]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/events/core.c
perf/core: Fix group scheduling with mixed hw and sw events
[mirror_ubuntu-hirsute-kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6 211
16444645 212 lockdep_assert_irqs_disabled();
fae3fde6 213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
16444645 309 lockdep_assert_irqs_disabled();
cca20946
PZ
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
8d5bce0c 433static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
9e630205 434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
0d3d73aa
PZ
585/*
586 * State based event timekeeping...
587 *
588 * The basic idea is to use event->state to determine which (if any) time
589 * fields to increment with the current delta. This means we only need to
590 * update timestamps when we change state or when they are explicitly requested
591 * (read).
592 *
593 * Event groups make things a little more complicated, but not terribly so. The
594 * rules for a group are that if the group leader is OFF the entire group is
595 * OFF, irrespecive of what the group member states are. This results in
596 * __perf_effective_state().
597 *
598 * A futher ramification is that when a group leader flips between OFF and
599 * !OFF, we need to update all group member times.
600 *
601 *
602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603 * need to make sure the relevant context time is updated before we try and
604 * update our timestamps.
605 */
606
607static __always_inline enum perf_event_state
608__perf_effective_state(struct perf_event *event)
609{
610 struct perf_event *leader = event->group_leader;
611
612 if (leader->state <= PERF_EVENT_STATE_OFF)
613 return leader->state;
614
615 return event->state;
616}
617
618static __always_inline void
619__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620{
621 enum perf_event_state state = __perf_effective_state(event);
622 u64 delta = now - event->tstamp;
623
624 *enabled = event->total_time_enabled;
625 if (state >= PERF_EVENT_STATE_INACTIVE)
626 *enabled += delta;
627
628 *running = event->total_time_running;
629 if (state >= PERF_EVENT_STATE_ACTIVE)
630 *running += delta;
631}
632
633static void perf_event_update_time(struct perf_event *event)
634{
635 u64 now = perf_event_time(event);
636
637 __perf_update_times(event, now, &event->total_time_enabled,
638 &event->total_time_running);
639 event->tstamp = now;
640}
641
642static void perf_event_update_sibling_time(struct perf_event *leader)
643{
644 struct perf_event *sibling;
645
edb39592 646 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
647 perf_event_update_time(sibling);
648}
649
650static void
651perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652{
653 if (event->state == state)
654 return;
655
656 perf_event_update_time(event);
657 /*
658 * If a group leader gets enabled/disabled all its siblings
659 * are affected too.
660 */
661 if ((event->state < 0) ^ (state < 0))
662 perf_event_update_sibling_time(event);
663
664 WRITE_ONCE(event->state, state);
665}
666
e5d1367f
SE
667#ifdef CONFIG_CGROUP_PERF
668
e5d1367f
SE
669static inline bool
670perf_cgroup_match(struct perf_event *event)
671{
672 struct perf_event_context *ctx = event->ctx;
673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
ef824fa1
TH
675 /* @event doesn't care about cgroup */
676 if (!event->cgrp)
677 return true;
678
679 /* wants specific cgroup scope but @cpuctx isn't associated with any */
680 if (!cpuctx->cgrp)
681 return false;
682
683 /*
684 * Cgroup scoping is recursive. An event enabled for a cgroup is
685 * also enabled for all its descendant cgroups. If @cpuctx's
686 * cgroup is a descendant of @event's (the test covers identity
687 * case), it's a match.
688 */
689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 event->cgrp->css.cgroup);
e5d1367f
SE
691}
692
e5d1367f
SE
693static inline void perf_detach_cgroup(struct perf_event *event)
694{
4e2ba650 695 css_put(&event->cgrp->css);
e5d1367f
SE
696 event->cgrp = NULL;
697}
698
699static inline int is_cgroup_event(struct perf_event *event)
700{
701 return event->cgrp != NULL;
702}
703
704static inline u64 perf_cgroup_event_time(struct perf_event *event)
705{
706 struct perf_cgroup_info *t;
707
708 t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 return t->time;
710}
711
712static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713{
714 struct perf_cgroup_info *info;
715 u64 now;
716
717 now = perf_clock();
718
719 info = this_cpu_ptr(cgrp->info);
720
721 info->time += now - info->timestamp;
722 info->timestamp = now;
723}
724
725static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726{
c917e0f2
SL
727 struct perf_cgroup *cgrp = cpuctx->cgrp;
728 struct cgroup_subsys_state *css;
729
730 if (cgrp) {
731 for (css = &cgrp->css; css; css = css->parent) {
732 cgrp = container_of(css, struct perf_cgroup, css);
733 __update_cgrp_time(cgrp);
734 }
735 }
e5d1367f
SE
736}
737
738static inline void update_cgrp_time_from_event(struct perf_event *event)
739{
3f7cce3c
SE
740 struct perf_cgroup *cgrp;
741
e5d1367f 742 /*
3f7cce3c
SE
743 * ensure we access cgroup data only when needed and
744 * when we know the cgroup is pinned (css_get)
e5d1367f 745 */
3f7cce3c 746 if (!is_cgroup_event(event))
e5d1367f
SE
747 return;
748
614e4c4e 749 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
750 /*
751 * Do not update time when cgroup is not active
752 */
e6a52033 753 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 754 __update_cgrp_time(event->cgrp);
e5d1367f
SE
755}
756
757static inline void
3f7cce3c
SE
758perf_cgroup_set_timestamp(struct task_struct *task,
759 struct perf_event_context *ctx)
e5d1367f
SE
760{
761 struct perf_cgroup *cgrp;
762 struct perf_cgroup_info *info;
c917e0f2 763 struct cgroup_subsys_state *css;
e5d1367f 764
3f7cce3c
SE
765 /*
766 * ctx->lock held by caller
767 * ensure we do not access cgroup data
768 * unless we have the cgroup pinned (css_get)
769 */
770 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
771 return;
772
614e4c4e 773 cgrp = perf_cgroup_from_task(task, ctx);
c917e0f2
SL
774
775 for (css = &cgrp->css; css; css = css->parent) {
776 cgrp = container_of(css, struct perf_cgroup, css);
777 info = this_cpu_ptr(cgrp->info);
778 info->timestamp = ctx->timestamp;
779 }
e5d1367f
SE
780}
781
058fe1c0
DCC
782static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
783
e5d1367f
SE
784#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
785#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
786
787/*
788 * reschedule events based on the cgroup constraint of task.
789 *
790 * mode SWOUT : schedule out everything
791 * mode SWIN : schedule in based on cgroup for next
792 */
18ab2cd3 793static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
794{
795 struct perf_cpu_context *cpuctx;
058fe1c0 796 struct list_head *list;
e5d1367f
SE
797 unsigned long flags;
798
799 /*
058fe1c0
DCC
800 * Disable interrupts and preemption to avoid this CPU's
801 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
802 */
803 local_irq_save(flags);
804
058fe1c0
DCC
805 list = this_cpu_ptr(&cgrp_cpuctx_list);
806 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 808
058fe1c0
DCC
809 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 811
058fe1c0
DCC
812 if (mode & PERF_CGROUP_SWOUT) {
813 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
814 /*
815 * must not be done before ctxswout due
816 * to event_filter_match() in event_sched_out()
817 */
818 cpuctx->cgrp = NULL;
819 }
e5d1367f 820
058fe1c0
DCC
821 if (mode & PERF_CGROUP_SWIN) {
822 WARN_ON_ONCE(cpuctx->cgrp);
823 /*
824 * set cgrp before ctxsw in to allow
825 * event_filter_match() to not have to pass
826 * task around
827 * we pass the cpuctx->ctx to perf_cgroup_from_task()
828 * because cgorup events are only per-cpu
829 */
830 cpuctx->cgrp = perf_cgroup_from_task(task,
831 &cpuctx->ctx);
832 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 833 }
058fe1c0
DCC
834 perf_pmu_enable(cpuctx->ctx.pmu);
835 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
836 }
837
e5d1367f
SE
838 local_irq_restore(flags);
839}
840
a8d757ef
SE
841static inline void perf_cgroup_sched_out(struct task_struct *task,
842 struct task_struct *next)
e5d1367f 843{
a8d757ef
SE
844 struct perf_cgroup *cgrp1;
845 struct perf_cgroup *cgrp2 = NULL;
846
ddaaf4e2 847 rcu_read_lock();
a8d757ef
SE
848 /*
849 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
850 * we do not need to pass the ctx here because we know
851 * we are holding the rcu lock
a8d757ef 852 */
614e4c4e 853 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 854 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
855
856 /*
857 * only schedule out current cgroup events if we know
858 * that we are switching to a different cgroup. Otherwise,
859 * do no touch the cgroup events.
860 */
861 if (cgrp1 != cgrp2)
862 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
863
864 rcu_read_unlock();
e5d1367f
SE
865}
866
a8d757ef
SE
867static inline void perf_cgroup_sched_in(struct task_struct *prev,
868 struct task_struct *task)
e5d1367f 869{
a8d757ef
SE
870 struct perf_cgroup *cgrp1;
871 struct perf_cgroup *cgrp2 = NULL;
872
ddaaf4e2 873 rcu_read_lock();
a8d757ef
SE
874 /*
875 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
876 * we do not need to pass the ctx here because we know
877 * we are holding the rcu lock
a8d757ef 878 */
614e4c4e 879 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 880 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
881
882 /*
883 * only need to schedule in cgroup events if we are changing
884 * cgroup during ctxsw. Cgroup events were not scheduled
885 * out of ctxsw out if that was not the case.
886 */
887 if (cgrp1 != cgrp2)
888 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
889
890 rcu_read_unlock();
e5d1367f
SE
891}
892
893static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894 struct perf_event_attr *attr,
895 struct perf_event *group_leader)
896{
897 struct perf_cgroup *cgrp;
898 struct cgroup_subsys_state *css;
2903ff01
AV
899 struct fd f = fdget(fd);
900 int ret = 0;
e5d1367f 901
2903ff01 902 if (!f.file)
e5d1367f
SE
903 return -EBADF;
904
b583043e 905 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 906 &perf_event_cgrp_subsys);
3db272c0
LZ
907 if (IS_ERR(css)) {
908 ret = PTR_ERR(css);
909 goto out;
910 }
e5d1367f
SE
911
912 cgrp = container_of(css, struct perf_cgroup, css);
913 event->cgrp = cgrp;
914
915 /*
916 * all events in a group must monitor
917 * the same cgroup because a task belongs
918 * to only one perf cgroup at a time
919 */
920 if (group_leader && group_leader->cgrp != cgrp) {
921 perf_detach_cgroup(event);
922 ret = -EINVAL;
e5d1367f 923 }
3db272c0 924out:
2903ff01 925 fdput(f);
e5d1367f
SE
926 return ret;
927}
928
929static inline void
930perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931{
932 struct perf_cgroup_info *t;
933 t = per_cpu_ptr(event->cgrp->info, event->cpu);
934 event->shadow_ctx_time = now - t->timestamp;
935}
936
db4a8356
DCC
937/*
938 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939 * cleared when last cgroup event is removed.
940 */
941static inline void
942list_update_cgroup_event(struct perf_event *event,
943 struct perf_event_context *ctx, bool add)
944{
945 struct perf_cpu_context *cpuctx;
058fe1c0 946 struct list_head *cpuctx_entry;
db4a8356
DCC
947
948 if (!is_cgroup_event(event))
949 return;
950
db4a8356
DCC
951 /*
952 * Because cgroup events are always per-cpu events,
953 * this will always be called from the right CPU.
954 */
955 cpuctx = __get_cpu_context(ctx);
33801b94 956
957 /*
958 * Since setting cpuctx->cgrp is conditional on the current @cgrp
959 * matching the event's cgroup, we must do this for every new event,
960 * because if the first would mismatch, the second would not try again
961 * and we would leave cpuctx->cgrp unset.
962 */
963 if (add && !cpuctx->cgrp) {
be96b316
TH
964 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
965
be96b316
TH
966 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967 cpuctx->cgrp = cgrp;
058fe1c0 968 }
33801b94 969
970 if (add && ctx->nr_cgroups++)
971 return;
972 else if (!add && --ctx->nr_cgroups)
973 return;
974
975 /* no cgroup running */
976 if (!add)
977 cpuctx->cgrp = NULL;
978
979 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
980 if (add)
981 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
982 else
983 list_del(cpuctx_entry);
db4a8356
DCC
984}
985
e5d1367f
SE
986#else /* !CONFIG_CGROUP_PERF */
987
988static inline bool
989perf_cgroup_match(struct perf_event *event)
990{
991 return true;
992}
993
994static inline void perf_detach_cgroup(struct perf_event *event)
995{}
996
997static inline int is_cgroup_event(struct perf_event *event)
998{
999 return 0;
1000}
1001
e5d1367f
SE
1002static inline void update_cgrp_time_from_event(struct perf_event *event)
1003{
1004}
1005
1006static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1007{
1008}
1009
a8d757ef
SE
1010static inline void perf_cgroup_sched_out(struct task_struct *task,
1011 struct task_struct *next)
e5d1367f
SE
1012{
1013}
1014
a8d757ef
SE
1015static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016 struct task_struct *task)
e5d1367f
SE
1017{
1018}
1019
1020static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021 struct perf_event_attr *attr,
1022 struct perf_event *group_leader)
1023{
1024 return -EINVAL;
1025}
1026
1027static inline void
3f7cce3c
SE
1028perf_cgroup_set_timestamp(struct task_struct *task,
1029 struct perf_event_context *ctx)
e5d1367f
SE
1030{
1031}
1032
1033void
1034perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1035{
1036}
1037
1038static inline void
1039perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1040{
1041}
1042
1043static inline u64 perf_cgroup_event_time(struct perf_event *event)
1044{
1045 return 0;
1046}
1047
db4a8356
DCC
1048static inline void
1049list_update_cgroup_event(struct perf_event *event,
1050 struct perf_event_context *ctx, bool add)
1051{
1052}
1053
e5d1367f
SE
1054#endif
1055
9e630205
SE
1056/*
1057 * set default to be dependent on timer tick just
1058 * like original code
1059 */
1060#define PERF_CPU_HRTIMER (1000 / HZ)
1061/*
8a1115ff 1062 * function must be called with interrupts disabled
9e630205 1063 */
272325c4 1064static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1065{
1066 struct perf_cpu_context *cpuctx;
8d5bce0c 1067 bool rotations;
9e630205 1068
16444645 1069 lockdep_assert_irqs_disabled();
9e630205
SE
1070
1071 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1072 rotations = perf_rotate_context(cpuctx);
1073
4cfafd30
PZ
1074 raw_spin_lock(&cpuctx->hrtimer_lock);
1075 if (rotations)
9e630205 1076 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1077 else
1078 cpuctx->hrtimer_active = 0;
1079 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1080
4cfafd30 1081 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1082}
1083
272325c4 1084static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1085{
272325c4 1086 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1087 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1088 u64 interval;
9e630205
SE
1089
1090 /* no multiplexing needed for SW PMU */
1091 if (pmu->task_ctx_nr == perf_sw_context)
1092 return;
1093
62b85639
SE
1094 /*
1095 * check default is sane, if not set then force to
1096 * default interval (1/tick)
1097 */
272325c4
PZ
1098 interval = pmu->hrtimer_interval_ms;
1099 if (interval < 1)
1100 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1101
272325c4 1102 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1103
4cfafd30
PZ
1104 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1106 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1107}
1108
272325c4 1109static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1110{
272325c4 1111 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1112 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1113 unsigned long flags;
9e630205
SE
1114
1115 /* not for SW PMU */
1116 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1117 return 0;
9e630205 1118
4cfafd30
PZ
1119 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120 if (!cpuctx->hrtimer_active) {
1121 cpuctx->hrtimer_active = 1;
1122 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1124 }
1125 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1126
272325c4 1127 return 0;
9e630205
SE
1128}
1129
33696fc0 1130void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1131{
33696fc0
PZ
1132 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133 if (!(*count)++)
1134 pmu->pmu_disable(pmu);
9e35ad38 1135}
9e35ad38 1136
33696fc0 1137void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1138{
33696fc0
PZ
1139 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140 if (!--(*count))
1141 pmu->pmu_enable(pmu);
9e35ad38 1142}
9e35ad38 1143
2fde4f94 1144static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1145
1146/*
2fde4f94
MR
1147 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148 * perf_event_task_tick() are fully serialized because they're strictly cpu
1149 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1151 */
2fde4f94 1152static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1153{
2fde4f94 1154 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1155
16444645 1156 lockdep_assert_irqs_disabled();
b5ab4cd5 1157
2fde4f94
MR
1158 WARN_ON(!list_empty(&ctx->active_ctx_list));
1159
1160 list_add(&ctx->active_ctx_list, head);
1161}
1162
1163static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1164{
16444645 1165 lockdep_assert_irqs_disabled();
2fde4f94
MR
1166
1167 WARN_ON(list_empty(&ctx->active_ctx_list));
1168
1169 list_del_init(&ctx->active_ctx_list);
9e35ad38 1170}
9e35ad38 1171
cdd6c482 1172static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1173{
e5289d4a 1174 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1175}
1176
4af57ef2
YZ
1177static void free_ctx(struct rcu_head *head)
1178{
1179 struct perf_event_context *ctx;
1180
1181 ctx = container_of(head, struct perf_event_context, rcu_head);
1182 kfree(ctx->task_ctx_data);
1183 kfree(ctx);
1184}
1185
cdd6c482 1186static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1187{
564c2b21
PM
1188 if (atomic_dec_and_test(&ctx->refcount)) {
1189 if (ctx->parent_ctx)
1190 put_ctx(ctx->parent_ctx);
63b6da39 1191 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1192 put_task_struct(ctx->task);
4af57ef2 1193 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1194 }
a63eaf34
PM
1195}
1196
f63a8daa
PZ
1197/*
1198 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199 * perf_pmu_migrate_context() we need some magic.
1200 *
1201 * Those places that change perf_event::ctx will hold both
1202 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1203 *
8b10c5e2
PZ
1204 * Lock ordering is by mutex address. There are two other sites where
1205 * perf_event_context::mutex nests and those are:
1206 *
1207 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1208 * perf_event_exit_event()
1209 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1210 *
1211 * - perf_event_init_context() [ parent, 0 ]
1212 * inherit_task_group()
1213 * inherit_group()
1214 * inherit_event()
1215 * perf_event_alloc()
1216 * perf_init_event()
1217 * perf_try_init_event() [ child , 1 ]
1218 *
1219 * While it appears there is an obvious deadlock here -- the parent and child
1220 * nesting levels are inverted between the two. This is in fact safe because
1221 * life-time rules separate them. That is an exiting task cannot fork, and a
1222 * spawning task cannot (yet) exit.
1223 *
1224 * But remember that that these are parent<->child context relations, and
1225 * migration does not affect children, therefore these two orderings should not
1226 * interact.
f63a8daa
PZ
1227 *
1228 * The change in perf_event::ctx does not affect children (as claimed above)
1229 * because the sys_perf_event_open() case will install a new event and break
1230 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231 * concerned with cpuctx and that doesn't have children.
1232 *
1233 * The places that change perf_event::ctx will issue:
1234 *
1235 * perf_remove_from_context();
1236 * synchronize_rcu();
1237 * perf_install_in_context();
1238 *
1239 * to affect the change. The remove_from_context() + synchronize_rcu() should
1240 * quiesce the event, after which we can install it in the new location. This
1241 * means that only external vectors (perf_fops, prctl) can perturb the event
1242 * while in transit. Therefore all such accessors should also acquire
1243 * perf_event_context::mutex to serialize against this.
1244 *
1245 * However; because event->ctx can change while we're waiting to acquire
1246 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247 * function.
1248 *
1249 * Lock order:
79c9ce57 1250 * cred_guard_mutex
f63a8daa
PZ
1251 * task_struct::perf_event_mutex
1252 * perf_event_context::mutex
f63a8daa 1253 * perf_event::child_mutex;
07c4a776 1254 * perf_event_context::lock
f63a8daa
PZ
1255 * perf_event::mmap_mutex
1256 * mmap_sem
82d94856
PZ
1257 *
1258 * cpu_hotplug_lock
1259 * pmus_lock
1260 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1261 */
a83fe28e
PZ
1262static struct perf_event_context *
1263perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1264{
1265 struct perf_event_context *ctx;
1266
1267again:
1268 rcu_read_lock();
6aa7de05 1269 ctx = READ_ONCE(event->ctx);
f63a8daa
PZ
1270 if (!atomic_inc_not_zero(&ctx->refcount)) {
1271 rcu_read_unlock();
1272 goto again;
1273 }
1274 rcu_read_unlock();
1275
a83fe28e 1276 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1277 if (event->ctx != ctx) {
1278 mutex_unlock(&ctx->mutex);
1279 put_ctx(ctx);
1280 goto again;
1281 }
1282
1283 return ctx;
1284}
1285
a83fe28e
PZ
1286static inline struct perf_event_context *
1287perf_event_ctx_lock(struct perf_event *event)
1288{
1289 return perf_event_ctx_lock_nested(event, 0);
1290}
1291
f63a8daa
PZ
1292static void perf_event_ctx_unlock(struct perf_event *event,
1293 struct perf_event_context *ctx)
1294{
1295 mutex_unlock(&ctx->mutex);
1296 put_ctx(ctx);
1297}
1298
211de6eb
PZ
1299/*
1300 * This must be done under the ctx->lock, such as to serialize against
1301 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302 * calling scheduler related locks and ctx->lock nests inside those.
1303 */
1304static __must_check struct perf_event_context *
1305unclone_ctx(struct perf_event_context *ctx)
71a851b4 1306{
211de6eb
PZ
1307 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1308
1309 lockdep_assert_held(&ctx->lock);
1310
1311 if (parent_ctx)
71a851b4 1312 ctx->parent_ctx = NULL;
5a3126d4 1313 ctx->generation++;
211de6eb
PZ
1314
1315 return parent_ctx;
71a851b4
PZ
1316}
1317
1d953111
ON
1318static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1319 enum pid_type type)
6844c09d 1320{
1d953111 1321 u32 nr;
6844c09d
ACM
1322 /*
1323 * only top level events have the pid namespace they were created in
1324 */
1325 if (event->parent)
1326 event = event->parent;
1327
1d953111
ON
1328 nr = __task_pid_nr_ns(p, type, event->ns);
1329 /* avoid -1 if it is idle thread or runs in another ns */
1330 if (!nr && !pid_alive(p))
1331 nr = -1;
1332 return nr;
6844c09d
ACM
1333}
1334
1d953111 1335static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1336{
1d953111
ON
1337 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1338}
6844c09d 1339
1d953111
ON
1340static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1341{
1342 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1343}
1344
7f453c24 1345/*
cdd6c482 1346 * If we inherit events we want to return the parent event id
7f453c24
PZ
1347 * to userspace.
1348 */
cdd6c482 1349static u64 primary_event_id(struct perf_event *event)
7f453c24 1350{
cdd6c482 1351 u64 id = event->id;
7f453c24 1352
cdd6c482
IM
1353 if (event->parent)
1354 id = event->parent->id;
7f453c24
PZ
1355
1356 return id;
1357}
1358
25346b93 1359/*
cdd6c482 1360 * Get the perf_event_context for a task and lock it.
63b6da39 1361 *
25346b93
PM
1362 * This has to cope with with the fact that until it is locked,
1363 * the context could get moved to another task.
1364 */
cdd6c482 1365static struct perf_event_context *
8dc85d54 1366perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1367{
cdd6c482 1368 struct perf_event_context *ctx;
25346b93 1369
9ed6060d 1370retry:
058ebd0e
PZ
1371 /*
1372 * One of the few rules of preemptible RCU is that one cannot do
1373 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1374 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1375 * rcu_read_unlock_special().
1376 *
1377 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1378 * side critical section has interrupts disabled.
058ebd0e 1379 */
2fd59077 1380 local_irq_save(*flags);
058ebd0e 1381 rcu_read_lock();
8dc85d54 1382 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1383 if (ctx) {
1384 /*
1385 * If this context is a clone of another, it might
1386 * get swapped for another underneath us by
cdd6c482 1387 * perf_event_task_sched_out, though the
25346b93
PM
1388 * rcu_read_lock() protects us from any context
1389 * getting freed. Lock the context and check if it
1390 * got swapped before we could get the lock, and retry
1391 * if so. If we locked the right context, then it
1392 * can't get swapped on us any more.
1393 */
2fd59077 1394 raw_spin_lock(&ctx->lock);
8dc85d54 1395 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1396 raw_spin_unlock(&ctx->lock);
058ebd0e 1397 rcu_read_unlock();
2fd59077 1398 local_irq_restore(*flags);
25346b93
PM
1399 goto retry;
1400 }
b49a9e7e 1401
63b6da39
PZ
1402 if (ctx->task == TASK_TOMBSTONE ||
1403 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1404 raw_spin_unlock(&ctx->lock);
b49a9e7e 1405 ctx = NULL;
828b6f0e
PZ
1406 } else {
1407 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1408 }
25346b93
PM
1409 }
1410 rcu_read_unlock();
2fd59077
PM
1411 if (!ctx)
1412 local_irq_restore(*flags);
25346b93
PM
1413 return ctx;
1414}
1415
1416/*
1417 * Get the context for a task and increment its pin_count so it
1418 * can't get swapped to another task. This also increments its
1419 * reference count so that the context can't get freed.
1420 */
8dc85d54
PZ
1421static struct perf_event_context *
1422perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1423{
cdd6c482 1424 struct perf_event_context *ctx;
25346b93
PM
1425 unsigned long flags;
1426
8dc85d54 1427 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1428 if (ctx) {
1429 ++ctx->pin_count;
e625cce1 1430 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1431 }
1432 return ctx;
1433}
1434
cdd6c482 1435static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1436{
1437 unsigned long flags;
1438
e625cce1 1439 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1440 --ctx->pin_count;
e625cce1 1441 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1442}
1443
f67218c3
PZ
1444/*
1445 * Update the record of the current time in a context.
1446 */
1447static void update_context_time(struct perf_event_context *ctx)
1448{
1449 u64 now = perf_clock();
1450
1451 ctx->time += now - ctx->timestamp;
1452 ctx->timestamp = now;
1453}
1454
4158755d
SE
1455static u64 perf_event_time(struct perf_event *event)
1456{
1457 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1458
1459 if (is_cgroup_event(event))
1460 return perf_cgroup_event_time(event);
1461
4158755d
SE
1462 return ctx ? ctx->time : 0;
1463}
1464
487f05e1
AS
1465static enum event_type_t get_event_type(struct perf_event *event)
1466{
1467 struct perf_event_context *ctx = event->ctx;
1468 enum event_type_t event_type;
1469
1470 lockdep_assert_held(&ctx->lock);
1471
3bda69c1
AS
1472 /*
1473 * It's 'group type', really, because if our group leader is
1474 * pinned, so are we.
1475 */
1476 if (event->group_leader != event)
1477 event = event->group_leader;
1478
487f05e1
AS
1479 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1480 if (!ctx->task)
1481 event_type |= EVENT_CPU;
1482
1483 return event_type;
1484}
1485
8e1a2031 1486/*
161c85fa 1487 * Helper function to initialize event group nodes.
8e1a2031 1488 */
161c85fa 1489static void init_event_group(struct perf_event *event)
8e1a2031
AB
1490{
1491 RB_CLEAR_NODE(&event->group_node);
1492 event->group_index = 0;
1493}
1494
1495/*
1496 * Extract pinned or flexible groups from the context
161c85fa 1497 * based on event attrs bits.
8e1a2031
AB
1498 */
1499static struct perf_event_groups *
1500get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1501{
1502 if (event->attr.pinned)
1503 return &ctx->pinned_groups;
1504 else
1505 return &ctx->flexible_groups;
1506}
1507
8e1a2031 1508/*
161c85fa 1509 * Helper function to initializes perf_event_group trees.
8e1a2031 1510 */
161c85fa 1511static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1512{
1513 groups->tree = RB_ROOT;
1514 groups->index = 0;
1515}
1516
1517/*
1518 * Compare function for event groups;
161c85fa
PZ
1519 *
1520 * Implements complex key that first sorts by CPU and then by virtual index
1521 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1522 */
161c85fa
PZ
1523static bool
1524perf_event_groups_less(struct perf_event *left, struct perf_event *right)
8e1a2031 1525{
161c85fa
PZ
1526 if (left->cpu < right->cpu)
1527 return true;
1528 if (left->cpu > right->cpu)
1529 return false;
1530
1531 if (left->group_index < right->group_index)
1532 return true;
1533 if (left->group_index > right->group_index)
1534 return false;
1535
1536 return false;
8e1a2031
AB
1537}
1538
1539/*
161c85fa
PZ
1540 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541 * key (see perf_event_groups_less). This places it last inside the CPU
1542 * subtree.
8e1a2031
AB
1543 */
1544static void
1545perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1546 struct perf_event *event)
8e1a2031
AB
1547{
1548 struct perf_event *node_event;
1549 struct rb_node *parent;
1550 struct rb_node **node;
1551
1552 event->group_index = ++groups->index;
1553
1554 node = &groups->tree.rb_node;
1555 parent = *node;
1556
1557 while (*node) {
1558 parent = *node;
161c85fa 1559 node_event = container_of(*node, struct perf_event, group_node);
8e1a2031
AB
1560
1561 if (perf_event_groups_less(event, node_event))
1562 node = &parent->rb_left;
1563 else
1564 node = &parent->rb_right;
1565 }
1566
1567 rb_link_node(&event->group_node, parent, node);
1568 rb_insert_color(&event->group_node, &groups->tree);
1569}
1570
1571/*
161c85fa 1572 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1573 */
1574static void
1575add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1576{
1577 struct perf_event_groups *groups;
1578
1579 groups = get_event_groups(event, ctx);
1580 perf_event_groups_insert(groups, event);
1581}
1582
1583/*
161c85fa 1584 * Delete a group from a tree.
8e1a2031
AB
1585 */
1586static void
1587perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1588 struct perf_event *event)
8e1a2031 1589{
161c85fa
PZ
1590 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1592
161c85fa 1593 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1594 init_event_group(event);
1595}
1596
1597/*
161c85fa 1598 * Helper function to delete event from its groups.
8e1a2031
AB
1599 */
1600static void
1601del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1602{
1603 struct perf_event_groups *groups;
1604
1605 groups = get_event_groups(event, ctx);
1606 perf_event_groups_delete(groups, event);
1607}
1608
1609/*
161c85fa 1610 * Get the leftmost event in the @cpu subtree.
8e1a2031
AB
1611 */
1612static struct perf_event *
1613perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1614{
1615 struct perf_event *node_event = NULL, *match = NULL;
1616 struct rb_node *node = groups->tree.rb_node;
1617
1618 while (node) {
161c85fa 1619 node_event = container_of(node, struct perf_event, group_node);
8e1a2031
AB
1620
1621 if (cpu < node_event->cpu) {
1622 node = node->rb_left;
1623 } else if (cpu > node_event->cpu) {
1624 node = node->rb_right;
1625 } else {
1626 match = node_event;
1627 node = node->rb_left;
1628 }
1629 }
1630
1631 return match;
1632}
1633
1cac7b1a
PZ
1634/*
1635 * Like rb_entry_next_safe() for the @cpu subtree.
1636 */
1637static struct perf_event *
1638perf_event_groups_next(struct perf_event *event)
1639{
1640 struct perf_event *next;
1641
1642 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643 if (next && next->cpu == event->cpu)
1644 return next;
1645
1646 return NULL;
1647}
1648
8e1a2031 1649/*
161c85fa 1650 * Iterate through the whole groups tree.
8e1a2031 1651 */
6e6804d2
PZ
1652#define perf_event_groups_for_each(event, groups) \
1653 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1654 typeof(*event), group_node); event; \
1655 event = rb_entry_safe(rb_next(&event->group_node), \
1656 typeof(*event), group_node))
8e1a2031 1657
fccc714b 1658/*
cdd6c482 1659 * Add a event from the lists for its context.
fccc714b
PZ
1660 * Must be called with ctx->mutex and ctx->lock held.
1661 */
04289bb9 1662static void
cdd6c482 1663list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1664{
c994d613
PZ
1665 lockdep_assert_held(&ctx->lock);
1666
8a49542c
PZ
1667 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1669
0d3d73aa
PZ
1670 event->tstamp = perf_event_time(event);
1671
04289bb9 1672 /*
8a49542c
PZ
1673 * If we're a stand alone event or group leader, we go to the context
1674 * list, group events are kept attached to the group so that
1675 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1676 */
8a49542c 1677 if (event->group_leader == event) {
4ff6a8de 1678 event->group_caps = event->event_caps;
8e1a2031 1679 add_event_to_groups(event, ctx);
5c148194 1680 }
592903cd 1681
db4a8356 1682 list_update_cgroup_event(event, ctx, true);
e5d1367f 1683
cdd6c482
IM
1684 list_add_rcu(&event->event_entry, &ctx->event_list);
1685 ctx->nr_events++;
1686 if (event->attr.inherit_stat)
bfbd3381 1687 ctx->nr_stat++;
5a3126d4
PZ
1688
1689 ctx->generation++;
04289bb9
IM
1690}
1691
0231bb53
JO
1692/*
1693 * Initialize event state based on the perf_event_attr::disabled.
1694 */
1695static inline void perf_event__state_init(struct perf_event *event)
1696{
1697 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698 PERF_EVENT_STATE_INACTIVE;
1699}
1700
a723968c 1701static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1702{
1703 int entry = sizeof(u64); /* value */
1704 int size = 0;
1705 int nr = 1;
1706
1707 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708 size += sizeof(u64);
1709
1710 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711 size += sizeof(u64);
1712
1713 if (event->attr.read_format & PERF_FORMAT_ID)
1714 entry += sizeof(u64);
1715
1716 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1717 nr += nr_siblings;
c320c7b7
ACM
1718 size += sizeof(u64);
1719 }
1720
1721 size += entry * nr;
1722 event->read_size = size;
1723}
1724
a723968c 1725static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1726{
1727 struct perf_sample_data *data;
c320c7b7
ACM
1728 u16 size = 0;
1729
c320c7b7
ACM
1730 if (sample_type & PERF_SAMPLE_IP)
1731 size += sizeof(data->ip);
1732
6844c09d
ACM
1733 if (sample_type & PERF_SAMPLE_ADDR)
1734 size += sizeof(data->addr);
1735
1736 if (sample_type & PERF_SAMPLE_PERIOD)
1737 size += sizeof(data->period);
1738
c3feedf2
AK
1739 if (sample_type & PERF_SAMPLE_WEIGHT)
1740 size += sizeof(data->weight);
1741
6844c09d
ACM
1742 if (sample_type & PERF_SAMPLE_READ)
1743 size += event->read_size;
1744
d6be9ad6
SE
1745 if (sample_type & PERF_SAMPLE_DATA_SRC)
1746 size += sizeof(data->data_src.val);
1747
fdfbbd07
AK
1748 if (sample_type & PERF_SAMPLE_TRANSACTION)
1749 size += sizeof(data->txn);
1750
fc7ce9c7
KL
1751 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752 size += sizeof(data->phys_addr);
1753
6844c09d
ACM
1754 event->header_size = size;
1755}
1756
a723968c
PZ
1757/*
1758 * Called at perf_event creation and when events are attached/detached from a
1759 * group.
1760 */
1761static void perf_event__header_size(struct perf_event *event)
1762{
1763 __perf_event_read_size(event,
1764 event->group_leader->nr_siblings);
1765 __perf_event_header_size(event, event->attr.sample_type);
1766}
1767
6844c09d
ACM
1768static void perf_event__id_header_size(struct perf_event *event)
1769{
1770 struct perf_sample_data *data;
1771 u64 sample_type = event->attr.sample_type;
1772 u16 size = 0;
1773
c320c7b7
ACM
1774 if (sample_type & PERF_SAMPLE_TID)
1775 size += sizeof(data->tid_entry);
1776
1777 if (sample_type & PERF_SAMPLE_TIME)
1778 size += sizeof(data->time);
1779
ff3d527c
AH
1780 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781 size += sizeof(data->id);
1782
c320c7b7
ACM
1783 if (sample_type & PERF_SAMPLE_ID)
1784 size += sizeof(data->id);
1785
1786 if (sample_type & PERF_SAMPLE_STREAM_ID)
1787 size += sizeof(data->stream_id);
1788
1789 if (sample_type & PERF_SAMPLE_CPU)
1790 size += sizeof(data->cpu_entry);
1791
6844c09d 1792 event->id_header_size = size;
c320c7b7
ACM
1793}
1794
a723968c
PZ
1795static bool perf_event_validate_size(struct perf_event *event)
1796{
1797 /*
1798 * The values computed here will be over-written when we actually
1799 * attach the event.
1800 */
1801 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803 perf_event__id_header_size(event);
1804
1805 /*
1806 * Sum the lot; should not exceed the 64k limit we have on records.
1807 * Conservative limit to allow for callchains and other variable fields.
1808 */
1809 if (event->read_size + event->header_size +
1810 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1811 return false;
1812
1813 return true;
1814}
1815
8a49542c
PZ
1816static void perf_group_attach(struct perf_event *event)
1817{
c320c7b7 1818 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1819
a76a82a3
PZ
1820 lockdep_assert_held(&event->ctx->lock);
1821
74c3337c
PZ
1822 /*
1823 * We can have double attach due to group movement in perf_event_open.
1824 */
1825 if (event->attach_state & PERF_ATTACH_GROUP)
1826 return;
1827
8a49542c
PZ
1828 event->attach_state |= PERF_ATTACH_GROUP;
1829
1830 if (group_leader == event)
1831 return;
1832
652884fe
PZ
1833 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1834
4ff6a8de 1835 group_leader->group_caps &= event->event_caps;
8a49542c 1836
8343aae6 1837 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1838 group_leader->nr_siblings++;
c320c7b7
ACM
1839
1840 perf_event__header_size(group_leader);
1841
edb39592 1842 for_each_sibling_event(pos, group_leader)
c320c7b7 1843 perf_event__header_size(pos);
8a49542c
PZ
1844}
1845
a63eaf34 1846/*
cdd6c482 1847 * Remove a event from the lists for its context.
fccc714b 1848 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1849 */
04289bb9 1850static void
cdd6c482 1851list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1852{
652884fe
PZ
1853 WARN_ON_ONCE(event->ctx != ctx);
1854 lockdep_assert_held(&ctx->lock);
1855
8a49542c
PZ
1856 /*
1857 * We can have double detach due to exit/hot-unplug + close.
1858 */
1859 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1860 return;
8a49542c
PZ
1861
1862 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1863
db4a8356 1864 list_update_cgroup_event(event, ctx, false);
e5d1367f 1865
cdd6c482
IM
1866 ctx->nr_events--;
1867 if (event->attr.inherit_stat)
bfbd3381 1868 ctx->nr_stat--;
8bc20959 1869
cdd6c482 1870 list_del_rcu(&event->event_entry);
04289bb9 1871
8a49542c 1872 if (event->group_leader == event)
8e1a2031 1873 del_event_from_groups(event, ctx);
5c148194 1874
b2e74a26
SE
1875 /*
1876 * If event was in error state, then keep it
1877 * that way, otherwise bogus counts will be
1878 * returned on read(). The only way to get out
1879 * of error state is by explicit re-enabling
1880 * of the event
1881 */
1882 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1883 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1884
1885 ctx->generation++;
050735b0
PZ
1886}
1887
8a49542c 1888static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1889{
1890 struct perf_event *sibling, *tmp;
6668128a 1891 struct perf_event_context *ctx = event->ctx;
8a49542c 1892
6668128a 1893 lockdep_assert_held(&ctx->lock);
a76a82a3 1894
8a49542c
PZ
1895 /*
1896 * We can have double detach due to exit/hot-unplug + close.
1897 */
1898 if (!(event->attach_state & PERF_ATTACH_GROUP))
1899 return;
1900
1901 event->attach_state &= ~PERF_ATTACH_GROUP;
1902
1903 /*
1904 * If this is a sibling, remove it from its group.
1905 */
1906 if (event->group_leader != event) {
8343aae6 1907 list_del_init(&event->sibling_list);
8a49542c 1908 event->group_leader->nr_siblings--;
c320c7b7 1909 goto out;
8a49542c
PZ
1910 }
1911
04289bb9 1912 /*
cdd6c482
IM
1913 * If this was a group event with sibling events then
1914 * upgrade the siblings to singleton events by adding them
8a49542c 1915 * to whatever list we are on.
04289bb9 1916 */
8343aae6 1917 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 1918
04289bb9 1919 sibling->group_leader = sibling;
24868367 1920 list_del_init(&sibling->sibling_list);
d6f962b5
FW
1921
1922 /* Inherit group flags from the previous leader */
4ff6a8de 1923 sibling->group_caps = event->group_caps;
652884fe 1924
8e1a2031 1925 if (!RB_EMPTY_NODE(&event->group_node)) {
8e1a2031 1926 add_event_to_groups(sibling, event->ctx);
6668128a
PZ
1927
1928 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929 struct list_head *list = sibling->attr.pinned ?
1930 &ctx->pinned_active : &ctx->flexible_active;
1931
1932 list_add_tail(&sibling->active_list, list);
1933 }
8e1a2031
AB
1934 }
1935
652884fe 1936 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1937 }
c320c7b7
ACM
1938
1939out:
1940 perf_event__header_size(event->group_leader);
1941
edb39592 1942 for_each_sibling_event(tmp, event->group_leader)
c320c7b7 1943 perf_event__header_size(tmp);
04289bb9
IM
1944}
1945
fadfe7be
JO
1946static bool is_orphaned_event(struct perf_event *event)
1947{
a69b0ca4 1948 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1949}
1950
2c81a647 1951static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1952{
1953 struct pmu *pmu = event->pmu;
1954 return pmu->filter_match ? pmu->filter_match(event) : 1;
1955}
1956
2c81a647
MR
1957/*
1958 * Check whether we should attempt to schedule an event group based on
1959 * PMU-specific filtering. An event group can consist of HW and SW events,
1960 * potentially with a SW leader, so we must check all the filters, to
1961 * determine whether a group is schedulable:
1962 */
1963static inline int pmu_filter_match(struct perf_event *event)
1964{
edb39592 1965 struct perf_event *sibling;
2c81a647
MR
1966
1967 if (!__pmu_filter_match(event))
1968 return 0;
1969
edb39592
PZ
1970 for_each_sibling_event(sibling, event) {
1971 if (!__pmu_filter_match(sibling))
2c81a647
MR
1972 return 0;
1973 }
1974
1975 return 1;
1976}
1977
fa66f07a
SE
1978static inline int
1979event_filter_match(struct perf_event *event)
1980{
0b8f1e2e
PZ
1981 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1983}
1984
9ffcfa6f
SE
1985static void
1986event_sched_out(struct perf_event *event,
3b6f9e5c 1987 struct perf_cpu_context *cpuctx,
cdd6c482 1988 struct perf_event_context *ctx)
3b6f9e5c 1989{
0d3d73aa 1990 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
1991
1992 WARN_ON_ONCE(event->ctx != ctx);
1993 lockdep_assert_held(&ctx->lock);
1994
cdd6c482 1995 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1996 return;
3b6f9e5c 1997
6668128a
PZ
1998 /*
1999 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000 * we can schedule events _OUT_ individually through things like
2001 * __perf_remove_from_context().
2002 */
2003 list_del_init(&event->active_list);
2004
44377277
AS
2005 perf_pmu_disable(event->pmu);
2006
28a967c3
PZ
2007 event->pmu->del(event, 0);
2008 event->oncpu = -1;
0d3d73aa 2009
cdd6c482
IM
2010 if (event->pending_disable) {
2011 event->pending_disable = 0;
0d3d73aa 2012 state = PERF_EVENT_STATE_OFF;
970892a9 2013 }
0d3d73aa 2014 perf_event_set_state(event, state);
3b6f9e5c 2015
cdd6c482 2016 if (!is_software_event(event))
3b6f9e5c 2017 cpuctx->active_oncpu--;
2fde4f94
MR
2018 if (!--ctx->nr_active)
2019 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
2020 if (event->attr.freq && event->attr.sample_freq)
2021 ctx->nr_freq--;
cdd6c482 2022 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 2023 cpuctx->exclusive = 0;
44377277
AS
2024
2025 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2026}
2027
d859e29f 2028static void
cdd6c482 2029group_sched_out(struct perf_event *group_event,
d859e29f 2030 struct perf_cpu_context *cpuctx,
cdd6c482 2031 struct perf_event_context *ctx)
d859e29f 2032{
cdd6c482 2033 struct perf_event *event;
0d3d73aa
PZ
2034
2035 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2036 return;
d859e29f 2037
3f005e7d
MR
2038 perf_pmu_disable(ctx->pmu);
2039
cdd6c482 2040 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
2041
2042 /*
2043 * Schedule out siblings (if any):
2044 */
edb39592 2045 for_each_sibling_event(event, group_event)
cdd6c482 2046 event_sched_out(event, cpuctx, ctx);
d859e29f 2047
3f005e7d
MR
2048 perf_pmu_enable(ctx->pmu);
2049
0d3d73aa 2050 if (group_event->attr.exclusive)
d859e29f
PM
2051 cpuctx->exclusive = 0;
2052}
2053
45a0e07a 2054#define DETACH_GROUP 0x01UL
0017960f 2055
0793a61d 2056/*
cdd6c482 2057 * Cross CPU call to remove a performance event
0793a61d 2058 *
cdd6c482 2059 * We disable the event on the hardware level first. After that we
0793a61d
TG
2060 * remove it from the context list.
2061 */
fae3fde6
PZ
2062static void
2063__perf_remove_from_context(struct perf_event *event,
2064 struct perf_cpu_context *cpuctx,
2065 struct perf_event_context *ctx,
2066 void *info)
0793a61d 2067{
45a0e07a 2068 unsigned long flags = (unsigned long)info;
0793a61d 2069
3c5c8711
PZ
2070 if (ctx->is_active & EVENT_TIME) {
2071 update_context_time(ctx);
2072 update_cgrp_time_from_cpuctx(cpuctx);
2073 }
2074
cdd6c482 2075 event_sched_out(event, cpuctx, ctx);
45a0e07a 2076 if (flags & DETACH_GROUP)
46ce0fe9 2077 perf_group_detach(event);
cdd6c482 2078 list_del_event(event, ctx);
39a43640
PZ
2079
2080 if (!ctx->nr_events && ctx->is_active) {
64ce3126 2081 ctx->is_active = 0;
39a43640
PZ
2082 if (ctx->task) {
2083 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084 cpuctx->task_ctx = NULL;
2085 }
64ce3126 2086 }
0793a61d
TG
2087}
2088
0793a61d 2089/*
cdd6c482 2090 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2091 *
cdd6c482
IM
2092 * If event->ctx is a cloned context, callers must make sure that
2093 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2094 * remains valid. This is OK when called from perf_release since
2095 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2096 * When called from perf_event_exit_task, it's OK because the
c93f7669 2097 * context has been detached from its task.
0793a61d 2098 */
45a0e07a 2099static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2100{
a76a82a3
PZ
2101 struct perf_event_context *ctx = event->ctx;
2102
2103 lockdep_assert_held(&ctx->mutex);
0793a61d 2104
45a0e07a 2105 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
2106
2107 /*
2108 * The above event_function_call() can NO-OP when it hits
2109 * TASK_TOMBSTONE. In that case we must already have been detached
2110 * from the context (by perf_event_exit_event()) but the grouping
2111 * might still be in-tact.
2112 */
2113 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114 if ((flags & DETACH_GROUP) &&
2115 (event->attach_state & PERF_ATTACH_GROUP)) {
2116 /*
2117 * Since in that case we cannot possibly be scheduled, simply
2118 * detach now.
2119 */
2120 raw_spin_lock_irq(&ctx->lock);
2121 perf_group_detach(event);
2122 raw_spin_unlock_irq(&ctx->lock);
2123 }
0793a61d
TG
2124}
2125
d859e29f 2126/*
cdd6c482 2127 * Cross CPU call to disable a performance event
d859e29f 2128 */
fae3fde6
PZ
2129static void __perf_event_disable(struct perf_event *event,
2130 struct perf_cpu_context *cpuctx,
2131 struct perf_event_context *ctx,
2132 void *info)
7b648018 2133{
fae3fde6
PZ
2134 if (event->state < PERF_EVENT_STATE_INACTIVE)
2135 return;
7b648018 2136
3c5c8711
PZ
2137 if (ctx->is_active & EVENT_TIME) {
2138 update_context_time(ctx);
2139 update_cgrp_time_from_event(event);
2140 }
2141
fae3fde6
PZ
2142 if (event == event->group_leader)
2143 group_sched_out(event, cpuctx, ctx);
2144 else
2145 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
2146
2147 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
2148}
2149
d859e29f 2150/*
cdd6c482 2151 * Disable a event.
c93f7669 2152 *
cdd6c482
IM
2153 * If event->ctx is a cloned context, callers must make sure that
2154 * every task struct that event->ctx->task could possibly point to
c93f7669 2155 * remains valid. This condition is satisifed when called through
cdd6c482
IM
2156 * perf_event_for_each_child or perf_event_for_each because they
2157 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2158 * goes to exit will block in perf_event_exit_event().
2159 *
cdd6c482 2160 * When called from perf_pending_event it's OK because event->ctx
c93f7669 2161 * is the current context on this CPU and preemption is disabled,
cdd6c482 2162 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2163 */
f63a8daa 2164static void _perf_event_disable(struct perf_event *event)
d859e29f 2165{
cdd6c482 2166 struct perf_event_context *ctx = event->ctx;
d859e29f 2167
e625cce1 2168 raw_spin_lock_irq(&ctx->lock);
7b648018 2169 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2170 raw_spin_unlock_irq(&ctx->lock);
7b648018 2171 return;
53cfbf59 2172 }
e625cce1 2173 raw_spin_unlock_irq(&ctx->lock);
7b648018 2174
fae3fde6
PZ
2175 event_function_call(event, __perf_event_disable, NULL);
2176}
2177
2178void perf_event_disable_local(struct perf_event *event)
2179{
2180 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2181}
f63a8daa
PZ
2182
2183/*
2184 * Strictly speaking kernel users cannot create groups and therefore this
2185 * interface does not need the perf_event_ctx_lock() magic.
2186 */
2187void perf_event_disable(struct perf_event *event)
2188{
2189 struct perf_event_context *ctx;
2190
2191 ctx = perf_event_ctx_lock(event);
2192 _perf_event_disable(event);
2193 perf_event_ctx_unlock(event, ctx);
2194}
dcfce4a0 2195EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2196
5aab90ce
JO
2197void perf_event_disable_inatomic(struct perf_event *event)
2198{
2199 event->pending_disable = 1;
2200 irq_work_queue(&event->pending);
2201}
2202
e5d1367f 2203static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2204 struct perf_event_context *ctx)
e5d1367f
SE
2205{
2206 /*
2207 * use the correct time source for the time snapshot
2208 *
2209 * We could get by without this by leveraging the
2210 * fact that to get to this function, the caller
2211 * has most likely already called update_context_time()
2212 * and update_cgrp_time_xx() and thus both timestamp
2213 * are identical (or very close). Given that tstamp is,
2214 * already adjusted for cgroup, we could say that:
2215 * tstamp - ctx->timestamp
2216 * is equivalent to
2217 * tstamp - cgrp->timestamp.
2218 *
2219 * Then, in perf_output_read(), the calculation would
2220 * work with no changes because:
2221 * - event is guaranteed scheduled in
2222 * - no scheduled out in between
2223 * - thus the timestamp would be the same
2224 *
2225 * But this is a bit hairy.
2226 *
2227 * So instead, we have an explicit cgroup call to remain
2228 * within the time time source all along. We believe it
2229 * is cleaner and simpler to understand.
2230 */
2231 if (is_cgroup_event(event))
0d3d73aa 2232 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2233 else
0d3d73aa 2234 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2235}
2236
4fe757dd
PZ
2237#define MAX_INTERRUPTS (~0ULL)
2238
2239static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2240static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2241
235c7fc7 2242static int
9ffcfa6f 2243event_sched_in(struct perf_event *event,
235c7fc7 2244 struct perf_cpu_context *cpuctx,
6e37738a 2245 struct perf_event_context *ctx)
235c7fc7 2246{
44377277 2247 int ret = 0;
4158755d 2248
63342411
PZ
2249 lockdep_assert_held(&ctx->lock);
2250
cdd6c482 2251 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2252 return 0;
2253
95ff4ca2
AS
2254 WRITE_ONCE(event->oncpu, smp_processor_id());
2255 /*
0c1cbc18
PZ
2256 * Order event::oncpu write to happen before the ACTIVE state is
2257 * visible. This allows perf_event_{stop,read}() to observe the correct
2258 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2259 */
2260 smp_wmb();
0d3d73aa 2261 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2262
2263 /*
2264 * Unthrottle events, since we scheduled we might have missed several
2265 * ticks already, also for a heavily scheduling task there is little
2266 * guarantee it'll get a tick in a timely manner.
2267 */
2268 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2269 perf_log_throttle(event, 1);
2270 event->hw.interrupts = 0;
2271 }
2272
44377277
AS
2273 perf_pmu_disable(event->pmu);
2274
0d3d73aa 2275 perf_set_shadow_time(event, ctx);
72f669c0 2276
ec0d7729
AS
2277 perf_log_itrace_start(event);
2278
a4eaf7f1 2279 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2280 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2281 event->oncpu = -1;
44377277
AS
2282 ret = -EAGAIN;
2283 goto out;
235c7fc7
IM
2284 }
2285
cdd6c482 2286 if (!is_software_event(event))
3b6f9e5c 2287 cpuctx->active_oncpu++;
2fde4f94
MR
2288 if (!ctx->nr_active++)
2289 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2290 if (event->attr.freq && event->attr.sample_freq)
2291 ctx->nr_freq++;
235c7fc7 2292
cdd6c482 2293 if (event->attr.exclusive)
3b6f9e5c
PM
2294 cpuctx->exclusive = 1;
2295
44377277
AS
2296out:
2297 perf_pmu_enable(event->pmu);
2298
2299 return ret;
235c7fc7
IM
2300}
2301
6751b71e 2302static int
cdd6c482 2303group_sched_in(struct perf_event *group_event,
6751b71e 2304 struct perf_cpu_context *cpuctx,
6e37738a 2305 struct perf_event_context *ctx)
6751b71e 2306{
6bde9b6c 2307 struct perf_event *event, *partial_group = NULL;
4a234593 2308 struct pmu *pmu = ctx->pmu;
6751b71e 2309
cdd6c482 2310 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2311 return 0;
2312
fbbe0701 2313 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2314
9ffcfa6f 2315 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2316 pmu->cancel_txn(pmu);
272325c4 2317 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2318 return -EAGAIN;
90151c35 2319 }
6751b71e
PM
2320
2321 /*
2322 * Schedule in siblings as one group (if any):
2323 */
edb39592 2324 for_each_sibling_event(event, group_event) {
9ffcfa6f 2325 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2326 partial_group = event;
6751b71e
PM
2327 goto group_error;
2328 }
2329 }
2330
9ffcfa6f 2331 if (!pmu->commit_txn(pmu))
6e85158c 2332 return 0;
9ffcfa6f 2333
6751b71e
PM
2334group_error:
2335 /*
2336 * Groups can be scheduled in as one unit only, so undo any
2337 * partial group before returning:
0d3d73aa 2338 * The events up to the failed event are scheduled out normally.
6751b71e 2339 */
edb39592 2340 for_each_sibling_event(event, group_event) {
cdd6c482 2341 if (event == partial_group)
0d3d73aa 2342 break;
d7842da4 2343
0d3d73aa 2344 event_sched_out(event, cpuctx, ctx);
6751b71e 2345 }
9ffcfa6f 2346 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2347
ad5133b7 2348 pmu->cancel_txn(pmu);
90151c35 2349
272325c4 2350 perf_mux_hrtimer_restart(cpuctx);
9e630205 2351
6751b71e
PM
2352 return -EAGAIN;
2353}
2354
3b6f9e5c 2355/*
cdd6c482 2356 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2357 */
cdd6c482 2358static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2359 struct perf_cpu_context *cpuctx,
2360 int can_add_hw)
2361{
2362 /*
cdd6c482 2363 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2364 */
4ff6a8de 2365 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2366 return 1;
2367 /*
2368 * If an exclusive group is already on, no other hardware
cdd6c482 2369 * events can go on.
3b6f9e5c
PM
2370 */
2371 if (cpuctx->exclusive)
2372 return 0;
2373 /*
2374 * If this group is exclusive and there are already
cdd6c482 2375 * events on the CPU, it can't go on.
3b6f9e5c 2376 */
cdd6c482 2377 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2378 return 0;
2379 /*
2380 * Otherwise, try to add it if all previous groups were able
2381 * to go on.
2382 */
2383 return can_add_hw;
2384}
2385
cdd6c482
IM
2386static void add_event_to_ctx(struct perf_event *event,
2387 struct perf_event_context *ctx)
53cfbf59 2388{
cdd6c482 2389 list_add_event(event, ctx);
8a49542c 2390 perf_group_attach(event);
53cfbf59
PM
2391}
2392
bd2afa49
PZ
2393static void ctx_sched_out(struct perf_event_context *ctx,
2394 struct perf_cpu_context *cpuctx,
2395 enum event_type_t event_type);
2c29ef0f
PZ
2396static void
2397ctx_sched_in(struct perf_event_context *ctx,
2398 struct perf_cpu_context *cpuctx,
2399 enum event_type_t event_type,
2400 struct task_struct *task);
fe4b04fa 2401
bd2afa49 2402static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2403 struct perf_event_context *ctx,
2404 enum event_type_t event_type)
bd2afa49
PZ
2405{
2406 if (!cpuctx->task_ctx)
2407 return;
2408
2409 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2410 return;
2411
487f05e1 2412 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2413}
2414
dce5855b
PZ
2415static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2416 struct perf_event_context *ctx,
2417 struct task_struct *task)
2418{
2419 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2420 if (ctx)
2421 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2422 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2423 if (ctx)
2424 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2425}
2426
487f05e1
AS
2427/*
2428 * We want to maintain the following priority of scheduling:
2429 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430 * - task pinned (EVENT_PINNED)
2431 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432 * - task flexible (EVENT_FLEXIBLE).
2433 *
2434 * In order to avoid unscheduling and scheduling back in everything every
2435 * time an event is added, only do it for the groups of equal priority and
2436 * below.
2437 *
2438 * This can be called after a batch operation on task events, in which case
2439 * event_type is a bit mask of the types of events involved. For CPU events,
2440 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2441 */
3e349507 2442static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2443 struct perf_event_context *task_ctx,
2444 enum event_type_t event_type)
0017960f 2445{
bd903afe 2446 enum event_type_t ctx_event_type;
487f05e1
AS
2447 bool cpu_event = !!(event_type & EVENT_CPU);
2448
2449 /*
2450 * If pinned groups are involved, flexible groups also need to be
2451 * scheduled out.
2452 */
2453 if (event_type & EVENT_PINNED)
2454 event_type |= EVENT_FLEXIBLE;
2455
bd903afe
SL
2456 ctx_event_type = event_type & EVENT_ALL;
2457
3e349507
PZ
2458 perf_pmu_disable(cpuctx->ctx.pmu);
2459 if (task_ctx)
487f05e1
AS
2460 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2461
2462 /*
2463 * Decide which cpu ctx groups to schedule out based on the types
2464 * of events that caused rescheduling:
2465 * - EVENT_CPU: schedule out corresponding groups;
2466 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467 * - otherwise, do nothing more.
2468 */
2469 if (cpu_event)
2470 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2471 else if (ctx_event_type & EVENT_PINNED)
2472 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2473
3e349507
PZ
2474 perf_event_sched_in(cpuctx, task_ctx, current);
2475 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2476}
2477
0793a61d 2478/*
cdd6c482 2479 * Cross CPU call to install and enable a performance event
682076ae 2480 *
a096309b
PZ
2481 * Very similar to remote_function() + event_function() but cannot assume that
2482 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2483 */
fe4b04fa 2484static int __perf_install_in_context(void *info)
0793a61d 2485{
a096309b
PZ
2486 struct perf_event *event = info;
2487 struct perf_event_context *ctx = event->ctx;
108b02cf 2488 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2489 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2490 bool reprogram = true;
a096309b 2491 int ret = 0;
0793a61d 2492
63b6da39 2493 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2494 if (ctx->task) {
b58f6b0d
PZ
2495 raw_spin_lock(&ctx->lock);
2496 task_ctx = ctx;
a096309b 2497
63cae12b 2498 reprogram = (ctx->task == current);
b58f6b0d 2499
39a43640 2500 /*
63cae12b
PZ
2501 * If the task is running, it must be running on this CPU,
2502 * otherwise we cannot reprogram things.
2503 *
2504 * If its not running, we don't care, ctx->lock will
2505 * serialize against it becoming runnable.
39a43640 2506 */
63cae12b
PZ
2507 if (task_curr(ctx->task) && !reprogram) {
2508 ret = -ESRCH;
2509 goto unlock;
2510 }
a096309b 2511
63cae12b 2512 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2513 } else if (task_ctx) {
2514 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2515 }
b58f6b0d 2516
33801b94 2517#ifdef CONFIG_CGROUP_PERF
2518 if (is_cgroup_event(event)) {
2519 /*
2520 * If the current cgroup doesn't match the event's
2521 * cgroup, we should not try to schedule it.
2522 */
2523 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2524 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2525 event->cgrp->css.cgroup);
2526 }
2527#endif
2528
63cae12b 2529 if (reprogram) {
a096309b
PZ
2530 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2531 add_event_to_ctx(event, ctx);
487f05e1 2532 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2533 } else {
2534 add_event_to_ctx(event, ctx);
2535 }
2536
63b6da39 2537unlock:
2c29ef0f 2538 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2539
a096309b 2540 return ret;
0793a61d
TG
2541}
2542
2543/*
a096309b
PZ
2544 * Attach a performance event to a context.
2545 *
2546 * Very similar to event_function_call, see comment there.
0793a61d
TG
2547 */
2548static void
cdd6c482
IM
2549perf_install_in_context(struct perf_event_context *ctx,
2550 struct perf_event *event,
0793a61d
TG
2551 int cpu)
2552{
a096309b 2553 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2554
fe4b04fa
PZ
2555 lockdep_assert_held(&ctx->mutex);
2556
0cda4c02
YZ
2557 if (event->cpu != -1)
2558 event->cpu = cpu;
c3f00c70 2559
0b8f1e2e
PZ
2560 /*
2561 * Ensures that if we can observe event->ctx, both the event and ctx
2562 * will be 'complete'. See perf_iterate_sb_cpu().
2563 */
2564 smp_store_release(&event->ctx, ctx);
2565
a096309b
PZ
2566 if (!task) {
2567 cpu_function_call(cpu, __perf_install_in_context, event);
2568 return;
2569 }
2570
2571 /*
2572 * Should not happen, we validate the ctx is still alive before calling.
2573 */
2574 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2575 return;
2576
39a43640
PZ
2577 /*
2578 * Installing events is tricky because we cannot rely on ctx->is_active
2579 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2580 *
2581 * Instead we use task_curr(), which tells us if the task is running.
2582 * However, since we use task_curr() outside of rq::lock, we can race
2583 * against the actual state. This means the result can be wrong.
2584 *
2585 * If we get a false positive, we retry, this is harmless.
2586 *
2587 * If we get a false negative, things are complicated. If we are after
2588 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589 * value must be correct. If we're before, it doesn't matter since
2590 * perf_event_context_sched_in() will program the counter.
2591 *
2592 * However, this hinges on the remote context switch having observed
2593 * our task->perf_event_ctxp[] store, such that it will in fact take
2594 * ctx::lock in perf_event_context_sched_in().
2595 *
2596 * We do this by task_function_call(), if the IPI fails to hit the task
2597 * we know any future context switch of task must see the
2598 * perf_event_ctpx[] store.
39a43640 2599 */
63cae12b 2600
63b6da39 2601 /*
63cae12b
PZ
2602 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603 * task_cpu() load, such that if the IPI then does not find the task
2604 * running, a future context switch of that task must observe the
2605 * store.
63b6da39 2606 */
63cae12b
PZ
2607 smp_mb();
2608again:
2609 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2610 return;
2611
2612 raw_spin_lock_irq(&ctx->lock);
2613 task = ctx->task;
84c4e620 2614 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2615 /*
2616 * Cannot happen because we already checked above (which also
2617 * cannot happen), and we hold ctx->mutex, which serializes us
2618 * against perf_event_exit_task_context().
2619 */
63b6da39
PZ
2620 raw_spin_unlock_irq(&ctx->lock);
2621 return;
2622 }
39a43640 2623 /*
63cae12b
PZ
2624 * If the task is not running, ctx->lock will avoid it becoming so,
2625 * thus we can safely install the event.
39a43640 2626 */
63cae12b
PZ
2627 if (task_curr(task)) {
2628 raw_spin_unlock_irq(&ctx->lock);
2629 goto again;
2630 }
2631 add_event_to_ctx(event, ctx);
2632 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2633}
2634
d859e29f 2635/*
cdd6c482 2636 * Cross CPU call to enable a performance event
d859e29f 2637 */
fae3fde6
PZ
2638static void __perf_event_enable(struct perf_event *event,
2639 struct perf_cpu_context *cpuctx,
2640 struct perf_event_context *ctx,
2641 void *info)
04289bb9 2642{
cdd6c482 2643 struct perf_event *leader = event->group_leader;
fae3fde6 2644 struct perf_event_context *task_ctx;
04289bb9 2645
6e801e01
PZ
2646 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2647 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2648 return;
3cbed429 2649
bd2afa49
PZ
2650 if (ctx->is_active)
2651 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2652
0d3d73aa 2653 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2654
fae3fde6
PZ
2655 if (!ctx->is_active)
2656 return;
2657
e5d1367f 2658 if (!event_filter_match(event)) {
bd2afa49 2659 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2660 return;
e5d1367f 2661 }
f4c4176f 2662
04289bb9 2663 /*
cdd6c482 2664 * If the event is in a group and isn't the group leader,
d859e29f 2665 * then don't put it on unless the group is on.
04289bb9 2666 */
bd2afa49
PZ
2667 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2668 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2669 return;
bd2afa49 2670 }
fe4b04fa 2671
fae3fde6
PZ
2672 task_ctx = cpuctx->task_ctx;
2673 if (ctx->task)
2674 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2675
487f05e1 2676 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2677}
2678
d859e29f 2679/*
cdd6c482 2680 * Enable a event.
c93f7669 2681 *
cdd6c482
IM
2682 * If event->ctx is a cloned context, callers must make sure that
2683 * every task struct that event->ctx->task could possibly point to
c93f7669 2684 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2685 * perf_event_for_each_child or perf_event_for_each as described
2686 * for perf_event_disable.
d859e29f 2687 */
f63a8daa 2688static void _perf_event_enable(struct perf_event *event)
d859e29f 2689{
cdd6c482 2690 struct perf_event_context *ctx = event->ctx;
d859e29f 2691
7b648018 2692 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2693 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2694 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2695 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2696 return;
2697 }
2698
d859e29f 2699 /*
cdd6c482 2700 * If the event is in error state, clear that first.
7b648018
PZ
2701 *
2702 * That way, if we see the event in error state below, we know that it
2703 * has gone back into error state, as distinct from the task having
2704 * been scheduled away before the cross-call arrived.
d859e29f 2705 */
cdd6c482
IM
2706 if (event->state == PERF_EVENT_STATE_ERROR)
2707 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2708 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2709
fae3fde6 2710 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2711}
f63a8daa
PZ
2712
2713/*
2714 * See perf_event_disable();
2715 */
2716void perf_event_enable(struct perf_event *event)
2717{
2718 struct perf_event_context *ctx;
2719
2720 ctx = perf_event_ctx_lock(event);
2721 _perf_event_enable(event);
2722 perf_event_ctx_unlock(event, ctx);
2723}
dcfce4a0 2724EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2725
375637bc
AS
2726struct stop_event_data {
2727 struct perf_event *event;
2728 unsigned int restart;
2729};
2730
95ff4ca2
AS
2731static int __perf_event_stop(void *info)
2732{
375637bc
AS
2733 struct stop_event_data *sd = info;
2734 struct perf_event *event = sd->event;
95ff4ca2 2735
375637bc 2736 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2737 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2738 return 0;
2739
2740 /* matches smp_wmb() in event_sched_in() */
2741 smp_rmb();
2742
2743 /*
2744 * There is a window with interrupts enabled before we get here,
2745 * so we need to check again lest we try to stop another CPU's event.
2746 */
2747 if (READ_ONCE(event->oncpu) != smp_processor_id())
2748 return -EAGAIN;
2749
2750 event->pmu->stop(event, PERF_EF_UPDATE);
2751
375637bc
AS
2752 /*
2753 * May race with the actual stop (through perf_pmu_output_stop()),
2754 * but it is only used for events with AUX ring buffer, and such
2755 * events will refuse to restart because of rb::aux_mmap_count==0,
2756 * see comments in perf_aux_output_begin().
2757 *
2758 * Since this is happening on a event-local CPU, no trace is lost
2759 * while restarting.
2760 */
2761 if (sd->restart)
c9bbdd48 2762 event->pmu->start(event, 0);
375637bc 2763
95ff4ca2
AS
2764 return 0;
2765}
2766
767ae086 2767static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2768{
2769 struct stop_event_data sd = {
2770 .event = event,
767ae086 2771 .restart = restart,
375637bc
AS
2772 };
2773 int ret = 0;
2774
2775 do {
2776 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2777 return 0;
2778
2779 /* matches smp_wmb() in event_sched_in() */
2780 smp_rmb();
2781
2782 /*
2783 * We only want to restart ACTIVE events, so if the event goes
2784 * inactive here (event->oncpu==-1), there's nothing more to do;
2785 * fall through with ret==-ENXIO.
2786 */
2787 ret = cpu_function_call(READ_ONCE(event->oncpu),
2788 __perf_event_stop, &sd);
2789 } while (ret == -EAGAIN);
2790
2791 return ret;
2792}
2793
2794/*
2795 * In order to contain the amount of racy and tricky in the address filter
2796 * configuration management, it is a two part process:
2797 *
2798 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799 * we update the addresses of corresponding vmas in
2800 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2801 * (p2) when an event is scheduled in (pmu::add), it calls
2802 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803 * if the generation has changed since the previous call.
2804 *
2805 * If (p1) happens while the event is active, we restart it to force (p2).
2806 *
2807 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2809 * ioctl;
2810 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2812 * for reading;
2813 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2814 * of exec.
2815 */
2816void perf_event_addr_filters_sync(struct perf_event *event)
2817{
2818 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2819
2820 if (!has_addr_filter(event))
2821 return;
2822
2823 raw_spin_lock(&ifh->lock);
2824 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2825 event->pmu->addr_filters_sync(event);
2826 event->hw.addr_filters_gen = event->addr_filters_gen;
2827 }
2828 raw_spin_unlock(&ifh->lock);
2829}
2830EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2831
f63a8daa 2832static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2833{
2023b359 2834 /*
cdd6c482 2835 * not supported on inherited events
2023b359 2836 */
2e939d1d 2837 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2838 return -EINVAL;
2839
cdd6c482 2840 atomic_add(refresh, &event->event_limit);
f63a8daa 2841 _perf_event_enable(event);
2023b359
PZ
2842
2843 return 0;
79f14641 2844}
f63a8daa
PZ
2845
2846/*
2847 * See perf_event_disable()
2848 */
2849int perf_event_refresh(struct perf_event *event, int refresh)
2850{
2851 struct perf_event_context *ctx;
2852 int ret;
2853
2854 ctx = perf_event_ctx_lock(event);
2855 ret = _perf_event_refresh(event, refresh);
2856 perf_event_ctx_unlock(event, ctx);
2857
2858 return ret;
2859}
26ca5c11 2860EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2861
32ff77e8
MC
2862static int perf_event_modify_breakpoint(struct perf_event *bp,
2863 struct perf_event_attr *attr)
2864{
2865 int err;
2866
2867 _perf_event_disable(bp);
2868
2869 err = modify_user_hw_breakpoint_check(bp, attr, true);
2870 if (err) {
2871 if (!bp->attr.disabled)
2872 _perf_event_enable(bp);
2873
2874 return err;
2875 }
2876
2877 if (!attr->disabled)
2878 _perf_event_enable(bp);
2879 return 0;
2880}
2881
2882static int perf_event_modify_attr(struct perf_event *event,
2883 struct perf_event_attr *attr)
2884{
2885 if (event->attr.type != attr->type)
2886 return -EINVAL;
2887
2888 switch (event->attr.type) {
2889 case PERF_TYPE_BREAKPOINT:
2890 return perf_event_modify_breakpoint(event, attr);
2891 default:
2892 /* Place holder for future additions. */
2893 return -EOPNOTSUPP;
2894 }
2895}
2896
5b0311e1
FW
2897static void ctx_sched_out(struct perf_event_context *ctx,
2898 struct perf_cpu_context *cpuctx,
2899 enum event_type_t event_type)
235c7fc7 2900{
6668128a 2901 struct perf_event *event, *tmp;
db24d33e 2902 int is_active = ctx->is_active;
235c7fc7 2903
c994d613 2904 lockdep_assert_held(&ctx->lock);
235c7fc7 2905
39a43640
PZ
2906 if (likely(!ctx->nr_events)) {
2907 /*
2908 * See __perf_remove_from_context().
2909 */
2910 WARN_ON_ONCE(ctx->is_active);
2911 if (ctx->task)
2912 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2913 return;
39a43640
PZ
2914 }
2915
db24d33e 2916 ctx->is_active &= ~event_type;
3cbaa590
PZ
2917 if (!(ctx->is_active & EVENT_ALL))
2918 ctx->is_active = 0;
2919
63e30d3e
PZ
2920 if (ctx->task) {
2921 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2922 if (!ctx->is_active)
2923 cpuctx->task_ctx = NULL;
2924 }
facc4307 2925
8fdc6539
PZ
2926 /*
2927 * Always update time if it was set; not only when it changes.
2928 * Otherwise we can 'forget' to update time for any but the last
2929 * context we sched out. For example:
2930 *
2931 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2932 * ctx_sched_out(.event_type = EVENT_PINNED)
2933 *
2934 * would only update time for the pinned events.
2935 */
3cbaa590
PZ
2936 if (is_active & EVENT_TIME) {
2937 /* update (and stop) ctx time */
2938 update_context_time(ctx);
2939 update_cgrp_time_from_cpuctx(cpuctx);
2940 }
2941
8fdc6539
PZ
2942 is_active ^= ctx->is_active; /* changed bits */
2943
3cbaa590 2944 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2945 return;
5b0311e1 2946
075e0b00 2947 perf_pmu_disable(ctx->pmu);
3cbaa590 2948 if (is_active & EVENT_PINNED) {
6668128a 2949 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
889ff015 2950 group_sched_out(event, cpuctx, ctx);
9ed6060d 2951 }
889ff015 2952
3cbaa590 2953 if (is_active & EVENT_FLEXIBLE) {
6668128a 2954 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
8c9ed8e1 2955 group_sched_out(event, cpuctx, ctx);
9ed6060d 2956 }
1b9a644f 2957 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2958}
2959
564c2b21 2960/*
5a3126d4
PZ
2961 * Test whether two contexts are equivalent, i.e. whether they have both been
2962 * cloned from the same version of the same context.
2963 *
2964 * Equivalence is measured using a generation number in the context that is
2965 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2966 * and list_del_event().
564c2b21 2967 */
cdd6c482
IM
2968static int context_equiv(struct perf_event_context *ctx1,
2969 struct perf_event_context *ctx2)
564c2b21 2970{
211de6eb
PZ
2971 lockdep_assert_held(&ctx1->lock);
2972 lockdep_assert_held(&ctx2->lock);
2973
5a3126d4
PZ
2974 /* Pinning disables the swap optimization */
2975 if (ctx1->pin_count || ctx2->pin_count)
2976 return 0;
2977
2978 /* If ctx1 is the parent of ctx2 */
2979 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2980 return 1;
2981
2982 /* If ctx2 is the parent of ctx1 */
2983 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2984 return 1;
2985
2986 /*
2987 * If ctx1 and ctx2 have the same parent; we flatten the parent
2988 * hierarchy, see perf_event_init_context().
2989 */
2990 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2991 ctx1->parent_gen == ctx2->parent_gen)
2992 return 1;
2993
2994 /* Unmatched */
2995 return 0;
564c2b21
PM
2996}
2997
cdd6c482
IM
2998static void __perf_event_sync_stat(struct perf_event *event,
2999 struct perf_event *next_event)
bfbd3381
PZ
3000{
3001 u64 value;
3002
cdd6c482 3003 if (!event->attr.inherit_stat)
bfbd3381
PZ
3004 return;
3005
3006 /*
cdd6c482 3007 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3008 * because we're in the middle of a context switch and have IRQs
3009 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3010 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3011 * don't need to use it.
3012 */
0d3d73aa 3013 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3014 event->pmu->read(event);
bfbd3381 3015
0d3d73aa 3016 perf_event_update_time(event);
bfbd3381
PZ
3017
3018 /*
cdd6c482 3019 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3020 * values when we flip the contexts.
3021 */
e7850595
PZ
3022 value = local64_read(&next_event->count);
3023 value = local64_xchg(&event->count, value);
3024 local64_set(&next_event->count, value);
bfbd3381 3025
cdd6c482
IM
3026 swap(event->total_time_enabled, next_event->total_time_enabled);
3027 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3028
bfbd3381 3029 /*
19d2e755 3030 * Since we swizzled the values, update the user visible data too.
bfbd3381 3031 */
cdd6c482
IM
3032 perf_event_update_userpage(event);
3033 perf_event_update_userpage(next_event);
bfbd3381
PZ
3034}
3035
cdd6c482
IM
3036static void perf_event_sync_stat(struct perf_event_context *ctx,
3037 struct perf_event_context *next_ctx)
bfbd3381 3038{
cdd6c482 3039 struct perf_event *event, *next_event;
bfbd3381
PZ
3040
3041 if (!ctx->nr_stat)
3042 return;
3043
02ffdbc8
PZ
3044 update_context_time(ctx);
3045
cdd6c482
IM
3046 event = list_first_entry(&ctx->event_list,
3047 struct perf_event, event_entry);
bfbd3381 3048
cdd6c482
IM
3049 next_event = list_first_entry(&next_ctx->event_list,
3050 struct perf_event, event_entry);
bfbd3381 3051
cdd6c482
IM
3052 while (&event->event_entry != &ctx->event_list &&
3053 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3054
cdd6c482 3055 __perf_event_sync_stat(event, next_event);
bfbd3381 3056
cdd6c482
IM
3057 event = list_next_entry(event, event_entry);
3058 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3059 }
3060}
3061
fe4b04fa
PZ
3062static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3063 struct task_struct *next)
0793a61d 3064{
8dc85d54 3065 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 3066 struct perf_event_context *next_ctx;
5a3126d4 3067 struct perf_event_context *parent, *next_parent;
108b02cf 3068 struct perf_cpu_context *cpuctx;
c93f7669 3069 int do_switch = 1;
0793a61d 3070
108b02cf
PZ
3071 if (likely(!ctx))
3072 return;
10989fb2 3073
108b02cf
PZ
3074 cpuctx = __get_cpu_context(ctx);
3075 if (!cpuctx->task_ctx)
0793a61d
TG
3076 return;
3077
c93f7669 3078 rcu_read_lock();
8dc85d54 3079 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
3080 if (!next_ctx)
3081 goto unlock;
3082
3083 parent = rcu_dereference(ctx->parent_ctx);
3084 next_parent = rcu_dereference(next_ctx->parent_ctx);
3085
3086 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3087 if (!parent && !next_parent)
5a3126d4
PZ
3088 goto unlock;
3089
3090 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3091 /*
3092 * Looks like the two contexts are clones, so we might be
3093 * able to optimize the context switch. We lock both
3094 * contexts and check that they are clones under the
3095 * lock (including re-checking that neither has been
3096 * uncloned in the meantime). It doesn't matter which
3097 * order we take the locks because no other cpu could
3098 * be trying to lock both of these tasks.
3099 */
e625cce1
TG
3100 raw_spin_lock(&ctx->lock);
3101 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3102 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
3103 WRITE_ONCE(ctx->task, next);
3104 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
3105
3106 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3107
63b6da39
PZ
3108 /*
3109 * RCU_INIT_POINTER here is safe because we've not
3110 * modified the ctx and the above modification of
3111 * ctx->task and ctx->task_ctx_data are immaterial
3112 * since those values are always verified under
3113 * ctx->lock which we're now holding.
3114 */
3115 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3116 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3117
c93f7669 3118 do_switch = 0;
bfbd3381 3119
cdd6c482 3120 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3121 }
e625cce1
TG
3122 raw_spin_unlock(&next_ctx->lock);
3123 raw_spin_unlock(&ctx->lock);
564c2b21 3124 }
5a3126d4 3125unlock:
c93f7669 3126 rcu_read_unlock();
564c2b21 3127
c93f7669 3128 if (do_switch) {
facc4307 3129 raw_spin_lock(&ctx->lock);
487f05e1 3130 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 3131 raw_spin_unlock(&ctx->lock);
c93f7669 3132 }
0793a61d
TG
3133}
3134
e48c1788
PZ
3135static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3136
ba532500
YZ
3137void perf_sched_cb_dec(struct pmu *pmu)
3138{
e48c1788
PZ
3139 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3140
ba532500 3141 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3142
3143 if (!--cpuctx->sched_cb_usage)
3144 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3145}
3146
e48c1788 3147
ba532500
YZ
3148void perf_sched_cb_inc(struct pmu *pmu)
3149{
e48c1788
PZ
3150 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3151
3152 if (!cpuctx->sched_cb_usage++)
3153 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3154
ba532500
YZ
3155 this_cpu_inc(perf_sched_cb_usages);
3156}
3157
3158/*
3159 * This function provides the context switch callback to the lower code
3160 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3161 *
3162 * This callback is relevant even to per-cpu events; for example multi event
3163 * PEBS requires this to provide PID/TID information. This requires we flush
3164 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3165 */
3166static void perf_pmu_sched_task(struct task_struct *prev,
3167 struct task_struct *next,
3168 bool sched_in)
3169{
3170 struct perf_cpu_context *cpuctx;
3171 struct pmu *pmu;
ba532500
YZ
3172
3173 if (prev == next)
3174 return;
3175
e48c1788 3176 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3177 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3178
e48c1788
PZ
3179 if (WARN_ON_ONCE(!pmu->sched_task))
3180 continue;
ba532500 3181
e48c1788
PZ
3182 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3183 perf_pmu_disable(pmu);
ba532500 3184
e48c1788 3185 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3186
e48c1788
PZ
3187 perf_pmu_enable(pmu);
3188 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3189 }
ba532500
YZ
3190}
3191
45ac1403
AH
3192static void perf_event_switch(struct task_struct *task,
3193 struct task_struct *next_prev, bool sched_in);
3194
8dc85d54
PZ
3195#define for_each_task_context_nr(ctxn) \
3196 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3197
3198/*
3199 * Called from scheduler to remove the events of the current task,
3200 * with interrupts disabled.
3201 *
3202 * We stop each event and update the event value in event->count.
3203 *
3204 * This does not protect us against NMI, but disable()
3205 * sets the disabled bit in the control field of event _before_
3206 * accessing the event control register. If a NMI hits, then it will
3207 * not restart the event.
3208 */
ab0cce56
JO
3209void __perf_event_task_sched_out(struct task_struct *task,
3210 struct task_struct *next)
8dc85d54
PZ
3211{
3212 int ctxn;
3213
ba532500
YZ
3214 if (__this_cpu_read(perf_sched_cb_usages))
3215 perf_pmu_sched_task(task, next, false);
3216
45ac1403
AH
3217 if (atomic_read(&nr_switch_events))
3218 perf_event_switch(task, next, false);
3219
8dc85d54
PZ
3220 for_each_task_context_nr(ctxn)
3221 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3222
3223 /*
3224 * if cgroup events exist on this CPU, then we need
3225 * to check if we have to switch out PMU state.
3226 * cgroup event are system-wide mode only
3227 */
4a32fea9 3228 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3229 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3230}
3231
5b0311e1
FW
3232/*
3233 * Called with IRQs disabled
3234 */
3235static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3236 enum event_type_t event_type)
3237{
3238 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3239}
3240
1cac7b1a
PZ
3241static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3242 int (*func)(struct perf_event *, void *), void *data)
0793a61d 3243{
1cac7b1a
PZ
3244 struct perf_event **evt, *evt1, *evt2;
3245 int ret;
8e1a2031 3246
1cac7b1a
PZ
3247 evt1 = perf_event_groups_first(groups, -1);
3248 evt2 = perf_event_groups_first(groups, cpu);
3249
3250 while (evt1 || evt2) {
3251 if (evt1 && evt2) {
3252 if (evt1->group_index < evt2->group_index)
3253 evt = &evt1;
3254 else
3255 evt = &evt2;
3256 } else if (evt1) {
3257 evt = &evt1;
3258 } else {
3259 evt = &evt2;
8e1a2031 3260 }
1cac7b1a
PZ
3261
3262 ret = func(*evt, data);
3263 if (ret)
3264 return ret;
3265
3266 *evt = perf_event_groups_next(*evt);
8e1a2031 3267 }
0793a61d 3268
1cac7b1a
PZ
3269 return 0;
3270}
3271
3272struct sched_in_data {
3273 struct perf_event_context *ctx;
3274 struct perf_cpu_context *cpuctx;
3275 int can_add_hw;
3276};
3277
3278static int pinned_sched_in(struct perf_event *event, void *data)
3279{
3280 struct sched_in_data *sid = data;
3281
3282 if (event->state <= PERF_EVENT_STATE_OFF)
3283 return 0;
3284
3285 if (!event_filter_match(event))
3286 return 0;
3287
6668128a
PZ
3288 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3289 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3290 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3291 }
1cac7b1a
PZ
3292
3293 /*
3294 * If this pinned group hasn't been scheduled,
3295 * put it in error state.
3296 */
3297 if (event->state == PERF_EVENT_STATE_INACTIVE)
3298 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3299
3300 return 0;
3301}
3302
3303static int flexible_sched_in(struct perf_event *event, void *data)
3304{
3305 struct sched_in_data *sid = data;
3306
3307 if (event->state <= PERF_EVENT_STATE_OFF)
3308 return 0;
3309
3310 if (!event_filter_match(event))
3311 return 0;
3312
3313 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
6668128a
PZ
3314 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3315 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3316 else
1cac7b1a 3317 sid->can_add_hw = 0;
3b6f9e5c 3318 }
1cac7b1a
PZ
3319
3320 return 0;
5b0311e1
FW
3321}
3322
3323static void
1cac7b1a
PZ
3324ctx_pinned_sched_in(struct perf_event_context *ctx,
3325 struct perf_cpu_context *cpuctx)
5b0311e1 3326{
1cac7b1a
PZ
3327 struct sched_in_data sid = {
3328 .ctx = ctx,
3329 .cpuctx = cpuctx,
3330 .can_add_hw = 1,
3331 };
3b6f9e5c 3332
1cac7b1a
PZ
3333 visit_groups_merge(&ctx->pinned_groups,
3334 smp_processor_id(),
3335 pinned_sched_in, &sid);
3336}
8e1a2031 3337
1cac7b1a
PZ
3338static void
3339ctx_flexible_sched_in(struct perf_event_context *ctx,
3340 struct perf_cpu_context *cpuctx)
3341{
3342 struct sched_in_data sid = {
3343 .ctx = ctx,
3344 .cpuctx = cpuctx,
3345 .can_add_hw = 1,
3346 };
0793a61d 3347
1cac7b1a
PZ
3348 visit_groups_merge(&ctx->flexible_groups,
3349 smp_processor_id(),
3350 flexible_sched_in, &sid);
5b0311e1
FW
3351}
3352
3353static void
3354ctx_sched_in(struct perf_event_context *ctx,
3355 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3356 enum event_type_t event_type,
3357 struct task_struct *task)
5b0311e1 3358{
db24d33e 3359 int is_active = ctx->is_active;
c994d613
PZ
3360 u64 now;
3361
3362 lockdep_assert_held(&ctx->lock);
e5d1367f 3363
5b0311e1 3364 if (likely(!ctx->nr_events))
facc4307 3365 return;
5b0311e1 3366
3cbaa590 3367 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3368 if (ctx->task) {
3369 if (!is_active)
3370 cpuctx->task_ctx = ctx;
3371 else
3372 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3373 }
3374
3cbaa590
PZ
3375 is_active ^= ctx->is_active; /* changed bits */
3376
3377 if (is_active & EVENT_TIME) {
3378 /* start ctx time */
3379 now = perf_clock();
3380 ctx->timestamp = now;
3381 perf_cgroup_set_timestamp(task, ctx);
3382 }
3383
5b0311e1
FW
3384 /*
3385 * First go through the list and put on any pinned groups
3386 * in order to give them the best chance of going on.
3387 */
3cbaa590 3388 if (is_active & EVENT_PINNED)
6e37738a 3389 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3390
3391 /* Then walk through the lower prio flexible groups */
3cbaa590 3392 if (is_active & EVENT_FLEXIBLE)
6e37738a 3393 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3394}
3395
329c0e01 3396static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3397 enum event_type_t event_type,
3398 struct task_struct *task)
329c0e01
FW
3399{
3400 struct perf_event_context *ctx = &cpuctx->ctx;
3401
e5d1367f 3402 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3403}
3404
e5d1367f
SE
3405static void perf_event_context_sched_in(struct perf_event_context *ctx,
3406 struct task_struct *task)
235c7fc7 3407{
108b02cf 3408 struct perf_cpu_context *cpuctx;
235c7fc7 3409
108b02cf 3410 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3411 if (cpuctx->task_ctx == ctx)
3412 return;
3413
facc4307 3414 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3415 /*
3416 * We must check ctx->nr_events while holding ctx->lock, such
3417 * that we serialize against perf_install_in_context().
3418 */
3419 if (!ctx->nr_events)
3420 goto unlock;
3421
1b9a644f 3422 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3423 /*
3424 * We want to keep the following priority order:
3425 * cpu pinned (that don't need to move), task pinned,
3426 * cpu flexible, task flexible.
fe45bafb
AS
3427 *
3428 * However, if task's ctx is not carrying any pinned
3429 * events, no need to flip the cpuctx's events around.
329c0e01 3430 */
8e1a2031 3431 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
fe45bafb 3432 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3433 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3434 perf_pmu_enable(ctx->pmu);
fdccc3fb 3435
3436unlock:
facc4307 3437 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3438}
3439
8dc85d54
PZ
3440/*
3441 * Called from scheduler to add the events of the current task
3442 * with interrupts disabled.
3443 *
3444 * We restore the event value and then enable it.
3445 *
3446 * This does not protect us against NMI, but enable()
3447 * sets the enabled bit in the control field of event _before_
3448 * accessing the event control register. If a NMI hits, then it will
3449 * keep the event running.
3450 */
ab0cce56
JO
3451void __perf_event_task_sched_in(struct task_struct *prev,
3452 struct task_struct *task)
8dc85d54
PZ
3453{
3454 struct perf_event_context *ctx;
3455 int ctxn;
3456
7e41d177
PZ
3457 /*
3458 * If cgroup events exist on this CPU, then we need to check if we have
3459 * to switch in PMU state; cgroup event are system-wide mode only.
3460 *
3461 * Since cgroup events are CPU events, we must schedule these in before
3462 * we schedule in the task events.
3463 */
3464 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3465 perf_cgroup_sched_in(prev, task);
3466
8dc85d54
PZ
3467 for_each_task_context_nr(ctxn) {
3468 ctx = task->perf_event_ctxp[ctxn];
3469 if (likely(!ctx))
3470 continue;
3471
e5d1367f 3472 perf_event_context_sched_in(ctx, task);
8dc85d54 3473 }
d010b332 3474
45ac1403
AH
3475 if (atomic_read(&nr_switch_events))
3476 perf_event_switch(task, prev, true);
3477
ba532500
YZ
3478 if (__this_cpu_read(perf_sched_cb_usages))
3479 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3480}
3481
abd50713
PZ
3482static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3483{
3484 u64 frequency = event->attr.sample_freq;
3485 u64 sec = NSEC_PER_SEC;
3486 u64 divisor, dividend;
3487
3488 int count_fls, nsec_fls, frequency_fls, sec_fls;
3489
3490 count_fls = fls64(count);
3491 nsec_fls = fls64(nsec);
3492 frequency_fls = fls64(frequency);
3493 sec_fls = 30;
3494
3495 /*
3496 * We got @count in @nsec, with a target of sample_freq HZ
3497 * the target period becomes:
3498 *
3499 * @count * 10^9
3500 * period = -------------------
3501 * @nsec * sample_freq
3502 *
3503 */
3504
3505 /*
3506 * Reduce accuracy by one bit such that @a and @b converge
3507 * to a similar magnitude.
3508 */
fe4b04fa 3509#define REDUCE_FLS(a, b) \
abd50713
PZ
3510do { \
3511 if (a##_fls > b##_fls) { \
3512 a >>= 1; \
3513 a##_fls--; \
3514 } else { \
3515 b >>= 1; \
3516 b##_fls--; \
3517 } \
3518} while (0)
3519
3520 /*
3521 * Reduce accuracy until either term fits in a u64, then proceed with
3522 * the other, so that finally we can do a u64/u64 division.
3523 */
3524 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3525 REDUCE_FLS(nsec, frequency);
3526 REDUCE_FLS(sec, count);
3527 }
3528
3529 if (count_fls + sec_fls > 64) {
3530 divisor = nsec * frequency;
3531
3532 while (count_fls + sec_fls > 64) {
3533 REDUCE_FLS(count, sec);
3534 divisor >>= 1;
3535 }
3536
3537 dividend = count * sec;
3538 } else {
3539 dividend = count * sec;
3540
3541 while (nsec_fls + frequency_fls > 64) {
3542 REDUCE_FLS(nsec, frequency);
3543 dividend >>= 1;
3544 }
3545
3546 divisor = nsec * frequency;
3547 }
3548
f6ab91ad
PZ
3549 if (!divisor)
3550 return dividend;
3551
abd50713
PZ
3552 return div64_u64(dividend, divisor);
3553}
3554
e050e3f0
SE
3555static DEFINE_PER_CPU(int, perf_throttled_count);
3556static DEFINE_PER_CPU(u64, perf_throttled_seq);
3557
f39d47ff 3558static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3559{
cdd6c482 3560 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3561 s64 period, sample_period;
bd2b5b12
PZ
3562 s64 delta;
3563
abd50713 3564 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3565
3566 delta = (s64)(period - hwc->sample_period);
3567 delta = (delta + 7) / 8; /* low pass filter */
3568
3569 sample_period = hwc->sample_period + delta;
3570
3571 if (!sample_period)
3572 sample_period = 1;
3573
bd2b5b12 3574 hwc->sample_period = sample_period;
abd50713 3575
e7850595 3576 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3577 if (disable)
3578 event->pmu->stop(event, PERF_EF_UPDATE);
3579
e7850595 3580 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3581
3582 if (disable)
3583 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3584 }
bd2b5b12
PZ
3585}
3586
e050e3f0
SE
3587/*
3588 * combine freq adjustment with unthrottling to avoid two passes over the
3589 * events. At the same time, make sure, having freq events does not change
3590 * the rate of unthrottling as that would introduce bias.
3591 */
3592static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3593 int needs_unthr)
60db5e09 3594{
cdd6c482
IM
3595 struct perf_event *event;
3596 struct hw_perf_event *hwc;
e050e3f0 3597 u64 now, period = TICK_NSEC;
abd50713 3598 s64 delta;
60db5e09 3599
e050e3f0
SE
3600 /*
3601 * only need to iterate over all events iff:
3602 * - context have events in frequency mode (needs freq adjust)
3603 * - there are events to unthrottle on this cpu
3604 */
3605 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3606 return;
3607
e050e3f0 3608 raw_spin_lock(&ctx->lock);
f39d47ff 3609 perf_pmu_disable(ctx->pmu);
e050e3f0 3610
03541f8b 3611 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3612 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3613 continue;
3614
5632ab12 3615 if (!event_filter_match(event))
5d27c23d
PZ
3616 continue;
3617
44377277
AS
3618 perf_pmu_disable(event->pmu);
3619
cdd6c482 3620 hwc = &event->hw;
6a24ed6c 3621
ae23bff1 3622 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3623 hwc->interrupts = 0;
cdd6c482 3624 perf_log_throttle(event, 1);
a4eaf7f1 3625 event->pmu->start(event, 0);
a78ac325
PZ
3626 }
3627
cdd6c482 3628 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3629 goto next;
60db5e09 3630
e050e3f0
SE
3631 /*
3632 * stop the event and update event->count
3633 */
3634 event->pmu->stop(event, PERF_EF_UPDATE);
3635
e7850595 3636 now = local64_read(&event->count);
abd50713
PZ
3637 delta = now - hwc->freq_count_stamp;
3638 hwc->freq_count_stamp = now;
60db5e09 3639
e050e3f0
SE
3640 /*
3641 * restart the event
3642 * reload only if value has changed
f39d47ff
SE
3643 * we have stopped the event so tell that
3644 * to perf_adjust_period() to avoid stopping it
3645 * twice.
e050e3f0 3646 */
abd50713 3647 if (delta > 0)
f39d47ff 3648 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3649
3650 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3651 next:
3652 perf_pmu_enable(event->pmu);
60db5e09 3653 }
e050e3f0 3654
f39d47ff 3655 perf_pmu_enable(ctx->pmu);
e050e3f0 3656 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3657}
3658
235c7fc7 3659/*
8703a7cf 3660 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 3661 */
8703a7cf 3662static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 3663{
dddd3379
TG
3664 /*
3665 * Rotate the first entry last of non-pinned groups. Rotation might be
3666 * disabled by the inheritance code.
3667 */
8703a7cf
PZ
3668 if (ctx->rotate_disable)
3669 return;
8e1a2031 3670
8703a7cf
PZ
3671 perf_event_groups_delete(&ctx->flexible_groups, event);
3672 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
3673}
3674
8d5bce0c
PZ
3675static inline struct perf_event *
3676ctx_first_active(struct perf_event_context *ctx)
235c7fc7 3677{
8d5bce0c
PZ
3678 return list_first_entry_or_null(&ctx->flexible_active,
3679 struct perf_event, active_list);
3680}
3681
3682static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3683{
3684 struct perf_event *cpu_event = NULL, *task_event = NULL;
3685 bool cpu_rotate = false, task_rotate = false;
8dc85d54 3686 struct perf_event_context *ctx = NULL;
8d5bce0c
PZ
3687
3688 /*
3689 * Since we run this from IRQ context, nobody can install new
3690 * events, thus the event count values are stable.
3691 */
7fc23a53 3692
b5ab4cd5 3693 if (cpuctx->ctx.nr_events) {
b5ab4cd5 3694 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
8d5bce0c 3695 cpu_rotate = true;
b5ab4cd5 3696 }
235c7fc7 3697
8dc85d54 3698 ctx = cpuctx->task_ctx;
b5ab4cd5 3699 if (ctx && ctx->nr_events) {
b5ab4cd5 3700 if (ctx->nr_events != ctx->nr_active)
8d5bce0c 3701 task_rotate = true;
b5ab4cd5 3702 }
9717e6cd 3703
8d5bce0c
PZ
3704 if (!(cpu_rotate || task_rotate))
3705 return false;
0f5a2601 3706
facc4307 3707 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3708 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3709
8d5bce0c
PZ
3710 if (task_rotate)
3711 task_event = ctx_first_active(ctx);
3712 if (cpu_rotate)
3713 cpu_event = ctx_first_active(&cpuctx->ctx);
8703a7cf 3714
8d5bce0c
PZ
3715 /*
3716 * As per the order given at ctx_resched() first 'pop' task flexible
3717 * and then, if needed CPU flexible.
3718 */
3719 if (task_event || (ctx && cpu_event))
e050e3f0 3720 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
8d5bce0c
PZ
3721 if (cpu_event)
3722 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
0793a61d 3723
8d5bce0c
PZ
3724 if (task_event)
3725 rotate_ctx(ctx, task_event);
3726 if (cpu_event)
3727 rotate_ctx(&cpuctx->ctx, cpu_event);
235c7fc7 3728
e050e3f0 3729 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3730
0f5a2601
PZ
3731 perf_pmu_enable(cpuctx->ctx.pmu);
3732 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 3733
8d5bce0c 3734 return true;
e9d2b064
PZ
3735}
3736
3737void perf_event_task_tick(void)
3738{
2fde4f94
MR
3739 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3740 struct perf_event_context *ctx, *tmp;
e050e3f0 3741 int throttled;
b5ab4cd5 3742
16444645 3743 lockdep_assert_irqs_disabled();
e9d2b064 3744
e050e3f0
SE
3745 __this_cpu_inc(perf_throttled_seq);
3746 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3747 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3748
2fde4f94 3749 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3750 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3751}
3752
889ff015
FW
3753static int event_enable_on_exec(struct perf_event *event,
3754 struct perf_event_context *ctx)
3755{
3756 if (!event->attr.enable_on_exec)
3757 return 0;
3758
3759 event->attr.enable_on_exec = 0;
3760 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3761 return 0;
3762
0d3d73aa 3763 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3764
3765 return 1;
3766}
3767
57e7986e 3768/*
cdd6c482 3769 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3770 * This expects task == current.
3771 */
c1274499 3772static void perf_event_enable_on_exec(int ctxn)
57e7986e 3773{
c1274499 3774 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3775 enum event_type_t event_type = 0;
3e349507 3776 struct perf_cpu_context *cpuctx;
cdd6c482 3777 struct perf_event *event;
57e7986e
PM
3778 unsigned long flags;
3779 int enabled = 0;
3780
3781 local_irq_save(flags);
c1274499 3782 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3783 if (!ctx || !ctx->nr_events)
57e7986e
PM
3784 goto out;
3785
3e349507
PZ
3786 cpuctx = __get_cpu_context(ctx);
3787 perf_ctx_lock(cpuctx, ctx);
7fce2509 3788 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3789 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3790 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3791 event_type |= get_event_type(event);
3792 }
57e7986e
PM
3793
3794 /*
3e349507 3795 * Unclone and reschedule this context if we enabled any event.
57e7986e 3796 */
3e349507 3797 if (enabled) {
211de6eb 3798 clone_ctx = unclone_ctx(ctx);
487f05e1 3799 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3800 } else {
3801 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3802 }
3803 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3804
9ed6060d 3805out:
57e7986e 3806 local_irq_restore(flags);
211de6eb
PZ
3807
3808 if (clone_ctx)
3809 put_ctx(clone_ctx);
57e7986e
PM
3810}
3811
0492d4c5
PZ
3812struct perf_read_data {
3813 struct perf_event *event;
3814 bool group;
7d88962e 3815 int ret;
0492d4c5
PZ
3816};
3817
451d24d1 3818static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3819{
d6a2f903
DCC
3820 u16 local_pkg, event_pkg;
3821
3822 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3823 int local_cpu = smp_processor_id();
3824
3825 event_pkg = topology_physical_package_id(event_cpu);
3826 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3827
3828 if (event_pkg == local_pkg)
3829 return local_cpu;
3830 }
3831
3832 return event_cpu;
3833}
3834
0793a61d 3835/*
cdd6c482 3836 * Cross CPU call to read the hardware event
0793a61d 3837 */
cdd6c482 3838static void __perf_event_read(void *info)
0793a61d 3839{
0492d4c5
PZ
3840 struct perf_read_data *data = info;
3841 struct perf_event *sub, *event = data->event;
cdd6c482 3842 struct perf_event_context *ctx = event->ctx;
108b02cf 3843 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3844 struct pmu *pmu = event->pmu;
621a01ea 3845
e1ac3614
PM
3846 /*
3847 * If this is a task context, we need to check whether it is
3848 * the current task context of this cpu. If not it has been
3849 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3850 * event->count would have been updated to a recent sample
3851 * when the event was scheduled out.
e1ac3614
PM
3852 */
3853 if (ctx->task && cpuctx->task_ctx != ctx)
3854 return;
3855
e625cce1 3856 raw_spin_lock(&ctx->lock);
0c1cbc18 3857 if (ctx->is_active & EVENT_TIME) {
542e72fc 3858 update_context_time(ctx);
e5d1367f
SE
3859 update_cgrp_time_from_event(event);
3860 }
0492d4c5 3861
0d3d73aa
PZ
3862 perf_event_update_time(event);
3863 if (data->group)
3864 perf_event_update_sibling_time(event);
0c1cbc18 3865
4a00c16e
SB
3866 if (event->state != PERF_EVENT_STATE_ACTIVE)
3867 goto unlock;
0492d4c5 3868
4a00c16e
SB
3869 if (!data->group) {
3870 pmu->read(event);
3871 data->ret = 0;
0492d4c5 3872 goto unlock;
4a00c16e
SB
3873 }
3874
3875 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3876
3877 pmu->read(event);
0492d4c5 3878
edb39592 3879 for_each_sibling_event(sub, event) {
4a00c16e
SB
3880 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3881 /*
3882 * Use sibling's PMU rather than @event's since
3883 * sibling could be on different (eg: software) PMU.
3884 */
0492d4c5 3885 sub->pmu->read(sub);
4a00c16e 3886 }
0492d4c5 3887 }
4a00c16e
SB
3888
3889 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3890
3891unlock:
e625cce1 3892 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3893}
3894
b5e58793
PZ
3895static inline u64 perf_event_count(struct perf_event *event)
3896{
c39a0e2c 3897 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3898}
3899
ffe8690c
KX
3900/*
3901 * NMI-safe method to read a local event, that is an event that
3902 * is:
3903 * - either for the current task, or for this CPU
3904 * - does not have inherit set, for inherited task events
3905 * will not be local and we cannot read them atomically
3906 * - must not have a pmu::count method
3907 */
7d9285e8
YS
3908int perf_event_read_local(struct perf_event *event, u64 *value,
3909 u64 *enabled, u64 *running)
ffe8690c
KX
3910{
3911 unsigned long flags;
f91840a3 3912 int ret = 0;
ffe8690c
KX
3913
3914 /*
3915 * Disabling interrupts avoids all counter scheduling (context
3916 * switches, timer based rotation and IPIs).
3917 */
3918 local_irq_save(flags);
3919
ffe8690c
KX
3920 /*
3921 * It must not be an event with inherit set, we cannot read
3922 * all child counters from atomic context.
3923 */
f91840a3
AS
3924 if (event->attr.inherit) {
3925 ret = -EOPNOTSUPP;
3926 goto out;
3927 }
ffe8690c 3928
f91840a3
AS
3929 /* If this is a per-task event, it must be for current */
3930 if ((event->attach_state & PERF_ATTACH_TASK) &&
3931 event->hw.target != current) {
3932 ret = -EINVAL;
3933 goto out;
3934 }
3935
3936 /* If this is a per-CPU event, it must be for this CPU */
3937 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3938 event->cpu != smp_processor_id()) {
3939 ret = -EINVAL;
3940 goto out;
3941 }
ffe8690c
KX
3942
3943 /*
3944 * If the event is currently on this CPU, its either a per-task event,
3945 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3946 * oncpu == -1).
3947 */
3948 if (event->oncpu == smp_processor_id())
3949 event->pmu->read(event);
3950
f91840a3 3951 *value = local64_read(&event->count);
0d3d73aa
PZ
3952 if (enabled || running) {
3953 u64 now = event->shadow_ctx_time + perf_clock();
3954 u64 __enabled, __running;
3955
3956 __perf_update_times(event, now, &__enabled, &__running);
3957 if (enabled)
3958 *enabled = __enabled;
3959 if (running)
3960 *running = __running;
3961 }
f91840a3 3962out:
ffe8690c
KX
3963 local_irq_restore(flags);
3964
f91840a3 3965 return ret;
ffe8690c
KX
3966}
3967
7d88962e 3968static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3969{
0c1cbc18 3970 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 3971 int event_cpu, ret = 0;
7d88962e 3972
0793a61d 3973 /*
cdd6c482
IM
3974 * If event is enabled and currently active on a CPU, update the
3975 * value in the event structure:
0793a61d 3976 */
0c1cbc18
PZ
3977again:
3978 if (state == PERF_EVENT_STATE_ACTIVE) {
3979 struct perf_read_data data;
3980
3981 /*
3982 * Orders the ->state and ->oncpu loads such that if we see
3983 * ACTIVE we must also see the right ->oncpu.
3984 *
3985 * Matches the smp_wmb() from event_sched_in().
3986 */
3987 smp_rmb();
d6a2f903 3988
451d24d1
PZ
3989 event_cpu = READ_ONCE(event->oncpu);
3990 if ((unsigned)event_cpu >= nr_cpu_ids)
3991 return 0;
3992
0c1cbc18
PZ
3993 data = (struct perf_read_data){
3994 .event = event,
3995 .group = group,
3996 .ret = 0,
3997 };
3998
451d24d1
PZ
3999 preempt_disable();
4000 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4001
58763148
PZ
4002 /*
4003 * Purposely ignore the smp_call_function_single() return
4004 * value.
4005 *
451d24d1 4006 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4007 * scheduled out and that will have updated the event count.
4008 *
4009 * Therefore, either way, we'll have an up-to-date event count
4010 * after this.
4011 */
451d24d1
PZ
4012 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4013 preempt_enable();
58763148 4014 ret = data.ret;
0c1cbc18
PZ
4015
4016 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4017 struct perf_event_context *ctx = event->ctx;
4018 unsigned long flags;
4019
e625cce1 4020 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4021 state = event->state;
4022 if (state != PERF_EVENT_STATE_INACTIVE) {
4023 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4024 goto again;
4025 }
4026
c530ccd9 4027 /*
0c1cbc18
PZ
4028 * May read while context is not active (e.g., thread is
4029 * blocked), in that case we cannot update context time
c530ccd9 4030 */
0c1cbc18 4031 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4032 update_context_time(ctx);
e5d1367f
SE
4033 update_cgrp_time_from_event(event);
4034 }
0c1cbc18 4035
0d3d73aa 4036 perf_event_update_time(event);
0492d4c5 4037 if (group)
0d3d73aa 4038 perf_event_update_sibling_time(event);
e625cce1 4039 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4040 }
7d88962e
SB
4041
4042 return ret;
0793a61d
TG
4043}
4044
a63eaf34 4045/*
cdd6c482 4046 * Initialize the perf_event context in a task_struct:
a63eaf34 4047 */
eb184479 4048static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4049{
e625cce1 4050 raw_spin_lock_init(&ctx->lock);
a63eaf34 4051 mutex_init(&ctx->mutex);
2fde4f94 4052 INIT_LIST_HEAD(&ctx->active_ctx_list);
8e1a2031
AB
4053 perf_event_groups_init(&ctx->pinned_groups);
4054 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4055 INIT_LIST_HEAD(&ctx->event_list);
6668128a
PZ
4056 INIT_LIST_HEAD(&ctx->pinned_active);
4057 INIT_LIST_HEAD(&ctx->flexible_active);
a63eaf34 4058 atomic_set(&ctx->refcount, 1);
eb184479
PZ
4059}
4060
4061static struct perf_event_context *
4062alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4063{
4064 struct perf_event_context *ctx;
4065
4066 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4067 if (!ctx)
4068 return NULL;
4069
4070 __perf_event_init_context(ctx);
4071 if (task) {
4072 ctx->task = task;
4073 get_task_struct(task);
0793a61d 4074 }
eb184479
PZ
4075 ctx->pmu = pmu;
4076
4077 return ctx;
a63eaf34
PM
4078}
4079
2ebd4ffb
MH
4080static struct task_struct *
4081find_lively_task_by_vpid(pid_t vpid)
4082{
4083 struct task_struct *task;
0793a61d
TG
4084
4085 rcu_read_lock();
2ebd4ffb 4086 if (!vpid)
0793a61d
TG
4087 task = current;
4088 else
2ebd4ffb 4089 task = find_task_by_vpid(vpid);
0793a61d
TG
4090 if (task)
4091 get_task_struct(task);
4092 rcu_read_unlock();
4093
4094 if (!task)
4095 return ERR_PTR(-ESRCH);
4096
2ebd4ffb 4097 return task;
2ebd4ffb
MH
4098}
4099
fe4b04fa
PZ
4100/*
4101 * Returns a matching context with refcount and pincount.
4102 */
108b02cf 4103static struct perf_event_context *
4af57ef2
YZ
4104find_get_context(struct pmu *pmu, struct task_struct *task,
4105 struct perf_event *event)
0793a61d 4106{
211de6eb 4107 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4108 struct perf_cpu_context *cpuctx;
4af57ef2 4109 void *task_ctx_data = NULL;
25346b93 4110 unsigned long flags;
8dc85d54 4111 int ctxn, err;
4af57ef2 4112 int cpu = event->cpu;
0793a61d 4113
22a4ec72 4114 if (!task) {
cdd6c482 4115 /* Must be root to operate on a CPU event: */
0764771d 4116 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
4117 return ERR_PTR(-EACCES);
4118
108b02cf 4119 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 4120 ctx = &cpuctx->ctx;
c93f7669 4121 get_ctx(ctx);
fe4b04fa 4122 ++ctx->pin_count;
0793a61d 4123
0793a61d
TG
4124 return ctx;
4125 }
4126
8dc85d54
PZ
4127 err = -EINVAL;
4128 ctxn = pmu->task_ctx_nr;
4129 if (ctxn < 0)
4130 goto errout;
4131
4af57ef2
YZ
4132 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4133 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4134 if (!task_ctx_data) {
4135 err = -ENOMEM;
4136 goto errout;
4137 }
4138 }
4139
9ed6060d 4140retry:
8dc85d54 4141 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 4142 if (ctx) {
211de6eb 4143 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4144 ++ctx->pin_count;
4af57ef2
YZ
4145
4146 if (task_ctx_data && !ctx->task_ctx_data) {
4147 ctx->task_ctx_data = task_ctx_data;
4148 task_ctx_data = NULL;
4149 }
e625cce1 4150 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4151
4152 if (clone_ctx)
4153 put_ctx(clone_ctx);
9137fb28 4154 } else {
eb184479 4155 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
4156 err = -ENOMEM;
4157 if (!ctx)
4158 goto errout;
eb184479 4159
4af57ef2
YZ
4160 if (task_ctx_data) {
4161 ctx->task_ctx_data = task_ctx_data;
4162 task_ctx_data = NULL;
4163 }
4164
dbe08d82
ON
4165 err = 0;
4166 mutex_lock(&task->perf_event_mutex);
4167 /*
4168 * If it has already passed perf_event_exit_task().
4169 * we must see PF_EXITING, it takes this mutex too.
4170 */
4171 if (task->flags & PF_EXITING)
4172 err = -ESRCH;
4173 else if (task->perf_event_ctxp[ctxn])
4174 err = -EAGAIN;
fe4b04fa 4175 else {
9137fb28 4176 get_ctx(ctx);
fe4b04fa 4177 ++ctx->pin_count;
dbe08d82 4178 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 4179 }
dbe08d82
ON
4180 mutex_unlock(&task->perf_event_mutex);
4181
4182 if (unlikely(err)) {
9137fb28 4183 put_ctx(ctx);
dbe08d82
ON
4184
4185 if (err == -EAGAIN)
4186 goto retry;
4187 goto errout;
a63eaf34
PM
4188 }
4189 }
4190
4af57ef2 4191 kfree(task_ctx_data);
0793a61d 4192 return ctx;
c93f7669 4193
9ed6060d 4194errout:
4af57ef2 4195 kfree(task_ctx_data);
c93f7669 4196 return ERR_PTR(err);
0793a61d
TG
4197}
4198
6fb2915d 4199static void perf_event_free_filter(struct perf_event *event);
2541517c 4200static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 4201
cdd6c482 4202static void free_event_rcu(struct rcu_head *head)
592903cd 4203{
cdd6c482 4204 struct perf_event *event;
592903cd 4205
cdd6c482
IM
4206 event = container_of(head, struct perf_event, rcu_head);
4207 if (event->ns)
4208 put_pid_ns(event->ns);
6fb2915d 4209 perf_event_free_filter(event);
cdd6c482 4210 kfree(event);
592903cd
PZ
4211}
4212
b69cf536
PZ
4213static void ring_buffer_attach(struct perf_event *event,
4214 struct ring_buffer *rb);
925d519a 4215
f2fb6bef
KL
4216static void detach_sb_event(struct perf_event *event)
4217{
4218 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4219
4220 raw_spin_lock(&pel->lock);
4221 list_del_rcu(&event->sb_list);
4222 raw_spin_unlock(&pel->lock);
4223}
4224
a4f144eb 4225static bool is_sb_event(struct perf_event *event)
f2fb6bef 4226{
a4f144eb
DCC
4227 struct perf_event_attr *attr = &event->attr;
4228
f2fb6bef 4229 if (event->parent)
a4f144eb 4230 return false;
f2fb6bef
KL
4231
4232 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4233 return false;
f2fb6bef 4234
a4f144eb
DCC
4235 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4236 attr->comm || attr->comm_exec ||
4237 attr->task ||
4238 attr->context_switch)
4239 return true;
4240 return false;
4241}
4242
4243static void unaccount_pmu_sb_event(struct perf_event *event)
4244{
4245 if (is_sb_event(event))
4246 detach_sb_event(event);
f2fb6bef
KL
4247}
4248
4beb31f3 4249static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4250{
4beb31f3
FW
4251 if (event->parent)
4252 return;
4253
4beb31f3
FW
4254 if (is_cgroup_event(event))
4255 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4256}
925d519a 4257
555e0c1e
FW
4258#ifdef CONFIG_NO_HZ_FULL
4259static DEFINE_SPINLOCK(nr_freq_lock);
4260#endif
4261
4262static void unaccount_freq_event_nohz(void)
4263{
4264#ifdef CONFIG_NO_HZ_FULL
4265 spin_lock(&nr_freq_lock);
4266 if (atomic_dec_and_test(&nr_freq_events))
4267 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4268 spin_unlock(&nr_freq_lock);
4269#endif
4270}
4271
4272static void unaccount_freq_event(void)
4273{
4274 if (tick_nohz_full_enabled())
4275 unaccount_freq_event_nohz();
4276 else
4277 atomic_dec(&nr_freq_events);
4278}
4279
4beb31f3
FW
4280static void unaccount_event(struct perf_event *event)
4281{
25432ae9
PZ
4282 bool dec = false;
4283
4beb31f3
FW
4284 if (event->parent)
4285 return;
4286
4287 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4288 dec = true;
4beb31f3
FW
4289 if (event->attr.mmap || event->attr.mmap_data)
4290 atomic_dec(&nr_mmap_events);
4291 if (event->attr.comm)
4292 atomic_dec(&nr_comm_events);
e4222673
HB
4293 if (event->attr.namespaces)
4294 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4295 if (event->attr.task)
4296 atomic_dec(&nr_task_events);
948b26b6 4297 if (event->attr.freq)
555e0c1e 4298 unaccount_freq_event();
45ac1403 4299 if (event->attr.context_switch) {
25432ae9 4300 dec = true;
45ac1403
AH
4301 atomic_dec(&nr_switch_events);
4302 }
4beb31f3 4303 if (is_cgroup_event(event))
25432ae9 4304 dec = true;
4beb31f3 4305 if (has_branch_stack(event))
25432ae9
PZ
4306 dec = true;
4307
9107c89e
PZ
4308 if (dec) {
4309 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4310 schedule_delayed_work(&perf_sched_work, HZ);
4311 }
4beb31f3
FW
4312
4313 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4314
4315 unaccount_pmu_sb_event(event);
4beb31f3 4316}
925d519a 4317
9107c89e
PZ
4318static void perf_sched_delayed(struct work_struct *work)
4319{
4320 mutex_lock(&perf_sched_mutex);
4321 if (atomic_dec_and_test(&perf_sched_count))
4322 static_branch_disable(&perf_sched_events);
4323 mutex_unlock(&perf_sched_mutex);
4324}
4325
bed5b25a
AS
4326/*
4327 * The following implement mutual exclusion of events on "exclusive" pmus
4328 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4329 * at a time, so we disallow creating events that might conflict, namely:
4330 *
4331 * 1) cpu-wide events in the presence of per-task events,
4332 * 2) per-task events in the presence of cpu-wide events,
4333 * 3) two matching events on the same context.
4334 *
4335 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4336 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4337 */
4338static int exclusive_event_init(struct perf_event *event)
4339{
4340 struct pmu *pmu = event->pmu;
4341
4342 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4343 return 0;
4344
4345 /*
4346 * Prevent co-existence of per-task and cpu-wide events on the
4347 * same exclusive pmu.
4348 *
4349 * Negative pmu::exclusive_cnt means there are cpu-wide
4350 * events on this "exclusive" pmu, positive means there are
4351 * per-task events.
4352 *
4353 * Since this is called in perf_event_alloc() path, event::ctx
4354 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4355 * to mean "per-task event", because unlike other attach states it
4356 * never gets cleared.
4357 */
4358 if (event->attach_state & PERF_ATTACH_TASK) {
4359 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4360 return -EBUSY;
4361 } else {
4362 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4363 return -EBUSY;
4364 }
4365
4366 return 0;
4367}
4368
4369static void exclusive_event_destroy(struct perf_event *event)
4370{
4371 struct pmu *pmu = event->pmu;
4372
4373 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4374 return;
4375
4376 /* see comment in exclusive_event_init() */
4377 if (event->attach_state & PERF_ATTACH_TASK)
4378 atomic_dec(&pmu->exclusive_cnt);
4379 else
4380 atomic_inc(&pmu->exclusive_cnt);
4381}
4382
4383static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4384{
3bf6215a 4385 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4386 (e1->cpu == e2->cpu ||
4387 e1->cpu == -1 ||
4388 e2->cpu == -1))
4389 return true;
4390 return false;
4391}
4392
4393/* Called under the same ctx::mutex as perf_install_in_context() */
4394static bool exclusive_event_installable(struct perf_event *event,
4395 struct perf_event_context *ctx)
4396{
4397 struct perf_event *iter_event;
4398 struct pmu *pmu = event->pmu;
4399
4400 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4401 return true;
4402
4403 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4404 if (exclusive_event_match(iter_event, event))
4405 return false;
4406 }
4407
4408 return true;
4409}
4410
375637bc
AS
4411static void perf_addr_filters_splice(struct perf_event *event,
4412 struct list_head *head);
4413
683ede43 4414static void _free_event(struct perf_event *event)
f1600952 4415{
e360adbe 4416 irq_work_sync(&event->pending);
925d519a 4417
4beb31f3 4418 unaccount_event(event);
9ee318a7 4419
76369139 4420 if (event->rb) {
9bb5d40c
PZ
4421 /*
4422 * Can happen when we close an event with re-directed output.
4423 *
4424 * Since we have a 0 refcount, perf_mmap_close() will skip
4425 * over us; possibly making our ring_buffer_put() the last.
4426 */
4427 mutex_lock(&event->mmap_mutex);
b69cf536 4428 ring_buffer_attach(event, NULL);
9bb5d40c 4429 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4430 }
4431
e5d1367f
SE
4432 if (is_cgroup_event(event))
4433 perf_detach_cgroup(event);
4434
a0733e69
PZ
4435 if (!event->parent) {
4436 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4437 put_callchain_buffers();
4438 }
4439
4440 perf_event_free_bpf_prog(event);
375637bc
AS
4441 perf_addr_filters_splice(event, NULL);
4442 kfree(event->addr_filters_offs);
a0733e69
PZ
4443
4444 if (event->destroy)
4445 event->destroy(event);
4446
4447 if (event->ctx)
4448 put_ctx(event->ctx);
4449
621b6d2e
PB
4450 if (event->hw.target)
4451 put_task_struct(event->hw.target);
4452
62a92c8f
AS
4453 exclusive_event_destroy(event);
4454 module_put(event->pmu->module);
a0733e69
PZ
4455
4456 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4457}
4458
683ede43
PZ
4459/*
4460 * Used to free events which have a known refcount of 1, such as in error paths
4461 * where the event isn't exposed yet and inherited events.
4462 */
4463static void free_event(struct perf_event *event)
0793a61d 4464{
683ede43
PZ
4465 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4466 "unexpected event refcount: %ld; ptr=%p\n",
4467 atomic_long_read(&event->refcount), event)) {
4468 /* leak to avoid use-after-free */
4469 return;
4470 }
0793a61d 4471
683ede43 4472 _free_event(event);
0793a61d
TG
4473}
4474
a66a3052 4475/*
f8697762 4476 * Remove user event from the owner task.
a66a3052 4477 */
f8697762 4478static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4479{
8882135b 4480 struct task_struct *owner;
fb0459d7 4481
8882135b 4482 rcu_read_lock();
8882135b 4483 /*
f47c02c0
PZ
4484 * Matches the smp_store_release() in perf_event_exit_task(). If we
4485 * observe !owner it means the list deletion is complete and we can
4486 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4487 * owner->perf_event_mutex.
4488 */
506458ef 4489 owner = READ_ONCE(event->owner);
8882135b
PZ
4490 if (owner) {
4491 /*
4492 * Since delayed_put_task_struct() also drops the last
4493 * task reference we can safely take a new reference
4494 * while holding the rcu_read_lock().
4495 */
4496 get_task_struct(owner);
4497 }
4498 rcu_read_unlock();
4499
4500 if (owner) {
f63a8daa
PZ
4501 /*
4502 * If we're here through perf_event_exit_task() we're already
4503 * holding ctx->mutex which would be an inversion wrt. the
4504 * normal lock order.
4505 *
4506 * However we can safely take this lock because its the child
4507 * ctx->mutex.
4508 */
4509 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4510
8882135b
PZ
4511 /*
4512 * We have to re-check the event->owner field, if it is cleared
4513 * we raced with perf_event_exit_task(), acquiring the mutex
4514 * ensured they're done, and we can proceed with freeing the
4515 * event.
4516 */
f47c02c0 4517 if (event->owner) {
8882135b 4518 list_del_init(&event->owner_entry);
f47c02c0
PZ
4519 smp_store_release(&event->owner, NULL);
4520 }
8882135b
PZ
4521 mutex_unlock(&owner->perf_event_mutex);
4522 put_task_struct(owner);
4523 }
f8697762
JO
4524}
4525
f8697762
JO
4526static void put_event(struct perf_event *event)
4527{
f8697762
JO
4528 if (!atomic_long_dec_and_test(&event->refcount))
4529 return;
4530
c6e5b732
PZ
4531 _free_event(event);
4532}
4533
4534/*
4535 * Kill an event dead; while event:refcount will preserve the event
4536 * object, it will not preserve its functionality. Once the last 'user'
4537 * gives up the object, we'll destroy the thing.
4538 */
4539int perf_event_release_kernel(struct perf_event *event)
4540{
a4f4bb6d 4541 struct perf_event_context *ctx = event->ctx;
c6e5b732 4542 struct perf_event *child, *tmp;
82d94856 4543 LIST_HEAD(free_list);
c6e5b732 4544
a4f4bb6d
PZ
4545 /*
4546 * If we got here through err_file: fput(event_file); we will not have
4547 * attached to a context yet.
4548 */
4549 if (!ctx) {
4550 WARN_ON_ONCE(event->attach_state &
4551 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4552 goto no_ctx;
4553 }
4554
f8697762
JO
4555 if (!is_kernel_event(event))
4556 perf_remove_from_owner(event);
8882135b 4557
5fa7c8ec 4558 ctx = perf_event_ctx_lock(event);
a83fe28e 4559 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4560 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4561
a69b0ca4 4562 raw_spin_lock_irq(&ctx->lock);
683ede43 4563 /*
d8a8cfc7 4564 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4565 * anymore.
683ede43 4566 *
a69b0ca4
PZ
4567 * Anybody acquiring event->child_mutex after the below loop _must_
4568 * also see this, most importantly inherit_event() which will avoid
4569 * placing more children on the list.
683ede43 4570 *
c6e5b732
PZ
4571 * Thus this guarantees that we will in fact observe and kill _ALL_
4572 * child events.
683ede43 4573 */
a69b0ca4
PZ
4574 event->state = PERF_EVENT_STATE_DEAD;
4575 raw_spin_unlock_irq(&ctx->lock);
4576
4577 perf_event_ctx_unlock(event, ctx);
683ede43 4578
c6e5b732
PZ
4579again:
4580 mutex_lock(&event->child_mutex);
4581 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4582
c6e5b732
PZ
4583 /*
4584 * Cannot change, child events are not migrated, see the
4585 * comment with perf_event_ctx_lock_nested().
4586 */
506458ef 4587 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4588 /*
4589 * Since child_mutex nests inside ctx::mutex, we must jump
4590 * through hoops. We start by grabbing a reference on the ctx.
4591 *
4592 * Since the event cannot get freed while we hold the
4593 * child_mutex, the context must also exist and have a !0
4594 * reference count.
4595 */
4596 get_ctx(ctx);
4597
4598 /*
4599 * Now that we have a ctx ref, we can drop child_mutex, and
4600 * acquire ctx::mutex without fear of it going away. Then we
4601 * can re-acquire child_mutex.
4602 */
4603 mutex_unlock(&event->child_mutex);
4604 mutex_lock(&ctx->mutex);
4605 mutex_lock(&event->child_mutex);
4606
4607 /*
4608 * Now that we hold ctx::mutex and child_mutex, revalidate our
4609 * state, if child is still the first entry, it didn't get freed
4610 * and we can continue doing so.
4611 */
4612 tmp = list_first_entry_or_null(&event->child_list,
4613 struct perf_event, child_list);
4614 if (tmp == child) {
4615 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4616 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4617 /*
4618 * This matches the refcount bump in inherit_event();
4619 * this can't be the last reference.
4620 */
4621 put_event(event);
4622 }
4623
4624 mutex_unlock(&event->child_mutex);
4625 mutex_unlock(&ctx->mutex);
4626 put_ctx(ctx);
4627 goto again;
4628 }
4629 mutex_unlock(&event->child_mutex);
4630
82d94856
PZ
4631 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4632 list_del(&child->child_list);
4633 free_event(child);
4634 }
4635
a4f4bb6d
PZ
4636no_ctx:
4637 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4638 return 0;
4639}
4640EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4641
8b10c5e2
PZ
4642/*
4643 * Called when the last reference to the file is gone.
4644 */
a6fa941d
AV
4645static int perf_release(struct inode *inode, struct file *file)
4646{
c6e5b732 4647 perf_event_release_kernel(file->private_data);
a6fa941d 4648 return 0;
fb0459d7 4649}
fb0459d7 4650
ca0dd44c 4651static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4652{
cdd6c482 4653 struct perf_event *child;
e53c0994
PZ
4654 u64 total = 0;
4655
59ed446f
PZ
4656 *enabled = 0;
4657 *running = 0;
4658
6f10581a 4659 mutex_lock(&event->child_mutex);
01add3ea 4660
7d88962e 4661 (void)perf_event_read(event, false);
01add3ea
SB
4662 total += perf_event_count(event);
4663
59ed446f
PZ
4664 *enabled += event->total_time_enabled +
4665 atomic64_read(&event->child_total_time_enabled);
4666 *running += event->total_time_running +
4667 atomic64_read(&event->child_total_time_running);
4668
4669 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4670 (void)perf_event_read(child, false);
01add3ea 4671 total += perf_event_count(child);
59ed446f
PZ
4672 *enabled += child->total_time_enabled;
4673 *running += child->total_time_running;
4674 }
6f10581a 4675 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4676
4677 return total;
4678}
ca0dd44c
PZ
4679
4680u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4681{
4682 struct perf_event_context *ctx;
4683 u64 count;
4684
4685 ctx = perf_event_ctx_lock(event);
4686 count = __perf_event_read_value(event, enabled, running);
4687 perf_event_ctx_unlock(event, ctx);
4688
4689 return count;
4690}
fb0459d7 4691EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4692
7d88962e 4693static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4694 u64 read_format, u64 *values)
3dab77fb 4695{
2aeb1883 4696 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4697 struct perf_event *sub;
2aeb1883 4698 unsigned long flags;
fa8c2693 4699 int n = 1; /* skip @nr */
7d88962e 4700 int ret;
f63a8daa 4701
7d88962e
SB
4702 ret = perf_event_read(leader, true);
4703 if (ret)
4704 return ret;
abf4868b 4705
a9cd8194
PZ
4706 raw_spin_lock_irqsave(&ctx->lock, flags);
4707
fa8c2693
PZ
4708 /*
4709 * Since we co-schedule groups, {enabled,running} times of siblings
4710 * will be identical to those of the leader, so we only publish one
4711 * set.
4712 */
4713 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4714 values[n++] += leader->total_time_enabled +
4715 atomic64_read(&leader->child_total_time_enabled);
4716 }
3dab77fb 4717
fa8c2693
PZ
4718 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4719 values[n++] += leader->total_time_running +
4720 atomic64_read(&leader->child_total_time_running);
4721 }
4722
4723 /*
4724 * Write {count,id} tuples for every sibling.
4725 */
4726 values[n++] += perf_event_count(leader);
abf4868b
PZ
4727 if (read_format & PERF_FORMAT_ID)
4728 values[n++] = primary_event_id(leader);
3dab77fb 4729
edb39592 4730 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
4731 values[n++] += perf_event_count(sub);
4732 if (read_format & PERF_FORMAT_ID)
4733 values[n++] = primary_event_id(sub);
4734 }
7d88962e 4735
2aeb1883 4736 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4737 return 0;
fa8c2693 4738}
3dab77fb 4739
fa8c2693
PZ
4740static int perf_read_group(struct perf_event *event,
4741 u64 read_format, char __user *buf)
4742{
4743 struct perf_event *leader = event->group_leader, *child;
4744 struct perf_event_context *ctx = leader->ctx;
7d88962e 4745 int ret;
fa8c2693 4746 u64 *values;
3dab77fb 4747
fa8c2693 4748 lockdep_assert_held(&ctx->mutex);
3dab77fb 4749
fa8c2693
PZ
4750 values = kzalloc(event->read_size, GFP_KERNEL);
4751 if (!values)
4752 return -ENOMEM;
3dab77fb 4753
fa8c2693
PZ
4754 values[0] = 1 + leader->nr_siblings;
4755
4756 /*
4757 * By locking the child_mutex of the leader we effectively
4758 * lock the child list of all siblings.. XXX explain how.
4759 */
4760 mutex_lock(&leader->child_mutex);
abf4868b 4761
7d88962e
SB
4762 ret = __perf_read_group_add(leader, read_format, values);
4763 if (ret)
4764 goto unlock;
4765
4766 list_for_each_entry(child, &leader->child_list, child_list) {
4767 ret = __perf_read_group_add(child, read_format, values);
4768 if (ret)
4769 goto unlock;
4770 }
abf4868b 4771
fa8c2693 4772 mutex_unlock(&leader->child_mutex);
abf4868b 4773
7d88962e 4774 ret = event->read_size;
fa8c2693
PZ
4775 if (copy_to_user(buf, values, event->read_size))
4776 ret = -EFAULT;
7d88962e 4777 goto out;
fa8c2693 4778
7d88962e
SB
4779unlock:
4780 mutex_unlock(&leader->child_mutex);
4781out:
fa8c2693 4782 kfree(values);
abf4868b 4783 return ret;
3dab77fb
PZ
4784}
4785
b15f495b 4786static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4787 u64 read_format, char __user *buf)
4788{
59ed446f 4789 u64 enabled, running;
3dab77fb
PZ
4790 u64 values[4];
4791 int n = 0;
4792
ca0dd44c 4793 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4794 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4795 values[n++] = enabled;
4796 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4797 values[n++] = running;
3dab77fb 4798 if (read_format & PERF_FORMAT_ID)
cdd6c482 4799 values[n++] = primary_event_id(event);
3dab77fb
PZ
4800
4801 if (copy_to_user(buf, values, n * sizeof(u64)))
4802 return -EFAULT;
4803
4804 return n * sizeof(u64);
4805}
4806
dc633982
JO
4807static bool is_event_hup(struct perf_event *event)
4808{
4809 bool no_children;
4810
a69b0ca4 4811 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4812 return false;
4813
4814 mutex_lock(&event->child_mutex);
4815 no_children = list_empty(&event->child_list);
4816 mutex_unlock(&event->child_mutex);
4817 return no_children;
4818}
4819
0793a61d 4820/*
cdd6c482 4821 * Read the performance event - simple non blocking version for now
0793a61d
TG
4822 */
4823static ssize_t
b15f495b 4824__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4825{
cdd6c482 4826 u64 read_format = event->attr.read_format;
3dab77fb 4827 int ret;
0793a61d 4828
3b6f9e5c 4829 /*
cdd6c482 4830 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4831 * error state (i.e. because it was pinned but it couldn't be
4832 * scheduled on to the CPU at some point).
4833 */
cdd6c482 4834 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4835 return 0;
4836
c320c7b7 4837 if (count < event->read_size)
3dab77fb
PZ
4838 return -ENOSPC;
4839
cdd6c482 4840 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4841 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4842 ret = perf_read_group(event, read_format, buf);
3dab77fb 4843 else
b15f495b 4844 ret = perf_read_one(event, read_format, buf);
0793a61d 4845
3dab77fb 4846 return ret;
0793a61d
TG
4847}
4848
0793a61d
TG
4849static ssize_t
4850perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4851{
cdd6c482 4852 struct perf_event *event = file->private_data;
f63a8daa
PZ
4853 struct perf_event_context *ctx;
4854 int ret;
0793a61d 4855
f63a8daa 4856 ctx = perf_event_ctx_lock(event);
b15f495b 4857 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4858 perf_event_ctx_unlock(event, ctx);
4859
4860 return ret;
0793a61d
TG
4861}
4862
9dd95748 4863static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 4864{
cdd6c482 4865 struct perf_event *event = file->private_data;
76369139 4866 struct ring_buffer *rb;
a9a08845 4867 __poll_t events = EPOLLHUP;
c7138f37 4868
e708d7ad 4869 poll_wait(file, &event->waitq, wait);
179033b3 4870
dc633982 4871 if (is_event_hup(event))
179033b3 4872 return events;
c7138f37 4873
10c6db11 4874 /*
9bb5d40c
PZ
4875 * Pin the event->rb by taking event->mmap_mutex; otherwise
4876 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4877 */
4878 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4879 rb = event->rb;
4880 if (rb)
76369139 4881 events = atomic_xchg(&rb->poll, 0);
10c6db11 4882 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4883 return events;
4884}
4885
f63a8daa 4886static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4887{
7d88962e 4888 (void)perf_event_read(event, false);
e7850595 4889 local64_set(&event->count, 0);
cdd6c482 4890 perf_event_update_userpage(event);
3df5edad
PZ
4891}
4892
c93f7669 4893/*
cdd6c482
IM
4894 * Holding the top-level event's child_mutex means that any
4895 * descendant process that has inherited this event will block
8ba289b8 4896 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4897 * task existence requirements of perf_event_enable/disable.
c93f7669 4898 */
cdd6c482
IM
4899static void perf_event_for_each_child(struct perf_event *event,
4900 void (*func)(struct perf_event *))
3df5edad 4901{
cdd6c482 4902 struct perf_event *child;
3df5edad 4903
cdd6c482 4904 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4905
cdd6c482
IM
4906 mutex_lock(&event->child_mutex);
4907 func(event);
4908 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4909 func(child);
cdd6c482 4910 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4911}
4912
cdd6c482
IM
4913static void perf_event_for_each(struct perf_event *event,
4914 void (*func)(struct perf_event *))
3df5edad 4915{
cdd6c482
IM
4916 struct perf_event_context *ctx = event->ctx;
4917 struct perf_event *sibling;
3df5edad 4918
f63a8daa
PZ
4919 lockdep_assert_held(&ctx->mutex);
4920
cdd6c482 4921 event = event->group_leader;
75f937f2 4922
cdd6c482 4923 perf_event_for_each_child(event, func);
edb39592 4924 for_each_sibling_event(sibling, event)
724b6daa 4925 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4926}
4927
fae3fde6
PZ
4928static void __perf_event_period(struct perf_event *event,
4929 struct perf_cpu_context *cpuctx,
4930 struct perf_event_context *ctx,
4931 void *info)
c7999c6f 4932{
fae3fde6 4933 u64 value = *((u64 *)info);
c7999c6f 4934 bool active;
08247e31 4935
cdd6c482 4936 if (event->attr.freq) {
cdd6c482 4937 event->attr.sample_freq = value;
08247e31 4938 } else {
cdd6c482
IM
4939 event->attr.sample_period = value;
4940 event->hw.sample_period = value;
08247e31 4941 }
bad7192b
PZ
4942
4943 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4944 if (active) {
4945 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4946 /*
4947 * We could be throttled; unthrottle now to avoid the tick
4948 * trying to unthrottle while we already re-started the event.
4949 */
4950 if (event->hw.interrupts == MAX_INTERRUPTS) {
4951 event->hw.interrupts = 0;
4952 perf_log_throttle(event, 1);
4953 }
bad7192b
PZ
4954 event->pmu->stop(event, PERF_EF_UPDATE);
4955 }
4956
4957 local64_set(&event->hw.period_left, 0);
4958
4959 if (active) {
4960 event->pmu->start(event, PERF_EF_RELOAD);
4961 perf_pmu_enable(ctx->pmu);
4962 }
c7999c6f
PZ
4963}
4964
4965static int perf_event_period(struct perf_event *event, u64 __user *arg)
4966{
c7999c6f
PZ
4967 u64 value;
4968
4969 if (!is_sampling_event(event))
4970 return -EINVAL;
4971
4972 if (copy_from_user(&value, arg, sizeof(value)))
4973 return -EFAULT;
4974
4975 if (!value)
4976 return -EINVAL;
4977
4978 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4979 return -EINVAL;
4980
fae3fde6 4981 event_function_call(event, __perf_event_period, &value);
08247e31 4982
c7999c6f 4983 return 0;
08247e31
PZ
4984}
4985
ac9721f3
PZ
4986static const struct file_operations perf_fops;
4987
2903ff01 4988static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4989{
2903ff01
AV
4990 struct fd f = fdget(fd);
4991 if (!f.file)
4992 return -EBADF;
ac9721f3 4993
2903ff01
AV
4994 if (f.file->f_op != &perf_fops) {
4995 fdput(f);
4996 return -EBADF;
ac9721f3 4997 }
2903ff01
AV
4998 *p = f;
4999 return 0;
ac9721f3
PZ
5000}
5001
5002static int perf_event_set_output(struct perf_event *event,
5003 struct perf_event *output_event);
6fb2915d 5004static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 5005static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
32ff77e8
MC
5006static int perf_copy_attr(struct perf_event_attr __user *uattr,
5007 struct perf_event_attr *attr);
a4be7c27 5008
f63a8daa 5009static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5010{
cdd6c482 5011 void (*func)(struct perf_event *);
3df5edad 5012 u32 flags = arg;
d859e29f
PM
5013
5014 switch (cmd) {
cdd6c482 5015 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5016 func = _perf_event_enable;
d859e29f 5017 break;
cdd6c482 5018 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5019 func = _perf_event_disable;
79f14641 5020 break;
cdd6c482 5021 case PERF_EVENT_IOC_RESET:
f63a8daa 5022 func = _perf_event_reset;
6de6a7b9 5023 break;
3df5edad 5024
cdd6c482 5025 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5026 return _perf_event_refresh(event, arg);
08247e31 5027
cdd6c482
IM
5028 case PERF_EVENT_IOC_PERIOD:
5029 return perf_event_period(event, (u64 __user *)arg);
08247e31 5030
cf4957f1
JO
5031 case PERF_EVENT_IOC_ID:
5032 {
5033 u64 id = primary_event_id(event);
5034
5035 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5036 return -EFAULT;
5037 return 0;
5038 }
5039
cdd6c482 5040 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5041 {
ac9721f3 5042 int ret;
ac9721f3 5043 if (arg != -1) {
2903ff01
AV
5044 struct perf_event *output_event;
5045 struct fd output;
5046 ret = perf_fget_light(arg, &output);
5047 if (ret)
5048 return ret;
5049 output_event = output.file->private_data;
5050 ret = perf_event_set_output(event, output_event);
5051 fdput(output);
5052 } else {
5053 ret = perf_event_set_output(event, NULL);
ac9721f3 5054 }
ac9721f3
PZ
5055 return ret;
5056 }
a4be7c27 5057
6fb2915d
LZ
5058 case PERF_EVENT_IOC_SET_FILTER:
5059 return perf_event_set_filter(event, (void __user *)arg);
5060
2541517c
AS
5061 case PERF_EVENT_IOC_SET_BPF:
5062 return perf_event_set_bpf_prog(event, arg);
5063
86e7972f
WN
5064 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5065 struct ring_buffer *rb;
5066
5067 rcu_read_lock();
5068 rb = rcu_dereference(event->rb);
5069 if (!rb || !rb->nr_pages) {
5070 rcu_read_unlock();
5071 return -EINVAL;
5072 }
5073 rb_toggle_paused(rb, !!arg);
5074 rcu_read_unlock();
5075 return 0;
5076 }
f371b304
YS
5077
5078 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5079 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5080
5081 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5082 struct perf_event_attr new_attr;
5083 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5084 &new_attr);
5085
5086 if (err)
5087 return err;
5088
5089 return perf_event_modify_attr(event, &new_attr);
5090 }
d859e29f 5091 default:
3df5edad 5092 return -ENOTTY;
d859e29f 5093 }
3df5edad
PZ
5094
5095 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5096 perf_event_for_each(event, func);
3df5edad 5097 else
cdd6c482 5098 perf_event_for_each_child(event, func);
3df5edad
PZ
5099
5100 return 0;
d859e29f
PM
5101}
5102
f63a8daa
PZ
5103static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5104{
5105 struct perf_event *event = file->private_data;
5106 struct perf_event_context *ctx;
5107 long ret;
5108
5109 ctx = perf_event_ctx_lock(event);
5110 ret = _perf_ioctl(event, cmd, arg);
5111 perf_event_ctx_unlock(event, ctx);
5112
5113 return ret;
5114}
5115
b3f20785
PM
5116#ifdef CONFIG_COMPAT
5117static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5118 unsigned long arg)
5119{
5120 switch (_IOC_NR(cmd)) {
5121 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5122 case _IOC_NR(PERF_EVENT_IOC_ID):
5123 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5124 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5125 cmd &= ~IOCSIZE_MASK;
5126 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5127 }
5128 break;
5129 }
5130 return perf_ioctl(file, cmd, arg);
5131}
5132#else
5133# define perf_compat_ioctl NULL
5134#endif
5135
cdd6c482 5136int perf_event_task_enable(void)
771d7cde 5137{
f63a8daa 5138 struct perf_event_context *ctx;
cdd6c482 5139 struct perf_event *event;
771d7cde 5140
cdd6c482 5141 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5142 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5143 ctx = perf_event_ctx_lock(event);
5144 perf_event_for_each_child(event, _perf_event_enable);
5145 perf_event_ctx_unlock(event, ctx);
5146 }
cdd6c482 5147 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5148
5149 return 0;
5150}
5151
cdd6c482 5152int perf_event_task_disable(void)
771d7cde 5153{
f63a8daa 5154 struct perf_event_context *ctx;
cdd6c482 5155 struct perf_event *event;
771d7cde 5156
cdd6c482 5157 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5158 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5159 ctx = perf_event_ctx_lock(event);
5160 perf_event_for_each_child(event, _perf_event_disable);
5161 perf_event_ctx_unlock(event, ctx);
5162 }
cdd6c482 5163 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5164
5165 return 0;
5166}
5167
cdd6c482 5168static int perf_event_index(struct perf_event *event)
194002b2 5169{
a4eaf7f1
PZ
5170 if (event->hw.state & PERF_HES_STOPPED)
5171 return 0;
5172
cdd6c482 5173 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
5174 return 0;
5175
35edc2a5 5176 return event->pmu->event_idx(event);
194002b2
PZ
5177}
5178
c4794295 5179static void calc_timer_values(struct perf_event *event,
e3f3541c 5180 u64 *now,
7f310a5d
EM
5181 u64 *enabled,
5182 u64 *running)
c4794295 5183{
e3f3541c 5184 u64 ctx_time;
c4794295 5185
e3f3541c
PZ
5186 *now = perf_clock();
5187 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 5188 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
5189}
5190
fa731587
PZ
5191static void perf_event_init_userpage(struct perf_event *event)
5192{
5193 struct perf_event_mmap_page *userpg;
5194 struct ring_buffer *rb;
5195
5196 rcu_read_lock();
5197 rb = rcu_dereference(event->rb);
5198 if (!rb)
5199 goto unlock;
5200
5201 userpg = rb->user_page;
5202
5203 /* Allow new userspace to detect that bit 0 is deprecated */
5204 userpg->cap_bit0_is_deprecated = 1;
5205 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
5206 userpg->data_offset = PAGE_SIZE;
5207 userpg->data_size = perf_data_size(rb);
fa731587
PZ
5208
5209unlock:
5210 rcu_read_unlock();
5211}
5212
c1317ec2
AL
5213void __weak arch_perf_update_userpage(
5214 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
5215{
5216}
5217
38ff667b
PZ
5218/*
5219 * Callers need to ensure there can be no nesting of this function, otherwise
5220 * the seqlock logic goes bad. We can not serialize this because the arch
5221 * code calls this from NMI context.
5222 */
cdd6c482 5223void perf_event_update_userpage(struct perf_event *event)
37d81828 5224{
cdd6c482 5225 struct perf_event_mmap_page *userpg;
76369139 5226 struct ring_buffer *rb;
e3f3541c 5227 u64 enabled, running, now;
38ff667b
PZ
5228
5229 rcu_read_lock();
5ec4c599
PZ
5230 rb = rcu_dereference(event->rb);
5231 if (!rb)
5232 goto unlock;
5233
0d641208
EM
5234 /*
5235 * compute total_time_enabled, total_time_running
5236 * based on snapshot values taken when the event
5237 * was last scheduled in.
5238 *
5239 * we cannot simply called update_context_time()
5240 * because of locking issue as we can be called in
5241 * NMI context
5242 */
e3f3541c 5243 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5244
76369139 5245 userpg = rb->user_page;
7b732a75
PZ
5246 /*
5247 * Disable preemption so as to not let the corresponding user-space
5248 * spin too long if we get preempted.
5249 */
5250 preempt_disable();
37d81828 5251 ++userpg->lock;
92f22a38 5252 barrier();
cdd6c482 5253 userpg->index = perf_event_index(event);
b5e58793 5254 userpg->offset = perf_event_count(event);
365a4038 5255 if (userpg->index)
e7850595 5256 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5257
0d641208 5258 userpg->time_enabled = enabled +
cdd6c482 5259 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5260
0d641208 5261 userpg->time_running = running +
cdd6c482 5262 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5263
c1317ec2 5264 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5265
92f22a38 5266 barrier();
37d81828 5267 ++userpg->lock;
7b732a75 5268 preempt_enable();
38ff667b 5269unlock:
7b732a75 5270 rcu_read_unlock();
37d81828 5271}
82975c46 5272EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 5273
11bac800 5274static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 5275{
11bac800 5276 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 5277 struct ring_buffer *rb;
906010b2
PZ
5278 int ret = VM_FAULT_SIGBUS;
5279
5280 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5281 if (vmf->pgoff == 0)
5282 ret = 0;
5283 return ret;
5284 }
5285
5286 rcu_read_lock();
76369139
FW
5287 rb = rcu_dereference(event->rb);
5288 if (!rb)
906010b2
PZ
5289 goto unlock;
5290
5291 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5292 goto unlock;
5293
76369139 5294 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5295 if (!vmf->page)
5296 goto unlock;
5297
5298 get_page(vmf->page);
11bac800 5299 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5300 vmf->page->index = vmf->pgoff;
5301
5302 ret = 0;
5303unlock:
5304 rcu_read_unlock();
5305
5306 return ret;
5307}
5308
10c6db11
PZ
5309static void ring_buffer_attach(struct perf_event *event,
5310 struct ring_buffer *rb)
5311{
b69cf536 5312 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5313 unsigned long flags;
5314
b69cf536
PZ
5315 if (event->rb) {
5316 /*
5317 * Should be impossible, we set this when removing
5318 * event->rb_entry and wait/clear when adding event->rb_entry.
5319 */
5320 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5321
b69cf536 5322 old_rb = event->rb;
b69cf536
PZ
5323 spin_lock_irqsave(&old_rb->event_lock, flags);
5324 list_del_rcu(&event->rb_entry);
5325 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5326
2f993cf0
ON
5327 event->rcu_batches = get_state_synchronize_rcu();
5328 event->rcu_pending = 1;
b69cf536 5329 }
10c6db11 5330
b69cf536 5331 if (rb) {
2f993cf0
ON
5332 if (event->rcu_pending) {
5333 cond_synchronize_rcu(event->rcu_batches);
5334 event->rcu_pending = 0;
5335 }
5336
b69cf536
PZ
5337 spin_lock_irqsave(&rb->event_lock, flags);
5338 list_add_rcu(&event->rb_entry, &rb->event_list);
5339 spin_unlock_irqrestore(&rb->event_lock, flags);
5340 }
5341
767ae086
AS
5342 /*
5343 * Avoid racing with perf_mmap_close(AUX): stop the event
5344 * before swizzling the event::rb pointer; if it's getting
5345 * unmapped, its aux_mmap_count will be 0 and it won't
5346 * restart. See the comment in __perf_pmu_output_stop().
5347 *
5348 * Data will inevitably be lost when set_output is done in
5349 * mid-air, but then again, whoever does it like this is
5350 * not in for the data anyway.
5351 */
5352 if (has_aux(event))
5353 perf_event_stop(event, 0);
5354
b69cf536
PZ
5355 rcu_assign_pointer(event->rb, rb);
5356
5357 if (old_rb) {
5358 ring_buffer_put(old_rb);
5359 /*
5360 * Since we detached before setting the new rb, so that we
5361 * could attach the new rb, we could have missed a wakeup.
5362 * Provide it now.
5363 */
5364 wake_up_all(&event->waitq);
5365 }
10c6db11
PZ
5366}
5367
5368static void ring_buffer_wakeup(struct perf_event *event)
5369{
5370 struct ring_buffer *rb;
5371
5372 rcu_read_lock();
5373 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5374 if (rb) {
5375 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5376 wake_up_all(&event->waitq);
5377 }
10c6db11
PZ
5378 rcu_read_unlock();
5379}
5380
fdc26706 5381struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5382{
76369139 5383 struct ring_buffer *rb;
7b732a75 5384
ac9721f3 5385 rcu_read_lock();
76369139
FW
5386 rb = rcu_dereference(event->rb);
5387 if (rb) {
5388 if (!atomic_inc_not_zero(&rb->refcount))
5389 rb = NULL;
ac9721f3
PZ
5390 }
5391 rcu_read_unlock();
5392
76369139 5393 return rb;
ac9721f3
PZ
5394}
5395
fdc26706 5396void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5397{
76369139 5398 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5399 return;
7b732a75 5400
9bb5d40c 5401 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5402
76369139 5403 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5404}
5405
5406static void perf_mmap_open(struct vm_area_struct *vma)
5407{
cdd6c482 5408 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5409
cdd6c482 5410 atomic_inc(&event->mmap_count);
9bb5d40c 5411 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5412
45bfb2e5
PZ
5413 if (vma->vm_pgoff)
5414 atomic_inc(&event->rb->aux_mmap_count);
5415
1e0fb9ec 5416 if (event->pmu->event_mapped)
bfe33492 5417 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5418}
5419
95ff4ca2
AS
5420static void perf_pmu_output_stop(struct perf_event *event);
5421
9bb5d40c
PZ
5422/*
5423 * A buffer can be mmap()ed multiple times; either directly through the same
5424 * event, or through other events by use of perf_event_set_output().
5425 *
5426 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5427 * the buffer here, where we still have a VM context. This means we need
5428 * to detach all events redirecting to us.
5429 */
7b732a75
PZ
5430static void perf_mmap_close(struct vm_area_struct *vma)
5431{
cdd6c482 5432 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5433
b69cf536 5434 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5435 struct user_struct *mmap_user = rb->mmap_user;
5436 int mmap_locked = rb->mmap_locked;
5437 unsigned long size = perf_data_size(rb);
789f90fc 5438
1e0fb9ec 5439 if (event->pmu->event_unmapped)
bfe33492 5440 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5441
45bfb2e5
PZ
5442 /*
5443 * rb->aux_mmap_count will always drop before rb->mmap_count and
5444 * event->mmap_count, so it is ok to use event->mmap_mutex to
5445 * serialize with perf_mmap here.
5446 */
5447 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5448 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5449 /*
5450 * Stop all AUX events that are writing to this buffer,
5451 * so that we can free its AUX pages and corresponding PMU
5452 * data. Note that after rb::aux_mmap_count dropped to zero,
5453 * they won't start any more (see perf_aux_output_begin()).
5454 */
5455 perf_pmu_output_stop(event);
5456
5457 /* now it's safe to free the pages */
45bfb2e5
PZ
5458 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5459 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5460
95ff4ca2 5461 /* this has to be the last one */
45bfb2e5 5462 rb_free_aux(rb);
95ff4ca2
AS
5463 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5464
45bfb2e5
PZ
5465 mutex_unlock(&event->mmap_mutex);
5466 }
5467
9bb5d40c
PZ
5468 atomic_dec(&rb->mmap_count);
5469
5470 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5471 goto out_put;
9bb5d40c 5472
b69cf536 5473 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5474 mutex_unlock(&event->mmap_mutex);
5475
5476 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5477 if (atomic_read(&rb->mmap_count))
5478 goto out_put;
ac9721f3 5479
9bb5d40c
PZ
5480 /*
5481 * No other mmap()s, detach from all other events that might redirect
5482 * into the now unreachable buffer. Somewhat complicated by the
5483 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5484 */
5485again:
5486 rcu_read_lock();
5487 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5488 if (!atomic_long_inc_not_zero(&event->refcount)) {
5489 /*
5490 * This event is en-route to free_event() which will
5491 * detach it and remove it from the list.
5492 */
5493 continue;
5494 }
5495 rcu_read_unlock();
789f90fc 5496
9bb5d40c
PZ
5497 mutex_lock(&event->mmap_mutex);
5498 /*
5499 * Check we didn't race with perf_event_set_output() which can
5500 * swizzle the rb from under us while we were waiting to
5501 * acquire mmap_mutex.
5502 *
5503 * If we find a different rb; ignore this event, a next
5504 * iteration will no longer find it on the list. We have to
5505 * still restart the iteration to make sure we're not now
5506 * iterating the wrong list.
5507 */
b69cf536
PZ
5508 if (event->rb == rb)
5509 ring_buffer_attach(event, NULL);
5510
cdd6c482 5511 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5512 put_event(event);
ac9721f3 5513
9bb5d40c
PZ
5514 /*
5515 * Restart the iteration; either we're on the wrong list or
5516 * destroyed its integrity by doing a deletion.
5517 */
5518 goto again;
7b732a75 5519 }
9bb5d40c
PZ
5520 rcu_read_unlock();
5521
5522 /*
5523 * It could be there's still a few 0-ref events on the list; they'll
5524 * get cleaned up by free_event() -- they'll also still have their
5525 * ref on the rb and will free it whenever they are done with it.
5526 *
5527 * Aside from that, this buffer is 'fully' detached and unmapped,
5528 * undo the VM accounting.
5529 */
5530
5531 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5532 vma->vm_mm->pinned_vm -= mmap_locked;
5533 free_uid(mmap_user);
5534
b69cf536 5535out_put:
9bb5d40c 5536 ring_buffer_put(rb); /* could be last */
37d81828
PM
5537}
5538
f0f37e2f 5539static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5540 .open = perf_mmap_open,
45bfb2e5 5541 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5542 .fault = perf_mmap_fault,
5543 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5544};
5545
5546static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5547{
cdd6c482 5548 struct perf_event *event = file->private_data;
22a4f650 5549 unsigned long user_locked, user_lock_limit;
789f90fc 5550 struct user_struct *user = current_user();
22a4f650 5551 unsigned long locked, lock_limit;
45bfb2e5 5552 struct ring_buffer *rb = NULL;
7b732a75
PZ
5553 unsigned long vma_size;
5554 unsigned long nr_pages;
45bfb2e5 5555 long user_extra = 0, extra = 0;
d57e34fd 5556 int ret = 0, flags = 0;
37d81828 5557
c7920614
PZ
5558 /*
5559 * Don't allow mmap() of inherited per-task counters. This would
5560 * create a performance issue due to all children writing to the
76369139 5561 * same rb.
c7920614
PZ
5562 */
5563 if (event->cpu == -1 && event->attr.inherit)
5564 return -EINVAL;
5565
43a21ea8 5566 if (!(vma->vm_flags & VM_SHARED))
37d81828 5567 return -EINVAL;
7b732a75
PZ
5568
5569 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5570
5571 if (vma->vm_pgoff == 0) {
5572 nr_pages = (vma_size / PAGE_SIZE) - 1;
5573 } else {
5574 /*
5575 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5576 * mapped, all subsequent mappings should have the same size
5577 * and offset. Must be above the normal perf buffer.
5578 */
5579 u64 aux_offset, aux_size;
5580
5581 if (!event->rb)
5582 return -EINVAL;
5583
5584 nr_pages = vma_size / PAGE_SIZE;
5585
5586 mutex_lock(&event->mmap_mutex);
5587 ret = -EINVAL;
5588
5589 rb = event->rb;
5590 if (!rb)
5591 goto aux_unlock;
5592
6aa7de05
MR
5593 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5594 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5595
5596 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5597 goto aux_unlock;
5598
5599 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5600 goto aux_unlock;
5601
5602 /* already mapped with a different offset */
5603 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5604 goto aux_unlock;
5605
5606 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5607 goto aux_unlock;
5608
5609 /* already mapped with a different size */
5610 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5611 goto aux_unlock;
5612
5613 if (!is_power_of_2(nr_pages))
5614 goto aux_unlock;
5615
5616 if (!atomic_inc_not_zero(&rb->mmap_count))
5617 goto aux_unlock;
5618
5619 if (rb_has_aux(rb)) {
5620 atomic_inc(&rb->aux_mmap_count);
5621 ret = 0;
5622 goto unlock;
5623 }
5624
5625 atomic_set(&rb->aux_mmap_count, 1);
5626 user_extra = nr_pages;
5627
5628 goto accounting;
5629 }
7b732a75 5630
7730d865 5631 /*
76369139 5632 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5633 * can do bitmasks instead of modulo.
5634 */
2ed11312 5635 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5636 return -EINVAL;
5637
7b732a75 5638 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5639 return -EINVAL;
5640
cdd6c482 5641 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5642again:
cdd6c482 5643 mutex_lock(&event->mmap_mutex);
76369139 5644 if (event->rb) {
9bb5d40c 5645 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5646 ret = -EINVAL;
9bb5d40c
PZ
5647 goto unlock;
5648 }
5649
5650 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5651 /*
5652 * Raced against perf_mmap_close() through
5653 * perf_event_set_output(). Try again, hope for better
5654 * luck.
5655 */
5656 mutex_unlock(&event->mmap_mutex);
5657 goto again;
5658 }
5659
ebb3c4c4
PZ
5660 goto unlock;
5661 }
5662
789f90fc 5663 user_extra = nr_pages + 1;
45bfb2e5
PZ
5664
5665accounting:
cdd6c482 5666 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5667
5668 /*
5669 * Increase the limit linearly with more CPUs:
5670 */
5671 user_lock_limit *= num_online_cpus();
5672
789f90fc 5673 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5674
789f90fc
PZ
5675 if (user_locked > user_lock_limit)
5676 extra = user_locked - user_lock_limit;
7b732a75 5677
78d7d407 5678 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5679 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5680 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5681
459ec28a
IM
5682 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5683 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5684 ret = -EPERM;
5685 goto unlock;
5686 }
7b732a75 5687
45bfb2e5 5688 WARN_ON(!rb && event->rb);
906010b2 5689
d57e34fd 5690 if (vma->vm_flags & VM_WRITE)
76369139 5691 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5692
76369139 5693 if (!rb) {
45bfb2e5
PZ
5694 rb = rb_alloc(nr_pages,
5695 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5696 event->cpu, flags);
26cb63ad 5697
45bfb2e5
PZ
5698 if (!rb) {
5699 ret = -ENOMEM;
5700 goto unlock;
5701 }
43a21ea8 5702
45bfb2e5
PZ
5703 atomic_set(&rb->mmap_count, 1);
5704 rb->mmap_user = get_current_user();
5705 rb->mmap_locked = extra;
26cb63ad 5706
45bfb2e5 5707 ring_buffer_attach(event, rb);
ac9721f3 5708
45bfb2e5
PZ
5709 perf_event_init_userpage(event);
5710 perf_event_update_userpage(event);
5711 } else {
1a594131
AS
5712 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5713 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5714 if (!ret)
5715 rb->aux_mmap_locked = extra;
5716 }
9a0f05cb 5717
ebb3c4c4 5718unlock:
45bfb2e5
PZ
5719 if (!ret) {
5720 atomic_long_add(user_extra, &user->locked_vm);
5721 vma->vm_mm->pinned_vm += extra;
5722
ac9721f3 5723 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5724 } else if (rb) {
5725 atomic_dec(&rb->mmap_count);
5726 }
5727aux_unlock:
cdd6c482 5728 mutex_unlock(&event->mmap_mutex);
37d81828 5729
9bb5d40c
PZ
5730 /*
5731 * Since pinned accounting is per vm we cannot allow fork() to copy our
5732 * vma.
5733 */
26cb63ad 5734 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5735 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5736
1e0fb9ec 5737 if (event->pmu->event_mapped)
bfe33492 5738 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5739
7b732a75 5740 return ret;
37d81828
PM
5741}
5742
3c446b3d
PZ
5743static int perf_fasync(int fd, struct file *filp, int on)
5744{
496ad9aa 5745 struct inode *inode = file_inode(filp);
cdd6c482 5746 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5747 int retval;
5748
5955102c 5749 inode_lock(inode);
cdd6c482 5750 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5751 inode_unlock(inode);
3c446b3d
PZ
5752
5753 if (retval < 0)
5754 return retval;
5755
5756 return 0;
5757}
5758
0793a61d 5759static const struct file_operations perf_fops = {
3326c1ce 5760 .llseek = no_llseek,
0793a61d
TG
5761 .release = perf_release,
5762 .read = perf_read,
5763 .poll = perf_poll,
d859e29f 5764 .unlocked_ioctl = perf_ioctl,
b3f20785 5765 .compat_ioctl = perf_compat_ioctl,
37d81828 5766 .mmap = perf_mmap,
3c446b3d 5767 .fasync = perf_fasync,
0793a61d
TG
5768};
5769
925d519a 5770/*
cdd6c482 5771 * Perf event wakeup
925d519a
PZ
5772 *
5773 * If there's data, ensure we set the poll() state and publish everything
5774 * to user-space before waking everybody up.
5775 */
5776
fed66e2c
PZ
5777static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5778{
5779 /* only the parent has fasync state */
5780 if (event->parent)
5781 event = event->parent;
5782 return &event->fasync;
5783}
5784
cdd6c482 5785void perf_event_wakeup(struct perf_event *event)
925d519a 5786{
10c6db11 5787 ring_buffer_wakeup(event);
4c9e2542 5788
cdd6c482 5789 if (event->pending_kill) {
fed66e2c 5790 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5791 event->pending_kill = 0;
4c9e2542 5792 }
925d519a
PZ
5793}
5794
e360adbe 5795static void perf_pending_event(struct irq_work *entry)
79f14641 5796{
cdd6c482
IM
5797 struct perf_event *event = container_of(entry,
5798 struct perf_event, pending);
d525211f
PZ
5799 int rctx;
5800
5801 rctx = perf_swevent_get_recursion_context();
5802 /*
5803 * If we 'fail' here, that's OK, it means recursion is already disabled
5804 * and we won't recurse 'further'.
5805 */
79f14641 5806
cdd6c482
IM
5807 if (event->pending_disable) {
5808 event->pending_disable = 0;
fae3fde6 5809 perf_event_disable_local(event);
79f14641
PZ
5810 }
5811
cdd6c482
IM
5812 if (event->pending_wakeup) {
5813 event->pending_wakeup = 0;
5814 perf_event_wakeup(event);
79f14641 5815 }
d525211f
PZ
5816
5817 if (rctx >= 0)
5818 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5819}
5820
39447b38
ZY
5821/*
5822 * We assume there is only KVM supporting the callbacks.
5823 * Later on, we might change it to a list if there is
5824 * another virtualization implementation supporting the callbacks.
5825 */
5826struct perf_guest_info_callbacks *perf_guest_cbs;
5827
5828int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5829{
5830 perf_guest_cbs = cbs;
5831 return 0;
5832}
5833EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5834
5835int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5836{
5837 perf_guest_cbs = NULL;
5838 return 0;
5839}
5840EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5841
4018994f
JO
5842static void
5843perf_output_sample_regs(struct perf_output_handle *handle,
5844 struct pt_regs *regs, u64 mask)
5845{
5846 int bit;
29dd3288 5847 DECLARE_BITMAP(_mask, 64);
4018994f 5848
29dd3288
MS
5849 bitmap_from_u64(_mask, mask);
5850 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5851 u64 val;
5852
5853 val = perf_reg_value(regs, bit);
5854 perf_output_put(handle, val);
5855 }
5856}
5857
60e2364e 5858static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5859 struct pt_regs *regs,
5860 struct pt_regs *regs_user_copy)
4018994f 5861{
88a7c26a
AL
5862 if (user_mode(regs)) {
5863 regs_user->abi = perf_reg_abi(current);
2565711f 5864 regs_user->regs = regs;
88a7c26a
AL
5865 } else if (current->mm) {
5866 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5867 } else {
5868 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5869 regs_user->regs = NULL;
4018994f
JO
5870 }
5871}
5872
60e2364e
SE
5873static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5874 struct pt_regs *regs)
5875{
5876 regs_intr->regs = regs;
5877 regs_intr->abi = perf_reg_abi(current);
5878}
5879
5880
c5ebcedb
JO
5881/*
5882 * Get remaining task size from user stack pointer.
5883 *
5884 * It'd be better to take stack vma map and limit this more
5885 * precisly, but there's no way to get it safely under interrupt,
5886 * so using TASK_SIZE as limit.
5887 */
5888static u64 perf_ustack_task_size(struct pt_regs *regs)
5889{
5890 unsigned long addr = perf_user_stack_pointer(regs);
5891
5892 if (!addr || addr >= TASK_SIZE)
5893 return 0;
5894
5895 return TASK_SIZE - addr;
5896}
5897
5898static u16
5899perf_sample_ustack_size(u16 stack_size, u16 header_size,
5900 struct pt_regs *regs)
5901{
5902 u64 task_size;
5903
5904 /* No regs, no stack pointer, no dump. */
5905 if (!regs)
5906 return 0;
5907
5908 /*
5909 * Check if we fit in with the requested stack size into the:
5910 * - TASK_SIZE
5911 * If we don't, we limit the size to the TASK_SIZE.
5912 *
5913 * - remaining sample size
5914 * If we don't, we customize the stack size to
5915 * fit in to the remaining sample size.
5916 */
5917
5918 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5919 stack_size = min(stack_size, (u16) task_size);
5920
5921 /* Current header size plus static size and dynamic size. */
5922 header_size += 2 * sizeof(u64);
5923
5924 /* Do we fit in with the current stack dump size? */
5925 if ((u16) (header_size + stack_size) < header_size) {
5926 /*
5927 * If we overflow the maximum size for the sample,
5928 * we customize the stack dump size to fit in.
5929 */
5930 stack_size = USHRT_MAX - header_size - sizeof(u64);
5931 stack_size = round_up(stack_size, sizeof(u64));
5932 }
5933
5934 return stack_size;
5935}
5936
5937static void
5938perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5939 struct pt_regs *regs)
5940{
5941 /* Case of a kernel thread, nothing to dump */
5942 if (!regs) {
5943 u64 size = 0;
5944 perf_output_put(handle, size);
5945 } else {
5946 unsigned long sp;
5947 unsigned int rem;
5948 u64 dyn_size;
5949
5950 /*
5951 * We dump:
5952 * static size
5953 * - the size requested by user or the best one we can fit
5954 * in to the sample max size
5955 * data
5956 * - user stack dump data
5957 * dynamic size
5958 * - the actual dumped size
5959 */
5960
5961 /* Static size. */
5962 perf_output_put(handle, dump_size);
5963
5964 /* Data. */
5965 sp = perf_user_stack_pointer(regs);
5966 rem = __output_copy_user(handle, (void *) sp, dump_size);
5967 dyn_size = dump_size - rem;
5968
5969 perf_output_skip(handle, rem);
5970
5971 /* Dynamic size. */
5972 perf_output_put(handle, dyn_size);
5973 }
5974}
5975
c980d109
ACM
5976static void __perf_event_header__init_id(struct perf_event_header *header,
5977 struct perf_sample_data *data,
5978 struct perf_event *event)
6844c09d
ACM
5979{
5980 u64 sample_type = event->attr.sample_type;
5981
5982 data->type = sample_type;
5983 header->size += event->id_header_size;
5984
5985 if (sample_type & PERF_SAMPLE_TID) {
5986 /* namespace issues */
5987 data->tid_entry.pid = perf_event_pid(event, current);
5988 data->tid_entry.tid = perf_event_tid(event, current);
5989 }
5990
5991 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5992 data->time = perf_event_clock(event);
6844c09d 5993
ff3d527c 5994 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5995 data->id = primary_event_id(event);
5996
5997 if (sample_type & PERF_SAMPLE_STREAM_ID)
5998 data->stream_id = event->id;
5999
6000 if (sample_type & PERF_SAMPLE_CPU) {
6001 data->cpu_entry.cpu = raw_smp_processor_id();
6002 data->cpu_entry.reserved = 0;
6003 }
6004}
6005
76369139
FW
6006void perf_event_header__init_id(struct perf_event_header *header,
6007 struct perf_sample_data *data,
6008 struct perf_event *event)
c980d109
ACM
6009{
6010 if (event->attr.sample_id_all)
6011 __perf_event_header__init_id(header, data, event);
6012}
6013
6014static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6015 struct perf_sample_data *data)
6016{
6017 u64 sample_type = data->type;
6018
6019 if (sample_type & PERF_SAMPLE_TID)
6020 perf_output_put(handle, data->tid_entry);
6021
6022 if (sample_type & PERF_SAMPLE_TIME)
6023 perf_output_put(handle, data->time);
6024
6025 if (sample_type & PERF_SAMPLE_ID)
6026 perf_output_put(handle, data->id);
6027
6028 if (sample_type & PERF_SAMPLE_STREAM_ID)
6029 perf_output_put(handle, data->stream_id);
6030
6031 if (sample_type & PERF_SAMPLE_CPU)
6032 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
6033
6034 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6035 perf_output_put(handle, data->id);
c980d109
ACM
6036}
6037
76369139
FW
6038void perf_event__output_id_sample(struct perf_event *event,
6039 struct perf_output_handle *handle,
6040 struct perf_sample_data *sample)
c980d109
ACM
6041{
6042 if (event->attr.sample_id_all)
6043 __perf_event__output_id_sample(handle, sample);
6044}
6045
3dab77fb 6046static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
6047 struct perf_event *event,
6048 u64 enabled, u64 running)
3dab77fb 6049{
cdd6c482 6050 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6051 u64 values[4];
6052 int n = 0;
6053
b5e58793 6054 values[n++] = perf_event_count(event);
3dab77fb 6055 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 6056 values[n++] = enabled +
cdd6c482 6057 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
6058 }
6059 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 6060 values[n++] = running +
cdd6c482 6061 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
6062 }
6063 if (read_format & PERF_FORMAT_ID)
cdd6c482 6064 values[n++] = primary_event_id(event);
3dab77fb 6065
76369139 6066 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6067}
6068
3dab77fb 6069static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
6070 struct perf_event *event,
6071 u64 enabled, u64 running)
3dab77fb 6072{
cdd6c482
IM
6073 struct perf_event *leader = event->group_leader, *sub;
6074 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6075 u64 values[5];
6076 int n = 0;
6077
6078 values[n++] = 1 + leader->nr_siblings;
6079
6080 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 6081 values[n++] = enabled;
3dab77fb
PZ
6082
6083 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 6084 values[n++] = running;
3dab77fb 6085
9e5b127d
PZ
6086 if ((leader != event) &&
6087 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6088 leader->pmu->read(leader);
6089
b5e58793 6090 values[n++] = perf_event_count(leader);
3dab77fb 6091 if (read_format & PERF_FORMAT_ID)
cdd6c482 6092 values[n++] = primary_event_id(leader);
3dab77fb 6093
76369139 6094 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 6095
edb39592 6096 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
6097 n = 0;
6098
6f5ab001
JO
6099 if ((sub != event) &&
6100 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6101 sub->pmu->read(sub);
6102
b5e58793 6103 values[n++] = perf_event_count(sub);
3dab77fb 6104 if (read_format & PERF_FORMAT_ID)
cdd6c482 6105 values[n++] = primary_event_id(sub);
3dab77fb 6106
76369139 6107 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6108 }
6109}
6110
eed01528
SE
6111#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6112 PERF_FORMAT_TOTAL_TIME_RUNNING)
6113
ba5213ae
PZ
6114/*
6115 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6116 *
6117 * The problem is that its both hard and excessively expensive to iterate the
6118 * child list, not to mention that its impossible to IPI the children running
6119 * on another CPU, from interrupt/NMI context.
6120 */
3dab77fb 6121static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 6122 struct perf_event *event)
3dab77fb 6123{
e3f3541c 6124 u64 enabled = 0, running = 0, now;
eed01528
SE
6125 u64 read_format = event->attr.read_format;
6126
6127 /*
6128 * compute total_time_enabled, total_time_running
6129 * based on snapshot values taken when the event
6130 * was last scheduled in.
6131 *
6132 * we cannot simply called update_context_time()
6133 * because of locking issue as we are called in
6134 * NMI context
6135 */
c4794295 6136 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 6137 calc_timer_values(event, &now, &enabled, &running);
eed01528 6138
cdd6c482 6139 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 6140 perf_output_read_group(handle, event, enabled, running);
3dab77fb 6141 else
eed01528 6142 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
6143}
6144
5622f295
MM
6145void perf_output_sample(struct perf_output_handle *handle,
6146 struct perf_event_header *header,
6147 struct perf_sample_data *data,
cdd6c482 6148 struct perf_event *event)
5622f295
MM
6149{
6150 u64 sample_type = data->type;
6151
6152 perf_output_put(handle, *header);
6153
ff3d527c
AH
6154 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6155 perf_output_put(handle, data->id);
6156
5622f295
MM
6157 if (sample_type & PERF_SAMPLE_IP)
6158 perf_output_put(handle, data->ip);
6159
6160 if (sample_type & PERF_SAMPLE_TID)
6161 perf_output_put(handle, data->tid_entry);
6162
6163 if (sample_type & PERF_SAMPLE_TIME)
6164 perf_output_put(handle, data->time);
6165
6166 if (sample_type & PERF_SAMPLE_ADDR)
6167 perf_output_put(handle, data->addr);
6168
6169 if (sample_type & PERF_SAMPLE_ID)
6170 perf_output_put(handle, data->id);
6171
6172 if (sample_type & PERF_SAMPLE_STREAM_ID)
6173 perf_output_put(handle, data->stream_id);
6174
6175 if (sample_type & PERF_SAMPLE_CPU)
6176 perf_output_put(handle, data->cpu_entry);
6177
6178 if (sample_type & PERF_SAMPLE_PERIOD)
6179 perf_output_put(handle, data->period);
6180
6181 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 6182 perf_output_read(handle, event);
5622f295
MM
6183
6184 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 6185 int size = 1;
5622f295 6186
99e818cc
JO
6187 size += data->callchain->nr;
6188 size *= sizeof(u64);
6189 __output_copy(handle, data->callchain, size);
5622f295
MM
6190 }
6191
6192 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6193 struct perf_raw_record *raw = data->raw;
6194
6195 if (raw) {
6196 struct perf_raw_frag *frag = &raw->frag;
6197
6198 perf_output_put(handle, raw->size);
6199 do {
6200 if (frag->copy) {
6201 __output_custom(handle, frag->copy,
6202 frag->data, frag->size);
6203 } else {
6204 __output_copy(handle, frag->data,
6205 frag->size);
6206 }
6207 if (perf_raw_frag_last(frag))
6208 break;
6209 frag = frag->next;
6210 } while (1);
6211 if (frag->pad)
6212 __output_skip(handle, NULL, frag->pad);
5622f295
MM
6213 } else {
6214 struct {
6215 u32 size;
6216 u32 data;
6217 } raw = {
6218 .size = sizeof(u32),
6219 .data = 0,
6220 };
6221 perf_output_put(handle, raw);
6222 }
6223 }
a7ac67ea 6224
bce38cd5
SE
6225 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6226 if (data->br_stack) {
6227 size_t size;
6228
6229 size = data->br_stack->nr
6230 * sizeof(struct perf_branch_entry);
6231
6232 perf_output_put(handle, data->br_stack->nr);
6233 perf_output_copy(handle, data->br_stack->entries, size);
6234 } else {
6235 /*
6236 * we always store at least the value of nr
6237 */
6238 u64 nr = 0;
6239 perf_output_put(handle, nr);
6240 }
6241 }
4018994f
JO
6242
6243 if (sample_type & PERF_SAMPLE_REGS_USER) {
6244 u64 abi = data->regs_user.abi;
6245
6246 /*
6247 * If there are no regs to dump, notice it through
6248 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6249 */
6250 perf_output_put(handle, abi);
6251
6252 if (abi) {
6253 u64 mask = event->attr.sample_regs_user;
6254 perf_output_sample_regs(handle,
6255 data->regs_user.regs,
6256 mask);
6257 }
6258 }
c5ebcedb 6259
a5cdd40c 6260 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6261 perf_output_sample_ustack(handle,
6262 data->stack_user_size,
6263 data->regs_user.regs);
a5cdd40c 6264 }
c3feedf2
AK
6265
6266 if (sample_type & PERF_SAMPLE_WEIGHT)
6267 perf_output_put(handle, data->weight);
d6be9ad6
SE
6268
6269 if (sample_type & PERF_SAMPLE_DATA_SRC)
6270 perf_output_put(handle, data->data_src.val);
a5cdd40c 6271
fdfbbd07
AK
6272 if (sample_type & PERF_SAMPLE_TRANSACTION)
6273 perf_output_put(handle, data->txn);
6274
60e2364e
SE
6275 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6276 u64 abi = data->regs_intr.abi;
6277 /*
6278 * If there are no regs to dump, notice it through
6279 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6280 */
6281 perf_output_put(handle, abi);
6282
6283 if (abi) {
6284 u64 mask = event->attr.sample_regs_intr;
6285
6286 perf_output_sample_regs(handle,
6287 data->regs_intr.regs,
6288 mask);
6289 }
6290 }
6291
fc7ce9c7
KL
6292 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6293 perf_output_put(handle, data->phys_addr);
6294
a5cdd40c
PZ
6295 if (!event->attr.watermark) {
6296 int wakeup_events = event->attr.wakeup_events;
6297
6298 if (wakeup_events) {
6299 struct ring_buffer *rb = handle->rb;
6300 int events = local_inc_return(&rb->events);
6301
6302 if (events >= wakeup_events) {
6303 local_sub(wakeup_events, &rb->events);
6304 local_inc(&rb->wakeup);
6305 }
6306 }
6307 }
5622f295
MM
6308}
6309
fc7ce9c7
KL
6310static u64 perf_virt_to_phys(u64 virt)
6311{
6312 u64 phys_addr = 0;
6313 struct page *p = NULL;
6314
6315 if (!virt)
6316 return 0;
6317
6318 if (virt >= TASK_SIZE) {
6319 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6320 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6321 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6322 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6323 } else {
6324 /*
6325 * Walking the pages tables for user address.
6326 * Interrupts are disabled, so it prevents any tear down
6327 * of the page tables.
6328 * Try IRQ-safe __get_user_pages_fast first.
6329 * If failed, leave phys_addr as 0.
6330 */
6331 if ((current->mm != NULL) &&
6332 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6333 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6334
6335 if (p)
6336 put_page(p);
6337 }
6338
6339 return phys_addr;
6340}
6341
99e818cc
JO
6342static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6343
8cf7e0e2
JO
6344static struct perf_callchain_entry *
6345perf_callchain(struct perf_event *event, struct pt_regs *regs)
6346{
6347 bool kernel = !event->attr.exclude_callchain_kernel;
6348 bool user = !event->attr.exclude_callchain_user;
6349 /* Disallow cross-task user callchains. */
6350 bool crosstask = event->ctx->task && event->ctx->task != current;
6351 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 6352 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6353
6354 if (!kernel && !user)
99e818cc 6355 return &__empty_callchain;
8cf7e0e2 6356
99e818cc
JO
6357 callchain = get_perf_callchain(regs, 0, kernel, user,
6358 max_stack, crosstask, true);
6359 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6360}
6361
5622f295
MM
6362void perf_prepare_sample(struct perf_event_header *header,
6363 struct perf_sample_data *data,
cdd6c482 6364 struct perf_event *event,
5622f295 6365 struct pt_regs *regs)
7b732a75 6366{
cdd6c482 6367 u64 sample_type = event->attr.sample_type;
7b732a75 6368
cdd6c482 6369 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6370 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6371
6372 header->misc = 0;
6373 header->misc |= perf_misc_flags(regs);
6fab0192 6374
c980d109 6375 __perf_event_header__init_id(header, data, event);
6844c09d 6376
c320c7b7 6377 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6378 data->ip = perf_instruction_pointer(regs);
6379
b23f3325 6380 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6381 int size = 1;
394ee076 6382
e6dab5ff 6383 data->callchain = perf_callchain(event, regs);
99e818cc 6384 size += data->callchain->nr;
5622f295
MM
6385
6386 header->size += size * sizeof(u64);
394ee076
PZ
6387 }
6388
3a43ce68 6389 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6390 struct perf_raw_record *raw = data->raw;
6391 int size;
6392
6393 if (raw) {
6394 struct perf_raw_frag *frag = &raw->frag;
6395 u32 sum = 0;
6396
6397 do {
6398 sum += frag->size;
6399 if (perf_raw_frag_last(frag))
6400 break;
6401 frag = frag->next;
6402 } while (1);
6403
6404 size = round_up(sum + sizeof(u32), sizeof(u64));
6405 raw->size = size - sizeof(u32);
6406 frag->pad = raw->size - sum;
6407 } else {
6408 size = sizeof(u64);
6409 }
a044560c 6410
7e3f977e 6411 header->size += size;
7f453c24 6412 }
bce38cd5
SE
6413
6414 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6415 int size = sizeof(u64); /* nr */
6416 if (data->br_stack) {
6417 size += data->br_stack->nr
6418 * sizeof(struct perf_branch_entry);
6419 }
6420 header->size += size;
6421 }
4018994f 6422
2565711f 6423 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6424 perf_sample_regs_user(&data->regs_user, regs,
6425 &data->regs_user_copy);
2565711f 6426
4018994f
JO
6427 if (sample_type & PERF_SAMPLE_REGS_USER) {
6428 /* regs dump ABI info */
6429 int size = sizeof(u64);
6430
4018994f
JO
6431 if (data->regs_user.regs) {
6432 u64 mask = event->attr.sample_regs_user;
6433 size += hweight64(mask) * sizeof(u64);
6434 }
6435
6436 header->size += size;
6437 }
c5ebcedb
JO
6438
6439 if (sample_type & PERF_SAMPLE_STACK_USER) {
6440 /*
6441 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6442 * processed as the last one or have additional check added
6443 * in case new sample type is added, because we could eat
6444 * up the rest of the sample size.
6445 */
c5ebcedb
JO
6446 u16 stack_size = event->attr.sample_stack_user;
6447 u16 size = sizeof(u64);
6448
c5ebcedb 6449 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6450 data->regs_user.regs);
c5ebcedb
JO
6451
6452 /*
6453 * If there is something to dump, add space for the dump
6454 * itself and for the field that tells the dynamic size,
6455 * which is how many have been actually dumped.
6456 */
6457 if (stack_size)
6458 size += sizeof(u64) + stack_size;
6459
6460 data->stack_user_size = stack_size;
6461 header->size += size;
6462 }
60e2364e
SE
6463
6464 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6465 /* regs dump ABI info */
6466 int size = sizeof(u64);
6467
6468 perf_sample_regs_intr(&data->regs_intr, regs);
6469
6470 if (data->regs_intr.regs) {
6471 u64 mask = event->attr.sample_regs_intr;
6472
6473 size += hweight64(mask) * sizeof(u64);
6474 }
6475
6476 header->size += size;
6477 }
fc7ce9c7
KL
6478
6479 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6480 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6481}
7f453c24 6482
9ecda41a
WN
6483static void __always_inline
6484__perf_event_output(struct perf_event *event,
6485 struct perf_sample_data *data,
6486 struct pt_regs *regs,
6487 int (*output_begin)(struct perf_output_handle *,
6488 struct perf_event *,
6489 unsigned int))
5622f295
MM
6490{
6491 struct perf_output_handle handle;
6492 struct perf_event_header header;
689802b2 6493
927c7a9e
FW
6494 /* protect the callchain buffers */
6495 rcu_read_lock();
6496
cdd6c482 6497 perf_prepare_sample(&header, data, event, regs);
5c148194 6498
9ecda41a 6499 if (output_begin(&handle, event, header.size))
927c7a9e 6500 goto exit;
0322cd6e 6501
cdd6c482 6502 perf_output_sample(&handle, &header, data, event);
f413cdb8 6503
8a057d84 6504 perf_output_end(&handle);
927c7a9e
FW
6505
6506exit:
6507 rcu_read_unlock();
0322cd6e
PZ
6508}
6509
9ecda41a
WN
6510void
6511perf_event_output_forward(struct perf_event *event,
6512 struct perf_sample_data *data,
6513 struct pt_regs *regs)
6514{
6515 __perf_event_output(event, data, regs, perf_output_begin_forward);
6516}
6517
6518void
6519perf_event_output_backward(struct perf_event *event,
6520 struct perf_sample_data *data,
6521 struct pt_regs *regs)
6522{
6523 __perf_event_output(event, data, regs, perf_output_begin_backward);
6524}
6525
6526void
6527perf_event_output(struct perf_event *event,
6528 struct perf_sample_data *data,
6529 struct pt_regs *regs)
6530{
6531 __perf_event_output(event, data, regs, perf_output_begin);
6532}
6533
38b200d6 6534/*
cdd6c482 6535 * read event_id
38b200d6
PZ
6536 */
6537
6538struct perf_read_event {
6539 struct perf_event_header header;
6540
6541 u32 pid;
6542 u32 tid;
38b200d6
PZ
6543};
6544
6545static void
cdd6c482 6546perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6547 struct task_struct *task)
6548{
6549 struct perf_output_handle handle;
c980d109 6550 struct perf_sample_data sample;
dfc65094 6551 struct perf_read_event read_event = {
38b200d6 6552 .header = {
cdd6c482 6553 .type = PERF_RECORD_READ,
38b200d6 6554 .misc = 0,
c320c7b7 6555 .size = sizeof(read_event) + event->read_size,
38b200d6 6556 },
cdd6c482
IM
6557 .pid = perf_event_pid(event, task),
6558 .tid = perf_event_tid(event, task),
38b200d6 6559 };
3dab77fb 6560 int ret;
38b200d6 6561
c980d109 6562 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6563 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6564 if (ret)
6565 return;
6566
dfc65094 6567 perf_output_put(&handle, read_event);
cdd6c482 6568 perf_output_read(&handle, event);
c980d109 6569 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6570
38b200d6
PZ
6571 perf_output_end(&handle);
6572}
6573
aab5b71e 6574typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6575
6576static void
aab5b71e
PZ
6577perf_iterate_ctx(struct perf_event_context *ctx,
6578 perf_iterate_f output,
b73e4fef 6579 void *data, bool all)
52d857a8
JO
6580{
6581 struct perf_event *event;
6582
6583 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6584 if (!all) {
6585 if (event->state < PERF_EVENT_STATE_INACTIVE)
6586 continue;
6587 if (!event_filter_match(event))
6588 continue;
6589 }
6590
67516844 6591 output(event, data);
52d857a8
JO
6592 }
6593}
6594
aab5b71e 6595static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6596{
6597 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6598 struct perf_event *event;
6599
6600 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6601 /*
6602 * Skip events that are not fully formed yet; ensure that
6603 * if we observe event->ctx, both event and ctx will be
6604 * complete enough. See perf_install_in_context().
6605 */
6606 if (!smp_load_acquire(&event->ctx))
6607 continue;
6608
f2fb6bef
KL
6609 if (event->state < PERF_EVENT_STATE_INACTIVE)
6610 continue;
6611 if (!event_filter_match(event))
6612 continue;
6613 output(event, data);
6614 }
6615}
6616
aab5b71e
PZ
6617/*
6618 * Iterate all events that need to receive side-band events.
6619 *
6620 * For new callers; ensure that account_pmu_sb_event() includes
6621 * your event, otherwise it might not get delivered.
6622 */
52d857a8 6623static void
aab5b71e 6624perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6625 struct perf_event_context *task_ctx)
6626{
52d857a8 6627 struct perf_event_context *ctx;
52d857a8
JO
6628 int ctxn;
6629
aab5b71e
PZ
6630 rcu_read_lock();
6631 preempt_disable();
6632
4e93ad60 6633 /*
aab5b71e
PZ
6634 * If we have task_ctx != NULL we only notify the task context itself.
6635 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6636 * context.
6637 */
6638 if (task_ctx) {
aab5b71e
PZ
6639 perf_iterate_ctx(task_ctx, output, data, false);
6640 goto done;
4e93ad60
JO
6641 }
6642
aab5b71e 6643 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6644
6645 for_each_task_context_nr(ctxn) {
52d857a8
JO
6646 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6647 if (ctx)
aab5b71e 6648 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6649 }
aab5b71e 6650done:
f2fb6bef 6651 preempt_enable();
52d857a8 6652 rcu_read_unlock();
95ff4ca2
AS
6653}
6654
375637bc
AS
6655/*
6656 * Clear all file-based filters at exec, they'll have to be
6657 * re-instated when/if these objects are mmapped again.
6658 */
6659static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6660{
6661 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6662 struct perf_addr_filter *filter;
6663 unsigned int restart = 0, count = 0;
6664 unsigned long flags;
6665
6666 if (!has_addr_filter(event))
6667 return;
6668
6669 raw_spin_lock_irqsave(&ifh->lock, flags);
6670 list_for_each_entry(filter, &ifh->list, entry) {
6671 if (filter->inode) {
6672 event->addr_filters_offs[count] = 0;
6673 restart++;
6674 }
6675
6676 count++;
6677 }
6678
6679 if (restart)
6680 event->addr_filters_gen++;
6681 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6682
6683 if (restart)
767ae086 6684 perf_event_stop(event, 1);
375637bc
AS
6685}
6686
6687void perf_event_exec(void)
6688{
6689 struct perf_event_context *ctx;
6690 int ctxn;
6691
6692 rcu_read_lock();
6693 for_each_task_context_nr(ctxn) {
6694 ctx = current->perf_event_ctxp[ctxn];
6695 if (!ctx)
6696 continue;
6697
6698 perf_event_enable_on_exec(ctxn);
6699
aab5b71e 6700 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6701 true);
6702 }
6703 rcu_read_unlock();
6704}
6705
95ff4ca2
AS
6706struct remote_output {
6707 struct ring_buffer *rb;
6708 int err;
6709};
6710
6711static void __perf_event_output_stop(struct perf_event *event, void *data)
6712{
6713 struct perf_event *parent = event->parent;
6714 struct remote_output *ro = data;
6715 struct ring_buffer *rb = ro->rb;
375637bc
AS
6716 struct stop_event_data sd = {
6717 .event = event,
6718 };
95ff4ca2
AS
6719
6720 if (!has_aux(event))
6721 return;
6722
6723 if (!parent)
6724 parent = event;
6725
6726 /*
6727 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6728 * ring-buffer, but it will be the child that's actually using it.
6729 *
6730 * We are using event::rb to determine if the event should be stopped,
6731 * however this may race with ring_buffer_attach() (through set_output),
6732 * which will make us skip the event that actually needs to be stopped.
6733 * So ring_buffer_attach() has to stop an aux event before re-assigning
6734 * its rb pointer.
95ff4ca2
AS
6735 */
6736 if (rcu_dereference(parent->rb) == rb)
375637bc 6737 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6738}
6739
6740static int __perf_pmu_output_stop(void *info)
6741{
6742 struct perf_event *event = info;
6743 struct pmu *pmu = event->pmu;
8b6a3fe8 6744 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6745 struct remote_output ro = {
6746 .rb = event->rb,
6747 };
6748
6749 rcu_read_lock();
aab5b71e 6750 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6751 if (cpuctx->task_ctx)
aab5b71e 6752 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6753 &ro, false);
95ff4ca2
AS
6754 rcu_read_unlock();
6755
6756 return ro.err;
6757}
6758
6759static void perf_pmu_output_stop(struct perf_event *event)
6760{
6761 struct perf_event *iter;
6762 int err, cpu;
6763
6764restart:
6765 rcu_read_lock();
6766 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6767 /*
6768 * For per-CPU events, we need to make sure that neither they
6769 * nor their children are running; for cpu==-1 events it's
6770 * sufficient to stop the event itself if it's active, since
6771 * it can't have children.
6772 */
6773 cpu = iter->cpu;
6774 if (cpu == -1)
6775 cpu = READ_ONCE(iter->oncpu);
6776
6777 if (cpu == -1)
6778 continue;
6779
6780 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6781 if (err == -EAGAIN) {
6782 rcu_read_unlock();
6783 goto restart;
6784 }
6785 }
6786 rcu_read_unlock();
52d857a8
JO
6787}
6788
60313ebe 6789/*
9f498cc5
PZ
6790 * task tracking -- fork/exit
6791 *
13d7a241 6792 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6793 */
6794
9f498cc5 6795struct perf_task_event {
3a80b4a3 6796 struct task_struct *task;
cdd6c482 6797 struct perf_event_context *task_ctx;
60313ebe
PZ
6798
6799 struct {
6800 struct perf_event_header header;
6801
6802 u32 pid;
6803 u32 ppid;
9f498cc5
PZ
6804 u32 tid;
6805 u32 ptid;
393b2ad8 6806 u64 time;
cdd6c482 6807 } event_id;
60313ebe
PZ
6808};
6809
67516844
JO
6810static int perf_event_task_match(struct perf_event *event)
6811{
13d7a241
SE
6812 return event->attr.comm || event->attr.mmap ||
6813 event->attr.mmap2 || event->attr.mmap_data ||
6814 event->attr.task;
67516844
JO
6815}
6816
cdd6c482 6817static void perf_event_task_output(struct perf_event *event,
52d857a8 6818 void *data)
60313ebe 6819{
52d857a8 6820 struct perf_task_event *task_event = data;
60313ebe 6821 struct perf_output_handle handle;
c980d109 6822 struct perf_sample_data sample;
9f498cc5 6823 struct task_struct *task = task_event->task;
c980d109 6824 int ret, size = task_event->event_id.header.size;
8bb39f9a 6825
67516844
JO
6826 if (!perf_event_task_match(event))
6827 return;
6828
c980d109 6829 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6830
c980d109 6831 ret = perf_output_begin(&handle, event,
a7ac67ea 6832 task_event->event_id.header.size);
ef60777c 6833 if (ret)
c980d109 6834 goto out;
60313ebe 6835
cdd6c482
IM
6836 task_event->event_id.pid = perf_event_pid(event, task);
6837 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6838
cdd6c482
IM
6839 task_event->event_id.tid = perf_event_tid(event, task);
6840 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6841
34f43927
PZ
6842 task_event->event_id.time = perf_event_clock(event);
6843
cdd6c482 6844 perf_output_put(&handle, task_event->event_id);
393b2ad8 6845
c980d109
ACM
6846 perf_event__output_id_sample(event, &handle, &sample);
6847
60313ebe 6848 perf_output_end(&handle);
c980d109
ACM
6849out:
6850 task_event->event_id.header.size = size;
60313ebe
PZ
6851}
6852
cdd6c482
IM
6853static void perf_event_task(struct task_struct *task,
6854 struct perf_event_context *task_ctx,
3a80b4a3 6855 int new)
60313ebe 6856{
9f498cc5 6857 struct perf_task_event task_event;
60313ebe 6858
cdd6c482
IM
6859 if (!atomic_read(&nr_comm_events) &&
6860 !atomic_read(&nr_mmap_events) &&
6861 !atomic_read(&nr_task_events))
60313ebe
PZ
6862 return;
6863
9f498cc5 6864 task_event = (struct perf_task_event){
3a80b4a3
PZ
6865 .task = task,
6866 .task_ctx = task_ctx,
cdd6c482 6867 .event_id = {
60313ebe 6868 .header = {
cdd6c482 6869 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6870 .misc = 0,
cdd6c482 6871 .size = sizeof(task_event.event_id),
60313ebe 6872 },
573402db
PZ
6873 /* .pid */
6874 /* .ppid */
9f498cc5
PZ
6875 /* .tid */
6876 /* .ptid */
34f43927 6877 /* .time */
60313ebe
PZ
6878 },
6879 };
6880
aab5b71e 6881 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6882 &task_event,
6883 task_ctx);
9f498cc5
PZ
6884}
6885
cdd6c482 6886void perf_event_fork(struct task_struct *task)
9f498cc5 6887{
cdd6c482 6888 perf_event_task(task, NULL, 1);
e4222673 6889 perf_event_namespaces(task);
60313ebe
PZ
6890}
6891
8d1b2d93
PZ
6892/*
6893 * comm tracking
6894 */
6895
6896struct perf_comm_event {
22a4f650
IM
6897 struct task_struct *task;
6898 char *comm;
8d1b2d93
PZ
6899 int comm_size;
6900
6901 struct {
6902 struct perf_event_header header;
6903
6904 u32 pid;
6905 u32 tid;
cdd6c482 6906 } event_id;
8d1b2d93
PZ
6907};
6908
67516844
JO
6909static int perf_event_comm_match(struct perf_event *event)
6910{
6911 return event->attr.comm;
6912}
6913
cdd6c482 6914static void perf_event_comm_output(struct perf_event *event,
52d857a8 6915 void *data)
8d1b2d93 6916{
52d857a8 6917 struct perf_comm_event *comm_event = data;
8d1b2d93 6918 struct perf_output_handle handle;
c980d109 6919 struct perf_sample_data sample;
cdd6c482 6920 int size = comm_event->event_id.header.size;
c980d109
ACM
6921 int ret;
6922
67516844
JO
6923 if (!perf_event_comm_match(event))
6924 return;
6925
c980d109
ACM
6926 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6927 ret = perf_output_begin(&handle, event,
a7ac67ea 6928 comm_event->event_id.header.size);
8d1b2d93
PZ
6929
6930 if (ret)
c980d109 6931 goto out;
8d1b2d93 6932
cdd6c482
IM
6933 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6934 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6935
cdd6c482 6936 perf_output_put(&handle, comm_event->event_id);
76369139 6937 __output_copy(&handle, comm_event->comm,
8d1b2d93 6938 comm_event->comm_size);
c980d109
ACM
6939
6940 perf_event__output_id_sample(event, &handle, &sample);
6941
8d1b2d93 6942 perf_output_end(&handle);
c980d109
ACM
6943out:
6944 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6945}
6946
cdd6c482 6947static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6948{
413ee3b4 6949 char comm[TASK_COMM_LEN];
8d1b2d93 6950 unsigned int size;
8d1b2d93 6951
413ee3b4 6952 memset(comm, 0, sizeof(comm));
96b02d78 6953 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6954 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6955
6956 comm_event->comm = comm;
6957 comm_event->comm_size = size;
6958
cdd6c482 6959 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6960
aab5b71e 6961 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6962 comm_event,
6963 NULL);
8d1b2d93
PZ
6964}
6965
82b89778 6966void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6967{
9ee318a7
PZ
6968 struct perf_comm_event comm_event;
6969
cdd6c482 6970 if (!atomic_read(&nr_comm_events))
9ee318a7 6971 return;
a63eaf34 6972
9ee318a7 6973 comm_event = (struct perf_comm_event){
8d1b2d93 6974 .task = task,
573402db
PZ
6975 /* .comm */
6976 /* .comm_size */
cdd6c482 6977 .event_id = {
573402db 6978 .header = {
cdd6c482 6979 .type = PERF_RECORD_COMM,
82b89778 6980 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6981 /* .size */
6982 },
6983 /* .pid */
6984 /* .tid */
8d1b2d93
PZ
6985 },
6986 };
6987
cdd6c482 6988 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6989}
6990
e4222673
HB
6991/*
6992 * namespaces tracking
6993 */
6994
6995struct perf_namespaces_event {
6996 struct task_struct *task;
6997
6998 struct {
6999 struct perf_event_header header;
7000
7001 u32 pid;
7002 u32 tid;
7003 u64 nr_namespaces;
7004 struct perf_ns_link_info link_info[NR_NAMESPACES];
7005 } event_id;
7006};
7007
7008static int perf_event_namespaces_match(struct perf_event *event)
7009{
7010 return event->attr.namespaces;
7011}
7012
7013static void perf_event_namespaces_output(struct perf_event *event,
7014 void *data)
7015{
7016 struct perf_namespaces_event *namespaces_event = data;
7017 struct perf_output_handle handle;
7018 struct perf_sample_data sample;
34900ec5 7019 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
7020 int ret;
7021
7022 if (!perf_event_namespaces_match(event))
7023 return;
7024
7025 perf_event_header__init_id(&namespaces_event->event_id.header,
7026 &sample, event);
7027 ret = perf_output_begin(&handle, event,
7028 namespaces_event->event_id.header.size);
7029 if (ret)
34900ec5 7030 goto out;
e4222673
HB
7031
7032 namespaces_event->event_id.pid = perf_event_pid(event,
7033 namespaces_event->task);
7034 namespaces_event->event_id.tid = perf_event_tid(event,
7035 namespaces_event->task);
7036
7037 perf_output_put(&handle, namespaces_event->event_id);
7038
7039 perf_event__output_id_sample(event, &handle, &sample);
7040
7041 perf_output_end(&handle);
34900ec5
JO
7042out:
7043 namespaces_event->event_id.header.size = header_size;
e4222673
HB
7044}
7045
7046static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7047 struct task_struct *task,
7048 const struct proc_ns_operations *ns_ops)
7049{
7050 struct path ns_path;
7051 struct inode *ns_inode;
7052 void *error;
7053
7054 error = ns_get_path(&ns_path, task, ns_ops);
7055 if (!error) {
7056 ns_inode = ns_path.dentry->d_inode;
7057 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7058 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 7059 path_put(&ns_path);
e4222673
HB
7060 }
7061}
7062
7063void perf_event_namespaces(struct task_struct *task)
7064{
7065 struct perf_namespaces_event namespaces_event;
7066 struct perf_ns_link_info *ns_link_info;
7067
7068 if (!atomic_read(&nr_namespaces_events))
7069 return;
7070
7071 namespaces_event = (struct perf_namespaces_event){
7072 .task = task,
7073 .event_id = {
7074 .header = {
7075 .type = PERF_RECORD_NAMESPACES,
7076 .misc = 0,
7077 .size = sizeof(namespaces_event.event_id),
7078 },
7079 /* .pid */
7080 /* .tid */
7081 .nr_namespaces = NR_NAMESPACES,
7082 /* .link_info[NR_NAMESPACES] */
7083 },
7084 };
7085
7086 ns_link_info = namespaces_event.event_id.link_info;
7087
7088 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7089 task, &mntns_operations);
7090
7091#ifdef CONFIG_USER_NS
7092 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7093 task, &userns_operations);
7094#endif
7095#ifdef CONFIG_NET_NS
7096 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7097 task, &netns_operations);
7098#endif
7099#ifdef CONFIG_UTS_NS
7100 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7101 task, &utsns_operations);
7102#endif
7103#ifdef CONFIG_IPC_NS
7104 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7105 task, &ipcns_operations);
7106#endif
7107#ifdef CONFIG_PID_NS
7108 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7109 task, &pidns_operations);
7110#endif
7111#ifdef CONFIG_CGROUPS
7112 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7113 task, &cgroupns_operations);
7114#endif
7115
7116 perf_iterate_sb(perf_event_namespaces_output,
7117 &namespaces_event,
7118 NULL);
7119}
7120
0a4a9391
PZ
7121/*
7122 * mmap tracking
7123 */
7124
7125struct perf_mmap_event {
089dd79d
PZ
7126 struct vm_area_struct *vma;
7127
7128 const char *file_name;
7129 int file_size;
13d7a241
SE
7130 int maj, min;
7131 u64 ino;
7132 u64 ino_generation;
f972eb63 7133 u32 prot, flags;
0a4a9391
PZ
7134
7135 struct {
7136 struct perf_event_header header;
7137
7138 u32 pid;
7139 u32 tid;
7140 u64 start;
7141 u64 len;
7142 u64 pgoff;
cdd6c482 7143 } event_id;
0a4a9391
PZ
7144};
7145
67516844
JO
7146static int perf_event_mmap_match(struct perf_event *event,
7147 void *data)
7148{
7149 struct perf_mmap_event *mmap_event = data;
7150 struct vm_area_struct *vma = mmap_event->vma;
7151 int executable = vma->vm_flags & VM_EXEC;
7152
7153 return (!executable && event->attr.mmap_data) ||
13d7a241 7154 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
7155}
7156
cdd6c482 7157static void perf_event_mmap_output(struct perf_event *event,
52d857a8 7158 void *data)
0a4a9391 7159{
52d857a8 7160 struct perf_mmap_event *mmap_event = data;
0a4a9391 7161 struct perf_output_handle handle;
c980d109 7162 struct perf_sample_data sample;
cdd6c482 7163 int size = mmap_event->event_id.header.size;
c980d109 7164 int ret;
0a4a9391 7165
67516844
JO
7166 if (!perf_event_mmap_match(event, data))
7167 return;
7168
13d7a241
SE
7169 if (event->attr.mmap2) {
7170 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7171 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7172 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7173 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 7174 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
7175 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7176 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
7177 }
7178
c980d109
ACM
7179 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7180 ret = perf_output_begin(&handle, event,
a7ac67ea 7181 mmap_event->event_id.header.size);
0a4a9391 7182 if (ret)
c980d109 7183 goto out;
0a4a9391 7184
cdd6c482
IM
7185 mmap_event->event_id.pid = perf_event_pid(event, current);
7186 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 7187
cdd6c482 7188 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
7189
7190 if (event->attr.mmap2) {
7191 perf_output_put(&handle, mmap_event->maj);
7192 perf_output_put(&handle, mmap_event->min);
7193 perf_output_put(&handle, mmap_event->ino);
7194 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
7195 perf_output_put(&handle, mmap_event->prot);
7196 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
7197 }
7198
76369139 7199 __output_copy(&handle, mmap_event->file_name,
0a4a9391 7200 mmap_event->file_size);
c980d109
ACM
7201
7202 perf_event__output_id_sample(event, &handle, &sample);
7203
78d613eb 7204 perf_output_end(&handle);
c980d109
ACM
7205out:
7206 mmap_event->event_id.header.size = size;
0a4a9391
PZ
7207}
7208
cdd6c482 7209static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 7210{
089dd79d
PZ
7211 struct vm_area_struct *vma = mmap_event->vma;
7212 struct file *file = vma->vm_file;
13d7a241
SE
7213 int maj = 0, min = 0;
7214 u64 ino = 0, gen = 0;
f972eb63 7215 u32 prot = 0, flags = 0;
0a4a9391
PZ
7216 unsigned int size;
7217 char tmp[16];
7218 char *buf = NULL;
2c42cfbf 7219 char *name;
413ee3b4 7220
0b3589be
PZ
7221 if (vma->vm_flags & VM_READ)
7222 prot |= PROT_READ;
7223 if (vma->vm_flags & VM_WRITE)
7224 prot |= PROT_WRITE;
7225 if (vma->vm_flags & VM_EXEC)
7226 prot |= PROT_EXEC;
7227
7228 if (vma->vm_flags & VM_MAYSHARE)
7229 flags = MAP_SHARED;
7230 else
7231 flags = MAP_PRIVATE;
7232
7233 if (vma->vm_flags & VM_DENYWRITE)
7234 flags |= MAP_DENYWRITE;
7235 if (vma->vm_flags & VM_MAYEXEC)
7236 flags |= MAP_EXECUTABLE;
7237 if (vma->vm_flags & VM_LOCKED)
7238 flags |= MAP_LOCKED;
7239 if (vma->vm_flags & VM_HUGETLB)
7240 flags |= MAP_HUGETLB;
7241
0a4a9391 7242 if (file) {
13d7a241
SE
7243 struct inode *inode;
7244 dev_t dev;
3ea2f2b9 7245
2c42cfbf 7246 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 7247 if (!buf) {
c7e548b4
ON
7248 name = "//enomem";
7249 goto cpy_name;
0a4a9391 7250 }
413ee3b4 7251 /*
3ea2f2b9 7252 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
7253 * need to add enough zero bytes after the string to handle
7254 * the 64bit alignment we do later.
7255 */
9bf39ab2 7256 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 7257 if (IS_ERR(name)) {
c7e548b4
ON
7258 name = "//toolong";
7259 goto cpy_name;
0a4a9391 7260 }
13d7a241
SE
7261 inode = file_inode(vma->vm_file);
7262 dev = inode->i_sb->s_dev;
7263 ino = inode->i_ino;
7264 gen = inode->i_generation;
7265 maj = MAJOR(dev);
7266 min = MINOR(dev);
f972eb63 7267
c7e548b4 7268 goto got_name;
0a4a9391 7269 } else {
fbe26abe
JO
7270 if (vma->vm_ops && vma->vm_ops->name) {
7271 name = (char *) vma->vm_ops->name(vma);
7272 if (name)
7273 goto cpy_name;
7274 }
7275
2c42cfbf 7276 name = (char *)arch_vma_name(vma);
c7e548b4
ON
7277 if (name)
7278 goto cpy_name;
089dd79d 7279
32c5fb7e 7280 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 7281 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
7282 name = "[heap]";
7283 goto cpy_name;
32c5fb7e
ON
7284 }
7285 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 7286 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
7287 name = "[stack]";
7288 goto cpy_name;
089dd79d
PZ
7289 }
7290
c7e548b4
ON
7291 name = "//anon";
7292 goto cpy_name;
0a4a9391
PZ
7293 }
7294
c7e548b4
ON
7295cpy_name:
7296 strlcpy(tmp, name, sizeof(tmp));
7297 name = tmp;
0a4a9391 7298got_name:
2c42cfbf
PZ
7299 /*
7300 * Since our buffer works in 8 byte units we need to align our string
7301 * size to a multiple of 8. However, we must guarantee the tail end is
7302 * zero'd out to avoid leaking random bits to userspace.
7303 */
7304 size = strlen(name)+1;
7305 while (!IS_ALIGNED(size, sizeof(u64)))
7306 name[size++] = '\0';
0a4a9391
PZ
7307
7308 mmap_event->file_name = name;
7309 mmap_event->file_size = size;
13d7a241
SE
7310 mmap_event->maj = maj;
7311 mmap_event->min = min;
7312 mmap_event->ino = ino;
7313 mmap_event->ino_generation = gen;
f972eb63
PZ
7314 mmap_event->prot = prot;
7315 mmap_event->flags = flags;
0a4a9391 7316
2fe85427
SE
7317 if (!(vma->vm_flags & VM_EXEC))
7318 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7319
cdd6c482 7320 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7321
aab5b71e 7322 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7323 mmap_event,
7324 NULL);
665c2142 7325
0a4a9391
PZ
7326 kfree(buf);
7327}
7328
375637bc
AS
7329/*
7330 * Check whether inode and address range match filter criteria.
7331 */
7332static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7333 struct file *file, unsigned long offset,
7334 unsigned long size)
7335{
45063097 7336 if (filter->inode != file_inode(file))
375637bc
AS
7337 return false;
7338
7339 if (filter->offset > offset + size)
7340 return false;
7341
7342 if (filter->offset + filter->size < offset)
7343 return false;
7344
7345 return true;
7346}
7347
7348static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7349{
7350 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7351 struct vm_area_struct *vma = data;
7352 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7353 struct file *file = vma->vm_file;
7354 struct perf_addr_filter *filter;
7355 unsigned int restart = 0, count = 0;
7356
7357 if (!has_addr_filter(event))
7358 return;
7359
7360 if (!file)
7361 return;
7362
7363 raw_spin_lock_irqsave(&ifh->lock, flags);
7364 list_for_each_entry(filter, &ifh->list, entry) {
7365 if (perf_addr_filter_match(filter, file, off,
7366 vma->vm_end - vma->vm_start)) {
7367 event->addr_filters_offs[count] = vma->vm_start;
7368 restart++;
7369 }
7370
7371 count++;
7372 }
7373
7374 if (restart)
7375 event->addr_filters_gen++;
7376 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7377
7378 if (restart)
767ae086 7379 perf_event_stop(event, 1);
375637bc
AS
7380}
7381
7382/*
7383 * Adjust all task's events' filters to the new vma
7384 */
7385static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7386{
7387 struct perf_event_context *ctx;
7388 int ctxn;
7389
12b40a23
MP
7390 /*
7391 * Data tracing isn't supported yet and as such there is no need
7392 * to keep track of anything that isn't related to executable code:
7393 */
7394 if (!(vma->vm_flags & VM_EXEC))
7395 return;
7396
375637bc
AS
7397 rcu_read_lock();
7398 for_each_task_context_nr(ctxn) {
7399 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7400 if (!ctx)
7401 continue;
7402
aab5b71e 7403 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7404 }
7405 rcu_read_unlock();
7406}
7407
3af9e859 7408void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7409{
9ee318a7
PZ
7410 struct perf_mmap_event mmap_event;
7411
cdd6c482 7412 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7413 return;
7414
7415 mmap_event = (struct perf_mmap_event){
089dd79d 7416 .vma = vma,
573402db
PZ
7417 /* .file_name */
7418 /* .file_size */
cdd6c482 7419 .event_id = {
573402db 7420 .header = {
cdd6c482 7421 .type = PERF_RECORD_MMAP,
39447b38 7422 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7423 /* .size */
7424 },
7425 /* .pid */
7426 /* .tid */
089dd79d
PZ
7427 .start = vma->vm_start,
7428 .len = vma->vm_end - vma->vm_start,
3a0304e9 7429 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7430 },
13d7a241
SE
7431 /* .maj (attr_mmap2 only) */
7432 /* .min (attr_mmap2 only) */
7433 /* .ino (attr_mmap2 only) */
7434 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7435 /* .prot (attr_mmap2 only) */
7436 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7437 };
7438
375637bc 7439 perf_addr_filters_adjust(vma);
cdd6c482 7440 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7441}
7442
68db7e98
AS
7443void perf_event_aux_event(struct perf_event *event, unsigned long head,
7444 unsigned long size, u64 flags)
7445{
7446 struct perf_output_handle handle;
7447 struct perf_sample_data sample;
7448 struct perf_aux_event {
7449 struct perf_event_header header;
7450 u64 offset;
7451 u64 size;
7452 u64 flags;
7453 } rec = {
7454 .header = {
7455 .type = PERF_RECORD_AUX,
7456 .misc = 0,
7457 .size = sizeof(rec),
7458 },
7459 .offset = head,
7460 .size = size,
7461 .flags = flags,
7462 };
7463 int ret;
7464
7465 perf_event_header__init_id(&rec.header, &sample, event);
7466 ret = perf_output_begin(&handle, event, rec.header.size);
7467
7468 if (ret)
7469 return;
7470
7471 perf_output_put(&handle, rec);
7472 perf_event__output_id_sample(event, &handle, &sample);
7473
7474 perf_output_end(&handle);
7475}
7476
f38b0dbb
KL
7477/*
7478 * Lost/dropped samples logging
7479 */
7480void perf_log_lost_samples(struct perf_event *event, u64 lost)
7481{
7482 struct perf_output_handle handle;
7483 struct perf_sample_data sample;
7484 int ret;
7485
7486 struct {
7487 struct perf_event_header header;
7488 u64 lost;
7489 } lost_samples_event = {
7490 .header = {
7491 .type = PERF_RECORD_LOST_SAMPLES,
7492 .misc = 0,
7493 .size = sizeof(lost_samples_event),
7494 },
7495 .lost = lost,
7496 };
7497
7498 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7499
7500 ret = perf_output_begin(&handle, event,
7501 lost_samples_event.header.size);
7502 if (ret)
7503 return;
7504
7505 perf_output_put(&handle, lost_samples_event);
7506 perf_event__output_id_sample(event, &handle, &sample);
7507 perf_output_end(&handle);
7508}
7509
45ac1403
AH
7510/*
7511 * context_switch tracking
7512 */
7513
7514struct perf_switch_event {
7515 struct task_struct *task;
7516 struct task_struct *next_prev;
7517
7518 struct {
7519 struct perf_event_header header;
7520 u32 next_prev_pid;
7521 u32 next_prev_tid;
7522 } event_id;
7523};
7524
7525static int perf_event_switch_match(struct perf_event *event)
7526{
7527 return event->attr.context_switch;
7528}
7529
7530static void perf_event_switch_output(struct perf_event *event, void *data)
7531{
7532 struct perf_switch_event *se = data;
7533 struct perf_output_handle handle;
7534 struct perf_sample_data sample;
7535 int ret;
7536
7537 if (!perf_event_switch_match(event))
7538 return;
7539
7540 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7541 if (event->ctx->task) {
7542 se->event_id.header.type = PERF_RECORD_SWITCH;
7543 se->event_id.header.size = sizeof(se->event_id.header);
7544 } else {
7545 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7546 se->event_id.header.size = sizeof(se->event_id);
7547 se->event_id.next_prev_pid =
7548 perf_event_pid(event, se->next_prev);
7549 se->event_id.next_prev_tid =
7550 perf_event_tid(event, se->next_prev);
7551 }
7552
7553 perf_event_header__init_id(&se->event_id.header, &sample, event);
7554
7555 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7556 if (ret)
7557 return;
7558
7559 if (event->ctx->task)
7560 perf_output_put(&handle, se->event_id.header);
7561 else
7562 perf_output_put(&handle, se->event_id);
7563
7564 perf_event__output_id_sample(event, &handle, &sample);
7565
7566 perf_output_end(&handle);
7567}
7568
7569static void perf_event_switch(struct task_struct *task,
7570 struct task_struct *next_prev, bool sched_in)
7571{
7572 struct perf_switch_event switch_event;
7573
7574 /* N.B. caller checks nr_switch_events != 0 */
7575
7576 switch_event = (struct perf_switch_event){
7577 .task = task,
7578 .next_prev = next_prev,
7579 .event_id = {
7580 .header = {
7581 /* .type */
7582 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7583 /* .size */
7584 },
7585 /* .next_prev_pid */
7586 /* .next_prev_tid */
7587 },
7588 };
7589
101592b4
AB
7590 if (!sched_in && task->state == TASK_RUNNING)
7591 switch_event.event_id.header.misc |=
7592 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7593
aab5b71e 7594 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7595 &switch_event,
7596 NULL);
7597}
7598
a78ac325
PZ
7599/*
7600 * IRQ throttle logging
7601 */
7602
cdd6c482 7603static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7604{
7605 struct perf_output_handle handle;
c980d109 7606 struct perf_sample_data sample;
a78ac325
PZ
7607 int ret;
7608
7609 struct {
7610 struct perf_event_header header;
7611 u64 time;
cca3f454 7612 u64 id;
7f453c24 7613 u64 stream_id;
a78ac325
PZ
7614 } throttle_event = {
7615 .header = {
cdd6c482 7616 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7617 .misc = 0,
7618 .size = sizeof(throttle_event),
7619 },
34f43927 7620 .time = perf_event_clock(event),
cdd6c482
IM
7621 .id = primary_event_id(event),
7622 .stream_id = event->id,
a78ac325
PZ
7623 };
7624
966ee4d6 7625 if (enable)
cdd6c482 7626 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7627
c980d109
ACM
7628 perf_event_header__init_id(&throttle_event.header, &sample, event);
7629
7630 ret = perf_output_begin(&handle, event,
a7ac67ea 7631 throttle_event.header.size);
a78ac325
PZ
7632 if (ret)
7633 return;
7634
7635 perf_output_put(&handle, throttle_event);
c980d109 7636 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7637 perf_output_end(&handle);
7638}
7639
8d4e6c4c
AS
7640void perf_event_itrace_started(struct perf_event *event)
7641{
7642 event->attach_state |= PERF_ATTACH_ITRACE;
7643}
7644
ec0d7729
AS
7645static void perf_log_itrace_start(struct perf_event *event)
7646{
7647 struct perf_output_handle handle;
7648 struct perf_sample_data sample;
7649 struct perf_aux_event {
7650 struct perf_event_header header;
7651 u32 pid;
7652 u32 tid;
7653 } rec;
7654 int ret;
7655
7656 if (event->parent)
7657 event = event->parent;
7658
7659 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7660 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7661 return;
7662
ec0d7729
AS
7663 rec.header.type = PERF_RECORD_ITRACE_START;
7664 rec.header.misc = 0;
7665 rec.header.size = sizeof(rec);
7666 rec.pid = perf_event_pid(event, current);
7667 rec.tid = perf_event_tid(event, current);
7668
7669 perf_event_header__init_id(&rec.header, &sample, event);
7670 ret = perf_output_begin(&handle, event, rec.header.size);
7671
7672 if (ret)
7673 return;
7674
7675 perf_output_put(&handle, rec);
7676 perf_event__output_id_sample(event, &handle, &sample);
7677
7678 perf_output_end(&handle);
7679}
7680
475113d9
JO
7681static int
7682__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7683{
cdd6c482 7684 struct hw_perf_event *hwc = &event->hw;
79f14641 7685 int ret = 0;
475113d9 7686 u64 seq;
96398826 7687
e050e3f0
SE
7688 seq = __this_cpu_read(perf_throttled_seq);
7689 if (seq != hwc->interrupts_seq) {
7690 hwc->interrupts_seq = seq;
7691 hwc->interrupts = 1;
7692 } else {
7693 hwc->interrupts++;
7694 if (unlikely(throttle
7695 && hwc->interrupts >= max_samples_per_tick)) {
7696 __this_cpu_inc(perf_throttled_count);
555e0c1e 7697 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7698 hwc->interrupts = MAX_INTERRUPTS;
7699 perf_log_throttle(event, 0);
a78ac325
PZ
7700 ret = 1;
7701 }
e050e3f0 7702 }
60db5e09 7703
cdd6c482 7704 if (event->attr.freq) {
def0a9b2 7705 u64 now = perf_clock();
abd50713 7706 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7707
abd50713 7708 hwc->freq_time_stamp = now;
bd2b5b12 7709
abd50713 7710 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7711 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7712 }
7713
475113d9
JO
7714 return ret;
7715}
7716
7717int perf_event_account_interrupt(struct perf_event *event)
7718{
7719 return __perf_event_account_interrupt(event, 1);
7720}
7721
7722/*
7723 * Generic event overflow handling, sampling.
7724 */
7725
7726static int __perf_event_overflow(struct perf_event *event,
7727 int throttle, struct perf_sample_data *data,
7728 struct pt_regs *regs)
7729{
7730 int events = atomic_read(&event->event_limit);
7731 int ret = 0;
7732
7733 /*
7734 * Non-sampling counters might still use the PMI to fold short
7735 * hardware counters, ignore those.
7736 */
7737 if (unlikely(!is_sampling_event(event)))
7738 return 0;
7739
7740 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7741
2023b359
PZ
7742 /*
7743 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7744 * events
2023b359
PZ
7745 */
7746
cdd6c482
IM
7747 event->pending_kill = POLL_IN;
7748 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7749 ret = 1;
cdd6c482 7750 event->pending_kill = POLL_HUP;
5aab90ce
JO
7751
7752 perf_event_disable_inatomic(event);
79f14641
PZ
7753 }
7754
aa6a5f3c 7755 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7756
fed66e2c 7757 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7758 event->pending_wakeup = 1;
7759 irq_work_queue(&event->pending);
f506b3dc
PZ
7760 }
7761
79f14641 7762 return ret;
f6c7d5fe
PZ
7763}
7764
a8b0ca17 7765int perf_event_overflow(struct perf_event *event,
5622f295
MM
7766 struct perf_sample_data *data,
7767 struct pt_regs *regs)
850bc73f 7768{
a8b0ca17 7769 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7770}
7771
15dbf27c 7772/*
cdd6c482 7773 * Generic software event infrastructure
15dbf27c
PZ
7774 */
7775
b28ab83c
PZ
7776struct swevent_htable {
7777 struct swevent_hlist *swevent_hlist;
7778 struct mutex hlist_mutex;
7779 int hlist_refcount;
7780
7781 /* Recursion avoidance in each contexts */
7782 int recursion[PERF_NR_CONTEXTS];
7783};
7784
7785static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7786
7b4b6658 7787/*
cdd6c482
IM
7788 * We directly increment event->count and keep a second value in
7789 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7790 * is kept in the range [-sample_period, 0] so that we can use the
7791 * sign as trigger.
7792 */
7793
ab573844 7794u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7795{
cdd6c482 7796 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7797 u64 period = hwc->last_period;
7798 u64 nr, offset;
7799 s64 old, val;
7800
7801 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7802
7803again:
e7850595 7804 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7805 if (val < 0)
7806 return 0;
15dbf27c 7807
7b4b6658
PZ
7808 nr = div64_u64(period + val, period);
7809 offset = nr * period;
7810 val -= offset;
e7850595 7811 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7812 goto again;
15dbf27c 7813
7b4b6658 7814 return nr;
15dbf27c
PZ
7815}
7816
0cff784a 7817static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7818 struct perf_sample_data *data,
5622f295 7819 struct pt_regs *regs)
15dbf27c 7820{
cdd6c482 7821 struct hw_perf_event *hwc = &event->hw;
850bc73f 7822 int throttle = 0;
15dbf27c 7823
0cff784a
PZ
7824 if (!overflow)
7825 overflow = perf_swevent_set_period(event);
15dbf27c 7826
7b4b6658
PZ
7827 if (hwc->interrupts == MAX_INTERRUPTS)
7828 return;
15dbf27c 7829
7b4b6658 7830 for (; overflow; overflow--) {
a8b0ca17 7831 if (__perf_event_overflow(event, throttle,
5622f295 7832 data, regs)) {
7b4b6658
PZ
7833 /*
7834 * We inhibit the overflow from happening when
7835 * hwc->interrupts == MAX_INTERRUPTS.
7836 */
7837 break;
7838 }
cf450a73 7839 throttle = 1;
7b4b6658 7840 }
15dbf27c
PZ
7841}
7842
a4eaf7f1 7843static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7844 struct perf_sample_data *data,
5622f295 7845 struct pt_regs *regs)
7b4b6658 7846{
cdd6c482 7847 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7848
e7850595 7849 local64_add(nr, &event->count);
d6d020e9 7850
0cff784a
PZ
7851 if (!regs)
7852 return;
7853
6c7e550f 7854 if (!is_sampling_event(event))
7b4b6658 7855 return;
d6d020e9 7856
5d81e5cf
AV
7857 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7858 data->period = nr;
7859 return perf_swevent_overflow(event, 1, data, regs);
7860 } else
7861 data->period = event->hw.last_period;
7862
0cff784a 7863 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7864 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7865
e7850595 7866 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7867 return;
df1a132b 7868
a8b0ca17 7869 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7870}
7871
f5ffe02e
FW
7872static int perf_exclude_event(struct perf_event *event,
7873 struct pt_regs *regs)
7874{
a4eaf7f1 7875 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7876 return 1;
a4eaf7f1 7877
f5ffe02e
FW
7878 if (regs) {
7879 if (event->attr.exclude_user && user_mode(regs))
7880 return 1;
7881
7882 if (event->attr.exclude_kernel && !user_mode(regs))
7883 return 1;
7884 }
7885
7886 return 0;
7887}
7888
cdd6c482 7889static int perf_swevent_match(struct perf_event *event,
1c432d89 7890 enum perf_type_id type,
6fb2915d
LZ
7891 u32 event_id,
7892 struct perf_sample_data *data,
7893 struct pt_regs *regs)
15dbf27c 7894{
cdd6c482 7895 if (event->attr.type != type)
a21ca2ca 7896 return 0;
f5ffe02e 7897
cdd6c482 7898 if (event->attr.config != event_id)
15dbf27c
PZ
7899 return 0;
7900
f5ffe02e
FW
7901 if (perf_exclude_event(event, regs))
7902 return 0;
15dbf27c
PZ
7903
7904 return 1;
7905}
7906
76e1d904
FW
7907static inline u64 swevent_hash(u64 type, u32 event_id)
7908{
7909 u64 val = event_id | (type << 32);
7910
7911 return hash_64(val, SWEVENT_HLIST_BITS);
7912}
7913
49f135ed
FW
7914static inline struct hlist_head *
7915__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7916{
49f135ed
FW
7917 u64 hash = swevent_hash(type, event_id);
7918
7919 return &hlist->heads[hash];
7920}
76e1d904 7921
49f135ed
FW
7922/* For the read side: events when they trigger */
7923static inline struct hlist_head *
b28ab83c 7924find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7925{
7926 struct swevent_hlist *hlist;
76e1d904 7927
b28ab83c 7928 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7929 if (!hlist)
7930 return NULL;
7931
49f135ed
FW
7932 return __find_swevent_head(hlist, type, event_id);
7933}
7934
7935/* For the event head insertion and removal in the hlist */
7936static inline struct hlist_head *
b28ab83c 7937find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7938{
7939 struct swevent_hlist *hlist;
7940 u32 event_id = event->attr.config;
7941 u64 type = event->attr.type;
7942
7943 /*
7944 * Event scheduling is always serialized against hlist allocation
7945 * and release. Which makes the protected version suitable here.
7946 * The context lock guarantees that.
7947 */
b28ab83c 7948 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7949 lockdep_is_held(&event->ctx->lock));
7950 if (!hlist)
7951 return NULL;
7952
7953 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7954}
7955
7956static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7957 u64 nr,
76e1d904
FW
7958 struct perf_sample_data *data,
7959 struct pt_regs *regs)
15dbf27c 7960{
4a32fea9 7961 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7962 struct perf_event *event;
76e1d904 7963 struct hlist_head *head;
15dbf27c 7964
76e1d904 7965 rcu_read_lock();
b28ab83c 7966 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7967 if (!head)
7968 goto end;
7969
b67bfe0d 7970 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7971 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7972 perf_swevent_event(event, nr, data, regs);
15dbf27c 7973 }
76e1d904
FW
7974end:
7975 rcu_read_unlock();
15dbf27c
PZ
7976}
7977
86038c5e
PZI
7978DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7979
4ed7c92d 7980int perf_swevent_get_recursion_context(void)
96f6d444 7981{
4a32fea9 7982 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7983
b28ab83c 7984 return get_recursion_context(swhash->recursion);
96f6d444 7985}
645e8cc0 7986EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7987
98b5c2c6 7988void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7989{
4a32fea9 7990 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7991
b28ab83c 7992 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7993}
15dbf27c 7994
86038c5e 7995void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7996{
a4234bfc 7997 struct perf_sample_data data;
4ed7c92d 7998
86038c5e 7999 if (WARN_ON_ONCE(!regs))
4ed7c92d 8000 return;
a4234bfc 8001
fd0d000b 8002 perf_sample_data_init(&data, addr, 0);
a8b0ca17 8003 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
8004}
8005
8006void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8007{
8008 int rctx;
8009
8010 preempt_disable_notrace();
8011 rctx = perf_swevent_get_recursion_context();
8012 if (unlikely(rctx < 0))
8013 goto fail;
8014
8015 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
8016
8017 perf_swevent_put_recursion_context(rctx);
86038c5e 8018fail:
1c024eca 8019 preempt_enable_notrace();
b8e83514
PZ
8020}
8021
cdd6c482 8022static void perf_swevent_read(struct perf_event *event)
15dbf27c 8023{
15dbf27c
PZ
8024}
8025
a4eaf7f1 8026static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 8027{
4a32fea9 8028 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8029 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
8030 struct hlist_head *head;
8031
6c7e550f 8032 if (is_sampling_event(event)) {
7b4b6658 8033 hwc->last_period = hwc->sample_period;
cdd6c482 8034 perf_swevent_set_period(event);
7b4b6658 8035 }
76e1d904 8036
a4eaf7f1
PZ
8037 hwc->state = !(flags & PERF_EF_START);
8038
b28ab83c 8039 head = find_swevent_head(swhash, event);
12ca6ad2 8040 if (WARN_ON_ONCE(!head))
76e1d904
FW
8041 return -EINVAL;
8042
8043 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 8044 perf_event_update_userpage(event);
76e1d904 8045
15dbf27c
PZ
8046 return 0;
8047}
8048
a4eaf7f1 8049static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 8050{
76e1d904 8051 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
8052}
8053
a4eaf7f1 8054static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 8055{
a4eaf7f1 8056 event->hw.state = 0;
d6d020e9 8057}
aa9c4c0f 8058
a4eaf7f1 8059static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 8060{
a4eaf7f1 8061 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
8062}
8063
49f135ed
FW
8064/* Deref the hlist from the update side */
8065static inline struct swevent_hlist *
b28ab83c 8066swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 8067{
b28ab83c
PZ
8068 return rcu_dereference_protected(swhash->swevent_hlist,
8069 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
8070}
8071
b28ab83c 8072static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 8073{
b28ab83c 8074 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 8075
49f135ed 8076 if (!hlist)
76e1d904
FW
8077 return;
8078
70691d4a 8079 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 8080 kfree_rcu(hlist, rcu_head);
76e1d904
FW
8081}
8082
3b364d7b 8083static void swevent_hlist_put_cpu(int cpu)
76e1d904 8084{
b28ab83c 8085 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 8086
b28ab83c 8087 mutex_lock(&swhash->hlist_mutex);
76e1d904 8088
b28ab83c
PZ
8089 if (!--swhash->hlist_refcount)
8090 swevent_hlist_release(swhash);
76e1d904 8091
b28ab83c 8092 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8093}
8094
3b364d7b 8095static void swevent_hlist_put(void)
76e1d904
FW
8096{
8097 int cpu;
8098
76e1d904 8099 for_each_possible_cpu(cpu)
3b364d7b 8100 swevent_hlist_put_cpu(cpu);
76e1d904
FW
8101}
8102
3b364d7b 8103static int swevent_hlist_get_cpu(int cpu)
76e1d904 8104{
b28ab83c 8105 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
8106 int err = 0;
8107
b28ab83c 8108 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
8109 if (!swevent_hlist_deref(swhash) &&
8110 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
8111 struct swevent_hlist *hlist;
8112
8113 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8114 if (!hlist) {
8115 err = -ENOMEM;
8116 goto exit;
8117 }
b28ab83c 8118 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8119 }
b28ab83c 8120 swhash->hlist_refcount++;
9ed6060d 8121exit:
b28ab83c 8122 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8123
8124 return err;
8125}
8126
3b364d7b 8127static int swevent_hlist_get(void)
76e1d904 8128{
3b364d7b 8129 int err, cpu, failed_cpu;
76e1d904 8130
a63fbed7 8131 mutex_lock(&pmus_lock);
76e1d904 8132 for_each_possible_cpu(cpu) {
3b364d7b 8133 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
8134 if (err) {
8135 failed_cpu = cpu;
8136 goto fail;
8137 }
8138 }
a63fbed7 8139 mutex_unlock(&pmus_lock);
76e1d904 8140 return 0;
9ed6060d 8141fail:
76e1d904
FW
8142 for_each_possible_cpu(cpu) {
8143 if (cpu == failed_cpu)
8144 break;
3b364d7b 8145 swevent_hlist_put_cpu(cpu);
76e1d904 8146 }
a63fbed7 8147 mutex_unlock(&pmus_lock);
76e1d904
FW
8148 return err;
8149}
8150
c5905afb 8151struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 8152
b0a873eb
PZ
8153static void sw_perf_event_destroy(struct perf_event *event)
8154{
8155 u64 event_id = event->attr.config;
95476b64 8156
b0a873eb
PZ
8157 WARN_ON(event->parent);
8158
c5905afb 8159 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 8160 swevent_hlist_put();
b0a873eb
PZ
8161}
8162
8163static int perf_swevent_init(struct perf_event *event)
8164{
8176cced 8165 u64 event_id = event->attr.config;
b0a873eb
PZ
8166
8167 if (event->attr.type != PERF_TYPE_SOFTWARE)
8168 return -ENOENT;
8169
2481c5fa
SE
8170 /*
8171 * no branch sampling for software events
8172 */
8173 if (has_branch_stack(event))
8174 return -EOPNOTSUPP;
8175
b0a873eb
PZ
8176 switch (event_id) {
8177 case PERF_COUNT_SW_CPU_CLOCK:
8178 case PERF_COUNT_SW_TASK_CLOCK:
8179 return -ENOENT;
8180
8181 default:
8182 break;
8183 }
8184
ce677831 8185 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
8186 return -ENOENT;
8187
8188 if (!event->parent) {
8189 int err;
8190
3b364d7b 8191 err = swevent_hlist_get();
b0a873eb
PZ
8192 if (err)
8193 return err;
8194
c5905afb 8195 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
8196 event->destroy = sw_perf_event_destroy;
8197 }
8198
8199 return 0;
8200}
8201
8202static struct pmu perf_swevent = {
89a1e187 8203 .task_ctx_nr = perf_sw_context,
95476b64 8204
34f43927
PZ
8205 .capabilities = PERF_PMU_CAP_NO_NMI,
8206
b0a873eb 8207 .event_init = perf_swevent_init,
a4eaf7f1
PZ
8208 .add = perf_swevent_add,
8209 .del = perf_swevent_del,
8210 .start = perf_swevent_start,
8211 .stop = perf_swevent_stop,
1c024eca 8212 .read = perf_swevent_read,
1c024eca
PZ
8213};
8214
b0a873eb
PZ
8215#ifdef CONFIG_EVENT_TRACING
8216
1c024eca
PZ
8217static int perf_tp_filter_match(struct perf_event *event,
8218 struct perf_sample_data *data)
8219{
7e3f977e 8220 void *record = data->raw->frag.data;
1c024eca 8221
b71b437e
PZ
8222 /* only top level events have filters set */
8223 if (event->parent)
8224 event = event->parent;
8225
1c024eca
PZ
8226 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8227 return 1;
8228 return 0;
8229}
8230
8231static int perf_tp_event_match(struct perf_event *event,
8232 struct perf_sample_data *data,
8233 struct pt_regs *regs)
8234{
a0f7d0f7
FW
8235 if (event->hw.state & PERF_HES_STOPPED)
8236 return 0;
580d607c
PZ
8237 /*
8238 * All tracepoints are from kernel-space.
8239 */
8240 if (event->attr.exclude_kernel)
1c024eca
PZ
8241 return 0;
8242
8243 if (!perf_tp_filter_match(event, data))
8244 return 0;
8245
8246 return 1;
8247}
8248
85b67bcb
AS
8249void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8250 struct trace_event_call *call, u64 count,
8251 struct pt_regs *regs, struct hlist_head *head,
8252 struct task_struct *task)
8253{
e87c6bc3 8254 if (bpf_prog_array_valid(call)) {
85b67bcb 8255 *(struct pt_regs **)raw_data = regs;
e87c6bc3 8256 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
8257 perf_swevent_put_recursion_context(rctx);
8258 return;
8259 }
8260 }
8261 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 8262 rctx, task);
85b67bcb
AS
8263}
8264EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8265
1e1dcd93 8266void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 8267 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 8268 struct task_struct *task)
95476b64
FW
8269{
8270 struct perf_sample_data data;
8fd0fbbe 8271 struct perf_event *event;
1c024eca 8272
95476b64 8273 struct perf_raw_record raw = {
7e3f977e
DB
8274 .frag = {
8275 .size = entry_size,
8276 .data = record,
8277 },
95476b64
FW
8278 };
8279
1e1dcd93 8280 perf_sample_data_init(&data, 0, 0);
95476b64
FW
8281 data.raw = &raw;
8282
1e1dcd93
AS
8283 perf_trace_buf_update(record, event_type);
8284
8fd0fbbe 8285 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 8286 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 8287 perf_swevent_event(event, count, &data, regs);
4f41c013 8288 }
ecc55f84 8289
e6dab5ff
AV
8290 /*
8291 * If we got specified a target task, also iterate its context and
8292 * deliver this event there too.
8293 */
8294 if (task && task != current) {
8295 struct perf_event_context *ctx;
8296 struct trace_entry *entry = record;
8297
8298 rcu_read_lock();
8299 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8300 if (!ctx)
8301 goto unlock;
8302
8303 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8304 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8305 continue;
8306 if (event->attr.config != entry->type)
8307 continue;
8308 if (perf_tp_event_match(event, &data, regs))
8309 perf_swevent_event(event, count, &data, regs);
8310 }
8311unlock:
8312 rcu_read_unlock();
8313 }
8314
ecc55f84 8315 perf_swevent_put_recursion_context(rctx);
95476b64
FW
8316}
8317EXPORT_SYMBOL_GPL(perf_tp_event);
8318
cdd6c482 8319static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 8320{
1c024eca 8321 perf_trace_destroy(event);
e077df4f
PZ
8322}
8323
b0a873eb 8324static int perf_tp_event_init(struct perf_event *event)
e077df4f 8325{
76e1d904
FW
8326 int err;
8327
b0a873eb
PZ
8328 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8329 return -ENOENT;
8330
2481c5fa
SE
8331 /*
8332 * no branch sampling for tracepoint events
8333 */
8334 if (has_branch_stack(event))
8335 return -EOPNOTSUPP;
8336
1c024eca
PZ
8337 err = perf_trace_init(event);
8338 if (err)
b0a873eb 8339 return err;
e077df4f 8340
cdd6c482 8341 event->destroy = tp_perf_event_destroy;
e077df4f 8342
b0a873eb
PZ
8343 return 0;
8344}
8345
8346static struct pmu perf_tracepoint = {
89a1e187
PZ
8347 .task_ctx_nr = perf_sw_context,
8348
b0a873eb 8349 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
8350 .add = perf_trace_add,
8351 .del = perf_trace_del,
8352 .start = perf_swevent_start,
8353 .stop = perf_swevent_stop,
b0a873eb 8354 .read = perf_swevent_read,
b0a873eb
PZ
8355};
8356
33ea4b24 8357#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
8358/*
8359 * Flags in config, used by dynamic PMU kprobe and uprobe
8360 * The flags should match following PMU_FORMAT_ATTR().
8361 *
8362 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8363 * if not set, create kprobe/uprobe
8364 */
8365enum perf_probe_config {
8366 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
8367};
8368
8369PMU_FORMAT_ATTR(retprobe, "config:0");
8370
8371static struct attribute *probe_attrs[] = {
8372 &format_attr_retprobe.attr,
8373 NULL,
8374};
8375
8376static struct attribute_group probe_format_group = {
8377 .name = "format",
8378 .attrs = probe_attrs,
8379};
8380
8381static const struct attribute_group *probe_attr_groups[] = {
8382 &probe_format_group,
8383 NULL,
8384};
33ea4b24 8385#endif
e12f03d7 8386
33ea4b24 8387#ifdef CONFIG_KPROBE_EVENTS
e12f03d7
SL
8388static int perf_kprobe_event_init(struct perf_event *event);
8389static struct pmu perf_kprobe = {
8390 .task_ctx_nr = perf_sw_context,
8391 .event_init = perf_kprobe_event_init,
8392 .add = perf_trace_add,
8393 .del = perf_trace_del,
8394 .start = perf_swevent_start,
8395 .stop = perf_swevent_stop,
8396 .read = perf_swevent_read,
8397 .attr_groups = probe_attr_groups,
8398};
8399
8400static int perf_kprobe_event_init(struct perf_event *event)
8401{
8402 int err;
8403 bool is_retprobe;
8404
8405 if (event->attr.type != perf_kprobe.type)
8406 return -ENOENT;
32e6e967
SL
8407
8408 if (!capable(CAP_SYS_ADMIN))
8409 return -EACCES;
8410
e12f03d7
SL
8411 /*
8412 * no branch sampling for probe events
8413 */
8414 if (has_branch_stack(event))
8415 return -EOPNOTSUPP;
8416
8417 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8418 err = perf_kprobe_init(event, is_retprobe);
8419 if (err)
8420 return err;
8421
8422 event->destroy = perf_kprobe_destroy;
8423
8424 return 0;
8425}
8426#endif /* CONFIG_KPROBE_EVENTS */
8427
33ea4b24
SL
8428#ifdef CONFIG_UPROBE_EVENTS
8429static int perf_uprobe_event_init(struct perf_event *event);
8430static struct pmu perf_uprobe = {
8431 .task_ctx_nr = perf_sw_context,
8432 .event_init = perf_uprobe_event_init,
8433 .add = perf_trace_add,
8434 .del = perf_trace_del,
8435 .start = perf_swevent_start,
8436 .stop = perf_swevent_stop,
8437 .read = perf_swevent_read,
8438 .attr_groups = probe_attr_groups,
8439};
8440
8441static int perf_uprobe_event_init(struct perf_event *event)
8442{
8443 int err;
8444 bool is_retprobe;
8445
8446 if (event->attr.type != perf_uprobe.type)
8447 return -ENOENT;
32e6e967
SL
8448
8449 if (!capable(CAP_SYS_ADMIN))
8450 return -EACCES;
8451
33ea4b24
SL
8452 /*
8453 * no branch sampling for probe events
8454 */
8455 if (has_branch_stack(event))
8456 return -EOPNOTSUPP;
8457
8458 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8459 err = perf_uprobe_init(event, is_retprobe);
8460 if (err)
8461 return err;
8462
8463 event->destroy = perf_uprobe_destroy;
8464
8465 return 0;
8466}
8467#endif /* CONFIG_UPROBE_EVENTS */
8468
b0a873eb
PZ
8469static inline void perf_tp_register(void)
8470{
2e80a82a 8471 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
8472#ifdef CONFIG_KPROBE_EVENTS
8473 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8474#endif
33ea4b24
SL
8475#ifdef CONFIG_UPROBE_EVENTS
8476 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8477#endif
e077df4f 8478}
6fb2915d 8479
6fb2915d
LZ
8480static void perf_event_free_filter(struct perf_event *event)
8481{
8482 ftrace_profile_free_filter(event);
8483}
8484
aa6a5f3c
AS
8485#ifdef CONFIG_BPF_SYSCALL
8486static void bpf_overflow_handler(struct perf_event *event,
8487 struct perf_sample_data *data,
8488 struct pt_regs *regs)
8489{
8490 struct bpf_perf_event_data_kern ctx = {
8491 .data = data,
7d9285e8 8492 .event = event,
aa6a5f3c
AS
8493 };
8494 int ret = 0;
8495
c895f6f7 8496 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
8497 preempt_disable();
8498 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8499 goto out;
8500 rcu_read_lock();
88575199 8501 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8502 rcu_read_unlock();
8503out:
8504 __this_cpu_dec(bpf_prog_active);
8505 preempt_enable();
8506 if (!ret)
8507 return;
8508
8509 event->orig_overflow_handler(event, data, regs);
8510}
8511
8512static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8513{
8514 struct bpf_prog *prog;
8515
8516 if (event->overflow_handler_context)
8517 /* hw breakpoint or kernel counter */
8518 return -EINVAL;
8519
8520 if (event->prog)
8521 return -EEXIST;
8522
8523 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8524 if (IS_ERR(prog))
8525 return PTR_ERR(prog);
8526
8527 event->prog = prog;
8528 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8529 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8530 return 0;
8531}
8532
8533static void perf_event_free_bpf_handler(struct perf_event *event)
8534{
8535 struct bpf_prog *prog = event->prog;
8536
8537 if (!prog)
8538 return;
8539
8540 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8541 event->prog = NULL;
8542 bpf_prog_put(prog);
8543}
8544#else
8545static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8546{
8547 return -EOPNOTSUPP;
8548}
8549static void perf_event_free_bpf_handler(struct perf_event *event)
8550{
8551}
8552#endif
8553
e12f03d7
SL
8554/*
8555 * returns true if the event is a tracepoint, or a kprobe/upprobe created
8556 * with perf_event_open()
8557 */
8558static inline bool perf_event_is_tracing(struct perf_event *event)
8559{
8560 if (event->pmu == &perf_tracepoint)
8561 return true;
8562#ifdef CONFIG_KPROBE_EVENTS
8563 if (event->pmu == &perf_kprobe)
8564 return true;
33ea4b24
SL
8565#endif
8566#ifdef CONFIG_UPROBE_EVENTS
8567 if (event->pmu == &perf_uprobe)
8568 return true;
e12f03d7
SL
8569#endif
8570 return false;
8571}
8572
2541517c
AS
8573static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8574{
cf5f5cea 8575 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 8576 struct bpf_prog *prog;
e87c6bc3 8577 int ret;
2541517c 8578
e12f03d7 8579 if (!perf_event_is_tracing(event))
f91840a3 8580 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 8581
98b5c2c6
AS
8582 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8583 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8584 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8585 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8586 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8587 return -EINVAL;
8588
8589 prog = bpf_prog_get(prog_fd);
8590 if (IS_ERR(prog))
8591 return PTR_ERR(prog);
8592
98b5c2c6 8593 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8594 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8595 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8596 /* valid fd, but invalid bpf program type */
8597 bpf_prog_put(prog);
8598 return -EINVAL;
8599 }
8600
9802d865
JB
8601 /* Kprobe override only works for kprobes, not uprobes. */
8602 if (prog->kprobe_override &&
8603 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8604 bpf_prog_put(prog);
8605 return -EINVAL;
8606 }
8607
cf5f5cea 8608 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8609 int off = trace_event_get_offsets(event->tp_event);
8610
8611 if (prog->aux->max_ctx_offset > off) {
8612 bpf_prog_put(prog);
8613 return -EACCES;
8614 }
8615 }
2541517c 8616
e87c6bc3
YS
8617 ret = perf_event_attach_bpf_prog(event, prog);
8618 if (ret)
8619 bpf_prog_put(prog);
8620 return ret;
2541517c
AS
8621}
8622
8623static void perf_event_free_bpf_prog(struct perf_event *event)
8624{
e12f03d7 8625 if (!perf_event_is_tracing(event)) {
0b4c6841 8626 perf_event_free_bpf_handler(event);
2541517c 8627 return;
2541517c 8628 }
e87c6bc3 8629 perf_event_detach_bpf_prog(event);
2541517c
AS
8630}
8631
e077df4f 8632#else
6fb2915d 8633
b0a873eb 8634static inline void perf_tp_register(void)
e077df4f 8635{
e077df4f 8636}
6fb2915d 8637
6fb2915d
LZ
8638static void perf_event_free_filter(struct perf_event *event)
8639{
8640}
8641
2541517c
AS
8642static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8643{
8644 return -ENOENT;
8645}
8646
8647static void perf_event_free_bpf_prog(struct perf_event *event)
8648{
8649}
07b139c8 8650#endif /* CONFIG_EVENT_TRACING */
e077df4f 8651
24f1e32c 8652#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8653void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8654{
f5ffe02e
FW
8655 struct perf_sample_data sample;
8656 struct pt_regs *regs = data;
8657
fd0d000b 8658 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8659
a4eaf7f1 8660 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8661 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8662}
8663#endif
8664
375637bc
AS
8665/*
8666 * Allocate a new address filter
8667 */
8668static struct perf_addr_filter *
8669perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8670{
8671 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8672 struct perf_addr_filter *filter;
8673
8674 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8675 if (!filter)
8676 return NULL;
8677
8678 INIT_LIST_HEAD(&filter->entry);
8679 list_add_tail(&filter->entry, filters);
8680
8681 return filter;
8682}
8683
8684static void free_filters_list(struct list_head *filters)
8685{
8686 struct perf_addr_filter *filter, *iter;
8687
8688 list_for_each_entry_safe(filter, iter, filters, entry) {
8689 if (filter->inode)
8690 iput(filter->inode);
8691 list_del(&filter->entry);
8692 kfree(filter);
8693 }
8694}
8695
8696/*
8697 * Free existing address filters and optionally install new ones
8698 */
8699static void perf_addr_filters_splice(struct perf_event *event,
8700 struct list_head *head)
8701{
8702 unsigned long flags;
8703 LIST_HEAD(list);
8704
8705 if (!has_addr_filter(event))
8706 return;
8707
8708 /* don't bother with children, they don't have their own filters */
8709 if (event->parent)
8710 return;
8711
8712 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8713
8714 list_splice_init(&event->addr_filters.list, &list);
8715 if (head)
8716 list_splice(head, &event->addr_filters.list);
8717
8718 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8719
8720 free_filters_list(&list);
8721}
8722
8723/*
8724 * Scan through mm's vmas and see if one of them matches the
8725 * @filter; if so, adjust filter's address range.
8726 * Called with mm::mmap_sem down for reading.
8727 */
8728static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8729 struct mm_struct *mm)
8730{
8731 struct vm_area_struct *vma;
8732
8733 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8734 struct file *file = vma->vm_file;
8735 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8736 unsigned long vma_size = vma->vm_end - vma->vm_start;
8737
8738 if (!file)
8739 continue;
8740
8741 if (!perf_addr_filter_match(filter, file, off, vma_size))
8742 continue;
8743
8744 return vma->vm_start;
8745 }
8746
8747 return 0;
8748}
8749
8750/*
8751 * Update event's address range filters based on the
8752 * task's existing mappings, if any.
8753 */
8754static void perf_event_addr_filters_apply(struct perf_event *event)
8755{
8756 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8757 struct task_struct *task = READ_ONCE(event->ctx->task);
8758 struct perf_addr_filter *filter;
8759 struct mm_struct *mm = NULL;
8760 unsigned int count = 0;
8761 unsigned long flags;
8762
8763 /*
8764 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8765 * will stop on the parent's child_mutex that our caller is also holding
8766 */
8767 if (task == TASK_TOMBSTONE)
8768 return;
8769
6ce77bfd
AS
8770 if (!ifh->nr_file_filters)
8771 return;
8772
375637bc
AS
8773 mm = get_task_mm(event->ctx->task);
8774 if (!mm)
8775 goto restart;
8776
8777 down_read(&mm->mmap_sem);
8778
8779 raw_spin_lock_irqsave(&ifh->lock, flags);
8780 list_for_each_entry(filter, &ifh->list, entry) {
8781 event->addr_filters_offs[count] = 0;
8782
99f5bc9b
MP
8783 /*
8784 * Adjust base offset if the filter is associated to a binary
8785 * that needs to be mapped:
8786 */
8787 if (filter->inode)
375637bc
AS
8788 event->addr_filters_offs[count] =
8789 perf_addr_filter_apply(filter, mm);
8790
8791 count++;
8792 }
8793
8794 event->addr_filters_gen++;
8795 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8796
8797 up_read(&mm->mmap_sem);
8798
8799 mmput(mm);
8800
8801restart:
767ae086 8802 perf_event_stop(event, 1);
375637bc
AS
8803}
8804
8805/*
8806 * Address range filtering: limiting the data to certain
8807 * instruction address ranges. Filters are ioctl()ed to us from
8808 * userspace as ascii strings.
8809 *
8810 * Filter string format:
8811 *
8812 * ACTION RANGE_SPEC
8813 * where ACTION is one of the
8814 * * "filter": limit the trace to this region
8815 * * "start": start tracing from this address
8816 * * "stop": stop tracing at this address/region;
8817 * RANGE_SPEC is
8818 * * for kernel addresses: <start address>[/<size>]
8819 * * for object files: <start address>[/<size>]@</path/to/object/file>
8820 *
6ed70cf3
AS
8821 * if <size> is not specified or is zero, the range is treated as a single
8822 * address; not valid for ACTION=="filter".
375637bc
AS
8823 */
8824enum {
e96271f3 8825 IF_ACT_NONE = -1,
375637bc
AS
8826 IF_ACT_FILTER,
8827 IF_ACT_START,
8828 IF_ACT_STOP,
8829 IF_SRC_FILE,
8830 IF_SRC_KERNEL,
8831 IF_SRC_FILEADDR,
8832 IF_SRC_KERNELADDR,
8833};
8834
8835enum {
8836 IF_STATE_ACTION = 0,
8837 IF_STATE_SOURCE,
8838 IF_STATE_END,
8839};
8840
8841static const match_table_t if_tokens = {
8842 { IF_ACT_FILTER, "filter" },
8843 { IF_ACT_START, "start" },
8844 { IF_ACT_STOP, "stop" },
8845 { IF_SRC_FILE, "%u/%u@%s" },
8846 { IF_SRC_KERNEL, "%u/%u" },
8847 { IF_SRC_FILEADDR, "%u@%s" },
8848 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8849 { IF_ACT_NONE, NULL },
375637bc
AS
8850};
8851
8852/*
8853 * Address filter string parser
8854 */
8855static int
8856perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8857 struct list_head *filters)
8858{
8859 struct perf_addr_filter *filter = NULL;
8860 char *start, *orig, *filename = NULL;
8861 struct path path;
8862 substring_t args[MAX_OPT_ARGS];
8863 int state = IF_STATE_ACTION, token;
8864 unsigned int kernel = 0;
8865 int ret = -EINVAL;
8866
8867 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8868 if (!fstr)
8869 return -ENOMEM;
8870
8871 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
8872 static const enum perf_addr_filter_action_t actions[] = {
8873 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
8874 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
8875 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
8876 };
375637bc
AS
8877 ret = -EINVAL;
8878
8879 if (!*start)
8880 continue;
8881
8882 /* filter definition begins */
8883 if (state == IF_STATE_ACTION) {
8884 filter = perf_addr_filter_new(event, filters);
8885 if (!filter)
8886 goto fail;
8887 }
8888
8889 token = match_token(start, if_tokens, args);
8890 switch (token) {
8891 case IF_ACT_FILTER:
8892 case IF_ACT_START:
375637bc
AS
8893 case IF_ACT_STOP:
8894 if (state != IF_STATE_ACTION)
8895 goto fail;
8896
6ed70cf3 8897 filter->action = actions[token];
375637bc
AS
8898 state = IF_STATE_SOURCE;
8899 break;
8900
8901 case IF_SRC_KERNELADDR:
8902 case IF_SRC_KERNEL:
8903 kernel = 1;
8904
8905 case IF_SRC_FILEADDR:
8906 case IF_SRC_FILE:
8907 if (state != IF_STATE_SOURCE)
8908 goto fail;
8909
375637bc
AS
8910 *args[0].to = 0;
8911 ret = kstrtoul(args[0].from, 0, &filter->offset);
8912 if (ret)
8913 goto fail;
8914
6ed70cf3 8915 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
8916 *args[1].to = 0;
8917 ret = kstrtoul(args[1].from, 0, &filter->size);
8918 if (ret)
8919 goto fail;
8920 }
8921
4059ffd0 8922 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 8923 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0
MP
8924
8925 filename = match_strdup(&args[fpos]);
375637bc
AS
8926 if (!filename) {
8927 ret = -ENOMEM;
8928 goto fail;
8929 }
8930 }
8931
8932 state = IF_STATE_END;
8933 break;
8934
8935 default:
8936 goto fail;
8937 }
8938
8939 /*
8940 * Filter definition is fully parsed, validate and install it.
8941 * Make sure that it doesn't contradict itself or the event's
8942 * attribute.
8943 */
8944 if (state == IF_STATE_END) {
9ccbfbb1 8945 ret = -EINVAL;
375637bc
AS
8946 if (kernel && event->attr.exclude_kernel)
8947 goto fail;
8948
6ed70cf3
AS
8949 /*
8950 * ACTION "filter" must have a non-zero length region
8951 * specified.
8952 */
8953 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
8954 !filter->size)
8955 goto fail;
8956
375637bc
AS
8957 if (!kernel) {
8958 if (!filename)
8959 goto fail;
8960
6ce77bfd
AS
8961 /*
8962 * For now, we only support file-based filters
8963 * in per-task events; doing so for CPU-wide
8964 * events requires additional context switching
8965 * trickery, since same object code will be
8966 * mapped at different virtual addresses in
8967 * different processes.
8968 */
8969 ret = -EOPNOTSUPP;
8970 if (!event->ctx->task)
8971 goto fail_free_name;
8972
375637bc
AS
8973 /* look up the path and grab its inode */
8974 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8975 if (ret)
8976 goto fail_free_name;
8977
8978 filter->inode = igrab(d_inode(path.dentry));
8979 path_put(&path);
8980 kfree(filename);
8981 filename = NULL;
8982
8983 ret = -EINVAL;
8984 if (!filter->inode ||
8985 !S_ISREG(filter->inode->i_mode))
8986 /* free_filters_list() will iput() */
8987 goto fail;
6ce77bfd
AS
8988
8989 event->addr_filters.nr_file_filters++;
375637bc
AS
8990 }
8991
8992 /* ready to consume more filters */
8993 state = IF_STATE_ACTION;
8994 filter = NULL;
8995 }
8996 }
8997
8998 if (state != IF_STATE_ACTION)
8999 goto fail;
9000
9001 kfree(orig);
9002
9003 return 0;
9004
9005fail_free_name:
9006 kfree(filename);
9007fail:
9008 free_filters_list(filters);
9009 kfree(orig);
9010
9011 return ret;
9012}
9013
9014static int
9015perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9016{
9017 LIST_HEAD(filters);
9018 int ret;
9019
9020 /*
9021 * Since this is called in perf_ioctl() path, we're already holding
9022 * ctx::mutex.
9023 */
9024 lockdep_assert_held(&event->ctx->mutex);
9025
9026 if (WARN_ON_ONCE(event->parent))
9027 return -EINVAL;
9028
375637bc
AS
9029 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9030 if (ret)
6ce77bfd 9031 goto fail_clear_files;
375637bc
AS
9032
9033 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
9034 if (ret)
9035 goto fail_free_filters;
375637bc
AS
9036
9037 /* remove existing filters, if any */
9038 perf_addr_filters_splice(event, &filters);
9039
9040 /* install new filters */
9041 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9042
6ce77bfd
AS
9043 return ret;
9044
9045fail_free_filters:
9046 free_filters_list(&filters);
9047
9048fail_clear_files:
9049 event->addr_filters.nr_file_filters = 0;
9050
375637bc
AS
9051 return ret;
9052}
9053
c796bbbe
AS
9054static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9055{
c796bbbe 9056 int ret = -EINVAL;
e12f03d7 9057 char *filter_str;
c796bbbe
AS
9058
9059 filter_str = strndup_user(arg, PAGE_SIZE);
9060 if (IS_ERR(filter_str))
9061 return PTR_ERR(filter_str);
9062
e12f03d7
SL
9063#ifdef CONFIG_EVENT_TRACING
9064 if (perf_event_is_tracing(event)) {
9065 struct perf_event_context *ctx = event->ctx;
9066
9067 /*
9068 * Beware, here be dragons!!
9069 *
9070 * the tracepoint muck will deadlock against ctx->mutex, but
9071 * the tracepoint stuff does not actually need it. So
9072 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9073 * already have a reference on ctx.
9074 *
9075 * This can result in event getting moved to a different ctx,
9076 * but that does not affect the tracepoint state.
9077 */
9078 mutex_unlock(&ctx->mutex);
9079 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9080 mutex_lock(&ctx->mutex);
9081 } else
9082#endif
9083 if (has_addr_filter(event))
375637bc 9084 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
9085
9086 kfree(filter_str);
9087 return ret;
9088}
9089
b0a873eb
PZ
9090/*
9091 * hrtimer based swevent callback
9092 */
f29ac756 9093
b0a873eb 9094static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 9095{
b0a873eb
PZ
9096 enum hrtimer_restart ret = HRTIMER_RESTART;
9097 struct perf_sample_data data;
9098 struct pt_regs *regs;
9099 struct perf_event *event;
9100 u64 period;
f29ac756 9101
b0a873eb 9102 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
9103
9104 if (event->state != PERF_EVENT_STATE_ACTIVE)
9105 return HRTIMER_NORESTART;
9106
b0a873eb 9107 event->pmu->read(event);
f344011c 9108
fd0d000b 9109 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
9110 regs = get_irq_regs();
9111
9112 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 9113 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 9114 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
9115 ret = HRTIMER_NORESTART;
9116 }
24f1e32c 9117
b0a873eb
PZ
9118 period = max_t(u64, 10000, event->hw.sample_period);
9119 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 9120
b0a873eb 9121 return ret;
f29ac756
PZ
9122}
9123
b0a873eb 9124static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 9125{
b0a873eb 9126 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
9127 s64 period;
9128
9129 if (!is_sampling_event(event))
9130 return;
f5ffe02e 9131
5d508e82
FBH
9132 period = local64_read(&hwc->period_left);
9133 if (period) {
9134 if (period < 0)
9135 period = 10000;
fa407f35 9136
5d508e82
FBH
9137 local64_set(&hwc->period_left, 0);
9138 } else {
9139 period = max_t(u64, 10000, hwc->sample_period);
9140 }
3497d206
TG
9141 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9142 HRTIMER_MODE_REL_PINNED);
24f1e32c 9143}
b0a873eb
PZ
9144
9145static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 9146{
b0a873eb
PZ
9147 struct hw_perf_event *hwc = &event->hw;
9148
6c7e550f 9149 if (is_sampling_event(event)) {
b0a873eb 9150 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 9151 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
9152
9153 hrtimer_cancel(&hwc->hrtimer);
9154 }
24f1e32c
FW
9155}
9156
ba3dd36c
PZ
9157static void perf_swevent_init_hrtimer(struct perf_event *event)
9158{
9159 struct hw_perf_event *hwc = &event->hw;
9160
9161 if (!is_sampling_event(event))
9162 return;
9163
9164 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9165 hwc->hrtimer.function = perf_swevent_hrtimer;
9166
9167 /*
9168 * Since hrtimers have a fixed rate, we can do a static freq->period
9169 * mapping and avoid the whole period adjust feedback stuff.
9170 */
9171 if (event->attr.freq) {
9172 long freq = event->attr.sample_freq;
9173
9174 event->attr.sample_period = NSEC_PER_SEC / freq;
9175 hwc->sample_period = event->attr.sample_period;
9176 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 9177 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
9178 event->attr.freq = 0;
9179 }
9180}
9181
b0a873eb
PZ
9182/*
9183 * Software event: cpu wall time clock
9184 */
9185
9186static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 9187{
b0a873eb
PZ
9188 s64 prev;
9189 u64 now;
9190
a4eaf7f1 9191 now = local_clock();
b0a873eb
PZ
9192 prev = local64_xchg(&event->hw.prev_count, now);
9193 local64_add(now - prev, &event->count);
24f1e32c 9194}
24f1e32c 9195
a4eaf7f1 9196static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9197{
a4eaf7f1 9198 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 9199 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9200}
9201
a4eaf7f1 9202static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 9203{
b0a873eb
PZ
9204 perf_swevent_cancel_hrtimer(event);
9205 cpu_clock_event_update(event);
9206}
f29ac756 9207
a4eaf7f1
PZ
9208static int cpu_clock_event_add(struct perf_event *event, int flags)
9209{
9210 if (flags & PERF_EF_START)
9211 cpu_clock_event_start(event, flags);
6a694a60 9212 perf_event_update_userpage(event);
a4eaf7f1
PZ
9213
9214 return 0;
9215}
9216
9217static void cpu_clock_event_del(struct perf_event *event, int flags)
9218{
9219 cpu_clock_event_stop(event, flags);
9220}
9221
b0a873eb
PZ
9222static void cpu_clock_event_read(struct perf_event *event)
9223{
9224 cpu_clock_event_update(event);
9225}
f344011c 9226
b0a873eb
PZ
9227static int cpu_clock_event_init(struct perf_event *event)
9228{
9229 if (event->attr.type != PERF_TYPE_SOFTWARE)
9230 return -ENOENT;
9231
9232 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9233 return -ENOENT;
9234
2481c5fa
SE
9235 /*
9236 * no branch sampling for software events
9237 */
9238 if (has_branch_stack(event))
9239 return -EOPNOTSUPP;
9240
ba3dd36c
PZ
9241 perf_swevent_init_hrtimer(event);
9242
b0a873eb 9243 return 0;
f29ac756
PZ
9244}
9245
b0a873eb 9246static struct pmu perf_cpu_clock = {
89a1e187
PZ
9247 .task_ctx_nr = perf_sw_context,
9248
34f43927
PZ
9249 .capabilities = PERF_PMU_CAP_NO_NMI,
9250
b0a873eb 9251 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
9252 .add = cpu_clock_event_add,
9253 .del = cpu_clock_event_del,
9254 .start = cpu_clock_event_start,
9255 .stop = cpu_clock_event_stop,
b0a873eb
PZ
9256 .read = cpu_clock_event_read,
9257};
9258
9259/*
9260 * Software event: task time clock
9261 */
9262
9263static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 9264{
b0a873eb
PZ
9265 u64 prev;
9266 s64 delta;
5c92d124 9267
b0a873eb
PZ
9268 prev = local64_xchg(&event->hw.prev_count, now);
9269 delta = now - prev;
9270 local64_add(delta, &event->count);
9271}
5c92d124 9272
a4eaf7f1 9273static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9274{
a4eaf7f1 9275 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 9276 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9277}
9278
a4eaf7f1 9279static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
9280{
9281 perf_swevent_cancel_hrtimer(event);
9282 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
9283}
9284
9285static int task_clock_event_add(struct perf_event *event, int flags)
9286{
9287 if (flags & PERF_EF_START)
9288 task_clock_event_start(event, flags);
6a694a60 9289 perf_event_update_userpage(event);
b0a873eb 9290
a4eaf7f1
PZ
9291 return 0;
9292}
9293
9294static void task_clock_event_del(struct perf_event *event, int flags)
9295{
9296 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
9297}
9298
9299static void task_clock_event_read(struct perf_event *event)
9300{
768a06e2
PZ
9301 u64 now = perf_clock();
9302 u64 delta = now - event->ctx->timestamp;
9303 u64 time = event->ctx->time + delta;
b0a873eb
PZ
9304
9305 task_clock_event_update(event, time);
9306}
9307
9308static int task_clock_event_init(struct perf_event *event)
6fb2915d 9309{
b0a873eb
PZ
9310 if (event->attr.type != PERF_TYPE_SOFTWARE)
9311 return -ENOENT;
9312
9313 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9314 return -ENOENT;
9315
2481c5fa
SE
9316 /*
9317 * no branch sampling for software events
9318 */
9319 if (has_branch_stack(event))
9320 return -EOPNOTSUPP;
9321
ba3dd36c
PZ
9322 perf_swevent_init_hrtimer(event);
9323
b0a873eb 9324 return 0;
6fb2915d
LZ
9325}
9326
b0a873eb 9327static struct pmu perf_task_clock = {
89a1e187
PZ
9328 .task_ctx_nr = perf_sw_context,
9329
34f43927
PZ
9330 .capabilities = PERF_PMU_CAP_NO_NMI,
9331
b0a873eb 9332 .event_init = task_clock_event_init,
a4eaf7f1
PZ
9333 .add = task_clock_event_add,
9334 .del = task_clock_event_del,
9335 .start = task_clock_event_start,
9336 .stop = task_clock_event_stop,
b0a873eb
PZ
9337 .read = task_clock_event_read,
9338};
6fb2915d 9339
ad5133b7 9340static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 9341{
e077df4f 9342}
6fb2915d 9343
fbbe0701
SB
9344static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9345{
9346}
9347
ad5133b7 9348static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 9349{
ad5133b7 9350 return 0;
6fb2915d
LZ
9351}
9352
18ab2cd3 9353static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
9354
9355static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 9356{
fbbe0701
SB
9357 __this_cpu_write(nop_txn_flags, flags);
9358
9359 if (flags & ~PERF_PMU_TXN_ADD)
9360 return;
9361
ad5133b7 9362 perf_pmu_disable(pmu);
6fb2915d
LZ
9363}
9364
ad5133b7
PZ
9365static int perf_pmu_commit_txn(struct pmu *pmu)
9366{
fbbe0701
SB
9367 unsigned int flags = __this_cpu_read(nop_txn_flags);
9368
9369 __this_cpu_write(nop_txn_flags, 0);
9370
9371 if (flags & ~PERF_PMU_TXN_ADD)
9372 return 0;
9373
ad5133b7
PZ
9374 perf_pmu_enable(pmu);
9375 return 0;
9376}
e077df4f 9377
ad5133b7 9378static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 9379{
fbbe0701
SB
9380 unsigned int flags = __this_cpu_read(nop_txn_flags);
9381
9382 __this_cpu_write(nop_txn_flags, 0);
9383
9384 if (flags & ~PERF_PMU_TXN_ADD)
9385 return;
9386
ad5133b7 9387 perf_pmu_enable(pmu);
24f1e32c
FW
9388}
9389
35edc2a5
PZ
9390static int perf_event_idx_default(struct perf_event *event)
9391{
c719f560 9392 return 0;
35edc2a5
PZ
9393}
9394
8dc85d54
PZ
9395/*
9396 * Ensures all contexts with the same task_ctx_nr have the same
9397 * pmu_cpu_context too.
9398 */
9e317041 9399static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 9400{
8dc85d54 9401 struct pmu *pmu;
b326e956 9402
8dc85d54
PZ
9403 if (ctxn < 0)
9404 return NULL;
24f1e32c 9405
8dc85d54
PZ
9406 list_for_each_entry(pmu, &pmus, entry) {
9407 if (pmu->task_ctx_nr == ctxn)
9408 return pmu->pmu_cpu_context;
9409 }
24f1e32c 9410
8dc85d54 9411 return NULL;
24f1e32c
FW
9412}
9413
51676957
PZ
9414static void free_pmu_context(struct pmu *pmu)
9415{
df0062b2
WD
9416 /*
9417 * Static contexts such as perf_sw_context have a global lifetime
9418 * and may be shared between different PMUs. Avoid freeing them
9419 * when a single PMU is going away.
9420 */
9421 if (pmu->task_ctx_nr > perf_invalid_context)
9422 return;
9423
8dc85d54 9424 mutex_lock(&pmus_lock);
51676957 9425 free_percpu(pmu->pmu_cpu_context);
8dc85d54 9426 mutex_unlock(&pmus_lock);
24f1e32c 9427}
6e855cd4
AS
9428
9429/*
9430 * Let userspace know that this PMU supports address range filtering:
9431 */
9432static ssize_t nr_addr_filters_show(struct device *dev,
9433 struct device_attribute *attr,
9434 char *page)
9435{
9436 struct pmu *pmu = dev_get_drvdata(dev);
9437
9438 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9439}
9440DEVICE_ATTR_RO(nr_addr_filters);
9441
2e80a82a 9442static struct idr pmu_idr;
d6d020e9 9443
abe43400
PZ
9444static ssize_t
9445type_show(struct device *dev, struct device_attribute *attr, char *page)
9446{
9447 struct pmu *pmu = dev_get_drvdata(dev);
9448
9449 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9450}
90826ca7 9451static DEVICE_ATTR_RO(type);
abe43400 9452
62b85639
SE
9453static ssize_t
9454perf_event_mux_interval_ms_show(struct device *dev,
9455 struct device_attribute *attr,
9456 char *page)
9457{
9458 struct pmu *pmu = dev_get_drvdata(dev);
9459
9460 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9461}
9462
272325c4
PZ
9463static DEFINE_MUTEX(mux_interval_mutex);
9464
62b85639
SE
9465static ssize_t
9466perf_event_mux_interval_ms_store(struct device *dev,
9467 struct device_attribute *attr,
9468 const char *buf, size_t count)
9469{
9470 struct pmu *pmu = dev_get_drvdata(dev);
9471 int timer, cpu, ret;
9472
9473 ret = kstrtoint(buf, 0, &timer);
9474 if (ret)
9475 return ret;
9476
9477 if (timer < 1)
9478 return -EINVAL;
9479
9480 /* same value, noting to do */
9481 if (timer == pmu->hrtimer_interval_ms)
9482 return count;
9483
272325c4 9484 mutex_lock(&mux_interval_mutex);
62b85639
SE
9485 pmu->hrtimer_interval_ms = timer;
9486
9487 /* update all cpuctx for this PMU */
a63fbed7 9488 cpus_read_lock();
272325c4 9489 for_each_online_cpu(cpu) {
62b85639
SE
9490 struct perf_cpu_context *cpuctx;
9491 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9492 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9493
272325c4
PZ
9494 cpu_function_call(cpu,
9495 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 9496 }
a63fbed7 9497 cpus_read_unlock();
272325c4 9498 mutex_unlock(&mux_interval_mutex);
62b85639
SE
9499
9500 return count;
9501}
90826ca7 9502static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 9503
90826ca7
GKH
9504static struct attribute *pmu_dev_attrs[] = {
9505 &dev_attr_type.attr,
9506 &dev_attr_perf_event_mux_interval_ms.attr,
9507 NULL,
abe43400 9508};
90826ca7 9509ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9510
9511static int pmu_bus_running;
9512static struct bus_type pmu_bus = {
9513 .name = "event_source",
90826ca7 9514 .dev_groups = pmu_dev_groups,
abe43400
PZ
9515};
9516
9517static void pmu_dev_release(struct device *dev)
9518{
9519 kfree(dev);
9520}
9521
9522static int pmu_dev_alloc(struct pmu *pmu)
9523{
9524 int ret = -ENOMEM;
9525
9526 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9527 if (!pmu->dev)
9528 goto out;
9529
0c9d42ed 9530 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9531 device_initialize(pmu->dev);
9532 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9533 if (ret)
9534 goto free_dev;
9535
9536 dev_set_drvdata(pmu->dev, pmu);
9537 pmu->dev->bus = &pmu_bus;
9538 pmu->dev->release = pmu_dev_release;
9539 ret = device_add(pmu->dev);
9540 if (ret)
9541 goto free_dev;
9542
6e855cd4
AS
9543 /* For PMUs with address filters, throw in an extra attribute: */
9544 if (pmu->nr_addr_filters)
9545 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9546
9547 if (ret)
9548 goto del_dev;
9549
abe43400
PZ
9550out:
9551 return ret;
9552
6e855cd4
AS
9553del_dev:
9554 device_del(pmu->dev);
9555
abe43400
PZ
9556free_dev:
9557 put_device(pmu->dev);
9558 goto out;
9559}
9560
547e9fd7 9561static struct lock_class_key cpuctx_mutex;
facc4307 9562static struct lock_class_key cpuctx_lock;
547e9fd7 9563
03d8e80b 9564int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9565{
108b02cf 9566 int cpu, ret;
24f1e32c 9567
b0a873eb 9568 mutex_lock(&pmus_lock);
33696fc0
PZ
9569 ret = -ENOMEM;
9570 pmu->pmu_disable_count = alloc_percpu(int);
9571 if (!pmu->pmu_disable_count)
9572 goto unlock;
f29ac756 9573
2e80a82a
PZ
9574 pmu->type = -1;
9575 if (!name)
9576 goto skip_type;
9577 pmu->name = name;
9578
9579 if (type < 0) {
0e9c3be2
TH
9580 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9581 if (type < 0) {
9582 ret = type;
2e80a82a
PZ
9583 goto free_pdc;
9584 }
9585 }
9586 pmu->type = type;
9587
abe43400
PZ
9588 if (pmu_bus_running) {
9589 ret = pmu_dev_alloc(pmu);
9590 if (ret)
9591 goto free_idr;
9592 }
9593
2e80a82a 9594skip_type:
26657848
PZ
9595 if (pmu->task_ctx_nr == perf_hw_context) {
9596 static int hw_context_taken = 0;
9597
5101ef20
MR
9598 /*
9599 * Other than systems with heterogeneous CPUs, it never makes
9600 * sense for two PMUs to share perf_hw_context. PMUs which are
9601 * uncore must use perf_invalid_context.
9602 */
9603 if (WARN_ON_ONCE(hw_context_taken &&
9604 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9605 pmu->task_ctx_nr = perf_invalid_context;
9606
9607 hw_context_taken = 1;
9608 }
9609
8dc85d54
PZ
9610 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9611 if (pmu->pmu_cpu_context)
9612 goto got_cpu_context;
f29ac756 9613
c4814202 9614 ret = -ENOMEM;
108b02cf
PZ
9615 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9616 if (!pmu->pmu_cpu_context)
abe43400 9617 goto free_dev;
f344011c 9618
108b02cf
PZ
9619 for_each_possible_cpu(cpu) {
9620 struct perf_cpu_context *cpuctx;
9621
9622 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9623 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9624 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9625 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9626 cpuctx->ctx.pmu = pmu;
a63fbed7 9627 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9628
272325c4 9629 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9630 }
76e1d904 9631
8dc85d54 9632got_cpu_context:
ad5133b7
PZ
9633 if (!pmu->start_txn) {
9634 if (pmu->pmu_enable) {
9635 /*
9636 * If we have pmu_enable/pmu_disable calls, install
9637 * transaction stubs that use that to try and batch
9638 * hardware accesses.
9639 */
9640 pmu->start_txn = perf_pmu_start_txn;
9641 pmu->commit_txn = perf_pmu_commit_txn;
9642 pmu->cancel_txn = perf_pmu_cancel_txn;
9643 } else {
fbbe0701 9644 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9645 pmu->commit_txn = perf_pmu_nop_int;
9646 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9647 }
5c92d124 9648 }
15dbf27c 9649
ad5133b7
PZ
9650 if (!pmu->pmu_enable) {
9651 pmu->pmu_enable = perf_pmu_nop_void;
9652 pmu->pmu_disable = perf_pmu_nop_void;
9653 }
9654
35edc2a5
PZ
9655 if (!pmu->event_idx)
9656 pmu->event_idx = perf_event_idx_default;
9657
b0a873eb 9658 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9659 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9660 ret = 0;
9661unlock:
b0a873eb
PZ
9662 mutex_unlock(&pmus_lock);
9663
33696fc0 9664 return ret;
108b02cf 9665
abe43400
PZ
9666free_dev:
9667 device_del(pmu->dev);
9668 put_device(pmu->dev);
9669
2e80a82a
PZ
9670free_idr:
9671 if (pmu->type >= PERF_TYPE_MAX)
9672 idr_remove(&pmu_idr, pmu->type);
9673
108b02cf
PZ
9674free_pdc:
9675 free_percpu(pmu->pmu_disable_count);
9676 goto unlock;
f29ac756 9677}
c464c76e 9678EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9679
b0a873eb 9680void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9681{
0933840a
JO
9682 int remove_device;
9683
b0a873eb 9684 mutex_lock(&pmus_lock);
0933840a 9685 remove_device = pmu_bus_running;
b0a873eb
PZ
9686 list_del_rcu(&pmu->entry);
9687 mutex_unlock(&pmus_lock);
5c92d124 9688
0475f9ea 9689 /*
cde8e884
PZ
9690 * We dereference the pmu list under both SRCU and regular RCU, so
9691 * synchronize against both of those.
0475f9ea 9692 */
b0a873eb 9693 synchronize_srcu(&pmus_srcu);
cde8e884 9694 synchronize_rcu();
d6d020e9 9695
33696fc0 9696 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9697 if (pmu->type >= PERF_TYPE_MAX)
9698 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9699 if (remove_device) {
9700 if (pmu->nr_addr_filters)
9701 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9702 device_del(pmu->dev);
9703 put_device(pmu->dev);
9704 }
51676957 9705 free_pmu_context(pmu);
b0a873eb 9706}
c464c76e 9707EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9708
cc34b98b
MR
9709static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9710{
ccd41c86 9711 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9712 int ret;
9713
9714 if (!try_module_get(pmu->module))
9715 return -ENODEV;
ccd41c86 9716
0c7296ca
PZ
9717 /*
9718 * A number of pmu->event_init() methods iterate the sibling_list to,
9719 * for example, validate if the group fits on the PMU. Therefore,
9720 * if this is a sibling event, acquire the ctx->mutex to protect
9721 * the sibling_list.
9722 */
9723 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
9724 /*
9725 * This ctx->mutex can nest when we're called through
9726 * inheritance. See the perf_event_ctx_lock_nested() comment.
9727 */
9728 ctx = perf_event_ctx_lock_nested(event->group_leader,
9729 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9730 BUG_ON(!ctx);
9731 }
9732
cc34b98b
MR
9733 event->pmu = pmu;
9734 ret = pmu->event_init(event);
ccd41c86
PZ
9735
9736 if (ctx)
9737 perf_event_ctx_unlock(event->group_leader, ctx);
9738
cc34b98b
MR
9739 if (ret)
9740 module_put(pmu->module);
9741
9742 return ret;
9743}
9744
18ab2cd3 9745static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9746{
85c617ab 9747 struct pmu *pmu;
b0a873eb 9748 int idx;
940c5b29 9749 int ret;
b0a873eb
PZ
9750
9751 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9752
40999312
KL
9753 /* Try parent's PMU first: */
9754 if (event->parent && event->parent->pmu) {
9755 pmu = event->parent->pmu;
9756 ret = perf_try_init_event(pmu, event);
9757 if (!ret)
9758 goto unlock;
9759 }
9760
2e80a82a
PZ
9761 rcu_read_lock();
9762 pmu = idr_find(&pmu_idr, event->attr.type);
9763 rcu_read_unlock();
940c5b29 9764 if (pmu) {
cc34b98b 9765 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9766 if (ret)
9767 pmu = ERR_PTR(ret);
2e80a82a 9768 goto unlock;
940c5b29 9769 }
2e80a82a 9770
b0a873eb 9771 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9772 ret = perf_try_init_event(pmu, event);
b0a873eb 9773 if (!ret)
e5f4d339 9774 goto unlock;
76e1d904 9775
b0a873eb
PZ
9776 if (ret != -ENOENT) {
9777 pmu = ERR_PTR(ret);
e5f4d339 9778 goto unlock;
f344011c 9779 }
5c92d124 9780 }
e5f4d339
PZ
9781 pmu = ERR_PTR(-ENOENT);
9782unlock:
b0a873eb 9783 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9784
4aeb0b42 9785 return pmu;
5c92d124
IM
9786}
9787
f2fb6bef
KL
9788static void attach_sb_event(struct perf_event *event)
9789{
9790 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9791
9792 raw_spin_lock(&pel->lock);
9793 list_add_rcu(&event->sb_list, &pel->list);
9794 raw_spin_unlock(&pel->lock);
9795}
9796
aab5b71e
PZ
9797/*
9798 * We keep a list of all !task (and therefore per-cpu) events
9799 * that need to receive side-band records.
9800 *
9801 * This avoids having to scan all the various PMU per-cpu contexts
9802 * looking for them.
9803 */
f2fb6bef
KL
9804static void account_pmu_sb_event(struct perf_event *event)
9805{
a4f144eb 9806 if (is_sb_event(event))
f2fb6bef
KL
9807 attach_sb_event(event);
9808}
9809
4beb31f3
FW
9810static void account_event_cpu(struct perf_event *event, int cpu)
9811{
9812 if (event->parent)
9813 return;
9814
4beb31f3
FW
9815 if (is_cgroup_event(event))
9816 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9817}
9818
555e0c1e
FW
9819/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9820static void account_freq_event_nohz(void)
9821{
9822#ifdef CONFIG_NO_HZ_FULL
9823 /* Lock so we don't race with concurrent unaccount */
9824 spin_lock(&nr_freq_lock);
9825 if (atomic_inc_return(&nr_freq_events) == 1)
9826 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9827 spin_unlock(&nr_freq_lock);
9828#endif
9829}
9830
9831static void account_freq_event(void)
9832{
9833 if (tick_nohz_full_enabled())
9834 account_freq_event_nohz();
9835 else
9836 atomic_inc(&nr_freq_events);
9837}
9838
9839
766d6c07
FW
9840static void account_event(struct perf_event *event)
9841{
25432ae9
PZ
9842 bool inc = false;
9843
4beb31f3
FW
9844 if (event->parent)
9845 return;
9846
766d6c07 9847 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9848 inc = true;
766d6c07
FW
9849 if (event->attr.mmap || event->attr.mmap_data)
9850 atomic_inc(&nr_mmap_events);
9851 if (event->attr.comm)
9852 atomic_inc(&nr_comm_events);
e4222673
HB
9853 if (event->attr.namespaces)
9854 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9855 if (event->attr.task)
9856 atomic_inc(&nr_task_events);
555e0c1e
FW
9857 if (event->attr.freq)
9858 account_freq_event();
45ac1403
AH
9859 if (event->attr.context_switch) {
9860 atomic_inc(&nr_switch_events);
25432ae9 9861 inc = true;
45ac1403 9862 }
4beb31f3 9863 if (has_branch_stack(event))
25432ae9 9864 inc = true;
4beb31f3 9865 if (is_cgroup_event(event))
25432ae9
PZ
9866 inc = true;
9867
9107c89e 9868 if (inc) {
5bce9db1
AS
9869 /*
9870 * We need the mutex here because static_branch_enable()
9871 * must complete *before* the perf_sched_count increment
9872 * becomes visible.
9873 */
9107c89e
PZ
9874 if (atomic_inc_not_zero(&perf_sched_count))
9875 goto enabled;
9876
9877 mutex_lock(&perf_sched_mutex);
9878 if (!atomic_read(&perf_sched_count)) {
9879 static_branch_enable(&perf_sched_events);
9880 /*
9881 * Guarantee that all CPUs observe they key change and
9882 * call the perf scheduling hooks before proceeding to
9883 * install events that need them.
9884 */
9885 synchronize_sched();
9886 }
9887 /*
9888 * Now that we have waited for the sync_sched(), allow further
9889 * increments to by-pass the mutex.
9890 */
9891 atomic_inc(&perf_sched_count);
9892 mutex_unlock(&perf_sched_mutex);
9893 }
9894enabled:
4beb31f3
FW
9895
9896 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9897
9898 account_pmu_sb_event(event);
766d6c07
FW
9899}
9900
0793a61d 9901/*
cdd6c482 9902 * Allocate and initialize a event structure
0793a61d 9903 */
cdd6c482 9904static struct perf_event *
c3f00c70 9905perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9906 struct task_struct *task,
9907 struct perf_event *group_leader,
9908 struct perf_event *parent_event,
4dc0da86 9909 perf_overflow_handler_t overflow_handler,
79dff51e 9910 void *context, int cgroup_fd)
0793a61d 9911{
51b0fe39 9912 struct pmu *pmu;
cdd6c482
IM
9913 struct perf_event *event;
9914 struct hw_perf_event *hwc;
90983b16 9915 long err = -EINVAL;
0793a61d 9916
66832eb4
ON
9917 if ((unsigned)cpu >= nr_cpu_ids) {
9918 if (!task || cpu != -1)
9919 return ERR_PTR(-EINVAL);
9920 }
9921
c3f00c70 9922 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9923 if (!event)
d5d2bc0d 9924 return ERR_PTR(-ENOMEM);
0793a61d 9925
04289bb9 9926 /*
cdd6c482 9927 * Single events are their own group leaders, with an
04289bb9
IM
9928 * empty sibling list:
9929 */
9930 if (!group_leader)
cdd6c482 9931 group_leader = event;
04289bb9 9932
cdd6c482
IM
9933 mutex_init(&event->child_mutex);
9934 INIT_LIST_HEAD(&event->child_list);
fccc714b 9935
cdd6c482
IM
9936 INIT_LIST_HEAD(&event->event_entry);
9937 INIT_LIST_HEAD(&event->sibling_list);
6668128a 9938 INIT_LIST_HEAD(&event->active_list);
8e1a2031 9939 init_event_group(event);
10c6db11 9940 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9941 INIT_LIST_HEAD(&event->active_entry);
375637bc 9942 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9943 INIT_HLIST_NODE(&event->hlist_entry);
9944
10c6db11 9945
cdd6c482 9946 init_waitqueue_head(&event->waitq);
e360adbe 9947 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9948
cdd6c482 9949 mutex_init(&event->mmap_mutex);
375637bc 9950 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9951
a6fa941d 9952 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9953 event->cpu = cpu;
9954 event->attr = *attr;
9955 event->group_leader = group_leader;
9956 event->pmu = NULL;
cdd6c482 9957 event->oncpu = -1;
a96bbc16 9958
cdd6c482 9959 event->parent = parent_event;
b84fbc9f 9960
17cf22c3 9961 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9962 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9963
cdd6c482 9964 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9965
d580ff86
PZ
9966 if (task) {
9967 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9968 /*
50f16a8b
PZ
9969 * XXX pmu::event_init needs to know what task to account to
9970 * and we cannot use the ctx information because we need the
9971 * pmu before we get a ctx.
d580ff86 9972 */
621b6d2e 9973 get_task_struct(task);
50f16a8b 9974 event->hw.target = task;
d580ff86
PZ
9975 }
9976
34f43927
PZ
9977 event->clock = &local_clock;
9978 if (parent_event)
9979 event->clock = parent_event->clock;
9980
4dc0da86 9981 if (!overflow_handler && parent_event) {
b326e956 9982 overflow_handler = parent_event->overflow_handler;
4dc0da86 9983 context = parent_event->overflow_handler_context;
f1e4ba5b 9984#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9985 if (overflow_handler == bpf_overflow_handler) {
9986 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9987
9988 if (IS_ERR(prog)) {
9989 err = PTR_ERR(prog);
9990 goto err_ns;
9991 }
9992 event->prog = prog;
9993 event->orig_overflow_handler =
9994 parent_event->orig_overflow_handler;
9995 }
9996#endif
4dc0da86 9997 }
66832eb4 9998
1879445d
WN
9999 if (overflow_handler) {
10000 event->overflow_handler = overflow_handler;
10001 event->overflow_handler_context = context;
9ecda41a
WN
10002 } else if (is_write_backward(event)){
10003 event->overflow_handler = perf_event_output_backward;
10004 event->overflow_handler_context = NULL;
1879445d 10005 } else {
9ecda41a 10006 event->overflow_handler = perf_event_output_forward;
1879445d
WN
10007 event->overflow_handler_context = NULL;
10008 }
97eaf530 10009
0231bb53 10010 perf_event__state_init(event);
a86ed508 10011
4aeb0b42 10012 pmu = NULL;
b8e83514 10013
cdd6c482 10014 hwc = &event->hw;
bd2b5b12 10015 hwc->sample_period = attr->sample_period;
0d48696f 10016 if (attr->freq && attr->sample_freq)
bd2b5b12 10017 hwc->sample_period = 1;
eced1dfc 10018 hwc->last_period = hwc->sample_period;
bd2b5b12 10019
e7850595 10020 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 10021
2023b359 10022 /*
ba5213ae
PZ
10023 * We currently do not support PERF_SAMPLE_READ on inherited events.
10024 * See perf_output_read().
2023b359 10025 */
ba5213ae 10026 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 10027 goto err_ns;
a46a2300
YZ
10028
10029 if (!has_branch_stack(event))
10030 event->attr.branch_sample_type = 0;
2023b359 10031
79dff51e
MF
10032 if (cgroup_fd != -1) {
10033 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10034 if (err)
10035 goto err_ns;
10036 }
10037
b0a873eb 10038 pmu = perf_init_event(event);
85c617ab 10039 if (IS_ERR(pmu)) {
4aeb0b42 10040 err = PTR_ERR(pmu);
90983b16 10041 goto err_ns;
621a01ea 10042 }
d5d2bc0d 10043
bed5b25a
AS
10044 err = exclusive_event_init(event);
10045 if (err)
10046 goto err_pmu;
10047
375637bc
AS
10048 if (has_addr_filter(event)) {
10049 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10050 sizeof(unsigned long),
10051 GFP_KERNEL);
36cc2b92
DC
10052 if (!event->addr_filters_offs) {
10053 err = -ENOMEM;
375637bc 10054 goto err_per_task;
36cc2b92 10055 }
375637bc
AS
10056
10057 /* force hw sync on the address filters */
10058 event->addr_filters_gen = 1;
10059 }
10060
cdd6c482 10061 if (!event->parent) {
927c7a9e 10062 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 10063 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 10064 if (err)
375637bc 10065 goto err_addr_filters;
d010b332 10066 }
f344011c 10067 }
9ee318a7 10068
927a5570
AS
10069 /* symmetric to unaccount_event() in _free_event() */
10070 account_event(event);
10071
cdd6c482 10072 return event;
90983b16 10073
375637bc
AS
10074err_addr_filters:
10075 kfree(event->addr_filters_offs);
10076
bed5b25a
AS
10077err_per_task:
10078 exclusive_event_destroy(event);
10079
90983b16
FW
10080err_pmu:
10081 if (event->destroy)
10082 event->destroy(event);
c464c76e 10083 module_put(pmu->module);
90983b16 10084err_ns:
79dff51e
MF
10085 if (is_cgroup_event(event))
10086 perf_detach_cgroup(event);
90983b16
FW
10087 if (event->ns)
10088 put_pid_ns(event->ns);
621b6d2e
PB
10089 if (event->hw.target)
10090 put_task_struct(event->hw.target);
90983b16
FW
10091 kfree(event);
10092
10093 return ERR_PTR(err);
0793a61d
TG
10094}
10095
cdd6c482
IM
10096static int perf_copy_attr(struct perf_event_attr __user *uattr,
10097 struct perf_event_attr *attr)
974802ea 10098{
974802ea 10099 u32 size;
cdf8073d 10100 int ret;
974802ea
PZ
10101
10102 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10103 return -EFAULT;
10104
10105 /*
10106 * zero the full structure, so that a short copy will be nice.
10107 */
10108 memset(attr, 0, sizeof(*attr));
10109
10110 ret = get_user(size, &uattr->size);
10111 if (ret)
10112 return ret;
10113
10114 if (size > PAGE_SIZE) /* silly large */
10115 goto err_size;
10116
10117 if (!size) /* abi compat */
10118 size = PERF_ATTR_SIZE_VER0;
10119
10120 if (size < PERF_ATTR_SIZE_VER0)
10121 goto err_size;
10122
10123 /*
10124 * If we're handed a bigger struct than we know of,
cdf8073d
IS
10125 * ensure all the unknown bits are 0 - i.e. new
10126 * user-space does not rely on any kernel feature
10127 * extensions we dont know about yet.
974802ea
PZ
10128 */
10129 if (size > sizeof(*attr)) {
cdf8073d
IS
10130 unsigned char __user *addr;
10131 unsigned char __user *end;
10132 unsigned char val;
974802ea 10133
cdf8073d
IS
10134 addr = (void __user *)uattr + sizeof(*attr);
10135 end = (void __user *)uattr + size;
974802ea 10136
cdf8073d 10137 for (; addr < end; addr++) {
974802ea
PZ
10138 ret = get_user(val, addr);
10139 if (ret)
10140 return ret;
10141 if (val)
10142 goto err_size;
10143 }
b3e62e35 10144 size = sizeof(*attr);
974802ea
PZ
10145 }
10146
10147 ret = copy_from_user(attr, uattr, size);
10148 if (ret)
10149 return -EFAULT;
10150
f12f42ac
MX
10151 attr->size = size;
10152
cd757645 10153 if (attr->__reserved_1)
974802ea
PZ
10154 return -EINVAL;
10155
10156 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10157 return -EINVAL;
10158
10159 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10160 return -EINVAL;
10161
bce38cd5
SE
10162 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10163 u64 mask = attr->branch_sample_type;
10164
10165 /* only using defined bits */
10166 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10167 return -EINVAL;
10168
10169 /* at least one branch bit must be set */
10170 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10171 return -EINVAL;
10172
bce38cd5
SE
10173 /* propagate priv level, when not set for branch */
10174 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10175
10176 /* exclude_kernel checked on syscall entry */
10177 if (!attr->exclude_kernel)
10178 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10179
10180 if (!attr->exclude_user)
10181 mask |= PERF_SAMPLE_BRANCH_USER;
10182
10183 if (!attr->exclude_hv)
10184 mask |= PERF_SAMPLE_BRANCH_HV;
10185 /*
10186 * adjust user setting (for HW filter setup)
10187 */
10188 attr->branch_sample_type = mask;
10189 }
e712209a
SE
10190 /* privileged levels capture (kernel, hv): check permissions */
10191 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
10192 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10193 return -EACCES;
bce38cd5 10194 }
4018994f 10195
c5ebcedb 10196 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 10197 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
10198 if (ret)
10199 return ret;
10200 }
10201
10202 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10203 if (!arch_perf_have_user_stack_dump())
10204 return -ENOSYS;
10205
10206 /*
10207 * We have __u32 type for the size, but so far
10208 * we can only use __u16 as maximum due to the
10209 * __u16 sample size limit.
10210 */
10211 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 10212 return -EINVAL;
c5ebcedb 10213 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 10214 return -EINVAL;
c5ebcedb 10215 }
4018994f 10216
5f970521
JO
10217 if (!attr->sample_max_stack)
10218 attr->sample_max_stack = sysctl_perf_event_max_stack;
10219
60e2364e
SE
10220 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10221 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
10222out:
10223 return ret;
10224
10225err_size:
10226 put_user(sizeof(*attr), &uattr->size);
10227 ret = -E2BIG;
10228 goto out;
10229}
10230
ac9721f3
PZ
10231static int
10232perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 10233{
b69cf536 10234 struct ring_buffer *rb = NULL;
a4be7c27
PZ
10235 int ret = -EINVAL;
10236
ac9721f3 10237 if (!output_event)
a4be7c27
PZ
10238 goto set;
10239
ac9721f3
PZ
10240 /* don't allow circular references */
10241 if (event == output_event)
a4be7c27
PZ
10242 goto out;
10243
0f139300
PZ
10244 /*
10245 * Don't allow cross-cpu buffers
10246 */
10247 if (output_event->cpu != event->cpu)
10248 goto out;
10249
10250 /*
76369139 10251 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
10252 */
10253 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10254 goto out;
10255
34f43927
PZ
10256 /*
10257 * Mixing clocks in the same buffer is trouble you don't need.
10258 */
10259 if (output_event->clock != event->clock)
10260 goto out;
10261
9ecda41a
WN
10262 /*
10263 * Either writing ring buffer from beginning or from end.
10264 * Mixing is not allowed.
10265 */
10266 if (is_write_backward(output_event) != is_write_backward(event))
10267 goto out;
10268
45bfb2e5
PZ
10269 /*
10270 * If both events generate aux data, they must be on the same PMU
10271 */
10272 if (has_aux(event) && has_aux(output_event) &&
10273 event->pmu != output_event->pmu)
10274 goto out;
10275
a4be7c27 10276set:
cdd6c482 10277 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
10278 /* Can't redirect output if we've got an active mmap() */
10279 if (atomic_read(&event->mmap_count))
10280 goto unlock;
a4be7c27 10281
ac9721f3 10282 if (output_event) {
76369139
FW
10283 /* get the rb we want to redirect to */
10284 rb = ring_buffer_get(output_event);
10285 if (!rb)
ac9721f3 10286 goto unlock;
a4be7c27
PZ
10287 }
10288
b69cf536 10289 ring_buffer_attach(event, rb);
9bb5d40c 10290
a4be7c27 10291 ret = 0;
ac9721f3
PZ
10292unlock:
10293 mutex_unlock(&event->mmap_mutex);
10294
a4be7c27 10295out:
a4be7c27
PZ
10296 return ret;
10297}
10298
f63a8daa
PZ
10299static void mutex_lock_double(struct mutex *a, struct mutex *b)
10300{
10301 if (b < a)
10302 swap(a, b);
10303
10304 mutex_lock(a);
10305 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10306}
10307
34f43927
PZ
10308static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10309{
10310 bool nmi_safe = false;
10311
10312 switch (clk_id) {
10313 case CLOCK_MONOTONIC:
10314 event->clock = &ktime_get_mono_fast_ns;
10315 nmi_safe = true;
10316 break;
10317
10318 case CLOCK_MONOTONIC_RAW:
10319 event->clock = &ktime_get_raw_fast_ns;
10320 nmi_safe = true;
10321 break;
10322
10323 case CLOCK_REALTIME:
10324 event->clock = &ktime_get_real_ns;
10325 break;
10326
10327 case CLOCK_BOOTTIME:
10328 event->clock = &ktime_get_boot_ns;
10329 break;
10330
10331 case CLOCK_TAI:
10332 event->clock = &ktime_get_tai_ns;
10333 break;
10334
10335 default:
10336 return -EINVAL;
10337 }
10338
10339 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10340 return -EINVAL;
10341
10342 return 0;
10343}
10344
321027c1
PZ
10345/*
10346 * Variation on perf_event_ctx_lock_nested(), except we take two context
10347 * mutexes.
10348 */
10349static struct perf_event_context *
10350__perf_event_ctx_lock_double(struct perf_event *group_leader,
10351 struct perf_event_context *ctx)
10352{
10353 struct perf_event_context *gctx;
10354
10355again:
10356 rcu_read_lock();
10357 gctx = READ_ONCE(group_leader->ctx);
10358 if (!atomic_inc_not_zero(&gctx->refcount)) {
10359 rcu_read_unlock();
10360 goto again;
10361 }
10362 rcu_read_unlock();
10363
10364 mutex_lock_double(&gctx->mutex, &ctx->mutex);
10365
10366 if (group_leader->ctx != gctx) {
10367 mutex_unlock(&ctx->mutex);
10368 mutex_unlock(&gctx->mutex);
10369 put_ctx(gctx);
10370 goto again;
10371 }
10372
10373 return gctx;
10374}
10375
0793a61d 10376/**
cdd6c482 10377 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 10378 *
cdd6c482 10379 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 10380 * @pid: target pid
9f66a381 10381 * @cpu: target cpu
cdd6c482 10382 * @group_fd: group leader event fd
0793a61d 10383 */
cdd6c482
IM
10384SYSCALL_DEFINE5(perf_event_open,
10385 struct perf_event_attr __user *, attr_uptr,
2743a5b0 10386 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 10387{
b04243ef
PZ
10388 struct perf_event *group_leader = NULL, *output_event = NULL;
10389 struct perf_event *event, *sibling;
cdd6c482 10390 struct perf_event_attr attr;
f63a8daa 10391 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 10392 struct file *event_file = NULL;
2903ff01 10393 struct fd group = {NULL, 0};
38a81da2 10394 struct task_struct *task = NULL;
89a1e187 10395 struct pmu *pmu;
ea635c64 10396 int event_fd;
b04243ef 10397 int move_group = 0;
dc86cabe 10398 int err;
a21b0b35 10399 int f_flags = O_RDWR;
79dff51e 10400 int cgroup_fd = -1;
0793a61d 10401
2743a5b0 10402 /* for future expandability... */
e5d1367f 10403 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
10404 return -EINVAL;
10405
dc86cabe
IM
10406 err = perf_copy_attr(attr_uptr, &attr);
10407 if (err)
10408 return err;
eab656ae 10409
0764771d
PZ
10410 if (!attr.exclude_kernel) {
10411 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10412 return -EACCES;
10413 }
10414
e4222673
HB
10415 if (attr.namespaces) {
10416 if (!capable(CAP_SYS_ADMIN))
10417 return -EACCES;
10418 }
10419
df58ab24 10420 if (attr.freq) {
cdd6c482 10421 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 10422 return -EINVAL;
0819b2e3
PZ
10423 } else {
10424 if (attr.sample_period & (1ULL << 63))
10425 return -EINVAL;
df58ab24
PZ
10426 }
10427
fc7ce9c7
KL
10428 /* Only privileged users can get physical addresses */
10429 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10430 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10431 return -EACCES;
10432
e5d1367f
SE
10433 /*
10434 * In cgroup mode, the pid argument is used to pass the fd
10435 * opened to the cgroup directory in cgroupfs. The cpu argument
10436 * designates the cpu on which to monitor threads from that
10437 * cgroup.
10438 */
10439 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10440 return -EINVAL;
10441
a21b0b35
YD
10442 if (flags & PERF_FLAG_FD_CLOEXEC)
10443 f_flags |= O_CLOEXEC;
10444
10445 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
10446 if (event_fd < 0)
10447 return event_fd;
10448
ac9721f3 10449 if (group_fd != -1) {
2903ff01
AV
10450 err = perf_fget_light(group_fd, &group);
10451 if (err)
d14b12d7 10452 goto err_fd;
2903ff01 10453 group_leader = group.file->private_data;
ac9721f3
PZ
10454 if (flags & PERF_FLAG_FD_OUTPUT)
10455 output_event = group_leader;
10456 if (flags & PERF_FLAG_FD_NO_GROUP)
10457 group_leader = NULL;
10458 }
10459
e5d1367f 10460 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
10461 task = find_lively_task_by_vpid(pid);
10462 if (IS_ERR(task)) {
10463 err = PTR_ERR(task);
10464 goto err_group_fd;
10465 }
10466 }
10467
1f4ee503
PZ
10468 if (task && group_leader &&
10469 group_leader->attr.inherit != attr.inherit) {
10470 err = -EINVAL;
10471 goto err_task;
10472 }
10473
79c9ce57
PZ
10474 if (task) {
10475 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10476 if (err)
e5aeee51 10477 goto err_task;
79c9ce57
PZ
10478
10479 /*
10480 * Reuse ptrace permission checks for now.
10481 *
10482 * We must hold cred_guard_mutex across this and any potential
10483 * perf_install_in_context() call for this new event to
10484 * serialize against exec() altering our credentials (and the
10485 * perf_event_exit_task() that could imply).
10486 */
10487 err = -EACCES;
10488 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10489 goto err_cred;
10490 }
10491
79dff51e
MF
10492 if (flags & PERF_FLAG_PID_CGROUP)
10493 cgroup_fd = pid;
10494
4dc0da86 10495 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 10496 NULL, NULL, cgroup_fd);
d14b12d7
SE
10497 if (IS_ERR(event)) {
10498 err = PTR_ERR(event);
79c9ce57 10499 goto err_cred;
d14b12d7
SE
10500 }
10501
53b25335
VW
10502 if (is_sampling_event(event)) {
10503 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 10504 err = -EOPNOTSUPP;
53b25335
VW
10505 goto err_alloc;
10506 }
10507 }
10508
89a1e187
PZ
10509 /*
10510 * Special case software events and allow them to be part of
10511 * any hardware group.
10512 */
10513 pmu = event->pmu;
b04243ef 10514
34f43927
PZ
10515 if (attr.use_clockid) {
10516 err = perf_event_set_clock(event, attr.clockid);
10517 if (err)
10518 goto err_alloc;
10519 }
10520
4ff6a8de
DCC
10521 if (pmu->task_ctx_nr == perf_sw_context)
10522 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10523
a1150c20
SL
10524 if (group_leader) {
10525 if (is_software_event(event) &&
10526 !in_software_context(group_leader)) {
b04243ef 10527 /*
a1150c20
SL
10528 * If the event is a sw event, but the group_leader
10529 * is on hw context.
b04243ef 10530 *
a1150c20
SL
10531 * Allow the addition of software events to hw
10532 * groups, this is safe because software events
10533 * never fail to schedule.
b04243ef 10534 */
a1150c20
SL
10535 pmu = group_leader->ctx->pmu;
10536 } else if (!is_software_event(event) &&
10537 is_software_event(group_leader) &&
4ff6a8de 10538 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10539 /*
10540 * In case the group is a pure software group, and we
10541 * try to add a hardware event, move the whole group to
10542 * the hardware context.
10543 */
10544 move_group = 1;
10545 }
10546 }
89a1e187
PZ
10547
10548 /*
10549 * Get the target context (task or percpu):
10550 */
4af57ef2 10551 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10552 if (IS_ERR(ctx)) {
10553 err = PTR_ERR(ctx);
c6be5a5c 10554 goto err_alloc;
89a1e187
PZ
10555 }
10556
bed5b25a
AS
10557 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10558 err = -EBUSY;
10559 goto err_context;
10560 }
10561
ccff286d 10562 /*
cdd6c482 10563 * Look up the group leader (we will attach this event to it):
04289bb9 10564 */
ac9721f3 10565 if (group_leader) {
dc86cabe 10566 err = -EINVAL;
04289bb9 10567
04289bb9 10568 /*
ccff286d
IM
10569 * Do not allow a recursive hierarchy (this new sibling
10570 * becoming part of another group-sibling):
10571 */
10572 if (group_leader->group_leader != group_leader)
c3f00c70 10573 goto err_context;
34f43927
PZ
10574
10575 /* All events in a group should have the same clock */
10576 if (group_leader->clock != event->clock)
10577 goto err_context;
10578
ccff286d 10579 /*
64aee2a9
MR
10580 * Make sure we're both events for the same CPU;
10581 * grouping events for different CPUs is broken; since
10582 * you can never concurrently schedule them anyhow.
04289bb9 10583 */
64aee2a9
MR
10584 if (group_leader->cpu != event->cpu)
10585 goto err_context;
c3c87e77 10586
64aee2a9
MR
10587 /*
10588 * Make sure we're both on the same task, or both
10589 * per-CPU events.
10590 */
10591 if (group_leader->ctx->task != ctx->task)
10592 goto err_context;
10593
10594 /*
10595 * Do not allow to attach to a group in a different task
10596 * or CPU context. If we're moving SW events, we'll fix
10597 * this up later, so allow that.
10598 */
10599 if (!move_group && group_leader->ctx != ctx)
10600 goto err_context;
b04243ef 10601
3b6f9e5c
PM
10602 /*
10603 * Only a group leader can be exclusive or pinned
10604 */
0d48696f 10605 if (attr.exclusive || attr.pinned)
c3f00c70 10606 goto err_context;
ac9721f3
PZ
10607 }
10608
10609 if (output_event) {
10610 err = perf_event_set_output(event, output_event);
10611 if (err)
c3f00c70 10612 goto err_context;
ac9721f3 10613 }
0793a61d 10614
a21b0b35
YD
10615 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10616 f_flags);
ea635c64
AV
10617 if (IS_ERR(event_file)) {
10618 err = PTR_ERR(event_file);
201c2f85 10619 event_file = NULL;
c3f00c70 10620 goto err_context;
ea635c64 10621 }
9b51f66d 10622
b04243ef 10623 if (move_group) {
321027c1
PZ
10624 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10625
84c4e620
PZ
10626 if (gctx->task == TASK_TOMBSTONE) {
10627 err = -ESRCH;
10628 goto err_locked;
10629 }
321027c1
PZ
10630
10631 /*
10632 * Check if we raced against another sys_perf_event_open() call
10633 * moving the software group underneath us.
10634 */
10635 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10636 /*
10637 * If someone moved the group out from under us, check
10638 * if this new event wound up on the same ctx, if so
10639 * its the regular !move_group case, otherwise fail.
10640 */
10641 if (gctx != ctx) {
10642 err = -EINVAL;
10643 goto err_locked;
10644 } else {
10645 perf_event_ctx_unlock(group_leader, gctx);
10646 move_group = 0;
10647 }
10648 }
f55fc2a5
PZ
10649 } else {
10650 mutex_lock(&ctx->mutex);
10651 }
10652
84c4e620
PZ
10653 if (ctx->task == TASK_TOMBSTONE) {
10654 err = -ESRCH;
10655 goto err_locked;
10656 }
10657
a723968c
PZ
10658 if (!perf_event_validate_size(event)) {
10659 err = -E2BIG;
10660 goto err_locked;
10661 }
10662
a63fbed7
TG
10663 if (!task) {
10664 /*
10665 * Check if the @cpu we're creating an event for is online.
10666 *
10667 * We use the perf_cpu_context::ctx::mutex to serialize against
10668 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10669 */
10670 struct perf_cpu_context *cpuctx =
10671 container_of(ctx, struct perf_cpu_context, ctx);
10672
10673 if (!cpuctx->online) {
10674 err = -ENODEV;
10675 goto err_locked;
10676 }
10677 }
10678
10679
f55fc2a5
PZ
10680 /*
10681 * Must be under the same ctx::mutex as perf_install_in_context(),
10682 * because we need to serialize with concurrent event creation.
10683 */
10684 if (!exclusive_event_installable(event, ctx)) {
10685 /* exclusive and group stuff are assumed mutually exclusive */
10686 WARN_ON_ONCE(move_group);
f63a8daa 10687
f55fc2a5
PZ
10688 err = -EBUSY;
10689 goto err_locked;
10690 }
f63a8daa 10691
f55fc2a5
PZ
10692 WARN_ON_ONCE(ctx->parent_ctx);
10693
79c9ce57
PZ
10694 /*
10695 * This is the point on no return; we cannot fail hereafter. This is
10696 * where we start modifying current state.
10697 */
10698
f55fc2a5 10699 if (move_group) {
f63a8daa
PZ
10700 /*
10701 * See perf_event_ctx_lock() for comments on the details
10702 * of swizzling perf_event::ctx.
10703 */
45a0e07a 10704 perf_remove_from_context(group_leader, 0);
279b5165 10705 put_ctx(gctx);
0231bb53 10706
edb39592 10707 for_each_sibling_event(sibling, group_leader) {
45a0e07a 10708 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10709 put_ctx(gctx);
10710 }
b04243ef 10711
f63a8daa
PZ
10712 /*
10713 * Wait for everybody to stop referencing the events through
10714 * the old lists, before installing it on new lists.
10715 */
0cda4c02 10716 synchronize_rcu();
f63a8daa 10717
8f95b435
PZI
10718 /*
10719 * Install the group siblings before the group leader.
10720 *
10721 * Because a group leader will try and install the entire group
10722 * (through the sibling list, which is still in-tact), we can
10723 * end up with siblings installed in the wrong context.
10724 *
10725 * By installing siblings first we NO-OP because they're not
10726 * reachable through the group lists.
10727 */
edb39592 10728 for_each_sibling_event(sibling, group_leader) {
8f95b435 10729 perf_event__state_init(sibling);
9fc81d87 10730 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10731 get_ctx(ctx);
10732 }
8f95b435
PZI
10733
10734 /*
10735 * Removing from the context ends up with disabled
10736 * event. What we want here is event in the initial
10737 * startup state, ready to be add into new context.
10738 */
10739 perf_event__state_init(group_leader);
10740 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10741 get_ctx(ctx);
bed5b25a
AS
10742 }
10743
f73e22ab
PZ
10744 /*
10745 * Precalculate sample_data sizes; do while holding ctx::mutex such
10746 * that we're serialized against further additions and before
10747 * perf_install_in_context() which is the point the event is active and
10748 * can use these values.
10749 */
10750 perf_event__header_size(event);
10751 perf_event__id_header_size(event);
10752
78cd2c74
PZ
10753 event->owner = current;
10754
e2d37cd2 10755 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10756 perf_unpin_context(ctx);
f63a8daa 10757
f55fc2a5 10758 if (move_group)
321027c1 10759 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10760 mutex_unlock(&ctx->mutex);
9b51f66d 10761
79c9ce57
PZ
10762 if (task) {
10763 mutex_unlock(&task->signal->cred_guard_mutex);
10764 put_task_struct(task);
10765 }
10766
cdd6c482
IM
10767 mutex_lock(&current->perf_event_mutex);
10768 list_add_tail(&event->owner_entry, &current->perf_event_list);
10769 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10770
8a49542c
PZ
10771 /*
10772 * Drop the reference on the group_event after placing the
10773 * new event on the sibling_list. This ensures destruction
10774 * of the group leader will find the pointer to itself in
10775 * perf_group_detach().
10776 */
2903ff01 10777 fdput(group);
ea635c64
AV
10778 fd_install(event_fd, event_file);
10779 return event_fd;
0793a61d 10780
f55fc2a5
PZ
10781err_locked:
10782 if (move_group)
321027c1 10783 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10784 mutex_unlock(&ctx->mutex);
10785/* err_file: */
10786 fput(event_file);
c3f00c70 10787err_context:
fe4b04fa 10788 perf_unpin_context(ctx);
ea635c64 10789 put_ctx(ctx);
c6be5a5c 10790err_alloc:
13005627
PZ
10791 /*
10792 * If event_file is set, the fput() above will have called ->release()
10793 * and that will take care of freeing the event.
10794 */
10795 if (!event_file)
10796 free_event(event);
79c9ce57
PZ
10797err_cred:
10798 if (task)
10799 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10800err_task:
e7d0bc04
PZ
10801 if (task)
10802 put_task_struct(task);
89a1e187 10803err_group_fd:
2903ff01 10804 fdput(group);
ea635c64
AV
10805err_fd:
10806 put_unused_fd(event_fd);
dc86cabe 10807 return err;
0793a61d
TG
10808}
10809
fb0459d7
AV
10810/**
10811 * perf_event_create_kernel_counter
10812 *
10813 * @attr: attributes of the counter to create
10814 * @cpu: cpu in which the counter is bound
38a81da2 10815 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10816 */
10817struct perf_event *
10818perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10819 struct task_struct *task,
4dc0da86
AK
10820 perf_overflow_handler_t overflow_handler,
10821 void *context)
fb0459d7 10822{
fb0459d7 10823 struct perf_event_context *ctx;
c3f00c70 10824 struct perf_event *event;
fb0459d7 10825 int err;
d859e29f 10826
fb0459d7
AV
10827 /*
10828 * Get the target context (task or percpu):
10829 */
d859e29f 10830
4dc0da86 10831 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10832 overflow_handler, context, -1);
c3f00c70
PZ
10833 if (IS_ERR(event)) {
10834 err = PTR_ERR(event);
10835 goto err;
10836 }
d859e29f 10837
f8697762 10838 /* Mark owner so we could distinguish it from user events. */
63b6da39 10839 event->owner = TASK_TOMBSTONE;
f8697762 10840
4af57ef2 10841 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10842 if (IS_ERR(ctx)) {
10843 err = PTR_ERR(ctx);
c3f00c70 10844 goto err_free;
d859e29f 10845 }
fb0459d7 10846
fb0459d7
AV
10847 WARN_ON_ONCE(ctx->parent_ctx);
10848 mutex_lock(&ctx->mutex);
84c4e620
PZ
10849 if (ctx->task == TASK_TOMBSTONE) {
10850 err = -ESRCH;
10851 goto err_unlock;
10852 }
10853
a63fbed7
TG
10854 if (!task) {
10855 /*
10856 * Check if the @cpu we're creating an event for is online.
10857 *
10858 * We use the perf_cpu_context::ctx::mutex to serialize against
10859 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10860 */
10861 struct perf_cpu_context *cpuctx =
10862 container_of(ctx, struct perf_cpu_context, ctx);
10863 if (!cpuctx->online) {
10864 err = -ENODEV;
10865 goto err_unlock;
10866 }
10867 }
10868
bed5b25a 10869 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10870 err = -EBUSY;
84c4e620 10871 goto err_unlock;
bed5b25a
AS
10872 }
10873
fb0459d7 10874 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10875 perf_unpin_context(ctx);
fb0459d7
AV
10876 mutex_unlock(&ctx->mutex);
10877
fb0459d7
AV
10878 return event;
10879
84c4e620
PZ
10880err_unlock:
10881 mutex_unlock(&ctx->mutex);
10882 perf_unpin_context(ctx);
10883 put_ctx(ctx);
c3f00c70
PZ
10884err_free:
10885 free_event(event);
10886err:
c6567f64 10887 return ERR_PTR(err);
9b51f66d 10888}
fb0459d7 10889EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10890
0cda4c02
YZ
10891void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10892{
10893 struct perf_event_context *src_ctx;
10894 struct perf_event_context *dst_ctx;
10895 struct perf_event *event, *tmp;
10896 LIST_HEAD(events);
10897
10898 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10899 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10900
f63a8daa
PZ
10901 /*
10902 * See perf_event_ctx_lock() for comments on the details
10903 * of swizzling perf_event::ctx.
10904 */
10905 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10906 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10907 event_entry) {
45a0e07a 10908 perf_remove_from_context(event, 0);
9a545de0 10909 unaccount_event_cpu(event, src_cpu);
0cda4c02 10910 put_ctx(src_ctx);
9886167d 10911 list_add(&event->migrate_entry, &events);
0cda4c02 10912 }
0cda4c02 10913
8f95b435
PZI
10914 /*
10915 * Wait for the events to quiesce before re-instating them.
10916 */
0cda4c02
YZ
10917 synchronize_rcu();
10918
8f95b435
PZI
10919 /*
10920 * Re-instate events in 2 passes.
10921 *
10922 * Skip over group leaders and only install siblings on this first
10923 * pass, siblings will not get enabled without a leader, however a
10924 * leader will enable its siblings, even if those are still on the old
10925 * context.
10926 */
10927 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10928 if (event->group_leader == event)
10929 continue;
10930
10931 list_del(&event->migrate_entry);
10932 if (event->state >= PERF_EVENT_STATE_OFF)
10933 event->state = PERF_EVENT_STATE_INACTIVE;
10934 account_event_cpu(event, dst_cpu);
10935 perf_install_in_context(dst_ctx, event, dst_cpu);
10936 get_ctx(dst_ctx);
10937 }
10938
10939 /*
10940 * Once all the siblings are setup properly, install the group leaders
10941 * to make it go.
10942 */
9886167d
PZ
10943 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10944 list_del(&event->migrate_entry);
0cda4c02
YZ
10945 if (event->state >= PERF_EVENT_STATE_OFF)
10946 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10947 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10948 perf_install_in_context(dst_ctx, event, dst_cpu);
10949 get_ctx(dst_ctx);
10950 }
10951 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10952 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10953}
10954EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10955
cdd6c482 10956static void sync_child_event(struct perf_event *child_event,
38b200d6 10957 struct task_struct *child)
d859e29f 10958{
cdd6c482 10959 struct perf_event *parent_event = child_event->parent;
8bc20959 10960 u64 child_val;
d859e29f 10961
cdd6c482
IM
10962 if (child_event->attr.inherit_stat)
10963 perf_event_read_event(child_event, child);
38b200d6 10964
b5e58793 10965 child_val = perf_event_count(child_event);
d859e29f
PM
10966
10967 /*
10968 * Add back the child's count to the parent's count:
10969 */
a6e6dea6 10970 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10971 atomic64_add(child_event->total_time_enabled,
10972 &parent_event->child_total_time_enabled);
10973 atomic64_add(child_event->total_time_running,
10974 &parent_event->child_total_time_running);
d859e29f
PM
10975}
10976
9b51f66d 10977static void
8ba289b8
PZ
10978perf_event_exit_event(struct perf_event *child_event,
10979 struct perf_event_context *child_ctx,
10980 struct task_struct *child)
9b51f66d 10981{
8ba289b8
PZ
10982 struct perf_event *parent_event = child_event->parent;
10983
1903d50c
PZ
10984 /*
10985 * Do not destroy the 'original' grouping; because of the context
10986 * switch optimization the original events could've ended up in a
10987 * random child task.
10988 *
10989 * If we were to destroy the original group, all group related
10990 * operations would cease to function properly after this random
10991 * child dies.
10992 *
10993 * Do destroy all inherited groups, we don't care about those
10994 * and being thorough is better.
10995 */
32132a3d
PZ
10996 raw_spin_lock_irq(&child_ctx->lock);
10997 WARN_ON_ONCE(child_ctx->is_active);
10998
8ba289b8 10999 if (parent_event)
32132a3d
PZ
11000 perf_group_detach(child_event);
11001 list_del_event(child_event, child_ctx);
0d3d73aa 11002 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 11003 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 11004
9b51f66d 11005 /*
8ba289b8 11006 * Parent events are governed by their filedesc, retain them.
9b51f66d 11007 */
8ba289b8 11008 if (!parent_event) {
179033b3 11009 perf_event_wakeup(child_event);
8ba289b8 11010 return;
4bcf349a 11011 }
8ba289b8
PZ
11012 /*
11013 * Child events can be cleaned up.
11014 */
11015
11016 sync_child_event(child_event, child);
11017
11018 /*
11019 * Remove this event from the parent's list
11020 */
11021 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11022 mutex_lock(&parent_event->child_mutex);
11023 list_del_init(&child_event->child_list);
11024 mutex_unlock(&parent_event->child_mutex);
11025
11026 /*
11027 * Kick perf_poll() for is_event_hup().
11028 */
11029 perf_event_wakeup(parent_event);
11030 free_event(child_event);
11031 put_event(parent_event);
9b51f66d
IM
11032}
11033
8dc85d54 11034static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 11035{
211de6eb 11036 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 11037 struct perf_event *child_event, *next;
63b6da39
PZ
11038
11039 WARN_ON_ONCE(child != current);
9b51f66d 11040
6a3351b6 11041 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 11042 if (!child_ctx)
9b51f66d
IM
11043 return;
11044
ad3a37de 11045 /*
6a3351b6
PZ
11046 * In order to reduce the amount of tricky in ctx tear-down, we hold
11047 * ctx::mutex over the entire thing. This serializes against almost
11048 * everything that wants to access the ctx.
11049 *
11050 * The exception is sys_perf_event_open() /
11051 * perf_event_create_kernel_count() which does find_get_context()
11052 * without ctx::mutex (it cannot because of the move_group double mutex
11053 * lock thing). See the comments in perf_install_in_context().
ad3a37de 11054 */
6a3351b6 11055 mutex_lock(&child_ctx->mutex);
c93f7669
PM
11056
11057 /*
6a3351b6
PZ
11058 * In a single ctx::lock section, de-schedule the events and detach the
11059 * context from the task such that we cannot ever get it scheduled back
11060 * in.
c93f7669 11061 */
6a3351b6 11062 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 11063 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 11064
71a851b4 11065 /*
63b6da39
PZ
11066 * Now that the context is inactive, destroy the task <-> ctx relation
11067 * and mark the context dead.
71a851b4 11068 */
63b6da39
PZ
11069 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11070 put_ctx(child_ctx); /* cannot be last */
11071 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11072 put_task_struct(current); /* cannot be last */
4a1c0f26 11073
211de6eb 11074 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 11075 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 11076
211de6eb
PZ
11077 if (clone_ctx)
11078 put_ctx(clone_ctx);
4a1c0f26 11079
9f498cc5 11080 /*
cdd6c482
IM
11081 * Report the task dead after unscheduling the events so that we
11082 * won't get any samples after PERF_RECORD_EXIT. We can however still
11083 * get a few PERF_RECORD_READ events.
9f498cc5 11084 */
cdd6c482 11085 perf_event_task(child, child_ctx, 0);
a63eaf34 11086
ebf905fc 11087 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 11088 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 11089
a63eaf34
PM
11090 mutex_unlock(&child_ctx->mutex);
11091
11092 put_ctx(child_ctx);
9b51f66d
IM
11093}
11094
8dc85d54
PZ
11095/*
11096 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
11097 *
11098 * Can be called with cred_guard_mutex held when called from
11099 * install_exec_creds().
8dc85d54
PZ
11100 */
11101void perf_event_exit_task(struct task_struct *child)
11102{
8882135b 11103 struct perf_event *event, *tmp;
8dc85d54
PZ
11104 int ctxn;
11105
8882135b
PZ
11106 mutex_lock(&child->perf_event_mutex);
11107 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11108 owner_entry) {
11109 list_del_init(&event->owner_entry);
11110
11111 /*
11112 * Ensure the list deletion is visible before we clear
11113 * the owner, closes a race against perf_release() where
11114 * we need to serialize on the owner->perf_event_mutex.
11115 */
f47c02c0 11116 smp_store_release(&event->owner, NULL);
8882135b
PZ
11117 }
11118 mutex_unlock(&child->perf_event_mutex);
11119
8dc85d54
PZ
11120 for_each_task_context_nr(ctxn)
11121 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
11122
11123 /*
11124 * The perf_event_exit_task_context calls perf_event_task
11125 * with child's task_ctx, which generates EXIT events for
11126 * child contexts and sets child->perf_event_ctxp[] to NULL.
11127 * At this point we need to send EXIT events to cpu contexts.
11128 */
11129 perf_event_task(child, NULL, 0);
8dc85d54
PZ
11130}
11131
889ff015
FW
11132static void perf_free_event(struct perf_event *event,
11133 struct perf_event_context *ctx)
11134{
11135 struct perf_event *parent = event->parent;
11136
11137 if (WARN_ON_ONCE(!parent))
11138 return;
11139
11140 mutex_lock(&parent->child_mutex);
11141 list_del_init(&event->child_list);
11142 mutex_unlock(&parent->child_mutex);
11143
a6fa941d 11144 put_event(parent);
889ff015 11145
652884fe 11146 raw_spin_lock_irq(&ctx->lock);
8a49542c 11147 perf_group_detach(event);
889ff015 11148 list_del_event(event, ctx);
652884fe 11149 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
11150 free_event(event);
11151}
11152
bbbee908 11153/*
652884fe 11154 * Free an unexposed, unused context as created by inheritance by
8dc85d54 11155 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
11156 *
11157 * Not all locks are strictly required, but take them anyway to be nice and
11158 * help out with the lockdep assertions.
bbbee908 11159 */
cdd6c482 11160void perf_event_free_task(struct task_struct *task)
bbbee908 11161{
8dc85d54 11162 struct perf_event_context *ctx;
cdd6c482 11163 struct perf_event *event, *tmp;
8dc85d54 11164 int ctxn;
bbbee908 11165
8dc85d54
PZ
11166 for_each_task_context_nr(ctxn) {
11167 ctx = task->perf_event_ctxp[ctxn];
11168 if (!ctx)
11169 continue;
bbbee908 11170
8dc85d54 11171 mutex_lock(&ctx->mutex);
e552a838
PZ
11172 raw_spin_lock_irq(&ctx->lock);
11173 /*
11174 * Destroy the task <-> ctx relation and mark the context dead.
11175 *
11176 * This is important because even though the task hasn't been
11177 * exposed yet the context has been (through child_list).
11178 */
11179 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11180 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11181 put_task_struct(task); /* cannot be last */
11182 raw_spin_unlock_irq(&ctx->lock);
bbbee908 11183
15121c78 11184 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 11185 perf_free_event(event, ctx);
bbbee908 11186
8dc85d54 11187 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
11188 put_ctx(ctx);
11189 }
889ff015
FW
11190}
11191
4e231c79
PZ
11192void perf_event_delayed_put(struct task_struct *task)
11193{
11194 int ctxn;
11195
11196 for_each_task_context_nr(ctxn)
11197 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11198}
11199
e03e7ee3 11200struct file *perf_event_get(unsigned int fd)
ffe8690c 11201{
e03e7ee3 11202 struct file *file;
ffe8690c 11203
e03e7ee3
AS
11204 file = fget_raw(fd);
11205 if (!file)
11206 return ERR_PTR(-EBADF);
ffe8690c 11207
e03e7ee3
AS
11208 if (file->f_op != &perf_fops) {
11209 fput(file);
11210 return ERR_PTR(-EBADF);
11211 }
ffe8690c 11212
e03e7ee3 11213 return file;
ffe8690c
KX
11214}
11215
11216const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11217{
11218 if (!event)
11219 return ERR_PTR(-EINVAL);
11220
11221 return &event->attr;
11222}
11223
97dee4f3 11224/*
d8a8cfc7
PZ
11225 * Inherit a event from parent task to child task.
11226 *
11227 * Returns:
11228 * - valid pointer on success
11229 * - NULL for orphaned events
11230 * - IS_ERR() on error
97dee4f3
PZ
11231 */
11232static struct perf_event *
11233inherit_event(struct perf_event *parent_event,
11234 struct task_struct *parent,
11235 struct perf_event_context *parent_ctx,
11236 struct task_struct *child,
11237 struct perf_event *group_leader,
11238 struct perf_event_context *child_ctx)
11239{
8ca2bd41 11240 enum perf_event_state parent_state = parent_event->state;
97dee4f3 11241 struct perf_event *child_event;
cee010ec 11242 unsigned long flags;
97dee4f3
PZ
11243
11244 /*
11245 * Instead of creating recursive hierarchies of events,
11246 * we link inherited events back to the original parent,
11247 * which has a filp for sure, which we use as the reference
11248 * count:
11249 */
11250 if (parent_event->parent)
11251 parent_event = parent_event->parent;
11252
11253 child_event = perf_event_alloc(&parent_event->attr,
11254 parent_event->cpu,
d580ff86 11255 child,
97dee4f3 11256 group_leader, parent_event,
79dff51e 11257 NULL, NULL, -1);
97dee4f3
PZ
11258 if (IS_ERR(child_event))
11259 return child_event;
a6fa941d 11260
313ccb96
JO
11261
11262 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11263 !child_ctx->task_ctx_data) {
11264 struct pmu *pmu = child_event->pmu;
11265
11266 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11267 GFP_KERNEL);
11268 if (!child_ctx->task_ctx_data) {
11269 free_event(child_event);
11270 return NULL;
11271 }
11272 }
11273
c6e5b732
PZ
11274 /*
11275 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11276 * must be under the same lock in order to serialize against
11277 * perf_event_release_kernel(), such that either we must observe
11278 * is_orphaned_event() or they will observe us on the child_list.
11279 */
11280 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
11281 if (is_orphaned_event(parent_event) ||
11282 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 11283 mutex_unlock(&parent_event->child_mutex);
313ccb96 11284 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
11285 free_event(child_event);
11286 return NULL;
11287 }
11288
97dee4f3
PZ
11289 get_ctx(child_ctx);
11290
11291 /*
11292 * Make the child state follow the state of the parent event,
11293 * not its attr.disabled bit. We hold the parent's mutex,
11294 * so we won't race with perf_event_{en, dis}able_family.
11295 */
1929def9 11296 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
11297 child_event->state = PERF_EVENT_STATE_INACTIVE;
11298 else
11299 child_event->state = PERF_EVENT_STATE_OFF;
11300
11301 if (parent_event->attr.freq) {
11302 u64 sample_period = parent_event->hw.sample_period;
11303 struct hw_perf_event *hwc = &child_event->hw;
11304
11305 hwc->sample_period = sample_period;
11306 hwc->last_period = sample_period;
11307
11308 local64_set(&hwc->period_left, sample_period);
11309 }
11310
11311 child_event->ctx = child_ctx;
11312 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
11313 child_event->overflow_handler_context
11314 = parent_event->overflow_handler_context;
97dee4f3 11315
614b6780
TG
11316 /*
11317 * Precalculate sample_data sizes
11318 */
11319 perf_event__header_size(child_event);
6844c09d 11320 perf_event__id_header_size(child_event);
614b6780 11321
97dee4f3
PZ
11322 /*
11323 * Link it up in the child's context:
11324 */
cee010ec 11325 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 11326 add_event_to_ctx(child_event, child_ctx);
cee010ec 11327 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 11328
97dee4f3
PZ
11329 /*
11330 * Link this into the parent event's child list
11331 */
97dee4f3
PZ
11332 list_add_tail(&child_event->child_list, &parent_event->child_list);
11333 mutex_unlock(&parent_event->child_mutex);
11334
11335 return child_event;
11336}
11337
d8a8cfc7
PZ
11338/*
11339 * Inherits an event group.
11340 *
11341 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11342 * This matches with perf_event_release_kernel() removing all child events.
11343 *
11344 * Returns:
11345 * - 0 on success
11346 * - <0 on error
11347 */
97dee4f3
PZ
11348static int inherit_group(struct perf_event *parent_event,
11349 struct task_struct *parent,
11350 struct perf_event_context *parent_ctx,
11351 struct task_struct *child,
11352 struct perf_event_context *child_ctx)
11353{
11354 struct perf_event *leader;
11355 struct perf_event *sub;
11356 struct perf_event *child_ctr;
11357
11358 leader = inherit_event(parent_event, parent, parent_ctx,
11359 child, NULL, child_ctx);
11360 if (IS_ERR(leader))
11361 return PTR_ERR(leader);
d8a8cfc7
PZ
11362 /*
11363 * @leader can be NULL here because of is_orphaned_event(). In this
11364 * case inherit_event() will create individual events, similar to what
11365 * perf_group_detach() would do anyway.
11366 */
edb39592 11367 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
11368 child_ctr = inherit_event(sub, parent, parent_ctx,
11369 child, leader, child_ctx);
11370 if (IS_ERR(child_ctr))
11371 return PTR_ERR(child_ctr);
11372 }
11373 return 0;
889ff015
FW
11374}
11375
d8a8cfc7
PZ
11376/*
11377 * Creates the child task context and tries to inherit the event-group.
11378 *
11379 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11380 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11381 * consistent with perf_event_release_kernel() removing all child events.
11382 *
11383 * Returns:
11384 * - 0 on success
11385 * - <0 on error
11386 */
889ff015
FW
11387static int
11388inherit_task_group(struct perf_event *event, struct task_struct *parent,
11389 struct perf_event_context *parent_ctx,
8dc85d54 11390 struct task_struct *child, int ctxn,
889ff015
FW
11391 int *inherited_all)
11392{
11393 int ret;
8dc85d54 11394 struct perf_event_context *child_ctx;
889ff015
FW
11395
11396 if (!event->attr.inherit) {
11397 *inherited_all = 0;
11398 return 0;
bbbee908
PZ
11399 }
11400
fe4b04fa 11401 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
11402 if (!child_ctx) {
11403 /*
11404 * This is executed from the parent task context, so
11405 * inherit events that have been marked for cloning.
11406 * First allocate and initialize a context for the
11407 * child.
11408 */
734df5ab 11409 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
11410 if (!child_ctx)
11411 return -ENOMEM;
bbbee908 11412
8dc85d54 11413 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
11414 }
11415
11416 ret = inherit_group(event, parent, parent_ctx,
11417 child, child_ctx);
11418
11419 if (ret)
11420 *inherited_all = 0;
11421
11422 return ret;
bbbee908
PZ
11423}
11424
9b51f66d 11425/*
cdd6c482 11426 * Initialize the perf_event context in task_struct
9b51f66d 11427 */
985c8dcb 11428static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 11429{
889ff015 11430 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
11431 struct perf_event_context *cloned_ctx;
11432 struct perf_event *event;
9b51f66d 11433 struct task_struct *parent = current;
564c2b21 11434 int inherited_all = 1;
dddd3379 11435 unsigned long flags;
6ab423e0 11436 int ret = 0;
9b51f66d 11437
8dc85d54 11438 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
11439 return 0;
11440
ad3a37de 11441 /*
25346b93
PM
11442 * If the parent's context is a clone, pin it so it won't get
11443 * swapped under us.
ad3a37de 11444 */
8dc85d54 11445 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
11446 if (!parent_ctx)
11447 return 0;
25346b93 11448
ad3a37de
PM
11449 /*
11450 * No need to check if parent_ctx != NULL here; since we saw
11451 * it non-NULL earlier, the only reason for it to become NULL
11452 * is if we exit, and since we're currently in the middle of
11453 * a fork we can't be exiting at the same time.
11454 */
ad3a37de 11455
9b51f66d
IM
11456 /*
11457 * Lock the parent list. No need to lock the child - not PID
11458 * hashed yet and not running, so nobody can access it.
11459 */
d859e29f 11460 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
11461
11462 /*
11463 * We dont have to disable NMIs - we are only looking at
11464 * the list, not manipulating it:
11465 */
6e6804d2 11466 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54
PZ
11467 ret = inherit_task_group(event, parent, parent_ctx,
11468 child, ctxn, &inherited_all);
889ff015 11469 if (ret)
e7cc4865 11470 goto out_unlock;
889ff015 11471 }
b93f7978 11472
dddd3379
TG
11473 /*
11474 * We can't hold ctx->lock when iterating the ->flexible_group list due
11475 * to allocations, but we need to prevent rotation because
11476 * rotate_ctx() will change the list from interrupt context.
11477 */
11478 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11479 parent_ctx->rotate_disable = 1;
11480 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11481
6e6804d2 11482 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54
PZ
11483 ret = inherit_task_group(event, parent, parent_ctx,
11484 child, ctxn, &inherited_all);
889ff015 11485 if (ret)
e7cc4865 11486 goto out_unlock;
564c2b21
PM
11487 }
11488
dddd3379
TG
11489 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11490 parent_ctx->rotate_disable = 0;
dddd3379 11491
8dc85d54 11492 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 11493
05cbaa28 11494 if (child_ctx && inherited_all) {
564c2b21
PM
11495 /*
11496 * Mark the child context as a clone of the parent
11497 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
11498 *
11499 * Note that if the parent is a clone, the holding of
11500 * parent_ctx->lock avoids it from being uncloned.
564c2b21 11501 */
c5ed5145 11502 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
11503 if (cloned_ctx) {
11504 child_ctx->parent_ctx = cloned_ctx;
25346b93 11505 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
11506 } else {
11507 child_ctx->parent_ctx = parent_ctx;
11508 child_ctx->parent_gen = parent_ctx->generation;
11509 }
11510 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
11511 }
11512
c5ed5145 11513 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 11514out_unlock:
d859e29f 11515 mutex_unlock(&parent_ctx->mutex);
6ab423e0 11516
25346b93 11517 perf_unpin_context(parent_ctx);
fe4b04fa 11518 put_ctx(parent_ctx);
ad3a37de 11519
6ab423e0 11520 return ret;
9b51f66d
IM
11521}
11522
8dc85d54
PZ
11523/*
11524 * Initialize the perf_event context in task_struct
11525 */
11526int perf_event_init_task(struct task_struct *child)
11527{
11528 int ctxn, ret;
11529
8550d7cb
ON
11530 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11531 mutex_init(&child->perf_event_mutex);
11532 INIT_LIST_HEAD(&child->perf_event_list);
11533
8dc85d54
PZ
11534 for_each_task_context_nr(ctxn) {
11535 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
11536 if (ret) {
11537 perf_event_free_task(child);
8dc85d54 11538 return ret;
6c72e350 11539 }
8dc85d54
PZ
11540 }
11541
11542 return 0;
11543}
11544
220b140b
PM
11545static void __init perf_event_init_all_cpus(void)
11546{
b28ab83c 11547 struct swevent_htable *swhash;
220b140b 11548 int cpu;
220b140b 11549
a63fbed7
TG
11550 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11551
220b140b 11552 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11553 swhash = &per_cpu(swevent_htable, cpu);
11554 mutex_init(&swhash->hlist_mutex);
2fde4f94 11555 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11556
11557 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11558 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11559
058fe1c0
DCC
11560#ifdef CONFIG_CGROUP_PERF
11561 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11562#endif
e48c1788 11563 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11564 }
11565}
11566
a63fbed7 11567void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11568{
108b02cf 11569 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11570
b28ab83c 11571 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11572 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11573 struct swevent_hlist *hlist;
11574
b28ab83c
PZ
11575 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11576 WARN_ON(!hlist);
11577 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11578 }
b28ab83c 11579 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11580}
11581
2965faa5 11582#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11583static void __perf_event_exit_context(void *__info)
0793a61d 11584{
108b02cf 11585 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11586 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11587 struct perf_event *event;
0793a61d 11588
fae3fde6 11589 raw_spin_lock(&ctx->lock);
0ee098c9 11590 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 11591 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11592 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11593 raw_spin_unlock(&ctx->lock);
0793a61d 11594}
108b02cf
PZ
11595
11596static void perf_event_exit_cpu_context(int cpu)
11597{
a63fbed7 11598 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11599 struct perf_event_context *ctx;
11600 struct pmu *pmu;
108b02cf 11601
a63fbed7
TG
11602 mutex_lock(&pmus_lock);
11603 list_for_each_entry(pmu, &pmus, entry) {
11604 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11605 ctx = &cpuctx->ctx;
108b02cf
PZ
11606
11607 mutex_lock(&ctx->mutex);
11608 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11609 cpuctx->online = 0;
108b02cf
PZ
11610 mutex_unlock(&ctx->mutex);
11611 }
a63fbed7
TG
11612 cpumask_clear_cpu(cpu, perf_online_mask);
11613 mutex_unlock(&pmus_lock);
108b02cf 11614}
00e16c3d
TG
11615#else
11616
11617static void perf_event_exit_cpu_context(int cpu) { }
11618
11619#endif
108b02cf 11620
a63fbed7
TG
11621int perf_event_init_cpu(unsigned int cpu)
11622{
11623 struct perf_cpu_context *cpuctx;
11624 struct perf_event_context *ctx;
11625 struct pmu *pmu;
11626
11627 perf_swevent_init_cpu(cpu);
11628
11629 mutex_lock(&pmus_lock);
11630 cpumask_set_cpu(cpu, perf_online_mask);
11631 list_for_each_entry(pmu, &pmus, entry) {
11632 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11633 ctx = &cpuctx->ctx;
11634
11635 mutex_lock(&ctx->mutex);
11636 cpuctx->online = 1;
11637 mutex_unlock(&ctx->mutex);
11638 }
11639 mutex_unlock(&pmus_lock);
11640
11641 return 0;
11642}
11643
00e16c3d 11644int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11645{
e3703f8c 11646 perf_event_exit_cpu_context(cpu);
00e16c3d 11647 return 0;
0793a61d 11648}
0793a61d 11649
c277443c
PZ
11650static int
11651perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11652{
11653 int cpu;
11654
11655 for_each_online_cpu(cpu)
11656 perf_event_exit_cpu(cpu);
11657
11658 return NOTIFY_OK;
11659}
11660
11661/*
11662 * Run the perf reboot notifier at the very last possible moment so that
11663 * the generic watchdog code runs as long as possible.
11664 */
11665static struct notifier_block perf_reboot_notifier = {
11666 .notifier_call = perf_reboot,
11667 .priority = INT_MIN,
11668};
11669
cdd6c482 11670void __init perf_event_init(void)
0793a61d 11671{
3c502e7a
JW
11672 int ret;
11673
2e80a82a
PZ
11674 idr_init(&pmu_idr);
11675
220b140b 11676 perf_event_init_all_cpus();
b0a873eb 11677 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11678 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11679 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11680 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11681 perf_tp_register();
00e16c3d 11682 perf_event_init_cpu(smp_processor_id());
c277443c 11683 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11684
11685 ret = init_hw_breakpoint();
11686 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11687
b01c3a00
JO
11688 /*
11689 * Build time assertion that we keep the data_head at the intended
11690 * location. IOW, validation we got the __reserved[] size right.
11691 */
11692 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11693 != 1024);
0793a61d 11694}
abe43400 11695
fd979c01
CS
11696ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11697 char *page)
11698{
11699 struct perf_pmu_events_attr *pmu_attr =
11700 container_of(attr, struct perf_pmu_events_attr, attr);
11701
11702 if (pmu_attr->event_str)
11703 return sprintf(page, "%s\n", pmu_attr->event_str);
11704
11705 return 0;
11706}
675965b0 11707EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11708
abe43400
PZ
11709static int __init perf_event_sysfs_init(void)
11710{
11711 struct pmu *pmu;
11712 int ret;
11713
11714 mutex_lock(&pmus_lock);
11715
11716 ret = bus_register(&pmu_bus);
11717 if (ret)
11718 goto unlock;
11719
11720 list_for_each_entry(pmu, &pmus, entry) {
11721 if (!pmu->name || pmu->type < 0)
11722 continue;
11723
11724 ret = pmu_dev_alloc(pmu);
11725 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11726 }
11727 pmu_bus_running = 1;
11728 ret = 0;
11729
11730unlock:
11731 mutex_unlock(&pmus_lock);
11732
11733 return ret;
11734}
11735device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11736
11737#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11738static struct cgroup_subsys_state *
11739perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11740{
11741 struct perf_cgroup *jc;
e5d1367f 11742
1b15d055 11743 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11744 if (!jc)
11745 return ERR_PTR(-ENOMEM);
11746
e5d1367f
SE
11747 jc->info = alloc_percpu(struct perf_cgroup_info);
11748 if (!jc->info) {
11749 kfree(jc);
11750 return ERR_PTR(-ENOMEM);
11751 }
11752
e5d1367f
SE
11753 return &jc->css;
11754}
11755
eb95419b 11756static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11757{
eb95419b
TH
11758 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11759
e5d1367f
SE
11760 free_percpu(jc->info);
11761 kfree(jc);
11762}
11763
11764static int __perf_cgroup_move(void *info)
11765{
11766 struct task_struct *task = info;
ddaaf4e2 11767 rcu_read_lock();
e5d1367f 11768 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11769 rcu_read_unlock();
e5d1367f
SE
11770 return 0;
11771}
11772
1f7dd3e5 11773static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11774{
bb9d97b6 11775 struct task_struct *task;
1f7dd3e5 11776 struct cgroup_subsys_state *css;
bb9d97b6 11777
1f7dd3e5 11778 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11779 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11780}
11781
073219e9 11782struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11783 .css_alloc = perf_cgroup_css_alloc,
11784 .css_free = perf_cgroup_css_free,
bb9d97b6 11785 .attach = perf_cgroup_attach,
968ebff1
TH
11786 /*
11787 * Implicitly enable on dfl hierarchy so that perf events can
11788 * always be filtered by cgroup2 path as long as perf_event
11789 * controller is not mounted on a legacy hierarchy.
11790 */
11791 .implicit_on_dfl = true,
8cfd8147 11792 .threaded = true,
e5d1367f
SE
11793};
11794#endif /* CONFIG_CGROUP_PERF */