]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/events/core.c
perf/core: Fix perf_output_read_group()
[mirror_ubuntu-hirsute-kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6 211
16444645 212 lockdep_assert_irqs_disabled();
fae3fde6 213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
16444645 309 lockdep_assert_irqs_disabled();
cca20946
PZ
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
9e630205
SE
433static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
0d3d73aa
PZ
585/*
586 * State based event timekeeping...
587 *
588 * The basic idea is to use event->state to determine which (if any) time
589 * fields to increment with the current delta. This means we only need to
590 * update timestamps when we change state or when they are explicitly requested
591 * (read).
592 *
593 * Event groups make things a little more complicated, but not terribly so. The
594 * rules for a group are that if the group leader is OFF the entire group is
595 * OFF, irrespecive of what the group member states are. This results in
596 * __perf_effective_state().
597 *
598 * A futher ramification is that when a group leader flips between OFF and
599 * !OFF, we need to update all group member times.
600 *
601 *
602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603 * need to make sure the relevant context time is updated before we try and
604 * update our timestamps.
605 */
606
607static __always_inline enum perf_event_state
608__perf_effective_state(struct perf_event *event)
609{
610 struct perf_event *leader = event->group_leader;
611
612 if (leader->state <= PERF_EVENT_STATE_OFF)
613 return leader->state;
614
615 return event->state;
616}
617
618static __always_inline void
619__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620{
621 enum perf_event_state state = __perf_effective_state(event);
622 u64 delta = now - event->tstamp;
623
624 *enabled = event->total_time_enabled;
625 if (state >= PERF_EVENT_STATE_INACTIVE)
626 *enabled += delta;
627
628 *running = event->total_time_running;
629 if (state >= PERF_EVENT_STATE_ACTIVE)
630 *running += delta;
631}
632
633static void perf_event_update_time(struct perf_event *event)
634{
635 u64 now = perf_event_time(event);
636
637 __perf_update_times(event, now, &event->total_time_enabled,
638 &event->total_time_running);
639 event->tstamp = now;
640}
641
642static void perf_event_update_sibling_time(struct perf_event *leader)
643{
644 struct perf_event *sibling;
645
646 list_for_each_entry(sibling, &leader->sibling_list, group_entry)
647 perf_event_update_time(sibling);
648}
649
650static void
651perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652{
653 if (event->state == state)
654 return;
655
656 perf_event_update_time(event);
657 /*
658 * If a group leader gets enabled/disabled all its siblings
659 * are affected too.
660 */
661 if ((event->state < 0) ^ (state < 0))
662 perf_event_update_sibling_time(event);
663
664 WRITE_ONCE(event->state, state);
665}
666
e5d1367f
SE
667#ifdef CONFIG_CGROUP_PERF
668
e5d1367f
SE
669static inline bool
670perf_cgroup_match(struct perf_event *event)
671{
672 struct perf_event_context *ctx = event->ctx;
673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
ef824fa1
TH
675 /* @event doesn't care about cgroup */
676 if (!event->cgrp)
677 return true;
678
679 /* wants specific cgroup scope but @cpuctx isn't associated with any */
680 if (!cpuctx->cgrp)
681 return false;
682
683 /*
684 * Cgroup scoping is recursive. An event enabled for a cgroup is
685 * also enabled for all its descendant cgroups. If @cpuctx's
686 * cgroup is a descendant of @event's (the test covers identity
687 * case), it's a match.
688 */
689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 event->cgrp->css.cgroup);
e5d1367f
SE
691}
692
e5d1367f
SE
693static inline void perf_detach_cgroup(struct perf_event *event)
694{
4e2ba650 695 css_put(&event->cgrp->css);
e5d1367f
SE
696 event->cgrp = NULL;
697}
698
699static inline int is_cgroup_event(struct perf_event *event)
700{
701 return event->cgrp != NULL;
702}
703
704static inline u64 perf_cgroup_event_time(struct perf_event *event)
705{
706 struct perf_cgroup_info *t;
707
708 t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 return t->time;
710}
711
712static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713{
714 struct perf_cgroup_info *info;
715 u64 now;
716
717 now = perf_clock();
718
719 info = this_cpu_ptr(cgrp->info);
720
721 info->time += now - info->timestamp;
722 info->timestamp = now;
723}
724
725static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726{
727 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728 if (cgrp_out)
729 __update_cgrp_time(cgrp_out);
730}
731
732static inline void update_cgrp_time_from_event(struct perf_event *event)
733{
3f7cce3c
SE
734 struct perf_cgroup *cgrp;
735
e5d1367f 736 /*
3f7cce3c
SE
737 * ensure we access cgroup data only when needed and
738 * when we know the cgroup is pinned (css_get)
e5d1367f 739 */
3f7cce3c 740 if (!is_cgroup_event(event))
e5d1367f
SE
741 return;
742
614e4c4e 743 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
744 /*
745 * Do not update time when cgroup is not active
746 */
e6a52033 747 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 748 __update_cgrp_time(event->cgrp);
e5d1367f
SE
749}
750
751static inline void
3f7cce3c
SE
752perf_cgroup_set_timestamp(struct task_struct *task,
753 struct perf_event_context *ctx)
e5d1367f
SE
754{
755 struct perf_cgroup *cgrp;
756 struct perf_cgroup_info *info;
757
3f7cce3c
SE
758 /*
759 * ctx->lock held by caller
760 * ensure we do not access cgroup data
761 * unless we have the cgroup pinned (css_get)
762 */
763 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
764 return;
765
614e4c4e 766 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 767 info = this_cpu_ptr(cgrp->info);
3f7cce3c 768 info->timestamp = ctx->timestamp;
e5d1367f
SE
769}
770
058fe1c0
DCC
771static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
772
e5d1367f
SE
773#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
774#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
775
776/*
777 * reschedule events based on the cgroup constraint of task.
778 *
779 * mode SWOUT : schedule out everything
780 * mode SWIN : schedule in based on cgroup for next
781 */
18ab2cd3 782static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
783{
784 struct perf_cpu_context *cpuctx;
058fe1c0 785 struct list_head *list;
e5d1367f
SE
786 unsigned long flags;
787
788 /*
058fe1c0
DCC
789 * Disable interrupts and preemption to avoid this CPU's
790 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
791 */
792 local_irq_save(flags);
793
058fe1c0
DCC
794 list = this_cpu_ptr(&cgrp_cpuctx_list);
795 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 797
058fe1c0
DCC
798 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 800
058fe1c0
DCC
801 if (mode & PERF_CGROUP_SWOUT) {
802 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
803 /*
804 * must not be done before ctxswout due
805 * to event_filter_match() in event_sched_out()
806 */
807 cpuctx->cgrp = NULL;
808 }
e5d1367f 809
058fe1c0
DCC
810 if (mode & PERF_CGROUP_SWIN) {
811 WARN_ON_ONCE(cpuctx->cgrp);
812 /*
813 * set cgrp before ctxsw in to allow
814 * event_filter_match() to not have to pass
815 * task around
816 * we pass the cpuctx->ctx to perf_cgroup_from_task()
817 * because cgorup events are only per-cpu
818 */
819 cpuctx->cgrp = perf_cgroup_from_task(task,
820 &cpuctx->ctx);
821 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 822 }
058fe1c0
DCC
823 perf_pmu_enable(cpuctx->ctx.pmu);
824 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
825 }
826
e5d1367f
SE
827 local_irq_restore(flags);
828}
829
a8d757ef
SE
830static inline void perf_cgroup_sched_out(struct task_struct *task,
831 struct task_struct *next)
e5d1367f 832{
a8d757ef
SE
833 struct perf_cgroup *cgrp1;
834 struct perf_cgroup *cgrp2 = NULL;
835
ddaaf4e2 836 rcu_read_lock();
a8d757ef
SE
837 /*
838 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
839 * we do not need to pass the ctx here because we know
840 * we are holding the rcu lock
a8d757ef 841 */
614e4c4e 842 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 843 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
844
845 /*
846 * only schedule out current cgroup events if we know
847 * that we are switching to a different cgroup. Otherwise,
848 * do no touch the cgroup events.
849 */
850 if (cgrp1 != cgrp2)
851 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
852
853 rcu_read_unlock();
e5d1367f
SE
854}
855
a8d757ef
SE
856static inline void perf_cgroup_sched_in(struct task_struct *prev,
857 struct task_struct *task)
e5d1367f 858{
a8d757ef
SE
859 struct perf_cgroup *cgrp1;
860 struct perf_cgroup *cgrp2 = NULL;
861
ddaaf4e2 862 rcu_read_lock();
a8d757ef
SE
863 /*
864 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
865 * we do not need to pass the ctx here because we know
866 * we are holding the rcu lock
a8d757ef 867 */
614e4c4e 868 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 869 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
870
871 /*
872 * only need to schedule in cgroup events if we are changing
873 * cgroup during ctxsw. Cgroup events were not scheduled
874 * out of ctxsw out if that was not the case.
875 */
876 if (cgrp1 != cgrp2)
877 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
878
879 rcu_read_unlock();
e5d1367f
SE
880}
881
882static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883 struct perf_event_attr *attr,
884 struct perf_event *group_leader)
885{
886 struct perf_cgroup *cgrp;
887 struct cgroup_subsys_state *css;
2903ff01
AV
888 struct fd f = fdget(fd);
889 int ret = 0;
e5d1367f 890
2903ff01 891 if (!f.file)
e5d1367f
SE
892 return -EBADF;
893
b583043e 894 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 895 &perf_event_cgrp_subsys);
3db272c0
LZ
896 if (IS_ERR(css)) {
897 ret = PTR_ERR(css);
898 goto out;
899 }
e5d1367f
SE
900
901 cgrp = container_of(css, struct perf_cgroup, css);
902 event->cgrp = cgrp;
903
904 /*
905 * all events in a group must monitor
906 * the same cgroup because a task belongs
907 * to only one perf cgroup at a time
908 */
909 if (group_leader && group_leader->cgrp != cgrp) {
910 perf_detach_cgroup(event);
911 ret = -EINVAL;
e5d1367f 912 }
3db272c0 913out:
2903ff01 914 fdput(f);
e5d1367f
SE
915 return ret;
916}
917
918static inline void
919perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
920{
921 struct perf_cgroup_info *t;
922 t = per_cpu_ptr(event->cgrp->info, event->cpu);
923 event->shadow_ctx_time = now - t->timestamp;
924}
925
db4a8356
DCC
926/*
927 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928 * cleared when last cgroup event is removed.
929 */
930static inline void
931list_update_cgroup_event(struct perf_event *event,
932 struct perf_event_context *ctx, bool add)
933{
934 struct perf_cpu_context *cpuctx;
058fe1c0 935 struct list_head *cpuctx_entry;
db4a8356
DCC
936
937 if (!is_cgroup_event(event))
938 return;
939
940 if (add && ctx->nr_cgroups++)
941 return;
942 else if (!add && --ctx->nr_cgroups)
943 return;
944 /*
945 * Because cgroup events are always per-cpu events,
946 * this will always be called from the right CPU.
947 */
948 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
949 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
950 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
951 if (add) {
be96b316
TH
952 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
953
058fe1c0 954 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
be96b316
TH
955 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956 cpuctx->cgrp = cgrp;
058fe1c0
DCC
957 } else {
958 list_del(cpuctx_entry);
8fc31ce8 959 cpuctx->cgrp = NULL;
058fe1c0 960 }
db4a8356
DCC
961}
962
e5d1367f
SE
963#else /* !CONFIG_CGROUP_PERF */
964
965static inline bool
966perf_cgroup_match(struct perf_event *event)
967{
968 return true;
969}
970
971static inline void perf_detach_cgroup(struct perf_event *event)
972{}
973
974static inline int is_cgroup_event(struct perf_event *event)
975{
976 return 0;
977}
978
e5d1367f
SE
979static inline void update_cgrp_time_from_event(struct perf_event *event)
980{
981}
982
983static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
984{
985}
986
a8d757ef
SE
987static inline void perf_cgroup_sched_out(struct task_struct *task,
988 struct task_struct *next)
e5d1367f
SE
989{
990}
991
a8d757ef
SE
992static inline void perf_cgroup_sched_in(struct task_struct *prev,
993 struct task_struct *task)
e5d1367f
SE
994{
995}
996
997static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
998 struct perf_event_attr *attr,
999 struct perf_event *group_leader)
1000{
1001 return -EINVAL;
1002}
1003
1004static inline void
3f7cce3c
SE
1005perf_cgroup_set_timestamp(struct task_struct *task,
1006 struct perf_event_context *ctx)
e5d1367f
SE
1007{
1008}
1009
1010void
1011perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1012{
1013}
1014
1015static inline void
1016perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1017{
1018}
1019
1020static inline u64 perf_cgroup_event_time(struct perf_event *event)
1021{
1022 return 0;
1023}
1024
db4a8356
DCC
1025static inline void
1026list_update_cgroup_event(struct perf_event *event,
1027 struct perf_event_context *ctx, bool add)
1028{
1029}
1030
e5d1367f
SE
1031#endif
1032
9e630205
SE
1033/*
1034 * set default to be dependent on timer tick just
1035 * like original code
1036 */
1037#define PERF_CPU_HRTIMER (1000 / HZ)
1038/*
8a1115ff 1039 * function must be called with interrupts disabled
9e630205 1040 */
272325c4 1041static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1042{
1043 struct perf_cpu_context *cpuctx;
9e630205
SE
1044 int rotations = 0;
1045
16444645 1046 lockdep_assert_irqs_disabled();
9e630205
SE
1047
1048 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1049 rotations = perf_rotate_context(cpuctx);
1050
4cfafd30
PZ
1051 raw_spin_lock(&cpuctx->hrtimer_lock);
1052 if (rotations)
9e630205 1053 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1054 else
1055 cpuctx->hrtimer_active = 0;
1056 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1057
4cfafd30 1058 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1059}
1060
272325c4 1061static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1062{
272325c4 1063 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1064 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1065 u64 interval;
9e630205
SE
1066
1067 /* no multiplexing needed for SW PMU */
1068 if (pmu->task_ctx_nr == perf_sw_context)
1069 return;
1070
62b85639
SE
1071 /*
1072 * check default is sane, if not set then force to
1073 * default interval (1/tick)
1074 */
272325c4
PZ
1075 interval = pmu->hrtimer_interval_ms;
1076 if (interval < 1)
1077 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1078
272325c4 1079 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1080
4cfafd30
PZ
1081 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1082 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1083 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1084}
1085
272325c4 1086static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1087{
272325c4 1088 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1089 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1090 unsigned long flags;
9e630205
SE
1091
1092 /* not for SW PMU */
1093 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1094 return 0;
9e630205 1095
4cfafd30
PZ
1096 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1097 if (!cpuctx->hrtimer_active) {
1098 cpuctx->hrtimer_active = 1;
1099 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1100 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1101 }
1102 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1103
272325c4 1104 return 0;
9e630205
SE
1105}
1106
33696fc0 1107void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1108{
33696fc0
PZ
1109 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1110 if (!(*count)++)
1111 pmu->pmu_disable(pmu);
9e35ad38 1112}
9e35ad38 1113
33696fc0 1114void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1115{
33696fc0
PZ
1116 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1117 if (!--(*count))
1118 pmu->pmu_enable(pmu);
9e35ad38 1119}
9e35ad38 1120
2fde4f94 1121static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1122
1123/*
2fde4f94
MR
1124 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1125 * perf_event_task_tick() are fully serialized because they're strictly cpu
1126 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1127 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1128 */
2fde4f94 1129static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1130{
2fde4f94 1131 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1132
16444645 1133 lockdep_assert_irqs_disabled();
b5ab4cd5 1134
2fde4f94
MR
1135 WARN_ON(!list_empty(&ctx->active_ctx_list));
1136
1137 list_add(&ctx->active_ctx_list, head);
1138}
1139
1140static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1141{
16444645 1142 lockdep_assert_irqs_disabled();
2fde4f94
MR
1143
1144 WARN_ON(list_empty(&ctx->active_ctx_list));
1145
1146 list_del_init(&ctx->active_ctx_list);
9e35ad38 1147}
9e35ad38 1148
cdd6c482 1149static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1150{
e5289d4a 1151 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1152}
1153
4af57ef2
YZ
1154static void free_ctx(struct rcu_head *head)
1155{
1156 struct perf_event_context *ctx;
1157
1158 ctx = container_of(head, struct perf_event_context, rcu_head);
1159 kfree(ctx->task_ctx_data);
1160 kfree(ctx);
1161}
1162
cdd6c482 1163static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1164{
564c2b21
PM
1165 if (atomic_dec_and_test(&ctx->refcount)) {
1166 if (ctx->parent_ctx)
1167 put_ctx(ctx->parent_ctx);
63b6da39 1168 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1169 put_task_struct(ctx->task);
4af57ef2 1170 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1171 }
a63eaf34
PM
1172}
1173
f63a8daa
PZ
1174/*
1175 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1176 * perf_pmu_migrate_context() we need some magic.
1177 *
1178 * Those places that change perf_event::ctx will hold both
1179 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1180 *
8b10c5e2
PZ
1181 * Lock ordering is by mutex address. There are two other sites where
1182 * perf_event_context::mutex nests and those are:
1183 *
1184 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1185 * perf_event_exit_event()
1186 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1187 *
1188 * - perf_event_init_context() [ parent, 0 ]
1189 * inherit_task_group()
1190 * inherit_group()
1191 * inherit_event()
1192 * perf_event_alloc()
1193 * perf_init_event()
1194 * perf_try_init_event() [ child , 1 ]
1195 *
1196 * While it appears there is an obvious deadlock here -- the parent and child
1197 * nesting levels are inverted between the two. This is in fact safe because
1198 * life-time rules separate them. That is an exiting task cannot fork, and a
1199 * spawning task cannot (yet) exit.
1200 *
1201 * But remember that that these are parent<->child context relations, and
1202 * migration does not affect children, therefore these two orderings should not
1203 * interact.
f63a8daa
PZ
1204 *
1205 * The change in perf_event::ctx does not affect children (as claimed above)
1206 * because the sys_perf_event_open() case will install a new event and break
1207 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1208 * concerned with cpuctx and that doesn't have children.
1209 *
1210 * The places that change perf_event::ctx will issue:
1211 *
1212 * perf_remove_from_context();
1213 * synchronize_rcu();
1214 * perf_install_in_context();
1215 *
1216 * to affect the change. The remove_from_context() + synchronize_rcu() should
1217 * quiesce the event, after which we can install it in the new location. This
1218 * means that only external vectors (perf_fops, prctl) can perturb the event
1219 * while in transit. Therefore all such accessors should also acquire
1220 * perf_event_context::mutex to serialize against this.
1221 *
1222 * However; because event->ctx can change while we're waiting to acquire
1223 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1224 * function.
1225 *
1226 * Lock order:
79c9ce57 1227 * cred_guard_mutex
f63a8daa
PZ
1228 * task_struct::perf_event_mutex
1229 * perf_event_context::mutex
f63a8daa 1230 * perf_event::child_mutex;
07c4a776 1231 * perf_event_context::lock
f63a8daa
PZ
1232 * perf_event::mmap_mutex
1233 * mmap_sem
82d94856
PZ
1234 *
1235 * cpu_hotplug_lock
1236 * pmus_lock
1237 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1238 */
a83fe28e
PZ
1239static struct perf_event_context *
1240perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1241{
1242 struct perf_event_context *ctx;
1243
1244again:
1245 rcu_read_lock();
6aa7de05 1246 ctx = READ_ONCE(event->ctx);
f63a8daa
PZ
1247 if (!atomic_inc_not_zero(&ctx->refcount)) {
1248 rcu_read_unlock();
1249 goto again;
1250 }
1251 rcu_read_unlock();
1252
a83fe28e 1253 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1254 if (event->ctx != ctx) {
1255 mutex_unlock(&ctx->mutex);
1256 put_ctx(ctx);
1257 goto again;
1258 }
1259
1260 return ctx;
1261}
1262
a83fe28e
PZ
1263static inline struct perf_event_context *
1264perf_event_ctx_lock(struct perf_event *event)
1265{
1266 return perf_event_ctx_lock_nested(event, 0);
1267}
1268
f63a8daa
PZ
1269static void perf_event_ctx_unlock(struct perf_event *event,
1270 struct perf_event_context *ctx)
1271{
1272 mutex_unlock(&ctx->mutex);
1273 put_ctx(ctx);
1274}
1275
211de6eb
PZ
1276/*
1277 * This must be done under the ctx->lock, such as to serialize against
1278 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1279 * calling scheduler related locks and ctx->lock nests inside those.
1280 */
1281static __must_check struct perf_event_context *
1282unclone_ctx(struct perf_event_context *ctx)
71a851b4 1283{
211de6eb
PZ
1284 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1285
1286 lockdep_assert_held(&ctx->lock);
1287
1288 if (parent_ctx)
71a851b4 1289 ctx->parent_ctx = NULL;
5a3126d4 1290 ctx->generation++;
211de6eb
PZ
1291
1292 return parent_ctx;
71a851b4
PZ
1293}
1294
1d953111
ON
1295static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1296 enum pid_type type)
6844c09d 1297{
1d953111 1298 u32 nr;
6844c09d
ACM
1299 /*
1300 * only top level events have the pid namespace they were created in
1301 */
1302 if (event->parent)
1303 event = event->parent;
1304
1d953111
ON
1305 nr = __task_pid_nr_ns(p, type, event->ns);
1306 /* avoid -1 if it is idle thread or runs in another ns */
1307 if (!nr && !pid_alive(p))
1308 nr = -1;
1309 return nr;
6844c09d
ACM
1310}
1311
1d953111 1312static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1313{
1d953111
ON
1314 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1315}
6844c09d 1316
1d953111
ON
1317static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1318{
1319 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1320}
1321
7f453c24 1322/*
cdd6c482 1323 * If we inherit events we want to return the parent event id
7f453c24
PZ
1324 * to userspace.
1325 */
cdd6c482 1326static u64 primary_event_id(struct perf_event *event)
7f453c24 1327{
cdd6c482 1328 u64 id = event->id;
7f453c24 1329
cdd6c482
IM
1330 if (event->parent)
1331 id = event->parent->id;
7f453c24
PZ
1332
1333 return id;
1334}
1335
25346b93 1336/*
cdd6c482 1337 * Get the perf_event_context for a task and lock it.
63b6da39 1338 *
25346b93
PM
1339 * This has to cope with with the fact that until it is locked,
1340 * the context could get moved to another task.
1341 */
cdd6c482 1342static struct perf_event_context *
8dc85d54 1343perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1344{
cdd6c482 1345 struct perf_event_context *ctx;
25346b93 1346
9ed6060d 1347retry:
058ebd0e
PZ
1348 /*
1349 * One of the few rules of preemptible RCU is that one cannot do
1350 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1351 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1352 * rcu_read_unlock_special().
1353 *
1354 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1355 * side critical section has interrupts disabled.
058ebd0e 1356 */
2fd59077 1357 local_irq_save(*flags);
058ebd0e 1358 rcu_read_lock();
8dc85d54 1359 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1360 if (ctx) {
1361 /*
1362 * If this context is a clone of another, it might
1363 * get swapped for another underneath us by
cdd6c482 1364 * perf_event_task_sched_out, though the
25346b93
PM
1365 * rcu_read_lock() protects us from any context
1366 * getting freed. Lock the context and check if it
1367 * got swapped before we could get the lock, and retry
1368 * if so. If we locked the right context, then it
1369 * can't get swapped on us any more.
1370 */
2fd59077 1371 raw_spin_lock(&ctx->lock);
8dc85d54 1372 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1373 raw_spin_unlock(&ctx->lock);
058ebd0e 1374 rcu_read_unlock();
2fd59077 1375 local_irq_restore(*flags);
25346b93
PM
1376 goto retry;
1377 }
b49a9e7e 1378
63b6da39
PZ
1379 if (ctx->task == TASK_TOMBSTONE ||
1380 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1381 raw_spin_unlock(&ctx->lock);
b49a9e7e 1382 ctx = NULL;
828b6f0e
PZ
1383 } else {
1384 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1385 }
25346b93
PM
1386 }
1387 rcu_read_unlock();
2fd59077
PM
1388 if (!ctx)
1389 local_irq_restore(*flags);
25346b93
PM
1390 return ctx;
1391}
1392
1393/*
1394 * Get the context for a task and increment its pin_count so it
1395 * can't get swapped to another task. This also increments its
1396 * reference count so that the context can't get freed.
1397 */
8dc85d54
PZ
1398static struct perf_event_context *
1399perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1400{
cdd6c482 1401 struct perf_event_context *ctx;
25346b93
PM
1402 unsigned long flags;
1403
8dc85d54 1404 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1405 if (ctx) {
1406 ++ctx->pin_count;
e625cce1 1407 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1408 }
1409 return ctx;
1410}
1411
cdd6c482 1412static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1413{
1414 unsigned long flags;
1415
e625cce1 1416 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1417 --ctx->pin_count;
e625cce1 1418 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1419}
1420
f67218c3
PZ
1421/*
1422 * Update the record of the current time in a context.
1423 */
1424static void update_context_time(struct perf_event_context *ctx)
1425{
1426 u64 now = perf_clock();
1427
1428 ctx->time += now - ctx->timestamp;
1429 ctx->timestamp = now;
1430}
1431
4158755d
SE
1432static u64 perf_event_time(struct perf_event *event)
1433{
1434 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1435
1436 if (is_cgroup_event(event))
1437 return perf_cgroup_event_time(event);
1438
4158755d
SE
1439 return ctx ? ctx->time : 0;
1440}
1441
487f05e1
AS
1442static enum event_type_t get_event_type(struct perf_event *event)
1443{
1444 struct perf_event_context *ctx = event->ctx;
1445 enum event_type_t event_type;
1446
1447 lockdep_assert_held(&ctx->lock);
1448
3bda69c1
AS
1449 /*
1450 * It's 'group type', really, because if our group leader is
1451 * pinned, so are we.
1452 */
1453 if (event->group_leader != event)
1454 event = event->group_leader;
1455
487f05e1
AS
1456 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1457 if (!ctx->task)
1458 event_type |= EVENT_CPU;
1459
1460 return event_type;
1461}
1462
889ff015
FW
1463static struct list_head *
1464ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1465{
1466 if (event->attr.pinned)
1467 return &ctx->pinned_groups;
1468 else
1469 return &ctx->flexible_groups;
1470}
1471
fccc714b 1472/*
cdd6c482 1473 * Add a event from the lists for its context.
fccc714b
PZ
1474 * Must be called with ctx->mutex and ctx->lock held.
1475 */
04289bb9 1476static void
cdd6c482 1477list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1478{
c994d613
PZ
1479 lockdep_assert_held(&ctx->lock);
1480
8a49542c
PZ
1481 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1482 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1483
0d3d73aa
PZ
1484 event->tstamp = perf_event_time(event);
1485
04289bb9 1486 /*
8a49542c
PZ
1487 * If we're a stand alone event or group leader, we go to the context
1488 * list, group events are kept attached to the group so that
1489 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1490 */
8a49542c 1491 if (event->group_leader == event) {
889ff015
FW
1492 struct list_head *list;
1493
4ff6a8de 1494 event->group_caps = event->event_caps;
d6f962b5 1495
889ff015
FW
1496 list = ctx_group_list(event, ctx);
1497 list_add_tail(&event->group_entry, list);
5c148194 1498 }
592903cd 1499
db4a8356 1500 list_update_cgroup_event(event, ctx, true);
e5d1367f 1501
cdd6c482
IM
1502 list_add_rcu(&event->event_entry, &ctx->event_list);
1503 ctx->nr_events++;
1504 if (event->attr.inherit_stat)
bfbd3381 1505 ctx->nr_stat++;
5a3126d4
PZ
1506
1507 ctx->generation++;
04289bb9
IM
1508}
1509
0231bb53
JO
1510/*
1511 * Initialize event state based on the perf_event_attr::disabled.
1512 */
1513static inline void perf_event__state_init(struct perf_event *event)
1514{
1515 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1516 PERF_EVENT_STATE_INACTIVE;
1517}
1518
a723968c 1519static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1520{
1521 int entry = sizeof(u64); /* value */
1522 int size = 0;
1523 int nr = 1;
1524
1525 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1526 size += sizeof(u64);
1527
1528 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1529 size += sizeof(u64);
1530
1531 if (event->attr.read_format & PERF_FORMAT_ID)
1532 entry += sizeof(u64);
1533
1534 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1535 nr += nr_siblings;
c320c7b7
ACM
1536 size += sizeof(u64);
1537 }
1538
1539 size += entry * nr;
1540 event->read_size = size;
1541}
1542
a723968c 1543static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1544{
1545 struct perf_sample_data *data;
c320c7b7
ACM
1546 u16 size = 0;
1547
c320c7b7
ACM
1548 if (sample_type & PERF_SAMPLE_IP)
1549 size += sizeof(data->ip);
1550
6844c09d
ACM
1551 if (sample_type & PERF_SAMPLE_ADDR)
1552 size += sizeof(data->addr);
1553
1554 if (sample_type & PERF_SAMPLE_PERIOD)
1555 size += sizeof(data->period);
1556
c3feedf2
AK
1557 if (sample_type & PERF_SAMPLE_WEIGHT)
1558 size += sizeof(data->weight);
1559
6844c09d
ACM
1560 if (sample_type & PERF_SAMPLE_READ)
1561 size += event->read_size;
1562
d6be9ad6
SE
1563 if (sample_type & PERF_SAMPLE_DATA_SRC)
1564 size += sizeof(data->data_src.val);
1565
fdfbbd07
AK
1566 if (sample_type & PERF_SAMPLE_TRANSACTION)
1567 size += sizeof(data->txn);
1568
fc7ce9c7
KL
1569 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1570 size += sizeof(data->phys_addr);
1571
6844c09d
ACM
1572 event->header_size = size;
1573}
1574
a723968c
PZ
1575/*
1576 * Called at perf_event creation and when events are attached/detached from a
1577 * group.
1578 */
1579static void perf_event__header_size(struct perf_event *event)
1580{
1581 __perf_event_read_size(event,
1582 event->group_leader->nr_siblings);
1583 __perf_event_header_size(event, event->attr.sample_type);
1584}
1585
6844c09d
ACM
1586static void perf_event__id_header_size(struct perf_event *event)
1587{
1588 struct perf_sample_data *data;
1589 u64 sample_type = event->attr.sample_type;
1590 u16 size = 0;
1591
c320c7b7
ACM
1592 if (sample_type & PERF_SAMPLE_TID)
1593 size += sizeof(data->tid_entry);
1594
1595 if (sample_type & PERF_SAMPLE_TIME)
1596 size += sizeof(data->time);
1597
ff3d527c
AH
1598 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1599 size += sizeof(data->id);
1600
c320c7b7
ACM
1601 if (sample_type & PERF_SAMPLE_ID)
1602 size += sizeof(data->id);
1603
1604 if (sample_type & PERF_SAMPLE_STREAM_ID)
1605 size += sizeof(data->stream_id);
1606
1607 if (sample_type & PERF_SAMPLE_CPU)
1608 size += sizeof(data->cpu_entry);
1609
6844c09d 1610 event->id_header_size = size;
c320c7b7
ACM
1611}
1612
a723968c
PZ
1613static bool perf_event_validate_size(struct perf_event *event)
1614{
1615 /*
1616 * The values computed here will be over-written when we actually
1617 * attach the event.
1618 */
1619 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1620 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1621 perf_event__id_header_size(event);
1622
1623 /*
1624 * Sum the lot; should not exceed the 64k limit we have on records.
1625 * Conservative limit to allow for callchains and other variable fields.
1626 */
1627 if (event->read_size + event->header_size +
1628 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1629 return false;
1630
1631 return true;
1632}
1633
8a49542c
PZ
1634static void perf_group_attach(struct perf_event *event)
1635{
c320c7b7 1636 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1637
a76a82a3
PZ
1638 lockdep_assert_held(&event->ctx->lock);
1639
74c3337c
PZ
1640 /*
1641 * We can have double attach due to group movement in perf_event_open.
1642 */
1643 if (event->attach_state & PERF_ATTACH_GROUP)
1644 return;
1645
8a49542c
PZ
1646 event->attach_state |= PERF_ATTACH_GROUP;
1647
1648 if (group_leader == event)
1649 return;
1650
652884fe
PZ
1651 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1652
4ff6a8de 1653 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1654
1655 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1656 group_leader->nr_siblings++;
c320c7b7
ACM
1657
1658 perf_event__header_size(group_leader);
1659
1660 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1661 perf_event__header_size(pos);
8a49542c
PZ
1662}
1663
a63eaf34 1664/*
cdd6c482 1665 * Remove a event from the lists for its context.
fccc714b 1666 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1667 */
04289bb9 1668static void
cdd6c482 1669list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1670{
652884fe
PZ
1671 WARN_ON_ONCE(event->ctx != ctx);
1672 lockdep_assert_held(&ctx->lock);
1673
8a49542c
PZ
1674 /*
1675 * We can have double detach due to exit/hot-unplug + close.
1676 */
1677 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1678 return;
8a49542c
PZ
1679
1680 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1681
db4a8356 1682 list_update_cgroup_event(event, ctx, false);
e5d1367f 1683
cdd6c482
IM
1684 ctx->nr_events--;
1685 if (event->attr.inherit_stat)
bfbd3381 1686 ctx->nr_stat--;
8bc20959 1687
cdd6c482 1688 list_del_rcu(&event->event_entry);
04289bb9 1689
8a49542c
PZ
1690 if (event->group_leader == event)
1691 list_del_init(&event->group_entry);
5c148194 1692
b2e74a26
SE
1693 /*
1694 * If event was in error state, then keep it
1695 * that way, otherwise bogus counts will be
1696 * returned on read(). The only way to get out
1697 * of error state is by explicit re-enabling
1698 * of the event
1699 */
1700 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1701 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1702
1703 ctx->generation++;
050735b0
PZ
1704}
1705
8a49542c 1706static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1707{
1708 struct perf_event *sibling, *tmp;
8a49542c
PZ
1709 struct list_head *list = NULL;
1710
a76a82a3
PZ
1711 lockdep_assert_held(&event->ctx->lock);
1712
8a49542c
PZ
1713 /*
1714 * We can have double detach due to exit/hot-unplug + close.
1715 */
1716 if (!(event->attach_state & PERF_ATTACH_GROUP))
1717 return;
1718
1719 event->attach_state &= ~PERF_ATTACH_GROUP;
1720
1721 /*
1722 * If this is a sibling, remove it from its group.
1723 */
1724 if (event->group_leader != event) {
1725 list_del_init(&event->group_entry);
1726 event->group_leader->nr_siblings--;
c320c7b7 1727 goto out;
8a49542c
PZ
1728 }
1729
1730 if (!list_empty(&event->group_entry))
1731 list = &event->group_entry;
2e2af50b 1732
04289bb9 1733 /*
cdd6c482
IM
1734 * If this was a group event with sibling events then
1735 * upgrade the siblings to singleton events by adding them
8a49542c 1736 * to whatever list we are on.
04289bb9 1737 */
cdd6c482 1738 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1739 if (list)
1740 list_move_tail(&sibling->group_entry, list);
04289bb9 1741 sibling->group_leader = sibling;
d6f962b5
FW
1742
1743 /* Inherit group flags from the previous leader */
4ff6a8de 1744 sibling->group_caps = event->group_caps;
652884fe
PZ
1745
1746 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1747 }
c320c7b7
ACM
1748
1749out:
1750 perf_event__header_size(event->group_leader);
1751
1752 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1753 perf_event__header_size(tmp);
04289bb9
IM
1754}
1755
fadfe7be
JO
1756static bool is_orphaned_event(struct perf_event *event)
1757{
a69b0ca4 1758 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1759}
1760
2c81a647 1761static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1762{
1763 struct pmu *pmu = event->pmu;
1764 return pmu->filter_match ? pmu->filter_match(event) : 1;
1765}
1766
2c81a647
MR
1767/*
1768 * Check whether we should attempt to schedule an event group based on
1769 * PMU-specific filtering. An event group can consist of HW and SW events,
1770 * potentially with a SW leader, so we must check all the filters, to
1771 * determine whether a group is schedulable:
1772 */
1773static inline int pmu_filter_match(struct perf_event *event)
1774{
1775 struct perf_event *child;
1776
1777 if (!__pmu_filter_match(event))
1778 return 0;
1779
1780 list_for_each_entry(child, &event->sibling_list, group_entry) {
1781 if (!__pmu_filter_match(child))
1782 return 0;
1783 }
1784
1785 return 1;
1786}
1787
fa66f07a
SE
1788static inline int
1789event_filter_match(struct perf_event *event)
1790{
0b8f1e2e
PZ
1791 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1792 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1793}
1794
9ffcfa6f
SE
1795static void
1796event_sched_out(struct perf_event *event,
3b6f9e5c 1797 struct perf_cpu_context *cpuctx,
cdd6c482 1798 struct perf_event_context *ctx)
3b6f9e5c 1799{
0d3d73aa 1800 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
1801
1802 WARN_ON_ONCE(event->ctx != ctx);
1803 lockdep_assert_held(&ctx->lock);
1804
cdd6c482 1805 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1806 return;
3b6f9e5c 1807
44377277
AS
1808 perf_pmu_disable(event->pmu);
1809
28a967c3
PZ
1810 event->pmu->del(event, 0);
1811 event->oncpu = -1;
0d3d73aa 1812
cdd6c482
IM
1813 if (event->pending_disable) {
1814 event->pending_disable = 0;
0d3d73aa 1815 state = PERF_EVENT_STATE_OFF;
970892a9 1816 }
0d3d73aa 1817 perf_event_set_state(event, state);
3b6f9e5c 1818
cdd6c482 1819 if (!is_software_event(event))
3b6f9e5c 1820 cpuctx->active_oncpu--;
2fde4f94
MR
1821 if (!--ctx->nr_active)
1822 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1823 if (event->attr.freq && event->attr.sample_freq)
1824 ctx->nr_freq--;
cdd6c482 1825 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1826 cpuctx->exclusive = 0;
44377277
AS
1827
1828 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1829}
1830
d859e29f 1831static void
cdd6c482 1832group_sched_out(struct perf_event *group_event,
d859e29f 1833 struct perf_cpu_context *cpuctx,
cdd6c482 1834 struct perf_event_context *ctx)
d859e29f 1835{
cdd6c482 1836 struct perf_event *event;
0d3d73aa
PZ
1837
1838 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1839 return;
d859e29f 1840
3f005e7d
MR
1841 perf_pmu_disable(ctx->pmu);
1842
cdd6c482 1843 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1844
1845 /*
1846 * Schedule out siblings (if any):
1847 */
cdd6c482
IM
1848 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1849 event_sched_out(event, cpuctx, ctx);
d859e29f 1850
3f005e7d
MR
1851 perf_pmu_enable(ctx->pmu);
1852
0d3d73aa 1853 if (group_event->attr.exclusive)
d859e29f
PM
1854 cpuctx->exclusive = 0;
1855}
1856
45a0e07a 1857#define DETACH_GROUP 0x01UL
0017960f 1858
0793a61d 1859/*
cdd6c482 1860 * Cross CPU call to remove a performance event
0793a61d 1861 *
cdd6c482 1862 * We disable the event on the hardware level first. After that we
0793a61d
TG
1863 * remove it from the context list.
1864 */
fae3fde6
PZ
1865static void
1866__perf_remove_from_context(struct perf_event *event,
1867 struct perf_cpu_context *cpuctx,
1868 struct perf_event_context *ctx,
1869 void *info)
0793a61d 1870{
45a0e07a 1871 unsigned long flags = (unsigned long)info;
0793a61d 1872
3c5c8711
PZ
1873 if (ctx->is_active & EVENT_TIME) {
1874 update_context_time(ctx);
1875 update_cgrp_time_from_cpuctx(cpuctx);
1876 }
1877
cdd6c482 1878 event_sched_out(event, cpuctx, ctx);
45a0e07a 1879 if (flags & DETACH_GROUP)
46ce0fe9 1880 perf_group_detach(event);
cdd6c482 1881 list_del_event(event, ctx);
39a43640
PZ
1882
1883 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1884 ctx->is_active = 0;
39a43640
PZ
1885 if (ctx->task) {
1886 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1887 cpuctx->task_ctx = NULL;
1888 }
64ce3126 1889 }
0793a61d
TG
1890}
1891
0793a61d 1892/*
cdd6c482 1893 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1894 *
cdd6c482
IM
1895 * If event->ctx is a cloned context, callers must make sure that
1896 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1897 * remains valid. This is OK when called from perf_release since
1898 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1899 * When called from perf_event_exit_task, it's OK because the
c93f7669 1900 * context has been detached from its task.
0793a61d 1901 */
45a0e07a 1902static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1903{
a76a82a3
PZ
1904 struct perf_event_context *ctx = event->ctx;
1905
1906 lockdep_assert_held(&ctx->mutex);
0793a61d 1907
45a0e07a 1908 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1909
1910 /*
1911 * The above event_function_call() can NO-OP when it hits
1912 * TASK_TOMBSTONE. In that case we must already have been detached
1913 * from the context (by perf_event_exit_event()) but the grouping
1914 * might still be in-tact.
1915 */
1916 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1917 if ((flags & DETACH_GROUP) &&
1918 (event->attach_state & PERF_ATTACH_GROUP)) {
1919 /*
1920 * Since in that case we cannot possibly be scheduled, simply
1921 * detach now.
1922 */
1923 raw_spin_lock_irq(&ctx->lock);
1924 perf_group_detach(event);
1925 raw_spin_unlock_irq(&ctx->lock);
1926 }
0793a61d
TG
1927}
1928
d859e29f 1929/*
cdd6c482 1930 * Cross CPU call to disable a performance event
d859e29f 1931 */
fae3fde6
PZ
1932static void __perf_event_disable(struct perf_event *event,
1933 struct perf_cpu_context *cpuctx,
1934 struct perf_event_context *ctx,
1935 void *info)
7b648018 1936{
fae3fde6
PZ
1937 if (event->state < PERF_EVENT_STATE_INACTIVE)
1938 return;
7b648018 1939
3c5c8711
PZ
1940 if (ctx->is_active & EVENT_TIME) {
1941 update_context_time(ctx);
1942 update_cgrp_time_from_event(event);
1943 }
1944
fae3fde6
PZ
1945 if (event == event->group_leader)
1946 group_sched_out(event, cpuctx, ctx);
1947 else
1948 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
1949
1950 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
1951}
1952
d859e29f 1953/*
cdd6c482 1954 * Disable a event.
c93f7669 1955 *
cdd6c482
IM
1956 * If event->ctx is a cloned context, callers must make sure that
1957 * every task struct that event->ctx->task could possibly point to
c93f7669 1958 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1959 * perf_event_for_each_child or perf_event_for_each because they
1960 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1961 * goes to exit will block in perf_event_exit_event().
1962 *
cdd6c482 1963 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1964 * is the current context on this CPU and preemption is disabled,
cdd6c482 1965 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1966 */
f63a8daa 1967static void _perf_event_disable(struct perf_event *event)
d859e29f 1968{
cdd6c482 1969 struct perf_event_context *ctx = event->ctx;
d859e29f 1970
e625cce1 1971 raw_spin_lock_irq(&ctx->lock);
7b648018 1972 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1973 raw_spin_unlock_irq(&ctx->lock);
7b648018 1974 return;
53cfbf59 1975 }
e625cce1 1976 raw_spin_unlock_irq(&ctx->lock);
7b648018 1977
fae3fde6
PZ
1978 event_function_call(event, __perf_event_disable, NULL);
1979}
1980
1981void perf_event_disable_local(struct perf_event *event)
1982{
1983 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1984}
f63a8daa
PZ
1985
1986/*
1987 * Strictly speaking kernel users cannot create groups and therefore this
1988 * interface does not need the perf_event_ctx_lock() magic.
1989 */
1990void perf_event_disable(struct perf_event *event)
1991{
1992 struct perf_event_context *ctx;
1993
1994 ctx = perf_event_ctx_lock(event);
1995 _perf_event_disable(event);
1996 perf_event_ctx_unlock(event, ctx);
1997}
dcfce4a0 1998EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1999
5aab90ce
JO
2000void perf_event_disable_inatomic(struct perf_event *event)
2001{
2002 event->pending_disable = 1;
2003 irq_work_queue(&event->pending);
2004}
2005
e5d1367f 2006static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2007 struct perf_event_context *ctx)
e5d1367f
SE
2008{
2009 /*
2010 * use the correct time source for the time snapshot
2011 *
2012 * We could get by without this by leveraging the
2013 * fact that to get to this function, the caller
2014 * has most likely already called update_context_time()
2015 * and update_cgrp_time_xx() and thus both timestamp
2016 * are identical (or very close). Given that tstamp is,
2017 * already adjusted for cgroup, we could say that:
2018 * tstamp - ctx->timestamp
2019 * is equivalent to
2020 * tstamp - cgrp->timestamp.
2021 *
2022 * Then, in perf_output_read(), the calculation would
2023 * work with no changes because:
2024 * - event is guaranteed scheduled in
2025 * - no scheduled out in between
2026 * - thus the timestamp would be the same
2027 *
2028 * But this is a bit hairy.
2029 *
2030 * So instead, we have an explicit cgroup call to remain
2031 * within the time time source all along. We believe it
2032 * is cleaner and simpler to understand.
2033 */
2034 if (is_cgroup_event(event))
0d3d73aa 2035 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2036 else
0d3d73aa 2037 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2038}
2039
4fe757dd
PZ
2040#define MAX_INTERRUPTS (~0ULL)
2041
2042static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2043static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2044
235c7fc7 2045static int
9ffcfa6f 2046event_sched_in(struct perf_event *event,
235c7fc7 2047 struct perf_cpu_context *cpuctx,
6e37738a 2048 struct perf_event_context *ctx)
235c7fc7 2049{
44377277 2050 int ret = 0;
4158755d 2051
63342411
PZ
2052 lockdep_assert_held(&ctx->lock);
2053
cdd6c482 2054 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2055 return 0;
2056
95ff4ca2
AS
2057 WRITE_ONCE(event->oncpu, smp_processor_id());
2058 /*
0c1cbc18
PZ
2059 * Order event::oncpu write to happen before the ACTIVE state is
2060 * visible. This allows perf_event_{stop,read}() to observe the correct
2061 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2062 */
2063 smp_wmb();
0d3d73aa 2064 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2065
2066 /*
2067 * Unthrottle events, since we scheduled we might have missed several
2068 * ticks already, also for a heavily scheduling task there is little
2069 * guarantee it'll get a tick in a timely manner.
2070 */
2071 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072 perf_log_throttle(event, 1);
2073 event->hw.interrupts = 0;
2074 }
2075
44377277
AS
2076 perf_pmu_disable(event->pmu);
2077
0d3d73aa 2078 perf_set_shadow_time(event, ctx);
72f669c0 2079
ec0d7729
AS
2080 perf_log_itrace_start(event);
2081
a4eaf7f1 2082 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2083 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2084 event->oncpu = -1;
44377277
AS
2085 ret = -EAGAIN;
2086 goto out;
235c7fc7
IM
2087 }
2088
cdd6c482 2089 if (!is_software_event(event))
3b6f9e5c 2090 cpuctx->active_oncpu++;
2fde4f94
MR
2091 if (!ctx->nr_active++)
2092 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2093 if (event->attr.freq && event->attr.sample_freq)
2094 ctx->nr_freq++;
235c7fc7 2095
cdd6c482 2096 if (event->attr.exclusive)
3b6f9e5c
PM
2097 cpuctx->exclusive = 1;
2098
44377277
AS
2099out:
2100 perf_pmu_enable(event->pmu);
2101
2102 return ret;
235c7fc7
IM
2103}
2104
6751b71e 2105static int
cdd6c482 2106group_sched_in(struct perf_event *group_event,
6751b71e 2107 struct perf_cpu_context *cpuctx,
6e37738a 2108 struct perf_event_context *ctx)
6751b71e 2109{
6bde9b6c 2110 struct perf_event *event, *partial_group = NULL;
4a234593 2111 struct pmu *pmu = ctx->pmu;
6751b71e 2112
cdd6c482 2113 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2114 return 0;
2115
fbbe0701 2116 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2117
9ffcfa6f 2118 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2119 pmu->cancel_txn(pmu);
272325c4 2120 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2121 return -EAGAIN;
90151c35 2122 }
6751b71e
PM
2123
2124 /*
2125 * Schedule in siblings as one group (if any):
2126 */
cdd6c482 2127 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2128 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2129 partial_group = event;
6751b71e
PM
2130 goto group_error;
2131 }
2132 }
2133
9ffcfa6f 2134 if (!pmu->commit_txn(pmu))
6e85158c 2135 return 0;
9ffcfa6f 2136
6751b71e
PM
2137group_error:
2138 /*
2139 * Groups can be scheduled in as one unit only, so undo any
2140 * partial group before returning:
0d3d73aa 2141 * The events up to the failed event are scheduled out normally.
6751b71e 2142 */
cdd6c482
IM
2143 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2144 if (event == partial_group)
0d3d73aa 2145 break;
d7842da4 2146
0d3d73aa 2147 event_sched_out(event, cpuctx, ctx);
6751b71e 2148 }
9ffcfa6f 2149 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2150
ad5133b7 2151 pmu->cancel_txn(pmu);
90151c35 2152
272325c4 2153 perf_mux_hrtimer_restart(cpuctx);
9e630205 2154
6751b71e
PM
2155 return -EAGAIN;
2156}
2157
3b6f9e5c 2158/*
cdd6c482 2159 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2160 */
cdd6c482 2161static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2162 struct perf_cpu_context *cpuctx,
2163 int can_add_hw)
2164{
2165 /*
cdd6c482 2166 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2167 */
4ff6a8de 2168 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2169 return 1;
2170 /*
2171 * If an exclusive group is already on, no other hardware
cdd6c482 2172 * events can go on.
3b6f9e5c
PM
2173 */
2174 if (cpuctx->exclusive)
2175 return 0;
2176 /*
2177 * If this group is exclusive and there are already
cdd6c482 2178 * events on the CPU, it can't go on.
3b6f9e5c 2179 */
cdd6c482 2180 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2181 return 0;
2182 /*
2183 * Otherwise, try to add it if all previous groups were able
2184 * to go on.
2185 */
2186 return can_add_hw;
2187}
2188
cdd6c482
IM
2189static void add_event_to_ctx(struct perf_event *event,
2190 struct perf_event_context *ctx)
53cfbf59 2191{
cdd6c482 2192 list_add_event(event, ctx);
8a49542c 2193 perf_group_attach(event);
53cfbf59
PM
2194}
2195
bd2afa49
PZ
2196static void ctx_sched_out(struct perf_event_context *ctx,
2197 struct perf_cpu_context *cpuctx,
2198 enum event_type_t event_type);
2c29ef0f
PZ
2199static void
2200ctx_sched_in(struct perf_event_context *ctx,
2201 struct perf_cpu_context *cpuctx,
2202 enum event_type_t event_type,
2203 struct task_struct *task);
fe4b04fa 2204
bd2afa49 2205static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2206 struct perf_event_context *ctx,
2207 enum event_type_t event_type)
bd2afa49
PZ
2208{
2209 if (!cpuctx->task_ctx)
2210 return;
2211
2212 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2213 return;
2214
487f05e1 2215 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2216}
2217
dce5855b
PZ
2218static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2219 struct perf_event_context *ctx,
2220 struct task_struct *task)
2221{
2222 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2223 if (ctx)
2224 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2225 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2226 if (ctx)
2227 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2228}
2229
487f05e1
AS
2230/*
2231 * We want to maintain the following priority of scheduling:
2232 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2233 * - task pinned (EVENT_PINNED)
2234 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2235 * - task flexible (EVENT_FLEXIBLE).
2236 *
2237 * In order to avoid unscheduling and scheduling back in everything every
2238 * time an event is added, only do it for the groups of equal priority and
2239 * below.
2240 *
2241 * This can be called after a batch operation on task events, in which case
2242 * event_type is a bit mask of the types of events involved. For CPU events,
2243 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2244 */
3e349507 2245static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2246 struct perf_event_context *task_ctx,
2247 enum event_type_t event_type)
0017960f 2248{
487f05e1
AS
2249 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2250 bool cpu_event = !!(event_type & EVENT_CPU);
2251
2252 /*
2253 * If pinned groups are involved, flexible groups also need to be
2254 * scheduled out.
2255 */
2256 if (event_type & EVENT_PINNED)
2257 event_type |= EVENT_FLEXIBLE;
2258
3e349507
PZ
2259 perf_pmu_disable(cpuctx->ctx.pmu);
2260 if (task_ctx)
487f05e1
AS
2261 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2262
2263 /*
2264 * Decide which cpu ctx groups to schedule out based on the types
2265 * of events that caused rescheduling:
2266 * - EVENT_CPU: schedule out corresponding groups;
2267 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2268 * - otherwise, do nothing more.
2269 */
2270 if (cpu_event)
2271 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2272 else if (ctx_event_type & EVENT_PINNED)
2273 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2274
3e349507
PZ
2275 perf_event_sched_in(cpuctx, task_ctx, current);
2276 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2277}
2278
0793a61d 2279/*
cdd6c482 2280 * Cross CPU call to install and enable a performance event
682076ae 2281 *
a096309b
PZ
2282 * Very similar to remote_function() + event_function() but cannot assume that
2283 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2284 */
fe4b04fa 2285static int __perf_install_in_context(void *info)
0793a61d 2286{
a096309b
PZ
2287 struct perf_event *event = info;
2288 struct perf_event_context *ctx = event->ctx;
108b02cf 2289 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2290 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2291 bool reprogram = true;
a096309b 2292 int ret = 0;
0793a61d 2293
63b6da39 2294 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2295 if (ctx->task) {
b58f6b0d
PZ
2296 raw_spin_lock(&ctx->lock);
2297 task_ctx = ctx;
a096309b 2298
63cae12b 2299 reprogram = (ctx->task == current);
b58f6b0d 2300
39a43640 2301 /*
63cae12b
PZ
2302 * If the task is running, it must be running on this CPU,
2303 * otherwise we cannot reprogram things.
2304 *
2305 * If its not running, we don't care, ctx->lock will
2306 * serialize against it becoming runnable.
39a43640 2307 */
63cae12b
PZ
2308 if (task_curr(ctx->task) && !reprogram) {
2309 ret = -ESRCH;
2310 goto unlock;
2311 }
a096309b 2312
63cae12b 2313 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2314 } else if (task_ctx) {
2315 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2316 }
b58f6b0d 2317
63cae12b 2318 if (reprogram) {
a096309b
PZ
2319 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2320 add_event_to_ctx(event, ctx);
487f05e1 2321 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2322 } else {
2323 add_event_to_ctx(event, ctx);
2324 }
2325
63b6da39 2326unlock:
2c29ef0f 2327 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2328
a096309b 2329 return ret;
0793a61d
TG
2330}
2331
2332/*
a096309b
PZ
2333 * Attach a performance event to a context.
2334 *
2335 * Very similar to event_function_call, see comment there.
0793a61d
TG
2336 */
2337static void
cdd6c482
IM
2338perf_install_in_context(struct perf_event_context *ctx,
2339 struct perf_event *event,
0793a61d
TG
2340 int cpu)
2341{
a096309b 2342 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2343
fe4b04fa
PZ
2344 lockdep_assert_held(&ctx->mutex);
2345
0cda4c02
YZ
2346 if (event->cpu != -1)
2347 event->cpu = cpu;
c3f00c70 2348
0b8f1e2e
PZ
2349 /*
2350 * Ensures that if we can observe event->ctx, both the event and ctx
2351 * will be 'complete'. See perf_iterate_sb_cpu().
2352 */
2353 smp_store_release(&event->ctx, ctx);
2354
a096309b
PZ
2355 if (!task) {
2356 cpu_function_call(cpu, __perf_install_in_context, event);
2357 return;
2358 }
2359
2360 /*
2361 * Should not happen, we validate the ctx is still alive before calling.
2362 */
2363 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2364 return;
2365
39a43640
PZ
2366 /*
2367 * Installing events is tricky because we cannot rely on ctx->is_active
2368 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2369 *
2370 * Instead we use task_curr(), which tells us if the task is running.
2371 * However, since we use task_curr() outside of rq::lock, we can race
2372 * against the actual state. This means the result can be wrong.
2373 *
2374 * If we get a false positive, we retry, this is harmless.
2375 *
2376 * If we get a false negative, things are complicated. If we are after
2377 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2378 * value must be correct. If we're before, it doesn't matter since
2379 * perf_event_context_sched_in() will program the counter.
2380 *
2381 * However, this hinges on the remote context switch having observed
2382 * our task->perf_event_ctxp[] store, such that it will in fact take
2383 * ctx::lock in perf_event_context_sched_in().
2384 *
2385 * We do this by task_function_call(), if the IPI fails to hit the task
2386 * we know any future context switch of task must see the
2387 * perf_event_ctpx[] store.
39a43640 2388 */
63cae12b 2389
63b6da39 2390 /*
63cae12b
PZ
2391 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2392 * task_cpu() load, such that if the IPI then does not find the task
2393 * running, a future context switch of that task must observe the
2394 * store.
63b6da39 2395 */
63cae12b
PZ
2396 smp_mb();
2397again:
2398 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2399 return;
2400
2401 raw_spin_lock_irq(&ctx->lock);
2402 task = ctx->task;
84c4e620 2403 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2404 /*
2405 * Cannot happen because we already checked above (which also
2406 * cannot happen), and we hold ctx->mutex, which serializes us
2407 * against perf_event_exit_task_context().
2408 */
63b6da39
PZ
2409 raw_spin_unlock_irq(&ctx->lock);
2410 return;
2411 }
39a43640 2412 /*
63cae12b
PZ
2413 * If the task is not running, ctx->lock will avoid it becoming so,
2414 * thus we can safely install the event.
39a43640 2415 */
63cae12b
PZ
2416 if (task_curr(task)) {
2417 raw_spin_unlock_irq(&ctx->lock);
2418 goto again;
2419 }
2420 add_event_to_ctx(event, ctx);
2421 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2422}
2423
d859e29f 2424/*
cdd6c482 2425 * Cross CPU call to enable a performance event
d859e29f 2426 */
fae3fde6
PZ
2427static void __perf_event_enable(struct perf_event *event,
2428 struct perf_cpu_context *cpuctx,
2429 struct perf_event_context *ctx,
2430 void *info)
04289bb9 2431{
cdd6c482 2432 struct perf_event *leader = event->group_leader;
fae3fde6 2433 struct perf_event_context *task_ctx;
04289bb9 2434
6e801e01
PZ
2435 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2436 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2437 return;
3cbed429 2438
bd2afa49
PZ
2439 if (ctx->is_active)
2440 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2441
0d3d73aa 2442 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2443
fae3fde6
PZ
2444 if (!ctx->is_active)
2445 return;
2446
e5d1367f 2447 if (!event_filter_match(event)) {
bd2afa49 2448 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2449 return;
e5d1367f 2450 }
f4c4176f 2451
04289bb9 2452 /*
cdd6c482 2453 * If the event is in a group and isn't the group leader,
d859e29f 2454 * then don't put it on unless the group is on.
04289bb9 2455 */
bd2afa49
PZ
2456 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2457 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2458 return;
bd2afa49 2459 }
fe4b04fa 2460
fae3fde6
PZ
2461 task_ctx = cpuctx->task_ctx;
2462 if (ctx->task)
2463 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2464
487f05e1 2465 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2466}
2467
d859e29f 2468/*
cdd6c482 2469 * Enable a event.
c93f7669 2470 *
cdd6c482
IM
2471 * If event->ctx is a cloned context, callers must make sure that
2472 * every task struct that event->ctx->task could possibly point to
c93f7669 2473 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2474 * perf_event_for_each_child or perf_event_for_each as described
2475 * for perf_event_disable.
d859e29f 2476 */
f63a8daa 2477static void _perf_event_enable(struct perf_event *event)
d859e29f 2478{
cdd6c482 2479 struct perf_event_context *ctx = event->ctx;
d859e29f 2480
7b648018 2481 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2482 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2483 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2484 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2485 return;
2486 }
2487
d859e29f 2488 /*
cdd6c482 2489 * If the event is in error state, clear that first.
7b648018
PZ
2490 *
2491 * That way, if we see the event in error state below, we know that it
2492 * has gone back into error state, as distinct from the task having
2493 * been scheduled away before the cross-call arrived.
d859e29f 2494 */
cdd6c482
IM
2495 if (event->state == PERF_EVENT_STATE_ERROR)
2496 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2497 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2498
fae3fde6 2499 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2500}
f63a8daa
PZ
2501
2502/*
2503 * See perf_event_disable();
2504 */
2505void perf_event_enable(struct perf_event *event)
2506{
2507 struct perf_event_context *ctx;
2508
2509 ctx = perf_event_ctx_lock(event);
2510 _perf_event_enable(event);
2511 perf_event_ctx_unlock(event, ctx);
2512}
dcfce4a0 2513EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2514
375637bc
AS
2515struct stop_event_data {
2516 struct perf_event *event;
2517 unsigned int restart;
2518};
2519
95ff4ca2
AS
2520static int __perf_event_stop(void *info)
2521{
375637bc
AS
2522 struct stop_event_data *sd = info;
2523 struct perf_event *event = sd->event;
95ff4ca2 2524
375637bc 2525 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2526 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2527 return 0;
2528
2529 /* matches smp_wmb() in event_sched_in() */
2530 smp_rmb();
2531
2532 /*
2533 * There is a window with interrupts enabled before we get here,
2534 * so we need to check again lest we try to stop another CPU's event.
2535 */
2536 if (READ_ONCE(event->oncpu) != smp_processor_id())
2537 return -EAGAIN;
2538
2539 event->pmu->stop(event, PERF_EF_UPDATE);
2540
375637bc
AS
2541 /*
2542 * May race with the actual stop (through perf_pmu_output_stop()),
2543 * but it is only used for events with AUX ring buffer, and such
2544 * events will refuse to restart because of rb::aux_mmap_count==0,
2545 * see comments in perf_aux_output_begin().
2546 *
2547 * Since this is happening on a event-local CPU, no trace is lost
2548 * while restarting.
2549 */
2550 if (sd->restart)
c9bbdd48 2551 event->pmu->start(event, 0);
375637bc 2552
95ff4ca2
AS
2553 return 0;
2554}
2555
767ae086 2556static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2557{
2558 struct stop_event_data sd = {
2559 .event = event,
767ae086 2560 .restart = restart,
375637bc
AS
2561 };
2562 int ret = 0;
2563
2564 do {
2565 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2566 return 0;
2567
2568 /* matches smp_wmb() in event_sched_in() */
2569 smp_rmb();
2570
2571 /*
2572 * We only want to restart ACTIVE events, so if the event goes
2573 * inactive here (event->oncpu==-1), there's nothing more to do;
2574 * fall through with ret==-ENXIO.
2575 */
2576 ret = cpu_function_call(READ_ONCE(event->oncpu),
2577 __perf_event_stop, &sd);
2578 } while (ret == -EAGAIN);
2579
2580 return ret;
2581}
2582
2583/*
2584 * In order to contain the amount of racy and tricky in the address filter
2585 * configuration management, it is a two part process:
2586 *
2587 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2588 * we update the addresses of corresponding vmas in
2589 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2590 * (p2) when an event is scheduled in (pmu::add), it calls
2591 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2592 * if the generation has changed since the previous call.
2593 *
2594 * If (p1) happens while the event is active, we restart it to force (p2).
2595 *
2596 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2597 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2598 * ioctl;
2599 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2600 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2601 * for reading;
2602 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2603 * of exec.
2604 */
2605void perf_event_addr_filters_sync(struct perf_event *event)
2606{
2607 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2608
2609 if (!has_addr_filter(event))
2610 return;
2611
2612 raw_spin_lock(&ifh->lock);
2613 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2614 event->pmu->addr_filters_sync(event);
2615 event->hw.addr_filters_gen = event->addr_filters_gen;
2616 }
2617 raw_spin_unlock(&ifh->lock);
2618}
2619EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2620
f63a8daa 2621static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2622{
2023b359 2623 /*
cdd6c482 2624 * not supported on inherited events
2023b359 2625 */
2e939d1d 2626 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2627 return -EINVAL;
2628
cdd6c482 2629 atomic_add(refresh, &event->event_limit);
f63a8daa 2630 _perf_event_enable(event);
2023b359
PZ
2631
2632 return 0;
79f14641 2633}
f63a8daa
PZ
2634
2635/*
2636 * See perf_event_disable()
2637 */
2638int perf_event_refresh(struct perf_event *event, int refresh)
2639{
2640 struct perf_event_context *ctx;
2641 int ret;
2642
2643 ctx = perf_event_ctx_lock(event);
2644 ret = _perf_event_refresh(event, refresh);
2645 perf_event_ctx_unlock(event, ctx);
2646
2647 return ret;
2648}
26ca5c11 2649EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2650
5b0311e1
FW
2651static void ctx_sched_out(struct perf_event_context *ctx,
2652 struct perf_cpu_context *cpuctx,
2653 enum event_type_t event_type)
235c7fc7 2654{
db24d33e 2655 int is_active = ctx->is_active;
c994d613 2656 struct perf_event *event;
235c7fc7 2657
c994d613 2658 lockdep_assert_held(&ctx->lock);
235c7fc7 2659
39a43640
PZ
2660 if (likely(!ctx->nr_events)) {
2661 /*
2662 * See __perf_remove_from_context().
2663 */
2664 WARN_ON_ONCE(ctx->is_active);
2665 if (ctx->task)
2666 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2667 return;
39a43640
PZ
2668 }
2669
db24d33e 2670 ctx->is_active &= ~event_type;
3cbaa590
PZ
2671 if (!(ctx->is_active & EVENT_ALL))
2672 ctx->is_active = 0;
2673
63e30d3e
PZ
2674 if (ctx->task) {
2675 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2676 if (!ctx->is_active)
2677 cpuctx->task_ctx = NULL;
2678 }
facc4307 2679
8fdc6539
PZ
2680 /*
2681 * Always update time if it was set; not only when it changes.
2682 * Otherwise we can 'forget' to update time for any but the last
2683 * context we sched out. For example:
2684 *
2685 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2686 * ctx_sched_out(.event_type = EVENT_PINNED)
2687 *
2688 * would only update time for the pinned events.
2689 */
3cbaa590
PZ
2690 if (is_active & EVENT_TIME) {
2691 /* update (and stop) ctx time */
2692 update_context_time(ctx);
2693 update_cgrp_time_from_cpuctx(cpuctx);
2694 }
2695
8fdc6539
PZ
2696 is_active ^= ctx->is_active; /* changed bits */
2697
3cbaa590 2698 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2699 return;
5b0311e1 2700
075e0b00 2701 perf_pmu_disable(ctx->pmu);
3cbaa590 2702 if (is_active & EVENT_PINNED) {
889ff015
FW
2703 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2704 group_sched_out(event, cpuctx, ctx);
9ed6060d 2705 }
889ff015 2706
3cbaa590 2707 if (is_active & EVENT_FLEXIBLE) {
889ff015 2708 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2709 group_sched_out(event, cpuctx, ctx);
9ed6060d 2710 }
1b9a644f 2711 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2712}
2713
564c2b21 2714/*
5a3126d4
PZ
2715 * Test whether two contexts are equivalent, i.e. whether they have both been
2716 * cloned from the same version of the same context.
2717 *
2718 * Equivalence is measured using a generation number in the context that is
2719 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2720 * and list_del_event().
564c2b21 2721 */
cdd6c482
IM
2722static int context_equiv(struct perf_event_context *ctx1,
2723 struct perf_event_context *ctx2)
564c2b21 2724{
211de6eb
PZ
2725 lockdep_assert_held(&ctx1->lock);
2726 lockdep_assert_held(&ctx2->lock);
2727
5a3126d4
PZ
2728 /* Pinning disables the swap optimization */
2729 if (ctx1->pin_count || ctx2->pin_count)
2730 return 0;
2731
2732 /* If ctx1 is the parent of ctx2 */
2733 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2734 return 1;
2735
2736 /* If ctx2 is the parent of ctx1 */
2737 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2738 return 1;
2739
2740 /*
2741 * If ctx1 and ctx2 have the same parent; we flatten the parent
2742 * hierarchy, see perf_event_init_context().
2743 */
2744 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2745 ctx1->parent_gen == ctx2->parent_gen)
2746 return 1;
2747
2748 /* Unmatched */
2749 return 0;
564c2b21
PM
2750}
2751
cdd6c482
IM
2752static void __perf_event_sync_stat(struct perf_event *event,
2753 struct perf_event *next_event)
bfbd3381
PZ
2754{
2755 u64 value;
2756
cdd6c482 2757 if (!event->attr.inherit_stat)
bfbd3381
PZ
2758 return;
2759
2760 /*
cdd6c482 2761 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2762 * because we're in the middle of a context switch and have IRQs
2763 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2764 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2765 * don't need to use it.
2766 */
0d3d73aa 2767 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 2768 event->pmu->read(event);
bfbd3381 2769
0d3d73aa 2770 perf_event_update_time(event);
bfbd3381
PZ
2771
2772 /*
cdd6c482 2773 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2774 * values when we flip the contexts.
2775 */
e7850595
PZ
2776 value = local64_read(&next_event->count);
2777 value = local64_xchg(&event->count, value);
2778 local64_set(&next_event->count, value);
bfbd3381 2779
cdd6c482
IM
2780 swap(event->total_time_enabled, next_event->total_time_enabled);
2781 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2782
bfbd3381 2783 /*
19d2e755 2784 * Since we swizzled the values, update the user visible data too.
bfbd3381 2785 */
cdd6c482
IM
2786 perf_event_update_userpage(event);
2787 perf_event_update_userpage(next_event);
bfbd3381
PZ
2788}
2789
cdd6c482
IM
2790static void perf_event_sync_stat(struct perf_event_context *ctx,
2791 struct perf_event_context *next_ctx)
bfbd3381 2792{
cdd6c482 2793 struct perf_event *event, *next_event;
bfbd3381
PZ
2794
2795 if (!ctx->nr_stat)
2796 return;
2797
02ffdbc8
PZ
2798 update_context_time(ctx);
2799
cdd6c482
IM
2800 event = list_first_entry(&ctx->event_list,
2801 struct perf_event, event_entry);
bfbd3381 2802
cdd6c482
IM
2803 next_event = list_first_entry(&next_ctx->event_list,
2804 struct perf_event, event_entry);
bfbd3381 2805
cdd6c482
IM
2806 while (&event->event_entry != &ctx->event_list &&
2807 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2808
cdd6c482 2809 __perf_event_sync_stat(event, next_event);
bfbd3381 2810
cdd6c482
IM
2811 event = list_next_entry(event, event_entry);
2812 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2813 }
2814}
2815
fe4b04fa
PZ
2816static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2817 struct task_struct *next)
0793a61d 2818{
8dc85d54 2819 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2820 struct perf_event_context *next_ctx;
5a3126d4 2821 struct perf_event_context *parent, *next_parent;
108b02cf 2822 struct perf_cpu_context *cpuctx;
c93f7669 2823 int do_switch = 1;
0793a61d 2824
108b02cf
PZ
2825 if (likely(!ctx))
2826 return;
10989fb2 2827
108b02cf
PZ
2828 cpuctx = __get_cpu_context(ctx);
2829 if (!cpuctx->task_ctx)
0793a61d
TG
2830 return;
2831
c93f7669 2832 rcu_read_lock();
8dc85d54 2833 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2834 if (!next_ctx)
2835 goto unlock;
2836
2837 parent = rcu_dereference(ctx->parent_ctx);
2838 next_parent = rcu_dereference(next_ctx->parent_ctx);
2839
2840 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2841 if (!parent && !next_parent)
5a3126d4
PZ
2842 goto unlock;
2843
2844 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2845 /*
2846 * Looks like the two contexts are clones, so we might be
2847 * able to optimize the context switch. We lock both
2848 * contexts and check that they are clones under the
2849 * lock (including re-checking that neither has been
2850 * uncloned in the meantime). It doesn't matter which
2851 * order we take the locks because no other cpu could
2852 * be trying to lock both of these tasks.
2853 */
e625cce1
TG
2854 raw_spin_lock(&ctx->lock);
2855 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2856 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2857 WRITE_ONCE(ctx->task, next);
2858 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2859
2860 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2861
63b6da39
PZ
2862 /*
2863 * RCU_INIT_POINTER here is safe because we've not
2864 * modified the ctx and the above modification of
2865 * ctx->task and ctx->task_ctx_data are immaterial
2866 * since those values are always verified under
2867 * ctx->lock which we're now holding.
2868 */
2869 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2870 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2871
c93f7669 2872 do_switch = 0;
bfbd3381 2873
cdd6c482 2874 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2875 }
e625cce1
TG
2876 raw_spin_unlock(&next_ctx->lock);
2877 raw_spin_unlock(&ctx->lock);
564c2b21 2878 }
5a3126d4 2879unlock:
c93f7669 2880 rcu_read_unlock();
564c2b21 2881
c93f7669 2882 if (do_switch) {
facc4307 2883 raw_spin_lock(&ctx->lock);
487f05e1 2884 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2885 raw_spin_unlock(&ctx->lock);
c93f7669 2886 }
0793a61d
TG
2887}
2888
e48c1788
PZ
2889static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2890
ba532500
YZ
2891void perf_sched_cb_dec(struct pmu *pmu)
2892{
e48c1788
PZ
2893 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2894
ba532500 2895 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2896
2897 if (!--cpuctx->sched_cb_usage)
2898 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2899}
2900
e48c1788 2901
ba532500
YZ
2902void perf_sched_cb_inc(struct pmu *pmu)
2903{
e48c1788
PZ
2904 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2905
2906 if (!cpuctx->sched_cb_usage++)
2907 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2908
ba532500
YZ
2909 this_cpu_inc(perf_sched_cb_usages);
2910}
2911
2912/*
2913 * This function provides the context switch callback to the lower code
2914 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
2915 *
2916 * This callback is relevant even to per-cpu events; for example multi event
2917 * PEBS requires this to provide PID/TID information. This requires we flush
2918 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
2919 */
2920static void perf_pmu_sched_task(struct task_struct *prev,
2921 struct task_struct *next,
2922 bool sched_in)
2923{
2924 struct perf_cpu_context *cpuctx;
2925 struct pmu *pmu;
ba532500
YZ
2926
2927 if (prev == next)
2928 return;
2929
e48c1788 2930 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 2931 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 2932
e48c1788
PZ
2933 if (WARN_ON_ONCE(!pmu->sched_task))
2934 continue;
ba532500 2935
e48c1788
PZ
2936 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2937 perf_pmu_disable(pmu);
ba532500 2938
e48c1788 2939 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 2940
e48c1788
PZ
2941 perf_pmu_enable(pmu);
2942 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 2943 }
ba532500
YZ
2944}
2945
45ac1403
AH
2946static void perf_event_switch(struct task_struct *task,
2947 struct task_struct *next_prev, bool sched_in);
2948
8dc85d54
PZ
2949#define for_each_task_context_nr(ctxn) \
2950 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2951
2952/*
2953 * Called from scheduler to remove the events of the current task,
2954 * with interrupts disabled.
2955 *
2956 * We stop each event and update the event value in event->count.
2957 *
2958 * This does not protect us against NMI, but disable()
2959 * sets the disabled bit in the control field of event _before_
2960 * accessing the event control register. If a NMI hits, then it will
2961 * not restart the event.
2962 */
ab0cce56
JO
2963void __perf_event_task_sched_out(struct task_struct *task,
2964 struct task_struct *next)
8dc85d54
PZ
2965{
2966 int ctxn;
2967
ba532500
YZ
2968 if (__this_cpu_read(perf_sched_cb_usages))
2969 perf_pmu_sched_task(task, next, false);
2970
45ac1403
AH
2971 if (atomic_read(&nr_switch_events))
2972 perf_event_switch(task, next, false);
2973
8dc85d54
PZ
2974 for_each_task_context_nr(ctxn)
2975 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2976
2977 /*
2978 * if cgroup events exist on this CPU, then we need
2979 * to check if we have to switch out PMU state.
2980 * cgroup event are system-wide mode only
2981 */
4a32fea9 2982 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2983 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2984}
2985
5b0311e1
FW
2986/*
2987 * Called with IRQs disabled
2988 */
2989static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2990 enum event_type_t event_type)
2991{
2992 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2993}
2994
235c7fc7 2995static void
5b0311e1 2996ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2997 struct perf_cpu_context *cpuctx)
0793a61d 2998{
cdd6c482 2999 struct perf_event *event;
0793a61d 3000
889ff015
FW
3001 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3002 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3003 continue;
5632ab12 3004 if (!event_filter_match(event))
3b6f9e5c
PM
3005 continue;
3006
8c9ed8e1 3007 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3008 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3009
3010 /*
3011 * If this pinned group hasn't been scheduled,
3012 * put it in error state.
3013 */
0d3d73aa
PZ
3014 if (event->state == PERF_EVENT_STATE_INACTIVE)
3015 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3b6f9e5c 3016 }
5b0311e1
FW
3017}
3018
3019static void
3020ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3021 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3022{
3023 struct perf_event *event;
3024 int can_add_hw = 1;
3b6f9e5c 3025
889ff015
FW
3026 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3027 /* Ignore events in OFF or ERROR state */
3028 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3029 continue;
04289bb9
IM
3030 /*
3031 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3032 * of events:
04289bb9 3033 */
5632ab12 3034 if (!event_filter_match(event))
0793a61d
TG
3035 continue;
3036
9ed6060d 3037 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3038 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3039 can_add_hw = 0;
9ed6060d 3040 }
0793a61d 3041 }
5b0311e1
FW
3042}
3043
3044static void
3045ctx_sched_in(struct perf_event_context *ctx,
3046 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3047 enum event_type_t event_type,
3048 struct task_struct *task)
5b0311e1 3049{
db24d33e 3050 int is_active = ctx->is_active;
c994d613
PZ
3051 u64 now;
3052
3053 lockdep_assert_held(&ctx->lock);
e5d1367f 3054
5b0311e1 3055 if (likely(!ctx->nr_events))
facc4307 3056 return;
5b0311e1 3057
3cbaa590 3058 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3059 if (ctx->task) {
3060 if (!is_active)
3061 cpuctx->task_ctx = ctx;
3062 else
3063 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3064 }
3065
3cbaa590
PZ
3066 is_active ^= ctx->is_active; /* changed bits */
3067
3068 if (is_active & EVENT_TIME) {
3069 /* start ctx time */
3070 now = perf_clock();
3071 ctx->timestamp = now;
3072 perf_cgroup_set_timestamp(task, ctx);
3073 }
3074
5b0311e1
FW
3075 /*
3076 * First go through the list and put on any pinned groups
3077 * in order to give them the best chance of going on.
3078 */
3cbaa590 3079 if (is_active & EVENT_PINNED)
6e37738a 3080 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3081
3082 /* Then walk through the lower prio flexible groups */
3cbaa590 3083 if (is_active & EVENT_FLEXIBLE)
6e37738a 3084 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3085}
3086
329c0e01 3087static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3088 enum event_type_t event_type,
3089 struct task_struct *task)
329c0e01
FW
3090{
3091 struct perf_event_context *ctx = &cpuctx->ctx;
3092
e5d1367f 3093 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3094}
3095
e5d1367f
SE
3096static void perf_event_context_sched_in(struct perf_event_context *ctx,
3097 struct task_struct *task)
235c7fc7 3098{
108b02cf 3099 struct perf_cpu_context *cpuctx;
235c7fc7 3100
108b02cf 3101 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3102 if (cpuctx->task_ctx == ctx)
3103 return;
3104
facc4307 3105 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3106 /*
3107 * We must check ctx->nr_events while holding ctx->lock, such
3108 * that we serialize against perf_install_in_context().
3109 */
3110 if (!ctx->nr_events)
3111 goto unlock;
3112
1b9a644f 3113 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3114 /*
3115 * We want to keep the following priority order:
3116 * cpu pinned (that don't need to move), task pinned,
3117 * cpu flexible, task flexible.
fe45bafb
AS
3118 *
3119 * However, if task's ctx is not carrying any pinned
3120 * events, no need to flip the cpuctx's events around.
329c0e01 3121 */
fe45bafb
AS
3122 if (!list_empty(&ctx->pinned_groups))
3123 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3124 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3125 perf_pmu_enable(ctx->pmu);
fdccc3fb 3126
3127unlock:
facc4307 3128 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3129}
3130
8dc85d54
PZ
3131/*
3132 * Called from scheduler to add the events of the current task
3133 * with interrupts disabled.
3134 *
3135 * We restore the event value and then enable it.
3136 *
3137 * This does not protect us against NMI, but enable()
3138 * sets the enabled bit in the control field of event _before_
3139 * accessing the event control register. If a NMI hits, then it will
3140 * keep the event running.
3141 */
ab0cce56
JO
3142void __perf_event_task_sched_in(struct task_struct *prev,
3143 struct task_struct *task)
8dc85d54
PZ
3144{
3145 struct perf_event_context *ctx;
3146 int ctxn;
3147
7e41d177
PZ
3148 /*
3149 * If cgroup events exist on this CPU, then we need to check if we have
3150 * to switch in PMU state; cgroup event are system-wide mode only.
3151 *
3152 * Since cgroup events are CPU events, we must schedule these in before
3153 * we schedule in the task events.
3154 */
3155 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3156 perf_cgroup_sched_in(prev, task);
3157
8dc85d54
PZ
3158 for_each_task_context_nr(ctxn) {
3159 ctx = task->perf_event_ctxp[ctxn];
3160 if (likely(!ctx))
3161 continue;
3162
e5d1367f 3163 perf_event_context_sched_in(ctx, task);
8dc85d54 3164 }
d010b332 3165
45ac1403
AH
3166 if (atomic_read(&nr_switch_events))
3167 perf_event_switch(task, prev, true);
3168
ba532500
YZ
3169 if (__this_cpu_read(perf_sched_cb_usages))
3170 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3171}
3172
abd50713
PZ
3173static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3174{
3175 u64 frequency = event->attr.sample_freq;
3176 u64 sec = NSEC_PER_SEC;
3177 u64 divisor, dividend;
3178
3179 int count_fls, nsec_fls, frequency_fls, sec_fls;
3180
3181 count_fls = fls64(count);
3182 nsec_fls = fls64(nsec);
3183 frequency_fls = fls64(frequency);
3184 sec_fls = 30;
3185
3186 /*
3187 * We got @count in @nsec, with a target of sample_freq HZ
3188 * the target period becomes:
3189 *
3190 * @count * 10^9
3191 * period = -------------------
3192 * @nsec * sample_freq
3193 *
3194 */
3195
3196 /*
3197 * Reduce accuracy by one bit such that @a and @b converge
3198 * to a similar magnitude.
3199 */
fe4b04fa 3200#define REDUCE_FLS(a, b) \
abd50713
PZ
3201do { \
3202 if (a##_fls > b##_fls) { \
3203 a >>= 1; \
3204 a##_fls--; \
3205 } else { \
3206 b >>= 1; \
3207 b##_fls--; \
3208 } \
3209} while (0)
3210
3211 /*
3212 * Reduce accuracy until either term fits in a u64, then proceed with
3213 * the other, so that finally we can do a u64/u64 division.
3214 */
3215 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3216 REDUCE_FLS(nsec, frequency);
3217 REDUCE_FLS(sec, count);
3218 }
3219
3220 if (count_fls + sec_fls > 64) {
3221 divisor = nsec * frequency;
3222
3223 while (count_fls + sec_fls > 64) {
3224 REDUCE_FLS(count, sec);
3225 divisor >>= 1;
3226 }
3227
3228 dividend = count * sec;
3229 } else {
3230 dividend = count * sec;
3231
3232 while (nsec_fls + frequency_fls > 64) {
3233 REDUCE_FLS(nsec, frequency);
3234 dividend >>= 1;
3235 }
3236
3237 divisor = nsec * frequency;
3238 }
3239
f6ab91ad
PZ
3240 if (!divisor)
3241 return dividend;
3242
abd50713
PZ
3243 return div64_u64(dividend, divisor);
3244}
3245
e050e3f0
SE
3246static DEFINE_PER_CPU(int, perf_throttled_count);
3247static DEFINE_PER_CPU(u64, perf_throttled_seq);
3248
f39d47ff 3249static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3250{
cdd6c482 3251 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3252 s64 period, sample_period;
bd2b5b12
PZ
3253 s64 delta;
3254
abd50713 3255 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3256
3257 delta = (s64)(period - hwc->sample_period);
3258 delta = (delta + 7) / 8; /* low pass filter */
3259
3260 sample_period = hwc->sample_period + delta;
3261
3262 if (!sample_period)
3263 sample_period = 1;
3264
bd2b5b12 3265 hwc->sample_period = sample_period;
abd50713 3266
e7850595 3267 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3268 if (disable)
3269 event->pmu->stop(event, PERF_EF_UPDATE);
3270
e7850595 3271 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3272
3273 if (disable)
3274 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3275 }
bd2b5b12
PZ
3276}
3277
e050e3f0
SE
3278/*
3279 * combine freq adjustment with unthrottling to avoid two passes over the
3280 * events. At the same time, make sure, having freq events does not change
3281 * the rate of unthrottling as that would introduce bias.
3282 */
3283static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3284 int needs_unthr)
60db5e09 3285{
cdd6c482
IM
3286 struct perf_event *event;
3287 struct hw_perf_event *hwc;
e050e3f0 3288 u64 now, period = TICK_NSEC;
abd50713 3289 s64 delta;
60db5e09 3290
e050e3f0
SE
3291 /*
3292 * only need to iterate over all events iff:
3293 * - context have events in frequency mode (needs freq adjust)
3294 * - there are events to unthrottle on this cpu
3295 */
3296 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3297 return;
3298
e050e3f0 3299 raw_spin_lock(&ctx->lock);
f39d47ff 3300 perf_pmu_disable(ctx->pmu);
e050e3f0 3301
03541f8b 3302 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3303 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3304 continue;
3305
5632ab12 3306 if (!event_filter_match(event))
5d27c23d
PZ
3307 continue;
3308
44377277
AS
3309 perf_pmu_disable(event->pmu);
3310
cdd6c482 3311 hwc = &event->hw;
6a24ed6c 3312
ae23bff1 3313 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3314 hwc->interrupts = 0;
cdd6c482 3315 perf_log_throttle(event, 1);
a4eaf7f1 3316 event->pmu->start(event, 0);
a78ac325
PZ
3317 }
3318
cdd6c482 3319 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3320 goto next;
60db5e09 3321
e050e3f0
SE
3322 /*
3323 * stop the event and update event->count
3324 */
3325 event->pmu->stop(event, PERF_EF_UPDATE);
3326
e7850595 3327 now = local64_read(&event->count);
abd50713
PZ
3328 delta = now - hwc->freq_count_stamp;
3329 hwc->freq_count_stamp = now;
60db5e09 3330
e050e3f0
SE
3331 /*
3332 * restart the event
3333 * reload only if value has changed
f39d47ff
SE
3334 * we have stopped the event so tell that
3335 * to perf_adjust_period() to avoid stopping it
3336 * twice.
e050e3f0 3337 */
abd50713 3338 if (delta > 0)
f39d47ff 3339 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3340
3341 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3342 next:
3343 perf_pmu_enable(event->pmu);
60db5e09 3344 }
e050e3f0 3345
f39d47ff 3346 perf_pmu_enable(ctx->pmu);
e050e3f0 3347 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3348}
3349
235c7fc7 3350/*
cdd6c482 3351 * Round-robin a context's events:
235c7fc7 3352 */
cdd6c482 3353static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3354{
dddd3379
TG
3355 /*
3356 * Rotate the first entry last of non-pinned groups. Rotation might be
3357 * disabled by the inheritance code.
3358 */
3359 if (!ctx->rotate_disable)
3360 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3361}
3362
9e630205 3363static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3364{
8dc85d54 3365 struct perf_event_context *ctx = NULL;
2fde4f94 3366 int rotate = 0;
7fc23a53 3367
b5ab4cd5 3368 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3369 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3370 rotate = 1;
3371 }
235c7fc7 3372
8dc85d54 3373 ctx = cpuctx->task_ctx;
b5ab4cd5 3374 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3375 if (ctx->nr_events != ctx->nr_active)
3376 rotate = 1;
3377 }
9717e6cd 3378
e050e3f0 3379 if (!rotate)
0f5a2601
PZ
3380 goto done;
3381
facc4307 3382 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3383 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3384
e050e3f0
SE
3385 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3386 if (ctx)
3387 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3388
e050e3f0
SE
3389 rotate_ctx(&cpuctx->ctx);
3390 if (ctx)
3391 rotate_ctx(ctx);
235c7fc7 3392
e050e3f0 3393 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3394
0f5a2601
PZ
3395 perf_pmu_enable(cpuctx->ctx.pmu);
3396 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3397done:
9e630205
SE
3398
3399 return rotate;
e9d2b064
PZ
3400}
3401
3402void perf_event_task_tick(void)
3403{
2fde4f94
MR
3404 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3405 struct perf_event_context *ctx, *tmp;
e050e3f0 3406 int throttled;
b5ab4cd5 3407
16444645 3408 lockdep_assert_irqs_disabled();
e9d2b064 3409
e050e3f0
SE
3410 __this_cpu_inc(perf_throttled_seq);
3411 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3412 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3413
2fde4f94 3414 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3415 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3416}
3417
889ff015
FW
3418static int event_enable_on_exec(struct perf_event *event,
3419 struct perf_event_context *ctx)
3420{
3421 if (!event->attr.enable_on_exec)
3422 return 0;
3423
3424 event->attr.enable_on_exec = 0;
3425 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3426 return 0;
3427
0d3d73aa 3428 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3429
3430 return 1;
3431}
3432
57e7986e 3433/*
cdd6c482 3434 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3435 * This expects task == current.
3436 */
c1274499 3437static void perf_event_enable_on_exec(int ctxn)
57e7986e 3438{
c1274499 3439 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3440 enum event_type_t event_type = 0;
3e349507 3441 struct perf_cpu_context *cpuctx;
cdd6c482 3442 struct perf_event *event;
57e7986e
PM
3443 unsigned long flags;
3444 int enabled = 0;
3445
3446 local_irq_save(flags);
c1274499 3447 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3448 if (!ctx || !ctx->nr_events)
57e7986e
PM
3449 goto out;
3450
3e349507
PZ
3451 cpuctx = __get_cpu_context(ctx);
3452 perf_ctx_lock(cpuctx, ctx);
7fce2509 3453 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3454 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3455 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3456 event_type |= get_event_type(event);
3457 }
57e7986e
PM
3458
3459 /*
3e349507 3460 * Unclone and reschedule this context if we enabled any event.
57e7986e 3461 */
3e349507 3462 if (enabled) {
211de6eb 3463 clone_ctx = unclone_ctx(ctx);
487f05e1 3464 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3465 } else {
3466 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3467 }
3468 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3469
9ed6060d 3470out:
57e7986e 3471 local_irq_restore(flags);
211de6eb
PZ
3472
3473 if (clone_ctx)
3474 put_ctx(clone_ctx);
57e7986e
PM
3475}
3476
0492d4c5
PZ
3477struct perf_read_data {
3478 struct perf_event *event;
3479 bool group;
7d88962e 3480 int ret;
0492d4c5
PZ
3481};
3482
451d24d1 3483static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3484{
d6a2f903
DCC
3485 u16 local_pkg, event_pkg;
3486
3487 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3488 int local_cpu = smp_processor_id();
3489
3490 event_pkg = topology_physical_package_id(event_cpu);
3491 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3492
3493 if (event_pkg == local_pkg)
3494 return local_cpu;
3495 }
3496
3497 return event_cpu;
3498}
3499
0793a61d 3500/*
cdd6c482 3501 * Cross CPU call to read the hardware event
0793a61d 3502 */
cdd6c482 3503static void __perf_event_read(void *info)
0793a61d 3504{
0492d4c5
PZ
3505 struct perf_read_data *data = info;
3506 struct perf_event *sub, *event = data->event;
cdd6c482 3507 struct perf_event_context *ctx = event->ctx;
108b02cf 3508 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3509 struct pmu *pmu = event->pmu;
621a01ea 3510
e1ac3614
PM
3511 /*
3512 * If this is a task context, we need to check whether it is
3513 * the current task context of this cpu. If not it has been
3514 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3515 * event->count would have been updated to a recent sample
3516 * when the event was scheduled out.
e1ac3614
PM
3517 */
3518 if (ctx->task && cpuctx->task_ctx != ctx)
3519 return;
3520
e625cce1 3521 raw_spin_lock(&ctx->lock);
0c1cbc18 3522 if (ctx->is_active & EVENT_TIME) {
542e72fc 3523 update_context_time(ctx);
e5d1367f
SE
3524 update_cgrp_time_from_event(event);
3525 }
0492d4c5 3526
0d3d73aa
PZ
3527 perf_event_update_time(event);
3528 if (data->group)
3529 perf_event_update_sibling_time(event);
0c1cbc18 3530
4a00c16e
SB
3531 if (event->state != PERF_EVENT_STATE_ACTIVE)
3532 goto unlock;
0492d4c5 3533
4a00c16e
SB
3534 if (!data->group) {
3535 pmu->read(event);
3536 data->ret = 0;
0492d4c5 3537 goto unlock;
4a00c16e
SB
3538 }
3539
3540 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3541
3542 pmu->read(event);
0492d4c5
PZ
3543
3544 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4a00c16e
SB
3545 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3546 /*
3547 * Use sibling's PMU rather than @event's since
3548 * sibling could be on different (eg: software) PMU.
3549 */
0492d4c5 3550 sub->pmu->read(sub);
4a00c16e 3551 }
0492d4c5 3552 }
4a00c16e
SB
3553
3554 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3555
3556unlock:
e625cce1 3557 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3558}
3559
b5e58793
PZ
3560static inline u64 perf_event_count(struct perf_event *event)
3561{
c39a0e2c 3562 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3563}
3564
ffe8690c
KX
3565/*
3566 * NMI-safe method to read a local event, that is an event that
3567 * is:
3568 * - either for the current task, or for this CPU
3569 * - does not have inherit set, for inherited task events
3570 * will not be local and we cannot read them atomically
3571 * - must not have a pmu::count method
3572 */
7d9285e8
YS
3573int perf_event_read_local(struct perf_event *event, u64 *value,
3574 u64 *enabled, u64 *running)
ffe8690c
KX
3575{
3576 unsigned long flags;
f91840a3 3577 int ret = 0;
ffe8690c
KX
3578
3579 /*
3580 * Disabling interrupts avoids all counter scheduling (context
3581 * switches, timer based rotation and IPIs).
3582 */
3583 local_irq_save(flags);
3584
ffe8690c
KX
3585 /*
3586 * It must not be an event with inherit set, we cannot read
3587 * all child counters from atomic context.
3588 */
f91840a3
AS
3589 if (event->attr.inherit) {
3590 ret = -EOPNOTSUPP;
3591 goto out;
3592 }
ffe8690c 3593
f91840a3
AS
3594 /* If this is a per-task event, it must be for current */
3595 if ((event->attach_state & PERF_ATTACH_TASK) &&
3596 event->hw.target != current) {
3597 ret = -EINVAL;
3598 goto out;
3599 }
3600
3601 /* If this is a per-CPU event, it must be for this CPU */
3602 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3603 event->cpu != smp_processor_id()) {
3604 ret = -EINVAL;
3605 goto out;
3606 }
ffe8690c
KX
3607
3608 /*
3609 * If the event is currently on this CPU, its either a per-task event,
3610 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3611 * oncpu == -1).
3612 */
3613 if (event->oncpu == smp_processor_id())
3614 event->pmu->read(event);
3615
f91840a3 3616 *value = local64_read(&event->count);
0d3d73aa
PZ
3617 if (enabled || running) {
3618 u64 now = event->shadow_ctx_time + perf_clock();
3619 u64 __enabled, __running;
3620
3621 __perf_update_times(event, now, &__enabled, &__running);
3622 if (enabled)
3623 *enabled = __enabled;
3624 if (running)
3625 *running = __running;
3626 }
f91840a3 3627out:
ffe8690c
KX
3628 local_irq_restore(flags);
3629
f91840a3 3630 return ret;
ffe8690c
KX
3631}
3632
7d88962e 3633static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3634{
0c1cbc18 3635 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 3636 int event_cpu, ret = 0;
7d88962e 3637
0793a61d 3638 /*
cdd6c482
IM
3639 * If event is enabled and currently active on a CPU, update the
3640 * value in the event structure:
0793a61d 3641 */
0c1cbc18
PZ
3642again:
3643 if (state == PERF_EVENT_STATE_ACTIVE) {
3644 struct perf_read_data data;
3645
3646 /*
3647 * Orders the ->state and ->oncpu loads such that if we see
3648 * ACTIVE we must also see the right ->oncpu.
3649 *
3650 * Matches the smp_wmb() from event_sched_in().
3651 */
3652 smp_rmb();
d6a2f903 3653
451d24d1
PZ
3654 event_cpu = READ_ONCE(event->oncpu);
3655 if ((unsigned)event_cpu >= nr_cpu_ids)
3656 return 0;
3657
0c1cbc18
PZ
3658 data = (struct perf_read_data){
3659 .event = event,
3660 .group = group,
3661 .ret = 0,
3662 };
3663
451d24d1
PZ
3664 preempt_disable();
3665 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3666
58763148
PZ
3667 /*
3668 * Purposely ignore the smp_call_function_single() return
3669 * value.
3670 *
451d24d1 3671 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3672 * scheduled out and that will have updated the event count.
3673 *
3674 * Therefore, either way, we'll have an up-to-date event count
3675 * after this.
3676 */
451d24d1
PZ
3677 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3678 preempt_enable();
58763148 3679 ret = data.ret;
0c1cbc18
PZ
3680
3681 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3682 struct perf_event_context *ctx = event->ctx;
3683 unsigned long flags;
3684
e625cce1 3685 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
3686 state = event->state;
3687 if (state != PERF_EVENT_STATE_INACTIVE) {
3688 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3689 goto again;
3690 }
3691
c530ccd9 3692 /*
0c1cbc18
PZ
3693 * May read while context is not active (e.g., thread is
3694 * blocked), in that case we cannot update context time
c530ccd9 3695 */
0c1cbc18 3696 if (ctx->is_active & EVENT_TIME) {
c530ccd9 3697 update_context_time(ctx);
e5d1367f
SE
3698 update_cgrp_time_from_event(event);
3699 }
0c1cbc18 3700
0d3d73aa 3701 perf_event_update_time(event);
0492d4c5 3702 if (group)
0d3d73aa 3703 perf_event_update_sibling_time(event);
e625cce1 3704 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3705 }
7d88962e
SB
3706
3707 return ret;
0793a61d
TG
3708}
3709
a63eaf34 3710/*
cdd6c482 3711 * Initialize the perf_event context in a task_struct:
a63eaf34 3712 */
eb184479 3713static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3714{
e625cce1 3715 raw_spin_lock_init(&ctx->lock);
a63eaf34 3716 mutex_init(&ctx->mutex);
2fde4f94 3717 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3718 INIT_LIST_HEAD(&ctx->pinned_groups);
3719 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3720 INIT_LIST_HEAD(&ctx->event_list);
3721 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3722}
3723
3724static struct perf_event_context *
3725alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3726{
3727 struct perf_event_context *ctx;
3728
3729 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3730 if (!ctx)
3731 return NULL;
3732
3733 __perf_event_init_context(ctx);
3734 if (task) {
3735 ctx->task = task;
3736 get_task_struct(task);
0793a61d 3737 }
eb184479
PZ
3738 ctx->pmu = pmu;
3739
3740 return ctx;
a63eaf34
PM
3741}
3742
2ebd4ffb
MH
3743static struct task_struct *
3744find_lively_task_by_vpid(pid_t vpid)
3745{
3746 struct task_struct *task;
0793a61d
TG
3747
3748 rcu_read_lock();
2ebd4ffb 3749 if (!vpid)
0793a61d
TG
3750 task = current;
3751 else
2ebd4ffb 3752 task = find_task_by_vpid(vpid);
0793a61d
TG
3753 if (task)
3754 get_task_struct(task);
3755 rcu_read_unlock();
3756
3757 if (!task)
3758 return ERR_PTR(-ESRCH);
3759
2ebd4ffb 3760 return task;
2ebd4ffb
MH
3761}
3762
fe4b04fa
PZ
3763/*
3764 * Returns a matching context with refcount and pincount.
3765 */
108b02cf 3766static struct perf_event_context *
4af57ef2
YZ
3767find_get_context(struct pmu *pmu, struct task_struct *task,
3768 struct perf_event *event)
0793a61d 3769{
211de6eb 3770 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3771 struct perf_cpu_context *cpuctx;
4af57ef2 3772 void *task_ctx_data = NULL;
25346b93 3773 unsigned long flags;
8dc85d54 3774 int ctxn, err;
4af57ef2 3775 int cpu = event->cpu;
0793a61d 3776
22a4ec72 3777 if (!task) {
cdd6c482 3778 /* Must be root to operate on a CPU event: */
0764771d 3779 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3780 return ERR_PTR(-EACCES);
3781
108b02cf 3782 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3783 ctx = &cpuctx->ctx;
c93f7669 3784 get_ctx(ctx);
fe4b04fa 3785 ++ctx->pin_count;
0793a61d 3786
0793a61d
TG
3787 return ctx;
3788 }
3789
8dc85d54
PZ
3790 err = -EINVAL;
3791 ctxn = pmu->task_ctx_nr;
3792 if (ctxn < 0)
3793 goto errout;
3794
4af57ef2
YZ
3795 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3796 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3797 if (!task_ctx_data) {
3798 err = -ENOMEM;
3799 goto errout;
3800 }
3801 }
3802
9ed6060d 3803retry:
8dc85d54 3804 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3805 if (ctx) {
211de6eb 3806 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3807 ++ctx->pin_count;
4af57ef2
YZ
3808
3809 if (task_ctx_data && !ctx->task_ctx_data) {
3810 ctx->task_ctx_data = task_ctx_data;
3811 task_ctx_data = NULL;
3812 }
e625cce1 3813 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3814
3815 if (clone_ctx)
3816 put_ctx(clone_ctx);
9137fb28 3817 } else {
eb184479 3818 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3819 err = -ENOMEM;
3820 if (!ctx)
3821 goto errout;
eb184479 3822
4af57ef2
YZ
3823 if (task_ctx_data) {
3824 ctx->task_ctx_data = task_ctx_data;
3825 task_ctx_data = NULL;
3826 }
3827
dbe08d82
ON
3828 err = 0;
3829 mutex_lock(&task->perf_event_mutex);
3830 /*
3831 * If it has already passed perf_event_exit_task().
3832 * we must see PF_EXITING, it takes this mutex too.
3833 */
3834 if (task->flags & PF_EXITING)
3835 err = -ESRCH;
3836 else if (task->perf_event_ctxp[ctxn])
3837 err = -EAGAIN;
fe4b04fa 3838 else {
9137fb28 3839 get_ctx(ctx);
fe4b04fa 3840 ++ctx->pin_count;
dbe08d82 3841 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3842 }
dbe08d82
ON
3843 mutex_unlock(&task->perf_event_mutex);
3844
3845 if (unlikely(err)) {
9137fb28 3846 put_ctx(ctx);
dbe08d82
ON
3847
3848 if (err == -EAGAIN)
3849 goto retry;
3850 goto errout;
a63eaf34
PM
3851 }
3852 }
3853
4af57ef2 3854 kfree(task_ctx_data);
0793a61d 3855 return ctx;
c93f7669 3856
9ed6060d 3857errout:
4af57ef2 3858 kfree(task_ctx_data);
c93f7669 3859 return ERR_PTR(err);
0793a61d
TG
3860}
3861
6fb2915d 3862static void perf_event_free_filter(struct perf_event *event);
2541517c 3863static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3864
cdd6c482 3865static void free_event_rcu(struct rcu_head *head)
592903cd 3866{
cdd6c482 3867 struct perf_event *event;
592903cd 3868
cdd6c482
IM
3869 event = container_of(head, struct perf_event, rcu_head);
3870 if (event->ns)
3871 put_pid_ns(event->ns);
6fb2915d 3872 perf_event_free_filter(event);
cdd6c482 3873 kfree(event);
592903cd
PZ
3874}
3875
b69cf536
PZ
3876static void ring_buffer_attach(struct perf_event *event,
3877 struct ring_buffer *rb);
925d519a 3878
f2fb6bef
KL
3879static void detach_sb_event(struct perf_event *event)
3880{
3881 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3882
3883 raw_spin_lock(&pel->lock);
3884 list_del_rcu(&event->sb_list);
3885 raw_spin_unlock(&pel->lock);
3886}
3887
a4f144eb 3888static bool is_sb_event(struct perf_event *event)
f2fb6bef 3889{
a4f144eb
DCC
3890 struct perf_event_attr *attr = &event->attr;
3891
f2fb6bef 3892 if (event->parent)
a4f144eb 3893 return false;
f2fb6bef
KL
3894
3895 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3896 return false;
f2fb6bef 3897
a4f144eb
DCC
3898 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3899 attr->comm || attr->comm_exec ||
3900 attr->task ||
3901 attr->context_switch)
3902 return true;
3903 return false;
3904}
3905
3906static void unaccount_pmu_sb_event(struct perf_event *event)
3907{
3908 if (is_sb_event(event))
3909 detach_sb_event(event);
f2fb6bef
KL
3910}
3911
4beb31f3 3912static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3913{
4beb31f3
FW
3914 if (event->parent)
3915 return;
3916
4beb31f3
FW
3917 if (is_cgroup_event(event))
3918 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3919}
925d519a 3920
555e0c1e
FW
3921#ifdef CONFIG_NO_HZ_FULL
3922static DEFINE_SPINLOCK(nr_freq_lock);
3923#endif
3924
3925static void unaccount_freq_event_nohz(void)
3926{
3927#ifdef CONFIG_NO_HZ_FULL
3928 spin_lock(&nr_freq_lock);
3929 if (atomic_dec_and_test(&nr_freq_events))
3930 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3931 spin_unlock(&nr_freq_lock);
3932#endif
3933}
3934
3935static void unaccount_freq_event(void)
3936{
3937 if (tick_nohz_full_enabled())
3938 unaccount_freq_event_nohz();
3939 else
3940 atomic_dec(&nr_freq_events);
3941}
3942
4beb31f3
FW
3943static void unaccount_event(struct perf_event *event)
3944{
25432ae9
PZ
3945 bool dec = false;
3946
4beb31f3
FW
3947 if (event->parent)
3948 return;
3949
3950 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3951 dec = true;
4beb31f3
FW
3952 if (event->attr.mmap || event->attr.mmap_data)
3953 atomic_dec(&nr_mmap_events);
3954 if (event->attr.comm)
3955 atomic_dec(&nr_comm_events);
e4222673
HB
3956 if (event->attr.namespaces)
3957 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
3958 if (event->attr.task)
3959 atomic_dec(&nr_task_events);
948b26b6 3960 if (event->attr.freq)
555e0c1e 3961 unaccount_freq_event();
45ac1403 3962 if (event->attr.context_switch) {
25432ae9 3963 dec = true;
45ac1403
AH
3964 atomic_dec(&nr_switch_events);
3965 }
4beb31f3 3966 if (is_cgroup_event(event))
25432ae9 3967 dec = true;
4beb31f3 3968 if (has_branch_stack(event))
25432ae9
PZ
3969 dec = true;
3970
9107c89e
PZ
3971 if (dec) {
3972 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3973 schedule_delayed_work(&perf_sched_work, HZ);
3974 }
4beb31f3
FW
3975
3976 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
3977
3978 unaccount_pmu_sb_event(event);
4beb31f3 3979}
925d519a 3980
9107c89e
PZ
3981static void perf_sched_delayed(struct work_struct *work)
3982{
3983 mutex_lock(&perf_sched_mutex);
3984 if (atomic_dec_and_test(&perf_sched_count))
3985 static_branch_disable(&perf_sched_events);
3986 mutex_unlock(&perf_sched_mutex);
3987}
3988
bed5b25a
AS
3989/*
3990 * The following implement mutual exclusion of events on "exclusive" pmus
3991 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3992 * at a time, so we disallow creating events that might conflict, namely:
3993 *
3994 * 1) cpu-wide events in the presence of per-task events,
3995 * 2) per-task events in the presence of cpu-wide events,
3996 * 3) two matching events on the same context.
3997 *
3998 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3999 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4000 */
4001static int exclusive_event_init(struct perf_event *event)
4002{
4003 struct pmu *pmu = event->pmu;
4004
4005 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4006 return 0;
4007
4008 /*
4009 * Prevent co-existence of per-task and cpu-wide events on the
4010 * same exclusive pmu.
4011 *
4012 * Negative pmu::exclusive_cnt means there are cpu-wide
4013 * events on this "exclusive" pmu, positive means there are
4014 * per-task events.
4015 *
4016 * Since this is called in perf_event_alloc() path, event::ctx
4017 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4018 * to mean "per-task event", because unlike other attach states it
4019 * never gets cleared.
4020 */
4021 if (event->attach_state & PERF_ATTACH_TASK) {
4022 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4023 return -EBUSY;
4024 } else {
4025 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4026 return -EBUSY;
4027 }
4028
4029 return 0;
4030}
4031
4032static void exclusive_event_destroy(struct perf_event *event)
4033{
4034 struct pmu *pmu = event->pmu;
4035
4036 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4037 return;
4038
4039 /* see comment in exclusive_event_init() */
4040 if (event->attach_state & PERF_ATTACH_TASK)
4041 atomic_dec(&pmu->exclusive_cnt);
4042 else
4043 atomic_inc(&pmu->exclusive_cnt);
4044}
4045
4046static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4047{
3bf6215a 4048 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4049 (e1->cpu == e2->cpu ||
4050 e1->cpu == -1 ||
4051 e2->cpu == -1))
4052 return true;
4053 return false;
4054}
4055
4056/* Called under the same ctx::mutex as perf_install_in_context() */
4057static bool exclusive_event_installable(struct perf_event *event,
4058 struct perf_event_context *ctx)
4059{
4060 struct perf_event *iter_event;
4061 struct pmu *pmu = event->pmu;
4062
4063 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4064 return true;
4065
4066 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4067 if (exclusive_event_match(iter_event, event))
4068 return false;
4069 }
4070
4071 return true;
4072}
4073
375637bc
AS
4074static void perf_addr_filters_splice(struct perf_event *event,
4075 struct list_head *head);
4076
683ede43 4077static void _free_event(struct perf_event *event)
f1600952 4078{
e360adbe 4079 irq_work_sync(&event->pending);
925d519a 4080
4beb31f3 4081 unaccount_event(event);
9ee318a7 4082
76369139 4083 if (event->rb) {
9bb5d40c
PZ
4084 /*
4085 * Can happen when we close an event with re-directed output.
4086 *
4087 * Since we have a 0 refcount, perf_mmap_close() will skip
4088 * over us; possibly making our ring_buffer_put() the last.
4089 */
4090 mutex_lock(&event->mmap_mutex);
b69cf536 4091 ring_buffer_attach(event, NULL);
9bb5d40c 4092 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4093 }
4094
e5d1367f
SE
4095 if (is_cgroup_event(event))
4096 perf_detach_cgroup(event);
4097
a0733e69
PZ
4098 if (!event->parent) {
4099 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4100 put_callchain_buffers();
4101 }
4102
4103 perf_event_free_bpf_prog(event);
375637bc
AS
4104 perf_addr_filters_splice(event, NULL);
4105 kfree(event->addr_filters_offs);
a0733e69
PZ
4106
4107 if (event->destroy)
4108 event->destroy(event);
4109
4110 if (event->ctx)
4111 put_ctx(event->ctx);
4112
62a92c8f
AS
4113 exclusive_event_destroy(event);
4114 module_put(event->pmu->module);
a0733e69
PZ
4115
4116 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4117}
4118
683ede43
PZ
4119/*
4120 * Used to free events which have a known refcount of 1, such as in error paths
4121 * where the event isn't exposed yet and inherited events.
4122 */
4123static void free_event(struct perf_event *event)
0793a61d 4124{
683ede43
PZ
4125 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4126 "unexpected event refcount: %ld; ptr=%p\n",
4127 atomic_long_read(&event->refcount), event)) {
4128 /* leak to avoid use-after-free */
4129 return;
4130 }
0793a61d 4131
683ede43 4132 _free_event(event);
0793a61d
TG
4133}
4134
a66a3052 4135/*
f8697762 4136 * Remove user event from the owner task.
a66a3052 4137 */
f8697762 4138static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4139{
8882135b 4140 struct task_struct *owner;
fb0459d7 4141
8882135b 4142 rcu_read_lock();
8882135b 4143 /*
f47c02c0
PZ
4144 * Matches the smp_store_release() in perf_event_exit_task(). If we
4145 * observe !owner it means the list deletion is complete and we can
4146 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4147 * owner->perf_event_mutex.
4148 */
506458ef 4149 owner = READ_ONCE(event->owner);
8882135b
PZ
4150 if (owner) {
4151 /*
4152 * Since delayed_put_task_struct() also drops the last
4153 * task reference we can safely take a new reference
4154 * while holding the rcu_read_lock().
4155 */
4156 get_task_struct(owner);
4157 }
4158 rcu_read_unlock();
4159
4160 if (owner) {
f63a8daa
PZ
4161 /*
4162 * If we're here through perf_event_exit_task() we're already
4163 * holding ctx->mutex which would be an inversion wrt. the
4164 * normal lock order.
4165 *
4166 * However we can safely take this lock because its the child
4167 * ctx->mutex.
4168 */
4169 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4170
8882135b
PZ
4171 /*
4172 * We have to re-check the event->owner field, if it is cleared
4173 * we raced with perf_event_exit_task(), acquiring the mutex
4174 * ensured they're done, and we can proceed with freeing the
4175 * event.
4176 */
f47c02c0 4177 if (event->owner) {
8882135b 4178 list_del_init(&event->owner_entry);
f47c02c0
PZ
4179 smp_store_release(&event->owner, NULL);
4180 }
8882135b
PZ
4181 mutex_unlock(&owner->perf_event_mutex);
4182 put_task_struct(owner);
4183 }
f8697762
JO
4184}
4185
f8697762
JO
4186static void put_event(struct perf_event *event)
4187{
f8697762
JO
4188 if (!atomic_long_dec_and_test(&event->refcount))
4189 return;
4190
c6e5b732
PZ
4191 _free_event(event);
4192}
4193
4194/*
4195 * Kill an event dead; while event:refcount will preserve the event
4196 * object, it will not preserve its functionality. Once the last 'user'
4197 * gives up the object, we'll destroy the thing.
4198 */
4199int perf_event_release_kernel(struct perf_event *event)
4200{
a4f4bb6d 4201 struct perf_event_context *ctx = event->ctx;
c6e5b732 4202 struct perf_event *child, *tmp;
82d94856 4203 LIST_HEAD(free_list);
c6e5b732 4204
a4f4bb6d
PZ
4205 /*
4206 * If we got here through err_file: fput(event_file); we will not have
4207 * attached to a context yet.
4208 */
4209 if (!ctx) {
4210 WARN_ON_ONCE(event->attach_state &
4211 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4212 goto no_ctx;
4213 }
4214
f8697762
JO
4215 if (!is_kernel_event(event))
4216 perf_remove_from_owner(event);
8882135b 4217
5fa7c8ec 4218 ctx = perf_event_ctx_lock(event);
a83fe28e 4219 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4220 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4221
a69b0ca4 4222 raw_spin_lock_irq(&ctx->lock);
683ede43 4223 /*
d8a8cfc7 4224 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4225 * anymore.
683ede43 4226 *
a69b0ca4
PZ
4227 * Anybody acquiring event->child_mutex after the below loop _must_
4228 * also see this, most importantly inherit_event() which will avoid
4229 * placing more children on the list.
683ede43 4230 *
c6e5b732
PZ
4231 * Thus this guarantees that we will in fact observe and kill _ALL_
4232 * child events.
683ede43 4233 */
a69b0ca4
PZ
4234 event->state = PERF_EVENT_STATE_DEAD;
4235 raw_spin_unlock_irq(&ctx->lock);
4236
4237 perf_event_ctx_unlock(event, ctx);
683ede43 4238
c6e5b732
PZ
4239again:
4240 mutex_lock(&event->child_mutex);
4241 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4242
c6e5b732
PZ
4243 /*
4244 * Cannot change, child events are not migrated, see the
4245 * comment with perf_event_ctx_lock_nested().
4246 */
506458ef 4247 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4248 /*
4249 * Since child_mutex nests inside ctx::mutex, we must jump
4250 * through hoops. We start by grabbing a reference on the ctx.
4251 *
4252 * Since the event cannot get freed while we hold the
4253 * child_mutex, the context must also exist and have a !0
4254 * reference count.
4255 */
4256 get_ctx(ctx);
4257
4258 /*
4259 * Now that we have a ctx ref, we can drop child_mutex, and
4260 * acquire ctx::mutex without fear of it going away. Then we
4261 * can re-acquire child_mutex.
4262 */
4263 mutex_unlock(&event->child_mutex);
4264 mutex_lock(&ctx->mutex);
4265 mutex_lock(&event->child_mutex);
4266
4267 /*
4268 * Now that we hold ctx::mutex and child_mutex, revalidate our
4269 * state, if child is still the first entry, it didn't get freed
4270 * and we can continue doing so.
4271 */
4272 tmp = list_first_entry_or_null(&event->child_list,
4273 struct perf_event, child_list);
4274 if (tmp == child) {
4275 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4276 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4277 /*
4278 * This matches the refcount bump in inherit_event();
4279 * this can't be the last reference.
4280 */
4281 put_event(event);
4282 }
4283
4284 mutex_unlock(&event->child_mutex);
4285 mutex_unlock(&ctx->mutex);
4286 put_ctx(ctx);
4287 goto again;
4288 }
4289 mutex_unlock(&event->child_mutex);
4290
82d94856
PZ
4291 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4292 list_del(&child->child_list);
4293 free_event(child);
4294 }
4295
a4f4bb6d
PZ
4296no_ctx:
4297 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4298 return 0;
4299}
4300EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4301
8b10c5e2
PZ
4302/*
4303 * Called when the last reference to the file is gone.
4304 */
a6fa941d
AV
4305static int perf_release(struct inode *inode, struct file *file)
4306{
c6e5b732 4307 perf_event_release_kernel(file->private_data);
a6fa941d 4308 return 0;
fb0459d7 4309}
fb0459d7 4310
ca0dd44c 4311static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4312{
cdd6c482 4313 struct perf_event *child;
e53c0994
PZ
4314 u64 total = 0;
4315
59ed446f
PZ
4316 *enabled = 0;
4317 *running = 0;
4318
6f10581a 4319 mutex_lock(&event->child_mutex);
01add3ea 4320
7d88962e 4321 (void)perf_event_read(event, false);
01add3ea
SB
4322 total += perf_event_count(event);
4323
59ed446f
PZ
4324 *enabled += event->total_time_enabled +
4325 atomic64_read(&event->child_total_time_enabled);
4326 *running += event->total_time_running +
4327 atomic64_read(&event->child_total_time_running);
4328
4329 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4330 (void)perf_event_read(child, false);
01add3ea 4331 total += perf_event_count(child);
59ed446f
PZ
4332 *enabled += child->total_time_enabled;
4333 *running += child->total_time_running;
4334 }
6f10581a 4335 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4336
4337 return total;
4338}
ca0dd44c
PZ
4339
4340u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4341{
4342 struct perf_event_context *ctx;
4343 u64 count;
4344
4345 ctx = perf_event_ctx_lock(event);
4346 count = __perf_event_read_value(event, enabled, running);
4347 perf_event_ctx_unlock(event, ctx);
4348
4349 return count;
4350}
fb0459d7 4351EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4352
7d88962e 4353static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4354 u64 read_format, u64 *values)
3dab77fb 4355{
2aeb1883 4356 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4357 struct perf_event *sub;
2aeb1883 4358 unsigned long flags;
fa8c2693 4359 int n = 1; /* skip @nr */
7d88962e 4360 int ret;
f63a8daa 4361
7d88962e
SB
4362 ret = perf_event_read(leader, true);
4363 if (ret)
4364 return ret;
abf4868b 4365
a9cd8194
PZ
4366 raw_spin_lock_irqsave(&ctx->lock, flags);
4367
fa8c2693
PZ
4368 /*
4369 * Since we co-schedule groups, {enabled,running} times of siblings
4370 * will be identical to those of the leader, so we only publish one
4371 * set.
4372 */
4373 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4374 values[n++] += leader->total_time_enabled +
4375 atomic64_read(&leader->child_total_time_enabled);
4376 }
3dab77fb 4377
fa8c2693
PZ
4378 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4379 values[n++] += leader->total_time_running +
4380 atomic64_read(&leader->child_total_time_running);
4381 }
4382
4383 /*
4384 * Write {count,id} tuples for every sibling.
4385 */
4386 values[n++] += perf_event_count(leader);
abf4868b
PZ
4387 if (read_format & PERF_FORMAT_ID)
4388 values[n++] = primary_event_id(leader);
3dab77fb 4389
fa8c2693
PZ
4390 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4391 values[n++] += perf_event_count(sub);
4392 if (read_format & PERF_FORMAT_ID)
4393 values[n++] = primary_event_id(sub);
4394 }
7d88962e 4395
2aeb1883 4396 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4397 return 0;
fa8c2693 4398}
3dab77fb 4399
fa8c2693
PZ
4400static int perf_read_group(struct perf_event *event,
4401 u64 read_format, char __user *buf)
4402{
4403 struct perf_event *leader = event->group_leader, *child;
4404 struct perf_event_context *ctx = leader->ctx;
7d88962e 4405 int ret;
fa8c2693 4406 u64 *values;
3dab77fb 4407
fa8c2693 4408 lockdep_assert_held(&ctx->mutex);
3dab77fb 4409
fa8c2693
PZ
4410 values = kzalloc(event->read_size, GFP_KERNEL);
4411 if (!values)
4412 return -ENOMEM;
3dab77fb 4413
fa8c2693
PZ
4414 values[0] = 1 + leader->nr_siblings;
4415
4416 /*
4417 * By locking the child_mutex of the leader we effectively
4418 * lock the child list of all siblings.. XXX explain how.
4419 */
4420 mutex_lock(&leader->child_mutex);
abf4868b 4421
7d88962e
SB
4422 ret = __perf_read_group_add(leader, read_format, values);
4423 if (ret)
4424 goto unlock;
4425
4426 list_for_each_entry(child, &leader->child_list, child_list) {
4427 ret = __perf_read_group_add(child, read_format, values);
4428 if (ret)
4429 goto unlock;
4430 }
abf4868b 4431
fa8c2693 4432 mutex_unlock(&leader->child_mutex);
abf4868b 4433
7d88962e 4434 ret = event->read_size;
fa8c2693
PZ
4435 if (copy_to_user(buf, values, event->read_size))
4436 ret = -EFAULT;
7d88962e 4437 goto out;
fa8c2693 4438
7d88962e
SB
4439unlock:
4440 mutex_unlock(&leader->child_mutex);
4441out:
fa8c2693 4442 kfree(values);
abf4868b 4443 return ret;
3dab77fb
PZ
4444}
4445
b15f495b 4446static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4447 u64 read_format, char __user *buf)
4448{
59ed446f 4449 u64 enabled, running;
3dab77fb
PZ
4450 u64 values[4];
4451 int n = 0;
4452
ca0dd44c 4453 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4454 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4455 values[n++] = enabled;
4456 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4457 values[n++] = running;
3dab77fb 4458 if (read_format & PERF_FORMAT_ID)
cdd6c482 4459 values[n++] = primary_event_id(event);
3dab77fb
PZ
4460
4461 if (copy_to_user(buf, values, n * sizeof(u64)))
4462 return -EFAULT;
4463
4464 return n * sizeof(u64);
4465}
4466
dc633982
JO
4467static bool is_event_hup(struct perf_event *event)
4468{
4469 bool no_children;
4470
a69b0ca4 4471 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4472 return false;
4473
4474 mutex_lock(&event->child_mutex);
4475 no_children = list_empty(&event->child_list);
4476 mutex_unlock(&event->child_mutex);
4477 return no_children;
4478}
4479
0793a61d 4480/*
cdd6c482 4481 * Read the performance event - simple non blocking version for now
0793a61d
TG
4482 */
4483static ssize_t
b15f495b 4484__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4485{
cdd6c482 4486 u64 read_format = event->attr.read_format;
3dab77fb 4487 int ret;
0793a61d 4488
3b6f9e5c 4489 /*
cdd6c482 4490 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4491 * error state (i.e. because it was pinned but it couldn't be
4492 * scheduled on to the CPU at some point).
4493 */
cdd6c482 4494 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4495 return 0;
4496
c320c7b7 4497 if (count < event->read_size)
3dab77fb
PZ
4498 return -ENOSPC;
4499
cdd6c482 4500 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4501 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4502 ret = perf_read_group(event, read_format, buf);
3dab77fb 4503 else
b15f495b 4504 ret = perf_read_one(event, read_format, buf);
0793a61d 4505
3dab77fb 4506 return ret;
0793a61d
TG
4507}
4508
0793a61d
TG
4509static ssize_t
4510perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4511{
cdd6c482 4512 struct perf_event *event = file->private_data;
f63a8daa
PZ
4513 struct perf_event_context *ctx;
4514 int ret;
0793a61d 4515
f63a8daa 4516 ctx = perf_event_ctx_lock(event);
b15f495b 4517 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4518 perf_event_ctx_unlock(event, ctx);
4519
4520 return ret;
0793a61d
TG
4521}
4522
9dd95748 4523static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 4524{
cdd6c482 4525 struct perf_event *event = file->private_data;
76369139 4526 struct ring_buffer *rb;
a9a08845 4527 __poll_t events = EPOLLHUP;
c7138f37 4528
e708d7ad 4529 poll_wait(file, &event->waitq, wait);
179033b3 4530
dc633982 4531 if (is_event_hup(event))
179033b3 4532 return events;
c7138f37 4533
10c6db11 4534 /*
9bb5d40c
PZ
4535 * Pin the event->rb by taking event->mmap_mutex; otherwise
4536 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4537 */
4538 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4539 rb = event->rb;
4540 if (rb)
76369139 4541 events = atomic_xchg(&rb->poll, 0);
10c6db11 4542 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4543 return events;
4544}
4545
f63a8daa 4546static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4547{
7d88962e 4548 (void)perf_event_read(event, false);
e7850595 4549 local64_set(&event->count, 0);
cdd6c482 4550 perf_event_update_userpage(event);
3df5edad
PZ
4551}
4552
c93f7669 4553/*
cdd6c482
IM
4554 * Holding the top-level event's child_mutex means that any
4555 * descendant process that has inherited this event will block
8ba289b8 4556 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4557 * task existence requirements of perf_event_enable/disable.
c93f7669 4558 */
cdd6c482
IM
4559static void perf_event_for_each_child(struct perf_event *event,
4560 void (*func)(struct perf_event *))
3df5edad 4561{
cdd6c482 4562 struct perf_event *child;
3df5edad 4563
cdd6c482 4564 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4565
cdd6c482
IM
4566 mutex_lock(&event->child_mutex);
4567 func(event);
4568 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4569 func(child);
cdd6c482 4570 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4571}
4572
cdd6c482
IM
4573static void perf_event_for_each(struct perf_event *event,
4574 void (*func)(struct perf_event *))
3df5edad 4575{
cdd6c482
IM
4576 struct perf_event_context *ctx = event->ctx;
4577 struct perf_event *sibling;
3df5edad 4578
f63a8daa
PZ
4579 lockdep_assert_held(&ctx->mutex);
4580
cdd6c482 4581 event = event->group_leader;
75f937f2 4582
cdd6c482 4583 perf_event_for_each_child(event, func);
cdd6c482 4584 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4585 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4586}
4587
fae3fde6
PZ
4588static void __perf_event_period(struct perf_event *event,
4589 struct perf_cpu_context *cpuctx,
4590 struct perf_event_context *ctx,
4591 void *info)
c7999c6f 4592{
fae3fde6 4593 u64 value = *((u64 *)info);
c7999c6f 4594 bool active;
08247e31 4595
cdd6c482 4596 if (event->attr.freq) {
cdd6c482 4597 event->attr.sample_freq = value;
08247e31 4598 } else {
cdd6c482
IM
4599 event->attr.sample_period = value;
4600 event->hw.sample_period = value;
08247e31 4601 }
bad7192b
PZ
4602
4603 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4604 if (active) {
4605 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4606 /*
4607 * We could be throttled; unthrottle now to avoid the tick
4608 * trying to unthrottle while we already re-started the event.
4609 */
4610 if (event->hw.interrupts == MAX_INTERRUPTS) {
4611 event->hw.interrupts = 0;
4612 perf_log_throttle(event, 1);
4613 }
bad7192b
PZ
4614 event->pmu->stop(event, PERF_EF_UPDATE);
4615 }
4616
4617 local64_set(&event->hw.period_left, 0);
4618
4619 if (active) {
4620 event->pmu->start(event, PERF_EF_RELOAD);
4621 perf_pmu_enable(ctx->pmu);
4622 }
c7999c6f
PZ
4623}
4624
4625static int perf_event_period(struct perf_event *event, u64 __user *arg)
4626{
c7999c6f
PZ
4627 u64 value;
4628
4629 if (!is_sampling_event(event))
4630 return -EINVAL;
4631
4632 if (copy_from_user(&value, arg, sizeof(value)))
4633 return -EFAULT;
4634
4635 if (!value)
4636 return -EINVAL;
4637
4638 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4639 return -EINVAL;
4640
fae3fde6 4641 event_function_call(event, __perf_event_period, &value);
08247e31 4642
c7999c6f 4643 return 0;
08247e31
PZ
4644}
4645
ac9721f3
PZ
4646static const struct file_operations perf_fops;
4647
2903ff01 4648static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4649{
2903ff01
AV
4650 struct fd f = fdget(fd);
4651 if (!f.file)
4652 return -EBADF;
ac9721f3 4653
2903ff01
AV
4654 if (f.file->f_op != &perf_fops) {
4655 fdput(f);
4656 return -EBADF;
ac9721f3 4657 }
2903ff01
AV
4658 *p = f;
4659 return 0;
ac9721f3
PZ
4660}
4661
4662static int perf_event_set_output(struct perf_event *event,
4663 struct perf_event *output_event);
6fb2915d 4664static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4665static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4666
f63a8daa 4667static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4668{
cdd6c482 4669 void (*func)(struct perf_event *);
3df5edad 4670 u32 flags = arg;
d859e29f
PM
4671
4672 switch (cmd) {
cdd6c482 4673 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4674 func = _perf_event_enable;
d859e29f 4675 break;
cdd6c482 4676 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4677 func = _perf_event_disable;
79f14641 4678 break;
cdd6c482 4679 case PERF_EVENT_IOC_RESET:
f63a8daa 4680 func = _perf_event_reset;
6de6a7b9 4681 break;
3df5edad 4682
cdd6c482 4683 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4684 return _perf_event_refresh(event, arg);
08247e31 4685
cdd6c482
IM
4686 case PERF_EVENT_IOC_PERIOD:
4687 return perf_event_period(event, (u64 __user *)arg);
08247e31 4688
cf4957f1
JO
4689 case PERF_EVENT_IOC_ID:
4690 {
4691 u64 id = primary_event_id(event);
4692
4693 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4694 return -EFAULT;
4695 return 0;
4696 }
4697
cdd6c482 4698 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4699 {
ac9721f3 4700 int ret;
ac9721f3 4701 if (arg != -1) {
2903ff01
AV
4702 struct perf_event *output_event;
4703 struct fd output;
4704 ret = perf_fget_light(arg, &output);
4705 if (ret)
4706 return ret;
4707 output_event = output.file->private_data;
4708 ret = perf_event_set_output(event, output_event);
4709 fdput(output);
4710 } else {
4711 ret = perf_event_set_output(event, NULL);
ac9721f3 4712 }
ac9721f3
PZ
4713 return ret;
4714 }
a4be7c27 4715
6fb2915d
LZ
4716 case PERF_EVENT_IOC_SET_FILTER:
4717 return perf_event_set_filter(event, (void __user *)arg);
4718
2541517c
AS
4719 case PERF_EVENT_IOC_SET_BPF:
4720 return perf_event_set_bpf_prog(event, arg);
4721
86e7972f
WN
4722 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4723 struct ring_buffer *rb;
4724
4725 rcu_read_lock();
4726 rb = rcu_dereference(event->rb);
4727 if (!rb || !rb->nr_pages) {
4728 rcu_read_unlock();
4729 return -EINVAL;
4730 }
4731 rb_toggle_paused(rb, !!arg);
4732 rcu_read_unlock();
4733 return 0;
4734 }
f371b304
YS
4735
4736 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 4737 return perf_event_query_prog_array(event, (void __user *)arg);
d859e29f 4738 default:
3df5edad 4739 return -ENOTTY;
d859e29f 4740 }
3df5edad
PZ
4741
4742 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4743 perf_event_for_each(event, func);
3df5edad 4744 else
cdd6c482 4745 perf_event_for_each_child(event, func);
3df5edad
PZ
4746
4747 return 0;
d859e29f
PM
4748}
4749
f63a8daa
PZ
4750static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4751{
4752 struct perf_event *event = file->private_data;
4753 struct perf_event_context *ctx;
4754 long ret;
4755
4756 ctx = perf_event_ctx_lock(event);
4757 ret = _perf_ioctl(event, cmd, arg);
4758 perf_event_ctx_unlock(event, ctx);
4759
4760 return ret;
4761}
4762
b3f20785
PM
4763#ifdef CONFIG_COMPAT
4764static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4765 unsigned long arg)
4766{
4767 switch (_IOC_NR(cmd)) {
4768 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4769 case _IOC_NR(PERF_EVENT_IOC_ID):
4770 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4771 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4772 cmd &= ~IOCSIZE_MASK;
4773 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4774 }
4775 break;
4776 }
4777 return perf_ioctl(file, cmd, arg);
4778}
4779#else
4780# define perf_compat_ioctl NULL
4781#endif
4782
cdd6c482 4783int perf_event_task_enable(void)
771d7cde 4784{
f63a8daa 4785 struct perf_event_context *ctx;
cdd6c482 4786 struct perf_event *event;
771d7cde 4787
cdd6c482 4788 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4789 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4790 ctx = perf_event_ctx_lock(event);
4791 perf_event_for_each_child(event, _perf_event_enable);
4792 perf_event_ctx_unlock(event, ctx);
4793 }
cdd6c482 4794 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4795
4796 return 0;
4797}
4798
cdd6c482 4799int perf_event_task_disable(void)
771d7cde 4800{
f63a8daa 4801 struct perf_event_context *ctx;
cdd6c482 4802 struct perf_event *event;
771d7cde 4803
cdd6c482 4804 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4805 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4806 ctx = perf_event_ctx_lock(event);
4807 perf_event_for_each_child(event, _perf_event_disable);
4808 perf_event_ctx_unlock(event, ctx);
4809 }
cdd6c482 4810 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4811
4812 return 0;
4813}
4814
cdd6c482 4815static int perf_event_index(struct perf_event *event)
194002b2 4816{
a4eaf7f1
PZ
4817 if (event->hw.state & PERF_HES_STOPPED)
4818 return 0;
4819
cdd6c482 4820 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4821 return 0;
4822
35edc2a5 4823 return event->pmu->event_idx(event);
194002b2
PZ
4824}
4825
c4794295 4826static void calc_timer_values(struct perf_event *event,
e3f3541c 4827 u64 *now,
7f310a5d
EM
4828 u64 *enabled,
4829 u64 *running)
c4794295 4830{
e3f3541c 4831 u64 ctx_time;
c4794295 4832
e3f3541c
PZ
4833 *now = perf_clock();
4834 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 4835 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
4836}
4837
fa731587
PZ
4838static void perf_event_init_userpage(struct perf_event *event)
4839{
4840 struct perf_event_mmap_page *userpg;
4841 struct ring_buffer *rb;
4842
4843 rcu_read_lock();
4844 rb = rcu_dereference(event->rb);
4845 if (!rb)
4846 goto unlock;
4847
4848 userpg = rb->user_page;
4849
4850 /* Allow new userspace to detect that bit 0 is deprecated */
4851 userpg->cap_bit0_is_deprecated = 1;
4852 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4853 userpg->data_offset = PAGE_SIZE;
4854 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4855
4856unlock:
4857 rcu_read_unlock();
4858}
4859
c1317ec2
AL
4860void __weak arch_perf_update_userpage(
4861 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4862{
4863}
4864
38ff667b
PZ
4865/*
4866 * Callers need to ensure there can be no nesting of this function, otherwise
4867 * the seqlock logic goes bad. We can not serialize this because the arch
4868 * code calls this from NMI context.
4869 */
cdd6c482 4870void perf_event_update_userpage(struct perf_event *event)
37d81828 4871{
cdd6c482 4872 struct perf_event_mmap_page *userpg;
76369139 4873 struct ring_buffer *rb;
e3f3541c 4874 u64 enabled, running, now;
38ff667b
PZ
4875
4876 rcu_read_lock();
5ec4c599
PZ
4877 rb = rcu_dereference(event->rb);
4878 if (!rb)
4879 goto unlock;
4880
0d641208
EM
4881 /*
4882 * compute total_time_enabled, total_time_running
4883 * based on snapshot values taken when the event
4884 * was last scheduled in.
4885 *
4886 * we cannot simply called update_context_time()
4887 * because of locking issue as we can be called in
4888 * NMI context
4889 */
e3f3541c 4890 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4891
76369139 4892 userpg = rb->user_page;
7b732a75
PZ
4893 /*
4894 * Disable preemption so as to not let the corresponding user-space
4895 * spin too long if we get preempted.
4896 */
4897 preempt_disable();
37d81828 4898 ++userpg->lock;
92f22a38 4899 barrier();
cdd6c482 4900 userpg->index = perf_event_index(event);
b5e58793 4901 userpg->offset = perf_event_count(event);
365a4038 4902 if (userpg->index)
e7850595 4903 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4904
0d641208 4905 userpg->time_enabled = enabled +
cdd6c482 4906 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4907
0d641208 4908 userpg->time_running = running +
cdd6c482 4909 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4910
c1317ec2 4911 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4912
92f22a38 4913 barrier();
37d81828 4914 ++userpg->lock;
7b732a75 4915 preempt_enable();
38ff667b 4916unlock:
7b732a75 4917 rcu_read_unlock();
37d81828 4918}
82975c46 4919EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 4920
11bac800 4921static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 4922{
11bac800 4923 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 4924 struct ring_buffer *rb;
906010b2
PZ
4925 int ret = VM_FAULT_SIGBUS;
4926
4927 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4928 if (vmf->pgoff == 0)
4929 ret = 0;
4930 return ret;
4931 }
4932
4933 rcu_read_lock();
76369139
FW
4934 rb = rcu_dereference(event->rb);
4935 if (!rb)
906010b2
PZ
4936 goto unlock;
4937
4938 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4939 goto unlock;
4940
76369139 4941 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4942 if (!vmf->page)
4943 goto unlock;
4944
4945 get_page(vmf->page);
11bac800 4946 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
4947 vmf->page->index = vmf->pgoff;
4948
4949 ret = 0;
4950unlock:
4951 rcu_read_unlock();
4952
4953 return ret;
4954}
4955
10c6db11
PZ
4956static void ring_buffer_attach(struct perf_event *event,
4957 struct ring_buffer *rb)
4958{
b69cf536 4959 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4960 unsigned long flags;
4961
b69cf536
PZ
4962 if (event->rb) {
4963 /*
4964 * Should be impossible, we set this when removing
4965 * event->rb_entry and wait/clear when adding event->rb_entry.
4966 */
4967 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4968
b69cf536 4969 old_rb = event->rb;
b69cf536
PZ
4970 spin_lock_irqsave(&old_rb->event_lock, flags);
4971 list_del_rcu(&event->rb_entry);
4972 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4973
2f993cf0
ON
4974 event->rcu_batches = get_state_synchronize_rcu();
4975 event->rcu_pending = 1;
b69cf536 4976 }
10c6db11 4977
b69cf536 4978 if (rb) {
2f993cf0
ON
4979 if (event->rcu_pending) {
4980 cond_synchronize_rcu(event->rcu_batches);
4981 event->rcu_pending = 0;
4982 }
4983
b69cf536
PZ
4984 spin_lock_irqsave(&rb->event_lock, flags);
4985 list_add_rcu(&event->rb_entry, &rb->event_list);
4986 spin_unlock_irqrestore(&rb->event_lock, flags);
4987 }
4988
767ae086
AS
4989 /*
4990 * Avoid racing with perf_mmap_close(AUX): stop the event
4991 * before swizzling the event::rb pointer; if it's getting
4992 * unmapped, its aux_mmap_count will be 0 and it won't
4993 * restart. See the comment in __perf_pmu_output_stop().
4994 *
4995 * Data will inevitably be lost when set_output is done in
4996 * mid-air, but then again, whoever does it like this is
4997 * not in for the data anyway.
4998 */
4999 if (has_aux(event))
5000 perf_event_stop(event, 0);
5001
b69cf536
PZ
5002 rcu_assign_pointer(event->rb, rb);
5003
5004 if (old_rb) {
5005 ring_buffer_put(old_rb);
5006 /*
5007 * Since we detached before setting the new rb, so that we
5008 * could attach the new rb, we could have missed a wakeup.
5009 * Provide it now.
5010 */
5011 wake_up_all(&event->waitq);
5012 }
10c6db11
PZ
5013}
5014
5015static void ring_buffer_wakeup(struct perf_event *event)
5016{
5017 struct ring_buffer *rb;
5018
5019 rcu_read_lock();
5020 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5021 if (rb) {
5022 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5023 wake_up_all(&event->waitq);
5024 }
10c6db11
PZ
5025 rcu_read_unlock();
5026}
5027
fdc26706 5028struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5029{
76369139 5030 struct ring_buffer *rb;
7b732a75 5031
ac9721f3 5032 rcu_read_lock();
76369139
FW
5033 rb = rcu_dereference(event->rb);
5034 if (rb) {
5035 if (!atomic_inc_not_zero(&rb->refcount))
5036 rb = NULL;
ac9721f3
PZ
5037 }
5038 rcu_read_unlock();
5039
76369139 5040 return rb;
ac9721f3
PZ
5041}
5042
fdc26706 5043void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5044{
76369139 5045 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5046 return;
7b732a75 5047
9bb5d40c 5048 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5049
76369139 5050 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5051}
5052
5053static void perf_mmap_open(struct vm_area_struct *vma)
5054{
cdd6c482 5055 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5056
cdd6c482 5057 atomic_inc(&event->mmap_count);
9bb5d40c 5058 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5059
45bfb2e5
PZ
5060 if (vma->vm_pgoff)
5061 atomic_inc(&event->rb->aux_mmap_count);
5062
1e0fb9ec 5063 if (event->pmu->event_mapped)
bfe33492 5064 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5065}
5066
95ff4ca2
AS
5067static void perf_pmu_output_stop(struct perf_event *event);
5068
9bb5d40c
PZ
5069/*
5070 * A buffer can be mmap()ed multiple times; either directly through the same
5071 * event, or through other events by use of perf_event_set_output().
5072 *
5073 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5074 * the buffer here, where we still have a VM context. This means we need
5075 * to detach all events redirecting to us.
5076 */
7b732a75
PZ
5077static void perf_mmap_close(struct vm_area_struct *vma)
5078{
cdd6c482 5079 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5080
b69cf536 5081 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5082 struct user_struct *mmap_user = rb->mmap_user;
5083 int mmap_locked = rb->mmap_locked;
5084 unsigned long size = perf_data_size(rb);
789f90fc 5085
1e0fb9ec 5086 if (event->pmu->event_unmapped)
bfe33492 5087 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5088
45bfb2e5
PZ
5089 /*
5090 * rb->aux_mmap_count will always drop before rb->mmap_count and
5091 * event->mmap_count, so it is ok to use event->mmap_mutex to
5092 * serialize with perf_mmap here.
5093 */
5094 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5095 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5096 /*
5097 * Stop all AUX events that are writing to this buffer,
5098 * so that we can free its AUX pages and corresponding PMU
5099 * data. Note that after rb::aux_mmap_count dropped to zero,
5100 * they won't start any more (see perf_aux_output_begin()).
5101 */
5102 perf_pmu_output_stop(event);
5103
5104 /* now it's safe to free the pages */
45bfb2e5
PZ
5105 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5106 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5107
95ff4ca2 5108 /* this has to be the last one */
45bfb2e5 5109 rb_free_aux(rb);
95ff4ca2
AS
5110 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5111
45bfb2e5
PZ
5112 mutex_unlock(&event->mmap_mutex);
5113 }
5114
9bb5d40c
PZ
5115 atomic_dec(&rb->mmap_count);
5116
5117 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5118 goto out_put;
9bb5d40c 5119
b69cf536 5120 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5121 mutex_unlock(&event->mmap_mutex);
5122
5123 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5124 if (atomic_read(&rb->mmap_count))
5125 goto out_put;
ac9721f3 5126
9bb5d40c
PZ
5127 /*
5128 * No other mmap()s, detach from all other events that might redirect
5129 * into the now unreachable buffer. Somewhat complicated by the
5130 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5131 */
5132again:
5133 rcu_read_lock();
5134 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5135 if (!atomic_long_inc_not_zero(&event->refcount)) {
5136 /*
5137 * This event is en-route to free_event() which will
5138 * detach it and remove it from the list.
5139 */
5140 continue;
5141 }
5142 rcu_read_unlock();
789f90fc 5143
9bb5d40c
PZ
5144 mutex_lock(&event->mmap_mutex);
5145 /*
5146 * Check we didn't race with perf_event_set_output() which can
5147 * swizzle the rb from under us while we were waiting to
5148 * acquire mmap_mutex.
5149 *
5150 * If we find a different rb; ignore this event, a next
5151 * iteration will no longer find it on the list. We have to
5152 * still restart the iteration to make sure we're not now
5153 * iterating the wrong list.
5154 */
b69cf536
PZ
5155 if (event->rb == rb)
5156 ring_buffer_attach(event, NULL);
5157
cdd6c482 5158 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5159 put_event(event);
ac9721f3 5160
9bb5d40c
PZ
5161 /*
5162 * Restart the iteration; either we're on the wrong list or
5163 * destroyed its integrity by doing a deletion.
5164 */
5165 goto again;
7b732a75 5166 }
9bb5d40c
PZ
5167 rcu_read_unlock();
5168
5169 /*
5170 * It could be there's still a few 0-ref events on the list; they'll
5171 * get cleaned up by free_event() -- they'll also still have their
5172 * ref on the rb and will free it whenever they are done with it.
5173 *
5174 * Aside from that, this buffer is 'fully' detached and unmapped,
5175 * undo the VM accounting.
5176 */
5177
5178 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5179 vma->vm_mm->pinned_vm -= mmap_locked;
5180 free_uid(mmap_user);
5181
b69cf536 5182out_put:
9bb5d40c 5183 ring_buffer_put(rb); /* could be last */
37d81828
PM
5184}
5185
f0f37e2f 5186static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5187 .open = perf_mmap_open,
45bfb2e5 5188 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5189 .fault = perf_mmap_fault,
5190 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5191};
5192
5193static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5194{
cdd6c482 5195 struct perf_event *event = file->private_data;
22a4f650 5196 unsigned long user_locked, user_lock_limit;
789f90fc 5197 struct user_struct *user = current_user();
22a4f650 5198 unsigned long locked, lock_limit;
45bfb2e5 5199 struct ring_buffer *rb = NULL;
7b732a75
PZ
5200 unsigned long vma_size;
5201 unsigned long nr_pages;
45bfb2e5 5202 long user_extra = 0, extra = 0;
d57e34fd 5203 int ret = 0, flags = 0;
37d81828 5204
c7920614
PZ
5205 /*
5206 * Don't allow mmap() of inherited per-task counters. This would
5207 * create a performance issue due to all children writing to the
76369139 5208 * same rb.
c7920614
PZ
5209 */
5210 if (event->cpu == -1 && event->attr.inherit)
5211 return -EINVAL;
5212
43a21ea8 5213 if (!(vma->vm_flags & VM_SHARED))
37d81828 5214 return -EINVAL;
7b732a75
PZ
5215
5216 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5217
5218 if (vma->vm_pgoff == 0) {
5219 nr_pages = (vma_size / PAGE_SIZE) - 1;
5220 } else {
5221 /*
5222 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5223 * mapped, all subsequent mappings should have the same size
5224 * and offset. Must be above the normal perf buffer.
5225 */
5226 u64 aux_offset, aux_size;
5227
5228 if (!event->rb)
5229 return -EINVAL;
5230
5231 nr_pages = vma_size / PAGE_SIZE;
5232
5233 mutex_lock(&event->mmap_mutex);
5234 ret = -EINVAL;
5235
5236 rb = event->rb;
5237 if (!rb)
5238 goto aux_unlock;
5239
6aa7de05
MR
5240 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5241 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5242
5243 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5244 goto aux_unlock;
5245
5246 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5247 goto aux_unlock;
5248
5249 /* already mapped with a different offset */
5250 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5251 goto aux_unlock;
5252
5253 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5254 goto aux_unlock;
5255
5256 /* already mapped with a different size */
5257 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5258 goto aux_unlock;
5259
5260 if (!is_power_of_2(nr_pages))
5261 goto aux_unlock;
5262
5263 if (!atomic_inc_not_zero(&rb->mmap_count))
5264 goto aux_unlock;
5265
5266 if (rb_has_aux(rb)) {
5267 atomic_inc(&rb->aux_mmap_count);
5268 ret = 0;
5269 goto unlock;
5270 }
5271
5272 atomic_set(&rb->aux_mmap_count, 1);
5273 user_extra = nr_pages;
5274
5275 goto accounting;
5276 }
7b732a75 5277
7730d865 5278 /*
76369139 5279 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5280 * can do bitmasks instead of modulo.
5281 */
2ed11312 5282 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5283 return -EINVAL;
5284
7b732a75 5285 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5286 return -EINVAL;
5287
cdd6c482 5288 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5289again:
cdd6c482 5290 mutex_lock(&event->mmap_mutex);
76369139 5291 if (event->rb) {
9bb5d40c 5292 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5293 ret = -EINVAL;
9bb5d40c
PZ
5294 goto unlock;
5295 }
5296
5297 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5298 /*
5299 * Raced against perf_mmap_close() through
5300 * perf_event_set_output(). Try again, hope for better
5301 * luck.
5302 */
5303 mutex_unlock(&event->mmap_mutex);
5304 goto again;
5305 }
5306
ebb3c4c4
PZ
5307 goto unlock;
5308 }
5309
789f90fc 5310 user_extra = nr_pages + 1;
45bfb2e5
PZ
5311
5312accounting:
cdd6c482 5313 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5314
5315 /*
5316 * Increase the limit linearly with more CPUs:
5317 */
5318 user_lock_limit *= num_online_cpus();
5319
789f90fc 5320 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5321
789f90fc
PZ
5322 if (user_locked > user_lock_limit)
5323 extra = user_locked - user_lock_limit;
7b732a75 5324
78d7d407 5325 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5326 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5327 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5328
459ec28a
IM
5329 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5330 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5331 ret = -EPERM;
5332 goto unlock;
5333 }
7b732a75 5334
45bfb2e5 5335 WARN_ON(!rb && event->rb);
906010b2 5336
d57e34fd 5337 if (vma->vm_flags & VM_WRITE)
76369139 5338 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5339
76369139 5340 if (!rb) {
45bfb2e5
PZ
5341 rb = rb_alloc(nr_pages,
5342 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5343 event->cpu, flags);
26cb63ad 5344
45bfb2e5
PZ
5345 if (!rb) {
5346 ret = -ENOMEM;
5347 goto unlock;
5348 }
43a21ea8 5349
45bfb2e5
PZ
5350 atomic_set(&rb->mmap_count, 1);
5351 rb->mmap_user = get_current_user();
5352 rb->mmap_locked = extra;
26cb63ad 5353
45bfb2e5 5354 ring_buffer_attach(event, rb);
ac9721f3 5355
45bfb2e5
PZ
5356 perf_event_init_userpage(event);
5357 perf_event_update_userpage(event);
5358 } else {
1a594131
AS
5359 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5360 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5361 if (!ret)
5362 rb->aux_mmap_locked = extra;
5363 }
9a0f05cb 5364
ebb3c4c4 5365unlock:
45bfb2e5
PZ
5366 if (!ret) {
5367 atomic_long_add(user_extra, &user->locked_vm);
5368 vma->vm_mm->pinned_vm += extra;
5369
ac9721f3 5370 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5371 } else if (rb) {
5372 atomic_dec(&rb->mmap_count);
5373 }
5374aux_unlock:
cdd6c482 5375 mutex_unlock(&event->mmap_mutex);
37d81828 5376
9bb5d40c
PZ
5377 /*
5378 * Since pinned accounting is per vm we cannot allow fork() to copy our
5379 * vma.
5380 */
26cb63ad 5381 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5382 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5383
1e0fb9ec 5384 if (event->pmu->event_mapped)
bfe33492 5385 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5386
7b732a75 5387 return ret;
37d81828
PM
5388}
5389
3c446b3d
PZ
5390static int perf_fasync(int fd, struct file *filp, int on)
5391{
496ad9aa 5392 struct inode *inode = file_inode(filp);
cdd6c482 5393 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5394 int retval;
5395
5955102c 5396 inode_lock(inode);
cdd6c482 5397 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5398 inode_unlock(inode);
3c446b3d
PZ
5399
5400 if (retval < 0)
5401 return retval;
5402
5403 return 0;
5404}
5405
0793a61d 5406static const struct file_operations perf_fops = {
3326c1ce 5407 .llseek = no_llseek,
0793a61d
TG
5408 .release = perf_release,
5409 .read = perf_read,
5410 .poll = perf_poll,
d859e29f 5411 .unlocked_ioctl = perf_ioctl,
b3f20785 5412 .compat_ioctl = perf_compat_ioctl,
37d81828 5413 .mmap = perf_mmap,
3c446b3d 5414 .fasync = perf_fasync,
0793a61d
TG
5415};
5416
925d519a 5417/*
cdd6c482 5418 * Perf event wakeup
925d519a
PZ
5419 *
5420 * If there's data, ensure we set the poll() state and publish everything
5421 * to user-space before waking everybody up.
5422 */
5423
fed66e2c
PZ
5424static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5425{
5426 /* only the parent has fasync state */
5427 if (event->parent)
5428 event = event->parent;
5429 return &event->fasync;
5430}
5431
cdd6c482 5432void perf_event_wakeup(struct perf_event *event)
925d519a 5433{
10c6db11 5434 ring_buffer_wakeup(event);
4c9e2542 5435
cdd6c482 5436 if (event->pending_kill) {
fed66e2c 5437 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5438 event->pending_kill = 0;
4c9e2542 5439 }
925d519a
PZ
5440}
5441
e360adbe 5442static void perf_pending_event(struct irq_work *entry)
79f14641 5443{
cdd6c482
IM
5444 struct perf_event *event = container_of(entry,
5445 struct perf_event, pending);
d525211f
PZ
5446 int rctx;
5447
5448 rctx = perf_swevent_get_recursion_context();
5449 /*
5450 * If we 'fail' here, that's OK, it means recursion is already disabled
5451 * and we won't recurse 'further'.
5452 */
79f14641 5453
cdd6c482
IM
5454 if (event->pending_disable) {
5455 event->pending_disable = 0;
fae3fde6 5456 perf_event_disable_local(event);
79f14641
PZ
5457 }
5458
cdd6c482
IM
5459 if (event->pending_wakeup) {
5460 event->pending_wakeup = 0;
5461 perf_event_wakeup(event);
79f14641 5462 }
d525211f
PZ
5463
5464 if (rctx >= 0)
5465 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5466}
5467
39447b38
ZY
5468/*
5469 * We assume there is only KVM supporting the callbacks.
5470 * Later on, we might change it to a list if there is
5471 * another virtualization implementation supporting the callbacks.
5472 */
5473struct perf_guest_info_callbacks *perf_guest_cbs;
5474
5475int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5476{
5477 perf_guest_cbs = cbs;
5478 return 0;
5479}
5480EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5481
5482int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5483{
5484 perf_guest_cbs = NULL;
5485 return 0;
5486}
5487EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5488
4018994f
JO
5489static void
5490perf_output_sample_regs(struct perf_output_handle *handle,
5491 struct pt_regs *regs, u64 mask)
5492{
5493 int bit;
29dd3288 5494 DECLARE_BITMAP(_mask, 64);
4018994f 5495
29dd3288
MS
5496 bitmap_from_u64(_mask, mask);
5497 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5498 u64 val;
5499
5500 val = perf_reg_value(regs, bit);
5501 perf_output_put(handle, val);
5502 }
5503}
5504
60e2364e 5505static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5506 struct pt_regs *regs,
5507 struct pt_regs *regs_user_copy)
4018994f 5508{
88a7c26a
AL
5509 if (user_mode(regs)) {
5510 regs_user->abi = perf_reg_abi(current);
2565711f 5511 regs_user->regs = regs;
88a7c26a
AL
5512 } else if (current->mm) {
5513 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5514 } else {
5515 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5516 regs_user->regs = NULL;
4018994f
JO
5517 }
5518}
5519
60e2364e
SE
5520static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5521 struct pt_regs *regs)
5522{
5523 regs_intr->regs = regs;
5524 regs_intr->abi = perf_reg_abi(current);
5525}
5526
5527
c5ebcedb
JO
5528/*
5529 * Get remaining task size from user stack pointer.
5530 *
5531 * It'd be better to take stack vma map and limit this more
5532 * precisly, but there's no way to get it safely under interrupt,
5533 * so using TASK_SIZE as limit.
5534 */
5535static u64 perf_ustack_task_size(struct pt_regs *regs)
5536{
5537 unsigned long addr = perf_user_stack_pointer(regs);
5538
5539 if (!addr || addr >= TASK_SIZE)
5540 return 0;
5541
5542 return TASK_SIZE - addr;
5543}
5544
5545static u16
5546perf_sample_ustack_size(u16 stack_size, u16 header_size,
5547 struct pt_regs *regs)
5548{
5549 u64 task_size;
5550
5551 /* No regs, no stack pointer, no dump. */
5552 if (!regs)
5553 return 0;
5554
5555 /*
5556 * Check if we fit in with the requested stack size into the:
5557 * - TASK_SIZE
5558 * If we don't, we limit the size to the TASK_SIZE.
5559 *
5560 * - remaining sample size
5561 * If we don't, we customize the stack size to
5562 * fit in to the remaining sample size.
5563 */
5564
5565 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5566 stack_size = min(stack_size, (u16) task_size);
5567
5568 /* Current header size plus static size and dynamic size. */
5569 header_size += 2 * sizeof(u64);
5570
5571 /* Do we fit in with the current stack dump size? */
5572 if ((u16) (header_size + stack_size) < header_size) {
5573 /*
5574 * If we overflow the maximum size for the sample,
5575 * we customize the stack dump size to fit in.
5576 */
5577 stack_size = USHRT_MAX - header_size - sizeof(u64);
5578 stack_size = round_up(stack_size, sizeof(u64));
5579 }
5580
5581 return stack_size;
5582}
5583
5584static void
5585perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5586 struct pt_regs *regs)
5587{
5588 /* Case of a kernel thread, nothing to dump */
5589 if (!regs) {
5590 u64 size = 0;
5591 perf_output_put(handle, size);
5592 } else {
5593 unsigned long sp;
5594 unsigned int rem;
5595 u64 dyn_size;
5596
5597 /*
5598 * We dump:
5599 * static size
5600 * - the size requested by user or the best one we can fit
5601 * in to the sample max size
5602 * data
5603 * - user stack dump data
5604 * dynamic size
5605 * - the actual dumped size
5606 */
5607
5608 /* Static size. */
5609 perf_output_put(handle, dump_size);
5610
5611 /* Data. */
5612 sp = perf_user_stack_pointer(regs);
5613 rem = __output_copy_user(handle, (void *) sp, dump_size);
5614 dyn_size = dump_size - rem;
5615
5616 perf_output_skip(handle, rem);
5617
5618 /* Dynamic size. */
5619 perf_output_put(handle, dyn_size);
5620 }
5621}
5622
c980d109
ACM
5623static void __perf_event_header__init_id(struct perf_event_header *header,
5624 struct perf_sample_data *data,
5625 struct perf_event *event)
6844c09d
ACM
5626{
5627 u64 sample_type = event->attr.sample_type;
5628
5629 data->type = sample_type;
5630 header->size += event->id_header_size;
5631
5632 if (sample_type & PERF_SAMPLE_TID) {
5633 /* namespace issues */
5634 data->tid_entry.pid = perf_event_pid(event, current);
5635 data->tid_entry.tid = perf_event_tid(event, current);
5636 }
5637
5638 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5639 data->time = perf_event_clock(event);
6844c09d 5640
ff3d527c 5641 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5642 data->id = primary_event_id(event);
5643
5644 if (sample_type & PERF_SAMPLE_STREAM_ID)
5645 data->stream_id = event->id;
5646
5647 if (sample_type & PERF_SAMPLE_CPU) {
5648 data->cpu_entry.cpu = raw_smp_processor_id();
5649 data->cpu_entry.reserved = 0;
5650 }
5651}
5652
76369139
FW
5653void perf_event_header__init_id(struct perf_event_header *header,
5654 struct perf_sample_data *data,
5655 struct perf_event *event)
c980d109
ACM
5656{
5657 if (event->attr.sample_id_all)
5658 __perf_event_header__init_id(header, data, event);
5659}
5660
5661static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5662 struct perf_sample_data *data)
5663{
5664 u64 sample_type = data->type;
5665
5666 if (sample_type & PERF_SAMPLE_TID)
5667 perf_output_put(handle, data->tid_entry);
5668
5669 if (sample_type & PERF_SAMPLE_TIME)
5670 perf_output_put(handle, data->time);
5671
5672 if (sample_type & PERF_SAMPLE_ID)
5673 perf_output_put(handle, data->id);
5674
5675 if (sample_type & PERF_SAMPLE_STREAM_ID)
5676 perf_output_put(handle, data->stream_id);
5677
5678 if (sample_type & PERF_SAMPLE_CPU)
5679 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5680
5681 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5682 perf_output_put(handle, data->id);
c980d109
ACM
5683}
5684
76369139
FW
5685void perf_event__output_id_sample(struct perf_event *event,
5686 struct perf_output_handle *handle,
5687 struct perf_sample_data *sample)
c980d109
ACM
5688{
5689 if (event->attr.sample_id_all)
5690 __perf_event__output_id_sample(handle, sample);
5691}
5692
3dab77fb 5693static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5694 struct perf_event *event,
5695 u64 enabled, u64 running)
3dab77fb 5696{
cdd6c482 5697 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5698 u64 values[4];
5699 int n = 0;
5700
b5e58793 5701 values[n++] = perf_event_count(event);
3dab77fb 5702 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5703 values[n++] = enabled +
cdd6c482 5704 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5705 }
5706 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5707 values[n++] = running +
cdd6c482 5708 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5709 }
5710 if (read_format & PERF_FORMAT_ID)
cdd6c482 5711 values[n++] = primary_event_id(event);
3dab77fb 5712
76369139 5713 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5714}
5715
3dab77fb 5716static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5717 struct perf_event *event,
5718 u64 enabled, u64 running)
3dab77fb 5719{
cdd6c482
IM
5720 struct perf_event *leader = event->group_leader, *sub;
5721 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5722 u64 values[5];
5723 int n = 0;
5724
5725 values[n++] = 1 + leader->nr_siblings;
5726
5727 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5728 values[n++] = enabled;
3dab77fb
PZ
5729
5730 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5731 values[n++] = running;
3dab77fb 5732
9e5b127d
PZ
5733 if ((leader != event) &&
5734 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5735 leader->pmu->read(leader);
5736
b5e58793 5737 values[n++] = perf_event_count(leader);
3dab77fb 5738 if (read_format & PERF_FORMAT_ID)
cdd6c482 5739 values[n++] = primary_event_id(leader);
3dab77fb 5740
76369139 5741 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5742
65abc865 5743 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5744 n = 0;
5745
6f5ab001
JO
5746 if ((sub != event) &&
5747 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5748 sub->pmu->read(sub);
5749
b5e58793 5750 values[n++] = perf_event_count(sub);
3dab77fb 5751 if (read_format & PERF_FORMAT_ID)
cdd6c482 5752 values[n++] = primary_event_id(sub);
3dab77fb 5753
76369139 5754 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5755 }
5756}
5757
eed01528
SE
5758#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5759 PERF_FORMAT_TOTAL_TIME_RUNNING)
5760
ba5213ae
PZ
5761/*
5762 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5763 *
5764 * The problem is that its both hard and excessively expensive to iterate the
5765 * child list, not to mention that its impossible to IPI the children running
5766 * on another CPU, from interrupt/NMI context.
5767 */
3dab77fb 5768static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5769 struct perf_event *event)
3dab77fb 5770{
e3f3541c 5771 u64 enabled = 0, running = 0, now;
eed01528
SE
5772 u64 read_format = event->attr.read_format;
5773
5774 /*
5775 * compute total_time_enabled, total_time_running
5776 * based on snapshot values taken when the event
5777 * was last scheduled in.
5778 *
5779 * we cannot simply called update_context_time()
5780 * because of locking issue as we are called in
5781 * NMI context
5782 */
c4794295 5783 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5784 calc_timer_values(event, &now, &enabled, &running);
eed01528 5785
cdd6c482 5786 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5787 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5788 else
eed01528 5789 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5790}
5791
5622f295
MM
5792void perf_output_sample(struct perf_output_handle *handle,
5793 struct perf_event_header *header,
5794 struct perf_sample_data *data,
cdd6c482 5795 struct perf_event *event)
5622f295
MM
5796{
5797 u64 sample_type = data->type;
5798
5799 perf_output_put(handle, *header);
5800
ff3d527c
AH
5801 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5802 perf_output_put(handle, data->id);
5803
5622f295
MM
5804 if (sample_type & PERF_SAMPLE_IP)
5805 perf_output_put(handle, data->ip);
5806
5807 if (sample_type & PERF_SAMPLE_TID)
5808 perf_output_put(handle, data->tid_entry);
5809
5810 if (sample_type & PERF_SAMPLE_TIME)
5811 perf_output_put(handle, data->time);
5812
5813 if (sample_type & PERF_SAMPLE_ADDR)
5814 perf_output_put(handle, data->addr);
5815
5816 if (sample_type & PERF_SAMPLE_ID)
5817 perf_output_put(handle, data->id);
5818
5819 if (sample_type & PERF_SAMPLE_STREAM_ID)
5820 perf_output_put(handle, data->stream_id);
5821
5822 if (sample_type & PERF_SAMPLE_CPU)
5823 perf_output_put(handle, data->cpu_entry);
5824
5825 if (sample_type & PERF_SAMPLE_PERIOD)
5826 perf_output_put(handle, data->period);
5827
5828 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5829 perf_output_read(handle, event);
5622f295
MM
5830
5831 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 5832 int size = 1;
5622f295 5833
99e818cc
JO
5834 size += data->callchain->nr;
5835 size *= sizeof(u64);
5836 __output_copy(handle, data->callchain, size);
5622f295
MM
5837 }
5838
5839 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5840 struct perf_raw_record *raw = data->raw;
5841
5842 if (raw) {
5843 struct perf_raw_frag *frag = &raw->frag;
5844
5845 perf_output_put(handle, raw->size);
5846 do {
5847 if (frag->copy) {
5848 __output_custom(handle, frag->copy,
5849 frag->data, frag->size);
5850 } else {
5851 __output_copy(handle, frag->data,
5852 frag->size);
5853 }
5854 if (perf_raw_frag_last(frag))
5855 break;
5856 frag = frag->next;
5857 } while (1);
5858 if (frag->pad)
5859 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5860 } else {
5861 struct {
5862 u32 size;
5863 u32 data;
5864 } raw = {
5865 .size = sizeof(u32),
5866 .data = 0,
5867 };
5868 perf_output_put(handle, raw);
5869 }
5870 }
a7ac67ea 5871
bce38cd5
SE
5872 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5873 if (data->br_stack) {
5874 size_t size;
5875
5876 size = data->br_stack->nr
5877 * sizeof(struct perf_branch_entry);
5878
5879 perf_output_put(handle, data->br_stack->nr);
5880 perf_output_copy(handle, data->br_stack->entries, size);
5881 } else {
5882 /*
5883 * we always store at least the value of nr
5884 */
5885 u64 nr = 0;
5886 perf_output_put(handle, nr);
5887 }
5888 }
4018994f
JO
5889
5890 if (sample_type & PERF_SAMPLE_REGS_USER) {
5891 u64 abi = data->regs_user.abi;
5892
5893 /*
5894 * If there are no regs to dump, notice it through
5895 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5896 */
5897 perf_output_put(handle, abi);
5898
5899 if (abi) {
5900 u64 mask = event->attr.sample_regs_user;
5901 perf_output_sample_regs(handle,
5902 data->regs_user.regs,
5903 mask);
5904 }
5905 }
c5ebcedb 5906
a5cdd40c 5907 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5908 perf_output_sample_ustack(handle,
5909 data->stack_user_size,
5910 data->regs_user.regs);
a5cdd40c 5911 }
c3feedf2
AK
5912
5913 if (sample_type & PERF_SAMPLE_WEIGHT)
5914 perf_output_put(handle, data->weight);
d6be9ad6
SE
5915
5916 if (sample_type & PERF_SAMPLE_DATA_SRC)
5917 perf_output_put(handle, data->data_src.val);
a5cdd40c 5918
fdfbbd07
AK
5919 if (sample_type & PERF_SAMPLE_TRANSACTION)
5920 perf_output_put(handle, data->txn);
5921
60e2364e
SE
5922 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5923 u64 abi = data->regs_intr.abi;
5924 /*
5925 * If there are no regs to dump, notice it through
5926 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5927 */
5928 perf_output_put(handle, abi);
5929
5930 if (abi) {
5931 u64 mask = event->attr.sample_regs_intr;
5932
5933 perf_output_sample_regs(handle,
5934 data->regs_intr.regs,
5935 mask);
5936 }
5937 }
5938
fc7ce9c7
KL
5939 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5940 perf_output_put(handle, data->phys_addr);
5941
a5cdd40c
PZ
5942 if (!event->attr.watermark) {
5943 int wakeup_events = event->attr.wakeup_events;
5944
5945 if (wakeup_events) {
5946 struct ring_buffer *rb = handle->rb;
5947 int events = local_inc_return(&rb->events);
5948
5949 if (events >= wakeup_events) {
5950 local_sub(wakeup_events, &rb->events);
5951 local_inc(&rb->wakeup);
5952 }
5953 }
5954 }
5622f295
MM
5955}
5956
fc7ce9c7
KL
5957static u64 perf_virt_to_phys(u64 virt)
5958{
5959 u64 phys_addr = 0;
5960 struct page *p = NULL;
5961
5962 if (!virt)
5963 return 0;
5964
5965 if (virt >= TASK_SIZE) {
5966 /* If it's vmalloc()d memory, leave phys_addr as 0 */
5967 if (virt_addr_valid((void *)(uintptr_t)virt) &&
5968 !(virt >= VMALLOC_START && virt < VMALLOC_END))
5969 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5970 } else {
5971 /*
5972 * Walking the pages tables for user address.
5973 * Interrupts are disabled, so it prevents any tear down
5974 * of the page tables.
5975 * Try IRQ-safe __get_user_pages_fast first.
5976 * If failed, leave phys_addr as 0.
5977 */
5978 if ((current->mm != NULL) &&
5979 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5980 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5981
5982 if (p)
5983 put_page(p);
5984 }
5985
5986 return phys_addr;
5987}
5988
99e818cc
JO
5989static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
5990
8cf7e0e2
JO
5991static struct perf_callchain_entry *
5992perf_callchain(struct perf_event *event, struct pt_regs *regs)
5993{
5994 bool kernel = !event->attr.exclude_callchain_kernel;
5995 bool user = !event->attr.exclude_callchain_user;
5996 /* Disallow cross-task user callchains. */
5997 bool crosstask = event->ctx->task && event->ctx->task != current;
5998 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 5999 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6000
6001 if (!kernel && !user)
99e818cc 6002 return &__empty_callchain;
8cf7e0e2 6003
99e818cc
JO
6004 callchain = get_perf_callchain(regs, 0, kernel, user,
6005 max_stack, crosstask, true);
6006 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6007}
6008
5622f295
MM
6009void perf_prepare_sample(struct perf_event_header *header,
6010 struct perf_sample_data *data,
cdd6c482 6011 struct perf_event *event,
5622f295 6012 struct pt_regs *regs)
7b732a75 6013{
cdd6c482 6014 u64 sample_type = event->attr.sample_type;
7b732a75 6015
cdd6c482 6016 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6017 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6018
6019 header->misc = 0;
6020 header->misc |= perf_misc_flags(regs);
6fab0192 6021
c980d109 6022 __perf_event_header__init_id(header, data, event);
6844c09d 6023
c320c7b7 6024 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6025 data->ip = perf_instruction_pointer(regs);
6026
b23f3325 6027 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6028 int size = 1;
394ee076 6029
e6dab5ff 6030 data->callchain = perf_callchain(event, regs);
99e818cc 6031 size += data->callchain->nr;
5622f295
MM
6032
6033 header->size += size * sizeof(u64);
394ee076
PZ
6034 }
6035
3a43ce68 6036 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6037 struct perf_raw_record *raw = data->raw;
6038 int size;
6039
6040 if (raw) {
6041 struct perf_raw_frag *frag = &raw->frag;
6042 u32 sum = 0;
6043
6044 do {
6045 sum += frag->size;
6046 if (perf_raw_frag_last(frag))
6047 break;
6048 frag = frag->next;
6049 } while (1);
6050
6051 size = round_up(sum + sizeof(u32), sizeof(u64));
6052 raw->size = size - sizeof(u32);
6053 frag->pad = raw->size - sum;
6054 } else {
6055 size = sizeof(u64);
6056 }
a044560c 6057
7e3f977e 6058 header->size += size;
7f453c24 6059 }
bce38cd5
SE
6060
6061 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6062 int size = sizeof(u64); /* nr */
6063 if (data->br_stack) {
6064 size += data->br_stack->nr
6065 * sizeof(struct perf_branch_entry);
6066 }
6067 header->size += size;
6068 }
4018994f 6069
2565711f 6070 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6071 perf_sample_regs_user(&data->regs_user, regs,
6072 &data->regs_user_copy);
2565711f 6073
4018994f
JO
6074 if (sample_type & PERF_SAMPLE_REGS_USER) {
6075 /* regs dump ABI info */
6076 int size = sizeof(u64);
6077
4018994f
JO
6078 if (data->regs_user.regs) {
6079 u64 mask = event->attr.sample_regs_user;
6080 size += hweight64(mask) * sizeof(u64);
6081 }
6082
6083 header->size += size;
6084 }
c5ebcedb
JO
6085
6086 if (sample_type & PERF_SAMPLE_STACK_USER) {
6087 /*
6088 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6089 * processed as the last one or have additional check added
6090 * in case new sample type is added, because we could eat
6091 * up the rest of the sample size.
6092 */
c5ebcedb
JO
6093 u16 stack_size = event->attr.sample_stack_user;
6094 u16 size = sizeof(u64);
6095
c5ebcedb 6096 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6097 data->regs_user.regs);
c5ebcedb
JO
6098
6099 /*
6100 * If there is something to dump, add space for the dump
6101 * itself and for the field that tells the dynamic size,
6102 * which is how many have been actually dumped.
6103 */
6104 if (stack_size)
6105 size += sizeof(u64) + stack_size;
6106
6107 data->stack_user_size = stack_size;
6108 header->size += size;
6109 }
60e2364e
SE
6110
6111 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6112 /* regs dump ABI info */
6113 int size = sizeof(u64);
6114
6115 perf_sample_regs_intr(&data->regs_intr, regs);
6116
6117 if (data->regs_intr.regs) {
6118 u64 mask = event->attr.sample_regs_intr;
6119
6120 size += hweight64(mask) * sizeof(u64);
6121 }
6122
6123 header->size += size;
6124 }
fc7ce9c7
KL
6125
6126 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6127 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6128}
7f453c24 6129
9ecda41a
WN
6130static void __always_inline
6131__perf_event_output(struct perf_event *event,
6132 struct perf_sample_data *data,
6133 struct pt_regs *regs,
6134 int (*output_begin)(struct perf_output_handle *,
6135 struct perf_event *,
6136 unsigned int))
5622f295
MM
6137{
6138 struct perf_output_handle handle;
6139 struct perf_event_header header;
689802b2 6140
927c7a9e
FW
6141 /* protect the callchain buffers */
6142 rcu_read_lock();
6143
cdd6c482 6144 perf_prepare_sample(&header, data, event, regs);
5c148194 6145
9ecda41a 6146 if (output_begin(&handle, event, header.size))
927c7a9e 6147 goto exit;
0322cd6e 6148
cdd6c482 6149 perf_output_sample(&handle, &header, data, event);
f413cdb8 6150
8a057d84 6151 perf_output_end(&handle);
927c7a9e
FW
6152
6153exit:
6154 rcu_read_unlock();
0322cd6e
PZ
6155}
6156
9ecda41a
WN
6157void
6158perf_event_output_forward(struct perf_event *event,
6159 struct perf_sample_data *data,
6160 struct pt_regs *regs)
6161{
6162 __perf_event_output(event, data, regs, perf_output_begin_forward);
6163}
6164
6165void
6166perf_event_output_backward(struct perf_event *event,
6167 struct perf_sample_data *data,
6168 struct pt_regs *regs)
6169{
6170 __perf_event_output(event, data, regs, perf_output_begin_backward);
6171}
6172
6173void
6174perf_event_output(struct perf_event *event,
6175 struct perf_sample_data *data,
6176 struct pt_regs *regs)
6177{
6178 __perf_event_output(event, data, regs, perf_output_begin);
6179}
6180
38b200d6 6181/*
cdd6c482 6182 * read event_id
38b200d6
PZ
6183 */
6184
6185struct perf_read_event {
6186 struct perf_event_header header;
6187
6188 u32 pid;
6189 u32 tid;
38b200d6
PZ
6190};
6191
6192static void
cdd6c482 6193perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6194 struct task_struct *task)
6195{
6196 struct perf_output_handle handle;
c980d109 6197 struct perf_sample_data sample;
dfc65094 6198 struct perf_read_event read_event = {
38b200d6 6199 .header = {
cdd6c482 6200 .type = PERF_RECORD_READ,
38b200d6 6201 .misc = 0,
c320c7b7 6202 .size = sizeof(read_event) + event->read_size,
38b200d6 6203 },
cdd6c482
IM
6204 .pid = perf_event_pid(event, task),
6205 .tid = perf_event_tid(event, task),
38b200d6 6206 };
3dab77fb 6207 int ret;
38b200d6 6208
c980d109 6209 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6210 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6211 if (ret)
6212 return;
6213
dfc65094 6214 perf_output_put(&handle, read_event);
cdd6c482 6215 perf_output_read(&handle, event);
c980d109 6216 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6217
38b200d6
PZ
6218 perf_output_end(&handle);
6219}
6220
aab5b71e 6221typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6222
6223static void
aab5b71e
PZ
6224perf_iterate_ctx(struct perf_event_context *ctx,
6225 perf_iterate_f output,
b73e4fef 6226 void *data, bool all)
52d857a8
JO
6227{
6228 struct perf_event *event;
6229
6230 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6231 if (!all) {
6232 if (event->state < PERF_EVENT_STATE_INACTIVE)
6233 continue;
6234 if (!event_filter_match(event))
6235 continue;
6236 }
6237
67516844 6238 output(event, data);
52d857a8
JO
6239 }
6240}
6241
aab5b71e 6242static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6243{
6244 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6245 struct perf_event *event;
6246
6247 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6248 /*
6249 * Skip events that are not fully formed yet; ensure that
6250 * if we observe event->ctx, both event and ctx will be
6251 * complete enough. See perf_install_in_context().
6252 */
6253 if (!smp_load_acquire(&event->ctx))
6254 continue;
6255
f2fb6bef
KL
6256 if (event->state < PERF_EVENT_STATE_INACTIVE)
6257 continue;
6258 if (!event_filter_match(event))
6259 continue;
6260 output(event, data);
6261 }
6262}
6263
aab5b71e
PZ
6264/*
6265 * Iterate all events that need to receive side-band events.
6266 *
6267 * For new callers; ensure that account_pmu_sb_event() includes
6268 * your event, otherwise it might not get delivered.
6269 */
52d857a8 6270static void
aab5b71e 6271perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6272 struct perf_event_context *task_ctx)
6273{
52d857a8 6274 struct perf_event_context *ctx;
52d857a8
JO
6275 int ctxn;
6276
aab5b71e
PZ
6277 rcu_read_lock();
6278 preempt_disable();
6279
4e93ad60 6280 /*
aab5b71e
PZ
6281 * If we have task_ctx != NULL we only notify the task context itself.
6282 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6283 * context.
6284 */
6285 if (task_ctx) {
aab5b71e
PZ
6286 perf_iterate_ctx(task_ctx, output, data, false);
6287 goto done;
4e93ad60
JO
6288 }
6289
aab5b71e 6290 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6291
6292 for_each_task_context_nr(ctxn) {
52d857a8
JO
6293 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6294 if (ctx)
aab5b71e 6295 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6296 }
aab5b71e 6297done:
f2fb6bef 6298 preempt_enable();
52d857a8 6299 rcu_read_unlock();
95ff4ca2
AS
6300}
6301
375637bc
AS
6302/*
6303 * Clear all file-based filters at exec, they'll have to be
6304 * re-instated when/if these objects are mmapped again.
6305 */
6306static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6307{
6308 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6309 struct perf_addr_filter *filter;
6310 unsigned int restart = 0, count = 0;
6311 unsigned long flags;
6312
6313 if (!has_addr_filter(event))
6314 return;
6315
6316 raw_spin_lock_irqsave(&ifh->lock, flags);
6317 list_for_each_entry(filter, &ifh->list, entry) {
6318 if (filter->inode) {
6319 event->addr_filters_offs[count] = 0;
6320 restart++;
6321 }
6322
6323 count++;
6324 }
6325
6326 if (restart)
6327 event->addr_filters_gen++;
6328 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6329
6330 if (restart)
767ae086 6331 perf_event_stop(event, 1);
375637bc
AS
6332}
6333
6334void perf_event_exec(void)
6335{
6336 struct perf_event_context *ctx;
6337 int ctxn;
6338
6339 rcu_read_lock();
6340 for_each_task_context_nr(ctxn) {
6341 ctx = current->perf_event_ctxp[ctxn];
6342 if (!ctx)
6343 continue;
6344
6345 perf_event_enable_on_exec(ctxn);
6346
aab5b71e 6347 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6348 true);
6349 }
6350 rcu_read_unlock();
6351}
6352
95ff4ca2
AS
6353struct remote_output {
6354 struct ring_buffer *rb;
6355 int err;
6356};
6357
6358static void __perf_event_output_stop(struct perf_event *event, void *data)
6359{
6360 struct perf_event *parent = event->parent;
6361 struct remote_output *ro = data;
6362 struct ring_buffer *rb = ro->rb;
375637bc
AS
6363 struct stop_event_data sd = {
6364 .event = event,
6365 };
95ff4ca2
AS
6366
6367 if (!has_aux(event))
6368 return;
6369
6370 if (!parent)
6371 parent = event;
6372
6373 /*
6374 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6375 * ring-buffer, but it will be the child that's actually using it.
6376 *
6377 * We are using event::rb to determine if the event should be stopped,
6378 * however this may race with ring_buffer_attach() (through set_output),
6379 * which will make us skip the event that actually needs to be stopped.
6380 * So ring_buffer_attach() has to stop an aux event before re-assigning
6381 * its rb pointer.
95ff4ca2
AS
6382 */
6383 if (rcu_dereference(parent->rb) == rb)
375637bc 6384 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6385}
6386
6387static int __perf_pmu_output_stop(void *info)
6388{
6389 struct perf_event *event = info;
6390 struct pmu *pmu = event->pmu;
8b6a3fe8 6391 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6392 struct remote_output ro = {
6393 .rb = event->rb,
6394 };
6395
6396 rcu_read_lock();
aab5b71e 6397 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6398 if (cpuctx->task_ctx)
aab5b71e 6399 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6400 &ro, false);
95ff4ca2
AS
6401 rcu_read_unlock();
6402
6403 return ro.err;
6404}
6405
6406static void perf_pmu_output_stop(struct perf_event *event)
6407{
6408 struct perf_event *iter;
6409 int err, cpu;
6410
6411restart:
6412 rcu_read_lock();
6413 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6414 /*
6415 * For per-CPU events, we need to make sure that neither they
6416 * nor their children are running; for cpu==-1 events it's
6417 * sufficient to stop the event itself if it's active, since
6418 * it can't have children.
6419 */
6420 cpu = iter->cpu;
6421 if (cpu == -1)
6422 cpu = READ_ONCE(iter->oncpu);
6423
6424 if (cpu == -1)
6425 continue;
6426
6427 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6428 if (err == -EAGAIN) {
6429 rcu_read_unlock();
6430 goto restart;
6431 }
6432 }
6433 rcu_read_unlock();
52d857a8
JO
6434}
6435
60313ebe 6436/*
9f498cc5
PZ
6437 * task tracking -- fork/exit
6438 *
13d7a241 6439 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6440 */
6441
9f498cc5 6442struct perf_task_event {
3a80b4a3 6443 struct task_struct *task;
cdd6c482 6444 struct perf_event_context *task_ctx;
60313ebe
PZ
6445
6446 struct {
6447 struct perf_event_header header;
6448
6449 u32 pid;
6450 u32 ppid;
9f498cc5
PZ
6451 u32 tid;
6452 u32 ptid;
393b2ad8 6453 u64 time;
cdd6c482 6454 } event_id;
60313ebe
PZ
6455};
6456
67516844
JO
6457static int perf_event_task_match(struct perf_event *event)
6458{
13d7a241
SE
6459 return event->attr.comm || event->attr.mmap ||
6460 event->attr.mmap2 || event->attr.mmap_data ||
6461 event->attr.task;
67516844
JO
6462}
6463
cdd6c482 6464static void perf_event_task_output(struct perf_event *event,
52d857a8 6465 void *data)
60313ebe 6466{
52d857a8 6467 struct perf_task_event *task_event = data;
60313ebe 6468 struct perf_output_handle handle;
c980d109 6469 struct perf_sample_data sample;
9f498cc5 6470 struct task_struct *task = task_event->task;
c980d109 6471 int ret, size = task_event->event_id.header.size;
8bb39f9a 6472
67516844
JO
6473 if (!perf_event_task_match(event))
6474 return;
6475
c980d109 6476 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6477
c980d109 6478 ret = perf_output_begin(&handle, event,
a7ac67ea 6479 task_event->event_id.header.size);
ef60777c 6480 if (ret)
c980d109 6481 goto out;
60313ebe 6482
cdd6c482
IM
6483 task_event->event_id.pid = perf_event_pid(event, task);
6484 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6485
cdd6c482
IM
6486 task_event->event_id.tid = perf_event_tid(event, task);
6487 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6488
34f43927
PZ
6489 task_event->event_id.time = perf_event_clock(event);
6490
cdd6c482 6491 perf_output_put(&handle, task_event->event_id);
393b2ad8 6492
c980d109
ACM
6493 perf_event__output_id_sample(event, &handle, &sample);
6494
60313ebe 6495 perf_output_end(&handle);
c980d109
ACM
6496out:
6497 task_event->event_id.header.size = size;
60313ebe
PZ
6498}
6499
cdd6c482
IM
6500static void perf_event_task(struct task_struct *task,
6501 struct perf_event_context *task_ctx,
3a80b4a3 6502 int new)
60313ebe 6503{
9f498cc5 6504 struct perf_task_event task_event;
60313ebe 6505
cdd6c482
IM
6506 if (!atomic_read(&nr_comm_events) &&
6507 !atomic_read(&nr_mmap_events) &&
6508 !atomic_read(&nr_task_events))
60313ebe
PZ
6509 return;
6510
9f498cc5 6511 task_event = (struct perf_task_event){
3a80b4a3
PZ
6512 .task = task,
6513 .task_ctx = task_ctx,
cdd6c482 6514 .event_id = {
60313ebe 6515 .header = {
cdd6c482 6516 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6517 .misc = 0,
cdd6c482 6518 .size = sizeof(task_event.event_id),
60313ebe 6519 },
573402db
PZ
6520 /* .pid */
6521 /* .ppid */
9f498cc5
PZ
6522 /* .tid */
6523 /* .ptid */
34f43927 6524 /* .time */
60313ebe
PZ
6525 },
6526 };
6527
aab5b71e 6528 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6529 &task_event,
6530 task_ctx);
9f498cc5
PZ
6531}
6532
cdd6c482 6533void perf_event_fork(struct task_struct *task)
9f498cc5 6534{
cdd6c482 6535 perf_event_task(task, NULL, 1);
e4222673 6536 perf_event_namespaces(task);
60313ebe
PZ
6537}
6538
8d1b2d93
PZ
6539/*
6540 * comm tracking
6541 */
6542
6543struct perf_comm_event {
22a4f650
IM
6544 struct task_struct *task;
6545 char *comm;
8d1b2d93
PZ
6546 int comm_size;
6547
6548 struct {
6549 struct perf_event_header header;
6550
6551 u32 pid;
6552 u32 tid;
cdd6c482 6553 } event_id;
8d1b2d93
PZ
6554};
6555
67516844
JO
6556static int perf_event_comm_match(struct perf_event *event)
6557{
6558 return event->attr.comm;
6559}
6560
cdd6c482 6561static void perf_event_comm_output(struct perf_event *event,
52d857a8 6562 void *data)
8d1b2d93 6563{
52d857a8 6564 struct perf_comm_event *comm_event = data;
8d1b2d93 6565 struct perf_output_handle handle;
c980d109 6566 struct perf_sample_data sample;
cdd6c482 6567 int size = comm_event->event_id.header.size;
c980d109
ACM
6568 int ret;
6569
67516844
JO
6570 if (!perf_event_comm_match(event))
6571 return;
6572
c980d109
ACM
6573 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6574 ret = perf_output_begin(&handle, event,
a7ac67ea 6575 comm_event->event_id.header.size);
8d1b2d93
PZ
6576
6577 if (ret)
c980d109 6578 goto out;
8d1b2d93 6579
cdd6c482
IM
6580 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6581 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6582
cdd6c482 6583 perf_output_put(&handle, comm_event->event_id);
76369139 6584 __output_copy(&handle, comm_event->comm,
8d1b2d93 6585 comm_event->comm_size);
c980d109
ACM
6586
6587 perf_event__output_id_sample(event, &handle, &sample);
6588
8d1b2d93 6589 perf_output_end(&handle);
c980d109
ACM
6590out:
6591 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6592}
6593
cdd6c482 6594static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6595{
413ee3b4 6596 char comm[TASK_COMM_LEN];
8d1b2d93 6597 unsigned int size;
8d1b2d93 6598
413ee3b4 6599 memset(comm, 0, sizeof(comm));
96b02d78 6600 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6601 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6602
6603 comm_event->comm = comm;
6604 comm_event->comm_size = size;
6605
cdd6c482 6606 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6607
aab5b71e 6608 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6609 comm_event,
6610 NULL);
8d1b2d93
PZ
6611}
6612
82b89778 6613void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6614{
9ee318a7
PZ
6615 struct perf_comm_event comm_event;
6616
cdd6c482 6617 if (!atomic_read(&nr_comm_events))
9ee318a7 6618 return;
a63eaf34 6619
9ee318a7 6620 comm_event = (struct perf_comm_event){
8d1b2d93 6621 .task = task,
573402db
PZ
6622 /* .comm */
6623 /* .comm_size */
cdd6c482 6624 .event_id = {
573402db 6625 .header = {
cdd6c482 6626 .type = PERF_RECORD_COMM,
82b89778 6627 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6628 /* .size */
6629 },
6630 /* .pid */
6631 /* .tid */
8d1b2d93
PZ
6632 },
6633 };
6634
cdd6c482 6635 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6636}
6637
e4222673
HB
6638/*
6639 * namespaces tracking
6640 */
6641
6642struct perf_namespaces_event {
6643 struct task_struct *task;
6644
6645 struct {
6646 struct perf_event_header header;
6647
6648 u32 pid;
6649 u32 tid;
6650 u64 nr_namespaces;
6651 struct perf_ns_link_info link_info[NR_NAMESPACES];
6652 } event_id;
6653};
6654
6655static int perf_event_namespaces_match(struct perf_event *event)
6656{
6657 return event->attr.namespaces;
6658}
6659
6660static void perf_event_namespaces_output(struct perf_event *event,
6661 void *data)
6662{
6663 struct perf_namespaces_event *namespaces_event = data;
6664 struct perf_output_handle handle;
6665 struct perf_sample_data sample;
34900ec5 6666 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
6667 int ret;
6668
6669 if (!perf_event_namespaces_match(event))
6670 return;
6671
6672 perf_event_header__init_id(&namespaces_event->event_id.header,
6673 &sample, event);
6674 ret = perf_output_begin(&handle, event,
6675 namespaces_event->event_id.header.size);
6676 if (ret)
34900ec5 6677 goto out;
e4222673
HB
6678
6679 namespaces_event->event_id.pid = perf_event_pid(event,
6680 namespaces_event->task);
6681 namespaces_event->event_id.tid = perf_event_tid(event,
6682 namespaces_event->task);
6683
6684 perf_output_put(&handle, namespaces_event->event_id);
6685
6686 perf_event__output_id_sample(event, &handle, &sample);
6687
6688 perf_output_end(&handle);
34900ec5
JO
6689out:
6690 namespaces_event->event_id.header.size = header_size;
e4222673
HB
6691}
6692
6693static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6694 struct task_struct *task,
6695 const struct proc_ns_operations *ns_ops)
6696{
6697 struct path ns_path;
6698 struct inode *ns_inode;
6699 void *error;
6700
6701 error = ns_get_path(&ns_path, task, ns_ops);
6702 if (!error) {
6703 ns_inode = ns_path.dentry->d_inode;
6704 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6705 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 6706 path_put(&ns_path);
e4222673
HB
6707 }
6708}
6709
6710void perf_event_namespaces(struct task_struct *task)
6711{
6712 struct perf_namespaces_event namespaces_event;
6713 struct perf_ns_link_info *ns_link_info;
6714
6715 if (!atomic_read(&nr_namespaces_events))
6716 return;
6717
6718 namespaces_event = (struct perf_namespaces_event){
6719 .task = task,
6720 .event_id = {
6721 .header = {
6722 .type = PERF_RECORD_NAMESPACES,
6723 .misc = 0,
6724 .size = sizeof(namespaces_event.event_id),
6725 },
6726 /* .pid */
6727 /* .tid */
6728 .nr_namespaces = NR_NAMESPACES,
6729 /* .link_info[NR_NAMESPACES] */
6730 },
6731 };
6732
6733 ns_link_info = namespaces_event.event_id.link_info;
6734
6735 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6736 task, &mntns_operations);
6737
6738#ifdef CONFIG_USER_NS
6739 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6740 task, &userns_operations);
6741#endif
6742#ifdef CONFIG_NET_NS
6743 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6744 task, &netns_operations);
6745#endif
6746#ifdef CONFIG_UTS_NS
6747 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6748 task, &utsns_operations);
6749#endif
6750#ifdef CONFIG_IPC_NS
6751 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6752 task, &ipcns_operations);
6753#endif
6754#ifdef CONFIG_PID_NS
6755 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6756 task, &pidns_operations);
6757#endif
6758#ifdef CONFIG_CGROUPS
6759 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6760 task, &cgroupns_operations);
6761#endif
6762
6763 perf_iterate_sb(perf_event_namespaces_output,
6764 &namespaces_event,
6765 NULL);
6766}
6767
0a4a9391
PZ
6768/*
6769 * mmap tracking
6770 */
6771
6772struct perf_mmap_event {
089dd79d
PZ
6773 struct vm_area_struct *vma;
6774
6775 const char *file_name;
6776 int file_size;
13d7a241
SE
6777 int maj, min;
6778 u64 ino;
6779 u64 ino_generation;
f972eb63 6780 u32 prot, flags;
0a4a9391
PZ
6781
6782 struct {
6783 struct perf_event_header header;
6784
6785 u32 pid;
6786 u32 tid;
6787 u64 start;
6788 u64 len;
6789 u64 pgoff;
cdd6c482 6790 } event_id;
0a4a9391
PZ
6791};
6792
67516844
JO
6793static int perf_event_mmap_match(struct perf_event *event,
6794 void *data)
6795{
6796 struct perf_mmap_event *mmap_event = data;
6797 struct vm_area_struct *vma = mmap_event->vma;
6798 int executable = vma->vm_flags & VM_EXEC;
6799
6800 return (!executable && event->attr.mmap_data) ||
13d7a241 6801 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6802}
6803
cdd6c482 6804static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6805 void *data)
0a4a9391 6806{
52d857a8 6807 struct perf_mmap_event *mmap_event = data;
0a4a9391 6808 struct perf_output_handle handle;
c980d109 6809 struct perf_sample_data sample;
cdd6c482 6810 int size = mmap_event->event_id.header.size;
c980d109 6811 int ret;
0a4a9391 6812
67516844
JO
6813 if (!perf_event_mmap_match(event, data))
6814 return;
6815
13d7a241
SE
6816 if (event->attr.mmap2) {
6817 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6818 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6819 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6820 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6821 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6822 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6823 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6824 }
6825
c980d109
ACM
6826 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6827 ret = perf_output_begin(&handle, event,
a7ac67ea 6828 mmap_event->event_id.header.size);
0a4a9391 6829 if (ret)
c980d109 6830 goto out;
0a4a9391 6831
cdd6c482
IM
6832 mmap_event->event_id.pid = perf_event_pid(event, current);
6833 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6834
cdd6c482 6835 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6836
6837 if (event->attr.mmap2) {
6838 perf_output_put(&handle, mmap_event->maj);
6839 perf_output_put(&handle, mmap_event->min);
6840 perf_output_put(&handle, mmap_event->ino);
6841 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6842 perf_output_put(&handle, mmap_event->prot);
6843 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6844 }
6845
76369139 6846 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6847 mmap_event->file_size);
c980d109
ACM
6848
6849 perf_event__output_id_sample(event, &handle, &sample);
6850
78d613eb 6851 perf_output_end(&handle);
c980d109
ACM
6852out:
6853 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6854}
6855
cdd6c482 6856static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6857{
089dd79d
PZ
6858 struct vm_area_struct *vma = mmap_event->vma;
6859 struct file *file = vma->vm_file;
13d7a241
SE
6860 int maj = 0, min = 0;
6861 u64 ino = 0, gen = 0;
f972eb63 6862 u32 prot = 0, flags = 0;
0a4a9391
PZ
6863 unsigned int size;
6864 char tmp[16];
6865 char *buf = NULL;
2c42cfbf 6866 char *name;
413ee3b4 6867
0b3589be
PZ
6868 if (vma->vm_flags & VM_READ)
6869 prot |= PROT_READ;
6870 if (vma->vm_flags & VM_WRITE)
6871 prot |= PROT_WRITE;
6872 if (vma->vm_flags & VM_EXEC)
6873 prot |= PROT_EXEC;
6874
6875 if (vma->vm_flags & VM_MAYSHARE)
6876 flags = MAP_SHARED;
6877 else
6878 flags = MAP_PRIVATE;
6879
6880 if (vma->vm_flags & VM_DENYWRITE)
6881 flags |= MAP_DENYWRITE;
6882 if (vma->vm_flags & VM_MAYEXEC)
6883 flags |= MAP_EXECUTABLE;
6884 if (vma->vm_flags & VM_LOCKED)
6885 flags |= MAP_LOCKED;
6886 if (vma->vm_flags & VM_HUGETLB)
6887 flags |= MAP_HUGETLB;
6888
0a4a9391 6889 if (file) {
13d7a241
SE
6890 struct inode *inode;
6891 dev_t dev;
3ea2f2b9 6892
2c42cfbf 6893 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6894 if (!buf) {
c7e548b4
ON
6895 name = "//enomem";
6896 goto cpy_name;
0a4a9391 6897 }
413ee3b4 6898 /*
3ea2f2b9 6899 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6900 * need to add enough zero bytes after the string to handle
6901 * the 64bit alignment we do later.
6902 */
9bf39ab2 6903 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6904 if (IS_ERR(name)) {
c7e548b4
ON
6905 name = "//toolong";
6906 goto cpy_name;
0a4a9391 6907 }
13d7a241
SE
6908 inode = file_inode(vma->vm_file);
6909 dev = inode->i_sb->s_dev;
6910 ino = inode->i_ino;
6911 gen = inode->i_generation;
6912 maj = MAJOR(dev);
6913 min = MINOR(dev);
f972eb63 6914
c7e548b4 6915 goto got_name;
0a4a9391 6916 } else {
fbe26abe
JO
6917 if (vma->vm_ops && vma->vm_ops->name) {
6918 name = (char *) vma->vm_ops->name(vma);
6919 if (name)
6920 goto cpy_name;
6921 }
6922
2c42cfbf 6923 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6924 if (name)
6925 goto cpy_name;
089dd79d 6926
32c5fb7e 6927 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6928 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6929 name = "[heap]";
6930 goto cpy_name;
32c5fb7e
ON
6931 }
6932 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6933 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6934 name = "[stack]";
6935 goto cpy_name;
089dd79d
PZ
6936 }
6937
c7e548b4
ON
6938 name = "//anon";
6939 goto cpy_name;
0a4a9391
PZ
6940 }
6941
c7e548b4
ON
6942cpy_name:
6943 strlcpy(tmp, name, sizeof(tmp));
6944 name = tmp;
0a4a9391 6945got_name:
2c42cfbf
PZ
6946 /*
6947 * Since our buffer works in 8 byte units we need to align our string
6948 * size to a multiple of 8. However, we must guarantee the tail end is
6949 * zero'd out to avoid leaking random bits to userspace.
6950 */
6951 size = strlen(name)+1;
6952 while (!IS_ALIGNED(size, sizeof(u64)))
6953 name[size++] = '\0';
0a4a9391
PZ
6954
6955 mmap_event->file_name = name;
6956 mmap_event->file_size = size;
13d7a241
SE
6957 mmap_event->maj = maj;
6958 mmap_event->min = min;
6959 mmap_event->ino = ino;
6960 mmap_event->ino_generation = gen;
f972eb63
PZ
6961 mmap_event->prot = prot;
6962 mmap_event->flags = flags;
0a4a9391 6963
2fe85427
SE
6964 if (!(vma->vm_flags & VM_EXEC))
6965 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6966
cdd6c482 6967 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6968
aab5b71e 6969 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6970 mmap_event,
6971 NULL);
665c2142 6972
0a4a9391
PZ
6973 kfree(buf);
6974}
6975
375637bc
AS
6976/*
6977 * Check whether inode and address range match filter criteria.
6978 */
6979static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6980 struct file *file, unsigned long offset,
6981 unsigned long size)
6982{
45063097 6983 if (filter->inode != file_inode(file))
375637bc
AS
6984 return false;
6985
6986 if (filter->offset > offset + size)
6987 return false;
6988
6989 if (filter->offset + filter->size < offset)
6990 return false;
6991
6992 return true;
6993}
6994
6995static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6996{
6997 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6998 struct vm_area_struct *vma = data;
6999 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7000 struct file *file = vma->vm_file;
7001 struct perf_addr_filter *filter;
7002 unsigned int restart = 0, count = 0;
7003
7004 if (!has_addr_filter(event))
7005 return;
7006
7007 if (!file)
7008 return;
7009
7010 raw_spin_lock_irqsave(&ifh->lock, flags);
7011 list_for_each_entry(filter, &ifh->list, entry) {
7012 if (perf_addr_filter_match(filter, file, off,
7013 vma->vm_end - vma->vm_start)) {
7014 event->addr_filters_offs[count] = vma->vm_start;
7015 restart++;
7016 }
7017
7018 count++;
7019 }
7020
7021 if (restart)
7022 event->addr_filters_gen++;
7023 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7024
7025 if (restart)
767ae086 7026 perf_event_stop(event, 1);
375637bc
AS
7027}
7028
7029/*
7030 * Adjust all task's events' filters to the new vma
7031 */
7032static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7033{
7034 struct perf_event_context *ctx;
7035 int ctxn;
7036
12b40a23
MP
7037 /*
7038 * Data tracing isn't supported yet and as such there is no need
7039 * to keep track of anything that isn't related to executable code:
7040 */
7041 if (!(vma->vm_flags & VM_EXEC))
7042 return;
7043
375637bc
AS
7044 rcu_read_lock();
7045 for_each_task_context_nr(ctxn) {
7046 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7047 if (!ctx)
7048 continue;
7049
aab5b71e 7050 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7051 }
7052 rcu_read_unlock();
7053}
7054
3af9e859 7055void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7056{
9ee318a7
PZ
7057 struct perf_mmap_event mmap_event;
7058
cdd6c482 7059 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7060 return;
7061
7062 mmap_event = (struct perf_mmap_event){
089dd79d 7063 .vma = vma,
573402db
PZ
7064 /* .file_name */
7065 /* .file_size */
cdd6c482 7066 .event_id = {
573402db 7067 .header = {
cdd6c482 7068 .type = PERF_RECORD_MMAP,
39447b38 7069 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7070 /* .size */
7071 },
7072 /* .pid */
7073 /* .tid */
089dd79d
PZ
7074 .start = vma->vm_start,
7075 .len = vma->vm_end - vma->vm_start,
3a0304e9 7076 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7077 },
13d7a241
SE
7078 /* .maj (attr_mmap2 only) */
7079 /* .min (attr_mmap2 only) */
7080 /* .ino (attr_mmap2 only) */
7081 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7082 /* .prot (attr_mmap2 only) */
7083 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7084 };
7085
375637bc 7086 perf_addr_filters_adjust(vma);
cdd6c482 7087 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7088}
7089
68db7e98
AS
7090void perf_event_aux_event(struct perf_event *event, unsigned long head,
7091 unsigned long size, u64 flags)
7092{
7093 struct perf_output_handle handle;
7094 struct perf_sample_data sample;
7095 struct perf_aux_event {
7096 struct perf_event_header header;
7097 u64 offset;
7098 u64 size;
7099 u64 flags;
7100 } rec = {
7101 .header = {
7102 .type = PERF_RECORD_AUX,
7103 .misc = 0,
7104 .size = sizeof(rec),
7105 },
7106 .offset = head,
7107 .size = size,
7108 .flags = flags,
7109 };
7110 int ret;
7111
7112 perf_event_header__init_id(&rec.header, &sample, event);
7113 ret = perf_output_begin(&handle, event, rec.header.size);
7114
7115 if (ret)
7116 return;
7117
7118 perf_output_put(&handle, rec);
7119 perf_event__output_id_sample(event, &handle, &sample);
7120
7121 perf_output_end(&handle);
7122}
7123
f38b0dbb
KL
7124/*
7125 * Lost/dropped samples logging
7126 */
7127void perf_log_lost_samples(struct perf_event *event, u64 lost)
7128{
7129 struct perf_output_handle handle;
7130 struct perf_sample_data sample;
7131 int ret;
7132
7133 struct {
7134 struct perf_event_header header;
7135 u64 lost;
7136 } lost_samples_event = {
7137 .header = {
7138 .type = PERF_RECORD_LOST_SAMPLES,
7139 .misc = 0,
7140 .size = sizeof(lost_samples_event),
7141 },
7142 .lost = lost,
7143 };
7144
7145 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7146
7147 ret = perf_output_begin(&handle, event,
7148 lost_samples_event.header.size);
7149 if (ret)
7150 return;
7151
7152 perf_output_put(&handle, lost_samples_event);
7153 perf_event__output_id_sample(event, &handle, &sample);
7154 perf_output_end(&handle);
7155}
7156
45ac1403
AH
7157/*
7158 * context_switch tracking
7159 */
7160
7161struct perf_switch_event {
7162 struct task_struct *task;
7163 struct task_struct *next_prev;
7164
7165 struct {
7166 struct perf_event_header header;
7167 u32 next_prev_pid;
7168 u32 next_prev_tid;
7169 } event_id;
7170};
7171
7172static int perf_event_switch_match(struct perf_event *event)
7173{
7174 return event->attr.context_switch;
7175}
7176
7177static void perf_event_switch_output(struct perf_event *event, void *data)
7178{
7179 struct perf_switch_event *se = data;
7180 struct perf_output_handle handle;
7181 struct perf_sample_data sample;
7182 int ret;
7183
7184 if (!perf_event_switch_match(event))
7185 return;
7186
7187 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7188 if (event->ctx->task) {
7189 se->event_id.header.type = PERF_RECORD_SWITCH;
7190 se->event_id.header.size = sizeof(se->event_id.header);
7191 } else {
7192 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7193 se->event_id.header.size = sizeof(se->event_id);
7194 se->event_id.next_prev_pid =
7195 perf_event_pid(event, se->next_prev);
7196 se->event_id.next_prev_tid =
7197 perf_event_tid(event, se->next_prev);
7198 }
7199
7200 perf_event_header__init_id(&se->event_id.header, &sample, event);
7201
7202 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7203 if (ret)
7204 return;
7205
7206 if (event->ctx->task)
7207 perf_output_put(&handle, se->event_id.header);
7208 else
7209 perf_output_put(&handle, se->event_id);
7210
7211 perf_event__output_id_sample(event, &handle, &sample);
7212
7213 perf_output_end(&handle);
7214}
7215
7216static void perf_event_switch(struct task_struct *task,
7217 struct task_struct *next_prev, bool sched_in)
7218{
7219 struct perf_switch_event switch_event;
7220
7221 /* N.B. caller checks nr_switch_events != 0 */
7222
7223 switch_event = (struct perf_switch_event){
7224 .task = task,
7225 .next_prev = next_prev,
7226 .event_id = {
7227 .header = {
7228 /* .type */
7229 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7230 /* .size */
7231 },
7232 /* .next_prev_pid */
7233 /* .next_prev_tid */
7234 },
7235 };
7236
aab5b71e 7237 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7238 &switch_event,
7239 NULL);
7240}
7241
a78ac325
PZ
7242/*
7243 * IRQ throttle logging
7244 */
7245
cdd6c482 7246static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7247{
7248 struct perf_output_handle handle;
c980d109 7249 struct perf_sample_data sample;
a78ac325
PZ
7250 int ret;
7251
7252 struct {
7253 struct perf_event_header header;
7254 u64 time;
cca3f454 7255 u64 id;
7f453c24 7256 u64 stream_id;
a78ac325
PZ
7257 } throttle_event = {
7258 .header = {
cdd6c482 7259 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7260 .misc = 0,
7261 .size = sizeof(throttle_event),
7262 },
34f43927 7263 .time = perf_event_clock(event),
cdd6c482
IM
7264 .id = primary_event_id(event),
7265 .stream_id = event->id,
a78ac325
PZ
7266 };
7267
966ee4d6 7268 if (enable)
cdd6c482 7269 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7270
c980d109
ACM
7271 perf_event_header__init_id(&throttle_event.header, &sample, event);
7272
7273 ret = perf_output_begin(&handle, event,
a7ac67ea 7274 throttle_event.header.size);
a78ac325
PZ
7275 if (ret)
7276 return;
7277
7278 perf_output_put(&handle, throttle_event);
c980d109 7279 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7280 perf_output_end(&handle);
7281}
7282
8d4e6c4c
AS
7283void perf_event_itrace_started(struct perf_event *event)
7284{
7285 event->attach_state |= PERF_ATTACH_ITRACE;
7286}
7287
ec0d7729
AS
7288static void perf_log_itrace_start(struct perf_event *event)
7289{
7290 struct perf_output_handle handle;
7291 struct perf_sample_data sample;
7292 struct perf_aux_event {
7293 struct perf_event_header header;
7294 u32 pid;
7295 u32 tid;
7296 } rec;
7297 int ret;
7298
7299 if (event->parent)
7300 event = event->parent;
7301
7302 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7303 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7304 return;
7305
ec0d7729
AS
7306 rec.header.type = PERF_RECORD_ITRACE_START;
7307 rec.header.misc = 0;
7308 rec.header.size = sizeof(rec);
7309 rec.pid = perf_event_pid(event, current);
7310 rec.tid = perf_event_tid(event, current);
7311
7312 perf_event_header__init_id(&rec.header, &sample, event);
7313 ret = perf_output_begin(&handle, event, rec.header.size);
7314
7315 if (ret)
7316 return;
7317
7318 perf_output_put(&handle, rec);
7319 perf_event__output_id_sample(event, &handle, &sample);
7320
7321 perf_output_end(&handle);
7322}
7323
475113d9
JO
7324static int
7325__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7326{
cdd6c482 7327 struct hw_perf_event *hwc = &event->hw;
79f14641 7328 int ret = 0;
475113d9 7329 u64 seq;
96398826 7330
e050e3f0
SE
7331 seq = __this_cpu_read(perf_throttled_seq);
7332 if (seq != hwc->interrupts_seq) {
7333 hwc->interrupts_seq = seq;
7334 hwc->interrupts = 1;
7335 } else {
7336 hwc->interrupts++;
7337 if (unlikely(throttle
7338 && hwc->interrupts >= max_samples_per_tick)) {
7339 __this_cpu_inc(perf_throttled_count);
555e0c1e 7340 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7341 hwc->interrupts = MAX_INTERRUPTS;
7342 perf_log_throttle(event, 0);
a78ac325
PZ
7343 ret = 1;
7344 }
e050e3f0 7345 }
60db5e09 7346
cdd6c482 7347 if (event->attr.freq) {
def0a9b2 7348 u64 now = perf_clock();
abd50713 7349 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7350
abd50713 7351 hwc->freq_time_stamp = now;
bd2b5b12 7352
abd50713 7353 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7354 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7355 }
7356
475113d9
JO
7357 return ret;
7358}
7359
7360int perf_event_account_interrupt(struct perf_event *event)
7361{
7362 return __perf_event_account_interrupt(event, 1);
7363}
7364
7365/*
7366 * Generic event overflow handling, sampling.
7367 */
7368
7369static int __perf_event_overflow(struct perf_event *event,
7370 int throttle, struct perf_sample_data *data,
7371 struct pt_regs *regs)
7372{
7373 int events = atomic_read(&event->event_limit);
7374 int ret = 0;
7375
7376 /*
7377 * Non-sampling counters might still use the PMI to fold short
7378 * hardware counters, ignore those.
7379 */
7380 if (unlikely(!is_sampling_event(event)))
7381 return 0;
7382
7383 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7384
2023b359
PZ
7385 /*
7386 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7387 * events
2023b359
PZ
7388 */
7389
cdd6c482
IM
7390 event->pending_kill = POLL_IN;
7391 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7392 ret = 1;
cdd6c482 7393 event->pending_kill = POLL_HUP;
5aab90ce
JO
7394
7395 perf_event_disable_inatomic(event);
79f14641
PZ
7396 }
7397
aa6a5f3c 7398 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7399
fed66e2c 7400 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7401 event->pending_wakeup = 1;
7402 irq_work_queue(&event->pending);
f506b3dc
PZ
7403 }
7404
79f14641 7405 return ret;
f6c7d5fe
PZ
7406}
7407
a8b0ca17 7408int perf_event_overflow(struct perf_event *event,
5622f295
MM
7409 struct perf_sample_data *data,
7410 struct pt_regs *regs)
850bc73f 7411{
a8b0ca17 7412 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7413}
7414
15dbf27c 7415/*
cdd6c482 7416 * Generic software event infrastructure
15dbf27c
PZ
7417 */
7418
b28ab83c
PZ
7419struct swevent_htable {
7420 struct swevent_hlist *swevent_hlist;
7421 struct mutex hlist_mutex;
7422 int hlist_refcount;
7423
7424 /* Recursion avoidance in each contexts */
7425 int recursion[PERF_NR_CONTEXTS];
7426};
7427
7428static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7429
7b4b6658 7430/*
cdd6c482
IM
7431 * We directly increment event->count and keep a second value in
7432 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7433 * is kept in the range [-sample_period, 0] so that we can use the
7434 * sign as trigger.
7435 */
7436
ab573844 7437u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7438{
cdd6c482 7439 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7440 u64 period = hwc->last_period;
7441 u64 nr, offset;
7442 s64 old, val;
7443
7444 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7445
7446again:
e7850595 7447 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7448 if (val < 0)
7449 return 0;
15dbf27c 7450
7b4b6658
PZ
7451 nr = div64_u64(period + val, period);
7452 offset = nr * period;
7453 val -= offset;
e7850595 7454 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7455 goto again;
15dbf27c 7456
7b4b6658 7457 return nr;
15dbf27c
PZ
7458}
7459
0cff784a 7460static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7461 struct perf_sample_data *data,
5622f295 7462 struct pt_regs *regs)
15dbf27c 7463{
cdd6c482 7464 struct hw_perf_event *hwc = &event->hw;
850bc73f 7465 int throttle = 0;
15dbf27c 7466
0cff784a
PZ
7467 if (!overflow)
7468 overflow = perf_swevent_set_period(event);
15dbf27c 7469
7b4b6658
PZ
7470 if (hwc->interrupts == MAX_INTERRUPTS)
7471 return;
15dbf27c 7472
7b4b6658 7473 for (; overflow; overflow--) {
a8b0ca17 7474 if (__perf_event_overflow(event, throttle,
5622f295 7475 data, regs)) {
7b4b6658
PZ
7476 /*
7477 * We inhibit the overflow from happening when
7478 * hwc->interrupts == MAX_INTERRUPTS.
7479 */
7480 break;
7481 }
cf450a73 7482 throttle = 1;
7b4b6658 7483 }
15dbf27c
PZ
7484}
7485
a4eaf7f1 7486static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7487 struct perf_sample_data *data,
5622f295 7488 struct pt_regs *regs)
7b4b6658 7489{
cdd6c482 7490 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7491
e7850595 7492 local64_add(nr, &event->count);
d6d020e9 7493
0cff784a
PZ
7494 if (!regs)
7495 return;
7496
6c7e550f 7497 if (!is_sampling_event(event))
7b4b6658 7498 return;
d6d020e9 7499
5d81e5cf
AV
7500 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7501 data->period = nr;
7502 return perf_swevent_overflow(event, 1, data, regs);
7503 } else
7504 data->period = event->hw.last_period;
7505
0cff784a 7506 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7507 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7508
e7850595 7509 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7510 return;
df1a132b 7511
a8b0ca17 7512 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7513}
7514
f5ffe02e
FW
7515static int perf_exclude_event(struct perf_event *event,
7516 struct pt_regs *regs)
7517{
a4eaf7f1 7518 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7519 return 1;
a4eaf7f1 7520
f5ffe02e
FW
7521 if (regs) {
7522 if (event->attr.exclude_user && user_mode(regs))
7523 return 1;
7524
7525 if (event->attr.exclude_kernel && !user_mode(regs))
7526 return 1;
7527 }
7528
7529 return 0;
7530}
7531
cdd6c482 7532static int perf_swevent_match(struct perf_event *event,
1c432d89 7533 enum perf_type_id type,
6fb2915d
LZ
7534 u32 event_id,
7535 struct perf_sample_data *data,
7536 struct pt_regs *regs)
15dbf27c 7537{
cdd6c482 7538 if (event->attr.type != type)
a21ca2ca 7539 return 0;
f5ffe02e 7540
cdd6c482 7541 if (event->attr.config != event_id)
15dbf27c
PZ
7542 return 0;
7543
f5ffe02e
FW
7544 if (perf_exclude_event(event, regs))
7545 return 0;
15dbf27c
PZ
7546
7547 return 1;
7548}
7549
76e1d904
FW
7550static inline u64 swevent_hash(u64 type, u32 event_id)
7551{
7552 u64 val = event_id | (type << 32);
7553
7554 return hash_64(val, SWEVENT_HLIST_BITS);
7555}
7556
49f135ed
FW
7557static inline struct hlist_head *
7558__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7559{
49f135ed
FW
7560 u64 hash = swevent_hash(type, event_id);
7561
7562 return &hlist->heads[hash];
7563}
76e1d904 7564
49f135ed
FW
7565/* For the read side: events when they trigger */
7566static inline struct hlist_head *
b28ab83c 7567find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7568{
7569 struct swevent_hlist *hlist;
76e1d904 7570
b28ab83c 7571 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7572 if (!hlist)
7573 return NULL;
7574
49f135ed
FW
7575 return __find_swevent_head(hlist, type, event_id);
7576}
7577
7578/* For the event head insertion and removal in the hlist */
7579static inline struct hlist_head *
b28ab83c 7580find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7581{
7582 struct swevent_hlist *hlist;
7583 u32 event_id = event->attr.config;
7584 u64 type = event->attr.type;
7585
7586 /*
7587 * Event scheduling is always serialized against hlist allocation
7588 * and release. Which makes the protected version suitable here.
7589 * The context lock guarantees that.
7590 */
b28ab83c 7591 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7592 lockdep_is_held(&event->ctx->lock));
7593 if (!hlist)
7594 return NULL;
7595
7596 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7597}
7598
7599static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7600 u64 nr,
76e1d904
FW
7601 struct perf_sample_data *data,
7602 struct pt_regs *regs)
15dbf27c 7603{
4a32fea9 7604 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7605 struct perf_event *event;
76e1d904 7606 struct hlist_head *head;
15dbf27c 7607
76e1d904 7608 rcu_read_lock();
b28ab83c 7609 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7610 if (!head)
7611 goto end;
7612
b67bfe0d 7613 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7614 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7615 perf_swevent_event(event, nr, data, regs);
15dbf27c 7616 }
76e1d904
FW
7617end:
7618 rcu_read_unlock();
15dbf27c
PZ
7619}
7620
86038c5e
PZI
7621DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7622
4ed7c92d 7623int perf_swevent_get_recursion_context(void)
96f6d444 7624{
4a32fea9 7625 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7626
b28ab83c 7627 return get_recursion_context(swhash->recursion);
96f6d444 7628}
645e8cc0 7629EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7630
98b5c2c6 7631void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7632{
4a32fea9 7633 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7634
b28ab83c 7635 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7636}
15dbf27c 7637
86038c5e 7638void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7639{
a4234bfc 7640 struct perf_sample_data data;
4ed7c92d 7641
86038c5e 7642 if (WARN_ON_ONCE(!regs))
4ed7c92d 7643 return;
a4234bfc 7644
fd0d000b 7645 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7646 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7647}
7648
7649void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7650{
7651 int rctx;
7652
7653 preempt_disable_notrace();
7654 rctx = perf_swevent_get_recursion_context();
7655 if (unlikely(rctx < 0))
7656 goto fail;
7657
7658 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7659
7660 perf_swevent_put_recursion_context(rctx);
86038c5e 7661fail:
1c024eca 7662 preempt_enable_notrace();
b8e83514
PZ
7663}
7664
cdd6c482 7665static void perf_swevent_read(struct perf_event *event)
15dbf27c 7666{
15dbf27c
PZ
7667}
7668
a4eaf7f1 7669static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7670{
4a32fea9 7671 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7672 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7673 struct hlist_head *head;
7674
6c7e550f 7675 if (is_sampling_event(event)) {
7b4b6658 7676 hwc->last_period = hwc->sample_period;
cdd6c482 7677 perf_swevent_set_period(event);
7b4b6658 7678 }
76e1d904 7679
a4eaf7f1
PZ
7680 hwc->state = !(flags & PERF_EF_START);
7681
b28ab83c 7682 head = find_swevent_head(swhash, event);
12ca6ad2 7683 if (WARN_ON_ONCE(!head))
76e1d904
FW
7684 return -EINVAL;
7685
7686 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7687 perf_event_update_userpage(event);
76e1d904 7688
15dbf27c
PZ
7689 return 0;
7690}
7691
a4eaf7f1 7692static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7693{
76e1d904 7694 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7695}
7696
a4eaf7f1 7697static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7698{
a4eaf7f1 7699 event->hw.state = 0;
d6d020e9 7700}
aa9c4c0f 7701
a4eaf7f1 7702static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7703{
a4eaf7f1 7704 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7705}
7706
49f135ed
FW
7707/* Deref the hlist from the update side */
7708static inline struct swevent_hlist *
b28ab83c 7709swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7710{
b28ab83c
PZ
7711 return rcu_dereference_protected(swhash->swevent_hlist,
7712 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7713}
7714
b28ab83c 7715static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7716{
b28ab83c 7717 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7718
49f135ed 7719 if (!hlist)
76e1d904
FW
7720 return;
7721
70691d4a 7722 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7723 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7724}
7725
3b364d7b 7726static void swevent_hlist_put_cpu(int cpu)
76e1d904 7727{
b28ab83c 7728 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7729
b28ab83c 7730 mutex_lock(&swhash->hlist_mutex);
76e1d904 7731
b28ab83c
PZ
7732 if (!--swhash->hlist_refcount)
7733 swevent_hlist_release(swhash);
76e1d904 7734
b28ab83c 7735 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7736}
7737
3b364d7b 7738static void swevent_hlist_put(void)
76e1d904
FW
7739{
7740 int cpu;
7741
76e1d904 7742 for_each_possible_cpu(cpu)
3b364d7b 7743 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7744}
7745
3b364d7b 7746static int swevent_hlist_get_cpu(int cpu)
76e1d904 7747{
b28ab83c 7748 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7749 int err = 0;
7750
b28ab83c 7751 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
7752 if (!swevent_hlist_deref(swhash) &&
7753 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
7754 struct swevent_hlist *hlist;
7755
7756 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7757 if (!hlist) {
7758 err = -ENOMEM;
7759 goto exit;
7760 }
b28ab83c 7761 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7762 }
b28ab83c 7763 swhash->hlist_refcount++;
9ed6060d 7764exit:
b28ab83c 7765 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7766
7767 return err;
7768}
7769
3b364d7b 7770static int swevent_hlist_get(void)
76e1d904 7771{
3b364d7b 7772 int err, cpu, failed_cpu;
76e1d904 7773
a63fbed7 7774 mutex_lock(&pmus_lock);
76e1d904 7775 for_each_possible_cpu(cpu) {
3b364d7b 7776 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7777 if (err) {
7778 failed_cpu = cpu;
7779 goto fail;
7780 }
7781 }
a63fbed7 7782 mutex_unlock(&pmus_lock);
76e1d904 7783 return 0;
9ed6060d 7784fail:
76e1d904
FW
7785 for_each_possible_cpu(cpu) {
7786 if (cpu == failed_cpu)
7787 break;
3b364d7b 7788 swevent_hlist_put_cpu(cpu);
76e1d904 7789 }
a63fbed7 7790 mutex_unlock(&pmus_lock);
76e1d904
FW
7791 return err;
7792}
7793
c5905afb 7794struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7795
b0a873eb
PZ
7796static void sw_perf_event_destroy(struct perf_event *event)
7797{
7798 u64 event_id = event->attr.config;
95476b64 7799
b0a873eb
PZ
7800 WARN_ON(event->parent);
7801
c5905afb 7802 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7803 swevent_hlist_put();
b0a873eb
PZ
7804}
7805
7806static int perf_swevent_init(struct perf_event *event)
7807{
8176cced 7808 u64 event_id = event->attr.config;
b0a873eb
PZ
7809
7810 if (event->attr.type != PERF_TYPE_SOFTWARE)
7811 return -ENOENT;
7812
2481c5fa
SE
7813 /*
7814 * no branch sampling for software events
7815 */
7816 if (has_branch_stack(event))
7817 return -EOPNOTSUPP;
7818
b0a873eb
PZ
7819 switch (event_id) {
7820 case PERF_COUNT_SW_CPU_CLOCK:
7821 case PERF_COUNT_SW_TASK_CLOCK:
7822 return -ENOENT;
7823
7824 default:
7825 break;
7826 }
7827
ce677831 7828 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7829 return -ENOENT;
7830
7831 if (!event->parent) {
7832 int err;
7833
3b364d7b 7834 err = swevent_hlist_get();
b0a873eb
PZ
7835 if (err)
7836 return err;
7837
c5905afb 7838 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7839 event->destroy = sw_perf_event_destroy;
7840 }
7841
7842 return 0;
7843}
7844
7845static struct pmu perf_swevent = {
89a1e187 7846 .task_ctx_nr = perf_sw_context,
95476b64 7847
34f43927
PZ
7848 .capabilities = PERF_PMU_CAP_NO_NMI,
7849
b0a873eb 7850 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7851 .add = perf_swevent_add,
7852 .del = perf_swevent_del,
7853 .start = perf_swevent_start,
7854 .stop = perf_swevent_stop,
1c024eca 7855 .read = perf_swevent_read,
1c024eca
PZ
7856};
7857
b0a873eb
PZ
7858#ifdef CONFIG_EVENT_TRACING
7859
1c024eca
PZ
7860static int perf_tp_filter_match(struct perf_event *event,
7861 struct perf_sample_data *data)
7862{
7e3f977e 7863 void *record = data->raw->frag.data;
1c024eca 7864
b71b437e
PZ
7865 /* only top level events have filters set */
7866 if (event->parent)
7867 event = event->parent;
7868
1c024eca
PZ
7869 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7870 return 1;
7871 return 0;
7872}
7873
7874static int perf_tp_event_match(struct perf_event *event,
7875 struct perf_sample_data *data,
7876 struct pt_regs *regs)
7877{
a0f7d0f7
FW
7878 if (event->hw.state & PERF_HES_STOPPED)
7879 return 0;
580d607c
PZ
7880 /*
7881 * All tracepoints are from kernel-space.
7882 */
7883 if (event->attr.exclude_kernel)
1c024eca
PZ
7884 return 0;
7885
7886 if (!perf_tp_filter_match(event, data))
7887 return 0;
7888
7889 return 1;
7890}
7891
85b67bcb
AS
7892void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7893 struct trace_event_call *call, u64 count,
7894 struct pt_regs *regs, struct hlist_head *head,
7895 struct task_struct *task)
7896{
e87c6bc3 7897 if (bpf_prog_array_valid(call)) {
85b67bcb 7898 *(struct pt_regs **)raw_data = regs;
e87c6bc3 7899 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
7900 perf_swevent_put_recursion_context(rctx);
7901 return;
7902 }
7903 }
7904 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 7905 rctx, task);
85b67bcb
AS
7906}
7907EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7908
1e1dcd93 7909void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 7910 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 7911 struct task_struct *task)
95476b64
FW
7912{
7913 struct perf_sample_data data;
8fd0fbbe 7914 struct perf_event *event;
1c024eca 7915
95476b64 7916 struct perf_raw_record raw = {
7e3f977e
DB
7917 .frag = {
7918 .size = entry_size,
7919 .data = record,
7920 },
95476b64
FW
7921 };
7922
1e1dcd93 7923 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7924 data.raw = &raw;
7925
1e1dcd93
AS
7926 perf_trace_buf_update(record, event_type);
7927
8fd0fbbe 7928 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7929 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7930 perf_swevent_event(event, count, &data, regs);
4f41c013 7931 }
ecc55f84 7932
e6dab5ff
AV
7933 /*
7934 * If we got specified a target task, also iterate its context and
7935 * deliver this event there too.
7936 */
7937 if (task && task != current) {
7938 struct perf_event_context *ctx;
7939 struct trace_entry *entry = record;
7940
7941 rcu_read_lock();
7942 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7943 if (!ctx)
7944 goto unlock;
7945
7946 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7947 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7948 continue;
7949 if (event->attr.config != entry->type)
7950 continue;
7951 if (perf_tp_event_match(event, &data, regs))
7952 perf_swevent_event(event, count, &data, regs);
7953 }
7954unlock:
7955 rcu_read_unlock();
7956 }
7957
ecc55f84 7958 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7959}
7960EXPORT_SYMBOL_GPL(perf_tp_event);
7961
cdd6c482 7962static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7963{
1c024eca 7964 perf_trace_destroy(event);
e077df4f
PZ
7965}
7966
b0a873eb 7967static int perf_tp_event_init(struct perf_event *event)
e077df4f 7968{
76e1d904
FW
7969 int err;
7970
b0a873eb
PZ
7971 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7972 return -ENOENT;
7973
2481c5fa
SE
7974 /*
7975 * no branch sampling for tracepoint events
7976 */
7977 if (has_branch_stack(event))
7978 return -EOPNOTSUPP;
7979
1c024eca
PZ
7980 err = perf_trace_init(event);
7981 if (err)
b0a873eb 7982 return err;
e077df4f 7983
cdd6c482 7984 event->destroy = tp_perf_event_destroy;
e077df4f 7985
b0a873eb
PZ
7986 return 0;
7987}
7988
7989static struct pmu perf_tracepoint = {
89a1e187
PZ
7990 .task_ctx_nr = perf_sw_context,
7991
b0a873eb 7992 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7993 .add = perf_trace_add,
7994 .del = perf_trace_del,
7995 .start = perf_swevent_start,
7996 .stop = perf_swevent_stop,
b0a873eb 7997 .read = perf_swevent_read,
b0a873eb
PZ
7998};
7999
33ea4b24 8000#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
8001/*
8002 * Flags in config, used by dynamic PMU kprobe and uprobe
8003 * The flags should match following PMU_FORMAT_ATTR().
8004 *
8005 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8006 * if not set, create kprobe/uprobe
8007 */
8008enum perf_probe_config {
8009 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
8010};
8011
8012PMU_FORMAT_ATTR(retprobe, "config:0");
8013
8014static struct attribute *probe_attrs[] = {
8015 &format_attr_retprobe.attr,
8016 NULL,
8017};
8018
8019static struct attribute_group probe_format_group = {
8020 .name = "format",
8021 .attrs = probe_attrs,
8022};
8023
8024static const struct attribute_group *probe_attr_groups[] = {
8025 &probe_format_group,
8026 NULL,
8027};
33ea4b24 8028#endif
e12f03d7 8029
33ea4b24 8030#ifdef CONFIG_KPROBE_EVENTS
e12f03d7
SL
8031static int perf_kprobe_event_init(struct perf_event *event);
8032static struct pmu perf_kprobe = {
8033 .task_ctx_nr = perf_sw_context,
8034 .event_init = perf_kprobe_event_init,
8035 .add = perf_trace_add,
8036 .del = perf_trace_del,
8037 .start = perf_swevent_start,
8038 .stop = perf_swevent_stop,
8039 .read = perf_swevent_read,
8040 .attr_groups = probe_attr_groups,
8041};
8042
8043static int perf_kprobe_event_init(struct perf_event *event)
8044{
8045 int err;
8046 bool is_retprobe;
8047
8048 if (event->attr.type != perf_kprobe.type)
8049 return -ENOENT;
8050 /*
8051 * no branch sampling for probe events
8052 */
8053 if (has_branch_stack(event))
8054 return -EOPNOTSUPP;
8055
8056 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8057 err = perf_kprobe_init(event, is_retprobe);
8058 if (err)
8059 return err;
8060
8061 event->destroy = perf_kprobe_destroy;
8062
8063 return 0;
8064}
8065#endif /* CONFIG_KPROBE_EVENTS */
8066
33ea4b24
SL
8067#ifdef CONFIG_UPROBE_EVENTS
8068static int perf_uprobe_event_init(struct perf_event *event);
8069static struct pmu perf_uprobe = {
8070 .task_ctx_nr = perf_sw_context,
8071 .event_init = perf_uprobe_event_init,
8072 .add = perf_trace_add,
8073 .del = perf_trace_del,
8074 .start = perf_swevent_start,
8075 .stop = perf_swevent_stop,
8076 .read = perf_swevent_read,
8077 .attr_groups = probe_attr_groups,
8078};
8079
8080static int perf_uprobe_event_init(struct perf_event *event)
8081{
8082 int err;
8083 bool is_retprobe;
8084
8085 if (event->attr.type != perf_uprobe.type)
8086 return -ENOENT;
8087 /*
8088 * no branch sampling for probe events
8089 */
8090 if (has_branch_stack(event))
8091 return -EOPNOTSUPP;
8092
8093 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8094 err = perf_uprobe_init(event, is_retprobe);
8095 if (err)
8096 return err;
8097
8098 event->destroy = perf_uprobe_destroy;
8099
8100 return 0;
8101}
8102#endif /* CONFIG_UPROBE_EVENTS */
8103
b0a873eb
PZ
8104static inline void perf_tp_register(void)
8105{
2e80a82a 8106 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
8107#ifdef CONFIG_KPROBE_EVENTS
8108 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8109#endif
33ea4b24
SL
8110#ifdef CONFIG_UPROBE_EVENTS
8111 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8112#endif
e077df4f 8113}
6fb2915d 8114
6fb2915d
LZ
8115static void perf_event_free_filter(struct perf_event *event)
8116{
8117 ftrace_profile_free_filter(event);
8118}
8119
aa6a5f3c
AS
8120#ifdef CONFIG_BPF_SYSCALL
8121static void bpf_overflow_handler(struct perf_event *event,
8122 struct perf_sample_data *data,
8123 struct pt_regs *regs)
8124{
8125 struct bpf_perf_event_data_kern ctx = {
8126 .data = data,
7d9285e8 8127 .event = event,
aa6a5f3c
AS
8128 };
8129 int ret = 0;
8130
c895f6f7 8131 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
8132 preempt_disable();
8133 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8134 goto out;
8135 rcu_read_lock();
88575199 8136 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8137 rcu_read_unlock();
8138out:
8139 __this_cpu_dec(bpf_prog_active);
8140 preempt_enable();
8141 if (!ret)
8142 return;
8143
8144 event->orig_overflow_handler(event, data, regs);
8145}
8146
8147static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8148{
8149 struct bpf_prog *prog;
8150
8151 if (event->overflow_handler_context)
8152 /* hw breakpoint or kernel counter */
8153 return -EINVAL;
8154
8155 if (event->prog)
8156 return -EEXIST;
8157
8158 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8159 if (IS_ERR(prog))
8160 return PTR_ERR(prog);
8161
8162 event->prog = prog;
8163 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8164 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8165 return 0;
8166}
8167
8168static void perf_event_free_bpf_handler(struct perf_event *event)
8169{
8170 struct bpf_prog *prog = event->prog;
8171
8172 if (!prog)
8173 return;
8174
8175 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8176 event->prog = NULL;
8177 bpf_prog_put(prog);
8178}
8179#else
8180static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8181{
8182 return -EOPNOTSUPP;
8183}
8184static void perf_event_free_bpf_handler(struct perf_event *event)
8185{
8186}
8187#endif
8188
e12f03d7
SL
8189/*
8190 * returns true if the event is a tracepoint, or a kprobe/upprobe created
8191 * with perf_event_open()
8192 */
8193static inline bool perf_event_is_tracing(struct perf_event *event)
8194{
8195 if (event->pmu == &perf_tracepoint)
8196 return true;
8197#ifdef CONFIG_KPROBE_EVENTS
8198 if (event->pmu == &perf_kprobe)
8199 return true;
33ea4b24
SL
8200#endif
8201#ifdef CONFIG_UPROBE_EVENTS
8202 if (event->pmu == &perf_uprobe)
8203 return true;
e12f03d7
SL
8204#endif
8205 return false;
8206}
8207
2541517c
AS
8208static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8209{
cf5f5cea 8210 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 8211 struct bpf_prog *prog;
e87c6bc3 8212 int ret;
2541517c 8213
e12f03d7 8214 if (!perf_event_is_tracing(event))
f91840a3 8215 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 8216
98b5c2c6
AS
8217 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8218 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8219 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8220 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8221 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8222 return -EINVAL;
8223
8224 prog = bpf_prog_get(prog_fd);
8225 if (IS_ERR(prog))
8226 return PTR_ERR(prog);
8227
98b5c2c6 8228 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8229 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8230 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8231 /* valid fd, but invalid bpf program type */
8232 bpf_prog_put(prog);
8233 return -EINVAL;
8234 }
8235
9802d865
JB
8236 /* Kprobe override only works for kprobes, not uprobes. */
8237 if (prog->kprobe_override &&
8238 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8239 bpf_prog_put(prog);
8240 return -EINVAL;
8241 }
8242
cf5f5cea 8243 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8244 int off = trace_event_get_offsets(event->tp_event);
8245
8246 if (prog->aux->max_ctx_offset > off) {
8247 bpf_prog_put(prog);
8248 return -EACCES;
8249 }
8250 }
2541517c 8251
e87c6bc3
YS
8252 ret = perf_event_attach_bpf_prog(event, prog);
8253 if (ret)
8254 bpf_prog_put(prog);
8255 return ret;
2541517c
AS
8256}
8257
8258static void perf_event_free_bpf_prog(struct perf_event *event)
8259{
e12f03d7 8260 if (!perf_event_is_tracing(event)) {
0b4c6841 8261 perf_event_free_bpf_handler(event);
2541517c 8262 return;
2541517c 8263 }
e87c6bc3 8264 perf_event_detach_bpf_prog(event);
2541517c
AS
8265}
8266
e077df4f 8267#else
6fb2915d 8268
b0a873eb 8269static inline void perf_tp_register(void)
e077df4f 8270{
e077df4f 8271}
6fb2915d 8272
6fb2915d
LZ
8273static void perf_event_free_filter(struct perf_event *event)
8274{
8275}
8276
2541517c
AS
8277static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8278{
8279 return -ENOENT;
8280}
8281
8282static void perf_event_free_bpf_prog(struct perf_event *event)
8283{
8284}
07b139c8 8285#endif /* CONFIG_EVENT_TRACING */
e077df4f 8286
24f1e32c 8287#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8288void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8289{
f5ffe02e
FW
8290 struct perf_sample_data sample;
8291 struct pt_regs *regs = data;
8292
fd0d000b 8293 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8294
a4eaf7f1 8295 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8296 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8297}
8298#endif
8299
375637bc
AS
8300/*
8301 * Allocate a new address filter
8302 */
8303static struct perf_addr_filter *
8304perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8305{
8306 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8307 struct perf_addr_filter *filter;
8308
8309 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8310 if (!filter)
8311 return NULL;
8312
8313 INIT_LIST_HEAD(&filter->entry);
8314 list_add_tail(&filter->entry, filters);
8315
8316 return filter;
8317}
8318
8319static void free_filters_list(struct list_head *filters)
8320{
8321 struct perf_addr_filter *filter, *iter;
8322
8323 list_for_each_entry_safe(filter, iter, filters, entry) {
8324 if (filter->inode)
8325 iput(filter->inode);
8326 list_del(&filter->entry);
8327 kfree(filter);
8328 }
8329}
8330
8331/*
8332 * Free existing address filters and optionally install new ones
8333 */
8334static void perf_addr_filters_splice(struct perf_event *event,
8335 struct list_head *head)
8336{
8337 unsigned long flags;
8338 LIST_HEAD(list);
8339
8340 if (!has_addr_filter(event))
8341 return;
8342
8343 /* don't bother with children, they don't have their own filters */
8344 if (event->parent)
8345 return;
8346
8347 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8348
8349 list_splice_init(&event->addr_filters.list, &list);
8350 if (head)
8351 list_splice(head, &event->addr_filters.list);
8352
8353 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8354
8355 free_filters_list(&list);
8356}
8357
8358/*
8359 * Scan through mm's vmas and see if one of them matches the
8360 * @filter; if so, adjust filter's address range.
8361 * Called with mm::mmap_sem down for reading.
8362 */
8363static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8364 struct mm_struct *mm)
8365{
8366 struct vm_area_struct *vma;
8367
8368 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8369 struct file *file = vma->vm_file;
8370 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8371 unsigned long vma_size = vma->vm_end - vma->vm_start;
8372
8373 if (!file)
8374 continue;
8375
8376 if (!perf_addr_filter_match(filter, file, off, vma_size))
8377 continue;
8378
8379 return vma->vm_start;
8380 }
8381
8382 return 0;
8383}
8384
8385/*
8386 * Update event's address range filters based on the
8387 * task's existing mappings, if any.
8388 */
8389static void perf_event_addr_filters_apply(struct perf_event *event)
8390{
8391 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8392 struct task_struct *task = READ_ONCE(event->ctx->task);
8393 struct perf_addr_filter *filter;
8394 struct mm_struct *mm = NULL;
8395 unsigned int count = 0;
8396 unsigned long flags;
8397
8398 /*
8399 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8400 * will stop on the parent's child_mutex that our caller is also holding
8401 */
8402 if (task == TASK_TOMBSTONE)
8403 return;
8404
6ce77bfd
AS
8405 if (!ifh->nr_file_filters)
8406 return;
8407
375637bc
AS
8408 mm = get_task_mm(event->ctx->task);
8409 if (!mm)
8410 goto restart;
8411
8412 down_read(&mm->mmap_sem);
8413
8414 raw_spin_lock_irqsave(&ifh->lock, flags);
8415 list_for_each_entry(filter, &ifh->list, entry) {
8416 event->addr_filters_offs[count] = 0;
8417
99f5bc9b
MP
8418 /*
8419 * Adjust base offset if the filter is associated to a binary
8420 * that needs to be mapped:
8421 */
8422 if (filter->inode)
375637bc
AS
8423 event->addr_filters_offs[count] =
8424 perf_addr_filter_apply(filter, mm);
8425
8426 count++;
8427 }
8428
8429 event->addr_filters_gen++;
8430 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8431
8432 up_read(&mm->mmap_sem);
8433
8434 mmput(mm);
8435
8436restart:
767ae086 8437 perf_event_stop(event, 1);
375637bc
AS
8438}
8439
8440/*
8441 * Address range filtering: limiting the data to certain
8442 * instruction address ranges. Filters are ioctl()ed to us from
8443 * userspace as ascii strings.
8444 *
8445 * Filter string format:
8446 *
8447 * ACTION RANGE_SPEC
8448 * where ACTION is one of the
8449 * * "filter": limit the trace to this region
8450 * * "start": start tracing from this address
8451 * * "stop": stop tracing at this address/region;
8452 * RANGE_SPEC is
8453 * * for kernel addresses: <start address>[/<size>]
8454 * * for object files: <start address>[/<size>]@</path/to/object/file>
8455 *
8456 * if <size> is not specified, the range is treated as a single address.
8457 */
8458enum {
e96271f3 8459 IF_ACT_NONE = -1,
375637bc
AS
8460 IF_ACT_FILTER,
8461 IF_ACT_START,
8462 IF_ACT_STOP,
8463 IF_SRC_FILE,
8464 IF_SRC_KERNEL,
8465 IF_SRC_FILEADDR,
8466 IF_SRC_KERNELADDR,
8467};
8468
8469enum {
8470 IF_STATE_ACTION = 0,
8471 IF_STATE_SOURCE,
8472 IF_STATE_END,
8473};
8474
8475static const match_table_t if_tokens = {
8476 { IF_ACT_FILTER, "filter" },
8477 { IF_ACT_START, "start" },
8478 { IF_ACT_STOP, "stop" },
8479 { IF_SRC_FILE, "%u/%u@%s" },
8480 { IF_SRC_KERNEL, "%u/%u" },
8481 { IF_SRC_FILEADDR, "%u@%s" },
8482 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8483 { IF_ACT_NONE, NULL },
375637bc
AS
8484};
8485
8486/*
8487 * Address filter string parser
8488 */
8489static int
8490perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8491 struct list_head *filters)
8492{
8493 struct perf_addr_filter *filter = NULL;
8494 char *start, *orig, *filename = NULL;
8495 struct path path;
8496 substring_t args[MAX_OPT_ARGS];
8497 int state = IF_STATE_ACTION, token;
8498 unsigned int kernel = 0;
8499 int ret = -EINVAL;
8500
8501 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8502 if (!fstr)
8503 return -ENOMEM;
8504
8505 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8506 ret = -EINVAL;
8507
8508 if (!*start)
8509 continue;
8510
8511 /* filter definition begins */
8512 if (state == IF_STATE_ACTION) {
8513 filter = perf_addr_filter_new(event, filters);
8514 if (!filter)
8515 goto fail;
8516 }
8517
8518 token = match_token(start, if_tokens, args);
8519 switch (token) {
8520 case IF_ACT_FILTER:
8521 case IF_ACT_START:
8522 filter->filter = 1;
8523
8524 case IF_ACT_STOP:
8525 if (state != IF_STATE_ACTION)
8526 goto fail;
8527
8528 state = IF_STATE_SOURCE;
8529 break;
8530
8531 case IF_SRC_KERNELADDR:
8532 case IF_SRC_KERNEL:
8533 kernel = 1;
8534
8535 case IF_SRC_FILEADDR:
8536 case IF_SRC_FILE:
8537 if (state != IF_STATE_SOURCE)
8538 goto fail;
8539
8540 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8541 filter->range = 1;
8542
8543 *args[0].to = 0;
8544 ret = kstrtoul(args[0].from, 0, &filter->offset);
8545 if (ret)
8546 goto fail;
8547
8548 if (filter->range) {
8549 *args[1].to = 0;
8550 ret = kstrtoul(args[1].from, 0, &filter->size);
8551 if (ret)
8552 goto fail;
8553 }
8554
4059ffd0
MP
8555 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8556 int fpos = filter->range ? 2 : 1;
8557
8558 filename = match_strdup(&args[fpos]);
375637bc
AS
8559 if (!filename) {
8560 ret = -ENOMEM;
8561 goto fail;
8562 }
8563 }
8564
8565 state = IF_STATE_END;
8566 break;
8567
8568 default:
8569 goto fail;
8570 }
8571
8572 /*
8573 * Filter definition is fully parsed, validate and install it.
8574 * Make sure that it doesn't contradict itself or the event's
8575 * attribute.
8576 */
8577 if (state == IF_STATE_END) {
9ccbfbb1 8578 ret = -EINVAL;
375637bc
AS
8579 if (kernel && event->attr.exclude_kernel)
8580 goto fail;
8581
8582 if (!kernel) {
8583 if (!filename)
8584 goto fail;
8585
6ce77bfd
AS
8586 /*
8587 * For now, we only support file-based filters
8588 * in per-task events; doing so for CPU-wide
8589 * events requires additional context switching
8590 * trickery, since same object code will be
8591 * mapped at different virtual addresses in
8592 * different processes.
8593 */
8594 ret = -EOPNOTSUPP;
8595 if (!event->ctx->task)
8596 goto fail_free_name;
8597
375637bc
AS
8598 /* look up the path and grab its inode */
8599 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8600 if (ret)
8601 goto fail_free_name;
8602
8603 filter->inode = igrab(d_inode(path.dentry));
8604 path_put(&path);
8605 kfree(filename);
8606 filename = NULL;
8607
8608 ret = -EINVAL;
8609 if (!filter->inode ||
8610 !S_ISREG(filter->inode->i_mode))
8611 /* free_filters_list() will iput() */
8612 goto fail;
6ce77bfd
AS
8613
8614 event->addr_filters.nr_file_filters++;
375637bc
AS
8615 }
8616
8617 /* ready to consume more filters */
8618 state = IF_STATE_ACTION;
8619 filter = NULL;
8620 }
8621 }
8622
8623 if (state != IF_STATE_ACTION)
8624 goto fail;
8625
8626 kfree(orig);
8627
8628 return 0;
8629
8630fail_free_name:
8631 kfree(filename);
8632fail:
8633 free_filters_list(filters);
8634 kfree(orig);
8635
8636 return ret;
8637}
8638
8639static int
8640perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8641{
8642 LIST_HEAD(filters);
8643 int ret;
8644
8645 /*
8646 * Since this is called in perf_ioctl() path, we're already holding
8647 * ctx::mutex.
8648 */
8649 lockdep_assert_held(&event->ctx->mutex);
8650
8651 if (WARN_ON_ONCE(event->parent))
8652 return -EINVAL;
8653
375637bc
AS
8654 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8655 if (ret)
6ce77bfd 8656 goto fail_clear_files;
375637bc
AS
8657
8658 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8659 if (ret)
8660 goto fail_free_filters;
375637bc
AS
8661
8662 /* remove existing filters, if any */
8663 perf_addr_filters_splice(event, &filters);
8664
8665 /* install new filters */
8666 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8667
6ce77bfd
AS
8668 return ret;
8669
8670fail_free_filters:
8671 free_filters_list(&filters);
8672
8673fail_clear_files:
8674 event->addr_filters.nr_file_filters = 0;
8675
375637bc
AS
8676 return ret;
8677}
8678
c796bbbe
AS
8679static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8680{
c796bbbe 8681 int ret = -EINVAL;
e12f03d7 8682 char *filter_str;
c796bbbe
AS
8683
8684 filter_str = strndup_user(arg, PAGE_SIZE);
8685 if (IS_ERR(filter_str))
8686 return PTR_ERR(filter_str);
8687
e12f03d7
SL
8688#ifdef CONFIG_EVENT_TRACING
8689 if (perf_event_is_tracing(event)) {
8690 struct perf_event_context *ctx = event->ctx;
8691
8692 /*
8693 * Beware, here be dragons!!
8694 *
8695 * the tracepoint muck will deadlock against ctx->mutex, but
8696 * the tracepoint stuff does not actually need it. So
8697 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
8698 * already have a reference on ctx.
8699 *
8700 * This can result in event getting moved to a different ctx,
8701 * but that does not affect the tracepoint state.
8702 */
8703 mutex_unlock(&ctx->mutex);
8704 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
8705 mutex_lock(&ctx->mutex);
8706 } else
8707#endif
8708 if (has_addr_filter(event))
375637bc 8709 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8710
8711 kfree(filter_str);
8712 return ret;
8713}
8714
b0a873eb
PZ
8715/*
8716 * hrtimer based swevent callback
8717 */
f29ac756 8718
b0a873eb 8719static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8720{
b0a873eb
PZ
8721 enum hrtimer_restart ret = HRTIMER_RESTART;
8722 struct perf_sample_data data;
8723 struct pt_regs *regs;
8724 struct perf_event *event;
8725 u64 period;
f29ac756 8726
b0a873eb 8727 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8728
8729 if (event->state != PERF_EVENT_STATE_ACTIVE)
8730 return HRTIMER_NORESTART;
8731
b0a873eb 8732 event->pmu->read(event);
f344011c 8733
fd0d000b 8734 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8735 regs = get_irq_regs();
8736
8737 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8738 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8739 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8740 ret = HRTIMER_NORESTART;
8741 }
24f1e32c 8742
b0a873eb
PZ
8743 period = max_t(u64, 10000, event->hw.sample_period);
8744 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8745
b0a873eb 8746 return ret;
f29ac756
PZ
8747}
8748
b0a873eb 8749static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8750{
b0a873eb 8751 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8752 s64 period;
8753
8754 if (!is_sampling_event(event))
8755 return;
f5ffe02e 8756
5d508e82
FBH
8757 period = local64_read(&hwc->period_left);
8758 if (period) {
8759 if (period < 0)
8760 period = 10000;
fa407f35 8761
5d508e82
FBH
8762 local64_set(&hwc->period_left, 0);
8763 } else {
8764 period = max_t(u64, 10000, hwc->sample_period);
8765 }
3497d206
TG
8766 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8767 HRTIMER_MODE_REL_PINNED);
24f1e32c 8768}
b0a873eb
PZ
8769
8770static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8771{
b0a873eb
PZ
8772 struct hw_perf_event *hwc = &event->hw;
8773
6c7e550f 8774 if (is_sampling_event(event)) {
b0a873eb 8775 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8776 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8777
8778 hrtimer_cancel(&hwc->hrtimer);
8779 }
24f1e32c
FW
8780}
8781
ba3dd36c
PZ
8782static void perf_swevent_init_hrtimer(struct perf_event *event)
8783{
8784 struct hw_perf_event *hwc = &event->hw;
8785
8786 if (!is_sampling_event(event))
8787 return;
8788
8789 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8790 hwc->hrtimer.function = perf_swevent_hrtimer;
8791
8792 /*
8793 * Since hrtimers have a fixed rate, we can do a static freq->period
8794 * mapping and avoid the whole period adjust feedback stuff.
8795 */
8796 if (event->attr.freq) {
8797 long freq = event->attr.sample_freq;
8798
8799 event->attr.sample_period = NSEC_PER_SEC / freq;
8800 hwc->sample_period = event->attr.sample_period;
8801 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8802 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8803 event->attr.freq = 0;
8804 }
8805}
8806
b0a873eb
PZ
8807/*
8808 * Software event: cpu wall time clock
8809 */
8810
8811static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8812{
b0a873eb
PZ
8813 s64 prev;
8814 u64 now;
8815
a4eaf7f1 8816 now = local_clock();
b0a873eb
PZ
8817 prev = local64_xchg(&event->hw.prev_count, now);
8818 local64_add(now - prev, &event->count);
24f1e32c 8819}
24f1e32c 8820
a4eaf7f1 8821static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8822{
a4eaf7f1 8823 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8824 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8825}
8826
a4eaf7f1 8827static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8828{
b0a873eb
PZ
8829 perf_swevent_cancel_hrtimer(event);
8830 cpu_clock_event_update(event);
8831}
f29ac756 8832
a4eaf7f1
PZ
8833static int cpu_clock_event_add(struct perf_event *event, int flags)
8834{
8835 if (flags & PERF_EF_START)
8836 cpu_clock_event_start(event, flags);
6a694a60 8837 perf_event_update_userpage(event);
a4eaf7f1
PZ
8838
8839 return 0;
8840}
8841
8842static void cpu_clock_event_del(struct perf_event *event, int flags)
8843{
8844 cpu_clock_event_stop(event, flags);
8845}
8846
b0a873eb
PZ
8847static void cpu_clock_event_read(struct perf_event *event)
8848{
8849 cpu_clock_event_update(event);
8850}
f344011c 8851
b0a873eb
PZ
8852static int cpu_clock_event_init(struct perf_event *event)
8853{
8854 if (event->attr.type != PERF_TYPE_SOFTWARE)
8855 return -ENOENT;
8856
8857 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8858 return -ENOENT;
8859
2481c5fa
SE
8860 /*
8861 * no branch sampling for software events
8862 */
8863 if (has_branch_stack(event))
8864 return -EOPNOTSUPP;
8865
ba3dd36c
PZ
8866 perf_swevent_init_hrtimer(event);
8867
b0a873eb 8868 return 0;
f29ac756
PZ
8869}
8870
b0a873eb 8871static struct pmu perf_cpu_clock = {
89a1e187
PZ
8872 .task_ctx_nr = perf_sw_context,
8873
34f43927
PZ
8874 .capabilities = PERF_PMU_CAP_NO_NMI,
8875
b0a873eb 8876 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8877 .add = cpu_clock_event_add,
8878 .del = cpu_clock_event_del,
8879 .start = cpu_clock_event_start,
8880 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8881 .read = cpu_clock_event_read,
8882};
8883
8884/*
8885 * Software event: task time clock
8886 */
8887
8888static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8889{
b0a873eb
PZ
8890 u64 prev;
8891 s64 delta;
5c92d124 8892
b0a873eb
PZ
8893 prev = local64_xchg(&event->hw.prev_count, now);
8894 delta = now - prev;
8895 local64_add(delta, &event->count);
8896}
5c92d124 8897
a4eaf7f1 8898static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8899{
a4eaf7f1 8900 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8901 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8902}
8903
a4eaf7f1 8904static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8905{
8906 perf_swevent_cancel_hrtimer(event);
8907 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8908}
8909
8910static int task_clock_event_add(struct perf_event *event, int flags)
8911{
8912 if (flags & PERF_EF_START)
8913 task_clock_event_start(event, flags);
6a694a60 8914 perf_event_update_userpage(event);
b0a873eb 8915
a4eaf7f1
PZ
8916 return 0;
8917}
8918
8919static void task_clock_event_del(struct perf_event *event, int flags)
8920{
8921 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8922}
8923
8924static void task_clock_event_read(struct perf_event *event)
8925{
768a06e2
PZ
8926 u64 now = perf_clock();
8927 u64 delta = now - event->ctx->timestamp;
8928 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8929
8930 task_clock_event_update(event, time);
8931}
8932
8933static int task_clock_event_init(struct perf_event *event)
6fb2915d 8934{
b0a873eb
PZ
8935 if (event->attr.type != PERF_TYPE_SOFTWARE)
8936 return -ENOENT;
8937
8938 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8939 return -ENOENT;
8940
2481c5fa
SE
8941 /*
8942 * no branch sampling for software events
8943 */
8944 if (has_branch_stack(event))
8945 return -EOPNOTSUPP;
8946
ba3dd36c
PZ
8947 perf_swevent_init_hrtimer(event);
8948
b0a873eb 8949 return 0;
6fb2915d
LZ
8950}
8951
b0a873eb 8952static struct pmu perf_task_clock = {
89a1e187
PZ
8953 .task_ctx_nr = perf_sw_context,
8954
34f43927
PZ
8955 .capabilities = PERF_PMU_CAP_NO_NMI,
8956
b0a873eb 8957 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8958 .add = task_clock_event_add,
8959 .del = task_clock_event_del,
8960 .start = task_clock_event_start,
8961 .stop = task_clock_event_stop,
b0a873eb
PZ
8962 .read = task_clock_event_read,
8963};
6fb2915d 8964
ad5133b7 8965static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8966{
e077df4f 8967}
6fb2915d 8968
fbbe0701
SB
8969static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8970{
8971}
8972
ad5133b7 8973static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8974{
ad5133b7 8975 return 0;
6fb2915d
LZ
8976}
8977
18ab2cd3 8978static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8979
8980static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8981{
fbbe0701
SB
8982 __this_cpu_write(nop_txn_flags, flags);
8983
8984 if (flags & ~PERF_PMU_TXN_ADD)
8985 return;
8986
ad5133b7 8987 perf_pmu_disable(pmu);
6fb2915d
LZ
8988}
8989
ad5133b7
PZ
8990static int perf_pmu_commit_txn(struct pmu *pmu)
8991{
fbbe0701
SB
8992 unsigned int flags = __this_cpu_read(nop_txn_flags);
8993
8994 __this_cpu_write(nop_txn_flags, 0);
8995
8996 if (flags & ~PERF_PMU_TXN_ADD)
8997 return 0;
8998
ad5133b7
PZ
8999 perf_pmu_enable(pmu);
9000 return 0;
9001}
e077df4f 9002
ad5133b7 9003static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 9004{
fbbe0701
SB
9005 unsigned int flags = __this_cpu_read(nop_txn_flags);
9006
9007 __this_cpu_write(nop_txn_flags, 0);
9008
9009 if (flags & ~PERF_PMU_TXN_ADD)
9010 return;
9011
ad5133b7 9012 perf_pmu_enable(pmu);
24f1e32c
FW
9013}
9014
35edc2a5
PZ
9015static int perf_event_idx_default(struct perf_event *event)
9016{
c719f560 9017 return 0;
35edc2a5
PZ
9018}
9019
8dc85d54
PZ
9020/*
9021 * Ensures all contexts with the same task_ctx_nr have the same
9022 * pmu_cpu_context too.
9023 */
9e317041 9024static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 9025{
8dc85d54 9026 struct pmu *pmu;
b326e956 9027
8dc85d54
PZ
9028 if (ctxn < 0)
9029 return NULL;
24f1e32c 9030
8dc85d54
PZ
9031 list_for_each_entry(pmu, &pmus, entry) {
9032 if (pmu->task_ctx_nr == ctxn)
9033 return pmu->pmu_cpu_context;
9034 }
24f1e32c 9035
8dc85d54 9036 return NULL;
24f1e32c
FW
9037}
9038
51676957
PZ
9039static void free_pmu_context(struct pmu *pmu)
9040{
df0062b2
WD
9041 /*
9042 * Static contexts such as perf_sw_context have a global lifetime
9043 * and may be shared between different PMUs. Avoid freeing them
9044 * when a single PMU is going away.
9045 */
9046 if (pmu->task_ctx_nr > perf_invalid_context)
9047 return;
9048
8dc85d54 9049 mutex_lock(&pmus_lock);
51676957 9050 free_percpu(pmu->pmu_cpu_context);
8dc85d54 9051 mutex_unlock(&pmus_lock);
24f1e32c 9052}
6e855cd4
AS
9053
9054/*
9055 * Let userspace know that this PMU supports address range filtering:
9056 */
9057static ssize_t nr_addr_filters_show(struct device *dev,
9058 struct device_attribute *attr,
9059 char *page)
9060{
9061 struct pmu *pmu = dev_get_drvdata(dev);
9062
9063 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9064}
9065DEVICE_ATTR_RO(nr_addr_filters);
9066
2e80a82a 9067static struct idr pmu_idr;
d6d020e9 9068
abe43400
PZ
9069static ssize_t
9070type_show(struct device *dev, struct device_attribute *attr, char *page)
9071{
9072 struct pmu *pmu = dev_get_drvdata(dev);
9073
9074 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9075}
90826ca7 9076static DEVICE_ATTR_RO(type);
abe43400 9077
62b85639
SE
9078static ssize_t
9079perf_event_mux_interval_ms_show(struct device *dev,
9080 struct device_attribute *attr,
9081 char *page)
9082{
9083 struct pmu *pmu = dev_get_drvdata(dev);
9084
9085 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9086}
9087
272325c4
PZ
9088static DEFINE_MUTEX(mux_interval_mutex);
9089
62b85639
SE
9090static ssize_t
9091perf_event_mux_interval_ms_store(struct device *dev,
9092 struct device_attribute *attr,
9093 const char *buf, size_t count)
9094{
9095 struct pmu *pmu = dev_get_drvdata(dev);
9096 int timer, cpu, ret;
9097
9098 ret = kstrtoint(buf, 0, &timer);
9099 if (ret)
9100 return ret;
9101
9102 if (timer < 1)
9103 return -EINVAL;
9104
9105 /* same value, noting to do */
9106 if (timer == pmu->hrtimer_interval_ms)
9107 return count;
9108
272325c4 9109 mutex_lock(&mux_interval_mutex);
62b85639
SE
9110 pmu->hrtimer_interval_ms = timer;
9111
9112 /* update all cpuctx for this PMU */
a63fbed7 9113 cpus_read_lock();
272325c4 9114 for_each_online_cpu(cpu) {
62b85639
SE
9115 struct perf_cpu_context *cpuctx;
9116 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9117 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9118
272325c4
PZ
9119 cpu_function_call(cpu,
9120 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 9121 }
a63fbed7 9122 cpus_read_unlock();
272325c4 9123 mutex_unlock(&mux_interval_mutex);
62b85639
SE
9124
9125 return count;
9126}
90826ca7 9127static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 9128
90826ca7
GKH
9129static struct attribute *pmu_dev_attrs[] = {
9130 &dev_attr_type.attr,
9131 &dev_attr_perf_event_mux_interval_ms.attr,
9132 NULL,
abe43400 9133};
90826ca7 9134ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9135
9136static int pmu_bus_running;
9137static struct bus_type pmu_bus = {
9138 .name = "event_source",
90826ca7 9139 .dev_groups = pmu_dev_groups,
abe43400
PZ
9140};
9141
9142static void pmu_dev_release(struct device *dev)
9143{
9144 kfree(dev);
9145}
9146
9147static int pmu_dev_alloc(struct pmu *pmu)
9148{
9149 int ret = -ENOMEM;
9150
9151 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9152 if (!pmu->dev)
9153 goto out;
9154
0c9d42ed 9155 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9156 device_initialize(pmu->dev);
9157 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9158 if (ret)
9159 goto free_dev;
9160
9161 dev_set_drvdata(pmu->dev, pmu);
9162 pmu->dev->bus = &pmu_bus;
9163 pmu->dev->release = pmu_dev_release;
9164 ret = device_add(pmu->dev);
9165 if (ret)
9166 goto free_dev;
9167
6e855cd4
AS
9168 /* For PMUs with address filters, throw in an extra attribute: */
9169 if (pmu->nr_addr_filters)
9170 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9171
9172 if (ret)
9173 goto del_dev;
9174
abe43400
PZ
9175out:
9176 return ret;
9177
6e855cd4
AS
9178del_dev:
9179 device_del(pmu->dev);
9180
abe43400
PZ
9181free_dev:
9182 put_device(pmu->dev);
9183 goto out;
9184}
9185
547e9fd7 9186static struct lock_class_key cpuctx_mutex;
facc4307 9187static struct lock_class_key cpuctx_lock;
547e9fd7 9188
03d8e80b 9189int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9190{
108b02cf 9191 int cpu, ret;
24f1e32c 9192
b0a873eb 9193 mutex_lock(&pmus_lock);
33696fc0
PZ
9194 ret = -ENOMEM;
9195 pmu->pmu_disable_count = alloc_percpu(int);
9196 if (!pmu->pmu_disable_count)
9197 goto unlock;
f29ac756 9198
2e80a82a
PZ
9199 pmu->type = -1;
9200 if (!name)
9201 goto skip_type;
9202 pmu->name = name;
9203
9204 if (type < 0) {
0e9c3be2
TH
9205 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9206 if (type < 0) {
9207 ret = type;
2e80a82a
PZ
9208 goto free_pdc;
9209 }
9210 }
9211 pmu->type = type;
9212
abe43400
PZ
9213 if (pmu_bus_running) {
9214 ret = pmu_dev_alloc(pmu);
9215 if (ret)
9216 goto free_idr;
9217 }
9218
2e80a82a 9219skip_type:
26657848
PZ
9220 if (pmu->task_ctx_nr == perf_hw_context) {
9221 static int hw_context_taken = 0;
9222
5101ef20
MR
9223 /*
9224 * Other than systems with heterogeneous CPUs, it never makes
9225 * sense for two PMUs to share perf_hw_context. PMUs which are
9226 * uncore must use perf_invalid_context.
9227 */
9228 if (WARN_ON_ONCE(hw_context_taken &&
9229 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9230 pmu->task_ctx_nr = perf_invalid_context;
9231
9232 hw_context_taken = 1;
9233 }
9234
8dc85d54
PZ
9235 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9236 if (pmu->pmu_cpu_context)
9237 goto got_cpu_context;
f29ac756 9238
c4814202 9239 ret = -ENOMEM;
108b02cf
PZ
9240 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9241 if (!pmu->pmu_cpu_context)
abe43400 9242 goto free_dev;
f344011c 9243
108b02cf
PZ
9244 for_each_possible_cpu(cpu) {
9245 struct perf_cpu_context *cpuctx;
9246
9247 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9248 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9249 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9250 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9251 cpuctx->ctx.pmu = pmu;
a63fbed7 9252 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9253
272325c4 9254 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9255 }
76e1d904 9256
8dc85d54 9257got_cpu_context:
ad5133b7
PZ
9258 if (!pmu->start_txn) {
9259 if (pmu->pmu_enable) {
9260 /*
9261 * If we have pmu_enable/pmu_disable calls, install
9262 * transaction stubs that use that to try and batch
9263 * hardware accesses.
9264 */
9265 pmu->start_txn = perf_pmu_start_txn;
9266 pmu->commit_txn = perf_pmu_commit_txn;
9267 pmu->cancel_txn = perf_pmu_cancel_txn;
9268 } else {
fbbe0701 9269 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9270 pmu->commit_txn = perf_pmu_nop_int;
9271 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9272 }
5c92d124 9273 }
15dbf27c 9274
ad5133b7
PZ
9275 if (!pmu->pmu_enable) {
9276 pmu->pmu_enable = perf_pmu_nop_void;
9277 pmu->pmu_disable = perf_pmu_nop_void;
9278 }
9279
35edc2a5
PZ
9280 if (!pmu->event_idx)
9281 pmu->event_idx = perf_event_idx_default;
9282
b0a873eb 9283 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9284 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9285 ret = 0;
9286unlock:
b0a873eb
PZ
9287 mutex_unlock(&pmus_lock);
9288
33696fc0 9289 return ret;
108b02cf 9290
abe43400
PZ
9291free_dev:
9292 device_del(pmu->dev);
9293 put_device(pmu->dev);
9294
2e80a82a
PZ
9295free_idr:
9296 if (pmu->type >= PERF_TYPE_MAX)
9297 idr_remove(&pmu_idr, pmu->type);
9298
108b02cf
PZ
9299free_pdc:
9300 free_percpu(pmu->pmu_disable_count);
9301 goto unlock;
f29ac756 9302}
c464c76e 9303EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9304
b0a873eb 9305void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9306{
0933840a
JO
9307 int remove_device;
9308
b0a873eb 9309 mutex_lock(&pmus_lock);
0933840a 9310 remove_device = pmu_bus_running;
b0a873eb
PZ
9311 list_del_rcu(&pmu->entry);
9312 mutex_unlock(&pmus_lock);
5c92d124 9313
0475f9ea 9314 /*
cde8e884
PZ
9315 * We dereference the pmu list under both SRCU and regular RCU, so
9316 * synchronize against both of those.
0475f9ea 9317 */
b0a873eb 9318 synchronize_srcu(&pmus_srcu);
cde8e884 9319 synchronize_rcu();
d6d020e9 9320
33696fc0 9321 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9322 if (pmu->type >= PERF_TYPE_MAX)
9323 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9324 if (remove_device) {
9325 if (pmu->nr_addr_filters)
9326 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9327 device_del(pmu->dev);
9328 put_device(pmu->dev);
9329 }
51676957 9330 free_pmu_context(pmu);
b0a873eb 9331}
c464c76e 9332EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9333
cc34b98b
MR
9334static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9335{
ccd41c86 9336 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9337 int ret;
9338
9339 if (!try_module_get(pmu->module))
9340 return -ENODEV;
ccd41c86 9341
0c7296ca
PZ
9342 /*
9343 * A number of pmu->event_init() methods iterate the sibling_list to,
9344 * for example, validate if the group fits on the PMU. Therefore,
9345 * if this is a sibling event, acquire the ctx->mutex to protect
9346 * the sibling_list.
9347 */
9348 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
9349 /*
9350 * This ctx->mutex can nest when we're called through
9351 * inheritance. See the perf_event_ctx_lock_nested() comment.
9352 */
9353 ctx = perf_event_ctx_lock_nested(event->group_leader,
9354 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9355 BUG_ON(!ctx);
9356 }
9357
cc34b98b
MR
9358 event->pmu = pmu;
9359 ret = pmu->event_init(event);
ccd41c86
PZ
9360
9361 if (ctx)
9362 perf_event_ctx_unlock(event->group_leader, ctx);
9363
cc34b98b
MR
9364 if (ret)
9365 module_put(pmu->module);
9366
9367 return ret;
9368}
9369
18ab2cd3 9370static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9371{
85c617ab 9372 struct pmu *pmu;
b0a873eb 9373 int idx;
940c5b29 9374 int ret;
b0a873eb
PZ
9375
9376 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9377
40999312
KL
9378 /* Try parent's PMU first: */
9379 if (event->parent && event->parent->pmu) {
9380 pmu = event->parent->pmu;
9381 ret = perf_try_init_event(pmu, event);
9382 if (!ret)
9383 goto unlock;
9384 }
9385
2e80a82a
PZ
9386 rcu_read_lock();
9387 pmu = idr_find(&pmu_idr, event->attr.type);
9388 rcu_read_unlock();
940c5b29 9389 if (pmu) {
cc34b98b 9390 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9391 if (ret)
9392 pmu = ERR_PTR(ret);
2e80a82a 9393 goto unlock;
940c5b29 9394 }
2e80a82a 9395
b0a873eb 9396 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9397 ret = perf_try_init_event(pmu, event);
b0a873eb 9398 if (!ret)
e5f4d339 9399 goto unlock;
76e1d904 9400
b0a873eb
PZ
9401 if (ret != -ENOENT) {
9402 pmu = ERR_PTR(ret);
e5f4d339 9403 goto unlock;
f344011c 9404 }
5c92d124 9405 }
e5f4d339
PZ
9406 pmu = ERR_PTR(-ENOENT);
9407unlock:
b0a873eb 9408 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9409
4aeb0b42 9410 return pmu;
5c92d124
IM
9411}
9412
f2fb6bef
KL
9413static void attach_sb_event(struct perf_event *event)
9414{
9415 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9416
9417 raw_spin_lock(&pel->lock);
9418 list_add_rcu(&event->sb_list, &pel->list);
9419 raw_spin_unlock(&pel->lock);
9420}
9421
aab5b71e
PZ
9422/*
9423 * We keep a list of all !task (and therefore per-cpu) events
9424 * that need to receive side-band records.
9425 *
9426 * This avoids having to scan all the various PMU per-cpu contexts
9427 * looking for them.
9428 */
f2fb6bef
KL
9429static void account_pmu_sb_event(struct perf_event *event)
9430{
a4f144eb 9431 if (is_sb_event(event))
f2fb6bef
KL
9432 attach_sb_event(event);
9433}
9434
4beb31f3
FW
9435static void account_event_cpu(struct perf_event *event, int cpu)
9436{
9437 if (event->parent)
9438 return;
9439
4beb31f3
FW
9440 if (is_cgroup_event(event))
9441 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9442}
9443
555e0c1e
FW
9444/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9445static void account_freq_event_nohz(void)
9446{
9447#ifdef CONFIG_NO_HZ_FULL
9448 /* Lock so we don't race with concurrent unaccount */
9449 spin_lock(&nr_freq_lock);
9450 if (atomic_inc_return(&nr_freq_events) == 1)
9451 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9452 spin_unlock(&nr_freq_lock);
9453#endif
9454}
9455
9456static void account_freq_event(void)
9457{
9458 if (tick_nohz_full_enabled())
9459 account_freq_event_nohz();
9460 else
9461 atomic_inc(&nr_freq_events);
9462}
9463
9464
766d6c07
FW
9465static void account_event(struct perf_event *event)
9466{
25432ae9
PZ
9467 bool inc = false;
9468
4beb31f3
FW
9469 if (event->parent)
9470 return;
9471
766d6c07 9472 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9473 inc = true;
766d6c07
FW
9474 if (event->attr.mmap || event->attr.mmap_data)
9475 atomic_inc(&nr_mmap_events);
9476 if (event->attr.comm)
9477 atomic_inc(&nr_comm_events);
e4222673
HB
9478 if (event->attr.namespaces)
9479 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9480 if (event->attr.task)
9481 atomic_inc(&nr_task_events);
555e0c1e
FW
9482 if (event->attr.freq)
9483 account_freq_event();
45ac1403
AH
9484 if (event->attr.context_switch) {
9485 atomic_inc(&nr_switch_events);
25432ae9 9486 inc = true;
45ac1403 9487 }
4beb31f3 9488 if (has_branch_stack(event))
25432ae9 9489 inc = true;
4beb31f3 9490 if (is_cgroup_event(event))
25432ae9
PZ
9491 inc = true;
9492
9107c89e 9493 if (inc) {
5bce9db1
AS
9494 /*
9495 * We need the mutex here because static_branch_enable()
9496 * must complete *before* the perf_sched_count increment
9497 * becomes visible.
9498 */
9107c89e
PZ
9499 if (atomic_inc_not_zero(&perf_sched_count))
9500 goto enabled;
9501
9502 mutex_lock(&perf_sched_mutex);
9503 if (!atomic_read(&perf_sched_count)) {
9504 static_branch_enable(&perf_sched_events);
9505 /*
9506 * Guarantee that all CPUs observe they key change and
9507 * call the perf scheduling hooks before proceeding to
9508 * install events that need them.
9509 */
9510 synchronize_sched();
9511 }
9512 /*
9513 * Now that we have waited for the sync_sched(), allow further
9514 * increments to by-pass the mutex.
9515 */
9516 atomic_inc(&perf_sched_count);
9517 mutex_unlock(&perf_sched_mutex);
9518 }
9519enabled:
4beb31f3
FW
9520
9521 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9522
9523 account_pmu_sb_event(event);
766d6c07
FW
9524}
9525
0793a61d 9526/*
cdd6c482 9527 * Allocate and initialize a event structure
0793a61d 9528 */
cdd6c482 9529static struct perf_event *
c3f00c70 9530perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9531 struct task_struct *task,
9532 struct perf_event *group_leader,
9533 struct perf_event *parent_event,
4dc0da86 9534 perf_overflow_handler_t overflow_handler,
79dff51e 9535 void *context, int cgroup_fd)
0793a61d 9536{
51b0fe39 9537 struct pmu *pmu;
cdd6c482
IM
9538 struct perf_event *event;
9539 struct hw_perf_event *hwc;
90983b16 9540 long err = -EINVAL;
0793a61d 9541
66832eb4
ON
9542 if ((unsigned)cpu >= nr_cpu_ids) {
9543 if (!task || cpu != -1)
9544 return ERR_PTR(-EINVAL);
9545 }
9546
c3f00c70 9547 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9548 if (!event)
d5d2bc0d 9549 return ERR_PTR(-ENOMEM);
0793a61d 9550
04289bb9 9551 /*
cdd6c482 9552 * Single events are their own group leaders, with an
04289bb9
IM
9553 * empty sibling list:
9554 */
9555 if (!group_leader)
cdd6c482 9556 group_leader = event;
04289bb9 9557
cdd6c482
IM
9558 mutex_init(&event->child_mutex);
9559 INIT_LIST_HEAD(&event->child_list);
fccc714b 9560
cdd6c482
IM
9561 INIT_LIST_HEAD(&event->group_entry);
9562 INIT_LIST_HEAD(&event->event_entry);
9563 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9564 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9565 INIT_LIST_HEAD(&event->active_entry);
375637bc 9566 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9567 INIT_HLIST_NODE(&event->hlist_entry);
9568
10c6db11 9569
cdd6c482 9570 init_waitqueue_head(&event->waitq);
e360adbe 9571 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9572
cdd6c482 9573 mutex_init(&event->mmap_mutex);
375637bc 9574 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9575
a6fa941d 9576 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9577 event->cpu = cpu;
9578 event->attr = *attr;
9579 event->group_leader = group_leader;
9580 event->pmu = NULL;
cdd6c482 9581 event->oncpu = -1;
a96bbc16 9582
cdd6c482 9583 event->parent = parent_event;
b84fbc9f 9584
17cf22c3 9585 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9586 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9587
cdd6c482 9588 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9589
d580ff86
PZ
9590 if (task) {
9591 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9592 /*
50f16a8b
PZ
9593 * XXX pmu::event_init needs to know what task to account to
9594 * and we cannot use the ctx information because we need the
9595 * pmu before we get a ctx.
d580ff86 9596 */
50f16a8b 9597 event->hw.target = task;
d580ff86
PZ
9598 }
9599
34f43927
PZ
9600 event->clock = &local_clock;
9601 if (parent_event)
9602 event->clock = parent_event->clock;
9603
4dc0da86 9604 if (!overflow_handler && parent_event) {
b326e956 9605 overflow_handler = parent_event->overflow_handler;
4dc0da86 9606 context = parent_event->overflow_handler_context;
f1e4ba5b 9607#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9608 if (overflow_handler == bpf_overflow_handler) {
9609 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9610
9611 if (IS_ERR(prog)) {
9612 err = PTR_ERR(prog);
9613 goto err_ns;
9614 }
9615 event->prog = prog;
9616 event->orig_overflow_handler =
9617 parent_event->orig_overflow_handler;
9618 }
9619#endif
4dc0da86 9620 }
66832eb4 9621
1879445d
WN
9622 if (overflow_handler) {
9623 event->overflow_handler = overflow_handler;
9624 event->overflow_handler_context = context;
9ecda41a
WN
9625 } else if (is_write_backward(event)){
9626 event->overflow_handler = perf_event_output_backward;
9627 event->overflow_handler_context = NULL;
1879445d 9628 } else {
9ecda41a 9629 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9630 event->overflow_handler_context = NULL;
9631 }
97eaf530 9632
0231bb53 9633 perf_event__state_init(event);
a86ed508 9634
4aeb0b42 9635 pmu = NULL;
b8e83514 9636
cdd6c482 9637 hwc = &event->hw;
bd2b5b12 9638 hwc->sample_period = attr->sample_period;
0d48696f 9639 if (attr->freq && attr->sample_freq)
bd2b5b12 9640 hwc->sample_period = 1;
eced1dfc 9641 hwc->last_period = hwc->sample_period;
bd2b5b12 9642
e7850595 9643 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9644
2023b359 9645 /*
ba5213ae
PZ
9646 * We currently do not support PERF_SAMPLE_READ on inherited events.
9647 * See perf_output_read().
2023b359 9648 */
ba5213ae 9649 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 9650 goto err_ns;
a46a2300
YZ
9651
9652 if (!has_branch_stack(event))
9653 event->attr.branch_sample_type = 0;
2023b359 9654
79dff51e
MF
9655 if (cgroup_fd != -1) {
9656 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9657 if (err)
9658 goto err_ns;
9659 }
9660
b0a873eb 9661 pmu = perf_init_event(event);
85c617ab 9662 if (IS_ERR(pmu)) {
4aeb0b42 9663 err = PTR_ERR(pmu);
90983b16 9664 goto err_ns;
621a01ea 9665 }
d5d2bc0d 9666
bed5b25a
AS
9667 err = exclusive_event_init(event);
9668 if (err)
9669 goto err_pmu;
9670
375637bc
AS
9671 if (has_addr_filter(event)) {
9672 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9673 sizeof(unsigned long),
9674 GFP_KERNEL);
36cc2b92
DC
9675 if (!event->addr_filters_offs) {
9676 err = -ENOMEM;
375637bc 9677 goto err_per_task;
36cc2b92 9678 }
375637bc
AS
9679
9680 /* force hw sync on the address filters */
9681 event->addr_filters_gen = 1;
9682 }
9683
cdd6c482 9684 if (!event->parent) {
927c7a9e 9685 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9686 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9687 if (err)
375637bc 9688 goto err_addr_filters;
d010b332 9689 }
f344011c 9690 }
9ee318a7 9691
927a5570
AS
9692 /* symmetric to unaccount_event() in _free_event() */
9693 account_event(event);
9694
cdd6c482 9695 return event;
90983b16 9696
375637bc
AS
9697err_addr_filters:
9698 kfree(event->addr_filters_offs);
9699
bed5b25a
AS
9700err_per_task:
9701 exclusive_event_destroy(event);
9702
90983b16
FW
9703err_pmu:
9704 if (event->destroy)
9705 event->destroy(event);
c464c76e 9706 module_put(pmu->module);
90983b16 9707err_ns:
79dff51e
MF
9708 if (is_cgroup_event(event))
9709 perf_detach_cgroup(event);
90983b16
FW
9710 if (event->ns)
9711 put_pid_ns(event->ns);
9712 kfree(event);
9713
9714 return ERR_PTR(err);
0793a61d
TG
9715}
9716
cdd6c482
IM
9717static int perf_copy_attr(struct perf_event_attr __user *uattr,
9718 struct perf_event_attr *attr)
974802ea 9719{
974802ea 9720 u32 size;
cdf8073d 9721 int ret;
974802ea
PZ
9722
9723 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9724 return -EFAULT;
9725
9726 /*
9727 * zero the full structure, so that a short copy will be nice.
9728 */
9729 memset(attr, 0, sizeof(*attr));
9730
9731 ret = get_user(size, &uattr->size);
9732 if (ret)
9733 return ret;
9734
9735 if (size > PAGE_SIZE) /* silly large */
9736 goto err_size;
9737
9738 if (!size) /* abi compat */
9739 size = PERF_ATTR_SIZE_VER0;
9740
9741 if (size < PERF_ATTR_SIZE_VER0)
9742 goto err_size;
9743
9744 /*
9745 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9746 * ensure all the unknown bits are 0 - i.e. new
9747 * user-space does not rely on any kernel feature
9748 * extensions we dont know about yet.
974802ea
PZ
9749 */
9750 if (size > sizeof(*attr)) {
cdf8073d
IS
9751 unsigned char __user *addr;
9752 unsigned char __user *end;
9753 unsigned char val;
974802ea 9754
cdf8073d
IS
9755 addr = (void __user *)uattr + sizeof(*attr);
9756 end = (void __user *)uattr + size;
974802ea 9757
cdf8073d 9758 for (; addr < end; addr++) {
974802ea
PZ
9759 ret = get_user(val, addr);
9760 if (ret)
9761 return ret;
9762 if (val)
9763 goto err_size;
9764 }
b3e62e35 9765 size = sizeof(*attr);
974802ea
PZ
9766 }
9767
9768 ret = copy_from_user(attr, uattr, size);
9769 if (ret)
9770 return -EFAULT;
9771
f12f42ac
MX
9772 attr->size = size;
9773
cd757645 9774 if (attr->__reserved_1)
974802ea
PZ
9775 return -EINVAL;
9776
9777 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9778 return -EINVAL;
9779
9780 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9781 return -EINVAL;
9782
bce38cd5
SE
9783 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9784 u64 mask = attr->branch_sample_type;
9785
9786 /* only using defined bits */
9787 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9788 return -EINVAL;
9789
9790 /* at least one branch bit must be set */
9791 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9792 return -EINVAL;
9793
bce38cd5
SE
9794 /* propagate priv level, when not set for branch */
9795 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9796
9797 /* exclude_kernel checked on syscall entry */
9798 if (!attr->exclude_kernel)
9799 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9800
9801 if (!attr->exclude_user)
9802 mask |= PERF_SAMPLE_BRANCH_USER;
9803
9804 if (!attr->exclude_hv)
9805 mask |= PERF_SAMPLE_BRANCH_HV;
9806 /*
9807 * adjust user setting (for HW filter setup)
9808 */
9809 attr->branch_sample_type = mask;
9810 }
e712209a
SE
9811 /* privileged levels capture (kernel, hv): check permissions */
9812 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9813 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9814 return -EACCES;
bce38cd5 9815 }
4018994f 9816
c5ebcedb 9817 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9818 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9819 if (ret)
9820 return ret;
9821 }
9822
9823 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9824 if (!arch_perf_have_user_stack_dump())
9825 return -ENOSYS;
9826
9827 /*
9828 * We have __u32 type for the size, but so far
9829 * we can only use __u16 as maximum due to the
9830 * __u16 sample size limit.
9831 */
9832 if (attr->sample_stack_user >= USHRT_MAX)
9833 ret = -EINVAL;
9834 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9835 ret = -EINVAL;
9836 }
4018994f 9837
60e2364e
SE
9838 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9839 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9840out:
9841 return ret;
9842
9843err_size:
9844 put_user(sizeof(*attr), &uattr->size);
9845 ret = -E2BIG;
9846 goto out;
9847}
9848
ac9721f3
PZ
9849static int
9850perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9851{
b69cf536 9852 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9853 int ret = -EINVAL;
9854
ac9721f3 9855 if (!output_event)
a4be7c27
PZ
9856 goto set;
9857
ac9721f3
PZ
9858 /* don't allow circular references */
9859 if (event == output_event)
a4be7c27
PZ
9860 goto out;
9861
0f139300
PZ
9862 /*
9863 * Don't allow cross-cpu buffers
9864 */
9865 if (output_event->cpu != event->cpu)
9866 goto out;
9867
9868 /*
76369139 9869 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9870 */
9871 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9872 goto out;
9873
34f43927
PZ
9874 /*
9875 * Mixing clocks in the same buffer is trouble you don't need.
9876 */
9877 if (output_event->clock != event->clock)
9878 goto out;
9879
9ecda41a
WN
9880 /*
9881 * Either writing ring buffer from beginning or from end.
9882 * Mixing is not allowed.
9883 */
9884 if (is_write_backward(output_event) != is_write_backward(event))
9885 goto out;
9886
45bfb2e5
PZ
9887 /*
9888 * If both events generate aux data, they must be on the same PMU
9889 */
9890 if (has_aux(event) && has_aux(output_event) &&
9891 event->pmu != output_event->pmu)
9892 goto out;
9893
a4be7c27 9894set:
cdd6c482 9895 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9896 /* Can't redirect output if we've got an active mmap() */
9897 if (atomic_read(&event->mmap_count))
9898 goto unlock;
a4be7c27 9899
ac9721f3 9900 if (output_event) {
76369139
FW
9901 /* get the rb we want to redirect to */
9902 rb = ring_buffer_get(output_event);
9903 if (!rb)
ac9721f3 9904 goto unlock;
a4be7c27
PZ
9905 }
9906
b69cf536 9907 ring_buffer_attach(event, rb);
9bb5d40c 9908
a4be7c27 9909 ret = 0;
ac9721f3
PZ
9910unlock:
9911 mutex_unlock(&event->mmap_mutex);
9912
a4be7c27 9913out:
a4be7c27
PZ
9914 return ret;
9915}
9916
f63a8daa
PZ
9917static void mutex_lock_double(struct mutex *a, struct mutex *b)
9918{
9919 if (b < a)
9920 swap(a, b);
9921
9922 mutex_lock(a);
9923 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9924}
9925
34f43927
PZ
9926static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9927{
9928 bool nmi_safe = false;
9929
9930 switch (clk_id) {
9931 case CLOCK_MONOTONIC:
9932 event->clock = &ktime_get_mono_fast_ns;
9933 nmi_safe = true;
9934 break;
9935
9936 case CLOCK_MONOTONIC_RAW:
9937 event->clock = &ktime_get_raw_fast_ns;
9938 nmi_safe = true;
9939 break;
9940
9941 case CLOCK_REALTIME:
9942 event->clock = &ktime_get_real_ns;
9943 break;
9944
9945 case CLOCK_BOOTTIME:
9946 event->clock = &ktime_get_boot_ns;
9947 break;
9948
9949 case CLOCK_TAI:
9950 event->clock = &ktime_get_tai_ns;
9951 break;
9952
9953 default:
9954 return -EINVAL;
9955 }
9956
9957 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9958 return -EINVAL;
9959
9960 return 0;
9961}
9962
321027c1
PZ
9963/*
9964 * Variation on perf_event_ctx_lock_nested(), except we take two context
9965 * mutexes.
9966 */
9967static struct perf_event_context *
9968__perf_event_ctx_lock_double(struct perf_event *group_leader,
9969 struct perf_event_context *ctx)
9970{
9971 struct perf_event_context *gctx;
9972
9973again:
9974 rcu_read_lock();
9975 gctx = READ_ONCE(group_leader->ctx);
9976 if (!atomic_inc_not_zero(&gctx->refcount)) {
9977 rcu_read_unlock();
9978 goto again;
9979 }
9980 rcu_read_unlock();
9981
9982 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9983
9984 if (group_leader->ctx != gctx) {
9985 mutex_unlock(&ctx->mutex);
9986 mutex_unlock(&gctx->mutex);
9987 put_ctx(gctx);
9988 goto again;
9989 }
9990
9991 return gctx;
9992}
9993
0793a61d 9994/**
cdd6c482 9995 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9996 *
cdd6c482 9997 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9998 * @pid: target pid
9f66a381 9999 * @cpu: target cpu
cdd6c482 10000 * @group_fd: group leader event fd
0793a61d 10001 */
cdd6c482
IM
10002SYSCALL_DEFINE5(perf_event_open,
10003 struct perf_event_attr __user *, attr_uptr,
2743a5b0 10004 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 10005{
b04243ef
PZ
10006 struct perf_event *group_leader = NULL, *output_event = NULL;
10007 struct perf_event *event, *sibling;
cdd6c482 10008 struct perf_event_attr attr;
f63a8daa 10009 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 10010 struct file *event_file = NULL;
2903ff01 10011 struct fd group = {NULL, 0};
38a81da2 10012 struct task_struct *task = NULL;
89a1e187 10013 struct pmu *pmu;
ea635c64 10014 int event_fd;
b04243ef 10015 int move_group = 0;
dc86cabe 10016 int err;
a21b0b35 10017 int f_flags = O_RDWR;
79dff51e 10018 int cgroup_fd = -1;
0793a61d 10019
2743a5b0 10020 /* for future expandability... */
e5d1367f 10021 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
10022 return -EINVAL;
10023
dc86cabe
IM
10024 err = perf_copy_attr(attr_uptr, &attr);
10025 if (err)
10026 return err;
eab656ae 10027
0764771d
PZ
10028 if (!attr.exclude_kernel) {
10029 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10030 return -EACCES;
10031 }
10032
e4222673
HB
10033 if (attr.namespaces) {
10034 if (!capable(CAP_SYS_ADMIN))
10035 return -EACCES;
10036 }
10037
df58ab24 10038 if (attr.freq) {
cdd6c482 10039 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 10040 return -EINVAL;
0819b2e3
PZ
10041 } else {
10042 if (attr.sample_period & (1ULL << 63))
10043 return -EINVAL;
df58ab24
PZ
10044 }
10045
fc7ce9c7
KL
10046 /* Only privileged users can get physical addresses */
10047 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10048 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10049 return -EACCES;
10050
97c79a38
ACM
10051 if (!attr.sample_max_stack)
10052 attr.sample_max_stack = sysctl_perf_event_max_stack;
10053
e5d1367f
SE
10054 /*
10055 * In cgroup mode, the pid argument is used to pass the fd
10056 * opened to the cgroup directory in cgroupfs. The cpu argument
10057 * designates the cpu on which to monitor threads from that
10058 * cgroup.
10059 */
10060 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10061 return -EINVAL;
10062
a21b0b35
YD
10063 if (flags & PERF_FLAG_FD_CLOEXEC)
10064 f_flags |= O_CLOEXEC;
10065
10066 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
10067 if (event_fd < 0)
10068 return event_fd;
10069
ac9721f3 10070 if (group_fd != -1) {
2903ff01
AV
10071 err = perf_fget_light(group_fd, &group);
10072 if (err)
d14b12d7 10073 goto err_fd;
2903ff01 10074 group_leader = group.file->private_data;
ac9721f3
PZ
10075 if (flags & PERF_FLAG_FD_OUTPUT)
10076 output_event = group_leader;
10077 if (flags & PERF_FLAG_FD_NO_GROUP)
10078 group_leader = NULL;
10079 }
10080
e5d1367f 10081 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
10082 task = find_lively_task_by_vpid(pid);
10083 if (IS_ERR(task)) {
10084 err = PTR_ERR(task);
10085 goto err_group_fd;
10086 }
10087 }
10088
1f4ee503
PZ
10089 if (task && group_leader &&
10090 group_leader->attr.inherit != attr.inherit) {
10091 err = -EINVAL;
10092 goto err_task;
10093 }
10094
79c9ce57
PZ
10095 if (task) {
10096 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10097 if (err)
e5aeee51 10098 goto err_task;
79c9ce57
PZ
10099
10100 /*
10101 * Reuse ptrace permission checks for now.
10102 *
10103 * We must hold cred_guard_mutex across this and any potential
10104 * perf_install_in_context() call for this new event to
10105 * serialize against exec() altering our credentials (and the
10106 * perf_event_exit_task() that could imply).
10107 */
10108 err = -EACCES;
10109 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10110 goto err_cred;
10111 }
10112
79dff51e
MF
10113 if (flags & PERF_FLAG_PID_CGROUP)
10114 cgroup_fd = pid;
10115
4dc0da86 10116 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 10117 NULL, NULL, cgroup_fd);
d14b12d7
SE
10118 if (IS_ERR(event)) {
10119 err = PTR_ERR(event);
79c9ce57 10120 goto err_cred;
d14b12d7
SE
10121 }
10122
53b25335
VW
10123 if (is_sampling_event(event)) {
10124 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 10125 err = -EOPNOTSUPP;
53b25335
VW
10126 goto err_alloc;
10127 }
10128 }
10129
89a1e187
PZ
10130 /*
10131 * Special case software events and allow them to be part of
10132 * any hardware group.
10133 */
10134 pmu = event->pmu;
b04243ef 10135
34f43927
PZ
10136 if (attr.use_clockid) {
10137 err = perf_event_set_clock(event, attr.clockid);
10138 if (err)
10139 goto err_alloc;
10140 }
10141
4ff6a8de
DCC
10142 if (pmu->task_ctx_nr == perf_sw_context)
10143 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10144
b04243ef
PZ
10145 if (group_leader &&
10146 (is_software_event(event) != is_software_event(group_leader))) {
10147 if (is_software_event(event)) {
10148 /*
10149 * If event and group_leader are not both a software
10150 * event, and event is, then group leader is not.
10151 *
10152 * Allow the addition of software events to !software
10153 * groups, this is safe because software events never
10154 * fail to schedule.
10155 */
10156 pmu = group_leader->pmu;
10157 } else if (is_software_event(group_leader) &&
4ff6a8de 10158 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10159 /*
10160 * In case the group is a pure software group, and we
10161 * try to add a hardware event, move the whole group to
10162 * the hardware context.
10163 */
10164 move_group = 1;
10165 }
10166 }
89a1e187
PZ
10167
10168 /*
10169 * Get the target context (task or percpu):
10170 */
4af57ef2 10171 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10172 if (IS_ERR(ctx)) {
10173 err = PTR_ERR(ctx);
c6be5a5c 10174 goto err_alloc;
89a1e187
PZ
10175 }
10176
bed5b25a
AS
10177 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10178 err = -EBUSY;
10179 goto err_context;
10180 }
10181
ccff286d 10182 /*
cdd6c482 10183 * Look up the group leader (we will attach this event to it):
04289bb9 10184 */
ac9721f3 10185 if (group_leader) {
dc86cabe 10186 err = -EINVAL;
04289bb9 10187
04289bb9 10188 /*
ccff286d
IM
10189 * Do not allow a recursive hierarchy (this new sibling
10190 * becoming part of another group-sibling):
10191 */
10192 if (group_leader->group_leader != group_leader)
c3f00c70 10193 goto err_context;
34f43927
PZ
10194
10195 /* All events in a group should have the same clock */
10196 if (group_leader->clock != event->clock)
10197 goto err_context;
10198
ccff286d 10199 /*
64aee2a9
MR
10200 * Make sure we're both events for the same CPU;
10201 * grouping events for different CPUs is broken; since
10202 * you can never concurrently schedule them anyhow.
04289bb9 10203 */
64aee2a9
MR
10204 if (group_leader->cpu != event->cpu)
10205 goto err_context;
c3c87e77 10206
64aee2a9
MR
10207 /*
10208 * Make sure we're both on the same task, or both
10209 * per-CPU events.
10210 */
10211 if (group_leader->ctx->task != ctx->task)
10212 goto err_context;
10213
10214 /*
10215 * Do not allow to attach to a group in a different task
10216 * or CPU context. If we're moving SW events, we'll fix
10217 * this up later, so allow that.
10218 */
10219 if (!move_group && group_leader->ctx != ctx)
10220 goto err_context;
b04243ef 10221
3b6f9e5c
PM
10222 /*
10223 * Only a group leader can be exclusive or pinned
10224 */
0d48696f 10225 if (attr.exclusive || attr.pinned)
c3f00c70 10226 goto err_context;
ac9721f3
PZ
10227 }
10228
10229 if (output_event) {
10230 err = perf_event_set_output(event, output_event);
10231 if (err)
c3f00c70 10232 goto err_context;
ac9721f3 10233 }
0793a61d 10234
a21b0b35
YD
10235 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10236 f_flags);
ea635c64
AV
10237 if (IS_ERR(event_file)) {
10238 err = PTR_ERR(event_file);
201c2f85 10239 event_file = NULL;
c3f00c70 10240 goto err_context;
ea635c64 10241 }
9b51f66d 10242
b04243ef 10243 if (move_group) {
321027c1
PZ
10244 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10245
84c4e620
PZ
10246 if (gctx->task == TASK_TOMBSTONE) {
10247 err = -ESRCH;
10248 goto err_locked;
10249 }
321027c1
PZ
10250
10251 /*
10252 * Check if we raced against another sys_perf_event_open() call
10253 * moving the software group underneath us.
10254 */
10255 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10256 /*
10257 * If someone moved the group out from under us, check
10258 * if this new event wound up on the same ctx, if so
10259 * its the regular !move_group case, otherwise fail.
10260 */
10261 if (gctx != ctx) {
10262 err = -EINVAL;
10263 goto err_locked;
10264 } else {
10265 perf_event_ctx_unlock(group_leader, gctx);
10266 move_group = 0;
10267 }
10268 }
f55fc2a5
PZ
10269 } else {
10270 mutex_lock(&ctx->mutex);
10271 }
10272
84c4e620
PZ
10273 if (ctx->task == TASK_TOMBSTONE) {
10274 err = -ESRCH;
10275 goto err_locked;
10276 }
10277
a723968c
PZ
10278 if (!perf_event_validate_size(event)) {
10279 err = -E2BIG;
10280 goto err_locked;
10281 }
10282
a63fbed7
TG
10283 if (!task) {
10284 /*
10285 * Check if the @cpu we're creating an event for is online.
10286 *
10287 * We use the perf_cpu_context::ctx::mutex to serialize against
10288 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10289 */
10290 struct perf_cpu_context *cpuctx =
10291 container_of(ctx, struct perf_cpu_context, ctx);
10292
10293 if (!cpuctx->online) {
10294 err = -ENODEV;
10295 goto err_locked;
10296 }
10297 }
10298
10299
f55fc2a5
PZ
10300 /*
10301 * Must be under the same ctx::mutex as perf_install_in_context(),
10302 * because we need to serialize with concurrent event creation.
10303 */
10304 if (!exclusive_event_installable(event, ctx)) {
10305 /* exclusive and group stuff are assumed mutually exclusive */
10306 WARN_ON_ONCE(move_group);
f63a8daa 10307
f55fc2a5
PZ
10308 err = -EBUSY;
10309 goto err_locked;
10310 }
f63a8daa 10311
f55fc2a5
PZ
10312 WARN_ON_ONCE(ctx->parent_ctx);
10313
79c9ce57
PZ
10314 /*
10315 * This is the point on no return; we cannot fail hereafter. This is
10316 * where we start modifying current state.
10317 */
10318
f55fc2a5 10319 if (move_group) {
f63a8daa
PZ
10320 /*
10321 * See perf_event_ctx_lock() for comments on the details
10322 * of swizzling perf_event::ctx.
10323 */
45a0e07a 10324 perf_remove_from_context(group_leader, 0);
279b5165 10325 put_ctx(gctx);
0231bb53 10326
b04243ef
PZ
10327 list_for_each_entry(sibling, &group_leader->sibling_list,
10328 group_entry) {
45a0e07a 10329 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10330 put_ctx(gctx);
10331 }
b04243ef 10332
f63a8daa
PZ
10333 /*
10334 * Wait for everybody to stop referencing the events through
10335 * the old lists, before installing it on new lists.
10336 */
0cda4c02 10337 synchronize_rcu();
f63a8daa 10338
8f95b435
PZI
10339 /*
10340 * Install the group siblings before the group leader.
10341 *
10342 * Because a group leader will try and install the entire group
10343 * (through the sibling list, which is still in-tact), we can
10344 * end up with siblings installed in the wrong context.
10345 *
10346 * By installing siblings first we NO-OP because they're not
10347 * reachable through the group lists.
10348 */
b04243ef
PZ
10349 list_for_each_entry(sibling, &group_leader->sibling_list,
10350 group_entry) {
8f95b435 10351 perf_event__state_init(sibling);
9fc81d87 10352 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10353 get_ctx(ctx);
10354 }
8f95b435
PZI
10355
10356 /*
10357 * Removing from the context ends up with disabled
10358 * event. What we want here is event in the initial
10359 * startup state, ready to be add into new context.
10360 */
10361 perf_event__state_init(group_leader);
10362 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10363 get_ctx(ctx);
bed5b25a
AS
10364 }
10365
f73e22ab
PZ
10366 /*
10367 * Precalculate sample_data sizes; do while holding ctx::mutex such
10368 * that we're serialized against further additions and before
10369 * perf_install_in_context() which is the point the event is active and
10370 * can use these values.
10371 */
10372 perf_event__header_size(event);
10373 perf_event__id_header_size(event);
10374
78cd2c74
PZ
10375 event->owner = current;
10376
e2d37cd2 10377 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10378 perf_unpin_context(ctx);
f63a8daa 10379
f55fc2a5 10380 if (move_group)
321027c1 10381 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10382 mutex_unlock(&ctx->mutex);
9b51f66d 10383
79c9ce57
PZ
10384 if (task) {
10385 mutex_unlock(&task->signal->cred_guard_mutex);
10386 put_task_struct(task);
10387 }
10388
cdd6c482
IM
10389 mutex_lock(&current->perf_event_mutex);
10390 list_add_tail(&event->owner_entry, &current->perf_event_list);
10391 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10392
8a49542c
PZ
10393 /*
10394 * Drop the reference on the group_event after placing the
10395 * new event on the sibling_list. This ensures destruction
10396 * of the group leader will find the pointer to itself in
10397 * perf_group_detach().
10398 */
2903ff01 10399 fdput(group);
ea635c64
AV
10400 fd_install(event_fd, event_file);
10401 return event_fd;
0793a61d 10402
f55fc2a5
PZ
10403err_locked:
10404 if (move_group)
321027c1 10405 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10406 mutex_unlock(&ctx->mutex);
10407/* err_file: */
10408 fput(event_file);
c3f00c70 10409err_context:
fe4b04fa 10410 perf_unpin_context(ctx);
ea635c64 10411 put_ctx(ctx);
c6be5a5c 10412err_alloc:
13005627
PZ
10413 /*
10414 * If event_file is set, the fput() above will have called ->release()
10415 * and that will take care of freeing the event.
10416 */
10417 if (!event_file)
10418 free_event(event);
79c9ce57
PZ
10419err_cred:
10420 if (task)
10421 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10422err_task:
e7d0bc04
PZ
10423 if (task)
10424 put_task_struct(task);
89a1e187 10425err_group_fd:
2903ff01 10426 fdput(group);
ea635c64
AV
10427err_fd:
10428 put_unused_fd(event_fd);
dc86cabe 10429 return err;
0793a61d
TG
10430}
10431
fb0459d7
AV
10432/**
10433 * perf_event_create_kernel_counter
10434 *
10435 * @attr: attributes of the counter to create
10436 * @cpu: cpu in which the counter is bound
38a81da2 10437 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10438 */
10439struct perf_event *
10440perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10441 struct task_struct *task,
4dc0da86
AK
10442 perf_overflow_handler_t overflow_handler,
10443 void *context)
fb0459d7 10444{
fb0459d7 10445 struct perf_event_context *ctx;
c3f00c70 10446 struct perf_event *event;
fb0459d7 10447 int err;
d859e29f 10448
fb0459d7
AV
10449 /*
10450 * Get the target context (task or percpu):
10451 */
d859e29f 10452
4dc0da86 10453 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10454 overflow_handler, context, -1);
c3f00c70
PZ
10455 if (IS_ERR(event)) {
10456 err = PTR_ERR(event);
10457 goto err;
10458 }
d859e29f 10459
f8697762 10460 /* Mark owner so we could distinguish it from user events. */
63b6da39 10461 event->owner = TASK_TOMBSTONE;
f8697762 10462
4af57ef2 10463 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10464 if (IS_ERR(ctx)) {
10465 err = PTR_ERR(ctx);
c3f00c70 10466 goto err_free;
d859e29f 10467 }
fb0459d7 10468
fb0459d7
AV
10469 WARN_ON_ONCE(ctx->parent_ctx);
10470 mutex_lock(&ctx->mutex);
84c4e620
PZ
10471 if (ctx->task == TASK_TOMBSTONE) {
10472 err = -ESRCH;
10473 goto err_unlock;
10474 }
10475
a63fbed7
TG
10476 if (!task) {
10477 /*
10478 * Check if the @cpu we're creating an event for is online.
10479 *
10480 * We use the perf_cpu_context::ctx::mutex to serialize against
10481 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10482 */
10483 struct perf_cpu_context *cpuctx =
10484 container_of(ctx, struct perf_cpu_context, ctx);
10485 if (!cpuctx->online) {
10486 err = -ENODEV;
10487 goto err_unlock;
10488 }
10489 }
10490
bed5b25a 10491 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10492 err = -EBUSY;
84c4e620 10493 goto err_unlock;
bed5b25a
AS
10494 }
10495
fb0459d7 10496 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10497 perf_unpin_context(ctx);
fb0459d7
AV
10498 mutex_unlock(&ctx->mutex);
10499
fb0459d7
AV
10500 return event;
10501
84c4e620
PZ
10502err_unlock:
10503 mutex_unlock(&ctx->mutex);
10504 perf_unpin_context(ctx);
10505 put_ctx(ctx);
c3f00c70
PZ
10506err_free:
10507 free_event(event);
10508err:
c6567f64 10509 return ERR_PTR(err);
9b51f66d 10510}
fb0459d7 10511EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10512
0cda4c02
YZ
10513void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10514{
10515 struct perf_event_context *src_ctx;
10516 struct perf_event_context *dst_ctx;
10517 struct perf_event *event, *tmp;
10518 LIST_HEAD(events);
10519
10520 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10521 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10522
f63a8daa
PZ
10523 /*
10524 * See perf_event_ctx_lock() for comments on the details
10525 * of swizzling perf_event::ctx.
10526 */
10527 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10528 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10529 event_entry) {
45a0e07a 10530 perf_remove_from_context(event, 0);
9a545de0 10531 unaccount_event_cpu(event, src_cpu);
0cda4c02 10532 put_ctx(src_ctx);
9886167d 10533 list_add(&event->migrate_entry, &events);
0cda4c02 10534 }
0cda4c02 10535
8f95b435
PZI
10536 /*
10537 * Wait for the events to quiesce before re-instating them.
10538 */
0cda4c02
YZ
10539 synchronize_rcu();
10540
8f95b435
PZI
10541 /*
10542 * Re-instate events in 2 passes.
10543 *
10544 * Skip over group leaders and only install siblings on this first
10545 * pass, siblings will not get enabled without a leader, however a
10546 * leader will enable its siblings, even if those are still on the old
10547 * context.
10548 */
10549 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10550 if (event->group_leader == event)
10551 continue;
10552
10553 list_del(&event->migrate_entry);
10554 if (event->state >= PERF_EVENT_STATE_OFF)
10555 event->state = PERF_EVENT_STATE_INACTIVE;
10556 account_event_cpu(event, dst_cpu);
10557 perf_install_in_context(dst_ctx, event, dst_cpu);
10558 get_ctx(dst_ctx);
10559 }
10560
10561 /*
10562 * Once all the siblings are setup properly, install the group leaders
10563 * to make it go.
10564 */
9886167d
PZ
10565 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10566 list_del(&event->migrate_entry);
0cda4c02
YZ
10567 if (event->state >= PERF_EVENT_STATE_OFF)
10568 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10569 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10570 perf_install_in_context(dst_ctx, event, dst_cpu);
10571 get_ctx(dst_ctx);
10572 }
10573 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10574 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10575}
10576EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10577
cdd6c482 10578static void sync_child_event(struct perf_event *child_event,
38b200d6 10579 struct task_struct *child)
d859e29f 10580{
cdd6c482 10581 struct perf_event *parent_event = child_event->parent;
8bc20959 10582 u64 child_val;
d859e29f 10583
cdd6c482
IM
10584 if (child_event->attr.inherit_stat)
10585 perf_event_read_event(child_event, child);
38b200d6 10586
b5e58793 10587 child_val = perf_event_count(child_event);
d859e29f
PM
10588
10589 /*
10590 * Add back the child's count to the parent's count:
10591 */
a6e6dea6 10592 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10593 atomic64_add(child_event->total_time_enabled,
10594 &parent_event->child_total_time_enabled);
10595 atomic64_add(child_event->total_time_running,
10596 &parent_event->child_total_time_running);
d859e29f
PM
10597}
10598
9b51f66d 10599static void
8ba289b8
PZ
10600perf_event_exit_event(struct perf_event *child_event,
10601 struct perf_event_context *child_ctx,
10602 struct task_struct *child)
9b51f66d 10603{
8ba289b8
PZ
10604 struct perf_event *parent_event = child_event->parent;
10605
1903d50c
PZ
10606 /*
10607 * Do not destroy the 'original' grouping; because of the context
10608 * switch optimization the original events could've ended up in a
10609 * random child task.
10610 *
10611 * If we were to destroy the original group, all group related
10612 * operations would cease to function properly after this random
10613 * child dies.
10614 *
10615 * Do destroy all inherited groups, we don't care about those
10616 * and being thorough is better.
10617 */
32132a3d
PZ
10618 raw_spin_lock_irq(&child_ctx->lock);
10619 WARN_ON_ONCE(child_ctx->is_active);
10620
8ba289b8 10621 if (parent_event)
32132a3d
PZ
10622 perf_group_detach(child_event);
10623 list_del_event(child_event, child_ctx);
0d3d73aa 10624 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 10625 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10626
9b51f66d 10627 /*
8ba289b8 10628 * Parent events are governed by their filedesc, retain them.
9b51f66d 10629 */
8ba289b8 10630 if (!parent_event) {
179033b3 10631 perf_event_wakeup(child_event);
8ba289b8 10632 return;
4bcf349a 10633 }
8ba289b8
PZ
10634 /*
10635 * Child events can be cleaned up.
10636 */
10637
10638 sync_child_event(child_event, child);
10639
10640 /*
10641 * Remove this event from the parent's list
10642 */
10643 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10644 mutex_lock(&parent_event->child_mutex);
10645 list_del_init(&child_event->child_list);
10646 mutex_unlock(&parent_event->child_mutex);
10647
10648 /*
10649 * Kick perf_poll() for is_event_hup().
10650 */
10651 perf_event_wakeup(parent_event);
10652 free_event(child_event);
10653 put_event(parent_event);
9b51f66d
IM
10654}
10655
8dc85d54 10656static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10657{
211de6eb 10658 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10659 struct perf_event *child_event, *next;
63b6da39
PZ
10660
10661 WARN_ON_ONCE(child != current);
9b51f66d 10662
6a3351b6 10663 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10664 if (!child_ctx)
9b51f66d
IM
10665 return;
10666
ad3a37de 10667 /*
6a3351b6
PZ
10668 * In order to reduce the amount of tricky in ctx tear-down, we hold
10669 * ctx::mutex over the entire thing. This serializes against almost
10670 * everything that wants to access the ctx.
10671 *
10672 * The exception is sys_perf_event_open() /
10673 * perf_event_create_kernel_count() which does find_get_context()
10674 * without ctx::mutex (it cannot because of the move_group double mutex
10675 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10676 */
6a3351b6 10677 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10678
10679 /*
6a3351b6
PZ
10680 * In a single ctx::lock section, de-schedule the events and detach the
10681 * context from the task such that we cannot ever get it scheduled back
10682 * in.
c93f7669 10683 */
6a3351b6 10684 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10685 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10686
71a851b4 10687 /*
63b6da39
PZ
10688 * Now that the context is inactive, destroy the task <-> ctx relation
10689 * and mark the context dead.
71a851b4 10690 */
63b6da39
PZ
10691 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10692 put_ctx(child_ctx); /* cannot be last */
10693 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10694 put_task_struct(current); /* cannot be last */
4a1c0f26 10695
211de6eb 10696 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10697 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10698
211de6eb
PZ
10699 if (clone_ctx)
10700 put_ctx(clone_ctx);
4a1c0f26 10701
9f498cc5 10702 /*
cdd6c482
IM
10703 * Report the task dead after unscheduling the events so that we
10704 * won't get any samples after PERF_RECORD_EXIT. We can however still
10705 * get a few PERF_RECORD_READ events.
9f498cc5 10706 */
cdd6c482 10707 perf_event_task(child, child_ctx, 0);
a63eaf34 10708
ebf905fc 10709 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10710 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10711
a63eaf34
PM
10712 mutex_unlock(&child_ctx->mutex);
10713
10714 put_ctx(child_ctx);
9b51f66d
IM
10715}
10716
8dc85d54
PZ
10717/*
10718 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10719 *
10720 * Can be called with cred_guard_mutex held when called from
10721 * install_exec_creds().
8dc85d54
PZ
10722 */
10723void perf_event_exit_task(struct task_struct *child)
10724{
8882135b 10725 struct perf_event *event, *tmp;
8dc85d54
PZ
10726 int ctxn;
10727
8882135b
PZ
10728 mutex_lock(&child->perf_event_mutex);
10729 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10730 owner_entry) {
10731 list_del_init(&event->owner_entry);
10732
10733 /*
10734 * Ensure the list deletion is visible before we clear
10735 * the owner, closes a race against perf_release() where
10736 * we need to serialize on the owner->perf_event_mutex.
10737 */
f47c02c0 10738 smp_store_release(&event->owner, NULL);
8882135b
PZ
10739 }
10740 mutex_unlock(&child->perf_event_mutex);
10741
8dc85d54
PZ
10742 for_each_task_context_nr(ctxn)
10743 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10744
10745 /*
10746 * The perf_event_exit_task_context calls perf_event_task
10747 * with child's task_ctx, which generates EXIT events for
10748 * child contexts and sets child->perf_event_ctxp[] to NULL.
10749 * At this point we need to send EXIT events to cpu contexts.
10750 */
10751 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10752}
10753
889ff015
FW
10754static void perf_free_event(struct perf_event *event,
10755 struct perf_event_context *ctx)
10756{
10757 struct perf_event *parent = event->parent;
10758
10759 if (WARN_ON_ONCE(!parent))
10760 return;
10761
10762 mutex_lock(&parent->child_mutex);
10763 list_del_init(&event->child_list);
10764 mutex_unlock(&parent->child_mutex);
10765
a6fa941d 10766 put_event(parent);
889ff015 10767
652884fe 10768 raw_spin_lock_irq(&ctx->lock);
8a49542c 10769 perf_group_detach(event);
889ff015 10770 list_del_event(event, ctx);
652884fe 10771 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10772 free_event(event);
10773}
10774
bbbee908 10775/*
652884fe 10776 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10777 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10778 *
10779 * Not all locks are strictly required, but take them anyway to be nice and
10780 * help out with the lockdep assertions.
bbbee908 10781 */
cdd6c482 10782void perf_event_free_task(struct task_struct *task)
bbbee908 10783{
8dc85d54 10784 struct perf_event_context *ctx;
cdd6c482 10785 struct perf_event *event, *tmp;
8dc85d54 10786 int ctxn;
bbbee908 10787
8dc85d54
PZ
10788 for_each_task_context_nr(ctxn) {
10789 ctx = task->perf_event_ctxp[ctxn];
10790 if (!ctx)
10791 continue;
bbbee908 10792
8dc85d54 10793 mutex_lock(&ctx->mutex);
e552a838
PZ
10794 raw_spin_lock_irq(&ctx->lock);
10795 /*
10796 * Destroy the task <-> ctx relation and mark the context dead.
10797 *
10798 * This is important because even though the task hasn't been
10799 * exposed yet the context has been (through child_list).
10800 */
10801 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10802 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10803 put_task_struct(task); /* cannot be last */
10804 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10805
15121c78 10806 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 10807 perf_free_event(event, ctx);
bbbee908 10808
8dc85d54 10809 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
10810 put_ctx(ctx);
10811 }
889ff015
FW
10812}
10813
4e231c79
PZ
10814void perf_event_delayed_put(struct task_struct *task)
10815{
10816 int ctxn;
10817
10818 for_each_task_context_nr(ctxn)
10819 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10820}
10821
e03e7ee3 10822struct file *perf_event_get(unsigned int fd)
ffe8690c 10823{
e03e7ee3 10824 struct file *file;
ffe8690c 10825
e03e7ee3
AS
10826 file = fget_raw(fd);
10827 if (!file)
10828 return ERR_PTR(-EBADF);
ffe8690c 10829
e03e7ee3
AS
10830 if (file->f_op != &perf_fops) {
10831 fput(file);
10832 return ERR_PTR(-EBADF);
10833 }
ffe8690c 10834
e03e7ee3 10835 return file;
ffe8690c
KX
10836}
10837
10838const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10839{
10840 if (!event)
10841 return ERR_PTR(-EINVAL);
10842
10843 return &event->attr;
10844}
10845
97dee4f3 10846/*
d8a8cfc7
PZ
10847 * Inherit a event from parent task to child task.
10848 *
10849 * Returns:
10850 * - valid pointer on success
10851 * - NULL for orphaned events
10852 * - IS_ERR() on error
97dee4f3
PZ
10853 */
10854static struct perf_event *
10855inherit_event(struct perf_event *parent_event,
10856 struct task_struct *parent,
10857 struct perf_event_context *parent_ctx,
10858 struct task_struct *child,
10859 struct perf_event *group_leader,
10860 struct perf_event_context *child_ctx)
10861{
8ca2bd41 10862 enum perf_event_state parent_state = parent_event->state;
97dee4f3 10863 struct perf_event *child_event;
cee010ec 10864 unsigned long flags;
97dee4f3
PZ
10865
10866 /*
10867 * Instead of creating recursive hierarchies of events,
10868 * we link inherited events back to the original parent,
10869 * which has a filp for sure, which we use as the reference
10870 * count:
10871 */
10872 if (parent_event->parent)
10873 parent_event = parent_event->parent;
10874
10875 child_event = perf_event_alloc(&parent_event->attr,
10876 parent_event->cpu,
d580ff86 10877 child,
97dee4f3 10878 group_leader, parent_event,
79dff51e 10879 NULL, NULL, -1);
97dee4f3
PZ
10880 if (IS_ERR(child_event))
10881 return child_event;
a6fa941d 10882
313ccb96
JO
10883
10884 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
10885 !child_ctx->task_ctx_data) {
10886 struct pmu *pmu = child_event->pmu;
10887
10888 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
10889 GFP_KERNEL);
10890 if (!child_ctx->task_ctx_data) {
10891 free_event(child_event);
10892 return NULL;
10893 }
10894 }
10895
c6e5b732
PZ
10896 /*
10897 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10898 * must be under the same lock in order to serialize against
10899 * perf_event_release_kernel(), such that either we must observe
10900 * is_orphaned_event() or they will observe us on the child_list.
10901 */
10902 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10903 if (is_orphaned_event(parent_event) ||
10904 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10905 mutex_unlock(&parent_event->child_mutex);
313ccb96 10906 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
10907 free_event(child_event);
10908 return NULL;
10909 }
10910
97dee4f3
PZ
10911 get_ctx(child_ctx);
10912
10913 /*
10914 * Make the child state follow the state of the parent event,
10915 * not its attr.disabled bit. We hold the parent's mutex,
10916 * so we won't race with perf_event_{en, dis}able_family.
10917 */
1929def9 10918 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10919 child_event->state = PERF_EVENT_STATE_INACTIVE;
10920 else
10921 child_event->state = PERF_EVENT_STATE_OFF;
10922
10923 if (parent_event->attr.freq) {
10924 u64 sample_period = parent_event->hw.sample_period;
10925 struct hw_perf_event *hwc = &child_event->hw;
10926
10927 hwc->sample_period = sample_period;
10928 hwc->last_period = sample_period;
10929
10930 local64_set(&hwc->period_left, sample_period);
10931 }
10932
10933 child_event->ctx = child_ctx;
10934 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10935 child_event->overflow_handler_context
10936 = parent_event->overflow_handler_context;
97dee4f3 10937
614b6780
TG
10938 /*
10939 * Precalculate sample_data sizes
10940 */
10941 perf_event__header_size(child_event);
6844c09d 10942 perf_event__id_header_size(child_event);
614b6780 10943
97dee4f3
PZ
10944 /*
10945 * Link it up in the child's context:
10946 */
cee010ec 10947 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10948 add_event_to_ctx(child_event, child_ctx);
cee010ec 10949 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10950
97dee4f3
PZ
10951 /*
10952 * Link this into the parent event's child list
10953 */
97dee4f3
PZ
10954 list_add_tail(&child_event->child_list, &parent_event->child_list);
10955 mutex_unlock(&parent_event->child_mutex);
10956
10957 return child_event;
10958}
10959
d8a8cfc7
PZ
10960/*
10961 * Inherits an event group.
10962 *
10963 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10964 * This matches with perf_event_release_kernel() removing all child events.
10965 *
10966 * Returns:
10967 * - 0 on success
10968 * - <0 on error
10969 */
97dee4f3
PZ
10970static int inherit_group(struct perf_event *parent_event,
10971 struct task_struct *parent,
10972 struct perf_event_context *parent_ctx,
10973 struct task_struct *child,
10974 struct perf_event_context *child_ctx)
10975{
10976 struct perf_event *leader;
10977 struct perf_event *sub;
10978 struct perf_event *child_ctr;
10979
10980 leader = inherit_event(parent_event, parent, parent_ctx,
10981 child, NULL, child_ctx);
10982 if (IS_ERR(leader))
10983 return PTR_ERR(leader);
d8a8cfc7
PZ
10984 /*
10985 * @leader can be NULL here because of is_orphaned_event(). In this
10986 * case inherit_event() will create individual events, similar to what
10987 * perf_group_detach() would do anyway.
10988 */
97dee4f3
PZ
10989 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10990 child_ctr = inherit_event(sub, parent, parent_ctx,
10991 child, leader, child_ctx);
10992 if (IS_ERR(child_ctr))
10993 return PTR_ERR(child_ctr);
10994 }
10995 return 0;
889ff015
FW
10996}
10997
d8a8cfc7
PZ
10998/*
10999 * Creates the child task context and tries to inherit the event-group.
11000 *
11001 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11002 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11003 * consistent with perf_event_release_kernel() removing all child events.
11004 *
11005 * Returns:
11006 * - 0 on success
11007 * - <0 on error
11008 */
889ff015
FW
11009static int
11010inherit_task_group(struct perf_event *event, struct task_struct *parent,
11011 struct perf_event_context *parent_ctx,
8dc85d54 11012 struct task_struct *child, int ctxn,
889ff015
FW
11013 int *inherited_all)
11014{
11015 int ret;
8dc85d54 11016 struct perf_event_context *child_ctx;
889ff015
FW
11017
11018 if (!event->attr.inherit) {
11019 *inherited_all = 0;
11020 return 0;
bbbee908
PZ
11021 }
11022
fe4b04fa 11023 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
11024 if (!child_ctx) {
11025 /*
11026 * This is executed from the parent task context, so
11027 * inherit events that have been marked for cloning.
11028 * First allocate and initialize a context for the
11029 * child.
11030 */
734df5ab 11031 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
11032 if (!child_ctx)
11033 return -ENOMEM;
bbbee908 11034
8dc85d54 11035 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
11036 }
11037
11038 ret = inherit_group(event, parent, parent_ctx,
11039 child, child_ctx);
11040
11041 if (ret)
11042 *inherited_all = 0;
11043
11044 return ret;
bbbee908
PZ
11045}
11046
9b51f66d 11047/*
cdd6c482 11048 * Initialize the perf_event context in task_struct
9b51f66d 11049 */
985c8dcb 11050static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 11051{
889ff015 11052 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
11053 struct perf_event_context *cloned_ctx;
11054 struct perf_event *event;
9b51f66d 11055 struct task_struct *parent = current;
564c2b21 11056 int inherited_all = 1;
dddd3379 11057 unsigned long flags;
6ab423e0 11058 int ret = 0;
9b51f66d 11059
8dc85d54 11060 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
11061 return 0;
11062
ad3a37de 11063 /*
25346b93
PM
11064 * If the parent's context is a clone, pin it so it won't get
11065 * swapped under us.
ad3a37de 11066 */
8dc85d54 11067 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
11068 if (!parent_ctx)
11069 return 0;
25346b93 11070
ad3a37de
PM
11071 /*
11072 * No need to check if parent_ctx != NULL here; since we saw
11073 * it non-NULL earlier, the only reason for it to become NULL
11074 * is if we exit, and since we're currently in the middle of
11075 * a fork we can't be exiting at the same time.
11076 */
ad3a37de 11077
9b51f66d
IM
11078 /*
11079 * Lock the parent list. No need to lock the child - not PID
11080 * hashed yet and not running, so nobody can access it.
11081 */
d859e29f 11082 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
11083
11084 /*
11085 * We dont have to disable NMIs - we are only looking at
11086 * the list, not manipulating it:
11087 */
889ff015 11088 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
11089 ret = inherit_task_group(event, parent, parent_ctx,
11090 child, ctxn, &inherited_all);
889ff015 11091 if (ret)
e7cc4865 11092 goto out_unlock;
889ff015 11093 }
b93f7978 11094
dddd3379
TG
11095 /*
11096 * We can't hold ctx->lock when iterating the ->flexible_group list due
11097 * to allocations, but we need to prevent rotation because
11098 * rotate_ctx() will change the list from interrupt context.
11099 */
11100 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11101 parent_ctx->rotate_disable = 1;
11102 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11103
889ff015 11104 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
11105 ret = inherit_task_group(event, parent, parent_ctx,
11106 child, ctxn, &inherited_all);
889ff015 11107 if (ret)
e7cc4865 11108 goto out_unlock;
564c2b21
PM
11109 }
11110
dddd3379
TG
11111 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11112 parent_ctx->rotate_disable = 0;
dddd3379 11113
8dc85d54 11114 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 11115
05cbaa28 11116 if (child_ctx && inherited_all) {
564c2b21
PM
11117 /*
11118 * Mark the child context as a clone of the parent
11119 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
11120 *
11121 * Note that if the parent is a clone, the holding of
11122 * parent_ctx->lock avoids it from being uncloned.
564c2b21 11123 */
c5ed5145 11124 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
11125 if (cloned_ctx) {
11126 child_ctx->parent_ctx = cloned_ctx;
25346b93 11127 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
11128 } else {
11129 child_ctx->parent_ctx = parent_ctx;
11130 child_ctx->parent_gen = parent_ctx->generation;
11131 }
11132 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
11133 }
11134
c5ed5145 11135 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 11136out_unlock:
d859e29f 11137 mutex_unlock(&parent_ctx->mutex);
6ab423e0 11138
25346b93 11139 perf_unpin_context(parent_ctx);
fe4b04fa 11140 put_ctx(parent_ctx);
ad3a37de 11141
6ab423e0 11142 return ret;
9b51f66d
IM
11143}
11144
8dc85d54
PZ
11145/*
11146 * Initialize the perf_event context in task_struct
11147 */
11148int perf_event_init_task(struct task_struct *child)
11149{
11150 int ctxn, ret;
11151
8550d7cb
ON
11152 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11153 mutex_init(&child->perf_event_mutex);
11154 INIT_LIST_HEAD(&child->perf_event_list);
11155
8dc85d54
PZ
11156 for_each_task_context_nr(ctxn) {
11157 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
11158 if (ret) {
11159 perf_event_free_task(child);
8dc85d54 11160 return ret;
6c72e350 11161 }
8dc85d54
PZ
11162 }
11163
11164 return 0;
11165}
11166
220b140b
PM
11167static void __init perf_event_init_all_cpus(void)
11168{
b28ab83c 11169 struct swevent_htable *swhash;
220b140b 11170 int cpu;
220b140b 11171
a63fbed7
TG
11172 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11173
220b140b 11174 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11175 swhash = &per_cpu(swevent_htable, cpu);
11176 mutex_init(&swhash->hlist_mutex);
2fde4f94 11177 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11178
11179 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11180 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11181
058fe1c0
DCC
11182#ifdef CONFIG_CGROUP_PERF
11183 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11184#endif
e48c1788 11185 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11186 }
11187}
11188
a63fbed7 11189void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11190{
108b02cf 11191 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11192
b28ab83c 11193 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11194 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11195 struct swevent_hlist *hlist;
11196
b28ab83c
PZ
11197 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11198 WARN_ON(!hlist);
11199 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11200 }
b28ab83c 11201 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11202}
11203
2965faa5 11204#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11205static void __perf_event_exit_context(void *__info)
0793a61d 11206{
108b02cf 11207 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11209 struct perf_event *event;
0793a61d 11210
fae3fde6 11211 raw_spin_lock(&ctx->lock);
0ee098c9 11212 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 11213 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11214 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11215 raw_spin_unlock(&ctx->lock);
0793a61d 11216}
108b02cf
PZ
11217
11218static void perf_event_exit_cpu_context(int cpu)
11219{
a63fbed7 11220 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11221 struct perf_event_context *ctx;
11222 struct pmu *pmu;
108b02cf 11223
a63fbed7
TG
11224 mutex_lock(&pmus_lock);
11225 list_for_each_entry(pmu, &pmus, entry) {
11226 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11227 ctx = &cpuctx->ctx;
108b02cf
PZ
11228
11229 mutex_lock(&ctx->mutex);
11230 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11231 cpuctx->online = 0;
108b02cf
PZ
11232 mutex_unlock(&ctx->mutex);
11233 }
a63fbed7
TG
11234 cpumask_clear_cpu(cpu, perf_online_mask);
11235 mutex_unlock(&pmus_lock);
108b02cf 11236}
00e16c3d
TG
11237#else
11238
11239static void perf_event_exit_cpu_context(int cpu) { }
11240
11241#endif
108b02cf 11242
a63fbed7
TG
11243int perf_event_init_cpu(unsigned int cpu)
11244{
11245 struct perf_cpu_context *cpuctx;
11246 struct perf_event_context *ctx;
11247 struct pmu *pmu;
11248
11249 perf_swevent_init_cpu(cpu);
11250
11251 mutex_lock(&pmus_lock);
11252 cpumask_set_cpu(cpu, perf_online_mask);
11253 list_for_each_entry(pmu, &pmus, entry) {
11254 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11255 ctx = &cpuctx->ctx;
11256
11257 mutex_lock(&ctx->mutex);
11258 cpuctx->online = 1;
11259 mutex_unlock(&ctx->mutex);
11260 }
11261 mutex_unlock(&pmus_lock);
11262
11263 return 0;
11264}
11265
00e16c3d 11266int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11267{
e3703f8c 11268 perf_event_exit_cpu_context(cpu);
00e16c3d 11269 return 0;
0793a61d 11270}
0793a61d 11271
c277443c
PZ
11272static int
11273perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11274{
11275 int cpu;
11276
11277 for_each_online_cpu(cpu)
11278 perf_event_exit_cpu(cpu);
11279
11280 return NOTIFY_OK;
11281}
11282
11283/*
11284 * Run the perf reboot notifier at the very last possible moment so that
11285 * the generic watchdog code runs as long as possible.
11286 */
11287static struct notifier_block perf_reboot_notifier = {
11288 .notifier_call = perf_reboot,
11289 .priority = INT_MIN,
11290};
11291
cdd6c482 11292void __init perf_event_init(void)
0793a61d 11293{
3c502e7a
JW
11294 int ret;
11295
2e80a82a
PZ
11296 idr_init(&pmu_idr);
11297
220b140b 11298 perf_event_init_all_cpus();
b0a873eb 11299 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11300 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11301 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11302 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11303 perf_tp_register();
00e16c3d 11304 perf_event_init_cpu(smp_processor_id());
c277443c 11305 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11306
11307 ret = init_hw_breakpoint();
11308 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11309
b01c3a00
JO
11310 /*
11311 * Build time assertion that we keep the data_head at the intended
11312 * location. IOW, validation we got the __reserved[] size right.
11313 */
11314 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11315 != 1024);
0793a61d 11316}
abe43400 11317
fd979c01
CS
11318ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11319 char *page)
11320{
11321 struct perf_pmu_events_attr *pmu_attr =
11322 container_of(attr, struct perf_pmu_events_attr, attr);
11323
11324 if (pmu_attr->event_str)
11325 return sprintf(page, "%s\n", pmu_attr->event_str);
11326
11327 return 0;
11328}
675965b0 11329EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11330
abe43400
PZ
11331static int __init perf_event_sysfs_init(void)
11332{
11333 struct pmu *pmu;
11334 int ret;
11335
11336 mutex_lock(&pmus_lock);
11337
11338 ret = bus_register(&pmu_bus);
11339 if (ret)
11340 goto unlock;
11341
11342 list_for_each_entry(pmu, &pmus, entry) {
11343 if (!pmu->name || pmu->type < 0)
11344 continue;
11345
11346 ret = pmu_dev_alloc(pmu);
11347 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11348 }
11349 pmu_bus_running = 1;
11350 ret = 0;
11351
11352unlock:
11353 mutex_unlock(&pmus_lock);
11354
11355 return ret;
11356}
11357device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11358
11359#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11360static struct cgroup_subsys_state *
11361perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11362{
11363 struct perf_cgroup *jc;
e5d1367f 11364
1b15d055 11365 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11366 if (!jc)
11367 return ERR_PTR(-ENOMEM);
11368
e5d1367f
SE
11369 jc->info = alloc_percpu(struct perf_cgroup_info);
11370 if (!jc->info) {
11371 kfree(jc);
11372 return ERR_PTR(-ENOMEM);
11373 }
11374
e5d1367f
SE
11375 return &jc->css;
11376}
11377
eb95419b 11378static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11379{
eb95419b
TH
11380 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11381
e5d1367f
SE
11382 free_percpu(jc->info);
11383 kfree(jc);
11384}
11385
11386static int __perf_cgroup_move(void *info)
11387{
11388 struct task_struct *task = info;
ddaaf4e2 11389 rcu_read_lock();
e5d1367f 11390 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11391 rcu_read_unlock();
e5d1367f
SE
11392 return 0;
11393}
11394
1f7dd3e5 11395static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11396{
bb9d97b6 11397 struct task_struct *task;
1f7dd3e5 11398 struct cgroup_subsys_state *css;
bb9d97b6 11399
1f7dd3e5 11400 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11401 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11402}
11403
073219e9 11404struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11405 .css_alloc = perf_cgroup_css_alloc,
11406 .css_free = perf_cgroup_css_free,
bb9d97b6 11407 .attach = perf_cgroup_attach,
968ebff1
TH
11408 /*
11409 * Implicitly enable on dfl hierarchy so that perf events can
11410 * always be filtered by cgroup2 path as long as perf_event
11411 * controller is not mounted on a legacy hierarchy.
11412 */
11413 .implicit_on_dfl = true,
8cfd8147 11414 .threaded = true,
e5d1367f
SE
11415};
11416#endif /* CONFIG_CGROUP_PERF */