FW
4284static void unaccount_event(struct perf_event *event)
4285{
25432ae9
PZ
4286 bool dec = false;
4287
4beb31f3
FW
4288 if (event->parent)
4289 return;
4290
4291 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4292 dec = true;
4beb31f3
FW
4293 if (event->attr.mmap || event->attr.mmap_data)
4294 atomic_dec(&nr_mmap_events);
4295 if (event->attr.comm)
4296 atomic_dec(&nr_comm_events);
e4222673
HB
4297 if (event->attr.namespaces)
4298 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4299 if (event->attr.task)
4300 atomic_dec(&nr_task_events);
948b26b6 4301 if (event->attr.freq)
555e0c1e 4302 unaccount_freq_event();
45ac1403 4303 if (event->attr.context_switch) {
25432ae9 4304 dec = true;
45ac1403
AH
4305 atomic_dec(&nr_switch_events);
4306 }
4beb31f3 4307 if (is_cgroup_event(event))
25432ae9 4308 dec = true;
4beb31f3 4309 if (has_branch_stack(event))
25432ae9 4310 dec = true;
76193a94
SL
4311 if (event->attr.ksymbol)
4312 atomic_dec(&nr_ksymbol_events);
6ee52e2a
SL
4313 if (event->attr.bpf_event)
4314 atomic_dec(&nr_bpf_events);
25432ae9 4315
9107c89e
PZ
4316 if (dec) {
4317 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4318 schedule_delayed_work(&perf_sched_work, HZ);
4319 }
4beb31f3
FW
4320
4321 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4322
4323 unaccount_pmu_sb_event(event);
4beb31f3 4324}
925d519a 4325
9107c89e
PZ
4326static void perf_sched_delayed(struct work_struct *work)
4327{
4328 mutex_lock(&perf_sched_mutex);
4329 if (atomic_dec_and_test(&perf_sched_count))
4330 static_branch_disable(&perf_sched_events);
4331 mutex_unlock(&perf_sched_mutex);
4332}
4333
bed5b25a
AS
4334/*
4335 * The following implement mutual exclusion of events on "exclusive" pmus
4336 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4337 * at a time, so we disallow creating events that might conflict, namely:
4338 *
4339 * 1) cpu-wide events in the presence of per-task events,
4340 * 2) per-task events in the presence of cpu-wide events,
4341 * 3) two matching events on the same context.
4342 *
4343 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4344 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4345 */
4346static int exclusive_event_init(struct perf_event *event)
4347{
4348 struct pmu *pmu = event->pmu;
4349
4350 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4351 return 0;
4352
4353 /*
4354 * Prevent co-existence of per-task and cpu-wide events on the
4355 * same exclusive pmu.
4356 *
4357 * Negative pmu::exclusive_cnt means there are cpu-wide
4358 * events on this "exclusive" pmu, positive means there are
4359 * per-task events.
4360 *
4361 * Since this is called in perf_event_alloc() path, event::ctx
4362 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4363 * to mean "per-task event", because unlike other attach states it
4364 * never gets cleared.
4365 */
4366 if (event->attach_state & PERF_ATTACH_TASK) {
4367 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4368 return -EBUSY;
4369 } else {
4370 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4371 return -EBUSY;
4372 }
4373
4374 return 0;
4375}
4376
4377static void exclusive_event_destroy(struct perf_event *event)
4378{
4379 struct pmu *pmu = event->pmu;
4380
4381 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4382 return;
4383
4384 /* see comment in exclusive_event_init() */
4385 if (event->attach_state & PERF_ATTACH_TASK)
4386 atomic_dec(&pmu->exclusive_cnt);
4387 else
4388 atomic_inc(&pmu->exclusive_cnt);
4389}
4390
4391static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4392{
3bf6215a 4393 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4394 (e1->cpu == e2->cpu ||
4395 e1->cpu == -1 ||
4396 e2->cpu == -1))
4397 return true;
4398 return false;
4399}
4400
4401/* Called under the same ctx::mutex as perf_install_in_context() */
4402static bool exclusive_event_installable(struct perf_event *event,
4403 struct perf_event_context *ctx)
4404{
4405 struct perf_event *iter_event;
4406 struct pmu *pmu = event->pmu;
4407
4408 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4409 return true;
4410
4411 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4412 if (exclusive_event_match(iter_event, event))
4413 return false;
4414 }
4415
4416 return true;
4417}
4418
375637bc
AS
4419static void perf_addr_filters_splice(struct perf_event *event,
4420 struct list_head *head);
4421
683ede43 4422static void _free_event(struct perf_event *event)
f1600952 4423{
e360adbe 4424 irq_work_sync(&event->pending);
925d519a 4425
4beb31f3 4426 unaccount_event(event);
9ee318a7 4427
76369139 4428 if (event->rb) {
9bb5d40c
PZ
4429 /*
4430 * Can happen when we close an event with re-directed output.
4431 *
4432 * Since we have a 0 refcount, perf_mmap_close() will skip
4433 * over us; possibly making our ring_buffer_put() the last.
4434 */
4435 mutex_lock(&event->mmap_mutex);
b69cf536 4436 ring_buffer_attach(event, NULL);
9bb5d40c 4437 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4438 }
4439
e5d1367f
SE
4440 if (is_cgroup_event(event))
4441 perf_detach_cgroup(event);
4442
a0733e69
PZ
4443 if (!event->parent) {
4444 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4445 put_callchain_buffers();
4446 }
4447
4448 perf_event_free_bpf_prog(event);
375637bc 4449 perf_addr_filters_splice(event, NULL);
c60f83b8 4450 kfree(event->addr_filter_ranges);
a0733e69
PZ
4451
4452 if (event->destroy)
4453 event->destroy(event);
4454
4455 if (event->ctx)
4456 put_ctx(event->ctx);
4457
621b6d2e
PB
4458 if (event->hw.target)
4459 put_task_struct(event->hw.target);
4460
62a92c8f
AS
4461 exclusive_event_destroy(event);
4462 module_put(event->pmu->module);
a0733e69
PZ
4463
4464 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4465}
4466
683ede43
PZ
4467/*
4468 * Used to free events which have a known refcount of 1, such as in error paths
4469 * where the event isn't exposed yet and inherited events.
4470 */
4471static void free_event(struct perf_event *event)
0793a61d 4472{
683ede43
PZ
4473 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4474 "unexpected event refcount: %ld; ptr=%p\n",
4475 atomic_long_read(&event->refcount), event)) {
4476 /* leak to avoid use-after-free */
4477 return;
4478 }
0793a61d 4479
683ede43 4480 _free_event(event);
0793a61d
TG
4481}
4482
a66a3052 4483/*
f8697762 4484 * Remove user event from the owner task.
a66a3052 4485 */
f8697762 4486static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4487{
8882135b 4488 struct task_struct *owner;
fb0459d7 4489
8882135b 4490 rcu_read_lock();
8882135b 4491 /*
f47c02c0
PZ
4492 * Matches the smp_store_release() in perf_event_exit_task(). If we
4493 * observe !owner it means the list deletion is complete and we can
4494 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4495 * owner->perf_event_mutex.
4496 */
506458ef 4497 owner = READ_ONCE(event->owner);
8882135b
PZ
4498 if (owner) {
4499 /*
4500 * Since delayed_put_task_struct() also drops the last
4501 * task reference we can safely take a new reference
4502 * while holding the rcu_read_lock().
4503 */
4504 get_task_struct(owner);
4505 }
4506 rcu_read_unlock();
4507
4508 if (owner) {
f63a8daa
PZ
4509 /*
4510 * If we're here through perf_event_exit_task() we're already
4511 * holding ctx->mutex which would be an inversion wrt. the
4512 * normal lock order.
4513 *
4514 * However we can safely take this lock because its the child
4515 * ctx->mutex.
4516 */
4517 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4518
8882135b
PZ
4519 /*
4520 * We have to re-check the event->owner field, if it is cleared
4521 * we raced with perf_event_exit_task(), acquiring the mutex
4522 * ensured they're done, and we can proceed with freeing the
4523 * event.
4524 */
f47c02c0 4525 if (event->owner) {
8882135b 4526 list_del_init(&event->owner_entry);
f47c02c0
PZ
4527 smp_store_release(&event->owner, NULL);
4528 }
8882135b
PZ
4529 mutex_unlock(&owner->perf_event_mutex);
4530 put_task_struct(owner);
4531 }
f8697762
JO
4532}
4533
f8697762
JO
4534static void put_event(struct perf_event *event)
4535{
f8697762
JO
4536 if (!atomic_long_dec_and_test(&event->refcount))
4537 return;
4538
c6e5b732
PZ
4539 _free_event(event);
4540}
4541
4542/*
4543 * Kill an event dead; while event:refcount will preserve the event
4544 * object, it will not preserve its functionality. Once the last 'user'
4545 * gives up the object, we'll destroy the thing.
4546 */
4547int perf_event_release_kernel(struct perf_event *event)
4548{
a4f4bb6d 4549 struct perf_event_context *ctx = event->ctx;
c6e5b732 4550 struct perf_event *child, *tmp;
82d94856 4551 LIST_HEAD(free_list);
c6e5b732 4552
a4f4bb6d
PZ
4553 /*
4554 * If we got here through err_file: fput(event_file); we will not have
4555 * attached to a context yet.
4556 */
4557 if (!ctx) {
4558 WARN_ON_ONCE(event->attach_state &
4559 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4560 goto no_ctx;
4561 }
4562
f8697762
JO
4563 if (!is_kernel_event(event))
4564 perf_remove_from_owner(event);
8882135b 4565
5fa7c8ec 4566 ctx = perf_event_ctx_lock(event);
a83fe28e 4567 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4568 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4569
a69b0ca4 4570 raw_spin_lock_irq(&ctx->lock);
683ede43 4571 /*
d8a8cfc7 4572 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4573 * anymore.
683ede43 4574 *
a69b0ca4
PZ
4575 * Anybody acquiring event->child_mutex after the below loop _must_
4576 * also see this, most importantly inherit_event() which will avoid
4577 * placing more children on the list.
683ede43 4578 *
c6e5b732
PZ
4579 * Thus this guarantees that we will in fact observe and kill _ALL_
4580 * child events.
683ede43 4581 */
a69b0ca4
PZ
4582 event->state = PERF_EVENT_STATE_DEAD;
4583 raw_spin_unlock_irq(&ctx->lock);
4584
4585 perf_event_ctx_unlock(event, ctx);
683ede43 4586
c6e5b732
PZ
4587again:
4588 mutex_lock(&event->child_mutex);
4589 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4590
c6e5b732
PZ
4591 /*
4592 * Cannot change, child events are not migrated, see the
4593 * comment with perf_event_ctx_lock_nested().
4594 */
506458ef 4595 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4596 /*
4597 * Since child_mutex nests inside ctx::mutex, we must jump
4598 * through hoops. We start by grabbing a reference on the ctx.
4599 *
4600 * Since the event cannot get freed while we hold the
4601 * child_mutex, the context must also exist and have a !0
4602 * reference count.
4603 */
4604 get_ctx(ctx);
4605
4606 /*
4607 * Now that we have a ctx ref, we can drop child_mutex, and
4608 * acquire ctx::mutex without fear of it going away. Then we
4609 * can re-acquire child_mutex.
4610 */
4611 mutex_unlock(&event->child_mutex);
4612 mutex_lock(&ctx->mutex);
4613 mutex_lock(&event->child_mutex);
4614
4615 /*
4616 * Now that we hold ctx::mutex and child_mutex, revalidate our
4617 * state, if child is still the first entry, it didn't get freed
4618 * and we can continue doing so.
4619 */
4620 tmp = list_first_entry_or_null(&event->child_list,
4621 struct perf_event, child_list);
4622 if (tmp == child) {
4623 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4624 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4625 /*
4626 * This matches the refcount bump in inherit_event();
4627 * this can't be the last reference.
4628 */
4629 put_event(event);
4630 }
4631
4632 mutex_unlock(&event->child_mutex);
4633 mutex_unlock(&ctx->mutex);
4634 put_ctx(ctx);
4635 goto again;
4636 }
4637 mutex_unlock(&event->child_mutex);
4638
82d94856
PZ
4639 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4640 list_del(&child->child_list);
4641 free_event(child);
4642 }
4643
a4f4bb6d
PZ
4644no_ctx:
4645 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4646 return 0;
4647}
4648EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4649
8b10c5e2
PZ
4650/*
4651 * Called when the last reference to the file is gone.
4652 */
a6fa941d
AV
4653static int perf_release(struct inode *inode, struct file *file)
4654{
c6e5b732 4655 perf_event_release_kernel(file->private_data);
a6fa941d 4656 return 0;
fb0459d7 4657}
fb0459d7 4658
ca0dd44c 4659static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4660{
cdd6c482 4661 struct perf_event *child;
e53c0994
PZ
4662 u64 total = 0;
4663
59ed446f
PZ
4664 *enabled = 0;
4665 *running = 0;
4666
6f10581a 4667 mutex_lock(&event->child_mutex);
01add3ea 4668
7d88962e 4669 (void)perf_event_read(event, false);
01add3ea
SB
4670 total += perf_event_count(event);
4671
59ed446f
PZ
4672 *enabled += event->total_time_enabled +
4673 atomic64_read(&event->child_total_time_enabled);
4674 *running += event->total_time_running +
4675 atomic64_read(&event->child_total_time_running);
4676
4677 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4678 (void)perf_event_read(child, false);
01add3ea 4679 total += perf_event_count(child);
59ed446f
PZ
4680 *enabled += child->total_time_enabled;
4681 *running += child->total_time_running;
4682 }
6f10581a 4683 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4684
4685 return total;
4686}
ca0dd44c
PZ
4687
4688u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4689{
4690 struct perf_event_context *ctx;
4691 u64 count;
4692
4693 ctx = perf_event_ctx_lock(event);
4694 count = __perf_event_read_value(event, enabled, running);
4695 perf_event_ctx_unlock(event, ctx);
4696
4697 return count;
4698}
fb0459d7 4699EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4700
7d88962e 4701static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4702 u64 read_format, u64 *values)
3dab77fb 4703{
2aeb1883 4704 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4705 struct perf_event *sub;
2aeb1883 4706 unsigned long flags;
fa8c2693 4707 int n = 1; /* skip @nr */
7d88962e 4708 int ret;
f63a8daa 4709
7d88962e
SB
4710 ret = perf_event_read(leader, true);
4711 if (ret)
4712 return ret;
abf4868b 4713
a9cd8194
PZ
4714 raw_spin_lock_irqsave(&ctx->lock, flags);
4715
fa8c2693
PZ
4716 /*
4717 * Since we co-schedule groups, {enabled,running} times of siblings
4718 * will be identical to those of the leader, so we only publish one
4719 * set.
4720 */
4721 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4722 values[n++] += leader->total_time_enabled +
4723 atomic64_read(&leader->child_total_time_enabled);
4724 }
3dab77fb 4725
fa8c2693
PZ
4726 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4727 values[n++] += leader->total_time_running +
4728 atomic64_read(&leader->child_total_time_running);
4729 }
4730
4731 /*
4732 * Write {count,id} tuples for every sibling.
4733 */
4734 values[n++] += perf_event_count(leader);
abf4868b
PZ
4735 if (read_format & PERF_FORMAT_ID)
4736 values[n++] = primary_event_id(leader);
3dab77fb 4737
edb39592 4738 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
4739 values[n++] += perf_event_count(sub);
4740 if (read_format & PERF_FORMAT_ID)
4741 values[n++] = primary_event_id(sub);
4742 }
7d88962e 4743
2aeb1883 4744 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4745 return 0;
fa8c2693 4746}
3dab77fb 4747
fa8c2693
PZ
4748static int perf_read_group(struct perf_event *event,
4749 u64 read_format, char __user *buf)
4750{
4751 struct perf_event *leader = event->group_leader, *child;
4752 struct perf_event_context *ctx = leader->ctx;
7d88962e 4753 int ret;
fa8c2693 4754 u64 *values;
3dab77fb 4755
fa8c2693 4756 lockdep_assert_held(&ctx->mutex);
3dab77fb 4757
fa8c2693
PZ
4758 values = kzalloc(event->read_size, GFP_KERNEL);
4759 if (!values)
4760 return -ENOMEM;
3dab77fb 4761
fa8c2693
PZ
4762 values[0] = 1 + leader->nr_siblings;
4763
4764 /*
4765 * By locking the child_mutex of the leader we effectively
4766 * lock the child list of all siblings.. XXX explain how.
4767 */
4768 mutex_lock(&leader->child_mutex);
abf4868b 4769
7d88962e
SB
4770 ret = __perf_read_group_add(leader, read_format, values);
4771 if (ret)
4772 goto unlock;
4773
4774 list_for_each_entry(child, &leader->child_list, child_list) {
4775 ret = __perf_read_group_add(child, read_format, values);
4776 if (ret)
4777 goto unlock;
4778 }
abf4868b 4779
fa8c2693 4780 mutex_unlock(&leader->child_mutex);
abf4868b 4781
7d88962e 4782 ret = event->read_size;
fa8c2693
PZ
4783 if (copy_to_user(buf, values, event->read_size))
4784 ret = -EFAULT;
7d88962e 4785 goto out;
fa8c2693 4786
7d88962e
SB
4787unlock:
4788 mutex_unlock(&leader->child_mutex);
4789out:
fa8c2693 4790 kfree(values);
abf4868b 4791 return ret;
3dab77fb
PZ
4792}
4793
b15f495b 4794static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4795 u64 read_format, char __user *buf)
4796{
59ed446f 4797 u64 enabled, running;
3dab77fb
PZ
4798 u64 values[4];
4799 int n = 0;
4800
ca0dd44c 4801 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4802 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4803 values[n++] = enabled;
4804 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4805 values[n++] = running;
3dab77fb 4806 if (read_format & PERF_FORMAT_ID)
cdd6c482 4807 values[n++] = primary_event_id(event);
3dab77fb
PZ
4808
4809 if (copy_to_user(buf, values, n * sizeof(u64)))
4810 return -EFAULT;
4811
4812 return n * sizeof(u64);
4813}
4814
dc633982
JO
4815static bool is_event_hup(struct perf_event *event)
4816{
4817 bool no_children;
4818
a69b0ca4 4819 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4820 return false;
4821
4822 mutex_lock(&event->child_mutex);
4823 no_children = list_empty(&event->child_list);
4824 mutex_unlock(&event->child_mutex);
4825 return no_children;
4826}
4827
0793a61d 4828/*
cdd6c482 4829 * Read the performance event - simple non blocking version for now
0793a61d
TG
4830 */
4831static ssize_t
b15f495b 4832__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4833{
cdd6c482 4834 u64 read_format = event->attr.read_format;
3dab77fb 4835 int ret;
0793a61d 4836
3b6f9e5c 4837 /*
788faab7 4838 * Return end-of-file for a read on an event that is in
3b6f9e5c
PM
4839 * error state (i.e. because it was pinned but it couldn't be
4840 * scheduled on to the CPU at some point).
4841 */
cdd6c482 4842 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4843 return 0;
4844
c320c7b7 4845 if (count < event->read_size)
3dab77fb
PZ
4846 return -ENOSPC;
4847
cdd6c482 4848 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4849 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4850 ret = perf_read_group(event, read_format, buf);
3dab77fb 4851 else
b15f495b 4852 ret = perf_read_one(event, read_format, buf);
0793a61d 4853
3dab77fb 4854 return ret;
0793a61d
TG
4855}
4856
0793a61d
TG
4857static ssize_t
4858perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4859{
cdd6c482 4860 struct perf_event *event = file->private_data;
f63a8daa
PZ
4861 struct perf_event_context *ctx;
4862 int ret;
0793a61d 4863
f63a8daa 4864 ctx = perf_event_ctx_lock(event);
b15f495b 4865 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4866 perf_event_ctx_unlock(event, ctx);
4867
4868 return ret;
0793a61d
TG
4869}
4870
9dd95748 4871static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 4872{
cdd6c482 4873 struct perf_event *event = file->private_data;
76369139 4874 struct ring_buffer *rb;
a9a08845 4875 __poll_t events = EPOLLHUP;
c7138f37 4876
e708d7ad 4877 poll_wait(file, &event->waitq, wait);
179033b3 4878
dc633982 4879 if (is_event_hup(event))
179033b3 4880 return events;
c7138f37 4881
10c6db11 4882 /*
9bb5d40c
PZ
4883 * Pin the event->rb by taking event->mmap_mutex; otherwise
4884 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4885 */
4886 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4887 rb = event->rb;
4888 if (rb)
76369139 4889 events = atomic_xchg(&rb->poll, 0);
10c6db11 4890 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4891 return events;
4892}
4893
f63a8daa 4894static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4895{
7d88962e 4896 (void)perf_event_read(event, false);
e7850595 4897 local64_set(&event->count, 0);
cdd6c482 4898 perf_event_update_userpage(event);
3df5edad
PZ
4899}
4900
c93f7669 4901/*
cdd6c482
IM
4902 * Holding the top-level event's child_mutex means that any
4903 * descendant process that has inherited this event will block
8ba289b8 4904 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4905 * task existence requirements of perf_event_enable/disable.
c93f7669 4906 */
cdd6c482
IM
4907static void perf_event_for_each_child(struct perf_event *event,
4908 void (*func)(struct perf_event *))
3df5edad 4909{
cdd6c482 4910 struct perf_event *child;
3df5edad 4911
cdd6c482 4912 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4913
cdd6c482
IM
4914 mutex_lock(&event->child_mutex);
4915 func(event);
4916 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4917 func(child);
cdd6c482 4918 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4919}
4920
cdd6c482
IM
4921static void perf_event_for_each(struct perf_event *event,
4922 void (*func)(struct perf_event *))
3df5edad 4923{
cdd6c482
IM
4924 struct perf_event_context *ctx = event->ctx;
4925 struct perf_event *sibling;
3df5edad 4926
f63a8daa
PZ
4927 lockdep_assert_held(&ctx->mutex);
4928
cdd6c482 4929 event = event->group_leader;
75f937f2 4930
cdd6c482 4931 perf_event_for_each_child(event, func);
edb39592 4932 for_each_sibling_event(sibling, event)
724b6daa 4933 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4934}
4935
fae3fde6
PZ
4936static void __perf_event_period(struct perf_event *event,
4937 struct perf_cpu_context *cpuctx,
4938 struct perf_event_context *ctx,
4939 void *info)
c7999c6f 4940{
fae3fde6 4941 u64 value = *((u64 *)info);
c7999c6f 4942 bool active;
08247e31 4943
cdd6c482 4944 if (event->attr.freq) {
cdd6c482 4945 event->attr.sample_freq = value;
08247e31 4946 } else {
cdd6c482
IM
4947 event->attr.sample_period = value;
4948 event->hw.sample_period = value;
08247e31 4949 }
bad7192b
PZ
4950
4951 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4952 if (active) {
4953 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4954 /*
4955 * We could be throttled; unthrottle now to avoid the tick
4956 * trying to unthrottle while we already re-started the event.
4957 */
4958 if (event->hw.interrupts == MAX_INTERRUPTS) {
4959 event->hw.interrupts = 0;
4960 perf_log_throttle(event, 1);
4961 }
bad7192b
PZ
4962 event->pmu->stop(event, PERF_EF_UPDATE);
4963 }
4964
4965 local64_set(&event->hw.period_left, 0);
4966
4967 if (active) {
4968 event->pmu->start(event, PERF_EF_RELOAD);
4969 perf_pmu_enable(ctx->pmu);
4970 }
c7999c6f
PZ
4971}
4972
81ec3f3c
JO
4973static int perf_event_check_period(struct perf_event *event, u64 value)
4974{
4975 return event->pmu->check_period(event, value);
4976}
4977
c7999c6f
PZ
4978static int perf_event_period(struct perf_event *event, u64 __user *arg)
4979{
c7999c6f
PZ
4980 u64 value;
4981
4982 if (!is_sampling_event(event))
4983 return -EINVAL;
4984
4985 if (copy_from_user(&value, arg, sizeof(value)))
4986 return -EFAULT;
4987
4988 if (!value)
4989 return -EINVAL;
4990
4991 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4992 return -EINVAL;
4993
81ec3f3c
JO
4994 if (perf_event_check_period(event, value))
4995 return -EINVAL;
4996
fae3fde6 4997 event_function_call(event, __perf_event_period, &value);
08247e31 4998
c7999c6f 4999 return 0;
08247e31
PZ
5000}
5001
ac9721f3
PZ
5002static const struct file_operations perf_fops;
5003
2903ff01 5004static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 5005{
2903ff01
AV
5006 struct fd f = fdget(fd);
5007 if (!f.file)
5008 return -EBADF;
ac9721f3 5009
2903ff01
AV
5010 if (f.file->f_op != &perf_fops) {
5011 fdput(f);
5012 return -EBADF;
ac9721f3 5013 }
2903ff01
AV
5014 *p = f;
5015 return 0;
ac9721f3
PZ
5016}
5017
5018static int perf_event_set_output(struct perf_event *event,
5019 struct perf_event *output_event);
6fb2915d 5020static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 5021static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
32ff77e8
MC
5022static int perf_copy_attr(struct perf_event_attr __user *uattr,
5023 struct perf_event_attr *attr);
a4be7c27 5024
f63a8daa 5025static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5026{
cdd6c482 5027 void (*func)(struct perf_event *);
3df5edad 5028 u32 flags = arg;
d859e29f
PM
5029
5030 switch (cmd) {
cdd6c482 5031 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5032 func = _perf_event_enable;
d859e29f 5033 break;
cdd6c482 5034 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5035 func = _perf_event_disable;
79f14641 5036 break;
cdd6c482 5037 case PERF_EVENT_IOC_RESET:
f63a8daa 5038 func = _perf_event_reset;
6de6a7b9 5039 break;
3df5edad 5040
cdd6c482 5041 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5042 return _perf_event_refresh(event, arg);
08247e31 5043
cdd6c482
IM
5044 case PERF_EVENT_IOC_PERIOD:
5045 return perf_event_period(event, (u64 __user *)arg);
08247e31 5046
cf4957f1
JO
5047 case PERF_EVENT_IOC_ID:
5048 {
5049 u64 id = primary_event_id(event);
5050
5051 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5052 return -EFAULT;
5053 return 0;
5054 }
5055
cdd6c482 5056 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5057 {
ac9721f3 5058 int ret;
ac9721f3 5059 if (arg != -1) {
2903ff01
AV
5060 struct perf_event *output_event;
5061 struct fd output;
5062 ret = perf_fget_light(arg, &output);
5063 if (ret)
5064 return ret;
5065 output_event = output.file->private_data;
5066 ret = perf_event_set_output(event, output_event);
5067 fdput(output);
5068 } else {
5069 ret = perf_event_set_output(event, NULL);
ac9721f3 5070 }
ac9721f3
PZ
5071 return ret;
5072 }
a4be7c27 5073
6fb2915d
LZ
5074 case PERF_EVENT_IOC_SET_FILTER:
5075 return perf_event_set_filter(event, (void __user *)arg);
5076
2541517c
AS
5077 case PERF_EVENT_IOC_SET_BPF:
5078 return perf_event_set_bpf_prog(event, arg);
5079
86e7972f
WN
5080 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5081 struct ring_buffer *rb;
5082
5083 rcu_read_lock();
5084 rb = rcu_dereference(event->rb);
5085 if (!rb || !rb->nr_pages) {
5086 rcu_read_unlock();
5087 return -EINVAL;
5088 }
5089 rb_toggle_paused(rb, !!arg);
5090 rcu_read_unlock();
5091 return 0;
5092 }
f371b304
YS
5093
5094 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5095 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5096
5097 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5098 struct perf_event_attr new_attr;
5099 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5100 &new_attr);
5101
5102 if (err)
5103 return err;
5104
5105 return perf_event_modify_attr(event, &new_attr);
5106 }
d859e29f 5107 default:
3df5edad 5108 return -ENOTTY;
d859e29f 5109 }
3df5edad
PZ
5110
5111 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5112 perf_event_for_each(event, func);
3df5edad 5113 else
cdd6c482 5114 perf_event_for_each_child(event, func);
3df5edad
PZ
5115
5116 return 0;
d859e29f
PM
5117}
5118
f63a8daa
PZ
5119static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5120{
5121 struct perf_event *event = file->private_data;
5122 struct perf_event_context *ctx;
5123 long ret;
5124
5125 ctx = perf_event_ctx_lock(event);
5126 ret = _perf_ioctl(event, cmd, arg);
5127 perf_event_ctx_unlock(event, ctx);
5128
5129 return ret;
5130}
5131
b3f20785
PM
5132#ifdef CONFIG_COMPAT
5133static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5134 unsigned long arg)
5135{
5136 switch (_IOC_NR(cmd)) {
5137 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5138 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
5139 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5140 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
5141 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5142 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5143 cmd &= ~IOCSIZE_MASK;
5144 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5145 }
5146 break;
5147 }
5148 return perf_ioctl(file, cmd, arg);
5149}
5150#else
5151# define perf_compat_ioctl NULL
5152#endif
5153
cdd6c482 5154int perf_event_task_enable(void)
771d7cde 5155{
f63a8daa 5156 struct perf_event_context *ctx;
cdd6c482 5157 struct perf_event *event;
771d7cde 5158
cdd6c482 5159 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5160 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5161 ctx = perf_event_ctx_lock(event);
5162 perf_event_for_each_child(event, _perf_event_enable);
5163 perf_event_ctx_unlock(event, ctx);
5164 }
cdd6c482 5165 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5166
5167 return 0;
5168}
5169
cdd6c482 5170int perf_event_task_disable(void)
771d7cde 5171{
f63a8daa 5172 struct perf_event_context *ctx;
cdd6c482 5173 struct perf_event *event;
771d7cde 5174
cdd6c482 5175 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5176 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5177 ctx = perf_event_ctx_lock(event);
5178 perf_event_for_each_child(event, _perf_event_disable);
5179 perf_event_ctx_unlock(event, ctx);
5180 }
cdd6c482 5181 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5182
5183 return 0;
5184}
5185
cdd6c482 5186static int perf_event_index(struct perf_event *event)
194002b2 5187{
a4eaf7f1
PZ
5188 if (event->hw.state & PERF_HES_STOPPED)
5189 return 0;
5190
cdd6c482 5191 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
5192 return 0;
5193
35edc2a5 5194 return event->pmu->event_idx(event);
194002b2
PZ
5195}
5196
c4794295 5197static void calc_timer_values(struct perf_event *event,
e3f3541c 5198 u64 *now,
7f310a5d
EM
5199 u64 *enabled,
5200 u64 *running)
c4794295 5201{
e3f3541c 5202 u64 ctx_time;
c4794295 5203
e3f3541c
PZ
5204 *now = perf_clock();
5205 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 5206 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
5207}
5208
fa731587
PZ
5209static void perf_event_init_userpage(struct perf_event *event)
5210{
5211 struct perf_event_mmap_page *userpg;
5212 struct ring_buffer *rb;
5213
5214 rcu_read_lock();
5215 rb = rcu_dereference(event->rb);
5216 if (!rb)
5217 goto unlock;
5218
5219 userpg = rb->user_page;
5220
5221 /* Allow new userspace to detect that bit 0 is deprecated */
5222 userpg->cap_bit0_is_deprecated = 1;
5223 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
5224 userpg->data_offset = PAGE_SIZE;
5225 userpg->data_size = perf_data_size(rb);
fa731587
PZ
5226
5227unlock:
5228 rcu_read_unlock();
5229}
5230
c1317ec2
AL
5231void __weak arch_perf_update_userpage(
5232 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
5233{
5234}
5235
38ff667b
PZ
5236/*
5237 * Callers need to ensure there can be no nesting of this function, otherwise
5238 * the seqlock logic goes bad. We can not serialize this because the arch
5239 * code calls this from NMI context.
5240 */
cdd6c482 5241void perf_event_update_userpage(struct perf_event *event)
37d81828 5242{
cdd6c482 5243 struct perf_event_mmap_page *userpg;
76369139 5244 struct ring_buffer *rb;
e3f3541c 5245 u64 enabled, running, now;
38ff667b
PZ
5246
5247 rcu_read_lock();
5ec4c599
PZ
5248 rb = rcu_dereference(event->rb);
5249 if (!rb)
5250 goto unlock;
5251
0d641208
EM
5252 /*
5253 * compute total_time_enabled, total_time_running
5254 * based on snapshot values taken when the event
5255 * was last scheduled in.
5256 *
5257 * we cannot simply called update_context_time()
5258 * because of locking issue as we can be called in
5259 * NMI context
5260 */
e3f3541c 5261 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5262
76369139 5263 userpg = rb->user_page;
7b732a75 5264 /*
9d2dcc8f
MF
5265 * Disable preemption to guarantee consistent time stamps are stored to
5266 * the user page.
7b732a75
PZ
5267 */
5268 preempt_disable();
37d81828 5269 ++userpg->lock;
92f22a38 5270 barrier();
cdd6c482 5271 userpg->index = perf_event_index(event);
b5e58793 5272 userpg->offset = perf_event_count(event);
365a4038 5273 if (userpg->index)
e7850595 5274 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5275
0d641208 5276 userpg->time_enabled = enabled +
cdd6c482 5277 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5278
0d641208 5279 userpg->time_running = running +
cdd6c482 5280 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5281
c1317ec2 5282 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5283
92f22a38 5284 barrier();
37d81828 5285 ++userpg->lock;
7b732a75 5286 preempt_enable();
38ff667b 5287unlock:
7b732a75 5288 rcu_read_unlock();
37d81828 5289}
82975c46 5290EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 5291
9e3ed2d7 5292static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
906010b2 5293{
11bac800 5294 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 5295 struct ring_buffer *rb;
9e3ed2d7 5296 vm_fault_t ret = VM_FAULT_SIGBUS;
906010b2
PZ
5297
5298 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5299 if (vmf->pgoff == 0)
5300 ret = 0;
5301 return ret;
5302 }
5303
5304 rcu_read_lock();
76369139
FW
5305 rb = rcu_dereference(event->rb);
5306 if (!rb)
906010b2
PZ
5307 goto unlock;
5308
5309 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5310 goto unlock;
5311
76369139 5312 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5313 if (!vmf->page)
5314 goto unlock;
5315
5316 get_page(vmf->page);
11bac800 5317 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5318 vmf->page->index = vmf->pgoff;
5319
5320 ret = 0;
5321unlock:
5322 rcu_read_unlock();
5323
5324 return ret;
5325}
5326
10c6db11
PZ
5327static void ring_buffer_attach(struct perf_event *event,
5328 struct ring_buffer *rb)
5329{
b69cf536 5330 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5331 unsigned long flags;
5332
b69cf536
PZ
5333 if (event->rb) {
5334 /*
5335 * Should be impossible, we set this when removing
5336 * event->rb_entry and wait/clear when adding event->rb_entry.
5337 */
5338 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5339
b69cf536 5340 old_rb = event->rb;
b69cf536
PZ
5341 spin_lock_irqsave(&old_rb->event_lock, flags);
5342 list_del_rcu(&event->rb_entry);
5343 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5344
2f993cf0
ON
5345 event->rcu_batches = get_state_synchronize_rcu();
5346 event->rcu_pending = 1;
b69cf536 5347 }
10c6db11 5348
b69cf536 5349 if (rb) {
2f993cf0
ON
5350 if (event->rcu_pending) {
5351 cond_synchronize_rcu(event->rcu_batches);
5352 event->rcu_pending = 0;
5353 }
5354
b69cf536
PZ
5355 spin_lock_irqsave(&rb->event_lock, flags);
5356 list_add_rcu(&event->rb_entry, &rb->event_list);
5357 spin_unlock_irqrestore(&rb->event_lock, flags);
5358 }
5359
767ae086
AS
5360 /*
5361 * Avoid racing with perf_mmap_close(AUX): stop the event
5362 * before swizzling the event::rb pointer; if it's getting
5363 * unmapped, its aux_mmap_count will be 0 and it won't
5364 * restart. See the comment in __perf_pmu_output_stop().
5365 *
5366 * Data will inevitably be lost when set_output is done in
5367 * mid-air, but then again, whoever does it like this is
5368 * not in for the data anyway.
5369 */
5370 if (has_aux(event))
5371 perf_event_stop(event, 0);
5372
b69cf536
PZ
5373 rcu_assign_pointer(event->rb, rb);
5374
5375 if (old_rb) {
5376 ring_buffer_put(old_rb);
5377 /*
5378 * Since we detached before setting the new rb, so that we
5379 * could attach the new rb, we could have missed a wakeup.
5380 * Provide it now.
5381 */
5382 wake_up_all(&event->waitq);
5383 }
10c6db11
PZ
5384}
5385
5386static void ring_buffer_wakeup(struct perf_event *event)
5387{
5388 struct ring_buffer *rb;
5389
5390 rcu_read_lock();
5391 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5392 if (rb) {
5393 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5394 wake_up_all(&event->waitq);
5395 }
10c6db11
PZ
5396 rcu_read_unlock();
5397}
5398
fdc26706 5399struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5400{
76369139 5401 struct ring_buffer *rb;
7b732a75 5402
ac9721f3 5403 rcu_read_lock();
76369139
FW
5404 rb = rcu_dereference(event->rb);
5405 if (rb) {
fecb8ed2 5406 if (!refcount_inc_not_zero(&rb->refcount))
76369139 5407 rb = NULL;
ac9721f3
PZ
5408 }
5409 rcu_read_unlock();
5410
76369139 5411 return rb;
ac9721f3
PZ
5412}
5413
fdc26706 5414void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5415{
fecb8ed2 5416 if (!refcount_dec_and_test(&rb->refcount))
ac9721f3 5417 return;
7b732a75 5418
9bb5d40c 5419 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5420
76369139 5421 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5422}
5423
5424static void perf_mmap_open(struct vm_area_struct *vma)
5425{
cdd6c482 5426 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5427
cdd6c482 5428 atomic_inc(&event->mmap_count);
9bb5d40c 5429 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5430
45bfb2e5
PZ
5431 if (vma->vm_pgoff)
5432 atomic_inc(&event->rb->aux_mmap_count);
5433
1e0fb9ec 5434 if (event->pmu->event_mapped)
bfe33492 5435 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5436}
5437
95ff4ca2
AS
5438static void perf_pmu_output_stop(struct perf_event *event);
5439
9bb5d40c
PZ
5440/*
5441 * A buffer can be mmap()ed multiple times; either directly through the same
5442 * event, or through other events by use of perf_event_set_output().
5443 *
5444 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5445 * the buffer here, where we still have a VM context. This means we need
5446 * to detach all events redirecting to us.
5447 */
7b732a75
PZ
5448static void perf_mmap_close(struct vm_area_struct *vma)
5449{
cdd6c482 5450 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5451
b69cf536 5452 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5453 struct user_struct *mmap_user = rb->mmap_user;
5454 int mmap_locked = rb->mmap_locked;
5455 unsigned long size = perf_data_size(rb);
789f90fc 5456
1e0fb9ec 5457 if (event->pmu->event_unmapped)
bfe33492 5458 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5459
45bfb2e5
PZ
5460 /*
5461 * rb->aux_mmap_count will always drop before rb->mmap_count and
5462 * event->mmap_count, so it is ok to use event->mmap_mutex to
5463 * serialize with perf_mmap here.
5464 */
5465 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5466 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5467 /*
5468 * Stop all AUX events that are writing to this buffer,
5469 * so that we can free its AUX pages and corresponding PMU
5470 * data. Note that after rb::aux_mmap_count dropped to zero,
5471 * they won't start any more (see perf_aux_output_begin()).
5472 */
5473 perf_pmu_output_stop(event);
5474
5475 /* now it's safe to free the pages */
45bfb2e5
PZ
5476 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5477 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5478
95ff4ca2 5479 /* this has to be the last one */
45bfb2e5 5480 rb_free_aux(rb);
ca3bb3d0 5481 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
95ff4ca2 5482
45bfb2e5
PZ
5483 mutex_unlock(&event->mmap_mutex);
5484 }
5485
9bb5d40c
PZ
5486 atomic_dec(&rb->mmap_count);
5487
5488 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5489 goto out_put;
9bb5d40c 5490
b69cf536 5491 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5492 mutex_unlock(&event->mmap_mutex);
5493
5494 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5495 if (atomic_read(&rb->mmap_count))
5496 goto out_put;
ac9721f3 5497
9bb5d40c
PZ
5498 /*
5499 * No other mmap()s, detach from all other events that might redirect
5500 * into the now unreachable buffer. Somewhat complicated by the
5501 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5502 */
5503again:
5504 rcu_read_lock();
5505 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5506 if (!atomic_long_inc_not_zero(&event->refcount)) {
5507 /*
5508 * This event is en-route to free_event() which will
5509 * detach it and remove it from the list.
5510 */
5511 continue;
5512 }
5513 rcu_read_unlock();
789f90fc 5514
9bb5d40c
PZ
5515 mutex_lock(&event->mmap_mutex);
5516 /*
5517 * Check we didn't race with perf_event_set_output() which can
5518 * swizzle the rb from under us while we were waiting to
5519 * acquire mmap_mutex.
5520 *
5521 * If we find a different rb; ignore this event, a next
5522 * iteration will no longer find it on the list. We have to
5523 * still restart the iteration to make sure we're not now
5524 * iterating the wrong list.
5525 */
b69cf536
PZ
5526 if (event->rb == rb)
5527 ring_buffer_attach(event, NULL);
5528
cdd6c482 5529 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5530 put_event(event);
ac9721f3 5531
9bb5d40c
PZ
5532 /*
5533 * Restart the iteration; either we're on the wrong list or
5534 * destroyed its integrity by doing a deletion.
5535 */
5536 goto again;
7b732a75 5537 }
9bb5d40c
PZ
5538 rcu_read_unlock();
5539
5540 /*
5541 * It could be there's still a few 0-ref events on the list; they'll
5542 * get cleaned up by free_event() -- they'll also still have their
5543 * ref on the rb and will free it whenever they are done with it.
5544 *
5545 * Aside from that, this buffer is 'fully' detached and unmapped,
5546 * undo the VM accounting.
5547 */
5548
5549 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5550 vma->vm_mm->pinned_vm -= mmap_locked;
5551 free_uid(mmap_user);
5552
b69cf536 5553out_put:
9bb5d40c 5554 ring_buffer_put(rb); /* could be last */
37d81828
PM
5555}
5556
f0f37e2f 5557static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5558 .open = perf_mmap_open,
fca0c116 5559 .close = perf_mmap_close, /* non mergeable */
43a21ea8
PZ
5560 .fault = perf_mmap_fault,
5561 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5562};
5563
5564static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5565{
cdd6c482 5566 struct perf_event *event = file->private_data;
22a4f650 5567 unsigned long user_locked, user_lock_limit;
789f90fc 5568 struct user_struct *user = current_user();
22a4f650 5569 unsigned long locked, lock_limit;
45bfb2e5 5570 struct ring_buffer *rb = NULL;
7b732a75
PZ
5571 unsigned long vma_size;
5572 unsigned long nr_pages;
45bfb2e5 5573 long user_extra = 0, extra = 0;
d57e34fd 5574 int ret = 0, flags = 0;
37d81828 5575
c7920614
PZ
5576 /*
5577 * Don't allow mmap() of inherited per-task counters. This would
5578 * create a performance issue due to all children writing to the
76369139 5579 * same rb.
c7920614
PZ
5580 */
5581 if (event->cpu == -1 && event->attr.inherit)
5582 return -EINVAL;
5583
43a21ea8 5584 if (!(vma->vm_flags & VM_SHARED))
37d81828 5585 return -EINVAL;
7b732a75
PZ
5586
5587 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5588
5589 if (vma->vm_pgoff == 0) {
5590 nr_pages = (vma_size / PAGE_SIZE) - 1;
5591 } else {
5592 /*
5593 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5594 * mapped, all subsequent mappings should have the same size
5595 * and offset. Must be above the normal perf buffer.
5596 */
5597 u64 aux_offset, aux_size;
5598
5599 if (!event->rb)
5600 return -EINVAL;
5601
5602 nr_pages = vma_size / PAGE_SIZE;
5603
5604 mutex_lock(&event->mmap_mutex);
5605 ret = -EINVAL;
5606
5607 rb = event->rb;
5608 if (!rb)
5609 goto aux_unlock;
5610
6aa7de05
MR
5611 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5612 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5613
5614 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5615 goto aux_unlock;
5616
5617 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5618 goto aux_unlock;
5619
5620 /* already mapped with a different offset */
5621 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5622 goto aux_unlock;
5623
5624 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5625 goto aux_unlock;
5626
5627 /* already mapped with a different size */
5628 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5629 goto aux_unlock;
5630
5631 if (!is_power_of_2(nr_pages))
5632 goto aux_unlock;
5633
5634 if (!atomic_inc_not_zero(&rb->mmap_count))
5635 goto aux_unlock;
5636
5637 if (rb_has_aux(rb)) {
5638 atomic_inc(&rb->aux_mmap_count);
5639 ret = 0;
5640 goto unlock;
5641 }
5642
5643 atomic_set(&rb->aux_mmap_count, 1);
5644 user_extra = nr_pages;
5645
5646 goto accounting;
5647 }
7b732a75 5648
7730d865 5649 /*
76369139 5650 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5651 * can do bitmasks instead of modulo.
5652 */
2ed11312 5653 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5654 return -EINVAL;
5655
7b732a75 5656 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5657 return -EINVAL;
5658
cdd6c482 5659 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5660again:
cdd6c482 5661 mutex_lock(&event->mmap_mutex);
76369139 5662 if (event->rb) {
9bb5d40c 5663 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5664 ret = -EINVAL;
9bb5d40c
PZ
5665 goto unlock;
5666 }
5667
5668 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5669 /*
5670 * Raced against perf_mmap_close() through
5671 * perf_event_set_output(). Try again, hope for better
5672 * luck.
5673 */
5674 mutex_unlock(&event->mmap_mutex);
5675 goto again;
5676 }
5677
ebb3c4c4
PZ
5678 goto unlock;
5679 }
5680
789f90fc 5681 user_extra = nr_pages + 1;
45bfb2e5
PZ
5682
5683accounting:
cdd6c482 5684 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5685
5686 /*
5687 * Increase the limit linearly with more CPUs:
5688 */
5689 user_lock_limit *= num_online_cpus();
5690
789f90fc 5691 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5692
789f90fc
PZ
5693 if (user_locked > user_lock_limit)
5694 extra = user_locked - user_lock_limit;
7b732a75 5695
78d7d407 5696 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5697 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5698 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5699
459ec28a
IM
5700 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5701 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5702 ret = -EPERM;
5703 goto unlock;
5704 }
7b732a75 5705
45bfb2e5 5706 WARN_ON(!rb && event->rb);
906010b2 5707
d57e34fd 5708 if (vma->vm_flags & VM_WRITE)
76369139 5709 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5710
76369139 5711 if (!rb) {
45bfb2e5
PZ
5712 rb = rb_alloc(nr_pages,
5713 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5714 event->cpu, flags);
26cb63ad 5715
45bfb2e5
PZ
5716 if (!rb) {
5717 ret = -ENOMEM;
5718 goto unlock;
5719 }
43a21ea8 5720
45bfb2e5
PZ
5721 atomic_set(&rb->mmap_count, 1);
5722 rb->mmap_user = get_current_user();
5723 rb->mmap_locked = extra;
26cb63ad 5724
45bfb2e5 5725 ring_buffer_attach(event, rb);
ac9721f3 5726
45bfb2e5
PZ
5727 perf_event_init_userpage(event);
5728 perf_event_update_userpage(event);
5729 } else {
1a594131
AS
5730 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5731 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5732 if (!ret)
5733 rb->aux_mmap_locked = extra;
5734 }
9a0f05cb 5735
ebb3c4c4 5736unlock:
45bfb2e5
PZ
5737 if (!ret) {
5738 atomic_long_add(user_extra, &user->locked_vm);
5739 vma->vm_mm->pinned_vm += extra;
5740
ac9721f3 5741 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5742 } else if (rb) {
5743 atomic_dec(&rb->mmap_count);
5744 }
5745aux_unlock:
cdd6c482 5746 mutex_unlock(&event->mmap_mutex);
37d81828 5747
9bb5d40c
PZ
5748 /*
5749 * Since pinned accounting is per vm we cannot allow fork() to copy our
5750 * vma.
5751 */
26cb63ad 5752 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5753 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5754
1e0fb9ec 5755 if (event->pmu->event_mapped)
bfe33492 5756 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5757
7b732a75 5758 return ret;
37d81828
PM
5759}
5760
3c446b3d
PZ
5761static int perf_fasync(int fd, struct file *filp, int on)
5762{
496ad9aa 5763 struct inode *inode = file_inode(filp);
cdd6c482 5764 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5765 int retval;
5766
5955102c 5767 inode_lock(inode);
cdd6c482 5768 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5769 inode_unlock(inode);
3c446b3d
PZ
5770
5771 if (retval < 0)
5772 return retval;
5773
5774 return 0;
5775}
5776
0793a61d 5777static const struct file_operations perf_fops = {
3326c1ce 5778 .llseek = no_llseek,
0793a61d
TG
5779 .release = perf_release,
5780 .read = perf_read,
5781 .poll = perf_poll,
d859e29f 5782 .unlocked_ioctl = perf_ioctl,
b3f20785 5783 .compat_ioctl = perf_compat_ioctl,
37d81828 5784 .mmap = perf_mmap,
3c446b3d 5785 .fasync = perf_fasync,
0793a61d
TG
5786};
5787
925d519a 5788/*
cdd6c482 5789 * Perf event wakeup
925d519a
PZ
5790 *
5791 * If there's data, ensure we set the poll() state and publish everything
5792 * to user-space before waking everybody up.
5793 */
5794
fed66e2c
PZ
5795static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5796{
5797 /* only the parent has fasync state */
5798 if (event->parent)
5799 event = event->parent;
5800 return &event->fasync;
5801}
5802
cdd6c482 5803void perf_event_wakeup(struct perf_event *event)
925d519a 5804{
10c6db11 5805 ring_buffer_wakeup(event);
4c9e2542 5806
cdd6c482 5807 if (event->pending_kill) {
fed66e2c 5808 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5809 event->pending_kill = 0;
4c9e2542 5810 }
925d519a
PZ
5811}
5812
e360adbe 5813static void perf_pending_event(struct irq_work *entry)
79f14641 5814{
cdd6c482
IM
5815 struct perf_event *event = container_of(entry,
5816 struct perf_event, pending);
d525211f
PZ
5817 int rctx;
5818
5819 rctx = perf_swevent_get_recursion_context();
5820 /*
5821 * If we 'fail' here, that's OK, it means recursion is already disabled
5822 * and we won't recurse 'further'.
5823 */
79f14641 5824
cdd6c482
IM
5825 if (event->pending_disable) {
5826 event->pending_disable = 0;
fae3fde6 5827 perf_event_disable_local(event);
79f14641
PZ
5828 }
5829
cdd6c482
IM
5830 if (event->pending_wakeup) {
5831 event->pending_wakeup = 0;
5832 perf_event_wakeup(event);
79f14641 5833 }
d525211f
PZ
5834
5835 if (rctx >= 0)
5836 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5837}
5838
39447b38
ZY
5839/*
5840 * We assume there is only KVM supporting the callbacks.
5841 * Later on, we might change it to a list if there is
5842 * another virtualization implementation supporting the callbacks.
5843 */
5844struct perf_guest_info_callbacks *perf_guest_cbs;
5845
5846int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5847{
5848 perf_guest_cbs = cbs;
5849 return 0;
5850}
5851EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5852
5853int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5854{
5855 perf_guest_cbs = NULL;
5856 return 0;
5857}
5858EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5859
4018994f
JO
5860static void
5861perf_output_sample_regs(struct perf_output_handle *handle,
5862 struct pt_regs *regs, u64 mask)
5863{
5864 int bit;
29dd3288 5865 DECLARE_BITMAP(_mask, 64);
4018994f 5866
29dd3288
MS
5867 bitmap_from_u64(_mask, mask);
5868 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5869 u64 val;
5870
5871 val = perf_reg_value(regs, bit);
5872 perf_output_put(handle, val);
5873 }
5874}
5875
60e2364e 5876static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5877 struct pt_regs *regs,
5878 struct pt_regs *regs_user_copy)
4018994f 5879{
88a7c26a
AL
5880 if (user_mode(regs)) {
5881 regs_user->abi = perf_reg_abi(current);
2565711f 5882 regs_user->regs = regs;
88a7c26a
AL
5883 } else if (current->mm) {
5884 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5885 } else {
5886 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5887 regs_user->regs = NULL;
4018994f
JO
5888 }
5889}
5890
60e2364e
SE
5891static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5892 struct pt_regs *regs)
5893{
5894 regs_intr->regs = regs;
5895 regs_intr->abi = perf_reg_abi(current);
5896}
5897
5898
c5ebcedb
JO
5899/*
5900 * Get remaining task size from user stack pointer.
5901 *
5902 * It'd be better to take stack vma map and limit this more
5903 * precisly, but there's no way to get it safely under interrupt,
5904 * so using TASK_SIZE as limit.
5905 */
5906static u64 perf_ustack_task_size(struct pt_regs *regs)
5907{
5908 unsigned long addr = perf_user_stack_pointer(regs);
5909
5910 if (!addr || addr >= TASK_SIZE)
5911 return 0;
5912
5913 return TASK_SIZE - addr;
5914}
5915
5916static u16
5917perf_sample_ustack_size(u16 stack_size, u16 header_size,
5918 struct pt_regs *regs)
5919{
5920 u64 task_size;
5921
5922 /* No regs, no stack pointer, no dump. */
5923 if (!regs)
5924 return 0;
5925
5926 /*
5927 * Check if we fit in with the requested stack size into the:
5928 * - TASK_SIZE
5929 * If we don't, we limit the size to the TASK_SIZE.
5930 *
5931 * - remaining sample size
5932 * If we don't, we customize the stack size to
5933 * fit in to the remaining sample size.
5934 */
5935
5936 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5937 stack_size = min(stack_size, (u16) task_size);
5938
5939 /* Current header size plus static size and dynamic size. */
5940 header_size += 2 * sizeof(u64);
5941
5942 /* Do we fit in with the current stack dump size? */
5943 if ((u16) (header_size + stack_size) < header_size) {
5944 /*
5945 * If we overflow the maximum size for the sample,
5946 * we customize the stack dump size to fit in.
5947 */
5948 stack_size = USHRT_MAX - header_size - sizeof(u64);
5949 stack_size = round_up(stack_size, sizeof(u64));
5950 }
5951
5952 return stack_size;
5953}
5954
5955static void
5956perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5957 struct pt_regs *regs)
5958{
5959 /* Case of a kernel thread, nothing to dump */
5960 if (!regs) {
5961 u64 size = 0;
5962 perf_output_put(handle, size);
5963 } else {
5964 unsigned long sp;
5965 unsigned int rem;
5966 u64 dyn_size;
02e18447 5967 mm_segment_t fs;
c5ebcedb
JO
5968
5969 /*
5970 * We dump:
5971 * static size
5972 * - the size requested by user or the best one we can fit
5973 * in to the sample max size
5974 * data
5975 * - user stack dump data
5976 * dynamic size
5977 * - the actual dumped size
5978 */
5979
5980 /* Static size. */
5981 perf_output_put(handle, dump_size);
5982
5983 /* Data. */
5984 sp = perf_user_stack_pointer(regs);
02e18447
YC
5985 fs = get_fs();
5986 set_fs(USER_DS);
c5ebcedb 5987 rem = __output_copy_user(handle, (void *) sp, dump_size);
02e18447 5988 set_fs(fs);
c5ebcedb
JO
5989 dyn_size = dump_size - rem;
5990
5991 perf_output_skip(handle, rem);
5992
5993 /* Dynamic size. */
5994 perf_output_put(handle, dyn_size);
5995 }
5996}
5997
c980d109
ACM
5998static void __perf_event_header__init_id(struct perf_event_header *header,
5999 struct perf_sample_data *data,
6000 struct perf_event *event)
6844c09d
ACM
6001{
6002 u64 sample_type = event->attr.sample_type;
6003
6004 data->type = sample_type;
6005 header->size += event->id_header_size;
6006
6007 if (sample_type & PERF_SAMPLE_TID) {
6008 /* namespace issues */
6009 data->tid_entry.pid = perf_event_pid(event, current);
6010 data->tid_entry.tid = perf_event_tid(event, current);
6011 }
6012
6013 if (sample_type & PERF_SAMPLE_TIME)
34f43927 6014 data->time = perf_event_clock(event);
6844c09d 6015
ff3d527c 6016 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
6017 data->id = primary_event_id(event);
6018
6019 if (sample_type & PERF_SAMPLE_STREAM_ID)
6020 data->stream_id = event->id;
6021
6022 if (sample_type & PERF_SAMPLE_CPU) {
6023 data->cpu_entry.cpu = raw_smp_processor_id();
6024 data->cpu_entry.reserved = 0;
6025 }
6026}
6027
76369139
FW
6028void perf_event_header__init_id(struct perf_event_header *header,
6029 struct perf_sample_data *data,
6030 struct perf_event *event)
c980d109
ACM
6031{
6032 if (event->attr.sample_id_all)
6033 __perf_event_header__init_id(header, data, event);
6034}
6035
6036static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6037 struct perf_sample_data *data)
6038{
6039 u64 sample_type = data->type;
6040
6041 if (sample_type & PERF_SAMPLE_TID)
6042 perf_output_put(handle, data->tid_entry);
6043
6044 if (sample_type & PERF_SAMPLE_TIME)
6045 perf_output_put(handle, data->time);
6046
6047 if (sample_type & PERF_SAMPLE_ID)
6048 perf_output_put(handle, data->id);
6049
6050 if (sample_type & PERF_SAMPLE_STREAM_ID)
6051 perf_output_put(handle, data->stream_id);
6052
6053 if (sample_type & PERF_SAMPLE_CPU)
6054 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
6055
6056 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6057 perf_output_put(handle, data->id);
c980d109
ACM
6058}
6059
76369139
FW
6060void perf_event__output_id_sample(struct perf_event *event,
6061 struct perf_output_handle *handle,
6062 struct perf_sample_data *sample)
c980d109
ACM
6063{
6064 if (event->attr.sample_id_all)
6065 __perf_event__output_id_sample(handle, sample);
6066}
6067
3dab77fb 6068static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
6069 struct perf_event *event,
6070 u64 enabled, u64 running)
3dab77fb 6071{
cdd6c482 6072 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6073 u64 values[4];
6074 int n = 0;
6075
b5e58793 6076 values[n++] = perf_event_count(event);
3dab77fb 6077 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 6078 values[n++] = enabled +
cdd6c482 6079 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
6080 }
6081 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 6082 values[n++] = running +
cdd6c482 6083 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
6084 }
6085 if (read_format & PERF_FORMAT_ID)
cdd6c482 6086 values[n++] = primary_event_id(event);
3dab77fb 6087
76369139 6088 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6089}
6090
3dab77fb 6091static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
6092 struct perf_event *event,
6093 u64 enabled, u64 running)
3dab77fb 6094{
cdd6c482
IM
6095 struct perf_event *leader = event->group_leader, *sub;
6096 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6097 u64 values[5];
6098 int n = 0;
6099
6100 values[n++] = 1 + leader->nr_siblings;
6101
6102 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 6103 values[n++] = enabled;
3dab77fb
PZ
6104
6105 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 6106 values[n++] = running;
3dab77fb 6107
9e5b127d
PZ
6108 if ((leader != event) &&
6109 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6110 leader->pmu->read(leader);
6111
b5e58793 6112 values[n++] = perf_event_count(leader);
3dab77fb 6113 if (read_format & PERF_FORMAT_ID)
cdd6c482 6114 values[n++] = primary_event_id(leader);
3dab77fb 6115
76369139 6116 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 6117
edb39592 6118 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
6119 n = 0;
6120
6f5ab001
JO
6121 if ((sub != event) &&
6122 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6123 sub->pmu->read(sub);
6124
b5e58793 6125 values[n++] = perf_event_count(sub);
3dab77fb 6126 if (read_format & PERF_FORMAT_ID)
cdd6c482 6127 values[n++] = primary_event_id(sub);
3dab77fb 6128
76369139 6129 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6130 }
6131}
6132
eed01528
SE
6133#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6134 PERF_FORMAT_TOTAL_TIME_RUNNING)
6135
ba5213ae
PZ
6136/*
6137 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6138 *
6139 * The problem is that its both hard and excessively expensive to iterate the
6140 * child list, not to mention that its impossible to IPI the children running
6141 * on another CPU, from interrupt/NMI context.
6142 */
3dab77fb 6143static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 6144 struct perf_event *event)
3dab77fb 6145{
e3f3541c 6146 u64 enabled = 0, running = 0, now;
eed01528
SE
6147 u64 read_format = event->attr.read_format;
6148
6149 /*
6150 * compute total_time_enabled, total_time_running
6151 * based on snapshot values taken when the event
6152 * was last scheduled in.
6153 *
6154 * we cannot simply called update_context_time()
6155 * because of locking issue as we are called in
6156 * NMI context
6157 */
c4794295 6158 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 6159 calc_timer_values(event, &now, &enabled, &running);
eed01528 6160
cdd6c482 6161 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 6162 perf_output_read_group(handle, event, enabled, running);
3dab77fb 6163 else
eed01528 6164 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
6165}
6166
5622f295
MM
6167void perf_output_sample(struct perf_output_handle *handle,
6168 struct perf_event_header *header,
6169 struct perf_sample_data *data,
cdd6c482 6170 struct perf_event *event)
5622f295
MM
6171{
6172 u64 sample_type = data->type;
6173
6174 perf_output_put(handle, *header);
6175
ff3d527c
AH
6176 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6177 perf_output_put(handle, data->id);
6178
5622f295
MM
6179 if (sample_type & PERF_SAMPLE_IP)
6180 perf_output_put(handle, data->ip);
6181
6182 if (sample_type & PERF_SAMPLE_TID)
6183 perf_output_put(handle, data->tid_entry);
6184
6185 if (sample_type & PERF_SAMPLE_TIME)
6186 perf_output_put(handle, data->time);
6187
6188 if (sample_type & PERF_SAMPLE_ADDR)
6189 perf_output_put(handle, data->addr);
6190
6191 if (sample_type & PERF_SAMPLE_ID)
6192 perf_output_put(handle, data->id);
6193
6194 if (sample_type & PERF_SAMPLE_STREAM_ID)
6195 perf_output_put(handle, data->stream_id);
6196
6197 if (sample_type & PERF_SAMPLE_CPU)
6198 perf_output_put(handle, data->cpu_entry);
6199
6200 if (sample_type & PERF_SAMPLE_PERIOD)
6201 perf_output_put(handle, data->period);
6202
6203 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 6204 perf_output_read(handle, event);
5622f295
MM
6205
6206 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 6207 int size = 1;
5622f295 6208
99e818cc
JO
6209 size += data->callchain->nr;
6210 size *= sizeof(u64);
6211 __output_copy(handle, data->callchain, size);
5622f295
MM
6212 }
6213
6214 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6215 struct perf_raw_record *raw = data->raw;
6216
6217 if (raw) {
6218 struct perf_raw_frag *frag = &raw->frag;
6219
6220 perf_output_put(handle, raw->size);
6221 do {
6222 if (frag->copy) {
6223 __output_custom(handle, frag->copy,
6224 frag->data, frag->size);
6225 } else {
6226 __output_copy(handle, frag->data,
6227 frag->size);
6228 }
6229 if (perf_raw_frag_last(frag))
6230 break;
6231 frag = frag->next;
6232 } while (1);
6233 if (frag->pad)
6234 __output_skip(handle, NULL, frag->pad);
5622f295
MM
6235 } else {
6236 struct {
6237 u32 size;
6238 u32 data;
6239 } raw = {
6240 .size = sizeof(u32),
6241 .data = 0,
6242 };
6243 perf_output_put(handle, raw);
6244 }
6245 }
a7ac67ea 6246
bce38cd5
SE
6247 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6248 if (data->br_stack) {
6249 size_t size;
6250
6251 size = data->br_stack->nr
6252 * sizeof(struct perf_branch_entry);
6253
6254 perf_output_put(handle, data->br_stack->nr);
6255 perf_output_copy(handle, data->br_stack->entries, size);
6256 } else {
6257 /*
6258 * we always store at least the value of nr
6259 */
6260 u64 nr = 0;
6261 perf_output_put(handle, nr);
6262 }
6263 }
4018994f
JO
6264
6265 if (sample_type & PERF_SAMPLE_REGS_USER) {
6266 u64 abi = data->regs_user.abi;
6267
6268 /*
6269 * If there are no regs to dump, notice it through
6270 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6271 */
6272 perf_output_put(handle, abi);
6273
6274 if (abi) {
6275 u64 mask = event->attr.sample_regs_user;
6276 perf_output_sample_regs(handle,
6277 data->regs_user.regs,
6278 mask);
6279 }
6280 }
c5ebcedb 6281
a5cdd40c 6282 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6283 perf_output_sample_ustack(handle,
6284 data->stack_user_size,
6285 data->regs_user.regs);
a5cdd40c 6286 }
c3feedf2
AK
6287
6288 if (sample_type & PERF_SAMPLE_WEIGHT)
6289 perf_output_put(handle, data->weight);
d6be9ad6
SE
6290
6291 if (sample_type & PERF_SAMPLE_DATA_SRC)
6292 perf_output_put(handle, data->data_src.val);
a5cdd40c 6293
fdfbbd07
AK
6294 if (sample_type & PERF_SAMPLE_TRANSACTION)
6295 perf_output_put(handle, data->txn);
6296
60e2364e
SE
6297 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6298 u64 abi = data->regs_intr.abi;
6299 /*
6300 * If there are no regs to dump, notice it through
6301 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6302 */
6303 perf_output_put(handle, abi);
6304
6305 if (abi) {
6306 u64 mask = event->attr.sample_regs_intr;
6307
6308 perf_output_sample_regs(handle,
6309 data->regs_intr.regs,
6310 mask);
6311 }
6312 }
6313
fc7ce9c7
KL
6314 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6315 perf_output_put(handle, data->phys_addr);
6316
a5cdd40c
PZ
6317 if (!event->attr.watermark) {
6318 int wakeup_events = event->attr.wakeup_events;
6319
6320 if (wakeup_events) {
6321 struct ring_buffer *rb = handle->rb;
6322 int events = local_inc_return(&rb->events);
6323
6324 if (events >= wakeup_events) {
6325 local_sub(wakeup_events, &rb->events);
6326 local_inc(&rb->wakeup);
6327 }
6328 }
6329 }
5622f295
MM
6330}
6331
fc7ce9c7
KL
6332static u64 perf_virt_to_phys(u64 virt)
6333{
6334 u64 phys_addr = 0;
6335 struct page *p = NULL;
6336
6337 if (!virt)
6338 return 0;
6339
6340 if (virt >= TASK_SIZE) {
6341 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6342 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6343 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6344 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6345 } else {
6346 /*
6347 * Walking the pages tables for user address.
6348 * Interrupts are disabled, so it prevents any tear down
6349 * of the page tables.
6350 * Try IRQ-safe __get_user_pages_fast first.
6351 * If failed, leave phys_addr as 0.
6352 */
6353 if ((current->mm != NULL) &&
6354 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6355 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6356
6357 if (p)
6358 put_page(p);
6359 }
6360
6361 return phys_addr;
6362}
6363
99e818cc
JO
6364static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6365
6cbc304f 6366struct perf_callchain_entry *
8cf7e0e2
JO
6367perf_callchain(struct perf_event *event, struct pt_regs *regs)
6368{
6369 bool kernel = !event->attr.exclude_callchain_kernel;
6370 bool user = !event->attr.exclude_callchain_user;
6371 /* Disallow cross-task user callchains. */
6372 bool crosstask = event->ctx->task && event->ctx->task != current;
6373 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 6374 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6375
6376 if (!kernel && !user)
99e818cc 6377 return &__empty_callchain;
8cf7e0e2 6378
99e818cc
JO
6379 callchain = get_perf_callchain(regs, 0, kernel, user,
6380 max_stack, crosstask, true);
6381 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6382}
6383
5622f295
MM
6384void perf_prepare_sample(struct perf_event_header *header,
6385 struct perf_sample_data *data,
cdd6c482 6386 struct perf_event *event,
5622f295 6387 struct pt_regs *regs)
7b732a75 6388{
cdd6c482 6389 u64 sample_type = event->attr.sample_type;
7b732a75 6390
cdd6c482 6391 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6392 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6393
6394 header->misc = 0;
6395 header->misc |= perf_misc_flags(regs);
6fab0192 6396
c980d109 6397 __perf_event_header__init_id(header, data, event);
6844c09d 6398
c320c7b7 6399 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6400 data->ip = perf_instruction_pointer(regs);
6401
b23f3325 6402 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6403 int size = 1;
394ee076 6404
6cbc304f
PZ
6405 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6406 data->callchain = perf_callchain(event, regs);
6407
99e818cc 6408 size += data->callchain->nr;
5622f295
MM
6409
6410 header->size += size * sizeof(u64);
394ee076
PZ
6411 }
6412
3a43ce68 6413 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6414 struct perf_raw_record *raw = data->raw;
6415 int size;
6416
6417 if (raw) {
6418 struct perf_raw_frag *frag = &raw->frag;
6419 u32 sum = 0;
6420
6421 do {
6422 sum += frag->size;
6423 if (perf_raw_frag_last(frag))
6424 break;
6425 frag = frag->next;
6426 } while (1);
6427
6428 size = round_up(sum + sizeof(u32), sizeof(u64));
6429 raw->size = size - sizeof(u32);
6430 frag->pad = raw->size - sum;
6431 } else {
6432 size = sizeof(u64);
6433 }
a044560c 6434
7e3f977e 6435 header->size += size;
7f453c24 6436 }
bce38cd5
SE
6437
6438 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6439 int size = sizeof(u64); /* nr */
6440 if (data->br_stack) {
6441 size += data->br_stack->nr
6442 * sizeof(struct perf_branch_entry);
6443 }
6444 header->size += size;
6445 }
4018994f 6446
2565711f 6447 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6448 perf_sample_regs_user(&data->regs_user, regs,
6449 &data->regs_user_copy);
2565711f 6450
4018994f
JO
6451 if (sample_type & PERF_SAMPLE_REGS_USER) {
6452 /* regs dump ABI info */
6453 int size = sizeof(u64);
6454
4018994f
JO
6455 if (data->regs_user.regs) {
6456 u64 mask = event->attr.sample_regs_user;
6457 size += hweight64(mask) * sizeof(u64);
6458 }
6459
6460 header->size += size;
6461 }
c5ebcedb
JO
6462
6463 if (sample_type & PERF_SAMPLE_STACK_USER) {
6464 /*
6465 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6466 * processed as the last one or have additional check added
6467 * in case new sample type is added, because we could eat
6468 * up the rest of the sample size.
6469 */
c5ebcedb
JO
6470 u16 stack_size = event->attr.sample_stack_user;
6471 u16 size = sizeof(u64);
6472
c5ebcedb 6473 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6474 data->regs_user.regs);
c5ebcedb
JO
6475
6476 /*
6477 * If there is something to dump, add space for the dump
6478 * itself and for the field that tells the dynamic size,
6479 * which is how many have been actually dumped.
6480 */
6481 if (stack_size)
6482 size += sizeof(u64) + stack_size;
6483
6484 data->stack_user_size = stack_size;
6485 header->size += size;
6486 }
60e2364e
SE
6487
6488 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6489 /* regs dump ABI info */
6490 int size = sizeof(u64);
6491
6492 perf_sample_regs_intr(&data->regs_intr, regs);
6493
6494 if (data->regs_intr.regs) {
6495 u64 mask = event->attr.sample_regs_intr;
6496
6497 size += hweight64(mask) * sizeof(u64);
6498 }
6499
6500 header->size += size;
6501 }
fc7ce9c7
KL
6502
6503 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6504 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6505}
7f453c24 6506
56201969 6507static __always_inline int
9ecda41a
WN
6508__perf_event_output(struct perf_event *event,
6509 struct perf_sample_data *data,
6510 struct pt_regs *regs,
6511 int (*output_begin)(struct perf_output_handle *,
6512 struct perf_event *,
6513 unsigned int))
5622f295
MM
6514{
6515 struct perf_output_handle handle;
6516 struct perf_event_header header;
56201969 6517 int err;
689802b2 6518
927c7a9e
FW
6519 /* protect the callchain buffers */
6520 rcu_read_lock();
6521
cdd6c482 6522 perf_prepare_sample(&header, data, event, regs);
5c148194 6523
56201969
ACM
6524 err = output_begin(&handle, event, header.size);
6525 if (err)
927c7a9e 6526 goto exit;
0322cd6e 6527
cdd6c482 6528 perf_output_sample(&handle, &header, data, event);
f413cdb8 6529
8a057d84 6530 perf_output_end(&handle);
927c7a9e
FW
6531
6532exit:
6533 rcu_read_unlock();
56201969 6534 return err;
0322cd6e
PZ
6535}
6536
9ecda41a
WN
6537void
6538perf_event_output_forward(struct perf_event *event,
6539 struct perf_sample_data *data,
6540 struct pt_regs *regs)
6541{
6542 __perf_event_output(event, data, regs, perf_output_begin_forward);
6543}
6544
6545void
6546perf_event_output_backward(struct perf_event *event,
6547 struct perf_sample_data *data,
6548 struct pt_regs *regs)
6549{
6550 __perf_event_output(event, data, regs, perf_output_begin_backward);
6551}
6552
56201969 6553int
9ecda41a
WN
6554perf_event_output(struct perf_event *event,
6555 struct perf_sample_data *data,
6556 struct pt_regs *regs)
6557{
56201969 6558 return __perf_event_output(event, data, regs, perf_output_begin);
9ecda41a
WN
6559}
6560
38b200d6 6561/*
cdd6c482 6562 * read event_id
38b200d6
PZ
6563 */
6564
6565struct perf_read_event {
6566 struct perf_event_header header;
6567
6568 u32 pid;
6569 u32 tid;
38b200d6
PZ
6570};
6571
6572static void
cdd6c482 6573perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6574 struct task_struct *task)
6575{
6576 struct perf_output_handle handle;
c980d109 6577 struct perf_sample_data sample;
dfc65094 6578 struct perf_read_event read_event = {
38b200d6 6579 .header = {
cdd6c482 6580 .type = PERF_RECORD_READ,
38b200d6 6581 .misc = 0,
c320c7b7 6582 .size = sizeof(read_event) + event->read_size,
38b200d6 6583 },
cdd6c482
IM
6584 .pid = perf_event_pid(event, task),
6585 .tid = perf_event_tid(event, task),
38b200d6 6586 };
3dab77fb 6587 int ret;
38b200d6 6588
c980d109 6589 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6590 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6591 if (ret)
6592 return;
6593
dfc65094 6594 perf_output_put(&handle, read_event);
cdd6c482 6595 perf_output_read(&handle, event);
c980d109 6596 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6597
38b200d6
PZ
6598 perf_output_end(&handle);
6599}
6600
aab5b71e 6601typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6602
6603static void
aab5b71e
PZ
6604perf_iterate_ctx(struct perf_event_context *ctx,
6605 perf_iterate_f output,
b73e4fef 6606 void *data, bool all)
52d857a8
JO
6607{
6608 struct perf_event *event;
6609
6610 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6611 if (!all) {
6612 if (event->state < PERF_EVENT_STATE_INACTIVE)
6613 continue;
6614 if (!event_filter_match(event))
6615 continue;
6616 }
6617
67516844 6618 output(event, data);
52d857a8
JO
6619 }
6620}
6621
aab5b71e 6622static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6623{
6624 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6625 struct perf_event *event;
6626
6627 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6628 /*
6629 * Skip events that are not fully formed yet; ensure that
6630 * if we observe event->ctx, both event and ctx will be
6631 * complete enough. See perf_install_in_context().
6632 */
6633 if (!smp_load_acquire(&event->ctx))
6634 continue;
6635
f2fb6bef
KL
6636 if (event->state < PERF_EVENT_STATE_INACTIVE)
6637 continue;
6638 if (!event_filter_match(event))
6639 continue;
6640 output(event, data);
6641 }
6642}
6643
aab5b71e
PZ
6644/*
6645 * Iterate all events that need to receive side-band events.
6646 *
6647 * For new callers; ensure that account_pmu_sb_event() includes
6648 * your event, otherwise it might not get delivered.
6649 */
52d857a8 6650static void
aab5b71e 6651perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6652 struct perf_event_context *task_ctx)
6653{
52d857a8 6654 struct perf_event_context *ctx;
52d857a8
JO
6655 int ctxn;
6656
aab5b71e
PZ
6657 rcu_read_lock();
6658 preempt_disable();
6659
4e93ad60 6660 /*
aab5b71e
PZ
6661 * If we have task_ctx != NULL we only notify the task context itself.
6662 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6663 * context.
6664 */
6665 if (task_ctx) {
aab5b71e
PZ
6666 perf_iterate_ctx(task_ctx, output, data, false);
6667 goto done;
4e93ad60
JO
6668 }
6669
aab5b71e 6670 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6671
6672 for_each_task_context_nr(ctxn) {
52d857a8
JO
6673 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6674 if (ctx)
aab5b71e 6675 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6676 }
aab5b71e 6677done:
f2fb6bef 6678 preempt_enable();
52d857a8 6679 rcu_read_unlock();
95ff4ca2
AS
6680}
6681
375637bc
AS
6682/*
6683 * Clear all file-based filters at exec, they'll have to be
6684 * re-instated when/if these objects are mmapped again.
6685 */
6686static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6687{
6688 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6689 struct perf_addr_filter *filter;
6690 unsigned int restart = 0, count = 0;
6691 unsigned long flags;
6692
6693 if (!has_addr_filter(event))
6694 return;
6695
6696 raw_spin_lock_irqsave(&ifh->lock, flags);
6697 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 6698 if (filter->path.dentry) {
c60f83b8
AS
6699 event->addr_filter_ranges[count].start = 0;
6700 event->addr_filter_ranges[count].size = 0;
375637bc
AS
6701 restart++;
6702 }
6703
6704 count++;
6705 }
6706
6707 if (restart)
6708 event->addr_filters_gen++;
6709 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6710
6711 if (restart)
767ae086 6712 perf_event_stop(event, 1);
375637bc
AS
6713}
6714
6715void perf_event_exec(void)
6716{
6717 struct perf_event_context *ctx;
6718 int ctxn;
6719
6720 rcu_read_lock();
6721 for_each_task_context_nr(ctxn) {
6722 ctx = current->perf_event_ctxp[ctxn];
6723 if (!ctx)
6724 continue;
6725
6726 perf_event_enable_on_exec(ctxn);
6727
aab5b71e 6728 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6729 true);
6730 }
6731 rcu_read_unlock();
6732}
6733
95ff4ca2
AS
6734struct remote_output {
6735 struct ring_buffer *rb;
6736 int err;
6737};
6738
6739static void __perf_event_output_stop(struct perf_event *event, void *data)
6740{
6741 struct perf_event *parent = event->parent;
6742 struct remote_output *ro = data;
6743 struct ring_buffer *rb = ro->rb;
375637bc
AS
6744 struct stop_event_data sd = {
6745 .event = event,
6746 };
95ff4ca2
AS
6747
6748 if (!has_aux(event))
6749 return;
6750
6751 if (!parent)
6752 parent = event;
6753
6754 /*
6755 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6756 * ring-buffer, but it will be the child that's actually using it.
6757 *
6758 * We are using event::rb to determine if the event should be stopped,
6759 * however this may race with ring_buffer_attach() (through set_output),
6760 * which will make us skip the event that actually needs to be stopped.
6761 * So ring_buffer_attach() has to stop an aux event before re-assigning
6762 * its rb pointer.
95ff4ca2
AS
6763 */
6764 if (rcu_dereference(parent->rb) == rb)
375637bc 6765 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6766}
6767
6768static int __perf_pmu_output_stop(void *info)
6769{
6770 struct perf_event *event = info;
6771 struct pmu *pmu = event->pmu;
8b6a3fe8 6772 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6773 struct remote_output ro = {
6774 .rb = event->rb,
6775 };
6776
6777 rcu_read_lock();
aab5b71e 6778 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6779 if (cpuctx->task_ctx)
aab5b71e 6780 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6781 &ro, false);
95ff4ca2
AS
6782 rcu_read_unlock();
6783
6784 return ro.err;
6785}
6786
6787static void perf_pmu_output_stop(struct perf_event *event)
6788{
6789 struct perf_event *iter;
6790 int err, cpu;
6791
6792restart:
6793 rcu_read_lock();
6794 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6795 /*
6796 * For per-CPU events, we need to make sure that neither they
6797 * nor their children are running; for cpu==-1 events it's
6798 * sufficient to stop the event itself if it's active, since
6799 * it can't have children.
6800 */
6801 cpu = iter->cpu;
6802 if (cpu == -1)
6803 cpu = READ_ONCE(iter->oncpu);
6804
6805 if (cpu == -1)
6806 continue;
6807
6808 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6809 if (err == -EAGAIN) {
6810 rcu_read_unlock();
6811 goto restart;
6812 }
6813 }
6814 rcu_read_unlock();
52d857a8
JO
6815}
6816
60313ebe 6817/*
9f498cc5
PZ
6818 * task tracking -- fork/exit
6819 *
13d7a241 6820 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6821 */
6822
9f498cc5 6823struct perf_task_event {
3a80b4a3 6824 struct task_struct *task;
cdd6c482 6825 struct perf_event_context *task_ctx;
60313ebe
PZ
6826
6827 struct {
6828 struct perf_event_header header;
6829
6830 u32 pid;
6831 u32 ppid;
9f498cc5
PZ
6832 u32 tid;
6833 u32 ptid;
393b2ad8 6834 u64 time;
cdd6c482 6835 } event_id;
60313ebe
PZ
6836};
6837
67516844
JO
6838static int perf_event_task_match(struct perf_event *event)
6839{
13d7a241
SE
6840 return event->attr.comm || event->attr.mmap ||
6841 event->attr.mmap2 || event->attr.mmap_data ||
6842 event->attr.task;
67516844
JO
6843}
6844
cdd6c482 6845static void perf_event_task_output(struct perf_event *event,
52d857a8 6846 void *data)
60313ebe 6847{
52d857a8 6848 struct perf_task_event *task_event = data;
60313ebe 6849 struct perf_output_handle handle;
c980d109 6850 struct perf_sample_data sample;
9f498cc5 6851 struct task_struct *task = task_event->task;
c980d109 6852 int ret, size = task_event->event_id.header.size;
8bb39f9a 6853
67516844
JO
6854 if (!perf_event_task_match(event))
6855 return;
6856
c980d109 6857 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6858
c980d109 6859 ret = perf_output_begin(&handle, event,
a7ac67ea 6860 task_event->event_id.header.size);
ef60777c 6861 if (ret)
c980d109 6862 goto out;
60313ebe 6863
cdd6c482
IM
6864 task_event->event_id.pid = perf_event_pid(event, task);
6865 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6866
cdd6c482
IM
6867 task_event->event_id.tid = perf_event_tid(event, task);
6868 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6869
34f43927
PZ
6870 task_event->event_id.time = perf_event_clock(event);
6871
cdd6c482 6872 perf_output_put(&handle, task_event->event_id);
393b2ad8 6873
c980d109
ACM
6874 perf_event__output_id_sample(event, &handle, &sample);
6875
60313ebe 6876 perf_output_end(&handle);
c980d109
ACM
6877out:
6878 task_event->event_id.header.size = size;
60313ebe
PZ
6879}
6880
cdd6c482
IM
6881static void perf_event_task(struct task_struct *task,
6882 struct perf_event_context *task_ctx,
3a80b4a3 6883 int new)
60313ebe 6884{
9f498cc5 6885 struct perf_task_event task_event;
60313ebe 6886
cdd6c482
IM
6887 if (!atomic_read(&nr_comm_events) &&
6888 !atomic_read(&nr_mmap_events) &&
6889 !atomic_read(&nr_task_events))
60313ebe
PZ
6890 return;
6891
9f498cc5 6892 task_event = (struct perf_task_event){
3a80b4a3
PZ
6893 .task = task,
6894 .task_ctx = task_ctx,
cdd6c482 6895 .event_id = {
60313ebe 6896 .header = {
cdd6c482 6897 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6898 .misc = 0,
cdd6c482 6899 .size = sizeof(task_event.event_id),
60313ebe 6900 },
573402db
PZ
6901 /* .pid */
6902 /* .ppid */
9f498cc5
PZ
6903 /* .tid */
6904 /* .ptid */
34f43927 6905 /* .time */
60313ebe
PZ
6906 },
6907 };
6908
aab5b71e 6909 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6910 &task_event,
6911 task_ctx);
9f498cc5
PZ
6912}
6913
cdd6c482 6914void perf_event_fork(struct task_struct *task)
9f498cc5 6915{
cdd6c482 6916 perf_event_task(task, NULL, 1);
e4222673 6917 perf_event_namespaces(task);
60313ebe
PZ
6918}
6919
8d1b2d93
PZ
6920/*
6921 * comm tracking
6922 */
6923
6924struct perf_comm_event {
22a4f650
IM
6925 struct task_struct *task;
6926 char *comm;
8d1b2d93
PZ
6927 int comm_size;
6928
6929 struct {
6930 struct perf_event_header header;
6931
6932 u32 pid;
6933 u32 tid;
cdd6c482 6934 } event_id;
8d1b2d93
PZ
6935};
6936
67516844
JO
6937static int perf_event_comm_match(struct perf_event *event)
6938{
6939 return event->attr.comm;
6940}
6941
cdd6c482 6942static void perf_event_comm_output(struct perf_event *event,
52d857a8 6943 void *data)
8d1b2d93 6944{
52d857a8 6945 struct perf_comm_event *comm_event = data;
8d1b2d93 6946 struct perf_output_handle handle;
c980d109 6947 struct perf_sample_data sample;
cdd6c482 6948 int size = comm_event->event_id.header.size;
c980d109
ACM
6949 int ret;
6950
67516844
JO
6951 if (!perf_event_comm_match(event))
6952 return;
6953
c980d109
ACM
6954 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6955 ret = perf_output_begin(&handle, event,
a7ac67ea 6956 comm_event->event_id.header.size);
8d1b2d93
PZ
6957
6958 if (ret)
c980d109 6959 goto out;
8d1b2d93 6960
cdd6c482
IM
6961 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6962 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6963
cdd6c482 6964 perf_output_put(&handle, comm_event->event_id);
76369139 6965 __output_copy(&handle, comm_event->comm,
8d1b2d93 6966 comm_event->comm_size);
c980d109
ACM
6967
6968 perf_event__output_id_sample(event, &handle, &sample);
6969
8d1b2d93 6970 perf_output_end(&handle);
c980d109
ACM
6971out:
6972 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6973}
6974
cdd6c482 6975static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6976{
413ee3b4 6977 char comm[TASK_COMM_LEN];
8d1b2d93 6978 unsigned int size;
8d1b2d93 6979
413ee3b4 6980 memset(comm, 0, sizeof(comm));
96b02d78 6981 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6982 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6983
6984 comm_event->comm = comm;
6985 comm_event->comm_size = size;
6986
cdd6c482 6987 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6988
aab5b71e 6989 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6990 comm_event,
6991 NULL);
8d1b2d93
PZ
6992}
6993
82b89778 6994void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6995{
9ee318a7
PZ
6996 struct perf_comm_event comm_event;
6997
cdd6c482 6998 if (!atomic_read(&nr_comm_events))
9ee318a7 6999 return;
a63eaf34 7000
9ee318a7 7001 comm_event = (struct perf_comm_event){
8d1b2d93 7002 .task = task,
573402db
PZ
7003 /* .comm */
7004 /* .comm_size */
cdd6c482 7005 .event_id = {
573402db 7006 .header = {
cdd6c482 7007 .type = PERF_RECORD_COMM,
82b89778 7008 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
7009 /* .size */
7010 },
7011 /* .pid */
7012 /* .tid */
8d1b2d93
PZ
7013 },
7014 };
7015
cdd6c482 7016 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
7017}
7018
e4222673
HB
7019/*
7020 * namespaces tracking
7021 */
7022
7023struct perf_namespaces_event {
7024 struct task_struct *task;
7025
7026 struct {
7027 struct perf_event_header header;
7028
7029 u32 pid;
7030 u32 tid;
7031 u64 nr_namespaces;
7032 struct perf_ns_link_info link_info[NR_NAMESPACES];
7033 } event_id;
7034};
7035
7036static int perf_event_namespaces_match(struct perf_event *event)
7037{
7038 return event->attr.namespaces;
7039}
7040
7041static void perf_event_namespaces_output(struct perf_event *event,
7042 void *data)
7043{
7044 struct perf_namespaces_event *namespaces_event = data;
7045 struct perf_output_handle handle;
7046 struct perf_sample_data sample;
34900ec5 7047 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
7048 int ret;
7049
7050 if (!perf_event_namespaces_match(event))
7051 return;
7052
7053 perf_event_header__init_id(&namespaces_event->event_id.header,
7054 &sample, event);
7055 ret = perf_output_begin(&handle, event,
7056 namespaces_event->event_id.header.size);
7057 if (ret)
34900ec5 7058 goto out;
e4222673
HB
7059
7060 namespaces_event->event_id.pid = perf_event_pid(event,
7061 namespaces_event->task);
7062 namespaces_event->event_id.tid = perf_event_tid(event,
7063 namespaces_event->task);
7064
7065 perf_output_put(&handle, namespaces_event->event_id);
7066
7067 perf_event__output_id_sample(event, &handle, &sample);
7068
7069 perf_output_end(&handle);
34900ec5
JO
7070out:
7071 namespaces_event->event_id.header.size = header_size;
e4222673
HB
7072}
7073
7074static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7075 struct task_struct *task,
7076 const struct proc_ns_operations *ns_ops)
7077{
7078 struct path ns_path;
7079 struct inode *ns_inode;
7080 void *error;
7081
7082 error = ns_get_path(&ns_path, task, ns_ops);
7083 if (!error) {
7084 ns_inode = ns_path.dentry->d_inode;
7085 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7086 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 7087 path_put(&ns_path);
e4222673
HB
7088 }
7089}
7090
7091void perf_event_namespaces(struct task_struct *task)
7092{
7093 struct perf_namespaces_event namespaces_event;
7094 struct perf_ns_link_info *ns_link_info;
7095
7096 if (!atomic_read(&nr_namespaces_events))
7097 return;
7098
7099 namespaces_event = (struct perf_namespaces_event){
7100 .task = task,
7101 .event_id = {
7102 .header = {
7103 .type = PERF_RECORD_NAMESPACES,
7104 .misc = 0,
7105 .size = sizeof(namespaces_event.event_id),
7106 },
7107 /* .pid */
7108 /* .tid */
7109 .nr_namespaces = NR_NAMESPACES,
7110 /* .link_info[NR_NAMESPACES] */
7111 },
7112 };
7113
7114 ns_link_info = namespaces_event.event_id.link_info;
7115
7116 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7117 task, &mntns_operations);
7118
7119#ifdef CONFIG_USER_NS
7120 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7121 task, &userns_operations);
7122#endif
7123#ifdef CONFIG_NET_NS
7124 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7125 task, &netns_operations);
7126#endif
7127#ifdef CONFIG_UTS_NS
7128 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7129 task, &utsns_operations);
7130#endif
7131#ifdef CONFIG_IPC_NS
7132 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7133 task, &ipcns_operations);
7134#endif
7135#ifdef CONFIG_PID_NS
7136 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7137 task, &pidns_operations);
7138#endif
7139#ifdef CONFIG_CGROUPS
7140 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7141 task, &cgroupns_operations);
7142#endif
7143
7144 perf_iterate_sb(perf_event_namespaces_output,
7145 &namespaces_event,
7146 NULL);
7147}
7148
0a4a9391
PZ
7149/*
7150 * mmap tracking
7151 */
7152
7153struct perf_mmap_event {
089dd79d
PZ
7154 struct vm_area_struct *vma;
7155
7156 const char *file_name;
7157 int file_size;
13d7a241
SE
7158 int maj, min;
7159 u64 ino;
7160 u64 ino_generation;
f972eb63 7161 u32 prot, flags;
0a4a9391
PZ
7162
7163 struct {
7164 struct perf_event_header header;
7165
7166 u32 pid;
7167 u32 tid;
7168 u64 start;
7169 u64 len;
7170 u64 pgoff;
cdd6c482 7171 } event_id;
0a4a9391
PZ
7172};
7173
67516844
JO
7174static int perf_event_mmap_match(struct perf_event *event,
7175 void *data)
7176{
7177 struct perf_mmap_event *mmap_event = data;
7178 struct vm_area_struct *vma = mmap_event->vma;
7179 int executable = vma->vm_flags & VM_EXEC;
7180
7181 return (!executable && event->attr.mmap_data) ||
13d7a241 7182 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
7183}
7184
cdd6c482 7185static void perf_event_mmap_output(struct perf_event *event,
52d857a8 7186 void *data)
0a4a9391 7187{
52d857a8 7188 struct perf_mmap_event *mmap_event = data;
0a4a9391 7189 struct perf_output_handle handle;
c980d109 7190 struct perf_sample_data sample;
cdd6c482 7191 int size = mmap_event->event_id.header.size;
c980d109 7192 int ret;
0a4a9391 7193
67516844
JO
7194 if (!perf_event_mmap_match(event, data))
7195 return;
7196
13d7a241
SE
7197 if (event->attr.mmap2) {
7198 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7199 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7200 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7201 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 7202 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
7203 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7204 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
7205 }
7206
c980d109
ACM
7207 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7208 ret = perf_output_begin(&handle, event,
a7ac67ea 7209 mmap_event->event_id.header.size);
0a4a9391 7210 if (ret)
c980d109 7211 goto out;
0a4a9391 7212
cdd6c482
IM
7213 mmap_event->event_id.pid = perf_event_pid(event, current);
7214 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 7215
cdd6c482 7216 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
7217
7218 if (event->attr.mmap2) {
7219 perf_output_put(&handle, mmap_event->maj);
7220 perf_output_put(&handle, mmap_event->min);
7221 perf_output_put(&handle, mmap_event->ino);
7222 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
7223 perf_output_put(&handle, mmap_event->prot);
7224 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
7225 }
7226
76369139 7227 __output_copy(&handle, mmap_event->file_name,
0a4a9391 7228 mmap_event->file_size);
c980d109
ACM
7229
7230 perf_event__output_id_sample(event, &handle, &sample);
7231
78d613eb 7232 perf_output_end(&handle);
c980d109
ACM
7233out:
7234 mmap_event->event_id.header.size = size;
0a4a9391
PZ
7235}
7236
cdd6c482 7237static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 7238{
089dd79d
PZ
7239 struct vm_area_struct *vma = mmap_event->vma;
7240 struct file *file = vma->vm_file;
13d7a241
SE
7241 int maj = 0, min = 0;
7242 u64 ino = 0, gen = 0;
f972eb63 7243 u32 prot = 0, flags = 0;
0a4a9391
PZ
7244 unsigned int size;
7245 char tmp[16];
7246 char *buf = NULL;
2c42cfbf 7247 char *name;
413ee3b4 7248
0b3589be
PZ
7249 if (vma->vm_flags & VM_READ)
7250 prot |= PROT_READ;
7251 if (vma->vm_flags & VM_WRITE)
7252 prot |= PROT_WRITE;
7253 if (vma->vm_flags & VM_EXEC)
7254 prot |= PROT_EXEC;
7255
7256 if (vma->vm_flags & VM_MAYSHARE)
7257 flags = MAP_SHARED;
7258 else
7259 flags = MAP_PRIVATE;
7260
7261 if (vma->vm_flags & VM_DENYWRITE)
7262 flags |= MAP_DENYWRITE;
7263 if (vma->vm_flags & VM_MAYEXEC)
7264 flags |= MAP_EXECUTABLE;
7265 if (vma->vm_flags & VM_LOCKED)
7266 flags |= MAP_LOCKED;
7267 if (vma->vm_flags & VM_HUGETLB)
7268 flags |= MAP_HUGETLB;
7269
0a4a9391 7270 if (file) {
13d7a241
SE
7271 struct inode *inode;
7272 dev_t dev;
3ea2f2b9 7273
2c42cfbf 7274 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 7275 if (!buf) {
c7e548b4
ON
7276 name = "//enomem";
7277 goto cpy_name;
0a4a9391 7278 }
413ee3b4 7279 /*
3ea2f2b9 7280 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
7281 * need to add enough zero bytes after the string to handle
7282 * the 64bit alignment we do later.
7283 */
9bf39ab2 7284 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 7285 if (IS_ERR(name)) {
c7e548b4
ON
7286 name = "//toolong";
7287 goto cpy_name;
0a4a9391 7288 }
13d7a241
SE
7289 inode = file_inode(vma->vm_file);
7290 dev = inode->i_sb->s_dev;
7291 ino = inode->i_ino;
7292 gen = inode->i_generation;
7293 maj = MAJOR(dev);
7294 min = MINOR(dev);
f972eb63 7295
c7e548b4 7296 goto got_name;
0a4a9391 7297 } else {
fbe26abe
JO
7298 if (vma->vm_ops && vma->vm_ops->name) {
7299 name = (char *) vma->vm_ops->name(vma);
7300 if (name)
7301 goto cpy_name;
7302 }
7303
2c42cfbf 7304 name = (char *)arch_vma_name(vma);
c7e548b4
ON
7305 if (name)
7306 goto cpy_name;
089dd79d 7307
32c5fb7e 7308 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 7309 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
7310 name = "[heap]";
7311 goto cpy_name;
32c5fb7e
ON
7312 }
7313 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 7314 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
7315 name = "[stack]";
7316 goto cpy_name;
089dd79d
PZ
7317 }
7318
c7e548b4
ON
7319 name = "//anon";
7320 goto cpy_name;
0a4a9391
PZ
7321 }
7322
c7e548b4
ON
7323cpy_name:
7324 strlcpy(tmp, name, sizeof(tmp));
7325 name = tmp;
0a4a9391 7326got_name:
2c42cfbf
PZ
7327 /*
7328 * Since our buffer works in 8 byte units we need to align our string
7329 * size to a multiple of 8. However, we must guarantee the tail end is
7330 * zero'd out to avoid leaking random bits to userspace.
7331 */
7332 size = strlen(name)+1;
7333 while (!IS_ALIGNED(size, sizeof(u64)))
7334 name[size++] = '\0';
0a4a9391
PZ
7335
7336 mmap_event->file_name = name;
7337 mmap_event->file_size = size;
13d7a241
SE
7338 mmap_event->maj = maj;
7339 mmap_event->min = min;
7340 mmap_event->ino = ino;
7341 mmap_event->ino_generation = gen;
f972eb63
PZ
7342 mmap_event->prot = prot;
7343 mmap_event->flags = flags;
0a4a9391 7344
2fe85427
SE
7345 if (!(vma->vm_flags & VM_EXEC))
7346 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7347
cdd6c482 7348 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7349
aab5b71e 7350 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7351 mmap_event,
7352 NULL);
665c2142 7353
0a4a9391
PZ
7354 kfree(buf);
7355}
7356
375637bc
AS
7357/*
7358 * Check whether inode and address range match filter criteria.
7359 */
7360static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7361 struct file *file, unsigned long offset,
7362 unsigned long size)
7363{
7f635ff1
MP
7364 /* d_inode(NULL) won't be equal to any mapped user-space file */
7365 if (!filter->path.dentry)
7366 return false;
7367
9511bce9 7368 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
7369 return false;
7370
7371 if (filter->offset > offset + size)
7372 return false;
7373
7374 if (filter->offset + filter->size < offset)
7375 return false;
7376
7377 return true;
7378}
7379
c60f83b8
AS
7380static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7381 struct vm_area_struct *vma,
7382 struct perf_addr_filter_range *fr)
7383{
7384 unsigned long vma_size = vma->vm_end - vma->vm_start;
7385 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7386 struct file *file = vma->vm_file;
7387
7388 if (!perf_addr_filter_match(filter, file, off, vma_size))
7389 return false;
7390
7391 if (filter->offset < off) {
7392 fr->start = vma->vm_start;
7393 fr->size = min(vma_size, filter->size - (off - filter->offset));
7394 } else {
7395 fr->start = vma->vm_start + filter->offset - off;
7396 fr->size = min(vma->vm_end - fr->start, filter->size);
7397 }
7398
7399 return true;
7400}
7401
375637bc
AS
7402static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7403{
7404 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7405 struct vm_area_struct *vma = data;
375637bc
AS
7406 struct perf_addr_filter *filter;
7407 unsigned int restart = 0, count = 0;
c60f83b8 7408 unsigned long flags;
375637bc
AS
7409
7410 if (!has_addr_filter(event))
7411 return;
7412
c60f83b8 7413 if (!vma->vm_file)
375637bc
AS
7414 return;
7415
7416 raw_spin_lock_irqsave(&ifh->lock, flags);
7417 list_for_each_entry(filter, &ifh->list, entry) {
c60f83b8
AS
7418 if (perf_addr_filter_vma_adjust(filter, vma,
7419 &event->addr_filter_ranges[count]))
375637bc 7420 restart++;
375637bc
AS
7421
7422 count++;
7423 }
7424
7425 if (restart)
7426 event->addr_filters_gen++;
7427 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7428
7429 if (restart)
767ae086 7430 perf_event_stop(event, 1);
375637bc
AS
7431}
7432
7433/*
7434 * Adjust all task's events' filters to the new vma
7435 */
7436static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7437{
7438 struct perf_event_context *ctx;
7439 int ctxn;
7440
12b40a23
MP
7441 /*
7442 * Data tracing isn't supported yet and as such there is no need
7443 * to keep track of anything that isn't related to executable code:
7444 */
7445 if (!(vma->vm_flags & VM_EXEC))
7446 return;
7447
375637bc
AS
7448 rcu_read_lock();
7449 for_each_task_context_nr(ctxn) {
7450 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7451 if (!ctx)
7452 continue;
7453
aab5b71e 7454 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7455 }
7456 rcu_read_unlock();
7457}
7458
3af9e859 7459void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7460{
9ee318a7
PZ
7461 struct perf_mmap_event mmap_event;
7462
cdd6c482 7463 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7464 return;
7465
7466 mmap_event = (struct perf_mmap_event){
089dd79d 7467 .vma = vma,
573402db
PZ
7468 /* .file_name */
7469 /* .file_size */
cdd6c482 7470 .event_id = {
573402db 7471 .header = {
cdd6c482 7472 .type = PERF_RECORD_MMAP,
39447b38 7473 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7474 /* .size */
7475 },
7476 /* .pid */
7477 /* .tid */
089dd79d
PZ
7478 .start = vma->vm_start,
7479 .len = vma->vm_end - vma->vm_start,
3a0304e9 7480 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7481 },
13d7a241
SE
7482 /* .maj (attr_mmap2 only) */
7483 /* .min (attr_mmap2 only) */
7484 /* .ino (attr_mmap2 only) */
7485 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7486 /* .prot (attr_mmap2 only) */
7487 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7488 };
7489
375637bc 7490 perf_addr_filters_adjust(vma);
cdd6c482 7491 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7492}
7493
68db7e98
AS
7494void perf_event_aux_event(struct perf_event *event, unsigned long head,
7495 unsigned long size, u64 flags)
7496{
7497 struct perf_output_handle handle;
7498 struct perf_sample_data sample;
7499 struct perf_aux_event {
7500 struct perf_event_header header;
7501 u64 offset;
7502 u64 size;
7503 u64 flags;
7504 } rec = {
7505 .header = {
7506 .type = PERF_RECORD_AUX,
7507 .misc = 0,
7508 .size = sizeof(rec),
7509 },
7510 .offset = head,
7511 .size = size,
7512 .flags = flags,
7513 };
7514 int ret;
7515
7516 perf_event_header__init_id(&rec.header, &sample, event);
7517 ret = perf_output_begin(&handle, event, rec.header.size);
7518
7519 if (ret)
7520 return;
7521
7522 perf_output_put(&handle, rec);
7523 perf_event__output_id_sample(event, &handle, &sample);
7524
7525 perf_output_end(&handle);
7526}
7527
f38b0dbb
KL
7528/*
7529 * Lost/dropped samples logging
7530 */
7531void perf_log_lost_samples(struct perf_event *event, u64 lost)
7532{
7533 struct perf_output_handle handle;
7534 struct perf_sample_data sample;
7535 int ret;
7536
7537 struct {
7538 struct perf_event_header header;
7539 u64 lost;
7540 } lost_samples_event = {
7541 .header = {
7542 .type = PERF_RECORD_LOST_SAMPLES,
7543 .misc = 0,
7544 .size = sizeof(lost_samples_event),
7545 },
7546 .lost = lost,
7547 };
7548
7549 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7550
7551 ret = perf_output_begin(&handle, event,
7552 lost_samples_event.header.size);
7553 if (ret)
7554 return;
7555
7556 perf_output_put(&handle, lost_samples_event);
7557 perf_event__output_id_sample(event, &handle, &sample);
7558 perf_output_end(&handle);
7559}
7560
45ac1403
AH
7561/*
7562 * context_switch tracking
7563 */
7564
7565struct perf_switch_event {
7566 struct task_struct *task;
7567 struct task_struct *next_prev;
7568
7569 struct {
7570 struct perf_event_header header;
7571 u32 next_prev_pid;
7572 u32 next_prev_tid;
7573 } event_id;
7574};
7575
7576static int perf_event_switch_match(struct perf_event *event)
7577{
7578 return event->attr.context_switch;
7579}
7580
7581static void perf_event_switch_output(struct perf_event *event, void *data)
7582{
7583 struct perf_switch_event *se = data;
7584 struct perf_output_handle handle;
7585 struct perf_sample_data sample;
7586 int ret;
7587
7588 if (!perf_event_switch_match(event))
7589 return;
7590
7591 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7592 if (event->ctx->task) {
7593 se->event_id.header.type = PERF_RECORD_SWITCH;
7594 se->event_id.header.size = sizeof(se->event_id.header);
7595 } else {
7596 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7597 se->event_id.header.size = sizeof(se->event_id);
7598 se->event_id.next_prev_pid =
7599 perf_event_pid(event, se->next_prev);
7600 se->event_id.next_prev_tid =
7601 perf_event_tid(event, se->next_prev);
7602 }
7603
7604 perf_event_header__init_id(&se->event_id.header, &sample, event);
7605
7606 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7607 if (ret)
7608 return;
7609
7610 if (event->ctx->task)
7611 perf_output_put(&handle, se->event_id.header);
7612 else
7613 perf_output_put(&handle, se->event_id);
7614
7615 perf_event__output_id_sample(event, &handle, &sample);
7616
7617 perf_output_end(&handle);
7618}
7619
7620static void perf_event_switch(struct task_struct *task,
7621 struct task_struct *next_prev, bool sched_in)
7622{
7623 struct perf_switch_event switch_event;
7624
7625 /* N.B. caller checks nr_switch_events != 0 */
7626
7627 switch_event = (struct perf_switch_event){
7628 .task = task,
7629 .next_prev = next_prev,
7630 .event_id = {
7631 .header = {
7632 /* .type */
7633 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7634 /* .size */
7635 },
7636 /* .next_prev_pid */
7637 /* .next_prev_tid */
7638 },
7639 };
7640
101592b4
AB
7641 if (!sched_in && task->state == TASK_RUNNING)
7642 switch_event.event_id.header.misc |=
7643 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7644
aab5b71e 7645 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7646 &switch_event,
7647 NULL);
7648}
7649
a78ac325
PZ
7650/*
7651 * IRQ throttle logging
7652 */
7653
cdd6c482 7654static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7655{
7656 struct perf_output_handle handle;
c980d109 7657 struct perf_sample_data sample;
a78ac325
PZ
7658 int ret;
7659
7660 struct {
7661 struct perf_event_header header;
7662 u64 time;
cca3f454 7663 u64 id;
7f453c24 7664 u64 stream_id;
a78ac325
PZ
7665 } throttle_event = {
7666 .header = {
cdd6c482 7667 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7668 .misc = 0,
7669 .size = sizeof(throttle_event),
7670 },
34f43927 7671 .time = perf_event_clock(event),
cdd6c482
IM
7672 .id = primary_event_id(event),
7673 .stream_id = event->id,
a78ac325
PZ
7674 };
7675
966ee4d6 7676 if (enable)
cdd6c482 7677 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7678
c980d109
ACM
7679 perf_event_header__init_id(&throttle_event.header, &sample, event);
7680
7681 ret = perf_output_begin(&handle, event,
a7ac67ea 7682 throttle_event.header.size);
a78ac325
PZ
7683 if (ret)
7684 return;
7685
7686 perf_output_put(&handle, throttle_event);
c980d109 7687 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7688 perf_output_end(&handle);
7689}
7690
76193a94
SL
7691/*
7692 * ksymbol register/unregister tracking
7693 */
7694
7695struct perf_ksymbol_event {
7696 const char *name;
7697 int name_len;
7698 struct {
7699 struct perf_event_header header;
7700 u64 addr;
7701 u32 len;
7702 u16 ksym_type;
7703 u16 flags;
7704 } event_id;
7705};
7706
7707static int perf_event_ksymbol_match(struct perf_event *event)
7708{
7709 return event->attr.ksymbol;
7710}
7711
7712static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7713{
7714 struct perf_ksymbol_event *ksymbol_event = data;
7715 struct perf_output_handle handle;
7716 struct perf_sample_data sample;
7717 int ret;
7718
7719 if (!perf_event_ksymbol_match(event))
7720 return;
7721
7722 perf_event_header__init_id(&ksymbol_event->event_id.header,
7723 &sample, event);
7724 ret = perf_output_begin(&handle, event,
7725 ksymbol_event->event_id.header.size);
7726 if (ret)
7727 return;
7728
7729 perf_output_put(&handle, ksymbol_event->event_id);
7730 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7731 perf_event__output_id_sample(event, &handle, &sample);
7732
7733 perf_output_end(&handle);
7734}
7735
7736void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7737 const char *sym)
7738{
7739 struct perf_ksymbol_event ksymbol_event;
7740 char name[KSYM_NAME_LEN];
7741 u16 flags = 0;
7742 int name_len;
7743
7744 if (!atomic_read(&nr_ksymbol_events))
7745 return;
7746
7747 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7748 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7749 goto err;
7750
7751 strlcpy(name, sym, KSYM_NAME_LEN);
7752 name_len = strlen(name) + 1;
7753 while (!IS_ALIGNED(name_len, sizeof(u64)))
7754 name[name_len++] = '\0';
7755 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7756
7757 if (unregister)
7758 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7759
7760 ksymbol_event = (struct perf_ksymbol_event){
7761 .name = name,
7762 .name_len = name_len,
7763 .event_id = {
7764 .header = {
7765 .type = PERF_RECORD_KSYMBOL,
7766 .size = sizeof(ksymbol_event.event_id) +
7767 name_len,
7768 },
7769 .addr = addr,
7770 .len = len,
7771 .ksym_type = ksym_type,
7772 .flags = flags,
7773 },
7774 };
7775
7776 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7777 return;
7778err:
7779 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7780}
7781
6ee52e2a
SL
7782/*
7783 * bpf program load/unload tracking
7784 */
7785
7786struct perf_bpf_event {
7787 struct bpf_prog *prog;
7788 struct {
7789 struct perf_event_header header;
7790 u16 type;
7791 u16 flags;
7792 u32 id;
7793 u8 tag[BPF_TAG_SIZE];
7794 } event_id;
7795};
7796
7797static int perf_event_bpf_match(struct perf_event *event)
7798{
7799 return event->attr.bpf_event;
7800}
7801
7802static void perf_event_bpf_output(struct perf_event *event, void *data)
7803{
7804 struct perf_bpf_event *bpf_event = data;
7805 struct perf_output_handle handle;
7806 struct perf_sample_data sample;
7807 int ret;
7808
7809 if (!perf_event_bpf_match(event))
7810 return;
7811
7812 perf_event_header__init_id(&bpf_event->event_id.header,
7813 &sample, event);
7814 ret = perf_output_begin(&handle, event,
7815 bpf_event->event_id.header.size);
7816 if (ret)
7817 return;
7818
7819 perf_output_put(&handle, bpf_event->event_id);
7820 perf_event__output_id_sample(event, &handle, &sample);
7821
7822 perf_output_end(&handle);
7823}
7824
7825static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7826 enum perf_bpf_event_type type)
7827{
7828 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7829 char sym[KSYM_NAME_LEN];
7830 int i;
7831
7832 if (prog->aux->func_cnt == 0) {
7833 bpf_get_prog_name(prog, sym);
7834 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7835 (u64)(unsigned long)prog->bpf_func,
7836 prog->jited_len, unregister, sym);
7837 } else {
7838 for (i = 0; i < prog->aux->func_cnt; i++) {
7839 struct bpf_prog *subprog = prog->aux->func[i];
7840
7841 bpf_get_prog_name(subprog, sym);
7842 perf_event_ksymbol(
7843 PERF_RECORD_KSYMBOL_TYPE_BPF,
7844 (u64)(unsigned long)subprog->bpf_func,
7845 subprog->jited_len, unregister, sym);
7846 }
7847 }
7848}
7849
7850void perf_event_bpf_event(struct bpf_prog *prog,
7851 enum perf_bpf_event_type type,
7852 u16 flags)
7853{
7854 struct perf_bpf_event bpf_event;
7855
7856 if (type <= PERF_BPF_EVENT_UNKNOWN ||
7857 type >= PERF_BPF_EVENT_MAX)
7858 return;
7859
7860 switch (type) {
7861 case PERF_BPF_EVENT_PROG_LOAD:
7862 case PERF_BPF_EVENT_PROG_UNLOAD:
7863 if (atomic_read(&nr_ksymbol_events))
7864 perf_event_bpf_emit_ksymbols(prog, type);
7865 break;
7866 default:
7867 break;
7868 }
7869
7870 if (!atomic_read(&nr_bpf_events))
7871 return;
7872
7873 bpf_event = (struct perf_bpf_event){
7874 .prog = prog,
7875 .event_id = {
7876 .header = {
7877 .type = PERF_RECORD_BPF_EVENT,
7878 .size = sizeof(bpf_event.event_id),
7879 },
7880 .type = type,
7881 .flags = flags,
7882 .id = prog->aux->id,
7883 },
7884 };
7885
7886 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
7887
7888 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
7889 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
7890}
7891
8d4e6c4c
AS
7892void perf_event_itrace_started(struct perf_event *event)
7893{
7894 event->attach_state |= PERF_ATTACH_ITRACE;
7895}
7896
ec0d7729
AS
7897static void perf_log_itrace_start(struct perf_event *event)
7898{
7899 struct perf_output_handle handle;
7900 struct perf_sample_data sample;
7901 struct perf_aux_event {
7902 struct perf_event_header header;
7903 u32 pid;
7904 u32 tid;
7905 } rec;
7906 int ret;
7907
7908 if (event->parent)
7909 event = event->parent;
7910
7911 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7912 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7913 return;
7914
ec0d7729
AS
7915 rec.header.type = PERF_RECORD_ITRACE_START;
7916 rec.header.misc = 0;
7917 rec.header.size = sizeof(rec);
7918 rec.pid = perf_event_pid(event, current);
7919 rec.tid = perf_event_tid(event, current);
7920
7921 perf_event_header__init_id(&rec.header, &sample, event);
7922 ret = perf_output_begin(&handle, event, rec.header.size);
7923
7924 if (ret)
7925 return;
7926
7927 perf_output_put(&handle, rec);
7928 perf_event__output_id_sample(event, &handle, &sample);
7929
7930 perf_output_end(&handle);
7931}
7932
475113d9
JO
7933static int
7934__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7935{
cdd6c482 7936 struct hw_perf_event *hwc = &event->hw;
79f14641 7937 int ret = 0;
475113d9 7938 u64 seq;
96398826 7939
e050e3f0
SE
7940 seq = __this_cpu_read(perf_throttled_seq);
7941 if (seq != hwc->interrupts_seq) {
7942 hwc->interrupts_seq = seq;
7943 hwc->interrupts = 1;
7944 } else {
7945 hwc->interrupts++;
7946 if (unlikely(throttle
7947 && hwc->interrupts >= max_samples_per_tick)) {
7948 __this_cpu_inc(perf_throttled_count);
555e0c1e 7949 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7950 hwc->interrupts = MAX_INTERRUPTS;
7951 perf_log_throttle(event, 0);
a78ac325
PZ
7952 ret = 1;
7953 }
e050e3f0 7954 }
60db5e09 7955
cdd6c482 7956 if (event->attr.freq) {
def0a9b2 7957 u64 now = perf_clock();
abd50713 7958 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7959
abd50713 7960 hwc->freq_time_stamp = now;
bd2b5b12 7961
abd50713 7962 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7963 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7964 }
7965
475113d9
JO
7966 return ret;
7967}
7968
7969int perf_event_account_interrupt(struct perf_event *event)
7970{
7971 return __perf_event_account_interrupt(event, 1);
7972}
7973
7974/*
7975 * Generic event overflow handling, sampling.
7976 */
7977
7978static int __perf_event_overflow(struct perf_event *event,
7979 int throttle, struct perf_sample_data *data,
7980 struct pt_regs *regs)
7981{
7982 int events = atomic_read(&event->event_limit);
7983 int ret = 0;
7984
7985 /*
7986 * Non-sampling counters might still use the PMI to fold short
7987 * hardware counters, ignore those.
7988 */
7989 if (unlikely(!is_sampling_event(event)))
7990 return 0;
7991
7992 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7993
2023b359
PZ
7994 /*
7995 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7996 * events
2023b359
PZ
7997 */
7998
cdd6c482
IM
7999 event->pending_kill = POLL_IN;
8000 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 8001 ret = 1;
cdd6c482 8002 event->pending_kill = POLL_HUP;
5aab90ce
JO
8003
8004 perf_event_disable_inatomic(event);
79f14641
PZ
8005 }
8006
aa6a5f3c 8007 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 8008
fed66e2c 8009 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
8010 event->pending_wakeup = 1;
8011 irq_work_queue(&event->pending);
f506b3dc
PZ
8012 }
8013
79f14641 8014 return ret;
f6c7d5fe
PZ
8015}
8016
a8b0ca17 8017int perf_event_overflow(struct perf_event *event,
5622f295
MM
8018 struct perf_sample_data *data,
8019 struct pt_regs *regs)
850bc73f 8020{
a8b0ca17 8021 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
8022}
8023
15dbf27c 8024/*
cdd6c482 8025 * Generic software event infrastructure
15dbf27c
PZ
8026 */
8027
b28ab83c
PZ
8028struct swevent_htable {
8029 struct swevent_hlist *swevent_hlist;
8030 struct mutex hlist_mutex;
8031 int hlist_refcount;
8032
8033 /* Recursion avoidance in each contexts */
8034 int recursion[PERF_NR_CONTEXTS];
8035};
8036
8037static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8038
7b4b6658 8039/*
cdd6c482
IM
8040 * We directly increment event->count and keep a second value in
8041 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
8042 * is kept in the range [-sample_period, 0] so that we can use the
8043 * sign as trigger.
8044 */
8045
ab573844 8046u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 8047{
cdd6c482 8048 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
8049 u64 period = hwc->last_period;
8050 u64 nr, offset;
8051 s64 old, val;
8052
8053 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
8054
8055again:
e7850595 8056 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
8057 if (val < 0)
8058 return 0;
15dbf27c 8059
7b4b6658
PZ
8060 nr = div64_u64(period + val, period);
8061 offset = nr * period;
8062 val -= offset;
e7850595 8063 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 8064 goto again;
15dbf27c 8065
7b4b6658 8066 return nr;
15dbf27c
PZ
8067}
8068
0cff784a 8069static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 8070 struct perf_sample_data *data,
5622f295 8071 struct pt_regs *regs)
15dbf27c 8072{
cdd6c482 8073 struct hw_perf_event *hwc = &event->hw;
850bc73f 8074 int throttle = 0;
15dbf27c 8075
0cff784a
PZ
8076 if (!overflow)
8077 overflow = perf_swevent_set_period(event);
15dbf27c 8078
7b4b6658
PZ
8079 if (hwc->interrupts == MAX_INTERRUPTS)
8080 return;
15dbf27c 8081
7b4b6658 8082 for (; overflow; overflow--) {
a8b0ca17 8083 if (__perf_event_overflow(event, throttle,
5622f295 8084 data, regs)) {
7b4b6658
PZ
8085 /*
8086 * We inhibit the overflow from happening when
8087 * hwc->interrupts == MAX_INTERRUPTS.
8088 */
8089 break;
8090 }
cf450a73 8091 throttle = 1;
7b4b6658 8092 }
15dbf27c
PZ
8093}
8094
a4eaf7f1 8095static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 8096 struct perf_sample_data *data,
5622f295 8097 struct pt_regs *regs)
7b4b6658 8098{
cdd6c482 8099 struct hw_perf_event *hwc = &event->hw;
d6d020e9 8100
e7850595 8101 local64_add(nr, &event->count);
d6d020e9 8102
0cff784a
PZ
8103 if (!regs)
8104 return;
8105
6c7e550f 8106 if (!is_sampling_event(event))
7b4b6658 8107 return;
d6d020e9 8108
5d81e5cf
AV
8109 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8110 data->period = nr;
8111 return perf_swevent_overflow(event, 1, data, regs);
8112 } else
8113 data->period = event->hw.last_period;
8114
0cff784a 8115 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 8116 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 8117
e7850595 8118 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 8119 return;
df1a132b 8120
a8b0ca17 8121 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
8122}
8123
f5ffe02e
FW
8124static int perf_exclude_event(struct perf_event *event,
8125 struct pt_regs *regs)
8126{
a4eaf7f1 8127 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 8128 return 1;
a4eaf7f1 8129
f5ffe02e
FW
8130 if (regs) {
8131 if (event->attr.exclude_user && user_mode(regs))
8132 return 1;
8133
8134 if (event->attr.exclude_kernel && !user_mode(regs))
8135 return 1;
8136 }
8137
8138 return 0;
8139}
8140
cdd6c482 8141static int perf_swevent_match(struct perf_event *event,
1c432d89 8142 enum perf_type_id type,
6fb2915d
LZ
8143 u32 event_id,
8144 struct perf_sample_data *data,
8145 struct pt_regs *regs)
15dbf27c 8146{
cdd6c482 8147 if (event->attr.type != type)
a21ca2ca 8148 return 0;
f5ffe02e 8149
cdd6c482 8150 if (event->attr.config != event_id)
15dbf27c
PZ
8151 return 0;
8152
f5ffe02e
FW
8153 if (perf_exclude_event(event, regs))
8154 return 0;
15dbf27c
PZ
8155
8156 return 1;
8157}
8158
76e1d904
FW
8159static inline u64 swevent_hash(u64 type, u32 event_id)
8160{
8161 u64 val = event_id | (type << 32);
8162
8163 return hash_64(val, SWEVENT_HLIST_BITS);
8164}
8165
49f135ed
FW
8166static inline struct hlist_head *
8167__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 8168{
49f135ed
FW
8169 u64 hash = swevent_hash(type, event_id);
8170
8171 return &hlist->heads[hash];
8172}
76e1d904 8173
49f135ed
FW
8174/* For the read side: events when they trigger */
8175static inline struct hlist_head *
b28ab83c 8176find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
8177{
8178 struct swevent_hlist *hlist;
76e1d904 8179
b28ab83c 8180 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
8181 if (!hlist)
8182 return NULL;
8183
49f135ed
FW
8184 return __find_swevent_head(hlist, type, event_id);
8185}
8186
8187/* For the event head insertion and removal in the hlist */
8188static inline struct hlist_head *
b28ab83c 8189find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
8190{
8191 struct swevent_hlist *hlist;
8192 u32 event_id = event->attr.config;
8193 u64 type = event->attr.type;
8194
8195 /*
8196 * Event scheduling is always serialized against hlist allocation
8197 * and release. Which makes the protected version suitable here.
8198 * The context lock guarantees that.
8199 */
b28ab83c 8200 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
8201 lockdep_is_held(&event->ctx->lock));
8202 if (!hlist)
8203 return NULL;
8204
8205 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
8206}
8207
8208static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 8209 u64 nr,
76e1d904
FW
8210 struct perf_sample_data *data,
8211 struct pt_regs *regs)
15dbf27c 8212{
4a32fea9 8213 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8214 struct perf_event *event;
76e1d904 8215 struct hlist_head *head;
15dbf27c 8216
76e1d904 8217 rcu_read_lock();
b28ab83c 8218 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
8219 if (!head)
8220 goto end;
8221
b67bfe0d 8222 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 8223 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 8224 perf_swevent_event(event, nr, data, regs);
15dbf27c 8225 }
76e1d904
FW
8226end:
8227 rcu_read_unlock();
15dbf27c
PZ
8228}
8229
86038c5e
PZI
8230DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8231
4ed7c92d 8232int perf_swevent_get_recursion_context(void)
96f6d444 8233{
4a32fea9 8234 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 8235
b28ab83c 8236 return get_recursion_context(swhash->recursion);
96f6d444 8237}
645e8cc0 8238EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 8239
98b5c2c6 8240void perf_swevent_put_recursion_context(int rctx)
15dbf27c 8241{
4a32fea9 8242 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 8243
b28ab83c 8244 put_recursion_context(swhash->recursion, rctx);
ce71b9df 8245}
15dbf27c 8246
86038c5e 8247void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 8248{
a4234bfc 8249 struct perf_sample_data data;
4ed7c92d 8250
86038c5e 8251 if (WARN_ON_ONCE(!regs))
4ed7c92d 8252 return;
a4234bfc 8253
fd0d000b 8254 perf_sample_data_init(&data, addr, 0);
a8b0ca17 8255 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
8256}
8257
8258void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8259{
8260 int rctx;
8261
8262 preempt_disable_notrace();
8263 rctx = perf_swevent_get_recursion_context();
8264 if (unlikely(rctx < 0))
8265 goto fail;
8266
8267 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
8268
8269 perf_swevent_put_recursion_context(rctx);
86038c5e 8270fail:
1c024eca 8271 preempt_enable_notrace();
b8e83514
PZ
8272}
8273
cdd6c482 8274static void perf_swevent_read(struct perf_event *event)
15dbf27c 8275{
15dbf27c
PZ
8276}
8277
a4eaf7f1 8278static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 8279{
4a32fea9 8280 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8281 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
8282 struct hlist_head *head;
8283
6c7e550f 8284 if (is_sampling_event(event)) {
7b4b6658 8285 hwc->last_period = hwc->sample_period;
cdd6c482 8286 perf_swevent_set_period(event);
7b4b6658 8287 }
76e1d904 8288
a4eaf7f1
PZ
8289 hwc->state = !(flags & PERF_EF_START);
8290
b28ab83c 8291 head = find_swevent_head(swhash, event);
12ca6ad2 8292 if (WARN_ON_ONCE(!head))
76e1d904
FW
8293 return -EINVAL;
8294
8295 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 8296 perf_event_update_userpage(event);
76e1d904 8297
15dbf27c
PZ
8298 return 0;
8299}
8300
a4eaf7f1 8301static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 8302{
76e1d904 8303 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
8304}
8305
a4eaf7f1 8306static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 8307{
a4eaf7f1 8308 event->hw.state = 0;
d6d020e9 8309}
aa9c4c0f 8310
a4eaf7f1 8311static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 8312{
a4eaf7f1 8313 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
8314}
8315
49f135ed
FW
8316/* Deref the hlist from the update side */
8317static inline struct swevent_hlist *
b28ab83c 8318swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 8319{
b28ab83c
PZ
8320 return rcu_dereference_protected(swhash->swevent_hlist,
8321 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
8322}
8323
b28ab83c 8324static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 8325{
b28ab83c 8326 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 8327
49f135ed 8328 if (!hlist)
76e1d904
FW
8329 return;
8330
70691d4a 8331 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 8332 kfree_rcu(hlist, rcu_head);
76e1d904
FW
8333}
8334
3b364d7b 8335static void swevent_hlist_put_cpu(int cpu)
76e1d904 8336{
b28ab83c 8337 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 8338
b28ab83c 8339 mutex_lock(&swhash->hlist_mutex);
76e1d904 8340
b28ab83c
PZ
8341 if (!--swhash->hlist_refcount)
8342 swevent_hlist_release(swhash);
76e1d904 8343
b28ab83c 8344 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8345}
8346
3b364d7b 8347static void swevent_hlist_put(void)
76e1d904
FW
8348{
8349 int cpu;
8350
76e1d904 8351 for_each_possible_cpu(cpu)
3b364d7b 8352 swevent_hlist_put_cpu(cpu);
76e1d904
FW
8353}
8354
3b364d7b 8355static int swevent_hlist_get_cpu(int cpu)
76e1d904 8356{
b28ab83c 8357 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
8358 int err = 0;
8359
b28ab83c 8360 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
8361 if (!swevent_hlist_deref(swhash) &&
8362 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
8363 struct swevent_hlist *hlist;
8364
8365 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8366 if (!hlist) {
8367 err = -ENOMEM;
8368 goto exit;
8369 }
b28ab83c 8370 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8371 }
b28ab83c 8372 swhash->hlist_refcount++;
9ed6060d 8373exit:
b28ab83c 8374 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8375
8376 return err;
8377}
8378
3b364d7b 8379static int swevent_hlist_get(void)
76e1d904 8380{
3b364d7b 8381 int err, cpu, failed_cpu;
76e1d904 8382
a63fbed7 8383 mutex_lock(&pmus_lock);
76e1d904 8384 for_each_possible_cpu(cpu) {
3b364d7b 8385 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
8386 if (err) {
8387 failed_cpu = cpu;
8388 goto fail;
8389 }
8390 }
a63fbed7 8391 mutex_unlock(&pmus_lock);
76e1d904 8392 return 0;
9ed6060d 8393fail:
76e1d904
FW
8394 for_each_possible_cpu(cpu) {
8395 if (cpu == failed_cpu)
8396 break;
3b364d7b 8397 swevent_hlist_put_cpu(cpu);
76e1d904 8398 }
a63fbed7 8399 mutex_unlock(&pmus_lock);
76e1d904
FW
8400 return err;
8401}
8402
c5905afb 8403struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 8404
b0a873eb
PZ
8405static void sw_perf_event_destroy(struct perf_event *event)
8406{
8407 u64 event_id = event->attr.config;
95476b64 8408
b0a873eb
PZ
8409 WARN_ON(event->parent);
8410
c5905afb 8411 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 8412 swevent_hlist_put();
b0a873eb
PZ
8413}
8414
8415static int perf_swevent_init(struct perf_event *event)
8416{
8176cced 8417 u64 event_id = event->attr.config;
b0a873eb
PZ
8418
8419 if (event->attr.type != PERF_TYPE_SOFTWARE)
8420 return -ENOENT;
8421
2481c5fa
SE
8422 /*
8423 * no branch sampling for software events
8424 */
8425 if (has_branch_stack(event))
8426 return -EOPNOTSUPP;
8427
b0a873eb
PZ
8428 switch (event_id) {
8429 case PERF_COUNT_SW_CPU_CLOCK:
8430 case PERF_COUNT_SW_TASK_CLOCK:
8431 return -ENOENT;
8432
8433 default:
8434 break;
8435 }
8436
ce677831 8437 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
8438 return -ENOENT;
8439
8440 if (!event->parent) {
8441 int err;
8442
3b364d7b 8443 err = swevent_hlist_get();
b0a873eb
PZ
8444 if (err)
8445 return err;
8446
c5905afb 8447 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
8448 event->destroy = sw_perf_event_destroy;
8449 }
8450
8451 return 0;
8452}
8453
8454static struct pmu perf_swevent = {
89a1e187 8455 .task_ctx_nr = perf_sw_context,
95476b64 8456
34f43927
PZ
8457 .capabilities = PERF_PMU_CAP_NO_NMI,
8458
b0a873eb 8459 .event_init = perf_swevent_init,
a4eaf7f1
PZ
8460 .add = perf_swevent_add,
8461 .del = perf_swevent_del,
8462 .start = perf_swevent_start,
8463 .stop = perf_swevent_stop,
1c024eca 8464 .read = perf_swevent_read,
1c024eca
PZ
8465};
8466
b0a873eb
PZ
8467#ifdef CONFIG_EVENT_TRACING
8468
1c024eca
PZ
8469static int perf_tp_filter_match(struct perf_event *event,
8470 struct perf_sample_data *data)
8471{
7e3f977e 8472 void *record = data->raw->frag.data;
1c024eca 8473
b71b437e
PZ
8474 /* only top level events have filters set */
8475 if (event->parent)
8476 event = event->parent;
8477
1c024eca
PZ
8478 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8479 return 1;
8480 return 0;
8481}
8482
8483static int perf_tp_event_match(struct perf_event *event,
8484 struct perf_sample_data *data,
8485 struct pt_regs *regs)
8486{
a0f7d0f7
FW
8487 if (event->hw.state & PERF_HES_STOPPED)
8488 return 0;
580d607c
PZ
8489 /*
8490 * All tracepoints are from kernel-space.
8491 */
8492 if (event->attr.exclude_kernel)
1c024eca
PZ
8493 return 0;
8494
8495 if (!perf_tp_filter_match(event, data))
8496 return 0;
8497
8498 return 1;
8499}
8500
85b67bcb
AS
8501void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8502 struct trace_event_call *call, u64 count,
8503 struct pt_regs *regs, struct hlist_head *head,
8504 struct task_struct *task)
8505{
e87c6bc3 8506 if (bpf_prog_array_valid(call)) {
85b67bcb 8507 *(struct pt_regs **)raw_data = regs;
e87c6bc3 8508 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
8509 perf_swevent_put_recursion_context(rctx);
8510 return;
8511 }
8512 }
8513 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 8514 rctx, task);
85b67bcb
AS
8515}
8516EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8517
1e1dcd93 8518void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 8519 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 8520 struct task_struct *task)
95476b64
FW
8521{
8522 struct perf_sample_data data;
8fd0fbbe 8523 struct perf_event *event;
1c024eca 8524
95476b64 8525 struct perf_raw_record raw = {
7e3f977e
DB
8526 .frag = {
8527 .size = entry_size,
8528 .data = record,
8529 },
95476b64
FW
8530 };
8531
1e1dcd93 8532 perf_sample_data_init(&data, 0, 0);
95476b64
FW
8533 data.raw = &raw;
8534
1e1dcd93
AS
8535 perf_trace_buf_update(record, event_type);
8536
8fd0fbbe 8537 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 8538 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 8539 perf_swevent_event(event, count, &data, regs);
4f41c013 8540 }
ecc55f84 8541
e6dab5ff
AV
8542 /*
8543 * If we got specified a target task, also iterate its context and
8544 * deliver this event there too.
8545 */
8546 if (task && task != current) {
8547 struct perf_event_context *ctx;
8548 struct trace_entry *entry = record;
8549
8550 rcu_read_lock();
8551 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8552 if (!ctx)
8553 goto unlock;
8554
8555 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cd6fb677
JO
8556 if (event->cpu != smp_processor_id())
8557 continue;
e6dab5ff
AV
8558 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8559 continue;
8560 if (event->attr.config != entry->type)
8561 continue;
8562 if (perf_tp_event_match(event, &data, regs))
8563 perf_swevent_event(event, count, &data, regs);
8564 }
8565unlock:
8566 rcu_read_unlock();
8567 }
8568
ecc55f84 8569 perf_swevent_put_recursion_context(rctx);
95476b64
FW
8570}
8571EXPORT_SYMBOL_GPL(perf_tp_event);
8572
cdd6c482 8573static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 8574{
1c024eca 8575 perf_trace_destroy(event);
e077df4f
PZ
8576}
8577
b0a873eb 8578static int perf_tp_event_init(struct perf_event *event)
e077df4f 8579{
76e1d904
FW
8580 int err;
8581
b0a873eb
PZ
8582 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8583 return -ENOENT;
8584
2481c5fa
SE
8585 /*
8586 * no branch sampling for tracepoint events
8587 */
8588 if (has_branch_stack(event))
8589 return -EOPNOTSUPP;
8590
1c024eca
PZ
8591 err = perf_trace_init(event);
8592 if (err)
b0a873eb 8593 return err;
e077df4f 8594
cdd6c482 8595 event->destroy = tp_perf_event_destroy;
e077df4f 8596
b0a873eb
PZ
8597 return 0;
8598}
8599
8600static struct pmu perf_tracepoint = {
89a1e187
PZ
8601 .task_ctx_nr = perf_sw_context,
8602
b0a873eb 8603 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
8604 .add = perf_trace_add,
8605 .del = perf_trace_del,
8606 .start = perf_swevent_start,
8607 .stop = perf_swevent_stop,
b0a873eb 8608 .read = perf_swevent_read,
b0a873eb
PZ
8609};
8610
33ea4b24 8611#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
8612/*
8613 * Flags in config, used by dynamic PMU kprobe and uprobe
8614 * The flags should match following PMU_FORMAT_ATTR().
8615 *
8616 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8617 * if not set, create kprobe/uprobe
a6ca88b2
SL
8618 *
8619 * The following values specify a reference counter (or semaphore in the
8620 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8621 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8622 *
8623 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
8624 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
e12f03d7
SL
8625 */
8626enum perf_probe_config {
8627 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
a6ca88b2
SL
8628 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8629 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
e12f03d7
SL
8630};
8631
8632PMU_FORMAT_ATTR(retprobe, "config:0");
a6ca88b2 8633#endif
e12f03d7 8634
a6ca88b2
SL
8635#ifdef CONFIG_KPROBE_EVENTS
8636static struct attribute *kprobe_attrs[] = {
e12f03d7
SL
8637 &format_attr_retprobe.attr,
8638 NULL,
8639};
8640
a6ca88b2 8641static struct attribute_group kprobe_format_group = {
e12f03d7 8642 .name = "format",
a6ca88b2 8643 .attrs = kprobe_attrs,
e12f03d7
SL
8644};
8645
a6ca88b2
SL
8646static const struct attribute_group *kprobe_attr_groups[] = {
8647 &kprobe_format_group,
e12f03d7
SL
8648 NULL,
8649};
8650
8651static int perf_kprobe_event_init(struct perf_event *event);
8652static struct pmu perf_kprobe = {
8653 .task_ctx_nr = perf_sw_context,
8654 .event_init = perf_kprobe_event_init,
8655 .add = perf_trace_add,
8656 .del = perf_trace_del,
8657 .start = perf_swevent_start,
8658 .stop = perf_swevent_stop,
8659 .read = perf_swevent_read,
a6ca88b2 8660 .attr_groups = kprobe_attr_groups,
e12f03d7
SL
8661};
8662
8663static int perf_kprobe_event_init(struct perf_event *event)
8664{
8665 int err;
8666 bool is_retprobe;
8667
8668 if (event->attr.type != perf_kprobe.type)
8669 return -ENOENT;
32e6e967
SL
8670
8671 if (!capable(CAP_SYS_ADMIN))
8672 return -EACCES;
8673
e12f03d7
SL
8674 /*
8675 * no branch sampling for probe events
8676 */
8677 if (has_branch_stack(event))
8678 return -EOPNOTSUPP;
8679
8680 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8681 err = perf_kprobe_init(event, is_retprobe);
8682 if (err)
8683 return err;
8684
8685 event->destroy = perf_kprobe_destroy;
8686
8687 return 0;
8688}
8689#endif /* CONFIG_KPROBE_EVENTS */
8690
33ea4b24 8691#ifdef CONFIG_UPROBE_EVENTS
a6ca88b2
SL
8692PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8693
8694static struct attribute *uprobe_attrs[] = {
8695 &format_attr_retprobe.attr,
8696 &format_attr_ref_ctr_offset.attr,
8697 NULL,
8698};
8699
8700static struct attribute_group uprobe_format_group = {
8701 .name = "format",
8702 .attrs = uprobe_attrs,
8703};
8704
8705static const struct attribute_group *uprobe_attr_groups[] = {
8706 &uprobe_format_group,
8707 NULL,
8708};
8709
33ea4b24
SL
8710static int perf_uprobe_event_init(struct perf_event *event);
8711static struct pmu perf_uprobe = {
8712 .task_ctx_nr = perf_sw_context,
8713 .event_init = perf_uprobe_event_init,
8714 .add = perf_trace_add,
8715 .del = perf_trace_del,
8716 .start = perf_swevent_start,
8717 .stop = perf_swevent_stop,
8718 .read = perf_swevent_read,
a6ca88b2 8719 .attr_groups = uprobe_attr_groups,
33ea4b24
SL
8720};
8721
8722static int perf_uprobe_event_init(struct perf_event *event)
8723{
8724 int err;
a6ca88b2 8725 unsigned long ref_ctr_offset;
33ea4b24
SL
8726 bool is_retprobe;
8727
8728 if (event->attr.type != perf_uprobe.type)
8729 return -ENOENT;
32e6e967
SL
8730
8731 if (!capable(CAP_SYS_ADMIN))
8732 return -EACCES;
8733
33ea4b24
SL
8734 /*
8735 * no branch sampling for probe events
8736 */
8737 if (has_branch_stack(event))
8738 return -EOPNOTSUPP;
8739
8740 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
a6ca88b2
SL
8741 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8742 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
33ea4b24
SL
8743 if (err)
8744 return err;
8745
8746 event->destroy = perf_uprobe_destroy;
8747
8748 return 0;
8749}
8750#endif /* CONFIG_UPROBE_EVENTS */
8751
b0a873eb
PZ
8752static inline void perf_tp_register(void)
8753{
2e80a82a 8754 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
8755#ifdef CONFIG_KPROBE_EVENTS
8756 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8757#endif
33ea4b24
SL
8758#ifdef CONFIG_UPROBE_EVENTS
8759 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8760#endif
e077df4f 8761}
6fb2915d 8762
6fb2915d
LZ
8763static void perf_event_free_filter(struct perf_event *event)
8764{
8765 ftrace_profile_free_filter(event);
8766}
8767
aa6a5f3c
AS
8768#ifdef CONFIG_BPF_SYSCALL
8769static void bpf_overflow_handler(struct perf_event *event,
8770 struct perf_sample_data *data,
8771 struct pt_regs *regs)
8772{
8773 struct bpf_perf_event_data_kern ctx = {
8774 .data = data,
7d9285e8 8775 .event = event,
aa6a5f3c
AS
8776 };
8777 int ret = 0;
8778
c895f6f7 8779 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
8780 preempt_disable();
8781 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8782 goto out;
8783 rcu_read_lock();
88575199 8784 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8785 rcu_read_unlock();
8786out:
8787 __this_cpu_dec(bpf_prog_active);
8788 preempt_enable();
8789 if (!ret)
8790 return;
8791
8792 event->orig_overflow_handler(event, data, regs);
8793}
8794
8795static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8796{
8797 struct bpf_prog *prog;
8798
8799 if (event->overflow_handler_context)
8800 /* hw breakpoint or kernel counter */
8801 return -EINVAL;
8802
8803 if (event->prog)
8804 return -EEXIST;
8805
8806 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8807 if (IS_ERR(prog))
8808 return PTR_ERR(prog);
8809
8810 event->prog = prog;
8811 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8812 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8813 return 0;
8814}
8815
8816static void perf_event_free_bpf_handler(struct perf_event *event)
8817{
8818 struct bpf_prog *prog = event->prog;
8819
8820 if (!prog)
8821 return;
8822
8823 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8824 event->prog = NULL;
8825 bpf_prog_put(prog);
8826}
8827#else
8828static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8829{
8830 return -EOPNOTSUPP;
8831}
8832static void perf_event_free_bpf_handler(struct perf_event *event)
8833{
8834}
8835#endif
8836
e12f03d7
SL
8837/*
8838 * returns true if the event is a tracepoint, or a kprobe/upprobe created
8839 * with perf_event_open()
8840 */
8841static inline bool perf_event_is_tracing(struct perf_event *event)
8842{
8843 if (event->pmu == &perf_tracepoint)
8844 return true;
8845#ifdef CONFIG_KPROBE_EVENTS
8846 if (event->pmu == &perf_kprobe)
8847 return true;
33ea4b24
SL
8848#endif
8849#ifdef CONFIG_UPROBE_EVENTS
8850 if (event->pmu == &perf_uprobe)
8851 return true;
e12f03d7
SL
8852#endif
8853 return false;
8854}
8855
2541517c
AS
8856static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8857{
cf5f5cea 8858 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 8859 struct bpf_prog *prog;
e87c6bc3 8860 int ret;
2541517c 8861
e12f03d7 8862 if (!perf_event_is_tracing(event))
f91840a3 8863 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 8864
98b5c2c6
AS
8865 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8866 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8867 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8868 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8869 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8870 return -EINVAL;
8871
8872 prog = bpf_prog_get(prog_fd);
8873 if (IS_ERR(prog))
8874 return PTR_ERR(prog);
8875
98b5c2c6 8876 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8877 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8878 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8879 /* valid fd, but invalid bpf program type */
8880 bpf_prog_put(prog);
8881 return -EINVAL;
8882 }
8883
9802d865
JB
8884 /* Kprobe override only works for kprobes, not uprobes. */
8885 if (prog->kprobe_override &&
8886 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8887 bpf_prog_put(prog);
8888 return -EINVAL;
8889 }
8890
cf5f5cea 8891 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8892 int off = trace_event_get_offsets(event->tp_event);
8893
8894 if (prog->aux->max_ctx_offset > off) {
8895 bpf_prog_put(prog);
8896 return -EACCES;
8897 }
8898 }
2541517c 8899
e87c6bc3
YS
8900 ret = perf_event_attach_bpf_prog(event, prog);
8901 if (ret)
8902 bpf_prog_put(prog);
8903 return ret;
2541517c
AS
8904}
8905
8906static void perf_event_free_bpf_prog(struct perf_event *event)
8907{
e12f03d7 8908 if (!perf_event_is_tracing(event)) {
0b4c6841 8909 perf_event_free_bpf_handler(event);
2541517c 8910 return;
2541517c 8911 }
e87c6bc3 8912 perf_event_detach_bpf_prog(event);
2541517c
AS
8913}
8914
e077df4f 8915#else
6fb2915d 8916
b0a873eb 8917static inline void perf_tp_register(void)
e077df4f 8918{
e077df4f 8919}
6fb2915d 8920
6fb2915d
LZ
8921static void perf_event_free_filter(struct perf_event *event)
8922{
8923}
8924
2541517c
AS
8925static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8926{
8927 return -ENOENT;
8928}
8929
8930static void perf_event_free_bpf_prog(struct perf_event *event)
8931{
8932}
07b139c8 8933#endif /* CONFIG_EVENT_TRACING */
e077df4f 8934
24f1e32c 8935#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8936void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8937{
f5ffe02e
FW
8938 struct perf_sample_data sample;
8939 struct pt_regs *regs = data;
8940
fd0d000b 8941 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8942
a4eaf7f1 8943 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8944 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8945}
8946#endif
8947
375637bc
AS
8948/*
8949 * Allocate a new address filter
8950 */
8951static struct perf_addr_filter *
8952perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8953{
8954 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8955 struct perf_addr_filter *filter;
8956
8957 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8958 if (!filter)
8959 return NULL;
8960
8961 INIT_LIST_HEAD(&filter->entry);
8962 list_add_tail(&filter->entry, filters);
8963
8964 return filter;
8965}
8966
8967static void free_filters_list(struct list_head *filters)
8968{
8969 struct perf_addr_filter *filter, *iter;
8970
8971 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 8972 path_put(&filter->path);
375637bc
AS
8973 list_del(&filter->entry);
8974 kfree(filter);
8975 }
8976}
8977
8978/*
8979 * Free existing address filters and optionally install new ones
8980 */
8981static void perf_addr_filters_splice(struct perf_event *event,
8982 struct list_head *head)
8983{
8984 unsigned long flags;
8985 LIST_HEAD(list);
8986
8987 if (!has_addr_filter(event))
8988 return;
8989
8990 /* don't bother with children, they don't have their own filters */
8991 if (event->parent)
8992 return;
8993
8994 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8995
8996 list_splice_init(&event->addr_filters.list, &list);
8997 if (head)
8998 list_splice(head, &event->addr_filters.list);
8999
9000 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9001
9002 free_filters_list(&list);
9003}
9004
9005/*
9006 * Scan through mm's vmas and see if one of them matches the
9007 * @filter; if so, adjust filter's address range.
9008 * Called with mm::mmap_sem down for reading.
9009 */
c60f83b8
AS
9010static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9011 struct mm_struct *mm,
9012 struct perf_addr_filter_range *fr)
375637bc
AS
9013{
9014 struct vm_area_struct *vma;
9015
9016 for (vma = mm->mmap; vma; vma = vma->vm_next) {
c60f83b8 9017 if (!vma->vm_file)
375637bc
AS
9018 continue;
9019
c60f83b8
AS
9020 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9021 return;
375637bc 9022 }
375637bc
AS
9023}
9024
9025/*
9026 * Update event's address range filters based on the
9027 * task's existing mappings, if any.
9028 */
9029static void perf_event_addr_filters_apply(struct perf_event *event)
9030{
9031 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9032 struct task_struct *task = READ_ONCE(event->ctx->task);
9033 struct perf_addr_filter *filter;
9034 struct mm_struct *mm = NULL;
9035 unsigned int count = 0;
9036 unsigned long flags;
9037
9038 /*
9039 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9040 * will stop on the parent's child_mutex that our caller is also holding
9041 */
9042 if (task == TASK_TOMBSTONE)
9043 return;
9044
6ce77bfd
AS
9045 if (!ifh->nr_file_filters)
9046 return;
9047
375637bc
AS
9048 mm = get_task_mm(event->ctx->task);
9049 if (!mm)
9050 goto restart;
9051
9052 down_read(&mm->mmap_sem);
9053
9054 raw_spin_lock_irqsave(&ifh->lock, flags);
9055 list_for_each_entry(filter, &ifh->list, entry) {
c60f83b8
AS
9056 event->addr_filter_ranges[count].start = 0;
9057 event->addr_filter_ranges[count].size = 0;
375637bc 9058
99f5bc9b
MP
9059 /*
9060 * Adjust base offset if the filter is associated to a binary
9061 * that needs to be mapped:
9062 */
9511bce9 9063 if (filter->path.dentry)
c60f83b8 9064 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
375637bc
AS
9065
9066 count++;
9067 }
9068
9069 event->addr_filters_gen++;
9070 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9071
9072 up_read(&mm->mmap_sem);
9073
9074 mmput(mm);
9075
9076restart:
767ae086 9077 perf_event_stop(event, 1);
375637bc
AS
9078}
9079
9080/*
9081 * Address range filtering: limiting the data to certain
9082 * instruction address ranges. Filters are ioctl()ed to us from
9083 * userspace as ascii strings.
9084 *
9085 * Filter string format:
9086 *
9087 * ACTION RANGE_SPEC
9088 * where ACTION is one of the
9089 * * "filter": limit the trace to this region
9090 * * "start": start tracing from this address
9091 * * "stop": stop tracing at this address/region;
9092 * RANGE_SPEC is
9093 * * for kernel addresses: <start address>[/<size>]
9094 * * for object files: <start address>[/<size>]@</path/to/object/file>
9095 *
6ed70cf3
AS
9096 * if <size> is not specified or is zero, the range is treated as a single
9097 * address; not valid for ACTION=="filter".
375637bc
AS
9098 */
9099enum {
e96271f3 9100 IF_ACT_NONE = -1,
375637bc
AS
9101 IF_ACT_FILTER,
9102 IF_ACT_START,
9103 IF_ACT_STOP,
9104 IF_SRC_FILE,
9105 IF_SRC_KERNEL,
9106 IF_SRC_FILEADDR,
9107 IF_SRC_KERNELADDR,
9108};
9109
9110enum {
9111 IF_STATE_ACTION = 0,
9112 IF_STATE_SOURCE,
9113 IF_STATE_END,
9114};
9115
9116static const match_table_t if_tokens = {
9117 { IF_ACT_FILTER, "filter" },
9118 { IF_ACT_START, "start" },
9119 { IF_ACT_STOP, "stop" },
9120 { IF_SRC_FILE, "%u/%u@%s" },
9121 { IF_SRC_KERNEL, "%u/%u" },
9122 { IF_SRC_FILEADDR, "%u@%s" },
9123 { IF_SRC_KERNELADDR, "%u" },
e96271f3 9124 { IF_ACT_NONE, NULL },
375637bc
AS
9125};
9126
9127/*
9128 * Address filter string parser
9129 */
9130static int
9131perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9132 struct list_head *filters)
9133{
9134 struct perf_addr_filter *filter = NULL;
9135 char *start, *orig, *filename = NULL;
375637bc
AS
9136 substring_t args[MAX_OPT_ARGS];
9137 int state = IF_STATE_ACTION, token;
9138 unsigned int kernel = 0;
9139 int ret = -EINVAL;
9140
9141 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9142 if (!fstr)
9143 return -ENOMEM;
9144
9145 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
9146 static const enum perf_addr_filter_action_t actions[] = {
9147 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9148 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9149 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9150 };
375637bc
AS
9151 ret = -EINVAL;
9152
9153 if (!*start)
9154 continue;
9155
9156 /* filter definition begins */
9157 if (state == IF_STATE_ACTION) {
9158 filter = perf_addr_filter_new(event, filters);
9159 if (!filter)
9160 goto fail;
9161 }
9162
9163 token = match_token(start, if_tokens, args);
9164 switch (token) {
9165 case IF_ACT_FILTER:
9166 case IF_ACT_START:
375637bc
AS
9167 case IF_ACT_STOP:
9168 if (state != IF_STATE_ACTION)
9169 goto fail;
9170
6ed70cf3 9171 filter->action = actions[token];
375637bc
AS
9172 state = IF_STATE_SOURCE;
9173 break;
9174
9175 case IF_SRC_KERNELADDR:
9176 case IF_SRC_KERNEL:
9177 kernel = 1;
9178
9179 case IF_SRC_FILEADDR:
9180 case IF_SRC_FILE:
9181 if (state != IF_STATE_SOURCE)
9182 goto fail;
9183
375637bc
AS
9184 *args[0].to = 0;
9185 ret = kstrtoul(args[0].from, 0, &filter->offset);
9186 if (ret)
9187 goto fail;
9188
6ed70cf3 9189 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
9190 *args[1].to = 0;
9191 ret = kstrtoul(args[1].from, 0, &filter->size);
9192 if (ret)
9193 goto fail;
9194 }
9195
4059ffd0 9196 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 9197 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0
MP
9198
9199 filename = match_strdup(&args[fpos]);
375637bc
AS
9200 if (!filename) {
9201 ret = -ENOMEM;
9202 goto fail;
9203 }
9204 }
9205
9206 state = IF_STATE_END;
9207 break;
9208
9209 default:
9210 goto fail;
9211 }
9212
9213 /*
9214 * Filter definition is fully parsed, validate and install it.
9215 * Make sure that it doesn't contradict itself or the event's
9216 * attribute.
9217 */
9218 if (state == IF_STATE_END) {
9ccbfbb1 9219 ret = -EINVAL;
375637bc
AS
9220 if (kernel && event->attr.exclude_kernel)
9221 goto fail;
9222
6ed70cf3
AS
9223 /*
9224 * ACTION "filter" must have a non-zero length region
9225 * specified.
9226 */
9227 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9228 !filter->size)
9229 goto fail;
9230
375637bc
AS
9231 if (!kernel) {
9232 if (!filename)
9233 goto fail;
9234
6ce77bfd
AS
9235 /*
9236 * For now, we only support file-based filters
9237 * in per-task events; doing so for CPU-wide
9238 * events requires additional context switching
9239 * trickery, since same object code will be
9240 * mapped at different virtual addresses in
9241 * different processes.
9242 */
9243 ret = -EOPNOTSUPP;
9244 if (!event->ctx->task)
9245 goto fail_free_name;
9246
375637bc 9247 /* look up the path and grab its inode */
9511bce9
SL
9248 ret = kern_path(filename, LOOKUP_FOLLOW,
9249 &filter->path);
375637bc
AS
9250 if (ret)
9251 goto fail_free_name;
9252
375637bc
AS
9253 kfree(filename);
9254 filename = NULL;
9255
9256 ret = -EINVAL;
9511bce9
SL
9257 if (!filter->path.dentry ||
9258 !S_ISREG(d_inode(filter->path.dentry)
9259 ->i_mode))
375637bc 9260 goto fail;
6ce77bfd
AS
9261
9262 event->addr_filters.nr_file_filters++;
375637bc
AS
9263 }
9264
9265 /* ready to consume more filters */
9266 state = IF_STATE_ACTION;
9267 filter = NULL;
9268 }
9269 }
9270
9271 if (state != IF_STATE_ACTION)
9272 goto fail;
9273
9274 kfree(orig);
9275
9276 return 0;
9277
9278fail_free_name:
9279 kfree(filename);
9280fail:
9281 free_filters_list(filters);
9282 kfree(orig);
9283
9284 return ret;
9285}
9286
9287static int
9288perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9289{
9290 LIST_HEAD(filters);
9291 int ret;
9292
9293 /*
9294 * Since this is called in perf_ioctl() path, we're already holding
9295 * ctx::mutex.
9296 */
9297 lockdep_assert_held(&event->ctx->mutex);
9298
9299 if (WARN_ON_ONCE(event->parent))
9300 return -EINVAL;
9301
375637bc
AS
9302 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9303 if (ret)
6ce77bfd 9304 goto fail_clear_files;
375637bc
AS
9305
9306 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
9307 if (ret)
9308 goto fail_free_filters;
375637bc
AS
9309
9310 /* remove existing filters, if any */
9311 perf_addr_filters_splice(event, &filters);
9312
9313 /* install new filters */
9314 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9315
6ce77bfd
AS
9316 return ret;
9317
9318fail_free_filters:
9319 free_filters_list(&filters);
9320
9321fail_clear_files:
9322 event->addr_filters.nr_file_filters = 0;
9323
375637bc
AS
9324 return ret;
9325}
9326
c796bbbe
AS
9327static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9328{
c796bbbe 9329 int ret = -EINVAL;
e12f03d7 9330 char *filter_str;
c796bbbe
AS
9331
9332 filter_str = strndup_user(arg, PAGE_SIZE);
9333 if (IS_ERR(filter_str))
9334 return PTR_ERR(filter_str);
9335
e12f03d7
SL
9336#ifdef CONFIG_EVENT_TRACING
9337 if (perf_event_is_tracing(event)) {
9338 struct perf_event_context *ctx = event->ctx;
9339
9340 /*
9341 * Beware, here be dragons!!
9342 *
9343 * the tracepoint muck will deadlock against ctx->mutex, but
9344 * the tracepoint stuff does not actually need it. So
9345 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9346 * already have a reference on ctx.
9347 *
9348 * This can result in event getting moved to a different ctx,
9349 * but that does not affect the tracepoint state.
9350 */
9351 mutex_unlock(&ctx->mutex);
9352 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9353 mutex_lock(&ctx->mutex);
9354 } else
9355#endif
9356 if (has_addr_filter(event))
375637bc 9357 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
9358
9359 kfree(filter_str);
9360 return ret;
9361}
9362
b0a873eb
PZ
9363/*
9364 * hrtimer based swevent callback
9365 */
f29ac756 9366
b0a873eb 9367static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 9368{
b0a873eb
PZ
9369 enum hrtimer_restart ret = HRTIMER_RESTART;
9370 struct perf_sample_data data;
9371 struct pt_regs *regs;
9372 struct perf_event *event;
9373 u64 period;
f29ac756 9374
b0a873eb 9375 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
9376
9377 if (event->state != PERF_EVENT_STATE_ACTIVE)
9378 return HRTIMER_NORESTART;
9379
b0a873eb 9380 event->pmu->read(event);
f344011c 9381
fd0d000b 9382 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
9383 regs = get_irq_regs();
9384
9385 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 9386 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 9387 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
9388 ret = HRTIMER_NORESTART;
9389 }
24f1e32c 9390
b0a873eb
PZ
9391 period = max_t(u64, 10000, event->hw.sample_period);
9392 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 9393
b0a873eb 9394 return ret;
f29ac756
PZ
9395}
9396
b0a873eb 9397static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 9398{
b0a873eb 9399 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
9400 s64 period;
9401
9402 if (!is_sampling_event(event))
9403 return;
f5ffe02e 9404
5d508e82
FBH
9405 period = local64_read(&hwc->period_left);
9406 if (period) {
9407 if (period < 0)
9408 period = 10000;
fa407f35 9409
5d508e82
FBH
9410 local64_set(&hwc->period_left, 0);
9411 } else {
9412 period = max_t(u64, 10000, hwc->sample_period);
9413 }
3497d206
TG
9414 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9415 HRTIMER_MODE_REL_PINNED);
24f1e32c 9416}
b0a873eb
PZ
9417
9418static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 9419{
b0a873eb
PZ
9420 struct hw_perf_event *hwc = &event->hw;
9421
6c7e550f 9422 if (is_sampling_event(event)) {
b0a873eb 9423 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 9424 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
9425
9426 hrtimer_cancel(&hwc->hrtimer);
9427 }
24f1e32c
FW
9428}
9429
ba3dd36c
PZ
9430static void perf_swevent_init_hrtimer(struct perf_event *event)
9431{
9432 struct hw_perf_event *hwc = &event->hw;
9433
9434 if (!is_sampling_event(event))
9435 return;
9436
9437 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9438 hwc->hrtimer.function = perf_swevent_hrtimer;
9439
9440 /*
9441 * Since hrtimers have a fixed rate, we can do a static freq->period
9442 * mapping and avoid the whole period adjust feedback stuff.
9443 */
9444 if (event->attr.freq) {
9445 long freq = event->attr.sample_freq;
9446
9447 event->attr.sample_period = NSEC_PER_SEC / freq;
9448 hwc->sample_period = event->attr.sample_period;
9449 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 9450 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
9451 event->attr.freq = 0;
9452 }
9453}
9454
b0a873eb
PZ
9455/*
9456 * Software event: cpu wall time clock
9457 */
9458
9459static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 9460{
b0a873eb
PZ
9461 s64 prev;
9462 u64 now;
9463
a4eaf7f1 9464 now = local_clock();
b0a873eb
PZ
9465 prev = local64_xchg(&event->hw.prev_count, now);
9466 local64_add(now - prev, &event->count);
24f1e32c 9467}
24f1e32c 9468
a4eaf7f1 9469static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9470{
a4eaf7f1 9471 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 9472 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9473}
9474
a4eaf7f1 9475static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 9476{
b0a873eb
PZ
9477 perf_swevent_cancel_hrtimer(event);
9478 cpu_clock_event_update(event);
9479}
f29ac756 9480
a4eaf7f1
PZ
9481static int cpu_clock_event_add(struct perf_event *event, int flags)
9482{
9483 if (flags & PERF_EF_START)
9484 cpu_clock_event_start(event, flags);
6a694a60 9485 perf_event_update_userpage(event);
a4eaf7f1
PZ
9486
9487 return 0;
9488}
9489
9490static void cpu_clock_event_del(struct perf_event *event, int flags)
9491{
9492 cpu_clock_event_stop(event, flags);
9493}
9494
b0a873eb
PZ
9495static void cpu_clock_event_read(struct perf_event *event)
9496{
9497 cpu_clock_event_update(event);
9498}
f344011c 9499
b0a873eb
PZ
9500static int cpu_clock_event_init(struct perf_event *event)
9501{
9502 if (event->attr.type != PERF_TYPE_SOFTWARE)
9503 return -ENOENT;
9504
9505 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9506 return -ENOENT;
9507
2481c5fa
SE
9508 /*
9509 * no branch sampling for software events
9510 */
9511 if (has_branch_stack(event))
9512 return -EOPNOTSUPP;
9513
ba3dd36c
PZ
9514 perf_swevent_init_hrtimer(event);
9515
b0a873eb 9516 return 0;
f29ac756
PZ
9517}
9518
b0a873eb 9519static struct pmu perf_cpu_clock = {
89a1e187
PZ
9520 .task_ctx_nr = perf_sw_context,
9521
34f43927
PZ
9522 .capabilities = PERF_PMU_CAP_NO_NMI,
9523
b0a873eb 9524 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
9525 .add = cpu_clock_event_add,
9526 .del = cpu_clock_event_del,
9527 .start = cpu_clock_event_start,
9528 .stop = cpu_clock_event_stop,
b0a873eb
PZ
9529 .read = cpu_clock_event_read,
9530};
9531
9532/*
9533 * Software event: task time clock
9534 */
9535
9536static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 9537{
b0a873eb
PZ
9538 u64 prev;
9539 s64 delta;
5c92d124 9540
b0a873eb
PZ
9541 prev = local64_xchg(&event->hw.prev_count, now);
9542 delta = now - prev;
9543 local64_add(delta, &event->count);
9544}
5c92d124 9545
a4eaf7f1 9546static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9547{
a4eaf7f1 9548 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 9549 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9550}
9551
a4eaf7f1 9552static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
9553{
9554 perf_swevent_cancel_hrtimer(event);
9555 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
9556}
9557
9558static int task_clock_event_add(struct perf_event *event, int flags)
9559{
9560 if (flags & PERF_EF_START)
9561 task_clock_event_start(event, flags);
6a694a60 9562 perf_event_update_userpage(event);
b0a873eb 9563
a4eaf7f1
PZ
9564 return 0;
9565}
9566
9567static void task_clock_event_del(struct perf_event *event, int flags)
9568{
9569 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
9570}
9571
9572static void task_clock_event_read(struct perf_event *event)
9573{
768a06e2
PZ
9574 u64 now = perf_clock();
9575 u64 delta = now - event->ctx->timestamp;
9576 u64 time = event->ctx->time + delta;
b0a873eb
PZ
9577
9578 task_clock_event_update(event, time);
9579}
9580
9581static int task_clock_event_init(struct perf_event *event)
6fb2915d 9582{
b0a873eb
PZ
9583 if (event->attr.type != PERF_TYPE_SOFTWARE)
9584 return -ENOENT;
9585
9586 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9587 return -ENOENT;
9588
2481c5fa
SE
9589 /*
9590 * no branch sampling for software events
9591 */
9592 if (has_branch_stack(event))
9593 return -EOPNOTSUPP;
9594
ba3dd36c
PZ
9595 perf_swevent_init_hrtimer(event);
9596
b0a873eb 9597 return 0;
6fb2915d
LZ
9598}
9599
b0a873eb 9600static struct pmu perf_task_clock = {
89a1e187
PZ
9601 .task_ctx_nr = perf_sw_context,
9602
34f43927
PZ
9603 .capabilities = PERF_PMU_CAP_NO_NMI,
9604
b0a873eb 9605 .event_init = task_clock_event_init,
a4eaf7f1
PZ
9606 .add = task_clock_event_add,
9607 .del = task_clock_event_del,
9608 .start = task_clock_event_start,
9609 .stop = task_clock_event_stop,
b0a873eb
PZ
9610 .read = task_clock_event_read,
9611};
6fb2915d 9612
ad5133b7 9613static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 9614{
e077df4f 9615}
6fb2915d 9616
fbbe0701
SB
9617static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9618{
9619}
9620
ad5133b7 9621static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 9622{
ad5133b7 9623 return 0;
6fb2915d
LZ
9624}
9625
81ec3f3c
JO
9626static int perf_event_nop_int(struct perf_event *event, u64 value)
9627{
9628 return 0;
9629}
9630
18ab2cd3 9631static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
9632
9633static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 9634{
fbbe0701
SB
9635 __this_cpu_write(nop_txn_flags, flags);
9636
9637 if (flags & ~PERF_PMU_TXN_ADD)
9638 return;
9639
ad5133b7 9640 perf_pmu_disable(pmu);
6fb2915d
LZ
9641}
9642
ad5133b7
PZ
9643static int perf_pmu_commit_txn(struct pmu *pmu)
9644{
fbbe0701
SB
9645 unsigned int flags = __this_cpu_read(nop_txn_flags);
9646
9647 __this_cpu_write(nop_txn_flags, 0);
9648
9649 if (flags & ~PERF_PMU_TXN_ADD)
9650 return 0;
9651
ad5133b7
PZ
9652 perf_pmu_enable(pmu);
9653 return 0;
9654}
e077df4f 9655
ad5133b7 9656static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 9657{
fbbe0701
SB
9658 unsigned int flags = __this_cpu_read(nop_txn_flags);
9659
9660 __this_cpu_write(nop_txn_flags, 0);
9661
9662 if (flags & ~PERF_PMU_TXN_ADD)
9663 return;
9664
ad5133b7 9665 perf_pmu_enable(pmu);
24f1e32c
FW
9666}
9667
35edc2a5
PZ
9668static int perf_event_idx_default(struct perf_event *event)
9669{
c719f560 9670 return 0;
35edc2a5
PZ
9671}
9672
8dc85d54
PZ
9673/*
9674 * Ensures all contexts with the same task_ctx_nr have the same
9675 * pmu_cpu_context too.
9676 */
9e317041 9677static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 9678{
8dc85d54 9679 struct pmu *pmu;
b326e956 9680
8dc85d54
PZ
9681 if (ctxn < 0)
9682 return NULL;
24f1e32c 9683
8dc85d54
PZ
9684 list_for_each_entry(pmu, &pmus, entry) {
9685 if (pmu->task_ctx_nr == ctxn)
9686 return pmu->pmu_cpu_context;
9687 }
24f1e32c 9688
8dc85d54 9689 return NULL;
24f1e32c
FW
9690}
9691
51676957
PZ
9692static void free_pmu_context(struct pmu *pmu)
9693{
df0062b2
WD
9694 /*
9695 * Static contexts such as perf_sw_context have a global lifetime
9696 * and may be shared between different PMUs. Avoid freeing them
9697 * when a single PMU is going away.
9698 */
9699 if (pmu->task_ctx_nr > perf_invalid_context)
9700 return;
9701
51676957 9702 free_percpu(pmu->pmu_cpu_context);
24f1e32c 9703}
6e855cd4
AS
9704
9705/*
9706 * Let userspace know that this PMU supports address range filtering:
9707 */
9708static ssize_t nr_addr_filters_show(struct device *dev,
9709 struct device_attribute *attr,
9710 char *page)
9711{
9712 struct pmu *pmu = dev_get_drvdata(dev);
9713
9714 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9715}
9716DEVICE_ATTR_RO(nr_addr_filters);
9717
2e80a82a 9718static struct idr pmu_idr;
d6d020e9 9719
abe43400
PZ
9720static ssize_t
9721type_show(struct device *dev, struct device_attribute *attr, char *page)
9722{
9723 struct pmu *pmu = dev_get_drvdata(dev);
9724
9725 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9726}
90826ca7 9727static DEVICE_ATTR_RO(type);
abe43400 9728
62b85639
SE
9729static ssize_t
9730perf_event_mux_interval_ms_show(struct device *dev,
9731 struct device_attribute *attr,
9732 char *page)
9733{
9734 struct pmu *pmu = dev_get_drvdata(dev);
9735
9736 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9737}
9738
272325c4
PZ
9739static DEFINE_MUTEX(mux_interval_mutex);
9740
62b85639
SE
9741static ssize_t
9742perf_event_mux_interval_ms_store(struct device *dev,
9743 struct device_attribute *attr,
9744 const char *buf, size_t count)
9745{
9746 struct pmu *pmu = dev_get_drvdata(dev);
9747 int timer, cpu, ret;
9748
9749 ret = kstrtoint(buf, 0, &timer);
9750 if (ret)
9751 return ret;
9752
9753 if (timer < 1)
9754 return -EINVAL;
9755
9756 /* same value, noting to do */
9757 if (timer == pmu->hrtimer_interval_ms)
9758 return count;
9759
272325c4 9760 mutex_lock(&mux_interval_mutex);
62b85639
SE
9761 pmu->hrtimer_interval_ms = timer;
9762
9763 /* update all cpuctx for this PMU */
a63fbed7 9764 cpus_read_lock();
272325c4 9765 for_each_online_cpu(cpu) {
62b85639
SE
9766 struct perf_cpu_context *cpuctx;
9767 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9768 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9769
272325c4
PZ
9770 cpu_function_call(cpu,
9771 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 9772 }
a63fbed7 9773 cpus_read_unlock();
272325c4 9774 mutex_unlock(&mux_interval_mutex);
62b85639
SE
9775
9776 return count;
9777}
90826ca7 9778static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 9779
90826ca7
GKH
9780static struct attribute *pmu_dev_attrs[] = {
9781 &dev_attr_type.attr,
9782 &dev_attr_perf_event_mux_interval_ms.attr,
9783 NULL,
abe43400 9784};
90826ca7 9785ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9786
9787static int pmu_bus_running;
9788static struct bus_type pmu_bus = {
9789 .name = "event_source",
90826ca7 9790 .dev_groups = pmu_dev_groups,
abe43400
PZ
9791};
9792
9793static void pmu_dev_release(struct device *dev)
9794{
9795 kfree(dev);
9796}
9797
9798static int pmu_dev_alloc(struct pmu *pmu)
9799{
9800 int ret = -ENOMEM;
9801
9802 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9803 if (!pmu->dev)
9804 goto out;
9805
0c9d42ed 9806 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9807 device_initialize(pmu->dev);
9808 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9809 if (ret)
9810 goto free_dev;
9811
9812 dev_set_drvdata(pmu->dev, pmu);
9813 pmu->dev->bus = &pmu_bus;
9814 pmu->dev->release = pmu_dev_release;
9815 ret = device_add(pmu->dev);
9816 if (ret)
9817 goto free_dev;
9818
6e855cd4
AS
9819 /* For PMUs with address filters, throw in an extra attribute: */
9820 if (pmu->nr_addr_filters)
9821 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9822
9823 if (ret)
9824 goto del_dev;
9825
abe43400
PZ
9826out:
9827 return ret;
9828
6e855cd4
AS
9829del_dev:
9830 device_del(pmu->dev);
9831
abe43400
PZ
9832free_dev:
9833 put_device(pmu->dev);
9834 goto out;
9835}
9836
547e9fd7 9837static struct lock_class_key cpuctx_mutex;
facc4307 9838static struct lock_class_key cpuctx_lock;
547e9fd7 9839
03d8e80b 9840int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9841{
108b02cf 9842 int cpu, ret;
24f1e32c 9843
b0a873eb 9844 mutex_lock(&pmus_lock);
33696fc0
PZ
9845 ret = -ENOMEM;
9846 pmu->pmu_disable_count = alloc_percpu(int);
9847 if (!pmu->pmu_disable_count)
9848 goto unlock;
f29ac756 9849
2e80a82a
PZ
9850 pmu->type = -1;
9851 if (!name)
9852 goto skip_type;
9853 pmu->name = name;
9854
9855 if (type < 0) {
0e9c3be2
TH
9856 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9857 if (type < 0) {
9858 ret = type;
2e80a82a
PZ
9859 goto free_pdc;
9860 }
9861 }
9862 pmu->type = type;
9863
abe43400
PZ
9864 if (pmu_bus_running) {
9865 ret = pmu_dev_alloc(pmu);
9866 if (ret)
9867 goto free_idr;
9868 }
9869
2e80a82a 9870skip_type:
26657848
PZ
9871 if (pmu->task_ctx_nr == perf_hw_context) {
9872 static int hw_context_taken = 0;
9873
5101ef20
MR
9874 /*
9875 * Other than systems with heterogeneous CPUs, it never makes
9876 * sense for two PMUs to share perf_hw_context. PMUs which are
9877 * uncore must use perf_invalid_context.
9878 */
9879 if (WARN_ON_ONCE(hw_context_taken &&
9880 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9881 pmu->task_ctx_nr = perf_invalid_context;
9882
9883 hw_context_taken = 1;
9884 }
9885
8dc85d54
PZ
9886 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9887 if (pmu->pmu_cpu_context)
9888 goto got_cpu_context;
f29ac756 9889
c4814202 9890 ret = -ENOMEM;
108b02cf
PZ
9891 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9892 if (!pmu->pmu_cpu_context)
abe43400 9893 goto free_dev;
f344011c 9894
108b02cf
PZ
9895 for_each_possible_cpu(cpu) {
9896 struct perf_cpu_context *cpuctx;
9897
9898 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9899 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9900 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9901 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9902 cpuctx->ctx.pmu = pmu;
a63fbed7 9903 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9904
272325c4 9905 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9906 }
76e1d904 9907
8dc85d54 9908got_cpu_context:
ad5133b7
PZ
9909 if (!pmu->start_txn) {
9910 if (pmu->pmu_enable) {
9911 /*
9912 * If we have pmu_enable/pmu_disable calls, install
9913 * transaction stubs that use that to try and batch
9914 * hardware accesses.
9915 */
9916 pmu->start_txn = perf_pmu_start_txn;
9917 pmu->commit_txn = perf_pmu_commit_txn;
9918 pmu->cancel_txn = perf_pmu_cancel_txn;
9919 } else {
fbbe0701 9920 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9921 pmu->commit_txn = perf_pmu_nop_int;
9922 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9923 }
5c92d124 9924 }
15dbf27c 9925
ad5133b7
PZ
9926 if (!pmu->pmu_enable) {
9927 pmu->pmu_enable = perf_pmu_nop_void;
9928 pmu->pmu_disable = perf_pmu_nop_void;
9929 }
9930
81ec3f3c
JO
9931 if (!pmu->check_period)
9932 pmu->check_period = perf_event_nop_int;
9933
35edc2a5
PZ
9934 if (!pmu->event_idx)
9935 pmu->event_idx = perf_event_idx_default;
9936
b0a873eb 9937 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9938 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9939 ret = 0;
9940unlock:
b0a873eb
PZ
9941 mutex_unlock(&pmus_lock);
9942
33696fc0 9943 return ret;
108b02cf 9944
abe43400
PZ
9945free_dev:
9946 device_del(pmu->dev);
9947 put_device(pmu->dev);
9948
2e80a82a
PZ
9949free_idr:
9950 if (pmu->type >= PERF_TYPE_MAX)
9951 idr_remove(&pmu_idr, pmu->type);
9952
108b02cf
PZ
9953free_pdc:
9954 free_percpu(pmu->pmu_disable_count);
9955 goto unlock;
f29ac756 9956}
c464c76e 9957EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9958
b0a873eb 9959void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9960{
b0a873eb
PZ
9961 mutex_lock(&pmus_lock);
9962 list_del_rcu(&pmu->entry);
5c92d124 9963
0475f9ea 9964 /*
cde8e884
PZ
9965 * We dereference the pmu list under both SRCU and regular RCU, so
9966 * synchronize against both of those.
0475f9ea 9967 */
b0a873eb 9968 synchronize_srcu(&pmus_srcu);
cde8e884 9969 synchronize_rcu();
d6d020e9 9970
33696fc0 9971 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9972 if (pmu->type >= PERF_TYPE_MAX)
9973 idr_remove(&pmu_idr, pmu->type);
a9f97721 9974 if (pmu_bus_running) {
0933840a
JO
9975 if (pmu->nr_addr_filters)
9976 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9977 device_del(pmu->dev);
9978 put_device(pmu->dev);
9979 }
51676957 9980 free_pmu_context(pmu);
a9f97721 9981 mutex_unlock(&pmus_lock);
b0a873eb 9982}
c464c76e 9983EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9984
cc34b98b
MR
9985static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9986{
ccd41c86 9987 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9988 int ret;
9989
9990 if (!try_module_get(pmu->module))
9991 return -ENODEV;
ccd41c86 9992
0c7296ca
PZ
9993 /*
9994 * A number of pmu->event_init() methods iterate the sibling_list to,
9995 * for example, validate if the group fits on the PMU. Therefore,
9996 * if this is a sibling event, acquire the ctx->mutex to protect
9997 * the sibling_list.
9998 */
9999 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
10000 /*
10001 * This ctx->mutex can nest when we're called through
10002 * inheritance. See the perf_event_ctx_lock_nested() comment.
10003 */
10004 ctx = perf_event_ctx_lock_nested(event->group_leader,
10005 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
10006 BUG_ON(!ctx);
10007 }
10008
cc34b98b
MR
10009 event->pmu = pmu;
10010 ret = pmu->event_init(event);
ccd41c86
PZ
10011
10012 if (ctx)
10013 perf_event_ctx_unlock(event->group_leader, ctx);
10014
cc6795ae
AM
10015 if (!ret) {
10016 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10017 event_has_any_exclude_flag(event)) {
10018 if (event->destroy)
10019 event->destroy(event);
10020 ret = -EINVAL;
10021 }
10022 }
10023
cc34b98b
MR
10024 if (ret)
10025 module_put(pmu->module);
10026
10027 return ret;
10028}
10029
18ab2cd3 10030static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 10031{
85c617ab 10032 struct pmu *pmu;
b0a873eb 10033 int idx;
940c5b29 10034 int ret;
b0a873eb
PZ
10035
10036 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 10037
40999312
KL
10038 /* Try parent's PMU first: */
10039 if (event->parent && event->parent->pmu) {
10040 pmu = event->parent->pmu;
10041 ret = perf_try_init_event(pmu, event);
10042 if (!ret)
10043 goto unlock;
10044 }
10045
2e80a82a
PZ
10046 rcu_read_lock();
10047 pmu = idr_find(&pmu_idr, event->attr.type);
10048 rcu_read_unlock();
940c5b29 10049 if (pmu) {
cc34b98b 10050 ret = perf_try_init_event(pmu, event);
940c5b29
LM
10051 if (ret)
10052 pmu = ERR_PTR(ret);
2e80a82a 10053 goto unlock;
940c5b29 10054 }
2e80a82a 10055
b0a873eb 10056 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 10057 ret = perf_try_init_event(pmu, event);
b0a873eb 10058 if (!ret)
e5f4d339 10059 goto unlock;
76e1d904 10060
b0a873eb
PZ
10061 if (ret != -ENOENT) {
10062 pmu = ERR_PTR(ret);
e5f4d339 10063 goto unlock;
f344011c 10064 }
5c92d124 10065 }
e5f4d339
PZ
10066 pmu = ERR_PTR(-ENOENT);
10067unlock:
b0a873eb 10068 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 10069
4aeb0b42 10070 return pmu;
5c92d124
IM
10071}
10072
f2fb6bef
KL
10073static void attach_sb_event(struct perf_event *event)
10074{
10075 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10076
10077 raw_spin_lock(&pel->lock);
10078 list_add_rcu(&event->sb_list, &pel->list);
10079 raw_spin_unlock(&pel->lock);
10080}
10081
aab5b71e
PZ
10082/*
10083 * We keep a list of all !task (and therefore per-cpu) events
10084 * that need to receive side-band records.
10085 *
10086 * This avoids having to scan all the various PMU per-cpu contexts
10087 * looking for them.
10088 */
f2fb6bef
KL
10089static void account_pmu_sb_event(struct perf_event *event)
10090{
a4f144eb 10091 if (is_sb_event(event))
f2fb6bef
KL
10092 attach_sb_event(event);
10093}
10094
4beb31f3
FW
10095static void account_event_cpu(struct perf_event *event, int cpu)
10096{
10097 if (event->parent)
10098 return;
10099
4beb31f3
FW
10100 if (is_cgroup_event(event))
10101 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10102}
10103
555e0c1e
FW
10104/* Freq events need the tick to stay alive (see perf_event_task_tick). */
10105static void account_freq_event_nohz(void)
10106{
10107#ifdef CONFIG_NO_HZ_FULL
10108 /* Lock so we don't race with concurrent unaccount */
10109 spin_lock(&nr_freq_lock);
10110 if (atomic_inc_return(&nr_freq_events) == 1)
10111 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10112 spin_unlock(&nr_freq_lock);
10113#endif
10114}
10115
10116static void account_freq_event(void)
10117{
10118 if (tick_nohz_full_enabled())
10119 account_freq_event_nohz();
10120 else
10121 atomic_inc(&nr_freq_events);
10122}
10123
10124
766d6c07
FW
10125static void account_event(struct perf_event *event)
10126{
25432ae9
PZ
10127 bool inc = false;
10128
4beb31f3
FW
10129 if (event->parent)
10130 return;
10131
766d6c07 10132 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 10133 inc = true;
766d6c07
FW
10134 if (event->attr.mmap || event->attr.mmap_data)
10135 atomic_inc(&nr_mmap_events);
10136 if (event->attr.comm)
10137 atomic_inc(&nr_comm_events);
e4222673
HB
10138 if (event->attr.namespaces)
10139 atomic_inc(&nr_namespaces_events);
766d6c07
FW
10140 if (event->attr.task)
10141 atomic_inc(&nr_task_events);
555e0c1e
FW
10142 if (event->attr.freq)
10143 account_freq_event();
45ac1403
AH
10144 if (event->attr.context_switch) {
10145 atomic_inc(&nr_switch_events);
25432ae9 10146 inc = true;
45ac1403 10147 }
4beb31f3 10148 if (has_branch_stack(event))
25432ae9 10149 inc = true;
4beb31f3 10150 if (is_cgroup_event(event))
25432ae9 10151 inc = true;
76193a94
SL
10152 if (event->attr.ksymbol)
10153 atomic_inc(&nr_ksymbol_events);
6ee52e2a
SL
10154 if (event->attr.bpf_event)
10155 atomic_inc(&nr_bpf_events);
25432ae9 10156
9107c89e 10157 if (inc) {
5bce9db1
AS
10158 /*
10159 * We need the mutex here because static_branch_enable()
10160 * must complete *before* the perf_sched_count increment
10161 * becomes visible.
10162 */
9107c89e
PZ
10163 if (atomic_inc_not_zero(&perf_sched_count))
10164 goto enabled;
10165
10166 mutex_lock(&perf_sched_mutex);
10167 if (!atomic_read(&perf_sched_count)) {
10168 static_branch_enable(&perf_sched_events);
10169 /*
10170 * Guarantee that all CPUs observe they key change and
10171 * call the perf scheduling hooks before proceeding to
10172 * install events that need them.
10173 */
0809d954 10174 synchronize_rcu();
9107c89e
PZ
10175 }
10176 /*
10177 * Now that we have waited for the sync_sched(), allow further
10178 * increments to by-pass the mutex.
10179 */
10180 atomic_inc(&perf_sched_count);
10181 mutex_unlock(&perf_sched_mutex);
10182 }
10183enabled:
4beb31f3
FW
10184
10185 account_event_cpu(event, event->cpu);
f2fb6bef
KL
10186
10187 account_pmu_sb_event(event);
766d6c07
FW
10188}
10189
0793a61d 10190/*
788faab7 10191 * Allocate and initialize an event structure
0793a61d 10192 */
cdd6c482 10193static struct perf_event *
c3f00c70 10194perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
10195 struct task_struct *task,
10196 struct perf_event *group_leader,
10197 struct perf_event *parent_event,
4dc0da86 10198 perf_overflow_handler_t overflow_handler,
79dff51e 10199 void *context, int cgroup_fd)
0793a61d 10200{
51b0fe39 10201 struct pmu *pmu;
cdd6c482
IM
10202 struct perf_event *event;
10203 struct hw_perf_event *hwc;
90983b16 10204 long err = -EINVAL;
0793a61d 10205
66832eb4
ON
10206 if ((unsigned)cpu >= nr_cpu_ids) {
10207 if (!task || cpu != -1)
10208 return ERR_PTR(-EINVAL);
10209 }
10210
c3f00c70 10211 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 10212 if (!event)
d5d2bc0d 10213 return ERR_PTR(-ENOMEM);
0793a61d 10214
04289bb9 10215 /*
cdd6c482 10216 * Single events are their own group leaders, with an
04289bb9
IM
10217 * empty sibling list:
10218 */
10219 if (!group_leader)
cdd6c482 10220 group_leader = event;
04289bb9 10221
cdd6c482
IM
10222 mutex_init(&event->child_mutex);
10223 INIT_LIST_HEAD(&event->child_list);
fccc714b 10224
cdd6c482
IM
10225 INIT_LIST_HEAD(&event->event_entry);
10226 INIT_LIST_HEAD(&event->sibling_list);
6668128a 10227 INIT_LIST_HEAD(&event->active_list);
8e1a2031 10228 init_event_group(event);
10c6db11 10229 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 10230 INIT_LIST_HEAD(&event->active_entry);
375637bc 10231 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
10232 INIT_HLIST_NODE(&event->hlist_entry);
10233
10c6db11 10234
cdd6c482 10235 init_waitqueue_head(&event->waitq);
e360adbe 10236 init_irq_work(&event->pending, perf_pending_event);
0793a61d 10237
cdd6c482 10238 mutex_init(&event->mmap_mutex);
375637bc 10239 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 10240
a6fa941d 10241 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
10242 event->cpu = cpu;
10243 event->attr = *attr;
10244 event->group_leader = group_leader;
10245 event->pmu = NULL;
cdd6c482 10246 event->oncpu = -1;
a96bbc16 10247
cdd6c482 10248 event->parent = parent_event;
b84fbc9f 10249
17cf22c3 10250 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 10251 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 10252
cdd6c482 10253 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 10254
d580ff86
PZ
10255 if (task) {
10256 event->attach_state = PERF_ATTACH_TASK;
d580ff86 10257 /*
50f16a8b
PZ
10258 * XXX pmu::event_init needs to know what task to account to
10259 * and we cannot use the ctx information because we need the
10260 * pmu before we get a ctx.
d580ff86 10261 */
621b6d2e 10262 get_task_struct(task);
50f16a8b 10263 event->hw.target = task;
d580ff86
PZ
10264 }
10265
34f43927
PZ
10266 event->clock = &local_clock;
10267 if (parent_event)
10268 event->clock = parent_event->clock;
10269
4dc0da86 10270 if (!overflow_handler && parent_event) {
b326e956 10271 overflow_handler = parent_event->overflow_handler;
4dc0da86 10272 context = parent_event->overflow_handler_context;
f1e4ba5b 10273#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
10274 if (overflow_handler == bpf_overflow_handler) {
10275 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10276
10277 if (IS_ERR(prog)) {
10278 err = PTR_ERR(prog);
10279 goto err_ns;
10280 }
10281 event->prog = prog;
10282 event->orig_overflow_handler =
10283 parent_event->orig_overflow_handler;
10284 }
10285#endif
4dc0da86 10286 }
66832eb4 10287
1879445d
WN
10288 if (overflow_handler) {
10289 event->overflow_handler = overflow_handler;
10290 event->overflow_handler_context = context;
9ecda41a
WN
10291 } else if (is_write_backward(event)){
10292 event->overflow_handler = perf_event_output_backward;
10293 event->overflow_handler_context = NULL;
1879445d 10294 } else {
9ecda41a 10295 event->overflow_handler = perf_event_output_forward;
1879445d
WN
10296 event->overflow_handler_context = NULL;
10297 }
97eaf530 10298
0231bb53 10299 perf_event__state_init(event);
a86ed508 10300
4aeb0b42 10301 pmu = NULL;
b8e83514 10302
cdd6c482 10303 hwc = &event->hw;
bd2b5b12 10304 hwc->sample_period = attr->sample_period;
0d48696f 10305 if (attr->freq && attr->sample_freq)
bd2b5b12 10306 hwc->sample_period = 1;
eced1dfc 10307 hwc->last_period = hwc->sample_period;
bd2b5b12 10308
e7850595 10309 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 10310
2023b359 10311 /*
ba5213ae
PZ
10312 * We currently do not support PERF_SAMPLE_READ on inherited events.
10313 * See perf_output_read().
2023b359 10314 */
ba5213ae 10315 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 10316 goto err_ns;
a46a2300
YZ
10317
10318 if (!has_branch_stack(event))
10319 event->attr.branch_sample_type = 0;
2023b359 10320
79dff51e
MF
10321 if (cgroup_fd != -1) {
10322 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10323 if (err)
10324 goto err_ns;
10325 }
10326
b0a873eb 10327 pmu = perf_init_event(event);
85c617ab 10328 if (IS_ERR(pmu)) {
4aeb0b42 10329 err = PTR_ERR(pmu);
90983b16 10330 goto err_ns;
621a01ea 10331 }
d5d2bc0d 10332
bed5b25a
AS
10333 err = exclusive_event_init(event);
10334 if (err)
10335 goto err_pmu;
10336
375637bc 10337 if (has_addr_filter(event)) {
c60f83b8
AS
10338 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10339 sizeof(struct perf_addr_filter_range),
10340 GFP_KERNEL);
10341 if (!event->addr_filter_ranges) {
36cc2b92 10342 err = -ENOMEM;
375637bc 10343 goto err_per_task;
36cc2b92 10344 }
375637bc 10345
18736eef
AS
10346 /*
10347 * Clone the parent's vma offsets: they are valid until exec()
10348 * even if the mm is not shared with the parent.
10349 */
10350 if (event->parent) {
10351 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10352
10353 raw_spin_lock_irq(&ifh->lock);
c60f83b8
AS
10354 memcpy(event->addr_filter_ranges,
10355 event->parent->addr_filter_ranges,
10356 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
18736eef
AS
10357 raw_spin_unlock_irq(&ifh->lock);
10358 }
10359
375637bc
AS
10360 /* force hw sync on the address filters */
10361 event->addr_filters_gen = 1;
10362 }
10363
cdd6c482 10364 if (!event->parent) {
927c7a9e 10365 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 10366 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 10367 if (err)
375637bc 10368 goto err_addr_filters;
d010b332 10369 }
f344011c 10370 }
9ee318a7 10371
927a5570
AS
10372 /* symmetric to unaccount_event() in _free_event() */
10373 account_event(event);
10374
cdd6c482 10375 return event;
90983b16 10376
375637bc 10377err_addr_filters:
c60f83b8 10378 kfree(event->addr_filter_ranges);
375637bc 10379
bed5b25a
AS
10380err_per_task:
10381 exclusive_event_destroy(event);
10382
90983b16
FW
10383err_pmu:
10384 if (event->destroy)
10385 event->destroy(event);
c464c76e 10386 module_put(pmu->module);
90983b16 10387err_ns:
79dff51e
MF
10388 if (is_cgroup_event(event))
10389 perf_detach_cgroup(event);
90983b16
FW
10390 if (event->ns)
10391 put_pid_ns(event->ns);
621b6d2e
PB
10392 if (event->hw.target)
10393 put_task_struct(event->hw.target);
90983b16
FW
10394 kfree(event);
10395
10396 return ERR_PTR(err);
0793a61d
TG
10397}
10398
cdd6c482
IM
10399static int perf_copy_attr(struct perf_event_attr __user *uattr,
10400 struct perf_event_attr *attr)
974802ea 10401{
974802ea 10402 u32 size;
cdf8073d 10403 int ret;
974802ea 10404
96d4f267 10405 if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
974802ea
PZ
10406 return -EFAULT;
10407
10408 /*
10409 * zero the full structure, so that a short copy will be nice.
10410 */
10411 memset(attr, 0, sizeof(*attr));
10412
10413 ret = get_user(size, &uattr->size);
10414 if (ret)
10415 return ret;
10416
10417 if (size > PAGE_SIZE) /* silly large */
10418 goto err_size;
10419
10420 if (!size) /* abi compat */
10421 size = PERF_ATTR_SIZE_VER0;
10422
10423 if (size < PERF_ATTR_SIZE_VER0)
10424 goto err_size;
10425
10426 /*
10427 * If we're handed a bigger struct than we know of,
cdf8073d
IS
10428 * ensure all the unknown bits are 0 - i.e. new
10429 * user-space does not rely on any kernel feature
10430 * extensions we dont know about yet.
974802ea
PZ
10431 */
10432 if (size > sizeof(*attr)) {
cdf8073d
IS
10433 unsigned char __user *addr;
10434 unsigned char __user *end;
10435 unsigned char val;
974802ea 10436
cdf8073d
IS
10437 addr = (void __user *)uattr + sizeof(*attr);
10438 end = (void __user *)uattr + size;
974802ea 10439
cdf8073d 10440 for (; addr < end; addr++) {
974802ea
PZ
10441 ret = get_user(val, addr);
10442 if (ret)
10443 return ret;
10444 if (val)
10445 goto err_size;
10446 }
b3e62e35 10447 size = sizeof(*attr);
974802ea
PZ
10448 }
10449
10450 ret = copy_from_user(attr, uattr, size);
10451 if (ret)
10452 return -EFAULT;
10453
f12f42ac
MX
10454 attr->size = size;
10455
cd757645 10456 if (attr->__reserved_1)
974802ea
PZ
10457 return -EINVAL;
10458
10459 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10460 return -EINVAL;
10461
10462 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10463 return -EINVAL;
10464
bce38cd5
SE
10465 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10466 u64 mask = attr->branch_sample_type;
10467
10468 /* only using defined bits */
10469 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10470 return -EINVAL;
10471
10472 /* at least one branch bit must be set */
10473 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10474 return -EINVAL;
10475
bce38cd5
SE
10476 /* propagate priv level, when not set for branch */
10477 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10478
10479 /* exclude_kernel checked on syscall entry */
10480 if (!attr->exclude_kernel)
10481 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10482
10483 if (!attr->exclude_user)
10484 mask |= PERF_SAMPLE_BRANCH_USER;
10485
10486 if (!attr->exclude_hv)
10487 mask |= PERF_SAMPLE_BRANCH_HV;
10488 /*
10489 * adjust user setting (for HW filter setup)
10490 */
10491 attr->branch_sample_type = mask;
10492 }
e712209a
SE
10493 /* privileged levels capture (kernel, hv): check permissions */
10494 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
10495 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10496 return -EACCES;
bce38cd5 10497 }
4018994f 10498
c5ebcedb 10499 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 10500 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
10501 if (ret)
10502 return ret;
10503 }
10504
10505 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10506 if (!arch_perf_have_user_stack_dump())
10507 return -ENOSYS;
10508
10509 /*
10510 * We have __u32 type for the size, but so far
10511 * we can only use __u16 as maximum due to the
10512 * __u16 sample size limit.
10513 */
10514 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 10515 return -EINVAL;
c5ebcedb 10516 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 10517 return -EINVAL;
c5ebcedb 10518 }
4018994f 10519
5f970521
JO
10520 if (!attr->sample_max_stack)
10521 attr->sample_max_stack = sysctl_perf_event_max_stack;
10522
60e2364e
SE
10523 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10524 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
10525out:
10526 return ret;
10527
10528err_size:
10529 put_user(sizeof(*attr), &uattr->size);
10530 ret = -E2BIG;
10531 goto out;
10532}
10533
ac9721f3
PZ
10534static int
10535perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 10536{
b69cf536 10537 struct ring_buffer *rb = NULL;
a4be7c27
PZ
10538 int ret = -EINVAL;
10539
ac9721f3 10540 if (!output_event)
a4be7c27
PZ
10541 goto set;
10542
ac9721f3
PZ
10543 /* don't allow circular references */
10544 if (event == output_event)
a4be7c27
PZ
10545 goto out;
10546
0f139300
PZ
10547 /*
10548 * Don't allow cross-cpu buffers
10549 */
10550 if (output_event->cpu != event->cpu)
10551 goto out;
10552
10553 /*
76369139 10554 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
10555 */
10556 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10557 goto out;
10558
34f43927
PZ
10559 /*
10560 * Mixing clocks in the same buffer is trouble you don't need.
10561 */
10562 if (output_event->clock != event->clock)
10563 goto out;
10564
9ecda41a
WN
10565 /*
10566 * Either writing ring buffer from beginning or from end.
10567 * Mixing is not allowed.
10568 */
10569 if (is_write_backward(output_event) != is_write_backward(event))
10570 goto out;
10571
45bfb2e5
PZ
10572 /*
10573 * If both events generate aux data, they must be on the same PMU
10574 */
10575 if (has_aux(event) && has_aux(output_event) &&
10576 event->pmu != output_event->pmu)
10577 goto out;
10578
a4be7c27 10579set:
cdd6c482 10580 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
10581 /* Can't redirect output if we've got an active mmap() */
10582 if (atomic_read(&event->mmap_count))
10583 goto unlock;
a4be7c27 10584
ac9721f3 10585 if (output_event) {
76369139
FW
10586 /* get the rb we want to redirect to */
10587 rb = ring_buffer_get(output_event);
10588 if (!rb)
ac9721f3 10589 goto unlock;
a4be7c27
PZ
10590 }
10591
b69cf536 10592 ring_buffer_attach(event, rb);
9bb5d40c 10593
a4be7c27 10594 ret = 0;
ac9721f3
PZ
10595unlock:
10596 mutex_unlock(&event->mmap_mutex);
10597
a4be7c27 10598out:
a4be7c27
PZ
10599 return ret;
10600}
10601
f63a8daa
PZ
10602static void mutex_lock_double(struct mutex *a, struct mutex *b)
10603{
10604 if (b < a)
10605 swap(a, b);
10606
10607 mutex_lock(a);
10608 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10609}
10610
34f43927
PZ
10611static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10612{
10613 bool nmi_safe = false;
10614
10615 switch (clk_id) {
10616 case CLOCK_MONOTONIC:
10617 event->clock = &ktime_get_mono_fast_ns;
10618 nmi_safe = true;
10619 break;
10620
10621 case CLOCK_MONOTONIC_RAW:
10622 event->clock = &ktime_get_raw_fast_ns;
10623 nmi_safe = true;
10624 break;
10625
10626 case CLOCK_REALTIME:
10627 event->clock = &ktime_get_real_ns;
10628 break;
10629
10630 case CLOCK_BOOTTIME:
10631 event->clock = &ktime_get_boot_ns;
10632 break;
10633
10634 case CLOCK_TAI:
10635 event->clock = &ktime_get_tai_ns;
10636 break;
10637
10638 default:
10639 return -EINVAL;
10640 }
10641
10642 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10643 return -EINVAL;
10644
10645 return 0;
10646}
10647
321027c1
PZ
10648/*
10649 * Variation on perf_event_ctx_lock_nested(), except we take two context
10650 * mutexes.
10651 */
10652static struct perf_event_context *
10653__perf_event_ctx_lock_double(struct perf_event *group_leader,
10654 struct perf_event_context *ctx)
10655{
10656 struct perf_event_context *gctx;
10657
10658again:
10659 rcu_read_lock();
10660 gctx = READ_ONCE(group_leader->ctx);
8c94abbb 10661 if (!refcount_inc_not_zero(&gctx->refcount)) {
321027c1
PZ
10662 rcu_read_unlock();
10663 goto again;
10664 }
10665 rcu_read_unlock();
10666
10667 mutex_lock_double(&gctx->mutex, &ctx->mutex);
10668
10669 if (group_leader->ctx != gctx) {
10670 mutex_unlock(&ctx->mutex);
10671 mutex_unlock(&gctx->mutex);
10672 put_ctx(gctx);
10673 goto again;
10674 }
10675
10676 return gctx;
10677}
10678
0793a61d 10679/**
cdd6c482 10680 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 10681 *
cdd6c482 10682 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 10683 * @pid: target pid
9f66a381 10684 * @cpu: target cpu
cdd6c482 10685 * @group_fd: group leader event fd
0793a61d 10686 */
cdd6c482
IM
10687SYSCALL_DEFINE5(perf_event_open,
10688 struct perf_event_attr __user *, attr_uptr,
2743a5b0 10689 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 10690{
b04243ef
PZ
10691 struct perf_event *group_leader = NULL, *output_event = NULL;
10692 struct perf_event *event, *sibling;
cdd6c482 10693 struct perf_event_attr attr;
f63a8daa 10694 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 10695 struct file *event_file = NULL;
2903ff01 10696 struct fd group = {NULL, 0};
38a81da2 10697 struct task_struct *task = NULL;
89a1e187 10698 struct pmu *pmu;
ea635c64 10699 int event_fd;
b04243ef 10700 int move_group = 0;
dc86cabe 10701 int err;
a21b0b35 10702 int f_flags = O_RDWR;
79dff51e 10703 int cgroup_fd = -1;
0793a61d 10704
2743a5b0 10705 /* for future expandability... */
e5d1367f 10706 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
10707 return -EINVAL;
10708
dc86cabe
IM
10709 err = perf_copy_attr(attr_uptr, &attr);
10710 if (err)
10711 return err;
eab656ae 10712
0764771d
PZ
10713 if (!attr.exclude_kernel) {
10714 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10715 return -EACCES;
10716 }
10717
e4222673
HB
10718 if (attr.namespaces) {
10719 if (!capable(CAP_SYS_ADMIN))
10720 return -EACCES;
10721 }
10722
df58ab24 10723 if (attr.freq) {
cdd6c482 10724 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 10725 return -EINVAL;
0819b2e3
PZ
10726 } else {
10727 if (attr.sample_period & (1ULL << 63))
10728 return -EINVAL;
df58ab24
PZ
10729 }
10730
fc7ce9c7
KL
10731 /* Only privileged users can get physical addresses */
10732 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10733 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10734 return -EACCES;
10735
e5d1367f
SE
10736 /*
10737 * In cgroup mode, the pid argument is used to pass the fd
10738 * opened to the cgroup directory in cgroupfs. The cpu argument
10739 * designates the cpu on which to monitor threads from that
10740 * cgroup.
10741 */
10742 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10743 return -EINVAL;
10744
a21b0b35
YD
10745 if (flags & PERF_FLAG_FD_CLOEXEC)
10746 f_flags |= O_CLOEXEC;
10747
10748 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
10749 if (event_fd < 0)
10750 return event_fd;
10751
ac9721f3 10752 if (group_fd != -1) {
2903ff01
AV
10753 err = perf_fget_light(group_fd, &group);
10754 if (err)
d14b12d7 10755 goto err_fd;
2903ff01 10756 group_leader = group.file->private_data;
ac9721f3
PZ
10757 if (flags & PERF_FLAG_FD_OUTPUT)
10758 output_event = group_leader;
10759 if (flags & PERF_FLAG_FD_NO_GROUP)
10760 group_leader = NULL;
10761 }
10762
e5d1367f 10763 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
10764 task = find_lively_task_by_vpid(pid);
10765 if (IS_ERR(task)) {
10766 err = PTR_ERR(task);
10767 goto err_group_fd;
10768 }
10769 }
10770
1f4ee503
PZ
10771 if (task && group_leader &&
10772 group_leader->attr.inherit != attr.inherit) {
10773 err = -EINVAL;
10774 goto err_task;
10775 }
10776
79c9ce57
PZ
10777 if (task) {
10778 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10779 if (err)
e5aeee51 10780 goto err_task;
79c9ce57
PZ
10781
10782 /*
10783 * Reuse ptrace permission checks for now.
10784 *
10785 * We must hold cred_guard_mutex across this and any potential
10786 * perf_install_in_context() call for this new event to
10787 * serialize against exec() altering our credentials (and the
10788 * perf_event_exit_task() that could imply).
10789 */
10790 err = -EACCES;
10791 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10792 goto err_cred;
10793 }
10794
79dff51e
MF
10795 if (flags & PERF_FLAG_PID_CGROUP)
10796 cgroup_fd = pid;
10797
4dc0da86 10798 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 10799 NULL, NULL, cgroup_fd);
d14b12d7
SE
10800 if (IS_ERR(event)) {
10801 err = PTR_ERR(event);
79c9ce57 10802 goto err_cred;
d14b12d7
SE
10803 }
10804
53b25335
VW
10805 if (is_sampling_event(event)) {
10806 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 10807 err = -EOPNOTSUPP;
53b25335
VW
10808 goto err_alloc;
10809 }
10810 }
10811
89a1e187
PZ
10812 /*
10813 * Special case software events and allow them to be part of
10814 * any hardware group.
10815 */
10816 pmu = event->pmu;
b04243ef 10817
34f43927
PZ
10818 if (attr.use_clockid) {
10819 err = perf_event_set_clock(event, attr.clockid);
10820 if (err)
10821 goto err_alloc;
10822 }
10823
4ff6a8de
DCC
10824 if (pmu->task_ctx_nr == perf_sw_context)
10825 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10826
a1150c20
SL
10827 if (group_leader) {
10828 if (is_software_event(event) &&
10829 !in_software_context(group_leader)) {
b04243ef 10830 /*
a1150c20
SL
10831 * If the event is a sw event, but the group_leader
10832 * is on hw context.
b04243ef 10833 *
a1150c20
SL
10834 * Allow the addition of software events to hw
10835 * groups, this is safe because software events
10836 * never fail to schedule.
b04243ef 10837 */
a1150c20
SL
10838 pmu = group_leader->ctx->pmu;
10839 } else if (!is_software_event(event) &&
10840 is_software_event(group_leader) &&
4ff6a8de 10841 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10842 /*
10843 * In case the group is a pure software group, and we
10844 * try to add a hardware event, move the whole group to
10845 * the hardware context.
10846 */
10847 move_group = 1;
10848 }
10849 }
89a1e187
PZ
10850
10851 /*
10852 * Get the target context (task or percpu):
10853 */
4af57ef2 10854 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10855 if (IS_ERR(ctx)) {
10856 err = PTR_ERR(ctx);
c6be5a5c 10857 goto err_alloc;
89a1e187
PZ
10858 }
10859
bed5b25a
AS
10860 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10861 err = -EBUSY;
10862 goto err_context;
10863 }
10864
ccff286d 10865 /*
cdd6c482 10866 * Look up the group leader (we will attach this event to it):
04289bb9 10867 */
ac9721f3 10868 if (group_leader) {
dc86cabe 10869 err = -EINVAL;
04289bb9 10870
04289bb9 10871 /*
ccff286d
IM
10872 * Do not allow a recursive hierarchy (this new sibling
10873 * becoming part of another group-sibling):
10874 */
10875 if (group_leader->group_leader != group_leader)
c3f00c70 10876 goto err_context;
34f43927
PZ
10877
10878 /* All events in a group should have the same clock */
10879 if (group_leader->clock != event->clock)
10880 goto err_context;
10881
ccff286d 10882 /*
64aee2a9
MR
10883 * Make sure we're both events for the same CPU;
10884 * grouping events for different CPUs is broken; since
10885 * you can never concurrently schedule them anyhow.
04289bb9 10886 */
64aee2a9
MR
10887 if (group_leader->cpu != event->cpu)
10888 goto err_context;
c3c87e77 10889
64aee2a9
MR
10890 /*
10891 * Make sure we're both on the same task, or both
10892 * per-CPU events.
10893 */
10894 if (group_leader->ctx->task != ctx->task)
10895 goto err_context;
10896
10897 /*
10898 * Do not allow to attach to a group in a different task
10899 * or CPU context. If we're moving SW events, we'll fix
10900 * this up later, so allow that.
10901 */
10902 if (!move_group && group_leader->ctx != ctx)
10903 goto err_context;
b04243ef 10904
3b6f9e5c
PM
10905 /*
10906 * Only a group leader can be exclusive or pinned
10907 */
0d48696f 10908 if (attr.exclusive || attr.pinned)
c3f00c70 10909 goto err_context;
ac9721f3
PZ
10910 }
10911
10912 if (output_event) {
10913 err = perf_event_set_output(event, output_event);
10914 if (err)
c3f00c70 10915 goto err_context;
ac9721f3 10916 }
0793a61d 10917
a21b0b35
YD
10918 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10919 f_flags);
ea635c64
AV
10920 if (IS_ERR(event_file)) {
10921 err = PTR_ERR(event_file);
201c2f85 10922 event_file = NULL;
c3f00c70 10923 goto err_context;
ea635c64 10924 }
9b51f66d 10925
b04243ef 10926 if (move_group) {
321027c1
PZ
10927 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10928
84c4e620
PZ
10929 if (gctx->task == TASK_TOMBSTONE) {
10930 err = -ESRCH;
10931 goto err_locked;
10932 }
321027c1
PZ
10933
10934 /*
10935 * Check if we raced against another sys_perf_event_open() call
10936 * moving the software group underneath us.
10937 */
10938 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10939 /*
10940 * If someone moved the group out from under us, check
10941 * if this new event wound up on the same ctx, if so
10942 * its the regular !move_group case, otherwise fail.
10943 */
10944 if (gctx != ctx) {
10945 err = -EINVAL;
10946 goto err_locked;
10947 } else {
10948 perf_event_ctx_unlock(group_leader, gctx);
10949 move_group = 0;
10950 }
10951 }
f55fc2a5
PZ
10952 } else {
10953 mutex_lock(&ctx->mutex);
10954 }
10955
84c4e620
PZ
10956 if (ctx->task == TASK_TOMBSTONE) {
10957 err = -ESRCH;
10958 goto err_locked;
10959 }
10960
a723968c
PZ
10961 if (!perf_event_validate_size(event)) {
10962 err = -E2BIG;
10963 goto err_locked;
10964 }
10965
a63fbed7
TG
10966 if (!task) {
10967 /*
10968 * Check if the @cpu we're creating an event for is online.
10969 *
10970 * We use the perf_cpu_context::ctx::mutex to serialize against
10971 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10972 */
10973 struct perf_cpu_context *cpuctx =
10974 container_of(ctx, struct perf_cpu_context, ctx);
10975
10976 if (!cpuctx->online) {
10977 err = -ENODEV;
10978 goto err_locked;
10979 }
10980 }
10981
10982
f55fc2a5
PZ
10983 /*
10984 * Must be under the same ctx::mutex as perf_install_in_context(),
10985 * because we need to serialize with concurrent event creation.
10986 */
10987 if (!exclusive_event_installable(event, ctx)) {
10988 /* exclusive and group stuff are assumed mutually exclusive */
10989 WARN_ON_ONCE(move_group);
f63a8daa 10990
f55fc2a5
PZ
10991 err = -EBUSY;
10992 goto err_locked;
10993 }
f63a8daa 10994
f55fc2a5
PZ
10995 WARN_ON_ONCE(ctx->parent_ctx);
10996
79c9ce57
PZ
10997 /*
10998 * This is the point on no return; we cannot fail hereafter. This is
10999 * where we start modifying current state.
11000 */
11001
f55fc2a5 11002 if (move_group) {
f63a8daa
PZ
11003 /*
11004 * See perf_event_ctx_lock() for comments on the details
11005 * of swizzling perf_event::ctx.
11006 */
45a0e07a 11007 perf_remove_from_context(group_leader, 0);
279b5165 11008 put_ctx(gctx);
0231bb53 11009
edb39592 11010 for_each_sibling_event(sibling, group_leader) {
45a0e07a 11011 perf_remove_from_context(sibling, 0);
b04243ef
PZ
11012 put_ctx(gctx);
11013 }
b04243ef 11014
f63a8daa
PZ
11015 /*
11016 * Wait for everybody to stop referencing the events through
11017 * the old lists, before installing it on new lists.
11018 */
0cda4c02 11019 synchronize_rcu();
f63a8daa 11020
8f95b435
PZI
11021 /*
11022 * Install the group siblings before the group leader.
11023 *
11024 * Because a group leader will try and install the entire group
11025 * (through the sibling list, which is still in-tact), we can
11026 * end up with siblings installed in the wrong context.
11027 *
11028 * By installing siblings first we NO-OP because they're not
11029 * reachable through the group lists.
11030 */
edb39592 11031 for_each_sibling_event(sibling, group_leader) {
8f95b435 11032 perf_event__state_init(sibling);
9fc81d87 11033 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
11034 get_ctx(ctx);
11035 }
8f95b435
PZI
11036
11037 /*
11038 * Removing from the context ends up with disabled
11039 * event. What we want here is event in the initial
11040 * startup state, ready to be add into new context.
11041 */
11042 perf_event__state_init(group_leader);
11043 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11044 get_ctx(ctx);
bed5b25a
AS
11045 }
11046
f73e22ab
PZ
11047 /*
11048 * Precalculate sample_data sizes; do while holding ctx::mutex such
11049 * that we're serialized against further additions and before
11050 * perf_install_in_context() which is the point the event is active and
11051 * can use these values.
11052 */
11053 perf_event__header_size(event);
11054 perf_event__id_header_size(event);
11055
78cd2c74
PZ
11056 event->owner = current;
11057
e2d37cd2 11058 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11059 perf_unpin_context(ctx);
f63a8daa 11060
f55fc2a5 11061 if (move_group)
321027c1 11062 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 11063 mutex_unlock(&ctx->mutex);
9b51f66d 11064
79c9ce57
PZ
11065 if (task) {
11066 mutex_unlock(&task->signal->cred_guard_mutex);
11067 put_task_struct(task);
11068 }
11069
cdd6c482
IM
11070 mutex_lock(&current->perf_event_mutex);
11071 list_add_tail(&event->owner_entry, &current->perf_event_list);
11072 mutex_unlock(&current->perf_event_mutex);
082ff5a2 11073
8a49542c
PZ
11074 /*
11075 * Drop the reference on the group_event after placing the
11076 * new event on the sibling_list. This ensures destruction
11077 * of the group leader will find the pointer to itself in
11078 * perf_group_detach().
11079 */
2903ff01 11080 fdput(group);
ea635c64
AV
11081 fd_install(event_fd, event_file);
11082 return event_fd;
0793a61d 11083
f55fc2a5
PZ
11084err_locked:
11085 if (move_group)
321027c1 11086 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
11087 mutex_unlock(&ctx->mutex);
11088/* err_file: */
11089 fput(event_file);
c3f00c70 11090err_context:
fe4b04fa 11091 perf_unpin_context(ctx);
ea635c64 11092 put_ctx(ctx);
c6be5a5c 11093err_alloc:
13005627
PZ
11094 /*
11095 * If event_file is set, the fput() above will have called ->release()
11096 * and that will take care of freeing the event.
11097 */
11098 if (!event_file)
11099 free_event(event);
79c9ce57
PZ
11100err_cred:
11101 if (task)
11102 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 11103err_task:
e7d0bc04
PZ
11104 if (task)
11105 put_task_struct(task);
89a1e187 11106err_group_fd:
2903ff01 11107 fdput(group);
ea635c64
AV
11108err_fd:
11109 put_unused_fd(event_fd);
dc86cabe 11110 return err;
0793a61d
TG
11111}
11112
fb0459d7
AV
11113/**
11114 * perf_event_create_kernel_counter
11115 *
11116 * @attr: attributes of the counter to create
11117 * @cpu: cpu in which the counter is bound
38a81da2 11118 * @task: task to profile (NULL for percpu)
fb0459d7
AV
11119 */
11120struct perf_event *
11121perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 11122 struct task_struct *task,
4dc0da86
AK
11123 perf_overflow_handler_t overflow_handler,
11124 void *context)
fb0459d7 11125{
fb0459d7 11126 struct perf_event_context *ctx;
c3f00c70 11127 struct perf_event *event;
fb0459d7 11128 int err;
d859e29f 11129
fb0459d7
AV
11130 /*
11131 * Get the target context (task or percpu):
11132 */
d859e29f 11133
4dc0da86 11134 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 11135 overflow_handler, context, -1);
c3f00c70
PZ
11136 if (IS_ERR(event)) {
11137 err = PTR_ERR(event);
11138 goto err;
11139 }
d859e29f 11140
f8697762 11141 /* Mark owner so we could distinguish it from user events. */
63b6da39 11142 event->owner = TASK_TOMBSTONE;
f8697762 11143
4af57ef2 11144 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
11145 if (IS_ERR(ctx)) {
11146 err = PTR_ERR(ctx);
c3f00c70 11147 goto err_free;
d859e29f 11148 }
fb0459d7 11149
fb0459d7
AV
11150 WARN_ON_ONCE(ctx->parent_ctx);
11151 mutex_lock(&ctx->mutex);
84c4e620
PZ
11152 if (ctx->task == TASK_TOMBSTONE) {
11153 err = -ESRCH;
11154 goto err_unlock;
11155 }
11156
a63fbed7
TG
11157 if (!task) {
11158 /*
11159 * Check if the @cpu we're creating an event for is online.
11160 *
11161 * We use the perf_cpu_context::ctx::mutex to serialize against
11162 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11163 */
11164 struct perf_cpu_context *cpuctx =
11165 container_of(ctx, struct perf_cpu_context, ctx);
11166 if (!cpuctx->online) {
11167 err = -ENODEV;
11168 goto err_unlock;
11169 }
11170 }
11171
bed5b25a 11172 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 11173 err = -EBUSY;
84c4e620 11174 goto err_unlock;
bed5b25a
AS
11175 }
11176
fb0459d7 11177 perf_install_in_context(ctx, event, cpu);
fe4b04fa 11178 perf_unpin_context(ctx);
fb0459d7
AV
11179 mutex_unlock(&ctx->mutex);
11180
fb0459d7
AV
11181 return event;
11182
84c4e620
PZ
11183err_unlock:
11184 mutex_unlock(&ctx->mutex);
11185 perf_unpin_context(ctx);
11186 put_ctx(ctx);
c3f00c70
PZ
11187err_free:
11188 free_event(event);
11189err:
c6567f64 11190 return ERR_PTR(err);
9b51f66d 11191}
fb0459d7 11192EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 11193
0cda4c02
YZ
11194void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11195{
11196 struct perf_event_context *src_ctx;
11197 struct perf_event_context *dst_ctx;
11198 struct perf_event *event, *tmp;
11199 LIST_HEAD(events);
11200
11201 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11202 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11203
f63a8daa
PZ
11204 /*
11205 * See perf_event_ctx_lock() for comments on the details
11206 * of swizzling perf_event::ctx.
11207 */
11208 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
11209 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11210 event_entry) {
45a0e07a 11211 perf_remove_from_context(event, 0);
9a545de0 11212 unaccount_event_cpu(event, src_cpu);
0cda4c02 11213 put_ctx(src_ctx);
9886167d 11214 list_add(&event->migrate_entry, &events);
0cda4c02 11215 }
0cda4c02 11216
8f95b435
PZI
11217 /*
11218 * Wait for the events to quiesce before re-instating them.
11219 */
0cda4c02
YZ
11220 synchronize_rcu();
11221
8f95b435
PZI
11222 /*
11223 * Re-instate events in 2 passes.
11224 *
11225 * Skip over group leaders and only install siblings on this first
11226 * pass, siblings will not get enabled without a leader, however a
11227 * leader will enable its siblings, even if those are still on the old
11228 * context.
11229 */
11230 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11231 if (event->group_leader == event)
11232 continue;
11233
11234 list_del(&event->migrate_entry);
11235 if (event->state >= PERF_EVENT_STATE_OFF)
11236 event->state = PERF_EVENT_STATE_INACTIVE;
11237 account_event_cpu(event, dst_cpu);
11238 perf_install_in_context(dst_ctx, event, dst_cpu);
11239 get_ctx(dst_ctx);
11240 }
11241
11242 /*
11243 * Once all the siblings are setup properly, install the group leaders
11244 * to make it go.
11245 */
9886167d
PZ
11246 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11247 list_del(&event->migrate_entry);
0cda4c02
YZ
11248 if (event->state >= PERF_EVENT_STATE_OFF)
11249 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 11250 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
11251 perf_install_in_context(dst_ctx, event, dst_cpu);
11252 get_ctx(dst_ctx);
11253 }
11254 mutex_unlock(&dst_ctx->mutex);
f63a8daa 11255 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
11256}
11257EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11258
cdd6c482 11259static void sync_child_event(struct perf_event *child_event,
38b200d6 11260 struct task_struct *child)
d859e29f 11261{
cdd6c482 11262 struct perf_event *parent_event = child_event->parent;
8bc20959 11263 u64 child_val;
d859e29f 11264
cdd6c482
IM
11265 if (child_event->attr.inherit_stat)
11266 perf_event_read_event(child_event, child);
38b200d6 11267
b5e58793 11268 child_val = perf_event_count(child_event);
d859e29f
PM
11269
11270 /*
11271 * Add back the child's count to the parent's count:
11272 */
a6e6dea6 11273 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
11274 atomic64_add(child_event->total_time_enabled,
11275 &parent_event->child_total_time_enabled);
11276 atomic64_add(child_event->total_time_running,
11277 &parent_event->child_total_time_running);
d859e29f
PM
11278}
11279
9b51f66d 11280static void
8ba289b8
PZ
11281perf_event_exit_event(struct perf_event *child_event,
11282 struct perf_event_context *child_ctx,
11283 struct task_struct *child)
9b51f66d 11284{
8ba289b8
PZ
11285 struct perf_event *parent_event = child_event->parent;
11286
1903d50c
PZ
11287 /*
11288 * Do not destroy the 'original' grouping; because of the context
11289 * switch optimization the original events could've ended up in a
11290 * random child task.
11291 *
11292 * If we were to destroy the original group, all group related
11293 * operations would cease to function properly after this random
11294 * child dies.
11295 *
11296 * Do destroy all inherited groups, we don't care about those
11297 * and being thorough is better.
11298 */
32132a3d
PZ
11299 raw_spin_lock_irq(&child_ctx->lock);
11300 WARN_ON_ONCE(child_ctx->is_active);
11301
8ba289b8 11302 if (parent_event)
32132a3d
PZ
11303 perf_group_detach(child_event);
11304 list_del_event(child_event, child_ctx);
0d3d73aa 11305 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 11306 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 11307
9b51f66d 11308 /*
8ba289b8 11309 * Parent events are governed by their filedesc, retain them.
9b51f66d 11310 */
8ba289b8 11311 if (!parent_event) {
179033b3 11312 perf_event_wakeup(child_event);
8ba289b8 11313 return;
4bcf349a 11314 }
8ba289b8
PZ
11315 /*
11316 * Child events can be cleaned up.
11317 */
11318
11319 sync_child_event(child_event, child);
11320
11321 /*
11322 * Remove this event from the parent's list
11323 */
11324 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11325 mutex_lock(&parent_event->child_mutex);
11326 list_del_init(&child_event->child_list);
11327 mutex_unlock(&parent_event->child_mutex);
11328
11329 /*
11330 * Kick perf_poll() for is_event_hup().
11331 */
11332 perf_event_wakeup(parent_event);
11333 free_event(child_event);
11334 put_event(parent_event);
9b51f66d
IM
11335}
11336
8dc85d54 11337static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 11338{
211de6eb 11339 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 11340 struct perf_event *child_event, *next;
63b6da39
PZ
11341
11342 WARN_ON_ONCE(child != current);
9b51f66d 11343
6a3351b6 11344 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 11345 if (!child_ctx)
9b51f66d
IM
11346 return;
11347
ad3a37de 11348 /*
6a3351b6
PZ
11349 * In order to reduce the amount of tricky in ctx tear-down, we hold
11350 * ctx::mutex over the entire thing. This serializes against almost
11351 * everything that wants to access the ctx.
11352 *
11353 * The exception is sys_perf_event_open() /
11354 * perf_event_create_kernel_count() which does find_get_context()
11355 * without ctx::mutex (it cannot because of the move_group double mutex
11356 * lock thing). See the comments in perf_install_in_context().
ad3a37de 11357 */
6a3351b6 11358 mutex_lock(&child_ctx->mutex);
c93f7669
PM
11359
11360 /*
6a3351b6
PZ
11361 * In a single ctx::lock section, de-schedule the events and detach the
11362 * context from the task such that we cannot ever get it scheduled back
11363 * in.
c93f7669 11364 */
6a3351b6 11365 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 11366 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 11367
71a851b4 11368 /*
63b6da39
PZ
11369 * Now that the context is inactive, destroy the task <-> ctx relation
11370 * and mark the context dead.
71a851b4 11371 */
63b6da39
PZ
11372 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11373 put_ctx(child_ctx); /* cannot be last */
11374 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11375 put_task_struct(current); /* cannot be last */
4a1c0f26 11376
211de6eb 11377 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 11378 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 11379
211de6eb
PZ
11380 if (clone_ctx)
11381 put_ctx(clone_ctx);
4a1c0f26 11382
9f498cc5 11383 /*
cdd6c482
IM
11384 * Report the task dead after unscheduling the events so that we
11385 * won't get any samples after PERF_RECORD_EXIT. We can however still
11386 * get a few PERF_RECORD_READ events.
9f498cc5 11387 */
cdd6c482 11388 perf_event_task(child, child_ctx, 0);
a63eaf34 11389
ebf905fc 11390 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 11391 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 11392
a63eaf34
PM
11393 mutex_unlock(&child_ctx->mutex);
11394
11395 put_ctx(child_ctx);
9b51f66d
IM
11396}
11397
8dc85d54
PZ
11398/*
11399 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
11400 *
11401 * Can be called with cred_guard_mutex held when called from
11402 * install_exec_creds().
8dc85d54
PZ
11403 */
11404void perf_event_exit_task(struct task_struct *child)
11405{
8882135b 11406 struct perf_event *event, *tmp;
8dc85d54
PZ
11407 int ctxn;
11408
8882135b
PZ
11409 mutex_lock(&child->perf_event_mutex);
11410 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11411 owner_entry) {
11412 list_del_init(&event->owner_entry);
11413
11414 /*
11415 * Ensure the list deletion is visible before we clear
11416 * the owner, closes a race against perf_release() where
11417 * we need to serialize on the owner->perf_event_mutex.
11418 */
f47c02c0 11419 smp_store_release(&event->owner, NULL);
8882135b
PZ
11420 }
11421 mutex_unlock(&child->perf_event_mutex);
11422
8dc85d54
PZ
11423 for_each_task_context_nr(ctxn)
11424 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
11425
11426 /*
11427 * The perf_event_exit_task_context calls perf_event_task
11428 * with child's task_ctx, which generates EXIT events for
11429 * child contexts and sets child->perf_event_ctxp[] to NULL.
11430 * At this point we need to send EXIT events to cpu contexts.
11431 */
11432 perf_event_task(child, NULL, 0);
8dc85d54
PZ
11433}
11434
889ff015
FW
11435static void perf_free_event(struct perf_event *event,
11436 struct perf_event_context *ctx)
11437{
11438 struct perf_event *parent = event->parent;
11439
11440 if (WARN_ON_ONCE(!parent))
11441 return;
11442
11443 mutex_lock(&parent->child_mutex);
11444 list_del_init(&event->child_list);
11445 mutex_unlock(&parent->child_mutex);
11446
a6fa941d 11447 put_event(parent);
889ff015 11448
652884fe 11449 raw_spin_lock_irq(&ctx->lock);
8a49542c 11450 perf_group_detach(event);
889ff015 11451 list_del_event(event, ctx);
652884fe 11452 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
11453 free_event(event);
11454}
11455
bbbee908 11456/*
652884fe 11457 * Free an unexposed, unused context as created by inheritance by
8dc85d54 11458 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
11459 *
11460 * Not all locks are strictly required, but take them anyway to be nice and
11461 * help out with the lockdep assertions.
bbbee908 11462 */
cdd6c482 11463void perf_event_free_task(struct task_struct *task)
bbbee908 11464{
8dc85d54 11465 struct perf_event_context *ctx;
cdd6c482 11466 struct perf_event *event, *tmp;
8dc85d54 11467 int ctxn;
bbbee908 11468
8dc85d54
PZ
11469 for_each_task_context_nr(ctxn) {
11470 ctx = task->perf_event_ctxp[ctxn];
11471 if (!ctx)
11472 continue;
bbbee908 11473
8dc85d54 11474 mutex_lock(&ctx->mutex);
e552a838
PZ
11475 raw_spin_lock_irq(&ctx->lock);
11476 /*
11477 * Destroy the task <-> ctx relation and mark the context dead.
11478 *
11479 * This is important because even though the task hasn't been
11480 * exposed yet the context has been (through child_list).
11481 */
11482 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11483 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11484 put_task_struct(task); /* cannot be last */
11485 raw_spin_unlock_irq(&ctx->lock);
bbbee908 11486
15121c78 11487 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 11488 perf_free_event(event, ctx);
bbbee908 11489
8dc85d54 11490 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
11491 put_ctx(ctx);
11492 }
889ff015
FW
11493}
11494
4e231c79
PZ
11495void perf_event_delayed_put(struct task_struct *task)
11496{
11497 int ctxn;
11498
11499 for_each_task_context_nr(ctxn)
11500 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11501}
11502
e03e7ee3 11503struct file *perf_event_get(unsigned int fd)
ffe8690c 11504{
e03e7ee3 11505 struct file *file;
ffe8690c 11506
e03e7ee3
AS
11507 file = fget_raw(fd);
11508 if (!file)
11509 return ERR_PTR(-EBADF);
ffe8690c 11510
e03e7ee3
AS
11511 if (file->f_op != &perf_fops) {
11512 fput(file);
11513 return ERR_PTR(-EBADF);
11514 }
ffe8690c 11515
e03e7ee3 11516 return file;
ffe8690c
KX
11517}
11518
f8d959a5
YS
11519const struct perf_event *perf_get_event(struct file *file)
11520{
11521 if (file->f_op != &perf_fops)
11522 return ERR_PTR(-EINVAL);
11523
11524 return file->private_data;
11525}
11526
ffe8690c
KX
11527const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11528{
11529 if (!event)
11530 return ERR_PTR(-EINVAL);
11531
11532 return &event->attr;
11533}
11534
97dee4f3 11535/*
788faab7 11536 * Inherit an event from parent task to child task.
d8a8cfc7
PZ
11537 *
11538 * Returns:
11539 * - valid pointer on success
11540 * - NULL for orphaned events
11541 * - IS_ERR() on error
97dee4f3
PZ
11542 */
11543static struct perf_event *
11544inherit_event(struct perf_event *parent_event,
11545 struct task_struct *parent,
11546 struct perf_event_context *parent_ctx,
11547 struct task_struct *child,
11548 struct perf_event *group_leader,
11549 struct perf_event_context *child_ctx)
11550{
8ca2bd41 11551 enum perf_event_state parent_state = parent_event->state;
97dee4f3 11552 struct perf_event *child_event;
cee010ec 11553 unsigned long flags;
97dee4f3
PZ
11554
11555 /*
11556 * Instead of creating recursive hierarchies of events,
11557 * we link inherited events back to the original parent,
11558 * which has a filp for sure, which we use as the reference
11559 * count:
11560 */
11561 if (parent_event->parent)
11562 parent_event = parent_event->parent;
11563
11564 child_event = perf_event_alloc(&parent_event->attr,
11565 parent_event->cpu,
d580ff86 11566 child,
97dee4f3 11567 group_leader, parent_event,
79dff51e 11568 NULL, NULL, -1);
97dee4f3
PZ
11569 if (IS_ERR(child_event))
11570 return child_event;
a6fa941d 11571
313ccb96
JO
11572
11573 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11574 !child_ctx->task_ctx_data) {
11575 struct pmu *pmu = child_event->pmu;
11576
11577 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11578 GFP_KERNEL);
11579 if (!child_ctx->task_ctx_data) {
11580 free_event(child_event);
11581 return NULL;
11582 }
11583 }
11584
c6e5b732
PZ
11585 /*
11586 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11587 * must be under the same lock in order to serialize against
11588 * perf_event_release_kernel(), such that either we must observe
11589 * is_orphaned_event() or they will observe us on the child_list.
11590 */
11591 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
11592 if (is_orphaned_event(parent_event) ||
11593 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 11594 mutex_unlock(&parent_event->child_mutex);
313ccb96 11595 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
11596 free_event(child_event);
11597 return NULL;
11598 }
11599
97dee4f3
PZ
11600 get_ctx(child_ctx);
11601
11602 /*
11603 * Make the child state follow the state of the parent event,
11604 * not its attr.disabled bit. We hold the parent's mutex,
11605 * so we won't race with perf_event_{en, dis}able_family.
11606 */
1929def9 11607 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
11608 child_event->state = PERF_EVENT_STATE_INACTIVE;
11609 else
11610 child_event->state = PERF_EVENT_STATE_OFF;
11611
11612 if (parent_event->attr.freq) {
11613 u64 sample_period = parent_event->hw.sample_period;
11614 struct hw_perf_event *hwc = &child_event->hw;
11615
11616 hwc->sample_period = sample_period;
11617 hwc->last_period = sample_period;
11618
11619 local64_set(&hwc->period_left, sample_period);
11620 }
11621
11622 child_event->ctx = child_ctx;
11623 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
11624 child_event->overflow_handler_context
11625 = parent_event->overflow_handler_context;
97dee4f3 11626
614b6780
TG
11627 /*
11628 * Precalculate sample_data sizes
11629 */
11630 perf_event__header_size(child_event);
6844c09d 11631 perf_event__id_header_size(child_event);
614b6780 11632
97dee4f3
PZ
11633 /*
11634 * Link it up in the child's context:
11635 */
cee010ec 11636 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 11637 add_event_to_ctx(child_event, child_ctx);
cee010ec 11638 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 11639
97dee4f3
PZ
11640 /*
11641 * Link this into the parent event's child list
11642 */
97dee4f3
PZ
11643 list_add_tail(&child_event->child_list, &parent_event->child_list);
11644 mutex_unlock(&parent_event->child_mutex);
11645
11646 return child_event;
11647}
11648
d8a8cfc7
PZ
11649/*
11650 * Inherits an event group.
11651 *
11652 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11653 * This matches with perf_event_release_kernel() removing all child events.
11654 *
11655 * Returns:
11656 * - 0 on success
11657 * - <0 on error
11658 */
97dee4f3
PZ
11659static int inherit_group(struct perf_event *parent_event,
11660 struct task_struct *parent,
11661 struct perf_event_context *parent_ctx,
11662 struct task_struct *child,
11663 struct perf_event_context *child_ctx)
11664{
11665 struct perf_event *leader;
11666 struct perf_event *sub;
11667 struct perf_event *child_ctr;
11668
11669 leader = inherit_event(parent_event, parent, parent_ctx,
11670 child, NULL, child_ctx);
11671 if (IS_ERR(leader))
11672 return PTR_ERR(leader);
d8a8cfc7
PZ
11673 /*
11674 * @leader can be NULL here because of is_orphaned_event(). In this
11675 * case inherit_event() will create individual events, similar to what
11676 * perf_group_detach() would do anyway.
11677 */
edb39592 11678 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
11679 child_ctr = inherit_event(sub, parent, parent_ctx,
11680 child, leader, child_ctx);
11681 if (IS_ERR(child_ctr))
11682 return PTR_ERR(child_ctr);
11683 }
11684 return 0;
889ff015
FW
11685}
11686
d8a8cfc7
PZ
11687/*
11688 * Creates the child task context and tries to inherit the event-group.
11689 *
11690 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11691 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11692 * consistent with perf_event_release_kernel() removing all child events.
11693 *
11694 * Returns:
11695 * - 0 on success
11696 * - <0 on error
11697 */
889ff015
FW
11698static int
11699inherit_task_group(struct perf_event *event, struct task_struct *parent,
11700 struct perf_event_context *parent_ctx,
8dc85d54 11701 struct task_struct *child, int ctxn,
889ff015
FW
11702 int *inherited_all)
11703{
11704 int ret;
8dc85d54 11705 struct perf_event_context *child_ctx;
889ff015
FW
11706
11707 if (!event->attr.inherit) {
11708 *inherited_all = 0;
11709 return 0;
bbbee908
PZ
11710 }
11711
fe4b04fa 11712 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
11713 if (!child_ctx) {
11714 /*
11715 * This is executed from the parent task context, so
11716 * inherit events that have been marked for cloning.
11717 * First allocate and initialize a context for the
11718 * child.
11719 */
734df5ab 11720 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
11721 if (!child_ctx)
11722 return -ENOMEM;
bbbee908 11723
8dc85d54 11724 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
11725 }
11726
11727 ret = inherit_group(event, parent, parent_ctx,
11728 child, child_ctx);
11729
11730 if (ret)
11731 *inherited_all = 0;
11732
11733 return ret;
bbbee908
PZ
11734}
11735
9b51f66d 11736/*
cdd6c482 11737 * Initialize the perf_event context in task_struct
9b51f66d 11738 */
985c8dcb 11739static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 11740{
889ff015 11741 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
11742 struct perf_event_context *cloned_ctx;
11743 struct perf_event *event;
9b51f66d 11744 struct task_struct *parent = current;
564c2b21 11745 int inherited_all = 1;
dddd3379 11746 unsigned long flags;
6ab423e0 11747 int ret = 0;
9b51f66d 11748
8dc85d54 11749 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
11750 return 0;
11751
ad3a37de 11752 /*
25346b93
PM
11753 * If the parent's context is a clone, pin it so it won't get
11754 * swapped under us.
ad3a37de 11755 */
8dc85d54 11756 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
11757 if (!parent_ctx)
11758 return 0;
25346b93 11759
ad3a37de
PM
11760 /*
11761 * No need to check if parent_ctx != NULL here; since we saw
11762 * it non-NULL earlier, the only reason for it to become NULL
11763 * is if we exit, and since we're currently in the middle of
11764 * a fork we can't be exiting at the same time.
11765 */
ad3a37de 11766
9b51f66d
IM
11767 /*
11768 * Lock the parent list. No need to lock the child - not PID
11769 * hashed yet and not running, so nobody can access it.
11770 */
d859e29f 11771 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
11772
11773 /*
11774 * We dont have to disable NMIs - we are only looking at
11775 * the list, not manipulating it:
11776 */
6e6804d2 11777 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54
PZ
11778 ret = inherit_task_group(event, parent, parent_ctx,
11779 child, ctxn, &inherited_all);
889ff015 11780 if (ret)
e7cc4865 11781 goto out_unlock;
889ff015 11782 }
b93f7978 11783
dddd3379
TG
11784 /*
11785 * We can't hold ctx->lock when iterating the ->flexible_group list due
11786 * to allocations, but we need to prevent rotation because
11787 * rotate_ctx() will change the list from interrupt context.
11788 */
11789 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11790 parent_ctx->rotate_disable = 1;
11791 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11792
6e6804d2 11793 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54
PZ
11794 ret = inherit_task_group(event, parent, parent_ctx,
11795 child, ctxn, &inherited_all);
889ff015 11796 if (ret)
e7cc4865 11797 goto out_unlock;
564c2b21
PM
11798 }
11799
dddd3379
TG
11800 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11801 parent_ctx->rotate_disable = 0;
dddd3379 11802
8dc85d54 11803 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 11804
05cbaa28 11805 if (child_ctx && inherited_all) {
564c2b21
PM
11806 /*
11807 * Mark the child context as a clone of the parent
11808 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
11809 *
11810 * Note that if the parent is a clone, the holding of
11811 * parent_ctx->lock avoids it from being uncloned.
564c2b21 11812 */
c5ed5145 11813 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
11814 if (cloned_ctx) {
11815 child_ctx->parent_ctx = cloned_ctx;
25346b93 11816 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
11817 } else {
11818 child_ctx->parent_ctx = parent_ctx;
11819 child_ctx->parent_gen = parent_ctx->generation;
11820 }
11821 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
11822 }
11823
c5ed5145 11824 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 11825out_unlock:
d859e29f 11826 mutex_unlock(&parent_ctx->mutex);
6ab423e0 11827
25346b93 11828 perf_unpin_context(parent_ctx);
fe4b04fa 11829 put_ctx(parent_ctx);
ad3a37de 11830
6ab423e0 11831 return ret;
9b51f66d
IM
11832}
11833
8dc85d54
PZ
11834/*
11835 * Initialize the perf_event context in task_struct
11836 */
11837int perf_event_init_task(struct task_struct *child)
11838{
11839 int ctxn, ret;
11840
8550d7cb
ON
11841 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11842 mutex_init(&child->perf_event_mutex);
11843 INIT_LIST_HEAD(&child->perf_event_list);
11844
8dc85d54
PZ
11845 for_each_task_context_nr(ctxn) {
11846 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
11847 if (ret) {
11848 perf_event_free_task(child);
8dc85d54 11849 return ret;
6c72e350 11850 }
8dc85d54
PZ
11851 }
11852
11853 return 0;
11854}
11855
220b140b
PM
11856static void __init perf_event_init_all_cpus(void)
11857{
b28ab83c 11858 struct swevent_htable *swhash;
220b140b 11859 int cpu;
220b140b 11860
a63fbed7
TG
11861 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11862
220b140b 11863 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11864 swhash = &per_cpu(swevent_htable, cpu);
11865 mutex_init(&swhash->hlist_mutex);
2fde4f94 11866 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11867
11868 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11869 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11870
058fe1c0
DCC
11871#ifdef CONFIG_CGROUP_PERF
11872 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11873#endif
e48c1788 11874 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11875 }
11876}
11877
a63fbed7 11878void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11879{
108b02cf 11880 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11881
b28ab83c 11882 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11883 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11884 struct swevent_hlist *hlist;
11885
b28ab83c
PZ
11886 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11887 WARN_ON(!hlist);
11888 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11889 }
b28ab83c 11890 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11891}
11892
2965faa5 11893#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11894static void __perf_event_exit_context(void *__info)
0793a61d 11895{
108b02cf 11896 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11897 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11898 struct perf_event *event;
0793a61d 11899
fae3fde6 11900 raw_spin_lock(&ctx->lock);
0ee098c9 11901 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 11902 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11903 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11904 raw_spin_unlock(&ctx->lock);
0793a61d 11905}
108b02cf
PZ
11906
11907static void perf_event_exit_cpu_context(int cpu)
11908{
a63fbed7 11909 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11910 struct perf_event_context *ctx;
11911 struct pmu *pmu;
108b02cf 11912
a63fbed7
TG
11913 mutex_lock(&pmus_lock);
11914 list_for_each_entry(pmu, &pmus, entry) {
11915 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11916 ctx = &cpuctx->ctx;
108b02cf
PZ
11917
11918 mutex_lock(&ctx->mutex);
11919 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11920 cpuctx->online = 0;
108b02cf
PZ
11921 mutex_unlock(&ctx->mutex);
11922 }
a63fbed7
TG
11923 cpumask_clear_cpu(cpu, perf_online_mask);
11924 mutex_unlock(&pmus_lock);
108b02cf 11925}
00e16c3d
TG
11926#else
11927
11928static void perf_event_exit_cpu_context(int cpu) { }
11929
11930#endif
108b02cf 11931
a63fbed7
TG
11932int perf_event_init_cpu(unsigned int cpu)
11933{
11934 struct perf_cpu_context *cpuctx;
11935 struct perf_event_context *ctx;
11936 struct pmu *pmu;
11937
11938 perf_swevent_init_cpu(cpu);
11939
11940 mutex_lock(&pmus_lock);
11941 cpumask_set_cpu(cpu, perf_online_mask);
11942 list_for_each_entry(pmu, &pmus, entry) {
11943 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11944 ctx = &cpuctx->ctx;
11945
11946 mutex_lock(&ctx->mutex);
11947 cpuctx->online = 1;
11948 mutex_unlock(&ctx->mutex);
11949 }
11950 mutex_unlock(&pmus_lock);
11951
11952 return 0;
11953}
11954
00e16c3d 11955int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11956{
e3703f8c 11957 perf_event_exit_cpu_context(cpu);
00e16c3d 11958 return 0;
0793a61d 11959}
0793a61d 11960
c277443c
PZ
11961static int
11962perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11963{
11964 int cpu;
11965
11966 for_each_online_cpu(cpu)
11967 perf_event_exit_cpu(cpu);
11968
11969 return NOTIFY_OK;
11970}
11971
11972/*
11973 * Run the perf reboot notifier at the very last possible moment so that
11974 * the generic watchdog code runs as long as possible.
11975 */
11976static struct notifier_block perf_reboot_notifier = {
11977 .notifier_call = perf_reboot,
11978 .priority = INT_MIN,
11979};
11980
cdd6c482 11981void __init perf_event_init(void)
0793a61d 11982{
3c502e7a
JW
11983 int ret;
11984
2e80a82a
PZ
11985 idr_init(&pmu_idr);
11986
220b140b 11987 perf_event_init_all_cpus();
b0a873eb 11988 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11989 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11990 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11991 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11992 perf_tp_register();
00e16c3d 11993 perf_event_init_cpu(smp_processor_id());
c277443c 11994 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11995
11996 ret = init_hw_breakpoint();
11997 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11998
b01c3a00
JO
11999 /*
12000 * Build time assertion that we keep the data_head at the intended
12001 * location. IOW, validation we got the __reserved[] size right.
12002 */
12003 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12004 != 1024);
0793a61d 12005}
abe43400 12006
fd979c01
CS
12007ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12008 char *page)
12009{
12010 struct perf_pmu_events_attr *pmu_attr =
12011 container_of(attr, struct perf_pmu_events_attr, attr);
12012
12013 if (pmu_attr->event_str)
12014 return sprintf(page, "%s\n", pmu_attr->event_str);
12015
12016 return 0;
12017}
675965b0 12018EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 12019
abe43400
PZ
12020static int __init perf_event_sysfs_init(void)
12021{
12022 struct pmu *pmu;
12023 int ret;
12024
12025 mutex_lock(&pmus_lock);
12026
12027 ret = bus_register(&pmu_bus);
12028 if (ret)
12029 goto unlock;
12030
12031 list_for_each_entry(pmu, &pmus, entry) {
12032 if (!pmu->name || pmu->type < 0)
12033 continue;
12034
12035 ret = pmu_dev_alloc(pmu);
12036 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12037 }
12038 pmu_bus_running = 1;
12039 ret = 0;
12040
12041unlock:
12042 mutex_unlock(&pmus_lock);
12043
12044 return ret;
12045}
12046device_initcall(perf_event_sysfs_init);
e5d1367f
SE
12047
12048#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
12049static struct cgroup_subsys_state *
12050perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
12051{
12052 struct perf_cgroup *jc;
e5d1367f 12053
1b15d055 12054 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
12055 if (!jc)
12056 return ERR_PTR(-ENOMEM);
12057
e5d1367f
SE
12058 jc->info = alloc_percpu(struct perf_cgroup_info);
12059 if (!jc->info) {
12060 kfree(jc);
12061 return ERR_PTR(-ENOMEM);
12062 }
12063
e5d1367f
SE
12064 return &jc->css;
12065}
12066
eb95419b 12067static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 12068{
eb95419b
TH
12069 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12070
e5d1367f
SE
12071 free_percpu(jc->info);
12072 kfree(jc);
12073}
12074
12075static int __perf_cgroup_move(void *info)
12076{
12077 struct task_struct *task = info;
ddaaf4e2 12078 rcu_read_lock();
e5d1367f 12079 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 12080 rcu_read_unlock();
e5d1367f
SE
12081 return 0;
12082}
12083
1f7dd3e5 12084static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 12085{
bb9d97b6 12086 struct task_struct *task;
1f7dd3e5 12087 struct cgroup_subsys_state *css;
bb9d97b6 12088
1f7dd3e5 12089 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 12090 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
12091}
12092
073219e9 12093struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
12094 .css_alloc = perf_cgroup_css_alloc,
12095 .css_free = perf_cgroup_css_free,
bb9d97b6 12096 .attach = perf_cgroup_attach,
968ebff1
TH
12097 /*
12098 * Implicitly enable on dfl hierarchy so that perf events can
12099 * always be filtered by cgroup2 path as long as perf_event
12100 * controller is not mounted on a legacy hierarchy.
12101 */
12102 .implicit_on_dfl = true,
8cfd8147 12103 .threaded = true,
e5d1367f
SE
12104};
12105#endif /* CONFIG_CGROUP_PERF */