]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/events/core.c
net: annotate ->poll() instances
[mirror_ubuntu-eoan-kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6 211
16444645 212 lockdep_assert_irqs_disabled();
fae3fde6 213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
16444645 309 lockdep_assert_irqs_disabled();
cca20946
PZ
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
9e630205
SE
433static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
0d3d73aa
PZ
585/*
586 * State based event timekeeping...
587 *
588 * The basic idea is to use event->state to determine which (if any) time
589 * fields to increment with the current delta. This means we only need to
590 * update timestamps when we change state or when they are explicitly requested
591 * (read).
592 *
593 * Event groups make things a little more complicated, but not terribly so. The
594 * rules for a group are that if the group leader is OFF the entire group is
595 * OFF, irrespecive of what the group member states are. This results in
596 * __perf_effective_state().
597 *
598 * A futher ramification is that when a group leader flips between OFF and
599 * !OFF, we need to update all group member times.
600 *
601 *
602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603 * need to make sure the relevant context time is updated before we try and
604 * update our timestamps.
605 */
606
607static __always_inline enum perf_event_state
608__perf_effective_state(struct perf_event *event)
609{
610 struct perf_event *leader = event->group_leader;
611
612 if (leader->state <= PERF_EVENT_STATE_OFF)
613 return leader->state;
614
615 return event->state;
616}
617
618static __always_inline void
619__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620{
621 enum perf_event_state state = __perf_effective_state(event);
622 u64 delta = now - event->tstamp;
623
624 *enabled = event->total_time_enabled;
625 if (state >= PERF_EVENT_STATE_INACTIVE)
626 *enabled += delta;
627
628 *running = event->total_time_running;
629 if (state >= PERF_EVENT_STATE_ACTIVE)
630 *running += delta;
631}
632
633static void perf_event_update_time(struct perf_event *event)
634{
635 u64 now = perf_event_time(event);
636
637 __perf_update_times(event, now, &event->total_time_enabled,
638 &event->total_time_running);
639 event->tstamp = now;
640}
641
642static void perf_event_update_sibling_time(struct perf_event *leader)
643{
644 struct perf_event *sibling;
645
646 list_for_each_entry(sibling, &leader->sibling_list, group_entry)
647 perf_event_update_time(sibling);
648}
649
650static void
651perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652{
653 if (event->state == state)
654 return;
655
656 perf_event_update_time(event);
657 /*
658 * If a group leader gets enabled/disabled all its siblings
659 * are affected too.
660 */
661 if ((event->state < 0) ^ (state < 0))
662 perf_event_update_sibling_time(event);
663
664 WRITE_ONCE(event->state, state);
665}
666
e5d1367f
SE
667#ifdef CONFIG_CGROUP_PERF
668
e5d1367f
SE
669static inline bool
670perf_cgroup_match(struct perf_event *event)
671{
672 struct perf_event_context *ctx = event->ctx;
673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
ef824fa1
TH
675 /* @event doesn't care about cgroup */
676 if (!event->cgrp)
677 return true;
678
679 /* wants specific cgroup scope but @cpuctx isn't associated with any */
680 if (!cpuctx->cgrp)
681 return false;
682
683 /*
684 * Cgroup scoping is recursive. An event enabled for a cgroup is
685 * also enabled for all its descendant cgroups. If @cpuctx's
686 * cgroup is a descendant of @event's (the test covers identity
687 * case), it's a match.
688 */
689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 event->cgrp->css.cgroup);
e5d1367f
SE
691}
692
e5d1367f
SE
693static inline void perf_detach_cgroup(struct perf_event *event)
694{
4e2ba650 695 css_put(&event->cgrp->css);
e5d1367f
SE
696 event->cgrp = NULL;
697}
698
699static inline int is_cgroup_event(struct perf_event *event)
700{
701 return event->cgrp != NULL;
702}
703
704static inline u64 perf_cgroup_event_time(struct perf_event *event)
705{
706 struct perf_cgroup_info *t;
707
708 t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 return t->time;
710}
711
712static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713{
714 struct perf_cgroup_info *info;
715 u64 now;
716
717 now = perf_clock();
718
719 info = this_cpu_ptr(cgrp->info);
720
721 info->time += now - info->timestamp;
722 info->timestamp = now;
723}
724
725static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726{
727 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728 if (cgrp_out)
729 __update_cgrp_time(cgrp_out);
730}
731
732static inline void update_cgrp_time_from_event(struct perf_event *event)
733{
3f7cce3c
SE
734 struct perf_cgroup *cgrp;
735
e5d1367f 736 /*
3f7cce3c
SE
737 * ensure we access cgroup data only when needed and
738 * when we know the cgroup is pinned (css_get)
e5d1367f 739 */
3f7cce3c 740 if (!is_cgroup_event(event))
e5d1367f
SE
741 return;
742
614e4c4e 743 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
744 /*
745 * Do not update time when cgroup is not active
746 */
e6a52033 747 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 748 __update_cgrp_time(event->cgrp);
e5d1367f
SE
749}
750
751static inline void
3f7cce3c
SE
752perf_cgroup_set_timestamp(struct task_struct *task,
753 struct perf_event_context *ctx)
e5d1367f
SE
754{
755 struct perf_cgroup *cgrp;
756 struct perf_cgroup_info *info;
757
3f7cce3c
SE
758 /*
759 * ctx->lock held by caller
760 * ensure we do not access cgroup data
761 * unless we have the cgroup pinned (css_get)
762 */
763 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
764 return;
765
614e4c4e 766 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 767 info = this_cpu_ptr(cgrp->info);
3f7cce3c 768 info->timestamp = ctx->timestamp;
e5d1367f
SE
769}
770
058fe1c0
DCC
771static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
772
e5d1367f
SE
773#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
774#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
775
776/*
777 * reschedule events based on the cgroup constraint of task.
778 *
779 * mode SWOUT : schedule out everything
780 * mode SWIN : schedule in based on cgroup for next
781 */
18ab2cd3 782static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
783{
784 struct perf_cpu_context *cpuctx;
058fe1c0 785 struct list_head *list;
e5d1367f
SE
786 unsigned long flags;
787
788 /*
058fe1c0
DCC
789 * Disable interrupts and preemption to avoid this CPU's
790 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
791 */
792 local_irq_save(flags);
793
058fe1c0
DCC
794 list = this_cpu_ptr(&cgrp_cpuctx_list);
795 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 797
058fe1c0
DCC
798 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 800
058fe1c0
DCC
801 if (mode & PERF_CGROUP_SWOUT) {
802 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
803 /*
804 * must not be done before ctxswout due
805 * to event_filter_match() in event_sched_out()
806 */
807 cpuctx->cgrp = NULL;
808 }
e5d1367f 809
058fe1c0
DCC
810 if (mode & PERF_CGROUP_SWIN) {
811 WARN_ON_ONCE(cpuctx->cgrp);
812 /*
813 * set cgrp before ctxsw in to allow
814 * event_filter_match() to not have to pass
815 * task around
816 * we pass the cpuctx->ctx to perf_cgroup_from_task()
817 * because cgorup events are only per-cpu
818 */
819 cpuctx->cgrp = perf_cgroup_from_task(task,
820 &cpuctx->ctx);
821 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 822 }
058fe1c0
DCC
823 perf_pmu_enable(cpuctx->ctx.pmu);
824 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
825 }
826
e5d1367f
SE
827 local_irq_restore(flags);
828}
829
a8d757ef
SE
830static inline void perf_cgroup_sched_out(struct task_struct *task,
831 struct task_struct *next)
e5d1367f 832{
a8d757ef
SE
833 struct perf_cgroup *cgrp1;
834 struct perf_cgroup *cgrp2 = NULL;
835
ddaaf4e2 836 rcu_read_lock();
a8d757ef
SE
837 /*
838 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
839 * we do not need to pass the ctx here because we know
840 * we are holding the rcu lock
a8d757ef 841 */
614e4c4e 842 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 843 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
844
845 /*
846 * only schedule out current cgroup events if we know
847 * that we are switching to a different cgroup. Otherwise,
848 * do no touch the cgroup events.
849 */
850 if (cgrp1 != cgrp2)
851 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
852
853 rcu_read_unlock();
e5d1367f
SE
854}
855
a8d757ef
SE
856static inline void perf_cgroup_sched_in(struct task_struct *prev,
857 struct task_struct *task)
e5d1367f 858{
a8d757ef
SE
859 struct perf_cgroup *cgrp1;
860 struct perf_cgroup *cgrp2 = NULL;
861
ddaaf4e2 862 rcu_read_lock();
a8d757ef
SE
863 /*
864 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
865 * we do not need to pass the ctx here because we know
866 * we are holding the rcu lock
a8d757ef 867 */
614e4c4e 868 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 869 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
870
871 /*
872 * only need to schedule in cgroup events if we are changing
873 * cgroup during ctxsw. Cgroup events were not scheduled
874 * out of ctxsw out if that was not the case.
875 */
876 if (cgrp1 != cgrp2)
877 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
878
879 rcu_read_unlock();
e5d1367f
SE
880}
881
882static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883 struct perf_event_attr *attr,
884 struct perf_event *group_leader)
885{
886 struct perf_cgroup *cgrp;
887 struct cgroup_subsys_state *css;
2903ff01
AV
888 struct fd f = fdget(fd);
889 int ret = 0;
e5d1367f 890
2903ff01 891 if (!f.file)
e5d1367f
SE
892 return -EBADF;
893
b583043e 894 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 895 &perf_event_cgrp_subsys);
3db272c0
LZ
896 if (IS_ERR(css)) {
897 ret = PTR_ERR(css);
898 goto out;
899 }
e5d1367f
SE
900
901 cgrp = container_of(css, struct perf_cgroup, css);
902 event->cgrp = cgrp;
903
904 /*
905 * all events in a group must monitor
906 * the same cgroup because a task belongs
907 * to only one perf cgroup at a time
908 */
909 if (group_leader && group_leader->cgrp != cgrp) {
910 perf_detach_cgroup(event);
911 ret = -EINVAL;
e5d1367f 912 }
3db272c0 913out:
2903ff01 914 fdput(f);
e5d1367f
SE
915 return ret;
916}
917
918static inline void
919perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
920{
921 struct perf_cgroup_info *t;
922 t = per_cpu_ptr(event->cgrp->info, event->cpu);
923 event->shadow_ctx_time = now - t->timestamp;
924}
925
db4a8356
DCC
926/*
927 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928 * cleared when last cgroup event is removed.
929 */
930static inline void
931list_update_cgroup_event(struct perf_event *event,
932 struct perf_event_context *ctx, bool add)
933{
934 struct perf_cpu_context *cpuctx;
058fe1c0 935 struct list_head *cpuctx_entry;
db4a8356
DCC
936
937 if (!is_cgroup_event(event))
938 return;
939
940 if (add && ctx->nr_cgroups++)
941 return;
942 else if (!add && --ctx->nr_cgroups)
943 return;
944 /*
945 * Because cgroup events are always per-cpu events,
946 * this will always be called from the right CPU.
947 */
948 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
949 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
950 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
951 if (add) {
be96b316
TH
952 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
953
058fe1c0 954 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
be96b316
TH
955 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956 cpuctx->cgrp = cgrp;
058fe1c0
DCC
957 } else {
958 list_del(cpuctx_entry);
8fc31ce8 959 cpuctx->cgrp = NULL;
058fe1c0 960 }
db4a8356
DCC
961}
962
e5d1367f
SE
963#else /* !CONFIG_CGROUP_PERF */
964
965static inline bool
966perf_cgroup_match(struct perf_event *event)
967{
968 return true;
969}
970
971static inline void perf_detach_cgroup(struct perf_event *event)
972{}
973
974static inline int is_cgroup_event(struct perf_event *event)
975{
976 return 0;
977}
978
e5d1367f
SE
979static inline void update_cgrp_time_from_event(struct perf_event *event)
980{
981}
982
983static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
984{
985}
986
a8d757ef
SE
987static inline void perf_cgroup_sched_out(struct task_struct *task,
988 struct task_struct *next)
e5d1367f
SE
989{
990}
991
a8d757ef
SE
992static inline void perf_cgroup_sched_in(struct task_struct *prev,
993 struct task_struct *task)
e5d1367f
SE
994{
995}
996
997static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
998 struct perf_event_attr *attr,
999 struct perf_event *group_leader)
1000{
1001 return -EINVAL;
1002}
1003
1004static inline void
3f7cce3c
SE
1005perf_cgroup_set_timestamp(struct task_struct *task,
1006 struct perf_event_context *ctx)
e5d1367f
SE
1007{
1008}
1009
1010void
1011perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1012{
1013}
1014
1015static inline void
1016perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1017{
1018}
1019
1020static inline u64 perf_cgroup_event_time(struct perf_event *event)
1021{
1022 return 0;
1023}
1024
db4a8356
DCC
1025static inline void
1026list_update_cgroup_event(struct perf_event *event,
1027 struct perf_event_context *ctx, bool add)
1028{
1029}
1030
e5d1367f
SE
1031#endif
1032
9e630205
SE
1033/*
1034 * set default to be dependent on timer tick just
1035 * like original code
1036 */
1037#define PERF_CPU_HRTIMER (1000 / HZ)
1038/*
8a1115ff 1039 * function must be called with interrupts disabled
9e630205 1040 */
272325c4 1041static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1042{
1043 struct perf_cpu_context *cpuctx;
9e630205
SE
1044 int rotations = 0;
1045
16444645 1046 lockdep_assert_irqs_disabled();
9e630205
SE
1047
1048 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1049 rotations = perf_rotate_context(cpuctx);
1050
4cfafd30
PZ
1051 raw_spin_lock(&cpuctx->hrtimer_lock);
1052 if (rotations)
9e630205 1053 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1054 else
1055 cpuctx->hrtimer_active = 0;
1056 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1057
4cfafd30 1058 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1059}
1060
272325c4 1061static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1062{
272325c4 1063 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1064 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1065 u64 interval;
9e630205
SE
1066
1067 /* no multiplexing needed for SW PMU */
1068 if (pmu->task_ctx_nr == perf_sw_context)
1069 return;
1070
62b85639
SE
1071 /*
1072 * check default is sane, if not set then force to
1073 * default interval (1/tick)
1074 */
272325c4
PZ
1075 interval = pmu->hrtimer_interval_ms;
1076 if (interval < 1)
1077 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1078
272325c4 1079 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1080
4cfafd30
PZ
1081 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1082 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1083 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1084}
1085
272325c4 1086static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1087{
272325c4 1088 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1089 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1090 unsigned long flags;
9e630205
SE
1091
1092 /* not for SW PMU */
1093 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1094 return 0;
9e630205 1095
4cfafd30
PZ
1096 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1097 if (!cpuctx->hrtimer_active) {
1098 cpuctx->hrtimer_active = 1;
1099 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1100 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1101 }
1102 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1103
272325c4 1104 return 0;
9e630205
SE
1105}
1106
33696fc0 1107void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1108{
33696fc0
PZ
1109 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1110 if (!(*count)++)
1111 pmu->pmu_disable(pmu);
9e35ad38 1112}
9e35ad38 1113
33696fc0 1114void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1115{
33696fc0
PZ
1116 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1117 if (!--(*count))
1118 pmu->pmu_enable(pmu);
9e35ad38 1119}
9e35ad38 1120
2fde4f94 1121static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1122
1123/*
2fde4f94
MR
1124 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1125 * perf_event_task_tick() are fully serialized because they're strictly cpu
1126 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1127 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1128 */
2fde4f94 1129static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1130{
2fde4f94 1131 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1132
16444645 1133 lockdep_assert_irqs_disabled();
b5ab4cd5 1134
2fde4f94
MR
1135 WARN_ON(!list_empty(&ctx->active_ctx_list));
1136
1137 list_add(&ctx->active_ctx_list, head);
1138}
1139
1140static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1141{
16444645 1142 lockdep_assert_irqs_disabled();
2fde4f94
MR
1143
1144 WARN_ON(list_empty(&ctx->active_ctx_list));
1145
1146 list_del_init(&ctx->active_ctx_list);
9e35ad38 1147}
9e35ad38 1148
cdd6c482 1149static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1150{
e5289d4a 1151 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1152}
1153
4af57ef2
YZ
1154static void free_ctx(struct rcu_head *head)
1155{
1156 struct perf_event_context *ctx;
1157
1158 ctx = container_of(head, struct perf_event_context, rcu_head);
1159 kfree(ctx->task_ctx_data);
1160 kfree(ctx);
1161}
1162
cdd6c482 1163static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1164{
564c2b21
PM
1165 if (atomic_dec_and_test(&ctx->refcount)) {
1166 if (ctx->parent_ctx)
1167 put_ctx(ctx->parent_ctx);
63b6da39 1168 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1169 put_task_struct(ctx->task);
4af57ef2 1170 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1171 }
a63eaf34
PM
1172}
1173
f63a8daa
PZ
1174/*
1175 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1176 * perf_pmu_migrate_context() we need some magic.
1177 *
1178 * Those places that change perf_event::ctx will hold both
1179 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1180 *
8b10c5e2
PZ
1181 * Lock ordering is by mutex address. There are two other sites where
1182 * perf_event_context::mutex nests and those are:
1183 *
1184 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1185 * perf_event_exit_event()
1186 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1187 *
1188 * - perf_event_init_context() [ parent, 0 ]
1189 * inherit_task_group()
1190 * inherit_group()
1191 * inherit_event()
1192 * perf_event_alloc()
1193 * perf_init_event()
1194 * perf_try_init_event() [ child , 1 ]
1195 *
1196 * While it appears there is an obvious deadlock here -- the parent and child
1197 * nesting levels are inverted between the two. This is in fact safe because
1198 * life-time rules separate them. That is an exiting task cannot fork, and a
1199 * spawning task cannot (yet) exit.
1200 *
1201 * But remember that that these are parent<->child context relations, and
1202 * migration does not affect children, therefore these two orderings should not
1203 * interact.
f63a8daa
PZ
1204 *
1205 * The change in perf_event::ctx does not affect children (as claimed above)
1206 * because the sys_perf_event_open() case will install a new event and break
1207 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1208 * concerned with cpuctx and that doesn't have children.
1209 *
1210 * The places that change perf_event::ctx will issue:
1211 *
1212 * perf_remove_from_context();
1213 * synchronize_rcu();
1214 * perf_install_in_context();
1215 *
1216 * to affect the change. The remove_from_context() + synchronize_rcu() should
1217 * quiesce the event, after which we can install it in the new location. This
1218 * means that only external vectors (perf_fops, prctl) can perturb the event
1219 * while in transit. Therefore all such accessors should also acquire
1220 * perf_event_context::mutex to serialize against this.
1221 *
1222 * However; because event->ctx can change while we're waiting to acquire
1223 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1224 * function.
1225 *
1226 * Lock order:
79c9ce57 1227 * cred_guard_mutex
f63a8daa
PZ
1228 * task_struct::perf_event_mutex
1229 * perf_event_context::mutex
f63a8daa 1230 * perf_event::child_mutex;
07c4a776 1231 * perf_event_context::lock
f63a8daa
PZ
1232 * perf_event::mmap_mutex
1233 * mmap_sem
1234 */
a83fe28e
PZ
1235static struct perf_event_context *
1236perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1237{
1238 struct perf_event_context *ctx;
1239
1240again:
1241 rcu_read_lock();
6aa7de05 1242 ctx = READ_ONCE(event->ctx);
f63a8daa
PZ
1243 if (!atomic_inc_not_zero(&ctx->refcount)) {
1244 rcu_read_unlock();
1245 goto again;
1246 }
1247 rcu_read_unlock();
1248
a83fe28e 1249 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1250 if (event->ctx != ctx) {
1251 mutex_unlock(&ctx->mutex);
1252 put_ctx(ctx);
1253 goto again;
1254 }
1255
1256 return ctx;
1257}
1258
a83fe28e
PZ
1259static inline struct perf_event_context *
1260perf_event_ctx_lock(struct perf_event *event)
1261{
1262 return perf_event_ctx_lock_nested(event, 0);
1263}
1264
f63a8daa
PZ
1265static void perf_event_ctx_unlock(struct perf_event *event,
1266 struct perf_event_context *ctx)
1267{
1268 mutex_unlock(&ctx->mutex);
1269 put_ctx(ctx);
1270}
1271
211de6eb
PZ
1272/*
1273 * This must be done under the ctx->lock, such as to serialize against
1274 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1275 * calling scheduler related locks and ctx->lock nests inside those.
1276 */
1277static __must_check struct perf_event_context *
1278unclone_ctx(struct perf_event_context *ctx)
71a851b4 1279{
211de6eb
PZ
1280 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1281
1282 lockdep_assert_held(&ctx->lock);
1283
1284 if (parent_ctx)
71a851b4 1285 ctx->parent_ctx = NULL;
5a3126d4 1286 ctx->generation++;
211de6eb
PZ
1287
1288 return parent_ctx;
71a851b4
PZ
1289}
1290
1d953111
ON
1291static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1292 enum pid_type type)
6844c09d 1293{
1d953111 1294 u32 nr;
6844c09d
ACM
1295 /*
1296 * only top level events have the pid namespace they were created in
1297 */
1298 if (event->parent)
1299 event = event->parent;
1300
1d953111
ON
1301 nr = __task_pid_nr_ns(p, type, event->ns);
1302 /* avoid -1 if it is idle thread or runs in another ns */
1303 if (!nr && !pid_alive(p))
1304 nr = -1;
1305 return nr;
6844c09d
ACM
1306}
1307
1d953111 1308static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1309{
1d953111
ON
1310 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1311}
6844c09d 1312
1d953111
ON
1313static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1314{
1315 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1316}
1317
7f453c24 1318/*
cdd6c482 1319 * If we inherit events we want to return the parent event id
7f453c24
PZ
1320 * to userspace.
1321 */
cdd6c482 1322static u64 primary_event_id(struct perf_event *event)
7f453c24 1323{
cdd6c482 1324 u64 id = event->id;
7f453c24 1325
cdd6c482
IM
1326 if (event->parent)
1327 id = event->parent->id;
7f453c24
PZ
1328
1329 return id;
1330}
1331
25346b93 1332/*
cdd6c482 1333 * Get the perf_event_context for a task and lock it.
63b6da39 1334 *
25346b93
PM
1335 * This has to cope with with the fact that until it is locked,
1336 * the context could get moved to another task.
1337 */
cdd6c482 1338static struct perf_event_context *
8dc85d54 1339perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1340{
cdd6c482 1341 struct perf_event_context *ctx;
25346b93 1342
9ed6060d 1343retry:
058ebd0e
PZ
1344 /*
1345 * One of the few rules of preemptible RCU is that one cannot do
1346 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1347 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1348 * rcu_read_unlock_special().
1349 *
1350 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1351 * side critical section has interrupts disabled.
058ebd0e 1352 */
2fd59077 1353 local_irq_save(*flags);
058ebd0e 1354 rcu_read_lock();
8dc85d54 1355 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1356 if (ctx) {
1357 /*
1358 * If this context is a clone of another, it might
1359 * get swapped for another underneath us by
cdd6c482 1360 * perf_event_task_sched_out, though the
25346b93
PM
1361 * rcu_read_lock() protects us from any context
1362 * getting freed. Lock the context and check if it
1363 * got swapped before we could get the lock, and retry
1364 * if so. If we locked the right context, then it
1365 * can't get swapped on us any more.
1366 */
2fd59077 1367 raw_spin_lock(&ctx->lock);
8dc85d54 1368 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1369 raw_spin_unlock(&ctx->lock);
058ebd0e 1370 rcu_read_unlock();
2fd59077 1371 local_irq_restore(*flags);
25346b93
PM
1372 goto retry;
1373 }
b49a9e7e 1374
63b6da39
PZ
1375 if (ctx->task == TASK_TOMBSTONE ||
1376 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1377 raw_spin_unlock(&ctx->lock);
b49a9e7e 1378 ctx = NULL;
828b6f0e
PZ
1379 } else {
1380 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1381 }
25346b93
PM
1382 }
1383 rcu_read_unlock();
2fd59077
PM
1384 if (!ctx)
1385 local_irq_restore(*flags);
25346b93
PM
1386 return ctx;
1387}
1388
1389/*
1390 * Get the context for a task and increment its pin_count so it
1391 * can't get swapped to another task. This also increments its
1392 * reference count so that the context can't get freed.
1393 */
8dc85d54
PZ
1394static struct perf_event_context *
1395perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1396{
cdd6c482 1397 struct perf_event_context *ctx;
25346b93
PM
1398 unsigned long flags;
1399
8dc85d54 1400 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1401 if (ctx) {
1402 ++ctx->pin_count;
e625cce1 1403 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1404 }
1405 return ctx;
1406}
1407
cdd6c482 1408static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1409{
1410 unsigned long flags;
1411
e625cce1 1412 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1413 --ctx->pin_count;
e625cce1 1414 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1415}
1416
f67218c3
PZ
1417/*
1418 * Update the record of the current time in a context.
1419 */
1420static void update_context_time(struct perf_event_context *ctx)
1421{
1422 u64 now = perf_clock();
1423
1424 ctx->time += now - ctx->timestamp;
1425 ctx->timestamp = now;
1426}
1427
4158755d
SE
1428static u64 perf_event_time(struct perf_event *event)
1429{
1430 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1431
1432 if (is_cgroup_event(event))
1433 return perf_cgroup_event_time(event);
1434
4158755d
SE
1435 return ctx ? ctx->time : 0;
1436}
1437
487f05e1
AS
1438static enum event_type_t get_event_type(struct perf_event *event)
1439{
1440 struct perf_event_context *ctx = event->ctx;
1441 enum event_type_t event_type;
1442
1443 lockdep_assert_held(&ctx->lock);
1444
3bda69c1
AS
1445 /*
1446 * It's 'group type', really, because if our group leader is
1447 * pinned, so are we.
1448 */
1449 if (event->group_leader != event)
1450 event = event->group_leader;
1451
487f05e1
AS
1452 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1453 if (!ctx->task)
1454 event_type |= EVENT_CPU;
1455
1456 return event_type;
1457}
1458
889ff015
FW
1459static struct list_head *
1460ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1461{
1462 if (event->attr.pinned)
1463 return &ctx->pinned_groups;
1464 else
1465 return &ctx->flexible_groups;
1466}
1467
fccc714b 1468/*
cdd6c482 1469 * Add a event from the lists for its context.
fccc714b
PZ
1470 * Must be called with ctx->mutex and ctx->lock held.
1471 */
04289bb9 1472static void
cdd6c482 1473list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1474{
c994d613
PZ
1475 lockdep_assert_held(&ctx->lock);
1476
8a49542c
PZ
1477 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1478 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1479
0d3d73aa
PZ
1480 event->tstamp = perf_event_time(event);
1481
04289bb9 1482 /*
8a49542c
PZ
1483 * If we're a stand alone event or group leader, we go to the context
1484 * list, group events are kept attached to the group so that
1485 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1486 */
8a49542c 1487 if (event->group_leader == event) {
889ff015
FW
1488 struct list_head *list;
1489
4ff6a8de 1490 event->group_caps = event->event_caps;
d6f962b5 1491
889ff015
FW
1492 list = ctx_group_list(event, ctx);
1493 list_add_tail(&event->group_entry, list);
5c148194 1494 }
592903cd 1495
db4a8356 1496 list_update_cgroup_event(event, ctx, true);
e5d1367f 1497
cdd6c482
IM
1498 list_add_rcu(&event->event_entry, &ctx->event_list);
1499 ctx->nr_events++;
1500 if (event->attr.inherit_stat)
bfbd3381 1501 ctx->nr_stat++;
5a3126d4
PZ
1502
1503 ctx->generation++;
04289bb9
IM
1504}
1505
0231bb53
JO
1506/*
1507 * Initialize event state based on the perf_event_attr::disabled.
1508 */
1509static inline void perf_event__state_init(struct perf_event *event)
1510{
1511 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1512 PERF_EVENT_STATE_INACTIVE;
1513}
1514
a723968c 1515static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1516{
1517 int entry = sizeof(u64); /* value */
1518 int size = 0;
1519 int nr = 1;
1520
1521 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1522 size += sizeof(u64);
1523
1524 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1525 size += sizeof(u64);
1526
1527 if (event->attr.read_format & PERF_FORMAT_ID)
1528 entry += sizeof(u64);
1529
1530 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1531 nr += nr_siblings;
c320c7b7
ACM
1532 size += sizeof(u64);
1533 }
1534
1535 size += entry * nr;
1536 event->read_size = size;
1537}
1538
a723968c 1539static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1540{
1541 struct perf_sample_data *data;
c320c7b7
ACM
1542 u16 size = 0;
1543
c320c7b7
ACM
1544 if (sample_type & PERF_SAMPLE_IP)
1545 size += sizeof(data->ip);
1546
6844c09d
ACM
1547 if (sample_type & PERF_SAMPLE_ADDR)
1548 size += sizeof(data->addr);
1549
1550 if (sample_type & PERF_SAMPLE_PERIOD)
1551 size += sizeof(data->period);
1552
c3feedf2
AK
1553 if (sample_type & PERF_SAMPLE_WEIGHT)
1554 size += sizeof(data->weight);
1555
6844c09d
ACM
1556 if (sample_type & PERF_SAMPLE_READ)
1557 size += event->read_size;
1558
d6be9ad6
SE
1559 if (sample_type & PERF_SAMPLE_DATA_SRC)
1560 size += sizeof(data->data_src.val);
1561
fdfbbd07
AK
1562 if (sample_type & PERF_SAMPLE_TRANSACTION)
1563 size += sizeof(data->txn);
1564
fc7ce9c7
KL
1565 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1566 size += sizeof(data->phys_addr);
1567
6844c09d
ACM
1568 event->header_size = size;
1569}
1570
a723968c
PZ
1571/*
1572 * Called at perf_event creation and when events are attached/detached from a
1573 * group.
1574 */
1575static void perf_event__header_size(struct perf_event *event)
1576{
1577 __perf_event_read_size(event,
1578 event->group_leader->nr_siblings);
1579 __perf_event_header_size(event, event->attr.sample_type);
1580}
1581
6844c09d
ACM
1582static void perf_event__id_header_size(struct perf_event *event)
1583{
1584 struct perf_sample_data *data;
1585 u64 sample_type = event->attr.sample_type;
1586 u16 size = 0;
1587
c320c7b7
ACM
1588 if (sample_type & PERF_SAMPLE_TID)
1589 size += sizeof(data->tid_entry);
1590
1591 if (sample_type & PERF_SAMPLE_TIME)
1592 size += sizeof(data->time);
1593
ff3d527c
AH
1594 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1595 size += sizeof(data->id);
1596
c320c7b7
ACM
1597 if (sample_type & PERF_SAMPLE_ID)
1598 size += sizeof(data->id);
1599
1600 if (sample_type & PERF_SAMPLE_STREAM_ID)
1601 size += sizeof(data->stream_id);
1602
1603 if (sample_type & PERF_SAMPLE_CPU)
1604 size += sizeof(data->cpu_entry);
1605
6844c09d 1606 event->id_header_size = size;
c320c7b7
ACM
1607}
1608
a723968c
PZ
1609static bool perf_event_validate_size(struct perf_event *event)
1610{
1611 /*
1612 * The values computed here will be over-written when we actually
1613 * attach the event.
1614 */
1615 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1616 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1617 perf_event__id_header_size(event);
1618
1619 /*
1620 * Sum the lot; should not exceed the 64k limit we have on records.
1621 * Conservative limit to allow for callchains and other variable fields.
1622 */
1623 if (event->read_size + event->header_size +
1624 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1625 return false;
1626
1627 return true;
1628}
1629
8a49542c
PZ
1630static void perf_group_attach(struct perf_event *event)
1631{
c320c7b7 1632 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1633
a76a82a3
PZ
1634 lockdep_assert_held(&event->ctx->lock);
1635
74c3337c
PZ
1636 /*
1637 * We can have double attach due to group movement in perf_event_open.
1638 */
1639 if (event->attach_state & PERF_ATTACH_GROUP)
1640 return;
1641
8a49542c
PZ
1642 event->attach_state |= PERF_ATTACH_GROUP;
1643
1644 if (group_leader == event)
1645 return;
1646
652884fe
PZ
1647 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1648
4ff6a8de 1649 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1650
1651 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1652 group_leader->nr_siblings++;
c320c7b7
ACM
1653
1654 perf_event__header_size(group_leader);
1655
1656 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1657 perf_event__header_size(pos);
8a49542c
PZ
1658}
1659
a63eaf34 1660/*
cdd6c482 1661 * Remove a event from the lists for its context.
fccc714b 1662 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1663 */
04289bb9 1664static void
cdd6c482 1665list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1666{
652884fe
PZ
1667 WARN_ON_ONCE(event->ctx != ctx);
1668 lockdep_assert_held(&ctx->lock);
1669
8a49542c
PZ
1670 /*
1671 * We can have double detach due to exit/hot-unplug + close.
1672 */
1673 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1674 return;
8a49542c
PZ
1675
1676 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1677
db4a8356 1678 list_update_cgroup_event(event, ctx, false);
e5d1367f 1679
cdd6c482
IM
1680 ctx->nr_events--;
1681 if (event->attr.inherit_stat)
bfbd3381 1682 ctx->nr_stat--;
8bc20959 1683
cdd6c482 1684 list_del_rcu(&event->event_entry);
04289bb9 1685
8a49542c
PZ
1686 if (event->group_leader == event)
1687 list_del_init(&event->group_entry);
5c148194 1688
b2e74a26
SE
1689 /*
1690 * If event was in error state, then keep it
1691 * that way, otherwise bogus counts will be
1692 * returned on read(). The only way to get out
1693 * of error state is by explicit re-enabling
1694 * of the event
1695 */
1696 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1697 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1698
1699 ctx->generation++;
050735b0
PZ
1700}
1701
8a49542c 1702static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1703{
1704 struct perf_event *sibling, *tmp;
8a49542c
PZ
1705 struct list_head *list = NULL;
1706
a76a82a3
PZ
1707 lockdep_assert_held(&event->ctx->lock);
1708
8a49542c
PZ
1709 /*
1710 * We can have double detach due to exit/hot-unplug + close.
1711 */
1712 if (!(event->attach_state & PERF_ATTACH_GROUP))
1713 return;
1714
1715 event->attach_state &= ~PERF_ATTACH_GROUP;
1716
1717 /*
1718 * If this is a sibling, remove it from its group.
1719 */
1720 if (event->group_leader != event) {
1721 list_del_init(&event->group_entry);
1722 event->group_leader->nr_siblings--;
c320c7b7 1723 goto out;
8a49542c
PZ
1724 }
1725
1726 if (!list_empty(&event->group_entry))
1727 list = &event->group_entry;
2e2af50b 1728
04289bb9 1729 /*
cdd6c482
IM
1730 * If this was a group event with sibling events then
1731 * upgrade the siblings to singleton events by adding them
8a49542c 1732 * to whatever list we are on.
04289bb9 1733 */
cdd6c482 1734 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1735 if (list)
1736 list_move_tail(&sibling->group_entry, list);
04289bb9 1737 sibling->group_leader = sibling;
d6f962b5
FW
1738
1739 /* Inherit group flags from the previous leader */
4ff6a8de 1740 sibling->group_caps = event->group_caps;
652884fe
PZ
1741
1742 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1743 }
c320c7b7
ACM
1744
1745out:
1746 perf_event__header_size(event->group_leader);
1747
1748 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1749 perf_event__header_size(tmp);
04289bb9
IM
1750}
1751
fadfe7be
JO
1752static bool is_orphaned_event(struct perf_event *event)
1753{
a69b0ca4 1754 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1755}
1756
2c81a647 1757static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1758{
1759 struct pmu *pmu = event->pmu;
1760 return pmu->filter_match ? pmu->filter_match(event) : 1;
1761}
1762
2c81a647
MR
1763/*
1764 * Check whether we should attempt to schedule an event group based on
1765 * PMU-specific filtering. An event group can consist of HW and SW events,
1766 * potentially with a SW leader, so we must check all the filters, to
1767 * determine whether a group is schedulable:
1768 */
1769static inline int pmu_filter_match(struct perf_event *event)
1770{
1771 struct perf_event *child;
1772
1773 if (!__pmu_filter_match(event))
1774 return 0;
1775
1776 list_for_each_entry(child, &event->sibling_list, group_entry) {
1777 if (!__pmu_filter_match(child))
1778 return 0;
1779 }
1780
1781 return 1;
1782}
1783
fa66f07a
SE
1784static inline int
1785event_filter_match(struct perf_event *event)
1786{
0b8f1e2e
PZ
1787 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1788 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1789}
1790
9ffcfa6f
SE
1791static void
1792event_sched_out(struct perf_event *event,
3b6f9e5c 1793 struct perf_cpu_context *cpuctx,
cdd6c482 1794 struct perf_event_context *ctx)
3b6f9e5c 1795{
0d3d73aa 1796 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
1797
1798 WARN_ON_ONCE(event->ctx != ctx);
1799 lockdep_assert_held(&ctx->lock);
1800
cdd6c482 1801 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1802 return;
3b6f9e5c 1803
44377277
AS
1804 perf_pmu_disable(event->pmu);
1805
28a967c3
PZ
1806 event->pmu->del(event, 0);
1807 event->oncpu = -1;
0d3d73aa 1808
cdd6c482
IM
1809 if (event->pending_disable) {
1810 event->pending_disable = 0;
0d3d73aa 1811 state = PERF_EVENT_STATE_OFF;
970892a9 1812 }
0d3d73aa 1813 perf_event_set_state(event, state);
3b6f9e5c 1814
cdd6c482 1815 if (!is_software_event(event))
3b6f9e5c 1816 cpuctx->active_oncpu--;
2fde4f94
MR
1817 if (!--ctx->nr_active)
1818 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1819 if (event->attr.freq && event->attr.sample_freq)
1820 ctx->nr_freq--;
cdd6c482 1821 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1822 cpuctx->exclusive = 0;
44377277
AS
1823
1824 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1825}
1826
d859e29f 1827static void
cdd6c482 1828group_sched_out(struct perf_event *group_event,
d859e29f 1829 struct perf_cpu_context *cpuctx,
cdd6c482 1830 struct perf_event_context *ctx)
d859e29f 1831{
cdd6c482 1832 struct perf_event *event;
0d3d73aa
PZ
1833
1834 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1835 return;
d859e29f 1836
3f005e7d
MR
1837 perf_pmu_disable(ctx->pmu);
1838
cdd6c482 1839 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1840
1841 /*
1842 * Schedule out siblings (if any):
1843 */
cdd6c482
IM
1844 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1845 event_sched_out(event, cpuctx, ctx);
d859e29f 1846
3f005e7d
MR
1847 perf_pmu_enable(ctx->pmu);
1848
0d3d73aa 1849 if (group_event->attr.exclusive)
d859e29f
PM
1850 cpuctx->exclusive = 0;
1851}
1852
45a0e07a 1853#define DETACH_GROUP 0x01UL
0017960f 1854
0793a61d 1855/*
cdd6c482 1856 * Cross CPU call to remove a performance event
0793a61d 1857 *
cdd6c482 1858 * We disable the event on the hardware level first. After that we
0793a61d
TG
1859 * remove it from the context list.
1860 */
fae3fde6
PZ
1861static void
1862__perf_remove_from_context(struct perf_event *event,
1863 struct perf_cpu_context *cpuctx,
1864 struct perf_event_context *ctx,
1865 void *info)
0793a61d 1866{
45a0e07a 1867 unsigned long flags = (unsigned long)info;
0793a61d 1868
3c5c8711
PZ
1869 if (ctx->is_active & EVENT_TIME) {
1870 update_context_time(ctx);
1871 update_cgrp_time_from_cpuctx(cpuctx);
1872 }
1873
cdd6c482 1874 event_sched_out(event, cpuctx, ctx);
45a0e07a 1875 if (flags & DETACH_GROUP)
46ce0fe9 1876 perf_group_detach(event);
cdd6c482 1877 list_del_event(event, ctx);
39a43640
PZ
1878
1879 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1880 ctx->is_active = 0;
39a43640
PZ
1881 if (ctx->task) {
1882 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1883 cpuctx->task_ctx = NULL;
1884 }
64ce3126 1885 }
0793a61d
TG
1886}
1887
0793a61d 1888/*
cdd6c482 1889 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1890 *
cdd6c482
IM
1891 * If event->ctx is a cloned context, callers must make sure that
1892 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1893 * remains valid. This is OK when called from perf_release since
1894 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1895 * When called from perf_event_exit_task, it's OK because the
c93f7669 1896 * context has been detached from its task.
0793a61d 1897 */
45a0e07a 1898static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1899{
a76a82a3
PZ
1900 struct perf_event_context *ctx = event->ctx;
1901
1902 lockdep_assert_held(&ctx->mutex);
0793a61d 1903
45a0e07a 1904 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1905
1906 /*
1907 * The above event_function_call() can NO-OP when it hits
1908 * TASK_TOMBSTONE. In that case we must already have been detached
1909 * from the context (by perf_event_exit_event()) but the grouping
1910 * might still be in-tact.
1911 */
1912 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1913 if ((flags & DETACH_GROUP) &&
1914 (event->attach_state & PERF_ATTACH_GROUP)) {
1915 /*
1916 * Since in that case we cannot possibly be scheduled, simply
1917 * detach now.
1918 */
1919 raw_spin_lock_irq(&ctx->lock);
1920 perf_group_detach(event);
1921 raw_spin_unlock_irq(&ctx->lock);
1922 }
0793a61d
TG
1923}
1924
d859e29f 1925/*
cdd6c482 1926 * Cross CPU call to disable a performance event
d859e29f 1927 */
fae3fde6
PZ
1928static void __perf_event_disable(struct perf_event *event,
1929 struct perf_cpu_context *cpuctx,
1930 struct perf_event_context *ctx,
1931 void *info)
7b648018 1932{
fae3fde6
PZ
1933 if (event->state < PERF_EVENT_STATE_INACTIVE)
1934 return;
7b648018 1935
3c5c8711
PZ
1936 if (ctx->is_active & EVENT_TIME) {
1937 update_context_time(ctx);
1938 update_cgrp_time_from_event(event);
1939 }
1940
fae3fde6
PZ
1941 if (event == event->group_leader)
1942 group_sched_out(event, cpuctx, ctx);
1943 else
1944 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
1945
1946 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
1947}
1948
d859e29f 1949/*
cdd6c482 1950 * Disable a event.
c93f7669 1951 *
cdd6c482
IM
1952 * If event->ctx is a cloned context, callers must make sure that
1953 * every task struct that event->ctx->task could possibly point to
c93f7669 1954 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1955 * perf_event_for_each_child or perf_event_for_each because they
1956 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1957 * goes to exit will block in perf_event_exit_event().
1958 *
cdd6c482 1959 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1960 * is the current context on this CPU and preemption is disabled,
cdd6c482 1961 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1962 */
f63a8daa 1963static void _perf_event_disable(struct perf_event *event)
d859e29f 1964{
cdd6c482 1965 struct perf_event_context *ctx = event->ctx;
d859e29f 1966
e625cce1 1967 raw_spin_lock_irq(&ctx->lock);
7b648018 1968 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1969 raw_spin_unlock_irq(&ctx->lock);
7b648018 1970 return;
53cfbf59 1971 }
e625cce1 1972 raw_spin_unlock_irq(&ctx->lock);
7b648018 1973
fae3fde6
PZ
1974 event_function_call(event, __perf_event_disable, NULL);
1975}
1976
1977void perf_event_disable_local(struct perf_event *event)
1978{
1979 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1980}
f63a8daa
PZ
1981
1982/*
1983 * Strictly speaking kernel users cannot create groups and therefore this
1984 * interface does not need the perf_event_ctx_lock() magic.
1985 */
1986void perf_event_disable(struct perf_event *event)
1987{
1988 struct perf_event_context *ctx;
1989
1990 ctx = perf_event_ctx_lock(event);
1991 _perf_event_disable(event);
1992 perf_event_ctx_unlock(event, ctx);
1993}
dcfce4a0 1994EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1995
5aab90ce
JO
1996void perf_event_disable_inatomic(struct perf_event *event)
1997{
1998 event->pending_disable = 1;
1999 irq_work_queue(&event->pending);
2000}
2001
e5d1367f 2002static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2003 struct perf_event_context *ctx)
e5d1367f
SE
2004{
2005 /*
2006 * use the correct time source for the time snapshot
2007 *
2008 * We could get by without this by leveraging the
2009 * fact that to get to this function, the caller
2010 * has most likely already called update_context_time()
2011 * and update_cgrp_time_xx() and thus both timestamp
2012 * are identical (or very close). Given that tstamp is,
2013 * already adjusted for cgroup, we could say that:
2014 * tstamp - ctx->timestamp
2015 * is equivalent to
2016 * tstamp - cgrp->timestamp.
2017 *
2018 * Then, in perf_output_read(), the calculation would
2019 * work with no changes because:
2020 * - event is guaranteed scheduled in
2021 * - no scheduled out in between
2022 * - thus the timestamp would be the same
2023 *
2024 * But this is a bit hairy.
2025 *
2026 * So instead, we have an explicit cgroup call to remain
2027 * within the time time source all along. We believe it
2028 * is cleaner and simpler to understand.
2029 */
2030 if (is_cgroup_event(event))
0d3d73aa 2031 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2032 else
0d3d73aa 2033 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2034}
2035
4fe757dd
PZ
2036#define MAX_INTERRUPTS (~0ULL)
2037
2038static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2039static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2040
235c7fc7 2041static int
9ffcfa6f 2042event_sched_in(struct perf_event *event,
235c7fc7 2043 struct perf_cpu_context *cpuctx,
6e37738a 2044 struct perf_event_context *ctx)
235c7fc7 2045{
44377277 2046 int ret = 0;
4158755d 2047
63342411
PZ
2048 lockdep_assert_held(&ctx->lock);
2049
cdd6c482 2050 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2051 return 0;
2052
95ff4ca2
AS
2053 WRITE_ONCE(event->oncpu, smp_processor_id());
2054 /*
0c1cbc18
PZ
2055 * Order event::oncpu write to happen before the ACTIVE state is
2056 * visible. This allows perf_event_{stop,read}() to observe the correct
2057 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2058 */
2059 smp_wmb();
0d3d73aa 2060 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2061
2062 /*
2063 * Unthrottle events, since we scheduled we might have missed several
2064 * ticks already, also for a heavily scheduling task there is little
2065 * guarantee it'll get a tick in a timely manner.
2066 */
2067 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2068 perf_log_throttle(event, 1);
2069 event->hw.interrupts = 0;
2070 }
2071
44377277
AS
2072 perf_pmu_disable(event->pmu);
2073
0d3d73aa 2074 perf_set_shadow_time(event, ctx);
72f669c0 2075
ec0d7729
AS
2076 perf_log_itrace_start(event);
2077
a4eaf7f1 2078 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2079 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2080 event->oncpu = -1;
44377277
AS
2081 ret = -EAGAIN;
2082 goto out;
235c7fc7
IM
2083 }
2084
cdd6c482 2085 if (!is_software_event(event))
3b6f9e5c 2086 cpuctx->active_oncpu++;
2fde4f94
MR
2087 if (!ctx->nr_active++)
2088 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2089 if (event->attr.freq && event->attr.sample_freq)
2090 ctx->nr_freq++;
235c7fc7 2091
cdd6c482 2092 if (event->attr.exclusive)
3b6f9e5c
PM
2093 cpuctx->exclusive = 1;
2094
44377277
AS
2095out:
2096 perf_pmu_enable(event->pmu);
2097
2098 return ret;
235c7fc7
IM
2099}
2100
6751b71e 2101static int
cdd6c482 2102group_sched_in(struct perf_event *group_event,
6751b71e 2103 struct perf_cpu_context *cpuctx,
6e37738a 2104 struct perf_event_context *ctx)
6751b71e 2105{
6bde9b6c 2106 struct perf_event *event, *partial_group = NULL;
4a234593 2107 struct pmu *pmu = ctx->pmu;
6751b71e 2108
cdd6c482 2109 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2110 return 0;
2111
fbbe0701 2112 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2113
9ffcfa6f 2114 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2115 pmu->cancel_txn(pmu);
272325c4 2116 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2117 return -EAGAIN;
90151c35 2118 }
6751b71e
PM
2119
2120 /*
2121 * Schedule in siblings as one group (if any):
2122 */
cdd6c482 2123 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2124 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2125 partial_group = event;
6751b71e
PM
2126 goto group_error;
2127 }
2128 }
2129
9ffcfa6f 2130 if (!pmu->commit_txn(pmu))
6e85158c 2131 return 0;
9ffcfa6f 2132
6751b71e
PM
2133group_error:
2134 /*
2135 * Groups can be scheduled in as one unit only, so undo any
2136 * partial group before returning:
0d3d73aa 2137 * The events up to the failed event are scheduled out normally.
6751b71e 2138 */
cdd6c482
IM
2139 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2140 if (event == partial_group)
0d3d73aa 2141 break;
d7842da4 2142
0d3d73aa 2143 event_sched_out(event, cpuctx, ctx);
6751b71e 2144 }
9ffcfa6f 2145 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2146
ad5133b7 2147 pmu->cancel_txn(pmu);
90151c35 2148
272325c4 2149 perf_mux_hrtimer_restart(cpuctx);
9e630205 2150
6751b71e
PM
2151 return -EAGAIN;
2152}
2153
3b6f9e5c 2154/*
cdd6c482 2155 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2156 */
cdd6c482 2157static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2158 struct perf_cpu_context *cpuctx,
2159 int can_add_hw)
2160{
2161 /*
cdd6c482 2162 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2163 */
4ff6a8de 2164 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2165 return 1;
2166 /*
2167 * If an exclusive group is already on, no other hardware
cdd6c482 2168 * events can go on.
3b6f9e5c
PM
2169 */
2170 if (cpuctx->exclusive)
2171 return 0;
2172 /*
2173 * If this group is exclusive and there are already
cdd6c482 2174 * events on the CPU, it can't go on.
3b6f9e5c 2175 */
cdd6c482 2176 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2177 return 0;
2178 /*
2179 * Otherwise, try to add it if all previous groups were able
2180 * to go on.
2181 */
2182 return can_add_hw;
2183}
2184
cdd6c482
IM
2185static void add_event_to_ctx(struct perf_event *event,
2186 struct perf_event_context *ctx)
53cfbf59 2187{
cdd6c482 2188 list_add_event(event, ctx);
8a49542c 2189 perf_group_attach(event);
53cfbf59
PM
2190}
2191
bd2afa49
PZ
2192static void ctx_sched_out(struct perf_event_context *ctx,
2193 struct perf_cpu_context *cpuctx,
2194 enum event_type_t event_type);
2c29ef0f
PZ
2195static void
2196ctx_sched_in(struct perf_event_context *ctx,
2197 struct perf_cpu_context *cpuctx,
2198 enum event_type_t event_type,
2199 struct task_struct *task);
fe4b04fa 2200
bd2afa49 2201static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2202 struct perf_event_context *ctx,
2203 enum event_type_t event_type)
bd2afa49
PZ
2204{
2205 if (!cpuctx->task_ctx)
2206 return;
2207
2208 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2209 return;
2210
487f05e1 2211 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2212}
2213
dce5855b
PZ
2214static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2215 struct perf_event_context *ctx,
2216 struct task_struct *task)
2217{
2218 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2219 if (ctx)
2220 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2221 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2222 if (ctx)
2223 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2224}
2225
487f05e1
AS
2226/*
2227 * We want to maintain the following priority of scheduling:
2228 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2229 * - task pinned (EVENT_PINNED)
2230 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2231 * - task flexible (EVENT_FLEXIBLE).
2232 *
2233 * In order to avoid unscheduling and scheduling back in everything every
2234 * time an event is added, only do it for the groups of equal priority and
2235 * below.
2236 *
2237 * This can be called after a batch operation on task events, in which case
2238 * event_type is a bit mask of the types of events involved. For CPU events,
2239 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2240 */
3e349507 2241static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2242 struct perf_event_context *task_ctx,
2243 enum event_type_t event_type)
0017960f 2244{
487f05e1
AS
2245 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2246 bool cpu_event = !!(event_type & EVENT_CPU);
2247
2248 /*
2249 * If pinned groups are involved, flexible groups also need to be
2250 * scheduled out.
2251 */
2252 if (event_type & EVENT_PINNED)
2253 event_type |= EVENT_FLEXIBLE;
2254
3e349507
PZ
2255 perf_pmu_disable(cpuctx->ctx.pmu);
2256 if (task_ctx)
487f05e1
AS
2257 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2258
2259 /*
2260 * Decide which cpu ctx groups to schedule out based on the types
2261 * of events that caused rescheduling:
2262 * - EVENT_CPU: schedule out corresponding groups;
2263 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2264 * - otherwise, do nothing more.
2265 */
2266 if (cpu_event)
2267 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2268 else if (ctx_event_type & EVENT_PINNED)
2269 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2270
3e349507
PZ
2271 perf_event_sched_in(cpuctx, task_ctx, current);
2272 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2273}
2274
0793a61d 2275/*
cdd6c482 2276 * Cross CPU call to install and enable a performance event
682076ae 2277 *
a096309b
PZ
2278 * Very similar to remote_function() + event_function() but cannot assume that
2279 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2280 */
fe4b04fa 2281static int __perf_install_in_context(void *info)
0793a61d 2282{
a096309b
PZ
2283 struct perf_event *event = info;
2284 struct perf_event_context *ctx = event->ctx;
108b02cf 2285 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2286 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2287 bool reprogram = true;
a096309b 2288 int ret = 0;
0793a61d 2289
63b6da39 2290 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2291 if (ctx->task) {
b58f6b0d
PZ
2292 raw_spin_lock(&ctx->lock);
2293 task_ctx = ctx;
a096309b 2294
63cae12b 2295 reprogram = (ctx->task == current);
b58f6b0d 2296
39a43640 2297 /*
63cae12b
PZ
2298 * If the task is running, it must be running on this CPU,
2299 * otherwise we cannot reprogram things.
2300 *
2301 * If its not running, we don't care, ctx->lock will
2302 * serialize against it becoming runnable.
39a43640 2303 */
63cae12b
PZ
2304 if (task_curr(ctx->task) && !reprogram) {
2305 ret = -ESRCH;
2306 goto unlock;
2307 }
a096309b 2308
63cae12b 2309 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2310 } else if (task_ctx) {
2311 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2312 }
b58f6b0d 2313
63cae12b 2314 if (reprogram) {
a096309b
PZ
2315 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2316 add_event_to_ctx(event, ctx);
487f05e1 2317 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2318 } else {
2319 add_event_to_ctx(event, ctx);
2320 }
2321
63b6da39 2322unlock:
2c29ef0f 2323 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2324
a096309b 2325 return ret;
0793a61d
TG
2326}
2327
2328/*
a096309b
PZ
2329 * Attach a performance event to a context.
2330 *
2331 * Very similar to event_function_call, see comment there.
0793a61d
TG
2332 */
2333static void
cdd6c482
IM
2334perf_install_in_context(struct perf_event_context *ctx,
2335 struct perf_event *event,
0793a61d
TG
2336 int cpu)
2337{
a096309b 2338 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2339
fe4b04fa
PZ
2340 lockdep_assert_held(&ctx->mutex);
2341
0cda4c02
YZ
2342 if (event->cpu != -1)
2343 event->cpu = cpu;
c3f00c70 2344
0b8f1e2e
PZ
2345 /*
2346 * Ensures that if we can observe event->ctx, both the event and ctx
2347 * will be 'complete'. See perf_iterate_sb_cpu().
2348 */
2349 smp_store_release(&event->ctx, ctx);
2350
a096309b
PZ
2351 if (!task) {
2352 cpu_function_call(cpu, __perf_install_in_context, event);
2353 return;
2354 }
2355
2356 /*
2357 * Should not happen, we validate the ctx is still alive before calling.
2358 */
2359 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2360 return;
2361
39a43640
PZ
2362 /*
2363 * Installing events is tricky because we cannot rely on ctx->is_active
2364 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2365 *
2366 * Instead we use task_curr(), which tells us if the task is running.
2367 * However, since we use task_curr() outside of rq::lock, we can race
2368 * against the actual state. This means the result can be wrong.
2369 *
2370 * If we get a false positive, we retry, this is harmless.
2371 *
2372 * If we get a false negative, things are complicated. If we are after
2373 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2374 * value must be correct. If we're before, it doesn't matter since
2375 * perf_event_context_sched_in() will program the counter.
2376 *
2377 * However, this hinges on the remote context switch having observed
2378 * our task->perf_event_ctxp[] store, such that it will in fact take
2379 * ctx::lock in perf_event_context_sched_in().
2380 *
2381 * We do this by task_function_call(), if the IPI fails to hit the task
2382 * we know any future context switch of task must see the
2383 * perf_event_ctpx[] store.
39a43640 2384 */
63cae12b 2385
63b6da39 2386 /*
63cae12b
PZ
2387 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2388 * task_cpu() load, such that if the IPI then does not find the task
2389 * running, a future context switch of that task must observe the
2390 * store.
63b6da39 2391 */
63cae12b
PZ
2392 smp_mb();
2393again:
2394 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2395 return;
2396
2397 raw_spin_lock_irq(&ctx->lock);
2398 task = ctx->task;
84c4e620 2399 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2400 /*
2401 * Cannot happen because we already checked above (which also
2402 * cannot happen), and we hold ctx->mutex, which serializes us
2403 * against perf_event_exit_task_context().
2404 */
63b6da39
PZ
2405 raw_spin_unlock_irq(&ctx->lock);
2406 return;
2407 }
39a43640 2408 /*
63cae12b
PZ
2409 * If the task is not running, ctx->lock will avoid it becoming so,
2410 * thus we can safely install the event.
39a43640 2411 */
63cae12b
PZ
2412 if (task_curr(task)) {
2413 raw_spin_unlock_irq(&ctx->lock);
2414 goto again;
2415 }
2416 add_event_to_ctx(event, ctx);
2417 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2418}
2419
d859e29f 2420/*
cdd6c482 2421 * Cross CPU call to enable a performance event
d859e29f 2422 */
fae3fde6
PZ
2423static void __perf_event_enable(struct perf_event *event,
2424 struct perf_cpu_context *cpuctx,
2425 struct perf_event_context *ctx,
2426 void *info)
04289bb9 2427{
cdd6c482 2428 struct perf_event *leader = event->group_leader;
fae3fde6 2429 struct perf_event_context *task_ctx;
04289bb9 2430
6e801e01
PZ
2431 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2432 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2433 return;
3cbed429 2434
bd2afa49
PZ
2435 if (ctx->is_active)
2436 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2437
0d3d73aa 2438 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2439
fae3fde6
PZ
2440 if (!ctx->is_active)
2441 return;
2442
e5d1367f 2443 if (!event_filter_match(event)) {
bd2afa49 2444 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2445 return;
e5d1367f 2446 }
f4c4176f 2447
04289bb9 2448 /*
cdd6c482 2449 * If the event is in a group and isn't the group leader,
d859e29f 2450 * then don't put it on unless the group is on.
04289bb9 2451 */
bd2afa49
PZ
2452 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2453 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2454 return;
bd2afa49 2455 }
fe4b04fa 2456
fae3fde6
PZ
2457 task_ctx = cpuctx->task_ctx;
2458 if (ctx->task)
2459 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2460
487f05e1 2461 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2462}
2463
d859e29f 2464/*
cdd6c482 2465 * Enable a event.
c93f7669 2466 *
cdd6c482
IM
2467 * If event->ctx is a cloned context, callers must make sure that
2468 * every task struct that event->ctx->task could possibly point to
c93f7669 2469 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2470 * perf_event_for_each_child or perf_event_for_each as described
2471 * for perf_event_disable.
d859e29f 2472 */
f63a8daa 2473static void _perf_event_enable(struct perf_event *event)
d859e29f 2474{
cdd6c482 2475 struct perf_event_context *ctx = event->ctx;
d859e29f 2476
7b648018 2477 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2478 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2479 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2480 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2481 return;
2482 }
2483
d859e29f 2484 /*
cdd6c482 2485 * If the event is in error state, clear that first.
7b648018
PZ
2486 *
2487 * That way, if we see the event in error state below, we know that it
2488 * has gone back into error state, as distinct from the task having
2489 * been scheduled away before the cross-call arrived.
d859e29f 2490 */
cdd6c482
IM
2491 if (event->state == PERF_EVENT_STATE_ERROR)
2492 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2493 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2494
fae3fde6 2495 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2496}
f63a8daa
PZ
2497
2498/*
2499 * See perf_event_disable();
2500 */
2501void perf_event_enable(struct perf_event *event)
2502{
2503 struct perf_event_context *ctx;
2504
2505 ctx = perf_event_ctx_lock(event);
2506 _perf_event_enable(event);
2507 perf_event_ctx_unlock(event, ctx);
2508}
dcfce4a0 2509EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2510
375637bc
AS
2511struct stop_event_data {
2512 struct perf_event *event;
2513 unsigned int restart;
2514};
2515
95ff4ca2
AS
2516static int __perf_event_stop(void *info)
2517{
375637bc
AS
2518 struct stop_event_data *sd = info;
2519 struct perf_event *event = sd->event;
95ff4ca2 2520
375637bc 2521 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2522 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2523 return 0;
2524
2525 /* matches smp_wmb() in event_sched_in() */
2526 smp_rmb();
2527
2528 /*
2529 * There is a window with interrupts enabled before we get here,
2530 * so we need to check again lest we try to stop another CPU's event.
2531 */
2532 if (READ_ONCE(event->oncpu) != smp_processor_id())
2533 return -EAGAIN;
2534
2535 event->pmu->stop(event, PERF_EF_UPDATE);
2536
375637bc
AS
2537 /*
2538 * May race with the actual stop (through perf_pmu_output_stop()),
2539 * but it is only used for events with AUX ring buffer, and such
2540 * events will refuse to restart because of rb::aux_mmap_count==0,
2541 * see comments in perf_aux_output_begin().
2542 *
2543 * Since this is happening on a event-local CPU, no trace is lost
2544 * while restarting.
2545 */
2546 if (sd->restart)
c9bbdd48 2547 event->pmu->start(event, 0);
375637bc 2548
95ff4ca2
AS
2549 return 0;
2550}
2551
767ae086 2552static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2553{
2554 struct stop_event_data sd = {
2555 .event = event,
767ae086 2556 .restart = restart,
375637bc
AS
2557 };
2558 int ret = 0;
2559
2560 do {
2561 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2562 return 0;
2563
2564 /* matches smp_wmb() in event_sched_in() */
2565 smp_rmb();
2566
2567 /*
2568 * We only want to restart ACTIVE events, so if the event goes
2569 * inactive here (event->oncpu==-1), there's nothing more to do;
2570 * fall through with ret==-ENXIO.
2571 */
2572 ret = cpu_function_call(READ_ONCE(event->oncpu),
2573 __perf_event_stop, &sd);
2574 } while (ret == -EAGAIN);
2575
2576 return ret;
2577}
2578
2579/*
2580 * In order to contain the amount of racy and tricky in the address filter
2581 * configuration management, it is a two part process:
2582 *
2583 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2584 * we update the addresses of corresponding vmas in
2585 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2586 * (p2) when an event is scheduled in (pmu::add), it calls
2587 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2588 * if the generation has changed since the previous call.
2589 *
2590 * If (p1) happens while the event is active, we restart it to force (p2).
2591 *
2592 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2593 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2594 * ioctl;
2595 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2596 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2597 * for reading;
2598 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2599 * of exec.
2600 */
2601void perf_event_addr_filters_sync(struct perf_event *event)
2602{
2603 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2604
2605 if (!has_addr_filter(event))
2606 return;
2607
2608 raw_spin_lock(&ifh->lock);
2609 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2610 event->pmu->addr_filters_sync(event);
2611 event->hw.addr_filters_gen = event->addr_filters_gen;
2612 }
2613 raw_spin_unlock(&ifh->lock);
2614}
2615EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2616
f63a8daa 2617static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2618{
2023b359 2619 /*
cdd6c482 2620 * not supported on inherited events
2023b359 2621 */
2e939d1d 2622 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2623 return -EINVAL;
2624
cdd6c482 2625 atomic_add(refresh, &event->event_limit);
f63a8daa 2626 _perf_event_enable(event);
2023b359
PZ
2627
2628 return 0;
79f14641 2629}
f63a8daa
PZ
2630
2631/*
2632 * See perf_event_disable()
2633 */
2634int perf_event_refresh(struct perf_event *event, int refresh)
2635{
2636 struct perf_event_context *ctx;
2637 int ret;
2638
2639 ctx = perf_event_ctx_lock(event);
2640 ret = _perf_event_refresh(event, refresh);
2641 perf_event_ctx_unlock(event, ctx);
2642
2643 return ret;
2644}
26ca5c11 2645EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2646
5b0311e1
FW
2647static void ctx_sched_out(struct perf_event_context *ctx,
2648 struct perf_cpu_context *cpuctx,
2649 enum event_type_t event_type)
235c7fc7 2650{
db24d33e 2651 int is_active = ctx->is_active;
c994d613 2652 struct perf_event *event;
235c7fc7 2653
c994d613 2654 lockdep_assert_held(&ctx->lock);
235c7fc7 2655
39a43640
PZ
2656 if (likely(!ctx->nr_events)) {
2657 /*
2658 * See __perf_remove_from_context().
2659 */
2660 WARN_ON_ONCE(ctx->is_active);
2661 if (ctx->task)
2662 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2663 return;
39a43640
PZ
2664 }
2665
db24d33e 2666 ctx->is_active &= ~event_type;
3cbaa590
PZ
2667 if (!(ctx->is_active & EVENT_ALL))
2668 ctx->is_active = 0;
2669
63e30d3e
PZ
2670 if (ctx->task) {
2671 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2672 if (!ctx->is_active)
2673 cpuctx->task_ctx = NULL;
2674 }
facc4307 2675
8fdc6539
PZ
2676 /*
2677 * Always update time if it was set; not only when it changes.
2678 * Otherwise we can 'forget' to update time for any but the last
2679 * context we sched out. For example:
2680 *
2681 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2682 * ctx_sched_out(.event_type = EVENT_PINNED)
2683 *
2684 * would only update time for the pinned events.
2685 */
3cbaa590
PZ
2686 if (is_active & EVENT_TIME) {
2687 /* update (and stop) ctx time */
2688 update_context_time(ctx);
2689 update_cgrp_time_from_cpuctx(cpuctx);
2690 }
2691
8fdc6539
PZ
2692 is_active ^= ctx->is_active; /* changed bits */
2693
3cbaa590 2694 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2695 return;
5b0311e1 2696
075e0b00 2697 perf_pmu_disable(ctx->pmu);
3cbaa590 2698 if (is_active & EVENT_PINNED) {
889ff015
FW
2699 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2700 group_sched_out(event, cpuctx, ctx);
9ed6060d 2701 }
889ff015 2702
3cbaa590 2703 if (is_active & EVENT_FLEXIBLE) {
889ff015 2704 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2705 group_sched_out(event, cpuctx, ctx);
9ed6060d 2706 }
1b9a644f 2707 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2708}
2709
564c2b21 2710/*
5a3126d4
PZ
2711 * Test whether two contexts are equivalent, i.e. whether they have both been
2712 * cloned from the same version of the same context.
2713 *
2714 * Equivalence is measured using a generation number in the context that is
2715 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2716 * and list_del_event().
564c2b21 2717 */
cdd6c482
IM
2718static int context_equiv(struct perf_event_context *ctx1,
2719 struct perf_event_context *ctx2)
564c2b21 2720{
211de6eb
PZ
2721 lockdep_assert_held(&ctx1->lock);
2722 lockdep_assert_held(&ctx2->lock);
2723
5a3126d4
PZ
2724 /* Pinning disables the swap optimization */
2725 if (ctx1->pin_count || ctx2->pin_count)
2726 return 0;
2727
2728 /* If ctx1 is the parent of ctx2 */
2729 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2730 return 1;
2731
2732 /* If ctx2 is the parent of ctx1 */
2733 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2734 return 1;
2735
2736 /*
2737 * If ctx1 and ctx2 have the same parent; we flatten the parent
2738 * hierarchy, see perf_event_init_context().
2739 */
2740 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2741 ctx1->parent_gen == ctx2->parent_gen)
2742 return 1;
2743
2744 /* Unmatched */
2745 return 0;
564c2b21
PM
2746}
2747
cdd6c482
IM
2748static void __perf_event_sync_stat(struct perf_event *event,
2749 struct perf_event *next_event)
bfbd3381
PZ
2750{
2751 u64 value;
2752
cdd6c482 2753 if (!event->attr.inherit_stat)
bfbd3381
PZ
2754 return;
2755
2756 /*
cdd6c482 2757 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2758 * because we're in the middle of a context switch and have IRQs
2759 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2760 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2761 * don't need to use it.
2762 */
0d3d73aa 2763 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 2764 event->pmu->read(event);
bfbd3381 2765
0d3d73aa 2766 perf_event_update_time(event);
bfbd3381
PZ
2767
2768 /*
cdd6c482 2769 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2770 * values when we flip the contexts.
2771 */
e7850595
PZ
2772 value = local64_read(&next_event->count);
2773 value = local64_xchg(&event->count, value);
2774 local64_set(&next_event->count, value);
bfbd3381 2775
cdd6c482
IM
2776 swap(event->total_time_enabled, next_event->total_time_enabled);
2777 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2778
bfbd3381 2779 /*
19d2e755 2780 * Since we swizzled the values, update the user visible data too.
bfbd3381 2781 */
cdd6c482
IM
2782 perf_event_update_userpage(event);
2783 perf_event_update_userpage(next_event);
bfbd3381
PZ
2784}
2785
cdd6c482
IM
2786static void perf_event_sync_stat(struct perf_event_context *ctx,
2787 struct perf_event_context *next_ctx)
bfbd3381 2788{
cdd6c482 2789 struct perf_event *event, *next_event;
bfbd3381
PZ
2790
2791 if (!ctx->nr_stat)
2792 return;
2793
02ffdbc8
PZ
2794 update_context_time(ctx);
2795
cdd6c482
IM
2796 event = list_first_entry(&ctx->event_list,
2797 struct perf_event, event_entry);
bfbd3381 2798
cdd6c482
IM
2799 next_event = list_first_entry(&next_ctx->event_list,
2800 struct perf_event, event_entry);
bfbd3381 2801
cdd6c482
IM
2802 while (&event->event_entry != &ctx->event_list &&
2803 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2804
cdd6c482 2805 __perf_event_sync_stat(event, next_event);
bfbd3381 2806
cdd6c482
IM
2807 event = list_next_entry(event, event_entry);
2808 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2809 }
2810}
2811
fe4b04fa
PZ
2812static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2813 struct task_struct *next)
0793a61d 2814{
8dc85d54 2815 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2816 struct perf_event_context *next_ctx;
5a3126d4 2817 struct perf_event_context *parent, *next_parent;
108b02cf 2818 struct perf_cpu_context *cpuctx;
c93f7669 2819 int do_switch = 1;
0793a61d 2820
108b02cf
PZ
2821 if (likely(!ctx))
2822 return;
10989fb2 2823
108b02cf
PZ
2824 cpuctx = __get_cpu_context(ctx);
2825 if (!cpuctx->task_ctx)
0793a61d
TG
2826 return;
2827
c93f7669 2828 rcu_read_lock();
8dc85d54 2829 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2830 if (!next_ctx)
2831 goto unlock;
2832
2833 parent = rcu_dereference(ctx->parent_ctx);
2834 next_parent = rcu_dereference(next_ctx->parent_ctx);
2835
2836 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2837 if (!parent && !next_parent)
5a3126d4
PZ
2838 goto unlock;
2839
2840 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2841 /*
2842 * Looks like the two contexts are clones, so we might be
2843 * able to optimize the context switch. We lock both
2844 * contexts and check that they are clones under the
2845 * lock (including re-checking that neither has been
2846 * uncloned in the meantime). It doesn't matter which
2847 * order we take the locks because no other cpu could
2848 * be trying to lock both of these tasks.
2849 */
e625cce1
TG
2850 raw_spin_lock(&ctx->lock);
2851 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2852 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2853 WRITE_ONCE(ctx->task, next);
2854 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2855
2856 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2857
63b6da39
PZ
2858 /*
2859 * RCU_INIT_POINTER here is safe because we've not
2860 * modified the ctx and the above modification of
2861 * ctx->task and ctx->task_ctx_data are immaterial
2862 * since those values are always verified under
2863 * ctx->lock which we're now holding.
2864 */
2865 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2866 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2867
c93f7669 2868 do_switch = 0;
bfbd3381 2869
cdd6c482 2870 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2871 }
e625cce1
TG
2872 raw_spin_unlock(&next_ctx->lock);
2873 raw_spin_unlock(&ctx->lock);
564c2b21 2874 }
5a3126d4 2875unlock:
c93f7669 2876 rcu_read_unlock();
564c2b21 2877
c93f7669 2878 if (do_switch) {
facc4307 2879 raw_spin_lock(&ctx->lock);
487f05e1 2880 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2881 raw_spin_unlock(&ctx->lock);
c93f7669 2882 }
0793a61d
TG
2883}
2884
e48c1788
PZ
2885static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2886
ba532500
YZ
2887void perf_sched_cb_dec(struct pmu *pmu)
2888{
e48c1788
PZ
2889 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2890
ba532500 2891 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2892
2893 if (!--cpuctx->sched_cb_usage)
2894 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2895}
2896
e48c1788 2897
ba532500
YZ
2898void perf_sched_cb_inc(struct pmu *pmu)
2899{
e48c1788
PZ
2900 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2901
2902 if (!cpuctx->sched_cb_usage++)
2903 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2904
ba532500
YZ
2905 this_cpu_inc(perf_sched_cb_usages);
2906}
2907
2908/*
2909 * This function provides the context switch callback to the lower code
2910 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
2911 *
2912 * This callback is relevant even to per-cpu events; for example multi event
2913 * PEBS requires this to provide PID/TID information. This requires we flush
2914 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
2915 */
2916static void perf_pmu_sched_task(struct task_struct *prev,
2917 struct task_struct *next,
2918 bool sched_in)
2919{
2920 struct perf_cpu_context *cpuctx;
2921 struct pmu *pmu;
ba532500
YZ
2922
2923 if (prev == next)
2924 return;
2925
e48c1788 2926 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 2927 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 2928
e48c1788
PZ
2929 if (WARN_ON_ONCE(!pmu->sched_task))
2930 continue;
ba532500 2931
e48c1788
PZ
2932 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2933 perf_pmu_disable(pmu);
ba532500 2934
e48c1788 2935 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 2936
e48c1788
PZ
2937 perf_pmu_enable(pmu);
2938 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 2939 }
ba532500
YZ
2940}
2941
45ac1403
AH
2942static void perf_event_switch(struct task_struct *task,
2943 struct task_struct *next_prev, bool sched_in);
2944
8dc85d54
PZ
2945#define for_each_task_context_nr(ctxn) \
2946 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2947
2948/*
2949 * Called from scheduler to remove the events of the current task,
2950 * with interrupts disabled.
2951 *
2952 * We stop each event and update the event value in event->count.
2953 *
2954 * This does not protect us against NMI, but disable()
2955 * sets the disabled bit in the control field of event _before_
2956 * accessing the event control register. If a NMI hits, then it will
2957 * not restart the event.
2958 */
ab0cce56
JO
2959void __perf_event_task_sched_out(struct task_struct *task,
2960 struct task_struct *next)
8dc85d54
PZ
2961{
2962 int ctxn;
2963
ba532500
YZ
2964 if (__this_cpu_read(perf_sched_cb_usages))
2965 perf_pmu_sched_task(task, next, false);
2966
45ac1403
AH
2967 if (atomic_read(&nr_switch_events))
2968 perf_event_switch(task, next, false);
2969
8dc85d54
PZ
2970 for_each_task_context_nr(ctxn)
2971 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2972
2973 /*
2974 * if cgroup events exist on this CPU, then we need
2975 * to check if we have to switch out PMU state.
2976 * cgroup event are system-wide mode only
2977 */
4a32fea9 2978 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2979 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2980}
2981
5b0311e1
FW
2982/*
2983 * Called with IRQs disabled
2984 */
2985static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2986 enum event_type_t event_type)
2987{
2988 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2989}
2990
235c7fc7 2991static void
5b0311e1 2992ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2993 struct perf_cpu_context *cpuctx)
0793a61d 2994{
cdd6c482 2995 struct perf_event *event;
0793a61d 2996
889ff015
FW
2997 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2998 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2999 continue;
5632ab12 3000 if (!event_filter_match(event))
3b6f9e5c
PM
3001 continue;
3002
8c9ed8e1 3003 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3004 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3005
3006 /*
3007 * If this pinned group hasn't been scheduled,
3008 * put it in error state.
3009 */
0d3d73aa
PZ
3010 if (event->state == PERF_EVENT_STATE_INACTIVE)
3011 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3b6f9e5c 3012 }
5b0311e1
FW
3013}
3014
3015static void
3016ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3017 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3018{
3019 struct perf_event *event;
3020 int can_add_hw = 1;
3b6f9e5c 3021
889ff015
FW
3022 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3023 /* Ignore events in OFF or ERROR state */
3024 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3025 continue;
04289bb9
IM
3026 /*
3027 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3028 * of events:
04289bb9 3029 */
5632ab12 3030 if (!event_filter_match(event))
0793a61d
TG
3031 continue;
3032
9ed6060d 3033 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3034 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3035 can_add_hw = 0;
9ed6060d 3036 }
0793a61d 3037 }
5b0311e1
FW
3038}
3039
3040static void
3041ctx_sched_in(struct perf_event_context *ctx,
3042 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3043 enum event_type_t event_type,
3044 struct task_struct *task)
5b0311e1 3045{
db24d33e 3046 int is_active = ctx->is_active;
c994d613
PZ
3047 u64 now;
3048
3049 lockdep_assert_held(&ctx->lock);
e5d1367f 3050
5b0311e1 3051 if (likely(!ctx->nr_events))
facc4307 3052 return;
5b0311e1 3053
3cbaa590 3054 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3055 if (ctx->task) {
3056 if (!is_active)
3057 cpuctx->task_ctx = ctx;
3058 else
3059 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3060 }
3061
3cbaa590
PZ
3062 is_active ^= ctx->is_active; /* changed bits */
3063
3064 if (is_active & EVENT_TIME) {
3065 /* start ctx time */
3066 now = perf_clock();
3067 ctx->timestamp = now;
3068 perf_cgroup_set_timestamp(task, ctx);
3069 }
3070
5b0311e1
FW
3071 /*
3072 * First go through the list and put on any pinned groups
3073 * in order to give them the best chance of going on.
3074 */
3cbaa590 3075 if (is_active & EVENT_PINNED)
6e37738a 3076 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3077
3078 /* Then walk through the lower prio flexible groups */
3cbaa590 3079 if (is_active & EVENT_FLEXIBLE)
6e37738a 3080 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3081}
3082
329c0e01 3083static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3084 enum event_type_t event_type,
3085 struct task_struct *task)
329c0e01
FW
3086{
3087 struct perf_event_context *ctx = &cpuctx->ctx;
3088
e5d1367f 3089 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3090}
3091
e5d1367f
SE
3092static void perf_event_context_sched_in(struct perf_event_context *ctx,
3093 struct task_struct *task)
235c7fc7 3094{
108b02cf 3095 struct perf_cpu_context *cpuctx;
235c7fc7 3096
108b02cf 3097 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3098 if (cpuctx->task_ctx == ctx)
3099 return;
3100
facc4307 3101 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3102 /*
3103 * We must check ctx->nr_events while holding ctx->lock, such
3104 * that we serialize against perf_install_in_context().
3105 */
3106 if (!ctx->nr_events)
3107 goto unlock;
3108
1b9a644f 3109 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3110 /*
3111 * We want to keep the following priority order:
3112 * cpu pinned (that don't need to move), task pinned,
3113 * cpu flexible, task flexible.
fe45bafb
AS
3114 *
3115 * However, if task's ctx is not carrying any pinned
3116 * events, no need to flip the cpuctx's events around.
329c0e01 3117 */
fe45bafb
AS
3118 if (!list_empty(&ctx->pinned_groups))
3119 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3120 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3121 perf_pmu_enable(ctx->pmu);
fdccc3fb 3122
3123unlock:
facc4307 3124 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3125}
3126
8dc85d54
PZ
3127/*
3128 * Called from scheduler to add the events of the current task
3129 * with interrupts disabled.
3130 *
3131 * We restore the event value and then enable it.
3132 *
3133 * This does not protect us against NMI, but enable()
3134 * sets the enabled bit in the control field of event _before_
3135 * accessing the event control register. If a NMI hits, then it will
3136 * keep the event running.
3137 */
ab0cce56
JO
3138void __perf_event_task_sched_in(struct task_struct *prev,
3139 struct task_struct *task)
8dc85d54
PZ
3140{
3141 struct perf_event_context *ctx;
3142 int ctxn;
3143
7e41d177
PZ
3144 /*
3145 * If cgroup events exist on this CPU, then we need to check if we have
3146 * to switch in PMU state; cgroup event are system-wide mode only.
3147 *
3148 * Since cgroup events are CPU events, we must schedule these in before
3149 * we schedule in the task events.
3150 */
3151 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3152 perf_cgroup_sched_in(prev, task);
3153
8dc85d54
PZ
3154 for_each_task_context_nr(ctxn) {
3155 ctx = task->perf_event_ctxp[ctxn];
3156 if (likely(!ctx))
3157 continue;
3158
e5d1367f 3159 perf_event_context_sched_in(ctx, task);
8dc85d54 3160 }
d010b332 3161
45ac1403
AH
3162 if (atomic_read(&nr_switch_events))
3163 perf_event_switch(task, prev, true);
3164
ba532500
YZ
3165 if (__this_cpu_read(perf_sched_cb_usages))
3166 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3167}
3168
abd50713
PZ
3169static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3170{
3171 u64 frequency = event->attr.sample_freq;
3172 u64 sec = NSEC_PER_SEC;
3173 u64 divisor, dividend;
3174
3175 int count_fls, nsec_fls, frequency_fls, sec_fls;
3176
3177 count_fls = fls64(count);
3178 nsec_fls = fls64(nsec);
3179 frequency_fls = fls64(frequency);
3180 sec_fls = 30;
3181
3182 /*
3183 * We got @count in @nsec, with a target of sample_freq HZ
3184 * the target period becomes:
3185 *
3186 * @count * 10^9
3187 * period = -------------------
3188 * @nsec * sample_freq
3189 *
3190 */
3191
3192 /*
3193 * Reduce accuracy by one bit such that @a and @b converge
3194 * to a similar magnitude.
3195 */
fe4b04fa 3196#define REDUCE_FLS(a, b) \
abd50713
PZ
3197do { \
3198 if (a##_fls > b##_fls) { \
3199 a >>= 1; \
3200 a##_fls--; \
3201 } else { \
3202 b >>= 1; \
3203 b##_fls--; \
3204 } \
3205} while (0)
3206
3207 /*
3208 * Reduce accuracy until either term fits in a u64, then proceed with
3209 * the other, so that finally we can do a u64/u64 division.
3210 */
3211 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3212 REDUCE_FLS(nsec, frequency);
3213 REDUCE_FLS(sec, count);
3214 }
3215
3216 if (count_fls + sec_fls > 64) {
3217 divisor = nsec * frequency;
3218
3219 while (count_fls + sec_fls > 64) {
3220 REDUCE_FLS(count, sec);
3221 divisor >>= 1;
3222 }
3223
3224 dividend = count * sec;
3225 } else {
3226 dividend = count * sec;
3227
3228 while (nsec_fls + frequency_fls > 64) {
3229 REDUCE_FLS(nsec, frequency);
3230 dividend >>= 1;
3231 }
3232
3233 divisor = nsec * frequency;
3234 }
3235
f6ab91ad
PZ
3236 if (!divisor)
3237 return dividend;
3238
abd50713
PZ
3239 return div64_u64(dividend, divisor);
3240}
3241
e050e3f0
SE
3242static DEFINE_PER_CPU(int, perf_throttled_count);
3243static DEFINE_PER_CPU(u64, perf_throttled_seq);
3244
f39d47ff 3245static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3246{
cdd6c482 3247 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3248 s64 period, sample_period;
bd2b5b12
PZ
3249 s64 delta;
3250
abd50713 3251 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3252
3253 delta = (s64)(period - hwc->sample_period);
3254 delta = (delta + 7) / 8; /* low pass filter */
3255
3256 sample_period = hwc->sample_period + delta;
3257
3258 if (!sample_period)
3259 sample_period = 1;
3260
bd2b5b12 3261 hwc->sample_period = sample_period;
abd50713 3262
e7850595 3263 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3264 if (disable)
3265 event->pmu->stop(event, PERF_EF_UPDATE);
3266
e7850595 3267 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3268
3269 if (disable)
3270 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3271 }
bd2b5b12
PZ
3272}
3273
e050e3f0
SE
3274/*
3275 * combine freq adjustment with unthrottling to avoid two passes over the
3276 * events. At the same time, make sure, having freq events does not change
3277 * the rate of unthrottling as that would introduce bias.
3278 */
3279static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3280 int needs_unthr)
60db5e09 3281{
cdd6c482
IM
3282 struct perf_event *event;
3283 struct hw_perf_event *hwc;
e050e3f0 3284 u64 now, period = TICK_NSEC;
abd50713 3285 s64 delta;
60db5e09 3286
e050e3f0
SE
3287 /*
3288 * only need to iterate over all events iff:
3289 * - context have events in frequency mode (needs freq adjust)
3290 * - there are events to unthrottle on this cpu
3291 */
3292 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3293 return;
3294
e050e3f0 3295 raw_spin_lock(&ctx->lock);
f39d47ff 3296 perf_pmu_disable(ctx->pmu);
e050e3f0 3297
03541f8b 3298 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3299 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3300 continue;
3301
5632ab12 3302 if (!event_filter_match(event))
5d27c23d
PZ
3303 continue;
3304
44377277
AS
3305 perf_pmu_disable(event->pmu);
3306
cdd6c482 3307 hwc = &event->hw;
6a24ed6c 3308
ae23bff1 3309 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3310 hwc->interrupts = 0;
cdd6c482 3311 perf_log_throttle(event, 1);
a4eaf7f1 3312 event->pmu->start(event, 0);
a78ac325
PZ
3313 }
3314
cdd6c482 3315 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3316 goto next;
60db5e09 3317
e050e3f0
SE
3318 /*
3319 * stop the event and update event->count
3320 */
3321 event->pmu->stop(event, PERF_EF_UPDATE);
3322
e7850595 3323 now = local64_read(&event->count);
abd50713
PZ
3324 delta = now - hwc->freq_count_stamp;
3325 hwc->freq_count_stamp = now;
60db5e09 3326
e050e3f0
SE
3327 /*
3328 * restart the event
3329 * reload only if value has changed
f39d47ff
SE
3330 * we have stopped the event so tell that
3331 * to perf_adjust_period() to avoid stopping it
3332 * twice.
e050e3f0 3333 */
abd50713 3334 if (delta > 0)
f39d47ff 3335 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3336
3337 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3338 next:
3339 perf_pmu_enable(event->pmu);
60db5e09 3340 }
e050e3f0 3341
f39d47ff 3342 perf_pmu_enable(ctx->pmu);
e050e3f0 3343 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3344}
3345
235c7fc7 3346/*
cdd6c482 3347 * Round-robin a context's events:
235c7fc7 3348 */
cdd6c482 3349static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3350{
dddd3379
TG
3351 /*
3352 * Rotate the first entry last of non-pinned groups. Rotation might be
3353 * disabled by the inheritance code.
3354 */
3355 if (!ctx->rotate_disable)
3356 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3357}
3358
9e630205 3359static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3360{
8dc85d54 3361 struct perf_event_context *ctx = NULL;
2fde4f94 3362 int rotate = 0;
7fc23a53 3363
b5ab4cd5 3364 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3365 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3366 rotate = 1;
3367 }
235c7fc7 3368
8dc85d54 3369 ctx = cpuctx->task_ctx;
b5ab4cd5 3370 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3371 if (ctx->nr_events != ctx->nr_active)
3372 rotate = 1;
3373 }
9717e6cd 3374
e050e3f0 3375 if (!rotate)
0f5a2601
PZ
3376 goto done;
3377
facc4307 3378 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3379 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3380
e050e3f0
SE
3381 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3382 if (ctx)
3383 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3384
e050e3f0
SE
3385 rotate_ctx(&cpuctx->ctx);
3386 if (ctx)
3387 rotate_ctx(ctx);
235c7fc7 3388
e050e3f0 3389 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3390
0f5a2601
PZ
3391 perf_pmu_enable(cpuctx->ctx.pmu);
3392 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3393done:
9e630205
SE
3394
3395 return rotate;
e9d2b064
PZ
3396}
3397
3398void perf_event_task_tick(void)
3399{
2fde4f94
MR
3400 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3401 struct perf_event_context *ctx, *tmp;
e050e3f0 3402 int throttled;
b5ab4cd5 3403
16444645 3404 lockdep_assert_irqs_disabled();
e9d2b064 3405
e050e3f0
SE
3406 __this_cpu_inc(perf_throttled_seq);
3407 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3408 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3409
2fde4f94 3410 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3411 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3412}
3413
889ff015
FW
3414static int event_enable_on_exec(struct perf_event *event,
3415 struct perf_event_context *ctx)
3416{
3417 if (!event->attr.enable_on_exec)
3418 return 0;
3419
3420 event->attr.enable_on_exec = 0;
3421 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3422 return 0;
3423
0d3d73aa 3424 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3425
3426 return 1;
3427}
3428
57e7986e 3429/*
cdd6c482 3430 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3431 * This expects task == current.
3432 */
c1274499 3433static void perf_event_enable_on_exec(int ctxn)
57e7986e 3434{
c1274499 3435 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3436 enum event_type_t event_type = 0;
3e349507 3437 struct perf_cpu_context *cpuctx;
cdd6c482 3438 struct perf_event *event;
57e7986e
PM
3439 unsigned long flags;
3440 int enabled = 0;
3441
3442 local_irq_save(flags);
c1274499 3443 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3444 if (!ctx || !ctx->nr_events)
57e7986e
PM
3445 goto out;
3446
3e349507
PZ
3447 cpuctx = __get_cpu_context(ctx);
3448 perf_ctx_lock(cpuctx, ctx);
7fce2509 3449 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3450 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3451 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3452 event_type |= get_event_type(event);
3453 }
57e7986e
PM
3454
3455 /*
3e349507 3456 * Unclone and reschedule this context if we enabled any event.
57e7986e 3457 */
3e349507 3458 if (enabled) {
211de6eb 3459 clone_ctx = unclone_ctx(ctx);
487f05e1 3460 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3461 } else {
3462 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3463 }
3464 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3465
9ed6060d 3466out:
57e7986e 3467 local_irq_restore(flags);
211de6eb
PZ
3468
3469 if (clone_ctx)
3470 put_ctx(clone_ctx);
57e7986e
PM
3471}
3472
0492d4c5
PZ
3473struct perf_read_data {
3474 struct perf_event *event;
3475 bool group;
7d88962e 3476 int ret;
0492d4c5
PZ
3477};
3478
451d24d1 3479static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3480{
d6a2f903
DCC
3481 u16 local_pkg, event_pkg;
3482
3483 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3484 int local_cpu = smp_processor_id();
3485
3486 event_pkg = topology_physical_package_id(event_cpu);
3487 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3488
3489 if (event_pkg == local_pkg)
3490 return local_cpu;
3491 }
3492
3493 return event_cpu;
3494}
3495
0793a61d 3496/*
cdd6c482 3497 * Cross CPU call to read the hardware event
0793a61d 3498 */
cdd6c482 3499static void __perf_event_read(void *info)
0793a61d 3500{
0492d4c5
PZ
3501 struct perf_read_data *data = info;
3502 struct perf_event *sub, *event = data->event;
cdd6c482 3503 struct perf_event_context *ctx = event->ctx;
108b02cf 3504 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3505 struct pmu *pmu = event->pmu;
621a01ea 3506
e1ac3614
PM
3507 /*
3508 * If this is a task context, we need to check whether it is
3509 * the current task context of this cpu. If not it has been
3510 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3511 * event->count would have been updated to a recent sample
3512 * when the event was scheduled out.
e1ac3614
PM
3513 */
3514 if (ctx->task && cpuctx->task_ctx != ctx)
3515 return;
3516
e625cce1 3517 raw_spin_lock(&ctx->lock);
0c1cbc18 3518 if (ctx->is_active & EVENT_TIME) {
542e72fc 3519 update_context_time(ctx);
e5d1367f
SE
3520 update_cgrp_time_from_event(event);
3521 }
0492d4c5 3522
0d3d73aa
PZ
3523 perf_event_update_time(event);
3524 if (data->group)
3525 perf_event_update_sibling_time(event);
0c1cbc18 3526
4a00c16e
SB
3527 if (event->state != PERF_EVENT_STATE_ACTIVE)
3528 goto unlock;
0492d4c5 3529
4a00c16e
SB
3530 if (!data->group) {
3531 pmu->read(event);
3532 data->ret = 0;
0492d4c5 3533 goto unlock;
4a00c16e
SB
3534 }
3535
3536 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3537
3538 pmu->read(event);
0492d4c5
PZ
3539
3540 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4a00c16e
SB
3541 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3542 /*
3543 * Use sibling's PMU rather than @event's since
3544 * sibling could be on different (eg: software) PMU.
3545 */
0492d4c5 3546 sub->pmu->read(sub);
4a00c16e 3547 }
0492d4c5 3548 }
4a00c16e
SB
3549
3550 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3551
3552unlock:
e625cce1 3553 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3554}
3555
b5e58793
PZ
3556static inline u64 perf_event_count(struct perf_event *event)
3557{
c39a0e2c 3558 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3559}
3560
ffe8690c
KX
3561/*
3562 * NMI-safe method to read a local event, that is an event that
3563 * is:
3564 * - either for the current task, or for this CPU
3565 * - does not have inherit set, for inherited task events
3566 * will not be local and we cannot read them atomically
3567 * - must not have a pmu::count method
3568 */
7d9285e8
YS
3569int perf_event_read_local(struct perf_event *event, u64 *value,
3570 u64 *enabled, u64 *running)
ffe8690c
KX
3571{
3572 unsigned long flags;
f91840a3 3573 int ret = 0;
ffe8690c
KX
3574
3575 /*
3576 * Disabling interrupts avoids all counter scheduling (context
3577 * switches, timer based rotation and IPIs).
3578 */
3579 local_irq_save(flags);
3580
ffe8690c
KX
3581 /*
3582 * It must not be an event with inherit set, we cannot read
3583 * all child counters from atomic context.
3584 */
f91840a3
AS
3585 if (event->attr.inherit) {
3586 ret = -EOPNOTSUPP;
3587 goto out;
3588 }
ffe8690c 3589
f91840a3
AS
3590 /* If this is a per-task event, it must be for current */
3591 if ((event->attach_state & PERF_ATTACH_TASK) &&
3592 event->hw.target != current) {
3593 ret = -EINVAL;
3594 goto out;
3595 }
3596
3597 /* If this is a per-CPU event, it must be for this CPU */
3598 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3599 event->cpu != smp_processor_id()) {
3600 ret = -EINVAL;
3601 goto out;
3602 }
ffe8690c
KX
3603
3604 /*
3605 * If the event is currently on this CPU, its either a per-task event,
3606 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3607 * oncpu == -1).
3608 */
3609 if (event->oncpu == smp_processor_id())
3610 event->pmu->read(event);
3611
f91840a3 3612 *value = local64_read(&event->count);
0d3d73aa
PZ
3613 if (enabled || running) {
3614 u64 now = event->shadow_ctx_time + perf_clock();
3615 u64 __enabled, __running;
3616
3617 __perf_update_times(event, now, &__enabled, &__running);
3618 if (enabled)
3619 *enabled = __enabled;
3620 if (running)
3621 *running = __running;
3622 }
f91840a3 3623out:
ffe8690c
KX
3624 local_irq_restore(flags);
3625
f91840a3 3626 return ret;
ffe8690c
KX
3627}
3628
7d88962e 3629static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3630{
0c1cbc18 3631 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 3632 int event_cpu, ret = 0;
7d88962e 3633
0793a61d 3634 /*
cdd6c482
IM
3635 * If event is enabled and currently active on a CPU, update the
3636 * value in the event structure:
0793a61d 3637 */
0c1cbc18
PZ
3638again:
3639 if (state == PERF_EVENT_STATE_ACTIVE) {
3640 struct perf_read_data data;
3641
3642 /*
3643 * Orders the ->state and ->oncpu loads such that if we see
3644 * ACTIVE we must also see the right ->oncpu.
3645 *
3646 * Matches the smp_wmb() from event_sched_in().
3647 */
3648 smp_rmb();
d6a2f903 3649
451d24d1
PZ
3650 event_cpu = READ_ONCE(event->oncpu);
3651 if ((unsigned)event_cpu >= nr_cpu_ids)
3652 return 0;
3653
0c1cbc18
PZ
3654 data = (struct perf_read_data){
3655 .event = event,
3656 .group = group,
3657 .ret = 0,
3658 };
3659
451d24d1
PZ
3660 preempt_disable();
3661 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3662
58763148
PZ
3663 /*
3664 * Purposely ignore the smp_call_function_single() return
3665 * value.
3666 *
451d24d1 3667 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3668 * scheduled out and that will have updated the event count.
3669 *
3670 * Therefore, either way, we'll have an up-to-date event count
3671 * after this.
3672 */
451d24d1
PZ
3673 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3674 preempt_enable();
58763148 3675 ret = data.ret;
0c1cbc18
PZ
3676
3677 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3678 struct perf_event_context *ctx = event->ctx;
3679 unsigned long flags;
3680
e625cce1 3681 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
3682 state = event->state;
3683 if (state != PERF_EVENT_STATE_INACTIVE) {
3684 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3685 goto again;
3686 }
3687
c530ccd9 3688 /*
0c1cbc18
PZ
3689 * May read while context is not active (e.g., thread is
3690 * blocked), in that case we cannot update context time
c530ccd9 3691 */
0c1cbc18 3692 if (ctx->is_active & EVENT_TIME) {
c530ccd9 3693 update_context_time(ctx);
e5d1367f
SE
3694 update_cgrp_time_from_event(event);
3695 }
0c1cbc18 3696
0d3d73aa 3697 perf_event_update_time(event);
0492d4c5 3698 if (group)
0d3d73aa 3699 perf_event_update_sibling_time(event);
e625cce1 3700 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3701 }
7d88962e
SB
3702
3703 return ret;
0793a61d
TG
3704}
3705
a63eaf34 3706/*
cdd6c482 3707 * Initialize the perf_event context in a task_struct:
a63eaf34 3708 */
eb184479 3709static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3710{
e625cce1 3711 raw_spin_lock_init(&ctx->lock);
a63eaf34 3712 mutex_init(&ctx->mutex);
2fde4f94 3713 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3714 INIT_LIST_HEAD(&ctx->pinned_groups);
3715 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3716 INIT_LIST_HEAD(&ctx->event_list);
3717 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3718}
3719
3720static struct perf_event_context *
3721alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3722{
3723 struct perf_event_context *ctx;
3724
3725 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3726 if (!ctx)
3727 return NULL;
3728
3729 __perf_event_init_context(ctx);
3730 if (task) {
3731 ctx->task = task;
3732 get_task_struct(task);
0793a61d 3733 }
eb184479
PZ
3734 ctx->pmu = pmu;
3735
3736 return ctx;
a63eaf34
PM
3737}
3738
2ebd4ffb
MH
3739static struct task_struct *
3740find_lively_task_by_vpid(pid_t vpid)
3741{
3742 struct task_struct *task;
0793a61d
TG
3743
3744 rcu_read_lock();
2ebd4ffb 3745 if (!vpid)
0793a61d
TG
3746 task = current;
3747 else
2ebd4ffb 3748 task = find_task_by_vpid(vpid);
0793a61d
TG
3749 if (task)
3750 get_task_struct(task);
3751 rcu_read_unlock();
3752
3753 if (!task)
3754 return ERR_PTR(-ESRCH);
3755
2ebd4ffb 3756 return task;
2ebd4ffb
MH
3757}
3758
fe4b04fa
PZ
3759/*
3760 * Returns a matching context with refcount and pincount.
3761 */
108b02cf 3762static struct perf_event_context *
4af57ef2
YZ
3763find_get_context(struct pmu *pmu, struct task_struct *task,
3764 struct perf_event *event)
0793a61d 3765{
211de6eb 3766 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3767 struct perf_cpu_context *cpuctx;
4af57ef2 3768 void *task_ctx_data = NULL;
25346b93 3769 unsigned long flags;
8dc85d54 3770 int ctxn, err;
4af57ef2 3771 int cpu = event->cpu;
0793a61d 3772
22a4ec72 3773 if (!task) {
cdd6c482 3774 /* Must be root to operate on a CPU event: */
0764771d 3775 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3776 return ERR_PTR(-EACCES);
3777
108b02cf 3778 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3779 ctx = &cpuctx->ctx;
c93f7669 3780 get_ctx(ctx);
fe4b04fa 3781 ++ctx->pin_count;
0793a61d 3782
0793a61d
TG
3783 return ctx;
3784 }
3785
8dc85d54
PZ
3786 err = -EINVAL;
3787 ctxn = pmu->task_ctx_nr;
3788 if (ctxn < 0)
3789 goto errout;
3790
4af57ef2
YZ
3791 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3792 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3793 if (!task_ctx_data) {
3794 err = -ENOMEM;
3795 goto errout;
3796 }
3797 }
3798
9ed6060d 3799retry:
8dc85d54 3800 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3801 if (ctx) {
211de6eb 3802 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3803 ++ctx->pin_count;
4af57ef2
YZ
3804
3805 if (task_ctx_data && !ctx->task_ctx_data) {
3806 ctx->task_ctx_data = task_ctx_data;
3807 task_ctx_data = NULL;
3808 }
e625cce1 3809 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3810
3811 if (clone_ctx)
3812 put_ctx(clone_ctx);
9137fb28 3813 } else {
eb184479 3814 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3815 err = -ENOMEM;
3816 if (!ctx)
3817 goto errout;
eb184479 3818
4af57ef2
YZ
3819 if (task_ctx_data) {
3820 ctx->task_ctx_data = task_ctx_data;
3821 task_ctx_data = NULL;
3822 }
3823
dbe08d82
ON
3824 err = 0;
3825 mutex_lock(&task->perf_event_mutex);
3826 /*
3827 * If it has already passed perf_event_exit_task().
3828 * we must see PF_EXITING, it takes this mutex too.
3829 */
3830 if (task->flags & PF_EXITING)
3831 err = -ESRCH;
3832 else if (task->perf_event_ctxp[ctxn])
3833 err = -EAGAIN;
fe4b04fa 3834 else {
9137fb28 3835 get_ctx(ctx);
fe4b04fa 3836 ++ctx->pin_count;
dbe08d82 3837 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3838 }
dbe08d82
ON
3839 mutex_unlock(&task->perf_event_mutex);
3840
3841 if (unlikely(err)) {
9137fb28 3842 put_ctx(ctx);
dbe08d82
ON
3843
3844 if (err == -EAGAIN)
3845 goto retry;
3846 goto errout;
a63eaf34
PM
3847 }
3848 }
3849
4af57ef2 3850 kfree(task_ctx_data);
0793a61d 3851 return ctx;
c93f7669 3852
9ed6060d 3853errout:
4af57ef2 3854 kfree(task_ctx_data);
c93f7669 3855 return ERR_PTR(err);
0793a61d
TG
3856}
3857
6fb2915d 3858static void perf_event_free_filter(struct perf_event *event);
2541517c 3859static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3860
cdd6c482 3861static void free_event_rcu(struct rcu_head *head)
592903cd 3862{
cdd6c482 3863 struct perf_event *event;
592903cd 3864
cdd6c482
IM
3865 event = container_of(head, struct perf_event, rcu_head);
3866 if (event->ns)
3867 put_pid_ns(event->ns);
6fb2915d 3868 perf_event_free_filter(event);
cdd6c482 3869 kfree(event);
592903cd
PZ
3870}
3871
b69cf536
PZ
3872static void ring_buffer_attach(struct perf_event *event,
3873 struct ring_buffer *rb);
925d519a 3874
f2fb6bef
KL
3875static void detach_sb_event(struct perf_event *event)
3876{
3877 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3878
3879 raw_spin_lock(&pel->lock);
3880 list_del_rcu(&event->sb_list);
3881 raw_spin_unlock(&pel->lock);
3882}
3883
a4f144eb 3884static bool is_sb_event(struct perf_event *event)
f2fb6bef 3885{
a4f144eb
DCC
3886 struct perf_event_attr *attr = &event->attr;
3887
f2fb6bef 3888 if (event->parent)
a4f144eb 3889 return false;
f2fb6bef
KL
3890
3891 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3892 return false;
f2fb6bef 3893
a4f144eb
DCC
3894 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3895 attr->comm || attr->comm_exec ||
3896 attr->task ||
3897 attr->context_switch)
3898 return true;
3899 return false;
3900}
3901
3902static void unaccount_pmu_sb_event(struct perf_event *event)
3903{
3904 if (is_sb_event(event))
3905 detach_sb_event(event);
f2fb6bef
KL
3906}
3907
4beb31f3 3908static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3909{
4beb31f3
FW
3910 if (event->parent)
3911 return;
3912
4beb31f3
FW
3913 if (is_cgroup_event(event))
3914 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3915}
925d519a 3916
555e0c1e
FW
3917#ifdef CONFIG_NO_HZ_FULL
3918static DEFINE_SPINLOCK(nr_freq_lock);
3919#endif
3920
3921static void unaccount_freq_event_nohz(void)
3922{
3923#ifdef CONFIG_NO_HZ_FULL
3924 spin_lock(&nr_freq_lock);
3925 if (atomic_dec_and_test(&nr_freq_events))
3926 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3927 spin_unlock(&nr_freq_lock);
3928#endif
3929}
3930
3931static void unaccount_freq_event(void)
3932{
3933 if (tick_nohz_full_enabled())
3934 unaccount_freq_event_nohz();
3935 else
3936 atomic_dec(&nr_freq_events);
3937}
3938
4beb31f3
FW
3939static void unaccount_event(struct perf_event *event)
3940{
25432ae9
PZ
3941 bool dec = false;
3942
4beb31f3
FW
3943 if (event->parent)
3944 return;
3945
3946 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3947 dec = true;
4beb31f3
FW
3948 if (event->attr.mmap || event->attr.mmap_data)
3949 atomic_dec(&nr_mmap_events);
3950 if (event->attr.comm)
3951 atomic_dec(&nr_comm_events);
e4222673
HB
3952 if (event->attr.namespaces)
3953 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
3954 if (event->attr.task)
3955 atomic_dec(&nr_task_events);
948b26b6 3956 if (event->attr.freq)
555e0c1e 3957 unaccount_freq_event();
45ac1403 3958 if (event->attr.context_switch) {
25432ae9 3959 dec = true;
45ac1403
AH
3960 atomic_dec(&nr_switch_events);
3961 }
4beb31f3 3962 if (is_cgroup_event(event))
25432ae9 3963 dec = true;
4beb31f3 3964 if (has_branch_stack(event))
25432ae9
PZ
3965 dec = true;
3966
9107c89e
PZ
3967 if (dec) {
3968 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3969 schedule_delayed_work(&perf_sched_work, HZ);
3970 }
4beb31f3
FW
3971
3972 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
3973
3974 unaccount_pmu_sb_event(event);
4beb31f3 3975}
925d519a 3976
9107c89e
PZ
3977static void perf_sched_delayed(struct work_struct *work)
3978{
3979 mutex_lock(&perf_sched_mutex);
3980 if (atomic_dec_and_test(&perf_sched_count))
3981 static_branch_disable(&perf_sched_events);
3982 mutex_unlock(&perf_sched_mutex);
3983}
3984
bed5b25a
AS
3985/*
3986 * The following implement mutual exclusion of events on "exclusive" pmus
3987 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3988 * at a time, so we disallow creating events that might conflict, namely:
3989 *
3990 * 1) cpu-wide events in the presence of per-task events,
3991 * 2) per-task events in the presence of cpu-wide events,
3992 * 3) two matching events on the same context.
3993 *
3994 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3995 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3996 */
3997static int exclusive_event_init(struct perf_event *event)
3998{
3999 struct pmu *pmu = event->pmu;
4000
4001 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4002 return 0;
4003
4004 /*
4005 * Prevent co-existence of per-task and cpu-wide events on the
4006 * same exclusive pmu.
4007 *
4008 * Negative pmu::exclusive_cnt means there are cpu-wide
4009 * events on this "exclusive" pmu, positive means there are
4010 * per-task events.
4011 *
4012 * Since this is called in perf_event_alloc() path, event::ctx
4013 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4014 * to mean "per-task event", because unlike other attach states it
4015 * never gets cleared.
4016 */
4017 if (event->attach_state & PERF_ATTACH_TASK) {
4018 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4019 return -EBUSY;
4020 } else {
4021 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4022 return -EBUSY;
4023 }
4024
4025 return 0;
4026}
4027
4028static void exclusive_event_destroy(struct perf_event *event)
4029{
4030 struct pmu *pmu = event->pmu;
4031
4032 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4033 return;
4034
4035 /* see comment in exclusive_event_init() */
4036 if (event->attach_state & PERF_ATTACH_TASK)
4037 atomic_dec(&pmu->exclusive_cnt);
4038 else
4039 atomic_inc(&pmu->exclusive_cnt);
4040}
4041
4042static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4043{
3bf6215a 4044 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4045 (e1->cpu == e2->cpu ||
4046 e1->cpu == -1 ||
4047 e2->cpu == -1))
4048 return true;
4049 return false;
4050}
4051
4052/* Called under the same ctx::mutex as perf_install_in_context() */
4053static bool exclusive_event_installable(struct perf_event *event,
4054 struct perf_event_context *ctx)
4055{
4056 struct perf_event *iter_event;
4057 struct pmu *pmu = event->pmu;
4058
4059 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4060 return true;
4061
4062 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4063 if (exclusive_event_match(iter_event, event))
4064 return false;
4065 }
4066
4067 return true;
4068}
4069
375637bc
AS
4070static void perf_addr_filters_splice(struct perf_event *event,
4071 struct list_head *head);
4072
683ede43 4073static void _free_event(struct perf_event *event)
f1600952 4074{
e360adbe 4075 irq_work_sync(&event->pending);
925d519a 4076
4beb31f3 4077 unaccount_event(event);
9ee318a7 4078
76369139 4079 if (event->rb) {
9bb5d40c
PZ
4080 /*
4081 * Can happen when we close an event with re-directed output.
4082 *
4083 * Since we have a 0 refcount, perf_mmap_close() will skip
4084 * over us; possibly making our ring_buffer_put() the last.
4085 */
4086 mutex_lock(&event->mmap_mutex);
b69cf536 4087 ring_buffer_attach(event, NULL);
9bb5d40c 4088 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4089 }
4090
e5d1367f
SE
4091 if (is_cgroup_event(event))
4092 perf_detach_cgroup(event);
4093
a0733e69
PZ
4094 if (!event->parent) {
4095 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4096 put_callchain_buffers();
4097 }
4098
4099 perf_event_free_bpf_prog(event);
375637bc
AS
4100 perf_addr_filters_splice(event, NULL);
4101 kfree(event->addr_filters_offs);
a0733e69
PZ
4102
4103 if (event->destroy)
4104 event->destroy(event);
4105
4106 if (event->ctx)
4107 put_ctx(event->ctx);
4108
62a92c8f
AS
4109 exclusive_event_destroy(event);
4110 module_put(event->pmu->module);
a0733e69
PZ
4111
4112 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4113}
4114
683ede43
PZ
4115/*
4116 * Used to free events which have a known refcount of 1, such as in error paths
4117 * where the event isn't exposed yet and inherited events.
4118 */
4119static void free_event(struct perf_event *event)
0793a61d 4120{
683ede43
PZ
4121 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4122 "unexpected event refcount: %ld; ptr=%p\n",
4123 atomic_long_read(&event->refcount), event)) {
4124 /* leak to avoid use-after-free */
4125 return;
4126 }
0793a61d 4127
683ede43 4128 _free_event(event);
0793a61d
TG
4129}
4130
a66a3052 4131/*
f8697762 4132 * Remove user event from the owner task.
a66a3052 4133 */
f8697762 4134static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4135{
8882135b 4136 struct task_struct *owner;
fb0459d7 4137
8882135b 4138 rcu_read_lock();
8882135b 4139 /*
f47c02c0
PZ
4140 * Matches the smp_store_release() in perf_event_exit_task(). If we
4141 * observe !owner it means the list deletion is complete and we can
4142 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4143 * owner->perf_event_mutex.
4144 */
506458ef 4145 owner = READ_ONCE(event->owner);
8882135b
PZ
4146 if (owner) {
4147 /*
4148 * Since delayed_put_task_struct() also drops the last
4149 * task reference we can safely take a new reference
4150 * while holding the rcu_read_lock().
4151 */
4152 get_task_struct(owner);
4153 }
4154 rcu_read_unlock();
4155
4156 if (owner) {
f63a8daa
PZ
4157 /*
4158 * If we're here through perf_event_exit_task() we're already
4159 * holding ctx->mutex which would be an inversion wrt. the
4160 * normal lock order.
4161 *
4162 * However we can safely take this lock because its the child
4163 * ctx->mutex.
4164 */
4165 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4166
8882135b
PZ
4167 /*
4168 * We have to re-check the event->owner field, if it is cleared
4169 * we raced with perf_event_exit_task(), acquiring the mutex
4170 * ensured they're done, and we can proceed with freeing the
4171 * event.
4172 */
f47c02c0 4173 if (event->owner) {
8882135b 4174 list_del_init(&event->owner_entry);
f47c02c0
PZ
4175 smp_store_release(&event->owner, NULL);
4176 }
8882135b
PZ
4177 mutex_unlock(&owner->perf_event_mutex);
4178 put_task_struct(owner);
4179 }
f8697762
JO
4180}
4181
f8697762
JO
4182static void put_event(struct perf_event *event)
4183{
f8697762
JO
4184 if (!atomic_long_dec_and_test(&event->refcount))
4185 return;
4186
c6e5b732
PZ
4187 _free_event(event);
4188}
4189
4190/*
4191 * Kill an event dead; while event:refcount will preserve the event
4192 * object, it will not preserve its functionality. Once the last 'user'
4193 * gives up the object, we'll destroy the thing.
4194 */
4195int perf_event_release_kernel(struct perf_event *event)
4196{
a4f4bb6d 4197 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4198 struct perf_event *child, *tmp;
4199
a4f4bb6d
PZ
4200 /*
4201 * If we got here through err_file: fput(event_file); we will not have
4202 * attached to a context yet.
4203 */
4204 if (!ctx) {
4205 WARN_ON_ONCE(event->attach_state &
4206 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4207 goto no_ctx;
4208 }
4209
f8697762
JO
4210 if (!is_kernel_event(event))
4211 perf_remove_from_owner(event);
8882135b 4212
5fa7c8ec 4213 ctx = perf_event_ctx_lock(event);
a83fe28e 4214 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4215 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4216
a69b0ca4 4217 raw_spin_lock_irq(&ctx->lock);
683ede43 4218 /*
d8a8cfc7 4219 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4220 * anymore.
683ede43 4221 *
a69b0ca4
PZ
4222 * Anybody acquiring event->child_mutex after the below loop _must_
4223 * also see this, most importantly inherit_event() which will avoid
4224 * placing more children on the list.
683ede43 4225 *
c6e5b732
PZ
4226 * Thus this guarantees that we will in fact observe and kill _ALL_
4227 * child events.
683ede43 4228 */
a69b0ca4
PZ
4229 event->state = PERF_EVENT_STATE_DEAD;
4230 raw_spin_unlock_irq(&ctx->lock);
4231
4232 perf_event_ctx_unlock(event, ctx);
683ede43 4233
c6e5b732
PZ
4234again:
4235 mutex_lock(&event->child_mutex);
4236 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4237
c6e5b732
PZ
4238 /*
4239 * Cannot change, child events are not migrated, see the
4240 * comment with perf_event_ctx_lock_nested().
4241 */
506458ef 4242 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4243 /*
4244 * Since child_mutex nests inside ctx::mutex, we must jump
4245 * through hoops. We start by grabbing a reference on the ctx.
4246 *
4247 * Since the event cannot get freed while we hold the
4248 * child_mutex, the context must also exist and have a !0
4249 * reference count.
4250 */
4251 get_ctx(ctx);
4252
4253 /*
4254 * Now that we have a ctx ref, we can drop child_mutex, and
4255 * acquire ctx::mutex without fear of it going away. Then we
4256 * can re-acquire child_mutex.
4257 */
4258 mutex_unlock(&event->child_mutex);
4259 mutex_lock(&ctx->mutex);
4260 mutex_lock(&event->child_mutex);
4261
4262 /*
4263 * Now that we hold ctx::mutex and child_mutex, revalidate our
4264 * state, if child is still the first entry, it didn't get freed
4265 * and we can continue doing so.
4266 */
4267 tmp = list_first_entry_or_null(&event->child_list,
4268 struct perf_event, child_list);
4269 if (tmp == child) {
4270 perf_remove_from_context(child, DETACH_GROUP);
4271 list_del(&child->child_list);
4272 free_event(child);
4273 /*
4274 * This matches the refcount bump in inherit_event();
4275 * this can't be the last reference.
4276 */
4277 put_event(event);
4278 }
4279
4280 mutex_unlock(&event->child_mutex);
4281 mutex_unlock(&ctx->mutex);
4282 put_ctx(ctx);
4283 goto again;
4284 }
4285 mutex_unlock(&event->child_mutex);
4286
a4f4bb6d
PZ
4287no_ctx:
4288 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4289 return 0;
4290}
4291EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4292
8b10c5e2
PZ
4293/*
4294 * Called when the last reference to the file is gone.
4295 */
a6fa941d
AV
4296static int perf_release(struct inode *inode, struct file *file)
4297{
c6e5b732 4298 perf_event_release_kernel(file->private_data);
a6fa941d 4299 return 0;
fb0459d7 4300}
fb0459d7 4301
ca0dd44c 4302static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4303{
cdd6c482 4304 struct perf_event *child;
e53c0994
PZ
4305 u64 total = 0;
4306
59ed446f
PZ
4307 *enabled = 0;
4308 *running = 0;
4309
6f10581a 4310 mutex_lock(&event->child_mutex);
01add3ea 4311
7d88962e 4312 (void)perf_event_read(event, false);
01add3ea
SB
4313 total += perf_event_count(event);
4314
59ed446f
PZ
4315 *enabled += event->total_time_enabled +
4316 atomic64_read(&event->child_total_time_enabled);
4317 *running += event->total_time_running +
4318 atomic64_read(&event->child_total_time_running);
4319
4320 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4321 (void)perf_event_read(child, false);
01add3ea 4322 total += perf_event_count(child);
59ed446f
PZ
4323 *enabled += child->total_time_enabled;
4324 *running += child->total_time_running;
4325 }
6f10581a 4326 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4327
4328 return total;
4329}
ca0dd44c
PZ
4330
4331u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4332{
4333 struct perf_event_context *ctx;
4334 u64 count;
4335
4336 ctx = perf_event_ctx_lock(event);
4337 count = __perf_event_read_value(event, enabled, running);
4338 perf_event_ctx_unlock(event, ctx);
4339
4340 return count;
4341}
fb0459d7 4342EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4343
7d88962e 4344static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4345 u64 read_format, u64 *values)
3dab77fb 4346{
2aeb1883 4347 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4348 struct perf_event *sub;
2aeb1883 4349 unsigned long flags;
fa8c2693 4350 int n = 1; /* skip @nr */
7d88962e 4351 int ret;
f63a8daa 4352
7d88962e
SB
4353 ret = perf_event_read(leader, true);
4354 if (ret)
4355 return ret;
abf4868b 4356
a9cd8194
PZ
4357 raw_spin_lock_irqsave(&ctx->lock, flags);
4358
fa8c2693
PZ
4359 /*
4360 * Since we co-schedule groups, {enabled,running} times of siblings
4361 * will be identical to those of the leader, so we only publish one
4362 * set.
4363 */
4364 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4365 values[n++] += leader->total_time_enabled +
4366 atomic64_read(&leader->child_total_time_enabled);
4367 }
3dab77fb 4368
fa8c2693
PZ
4369 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4370 values[n++] += leader->total_time_running +
4371 atomic64_read(&leader->child_total_time_running);
4372 }
4373
4374 /*
4375 * Write {count,id} tuples for every sibling.
4376 */
4377 values[n++] += perf_event_count(leader);
abf4868b
PZ
4378 if (read_format & PERF_FORMAT_ID)
4379 values[n++] = primary_event_id(leader);
3dab77fb 4380
fa8c2693
PZ
4381 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4382 values[n++] += perf_event_count(sub);
4383 if (read_format & PERF_FORMAT_ID)
4384 values[n++] = primary_event_id(sub);
4385 }
7d88962e 4386
2aeb1883 4387 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4388 return 0;
fa8c2693 4389}
3dab77fb 4390
fa8c2693
PZ
4391static int perf_read_group(struct perf_event *event,
4392 u64 read_format, char __user *buf)
4393{
4394 struct perf_event *leader = event->group_leader, *child;
4395 struct perf_event_context *ctx = leader->ctx;
7d88962e 4396 int ret;
fa8c2693 4397 u64 *values;
3dab77fb 4398
fa8c2693 4399 lockdep_assert_held(&ctx->mutex);
3dab77fb 4400
fa8c2693
PZ
4401 values = kzalloc(event->read_size, GFP_KERNEL);
4402 if (!values)
4403 return -ENOMEM;
3dab77fb 4404
fa8c2693
PZ
4405 values[0] = 1 + leader->nr_siblings;
4406
4407 /*
4408 * By locking the child_mutex of the leader we effectively
4409 * lock the child list of all siblings.. XXX explain how.
4410 */
4411 mutex_lock(&leader->child_mutex);
abf4868b 4412
7d88962e
SB
4413 ret = __perf_read_group_add(leader, read_format, values);
4414 if (ret)
4415 goto unlock;
4416
4417 list_for_each_entry(child, &leader->child_list, child_list) {
4418 ret = __perf_read_group_add(child, read_format, values);
4419 if (ret)
4420 goto unlock;
4421 }
abf4868b 4422
fa8c2693 4423 mutex_unlock(&leader->child_mutex);
abf4868b 4424
7d88962e 4425 ret = event->read_size;
fa8c2693
PZ
4426 if (copy_to_user(buf, values, event->read_size))
4427 ret = -EFAULT;
7d88962e 4428 goto out;
fa8c2693 4429
7d88962e
SB
4430unlock:
4431 mutex_unlock(&leader->child_mutex);
4432out:
fa8c2693 4433 kfree(values);
abf4868b 4434 return ret;
3dab77fb
PZ
4435}
4436
b15f495b 4437static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4438 u64 read_format, char __user *buf)
4439{
59ed446f 4440 u64 enabled, running;
3dab77fb
PZ
4441 u64 values[4];
4442 int n = 0;
4443
ca0dd44c 4444 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4445 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4446 values[n++] = enabled;
4447 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4448 values[n++] = running;
3dab77fb 4449 if (read_format & PERF_FORMAT_ID)
cdd6c482 4450 values[n++] = primary_event_id(event);
3dab77fb
PZ
4451
4452 if (copy_to_user(buf, values, n * sizeof(u64)))
4453 return -EFAULT;
4454
4455 return n * sizeof(u64);
4456}
4457
dc633982
JO
4458static bool is_event_hup(struct perf_event *event)
4459{
4460 bool no_children;
4461
a69b0ca4 4462 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4463 return false;
4464
4465 mutex_lock(&event->child_mutex);
4466 no_children = list_empty(&event->child_list);
4467 mutex_unlock(&event->child_mutex);
4468 return no_children;
4469}
4470
0793a61d 4471/*
cdd6c482 4472 * Read the performance event - simple non blocking version for now
0793a61d
TG
4473 */
4474static ssize_t
b15f495b 4475__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4476{
cdd6c482 4477 u64 read_format = event->attr.read_format;
3dab77fb 4478 int ret;
0793a61d 4479
3b6f9e5c 4480 /*
cdd6c482 4481 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4482 * error state (i.e. because it was pinned but it couldn't be
4483 * scheduled on to the CPU at some point).
4484 */
cdd6c482 4485 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4486 return 0;
4487
c320c7b7 4488 if (count < event->read_size)
3dab77fb
PZ
4489 return -ENOSPC;
4490
cdd6c482 4491 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4492 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4493 ret = perf_read_group(event, read_format, buf);
3dab77fb 4494 else
b15f495b 4495 ret = perf_read_one(event, read_format, buf);
0793a61d 4496
3dab77fb 4497 return ret;
0793a61d
TG
4498}
4499
0793a61d
TG
4500static ssize_t
4501perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4502{
cdd6c482 4503 struct perf_event *event = file->private_data;
f63a8daa
PZ
4504 struct perf_event_context *ctx;
4505 int ret;
0793a61d 4506
f63a8daa 4507 ctx = perf_event_ctx_lock(event);
b15f495b 4508 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4509 perf_event_ctx_unlock(event, ctx);
4510
4511 return ret;
0793a61d
TG
4512}
4513
4514static unsigned int perf_poll(struct file *file, poll_table *wait)
4515{
cdd6c482 4516 struct perf_event *event = file->private_data;
76369139 4517 struct ring_buffer *rb;
61b67684 4518 unsigned int events = POLLHUP;
c7138f37 4519
e708d7ad 4520 poll_wait(file, &event->waitq, wait);
179033b3 4521
dc633982 4522 if (is_event_hup(event))
179033b3 4523 return events;
c7138f37 4524
10c6db11 4525 /*
9bb5d40c
PZ
4526 * Pin the event->rb by taking event->mmap_mutex; otherwise
4527 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4528 */
4529 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4530 rb = event->rb;
4531 if (rb)
76369139 4532 events = atomic_xchg(&rb->poll, 0);
10c6db11 4533 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4534 return events;
4535}
4536
f63a8daa 4537static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4538{
7d88962e 4539 (void)perf_event_read(event, false);
e7850595 4540 local64_set(&event->count, 0);
cdd6c482 4541 perf_event_update_userpage(event);
3df5edad
PZ
4542}
4543
c93f7669 4544/*
cdd6c482
IM
4545 * Holding the top-level event's child_mutex means that any
4546 * descendant process that has inherited this event will block
8ba289b8 4547 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4548 * task existence requirements of perf_event_enable/disable.
c93f7669 4549 */
cdd6c482
IM
4550static void perf_event_for_each_child(struct perf_event *event,
4551 void (*func)(struct perf_event *))
3df5edad 4552{
cdd6c482 4553 struct perf_event *child;
3df5edad 4554
cdd6c482 4555 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4556
cdd6c482
IM
4557 mutex_lock(&event->child_mutex);
4558 func(event);
4559 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4560 func(child);
cdd6c482 4561 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4562}
4563
cdd6c482
IM
4564static void perf_event_for_each(struct perf_event *event,
4565 void (*func)(struct perf_event *))
3df5edad 4566{
cdd6c482
IM
4567 struct perf_event_context *ctx = event->ctx;
4568 struct perf_event *sibling;
3df5edad 4569
f63a8daa
PZ
4570 lockdep_assert_held(&ctx->mutex);
4571
cdd6c482 4572 event = event->group_leader;
75f937f2 4573
cdd6c482 4574 perf_event_for_each_child(event, func);
cdd6c482 4575 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4576 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4577}
4578
fae3fde6
PZ
4579static void __perf_event_period(struct perf_event *event,
4580 struct perf_cpu_context *cpuctx,
4581 struct perf_event_context *ctx,
4582 void *info)
c7999c6f 4583{
fae3fde6 4584 u64 value = *((u64 *)info);
c7999c6f 4585 bool active;
08247e31 4586
cdd6c482 4587 if (event->attr.freq) {
cdd6c482 4588 event->attr.sample_freq = value;
08247e31 4589 } else {
cdd6c482
IM
4590 event->attr.sample_period = value;
4591 event->hw.sample_period = value;
08247e31 4592 }
bad7192b
PZ
4593
4594 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4595 if (active) {
4596 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4597 /*
4598 * We could be throttled; unthrottle now to avoid the tick
4599 * trying to unthrottle while we already re-started the event.
4600 */
4601 if (event->hw.interrupts == MAX_INTERRUPTS) {
4602 event->hw.interrupts = 0;
4603 perf_log_throttle(event, 1);
4604 }
bad7192b
PZ
4605 event->pmu->stop(event, PERF_EF_UPDATE);
4606 }
4607
4608 local64_set(&event->hw.period_left, 0);
4609
4610 if (active) {
4611 event->pmu->start(event, PERF_EF_RELOAD);
4612 perf_pmu_enable(ctx->pmu);
4613 }
c7999c6f
PZ
4614}
4615
4616static int perf_event_period(struct perf_event *event, u64 __user *arg)
4617{
c7999c6f
PZ
4618 u64 value;
4619
4620 if (!is_sampling_event(event))
4621 return -EINVAL;
4622
4623 if (copy_from_user(&value, arg, sizeof(value)))
4624 return -EFAULT;
4625
4626 if (!value)
4627 return -EINVAL;
4628
4629 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4630 return -EINVAL;
4631
fae3fde6 4632 event_function_call(event, __perf_event_period, &value);
08247e31 4633
c7999c6f 4634 return 0;
08247e31
PZ
4635}
4636
ac9721f3
PZ
4637static const struct file_operations perf_fops;
4638
2903ff01 4639static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4640{
2903ff01
AV
4641 struct fd f = fdget(fd);
4642 if (!f.file)
4643 return -EBADF;
ac9721f3 4644
2903ff01
AV
4645 if (f.file->f_op != &perf_fops) {
4646 fdput(f);
4647 return -EBADF;
ac9721f3 4648 }
2903ff01
AV
4649 *p = f;
4650 return 0;
ac9721f3
PZ
4651}
4652
4653static int perf_event_set_output(struct perf_event *event,
4654 struct perf_event *output_event);
6fb2915d 4655static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4656static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4657
f63a8daa 4658static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4659{
cdd6c482 4660 void (*func)(struct perf_event *);
3df5edad 4661 u32 flags = arg;
d859e29f
PM
4662
4663 switch (cmd) {
cdd6c482 4664 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4665 func = _perf_event_enable;
d859e29f 4666 break;
cdd6c482 4667 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4668 func = _perf_event_disable;
79f14641 4669 break;
cdd6c482 4670 case PERF_EVENT_IOC_RESET:
f63a8daa 4671 func = _perf_event_reset;
6de6a7b9 4672 break;
3df5edad 4673
cdd6c482 4674 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4675 return _perf_event_refresh(event, arg);
08247e31 4676
cdd6c482
IM
4677 case PERF_EVENT_IOC_PERIOD:
4678 return perf_event_period(event, (u64 __user *)arg);
08247e31 4679
cf4957f1
JO
4680 case PERF_EVENT_IOC_ID:
4681 {
4682 u64 id = primary_event_id(event);
4683
4684 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4685 return -EFAULT;
4686 return 0;
4687 }
4688
cdd6c482 4689 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4690 {
ac9721f3 4691 int ret;
ac9721f3 4692 if (arg != -1) {
2903ff01
AV
4693 struct perf_event *output_event;
4694 struct fd output;
4695 ret = perf_fget_light(arg, &output);
4696 if (ret)
4697 return ret;
4698 output_event = output.file->private_data;
4699 ret = perf_event_set_output(event, output_event);
4700 fdput(output);
4701 } else {
4702 ret = perf_event_set_output(event, NULL);
ac9721f3 4703 }
ac9721f3
PZ
4704 return ret;
4705 }
a4be7c27 4706
6fb2915d
LZ
4707 case PERF_EVENT_IOC_SET_FILTER:
4708 return perf_event_set_filter(event, (void __user *)arg);
4709
2541517c
AS
4710 case PERF_EVENT_IOC_SET_BPF:
4711 return perf_event_set_bpf_prog(event, arg);
4712
86e7972f
WN
4713 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4714 struct ring_buffer *rb;
4715
4716 rcu_read_lock();
4717 rb = rcu_dereference(event->rb);
4718 if (!rb || !rb->nr_pages) {
4719 rcu_read_unlock();
4720 return -EINVAL;
4721 }
4722 rb_toggle_paused(rb, !!arg);
4723 rcu_read_unlock();
4724 return 0;
4725 }
d859e29f 4726 default:
3df5edad 4727 return -ENOTTY;
d859e29f 4728 }
3df5edad
PZ
4729
4730 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4731 perf_event_for_each(event, func);
3df5edad 4732 else
cdd6c482 4733 perf_event_for_each_child(event, func);
3df5edad
PZ
4734
4735 return 0;
d859e29f
PM
4736}
4737
f63a8daa
PZ
4738static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4739{
4740 struct perf_event *event = file->private_data;
4741 struct perf_event_context *ctx;
4742 long ret;
4743
4744 ctx = perf_event_ctx_lock(event);
4745 ret = _perf_ioctl(event, cmd, arg);
4746 perf_event_ctx_unlock(event, ctx);
4747
4748 return ret;
4749}
4750
b3f20785
PM
4751#ifdef CONFIG_COMPAT
4752static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4753 unsigned long arg)
4754{
4755 switch (_IOC_NR(cmd)) {
4756 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4757 case _IOC_NR(PERF_EVENT_IOC_ID):
4758 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4759 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4760 cmd &= ~IOCSIZE_MASK;
4761 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4762 }
4763 break;
4764 }
4765 return perf_ioctl(file, cmd, arg);
4766}
4767#else
4768# define perf_compat_ioctl NULL
4769#endif
4770
cdd6c482 4771int perf_event_task_enable(void)
771d7cde 4772{
f63a8daa 4773 struct perf_event_context *ctx;
cdd6c482 4774 struct perf_event *event;
771d7cde 4775
cdd6c482 4776 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4777 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4778 ctx = perf_event_ctx_lock(event);
4779 perf_event_for_each_child(event, _perf_event_enable);
4780 perf_event_ctx_unlock(event, ctx);
4781 }
cdd6c482 4782 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4783
4784 return 0;
4785}
4786
cdd6c482 4787int perf_event_task_disable(void)
771d7cde 4788{
f63a8daa 4789 struct perf_event_context *ctx;
cdd6c482 4790 struct perf_event *event;
771d7cde 4791
cdd6c482 4792 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4793 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4794 ctx = perf_event_ctx_lock(event);
4795 perf_event_for_each_child(event, _perf_event_disable);
4796 perf_event_ctx_unlock(event, ctx);
4797 }
cdd6c482 4798 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4799
4800 return 0;
4801}
4802
cdd6c482 4803static int perf_event_index(struct perf_event *event)
194002b2 4804{
a4eaf7f1
PZ
4805 if (event->hw.state & PERF_HES_STOPPED)
4806 return 0;
4807
cdd6c482 4808 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4809 return 0;
4810
35edc2a5 4811 return event->pmu->event_idx(event);
194002b2
PZ
4812}
4813
c4794295 4814static void calc_timer_values(struct perf_event *event,
e3f3541c 4815 u64 *now,
7f310a5d
EM
4816 u64 *enabled,
4817 u64 *running)
c4794295 4818{
e3f3541c 4819 u64 ctx_time;
c4794295 4820
e3f3541c
PZ
4821 *now = perf_clock();
4822 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 4823 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
4824}
4825
fa731587
PZ
4826static void perf_event_init_userpage(struct perf_event *event)
4827{
4828 struct perf_event_mmap_page *userpg;
4829 struct ring_buffer *rb;
4830
4831 rcu_read_lock();
4832 rb = rcu_dereference(event->rb);
4833 if (!rb)
4834 goto unlock;
4835
4836 userpg = rb->user_page;
4837
4838 /* Allow new userspace to detect that bit 0 is deprecated */
4839 userpg->cap_bit0_is_deprecated = 1;
4840 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4841 userpg->data_offset = PAGE_SIZE;
4842 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4843
4844unlock:
4845 rcu_read_unlock();
4846}
4847
c1317ec2
AL
4848void __weak arch_perf_update_userpage(
4849 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4850{
4851}
4852
38ff667b
PZ
4853/*
4854 * Callers need to ensure there can be no nesting of this function, otherwise
4855 * the seqlock logic goes bad. We can not serialize this because the arch
4856 * code calls this from NMI context.
4857 */
cdd6c482 4858void perf_event_update_userpage(struct perf_event *event)
37d81828 4859{
cdd6c482 4860 struct perf_event_mmap_page *userpg;
76369139 4861 struct ring_buffer *rb;
e3f3541c 4862 u64 enabled, running, now;
38ff667b
PZ
4863
4864 rcu_read_lock();
5ec4c599
PZ
4865 rb = rcu_dereference(event->rb);
4866 if (!rb)
4867 goto unlock;
4868
0d641208
EM
4869 /*
4870 * compute total_time_enabled, total_time_running
4871 * based on snapshot values taken when the event
4872 * was last scheduled in.
4873 *
4874 * we cannot simply called update_context_time()
4875 * because of locking issue as we can be called in
4876 * NMI context
4877 */
e3f3541c 4878 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4879
76369139 4880 userpg = rb->user_page;
7b732a75
PZ
4881 /*
4882 * Disable preemption so as to not let the corresponding user-space
4883 * spin too long if we get preempted.
4884 */
4885 preempt_disable();
37d81828 4886 ++userpg->lock;
92f22a38 4887 barrier();
cdd6c482 4888 userpg->index = perf_event_index(event);
b5e58793 4889 userpg->offset = perf_event_count(event);
365a4038 4890 if (userpg->index)
e7850595 4891 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4892
0d641208 4893 userpg->time_enabled = enabled +
cdd6c482 4894 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4895
0d641208 4896 userpg->time_running = running +
cdd6c482 4897 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4898
c1317ec2 4899 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4900
92f22a38 4901 barrier();
37d81828 4902 ++userpg->lock;
7b732a75 4903 preempt_enable();
38ff667b 4904unlock:
7b732a75 4905 rcu_read_unlock();
37d81828
PM
4906}
4907
11bac800 4908static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 4909{
11bac800 4910 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 4911 struct ring_buffer *rb;
906010b2
PZ
4912 int ret = VM_FAULT_SIGBUS;
4913
4914 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4915 if (vmf->pgoff == 0)
4916 ret = 0;
4917 return ret;
4918 }
4919
4920 rcu_read_lock();
76369139
FW
4921 rb = rcu_dereference(event->rb);
4922 if (!rb)
906010b2
PZ
4923 goto unlock;
4924
4925 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4926 goto unlock;
4927
76369139 4928 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4929 if (!vmf->page)
4930 goto unlock;
4931
4932 get_page(vmf->page);
11bac800 4933 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
4934 vmf->page->index = vmf->pgoff;
4935
4936 ret = 0;
4937unlock:
4938 rcu_read_unlock();
4939
4940 return ret;
4941}
4942
10c6db11
PZ
4943static void ring_buffer_attach(struct perf_event *event,
4944 struct ring_buffer *rb)
4945{
b69cf536 4946 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4947 unsigned long flags;
4948
b69cf536
PZ
4949 if (event->rb) {
4950 /*
4951 * Should be impossible, we set this when removing
4952 * event->rb_entry and wait/clear when adding event->rb_entry.
4953 */
4954 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4955
b69cf536 4956 old_rb = event->rb;
b69cf536
PZ
4957 spin_lock_irqsave(&old_rb->event_lock, flags);
4958 list_del_rcu(&event->rb_entry);
4959 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4960
2f993cf0
ON
4961 event->rcu_batches = get_state_synchronize_rcu();
4962 event->rcu_pending = 1;
b69cf536 4963 }
10c6db11 4964
b69cf536 4965 if (rb) {
2f993cf0
ON
4966 if (event->rcu_pending) {
4967 cond_synchronize_rcu(event->rcu_batches);
4968 event->rcu_pending = 0;
4969 }
4970
b69cf536
PZ
4971 spin_lock_irqsave(&rb->event_lock, flags);
4972 list_add_rcu(&event->rb_entry, &rb->event_list);
4973 spin_unlock_irqrestore(&rb->event_lock, flags);
4974 }
4975
767ae086
AS
4976 /*
4977 * Avoid racing with perf_mmap_close(AUX): stop the event
4978 * before swizzling the event::rb pointer; if it's getting
4979 * unmapped, its aux_mmap_count will be 0 and it won't
4980 * restart. See the comment in __perf_pmu_output_stop().
4981 *
4982 * Data will inevitably be lost when set_output is done in
4983 * mid-air, but then again, whoever does it like this is
4984 * not in for the data anyway.
4985 */
4986 if (has_aux(event))
4987 perf_event_stop(event, 0);
4988
b69cf536
PZ
4989 rcu_assign_pointer(event->rb, rb);
4990
4991 if (old_rb) {
4992 ring_buffer_put(old_rb);
4993 /*
4994 * Since we detached before setting the new rb, so that we
4995 * could attach the new rb, we could have missed a wakeup.
4996 * Provide it now.
4997 */
4998 wake_up_all(&event->waitq);
4999 }
10c6db11
PZ
5000}
5001
5002static void ring_buffer_wakeup(struct perf_event *event)
5003{
5004 struct ring_buffer *rb;
5005
5006 rcu_read_lock();
5007 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5008 if (rb) {
5009 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5010 wake_up_all(&event->waitq);
5011 }
10c6db11
PZ
5012 rcu_read_unlock();
5013}
5014
fdc26706 5015struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5016{
76369139 5017 struct ring_buffer *rb;
7b732a75 5018
ac9721f3 5019 rcu_read_lock();
76369139
FW
5020 rb = rcu_dereference(event->rb);
5021 if (rb) {
5022 if (!atomic_inc_not_zero(&rb->refcount))
5023 rb = NULL;
ac9721f3
PZ
5024 }
5025 rcu_read_unlock();
5026
76369139 5027 return rb;
ac9721f3
PZ
5028}
5029
fdc26706 5030void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5031{
76369139 5032 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5033 return;
7b732a75 5034
9bb5d40c 5035 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5036
76369139 5037 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5038}
5039
5040static void perf_mmap_open(struct vm_area_struct *vma)
5041{
cdd6c482 5042 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5043
cdd6c482 5044 atomic_inc(&event->mmap_count);
9bb5d40c 5045 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5046
45bfb2e5
PZ
5047 if (vma->vm_pgoff)
5048 atomic_inc(&event->rb->aux_mmap_count);
5049
1e0fb9ec 5050 if (event->pmu->event_mapped)
bfe33492 5051 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5052}
5053
95ff4ca2
AS
5054static void perf_pmu_output_stop(struct perf_event *event);
5055
9bb5d40c
PZ
5056/*
5057 * A buffer can be mmap()ed multiple times; either directly through the same
5058 * event, or through other events by use of perf_event_set_output().
5059 *
5060 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5061 * the buffer here, where we still have a VM context. This means we need
5062 * to detach all events redirecting to us.
5063 */
7b732a75
PZ
5064static void perf_mmap_close(struct vm_area_struct *vma)
5065{
cdd6c482 5066 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5067
b69cf536 5068 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5069 struct user_struct *mmap_user = rb->mmap_user;
5070 int mmap_locked = rb->mmap_locked;
5071 unsigned long size = perf_data_size(rb);
789f90fc 5072
1e0fb9ec 5073 if (event->pmu->event_unmapped)
bfe33492 5074 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5075
45bfb2e5
PZ
5076 /*
5077 * rb->aux_mmap_count will always drop before rb->mmap_count and
5078 * event->mmap_count, so it is ok to use event->mmap_mutex to
5079 * serialize with perf_mmap here.
5080 */
5081 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5082 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5083 /*
5084 * Stop all AUX events that are writing to this buffer,
5085 * so that we can free its AUX pages and corresponding PMU
5086 * data. Note that after rb::aux_mmap_count dropped to zero,
5087 * they won't start any more (see perf_aux_output_begin()).
5088 */
5089 perf_pmu_output_stop(event);
5090
5091 /* now it's safe to free the pages */
45bfb2e5
PZ
5092 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5093 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5094
95ff4ca2 5095 /* this has to be the last one */
45bfb2e5 5096 rb_free_aux(rb);
95ff4ca2
AS
5097 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5098
45bfb2e5
PZ
5099 mutex_unlock(&event->mmap_mutex);
5100 }
5101
9bb5d40c
PZ
5102 atomic_dec(&rb->mmap_count);
5103
5104 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5105 goto out_put;
9bb5d40c 5106
b69cf536 5107 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5108 mutex_unlock(&event->mmap_mutex);
5109
5110 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5111 if (atomic_read(&rb->mmap_count))
5112 goto out_put;
ac9721f3 5113
9bb5d40c
PZ
5114 /*
5115 * No other mmap()s, detach from all other events that might redirect
5116 * into the now unreachable buffer. Somewhat complicated by the
5117 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5118 */
5119again:
5120 rcu_read_lock();
5121 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5122 if (!atomic_long_inc_not_zero(&event->refcount)) {
5123 /*
5124 * This event is en-route to free_event() which will
5125 * detach it and remove it from the list.
5126 */
5127 continue;
5128 }
5129 rcu_read_unlock();
789f90fc 5130
9bb5d40c
PZ
5131 mutex_lock(&event->mmap_mutex);
5132 /*
5133 * Check we didn't race with perf_event_set_output() which can
5134 * swizzle the rb from under us while we were waiting to
5135 * acquire mmap_mutex.
5136 *
5137 * If we find a different rb; ignore this event, a next
5138 * iteration will no longer find it on the list. We have to
5139 * still restart the iteration to make sure we're not now
5140 * iterating the wrong list.
5141 */
b69cf536
PZ
5142 if (event->rb == rb)
5143 ring_buffer_attach(event, NULL);
5144
cdd6c482 5145 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5146 put_event(event);
ac9721f3 5147
9bb5d40c
PZ
5148 /*
5149 * Restart the iteration; either we're on the wrong list or
5150 * destroyed its integrity by doing a deletion.
5151 */
5152 goto again;
7b732a75 5153 }
9bb5d40c
PZ
5154 rcu_read_unlock();
5155
5156 /*
5157 * It could be there's still a few 0-ref events on the list; they'll
5158 * get cleaned up by free_event() -- they'll also still have their
5159 * ref on the rb and will free it whenever they are done with it.
5160 *
5161 * Aside from that, this buffer is 'fully' detached and unmapped,
5162 * undo the VM accounting.
5163 */
5164
5165 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5166 vma->vm_mm->pinned_vm -= mmap_locked;
5167 free_uid(mmap_user);
5168
b69cf536 5169out_put:
9bb5d40c 5170 ring_buffer_put(rb); /* could be last */
37d81828
PM
5171}
5172
f0f37e2f 5173static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5174 .open = perf_mmap_open,
45bfb2e5 5175 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5176 .fault = perf_mmap_fault,
5177 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5178};
5179
5180static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5181{
cdd6c482 5182 struct perf_event *event = file->private_data;
22a4f650 5183 unsigned long user_locked, user_lock_limit;
789f90fc 5184 struct user_struct *user = current_user();
22a4f650 5185 unsigned long locked, lock_limit;
45bfb2e5 5186 struct ring_buffer *rb = NULL;
7b732a75
PZ
5187 unsigned long vma_size;
5188 unsigned long nr_pages;
45bfb2e5 5189 long user_extra = 0, extra = 0;
d57e34fd 5190 int ret = 0, flags = 0;
37d81828 5191
c7920614
PZ
5192 /*
5193 * Don't allow mmap() of inherited per-task counters. This would
5194 * create a performance issue due to all children writing to the
76369139 5195 * same rb.
c7920614
PZ
5196 */
5197 if (event->cpu == -1 && event->attr.inherit)
5198 return -EINVAL;
5199
43a21ea8 5200 if (!(vma->vm_flags & VM_SHARED))
37d81828 5201 return -EINVAL;
7b732a75
PZ
5202
5203 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5204
5205 if (vma->vm_pgoff == 0) {
5206 nr_pages = (vma_size / PAGE_SIZE) - 1;
5207 } else {
5208 /*
5209 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5210 * mapped, all subsequent mappings should have the same size
5211 * and offset. Must be above the normal perf buffer.
5212 */
5213 u64 aux_offset, aux_size;
5214
5215 if (!event->rb)
5216 return -EINVAL;
5217
5218 nr_pages = vma_size / PAGE_SIZE;
5219
5220 mutex_lock(&event->mmap_mutex);
5221 ret = -EINVAL;
5222
5223 rb = event->rb;
5224 if (!rb)
5225 goto aux_unlock;
5226
6aa7de05
MR
5227 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5228 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5229
5230 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5231 goto aux_unlock;
5232
5233 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5234 goto aux_unlock;
5235
5236 /* already mapped with a different offset */
5237 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5238 goto aux_unlock;
5239
5240 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5241 goto aux_unlock;
5242
5243 /* already mapped with a different size */
5244 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5245 goto aux_unlock;
5246
5247 if (!is_power_of_2(nr_pages))
5248 goto aux_unlock;
5249
5250 if (!atomic_inc_not_zero(&rb->mmap_count))
5251 goto aux_unlock;
5252
5253 if (rb_has_aux(rb)) {
5254 atomic_inc(&rb->aux_mmap_count);
5255 ret = 0;
5256 goto unlock;
5257 }
5258
5259 atomic_set(&rb->aux_mmap_count, 1);
5260 user_extra = nr_pages;
5261
5262 goto accounting;
5263 }
7b732a75 5264
7730d865 5265 /*
76369139 5266 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5267 * can do bitmasks instead of modulo.
5268 */
2ed11312 5269 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5270 return -EINVAL;
5271
7b732a75 5272 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5273 return -EINVAL;
5274
cdd6c482 5275 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5276again:
cdd6c482 5277 mutex_lock(&event->mmap_mutex);
76369139 5278 if (event->rb) {
9bb5d40c 5279 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5280 ret = -EINVAL;
9bb5d40c
PZ
5281 goto unlock;
5282 }
5283
5284 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5285 /*
5286 * Raced against perf_mmap_close() through
5287 * perf_event_set_output(). Try again, hope for better
5288 * luck.
5289 */
5290 mutex_unlock(&event->mmap_mutex);
5291 goto again;
5292 }
5293
ebb3c4c4
PZ
5294 goto unlock;
5295 }
5296
789f90fc 5297 user_extra = nr_pages + 1;
45bfb2e5
PZ
5298
5299accounting:
cdd6c482 5300 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5301
5302 /*
5303 * Increase the limit linearly with more CPUs:
5304 */
5305 user_lock_limit *= num_online_cpus();
5306
789f90fc 5307 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5308
789f90fc
PZ
5309 if (user_locked > user_lock_limit)
5310 extra = user_locked - user_lock_limit;
7b732a75 5311
78d7d407 5312 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5313 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5314 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5315
459ec28a
IM
5316 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5317 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5318 ret = -EPERM;
5319 goto unlock;
5320 }
7b732a75 5321
45bfb2e5 5322 WARN_ON(!rb && event->rb);
906010b2 5323
d57e34fd 5324 if (vma->vm_flags & VM_WRITE)
76369139 5325 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5326
76369139 5327 if (!rb) {
45bfb2e5
PZ
5328 rb = rb_alloc(nr_pages,
5329 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5330 event->cpu, flags);
26cb63ad 5331
45bfb2e5
PZ
5332 if (!rb) {
5333 ret = -ENOMEM;
5334 goto unlock;
5335 }
43a21ea8 5336
45bfb2e5
PZ
5337 atomic_set(&rb->mmap_count, 1);
5338 rb->mmap_user = get_current_user();
5339 rb->mmap_locked = extra;
26cb63ad 5340
45bfb2e5 5341 ring_buffer_attach(event, rb);
ac9721f3 5342
45bfb2e5
PZ
5343 perf_event_init_userpage(event);
5344 perf_event_update_userpage(event);
5345 } else {
1a594131
AS
5346 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5347 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5348 if (!ret)
5349 rb->aux_mmap_locked = extra;
5350 }
9a0f05cb 5351
ebb3c4c4 5352unlock:
45bfb2e5
PZ
5353 if (!ret) {
5354 atomic_long_add(user_extra, &user->locked_vm);
5355 vma->vm_mm->pinned_vm += extra;
5356
ac9721f3 5357 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5358 } else if (rb) {
5359 atomic_dec(&rb->mmap_count);
5360 }
5361aux_unlock:
cdd6c482 5362 mutex_unlock(&event->mmap_mutex);
37d81828 5363
9bb5d40c
PZ
5364 /*
5365 * Since pinned accounting is per vm we cannot allow fork() to copy our
5366 * vma.
5367 */
26cb63ad 5368 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5369 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5370
1e0fb9ec 5371 if (event->pmu->event_mapped)
bfe33492 5372 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5373
7b732a75 5374 return ret;
37d81828
PM
5375}
5376
3c446b3d
PZ
5377static int perf_fasync(int fd, struct file *filp, int on)
5378{
496ad9aa 5379 struct inode *inode = file_inode(filp);
cdd6c482 5380 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5381 int retval;
5382
5955102c 5383 inode_lock(inode);
cdd6c482 5384 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5385 inode_unlock(inode);
3c446b3d
PZ
5386
5387 if (retval < 0)
5388 return retval;
5389
5390 return 0;
5391}
5392
0793a61d 5393static const struct file_operations perf_fops = {
3326c1ce 5394 .llseek = no_llseek,
0793a61d
TG
5395 .release = perf_release,
5396 .read = perf_read,
5397 .poll = perf_poll,
d859e29f 5398 .unlocked_ioctl = perf_ioctl,
b3f20785 5399 .compat_ioctl = perf_compat_ioctl,
37d81828 5400 .mmap = perf_mmap,
3c446b3d 5401 .fasync = perf_fasync,
0793a61d
TG
5402};
5403
925d519a 5404/*
cdd6c482 5405 * Perf event wakeup
925d519a
PZ
5406 *
5407 * If there's data, ensure we set the poll() state and publish everything
5408 * to user-space before waking everybody up.
5409 */
5410
fed66e2c
PZ
5411static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5412{
5413 /* only the parent has fasync state */
5414 if (event->parent)
5415 event = event->parent;
5416 return &event->fasync;
5417}
5418
cdd6c482 5419void perf_event_wakeup(struct perf_event *event)
925d519a 5420{
10c6db11 5421 ring_buffer_wakeup(event);
4c9e2542 5422
cdd6c482 5423 if (event->pending_kill) {
fed66e2c 5424 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5425 event->pending_kill = 0;
4c9e2542 5426 }
925d519a
PZ
5427}
5428
e360adbe 5429static void perf_pending_event(struct irq_work *entry)
79f14641 5430{
cdd6c482
IM
5431 struct perf_event *event = container_of(entry,
5432 struct perf_event, pending);
d525211f
PZ
5433 int rctx;
5434
5435 rctx = perf_swevent_get_recursion_context();
5436 /*
5437 * If we 'fail' here, that's OK, it means recursion is already disabled
5438 * and we won't recurse 'further'.
5439 */
79f14641 5440
cdd6c482
IM
5441 if (event->pending_disable) {
5442 event->pending_disable = 0;
fae3fde6 5443 perf_event_disable_local(event);
79f14641
PZ
5444 }
5445
cdd6c482
IM
5446 if (event->pending_wakeup) {
5447 event->pending_wakeup = 0;
5448 perf_event_wakeup(event);
79f14641 5449 }
d525211f
PZ
5450
5451 if (rctx >= 0)
5452 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5453}
5454
39447b38
ZY
5455/*
5456 * We assume there is only KVM supporting the callbacks.
5457 * Later on, we might change it to a list if there is
5458 * another virtualization implementation supporting the callbacks.
5459 */
5460struct perf_guest_info_callbacks *perf_guest_cbs;
5461
5462int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5463{
5464 perf_guest_cbs = cbs;
5465 return 0;
5466}
5467EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5468
5469int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5470{
5471 perf_guest_cbs = NULL;
5472 return 0;
5473}
5474EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5475
4018994f
JO
5476static void
5477perf_output_sample_regs(struct perf_output_handle *handle,
5478 struct pt_regs *regs, u64 mask)
5479{
5480 int bit;
29dd3288 5481 DECLARE_BITMAP(_mask, 64);
4018994f 5482
29dd3288
MS
5483 bitmap_from_u64(_mask, mask);
5484 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5485 u64 val;
5486
5487 val = perf_reg_value(regs, bit);
5488 perf_output_put(handle, val);
5489 }
5490}
5491
60e2364e 5492static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5493 struct pt_regs *regs,
5494 struct pt_regs *regs_user_copy)
4018994f 5495{
88a7c26a
AL
5496 if (user_mode(regs)) {
5497 regs_user->abi = perf_reg_abi(current);
2565711f 5498 regs_user->regs = regs;
88a7c26a
AL
5499 } else if (current->mm) {
5500 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5501 } else {
5502 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5503 regs_user->regs = NULL;
4018994f
JO
5504 }
5505}
5506
60e2364e
SE
5507static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5508 struct pt_regs *regs)
5509{
5510 regs_intr->regs = regs;
5511 regs_intr->abi = perf_reg_abi(current);
5512}
5513
5514
c5ebcedb
JO
5515/*
5516 * Get remaining task size from user stack pointer.
5517 *
5518 * It'd be better to take stack vma map and limit this more
5519 * precisly, but there's no way to get it safely under interrupt,
5520 * so using TASK_SIZE as limit.
5521 */
5522static u64 perf_ustack_task_size(struct pt_regs *regs)
5523{
5524 unsigned long addr = perf_user_stack_pointer(regs);
5525
5526 if (!addr || addr >= TASK_SIZE)
5527 return 0;
5528
5529 return TASK_SIZE - addr;
5530}
5531
5532static u16
5533perf_sample_ustack_size(u16 stack_size, u16 header_size,
5534 struct pt_regs *regs)
5535{
5536 u64 task_size;
5537
5538 /* No regs, no stack pointer, no dump. */
5539 if (!regs)
5540 return 0;
5541
5542 /*
5543 * Check if we fit in with the requested stack size into the:
5544 * - TASK_SIZE
5545 * If we don't, we limit the size to the TASK_SIZE.
5546 *
5547 * - remaining sample size
5548 * If we don't, we customize the stack size to
5549 * fit in to the remaining sample size.
5550 */
5551
5552 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5553 stack_size = min(stack_size, (u16) task_size);
5554
5555 /* Current header size plus static size and dynamic size. */
5556 header_size += 2 * sizeof(u64);
5557
5558 /* Do we fit in with the current stack dump size? */
5559 if ((u16) (header_size + stack_size) < header_size) {
5560 /*
5561 * If we overflow the maximum size for the sample,
5562 * we customize the stack dump size to fit in.
5563 */
5564 stack_size = USHRT_MAX - header_size - sizeof(u64);
5565 stack_size = round_up(stack_size, sizeof(u64));
5566 }
5567
5568 return stack_size;
5569}
5570
5571static void
5572perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5573 struct pt_regs *regs)
5574{
5575 /* Case of a kernel thread, nothing to dump */
5576 if (!regs) {
5577 u64 size = 0;
5578 perf_output_put(handle, size);
5579 } else {
5580 unsigned long sp;
5581 unsigned int rem;
5582 u64 dyn_size;
5583
5584 /*
5585 * We dump:
5586 * static size
5587 * - the size requested by user or the best one we can fit
5588 * in to the sample max size
5589 * data
5590 * - user stack dump data
5591 * dynamic size
5592 * - the actual dumped size
5593 */
5594
5595 /* Static size. */
5596 perf_output_put(handle, dump_size);
5597
5598 /* Data. */
5599 sp = perf_user_stack_pointer(regs);
5600 rem = __output_copy_user(handle, (void *) sp, dump_size);
5601 dyn_size = dump_size - rem;
5602
5603 perf_output_skip(handle, rem);
5604
5605 /* Dynamic size. */
5606 perf_output_put(handle, dyn_size);
5607 }
5608}
5609
c980d109
ACM
5610static void __perf_event_header__init_id(struct perf_event_header *header,
5611 struct perf_sample_data *data,
5612 struct perf_event *event)
6844c09d
ACM
5613{
5614 u64 sample_type = event->attr.sample_type;
5615
5616 data->type = sample_type;
5617 header->size += event->id_header_size;
5618
5619 if (sample_type & PERF_SAMPLE_TID) {
5620 /* namespace issues */
5621 data->tid_entry.pid = perf_event_pid(event, current);
5622 data->tid_entry.tid = perf_event_tid(event, current);
5623 }
5624
5625 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5626 data->time = perf_event_clock(event);
6844c09d 5627
ff3d527c 5628 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5629 data->id = primary_event_id(event);
5630
5631 if (sample_type & PERF_SAMPLE_STREAM_ID)
5632 data->stream_id = event->id;
5633
5634 if (sample_type & PERF_SAMPLE_CPU) {
5635 data->cpu_entry.cpu = raw_smp_processor_id();
5636 data->cpu_entry.reserved = 0;
5637 }
5638}
5639
76369139
FW
5640void perf_event_header__init_id(struct perf_event_header *header,
5641 struct perf_sample_data *data,
5642 struct perf_event *event)
c980d109
ACM
5643{
5644 if (event->attr.sample_id_all)
5645 __perf_event_header__init_id(header, data, event);
5646}
5647
5648static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5649 struct perf_sample_data *data)
5650{
5651 u64 sample_type = data->type;
5652
5653 if (sample_type & PERF_SAMPLE_TID)
5654 perf_output_put(handle, data->tid_entry);
5655
5656 if (sample_type & PERF_SAMPLE_TIME)
5657 perf_output_put(handle, data->time);
5658
5659 if (sample_type & PERF_SAMPLE_ID)
5660 perf_output_put(handle, data->id);
5661
5662 if (sample_type & PERF_SAMPLE_STREAM_ID)
5663 perf_output_put(handle, data->stream_id);
5664
5665 if (sample_type & PERF_SAMPLE_CPU)
5666 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5667
5668 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5669 perf_output_put(handle, data->id);
c980d109
ACM
5670}
5671
76369139
FW
5672void perf_event__output_id_sample(struct perf_event *event,
5673 struct perf_output_handle *handle,
5674 struct perf_sample_data *sample)
c980d109
ACM
5675{
5676 if (event->attr.sample_id_all)
5677 __perf_event__output_id_sample(handle, sample);
5678}
5679
3dab77fb 5680static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5681 struct perf_event *event,
5682 u64 enabled, u64 running)
3dab77fb 5683{
cdd6c482 5684 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5685 u64 values[4];
5686 int n = 0;
5687
b5e58793 5688 values[n++] = perf_event_count(event);
3dab77fb 5689 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5690 values[n++] = enabled +
cdd6c482 5691 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5692 }
5693 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5694 values[n++] = running +
cdd6c482 5695 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5696 }
5697 if (read_format & PERF_FORMAT_ID)
cdd6c482 5698 values[n++] = primary_event_id(event);
3dab77fb 5699
76369139 5700 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5701}
5702
3dab77fb 5703static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5704 struct perf_event *event,
5705 u64 enabled, u64 running)
3dab77fb 5706{
cdd6c482
IM
5707 struct perf_event *leader = event->group_leader, *sub;
5708 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5709 u64 values[5];
5710 int n = 0;
5711
5712 values[n++] = 1 + leader->nr_siblings;
5713
5714 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5715 values[n++] = enabled;
3dab77fb
PZ
5716
5717 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5718 values[n++] = running;
3dab77fb 5719
cdd6c482 5720 if (leader != event)
3dab77fb
PZ
5721 leader->pmu->read(leader);
5722
b5e58793 5723 values[n++] = perf_event_count(leader);
3dab77fb 5724 if (read_format & PERF_FORMAT_ID)
cdd6c482 5725 values[n++] = primary_event_id(leader);
3dab77fb 5726
76369139 5727 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5728
65abc865 5729 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5730 n = 0;
5731
6f5ab001
JO
5732 if ((sub != event) &&
5733 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5734 sub->pmu->read(sub);
5735
b5e58793 5736 values[n++] = perf_event_count(sub);
3dab77fb 5737 if (read_format & PERF_FORMAT_ID)
cdd6c482 5738 values[n++] = primary_event_id(sub);
3dab77fb 5739
76369139 5740 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5741 }
5742}
5743
eed01528
SE
5744#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5745 PERF_FORMAT_TOTAL_TIME_RUNNING)
5746
ba5213ae
PZ
5747/*
5748 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5749 *
5750 * The problem is that its both hard and excessively expensive to iterate the
5751 * child list, not to mention that its impossible to IPI the children running
5752 * on another CPU, from interrupt/NMI context.
5753 */
3dab77fb 5754static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5755 struct perf_event *event)
3dab77fb 5756{
e3f3541c 5757 u64 enabled = 0, running = 0, now;
eed01528
SE
5758 u64 read_format = event->attr.read_format;
5759
5760 /*
5761 * compute total_time_enabled, total_time_running
5762 * based on snapshot values taken when the event
5763 * was last scheduled in.
5764 *
5765 * we cannot simply called update_context_time()
5766 * because of locking issue as we are called in
5767 * NMI context
5768 */
c4794295 5769 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5770 calc_timer_values(event, &now, &enabled, &running);
eed01528 5771
cdd6c482 5772 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5773 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5774 else
eed01528 5775 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5776}
5777
5622f295
MM
5778void perf_output_sample(struct perf_output_handle *handle,
5779 struct perf_event_header *header,
5780 struct perf_sample_data *data,
cdd6c482 5781 struct perf_event *event)
5622f295
MM
5782{
5783 u64 sample_type = data->type;
5784
5785 perf_output_put(handle, *header);
5786
ff3d527c
AH
5787 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5788 perf_output_put(handle, data->id);
5789
5622f295
MM
5790 if (sample_type & PERF_SAMPLE_IP)
5791 perf_output_put(handle, data->ip);
5792
5793 if (sample_type & PERF_SAMPLE_TID)
5794 perf_output_put(handle, data->tid_entry);
5795
5796 if (sample_type & PERF_SAMPLE_TIME)
5797 perf_output_put(handle, data->time);
5798
5799 if (sample_type & PERF_SAMPLE_ADDR)
5800 perf_output_put(handle, data->addr);
5801
5802 if (sample_type & PERF_SAMPLE_ID)
5803 perf_output_put(handle, data->id);
5804
5805 if (sample_type & PERF_SAMPLE_STREAM_ID)
5806 perf_output_put(handle, data->stream_id);
5807
5808 if (sample_type & PERF_SAMPLE_CPU)
5809 perf_output_put(handle, data->cpu_entry);
5810
5811 if (sample_type & PERF_SAMPLE_PERIOD)
5812 perf_output_put(handle, data->period);
5813
5814 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5815 perf_output_read(handle, event);
5622f295
MM
5816
5817 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5818 if (data->callchain) {
5819 int size = 1;
5820
5821 if (data->callchain)
5822 size += data->callchain->nr;
5823
5824 size *= sizeof(u64);
5825
76369139 5826 __output_copy(handle, data->callchain, size);
5622f295
MM
5827 } else {
5828 u64 nr = 0;
5829 perf_output_put(handle, nr);
5830 }
5831 }
5832
5833 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5834 struct perf_raw_record *raw = data->raw;
5835
5836 if (raw) {
5837 struct perf_raw_frag *frag = &raw->frag;
5838
5839 perf_output_put(handle, raw->size);
5840 do {
5841 if (frag->copy) {
5842 __output_custom(handle, frag->copy,
5843 frag->data, frag->size);
5844 } else {
5845 __output_copy(handle, frag->data,
5846 frag->size);
5847 }
5848 if (perf_raw_frag_last(frag))
5849 break;
5850 frag = frag->next;
5851 } while (1);
5852 if (frag->pad)
5853 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5854 } else {
5855 struct {
5856 u32 size;
5857 u32 data;
5858 } raw = {
5859 .size = sizeof(u32),
5860 .data = 0,
5861 };
5862 perf_output_put(handle, raw);
5863 }
5864 }
a7ac67ea 5865
bce38cd5
SE
5866 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5867 if (data->br_stack) {
5868 size_t size;
5869
5870 size = data->br_stack->nr
5871 * sizeof(struct perf_branch_entry);
5872
5873 perf_output_put(handle, data->br_stack->nr);
5874 perf_output_copy(handle, data->br_stack->entries, size);
5875 } else {
5876 /*
5877 * we always store at least the value of nr
5878 */
5879 u64 nr = 0;
5880 perf_output_put(handle, nr);
5881 }
5882 }
4018994f
JO
5883
5884 if (sample_type & PERF_SAMPLE_REGS_USER) {
5885 u64 abi = data->regs_user.abi;
5886
5887 /*
5888 * If there are no regs to dump, notice it through
5889 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5890 */
5891 perf_output_put(handle, abi);
5892
5893 if (abi) {
5894 u64 mask = event->attr.sample_regs_user;
5895 perf_output_sample_regs(handle,
5896 data->regs_user.regs,
5897 mask);
5898 }
5899 }
c5ebcedb 5900
a5cdd40c 5901 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5902 perf_output_sample_ustack(handle,
5903 data->stack_user_size,
5904 data->regs_user.regs);
a5cdd40c 5905 }
c3feedf2
AK
5906
5907 if (sample_type & PERF_SAMPLE_WEIGHT)
5908 perf_output_put(handle, data->weight);
d6be9ad6
SE
5909
5910 if (sample_type & PERF_SAMPLE_DATA_SRC)
5911 perf_output_put(handle, data->data_src.val);
a5cdd40c 5912
fdfbbd07
AK
5913 if (sample_type & PERF_SAMPLE_TRANSACTION)
5914 perf_output_put(handle, data->txn);
5915
60e2364e
SE
5916 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5917 u64 abi = data->regs_intr.abi;
5918 /*
5919 * If there are no regs to dump, notice it through
5920 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5921 */
5922 perf_output_put(handle, abi);
5923
5924 if (abi) {
5925 u64 mask = event->attr.sample_regs_intr;
5926
5927 perf_output_sample_regs(handle,
5928 data->regs_intr.regs,
5929 mask);
5930 }
5931 }
5932
fc7ce9c7
KL
5933 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5934 perf_output_put(handle, data->phys_addr);
5935
a5cdd40c
PZ
5936 if (!event->attr.watermark) {
5937 int wakeup_events = event->attr.wakeup_events;
5938
5939 if (wakeup_events) {
5940 struct ring_buffer *rb = handle->rb;
5941 int events = local_inc_return(&rb->events);
5942
5943 if (events >= wakeup_events) {
5944 local_sub(wakeup_events, &rb->events);
5945 local_inc(&rb->wakeup);
5946 }
5947 }
5948 }
5622f295
MM
5949}
5950
fc7ce9c7
KL
5951static u64 perf_virt_to_phys(u64 virt)
5952{
5953 u64 phys_addr = 0;
5954 struct page *p = NULL;
5955
5956 if (!virt)
5957 return 0;
5958
5959 if (virt >= TASK_SIZE) {
5960 /* If it's vmalloc()d memory, leave phys_addr as 0 */
5961 if (virt_addr_valid((void *)(uintptr_t)virt) &&
5962 !(virt >= VMALLOC_START && virt < VMALLOC_END))
5963 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5964 } else {
5965 /*
5966 * Walking the pages tables for user address.
5967 * Interrupts are disabled, so it prevents any tear down
5968 * of the page tables.
5969 * Try IRQ-safe __get_user_pages_fast first.
5970 * If failed, leave phys_addr as 0.
5971 */
5972 if ((current->mm != NULL) &&
5973 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5974 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5975
5976 if (p)
5977 put_page(p);
5978 }
5979
5980 return phys_addr;
5981}
5982
5622f295
MM
5983void perf_prepare_sample(struct perf_event_header *header,
5984 struct perf_sample_data *data,
cdd6c482 5985 struct perf_event *event,
5622f295 5986 struct pt_regs *regs)
7b732a75 5987{
cdd6c482 5988 u64 sample_type = event->attr.sample_type;
7b732a75 5989
cdd6c482 5990 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5991 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5992
5993 header->misc = 0;
5994 header->misc |= perf_misc_flags(regs);
6fab0192 5995
c980d109 5996 __perf_event_header__init_id(header, data, event);
6844c09d 5997
c320c7b7 5998 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5999 data->ip = perf_instruction_pointer(regs);
6000
b23f3325 6001 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6002 int size = 1;
394ee076 6003
e6dab5ff 6004 data->callchain = perf_callchain(event, regs);
5622f295
MM
6005
6006 if (data->callchain)
6007 size += data->callchain->nr;
6008
6009 header->size += size * sizeof(u64);
394ee076
PZ
6010 }
6011
3a43ce68 6012 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6013 struct perf_raw_record *raw = data->raw;
6014 int size;
6015
6016 if (raw) {
6017 struct perf_raw_frag *frag = &raw->frag;
6018 u32 sum = 0;
6019
6020 do {
6021 sum += frag->size;
6022 if (perf_raw_frag_last(frag))
6023 break;
6024 frag = frag->next;
6025 } while (1);
6026
6027 size = round_up(sum + sizeof(u32), sizeof(u64));
6028 raw->size = size - sizeof(u32);
6029 frag->pad = raw->size - sum;
6030 } else {
6031 size = sizeof(u64);
6032 }
a044560c 6033
7e3f977e 6034 header->size += size;
7f453c24 6035 }
bce38cd5
SE
6036
6037 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6038 int size = sizeof(u64); /* nr */
6039 if (data->br_stack) {
6040 size += data->br_stack->nr
6041 * sizeof(struct perf_branch_entry);
6042 }
6043 header->size += size;
6044 }
4018994f 6045
2565711f 6046 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6047 perf_sample_regs_user(&data->regs_user, regs,
6048 &data->regs_user_copy);
2565711f 6049
4018994f
JO
6050 if (sample_type & PERF_SAMPLE_REGS_USER) {
6051 /* regs dump ABI info */
6052 int size = sizeof(u64);
6053
4018994f
JO
6054 if (data->regs_user.regs) {
6055 u64 mask = event->attr.sample_regs_user;
6056 size += hweight64(mask) * sizeof(u64);
6057 }
6058
6059 header->size += size;
6060 }
c5ebcedb
JO
6061
6062 if (sample_type & PERF_SAMPLE_STACK_USER) {
6063 /*
6064 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6065 * processed as the last one or have additional check added
6066 * in case new sample type is added, because we could eat
6067 * up the rest of the sample size.
6068 */
c5ebcedb
JO
6069 u16 stack_size = event->attr.sample_stack_user;
6070 u16 size = sizeof(u64);
6071
c5ebcedb 6072 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6073 data->regs_user.regs);
c5ebcedb
JO
6074
6075 /*
6076 * If there is something to dump, add space for the dump
6077 * itself and for the field that tells the dynamic size,
6078 * which is how many have been actually dumped.
6079 */
6080 if (stack_size)
6081 size += sizeof(u64) + stack_size;
6082
6083 data->stack_user_size = stack_size;
6084 header->size += size;
6085 }
60e2364e
SE
6086
6087 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6088 /* regs dump ABI info */
6089 int size = sizeof(u64);
6090
6091 perf_sample_regs_intr(&data->regs_intr, regs);
6092
6093 if (data->regs_intr.regs) {
6094 u64 mask = event->attr.sample_regs_intr;
6095
6096 size += hweight64(mask) * sizeof(u64);
6097 }
6098
6099 header->size += size;
6100 }
fc7ce9c7
KL
6101
6102 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6103 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6104}
7f453c24 6105
9ecda41a
WN
6106static void __always_inline
6107__perf_event_output(struct perf_event *event,
6108 struct perf_sample_data *data,
6109 struct pt_regs *regs,
6110 int (*output_begin)(struct perf_output_handle *,
6111 struct perf_event *,
6112 unsigned int))
5622f295
MM
6113{
6114 struct perf_output_handle handle;
6115 struct perf_event_header header;
689802b2 6116
927c7a9e
FW
6117 /* protect the callchain buffers */
6118 rcu_read_lock();
6119
cdd6c482 6120 perf_prepare_sample(&header, data, event, regs);
5c148194 6121
9ecda41a 6122 if (output_begin(&handle, event, header.size))
927c7a9e 6123 goto exit;
0322cd6e 6124
cdd6c482 6125 perf_output_sample(&handle, &header, data, event);
f413cdb8 6126
8a057d84 6127 perf_output_end(&handle);
927c7a9e
FW
6128
6129exit:
6130 rcu_read_unlock();
0322cd6e
PZ
6131}
6132
9ecda41a
WN
6133void
6134perf_event_output_forward(struct perf_event *event,
6135 struct perf_sample_data *data,
6136 struct pt_regs *regs)
6137{
6138 __perf_event_output(event, data, regs, perf_output_begin_forward);
6139}
6140
6141void
6142perf_event_output_backward(struct perf_event *event,
6143 struct perf_sample_data *data,
6144 struct pt_regs *regs)
6145{
6146 __perf_event_output(event, data, regs, perf_output_begin_backward);
6147}
6148
6149void
6150perf_event_output(struct perf_event *event,
6151 struct perf_sample_data *data,
6152 struct pt_regs *regs)
6153{
6154 __perf_event_output(event, data, regs, perf_output_begin);
6155}
6156
38b200d6 6157/*
cdd6c482 6158 * read event_id
38b200d6
PZ
6159 */
6160
6161struct perf_read_event {
6162 struct perf_event_header header;
6163
6164 u32 pid;
6165 u32 tid;
38b200d6
PZ
6166};
6167
6168static void
cdd6c482 6169perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6170 struct task_struct *task)
6171{
6172 struct perf_output_handle handle;
c980d109 6173 struct perf_sample_data sample;
dfc65094 6174 struct perf_read_event read_event = {
38b200d6 6175 .header = {
cdd6c482 6176 .type = PERF_RECORD_READ,
38b200d6 6177 .misc = 0,
c320c7b7 6178 .size = sizeof(read_event) + event->read_size,
38b200d6 6179 },
cdd6c482
IM
6180 .pid = perf_event_pid(event, task),
6181 .tid = perf_event_tid(event, task),
38b200d6 6182 };
3dab77fb 6183 int ret;
38b200d6 6184
c980d109 6185 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6186 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6187 if (ret)
6188 return;
6189
dfc65094 6190 perf_output_put(&handle, read_event);
cdd6c482 6191 perf_output_read(&handle, event);
c980d109 6192 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6193
38b200d6
PZ
6194 perf_output_end(&handle);
6195}
6196
aab5b71e 6197typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6198
6199static void
aab5b71e
PZ
6200perf_iterate_ctx(struct perf_event_context *ctx,
6201 perf_iterate_f output,
b73e4fef 6202 void *data, bool all)
52d857a8
JO
6203{
6204 struct perf_event *event;
6205
6206 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6207 if (!all) {
6208 if (event->state < PERF_EVENT_STATE_INACTIVE)
6209 continue;
6210 if (!event_filter_match(event))
6211 continue;
6212 }
6213
67516844 6214 output(event, data);
52d857a8
JO
6215 }
6216}
6217
aab5b71e 6218static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6219{
6220 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6221 struct perf_event *event;
6222
6223 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6224 /*
6225 * Skip events that are not fully formed yet; ensure that
6226 * if we observe event->ctx, both event and ctx will be
6227 * complete enough. See perf_install_in_context().
6228 */
6229 if (!smp_load_acquire(&event->ctx))
6230 continue;
6231
f2fb6bef
KL
6232 if (event->state < PERF_EVENT_STATE_INACTIVE)
6233 continue;
6234 if (!event_filter_match(event))
6235 continue;
6236 output(event, data);
6237 }
6238}
6239
aab5b71e
PZ
6240/*
6241 * Iterate all events that need to receive side-band events.
6242 *
6243 * For new callers; ensure that account_pmu_sb_event() includes
6244 * your event, otherwise it might not get delivered.
6245 */
52d857a8 6246static void
aab5b71e 6247perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6248 struct perf_event_context *task_ctx)
6249{
52d857a8 6250 struct perf_event_context *ctx;
52d857a8
JO
6251 int ctxn;
6252
aab5b71e
PZ
6253 rcu_read_lock();
6254 preempt_disable();
6255
4e93ad60 6256 /*
aab5b71e
PZ
6257 * If we have task_ctx != NULL we only notify the task context itself.
6258 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6259 * context.
6260 */
6261 if (task_ctx) {
aab5b71e
PZ
6262 perf_iterate_ctx(task_ctx, output, data, false);
6263 goto done;
4e93ad60
JO
6264 }
6265
aab5b71e 6266 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6267
6268 for_each_task_context_nr(ctxn) {
52d857a8
JO
6269 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6270 if (ctx)
aab5b71e 6271 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6272 }
aab5b71e 6273done:
f2fb6bef 6274 preempt_enable();
52d857a8 6275 rcu_read_unlock();
95ff4ca2
AS
6276}
6277
375637bc
AS
6278/*
6279 * Clear all file-based filters at exec, they'll have to be
6280 * re-instated when/if these objects are mmapped again.
6281 */
6282static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6283{
6284 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6285 struct perf_addr_filter *filter;
6286 unsigned int restart = 0, count = 0;
6287 unsigned long flags;
6288
6289 if (!has_addr_filter(event))
6290 return;
6291
6292 raw_spin_lock_irqsave(&ifh->lock, flags);
6293 list_for_each_entry(filter, &ifh->list, entry) {
6294 if (filter->inode) {
6295 event->addr_filters_offs[count] = 0;
6296 restart++;
6297 }
6298
6299 count++;
6300 }
6301
6302 if (restart)
6303 event->addr_filters_gen++;
6304 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6305
6306 if (restart)
767ae086 6307 perf_event_stop(event, 1);
375637bc
AS
6308}
6309
6310void perf_event_exec(void)
6311{
6312 struct perf_event_context *ctx;
6313 int ctxn;
6314
6315 rcu_read_lock();
6316 for_each_task_context_nr(ctxn) {
6317 ctx = current->perf_event_ctxp[ctxn];
6318 if (!ctx)
6319 continue;
6320
6321 perf_event_enable_on_exec(ctxn);
6322
aab5b71e 6323 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6324 true);
6325 }
6326 rcu_read_unlock();
6327}
6328
95ff4ca2
AS
6329struct remote_output {
6330 struct ring_buffer *rb;
6331 int err;
6332};
6333
6334static void __perf_event_output_stop(struct perf_event *event, void *data)
6335{
6336 struct perf_event *parent = event->parent;
6337 struct remote_output *ro = data;
6338 struct ring_buffer *rb = ro->rb;
375637bc
AS
6339 struct stop_event_data sd = {
6340 .event = event,
6341 };
95ff4ca2
AS
6342
6343 if (!has_aux(event))
6344 return;
6345
6346 if (!parent)
6347 parent = event;
6348
6349 /*
6350 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6351 * ring-buffer, but it will be the child that's actually using it.
6352 *
6353 * We are using event::rb to determine if the event should be stopped,
6354 * however this may race with ring_buffer_attach() (through set_output),
6355 * which will make us skip the event that actually needs to be stopped.
6356 * So ring_buffer_attach() has to stop an aux event before re-assigning
6357 * its rb pointer.
95ff4ca2
AS
6358 */
6359 if (rcu_dereference(parent->rb) == rb)
375637bc 6360 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6361}
6362
6363static int __perf_pmu_output_stop(void *info)
6364{
6365 struct perf_event *event = info;
6366 struct pmu *pmu = event->pmu;
8b6a3fe8 6367 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6368 struct remote_output ro = {
6369 .rb = event->rb,
6370 };
6371
6372 rcu_read_lock();
aab5b71e 6373 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6374 if (cpuctx->task_ctx)
aab5b71e 6375 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6376 &ro, false);
95ff4ca2
AS
6377 rcu_read_unlock();
6378
6379 return ro.err;
6380}
6381
6382static void perf_pmu_output_stop(struct perf_event *event)
6383{
6384 struct perf_event *iter;
6385 int err, cpu;
6386
6387restart:
6388 rcu_read_lock();
6389 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6390 /*
6391 * For per-CPU events, we need to make sure that neither they
6392 * nor their children are running; for cpu==-1 events it's
6393 * sufficient to stop the event itself if it's active, since
6394 * it can't have children.
6395 */
6396 cpu = iter->cpu;
6397 if (cpu == -1)
6398 cpu = READ_ONCE(iter->oncpu);
6399
6400 if (cpu == -1)
6401 continue;
6402
6403 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6404 if (err == -EAGAIN) {
6405 rcu_read_unlock();
6406 goto restart;
6407 }
6408 }
6409 rcu_read_unlock();
52d857a8
JO
6410}
6411
60313ebe 6412/*
9f498cc5
PZ
6413 * task tracking -- fork/exit
6414 *
13d7a241 6415 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6416 */
6417
9f498cc5 6418struct perf_task_event {
3a80b4a3 6419 struct task_struct *task;
cdd6c482 6420 struct perf_event_context *task_ctx;
60313ebe
PZ
6421
6422 struct {
6423 struct perf_event_header header;
6424
6425 u32 pid;
6426 u32 ppid;
9f498cc5
PZ
6427 u32 tid;
6428 u32 ptid;
393b2ad8 6429 u64 time;
cdd6c482 6430 } event_id;
60313ebe
PZ
6431};
6432
67516844
JO
6433static int perf_event_task_match(struct perf_event *event)
6434{
13d7a241
SE
6435 return event->attr.comm || event->attr.mmap ||
6436 event->attr.mmap2 || event->attr.mmap_data ||
6437 event->attr.task;
67516844
JO
6438}
6439
cdd6c482 6440static void perf_event_task_output(struct perf_event *event,
52d857a8 6441 void *data)
60313ebe 6442{
52d857a8 6443 struct perf_task_event *task_event = data;
60313ebe 6444 struct perf_output_handle handle;
c980d109 6445 struct perf_sample_data sample;
9f498cc5 6446 struct task_struct *task = task_event->task;
c980d109 6447 int ret, size = task_event->event_id.header.size;
8bb39f9a 6448
67516844
JO
6449 if (!perf_event_task_match(event))
6450 return;
6451
c980d109 6452 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6453
c980d109 6454 ret = perf_output_begin(&handle, event,
a7ac67ea 6455 task_event->event_id.header.size);
ef60777c 6456 if (ret)
c980d109 6457 goto out;
60313ebe 6458
cdd6c482
IM
6459 task_event->event_id.pid = perf_event_pid(event, task);
6460 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6461
cdd6c482
IM
6462 task_event->event_id.tid = perf_event_tid(event, task);
6463 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6464
34f43927
PZ
6465 task_event->event_id.time = perf_event_clock(event);
6466
cdd6c482 6467 perf_output_put(&handle, task_event->event_id);
393b2ad8 6468
c980d109
ACM
6469 perf_event__output_id_sample(event, &handle, &sample);
6470
60313ebe 6471 perf_output_end(&handle);
c980d109
ACM
6472out:
6473 task_event->event_id.header.size = size;
60313ebe
PZ
6474}
6475
cdd6c482
IM
6476static void perf_event_task(struct task_struct *task,
6477 struct perf_event_context *task_ctx,
3a80b4a3 6478 int new)
60313ebe 6479{
9f498cc5 6480 struct perf_task_event task_event;
60313ebe 6481
cdd6c482
IM
6482 if (!atomic_read(&nr_comm_events) &&
6483 !atomic_read(&nr_mmap_events) &&
6484 !atomic_read(&nr_task_events))
60313ebe
PZ
6485 return;
6486
9f498cc5 6487 task_event = (struct perf_task_event){
3a80b4a3
PZ
6488 .task = task,
6489 .task_ctx = task_ctx,
cdd6c482 6490 .event_id = {
60313ebe 6491 .header = {
cdd6c482 6492 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6493 .misc = 0,
cdd6c482 6494 .size = sizeof(task_event.event_id),
60313ebe 6495 },
573402db
PZ
6496 /* .pid */
6497 /* .ppid */
9f498cc5
PZ
6498 /* .tid */
6499 /* .ptid */
34f43927 6500 /* .time */
60313ebe
PZ
6501 },
6502 };
6503
aab5b71e 6504 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6505 &task_event,
6506 task_ctx);
9f498cc5
PZ
6507}
6508
cdd6c482 6509void perf_event_fork(struct task_struct *task)
9f498cc5 6510{
cdd6c482 6511 perf_event_task(task, NULL, 1);
e4222673 6512 perf_event_namespaces(task);
60313ebe
PZ
6513}
6514
8d1b2d93
PZ
6515/*
6516 * comm tracking
6517 */
6518
6519struct perf_comm_event {
22a4f650
IM
6520 struct task_struct *task;
6521 char *comm;
8d1b2d93
PZ
6522 int comm_size;
6523
6524 struct {
6525 struct perf_event_header header;
6526
6527 u32 pid;
6528 u32 tid;
cdd6c482 6529 } event_id;
8d1b2d93
PZ
6530};
6531
67516844
JO
6532static int perf_event_comm_match(struct perf_event *event)
6533{
6534 return event->attr.comm;
6535}
6536
cdd6c482 6537static void perf_event_comm_output(struct perf_event *event,
52d857a8 6538 void *data)
8d1b2d93 6539{
52d857a8 6540 struct perf_comm_event *comm_event = data;
8d1b2d93 6541 struct perf_output_handle handle;
c980d109 6542 struct perf_sample_data sample;
cdd6c482 6543 int size = comm_event->event_id.header.size;
c980d109
ACM
6544 int ret;
6545
67516844
JO
6546 if (!perf_event_comm_match(event))
6547 return;
6548
c980d109
ACM
6549 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6550 ret = perf_output_begin(&handle, event,
a7ac67ea 6551 comm_event->event_id.header.size);
8d1b2d93
PZ
6552
6553 if (ret)
c980d109 6554 goto out;
8d1b2d93 6555
cdd6c482
IM
6556 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6557 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6558
cdd6c482 6559 perf_output_put(&handle, comm_event->event_id);
76369139 6560 __output_copy(&handle, comm_event->comm,
8d1b2d93 6561 comm_event->comm_size);
c980d109
ACM
6562
6563 perf_event__output_id_sample(event, &handle, &sample);
6564
8d1b2d93 6565 perf_output_end(&handle);
c980d109
ACM
6566out:
6567 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6568}
6569
cdd6c482 6570static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6571{
413ee3b4 6572 char comm[TASK_COMM_LEN];
8d1b2d93 6573 unsigned int size;
8d1b2d93 6574
413ee3b4 6575 memset(comm, 0, sizeof(comm));
96b02d78 6576 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6577 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6578
6579 comm_event->comm = comm;
6580 comm_event->comm_size = size;
6581
cdd6c482 6582 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6583
aab5b71e 6584 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6585 comm_event,
6586 NULL);
8d1b2d93
PZ
6587}
6588
82b89778 6589void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6590{
9ee318a7
PZ
6591 struct perf_comm_event comm_event;
6592
cdd6c482 6593 if (!atomic_read(&nr_comm_events))
9ee318a7 6594 return;
a63eaf34 6595
9ee318a7 6596 comm_event = (struct perf_comm_event){
8d1b2d93 6597 .task = task,
573402db
PZ
6598 /* .comm */
6599 /* .comm_size */
cdd6c482 6600 .event_id = {
573402db 6601 .header = {
cdd6c482 6602 .type = PERF_RECORD_COMM,
82b89778 6603 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6604 /* .size */
6605 },
6606 /* .pid */
6607 /* .tid */
8d1b2d93
PZ
6608 },
6609 };
6610
cdd6c482 6611 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6612}
6613
e4222673
HB
6614/*
6615 * namespaces tracking
6616 */
6617
6618struct perf_namespaces_event {
6619 struct task_struct *task;
6620
6621 struct {
6622 struct perf_event_header header;
6623
6624 u32 pid;
6625 u32 tid;
6626 u64 nr_namespaces;
6627 struct perf_ns_link_info link_info[NR_NAMESPACES];
6628 } event_id;
6629};
6630
6631static int perf_event_namespaces_match(struct perf_event *event)
6632{
6633 return event->attr.namespaces;
6634}
6635
6636static void perf_event_namespaces_output(struct perf_event *event,
6637 void *data)
6638{
6639 struct perf_namespaces_event *namespaces_event = data;
6640 struct perf_output_handle handle;
6641 struct perf_sample_data sample;
6642 int ret;
6643
6644 if (!perf_event_namespaces_match(event))
6645 return;
6646
6647 perf_event_header__init_id(&namespaces_event->event_id.header,
6648 &sample, event);
6649 ret = perf_output_begin(&handle, event,
6650 namespaces_event->event_id.header.size);
6651 if (ret)
6652 return;
6653
6654 namespaces_event->event_id.pid = perf_event_pid(event,
6655 namespaces_event->task);
6656 namespaces_event->event_id.tid = perf_event_tid(event,
6657 namespaces_event->task);
6658
6659 perf_output_put(&handle, namespaces_event->event_id);
6660
6661 perf_event__output_id_sample(event, &handle, &sample);
6662
6663 perf_output_end(&handle);
6664}
6665
6666static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6667 struct task_struct *task,
6668 const struct proc_ns_operations *ns_ops)
6669{
6670 struct path ns_path;
6671 struct inode *ns_inode;
6672 void *error;
6673
6674 error = ns_get_path(&ns_path, task, ns_ops);
6675 if (!error) {
6676 ns_inode = ns_path.dentry->d_inode;
6677 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6678 ns_link_info->ino = ns_inode->i_ino;
4a31b424 6679 path_put(&ns_path);
e4222673
HB
6680 }
6681}
6682
6683void perf_event_namespaces(struct task_struct *task)
6684{
6685 struct perf_namespaces_event namespaces_event;
6686 struct perf_ns_link_info *ns_link_info;
6687
6688 if (!atomic_read(&nr_namespaces_events))
6689 return;
6690
6691 namespaces_event = (struct perf_namespaces_event){
6692 .task = task,
6693 .event_id = {
6694 .header = {
6695 .type = PERF_RECORD_NAMESPACES,
6696 .misc = 0,
6697 .size = sizeof(namespaces_event.event_id),
6698 },
6699 /* .pid */
6700 /* .tid */
6701 .nr_namespaces = NR_NAMESPACES,
6702 /* .link_info[NR_NAMESPACES] */
6703 },
6704 };
6705
6706 ns_link_info = namespaces_event.event_id.link_info;
6707
6708 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6709 task, &mntns_operations);
6710
6711#ifdef CONFIG_USER_NS
6712 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6713 task, &userns_operations);
6714#endif
6715#ifdef CONFIG_NET_NS
6716 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6717 task, &netns_operations);
6718#endif
6719#ifdef CONFIG_UTS_NS
6720 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6721 task, &utsns_operations);
6722#endif
6723#ifdef CONFIG_IPC_NS
6724 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6725 task, &ipcns_operations);
6726#endif
6727#ifdef CONFIG_PID_NS
6728 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6729 task, &pidns_operations);
6730#endif
6731#ifdef CONFIG_CGROUPS
6732 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6733 task, &cgroupns_operations);
6734#endif
6735
6736 perf_iterate_sb(perf_event_namespaces_output,
6737 &namespaces_event,
6738 NULL);
6739}
6740
0a4a9391
PZ
6741/*
6742 * mmap tracking
6743 */
6744
6745struct perf_mmap_event {
089dd79d
PZ
6746 struct vm_area_struct *vma;
6747
6748 const char *file_name;
6749 int file_size;
13d7a241
SE
6750 int maj, min;
6751 u64 ino;
6752 u64 ino_generation;
f972eb63 6753 u32 prot, flags;
0a4a9391
PZ
6754
6755 struct {
6756 struct perf_event_header header;
6757
6758 u32 pid;
6759 u32 tid;
6760 u64 start;
6761 u64 len;
6762 u64 pgoff;
cdd6c482 6763 } event_id;
0a4a9391
PZ
6764};
6765
67516844
JO
6766static int perf_event_mmap_match(struct perf_event *event,
6767 void *data)
6768{
6769 struct perf_mmap_event *mmap_event = data;
6770 struct vm_area_struct *vma = mmap_event->vma;
6771 int executable = vma->vm_flags & VM_EXEC;
6772
6773 return (!executable && event->attr.mmap_data) ||
13d7a241 6774 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6775}
6776
cdd6c482 6777static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6778 void *data)
0a4a9391 6779{
52d857a8 6780 struct perf_mmap_event *mmap_event = data;
0a4a9391 6781 struct perf_output_handle handle;
c980d109 6782 struct perf_sample_data sample;
cdd6c482 6783 int size = mmap_event->event_id.header.size;
c980d109 6784 int ret;
0a4a9391 6785
67516844
JO
6786 if (!perf_event_mmap_match(event, data))
6787 return;
6788
13d7a241
SE
6789 if (event->attr.mmap2) {
6790 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6791 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6792 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6793 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6794 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6795 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6796 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6797 }
6798
c980d109
ACM
6799 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6800 ret = perf_output_begin(&handle, event,
a7ac67ea 6801 mmap_event->event_id.header.size);
0a4a9391 6802 if (ret)
c980d109 6803 goto out;
0a4a9391 6804
cdd6c482
IM
6805 mmap_event->event_id.pid = perf_event_pid(event, current);
6806 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6807
cdd6c482 6808 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6809
6810 if (event->attr.mmap2) {
6811 perf_output_put(&handle, mmap_event->maj);
6812 perf_output_put(&handle, mmap_event->min);
6813 perf_output_put(&handle, mmap_event->ino);
6814 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6815 perf_output_put(&handle, mmap_event->prot);
6816 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6817 }
6818
76369139 6819 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6820 mmap_event->file_size);
c980d109
ACM
6821
6822 perf_event__output_id_sample(event, &handle, &sample);
6823
78d613eb 6824 perf_output_end(&handle);
c980d109
ACM
6825out:
6826 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6827}
6828
cdd6c482 6829static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6830{
089dd79d
PZ
6831 struct vm_area_struct *vma = mmap_event->vma;
6832 struct file *file = vma->vm_file;
13d7a241
SE
6833 int maj = 0, min = 0;
6834 u64 ino = 0, gen = 0;
f972eb63 6835 u32 prot = 0, flags = 0;
0a4a9391
PZ
6836 unsigned int size;
6837 char tmp[16];
6838 char *buf = NULL;
2c42cfbf 6839 char *name;
413ee3b4 6840
0b3589be
PZ
6841 if (vma->vm_flags & VM_READ)
6842 prot |= PROT_READ;
6843 if (vma->vm_flags & VM_WRITE)
6844 prot |= PROT_WRITE;
6845 if (vma->vm_flags & VM_EXEC)
6846 prot |= PROT_EXEC;
6847
6848 if (vma->vm_flags & VM_MAYSHARE)
6849 flags = MAP_SHARED;
6850 else
6851 flags = MAP_PRIVATE;
6852
6853 if (vma->vm_flags & VM_DENYWRITE)
6854 flags |= MAP_DENYWRITE;
6855 if (vma->vm_flags & VM_MAYEXEC)
6856 flags |= MAP_EXECUTABLE;
6857 if (vma->vm_flags & VM_LOCKED)
6858 flags |= MAP_LOCKED;
6859 if (vma->vm_flags & VM_HUGETLB)
6860 flags |= MAP_HUGETLB;
6861
0a4a9391 6862 if (file) {
13d7a241
SE
6863 struct inode *inode;
6864 dev_t dev;
3ea2f2b9 6865
2c42cfbf 6866 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6867 if (!buf) {
c7e548b4
ON
6868 name = "//enomem";
6869 goto cpy_name;
0a4a9391 6870 }
413ee3b4 6871 /*
3ea2f2b9 6872 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6873 * need to add enough zero bytes after the string to handle
6874 * the 64bit alignment we do later.
6875 */
9bf39ab2 6876 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6877 if (IS_ERR(name)) {
c7e548b4
ON
6878 name = "//toolong";
6879 goto cpy_name;
0a4a9391 6880 }
13d7a241
SE
6881 inode = file_inode(vma->vm_file);
6882 dev = inode->i_sb->s_dev;
6883 ino = inode->i_ino;
6884 gen = inode->i_generation;
6885 maj = MAJOR(dev);
6886 min = MINOR(dev);
f972eb63 6887
c7e548b4 6888 goto got_name;
0a4a9391 6889 } else {
fbe26abe
JO
6890 if (vma->vm_ops && vma->vm_ops->name) {
6891 name = (char *) vma->vm_ops->name(vma);
6892 if (name)
6893 goto cpy_name;
6894 }
6895
2c42cfbf 6896 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6897 if (name)
6898 goto cpy_name;
089dd79d 6899
32c5fb7e 6900 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6901 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6902 name = "[heap]";
6903 goto cpy_name;
32c5fb7e
ON
6904 }
6905 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6906 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6907 name = "[stack]";
6908 goto cpy_name;
089dd79d
PZ
6909 }
6910
c7e548b4
ON
6911 name = "//anon";
6912 goto cpy_name;
0a4a9391
PZ
6913 }
6914
c7e548b4
ON
6915cpy_name:
6916 strlcpy(tmp, name, sizeof(tmp));
6917 name = tmp;
0a4a9391 6918got_name:
2c42cfbf
PZ
6919 /*
6920 * Since our buffer works in 8 byte units we need to align our string
6921 * size to a multiple of 8. However, we must guarantee the tail end is
6922 * zero'd out to avoid leaking random bits to userspace.
6923 */
6924 size = strlen(name)+1;
6925 while (!IS_ALIGNED(size, sizeof(u64)))
6926 name[size++] = '\0';
0a4a9391
PZ
6927
6928 mmap_event->file_name = name;
6929 mmap_event->file_size = size;
13d7a241
SE
6930 mmap_event->maj = maj;
6931 mmap_event->min = min;
6932 mmap_event->ino = ino;
6933 mmap_event->ino_generation = gen;
f972eb63
PZ
6934 mmap_event->prot = prot;
6935 mmap_event->flags = flags;
0a4a9391 6936
2fe85427
SE
6937 if (!(vma->vm_flags & VM_EXEC))
6938 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6939
cdd6c482 6940 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6941
aab5b71e 6942 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6943 mmap_event,
6944 NULL);
665c2142 6945
0a4a9391
PZ
6946 kfree(buf);
6947}
6948
375637bc
AS
6949/*
6950 * Check whether inode and address range match filter criteria.
6951 */
6952static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6953 struct file *file, unsigned long offset,
6954 unsigned long size)
6955{
45063097 6956 if (filter->inode != file_inode(file))
375637bc
AS
6957 return false;
6958
6959 if (filter->offset > offset + size)
6960 return false;
6961
6962 if (filter->offset + filter->size < offset)
6963 return false;
6964
6965 return true;
6966}
6967
6968static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6969{
6970 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6971 struct vm_area_struct *vma = data;
6972 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6973 struct file *file = vma->vm_file;
6974 struct perf_addr_filter *filter;
6975 unsigned int restart = 0, count = 0;
6976
6977 if (!has_addr_filter(event))
6978 return;
6979
6980 if (!file)
6981 return;
6982
6983 raw_spin_lock_irqsave(&ifh->lock, flags);
6984 list_for_each_entry(filter, &ifh->list, entry) {
6985 if (perf_addr_filter_match(filter, file, off,
6986 vma->vm_end - vma->vm_start)) {
6987 event->addr_filters_offs[count] = vma->vm_start;
6988 restart++;
6989 }
6990
6991 count++;
6992 }
6993
6994 if (restart)
6995 event->addr_filters_gen++;
6996 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6997
6998 if (restart)
767ae086 6999 perf_event_stop(event, 1);
375637bc
AS
7000}
7001
7002/*
7003 * Adjust all task's events' filters to the new vma
7004 */
7005static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7006{
7007 struct perf_event_context *ctx;
7008 int ctxn;
7009
12b40a23
MP
7010 /*
7011 * Data tracing isn't supported yet and as such there is no need
7012 * to keep track of anything that isn't related to executable code:
7013 */
7014 if (!(vma->vm_flags & VM_EXEC))
7015 return;
7016
375637bc
AS
7017 rcu_read_lock();
7018 for_each_task_context_nr(ctxn) {
7019 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7020 if (!ctx)
7021 continue;
7022
aab5b71e 7023 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7024 }
7025 rcu_read_unlock();
7026}
7027
3af9e859 7028void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7029{
9ee318a7
PZ
7030 struct perf_mmap_event mmap_event;
7031
cdd6c482 7032 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7033 return;
7034
7035 mmap_event = (struct perf_mmap_event){
089dd79d 7036 .vma = vma,
573402db
PZ
7037 /* .file_name */
7038 /* .file_size */
cdd6c482 7039 .event_id = {
573402db 7040 .header = {
cdd6c482 7041 .type = PERF_RECORD_MMAP,
39447b38 7042 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7043 /* .size */
7044 },
7045 /* .pid */
7046 /* .tid */
089dd79d
PZ
7047 .start = vma->vm_start,
7048 .len = vma->vm_end - vma->vm_start,
3a0304e9 7049 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7050 },
13d7a241
SE
7051 /* .maj (attr_mmap2 only) */
7052 /* .min (attr_mmap2 only) */
7053 /* .ino (attr_mmap2 only) */
7054 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7055 /* .prot (attr_mmap2 only) */
7056 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7057 };
7058
375637bc 7059 perf_addr_filters_adjust(vma);
cdd6c482 7060 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7061}
7062
68db7e98
AS
7063void perf_event_aux_event(struct perf_event *event, unsigned long head,
7064 unsigned long size, u64 flags)
7065{
7066 struct perf_output_handle handle;
7067 struct perf_sample_data sample;
7068 struct perf_aux_event {
7069 struct perf_event_header header;
7070 u64 offset;
7071 u64 size;
7072 u64 flags;
7073 } rec = {
7074 .header = {
7075 .type = PERF_RECORD_AUX,
7076 .misc = 0,
7077 .size = sizeof(rec),
7078 },
7079 .offset = head,
7080 .size = size,
7081 .flags = flags,
7082 };
7083 int ret;
7084
7085 perf_event_header__init_id(&rec.header, &sample, event);
7086 ret = perf_output_begin(&handle, event, rec.header.size);
7087
7088 if (ret)
7089 return;
7090
7091 perf_output_put(&handle, rec);
7092 perf_event__output_id_sample(event, &handle, &sample);
7093
7094 perf_output_end(&handle);
7095}
7096
f38b0dbb
KL
7097/*
7098 * Lost/dropped samples logging
7099 */
7100void perf_log_lost_samples(struct perf_event *event, u64 lost)
7101{
7102 struct perf_output_handle handle;
7103 struct perf_sample_data sample;
7104 int ret;
7105
7106 struct {
7107 struct perf_event_header header;
7108 u64 lost;
7109 } lost_samples_event = {
7110 .header = {
7111 .type = PERF_RECORD_LOST_SAMPLES,
7112 .misc = 0,
7113 .size = sizeof(lost_samples_event),
7114 },
7115 .lost = lost,
7116 };
7117
7118 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7119
7120 ret = perf_output_begin(&handle, event,
7121 lost_samples_event.header.size);
7122 if (ret)
7123 return;
7124
7125 perf_output_put(&handle, lost_samples_event);
7126 perf_event__output_id_sample(event, &handle, &sample);
7127 perf_output_end(&handle);
7128}
7129
45ac1403
AH
7130/*
7131 * context_switch tracking
7132 */
7133
7134struct perf_switch_event {
7135 struct task_struct *task;
7136 struct task_struct *next_prev;
7137
7138 struct {
7139 struct perf_event_header header;
7140 u32 next_prev_pid;
7141 u32 next_prev_tid;
7142 } event_id;
7143};
7144
7145static int perf_event_switch_match(struct perf_event *event)
7146{
7147 return event->attr.context_switch;
7148}
7149
7150static void perf_event_switch_output(struct perf_event *event, void *data)
7151{
7152 struct perf_switch_event *se = data;
7153 struct perf_output_handle handle;
7154 struct perf_sample_data sample;
7155 int ret;
7156
7157 if (!perf_event_switch_match(event))
7158 return;
7159
7160 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7161 if (event->ctx->task) {
7162 se->event_id.header.type = PERF_RECORD_SWITCH;
7163 se->event_id.header.size = sizeof(se->event_id.header);
7164 } else {
7165 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7166 se->event_id.header.size = sizeof(se->event_id);
7167 se->event_id.next_prev_pid =
7168 perf_event_pid(event, se->next_prev);
7169 se->event_id.next_prev_tid =
7170 perf_event_tid(event, se->next_prev);
7171 }
7172
7173 perf_event_header__init_id(&se->event_id.header, &sample, event);
7174
7175 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7176 if (ret)
7177 return;
7178
7179 if (event->ctx->task)
7180 perf_output_put(&handle, se->event_id.header);
7181 else
7182 perf_output_put(&handle, se->event_id);
7183
7184 perf_event__output_id_sample(event, &handle, &sample);
7185
7186 perf_output_end(&handle);
7187}
7188
7189static void perf_event_switch(struct task_struct *task,
7190 struct task_struct *next_prev, bool sched_in)
7191{
7192 struct perf_switch_event switch_event;
7193
7194 /* N.B. caller checks nr_switch_events != 0 */
7195
7196 switch_event = (struct perf_switch_event){
7197 .task = task,
7198 .next_prev = next_prev,
7199 .event_id = {
7200 .header = {
7201 /* .type */
7202 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7203 /* .size */
7204 },
7205 /* .next_prev_pid */
7206 /* .next_prev_tid */
7207 },
7208 };
7209
aab5b71e 7210 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7211 &switch_event,
7212 NULL);
7213}
7214
a78ac325
PZ
7215/*
7216 * IRQ throttle logging
7217 */
7218
cdd6c482 7219static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7220{
7221 struct perf_output_handle handle;
c980d109 7222 struct perf_sample_data sample;
a78ac325
PZ
7223 int ret;
7224
7225 struct {
7226 struct perf_event_header header;
7227 u64 time;
cca3f454 7228 u64 id;
7f453c24 7229 u64 stream_id;
a78ac325
PZ
7230 } throttle_event = {
7231 .header = {
cdd6c482 7232 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7233 .misc = 0,
7234 .size = sizeof(throttle_event),
7235 },
34f43927 7236 .time = perf_event_clock(event),
cdd6c482
IM
7237 .id = primary_event_id(event),
7238 .stream_id = event->id,
a78ac325
PZ
7239 };
7240
966ee4d6 7241 if (enable)
cdd6c482 7242 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7243
c980d109
ACM
7244 perf_event_header__init_id(&throttle_event.header, &sample, event);
7245
7246 ret = perf_output_begin(&handle, event,
a7ac67ea 7247 throttle_event.header.size);
a78ac325
PZ
7248 if (ret)
7249 return;
7250
7251 perf_output_put(&handle, throttle_event);
c980d109 7252 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7253 perf_output_end(&handle);
7254}
7255
8d4e6c4c
AS
7256void perf_event_itrace_started(struct perf_event *event)
7257{
7258 event->attach_state |= PERF_ATTACH_ITRACE;
7259}
7260
ec0d7729
AS
7261static void perf_log_itrace_start(struct perf_event *event)
7262{
7263 struct perf_output_handle handle;
7264 struct perf_sample_data sample;
7265 struct perf_aux_event {
7266 struct perf_event_header header;
7267 u32 pid;
7268 u32 tid;
7269 } rec;
7270 int ret;
7271
7272 if (event->parent)
7273 event = event->parent;
7274
7275 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7276 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7277 return;
7278
ec0d7729
AS
7279 rec.header.type = PERF_RECORD_ITRACE_START;
7280 rec.header.misc = 0;
7281 rec.header.size = sizeof(rec);
7282 rec.pid = perf_event_pid(event, current);
7283 rec.tid = perf_event_tid(event, current);
7284
7285 perf_event_header__init_id(&rec.header, &sample, event);
7286 ret = perf_output_begin(&handle, event, rec.header.size);
7287
7288 if (ret)
7289 return;
7290
7291 perf_output_put(&handle, rec);
7292 perf_event__output_id_sample(event, &handle, &sample);
7293
7294 perf_output_end(&handle);
7295}
7296
475113d9
JO
7297static int
7298__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7299{
cdd6c482 7300 struct hw_perf_event *hwc = &event->hw;
79f14641 7301 int ret = 0;
475113d9 7302 u64 seq;
96398826 7303
e050e3f0
SE
7304 seq = __this_cpu_read(perf_throttled_seq);
7305 if (seq != hwc->interrupts_seq) {
7306 hwc->interrupts_seq = seq;
7307 hwc->interrupts = 1;
7308 } else {
7309 hwc->interrupts++;
7310 if (unlikely(throttle
7311 && hwc->interrupts >= max_samples_per_tick)) {
7312 __this_cpu_inc(perf_throttled_count);
555e0c1e 7313 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7314 hwc->interrupts = MAX_INTERRUPTS;
7315 perf_log_throttle(event, 0);
a78ac325
PZ
7316 ret = 1;
7317 }
e050e3f0 7318 }
60db5e09 7319
cdd6c482 7320 if (event->attr.freq) {
def0a9b2 7321 u64 now = perf_clock();
abd50713 7322 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7323
abd50713 7324 hwc->freq_time_stamp = now;
bd2b5b12 7325
abd50713 7326 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7327 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7328 }
7329
475113d9
JO
7330 return ret;
7331}
7332
7333int perf_event_account_interrupt(struct perf_event *event)
7334{
7335 return __perf_event_account_interrupt(event, 1);
7336}
7337
7338/*
7339 * Generic event overflow handling, sampling.
7340 */
7341
7342static int __perf_event_overflow(struct perf_event *event,
7343 int throttle, struct perf_sample_data *data,
7344 struct pt_regs *regs)
7345{
7346 int events = atomic_read(&event->event_limit);
7347 int ret = 0;
7348
7349 /*
7350 * Non-sampling counters might still use the PMI to fold short
7351 * hardware counters, ignore those.
7352 */
7353 if (unlikely(!is_sampling_event(event)))
7354 return 0;
7355
7356 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7357
2023b359
PZ
7358 /*
7359 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7360 * events
2023b359
PZ
7361 */
7362
cdd6c482
IM
7363 event->pending_kill = POLL_IN;
7364 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7365 ret = 1;
cdd6c482 7366 event->pending_kill = POLL_HUP;
5aab90ce
JO
7367
7368 perf_event_disable_inatomic(event);
79f14641
PZ
7369 }
7370
aa6a5f3c 7371 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7372
fed66e2c 7373 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7374 event->pending_wakeup = 1;
7375 irq_work_queue(&event->pending);
f506b3dc
PZ
7376 }
7377
79f14641 7378 return ret;
f6c7d5fe
PZ
7379}
7380
a8b0ca17 7381int perf_event_overflow(struct perf_event *event,
5622f295
MM
7382 struct perf_sample_data *data,
7383 struct pt_regs *regs)
850bc73f 7384{
a8b0ca17 7385 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7386}
7387
15dbf27c 7388/*
cdd6c482 7389 * Generic software event infrastructure
15dbf27c
PZ
7390 */
7391
b28ab83c
PZ
7392struct swevent_htable {
7393 struct swevent_hlist *swevent_hlist;
7394 struct mutex hlist_mutex;
7395 int hlist_refcount;
7396
7397 /* Recursion avoidance in each contexts */
7398 int recursion[PERF_NR_CONTEXTS];
7399};
7400
7401static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7402
7b4b6658 7403/*
cdd6c482
IM
7404 * We directly increment event->count and keep a second value in
7405 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7406 * is kept in the range [-sample_period, 0] so that we can use the
7407 * sign as trigger.
7408 */
7409
ab573844 7410u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7411{
cdd6c482 7412 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7413 u64 period = hwc->last_period;
7414 u64 nr, offset;
7415 s64 old, val;
7416
7417 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7418
7419again:
e7850595 7420 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7421 if (val < 0)
7422 return 0;
15dbf27c 7423
7b4b6658
PZ
7424 nr = div64_u64(period + val, period);
7425 offset = nr * period;
7426 val -= offset;
e7850595 7427 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7428 goto again;
15dbf27c 7429
7b4b6658 7430 return nr;
15dbf27c
PZ
7431}
7432
0cff784a 7433static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7434 struct perf_sample_data *data,
5622f295 7435 struct pt_regs *regs)
15dbf27c 7436{
cdd6c482 7437 struct hw_perf_event *hwc = &event->hw;
850bc73f 7438 int throttle = 0;
15dbf27c 7439
0cff784a
PZ
7440 if (!overflow)
7441 overflow = perf_swevent_set_period(event);
15dbf27c 7442
7b4b6658
PZ
7443 if (hwc->interrupts == MAX_INTERRUPTS)
7444 return;
15dbf27c 7445
7b4b6658 7446 for (; overflow; overflow--) {
a8b0ca17 7447 if (__perf_event_overflow(event, throttle,
5622f295 7448 data, regs)) {
7b4b6658
PZ
7449 /*
7450 * We inhibit the overflow from happening when
7451 * hwc->interrupts == MAX_INTERRUPTS.
7452 */
7453 break;
7454 }
cf450a73 7455 throttle = 1;
7b4b6658 7456 }
15dbf27c
PZ
7457}
7458
a4eaf7f1 7459static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7460 struct perf_sample_data *data,
5622f295 7461 struct pt_regs *regs)
7b4b6658 7462{
cdd6c482 7463 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7464
e7850595 7465 local64_add(nr, &event->count);
d6d020e9 7466
0cff784a
PZ
7467 if (!regs)
7468 return;
7469
6c7e550f 7470 if (!is_sampling_event(event))
7b4b6658 7471 return;
d6d020e9 7472
5d81e5cf
AV
7473 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7474 data->period = nr;
7475 return perf_swevent_overflow(event, 1, data, regs);
7476 } else
7477 data->period = event->hw.last_period;
7478
0cff784a 7479 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7480 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7481
e7850595 7482 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7483 return;
df1a132b 7484
a8b0ca17 7485 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7486}
7487
f5ffe02e
FW
7488static int perf_exclude_event(struct perf_event *event,
7489 struct pt_regs *regs)
7490{
a4eaf7f1 7491 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7492 return 1;
a4eaf7f1 7493
f5ffe02e
FW
7494 if (regs) {
7495 if (event->attr.exclude_user && user_mode(regs))
7496 return 1;
7497
7498 if (event->attr.exclude_kernel && !user_mode(regs))
7499 return 1;
7500 }
7501
7502 return 0;
7503}
7504
cdd6c482 7505static int perf_swevent_match(struct perf_event *event,
1c432d89 7506 enum perf_type_id type,
6fb2915d
LZ
7507 u32 event_id,
7508 struct perf_sample_data *data,
7509 struct pt_regs *regs)
15dbf27c 7510{
cdd6c482 7511 if (event->attr.type != type)
a21ca2ca 7512 return 0;
f5ffe02e 7513
cdd6c482 7514 if (event->attr.config != event_id)
15dbf27c
PZ
7515 return 0;
7516
f5ffe02e
FW
7517 if (perf_exclude_event(event, regs))
7518 return 0;
15dbf27c
PZ
7519
7520 return 1;
7521}
7522
76e1d904
FW
7523static inline u64 swevent_hash(u64 type, u32 event_id)
7524{
7525 u64 val = event_id | (type << 32);
7526
7527 return hash_64(val, SWEVENT_HLIST_BITS);
7528}
7529
49f135ed
FW
7530static inline struct hlist_head *
7531__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7532{
49f135ed
FW
7533 u64 hash = swevent_hash(type, event_id);
7534
7535 return &hlist->heads[hash];
7536}
76e1d904 7537
49f135ed
FW
7538/* For the read side: events when they trigger */
7539static inline struct hlist_head *
b28ab83c 7540find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7541{
7542 struct swevent_hlist *hlist;
76e1d904 7543
b28ab83c 7544 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7545 if (!hlist)
7546 return NULL;
7547
49f135ed
FW
7548 return __find_swevent_head(hlist, type, event_id);
7549}
7550
7551/* For the event head insertion and removal in the hlist */
7552static inline struct hlist_head *
b28ab83c 7553find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7554{
7555 struct swevent_hlist *hlist;
7556 u32 event_id = event->attr.config;
7557 u64 type = event->attr.type;
7558
7559 /*
7560 * Event scheduling is always serialized against hlist allocation
7561 * and release. Which makes the protected version suitable here.
7562 * The context lock guarantees that.
7563 */
b28ab83c 7564 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7565 lockdep_is_held(&event->ctx->lock));
7566 if (!hlist)
7567 return NULL;
7568
7569 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7570}
7571
7572static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7573 u64 nr,
76e1d904
FW
7574 struct perf_sample_data *data,
7575 struct pt_regs *regs)
15dbf27c 7576{
4a32fea9 7577 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7578 struct perf_event *event;
76e1d904 7579 struct hlist_head *head;
15dbf27c 7580
76e1d904 7581 rcu_read_lock();
b28ab83c 7582 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7583 if (!head)
7584 goto end;
7585
b67bfe0d 7586 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7587 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7588 perf_swevent_event(event, nr, data, regs);
15dbf27c 7589 }
76e1d904
FW
7590end:
7591 rcu_read_unlock();
15dbf27c
PZ
7592}
7593
86038c5e
PZI
7594DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7595
4ed7c92d 7596int perf_swevent_get_recursion_context(void)
96f6d444 7597{
4a32fea9 7598 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7599
b28ab83c 7600 return get_recursion_context(swhash->recursion);
96f6d444 7601}
645e8cc0 7602EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7603
98b5c2c6 7604void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7605{
4a32fea9 7606 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7607
b28ab83c 7608 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7609}
15dbf27c 7610
86038c5e 7611void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7612{
a4234bfc 7613 struct perf_sample_data data;
4ed7c92d 7614
86038c5e 7615 if (WARN_ON_ONCE(!regs))
4ed7c92d 7616 return;
a4234bfc 7617
fd0d000b 7618 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7619 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7620}
7621
7622void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7623{
7624 int rctx;
7625
7626 preempt_disable_notrace();
7627 rctx = perf_swevent_get_recursion_context();
7628 if (unlikely(rctx < 0))
7629 goto fail;
7630
7631 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7632
7633 perf_swevent_put_recursion_context(rctx);
86038c5e 7634fail:
1c024eca 7635 preempt_enable_notrace();
b8e83514
PZ
7636}
7637
cdd6c482 7638static void perf_swevent_read(struct perf_event *event)
15dbf27c 7639{
15dbf27c
PZ
7640}
7641
a4eaf7f1 7642static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7643{
4a32fea9 7644 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7645 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7646 struct hlist_head *head;
7647
6c7e550f 7648 if (is_sampling_event(event)) {
7b4b6658 7649 hwc->last_period = hwc->sample_period;
cdd6c482 7650 perf_swevent_set_period(event);
7b4b6658 7651 }
76e1d904 7652
a4eaf7f1
PZ
7653 hwc->state = !(flags & PERF_EF_START);
7654
b28ab83c 7655 head = find_swevent_head(swhash, event);
12ca6ad2 7656 if (WARN_ON_ONCE(!head))
76e1d904
FW
7657 return -EINVAL;
7658
7659 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7660 perf_event_update_userpage(event);
76e1d904 7661
15dbf27c
PZ
7662 return 0;
7663}
7664
a4eaf7f1 7665static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7666{
76e1d904 7667 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7668}
7669
a4eaf7f1 7670static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7671{
a4eaf7f1 7672 event->hw.state = 0;
d6d020e9 7673}
aa9c4c0f 7674
a4eaf7f1 7675static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7676{
a4eaf7f1 7677 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7678}
7679
49f135ed
FW
7680/* Deref the hlist from the update side */
7681static inline struct swevent_hlist *
b28ab83c 7682swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7683{
b28ab83c
PZ
7684 return rcu_dereference_protected(swhash->swevent_hlist,
7685 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7686}
7687
b28ab83c 7688static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7689{
b28ab83c 7690 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7691
49f135ed 7692 if (!hlist)
76e1d904
FW
7693 return;
7694
70691d4a 7695 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7696 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7697}
7698
3b364d7b 7699static void swevent_hlist_put_cpu(int cpu)
76e1d904 7700{
b28ab83c 7701 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7702
b28ab83c 7703 mutex_lock(&swhash->hlist_mutex);
76e1d904 7704
b28ab83c
PZ
7705 if (!--swhash->hlist_refcount)
7706 swevent_hlist_release(swhash);
76e1d904 7707
b28ab83c 7708 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7709}
7710
3b364d7b 7711static void swevent_hlist_put(void)
76e1d904
FW
7712{
7713 int cpu;
7714
76e1d904 7715 for_each_possible_cpu(cpu)
3b364d7b 7716 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7717}
7718
3b364d7b 7719static int swevent_hlist_get_cpu(int cpu)
76e1d904 7720{
b28ab83c 7721 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7722 int err = 0;
7723
b28ab83c 7724 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
7725 if (!swevent_hlist_deref(swhash) &&
7726 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
7727 struct swevent_hlist *hlist;
7728
7729 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7730 if (!hlist) {
7731 err = -ENOMEM;
7732 goto exit;
7733 }
b28ab83c 7734 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7735 }
b28ab83c 7736 swhash->hlist_refcount++;
9ed6060d 7737exit:
b28ab83c 7738 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7739
7740 return err;
7741}
7742
3b364d7b 7743static int swevent_hlist_get(void)
76e1d904 7744{
3b364d7b 7745 int err, cpu, failed_cpu;
76e1d904 7746
a63fbed7 7747 mutex_lock(&pmus_lock);
76e1d904 7748 for_each_possible_cpu(cpu) {
3b364d7b 7749 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7750 if (err) {
7751 failed_cpu = cpu;
7752 goto fail;
7753 }
7754 }
a63fbed7 7755 mutex_unlock(&pmus_lock);
76e1d904 7756 return 0;
9ed6060d 7757fail:
76e1d904
FW
7758 for_each_possible_cpu(cpu) {
7759 if (cpu == failed_cpu)
7760 break;
3b364d7b 7761 swevent_hlist_put_cpu(cpu);
76e1d904 7762 }
a63fbed7 7763 mutex_unlock(&pmus_lock);
76e1d904
FW
7764 return err;
7765}
7766
c5905afb 7767struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7768
b0a873eb
PZ
7769static void sw_perf_event_destroy(struct perf_event *event)
7770{
7771 u64 event_id = event->attr.config;
95476b64 7772
b0a873eb
PZ
7773 WARN_ON(event->parent);
7774
c5905afb 7775 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7776 swevent_hlist_put();
b0a873eb
PZ
7777}
7778
7779static int perf_swevent_init(struct perf_event *event)
7780{
8176cced 7781 u64 event_id = event->attr.config;
b0a873eb
PZ
7782
7783 if (event->attr.type != PERF_TYPE_SOFTWARE)
7784 return -ENOENT;
7785
2481c5fa
SE
7786 /*
7787 * no branch sampling for software events
7788 */
7789 if (has_branch_stack(event))
7790 return -EOPNOTSUPP;
7791
b0a873eb
PZ
7792 switch (event_id) {
7793 case PERF_COUNT_SW_CPU_CLOCK:
7794 case PERF_COUNT_SW_TASK_CLOCK:
7795 return -ENOENT;
7796
7797 default:
7798 break;
7799 }
7800
ce677831 7801 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7802 return -ENOENT;
7803
7804 if (!event->parent) {
7805 int err;
7806
3b364d7b 7807 err = swevent_hlist_get();
b0a873eb
PZ
7808 if (err)
7809 return err;
7810
c5905afb 7811 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7812 event->destroy = sw_perf_event_destroy;
7813 }
7814
7815 return 0;
7816}
7817
7818static struct pmu perf_swevent = {
89a1e187 7819 .task_ctx_nr = perf_sw_context,
95476b64 7820
34f43927
PZ
7821 .capabilities = PERF_PMU_CAP_NO_NMI,
7822
b0a873eb 7823 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7824 .add = perf_swevent_add,
7825 .del = perf_swevent_del,
7826 .start = perf_swevent_start,
7827 .stop = perf_swevent_stop,
1c024eca 7828 .read = perf_swevent_read,
1c024eca
PZ
7829};
7830
b0a873eb
PZ
7831#ifdef CONFIG_EVENT_TRACING
7832
1c024eca
PZ
7833static int perf_tp_filter_match(struct perf_event *event,
7834 struct perf_sample_data *data)
7835{
7e3f977e 7836 void *record = data->raw->frag.data;
1c024eca 7837
b71b437e
PZ
7838 /* only top level events have filters set */
7839 if (event->parent)
7840 event = event->parent;
7841
1c024eca
PZ
7842 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7843 return 1;
7844 return 0;
7845}
7846
7847static int perf_tp_event_match(struct perf_event *event,
7848 struct perf_sample_data *data,
7849 struct pt_regs *regs)
7850{
a0f7d0f7
FW
7851 if (event->hw.state & PERF_HES_STOPPED)
7852 return 0;
580d607c
PZ
7853 /*
7854 * All tracepoints are from kernel-space.
7855 */
7856 if (event->attr.exclude_kernel)
1c024eca
PZ
7857 return 0;
7858
7859 if (!perf_tp_filter_match(event, data))
7860 return 0;
7861
7862 return 1;
7863}
7864
85b67bcb
AS
7865void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7866 struct trace_event_call *call, u64 count,
7867 struct pt_regs *regs, struct hlist_head *head,
7868 struct task_struct *task)
7869{
e87c6bc3 7870 if (bpf_prog_array_valid(call)) {
85b67bcb 7871 *(struct pt_regs **)raw_data = regs;
e87c6bc3 7872 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
7873 perf_swevent_put_recursion_context(rctx);
7874 return;
7875 }
7876 }
7877 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 7878 rctx, task);
85b67bcb
AS
7879}
7880EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7881
1e1dcd93 7882void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 7883 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 7884 struct task_struct *task)
95476b64
FW
7885{
7886 struct perf_sample_data data;
8fd0fbbe 7887 struct perf_event *event;
1c024eca 7888
95476b64 7889 struct perf_raw_record raw = {
7e3f977e
DB
7890 .frag = {
7891 .size = entry_size,
7892 .data = record,
7893 },
95476b64
FW
7894 };
7895
1e1dcd93 7896 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7897 data.raw = &raw;
7898
1e1dcd93
AS
7899 perf_trace_buf_update(record, event_type);
7900
8fd0fbbe 7901 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7902 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7903 perf_swevent_event(event, count, &data, regs);
4f41c013 7904 }
ecc55f84 7905
e6dab5ff
AV
7906 /*
7907 * If we got specified a target task, also iterate its context and
7908 * deliver this event there too.
7909 */
7910 if (task && task != current) {
7911 struct perf_event_context *ctx;
7912 struct trace_entry *entry = record;
7913
7914 rcu_read_lock();
7915 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7916 if (!ctx)
7917 goto unlock;
7918
7919 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7920 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7921 continue;
7922 if (event->attr.config != entry->type)
7923 continue;
7924 if (perf_tp_event_match(event, &data, regs))
7925 perf_swevent_event(event, count, &data, regs);
7926 }
7927unlock:
7928 rcu_read_unlock();
7929 }
7930
ecc55f84 7931 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7932}
7933EXPORT_SYMBOL_GPL(perf_tp_event);
7934
cdd6c482 7935static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7936{
1c024eca 7937 perf_trace_destroy(event);
e077df4f
PZ
7938}
7939
b0a873eb 7940static int perf_tp_event_init(struct perf_event *event)
e077df4f 7941{
76e1d904
FW
7942 int err;
7943
b0a873eb
PZ
7944 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7945 return -ENOENT;
7946
2481c5fa
SE
7947 /*
7948 * no branch sampling for tracepoint events
7949 */
7950 if (has_branch_stack(event))
7951 return -EOPNOTSUPP;
7952
1c024eca
PZ
7953 err = perf_trace_init(event);
7954 if (err)
b0a873eb 7955 return err;
e077df4f 7956
cdd6c482 7957 event->destroy = tp_perf_event_destroy;
e077df4f 7958
b0a873eb
PZ
7959 return 0;
7960}
7961
7962static struct pmu perf_tracepoint = {
89a1e187
PZ
7963 .task_ctx_nr = perf_sw_context,
7964
b0a873eb 7965 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7966 .add = perf_trace_add,
7967 .del = perf_trace_del,
7968 .start = perf_swevent_start,
7969 .stop = perf_swevent_stop,
b0a873eb 7970 .read = perf_swevent_read,
b0a873eb
PZ
7971};
7972
7973static inline void perf_tp_register(void)
7974{
2e80a82a 7975 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7976}
6fb2915d 7977
6fb2915d
LZ
7978static void perf_event_free_filter(struct perf_event *event)
7979{
7980 ftrace_profile_free_filter(event);
7981}
7982
aa6a5f3c
AS
7983#ifdef CONFIG_BPF_SYSCALL
7984static void bpf_overflow_handler(struct perf_event *event,
7985 struct perf_sample_data *data,
7986 struct pt_regs *regs)
7987{
7988 struct bpf_perf_event_data_kern ctx = {
7989 .data = data,
7990 .regs = regs,
7d9285e8 7991 .event = event,
aa6a5f3c
AS
7992 };
7993 int ret = 0;
7994
7995 preempt_disable();
7996 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7997 goto out;
7998 rcu_read_lock();
88575199 7999 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8000 rcu_read_unlock();
8001out:
8002 __this_cpu_dec(bpf_prog_active);
8003 preempt_enable();
8004 if (!ret)
8005 return;
8006
8007 event->orig_overflow_handler(event, data, regs);
8008}
8009
8010static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8011{
8012 struct bpf_prog *prog;
8013
8014 if (event->overflow_handler_context)
8015 /* hw breakpoint or kernel counter */
8016 return -EINVAL;
8017
8018 if (event->prog)
8019 return -EEXIST;
8020
8021 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8022 if (IS_ERR(prog))
8023 return PTR_ERR(prog);
8024
8025 event->prog = prog;
8026 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8027 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8028 return 0;
8029}
8030
8031static void perf_event_free_bpf_handler(struct perf_event *event)
8032{
8033 struct bpf_prog *prog = event->prog;
8034
8035 if (!prog)
8036 return;
8037
8038 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8039 event->prog = NULL;
8040 bpf_prog_put(prog);
8041}
8042#else
8043static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8044{
8045 return -EOPNOTSUPP;
8046}
8047static void perf_event_free_bpf_handler(struct perf_event *event)
8048{
8049}
8050#endif
8051
2541517c
AS
8052static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8053{
cf5f5cea 8054 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 8055 struct bpf_prog *prog;
e87c6bc3 8056 int ret;
2541517c
AS
8057
8058 if (event->attr.type != PERF_TYPE_TRACEPOINT)
f91840a3 8059 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 8060
98b5c2c6
AS
8061 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8062 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8063 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8064 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8065 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8066 return -EINVAL;
8067
8068 prog = bpf_prog_get(prog_fd);
8069 if (IS_ERR(prog))
8070 return PTR_ERR(prog);
8071
98b5c2c6 8072 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8073 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8074 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8075 /* valid fd, but invalid bpf program type */
8076 bpf_prog_put(prog);
8077 return -EINVAL;
8078 }
8079
cf5f5cea 8080 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8081 int off = trace_event_get_offsets(event->tp_event);
8082
8083 if (prog->aux->max_ctx_offset > off) {
8084 bpf_prog_put(prog);
8085 return -EACCES;
8086 }
8087 }
2541517c 8088
e87c6bc3
YS
8089 ret = perf_event_attach_bpf_prog(event, prog);
8090 if (ret)
8091 bpf_prog_put(prog);
8092 return ret;
2541517c
AS
8093}
8094
8095static void perf_event_free_bpf_prog(struct perf_event *event)
8096{
0b4c6841
YS
8097 if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8098 perf_event_free_bpf_handler(event);
2541517c 8099 return;
2541517c 8100 }
e87c6bc3 8101 perf_event_detach_bpf_prog(event);
2541517c
AS
8102}
8103
e077df4f 8104#else
6fb2915d 8105
b0a873eb 8106static inline void perf_tp_register(void)
e077df4f 8107{
e077df4f 8108}
6fb2915d 8109
6fb2915d
LZ
8110static void perf_event_free_filter(struct perf_event *event)
8111{
8112}
8113
2541517c
AS
8114static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8115{
8116 return -ENOENT;
8117}
8118
8119static void perf_event_free_bpf_prog(struct perf_event *event)
8120{
8121}
07b139c8 8122#endif /* CONFIG_EVENT_TRACING */
e077df4f 8123
24f1e32c 8124#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8125void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8126{
f5ffe02e
FW
8127 struct perf_sample_data sample;
8128 struct pt_regs *regs = data;
8129
fd0d000b 8130 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8131
a4eaf7f1 8132 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8133 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8134}
8135#endif
8136
375637bc
AS
8137/*
8138 * Allocate a new address filter
8139 */
8140static struct perf_addr_filter *
8141perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8142{
8143 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8144 struct perf_addr_filter *filter;
8145
8146 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8147 if (!filter)
8148 return NULL;
8149
8150 INIT_LIST_HEAD(&filter->entry);
8151 list_add_tail(&filter->entry, filters);
8152
8153 return filter;
8154}
8155
8156static void free_filters_list(struct list_head *filters)
8157{
8158 struct perf_addr_filter *filter, *iter;
8159
8160 list_for_each_entry_safe(filter, iter, filters, entry) {
8161 if (filter->inode)
8162 iput(filter->inode);
8163 list_del(&filter->entry);
8164 kfree(filter);
8165 }
8166}
8167
8168/*
8169 * Free existing address filters and optionally install new ones
8170 */
8171static void perf_addr_filters_splice(struct perf_event *event,
8172 struct list_head *head)
8173{
8174 unsigned long flags;
8175 LIST_HEAD(list);
8176
8177 if (!has_addr_filter(event))
8178 return;
8179
8180 /* don't bother with children, they don't have their own filters */
8181 if (event->parent)
8182 return;
8183
8184 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8185
8186 list_splice_init(&event->addr_filters.list, &list);
8187 if (head)
8188 list_splice(head, &event->addr_filters.list);
8189
8190 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8191
8192 free_filters_list(&list);
8193}
8194
8195/*
8196 * Scan through mm's vmas and see if one of them matches the
8197 * @filter; if so, adjust filter's address range.
8198 * Called with mm::mmap_sem down for reading.
8199 */
8200static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8201 struct mm_struct *mm)
8202{
8203 struct vm_area_struct *vma;
8204
8205 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8206 struct file *file = vma->vm_file;
8207 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8208 unsigned long vma_size = vma->vm_end - vma->vm_start;
8209
8210 if (!file)
8211 continue;
8212
8213 if (!perf_addr_filter_match(filter, file, off, vma_size))
8214 continue;
8215
8216 return vma->vm_start;
8217 }
8218
8219 return 0;
8220}
8221
8222/*
8223 * Update event's address range filters based on the
8224 * task's existing mappings, if any.
8225 */
8226static void perf_event_addr_filters_apply(struct perf_event *event)
8227{
8228 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8229 struct task_struct *task = READ_ONCE(event->ctx->task);
8230 struct perf_addr_filter *filter;
8231 struct mm_struct *mm = NULL;
8232 unsigned int count = 0;
8233 unsigned long flags;
8234
8235 /*
8236 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8237 * will stop on the parent's child_mutex that our caller is also holding
8238 */
8239 if (task == TASK_TOMBSTONE)
8240 return;
8241
6ce77bfd
AS
8242 if (!ifh->nr_file_filters)
8243 return;
8244
375637bc
AS
8245 mm = get_task_mm(event->ctx->task);
8246 if (!mm)
8247 goto restart;
8248
8249 down_read(&mm->mmap_sem);
8250
8251 raw_spin_lock_irqsave(&ifh->lock, flags);
8252 list_for_each_entry(filter, &ifh->list, entry) {
8253 event->addr_filters_offs[count] = 0;
8254
99f5bc9b
MP
8255 /*
8256 * Adjust base offset if the filter is associated to a binary
8257 * that needs to be mapped:
8258 */
8259 if (filter->inode)
375637bc
AS
8260 event->addr_filters_offs[count] =
8261 perf_addr_filter_apply(filter, mm);
8262
8263 count++;
8264 }
8265
8266 event->addr_filters_gen++;
8267 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8268
8269 up_read(&mm->mmap_sem);
8270
8271 mmput(mm);
8272
8273restart:
767ae086 8274 perf_event_stop(event, 1);
375637bc
AS
8275}
8276
8277/*
8278 * Address range filtering: limiting the data to certain
8279 * instruction address ranges. Filters are ioctl()ed to us from
8280 * userspace as ascii strings.
8281 *
8282 * Filter string format:
8283 *
8284 * ACTION RANGE_SPEC
8285 * where ACTION is one of the
8286 * * "filter": limit the trace to this region
8287 * * "start": start tracing from this address
8288 * * "stop": stop tracing at this address/region;
8289 * RANGE_SPEC is
8290 * * for kernel addresses: <start address>[/<size>]
8291 * * for object files: <start address>[/<size>]@</path/to/object/file>
8292 *
8293 * if <size> is not specified, the range is treated as a single address.
8294 */
8295enum {
e96271f3 8296 IF_ACT_NONE = -1,
375637bc
AS
8297 IF_ACT_FILTER,
8298 IF_ACT_START,
8299 IF_ACT_STOP,
8300 IF_SRC_FILE,
8301 IF_SRC_KERNEL,
8302 IF_SRC_FILEADDR,
8303 IF_SRC_KERNELADDR,
8304};
8305
8306enum {
8307 IF_STATE_ACTION = 0,
8308 IF_STATE_SOURCE,
8309 IF_STATE_END,
8310};
8311
8312static const match_table_t if_tokens = {
8313 { IF_ACT_FILTER, "filter" },
8314 { IF_ACT_START, "start" },
8315 { IF_ACT_STOP, "stop" },
8316 { IF_SRC_FILE, "%u/%u@%s" },
8317 { IF_SRC_KERNEL, "%u/%u" },
8318 { IF_SRC_FILEADDR, "%u@%s" },
8319 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8320 { IF_ACT_NONE, NULL },
375637bc
AS
8321};
8322
8323/*
8324 * Address filter string parser
8325 */
8326static int
8327perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8328 struct list_head *filters)
8329{
8330 struct perf_addr_filter *filter = NULL;
8331 char *start, *orig, *filename = NULL;
8332 struct path path;
8333 substring_t args[MAX_OPT_ARGS];
8334 int state = IF_STATE_ACTION, token;
8335 unsigned int kernel = 0;
8336 int ret = -EINVAL;
8337
8338 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8339 if (!fstr)
8340 return -ENOMEM;
8341
8342 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8343 ret = -EINVAL;
8344
8345 if (!*start)
8346 continue;
8347
8348 /* filter definition begins */
8349 if (state == IF_STATE_ACTION) {
8350 filter = perf_addr_filter_new(event, filters);
8351 if (!filter)
8352 goto fail;
8353 }
8354
8355 token = match_token(start, if_tokens, args);
8356 switch (token) {
8357 case IF_ACT_FILTER:
8358 case IF_ACT_START:
8359 filter->filter = 1;
8360
8361 case IF_ACT_STOP:
8362 if (state != IF_STATE_ACTION)
8363 goto fail;
8364
8365 state = IF_STATE_SOURCE;
8366 break;
8367
8368 case IF_SRC_KERNELADDR:
8369 case IF_SRC_KERNEL:
8370 kernel = 1;
8371
8372 case IF_SRC_FILEADDR:
8373 case IF_SRC_FILE:
8374 if (state != IF_STATE_SOURCE)
8375 goto fail;
8376
8377 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8378 filter->range = 1;
8379
8380 *args[0].to = 0;
8381 ret = kstrtoul(args[0].from, 0, &filter->offset);
8382 if (ret)
8383 goto fail;
8384
8385 if (filter->range) {
8386 *args[1].to = 0;
8387 ret = kstrtoul(args[1].from, 0, &filter->size);
8388 if (ret)
8389 goto fail;
8390 }
8391
4059ffd0
MP
8392 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8393 int fpos = filter->range ? 2 : 1;
8394
8395 filename = match_strdup(&args[fpos]);
375637bc
AS
8396 if (!filename) {
8397 ret = -ENOMEM;
8398 goto fail;
8399 }
8400 }
8401
8402 state = IF_STATE_END;
8403 break;
8404
8405 default:
8406 goto fail;
8407 }
8408
8409 /*
8410 * Filter definition is fully parsed, validate and install it.
8411 * Make sure that it doesn't contradict itself or the event's
8412 * attribute.
8413 */
8414 if (state == IF_STATE_END) {
9ccbfbb1 8415 ret = -EINVAL;
375637bc
AS
8416 if (kernel && event->attr.exclude_kernel)
8417 goto fail;
8418
8419 if (!kernel) {
8420 if (!filename)
8421 goto fail;
8422
6ce77bfd
AS
8423 /*
8424 * For now, we only support file-based filters
8425 * in per-task events; doing so for CPU-wide
8426 * events requires additional context switching
8427 * trickery, since same object code will be
8428 * mapped at different virtual addresses in
8429 * different processes.
8430 */
8431 ret = -EOPNOTSUPP;
8432 if (!event->ctx->task)
8433 goto fail_free_name;
8434
375637bc
AS
8435 /* look up the path and grab its inode */
8436 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8437 if (ret)
8438 goto fail_free_name;
8439
8440 filter->inode = igrab(d_inode(path.dentry));
8441 path_put(&path);
8442 kfree(filename);
8443 filename = NULL;
8444
8445 ret = -EINVAL;
8446 if (!filter->inode ||
8447 !S_ISREG(filter->inode->i_mode))
8448 /* free_filters_list() will iput() */
8449 goto fail;
6ce77bfd
AS
8450
8451 event->addr_filters.nr_file_filters++;
375637bc
AS
8452 }
8453
8454 /* ready to consume more filters */
8455 state = IF_STATE_ACTION;
8456 filter = NULL;
8457 }
8458 }
8459
8460 if (state != IF_STATE_ACTION)
8461 goto fail;
8462
8463 kfree(orig);
8464
8465 return 0;
8466
8467fail_free_name:
8468 kfree(filename);
8469fail:
8470 free_filters_list(filters);
8471 kfree(orig);
8472
8473 return ret;
8474}
8475
8476static int
8477perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8478{
8479 LIST_HEAD(filters);
8480 int ret;
8481
8482 /*
8483 * Since this is called in perf_ioctl() path, we're already holding
8484 * ctx::mutex.
8485 */
8486 lockdep_assert_held(&event->ctx->mutex);
8487
8488 if (WARN_ON_ONCE(event->parent))
8489 return -EINVAL;
8490
375637bc
AS
8491 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8492 if (ret)
6ce77bfd 8493 goto fail_clear_files;
375637bc
AS
8494
8495 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8496 if (ret)
8497 goto fail_free_filters;
375637bc
AS
8498
8499 /* remove existing filters, if any */
8500 perf_addr_filters_splice(event, &filters);
8501
8502 /* install new filters */
8503 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8504
6ce77bfd
AS
8505 return ret;
8506
8507fail_free_filters:
8508 free_filters_list(&filters);
8509
8510fail_clear_files:
8511 event->addr_filters.nr_file_filters = 0;
8512
375637bc
AS
8513 return ret;
8514}
8515
c796bbbe
AS
8516static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8517{
8518 char *filter_str;
8519 int ret = -EINVAL;
8520
375637bc
AS
8521 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8522 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8523 !has_addr_filter(event))
c796bbbe
AS
8524 return -EINVAL;
8525
8526 filter_str = strndup_user(arg, PAGE_SIZE);
8527 if (IS_ERR(filter_str))
8528 return PTR_ERR(filter_str);
8529
8530 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8531 event->attr.type == PERF_TYPE_TRACEPOINT)
8532 ret = ftrace_profile_set_filter(event, event->attr.config,
8533 filter_str);
375637bc
AS
8534 else if (has_addr_filter(event))
8535 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8536
8537 kfree(filter_str);
8538 return ret;
8539}
8540
b0a873eb
PZ
8541/*
8542 * hrtimer based swevent callback
8543 */
f29ac756 8544
b0a873eb 8545static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8546{
b0a873eb
PZ
8547 enum hrtimer_restart ret = HRTIMER_RESTART;
8548 struct perf_sample_data data;
8549 struct pt_regs *regs;
8550 struct perf_event *event;
8551 u64 period;
f29ac756 8552
b0a873eb 8553 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8554
8555 if (event->state != PERF_EVENT_STATE_ACTIVE)
8556 return HRTIMER_NORESTART;
8557
b0a873eb 8558 event->pmu->read(event);
f344011c 8559
fd0d000b 8560 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8561 regs = get_irq_regs();
8562
8563 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8564 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8565 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8566 ret = HRTIMER_NORESTART;
8567 }
24f1e32c 8568
b0a873eb
PZ
8569 period = max_t(u64, 10000, event->hw.sample_period);
8570 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8571
b0a873eb 8572 return ret;
f29ac756
PZ
8573}
8574
b0a873eb 8575static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8576{
b0a873eb 8577 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8578 s64 period;
8579
8580 if (!is_sampling_event(event))
8581 return;
f5ffe02e 8582
5d508e82
FBH
8583 period = local64_read(&hwc->period_left);
8584 if (period) {
8585 if (period < 0)
8586 period = 10000;
fa407f35 8587
5d508e82
FBH
8588 local64_set(&hwc->period_left, 0);
8589 } else {
8590 period = max_t(u64, 10000, hwc->sample_period);
8591 }
3497d206
TG
8592 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8593 HRTIMER_MODE_REL_PINNED);
24f1e32c 8594}
b0a873eb
PZ
8595
8596static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8597{
b0a873eb
PZ
8598 struct hw_perf_event *hwc = &event->hw;
8599
6c7e550f 8600 if (is_sampling_event(event)) {
b0a873eb 8601 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8602 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8603
8604 hrtimer_cancel(&hwc->hrtimer);
8605 }
24f1e32c
FW
8606}
8607
ba3dd36c
PZ
8608static void perf_swevent_init_hrtimer(struct perf_event *event)
8609{
8610 struct hw_perf_event *hwc = &event->hw;
8611
8612 if (!is_sampling_event(event))
8613 return;
8614
8615 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8616 hwc->hrtimer.function = perf_swevent_hrtimer;
8617
8618 /*
8619 * Since hrtimers have a fixed rate, we can do a static freq->period
8620 * mapping and avoid the whole period adjust feedback stuff.
8621 */
8622 if (event->attr.freq) {
8623 long freq = event->attr.sample_freq;
8624
8625 event->attr.sample_period = NSEC_PER_SEC / freq;
8626 hwc->sample_period = event->attr.sample_period;
8627 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8628 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8629 event->attr.freq = 0;
8630 }
8631}
8632
b0a873eb
PZ
8633/*
8634 * Software event: cpu wall time clock
8635 */
8636
8637static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8638{
b0a873eb
PZ
8639 s64 prev;
8640 u64 now;
8641
a4eaf7f1 8642 now = local_clock();
b0a873eb
PZ
8643 prev = local64_xchg(&event->hw.prev_count, now);
8644 local64_add(now - prev, &event->count);
24f1e32c 8645}
24f1e32c 8646
a4eaf7f1 8647static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8648{
a4eaf7f1 8649 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8650 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8651}
8652
a4eaf7f1 8653static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8654{
b0a873eb
PZ
8655 perf_swevent_cancel_hrtimer(event);
8656 cpu_clock_event_update(event);
8657}
f29ac756 8658
a4eaf7f1
PZ
8659static int cpu_clock_event_add(struct perf_event *event, int flags)
8660{
8661 if (flags & PERF_EF_START)
8662 cpu_clock_event_start(event, flags);
6a694a60 8663 perf_event_update_userpage(event);
a4eaf7f1
PZ
8664
8665 return 0;
8666}
8667
8668static void cpu_clock_event_del(struct perf_event *event, int flags)
8669{
8670 cpu_clock_event_stop(event, flags);
8671}
8672
b0a873eb
PZ
8673static void cpu_clock_event_read(struct perf_event *event)
8674{
8675 cpu_clock_event_update(event);
8676}
f344011c 8677
b0a873eb
PZ
8678static int cpu_clock_event_init(struct perf_event *event)
8679{
8680 if (event->attr.type != PERF_TYPE_SOFTWARE)
8681 return -ENOENT;
8682
8683 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8684 return -ENOENT;
8685
2481c5fa
SE
8686 /*
8687 * no branch sampling for software events
8688 */
8689 if (has_branch_stack(event))
8690 return -EOPNOTSUPP;
8691
ba3dd36c
PZ
8692 perf_swevent_init_hrtimer(event);
8693
b0a873eb 8694 return 0;
f29ac756
PZ
8695}
8696
b0a873eb 8697static struct pmu perf_cpu_clock = {
89a1e187
PZ
8698 .task_ctx_nr = perf_sw_context,
8699
34f43927
PZ
8700 .capabilities = PERF_PMU_CAP_NO_NMI,
8701
b0a873eb 8702 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8703 .add = cpu_clock_event_add,
8704 .del = cpu_clock_event_del,
8705 .start = cpu_clock_event_start,
8706 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8707 .read = cpu_clock_event_read,
8708};
8709
8710/*
8711 * Software event: task time clock
8712 */
8713
8714static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8715{
b0a873eb
PZ
8716 u64 prev;
8717 s64 delta;
5c92d124 8718
b0a873eb
PZ
8719 prev = local64_xchg(&event->hw.prev_count, now);
8720 delta = now - prev;
8721 local64_add(delta, &event->count);
8722}
5c92d124 8723
a4eaf7f1 8724static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8725{
a4eaf7f1 8726 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8727 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8728}
8729
a4eaf7f1 8730static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8731{
8732 perf_swevent_cancel_hrtimer(event);
8733 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8734}
8735
8736static int task_clock_event_add(struct perf_event *event, int flags)
8737{
8738 if (flags & PERF_EF_START)
8739 task_clock_event_start(event, flags);
6a694a60 8740 perf_event_update_userpage(event);
b0a873eb 8741
a4eaf7f1
PZ
8742 return 0;
8743}
8744
8745static void task_clock_event_del(struct perf_event *event, int flags)
8746{
8747 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8748}
8749
8750static void task_clock_event_read(struct perf_event *event)
8751{
768a06e2
PZ
8752 u64 now = perf_clock();
8753 u64 delta = now - event->ctx->timestamp;
8754 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8755
8756 task_clock_event_update(event, time);
8757}
8758
8759static int task_clock_event_init(struct perf_event *event)
6fb2915d 8760{
b0a873eb
PZ
8761 if (event->attr.type != PERF_TYPE_SOFTWARE)
8762 return -ENOENT;
8763
8764 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8765 return -ENOENT;
8766
2481c5fa
SE
8767 /*
8768 * no branch sampling for software events
8769 */
8770 if (has_branch_stack(event))
8771 return -EOPNOTSUPP;
8772
ba3dd36c
PZ
8773 perf_swevent_init_hrtimer(event);
8774
b0a873eb 8775 return 0;
6fb2915d
LZ
8776}
8777
b0a873eb 8778static struct pmu perf_task_clock = {
89a1e187
PZ
8779 .task_ctx_nr = perf_sw_context,
8780
34f43927
PZ
8781 .capabilities = PERF_PMU_CAP_NO_NMI,
8782
b0a873eb 8783 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8784 .add = task_clock_event_add,
8785 .del = task_clock_event_del,
8786 .start = task_clock_event_start,
8787 .stop = task_clock_event_stop,
b0a873eb
PZ
8788 .read = task_clock_event_read,
8789};
6fb2915d 8790
ad5133b7 8791static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8792{
e077df4f 8793}
6fb2915d 8794
fbbe0701
SB
8795static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8796{
8797}
8798
ad5133b7 8799static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8800{
ad5133b7 8801 return 0;
6fb2915d
LZ
8802}
8803
18ab2cd3 8804static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8805
8806static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8807{
fbbe0701
SB
8808 __this_cpu_write(nop_txn_flags, flags);
8809
8810 if (flags & ~PERF_PMU_TXN_ADD)
8811 return;
8812
ad5133b7 8813 perf_pmu_disable(pmu);
6fb2915d
LZ
8814}
8815
ad5133b7
PZ
8816static int perf_pmu_commit_txn(struct pmu *pmu)
8817{
fbbe0701
SB
8818 unsigned int flags = __this_cpu_read(nop_txn_flags);
8819
8820 __this_cpu_write(nop_txn_flags, 0);
8821
8822 if (flags & ~PERF_PMU_TXN_ADD)
8823 return 0;
8824
ad5133b7
PZ
8825 perf_pmu_enable(pmu);
8826 return 0;
8827}
e077df4f 8828
ad5133b7 8829static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8830{
fbbe0701
SB
8831 unsigned int flags = __this_cpu_read(nop_txn_flags);
8832
8833 __this_cpu_write(nop_txn_flags, 0);
8834
8835 if (flags & ~PERF_PMU_TXN_ADD)
8836 return;
8837
ad5133b7 8838 perf_pmu_enable(pmu);
24f1e32c
FW
8839}
8840
35edc2a5
PZ
8841static int perf_event_idx_default(struct perf_event *event)
8842{
c719f560 8843 return 0;
35edc2a5
PZ
8844}
8845
8dc85d54
PZ
8846/*
8847 * Ensures all contexts with the same task_ctx_nr have the same
8848 * pmu_cpu_context too.
8849 */
9e317041 8850static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8851{
8dc85d54 8852 struct pmu *pmu;
b326e956 8853
8dc85d54
PZ
8854 if (ctxn < 0)
8855 return NULL;
24f1e32c 8856
8dc85d54
PZ
8857 list_for_each_entry(pmu, &pmus, entry) {
8858 if (pmu->task_ctx_nr == ctxn)
8859 return pmu->pmu_cpu_context;
8860 }
24f1e32c 8861
8dc85d54 8862 return NULL;
24f1e32c
FW
8863}
8864
51676957
PZ
8865static void free_pmu_context(struct pmu *pmu)
8866{
df0062b2
WD
8867 /*
8868 * Static contexts such as perf_sw_context have a global lifetime
8869 * and may be shared between different PMUs. Avoid freeing them
8870 * when a single PMU is going away.
8871 */
8872 if (pmu->task_ctx_nr > perf_invalid_context)
8873 return;
8874
8dc85d54 8875 mutex_lock(&pmus_lock);
51676957 8876 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8877 mutex_unlock(&pmus_lock);
24f1e32c 8878}
6e855cd4
AS
8879
8880/*
8881 * Let userspace know that this PMU supports address range filtering:
8882 */
8883static ssize_t nr_addr_filters_show(struct device *dev,
8884 struct device_attribute *attr,
8885 char *page)
8886{
8887 struct pmu *pmu = dev_get_drvdata(dev);
8888
8889 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8890}
8891DEVICE_ATTR_RO(nr_addr_filters);
8892
2e80a82a 8893static struct idr pmu_idr;
d6d020e9 8894
abe43400
PZ
8895static ssize_t
8896type_show(struct device *dev, struct device_attribute *attr, char *page)
8897{
8898 struct pmu *pmu = dev_get_drvdata(dev);
8899
8900 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8901}
90826ca7 8902static DEVICE_ATTR_RO(type);
abe43400 8903
62b85639
SE
8904static ssize_t
8905perf_event_mux_interval_ms_show(struct device *dev,
8906 struct device_attribute *attr,
8907 char *page)
8908{
8909 struct pmu *pmu = dev_get_drvdata(dev);
8910
8911 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8912}
8913
272325c4
PZ
8914static DEFINE_MUTEX(mux_interval_mutex);
8915
62b85639
SE
8916static ssize_t
8917perf_event_mux_interval_ms_store(struct device *dev,
8918 struct device_attribute *attr,
8919 const char *buf, size_t count)
8920{
8921 struct pmu *pmu = dev_get_drvdata(dev);
8922 int timer, cpu, ret;
8923
8924 ret = kstrtoint(buf, 0, &timer);
8925 if (ret)
8926 return ret;
8927
8928 if (timer < 1)
8929 return -EINVAL;
8930
8931 /* same value, noting to do */
8932 if (timer == pmu->hrtimer_interval_ms)
8933 return count;
8934
272325c4 8935 mutex_lock(&mux_interval_mutex);
62b85639
SE
8936 pmu->hrtimer_interval_ms = timer;
8937
8938 /* update all cpuctx for this PMU */
a63fbed7 8939 cpus_read_lock();
272325c4 8940 for_each_online_cpu(cpu) {
62b85639
SE
8941 struct perf_cpu_context *cpuctx;
8942 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8943 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8944
272325c4
PZ
8945 cpu_function_call(cpu,
8946 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8947 }
a63fbed7 8948 cpus_read_unlock();
272325c4 8949 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8950
8951 return count;
8952}
90826ca7 8953static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8954
90826ca7
GKH
8955static struct attribute *pmu_dev_attrs[] = {
8956 &dev_attr_type.attr,
8957 &dev_attr_perf_event_mux_interval_ms.attr,
8958 NULL,
abe43400 8959};
90826ca7 8960ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8961
8962static int pmu_bus_running;
8963static struct bus_type pmu_bus = {
8964 .name = "event_source",
90826ca7 8965 .dev_groups = pmu_dev_groups,
abe43400
PZ
8966};
8967
8968static void pmu_dev_release(struct device *dev)
8969{
8970 kfree(dev);
8971}
8972
8973static int pmu_dev_alloc(struct pmu *pmu)
8974{
8975 int ret = -ENOMEM;
8976
8977 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8978 if (!pmu->dev)
8979 goto out;
8980
0c9d42ed 8981 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
8982 device_initialize(pmu->dev);
8983 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8984 if (ret)
8985 goto free_dev;
8986
8987 dev_set_drvdata(pmu->dev, pmu);
8988 pmu->dev->bus = &pmu_bus;
8989 pmu->dev->release = pmu_dev_release;
8990 ret = device_add(pmu->dev);
8991 if (ret)
8992 goto free_dev;
8993
6e855cd4
AS
8994 /* For PMUs with address filters, throw in an extra attribute: */
8995 if (pmu->nr_addr_filters)
8996 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8997
8998 if (ret)
8999 goto del_dev;
9000
abe43400
PZ
9001out:
9002 return ret;
9003
6e855cd4
AS
9004del_dev:
9005 device_del(pmu->dev);
9006
abe43400
PZ
9007free_dev:
9008 put_device(pmu->dev);
9009 goto out;
9010}
9011
547e9fd7 9012static struct lock_class_key cpuctx_mutex;
facc4307 9013static struct lock_class_key cpuctx_lock;
547e9fd7 9014
03d8e80b 9015int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9016{
108b02cf 9017 int cpu, ret;
24f1e32c 9018
b0a873eb 9019 mutex_lock(&pmus_lock);
33696fc0
PZ
9020 ret = -ENOMEM;
9021 pmu->pmu_disable_count = alloc_percpu(int);
9022 if (!pmu->pmu_disable_count)
9023 goto unlock;
f29ac756 9024
2e80a82a
PZ
9025 pmu->type = -1;
9026 if (!name)
9027 goto skip_type;
9028 pmu->name = name;
9029
9030 if (type < 0) {
0e9c3be2
TH
9031 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9032 if (type < 0) {
9033 ret = type;
2e80a82a
PZ
9034 goto free_pdc;
9035 }
9036 }
9037 pmu->type = type;
9038
abe43400
PZ
9039 if (pmu_bus_running) {
9040 ret = pmu_dev_alloc(pmu);
9041 if (ret)
9042 goto free_idr;
9043 }
9044
2e80a82a 9045skip_type:
26657848
PZ
9046 if (pmu->task_ctx_nr == perf_hw_context) {
9047 static int hw_context_taken = 0;
9048
5101ef20
MR
9049 /*
9050 * Other than systems with heterogeneous CPUs, it never makes
9051 * sense for two PMUs to share perf_hw_context. PMUs which are
9052 * uncore must use perf_invalid_context.
9053 */
9054 if (WARN_ON_ONCE(hw_context_taken &&
9055 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9056 pmu->task_ctx_nr = perf_invalid_context;
9057
9058 hw_context_taken = 1;
9059 }
9060
8dc85d54
PZ
9061 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9062 if (pmu->pmu_cpu_context)
9063 goto got_cpu_context;
f29ac756 9064
c4814202 9065 ret = -ENOMEM;
108b02cf
PZ
9066 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9067 if (!pmu->pmu_cpu_context)
abe43400 9068 goto free_dev;
f344011c 9069
108b02cf
PZ
9070 for_each_possible_cpu(cpu) {
9071 struct perf_cpu_context *cpuctx;
9072
9073 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9074 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9075 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9076 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9077 cpuctx->ctx.pmu = pmu;
a63fbed7 9078 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9079
272325c4 9080 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9081 }
76e1d904 9082
8dc85d54 9083got_cpu_context:
ad5133b7
PZ
9084 if (!pmu->start_txn) {
9085 if (pmu->pmu_enable) {
9086 /*
9087 * If we have pmu_enable/pmu_disable calls, install
9088 * transaction stubs that use that to try and batch
9089 * hardware accesses.
9090 */
9091 pmu->start_txn = perf_pmu_start_txn;
9092 pmu->commit_txn = perf_pmu_commit_txn;
9093 pmu->cancel_txn = perf_pmu_cancel_txn;
9094 } else {
fbbe0701 9095 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9096 pmu->commit_txn = perf_pmu_nop_int;
9097 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9098 }
5c92d124 9099 }
15dbf27c 9100
ad5133b7
PZ
9101 if (!pmu->pmu_enable) {
9102 pmu->pmu_enable = perf_pmu_nop_void;
9103 pmu->pmu_disable = perf_pmu_nop_void;
9104 }
9105
35edc2a5
PZ
9106 if (!pmu->event_idx)
9107 pmu->event_idx = perf_event_idx_default;
9108
b0a873eb 9109 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9110 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9111 ret = 0;
9112unlock:
b0a873eb
PZ
9113 mutex_unlock(&pmus_lock);
9114
33696fc0 9115 return ret;
108b02cf 9116
abe43400
PZ
9117free_dev:
9118 device_del(pmu->dev);
9119 put_device(pmu->dev);
9120
2e80a82a
PZ
9121free_idr:
9122 if (pmu->type >= PERF_TYPE_MAX)
9123 idr_remove(&pmu_idr, pmu->type);
9124
108b02cf
PZ
9125free_pdc:
9126 free_percpu(pmu->pmu_disable_count);
9127 goto unlock;
f29ac756 9128}
c464c76e 9129EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9130
b0a873eb 9131void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9132{
0933840a
JO
9133 int remove_device;
9134
b0a873eb 9135 mutex_lock(&pmus_lock);
0933840a 9136 remove_device = pmu_bus_running;
b0a873eb
PZ
9137 list_del_rcu(&pmu->entry);
9138 mutex_unlock(&pmus_lock);
5c92d124 9139
0475f9ea 9140 /*
cde8e884
PZ
9141 * We dereference the pmu list under both SRCU and regular RCU, so
9142 * synchronize against both of those.
0475f9ea 9143 */
b0a873eb 9144 synchronize_srcu(&pmus_srcu);
cde8e884 9145 synchronize_rcu();
d6d020e9 9146
33696fc0 9147 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9148 if (pmu->type >= PERF_TYPE_MAX)
9149 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9150 if (remove_device) {
9151 if (pmu->nr_addr_filters)
9152 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9153 device_del(pmu->dev);
9154 put_device(pmu->dev);
9155 }
51676957 9156 free_pmu_context(pmu);
b0a873eb 9157}
c464c76e 9158EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9159
cc34b98b
MR
9160static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9161{
ccd41c86 9162 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9163 int ret;
9164
9165 if (!try_module_get(pmu->module))
9166 return -ENODEV;
ccd41c86
PZ
9167
9168 if (event->group_leader != event) {
8b10c5e2
PZ
9169 /*
9170 * This ctx->mutex can nest when we're called through
9171 * inheritance. See the perf_event_ctx_lock_nested() comment.
9172 */
9173 ctx = perf_event_ctx_lock_nested(event->group_leader,
9174 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9175 BUG_ON(!ctx);
9176 }
9177
cc34b98b
MR
9178 event->pmu = pmu;
9179 ret = pmu->event_init(event);
ccd41c86
PZ
9180
9181 if (ctx)
9182 perf_event_ctx_unlock(event->group_leader, ctx);
9183
cc34b98b
MR
9184 if (ret)
9185 module_put(pmu->module);
9186
9187 return ret;
9188}
9189
18ab2cd3 9190static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9191{
85c617ab 9192 struct pmu *pmu;
b0a873eb 9193 int idx;
940c5b29 9194 int ret;
b0a873eb
PZ
9195
9196 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9197
40999312
KL
9198 /* Try parent's PMU first: */
9199 if (event->parent && event->parent->pmu) {
9200 pmu = event->parent->pmu;
9201 ret = perf_try_init_event(pmu, event);
9202 if (!ret)
9203 goto unlock;
9204 }
9205
2e80a82a
PZ
9206 rcu_read_lock();
9207 pmu = idr_find(&pmu_idr, event->attr.type);
9208 rcu_read_unlock();
940c5b29 9209 if (pmu) {
cc34b98b 9210 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9211 if (ret)
9212 pmu = ERR_PTR(ret);
2e80a82a 9213 goto unlock;
940c5b29 9214 }
2e80a82a 9215
b0a873eb 9216 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9217 ret = perf_try_init_event(pmu, event);
b0a873eb 9218 if (!ret)
e5f4d339 9219 goto unlock;
76e1d904 9220
b0a873eb
PZ
9221 if (ret != -ENOENT) {
9222 pmu = ERR_PTR(ret);
e5f4d339 9223 goto unlock;
f344011c 9224 }
5c92d124 9225 }
e5f4d339
PZ
9226 pmu = ERR_PTR(-ENOENT);
9227unlock:
b0a873eb 9228 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9229
4aeb0b42 9230 return pmu;
5c92d124
IM
9231}
9232
f2fb6bef
KL
9233static void attach_sb_event(struct perf_event *event)
9234{
9235 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9236
9237 raw_spin_lock(&pel->lock);
9238 list_add_rcu(&event->sb_list, &pel->list);
9239 raw_spin_unlock(&pel->lock);
9240}
9241
aab5b71e
PZ
9242/*
9243 * We keep a list of all !task (and therefore per-cpu) events
9244 * that need to receive side-band records.
9245 *
9246 * This avoids having to scan all the various PMU per-cpu contexts
9247 * looking for them.
9248 */
f2fb6bef
KL
9249static void account_pmu_sb_event(struct perf_event *event)
9250{
a4f144eb 9251 if (is_sb_event(event))
f2fb6bef
KL
9252 attach_sb_event(event);
9253}
9254
4beb31f3
FW
9255static void account_event_cpu(struct perf_event *event, int cpu)
9256{
9257 if (event->parent)
9258 return;
9259
4beb31f3
FW
9260 if (is_cgroup_event(event))
9261 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9262}
9263
555e0c1e
FW
9264/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9265static void account_freq_event_nohz(void)
9266{
9267#ifdef CONFIG_NO_HZ_FULL
9268 /* Lock so we don't race with concurrent unaccount */
9269 spin_lock(&nr_freq_lock);
9270 if (atomic_inc_return(&nr_freq_events) == 1)
9271 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9272 spin_unlock(&nr_freq_lock);
9273#endif
9274}
9275
9276static void account_freq_event(void)
9277{
9278 if (tick_nohz_full_enabled())
9279 account_freq_event_nohz();
9280 else
9281 atomic_inc(&nr_freq_events);
9282}
9283
9284
766d6c07
FW
9285static void account_event(struct perf_event *event)
9286{
25432ae9
PZ
9287 bool inc = false;
9288
4beb31f3
FW
9289 if (event->parent)
9290 return;
9291
766d6c07 9292 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9293 inc = true;
766d6c07
FW
9294 if (event->attr.mmap || event->attr.mmap_data)
9295 atomic_inc(&nr_mmap_events);
9296 if (event->attr.comm)
9297 atomic_inc(&nr_comm_events);
e4222673
HB
9298 if (event->attr.namespaces)
9299 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9300 if (event->attr.task)
9301 atomic_inc(&nr_task_events);
555e0c1e
FW
9302 if (event->attr.freq)
9303 account_freq_event();
45ac1403
AH
9304 if (event->attr.context_switch) {
9305 atomic_inc(&nr_switch_events);
25432ae9 9306 inc = true;
45ac1403 9307 }
4beb31f3 9308 if (has_branch_stack(event))
25432ae9 9309 inc = true;
4beb31f3 9310 if (is_cgroup_event(event))
25432ae9
PZ
9311 inc = true;
9312
9107c89e 9313 if (inc) {
5bce9db1
AS
9314 /*
9315 * We need the mutex here because static_branch_enable()
9316 * must complete *before* the perf_sched_count increment
9317 * becomes visible.
9318 */
9107c89e
PZ
9319 if (atomic_inc_not_zero(&perf_sched_count))
9320 goto enabled;
9321
9322 mutex_lock(&perf_sched_mutex);
9323 if (!atomic_read(&perf_sched_count)) {
9324 static_branch_enable(&perf_sched_events);
9325 /*
9326 * Guarantee that all CPUs observe they key change and
9327 * call the perf scheduling hooks before proceeding to
9328 * install events that need them.
9329 */
9330 synchronize_sched();
9331 }
9332 /*
9333 * Now that we have waited for the sync_sched(), allow further
9334 * increments to by-pass the mutex.
9335 */
9336 atomic_inc(&perf_sched_count);
9337 mutex_unlock(&perf_sched_mutex);
9338 }
9339enabled:
4beb31f3
FW
9340
9341 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9342
9343 account_pmu_sb_event(event);
766d6c07
FW
9344}
9345
0793a61d 9346/*
cdd6c482 9347 * Allocate and initialize a event structure
0793a61d 9348 */
cdd6c482 9349static struct perf_event *
c3f00c70 9350perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9351 struct task_struct *task,
9352 struct perf_event *group_leader,
9353 struct perf_event *parent_event,
4dc0da86 9354 perf_overflow_handler_t overflow_handler,
79dff51e 9355 void *context, int cgroup_fd)
0793a61d 9356{
51b0fe39 9357 struct pmu *pmu;
cdd6c482
IM
9358 struct perf_event *event;
9359 struct hw_perf_event *hwc;
90983b16 9360 long err = -EINVAL;
0793a61d 9361
66832eb4
ON
9362 if ((unsigned)cpu >= nr_cpu_ids) {
9363 if (!task || cpu != -1)
9364 return ERR_PTR(-EINVAL);
9365 }
9366
c3f00c70 9367 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9368 if (!event)
d5d2bc0d 9369 return ERR_PTR(-ENOMEM);
0793a61d 9370
04289bb9 9371 /*
cdd6c482 9372 * Single events are their own group leaders, with an
04289bb9
IM
9373 * empty sibling list:
9374 */
9375 if (!group_leader)
cdd6c482 9376 group_leader = event;
04289bb9 9377
cdd6c482
IM
9378 mutex_init(&event->child_mutex);
9379 INIT_LIST_HEAD(&event->child_list);
fccc714b 9380
cdd6c482
IM
9381 INIT_LIST_HEAD(&event->group_entry);
9382 INIT_LIST_HEAD(&event->event_entry);
9383 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9384 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9385 INIT_LIST_HEAD(&event->active_entry);
375637bc 9386 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9387 INIT_HLIST_NODE(&event->hlist_entry);
9388
10c6db11 9389
cdd6c482 9390 init_waitqueue_head(&event->waitq);
e360adbe 9391 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9392
cdd6c482 9393 mutex_init(&event->mmap_mutex);
375637bc 9394 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9395
a6fa941d 9396 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9397 event->cpu = cpu;
9398 event->attr = *attr;
9399 event->group_leader = group_leader;
9400 event->pmu = NULL;
cdd6c482 9401 event->oncpu = -1;
a96bbc16 9402
cdd6c482 9403 event->parent = parent_event;
b84fbc9f 9404
17cf22c3 9405 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9406 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9407
cdd6c482 9408 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9409
d580ff86
PZ
9410 if (task) {
9411 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9412 /*
50f16a8b
PZ
9413 * XXX pmu::event_init needs to know what task to account to
9414 * and we cannot use the ctx information because we need the
9415 * pmu before we get a ctx.
d580ff86 9416 */
50f16a8b 9417 event->hw.target = task;
d580ff86
PZ
9418 }
9419
34f43927
PZ
9420 event->clock = &local_clock;
9421 if (parent_event)
9422 event->clock = parent_event->clock;
9423
4dc0da86 9424 if (!overflow_handler && parent_event) {
b326e956 9425 overflow_handler = parent_event->overflow_handler;
4dc0da86 9426 context = parent_event->overflow_handler_context;
f1e4ba5b 9427#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9428 if (overflow_handler == bpf_overflow_handler) {
9429 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9430
9431 if (IS_ERR(prog)) {
9432 err = PTR_ERR(prog);
9433 goto err_ns;
9434 }
9435 event->prog = prog;
9436 event->orig_overflow_handler =
9437 parent_event->orig_overflow_handler;
9438 }
9439#endif
4dc0da86 9440 }
66832eb4 9441
1879445d
WN
9442 if (overflow_handler) {
9443 event->overflow_handler = overflow_handler;
9444 event->overflow_handler_context = context;
9ecda41a
WN
9445 } else if (is_write_backward(event)){
9446 event->overflow_handler = perf_event_output_backward;
9447 event->overflow_handler_context = NULL;
1879445d 9448 } else {
9ecda41a 9449 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9450 event->overflow_handler_context = NULL;
9451 }
97eaf530 9452
0231bb53 9453 perf_event__state_init(event);
a86ed508 9454
4aeb0b42 9455 pmu = NULL;
b8e83514 9456
cdd6c482 9457 hwc = &event->hw;
bd2b5b12 9458 hwc->sample_period = attr->sample_period;
0d48696f 9459 if (attr->freq && attr->sample_freq)
bd2b5b12 9460 hwc->sample_period = 1;
eced1dfc 9461 hwc->last_period = hwc->sample_period;
bd2b5b12 9462
e7850595 9463 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9464
2023b359 9465 /*
ba5213ae
PZ
9466 * We currently do not support PERF_SAMPLE_READ on inherited events.
9467 * See perf_output_read().
2023b359 9468 */
ba5213ae 9469 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 9470 goto err_ns;
a46a2300
YZ
9471
9472 if (!has_branch_stack(event))
9473 event->attr.branch_sample_type = 0;
2023b359 9474
79dff51e
MF
9475 if (cgroup_fd != -1) {
9476 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9477 if (err)
9478 goto err_ns;
9479 }
9480
b0a873eb 9481 pmu = perf_init_event(event);
85c617ab 9482 if (IS_ERR(pmu)) {
4aeb0b42 9483 err = PTR_ERR(pmu);
90983b16 9484 goto err_ns;
621a01ea 9485 }
d5d2bc0d 9486
bed5b25a
AS
9487 err = exclusive_event_init(event);
9488 if (err)
9489 goto err_pmu;
9490
375637bc
AS
9491 if (has_addr_filter(event)) {
9492 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9493 sizeof(unsigned long),
9494 GFP_KERNEL);
36cc2b92
DC
9495 if (!event->addr_filters_offs) {
9496 err = -ENOMEM;
375637bc 9497 goto err_per_task;
36cc2b92 9498 }
375637bc
AS
9499
9500 /* force hw sync on the address filters */
9501 event->addr_filters_gen = 1;
9502 }
9503
cdd6c482 9504 if (!event->parent) {
927c7a9e 9505 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9506 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9507 if (err)
375637bc 9508 goto err_addr_filters;
d010b332 9509 }
f344011c 9510 }
9ee318a7 9511
927a5570
AS
9512 /* symmetric to unaccount_event() in _free_event() */
9513 account_event(event);
9514
cdd6c482 9515 return event;
90983b16 9516
375637bc
AS
9517err_addr_filters:
9518 kfree(event->addr_filters_offs);
9519
bed5b25a
AS
9520err_per_task:
9521 exclusive_event_destroy(event);
9522
90983b16
FW
9523err_pmu:
9524 if (event->destroy)
9525 event->destroy(event);
c464c76e 9526 module_put(pmu->module);
90983b16 9527err_ns:
79dff51e
MF
9528 if (is_cgroup_event(event))
9529 perf_detach_cgroup(event);
90983b16
FW
9530 if (event->ns)
9531 put_pid_ns(event->ns);
9532 kfree(event);
9533
9534 return ERR_PTR(err);
0793a61d
TG
9535}
9536
cdd6c482
IM
9537static int perf_copy_attr(struct perf_event_attr __user *uattr,
9538 struct perf_event_attr *attr)
974802ea 9539{
974802ea 9540 u32 size;
cdf8073d 9541 int ret;
974802ea
PZ
9542
9543 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9544 return -EFAULT;
9545
9546 /*
9547 * zero the full structure, so that a short copy will be nice.
9548 */
9549 memset(attr, 0, sizeof(*attr));
9550
9551 ret = get_user(size, &uattr->size);
9552 if (ret)
9553 return ret;
9554
9555 if (size > PAGE_SIZE) /* silly large */
9556 goto err_size;
9557
9558 if (!size) /* abi compat */
9559 size = PERF_ATTR_SIZE_VER0;
9560
9561 if (size < PERF_ATTR_SIZE_VER0)
9562 goto err_size;
9563
9564 /*
9565 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9566 * ensure all the unknown bits are 0 - i.e. new
9567 * user-space does not rely on any kernel feature
9568 * extensions we dont know about yet.
974802ea
PZ
9569 */
9570 if (size > sizeof(*attr)) {
cdf8073d
IS
9571 unsigned char __user *addr;
9572 unsigned char __user *end;
9573 unsigned char val;
974802ea 9574
cdf8073d
IS
9575 addr = (void __user *)uattr + sizeof(*attr);
9576 end = (void __user *)uattr + size;
974802ea 9577
cdf8073d 9578 for (; addr < end; addr++) {
974802ea
PZ
9579 ret = get_user(val, addr);
9580 if (ret)
9581 return ret;
9582 if (val)
9583 goto err_size;
9584 }
b3e62e35 9585 size = sizeof(*attr);
974802ea
PZ
9586 }
9587
9588 ret = copy_from_user(attr, uattr, size);
9589 if (ret)
9590 return -EFAULT;
9591
f12f42ac
MX
9592 attr->size = size;
9593
cd757645 9594 if (attr->__reserved_1)
974802ea
PZ
9595 return -EINVAL;
9596
9597 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9598 return -EINVAL;
9599
9600 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9601 return -EINVAL;
9602
bce38cd5
SE
9603 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9604 u64 mask = attr->branch_sample_type;
9605
9606 /* only using defined bits */
9607 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9608 return -EINVAL;
9609
9610 /* at least one branch bit must be set */
9611 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9612 return -EINVAL;
9613
bce38cd5
SE
9614 /* propagate priv level, when not set for branch */
9615 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9616
9617 /* exclude_kernel checked on syscall entry */
9618 if (!attr->exclude_kernel)
9619 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9620
9621 if (!attr->exclude_user)
9622 mask |= PERF_SAMPLE_BRANCH_USER;
9623
9624 if (!attr->exclude_hv)
9625 mask |= PERF_SAMPLE_BRANCH_HV;
9626 /*
9627 * adjust user setting (for HW filter setup)
9628 */
9629 attr->branch_sample_type = mask;
9630 }
e712209a
SE
9631 /* privileged levels capture (kernel, hv): check permissions */
9632 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9633 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9634 return -EACCES;
bce38cd5 9635 }
4018994f 9636
c5ebcedb 9637 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9638 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9639 if (ret)
9640 return ret;
9641 }
9642
9643 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9644 if (!arch_perf_have_user_stack_dump())
9645 return -ENOSYS;
9646
9647 /*
9648 * We have __u32 type for the size, but so far
9649 * we can only use __u16 as maximum due to the
9650 * __u16 sample size limit.
9651 */
9652 if (attr->sample_stack_user >= USHRT_MAX)
9653 ret = -EINVAL;
9654 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9655 ret = -EINVAL;
9656 }
4018994f 9657
60e2364e
SE
9658 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9659 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9660out:
9661 return ret;
9662
9663err_size:
9664 put_user(sizeof(*attr), &uattr->size);
9665 ret = -E2BIG;
9666 goto out;
9667}
9668
ac9721f3
PZ
9669static int
9670perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9671{
b69cf536 9672 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9673 int ret = -EINVAL;
9674
ac9721f3 9675 if (!output_event)
a4be7c27
PZ
9676 goto set;
9677
ac9721f3
PZ
9678 /* don't allow circular references */
9679 if (event == output_event)
a4be7c27
PZ
9680 goto out;
9681
0f139300
PZ
9682 /*
9683 * Don't allow cross-cpu buffers
9684 */
9685 if (output_event->cpu != event->cpu)
9686 goto out;
9687
9688 /*
76369139 9689 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9690 */
9691 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9692 goto out;
9693
34f43927
PZ
9694 /*
9695 * Mixing clocks in the same buffer is trouble you don't need.
9696 */
9697 if (output_event->clock != event->clock)
9698 goto out;
9699
9ecda41a
WN
9700 /*
9701 * Either writing ring buffer from beginning or from end.
9702 * Mixing is not allowed.
9703 */
9704 if (is_write_backward(output_event) != is_write_backward(event))
9705 goto out;
9706
45bfb2e5
PZ
9707 /*
9708 * If both events generate aux data, they must be on the same PMU
9709 */
9710 if (has_aux(event) && has_aux(output_event) &&
9711 event->pmu != output_event->pmu)
9712 goto out;
9713
a4be7c27 9714set:
cdd6c482 9715 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9716 /* Can't redirect output if we've got an active mmap() */
9717 if (atomic_read(&event->mmap_count))
9718 goto unlock;
a4be7c27 9719
ac9721f3 9720 if (output_event) {
76369139
FW
9721 /* get the rb we want to redirect to */
9722 rb = ring_buffer_get(output_event);
9723 if (!rb)
ac9721f3 9724 goto unlock;
a4be7c27
PZ
9725 }
9726
b69cf536 9727 ring_buffer_attach(event, rb);
9bb5d40c 9728
a4be7c27 9729 ret = 0;
ac9721f3
PZ
9730unlock:
9731 mutex_unlock(&event->mmap_mutex);
9732
a4be7c27 9733out:
a4be7c27
PZ
9734 return ret;
9735}
9736
f63a8daa
PZ
9737static void mutex_lock_double(struct mutex *a, struct mutex *b)
9738{
9739 if (b < a)
9740 swap(a, b);
9741
9742 mutex_lock(a);
9743 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9744}
9745
34f43927
PZ
9746static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9747{
9748 bool nmi_safe = false;
9749
9750 switch (clk_id) {
9751 case CLOCK_MONOTONIC:
9752 event->clock = &ktime_get_mono_fast_ns;
9753 nmi_safe = true;
9754 break;
9755
9756 case CLOCK_MONOTONIC_RAW:
9757 event->clock = &ktime_get_raw_fast_ns;
9758 nmi_safe = true;
9759 break;
9760
9761 case CLOCK_REALTIME:
9762 event->clock = &ktime_get_real_ns;
9763 break;
9764
9765 case CLOCK_BOOTTIME:
9766 event->clock = &ktime_get_boot_ns;
9767 break;
9768
9769 case CLOCK_TAI:
9770 event->clock = &ktime_get_tai_ns;
9771 break;
9772
9773 default:
9774 return -EINVAL;
9775 }
9776
9777 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9778 return -EINVAL;
9779
9780 return 0;
9781}
9782
321027c1
PZ
9783/*
9784 * Variation on perf_event_ctx_lock_nested(), except we take two context
9785 * mutexes.
9786 */
9787static struct perf_event_context *
9788__perf_event_ctx_lock_double(struct perf_event *group_leader,
9789 struct perf_event_context *ctx)
9790{
9791 struct perf_event_context *gctx;
9792
9793again:
9794 rcu_read_lock();
9795 gctx = READ_ONCE(group_leader->ctx);
9796 if (!atomic_inc_not_zero(&gctx->refcount)) {
9797 rcu_read_unlock();
9798 goto again;
9799 }
9800 rcu_read_unlock();
9801
9802 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9803
9804 if (group_leader->ctx != gctx) {
9805 mutex_unlock(&ctx->mutex);
9806 mutex_unlock(&gctx->mutex);
9807 put_ctx(gctx);
9808 goto again;
9809 }
9810
9811 return gctx;
9812}
9813
0793a61d 9814/**
cdd6c482 9815 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9816 *
cdd6c482 9817 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9818 * @pid: target pid
9f66a381 9819 * @cpu: target cpu
cdd6c482 9820 * @group_fd: group leader event fd
0793a61d 9821 */
cdd6c482
IM
9822SYSCALL_DEFINE5(perf_event_open,
9823 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9824 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9825{
b04243ef
PZ
9826 struct perf_event *group_leader = NULL, *output_event = NULL;
9827 struct perf_event *event, *sibling;
cdd6c482 9828 struct perf_event_attr attr;
f63a8daa 9829 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9830 struct file *event_file = NULL;
2903ff01 9831 struct fd group = {NULL, 0};
38a81da2 9832 struct task_struct *task = NULL;
89a1e187 9833 struct pmu *pmu;
ea635c64 9834 int event_fd;
b04243ef 9835 int move_group = 0;
dc86cabe 9836 int err;
a21b0b35 9837 int f_flags = O_RDWR;
79dff51e 9838 int cgroup_fd = -1;
0793a61d 9839
2743a5b0 9840 /* for future expandability... */
e5d1367f 9841 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9842 return -EINVAL;
9843
dc86cabe
IM
9844 err = perf_copy_attr(attr_uptr, &attr);
9845 if (err)
9846 return err;
eab656ae 9847
0764771d
PZ
9848 if (!attr.exclude_kernel) {
9849 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9850 return -EACCES;
9851 }
9852
e4222673
HB
9853 if (attr.namespaces) {
9854 if (!capable(CAP_SYS_ADMIN))
9855 return -EACCES;
9856 }
9857
df58ab24 9858 if (attr.freq) {
cdd6c482 9859 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9860 return -EINVAL;
0819b2e3
PZ
9861 } else {
9862 if (attr.sample_period & (1ULL << 63))
9863 return -EINVAL;
df58ab24
PZ
9864 }
9865
fc7ce9c7
KL
9866 /* Only privileged users can get physical addresses */
9867 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9868 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9869 return -EACCES;
9870
97c79a38
ACM
9871 if (!attr.sample_max_stack)
9872 attr.sample_max_stack = sysctl_perf_event_max_stack;
9873
e5d1367f
SE
9874 /*
9875 * In cgroup mode, the pid argument is used to pass the fd
9876 * opened to the cgroup directory in cgroupfs. The cpu argument
9877 * designates the cpu on which to monitor threads from that
9878 * cgroup.
9879 */
9880 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9881 return -EINVAL;
9882
a21b0b35
YD
9883 if (flags & PERF_FLAG_FD_CLOEXEC)
9884 f_flags |= O_CLOEXEC;
9885
9886 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9887 if (event_fd < 0)
9888 return event_fd;
9889
ac9721f3 9890 if (group_fd != -1) {
2903ff01
AV
9891 err = perf_fget_light(group_fd, &group);
9892 if (err)
d14b12d7 9893 goto err_fd;
2903ff01 9894 group_leader = group.file->private_data;
ac9721f3
PZ
9895 if (flags & PERF_FLAG_FD_OUTPUT)
9896 output_event = group_leader;
9897 if (flags & PERF_FLAG_FD_NO_GROUP)
9898 group_leader = NULL;
9899 }
9900
e5d1367f 9901 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9902 task = find_lively_task_by_vpid(pid);
9903 if (IS_ERR(task)) {
9904 err = PTR_ERR(task);
9905 goto err_group_fd;
9906 }
9907 }
9908
1f4ee503
PZ
9909 if (task && group_leader &&
9910 group_leader->attr.inherit != attr.inherit) {
9911 err = -EINVAL;
9912 goto err_task;
9913 }
9914
79c9ce57
PZ
9915 if (task) {
9916 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9917 if (err)
e5aeee51 9918 goto err_task;
79c9ce57
PZ
9919
9920 /*
9921 * Reuse ptrace permission checks for now.
9922 *
9923 * We must hold cred_guard_mutex across this and any potential
9924 * perf_install_in_context() call for this new event to
9925 * serialize against exec() altering our credentials (and the
9926 * perf_event_exit_task() that could imply).
9927 */
9928 err = -EACCES;
9929 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9930 goto err_cred;
9931 }
9932
79dff51e
MF
9933 if (flags & PERF_FLAG_PID_CGROUP)
9934 cgroup_fd = pid;
9935
4dc0da86 9936 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9937 NULL, NULL, cgroup_fd);
d14b12d7
SE
9938 if (IS_ERR(event)) {
9939 err = PTR_ERR(event);
79c9ce57 9940 goto err_cred;
d14b12d7
SE
9941 }
9942
53b25335
VW
9943 if (is_sampling_event(event)) {
9944 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 9945 err = -EOPNOTSUPP;
53b25335
VW
9946 goto err_alloc;
9947 }
9948 }
9949
89a1e187
PZ
9950 /*
9951 * Special case software events and allow them to be part of
9952 * any hardware group.
9953 */
9954 pmu = event->pmu;
b04243ef 9955
34f43927
PZ
9956 if (attr.use_clockid) {
9957 err = perf_event_set_clock(event, attr.clockid);
9958 if (err)
9959 goto err_alloc;
9960 }
9961
4ff6a8de
DCC
9962 if (pmu->task_ctx_nr == perf_sw_context)
9963 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9964
b04243ef
PZ
9965 if (group_leader &&
9966 (is_software_event(event) != is_software_event(group_leader))) {
9967 if (is_software_event(event)) {
9968 /*
9969 * If event and group_leader are not both a software
9970 * event, and event is, then group leader is not.
9971 *
9972 * Allow the addition of software events to !software
9973 * groups, this is safe because software events never
9974 * fail to schedule.
9975 */
9976 pmu = group_leader->pmu;
9977 } else if (is_software_event(group_leader) &&
4ff6a8de 9978 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
9979 /*
9980 * In case the group is a pure software group, and we
9981 * try to add a hardware event, move the whole group to
9982 * the hardware context.
9983 */
9984 move_group = 1;
9985 }
9986 }
89a1e187
PZ
9987
9988 /*
9989 * Get the target context (task or percpu):
9990 */
4af57ef2 9991 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
9992 if (IS_ERR(ctx)) {
9993 err = PTR_ERR(ctx);
c6be5a5c 9994 goto err_alloc;
89a1e187
PZ
9995 }
9996
bed5b25a
AS
9997 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9998 err = -EBUSY;
9999 goto err_context;
10000 }
10001
ccff286d 10002 /*
cdd6c482 10003 * Look up the group leader (we will attach this event to it):
04289bb9 10004 */
ac9721f3 10005 if (group_leader) {
dc86cabe 10006 err = -EINVAL;
04289bb9 10007
04289bb9 10008 /*
ccff286d
IM
10009 * Do not allow a recursive hierarchy (this new sibling
10010 * becoming part of another group-sibling):
10011 */
10012 if (group_leader->group_leader != group_leader)
c3f00c70 10013 goto err_context;
34f43927
PZ
10014
10015 /* All events in a group should have the same clock */
10016 if (group_leader->clock != event->clock)
10017 goto err_context;
10018
ccff286d 10019 /*
64aee2a9
MR
10020 * Make sure we're both events for the same CPU;
10021 * grouping events for different CPUs is broken; since
10022 * you can never concurrently schedule them anyhow.
04289bb9 10023 */
64aee2a9
MR
10024 if (group_leader->cpu != event->cpu)
10025 goto err_context;
c3c87e77 10026
64aee2a9
MR
10027 /*
10028 * Make sure we're both on the same task, or both
10029 * per-CPU events.
10030 */
10031 if (group_leader->ctx->task != ctx->task)
10032 goto err_context;
10033
10034 /*
10035 * Do not allow to attach to a group in a different task
10036 * or CPU context. If we're moving SW events, we'll fix
10037 * this up later, so allow that.
10038 */
10039 if (!move_group && group_leader->ctx != ctx)
10040 goto err_context;
b04243ef 10041
3b6f9e5c
PM
10042 /*
10043 * Only a group leader can be exclusive or pinned
10044 */
0d48696f 10045 if (attr.exclusive || attr.pinned)
c3f00c70 10046 goto err_context;
ac9721f3
PZ
10047 }
10048
10049 if (output_event) {
10050 err = perf_event_set_output(event, output_event);
10051 if (err)
c3f00c70 10052 goto err_context;
ac9721f3 10053 }
0793a61d 10054
a21b0b35
YD
10055 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10056 f_flags);
ea635c64
AV
10057 if (IS_ERR(event_file)) {
10058 err = PTR_ERR(event_file);
201c2f85 10059 event_file = NULL;
c3f00c70 10060 goto err_context;
ea635c64 10061 }
9b51f66d 10062
b04243ef 10063 if (move_group) {
321027c1
PZ
10064 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10065
84c4e620
PZ
10066 if (gctx->task == TASK_TOMBSTONE) {
10067 err = -ESRCH;
10068 goto err_locked;
10069 }
321027c1
PZ
10070
10071 /*
10072 * Check if we raced against another sys_perf_event_open() call
10073 * moving the software group underneath us.
10074 */
10075 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10076 /*
10077 * If someone moved the group out from under us, check
10078 * if this new event wound up on the same ctx, if so
10079 * its the regular !move_group case, otherwise fail.
10080 */
10081 if (gctx != ctx) {
10082 err = -EINVAL;
10083 goto err_locked;
10084 } else {
10085 perf_event_ctx_unlock(group_leader, gctx);
10086 move_group = 0;
10087 }
10088 }
f55fc2a5
PZ
10089 } else {
10090 mutex_lock(&ctx->mutex);
10091 }
10092
84c4e620
PZ
10093 if (ctx->task == TASK_TOMBSTONE) {
10094 err = -ESRCH;
10095 goto err_locked;
10096 }
10097
a723968c
PZ
10098 if (!perf_event_validate_size(event)) {
10099 err = -E2BIG;
10100 goto err_locked;
10101 }
10102
a63fbed7
TG
10103 if (!task) {
10104 /*
10105 * Check if the @cpu we're creating an event for is online.
10106 *
10107 * We use the perf_cpu_context::ctx::mutex to serialize against
10108 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10109 */
10110 struct perf_cpu_context *cpuctx =
10111 container_of(ctx, struct perf_cpu_context, ctx);
10112
10113 if (!cpuctx->online) {
10114 err = -ENODEV;
10115 goto err_locked;
10116 }
10117 }
10118
10119
f55fc2a5
PZ
10120 /*
10121 * Must be under the same ctx::mutex as perf_install_in_context(),
10122 * because we need to serialize with concurrent event creation.
10123 */
10124 if (!exclusive_event_installable(event, ctx)) {
10125 /* exclusive and group stuff are assumed mutually exclusive */
10126 WARN_ON_ONCE(move_group);
f63a8daa 10127
f55fc2a5
PZ
10128 err = -EBUSY;
10129 goto err_locked;
10130 }
f63a8daa 10131
f55fc2a5
PZ
10132 WARN_ON_ONCE(ctx->parent_ctx);
10133
79c9ce57
PZ
10134 /*
10135 * This is the point on no return; we cannot fail hereafter. This is
10136 * where we start modifying current state.
10137 */
10138
f55fc2a5 10139 if (move_group) {
f63a8daa
PZ
10140 /*
10141 * See perf_event_ctx_lock() for comments on the details
10142 * of swizzling perf_event::ctx.
10143 */
45a0e07a 10144 perf_remove_from_context(group_leader, 0);
279b5165 10145 put_ctx(gctx);
0231bb53 10146
b04243ef
PZ
10147 list_for_each_entry(sibling, &group_leader->sibling_list,
10148 group_entry) {
45a0e07a 10149 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10150 put_ctx(gctx);
10151 }
b04243ef 10152
f63a8daa
PZ
10153 /*
10154 * Wait for everybody to stop referencing the events through
10155 * the old lists, before installing it on new lists.
10156 */
0cda4c02 10157 synchronize_rcu();
f63a8daa 10158
8f95b435
PZI
10159 /*
10160 * Install the group siblings before the group leader.
10161 *
10162 * Because a group leader will try and install the entire group
10163 * (through the sibling list, which is still in-tact), we can
10164 * end up with siblings installed in the wrong context.
10165 *
10166 * By installing siblings first we NO-OP because they're not
10167 * reachable through the group lists.
10168 */
b04243ef
PZ
10169 list_for_each_entry(sibling, &group_leader->sibling_list,
10170 group_entry) {
8f95b435 10171 perf_event__state_init(sibling);
9fc81d87 10172 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10173 get_ctx(ctx);
10174 }
8f95b435
PZI
10175
10176 /*
10177 * Removing from the context ends up with disabled
10178 * event. What we want here is event in the initial
10179 * startup state, ready to be add into new context.
10180 */
10181 perf_event__state_init(group_leader);
10182 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10183 get_ctx(ctx);
bed5b25a
AS
10184 }
10185
f73e22ab
PZ
10186 /*
10187 * Precalculate sample_data sizes; do while holding ctx::mutex such
10188 * that we're serialized against further additions and before
10189 * perf_install_in_context() which is the point the event is active and
10190 * can use these values.
10191 */
10192 perf_event__header_size(event);
10193 perf_event__id_header_size(event);
10194
78cd2c74
PZ
10195 event->owner = current;
10196
e2d37cd2 10197 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10198 perf_unpin_context(ctx);
f63a8daa 10199
f55fc2a5 10200 if (move_group)
321027c1 10201 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10202 mutex_unlock(&ctx->mutex);
9b51f66d 10203
79c9ce57
PZ
10204 if (task) {
10205 mutex_unlock(&task->signal->cred_guard_mutex);
10206 put_task_struct(task);
10207 }
10208
cdd6c482
IM
10209 mutex_lock(&current->perf_event_mutex);
10210 list_add_tail(&event->owner_entry, &current->perf_event_list);
10211 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10212
8a49542c
PZ
10213 /*
10214 * Drop the reference on the group_event after placing the
10215 * new event on the sibling_list. This ensures destruction
10216 * of the group leader will find the pointer to itself in
10217 * perf_group_detach().
10218 */
2903ff01 10219 fdput(group);
ea635c64
AV
10220 fd_install(event_fd, event_file);
10221 return event_fd;
0793a61d 10222
f55fc2a5
PZ
10223err_locked:
10224 if (move_group)
321027c1 10225 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10226 mutex_unlock(&ctx->mutex);
10227/* err_file: */
10228 fput(event_file);
c3f00c70 10229err_context:
fe4b04fa 10230 perf_unpin_context(ctx);
ea635c64 10231 put_ctx(ctx);
c6be5a5c 10232err_alloc:
13005627
PZ
10233 /*
10234 * If event_file is set, the fput() above will have called ->release()
10235 * and that will take care of freeing the event.
10236 */
10237 if (!event_file)
10238 free_event(event);
79c9ce57
PZ
10239err_cred:
10240 if (task)
10241 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10242err_task:
e7d0bc04
PZ
10243 if (task)
10244 put_task_struct(task);
89a1e187 10245err_group_fd:
2903ff01 10246 fdput(group);
ea635c64
AV
10247err_fd:
10248 put_unused_fd(event_fd);
dc86cabe 10249 return err;
0793a61d
TG
10250}
10251
fb0459d7
AV
10252/**
10253 * perf_event_create_kernel_counter
10254 *
10255 * @attr: attributes of the counter to create
10256 * @cpu: cpu in which the counter is bound
38a81da2 10257 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10258 */
10259struct perf_event *
10260perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10261 struct task_struct *task,
4dc0da86
AK
10262 perf_overflow_handler_t overflow_handler,
10263 void *context)
fb0459d7 10264{
fb0459d7 10265 struct perf_event_context *ctx;
c3f00c70 10266 struct perf_event *event;
fb0459d7 10267 int err;
d859e29f 10268
fb0459d7
AV
10269 /*
10270 * Get the target context (task or percpu):
10271 */
d859e29f 10272
4dc0da86 10273 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10274 overflow_handler, context, -1);
c3f00c70
PZ
10275 if (IS_ERR(event)) {
10276 err = PTR_ERR(event);
10277 goto err;
10278 }
d859e29f 10279
f8697762 10280 /* Mark owner so we could distinguish it from user events. */
63b6da39 10281 event->owner = TASK_TOMBSTONE;
f8697762 10282
4af57ef2 10283 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10284 if (IS_ERR(ctx)) {
10285 err = PTR_ERR(ctx);
c3f00c70 10286 goto err_free;
d859e29f 10287 }
fb0459d7 10288
fb0459d7
AV
10289 WARN_ON_ONCE(ctx->parent_ctx);
10290 mutex_lock(&ctx->mutex);
84c4e620
PZ
10291 if (ctx->task == TASK_TOMBSTONE) {
10292 err = -ESRCH;
10293 goto err_unlock;
10294 }
10295
a63fbed7
TG
10296 if (!task) {
10297 /*
10298 * Check if the @cpu we're creating an event for is online.
10299 *
10300 * We use the perf_cpu_context::ctx::mutex to serialize against
10301 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10302 */
10303 struct perf_cpu_context *cpuctx =
10304 container_of(ctx, struct perf_cpu_context, ctx);
10305 if (!cpuctx->online) {
10306 err = -ENODEV;
10307 goto err_unlock;
10308 }
10309 }
10310
bed5b25a 10311 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10312 err = -EBUSY;
84c4e620 10313 goto err_unlock;
bed5b25a
AS
10314 }
10315
fb0459d7 10316 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10317 perf_unpin_context(ctx);
fb0459d7
AV
10318 mutex_unlock(&ctx->mutex);
10319
fb0459d7
AV
10320 return event;
10321
84c4e620
PZ
10322err_unlock:
10323 mutex_unlock(&ctx->mutex);
10324 perf_unpin_context(ctx);
10325 put_ctx(ctx);
c3f00c70
PZ
10326err_free:
10327 free_event(event);
10328err:
c6567f64 10329 return ERR_PTR(err);
9b51f66d 10330}
fb0459d7 10331EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10332
0cda4c02
YZ
10333void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10334{
10335 struct perf_event_context *src_ctx;
10336 struct perf_event_context *dst_ctx;
10337 struct perf_event *event, *tmp;
10338 LIST_HEAD(events);
10339
10340 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10341 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10342
f63a8daa
PZ
10343 /*
10344 * See perf_event_ctx_lock() for comments on the details
10345 * of swizzling perf_event::ctx.
10346 */
10347 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10348 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10349 event_entry) {
45a0e07a 10350 perf_remove_from_context(event, 0);
9a545de0 10351 unaccount_event_cpu(event, src_cpu);
0cda4c02 10352 put_ctx(src_ctx);
9886167d 10353 list_add(&event->migrate_entry, &events);
0cda4c02 10354 }
0cda4c02 10355
8f95b435
PZI
10356 /*
10357 * Wait for the events to quiesce before re-instating them.
10358 */
0cda4c02
YZ
10359 synchronize_rcu();
10360
8f95b435
PZI
10361 /*
10362 * Re-instate events in 2 passes.
10363 *
10364 * Skip over group leaders and only install siblings on this first
10365 * pass, siblings will not get enabled without a leader, however a
10366 * leader will enable its siblings, even if those are still on the old
10367 * context.
10368 */
10369 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10370 if (event->group_leader == event)
10371 continue;
10372
10373 list_del(&event->migrate_entry);
10374 if (event->state >= PERF_EVENT_STATE_OFF)
10375 event->state = PERF_EVENT_STATE_INACTIVE;
10376 account_event_cpu(event, dst_cpu);
10377 perf_install_in_context(dst_ctx, event, dst_cpu);
10378 get_ctx(dst_ctx);
10379 }
10380
10381 /*
10382 * Once all the siblings are setup properly, install the group leaders
10383 * to make it go.
10384 */
9886167d
PZ
10385 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10386 list_del(&event->migrate_entry);
0cda4c02
YZ
10387 if (event->state >= PERF_EVENT_STATE_OFF)
10388 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10389 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10390 perf_install_in_context(dst_ctx, event, dst_cpu);
10391 get_ctx(dst_ctx);
10392 }
10393 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10394 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10395}
10396EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10397
cdd6c482 10398static void sync_child_event(struct perf_event *child_event,
38b200d6 10399 struct task_struct *child)
d859e29f 10400{
cdd6c482 10401 struct perf_event *parent_event = child_event->parent;
8bc20959 10402 u64 child_val;
d859e29f 10403
cdd6c482
IM
10404 if (child_event->attr.inherit_stat)
10405 perf_event_read_event(child_event, child);
38b200d6 10406
b5e58793 10407 child_val = perf_event_count(child_event);
d859e29f
PM
10408
10409 /*
10410 * Add back the child's count to the parent's count:
10411 */
a6e6dea6 10412 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10413 atomic64_add(child_event->total_time_enabled,
10414 &parent_event->child_total_time_enabled);
10415 atomic64_add(child_event->total_time_running,
10416 &parent_event->child_total_time_running);
d859e29f
PM
10417}
10418
9b51f66d 10419static void
8ba289b8
PZ
10420perf_event_exit_event(struct perf_event *child_event,
10421 struct perf_event_context *child_ctx,
10422 struct task_struct *child)
9b51f66d 10423{
8ba289b8
PZ
10424 struct perf_event *parent_event = child_event->parent;
10425
1903d50c
PZ
10426 /*
10427 * Do not destroy the 'original' grouping; because of the context
10428 * switch optimization the original events could've ended up in a
10429 * random child task.
10430 *
10431 * If we were to destroy the original group, all group related
10432 * operations would cease to function properly after this random
10433 * child dies.
10434 *
10435 * Do destroy all inherited groups, we don't care about those
10436 * and being thorough is better.
10437 */
32132a3d
PZ
10438 raw_spin_lock_irq(&child_ctx->lock);
10439 WARN_ON_ONCE(child_ctx->is_active);
10440
8ba289b8 10441 if (parent_event)
32132a3d
PZ
10442 perf_group_detach(child_event);
10443 list_del_event(child_event, child_ctx);
0d3d73aa 10444 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 10445 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10446
9b51f66d 10447 /*
8ba289b8 10448 * Parent events are governed by their filedesc, retain them.
9b51f66d 10449 */
8ba289b8 10450 if (!parent_event) {
179033b3 10451 perf_event_wakeup(child_event);
8ba289b8 10452 return;
4bcf349a 10453 }
8ba289b8
PZ
10454 /*
10455 * Child events can be cleaned up.
10456 */
10457
10458 sync_child_event(child_event, child);
10459
10460 /*
10461 * Remove this event from the parent's list
10462 */
10463 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10464 mutex_lock(&parent_event->child_mutex);
10465 list_del_init(&child_event->child_list);
10466 mutex_unlock(&parent_event->child_mutex);
10467
10468 /*
10469 * Kick perf_poll() for is_event_hup().
10470 */
10471 perf_event_wakeup(parent_event);
10472 free_event(child_event);
10473 put_event(parent_event);
9b51f66d
IM
10474}
10475
8dc85d54 10476static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10477{
211de6eb 10478 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10479 struct perf_event *child_event, *next;
63b6da39
PZ
10480
10481 WARN_ON_ONCE(child != current);
9b51f66d 10482
6a3351b6 10483 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10484 if (!child_ctx)
9b51f66d
IM
10485 return;
10486
ad3a37de 10487 /*
6a3351b6
PZ
10488 * In order to reduce the amount of tricky in ctx tear-down, we hold
10489 * ctx::mutex over the entire thing. This serializes against almost
10490 * everything that wants to access the ctx.
10491 *
10492 * The exception is sys_perf_event_open() /
10493 * perf_event_create_kernel_count() which does find_get_context()
10494 * without ctx::mutex (it cannot because of the move_group double mutex
10495 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10496 */
6a3351b6 10497 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10498
10499 /*
6a3351b6
PZ
10500 * In a single ctx::lock section, de-schedule the events and detach the
10501 * context from the task such that we cannot ever get it scheduled back
10502 * in.
c93f7669 10503 */
6a3351b6 10504 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10505 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10506
71a851b4 10507 /*
63b6da39
PZ
10508 * Now that the context is inactive, destroy the task <-> ctx relation
10509 * and mark the context dead.
71a851b4 10510 */
63b6da39
PZ
10511 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10512 put_ctx(child_ctx); /* cannot be last */
10513 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10514 put_task_struct(current); /* cannot be last */
4a1c0f26 10515
211de6eb 10516 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10517 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10518
211de6eb
PZ
10519 if (clone_ctx)
10520 put_ctx(clone_ctx);
4a1c0f26 10521
9f498cc5 10522 /*
cdd6c482
IM
10523 * Report the task dead after unscheduling the events so that we
10524 * won't get any samples after PERF_RECORD_EXIT. We can however still
10525 * get a few PERF_RECORD_READ events.
9f498cc5 10526 */
cdd6c482 10527 perf_event_task(child, child_ctx, 0);
a63eaf34 10528
ebf905fc 10529 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10530 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10531
a63eaf34
PM
10532 mutex_unlock(&child_ctx->mutex);
10533
10534 put_ctx(child_ctx);
9b51f66d
IM
10535}
10536
8dc85d54
PZ
10537/*
10538 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10539 *
10540 * Can be called with cred_guard_mutex held when called from
10541 * install_exec_creds().
8dc85d54
PZ
10542 */
10543void perf_event_exit_task(struct task_struct *child)
10544{
8882135b 10545 struct perf_event *event, *tmp;
8dc85d54
PZ
10546 int ctxn;
10547
8882135b
PZ
10548 mutex_lock(&child->perf_event_mutex);
10549 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10550 owner_entry) {
10551 list_del_init(&event->owner_entry);
10552
10553 /*
10554 * Ensure the list deletion is visible before we clear
10555 * the owner, closes a race against perf_release() where
10556 * we need to serialize on the owner->perf_event_mutex.
10557 */
f47c02c0 10558 smp_store_release(&event->owner, NULL);
8882135b
PZ
10559 }
10560 mutex_unlock(&child->perf_event_mutex);
10561
8dc85d54
PZ
10562 for_each_task_context_nr(ctxn)
10563 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10564
10565 /*
10566 * The perf_event_exit_task_context calls perf_event_task
10567 * with child's task_ctx, which generates EXIT events for
10568 * child contexts and sets child->perf_event_ctxp[] to NULL.
10569 * At this point we need to send EXIT events to cpu contexts.
10570 */
10571 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10572}
10573
889ff015
FW
10574static void perf_free_event(struct perf_event *event,
10575 struct perf_event_context *ctx)
10576{
10577 struct perf_event *parent = event->parent;
10578
10579 if (WARN_ON_ONCE(!parent))
10580 return;
10581
10582 mutex_lock(&parent->child_mutex);
10583 list_del_init(&event->child_list);
10584 mutex_unlock(&parent->child_mutex);
10585
a6fa941d 10586 put_event(parent);
889ff015 10587
652884fe 10588 raw_spin_lock_irq(&ctx->lock);
8a49542c 10589 perf_group_detach(event);
889ff015 10590 list_del_event(event, ctx);
652884fe 10591 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10592 free_event(event);
10593}
10594
bbbee908 10595/*
652884fe 10596 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10597 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10598 *
10599 * Not all locks are strictly required, but take them anyway to be nice and
10600 * help out with the lockdep assertions.
bbbee908 10601 */
cdd6c482 10602void perf_event_free_task(struct task_struct *task)
bbbee908 10603{
8dc85d54 10604 struct perf_event_context *ctx;
cdd6c482 10605 struct perf_event *event, *tmp;
8dc85d54 10606 int ctxn;
bbbee908 10607
8dc85d54
PZ
10608 for_each_task_context_nr(ctxn) {
10609 ctx = task->perf_event_ctxp[ctxn];
10610 if (!ctx)
10611 continue;
bbbee908 10612
8dc85d54 10613 mutex_lock(&ctx->mutex);
e552a838
PZ
10614 raw_spin_lock_irq(&ctx->lock);
10615 /*
10616 * Destroy the task <-> ctx relation and mark the context dead.
10617 *
10618 * This is important because even though the task hasn't been
10619 * exposed yet the context has been (through child_list).
10620 */
10621 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10622 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10623 put_task_struct(task); /* cannot be last */
10624 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10625
15121c78 10626 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 10627 perf_free_event(event, ctx);
bbbee908 10628
8dc85d54 10629 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
10630 put_ctx(ctx);
10631 }
889ff015
FW
10632}
10633
4e231c79
PZ
10634void perf_event_delayed_put(struct task_struct *task)
10635{
10636 int ctxn;
10637
10638 for_each_task_context_nr(ctxn)
10639 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10640}
10641
e03e7ee3 10642struct file *perf_event_get(unsigned int fd)
ffe8690c 10643{
e03e7ee3 10644 struct file *file;
ffe8690c 10645
e03e7ee3
AS
10646 file = fget_raw(fd);
10647 if (!file)
10648 return ERR_PTR(-EBADF);
ffe8690c 10649
e03e7ee3
AS
10650 if (file->f_op != &perf_fops) {
10651 fput(file);
10652 return ERR_PTR(-EBADF);
10653 }
ffe8690c 10654
e03e7ee3 10655 return file;
ffe8690c
KX
10656}
10657
10658const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10659{
10660 if (!event)
10661 return ERR_PTR(-EINVAL);
10662
10663 return &event->attr;
10664}
10665
97dee4f3 10666/*
d8a8cfc7
PZ
10667 * Inherit a event from parent task to child task.
10668 *
10669 * Returns:
10670 * - valid pointer on success
10671 * - NULL for orphaned events
10672 * - IS_ERR() on error
97dee4f3
PZ
10673 */
10674static struct perf_event *
10675inherit_event(struct perf_event *parent_event,
10676 struct task_struct *parent,
10677 struct perf_event_context *parent_ctx,
10678 struct task_struct *child,
10679 struct perf_event *group_leader,
10680 struct perf_event_context *child_ctx)
10681{
8ca2bd41 10682 enum perf_event_state parent_state = parent_event->state;
97dee4f3 10683 struct perf_event *child_event;
cee010ec 10684 unsigned long flags;
97dee4f3
PZ
10685
10686 /*
10687 * Instead of creating recursive hierarchies of events,
10688 * we link inherited events back to the original parent,
10689 * which has a filp for sure, which we use as the reference
10690 * count:
10691 */
10692 if (parent_event->parent)
10693 parent_event = parent_event->parent;
10694
10695 child_event = perf_event_alloc(&parent_event->attr,
10696 parent_event->cpu,
d580ff86 10697 child,
97dee4f3 10698 group_leader, parent_event,
79dff51e 10699 NULL, NULL, -1);
97dee4f3
PZ
10700 if (IS_ERR(child_event))
10701 return child_event;
a6fa941d 10702
c6e5b732
PZ
10703 /*
10704 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10705 * must be under the same lock in order to serialize against
10706 * perf_event_release_kernel(), such that either we must observe
10707 * is_orphaned_event() or they will observe us on the child_list.
10708 */
10709 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10710 if (is_orphaned_event(parent_event) ||
10711 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10712 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10713 free_event(child_event);
10714 return NULL;
10715 }
10716
97dee4f3
PZ
10717 get_ctx(child_ctx);
10718
10719 /*
10720 * Make the child state follow the state of the parent event,
10721 * not its attr.disabled bit. We hold the parent's mutex,
10722 * so we won't race with perf_event_{en, dis}able_family.
10723 */
1929def9 10724 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10725 child_event->state = PERF_EVENT_STATE_INACTIVE;
10726 else
10727 child_event->state = PERF_EVENT_STATE_OFF;
10728
10729 if (parent_event->attr.freq) {
10730 u64 sample_period = parent_event->hw.sample_period;
10731 struct hw_perf_event *hwc = &child_event->hw;
10732
10733 hwc->sample_period = sample_period;
10734 hwc->last_period = sample_period;
10735
10736 local64_set(&hwc->period_left, sample_period);
10737 }
10738
10739 child_event->ctx = child_ctx;
10740 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10741 child_event->overflow_handler_context
10742 = parent_event->overflow_handler_context;
97dee4f3 10743
614b6780
TG
10744 /*
10745 * Precalculate sample_data sizes
10746 */
10747 perf_event__header_size(child_event);
6844c09d 10748 perf_event__id_header_size(child_event);
614b6780 10749
97dee4f3
PZ
10750 /*
10751 * Link it up in the child's context:
10752 */
cee010ec 10753 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10754 add_event_to_ctx(child_event, child_ctx);
cee010ec 10755 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10756
97dee4f3
PZ
10757 /*
10758 * Link this into the parent event's child list
10759 */
97dee4f3
PZ
10760 list_add_tail(&child_event->child_list, &parent_event->child_list);
10761 mutex_unlock(&parent_event->child_mutex);
10762
10763 return child_event;
10764}
10765
d8a8cfc7
PZ
10766/*
10767 * Inherits an event group.
10768 *
10769 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10770 * This matches with perf_event_release_kernel() removing all child events.
10771 *
10772 * Returns:
10773 * - 0 on success
10774 * - <0 on error
10775 */
97dee4f3
PZ
10776static int inherit_group(struct perf_event *parent_event,
10777 struct task_struct *parent,
10778 struct perf_event_context *parent_ctx,
10779 struct task_struct *child,
10780 struct perf_event_context *child_ctx)
10781{
10782 struct perf_event *leader;
10783 struct perf_event *sub;
10784 struct perf_event *child_ctr;
10785
10786 leader = inherit_event(parent_event, parent, parent_ctx,
10787 child, NULL, child_ctx);
10788 if (IS_ERR(leader))
10789 return PTR_ERR(leader);
d8a8cfc7
PZ
10790 /*
10791 * @leader can be NULL here because of is_orphaned_event(). In this
10792 * case inherit_event() will create individual events, similar to what
10793 * perf_group_detach() would do anyway.
10794 */
97dee4f3
PZ
10795 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10796 child_ctr = inherit_event(sub, parent, parent_ctx,
10797 child, leader, child_ctx);
10798 if (IS_ERR(child_ctr))
10799 return PTR_ERR(child_ctr);
10800 }
10801 return 0;
889ff015
FW
10802}
10803
d8a8cfc7
PZ
10804/*
10805 * Creates the child task context and tries to inherit the event-group.
10806 *
10807 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10808 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10809 * consistent with perf_event_release_kernel() removing all child events.
10810 *
10811 * Returns:
10812 * - 0 on success
10813 * - <0 on error
10814 */
889ff015
FW
10815static int
10816inherit_task_group(struct perf_event *event, struct task_struct *parent,
10817 struct perf_event_context *parent_ctx,
8dc85d54 10818 struct task_struct *child, int ctxn,
889ff015
FW
10819 int *inherited_all)
10820{
10821 int ret;
8dc85d54 10822 struct perf_event_context *child_ctx;
889ff015
FW
10823
10824 if (!event->attr.inherit) {
10825 *inherited_all = 0;
10826 return 0;
bbbee908
PZ
10827 }
10828
fe4b04fa 10829 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10830 if (!child_ctx) {
10831 /*
10832 * This is executed from the parent task context, so
10833 * inherit events that have been marked for cloning.
10834 * First allocate and initialize a context for the
10835 * child.
10836 */
734df5ab 10837 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10838 if (!child_ctx)
10839 return -ENOMEM;
bbbee908 10840
8dc85d54 10841 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10842 }
10843
10844 ret = inherit_group(event, parent, parent_ctx,
10845 child, child_ctx);
10846
10847 if (ret)
10848 *inherited_all = 0;
10849
10850 return ret;
bbbee908
PZ
10851}
10852
9b51f66d 10853/*
cdd6c482 10854 * Initialize the perf_event context in task_struct
9b51f66d 10855 */
985c8dcb 10856static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10857{
889ff015 10858 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10859 struct perf_event_context *cloned_ctx;
10860 struct perf_event *event;
9b51f66d 10861 struct task_struct *parent = current;
564c2b21 10862 int inherited_all = 1;
dddd3379 10863 unsigned long flags;
6ab423e0 10864 int ret = 0;
9b51f66d 10865
8dc85d54 10866 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10867 return 0;
10868
ad3a37de 10869 /*
25346b93
PM
10870 * If the parent's context is a clone, pin it so it won't get
10871 * swapped under us.
ad3a37de 10872 */
8dc85d54 10873 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10874 if (!parent_ctx)
10875 return 0;
25346b93 10876
ad3a37de
PM
10877 /*
10878 * No need to check if parent_ctx != NULL here; since we saw
10879 * it non-NULL earlier, the only reason for it to become NULL
10880 * is if we exit, and since we're currently in the middle of
10881 * a fork we can't be exiting at the same time.
10882 */
ad3a37de 10883
9b51f66d
IM
10884 /*
10885 * Lock the parent list. No need to lock the child - not PID
10886 * hashed yet and not running, so nobody can access it.
10887 */
d859e29f 10888 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10889
10890 /*
10891 * We dont have to disable NMIs - we are only looking at
10892 * the list, not manipulating it:
10893 */
889ff015 10894 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10895 ret = inherit_task_group(event, parent, parent_ctx,
10896 child, ctxn, &inherited_all);
889ff015 10897 if (ret)
e7cc4865 10898 goto out_unlock;
889ff015 10899 }
b93f7978 10900
dddd3379
TG
10901 /*
10902 * We can't hold ctx->lock when iterating the ->flexible_group list due
10903 * to allocations, but we need to prevent rotation because
10904 * rotate_ctx() will change the list from interrupt context.
10905 */
10906 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10907 parent_ctx->rotate_disable = 1;
10908 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10909
889ff015 10910 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10911 ret = inherit_task_group(event, parent, parent_ctx,
10912 child, ctxn, &inherited_all);
889ff015 10913 if (ret)
e7cc4865 10914 goto out_unlock;
564c2b21
PM
10915 }
10916
dddd3379
TG
10917 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10918 parent_ctx->rotate_disable = 0;
dddd3379 10919
8dc85d54 10920 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10921
05cbaa28 10922 if (child_ctx && inherited_all) {
564c2b21
PM
10923 /*
10924 * Mark the child context as a clone of the parent
10925 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10926 *
10927 * Note that if the parent is a clone, the holding of
10928 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10929 */
c5ed5145 10930 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10931 if (cloned_ctx) {
10932 child_ctx->parent_ctx = cloned_ctx;
25346b93 10933 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10934 } else {
10935 child_ctx->parent_ctx = parent_ctx;
10936 child_ctx->parent_gen = parent_ctx->generation;
10937 }
10938 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10939 }
10940
c5ed5145 10941 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 10942out_unlock:
d859e29f 10943 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10944
25346b93 10945 perf_unpin_context(parent_ctx);
fe4b04fa 10946 put_ctx(parent_ctx);
ad3a37de 10947
6ab423e0 10948 return ret;
9b51f66d
IM
10949}
10950
8dc85d54
PZ
10951/*
10952 * Initialize the perf_event context in task_struct
10953 */
10954int perf_event_init_task(struct task_struct *child)
10955{
10956 int ctxn, ret;
10957
8550d7cb
ON
10958 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10959 mutex_init(&child->perf_event_mutex);
10960 INIT_LIST_HEAD(&child->perf_event_list);
10961
8dc85d54
PZ
10962 for_each_task_context_nr(ctxn) {
10963 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10964 if (ret) {
10965 perf_event_free_task(child);
8dc85d54 10966 return ret;
6c72e350 10967 }
8dc85d54
PZ
10968 }
10969
10970 return 0;
10971}
10972
220b140b
PM
10973static void __init perf_event_init_all_cpus(void)
10974{
b28ab83c 10975 struct swevent_htable *swhash;
220b140b 10976 int cpu;
220b140b 10977
a63fbed7
TG
10978 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
10979
220b140b 10980 for_each_possible_cpu(cpu) {
b28ab83c
PZ
10981 swhash = &per_cpu(swevent_htable, cpu);
10982 mutex_init(&swhash->hlist_mutex);
2fde4f94 10983 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
10984
10985 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10986 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 10987
058fe1c0
DCC
10988#ifdef CONFIG_CGROUP_PERF
10989 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10990#endif
e48c1788 10991 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
10992 }
10993}
10994
a63fbed7 10995void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 10996{
108b02cf 10997 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 10998
b28ab83c 10999 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11000 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11001 struct swevent_hlist *hlist;
11002
b28ab83c
PZ
11003 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11004 WARN_ON(!hlist);
11005 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11006 }
b28ab83c 11007 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11008}
11009
2965faa5 11010#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11011static void __perf_event_exit_context(void *__info)
0793a61d 11012{
108b02cf 11013 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11014 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11015 struct perf_event *event;
0793a61d 11016
fae3fde6 11017 raw_spin_lock(&ctx->lock);
0ee098c9 11018 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 11019 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11020 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11021 raw_spin_unlock(&ctx->lock);
0793a61d 11022}
108b02cf
PZ
11023
11024static void perf_event_exit_cpu_context(int cpu)
11025{
a63fbed7 11026 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11027 struct perf_event_context *ctx;
11028 struct pmu *pmu;
108b02cf 11029
a63fbed7
TG
11030 mutex_lock(&pmus_lock);
11031 list_for_each_entry(pmu, &pmus, entry) {
11032 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11033 ctx = &cpuctx->ctx;
108b02cf
PZ
11034
11035 mutex_lock(&ctx->mutex);
11036 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11037 cpuctx->online = 0;
108b02cf
PZ
11038 mutex_unlock(&ctx->mutex);
11039 }
a63fbed7
TG
11040 cpumask_clear_cpu(cpu, perf_online_mask);
11041 mutex_unlock(&pmus_lock);
108b02cf 11042}
00e16c3d
TG
11043#else
11044
11045static void perf_event_exit_cpu_context(int cpu) { }
11046
11047#endif
108b02cf 11048
a63fbed7
TG
11049int perf_event_init_cpu(unsigned int cpu)
11050{
11051 struct perf_cpu_context *cpuctx;
11052 struct perf_event_context *ctx;
11053 struct pmu *pmu;
11054
11055 perf_swevent_init_cpu(cpu);
11056
11057 mutex_lock(&pmus_lock);
11058 cpumask_set_cpu(cpu, perf_online_mask);
11059 list_for_each_entry(pmu, &pmus, entry) {
11060 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11061 ctx = &cpuctx->ctx;
11062
11063 mutex_lock(&ctx->mutex);
11064 cpuctx->online = 1;
11065 mutex_unlock(&ctx->mutex);
11066 }
11067 mutex_unlock(&pmus_lock);
11068
11069 return 0;
11070}
11071
00e16c3d 11072int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11073{
e3703f8c 11074 perf_event_exit_cpu_context(cpu);
00e16c3d 11075 return 0;
0793a61d 11076}
0793a61d 11077
c277443c
PZ
11078static int
11079perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11080{
11081 int cpu;
11082
11083 for_each_online_cpu(cpu)
11084 perf_event_exit_cpu(cpu);
11085
11086 return NOTIFY_OK;
11087}
11088
11089/*
11090 * Run the perf reboot notifier at the very last possible moment so that
11091 * the generic watchdog code runs as long as possible.
11092 */
11093static struct notifier_block perf_reboot_notifier = {
11094 .notifier_call = perf_reboot,
11095 .priority = INT_MIN,
11096};
11097
cdd6c482 11098void __init perf_event_init(void)
0793a61d 11099{
3c502e7a
JW
11100 int ret;
11101
2e80a82a
PZ
11102 idr_init(&pmu_idr);
11103
220b140b 11104 perf_event_init_all_cpus();
b0a873eb 11105 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11106 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11107 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11108 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11109 perf_tp_register();
00e16c3d 11110 perf_event_init_cpu(smp_processor_id());
c277443c 11111 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11112
11113 ret = init_hw_breakpoint();
11114 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11115
b01c3a00
JO
11116 /*
11117 * Build time assertion that we keep the data_head at the intended
11118 * location. IOW, validation we got the __reserved[] size right.
11119 */
11120 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11121 != 1024);
0793a61d 11122}
abe43400 11123
fd979c01
CS
11124ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11125 char *page)
11126{
11127 struct perf_pmu_events_attr *pmu_attr =
11128 container_of(attr, struct perf_pmu_events_attr, attr);
11129
11130 if (pmu_attr->event_str)
11131 return sprintf(page, "%s\n", pmu_attr->event_str);
11132
11133 return 0;
11134}
675965b0 11135EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11136
abe43400
PZ
11137static int __init perf_event_sysfs_init(void)
11138{
11139 struct pmu *pmu;
11140 int ret;
11141
11142 mutex_lock(&pmus_lock);
11143
11144 ret = bus_register(&pmu_bus);
11145 if (ret)
11146 goto unlock;
11147
11148 list_for_each_entry(pmu, &pmus, entry) {
11149 if (!pmu->name || pmu->type < 0)
11150 continue;
11151
11152 ret = pmu_dev_alloc(pmu);
11153 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11154 }
11155 pmu_bus_running = 1;
11156 ret = 0;
11157
11158unlock:
11159 mutex_unlock(&pmus_lock);
11160
11161 return ret;
11162}
11163device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11164
11165#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11166static struct cgroup_subsys_state *
11167perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11168{
11169 struct perf_cgroup *jc;
e5d1367f 11170
1b15d055 11171 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11172 if (!jc)
11173 return ERR_PTR(-ENOMEM);
11174
e5d1367f
SE
11175 jc->info = alloc_percpu(struct perf_cgroup_info);
11176 if (!jc->info) {
11177 kfree(jc);
11178 return ERR_PTR(-ENOMEM);
11179 }
11180
e5d1367f
SE
11181 return &jc->css;
11182}
11183
eb95419b 11184static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11185{
eb95419b
TH
11186 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11187
e5d1367f
SE
11188 free_percpu(jc->info);
11189 kfree(jc);
11190}
11191
11192static int __perf_cgroup_move(void *info)
11193{
11194 struct task_struct *task = info;
ddaaf4e2 11195 rcu_read_lock();
e5d1367f 11196 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11197 rcu_read_unlock();
e5d1367f
SE
11198 return 0;
11199}
11200
1f7dd3e5 11201static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11202{
bb9d97b6 11203 struct task_struct *task;
1f7dd3e5 11204 struct cgroup_subsys_state *css;
bb9d97b6 11205
1f7dd3e5 11206 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11207 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11208}
11209
073219e9 11210struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11211 .css_alloc = perf_cgroup_css_alloc,
11212 .css_free = perf_cgroup_css_free,
bb9d97b6 11213 .attach = perf_cgroup_attach,
968ebff1
TH
11214 /*
11215 * Implicitly enable on dfl hierarchy so that perf events can
11216 * always be filtered by cgroup2 path as long as perf_event
11217 * controller is not mounted on a legacy hierarchy.
11218 */
11219 .implicit_on_dfl = true,
8cfd8147 11220 .threaded = true,
e5d1367f
SE
11221};
11222#endif /* CONFIG_CGROUP_PERF */