]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/events/core.c
perf: Make perf_callchain function static
[mirror_ubuntu-hirsute-kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6 211
16444645 212 lockdep_assert_irqs_disabled();
fae3fde6 213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
16444645 309 lockdep_assert_irqs_disabled();
cca20946
PZ
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
9e630205
SE
433static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
0d3d73aa
PZ
585/*
586 * State based event timekeeping...
587 *
588 * The basic idea is to use event->state to determine which (if any) time
589 * fields to increment with the current delta. This means we only need to
590 * update timestamps when we change state or when they are explicitly requested
591 * (read).
592 *
593 * Event groups make things a little more complicated, but not terribly so. The
594 * rules for a group are that if the group leader is OFF the entire group is
595 * OFF, irrespecive of what the group member states are. This results in
596 * __perf_effective_state().
597 *
598 * A futher ramification is that when a group leader flips between OFF and
599 * !OFF, we need to update all group member times.
600 *
601 *
602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603 * need to make sure the relevant context time is updated before we try and
604 * update our timestamps.
605 */
606
607static __always_inline enum perf_event_state
608__perf_effective_state(struct perf_event *event)
609{
610 struct perf_event *leader = event->group_leader;
611
612 if (leader->state <= PERF_EVENT_STATE_OFF)
613 return leader->state;
614
615 return event->state;
616}
617
618static __always_inline void
619__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620{
621 enum perf_event_state state = __perf_effective_state(event);
622 u64 delta = now - event->tstamp;
623
624 *enabled = event->total_time_enabled;
625 if (state >= PERF_EVENT_STATE_INACTIVE)
626 *enabled += delta;
627
628 *running = event->total_time_running;
629 if (state >= PERF_EVENT_STATE_ACTIVE)
630 *running += delta;
631}
632
633static void perf_event_update_time(struct perf_event *event)
634{
635 u64 now = perf_event_time(event);
636
637 __perf_update_times(event, now, &event->total_time_enabled,
638 &event->total_time_running);
639 event->tstamp = now;
640}
641
642static void perf_event_update_sibling_time(struct perf_event *leader)
643{
644 struct perf_event *sibling;
645
646 list_for_each_entry(sibling, &leader->sibling_list, group_entry)
647 perf_event_update_time(sibling);
648}
649
650static void
651perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652{
653 if (event->state == state)
654 return;
655
656 perf_event_update_time(event);
657 /*
658 * If a group leader gets enabled/disabled all its siblings
659 * are affected too.
660 */
661 if ((event->state < 0) ^ (state < 0))
662 perf_event_update_sibling_time(event);
663
664 WRITE_ONCE(event->state, state);
665}
666
e5d1367f
SE
667#ifdef CONFIG_CGROUP_PERF
668
e5d1367f
SE
669static inline bool
670perf_cgroup_match(struct perf_event *event)
671{
672 struct perf_event_context *ctx = event->ctx;
673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
ef824fa1
TH
675 /* @event doesn't care about cgroup */
676 if (!event->cgrp)
677 return true;
678
679 /* wants specific cgroup scope but @cpuctx isn't associated with any */
680 if (!cpuctx->cgrp)
681 return false;
682
683 /*
684 * Cgroup scoping is recursive. An event enabled for a cgroup is
685 * also enabled for all its descendant cgroups. If @cpuctx's
686 * cgroup is a descendant of @event's (the test covers identity
687 * case), it's a match.
688 */
689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 event->cgrp->css.cgroup);
e5d1367f
SE
691}
692
e5d1367f
SE
693static inline void perf_detach_cgroup(struct perf_event *event)
694{
4e2ba650 695 css_put(&event->cgrp->css);
e5d1367f
SE
696 event->cgrp = NULL;
697}
698
699static inline int is_cgroup_event(struct perf_event *event)
700{
701 return event->cgrp != NULL;
702}
703
704static inline u64 perf_cgroup_event_time(struct perf_event *event)
705{
706 struct perf_cgroup_info *t;
707
708 t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 return t->time;
710}
711
712static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713{
714 struct perf_cgroup_info *info;
715 u64 now;
716
717 now = perf_clock();
718
719 info = this_cpu_ptr(cgrp->info);
720
721 info->time += now - info->timestamp;
722 info->timestamp = now;
723}
724
725static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726{
727 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728 if (cgrp_out)
729 __update_cgrp_time(cgrp_out);
730}
731
732static inline void update_cgrp_time_from_event(struct perf_event *event)
733{
3f7cce3c
SE
734 struct perf_cgroup *cgrp;
735
e5d1367f 736 /*
3f7cce3c
SE
737 * ensure we access cgroup data only when needed and
738 * when we know the cgroup is pinned (css_get)
e5d1367f 739 */
3f7cce3c 740 if (!is_cgroup_event(event))
e5d1367f
SE
741 return;
742
614e4c4e 743 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
744 /*
745 * Do not update time when cgroup is not active
746 */
e6a52033 747 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 748 __update_cgrp_time(event->cgrp);
e5d1367f
SE
749}
750
751static inline void
3f7cce3c
SE
752perf_cgroup_set_timestamp(struct task_struct *task,
753 struct perf_event_context *ctx)
e5d1367f
SE
754{
755 struct perf_cgroup *cgrp;
756 struct perf_cgroup_info *info;
757
3f7cce3c
SE
758 /*
759 * ctx->lock held by caller
760 * ensure we do not access cgroup data
761 * unless we have the cgroup pinned (css_get)
762 */
763 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
764 return;
765
614e4c4e 766 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 767 info = this_cpu_ptr(cgrp->info);
3f7cce3c 768 info->timestamp = ctx->timestamp;
e5d1367f
SE
769}
770
058fe1c0
DCC
771static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
772
e5d1367f
SE
773#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
774#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
775
776/*
777 * reschedule events based on the cgroup constraint of task.
778 *
779 * mode SWOUT : schedule out everything
780 * mode SWIN : schedule in based on cgroup for next
781 */
18ab2cd3 782static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
783{
784 struct perf_cpu_context *cpuctx;
058fe1c0 785 struct list_head *list;
e5d1367f
SE
786 unsigned long flags;
787
788 /*
058fe1c0
DCC
789 * Disable interrupts and preemption to avoid this CPU's
790 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
791 */
792 local_irq_save(flags);
793
058fe1c0
DCC
794 list = this_cpu_ptr(&cgrp_cpuctx_list);
795 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 797
058fe1c0
DCC
798 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 800
058fe1c0
DCC
801 if (mode & PERF_CGROUP_SWOUT) {
802 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
803 /*
804 * must not be done before ctxswout due
805 * to event_filter_match() in event_sched_out()
806 */
807 cpuctx->cgrp = NULL;
808 }
e5d1367f 809
058fe1c0
DCC
810 if (mode & PERF_CGROUP_SWIN) {
811 WARN_ON_ONCE(cpuctx->cgrp);
812 /*
813 * set cgrp before ctxsw in to allow
814 * event_filter_match() to not have to pass
815 * task around
816 * we pass the cpuctx->ctx to perf_cgroup_from_task()
817 * because cgorup events are only per-cpu
818 */
819 cpuctx->cgrp = perf_cgroup_from_task(task,
820 &cpuctx->ctx);
821 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 822 }
058fe1c0
DCC
823 perf_pmu_enable(cpuctx->ctx.pmu);
824 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
825 }
826
e5d1367f
SE
827 local_irq_restore(flags);
828}
829
a8d757ef
SE
830static inline void perf_cgroup_sched_out(struct task_struct *task,
831 struct task_struct *next)
e5d1367f 832{
a8d757ef
SE
833 struct perf_cgroup *cgrp1;
834 struct perf_cgroup *cgrp2 = NULL;
835
ddaaf4e2 836 rcu_read_lock();
a8d757ef
SE
837 /*
838 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
839 * we do not need to pass the ctx here because we know
840 * we are holding the rcu lock
a8d757ef 841 */
614e4c4e 842 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 843 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
844
845 /*
846 * only schedule out current cgroup events if we know
847 * that we are switching to a different cgroup. Otherwise,
848 * do no touch the cgroup events.
849 */
850 if (cgrp1 != cgrp2)
851 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
852
853 rcu_read_unlock();
e5d1367f
SE
854}
855
a8d757ef
SE
856static inline void perf_cgroup_sched_in(struct task_struct *prev,
857 struct task_struct *task)
e5d1367f 858{
a8d757ef
SE
859 struct perf_cgroup *cgrp1;
860 struct perf_cgroup *cgrp2 = NULL;
861
ddaaf4e2 862 rcu_read_lock();
a8d757ef
SE
863 /*
864 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
865 * we do not need to pass the ctx here because we know
866 * we are holding the rcu lock
a8d757ef 867 */
614e4c4e 868 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 869 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
870
871 /*
872 * only need to schedule in cgroup events if we are changing
873 * cgroup during ctxsw. Cgroup events were not scheduled
874 * out of ctxsw out if that was not the case.
875 */
876 if (cgrp1 != cgrp2)
877 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
878
879 rcu_read_unlock();
e5d1367f
SE
880}
881
882static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883 struct perf_event_attr *attr,
884 struct perf_event *group_leader)
885{
886 struct perf_cgroup *cgrp;
887 struct cgroup_subsys_state *css;
2903ff01
AV
888 struct fd f = fdget(fd);
889 int ret = 0;
e5d1367f 890
2903ff01 891 if (!f.file)
e5d1367f
SE
892 return -EBADF;
893
b583043e 894 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 895 &perf_event_cgrp_subsys);
3db272c0
LZ
896 if (IS_ERR(css)) {
897 ret = PTR_ERR(css);
898 goto out;
899 }
e5d1367f
SE
900
901 cgrp = container_of(css, struct perf_cgroup, css);
902 event->cgrp = cgrp;
903
904 /*
905 * all events in a group must monitor
906 * the same cgroup because a task belongs
907 * to only one perf cgroup at a time
908 */
909 if (group_leader && group_leader->cgrp != cgrp) {
910 perf_detach_cgroup(event);
911 ret = -EINVAL;
e5d1367f 912 }
3db272c0 913out:
2903ff01 914 fdput(f);
e5d1367f
SE
915 return ret;
916}
917
918static inline void
919perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
920{
921 struct perf_cgroup_info *t;
922 t = per_cpu_ptr(event->cgrp->info, event->cpu);
923 event->shadow_ctx_time = now - t->timestamp;
924}
925
db4a8356
DCC
926/*
927 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928 * cleared when last cgroup event is removed.
929 */
930static inline void
931list_update_cgroup_event(struct perf_event *event,
932 struct perf_event_context *ctx, bool add)
933{
934 struct perf_cpu_context *cpuctx;
058fe1c0 935 struct list_head *cpuctx_entry;
db4a8356
DCC
936
937 if (!is_cgroup_event(event))
938 return;
939
940 if (add && ctx->nr_cgroups++)
941 return;
942 else if (!add && --ctx->nr_cgroups)
943 return;
944 /*
945 * Because cgroup events are always per-cpu events,
946 * this will always be called from the right CPU.
947 */
948 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
949 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
950 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
951 if (add) {
be96b316
TH
952 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
953
058fe1c0 954 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
be96b316
TH
955 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956 cpuctx->cgrp = cgrp;
058fe1c0
DCC
957 } else {
958 list_del(cpuctx_entry);
8fc31ce8 959 cpuctx->cgrp = NULL;
058fe1c0 960 }
db4a8356
DCC
961}
962
e5d1367f
SE
963#else /* !CONFIG_CGROUP_PERF */
964
965static inline bool
966perf_cgroup_match(struct perf_event *event)
967{
968 return true;
969}
970
971static inline void perf_detach_cgroup(struct perf_event *event)
972{}
973
974static inline int is_cgroup_event(struct perf_event *event)
975{
976 return 0;
977}
978
e5d1367f
SE
979static inline void update_cgrp_time_from_event(struct perf_event *event)
980{
981}
982
983static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
984{
985}
986
a8d757ef
SE
987static inline void perf_cgroup_sched_out(struct task_struct *task,
988 struct task_struct *next)
e5d1367f
SE
989{
990}
991
a8d757ef
SE
992static inline void perf_cgroup_sched_in(struct task_struct *prev,
993 struct task_struct *task)
e5d1367f
SE
994{
995}
996
997static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
998 struct perf_event_attr *attr,
999 struct perf_event *group_leader)
1000{
1001 return -EINVAL;
1002}
1003
1004static inline void
3f7cce3c
SE
1005perf_cgroup_set_timestamp(struct task_struct *task,
1006 struct perf_event_context *ctx)
e5d1367f
SE
1007{
1008}
1009
1010void
1011perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1012{
1013}
1014
1015static inline void
1016perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1017{
1018}
1019
1020static inline u64 perf_cgroup_event_time(struct perf_event *event)
1021{
1022 return 0;
1023}
1024
db4a8356
DCC
1025static inline void
1026list_update_cgroup_event(struct perf_event *event,
1027 struct perf_event_context *ctx, bool add)
1028{
1029}
1030
e5d1367f
SE
1031#endif
1032
9e630205
SE
1033/*
1034 * set default to be dependent on timer tick just
1035 * like original code
1036 */
1037#define PERF_CPU_HRTIMER (1000 / HZ)
1038/*
8a1115ff 1039 * function must be called with interrupts disabled
9e630205 1040 */
272325c4 1041static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1042{
1043 struct perf_cpu_context *cpuctx;
9e630205
SE
1044 int rotations = 0;
1045
16444645 1046 lockdep_assert_irqs_disabled();
9e630205
SE
1047
1048 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1049 rotations = perf_rotate_context(cpuctx);
1050
4cfafd30
PZ
1051 raw_spin_lock(&cpuctx->hrtimer_lock);
1052 if (rotations)
9e630205 1053 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1054 else
1055 cpuctx->hrtimer_active = 0;
1056 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1057
4cfafd30 1058 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1059}
1060
272325c4 1061static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1062{
272325c4 1063 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1064 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1065 u64 interval;
9e630205
SE
1066
1067 /* no multiplexing needed for SW PMU */
1068 if (pmu->task_ctx_nr == perf_sw_context)
1069 return;
1070
62b85639
SE
1071 /*
1072 * check default is sane, if not set then force to
1073 * default interval (1/tick)
1074 */
272325c4
PZ
1075 interval = pmu->hrtimer_interval_ms;
1076 if (interval < 1)
1077 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1078
272325c4 1079 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1080
4cfafd30
PZ
1081 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1082 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1083 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1084}
1085
272325c4 1086static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1087{
272325c4 1088 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1089 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1090 unsigned long flags;
9e630205
SE
1091
1092 /* not for SW PMU */
1093 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1094 return 0;
9e630205 1095
4cfafd30
PZ
1096 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1097 if (!cpuctx->hrtimer_active) {
1098 cpuctx->hrtimer_active = 1;
1099 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1100 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1101 }
1102 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1103
272325c4 1104 return 0;
9e630205
SE
1105}
1106
33696fc0 1107void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1108{
33696fc0
PZ
1109 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1110 if (!(*count)++)
1111 pmu->pmu_disable(pmu);
9e35ad38 1112}
9e35ad38 1113
33696fc0 1114void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1115{
33696fc0
PZ
1116 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1117 if (!--(*count))
1118 pmu->pmu_enable(pmu);
9e35ad38 1119}
9e35ad38 1120
2fde4f94 1121static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1122
1123/*
2fde4f94
MR
1124 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1125 * perf_event_task_tick() are fully serialized because they're strictly cpu
1126 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1127 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1128 */
2fde4f94 1129static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1130{
2fde4f94 1131 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1132
16444645 1133 lockdep_assert_irqs_disabled();
b5ab4cd5 1134
2fde4f94
MR
1135 WARN_ON(!list_empty(&ctx->active_ctx_list));
1136
1137 list_add(&ctx->active_ctx_list, head);
1138}
1139
1140static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1141{
16444645 1142 lockdep_assert_irqs_disabled();
2fde4f94
MR
1143
1144 WARN_ON(list_empty(&ctx->active_ctx_list));
1145
1146 list_del_init(&ctx->active_ctx_list);
9e35ad38 1147}
9e35ad38 1148
cdd6c482 1149static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1150{
e5289d4a 1151 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1152}
1153
4af57ef2
YZ
1154static void free_ctx(struct rcu_head *head)
1155{
1156 struct perf_event_context *ctx;
1157
1158 ctx = container_of(head, struct perf_event_context, rcu_head);
1159 kfree(ctx->task_ctx_data);
1160 kfree(ctx);
1161}
1162
cdd6c482 1163static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1164{
564c2b21
PM
1165 if (atomic_dec_and_test(&ctx->refcount)) {
1166 if (ctx->parent_ctx)
1167 put_ctx(ctx->parent_ctx);
63b6da39 1168 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1169 put_task_struct(ctx->task);
4af57ef2 1170 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1171 }
a63eaf34
PM
1172}
1173
f63a8daa
PZ
1174/*
1175 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1176 * perf_pmu_migrate_context() we need some magic.
1177 *
1178 * Those places that change perf_event::ctx will hold both
1179 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1180 *
8b10c5e2
PZ
1181 * Lock ordering is by mutex address. There are two other sites where
1182 * perf_event_context::mutex nests and those are:
1183 *
1184 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1185 * perf_event_exit_event()
1186 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1187 *
1188 * - perf_event_init_context() [ parent, 0 ]
1189 * inherit_task_group()
1190 * inherit_group()
1191 * inherit_event()
1192 * perf_event_alloc()
1193 * perf_init_event()
1194 * perf_try_init_event() [ child , 1 ]
1195 *
1196 * While it appears there is an obvious deadlock here -- the parent and child
1197 * nesting levels are inverted between the two. This is in fact safe because
1198 * life-time rules separate them. That is an exiting task cannot fork, and a
1199 * spawning task cannot (yet) exit.
1200 *
1201 * But remember that that these are parent<->child context relations, and
1202 * migration does not affect children, therefore these two orderings should not
1203 * interact.
f63a8daa
PZ
1204 *
1205 * The change in perf_event::ctx does not affect children (as claimed above)
1206 * because the sys_perf_event_open() case will install a new event and break
1207 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1208 * concerned with cpuctx and that doesn't have children.
1209 *
1210 * The places that change perf_event::ctx will issue:
1211 *
1212 * perf_remove_from_context();
1213 * synchronize_rcu();
1214 * perf_install_in_context();
1215 *
1216 * to affect the change. The remove_from_context() + synchronize_rcu() should
1217 * quiesce the event, after which we can install it in the new location. This
1218 * means that only external vectors (perf_fops, prctl) can perturb the event
1219 * while in transit. Therefore all such accessors should also acquire
1220 * perf_event_context::mutex to serialize against this.
1221 *
1222 * However; because event->ctx can change while we're waiting to acquire
1223 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1224 * function.
1225 *
1226 * Lock order:
79c9ce57 1227 * cred_guard_mutex
f63a8daa
PZ
1228 * task_struct::perf_event_mutex
1229 * perf_event_context::mutex
f63a8daa 1230 * perf_event::child_mutex;
07c4a776 1231 * perf_event_context::lock
f63a8daa
PZ
1232 * perf_event::mmap_mutex
1233 * mmap_sem
1234 */
a83fe28e
PZ
1235static struct perf_event_context *
1236perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1237{
1238 struct perf_event_context *ctx;
1239
1240again:
1241 rcu_read_lock();
6aa7de05 1242 ctx = READ_ONCE(event->ctx);
f63a8daa
PZ
1243 if (!atomic_inc_not_zero(&ctx->refcount)) {
1244 rcu_read_unlock();
1245 goto again;
1246 }
1247 rcu_read_unlock();
1248
a83fe28e 1249 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1250 if (event->ctx != ctx) {
1251 mutex_unlock(&ctx->mutex);
1252 put_ctx(ctx);
1253 goto again;
1254 }
1255
1256 return ctx;
1257}
1258
a83fe28e
PZ
1259static inline struct perf_event_context *
1260perf_event_ctx_lock(struct perf_event *event)
1261{
1262 return perf_event_ctx_lock_nested(event, 0);
1263}
1264
f63a8daa
PZ
1265static void perf_event_ctx_unlock(struct perf_event *event,
1266 struct perf_event_context *ctx)
1267{
1268 mutex_unlock(&ctx->mutex);
1269 put_ctx(ctx);
1270}
1271
211de6eb
PZ
1272/*
1273 * This must be done under the ctx->lock, such as to serialize against
1274 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1275 * calling scheduler related locks and ctx->lock nests inside those.
1276 */
1277static __must_check struct perf_event_context *
1278unclone_ctx(struct perf_event_context *ctx)
71a851b4 1279{
211de6eb
PZ
1280 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1281
1282 lockdep_assert_held(&ctx->lock);
1283
1284 if (parent_ctx)
71a851b4 1285 ctx->parent_ctx = NULL;
5a3126d4 1286 ctx->generation++;
211de6eb
PZ
1287
1288 return parent_ctx;
71a851b4
PZ
1289}
1290
1d953111
ON
1291static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1292 enum pid_type type)
6844c09d 1293{
1d953111 1294 u32 nr;
6844c09d
ACM
1295 /*
1296 * only top level events have the pid namespace they were created in
1297 */
1298 if (event->parent)
1299 event = event->parent;
1300
1d953111
ON
1301 nr = __task_pid_nr_ns(p, type, event->ns);
1302 /* avoid -1 if it is idle thread or runs in another ns */
1303 if (!nr && !pid_alive(p))
1304 nr = -1;
1305 return nr;
6844c09d
ACM
1306}
1307
1d953111 1308static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1309{
1d953111
ON
1310 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1311}
6844c09d 1312
1d953111
ON
1313static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1314{
1315 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1316}
1317
7f453c24 1318/*
cdd6c482 1319 * If we inherit events we want to return the parent event id
7f453c24
PZ
1320 * to userspace.
1321 */
cdd6c482 1322static u64 primary_event_id(struct perf_event *event)
7f453c24 1323{
cdd6c482 1324 u64 id = event->id;
7f453c24 1325
cdd6c482
IM
1326 if (event->parent)
1327 id = event->parent->id;
7f453c24
PZ
1328
1329 return id;
1330}
1331
25346b93 1332/*
cdd6c482 1333 * Get the perf_event_context for a task and lock it.
63b6da39 1334 *
25346b93
PM
1335 * This has to cope with with the fact that until it is locked,
1336 * the context could get moved to another task.
1337 */
cdd6c482 1338static struct perf_event_context *
8dc85d54 1339perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1340{
cdd6c482 1341 struct perf_event_context *ctx;
25346b93 1342
9ed6060d 1343retry:
058ebd0e
PZ
1344 /*
1345 * One of the few rules of preemptible RCU is that one cannot do
1346 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1347 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1348 * rcu_read_unlock_special().
1349 *
1350 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1351 * side critical section has interrupts disabled.
058ebd0e 1352 */
2fd59077 1353 local_irq_save(*flags);
058ebd0e 1354 rcu_read_lock();
8dc85d54 1355 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1356 if (ctx) {
1357 /*
1358 * If this context is a clone of another, it might
1359 * get swapped for another underneath us by
cdd6c482 1360 * perf_event_task_sched_out, though the
25346b93
PM
1361 * rcu_read_lock() protects us from any context
1362 * getting freed. Lock the context and check if it
1363 * got swapped before we could get the lock, and retry
1364 * if so. If we locked the right context, then it
1365 * can't get swapped on us any more.
1366 */
2fd59077 1367 raw_spin_lock(&ctx->lock);
8dc85d54 1368 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1369 raw_spin_unlock(&ctx->lock);
058ebd0e 1370 rcu_read_unlock();
2fd59077 1371 local_irq_restore(*flags);
25346b93
PM
1372 goto retry;
1373 }
b49a9e7e 1374
63b6da39
PZ
1375 if (ctx->task == TASK_TOMBSTONE ||
1376 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1377 raw_spin_unlock(&ctx->lock);
b49a9e7e 1378 ctx = NULL;
828b6f0e
PZ
1379 } else {
1380 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1381 }
25346b93
PM
1382 }
1383 rcu_read_unlock();
2fd59077
PM
1384 if (!ctx)
1385 local_irq_restore(*flags);
25346b93
PM
1386 return ctx;
1387}
1388
1389/*
1390 * Get the context for a task and increment its pin_count so it
1391 * can't get swapped to another task. This also increments its
1392 * reference count so that the context can't get freed.
1393 */
8dc85d54
PZ
1394static struct perf_event_context *
1395perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1396{
cdd6c482 1397 struct perf_event_context *ctx;
25346b93
PM
1398 unsigned long flags;
1399
8dc85d54 1400 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1401 if (ctx) {
1402 ++ctx->pin_count;
e625cce1 1403 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1404 }
1405 return ctx;
1406}
1407
cdd6c482 1408static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1409{
1410 unsigned long flags;
1411
e625cce1 1412 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1413 --ctx->pin_count;
e625cce1 1414 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1415}
1416
f67218c3
PZ
1417/*
1418 * Update the record of the current time in a context.
1419 */
1420static void update_context_time(struct perf_event_context *ctx)
1421{
1422 u64 now = perf_clock();
1423
1424 ctx->time += now - ctx->timestamp;
1425 ctx->timestamp = now;
1426}
1427
4158755d
SE
1428static u64 perf_event_time(struct perf_event *event)
1429{
1430 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1431
1432 if (is_cgroup_event(event))
1433 return perf_cgroup_event_time(event);
1434
4158755d
SE
1435 return ctx ? ctx->time : 0;
1436}
1437
487f05e1
AS
1438static enum event_type_t get_event_type(struct perf_event *event)
1439{
1440 struct perf_event_context *ctx = event->ctx;
1441 enum event_type_t event_type;
1442
1443 lockdep_assert_held(&ctx->lock);
1444
3bda69c1
AS
1445 /*
1446 * It's 'group type', really, because if our group leader is
1447 * pinned, so are we.
1448 */
1449 if (event->group_leader != event)
1450 event = event->group_leader;
1451
487f05e1
AS
1452 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1453 if (!ctx->task)
1454 event_type |= EVENT_CPU;
1455
1456 return event_type;
1457}
1458
889ff015
FW
1459static struct list_head *
1460ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1461{
1462 if (event->attr.pinned)
1463 return &ctx->pinned_groups;
1464 else
1465 return &ctx->flexible_groups;
1466}
1467
fccc714b 1468/*
cdd6c482 1469 * Add a event from the lists for its context.
fccc714b
PZ
1470 * Must be called with ctx->mutex and ctx->lock held.
1471 */
04289bb9 1472static void
cdd6c482 1473list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1474{
c994d613
PZ
1475 lockdep_assert_held(&ctx->lock);
1476
8a49542c
PZ
1477 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1478 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1479
0d3d73aa
PZ
1480 event->tstamp = perf_event_time(event);
1481
04289bb9 1482 /*
8a49542c
PZ
1483 * If we're a stand alone event or group leader, we go to the context
1484 * list, group events are kept attached to the group so that
1485 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1486 */
8a49542c 1487 if (event->group_leader == event) {
889ff015
FW
1488 struct list_head *list;
1489
4ff6a8de 1490 event->group_caps = event->event_caps;
d6f962b5 1491
889ff015
FW
1492 list = ctx_group_list(event, ctx);
1493 list_add_tail(&event->group_entry, list);
5c148194 1494 }
592903cd 1495
db4a8356 1496 list_update_cgroup_event(event, ctx, true);
e5d1367f 1497
cdd6c482
IM
1498 list_add_rcu(&event->event_entry, &ctx->event_list);
1499 ctx->nr_events++;
1500 if (event->attr.inherit_stat)
bfbd3381 1501 ctx->nr_stat++;
5a3126d4
PZ
1502
1503 ctx->generation++;
04289bb9
IM
1504}
1505
0231bb53
JO
1506/*
1507 * Initialize event state based on the perf_event_attr::disabled.
1508 */
1509static inline void perf_event__state_init(struct perf_event *event)
1510{
1511 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1512 PERF_EVENT_STATE_INACTIVE;
1513}
1514
a723968c 1515static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1516{
1517 int entry = sizeof(u64); /* value */
1518 int size = 0;
1519 int nr = 1;
1520
1521 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1522 size += sizeof(u64);
1523
1524 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1525 size += sizeof(u64);
1526
1527 if (event->attr.read_format & PERF_FORMAT_ID)
1528 entry += sizeof(u64);
1529
1530 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1531 nr += nr_siblings;
c320c7b7
ACM
1532 size += sizeof(u64);
1533 }
1534
1535 size += entry * nr;
1536 event->read_size = size;
1537}
1538
a723968c 1539static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1540{
1541 struct perf_sample_data *data;
c320c7b7
ACM
1542 u16 size = 0;
1543
c320c7b7
ACM
1544 if (sample_type & PERF_SAMPLE_IP)
1545 size += sizeof(data->ip);
1546
6844c09d
ACM
1547 if (sample_type & PERF_SAMPLE_ADDR)
1548 size += sizeof(data->addr);
1549
1550 if (sample_type & PERF_SAMPLE_PERIOD)
1551 size += sizeof(data->period);
1552
c3feedf2
AK
1553 if (sample_type & PERF_SAMPLE_WEIGHT)
1554 size += sizeof(data->weight);
1555
6844c09d
ACM
1556 if (sample_type & PERF_SAMPLE_READ)
1557 size += event->read_size;
1558
d6be9ad6
SE
1559 if (sample_type & PERF_SAMPLE_DATA_SRC)
1560 size += sizeof(data->data_src.val);
1561
fdfbbd07
AK
1562 if (sample_type & PERF_SAMPLE_TRANSACTION)
1563 size += sizeof(data->txn);
1564
fc7ce9c7
KL
1565 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1566 size += sizeof(data->phys_addr);
1567
6844c09d
ACM
1568 event->header_size = size;
1569}
1570
a723968c
PZ
1571/*
1572 * Called at perf_event creation and when events are attached/detached from a
1573 * group.
1574 */
1575static void perf_event__header_size(struct perf_event *event)
1576{
1577 __perf_event_read_size(event,
1578 event->group_leader->nr_siblings);
1579 __perf_event_header_size(event, event->attr.sample_type);
1580}
1581
6844c09d
ACM
1582static void perf_event__id_header_size(struct perf_event *event)
1583{
1584 struct perf_sample_data *data;
1585 u64 sample_type = event->attr.sample_type;
1586 u16 size = 0;
1587
c320c7b7
ACM
1588 if (sample_type & PERF_SAMPLE_TID)
1589 size += sizeof(data->tid_entry);
1590
1591 if (sample_type & PERF_SAMPLE_TIME)
1592 size += sizeof(data->time);
1593
ff3d527c
AH
1594 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1595 size += sizeof(data->id);
1596
c320c7b7
ACM
1597 if (sample_type & PERF_SAMPLE_ID)
1598 size += sizeof(data->id);
1599
1600 if (sample_type & PERF_SAMPLE_STREAM_ID)
1601 size += sizeof(data->stream_id);
1602
1603 if (sample_type & PERF_SAMPLE_CPU)
1604 size += sizeof(data->cpu_entry);
1605
6844c09d 1606 event->id_header_size = size;
c320c7b7
ACM
1607}
1608
a723968c
PZ
1609static bool perf_event_validate_size(struct perf_event *event)
1610{
1611 /*
1612 * The values computed here will be over-written when we actually
1613 * attach the event.
1614 */
1615 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1616 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1617 perf_event__id_header_size(event);
1618
1619 /*
1620 * Sum the lot; should not exceed the 64k limit we have on records.
1621 * Conservative limit to allow for callchains and other variable fields.
1622 */
1623 if (event->read_size + event->header_size +
1624 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1625 return false;
1626
1627 return true;
1628}
1629
8a49542c
PZ
1630static void perf_group_attach(struct perf_event *event)
1631{
c320c7b7 1632 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1633
a76a82a3
PZ
1634 lockdep_assert_held(&event->ctx->lock);
1635
74c3337c
PZ
1636 /*
1637 * We can have double attach due to group movement in perf_event_open.
1638 */
1639 if (event->attach_state & PERF_ATTACH_GROUP)
1640 return;
1641
8a49542c
PZ
1642 event->attach_state |= PERF_ATTACH_GROUP;
1643
1644 if (group_leader == event)
1645 return;
1646
652884fe
PZ
1647 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1648
4ff6a8de 1649 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1650
1651 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1652 group_leader->nr_siblings++;
c320c7b7
ACM
1653
1654 perf_event__header_size(group_leader);
1655
1656 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1657 perf_event__header_size(pos);
8a49542c
PZ
1658}
1659
a63eaf34 1660/*
cdd6c482 1661 * Remove a event from the lists for its context.
fccc714b 1662 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1663 */
04289bb9 1664static void
cdd6c482 1665list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1666{
652884fe
PZ
1667 WARN_ON_ONCE(event->ctx != ctx);
1668 lockdep_assert_held(&ctx->lock);
1669
8a49542c
PZ
1670 /*
1671 * We can have double detach due to exit/hot-unplug + close.
1672 */
1673 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1674 return;
8a49542c
PZ
1675
1676 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1677
db4a8356 1678 list_update_cgroup_event(event, ctx, false);
e5d1367f 1679
cdd6c482
IM
1680 ctx->nr_events--;
1681 if (event->attr.inherit_stat)
bfbd3381 1682 ctx->nr_stat--;
8bc20959 1683
cdd6c482 1684 list_del_rcu(&event->event_entry);
04289bb9 1685
8a49542c
PZ
1686 if (event->group_leader == event)
1687 list_del_init(&event->group_entry);
5c148194 1688
b2e74a26
SE
1689 /*
1690 * If event was in error state, then keep it
1691 * that way, otherwise bogus counts will be
1692 * returned on read(). The only way to get out
1693 * of error state is by explicit re-enabling
1694 * of the event
1695 */
1696 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1697 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1698
1699 ctx->generation++;
050735b0
PZ
1700}
1701
8a49542c 1702static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1703{
1704 struct perf_event *sibling, *tmp;
8a49542c
PZ
1705 struct list_head *list = NULL;
1706
a76a82a3
PZ
1707 lockdep_assert_held(&event->ctx->lock);
1708
8a49542c
PZ
1709 /*
1710 * We can have double detach due to exit/hot-unplug + close.
1711 */
1712 if (!(event->attach_state & PERF_ATTACH_GROUP))
1713 return;
1714
1715 event->attach_state &= ~PERF_ATTACH_GROUP;
1716
1717 /*
1718 * If this is a sibling, remove it from its group.
1719 */
1720 if (event->group_leader != event) {
1721 list_del_init(&event->group_entry);
1722 event->group_leader->nr_siblings--;
c320c7b7 1723 goto out;
8a49542c
PZ
1724 }
1725
1726 if (!list_empty(&event->group_entry))
1727 list = &event->group_entry;
2e2af50b 1728
04289bb9 1729 /*
cdd6c482
IM
1730 * If this was a group event with sibling events then
1731 * upgrade the siblings to singleton events by adding them
8a49542c 1732 * to whatever list we are on.
04289bb9 1733 */
cdd6c482 1734 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1735 if (list)
1736 list_move_tail(&sibling->group_entry, list);
04289bb9 1737 sibling->group_leader = sibling;
d6f962b5
FW
1738
1739 /* Inherit group flags from the previous leader */
4ff6a8de 1740 sibling->group_caps = event->group_caps;
652884fe
PZ
1741
1742 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1743 }
c320c7b7
ACM
1744
1745out:
1746 perf_event__header_size(event->group_leader);
1747
1748 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1749 perf_event__header_size(tmp);
04289bb9
IM
1750}
1751
fadfe7be
JO
1752static bool is_orphaned_event(struct perf_event *event)
1753{
a69b0ca4 1754 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1755}
1756
2c81a647 1757static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1758{
1759 struct pmu *pmu = event->pmu;
1760 return pmu->filter_match ? pmu->filter_match(event) : 1;
1761}
1762
2c81a647
MR
1763/*
1764 * Check whether we should attempt to schedule an event group based on
1765 * PMU-specific filtering. An event group can consist of HW and SW events,
1766 * potentially with a SW leader, so we must check all the filters, to
1767 * determine whether a group is schedulable:
1768 */
1769static inline int pmu_filter_match(struct perf_event *event)
1770{
1771 struct perf_event *child;
1772
1773 if (!__pmu_filter_match(event))
1774 return 0;
1775
1776 list_for_each_entry(child, &event->sibling_list, group_entry) {
1777 if (!__pmu_filter_match(child))
1778 return 0;
1779 }
1780
1781 return 1;
1782}
1783
fa66f07a
SE
1784static inline int
1785event_filter_match(struct perf_event *event)
1786{
0b8f1e2e
PZ
1787 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1788 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1789}
1790
9ffcfa6f
SE
1791static void
1792event_sched_out(struct perf_event *event,
3b6f9e5c 1793 struct perf_cpu_context *cpuctx,
cdd6c482 1794 struct perf_event_context *ctx)
3b6f9e5c 1795{
0d3d73aa 1796 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
1797
1798 WARN_ON_ONCE(event->ctx != ctx);
1799 lockdep_assert_held(&ctx->lock);
1800
cdd6c482 1801 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1802 return;
3b6f9e5c 1803
44377277
AS
1804 perf_pmu_disable(event->pmu);
1805
28a967c3
PZ
1806 event->pmu->del(event, 0);
1807 event->oncpu = -1;
0d3d73aa 1808
cdd6c482
IM
1809 if (event->pending_disable) {
1810 event->pending_disable = 0;
0d3d73aa 1811 state = PERF_EVENT_STATE_OFF;
970892a9 1812 }
0d3d73aa 1813 perf_event_set_state(event, state);
3b6f9e5c 1814
cdd6c482 1815 if (!is_software_event(event))
3b6f9e5c 1816 cpuctx->active_oncpu--;
2fde4f94
MR
1817 if (!--ctx->nr_active)
1818 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1819 if (event->attr.freq && event->attr.sample_freq)
1820 ctx->nr_freq--;
cdd6c482 1821 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1822 cpuctx->exclusive = 0;
44377277
AS
1823
1824 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1825}
1826
d859e29f 1827static void
cdd6c482 1828group_sched_out(struct perf_event *group_event,
d859e29f 1829 struct perf_cpu_context *cpuctx,
cdd6c482 1830 struct perf_event_context *ctx)
d859e29f 1831{
cdd6c482 1832 struct perf_event *event;
0d3d73aa
PZ
1833
1834 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1835 return;
d859e29f 1836
3f005e7d
MR
1837 perf_pmu_disable(ctx->pmu);
1838
cdd6c482 1839 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1840
1841 /*
1842 * Schedule out siblings (if any):
1843 */
cdd6c482
IM
1844 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1845 event_sched_out(event, cpuctx, ctx);
d859e29f 1846
3f005e7d
MR
1847 perf_pmu_enable(ctx->pmu);
1848
0d3d73aa 1849 if (group_event->attr.exclusive)
d859e29f
PM
1850 cpuctx->exclusive = 0;
1851}
1852
45a0e07a 1853#define DETACH_GROUP 0x01UL
0017960f 1854
0793a61d 1855/*
cdd6c482 1856 * Cross CPU call to remove a performance event
0793a61d 1857 *
cdd6c482 1858 * We disable the event on the hardware level first. After that we
0793a61d
TG
1859 * remove it from the context list.
1860 */
fae3fde6
PZ
1861static void
1862__perf_remove_from_context(struct perf_event *event,
1863 struct perf_cpu_context *cpuctx,
1864 struct perf_event_context *ctx,
1865 void *info)
0793a61d 1866{
45a0e07a 1867 unsigned long flags = (unsigned long)info;
0793a61d 1868
3c5c8711
PZ
1869 if (ctx->is_active & EVENT_TIME) {
1870 update_context_time(ctx);
1871 update_cgrp_time_from_cpuctx(cpuctx);
1872 }
1873
cdd6c482 1874 event_sched_out(event, cpuctx, ctx);
45a0e07a 1875 if (flags & DETACH_GROUP)
46ce0fe9 1876 perf_group_detach(event);
cdd6c482 1877 list_del_event(event, ctx);
39a43640
PZ
1878
1879 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1880 ctx->is_active = 0;
39a43640
PZ
1881 if (ctx->task) {
1882 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1883 cpuctx->task_ctx = NULL;
1884 }
64ce3126 1885 }
0793a61d
TG
1886}
1887
0793a61d 1888/*
cdd6c482 1889 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1890 *
cdd6c482
IM
1891 * If event->ctx is a cloned context, callers must make sure that
1892 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1893 * remains valid. This is OK when called from perf_release since
1894 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1895 * When called from perf_event_exit_task, it's OK because the
c93f7669 1896 * context has been detached from its task.
0793a61d 1897 */
45a0e07a 1898static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1899{
a76a82a3
PZ
1900 struct perf_event_context *ctx = event->ctx;
1901
1902 lockdep_assert_held(&ctx->mutex);
0793a61d 1903
45a0e07a 1904 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1905
1906 /*
1907 * The above event_function_call() can NO-OP when it hits
1908 * TASK_TOMBSTONE. In that case we must already have been detached
1909 * from the context (by perf_event_exit_event()) but the grouping
1910 * might still be in-tact.
1911 */
1912 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1913 if ((flags & DETACH_GROUP) &&
1914 (event->attach_state & PERF_ATTACH_GROUP)) {
1915 /*
1916 * Since in that case we cannot possibly be scheduled, simply
1917 * detach now.
1918 */
1919 raw_spin_lock_irq(&ctx->lock);
1920 perf_group_detach(event);
1921 raw_spin_unlock_irq(&ctx->lock);
1922 }
0793a61d
TG
1923}
1924
d859e29f 1925/*
cdd6c482 1926 * Cross CPU call to disable a performance event
d859e29f 1927 */
fae3fde6
PZ
1928static void __perf_event_disable(struct perf_event *event,
1929 struct perf_cpu_context *cpuctx,
1930 struct perf_event_context *ctx,
1931 void *info)
7b648018 1932{
fae3fde6
PZ
1933 if (event->state < PERF_EVENT_STATE_INACTIVE)
1934 return;
7b648018 1935
3c5c8711
PZ
1936 if (ctx->is_active & EVENT_TIME) {
1937 update_context_time(ctx);
1938 update_cgrp_time_from_event(event);
1939 }
1940
fae3fde6
PZ
1941 if (event == event->group_leader)
1942 group_sched_out(event, cpuctx, ctx);
1943 else
1944 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
1945
1946 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
1947}
1948
d859e29f 1949/*
cdd6c482 1950 * Disable a event.
c93f7669 1951 *
cdd6c482
IM
1952 * If event->ctx is a cloned context, callers must make sure that
1953 * every task struct that event->ctx->task could possibly point to
c93f7669 1954 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1955 * perf_event_for_each_child or perf_event_for_each because they
1956 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1957 * goes to exit will block in perf_event_exit_event().
1958 *
cdd6c482 1959 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1960 * is the current context on this CPU and preemption is disabled,
cdd6c482 1961 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1962 */
f63a8daa 1963static void _perf_event_disable(struct perf_event *event)
d859e29f 1964{
cdd6c482 1965 struct perf_event_context *ctx = event->ctx;
d859e29f 1966
e625cce1 1967 raw_spin_lock_irq(&ctx->lock);
7b648018 1968 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1969 raw_spin_unlock_irq(&ctx->lock);
7b648018 1970 return;
53cfbf59 1971 }
e625cce1 1972 raw_spin_unlock_irq(&ctx->lock);
7b648018 1973
fae3fde6
PZ
1974 event_function_call(event, __perf_event_disable, NULL);
1975}
1976
1977void perf_event_disable_local(struct perf_event *event)
1978{
1979 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1980}
f63a8daa
PZ
1981
1982/*
1983 * Strictly speaking kernel users cannot create groups and therefore this
1984 * interface does not need the perf_event_ctx_lock() magic.
1985 */
1986void perf_event_disable(struct perf_event *event)
1987{
1988 struct perf_event_context *ctx;
1989
1990 ctx = perf_event_ctx_lock(event);
1991 _perf_event_disable(event);
1992 perf_event_ctx_unlock(event, ctx);
1993}
dcfce4a0 1994EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1995
5aab90ce
JO
1996void perf_event_disable_inatomic(struct perf_event *event)
1997{
1998 event->pending_disable = 1;
1999 irq_work_queue(&event->pending);
2000}
2001
e5d1367f 2002static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2003 struct perf_event_context *ctx)
e5d1367f
SE
2004{
2005 /*
2006 * use the correct time source for the time snapshot
2007 *
2008 * We could get by without this by leveraging the
2009 * fact that to get to this function, the caller
2010 * has most likely already called update_context_time()
2011 * and update_cgrp_time_xx() and thus both timestamp
2012 * are identical (or very close). Given that tstamp is,
2013 * already adjusted for cgroup, we could say that:
2014 * tstamp - ctx->timestamp
2015 * is equivalent to
2016 * tstamp - cgrp->timestamp.
2017 *
2018 * Then, in perf_output_read(), the calculation would
2019 * work with no changes because:
2020 * - event is guaranteed scheduled in
2021 * - no scheduled out in between
2022 * - thus the timestamp would be the same
2023 *
2024 * But this is a bit hairy.
2025 *
2026 * So instead, we have an explicit cgroup call to remain
2027 * within the time time source all along. We believe it
2028 * is cleaner and simpler to understand.
2029 */
2030 if (is_cgroup_event(event))
0d3d73aa 2031 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2032 else
0d3d73aa 2033 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2034}
2035
4fe757dd
PZ
2036#define MAX_INTERRUPTS (~0ULL)
2037
2038static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2039static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2040
235c7fc7 2041static int
9ffcfa6f 2042event_sched_in(struct perf_event *event,
235c7fc7 2043 struct perf_cpu_context *cpuctx,
6e37738a 2044 struct perf_event_context *ctx)
235c7fc7 2045{
44377277 2046 int ret = 0;
4158755d 2047
63342411
PZ
2048 lockdep_assert_held(&ctx->lock);
2049
cdd6c482 2050 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2051 return 0;
2052
95ff4ca2
AS
2053 WRITE_ONCE(event->oncpu, smp_processor_id());
2054 /*
0c1cbc18
PZ
2055 * Order event::oncpu write to happen before the ACTIVE state is
2056 * visible. This allows perf_event_{stop,read}() to observe the correct
2057 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2058 */
2059 smp_wmb();
0d3d73aa 2060 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2061
2062 /*
2063 * Unthrottle events, since we scheduled we might have missed several
2064 * ticks already, also for a heavily scheduling task there is little
2065 * guarantee it'll get a tick in a timely manner.
2066 */
2067 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2068 perf_log_throttle(event, 1);
2069 event->hw.interrupts = 0;
2070 }
2071
44377277
AS
2072 perf_pmu_disable(event->pmu);
2073
0d3d73aa 2074 perf_set_shadow_time(event, ctx);
72f669c0 2075
ec0d7729
AS
2076 perf_log_itrace_start(event);
2077
a4eaf7f1 2078 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2079 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2080 event->oncpu = -1;
44377277
AS
2081 ret = -EAGAIN;
2082 goto out;
235c7fc7
IM
2083 }
2084
cdd6c482 2085 if (!is_software_event(event))
3b6f9e5c 2086 cpuctx->active_oncpu++;
2fde4f94
MR
2087 if (!ctx->nr_active++)
2088 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2089 if (event->attr.freq && event->attr.sample_freq)
2090 ctx->nr_freq++;
235c7fc7 2091
cdd6c482 2092 if (event->attr.exclusive)
3b6f9e5c
PM
2093 cpuctx->exclusive = 1;
2094
44377277
AS
2095out:
2096 perf_pmu_enable(event->pmu);
2097
2098 return ret;
235c7fc7
IM
2099}
2100
6751b71e 2101static int
cdd6c482 2102group_sched_in(struct perf_event *group_event,
6751b71e 2103 struct perf_cpu_context *cpuctx,
6e37738a 2104 struct perf_event_context *ctx)
6751b71e 2105{
6bde9b6c 2106 struct perf_event *event, *partial_group = NULL;
4a234593 2107 struct pmu *pmu = ctx->pmu;
6751b71e 2108
cdd6c482 2109 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2110 return 0;
2111
fbbe0701 2112 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2113
9ffcfa6f 2114 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2115 pmu->cancel_txn(pmu);
272325c4 2116 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2117 return -EAGAIN;
90151c35 2118 }
6751b71e
PM
2119
2120 /*
2121 * Schedule in siblings as one group (if any):
2122 */
cdd6c482 2123 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2124 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2125 partial_group = event;
6751b71e
PM
2126 goto group_error;
2127 }
2128 }
2129
9ffcfa6f 2130 if (!pmu->commit_txn(pmu))
6e85158c 2131 return 0;
9ffcfa6f 2132
6751b71e
PM
2133group_error:
2134 /*
2135 * Groups can be scheduled in as one unit only, so undo any
2136 * partial group before returning:
0d3d73aa 2137 * The events up to the failed event are scheduled out normally.
6751b71e 2138 */
cdd6c482
IM
2139 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2140 if (event == partial_group)
0d3d73aa 2141 break;
d7842da4 2142
0d3d73aa 2143 event_sched_out(event, cpuctx, ctx);
6751b71e 2144 }
9ffcfa6f 2145 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2146
ad5133b7 2147 pmu->cancel_txn(pmu);
90151c35 2148
272325c4 2149 perf_mux_hrtimer_restart(cpuctx);
9e630205 2150
6751b71e
PM
2151 return -EAGAIN;
2152}
2153
3b6f9e5c 2154/*
cdd6c482 2155 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2156 */
cdd6c482 2157static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2158 struct perf_cpu_context *cpuctx,
2159 int can_add_hw)
2160{
2161 /*
cdd6c482 2162 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2163 */
4ff6a8de 2164 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2165 return 1;
2166 /*
2167 * If an exclusive group is already on, no other hardware
cdd6c482 2168 * events can go on.
3b6f9e5c
PM
2169 */
2170 if (cpuctx->exclusive)
2171 return 0;
2172 /*
2173 * If this group is exclusive and there are already
cdd6c482 2174 * events on the CPU, it can't go on.
3b6f9e5c 2175 */
cdd6c482 2176 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2177 return 0;
2178 /*
2179 * Otherwise, try to add it if all previous groups were able
2180 * to go on.
2181 */
2182 return can_add_hw;
2183}
2184
cdd6c482
IM
2185static void add_event_to_ctx(struct perf_event *event,
2186 struct perf_event_context *ctx)
53cfbf59 2187{
cdd6c482 2188 list_add_event(event, ctx);
8a49542c 2189 perf_group_attach(event);
53cfbf59
PM
2190}
2191
bd2afa49
PZ
2192static void ctx_sched_out(struct perf_event_context *ctx,
2193 struct perf_cpu_context *cpuctx,
2194 enum event_type_t event_type);
2c29ef0f
PZ
2195static void
2196ctx_sched_in(struct perf_event_context *ctx,
2197 struct perf_cpu_context *cpuctx,
2198 enum event_type_t event_type,
2199 struct task_struct *task);
fe4b04fa 2200
bd2afa49 2201static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2202 struct perf_event_context *ctx,
2203 enum event_type_t event_type)
bd2afa49
PZ
2204{
2205 if (!cpuctx->task_ctx)
2206 return;
2207
2208 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2209 return;
2210
487f05e1 2211 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2212}
2213
dce5855b
PZ
2214static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2215 struct perf_event_context *ctx,
2216 struct task_struct *task)
2217{
2218 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2219 if (ctx)
2220 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2221 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2222 if (ctx)
2223 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2224}
2225
487f05e1
AS
2226/*
2227 * We want to maintain the following priority of scheduling:
2228 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2229 * - task pinned (EVENT_PINNED)
2230 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2231 * - task flexible (EVENT_FLEXIBLE).
2232 *
2233 * In order to avoid unscheduling and scheduling back in everything every
2234 * time an event is added, only do it for the groups of equal priority and
2235 * below.
2236 *
2237 * This can be called after a batch operation on task events, in which case
2238 * event_type is a bit mask of the types of events involved. For CPU events,
2239 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2240 */
3e349507 2241static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2242 struct perf_event_context *task_ctx,
2243 enum event_type_t event_type)
0017960f 2244{
487f05e1
AS
2245 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2246 bool cpu_event = !!(event_type & EVENT_CPU);
2247
2248 /*
2249 * If pinned groups are involved, flexible groups also need to be
2250 * scheduled out.
2251 */
2252 if (event_type & EVENT_PINNED)
2253 event_type |= EVENT_FLEXIBLE;
2254
3e349507
PZ
2255 perf_pmu_disable(cpuctx->ctx.pmu);
2256 if (task_ctx)
487f05e1
AS
2257 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2258
2259 /*
2260 * Decide which cpu ctx groups to schedule out based on the types
2261 * of events that caused rescheduling:
2262 * - EVENT_CPU: schedule out corresponding groups;
2263 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2264 * - otherwise, do nothing more.
2265 */
2266 if (cpu_event)
2267 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2268 else if (ctx_event_type & EVENT_PINNED)
2269 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2270
3e349507
PZ
2271 perf_event_sched_in(cpuctx, task_ctx, current);
2272 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2273}
2274
0793a61d 2275/*
cdd6c482 2276 * Cross CPU call to install and enable a performance event
682076ae 2277 *
a096309b
PZ
2278 * Very similar to remote_function() + event_function() but cannot assume that
2279 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2280 */
fe4b04fa 2281static int __perf_install_in_context(void *info)
0793a61d 2282{
a096309b
PZ
2283 struct perf_event *event = info;
2284 struct perf_event_context *ctx = event->ctx;
108b02cf 2285 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2286 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2287 bool reprogram = true;
a096309b 2288 int ret = 0;
0793a61d 2289
63b6da39 2290 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2291 if (ctx->task) {
b58f6b0d
PZ
2292 raw_spin_lock(&ctx->lock);
2293 task_ctx = ctx;
a096309b 2294
63cae12b 2295 reprogram = (ctx->task == current);
b58f6b0d 2296
39a43640 2297 /*
63cae12b
PZ
2298 * If the task is running, it must be running on this CPU,
2299 * otherwise we cannot reprogram things.
2300 *
2301 * If its not running, we don't care, ctx->lock will
2302 * serialize against it becoming runnable.
39a43640 2303 */
63cae12b
PZ
2304 if (task_curr(ctx->task) && !reprogram) {
2305 ret = -ESRCH;
2306 goto unlock;
2307 }
a096309b 2308
63cae12b 2309 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2310 } else if (task_ctx) {
2311 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2312 }
b58f6b0d 2313
63cae12b 2314 if (reprogram) {
a096309b
PZ
2315 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2316 add_event_to_ctx(event, ctx);
487f05e1 2317 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2318 } else {
2319 add_event_to_ctx(event, ctx);
2320 }
2321
63b6da39 2322unlock:
2c29ef0f 2323 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2324
a096309b 2325 return ret;
0793a61d
TG
2326}
2327
2328/*
a096309b
PZ
2329 * Attach a performance event to a context.
2330 *
2331 * Very similar to event_function_call, see comment there.
0793a61d
TG
2332 */
2333static void
cdd6c482
IM
2334perf_install_in_context(struct perf_event_context *ctx,
2335 struct perf_event *event,
0793a61d
TG
2336 int cpu)
2337{
a096309b 2338 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2339
fe4b04fa
PZ
2340 lockdep_assert_held(&ctx->mutex);
2341
0cda4c02
YZ
2342 if (event->cpu != -1)
2343 event->cpu = cpu;
c3f00c70 2344
0b8f1e2e
PZ
2345 /*
2346 * Ensures that if we can observe event->ctx, both the event and ctx
2347 * will be 'complete'. See perf_iterate_sb_cpu().
2348 */
2349 smp_store_release(&event->ctx, ctx);
2350
a096309b
PZ
2351 if (!task) {
2352 cpu_function_call(cpu, __perf_install_in_context, event);
2353 return;
2354 }
2355
2356 /*
2357 * Should not happen, we validate the ctx is still alive before calling.
2358 */
2359 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2360 return;
2361
39a43640
PZ
2362 /*
2363 * Installing events is tricky because we cannot rely on ctx->is_active
2364 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2365 *
2366 * Instead we use task_curr(), which tells us if the task is running.
2367 * However, since we use task_curr() outside of rq::lock, we can race
2368 * against the actual state. This means the result can be wrong.
2369 *
2370 * If we get a false positive, we retry, this is harmless.
2371 *
2372 * If we get a false negative, things are complicated. If we are after
2373 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2374 * value must be correct. If we're before, it doesn't matter since
2375 * perf_event_context_sched_in() will program the counter.
2376 *
2377 * However, this hinges on the remote context switch having observed
2378 * our task->perf_event_ctxp[] store, such that it will in fact take
2379 * ctx::lock in perf_event_context_sched_in().
2380 *
2381 * We do this by task_function_call(), if the IPI fails to hit the task
2382 * we know any future context switch of task must see the
2383 * perf_event_ctpx[] store.
39a43640 2384 */
63cae12b 2385
63b6da39 2386 /*
63cae12b
PZ
2387 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2388 * task_cpu() load, such that if the IPI then does not find the task
2389 * running, a future context switch of that task must observe the
2390 * store.
63b6da39 2391 */
63cae12b
PZ
2392 smp_mb();
2393again:
2394 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2395 return;
2396
2397 raw_spin_lock_irq(&ctx->lock);
2398 task = ctx->task;
84c4e620 2399 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2400 /*
2401 * Cannot happen because we already checked above (which also
2402 * cannot happen), and we hold ctx->mutex, which serializes us
2403 * against perf_event_exit_task_context().
2404 */
63b6da39
PZ
2405 raw_spin_unlock_irq(&ctx->lock);
2406 return;
2407 }
39a43640 2408 /*
63cae12b
PZ
2409 * If the task is not running, ctx->lock will avoid it becoming so,
2410 * thus we can safely install the event.
39a43640 2411 */
63cae12b
PZ
2412 if (task_curr(task)) {
2413 raw_spin_unlock_irq(&ctx->lock);
2414 goto again;
2415 }
2416 add_event_to_ctx(event, ctx);
2417 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2418}
2419
d859e29f 2420/*
cdd6c482 2421 * Cross CPU call to enable a performance event
d859e29f 2422 */
fae3fde6
PZ
2423static void __perf_event_enable(struct perf_event *event,
2424 struct perf_cpu_context *cpuctx,
2425 struct perf_event_context *ctx,
2426 void *info)
04289bb9 2427{
cdd6c482 2428 struct perf_event *leader = event->group_leader;
fae3fde6 2429 struct perf_event_context *task_ctx;
04289bb9 2430
6e801e01
PZ
2431 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2432 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2433 return;
3cbed429 2434
bd2afa49
PZ
2435 if (ctx->is_active)
2436 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2437
0d3d73aa 2438 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2439
fae3fde6
PZ
2440 if (!ctx->is_active)
2441 return;
2442
e5d1367f 2443 if (!event_filter_match(event)) {
bd2afa49 2444 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2445 return;
e5d1367f 2446 }
f4c4176f 2447
04289bb9 2448 /*
cdd6c482 2449 * If the event is in a group and isn't the group leader,
d859e29f 2450 * then don't put it on unless the group is on.
04289bb9 2451 */
bd2afa49
PZ
2452 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2453 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2454 return;
bd2afa49 2455 }
fe4b04fa 2456
fae3fde6
PZ
2457 task_ctx = cpuctx->task_ctx;
2458 if (ctx->task)
2459 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2460
487f05e1 2461 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2462}
2463
d859e29f 2464/*
cdd6c482 2465 * Enable a event.
c93f7669 2466 *
cdd6c482
IM
2467 * If event->ctx is a cloned context, callers must make sure that
2468 * every task struct that event->ctx->task could possibly point to
c93f7669 2469 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2470 * perf_event_for_each_child or perf_event_for_each as described
2471 * for perf_event_disable.
d859e29f 2472 */
f63a8daa 2473static void _perf_event_enable(struct perf_event *event)
d859e29f 2474{
cdd6c482 2475 struct perf_event_context *ctx = event->ctx;
d859e29f 2476
7b648018 2477 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2478 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2479 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2480 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2481 return;
2482 }
2483
d859e29f 2484 /*
cdd6c482 2485 * If the event is in error state, clear that first.
7b648018
PZ
2486 *
2487 * That way, if we see the event in error state below, we know that it
2488 * has gone back into error state, as distinct from the task having
2489 * been scheduled away before the cross-call arrived.
d859e29f 2490 */
cdd6c482
IM
2491 if (event->state == PERF_EVENT_STATE_ERROR)
2492 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2493 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2494
fae3fde6 2495 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2496}
f63a8daa
PZ
2497
2498/*
2499 * See perf_event_disable();
2500 */
2501void perf_event_enable(struct perf_event *event)
2502{
2503 struct perf_event_context *ctx;
2504
2505 ctx = perf_event_ctx_lock(event);
2506 _perf_event_enable(event);
2507 perf_event_ctx_unlock(event, ctx);
2508}
dcfce4a0 2509EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2510
375637bc
AS
2511struct stop_event_data {
2512 struct perf_event *event;
2513 unsigned int restart;
2514};
2515
95ff4ca2
AS
2516static int __perf_event_stop(void *info)
2517{
375637bc
AS
2518 struct stop_event_data *sd = info;
2519 struct perf_event *event = sd->event;
95ff4ca2 2520
375637bc 2521 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2522 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2523 return 0;
2524
2525 /* matches smp_wmb() in event_sched_in() */
2526 smp_rmb();
2527
2528 /*
2529 * There is a window with interrupts enabled before we get here,
2530 * so we need to check again lest we try to stop another CPU's event.
2531 */
2532 if (READ_ONCE(event->oncpu) != smp_processor_id())
2533 return -EAGAIN;
2534
2535 event->pmu->stop(event, PERF_EF_UPDATE);
2536
375637bc
AS
2537 /*
2538 * May race with the actual stop (through perf_pmu_output_stop()),
2539 * but it is only used for events with AUX ring buffer, and such
2540 * events will refuse to restart because of rb::aux_mmap_count==0,
2541 * see comments in perf_aux_output_begin().
2542 *
2543 * Since this is happening on a event-local CPU, no trace is lost
2544 * while restarting.
2545 */
2546 if (sd->restart)
c9bbdd48 2547 event->pmu->start(event, 0);
375637bc 2548
95ff4ca2
AS
2549 return 0;
2550}
2551
767ae086 2552static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2553{
2554 struct stop_event_data sd = {
2555 .event = event,
767ae086 2556 .restart = restart,
375637bc
AS
2557 };
2558 int ret = 0;
2559
2560 do {
2561 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2562 return 0;
2563
2564 /* matches smp_wmb() in event_sched_in() */
2565 smp_rmb();
2566
2567 /*
2568 * We only want to restart ACTIVE events, so if the event goes
2569 * inactive here (event->oncpu==-1), there's nothing more to do;
2570 * fall through with ret==-ENXIO.
2571 */
2572 ret = cpu_function_call(READ_ONCE(event->oncpu),
2573 __perf_event_stop, &sd);
2574 } while (ret == -EAGAIN);
2575
2576 return ret;
2577}
2578
2579/*
2580 * In order to contain the amount of racy and tricky in the address filter
2581 * configuration management, it is a two part process:
2582 *
2583 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2584 * we update the addresses of corresponding vmas in
2585 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2586 * (p2) when an event is scheduled in (pmu::add), it calls
2587 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2588 * if the generation has changed since the previous call.
2589 *
2590 * If (p1) happens while the event is active, we restart it to force (p2).
2591 *
2592 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2593 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2594 * ioctl;
2595 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2596 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2597 * for reading;
2598 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2599 * of exec.
2600 */
2601void perf_event_addr_filters_sync(struct perf_event *event)
2602{
2603 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2604
2605 if (!has_addr_filter(event))
2606 return;
2607
2608 raw_spin_lock(&ifh->lock);
2609 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2610 event->pmu->addr_filters_sync(event);
2611 event->hw.addr_filters_gen = event->addr_filters_gen;
2612 }
2613 raw_spin_unlock(&ifh->lock);
2614}
2615EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2616
f63a8daa 2617static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2618{
2023b359 2619 /*
cdd6c482 2620 * not supported on inherited events
2023b359 2621 */
2e939d1d 2622 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2623 return -EINVAL;
2624
cdd6c482 2625 atomic_add(refresh, &event->event_limit);
f63a8daa 2626 _perf_event_enable(event);
2023b359
PZ
2627
2628 return 0;
79f14641 2629}
f63a8daa
PZ
2630
2631/*
2632 * See perf_event_disable()
2633 */
2634int perf_event_refresh(struct perf_event *event, int refresh)
2635{
2636 struct perf_event_context *ctx;
2637 int ret;
2638
2639 ctx = perf_event_ctx_lock(event);
2640 ret = _perf_event_refresh(event, refresh);
2641 perf_event_ctx_unlock(event, ctx);
2642
2643 return ret;
2644}
26ca5c11 2645EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2646
5b0311e1
FW
2647static void ctx_sched_out(struct perf_event_context *ctx,
2648 struct perf_cpu_context *cpuctx,
2649 enum event_type_t event_type)
235c7fc7 2650{
db24d33e 2651 int is_active = ctx->is_active;
c994d613 2652 struct perf_event *event;
235c7fc7 2653
c994d613 2654 lockdep_assert_held(&ctx->lock);
235c7fc7 2655
39a43640
PZ
2656 if (likely(!ctx->nr_events)) {
2657 /*
2658 * See __perf_remove_from_context().
2659 */
2660 WARN_ON_ONCE(ctx->is_active);
2661 if (ctx->task)
2662 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2663 return;
39a43640
PZ
2664 }
2665
db24d33e 2666 ctx->is_active &= ~event_type;
3cbaa590
PZ
2667 if (!(ctx->is_active & EVENT_ALL))
2668 ctx->is_active = 0;
2669
63e30d3e
PZ
2670 if (ctx->task) {
2671 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2672 if (!ctx->is_active)
2673 cpuctx->task_ctx = NULL;
2674 }
facc4307 2675
8fdc6539
PZ
2676 /*
2677 * Always update time if it was set; not only when it changes.
2678 * Otherwise we can 'forget' to update time for any but the last
2679 * context we sched out. For example:
2680 *
2681 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2682 * ctx_sched_out(.event_type = EVENT_PINNED)
2683 *
2684 * would only update time for the pinned events.
2685 */
3cbaa590
PZ
2686 if (is_active & EVENT_TIME) {
2687 /* update (and stop) ctx time */
2688 update_context_time(ctx);
2689 update_cgrp_time_from_cpuctx(cpuctx);
2690 }
2691
8fdc6539
PZ
2692 is_active ^= ctx->is_active; /* changed bits */
2693
3cbaa590 2694 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2695 return;
5b0311e1 2696
075e0b00 2697 perf_pmu_disable(ctx->pmu);
3cbaa590 2698 if (is_active & EVENT_PINNED) {
889ff015
FW
2699 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2700 group_sched_out(event, cpuctx, ctx);
9ed6060d 2701 }
889ff015 2702
3cbaa590 2703 if (is_active & EVENT_FLEXIBLE) {
889ff015 2704 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2705 group_sched_out(event, cpuctx, ctx);
9ed6060d 2706 }
1b9a644f 2707 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2708}
2709
564c2b21 2710/*
5a3126d4
PZ
2711 * Test whether two contexts are equivalent, i.e. whether they have both been
2712 * cloned from the same version of the same context.
2713 *
2714 * Equivalence is measured using a generation number in the context that is
2715 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2716 * and list_del_event().
564c2b21 2717 */
cdd6c482
IM
2718static int context_equiv(struct perf_event_context *ctx1,
2719 struct perf_event_context *ctx2)
564c2b21 2720{
211de6eb
PZ
2721 lockdep_assert_held(&ctx1->lock);
2722 lockdep_assert_held(&ctx2->lock);
2723
5a3126d4
PZ
2724 /* Pinning disables the swap optimization */
2725 if (ctx1->pin_count || ctx2->pin_count)
2726 return 0;
2727
2728 /* If ctx1 is the parent of ctx2 */
2729 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2730 return 1;
2731
2732 /* If ctx2 is the parent of ctx1 */
2733 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2734 return 1;
2735
2736 /*
2737 * If ctx1 and ctx2 have the same parent; we flatten the parent
2738 * hierarchy, see perf_event_init_context().
2739 */
2740 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2741 ctx1->parent_gen == ctx2->parent_gen)
2742 return 1;
2743
2744 /* Unmatched */
2745 return 0;
564c2b21
PM
2746}
2747
cdd6c482
IM
2748static void __perf_event_sync_stat(struct perf_event *event,
2749 struct perf_event *next_event)
bfbd3381
PZ
2750{
2751 u64 value;
2752
cdd6c482 2753 if (!event->attr.inherit_stat)
bfbd3381
PZ
2754 return;
2755
2756 /*
cdd6c482 2757 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2758 * because we're in the middle of a context switch and have IRQs
2759 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2760 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2761 * don't need to use it.
2762 */
0d3d73aa 2763 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 2764 event->pmu->read(event);
bfbd3381 2765
0d3d73aa 2766 perf_event_update_time(event);
bfbd3381
PZ
2767
2768 /*
cdd6c482 2769 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2770 * values when we flip the contexts.
2771 */
e7850595
PZ
2772 value = local64_read(&next_event->count);
2773 value = local64_xchg(&event->count, value);
2774 local64_set(&next_event->count, value);
bfbd3381 2775
cdd6c482
IM
2776 swap(event->total_time_enabled, next_event->total_time_enabled);
2777 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2778
bfbd3381 2779 /*
19d2e755 2780 * Since we swizzled the values, update the user visible data too.
bfbd3381 2781 */
cdd6c482
IM
2782 perf_event_update_userpage(event);
2783 perf_event_update_userpage(next_event);
bfbd3381
PZ
2784}
2785
cdd6c482
IM
2786static void perf_event_sync_stat(struct perf_event_context *ctx,
2787 struct perf_event_context *next_ctx)
bfbd3381 2788{
cdd6c482 2789 struct perf_event *event, *next_event;
bfbd3381
PZ
2790
2791 if (!ctx->nr_stat)
2792 return;
2793
02ffdbc8
PZ
2794 update_context_time(ctx);
2795
cdd6c482
IM
2796 event = list_first_entry(&ctx->event_list,
2797 struct perf_event, event_entry);
bfbd3381 2798
cdd6c482
IM
2799 next_event = list_first_entry(&next_ctx->event_list,
2800 struct perf_event, event_entry);
bfbd3381 2801
cdd6c482
IM
2802 while (&event->event_entry != &ctx->event_list &&
2803 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2804
cdd6c482 2805 __perf_event_sync_stat(event, next_event);
bfbd3381 2806
cdd6c482
IM
2807 event = list_next_entry(event, event_entry);
2808 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2809 }
2810}
2811
fe4b04fa
PZ
2812static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2813 struct task_struct *next)
0793a61d 2814{
8dc85d54 2815 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2816 struct perf_event_context *next_ctx;
5a3126d4 2817 struct perf_event_context *parent, *next_parent;
108b02cf 2818 struct perf_cpu_context *cpuctx;
c93f7669 2819 int do_switch = 1;
0793a61d 2820
108b02cf
PZ
2821 if (likely(!ctx))
2822 return;
10989fb2 2823
108b02cf
PZ
2824 cpuctx = __get_cpu_context(ctx);
2825 if (!cpuctx->task_ctx)
0793a61d
TG
2826 return;
2827
c93f7669 2828 rcu_read_lock();
8dc85d54 2829 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2830 if (!next_ctx)
2831 goto unlock;
2832
2833 parent = rcu_dereference(ctx->parent_ctx);
2834 next_parent = rcu_dereference(next_ctx->parent_ctx);
2835
2836 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2837 if (!parent && !next_parent)
5a3126d4
PZ
2838 goto unlock;
2839
2840 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2841 /*
2842 * Looks like the two contexts are clones, so we might be
2843 * able to optimize the context switch. We lock both
2844 * contexts and check that they are clones under the
2845 * lock (including re-checking that neither has been
2846 * uncloned in the meantime). It doesn't matter which
2847 * order we take the locks because no other cpu could
2848 * be trying to lock both of these tasks.
2849 */
e625cce1
TG
2850 raw_spin_lock(&ctx->lock);
2851 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2852 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2853 WRITE_ONCE(ctx->task, next);
2854 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2855
2856 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2857
63b6da39
PZ
2858 /*
2859 * RCU_INIT_POINTER here is safe because we've not
2860 * modified the ctx and the above modification of
2861 * ctx->task and ctx->task_ctx_data are immaterial
2862 * since those values are always verified under
2863 * ctx->lock which we're now holding.
2864 */
2865 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2866 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2867
c93f7669 2868 do_switch = 0;
bfbd3381 2869
cdd6c482 2870 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2871 }
e625cce1
TG
2872 raw_spin_unlock(&next_ctx->lock);
2873 raw_spin_unlock(&ctx->lock);
564c2b21 2874 }
5a3126d4 2875unlock:
c93f7669 2876 rcu_read_unlock();
564c2b21 2877
c93f7669 2878 if (do_switch) {
facc4307 2879 raw_spin_lock(&ctx->lock);
487f05e1 2880 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2881 raw_spin_unlock(&ctx->lock);
c93f7669 2882 }
0793a61d
TG
2883}
2884
e48c1788
PZ
2885static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2886
ba532500
YZ
2887void perf_sched_cb_dec(struct pmu *pmu)
2888{
e48c1788
PZ
2889 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2890
ba532500 2891 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2892
2893 if (!--cpuctx->sched_cb_usage)
2894 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2895}
2896
e48c1788 2897
ba532500
YZ
2898void perf_sched_cb_inc(struct pmu *pmu)
2899{
e48c1788
PZ
2900 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2901
2902 if (!cpuctx->sched_cb_usage++)
2903 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2904
ba532500
YZ
2905 this_cpu_inc(perf_sched_cb_usages);
2906}
2907
2908/*
2909 * This function provides the context switch callback to the lower code
2910 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
2911 *
2912 * This callback is relevant even to per-cpu events; for example multi event
2913 * PEBS requires this to provide PID/TID information. This requires we flush
2914 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
2915 */
2916static void perf_pmu_sched_task(struct task_struct *prev,
2917 struct task_struct *next,
2918 bool sched_in)
2919{
2920 struct perf_cpu_context *cpuctx;
2921 struct pmu *pmu;
ba532500
YZ
2922
2923 if (prev == next)
2924 return;
2925
e48c1788 2926 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 2927 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 2928
e48c1788
PZ
2929 if (WARN_ON_ONCE(!pmu->sched_task))
2930 continue;
ba532500 2931
e48c1788
PZ
2932 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2933 perf_pmu_disable(pmu);
ba532500 2934
e48c1788 2935 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 2936
e48c1788
PZ
2937 perf_pmu_enable(pmu);
2938 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 2939 }
ba532500
YZ
2940}
2941
45ac1403
AH
2942static void perf_event_switch(struct task_struct *task,
2943 struct task_struct *next_prev, bool sched_in);
2944
8dc85d54
PZ
2945#define for_each_task_context_nr(ctxn) \
2946 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2947
2948/*
2949 * Called from scheduler to remove the events of the current task,
2950 * with interrupts disabled.
2951 *
2952 * We stop each event and update the event value in event->count.
2953 *
2954 * This does not protect us against NMI, but disable()
2955 * sets the disabled bit in the control field of event _before_
2956 * accessing the event control register. If a NMI hits, then it will
2957 * not restart the event.
2958 */
ab0cce56
JO
2959void __perf_event_task_sched_out(struct task_struct *task,
2960 struct task_struct *next)
8dc85d54
PZ
2961{
2962 int ctxn;
2963
ba532500
YZ
2964 if (__this_cpu_read(perf_sched_cb_usages))
2965 perf_pmu_sched_task(task, next, false);
2966
45ac1403
AH
2967 if (atomic_read(&nr_switch_events))
2968 perf_event_switch(task, next, false);
2969
8dc85d54
PZ
2970 for_each_task_context_nr(ctxn)
2971 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2972
2973 /*
2974 * if cgroup events exist on this CPU, then we need
2975 * to check if we have to switch out PMU state.
2976 * cgroup event are system-wide mode only
2977 */
4a32fea9 2978 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2979 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2980}
2981
5b0311e1
FW
2982/*
2983 * Called with IRQs disabled
2984 */
2985static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2986 enum event_type_t event_type)
2987{
2988 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2989}
2990
235c7fc7 2991static void
5b0311e1 2992ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2993 struct perf_cpu_context *cpuctx)
0793a61d 2994{
cdd6c482 2995 struct perf_event *event;
0793a61d 2996
889ff015
FW
2997 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2998 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2999 continue;
5632ab12 3000 if (!event_filter_match(event))
3b6f9e5c
PM
3001 continue;
3002
8c9ed8e1 3003 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3004 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3005
3006 /*
3007 * If this pinned group hasn't been scheduled,
3008 * put it in error state.
3009 */
0d3d73aa
PZ
3010 if (event->state == PERF_EVENT_STATE_INACTIVE)
3011 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3b6f9e5c 3012 }
5b0311e1
FW
3013}
3014
3015static void
3016ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3017 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3018{
3019 struct perf_event *event;
3020 int can_add_hw = 1;
3b6f9e5c 3021
889ff015
FW
3022 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3023 /* Ignore events in OFF or ERROR state */
3024 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3025 continue;
04289bb9
IM
3026 /*
3027 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3028 * of events:
04289bb9 3029 */
5632ab12 3030 if (!event_filter_match(event))
0793a61d
TG
3031 continue;
3032
9ed6060d 3033 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3034 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3035 can_add_hw = 0;
9ed6060d 3036 }
0793a61d 3037 }
5b0311e1
FW
3038}
3039
3040static void
3041ctx_sched_in(struct perf_event_context *ctx,
3042 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3043 enum event_type_t event_type,
3044 struct task_struct *task)
5b0311e1 3045{
db24d33e 3046 int is_active = ctx->is_active;
c994d613
PZ
3047 u64 now;
3048
3049 lockdep_assert_held(&ctx->lock);
e5d1367f 3050
5b0311e1 3051 if (likely(!ctx->nr_events))
facc4307 3052 return;
5b0311e1 3053
3cbaa590 3054 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3055 if (ctx->task) {
3056 if (!is_active)
3057 cpuctx->task_ctx = ctx;
3058 else
3059 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3060 }
3061
3cbaa590
PZ
3062 is_active ^= ctx->is_active; /* changed bits */
3063
3064 if (is_active & EVENT_TIME) {
3065 /* start ctx time */
3066 now = perf_clock();
3067 ctx->timestamp = now;
3068 perf_cgroup_set_timestamp(task, ctx);
3069 }
3070
5b0311e1
FW
3071 /*
3072 * First go through the list and put on any pinned groups
3073 * in order to give them the best chance of going on.
3074 */
3cbaa590 3075 if (is_active & EVENT_PINNED)
6e37738a 3076 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3077
3078 /* Then walk through the lower prio flexible groups */
3cbaa590 3079 if (is_active & EVENT_FLEXIBLE)
6e37738a 3080 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3081}
3082
329c0e01 3083static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3084 enum event_type_t event_type,
3085 struct task_struct *task)
329c0e01
FW
3086{
3087 struct perf_event_context *ctx = &cpuctx->ctx;
3088
e5d1367f 3089 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3090}
3091
e5d1367f
SE
3092static void perf_event_context_sched_in(struct perf_event_context *ctx,
3093 struct task_struct *task)
235c7fc7 3094{
108b02cf 3095 struct perf_cpu_context *cpuctx;
235c7fc7 3096
108b02cf 3097 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3098 if (cpuctx->task_ctx == ctx)
3099 return;
3100
facc4307 3101 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3102 /*
3103 * We must check ctx->nr_events while holding ctx->lock, such
3104 * that we serialize against perf_install_in_context().
3105 */
3106 if (!ctx->nr_events)
3107 goto unlock;
3108
1b9a644f 3109 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3110 /*
3111 * We want to keep the following priority order:
3112 * cpu pinned (that don't need to move), task pinned,
3113 * cpu flexible, task flexible.
fe45bafb
AS
3114 *
3115 * However, if task's ctx is not carrying any pinned
3116 * events, no need to flip the cpuctx's events around.
329c0e01 3117 */
fe45bafb
AS
3118 if (!list_empty(&ctx->pinned_groups))
3119 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3120 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3121 perf_pmu_enable(ctx->pmu);
fdccc3fb 3122
3123unlock:
facc4307 3124 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3125}
3126
8dc85d54
PZ
3127/*
3128 * Called from scheduler to add the events of the current task
3129 * with interrupts disabled.
3130 *
3131 * We restore the event value and then enable it.
3132 *
3133 * This does not protect us against NMI, but enable()
3134 * sets the enabled bit in the control field of event _before_
3135 * accessing the event control register. If a NMI hits, then it will
3136 * keep the event running.
3137 */
ab0cce56
JO
3138void __perf_event_task_sched_in(struct task_struct *prev,
3139 struct task_struct *task)
8dc85d54
PZ
3140{
3141 struct perf_event_context *ctx;
3142 int ctxn;
3143
7e41d177
PZ
3144 /*
3145 * If cgroup events exist on this CPU, then we need to check if we have
3146 * to switch in PMU state; cgroup event are system-wide mode only.
3147 *
3148 * Since cgroup events are CPU events, we must schedule these in before
3149 * we schedule in the task events.
3150 */
3151 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3152 perf_cgroup_sched_in(prev, task);
3153
8dc85d54
PZ
3154 for_each_task_context_nr(ctxn) {
3155 ctx = task->perf_event_ctxp[ctxn];
3156 if (likely(!ctx))
3157 continue;
3158
e5d1367f 3159 perf_event_context_sched_in(ctx, task);
8dc85d54 3160 }
d010b332 3161
45ac1403
AH
3162 if (atomic_read(&nr_switch_events))
3163 perf_event_switch(task, prev, true);
3164
ba532500
YZ
3165 if (__this_cpu_read(perf_sched_cb_usages))
3166 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3167}
3168
abd50713
PZ
3169static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3170{
3171 u64 frequency = event->attr.sample_freq;
3172 u64 sec = NSEC_PER_SEC;
3173 u64 divisor, dividend;
3174
3175 int count_fls, nsec_fls, frequency_fls, sec_fls;
3176
3177 count_fls = fls64(count);
3178 nsec_fls = fls64(nsec);
3179 frequency_fls = fls64(frequency);
3180 sec_fls = 30;
3181
3182 /*
3183 * We got @count in @nsec, with a target of sample_freq HZ
3184 * the target period becomes:
3185 *
3186 * @count * 10^9
3187 * period = -------------------
3188 * @nsec * sample_freq
3189 *
3190 */
3191
3192 /*
3193 * Reduce accuracy by one bit such that @a and @b converge
3194 * to a similar magnitude.
3195 */
fe4b04fa 3196#define REDUCE_FLS(a, b) \
abd50713
PZ
3197do { \
3198 if (a##_fls > b##_fls) { \
3199 a >>= 1; \
3200 a##_fls--; \
3201 } else { \
3202 b >>= 1; \
3203 b##_fls--; \
3204 } \
3205} while (0)
3206
3207 /*
3208 * Reduce accuracy until either term fits in a u64, then proceed with
3209 * the other, so that finally we can do a u64/u64 division.
3210 */
3211 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3212 REDUCE_FLS(nsec, frequency);
3213 REDUCE_FLS(sec, count);
3214 }
3215
3216 if (count_fls + sec_fls > 64) {
3217 divisor = nsec * frequency;
3218
3219 while (count_fls + sec_fls > 64) {
3220 REDUCE_FLS(count, sec);
3221 divisor >>= 1;
3222 }
3223
3224 dividend = count * sec;
3225 } else {
3226 dividend = count * sec;
3227
3228 while (nsec_fls + frequency_fls > 64) {
3229 REDUCE_FLS(nsec, frequency);
3230 dividend >>= 1;
3231 }
3232
3233 divisor = nsec * frequency;
3234 }
3235
f6ab91ad
PZ
3236 if (!divisor)
3237 return dividend;
3238
abd50713
PZ
3239 return div64_u64(dividend, divisor);
3240}
3241
e050e3f0
SE
3242static DEFINE_PER_CPU(int, perf_throttled_count);
3243static DEFINE_PER_CPU(u64, perf_throttled_seq);
3244
f39d47ff 3245static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3246{
cdd6c482 3247 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3248 s64 period, sample_period;
bd2b5b12
PZ
3249 s64 delta;
3250
abd50713 3251 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3252
3253 delta = (s64)(period - hwc->sample_period);
3254 delta = (delta + 7) / 8; /* low pass filter */
3255
3256 sample_period = hwc->sample_period + delta;
3257
3258 if (!sample_period)
3259 sample_period = 1;
3260
bd2b5b12 3261 hwc->sample_period = sample_period;
abd50713 3262
e7850595 3263 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3264 if (disable)
3265 event->pmu->stop(event, PERF_EF_UPDATE);
3266
e7850595 3267 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3268
3269 if (disable)
3270 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3271 }
bd2b5b12
PZ
3272}
3273
e050e3f0
SE
3274/*
3275 * combine freq adjustment with unthrottling to avoid two passes over the
3276 * events. At the same time, make sure, having freq events does not change
3277 * the rate of unthrottling as that would introduce bias.
3278 */
3279static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3280 int needs_unthr)
60db5e09 3281{
cdd6c482
IM
3282 struct perf_event *event;
3283 struct hw_perf_event *hwc;
e050e3f0 3284 u64 now, period = TICK_NSEC;
abd50713 3285 s64 delta;
60db5e09 3286
e050e3f0
SE
3287 /*
3288 * only need to iterate over all events iff:
3289 * - context have events in frequency mode (needs freq adjust)
3290 * - there are events to unthrottle on this cpu
3291 */
3292 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3293 return;
3294
e050e3f0 3295 raw_spin_lock(&ctx->lock);
f39d47ff 3296 perf_pmu_disable(ctx->pmu);
e050e3f0 3297
03541f8b 3298 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3299 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3300 continue;
3301
5632ab12 3302 if (!event_filter_match(event))
5d27c23d
PZ
3303 continue;
3304
44377277
AS
3305 perf_pmu_disable(event->pmu);
3306
cdd6c482 3307 hwc = &event->hw;
6a24ed6c 3308
ae23bff1 3309 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3310 hwc->interrupts = 0;
cdd6c482 3311 perf_log_throttle(event, 1);
a4eaf7f1 3312 event->pmu->start(event, 0);
a78ac325
PZ
3313 }
3314
cdd6c482 3315 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3316 goto next;
60db5e09 3317
e050e3f0
SE
3318 /*
3319 * stop the event and update event->count
3320 */
3321 event->pmu->stop(event, PERF_EF_UPDATE);
3322
e7850595 3323 now = local64_read(&event->count);
abd50713
PZ
3324 delta = now - hwc->freq_count_stamp;
3325 hwc->freq_count_stamp = now;
60db5e09 3326
e050e3f0
SE
3327 /*
3328 * restart the event
3329 * reload only if value has changed
f39d47ff
SE
3330 * we have stopped the event so tell that
3331 * to perf_adjust_period() to avoid stopping it
3332 * twice.
e050e3f0 3333 */
abd50713 3334 if (delta > 0)
f39d47ff 3335 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3336
3337 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3338 next:
3339 perf_pmu_enable(event->pmu);
60db5e09 3340 }
e050e3f0 3341
f39d47ff 3342 perf_pmu_enable(ctx->pmu);
e050e3f0 3343 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3344}
3345
235c7fc7 3346/*
cdd6c482 3347 * Round-robin a context's events:
235c7fc7 3348 */
cdd6c482 3349static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3350{
dddd3379
TG
3351 /*
3352 * Rotate the first entry last of non-pinned groups. Rotation might be
3353 * disabled by the inheritance code.
3354 */
3355 if (!ctx->rotate_disable)
3356 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3357}
3358
9e630205 3359static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3360{
8dc85d54 3361 struct perf_event_context *ctx = NULL;
2fde4f94 3362 int rotate = 0;
7fc23a53 3363
b5ab4cd5 3364 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3365 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3366 rotate = 1;
3367 }
235c7fc7 3368
8dc85d54 3369 ctx = cpuctx->task_ctx;
b5ab4cd5 3370 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3371 if (ctx->nr_events != ctx->nr_active)
3372 rotate = 1;
3373 }
9717e6cd 3374
e050e3f0 3375 if (!rotate)
0f5a2601
PZ
3376 goto done;
3377
facc4307 3378 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3379 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3380
e050e3f0
SE
3381 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3382 if (ctx)
3383 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3384
e050e3f0
SE
3385 rotate_ctx(&cpuctx->ctx);
3386 if (ctx)
3387 rotate_ctx(ctx);
235c7fc7 3388
e050e3f0 3389 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3390
0f5a2601
PZ
3391 perf_pmu_enable(cpuctx->ctx.pmu);
3392 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3393done:
9e630205
SE
3394
3395 return rotate;
e9d2b064
PZ
3396}
3397
3398void perf_event_task_tick(void)
3399{
2fde4f94
MR
3400 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3401 struct perf_event_context *ctx, *tmp;
e050e3f0 3402 int throttled;
b5ab4cd5 3403
16444645 3404 lockdep_assert_irqs_disabled();
e9d2b064 3405
e050e3f0
SE
3406 __this_cpu_inc(perf_throttled_seq);
3407 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3408 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3409
2fde4f94 3410 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3411 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3412}
3413
889ff015
FW
3414static int event_enable_on_exec(struct perf_event *event,
3415 struct perf_event_context *ctx)
3416{
3417 if (!event->attr.enable_on_exec)
3418 return 0;
3419
3420 event->attr.enable_on_exec = 0;
3421 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3422 return 0;
3423
0d3d73aa 3424 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3425
3426 return 1;
3427}
3428
57e7986e 3429/*
cdd6c482 3430 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3431 * This expects task == current.
3432 */
c1274499 3433static void perf_event_enable_on_exec(int ctxn)
57e7986e 3434{
c1274499 3435 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3436 enum event_type_t event_type = 0;
3e349507 3437 struct perf_cpu_context *cpuctx;
cdd6c482 3438 struct perf_event *event;
57e7986e
PM
3439 unsigned long flags;
3440 int enabled = 0;
3441
3442 local_irq_save(flags);
c1274499 3443 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3444 if (!ctx || !ctx->nr_events)
57e7986e
PM
3445 goto out;
3446
3e349507
PZ
3447 cpuctx = __get_cpu_context(ctx);
3448 perf_ctx_lock(cpuctx, ctx);
7fce2509 3449 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3450 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3451 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3452 event_type |= get_event_type(event);
3453 }
57e7986e
PM
3454
3455 /*
3e349507 3456 * Unclone and reschedule this context if we enabled any event.
57e7986e 3457 */
3e349507 3458 if (enabled) {
211de6eb 3459 clone_ctx = unclone_ctx(ctx);
487f05e1 3460 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3461 } else {
3462 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3463 }
3464 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3465
9ed6060d 3466out:
57e7986e 3467 local_irq_restore(flags);
211de6eb
PZ
3468
3469 if (clone_ctx)
3470 put_ctx(clone_ctx);
57e7986e
PM
3471}
3472
0492d4c5
PZ
3473struct perf_read_data {
3474 struct perf_event *event;
3475 bool group;
7d88962e 3476 int ret;
0492d4c5
PZ
3477};
3478
451d24d1 3479static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3480{
d6a2f903
DCC
3481 u16 local_pkg, event_pkg;
3482
3483 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3484 int local_cpu = smp_processor_id();
3485
3486 event_pkg = topology_physical_package_id(event_cpu);
3487 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3488
3489 if (event_pkg == local_pkg)
3490 return local_cpu;
3491 }
3492
3493 return event_cpu;
3494}
3495
0793a61d 3496/*
cdd6c482 3497 * Cross CPU call to read the hardware event
0793a61d 3498 */
cdd6c482 3499static void __perf_event_read(void *info)
0793a61d 3500{
0492d4c5
PZ
3501 struct perf_read_data *data = info;
3502 struct perf_event *sub, *event = data->event;
cdd6c482 3503 struct perf_event_context *ctx = event->ctx;
108b02cf 3504 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3505 struct pmu *pmu = event->pmu;
621a01ea 3506
e1ac3614
PM
3507 /*
3508 * If this is a task context, we need to check whether it is
3509 * the current task context of this cpu. If not it has been
3510 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3511 * event->count would have been updated to a recent sample
3512 * when the event was scheduled out.
e1ac3614
PM
3513 */
3514 if (ctx->task && cpuctx->task_ctx != ctx)
3515 return;
3516
e625cce1 3517 raw_spin_lock(&ctx->lock);
0c1cbc18 3518 if (ctx->is_active & EVENT_TIME) {
542e72fc 3519 update_context_time(ctx);
e5d1367f
SE
3520 update_cgrp_time_from_event(event);
3521 }
0492d4c5 3522
0d3d73aa
PZ
3523 perf_event_update_time(event);
3524 if (data->group)
3525 perf_event_update_sibling_time(event);
0c1cbc18 3526
4a00c16e
SB
3527 if (event->state != PERF_EVENT_STATE_ACTIVE)
3528 goto unlock;
0492d4c5 3529
4a00c16e
SB
3530 if (!data->group) {
3531 pmu->read(event);
3532 data->ret = 0;
0492d4c5 3533 goto unlock;
4a00c16e
SB
3534 }
3535
3536 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3537
3538 pmu->read(event);
0492d4c5
PZ
3539
3540 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4a00c16e
SB
3541 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3542 /*
3543 * Use sibling's PMU rather than @event's since
3544 * sibling could be on different (eg: software) PMU.
3545 */
0492d4c5 3546 sub->pmu->read(sub);
4a00c16e 3547 }
0492d4c5 3548 }
4a00c16e
SB
3549
3550 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3551
3552unlock:
e625cce1 3553 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3554}
3555
b5e58793
PZ
3556static inline u64 perf_event_count(struct perf_event *event)
3557{
c39a0e2c 3558 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3559}
3560
ffe8690c
KX
3561/*
3562 * NMI-safe method to read a local event, that is an event that
3563 * is:
3564 * - either for the current task, or for this CPU
3565 * - does not have inherit set, for inherited task events
3566 * will not be local and we cannot read them atomically
3567 * - must not have a pmu::count method
3568 */
7d9285e8
YS
3569int perf_event_read_local(struct perf_event *event, u64 *value,
3570 u64 *enabled, u64 *running)
ffe8690c
KX
3571{
3572 unsigned long flags;
f91840a3 3573 int ret = 0;
ffe8690c
KX
3574
3575 /*
3576 * Disabling interrupts avoids all counter scheduling (context
3577 * switches, timer based rotation and IPIs).
3578 */
3579 local_irq_save(flags);
3580
ffe8690c
KX
3581 /*
3582 * It must not be an event with inherit set, we cannot read
3583 * all child counters from atomic context.
3584 */
f91840a3
AS
3585 if (event->attr.inherit) {
3586 ret = -EOPNOTSUPP;
3587 goto out;
3588 }
ffe8690c 3589
f91840a3
AS
3590 /* If this is a per-task event, it must be for current */
3591 if ((event->attach_state & PERF_ATTACH_TASK) &&
3592 event->hw.target != current) {
3593 ret = -EINVAL;
3594 goto out;
3595 }
3596
3597 /* If this is a per-CPU event, it must be for this CPU */
3598 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3599 event->cpu != smp_processor_id()) {
3600 ret = -EINVAL;
3601 goto out;
3602 }
ffe8690c
KX
3603
3604 /*
3605 * If the event is currently on this CPU, its either a per-task event,
3606 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3607 * oncpu == -1).
3608 */
3609 if (event->oncpu == smp_processor_id())
3610 event->pmu->read(event);
3611
f91840a3 3612 *value = local64_read(&event->count);
0d3d73aa
PZ
3613 if (enabled || running) {
3614 u64 now = event->shadow_ctx_time + perf_clock();
3615 u64 __enabled, __running;
3616
3617 __perf_update_times(event, now, &__enabled, &__running);
3618 if (enabled)
3619 *enabled = __enabled;
3620 if (running)
3621 *running = __running;
3622 }
f91840a3 3623out:
ffe8690c
KX
3624 local_irq_restore(flags);
3625
f91840a3 3626 return ret;
ffe8690c
KX
3627}
3628
7d88962e 3629static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3630{
0c1cbc18 3631 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 3632 int event_cpu, ret = 0;
7d88962e 3633
0793a61d 3634 /*
cdd6c482
IM
3635 * If event is enabled and currently active on a CPU, update the
3636 * value in the event structure:
0793a61d 3637 */
0c1cbc18
PZ
3638again:
3639 if (state == PERF_EVENT_STATE_ACTIVE) {
3640 struct perf_read_data data;
3641
3642 /*
3643 * Orders the ->state and ->oncpu loads such that if we see
3644 * ACTIVE we must also see the right ->oncpu.
3645 *
3646 * Matches the smp_wmb() from event_sched_in().
3647 */
3648 smp_rmb();
d6a2f903 3649
451d24d1
PZ
3650 event_cpu = READ_ONCE(event->oncpu);
3651 if ((unsigned)event_cpu >= nr_cpu_ids)
3652 return 0;
3653
0c1cbc18
PZ
3654 data = (struct perf_read_data){
3655 .event = event,
3656 .group = group,
3657 .ret = 0,
3658 };
3659
451d24d1
PZ
3660 preempt_disable();
3661 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3662
58763148
PZ
3663 /*
3664 * Purposely ignore the smp_call_function_single() return
3665 * value.
3666 *
451d24d1 3667 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3668 * scheduled out and that will have updated the event count.
3669 *
3670 * Therefore, either way, we'll have an up-to-date event count
3671 * after this.
3672 */
451d24d1
PZ
3673 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3674 preempt_enable();
58763148 3675 ret = data.ret;
0c1cbc18
PZ
3676
3677 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3678 struct perf_event_context *ctx = event->ctx;
3679 unsigned long flags;
3680
e625cce1 3681 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
3682 state = event->state;
3683 if (state != PERF_EVENT_STATE_INACTIVE) {
3684 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3685 goto again;
3686 }
3687
c530ccd9 3688 /*
0c1cbc18
PZ
3689 * May read while context is not active (e.g., thread is
3690 * blocked), in that case we cannot update context time
c530ccd9 3691 */
0c1cbc18 3692 if (ctx->is_active & EVENT_TIME) {
c530ccd9 3693 update_context_time(ctx);
e5d1367f
SE
3694 update_cgrp_time_from_event(event);
3695 }
0c1cbc18 3696
0d3d73aa 3697 perf_event_update_time(event);
0492d4c5 3698 if (group)
0d3d73aa 3699 perf_event_update_sibling_time(event);
e625cce1 3700 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3701 }
7d88962e
SB
3702
3703 return ret;
0793a61d
TG
3704}
3705
a63eaf34 3706/*
cdd6c482 3707 * Initialize the perf_event context in a task_struct:
a63eaf34 3708 */
eb184479 3709static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3710{
e625cce1 3711 raw_spin_lock_init(&ctx->lock);
a63eaf34 3712 mutex_init(&ctx->mutex);
2fde4f94 3713 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3714 INIT_LIST_HEAD(&ctx->pinned_groups);
3715 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3716 INIT_LIST_HEAD(&ctx->event_list);
3717 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3718}
3719
3720static struct perf_event_context *
3721alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3722{
3723 struct perf_event_context *ctx;
3724
3725 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3726 if (!ctx)
3727 return NULL;
3728
3729 __perf_event_init_context(ctx);
3730 if (task) {
3731 ctx->task = task;
3732 get_task_struct(task);
0793a61d 3733 }
eb184479
PZ
3734 ctx->pmu = pmu;
3735
3736 return ctx;
a63eaf34
PM
3737}
3738
2ebd4ffb
MH
3739static struct task_struct *
3740find_lively_task_by_vpid(pid_t vpid)
3741{
3742 struct task_struct *task;
0793a61d
TG
3743
3744 rcu_read_lock();
2ebd4ffb 3745 if (!vpid)
0793a61d
TG
3746 task = current;
3747 else
2ebd4ffb 3748 task = find_task_by_vpid(vpid);
0793a61d
TG
3749 if (task)
3750 get_task_struct(task);
3751 rcu_read_unlock();
3752
3753 if (!task)
3754 return ERR_PTR(-ESRCH);
3755
2ebd4ffb 3756 return task;
2ebd4ffb
MH
3757}
3758
fe4b04fa
PZ
3759/*
3760 * Returns a matching context with refcount and pincount.
3761 */
108b02cf 3762static struct perf_event_context *
4af57ef2
YZ
3763find_get_context(struct pmu *pmu, struct task_struct *task,
3764 struct perf_event *event)
0793a61d 3765{
211de6eb 3766 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3767 struct perf_cpu_context *cpuctx;
4af57ef2 3768 void *task_ctx_data = NULL;
25346b93 3769 unsigned long flags;
8dc85d54 3770 int ctxn, err;
4af57ef2 3771 int cpu = event->cpu;
0793a61d 3772
22a4ec72 3773 if (!task) {
cdd6c482 3774 /* Must be root to operate on a CPU event: */
0764771d 3775 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3776 return ERR_PTR(-EACCES);
3777
108b02cf 3778 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3779 ctx = &cpuctx->ctx;
c93f7669 3780 get_ctx(ctx);
fe4b04fa 3781 ++ctx->pin_count;
0793a61d 3782
0793a61d
TG
3783 return ctx;
3784 }
3785
8dc85d54
PZ
3786 err = -EINVAL;
3787 ctxn = pmu->task_ctx_nr;
3788 if (ctxn < 0)
3789 goto errout;
3790
4af57ef2
YZ
3791 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3792 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3793 if (!task_ctx_data) {
3794 err = -ENOMEM;
3795 goto errout;
3796 }
3797 }
3798
9ed6060d 3799retry:
8dc85d54 3800 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3801 if (ctx) {
211de6eb 3802 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3803 ++ctx->pin_count;
4af57ef2
YZ
3804
3805 if (task_ctx_data && !ctx->task_ctx_data) {
3806 ctx->task_ctx_data = task_ctx_data;
3807 task_ctx_data = NULL;
3808 }
e625cce1 3809 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3810
3811 if (clone_ctx)
3812 put_ctx(clone_ctx);
9137fb28 3813 } else {
eb184479 3814 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3815 err = -ENOMEM;
3816 if (!ctx)
3817 goto errout;
eb184479 3818
4af57ef2
YZ
3819 if (task_ctx_data) {
3820 ctx->task_ctx_data = task_ctx_data;
3821 task_ctx_data = NULL;
3822 }
3823
dbe08d82
ON
3824 err = 0;
3825 mutex_lock(&task->perf_event_mutex);
3826 /*
3827 * If it has already passed perf_event_exit_task().
3828 * we must see PF_EXITING, it takes this mutex too.
3829 */
3830 if (task->flags & PF_EXITING)
3831 err = -ESRCH;
3832 else if (task->perf_event_ctxp[ctxn])
3833 err = -EAGAIN;
fe4b04fa 3834 else {
9137fb28 3835 get_ctx(ctx);
fe4b04fa 3836 ++ctx->pin_count;
dbe08d82 3837 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3838 }
dbe08d82
ON
3839 mutex_unlock(&task->perf_event_mutex);
3840
3841 if (unlikely(err)) {
9137fb28 3842 put_ctx(ctx);
dbe08d82
ON
3843
3844 if (err == -EAGAIN)
3845 goto retry;
3846 goto errout;
a63eaf34
PM
3847 }
3848 }
3849
4af57ef2 3850 kfree(task_ctx_data);
0793a61d 3851 return ctx;
c93f7669 3852
9ed6060d 3853errout:
4af57ef2 3854 kfree(task_ctx_data);
c93f7669 3855 return ERR_PTR(err);
0793a61d
TG
3856}
3857
6fb2915d 3858static void perf_event_free_filter(struct perf_event *event);
2541517c 3859static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3860
cdd6c482 3861static void free_event_rcu(struct rcu_head *head)
592903cd 3862{
cdd6c482 3863 struct perf_event *event;
592903cd 3864
cdd6c482
IM
3865 event = container_of(head, struct perf_event, rcu_head);
3866 if (event->ns)
3867 put_pid_ns(event->ns);
6fb2915d 3868 perf_event_free_filter(event);
cdd6c482 3869 kfree(event);
592903cd
PZ
3870}
3871
b69cf536
PZ
3872static void ring_buffer_attach(struct perf_event *event,
3873 struct ring_buffer *rb);
925d519a 3874
f2fb6bef
KL
3875static void detach_sb_event(struct perf_event *event)
3876{
3877 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3878
3879 raw_spin_lock(&pel->lock);
3880 list_del_rcu(&event->sb_list);
3881 raw_spin_unlock(&pel->lock);
3882}
3883
a4f144eb 3884static bool is_sb_event(struct perf_event *event)
f2fb6bef 3885{
a4f144eb
DCC
3886 struct perf_event_attr *attr = &event->attr;
3887
f2fb6bef 3888 if (event->parent)
a4f144eb 3889 return false;
f2fb6bef
KL
3890
3891 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3892 return false;
f2fb6bef 3893
a4f144eb
DCC
3894 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3895 attr->comm || attr->comm_exec ||
3896 attr->task ||
3897 attr->context_switch)
3898 return true;
3899 return false;
3900}
3901
3902static void unaccount_pmu_sb_event(struct perf_event *event)
3903{
3904 if (is_sb_event(event))
3905 detach_sb_event(event);
f2fb6bef
KL
3906}
3907
4beb31f3 3908static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3909{
4beb31f3
FW
3910 if (event->parent)
3911 return;
3912
4beb31f3
FW
3913 if (is_cgroup_event(event))
3914 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3915}
925d519a 3916
555e0c1e
FW
3917#ifdef CONFIG_NO_HZ_FULL
3918static DEFINE_SPINLOCK(nr_freq_lock);
3919#endif
3920
3921static void unaccount_freq_event_nohz(void)
3922{
3923#ifdef CONFIG_NO_HZ_FULL
3924 spin_lock(&nr_freq_lock);
3925 if (atomic_dec_and_test(&nr_freq_events))
3926 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3927 spin_unlock(&nr_freq_lock);
3928#endif
3929}
3930
3931static void unaccount_freq_event(void)
3932{
3933 if (tick_nohz_full_enabled())
3934 unaccount_freq_event_nohz();
3935 else
3936 atomic_dec(&nr_freq_events);
3937}
3938
4beb31f3
FW
3939static void unaccount_event(struct perf_event *event)
3940{
25432ae9
PZ
3941 bool dec = false;
3942
4beb31f3
FW
3943 if (event->parent)
3944 return;
3945
3946 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3947 dec = true;
4beb31f3
FW
3948 if (event->attr.mmap || event->attr.mmap_data)
3949 atomic_dec(&nr_mmap_events);
3950 if (event->attr.comm)
3951 atomic_dec(&nr_comm_events);
e4222673
HB
3952 if (event->attr.namespaces)
3953 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
3954 if (event->attr.task)
3955 atomic_dec(&nr_task_events);
948b26b6 3956 if (event->attr.freq)
555e0c1e 3957 unaccount_freq_event();
45ac1403 3958 if (event->attr.context_switch) {
25432ae9 3959 dec = true;
45ac1403
AH
3960 atomic_dec(&nr_switch_events);
3961 }
4beb31f3 3962 if (is_cgroup_event(event))
25432ae9 3963 dec = true;
4beb31f3 3964 if (has_branch_stack(event))
25432ae9
PZ
3965 dec = true;
3966
9107c89e
PZ
3967 if (dec) {
3968 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3969 schedule_delayed_work(&perf_sched_work, HZ);
3970 }
4beb31f3
FW
3971
3972 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
3973
3974 unaccount_pmu_sb_event(event);
4beb31f3 3975}
925d519a 3976
9107c89e
PZ
3977static void perf_sched_delayed(struct work_struct *work)
3978{
3979 mutex_lock(&perf_sched_mutex);
3980 if (atomic_dec_and_test(&perf_sched_count))
3981 static_branch_disable(&perf_sched_events);
3982 mutex_unlock(&perf_sched_mutex);
3983}
3984
bed5b25a
AS
3985/*
3986 * The following implement mutual exclusion of events on "exclusive" pmus
3987 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3988 * at a time, so we disallow creating events that might conflict, namely:
3989 *
3990 * 1) cpu-wide events in the presence of per-task events,
3991 * 2) per-task events in the presence of cpu-wide events,
3992 * 3) two matching events on the same context.
3993 *
3994 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3995 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3996 */
3997static int exclusive_event_init(struct perf_event *event)
3998{
3999 struct pmu *pmu = event->pmu;
4000
4001 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4002 return 0;
4003
4004 /*
4005 * Prevent co-existence of per-task and cpu-wide events on the
4006 * same exclusive pmu.
4007 *
4008 * Negative pmu::exclusive_cnt means there are cpu-wide
4009 * events on this "exclusive" pmu, positive means there are
4010 * per-task events.
4011 *
4012 * Since this is called in perf_event_alloc() path, event::ctx
4013 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4014 * to mean "per-task event", because unlike other attach states it
4015 * never gets cleared.
4016 */
4017 if (event->attach_state & PERF_ATTACH_TASK) {
4018 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4019 return -EBUSY;
4020 } else {
4021 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4022 return -EBUSY;
4023 }
4024
4025 return 0;
4026}
4027
4028static void exclusive_event_destroy(struct perf_event *event)
4029{
4030 struct pmu *pmu = event->pmu;
4031
4032 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4033 return;
4034
4035 /* see comment in exclusive_event_init() */
4036 if (event->attach_state & PERF_ATTACH_TASK)
4037 atomic_dec(&pmu->exclusive_cnt);
4038 else
4039 atomic_inc(&pmu->exclusive_cnt);
4040}
4041
4042static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4043{
3bf6215a 4044 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4045 (e1->cpu == e2->cpu ||
4046 e1->cpu == -1 ||
4047 e2->cpu == -1))
4048 return true;
4049 return false;
4050}
4051
4052/* Called under the same ctx::mutex as perf_install_in_context() */
4053static bool exclusive_event_installable(struct perf_event *event,
4054 struct perf_event_context *ctx)
4055{
4056 struct perf_event *iter_event;
4057 struct pmu *pmu = event->pmu;
4058
4059 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4060 return true;
4061
4062 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4063 if (exclusive_event_match(iter_event, event))
4064 return false;
4065 }
4066
4067 return true;
4068}
4069
375637bc
AS
4070static void perf_addr_filters_splice(struct perf_event *event,
4071 struct list_head *head);
4072
683ede43 4073static void _free_event(struct perf_event *event)
f1600952 4074{
e360adbe 4075 irq_work_sync(&event->pending);
925d519a 4076
4beb31f3 4077 unaccount_event(event);
9ee318a7 4078
76369139 4079 if (event->rb) {
9bb5d40c
PZ
4080 /*
4081 * Can happen when we close an event with re-directed output.
4082 *
4083 * Since we have a 0 refcount, perf_mmap_close() will skip
4084 * over us; possibly making our ring_buffer_put() the last.
4085 */
4086 mutex_lock(&event->mmap_mutex);
b69cf536 4087 ring_buffer_attach(event, NULL);
9bb5d40c 4088 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4089 }
4090
e5d1367f
SE
4091 if (is_cgroup_event(event))
4092 perf_detach_cgroup(event);
4093
a0733e69
PZ
4094 if (!event->parent) {
4095 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4096 put_callchain_buffers();
4097 }
4098
4099 perf_event_free_bpf_prog(event);
375637bc
AS
4100 perf_addr_filters_splice(event, NULL);
4101 kfree(event->addr_filters_offs);
a0733e69
PZ
4102
4103 if (event->destroy)
4104 event->destroy(event);
4105
4106 if (event->ctx)
4107 put_ctx(event->ctx);
4108
62a92c8f
AS
4109 exclusive_event_destroy(event);
4110 module_put(event->pmu->module);
a0733e69
PZ
4111
4112 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4113}
4114
683ede43
PZ
4115/*
4116 * Used to free events which have a known refcount of 1, such as in error paths
4117 * where the event isn't exposed yet and inherited events.
4118 */
4119static void free_event(struct perf_event *event)
0793a61d 4120{
683ede43
PZ
4121 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4122 "unexpected event refcount: %ld; ptr=%p\n",
4123 atomic_long_read(&event->refcount), event)) {
4124 /* leak to avoid use-after-free */
4125 return;
4126 }
0793a61d 4127
683ede43 4128 _free_event(event);
0793a61d
TG
4129}
4130
a66a3052 4131/*
f8697762 4132 * Remove user event from the owner task.
a66a3052 4133 */
f8697762 4134static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4135{
8882135b 4136 struct task_struct *owner;
fb0459d7 4137
8882135b 4138 rcu_read_lock();
8882135b 4139 /*
f47c02c0
PZ
4140 * Matches the smp_store_release() in perf_event_exit_task(). If we
4141 * observe !owner it means the list deletion is complete and we can
4142 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4143 * owner->perf_event_mutex.
4144 */
506458ef 4145 owner = READ_ONCE(event->owner);
8882135b
PZ
4146 if (owner) {
4147 /*
4148 * Since delayed_put_task_struct() also drops the last
4149 * task reference we can safely take a new reference
4150 * while holding the rcu_read_lock().
4151 */
4152 get_task_struct(owner);
4153 }
4154 rcu_read_unlock();
4155
4156 if (owner) {
f63a8daa
PZ
4157 /*
4158 * If we're here through perf_event_exit_task() we're already
4159 * holding ctx->mutex which would be an inversion wrt. the
4160 * normal lock order.
4161 *
4162 * However we can safely take this lock because its the child
4163 * ctx->mutex.
4164 */
4165 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4166
8882135b
PZ
4167 /*
4168 * We have to re-check the event->owner field, if it is cleared
4169 * we raced with perf_event_exit_task(), acquiring the mutex
4170 * ensured they're done, and we can proceed with freeing the
4171 * event.
4172 */
f47c02c0 4173 if (event->owner) {
8882135b 4174 list_del_init(&event->owner_entry);
f47c02c0
PZ
4175 smp_store_release(&event->owner, NULL);
4176 }
8882135b
PZ
4177 mutex_unlock(&owner->perf_event_mutex);
4178 put_task_struct(owner);
4179 }
f8697762
JO
4180}
4181
f8697762
JO
4182static void put_event(struct perf_event *event)
4183{
f8697762
JO
4184 if (!atomic_long_dec_and_test(&event->refcount))
4185 return;
4186
c6e5b732
PZ
4187 _free_event(event);
4188}
4189
4190/*
4191 * Kill an event dead; while event:refcount will preserve the event
4192 * object, it will not preserve its functionality. Once the last 'user'
4193 * gives up the object, we'll destroy the thing.
4194 */
4195int perf_event_release_kernel(struct perf_event *event)
4196{
a4f4bb6d 4197 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4198 struct perf_event *child, *tmp;
4199
a4f4bb6d
PZ
4200 /*
4201 * If we got here through err_file: fput(event_file); we will not have
4202 * attached to a context yet.
4203 */
4204 if (!ctx) {
4205 WARN_ON_ONCE(event->attach_state &
4206 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4207 goto no_ctx;
4208 }
4209
f8697762
JO
4210 if (!is_kernel_event(event))
4211 perf_remove_from_owner(event);
8882135b 4212
5fa7c8ec 4213 ctx = perf_event_ctx_lock(event);
a83fe28e 4214 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4215 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4216
a69b0ca4 4217 raw_spin_lock_irq(&ctx->lock);
683ede43 4218 /*
d8a8cfc7 4219 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4220 * anymore.
683ede43 4221 *
a69b0ca4
PZ
4222 * Anybody acquiring event->child_mutex after the below loop _must_
4223 * also see this, most importantly inherit_event() which will avoid
4224 * placing more children on the list.
683ede43 4225 *
c6e5b732
PZ
4226 * Thus this guarantees that we will in fact observe and kill _ALL_
4227 * child events.
683ede43 4228 */
a69b0ca4
PZ
4229 event->state = PERF_EVENT_STATE_DEAD;
4230 raw_spin_unlock_irq(&ctx->lock);
4231
4232 perf_event_ctx_unlock(event, ctx);
683ede43 4233
c6e5b732
PZ
4234again:
4235 mutex_lock(&event->child_mutex);
4236 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4237
c6e5b732
PZ
4238 /*
4239 * Cannot change, child events are not migrated, see the
4240 * comment with perf_event_ctx_lock_nested().
4241 */
506458ef 4242 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4243 /*
4244 * Since child_mutex nests inside ctx::mutex, we must jump
4245 * through hoops. We start by grabbing a reference on the ctx.
4246 *
4247 * Since the event cannot get freed while we hold the
4248 * child_mutex, the context must also exist and have a !0
4249 * reference count.
4250 */
4251 get_ctx(ctx);
4252
4253 /*
4254 * Now that we have a ctx ref, we can drop child_mutex, and
4255 * acquire ctx::mutex without fear of it going away. Then we
4256 * can re-acquire child_mutex.
4257 */
4258 mutex_unlock(&event->child_mutex);
4259 mutex_lock(&ctx->mutex);
4260 mutex_lock(&event->child_mutex);
4261
4262 /*
4263 * Now that we hold ctx::mutex and child_mutex, revalidate our
4264 * state, if child is still the first entry, it didn't get freed
4265 * and we can continue doing so.
4266 */
4267 tmp = list_first_entry_or_null(&event->child_list,
4268 struct perf_event, child_list);
4269 if (tmp == child) {
4270 perf_remove_from_context(child, DETACH_GROUP);
4271 list_del(&child->child_list);
4272 free_event(child);
4273 /*
4274 * This matches the refcount bump in inherit_event();
4275 * this can't be the last reference.
4276 */
4277 put_event(event);
4278 }
4279
4280 mutex_unlock(&event->child_mutex);
4281 mutex_unlock(&ctx->mutex);
4282 put_ctx(ctx);
4283 goto again;
4284 }
4285 mutex_unlock(&event->child_mutex);
4286
a4f4bb6d
PZ
4287no_ctx:
4288 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4289 return 0;
4290}
4291EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4292
8b10c5e2
PZ
4293/*
4294 * Called when the last reference to the file is gone.
4295 */
a6fa941d
AV
4296static int perf_release(struct inode *inode, struct file *file)
4297{
c6e5b732 4298 perf_event_release_kernel(file->private_data);
a6fa941d 4299 return 0;
fb0459d7 4300}
fb0459d7 4301
ca0dd44c 4302static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4303{
cdd6c482 4304 struct perf_event *child;
e53c0994
PZ
4305 u64 total = 0;
4306
59ed446f
PZ
4307 *enabled = 0;
4308 *running = 0;
4309
6f10581a 4310 mutex_lock(&event->child_mutex);
01add3ea 4311
7d88962e 4312 (void)perf_event_read(event, false);
01add3ea
SB
4313 total += perf_event_count(event);
4314
59ed446f
PZ
4315 *enabled += event->total_time_enabled +
4316 atomic64_read(&event->child_total_time_enabled);
4317 *running += event->total_time_running +
4318 atomic64_read(&event->child_total_time_running);
4319
4320 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4321 (void)perf_event_read(child, false);
01add3ea 4322 total += perf_event_count(child);
59ed446f
PZ
4323 *enabled += child->total_time_enabled;
4324 *running += child->total_time_running;
4325 }
6f10581a 4326 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4327
4328 return total;
4329}
ca0dd44c
PZ
4330
4331u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4332{
4333 struct perf_event_context *ctx;
4334 u64 count;
4335
4336 ctx = perf_event_ctx_lock(event);
4337 count = __perf_event_read_value(event, enabled, running);
4338 perf_event_ctx_unlock(event, ctx);
4339
4340 return count;
4341}
fb0459d7 4342EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4343
7d88962e 4344static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4345 u64 read_format, u64 *values)
3dab77fb 4346{
2aeb1883 4347 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4348 struct perf_event *sub;
2aeb1883 4349 unsigned long flags;
fa8c2693 4350 int n = 1; /* skip @nr */
7d88962e 4351 int ret;
f63a8daa 4352
7d88962e
SB
4353 ret = perf_event_read(leader, true);
4354 if (ret)
4355 return ret;
abf4868b 4356
a9cd8194
PZ
4357 raw_spin_lock_irqsave(&ctx->lock, flags);
4358
fa8c2693
PZ
4359 /*
4360 * Since we co-schedule groups, {enabled,running} times of siblings
4361 * will be identical to those of the leader, so we only publish one
4362 * set.
4363 */
4364 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4365 values[n++] += leader->total_time_enabled +
4366 atomic64_read(&leader->child_total_time_enabled);
4367 }
3dab77fb 4368
fa8c2693
PZ
4369 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4370 values[n++] += leader->total_time_running +
4371 atomic64_read(&leader->child_total_time_running);
4372 }
4373
4374 /*
4375 * Write {count,id} tuples for every sibling.
4376 */
4377 values[n++] += perf_event_count(leader);
abf4868b
PZ
4378 if (read_format & PERF_FORMAT_ID)
4379 values[n++] = primary_event_id(leader);
3dab77fb 4380
fa8c2693
PZ
4381 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4382 values[n++] += perf_event_count(sub);
4383 if (read_format & PERF_FORMAT_ID)
4384 values[n++] = primary_event_id(sub);
4385 }
7d88962e 4386
2aeb1883 4387 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4388 return 0;
fa8c2693 4389}
3dab77fb 4390
fa8c2693
PZ
4391static int perf_read_group(struct perf_event *event,
4392 u64 read_format, char __user *buf)
4393{
4394 struct perf_event *leader = event->group_leader, *child;
4395 struct perf_event_context *ctx = leader->ctx;
7d88962e 4396 int ret;
fa8c2693 4397 u64 *values;
3dab77fb 4398
fa8c2693 4399 lockdep_assert_held(&ctx->mutex);
3dab77fb 4400
fa8c2693
PZ
4401 values = kzalloc(event->read_size, GFP_KERNEL);
4402 if (!values)
4403 return -ENOMEM;
3dab77fb 4404
fa8c2693
PZ
4405 values[0] = 1 + leader->nr_siblings;
4406
4407 /*
4408 * By locking the child_mutex of the leader we effectively
4409 * lock the child list of all siblings.. XXX explain how.
4410 */
4411 mutex_lock(&leader->child_mutex);
abf4868b 4412
7d88962e
SB
4413 ret = __perf_read_group_add(leader, read_format, values);
4414 if (ret)
4415 goto unlock;
4416
4417 list_for_each_entry(child, &leader->child_list, child_list) {
4418 ret = __perf_read_group_add(child, read_format, values);
4419 if (ret)
4420 goto unlock;
4421 }
abf4868b 4422
fa8c2693 4423 mutex_unlock(&leader->child_mutex);
abf4868b 4424
7d88962e 4425 ret = event->read_size;
fa8c2693
PZ
4426 if (copy_to_user(buf, values, event->read_size))
4427 ret = -EFAULT;
7d88962e 4428 goto out;
fa8c2693 4429
7d88962e
SB
4430unlock:
4431 mutex_unlock(&leader->child_mutex);
4432out:
fa8c2693 4433 kfree(values);
abf4868b 4434 return ret;
3dab77fb
PZ
4435}
4436
b15f495b 4437static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4438 u64 read_format, char __user *buf)
4439{
59ed446f 4440 u64 enabled, running;
3dab77fb
PZ
4441 u64 values[4];
4442 int n = 0;
4443
ca0dd44c 4444 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4445 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4446 values[n++] = enabled;
4447 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4448 values[n++] = running;
3dab77fb 4449 if (read_format & PERF_FORMAT_ID)
cdd6c482 4450 values[n++] = primary_event_id(event);
3dab77fb
PZ
4451
4452 if (copy_to_user(buf, values, n * sizeof(u64)))
4453 return -EFAULT;
4454
4455 return n * sizeof(u64);
4456}
4457
dc633982
JO
4458static bool is_event_hup(struct perf_event *event)
4459{
4460 bool no_children;
4461
a69b0ca4 4462 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4463 return false;
4464
4465 mutex_lock(&event->child_mutex);
4466 no_children = list_empty(&event->child_list);
4467 mutex_unlock(&event->child_mutex);
4468 return no_children;
4469}
4470
0793a61d 4471/*
cdd6c482 4472 * Read the performance event - simple non blocking version for now
0793a61d
TG
4473 */
4474static ssize_t
b15f495b 4475__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4476{
cdd6c482 4477 u64 read_format = event->attr.read_format;
3dab77fb 4478 int ret;
0793a61d 4479
3b6f9e5c 4480 /*
cdd6c482 4481 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4482 * error state (i.e. because it was pinned but it couldn't be
4483 * scheduled on to the CPU at some point).
4484 */
cdd6c482 4485 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4486 return 0;
4487
c320c7b7 4488 if (count < event->read_size)
3dab77fb
PZ
4489 return -ENOSPC;
4490
cdd6c482 4491 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4492 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4493 ret = perf_read_group(event, read_format, buf);
3dab77fb 4494 else
b15f495b 4495 ret = perf_read_one(event, read_format, buf);
0793a61d 4496
3dab77fb 4497 return ret;
0793a61d
TG
4498}
4499
0793a61d
TG
4500static ssize_t
4501perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4502{
cdd6c482 4503 struct perf_event *event = file->private_data;
f63a8daa
PZ
4504 struct perf_event_context *ctx;
4505 int ret;
0793a61d 4506
f63a8daa 4507 ctx = perf_event_ctx_lock(event);
b15f495b 4508 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4509 perf_event_ctx_unlock(event, ctx);
4510
4511 return ret;
0793a61d
TG
4512}
4513
4514static unsigned int perf_poll(struct file *file, poll_table *wait)
4515{
cdd6c482 4516 struct perf_event *event = file->private_data;
76369139 4517 struct ring_buffer *rb;
61b67684 4518 unsigned int events = POLLHUP;
c7138f37 4519
e708d7ad 4520 poll_wait(file, &event->waitq, wait);
179033b3 4521
dc633982 4522 if (is_event_hup(event))
179033b3 4523 return events;
c7138f37 4524
10c6db11 4525 /*
9bb5d40c
PZ
4526 * Pin the event->rb by taking event->mmap_mutex; otherwise
4527 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4528 */
4529 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4530 rb = event->rb;
4531 if (rb)
76369139 4532 events = atomic_xchg(&rb->poll, 0);
10c6db11 4533 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4534 return events;
4535}
4536
f63a8daa 4537static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4538{
7d88962e 4539 (void)perf_event_read(event, false);
e7850595 4540 local64_set(&event->count, 0);
cdd6c482 4541 perf_event_update_userpage(event);
3df5edad
PZ
4542}
4543
c93f7669 4544/*
cdd6c482
IM
4545 * Holding the top-level event's child_mutex means that any
4546 * descendant process that has inherited this event will block
8ba289b8 4547 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4548 * task existence requirements of perf_event_enable/disable.
c93f7669 4549 */
cdd6c482
IM
4550static void perf_event_for_each_child(struct perf_event *event,
4551 void (*func)(struct perf_event *))
3df5edad 4552{
cdd6c482 4553 struct perf_event *child;
3df5edad 4554
cdd6c482 4555 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4556
cdd6c482
IM
4557 mutex_lock(&event->child_mutex);
4558 func(event);
4559 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4560 func(child);
cdd6c482 4561 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4562}
4563
cdd6c482
IM
4564static void perf_event_for_each(struct perf_event *event,
4565 void (*func)(struct perf_event *))
3df5edad 4566{
cdd6c482
IM
4567 struct perf_event_context *ctx = event->ctx;
4568 struct perf_event *sibling;
3df5edad 4569
f63a8daa
PZ
4570 lockdep_assert_held(&ctx->mutex);
4571
cdd6c482 4572 event = event->group_leader;
75f937f2 4573
cdd6c482 4574 perf_event_for_each_child(event, func);
cdd6c482 4575 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4576 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4577}
4578
fae3fde6
PZ
4579static void __perf_event_period(struct perf_event *event,
4580 struct perf_cpu_context *cpuctx,
4581 struct perf_event_context *ctx,
4582 void *info)
c7999c6f 4583{
fae3fde6 4584 u64 value = *((u64 *)info);
c7999c6f 4585 bool active;
08247e31 4586
cdd6c482 4587 if (event->attr.freq) {
cdd6c482 4588 event->attr.sample_freq = value;
08247e31 4589 } else {
cdd6c482
IM
4590 event->attr.sample_period = value;
4591 event->hw.sample_period = value;
08247e31 4592 }
bad7192b
PZ
4593
4594 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4595 if (active) {
4596 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4597 /*
4598 * We could be throttled; unthrottle now to avoid the tick
4599 * trying to unthrottle while we already re-started the event.
4600 */
4601 if (event->hw.interrupts == MAX_INTERRUPTS) {
4602 event->hw.interrupts = 0;
4603 perf_log_throttle(event, 1);
4604 }
bad7192b
PZ
4605 event->pmu->stop(event, PERF_EF_UPDATE);
4606 }
4607
4608 local64_set(&event->hw.period_left, 0);
4609
4610 if (active) {
4611 event->pmu->start(event, PERF_EF_RELOAD);
4612 perf_pmu_enable(ctx->pmu);
4613 }
c7999c6f
PZ
4614}
4615
4616static int perf_event_period(struct perf_event *event, u64 __user *arg)
4617{
c7999c6f
PZ
4618 u64 value;
4619
4620 if (!is_sampling_event(event))
4621 return -EINVAL;
4622
4623 if (copy_from_user(&value, arg, sizeof(value)))
4624 return -EFAULT;
4625
4626 if (!value)
4627 return -EINVAL;
4628
4629 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4630 return -EINVAL;
4631
fae3fde6 4632 event_function_call(event, __perf_event_period, &value);
08247e31 4633
c7999c6f 4634 return 0;
08247e31
PZ
4635}
4636
ac9721f3
PZ
4637static const struct file_operations perf_fops;
4638
2903ff01 4639static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4640{
2903ff01
AV
4641 struct fd f = fdget(fd);
4642 if (!f.file)
4643 return -EBADF;
ac9721f3 4644
2903ff01
AV
4645 if (f.file->f_op != &perf_fops) {
4646 fdput(f);
4647 return -EBADF;
ac9721f3 4648 }
2903ff01
AV
4649 *p = f;
4650 return 0;
ac9721f3
PZ
4651}
4652
4653static int perf_event_set_output(struct perf_event *event,
4654 struct perf_event *output_event);
6fb2915d 4655static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4656static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4657
f63a8daa 4658static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4659{
cdd6c482 4660 void (*func)(struct perf_event *);
3df5edad 4661 u32 flags = arg;
d859e29f
PM
4662
4663 switch (cmd) {
cdd6c482 4664 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4665 func = _perf_event_enable;
d859e29f 4666 break;
cdd6c482 4667 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4668 func = _perf_event_disable;
79f14641 4669 break;
cdd6c482 4670 case PERF_EVENT_IOC_RESET:
f63a8daa 4671 func = _perf_event_reset;
6de6a7b9 4672 break;
3df5edad 4673
cdd6c482 4674 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4675 return _perf_event_refresh(event, arg);
08247e31 4676
cdd6c482
IM
4677 case PERF_EVENT_IOC_PERIOD:
4678 return perf_event_period(event, (u64 __user *)arg);
08247e31 4679
cf4957f1
JO
4680 case PERF_EVENT_IOC_ID:
4681 {
4682 u64 id = primary_event_id(event);
4683
4684 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4685 return -EFAULT;
4686 return 0;
4687 }
4688
cdd6c482 4689 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4690 {
ac9721f3 4691 int ret;
ac9721f3 4692 if (arg != -1) {
2903ff01
AV
4693 struct perf_event *output_event;
4694 struct fd output;
4695 ret = perf_fget_light(arg, &output);
4696 if (ret)
4697 return ret;
4698 output_event = output.file->private_data;
4699 ret = perf_event_set_output(event, output_event);
4700 fdput(output);
4701 } else {
4702 ret = perf_event_set_output(event, NULL);
ac9721f3 4703 }
ac9721f3
PZ
4704 return ret;
4705 }
a4be7c27 4706
6fb2915d
LZ
4707 case PERF_EVENT_IOC_SET_FILTER:
4708 return perf_event_set_filter(event, (void __user *)arg);
4709
2541517c
AS
4710 case PERF_EVENT_IOC_SET_BPF:
4711 return perf_event_set_bpf_prog(event, arg);
4712
86e7972f
WN
4713 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4714 struct ring_buffer *rb;
4715
4716 rcu_read_lock();
4717 rb = rcu_dereference(event->rb);
4718 if (!rb || !rb->nr_pages) {
4719 rcu_read_unlock();
4720 return -EINVAL;
4721 }
4722 rb_toggle_paused(rb, !!arg);
4723 rcu_read_unlock();
4724 return 0;
4725 }
d859e29f 4726 default:
3df5edad 4727 return -ENOTTY;
d859e29f 4728 }
3df5edad
PZ
4729
4730 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4731 perf_event_for_each(event, func);
3df5edad 4732 else
cdd6c482 4733 perf_event_for_each_child(event, func);
3df5edad
PZ
4734
4735 return 0;
d859e29f
PM
4736}
4737
f63a8daa
PZ
4738static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4739{
4740 struct perf_event *event = file->private_data;
4741 struct perf_event_context *ctx;
4742 long ret;
4743
4744 ctx = perf_event_ctx_lock(event);
4745 ret = _perf_ioctl(event, cmd, arg);
4746 perf_event_ctx_unlock(event, ctx);
4747
4748 return ret;
4749}
4750
b3f20785
PM
4751#ifdef CONFIG_COMPAT
4752static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4753 unsigned long arg)
4754{
4755 switch (_IOC_NR(cmd)) {
4756 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4757 case _IOC_NR(PERF_EVENT_IOC_ID):
4758 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4759 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4760 cmd &= ~IOCSIZE_MASK;
4761 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4762 }
4763 break;
4764 }
4765 return perf_ioctl(file, cmd, arg);
4766}
4767#else
4768# define perf_compat_ioctl NULL
4769#endif
4770
cdd6c482 4771int perf_event_task_enable(void)
771d7cde 4772{
f63a8daa 4773 struct perf_event_context *ctx;
cdd6c482 4774 struct perf_event *event;
771d7cde 4775
cdd6c482 4776 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4777 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4778 ctx = perf_event_ctx_lock(event);
4779 perf_event_for_each_child(event, _perf_event_enable);
4780 perf_event_ctx_unlock(event, ctx);
4781 }
cdd6c482 4782 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4783
4784 return 0;
4785}
4786
cdd6c482 4787int perf_event_task_disable(void)
771d7cde 4788{
f63a8daa 4789 struct perf_event_context *ctx;
cdd6c482 4790 struct perf_event *event;
771d7cde 4791
cdd6c482 4792 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4793 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4794 ctx = perf_event_ctx_lock(event);
4795 perf_event_for_each_child(event, _perf_event_disable);
4796 perf_event_ctx_unlock(event, ctx);
4797 }
cdd6c482 4798 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4799
4800 return 0;
4801}
4802
cdd6c482 4803static int perf_event_index(struct perf_event *event)
194002b2 4804{
a4eaf7f1
PZ
4805 if (event->hw.state & PERF_HES_STOPPED)
4806 return 0;
4807
cdd6c482 4808 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4809 return 0;
4810
35edc2a5 4811 return event->pmu->event_idx(event);
194002b2
PZ
4812}
4813
c4794295 4814static void calc_timer_values(struct perf_event *event,
e3f3541c 4815 u64 *now,
7f310a5d
EM
4816 u64 *enabled,
4817 u64 *running)
c4794295 4818{
e3f3541c 4819 u64 ctx_time;
c4794295 4820
e3f3541c
PZ
4821 *now = perf_clock();
4822 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 4823 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
4824}
4825
fa731587
PZ
4826static void perf_event_init_userpage(struct perf_event *event)
4827{
4828 struct perf_event_mmap_page *userpg;
4829 struct ring_buffer *rb;
4830
4831 rcu_read_lock();
4832 rb = rcu_dereference(event->rb);
4833 if (!rb)
4834 goto unlock;
4835
4836 userpg = rb->user_page;
4837
4838 /* Allow new userspace to detect that bit 0 is deprecated */
4839 userpg->cap_bit0_is_deprecated = 1;
4840 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4841 userpg->data_offset = PAGE_SIZE;
4842 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4843
4844unlock:
4845 rcu_read_unlock();
4846}
4847
c1317ec2
AL
4848void __weak arch_perf_update_userpage(
4849 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4850{
4851}
4852
38ff667b
PZ
4853/*
4854 * Callers need to ensure there can be no nesting of this function, otherwise
4855 * the seqlock logic goes bad. We can not serialize this because the arch
4856 * code calls this from NMI context.
4857 */
cdd6c482 4858void perf_event_update_userpage(struct perf_event *event)
37d81828 4859{
cdd6c482 4860 struct perf_event_mmap_page *userpg;
76369139 4861 struct ring_buffer *rb;
e3f3541c 4862 u64 enabled, running, now;
38ff667b
PZ
4863
4864 rcu_read_lock();
5ec4c599
PZ
4865 rb = rcu_dereference(event->rb);
4866 if (!rb)
4867 goto unlock;
4868
0d641208
EM
4869 /*
4870 * compute total_time_enabled, total_time_running
4871 * based on snapshot values taken when the event
4872 * was last scheduled in.
4873 *
4874 * we cannot simply called update_context_time()
4875 * because of locking issue as we can be called in
4876 * NMI context
4877 */
e3f3541c 4878 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4879
76369139 4880 userpg = rb->user_page;
7b732a75
PZ
4881 /*
4882 * Disable preemption so as to not let the corresponding user-space
4883 * spin too long if we get preempted.
4884 */
4885 preempt_disable();
37d81828 4886 ++userpg->lock;
92f22a38 4887 barrier();
cdd6c482 4888 userpg->index = perf_event_index(event);
b5e58793 4889 userpg->offset = perf_event_count(event);
365a4038 4890 if (userpg->index)
e7850595 4891 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4892
0d641208 4893 userpg->time_enabled = enabled +
cdd6c482 4894 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4895
0d641208 4896 userpg->time_running = running +
cdd6c482 4897 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4898
c1317ec2 4899 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4900
92f22a38 4901 barrier();
37d81828 4902 ++userpg->lock;
7b732a75 4903 preempt_enable();
38ff667b 4904unlock:
7b732a75 4905 rcu_read_unlock();
37d81828
PM
4906}
4907
11bac800 4908static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 4909{
11bac800 4910 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 4911 struct ring_buffer *rb;
906010b2
PZ
4912 int ret = VM_FAULT_SIGBUS;
4913
4914 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4915 if (vmf->pgoff == 0)
4916 ret = 0;
4917 return ret;
4918 }
4919
4920 rcu_read_lock();
76369139
FW
4921 rb = rcu_dereference(event->rb);
4922 if (!rb)
906010b2
PZ
4923 goto unlock;
4924
4925 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4926 goto unlock;
4927
76369139 4928 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4929 if (!vmf->page)
4930 goto unlock;
4931
4932 get_page(vmf->page);
11bac800 4933 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
4934 vmf->page->index = vmf->pgoff;
4935
4936 ret = 0;
4937unlock:
4938 rcu_read_unlock();
4939
4940 return ret;
4941}
4942
10c6db11
PZ
4943static void ring_buffer_attach(struct perf_event *event,
4944 struct ring_buffer *rb)
4945{
b69cf536 4946 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4947 unsigned long flags;
4948
b69cf536
PZ
4949 if (event->rb) {
4950 /*
4951 * Should be impossible, we set this when removing
4952 * event->rb_entry and wait/clear when adding event->rb_entry.
4953 */
4954 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4955
b69cf536 4956 old_rb = event->rb;
b69cf536
PZ
4957 spin_lock_irqsave(&old_rb->event_lock, flags);
4958 list_del_rcu(&event->rb_entry);
4959 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4960
2f993cf0
ON
4961 event->rcu_batches = get_state_synchronize_rcu();
4962 event->rcu_pending = 1;
b69cf536 4963 }
10c6db11 4964
b69cf536 4965 if (rb) {
2f993cf0
ON
4966 if (event->rcu_pending) {
4967 cond_synchronize_rcu(event->rcu_batches);
4968 event->rcu_pending = 0;
4969 }
4970
b69cf536
PZ
4971 spin_lock_irqsave(&rb->event_lock, flags);
4972 list_add_rcu(&event->rb_entry, &rb->event_list);
4973 spin_unlock_irqrestore(&rb->event_lock, flags);
4974 }
4975
767ae086
AS
4976 /*
4977 * Avoid racing with perf_mmap_close(AUX): stop the event
4978 * before swizzling the event::rb pointer; if it's getting
4979 * unmapped, its aux_mmap_count will be 0 and it won't
4980 * restart. See the comment in __perf_pmu_output_stop().
4981 *
4982 * Data will inevitably be lost when set_output is done in
4983 * mid-air, but then again, whoever does it like this is
4984 * not in for the data anyway.
4985 */
4986 if (has_aux(event))
4987 perf_event_stop(event, 0);
4988
b69cf536
PZ
4989 rcu_assign_pointer(event->rb, rb);
4990
4991 if (old_rb) {
4992 ring_buffer_put(old_rb);
4993 /*
4994 * Since we detached before setting the new rb, so that we
4995 * could attach the new rb, we could have missed a wakeup.
4996 * Provide it now.
4997 */
4998 wake_up_all(&event->waitq);
4999 }
10c6db11
PZ
5000}
5001
5002static void ring_buffer_wakeup(struct perf_event *event)
5003{
5004 struct ring_buffer *rb;
5005
5006 rcu_read_lock();
5007 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5008 if (rb) {
5009 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5010 wake_up_all(&event->waitq);
5011 }
10c6db11
PZ
5012 rcu_read_unlock();
5013}
5014
fdc26706 5015struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5016{
76369139 5017 struct ring_buffer *rb;
7b732a75 5018
ac9721f3 5019 rcu_read_lock();
76369139
FW
5020 rb = rcu_dereference(event->rb);
5021 if (rb) {
5022 if (!atomic_inc_not_zero(&rb->refcount))
5023 rb = NULL;
ac9721f3
PZ
5024 }
5025 rcu_read_unlock();
5026
76369139 5027 return rb;
ac9721f3
PZ
5028}
5029
fdc26706 5030void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5031{
76369139 5032 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5033 return;
7b732a75 5034
9bb5d40c 5035 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5036
76369139 5037 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5038}
5039
5040static void perf_mmap_open(struct vm_area_struct *vma)
5041{
cdd6c482 5042 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5043
cdd6c482 5044 atomic_inc(&event->mmap_count);
9bb5d40c 5045 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5046
45bfb2e5
PZ
5047 if (vma->vm_pgoff)
5048 atomic_inc(&event->rb->aux_mmap_count);
5049
1e0fb9ec 5050 if (event->pmu->event_mapped)
bfe33492 5051 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5052}
5053
95ff4ca2
AS
5054static void perf_pmu_output_stop(struct perf_event *event);
5055
9bb5d40c
PZ
5056/*
5057 * A buffer can be mmap()ed multiple times; either directly through the same
5058 * event, or through other events by use of perf_event_set_output().
5059 *
5060 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5061 * the buffer here, where we still have a VM context. This means we need
5062 * to detach all events redirecting to us.
5063 */
7b732a75
PZ
5064static void perf_mmap_close(struct vm_area_struct *vma)
5065{
cdd6c482 5066 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5067
b69cf536 5068 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5069 struct user_struct *mmap_user = rb->mmap_user;
5070 int mmap_locked = rb->mmap_locked;
5071 unsigned long size = perf_data_size(rb);
789f90fc 5072
1e0fb9ec 5073 if (event->pmu->event_unmapped)
bfe33492 5074 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5075
45bfb2e5
PZ
5076 /*
5077 * rb->aux_mmap_count will always drop before rb->mmap_count and
5078 * event->mmap_count, so it is ok to use event->mmap_mutex to
5079 * serialize with perf_mmap here.
5080 */
5081 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5082 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5083 /*
5084 * Stop all AUX events that are writing to this buffer,
5085 * so that we can free its AUX pages and corresponding PMU
5086 * data. Note that after rb::aux_mmap_count dropped to zero,
5087 * they won't start any more (see perf_aux_output_begin()).
5088 */
5089 perf_pmu_output_stop(event);
5090
5091 /* now it's safe to free the pages */
45bfb2e5
PZ
5092 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5093 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5094
95ff4ca2 5095 /* this has to be the last one */
45bfb2e5 5096 rb_free_aux(rb);
95ff4ca2
AS
5097 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5098
45bfb2e5
PZ
5099 mutex_unlock(&event->mmap_mutex);
5100 }
5101
9bb5d40c
PZ
5102 atomic_dec(&rb->mmap_count);
5103
5104 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5105 goto out_put;
9bb5d40c 5106
b69cf536 5107 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5108 mutex_unlock(&event->mmap_mutex);
5109
5110 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5111 if (atomic_read(&rb->mmap_count))
5112 goto out_put;
ac9721f3 5113
9bb5d40c
PZ
5114 /*
5115 * No other mmap()s, detach from all other events that might redirect
5116 * into the now unreachable buffer. Somewhat complicated by the
5117 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5118 */
5119again:
5120 rcu_read_lock();
5121 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5122 if (!atomic_long_inc_not_zero(&event->refcount)) {
5123 /*
5124 * This event is en-route to free_event() which will
5125 * detach it and remove it from the list.
5126 */
5127 continue;
5128 }
5129 rcu_read_unlock();
789f90fc 5130
9bb5d40c
PZ
5131 mutex_lock(&event->mmap_mutex);
5132 /*
5133 * Check we didn't race with perf_event_set_output() which can
5134 * swizzle the rb from under us while we were waiting to
5135 * acquire mmap_mutex.
5136 *
5137 * If we find a different rb; ignore this event, a next
5138 * iteration will no longer find it on the list. We have to
5139 * still restart the iteration to make sure we're not now
5140 * iterating the wrong list.
5141 */
b69cf536
PZ
5142 if (event->rb == rb)
5143 ring_buffer_attach(event, NULL);
5144
cdd6c482 5145 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5146 put_event(event);
ac9721f3 5147
9bb5d40c
PZ
5148 /*
5149 * Restart the iteration; either we're on the wrong list or
5150 * destroyed its integrity by doing a deletion.
5151 */
5152 goto again;
7b732a75 5153 }
9bb5d40c
PZ
5154 rcu_read_unlock();
5155
5156 /*
5157 * It could be there's still a few 0-ref events on the list; they'll
5158 * get cleaned up by free_event() -- they'll also still have their
5159 * ref on the rb and will free it whenever they are done with it.
5160 *
5161 * Aside from that, this buffer is 'fully' detached and unmapped,
5162 * undo the VM accounting.
5163 */
5164
5165 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5166 vma->vm_mm->pinned_vm -= mmap_locked;
5167 free_uid(mmap_user);
5168
b69cf536 5169out_put:
9bb5d40c 5170 ring_buffer_put(rb); /* could be last */
37d81828
PM
5171}
5172
f0f37e2f 5173static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5174 .open = perf_mmap_open,
45bfb2e5 5175 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5176 .fault = perf_mmap_fault,
5177 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5178};
5179
5180static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5181{
cdd6c482 5182 struct perf_event *event = file->private_data;
22a4f650 5183 unsigned long user_locked, user_lock_limit;
789f90fc 5184 struct user_struct *user = current_user();
22a4f650 5185 unsigned long locked, lock_limit;
45bfb2e5 5186 struct ring_buffer *rb = NULL;
7b732a75
PZ
5187 unsigned long vma_size;
5188 unsigned long nr_pages;
45bfb2e5 5189 long user_extra = 0, extra = 0;
d57e34fd 5190 int ret = 0, flags = 0;
37d81828 5191
c7920614
PZ
5192 /*
5193 * Don't allow mmap() of inherited per-task counters. This would
5194 * create a performance issue due to all children writing to the
76369139 5195 * same rb.
c7920614
PZ
5196 */
5197 if (event->cpu == -1 && event->attr.inherit)
5198 return -EINVAL;
5199
43a21ea8 5200 if (!(vma->vm_flags & VM_SHARED))
37d81828 5201 return -EINVAL;
7b732a75
PZ
5202
5203 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5204
5205 if (vma->vm_pgoff == 0) {
5206 nr_pages = (vma_size / PAGE_SIZE) - 1;
5207 } else {
5208 /*
5209 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5210 * mapped, all subsequent mappings should have the same size
5211 * and offset. Must be above the normal perf buffer.
5212 */
5213 u64 aux_offset, aux_size;
5214
5215 if (!event->rb)
5216 return -EINVAL;
5217
5218 nr_pages = vma_size / PAGE_SIZE;
5219
5220 mutex_lock(&event->mmap_mutex);
5221 ret = -EINVAL;
5222
5223 rb = event->rb;
5224 if (!rb)
5225 goto aux_unlock;
5226
6aa7de05
MR
5227 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5228 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5229
5230 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5231 goto aux_unlock;
5232
5233 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5234 goto aux_unlock;
5235
5236 /* already mapped with a different offset */
5237 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5238 goto aux_unlock;
5239
5240 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5241 goto aux_unlock;
5242
5243 /* already mapped with a different size */
5244 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5245 goto aux_unlock;
5246
5247 if (!is_power_of_2(nr_pages))
5248 goto aux_unlock;
5249
5250 if (!atomic_inc_not_zero(&rb->mmap_count))
5251 goto aux_unlock;
5252
5253 if (rb_has_aux(rb)) {
5254 atomic_inc(&rb->aux_mmap_count);
5255 ret = 0;
5256 goto unlock;
5257 }
5258
5259 atomic_set(&rb->aux_mmap_count, 1);
5260 user_extra = nr_pages;
5261
5262 goto accounting;
5263 }
7b732a75 5264
7730d865 5265 /*
76369139 5266 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5267 * can do bitmasks instead of modulo.
5268 */
2ed11312 5269 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5270 return -EINVAL;
5271
7b732a75 5272 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5273 return -EINVAL;
5274
cdd6c482 5275 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5276again:
cdd6c482 5277 mutex_lock(&event->mmap_mutex);
76369139 5278 if (event->rb) {
9bb5d40c 5279 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5280 ret = -EINVAL;
9bb5d40c
PZ
5281 goto unlock;
5282 }
5283
5284 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5285 /*
5286 * Raced against perf_mmap_close() through
5287 * perf_event_set_output(). Try again, hope for better
5288 * luck.
5289 */
5290 mutex_unlock(&event->mmap_mutex);
5291 goto again;
5292 }
5293
ebb3c4c4
PZ
5294 goto unlock;
5295 }
5296
789f90fc 5297 user_extra = nr_pages + 1;
45bfb2e5
PZ
5298
5299accounting:
cdd6c482 5300 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5301
5302 /*
5303 * Increase the limit linearly with more CPUs:
5304 */
5305 user_lock_limit *= num_online_cpus();
5306
789f90fc 5307 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5308
789f90fc
PZ
5309 if (user_locked > user_lock_limit)
5310 extra = user_locked - user_lock_limit;
7b732a75 5311
78d7d407 5312 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5313 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5314 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5315
459ec28a
IM
5316 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5317 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5318 ret = -EPERM;
5319 goto unlock;
5320 }
7b732a75 5321
45bfb2e5 5322 WARN_ON(!rb && event->rb);
906010b2 5323
d57e34fd 5324 if (vma->vm_flags & VM_WRITE)
76369139 5325 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5326
76369139 5327 if (!rb) {
45bfb2e5
PZ
5328 rb = rb_alloc(nr_pages,
5329 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5330 event->cpu, flags);
26cb63ad 5331
45bfb2e5
PZ
5332 if (!rb) {
5333 ret = -ENOMEM;
5334 goto unlock;
5335 }
43a21ea8 5336
45bfb2e5
PZ
5337 atomic_set(&rb->mmap_count, 1);
5338 rb->mmap_user = get_current_user();
5339 rb->mmap_locked = extra;
26cb63ad 5340
45bfb2e5 5341 ring_buffer_attach(event, rb);
ac9721f3 5342
45bfb2e5
PZ
5343 perf_event_init_userpage(event);
5344 perf_event_update_userpage(event);
5345 } else {
1a594131
AS
5346 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5347 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5348 if (!ret)
5349 rb->aux_mmap_locked = extra;
5350 }
9a0f05cb 5351
ebb3c4c4 5352unlock:
45bfb2e5
PZ
5353 if (!ret) {
5354 atomic_long_add(user_extra, &user->locked_vm);
5355 vma->vm_mm->pinned_vm += extra;
5356
ac9721f3 5357 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5358 } else if (rb) {
5359 atomic_dec(&rb->mmap_count);
5360 }
5361aux_unlock:
cdd6c482 5362 mutex_unlock(&event->mmap_mutex);
37d81828 5363
9bb5d40c
PZ
5364 /*
5365 * Since pinned accounting is per vm we cannot allow fork() to copy our
5366 * vma.
5367 */
26cb63ad 5368 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5369 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5370
1e0fb9ec 5371 if (event->pmu->event_mapped)
bfe33492 5372 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5373
7b732a75 5374 return ret;
37d81828
PM
5375}
5376
3c446b3d
PZ
5377static int perf_fasync(int fd, struct file *filp, int on)
5378{
496ad9aa 5379 struct inode *inode = file_inode(filp);
cdd6c482 5380 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5381 int retval;
5382
5955102c 5383 inode_lock(inode);
cdd6c482 5384 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5385 inode_unlock(inode);
3c446b3d
PZ
5386
5387 if (retval < 0)
5388 return retval;
5389
5390 return 0;
5391}
5392
0793a61d 5393static const struct file_operations perf_fops = {
3326c1ce 5394 .llseek = no_llseek,
0793a61d
TG
5395 .release = perf_release,
5396 .read = perf_read,
5397 .poll = perf_poll,
d859e29f 5398 .unlocked_ioctl = perf_ioctl,
b3f20785 5399 .compat_ioctl = perf_compat_ioctl,
37d81828 5400 .mmap = perf_mmap,
3c446b3d 5401 .fasync = perf_fasync,
0793a61d
TG
5402};
5403
925d519a 5404/*
cdd6c482 5405 * Perf event wakeup
925d519a
PZ
5406 *
5407 * If there's data, ensure we set the poll() state and publish everything
5408 * to user-space before waking everybody up.
5409 */
5410
fed66e2c
PZ
5411static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5412{
5413 /* only the parent has fasync state */
5414 if (event->parent)
5415 event = event->parent;
5416 return &event->fasync;
5417}
5418
cdd6c482 5419void perf_event_wakeup(struct perf_event *event)
925d519a 5420{
10c6db11 5421 ring_buffer_wakeup(event);
4c9e2542 5422
cdd6c482 5423 if (event->pending_kill) {
fed66e2c 5424 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5425 event->pending_kill = 0;
4c9e2542 5426 }
925d519a
PZ
5427}
5428
e360adbe 5429static void perf_pending_event(struct irq_work *entry)
79f14641 5430{
cdd6c482
IM
5431 struct perf_event *event = container_of(entry,
5432 struct perf_event, pending);
d525211f
PZ
5433 int rctx;
5434
5435 rctx = perf_swevent_get_recursion_context();
5436 /*
5437 * If we 'fail' here, that's OK, it means recursion is already disabled
5438 * and we won't recurse 'further'.
5439 */
79f14641 5440
cdd6c482
IM
5441 if (event->pending_disable) {
5442 event->pending_disable = 0;
fae3fde6 5443 perf_event_disable_local(event);
79f14641
PZ
5444 }
5445
cdd6c482
IM
5446 if (event->pending_wakeup) {
5447 event->pending_wakeup = 0;
5448 perf_event_wakeup(event);
79f14641 5449 }
d525211f
PZ
5450
5451 if (rctx >= 0)
5452 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5453}
5454
39447b38
ZY
5455/*
5456 * We assume there is only KVM supporting the callbacks.
5457 * Later on, we might change it to a list if there is
5458 * another virtualization implementation supporting the callbacks.
5459 */
5460struct perf_guest_info_callbacks *perf_guest_cbs;
5461
5462int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5463{
5464 perf_guest_cbs = cbs;
5465 return 0;
5466}
5467EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5468
5469int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5470{
5471 perf_guest_cbs = NULL;
5472 return 0;
5473}
5474EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5475
4018994f
JO
5476static void
5477perf_output_sample_regs(struct perf_output_handle *handle,
5478 struct pt_regs *regs, u64 mask)
5479{
5480 int bit;
29dd3288 5481 DECLARE_BITMAP(_mask, 64);
4018994f 5482
29dd3288
MS
5483 bitmap_from_u64(_mask, mask);
5484 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5485 u64 val;
5486
5487 val = perf_reg_value(regs, bit);
5488 perf_output_put(handle, val);
5489 }
5490}
5491
60e2364e 5492static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5493 struct pt_regs *regs,
5494 struct pt_regs *regs_user_copy)
4018994f 5495{
88a7c26a
AL
5496 if (user_mode(regs)) {
5497 regs_user->abi = perf_reg_abi(current);
2565711f 5498 regs_user->regs = regs;
88a7c26a
AL
5499 } else if (current->mm) {
5500 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5501 } else {
5502 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5503 regs_user->regs = NULL;
4018994f
JO
5504 }
5505}
5506
60e2364e
SE
5507static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5508 struct pt_regs *regs)
5509{
5510 regs_intr->regs = regs;
5511 regs_intr->abi = perf_reg_abi(current);
5512}
5513
5514
c5ebcedb
JO
5515/*
5516 * Get remaining task size from user stack pointer.
5517 *
5518 * It'd be better to take stack vma map and limit this more
5519 * precisly, but there's no way to get it safely under interrupt,
5520 * so using TASK_SIZE as limit.
5521 */
5522static u64 perf_ustack_task_size(struct pt_regs *regs)
5523{
5524 unsigned long addr = perf_user_stack_pointer(regs);
5525
5526 if (!addr || addr >= TASK_SIZE)
5527 return 0;
5528
5529 return TASK_SIZE - addr;
5530}
5531
5532static u16
5533perf_sample_ustack_size(u16 stack_size, u16 header_size,
5534 struct pt_regs *regs)
5535{
5536 u64 task_size;
5537
5538 /* No regs, no stack pointer, no dump. */
5539 if (!regs)
5540 return 0;
5541
5542 /*
5543 * Check if we fit in with the requested stack size into the:
5544 * - TASK_SIZE
5545 * If we don't, we limit the size to the TASK_SIZE.
5546 *
5547 * - remaining sample size
5548 * If we don't, we customize the stack size to
5549 * fit in to the remaining sample size.
5550 */
5551
5552 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5553 stack_size = min(stack_size, (u16) task_size);
5554
5555 /* Current header size plus static size and dynamic size. */
5556 header_size += 2 * sizeof(u64);
5557
5558 /* Do we fit in with the current stack dump size? */
5559 if ((u16) (header_size + stack_size) < header_size) {
5560 /*
5561 * If we overflow the maximum size for the sample,
5562 * we customize the stack dump size to fit in.
5563 */
5564 stack_size = USHRT_MAX - header_size - sizeof(u64);
5565 stack_size = round_up(stack_size, sizeof(u64));
5566 }
5567
5568 return stack_size;
5569}
5570
5571static void
5572perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5573 struct pt_regs *regs)
5574{
5575 /* Case of a kernel thread, nothing to dump */
5576 if (!regs) {
5577 u64 size = 0;
5578 perf_output_put(handle, size);
5579 } else {
5580 unsigned long sp;
5581 unsigned int rem;
5582 u64 dyn_size;
5583
5584 /*
5585 * We dump:
5586 * static size
5587 * - the size requested by user or the best one we can fit
5588 * in to the sample max size
5589 * data
5590 * - user stack dump data
5591 * dynamic size
5592 * - the actual dumped size
5593 */
5594
5595 /* Static size. */
5596 perf_output_put(handle, dump_size);
5597
5598 /* Data. */
5599 sp = perf_user_stack_pointer(regs);
5600 rem = __output_copy_user(handle, (void *) sp, dump_size);
5601 dyn_size = dump_size - rem;
5602
5603 perf_output_skip(handle, rem);
5604
5605 /* Dynamic size. */
5606 perf_output_put(handle, dyn_size);
5607 }
5608}
5609
c980d109
ACM
5610static void __perf_event_header__init_id(struct perf_event_header *header,
5611 struct perf_sample_data *data,
5612 struct perf_event *event)
6844c09d
ACM
5613{
5614 u64 sample_type = event->attr.sample_type;
5615
5616 data->type = sample_type;
5617 header->size += event->id_header_size;
5618
5619 if (sample_type & PERF_SAMPLE_TID) {
5620 /* namespace issues */
5621 data->tid_entry.pid = perf_event_pid(event, current);
5622 data->tid_entry.tid = perf_event_tid(event, current);
5623 }
5624
5625 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5626 data->time = perf_event_clock(event);
6844c09d 5627
ff3d527c 5628 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5629 data->id = primary_event_id(event);
5630
5631 if (sample_type & PERF_SAMPLE_STREAM_ID)
5632 data->stream_id = event->id;
5633
5634 if (sample_type & PERF_SAMPLE_CPU) {
5635 data->cpu_entry.cpu = raw_smp_processor_id();
5636 data->cpu_entry.reserved = 0;
5637 }
5638}
5639
76369139
FW
5640void perf_event_header__init_id(struct perf_event_header *header,
5641 struct perf_sample_data *data,
5642 struct perf_event *event)
c980d109
ACM
5643{
5644 if (event->attr.sample_id_all)
5645 __perf_event_header__init_id(header, data, event);
5646}
5647
5648static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5649 struct perf_sample_data *data)
5650{
5651 u64 sample_type = data->type;
5652
5653 if (sample_type & PERF_SAMPLE_TID)
5654 perf_output_put(handle, data->tid_entry);
5655
5656 if (sample_type & PERF_SAMPLE_TIME)
5657 perf_output_put(handle, data->time);
5658
5659 if (sample_type & PERF_SAMPLE_ID)
5660 perf_output_put(handle, data->id);
5661
5662 if (sample_type & PERF_SAMPLE_STREAM_ID)
5663 perf_output_put(handle, data->stream_id);
5664
5665 if (sample_type & PERF_SAMPLE_CPU)
5666 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5667
5668 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5669 perf_output_put(handle, data->id);
c980d109
ACM
5670}
5671
76369139
FW
5672void perf_event__output_id_sample(struct perf_event *event,
5673 struct perf_output_handle *handle,
5674 struct perf_sample_data *sample)
c980d109
ACM
5675{
5676 if (event->attr.sample_id_all)
5677 __perf_event__output_id_sample(handle, sample);
5678}
5679
3dab77fb 5680static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5681 struct perf_event *event,
5682 u64 enabled, u64 running)
3dab77fb 5683{
cdd6c482 5684 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5685 u64 values[4];
5686 int n = 0;
5687
b5e58793 5688 values[n++] = perf_event_count(event);
3dab77fb 5689 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5690 values[n++] = enabled +
cdd6c482 5691 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5692 }
5693 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5694 values[n++] = running +
cdd6c482 5695 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5696 }
5697 if (read_format & PERF_FORMAT_ID)
cdd6c482 5698 values[n++] = primary_event_id(event);
3dab77fb 5699
76369139 5700 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5701}
5702
3dab77fb 5703static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5704 struct perf_event *event,
5705 u64 enabled, u64 running)
3dab77fb 5706{
cdd6c482
IM
5707 struct perf_event *leader = event->group_leader, *sub;
5708 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5709 u64 values[5];
5710 int n = 0;
5711
5712 values[n++] = 1 + leader->nr_siblings;
5713
5714 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5715 values[n++] = enabled;
3dab77fb
PZ
5716
5717 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5718 values[n++] = running;
3dab77fb 5719
cdd6c482 5720 if (leader != event)
3dab77fb
PZ
5721 leader->pmu->read(leader);
5722
b5e58793 5723 values[n++] = perf_event_count(leader);
3dab77fb 5724 if (read_format & PERF_FORMAT_ID)
cdd6c482 5725 values[n++] = primary_event_id(leader);
3dab77fb 5726
76369139 5727 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5728
65abc865 5729 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5730 n = 0;
5731
6f5ab001
JO
5732 if ((sub != event) &&
5733 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5734 sub->pmu->read(sub);
5735
b5e58793 5736 values[n++] = perf_event_count(sub);
3dab77fb 5737 if (read_format & PERF_FORMAT_ID)
cdd6c482 5738 values[n++] = primary_event_id(sub);
3dab77fb 5739
76369139 5740 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5741 }
5742}
5743
eed01528
SE
5744#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5745 PERF_FORMAT_TOTAL_TIME_RUNNING)
5746
ba5213ae
PZ
5747/*
5748 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5749 *
5750 * The problem is that its both hard and excessively expensive to iterate the
5751 * child list, not to mention that its impossible to IPI the children running
5752 * on another CPU, from interrupt/NMI context.
5753 */
3dab77fb 5754static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5755 struct perf_event *event)
3dab77fb 5756{
e3f3541c 5757 u64 enabled = 0, running = 0, now;
eed01528
SE
5758 u64 read_format = event->attr.read_format;
5759
5760 /*
5761 * compute total_time_enabled, total_time_running
5762 * based on snapshot values taken when the event
5763 * was last scheduled in.
5764 *
5765 * we cannot simply called update_context_time()
5766 * because of locking issue as we are called in
5767 * NMI context
5768 */
c4794295 5769 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5770 calc_timer_values(event, &now, &enabled, &running);
eed01528 5771
cdd6c482 5772 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5773 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5774 else
eed01528 5775 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5776}
5777
5622f295
MM
5778void perf_output_sample(struct perf_output_handle *handle,
5779 struct perf_event_header *header,
5780 struct perf_sample_data *data,
cdd6c482 5781 struct perf_event *event)
5622f295
MM
5782{
5783 u64 sample_type = data->type;
5784
5785 perf_output_put(handle, *header);
5786
ff3d527c
AH
5787 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5788 perf_output_put(handle, data->id);
5789
5622f295
MM
5790 if (sample_type & PERF_SAMPLE_IP)
5791 perf_output_put(handle, data->ip);
5792
5793 if (sample_type & PERF_SAMPLE_TID)
5794 perf_output_put(handle, data->tid_entry);
5795
5796 if (sample_type & PERF_SAMPLE_TIME)
5797 perf_output_put(handle, data->time);
5798
5799 if (sample_type & PERF_SAMPLE_ADDR)
5800 perf_output_put(handle, data->addr);
5801
5802 if (sample_type & PERF_SAMPLE_ID)
5803 perf_output_put(handle, data->id);
5804
5805 if (sample_type & PERF_SAMPLE_STREAM_ID)
5806 perf_output_put(handle, data->stream_id);
5807
5808 if (sample_type & PERF_SAMPLE_CPU)
5809 perf_output_put(handle, data->cpu_entry);
5810
5811 if (sample_type & PERF_SAMPLE_PERIOD)
5812 perf_output_put(handle, data->period);
5813
5814 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5815 perf_output_read(handle, event);
5622f295
MM
5816
5817 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5818 if (data->callchain) {
5819 int size = 1;
5820
5821 if (data->callchain)
5822 size += data->callchain->nr;
5823
5824 size *= sizeof(u64);
5825
76369139 5826 __output_copy(handle, data->callchain, size);
5622f295
MM
5827 } else {
5828 u64 nr = 0;
5829 perf_output_put(handle, nr);
5830 }
5831 }
5832
5833 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5834 struct perf_raw_record *raw = data->raw;
5835
5836 if (raw) {
5837 struct perf_raw_frag *frag = &raw->frag;
5838
5839 perf_output_put(handle, raw->size);
5840 do {
5841 if (frag->copy) {
5842 __output_custom(handle, frag->copy,
5843 frag->data, frag->size);
5844 } else {
5845 __output_copy(handle, frag->data,
5846 frag->size);
5847 }
5848 if (perf_raw_frag_last(frag))
5849 break;
5850 frag = frag->next;
5851 } while (1);
5852 if (frag->pad)
5853 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5854 } else {
5855 struct {
5856 u32 size;
5857 u32 data;
5858 } raw = {
5859 .size = sizeof(u32),
5860 .data = 0,
5861 };
5862 perf_output_put(handle, raw);
5863 }
5864 }
a7ac67ea 5865
bce38cd5
SE
5866 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5867 if (data->br_stack) {
5868 size_t size;
5869
5870 size = data->br_stack->nr
5871 * sizeof(struct perf_branch_entry);
5872
5873 perf_output_put(handle, data->br_stack->nr);
5874 perf_output_copy(handle, data->br_stack->entries, size);
5875 } else {
5876 /*
5877 * we always store at least the value of nr
5878 */
5879 u64 nr = 0;
5880 perf_output_put(handle, nr);
5881 }
5882 }
4018994f
JO
5883
5884 if (sample_type & PERF_SAMPLE_REGS_USER) {
5885 u64 abi = data->regs_user.abi;
5886
5887 /*
5888 * If there are no regs to dump, notice it through
5889 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5890 */
5891 perf_output_put(handle, abi);
5892
5893 if (abi) {
5894 u64 mask = event->attr.sample_regs_user;
5895 perf_output_sample_regs(handle,
5896 data->regs_user.regs,
5897 mask);
5898 }
5899 }
c5ebcedb 5900
a5cdd40c 5901 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5902 perf_output_sample_ustack(handle,
5903 data->stack_user_size,
5904 data->regs_user.regs);
a5cdd40c 5905 }
c3feedf2
AK
5906
5907 if (sample_type & PERF_SAMPLE_WEIGHT)
5908 perf_output_put(handle, data->weight);
d6be9ad6
SE
5909
5910 if (sample_type & PERF_SAMPLE_DATA_SRC)
5911 perf_output_put(handle, data->data_src.val);
a5cdd40c 5912
fdfbbd07
AK
5913 if (sample_type & PERF_SAMPLE_TRANSACTION)
5914 perf_output_put(handle, data->txn);
5915
60e2364e
SE
5916 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5917 u64 abi = data->regs_intr.abi;
5918 /*
5919 * If there are no regs to dump, notice it through
5920 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5921 */
5922 perf_output_put(handle, abi);
5923
5924 if (abi) {
5925 u64 mask = event->attr.sample_regs_intr;
5926
5927 perf_output_sample_regs(handle,
5928 data->regs_intr.regs,
5929 mask);
5930 }
5931 }
5932
fc7ce9c7
KL
5933 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5934 perf_output_put(handle, data->phys_addr);
5935
a5cdd40c
PZ
5936 if (!event->attr.watermark) {
5937 int wakeup_events = event->attr.wakeup_events;
5938
5939 if (wakeup_events) {
5940 struct ring_buffer *rb = handle->rb;
5941 int events = local_inc_return(&rb->events);
5942
5943 if (events >= wakeup_events) {
5944 local_sub(wakeup_events, &rb->events);
5945 local_inc(&rb->wakeup);
5946 }
5947 }
5948 }
5622f295
MM
5949}
5950
fc7ce9c7
KL
5951static u64 perf_virt_to_phys(u64 virt)
5952{
5953 u64 phys_addr = 0;
5954 struct page *p = NULL;
5955
5956 if (!virt)
5957 return 0;
5958
5959 if (virt >= TASK_SIZE) {
5960 /* If it's vmalloc()d memory, leave phys_addr as 0 */
5961 if (virt_addr_valid((void *)(uintptr_t)virt) &&
5962 !(virt >= VMALLOC_START && virt < VMALLOC_END))
5963 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5964 } else {
5965 /*
5966 * Walking the pages tables for user address.
5967 * Interrupts are disabled, so it prevents any tear down
5968 * of the page tables.
5969 * Try IRQ-safe __get_user_pages_fast first.
5970 * If failed, leave phys_addr as 0.
5971 */
5972 if ((current->mm != NULL) &&
5973 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5974 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5975
5976 if (p)
5977 put_page(p);
5978 }
5979
5980 return phys_addr;
5981}
5982
8cf7e0e2
JO
5983static struct perf_callchain_entry *
5984perf_callchain(struct perf_event *event, struct pt_regs *regs)
5985{
5986 bool kernel = !event->attr.exclude_callchain_kernel;
5987 bool user = !event->attr.exclude_callchain_user;
5988 /* Disallow cross-task user callchains. */
5989 bool crosstask = event->ctx->task && event->ctx->task != current;
5990 const u32 max_stack = event->attr.sample_max_stack;
5991
5992 if (!kernel && !user)
5993 return NULL;
5994
5995 return get_perf_callchain(regs, 0, kernel, user,
5996 max_stack, crosstask, true);
5997}
5998
5622f295
MM
5999void perf_prepare_sample(struct perf_event_header *header,
6000 struct perf_sample_data *data,
cdd6c482 6001 struct perf_event *event,
5622f295 6002 struct pt_regs *regs)
7b732a75 6003{
cdd6c482 6004 u64 sample_type = event->attr.sample_type;
7b732a75 6005
cdd6c482 6006 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6007 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6008
6009 header->misc = 0;
6010 header->misc |= perf_misc_flags(regs);
6fab0192 6011
c980d109 6012 __perf_event_header__init_id(header, data, event);
6844c09d 6013
c320c7b7 6014 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6015 data->ip = perf_instruction_pointer(regs);
6016
b23f3325 6017 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6018 int size = 1;
394ee076 6019
e6dab5ff 6020 data->callchain = perf_callchain(event, regs);
5622f295
MM
6021
6022 if (data->callchain)
6023 size += data->callchain->nr;
6024
6025 header->size += size * sizeof(u64);
394ee076
PZ
6026 }
6027
3a43ce68 6028 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6029 struct perf_raw_record *raw = data->raw;
6030 int size;
6031
6032 if (raw) {
6033 struct perf_raw_frag *frag = &raw->frag;
6034 u32 sum = 0;
6035
6036 do {
6037 sum += frag->size;
6038 if (perf_raw_frag_last(frag))
6039 break;
6040 frag = frag->next;
6041 } while (1);
6042
6043 size = round_up(sum + sizeof(u32), sizeof(u64));
6044 raw->size = size - sizeof(u32);
6045 frag->pad = raw->size - sum;
6046 } else {
6047 size = sizeof(u64);
6048 }
a044560c 6049
7e3f977e 6050 header->size += size;
7f453c24 6051 }
bce38cd5
SE
6052
6053 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6054 int size = sizeof(u64); /* nr */
6055 if (data->br_stack) {
6056 size += data->br_stack->nr
6057 * sizeof(struct perf_branch_entry);
6058 }
6059 header->size += size;
6060 }
4018994f 6061
2565711f 6062 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6063 perf_sample_regs_user(&data->regs_user, regs,
6064 &data->regs_user_copy);
2565711f 6065
4018994f
JO
6066 if (sample_type & PERF_SAMPLE_REGS_USER) {
6067 /* regs dump ABI info */
6068 int size = sizeof(u64);
6069
4018994f
JO
6070 if (data->regs_user.regs) {
6071 u64 mask = event->attr.sample_regs_user;
6072 size += hweight64(mask) * sizeof(u64);
6073 }
6074
6075 header->size += size;
6076 }
c5ebcedb
JO
6077
6078 if (sample_type & PERF_SAMPLE_STACK_USER) {
6079 /*
6080 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6081 * processed as the last one or have additional check added
6082 * in case new sample type is added, because we could eat
6083 * up the rest of the sample size.
6084 */
c5ebcedb
JO
6085 u16 stack_size = event->attr.sample_stack_user;
6086 u16 size = sizeof(u64);
6087
c5ebcedb 6088 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6089 data->regs_user.regs);
c5ebcedb
JO
6090
6091 /*
6092 * If there is something to dump, add space for the dump
6093 * itself and for the field that tells the dynamic size,
6094 * which is how many have been actually dumped.
6095 */
6096 if (stack_size)
6097 size += sizeof(u64) + stack_size;
6098
6099 data->stack_user_size = stack_size;
6100 header->size += size;
6101 }
60e2364e
SE
6102
6103 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6104 /* regs dump ABI info */
6105 int size = sizeof(u64);
6106
6107 perf_sample_regs_intr(&data->regs_intr, regs);
6108
6109 if (data->regs_intr.regs) {
6110 u64 mask = event->attr.sample_regs_intr;
6111
6112 size += hweight64(mask) * sizeof(u64);
6113 }
6114
6115 header->size += size;
6116 }
fc7ce9c7
KL
6117
6118 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6119 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6120}
7f453c24 6121
9ecda41a
WN
6122static void __always_inline
6123__perf_event_output(struct perf_event *event,
6124 struct perf_sample_data *data,
6125 struct pt_regs *regs,
6126 int (*output_begin)(struct perf_output_handle *,
6127 struct perf_event *,
6128 unsigned int))
5622f295
MM
6129{
6130 struct perf_output_handle handle;
6131 struct perf_event_header header;
689802b2 6132
927c7a9e
FW
6133 /* protect the callchain buffers */
6134 rcu_read_lock();
6135
cdd6c482 6136 perf_prepare_sample(&header, data, event, regs);
5c148194 6137
9ecda41a 6138 if (output_begin(&handle, event, header.size))
927c7a9e 6139 goto exit;
0322cd6e 6140
cdd6c482 6141 perf_output_sample(&handle, &header, data, event);
f413cdb8 6142
8a057d84 6143 perf_output_end(&handle);
927c7a9e
FW
6144
6145exit:
6146 rcu_read_unlock();
0322cd6e
PZ
6147}
6148
9ecda41a
WN
6149void
6150perf_event_output_forward(struct perf_event *event,
6151 struct perf_sample_data *data,
6152 struct pt_regs *regs)
6153{
6154 __perf_event_output(event, data, regs, perf_output_begin_forward);
6155}
6156
6157void
6158perf_event_output_backward(struct perf_event *event,
6159 struct perf_sample_data *data,
6160 struct pt_regs *regs)
6161{
6162 __perf_event_output(event, data, regs, perf_output_begin_backward);
6163}
6164
6165void
6166perf_event_output(struct perf_event *event,
6167 struct perf_sample_data *data,
6168 struct pt_regs *regs)
6169{
6170 __perf_event_output(event, data, regs, perf_output_begin);
6171}
6172
38b200d6 6173/*
cdd6c482 6174 * read event_id
38b200d6
PZ
6175 */
6176
6177struct perf_read_event {
6178 struct perf_event_header header;
6179
6180 u32 pid;
6181 u32 tid;
38b200d6
PZ
6182};
6183
6184static void
cdd6c482 6185perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6186 struct task_struct *task)
6187{
6188 struct perf_output_handle handle;
c980d109 6189 struct perf_sample_data sample;
dfc65094 6190 struct perf_read_event read_event = {
38b200d6 6191 .header = {
cdd6c482 6192 .type = PERF_RECORD_READ,
38b200d6 6193 .misc = 0,
c320c7b7 6194 .size = sizeof(read_event) + event->read_size,
38b200d6 6195 },
cdd6c482
IM
6196 .pid = perf_event_pid(event, task),
6197 .tid = perf_event_tid(event, task),
38b200d6 6198 };
3dab77fb 6199 int ret;
38b200d6 6200
c980d109 6201 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6202 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6203 if (ret)
6204 return;
6205
dfc65094 6206 perf_output_put(&handle, read_event);
cdd6c482 6207 perf_output_read(&handle, event);
c980d109 6208 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6209
38b200d6
PZ
6210 perf_output_end(&handle);
6211}
6212
aab5b71e 6213typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6214
6215static void
aab5b71e
PZ
6216perf_iterate_ctx(struct perf_event_context *ctx,
6217 perf_iterate_f output,
b73e4fef 6218 void *data, bool all)
52d857a8
JO
6219{
6220 struct perf_event *event;
6221
6222 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6223 if (!all) {
6224 if (event->state < PERF_EVENT_STATE_INACTIVE)
6225 continue;
6226 if (!event_filter_match(event))
6227 continue;
6228 }
6229
67516844 6230 output(event, data);
52d857a8
JO
6231 }
6232}
6233
aab5b71e 6234static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6235{
6236 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6237 struct perf_event *event;
6238
6239 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6240 /*
6241 * Skip events that are not fully formed yet; ensure that
6242 * if we observe event->ctx, both event and ctx will be
6243 * complete enough. See perf_install_in_context().
6244 */
6245 if (!smp_load_acquire(&event->ctx))
6246 continue;
6247
f2fb6bef
KL
6248 if (event->state < PERF_EVENT_STATE_INACTIVE)
6249 continue;
6250 if (!event_filter_match(event))
6251 continue;
6252 output(event, data);
6253 }
6254}
6255
aab5b71e
PZ
6256/*
6257 * Iterate all events that need to receive side-band events.
6258 *
6259 * For new callers; ensure that account_pmu_sb_event() includes
6260 * your event, otherwise it might not get delivered.
6261 */
52d857a8 6262static void
aab5b71e 6263perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6264 struct perf_event_context *task_ctx)
6265{
52d857a8 6266 struct perf_event_context *ctx;
52d857a8
JO
6267 int ctxn;
6268
aab5b71e
PZ
6269 rcu_read_lock();
6270 preempt_disable();
6271
4e93ad60 6272 /*
aab5b71e
PZ
6273 * If we have task_ctx != NULL we only notify the task context itself.
6274 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6275 * context.
6276 */
6277 if (task_ctx) {
aab5b71e
PZ
6278 perf_iterate_ctx(task_ctx, output, data, false);
6279 goto done;
4e93ad60
JO
6280 }
6281
aab5b71e 6282 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6283
6284 for_each_task_context_nr(ctxn) {
52d857a8
JO
6285 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6286 if (ctx)
aab5b71e 6287 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6288 }
aab5b71e 6289done:
f2fb6bef 6290 preempt_enable();
52d857a8 6291 rcu_read_unlock();
95ff4ca2
AS
6292}
6293
375637bc
AS
6294/*
6295 * Clear all file-based filters at exec, they'll have to be
6296 * re-instated when/if these objects are mmapped again.
6297 */
6298static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6299{
6300 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6301 struct perf_addr_filter *filter;
6302 unsigned int restart = 0, count = 0;
6303 unsigned long flags;
6304
6305 if (!has_addr_filter(event))
6306 return;
6307
6308 raw_spin_lock_irqsave(&ifh->lock, flags);
6309 list_for_each_entry(filter, &ifh->list, entry) {
6310 if (filter->inode) {
6311 event->addr_filters_offs[count] = 0;
6312 restart++;
6313 }
6314
6315 count++;
6316 }
6317
6318 if (restart)
6319 event->addr_filters_gen++;
6320 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6321
6322 if (restart)
767ae086 6323 perf_event_stop(event, 1);
375637bc
AS
6324}
6325
6326void perf_event_exec(void)
6327{
6328 struct perf_event_context *ctx;
6329 int ctxn;
6330
6331 rcu_read_lock();
6332 for_each_task_context_nr(ctxn) {
6333 ctx = current->perf_event_ctxp[ctxn];
6334 if (!ctx)
6335 continue;
6336
6337 perf_event_enable_on_exec(ctxn);
6338
aab5b71e 6339 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6340 true);
6341 }
6342 rcu_read_unlock();
6343}
6344
95ff4ca2
AS
6345struct remote_output {
6346 struct ring_buffer *rb;
6347 int err;
6348};
6349
6350static void __perf_event_output_stop(struct perf_event *event, void *data)
6351{
6352 struct perf_event *parent = event->parent;
6353 struct remote_output *ro = data;
6354 struct ring_buffer *rb = ro->rb;
375637bc
AS
6355 struct stop_event_data sd = {
6356 .event = event,
6357 };
95ff4ca2
AS
6358
6359 if (!has_aux(event))
6360 return;
6361
6362 if (!parent)
6363 parent = event;
6364
6365 /*
6366 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6367 * ring-buffer, but it will be the child that's actually using it.
6368 *
6369 * We are using event::rb to determine if the event should be stopped,
6370 * however this may race with ring_buffer_attach() (through set_output),
6371 * which will make us skip the event that actually needs to be stopped.
6372 * So ring_buffer_attach() has to stop an aux event before re-assigning
6373 * its rb pointer.
95ff4ca2
AS
6374 */
6375 if (rcu_dereference(parent->rb) == rb)
375637bc 6376 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6377}
6378
6379static int __perf_pmu_output_stop(void *info)
6380{
6381 struct perf_event *event = info;
6382 struct pmu *pmu = event->pmu;
8b6a3fe8 6383 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6384 struct remote_output ro = {
6385 .rb = event->rb,
6386 };
6387
6388 rcu_read_lock();
aab5b71e 6389 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6390 if (cpuctx->task_ctx)
aab5b71e 6391 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6392 &ro, false);
95ff4ca2
AS
6393 rcu_read_unlock();
6394
6395 return ro.err;
6396}
6397
6398static void perf_pmu_output_stop(struct perf_event *event)
6399{
6400 struct perf_event *iter;
6401 int err, cpu;
6402
6403restart:
6404 rcu_read_lock();
6405 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6406 /*
6407 * For per-CPU events, we need to make sure that neither they
6408 * nor their children are running; for cpu==-1 events it's
6409 * sufficient to stop the event itself if it's active, since
6410 * it can't have children.
6411 */
6412 cpu = iter->cpu;
6413 if (cpu == -1)
6414 cpu = READ_ONCE(iter->oncpu);
6415
6416 if (cpu == -1)
6417 continue;
6418
6419 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6420 if (err == -EAGAIN) {
6421 rcu_read_unlock();
6422 goto restart;
6423 }
6424 }
6425 rcu_read_unlock();
52d857a8
JO
6426}
6427
60313ebe 6428/*
9f498cc5
PZ
6429 * task tracking -- fork/exit
6430 *
13d7a241 6431 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6432 */
6433
9f498cc5 6434struct perf_task_event {
3a80b4a3 6435 struct task_struct *task;
cdd6c482 6436 struct perf_event_context *task_ctx;
60313ebe
PZ
6437
6438 struct {
6439 struct perf_event_header header;
6440
6441 u32 pid;
6442 u32 ppid;
9f498cc5
PZ
6443 u32 tid;
6444 u32 ptid;
393b2ad8 6445 u64 time;
cdd6c482 6446 } event_id;
60313ebe
PZ
6447};
6448
67516844
JO
6449static int perf_event_task_match(struct perf_event *event)
6450{
13d7a241
SE
6451 return event->attr.comm || event->attr.mmap ||
6452 event->attr.mmap2 || event->attr.mmap_data ||
6453 event->attr.task;
67516844
JO
6454}
6455
cdd6c482 6456static void perf_event_task_output(struct perf_event *event,
52d857a8 6457 void *data)
60313ebe 6458{
52d857a8 6459 struct perf_task_event *task_event = data;
60313ebe 6460 struct perf_output_handle handle;
c980d109 6461 struct perf_sample_data sample;
9f498cc5 6462 struct task_struct *task = task_event->task;
c980d109 6463 int ret, size = task_event->event_id.header.size;
8bb39f9a 6464
67516844
JO
6465 if (!perf_event_task_match(event))
6466 return;
6467
c980d109 6468 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6469
c980d109 6470 ret = perf_output_begin(&handle, event,
a7ac67ea 6471 task_event->event_id.header.size);
ef60777c 6472 if (ret)
c980d109 6473 goto out;
60313ebe 6474
cdd6c482
IM
6475 task_event->event_id.pid = perf_event_pid(event, task);
6476 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6477
cdd6c482
IM
6478 task_event->event_id.tid = perf_event_tid(event, task);
6479 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6480
34f43927
PZ
6481 task_event->event_id.time = perf_event_clock(event);
6482
cdd6c482 6483 perf_output_put(&handle, task_event->event_id);
393b2ad8 6484
c980d109
ACM
6485 perf_event__output_id_sample(event, &handle, &sample);
6486
60313ebe 6487 perf_output_end(&handle);
c980d109
ACM
6488out:
6489 task_event->event_id.header.size = size;
60313ebe
PZ
6490}
6491
cdd6c482
IM
6492static void perf_event_task(struct task_struct *task,
6493 struct perf_event_context *task_ctx,
3a80b4a3 6494 int new)
60313ebe 6495{
9f498cc5 6496 struct perf_task_event task_event;
60313ebe 6497
cdd6c482
IM
6498 if (!atomic_read(&nr_comm_events) &&
6499 !atomic_read(&nr_mmap_events) &&
6500 !atomic_read(&nr_task_events))
60313ebe
PZ
6501 return;
6502
9f498cc5 6503 task_event = (struct perf_task_event){
3a80b4a3
PZ
6504 .task = task,
6505 .task_ctx = task_ctx,
cdd6c482 6506 .event_id = {
60313ebe 6507 .header = {
cdd6c482 6508 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6509 .misc = 0,
cdd6c482 6510 .size = sizeof(task_event.event_id),
60313ebe 6511 },
573402db
PZ
6512 /* .pid */
6513 /* .ppid */
9f498cc5
PZ
6514 /* .tid */
6515 /* .ptid */
34f43927 6516 /* .time */
60313ebe
PZ
6517 },
6518 };
6519
aab5b71e 6520 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6521 &task_event,
6522 task_ctx);
9f498cc5
PZ
6523}
6524
cdd6c482 6525void perf_event_fork(struct task_struct *task)
9f498cc5 6526{
cdd6c482 6527 perf_event_task(task, NULL, 1);
e4222673 6528 perf_event_namespaces(task);
60313ebe
PZ
6529}
6530
8d1b2d93
PZ
6531/*
6532 * comm tracking
6533 */
6534
6535struct perf_comm_event {
22a4f650
IM
6536 struct task_struct *task;
6537 char *comm;
8d1b2d93
PZ
6538 int comm_size;
6539
6540 struct {
6541 struct perf_event_header header;
6542
6543 u32 pid;
6544 u32 tid;
cdd6c482 6545 } event_id;
8d1b2d93
PZ
6546};
6547
67516844
JO
6548static int perf_event_comm_match(struct perf_event *event)
6549{
6550 return event->attr.comm;
6551}
6552
cdd6c482 6553static void perf_event_comm_output(struct perf_event *event,
52d857a8 6554 void *data)
8d1b2d93 6555{
52d857a8 6556 struct perf_comm_event *comm_event = data;
8d1b2d93 6557 struct perf_output_handle handle;
c980d109 6558 struct perf_sample_data sample;
cdd6c482 6559 int size = comm_event->event_id.header.size;
c980d109
ACM
6560 int ret;
6561
67516844
JO
6562 if (!perf_event_comm_match(event))
6563 return;
6564
c980d109
ACM
6565 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6566 ret = perf_output_begin(&handle, event,
a7ac67ea 6567 comm_event->event_id.header.size);
8d1b2d93
PZ
6568
6569 if (ret)
c980d109 6570 goto out;
8d1b2d93 6571
cdd6c482
IM
6572 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6573 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6574
cdd6c482 6575 perf_output_put(&handle, comm_event->event_id);
76369139 6576 __output_copy(&handle, comm_event->comm,
8d1b2d93 6577 comm_event->comm_size);
c980d109
ACM
6578
6579 perf_event__output_id_sample(event, &handle, &sample);
6580
8d1b2d93 6581 perf_output_end(&handle);
c980d109
ACM
6582out:
6583 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6584}
6585
cdd6c482 6586static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6587{
413ee3b4 6588 char comm[TASK_COMM_LEN];
8d1b2d93 6589 unsigned int size;
8d1b2d93 6590
413ee3b4 6591 memset(comm, 0, sizeof(comm));
96b02d78 6592 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6593 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6594
6595 comm_event->comm = comm;
6596 comm_event->comm_size = size;
6597
cdd6c482 6598 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6599
aab5b71e 6600 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6601 comm_event,
6602 NULL);
8d1b2d93
PZ
6603}
6604
82b89778 6605void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6606{
9ee318a7
PZ
6607 struct perf_comm_event comm_event;
6608
cdd6c482 6609 if (!atomic_read(&nr_comm_events))
9ee318a7 6610 return;
a63eaf34 6611
9ee318a7 6612 comm_event = (struct perf_comm_event){
8d1b2d93 6613 .task = task,
573402db
PZ
6614 /* .comm */
6615 /* .comm_size */
cdd6c482 6616 .event_id = {
573402db 6617 .header = {
cdd6c482 6618 .type = PERF_RECORD_COMM,
82b89778 6619 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6620 /* .size */
6621 },
6622 /* .pid */
6623 /* .tid */
8d1b2d93
PZ
6624 },
6625 };
6626
cdd6c482 6627 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6628}
6629
e4222673
HB
6630/*
6631 * namespaces tracking
6632 */
6633
6634struct perf_namespaces_event {
6635 struct task_struct *task;
6636
6637 struct {
6638 struct perf_event_header header;
6639
6640 u32 pid;
6641 u32 tid;
6642 u64 nr_namespaces;
6643 struct perf_ns_link_info link_info[NR_NAMESPACES];
6644 } event_id;
6645};
6646
6647static int perf_event_namespaces_match(struct perf_event *event)
6648{
6649 return event->attr.namespaces;
6650}
6651
6652static void perf_event_namespaces_output(struct perf_event *event,
6653 void *data)
6654{
6655 struct perf_namespaces_event *namespaces_event = data;
6656 struct perf_output_handle handle;
6657 struct perf_sample_data sample;
34900ec5 6658 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
6659 int ret;
6660
6661 if (!perf_event_namespaces_match(event))
6662 return;
6663
6664 perf_event_header__init_id(&namespaces_event->event_id.header,
6665 &sample, event);
6666 ret = perf_output_begin(&handle, event,
6667 namespaces_event->event_id.header.size);
6668 if (ret)
34900ec5 6669 goto out;
e4222673
HB
6670
6671 namespaces_event->event_id.pid = perf_event_pid(event,
6672 namespaces_event->task);
6673 namespaces_event->event_id.tid = perf_event_tid(event,
6674 namespaces_event->task);
6675
6676 perf_output_put(&handle, namespaces_event->event_id);
6677
6678 perf_event__output_id_sample(event, &handle, &sample);
6679
6680 perf_output_end(&handle);
34900ec5
JO
6681out:
6682 namespaces_event->event_id.header.size = header_size;
e4222673
HB
6683}
6684
6685static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6686 struct task_struct *task,
6687 const struct proc_ns_operations *ns_ops)
6688{
6689 struct path ns_path;
6690 struct inode *ns_inode;
6691 void *error;
6692
6693 error = ns_get_path(&ns_path, task, ns_ops);
6694 if (!error) {
6695 ns_inode = ns_path.dentry->d_inode;
6696 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6697 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 6698 path_put(&ns_path);
e4222673
HB
6699 }
6700}
6701
6702void perf_event_namespaces(struct task_struct *task)
6703{
6704 struct perf_namespaces_event namespaces_event;
6705 struct perf_ns_link_info *ns_link_info;
6706
6707 if (!atomic_read(&nr_namespaces_events))
6708 return;
6709
6710 namespaces_event = (struct perf_namespaces_event){
6711 .task = task,
6712 .event_id = {
6713 .header = {
6714 .type = PERF_RECORD_NAMESPACES,
6715 .misc = 0,
6716 .size = sizeof(namespaces_event.event_id),
6717 },
6718 /* .pid */
6719 /* .tid */
6720 .nr_namespaces = NR_NAMESPACES,
6721 /* .link_info[NR_NAMESPACES] */
6722 },
6723 };
6724
6725 ns_link_info = namespaces_event.event_id.link_info;
6726
6727 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6728 task, &mntns_operations);
6729
6730#ifdef CONFIG_USER_NS
6731 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6732 task, &userns_operations);
6733#endif
6734#ifdef CONFIG_NET_NS
6735 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6736 task, &netns_operations);
6737#endif
6738#ifdef CONFIG_UTS_NS
6739 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6740 task, &utsns_operations);
6741#endif
6742#ifdef CONFIG_IPC_NS
6743 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6744 task, &ipcns_operations);
6745#endif
6746#ifdef CONFIG_PID_NS
6747 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6748 task, &pidns_operations);
6749#endif
6750#ifdef CONFIG_CGROUPS
6751 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6752 task, &cgroupns_operations);
6753#endif
6754
6755 perf_iterate_sb(perf_event_namespaces_output,
6756 &namespaces_event,
6757 NULL);
6758}
6759
0a4a9391
PZ
6760/*
6761 * mmap tracking
6762 */
6763
6764struct perf_mmap_event {
089dd79d
PZ
6765 struct vm_area_struct *vma;
6766
6767 const char *file_name;
6768 int file_size;
13d7a241
SE
6769 int maj, min;
6770 u64 ino;
6771 u64 ino_generation;
f972eb63 6772 u32 prot, flags;
0a4a9391
PZ
6773
6774 struct {
6775 struct perf_event_header header;
6776
6777 u32 pid;
6778 u32 tid;
6779 u64 start;
6780 u64 len;
6781 u64 pgoff;
cdd6c482 6782 } event_id;
0a4a9391
PZ
6783};
6784
67516844
JO
6785static int perf_event_mmap_match(struct perf_event *event,
6786 void *data)
6787{
6788 struct perf_mmap_event *mmap_event = data;
6789 struct vm_area_struct *vma = mmap_event->vma;
6790 int executable = vma->vm_flags & VM_EXEC;
6791
6792 return (!executable && event->attr.mmap_data) ||
13d7a241 6793 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6794}
6795
cdd6c482 6796static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6797 void *data)
0a4a9391 6798{
52d857a8 6799 struct perf_mmap_event *mmap_event = data;
0a4a9391 6800 struct perf_output_handle handle;
c980d109 6801 struct perf_sample_data sample;
cdd6c482 6802 int size = mmap_event->event_id.header.size;
c980d109 6803 int ret;
0a4a9391 6804
67516844
JO
6805 if (!perf_event_mmap_match(event, data))
6806 return;
6807
13d7a241
SE
6808 if (event->attr.mmap2) {
6809 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6810 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6811 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6812 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6813 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6814 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6815 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6816 }
6817
c980d109
ACM
6818 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6819 ret = perf_output_begin(&handle, event,
a7ac67ea 6820 mmap_event->event_id.header.size);
0a4a9391 6821 if (ret)
c980d109 6822 goto out;
0a4a9391 6823
cdd6c482
IM
6824 mmap_event->event_id.pid = perf_event_pid(event, current);
6825 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6826
cdd6c482 6827 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6828
6829 if (event->attr.mmap2) {
6830 perf_output_put(&handle, mmap_event->maj);
6831 perf_output_put(&handle, mmap_event->min);
6832 perf_output_put(&handle, mmap_event->ino);
6833 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6834 perf_output_put(&handle, mmap_event->prot);
6835 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6836 }
6837
76369139 6838 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6839 mmap_event->file_size);
c980d109
ACM
6840
6841 perf_event__output_id_sample(event, &handle, &sample);
6842
78d613eb 6843 perf_output_end(&handle);
c980d109
ACM
6844out:
6845 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6846}
6847
cdd6c482 6848static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6849{
089dd79d
PZ
6850 struct vm_area_struct *vma = mmap_event->vma;
6851 struct file *file = vma->vm_file;
13d7a241
SE
6852 int maj = 0, min = 0;
6853 u64 ino = 0, gen = 0;
f972eb63 6854 u32 prot = 0, flags = 0;
0a4a9391
PZ
6855 unsigned int size;
6856 char tmp[16];
6857 char *buf = NULL;
2c42cfbf 6858 char *name;
413ee3b4 6859
0b3589be
PZ
6860 if (vma->vm_flags & VM_READ)
6861 prot |= PROT_READ;
6862 if (vma->vm_flags & VM_WRITE)
6863 prot |= PROT_WRITE;
6864 if (vma->vm_flags & VM_EXEC)
6865 prot |= PROT_EXEC;
6866
6867 if (vma->vm_flags & VM_MAYSHARE)
6868 flags = MAP_SHARED;
6869 else
6870 flags = MAP_PRIVATE;
6871
6872 if (vma->vm_flags & VM_DENYWRITE)
6873 flags |= MAP_DENYWRITE;
6874 if (vma->vm_flags & VM_MAYEXEC)
6875 flags |= MAP_EXECUTABLE;
6876 if (vma->vm_flags & VM_LOCKED)
6877 flags |= MAP_LOCKED;
6878 if (vma->vm_flags & VM_HUGETLB)
6879 flags |= MAP_HUGETLB;
6880
0a4a9391 6881 if (file) {
13d7a241
SE
6882 struct inode *inode;
6883 dev_t dev;
3ea2f2b9 6884
2c42cfbf 6885 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6886 if (!buf) {
c7e548b4
ON
6887 name = "//enomem";
6888 goto cpy_name;
0a4a9391 6889 }
413ee3b4 6890 /*
3ea2f2b9 6891 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6892 * need to add enough zero bytes after the string to handle
6893 * the 64bit alignment we do later.
6894 */
9bf39ab2 6895 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6896 if (IS_ERR(name)) {
c7e548b4
ON
6897 name = "//toolong";
6898 goto cpy_name;
0a4a9391 6899 }
13d7a241
SE
6900 inode = file_inode(vma->vm_file);
6901 dev = inode->i_sb->s_dev;
6902 ino = inode->i_ino;
6903 gen = inode->i_generation;
6904 maj = MAJOR(dev);
6905 min = MINOR(dev);
f972eb63 6906
c7e548b4 6907 goto got_name;
0a4a9391 6908 } else {
fbe26abe
JO
6909 if (vma->vm_ops && vma->vm_ops->name) {
6910 name = (char *) vma->vm_ops->name(vma);
6911 if (name)
6912 goto cpy_name;
6913 }
6914
2c42cfbf 6915 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6916 if (name)
6917 goto cpy_name;
089dd79d 6918
32c5fb7e 6919 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6920 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6921 name = "[heap]";
6922 goto cpy_name;
32c5fb7e
ON
6923 }
6924 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6925 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6926 name = "[stack]";
6927 goto cpy_name;
089dd79d
PZ
6928 }
6929
c7e548b4
ON
6930 name = "//anon";
6931 goto cpy_name;
0a4a9391
PZ
6932 }
6933
c7e548b4
ON
6934cpy_name:
6935 strlcpy(tmp, name, sizeof(tmp));
6936 name = tmp;
0a4a9391 6937got_name:
2c42cfbf
PZ
6938 /*
6939 * Since our buffer works in 8 byte units we need to align our string
6940 * size to a multiple of 8. However, we must guarantee the tail end is
6941 * zero'd out to avoid leaking random bits to userspace.
6942 */
6943 size = strlen(name)+1;
6944 while (!IS_ALIGNED(size, sizeof(u64)))
6945 name[size++] = '\0';
0a4a9391
PZ
6946
6947 mmap_event->file_name = name;
6948 mmap_event->file_size = size;
13d7a241
SE
6949 mmap_event->maj = maj;
6950 mmap_event->min = min;
6951 mmap_event->ino = ino;
6952 mmap_event->ino_generation = gen;
f972eb63
PZ
6953 mmap_event->prot = prot;
6954 mmap_event->flags = flags;
0a4a9391 6955
2fe85427
SE
6956 if (!(vma->vm_flags & VM_EXEC))
6957 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6958
cdd6c482 6959 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6960
aab5b71e 6961 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6962 mmap_event,
6963 NULL);
665c2142 6964
0a4a9391
PZ
6965 kfree(buf);
6966}
6967
375637bc
AS
6968/*
6969 * Check whether inode and address range match filter criteria.
6970 */
6971static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6972 struct file *file, unsigned long offset,
6973 unsigned long size)
6974{
45063097 6975 if (filter->inode != file_inode(file))
375637bc
AS
6976 return false;
6977
6978 if (filter->offset > offset + size)
6979 return false;
6980
6981 if (filter->offset + filter->size < offset)
6982 return false;
6983
6984 return true;
6985}
6986
6987static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6988{
6989 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6990 struct vm_area_struct *vma = data;
6991 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6992 struct file *file = vma->vm_file;
6993 struct perf_addr_filter *filter;
6994 unsigned int restart = 0, count = 0;
6995
6996 if (!has_addr_filter(event))
6997 return;
6998
6999 if (!file)
7000 return;
7001
7002 raw_spin_lock_irqsave(&ifh->lock, flags);
7003 list_for_each_entry(filter, &ifh->list, entry) {
7004 if (perf_addr_filter_match(filter, file, off,
7005 vma->vm_end - vma->vm_start)) {
7006 event->addr_filters_offs[count] = vma->vm_start;
7007 restart++;
7008 }
7009
7010 count++;
7011 }
7012
7013 if (restart)
7014 event->addr_filters_gen++;
7015 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7016
7017 if (restart)
767ae086 7018 perf_event_stop(event, 1);
375637bc
AS
7019}
7020
7021/*
7022 * Adjust all task's events' filters to the new vma
7023 */
7024static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7025{
7026 struct perf_event_context *ctx;
7027 int ctxn;
7028
12b40a23
MP
7029 /*
7030 * Data tracing isn't supported yet and as such there is no need
7031 * to keep track of anything that isn't related to executable code:
7032 */
7033 if (!(vma->vm_flags & VM_EXEC))
7034 return;
7035
375637bc
AS
7036 rcu_read_lock();
7037 for_each_task_context_nr(ctxn) {
7038 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7039 if (!ctx)
7040 continue;
7041
aab5b71e 7042 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7043 }
7044 rcu_read_unlock();
7045}
7046
3af9e859 7047void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7048{
9ee318a7
PZ
7049 struct perf_mmap_event mmap_event;
7050
cdd6c482 7051 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7052 return;
7053
7054 mmap_event = (struct perf_mmap_event){
089dd79d 7055 .vma = vma,
573402db
PZ
7056 /* .file_name */
7057 /* .file_size */
cdd6c482 7058 .event_id = {
573402db 7059 .header = {
cdd6c482 7060 .type = PERF_RECORD_MMAP,
39447b38 7061 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7062 /* .size */
7063 },
7064 /* .pid */
7065 /* .tid */
089dd79d
PZ
7066 .start = vma->vm_start,
7067 .len = vma->vm_end - vma->vm_start,
3a0304e9 7068 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7069 },
13d7a241
SE
7070 /* .maj (attr_mmap2 only) */
7071 /* .min (attr_mmap2 only) */
7072 /* .ino (attr_mmap2 only) */
7073 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7074 /* .prot (attr_mmap2 only) */
7075 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7076 };
7077
375637bc 7078 perf_addr_filters_adjust(vma);
cdd6c482 7079 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7080}
7081
68db7e98
AS
7082void perf_event_aux_event(struct perf_event *event, unsigned long head,
7083 unsigned long size, u64 flags)
7084{
7085 struct perf_output_handle handle;
7086 struct perf_sample_data sample;
7087 struct perf_aux_event {
7088 struct perf_event_header header;
7089 u64 offset;
7090 u64 size;
7091 u64 flags;
7092 } rec = {
7093 .header = {
7094 .type = PERF_RECORD_AUX,
7095 .misc = 0,
7096 .size = sizeof(rec),
7097 },
7098 .offset = head,
7099 .size = size,
7100 .flags = flags,
7101 };
7102 int ret;
7103
7104 perf_event_header__init_id(&rec.header, &sample, event);
7105 ret = perf_output_begin(&handle, event, rec.header.size);
7106
7107 if (ret)
7108 return;
7109
7110 perf_output_put(&handle, rec);
7111 perf_event__output_id_sample(event, &handle, &sample);
7112
7113 perf_output_end(&handle);
7114}
7115
f38b0dbb
KL
7116/*
7117 * Lost/dropped samples logging
7118 */
7119void perf_log_lost_samples(struct perf_event *event, u64 lost)
7120{
7121 struct perf_output_handle handle;
7122 struct perf_sample_data sample;
7123 int ret;
7124
7125 struct {
7126 struct perf_event_header header;
7127 u64 lost;
7128 } lost_samples_event = {
7129 .header = {
7130 .type = PERF_RECORD_LOST_SAMPLES,
7131 .misc = 0,
7132 .size = sizeof(lost_samples_event),
7133 },
7134 .lost = lost,
7135 };
7136
7137 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7138
7139 ret = perf_output_begin(&handle, event,
7140 lost_samples_event.header.size);
7141 if (ret)
7142 return;
7143
7144 perf_output_put(&handle, lost_samples_event);
7145 perf_event__output_id_sample(event, &handle, &sample);
7146 perf_output_end(&handle);
7147}
7148
45ac1403
AH
7149/*
7150 * context_switch tracking
7151 */
7152
7153struct perf_switch_event {
7154 struct task_struct *task;
7155 struct task_struct *next_prev;
7156
7157 struct {
7158 struct perf_event_header header;
7159 u32 next_prev_pid;
7160 u32 next_prev_tid;
7161 } event_id;
7162};
7163
7164static int perf_event_switch_match(struct perf_event *event)
7165{
7166 return event->attr.context_switch;
7167}
7168
7169static void perf_event_switch_output(struct perf_event *event, void *data)
7170{
7171 struct perf_switch_event *se = data;
7172 struct perf_output_handle handle;
7173 struct perf_sample_data sample;
7174 int ret;
7175
7176 if (!perf_event_switch_match(event))
7177 return;
7178
7179 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7180 if (event->ctx->task) {
7181 se->event_id.header.type = PERF_RECORD_SWITCH;
7182 se->event_id.header.size = sizeof(se->event_id.header);
7183 } else {
7184 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7185 se->event_id.header.size = sizeof(se->event_id);
7186 se->event_id.next_prev_pid =
7187 perf_event_pid(event, se->next_prev);
7188 se->event_id.next_prev_tid =
7189 perf_event_tid(event, se->next_prev);
7190 }
7191
7192 perf_event_header__init_id(&se->event_id.header, &sample, event);
7193
7194 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7195 if (ret)
7196 return;
7197
7198 if (event->ctx->task)
7199 perf_output_put(&handle, se->event_id.header);
7200 else
7201 perf_output_put(&handle, se->event_id);
7202
7203 perf_event__output_id_sample(event, &handle, &sample);
7204
7205 perf_output_end(&handle);
7206}
7207
7208static void perf_event_switch(struct task_struct *task,
7209 struct task_struct *next_prev, bool sched_in)
7210{
7211 struct perf_switch_event switch_event;
7212
7213 /* N.B. caller checks nr_switch_events != 0 */
7214
7215 switch_event = (struct perf_switch_event){
7216 .task = task,
7217 .next_prev = next_prev,
7218 .event_id = {
7219 .header = {
7220 /* .type */
7221 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7222 /* .size */
7223 },
7224 /* .next_prev_pid */
7225 /* .next_prev_tid */
7226 },
7227 };
7228
aab5b71e 7229 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7230 &switch_event,
7231 NULL);
7232}
7233
a78ac325
PZ
7234/*
7235 * IRQ throttle logging
7236 */
7237
cdd6c482 7238static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7239{
7240 struct perf_output_handle handle;
c980d109 7241 struct perf_sample_data sample;
a78ac325
PZ
7242 int ret;
7243
7244 struct {
7245 struct perf_event_header header;
7246 u64 time;
cca3f454 7247 u64 id;
7f453c24 7248 u64 stream_id;
a78ac325
PZ
7249 } throttle_event = {
7250 .header = {
cdd6c482 7251 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7252 .misc = 0,
7253 .size = sizeof(throttle_event),
7254 },
34f43927 7255 .time = perf_event_clock(event),
cdd6c482
IM
7256 .id = primary_event_id(event),
7257 .stream_id = event->id,
a78ac325
PZ
7258 };
7259
966ee4d6 7260 if (enable)
cdd6c482 7261 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7262
c980d109
ACM
7263 perf_event_header__init_id(&throttle_event.header, &sample, event);
7264
7265 ret = perf_output_begin(&handle, event,
a7ac67ea 7266 throttle_event.header.size);
a78ac325
PZ
7267 if (ret)
7268 return;
7269
7270 perf_output_put(&handle, throttle_event);
c980d109 7271 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7272 perf_output_end(&handle);
7273}
7274
8d4e6c4c
AS
7275void perf_event_itrace_started(struct perf_event *event)
7276{
7277 event->attach_state |= PERF_ATTACH_ITRACE;
7278}
7279
ec0d7729
AS
7280static void perf_log_itrace_start(struct perf_event *event)
7281{
7282 struct perf_output_handle handle;
7283 struct perf_sample_data sample;
7284 struct perf_aux_event {
7285 struct perf_event_header header;
7286 u32 pid;
7287 u32 tid;
7288 } rec;
7289 int ret;
7290
7291 if (event->parent)
7292 event = event->parent;
7293
7294 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7295 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7296 return;
7297
ec0d7729
AS
7298 rec.header.type = PERF_RECORD_ITRACE_START;
7299 rec.header.misc = 0;
7300 rec.header.size = sizeof(rec);
7301 rec.pid = perf_event_pid(event, current);
7302 rec.tid = perf_event_tid(event, current);
7303
7304 perf_event_header__init_id(&rec.header, &sample, event);
7305 ret = perf_output_begin(&handle, event, rec.header.size);
7306
7307 if (ret)
7308 return;
7309
7310 perf_output_put(&handle, rec);
7311 perf_event__output_id_sample(event, &handle, &sample);
7312
7313 perf_output_end(&handle);
7314}
7315
475113d9
JO
7316static int
7317__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7318{
cdd6c482 7319 struct hw_perf_event *hwc = &event->hw;
79f14641 7320 int ret = 0;
475113d9 7321 u64 seq;
96398826 7322
e050e3f0
SE
7323 seq = __this_cpu_read(perf_throttled_seq);
7324 if (seq != hwc->interrupts_seq) {
7325 hwc->interrupts_seq = seq;
7326 hwc->interrupts = 1;
7327 } else {
7328 hwc->interrupts++;
7329 if (unlikely(throttle
7330 && hwc->interrupts >= max_samples_per_tick)) {
7331 __this_cpu_inc(perf_throttled_count);
555e0c1e 7332 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7333 hwc->interrupts = MAX_INTERRUPTS;
7334 perf_log_throttle(event, 0);
a78ac325
PZ
7335 ret = 1;
7336 }
e050e3f0 7337 }
60db5e09 7338
cdd6c482 7339 if (event->attr.freq) {
def0a9b2 7340 u64 now = perf_clock();
abd50713 7341 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7342
abd50713 7343 hwc->freq_time_stamp = now;
bd2b5b12 7344
abd50713 7345 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7346 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7347 }
7348
475113d9
JO
7349 return ret;
7350}
7351
7352int perf_event_account_interrupt(struct perf_event *event)
7353{
7354 return __perf_event_account_interrupt(event, 1);
7355}
7356
7357/*
7358 * Generic event overflow handling, sampling.
7359 */
7360
7361static int __perf_event_overflow(struct perf_event *event,
7362 int throttle, struct perf_sample_data *data,
7363 struct pt_regs *regs)
7364{
7365 int events = atomic_read(&event->event_limit);
7366 int ret = 0;
7367
7368 /*
7369 * Non-sampling counters might still use the PMI to fold short
7370 * hardware counters, ignore those.
7371 */
7372 if (unlikely(!is_sampling_event(event)))
7373 return 0;
7374
7375 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7376
2023b359
PZ
7377 /*
7378 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7379 * events
2023b359
PZ
7380 */
7381
cdd6c482
IM
7382 event->pending_kill = POLL_IN;
7383 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7384 ret = 1;
cdd6c482 7385 event->pending_kill = POLL_HUP;
5aab90ce
JO
7386
7387 perf_event_disable_inatomic(event);
79f14641
PZ
7388 }
7389
aa6a5f3c 7390 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7391
fed66e2c 7392 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7393 event->pending_wakeup = 1;
7394 irq_work_queue(&event->pending);
f506b3dc
PZ
7395 }
7396
79f14641 7397 return ret;
f6c7d5fe
PZ
7398}
7399
a8b0ca17 7400int perf_event_overflow(struct perf_event *event,
5622f295
MM
7401 struct perf_sample_data *data,
7402 struct pt_regs *regs)
850bc73f 7403{
a8b0ca17 7404 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7405}
7406
15dbf27c 7407/*
cdd6c482 7408 * Generic software event infrastructure
15dbf27c
PZ
7409 */
7410
b28ab83c
PZ
7411struct swevent_htable {
7412 struct swevent_hlist *swevent_hlist;
7413 struct mutex hlist_mutex;
7414 int hlist_refcount;
7415
7416 /* Recursion avoidance in each contexts */
7417 int recursion[PERF_NR_CONTEXTS];
7418};
7419
7420static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7421
7b4b6658 7422/*
cdd6c482
IM
7423 * We directly increment event->count and keep a second value in
7424 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7425 * is kept in the range [-sample_period, 0] so that we can use the
7426 * sign as trigger.
7427 */
7428
ab573844 7429u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7430{
cdd6c482 7431 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7432 u64 period = hwc->last_period;
7433 u64 nr, offset;
7434 s64 old, val;
7435
7436 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7437
7438again:
e7850595 7439 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7440 if (val < 0)
7441 return 0;
15dbf27c 7442
7b4b6658
PZ
7443 nr = div64_u64(period + val, period);
7444 offset = nr * period;
7445 val -= offset;
e7850595 7446 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7447 goto again;
15dbf27c 7448
7b4b6658 7449 return nr;
15dbf27c
PZ
7450}
7451
0cff784a 7452static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7453 struct perf_sample_data *data,
5622f295 7454 struct pt_regs *regs)
15dbf27c 7455{
cdd6c482 7456 struct hw_perf_event *hwc = &event->hw;
850bc73f 7457 int throttle = 0;
15dbf27c 7458
0cff784a
PZ
7459 if (!overflow)
7460 overflow = perf_swevent_set_period(event);
15dbf27c 7461
7b4b6658
PZ
7462 if (hwc->interrupts == MAX_INTERRUPTS)
7463 return;
15dbf27c 7464
7b4b6658 7465 for (; overflow; overflow--) {
a8b0ca17 7466 if (__perf_event_overflow(event, throttle,
5622f295 7467 data, regs)) {
7b4b6658
PZ
7468 /*
7469 * We inhibit the overflow from happening when
7470 * hwc->interrupts == MAX_INTERRUPTS.
7471 */
7472 break;
7473 }
cf450a73 7474 throttle = 1;
7b4b6658 7475 }
15dbf27c
PZ
7476}
7477
a4eaf7f1 7478static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7479 struct perf_sample_data *data,
5622f295 7480 struct pt_regs *regs)
7b4b6658 7481{
cdd6c482 7482 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7483
e7850595 7484 local64_add(nr, &event->count);
d6d020e9 7485
0cff784a
PZ
7486 if (!regs)
7487 return;
7488
6c7e550f 7489 if (!is_sampling_event(event))
7b4b6658 7490 return;
d6d020e9 7491
5d81e5cf
AV
7492 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7493 data->period = nr;
7494 return perf_swevent_overflow(event, 1, data, regs);
7495 } else
7496 data->period = event->hw.last_period;
7497
0cff784a 7498 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7499 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7500
e7850595 7501 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7502 return;
df1a132b 7503
a8b0ca17 7504 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7505}
7506
f5ffe02e
FW
7507static int perf_exclude_event(struct perf_event *event,
7508 struct pt_regs *regs)
7509{
a4eaf7f1 7510 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7511 return 1;
a4eaf7f1 7512
f5ffe02e
FW
7513 if (regs) {
7514 if (event->attr.exclude_user && user_mode(regs))
7515 return 1;
7516
7517 if (event->attr.exclude_kernel && !user_mode(regs))
7518 return 1;
7519 }
7520
7521 return 0;
7522}
7523
cdd6c482 7524static int perf_swevent_match(struct perf_event *event,
1c432d89 7525 enum perf_type_id type,
6fb2915d
LZ
7526 u32 event_id,
7527 struct perf_sample_data *data,
7528 struct pt_regs *regs)
15dbf27c 7529{
cdd6c482 7530 if (event->attr.type != type)
a21ca2ca 7531 return 0;
f5ffe02e 7532
cdd6c482 7533 if (event->attr.config != event_id)
15dbf27c
PZ
7534 return 0;
7535
f5ffe02e
FW
7536 if (perf_exclude_event(event, regs))
7537 return 0;
15dbf27c
PZ
7538
7539 return 1;
7540}
7541
76e1d904
FW
7542static inline u64 swevent_hash(u64 type, u32 event_id)
7543{
7544 u64 val = event_id | (type << 32);
7545
7546 return hash_64(val, SWEVENT_HLIST_BITS);
7547}
7548
49f135ed
FW
7549static inline struct hlist_head *
7550__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7551{
49f135ed
FW
7552 u64 hash = swevent_hash(type, event_id);
7553
7554 return &hlist->heads[hash];
7555}
76e1d904 7556
49f135ed
FW
7557/* For the read side: events when they trigger */
7558static inline struct hlist_head *
b28ab83c 7559find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7560{
7561 struct swevent_hlist *hlist;
76e1d904 7562
b28ab83c 7563 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7564 if (!hlist)
7565 return NULL;
7566
49f135ed
FW
7567 return __find_swevent_head(hlist, type, event_id);
7568}
7569
7570/* For the event head insertion and removal in the hlist */
7571static inline struct hlist_head *
b28ab83c 7572find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7573{
7574 struct swevent_hlist *hlist;
7575 u32 event_id = event->attr.config;
7576 u64 type = event->attr.type;
7577
7578 /*
7579 * Event scheduling is always serialized against hlist allocation
7580 * and release. Which makes the protected version suitable here.
7581 * The context lock guarantees that.
7582 */
b28ab83c 7583 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7584 lockdep_is_held(&event->ctx->lock));
7585 if (!hlist)
7586 return NULL;
7587
7588 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7589}
7590
7591static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7592 u64 nr,
76e1d904
FW
7593 struct perf_sample_data *data,
7594 struct pt_regs *regs)
15dbf27c 7595{
4a32fea9 7596 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7597 struct perf_event *event;
76e1d904 7598 struct hlist_head *head;
15dbf27c 7599
76e1d904 7600 rcu_read_lock();
b28ab83c 7601 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7602 if (!head)
7603 goto end;
7604
b67bfe0d 7605 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7606 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7607 perf_swevent_event(event, nr, data, regs);
15dbf27c 7608 }
76e1d904
FW
7609end:
7610 rcu_read_unlock();
15dbf27c
PZ
7611}
7612
86038c5e
PZI
7613DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7614
4ed7c92d 7615int perf_swevent_get_recursion_context(void)
96f6d444 7616{
4a32fea9 7617 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7618
b28ab83c 7619 return get_recursion_context(swhash->recursion);
96f6d444 7620}
645e8cc0 7621EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7622
98b5c2c6 7623void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7624{
4a32fea9 7625 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7626
b28ab83c 7627 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7628}
15dbf27c 7629
86038c5e 7630void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7631{
a4234bfc 7632 struct perf_sample_data data;
4ed7c92d 7633
86038c5e 7634 if (WARN_ON_ONCE(!regs))
4ed7c92d 7635 return;
a4234bfc 7636
fd0d000b 7637 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7638 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7639}
7640
7641void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7642{
7643 int rctx;
7644
7645 preempt_disable_notrace();
7646 rctx = perf_swevent_get_recursion_context();
7647 if (unlikely(rctx < 0))
7648 goto fail;
7649
7650 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7651
7652 perf_swevent_put_recursion_context(rctx);
86038c5e 7653fail:
1c024eca 7654 preempt_enable_notrace();
b8e83514
PZ
7655}
7656
cdd6c482 7657static void perf_swevent_read(struct perf_event *event)
15dbf27c 7658{
15dbf27c
PZ
7659}
7660
a4eaf7f1 7661static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7662{
4a32fea9 7663 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7664 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7665 struct hlist_head *head;
7666
6c7e550f 7667 if (is_sampling_event(event)) {
7b4b6658 7668 hwc->last_period = hwc->sample_period;
cdd6c482 7669 perf_swevent_set_period(event);
7b4b6658 7670 }
76e1d904 7671
a4eaf7f1
PZ
7672 hwc->state = !(flags & PERF_EF_START);
7673
b28ab83c 7674 head = find_swevent_head(swhash, event);
12ca6ad2 7675 if (WARN_ON_ONCE(!head))
76e1d904
FW
7676 return -EINVAL;
7677
7678 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7679 perf_event_update_userpage(event);
76e1d904 7680
15dbf27c
PZ
7681 return 0;
7682}
7683
a4eaf7f1 7684static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7685{
76e1d904 7686 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7687}
7688
a4eaf7f1 7689static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7690{
a4eaf7f1 7691 event->hw.state = 0;
d6d020e9 7692}
aa9c4c0f 7693
a4eaf7f1 7694static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7695{
a4eaf7f1 7696 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7697}
7698
49f135ed
FW
7699/* Deref the hlist from the update side */
7700static inline struct swevent_hlist *
b28ab83c 7701swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7702{
b28ab83c
PZ
7703 return rcu_dereference_protected(swhash->swevent_hlist,
7704 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7705}
7706
b28ab83c 7707static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7708{
b28ab83c 7709 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7710
49f135ed 7711 if (!hlist)
76e1d904
FW
7712 return;
7713
70691d4a 7714 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7715 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7716}
7717
3b364d7b 7718static void swevent_hlist_put_cpu(int cpu)
76e1d904 7719{
b28ab83c 7720 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7721
b28ab83c 7722 mutex_lock(&swhash->hlist_mutex);
76e1d904 7723
b28ab83c
PZ
7724 if (!--swhash->hlist_refcount)
7725 swevent_hlist_release(swhash);
76e1d904 7726
b28ab83c 7727 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7728}
7729
3b364d7b 7730static void swevent_hlist_put(void)
76e1d904
FW
7731{
7732 int cpu;
7733
76e1d904 7734 for_each_possible_cpu(cpu)
3b364d7b 7735 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7736}
7737
3b364d7b 7738static int swevent_hlist_get_cpu(int cpu)
76e1d904 7739{
b28ab83c 7740 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7741 int err = 0;
7742
b28ab83c 7743 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
7744 if (!swevent_hlist_deref(swhash) &&
7745 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
7746 struct swevent_hlist *hlist;
7747
7748 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7749 if (!hlist) {
7750 err = -ENOMEM;
7751 goto exit;
7752 }
b28ab83c 7753 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7754 }
b28ab83c 7755 swhash->hlist_refcount++;
9ed6060d 7756exit:
b28ab83c 7757 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7758
7759 return err;
7760}
7761
3b364d7b 7762static int swevent_hlist_get(void)
76e1d904 7763{
3b364d7b 7764 int err, cpu, failed_cpu;
76e1d904 7765
a63fbed7 7766 mutex_lock(&pmus_lock);
76e1d904 7767 for_each_possible_cpu(cpu) {
3b364d7b 7768 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7769 if (err) {
7770 failed_cpu = cpu;
7771 goto fail;
7772 }
7773 }
a63fbed7 7774 mutex_unlock(&pmus_lock);
76e1d904 7775 return 0;
9ed6060d 7776fail:
76e1d904
FW
7777 for_each_possible_cpu(cpu) {
7778 if (cpu == failed_cpu)
7779 break;
3b364d7b 7780 swevent_hlist_put_cpu(cpu);
76e1d904 7781 }
a63fbed7 7782 mutex_unlock(&pmus_lock);
76e1d904
FW
7783 return err;
7784}
7785
c5905afb 7786struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7787
b0a873eb
PZ
7788static void sw_perf_event_destroy(struct perf_event *event)
7789{
7790 u64 event_id = event->attr.config;
95476b64 7791
b0a873eb
PZ
7792 WARN_ON(event->parent);
7793
c5905afb 7794 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7795 swevent_hlist_put();
b0a873eb
PZ
7796}
7797
7798static int perf_swevent_init(struct perf_event *event)
7799{
8176cced 7800 u64 event_id = event->attr.config;
b0a873eb
PZ
7801
7802 if (event->attr.type != PERF_TYPE_SOFTWARE)
7803 return -ENOENT;
7804
2481c5fa
SE
7805 /*
7806 * no branch sampling for software events
7807 */
7808 if (has_branch_stack(event))
7809 return -EOPNOTSUPP;
7810
b0a873eb
PZ
7811 switch (event_id) {
7812 case PERF_COUNT_SW_CPU_CLOCK:
7813 case PERF_COUNT_SW_TASK_CLOCK:
7814 return -ENOENT;
7815
7816 default:
7817 break;
7818 }
7819
ce677831 7820 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7821 return -ENOENT;
7822
7823 if (!event->parent) {
7824 int err;
7825
3b364d7b 7826 err = swevent_hlist_get();
b0a873eb
PZ
7827 if (err)
7828 return err;
7829
c5905afb 7830 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7831 event->destroy = sw_perf_event_destroy;
7832 }
7833
7834 return 0;
7835}
7836
7837static struct pmu perf_swevent = {
89a1e187 7838 .task_ctx_nr = perf_sw_context,
95476b64 7839
34f43927
PZ
7840 .capabilities = PERF_PMU_CAP_NO_NMI,
7841
b0a873eb 7842 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7843 .add = perf_swevent_add,
7844 .del = perf_swevent_del,
7845 .start = perf_swevent_start,
7846 .stop = perf_swevent_stop,
1c024eca 7847 .read = perf_swevent_read,
1c024eca
PZ
7848};
7849
b0a873eb
PZ
7850#ifdef CONFIG_EVENT_TRACING
7851
1c024eca
PZ
7852static int perf_tp_filter_match(struct perf_event *event,
7853 struct perf_sample_data *data)
7854{
7e3f977e 7855 void *record = data->raw->frag.data;
1c024eca 7856
b71b437e
PZ
7857 /* only top level events have filters set */
7858 if (event->parent)
7859 event = event->parent;
7860
1c024eca
PZ
7861 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7862 return 1;
7863 return 0;
7864}
7865
7866static int perf_tp_event_match(struct perf_event *event,
7867 struct perf_sample_data *data,
7868 struct pt_regs *regs)
7869{
a0f7d0f7
FW
7870 if (event->hw.state & PERF_HES_STOPPED)
7871 return 0;
580d607c
PZ
7872 /*
7873 * All tracepoints are from kernel-space.
7874 */
7875 if (event->attr.exclude_kernel)
1c024eca
PZ
7876 return 0;
7877
7878 if (!perf_tp_filter_match(event, data))
7879 return 0;
7880
7881 return 1;
7882}
7883
85b67bcb
AS
7884void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7885 struct trace_event_call *call, u64 count,
7886 struct pt_regs *regs, struct hlist_head *head,
7887 struct task_struct *task)
7888{
e87c6bc3 7889 if (bpf_prog_array_valid(call)) {
85b67bcb 7890 *(struct pt_regs **)raw_data = regs;
e87c6bc3 7891 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
7892 perf_swevent_put_recursion_context(rctx);
7893 return;
7894 }
7895 }
7896 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 7897 rctx, task);
85b67bcb
AS
7898}
7899EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7900
1e1dcd93 7901void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 7902 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 7903 struct task_struct *task)
95476b64
FW
7904{
7905 struct perf_sample_data data;
8fd0fbbe 7906 struct perf_event *event;
1c024eca 7907
95476b64 7908 struct perf_raw_record raw = {
7e3f977e
DB
7909 .frag = {
7910 .size = entry_size,
7911 .data = record,
7912 },
95476b64
FW
7913 };
7914
1e1dcd93 7915 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7916 data.raw = &raw;
7917
1e1dcd93
AS
7918 perf_trace_buf_update(record, event_type);
7919
8fd0fbbe 7920 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7921 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7922 perf_swevent_event(event, count, &data, regs);
4f41c013 7923 }
ecc55f84 7924
e6dab5ff
AV
7925 /*
7926 * If we got specified a target task, also iterate its context and
7927 * deliver this event there too.
7928 */
7929 if (task && task != current) {
7930 struct perf_event_context *ctx;
7931 struct trace_entry *entry = record;
7932
7933 rcu_read_lock();
7934 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7935 if (!ctx)
7936 goto unlock;
7937
7938 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7939 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7940 continue;
7941 if (event->attr.config != entry->type)
7942 continue;
7943 if (perf_tp_event_match(event, &data, regs))
7944 perf_swevent_event(event, count, &data, regs);
7945 }
7946unlock:
7947 rcu_read_unlock();
7948 }
7949
ecc55f84 7950 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7951}
7952EXPORT_SYMBOL_GPL(perf_tp_event);
7953
cdd6c482 7954static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7955{
1c024eca 7956 perf_trace_destroy(event);
e077df4f
PZ
7957}
7958
b0a873eb 7959static int perf_tp_event_init(struct perf_event *event)
e077df4f 7960{
76e1d904
FW
7961 int err;
7962
b0a873eb
PZ
7963 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7964 return -ENOENT;
7965
2481c5fa
SE
7966 /*
7967 * no branch sampling for tracepoint events
7968 */
7969 if (has_branch_stack(event))
7970 return -EOPNOTSUPP;
7971
1c024eca
PZ
7972 err = perf_trace_init(event);
7973 if (err)
b0a873eb 7974 return err;
e077df4f 7975
cdd6c482 7976 event->destroy = tp_perf_event_destroy;
e077df4f 7977
b0a873eb
PZ
7978 return 0;
7979}
7980
7981static struct pmu perf_tracepoint = {
89a1e187
PZ
7982 .task_ctx_nr = perf_sw_context,
7983
b0a873eb 7984 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7985 .add = perf_trace_add,
7986 .del = perf_trace_del,
7987 .start = perf_swevent_start,
7988 .stop = perf_swevent_stop,
b0a873eb 7989 .read = perf_swevent_read,
b0a873eb
PZ
7990};
7991
7992static inline void perf_tp_register(void)
7993{
2e80a82a 7994 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7995}
6fb2915d 7996
6fb2915d
LZ
7997static void perf_event_free_filter(struct perf_event *event)
7998{
7999 ftrace_profile_free_filter(event);
8000}
8001
aa6a5f3c
AS
8002#ifdef CONFIG_BPF_SYSCALL
8003static void bpf_overflow_handler(struct perf_event *event,
8004 struct perf_sample_data *data,
8005 struct pt_regs *regs)
8006{
8007 struct bpf_perf_event_data_kern ctx = {
8008 .data = data,
7d9285e8 8009 .event = event,
aa6a5f3c
AS
8010 };
8011 int ret = 0;
8012
c895f6f7 8013 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
8014 preempt_disable();
8015 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8016 goto out;
8017 rcu_read_lock();
88575199 8018 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8019 rcu_read_unlock();
8020out:
8021 __this_cpu_dec(bpf_prog_active);
8022 preempt_enable();
8023 if (!ret)
8024 return;
8025
8026 event->orig_overflow_handler(event, data, regs);
8027}
8028
8029static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8030{
8031 struct bpf_prog *prog;
8032
8033 if (event->overflow_handler_context)
8034 /* hw breakpoint or kernel counter */
8035 return -EINVAL;
8036
8037 if (event->prog)
8038 return -EEXIST;
8039
8040 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8041 if (IS_ERR(prog))
8042 return PTR_ERR(prog);
8043
8044 event->prog = prog;
8045 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8046 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8047 return 0;
8048}
8049
8050static void perf_event_free_bpf_handler(struct perf_event *event)
8051{
8052 struct bpf_prog *prog = event->prog;
8053
8054 if (!prog)
8055 return;
8056
8057 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8058 event->prog = NULL;
8059 bpf_prog_put(prog);
8060}
8061#else
8062static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8063{
8064 return -EOPNOTSUPP;
8065}
8066static void perf_event_free_bpf_handler(struct perf_event *event)
8067{
8068}
8069#endif
8070
2541517c
AS
8071static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8072{
cf5f5cea 8073 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 8074 struct bpf_prog *prog;
e87c6bc3 8075 int ret;
2541517c
AS
8076
8077 if (event->attr.type != PERF_TYPE_TRACEPOINT)
f91840a3 8078 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 8079
98b5c2c6
AS
8080 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8081 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8082 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8083 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8084 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8085 return -EINVAL;
8086
8087 prog = bpf_prog_get(prog_fd);
8088 if (IS_ERR(prog))
8089 return PTR_ERR(prog);
8090
98b5c2c6 8091 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8092 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8093 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8094 /* valid fd, but invalid bpf program type */
8095 bpf_prog_put(prog);
8096 return -EINVAL;
8097 }
8098
cf5f5cea 8099 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8100 int off = trace_event_get_offsets(event->tp_event);
8101
8102 if (prog->aux->max_ctx_offset > off) {
8103 bpf_prog_put(prog);
8104 return -EACCES;
8105 }
8106 }
2541517c 8107
e87c6bc3
YS
8108 ret = perf_event_attach_bpf_prog(event, prog);
8109 if (ret)
8110 bpf_prog_put(prog);
8111 return ret;
2541517c
AS
8112}
8113
8114static void perf_event_free_bpf_prog(struct perf_event *event)
8115{
0b4c6841
YS
8116 if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8117 perf_event_free_bpf_handler(event);
2541517c 8118 return;
2541517c 8119 }
e87c6bc3 8120 perf_event_detach_bpf_prog(event);
2541517c
AS
8121}
8122
e077df4f 8123#else
6fb2915d 8124
b0a873eb 8125static inline void perf_tp_register(void)
e077df4f 8126{
e077df4f 8127}
6fb2915d 8128
6fb2915d
LZ
8129static void perf_event_free_filter(struct perf_event *event)
8130{
8131}
8132
2541517c
AS
8133static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8134{
8135 return -ENOENT;
8136}
8137
8138static void perf_event_free_bpf_prog(struct perf_event *event)
8139{
8140}
07b139c8 8141#endif /* CONFIG_EVENT_TRACING */
e077df4f 8142
24f1e32c 8143#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8144void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8145{
f5ffe02e
FW
8146 struct perf_sample_data sample;
8147 struct pt_regs *regs = data;
8148
fd0d000b 8149 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8150
a4eaf7f1 8151 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8152 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8153}
8154#endif
8155
375637bc
AS
8156/*
8157 * Allocate a new address filter
8158 */
8159static struct perf_addr_filter *
8160perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8161{
8162 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8163 struct perf_addr_filter *filter;
8164
8165 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8166 if (!filter)
8167 return NULL;
8168
8169 INIT_LIST_HEAD(&filter->entry);
8170 list_add_tail(&filter->entry, filters);
8171
8172 return filter;
8173}
8174
8175static void free_filters_list(struct list_head *filters)
8176{
8177 struct perf_addr_filter *filter, *iter;
8178
8179 list_for_each_entry_safe(filter, iter, filters, entry) {
8180 if (filter->inode)
8181 iput(filter->inode);
8182 list_del(&filter->entry);
8183 kfree(filter);
8184 }
8185}
8186
8187/*
8188 * Free existing address filters and optionally install new ones
8189 */
8190static void perf_addr_filters_splice(struct perf_event *event,
8191 struct list_head *head)
8192{
8193 unsigned long flags;
8194 LIST_HEAD(list);
8195
8196 if (!has_addr_filter(event))
8197 return;
8198
8199 /* don't bother with children, they don't have their own filters */
8200 if (event->parent)
8201 return;
8202
8203 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8204
8205 list_splice_init(&event->addr_filters.list, &list);
8206 if (head)
8207 list_splice(head, &event->addr_filters.list);
8208
8209 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8210
8211 free_filters_list(&list);
8212}
8213
8214/*
8215 * Scan through mm's vmas and see if one of them matches the
8216 * @filter; if so, adjust filter's address range.
8217 * Called with mm::mmap_sem down for reading.
8218 */
8219static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8220 struct mm_struct *mm)
8221{
8222 struct vm_area_struct *vma;
8223
8224 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8225 struct file *file = vma->vm_file;
8226 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8227 unsigned long vma_size = vma->vm_end - vma->vm_start;
8228
8229 if (!file)
8230 continue;
8231
8232 if (!perf_addr_filter_match(filter, file, off, vma_size))
8233 continue;
8234
8235 return vma->vm_start;
8236 }
8237
8238 return 0;
8239}
8240
8241/*
8242 * Update event's address range filters based on the
8243 * task's existing mappings, if any.
8244 */
8245static void perf_event_addr_filters_apply(struct perf_event *event)
8246{
8247 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8248 struct task_struct *task = READ_ONCE(event->ctx->task);
8249 struct perf_addr_filter *filter;
8250 struct mm_struct *mm = NULL;
8251 unsigned int count = 0;
8252 unsigned long flags;
8253
8254 /*
8255 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8256 * will stop on the parent's child_mutex that our caller is also holding
8257 */
8258 if (task == TASK_TOMBSTONE)
8259 return;
8260
6ce77bfd
AS
8261 if (!ifh->nr_file_filters)
8262 return;
8263
375637bc
AS
8264 mm = get_task_mm(event->ctx->task);
8265 if (!mm)
8266 goto restart;
8267
8268 down_read(&mm->mmap_sem);
8269
8270 raw_spin_lock_irqsave(&ifh->lock, flags);
8271 list_for_each_entry(filter, &ifh->list, entry) {
8272 event->addr_filters_offs[count] = 0;
8273
99f5bc9b
MP
8274 /*
8275 * Adjust base offset if the filter is associated to a binary
8276 * that needs to be mapped:
8277 */
8278 if (filter->inode)
375637bc
AS
8279 event->addr_filters_offs[count] =
8280 perf_addr_filter_apply(filter, mm);
8281
8282 count++;
8283 }
8284
8285 event->addr_filters_gen++;
8286 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8287
8288 up_read(&mm->mmap_sem);
8289
8290 mmput(mm);
8291
8292restart:
767ae086 8293 perf_event_stop(event, 1);
375637bc
AS
8294}
8295
8296/*
8297 * Address range filtering: limiting the data to certain
8298 * instruction address ranges. Filters are ioctl()ed to us from
8299 * userspace as ascii strings.
8300 *
8301 * Filter string format:
8302 *
8303 * ACTION RANGE_SPEC
8304 * where ACTION is one of the
8305 * * "filter": limit the trace to this region
8306 * * "start": start tracing from this address
8307 * * "stop": stop tracing at this address/region;
8308 * RANGE_SPEC is
8309 * * for kernel addresses: <start address>[/<size>]
8310 * * for object files: <start address>[/<size>]@</path/to/object/file>
8311 *
8312 * if <size> is not specified, the range is treated as a single address.
8313 */
8314enum {
e96271f3 8315 IF_ACT_NONE = -1,
375637bc
AS
8316 IF_ACT_FILTER,
8317 IF_ACT_START,
8318 IF_ACT_STOP,
8319 IF_SRC_FILE,
8320 IF_SRC_KERNEL,
8321 IF_SRC_FILEADDR,
8322 IF_SRC_KERNELADDR,
8323};
8324
8325enum {
8326 IF_STATE_ACTION = 0,
8327 IF_STATE_SOURCE,
8328 IF_STATE_END,
8329};
8330
8331static const match_table_t if_tokens = {
8332 { IF_ACT_FILTER, "filter" },
8333 { IF_ACT_START, "start" },
8334 { IF_ACT_STOP, "stop" },
8335 { IF_SRC_FILE, "%u/%u@%s" },
8336 { IF_SRC_KERNEL, "%u/%u" },
8337 { IF_SRC_FILEADDR, "%u@%s" },
8338 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8339 { IF_ACT_NONE, NULL },
375637bc
AS
8340};
8341
8342/*
8343 * Address filter string parser
8344 */
8345static int
8346perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8347 struct list_head *filters)
8348{
8349 struct perf_addr_filter *filter = NULL;
8350 char *start, *orig, *filename = NULL;
8351 struct path path;
8352 substring_t args[MAX_OPT_ARGS];
8353 int state = IF_STATE_ACTION, token;
8354 unsigned int kernel = 0;
8355 int ret = -EINVAL;
8356
8357 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8358 if (!fstr)
8359 return -ENOMEM;
8360
8361 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8362 ret = -EINVAL;
8363
8364 if (!*start)
8365 continue;
8366
8367 /* filter definition begins */
8368 if (state == IF_STATE_ACTION) {
8369 filter = perf_addr_filter_new(event, filters);
8370 if (!filter)
8371 goto fail;
8372 }
8373
8374 token = match_token(start, if_tokens, args);
8375 switch (token) {
8376 case IF_ACT_FILTER:
8377 case IF_ACT_START:
8378 filter->filter = 1;
8379
8380 case IF_ACT_STOP:
8381 if (state != IF_STATE_ACTION)
8382 goto fail;
8383
8384 state = IF_STATE_SOURCE;
8385 break;
8386
8387 case IF_SRC_KERNELADDR:
8388 case IF_SRC_KERNEL:
8389 kernel = 1;
8390
8391 case IF_SRC_FILEADDR:
8392 case IF_SRC_FILE:
8393 if (state != IF_STATE_SOURCE)
8394 goto fail;
8395
8396 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8397 filter->range = 1;
8398
8399 *args[0].to = 0;
8400 ret = kstrtoul(args[0].from, 0, &filter->offset);
8401 if (ret)
8402 goto fail;
8403
8404 if (filter->range) {
8405 *args[1].to = 0;
8406 ret = kstrtoul(args[1].from, 0, &filter->size);
8407 if (ret)
8408 goto fail;
8409 }
8410
4059ffd0
MP
8411 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8412 int fpos = filter->range ? 2 : 1;
8413
8414 filename = match_strdup(&args[fpos]);
375637bc
AS
8415 if (!filename) {
8416 ret = -ENOMEM;
8417 goto fail;
8418 }
8419 }
8420
8421 state = IF_STATE_END;
8422 break;
8423
8424 default:
8425 goto fail;
8426 }
8427
8428 /*
8429 * Filter definition is fully parsed, validate and install it.
8430 * Make sure that it doesn't contradict itself or the event's
8431 * attribute.
8432 */
8433 if (state == IF_STATE_END) {
9ccbfbb1 8434 ret = -EINVAL;
375637bc
AS
8435 if (kernel && event->attr.exclude_kernel)
8436 goto fail;
8437
8438 if (!kernel) {
8439 if (!filename)
8440 goto fail;
8441
6ce77bfd
AS
8442 /*
8443 * For now, we only support file-based filters
8444 * in per-task events; doing so for CPU-wide
8445 * events requires additional context switching
8446 * trickery, since same object code will be
8447 * mapped at different virtual addresses in
8448 * different processes.
8449 */
8450 ret = -EOPNOTSUPP;
8451 if (!event->ctx->task)
8452 goto fail_free_name;
8453
375637bc
AS
8454 /* look up the path and grab its inode */
8455 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8456 if (ret)
8457 goto fail_free_name;
8458
8459 filter->inode = igrab(d_inode(path.dentry));
8460 path_put(&path);
8461 kfree(filename);
8462 filename = NULL;
8463
8464 ret = -EINVAL;
8465 if (!filter->inode ||
8466 !S_ISREG(filter->inode->i_mode))
8467 /* free_filters_list() will iput() */
8468 goto fail;
6ce77bfd
AS
8469
8470 event->addr_filters.nr_file_filters++;
375637bc
AS
8471 }
8472
8473 /* ready to consume more filters */
8474 state = IF_STATE_ACTION;
8475 filter = NULL;
8476 }
8477 }
8478
8479 if (state != IF_STATE_ACTION)
8480 goto fail;
8481
8482 kfree(orig);
8483
8484 return 0;
8485
8486fail_free_name:
8487 kfree(filename);
8488fail:
8489 free_filters_list(filters);
8490 kfree(orig);
8491
8492 return ret;
8493}
8494
8495static int
8496perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8497{
8498 LIST_HEAD(filters);
8499 int ret;
8500
8501 /*
8502 * Since this is called in perf_ioctl() path, we're already holding
8503 * ctx::mutex.
8504 */
8505 lockdep_assert_held(&event->ctx->mutex);
8506
8507 if (WARN_ON_ONCE(event->parent))
8508 return -EINVAL;
8509
375637bc
AS
8510 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8511 if (ret)
6ce77bfd 8512 goto fail_clear_files;
375637bc
AS
8513
8514 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8515 if (ret)
8516 goto fail_free_filters;
375637bc
AS
8517
8518 /* remove existing filters, if any */
8519 perf_addr_filters_splice(event, &filters);
8520
8521 /* install new filters */
8522 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8523
6ce77bfd
AS
8524 return ret;
8525
8526fail_free_filters:
8527 free_filters_list(&filters);
8528
8529fail_clear_files:
8530 event->addr_filters.nr_file_filters = 0;
8531
375637bc
AS
8532 return ret;
8533}
8534
c796bbbe
AS
8535static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8536{
8537 char *filter_str;
8538 int ret = -EINVAL;
8539
375637bc
AS
8540 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8541 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8542 !has_addr_filter(event))
c796bbbe
AS
8543 return -EINVAL;
8544
8545 filter_str = strndup_user(arg, PAGE_SIZE);
8546 if (IS_ERR(filter_str))
8547 return PTR_ERR(filter_str);
8548
8549 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8550 event->attr.type == PERF_TYPE_TRACEPOINT)
8551 ret = ftrace_profile_set_filter(event, event->attr.config,
8552 filter_str);
375637bc
AS
8553 else if (has_addr_filter(event))
8554 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8555
8556 kfree(filter_str);
8557 return ret;
8558}
8559
b0a873eb
PZ
8560/*
8561 * hrtimer based swevent callback
8562 */
f29ac756 8563
b0a873eb 8564static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8565{
b0a873eb
PZ
8566 enum hrtimer_restart ret = HRTIMER_RESTART;
8567 struct perf_sample_data data;
8568 struct pt_regs *regs;
8569 struct perf_event *event;
8570 u64 period;
f29ac756 8571
b0a873eb 8572 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8573
8574 if (event->state != PERF_EVENT_STATE_ACTIVE)
8575 return HRTIMER_NORESTART;
8576
b0a873eb 8577 event->pmu->read(event);
f344011c 8578
fd0d000b 8579 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8580 regs = get_irq_regs();
8581
8582 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8583 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8584 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8585 ret = HRTIMER_NORESTART;
8586 }
24f1e32c 8587
b0a873eb
PZ
8588 period = max_t(u64, 10000, event->hw.sample_period);
8589 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8590
b0a873eb 8591 return ret;
f29ac756
PZ
8592}
8593
b0a873eb 8594static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8595{
b0a873eb 8596 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8597 s64 period;
8598
8599 if (!is_sampling_event(event))
8600 return;
f5ffe02e 8601
5d508e82
FBH
8602 period = local64_read(&hwc->period_left);
8603 if (period) {
8604 if (period < 0)
8605 period = 10000;
fa407f35 8606
5d508e82
FBH
8607 local64_set(&hwc->period_left, 0);
8608 } else {
8609 period = max_t(u64, 10000, hwc->sample_period);
8610 }
3497d206
TG
8611 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8612 HRTIMER_MODE_REL_PINNED);
24f1e32c 8613}
b0a873eb
PZ
8614
8615static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8616{
b0a873eb
PZ
8617 struct hw_perf_event *hwc = &event->hw;
8618
6c7e550f 8619 if (is_sampling_event(event)) {
b0a873eb 8620 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8621 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8622
8623 hrtimer_cancel(&hwc->hrtimer);
8624 }
24f1e32c
FW
8625}
8626
ba3dd36c
PZ
8627static void perf_swevent_init_hrtimer(struct perf_event *event)
8628{
8629 struct hw_perf_event *hwc = &event->hw;
8630
8631 if (!is_sampling_event(event))
8632 return;
8633
8634 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8635 hwc->hrtimer.function = perf_swevent_hrtimer;
8636
8637 /*
8638 * Since hrtimers have a fixed rate, we can do a static freq->period
8639 * mapping and avoid the whole period adjust feedback stuff.
8640 */
8641 if (event->attr.freq) {
8642 long freq = event->attr.sample_freq;
8643
8644 event->attr.sample_period = NSEC_PER_SEC / freq;
8645 hwc->sample_period = event->attr.sample_period;
8646 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8647 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8648 event->attr.freq = 0;
8649 }
8650}
8651
b0a873eb
PZ
8652/*
8653 * Software event: cpu wall time clock
8654 */
8655
8656static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8657{
b0a873eb
PZ
8658 s64 prev;
8659 u64 now;
8660
a4eaf7f1 8661 now = local_clock();
b0a873eb
PZ
8662 prev = local64_xchg(&event->hw.prev_count, now);
8663 local64_add(now - prev, &event->count);
24f1e32c 8664}
24f1e32c 8665
a4eaf7f1 8666static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8667{
a4eaf7f1 8668 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8669 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8670}
8671
a4eaf7f1 8672static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8673{
b0a873eb
PZ
8674 perf_swevent_cancel_hrtimer(event);
8675 cpu_clock_event_update(event);
8676}
f29ac756 8677
a4eaf7f1
PZ
8678static int cpu_clock_event_add(struct perf_event *event, int flags)
8679{
8680 if (flags & PERF_EF_START)
8681 cpu_clock_event_start(event, flags);
6a694a60 8682 perf_event_update_userpage(event);
a4eaf7f1
PZ
8683
8684 return 0;
8685}
8686
8687static void cpu_clock_event_del(struct perf_event *event, int flags)
8688{
8689 cpu_clock_event_stop(event, flags);
8690}
8691
b0a873eb
PZ
8692static void cpu_clock_event_read(struct perf_event *event)
8693{
8694 cpu_clock_event_update(event);
8695}
f344011c 8696
b0a873eb
PZ
8697static int cpu_clock_event_init(struct perf_event *event)
8698{
8699 if (event->attr.type != PERF_TYPE_SOFTWARE)
8700 return -ENOENT;
8701
8702 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8703 return -ENOENT;
8704
2481c5fa
SE
8705 /*
8706 * no branch sampling for software events
8707 */
8708 if (has_branch_stack(event))
8709 return -EOPNOTSUPP;
8710
ba3dd36c
PZ
8711 perf_swevent_init_hrtimer(event);
8712
b0a873eb 8713 return 0;
f29ac756
PZ
8714}
8715
b0a873eb 8716static struct pmu perf_cpu_clock = {
89a1e187
PZ
8717 .task_ctx_nr = perf_sw_context,
8718
34f43927
PZ
8719 .capabilities = PERF_PMU_CAP_NO_NMI,
8720
b0a873eb 8721 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8722 .add = cpu_clock_event_add,
8723 .del = cpu_clock_event_del,
8724 .start = cpu_clock_event_start,
8725 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8726 .read = cpu_clock_event_read,
8727};
8728
8729/*
8730 * Software event: task time clock
8731 */
8732
8733static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8734{
b0a873eb
PZ
8735 u64 prev;
8736 s64 delta;
5c92d124 8737
b0a873eb
PZ
8738 prev = local64_xchg(&event->hw.prev_count, now);
8739 delta = now - prev;
8740 local64_add(delta, &event->count);
8741}
5c92d124 8742
a4eaf7f1 8743static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8744{
a4eaf7f1 8745 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8746 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8747}
8748
a4eaf7f1 8749static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8750{
8751 perf_swevent_cancel_hrtimer(event);
8752 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8753}
8754
8755static int task_clock_event_add(struct perf_event *event, int flags)
8756{
8757 if (flags & PERF_EF_START)
8758 task_clock_event_start(event, flags);
6a694a60 8759 perf_event_update_userpage(event);
b0a873eb 8760
a4eaf7f1
PZ
8761 return 0;
8762}
8763
8764static void task_clock_event_del(struct perf_event *event, int flags)
8765{
8766 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8767}
8768
8769static void task_clock_event_read(struct perf_event *event)
8770{
768a06e2
PZ
8771 u64 now = perf_clock();
8772 u64 delta = now - event->ctx->timestamp;
8773 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8774
8775 task_clock_event_update(event, time);
8776}
8777
8778static int task_clock_event_init(struct perf_event *event)
6fb2915d 8779{
b0a873eb
PZ
8780 if (event->attr.type != PERF_TYPE_SOFTWARE)
8781 return -ENOENT;
8782
8783 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8784 return -ENOENT;
8785
2481c5fa
SE
8786 /*
8787 * no branch sampling for software events
8788 */
8789 if (has_branch_stack(event))
8790 return -EOPNOTSUPP;
8791
ba3dd36c
PZ
8792 perf_swevent_init_hrtimer(event);
8793
b0a873eb 8794 return 0;
6fb2915d
LZ
8795}
8796
b0a873eb 8797static struct pmu perf_task_clock = {
89a1e187
PZ
8798 .task_ctx_nr = perf_sw_context,
8799
34f43927
PZ
8800 .capabilities = PERF_PMU_CAP_NO_NMI,
8801
b0a873eb 8802 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8803 .add = task_clock_event_add,
8804 .del = task_clock_event_del,
8805 .start = task_clock_event_start,
8806 .stop = task_clock_event_stop,
b0a873eb
PZ
8807 .read = task_clock_event_read,
8808};
6fb2915d 8809
ad5133b7 8810static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8811{
e077df4f 8812}
6fb2915d 8813
fbbe0701
SB
8814static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8815{
8816}
8817
ad5133b7 8818static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8819{
ad5133b7 8820 return 0;
6fb2915d
LZ
8821}
8822
18ab2cd3 8823static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8824
8825static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8826{
fbbe0701
SB
8827 __this_cpu_write(nop_txn_flags, flags);
8828
8829 if (flags & ~PERF_PMU_TXN_ADD)
8830 return;
8831
ad5133b7 8832 perf_pmu_disable(pmu);
6fb2915d
LZ
8833}
8834
ad5133b7
PZ
8835static int perf_pmu_commit_txn(struct pmu *pmu)
8836{
fbbe0701
SB
8837 unsigned int flags = __this_cpu_read(nop_txn_flags);
8838
8839 __this_cpu_write(nop_txn_flags, 0);
8840
8841 if (flags & ~PERF_PMU_TXN_ADD)
8842 return 0;
8843
ad5133b7
PZ
8844 perf_pmu_enable(pmu);
8845 return 0;
8846}
e077df4f 8847
ad5133b7 8848static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8849{
fbbe0701
SB
8850 unsigned int flags = __this_cpu_read(nop_txn_flags);
8851
8852 __this_cpu_write(nop_txn_flags, 0);
8853
8854 if (flags & ~PERF_PMU_TXN_ADD)
8855 return;
8856
ad5133b7 8857 perf_pmu_enable(pmu);
24f1e32c
FW
8858}
8859
35edc2a5
PZ
8860static int perf_event_idx_default(struct perf_event *event)
8861{
c719f560 8862 return 0;
35edc2a5
PZ
8863}
8864
8dc85d54
PZ
8865/*
8866 * Ensures all contexts with the same task_ctx_nr have the same
8867 * pmu_cpu_context too.
8868 */
9e317041 8869static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8870{
8dc85d54 8871 struct pmu *pmu;
b326e956 8872
8dc85d54
PZ
8873 if (ctxn < 0)
8874 return NULL;
24f1e32c 8875
8dc85d54
PZ
8876 list_for_each_entry(pmu, &pmus, entry) {
8877 if (pmu->task_ctx_nr == ctxn)
8878 return pmu->pmu_cpu_context;
8879 }
24f1e32c 8880
8dc85d54 8881 return NULL;
24f1e32c
FW
8882}
8883
51676957
PZ
8884static void free_pmu_context(struct pmu *pmu)
8885{
df0062b2
WD
8886 /*
8887 * Static contexts such as perf_sw_context have a global lifetime
8888 * and may be shared between different PMUs. Avoid freeing them
8889 * when a single PMU is going away.
8890 */
8891 if (pmu->task_ctx_nr > perf_invalid_context)
8892 return;
8893
8dc85d54 8894 mutex_lock(&pmus_lock);
51676957 8895 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8896 mutex_unlock(&pmus_lock);
24f1e32c 8897}
6e855cd4
AS
8898
8899/*
8900 * Let userspace know that this PMU supports address range filtering:
8901 */
8902static ssize_t nr_addr_filters_show(struct device *dev,
8903 struct device_attribute *attr,
8904 char *page)
8905{
8906 struct pmu *pmu = dev_get_drvdata(dev);
8907
8908 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8909}
8910DEVICE_ATTR_RO(nr_addr_filters);
8911
2e80a82a 8912static struct idr pmu_idr;
d6d020e9 8913
abe43400
PZ
8914static ssize_t
8915type_show(struct device *dev, struct device_attribute *attr, char *page)
8916{
8917 struct pmu *pmu = dev_get_drvdata(dev);
8918
8919 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8920}
90826ca7 8921static DEVICE_ATTR_RO(type);
abe43400 8922
62b85639
SE
8923static ssize_t
8924perf_event_mux_interval_ms_show(struct device *dev,
8925 struct device_attribute *attr,
8926 char *page)
8927{
8928 struct pmu *pmu = dev_get_drvdata(dev);
8929
8930 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8931}
8932
272325c4
PZ
8933static DEFINE_MUTEX(mux_interval_mutex);
8934
62b85639
SE
8935static ssize_t
8936perf_event_mux_interval_ms_store(struct device *dev,
8937 struct device_attribute *attr,
8938 const char *buf, size_t count)
8939{
8940 struct pmu *pmu = dev_get_drvdata(dev);
8941 int timer, cpu, ret;
8942
8943 ret = kstrtoint(buf, 0, &timer);
8944 if (ret)
8945 return ret;
8946
8947 if (timer < 1)
8948 return -EINVAL;
8949
8950 /* same value, noting to do */
8951 if (timer == pmu->hrtimer_interval_ms)
8952 return count;
8953
272325c4 8954 mutex_lock(&mux_interval_mutex);
62b85639
SE
8955 pmu->hrtimer_interval_ms = timer;
8956
8957 /* update all cpuctx for this PMU */
a63fbed7 8958 cpus_read_lock();
272325c4 8959 for_each_online_cpu(cpu) {
62b85639
SE
8960 struct perf_cpu_context *cpuctx;
8961 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8962 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8963
272325c4
PZ
8964 cpu_function_call(cpu,
8965 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8966 }
a63fbed7 8967 cpus_read_unlock();
272325c4 8968 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8969
8970 return count;
8971}
90826ca7 8972static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8973
90826ca7
GKH
8974static struct attribute *pmu_dev_attrs[] = {
8975 &dev_attr_type.attr,
8976 &dev_attr_perf_event_mux_interval_ms.attr,
8977 NULL,
abe43400 8978};
90826ca7 8979ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8980
8981static int pmu_bus_running;
8982static struct bus_type pmu_bus = {
8983 .name = "event_source",
90826ca7 8984 .dev_groups = pmu_dev_groups,
abe43400
PZ
8985};
8986
8987static void pmu_dev_release(struct device *dev)
8988{
8989 kfree(dev);
8990}
8991
8992static int pmu_dev_alloc(struct pmu *pmu)
8993{
8994 int ret = -ENOMEM;
8995
8996 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8997 if (!pmu->dev)
8998 goto out;
8999
0c9d42ed 9000 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9001 device_initialize(pmu->dev);
9002 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9003 if (ret)
9004 goto free_dev;
9005
9006 dev_set_drvdata(pmu->dev, pmu);
9007 pmu->dev->bus = &pmu_bus;
9008 pmu->dev->release = pmu_dev_release;
9009 ret = device_add(pmu->dev);
9010 if (ret)
9011 goto free_dev;
9012
6e855cd4
AS
9013 /* For PMUs with address filters, throw in an extra attribute: */
9014 if (pmu->nr_addr_filters)
9015 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9016
9017 if (ret)
9018 goto del_dev;
9019
abe43400
PZ
9020out:
9021 return ret;
9022
6e855cd4
AS
9023del_dev:
9024 device_del(pmu->dev);
9025
abe43400
PZ
9026free_dev:
9027 put_device(pmu->dev);
9028 goto out;
9029}
9030
547e9fd7 9031static struct lock_class_key cpuctx_mutex;
facc4307 9032static struct lock_class_key cpuctx_lock;
547e9fd7 9033
03d8e80b 9034int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9035{
108b02cf 9036 int cpu, ret;
24f1e32c 9037
b0a873eb 9038 mutex_lock(&pmus_lock);
33696fc0
PZ
9039 ret = -ENOMEM;
9040 pmu->pmu_disable_count = alloc_percpu(int);
9041 if (!pmu->pmu_disable_count)
9042 goto unlock;
f29ac756 9043
2e80a82a
PZ
9044 pmu->type = -1;
9045 if (!name)
9046 goto skip_type;
9047 pmu->name = name;
9048
9049 if (type < 0) {
0e9c3be2
TH
9050 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9051 if (type < 0) {
9052 ret = type;
2e80a82a
PZ
9053 goto free_pdc;
9054 }
9055 }
9056 pmu->type = type;
9057
abe43400
PZ
9058 if (pmu_bus_running) {
9059 ret = pmu_dev_alloc(pmu);
9060 if (ret)
9061 goto free_idr;
9062 }
9063
2e80a82a 9064skip_type:
26657848
PZ
9065 if (pmu->task_ctx_nr == perf_hw_context) {
9066 static int hw_context_taken = 0;
9067
5101ef20
MR
9068 /*
9069 * Other than systems with heterogeneous CPUs, it never makes
9070 * sense for two PMUs to share perf_hw_context. PMUs which are
9071 * uncore must use perf_invalid_context.
9072 */
9073 if (WARN_ON_ONCE(hw_context_taken &&
9074 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9075 pmu->task_ctx_nr = perf_invalid_context;
9076
9077 hw_context_taken = 1;
9078 }
9079
8dc85d54
PZ
9080 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9081 if (pmu->pmu_cpu_context)
9082 goto got_cpu_context;
f29ac756 9083
c4814202 9084 ret = -ENOMEM;
108b02cf
PZ
9085 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9086 if (!pmu->pmu_cpu_context)
abe43400 9087 goto free_dev;
f344011c 9088
108b02cf
PZ
9089 for_each_possible_cpu(cpu) {
9090 struct perf_cpu_context *cpuctx;
9091
9092 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9093 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9094 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9095 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9096 cpuctx->ctx.pmu = pmu;
a63fbed7 9097 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9098
272325c4 9099 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9100 }
76e1d904 9101
8dc85d54 9102got_cpu_context:
ad5133b7
PZ
9103 if (!pmu->start_txn) {
9104 if (pmu->pmu_enable) {
9105 /*
9106 * If we have pmu_enable/pmu_disable calls, install
9107 * transaction stubs that use that to try and batch
9108 * hardware accesses.
9109 */
9110 pmu->start_txn = perf_pmu_start_txn;
9111 pmu->commit_txn = perf_pmu_commit_txn;
9112 pmu->cancel_txn = perf_pmu_cancel_txn;
9113 } else {
fbbe0701 9114 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9115 pmu->commit_txn = perf_pmu_nop_int;
9116 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9117 }
5c92d124 9118 }
15dbf27c 9119
ad5133b7
PZ
9120 if (!pmu->pmu_enable) {
9121 pmu->pmu_enable = perf_pmu_nop_void;
9122 pmu->pmu_disable = perf_pmu_nop_void;
9123 }
9124
35edc2a5
PZ
9125 if (!pmu->event_idx)
9126 pmu->event_idx = perf_event_idx_default;
9127
b0a873eb 9128 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9129 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9130 ret = 0;
9131unlock:
b0a873eb
PZ
9132 mutex_unlock(&pmus_lock);
9133
33696fc0 9134 return ret;
108b02cf 9135
abe43400
PZ
9136free_dev:
9137 device_del(pmu->dev);
9138 put_device(pmu->dev);
9139
2e80a82a
PZ
9140free_idr:
9141 if (pmu->type >= PERF_TYPE_MAX)
9142 idr_remove(&pmu_idr, pmu->type);
9143
108b02cf
PZ
9144free_pdc:
9145 free_percpu(pmu->pmu_disable_count);
9146 goto unlock;
f29ac756 9147}
c464c76e 9148EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9149
b0a873eb 9150void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9151{
0933840a
JO
9152 int remove_device;
9153
b0a873eb 9154 mutex_lock(&pmus_lock);
0933840a 9155 remove_device = pmu_bus_running;
b0a873eb
PZ
9156 list_del_rcu(&pmu->entry);
9157 mutex_unlock(&pmus_lock);
5c92d124 9158
0475f9ea 9159 /*
cde8e884
PZ
9160 * We dereference the pmu list under both SRCU and regular RCU, so
9161 * synchronize against both of those.
0475f9ea 9162 */
b0a873eb 9163 synchronize_srcu(&pmus_srcu);
cde8e884 9164 synchronize_rcu();
d6d020e9 9165
33696fc0 9166 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9167 if (pmu->type >= PERF_TYPE_MAX)
9168 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9169 if (remove_device) {
9170 if (pmu->nr_addr_filters)
9171 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9172 device_del(pmu->dev);
9173 put_device(pmu->dev);
9174 }
51676957 9175 free_pmu_context(pmu);
b0a873eb 9176}
c464c76e 9177EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9178
cc34b98b
MR
9179static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9180{
ccd41c86 9181 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9182 int ret;
9183
9184 if (!try_module_get(pmu->module))
9185 return -ENODEV;
ccd41c86
PZ
9186
9187 if (event->group_leader != event) {
8b10c5e2
PZ
9188 /*
9189 * This ctx->mutex can nest when we're called through
9190 * inheritance. See the perf_event_ctx_lock_nested() comment.
9191 */
9192 ctx = perf_event_ctx_lock_nested(event->group_leader,
9193 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9194 BUG_ON(!ctx);
9195 }
9196
cc34b98b
MR
9197 event->pmu = pmu;
9198 ret = pmu->event_init(event);
ccd41c86
PZ
9199
9200 if (ctx)
9201 perf_event_ctx_unlock(event->group_leader, ctx);
9202
cc34b98b
MR
9203 if (ret)
9204 module_put(pmu->module);
9205
9206 return ret;
9207}
9208
18ab2cd3 9209static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9210{
85c617ab 9211 struct pmu *pmu;
b0a873eb 9212 int idx;
940c5b29 9213 int ret;
b0a873eb
PZ
9214
9215 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9216
40999312
KL
9217 /* Try parent's PMU first: */
9218 if (event->parent && event->parent->pmu) {
9219 pmu = event->parent->pmu;
9220 ret = perf_try_init_event(pmu, event);
9221 if (!ret)
9222 goto unlock;
9223 }
9224
2e80a82a
PZ
9225 rcu_read_lock();
9226 pmu = idr_find(&pmu_idr, event->attr.type);
9227 rcu_read_unlock();
940c5b29 9228 if (pmu) {
cc34b98b 9229 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9230 if (ret)
9231 pmu = ERR_PTR(ret);
2e80a82a 9232 goto unlock;
940c5b29 9233 }
2e80a82a 9234
b0a873eb 9235 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9236 ret = perf_try_init_event(pmu, event);
b0a873eb 9237 if (!ret)
e5f4d339 9238 goto unlock;
76e1d904 9239
b0a873eb
PZ
9240 if (ret != -ENOENT) {
9241 pmu = ERR_PTR(ret);
e5f4d339 9242 goto unlock;
f344011c 9243 }
5c92d124 9244 }
e5f4d339
PZ
9245 pmu = ERR_PTR(-ENOENT);
9246unlock:
b0a873eb 9247 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9248
4aeb0b42 9249 return pmu;
5c92d124
IM
9250}
9251
f2fb6bef
KL
9252static void attach_sb_event(struct perf_event *event)
9253{
9254 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9255
9256 raw_spin_lock(&pel->lock);
9257 list_add_rcu(&event->sb_list, &pel->list);
9258 raw_spin_unlock(&pel->lock);
9259}
9260
aab5b71e
PZ
9261/*
9262 * We keep a list of all !task (and therefore per-cpu) events
9263 * that need to receive side-band records.
9264 *
9265 * This avoids having to scan all the various PMU per-cpu contexts
9266 * looking for them.
9267 */
f2fb6bef
KL
9268static void account_pmu_sb_event(struct perf_event *event)
9269{
a4f144eb 9270 if (is_sb_event(event))
f2fb6bef
KL
9271 attach_sb_event(event);
9272}
9273
4beb31f3
FW
9274static void account_event_cpu(struct perf_event *event, int cpu)
9275{
9276 if (event->parent)
9277 return;
9278
4beb31f3
FW
9279 if (is_cgroup_event(event))
9280 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9281}
9282
555e0c1e
FW
9283/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9284static void account_freq_event_nohz(void)
9285{
9286#ifdef CONFIG_NO_HZ_FULL
9287 /* Lock so we don't race with concurrent unaccount */
9288 spin_lock(&nr_freq_lock);
9289 if (atomic_inc_return(&nr_freq_events) == 1)
9290 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9291 spin_unlock(&nr_freq_lock);
9292#endif
9293}
9294
9295static void account_freq_event(void)
9296{
9297 if (tick_nohz_full_enabled())
9298 account_freq_event_nohz();
9299 else
9300 atomic_inc(&nr_freq_events);
9301}
9302
9303
766d6c07
FW
9304static void account_event(struct perf_event *event)
9305{
25432ae9
PZ
9306 bool inc = false;
9307
4beb31f3
FW
9308 if (event->parent)
9309 return;
9310
766d6c07 9311 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9312 inc = true;
766d6c07
FW
9313 if (event->attr.mmap || event->attr.mmap_data)
9314 atomic_inc(&nr_mmap_events);
9315 if (event->attr.comm)
9316 atomic_inc(&nr_comm_events);
e4222673
HB
9317 if (event->attr.namespaces)
9318 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9319 if (event->attr.task)
9320 atomic_inc(&nr_task_events);
555e0c1e
FW
9321 if (event->attr.freq)
9322 account_freq_event();
45ac1403
AH
9323 if (event->attr.context_switch) {
9324 atomic_inc(&nr_switch_events);
25432ae9 9325 inc = true;
45ac1403 9326 }
4beb31f3 9327 if (has_branch_stack(event))
25432ae9 9328 inc = true;
4beb31f3 9329 if (is_cgroup_event(event))
25432ae9
PZ
9330 inc = true;
9331
9107c89e 9332 if (inc) {
5bce9db1
AS
9333 /*
9334 * We need the mutex here because static_branch_enable()
9335 * must complete *before* the perf_sched_count increment
9336 * becomes visible.
9337 */
9107c89e
PZ
9338 if (atomic_inc_not_zero(&perf_sched_count))
9339 goto enabled;
9340
9341 mutex_lock(&perf_sched_mutex);
9342 if (!atomic_read(&perf_sched_count)) {
9343 static_branch_enable(&perf_sched_events);
9344 /*
9345 * Guarantee that all CPUs observe they key change and
9346 * call the perf scheduling hooks before proceeding to
9347 * install events that need them.
9348 */
9349 synchronize_sched();
9350 }
9351 /*
9352 * Now that we have waited for the sync_sched(), allow further
9353 * increments to by-pass the mutex.
9354 */
9355 atomic_inc(&perf_sched_count);
9356 mutex_unlock(&perf_sched_mutex);
9357 }
9358enabled:
4beb31f3
FW
9359
9360 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9361
9362 account_pmu_sb_event(event);
766d6c07
FW
9363}
9364
0793a61d 9365/*
cdd6c482 9366 * Allocate and initialize a event structure
0793a61d 9367 */
cdd6c482 9368static struct perf_event *
c3f00c70 9369perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9370 struct task_struct *task,
9371 struct perf_event *group_leader,
9372 struct perf_event *parent_event,
4dc0da86 9373 perf_overflow_handler_t overflow_handler,
79dff51e 9374 void *context, int cgroup_fd)
0793a61d 9375{
51b0fe39 9376 struct pmu *pmu;
cdd6c482
IM
9377 struct perf_event *event;
9378 struct hw_perf_event *hwc;
90983b16 9379 long err = -EINVAL;
0793a61d 9380
66832eb4
ON
9381 if ((unsigned)cpu >= nr_cpu_ids) {
9382 if (!task || cpu != -1)
9383 return ERR_PTR(-EINVAL);
9384 }
9385
c3f00c70 9386 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9387 if (!event)
d5d2bc0d 9388 return ERR_PTR(-ENOMEM);
0793a61d 9389
04289bb9 9390 /*
cdd6c482 9391 * Single events are their own group leaders, with an
04289bb9
IM
9392 * empty sibling list:
9393 */
9394 if (!group_leader)
cdd6c482 9395 group_leader = event;
04289bb9 9396
cdd6c482
IM
9397 mutex_init(&event->child_mutex);
9398 INIT_LIST_HEAD(&event->child_list);
fccc714b 9399
cdd6c482
IM
9400 INIT_LIST_HEAD(&event->group_entry);
9401 INIT_LIST_HEAD(&event->event_entry);
9402 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9403 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9404 INIT_LIST_HEAD(&event->active_entry);
375637bc 9405 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9406 INIT_HLIST_NODE(&event->hlist_entry);
9407
10c6db11 9408
cdd6c482 9409 init_waitqueue_head(&event->waitq);
e360adbe 9410 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9411
cdd6c482 9412 mutex_init(&event->mmap_mutex);
375637bc 9413 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9414
a6fa941d 9415 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9416 event->cpu = cpu;
9417 event->attr = *attr;
9418 event->group_leader = group_leader;
9419 event->pmu = NULL;
cdd6c482 9420 event->oncpu = -1;
a96bbc16 9421
cdd6c482 9422 event->parent = parent_event;
b84fbc9f 9423
17cf22c3 9424 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9425 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9426
cdd6c482 9427 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9428
d580ff86
PZ
9429 if (task) {
9430 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9431 /*
50f16a8b
PZ
9432 * XXX pmu::event_init needs to know what task to account to
9433 * and we cannot use the ctx information because we need the
9434 * pmu before we get a ctx.
d580ff86 9435 */
50f16a8b 9436 event->hw.target = task;
d580ff86
PZ
9437 }
9438
34f43927
PZ
9439 event->clock = &local_clock;
9440 if (parent_event)
9441 event->clock = parent_event->clock;
9442
4dc0da86 9443 if (!overflow_handler && parent_event) {
b326e956 9444 overflow_handler = parent_event->overflow_handler;
4dc0da86 9445 context = parent_event->overflow_handler_context;
f1e4ba5b 9446#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9447 if (overflow_handler == bpf_overflow_handler) {
9448 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9449
9450 if (IS_ERR(prog)) {
9451 err = PTR_ERR(prog);
9452 goto err_ns;
9453 }
9454 event->prog = prog;
9455 event->orig_overflow_handler =
9456 parent_event->orig_overflow_handler;
9457 }
9458#endif
4dc0da86 9459 }
66832eb4 9460
1879445d
WN
9461 if (overflow_handler) {
9462 event->overflow_handler = overflow_handler;
9463 event->overflow_handler_context = context;
9ecda41a
WN
9464 } else if (is_write_backward(event)){
9465 event->overflow_handler = perf_event_output_backward;
9466 event->overflow_handler_context = NULL;
1879445d 9467 } else {
9ecda41a 9468 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9469 event->overflow_handler_context = NULL;
9470 }
97eaf530 9471
0231bb53 9472 perf_event__state_init(event);
a86ed508 9473
4aeb0b42 9474 pmu = NULL;
b8e83514 9475
cdd6c482 9476 hwc = &event->hw;
bd2b5b12 9477 hwc->sample_period = attr->sample_period;
0d48696f 9478 if (attr->freq && attr->sample_freq)
bd2b5b12 9479 hwc->sample_period = 1;
eced1dfc 9480 hwc->last_period = hwc->sample_period;
bd2b5b12 9481
e7850595 9482 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9483
2023b359 9484 /*
ba5213ae
PZ
9485 * We currently do not support PERF_SAMPLE_READ on inherited events.
9486 * See perf_output_read().
2023b359 9487 */
ba5213ae 9488 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 9489 goto err_ns;
a46a2300
YZ
9490
9491 if (!has_branch_stack(event))
9492 event->attr.branch_sample_type = 0;
2023b359 9493
79dff51e
MF
9494 if (cgroup_fd != -1) {
9495 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9496 if (err)
9497 goto err_ns;
9498 }
9499
b0a873eb 9500 pmu = perf_init_event(event);
85c617ab 9501 if (IS_ERR(pmu)) {
4aeb0b42 9502 err = PTR_ERR(pmu);
90983b16 9503 goto err_ns;
621a01ea 9504 }
d5d2bc0d 9505
bed5b25a
AS
9506 err = exclusive_event_init(event);
9507 if (err)
9508 goto err_pmu;
9509
375637bc
AS
9510 if (has_addr_filter(event)) {
9511 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9512 sizeof(unsigned long),
9513 GFP_KERNEL);
36cc2b92
DC
9514 if (!event->addr_filters_offs) {
9515 err = -ENOMEM;
375637bc 9516 goto err_per_task;
36cc2b92 9517 }
375637bc
AS
9518
9519 /* force hw sync on the address filters */
9520 event->addr_filters_gen = 1;
9521 }
9522
cdd6c482 9523 if (!event->parent) {
927c7a9e 9524 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9525 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9526 if (err)
375637bc 9527 goto err_addr_filters;
d010b332 9528 }
f344011c 9529 }
9ee318a7 9530
927a5570
AS
9531 /* symmetric to unaccount_event() in _free_event() */
9532 account_event(event);
9533
cdd6c482 9534 return event;
90983b16 9535
375637bc
AS
9536err_addr_filters:
9537 kfree(event->addr_filters_offs);
9538
bed5b25a
AS
9539err_per_task:
9540 exclusive_event_destroy(event);
9541
90983b16
FW
9542err_pmu:
9543 if (event->destroy)
9544 event->destroy(event);
c464c76e 9545 module_put(pmu->module);
90983b16 9546err_ns:
79dff51e
MF
9547 if (is_cgroup_event(event))
9548 perf_detach_cgroup(event);
90983b16
FW
9549 if (event->ns)
9550 put_pid_ns(event->ns);
9551 kfree(event);
9552
9553 return ERR_PTR(err);
0793a61d
TG
9554}
9555
cdd6c482
IM
9556static int perf_copy_attr(struct perf_event_attr __user *uattr,
9557 struct perf_event_attr *attr)
974802ea 9558{
974802ea 9559 u32 size;
cdf8073d 9560 int ret;
974802ea
PZ
9561
9562 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9563 return -EFAULT;
9564
9565 /*
9566 * zero the full structure, so that a short copy will be nice.
9567 */
9568 memset(attr, 0, sizeof(*attr));
9569
9570 ret = get_user(size, &uattr->size);
9571 if (ret)
9572 return ret;
9573
9574 if (size > PAGE_SIZE) /* silly large */
9575 goto err_size;
9576
9577 if (!size) /* abi compat */
9578 size = PERF_ATTR_SIZE_VER0;
9579
9580 if (size < PERF_ATTR_SIZE_VER0)
9581 goto err_size;
9582
9583 /*
9584 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9585 * ensure all the unknown bits are 0 - i.e. new
9586 * user-space does not rely on any kernel feature
9587 * extensions we dont know about yet.
974802ea
PZ
9588 */
9589 if (size > sizeof(*attr)) {
cdf8073d
IS
9590 unsigned char __user *addr;
9591 unsigned char __user *end;
9592 unsigned char val;
974802ea 9593
cdf8073d
IS
9594 addr = (void __user *)uattr + sizeof(*attr);
9595 end = (void __user *)uattr + size;
974802ea 9596
cdf8073d 9597 for (; addr < end; addr++) {
974802ea
PZ
9598 ret = get_user(val, addr);
9599 if (ret)
9600 return ret;
9601 if (val)
9602 goto err_size;
9603 }
b3e62e35 9604 size = sizeof(*attr);
974802ea
PZ
9605 }
9606
9607 ret = copy_from_user(attr, uattr, size);
9608 if (ret)
9609 return -EFAULT;
9610
f12f42ac
MX
9611 attr->size = size;
9612
cd757645 9613 if (attr->__reserved_1)
974802ea
PZ
9614 return -EINVAL;
9615
9616 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9617 return -EINVAL;
9618
9619 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9620 return -EINVAL;
9621
bce38cd5
SE
9622 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9623 u64 mask = attr->branch_sample_type;
9624
9625 /* only using defined bits */
9626 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9627 return -EINVAL;
9628
9629 /* at least one branch bit must be set */
9630 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9631 return -EINVAL;
9632
bce38cd5
SE
9633 /* propagate priv level, when not set for branch */
9634 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9635
9636 /* exclude_kernel checked on syscall entry */
9637 if (!attr->exclude_kernel)
9638 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9639
9640 if (!attr->exclude_user)
9641 mask |= PERF_SAMPLE_BRANCH_USER;
9642
9643 if (!attr->exclude_hv)
9644 mask |= PERF_SAMPLE_BRANCH_HV;
9645 /*
9646 * adjust user setting (for HW filter setup)
9647 */
9648 attr->branch_sample_type = mask;
9649 }
e712209a
SE
9650 /* privileged levels capture (kernel, hv): check permissions */
9651 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9652 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9653 return -EACCES;
bce38cd5 9654 }
4018994f 9655
c5ebcedb 9656 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9657 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9658 if (ret)
9659 return ret;
9660 }
9661
9662 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9663 if (!arch_perf_have_user_stack_dump())
9664 return -ENOSYS;
9665
9666 /*
9667 * We have __u32 type for the size, but so far
9668 * we can only use __u16 as maximum due to the
9669 * __u16 sample size limit.
9670 */
9671 if (attr->sample_stack_user >= USHRT_MAX)
9672 ret = -EINVAL;
9673 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9674 ret = -EINVAL;
9675 }
4018994f 9676
60e2364e
SE
9677 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9678 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9679out:
9680 return ret;
9681
9682err_size:
9683 put_user(sizeof(*attr), &uattr->size);
9684 ret = -E2BIG;
9685 goto out;
9686}
9687
ac9721f3
PZ
9688static int
9689perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9690{
b69cf536 9691 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9692 int ret = -EINVAL;
9693
ac9721f3 9694 if (!output_event)
a4be7c27
PZ
9695 goto set;
9696
ac9721f3
PZ
9697 /* don't allow circular references */
9698 if (event == output_event)
a4be7c27
PZ
9699 goto out;
9700
0f139300
PZ
9701 /*
9702 * Don't allow cross-cpu buffers
9703 */
9704 if (output_event->cpu != event->cpu)
9705 goto out;
9706
9707 /*
76369139 9708 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9709 */
9710 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9711 goto out;
9712
34f43927
PZ
9713 /*
9714 * Mixing clocks in the same buffer is trouble you don't need.
9715 */
9716 if (output_event->clock != event->clock)
9717 goto out;
9718
9ecda41a
WN
9719 /*
9720 * Either writing ring buffer from beginning or from end.
9721 * Mixing is not allowed.
9722 */
9723 if (is_write_backward(output_event) != is_write_backward(event))
9724 goto out;
9725
45bfb2e5
PZ
9726 /*
9727 * If both events generate aux data, they must be on the same PMU
9728 */
9729 if (has_aux(event) && has_aux(output_event) &&
9730 event->pmu != output_event->pmu)
9731 goto out;
9732
a4be7c27 9733set:
cdd6c482 9734 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9735 /* Can't redirect output if we've got an active mmap() */
9736 if (atomic_read(&event->mmap_count))
9737 goto unlock;
a4be7c27 9738
ac9721f3 9739 if (output_event) {
76369139
FW
9740 /* get the rb we want to redirect to */
9741 rb = ring_buffer_get(output_event);
9742 if (!rb)
ac9721f3 9743 goto unlock;
a4be7c27
PZ
9744 }
9745
b69cf536 9746 ring_buffer_attach(event, rb);
9bb5d40c 9747
a4be7c27 9748 ret = 0;
ac9721f3
PZ
9749unlock:
9750 mutex_unlock(&event->mmap_mutex);
9751
a4be7c27 9752out:
a4be7c27
PZ
9753 return ret;
9754}
9755
f63a8daa
PZ
9756static void mutex_lock_double(struct mutex *a, struct mutex *b)
9757{
9758 if (b < a)
9759 swap(a, b);
9760
9761 mutex_lock(a);
9762 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9763}
9764
34f43927
PZ
9765static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9766{
9767 bool nmi_safe = false;
9768
9769 switch (clk_id) {
9770 case CLOCK_MONOTONIC:
9771 event->clock = &ktime_get_mono_fast_ns;
9772 nmi_safe = true;
9773 break;
9774
9775 case CLOCK_MONOTONIC_RAW:
9776 event->clock = &ktime_get_raw_fast_ns;
9777 nmi_safe = true;
9778 break;
9779
9780 case CLOCK_REALTIME:
9781 event->clock = &ktime_get_real_ns;
9782 break;
9783
9784 case CLOCK_BOOTTIME:
9785 event->clock = &ktime_get_boot_ns;
9786 break;
9787
9788 case CLOCK_TAI:
9789 event->clock = &ktime_get_tai_ns;
9790 break;
9791
9792 default:
9793 return -EINVAL;
9794 }
9795
9796 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9797 return -EINVAL;
9798
9799 return 0;
9800}
9801
321027c1
PZ
9802/*
9803 * Variation on perf_event_ctx_lock_nested(), except we take two context
9804 * mutexes.
9805 */
9806static struct perf_event_context *
9807__perf_event_ctx_lock_double(struct perf_event *group_leader,
9808 struct perf_event_context *ctx)
9809{
9810 struct perf_event_context *gctx;
9811
9812again:
9813 rcu_read_lock();
9814 gctx = READ_ONCE(group_leader->ctx);
9815 if (!atomic_inc_not_zero(&gctx->refcount)) {
9816 rcu_read_unlock();
9817 goto again;
9818 }
9819 rcu_read_unlock();
9820
9821 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9822
9823 if (group_leader->ctx != gctx) {
9824 mutex_unlock(&ctx->mutex);
9825 mutex_unlock(&gctx->mutex);
9826 put_ctx(gctx);
9827 goto again;
9828 }
9829
9830 return gctx;
9831}
9832
0793a61d 9833/**
cdd6c482 9834 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9835 *
cdd6c482 9836 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9837 * @pid: target pid
9f66a381 9838 * @cpu: target cpu
cdd6c482 9839 * @group_fd: group leader event fd
0793a61d 9840 */
cdd6c482
IM
9841SYSCALL_DEFINE5(perf_event_open,
9842 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9843 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9844{
b04243ef
PZ
9845 struct perf_event *group_leader = NULL, *output_event = NULL;
9846 struct perf_event *event, *sibling;
cdd6c482 9847 struct perf_event_attr attr;
f63a8daa 9848 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9849 struct file *event_file = NULL;
2903ff01 9850 struct fd group = {NULL, 0};
38a81da2 9851 struct task_struct *task = NULL;
89a1e187 9852 struct pmu *pmu;
ea635c64 9853 int event_fd;
b04243ef 9854 int move_group = 0;
dc86cabe 9855 int err;
a21b0b35 9856 int f_flags = O_RDWR;
79dff51e 9857 int cgroup_fd = -1;
0793a61d 9858
2743a5b0 9859 /* for future expandability... */
e5d1367f 9860 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9861 return -EINVAL;
9862
dc86cabe
IM
9863 err = perf_copy_attr(attr_uptr, &attr);
9864 if (err)
9865 return err;
eab656ae 9866
0764771d
PZ
9867 if (!attr.exclude_kernel) {
9868 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9869 return -EACCES;
9870 }
9871
e4222673
HB
9872 if (attr.namespaces) {
9873 if (!capable(CAP_SYS_ADMIN))
9874 return -EACCES;
9875 }
9876
df58ab24 9877 if (attr.freq) {
cdd6c482 9878 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9879 return -EINVAL;
0819b2e3
PZ
9880 } else {
9881 if (attr.sample_period & (1ULL << 63))
9882 return -EINVAL;
df58ab24
PZ
9883 }
9884
fc7ce9c7
KL
9885 /* Only privileged users can get physical addresses */
9886 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9887 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9888 return -EACCES;
9889
97c79a38
ACM
9890 if (!attr.sample_max_stack)
9891 attr.sample_max_stack = sysctl_perf_event_max_stack;
9892
e5d1367f
SE
9893 /*
9894 * In cgroup mode, the pid argument is used to pass the fd
9895 * opened to the cgroup directory in cgroupfs. The cpu argument
9896 * designates the cpu on which to monitor threads from that
9897 * cgroup.
9898 */
9899 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9900 return -EINVAL;
9901
a21b0b35
YD
9902 if (flags & PERF_FLAG_FD_CLOEXEC)
9903 f_flags |= O_CLOEXEC;
9904
9905 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9906 if (event_fd < 0)
9907 return event_fd;
9908
ac9721f3 9909 if (group_fd != -1) {
2903ff01
AV
9910 err = perf_fget_light(group_fd, &group);
9911 if (err)
d14b12d7 9912 goto err_fd;
2903ff01 9913 group_leader = group.file->private_data;
ac9721f3
PZ
9914 if (flags & PERF_FLAG_FD_OUTPUT)
9915 output_event = group_leader;
9916 if (flags & PERF_FLAG_FD_NO_GROUP)
9917 group_leader = NULL;
9918 }
9919
e5d1367f 9920 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9921 task = find_lively_task_by_vpid(pid);
9922 if (IS_ERR(task)) {
9923 err = PTR_ERR(task);
9924 goto err_group_fd;
9925 }
9926 }
9927
1f4ee503
PZ
9928 if (task && group_leader &&
9929 group_leader->attr.inherit != attr.inherit) {
9930 err = -EINVAL;
9931 goto err_task;
9932 }
9933
79c9ce57
PZ
9934 if (task) {
9935 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9936 if (err)
e5aeee51 9937 goto err_task;
79c9ce57
PZ
9938
9939 /*
9940 * Reuse ptrace permission checks for now.
9941 *
9942 * We must hold cred_guard_mutex across this and any potential
9943 * perf_install_in_context() call for this new event to
9944 * serialize against exec() altering our credentials (and the
9945 * perf_event_exit_task() that could imply).
9946 */
9947 err = -EACCES;
9948 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9949 goto err_cred;
9950 }
9951
79dff51e
MF
9952 if (flags & PERF_FLAG_PID_CGROUP)
9953 cgroup_fd = pid;
9954
4dc0da86 9955 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9956 NULL, NULL, cgroup_fd);
d14b12d7
SE
9957 if (IS_ERR(event)) {
9958 err = PTR_ERR(event);
79c9ce57 9959 goto err_cred;
d14b12d7
SE
9960 }
9961
53b25335
VW
9962 if (is_sampling_event(event)) {
9963 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 9964 err = -EOPNOTSUPP;
53b25335
VW
9965 goto err_alloc;
9966 }
9967 }
9968
89a1e187
PZ
9969 /*
9970 * Special case software events and allow them to be part of
9971 * any hardware group.
9972 */
9973 pmu = event->pmu;
b04243ef 9974
34f43927
PZ
9975 if (attr.use_clockid) {
9976 err = perf_event_set_clock(event, attr.clockid);
9977 if (err)
9978 goto err_alloc;
9979 }
9980
4ff6a8de
DCC
9981 if (pmu->task_ctx_nr == perf_sw_context)
9982 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9983
b04243ef
PZ
9984 if (group_leader &&
9985 (is_software_event(event) != is_software_event(group_leader))) {
9986 if (is_software_event(event)) {
9987 /*
9988 * If event and group_leader are not both a software
9989 * event, and event is, then group leader is not.
9990 *
9991 * Allow the addition of software events to !software
9992 * groups, this is safe because software events never
9993 * fail to schedule.
9994 */
9995 pmu = group_leader->pmu;
9996 } else if (is_software_event(group_leader) &&
4ff6a8de 9997 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
9998 /*
9999 * In case the group is a pure software group, and we
10000 * try to add a hardware event, move the whole group to
10001 * the hardware context.
10002 */
10003 move_group = 1;
10004 }
10005 }
89a1e187
PZ
10006
10007 /*
10008 * Get the target context (task or percpu):
10009 */
4af57ef2 10010 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10011 if (IS_ERR(ctx)) {
10012 err = PTR_ERR(ctx);
c6be5a5c 10013 goto err_alloc;
89a1e187
PZ
10014 }
10015
bed5b25a
AS
10016 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10017 err = -EBUSY;
10018 goto err_context;
10019 }
10020
ccff286d 10021 /*
cdd6c482 10022 * Look up the group leader (we will attach this event to it):
04289bb9 10023 */
ac9721f3 10024 if (group_leader) {
dc86cabe 10025 err = -EINVAL;
04289bb9 10026
04289bb9 10027 /*
ccff286d
IM
10028 * Do not allow a recursive hierarchy (this new sibling
10029 * becoming part of another group-sibling):
10030 */
10031 if (group_leader->group_leader != group_leader)
c3f00c70 10032 goto err_context;
34f43927
PZ
10033
10034 /* All events in a group should have the same clock */
10035 if (group_leader->clock != event->clock)
10036 goto err_context;
10037
ccff286d 10038 /*
64aee2a9
MR
10039 * Make sure we're both events for the same CPU;
10040 * grouping events for different CPUs is broken; since
10041 * you can never concurrently schedule them anyhow.
04289bb9 10042 */
64aee2a9
MR
10043 if (group_leader->cpu != event->cpu)
10044 goto err_context;
c3c87e77 10045
64aee2a9
MR
10046 /*
10047 * Make sure we're both on the same task, or both
10048 * per-CPU events.
10049 */
10050 if (group_leader->ctx->task != ctx->task)
10051 goto err_context;
10052
10053 /*
10054 * Do not allow to attach to a group in a different task
10055 * or CPU context. If we're moving SW events, we'll fix
10056 * this up later, so allow that.
10057 */
10058 if (!move_group && group_leader->ctx != ctx)
10059 goto err_context;
b04243ef 10060
3b6f9e5c
PM
10061 /*
10062 * Only a group leader can be exclusive or pinned
10063 */
0d48696f 10064 if (attr.exclusive || attr.pinned)
c3f00c70 10065 goto err_context;
ac9721f3
PZ
10066 }
10067
10068 if (output_event) {
10069 err = perf_event_set_output(event, output_event);
10070 if (err)
c3f00c70 10071 goto err_context;
ac9721f3 10072 }
0793a61d 10073
a21b0b35
YD
10074 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10075 f_flags);
ea635c64
AV
10076 if (IS_ERR(event_file)) {
10077 err = PTR_ERR(event_file);
201c2f85 10078 event_file = NULL;
c3f00c70 10079 goto err_context;
ea635c64 10080 }
9b51f66d 10081
b04243ef 10082 if (move_group) {
321027c1
PZ
10083 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10084
84c4e620
PZ
10085 if (gctx->task == TASK_TOMBSTONE) {
10086 err = -ESRCH;
10087 goto err_locked;
10088 }
321027c1
PZ
10089
10090 /*
10091 * Check if we raced against another sys_perf_event_open() call
10092 * moving the software group underneath us.
10093 */
10094 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10095 /*
10096 * If someone moved the group out from under us, check
10097 * if this new event wound up on the same ctx, if so
10098 * its the regular !move_group case, otherwise fail.
10099 */
10100 if (gctx != ctx) {
10101 err = -EINVAL;
10102 goto err_locked;
10103 } else {
10104 perf_event_ctx_unlock(group_leader, gctx);
10105 move_group = 0;
10106 }
10107 }
f55fc2a5
PZ
10108 } else {
10109 mutex_lock(&ctx->mutex);
10110 }
10111
84c4e620
PZ
10112 if (ctx->task == TASK_TOMBSTONE) {
10113 err = -ESRCH;
10114 goto err_locked;
10115 }
10116
a723968c
PZ
10117 if (!perf_event_validate_size(event)) {
10118 err = -E2BIG;
10119 goto err_locked;
10120 }
10121
a63fbed7
TG
10122 if (!task) {
10123 /*
10124 * Check if the @cpu we're creating an event for is online.
10125 *
10126 * We use the perf_cpu_context::ctx::mutex to serialize against
10127 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10128 */
10129 struct perf_cpu_context *cpuctx =
10130 container_of(ctx, struct perf_cpu_context, ctx);
10131
10132 if (!cpuctx->online) {
10133 err = -ENODEV;
10134 goto err_locked;
10135 }
10136 }
10137
10138
f55fc2a5
PZ
10139 /*
10140 * Must be under the same ctx::mutex as perf_install_in_context(),
10141 * because we need to serialize with concurrent event creation.
10142 */
10143 if (!exclusive_event_installable(event, ctx)) {
10144 /* exclusive and group stuff are assumed mutually exclusive */
10145 WARN_ON_ONCE(move_group);
f63a8daa 10146
f55fc2a5
PZ
10147 err = -EBUSY;
10148 goto err_locked;
10149 }
f63a8daa 10150
f55fc2a5
PZ
10151 WARN_ON_ONCE(ctx->parent_ctx);
10152
79c9ce57
PZ
10153 /*
10154 * This is the point on no return; we cannot fail hereafter. This is
10155 * where we start modifying current state.
10156 */
10157
f55fc2a5 10158 if (move_group) {
f63a8daa
PZ
10159 /*
10160 * See perf_event_ctx_lock() for comments on the details
10161 * of swizzling perf_event::ctx.
10162 */
45a0e07a 10163 perf_remove_from_context(group_leader, 0);
279b5165 10164 put_ctx(gctx);
0231bb53 10165
b04243ef
PZ
10166 list_for_each_entry(sibling, &group_leader->sibling_list,
10167 group_entry) {
45a0e07a 10168 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10169 put_ctx(gctx);
10170 }
b04243ef 10171
f63a8daa
PZ
10172 /*
10173 * Wait for everybody to stop referencing the events through
10174 * the old lists, before installing it on new lists.
10175 */
0cda4c02 10176 synchronize_rcu();
f63a8daa 10177
8f95b435
PZI
10178 /*
10179 * Install the group siblings before the group leader.
10180 *
10181 * Because a group leader will try and install the entire group
10182 * (through the sibling list, which is still in-tact), we can
10183 * end up with siblings installed in the wrong context.
10184 *
10185 * By installing siblings first we NO-OP because they're not
10186 * reachable through the group lists.
10187 */
b04243ef
PZ
10188 list_for_each_entry(sibling, &group_leader->sibling_list,
10189 group_entry) {
8f95b435 10190 perf_event__state_init(sibling);
9fc81d87 10191 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10192 get_ctx(ctx);
10193 }
8f95b435
PZI
10194
10195 /*
10196 * Removing from the context ends up with disabled
10197 * event. What we want here is event in the initial
10198 * startup state, ready to be add into new context.
10199 */
10200 perf_event__state_init(group_leader);
10201 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10202 get_ctx(ctx);
bed5b25a
AS
10203 }
10204
f73e22ab
PZ
10205 /*
10206 * Precalculate sample_data sizes; do while holding ctx::mutex such
10207 * that we're serialized against further additions and before
10208 * perf_install_in_context() which is the point the event is active and
10209 * can use these values.
10210 */
10211 perf_event__header_size(event);
10212 perf_event__id_header_size(event);
10213
78cd2c74
PZ
10214 event->owner = current;
10215
e2d37cd2 10216 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10217 perf_unpin_context(ctx);
f63a8daa 10218
f55fc2a5 10219 if (move_group)
321027c1 10220 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10221 mutex_unlock(&ctx->mutex);
9b51f66d 10222
79c9ce57
PZ
10223 if (task) {
10224 mutex_unlock(&task->signal->cred_guard_mutex);
10225 put_task_struct(task);
10226 }
10227
cdd6c482
IM
10228 mutex_lock(&current->perf_event_mutex);
10229 list_add_tail(&event->owner_entry, &current->perf_event_list);
10230 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10231
8a49542c
PZ
10232 /*
10233 * Drop the reference on the group_event after placing the
10234 * new event on the sibling_list. This ensures destruction
10235 * of the group leader will find the pointer to itself in
10236 * perf_group_detach().
10237 */
2903ff01 10238 fdput(group);
ea635c64
AV
10239 fd_install(event_fd, event_file);
10240 return event_fd;
0793a61d 10241
f55fc2a5
PZ
10242err_locked:
10243 if (move_group)
321027c1 10244 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10245 mutex_unlock(&ctx->mutex);
10246/* err_file: */
10247 fput(event_file);
c3f00c70 10248err_context:
fe4b04fa 10249 perf_unpin_context(ctx);
ea635c64 10250 put_ctx(ctx);
c6be5a5c 10251err_alloc:
13005627
PZ
10252 /*
10253 * If event_file is set, the fput() above will have called ->release()
10254 * and that will take care of freeing the event.
10255 */
10256 if (!event_file)
10257 free_event(event);
79c9ce57
PZ
10258err_cred:
10259 if (task)
10260 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10261err_task:
e7d0bc04
PZ
10262 if (task)
10263 put_task_struct(task);
89a1e187 10264err_group_fd:
2903ff01 10265 fdput(group);
ea635c64
AV
10266err_fd:
10267 put_unused_fd(event_fd);
dc86cabe 10268 return err;
0793a61d
TG
10269}
10270
fb0459d7
AV
10271/**
10272 * perf_event_create_kernel_counter
10273 *
10274 * @attr: attributes of the counter to create
10275 * @cpu: cpu in which the counter is bound
38a81da2 10276 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10277 */
10278struct perf_event *
10279perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10280 struct task_struct *task,
4dc0da86
AK
10281 perf_overflow_handler_t overflow_handler,
10282 void *context)
fb0459d7 10283{
fb0459d7 10284 struct perf_event_context *ctx;
c3f00c70 10285 struct perf_event *event;
fb0459d7 10286 int err;
d859e29f 10287
fb0459d7
AV
10288 /*
10289 * Get the target context (task or percpu):
10290 */
d859e29f 10291
4dc0da86 10292 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10293 overflow_handler, context, -1);
c3f00c70
PZ
10294 if (IS_ERR(event)) {
10295 err = PTR_ERR(event);
10296 goto err;
10297 }
d859e29f 10298
f8697762 10299 /* Mark owner so we could distinguish it from user events. */
63b6da39 10300 event->owner = TASK_TOMBSTONE;
f8697762 10301
4af57ef2 10302 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10303 if (IS_ERR(ctx)) {
10304 err = PTR_ERR(ctx);
c3f00c70 10305 goto err_free;
d859e29f 10306 }
fb0459d7 10307
fb0459d7
AV
10308 WARN_ON_ONCE(ctx->parent_ctx);
10309 mutex_lock(&ctx->mutex);
84c4e620
PZ
10310 if (ctx->task == TASK_TOMBSTONE) {
10311 err = -ESRCH;
10312 goto err_unlock;
10313 }
10314
a63fbed7
TG
10315 if (!task) {
10316 /*
10317 * Check if the @cpu we're creating an event for is online.
10318 *
10319 * We use the perf_cpu_context::ctx::mutex to serialize against
10320 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10321 */
10322 struct perf_cpu_context *cpuctx =
10323 container_of(ctx, struct perf_cpu_context, ctx);
10324 if (!cpuctx->online) {
10325 err = -ENODEV;
10326 goto err_unlock;
10327 }
10328 }
10329
bed5b25a 10330 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10331 err = -EBUSY;
84c4e620 10332 goto err_unlock;
bed5b25a
AS
10333 }
10334
fb0459d7 10335 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10336 perf_unpin_context(ctx);
fb0459d7
AV
10337 mutex_unlock(&ctx->mutex);
10338
fb0459d7
AV
10339 return event;
10340
84c4e620
PZ
10341err_unlock:
10342 mutex_unlock(&ctx->mutex);
10343 perf_unpin_context(ctx);
10344 put_ctx(ctx);
c3f00c70
PZ
10345err_free:
10346 free_event(event);
10347err:
c6567f64 10348 return ERR_PTR(err);
9b51f66d 10349}
fb0459d7 10350EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10351
0cda4c02
YZ
10352void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10353{
10354 struct perf_event_context *src_ctx;
10355 struct perf_event_context *dst_ctx;
10356 struct perf_event *event, *tmp;
10357 LIST_HEAD(events);
10358
10359 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10360 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10361
f63a8daa
PZ
10362 /*
10363 * See perf_event_ctx_lock() for comments on the details
10364 * of swizzling perf_event::ctx.
10365 */
10366 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10367 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10368 event_entry) {
45a0e07a 10369 perf_remove_from_context(event, 0);
9a545de0 10370 unaccount_event_cpu(event, src_cpu);
0cda4c02 10371 put_ctx(src_ctx);
9886167d 10372 list_add(&event->migrate_entry, &events);
0cda4c02 10373 }
0cda4c02 10374
8f95b435
PZI
10375 /*
10376 * Wait for the events to quiesce before re-instating them.
10377 */
0cda4c02
YZ
10378 synchronize_rcu();
10379
8f95b435
PZI
10380 /*
10381 * Re-instate events in 2 passes.
10382 *
10383 * Skip over group leaders and only install siblings on this first
10384 * pass, siblings will not get enabled without a leader, however a
10385 * leader will enable its siblings, even if those are still on the old
10386 * context.
10387 */
10388 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10389 if (event->group_leader == event)
10390 continue;
10391
10392 list_del(&event->migrate_entry);
10393 if (event->state >= PERF_EVENT_STATE_OFF)
10394 event->state = PERF_EVENT_STATE_INACTIVE;
10395 account_event_cpu(event, dst_cpu);
10396 perf_install_in_context(dst_ctx, event, dst_cpu);
10397 get_ctx(dst_ctx);
10398 }
10399
10400 /*
10401 * Once all the siblings are setup properly, install the group leaders
10402 * to make it go.
10403 */
9886167d
PZ
10404 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10405 list_del(&event->migrate_entry);
0cda4c02
YZ
10406 if (event->state >= PERF_EVENT_STATE_OFF)
10407 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10408 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10409 perf_install_in_context(dst_ctx, event, dst_cpu);
10410 get_ctx(dst_ctx);
10411 }
10412 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10413 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10414}
10415EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10416
cdd6c482 10417static void sync_child_event(struct perf_event *child_event,
38b200d6 10418 struct task_struct *child)
d859e29f 10419{
cdd6c482 10420 struct perf_event *parent_event = child_event->parent;
8bc20959 10421 u64 child_val;
d859e29f 10422
cdd6c482
IM
10423 if (child_event->attr.inherit_stat)
10424 perf_event_read_event(child_event, child);
38b200d6 10425
b5e58793 10426 child_val = perf_event_count(child_event);
d859e29f
PM
10427
10428 /*
10429 * Add back the child's count to the parent's count:
10430 */
a6e6dea6 10431 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10432 atomic64_add(child_event->total_time_enabled,
10433 &parent_event->child_total_time_enabled);
10434 atomic64_add(child_event->total_time_running,
10435 &parent_event->child_total_time_running);
d859e29f
PM
10436}
10437
9b51f66d 10438static void
8ba289b8
PZ
10439perf_event_exit_event(struct perf_event *child_event,
10440 struct perf_event_context *child_ctx,
10441 struct task_struct *child)
9b51f66d 10442{
8ba289b8
PZ
10443 struct perf_event *parent_event = child_event->parent;
10444
1903d50c
PZ
10445 /*
10446 * Do not destroy the 'original' grouping; because of the context
10447 * switch optimization the original events could've ended up in a
10448 * random child task.
10449 *
10450 * If we were to destroy the original group, all group related
10451 * operations would cease to function properly after this random
10452 * child dies.
10453 *
10454 * Do destroy all inherited groups, we don't care about those
10455 * and being thorough is better.
10456 */
32132a3d
PZ
10457 raw_spin_lock_irq(&child_ctx->lock);
10458 WARN_ON_ONCE(child_ctx->is_active);
10459
8ba289b8 10460 if (parent_event)
32132a3d
PZ
10461 perf_group_detach(child_event);
10462 list_del_event(child_event, child_ctx);
0d3d73aa 10463 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 10464 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10465
9b51f66d 10466 /*
8ba289b8 10467 * Parent events are governed by their filedesc, retain them.
9b51f66d 10468 */
8ba289b8 10469 if (!parent_event) {
179033b3 10470 perf_event_wakeup(child_event);
8ba289b8 10471 return;
4bcf349a 10472 }
8ba289b8
PZ
10473 /*
10474 * Child events can be cleaned up.
10475 */
10476
10477 sync_child_event(child_event, child);
10478
10479 /*
10480 * Remove this event from the parent's list
10481 */
10482 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10483 mutex_lock(&parent_event->child_mutex);
10484 list_del_init(&child_event->child_list);
10485 mutex_unlock(&parent_event->child_mutex);
10486
10487 /*
10488 * Kick perf_poll() for is_event_hup().
10489 */
10490 perf_event_wakeup(parent_event);
10491 free_event(child_event);
10492 put_event(parent_event);
9b51f66d
IM
10493}
10494
8dc85d54 10495static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10496{
211de6eb 10497 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10498 struct perf_event *child_event, *next;
63b6da39
PZ
10499
10500 WARN_ON_ONCE(child != current);
9b51f66d 10501
6a3351b6 10502 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10503 if (!child_ctx)
9b51f66d
IM
10504 return;
10505
ad3a37de 10506 /*
6a3351b6
PZ
10507 * In order to reduce the amount of tricky in ctx tear-down, we hold
10508 * ctx::mutex over the entire thing. This serializes against almost
10509 * everything that wants to access the ctx.
10510 *
10511 * The exception is sys_perf_event_open() /
10512 * perf_event_create_kernel_count() which does find_get_context()
10513 * without ctx::mutex (it cannot because of the move_group double mutex
10514 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10515 */
6a3351b6 10516 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10517
10518 /*
6a3351b6
PZ
10519 * In a single ctx::lock section, de-schedule the events and detach the
10520 * context from the task such that we cannot ever get it scheduled back
10521 * in.
c93f7669 10522 */
6a3351b6 10523 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10524 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10525
71a851b4 10526 /*
63b6da39
PZ
10527 * Now that the context is inactive, destroy the task <-> ctx relation
10528 * and mark the context dead.
71a851b4 10529 */
63b6da39
PZ
10530 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10531 put_ctx(child_ctx); /* cannot be last */
10532 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10533 put_task_struct(current); /* cannot be last */
4a1c0f26 10534
211de6eb 10535 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10536 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10537
211de6eb
PZ
10538 if (clone_ctx)
10539 put_ctx(clone_ctx);
4a1c0f26 10540
9f498cc5 10541 /*
cdd6c482
IM
10542 * Report the task dead after unscheduling the events so that we
10543 * won't get any samples after PERF_RECORD_EXIT. We can however still
10544 * get a few PERF_RECORD_READ events.
9f498cc5 10545 */
cdd6c482 10546 perf_event_task(child, child_ctx, 0);
a63eaf34 10547
ebf905fc 10548 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10549 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10550
a63eaf34
PM
10551 mutex_unlock(&child_ctx->mutex);
10552
10553 put_ctx(child_ctx);
9b51f66d
IM
10554}
10555
8dc85d54
PZ
10556/*
10557 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10558 *
10559 * Can be called with cred_guard_mutex held when called from
10560 * install_exec_creds().
8dc85d54
PZ
10561 */
10562void perf_event_exit_task(struct task_struct *child)
10563{
8882135b 10564 struct perf_event *event, *tmp;
8dc85d54
PZ
10565 int ctxn;
10566
8882135b
PZ
10567 mutex_lock(&child->perf_event_mutex);
10568 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10569 owner_entry) {
10570 list_del_init(&event->owner_entry);
10571
10572 /*
10573 * Ensure the list deletion is visible before we clear
10574 * the owner, closes a race against perf_release() where
10575 * we need to serialize on the owner->perf_event_mutex.
10576 */
f47c02c0 10577 smp_store_release(&event->owner, NULL);
8882135b
PZ
10578 }
10579 mutex_unlock(&child->perf_event_mutex);
10580
8dc85d54
PZ
10581 for_each_task_context_nr(ctxn)
10582 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10583
10584 /*
10585 * The perf_event_exit_task_context calls perf_event_task
10586 * with child's task_ctx, which generates EXIT events for
10587 * child contexts and sets child->perf_event_ctxp[] to NULL.
10588 * At this point we need to send EXIT events to cpu contexts.
10589 */
10590 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10591}
10592
889ff015
FW
10593static void perf_free_event(struct perf_event *event,
10594 struct perf_event_context *ctx)
10595{
10596 struct perf_event *parent = event->parent;
10597
10598 if (WARN_ON_ONCE(!parent))
10599 return;
10600
10601 mutex_lock(&parent->child_mutex);
10602 list_del_init(&event->child_list);
10603 mutex_unlock(&parent->child_mutex);
10604
a6fa941d 10605 put_event(parent);
889ff015 10606
652884fe 10607 raw_spin_lock_irq(&ctx->lock);
8a49542c 10608 perf_group_detach(event);
889ff015 10609 list_del_event(event, ctx);
652884fe 10610 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10611 free_event(event);
10612}
10613
bbbee908 10614/*
652884fe 10615 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10616 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10617 *
10618 * Not all locks are strictly required, but take them anyway to be nice and
10619 * help out with the lockdep assertions.
bbbee908 10620 */
cdd6c482 10621void perf_event_free_task(struct task_struct *task)
bbbee908 10622{
8dc85d54 10623 struct perf_event_context *ctx;
cdd6c482 10624 struct perf_event *event, *tmp;
8dc85d54 10625 int ctxn;
bbbee908 10626
8dc85d54
PZ
10627 for_each_task_context_nr(ctxn) {
10628 ctx = task->perf_event_ctxp[ctxn];
10629 if (!ctx)
10630 continue;
bbbee908 10631
8dc85d54 10632 mutex_lock(&ctx->mutex);
e552a838
PZ
10633 raw_spin_lock_irq(&ctx->lock);
10634 /*
10635 * Destroy the task <-> ctx relation and mark the context dead.
10636 *
10637 * This is important because even though the task hasn't been
10638 * exposed yet the context has been (through child_list).
10639 */
10640 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10641 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10642 put_task_struct(task); /* cannot be last */
10643 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10644
15121c78 10645 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 10646 perf_free_event(event, ctx);
bbbee908 10647
8dc85d54 10648 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
10649 put_ctx(ctx);
10650 }
889ff015
FW
10651}
10652
4e231c79
PZ
10653void perf_event_delayed_put(struct task_struct *task)
10654{
10655 int ctxn;
10656
10657 for_each_task_context_nr(ctxn)
10658 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10659}
10660
e03e7ee3 10661struct file *perf_event_get(unsigned int fd)
ffe8690c 10662{
e03e7ee3 10663 struct file *file;
ffe8690c 10664
e03e7ee3
AS
10665 file = fget_raw(fd);
10666 if (!file)
10667 return ERR_PTR(-EBADF);
ffe8690c 10668
e03e7ee3
AS
10669 if (file->f_op != &perf_fops) {
10670 fput(file);
10671 return ERR_PTR(-EBADF);
10672 }
ffe8690c 10673
e03e7ee3 10674 return file;
ffe8690c
KX
10675}
10676
10677const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10678{
10679 if (!event)
10680 return ERR_PTR(-EINVAL);
10681
10682 return &event->attr;
10683}
10684
97dee4f3 10685/*
d8a8cfc7
PZ
10686 * Inherit a event from parent task to child task.
10687 *
10688 * Returns:
10689 * - valid pointer on success
10690 * - NULL for orphaned events
10691 * - IS_ERR() on error
97dee4f3
PZ
10692 */
10693static struct perf_event *
10694inherit_event(struct perf_event *parent_event,
10695 struct task_struct *parent,
10696 struct perf_event_context *parent_ctx,
10697 struct task_struct *child,
10698 struct perf_event *group_leader,
10699 struct perf_event_context *child_ctx)
10700{
8ca2bd41 10701 enum perf_event_state parent_state = parent_event->state;
97dee4f3 10702 struct perf_event *child_event;
cee010ec 10703 unsigned long flags;
97dee4f3
PZ
10704
10705 /*
10706 * Instead of creating recursive hierarchies of events,
10707 * we link inherited events back to the original parent,
10708 * which has a filp for sure, which we use as the reference
10709 * count:
10710 */
10711 if (parent_event->parent)
10712 parent_event = parent_event->parent;
10713
10714 child_event = perf_event_alloc(&parent_event->attr,
10715 parent_event->cpu,
d580ff86 10716 child,
97dee4f3 10717 group_leader, parent_event,
79dff51e 10718 NULL, NULL, -1);
97dee4f3
PZ
10719 if (IS_ERR(child_event))
10720 return child_event;
a6fa941d 10721
313ccb96
JO
10722
10723 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
10724 !child_ctx->task_ctx_data) {
10725 struct pmu *pmu = child_event->pmu;
10726
10727 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
10728 GFP_KERNEL);
10729 if (!child_ctx->task_ctx_data) {
10730 free_event(child_event);
10731 return NULL;
10732 }
10733 }
10734
c6e5b732
PZ
10735 /*
10736 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10737 * must be under the same lock in order to serialize against
10738 * perf_event_release_kernel(), such that either we must observe
10739 * is_orphaned_event() or they will observe us on the child_list.
10740 */
10741 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10742 if (is_orphaned_event(parent_event) ||
10743 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10744 mutex_unlock(&parent_event->child_mutex);
313ccb96 10745 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
10746 free_event(child_event);
10747 return NULL;
10748 }
10749
97dee4f3
PZ
10750 get_ctx(child_ctx);
10751
10752 /*
10753 * Make the child state follow the state of the parent event,
10754 * not its attr.disabled bit. We hold the parent's mutex,
10755 * so we won't race with perf_event_{en, dis}able_family.
10756 */
1929def9 10757 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10758 child_event->state = PERF_EVENT_STATE_INACTIVE;
10759 else
10760 child_event->state = PERF_EVENT_STATE_OFF;
10761
10762 if (parent_event->attr.freq) {
10763 u64 sample_period = parent_event->hw.sample_period;
10764 struct hw_perf_event *hwc = &child_event->hw;
10765
10766 hwc->sample_period = sample_period;
10767 hwc->last_period = sample_period;
10768
10769 local64_set(&hwc->period_left, sample_period);
10770 }
10771
10772 child_event->ctx = child_ctx;
10773 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10774 child_event->overflow_handler_context
10775 = parent_event->overflow_handler_context;
97dee4f3 10776
614b6780
TG
10777 /*
10778 * Precalculate sample_data sizes
10779 */
10780 perf_event__header_size(child_event);
6844c09d 10781 perf_event__id_header_size(child_event);
614b6780 10782
97dee4f3
PZ
10783 /*
10784 * Link it up in the child's context:
10785 */
cee010ec 10786 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10787 add_event_to_ctx(child_event, child_ctx);
cee010ec 10788 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10789
97dee4f3
PZ
10790 /*
10791 * Link this into the parent event's child list
10792 */
97dee4f3
PZ
10793 list_add_tail(&child_event->child_list, &parent_event->child_list);
10794 mutex_unlock(&parent_event->child_mutex);
10795
10796 return child_event;
10797}
10798
d8a8cfc7
PZ
10799/*
10800 * Inherits an event group.
10801 *
10802 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10803 * This matches with perf_event_release_kernel() removing all child events.
10804 *
10805 * Returns:
10806 * - 0 on success
10807 * - <0 on error
10808 */
97dee4f3
PZ
10809static int inherit_group(struct perf_event *parent_event,
10810 struct task_struct *parent,
10811 struct perf_event_context *parent_ctx,
10812 struct task_struct *child,
10813 struct perf_event_context *child_ctx)
10814{
10815 struct perf_event *leader;
10816 struct perf_event *sub;
10817 struct perf_event *child_ctr;
10818
10819 leader = inherit_event(parent_event, parent, parent_ctx,
10820 child, NULL, child_ctx);
10821 if (IS_ERR(leader))
10822 return PTR_ERR(leader);
d8a8cfc7
PZ
10823 /*
10824 * @leader can be NULL here because of is_orphaned_event(). In this
10825 * case inherit_event() will create individual events, similar to what
10826 * perf_group_detach() would do anyway.
10827 */
97dee4f3
PZ
10828 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10829 child_ctr = inherit_event(sub, parent, parent_ctx,
10830 child, leader, child_ctx);
10831 if (IS_ERR(child_ctr))
10832 return PTR_ERR(child_ctr);
10833 }
10834 return 0;
889ff015
FW
10835}
10836
d8a8cfc7
PZ
10837/*
10838 * Creates the child task context and tries to inherit the event-group.
10839 *
10840 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10841 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10842 * consistent with perf_event_release_kernel() removing all child events.
10843 *
10844 * Returns:
10845 * - 0 on success
10846 * - <0 on error
10847 */
889ff015
FW
10848static int
10849inherit_task_group(struct perf_event *event, struct task_struct *parent,
10850 struct perf_event_context *parent_ctx,
8dc85d54 10851 struct task_struct *child, int ctxn,
889ff015
FW
10852 int *inherited_all)
10853{
10854 int ret;
8dc85d54 10855 struct perf_event_context *child_ctx;
889ff015
FW
10856
10857 if (!event->attr.inherit) {
10858 *inherited_all = 0;
10859 return 0;
bbbee908
PZ
10860 }
10861
fe4b04fa 10862 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10863 if (!child_ctx) {
10864 /*
10865 * This is executed from the parent task context, so
10866 * inherit events that have been marked for cloning.
10867 * First allocate and initialize a context for the
10868 * child.
10869 */
734df5ab 10870 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10871 if (!child_ctx)
10872 return -ENOMEM;
bbbee908 10873
8dc85d54 10874 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10875 }
10876
10877 ret = inherit_group(event, parent, parent_ctx,
10878 child, child_ctx);
10879
10880 if (ret)
10881 *inherited_all = 0;
10882
10883 return ret;
bbbee908
PZ
10884}
10885
9b51f66d 10886/*
cdd6c482 10887 * Initialize the perf_event context in task_struct
9b51f66d 10888 */
985c8dcb 10889static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10890{
889ff015 10891 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10892 struct perf_event_context *cloned_ctx;
10893 struct perf_event *event;
9b51f66d 10894 struct task_struct *parent = current;
564c2b21 10895 int inherited_all = 1;
dddd3379 10896 unsigned long flags;
6ab423e0 10897 int ret = 0;
9b51f66d 10898
8dc85d54 10899 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10900 return 0;
10901
ad3a37de 10902 /*
25346b93
PM
10903 * If the parent's context is a clone, pin it so it won't get
10904 * swapped under us.
ad3a37de 10905 */
8dc85d54 10906 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10907 if (!parent_ctx)
10908 return 0;
25346b93 10909
ad3a37de
PM
10910 /*
10911 * No need to check if parent_ctx != NULL here; since we saw
10912 * it non-NULL earlier, the only reason for it to become NULL
10913 * is if we exit, and since we're currently in the middle of
10914 * a fork we can't be exiting at the same time.
10915 */
ad3a37de 10916
9b51f66d
IM
10917 /*
10918 * Lock the parent list. No need to lock the child - not PID
10919 * hashed yet and not running, so nobody can access it.
10920 */
d859e29f 10921 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10922
10923 /*
10924 * We dont have to disable NMIs - we are only looking at
10925 * the list, not manipulating it:
10926 */
889ff015 10927 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10928 ret = inherit_task_group(event, parent, parent_ctx,
10929 child, ctxn, &inherited_all);
889ff015 10930 if (ret)
e7cc4865 10931 goto out_unlock;
889ff015 10932 }
b93f7978 10933
dddd3379
TG
10934 /*
10935 * We can't hold ctx->lock when iterating the ->flexible_group list due
10936 * to allocations, but we need to prevent rotation because
10937 * rotate_ctx() will change the list from interrupt context.
10938 */
10939 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10940 parent_ctx->rotate_disable = 1;
10941 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10942
889ff015 10943 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10944 ret = inherit_task_group(event, parent, parent_ctx,
10945 child, ctxn, &inherited_all);
889ff015 10946 if (ret)
e7cc4865 10947 goto out_unlock;
564c2b21
PM
10948 }
10949
dddd3379
TG
10950 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10951 parent_ctx->rotate_disable = 0;
dddd3379 10952
8dc85d54 10953 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10954
05cbaa28 10955 if (child_ctx && inherited_all) {
564c2b21
PM
10956 /*
10957 * Mark the child context as a clone of the parent
10958 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10959 *
10960 * Note that if the parent is a clone, the holding of
10961 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10962 */
c5ed5145 10963 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10964 if (cloned_ctx) {
10965 child_ctx->parent_ctx = cloned_ctx;
25346b93 10966 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10967 } else {
10968 child_ctx->parent_ctx = parent_ctx;
10969 child_ctx->parent_gen = parent_ctx->generation;
10970 }
10971 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10972 }
10973
c5ed5145 10974 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 10975out_unlock:
d859e29f 10976 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10977
25346b93 10978 perf_unpin_context(parent_ctx);
fe4b04fa 10979 put_ctx(parent_ctx);
ad3a37de 10980
6ab423e0 10981 return ret;
9b51f66d
IM
10982}
10983
8dc85d54
PZ
10984/*
10985 * Initialize the perf_event context in task_struct
10986 */
10987int perf_event_init_task(struct task_struct *child)
10988{
10989 int ctxn, ret;
10990
8550d7cb
ON
10991 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10992 mutex_init(&child->perf_event_mutex);
10993 INIT_LIST_HEAD(&child->perf_event_list);
10994
8dc85d54
PZ
10995 for_each_task_context_nr(ctxn) {
10996 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10997 if (ret) {
10998 perf_event_free_task(child);
8dc85d54 10999 return ret;
6c72e350 11000 }
8dc85d54
PZ
11001 }
11002
11003 return 0;
11004}
11005
220b140b
PM
11006static void __init perf_event_init_all_cpus(void)
11007{
b28ab83c 11008 struct swevent_htable *swhash;
220b140b 11009 int cpu;
220b140b 11010
a63fbed7
TG
11011 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11012
220b140b 11013 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11014 swhash = &per_cpu(swevent_htable, cpu);
11015 mutex_init(&swhash->hlist_mutex);
2fde4f94 11016 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11017
11018 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11019 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11020
058fe1c0
DCC
11021#ifdef CONFIG_CGROUP_PERF
11022 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11023#endif
e48c1788 11024 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11025 }
11026}
11027
a63fbed7 11028void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11029{
108b02cf 11030 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11031
b28ab83c 11032 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11033 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11034 struct swevent_hlist *hlist;
11035
b28ab83c
PZ
11036 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11037 WARN_ON(!hlist);
11038 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11039 }
b28ab83c 11040 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11041}
11042
2965faa5 11043#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11044static void __perf_event_exit_context(void *__info)
0793a61d 11045{
108b02cf 11046 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11047 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11048 struct perf_event *event;
0793a61d 11049
fae3fde6 11050 raw_spin_lock(&ctx->lock);
0ee098c9 11051 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 11052 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11053 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11054 raw_spin_unlock(&ctx->lock);
0793a61d 11055}
108b02cf
PZ
11056
11057static void perf_event_exit_cpu_context(int cpu)
11058{
a63fbed7 11059 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11060 struct perf_event_context *ctx;
11061 struct pmu *pmu;
108b02cf 11062
a63fbed7
TG
11063 mutex_lock(&pmus_lock);
11064 list_for_each_entry(pmu, &pmus, entry) {
11065 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11066 ctx = &cpuctx->ctx;
108b02cf
PZ
11067
11068 mutex_lock(&ctx->mutex);
11069 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11070 cpuctx->online = 0;
108b02cf
PZ
11071 mutex_unlock(&ctx->mutex);
11072 }
a63fbed7
TG
11073 cpumask_clear_cpu(cpu, perf_online_mask);
11074 mutex_unlock(&pmus_lock);
108b02cf 11075}
00e16c3d
TG
11076#else
11077
11078static void perf_event_exit_cpu_context(int cpu) { }
11079
11080#endif
108b02cf 11081
a63fbed7
TG
11082int perf_event_init_cpu(unsigned int cpu)
11083{
11084 struct perf_cpu_context *cpuctx;
11085 struct perf_event_context *ctx;
11086 struct pmu *pmu;
11087
11088 perf_swevent_init_cpu(cpu);
11089
11090 mutex_lock(&pmus_lock);
11091 cpumask_set_cpu(cpu, perf_online_mask);
11092 list_for_each_entry(pmu, &pmus, entry) {
11093 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11094 ctx = &cpuctx->ctx;
11095
11096 mutex_lock(&ctx->mutex);
11097 cpuctx->online = 1;
11098 mutex_unlock(&ctx->mutex);
11099 }
11100 mutex_unlock(&pmus_lock);
11101
11102 return 0;
11103}
11104
00e16c3d 11105int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11106{
e3703f8c 11107 perf_event_exit_cpu_context(cpu);
00e16c3d 11108 return 0;
0793a61d 11109}
0793a61d 11110
c277443c
PZ
11111static int
11112perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11113{
11114 int cpu;
11115
11116 for_each_online_cpu(cpu)
11117 perf_event_exit_cpu(cpu);
11118
11119 return NOTIFY_OK;
11120}
11121
11122/*
11123 * Run the perf reboot notifier at the very last possible moment so that
11124 * the generic watchdog code runs as long as possible.
11125 */
11126static struct notifier_block perf_reboot_notifier = {
11127 .notifier_call = perf_reboot,
11128 .priority = INT_MIN,
11129};
11130
cdd6c482 11131void __init perf_event_init(void)
0793a61d 11132{
3c502e7a
JW
11133 int ret;
11134
2e80a82a
PZ
11135 idr_init(&pmu_idr);
11136
220b140b 11137 perf_event_init_all_cpus();
b0a873eb 11138 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11139 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11140 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11141 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11142 perf_tp_register();
00e16c3d 11143 perf_event_init_cpu(smp_processor_id());
c277443c 11144 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11145
11146 ret = init_hw_breakpoint();
11147 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11148
b01c3a00
JO
11149 /*
11150 * Build time assertion that we keep the data_head at the intended
11151 * location. IOW, validation we got the __reserved[] size right.
11152 */
11153 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11154 != 1024);
0793a61d 11155}
abe43400 11156
fd979c01
CS
11157ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11158 char *page)
11159{
11160 struct perf_pmu_events_attr *pmu_attr =
11161 container_of(attr, struct perf_pmu_events_attr, attr);
11162
11163 if (pmu_attr->event_str)
11164 return sprintf(page, "%s\n", pmu_attr->event_str);
11165
11166 return 0;
11167}
675965b0 11168EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11169
abe43400
PZ
11170static int __init perf_event_sysfs_init(void)
11171{
11172 struct pmu *pmu;
11173 int ret;
11174
11175 mutex_lock(&pmus_lock);
11176
11177 ret = bus_register(&pmu_bus);
11178 if (ret)
11179 goto unlock;
11180
11181 list_for_each_entry(pmu, &pmus, entry) {
11182 if (!pmu->name || pmu->type < 0)
11183 continue;
11184
11185 ret = pmu_dev_alloc(pmu);
11186 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11187 }
11188 pmu_bus_running = 1;
11189 ret = 0;
11190
11191unlock:
11192 mutex_unlock(&pmus_lock);
11193
11194 return ret;
11195}
11196device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11197
11198#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11199static struct cgroup_subsys_state *
11200perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11201{
11202 struct perf_cgroup *jc;
e5d1367f 11203
1b15d055 11204 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11205 if (!jc)
11206 return ERR_PTR(-ENOMEM);
11207
e5d1367f
SE
11208 jc->info = alloc_percpu(struct perf_cgroup_info);
11209 if (!jc->info) {
11210 kfree(jc);
11211 return ERR_PTR(-ENOMEM);
11212 }
11213
e5d1367f
SE
11214 return &jc->css;
11215}
11216
eb95419b 11217static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11218{
eb95419b
TH
11219 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11220
e5d1367f
SE
11221 free_percpu(jc->info);
11222 kfree(jc);
11223}
11224
11225static int __perf_cgroup_move(void *info)
11226{
11227 struct task_struct *task = info;
ddaaf4e2 11228 rcu_read_lock();
e5d1367f 11229 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11230 rcu_read_unlock();
e5d1367f
SE
11231 return 0;
11232}
11233
1f7dd3e5 11234static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11235{
bb9d97b6 11236 struct task_struct *task;
1f7dd3e5 11237 struct cgroup_subsys_state *css;
bb9d97b6 11238
1f7dd3e5 11239 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11240 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11241}
11242
073219e9 11243struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11244 .css_alloc = perf_cgroup_css_alloc,
11245 .css_free = perf_cgroup_css_free,
bb9d97b6 11246 .attach = perf_cgroup_attach,
968ebff1
TH
11247 /*
11248 * Implicitly enable on dfl hierarchy so that perf events can
11249 * always be filtered by cgroup2 path as long as perf_event
11250 * controller is not mounted on a legacy hierarchy.
11251 */
11252 .implicit_on_dfl = true,
8cfd8147 11253 .threaded = true,
e5d1367f
SE
11254};
11255#endif /* CONFIG_CGROUP_PERF */