]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/events/core.c
locking/atomics, mm: Convert ACCESS_ONCE() to READ_ONCE()/WRITE_ONCE()
[mirror_ubuntu-hirsute-kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6
PZ
211
212 WARN_ON_ONCE(!irqs_disabled());
213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 WARN_ON_ONCE(!irqs_disabled());
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
9e630205
SE
433static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
e5d1367f
SE
585#ifdef CONFIG_CGROUP_PERF
586
e5d1367f
SE
587static inline bool
588perf_cgroup_match(struct perf_event *event)
589{
590 struct perf_event_context *ctx = event->ctx;
591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
ef824fa1
TH
593 /* @event doesn't care about cgroup */
594 if (!event->cgrp)
595 return true;
596
597 /* wants specific cgroup scope but @cpuctx isn't associated with any */
598 if (!cpuctx->cgrp)
599 return false;
600
601 /*
602 * Cgroup scoping is recursive. An event enabled for a cgroup is
603 * also enabled for all its descendant cgroups. If @cpuctx's
604 * cgroup is a descendant of @event's (the test covers identity
605 * case), it's a match.
606 */
607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608 event->cgrp->css.cgroup);
e5d1367f
SE
609}
610
e5d1367f
SE
611static inline void perf_detach_cgroup(struct perf_event *event)
612{
4e2ba650 613 css_put(&event->cgrp->css);
e5d1367f
SE
614 event->cgrp = NULL;
615}
616
617static inline int is_cgroup_event(struct perf_event *event)
618{
619 return event->cgrp != NULL;
620}
621
622static inline u64 perf_cgroup_event_time(struct perf_event *event)
623{
624 struct perf_cgroup_info *t;
625
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 return t->time;
628}
629
630static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631{
632 struct perf_cgroup_info *info;
633 u64 now;
634
635 now = perf_clock();
636
637 info = this_cpu_ptr(cgrp->info);
638
639 info->time += now - info->timestamp;
640 info->timestamp = now;
641}
642
643static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644{
645 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646 if (cgrp_out)
647 __update_cgrp_time(cgrp_out);
648}
649
650static inline void update_cgrp_time_from_event(struct perf_event *event)
651{
3f7cce3c
SE
652 struct perf_cgroup *cgrp;
653
e5d1367f 654 /*
3f7cce3c
SE
655 * ensure we access cgroup data only when needed and
656 * when we know the cgroup is pinned (css_get)
e5d1367f 657 */
3f7cce3c 658 if (!is_cgroup_event(event))
e5d1367f
SE
659 return;
660
614e4c4e 661 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
662 /*
663 * Do not update time when cgroup is not active
664 */
e6a52033 665 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 666 __update_cgrp_time(event->cgrp);
e5d1367f
SE
667}
668
669static inline void
3f7cce3c
SE
670perf_cgroup_set_timestamp(struct task_struct *task,
671 struct perf_event_context *ctx)
e5d1367f
SE
672{
673 struct perf_cgroup *cgrp;
674 struct perf_cgroup_info *info;
675
3f7cce3c
SE
676 /*
677 * ctx->lock held by caller
678 * ensure we do not access cgroup data
679 * unless we have the cgroup pinned (css_get)
680 */
681 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
682 return;
683
614e4c4e 684 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 685 info = this_cpu_ptr(cgrp->info);
3f7cce3c 686 info->timestamp = ctx->timestamp;
e5d1367f
SE
687}
688
058fe1c0
DCC
689static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
e5d1367f
SE
691#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
692#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
693
694/*
695 * reschedule events based on the cgroup constraint of task.
696 *
697 * mode SWOUT : schedule out everything
698 * mode SWIN : schedule in based on cgroup for next
699 */
18ab2cd3 700static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
701{
702 struct perf_cpu_context *cpuctx;
058fe1c0 703 struct list_head *list;
e5d1367f
SE
704 unsigned long flags;
705
706 /*
058fe1c0
DCC
707 * Disable interrupts and preemption to avoid this CPU's
708 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
709 */
710 local_irq_save(flags);
711
058fe1c0
DCC
712 list = this_cpu_ptr(&cgrp_cpuctx_list);
713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 715
058fe1c0
DCC
716 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 718
058fe1c0
DCC
719 if (mode & PERF_CGROUP_SWOUT) {
720 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721 /*
722 * must not be done before ctxswout due
723 * to event_filter_match() in event_sched_out()
724 */
725 cpuctx->cgrp = NULL;
726 }
e5d1367f 727
058fe1c0
DCC
728 if (mode & PERF_CGROUP_SWIN) {
729 WARN_ON_ONCE(cpuctx->cgrp);
730 /*
731 * set cgrp before ctxsw in to allow
732 * event_filter_match() to not have to pass
733 * task around
734 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 * because cgorup events are only per-cpu
736 */
737 cpuctx->cgrp = perf_cgroup_from_task(task,
738 &cpuctx->ctx);
739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 740 }
058fe1c0
DCC
741 perf_pmu_enable(cpuctx->ctx.pmu);
742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
743 }
744
e5d1367f
SE
745 local_irq_restore(flags);
746}
747
a8d757ef
SE
748static inline void perf_cgroup_sched_out(struct task_struct *task,
749 struct task_struct *next)
e5d1367f 750{
a8d757ef
SE
751 struct perf_cgroup *cgrp1;
752 struct perf_cgroup *cgrp2 = NULL;
753
ddaaf4e2 754 rcu_read_lock();
a8d757ef
SE
755 /*
756 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
757 * we do not need to pass the ctx here because we know
758 * we are holding the rcu lock
a8d757ef 759 */
614e4c4e 760 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 761 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
762
763 /*
764 * only schedule out current cgroup events if we know
765 * that we are switching to a different cgroup. Otherwise,
766 * do no touch the cgroup events.
767 */
768 if (cgrp1 != cgrp2)
769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
770
771 rcu_read_unlock();
e5d1367f
SE
772}
773
a8d757ef
SE
774static inline void perf_cgroup_sched_in(struct task_struct *prev,
775 struct task_struct *task)
e5d1367f 776{
a8d757ef
SE
777 struct perf_cgroup *cgrp1;
778 struct perf_cgroup *cgrp2 = NULL;
779
ddaaf4e2 780 rcu_read_lock();
a8d757ef
SE
781 /*
782 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
783 * we do not need to pass the ctx here because we know
784 * we are holding the rcu lock
a8d757ef 785 */
614e4c4e 786 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 787 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
788
789 /*
790 * only need to schedule in cgroup events if we are changing
791 * cgroup during ctxsw. Cgroup events were not scheduled
792 * out of ctxsw out if that was not the case.
793 */
794 if (cgrp1 != cgrp2)
795 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
796
797 rcu_read_unlock();
e5d1367f
SE
798}
799
800static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801 struct perf_event_attr *attr,
802 struct perf_event *group_leader)
803{
804 struct perf_cgroup *cgrp;
805 struct cgroup_subsys_state *css;
2903ff01
AV
806 struct fd f = fdget(fd);
807 int ret = 0;
e5d1367f 808
2903ff01 809 if (!f.file)
e5d1367f
SE
810 return -EBADF;
811
b583043e 812 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 813 &perf_event_cgrp_subsys);
3db272c0
LZ
814 if (IS_ERR(css)) {
815 ret = PTR_ERR(css);
816 goto out;
817 }
e5d1367f
SE
818
819 cgrp = container_of(css, struct perf_cgroup, css);
820 event->cgrp = cgrp;
821
822 /*
823 * all events in a group must monitor
824 * the same cgroup because a task belongs
825 * to only one perf cgroup at a time
826 */
827 if (group_leader && group_leader->cgrp != cgrp) {
828 perf_detach_cgroup(event);
829 ret = -EINVAL;
e5d1367f 830 }
3db272c0 831out:
2903ff01 832 fdput(f);
e5d1367f
SE
833 return ret;
834}
835
836static inline void
837perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838{
839 struct perf_cgroup_info *t;
840 t = per_cpu_ptr(event->cgrp->info, event->cpu);
841 event->shadow_ctx_time = now - t->timestamp;
842}
843
844static inline void
845perf_cgroup_defer_enabled(struct perf_event *event)
846{
847 /*
848 * when the current task's perf cgroup does not match
849 * the event's, we need to remember to call the
850 * perf_mark_enable() function the first time a task with
851 * a matching perf cgroup is scheduled in.
852 */
853 if (is_cgroup_event(event) && !perf_cgroup_match(event))
854 event->cgrp_defer_enabled = 1;
855}
856
857static inline void
858perf_cgroup_mark_enabled(struct perf_event *event,
859 struct perf_event_context *ctx)
860{
861 struct perf_event *sub;
862 u64 tstamp = perf_event_time(event);
863
864 if (!event->cgrp_defer_enabled)
865 return;
866
867 event->cgrp_defer_enabled = 0;
868
869 event->tstamp_enabled = tstamp - event->total_time_enabled;
870 list_for_each_entry(sub, &event->sibling_list, group_entry) {
871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873 sub->cgrp_defer_enabled = 0;
874 }
875 }
876}
db4a8356
DCC
877
878/*
879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880 * cleared when last cgroup event is removed.
881 */
882static inline void
883list_update_cgroup_event(struct perf_event *event,
884 struct perf_event_context *ctx, bool add)
885{
886 struct perf_cpu_context *cpuctx;
058fe1c0 887 struct list_head *cpuctx_entry;
db4a8356
DCC
888
889 if (!is_cgroup_event(event))
890 return;
891
892 if (add && ctx->nr_cgroups++)
893 return;
894 else if (!add && --ctx->nr_cgroups)
895 return;
896 /*
897 * Because cgroup events are always per-cpu events,
898 * this will always be called from the right CPU.
899 */
900 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903 if (add) {
904 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906 cpuctx->cgrp = event->cgrp;
907 } else {
908 list_del(cpuctx_entry);
8fc31ce8 909 cpuctx->cgrp = NULL;
058fe1c0 910 }
db4a8356
DCC
911}
912
e5d1367f
SE
913#else /* !CONFIG_CGROUP_PERF */
914
915static inline bool
916perf_cgroup_match(struct perf_event *event)
917{
918 return true;
919}
920
921static inline void perf_detach_cgroup(struct perf_event *event)
922{}
923
924static inline int is_cgroup_event(struct perf_event *event)
925{
926 return 0;
927}
928
e5d1367f
SE
929static inline void update_cgrp_time_from_event(struct perf_event *event)
930{
931}
932
933static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934{
935}
936
a8d757ef
SE
937static inline void perf_cgroup_sched_out(struct task_struct *task,
938 struct task_struct *next)
e5d1367f
SE
939{
940}
941
a8d757ef
SE
942static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 struct task_struct *task)
e5d1367f
SE
944{
945}
946
947static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 struct perf_event_attr *attr,
949 struct perf_event *group_leader)
950{
951 return -EINVAL;
952}
953
954static inline void
3f7cce3c
SE
955perf_cgroup_set_timestamp(struct task_struct *task,
956 struct perf_event_context *ctx)
e5d1367f
SE
957{
958}
959
960void
961perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962{
963}
964
965static inline void
966perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967{
968}
969
970static inline u64 perf_cgroup_event_time(struct perf_event *event)
971{
972 return 0;
973}
974
975static inline void
976perf_cgroup_defer_enabled(struct perf_event *event)
977{
978}
979
980static inline void
981perf_cgroup_mark_enabled(struct perf_event *event,
982 struct perf_event_context *ctx)
983{
984}
db4a8356
DCC
985
986static inline void
987list_update_cgroup_event(struct perf_event *event,
988 struct perf_event_context *ctx, bool add)
989{
990}
991
e5d1367f
SE
992#endif
993
9e630205
SE
994/*
995 * set default to be dependent on timer tick just
996 * like original code
997 */
998#define PERF_CPU_HRTIMER (1000 / HZ)
999/*
8a1115ff 1000 * function must be called with interrupts disabled
9e630205 1001 */
272325c4 1002static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1003{
1004 struct perf_cpu_context *cpuctx;
9e630205
SE
1005 int rotations = 0;
1006
1007 WARN_ON(!irqs_disabled());
1008
1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1010 rotations = perf_rotate_context(cpuctx);
1011
4cfafd30
PZ
1012 raw_spin_lock(&cpuctx->hrtimer_lock);
1013 if (rotations)
9e630205 1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1015 else
1016 cpuctx->hrtimer_active = 0;
1017 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1018
4cfafd30 1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1020}
1021
272325c4 1022static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1023{
272325c4 1024 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1025 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1026 u64 interval;
9e630205
SE
1027
1028 /* no multiplexing needed for SW PMU */
1029 if (pmu->task_ctx_nr == perf_sw_context)
1030 return;
1031
62b85639
SE
1032 /*
1033 * check default is sane, if not set then force to
1034 * default interval (1/tick)
1035 */
272325c4
PZ
1036 interval = pmu->hrtimer_interval_ms;
1037 if (interval < 1)
1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1039
272325c4 1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1041
4cfafd30
PZ
1042 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1044 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1045}
1046
272325c4 1047static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1048{
272325c4 1049 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1050 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1051 unsigned long flags;
9e630205
SE
1052
1053 /* not for SW PMU */
1054 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1055 return 0;
9e630205 1056
4cfafd30
PZ
1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 if (!cpuctx->hrtimer_active) {
1059 cpuctx->hrtimer_active = 1;
1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 }
1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1064
272325c4 1065 return 0;
9e630205
SE
1066}
1067
33696fc0 1068void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1069{
33696fc0
PZ
1070 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 if (!(*count)++)
1072 pmu->pmu_disable(pmu);
9e35ad38 1073}
9e35ad38 1074
33696fc0 1075void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1076{
33696fc0
PZ
1077 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 if (!--(*count))
1079 pmu->pmu_enable(pmu);
9e35ad38 1080}
9e35ad38 1081
2fde4f94 1082static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1083
1084/*
2fde4f94
MR
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1089 */
2fde4f94 1090static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1091{
2fde4f94 1092 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1093
e9d2b064 1094 WARN_ON(!irqs_disabled());
b5ab4cd5 1095
2fde4f94
MR
1096 WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098 list_add(&ctx->active_ctx_list, head);
1099}
1100
1101static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102{
1103 WARN_ON(!irqs_disabled());
1104
1105 WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107 list_del_init(&ctx->active_ctx_list);
9e35ad38 1108}
9e35ad38 1109
cdd6c482 1110static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1111{
e5289d4a 1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1113}
1114
4af57ef2
YZ
1115static void free_ctx(struct rcu_head *head)
1116{
1117 struct perf_event_context *ctx;
1118
1119 ctx = container_of(head, struct perf_event_context, rcu_head);
1120 kfree(ctx->task_ctx_data);
1121 kfree(ctx);
1122}
1123
cdd6c482 1124static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1125{
564c2b21
PM
1126 if (atomic_dec_and_test(&ctx->refcount)) {
1127 if (ctx->parent_ctx)
1128 put_ctx(ctx->parent_ctx);
63b6da39 1129 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1130 put_task_struct(ctx->task);
4af57ef2 1131 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1132 }
a63eaf34
PM
1133}
1134
f63a8daa
PZ
1135/*
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1138 *
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141 *
8b10c5e2
PZ
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1144 *
1145 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1146 * perf_event_exit_event()
1147 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1148 *
1149 * - perf_event_init_context() [ parent, 0 ]
1150 * inherit_task_group()
1151 * inherit_group()
1152 * inherit_event()
1153 * perf_event_alloc()
1154 * perf_init_event()
1155 * perf_try_init_event() [ child , 1 ]
1156 *
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1161 *
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1164 * interact.
f63a8daa
PZ
1165 *
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1170 *
1171 * The places that change perf_event::ctx will issue:
1172 *
1173 * perf_remove_from_context();
1174 * synchronize_rcu();
1175 * perf_install_in_context();
1176 *
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1182 *
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185 * function.
1186 *
1187 * Lock order:
79c9ce57 1188 * cred_guard_mutex
f63a8daa
PZ
1189 * task_struct::perf_event_mutex
1190 * perf_event_context::mutex
f63a8daa 1191 * perf_event::child_mutex;
07c4a776 1192 * perf_event_context::lock
f63a8daa
PZ
1193 * perf_event::mmap_mutex
1194 * mmap_sem
1195 */
a83fe28e
PZ
1196static struct perf_event_context *
1197perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1198{
1199 struct perf_event_context *ctx;
1200
1201again:
1202 rcu_read_lock();
1203 ctx = ACCESS_ONCE(event->ctx);
1204 if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 rcu_read_unlock();
1206 goto again;
1207 }
1208 rcu_read_unlock();
1209
a83fe28e 1210 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1211 if (event->ctx != ctx) {
1212 mutex_unlock(&ctx->mutex);
1213 put_ctx(ctx);
1214 goto again;
1215 }
1216
1217 return ctx;
1218}
1219
a83fe28e
PZ
1220static inline struct perf_event_context *
1221perf_event_ctx_lock(struct perf_event *event)
1222{
1223 return perf_event_ctx_lock_nested(event, 0);
1224}
1225
f63a8daa
PZ
1226static void perf_event_ctx_unlock(struct perf_event *event,
1227 struct perf_event_context *ctx)
1228{
1229 mutex_unlock(&ctx->mutex);
1230 put_ctx(ctx);
1231}
1232
211de6eb
PZ
1233/*
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1237 */
1238static __must_check struct perf_event_context *
1239unclone_ctx(struct perf_event_context *ctx)
71a851b4 1240{
211de6eb
PZ
1241 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243 lockdep_assert_held(&ctx->lock);
1244
1245 if (parent_ctx)
71a851b4 1246 ctx->parent_ctx = NULL;
5a3126d4 1247 ctx->generation++;
211de6eb
PZ
1248
1249 return parent_ctx;
71a851b4
PZ
1250}
1251
1d953111
ON
1252static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1253 enum pid_type type)
6844c09d 1254{
1d953111 1255 u32 nr;
6844c09d
ACM
1256 /*
1257 * only top level events have the pid namespace they were created in
1258 */
1259 if (event->parent)
1260 event = event->parent;
1261
1d953111
ON
1262 nr = __task_pid_nr_ns(p, type, event->ns);
1263 /* avoid -1 if it is idle thread or runs in another ns */
1264 if (!nr && !pid_alive(p))
1265 nr = -1;
1266 return nr;
6844c09d
ACM
1267}
1268
1d953111 1269static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1270{
1d953111
ON
1271 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1272}
6844c09d 1273
1d953111
ON
1274static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1275{
1276 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1277}
1278
7f453c24 1279/*
cdd6c482 1280 * If we inherit events we want to return the parent event id
7f453c24
PZ
1281 * to userspace.
1282 */
cdd6c482 1283static u64 primary_event_id(struct perf_event *event)
7f453c24 1284{
cdd6c482 1285 u64 id = event->id;
7f453c24 1286
cdd6c482
IM
1287 if (event->parent)
1288 id = event->parent->id;
7f453c24
PZ
1289
1290 return id;
1291}
1292
25346b93 1293/*
cdd6c482 1294 * Get the perf_event_context for a task and lock it.
63b6da39 1295 *
25346b93
PM
1296 * This has to cope with with the fact that until it is locked,
1297 * the context could get moved to another task.
1298 */
cdd6c482 1299static struct perf_event_context *
8dc85d54 1300perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1301{
cdd6c482 1302 struct perf_event_context *ctx;
25346b93 1303
9ed6060d 1304retry:
058ebd0e
PZ
1305 /*
1306 * One of the few rules of preemptible RCU is that one cannot do
1307 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1308 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1309 * rcu_read_unlock_special().
1310 *
1311 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1312 * side critical section has interrupts disabled.
058ebd0e 1313 */
2fd59077 1314 local_irq_save(*flags);
058ebd0e 1315 rcu_read_lock();
8dc85d54 1316 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1317 if (ctx) {
1318 /*
1319 * If this context is a clone of another, it might
1320 * get swapped for another underneath us by
cdd6c482 1321 * perf_event_task_sched_out, though the
25346b93
PM
1322 * rcu_read_lock() protects us from any context
1323 * getting freed. Lock the context and check if it
1324 * got swapped before we could get the lock, and retry
1325 * if so. If we locked the right context, then it
1326 * can't get swapped on us any more.
1327 */
2fd59077 1328 raw_spin_lock(&ctx->lock);
8dc85d54 1329 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1330 raw_spin_unlock(&ctx->lock);
058ebd0e 1331 rcu_read_unlock();
2fd59077 1332 local_irq_restore(*flags);
25346b93
PM
1333 goto retry;
1334 }
b49a9e7e 1335
63b6da39
PZ
1336 if (ctx->task == TASK_TOMBSTONE ||
1337 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1338 raw_spin_unlock(&ctx->lock);
b49a9e7e 1339 ctx = NULL;
828b6f0e
PZ
1340 } else {
1341 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1342 }
25346b93
PM
1343 }
1344 rcu_read_unlock();
2fd59077
PM
1345 if (!ctx)
1346 local_irq_restore(*flags);
25346b93
PM
1347 return ctx;
1348}
1349
1350/*
1351 * Get the context for a task and increment its pin_count so it
1352 * can't get swapped to another task. This also increments its
1353 * reference count so that the context can't get freed.
1354 */
8dc85d54
PZ
1355static struct perf_event_context *
1356perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1357{
cdd6c482 1358 struct perf_event_context *ctx;
25346b93
PM
1359 unsigned long flags;
1360
8dc85d54 1361 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1362 if (ctx) {
1363 ++ctx->pin_count;
e625cce1 1364 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1365 }
1366 return ctx;
1367}
1368
cdd6c482 1369static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1370{
1371 unsigned long flags;
1372
e625cce1 1373 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1374 --ctx->pin_count;
e625cce1 1375 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1376}
1377
f67218c3
PZ
1378/*
1379 * Update the record of the current time in a context.
1380 */
1381static void update_context_time(struct perf_event_context *ctx)
1382{
1383 u64 now = perf_clock();
1384
1385 ctx->time += now - ctx->timestamp;
1386 ctx->timestamp = now;
1387}
1388
4158755d
SE
1389static u64 perf_event_time(struct perf_event *event)
1390{
1391 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1392
1393 if (is_cgroup_event(event))
1394 return perf_cgroup_event_time(event);
1395
4158755d
SE
1396 return ctx ? ctx->time : 0;
1397}
1398
f67218c3
PZ
1399/*
1400 * Update the total_time_enabled and total_time_running fields for a event.
1401 */
1402static void update_event_times(struct perf_event *event)
1403{
1404 struct perf_event_context *ctx = event->ctx;
1405 u64 run_end;
1406
3cbaa590
PZ
1407 lockdep_assert_held(&ctx->lock);
1408
f67218c3
PZ
1409 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1410 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1411 return;
3cbaa590 1412
e5d1367f
SE
1413 /*
1414 * in cgroup mode, time_enabled represents
1415 * the time the event was enabled AND active
1416 * tasks were in the monitored cgroup. This is
1417 * independent of the activity of the context as
1418 * there may be a mix of cgroup and non-cgroup events.
1419 *
1420 * That is why we treat cgroup events differently
1421 * here.
1422 */
1423 if (is_cgroup_event(event))
46cd6a7f 1424 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1425 else if (ctx->is_active)
1426 run_end = ctx->time;
acd1d7c1
PZ
1427 else
1428 run_end = event->tstamp_stopped;
1429
1430 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1431
1432 if (event->state == PERF_EVENT_STATE_INACTIVE)
1433 run_end = event->tstamp_stopped;
1434 else
4158755d 1435 run_end = perf_event_time(event);
f67218c3
PZ
1436
1437 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1438
f67218c3
PZ
1439}
1440
96c21a46
PZ
1441/*
1442 * Update total_time_enabled and total_time_running for all events in a group.
1443 */
1444static void update_group_times(struct perf_event *leader)
1445{
1446 struct perf_event *event;
1447
1448 update_event_times(leader);
1449 list_for_each_entry(event, &leader->sibling_list, group_entry)
1450 update_event_times(event);
1451}
1452
487f05e1
AS
1453static enum event_type_t get_event_type(struct perf_event *event)
1454{
1455 struct perf_event_context *ctx = event->ctx;
1456 enum event_type_t event_type;
1457
1458 lockdep_assert_held(&ctx->lock);
1459
3bda69c1
AS
1460 /*
1461 * It's 'group type', really, because if our group leader is
1462 * pinned, so are we.
1463 */
1464 if (event->group_leader != event)
1465 event = event->group_leader;
1466
487f05e1
AS
1467 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1468 if (!ctx->task)
1469 event_type |= EVENT_CPU;
1470
1471 return event_type;
1472}
1473
889ff015
FW
1474static struct list_head *
1475ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1476{
1477 if (event->attr.pinned)
1478 return &ctx->pinned_groups;
1479 else
1480 return &ctx->flexible_groups;
1481}
1482
fccc714b 1483/*
cdd6c482 1484 * Add a event from the lists for its context.
fccc714b
PZ
1485 * Must be called with ctx->mutex and ctx->lock held.
1486 */
04289bb9 1487static void
cdd6c482 1488list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1489{
c994d613
PZ
1490 lockdep_assert_held(&ctx->lock);
1491
8a49542c
PZ
1492 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1493 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1494
1495 /*
8a49542c
PZ
1496 * If we're a stand alone event or group leader, we go to the context
1497 * list, group events are kept attached to the group so that
1498 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1499 */
8a49542c 1500 if (event->group_leader == event) {
889ff015
FW
1501 struct list_head *list;
1502
4ff6a8de 1503 event->group_caps = event->event_caps;
d6f962b5 1504
889ff015
FW
1505 list = ctx_group_list(event, ctx);
1506 list_add_tail(&event->group_entry, list);
5c148194 1507 }
592903cd 1508
db4a8356 1509 list_update_cgroup_event(event, ctx, true);
e5d1367f 1510
cdd6c482
IM
1511 list_add_rcu(&event->event_entry, &ctx->event_list);
1512 ctx->nr_events++;
1513 if (event->attr.inherit_stat)
bfbd3381 1514 ctx->nr_stat++;
5a3126d4
PZ
1515
1516 ctx->generation++;
04289bb9
IM
1517}
1518
0231bb53
JO
1519/*
1520 * Initialize event state based on the perf_event_attr::disabled.
1521 */
1522static inline void perf_event__state_init(struct perf_event *event)
1523{
1524 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1525 PERF_EVENT_STATE_INACTIVE;
1526}
1527
a723968c 1528static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1529{
1530 int entry = sizeof(u64); /* value */
1531 int size = 0;
1532 int nr = 1;
1533
1534 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1535 size += sizeof(u64);
1536
1537 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1538 size += sizeof(u64);
1539
1540 if (event->attr.read_format & PERF_FORMAT_ID)
1541 entry += sizeof(u64);
1542
1543 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1544 nr += nr_siblings;
c320c7b7
ACM
1545 size += sizeof(u64);
1546 }
1547
1548 size += entry * nr;
1549 event->read_size = size;
1550}
1551
a723968c 1552static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1553{
1554 struct perf_sample_data *data;
c320c7b7
ACM
1555 u16 size = 0;
1556
c320c7b7
ACM
1557 if (sample_type & PERF_SAMPLE_IP)
1558 size += sizeof(data->ip);
1559
6844c09d
ACM
1560 if (sample_type & PERF_SAMPLE_ADDR)
1561 size += sizeof(data->addr);
1562
1563 if (sample_type & PERF_SAMPLE_PERIOD)
1564 size += sizeof(data->period);
1565
c3feedf2
AK
1566 if (sample_type & PERF_SAMPLE_WEIGHT)
1567 size += sizeof(data->weight);
1568
6844c09d
ACM
1569 if (sample_type & PERF_SAMPLE_READ)
1570 size += event->read_size;
1571
d6be9ad6
SE
1572 if (sample_type & PERF_SAMPLE_DATA_SRC)
1573 size += sizeof(data->data_src.val);
1574
fdfbbd07
AK
1575 if (sample_type & PERF_SAMPLE_TRANSACTION)
1576 size += sizeof(data->txn);
1577
fc7ce9c7
KL
1578 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1579 size += sizeof(data->phys_addr);
1580
6844c09d
ACM
1581 event->header_size = size;
1582}
1583
a723968c
PZ
1584/*
1585 * Called at perf_event creation and when events are attached/detached from a
1586 * group.
1587 */
1588static void perf_event__header_size(struct perf_event *event)
1589{
1590 __perf_event_read_size(event,
1591 event->group_leader->nr_siblings);
1592 __perf_event_header_size(event, event->attr.sample_type);
1593}
1594
6844c09d
ACM
1595static void perf_event__id_header_size(struct perf_event *event)
1596{
1597 struct perf_sample_data *data;
1598 u64 sample_type = event->attr.sample_type;
1599 u16 size = 0;
1600
c320c7b7
ACM
1601 if (sample_type & PERF_SAMPLE_TID)
1602 size += sizeof(data->tid_entry);
1603
1604 if (sample_type & PERF_SAMPLE_TIME)
1605 size += sizeof(data->time);
1606
ff3d527c
AH
1607 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1608 size += sizeof(data->id);
1609
c320c7b7
ACM
1610 if (sample_type & PERF_SAMPLE_ID)
1611 size += sizeof(data->id);
1612
1613 if (sample_type & PERF_SAMPLE_STREAM_ID)
1614 size += sizeof(data->stream_id);
1615
1616 if (sample_type & PERF_SAMPLE_CPU)
1617 size += sizeof(data->cpu_entry);
1618
6844c09d 1619 event->id_header_size = size;
c320c7b7
ACM
1620}
1621
a723968c
PZ
1622static bool perf_event_validate_size(struct perf_event *event)
1623{
1624 /*
1625 * The values computed here will be over-written when we actually
1626 * attach the event.
1627 */
1628 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1629 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1630 perf_event__id_header_size(event);
1631
1632 /*
1633 * Sum the lot; should not exceed the 64k limit we have on records.
1634 * Conservative limit to allow for callchains and other variable fields.
1635 */
1636 if (event->read_size + event->header_size +
1637 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1638 return false;
1639
1640 return true;
1641}
1642
8a49542c
PZ
1643static void perf_group_attach(struct perf_event *event)
1644{
c320c7b7 1645 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1646
a76a82a3
PZ
1647 lockdep_assert_held(&event->ctx->lock);
1648
74c3337c
PZ
1649 /*
1650 * We can have double attach due to group movement in perf_event_open.
1651 */
1652 if (event->attach_state & PERF_ATTACH_GROUP)
1653 return;
1654
8a49542c
PZ
1655 event->attach_state |= PERF_ATTACH_GROUP;
1656
1657 if (group_leader == event)
1658 return;
1659
652884fe
PZ
1660 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1661
4ff6a8de 1662 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1663
1664 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1665 group_leader->nr_siblings++;
c320c7b7
ACM
1666
1667 perf_event__header_size(group_leader);
1668
1669 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1670 perf_event__header_size(pos);
8a49542c
PZ
1671}
1672
a63eaf34 1673/*
cdd6c482 1674 * Remove a event from the lists for its context.
fccc714b 1675 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1676 */
04289bb9 1677static void
cdd6c482 1678list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1679{
652884fe
PZ
1680 WARN_ON_ONCE(event->ctx != ctx);
1681 lockdep_assert_held(&ctx->lock);
1682
8a49542c
PZ
1683 /*
1684 * We can have double detach due to exit/hot-unplug + close.
1685 */
1686 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1687 return;
8a49542c
PZ
1688
1689 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1690
db4a8356 1691 list_update_cgroup_event(event, ctx, false);
e5d1367f 1692
cdd6c482
IM
1693 ctx->nr_events--;
1694 if (event->attr.inherit_stat)
bfbd3381 1695 ctx->nr_stat--;
8bc20959 1696
cdd6c482 1697 list_del_rcu(&event->event_entry);
04289bb9 1698
8a49542c
PZ
1699 if (event->group_leader == event)
1700 list_del_init(&event->group_entry);
5c148194 1701
96c21a46 1702 update_group_times(event);
b2e74a26
SE
1703
1704 /*
1705 * If event was in error state, then keep it
1706 * that way, otherwise bogus counts will be
1707 * returned on read(). The only way to get out
1708 * of error state is by explicit re-enabling
1709 * of the event
1710 */
1711 if (event->state > PERF_EVENT_STATE_OFF)
1712 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1713
1714 ctx->generation++;
050735b0
PZ
1715}
1716
8a49542c 1717static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1718{
1719 struct perf_event *sibling, *tmp;
8a49542c
PZ
1720 struct list_head *list = NULL;
1721
a76a82a3
PZ
1722 lockdep_assert_held(&event->ctx->lock);
1723
8a49542c
PZ
1724 /*
1725 * We can have double detach due to exit/hot-unplug + close.
1726 */
1727 if (!(event->attach_state & PERF_ATTACH_GROUP))
1728 return;
1729
1730 event->attach_state &= ~PERF_ATTACH_GROUP;
1731
1732 /*
1733 * If this is a sibling, remove it from its group.
1734 */
1735 if (event->group_leader != event) {
1736 list_del_init(&event->group_entry);
1737 event->group_leader->nr_siblings--;
c320c7b7 1738 goto out;
8a49542c
PZ
1739 }
1740
1741 if (!list_empty(&event->group_entry))
1742 list = &event->group_entry;
2e2af50b 1743
04289bb9 1744 /*
cdd6c482
IM
1745 * If this was a group event with sibling events then
1746 * upgrade the siblings to singleton events by adding them
8a49542c 1747 * to whatever list we are on.
04289bb9 1748 */
cdd6c482 1749 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1750 if (list)
1751 list_move_tail(&sibling->group_entry, list);
04289bb9 1752 sibling->group_leader = sibling;
d6f962b5
FW
1753
1754 /* Inherit group flags from the previous leader */
4ff6a8de 1755 sibling->group_caps = event->group_caps;
652884fe
PZ
1756
1757 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1758 }
c320c7b7
ACM
1759
1760out:
1761 perf_event__header_size(event->group_leader);
1762
1763 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1764 perf_event__header_size(tmp);
04289bb9
IM
1765}
1766
fadfe7be
JO
1767static bool is_orphaned_event(struct perf_event *event)
1768{
a69b0ca4 1769 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1770}
1771
2c81a647 1772static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1773{
1774 struct pmu *pmu = event->pmu;
1775 return pmu->filter_match ? pmu->filter_match(event) : 1;
1776}
1777
2c81a647
MR
1778/*
1779 * Check whether we should attempt to schedule an event group based on
1780 * PMU-specific filtering. An event group can consist of HW and SW events,
1781 * potentially with a SW leader, so we must check all the filters, to
1782 * determine whether a group is schedulable:
1783 */
1784static inline int pmu_filter_match(struct perf_event *event)
1785{
1786 struct perf_event *child;
1787
1788 if (!__pmu_filter_match(event))
1789 return 0;
1790
1791 list_for_each_entry(child, &event->sibling_list, group_entry) {
1792 if (!__pmu_filter_match(child))
1793 return 0;
1794 }
1795
1796 return 1;
1797}
1798
fa66f07a
SE
1799static inline int
1800event_filter_match(struct perf_event *event)
1801{
0b8f1e2e
PZ
1802 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1803 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1804}
1805
9ffcfa6f
SE
1806static void
1807event_sched_out(struct perf_event *event,
3b6f9e5c 1808 struct perf_cpu_context *cpuctx,
cdd6c482 1809 struct perf_event_context *ctx)
3b6f9e5c 1810{
4158755d 1811 u64 tstamp = perf_event_time(event);
fa66f07a 1812 u64 delta;
652884fe
PZ
1813
1814 WARN_ON_ONCE(event->ctx != ctx);
1815 lockdep_assert_held(&ctx->lock);
1816
fa66f07a
SE
1817 /*
1818 * An event which could not be activated because of
1819 * filter mismatch still needs to have its timings
1820 * maintained, otherwise bogus information is return
1821 * via read() for time_enabled, time_running:
1822 */
0b8f1e2e
PZ
1823 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1824 !event_filter_match(event)) {
e5d1367f 1825 delta = tstamp - event->tstamp_stopped;
fa66f07a 1826 event->tstamp_running += delta;
4158755d 1827 event->tstamp_stopped = tstamp;
fa66f07a
SE
1828 }
1829
cdd6c482 1830 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1831 return;
3b6f9e5c 1832
44377277
AS
1833 perf_pmu_disable(event->pmu);
1834
28a967c3
PZ
1835 event->tstamp_stopped = tstamp;
1836 event->pmu->del(event, 0);
1837 event->oncpu = -1;
cdd6c482
IM
1838 event->state = PERF_EVENT_STATE_INACTIVE;
1839 if (event->pending_disable) {
1840 event->pending_disable = 0;
1841 event->state = PERF_EVENT_STATE_OFF;
970892a9 1842 }
3b6f9e5c 1843
cdd6c482 1844 if (!is_software_event(event))
3b6f9e5c 1845 cpuctx->active_oncpu--;
2fde4f94
MR
1846 if (!--ctx->nr_active)
1847 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1848 if (event->attr.freq && event->attr.sample_freq)
1849 ctx->nr_freq--;
cdd6c482 1850 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1851 cpuctx->exclusive = 0;
44377277
AS
1852
1853 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1854}
1855
d859e29f 1856static void
cdd6c482 1857group_sched_out(struct perf_event *group_event,
d859e29f 1858 struct perf_cpu_context *cpuctx,
cdd6c482 1859 struct perf_event_context *ctx)
d859e29f 1860{
cdd6c482 1861 struct perf_event *event;
fa66f07a 1862 int state = group_event->state;
d859e29f 1863
3f005e7d
MR
1864 perf_pmu_disable(ctx->pmu);
1865
cdd6c482 1866 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1867
1868 /*
1869 * Schedule out siblings (if any):
1870 */
cdd6c482
IM
1871 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1872 event_sched_out(event, cpuctx, ctx);
d859e29f 1873
3f005e7d
MR
1874 perf_pmu_enable(ctx->pmu);
1875
fa66f07a 1876 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1877 cpuctx->exclusive = 0;
1878}
1879
45a0e07a 1880#define DETACH_GROUP 0x01UL
0017960f 1881
0793a61d 1882/*
cdd6c482 1883 * Cross CPU call to remove a performance event
0793a61d 1884 *
cdd6c482 1885 * We disable the event on the hardware level first. After that we
0793a61d
TG
1886 * remove it from the context list.
1887 */
fae3fde6
PZ
1888static void
1889__perf_remove_from_context(struct perf_event *event,
1890 struct perf_cpu_context *cpuctx,
1891 struct perf_event_context *ctx,
1892 void *info)
0793a61d 1893{
45a0e07a 1894 unsigned long flags = (unsigned long)info;
0793a61d 1895
cdd6c482 1896 event_sched_out(event, cpuctx, ctx);
45a0e07a 1897 if (flags & DETACH_GROUP)
46ce0fe9 1898 perf_group_detach(event);
cdd6c482 1899 list_del_event(event, ctx);
39a43640
PZ
1900
1901 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1902 ctx->is_active = 0;
39a43640
PZ
1903 if (ctx->task) {
1904 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1905 cpuctx->task_ctx = NULL;
1906 }
64ce3126 1907 }
0793a61d
TG
1908}
1909
0793a61d 1910/*
cdd6c482 1911 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1912 *
cdd6c482
IM
1913 * If event->ctx is a cloned context, callers must make sure that
1914 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1915 * remains valid. This is OK when called from perf_release since
1916 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1917 * When called from perf_event_exit_task, it's OK because the
c93f7669 1918 * context has been detached from its task.
0793a61d 1919 */
45a0e07a 1920static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1921{
a76a82a3
PZ
1922 struct perf_event_context *ctx = event->ctx;
1923
1924 lockdep_assert_held(&ctx->mutex);
0793a61d 1925
45a0e07a 1926 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1927
1928 /*
1929 * The above event_function_call() can NO-OP when it hits
1930 * TASK_TOMBSTONE. In that case we must already have been detached
1931 * from the context (by perf_event_exit_event()) but the grouping
1932 * might still be in-tact.
1933 */
1934 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1935 if ((flags & DETACH_GROUP) &&
1936 (event->attach_state & PERF_ATTACH_GROUP)) {
1937 /*
1938 * Since in that case we cannot possibly be scheduled, simply
1939 * detach now.
1940 */
1941 raw_spin_lock_irq(&ctx->lock);
1942 perf_group_detach(event);
1943 raw_spin_unlock_irq(&ctx->lock);
1944 }
0793a61d
TG
1945}
1946
d859e29f 1947/*
cdd6c482 1948 * Cross CPU call to disable a performance event
d859e29f 1949 */
fae3fde6
PZ
1950static void __perf_event_disable(struct perf_event *event,
1951 struct perf_cpu_context *cpuctx,
1952 struct perf_event_context *ctx,
1953 void *info)
7b648018 1954{
fae3fde6
PZ
1955 if (event->state < PERF_EVENT_STATE_INACTIVE)
1956 return;
7b648018 1957
fae3fde6
PZ
1958 update_context_time(ctx);
1959 update_cgrp_time_from_event(event);
1960 update_group_times(event);
1961 if (event == event->group_leader)
1962 group_sched_out(event, cpuctx, ctx);
1963 else
1964 event_sched_out(event, cpuctx, ctx);
1965 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1966}
1967
d859e29f 1968/*
cdd6c482 1969 * Disable a event.
c93f7669 1970 *
cdd6c482
IM
1971 * If event->ctx is a cloned context, callers must make sure that
1972 * every task struct that event->ctx->task could possibly point to
c93f7669 1973 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1974 * perf_event_for_each_child or perf_event_for_each because they
1975 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1976 * goes to exit will block in perf_event_exit_event().
1977 *
cdd6c482 1978 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1979 * is the current context on this CPU and preemption is disabled,
cdd6c482 1980 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1981 */
f63a8daa 1982static void _perf_event_disable(struct perf_event *event)
d859e29f 1983{
cdd6c482 1984 struct perf_event_context *ctx = event->ctx;
d859e29f 1985
e625cce1 1986 raw_spin_lock_irq(&ctx->lock);
7b648018 1987 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1988 raw_spin_unlock_irq(&ctx->lock);
7b648018 1989 return;
53cfbf59 1990 }
e625cce1 1991 raw_spin_unlock_irq(&ctx->lock);
7b648018 1992
fae3fde6
PZ
1993 event_function_call(event, __perf_event_disable, NULL);
1994}
1995
1996void perf_event_disable_local(struct perf_event *event)
1997{
1998 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1999}
f63a8daa
PZ
2000
2001/*
2002 * Strictly speaking kernel users cannot create groups and therefore this
2003 * interface does not need the perf_event_ctx_lock() magic.
2004 */
2005void perf_event_disable(struct perf_event *event)
2006{
2007 struct perf_event_context *ctx;
2008
2009 ctx = perf_event_ctx_lock(event);
2010 _perf_event_disable(event);
2011 perf_event_ctx_unlock(event, ctx);
2012}
dcfce4a0 2013EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2014
5aab90ce
JO
2015void perf_event_disable_inatomic(struct perf_event *event)
2016{
2017 event->pending_disable = 1;
2018 irq_work_queue(&event->pending);
2019}
2020
e5d1367f
SE
2021static void perf_set_shadow_time(struct perf_event *event,
2022 struct perf_event_context *ctx,
2023 u64 tstamp)
2024{
2025 /*
2026 * use the correct time source for the time snapshot
2027 *
2028 * We could get by without this by leveraging the
2029 * fact that to get to this function, the caller
2030 * has most likely already called update_context_time()
2031 * and update_cgrp_time_xx() and thus both timestamp
2032 * are identical (or very close). Given that tstamp is,
2033 * already adjusted for cgroup, we could say that:
2034 * tstamp - ctx->timestamp
2035 * is equivalent to
2036 * tstamp - cgrp->timestamp.
2037 *
2038 * Then, in perf_output_read(), the calculation would
2039 * work with no changes because:
2040 * - event is guaranteed scheduled in
2041 * - no scheduled out in between
2042 * - thus the timestamp would be the same
2043 *
2044 * But this is a bit hairy.
2045 *
2046 * So instead, we have an explicit cgroup call to remain
2047 * within the time time source all along. We believe it
2048 * is cleaner and simpler to understand.
2049 */
2050 if (is_cgroup_event(event))
2051 perf_cgroup_set_shadow_time(event, tstamp);
2052 else
2053 event->shadow_ctx_time = tstamp - ctx->timestamp;
2054}
2055
4fe757dd
PZ
2056#define MAX_INTERRUPTS (~0ULL)
2057
2058static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2059static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2060
235c7fc7 2061static int
9ffcfa6f 2062event_sched_in(struct perf_event *event,
235c7fc7 2063 struct perf_cpu_context *cpuctx,
6e37738a 2064 struct perf_event_context *ctx)
235c7fc7 2065{
4158755d 2066 u64 tstamp = perf_event_time(event);
44377277 2067 int ret = 0;
4158755d 2068
63342411
PZ
2069 lockdep_assert_held(&ctx->lock);
2070
cdd6c482 2071 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2072 return 0;
2073
95ff4ca2
AS
2074 WRITE_ONCE(event->oncpu, smp_processor_id());
2075 /*
2076 * Order event::oncpu write to happen before the ACTIVE state
2077 * is visible.
2078 */
2079 smp_wmb();
2080 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2081
2082 /*
2083 * Unthrottle events, since we scheduled we might have missed several
2084 * ticks already, also for a heavily scheduling task there is little
2085 * guarantee it'll get a tick in a timely manner.
2086 */
2087 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2088 perf_log_throttle(event, 1);
2089 event->hw.interrupts = 0;
2090 }
2091
235c7fc7
IM
2092 /*
2093 * The new state must be visible before we turn it on in the hardware:
2094 */
2095 smp_wmb();
2096
44377277
AS
2097 perf_pmu_disable(event->pmu);
2098
72f669c0
SL
2099 perf_set_shadow_time(event, ctx, tstamp);
2100
ec0d7729
AS
2101 perf_log_itrace_start(event);
2102
a4eaf7f1 2103 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2104 event->state = PERF_EVENT_STATE_INACTIVE;
2105 event->oncpu = -1;
44377277
AS
2106 ret = -EAGAIN;
2107 goto out;
235c7fc7
IM
2108 }
2109
00a2916f
PZ
2110 event->tstamp_running += tstamp - event->tstamp_stopped;
2111
cdd6c482 2112 if (!is_software_event(event))
3b6f9e5c 2113 cpuctx->active_oncpu++;
2fde4f94
MR
2114 if (!ctx->nr_active++)
2115 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2116 if (event->attr.freq && event->attr.sample_freq)
2117 ctx->nr_freq++;
235c7fc7 2118
cdd6c482 2119 if (event->attr.exclusive)
3b6f9e5c
PM
2120 cpuctx->exclusive = 1;
2121
44377277
AS
2122out:
2123 perf_pmu_enable(event->pmu);
2124
2125 return ret;
235c7fc7
IM
2126}
2127
6751b71e 2128static int
cdd6c482 2129group_sched_in(struct perf_event *group_event,
6751b71e 2130 struct perf_cpu_context *cpuctx,
6e37738a 2131 struct perf_event_context *ctx)
6751b71e 2132{
6bde9b6c 2133 struct perf_event *event, *partial_group = NULL;
4a234593 2134 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2135 u64 now = ctx->time;
2136 bool simulate = false;
6751b71e 2137
cdd6c482 2138 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2139 return 0;
2140
fbbe0701 2141 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2142
9ffcfa6f 2143 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2144 pmu->cancel_txn(pmu);
272325c4 2145 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2146 return -EAGAIN;
90151c35 2147 }
6751b71e
PM
2148
2149 /*
2150 * Schedule in siblings as one group (if any):
2151 */
cdd6c482 2152 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2153 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2154 partial_group = event;
6751b71e
PM
2155 goto group_error;
2156 }
2157 }
2158
9ffcfa6f 2159 if (!pmu->commit_txn(pmu))
6e85158c 2160 return 0;
9ffcfa6f 2161
6751b71e
PM
2162group_error:
2163 /*
2164 * Groups can be scheduled in as one unit only, so undo any
2165 * partial group before returning:
d7842da4
SE
2166 * The events up to the failed event are scheduled out normally,
2167 * tstamp_stopped will be updated.
2168 *
2169 * The failed events and the remaining siblings need to have
2170 * their timings updated as if they had gone thru event_sched_in()
2171 * and event_sched_out(). This is required to get consistent timings
2172 * across the group. This also takes care of the case where the group
2173 * could never be scheduled by ensuring tstamp_stopped is set to mark
2174 * the time the event was actually stopped, such that time delta
2175 * calculation in update_event_times() is correct.
6751b71e 2176 */
cdd6c482
IM
2177 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2178 if (event == partial_group)
d7842da4
SE
2179 simulate = true;
2180
2181 if (simulate) {
2182 event->tstamp_running += now - event->tstamp_stopped;
2183 event->tstamp_stopped = now;
2184 } else {
2185 event_sched_out(event, cpuctx, ctx);
2186 }
6751b71e 2187 }
9ffcfa6f 2188 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2189
ad5133b7 2190 pmu->cancel_txn(pmu);
90151c35 2191
272325c4 2192 perf_mux_hrtimer_restart(cpuctx);
9e630205 2193
6751b71e
PM
2194 return -EAGAIN;
2195}
2196
3b6f9e5c 2197/*
cdd6c482 2198 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2199 */
cdd6c482 2200static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2201 struct perf_cpu_context *cpuctx,
2202 int can_add_hw)
2203{
2204 /*
cdd6c482 2205 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2206 */
4ff6a8de 2207 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2208 return 1;
2209 /*
2210 * If an exclusive group is already on, no other hardware
cdd6c482 2211 * events can go on.
3b6f9e5c
PM
2212 */
2213 if (cpuctx->exclusive)
2214 return 0;
2215 /*
2216 * If this group is exclusive and there are already
cdd6c482 2217 * events on the CPU, it can't go on.
3b6f9e5c 2218 */
cdd6c482 2219 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2220 return 0;
2221 /*
2222 * Otherwise, try to add it if all previous groups were able
2223 * to go on.
2224 */
2225 return can_add_hw;
2226}
2227
9b231d9f
PZ
2228/*
2229 * Complement to update_event_times(). This computes the tstamp_* values to
2230 * continue 'enabled' state from @now, and effectively discards the time
2231 * between the prior tstamp_stopped and now (as we were in the OFF state, or
2232 * just switched (context) time base).
2233 *
2234 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2235 * cannot have been scheduled in yet. And going into INACTIVE state means
2236 * '@event->tstamp_stopped = @now'.
2237 *
2238 * Thus given the rules of update_event_times():
2239 *
2240 * total_time_enabled = tstamp_stopped - tstamp_enabled
2241 * total_time_running = tstamp_stopped - tstamp_running
2242 *
2243 * We can insert 'tstamp_stopped == now' and reverse them to compute new
2244 * tstamp_* values.
2245 */
2246static void __perf_event_enable_time(struct perf_event *event, u64 now)
2247{
2248 WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2249
2250 event->tstamp_stopped = now;
2251 event->tstamp_enabled = now - event->total_time_enabled;
2252 event->tstamp_running = now - event->total_time_running;
2253}
2254
cdd6c482
IM
2255static void add_event_to_ctx(struct perf_event *event,
2256 struct perf_event_context *ctx)
53cfbf59 2257{
4158755d
SE
2258 u64 tstamp = perf_event_time(event);
2259
cdd6c482 2260 list_add_event(event, ctx);
8a49542c 2261 perf_group_attach(event);
9b231d9f
PZ
2262 /*
2263 * We can be called with event->state == STATE_OFF when we create with
2264 * .disabled = 1. In that case the IOC_ENABLE will call this function.
2265 */
2266 if (event->state == PERF_EVENT_STATE_INACTIVE)
2267 __perf_event_enable_time(event, tstamp);
53cfbf59
PM
2268}
2269
bd2afa49
PZ
2270static void ctx_sched_out(struct perf_event_context *ctx,
2271 struct perf_cpu_context *cpuctx,
2272 enum event_type_t event_type);
2c29ef0f
PZ
2273static void
2274ctx_sched_in(struct perf_event_context *ctx,
2275 struct perf_cpu_context *cpuctx,
2276 enum event_type_t event_type,
2277 struct task_struct *task);
fe4b04fa 2278
bd2afa49 2279static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2280 struct perf_event_context *ctx,
2281 enum event_type_t event_type)
bd2afa49
PZ
2282{
2283 if (!cpuctx->task_ctx)
2284 return;
2285
2286 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2287 return;
2288
487f05e1 2289 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2290}
2291
dce5855b
PZ
2292static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2293 struct perf_event_context *ctx,
2294 struct task_struct *task)
2295{
2296 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2297 if (ctx)
2298 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2299 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2300 if (ctx)
2301 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2302}
2303
487f05e1
AS
2304/*
2305 * We want to maintain the following priority of scheduling:
2306 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2307 * - task pinned (EVENT_PINNED)
2308 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2309 * - task flexible (EVENT_FLEXIBLE).
2310 *
2311 * In order to avoid unscheduling and scheduling back in everything every
2312 * time an event is added, only do it for the groups of equal priority and
2313 * below.
2314 *
2315 * This can be called after a batch operation on task events, in which case
2316 * event_type is a bit mask of the types of events involved. For CPU events,
2317 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2318 */
3e349507 2319static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2320 struct perf_event_context *task_ctx,
2321 enum event_type_t event_type)
0017960f 2322{
487f05e1
AS
2323 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2324 bool cpu_event = !!(event_type & EVENT_CPU);
2325
2326 /*
2327 * If pinned groups are involved, flexible groups also need to be
2328 * scheduled out.
2329 */
2330 if (event_type & EVENT_PINNED)
2331 event_type |= EVENT_FLEXIBLE;
2332
3e349507
PZ
2333 perf_pmu_disable(cpuctx->ctx.pmu);
2334 if (task_ctx)
487f05e1
AS
2335 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2336
2337 /*
2338 * Decide which cpu ctx groups to schedule out based on the types
2339 * of events that caused rescheduling:
2340 * - EVENT_CPU: schedule out corresponding groups;
2341 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2342 * - otherwise, do nothing more.
2343 */
2344 if (cpu_event)
2345 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2346 else if (ctx_event_type & EVENT_PINNED)
2347 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2348
3e349507
PZ
2349 perf_event_sched_in(cpuctx, task_ctx, current);
2350 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2351}
2352
0793a61d 2353/*
cdd6c482 2354 * Cross CPU call to install and enable a performance event
682076ae 2355 *
a096309b
PZ
2356 * Very similar to remote_function() + event_function() but cannot assume that
2357 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2358 */
fe4b04fa 2359static int __perf_install_in_context(void *info)
0793a61d 2360{
a096309b
PZ
2361 struct perf_event *event = info;
2362 struct perf_event_context *ctx = event->ctx;
108b02cf 2363 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2364 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2365 bool reprogram = true;
a096309b 2366 int ret = 0;
0793a61d 2367
63b6da39 2368 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2369 if (ctx->task) {
b58f6b0d
PZ
2370 raw_spin_lock(&ctx->lock);
2371 task_ctx = ctx;
a096309b 2372
63cae12b 2373 reprogram = (ctx->task == current);
b58f6b0d 2374
39a43640 2375 /*
63cae12b
PZ
2376 * If the task is running, it must be running on this CPU,
2377 * otherwise we cannot reprogram things.
2378 *
2379 * If its not running, we don't care, ctx->lock will
2380 * serialize against it becoming runnable.
39a43640 2381 */
63cae12b
PZ
2382 if (task_curr(ctx->task) && !reprogram) {
2383 ret = -ESRCH;
2384 goto unlock;
2385 }
a096309b 2386
63cae12b 2387 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2388 } else if (task_ctx) {
2389 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2390 }
b58f6b0d 2391
63cae12b 2392 if (reprogram) {
a096309b
PZ
2393 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2394 add_event_to_ctx(event, ctx);
487f05e1 2395 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2396 } else {
2397 add_event_to_ctx(event, ctx);
2398 }
2399
63b6da39 2400unlock:
2c29ef0f 2401 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2402
a096309b 2403 return ret;
0793a61d
TG
2404}
2405
2406/*
a096309b
PZ
2407 * Attach a performance event to a context.
2408 *
2409 * Very similar to event_function_call, see comment there.
0793a61d
TG
2410 */
2411static void
cdd6c482
IM
2412perf_install_in_context(struct perf_event_context *ctx,
2413 struct perf_event *event,
0793a61d
TG
2414 int cpu)
2415{
a096309b 2416 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2417
fe4b04fa
PZ
2418 lockdep_assert_held(&ctx->mutex);
2419
0cda4c02
YZ
2420 if (event->cpu != -1)
2421 event->cpu = cpu;
c3f00c70 2422
0b8f1e2e
PZ
2423 /*
2424 * Ensures that if we can observe event->ctx, both the event and ctx
2425 * will be 'complete'. See perf_iterate_sb_cpu().
2426 */
2427 smp_store_release(&event->ctx, ctx);
2428
a096309b
PZ
2429 if (!task) {
2430 cpu_function_call(cpu, __perf_install_in_context, event);
2431 return;
2432 }
2433
2434 /*
2435 * Should not happen, we validate the ctx is still alive before calling.
2436 */
2437 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2438 return;
2439
39a43640
PZ
2440 /*
2441 * Installing events is tricky because we cannot rely on ctx->is_active
2442 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2443 *
2444 * Instead we use task_curr(), which tells us if the task is running.
2445 * However, since we use task_curr() outside of rq::lock, we can race
2446 * against the actual state. This means the result can be wrong.
2447 *
2448 * If we get a false positive, we retry, this is harmless.
2449 *
2450 * If we get a false negative, things are complicated. If we are after
2451 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2452 * value must be correct. If we're before, it doesn't matter since
2453 * perf_event_context_sched_in() will program the counter.
2454 *
2455 * However, this hinges on the remote context switch having observed
2456 * our task->perf_event_ctxp[] store, such that it will in fact take
2457 * ctx::lock in perf_event_context_sched_in().
2458 *
2459 * We do this by task_function_call(), if the IPI fails to hit the task
2460 * we know any future context switch of task must see the
2461 * perf_event_ctpx[] store.
39a43640 2462 */
63cae12b 2463
63b6da39 2464 /*
63cae12b
PZ
2465 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2466 * task_cpu() load, such that if the IPI then does not find the task
2467 * running, a future context switch of that task must observe the
2468 * store.
63b6da39 2469 */
63cae12b
PZ
2470 smp_mb();
2471again:
2472 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2473 return;
2474
2475 raw_spin_lock_irq(&ctx->lock);
2476 task = ctx->task;
84c4e620 2477 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2478 /*
2479 * Cannot happen because we already checked above (which also
2480 * cannot happen), and we hold ctx->mutex, which serializes us
2481 * against perf_event_exit_task_context().
2482 */
63b6da39
PZ
2483 raw_spin_unlock_irq(&ctx->lock);
2484 return;
2485 }
39a43640 2486 /*
63cae12b
PZ
2487 * If the task is not running, ctx->lock will avoid it becoming so,
2488 * thus we can safely install the event.
39a43640 2489 */
63cae12b
PZ
2490 if (task_curr(task)) {
2491 raw_spin_unlock_irq(&ctx->lock);
2492 goto again;
2493 }
2494 add_event_to_ctx(event, ctx);
2495 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2496}
2497
fa289bec 2498/*
cdd6c482 2499 * Put a event into inactive state and update time fields.
fa289bec
PM
2500 * Enabling the leader of a group effectively enables all
2501 * the group members that aren't explicitly disabled, so we
2502 * have to update their ->tstamp_enabled also.
2503 * Note: this works for group members as well as group leaders
2504 * since the non-leader members' sibling_lists will be empty.
2505 */
1d9b482e 2506static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2507{
cdd6c482 2508 struct perf_event *sub;
4158755d 2509 u64 tstamp = perf_event_time(event);
fa289bec 2510
cdd6c482 2511 event->state = PERF_EVENT_STATE_INACTIVE;
9b231d9f 2512 __perf_event_enable_time(event, tstamp);
9ed6060d 2513 list_for_each_entry(sub, &event->sibling_list, group_entry) {
9b231d9f 2514 /* XXX should not be > INACTIVE if event isn't */
4158755d 2515 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
9b231d9f 2516 __perf_event_enable_time(sub, tstamp);
9ed6060d 2517 }
fa289bec
PM
2518}
2519
d859e29f 2520/*
cdd6c482 2521 * Cross CPU call to enable a performance event
d859e29f 2522 */
fae3fde6
PZ
2523static void __perf_event_enable(struct perf_event *event,
2524 struct perf_cpu_context *cpuctx,
2525 struct perf_event_context *ctx,
2526 void *info)
04289bb9 2527{
cdd6c482 2528 struct perf_event *leader = event->group_leader;
fae3fde6 2529 struct perf_event_context *task_ctx;
04289bb9 2530
6e801e01
PZ
2531 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2532 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2533 return;
3cbed429 2534
bd2afa49
PZ
2535 if (ctx->is_active)
2536 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2537
1d9b482e 2538 __perf_event_mark_enabled(event);
04289bb9 2539
fae3fde6
PZ
2540 if (!ctx->is_active)
2541 return;
2542
e5d1367f 2543 if (!event_filter_match(event)) {
bd2afa49 2544 if (is_cgroup_event(event))
e5d1367f 2545 perf_cgroup_defer_enabled(event);
bd2afa49 2546 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2547 return;
e5d1367f 2548 }
f4c4176f 2549
04289bb9 2550 /*
cdd6c482 2551 * If the event is in a group and isn't the group leader,
d859e29f 2552 * then don't put it on unless the group is on.
04289bb9 2553 */
bd2afa49
PZ
2554 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2555 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2556 return;
bd2afa49 2557 }
fe4b04fa 2558
fae3fde6
PZ
2559 task_ctx = cpuctx->task_ctx;
2560 if (ctx->task)
2561 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2562
487f05e1 2563 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2564}
2565
d859e29f 2566/*
cdd6c482 2567 * Enable a event.
c93f7669 2568 *
cdd6c482
IM
2569 * If event->ctx is a cloned context, callers must make sure that
2570 * every task struct that event->ctx->task could possibly point to
c93f7669 2571 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2572 * perf_event_for_each_child or perf_event_for_each as described
2573 * for perf_event_disable.
d859e29f 2574 */
f63a8daa 2575static void _perf_event_enable(struct perf_event *event)
d859e29f 2576{
cdd6c482 2577 struct perf_event_context *ctx = event->ctx;
d859e29f 2578
7b648018 2579 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2580 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2581 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2582 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2583 return;
2584 }
2585
d859e29f 2586 /*
cdd6c482 2587 * If the event is in error state, clear that first.
7b648018
PZ
2588 *
2589 * That way, if we see the event in error state below, we know that it
2590 * has gone back into error state, as distinct from the task having
2591 * been scheduled away before the cross-call arrived.
d859e29f 2592 */
cdd6c482
IM
2593 if (event->state == PERF_EVENT_STATE_ERROR)
2594 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2595 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2596
fae3fde6 2597 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2598}
f63a8daa
PZ
2599
2600/*
2601 * See perf_event_disable();
2602 */
2603void perf_event_enable(struct perf_event *event)
2604{
2605 struct perf_event_context *ctx;
2606
2607 ctx = perf_event_ctx_lock(event);
2608 _perf_event_enable(event);
2609 perf_event_ctx_unlock(event, ctx);
2610}
dcfce4a0 2611EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2612
375637bc
AS
2613struct stop_event_data {
2614 struct perf_event *event;
2615 unsigned int restart;
2616};
2617
95ff4ca2
AS
2618static int __perf_event_stop(void *info)
2619{
375637bc
AS
2620 struct stop_event_data *sd = info;
2621 struct perf_event *event = sd->event;
95ff4ca2 2622
375637bc 2623 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2624 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2625 return 0;
2626
2627 /* matches smp_wmb() in event_sched_in() */
2628 smp_rmb();
2629
2630 /*
2631 * There is a window with interrupts enabled before we get here,
2632 * so we need to check again lest we try to stop another CPU's event.
2633 */
2634 if (READ_ONCE(event->oncpu) != smp_processor_id())
2635 return -EAGAIN;
2636
2637 event->pmu->stop(event, PERF_EF_UPDATE);
2638
375637bc
AS
2639 /*
2640 * May race with the actual stop (through perf_pmu_output_stop()),
2641 * but it is only used for events with AUX ring buffer, and such
2642 * events will refuse to restart because of rb::aux_mmap_count==0,
2643 * see comments in perf_aux_output_begin().
2644 *
2645 * Since this is happening on a event-local CPU, no trace is lost
2646 * while restarting.
2647 */
2648 if (sd->restart)
c9bbdd48 2649 event->pmu->start(event, 0);
375637bc 2650
95ff4ca2
AS
2651 return 0;
2652}
2653
767ae086 2654static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2655{
2656 struct stop_event_data sd = {
2657 .event = event,
767ae086 2658 .restart = restart,
375637bc
AS
2659 };
2660 int ret = 0;
2661
2662 do {
2663 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2664 return 0;
2665
2666 /* matches smp_wmb() in event_sched_in() */
2667 smp_rmb();
2668
2669 /*
2670 * We only want to restart ACTIVE events, so if the event goes
2671 * inactive here (event->oncpu==-1), there's nothing more to do;
2672 * fall through with ret==-ENXIO.
2673 */
2674 ret = cpu_function_call(READ_ONCE(event->oncpu),
2675 __perf_event_stop, &sd);
2676 } while (ret == -EAGAIN);
2677
2678 return ret;
2679}
2680
2681/*
2682 * In order to contain the amount of racy and tricky in the address filter
2683 * configuration management, it is a two part process:
2684 *
2685 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2686 * we update the addresses of corresponding vmas in
2687 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2688 * (p2) when an event is scheduled in (pmu::add), it calls
2689 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2690 * if the generation has changed since the previous call.
2691 *
2692 * If (p1) happens while the event is active, we restart it to force (p2).
2693 *
2694 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2695 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2696 * ioctl;
2697 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2698 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2699 * for reading;
2700 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2701 * of exec.
2702 */
2703void perf_event_addr_filters_sync(struct perf_event *event)
2704{
2705 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2706
2707 if (!has_addr_filter(event))
2708 return;
2709
2710 raw_spin_lock(&ifh->lock);
2711 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2712 event->pmu->addr_filters_sync(event);
2713 event->hw.addr_filters_gen = event->addr_filters_gen;
2714 }
2715 raw_spin_unlock(&ifh->lock);
2716}
2717EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2718
f63a8daa 2719static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2720{
2023b359 2721 /*
cdd6c482 2722 * not supported on inherited events
2023b359 2723 */
2e939d1d 2724 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2725 return -EINVAL;
2726
cdd6c482 2727 atomic_add(refresh, &event->event_limit);
f63a8daa 2728 _perf_event_enable(event);
2023b359
PZ
2729
2730 return 0;
79f14641 2731}
f63a8daa
PZ
2732
2733/*
2734 * See perf_event_disable()
2735 */
2736int perf_event_refresh(struct perf_event *event, int refresh)
2737{
2738 struct perf_event_context *ctx;
2739 int ret;
2740
2741 ctx = perf_event_ctx_lock(event);
2742 ret = _perf_event_refresh(event, refresh);
2743 perf_event_ctx_unlock(event, ctx);
2744
2745 return ret;
2746}
26ca5c11 2747EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2748
5b0311e1
FW
2749static void ctx_sched_out(struct perf_event_context *ctx,
2750 struct perf_cpu_context *cpuctx,
2751 enum event_type_t event_type)
235c7fc7 2752{
db24d33e 2753 int is_active = ctx->is_active;
c994d613 2754 struct perf_event *event;
235c7fc7 2755
c994d613 2756 lockdep_assert_held(&ctx->lock);
235c7fc7 2757
39a43640
PZ
2758 if (likely(!ctx->nr_events)) {
2759 /*
2760 * See __perf_remove_from_context().
2761 */
2762 WARN_ON_ONCE(ctx->is_active);
2763 if (ctx->task)
2764 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2765 return;
39a43640
PZ
2766 }
2767
db24d33e 2768 ctx->is_active &= ~event_type;
3cbaa590
PZ
2769 if (!(ctx->is_active & EVENT_ALL))
2770 ctx->is_active = 0;
2771
63e30d3e
PZ
2772 if (ctx->task) {
2773 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2774 if (!ctx->is_active)
2775 cpuctx->task_ctx = NULL;
2776 }
facc4307 2777
8fdc6539
PZ
2778 /*
2779 * Always update time if it was set; not only when it changes.
2780 * Otherwise we can 'forget' to update time for any but the last
2781 * context we sched out. For example:
2782 *
2783 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2784 * ctx_sched_out(.event_type = EVENT_PINNED)
2785 *
2786 * would only update time for the pinned events.
2787 */
3cbaa590
PZ
2788 if (is_active & EVENT_TIME) {
2789 /* update (and stop) ctx time */
2790 update_context_time(ctx);
2791 update_cgrp_time_from_cpuctx(cpuctx);
2792 }
2793
8fdc6539
PZ
2794 is_active ^= ctx->is_active; /* changed bits */
2795
3cbaa590 2796 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2797 return;
5b0311e1 2798
075e0b00 2799 perf_pmu_disable(ctx->pmu);
3cbaa590 2800 if (is_active & EVENT_PINNED) {
889ff015
FW
2801 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2802 group_sched_out(event, cpuctx, ctx);
9ed6060d 2803 }
889ff015 2804
3cbaa590 2805 if (is_active & EVENT_FLEXIBLE) {
889ff015 2806 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2807 group_sched_out(event, cpuctx, ctx);
9ed6060d 2808 }
1b9a644f 2809 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2810}
2811
564c2b21 2812/*
5a3126d4
PZ
2813 * Test whether two contexts are equivalent, i.e. whether they have both been
2814 * cloned from the same version of the same context.
2815 *
2816 * Equivalence is measured using a generation number in the context that is
2817 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2818 * and list_del_event().
564c2b21 2819 */
cdd6c482
IM
2820static int context_equiv(struct perf_event_context *ctx1,
2821 struct perf_event_context *ctx2)
564c2b21 2822{
211de6eb
PZ
2823 lockdep_assert_held(&ctx1->lock);
2824 lockdep_assert_held(&ctx2->lock);
2825
5a3126d4
PZ
2826 /* Pinning disables the swap optimization */
2827 if (ctx1->pin_count || ctx2->pin_count)
2828 return 0;
2829
2830 /* If ctx1 is the parent of ctx2 */
2831 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2832 return 1;
2833
2834 /* If ctx2 is the parent of ctx1 */
2835 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2836 return 1;
2837
2838 /*
2839 * If ctx1 and ctx2 have the same parent; we flatten the parent
2840 * hierarchy, see perf_event_init_context().
2841 */
2842 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2843 ctx1->parent_gen == ctx2->parent_gen)
2844 return 1;
2845
2846 /* Unmatched */
2847 return 0;
564c2b21
PM
2848}
2849
cdd6c482
IM
2850static void __perf_event_sync_stat(struct perf_event *event,
2851 struct perf_event *next_event)
bfbd3381
PZ
2852{
2853 u64 value;
2854
cdd6c482 2855 if (!event->attr.inherit_stat)
bfbd3381
PZ
2856 return;
2857
2858 /*
cdd6c482 2859 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2860 * because we're in the middle of a context switch and have IRQs
2861 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2862 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2863 * don't need to use it.
2864 */
cdd6c482
IM
2865 switch (event->state) {
2866 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2867 event->pmu->read(event);
2868 /* fall-through */
bfbd3381 2869
cdd6c482
IM
2870 case PERF_EVENT_STATE_INACTIVE:
2871 update_event_times(event);
bfbd3381
PZ
2872 break;
2873
2874 default:
2875 break;
2876 }
2877
2878 /*
cdd6c482 2879 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2880 * values when we flip the contexts.
2881 */
e7850595
PZ
2882 value = local64_read(&next_event->count);
2883 value = local64_xchg(&event->count, value);
2884 local64_set(&next_event->count, value);
bfbd3381 2885
cdd6c482
IM
2886 swap(event->total_time_enabled, next_event->total_time_enabled);
2887 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2888
bfbd3381 2889 /*
19d2e755 2890 * Since we swizzled the values, update the user visible data too.
bfbd3381 2891 */
cdd6c482
IM
2892 perf_event_update_userpage(event);
2893 perf_event_update_userpage(next_event);
bfbd3381
PZ
2894}
2895
cdd6c482
IM
2896static void perf_event_sync_stat(struct perf_event_context *ctx,
2897 struct perf_event_context *next_ctx)
bfbd3381 2898{
cdd6c482 2899 struct perf_event *event, *next_event;
bfbd3381
PZ
2900
2901 if (!ctx->nr_stat)
2902 return;
2903
02ffdbc8
PZ
2904 update_context_time(ctx);
2905
cdd6c482
IM
2906 event = list_first_entry(&ctx->event_list,
2907 struct perf_event, event_entry);
bfbd3381 2908
cdd6c482
IM
2909 next_event = list_first_entry(&next_ctx->event_list,
2910 struct perf_event, event_entry);
bfbd3381 2911
cdd6c482
IM
2912 while (&event->event_entry != &ctx->event_list &&
2913 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2914
cdd6c482 2915 __perf_event_sync_stat(event, next_event);
bfbd3381 2916
cdd6c482
IM
2917 event = list_next_entry(event, event_entry);
2918 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2919 }
2920}
2921
fe4b04fa
PZ
2922static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2923 struct task_struct *next)
0793a61d 2924{
8dc85d54 2925 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2926 struct perf_event_context *next_ctx;
5a3126d4 2927 struct perf_event_context *parent, *next_parent;
108b02cf 2928 struct perf_cpu_context *cpuctx;
c93f7669 2929 int do_switch = 1;
0793a61d 2930
108b02cf
PZ
2931 if (likely(!ctx))
2932 return;
10989fb2 2933
108b02cf
PZ
2934 cpuctx = __get_cpu_context(ctx);
2935 if (!cpuctx->task_ctx)
0793a61d
TG
2936 return;
2937
c93f7669 2938 rcu_read_lock();
8dc85d54 2939 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2940 if (!next_ctx)
2941 goto unlock;
2942
2943 parent = rcu_dereference(ctx->parent_ctx);
2944 next_parent = rcu_dereference(next_ctx->parent_ctx);
2945
2946 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2947 if (!parent && !next_parent)
5a3126d4
PZ
2948 goto unlock;
2949
2950 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2951 /*
2952 * Looks like the two contexts are clones, so we might be
2953 * able to optimize the context switch. We lock both
2954 * contexts and check that they are clones under the
2955 * lock (including re-checking that neither has been
2956 * uncloned in the meantime). It doesn't matter which
2957 * order we take the locks because no other cpu could
2958 * be trying to lock both of these tasks.
2959 */
e625cce1
TG
2960 raw_spin_lock(&ctx->lock);
2961 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2962 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2963 WRITE_ONCE(ctx->task, next);
2964 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2965
2966 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2967
63b6da39
PZ
2968 /*
2969 * RCU_INIT_POINTER here is safe because we've not
2970 * modified the ctx and the above modification of
2971 * ctx->task and ctx->task_ctx_data are immaterial
2972 * since those values are always verified under
2973 * ctx->lock which we're now holding.
2974 */
2975 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2976 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2977
c93f7669 2978 do_switch = 0;
bfbd3381 2979
cdd6c482 2980 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2981 }
e625cce1
TG
2982 raw_spin_unlock(&next_ctx->lock);
2983 raw_spin_unlock(&ctx->lock);
564c2b21 2984 }
5a3126d4 2985unlock:
c93f7669 2986 rcu_read_unlock();
564c2b21 2987
c93f7669 2988 if (do_switch) {
facc4307 2989 raw_spin_lock(&ctx->lock);
487f05e1 2990 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2991 raw_spin_unlock(&ctx->lock);
c93f7669 2992 }
0793a61d
TG
2993}
2994
e48c1788
PZ
2995static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2996
ba532500
YZ
2997void perf_sched_cb_dec(struct pmu *pmu)
2998{
e48c1788
PZ
2999 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3000
ba532500 3001 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3002
3003 if (!--cpuctx->sched_cb_usage)
3004 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3005}
3006
e48c1788 3007
ba532500
YZ
3008void perf_sched_cb_inc(struct pmu *pmu)
3009{
e48c1788
PZ
3010 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3011
3012 if (!cpuctx->sched_cb_usage++)
3013 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3014
ba532500
YZ
3015 this_cpu_inc(perf_sched_cb_usages);
3016}
3017
3018/*
3019 * This function provides the context switch callback to the lower code
3020 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3021 *
3022 * This callback is relevant even to per-cpu events; for example multi event
3023 * PEBS requires this to provide PID/TID information. This requires we flush
3024 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3025 */
3026static void perf_pmu_sched_task(struct task_struct *prev,
3027 struct task_struct *next,
3028 bool sched_in)
3029{
3030 struct perf_cpu_context *cpuctx;
3031 struct pmu *pmu;
ba532500
YZ
3032
3033 if (prev == next)
3034 return;
3035
e48c1788 3036 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3037 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3038
e48c1788
PZ
3039 if (WARN_ON_ONCE(!pmu->sched_task))
3040 continue;
ba532500 3041
e48c1788
PZ
3042 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3043 perf_pmu_disable(pmu);
ba532500 3044
e48c1788 3045 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3046
e48c1788
PZ
3047 perf_pmu_enable(pmu);
3048 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3049 }
ba532500
YZ
3050}
3051
45ac1403
AH
3052static void perf_event_switch(struct task_struct *task,
3053 struct task_struct *next_prev, bool sched_in);
3054
8dc85d54
PZ
3055#define for_each_task_context_nr(ctxn) \
3056 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3057
3058/*
3059 * Called from scheduler to remove the events of the current task,
3060 * with interrupts disabled.
3061 *
3062 * We stop each event and update the event value in event->count.
3063 *
3064 * This does not protect us against NMI, but disable()
3065 * sets the disabled bit in the control field of event _before_
3066 * accessing the event control register. If a NMI hits, then it will
3067 * not restart the event.
3068 */
ab0cce56
JO
3069void __perf_event_task_sched_out(struct task_struct *task,
3070 struct task_struct *next)
8dc85d54
PZ
3071{
3072 int ctxn;
3073
ba532500
YZ
3074 if (__this_cpu_read(perf_sched_cb_usages))
3075 perf_pmu_sched_task(task, next, false);
3076
45ac1403
AH
3077 if (atomic_read(&nr_switch_events))
3078 perf_event_switch(task, next, false);
3079
8dc85d54
PZ
3080 for_each_task_context_nr(ctxn)
3081 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3082
3083 /*
3084 * if cgroup events exist on this CPU, then we need
3085 * to check if we have to switch out PMU state.
3086 * cgroup event are system-wide mode only
3087 */
4a32fea9 3088 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3089 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3090}
3091
5b0311e1
FW
3092/*
3093 * Called with IRQs disabled
3094 */
3095static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3096 enum event_type_t event_type)
3097{
3098 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3099}
3100
235c7fc7 3101static void
5b0311e1 3102ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 3103 struct perf_cpu_context *cpuctx)
0793a61d 3104{
cdd6c482 3105 struct perf_event *event;
0793a61d 3106
889ff015
FW
3107 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3108 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3109 continue;
5632ab12 3110 if (!event_filter_match(event))
3b6f9e5c
PM
3111 continue;
3112
e5d1367f
SE
3113 /* may need to reset tstamp_enabled */
3114 if (is_cgroup_event(event))
3115 perf_cgroup_mark_enabled(event, ctx);
3116
8c9ed8e1 3117 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3118 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3119
3120 /*
3121 * If this pinned group hasn't been scheduled,
3122 * put it in error state.
3123 */
cdd6c482
IM
3124 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3125 update_group_times(event);
3126 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 3127 }
3b6f9e5c 3128 }
5b0311e1
FW
3129}
3130
3131static void
3132ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3133 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3134{
3135 struct perf_event *event;
3136 int can_add_hw = 1;
3b6f9e5c 3137
889ff015
FW
3138 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3139 /* Ignore events in OFF or ERROR state */
3140 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3141 continue;
04289bb9
IM
3142 /*
3143 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3144 * of events:
04289bb9 3145 */
5632ab12 3146 if (!event_filter_match(event))
0793a61d
TG
3147 continue;
3148
e5d1367f
SE
3149 /* may need to reset tstamp_enabled */
3150 if (is_cgroup_event(event))
3151 perf_cgroup_mark_enabled(event, ctx);
3152
9ed6060d 3153 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3154 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3155 can_add_hw = 0;
9ed6060d 3156 }
0793a61d 3157 }
5b0311e1
FW
3158}
3159
3160static void
3161ctx_sched_in(struct perf_event_context *ctx,
3162 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3163 enum event_type_t event_type,
3164 struct task_struct *task)
5b0311e1 3165{
db24d33e 3166 int is_active = ctx->is_active;
c994d613
PZ
3167 u64 now;
3168
3169 lockdep_assert_held(&ctx->lock);
e5d1367f 3170
5b0311e1 3171 if (likely(!ctx->nr_events))
facc4307 3172 return;
5b0311e1 3173
3cbaa590 3174 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3175 if (ctx->task) {
3176 if (!is_active)
3177 cpuctx->task_ctx = ctx;
3178 else
3179 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3180 }
3181
3cbaa590
PZ
3182 is_active ^= ctx->is_active; /* changed bits */
3183
3184 if (is_active & EVENT_TIME) {
3185 /* start ctx time */
3186 now = perf_clock();
3187 ctx->timestamp = now;
3188 perf_cgroup_set_timestamp(task, ctx);
3189 }
3190
5b0311e1
FW
3191 /*
3192 * First go through the list and put on any pinned groups
3193 * in order to give them the best chance of going on.
3194 */
3cbaa590 3195 if (is_active & EVENT_PINNED)
6e37738a 3196 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3197
3198 /* Then walk through the lower prio flexible groups */
3cbaa590 3199 if (is_active & EVENT_FLEXIBLE)
6e37738a 3200 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3201}
3202
329c0e01 3203static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3204 enum event_type_t event_type,
3205 struct task_struct *task)
329c0e01
FW
3206{
3207 struct perf_event_context *ctx = &cpuctx->ctx;
3208
e5d1367f 3209 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3210}
3211
e5d1367f
SE
3212static void perf_event_context_sched_in(struct perf_event_context *ctx,
3213 struct task_struct *task)
235c7fc7 3214{
108b02cf 3215 struct perf_cpu_context *cpuctx;
235c7fc7 3216
108b02cf 3217 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3218 if (cpuctx->task_ctx == ctx)
3219 return;
3220
facc4307 3221 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3222 /*
3223 * We must check ctx->nr_events while holding ctx->lock, such
3224 * that we serialize against perf_install_in_context().
3225 */
3226 if (!ctx->nr_events)
3227 goto unlock;
3228
1b9a644f 3229 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3230 /*
3231 * We want to keep the following priority order:
3232 * cpu pinned (that don't need to move), task pinned,
3233 * cpu flexible, task flexible.
fe45bafb
AS
3234 *
3235 * However, if task's ctx is not carrying any pinned
3236 * events, no need to flip the cpuctx's events around.
329c0e01 3237 */
fe45bafb
AS
3238 if (!list_empty(&ctx->pinned_groups))
3239 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3240 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3241 perf_pmu_enable(ctx->pmu);
fdccc3fb 3242
3243unlock:
facc4307 3244 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3245}
3246
8dc85d54
PZ
3247/*
3248 * Called from scheduler to add the events of the current task
3249 * with interrupts disabled.
3250 *
3251 * We restore the event value and then enable it.
3252 *
3253 * This does not protect us against NMI, but enable()
3254 * sets the enabled bit in the control field of event _before_
3255 * accessing the event control register. If a NMI hits, then it will
3256 * keep the event running.
3257 */
ab0cce56
JO
3258void __perf_event_task_sched_in(struct task_struct *prev,
3259 struct task_struct *task)
8dc85d54
PZ
3260{
3261 struct perf_event_context *ctx;
3262 int ctxn;
3263
7e41d177
PZ
3264 /*
3265 * If cgroup events exist on this CPU, then we need to check if we have
3266 * to switch in PMU state; cgroup event are system-wide mode only.
3267 *
3268 * Since cgroup events are CPU events, we must schedule these in before
3269 * we schedule in the task events.
3270 */
3271 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3272 perf_cgroup_sched_in(prev, task);
3273
8dc85d54
PZ
3274 for_each_task_context_nr(ctxn) {
3275 ctx = task->perf_event_ctxp[ctxn];
3276 if (likely(!ctx))
3277 continue;
3278
e5d1367f 3279 perf_event_context_sched_in(ctx, task);
8dc85d54 3280 }
d010b332 3281
45ac1403
AH
3282 if (atomic_read(&nr_switch_events))
3283 perf_event_switch(task, prev, true);
3284
ba532500
YZ
3285 if (__this_cpu_read(perf_sched_cb_usages))
3286 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3287}
3288
abd50713
PZ
3289static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3290{
3291 u64 frequency = event->attr.sample_freq;
3292 u64 sec = NSEC_PER_SEC;
3293 u64 divisor, dividend;
3294
3295 int count_fls, nsec_fls, frequency_fls, sec_fls;
3296
3297 count_fls = fls64(count);
3298 nsec_fls = fls64(nsec);
3299 frequency_fls = fls64(frequency);
3300 sec_fls = 30;
3301
3302 /*
3303 * We got @count in @nsec, with a target of sample_freq HZ
3304 * the target period becomes:
3305 *
3306 * @count * 10^9
3307 * period = -------------------
3308 * @nsec * sample_freq
3309 *
3310 */
3311
3312 /*
3313 * Reduce accuracy by one bit such that @a and @b converge
3314 * to a similar magnitude.
3315 */
fe4b04fa 3316#define REDUCE_FLS(a, b) \
abd50713
PZ
3317do { \
3318 if (a##_fls > b##_fls) { \
3319 a >>= 1; \
3320 a##_fls--; \
3321 } else { \
3322 b >>= 1; \
3323 b##_fls--; \
3324 } \
3325} while (0)
3326
3327 /*
3328 * Reduce accuracy until either term fits in a u64, then proceed with
3329 * the other, so that finally we can do a u64/u64 division.
3330 */
3331 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3332 REDUCE_FLS(nsec, frequency);
3333 REDUCE_FLS(sec, count);
3334 }
3335
3336 if (count_fls + sec_fls > 64) {
3337 divisor = nsec * frequency;
3338
3339 while (count_fls + sec_fls > 64) {
3340 REDUCE_FLS(count, sec);
3341 divisor >>= 1;
3342 }
3343
3344 dividend = count * sec;
3345 } else {
3346 dividend = count * sec;
3347
3348 while (nsec_fls + frequency_fls > 64) {
3349 REDUCE_FLS(nsec, frequency);
3350 dividend >>= 1;
3351 }
3352
3353 divisor = nsec * frequency;
3354 }
3355
f6ab91ad
PZ
3356 if (!divisor)
3357 return dividend;
3358
abd50713
PZ
3359 return div64_u64(dividend, divisor);
3360}
3361
e050e3f0
SE
3362static DEFINE_PER_CPU(int, perf_throttled_count);
3363static DEFINE_PER_CPU(u64, perf_throttled_seq);
3364
f39d47ff 3365static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3366{
cdd6c482 3367 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3368 s64 period, sample_period;
bd2b5b12
PZ
3369 s64 delta;
3370
abd50713 3371 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3372
3373 delta = (s64)(period - hwc->sample_period);
3374 delta = (delta + 7) / 8; /* low pass filter */
3375
3376 sample_period = hwc->sample_period + delta;
3377
3378 if (!sample_period)
3379 sample_period = 1;
3380
bd2b5b12 3381 hwc->sample_period = sample_period;
abd50713 3382
e7850595 3383 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3384 if (disable)
3385 event->pmu->stop(event, PERF_EF_UPDATE);
3386
e7850595 3387 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3388
3389 if (disable)
3390 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3391 }
bd2b5b12
PZ
3392}
3393
e050e3f0
SE
3394/*
3395 * combine freq adjustment with unthrottling to avoid two passes over the
3396 * events. At the same time, make sure, having freq events does not change
3397 * the rate of unthrottling as that would introduce bias.
3398 */
3399static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3400 int needs_unthr)
60db5e09 3401{
cdd6c482
IM
3402 struct perf_event *event;
3403 struct hw_perf_event *hwc;
e050e3f0 3404 u64 now, period = TICK_NSEC;
abd50713 3405 s64 delta;
60db5e09 3406
e050e3f0
SE
3407 /*
3408 * only need to iterate over all events iff:
3409 * - context have events in frequency mode (needs freq adjust)
3410 * - there are events to unthrottle on this cpu
3411 */
3412 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3413 return;
3414
e050e3f0 3415 raw_spin_lock(&ctx->lock);
f39d47ff 3416 perf_pmu_disable(ctx->pmu);
e050e3f0 3417
03541f8b 3418 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3419 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3420 continue;
3421
5632ab12 3422 if (!event_filter_match(event))
5d27c23d
PZ
3423 continue;
3424
44377277
AS
3425 perf_pmu_disable(event->pmu);
3426
cdd6c482 3427 hwc = &event->hw;
6a24ed6c 3428
ae23bff1 3429 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3430 hwc->interrupts = 0;
cdd6c482 3431 perf_log_throttle(event, 1);
a4eaf7f1 3432 event->pmu->start(event, 0);
a78ac325
PZ
3433 }
3434
cdd6c482 3435 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3436 goto next;
60db5e09 3437
e050e3f0
SE
3438 /*
3439 * stop the event and update event->count
3440 */
3441 event->pmu->stop(event, PERF_EF_UPDATE);
3442
e7850595 3443 now = local64_read(&event->count);
abd50713
PZ
3444 delta = now - hwc->freq_count_stamp;
3445 hwc->freq_count_stamp = now;
60db5e09 3446
e050e3f0
SE
3447 /*
3448 * restart the event
3449 * reload only if value has changed
f39d47ff
SE
3450 * we have stopped the event so tell that
3451 * to perf_adjust_period() to avoid stopping it
3452 * twice.
e050e3f0 3453 */
abd50713 3454 if (delta > 0)
f39d47ff 3455 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3456
3457 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3458 next:
3459 perf_pmu_enable(event->pmu);
60db5e09 3460 }
e050e3f0 3461
f39d47ff 3462 perf_pmu_enable(ctx->pmu);
e050e3f0 3463 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3464}
3465
235c7fc7 3466/*
cdd6c482 3467 * Round-robin a context's events:
235c7fc7 3468 */
cdd6c482 3469static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3470{
dddd3379
TG
3471 /*
3472 * Rotate the first entry last of non-pinned groups. Rotation might be
3473 * disabled by the inheritance code.
3474 */
3475 if (!ctx->rotate_disable)
3476 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3477}
3478
9e630205 3479static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3480{
8dc85d54 3481 struct perf_event_context *ctx = NULL;
2fde4f94 3482 int rotate = 0;
7fc23a53 3483
b5ab4cd5 3484 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3485 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3486 rotate = 1;
3487 }
235c7fc7 3488
8dc85d54 3489 ctx = cpuctx->task_ctx;
b5ab4cd5 3490 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3491 if (ctx->nr_events != ctx->nr_active)
3492 rotate = 1;
3493 }
9717e6cd 3494
e050e3f0 3495 if (!rotate)
0f5a2601
PZ
3496 goto done;
3497
facc4307 3498 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3499 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3500
e050e3f0
SE
3501 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3502 if (ctx)
3503 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3504
e050e3f0
SE
3505 rotate_ctx(&cpuctx->ctx);
3506 if (ctx)
3507 rotate_ctx(ctx);
235c7fc7 3508
e050e3f0 3509 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3510
0f5a2601
PZ
3511 perf_pmu_enable(cpuctx->ctx.pmu);
3512 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3513done:
9e630205
SE
3514
3515 return rotate;
e9d2b064
PZ
3516}
3517
3518void perf_event_task_tick(void)
3519{
2fde4f94
MR
3520 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3521 struct perf_event_context *ctx, *tmp;
e050e3f0 3522 int throttled;
b5ab4cd5 3523
e9d2b064
PZ
3524 WARN_ON(!irqs_disabled());
3525
e050e3f0
SE
3526 __this_cpu_inc(perf_throttled_seq);
3527 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3528 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3529
2fde4f94 3530 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3531 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3532}
3533
889ff015
FW
3534static int event_enable_on_exec(struct perf_event *event,
3535 struct perf_event_context *ctx)
3536{
3537 if (!event->attr.enable_on_exec)
3538 return 0;
3539
3540 event->attr.enable_on_exec = 0;
3541 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3542 return 0;
3543
1d9b482e 3544 __perf_event_mark_enabled(event);
889ff015
FW
3545
3546 return 1;
3547}
3548
57e7986e 3549/*
cdd6c482 3550 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3551 * This expects task == current.
3552 */
c1274499 3553static void perf_event_enable_on_exec(int ctxn)
57e7986e 3554{
c1274499 3555 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3556 enum event_type_t event_type = 0;
3e349507 3557 struct perf_cpu_context *cpuctx;
cdd6c482 3558 struct perf_event *event;
57e7986e
PM
3559 unsigned long flags;
3560 int enabled = 0;
3561
3562 local_irq_save(flags);
c1274499 3563 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3564 if (!ctx || !ctx->nr_events)
57e7986e
PM
3565 goto out;
3566
3e349507
PZ
3567 cpuctx = __get_cpu_context(ctx);
3568 perf_ctx_lock(cpuctx, ctx);
7fce2509 3569 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3570 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3571 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3572 event_type |= get_event_type(event);
3573 }
57e7986e
PM
3574
3575 /*
3e349507 3576 * Unclone and reschedule this context if we enabled any event.
57e7986e 3577 */
3e349507 3578 if (enabled) {
211de6eb 3579 clone_ctx = unclone_ctx(ctx);
487f05e1 3580 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3581 } else {
3582 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3583 }
3584 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3585
9ed6060d 3586out:
57e7986e 3587 local_irq_restore(flags);
211de6eb
PZ
3588
3589 if (clone_ctx)
3590 put_ctx(clone_ctx);
57e7986e
PM
3591}
3592
0492d4c5
PZ
3593struct perf_read_data {
3594 struct perf_event *event;
3595 bool group;
7d88962e 3596 int ret;
0492d4c5
PZ
3597};
3598
451d24d1 3599static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3600{
d6a2f903
DCC
3601 u16 local_pkg, event_pkg;
3602
3603 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3604 int local_cpu = smp_processor_id();
3605
3606 event_pkg = topology_physical_package_id(event_cpu);
3607 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3608
3609 if (event_pkg == local_pkg)
3610 return local_cpu;
3611 }
3612
3613 return event_cpu;
3614}
3615
0793a61d 3616/*
cdd6c482 3617 * Cross CPU call to read the hardware event
0793a61d 3618 */
cdd6c482 3619static void __perf_event_read(void *info)
0793a61d 3620{
0492d4c5
PZ
3621 struct perf_read_data *data = info;
3622 struct perf_event *sub, *event = data->event;
cdd6c482 3623 struct perf_event_context *ctx = event->ctx;
108b02cf 3624 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3625 struct pmu *pmu = event->pmu;
621a01ea 3626
e1ac3614
PM
3627 /*
3628 * If this is a task context, we need to check whether it is
3629 * the current task context of this cpu. If not it has been
3630 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3631 * event->count would have been updated to a recent sample
3632 * when the event was scheduled out.
e1ac3614
PM
3633 */
3634 if (ctx->task && cpuctx->task_ctx != ctx)
3635 return;
3636
e625cce1 3637 raw_spin_lock(&ctx->lock);
e5d1367f 3638 if (ctx->is_active) {
542e72fc 3639 update_context_time(ctx);
e5d1367f
SE
3640 update_cgrp_time_from_event(event);
3641 }
0492d4c5 3642
cdd6c482 3643 update_event_times(event);
4a00c16e
SB
3644 if (event->state != PERF_EVENT_STATE_ACTIVE)
3645 goto unlock;
0492d4c5 3646
4a00c16e
SB
3647 if (!data->group) {
3648 pmu->read(event);
3649 data->ret = 0;
0492d4c5 3650 goto unlock;
4a00c16e
SB
3651 }
3652
3653 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3654
3655 pmu->read(event);
0492d4c5
PZ
3656
3657 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3658 update_event_times(sub);
4a00c16e
SB
3659 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3660 /*
3661 * Use sibling's PMU rather than @event's since
3662 * sibling could be on different (eg: software) PMU.
3663 */
0492d4c5 3664 sub->pmu->read(sub);
4a00c16e 3665 }
0492d4c5 3666 }
4a00c16e
SB
3667
3668 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3669
3670unlock:
e625cce1 3671 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3672}
3673
b5e58793
PZ
3674static inline u64 perf_event_count(struct perf_event *event)
3675{
c39a0e2c 3676 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3677}
3678
ffe8690c
KX
3679/*
3680 * NMI-safe method to read a local event, that is an event that
3681 * is:
3682 * - either for the current task, or for this CPU
3683 * - does not have inherit set, for inherited task events
3684 * will not be local and we cannot read them atomically
3685 * - must not have a pmu::count method
3686 */
f91840a3 3687int perf_event_read_local(struct perf_event *event, u64 *value)
ffe8690c
KX
3688{
3689 unsigned long flags;
f91840a3 3690 int ret = 0;
ffe8690c
KX
3691
3692 /*
3693 * Disabling interrupts avoids all counter scheduling (context
3694 * switches, timer based rotation and IPIs).
3695 */
3696 local_irq_save(flags);
3697
ffe8690c
KX
3698 /*
3699 * It must not be an event with inherit set, we cannot read
3700 * all child counters from atomic context.
3701 */
f91840a3
AS
3702 if (event->attr.inherit) {
3703 ret = -EOPNOTSUPP;
3704 goto out;
3705 }
ffe8690c 3706
f91840a3
AS
3707 /* If this is a per-task event, it must be for current */
3708 if ((event->attach_state & PERF_ATTACH_TASK) &&
3709 event->hw.target != current) {
3710 ret = -EINVAL;
3711 goto out;
3712 }
3713
3714 /* If this is a per-CPU event, it must be for this CPU */
3715 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3716 event->cpu != smp_processor_id()) {
3717 ret = -EINVAL;
3718 goto out;
3719 }
ffe8690c
KX
3720
3721 /*
3722 * If the event is currently on this CPU, its either a per-task event,
3723 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3724 * oncpu == -1).
3725 */
3726 if (event->oncpu == smp_processor_id())
3727 event->pmu->read(event);
3728
f91840a3
AS
3729 *value = local64_read(&event->count);
3730out:
ffe8690c
KX
3731 local_irq_restore(flags);
3732
f91840a3 3733 return ret;
ffe8690c
KX
3734}
3735
7d88962e 3736static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3737{
451d24d1 3738 int event_cpu, ret = 0;
7d88962e 3739
0793a61d 3740 /*
cdd6c482
IM
3741 * If event is enabled and currently active on a CPU, update the
3742 * value in the event structure:
0793a61d 3743 */
cdd6c482 3744 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3745 struct perf_read_data data = {
3746 .event = event,
3747 .group = group,
7d88962e 3748 .ret = 0,
0492d4c5 3749 };
d6a2f903 3750
451d24d1
PZ
3751 event_cpu = READ_ONCE(event->oncpu);
3752 if ((unsigned)event_cpu >= nr_cpu_ids)
3753 return 0;
3754
3755 preempt_disable();
3756 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3757
58763148
PZ
3758 /*
3759 * Purposely ignore the smp_call_function_single() return
3760 * value.
3761 *
451d24d1 3762 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3763 * scheduled out and that will have updated the event count.
3764 *
3765 * Therefore, either way, we'll have an up-to-date event count
3766 * after this.
3767 */
451d24d1
PZ
3768 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3769 preempt_enable();
58763148 3770 ret = data.ret;
cdd6c482 3771 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3772 struct perf_event_context *ctx = event->ctx;
3773 unsigned long flags;
3774
e625cce1 3775 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3776 /*
3777 * may read while context is not active
3778 * (e.g., thread is blocked), in that case
3779 * we cannot update context time
3780 */
e5d1367f 3781 if (ctx->is_active) {
c530ccd9 3782 update_context_time(ctx);
e5d1367f
SE
3783 update_cgrp_time_from_event(event);
3784 }
0492d4c5
PZ
3785 if (group)
3786 update_group_times(event);
3787 else
3788 update_event_times(event);
e625cce1 3789 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3790 }
7d88962e
SB
3791
3792 return ret;
0793a61d
TG
3793}
3794
a63eaf34 3795/*
cdd6c482 3796 * Initialize the perf_event context in a task_struct:
a63eaf34 3797 */
eb184479 3798static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3799{
e625cce1 3800 raw_spin_lock_init(&ctx->lock);
a63eaf34 3801 mutex_init(&ctx->mutex);
2fde4f94 3802 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3803 INIT_LIST_HEAD(&ctx->pinned_groups);
3804 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3805 INIT_LIST_HEAD(&ctx->event_list);
3806 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3807}
3808
3809static struct perf_event_context *
3810alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3811{
3812 struct perf_event_context *ctx;
3813
3814 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3815 if (!ctx)
3816 return NULL;
3817
3818 __perf_event_init_context(ctx);
3819 if (task) {
3820 ctx->task = task;
3821 get_task_struct(task);
0793a61d 3822 }
eb184479
PZ
3823 ctx->pmu = pmu;
3824
3825 return ctx;
a63eaf34
PM
3826}
3827
2ebd4ffb
MH
3828static struct task_struct *
3829find_lively_task_by_vpid(pid_t vpid)
3830{
3831 struct task_struct *task;
0793a61d
TG
3832
3833 rcu_read_lock();
2ebd4ffb 3834 if (!vpid)
0793a61d
TG
3835 task = current;
3836 else
2ebd4ffb 3837 task = find_task_by_vpid(vpid);
0793a61d
TG
3838 if (task)
3839 get_task_struct(task);
3840 rcu_read_unlock();
3841
3842 if (!task)
3843 return ERR_PTR(-ESRCH);
3844
2ebd4ffb 3845 return task;
2ebd4ffb
MH
3846}
3847
fe4b04fa
PZ
3848/*
3849 * Returns a matching context with refcount and pincount.
3850 */
108b02cf 3851static struct perf_event_context *
4af57ef2
YZ
3852find_get_context(struct pmu *pmu, struct task_struct *task,
3853 struct perf_event *event)
0793a61d 3854{
211de6eb 3855 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3856 struct perf_cpu_context *cpuctx;
4af57ef2 3857 void *task_ctx_data = NULL;
25346b93 3858 unsigned long flags;
8dc85d54 3859 int ctxn, err;
4af57ef2 3860 int cpu = event->cpu;
0793a61d 3861
22a4ec72 3862 if (!task) {
cdd6c482 3863 /* Must be root to operate on a CPU event: */
0764771d 3864 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3865 return ERR_PTR(-EACCES);
3866
108b02cf 3867 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3868 ctx = &cpuctx->ctx;
c93f7669 3869 get_ctx(ctx);
fe4b04fa 3870 ++ctx->pin_count;
0793a61d 3871
0793a61d
TG
3872 return ctx;
3873 }
3874
8dc85d54
PZ
3875 err = -EINVAL;
3876 ctxn = pmu->task_ctx_nr;
3877 if (ctxn < 0)
3878 goto errout;
3879
4af57ef2
YZ
3880 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3881 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3882 if (!task_ctx_data) {
3883 err = -ENOMEM;
3884 goto errout;
3885 }
3886 }
3887
9ed6060d 3888retry:
8dc85d54 3889 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3890 if (ctx) {
211de6eb 3891 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3892 ++ctx->pin_count;
4af57ef2
YZ
3893
3894 if (task_ctx_data && !ctx->task_ctx_data) {
3895 ctx->task_ctx_data = task_ctx_data;
3896 task_ctx_data = NULL;
3897 }
e625cce1 3898 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3899
3900 if (clone_ctx)
3901 put_ctx(clone_ctx);
9137fb28 3902 } else {
eb184479 3903 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3904 err = -ENOMEM;
3905 if (!ctx)
3906 goto errout;
eb184479 3907
4af57ef2
YZ
3908 if (task_ctx_data) {
3909 ctx->task_ctx_data = task_ctx_data;
3910 task_ctx_data = NULL;
3911 }
3912
dbe08d82
ON
3913 err = 0;
3914 mutex_lock(&task->perf_event_mutex);
3915 /*
3916 * If it has already passed perf_event_exit_task().
3917 * we must see PF_EXITING, it takes this mutex too.
3918 */
3919 if (task->flags & PF_EXITING)
3920 err = -ESRCH;
3921 else if (task->perf_event_ctxp[ctxn])
3922 err = -EAGAIN;
fe4b04fa 3923 else {
9137fb28 3924 get_ctx(ctx);
fe4b04fa 3925 ++ctx->pin_count;
dbe08d82 3926 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3927 }
dbe08d82
ON
3928 mutex_unlock(&task->perf_event_mutex);
3929
3930 if (unlikely(err)) {
9137fb28 3931 put_ctx(ctx);
dbe08d82
ON
3932
3933 if (err == -EAGAIN)
3934 goto retry;
3935 goto errout;
a63eaf34
PM
3936 }
3937 }
3938
4af57ef2 3939 kfree(task_ctx_data);
0793a61d 3940 return ctx;
c93f7669 3941
9ed6060d 3942errout:
4af57ef2 3943 kfree(task_ctx_data);
c93f7669 3944 return ERR_PTR(err);
0793a61d
TG
3945}
3946
6fb2915d 3947static void perf_event_free_filter(struct perf_event *event);
2541517c 3948static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3949
cdd6c482 3950static void free_event_rcu(struct rcu_head *head)
592903cd 3951{
cdd6c482 3952 struct perf_event *event;
592903cd 3953
cdd6c482
IM
3954 event = container_of(head, struct perf_event, rcu_head);
3955 if (event->ns)
3956 put_pid_ns(event->ns);
6fb2915d 3957 perf_event_free_filter(event);
cdd6c482 3958 kfree(event);
592903cd
PZ
3959}
3960
b69cf536
PZ
3961static void ring_buffer_attach(struct perf_event *event,
3962 struct ring_buffer *rb);
925d519a 3963
f2fb6bef
KL
3964static void detach_sb_event(struct perf_event *event)
3965{
3966 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3967
3968 raw_spin_lock(&pel->lock);
3969 list_del_rcu(&event->sb_list);
3970 raw_spin_unlock(&pel->lock);
3971}
3972
a4f144eb 3973static bool is_sb_event(struct perf_event *event)
f2fb6bef 3974{
a4f144eb
DCC
3975 struct perf_event_attr *attr = &event->attr;
3976
f2fb6bef 3977 if (event->parent)
a4f144eb 3978 return false;
f2fb6bef
KL
3979
3980 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3981 return false;
f2fb6bef 3982
a4f144eb
DCC
3983 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3984 attr->comm || attr->comm_exec ||
3985 attr->task ||
3986 attr->context_switch)
3987 return true;
3988 return false;
3989}
3990
3991static void unaccount_pmu_sb_event(struct perf_event *event)
3992{
3993 if (is_sb_event(event))
3994 detach_sb_event(event);
f2fb6bef
KL
3995}
3996
4beb31f3 3997static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3998{
4beb31f3
FW
3999 if (event->parent)
4000 return;
4001
4beb31f3
FW
4002 if (is_cgroup_event(event))
4003 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4004}
925d519a 4005
555e0c1e
FW
4006#ifdef CONFIG_NO_HZ_FULL
4007static DEFINE_SPINLOCK(nr_freq_lock);
4008#endif
4009
4010static void unaccount_freq_event_nohz(void)
4011{
4012#ifdef CONFIG_NO_HZ_FULL
4013 spin_lock(&nr_freq_lock);
4014 if (atomic_dec_and_test(&nr_freq_events))
4015 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4016 spin_unlock(&nr_freq_lock);
4017#endif
4018}
4019
4020static void unaccount_freq_event(void)
4021{
4022 if (tick_nohz_full_enabled())
4023 unaccount_freq_event_nohz();
4024 else
4025 atomic_dec(&nr_freq_events);
4026}
4027
4beb31f3
FW
4028static void unaccount_event(struct perf_event *event)
4029{
25432ae9
PZ
4030 bool dec = false;
4031
4beb31f3
FW
4032 if (event->parent)
4033 return;
4034
4035 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4036 dec = true;
4beb31f3
FW
4037 if (event->attr.mmap || event->attr.mmap_data)
4038 atomic_dec(&nr_mmap_events);
4039 if (event->attr.comm)
4040 atomic_dec(&nr_comm_events);
e4222673
HB
4041 if (event->attr.namespaces)
4042 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4043 if (event->attr.task)
4044 atomic_dec(&nr_task_events);
948b26b6 4045 if (event->attr.freq)
555e0c1e 4046 unaccount_freq_event();
45ac1403 4047 if (event->attr.context_switch) {
25432ae9 4048 dec = true;
45ac1403
AH
4049 atomic_dec(&nr_switch_events);
4050 }
4beb31f3 4051 if (is_cgroup_event(event))
25432ae9 4052 dec = true;
4beb31f3 4053 if (has_branch_stack(event))
25432ae9
PZ
4054 dec = true;
4055
9107c89e
PZ
4056 if (dec) {
4057 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4058 schedule_delayed_work(&perf_sched_work, HZ);
4059 }
4beb31f3
FW
4060
4061 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4062
4063 unaccount_pmu_sb_event(event);
4beb31f3 4064}
925d519a 4065
9107c89e
PZ
4066static void perf_sched_delayed(struct work_struct *work)
4067{
4068 mutex_lock(&perf_sched_mutex);
4069 if (atomic_dec_and_test(&perf_sched_count))
4070 static_branch_disable(&perf_sched_events);
4071 mutex_unlock(&perf_sched_mutex);
4072}
4073
bed5b25a
AS
4074/*
4075 * The following implement mutual exclusion of events on "exclusive" pmus
4076 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4077 * at a time, so we disallow creating events that might conflict, namely:
4078 *
4079 * 1) cpu-wide events in the presence of per-task events,
4080 * 2) per-task events in the presence of cpu-wide events,
4081 * 3) two matching events on the same context.
4082 *
4083 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4084 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4085 */
4086static int exclusive_event_init(struct perf_event *event)
4087{
4088 struct pmu *pmu = event->pmu;
4089
4090 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4091 return 0;
4092
4093 /*
4094 * Prevent co-existence of per-task and cpu-wide events on the
4095 * same exclusive pmu.
4096 *
4097 * Negative pmu::exclusive_cnt means there are cpu-wide
4098 * events on this "exclusive" pmu, positive means there are
4099 * per-task events.
4100 *
4101 * Since this is called in perf_event_alloc() path, event::ctx
4102 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4103 * to mean "per-task event", because unlike other attach states it
4104 * never gets cleared.
4105 */
4106 if (event->attach_state & PERF_ATTACH_TASK) {
4107 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4108 return -EBUSY;
4109 } else {
4110 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4111 return -EBUSY;
4112 }
4113
4114 return 0;
4115}
4116
4117static void exclusive_event_destroy(struct perf_event *event)
4118{
4119 struct pmu *pmu = event->pmu;
4120
4121 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4122 return;
4123
4124 /* see comment in exclusive_event_init() */
4125 if (event->attach_state & PERF_ATTACH_TASK)
4126 atomic_dec(&pmu->exclusive_cnt);
4127 else
4128 atomic_inc(&pmu->exclusive_cnt);
4129}
4130
4131static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4132{
3bf6215a 4133 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4134 (e1->cpu == e2->cpu ||
4135 e1->cpu == -1 ||
4136 e2->cpu == -1))
4137 return true;
4138 return false;
4139}
4140
4141/* Called under the same ctx::mutex as perf_install_in_context() */
4142static bool exclusive_event_installable(struct perf_event *event,
4143 struct perf_event_context *ctx)
4144{
4145 struct perf_event *iter_event;
4146 struct pmu *pmu = event->pmu;
4147
4148 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4149 return true;
4150
4151 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4152 if (exclusive_event_match(iter_event, event))
4153 return false;
4154 }
4155
4156 return true;
4157}
4158
375637bc
AS
4159static void perf_addr_filters_splice(struct perf_event *event,
4160 struct list_head *head);
4161
683ede43 4162static void _free_event(struct perf_event *event)
f1600952 4163{
e360adbe 4164 irq_work_sync(&event->pending);
925d519a 4165
4beb31f3 4166 unaccount_event(event);
9ee318a7 4167
76369139 4168 if (event->rb) {
9bb5d40c
PZ
4169 /*
4170 * Can happen when we close an event with re-directed output.
4171 *
4172 * Since we have a 0 refcount, perf_mmap_close() will skip
4173 * over us; possibly making our ring_buffer_put() the last.
4174 */
4175 mutex_lock(&event->mmap_mutex);
b69cf536 4176 ring_buffer_attach(event, NULL);
9bb5d40c 4177 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4178 }
4179
e5d1367f
SE
4180 if (is_cgroup_event(event))
4181 perf_detach_cgroup(event);
4182
a0733e69
PZ
4183 if (!event->parent) {
4184 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4185 put_callchain_buffers();
4186 }
4187
4188 perf_event_free_bpf_prog(event);
375637bc
AS
4189 perf_addr_filters_splice(event, NULL);
4190 kfree(event->addr_filters_offs);
a0733e69
PZ
4191
4192 if (event->destroy)
4193 event->destroy(event);
4194
4195 if (event->ctx)
4196 put_ctx(event->ctx);
4197
62a92c8f
AS
4198 exclusive_event_destroy(event);
4199 module_put(event->pmu->module);
a0733e69
PZ
4200
4201 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4202}
4203
683ede43
PZ
4204/*
4205 * Used to free events which have a known refcount of 1, such as in error paths
4206 * where the event isn't exposed yet and inherited events.
4207 */
4208static void free_event(struct perf_event *event)
0793a61d 4209{
683ede43
PZ
4210 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4211 "unexpected event refcount: %ld; ptr=%p\n",
4212 atomic_long_read(&event->refcount), event)) {
4213 /* leak to avoid use-after-free */
4214 return;
4215 }
0793a61d 4216
683ede43 4217 _free_event(event);
0793a61d
TG
4218}
4219
a66a3052 4220/*
f8697762 4221 * Remove user event from the owner task.
a66a3052 4222 */
f8697762 4223static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4224{
8882135b 4225 struct task_struct *owner;
fb0459d7 4226
8882135b 4227 rcu_read_lock();
8882135b 4228 /*
f47c02c0
PZ
4229 * Matches the smp_store_release() in perf_event_exit_task(). If we
4230 * observe !owner it means the list deletion is complete and we can
4231 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4232 * owner->perf_event_mutex.
4233 */
506458ef 4234 owner = READ_ONCE(event->owner);
8882135b
PZ
4235 if (owner) {
4236 /*
4237 * Since delayed_put_task_struct() also drops the last
4238 * task reference we can safely take a new reference
4239 * while holding the rcu_read_lock().
4240 */
4241 get_task_struct(owner);
4242 }
4243 rcu_read_unlock();
4244
4245 if (owner) {
f63a8daa
PZ
4246 /*
4247 * If we're here through perf_event_exit_task() we're already
4248 * holding ctx->mutex which would be an inversion wrt. the
4249 * normal lock order.
4250 *
4251 * However we can safely take this lock because its the child
4252 * ctx->mutex.
4253 */
4254 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4255
8882135b
PZ
4256 /*
4257 * We have to re-check the event->owner field, if it is cleared
4258 * we raced with perf_event_exit_task(), acquiring the mutex
4259 * ensured they're done, and we can proceed with freeing the
4260 * event.
4261 */
f47c02c0 4262 if (event->owner) {
8882135b 4263 list_del_init(&event->owner_entry);
f47c02c0
PZ
4264 smp_store_release(&event->owner, NULL);
4265 }
8882135b
PZ
4266 mutex_unlock(&owner->perf_event_mutex);
4267 put_task_struct(owner);
4268 }
f8697762
JO
4269}
4270
f8697762
JO
4271static void put_event(struct perf_event *event)
4272{
f8697762
JO
4273 if (!atomic_long_dec_and_test(&event->refcount))
4274 return;
4275
c6e5b732
PZ
4276 _free_event(event);
4277}
4278
4279/*
4280 * Kill an event dead; while event:refcount will preserve the event
4281 * object, it will not preserve its functionality. Once the last 'user'
4282 * gives up the object, we'll destroy the thing.
4283 */
4284int perf_event_release_kernel(struct perf_event *event)
4285{
a4f4bb6d 4286 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4287 struct perf_event *child, *tmp;
4288
a4f4bb6d
PZ
4289 /*
4290 * If we got here through err_file: fput(event_file); we will not have
4291 * attached to a context yet.
4292 */
4293 if (!ctx) {
4294 WARN_ON_ONCE(event->attach_state &
4295 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4296 goto no_ctx;
4297 }
4298
f8697762
JO
4299 if (!is_kernel_event(event))
4300 perf_remove_from_owner(event);
8882135b 4301
5fa7c8ec 4302 ctx = perf_event_ctx_lock(event);
a83fe28e 4303 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4304 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4305
a69b0ca4 4306 raw_spin_lock_irq(&ctx->lock);
683ede43 4307 /*
d8a8cfc7 4308 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4309 * anymore.
683ede43 4310 *
a69b0ca4
PZ
4311 * Anybody acquiring event->child_mutex after the below loop _must_
4312 * also see this, most importantly inherit_event() which will avoid
4313 * placing more children on the list.
683ede43 4314 *
c6e5b732
PZ
4315 * Thus this guarantees that we will in fact observe and kill _ALL_
4316 * child events.
683ede43 4317 */
a69b0ca4
PZ
4318 event->state = PERF_EVENT_STATE_DEAD;
4319 raw_spin_unlock_irq(&ctx->lock);
4320
4321 perf_event_ctx_unlock(event, ctx);
683ede43 4322
c6e5b732
PZ
4323again:
4324 mutex_lock(&event->child_mutex);
4325 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4326
c6e5b732
PZ
4327 /*
4328 * Cannot change, child events are not migrated, see the
4329 * comment with perf_event_ctx_lock_nested().
4330 */
506458ef 4331 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4332 /*
4333 * Since child_mutex nests inside ctx::mutex, we must jump
4334 * through hoops. We start by grabbing a reference on the ctx.
4335 *
4336 * Since the event cannot get freed while we hold the
4337 * child_mutex, the context must also exist and have a !0
4338 * reference count.
4339 */
4340 get_ctx(ctx);
4341
4342 /*
4343 * Now that we have a ctx ref, we can drop child_mutex, and
4344 * acquire ctx::mutex without fear of it going away. Then we
4345 * can re-acquire child_mutex.
4346 */
4347 mutex_unlock(&event->child_mutex);
4348 mutex_lock(&ctx->mutex);
4349 mutex_lock(&event->child_mutex);
4350
4351 /*
4352 * Now that we hold ctx::mutex and child_mutex, revalidate our
4353 * state, if child is still the first entry, it didn't get freed
4354 * and we can continue doing so.
4355 */
4356 tmp = list_first_entry_or_null(&event->child_list,
4357 struct perf_event, child_list);
4358 if (tmp == child) {
4359 perf_remove_from_context(child, DETACH_GROUP);
4360 list_del(&child->child_list);
4361 free_event(child);
4362 /*
4363 * This matches the refcount bump in inherit_event();
4364 * this can't be the last reference.
4365 */
4366 put_event(event);
4367 }
4368
4369 mutex_unlock(&event->child_mutex);
4370 mutex_unlock(&ctx->mutex);
4371 put_ctx(ctx);
4372 goto again;
4373 }
4374 mutex_unlock(&event->child_mutex);
4375
a4f4bb6d
PZ
4376no_ctx:
4377 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4378 return 0;
4379}
4380EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4381
8b10c5e2
PZ
4382/*
4383 * Called when the last reference to the file is gone.
4384 */
a6fa941d
AV
4385static int perf_release(struct inode *inode, struct file *file)
4386{
c6e5b732 4387 perf_event_release_kernel(file->private_data);
a6fa941d 4388 return 0;
fb0459d7 4389}
fb0459d7 4390
59ed446f 4391u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4392{
cdd6c482 4393 struct perf_event *child;
e53c0994
PZ
4394 u64 total = 0;
4395
59ed446f
PZ
4396 *enabled = 0;
4397 *running = 0;
4398
6f10581a 4399 mutex_lock(&event->child_mutex);
01add3ea 4400
7d88962e 4401 (void)perf_event_read(event, false);
01add3ea
SB
4402 total += perf_event_count(event);
4403
59ed446f
PZ
4404 *enabled += event->total_time_enabled +
4405 atomic64_read(&event->child_total_time_enabled);
4406 *running += event->total_time_running +
4407 atomic64_read(&event->child_total_time_running);
4408
4409 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4410 (void)perf_event_read(child, false);
01add3ea 4411 total += perf_event_count(child);
59ed446f
PZ
4412 *enabled += child->total_time_enabled;
4413 *running += child->total_time_running;
4414 }
6f10581a 4415 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4416
4417 return total;
4418}
fb0459d7 4419EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4420
7d88962e 4421static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4422 u64 read_format, u64 *values)
3dab77fb 4423{
2aeb1883 4424 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4425 struct perf_event *sub;
2aeb1883 4426 unsigned long flags;
fa8c2693 4427 int n = 1; /* skip @nr */
7d88962e 4428 int ret;
f63a8daa 4429
7d88962e
SB
4430 ret = perf_event_read(leader, true);
4431 if (ret)
4432 return ret;
abf4868b 4433
fa8c2693
PZ
4434 /*
4435 * Since we co-schedule groups, {enabled,running} times of siblings
4436 * will be identical to those of the leader, so we only publish one
4437 * set.
4438 */
4439 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4440 values[n++] += leader->total_time_enabled +
4441 atomic64_read(&leader->child_total_time_enabled);
4442 }
3dab77fb 4443
fa8c2693
PZ
4444 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4445 values[n++] += leader->total_time_running +
4446 atomic64_read(&leader->child_total_time_running);
4447 }
4448
4449 /*
4450 * Write {count,id} tuples for every sibling.
4451 */
4452 values[n++] += perf_event_count(leader);
abf4868b
PZ
4453 if (read_format & PERF_FORMAT_ID)
4454 values[n++] = primary_event_id(leader);
3dab77fb 4455
2aeb1883
JO
4456 raw_spin_lock_irqsave(&ctx->lock, flags);
4457
fa8c2693
PZ
4458 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4459 values[n++] += perf_event_count(sub);
4460 if (read_format & PERF_FORMAT_ID)
4461 values[n++] = primary_event_id(sub);
4462 }
7d88962e 4463
2aeb1883 4464 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4465 return 0;
fa8c2693 4466}
3dab77fb 4467
fa8c2693
PZ
4468static int perf_read_group(struct perf_event *event,
4469 u64 read_format, char __user *buf)
4470{
4471 struct perf_event *leader = event->group_leader, *child;
4472 struct perf_event_context *ctx = leader->ctx;
7d88962e 4473 int ret;
fa8c2693 4474 u64 *values;
3dab77fb 4475
fa8c2693 4476 lockdep_assert_held(&ctx->mutex);
3dab77fb 4477
fa8c2693
PZ
4478 values = kzalloc(event->read_size, GFP_KERNEL);
4479 if (!values)
4480 return -ENOMEM;
3dab77fb 4481
fa8c2693
PZ
4482 values[0] = 1 + leader->nr_siblings;
4483
4484 /*
4485 * By locking the child_mutex of the leader we effectively
4486 * lock the child list of all siblings.. XXX explain how.
4487 */
4488 mutex_lock(&leader->child_mutex);
abf4868b 4489
7d88962e
SB
4490 ret = __perf_read_group_add(leader, read_format, values);
4491 if (ret)
4492 goto unlock;
4493
4494 list_for_each_entry(child, &leader->child_list, child_list) {
4495 ret = __perf_read_group_add(child, read_format, values);
4496 if (ret)
4497 goto unlock;
4498 }
abf4868b 4499
fa8c2693 4500 mutex_unlock(&leader->child_mutex);
abf4868b 4501
7d88962e 4502 ret = event->read_size;
fa8c2693
PZ
4503 if (copy_to_user(buf, values, event->read_size))
4504 ret = -EFAULT;
7d88962e 4505 goto out;
fa8c2693 4506
7d88962e
SB
4507unlock:
4508 mutex_unlock(&leader->child_mutex);
4509out:
fa8c2693 4510 kfree(values);
abf4868b 4511 return ret;
3dab77fb
PZ
4512}
4513
b15f495b 4514static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4515 u64 read_format, char __user *buf)
4516{
59ed446f 4517 u64 enabled, running;
3dab77fb
PZ
4518 u64 values[4];
4519 int n = 0;
4520
59ed446f
PZ
4521 values[n++] = perf_event_read_value(event, &enabled, &running);
4522 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4523 values[n++] = enabled;
4524 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4525 values[n++] = running;
3dab77fb 4526 if (read_format & PERF_FORMAT_ID)
cdd6c482 4527 values[n++] = primary_event_id(event);
3dab77fb
PZ
4528
4529 if (copy_to_user(buf, values, n * sizeof(u64)))
4530 return -EFAULT;
4531
4532 return n * sizeof(u64);
4533}
4534
dc633982
JO
4535static bool is_event_hup(struct perf_event *event)
4536{
4537 bool no_children;
4538
a69b0ca4 4539 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4540 return false;
4541
4542 mutex_lock(&event->child_mutex);
4543 no_children = list_empty(&event->child_list);
4544 mutex_unlock(&event->child_mutex);
4545 return no_children;
4546}
4547
0793a61d 4548/*
cdd6c482 4549 * Read the performance event - simple non blocking version for now
0793a61d
TG
4550 */
4551static ssize_t
b15f495b 4552__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4553{
cdd6c482 4554 u64 read_format = event->attr.read_format;
3dab77fb 4555 int ret;
0793a61d 4556
3b6f9e5c 4557 /*
cdd6c482 4558 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4559 * error state (i.e. because it was pinned but it couldn't be
4560 * scheduled on to the CPU at some point).
4561 */
cdd6c482 4562 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4563 return 0;
4564
c320c7b7 4565 if (count < event->read_size)
3dab77fb
PZ
4566 return -ENOSPC;
4567
cdd6c482 4568 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4569 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4570 ret = perf_read_group(event, read_format, buf);
3dab77fb 4571 else
b15f495b 4572 ret = perf_read_one(event, read_format, buf);
0793a61d 4573
3dab77fb 4574 return ret;
0793a61d
TG
4575}
4576
0793a61d
TG
4577static ssize_t
4578perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4579{
cdd6c482 4580 struct perf_event *event = file->private_data;
f63a8daa
PZ
4581 struct perf_event_context *ctx;
4582 int ret;
0793a61d 4583
f63a8daa 4584 ctx = perf_event_ctx_lock(event);
b15f495b 4585 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4586 perf_event_ctx_unlock(event, ctx);
4587
4588 return ret;
0793a61d
TG
4589}
4590
4591static unsigned int perf_poll(struct file *file, poll_table *wait)
4592{
cdd6c482 4593 struct perf_event *event = file->private_data;
76369139 4594 struct ring_buffer *rb;
61b67684 4595 unsigned int events = POLLHUP;
c7138f37 4596
e708d7ad 4597 poll_wait(file, &event->waitq, wait);
179033b3 4598
dc633982 4599 if (is_event_hup(event))
179033b3 4600 return events;
c7138f37 4601
10c6db11 4602 /*
9bb5d40c
PZ
4603 * Pin the event->rb by taking event->mmap_mutex; otherwise
4604 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4605 */
4606 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4607 rb = event->rb;
4608 if (rb)
76369139 4609 events = atomic_xchg(&rb->poll, 0);
10c6db11 4610 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4611 return events;
4612}
4613
f63a8daa 4614static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4615{
7d88962e 4616 (void)perf_event_read(event, false);
e7850595 4617 local64_set(&event->count, 0);
cdd6c482 4618 perf_event_update_userpage(event);
3df5edad
PZ
4619}
4620
c93f7669 4621/*
cdd6c482
IM
4622 * Holding the top-level event's child_mutex means that any
4623 * descendant process that has inherited this event will block
8ba289b8 4624 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4625 * task existence requirements of perf_event_enable/disable.
c93f7669 4626 */
cdd6c482
IM
4627static void perf_event_for_each_child(struct perf_event *event,
4628 void (*func)(struct perf_event *))
3df5edad 4629{
cdd6c482 4630 struct perf_event *child;
3df5edad 4631
cdd6c482 4632 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4633
cdd6c482
IM
4634 mutex_lock(&event->child_mutex);
4635 func(event);
4636 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4637 func(child);
cdd6c482 4638 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4639}
4640
cdd6c482
IM
4641static void perf_event_for_each(struct perf_event *event,
4642 void (*func)(struct perf_event *))
3df5edad 4643{
cdd6c482
IM
4644 struct perf_event_context *ctx = event->ctx;
4645 struct perf_event *sibling;
3df5edad 4646
f63a8daa
PZ
4647 lockdep_assert_held(&ctx->mutex);
4648
cdd6c482 4649 event = event->group_leader;
75f937f2 4650
cdd6c482 4651 perf_event_for_each_child(event, func);
cdd6c482 4652 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4653 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4654}
4655
fae3fde6
PZ
4656static void __perf_event_period(struct perf_event *event,
4657 struct perf_cpu_context *cpuctx,
4658 struct perf_event_context *ctx,
4659 void *info)
c7999c6f 4660{
fae3fde6 4661 u64 value = *((u64 *)info);
c7999c6f 4662 bool active;
08247e31 4663
cdd6c482 4664 if (event->attr.freq) {
cdd6c482 4665 event->attr.sample_freq = value;
08247e31 4666 } else {
cdd6c482
IM
4667 event->attr.sample_period = value;
4668 event->hw.sample_period = value;
08247e31 4669 }
bad7192b
PZ
4670
4671 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4672 if (active) {
4673 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4674 /*
4675 * We could be throttled; unthrottle now to avoid the tick
4676 * trying to unthrottle while we already re-started the event.
4677 */
4678 if (event->hw.interrupts == MAX_INTERRUPTS) {
4679 event->hw.interrupts = 0;
4680 perf_log_throttle(event, 1);
4681 }
bad7192b
PZ
4682 event->pmu->stop(event, PERF_EF_UPDATE);
4683 }
4684
4685 local64_set(&event->hw.period_left, 0);
4686
4687 if (active) {
4688 event->pmu->start(event, PERF_EF_RELOAD);
4689 perf_pmu_enable(ctx->pmu);
4690 }
c7999c6f
PZ
4691}
4692
4693static int perf_event_period(struct perf_event *event, u64 __user *arg)
4694{
c7999c6f
PZ
4695 u64 value;
4696
4697 if (!is_sampling_event(event))
4698 return -EINVAL;
4699
4700 if (copy_from_user(&value, arg, sizeof(value)))
4701 return -EFAULT;
4702
4703 if (!value)
4704 return -EINVAL;
4705
4706 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4707 return -EINVAL;
4708
fae3fde6 4709 event_function_call(event, __perf_event_period, &value);
08247e31 4710
c7999c6f 4711 return 0;
08247e31
PZ
4712}
4713
ac9721f3
PZ
4714static const struct file_operations perf_fops;
4715
2903ff01 4716static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4717{
2903ff01
AV
4718 struct fd f = fdget(fd);
4719 if (!f.file)
4720 return -EBADF;
ac9721f3 4721
2903ff01
AV
4722 if (f.file->f_op != &perf_fops) {
4723 fdput(f);
4724 return -EBADF;
ac9721f3 4725 }
2903ff01
AV
4726 *p = f;
4727 return 0;
ac9721f3
PZ
4728}
4729
4730static int perf_event_set_output(struct perf_event *event,
4731 struct perf_event *output_event);
6fb2915d 4732static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4733static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4734
f63a8daa 4735static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4736{
cdd6c482 4737 void (*func)(struct perf_event *);
3df5edad 4738 u32 flags = arg;
d859e29f
PM
4739
4740 switch (cmd) {
cdd6c482 4741 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4742 func = _perf_event_enable;
d859e29f 4743 break;
cdd6c482 4744 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4745 func = _perf_event_disable;
79f14641 4746 break;
cdd6c482 4747 case PERF_EVENT_IOC_RESET:
f63a8daa 4748 func = _perf_event_reset;
6de6a7b9 4749 break;
3df5edad 4750
cdd6c482 4751 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4752 return _perf_event_refresh(event, arg);
08247e31 4753
cdd6c482
IM
4754 case PERF_EVENT_IOC_PERIOD:
4755 return perf_event_period(event, (u64 __user *)arg);
08247e31 4756
cf4957f1
JO
4757 case PERF_EVENT_IOC_ID:
4758 {
4759 u64 id = primary_event_id(event);
4760
4761 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4762 return -EFAULT;
4763 return 0;
4764 }
4765
cdd6c482 4766 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4767 {
ac9721f3 4768 int ret;
ac9721f3 4769 if (arg != -1) {
2903ff01
AV
4770 struct perf_event *output_event;
4771 struct fd output;
4772 ret = perf_fget_light(arg, &output);
4773 if (ret)
4774 return ret;
4775 output_event = output.file->private_data;
4776 ret = perf_event_set_output(event, output_event);
4777 fdput(output);
4778 } else {
4779 ret = perf_event_set_output(event, NULL);
ac9721f3 4780 }
ac9721f3
PZ
4781 return ret;
4782 }
a4be7c27 4783
6fb2915d
LZ
4784 case PERF_EVENT_IOC_SET_FILTER:
4785 return perf_event_set_filter(event, (void __user *)arg);
4786
2541517c
AS
4787 case PERF_EVENT_IOC_SET_BPF:
4788 return perf_event_set_bpf_prog(event, arg);
4789
86e7972f
WN
4790 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4791 struct ring_buffer *rb;
4792
4793 rcu_read_lock();
4794 rb = rcu_dereference(event->rb);
4795 if (!rb || !rb->nr_pages) {
4796 rcu_read_unlock();
4797 return -EINVAL;
4798 }
4799 rb_toggle_paused(rb, !!arg);
4800 rcu_read_unlock();
4801 return 0;
4802 }
d859e29f 4803 default:
3df5edad 4804 return -ENOTTY;
d859e29f 4805 }
3df5edad
PZ
4806
4807 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4808 perf_event_for_each(event, func);
3df5edad 4809 else
cdd6c482 4810 perf_event_for_each_child(event, func);
3df5edad
PZ
4811
4812 return 0;
d859e29f
PM
4813}
4814
f63a8daa
PZ
4815static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4816{
4817 struct perf_event *event = file->private_data;
4818 struct perf_event_context *ctx;
4819 long ret;
4820
4821 ctx = perf_event_ctx_lock(event);
4822 ret = _perf_ioctl(event, cmd, arg);
4823 perf_event_ctx_unlock(event, ctx);
4824
4825 return ret;
4826}
4827
b3f20785
PM
4828#ifdef CONFIG_COMPAT
4829static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4830 unsigned long arg)
4831{
4832 switch (_IOC_NR(cmd)) {
4833 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4834 case _IOC_NR(PERF_EVENT_IOC_ID):
4835 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4836 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4837 cmd &= ~IOCSIZE_MASK;
4838 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4839 }
4840 break;
4841 }
4842 return perf_ioctl(file, cmd, arg);
4843}
4844#else
4845# define perf_compat_ioctl NULL
4846#endif
4847
cdd6c482 4848int perf_event_task_enable(void)
771d7cde 4849{
f63a8daa 4850 struct perf_event_context *ctx;
cdd6c482 4851 struct perf_event *event;
771d7cde 4852
cdd6c482 4853 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4854 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4855 ctx = perf_event_ctx_lock(event);
4856 perf_event_for_each_child(event, _perf_event_enable);
4857 perf_event_ctx_unlock(event, ctx);
4858 }
cdd6c482 4859 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4860
4861 return 0;
4862}
4863
cdd6c482 4864int perf_event_task_disable(void)
771d7cde 4865{
f63a8daa 4866 struct perf_event_context *ctx;
cdd6c482 4867 struct perf_event *event;
771d7cde 4868
cdd6c482 4869 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4870 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4871 ctx = perf_event_ctx_lock(event);
4872 perf_event_for_each_child(event, _perf_event_disable);
4873 perf_event_ctx_unlock(event, ctx);
4874 }
cdd6c482 4875 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4876
4877 return 0;
4878}
4879
cdd6c482 4880static int perf_event_index(struct perf_event *event)
194002b2 4881{
a4eaf7f1
PZ
4882 if (event->hw.state & PERF_HES_STOPPED)
4883 return 0;
4884
cdd6c482 4885 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4886 return 0;
4887
35edc2a5 4888 return event->pmu->event_idx(event);
194002b2
PZ
4889}
4890
c4794295 4891static void calc_timer_values(struct perf_event *event,
e3f3541c 4892 u64 *now,
7f310a5d
EM
4893 u64 *enabled,
4894 u64 *running)
c4794295 4895{
e3f3541c 4896 u64 ctx_time;
c4794295 4897
e3f3541c
PZ
4898 *now = perf_clock();
4899 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4900 *enabled = ctx_time - event->tstamp_enabled;
4901 *running = ctx_time - event->tstamp_running;
4902}
4903
fa731587
PZ
4904static void perf_event_init_userpage(struct perf_event *event)
4905{
4906 struct perf_event_mmap_page *userpg;
4907 struct ring_buffer *rb;
4908
4909 rcu_read_lock();
4910 rb = rcu_dereference(event->rb);
4911 if (!rb)
4912 goto unlock;
4913
4914 userpg = rb->user_page;
4915
4916 /* Allow new userspace to detect that bit 0 is deprecated */
4917 userpg->cap_bit0_is_deprecated = 1;
4918 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4919 userpg->data_offset = PAGE_SIZE;
4920 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4921
4922unlock:
4923 rcu_read_unlock();
4924}
4925
c1317ec2
AL
4926void __weak arch_perf_update_userpage(
4927 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4928{
4929}
4930
38ff667b
PZ
4931/*
4932 * Callers need to ensure there can be no nesting of this function, otherwise
4933 * the seqlock logic goes bad. We can not serialize this because the arch
4934 * code calls this from NMI context.
4935 */
cdd6c482 4936void perf_event_update_userpage(struct perf_event *event)
37d81828 4937{
cdd6c482 4938 struct perf_event_mmap_page *userpg;
76369139 4939 struct ring_buffer *rb;
e3f3541c 4940 u64 enabled, running, now;
38ff667b
PZ
4941
4942 rcu_read_lock();
5ec4c599
PZ
4943 rb = rcu_dereference(event->rb);
4944 if (!rb)
4945 goto unlock;
4946
0d641208
EM
4947 /*
4948 * compute total_time_enabled, total_time_running
4949 * based on snapshot values taken when the event
4950 * was last scheduled in.
4951 *
4952 * we cannot simply called update_context_time()
4953 * because of locking issue as we can be called in
4954 * NMI context
4955 */
e3f3541c 4956 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4957
76369139 4958 userpg = rb->user_page;
7b732a75
PZ
4959 /*
4960 * Disable preemption so as to not let the corresponding user-space
4961 * spin too long if we get preempted.
4962 */
4963 preempt_disable();
37d81828 4964 ++userpg->lock;
92f22a38 4965 barrier();
cdd6c482 4966 userpg->index = perf_event_index(event);
b5e58793 4967 userpg->offset = perf_event_count(event);
365a4038 4968 if (userpg->index)
e7850595 4969 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4970
0d641208 4971 userpg->time_enabled = enabled +
cdd6c482 4972 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4973
0d641208 4974 userpg->time_running = running +
cdd6c482 4975 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4976
c1317ec2 4977 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4978
92f22a38 4979 barrier();
37d81828 4980 ++userpg->lock;
7b732a75 4981 preempt_enable();
38ff667b 4982unlock:
7b732a75 4983 rcu_read_unlock();
37d81828
PM
4984}
4985
11bac800 4986static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 4987{
11bac800 4988 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 4989 struct ring_buffer *rb;
906010b2
PZ
4990 int ret = VM_FAULT_SIGBUS;
4991
4992 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4993 if (vmf->pgoff == 0)
4994 ret = 0;
4995 return ret;
4996 }
4997
4998 rcu_read_lock();
76369139
FW
4999 rb = rcu_dereference(event->rb);
5000 if (!rb)
906010b2
PZ
5001 goto unlock;
5002
5003 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5004 goto unlock;
5005
76369139 5006 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5007 if (!vmf->page)
5008 goto unlock;
5009
5010 get_page(vmf->page);
11bac800 5011 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5012 vmf->page->index = vmf->pgoff;
5013
5014 ret = 0;
5015unlock:
5016 rcu_read_unlock();
5017
5018 return ret;
5019}
5020
10c6db11
PZ
5021static void ring_buffer_attach(struct perf_event *event,
5022 struct ring_buffer *rb)
5023{
b69cf536 5024 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5025 unsigned long flags;
5026
b69cf536
PZ
5027 if (event->rb) {
5028 /*
5029 * Should be impossible, we set this when removing
5030 * event->rb_entry and wait/clear when adding event->rb_entry.
5031 */
5032 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5033
b69cf536 5034 old_rb = event->rb;
b69cf536
PZ
5035 spin_lock_irqsave(&old_rb->event_lock, flags);
5036 list_del_rcu(&event->rb_entry);
5037 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5038
2f993cf0
ON
5039 event->rcu_batches = get_state_synchronize_rcu();
5040 event->rcu_pending = 1;
b69cf536 5041 }
10c6db11 5042
b69cf536 5043 if (rb) {
2f993cf0
ON
5044 if (event->rcu_pending) {
5045 cond_synchronize_rcu(event->rcu_batches);
5046 event->rcu_pending = 0;
5047 }
5048
b69cf536
PZ
5049 spin_lock_irqsave(&rb->event_lock, flags);
5050 list_add_rcu(&event->rb_entry, &rb->event_list);
5051 spin_unlock_irqrestore(&rb->event_lock, flags);
5052 }
5053
767ae086
AS
5054 /*
5055 * Avoid racing with perf_mmap_close(AUX): stop the event
5056 * before swizzling the event::rb pointer; if it's getting
5057 * unmapped, its aux_mmap_count will be 0 and it won't
5058 * restart. See the comment in __perf_pmu_output_stop().
5059 *
5060 * Data will inevitably be lost when set_output is done in
5061 * mid-air, but then again, whoever does it like this is
5062 * not in for the data anyway.
5063 */
5064 if (has_aux(event))
5065 perf_event_stop(event, 0);
5066
b69cf536
PZ
5067 rcu_assign_pointer(event->rb, rb);
5068
5069 if (old_rb) {
5070 ring_buffer_put(old_rb);
5071 /*
5072 * Since we detached before setting the new rb, so that we
5073 * could attach the new rb, we could have missed a wakeup.
5074 * Provide it now.
5075 */
5076 wake_up_all(&event->waitq);
5077 }
10c6db11
PZ
5078}
5079
5080static void ring_buffer_wakeup(struct perf_event *event)
5081{
5082 struct ring_buffer *rb;
5083
5084 rcu_read_lock();
5085 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5086 if (rb) {
5087 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5088 wake_up_all(&event->waitq);
5089 }
10c6db11
PZ
5090 rcu_read_unlock();
5091}
5092
fdc26706 5093struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5094{
76369139 5095 struct ring_buffer *rb;
7b732a75 5096
ac9721f3 5097 rcu_read_lock();
76369139
FW
5098 rb = rcu_dereference(event->rb);
5099 if (rb) {
5100 if (!atomic_inc_not_zero(&rb->refcount))
5101 rb = NULL;
ac9721f3
PZ
5102 }
5103 rcu_read_unlock();
5104
76369139 5105 return rb;
ac9721f3
PZ
5106}
5107
fdc26706 5108void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5109{
76369139 5110 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5111 return;
7b732a75 5112
9bb5d40c 5113 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5114
76369139 5115 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5116}
5117
5118static void perf_mmap_open(struct vm_area_struct *vma)
5119{
cdd6c482 5120 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5121
cdd6c482 5122 atomic_inc(&event->mmap_count);
9bb5d40c 5123 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5124
45bfb2e5
PZ
5125 if (vma->vm_pgoff)
5126 atomic_inc(&event->rb->aux_mmap_count);
5127
1e0fb9ec 5128 if (event->pmu->event_mapped)
bfe33492 5129 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5130}
5131
95ff4ca2
AS
5132static void perf_pmu_output_stop(struct perf_event *event);
5133
9bb5d40c
PZ
5134/*
5135 * A buffer can be mmap()ed multiple times; either directly through the same
5136 * event, or through other events by use of perf_event_set_output().
5137 *
5138 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5139 * the buffer here, where we still have a VM context. This means we need
5140 * to detach all events redirecting to us.
5141 */
7b732a75
PZ
5142static void perf_mmap_close(struct vm_area_struct *vma)
5143{
cdd6c482 5144 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5145
b69cf536 5146 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5147 struct user_struct *mmap_user = rb->mmap_user;
5148 int mmap_locked = rb->mmap_locked;
5149 unsigned long size = perf_data_size(rb);
789f90fc 5150
1e0fb9ec 5151 if (event->pmu->event_unmapped)
bfe33492 5152 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5153
45bfb2e5
PZ
5154 /*
5155 * rb->aux_mmap_count will always drop before rb->mmap_count and
5156 * event->mmap_count, so it is ok to use event->mmap_mutex to
5157 * serialize with perf_mmap here.
5158 */
5159 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5160 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5161 /*
5162 * Stop all AUX events that are writing to this buffer,
5163 * so that we can free its AUX pages and corresponding PMU
5164 * data. Note that after rb::aux_mmap_count dropped to zero,
5165 * they won't start any more (see perf_aux_output_begin()).
5166 */
5167 perf_pmu_output_stop(event);
5168
5169 /* now it's safe to free the pages */
45bfb2e5
PZ
5170 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5171 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5172
95ff4ca2 5173 /* this has to be the last one */
45bfb2e5 5174 rb_free_aux(rb);
95ff4ca2
AS
5175 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5176
45bfb2e5
PZ
5177 mutex_unlock(&event->mmap_mutex);
5178 }
5179
9bb5d40c
PZ
5180 atomic_dec(&rb->mmap_count);
5181
5182 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5183 goto out_put;
9bb5d40c 5184
b69cf536 5185 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5186 mutex_unlock(&event->mmap_mutex);
5187
5188 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5189 if (atomic_read(&rb->mmap_count))
5190 goto out_put;
ac9721f3 5191
9bb5d40c
PZ
5192 /*
5193 * No other mmap()s, detach from all other events that might redirect
5194 * into the now unreachable buffer. Somewhat complicated by the
5195 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5196 */
5197again:
5198 rcu_read_lock();
5199 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5200 if (!atomic_long_inc_not_zero(&event->refcount)) {
5201 /*
5202 * This event is en-route to free_event() which will
5203 * detach it and remove it from the list.
5204 */
5205 continue;
5206 }
5207 rcu_read_unlock();
789f90fc 5208
9bb5d40c
PZ
5209 mutex_lock(&event->mmap_mutex);
5210 /*
5211 * Check we didn't race with perf_event_set_output() which can
5212 * swizzle the rb from under us while we were waiting to
5213 * acquire mmap_mutex.
5214 *
5215 * If we find a different rb; ignore this event, a next
5216 * iteration will no longer find it on the list. We have to
5217 * still restart the iteration to make sure we're not now
5218 * iterating the wrong list.
5219 */
b69cf536
PZ
5220 if (event->rb == rb)
5221 ring_buffer_attach(event, NULL);
5222
cdd6c482 5223 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5224 put_event(event);
ac9721f3 5225
9bb5d40c
PZ
5226 /*
5227 * Restart the iteration; either we're on the wrong list or
5228 * destroyed its integrity by doing a deletion.
5229 */
5230 goto again;
7b732a75 5231 }
9bb5d40c
PZ
5232 rcu_read_unlock();
5233
5234 /*
5235 * It could be there's still a few 0-ref events on the list; they'll
5236 * get cleaned up by free_event() -- they'll also still have their
5237 * ref on the rb and will free it whenever they are done with it.
5238 *
5239 * Aside from that, this buffer is 'fully' detached and unmapped,
5240 * undo the VM accounting.
5241 */
5242
5243 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5244 vma->vm_mm->pinned_vm -= mmap_locked;
5245 free_uid(mmap_user);
5246
b69cf536 5247out_put:
9bb5d40c 5248 ring_buffer_put(rb); /* could be last */
37d81828
PM
5249}
5250
f0f37e2f 5251static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5252 .open = perf_mmap_open,
45bfb2e5 5253 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5254 .fault = perf_mmap_fault,
5255 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5256};
5257
5258static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5259{
cdd6c482 5260 struct perf_event *event = file->private_data;
22a4f650 5261 unsigned long user_locked, user_lock_limit;
789f90fc 5262 struct user_struct *user = current_user();
22a4f650 5263 unsigned long locked, lock_limit;
45bfb2e5 5264 struct ring_buffer *rb = NULL;
7b732a75
PZ
5265 unsigned long vma_size;
5266 unsigned long nr_pages;
45bfb2e5 5267 long user_extra = 0, extra = 0;
d57e34fd 5268 int ret = 0, flags = 0;
37d81828 5269
c7920614
PZ
5270 /*
5271 * Don't allow mmap() of inherited per-task counters. This would
5272 * create a performance issue due to all children writing to the
76369139 5273 * same rb.
c7920614
PZ
5274 */
5275 if (event->cpu == -1 && event->attr.inherit)
5276 return -EINVAL;
5277
43a21ea8 5278 if (!(vma->vm_flags & VM_SHARED))
37d81828 5279 return -EINVAL;
7b732a75
PZ
5280
5281 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5282
5283 if (vma->vm_pgoff == 0) {
5284 nr_pages = (vma_size / PAGE_SIZE) - 1;
5285 } else {
5286 /*
5287 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5288 * mapped, all subsequent mappings should have the same size
5289 * and offset. Must be above the normal perf buffer.
5290 */
5291 u64 aux_offset, aux_size;
5292
5293 if (!event->rb)
5294 return -EINVAL;
5295
5296 nr_pages = vma_size / PAGE_SIZE;
5297
5298 mutex_lock(&event->mmap_mutex);
5299 ret = -EINVAL;
5300
5301 rb = event->rb;
5302 if (!rb)
5303 goto aux_unlock;
5304
5305 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5306 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5307
5308 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5309 goto aux_unlock;
5310
5311 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5312 goto aux_unlock;
5313
5314 /* already mapped with a different offset */
5315 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5316 goto aux_unlock;
5317
5318 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5319 goto aux_unlock;
5320
5321 /* already mapped with a different size */
5322 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5323 goto aux_unlock;
5324
5325 if (!is_power_of_2(nr_pages))
5326 goto aux_unlock;
5327
5328 if (!atomic_inc_not_zero(&rb->mmap_count))
5329 goto aux_unlock;
5330
5331 if (rb_has_aux(rb)) {
5332 atomic_inc(&rb->aux_mmap_count);
5333 ret = 0;
5334 goto unlock;
5335 }
5336
5337 atomic_set(&rb->aux_mmap_count, 1);
5338 user_extra = nr_pages;
5339
5340 goto accounting;
5341 }
7b732a75 5342
7730d865 5343 /*
76369139 5344 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5345 * can do bitmasks instead of modulo.
5346 */
2ed11312 5347 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5348 return -EINVAL;
5349
7b732a75 5350 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5351 return -EINVAL;
5352
cdd6c482 5353 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5354again:
cdd6c482 5355 mutex_lock(&event->mmap_mutex);
76369139 5356 if (event->rb) {
9bb5d40c 5357 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5358 ret = -EINVAL;
9bb5d40c
PZ
5359 goto unlock;
5360 }
5361
5362 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5363 /*
5364 * Raced against perf_mmap_close() through
5365 * perf_event_set_output(). Try again, hope for better
5366 * luck.
5367 */
5368 mutex_unlock(&event->mmap_mutex);
5369 goto again;
5370 }
5371
ebb3c4c4
PZ
5372 goto unlock;
5373 }
5374
789f90fc 5375 user_extra = nr_pages + 1;
45bfb2e5
PZ
5376
5377accounting:
cdd6c482 5378 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5379
5380 /*
5381 * Increase the limit linearly with more CPUs:
5382 */
5383 user_lock_limit *= num_online_cpus();
5384
789f90fc 5385 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5386
789f90fc
PZ
5387 if (user_locked > user_lock_limit)
5388 extra = user_locked - user_lock_limit;
7b732a75 5389
78d7d407 5390 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5391 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5392 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5393
459ec28a
IM
5394 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5395 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5396 ret = -EPERM;
5397 goto unlock;
5398 }
7b732a75 5399
45bfb2e5 5400 WARN_ON(!rb && event->rb);
906010b2 5401
d57e34fd 5402 if (vma->vm_flags & VM_WRITE)
76369139 5403 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5404
76369139 5405 if (!rb) {
45bfb2e5
PZ
5406 rb = rb_alloc(nr_pages,
5407 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5408 event->cpu, flags);
26cb63ad 5409
45bfb2e5
PZ
5410 if (!rb) {
5411 ret = -ENOMEM;
5412 goto unlock;
5413 }
43a21ea8 5414
45bfb2e5
PZ
5415 atomic_set(&rb->mmap_count, 1);
5416 rb->mmap_user = get_current_user();
5417 rb->mmap_locked = extra;
26cb63ad 5418
45bfb2e5 5419 ring_buffer_attach(event, rb);
ac9721f3 5420
45bfb2e5
PZ
5421 perf_event_init_userpage(event);
5422 perf_event_update_userpage(event);
5423 } else {
1a594131
AS
5424 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5425 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5426 if (!ret)
5427 rb->aux_mmap_locked = extra;
5428 }
9a0f05cb 5429
ebb3c4c4 5430unlock:
45bfb2e5
PZ
5431 if (!ret) {
5432 atomic_long_add(user_extra, &user->locked_vm);
5433 vma->vm_mm->pinned_vm += extra;
5434
ac9721f3 5435 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5436 } else if (rb) {
5437 atomic_dec(&rb->mmap_count);
5438 }
5439aux_unlock:
cdd6c482 5440 mutex_unlock(&event->mmap_mutex);
37d81828 5441
9bb5d40c
PZ
5442 /*
5443 * Since pinned accounting is per vm we cannot allow fork() to copy our
5444 * vma.
5445 */
26cb63ad 5446 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5447 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5448
1e0fb9ec 5449 if (event->pmu->event_mapped)
bfe33492 5450 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5451
7b732a75 5452 return ret;
37d81828
PM
5453}
5454
3c446b3d
PZ
5455static int perf_fasync(int fd, struct file *filp, int on)
5456{
496ad9aa 5457 struct inode *inode = file_inode(filp);
cdd6c482 5458 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5459 int retval;
5460
5955102c 5461 inode_lock(inode);
cdd6c482 5462 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5463 inode_unlock(inode);
3c446b3d
PZ
5464
5465 if (retval < 0)
5466 return retval;
5467
5468 return 0;
5469}
5470
0793a61d 5471static const struct file_operations perf_fops = {
3326c1ce 5472 .llseek = no_llseek,
0793a61d
TG
5473 .release = perf_release,
5474 .read = perf_read,
5475 .poll = perf_poll,
d859e29f 5476 .unlocked_ioctl = perf_ioctl,
b3f20785 5477 .compat_ioctl = perf_compat_ioctl,
37d81828 5478 .mmap = perf_mmap,
3c446b3d 5479 .fasync = perf_fasync,
0793a61d
TG
5480};
5481
925d519a 5482/*
cdd6c482 5483 * Perf event wakeup
925d519a
PZ
5484 *
5485 * If there's data, ensure we set the poll() state and publish everything
5486 * to user-space before waking everybody up.
5487 */
5488
fed66e2c
PZ
5489static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5490{
5491 /* only the parent has fasync state */
5492 if (event->parent)
5493 event = event->parent;
5494 return &event->fasync;
5495}
5496
cdd6c482 5497void perf_event_wakeup(struct perf_event *event)
925d519a 5498{
10c6db11 5499 ring_buffer_wakeup(event);
4c9e2542 5500
cdd6c482 5501 if (event->pending_kill) {
fed66e2c 5502 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5503 event->pending_kill = 0;
4c9e2542 5504 }
925d519a
PZ
5505}
5506
e360adbe 5507static void perf_pending_event(struct irq_work *entry)
79f14641 5508{
cdd6c482
IM
5509 struct perf_event *event = container_of(entry,
5510 struct perf_event, pending);
d525211f
PZ
5511 int rctx;
5512
5513 rctx = perf_swevent_get_recursion_context();
5514 /*
5515 * If we 'fail' here, that's OK, it means recursion is already disabled
5516 * and we won't recurse 'further'.
5517 */
79f14641 5518
cdd6c482
IM
5519 if (event->pending_disable) {
5520 event->pending_disable = 0;
fae3fde6 5521 perf_event_disable_local(event);
79f14641
PZ
5522 }
5523
cdd6c482
IM
5524 if (event->pending_wakeup) {
5525 event->pending_wakeup = 0;
5526 perf_event_wakeup(event);
79f14641 5527 }
d525211f
PZ
5528
5529 if (rctx >= 0)
5530 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5531}
5532
39447b38
ZY
5533/*
5534 * We assume there is only KVM supporting the callbacks.
5535 * Later on, we might change it to a list if there is
5536 * another virtualization implementation supporting the callbacks.
5537 */
5538struct perf_guest_info_callbacks *perf_guest_cbs;
5539
5540int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5541{
5542 perf_guest_cbs = cbs;
5543 return 0;
5544}
5545EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5546
5547int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5548{
5549 perf_guest_cbs = NULL;
5550 return 0;
5551}
5552EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5553
4018994f
JO
5554static void
5555perf_output_sample_regs(struct perf_output_handle *handle,
5556 struct pt_regs *regs, u64 mask)
5557{
5558 int bit;
29dd3288 5559 DECLARE_BITMAP(_mask, 64);
4018994f 5560
29dd3288
MS
5561 bitmap_from_u64(_mask, mask);
5562 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5563 u64 val;
5564
5565 val = perf_reg_value(regs, bit);
5566 perf_output_put(handle, val);
5567 }
5568}
5569
60e2364e 5570static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5571 struct pt_regs *regs,
5572 struct pt_regs *regs_user_copy)
4018994f 5573{
88a7c26a
AL
5574 if (user_mode(regs)) {
5575 regs_user->abi = perf_reg_abi(current);
2565711f 5576 regs_user->regs = regs;
88a7c26a
AL
5577 } else if (current->mm) {
5578 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5579 } else {
5580 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5581 regs_user->regs = NULL;
4018994f
JO
5582 }
5583}
5584
60e2364e
SE
5585static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5586 struct pt_regs *regs)
5587{
5588 regs_intr->regs = regs;
5589 regs_intr->abi = perf_reg_abi(current);
5590}
5591
5592
c5ebcedb
JO
5593/*
5594 * Get remaining task size from user stack pointer.
5595 *
5596 * It'd be better to take stack vma map and limit this more
5597 * precisly, but there's no way to get it safely under interrupt,
5598 * so using TASK_SIZE as limit.
5599 */
5600static u64 perf_ustack_task_size(struct pt_regs *regs)
5601{
5602 unsigned long addr = perf_user_stack_pointer(regs);
5603
5604 if (!addr || addr >= TASK_SIZE)
5605 return 0;
5606
5607 return TASK_SIZE - addr;
5608}
5609
5610static u16
5611perf_sample_ustack_size(u16 stack_size, u16 header_size,
5612 struct pt_regs *regs)
5613{
5614 u64 task_size;
5615
5616 /* No regs, no stack pointer, no dump. */
5617 if (!regs)
5618 return 0;
5619
5620 /*
5621 * Check if we fit in with the requested stack size into the:
5622 * - TASK_SIZE
5623 * If we don't, we limit the size to the TASK_SIZE.
5624 *
5625 * - remaining sample size
5626 * If we don't, we customize the stack size to
5627 * fit in to the remaining sample size.
5628 */
5629
5630 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5631 stack_size = min(stack_size, (u16) task_size);
5632
5633 /* Current header size plus static size and dynamic size. */
5634 header_size += 2 * sizeof(u64);
5635
5636 /* Do we fit in with the current stack dump size? */
5637 if ((u16) (header_size + stack_size) < header_size) {
5638 /*
5639 * If we overflow the maximum size for the sample,
5640 * we customize the stack dump size to fit in.
5641 */
5642 stack_size = USHRT_MAX - header_size - sizeof(u64);
5643 stack_size = round_up(stack_size, sizeof(u64));
5644 }
5645
5646 return stack_size;
5647}
5648
5649static void
5650perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5651 struct pt_regs *regs)
5652{
5653 /* Case of a kernel thread, nothing to dump */
5654 if (!regs) {
5655 u64 size = 0;
5656 perf_output_put(handle, size);
5657 } else {
5658 unsigned long sp;
5659 unsigned int rem;
5660 u64 dyn_size;
5661
5662 /*
5663 * We dump:
5664 * static size
5665 * - the size requested by user or the best one we can fit
5666 * in to the sample max size
5667 * data
5668 * - user stack dump data
5669 * dynamic size
5670 * - the actual dumped size
5671 */
5672
5673 /* Static size. */
5674 perf_output_put(handle, dump_size);
5675
5676 /* Data. */
5677 sp = perf_user_stack_pointer(regs);
5678 rem = __output_copy_user(handle, (void *) sp, dump_size);
5679 dyn_size = dump_size - rem;
5680
5681 perf_output_skip(handle, rem);
5682
5683 /* Dynamic size. */
5684 perf_output_put(handle, dyn_size);
5685 }
5686}
5687
c980d109
ACM
5688static void __perf_event_header__init_id(struct perf_event_header *header,
5689 struct perf_sample_data *data,
5690 struct perf_event *event)
6844c09d
ACM
5691{
5692 u64 sample_type = event->attr.sample_type;
5693
5694 data->type = sample_type;
5695 header->size += event->id_header_size;
5696
5697 if (sample_type & PERF_SAMPLE_TID) {
5698 /* namespace issues */
5699 data->tid_entry.pid = perf_event_pid(event, current);
5700 data->tid_entry.tid = perf_event_tid(event, current);
5701 }
5702
5703 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5704 data->time = perf_event_clock(event);
6844c09d 5705
ff3d527c 5706 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5707 data->id = primary_event_id(event);
5708
5709 if (sample_type & PERF_SAMPLE_STREAM_ID)
5710 data->stream_id = event->id;
5711
5712 if (sample_type & PERF_SAMPLE_CPU) {
5713 data->cpu_entry.cpu = raw_smp_processor_id();
5714 data->cpu_entry.reserved = 0;
5715 }
5716}
5717
76369139
FW
5718void perf_event_header__init_id(struct perf_event_header *header,
5719 struct perf_sample_data *data,
5720 struct perf_event *event)
c980d109
ACM
5721{
5722 if (event->attr.sample_id_all)
5723 __perf_event_header__init_id(header, data, event);
5724}
5725
5726static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5727 struct perf_sample_data *data)
5728{
5729 u64 sample_type = data->type;
5730
5731 if (sample_type & PERF_SAMPLE_TID)
5732 perf_output_put(handle, data->tid_entry);
5733
5734 if (sample_type & PERF_SAMPLE_TIME)
5735 perf_output_put(handle, data->time);
5736
5737 if (sample_type & PERF_SAMPLE_ID)
5738 perf_output_put(handle, data->id);
5739
5740 if (sample_type & PERF_SAMPLE_STREAM_ID)
5741 perf_output_put(handle, data->stream_id);
5742
5743 if (sample_type & PERF_SAMPLE_CPU)
5744 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5745
5746 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5747 perf_output_put(handle, data->id);
c980d109
ACM
5748}
5749
76369139
FW
5750void perf_event__output_id_sample(struct perf_event *event,
5751 struct perf_output_handle *handle,
5752 struct perf_sample_data *sample)
c980d109
ACM
5753{
5754 if (event->attr.sample_id_all)
5755 __perf_event__output_id_sample(handle, sample);
5756}
5757
3dab77fb 5758static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5759 struct perf_event *event,
5760 u64 enabled, u64 running)
3dab77fb 5761{
cdd6c482 5762 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5763 u64 values[4];
5764 int n = 0;
5765
b5e58793 5766 values[n++] = perf_event_count(event);
3dab77fb 5767 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5768 values[n++] = enabled +
cdd6c482 5769 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5770 }
5771 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5772 values[n++] = running +
cdd6c482 5773 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5774 }
5775 if (read_format & PERF_FORMAT_ID)
cdd6c482 5776 values[n++] = primary_event_id(event);
3dab77fb 5777
76369139 5778 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5779}
5780
3dab77fb 5781static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5782 struct perf_event *event,
5783 u64 enabled, u64 running)
3dab77fb 5784{
cdd6c482
IM
5785 struct perf_event *leader = event->group_leader, *sub;
5786 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5787 u64 values[5];
5788 int n = 0;
5789
5790 values[n++] = 1 + leader->nr_siblings;
5791
5792 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5793 values[n++] = enabled;
3dab77fb
PZ
5794
5795 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5796 values[n++] = running;
3dab77fb 5797
cdd6c482 5798 if (leader != event)
3dab77fb
PZ
5799 leader->pmu->read(leader);
5800
b5e58793 5801 values[n++] = perf_event_count(leader);
3dab77fb 5802 if (read_format & PERF_FORMAT_ID)
cdd6c482 5803 values[n++] = primary_event_id(leader);
3dab77fb 5804
76369139 5805 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5806
65abc865 5807 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5808 n = 0;
5809
6f5ab001
JO
5810 if ((sub != event) &&
5811 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5812 sub->pmu->read(sub);
5813
b5e58793 5814 values[n++] = perf_event_count(sub);
3dab77fb 5815 if (read_format & PERF_FORMAT_ID)
cdd6c482 5816 values[n++] = primary_event_id(sub);
3dab77fb 5817
76369139 5818 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5819 }
5820}
5821
eed01528
SE
5822#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5823 PERF_FORMAT_TOTAL_TIME_RUNNING)
5824
ba5213ae
PZ
5825/*
5826 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5827 *
5828 * The problem is that its both hard and excessively expensive to iterate the
5829 * child list, not to mention that its impossible to IPI the children running
5830 * on another CPU, from interrupt/NMI context.
5831 */
3dab77fb 5832static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5833 struct perf_event *event)
3dab77fb 5834{
e3f3541c 5835 u64 enabled = 0, running = 0, now;
eed01528
SE
5836 u64 read_format = event->attr.read_format;
5837
5838 /*
5839 * compute total_time_enabled, total_time_running
5840 * based on snapshot values taken when the event
5841 * was last scheduled in.
5842 *
5843 * we cannot simply called update_context_time()
5844 * because of locking issue as we are called in
5845 * NMI context
5846 */
c4794295 5847 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5848 calc_timer_values(event, &now, &enabled, &running);
eed01528 5849
cdd6c482 5850 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5851 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5852 else
eed01528 5853 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5854}
5855
5622f295
MM
5856void perf_output_sample(struct perf_output_handle *handle,
5857 struct perf_event_header *header,
5858 struct perf_sample_data *data,
cdd6c482 5859 struct perf_event *event)
5622f295
MM
5860{
5861 u64 sample_type = data->type;
5862
5863 perf_output_put(handle, *header);
5864
ff3d527c
AH
5865 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5866 perf_output_put(handle, data->id);
5867
5622f295
MM
5868 if (sample_type & PERF_SAMPLE_IP)
5869 perf_output_put(handle, data->ip);
5870
5871 if (sample_type & PERF_SAMPLE_TID)
5872 perf_output_put(handle, data->tid_entry);
5873
5874 if (sample_type & PERF_SAMPLE_TIME)
5875 perf_output_put(handle, data->time);
5876
5877 if (sample_type & PERF_SAMPLE_ADDR)
5878 perf_output_put(handle, data->addr);
5879
5880 if (sample_type & PERF_SAMPLE_ID)
5881 perf_output_put(handle, data->id);
5882
5883 if (sample_type & PERF_SAMPLE_STREAM_ID)
5884 perf_output_put(handle, data->stream_id);
5885
5886 if (sample_type & PERF_SAMPLE_CPU)
5887 perf_output_put(handle, data->cpu_entry);
5888
5889 if (sample_type & PERF_SAMPLE_PERIOD)
5890 perf_output_put(handle, data->period);
5891
5892 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5893 perf_output_read(handle, event);
5622f295
MM
5894
5895 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5896 if (data->callchain) {
5897 int size = 1;
5898
5899 if (data->callchain)
5900 size += data->callchain->nr;
5901
5902 size *= sizeof(u64);
5903
76369139 5904 __output_copy(handle, data->callchain, size);
5622f295
MM
5905 } else {
5906 u64 nr = 0;
5907 perf_output_put(handle, nr);
5908 }
5909 }
5910
5911 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5912 struct perf_raw_record *raw = data->raw;
5913
5914 if (raw) {
5915 struct perf_raw_frag *frag = &raw->frag;
5916
5917 perf_output_put(handle, raw->size);
5918 do {
5919 if (frag->copy) {
5920 __output_custom(handle, frag->copy,
5921 frag->data, frag->size);
5922 } else {
5923 __output_copy(handle, frag->data,
5924 frag->size);
5925 }
5926 if (perf_raw_frag_last(frag))
5927 break;
5928 frag = frag->next;
5929 } while (1);
5930 if (frag->pad)
5931 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5932 } else {
5933 struct {
5934 u32 size;
5935 u32 data;
5936 } raw = {
5937 .size = sizeof(u32),
5938 .data = 0,
5939 };
5940 perf_output_put(handle, raw);
5941 }
5942 }
a7ac67ea 5943
bce38cd5
SE
5944 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5945 if (data->br_stack) {
5946 size_t size;
5947
5948 size = data->br_stack->nr
5949 * sizeof(struct perf_branch_entry);
5950
5951 perf_output_put(handle, data->br_stack->nr);
5952 perf_output_copy(handle, data->br_stack->entries, size);
5953 } else {
5954 /*
5955 * we always store at least the value of nr
5956 */
5957 u64 nr = 0;
5958 perf_output_put(handle, nr);
5959 }
5960 }
4018994f
JO
5961
5962 if (sample_type & PERF_SAMPLE_REGS_USER) {
5963 u64 abi = data->regs_user.abi;
5964
5965 /*
5966 * If there are no regs to dump, notice it through
5967 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5968 */
5969 perf_output_put(handle, abi);
5970
5971 if (abi) {
5972 u64 mask = event->attr.sample_regs_user;
5973 perf_output_sample_regs(handle,
5974 data->regs_user.regs,
5975 mask);
5976 }
5977 }
c5ebcedb 5978
a5cdd40c 5979 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5980 perf_output_sample_ustack(handle,
5981 data->stack_user_size,
5982 data->regs_user.regs);
a5cdd40c 5983 }
c3feedf2
AK
5984
5985 if (sample_type & PERF_SAMPLE_WEIGHT)
5986 perf_output_put(handle, data->weight);
d6be9ad6
SE
5987
5988 if (sample_type & PERF_SAMPLE_DATA_SRC)
5989 perf_output_put(handle, data->data_src.val);
a5cdd40c 5990
fdfbbd07
AK
5991 if (sample_type & PERF_SAMPLE_TRANSACTION)
5992 perf_output_put(handle, data->txn);
5993
60e2364e
SE
5994 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5995 u64 abi = data->regs_intr.abi;
5996 /*
5997 * If there are no regs to dump, notice it through
5998 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5999 */
6000 perf_output_put(handle, abi);
6001
6002 if (abi) {
6003 u64 mask = event->attr.sample_regs_intr;
6004
6005 perf_output_sample_regs(handle,
6006 data->regs_intr.regs,
6007 mask);
6008 }
6009 }
6010
fc7ce9c7
KL
6011 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6012 perf_output_put(handle, data->phys_addr);
6013
a5cdd40c
PZ
6014 if (!event->attr.watermark) {
6015 int wakeup_events = event->attr.wakeup_events;
6016
6017 if (wakeup_events) {
6018 struct ring_buffer *rb = handle->rb;
6019 int events = local_inc_return(&rb->events);
6020
6021 if (events >= wakeup_events) {
6022 local_sub(wakeup_events, &rb->events);
6023 local_inc(&rb->wakeup);
6024 }
6025 }
6026 }
5622f295
MM
6027}
6028
fc7ce9c7
KL
6029static u64 perf_virt_to_phys(u64 virt)
6030{
6031 u64 phys_addr = 0;
6032 struct page *p = NULL;
6033
6034 if (!virt)
6035 return 0;
6036
6037 if (virt >= TASK_SIZE) {
6038 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6039 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6040 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6041 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6042 } else {
6043 /*
6044 * Walking the pages tables for user address.
6045 * Interrupts are disabled, so it prevents any tear down
6046 * of the page tables.
6047 * Try IRQ-safe __get_user_pages_fast first.
6048 * If failed, leave phys_addr as 0.
6049 */
6050 if ((current->mm != NULL) &&
6051 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6052 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6053
6054 if (p)
6055 put_page(p);
6056 }
6057
6058 return phys_addr;
6059}
6060
5622f295
MM
6061void perf_prepare_sample(struct perf_event_header *header,
6062 struct perf_sample_data *data,
cdd6c482 6063 struct perf_event *event,
5622f295 6064 struct pt_regs *regs)
7b732a75 6065{
cdd6c482 6066 u64 sample_type = event->attr.sample_type;
7b732a75 6067
cdd6c482 6068 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6069 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6070
6071 header->misc = 0;
6072 header->misc |= perf_misc_flags(regs);
6fab0192 6073
c980d109 6074 __perf_event_header__init_id(header, data, event);
6844c09d 6075
c320c7b7 6076 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6077 data->ip = perf_instruction_pointer(regs);
6078
b23f3325 6079 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6080 int size = 1;
394ee076 6081
e6dab5ff 6082 data->callchain = perf_callchain(event, regs);
5622f295
MM
6083
6084 if (data->callchain)
6085 size += data->callchain->nr;
6086
6087 header->size += size * sizeof(u64);
394ee076
PZ
6088 }
6089
3a43ce68 6090 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6091 struct perf_raw_record *raw = data->raw;
6092 int size;
6093
6094 if (raw) {
6095 struct perf_raw_frag *frag = &raw->frag;
6096 u32 sum = 0;
6097
6098 do {
6099 sum += frag->size;
6100 if (perf_raw_frag_last(frag))
6101 break;
6102 frag = frag->next;
6103 } while (1);
6104
6105 size = round_up(sum + sizeof(u32), sizeof(u64));
6106 raw->size = size - sizeof(u32);
6107 frag->pad = raw->size - sum;
6108 } else {
6109 size = sizeof(u64);
6110 }
a044560c 6111
7e3f977e 6112 header->size += size;
7f453c24 6113 }
bce38cd5
SE
6114
6115 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6116 int size = sizeof(u64); /* nr */
6117 if (data->br_stack) {
6118 size += data->br_stack->nr
6119 * sizeof(struct perf_branch_entry);
6120 }
6121 header->size += size;
6122 }
4018994f 6123
2565711f 6124 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6125 perf_sample_regs_user(&data->regs_user, regs,
6126 &data->regs_user_copy);
2565711f 6127
4018994f
JO
6128 if (sample_type & PERF_SAMPLE_REGS_USER) {
6129 /* regs dump ABI info */
6130 int size = sizeof(u64);
6131
4018994f
JO
6132 if (data->regs_user.regs) {
6133 u64 mask = event->attr.sample_regs_user;
6134 size += hweight64(mask) * sizeof(u64);
6135 }
6136
6137 header->size += size;
6138 }
c5ebcedb
JO
6139
6140 if (sample_type & PERF_SAMPLE_STACK_USER) {
6141 /*
6142 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6143 * processed as the last one or have additional check added
6144 * in case new sample type is added, because we could eat
6145 * up the rest of the sample size.
6146 */
c5ebcedb
JO
6147 u16 stack_size = event->attr.sample_stack_user;
6148 u16 size = sizeof(u64);
6149
c5ebcedb 6150 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6151 data->regs_user.regs);
c5ebcedb
JO
6152
6153 /*
6154 * If there is something to dump, add space for the dump
6155 * itself and for the field that tells the dynamic size,
6156 * which is how many have been actually dumped.
6157 */
6158 if (stack_size)
6159 size += sizeof(u64) + stack_size;
6160
6161 data->stack_user_size = stack_size;
6162 header->size += size;
6163 }
60e2364e
SE
6164
6165 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6166 /* regs dump ABI info */
6167 int size = sizeof(u64);
6168
6169 perf_sample_regs_intr(&data->regs_intr, regs);
6170
6171 if (data->regs_intr.regs) {
6172 u64 mask = event->attr.sample_regs_intr;
6173
6174 size += hweight64(mask) * sizeof(u64);
6175 }
6176
6177 header->size += size;
6178 }
fc7ce9c7
KL
6179
6180 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6181 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6182}
7f453c24 6183
9ecda41a
WN
6184static void __always_inline
6185__perf_event_output(struct perf_event *event,
6186 struct perf_sample_data *data,
6187 struct pt_regs *regs,
6188 int (*output_begin)(struct perf_output_handle *,
6189 struct perf_event *,
6190 unsigned int))
5622f295
MM
6191{
6192 struct perf_output_handle handle;
6193 struct perf_event_header header;
689802b2 6194
927c7a9e
FW
6195 /* protect the callchain buffers */
6196 rcu_read_lock();
6197
cdd6c482 6198 perf_prepare_sample(&header, data, event, regs);
5c148194 6199
9ecda41a 6200 if (output_begin(&handle, event, header.size))
927c7a9e 6201 goto exit;
0322cd6e 6202
cdd6c482 6203 perf_output_sample(&handle, &header, data, event);
f413cdb8 6204
8a057d84 6205 perf_output_end(&handle);
927c7a9e
FW
6206
6207exit:
6208 rcu_read_unlock();
0322cd6e
PZ
6209}
6210
9ecda41a
WN
6211void
6212perf_event_output_forward(struct perf_event *event,
6213 struct perf_sample_data *data,
6214 struct pt_regs *regs)
6215{
6216 __perf_event_output(event, data, regs, perf_output_begin_forward);
6217}
6218
6219void
6220perf_event_output_backward(struct perf_event *event,
6221 struct perf_sample_data *data,
6222 struct pt_regs *regs)
6223{
6224 __perf_event_output(event, data, regs, perf_output_begin_backward);
6225}
6226
6227void
6228perf_event_output(struct perf_event *event,
6229 struct perf_sample_data *data,
6230 struct pt_regs *regs)
6231{
6232 __perf_event_output(event, data, regs, perf_output_begin);
6233}
6234
38b200d6 6235/*
cdd6c482 6236 * read event_id
38b200d6
PZ
6237 */
6238
6239struct perf_read_event {
6240 struct perf_event_header header;
6241
6242 u32 pid;
6243 u32 tid;
38b200d6
PZ
6244};
6245
6246static void
cdd6c482 6247perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6248 struct task_struct *task)
6249{
6250 struct perf_output_handle handle;
c980d109 6251 struct perf_sample_data sample;
dfc65094 6252 struct perf_read_event read_event = {
38b200d6 6253 .header = {
cdd6c482 6254 .type = PERF_RECORD_READ,
38b200d6 6255 .misc = 0,
c320c7b7 6256 .size = sizeof(read_event) + event->read_size,
38b200d6 6257 },
cdd6c482
IM
6258 .pid = perf_event_pid(event, task),
6259 .tid = perf_event_tid(event, task),
38b200d6 6260 };
3dab77fb 6261 int ret;
38b200d6 6262
c980d109 6263 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6264 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6265 if (ret)
6266 return;
6267
dfc65094 6268 perf_output_put(&handle, read_event);
cdd6c482 6269 perf_output_read(&handle, event);
c980d109 6270 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6271
38b200d6
PZ
6272 perf_output_end(&handle);
6273}
6274
aab5b71e 6275typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6276
6277static void
aab5b71e
PZ
6278perf_iterate_ctx(struct perf_event_context *ctx,
6279 perf_iterate_f output,
b73e4fef 6280 void *data, bool all)
52d857a8
JO
6281{
6282 struct perf_event *event;
6283
6284 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6285 if (!all) {
6286 if (event->state < PERF_EVENT_STATE_INACTIVE)
6287 continue;
6288 if (!event_filter_match(event))
6289 continue;
6290 }
6291
67516844 6292 output(event, data);
52d857a8
JO
6293 }
6294}
6295
aab5b71e 6296static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6297{
6298 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6299 struct perf_event *event;
6300
6301 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6302 /*
6303 * Skip events that are not fully formed yet; ensure that
6304 * if we observe event->ctx, both event and ctx will be
6305 * complete enough. See perf_install_in_context().
6306 */
6307 if (!smp_load_acquire(&event->ctx))
6308 continue;
6309
f2fb6bef
KL
6310 if (event->state < PERF_EVENT_STATE_INACTIVE)
6311 continue;
6312 if (!event_filter_match(event))
6313 continue;
6314 output(event, data);
6315 }
6316}
6317
aab5b71e
PZ
6318/*
6319 * Iterate all events that need to receive side-band events.
6320 *
6321 * For new callers; ensure that account_pmu_sb_event() includes
6322 * your event, otherwise it might not get delivered.
6323 */
52d857a8 6324static void
aab5b71e 6325perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6326 struct perf_event_context *task_ctx)
6327{
52d857a8 6328 struct perf_event_context *ctx;
52d857a8
JO
6329 int ctxn;
6330
aab5b71e
PZ
6331 rcu_read_lock();
6332 preempt_disable();
6333
4e93ad60 6334 /*
aab5b71e
PZ
6335 * If we have task_ctx != NULL we only notify the task context itself.
6336 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6337 * context.
6338 */
6339 if (task_ctx) {
aab5b71e
PZ
6340 perf_iterate_ctx(task_ctx, output, data, false);
6341 goto done;
4e93ad60
JO
6342 }
6343
aab5b71e 6344 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6345
6346 for_each_task_context_nr(ctxn) {
52d857a8
JO
6347 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6348 if (ctx)
aab5b71e 6349 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6350 }
aab5b71e 6351done:
f2fb6bef 6352 preempt_enable();
52d857a8 6353 rcu_read_unlock();
95ff4ca2
AS
6354}
6355
375637bc
AS
6356/*
6357 * Clear all file-based filters at exec, they'll have to be
6358 * re-instated when/if these objects are mmapped again.
6359 */
6360static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6361{
6362 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6363 struct perf_addr_filter *filter;
6364 unsigned int restart = 0, count = 0;
6365 unsigned long flags;
6366
6367 if (!has_addr_filter(event))
6368 return;
6369
6370 raw_spin_lock_irqsave(&ifh->lock, flags);
6371 list_for_each_entry(filter, &ifh->list, entry) {
6372 if (filter->inode) {
6373 event->addr_filters_offs[count] = 0;
6374 restart++;
6375 }
6376
6377 count++;
6378 }
6379
6380 if (restart)
6381 event->addr_filters_gen++;
6382 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6383
6384 if (restart)
767ae086 6385 perf_event_stop(event, 1);
375637bc
AS
6386}
6387
6388void perf_event_exec(void)
6389{
6390 struct perf_event_context *ctx;
6391 int ctxn;
6392
6393 rcu_read_lock();
6394 for_each_task_context_nr(ctxn) {
6395 ctx = current->perf_event_ctxp[ctxn];
6396 if (!ctx)
6397 continue;
6398
6399 perf_event_enable_on_exec(ctxn);
6400
aab5b71e 6401 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6402 true);
6403 }
6404 rcu_read_unlock();
6405}
6406
95ff4ca2
AS
6407struct remote_output {
6408 struct ring_buffer *rb;
6409 int err;
6410};
6411
6412static void __perf_event_output_stop(struct perf_event *event, void *data)
6413{
6414 struct perf_event *parent = event->parent;
6415 struct remote_output *ro = data;
6416 struct ring_buffer *rb = ro->rb;
375637bc
AS
6417 struct stop_event_data sd = {
6418 .event = event,
6419 };
95ff4ca2
AS
6420
6421 if (!has_aux(event))
6422 return;
6423
6424 if (!parent)
6425 parent = event;
6426
6427 /*
6428 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6429 * ring-buffer, but it will be the child that's actually using it.
6430 *
6431 * We are using event::rb to determine if the event should be stopped,
6432 * however this may race with ring_buffer_attach() (through set_output),
6433 * which will make us skip the event that actually needs to be stopped.
6434 * So ring_buffer_attach() has to stop an aux event before re-assigning
6435 * its rb pointer.
95ff4ca2
AS
6436 */
6437 if (rcu_dereference(parent->rb) == rb)
375637bc 6438 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6439}
6440
6441static int __perf_pmu_output_stop(void *info)
6442{
6443 struct perf_event *event = info;
6444 struct pmu *pmu = event->pmu;
8b6a3fe8 6445 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6446 struct remote_output ro = {
6447 .rb = event->rb,
6448 };
6449
6450 rcu_read_lock();
aab5b71e 6451 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6452 if (cpuctx->task_ctx)
aab5b71e 6453 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6454 &ro, false);
95ff4ca2
AS
6455 rcu_read_unlock();
6456
6457 return ro.err;
6458}
6459
6460static void perf_pmu_output_stop(struct perf_event *event)
6461{
6462 struct perf_event *iter;
6463 int err, cpu;
6464
6465restart:
6466 rcu_read_lock();
6467 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6468 /*
6469 * For per-CPU events, we need to make sure that neither they
6470 * nor their children are running; for cpu==-1 events it's
6471 * sufficient to stop the event itself if it's active, since
6472 * it can't have children.
6473 */
6474 cpu = iter->cpu;
6475 if (cpu == -1)
6476 cpu = READ_ONCE(iter->oncpu);
6477
6478 if (cpu == -1)
6479 continue;
6480
6481 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6482 if (err == -EAGAIN) {
6483 rcu_read_unlock();
6484 goto restart;
6485 }
6486 }
6487 rcu_read_unlock();
52d857a8
JO
6488}
6489
60313ebe 6490/*
9f498cc5
PZ
6491 * task tracking -- fork/exit
6492 *
13d7a241 6493 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6494 */
6495
9f498cc5 6496struct perf_task_event {
3a80b4a3 6497 struct task_struct *task;
cdd6c482 6498 struct perf_event_context *task_ctx;
60313ebe
PZ
6499
6500 struct {
6501 struct perf_event_header header;
6502
6503 u32 pid;
6504 u32 ppid;
9f498cc5
PZ
6505 u32 tid;
6506 u32 ptid;
393b2ad8 6507 u64 time;
cdd6c482 6508 } event_id;
60313ebe
PZ
6509};
6510
67516844
JO
6511static int perf_event_task_match(struct perf_event *event)
6512{
13d7a241
SE
6513 return event->attr.comm || event->attr.mmap ||
6514 event->attr.mmap2 || event->attr.mmap_data ||
6515 event->attr.task;
67516844
JO
6516}
6517
cdd6c482 6518static void perf_event_task_output(struct perf_event *event,
52d857a8 6519 void *data)
60313ebe 6520{
52d857a8 6521 struct perf_task_event *task_event = data;
60313ebe 6522 struct perf_output_handle handle;
c980d109 6523 struct perf_sample_data sample;
9f498cc5 6524 struct task_struct *task = task_event->task;
c980d109 6525 int ret, size = task_event->event_id.header.size;
8bb39f9a 6526
67516844
JO
6527 if (!perf_event_task_match(event))
6528 return;
6529
c980d109 6530 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6531
c980d109 6532 ret = perf_output_begin(&handle, event,
a7ac67ea 6533 task_event->event_id.header.size);
ef60777c 6534 if (ret)
c980d109 6535 goto out;
60313ebe 6536
cdd6c482
IM
6537 task_event->event_id.pid = perf_event_pid(event, task);
6538 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6539
cdd6c482
IM
6540 task_event->event_id.tid = perf_event_tid(event, task);
6541 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6542
34f43927
PZ
6543 task_event->event_id.time = perf_event_clock(event);
6544
cdd6c482 6545 perf_output_put(&handle, task_event->event_id);
393b2ad8 6546
c980d109
ACM
6547 perf_event__output_id_sample(event, &handle, &sample);
6548
60313ebe 6549 perf_output_end(&handle);
c980d109
ACM
6550out:
6551 task_event->event_id.header.size = size;
60313ebe
PZ
6552}
6553
cdd6c482
IM
6554static void perf_event_task(struct task_struct *task,
6555 struct perf_event_context *task_ctx,
3a80b4a3 6556 int new)
60313ebe 6557{
9f498cc5 6558 struct perf_task_event task_event;
60313ebe 6559
cdd6c482
IM
6560 if (!atomic_read(&nr_comm_events) &&
6561 !atomic_read(&nr_mmap_events) &&
6562 !atomic_read(&nr_task_events))
60313ebe
PZ
6563 return;
6564
9f498cc5 6565 task_event = (struct perf_task_event){
3a80b4a3
PZ
6566 .task = task,
6567 .task_ctx = task_ctx,
cdd6c482 6568 .event_id = {
60313ebe 6569 .header = {
cdd6c482 6570 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6571 .misc = 0,
cdd6c482 6572 .size = sizeof(task_event.event_id),
60313ebe 6573 },
573402db
PZ
6574 /* .pid */
6575 /* .ppid */
9f498cc5
PZ
6576 /* .tid */
6577 /* .ptid */
34f43927 6578 /* .time */
60313ebe
PZ
6579 },
6580 };
6581
aab5b71e 6582 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6583 &task_event,
6584 task_ctx);
9f498cc5
PZ
6585}
6586
cdd6c482 6587void perf_event_fork(struct task_struct *task)
9f498cc5 6588{
cdd6c482 6589 perf_event_task(task, NULL, 1);
e4222673 6590 perf_event_namespaces(task);
60313ebe
PZ
6591}
6592
8d1b2d93
PZ
6593/*
6594 * comm tracking
6595 */
6596
6597struct perf_comm_event {
22a4f650
IM
6598 struct task_struct *task;
6599 char *comm;
8d1b2d93
PZ
6600 int comm_size;
6601
6602 struct {
6603 struct perf_event_header header;
6604
6605 u32 pid;
6606 u32 tid;
cdd6c482 6607 } event_id;
8d1b2d93
PZ
6608};
6609
67516844
JO
6610static int perf_event_comm_match(struct perf_event *event)
6611{
6612 return event->attr.comm;
6613}
6614
cdd6c482 6615static void perf_event_comm_output(struct perf_event *event,
52d857a8 6616 void *data)
8d1b2d93 6617{
52d857a8 6618 struct perf_comm_event *comm_event = data;
8d1b2d93 6619 struct perf_output_handle handle;
c980d109 6620 struct perf_sample_data sample;
cdd6c482 6621 int size = comm_event->event_id.header.size;
c980d109
ACM
6622 int ret;
6623
67516844
JO
6624 if (!perf_event_comm_match(event))
6625 return;
6626
c980d109
ACM
6627 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6628 ret = perf_output_begin(&handle, event,
a7ac67ea 6629 comm_event->event_id.header.size);
8d1b2d93
PZ
6630
6631 if (ret)
c980d109 6632 goto out;
8d1b2d93 6633
cdd6c482
IM
6634 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6635 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6636
cdd6c482 6637 perf_output_put(&handle, comm_event->event_id);
76369139 6638 __output_copy(&handle, comm_event->comm,
8d1b2d93 6639 comm_event->comm_size);
c980d109
ACM
6640
6641 perf_event__output_id_sample(event, &handle, &sample);
6642
8d1b2d93 6643 perf_output_end(&handle);
c980d109
ACM
6644out:
6645 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6646}
6647
cdd6c482 6648static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6649{
413ee3b4 6650 char comm[TASK_COMM_LEN];
8d1b2d93 6651 unsigned int size;
8d1b2d93 6652
413ee3b4 6653 memset(comm, 0, sizeof(comm));
96b02d78 6654 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6655 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6656
6657 comm_event->comm = comm;
6658 comm_event->comm_size = size;
6659
cdd6c482 6660 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6661
aab5b71e 6662 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6663 comm_event,
6664 NULL);
8d1b2d93
PZ
6665}
6666
82b89778 6667void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6668{
9ee318a7
PZ
6669 struct perf_comm_event comm_event;
6670
cdd6c482 6671 if (!atomic_read(&nr_comm_events))
9ee318a7 6672 return;
a63eaf34 6673
9ee318a7 6674 comm_event = (struct perf_comm_event){
8d1b2d93 6675 .task = task,
573402db
PZ
6676 /* .comm */
6677 /* .comm_size */
cdd6c482 6678 .event_id = {
573402db 6679 .header = {
cdd6c482 6680 .type = PERF_RECORD_COMM,
82b89778 6681 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6682 /* .size */
6683 },
6684 /* .pid */
6685 /* .tid */
8d1b2d93
PZ
6686 },
6687 };
6688
cdd6c482 6689 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6690}
6691
e4222673
HB
6692/*
6693 * namespaces tracking
6694 */
6695
6696struct perf_namespaces_event {
6697 struct task_struct *task;
6698
6699 struct {
6700 struct perf_event_header header;
6701
6702 u32 pid;
6703 u32 tid;
6704 u64 nr_namespaces;
6705 struct perf_ns_link_info link_info[NR_NAMESPACES];
6706 } event_id;
6707};
6708
6709static int perf_event_namespaces_match(struct perf_event *event)
6710{
6711 return event->attr.namespaces;
6712}
6713
6714static void perf_event_namespaces_output(struct perf_event *event,
6715 void *data)
6716{
6717 struct perf_namespaces_event *namespaces_event = data;
6718 struct perf_output_handle handle;
6719 struct perf_sample_data sample;
6720 int ret;
6721
6722 if (!perf_event_namespaces_match(event))
6723 return;
6724
6725 perf_event_header__init_id(&namespaces_event->event_id.header,
6726 &sample, event);
6727 ret = perf_output_begin(&handle, event,
6728 namespaces_event->event_id.header.size);
6729 if (ret)
6730 return;
6731
6732 namespaces_event->event_id.pid = perf_event_pid(event,
6733 namespaces_event->task);
6734 namespaces_event->event_id.tid = perf_event_tid(event,
6735 namespaces_event->task);
6736
6737 perf_output_put(&handle, namespaces_event->event_id);
6738
6739 perf_event__output_id_sample(event, &handle, &sample);
6740
6741 perf_output_end(&handle);
6742}
6743
6744static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6745 struct task_struct *task,
6746 const struct proc_ns_operations *ns_ops)
6747{
6748 struct path ns_path;
6749 struct inode *ns_inode;
6750 void *error;
6751
6752 error = ns_get_path(&ns_path, task, ns_ops);
6753 if (!error) {
6754 ns_inode = ns_path.dentry->d_inode;
6755 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6756 ns_link_info->ino = ns_inode->i_ino;
6757 }
6758}
6759
6760void perf_event_namespaces(struct task_struct *task)
6761{
6762 struct perf_namespaces_event namespaces_event;
6763 struct perf_ns_link_info *ns_link_info;
6764
6765 if (!atomic_read(&nr_namespaces_events))
6766 return;
6767
6768 namespaces_event = (struct perf_namespaces_event){
6769 .task = task,
6770 .event_id = {
6771 .header = {
6772 .type = PERF_RECORD_NAMESPACES,
6773 .misc = 0,
6774 .size = sizeof(namespaces_event.event_id),
6775 },
6776 /* .pid */
6777 /* .tid */
6778 .nr_namespaces = NR_NAMESPACES,
6779 /* .link_info[NR_NAMESPACES] */
6780 },
6781 };
6782
6783 ns_link_info = namespaces_event.event_id.link_info;
6784
6785 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6786 task, &mntns_operations);
6787
6788#ifdef CONFIG_USER_NS
6789 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6790 task, &userns_operations);
6791#endif
6792#ifdef CONFIG_NET_NS
6793 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6794 task, &netns_operations);
6795#endif
6796#ifdef CONFIG_UTS_NS
6797 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6798 task, &utsns_operations);
6799#endif
6800#ifdef CONFIG_IPC_NS
6801 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6802 task, &ipcns_operations);
6803#endif
6804#ifdef CONFIG_PID_NS
6805 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6806 task, &pidns_operations);
6807#endif
6808#ifdef CONFIG_CGROUPS
6809 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6810 task, &cgroupns_operations);
6811#endif
6812
6813 perf_iterate_sb(perf_event_namespaces_output,
6814 &namespaces_event,
6815 NULL);
6816}
6817
0a4a9391
PZ
6818/*
6819 * mmap tracking
6820 */
6821
6822struct perf_mmap_event {
089dd79d
PZ
6823 struct vm_area_struct *vma;
6824
6825 const char *file_name;
6826 int file_size;
13d7a241
SE
6827 int maj, min;
6828 u64 ino;
6829 u64 ino_generation;
f972eb63 6830 u32 prot, flags;
0a4a9391
PZ
6831
6832 struct {
6833 struct perf_event_header header;
6834
6835 u32 pid;
6836 u32 tid;
6837 u64 start;
6838 u64 len;
6839 u64 pgoff;
cdd6c482 6840 } event_id;
0a4a9391
PZ
6841};
6842
67516844
JO
6843static int perf_event_mmap_match(struct perf_event *event,
6844 void *data)
6845{
6846 struct perf_mmap_event *mmap_event = data;
6847 struct vm_area_struct *vma = mmap_event->vma;
6848 int executable = vma->vm_flags & VM_EXEC;
6849
6850 return (!executable && event->attr.mmap_data) ||
13d7a241 6851 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6852}
6853
cdd6c482 6854static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6855 void *data)
0a4a9391 6856{
52d857a8 6857 struct perf_mmap_event *mmap_event = data;
0a4a9391 6858 struct perf_output_handle handle;
c980d109 6859 struct perf_sample_data sample;
cdd6c482 6860 int size = mmap_event->event_id.header.size;
c980d109 6861 int ret;
0a4a9391 6862
67516844
JO
6863 if (!perf_event_mmap_match(event, data))
6864 return;
6865
13d7a241
SE
6866 if (event->attr.mmap2) {
6867 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6868 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6869 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6870 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6871 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6872 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6873 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6874 }
6875
c980d109
ACM
6876 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6877 ret = perf_output_begin(&handle, event,
a7ac67ea 6878 mmap_event->event_id.header.size);
0a4a9391 6879 if (ret)
c980d109 6880 goto out;
0a4a9391 6881
cdd6c482
IM
6882 mmap_event->event_id.pid = perf_event_pid(event, current);
6883 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6884
cdd6c482 6885 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6886
6887 if (event->attr.mmap2) {
6888 perf_output_put(&handle, mmap_event->maj);
6889 perf_output_put(&handle, mmap_event->min);
6890 perf_output_put(&handle, mmap_event->ino);
6891 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6892 perf_output_put(&handle, mmap_event->prot);
6893 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6894 }
6895
76369139 6896 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6897 mmap_event->file_size);
c980d109
ACM
6898
6899 perf_event__output_id_sample(event, &handle, &sample);
6900
78d613eb 6901 perf_output_end(&handle);
c980d109
ACM
6902out:
6903 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6904}
6905
cdd6c482 6906static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6907{
089dd79d
PZ
6908 struct vm_area_struct *vma = mmap_event->vma;
6909 struct file *file = vma->vm_file;
13d7a241
SE
6910 int maj = 0, min = 0;
6911 u64 ino = 0, gen = 0;
f972eb63 6912 u32 prot = 0, flags = 0;
0a4a9391
PZ
6913 unsigned int size;
6914 char tmp[16];
6915 char *buf = NULL;
2c42cfbf 6916 char *name;
413ee3b4 6917
0b3589be
PZ
6918 if (vma->vm_flags & VM_READ)
6919 prot |= PROT_READ;
6920 if (vma->vm_flags & VM_WRITE)
6921 prot |= PROT_WRITE;
6922 if (vma->vm_flags & VM_EXEC)
6923 prot |= PROT_EXEC;
6924
6925 if (vma->vm_flags & VM_MAYSHARE)
6926 flags = MAP_SHARED;
6927 else
6928 flags = MAP_PRIVATE;
6929
6930 if (vma->vm_flags & VM_DENYWRITE)
6931 flags |= MAP_DENYWRITE;
6932 if (vma->vm_flags & VM_MAYEXEC)
6933 flags |= MAP_EXECUTABLE;
6934 if (vma->vm_flags & VM_LOCKED)
6935 flags |= MAP_LOCKED;
6936 if (vma->vm_flags & VM_HUGETLB)
6937 flags |= MAP_HUGETLB;
6938
0a4a9391 6939 if (file) {
13d7a241
SE
6940 struct inode *inode;
6941 dev_t dev;
3ea2f2b9 6942
2c42cfbf 6943 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6944 if (!buf) {
c7e548b4
ON
6945 name = "//enomem";
6946 goto cpy_name;
0a4a9391 6947 }
413ee3b4 6948 /*
3ea2f2b9 6949 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6950 * need to add enough zero bytes after the string to handle
6951 * the 64bit alignment we do later.
6952 */
9bf39ab2 6953 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6954 if (IS_ERR(name)) {
c7e548b4
ON
6955 name = "//toolong";
6956 goto cpy_name;
0a4a9391 6957 }
13d7a241
SE
6958 inode = file_inode(vma->vm_file);
6959 dev = inode->i_sb->s_dev;
6960 ino = inode->i_ino;
6961 gen = inode->i_generation;
6962 maj = MAJOR(dev);
6963 min = MINOR(dev);
f972eb63 6964
c7e548b4 6965 goto got_name;
0a4a9391 6966 } else {
fbe26abe
JO
6967 if (vma->vm_ops && vma->vm_ops->name) {
6968 name = (char *) vma->vm_ops->name(vma);
6969 if (name)
6970 goto cpy_name;
6971 }
6972
2c42cfbf 6973 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6974 if (name)
6975 goto cpy_name;
089dd79d 6976
32c5fb7e 6977 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6978 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6979 name = "[heap]";
6980 goto cpy_name;
32c5fb7e
ON
6981 }
6982 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6983 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6984 name = "[stack]";
6985 goto cpy_name;
089dd79d
PZ
6986 }
6987
c7e548b4
ON
6988 name = "//anon";
6989 goto cpy_name;
0a4a9391
PZ
6990 }
6991
c7e548b4
ON
6992cpy_name:
6993 strlcpy(tmp, name, sizeof(tmp));
6994 name = tmp;
0a4a9391 6995got_name:
2c42cfbf
PZ
6996 /*
6997 * Since our buffer works in 8 byte units we need to align our string
6998 * size to a multiple of 8. However, we must guarantee the tail end is
6999 * zero'd out to avoid leaking random bits to userspace.
7000 */
7001 size = strlen(name)+1;
7002 while (!IS_ALIGNED(size, sizeof(u64)))
7003 name[size++] = '\0';
0a4a9391
PZ
7004
7005 mmap_event->file_name = name;
7006 mmap_event->file_size = size;
13d7a241
SE
7007 mmap_event->maj = maj;
7008 mmap_event->min = min;
7009 mmap_event->ino = ino;
7010 mmap_event->ino_generation = gen;
f972eb63
PZ
7011 mmap_event->prot = prot;
7012 mmap_event->flags = flags;
0a4a9391 7013
2fe85427
SE
7014 if (!(vma->vm_flags & VM_EXEC))
7015 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7016
cdd6c482 7017 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7018
aab5b71e 7019 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7020 mmap_event,
7021 NULL);
665c2142 7022
0a4a9391
PZ
7023 kfree(buf);
7024}
7025
375637bc
AS
7026/*
7027 * Check whether inode and address range match filter criteria.
7028 */
7029static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7030 struct file *file, unsigned long offset,
7031 unsigned long size)
7032{
45063097 7033 if (filter->inode != file_inode(file))
375637bc
AS
7034 return false;
7035
7036 if (filter->offset > offset + size)
7037 return false;
7038
7039 if (filter->offset + filter->size < offset)
7040 return false;
7041
7042 return true;
7043}
7044
7045static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7046{
7047 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7048 struct vm_area_struct *vma = data;
7049 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7050 struct file *file = vma->vm_file;
7051 struct perf_addr_filter *filter;
7052 unsigned int restart = 0, count = 0;
7053
7054 if (!has_addr_filter(event))
7055 return;
7056
7057 if (!file)
7058 return;
7059
7060 raw_spin_lock_irqsave(&ifh->lock, flags);
7061 list_for_each_entry(filter, &ifh->list, entry) {
7062 if (perf_addr_filter_match(filter, file, off,
7063 vma->vm_end - vma->vm_start)) {
7064 event->addr_filters_offs[count] = vma->vm_start;
7065 restart++;
7066 }
7067
7068 count++;
7069 }
7070
7071 if (restart)
7072 event->addr_filters_gen++;
7073 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7074
7075 if (restart)
767ae086 7076 perf_event_stop(event, 1);
375637bc
AS
7077}
7078
7079/*
7080 * Adjust all task's events' filters to the new vma
7081 */
7082static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7083{
7084 struct perf_event_context *ctx;
7085 int ctxn;
7086
12b40a23
MP
7087 /*
7088 * Data tracing isn't supported yet and as such there is no need
7089 * to keep track of anything that isn't related to executable code:
7090 */
7091 if (!(vma->vm_flags & VM_EXEC))
7092 return;
7093
375637bc
AS
7094 rcu_read_lock();
7095 for_each_task_context_nr(ctxn) {
7096 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7097 if (!ctx)
7098 continue;
7099
aab5b71e 7100 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7101 }
7102 rcu_read_unlock();
7103}
7104
3af9e859 7105void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7106{
9ee318a7
PZ
7107 struct perf_mmap_event mmap_event;
7108
cdd6c482 7109 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7110 return;
7111
7112 mmap_event = (struct perf_mmap_event){
089dd79d 7113 .vma = vma,
573402db
PZ
7114 /* .file_name */
7115 /* .file_size */
cdd6c482 7116 .event_id = {
573402db 7117 .header = {
cdd6c482 7118 .type = PERF_RECORD_MMAP,
39447b38 7119 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7120 /* .size */
7121 },
7122 /* .pid */
7123 /* .tid */
089dd79d
PZ
7124 .start = vma->vm_start,
7125 .len = vma->vm_end - vma->vm_start,
3a0304e9 7126 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7127 },
13d7a241
SE
7128 /* .maj (attr_mmap2 only) */
7129 /* .min (attr_mmap2 only) */
7130 /* .ino (attr_mmap2 only) */
7131 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7132 /* .prot (attr_mmap2 only) */
7133 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7134 };
7135
375637bc 7136 perf_addr_filters_adjust(vma);
cdd6c482 7137 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7138}
7139
68db7e98
AS
7140void perf_event_aux_event(struct perf_event *event, unsigned long head,
7141 unsigned long size, u64 flags)
7142{
7143 struct perf_output_handle handle;
7144 struct perf_sample_data sample;
7145 struct perf_aux_event {
7146 struct perf_event_header header;
7147 u64 offset;
7148 u64 size;
7149 u64 flags;
7150 } rec = {
7151 .header = {
7152 .type = PERF_RECORD_AUX,
7153 .misc = 0,
7154 .size = sizeof(rec),
7155 },
7156 .offset = head,
7157 .size = size,
7158 .flags = flags,
7159 };
7160 int ret;
7161
7162 perf_event_header__init_id(&rec.header, &sample, event);
7163 ret = perf_output_begin(&handle, event, rec.header.size);
7164
7165 if (ret)
7166 return;
7167
7168 perf_output_put(&handle, rec);
7169 perf_event__output_id_sample(event, &handle, &sample);
7170
7171 perf_output_end(&handle);
7172}
7173
f38b0dbb
KL
7174/*
7175 * Lost/dropped samples logging
7176 */
7177void perf_log_lost_samples(struct perf_event *event, u64 lost)
7178{
7179 struct perf_output_handle handle;
7180 struct perf_sample_data sample;
7181 int ret;
7182
7183 struct {
7184 struct perf_event_header header;
7185 u64 lost;
7186 } lost_samples_event = {
7187 .header = {
7188 .type = PERF_RECORD_LOST_SAMPLES,
7189 .misc = 0,
7190 .size = sizeof(lost_samples_event),
7191 },
7192 .lost = lost,
7193 };
7194
7195 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7196
7197 ret = perf_output_begin(&handle, event,
7198 lost_samples_event.header.size);
7199 if (ret)
7200 return;
7201
7202 perf_output_put(&handle, lost_samples_event);
7203 perf_event__output_id_sample(event, &handle, &sample);
7204 perf_output_end(&handle);
7205}
7206
45ac1403
AH
7207/*
7208 * context_switch tracking
7209 */
7210
7211struct perf_switch_event {
7212 struct task_struct *task;
7213 struct task_struct *next_prev;
7214
7215 struct {
7216 struct perf_event_header header;
7217 u32 next_prev_pid;
7218 u32 next_prev_tid;
7219 } event_id;
7220};
7221
7222static int perf_event_switch_match(struct perf_event *event)
7223{
7224 return event->attr.context_switch;
7225}
7226
7227static void perf_event_switch_output(struct perf_event *event, void *data)
7228{
7229 struct perf_switch_event *se = data;
7230 struct perf_output_handle handle;
7231 struct perf_sample_data sample;
7232 int ret;
7233
7234 if (!perf_event_switch_match(event))
7235 return;
7236
7237 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7238 if (event->ctx->task) {
7239 se->event_id.header.type = PERF_RECORD_SWITCH;
7240 se->event_id.header.size = sizeof(se->event_id.header);
7241 } else {
7242 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7243 se->event_id.header.size = sizeof(se->event_id);
7244 se->event_id.next_prev_pid =
7245 perf_event_pid(event, se->next_prev);
7246 se->event_id.next_prev_tid =
7247 perf_event_tid(event, se->next_prev);
7248 }
7249
7250 perf_event_header__init_id(&se->event_id.header, &sample, event);
7251
7252 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7253 if (ret)
7254 return;
7255
7256 if (event->ctx->task)
7257 perf_output_put(&handle, se->event_id.header);
7258 else
7259 perf_output_put(&handle, se->event_id);
7260
7261 perf_event__output_id_sample(event, &handle, &sample);
7262
7263 perf_output_end(&handle);
7264}
7265
7266static void perf_event_switch(struct task_struct *task,
7267 struct task_struct *next_prev, bool sched_in)
7268{
7269 struct perf_switch_event switch_event;
7270
7271 /* N.B. caller checks nr_switch_events != 0 */
7272
7273 switch_event = (struct perf_switch_event){
7274 .task = task,
7275 .next_prev = next_prev,
7276 .event_id = {
7277 .header = {
7278 /* .type */
7279 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7280 /* .size */
7281 },
7282 /* .next_prev_pid */
7283 /* .next_prev_tid */
7284 },
7285 };
7286
aab5b71e 7287 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7288 &switch_event,
7289 NULL);
7290}
7291
a78ac325
PZ
7292/*
7293 * IRQ throttle logging
7294 */
7295
cdd6c482 7296static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7297{
7298 struct perf_output_handle handle;
c980d109 7299 struct perf_sample_data sample;
a78ac325
PZ
7300 int ret;
7301
7302 struct {
7303 struct perf_event_header header;
7304 u64 time;
cca3f454 7305 u64 id;
7f453c24 7306 u64 stream_id;
a78ac325
PZ
7307 } throttle_event = {
7308 .header = {
cdd6c482 7309 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7310 .misc = 0,
7311 .size = sizeof(throttle_event),
7312 },
34f43927 7313 .time = perf_event_clock(event),
cdd6c482
IM
7314 .id = primary_event_id(event),
7315 .stream_id = event->id,
a78ac325
PZ
7316 };
7317
966ee4d6 7318 if (enable)
cdd6c482 7319 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7320
c980d109
ACM
7321 perf_event_header__init_id(&throttle_event.header, &sample, event);
7322
7323 ret = perf_output_begin(&handle, event,
a7ac67ea 7324 throttle_event.header.size);
a78ac325
PZ
7325 if (ret)
7326 return;
7327
7328 perf_output_put(&handle, throttle_event);
c980d109 7329 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7330 perf_output_end(&handle);
7331}
7332
8d4e6c4c
AS
7333void perf_event_itrace_started(struct perf_event *event)
7334{
7335 event->attach_state |= PERF_ATTACH_ITRACE;
7336}
7337
ec0d7729
AS
7338static void perf_log_itrace_start(struct perf_event *event)
7339{
7340 struct perf_output_handle handle;
7341 struct perf_sample_data sample;
7342 struct perf_aux_event {
7343 struct perf_event_header header;
7344 u32 pid;
7345 u32 tid;
7346 } rec;
7347 int ret;
7348
7349 if (event->parent)
7350 event = event->parent;
7351
7352 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7353 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7354 return;
7355
ec0d7729
AS
7356 rec.header.type = PERF_RECORD_ITRACE_START;
7357 rec.header.misc = 0;
7358 rec.header.size = sizeof(rec);
7359 rec.pid = perf_event_pid(event, current);
7360 rec.tid = perf_event_tid(event, current);
7361
7362 perf_event_header__init_id(&rec.header, &sample, event);
7363 ret = perf_output_begin(&handle, event, rec.header.size);
7364
7365 if (ret)
7366 return;
7367
7368 perf_output_put(&handle, rec);
7369 perf_event__output_id_sample(event, &handle, &sample);
7370
7371 perf_output_end(&handle);
7372}
7373
475113d9
JO
7374static int
7375__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7376{
cdd6c482 7377 struct hw_perf_event *hwc = &event->hw;
79f14641 7378 int ret = 0;
475113d9 7379 u64 seq;
96398826 7380
e050e3f0
SE
7381 seq = __this_cpu_read(perf_throttled_seq);
7382 if (seq != hwc->interrupts_seq) {
7383 hwc->interrupts_seq = seq;
7384 hwc->interrupts = 1;
7385 } else {
7386 hwc->interrupts++;
7387 if (unlikely(throttle
7388 && hwc->interrupts >= max_samples_per_tick)) {
7389 __this_cpu_inc(perf_throttled_count);
555e0c1e 7390 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7391 hwc->interrupts = MAX_INTERRUPTS;
7392 perf_log_throttle(event, 0);
a78ac325
PZ
7393 ret = 1;
7394 }
e050e3f0 7395 }
60db5e09 7396
cdd6c482 7397 if (event->attr.freq) {
def0a9b2 7398 u64 now = perf_clock();
abd50713 7399 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7400
abd50713 7401 hwc->freq_time_stamp = now;
bd2b5b12 7402
abd50713 7403 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7404 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7405 }
7406
475113d9
JO
7407 return ret;
7408}
7409
7410int perf_event_account_interrupt(struct perf_event *event)
7411{
7412 return __perf_event_account_interrupt(event, 1);
7413}
7414
7415/*
7416 * Generic event overflow handling, sampling.
7417 */
7418
7419static int __perf_event_overflow(struct perf_event *event,
7420 int throttle, struct perf_sample_data *data,
7421 struct pt_regs *regs)
7422{
7423 int events = atomic_read(&event->event_limit);
7424 int ret = 0;
7425
7426 /*
7427 * Non-sampling counters might still use the PMI to fold short
7428 * hardware counters, ignore those.
7429 */
7430 if (unlikely(!is_sampling_event(event)))
7431 return 0;
7432
7433 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7434
2023b359
PZ
7435 /*
7436 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7437 * events
2023b359
PZ
7438 */
7439
cdd6c482
IM
7440 event->pending_kill = POLL_IN;
7441 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7442 ret = 1;
cdd6c482 7443 event->pending_kill = POLL_HUP;
5aab90ce
JO
7444
7445 perf_event_disable_inatomic(event);
79f14641
PZ
7446 }
7447
aa6a5f3c 7448 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7449
fed66e2c 7450 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7451 event->pending_wakeup = 1;
7452 irq_work_queue(&event->pending);
f506b3dc
PZ
7453 }
7454
79f14641 7455 return ret;
f6c7d5fe
PZ
7456}
7457
a8b0ca17 7458int perf_event_overflow(struct perf_event *event,
5622f295
MM
7459 struct perf_sample_data *data,
7460 struct pt_regs *regs)
850bc73f 7461{
a8b0ca17 7462 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7463}
7464
15dbf27c 7465/*
cdd6c482 7466 * Generic software event infrastructure
15dbf27c
PZ
7467 */
7468
b28ab83c
PZ
7469struct swevent_htable {
7470 struct swevent_hlist *swevent_hlist;
7471 struct mutex hlist_mutex;
7472 int hlist_refcount;
7473
7474 /* Recursion avoidance in each contexts */
7475 int recursion[PERF_NR_CONTEXTS];
7476};
7477
7478static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7479
7b4b6658 7480/*
cdd6c482
IM
7481 * We directly increment event->count and keep a second value in
7482 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7483 * is kept in the range [-sample_period, 0] so that we can use the
7484 * sign as trigger.
7485 */
7486
ab573844 7487u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7488{
cdd6c482 7489 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7490 u64 period = hwc->last_period;
7491 u64 nr, offset;
7492 s64 old, val;
7493
7494 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7495
7496again:
e7850595 7497 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7498 if (val < 0)
7499 return 0;
15dbf27c 7500
7b4b6658
PZ
7501 nr = div64_u64(period + val, period);
7502 offset = nr * period;
7503 val -= offset;
e7850595 7504 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7505 goto again;
15dbf27c 7506
7b4b6658 7507 return nr;
15dbf27c
PZ
7508}
7509
0cff784a 7510static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7511 struct perf_sample_data *data,
5622f295 7512 struct pt_regs *regs)
15dbf27c 7513{
cdd6c482 7514 struct hw_perf_event *hwc = &event->hw;
850bc73f 7515 int throttle = 0;
15dbf27c 7516
0cff784a
PZ
7517 if (!overflow)
7518 overflow = perf_swevent_set_period(event);
15dbf27c 7519
7b4b6658
PZ
7520 if (hwc->interrupts == MAX_INTERRUPTS)
7521 return;
15dbf27c 7522
7b4b6658 7523 for (; overflow; overflow--) {
a8b0ca17 7524 if (__perf_event_overflow(event, throttle,
5622f295 7525 data, regs)) {
7b4b6658
PZ
7526 /*
7527 * We inhibit the overflow from happening when
7528 * hwc->interrupts == MAX_INTERRUPTS.
7529 */
7530 break;
7531 }
cf450a73 7532 throttle = 1;
7b4b6658 7533 }
15dbf27c
PZ
7534}
7535
a4eaf7f1 7536static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7537 struct perf_sample_data *data,
5622f295 7538 struct pt_regs *regs)
7b4b6658 7539{
cdd6c482 7540 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7541
e7850595 7542 local64_add(nr, &event->count);
d6d020e9 7543
0cff784a
PZ
7544 if (!regs)
7545 return;
7546
6c7e550f 7547 if (!is_sampling_event(event))
7b4b6658 7548 return;
d6d020e9 7549
5d81e5cf
AV
7550 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7551 data->period = nr;
7552 return perf_swevent_overflow(event, 1, data, regs);
7553 } else
7554 data->period = event->hw.last_period;
7555
0cff784a 7556 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7557 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7558
e7850595 7559 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7560 return;
df1a132b 7561
a8b0ca17 7562 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7563}
7564
f5ffe02e
FW
7565static int perf_exclude_event(struct perf_event *event,
7566 struct pt_regs *regs)
7567{
a4eaf7f1 7568 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7569 return 1;
a4eaf7f1 7570
f5ffe02e
FW
7571 if (regs) {
7572 if (event->attr.exclude_user && user_mode(regs))
7573 return 1;
7574
7575 if (event->attr.exclude_kernel && !user_mode(regs))
7576 return 1;
7577 }
7578
7579 return 0;
7580}
7581
cdd6c482 7582static int perf_swevent_match(struct perf_event *event,
1c432d89 7583 enum perf_type_id type,
6fb2915d
LZ
7584 u32 event_id,
7585 struct perf_sample_data *data,
7586 struct pt_regs *regs)
15dbf27c 7587{
cdd6c482 7588 if (event->attr.type != type)
a21ca2ca 7589 return 0;
f5ffe02e 7590
cdd6c482 7591 if (event->attr.config != event_id)
15dbf27c
PZ
7592 return 0;
7593
f5ffe02e
FW
7594 if (perf_exclude_event(event, regs))
7595 return 0;
15dbf27c
PZ
7596
7597 return 1;
7598}
7599
76e1d904
FW
7600static inline u64 swevent_hash(u64 type, u32 event_id)
7601{
7602 u64 val = event_id | (type << 32);
7603
7604 return hash_64(val, SWEVENT_HLIST_BITS);
7605}
7606
49f135ed
FW
7607static inline struct hlist_head *
7608__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7609{
49f135ed
FW
7610 u64 hash = swevent_hash(type, event_id);
7611
7612 return &hlist->heads[hash];
7613}
76e1d904 7614
49f135ed
FW
7615/* For the read side: events when they trigger */
7616static inline struct hlist_head *
b28ab83c 7617find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7618{
7619 struct swevent_hlist *hlist;
76e1d904 7620
b28ab83c 7621 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7622 if (!hlist)
7623 return NULL;
7624
49f135ed
FW
7625 return __find_swevent_head(hlist, type, event_id);
7626}
7627
7628/* For the event head insertion and removal in the hlist */
7629static inline struct hlist_head *
b28ab83c 7630find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7631{
7632 struct swevent_hlist *hlist;
7633 u32 event_id = event->attr.config;
7634 u64 type = event->attr.type;
7635
7636 /*
7637 * Event scheduling is always serialized against hlist allocation
7638 * and release. Which makes the protected version suitable here.
7639 * The context lock guarantees that.
7640 */
b28ab83c 7641 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7642 lockdep_is_held(&event->ctx->lock));
7643 if (!hlist)
7644 return NULL;
7645
7646 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7647}
7648
7649static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7650 u64 nr,
76e1d904
FW
7651 struct perf_sample_data *data,
7652 struct pt_regs *regs)
15dbf27c 7653{
4a32fea9 7654 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7655 struct perf_event *event;
76e1d904 7656 struct hlist_head *head;
15dbf27c 7657
76e1d904 7658 rcu_read_lock();
b28ab83c 7659 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7660 if (!head)
7661 goto end;
7662
b67bfe0d 7663 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7664 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7665 perf_swevent_event(event, nr, data, regs);
15dbf27c 7666 }
76e1d904
FW
7667end:
7668 rcu_read_unlock();
15dbf27c
PZ
7669}
7670
86038c5e
PZI
7671DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7672
4ed7c92d 7673int perf_swevent_get_recursion_context(void)
96f6d444 7674{
4a32fea9 7675 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7676
b28ab83c 7677 return get_recursion_context(swhash->recursion);
96f6d444 7678}
645e8cc0 7679EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7680
98b5c2c6 7681void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7682{
4a32fea9 7683 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7684
b28ab83c 7685 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7686}
15dbf27c 7687
86038c5e 7688void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7689{
a4234bfc 7690 struct perf_sample_data data;
4ed7c92d 7691
86038c5e 7692 if (WARN_ON_ONCE(!regs))
4ed7c92d 7693 return;
a4234bfc 7694
fd0d000b 7695 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7696 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7697}
7698
7699void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7700{
7701 int rctx;
7702
7703 preempt_disable_notrace();
7704 rctx = perf_swevent_get_recursion_context();
7705 if (unlikely(rctx < 0))
7706 goto fail;
7707
7708 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7709
7710 perf_swevent_put_recursion_context(rctx);
86038c5e 7711fail:
1c024eca 7712 preempt_enable_notrace();
b8e83514
PZ
7713}
7714
cdd6c482 7715static void perf_swevent_read(struct perf_event *event)
15dbf27c 7716{
15dbf27c
PZ
7717}
7718
a4eaf7f1 7719static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7720{
4a32fea9 7721 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7722 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7723 struct hlist_head *head;
7724
6c7e550f 7725 if (is_sampling_event(event)) {
7b4b6658 7726 hwc->last_period = hwc->sample_period;
cdd6c482 7727 perf_swevent_set_period(event);
7b4b6658 7728 }
76e1d904 7729
a4eaf7f1
PZ
7730 hwc->state = !(flags & PERF_EF_START);
7731
b28ab83c 7732 head = find_swevent_head(swhash, event);
12ca6ad2 7733 if (WARN_ON_ONCE(!head))
76e1d904
FW
7734 return -EINVAL;
7735
7736 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7737 perf_event_update_userpage(event);
76e1d904 7738
15dbf27c
PZ
7739 return 0;
7740}
7741
a4eaf7f1 7742static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7743{
76e1d904 7744 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7745}
7746
a4eaf7f1 7747static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7748{
a4eaf7f1 7749 event->hw.state = 0;
d6d020e9 7750}
aa9c4c0f 7751
a4eaf7f1 7752static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7753{
a4eaf7f1 7754 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7755}
7756
49f135ed
FW
7757/* Deref the hlist from the update side */
7758static inline struct swevent_hlist *
b28ab83c 7759swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7760{
b28ab83c
PZ
7761 return rcu_dereference_protected(swhash->swevent_hlist,
7762 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7763}
7764
b28ab83c 7765static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7766{
b28ab83c 7767 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7768
49f135ed 7769 if (!hlist)
76e1d904
FW
7770 return;
7771
70691d4a 7772 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7773 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7774}
7775
3b364d7b 7776static void swevent_hlist_put_cpu(int cpu)
76e1d904 7777{
b28ab83c 7778 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7779
b28ab83c 7780 mutex_lock(&swhash->hlist_mutex);
76e1d904 7781
b28ab83c
PZ
7782 if (!--swhash->hlist_refcount)
7783 swevent_hlist_release(swhash);
76e1d904 7784
b28ab83c 7785 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7786}
7787
3b364d7b 7788static void swevent_hlist_put(void)
76e1d904
FW
7789{
7790 int cpu;
7791
76e1d904 7792 for_each_possible_cpu(cpu)
3b364d7b 7793 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7794}
7795
3b364d7b 7796static int swevent_hlist_get_cpu(int cpu)
76e1d904 7797{
b28ab83c 7798 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7799 int err = 0;
7800
b28ab83c 7801 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
7802 if (!swevent_hlist_deref(swhash) &&
7803 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
7804 struct swevent_hlist *hlist;
7805
7806 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7807 if (!hlist) {
7808 err = -ENOMEM;
7809 goto exit;
7810 }
b28ab83c 7811 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7812 }
b28ab83c 7813 swhash->hlist_refcount++;
9ed6060d 7814exit:
b28ab83c 7815 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7816
7817 return err;
7818}
7819
3b364d7b 7820static int swevent_hlist_get(void)
76e1d904 7821{
3b364d7b 7822 int err, cpu, failed_cpu;
76e1d904 7823
a63fbed7 7824 mutex_lock(&pmus_lock);
76e1d904 7825 for_each_possible_cpu(cpu) {
3b364d7b 7826 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7827 if (err) {
7828 failed_cpu = cpu;
7829 goto fail;
7830 }
7831 }
a63fbed7 7832 mutex_unlock(&pmus_lock);
76e1d904 7833 return 0;
9ed6060d 7834fail:
76e1d904
FW
7835 for_each_possible_cpu(cpu) {
7836 if (cpu == failed_cpu)
7837 break;
3b364d7b 7838 swevent_hlist_put_cpu(cpu);
76e1d904 7839 }
a63fbed7 7840 mutex_unlock(&pmus_lock);
76e1d904
FW
7841 return err;
7842}
7843
c5905afb 7844struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7845
b0a873eb
PZ
7846static void sw_perf_event_destroy(struct perf_event *event)
7847{
7848 u64 event_id = event->attr.config;
95476b64 7849
b0a873eb
PZ
7850 WARN_ON(event->parent);
7851
c5905afb 7852 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7853 swevent_hlist_put();
b0a873eb
PZ
7854}
7855
7856static int perf_swevent_init(struct perf_event *event)
7857{
8176cced 7858 u64 event_id = event->attr.config;
b0a873eb
PZ
7859
7860 if (event->attr.type != PERF_TYPE_SOFTWARE)
7861 return -ENOENT;
7862
2481c5fa
SE
7863 /*
7864 * no branch sampling for software events
7865 */
7866 if (has_branch_stack(event))
7867 return -EOPNOTSUPP;
7868
b0a873eb
PZ
7869 switch (event_id) {
7870 case PERF_COUNT_SW_CPU_CLOCK:
7871 case PERF_COUNT_SW_TASK_CLOCK:
7872 return -ENOENT;
7873
7874 default:
7875 break;
7876 }
7877
ce677831 7878 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7879 return -ENOENT;
7880
7881 if (!event->parent) {
7882 int err;
7883
3b364d7b 7884 err = swevent_hlist_get();
b0a873eb
PZ
7885 if (err)
7886 return err;
7887
c5905afb 7888 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7889 event->destroy = sw_perf_event_destroy;
7890 }
7891
7892 return 0;
7893}
7894
7895static struct pmu perf_swevent = {
89a1e187 7896 .task_ctx_nr = perf_sw_context,
95476b64 7897
34f43927
PZ
7898 .capabilities = PERF_PMU_CAP_NO_NMI,
7899
b0a873eb 7900 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7901 .add = perf_swevent_add,
7902 .del = perf_swevent_del,
7903 .start = perf_swevent_start,
7904 .stop = perf_swevent_stop,
1c024eca 7905 .read = perf_swevent_read,
1c024eca
PZ
7906};
7907
b0a873eb
PZ
7908#ifdef CONFIG_EVENT_TRACING
7909
1c024eca
PZ
7910static int perf_tp_filter_match(struct perf_event *event,
7911 struct perf_sample_data *data)
7912{
7e3f977e 7913 void *record = data->raw->frag.data;
1c024eca 7914
b71b437e
PZ
7915 /* only top level events have filters set */
7916 if (event->parent)
7917 event = event->parent;
7918
1c024eca
PZ
7919 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7920 return 1;
7921 return 0;
7922}
7923
7924static int perf_tp_event_match(struct perf_event *event,
7925 struct perf_sample_data *data,
7926 struct pt_regs *regs)
7927{
a0f7d0f7
FW
7928 if (event->hw.state & PERF_HES_STOPPED)
7929 return 0;
580d607c
PZ
7930 /*
7931 * All tracepoints are from kernel-space.
7932 */
7933 if (event->attr.exclude_kernel)
1c024eca
PZ
7934 return 0;
7935
7936 if (!perf_tp_filter_match(event, data))
7937 return 0;
7938
7939 return 1;
7940}
7941
85b67bcb
AS
7942void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7943 struct trace_event_call *call, u64 count,
7944 struct pt_regs *regs, struct hlist_head *head,
7945 struct task_struct *task)
7946{
7947 struct bpf_prog *prog = call->prog;
7948
7949 if (prog) {
7950 *(struct pt_regs **)raw_data = regs;
7951 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7952 perf_swevent_put_recursion_context(rctx);
7953 return;
7954 }
7955 }
7956 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
75e83876 7957 rctx, task, NULL);
85b67bcb
AS
7958}
7959EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7960
1e1dcd93 7961void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 7962 struct pt_regs *regs, struct hlist_head *head, int rctx,
75e83876 7963 struct task_struct *task, struct perf_event *event)
95476b64
FW
7964{
7965 struct perf_sample_data data;
1c024eca 7966
95476b64 7967 struct perf_raw_record raw = {
7e3f977e
DB
7968 .frag = {
7969 .size = entry_size,
7970 .data = record,
7971 },
95476b64
FW
7972 };
7973
1e1dcd93 7974 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7975 data.raw = &raw;
7976
1e1dcd93
AS
7977 perf_trace_buf_update(record, event_type);
7978
75e83876
ZC
7979 /* Use the given event instead of the hlist */
7980 if (event) {
1c024eca 7981 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7982 perf_swevent_event(event, count, &data, regs);
75e83876
ZC
7983 } else {
7984 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7985 if (perf_tp_event_match(event, &data, regs))
7986 perf_swevent_event(event, count, &data, regs);
7987 }
4f41c013 7988 }
ecc55f84 7989
e6dab5ff
AV
7990 /*
7991 * If we got specified a target task, also iterate its context and
7992 * deliver this event there too.
7993 */
7994 if (task && task != current) {
7995 struct perf_event_context *ctx;
7996 struct trace_entry *entry = record;
7997
7998 rcu_read_lock();
7999 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8000 if (!ctx)
8001 goto unlock;
8002
8003 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8004 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8005 continue;
8006 if (event->attr.config != entry->type)
8007 continue;
8008 if (perf_tp_event_match(event, &data, regs))
8009 perf_swevent_event(event, count, &data, regs);
8010 }
8011unlock:
8012 rcu_read_unlock();
8013 }
8014
ecc55f84 8015 perf_swevent_put_recursion_context(rctx);
95476b64
FW
8016}
8017EXPORT_SYMBOL_GPL(perf_tp_event);
8018
cdd6c482 8019static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 8020{
1c024eca 8021 perf_trace_destroy(event);
e077df4f
PZ
8022}
8023
b0a873eb 8024static int perf_tp_event_init(struct perf_event *event)
e077df4f 8025{
76e1d904
FW
8026 int err;
8027
b0a873eb
PZ
8028 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8029 return -ENOENT;
8030
2481c5fa
SE
8031 /*
8032 * no branch sampling for tracepoint events
8033 */
8034 if (has_branch_stack(event))
8035 return -EOPNOTSUPP;
8036
1c024eca
PZ
8037 err = perf_trace_init(event);
8038 if (err)
b0a873eb 8039 return err;
e077df4f 8040
cdd6c482 8041 event->destroy = tp_perf_event_destroy;
e077df4f 8042
b0a873eb
PZ
8043 return 0;
8044}
8045
8046static struct pmu perf_tracepoint = {
89a1e187
PZ
8047 .task_ctx_nr = perf_sw_context,
8048
b0a873eb 8049 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
8050 .add = perf_trace_add,
8051 .del = perf_trace_del,
8052 .start = perf_swevent_start,
8053 .stop = perf_swevent_stop,
b0a873eb 8054 .read = perf_swevent_read,
b0a873eb
PZ
8055};
8056
8057static inline void perf_tp_register(void)
8058{
2e80a82a 8059 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 8060}
6fb2915d 8061
6fb2915d
LZ
8062static void perf_event_free_filter(struct perf_event *event)
8063{
8064 ftrace_profile_free_filter(event);
8065}
8066
aa6a5f3c
AS
8067#ifdef CONFIG_BPF_SYSCALL
8068static void bpf_overflow_handler(struct perf_event *event,
8069 struct perf_sample_data *data,
8070 struct pt_regs *regs)
8071{
8072 struct bpf_perf_event_data_kern ctx = {
8073 .data = data,
8074 .regs = regs,
8075 };
8076 int ret = 0;
8077
8078 preempt_disable();
8079 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8080 goto out;
8081 rcu_read_lock();
88575199 8082 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8083 rcu_read_unlock();
8084out:
8085 __this_cpu_dec(bpf_prog_active);
8086 preempt_enable();
8087 if (!ret)
8088 return;
8089
8090 event->orig_overflow_handler(event, data, regs);
8091}
8092
8093static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8094{
8095 struct bpf_prog *prog;
8096
8097 if (event->overflow_handler_context)
8098 /* hw breakpoint or kernel counter */
8099 return -EINVAL;
8100
8101 if (event->prog)
8102 return -EEXIST;
8103
8104 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8105 if (IS_ERR(prog))
8106 return PTR_ERR(prog);
8107
8108 event->prog = prog;
8109 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8110 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8111 return 0;
8112}
8113
8114static void perf_event_free_bpf_handler(struct perf_event *event)
8115{
8116 struct bpf_prog *prog = event->prog;
8117
8118 if (!prog)
8119 return;
8120
8121 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8122 event->prog = NULL;
8123 bpf_prog_put(prog);
8124}
8125#else
8126static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8127{
8128 return -EOPNOTSUPP;
8129}
8130static void perf_event_free_bpf_handler(struct perf_event *event)
8131{
8132}
8133#endif
8134
2541517c
AS
8135static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8136{
cf5f5cea 8137 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c
AS
8138 struct bpf_prog *prog;
8139
8140 if (event->attr.type != PERF_TYPE_TRACEPOINT)
f91840a3 8141 return perf_event_set_bpf_handler(event, prog_fd);
2541517c
AS
8142
8143 if (event->tp_event->prog)
8144 return -EEXIST;
8145
98b5c2c6
AS
8146 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8147 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8148 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8149 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8150 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8151 return -EINVAL;
8152
8153 prog = bpf_prog_get(prog_fd);
8154 if (IS_ERR(prog))
8155 return PTR_ERR(prog);
8156
98b5c2c6 8157 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8158 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8159 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8160 /* valid fd, but invalid bpf program type */
8161 bpf_prog_put(prog);
8162 return -EINVAL;
8163 }
8164
cf5f5cea 8165 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8166 int off = trace_event_get_offsets(event->tp_event);
8167
8168 if (prog->aux->max_ctx_offset > off) {
8169 bpf_prog_put(prog);
8170 return -EACCES;
8171 }
8172 }
2541517c 8173 event->tp_event->prog = prog;
ec9dd352 8174 event->tp_event->bpf_prog_owner = event;
2541517c
AS
8175
8176 return 0;
8177}
8178
8179static void perf_event_free_bpf_prog(struct perf_event *event)
8180{
8181 struct bpf_prog *prog;
8182
aa6a5f3c
AS
8183 perf_event_free_bpf_handler(event);
8184
2541517c
AS
8185 if (!event->tp_event)
8186 return;
8187
8188 prog = event->tp_event->prog;
ec9dd352 8189 if (prog && event->tp_event->bpf_prog_owner == event) {
2541517c 8190 event->tp_event->prog = NULL;
1aacde3d 8191 bpf_prog_put(prog);
2541517c
AS
8192 }
8193}
8194
e077df4f 8195#else
6fb2915d 8196
b0a873eb 8197static inline void perf_tp_register(void)
e077df4f 8198{
e077df4f 8199}
6fb2915d 8200
6fb2915d
LZ
8201static void perf_event_free_filter(struct perf_event *event)
8202{
8203}
8204
2541517c
AS
8205static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8206{
8207 return -ENOENT;
8208}
8209
8210static void perf_event_free_bpf_prog(struct perf_event *event)
8211{
8212}
07b139c8 8213#endif /* CONFIG_EVENT_TRACING */
e077df4f 8214
24f1e32c 8215#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8216void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8217{
f5ffe02e
FW
8218 struct perf_sample_data sample;
8219 struct pt_regs *regs = data;
8220
fd0d000b 8221 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8222
a4eaf7f1 8223 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8224 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8225}
8226#endif
8227
375637bc
AS
8228/*
8229 * Allocate a new address filter
8230 */
8231static struct perf_addr_filter *
8232perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8233{
8234 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8235 struct perf_addr_filter *filter;
8236
8237 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8238 if (!filter)
8239 return NULL;
8240
8241 INIT_LIST_HEAD(&filter->entry);
8242 list_add_tail(&filter->entry, filters);
8243
8244 return filter;
8245}
8246
8247static void free_filters_list(struct list_head *filters)
8248{
8249 struct perf_addr_filter *filter, *iter;
8250
8251 list_for_each_entry_safe(filter, iter, filters, entry) {
8252 if (filter->inode)
8253 iput(filter->inode);
8254 list_del(&filter->entry);
8255 kfree(filter);
8256 }
8257}
8258
8259/*
8260 * Free existing address filters and optionally install new ones
8261 */
8262static void perf_addr_filters_splice(struct perf_event *event,
8263 struct list_head *head)
8264{
8265 unsigned long flags;
8266 LIST_HEAD(list);
8267
8268 if (!has_addr_filter(event))
8269 return;
8270
8271 /* don't bother with children, they don't have their own filters */
8272 if (event->parent)
8273 return;
8274
8275 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8276
8277 list_splice_init(&event->addr_filters.list, &list);
8278 if (head)
8279 list_splice(head, &event->addr_filters.list);
8280
8281 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8282
8283 free_filters_list(&list);
8284}
8285
8286/*
8287 * Scan through mm's vmas and see if one of them matches the
8288 * @filter; if so, adjust filter's address range.
8289 * Called with mm::mmap_sem down for reading.
8290 */
8291static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8292 struct mm_struct *mm)
8293{
8294 struct vm_area_struct *vma;
8295
8296 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8297 struct file *file = vma->vm_file;
8298 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8299 unsigned long vma_size = vma->vm_end - vma->vm_start;
8300
8301 if (!file)
8302 continue;
8303
8304 if (!perf_addr_filter_match(filter, file, off, vma_size))
8305 continue;
8306
8307 return vma->vm_start;
8308 }
8309
8310 return 0;
8311}
8312
8313/*
8314 * Update event's address range filters based on the
8315 * task's existing mappings, if any.
8316 */
8317static void perf_event_addr_filters_apply(struct perf_event *event)
8318{
8319 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8320 struct task_struct *task = READ_ONCE(event->ctx->task);
8321 struct perf_addr_filter *filter;
8322 struct mm_struct *mm = NULL;
8323 unsigned int count = 0;
8324 unsigned long flags;
8325
8326 /*
8327 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8328 * will stop on the parent's child_mutex that our caller is also holding
8329 */
8330 if (task == TASK_TOMBSTONE)
8331 return;
8332
6ce77bfd
AS
8333 if (!ifh->nr_file_filters)
8334 return;
8335
375637bc
AS
8336 mm = get_task_mm(event->ctx->task);
8337 if (!mm)
8338 goto restart;
8339
8340 down_read(&mm->mmap_sem);
8341
8342 raw_spin_lock_irqsave(&ifh->lock, flags);
8343 list_for_each_entry(filter, &ifh->list, entry) {
8344 event->addr_filters_offs[count] = 0;
8345
99f5bc9b
MP
8346 /*
8347 * Adjust base offset if the filter is associated to a binary
8348 * that needs to be mapped:
8349 */
8350 if (filter->inode)
375637bc
AS
8351 event->addr_filters_offs[count] =
8352 perf_addr_filter_apply(filter, mm);
8353
8354 count++;
8355 }
8356
8357 event->addr_filters_gen++;
8358 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8359
8360 up_read(&mm->mmap_sem);
8361
8362 mmput(mm);
8363
8364restart:
767ae086 8365 perf_event_stop(event, 1);
375637bc
AS
8366}
8367
8368/*
8369 * Address range filtering: limiting the data to certain
8370 * instruction address ranges. Filters are ioctl()ed to us from
8371 * userspace as ascii strings.
8372 *
8373 * Filter string format:
8374 *
8375 * ACTION RANGE_SPEC
8376 * where ACTION is one of the
8377 * * "filter": limit the trace to this region
8378 * * "start": start tracing from this address
8379 * * "stop": stop tracing at this address/region;
8380 * RANGE_SPEC is
8381 * * for kernel addresses: <start address>[/<size>]
8382 * * for object files: <start address>[/<size>]@</path/to/object/file>
8383 *
8384 * if <size> is not specified, the range is treated as a single address.
8385 */
8386enum {
e96271f3 8387 IF_ACT_NONE = -1,
375637bc
AS
8388 IF_ACT_FILTER,
8389 IF_ACT_START,
8390 IF_ACT_STOP,
8391 IF_SRC_FILE,
8392 IF_SRC_KERNEL,
8393 IF_SRC_FILEADDR,
8394 IF_SRC_KERNELADDR,
8395};
8396
8397enum {
8398 IF_STATE_ACTION = 0,
8399 IF_STATE_SOURCE,
8400 IF_STATE_END,
8401};
8402
8403static const match_table_t if_tokens = {
8404 { IF_ACT_FILTER, "filter" },
8405 { IF_ACT_START, "start" },
8406 { IF_ACT_STOP, "stop" },
8407 { IF_SRC_FILE, "%u/%u@%s" },
8408 { IF_SRC_KERNEL, "%u/%u" },
8409 { IF_SRC_FILEADDR, "%u@%s" },
8410 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8411 { IF_ACT_NONE, NULL },
375637bc
AS
8412};
8413
8414/*
8415 * Address filter string parser
8416 */
8417static int
8418perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8419 struct list_head *filters)
8420{
8421 struct perf_addr_filter *filter = NULL;
8422 char *start, *orig, *filename = NULL;
8423 struct path path;
8424 substring_t args[MAX_OPT_ARGS];
8425 int state = IF_STATE_ACTION, token;
8426 unsigned int kernel = 0;
8427 int ret = -EINVAL;
8428
8429 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8430 if (!fstr)
8431 return -ENOMEM;
8432
8433 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8434 ret = -EINVAL;
8435
8436 if (!*start)
8437 continue;
8438
8439 /* filter definition begins */
8440 if (state == IF_STATE_ACTION) {
8441 filter = perf_addr_filter_new(event, filters);
8442 if (!filter)
8443 goto fail;
8444 }
8445
8446 token = match_token(start, if_tokens, args);
8447 switch (token) {
8448 case IF_ACT_FILTER:
8449 case IF_ACT_START:
8450 filter->filter = 1;
8451
8452 case IF_ACT_STOP:
8453 if (state != IF_STATE_ACTION)
8454 goto fail;
8455
8456 state = IF_STATE_SOURCE;
8457 break;
8458
8459 case IF_SRC_KERNELADDR:
8460 case IF_SRC_KERNEL:
8461 kernel = 1;
8462
8463 case IF_SRC_FILEADDR:
8464 case IF_SRC_FILE:
8465 if (state != IF_STATE_SOURCE)
8466 goto fail;
8467
8468 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8469 filter->range = 1;
8470
8471 *args[0].to = 0;
8472 ret = kstrtoul(args[0].from, 0, &filter->offset);
8473 if (ret)
8474 goto fail;
8475
8476 if (filter->range) {
8477 *args[1].to = 0;
8478 ret = kstrtoul(args[1].from, 0, &filter->size);
8479 if (ret)
8480 goto fail;
8481 }
8482
4059ffd0
MP
8483 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8484 int fpos = filter->range ? 2 : 1;
8485
8486 filename = match_strdup(&args[fpos]);
375637bc
AS
8487 if (!filename) {
8488 ret = -ENOMEM;
8489 goto fail;
8490 }
8491 }
8492
8493 state = IF_STATE_END;
8494 break;
8495
8496 default:
8497 goto fail;
8498 }
8499
8500 /*
8501 * Filter definition is fully parsed, validate and install it.
8502 * Make sure that it doesn't contradict itself or the event's
8503 * attribute.
8504 */
8505 if (state == IF_STATE_END) {
9ccbfbb1 8506 ret = -EINVAL;
375637bc
AS
8507 if (kernel && event->attr.exclude_kernel)
8508 goto fail;
8509
8510 if (!kernel) {
8511 if (!filename)
8512 goto fail;
8513
6ce77bfd
AS
8514 /*
8515 * For now, we only support file-based filters
8516 * in per-task events; doing so for CPU-wide
8517 * events requires additional context switching
8518 * trickery, since same object code will be
8519 * mapped at different virtual addresses in
8520 * different processes.
8521 */
8522 ret = -EOPNOTSUPP;
8523 if (!event->ctx->task)
8524 goto fail_free_name;
8525
375637bc
AS
8526 /* look up the path and grab its inode */
8527 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8528 if (ret)
8529 goto fail_free_name;
8530
8531 filter->inode = igrab(d_inode(path.dentry));
8532 path_put(&path);
8533 kfree(filename);
8534 filename = NULL;
8535
8536 ret = -EINVAL;
8537 if (!filter->inode ||
8538 !S_ISREG(filter->inode->i_mode))
8539 /* free_filters_list() will iput() */
8540 goto fail;
6ce77bfd
AS
8541
8542 event->addr_filters.nr_file_filters++;
375637bc
AS
8543 }
8544
8545 /* ready to consume more filters */
8546 state = IF_STATE_ACTION;
8547 filter = NULL;
8548 }
8549 }
8550
8551 if (state != IF_STATE_ACTION)
8552 goto fail;
8553
8554 kfree(orig);
8555
8556 return 0;
8557
8558fail_free_name:
8559 kfree(filename);
8560fail:
8561 free_filters_list(filters);
8562 kfree(orig);
8563
8564 return ret;
8565}
8566
8567static int
8568perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8569{
8570 LIST_HEAD(filters);
8571 int ret;
8572
8573 /*
8574 * Since this is called in perf_ioctl() path, we're already holding
8575 * ctx::mutex.
8576 */
8577 lockdep_assert_held(&event->ctx->mutex);
8578
8579 if (WARN_ON_ONCE(event->parent))
8580 return -EINVAL;
8581
375637bc
AS
8582 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8583 if (ret)
6ce77bfd 8584 goto fail_clear_files;
375637bc
AS
8585
8586 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8587 if (ret)
8588 goto fail_free_filters;
375637bc
AS
8589
8590 /* remove existing filters, if any */
8591 perf_addr_filters_splice(event, &filters);
8592
8593 /* install new filters */
8594 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8595
6ce77bfd
AS
8596 return ret;
8597
8598fail_free_filters:
8599 free_filters_list(&filters);
8600
8601fail_clear_files:
8602 event->addr_filters.nr_file_filters = 0;
8603
375637bc
AS
8604 return ret;
8605}
8606
c796bbbe
AS
8607static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8608{
8609 char *filter_str;
8610 int ret = -EINVAL;
8611
375637bc
AS
8612 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8613 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8614 !has_addr_filter(event))
c796bbbe
AS
8615 return -EINVAL;
8616
8617 filter_str = strndup_user(arg, PAGE_SIZE);
8618 if (IS_ERR(filter_str))
8619 return PTR_ERR(filter_str);
8620
8621 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8622 event->attr.type == PERF_TYPE_TRACEPOINT)
8623 ret = ftrace_profile_set_filter(event, event->attr.config,
8624 filter_str);
375637bc
AS
8625 else if (has_addr_filter(event))
8626 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8627
8628 kfree(filter_str);
8629 return ret;
8630}
8631
b0a873eb
PZ
8632/*
8633 * hrtimer based swevent callback
8634 */
f29ac756 8635
b0a873eb 8636static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8637{
b0a873eb
PZ
8638 enum hrtimer_restart ret = HRTIMER_RESTART;
8639 struct perf_sample_data data;
8640 struct pt_regs *regs;
8641 struct perf_event *event;
8642 u64 period;
f29ac756 8643
b0a873eb 8644 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8645
8646 if (event->state != PERF_EVENT_STATE_ACTIVE)
8647 return HRTIMER_NORESTART;
8648
b0a873eb 8649 event->pmu->read(event);
f344011c 8650
fd0d000b 8651 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8652 regs = get_irq_regs();
8653
8654 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8655 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8656 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8657 ret = HRTIMER_NORESTART;
8658 }
24f1e32c 8659
b0a873eb
PZ
8660 period = max_t(u64, 10000, event->hw.sample_period);
8661 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8662
b0a873eb 8663 return ret;
f29ac756
PZ
8664}
8665
b0a873eb 8666static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8667{
b0a873eb 8668 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8669 s64 period;
8670
8671 if (!is_sampling_event(event))
8672 return;
f5ffe02e 8673
5d508e82
FBH
8674 period = local64_read(&hwc->period_left);
8675 if (period) {
8676 if (period < 0)
8677 period = 10000;
fa407f35 8678
5d508e82
FBH
8679 local64_set(&hwc->period_left, 0);
8680 } else {
8681 period = max_t(u64, 10000, hwc->sample_period);
8682 }
3497d206
TG
8683 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8684 HRTIMER_MODE_REL_PINNED);
24f1e32c 8685}
b0a873eb
PZ
8686
8687static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8688{
b0a873eb
PZ
8689 struct hw_perf_event *hwc = &event->hw;
8690
6c7e550f 8691 if (is_sampling_event(event)) {
b0a873eb 8692 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8693 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8694
8695 hrtimer_cancel(&hwc->hrtimer);
8696 }
24f1e32c
FW
8697}
8698
ba3dd36c
PZ
8699static void perf_swevent_init_hrtimer(struct perf_event *event)
8700{
8701 struct hw_perf_event *hwc = &event->hw;
8702
8703 if (!is_sampling_event(event))
8704 return;
8705
8706 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8707 hwc->hrtimer.function = perf_swevent_hrtimer;
8708
8709 /*
8710 * Since hrtimers have a fixed rate, we can do a static freq->period
8711 * mapping and avoid the whole period adjust feedback stuff.
8712 */
8713 if (event->attr.freq) {
8714 long freq = event->attr.sample_freq;
8715
8716 event->attr.sample_period = NSEC_PER_SEC / freq;
8717 hwc->sample_period = event->attr.sample_period;
8718 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8719 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8720 event->attr.freq = 0;
8721 }
8722}
8723
b0a873eb
PZ
8724/*
8725 * Software event: cpu wall time clock
8726 */
8727
8728static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8729{
b0a873eb
PZ
8730 s64 prev;
8731 u64 now;
8732
a4eaf7f1 8733 now = local_clock();
b0a873eb
PZ
8734 prev = local64_xchg(&event->hw.prev_count, now);
8735 local64_add(now - prev, &event->count);
24f1e32c 8736}
24f1e32c 8737
a4eaf7f1 8738static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8739{
a4eaf7f1 8740 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8741 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8742}
8743
a4eaf7f1 8744static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8745{
b0a873eb
PZ
8746 perf_swevent_cancel_hrtimer(event);
8747 cpu_clock_event_update(event);
8748}
f29ac756 8749
a4eaf7f1
PZ
8750static int cpu_clock_event_add(struct perf_event *event, int flags)
8751{
8752 if (flags & PERF_EF_START)
8753 cpu_clock_event_start(event, flags);
6a694a60 8754 perf_event_update_userpage(event);
a4eaf7f1
PZ
8755
8756 return 0;
8757}
8758
8759static void cpu_clock_event_del(struct perf_event *event, int flags)
8760{
8761 cpu_clock_event_stop(event, flags);
8762}
8763
b0a873eb
PZ
8764static void cpu_clock_event_read(struct perf_event *event)
8765{
8766 cpu_clock_event_update(event);
8767}
f344011c 8768
b0a873eb
PZ
8769static int cpu_clock_event_init(struct perf_event *event)
8770{
8771 if (event->attr.type != PERF_TYPE_SOFTWARE)
8772 return -ENOENT;
8773
8774 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8775 return -ENOENT;
8776
2481c5fa
SE
8777 /*
8778 * no branch sampling for software events
8779 */
8780 if (has_branch_stack(event))
8781 return -EOPNOTSUPP;
8782
ba3dd36c
PZ
8783 perf_swevent_init_hrtimer(event);
8784
b0a873eb 8785 return 0;
f29ac756
PZ
8786}
8787
b0a873eb 8788static struct pmu perf_cpu_clock = {
89a1e187
PZ
8789 .task_ctx_nr = perf_sw_context,
8790
34f43927
PZ
8791 .capabilities = PERF_PMU_CAP_NO_NMI,
8792
b0a873eb 8793 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8794 .add = cpu_clock_event_add,
8795 .del = cpu_clock_event_del,
8796 .start = cpu_clock_event_start,
8797 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8798 .read = cpu_clock_event_read,
8799};
8800
8801/*
8802 * Software event: task time clock
8803 */
8804
8805static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8806{
b0a873eb
PZ
8807 u64 prev;
8808 s64 delta;
5c92d124 8809
b0a873eb
PZ
8810 prev = local64_xchg(&event->hw.prev_count, now);
8811 delta = now - prev;
8812 local64_add(delta, &event->count);
8813}
5c92d124 8814
a4eaf7f1 8815static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8816{
a4eaf7f1 8817 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8818 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8819}
8820
a4eaf7f1 8821static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8822{
8823 perf_swevent_cancel_hrtimer(event);
8824 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8825}
8826
8827static int task_clock_event_add(struct perf_event *event, int flags)
8828{
8829 if (flags & PERF_EF_START)
8830 task_clock_event_start(event, flags);
6a694a60 8831 perf_event_update_userpage(event);
b0a873eb 8832
a4eaf7f1
PZ
8833 return 0;
8834}
8835
8836static void task_clock_event_del(struct perf_event *event, int flags)
8837{
8838 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8839}
8840
8841static void task_clock_event_read(struct perf_event *event)
8842{
768a06e2
PZ
8843 u64 now = perf_clock();
8844 u64 delta = now - event->ctx->timestamp;
8845 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8846
8847 task_clock_event_update(event, time);
8848}
8849
8850static int task_clock_event_init(struct perf_event *event)
6fb2915d 8851{
b0a873eb
PZ
8852 if (event->attr.type != PERF_TYPE_SOFTWARE)
8853 return -ENOENT;
8854
8855 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8856 return -ENOENT;
8857
2481c5fa
SE
8858 /*
8859 * no branch sampling for software events
8860 */
8861 if (has_branch_stack(event))
8862 return -EOPNOTSUPP;
8863
ba3dd36c
PZ
8864 perf_swevent_init_hrtimer(event);
8865
b0a873eb 8866 return 0;
6fb2915d
LZ
8867}
8868
b0a873eb 8869static struct pmu perf_task_clock = {
89a1e187
PZ
8870 .task_ctx_nr = perf_sw_context,
8871
34f43927
PZ
8872 .capabilities = PERF_PMU_CAP_NO_NMI,
8873
b0a873eb 8874 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8875 .add = task_clock_event_add,
8876 .del = task_clock_event_del,
8877 .start = task_clock_event_start,
8878 .stop = task_clock_event_stop,
b0a873eb
PZ
8879 .read = task_clock_event_read,
8880};
6fb2915d 8881
ad5133b7 8882static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8883{
e077df4f 8884}
6fb2915d 8885
fbbe0701
SB
8886static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8887{
8888}
8889
ad5133b7 8890static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8891{
ad5133b7 8892 return 0;
6fb2915d
LZ
8893}
8894
18ab2cd3 8895static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8896
8897static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8898{
fbbe0701
SB
8899 __this_cpu_write(nop_txn_flags, flags);
8900
8901 if (flags & ~PERF_PMU_TXN_ADD)
8902 return;
8903
ad5133b7 8904 perf_pmu_disable(pmu);
6fb2915d
LZ
8905}
8906
ad5133b7
PZ
8907static int perf_pmu_commit_txn(struct pmu *pmu)
8908{
fbbe0701
SB
8909 unsigned int flags = __this_cpu_read(nop_txn_flags);
8910
8911 __this_cpu_write(nop_txn_flags, 0);
8912
8913 if (flags & ~PERF_PMU_TXN_ADD)
8914 return 0;
8915
ad5133b7
PZ
8916 perf_pmu_enable(pmu);
8917 return 0;
8918}
e077df4f 8919
ad5133b7 8920static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8921{
fbbe0701
SB
8922 unsigned int flags = __this_cpu_read(nop_txn_flags);
8923
8924 __this_cpu_write(nop_txn_flags, 0);
8925
8926 if (flags & ~PERF_PMU_TXN_ADD)
8927 return;
8928
ad5133b7 8929 perf_pmu_enable(pmu);
24f1e32c
FW
8930}
8931
35edc2a5
PZ
8932static int perf_event_idx_default(struct perf_event *event)
8933{
c719f560 8934 return 0;
35edc2a5
PZ
8935}
8936
8dc85d54
PZ
8937/*
8938 * Ensures all contexts with the same task_ctx_nr have the same
8939 * pmu_cpu_context too.
8940 */
9e317041 8941static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8942{
8dc85d54 8943 struct pmu *pmu;
b326e956 8944
8dc85d54
PZ
8945 if (ctxn < 0)
8946 return NULL;
24f1e32c 8947
8dc85d54
PZ
8948 list_for_each_entry(pmu, &pmus, entry) {
8949 if (pmu->task_ctx_nr == ctxn)
8950 return pmu->pmu_cpu_context;
8951 }
24f1e32c 8952
8dc85d54 8953 return NULL;
24f1e32c
FW
8954}
8955
51676957
PZ
8956static void free_pmu_context(struct pmu *pmu)
8957{
df0062b2
WD
8958 /*
8959 * Static contexts such as perf_sw_context have a global lifetime
8960 * and may be shared between different PMUs. Avoid freeing them
8961 * when a single PMU is going away.
8962 */
8963 if (pmu->task_ctx_nr > perf_invalid_context)
8964 return;
8965
8dc85d54 8966 mutex_lock(&pmus_lock);
51676957 8967 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8968 mutex_unlock(&pmus_lock);
24f1e32c 8969}
6e855cd4
AS
8970
8971/*
8972 * Let userspace know that this PMU supports address range filtering:
8973 */
8974static ssize_t nr_addr_filters_show(struct device *dev,
8975 struct device_attribute *attr,
8976 char *page)
8977{
8978 struct pmu *pmu = dev_get_drvdata(dev);
8979
8980 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8981}
8982DEVICE_ATTR_RO(nr_addr_filters);
8983
2e80a82a 8984static struct idr pmu_idr;
d6d020e9 8985
abe43400
PZ
8986static ssize_t
8987type_show(struct device *dev, struct device_attribute *attr, char *page)
8988{
8989 struct pmu *pmu = dev_get_drvdata(dev);
8990
8991 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8992}
90826ca7 8993static DEVICE_ATTR_RO(type);
abe43400 8994
62b85639
SE
8995static ssize_t
8996perf_event_mux_interval_ms_show(struct device *dev,
8997 struct device_attribute *attr,
8998 char *page)
8999{
9000 struct pmu *pmu = dev_get_drvdata(dev);
9001
9002 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9003}
9004
272325c4
PZ
9005static DEFINE_MUTEX(mux_interval_mutex);
9006
62b85639
SE
9007static ssize_t
9008perf_event_mux_interval_ms_store(struct device *dev,
9009 struct device_attribute *attr,
9010 const char *buf, size_t count)
9011{
9012 struct pmu *pmu = dev_get_drvdata(dev);
9013 int timer, cpu, ret;
9014
9015 ret = kstrtoint(buf, 0, &timer);
9016 if (ret)
9017 return ret;
9018
9019 if (timer < 1)
9020 return -EINVAL;
9021
9022 /* same value, noting to do */
9023 if (timer == pmu->hrtimer_interval_ms)
9024 return count;
9025
272325c4 9026 mutex_lock(&mux_interval_mutex);
62b85639
SE
9027 pmu->hrtimer_interval_ms = timer;
9028
9029 /* update all cpuctx for this PMU */
a63fbed7 9030 cpus_read_lock();
272325c4 9031 for_each_online_cpu(cpu) {
62b85639
SE
9032 struct perf_cpu_context *cpuctx;
9033 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9034 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9035
272325c4
PZ
9036 cpu_function_call(cpu,
9037 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 9038 }
a63fbed7 9039 cpus_read_unlock();
272325c4 9040 mutex_unlock(&mux_interval_mutex);
62b85639
SE
9041
9042 return count;
9043}
90826ca7 9044static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 9045
90826ca7
GKH
9046static struct attribute *pmu_dev_attrs[] = {
9047 &dev_attr_type.attr,
9048 &dev_attr_perf_event_mux_interval_ms.attr,
9049 NULL,
abe43400 9050};
90826ca7 9051ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9052
9053static int pmu_bus_running;
9054static struct bus_type pmu_bus = {
9055 .name = "event_source",
90826ca7 9056 .dev_groups = pmu_dev_groups,
abe43400
PZ
9057};
9058
9059static void pmu_dev_release(struct device *dev)
9060{
9061 kfree(dev);
9062}
9063
9064static int pmu_dev_alloc(struct pmu *pmu)
9065{
9066 int ret = -ENOMEM;
9067
9068 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9069 if (!pmu->dev)
9070 goto out;
9071
0c9d42ed 9072 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9073 device_initialize(pmu->dev);
9074 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9075 if (ret)
9076 goto free_dev;
9077
9078 dev_set_drvdata(pmu->dev, pmu);
9079 pmu->dev->bus = &pmu_bus;
9080 pmu->dev->release = pmu_dev_release;
9081 ret = device_add(pmu->dev);
9082 if (ret)
9083 goto free_dev;
9084
6e855cd4
AS
9085 /* For PMUs with address filters, throw in an extra attribute: */
9086 if (pmu->nr_addr_filters)
9087 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9088
9089 if (ret)
9090 goto del_dev;
9091
abe43400
PZ
9092out:
9093 return ret;
9094
6e855cd4
AS
9095del_dev:
9096 device_del(pmu->dev);
9097
abe43400
PZ
9098free_dev:
9099 put_device(pmu->dev);
9100 goto out;
9101}
9102
547e9fd7 9103static struct lock_class_key cpuctx_mutex;
facc4307 9104static struct lock_class_key cpuctx_lock;
547e9fd7 9105
03d8e80b 9106int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9107{
108b02cf 9108 int cpu, ret;
24f1e32c 9109
b0a873eb 9110 mutex_lock(&pmus_lock);
33696fc0
PZ
9111 ret = -ENOMEM;
9112 pmu->pmu_disable_count = alloc_percpu(int);
9113 if (!pmu->pmu_disable_count)
9114 goto unlock;
f29ac756 9115
2e80a82a
PZ
9116 pmu->type = -1;
9117 if (!name)
9118 goto skip_type;
9119 pmu->name = name;
9120
9121 if (type < 0) {
0e9c3be2
TH
9122 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9123 if (type < 0) {
9124 ret = type;
2e80a82a
PZ
9125 goto free_pdc;
9126 }
9127 }
9128 pmu->type = type;
9129
abe43400
PZ
9130 if (pmu_bus_running) {
9131 ret = pmu_dev_alloc(pmu);
9132 if (ret)
9133 goto free_idr;
9134 }
9135
2e80a82a 9136skip_type:
26657848
PZ
9137 if (pmu->task_ctx_nr == perf_hw_context) {
9138 static int hw_context_taken = 0;
9139
5101ef20
MR
9140 /*
9141 * Other than systems with heterogeneous CPUs, it never makes
9142 * sense for two PMUs to share perf_hw_context. PMUs which are
9143 * uncore must use perf_invalid_context.
9144 */
9145 if (WARN_ON_ONCE(hw_context_taken &&
9146 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9147 pmu->task_ctx_nr = perf_invalid_context;
9148
9149 hw_context_taken = 1;
9150 }
9151
8dc85d54
PZ
9152 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9153 if (pmu->pmu_cpu_context)
9154 goto got_cpu_context;
f29ac756 9155
c4814202 9156 ret = -ENOMEM;
108b02cf
PZ
9157 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9158 if (!pmu->pmu_cpu_context)
abe43400 9159 goto free_dev;
f344011c 9160
108b02cf
PZ
9161 for_each_possible_cpu(cpu) {
9162 struct perf_cpu_context *cpuctx;
9163
9164 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9165 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9166 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9167 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9168 cpuctx->ctx.pmu = pmu;
a63fbed7 9169 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9170
272325c4 9171 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9172 }
76e1d904 9173
8dc85d54 9174got_cpu_context:
ad5133b7
PZ
9175 if (!pmu->start_txn) {
9176 if (pmu->pmu_enable) {
9177 /*
9178 * If we have pmu_enable/pmu_disable calls, install
9179 * transaction stubs that use that to try and batch
9180 * hardware accesses.
9181 */
9182 pmu->start_txn = perf_pmu_start_txn;
9183 pmu->commit_txn = perf_pmu_commit_txn;
9184 pmu->cancel_txn = perf_pmu_cancel_txn;
9185 } else {
fbbe0701 9186 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9187 pmu->commit_txn = perf_pmu_nop_int;
9188 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9189 }
5c92d124 9190 }
15dbf27c 9191
ad5133b7
PZ
9192 if (!pmu->pmu_enable) {
9193 pmu->pmu_enable = perf_pmu_nop_void;
9194 pmu->pmu_disable = perf_pmu_nop_void;
9195 }
9196
35edc2a5
PZ
9197 if (!pmu->event_idx)
9198 pmu->event_idx = perf_event_idx_default;
9199
b0a873eb 9200 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9201 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9202 ret = 0;
9203unlock:
b0a873eb
PZ
9204 mutex_unlock(&pmus_lock);
9205
33696fc0 9206 return ret;
108b02cf 9207
abe43400
PZ
9208free_dev:
9209 device_del(pmu->dev);
9210 put_device(pmu->dev);
9211
2e80a82a
PZ
9212free_idr:
9213 if (pmu->type >= PERF_TYPE_MAX)
9214 idr_remove(&pmu_idr, pmu->type);
9215
108b02cf
PZ
9216free_pdc:
9217 free_percpu(pmu->pmu_disable_count);
9218 goto unlock;
f29ac756 9219}
c464c76e 9220EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9221
b0a873eb 9222void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9223{
0933840a
JO
9224 int remove_device;
9225
b0a873eb 9226 mutex_lock(&pmus_lock);
0933840a 9227 remove_device = pmu_bus_running;
b0a873eb
PZ
9228 list_del_rcu(&pmu->entry);
9229 mutex_unlock(&pmus_lock);
5c92d124 9230
0475f9ea 9231 /*
cde8e884
PZ
9232 * We dereference the pmu list under both SRCU and regular RCU, so
9233 * synchronize against both of those.
0475f9ea 9234 */
b0a873eb 9235 synchronize_srcu(&pmus_srcu);
cde8e884 9236 synchronize_rcu();
d6d020e9 9237
33696fc0 9238 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9239 if (pmu->type >= PERF_TYPE_MAX)
9240 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9241 if (remove_device) {
9242 if (pmu->nr_addr_filters)
9243 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9244 device_del(pmu->dev);
9245 put_device(pmu->dev);
9246 }
51676957 9247 free_pmu_context(pmu);
b0a873eb 9248}
c464c76e 9249EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9250
cc34b98b
MR
9251static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9252{
ccd41c86 9253 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9254 int ret;
9255
9256 if (!try_module_get(pmu->module))
9257 return -ENODEV;
ccd41c86
PZ
9258
9259 if (event->group_leader != event) {
8b10c5e2
PZ
9260 /*
9261 * This ctx->mutex can nest when we're called through
9262 * inheritance. See the perf_event_ctx_lock_nested() comment.
9263 */
9264 ctx = perf_event_ctx_lock_nested(event->group_leader,
9265 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9266 BUG_ON(!ctx);
9267 }
9268
cc34b98b
MR
9269 event->pmu = pmu;
9270 ret = pmu->event_init(event);
ccd41c86
PZ
9271
9272 if (ctx)
9273 perf_event_ctx_unlock(event->group_leader, ctx);
9274
cc34b98b
MR
9275 if (ret)
9276 module_put(pmu->module);
9277
9278 return ret;
9279}
9280
18ab2cd3 9281static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9282{
85c617ab 9283 struct pmu *pmu;
b0a873eb 9284 int idx;
940c5b29 9285 int ret;
b0a873eb
PZ
9286
9287 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9288
40999312
KL
9289 /* Try parent's PMU first: */
9290 if (event->parent && event->parent->pmu) {
9291 pmu = event->parent->pmu;
9292 ret = perf_try_init_event(pmu, event);
9293 if (!ret)
9294 goto unlock;
9295 }
9296
2e80a82a
PZ
9297 rcu_read_lock();
9298 pmu = idr_find(&pmu_idr, event->attr.type);
9299 rcu_read_unlock();
940c5b29 9300 if (pmu) {
cc34b98b 9301 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9302 if (ret)
9303 pmu = ERR_PTR(ret);
2e80a82a 9304 goto unlock;
940c5b29 9305 }
2e80a82a 9306
b0a873eb 9307 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9308 ret = perf_try_init_event(pmu, event);
b0a873eb 9309 if (!ret)
e5f4d339 9310 goto unlock;
76e1d904 9311
b0a873eb
PZ
9312 if (ret != -ENOENT) {
9313 pmu = ERR_PTR(ret);
e5f4d339 9314 goto unlock;
f344011c 9315 }
5c92d124 9316 }
e5f4d339
PZ
9317 pmu = ERR_PTR(-ENOENT);
9318unlock:
b0a873eb 9319 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9320
4aeb0b42 9321 return pmu;
5c92d124
IM
9322}
9323
f2fb6bef
KL
9324static void attach_sb_event(struct perf_event *event)
9325{
9326 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9327
9328 raw_spin_lock(&pel->lock);
9329 list_add_rcu(&event->sb_list, &pel->list);
9330 raw_spin_unlock(&pel->lock);
9331}
9332
aab5b71e
PZ
9333/*
9334 * We keep a list of all !task (and therefore per-cpu) events
9335 * that need to receive side-band records.
9336 *
9337 * This avoids having to scan all the various PMU per-cpu contexts
9338 * looking for them.
9339 */
f2fb6bef
KL
9340static void account_pmu_sb_event(struct perf_event *event)
9341{
a4f144eb 9342 if (is_sb_event(event))
f2fb6bef
KL
9343 attach_sb_event(event);
9344}
9345
4beb31f3
FW
9346static void account_event_cpu(struct perf_event *event, int cpu)
9347{
9348 if (event->parent)
9349 return;
9350
4beb31f3
FW
9351 if (is_cgroup_event(event))
9352 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9353}
9354
555e0c1e
FW
9355/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9356static void account_freq_event_nohz(void)
9357{
9358#ifdef CONFIG_NO_HZ_FULL
9359 /* Lock so we don't race with concurrent unaccount */
9360 spin_lock(&nr_freq_lock);
9361 if (atomic_inc_return(&nr_freq_events) == 1)
9362 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9363 spin_unlock(&nr_freq_lock);
9364#endif
9365}
9366
9367static void account_freq_event(void)
9368{
9369 if (tick_nohz_full_enabled())
9370 account_freq_event_nohz();
9371 else
9372 atomic_inc(&nr_freq_events);
9373}
9374
9375
766d6c07
FW
9376static void account_event(struct perf_event *event)
9377{
25432ae9
PZ
9378 bool inc = false;
9379
4beb31f3
FW
9380 if (event->parent)
9381 return;
9382
766d6c07 9383 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9384 inc = true;
766d6c07
FW
9385 if (event->attr.mmap || event->attr.mmap_data)
9386 atomic_inc(&nr_mmap_events);
9387 if (event->attr.comm)
9388 atomic_inc(&nr_comm_events);
e4222673
HB
9389 if (event->attr.namespaces)
9390 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9391 if (event->attr.task)
9392 atomic_inc(&nr_task_events);
555e0c1e
FW
9393 if (event->attr.freq)
9394 account_freq_event();
45ac1403
AH
9395 if (event->attr.context_switch) {
9396 atomic_inc(&nr_switch_events);
25432ae9 9397 inc = true;
45ac1403 9398 }
4beb31f3 9399 if (has_branch_stack(event))
25432ae9 9400 inc = true;
4beb31f3 9401 if (is_cgroup_event(event))
25432ae9
PZ
9402 inc = true;
9403
9107c89e
PZ
9404 if (inc) {
9405 if (atomic_inc_not_zero(&perf_sched_count))
9406 goto enabled;
9407
9408 mutex_lock(&perf_sched_mutex);
9409 if (!atomic_read(&perf_sched_count)) {
9410 static_branch_enable(&perf_sched_events);
9411 /*
9412 * Guarantee that all CPUs observe they key change and
9413 * call the perf scheduling hooks before proceeding to
9414 * install events that need them.
9415 */
9416 synchronize_sched();
9417 }
9418 /*
9419 * Now that we have waited for the sync_sched(), allow further
9420 * increments to by-pass the mutex.
9421 */
9422 atomic_inc(&perf_sched_count);
9423 mutex_unlock(&perf_sched_mutex);
9424 }
9425enabled:
4beb31f3
FW
9426
9427 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9428
9429 account_pmu_sb_event(event);
766d6c07
FW
9430}
9431
0793a61d 9432/*
cdd6c482 9433 * Allocate and initialize a event structure
0793a61d 9434 */
cdd6c482 9435static struct perf_event *
c3f00c70 9436perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9437 struct task_struct *task,
9438 struct perf_event *group_leader,
9439 struct perf_event *parent_event,
4dc0da86 9440 perf_overflow_handler_t overflow_handler,
79dff51e 9441 void *context, int cgroup_fd)
0793a61d 9442{
51b0fe39 9443 struct pmu *pmu;
cdd6c482
IM
9444 struct perf_event *event;
9445 struct hw_perf_event *hwc;
90983b16 9446 long err = -EINVAL;
0793a61d 9447
66832eb4
ON
9448 if ((unsigned)cpu >= nr_cpu_ids) {
9449 if (!task || cpu != -1)
9450 return ERR_PTR(-EINVAL);
9451 }
9452
c3f00c70 9453 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9454 if (!event)
d5d2bc0d 9455 return ERR_PTR(-ENOMEM);
0793a61d 9456
04289bb9 9457 /*
cdd6c482 9458 * Single events are their own group leaders, with an
04289bb9
IM
9459 * empty sibling list:
9460 */
9461 if (!group_leader)
cdd6c482 9462 group_leader = event;
04289bb9 9463
cdd6c482
IM
9464 mutex_init(&event->child_mutex);
9465 INIT_LIST_HEAD(&event->child_list);
fccc714b 9466
cdd6c482
IM
9467 INIT_LIST_HEAD(&event->group_entry);
9468 INIT_LIST_HEAD(&event->event_entry);
9469 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9470 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9471 INIT_LIST_HEAD(&event->active_entry);
375637bc 9472 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9473 INIT_HLIST_NODE(&event->hlist_entry);
9474
10c6db11 9475
cdd6c482 9476 init_waitqueue_head(&event->waitq);
e360adbe 9477 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9478
cdd6c482 9479 mutex_init(&event->mmap_mutex);
375637bc 9480 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9481
a6fa941d 9482 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9483 event->cpu = cpu;
9484 event->attr = *attr;
9485 event->group_leader = group_leader;
9486 event->pmu = NULL;
cdd6c482 9487 event->oncpu = -1;
a96bbc16 9488
cdd6c482 9489 event->parent = parent_event;
b84fbc9f 9490
17cf22c3 9491 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9492 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9493
cdd6c482 9494 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9495
d580ff86
PZ
9496 if (task) {
9497 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9498 /*
50f16a8b
PZ
9499 * XXX pmu::event_init needs to know what task to account to
9500 * and we cannot use the ctx information because we need the
9501 * pmu before we get a ctx.
d580ff86 9502 */
50f16a8b 9503 event->hw.target = task;
d580ff86
PZ
9504 }
9505
34f43927
PZ
9506 event->clock = &local_clock;
9507 if (parent_event)
9508 event->clock = parent_event->clock;
9509
4dc0da86 9510 if (!overflow_handler && parent_event) {
b326e956 9511 overflow_handler = parent_event->overflow_handler;
4dc0da86 9512 context = parent_event->overflow_handler_context;
f1e4ba5b 9513#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9514 if (overflow_handler == bpf_overflow_handler) {
9515 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9516
9517 if (IS_ERR(prog)) {
9518 err = PTR_ERR(prog);
9519 goto err_ns;
9520 }
9521 event->prog = prog;
9522 event->orig_overflow_handler =
9523 parent_event->orig_overflow_handler;
9524 }
9525#endif
4dc0da86 9526 }
66832eb4 9527
1879445d
WN
9528 if (overflow_handler) {
9529 event->overflow_handler = overflow_handler;
9530 event->overflow_handler_context = context;
9ecda41a
WN
9531 } else if (is_write_backward(event)){
9532 event->overflow_handler = perf_event_output_backward;
9533 event->overflow_handler_context = NULL;
1879445d 9534 } else {
9ecda41a 9535 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9536 event->overflow_handler_context = NULL;
9537 }
97eaf530 9538
0231bb53 9539 perf_event__state_init(event);
a86ed508 9540
4aeb0b42 9541 pmu = NULL;
b8e83514 9542
cdd6c482 9543 hwc = &event->hw;
bd2b5b12 9544 hwc->sample_period = attr->sample_period;
0d48696f 9545 if (attr->freq && attr->sample_freq)
bd2b5b12 9546 hwc->sample_period = 1;
eced1dfc 9547 hwc->last_period = hwc->sample_period;
bd2b5b12 9548
e7850595 9549 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9550
2023b359 9551 /*
ba5213ae
PZ
9552 * We currently do not support PERF_SAMPLE_READ on inherited events.
9553 * See perf_output_read().
2023b359 9554 */
ba5213ae 9555 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 9556 goto err_ns;
a46a2300
YZ
9557
9558 if (!has_branch_stack(event))
9559 event->attr.branch_sample_type = 0;
2023b359 9560
79dff51e
MF
9561 if (cgroup_fd != -1) {
9562 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9563 if (err)
9564 goto err_ns;
9565 }
9566
b0a873eb 9567 pmu = perf_init_event(event);
85c617ab 9568 if (IS_ERR(pmu)) {
4aeb0b42 9569 err = PTR_ERR(pmu);
90983b16 9570 goto err_ns;
621a01ea 9571 }
d5d2bc0d 9572
bed5b25a
AS
9573 err = exclusive_event_init(event);
9574 if (err)
9575 goto err_pmu;
9576
375637bc
AS
9577 if (has_addr_filter(event)) {
9578 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9579 sizeof(unsigned long),
9580 GFP_KERNEL);
36cc2b92
DC
9581 if (!event->addr_filters_offs) {
9582 err = -ENOMEM;
375637bc 9583 goto err_per_task;
36cc2b92 9584 }
375637bc
AS
9585
9586 /* force hw sync on the address filters */
9587 event->addr_filters_gen = 1;
9588 }
9589
cdd6c482 9590 if (!event->parent) {
927c7a9e 9591 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9592 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9593 if (err)
375637bc 9594 goto err_addr_filters;
d010b332 9595 }
f344011c 9596 }
9ee318a7 9597
927a5570
AS
9598 /* symmetric to unaccount_event() in _free_event() */
9599 account_event(event);
9600
cdd6c482 9601 return event;
90983b16 9602
375637bc
AS
9603err_addr_filters:
9604 kfree(event->addr_filters_offs);
9605
bed5b25a
AS
9606err_per_task:
9607 exclusive_event_destroy(event);
9608
90983b16
FW
9609err_pmu:
9610 if (event->destroy)
9611 event->destroy(event);
c464c76e 9612 module_put(pmu->module);
90983b16 9613err_ns:
79dff51e
MF
9614 if (is_cgroup_event(event))
9615 perf_detach_cgroup(event);
90983b16
FW
9616 if (event->ns)
9617 put_pid_ns(event->ns);
9618 kfree(event);
9619
9620 return ERR_PTR(err);
0793a61d
TG
9621}
9622
cdd6c482
IM
9623static int perf_copy_attr(struct perf_event_attr __user *uattr,
9624 struct perf_event_attr *attr)
974802ea 9625{
974802ea 9626 u32 size;
cdf8073d 9627 int ret;
974802ea
PZ
9628
9629 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9630 return -EFAULT;
9631
9632 /*
9633 * zero the full structure, so that a short copy will be nice.
9634 */
9635 memset(attr, 0, sizeof(*attr));
9636
9637 ret = get_user(size, &uattr->size);
9638 if (ret)
9639 return ret;
9640
9641 if (size > PAGE_SIZE) /* silly large */
9642 goto err_size;
9643
9644 if (!size) /* abi compat */
9645 size = PERF_ATTR_SIZE_VER0;
9646
9647 if (size < PERF_ATTR_SIZE_VER0)
9648 goto err_size;
9649
9650 /*
9651 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9652 * ensure all the unknown bits are 0 - i.e. new
9653 * user-space does not rely on any kernel feature
9654 * extensions we dont know about yet.
974802ea
PZ
9655 */
9656 if (size > sizeof(*attr)) {
cdf8073d
IS
9657 unsigned char __user *addr;
9658 unsigned char __user *end;
9659 unsigned char val;
974802ea 9660
cdf8073d
IS
9661 addr = (void __user *)uattr + sizeof(*attr);
9662 end = (void __user *)uattr + size;
974802ea 9663
cdf8073d 9664 for (; addr < end; addr++) {
974802ea
PZ
9665 ret = get_user(val, addr);
9666 if (ret)
9667 return ret;
9668 if (val)
9669 goto err_size;
9670 }
b3e62e35 9671 size = sizeof(*attr);
974802ea
PZ
9672 }
9673
9674 ret = copy_from_user(attr, uattr, size);
9675 if (ret)
9676 return -EFAULT;
9677
f12f42ac
MX
9678 attr->size = size;
9679
cd757645 9680 if (attr->__reserved_1)
974802ea
PZ
9681 return -EINVAL;
9682
9683 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9684 return -EINVAL;
9685
9686 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9687 return -EINVAL;
9688
bce38cd5
SE
9689 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9690 u64 mask = attr->branch_sample_type;
9691
9692 /* only using defined bits */
9693 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9694 return -EINVAL;
9695
9696 /* at least one branch bit must be set */
9697 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9698 return -EINVAL;
9699
bce38cd5
SE
9700 /* propagate priv level, when not set for branch */
9701 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9702
9703 /* exclude_kernel checked on syscall entry */
9704 if (!attr->exclude_kernel)
9705 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9706
9707 if (!attr->exclude_user)
9708 mask |= PERF_SAMPLE_BRANCH_USER;
9709
9710 if (!attr->exclude_hv)
9711 mask |= PERF_SAMPLE_BRANCH_HV;
9712 /*
9713 * adjust user setting (for HW filter setup)
9714 */
9715 attr->branch_sample_type = mask;
9716 }
e712209a
SE
9717 /* privileged levels capture (kernel, hv): check permissions */
9718 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9719 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9720 return -EACCES;
bce38cd5 9721 }
4018994f 9722
c5ebcedb 9723 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9724 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9725 if (ret)
9726 return ret;
9727 }
9728
9729 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9730 if (!arch_perf_have_user_stack_dump())
9731 return -ENOSYS;
9732
9733 /*
9734 * We have __u32 type for the size, but so far
9735 * we can only use __u16 as maximum due to the
9736 * __u16 sample size limit.
9737 */
9738 if (attr->sample_stack_user >= USHRT_MAX)
9739 ret = -EINVAL;
9740 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9741 ret = -EINVAL;
9742 }
4018994f 9743
60e2364e
SE
9744 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9745 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9746out:
9747 return ret;
9748
9749err_size:
9750 put_user(sizeof(*attr), &uattr->size);
9751 ret = -E2BIG;
9752 goto out;
9753}
9754
ac9721f3
PZ
9755static int
9756perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9757{
b69cf536 9758 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9759 int ret = -EINVAL;
9760
ac9721f3 9761 if (!output_event)
a4be7c27
PZ
9762 goto set;
9763
ac9721f3
PZ
9764 /* don't allow circular references */
9765 if (event == output_event)
a4be7c27
PZ
9766 goto out;
9767
0f139300
PZ
9768 /*
9769 * Don't allow cross-cpu buffers
9770 */
9771 if (output_event->cpu != event->cpu)
9772 goto out;
9773
9774 /*
76369139 9775 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9776 */
9777 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9778 goto out;
9779
34f43927
PZ
9780 /*
9781 * Mixing clocks in the same buffer is trouble you don't need.
9782 */
9783 if (output_event->clock != event->clock)
9784 goto out;
9785
9ecda41a
WN
9786 /*
9787 * Either writing ring buffer from beginning or from end.
9788 * Mixing is not allowed.
9789 */
9790 if (is_write_backward(output_event) != is_write_backward(event))
9791 goto out;
9792
45bfb2e5
PZ
9793 /*
9794 * If both events generate aux data, they must be on the same PMU
9795 */
9796 if (has_aux(event) && has_aux(output_event) &&
9797 event->pmu != output_event->pmu)
9798 goto out;
9799
a4be7c27 9800set:
cdd6c482 9801 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9802 /* Can't redirect output if we've got an active mmap() */
9803 if (atomic_read(&event->mmap_count))
9804 goto unlock;
a4be7c27 9805
ac9721f3 9806 if (output_event) {
76369139
FW
9807 /* get the rb we want to redirect to */
9808 rb = ring_buffer_get(output_event);
9809 if (!rb)
ac9721f3 9810 goto unlock;
a4be7c27
PZ
9811 }
9812
b69cf536 9813 ring_buffer_attach(event, rb);
9bb5d40c 9814
a4be7c27 9815 ret = 0;
ac9721f3
PZ
9816unlock:
9817 mutex_unlock(&event->mmap_mutex);
9818
a4be7c27 9819out:
a4be7c27
PZ
9820 return ret;
9821}
9822
f63a8daa
PZ
9823static void mutex_lock_double(struct mutex *a, struct mutex *b)
9824{
9825 if (b < a)
9826 swap(a, b);
9827
9828 mutex_lock(a);
9829 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9830}
9831
34f43927
PZ
9832static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9833{
9834 bool nmi_safe = false;
9835
9836 switch (clk_id) {
9837 case CLOCK_MONOTONIC:
9838 event->clock = &ktime_get_mono_fast_ns;
9839 nmi_safe = true;
9840 break;
9841
9842 case CLOCK_MONOTONIC_RAW:
9843 event->clock = &ktime_get_raw_fast_ns;
9844 nmi_safe = true;
9845 break;
9846
9847 case CLOCK_REALTIME:
9848 event->clock = &ktime_get_real_ns;
9849 break;
9850
9851 case CLOCK_BOOTTIME:
9852 event->clock = &ktime_get_boot_ns;
9853 break;
9854
9855 case CLOCK_TAI:
9856 event->clock = &ktime_get_tai_ns;
9857 break;
9858
9859 default:
9860 return -EINVAL;
9861 }
9862
9863 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9864 return -EINVAL;
9865
9866 return 0;
9867}
9868
321027c1
PZ
9869/*
9870 * Variation on perf_event_ctx_lock_nested(), except we take two context
9871 * mutexes.
9872 */
9873static struct perf_event_context *
9874__perf_event_ctx_lock_double(struct perf_event *group_leader,
9875 struct perf_event_context *ctx)
9876{
9877 struct perf_event_context *gctx;
9878
9879again:
9880 rcu_read_lock();
9881 gctx = READ_ONCE(group_leader->ctx);
9882 if (!atomic_inc_not_zero(&gctx->refcount)) {
9883 rcu_read_unlock();
9884 goto again;
9885 }
9886 rcu_read_unlock();
9887
9888 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9889
9890 if (group_leader->ctx != gctx) {
9891 mutex_unlock(&ctx->mutex);
9892 mutex_unlock(&gctx->mutex);
9893 put_ctx(gctx);
9894 goto again;
9895 }
9896
9897 return gctx;
9898}
9899
0793a61d 9900/**
cdd6c482 9901 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9902 *
cdd6c482 9903 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9904 * @pid: target pid
9f66a381 9905 * @cpu: target cpu
cdd6c482 9906 * @group_fd: group leader event fd
0793a61d 9907 */
cdd6c482
IM
9908SYSCALL_DEFINE5(perf_event_open,
9909 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9910 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9911{
b04243ef
PZ
9912 struct perf_event *group_leader = NULL, *output_event = NULL;
9913 struct perf_event *event, *sibling;
cdd6c482 9914 struct perf_event_attr attr;
f63a8daa 9915 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9916 struct file *event_file = NULL;
2903ff01 9917 struct fd group = {NULL, 0};
38a81da2 9918 struct task_struct *task = NULL;
89a1e187 9919 struct pmu *pmu;
ea635c64 9920 int event_fd;
b04243ef 9921 int move_group = 0;
dc86cabe 9922 int err;
a21b0b35 9923 int f_flags = O_RDWR;
79dff51e 9924 int cgroup_fd = -1;
0793a61d 9925
2743a5b0 9926 /* for future expandability... */
e5d1367f 9927 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9928 return -EINVAL;
9929
dc86cabe
IM
9930 err = perf_copy_attr(attr_uptr, &attr);
9931 if (err)
9932 return err;
eab656ae 9933
0764771d
PZ
9934 if (!attr.exclude_kernel) {
9935 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9936 return -EACCES;
9937 }
9938
e4222673
HB
9939 if (attr.namespaces) {
9940 if (!capable(CAP_SYS_ADMIN))
9941 return -EACCES;
9942 }
9943
df58ab24 9944 if (attr.freq) {
cdd6c482 9945 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9946 return -EINVAL;
0819b2e3
PZ
9947 } else {
9948 if (attr.sample_period & (1ULL << 63))
9949 return -EINVAL;
df58ab24
PZ
9950 }
9951
fc7ce9c7
KL
9952 /* Only privileged users can get physical addresses */
9953 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9954 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9955 return -EACCES;
9956
97c79a38
ACM
9957 if (!attr.sample_max_stack)
9958 attr.sample_max_stack = sysctl_perf_event_max_stack;
9959
e5d1367f
SE
9960 /*
9961 * In cgroup mode, the pid argument is used to pass the fd
9962 * opened to the cgroup directory in cgroupfs. The cpu argument
9963 * designates the cpu on which to monitor threads from that
9964 * cgroup.
9965 */
9966 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9967 return -EINVAL;
9968
a21b0b35
YD
9969 if (flags & PERF_FLAG_FD_CLOEXEC)
9970 f_flags |= O_CLOEXEC;
9971
9972 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9973 if (event_fd < 0)
9974 return event_fd;
9975
ac9721f3 9976 if (group_fd != -1) {
2903ff01
AV
9977 err = perf_fget_light(group_fd, &group);
9978 if (err)
d14b12d7 9979 goto err_fd;
2903ff01 9980 group_leader = group.file->private_data;
ac9721f3
PZ
9981 if (flags & PERF_FLAG_FD_OUTPUT)
9982 output_event = group_leader;
9983 if (flags & PERF_FLAG_FD_NO_GROUP)
9984 group_leader = NULL;
9985 }
9986
e5d1367f 9987 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9988 task = find_lively_task_by_vpid(pid);
9989 if (IS_ERR(task)) {
9990 err = PTR_ERR(task);
9991 goto err_group_fd;
9992 }
9993 }
9994
1f4ee503
PZ
9995 if (task && group_leader &&
9996 group_leader->attr.inherit != attr.inherit) {
9997 err = -EINVAL;
9998 goto err_task;
9999 }
10000
79c9ce57
PZ
10001 if (task) {
10002 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10003 if (err)
e5aeee51 10004 goto err_task;
79c9ce57
PZ
10005
10006 /*
10007 * Reuse ptrace permission checks for now.
10008 *
10009 * We must hold cred_guard_mutex across this and any potential
10010 * perf_install_in_context() call for this new event to
10011 * serialize against exec() altering our credentials (and the
10012 * perf_event_exit_task() that could imply).
10013 */
10014 err = -EACCES;
10015 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10016 goto err_cred;
10017 }
10018
79dff51e
MF
10019 if (flags & PERF_FLAG_PID_CGROUP)
10020 cgroup_fd = pid;
10021
4dc0da86 10022 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 10023 NULL, NULL, cgroup_fd);
d14b12d7
SE
10024 if (IS_ERR(event)) {
10025 err = PTR_ERR(event);
79c9ce57 10026 goto err_cred;
d14b12d7
SE
10027 }
10028
53b25335
VW
10029 if (is_sampling_event(event)) {
10030 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 10031 err = -EOPNOTSUPP;
53b25335
VW
10032 goto err_alloc;
10033 }
10034 }
10035
89a1e187
PZ
10036 /*
10037 * Special case software events and allow them to be part of
10038 * any hardware group.
10039 */
10040 pmu = event->pmu;
b04243ef 10041
34f43927
PZ
10042 if (attr.use_clockid) {
10043 err = perf_event_set_clock(event, attr.clockid);
10044 if (err)
10045 goto err_alloc;
10046 }
10047
4ff6a8de
DCC
10048 if (pmu->task_ctx_nr == perf_sw_context)
10049 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10050
b04243ef
PZ
10051 if (group_leader &&
10052 (is_software_event(event) != is_software_event(group_leader))) {
10053 if (is_software_event(event)) {
10054 /*
10055 * If event and group_leader are not both a software
10056 * event, and event is, then group leader is not.
10057 *
10058 * Allow the addition of software events to !software
10059 * groups, this is safe because software events never
10060 * fail to schedule.
10061 */
10062 pmu = group_leader->pmu;
10063 } else if (is_software_event(group_leader) &&
4ff6a8de 10064 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10065 /*
10066 * In case the group is a pure software group, and we
10067 * try to add a hardware event, move the whole group to
10068 * the hardware context.
10069 */
10070 move_group = 1;
10071 }
10072 }
89a1e187
PZ
10073
10074 /*
10075 * Get the target context (task or percpu):
10076 */
4af57ef2 10077 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10078 if (IS_ERR(ctx)) {
10079 err = PTR_ERR(ctx);
c6be5a5c 10080 goto err_alloc;
89a1e187
PZ
10081 }
10082
bed5b25a
AS
10083 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10084 err = -EBUSY;
10085 goto err_context;
10086 }
10087
ccff286d 10088 /*
cdd6c482 10089 * Look up the group leader (we will attach this event to it):
04289bb9 10090 */
ac9721f3 10091 if (group_leader) {
dc86cabe 10092 err = -EINVAL;
04289bb9 10093
04289bb9 10094 /*
ccff286d
IM
10095 * Do not allow a recursive hierarchy (this new sibling
10096 * becoming part of another group-sibling):
10097 */
10098 if (group_leader->group_leader != group_leader)
c3f00c70 10099 goto err_context;
34f43927
PZ
10100
10101 /* All events in a group should have the same clock */
10102 if (group_leader->clock != event->clock)
10103 goto err_context;
10104
ccff286d 10105 /*
64aee2a9
MR
10106 * Make sure we're both events for the same CPU;
10107 * grouping events for different CPUs is broken; since
10108 * you can never concurrently schedule them anyhow.
04289bb9 10109 */
64aee2a9
MR
10110 if (group_leader->cpu != event->cpu)
10111 goto err_context;
c3c87e77 10112
64aee2a9
MR
10113 /*
10114 * Make sure we're both on the same task, or both
10115 * per-CPU events.
10116 */
10117 if (group_leader->ctx->task != ctx->task)
10118 goto err_context;
10119
10120 /*
10121 * Do not allow to attach to a group in a different task
10122 * or CPU context. If we're moving SW events, we'll fix
10123 * this up later, so allow that.
10124 */
10125 if (!move_group && group_leader->ctx != ctx)
10126 goto err_context;
b04243ef 10127
3b6f9e5c
PM
10128 /*
10129 * Only a group leader can be exclusive or pinned
10130 */
0d48696f 10131 if (attr.exclusive || attr.pinned)
c3f00c70 10132 goto err_context;
ac9721f3
PZ
10133 }
10134
10135 if (output_event) {
10136 err = perf_event_set_output(event, output_event);
10137 if (err)
c3f00c70 10138 goto err_context;
ac9721f3 10139 }
0793a61d 10140
a21b0b35
YD
10141 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10142 f_flags);
ea635c64
AV
10143 if (IS_ERR(event_file)) {
10144 err = PTR_ERR(event_file);
201c2f85 10145 event_file = NULL;
c3f00c70 10146 goto err_context;
ea635c64 10147 }
9b51f66d 10148
b04243ef 10149 if (move_group) {
321027c1
PZ
10150 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10151
84c4e620
PZ
10152 if (gctx->task == TASK_TOMBSTONE) {
10153 err = -ESRCH;
10154 goto err_locked;
10155 }
321027c1
PZ
10156
10157 /*
10158 * Check if we raced against another sys_perf_event_open() call
10159 * moving the software group underneath us.
10160 */
10161 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10162 /*
10163 * If someone moved the group out from under us, check
10164 * if this new event wound up on the same ctx, if so
10165 * its the regular !move_group case, otherwise fail.
10166 */
10167 if (gctx != ctx) {
10168 err = -EINVAL;
10169 goto err_locked;
10170 } else {
10171 perf_event_ctx_unlock(group_leader, gctx);
10172 move_group = 0;
10173 }
10174 }
f55fc2a5
PZ
10175 } else {
10176 mutex_lock(&ctx->mutex);
10177 }
10178
84c4e620
PZ
10179 if (ctx->task == TASK_TOMBSTONE) {
10180 err = -ESRCH;
10181 goto err_locked;
10182 }
10183
a723968c
PZ
10184 if (!perf_event_validate_size(event)) {
10185 err = -E2BIG;
10186 goto err_locked;
10187 }
10188
a63fbed7
TG
10189 if (!task) {
10190 /*
10191 * Check if the @cpu we're creating an event for is online.
10192 *
10193 * We use the perf_cpu_context::ctx::mutex to serialize against
10194 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10195 */
10196 struct perf_cpu_context *cpuctx =
10197 container_of(ctx, struct perf_cpu_context, ctx);
10198
10199 if (!cpuctx->online) {
10200 err = -ENODEV;
10201 goto err_locked;
10202 }
10203 }
10204
10205
f55fc2a5
PZ
10206 /*
10207 * Must be under the same ctx::mutex as perf_install_in_context(),
10208 * because we need to serialize with concurrent event creation.
10209 */
10210 if (!exclusive_event_installable(event, ctx)) {
10211 /* exclusive and group stuff are assumed mutually exclusive */
10212 WARN_ON_ONCE(move_group);
f63a8daa 10213
f55fc2a5
PZ
10214 err = -EBUSY;
10215 goto err_locked;
10216 }
f63a8daa 10217
f55fc2a5
PZ
10218 WARN_ON_ONCE(ctx->parent_ctx);
10219
79c9ce57
PZ
10220 /*
10221 * This is the point on no return; we cannot fail hereafter. This is
10222 * where we start modifying current state.
10223 */
10224
f55fc2a5 10225 if (move_group) {
f63a8daa
PZ
10226 /*
10227 * See perf_event_ctx_lock() for comments on the details
10228 * of swizzling perf_event::ctx.
10229 */
45a0e07a 10230 perf_remove_from_context(group_leader, 0);
279b5165 10231 put_ctx(gctx);
0231bb53 10232
b04243ef
PZ
10233 list_for_each_entry(sibling, &group_leader->sibling_list,
10234 group_entry) {
45a0e07a 10235 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10236 put_ctx(gctx);
10237 }
b04243ef 10238
f63a8daa
PZ
10239 /*
10240 * Wait for everybody to stop referencing the events through
10241 * the old lists, before installing it on new lists.
10242 */
0cda4c02 10243 synchronize_rcu();
f63a8daa 10244
8f95b435
PZI
10245 /*
10246 * Install the group siblings before the group leader.
10247 *
10248 * Because a group leader will try and install the entire group
10249 * (through the sibling list, which is still in-tact), we can
10250 * end up with siblings installed in the wrong context.
10251 *
10252 * By installing siblings first we NO-OP because they're not
10253 * reachable through the group lists.
10254 */
b04243ef
PZ
10255 list_for_each_entry(sibling, &group_leader->sibling_list,
10256 group_entry) {
8f95b435 10257 perf_event__state_init(sibling);
9fc81d87 10258 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10259 get_ctx(ctx);
10260 }
8f95b435
PZI
10261
10262 /*
10263 * Removing from the context ends up with disabled
10264 * event. What we want here is event in the initial
10265 * startup state, ready to be add into new context.
10266 */
10267 perf_event__state_init(group_leader);
10268 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10269 get_ctx(ctx);
bed5b25a
AS
10270 }
10271
f73e22ab
PZ
10272 /*
10273 * Precalculate sample_data sizes; do while holding ctx::mutex such
10274 * that we're serialized against further additions and before
10275 * perf_install_in_context() which is the point the event is active and
10276 * can use these values.
10277 */
10278 perf_event__header_size(event);
10279 perf_event__id_header_size(event);
10280
78cd2c74
PZ
10281 event->owner = current;
10282
e2d37cd2 10283 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10284 perf_unpin_context(ctx);
f63a8daa 10285
f55fc2a5 10286 if (move_group)
321027c1 10287 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10288 mutex_unlock(&ctx->mutex);
9b51f66d 10289
79c9ce57
PZ
10290 if (task) {
10291 mutex_unlock(&task->signal->cred_guard_mutex);
10292 put_task_struct(task);
10293 }
10294
cdd6c482
IM
10295 mutex_lock(&current->perf_event_mutex);
10296 list_add_tail(&event->owner_entry, &current->perf_event_list);
10297 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10298
8a49542c
PZ
10299 /*
10300 * Drop the reference on the group_event after placing the
10301 * new event on the sibling_list. This ensures destruction
10302 * of the group leader will find the pointer to itself in
10303 * perf_group_detach().
10304 */
2903ff01 10305 fdput(group);
ea635c64
AV
10306 fd_install(event_fd, event_file);
10307 return event_fd;
0793a61d 10308
f55fc2a5
PZ
10309err_locked:
10310 if (move_group)
321027c1 10311 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10312 mutex_unlock(&ctx->mutex);
10313/* err_file: */
10314 fput(event_file);
c3f00c70 10315err_context:
fe4b04fa 10316 perf_unpin_context(ctx);
ea635c64 10317 put_ctx(ctx);
c6be5a5c 10318err_alloc:
13005627
PZ
10319 /*
10320 * If event_file is set, the fput() above will have called ->release()
10321 * and that will take care of freeing the event.
10322 */
10323 if (!event_file)
10324 free_event(event);
79c9ce57
PZ
10325err_cred:
10326 if (task)
10327 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10328err_task:
e7d0bc04
PZ
10329 if (task)
10330 put_task_struct(task);
89a1e187 10331err_group_fd:
2903ff01 10332 fdput(group);
ea635c64
AV
10333err_fd:
10334 put_unused_fd(event_fd);
dc86cabe 10335 return err;
0793a61d
TG
10336}
10337
fb0459d7
AV
10338/**
10339 * perf_event_create_kernel_counter
10340 *
10341 * @attr: attributes of the counter to create
10342 * @cpu: cpu in which the counter is bound
38a81da2 10343 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10344 */
10345struct perf_event *
10346perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10347 struct task_struct *task,
4dc0da86
AK
10348 perf_overflow_handler_t overflow_handler,
10349 void *context)
fb0459d7 10350{
fb0459d7 10351 struct perf_event_context *ctx;
c3f00c70 10352 struct perf_event *event;
fb0459d7 10353 int err;
d859e29f 10354
fb0459d7
AV
10355 /*
10356 * Get the target context (task or percpu):
10357 */
d859e29f 10358
4dc0da86 10359 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10360 overflow_handler, context, -1);
c3f00c70
PZ
10361 if (IS_ERR(event)) {
10362 err = PTR_ERR(event);
10363 goto err;
10364 }
d859e29f 10365
f8697762 10366 /* Mark owner so we could distinguish it from user events. */
63b6da39 10367 event->owner = TASK_TOMBSTONE;
f8697762 10368
4af57ef2 10369 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10370 if (IS_ERR(ctx)) {
10371 err = PTR_ERR(ctx);
c3f00c70 10372 goto err_free;
d859e29f 10373 }
fb0459d7 10374
fb0459d7
AV
10375 WARN_ON_ONCE(ctx->parent_ctx);
10376 mutex_lock(&ctx->mutex);
84c4e620
PZ
10377 if (ctx->task == TASK_TOMBSTONE) {
10378 err = -ESRCH;
10379 goto err_unlock;
10380 }
10381
a63fbed7
TG
10382 if (!task) {
10383 /*
10384 * Check if the @cpu we're creating an event for is online.
10385 *
10386 * We use the perf_cpu_context::ctx::mutex to serialize against
10387 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10388 */
10389 struct perf_cpu_context *cpuctx =
10390 container_of(ctx, struct perf_cpu_context, ctx);
10391 if (!cpuctx->online) {
10392 err = -ENODEV;
10393 goto err_unlock;
10394 }
10395 }
10396
bed5b25a 10397 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10398 err = -EBUSY;
84c4e620 10399 goto err_unlock;
bed5b25a
AS
10400 }
10401
fb0459d7 10402 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10403 perf_unpin_context(ctx);
fb0459d7
AV
10404 mutex_unlock(&ctx->mutex);
10405
fb0459d7
AV
10406 return event;
10407
84c4e620
PZ
10408err_unlock:
10409 mutex_unlock(&ctx->mutex);
10410 perf_unpin_context(ctx);
10411 put_ctx(ctx);
c3f00c70
PZ
10412err_free:
10413 free_event(event);
10414err:
c6567f64 10415 return ERR_PTR(err);
9b51f66d 10416}
fb0459d7 10417EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10418
0cda4c02
YZ
10419void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10420{
10421 struct perf_event_context *src_ctx;
10422 struct perf_event_context *dst_ctx;
10423 struct perf_event *event, *tmp;
10424 LIST_HEAD(events);
10425
10426 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10427 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10428
f63a8daa
PZ
10429 /*
10430 * See perf_event_ctx_lock() for comments on the details
10431 * of swizzling perf_event::ctx.
10432 */
10433 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10434 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10435 event_entry) {
45a0e07a 10436 perf_remove_from_context(event, 0);
9a545de0 10437 unaccount_event_cpu(event, src_cpu);
0cda4c02 10438 put_ctx(src_ctx);
9886167d 10439 list_add(&event->migrate_entry, &events);
0cda4c02 10440 }
0cda4c02 10441
8f95b435
PZI
10442 /*
10443 * Wait for the events to quiesce before re-instating them.
10444 */
0cda4c02
YZ
10445 synchronize_rcu();
10446
8f95b435
PZI
10447 /*
10448 * Re-instate events in 2 passes.
10449 *
10450 * Skip over group leaders and only install siblings on this first
10451 * pass, siblings will not get enabled without a leader, however a
10452 * leader will enable its siblings, even if those are still on the old
10453 * context.
10454 */
10455 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10456 if (event->group_leader == event)
10457 continue;
10458
10459 list_del(&event->migrate_entry);
10460 if (event->state >= PERF_EVENT_STATE_OFF)
10461 event->state = PERF_EVENT_STATE_INACTIVE;
10462 account_event_cpu(event, dst_cpu);
10463 perf_install_in_context(dst_ctx, event, dst_cpu);
10464 get_ctx(dst_ctx);
10465 }
10466
10467 /*
10468 * Once all the siblings are setup properly, install the group leaders
10469 * to make it go.
10470 */
9886167d
PZ
10471 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10472 list_del(&event->migrate_entry);
0cda4c02
YZ
10473 if (event->state >= PERF_EVENT_STATE_OFF)
10474 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10475 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10476 perf_install_in_context(dst_ctx, event, dst_cpu);
10477 get_ctx(dst_ctx);
10478 }
10479 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10480 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10481}
10482EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10483
cdd6c482 10484static void sync_child_event(struct perf_event *child_event,
38b200d6 10485 struct task_struct *child)
d859e29f 10486{
cdd6c482 10487 struct perf_event *parent_event = child_event->parent;
8bc20959 10488 u64 child_val;
d859e29f 10489
cdd6c482
IM
10490 if (child_event->attr.inherit_stat)
10491 perf_event_read_event(child_event, child);
38b200d6 10492
b5e58793 10493 child_val = perf_event_count(child_event);
d859e29f
PM
10494
10495 /*
10496 * Add back the child's count to the parent's count:
10497 */
a6e6dea6 10498 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10499 atomic64_add(child_event->total_time_enabled,
10500 &parent_event->child_total_time_enabled);
10501 atomic64_add(child_event->total_time_running,
10502 &parent_event->child_total_time_running);
d859e29f
PM
10503}
10504
9b51f66d 10505static void
8ba289b8
PZ
10506perf_event_exit_event(struct perf_event *child_event,
10507 struct perf_event_context *child_ctx,
10508 struct task_struct *child)
9b51f66d 10509{
8ba289b8
PZ
10510 struct perf_event *parent_event = child_event->parent;
10511
1903d50c
PZ
10512 /*
10513 * Do not destroy the 'original' grouping; because of the context
10514 * switch optimization the original events could've ended up in a
10515 * random child task.
10516 *
10517 * If we were to destroy the original group, all group related
10518 * operations would cease to function properly after this random
10519 * child dies.
10520 *
10521 * Do destroy all inherited groups, we don't care about those
10522 * and being thorough is better.
10523 */
32132a3d
PZ
10524 raw_spin_lock_irq(&child_ctx->lock);
10525 WARN_ON_ONCE(child_ctx->is_active);
10526
8ba289b8 10527 if (parent_event)
32132a3d
PZ
10528 perf_group_detach(child_event);
10529 list_del_event(child_event, child_ctx);
a69b0ca4 10530 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 10531 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10532
9b51f66d 10533 /*
8ba289b8 10534 * Parent events are governed by their filedesc, retain them.
9b51f66d 10535 */
8ba289b8 10536 if (!parent_event) {
179033b3 10537 perf_event_wakeup(child_event);
8ba289b8 10538 return;
4bcf349a 10539 }
8ba289b8
PZ
10540 /*
10541 * Child events can be cleaned up.
10542 */
10543
10544 sync_child_event(child_event, child);
10545
10546 /*
10547 * Remove this event from the parent's list
10548 */
10549 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10550 mutex_lock(&parent_event->child_mutex);
10551 list_del_init(&child_event->child_list);
10552 mutex_unlock(&parent_event->child_mutex);
10553
10554 /*
10555 * Kick perf_poll() for is_event_hup().
10556 */
10557 perf_event_wakeup(parent_event);
10558 free_event(child_event);
10559 put_event(parent_event);
9b51f66d
IM
10560}
10561
8dc85d54 10562static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10563{
211de6eb 10564 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10565 struct perf_event *child_event, *next;
63b6da39
PZ
10566
10567 WARN_ON_ONCE(child != current);
9b51f66d 10568
6a3351b6 10569 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10570 if (!child_ctx)
9b51f66d
IM
10571 return;
10572
ad3a37de 10573 /*
6a3351b6
PZ
10574 * In order to reduce the amount of tricky in ctx tear-down, we hold
10575 * ctx::mutex over the entire thing. This serializes against almost
10576 * everything that wants to access the ctx.
10577 *
10578 * The exception is sys_perf_event_open() /
10579 * perf_event_create_kernel_count() which does find_get_context()
10580 * without ctx::mutex (it cannot because of the move_group double mutex
10581 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10582 */
6a3351b6 10583 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10584
10585 /*
6a3351b6
PZ
10586 * In a single ctx::lock section, de-schedule the events and detach the
10587 * context from the task such that we cannot ever get it scheduled back
10588 * in.
c93f7669 10589 */
6a3351b6 10590 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10591 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10592
71a851b4 10593 /*
63b6da39
PZ
10594 * Now that the context is inactive, destroy the task <-> ctx relation
10595 * and mark the context dead.
71a851b4 10596 */
63b6da39
PZ
10597 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10598 put_ctx(child_ctx); /* cannot be last */
10599 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10600 put_task_struct(current); /* cannot be last */
4a1c0f26 10601
211de6eb 10602 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10603 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10604
211de6eb
PZ
10605 if (clone_ctx)
10606 put_ctx(clone_ctx);
4a1c0f26 10607
9f498cc5 10608 /*
cdd6c482
IM
10609 * Report the task dead after unscheduling the events so that we
10610 * won't get any samples after PERF_RECORD_EXIT. We can however still
10611 * get a few PERF_RECORD_READ events.
9f498cc5 10612 */
cdd6c482 10613 perf_event_task(child, child_ctx, 0);
a63eaf34 10614
ebf905fc 10615 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10616 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10617
a63eaf34
PM
10618 mutex_unlock(&child_ctx->mutex);
10619
10620 put_ctx(child_ctx);
9b51f66d
IM
10621}
10622
8dc85d54
PZ
10623/*
10624 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10625 *
10626 * Can be called with cred_guard_mutex held when called from
10627 * install_exec_creds().
8dc85d54
PZ
10628 */
10629void perf_event_exit_task(struct task_struct *child)
10630{
8882135b 10631 struct perf_event *event, *tmp;
8dc85d54
PZ
10632 int ctxn;
10633
8882135b
PZ
10634 mutex_lock(&child->perf_event_mutex);
10635 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10636 owner_entry) {
10637 list_del_init(&event->owner_entry);
10638
10639 /*
10640 * Ensure the list deletion is visible before we clear
10641 * the owner, closes a race against perf_release() where
10642 * we need to serialize on the owner->perf_event_mutex.
10643 */
f47c02c0 10644 smp_store_release(&event->owner, NULL);
8882135b
PZ
10645 }
10646 mutex_unlock(&child->perf_event_mutex);
10647
8dc85d54
PZ
10648 for_each_task_context_nr(ctxn)
10649 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10650
10651 /*
10652 * The perf_event_exit_task_context calls perf_event_task
10653 * with child's task_ctx, which generates EXIT events for
10654 * child contexts and sets child->perf_event_ctxp[] to NULL.
10655 * At this point we need to send EXIT events to cpu contexts.
10656 */
10657 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10658}
10659
889ff015
FW
10660static void perf_free_event(struct perf_event *event,
10661 struct perf_event_context *ctx)
10662{
10663 struct perf_event *parent = event->parent;
10664
10665 if (WARN_ON_ONCE(!parent))
10666 return;
10667
10668 mutex_lock(&parent->child_mutex);
10669 list_del_init(&event->child_list);
10670 mutex_unlock(&parent->child_mutex);
10671
a6fa941d 10672 put_event(parent);
889ff015 10673
652884fe 10674 raw_spin_lock_irq(&ctx->lock);
8a49542c 10675 perf_group_detach(event);
889ff015 10676 list_del_event(event, ctx);
652884fe 10677 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10678 free_event(event);
10679}
10680
bbbee908 10681/*
652884fe 10682 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10683 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10684 *
10685 * Not all locks are strictly required, but take them anyway to be nice and
10686 * help out with the lockdep assertions.
bbbee908 10687 */
cdd6c482 10688void perf_event_free_task(struct task_struct *task)
bbbee908 10689{
8dc85d54 10690 struct perf_event_context *ctx;
cdd6c482 10691 struct perf_event *event, *tmp;
8dc85d54 10692 int ctxn;
bbbee908 10693
8dc85d54
PZ
10694 for_each_task_context_nr(ctxn) {
10695 ctx = task->perf_event_ctxp[ctxn];
10696 if (!ctx)
10697 continue;
bbbee908 10698
8dc85d54 10699 mutex_lock(&ctx->mutex);
e552a838
PZ
10700 raw_spin_lock_irq(&ctx->lock);
10701 /*
10702 * Destroy the task <-> ctx relation and mark the context dead.
10703 *
10704 * This is important because even though the task hasn't been
10705 * exposed yet the context has been (through child_list).
10706 */
10707 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10708 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10709 put_task_struct(task); /* cannot be last */
10710 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10711
15121c78 10712 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 10713 perf_free_event(event, ctx);
bbbee908 10714
8dc85d54 10715 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
10716 put_ctx(ctx);
10717 }
889ff015
FW
10718}
10719
4e231c79
PZ
10720void perf_event_delayed_put(struct task_struct *task)
10721{
10722 int ctxn;
10723
10724 for_each_task_context_nr(ctxn)
10725 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10726}
10727
e03e7ee3 10728struct file *perf_event_get(unsigned int fd)
ffe8690c 10729{
e03e7ee3 10730 struct file *file;
ffe8690c 10731
e03e7ee3
AS
10732 file = fget_raw(fd);
10733 if (!file)
10734 return ERR_PTR(-EBADF);
ffe8690c 10735
e03e7ee3
AS
10736 if (file->f_op != &perf_fops) {
10737 fput(file);
10738 return ERR_PTR(-EBADF);
10739 }
ffe8690c 10740
e03e7ee3 10741 return file;
ffe8690c
KX
10742}
10743
10744const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10745{
10746 if (!event)
10747 return ERR_PTR(-EINVAL);
10748
10749 return &event->attr;
10750}
10751
97dee4f3 10752/*
d8a8cfc7
PZ
10753 * Inherit a event from parent task to child task.
10754 *
10755 * Returns:
10756 * - valid pointer on success
10757 * - NULL for orphaned events
10758 * - IS_ERR() on error
97dee4f3
PZ
10759 */
10760static struct perf_event *
10761inherit_event(struct perf_event *parent_event,
10762 struct task_struct *parent,
10763 struct perf_event_context *parent_ctx,
10764 struct task_struct *child,
10765 struct perf_event *group_leader,
10766 struct perf_event_context *child_ctx)
10767{
1929def9 10768 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10769 struct perf_event *child_event;
cee010ec 10770 unsigned long flags;
97dee4f3
PZ
10771
10772 /*
10773 * Instead of creating recursive hierarchies of events,
10774 * we link inherited events back to the original parent,
10775 * which has a filp for sure, which we use as the reference
10776 * count:
10777 */
10778 if (parent_event->parent)
10779 parent_event = parent_event->parent;
10780
10781 child_event = perf_event_alloc(&parent_event->attr,
10782 parent_event->cpu,
d580ff86 10783 child,
97dee4f3 10784 group_leader, parent_event,
79dff51e 10785 NULL, NULL, -1);
97dee4f3
PZ
10786 if (IS_ERR(child_event))
10787 return child_event;
a6fa941d 10788
c6e5b732
PZ
10789 /*
10790 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10791 * must be under the same lock in order to serialize against
10792 * perf_event_release_kernel(), such that either we must observe
10793 * is_orphaned_event() or they will observe us on the child_list.
10794 */
10795 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10796 if (is_orphaned_event(parent_event) ||
10797 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10798 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10799 free_event(child_event);
10800 return NULL;
10801 }
10802
97dee4f3
PZ
10803 get_ctx(child_ctx);
10804
10805 /*
10806 * Make the child state follow the state of the parent event,
10807 * not its attr.disabled bit. We hold the parent's mutex,
10808 * so we won't race with perf_event_{en, dis}able_family.
10809 */
1929def9 10810 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10811 child_event->state = PERF_EVENT_STATE_INACTIVE;
10812 else
10813 child_event->state = PERF_EVENT_STATE_OFF;
10814
10815 if (parent_event->attr.freq) {
10816 u64 sample_period = parent_event->hw.sample_period;
10817 struct hw_perf_event *hwc = &child_event->hw;
10818
10819 hwc->sample_period = sample_period;
10820 hwc->last_period = sample_period;
10821
10822 local64_set(&hwc->period_left, sample_period);
10823 }
10824
10825 child_event->ctx = child_ctx;
10826 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10827 child_event->overflow_handler_context
10828 = parent_event->overflow_handler_context;
97dee4f3 10829
614b6780
TG
10830 /*
10831 * Precalculate sample_data sizes
10832 */
10833 perf_event__header_size(child_event);
6844c09d 10834 perf_event__id_header_size(child_event);
614b6780 10835
97dee4f3
PZ
10836 /*
10837 * Link it up in the child's context:
10838 */
cee010ec 10839 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10840 add_event_to_ctx(child_event, child_ctx);
cee010ec 10841 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10842
97dee4f3
PZ
10843 /*
10844 * Link this into the parent event's child list
10845 */
97dee4f3
PZ
10846 list_add_tail(&child_event->child_list, &parent_event->child_list);
10847 mutex_unlock(&parent_event->child_mutex);
10848
10849 return child_event;
10850}
10851
d8a8cfc7
PZ
10852/*
10853 * Inherits an event group.
10854 *
10855 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10856 * This matches with perf_event_release_kernel() removing all child events.
10857 *
10858 * Returns:
10859 * - 0 on success
10860 * - <0 on error
10861 */
97dee4f3
PZ
10862static int inherit_group(struct perf_event *parent_event,
10863 struct task_struct *parent,
10864 struct perf_event_context *parent_ctx,
10865 struct task_struct *child,
10866 struct perf_event_context *child_ctx)
10867{
10868 struct perf_event *leader;
10869 struct perf_event *sub;
10870 struct perf_event *child_ctr;
10871
10872 leader = inherit_event(parent_event, parent, parent_ctx,
10873 child, NULL, child_ctx);
10874 if (IS_ERR(leader))
10875 return PTR_ERR(leader);
d8a8cfc7
PZ
10876 /*
10877 * @leader can be NULL here because of is_orphaned_event(). In this
10878 * case inherit_event() will create individual events, similar to what
10879 * perf_group_detach() would do anyway.
10880 */
97dee4f3
PZ
10881 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10882 child_ctr = inherit_event(sub, parent, parent_ctx,
10883 child, leader, child_ctx);
10884 if (IS_ERR(child_ctr))
10885 return PTR_ERR(child_ctr);
10886 }
10887 return 0;
889ff015
FW
10888}
10889
d8a8cfc7
PZ
10890/*
10891 * Creates the child task context and tries to inherit the event-group.
10892 *
10893 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10894 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10895 * consistent with perf_event_release_kernel() removing all child events.
10896 *
10897 * Returns:
10898 * - 0 on success
10899 * - <0 on error
10900 */
889ff015
FW
10901static int
10902inherit_task_group(struct perf_event *event, struct task_struct *parent,
10903 struct perf_event_context *parent_ctx,
8dc85d54 10904 struct task_struct *child, int ctxn,
889ff015
FW
10905 int *inherited_all)
10906{
10907 int ret;
8dc85d54 10908 struct perf_event_context *child_ctx;
889ff015
FW
10909
10910 if (!event->attr.inherit) {
10911 *inherited_all = 0;
10912 return 0;
bbbee908
PZ
10913 }
10914
fe4b04fa 10915 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10916 if (!child_ctx) {
10917 /*
10918 * This is executed from the parent task context, so
10919 * inherit events that have been marked for cloning.
10920 * First allocate and initialize a context for the
10921 * child.
10922 */
734df5ab 10923 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10924 if (!child_ctx)
10925 return -ENOMEM;
bbbee908 10926
8dc85d54 10927 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10928 }
10929
10930 ret = inherit_group(event, parent, parent_ctx,
10931 child, child_ctx);
10932
10933 if (ret)
10934 *inherited_all = 0;
10935
10936 return ret;
bbbee908
PZ
10937}
10938
9b51f66d 10939/*
cdd6c482 10940 * Initialize the perf_event context in task_struct
9b51f66d 10941 */
985c8dcb 10942static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10943{
889ff015 10944 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10945 struct perf_event_context *cloned_ctx;
10946 struct perf_event *event;
9b51f66d 10947 struct task_struct *parent = current;
564c2b21 10948 int inherited_all = 1;
dddd3379 10949 unsigned long flags;
6ab423e0 10950 int ret = 0;
9b51f66d 10951
8dc85d54 10952 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10953 return 0;
10954
ad3a37de 10955 /*
25346b93
PM
10956 * If the parent's context is a clone, pin it so it won't get
10957 * swapped under us.
ad3a37de 10958 */
8dc85d54 10959 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10960 if (!parent_ctx)
10961 return 0;
25346b93 10962
ad3a37de
PM
10963 /*
10964 * No need to check if parent_ctx != NULL here; since we saw
10965 * it non-NULL earlier, the only reason for it to become NULL
10966 * is if we exit, and since we're currently in the middle of
10967 * a fork we can't be exiting at the same time.
10968 */
ad3a37de 10969
9b51f66d
IM
10970 /*
10971 * Lock the parent list. No need to lock the child - not PID
10972 * hashed yet and not running, so nobody can access it.
10973 */
d859e29f 10974 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10975
10976 /*
10977 * We dont have to disable NMIs - we are only looking at
10978 * the list, not manipulating it:
10979 */
889ff015 10980 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10981 ret = inherit_task_group(event, parent, parent_ctx,
10982 child, ctxn, &inherited_all);
889ff015 10983 if (ret)
e7cc4865 10984 goto out_unlock;
889ff015 10985 }
b93f7978 10986
dddd3379
TG
10987 /*
10988 * We can't hold ctx->lock when iterating the ->flexible_group list due
10989 * to allocations, but we need to prevent rotation because
10990 * rotate_ctx() will change the list from interrupt context.
10991 */
10992 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10993 parent_ctx->rotate_disable = 1;
10994 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10995
889ff015 10996 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10997 ret = inherit_task_group(event, parent, parent_ctx,
10998 child, ctxn, &inherited_all);
889ff015 10999 if (ret)
e7cc4865 11000 goto out_unlock;
564c2b21
PM
11001 }
11002
dddd3379
TG
11003 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11004 parent_ctx->rotate_disable = 0;
dddd3379 11005
8dc85d54 11006 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 11007
05cbaa28 11008 if (child_ctx && inherited_all) {
564c2b21
PM
11009 /*
11010 * Mark the child context as a clone of the parent
11011 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
11012 *
11013 * Note that if the parent is a clone, the holding of
11014 * parent_ctx->lock avoids it from being uncloned.
564c2b21 11015 */
c5ed5145 11016 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
11017 if (cloned_ctx) {
11018 child_ctx->parent_ctx = cloned_ctx;
25346b93 11019 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
11020 } else {
11021 child_ctx->parent_ctx = parent_ctx;
11022 child_ctx->parent_gen = parent_ctx->generation;
11023 }
11024 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
11025 }
11026
c5ed5145 11027 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 11028out_unlock:
d859e29f 11029 mutex_unlock(&parent_ctx->mutex);
6ab423e0 11030
25346b93 11031 perf_unpin_context(parent_ctx);
fe4b04fa 11032 put_ctx(parent_ctx);
ad3a37de 11033
6ab423e0 11034 return ret;
9b51f66d
IM
11035}
11036
8dc85d54
PZ
11037/*
11038 * Initialize the perf_event context in task_struct
11039 */
11040int perf_event_init_task(struct task_struct *child)
11041{
11042 int ctxn, ret;
11043
8550d7cb
ON
11044 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11045 mutex_init(&child->perf_event_mutex);
11046 INIT_LIST_HEAD(&child->perf_event_list);
11047
8dc85d54
PZ
11048 for_each_task_context_nr(ctxn) {
11049 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
11050 if (ret) {
11051 perf_event_free_task(child);
8dc85d54 11052 return ret;
6c72e350 11053 }
8dc85d54
PZ
11054 }
11055
11056 return 0;
11057}
11058
220b140b
PM
11059static void __init perf_event_init_all_cpus(void)
11060{
b28ab83c 11061 struct swevent_htable *swhash;
220b140b 11062 int cpu;
220b140b 11063
a63fbed7
TG
11064 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11065
220b140b 11066 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11067 swhash = &per_cpu(swevent_htable, cpu);
11068 mutex_init(&swhash->hlist_mutex);
2fde4f94 11069 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11070
11071 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11072 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11073
058fe1c0
DCC
11074#ifdef CONFIG_CGROUP_PERF
11075 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11076#endif
e48c1788 11077 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11078 }
11079}
11080
a63fbed7 11081void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11082{
108b02cf 11083 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11084
b28ab83c 11085 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11086 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11087 struct swevent_hlist *hlist;
11088
b28ab83c
PZ
11089 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11090 WARN_ON(!hlist);
11091 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11092 }
b28ab83c 11093 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11094}
11095
2965faa5 11096#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11097static void __perf_event_exit_context(void *__info)
0793a61d 11098{
108b02cf 11099 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11100 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11101 struct perf_event *event;
0793a61d 11102
fae3fde6
PZ
11103 raw_spin_lock(&ctx->lock);
11104 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11105 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11106 raw_spin_unlock(&ctx->lock);
0793a61d 11107}
108b02cf
PZ
11108
11109static void perf_event_exit_cpu_context(int cpu)
11110{
a63fbed7 11111 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11112 struct perf_event_context *ctx;
11113 struct pmu *pmu;
108b02cf 11114
a63fbed7
TG
11115 mutex_lock(&pmus_lock);
11116 list_for_each_entry(pmu, &pmus, entry) {
11117 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11118 ctx = &cpuctx->ctx;
108b02cf
PZ
11119
11120 mutex_lock(&ctx->mutex);
11121 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11122 cpuctx->online = 0;
108b02cf
PZ
11123 mutex_unlock(&ctx->mutex);
11124 }
a63fbed7
TG
11125 cpumask_clear_cpu(cpu, perf_online_mask);
11126 mutex_unlock(&pmus_lock);
108b02cf 11127}
00e16c3d
TG
11128#else
11129
11130static void perf_event_exit_cpu_context(int cpu) { }
11131
11132#endif
108b02cf 11133
a63fbed7
TG
11134int perf_event_init_cpu(unsigned int cpu)
11135{
11136 struct perf_cpu_context *cpuctx;
11137 struct perf_event_context *ctx;
11138 struct pmu *pmu;
11139
11140 perf_swevent_init_cpu(cpu);
11141
11142 mutex_lock(&pmus_lock);
11143 cpumask_set_cpu(cpu, perf_online_mask);
11144 list_for_each_entry(pmu, &pmus, entry) {
11145 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11146 ctx = &cpuctx->ctx;
11147
11148 mutex_lock(&ctx->mutex);
11149 cpuctx->online = 1;
11150 mutex_unlock(&ctx->mutex);
11151 }
11152 mutex_unlock(&pmus_lock);
11153
11154 return 0;
11155}
11156
00e16c3d 11157int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11158{
e3703f8c 11159 perf_event_exit_cpu_context(cpu);
00e16c3d 11160 return 0;
0793a61d 11161}
0793a61d 11162
c277443c
PZ
11163static int
11164perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11165{
11166 int cpu;
11167
11168 for_each_online_cpu(cpu)
11169 perf_event_exit_cpu(cpu);
11170
11171 return NOTIFY_OK;
11172}
11173
11174/*
11175 * Run the perf reboot notifier at the very last possible moment so that
11176 * the generic watchdog code runs as long as possible.
11177 */
11178static struct notifier_block perf_reboot_notifier = {
11179 .notifier_call = perf_reboot,
11180 .priority = INT_MIN,
11181};
11182
cdd6c482 11183void __init perf_event_init(void)
0793a61d 11184{
3c502e7a
JW
11185 int ret;
11186
2e80a82a
PZ
11187 idr_init(&pmu_idr);
11188
220b140b 11189 perf_event_init_all_cpus();
b0a873eb 11190 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11191 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11192 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11193 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11194 perf_tp_register();
00e16c3d 11195 perf_event_init_cpu(smp_processor_id());
c277443c 11196 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11197
11198 ret = init_hw_breakpoint();
11199 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11200
b01c3a00
JO
11201 /*
11202 * Build time assertion that we keep the data_head at the intended
11203 * location. IOW, validation we got the __reserved[] size right.
11204 */
11205 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11206 != 1024);
0793a61d 11207}
abe43400 11208
fd979c01
CS
11209ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11210 char *page)
11211{
11212 struct perf_pmu_events_attr *pmu_attr =
11213 container_of(attr, struct perf_pmu_events_attr, attr);
11214
11215 if (pmu_attr->event_str)
11216 return sprintf(page, "%s\n", pmu_attr->event_str);
11217
11218 return 0;
11219}
675965b0 11220EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11221
abe43400
PZ
11222static int __init perf_event_sysfs_init(void)
11223{
11224 struct pmu *pmu;
11225 int ret;
11226
11227 mutex_lock(&pmus_lock);
11228
11229 ret = bus_register(&pmu_bus);
11230 if (ret)
11231 goto unlock;
11232
11233 list_for_each_entry(pmu, &pmus, entry) {
11234 if (!pmu->name || pmu->type < 0)
11235 continue;
11236
11237 ret = pmu_dev_alloc(pmu);
11238 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11239 }
11240 pmu_bus_running = 1;
11241 ret = 0;
11242
11243unlock:
11244 mutex_unlock(&pmus_lock);
11245
11246 return ret;
11247}
11248device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11249
11250#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11251static struct cgroup_subsys_state *
11252perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11253{
11254 struct perf_cgroup *jc;
e5d1367f 11255
1b15d055 11256 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11257 if (!jc)
11258 return ERR_PTR(-ENOMEM);
11259
e5d1367f
SE
11260 jc->info = alloc_percpu(struct perf_cgroup_info);
11261 if (!jc->info) {
11262 kfree(jc);
11263 return ERR_PTR(-ENOMEM);
11264 }
11265
e5d1367f
SE
11266 return &jc->css;
11267}
11268
eb95419b 11269static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11270{
eb95419b
TH
11271 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11272
e5d1367f
SE
11273 free_percpu(jc->info);
11274 kfree(jc);
11275}
11276
11277static int __perf_cgroup_move(void *info)
11278{
11279 struct task_struct *task = info;
ddaaf4e2 11280 rcu_read_lock();
e5d1367f 11281 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11282 rcu_read_unlock();
e5d1367f
SE
11283 return 0;
11284}
11285
1f7dd3e5 11286static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11287{
bb9d97b6 11288 struct task_struct *task;
1f7dd3e5 11289 struct cgroup_subsys_state *css;
bb9d97b6 11290
1f7dd3e5 11291 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11292 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11293}
11294
073219e9 11295struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11296 .css_alloc = perf_cgroup_css_alloc,
11297 .css_free = perf_cgroup_css_free,
bb9d97b6 11298 .attach = perf_cgroup_attach,
968ebff1
TH
11299 /*
11300 * Implicitly enable on dfl hierarchy so that perf events can
11301 * always be filtered by cgroup2 path as long as perf_event
11302 * controller is not mounted on a legacy hierarchy.
11303 */
11304 .implicit_on_dfl = true,
8cfd8147 11305 .threaded = true,
e5d1367f
SE
11306};
11307#endif /* CONFIG_CGROUP_PERF */