]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/events/core.c
perf/core: Fix ctx_event_type in ctx_resched()
[mirror_ubuntu-eoan-kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6 211
16444645 212 lockdep_assert_irqs_disabled();
fae3fde6 213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
16444645 309 lockdep_assert_irqs_disabled();
cca20946
PZ
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
9e630205
SE
433static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
0d3d73aa
PZ
585/*
586 * State based event timekeeping...
587 *
588 * The basic idea is to use event->state to determine which (if any) time
589 * fields to increment with the current delta. This means we only need to
590 * update timestamps when we change state or when they are explicitly requested
591 * (read).
592 *
593 * Event groups make things a little more complicated, but not terribly so. The
594 * rules for a group are that if the group leader is OFF the entire group is
595 * OFF, irrespecive of what the group member states are. This results in
596 * __perf_effective_state().
597 *
598 * A futher ramification is that when a group leader flips between OFF and
599 * !OFF, we need to update all group member times.
600 *
601 *
602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603 * need to make sure the relevant context time is updated before we try and
604 * update our timestamps.
605 */
606
607static __always_inline enum perf_event_state
608__perf_effective_state(struct perf_event *event)
609{
610 struct perf_event *leader = event->group_leader;
611
612 if (leader->state <= PERF_EVENT_STATE_OFF)
613 return leader->state;
614
615 return event->state;
616}
617
618static __always_inline void
619__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620{
621 enum perf_event_state state = __perf_effective_state(event);
622 u64 delta = now - event->tstamp;
623
624 *enabled = event->total_time_enabled;
625 if (state >= PERF_EVENT_STATE_INACTIVE)
626 *enabled += delta;
627
628 *running = event->total_time_running;
629 if (state >= PERF_EVENT_STATE_ACTIVE)
630 *running += delta;
631}
632
633static void perf_event_update_time(struct perf_event *event)
634{
635 u64 now = perf_event_time(event);
636
637 __perf_update_times(event, now, &event->total_time_enabled,
638 &event->total_time_running);
639 event->tstamp = now;
640}
641
642static void perf_event_update_sibling_time(struct perf_event *leader)
643{
644 struct perf_event *sibling;
645
646 list_for_each_entry(sibling, &leader->sibling_list, group_entry)
647 perf_event_update_time(sibling);
648}
649
650static void
651perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652{
653 if (event->state == state)
654 return;
655
656 perf_event_update_time(event);
657 /*
658 * If a group leader gets enabled/disabled all its siblings
659 * are affected too.
660 */
661 if ((event->state < 0) ^ (state < 0))
662 perf_event_update_sibling_time(event);
663
664 WRITE_ONCE(event->state, state);
665}
666
e5d1367f
SE
667#ifdef CONFIG_CGROUP_PERF
668
e5d1367f
SE
669static inline bool
670perf_cgroup_match(struct perf_event *event)
671{
672 struct perf_event_context *ctx = event->ctx;
673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
ef824fa1
TH
675 /* @event doesn't care about cgroup */
676 if (!event->cgrp)
677 return true;
678
679 /* wants specific cgroup scope but @cpuctx isn't associated with any */
680 if (!cpuctx->cgrp)
681 return false;
682
683 /*
684 * Cgroup scoping is recursive. An event enabled for a cgroup is
685 * also enabled for all its descendant cgroups. If @cpuctx's
686 * cgroup is a descendant of @event's (the test covers identity
687 * case), it's a match.
688 */
689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 event->cgrp->css.cgroup);
e5d1367f
SE
691}
692
e5d1367f
SE
693static inline void perf_detach_cgroup(struct perf_event *event)
694{
4e2ba650 695 css_put(&event->cgrp->css);
e5d1367f
SE
696 event->cgrp = NULL;
697}
698
699static inline int is_cgroup_event(struct perf_event *event)
700{
701 return event->cgrp != NULL;
702}
703
704static inline u64 perf_cgroup_event_time(struct perf_event *event)
705{
706 struct perf_cgroup_info *t;
707
708 t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 return t->time;
710}
711
712static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713{
714 struct perf_cgroup_info *info;
715 u64 now;
716
717 now = perf_clock();
718
719 info = this_cpu_ptr(cgrp->info);
720
721 info->time += now - info->timestamp;
722 info->timestamp = now;
723}
724
725static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726{
727 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728 if (cgrp_out)
729 __update_cgrp_time(cgrp_out);
730}
731
732static inline void update_cgrp_time_from_event(struct perf_event *event)
733{
3f7cce3c
SE
734 struct perf_cgroup *cgrp;
735
e5d1367f 736 /*
3f7cce3c
SE
737 * ensure we access cgroup data only when needed and
738 * when we know the cgroup is pinned (css_get)
e5d1367f 739 */
3f7cce3c 740 if (!is_cgroup_event(event))
e5d1367f
SE
741 return;
742
614e4c4e 743 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
744 /*
745 * Do not update time when cgroup is not active
746 */
e6a52033 747 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 748 __update_cgrp_time(event->cgrp);
e5d1367f
SE
749}
750
751static inline void
3f7cce3c
SE
752perf_cgroup_set_timestamp(struct task_struct *task,
753 struct perf_event_context *ctx)
e5d1367f
SE
754{
755 struct perf_cgroup *cgrp;
756 struct perf_cgroup_info *info;
757
3f7cce3c
SE
758 /*
759 * ctx->lock held by caller
760 * ensure we do not access cgroup data
761 * unless we have the cgroup pinned (css_get)
762 */
763 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
764 return;
765
614e4c4e 766 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 767 info = this_cpu_ptr(cgrp->info);
3f7cce3c 768 info->timestamp = ctx->timestamp;
e5d1367f
SE
769}
770
058fe1c0
DCC
771static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
772
e5d1367f
SE
773#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
774#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
775
776/*
777 * reschedule events based on the cgroup constraint of task.
778 *
779 * mode SWOUT : schedule out everything
780 * mode SWIN : schedule in based on cgroup for next
781 */
18ab2cd3 782static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
783{
784 struct perf_cpu_context *cpuctx;
058fe1c0 785 struct list_head *list;
e5d1367f
SE
786 unsigned long flags;
787
788 /*
058fe1c0
DCC
789 * Disable interrupts and preemption to avoid this CPU's
790 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
791 */
792 local_irq_save(flags);
793
058fe1c0
DCC
794 list = this_cpu_ptr(&cgrp_cpuctx_list);
795 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 797
058fe1c0
DCC
798 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 800
058fe1c0
DCC
801 if (mode & PERF_CGROUP_SWOUT) {
802 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
803 /*
804 * must not be done before ctxswout due
805 * to event_filter_match() in event_sched_out()
806 */
807 cpuctx->cgrp = NULL;
808 }
e5d1367f 809
058fe1c0
DCC
810 if (mode & PERF_CGROUP_SWIN) {
811 WARN_ON_ONCE(cpuctx->cgrp);
812 /*
813 * set cgrp before ctxsw in to allow
814 * event_filter_match() to not have to pass
815 * task around
816 * we pass the cpuctx->ctx to perf_cgroup_from_task()
817 * because cgorup events are only per-cpu
818 */
819 cpuctx->cgrp = perf_cgroup_from_task(task,
820 &cpuctx->ctx);
821 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 822 }
058fe1c0
DCC
823 perf_pmu_enable(cpuctx->ctx.pmu);
824 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
825 }
826
e5d1367f
SE
827 local_irq_restore(flags);
828}
829
a8d757ef
SE
830static inline void perf_cgroup_sched_out(struct task_struct *task,
831 struct task_struct *next)
e5d1367f 832{
a8d757ef
SE
833 struct perf_cgroup *cgrp1;
834 struct perf_cgroup *cgrp2 = NULL;
835
ddaaf4e2 836 rcu_read_lock();
a8d757ef
SE
837 /*
838 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
839 * we do not need to pass the ctx here because we know
840 * we are holding the rcu lock
a8d757ef 841 */
614e4c4e 842 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 843 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
844
845 /*
846 * only schedule out current cgroup events if we know
847 * that we are switching to a different cgroup. Otherwise,
848 * do no touch the cgroup events.
849 */
850 if (cgrp1 != cgrp2)
851 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
852
853 rcu_read_unlock();
e5d1367f
SE
854}
855
a8d757ef
SE
856static inline void perf_cgroup_sched_in(struct task_struct *prev,
857 struct task_struct *task)
e5d1367f 858{
a8d757ef
SE
859 struct perf_cgroup *cgrp1;
860 struct perf_cgroup *cgrp2 = NULL;
861
ddaaf4e2 862 rcu_read_lock();
a8d757ef
SE
863 /*
864 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
865 * we do not need to pass the ctx here because we know
866 * we are holding the rcu lock
a8d757ef 867 */
614e4c4e 868 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 869 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
870
871 /*
872 * only need to schedule in cgroup events if we are changing
873 * cgroup during ctxsw. Cgroup events were not scheduled
874 * out of ctxsw out if that was not the case.
875 */
876 if (cgrp1 != cgrp2)
877 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
878
879 rcu_read_unlock();
e5d1367f
SE
880}
881
882static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883 struct perf_event_attr *attr,
884 struct perf_event *group_leader)
885{
886 struct perf_cgroup *cgrp;
887 struct cgroup_subsys_state *css;
2903ff01
AV
888 struct fd f = fdget(fd);
889 int ret = 0;
e5d1367f 890
2903ff01 891 if (!f.file)
e5d1367f
SE
892 return -EBADF;
893
b583043e 894 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 895 &perf_event_cgrp_subsys);
3db272c0
LZ
896 if (IS_ERR(css)) {
897 ret = PTR_ERR(css);
898 goto out;
899 }
e5d1367f
SE
900
901 cgrp = container_of(css, struct perf_cgroup, css);
902 event->cgrp = cgrp;
903
904 /*
905 * all events in a group must monitor
906 * the same cgroup because a task belongs
907 * to only one perf cgroup at a time
908 */
909 if (group_leader && group_leader->cgrp != cgrp) {
910 perf_detach_cgroup(event);
911 ret = -EINVAL;
e5d1367f 912 }
3db272c0 913out:
2903ff01 914 fdput(f);
e5d1367f
SE
915 return ret;
916}
917
918static inline void
919perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
920{
921 struct perf_cgroup_info *t;
922 t = per_cpu_ptr(event->cgrp->info, event->cpu);
923 event->shadow_ctx_time = now - t->timestamp;
924}
925
db4a8356
DCC
926/*
927 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928 * cleared when last cgroup event is removed.
929 */
930static inline void
931list_update_cgroup_event(struct perf_event *event,
932 struct perf_event_context *ctx, bool add)
933{
934 struct perf_cpu_context *cpuctx;
058fe1c0 935 struct list_head *cpuctx_entry;
db4a8356
DCC
936
937 if (!is_cgroup_event(event))
938 return;
939
940 if (add && ctx->nr_cgroups++)
941 return;
942 else if (!add && --ctx->nr_cgroups)
943 return;
944 /*
945 * Because cgroup events are always per-cpu events,
946 * this will always be called from the right CPU.
947 */
948 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
949 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
950 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
951 if (add) {
be96b316
TH
952 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
953
058fe1c0 954 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
be96b316
TH
955 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956 cpuctx->cgrp = cgrp;
058fe1c0
DCC
957 } else {
958 list_del(cpuctx_entry);
8fc31ce8 959 cpuctx->cgrp = NULL;
058fe1c0 960 }
db4a8356
DCC
961}
962
e5d1367f
SE
963#else /* !CONFIG_CGROUP_PERF */
964
965static inline bool
966perf_cgroup_match(struct perf_event *event)
967{
968 return true;
969}
970
971static inline void perf_detach_cgroup(struct perf_event *event)
972{}
973
974static inline int is_cgroup_event(struct perf_event *event)
975{
976 return 0;
977}
978
e5d1367f
SE
979static inline void update_cgrp_time_from_event(struct perf_event *event)
980{
981}
982
983static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
984{
985}
986
a8d757ef
SE
987static inline void perf_cgroup_sched_out(struct task_struct *task,
988 struct task_struct *next)
e5d1367f
SE
989{
990}
991
a8d757ef
SE
992static inline void perf_cgroup_sched_in(struct task_struct *prev,
993 struct task_struct *task)
e5d1367f
SE
994{
995}
996
997static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
998 struct perf_event_attr *attr,
999 struct perf_event *group_leader)
1000{
1001 return -EINVAL;
1002}
1003
1004static inline void
3f7cce3c
SE
1005perf_cgroup_set_timestamp(struct task_struct *task,
1006 struct perf_event_context *ctx)
e5d1367f
SE
1007{
1008}
1009
1010void
1011perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1012{
1013}
1014
1015static inline void
1016perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1017{
1018}
1019
1020static inline u64 perf_cgroup_event_time(struct perf_event *event)
1021{
1022 return 0;
1023}
1024
db4a8356
DCC
1025static inline void
1026list_update_cgroup_event(struct perf_event *event,
1027 struct perf_event_context *ctx, bool add)
1028{
1029}
1030
e5d1367f
SE
1031#endif
1032
9e630205
SE
1033/*
1034 * set default to be dependent on timer tick just
1035 * like original code
1036 */
1037#define PERF_CPU_HRTIMER (1000 / HZ)
1038/*
8a1115ff 1039 * function must be called with interrupts disabled
9e630205 1040 */
272325c4 1041static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1042{
1043 struct perf_cpu_context *cpuctx;
9e630205
SE
1044 int rotations = 0;
1045
16444645 1046 lockdep_assert_irqs_disabled();
9e630205
SE
1047
1048 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1049 rotations = perf_rotate_context(cpuctx);
1050
4cfafd30
PZ
1051 raw_spin_lock(&cpuctx->hrtimer_lock);
1052 if (rotations)
9e630205 1053 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1054 else
1055 cpuctx->hrtimer_active = 0;
1056 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1057
4cfafd30 1058 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1059}
1060
272325c4 1061static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1062{
272325c4 1063 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1064 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1065 u64 interval;
9e630205
SE
1066
1067 /* no multiplexing needed for SW PMU */
1068 if (pmu->task_ctx_nr == perf_sw_context)
1069 return;
1070
62b85639
SE
1071 /*
1072 * check default is sane, if not set then force to
1073 * default interval (1/tick)
1074 */
272325c4
PZ
1075 interval = pmu->hrtimer_interval_ms;
1076 if (interval < 1)
1077 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1078
272325c4 1079 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1080
4cfafd30
PZ
1081 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1082 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1083 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1084}
1085
272325c4 1086static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1087{
272325c4 1088 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1089 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1090 unsigned long flags;
9e630205
SE
1091
1092 /* not for SW PMU */
1093 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1094 return 0;
9e630205 1095
4cfafd30
PZ
1096 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1097 if (!cpuctx->hrtimer_active) {
1098 cpuctx->hrtimer_active = 1;
1099 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1100 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1101 }
1102 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1103
272325c4 1104 return 0;
9e630205
SE
1105}
1106
33696fc0 1107void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1108{
33696fc0
PZ
1109 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1110 if (!(*count)++)
1111 pmu->pmu_disable(pmu);
9e35ad38 1112}
9e35ad38 1113
33696fc0 1114void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1115{
33696fc0
PZ
1116 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1117 if (!--(*count))
1118 pmu->pmu_enable(pmu);
9e35ad38 1119}
9e35ad38 1120
2fde4f94 1121static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1122
1123/*
2fde4f94
MR
1124 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1125 * perf_event_task_tick() are fully serialized because they're strictly cpu
1126 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1127 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1128 */
2fde4f94 1129static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1130{
2fde4f94 1131 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1132
16444645 1133 lockdep_assert_irqs_disabled();
b5ab4cd5 1134
2fde4f94
MR
1135 WARN_ON(!list_empty(&ctx->active_ctx_list));
1136
1137 list_add(&ctx->active_ctx_list, head);
1138}
1139
1140static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1141{
16444645 1142 lockdep_assert_irqs_disabled();
2fde4f94
MR
1143
1144 WARN_ON(list_empty(&ctx->active_ctx_list));
1145
1146 list_del_init(&ctx->active_ctx_list);
9e35ad38 1147}
9e35ad38 1148
cdd6c482 1149static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1150{
e5289d4a 1151 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1152}
1153
4af57ef2
YZ
1154static void free_ctx(struct rcu_head *head)
1155{
1156 struct perf_event_context *ctx;
1157
1158 ctx = container_of(head, struct perf_event_context, rcu_head);
1159 kfree(ctx->task_ctx_data);
1160 kfree(ctx);
1161}
1162
cdd6c482 1163static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1164{
564c2b21
PM
1165 if (atomic_dec_and_test(&ctx->refcount)) {
1166 if (ctx->parent_ctx)
1167 put_ctx(ctx->parent_ctx);
63b6da39 1168 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1169 put_task_struct(ctx->task);
4af57ef2 1170 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1171 }
a63eaf34
PM
1172}
1173
f63a8daa
PZ
1174/*
1175 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1176 * perf_pmu_migrate_context() we need some magic.
1177 *
1178 * Those places that change perf_event::ctx will hold both
1179 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1180 *
8b10c5e2
PZ
1181 * Lock ordering is by mutex address. There are two other sites where
1182 * perf_event_context::mutex nests and those are:
1183 *
1184 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1185 * perf_event_exit_event()
1186 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1187 *
1188 * - perf_event_init_context() [ parent, 0 ]
1189 * inherit_task_group()
1190 * inherit_group()
1191 * inherit_event()
1192 * perf_event_alloc()
1193 * perf_init_event()
1194 * perf_try_init_event() [ child , 1 ]
1195 *
1196 * While it appears there is an obvious deadlock here -- the parent and child
1197 * nesting levels are inverted between the two. This is in fact safe because
1198 * life-time rules separate them. That is an exiting task cannot fork, and a
1199 * spawning task cannot (yet) exit.
1200 *
1201 * But remember that that these are parent<->child context relations, and
1202 * migration does not affect children, therefore these two orderings should not
1203 * interact.
f63a8daa
PZ
1204 *
1205 * The change in perf_event::ctx does not affect children (as claimed above)
1206 * because the sys_perf_event_open() case will install a new event and break
1207 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1208 * concerned with cpuctx and that doesn't have children.
1209 *
1210 * The places that change perf_event::ctx will issue:
1211 *
1212 * perf_remove_from_context();
1213 * synchronize_rcu();
1214 * perf_install_in_context();
1215 *
1216 * to affect the change. The remove_from_context() + synchronize_rcu() should
1217 * quiesce the event, after which we can install it in the new location. This
1218 * means that only external vectors (perf_fops, prctl) can perturb the event
1219 * while in transit. Therefore all such accessors should also acquire
1220 * perf_event_context::mutex to serialize against this.
1221 *
1222 * However; because event->ctx can change while we're waiting to acquire
1223 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1224 * function.
1225 *
1226 * Lock order:
79c9ce57 1227 * cred_guard_mutex
f63a8daa
PZ
1228 * task_struct::perf_event_mutex
1229 * perf_event_context::mutex
f63a8daa 1230 * perf_event::child_mutex;
07c4a776 1231 * perf_event_context::lock
f63a8daa
PZ
1232 * perf_event::mmap_mutex
1233 * mmap_sem
82d94856
PZ
1234 *
1235 * cpu_hotplug_lock
1236 * pmus_lock
1237 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1238 */
a83fe28e
PZ
1239static struct perf_event_context *
1240perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1241{
1242 struct perf_event_context *ctx;
1243
1244again:
1245 rcu_read_lock();
6aa7de05 1246 ctx = READ_ONCE(event->ctx);
f63a8daa
PZ
1247 if (!atomic_inc_not_zero(&ctx->refcount)) {
1248 rcu_read_unlock();
1249 goto again;
1250 }
1251 rcu_read_unlock();
1252
a83fe28e 1253 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1254 if (event->ctx != ctx) {
1255 mutex_unlock(&ctx->mutex);
1256 put_ctx(ctx);
1257 goto again;
1258 }
1259
1260 return ctx;
1261}
1262
a83fe28e
PZ
1263static inline struct perf_event_context *
1264perf_event_ctx_lock(struct perf_event *event)
1265{
1266 return perf_event_ctx_lock_nested(event, 0);
1267}
1268
f63a8daa
PZ
1269static void perf_event_ctx_unlock(struct perf_event *event,
1270 struct perf_event_context *ctx)
1271{
1272 mutex_unlock(&ctx->mutex);
1273 put_ctx(ctx);
1274}
1275
211de6eb
PZ
1276/*
1277 * This must be done under the ctx->lock, such as to serialize against
1278 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1279 * calling scheduler related locks and ctx->lock nests inside those.
1280 */
1281static __must_check struct perf_event_context *
1282unclone_ctx(struct perf_event_context *ctx)
71a851b4 1283{
211de6eb
PZ
1284 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1285
1286 lockdep_assert_held(&ctx->lock);
1287
1288 if (parent_ctx)
71a851b4 1289 ctx->parent_ctx = NULL;
5a3126d4 1290 ctx->generation++;
211de6eb
PZ
1291
1292 return parent_ctx;
71a851b4
PZ
1293}
1294
1d953111
ON
1295static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1296 enum pid_type type)
6844c09d 1297{
1d953111 1298 u32 nr;
6844c09d
ACM
1299 /*
1300 * only top level events have the pid namespace they were created in
1301 */
1302 if (event->parent)
1303 event = event->parent;
1304
1d953111
ON
1305 nr = __task_pid_nr_ns(p, type, event->ns);
1306 /* avoid -1 if it is idle thread or runs in another ns */
1307 if (!nr && !pid_alive(p))
1308 nr = -1;
1309 return nr;
6844c09d
ACM
1310}
1311
1d953111 1312static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1313{
1d953111
ON
1314 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1315}
6844c09d 1316
1d953111
ON
1317static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1318{
1319 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1320}
1321
7f453c24 1322/*
cdd6c482 1323 * If we inherit events we want to return the parent event id
7f453c24
PZ
1324 * to userspace.
1325 */
cdd6c482 1326static u64 primary_event_id(struct perf_event *event)
7f453c24 1327{
cdd6c482 1328 u64 id = event->id;
7f453c24 1329
cdd6c482
IM
1330 if (event->parent)
1331 id = event->parent->id;
7f453c24
PZ
1332
1333 return id;
1334}
1335
25346b93 1336/*
cdd6c482 1337 * Get the perf_event_context for a task and lock it.
63b6da39 1338 *
25346b93
PM
1339 * This has to cope with with the fact that until it is locked,
1340 * the context could get moved to another task.
1341 */
cdd6c482 1342static struct perf_event_context *
8dc85d54 1343perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1344{
cdd6c482 1345 struct perf_event_context *ctx;
25346b93 1346
9ed6060d 1347retry:
058ebd0e
PZ
1348 /*
1349 * One of the few rules of preemptible RCU is that one cannot do
1350 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1351 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1352 * rcu_read_unlock_special().
1353 *
1354 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1355 * side critical section has interrupts disabled.
058ebd0e 1356 */
2fd59077 1357 local_irq_save(*flags);
058ebd0e 1358 rcu_read_lock();
8dc85d54 1359 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1360 if (ctx) {
1361 /*
1362 * If this context is a clone of another, it might
1363 * get swapped for another underneath us by
cdd6c482 1364 * perf_event_task_sched_out, though the
25346b93
PM
1365 * rcu_read_lock() protects us from any context
1366 * getting freed. Lock the context and check if it
1367 * got swapped before we could get the lock, and retry
1368 * if so. If we locked the right context, then it
1369 * can't get swapped on us any more.
1370 */
2fd59077 1371 raw_spin_lock(&ctx->lock);
8dc85d54 1372 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1373 raw_spin_unlock(&ctx->lock);
058ebd0e 1374 rcu_read_unlock();
2fd59077 1375 local_irq_restore(*flags);
25346b93
PM
1376 goto retry;
1377 }
b49a9e7e 1378
63b6da39
PZ
1379 if (ctx->task == TASK_TOMBSTONE ||
1380 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1381 raw_spin_unlock(&ctx->lock);
b49a9e7e 1382 ctx = NULL;
828b6f0e
PZ
1383 } else {
1384 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1385 }
25346b93
PM
1386 }
1387 rcu_read_unlock();
2fd59077
PM
1388 if (!ctx)
1389 local_irq_restore(*flags);
25346b93
PM
1390 return ctx;
1391}
1392
1393/*
1394 * Get the context for a task and increment its pin_count so it
1395 * can't get swapped to another task. This also increments its
1396 * reference count so that the context can't get freed.
1397 */
8dc85d54
PZ
1398static struct perf_event_context *
1399perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1400{
cdd6c482 1401 struct perf_event_context *ctx;
25346b93
PM
1402 unsigned long flags;
1403
8dc85d54 1404 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1405 if (ctx) {
1406 ++ctx->pin_count;
e625cce1 1407 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1408 }
1409 return ctx;
1410}
1411
cdd6c482 1412static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1413{
1414 unsigned long flags;
1415
e625cce1 1416 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1417 --ctx->pin_count;
e625cce1 1418 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1419}
1420
f67218c3
PZ
1421/*
1422 * Update the record of the current time in a context.
1423 */
1424static void update_context_time(struct perf_event_context *ctx)
1425{
1426 u64 now = perf_clock();
1427
1428 ctx->time += now - ctx->timestamp;
1429 ctx->timestamp = now;
1430}
1431
4158755d
SE
1432static u64 perf_event_time(struct perf_event *event)
1433{
1434 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1435
1436 if (is_cgroup_event(event))
1437 return perf_cgroup_event_time(event);
1438
4158755d
SE
1439 return ctx ? ctx->time : 0;
1440}
1441
487f05e1
AS
1442static enum event_type_t get_event_type(struct perf_event *event)
1443{
1444 struct perf_event_context *ctx = event->ctx;
1445 enum event_type_t event_type;
1446
1447 lockdep_assert_held(&ctx->lock);
1448
3bda69c1
AS
1449 /*
1450 * It's 'group type', really, because if our group leader is
1451 * pinned, so are we.
1452 */
1453 if (event->group_leader != event)
1454 event = event->group_leader;
1455
487f05e1
AS
1456 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1457 if (!ctx->task)
1458 event_type |= EVENT_CPU;
1459
1460 return event_type;
1461}
1462
889ff015
FW
1463static struct list_head *
1464ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1465{
1466 if (event->attr.pinned)
1467 return &ctx->pinned_groups;
1468 else
1469 return &ctx->flexible_groups;
1470}
1471
fccc714b 1472/*
cdd6c482 1473 * Add a event from the lists for its context.
fccc714b
PZ
1474 * Must be called with ctx->mutex and ctx->lock held.
1475 */
04289bb9 1476static void
cdd6c482 1477list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1478{
c994d613
PZ
1479 lockdep_assert_held(&ctx->lock);
1480
8a49542c
PZ
1481 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1482 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1483
0d3d73aa
PZ
1484 event->tstamp = perf_event_time(event);
1485
04289bb9 1486 /*
8a49542c
PZ
1487 * If we're a stand alone event or group leader, we go to the context
1488 * list, group events are kept attached to the group so that
1489 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1490 */
8a49542c 1491 if (event->group_leader == event) {
889ff015
FW
1492 struct list_head *list;
1493
4ff6a8de 1494 event->group_caps = event->event_caps;
d6f962b5 1495
889ff015
FW
1496 list = ctx_group_list(event, ctx);
1497 list_add_tail(&event->group_entry, list);
5c148194 1498 }
592903cd 1499
db4a8356 1500 list_update_cgroup_event(event, ctx, true);
e5d1367f 1501
cdd6c482
IM
1502 list_add_rcu(&event->event_entry, &ctx->event_list);
1503 ctx->nr_events++;
1504 if (event->attr.inherit_stat)
bfbd3381 1505 ctx->nr_stat++;
5a3126d4
PZ
1506
1507 ctx->generation++;
04289bb9
IM
1508}
1509
0231bb53
JO
1510/*
1511 * Initialize event state based on the perf_event_attr::disabled.
1512 */
1513static inline void perf_event__state_init(struct perf_event *event)
1514{
1515 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1516 PERF_EVENT_STATE_INACTIVE;
1517}
1518
a723968c 1519static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1520{
1521 int entry = sizeof(u64); /* value */
1522 int size = 0;
1523 int nr = 1;
1524
1525 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1526 size += sizeof(u64);
1527
1528 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1529 size += sizeof(u64);
1530
1531 if (event->attr.read_format & PERF_FORMAT_ID)
1532 entry += sizeof(u64);
1533
1534 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1535 nr += nr_siblings;
c320c7b7
ACM
1536 size += sizeof(u64);
1537 }
1538
1539 size += entry * nr;
1540 event->read_size = size;
1541}
1542
a723968c 1543static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1544{
1545 struct perf_sample_data *data;
c320c7b7
ACM
1546 u16 size = 0;
1547
c320c7b7
ACM
1548 if (sample_type & PERF_SAMPLE_IP)
1549 size += sizeof(data->ip);
1550
6844c09d
ACM
1551 if (sample_type & PERF_SAMPLE_ADDR)
1552 size += sizeof(data->addr);
1553
1554 if (sample_type & PERF_SAMPLE_PERIOD)
1555 size += sizeof(data->period);
1556
c3feedf2
AK
1557 if (sample_type & PERF_SAMPLE_WEIGHT)
1558 size += sizeof(data->weight);
1559
6844c09d
ACM
1560 if (sample_type & PERF_SAMPLE_READ)
1561 size += event->read_size;
1562
d6be9ad6
SE
1563 if (sample_type & PERF_SAMPLE_DATA_SRC)
1564 size += sizeof(data->data_src.val);
1565
fdfbbd07
AK
1566 if (sample_type & PERF_SAMPLE_TRANSACTION)
1567 size += sizeof(data->txn);
1568
fc7ce9c7
KL
1569 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1570 size += sizeof(data->phys_addr);
1571
6844c09d
ACM
1572 event->header_size = size;
1573}
1574
a723968c
PZ
1575/*
1576 * Called at perf_event creation and when events are attached/detached from a
1577 * group.
1578 */
1579static void perf_event__header_size(struct perf_event *event)
1580{
1581 __perf_event_read_size(event,
1582 event->group_leader->nr_siblings);
1583 __perf_event_header_size(event, event->attr.sample_type);
1584}
1585
6844c09d
ACM
1586static void perf_event__id_header_size(struct perf_event *event)
1587{
1588 struct perf_sample_data *data;
1589 u64 sample_type = event->attr.sample_type;
1590 u16 size = 0;
1591
c320c7b7
ACM
1592 if (sample_type & PERF_SAMPLE_TID)
1593 size += sizeof(data->tid_entry);
1594
1595 if (sample_type & PERF_SAMPLE_TIME)
1596 size += sizeof(data->time);
1597
ff3d527c
AH
1598 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1599 size += sizeof(data->id);
1600
c320c7b7
ACM
1601 if (sample_type & PERF_SAMPLE_ID)
1602 size += sizeof(data->id);
1603
1604 if (sample_type & PERF_SAMPLE_STREAM_ID)
1605 size += sizeof(data->stream_id);
1606
1607 if (sample_type & PERF_SAMPLE_CPU)
1608 size += sizeof(data->cpu_entry);
1609
6844c09d 1610 event->id_header_size = size;
c320c7b7
ACM
1611}
1612
a723968c
PZ
1613static bool perf_event_validate_size(struct perf_event *event)
1614{
1615 /*
1616 * The values computed here will be over-written when we actually
1617 * attach the event.
1618 */
1619 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1620 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1621 perf_event__id_header_size(event);
1622
1623 /*
1624 * Sum the lot; should not exceed the 64k limit we have on records.
1625 * Conservative limit to allow for callchains and other variable fields.
1626 */
1627 if (event->read_size + event->header_size +
1628 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1629 return false;
1630
1631 return true;
1632}
1633
8a49542c
PZ
1634static void perf_group_attach(struct perf_event *event)
1635{
c320c7b7 1636 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1637
a76a82a3
PZ
1638 lockdep_assert_held(&event->ctx->lock);
1639
74c3337c
PZ
1640 /*
1641 * We can have double attach due to group movement in perf_event_open.
1642 */
1643 if (event->attach_state & PERF_ATTACH_GROUP)
1644 return;
1645
8a49542c
PZ
1646 event->attach_state |= PERF_ATTACH_GROUP;
1647
1648 if (group_leader == event)
1649 return;
1650
652884fe
PZ
1651 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1652
4ff6a8de 1653 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1654
1655 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1656 group_leader->nr_siblings++;
c320c7b7
ACM
1657
1658 perf_event__header_size(group_leader);
1659
1660 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1661 perf_event__header_size(pos);
8a49542c
PZ
1662}
1663
a63eaf34 1664/*
cdd6c482 1665 * Remove a event from the lists for its context.
fccc714b 1666 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1667 */
04289bb9 1668static void
cdd6c482 1669list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1670{
652884fe
PZ
1671 WARN_ON_ONCE(event->ctx != ctx);
1672 lockdep_assert_held(&ctx->lock);
1673
8a49542c
PZ
1674 /*
1675 * We can have double detach due to exit/hot-unplug + close.
1676 */
1677 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1678 return;
8a49542c
PZ
1679
1680 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1681
db4a8356 1682 list_update_cgroup_event(event, ctx, false);
e5d1367f 1683
cdd6c482
IM
1684 ctx->nr_events--;
1685 if (event->attr.inherit_stat)
bfbd3381 1686 ctx->nr_stat--;
8bc20959 1687
cdd6c482 1688 list_del_rcu(&event->event_entry);
04289bb9 1689
8a49542c
PZ
1690 if (event->group_leader == event)
1691 list_del_init(&event->group_entry);
5c148194 1692
b2e74a26
SE
1693 /*
1694 * If event was in error state, then keep it
1695 * that way, otherwise bogus counts will be
1696 * returned on read(). The only way to get out
1697 * of error state is by explicit re-enabling
1698 * of the event
1699 */
1700 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1701 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1702
1703 ctx->generation++;
050735b0
PZ
1704}
1705
8a49542c 1706static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1707{
1708 struct perf_event *sibling, *tmp;
8a49542c
PZ
1709 struct list_head *list = NULL;
1710
a76a82a3
PZ
1711 lockdep_assert_held(&event->ctx->lock);
1712
8a49542c
PZ
1713 /*
1714 * We can have double detach due to exit/hot-unplug + close.
1715 */
1716 if (!(event->attach_state & PERF_ATTACH_GROUP))
1717 return;
1718
1719 event->attach_state &= ~PERF_ATTACH_GROUP;
1720
1721 /*
1722 * If this is a sibling, remove it from its group.
1723 */
1724 if (event->group_leader != event) {
1725 list_del_init(&event->group_entry);
1726 event->group_leader->nr_siblings--;
c320c7b7 1727 goto out;
8a49542c
PZ
1728 }
1729
1730 if (!list_empty(&event->group_entry))
1731 list = &event->group_entry;
2e2af50b 1732
04289bb9 1733 /*
cdd6c482
IM
1734 * If this was a group event with sibling events then
1735 * upgrade the siblings to singleton events by adding them
8a49542c 1736 * to whatever list we are on.
04289bb9 1737 */
cdd6c482 1738 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1739 if (list)
1740 list_move_tail(&sibling->group_entry, list);
04289bb9 1741 sibling->group_leader = sibling;
d6f962b5
FW
1742
1743 /* Inherit group flags from the previous leader */
4ff6a8de 1744 sibling->group_caps = event->group_caps;
652884fe
PZ
1745
1746 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1747 }
c320c7b7
ACM
1748
1749out:
1750 perf_event__header_size(event->group_leader);
1751
1752 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1753 perf_event__header_size(tmp);
04289bb9
IM
1754}
1755
fadfe7be
JO
1756static bool is_orphaned_event(struct perf_event *event)
1757{
a69b0ca4 1758 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1759}
1760
2c81a647 1761static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1762{
1763 struct pmu *pmu = event->pmu;
1764 return pmu->filter_match ? pmu->filter_match(event) : 1;
1765}
1766
2c81a647
MR
1767/*
1768 * Check whether we should attempt to schedule an event group based on
1769 * PMU-specific filtering. An event group can consist of HW and SW events,
1770 * potentially with a SW leader, so we must check all the filters, to
1771 * determine whether a group is schedulable:
1772 */
1773static inline int pmu_filter_match(struct perf_event *event)
1774{
1775 struct perf_event *child;
1776
1777 if (!__pmu_filter_match(event))
1778 return 0;
1779
1780 list_for_each_entry(child, &event->sibling_list, group_entry) {
1781 if (!__pmu_filter_match(child))
1782 return 0;
1783 }
1784
1785 return 1;
1786}
1787
fa66f07a
SE
1788static inline int
1789event_filter_match(struct perf_event *event)
1790{
0b8f1e2e
PZ
1791 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1792 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1793}
1794
9ffcfa6f
SE
1795static void
1796event_sched_out(struct perf_event *event,
3b6f9e5c 1797 struct perf_cpu_context *cpuctx,
cdd6c482 1798 struct perf_event_context *ctx)
3b6f9e5c 1799{
0d3d73aa 1800 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
1801
1802 WARN_ON_ONCE(event->ctx != ctx);
1803 lockdep_assert_held(&ctx->lock);
1804
cdd6c482 1805 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1806 return;
3b6f9e5c 1807
44377277
AS
1808 perf_pmu_disable(event->pmu);
1809
28a967c3
PZ
1810 event->pmu->del(event, 0);
1811 event->oncpu = -1;
0d3d73aa 1812
cdd6c482
IM
1813 if (event->pending_disable) {
1814 event->pending_disable = 0;
0d3d73aa 1815 state = PERF_EVENT_STATE_OFF;
970892a9 1816 }
0d3d73aa 1817 perf_event_set_state(event, state);
3b6f9e5c 1818
cdd6c482 1819 if (!is_software_event(event))
3b6f9e5c 1820 cpuctx->active_oncpu--;
2fde4f94
MR
1821 if (!--ctx->nr_active)
1822 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1823 if (event->attr.freq && event->attr.sample_freq)
1824 ctx->nr_freq--;
cdd6c482 1825 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1826 cpuctx->exclusive = 0;
44377277
AS
1827
1828 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1829}
1830
d859e29f 1831static void
cdd6c482 1832group_sched_out(struct perf_event *group_event,
d859e29f 1833 struct perf_cpu_context *cpuctx,
cdd6c482 1834 struct perf_event_context *ctx)
d859e29f 1835{
cdd6c482 1836 struct perf_event *event;
0d3d73aa
PZ
1837
1838 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1839 return;
d859e29f 1840
3f005e7d
MR
1841 perf_pmu_disable(ctx->pmu);
1842
cdd6c482 1843 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1844
1845 /*
1846 * Schedule out siblings (if any):
1847 */
cdd6c482
IM
1848 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1849 event_sched_out(event, cpuctx, ctx);
d859e29f 1850
3f005e7d
MR
1851 perf_pmu_enable(ctx->pmu);
1852
0d3d73aa 1853 if (group_event->attr.exclusive)
d859e29f
PM
1854 cpuctx->exclusive = 0;
1855}
1856
45a0e07a 1857#define DETACH_GROUP 0x01UL
0017960f 1858
0793a61d 1859/*
cdd6c482 1860 * Cross CPU call to remove a performance event
0793a61d 1861 *
cdd6c482 1862 * We disable the event on the hardware level first. After that we
0793a61d
TG
1863 * remove it from the context list.
1864 */
fae3fde6
PZ
1865static void
1866__perf_remove_from_context(struct perf_event *event,
1867 struct perf_cpu_context *cpuctx,
1868 struct perf_event_context *ctx,
1869 void *info)
0793a61d 1870{
45a0e07a 1871 unsigned long flags = (unsigned long)info;
0793a61d 1872
3c5c8711
PZ
1873 if (ctx->is_active & EVENT_TIME) {
1874 update_context_time(ctx);
1875 update_cgrp_time_from_cpuctx(cpuctx);
1876 }
1877
cdd6c482 1878 event_sched_out(event, cpuctx, ctx);
45a0e07a 1879 if (flags & DETACH_GROUP)
46ce0fe9 1880 perf_group_detach(event);
cdd6c482 1881 list_del_event(event, ctx);
39a43640
PZ
1882
1883 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1884 ctx->is_active = 0;
39a43640
PZ
1885 if (ctx->task) {
1886 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1887 cpuctx->task_ctx = NULL;
1888 }
64ce3126 1889 }
0793a61d
TG
1890}
1891
0793a61d 1892/*
cdd6c482 1893 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1894 *
cdd6c482
IM
1895 * If event->ctx is a cloned context, callers must make sure that
1896 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1897 * remains valid. This is OK when called from perf_release since
1898 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1899 * When called from perf_event_exit_task, it's OK because the
c93f7669 1900 * context has been detached from its task.
0793a61d 1901 */
45a0e07a 1902static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1903{
a76a82a3
PZ
1904 struct perf_event_context *ctx = event->ctx;
1905
1906 lockdep_assert_held(&ctx->mutex);
0793a61d 1907
45a0e07a 1908 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1909
1910 /*
1911 * The above event_function_call() can NO-OP when it hits
1912 * TASK_TOMBSTONE. In that case we must already have been detached
1913 * from the context (by perf_event_exit_event()) but the grouping
1914 * might still be in-tact.
1915 */
1916 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1917 if ((flags & DETACH_GROUP) &&
1918 (event->attach_state & PERF_ATTACH_GROUP)) {
1919 /*
1920 * Since in that case we cannot possibly be scheduled, simply
1921 * detach now.
1922 */
1923 raw_spin_lock_irq(&ctx->lock);
1924 perf_group_detach(event);
1925 raw_spin_unlock_irq(&ctx->lock);
1926 }
0793a61d
TG
1927}
1928
d859e29f 1929/*
cdd6c482 1930 * Cross CPU call to disable a performance event
d859e29f 1931 */
fae3fde6
PZ
1932static void __perf_event_disable(struct perf_event *event,
1933 struct perf_cpu_context *cpuctx,
1934 struct perf_event_context *ctx,
1935 void *info)
7b648018 1936{
fae3fde6
PZ
1937 if (event->state < PERF_EVENT_STATE_INACTIVE)
1938 return;
7b648018 1939
3c5c8711
PZ
1940 if (ctx->is_active & EVENT_TIME) {
1941 update_context_time(ctx);
1942 update_cgrp_time_from_event(event);
1943 }
1944
fae3fde6
PZ
1945 if (event == event->group_leader)
1946 group_sched_out(event, cpuctx, ctx);
1947 else
1948 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
1949
1950 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
1951}
1952
d859e29f 1953/*
cdd6c482 1954 * Disable a event.
c93f7669 1955 *
cdd6c482
IM
1956 * If event->ctx is a cloned context, callers must make sure that
1957 * every task struct that event->ctx->task could possibly point to
c93f7669 1958 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1959 * perf_event_for_each_child or perf_event_for_each because they
1960 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1961 * goes to exit will block in perf_event_exit_event().
1962 *
cdd6c482 1963 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1964 * is the current context on this CPU and preemption is disabled,
cdd6c482 1965 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1966 */
f63a8daa 1967static void _perf_event_disable(struct perf_event *event)
d859e29f 1968{
cdd6c482 1969 struct perf_event_context *ctx = event->ctx;
d859e29f 1970
e625cce1 1971 raw_spin_lock_irq(&ctx->lock);
7b648018 1972 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1973 raw_spin_unlock_irq(&ctx->lock);
7b648018 1974 return;
53cfbf59 1975 }
e625cce1 1976 raw_spin_unlock_irq(&ctx->lock);
7b648018 1977
fae3fde6
PZ
1978 event_function_call(event, __perf_event_disable, NULL);
1979}
1980
1981void perf_event_disable_local(struct perf_event *event)
1982{
1983 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1984}
f63a8daa
PZ
1985
1986/*
1987 * Strictly speaking kernel users cannot create groups and therefore this
1988 * interface does not need the perf_event_ctx_lock() magic.
1989 */
1990void perf_event_disable(struct perf_event *event)
1991{
1992 struct perf_event_context *ctx;
1993
1994 ctx = perf_event_ctx_lock(event);
1995 _perf_event_disable(event);
1996 perf_event_ctx_unlock(event, ctx);
1997}
dcfce4a0 1998EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1999
5aab90ce
JO
2000void perf_event_disable_inatomic(struct perf_event *event)
2001{
2002 event->pending_disable = 1;
2003 irq_work_queue(&event->pending);
2004}
2005
e5d1367f 2006static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2007 struct perf_event_context *ctx)
e5d1367f
SE
2008{
2009 /*
2010 * use the correct time source for the time snapshot
2011 *
2012 * We could get by without this by leveraging the
2013 * fact that to get to this function, the caller
2014 * has most likely already called update_context_time()
2015 * and update_cgrp_time_xx() and thus both timestamp
2016 * are identical (or very close). Given that tstamp is,
2017 * already adjusted for cgroup, we could say that:
2018 * tstamp - ctx->timestamp
2019 * is equivalent to
2020 * tstamp - cgrp->timestamp.
2021 *
2022 * Then, in perf_output_read(), the calculation would
2023 * work with no changes because:
2024 * - event is guaranteed scheduled in
2025 * - no scheduled out in between
2026 * - thus the timestamp would be the same
2027 *
2028 * But this is a bit hairy.
2029 *
2030 * So instead, we have an explicit cgroup call to remain
2031 * within the time time source all along. We believe it
2032 * is cleaner and simpler to understand.
2033 */
2034 if (is_cgroup_event(event))
0d3d73aa 2035 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2036 else
0d3d73aa 2037 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2038}
2039
4fe757dd
PZ
2040#define MAX_INTERRUPTS (~0ULL)
2041
2042static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2043static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2044
235c7fc7 2045static int
9ffcfa6f 2046event_sched_in(struct perf_event *event,
235c7fc7 2047 struct perf_cpu_context *cpuctx,
6e37738a 2048 struct perf_event_context *ctx)
235c7fc7 2049{
44377277 2050 int ret = 0;
4158755d 2051
63342411
PZ
2052 lockdep_assert_held(&ctx->lock);
2053
cdd6c482 2054 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2055 return 0;
2056
95ff4ca2
AS
2057 WRITE_ONCE(event->oncpu, smp_processor_id());
2058 /*
0c1cbc18
PZ
2059 * Order event::oncpu write to happen before the ACTIVE state is
2060 * visible. This allows perf_event_{stop,read}() to observe the correct
2061 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2062 */
2063 smp_wmb();
0d3d73aa 2064 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2065
2066 /*
2067 * Unthrottle events, since we scheduled we might have missed several
2068 * ticks already, also for a heavily scheduling task there is little
2069 * guarantee it'll get a tick in a timely manner.
2070 */
2071 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072 perf_log_throttle(event, 1);
2073 event->hw.interrupts = 0;
2074 }
2075
44377277
AS
2076 perf_pmu_disable(event->pmu);
2077
0d3d73aa 2078 perf_set_shadow_time(event, ctx);
72f669c0 2079
ec0d7729
AS
2080 perf_log_itrace_start(event);
2081
a4eaf7f1 2082 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2083 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2084 event->oncpu = -1;
44377277
AS
2085 ret = -EAGAIN;
2086 goto out;
235c7fc7
IM
2087 }
2088
cdd6c482 2089 if (!is_software_event(event))
3b6f9e5c 2090 cpuctx->active_oncpu++;
2fde4f94
MR
2091 if (!ctx->nr_active++)
2092 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2093 if (event->attr.freq && event->attr.sample_freq)
2094 ctx->nr_freq++;
235c7fc7 2095
cdd6c482 2096 if (event->attr.exclusive)
3b6f9e5c
PM
2097 cpuctx->exclusive = 1;
2098
44377277
AS
2099out:
2100 perf_pmu_enable(event->pmu);
2101
2102 return ret;
235c7fc7
IM
2103}
2104
6751b71e 2105static int
cdd6c482 2106group_sched_in(struct perf_event *group_event,
6751b71e 2107 struct perf_cpu_context *cpuctx,
6e37738a 2108 struct perf_event_context *ctx)
6751b71e 2109{
6bde9b6c 2110 struct perf_event *event, *partial_group = NULL;
4a234593 2111 struct pmu *pmu = ctx->pmu;
6751b71e 2112
cdd6c482 2113 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2114 return 0;
2115
fbbe0701 2116 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2117
9ffcfa6f 2118 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2119 pmu->cancel_txn(pmu);
272325c4 2120 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2121 return -EAGAIN;
90151c35 2122 }
6751b71e
PM
2123
2124 /*
2125 * Schedule in siblings as one group (if any):
2126 */
cdd6c482 2127 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2128 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2129 partial_group = event;
6751b71e
PM
2130 goto group_error;
2131 }
2132 }
2133
9ffcfa6f 2134 if (!pmu->commit_txn(pmu))
6e85158c 2135 return 0;
9ffcfa6f 2136
6751b71e
PM
2137group_error:
2138 /*
2139 * Groups can be scheduled in as one unit only, so undo any
2140 * partial group before returning:
0d3d73aa 2141 * The events up to the failed event are scheduled out normally.
6751b71e 2142 */
cdd6c482
IM
2143 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2144 if (event == partial_group)
0d3d73aa 2145 break;
d7842da4 2146
0d3d73aa 2147 event_sched_out(event, cpuctx, ctx);
6751b71e 2148 }
9ffcfa6f 2149 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2150
ad5133b7 2151 pmu->cancel_txn(pmu);
90151c35 2152
272325c4 2153 perf_mux_hrtimer_restart(cpuctx);
9e630205 2154
6751b71e
PM
2155 return -EAGAIN;
2156}
2157
3b6f9e5c 2158/*
cdd6c482 2159 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2160 */
cdd6c482 2161static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2162 struct perf_cpu_context *cpuctx,
2163 int can_add_hw)
2164{
2165 /*
cdd6c482 2166 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2167 */
4ff6a8de 2168 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2169 return 1;
2170 /*
2171 * If an exclusive group is already on, no other hardware
cdd6c482 2172 * events can go on.
3b6f9e5c
PM
2173 */
2174 if (cpuctx->exclusive)
2175 return 0;
2176 /*
2177 * If this group is exclusive and there are already
cdd6c482 2178 * events on the CPU, it can't go on.
3b6f9e5c 2179 */
cdd6c482 2180 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2181 return 0;
2182 /*
2183 * Otherwise, try to add it if all previous groups were able
2184 * to go on.
2185 */
2186 return can_add_hw;
2187}
2188
cdd6c482
IM
2189static void add_event_to_ctx(struct perf_event *event,
2190 struct perf_event_context *ctx)
53cfbf59 2191{
cdd6c482 2192 list_add_event(event, ctx);
8a49542c 2193 perf_group_attach(event);
53cfbf59
PM
2194}
2195
bd2afa49
PZ
2196static void ctx_sched_out(struct perf_event_context *ctx,
2197 struct perf_cpu_context *cpuctx,
2198 enum event_type_t event_type);
2c29ef0f
PZ
2199static void
2200ctx_sched_in(struct perf_event_context *ctx,
2201 struct perf_cpu_context *cpuctx,
2202 enum event_type_t event_type,
2203 struct task_struct *task);
fe4b04fa 2204
bd2afa49 2205static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2206 struct perf_event_context *ctx,
2207 enum event_type_t event_type)
bd2afa49
PZ
2208{
2209 if (!cpuctx->task_ctx)
2210 return;
2211
2212 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2213 return;
2214
487f05e1 2215 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2216}
2217
dce5855b
PZ
2218static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2219 struct perf_event_context *ctx,
2220 struct task_struct *task)
2221{
2222 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2223 if (ctx)
2224 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2225 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2226 if (ctx)
2227 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2228}
2229
487f05e1
AS
2230/*
2231 * We want to maintain the following priority of scheduling:
2232 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2233 * - task pinned (EVENT_PINNED)
2234 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2235 * - task flexible (EVENT_FLEXIBLE).
2236 *
2237 * In order to avoid unscheduling and scheduling back in everything every
2238 * time an event is added, only do it for the groups of equal priority and
2239 * below.
2240 *
2241 * This can be called after a batch operation on task events, in which case
2242 * event_type is a bit mask of the types of events involved. For CPU events,
2243 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2244 */
3e349507 2245static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2246 struct perf_event_context *task_ctx,
2247 enum event_type_t event_type)
0017960f 2248{
bd903afe 2249 enum event_type_t ctx_event_type;
487f05e1
AS
2250 bool cpu_event = !!(event_type & EVENT_CPU);
2251
2252 /*
2253 * If pinned groups are involved, flexible groups also need to be
2254 * scheduled out.
2255 */
2256 if (event_type & EVENT_PINNED)
2257 event_type |= EVENT_FLEXIBLE;
2258
bd903afe
SL
2259 ctx_event_type = event_type & EVENT_ALL;
2260
3e349507
PZ
2261 perf_pmu_disable(cpuctx->ctx.pmu);
2262 if (task_ctx)
487f05e1
AS
2263 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2264
2265 /*
2266 * Decide which cpu ctx groups to schedule out based on the types
2267 * of events that caused rescheduling:
2268 * - EVENT_CPU: schedule out corresponding groups;
2269 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2270 * - otherwise, do nothing more.
2271 */
2272 if (cpu_event)
2273 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2274 else if (ctx_event_type & EVENT_PINNED)
2275 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2276
3e349507
PZ
2277 perf_event_sched_in(cpuctx, task_ctx, current);
2278 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2279}
2280
0793a61d 2281/*
cdd6c482 2282 * Cross CPU call to install and enable a performance event
682076ae 2283 *
a096309b
PZ
2284 * Very similar to remote_function() + event_function() but cannot assume that
2285 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2286 */
fe4b04fa 2287static int __perf_install_in_context(void *info)
0793a61d 2288{
a096309b
PZ
2289 struct perf_event *event = info;
2290 struct perf_event_context *ctx = event->ctx;
108b02cf 2291 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2292 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2293 bool reprogram = true;
a096309b 2294 int ret = 0;
0793a61d 2295
63b6da39 2296 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2297 if (ctx->task) {
b58f6b0d
PZ
2298 raw_spin_lock(&ctx->lock);
2299 task_ctx = ctx;
a096309b 2300
63cae12b 2301 reprogram = (ctx->task == current);
b58f6b0d 2302
39a43640 2303 /*
63cae12b
PZ
2304 * If the task is running, it must be running on this CPU,
2305 * otherwise we cannot reprogram things.
2306 *
2307 * If its not running, we don't care, ctx->lock will
2308 * serialize against it becoming runnable.
39a43640 2309 */
63cae12b
PZ
2310 if (task_curr(ctx->task) && !reprogram) {
2311 ret = -ESRCH;
2312 goto unlock;
2313 }
a096309b 2314
63cae12b 2315 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2316 } else if (task_ctx) {
2317 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2318 }
b58f6b0d 2319
63cae12b 2320 if (reprogram) {
a096309b
PZ
2321 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2322 add_event_to_ctx(event, ctx);
487f05e1 2323 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2324 } else {
2325 add_event_to_ctx(event, ctx);
2326 }
2327
63b6da39 2328unlock:
2c29ef0f 2329 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2330
a096309b 2331 return ret;
0793a61d
TG
2332}
2333
2334/*
a096309b
PZ
2335 * Attach a performance event to a context.
2336 *
2337 * Very similar to event_function_call, see comment there.
0793a61d
TG
2338 */
2339static void
cdd6c482
IM
2340perf_install_in_context(struct perf_event_context *ctx,
2341 struct perf_event *event,
0793a61d
TG
2342 int cpu)
2343{
a096309b 2344 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2345
fe4b04fa
PZ
2346 lockdep_assert_held(&ctx->mutex);
2347
0cda4c02
YZ
2348 if (event->cpu != -1)
2349 event->cpu = cpu;
c3f00c70 2350
0b8f1e2e
PZ
2351 /*
2352 * Ensures that if we can observe event->ctx, both the event and ctx
2353 * will be 'complete'. See perf_iterate_sb_cpu().
2354 */
2355 smp_store_release(&event->ctx, ctx);
2356
a096309b
PZ
2357 if (!task) {
2358 cpu_function_call(cpu, __perf_install_in_context, event);
2359 return;
2360 }
2361
2362 /*
2363 * Should not happen, we validate the ctx is still alive before calling.
2364 */
2365 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2366 return;
2367
39a43640
PZ
2368 /*
2369 * Installing events is tricky because we cannot rely on ctx->is_active
2370 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2371 *
2372 * Instead we use task_curr(), which tells us if the task is running.
2373 * However, since we use task_curr() outside of rq::lock, we can race
2374 * against the actual state. This means the result can be wrong.
2375 *
2376 * If we get a false positive, we retry, this is harmless.
2377 *
2378 * If we get a false negative, things are complicated. If we are after
2379 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2380 * value must be correct. If we're before, it doesn't matter since
2381 * perf_event_context_sched_in() will program the counter.
2382 *
2383 * However, this hinges on the remote context switch having observed
2384 * our task->perf_event_ctxp[] store, such that it will in fact take
2385 * ctx::lock in perf_event_context_sched_in().
2386 *
2387 * We do this by task_function_call(), if the IPI fails to hit the task
2388 * we know any future context switch of task must see the
2389 * perf_event_ctpx[] store.
39a43640 2390 */
63cae12b 2391
63b6da39 2392 /*
63cae12b
PZ
2393 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2394 * task_cpu() load, such that if the IPI then does not find the task
2395 * running, a future context switch of that task must observe the
2396 * store.
63b6da39 2397 */
63cae12b
PZ
2398 smp_mb();
2399again:
2400 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2401 return;
2402
2403 raw_spin_lock_irq(&ctx->lock);
2404 task = ctx->task;
84c4e620 2405 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2406 /*
2407 * Cannot happen because we already checked above (which also
2408 * cannot happen), and we hold ctx->mutex, which serializes us
2409 * against perf_event_exit_task_context().
2410 */
63b6da39
PZ
2411 raw_spin_unlock_irq(&ctx->lock);
2412 return;
2413 }
39a43640 2414 /*
63cae12b
PZ
2415 * If the task is not running, ctx->lock will avoid it becoming so,
2416 * thus we can safely install the event.
39a43640 2417 */
63cae12b
PZ
2418 if (task_curr(task)) {
2419 raw_spin_unlock_irq(&ctx->lock);
2420 goto again;
2421 }
2422 add_event_to_ctx(event, ctx);
2423 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2424}
2425
d859e29f 2426/*
cdd6c482 2427 * Cross CPU call to enable a performance event
d859e29f 2428 */
fae3fde6
PZ
2429static void __perf_event_enable(struct perf_event *event,
2430 struct perf_cpu_context *cpuctx,
2431 struct perf_event_context *ctx,
2432 void *info)
04289bb9 2433{
cdd6c482 2434 struct perf_event *leader = event->group_leader;
fae3fde6 2435 struct perf_event_context *task_ctx;
04289bb9 2436
6e801e01
PZ
2437 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2438 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2439 return;
3cbed429 2440
bd2afa49
PZ
2441 if (ctx->is_active)
2442 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2443
0d3d73aa 2444 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2445
fae3fde6
PZ
2446 if (!ctx->is_active)
2447 return;
2448
e5d1367f 2449 if (!event_filter_match(event)) {
bd2afa49 2450 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2451 return;
e5d1367f 2452 }
f4c4176f 2453
04289bb9 2454 /*
cdd6c482 2455 * If the event is in a group and isn't the group leader,
d859e29f 2456 * then don't put it on unless the group is on.
04289bb9 2457 */
bd2afa49
PZ
2458 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2459 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2460 return;
bd2afa49 2461 }
fe4b04fa 2462
fae3fde6
PZ
2463 task_ctx = cpuctx->task_ctx;
2464 if (ctx->task)
2465 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2466
487f05e1 2467 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2468}
2469
d859e29f 2470/*
cdd6c482 2471 * Enable a event.
c93f7669 2472 *
cdd6c482
IM
2473 * If event->ctx is a cloned context, callers must make sure that
2474 * every task struct that event->ctx->task could possibly point to
c93f7669 2475 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2476 * perf_event_for_each_child or perf_event_for_each as described
2477 * for perf_event_disable.
d859e29f 2478 */
f63a8daa 2479static void _perf_event_enable(struct perf_event *event)
d859e29f 2480{
cdd6c482 2481 struct perf_event_context *ctx = event->ctx;
d859e29f 2482
7b648018 2483 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2484 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2485 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2486 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2487 return;
2488 }
2489
d859e29f 2490 /*
cdd6c482 2491 * If the event is in error state, clear that first.
7b648018
PZ
2492 *
2493 * That way, if we see the event in error state below, we know that it
2494 * has gone back into error state, as distinct from the task having
2495 * been scheduled away before the cross-call arrived.
d859e29f 2496 */
cdd6c482
IM
2497 if (event->state == PERF_EVENT_STATE_ERROR)
2498 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2499 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2500
fae3fde6 2501 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2502}
f63a8daa
PZ
2503
2504/*
2505 * See perf_event_disable();
2506 */
2507void perf_event_enable(struct perf_event *event)
2508{
2509 struct perf_event_context *ctx;
2510
2511 ctx = perf_event_ctx_lock(event);
2512 _perf_event_enable(event);
2513 perf_event_ctx_unlock(event, ctx);
2514}
dcfce4a0 2515EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2516
375637bc
AS
2517struct stop_event_data {
2518 struct perf_event *event;
2519 unsigned int restart;
2520};
2521
95ff4ca2
AS
2522static int __perf_event_stop(void *info)
2523{
375637bc
AS
2524 struct stop_event_data *sd = info;
2525 struct perf_event *event = sd->event;
95ff4ca2 2526
375637bc 2527 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2528 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2529 return 0;
2530
2531 /* matches smp_wmb() in event_sched_in() */
2532 smp_rmb();
2533
2534 /*
2535 * There is a window with interrupts enabled before we get here,
2536 * so we need to check again lest we try to stop another CPU's event.
2537 */
2538 if (READ_ONCE(event->oncpu) != smp_processor_id())
2539 return -EAGAIN;
2540
2541 event->pmu->stop(event, PERF_EF_UPDATE);
2542
375637bc
AS
2543 /*
2544 * May race with the actual stop (through perf_pmu_output_stop()),
2545 * but it is only used for events with AUX ring buffer, and such
2546 * events will refuse to restart because of rb::aux_mmap_count==0,
2547 * see comments in perf_aux_output_begin().
2548 *
2549 * Since this is happening on a event-local CPU, no trace is lost
2550 * while restarting.
2551 */
2552 if (sd->restart)
c9bbdd48 2553 event->pmu->start(event, 0);
375637bc 2554
95ff4ca2
AS
2555 return 0;
2556}
2557
767ae086 2558static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2559{
2560 struct stop_event_data sd = {
2561 .event = event,
767ae086 2562 .restart = restart,
375637bc
AS
2563 };
2564 int ret = 0;
2565
2566 do {
2567 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2568 return 0;
2569
2570 /* matches smp_wmb() in event_sched_in() */
2571 smp_rmb();
2572
2573 /*
2574 * We only want to restart ACTIVE events, so if the event goes
2575 * inactive here (event->oncpu==-1), there's nothing more to do;
2576 * fall through with ret==-ENXIO.
2577 */
2578 ret = cpu_function_call(READ_ONCE(event->oncpu),
2579 __perf_event_stop, &sd);
2580 } while (ret == -EAGAIN);
2581
2582 return ret;
2583}
2584
2585/*
2586 * In order to contain the amount of racy and tricky in the address filter
2587 * configuration management, it is a two part process:
2588 *
2589 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2590 * we update the addresses of corresponding vmas in
2591 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2592 * (p2) when an event is scheduled in (pmu::add), it calls
2593 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2594 * if the generation has changed since the previous call.
2595 *
2596 * If (p1) happens while the event is active, we restart it to force (p2).
2597 *
2598 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2599 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2600 * ioctl;
2601 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2602 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2603 * for reading;
2604 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2605 * of exec.
2606 */
2607void perf_event_addr_filters_sync(struct perf_event *event)
2608{
2609 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2610
2611 if (!has_addr_filter(event))
2612 return;
2613
2614 raw_spin_lock(&ifh->lock);
2615 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2616 event->pmu->addr_filters_sync(event);
2617 event->hw.addr_filters_gen = event->addr_filters_gen;
2618 }
2619 raw_spin_unlock(&ifh->lock);
2620}
2621EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2622
f63a8daa 2623static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2624{
2023b359 2625 /*
cdd6c482 2626 * not supported on inherited events
2023b359 2627 */
2e939d1d 2628 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2629 return -EINVAL;
2630
cdd6c482 2631 atomic_add(refresh, &event->event_limit);
f63a8daa 2632 _perf_event_enable(event);
2023b359
PZ
2633
2634 return 0;
79f14641 2635}
f63a8daa
PZ
2636
2637/*
2638 * See perf_event_disable()
2639 */
2640int perf_event_refresh(struct perf_event *event, int refresh)
2641{
2642 struct perf_event_context *ctx;
2643 int ret;
2644
2645 ctx = perf_event_ctx_lock(event);
2646 ret = _perf_event_refresh(event, refresh);
2647 perf_event_ctx_unlock(event, ctx);
2648
2649 return ret;
2650}
26ca5c11 2651EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2652
5b0311e1
FW
2653static void ctx_sched_out(struct perf_event_context *ctx,
2654 struct perf_cpu_context *cpuctx,
2655 enum event_type_t event_type)
235c7fc7 2656{
db24d33e 2657 int is_active = ctx->is_active;
c994d613 2658 struct perf_event *event;
235c7fc7 2659
c994d613 2660 lockdep_assert_held(&ctx->lock);
235c7fc7 2661
39a43640
PZ
2662 if (likely(!ctx->nr_events)) {
2663 /*
2664 * See __perf_remove_from_context().
2665 */
2666 WARN_ON_ONCE(ctx->is_active);
2667 if (ctx->task)
2668 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2669 return;
39a43640
PZ
2670 }
2671
db24d33e 2672 ctx->is_active &= ~event_type;
3cbaa590
PZ
2673 if (!(ctx->is_active & EVENT_ALL))
2674 ctx->is_active = 0;
2675
63e30d3e
PZ
2676 if (ctx->task) {
2677 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2678 if (!ctx->is_active)
2679 cpuctx->task_ctx = NULL;
2680 }
facc4307 2681
8fdc6539
PZ
2682 /*
2683 * Always update time if it was set; not only when it changes.
2684 * Otherwise we can 'forget' to update time for any but the last
2685 * context we sched out. For example:
2686 *
2687 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2688 * ctx_sched_out(.event_type = EVENT_PINNED)
2689 *
2690 * would only update time for the pinned events.
2691 */
3cbaa590
PZ
2692 if (is_active & EVENT_TIME) {
2693 /* update (and stop) ctx time */
2694 update_context_time(ctx);
2695 update_cgrp_time_from_cpuctx(cpuctx);
2696 }
2697
8fdc6539
PZ
2698 is_active ^= ctx->is_active; /* changed bits */
2699
3cbaa590 2700 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2701 return;
5b0311e1 2702
075e0b00 2703 perf_pmu_disable(ctx->pmu);
3cbaa590 2704 if (is_active & EVENT_PINNED) {
889ff015
FW
2705 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2706 group_sched_out(event, cpuctx, ctx);
9ed6060d 2707 }
889ff015 2708
3cbaa590 2709 if (is_active & EVENT_FLEXIBLE) {
889ff015 2710 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2711 group_sched_out(event, cpuctx, ctx);
9ed6060d 2712 }
1b9a644f 2713 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2714}
2715
564c2b21 2716/*
5a3126d4
PZ
2717 * Test whether two contexts are equivalent, i.e. whether they have both been
2718 * cloned from the same version of the same context.
2719 *
2720 * Equivalence is measured using a generation number in the context that is
2721 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2722 * and list_del_event().
564c2b21 2723 */
cdd6c482
IM
2724static int context_equiv(struct perf_event_context *ctx1,
2725 struct perf_event_context *ctx2)
564c2b21 2726{
211de6eb
PZ
2727 lockdep_assert_held(&ctx1->lock);
2728 lockdep_assert_held(&ctx2->lock);
2729
5a3126d4
PZ
2730 /* Pinning disables the swap optimization */
2731 if (ctx1->pin_count || ctx2->pin_count)
2732 return 0;
2733
2734 /* If ctx1 is the parent of ctx2 */
2735 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2736 return 1;
2737
2738 /* If ctx2 is the parent of ctx1 */
2739 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2740 return 1;
2741
2742 /*
2743 * If ctx1 and ctx2 have the same parent; we flatten the parent
2744 * hierarchy, see perf_event_init_context().
2745 */
2746 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2747 ctx1->parent_gen == ctx2->parent_gen)
2748 return 1;
2749
2750 /* Unmatched */
2751 return 0;
564c2b21
PM
2752}
2753
cdd6c482
IM
2754static void __perf_event_sync_stat(struct perf_event *event,
2755 struct perf_event *next_event)
bfbd3381
PZ
2756{
2757 u64 value;
2758
cdd6c482 2759 if (!event->attr.inherit_stat)
bfbd3381
PZ
2760 return;
2761
2762 /*
cdd6c482 2763 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2764 * because we're in the middle of a context switch and have IRQs
2765 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2766 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2767 * don't need to use it.
2768 */
0d3d73aa 2769 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 2770 event->pmu->read(event);
bfbd3381 2771
0d3d73aa 2772 perf_event_update_time(event);
bfbd3381
PZ
2773
2774 /*
cdd6c482 2775 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2776 * values when we flip the contexts.
2777 */
e7850595
PZ
2778 value = local64_read(&next_event->count);
2779 value = local64_xchg(&event->count, value);
2780 local64_set(&next_event->count, value);
bfbd3381 2781
cdd6c482
IM
2782 swap(event->total_time_enabled, next_event->total_time_enabled);
2783 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2784
bfbd3381 2785 /*
19d2e755 2786 * Since we swizzled the values, update the user visible data too.
bfbd3381 2787 */
cdd6c482
IM
2788 perf_event_update_userpage(event);
2789 perf_event_update_userpage(next_event);
bfbd3381
PZ
2790}
2791
cdd6c482
IM
2792static void perf_event_sync_stat(struct perf_event_context *ctx,
2793 struct perf_event_context *next_ctx)
bfbd3381 2794{
cdd6c482 2795 struct perf_event *event, *next_event;
bfbd3381
PZ
2796
2797 if (!ctx->nr_stat)
2798 return;
2799
02ffdbc8
PZ
2800 update_context_time(ctx);
2801
cdd6c482
IM
2802 event = list_first_entry(&ctx->event_list,
2803 struct perf_event, event_entry);
bfbd3381 2804
cdd6c482
IM
2805 next_event = list_first_entry(&next_ctx->event_list,
2806 struct perf_event, event_entry);
bfbd3381 2807
cdd6c482
IM
2808 while (&event->event_entry != &ctx->event_list &&
2809 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2810
cdd6c482 2811 __perf_event_sync_stat(event, next_event);
bfbd3381 2812
cdd6c482
IM
2813 event = list_next_entry(event, event_entry);
2814 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2815 }
2816}
2817
fe4b04fa
PZ
2818static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2819 struct task_struct *next)
0793a61d 2820{
8dc85d54 2821 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2822 struct perf_event_context *next_ctx;
5a3126d4 2823 struct perf_event_context *parent, *next_parent;
108b02cf 2824 struct perf_cpu_context *cpuctx;
c93f7669 2825 int do_switch = 1;
0793a61d 2826
108b02cf
PZ
2827 if (likely(!ctx))
2828 return;
10989fb2 2829
108b02cf
PZ
2830 cpuctx = __get_cpu_context(ctx);
2831 if (!cpuctx->task_ctx)
0793a61d
TG
2832 return;
2833
c93f7669 2834 rcu_read_lock();
8dc85d54 2835 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2836 if (!next_ctx)
2837 goto unlock;
2838
2839 parent = rcu_dereference(ctx->parent_ctx);
2840 next_parent = rcu_dereference(next_ctx->parent_ctx);
2841
2842 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2843 if (!parent && !next_parent)
5a3126d4
PZ
2844 goto unlock;
2845
2846 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2847 /*
2848 * Looks like the two contexts are clones, so we might be
2849 * able to optimize the context switch. We lock both
2850 * contexts and check that they are clones under the
2851 * lock (including re-checking that neither has been
2852 * uncloned in the meantime). It doesn't matter which
2853 * order we take the locks because no other cpu could
2854 * be trying to lock both of these tasks.
2855 */
e625cce1
TG
2856 raw_spin_lock(&ctx->lock);
2857 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2858 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2859 WRITE_ONCE(ctx->task, next);
2860 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2861
2862 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2863
63b6da39
PZ
2864 /*
2865 * RCU_INIT_POINTER here is safe because we've not
2866 * modified the ctx and the above modification of
2867 * ctx->task and ctx->task_ctx_data are immaterial
2868 * since those values are always verified under
2869 * ctx->lock which we're now holding.
2870 */
2871 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2872 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2873
c93f7669 2874 do_switch = 0;
bfbd3381 2875
cdd6c482 2876 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2877 }
e625cce1
TG
2878 raw_spin_unlock(&next_ctx->lock);
2879 raw_spin_unlock(&ctx->lock);
564c2b21 2880 }
5a3126d4 2881unlock:
c93f7669 2882 rcu_read_unlock();
564c2b21 2883
c93f7669 2884 if (do_switch) {
facc4307 2885 raw_spin_lock(&ctx->lock);
487f05e1 2886 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2887 raw_spin_unlock(&ctx->lock);
c93f7669 2888 }
0793a61d
TG
2889}
2890
e48c1788
PZ
2891static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2892
ba532500
YZ
2893void perf_sched_cb_dec(struct pmu *pmu)
2894{
e48c1788
PZ
2895 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2896
ba532500 2897 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2898
2899 if (!--cpuctx->sched_cb_usage)
2900 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2901}
2902
e48c1788 2903
ba532500
YZ
2904void perf_sched_cb_inc(struct pmu *pmu)
2905{
e48c1788
PZ
2906 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2907
2908 if (!cpuctx->sched_cb_usage++)
2909 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2910
ba532500
YZ
2911 this_cpu_inc(perf_sched_cb_usages);
2912}
2913
2914/*
2915 * This function provides the context switch callback to the lower code
2916 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
2917 *
2918 * This callback is relevant even to per-cpu events; for example multi event
2919 * PEBS requires this to provide PID/TID information. This requires we flush
2920 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
2921 */
2922static void perf_pmu_sched_task(struct task_struct *prev,
2923 struct task_struct *next,
2924 bool sched_in)
2925{
2926 struct perf_cpu_context *cpuctx;
2927 struct pmu *pmu;
ba532500
YZ
2928
2929 if (prev == next)
2930 return;
2931
e48c1788 2932 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 2933 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 2934
e48c1788
PZ
2935 if (WARN_ON_ONCE(!pmu->sched_task))
2936 continue;
ba532500 2937
e48c1788
PZ
2938 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2939 perf_pmu_disable(pmu);
ba532500 2940
e48c1788 2941 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 2942
e48c1788
PZ
2943 perf_pmu_enable(pmu);
2944 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 2945 }
ba532500
YZ
2946}
2947
45ac1403
AH
2948static void perf_event_switch(struct task_struct *task,
2949 struct task_struct *next_prev, bool sched_in);
2950
8dc85d54
PZ
2951#define for_each_task_context_nr(ctxn) \
2952 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2953
2954/*
2955 * Called from scheduler to remove the events of the current task,
2956 * with interrupts disabled.
2957 *
2958 * We stop each event and update the event value in event->count.
2959 *
2960 * This does not protect us against NMI, but disable()
2961 * sets the disabled bit in the control field of event _before_
2962 * accessing the event control register. If a NMI hits, then it will
2963 * not restart the event.
2964 */
ab0cce56
JO
2965void __perf_event_task_sched_out(struct task_struct *task,
2966 struct task_struct *next)
8dc85d54
PZ
2967{
2968 int ctxn;
2969
ba532500
YZ
2970 if (__this_cpu_read(perf_sched_cb_usages))
2971 perf_pmu_sched_task(task, next, false);
2972
45ac1403
AH
2973 if (atomic_read(&nr_switch_events))
2974 perf_event_switch(task, next, false);
2975
8dc85d54
PZ
2976 for_each_task_context_nr(ctxn)
2977 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2978
2979 /*
2980 * if cgroup events exist on this CPU, then we need
2981 * to check if we have to switch out PMU state.
2982 * cgroup event are system-wide mode only
2983 */
4a32fea9 2984 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2985 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2986}
2987
5b0311e1
FW
2988/*
2989 * Called with IRQs disabled
2990 */
2991static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2992 enum event_type_t event_type)
2993{
2994 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2995}
2996
235c7fc7 2997static void
5b0311e1 2998ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2999 struct perf_cpu_context *cpuctx)
0793a61d 3000{
cdd6c482 3001 struct perf_event *event;
0793a61d 3002
889ff015
FW
3003 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3004 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3005 continue;
5632ab12 3006 if (!event_filter_match(event))
3b6f9e5c
PM
3007 continue;
3008
8c9ed8e1 3009 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3010 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3011
3012 /*
3013 * If this pinned group hasn't been scheduled,
3014 * put it in error state.
3015 */
0d3d73aa
PZ
3016 if (event->state == PERF_EVENT_STATE_INACTIVE)
3017 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3b6f9e5c 3018 }
5b0311e1
FW
3019}
3020
3021static void
3022ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3023 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3024{
3025 struct perf_event *event;
3026 int can_add_hw = 1;
3b6f9e5c 3027
889ff015
FW
3028 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3029 /* Ignore events in OFF or ERROR state */
3030 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3031 continue;
04289bb9
IM
3032 /*
3033 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3034 * of events:
04289bb9 3035 */
5632ab12 3036 if (!event_filter_match(event))
0793a61d
TG
3037 continue;
3038
9ed6060d 3039 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3040 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3041 can_add_hw = 0;
9ed6060d 3042 }
0793a61d 3043 }
5b0311e1
FW
3044}
3045
3046static void
3047ctx_sched_in(struct perf_event_context *ctx,
3048 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3049 enum event_type_t event_type,
3050 struct task_struct *task)
5b0311e1 3051{
db24d33e 3052 int is_active = ctx->is_active;
c994d613
PZ
3053 u64 now;
3054
3055 lockdep_assert_held(&ctx->lock);
e5d1367f 3056
5b0311e1 3057 if (likely(!ctx->nr_events))
facc4307 3058 return;
5b0311e1 3059
3cbaa590 3060 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3061 if (ctx->task) {
3062 if (!is_active)
3063 cpuctx->task_ctx = ctx;
3064 else
3065 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3066 }
3067
3cbaa590
PZ
3068 is_active ^= ctx->is_active; /* changed bits */
3069
3070 if (is_active & EVENT_TIME) {
3071 /* start ctx time */
3072 now = perf_clock();
3073 ctx->timestamp = now;
3074 perf_cgroup_set_timestamp(task, ctx);
3075 }
3076
5b0311e1
FW
3077 /*
3078 * First go through the list and put on any pinned groups
3079 * in order to give them the best chance of going on.
3080 */
3cbaa590 3081 if (is_active & EVENT_PINNED)
6e37738a 3082 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3083
3084 /* Then walk through the lower prio flexible groups */
3cbaa590 3085 if (is_active & EVENT_FLEXIBLE)
6e37738a 3086 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3087}
3088
329c0e01 3089static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3090 enum event_type_t event_type,
3091 struct task_struct *task)
329c0e01
FW
3092{
3093 struct perf_event_context *ctx = &cpuctx->ctx;
3094
e5d1367f 3095 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3096}
3097
e5d1367f
SE
3098static void perf_event_context_sched_in(struct perf_event_context *ctx,
3099 struct task_struct *task)
235c7fc7 3100{
108b02cf 3101 struct perf_cpu_context *cpuctx;
235c7fc7 3102
108b02cf 3103 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3104 if (cpuctx->task_ctx == ctx)
3105 return;
3106
facc4307 3107 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3108 /*
3109 * We must check ctx->nr_events while holding ctx->lock, such
3110 * that we serialize against perf_install_in_context().
3111 */
3112 if (!ctx->nr_events)
3113 goto unlock;
3114
1b9a644f 3115 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3116 /*
3117 * We want to keep the following priority order:
3118 * cpu pinned (that don't need to move), task pinned,
3119 * cpu flexible, task flexible.
fe45bafb
AS
3120 *
3121 * However, if task's ctx is not carrying any pinned
3122 * events, no need to flip the cpuctx's events around.
329c0e01 3123 */
fe45bafb
AS
3124 if (!list_empty(&ctx->pinned_groups))
3125 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3126 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3127 perf_pmu_enable(ctx->pmu);
fdccc3fb 3128
3129unlock:
facc4307 3130 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3131}
3132
8dc85d54
PZ
3133/*
3134 * Called from scheduler to add the events of the current task
3135 * with interrupts disabled.
3136 *
3137 * We restore the event value and then enable it.
3138 *
3139 * This does not protect us against NMI, but enable()
3140 * sets the enabled bit in the control field of event _before_
3141 * accessing the event control register. If a NMI hits, then it will
3142 * keep the event running.
3143 */
ab0cce56
JO
3144void __perf_event_task_sched_in(struct task_struct *prev,
3145 struct task_struct *task)
8dc85d54
PZ
3146{
3147 struct perf_event_context *ctx;
3148 int ctxn;
3149
7e41d177
PZ
3150 /*
3151 * If cgroup events exist on this CPU, then we need to check if we have
3152 * to switch in PMU state; cgroup event are system-wide mode only.
3153 *
3154 * Since cgroup events are CPU events, we must schedule these in before
3155 * we schedule in the task events.
3156 */
3157 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3158 perf_cgroup_sched_in(prev, task);
3159
8dc85d54
PZ
3160 for_each_task_context_nr(ctxn) {
3161 ctx = task->perf_event_ctxp[ctxn];
3162 if (likely(!ctx))
3163 continue;
3164
e5d1367f 3165 perf_event_context_sched_in(ctx, task);
8dc85d54 3166 }
d010b332 3167
45ac1403
AH
3168 if (atomic_read(&nr_switch_events))
3169 perf_event_switch(task, prev, true);
3170
ba532500
YZ
3171 if (__this_cpu_read(perf_sched_cb_usages))
3172 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3173}
3174
abd50713
PZ
3175static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3176{
3177 u64 frequency = event->attr.sample_freq;
3178 u64 sec = NSEC_PER_SEC;
3179 u64 divisor, dividend;
3180
3181 int count_fls, nsec_fls, frequency_fls, sec_fls;
3182
3183 count_fls = fls64(count);
3184 nsec_fls = fls64(nsec);
3185 frequency_fls = fls64(frequency);
3186 sec_fls = 30;
3187
3188 /*
3189 * We got @count in @nsec, with a target of sample_freq HZ
3190 * the target period becomes:
3191 *
3192 * @count * 10^9
3193 * period = -------------------
3194 * @nsec * sample_freq
3195 *
3196 */
3197
3198 /*
3199 * Reduce accuracy by one bit such that @a and @b converge
3200 * to a similar magnitude.
3201 */
fe4b04fa 3202#define REDUCE_FLS(a, b) \
abd50713
PZ
3203do { \
3204 if (a##_fls > b##_fls) { \
3205 a >>= 1; \
3206 a##_fls--; \
3207 } else { \
3208 b >>= 1; \
3209 b##_fls--; \
3210 } \
3211} while (0)
3212
3213 /*
3214 * Reduce accuracy until either term fits in a u64, then proceed with
3215 * the other, so that finally we can do a u64/u64 division.
3216 */
3217 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3218 REDUCE_FLS(nsec, frequency);
3219 REDUCE_FLS(sec, count);
3220 }
3221
3222 if (count_fls + sec_fls > 64) {
3223 divisor = nsec * frequency;
3224
3225 while (count_fls + sec_fls > 64) {
3226 REDUCE_FLS(count, sec);
3227 divisor >>= 1;
3228 }
3229
3230 dividend = count * sec;
3231 } else {
3232 dividend = count * sec;
3233
3234 while (nsec_fls + frequency_fls > 64) {
3235 REDUCE_FLS(nsec, frequency);
3236 dividend >>= 1;
3237 }
3238
3239 divisor = nsec * frequency;
3240 }
3241
f6ab91ad
PZ
3242 if (!divisor)
3243 return dividend;
3244
abd50713
PZ
3245 return div64_u64(dividend, divisor);
3246}
3247
e050e3f0
SE
3248static DEFINE_PER_CPU(int, perf_throttled_count);
3249static DEFINE_PER_CPU(u64, perf_throttled_seq);
3250
f39d47ff 3251static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3252{
cdd6c482 3253 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3254 s64 period, sample_period;
bd2b5b12
PZ
3255 s64 delta;
3256
abd50713 3257 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3258
3259 delta = (s64)(period - hwc->sample_period);
3260 delta = (delta + 7) / 8; /* low pass filter */
3261
3262 sample_period = hwc->sample_period + delta;
3263
3264 if (!sample_period)
3265 sample_period = 1;
3266
bd2b5b12 3267 hwc->sample_period = sample_period;
abd50713 3268
e7850595 3269 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3270 if (disable)
3271 event->pmu->stop(event, PERF_EF_UPDATE);
3272
e7850595 3273 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3274
3275 if (disable)
3276 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3277 }
bd2b5b12
PZ
3278}
3279
e050e3f0
SE
3280/*
3281 * combine freq adjustment with unthrottling to avoid two passes over the
3282 * events. At the same time, make sure, having freq events does not change
3283 * the rate of unthrottling as that would introduce bias.
3284 */
3285static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3286 int needs_unthr)
60db5e09 3287{
cdd6c482
IM
3288 struct perf_event *event;
3289 struct hw_perf_event *hwc;
e050e3f0 3290 u64 now, period = TICK_NSEC;
abd50713 3291 s64 delta;
60db5e09 3292
e050e3f0
SE
3293 /*
3294 * only need to iterate over all events iff:
3295 * - context have events in frequency mode (needs freq adjust)
3296 * - there are events to unthrottle on this cpu
3297 */
3298 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3299 return;
3300
e050e3f0 3301 raw_spin_lock(&ctx->lock);
f39d47ff 3302 perf_pmu_disable(ctx->pmu);
e050e3f0 3303
03541f8b 3304 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3305 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3306 continue;
3307
5632ab12 3308 if (!event_filter_match(event))
5d27c23d
PZ
3309 continue;
3310
44377277
AS
3311 perf_pmu_disable(event->pmu);
3312
cdd6c482 3313 hwc = &event->hw;
6a24ed6c 3314
ae23bff1 3315 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3316 hwc->interrupts = 0;
cdd6c482 3317 perf_log_throttle(event, 1);
a4eaf7f1 3318 event->pmu->start(event, 0);
a78ac325
PZ
3319 }
3320
cdd6c482 3321 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3322 goto next;
60db5e09 3323
e050e3f0
SE
3324 /*
3325 * stop the event and update event->count
3326 */
3327 event->pmu->stop(event, PERF_EF_UPDATE);
3328
e7850595 3329 now = local64_read(&event->count);
abd50713
PZ
3330 delta = now - hwc->freq_count_stamp;
3331 hwc->freq_count_stamp = now;
60db5e09 3332
e050e3f0
SE
3333 /*
3334 * restart the event
3335 * reload only if value has changed
f39d47ff
SE
3336 * we have stopped the event so tell that
3337 * to perf_adjust_period() to avoid stopping it
3338 * twice.
e050e3f0 3339 */
abd50713 3340 if (delta > 0)
f39d47ff 3341 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3342
3343 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3344 next:
3345 perf_pmu_enable(event->pmu);
60db5e09 3346 }
e050e3f0 3347
f39d47ff 3348 perf_pmu_enable(ctx->pmu);
e050e3f0 3349 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3350}
3351
235c7fc7 3352/*
cdd6c482 3353 * Round-robin a context's events:
235c7fc7 3354 */
cdd6c482 3355static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3356{
dddd3379
TG
3357 /*
3358 * Rotate the first entry last of non-pinned groups. Rotation might be
3359 * disabled by the inheritance code.
3360 */
3361 if (!ctx->rotate_disable)
3362 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3363}
3364
9e630205 3365static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3366{
8dc85d54 3367 struct perf_event_context *ctx = NULL;
2fde4f94 3368 int rotate = 0;
7fc23a53 3369
b5ab4cd5 3370 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3371 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3372 rotate = 1;
3373 }
235c7fc7 3374
8dc85d54 3375 ctx = cpuctx->task_ctx;
b5ab4cd5 3376 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3377 if (ctx->nr_events != ctx->nr_active)
3378 rotate = 1;
3379 }
9717e6cd 3380
e050e3f0 3381 if (!rotate)
0f5a2601
PZ
3382 goto done;
3383
facc4307 3384 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3385 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3386
e050e3f0
SE
3387 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3388 if (ctx)
3389 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3390
e050e3f0
SE
3391 rotate_ctx(&cpuctx->ctx);
3392 if (ctx)
3393 rotate_ctx(ctx);
235c7fc7 3394
e050e3f0 3395 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3396
0f5a2601
PZ
3397 perf_pmu_enable(cpuctx->ctx.pmu);
3398 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3399done:
9e630205
SE
3400
3401 return rotate;
e9d2b064
PZ
3402}
3403
3404void perf_event_task_tick(void)
3405{
2fde4f94
MR
3406 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3407 struct perf_event_context *ctx, *tmp;
e050e3f0 3408 int throttled;
b5ab4cd5 3409
16444645 3410 lockdep_assert_irqs_disabled();
e9d2b064 3411
e050e3f0
SE
3412 __this_cpu_inc(perf_throttled_seq);
3413 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3414 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3415
2fde4f94 3416 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3417 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3418}
3419
889ff015
FW
3420static int event_enable_on_exec(struct perf_event *event,
3421 struct perf_event_context *ctx)
3422{
3423 if (!event->attr.enable_on_exec)
3424 return 0;
3425
3426 event->attr.enable_on_exec = 0;
3427 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3428 return 0;
3429
0d3d73aa 3430 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3431
3432 return 1;
3433}
3434
57e7986e 3435/*
cdd6c482 3436 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3437 * This expects task == current.
3438 */
c1274499 3439static void perf_event_enable_on_exec(int ctxn)
57e7986e 3440{
c1274499 3441 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3442 enum event_type_t event_type = 0;
3e349507 3443 struct perf_cpu_context *cpuctx;
cdd6c482 3444 struct perf_event *event;
57e7986e
PM
3445 unsigned long flags;
3446 int enabled = 0;
3447
3448 local_irq_save(flags);
c1274499 3449 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3450 if (!ctx || !ctx->nr_events)
57e7986e
PM
3451 goto out;
3452
3e349507
PZ
3453 cpuctx = __get_cpu_context(ctx);
3454 perf_ctx_lock(cpuctx, ctx);
7fce2509 3455 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3456 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3457 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3458 event_type |= get_event_type(event);
3459 }
57e7986e
PM
3460
3461 /*
3e349507 3462 * Unclone and reschedule this context if we enabled any event.
57e7986e 3463 */
3e349507 3464 if (enabled) {
211de6eb 3465 clone_ctx = unclone_ctx(ctx);
487f05e1 3466 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3467 } else {
3468 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3469 }
3470 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3471
9ed6060d 3472out:
57e7986e 3473 local_irq_restore(flags);
211de6eb
PZ
3474
3475 if (clone_ctx)
3476 put_ctx(clone_ctx);
57e7986e
PM
3477}
3478
0492d4c5
PZ
3479struct perf_read_data {
3480 struct perf_event *event;
3481 bool group;
7d88962e 3482 int ret;
0492d4c5
PZ
3483};
3484
451d24d1 3485static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3486{
d6a2f903
DCC
3487 u16 local_pkg, event_pkg;
3488
3489 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3490 int local_cpu = smp_processor_id();
3491
3492 event_pkg = topology_physical_package_id(event_cpu);
3493 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3494
3495 if (event_pkg == local_pkg)
3496 return local_cpu;
3497 }
3498
3499 return event_cpu;
3500}
3501
0793a61d 3502/*
cdd6c482 3503 * Cross CPU call to read the hardware event
0793a61d 3504 */
cdd6c482 3505static void __perf_event_read(void *info)
0793a61d 3506{
0492d4c5
PZ
3507 struct perf_read_data *data = info;
3508 struct perf_event *sub, *event = data->event;
cdd6c482 3509 struct perf_event_context *ctx = event->ctx;
108b02cf 3510 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3511 struct pmu *pmu = event->pmu;
621a01ea 3512
e1ac3614
PM
3513 /*
3514 * If this is a task context, we need to check whether it is
3515 * the current task context of this cpu. If not it has been
3516 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3517 * event->count would have been updated to a recent sample
3518 * when the event was scheduled out.
e1ac3614
PM
3519 */
3520 if (ctx->task && cpuctx->task_ctx != ctx)
3521 return;
3522
e625cce1 3523 raw_spin_lock(&ctx->lock);
0c1cbc18 3524 if (ctx->is_active & EVENT_TIME) {
542e72fc 3525 update_context_time(ctx);
e5d1367f
SE
3526 update_cgrp_time_from_event(event);
3527 }
0492d4c5 3528
0d3d73aa
PZ
3529 perf_event_update_time(event);
3530 if (data->group)
3531 perf_event_update_sibling_time(event);
0c1cbc18 3532
4a00c16e
SB
3533 if (event->state != PERF_EVENT_STATE_ACTIVE)
3534 goto unlock;
0492d4c5 3535
4a00c16e
SB
3536 if (!data->group) {
3537 pmu->read(event);
3538 data->ret = 0;
0492d4c5 3539 goto unlock;
4a00c16e
SB
3540 }
3541
3542 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3543
3544 pmu->read(event);
0492d4c5
PZ
3545
3546 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4a00c16e
SB
3547 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3548 /*
3549 * Use sibling's PMU rather than @event's since
3550 * sibling could be on different (eg: software) PMU.
3551 */
0492d4c5 3552 sub->pmu->read(sub);
4a00c16e 3553 }
0492d4c5 3554 }
4a00c16e
SB
3555
3556 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3557
3558unlock:
e625cce1 3559 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3560}
3561
b5e58793
PZ
3562static inline u64 perf_event_count(struct perf_event *event)
3563{
c39a0e2c 3564 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3565}
3566
ffe8690c
KX
3567/*
3568 * NMI-safe method to read a local event, that is an event that
3569 * is:
3570 * - either for the current task, or for this CPU
3571 * - does not have inherit set, for inherited task events
3572 * will not be local and we cannot read them atomically
3573 * - must not have a pmu::count method
3574 */
7d9285e8
YS
3575int perf_event_read_local(struct perf_event *event, u64 *value,
3576 u64 *enabled, u64 *running)
ffe8690c
KX
3577{
3578 unsigned long flags;
f91840a3 3579 int ret = 0;
ffe8690c
KX
3580
3581 /*
3582 * Disabling interrupts avoids all counter scheduling (context
3583 * switches, timer based rotation and IPIs).
3584 */
3585 local_irq_save(flags);
3586
ffe8690c
KX
3587 /*
3588 * It must not be an event with inherit set, we cannot read
3589 * all child counters from atomic context.
3590 */
f91840a3
AS
3591 if (event->attr.inherit) {
3592 ret = -EOPNOTSUPP;
3593 goto out;
3594 }
ffe8690c 3595
f91840a3
AS
3596 /* If this is a per-task event, it must be for current */
3597 if ((event->attach_state & PERF_ATTACH_TASK) &&
3598 event->hw.target != current) {
3599 ret = -EINVAL;
3600 goto out;
3601 }
3602
3603 /* If this is a per-CPU event, it must be for this CPU */
3604 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3605 event->cpu != smp_processor_id()) {
3606 ret = -EINVAL;
3607 goto out;
3608 }
ffe8690c
KX
3609
3610 /*
3611 * If the event is currently on this CPU, its either a per-task event,
3612 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3613 * oncpu == -1).
3614 */
3615 if (event->oncpu == smp_processor_id())
3616 event->pmu->read(event);
3617
f91840a3 3618 *value = local64_read(&event->count);
0d3d73aa
PZ
3619 if (enabled || running) {
3620 u64 now = event->shadow_ctx_time + perf_clock();
3621 u64 __enabled, __running;
3622
3623 __perf_update_times(event, now, &__enabled, &__running);
3624 if (enabled)
3625 *enabled = __enabled;
3626 if (running)
3627 *running = __running;
3628 }
f91840a3 3629out:
ffe8690c
KX
3630 local_irq_restore(flags);
3631
f91840a3 3632 return ret;
ffe8690c
KX
3633}
3634
7d88962e 3635static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3636{
0c1cbc18 3637 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 3638 int event_cpu, ret = 0;
7d88962e 3639
0793a61d 3640 /*
cdd6c482
IM
3641 * If event is enabled and currently active on a CPU, update the
3642 * value in the event structure:
0793a61d 3643 */
0c1cbc18
PZ
3644again:
3645 if (state == PERF_EVENT_STATE_ACTIVE) {
3646 struct perf_read_data data;
3647
3648 /*
3649 * Orders the ->state and ->oncpu loads such that if we see
3650 * ACTIVE we must also see the right ->oncpu.
3651 *
3652 * Matches the smp_wmb() from event_sched_in().
3653 */
3654 smp_rmb();
d6a2f903 3655
451d24d1
PZ
3656 event_cpu = READ_ONCE(event->oncpu);
3657 if ((unsigned)event_cpu >= nr_cpu_ids)
3658 return 0;
3659
0c1cbc18
PZ
3660 data = (struct perf_read_data){
3661 .event = event,
3662 .group = group,
3663 .ret = 0,
3664 };
3665
451d24d1
PZ
3666 preempt_disable();
3667 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3668
58763148
PZ
3669 /*
3670 * Purposely ignore the smp_call_function_single() return
3671 * value.
3672 *
451d24d1 3673 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3674 * scheduled out and that will have updated the event count.
3675 *
3676 * Therefore, either way, we'll have an up-to-date event count
3677 * after this.
3678 */
451d24d1
PZ
3679 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3680 preempt_enable();
58763148 3681 ret = data.ret;
0c1cbc18
PZ
3682
3683 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3684 struct perf_event_context *ctx = event->ctx;
3685 unsigned long flags;
3686
e625cce1 3687 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
3688 state = event->state;
3689 if (state != PERF_EVENT_STATE_INACTIVE) {
3690 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3691 goto again;
3692 }
3693
c530ccd9 3694 /*
0c1cbc18
PZ
3695 * May read while context is not active (e.g., thread is
3696 * blocked), in that case we cannot update context time
c530ccd9 3697 */
0c1cbc18 3698 if (ctx->is_active & EVENT_TIME) {
c530ccd9 3699 update_context_time(ctx);
e5d1367f
SE
3700 update_cgrp_time_from_event(event);
3701 }
0c1cbc18 3702
0d3d73aa 3703 perf_event_update_time(event);
0492d4c5 3704 if (group)
0d3d73aa 3705 perf_event_update_sibling_time(event);
e625cce1 3706 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3707 }
7d88962e
SB
3708
3709 return ret;
0793a61d
TG
3710}
3711
a63eaf34 3712/*
cdd6c482 3713 * Initialize the perf_event context in a task_struct:
a63eaf34 3714 */
eb184479 3715static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3716{
e625cce1 3717 raw_spin_lock_init(&ctx->lock);
a63eaf34 3718 mutex_init(&ctx->mutex);
2fde4f94 3719 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3720 INIT_LIST_HEAD(&ctx->pinned_groups);
3721 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3722 INIT_LIST_HEAD(&ctx->event_list);
3723 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3724}
3725
3726static struct perf_event_context *
3727alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3728{
3729 struct perf_event_context *ctx;
3730
3731 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3732 if (!ctx)
3733 return NULL;
3734
3735 __perf_event_init_context(ctx);
3736 if (task) {
3737 ctx->task = task;
3738 get_task_struct(task);
0793a61d 3739 }
eb184479
PZ
3740 ctx->pmu = pmu;
3741
3742 return ctx;
a63eaf34
PM
3743}
3744
2ebd4ffb
MH
3745static struct task_struct *
3746find_lively_task_by_vpid(pid_t vpid)
3747{
3748 struct task_struct *task;
0793a61d
TG
3749
3750 rcu_read_lock();
2ebd4ffb 3751 if (!vpid)
0793a61d
TG
3752 task = current;
3753 else
2ebd4ffb 3754 task = find_task_by_vpid(vpid);
0793a61d
TG
3755 if (task)
3756 get_task_struct(task);
3757 rcu_read_unlock();
3758
3759 if (!task)
3760 return ERR_PTR(-ESRCH);
3761
2ebd4ffb 3762 return task;
2ebd4ffb
MH
3763}
3764
fe4b04fa
PZ
3765/*
3766 * Returns a matching context with refcount and pincount.
3767 */
108b02cf 3768static struct perf_event_context *
4af57ef2
YZ
3769find_get_context(struct pmu *pmu, struct task_struct *task,
3770 struct perf_event *event)
0793a61d 3771{
211de6eb 3772 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3773 struct perf_cpu_context *cpuctx;
4af57ef2 3774 void *task_ctx_data = NULL;
25346b93 3775 unsigned long flags;
8dc85d54 3776 int ctxn, err;
4af57ef2 3777 int cpu = event->cpu;
0793a61d 3778
22a4ec72 3779 if (!task) {
cdd6c482 3780 /* Must be root to operate on a CPU event: */
0764771d 3781 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3782 return ERR_PTR(-EACCES);
3783
108b02cf 3784 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3785 ctx = &cpuctx->ctx;
c93f7669 3786 get_ctx(ctx);
fe4b04fa 3787 ++ctx->pin_count;
0793a61d 3788
0793a61d
TG
3789 return ctx;
3790 }
3791
8dc85d54
PZ
3792 err = -EINVAL;
3793 ctxn = pmu->task_ctx_nr;
3794 if (ctxn < 0)
3795 goto errout;
3796
4af57ef2
YZ
3797 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3798 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3799 if (!task_ctx_data) {
3800 err = -ENOMEM;
3801 goto errout;
3802 }
3803 }
3804
9ed6060d 3805retry:
8dc85d54 3806 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3807 if (ctx) {
211de6eb 3808 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3809 ++ctx->pin_count;
4af57ef2
YZ
3810
3811 if (task_ctx_data && !ctx->task_ctx_data) {
3812 ctx->task_ctx_data = task_ctx_data;
3813 task_ctx_data = NULL;
3814 }
e625cce1 3815 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3816
3817 if (clone_ctx)
3818 put_ctx(clone_ctx);
9137fb28 3819 } else {
eb184479 3820 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3821 err = -ENOMEM;
3822 if (!ctx)
3823 goto errout;
eb184479 3824
4af57ef2
YZ
3825 if (task_ctx_data) {
3826 ctx->task_ctx_data = task_ctx_data;
3827 task_ctx_data = NULL;
3828 }
3829
dbe08d82
ON
3830 err = 0;
3831 mutex_lock(&task->perf_event_mutex);
3832 /*
3833 * If it has already passed perf_event_exit_task().
3834 * we must see PF_EXITING, it takes this mutex too.
3835 */
3836 if (task->flags & PF_EXITING)
3837 err = -ESRCH;
3838 else if (task->perf_event_ctxp[ctxn])
3839 err = -EAGAIN;
fe4b04fa 3840 else {
9137fb28 3841 get_ctx(ctx);
fe4b04fa 3842 ++ctx->pin_count;
dbe08d82 3843 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3844 }
dbe08d82
ON
3845 mutex_unlock(&task->perf_event_mutex);
3846
3847 if (unlikely(err)) {
9137fb28 3848 put_ctx(ctx);
dbe08d82
ON
3849
3850 if (err == -EAGAIN)
3851 goto retry;
3852 goto errout;
a63eaf34
PM
3853 }
3854 }
3855
4af57ef2 3856 kfree(task_ctx_data);
0793a61d 3857 return ctx;
c93f7669 3858
9ed6060d 3859errout:
4af57ef2 3860 kfree(task_ctx_data);
c93f7669 3861 return ERR_PTR(err);
0793a61d
TG
3862}
3863
6fb2915d 3864static void perf_event_free_filter(struct perf_event *event);
2541517c 3865static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3866
cdd6c482 3867static void free_event_rcu(struct rcu_head *head)
592903cd 3868{
cdd6c482 3869 struct perf_event *event;
592903cd 3870
cdd6c482
IM
3871 event = container_of(head, struct perf_event, rcu_head);
3872 if (event->ns)
3873 put_pid_ns(event->ns);
6fb2915d 3874 perf_event_free_filter(event);
cdd6c482 3875 kfree(event);
592903cd
PZ
3876}
3877
b69cf536
PZ
3878static void ring_buffer_attach(struct perf_event *event,
3879 struct ring_buffer *rb);
925d519a 3880
f2fb6bef
KL
3881static void detach_sb_event(struct perf_event *event)
3882{
3883 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3884
3885 raw_spin_lock(&pel->lock);
3886 list_del_rcu(&event->sb_list);
3887 raw_spin_unlock(&pel->lock);
3888}
3889
a4f144eb 3890static bool is_sb_event(struct perf_event *event)
f2fb6bef 3891{
a4f144eb
DCC
3892 struct perf_event_attr *attr = &event->attr;
3893
f2fb6bef 3894 if (event->parent)
a4f144eb 3895 return false;
f2fb6bef
KL
3896
3897 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3898 return false;
f2fb6bef 3899
a4f144eb
DCC
3900 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3901 attr->comm || attr->comm_exec ||
3902 attr->task ||
3903 attr->context_switch)
3904 return true;
3905 return false;
3906}
3907
3908static void unaccount_pmu_sb_event(struct perf_event *event)
3909{
3910 if (is_sb_event(event))
3911 detach_sb_event(event);
f2fb6bef
KL
3912}
3913
4beb31f3 3914static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3915{
4beb31f3
FW
3916 if (event->parent)
3917 return;
3918
4beb31f3
FW
3919 if (is_cgroup_event(event))
3920 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3921}
925d519a 3922
555e0c1e
FW
3923#ifdef CONFIG_NO_HZ_FULL
3924static DEFINE_SPINLOCK(nr_freq_lock);
3925#endif
3926
3927static void unaccount_freq_event_nohz(void)
3928{
3929#ifdef CONFIG_NO_HZ_FULL
3930 spin_lock(&nr_freq_lock);
3931 if (atomic_dec_and_test(&nr_freq_events))
3932 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3933 spin_unlock(&nr_freq_lock);
3934#endif
3935}
3936
3937static void unaccount_freq_event(void)
3938{
3939 if (tick_nohz_full_enabled())
3940 unaccount_freq_event_nohz();
3941 else
3942 atomic_dec(&nr_freq_events);
3943}
3944
4beb31f3
FW
3945static void unaccount_event(struct perf_event *event)
3946{
25432ae9
PZ
3947 bool dec = false;
3948
4beb31f3
FW
3949 if (event->parent)
3950 return;
3951
3952 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3953 dec = true;
4beb31f3
FW
3954 if (event->attr.mmap || event->attr.mmap_data)
3955 atomic_dec(&nr_mmap_events);
3956 if (event->attr.comm)
3957 atomic_dec(&nr_comm_events);
e4222673
HB
3958 if (event->attr.namespaces)
3959 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
3960 if (event->attr.task)
3961 atomic_dec(&nr_task_events);
948b26b6 3962 if (event->attr.freq)
555e0c1e 3963 unaccount_freq_event();
45ac1403 3964 if (event->attr.context_switch) {
25432ae9 3965 dec = true;
45ac1403
AH
3966 atomic_dec(&nr_switch_events);
3967 }
4beb31f3 3968 if (is_cgroup_event(event))
25432ae9 3969 dec = true;
4beb31f3 3970 if (has_branch_stack(event))
25432ae9
PZ
3971 dec = true;
3972
9107c89e
PZ
3973 if (dec) {
3974 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3975 schedule_delayed_work(&perf_sched_work, HZ);
3976 }
4beb31f3
FW
3977
3978 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
3979
3980 unaccount_pmu_sb_event(event);
4beb31f3 3981}
925d519a 3982
9107c89e
PZ
3983static void perf_sched_delayed(struct work_struct *work)
3984{
3985 mutex_lock(&perf_sched_mutex);
3986 if (atomic_dec_and_test(&perf_sched_count))
3987 static_branch_disable(&perf_sched_events);
3988 mutex_unlock(&perf_sched_mutex);
3989}
3990
bed5b25a
AS
3991/*
3992 * The following implement mutual exclusion of events on "exclusive" pmus
3993 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3994 * at a time, so we disallow creating events that might conflict, namely:
3995 *
3996 * 1) cpu-wide events in the presence of per-task events,
3997 * 2) per-task events in the presence of cpu-wide events,
3998 * 3) two matching events on the same context.
3999 *
4000 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4001 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4002 */
4003static int exclusive_event_init(struct perf_event *event)
4004{
4005 struct pmu *pmu = event->pmu;
4006
4007 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4008 return 0;
4009
4010 /*
4011 * Prevent co-existence of per-task and cpu-wide events on the
4012 * same exclusive pmu.
4013 *
4014 * Negative pmu::exclusive_cnt means there are cpu-wide
4015 * events on this "exclusive" pmu, positive means there are
4016 * per-task events.
4017 *
4018 * Since this is called in perf_event_alloc() path, event::ctx
4019 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4020 * to mean "per-task event", because unlike other attach states it
4021 * never gets cleared.
4022 */
4023 if (event->attach_state & PERF_ATTACH_TASK) {
4024 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4025 return -EBUSY;
4026 } else {
4027 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4028 return -EBUSY;
4029 }
4030
4031 return 0;
4032}
4033
4034static void exclusive_event_destroy(struct perf_event *event)
4035{
4036 struct pmu *pmu = event->pmu;
4037
4038 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4039 return;
4040
4041 /* see comment in exclusive_event_init() */
4042 if (event->attach_state & PERF_ATTACH_TASK)
4043 atomic_dec(&pmu->exclusive_cnt);
4044 else
4045 atomic_inc(&pmu->exclusive_cnt);
4046}
4047
4048static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4049{
3bf6215a 4050 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4051 (e1->cpu == e2->cpu ||
4052 e1->cpu == -1 ||
4053 e2->cpu == -1))
4054 return true;
4055 return false;
4056}
4057
4058/* Called under the same ctx::mutex as perf_install_in_context() */
4059static bool exclusive_event_installable(struct perf_event *event,
4060 struct perf_event_context *ctx)
4061{
4062 struct perf_event *iter_event;
4063 struct pmu *pmu = event->pmu;
4064
4065 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4066 return true;
4067
4068 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4069 if (exclusive_event_match(iter_event, event))
4070 return false;
4071 }
4072
4073 return true;
4074}
4075
375637bc
AS
4076static void perf_addr_filters_splice(struct perf_event *event,
4077 struct list_head *head);
4078
683ede43 4079static void _free_event(struct perf_event *event)
f1600952 4080{
e360adbe 4081 irq_work_sync(&event->pending);
925d519a 4082
4beb31f3 4083 unaccount_event(event);
9ee318a7 4084
76369139 4085 if (event->rb) {
9bb5d40c
PZ
4086 /*
4087 * Can happen when we close an event with re-directed output.
4088 *
4089 * Since we have a 0 refcount, perf_mmap_close() will skip
4090 * over us; possibly making our ring_buffer_put() the last.
4091 */
4092 mutex_lock(&event->mmap_mutex);
b69cf536 4093 ring_buffer_attach(event, NULL);
9bb5d40c 4094 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4095 }
4096
e5d1367f
SE
4097 if (is_cgroup_event(event))
4098 perf_detach_cgroup(event);
4099
a0733e69
PZ
4100 if (!event->parent) {
4101 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4102 put_callchain_buffers();
4103 }
4104
4105 perf_event_free_bpf_prog(event);
375637bc
AS
4106 perf_addr_filters_splice(event, NULL);
4107 kfree(event->addr_filters_offs);
a0733e69
PZ
4108
4109 if (event->destroy)
4110 event->destroy(event);
4111
4112 if (event->ctx)
4113 put_ctx(event->ctx);
4114
62a92c8f
AS
4115 exclusive_event_destroy(event);
4116 module_put(event->pmu->module);
a0733e69
PZ
4117
4118 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4119}
4120
683ede43
PZ
4121/*
4122 * Used to free events which have a known refcount of 1, such as in error paths
4123 * where the event isn't exposed yet and inherited events.
4124 */
4125static void free_event(struct perf_event *event)
0793a61d 4126{
683ede43
PZ
4127 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4128 "unexpected event refcount: %ld; ptr=%p\n",
4129 atomic_long_read(&event->refcount), event)) {
4130 /* leak to avoid use-after-free */
4131 return;
4132 }
0793a61d 4133
683ede43 4134 _free_event(event);
0793a61d
TG
4135}
4136
a66a3052 4137/*
f8697762 4138 * Remove user event from the owner task.
a66a3052 4139 */
f8697762 4140static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4141{
8882135b 4142 struct task_struct *owner;
fb0459d7 4143
8882135b 4144 rcu_read_lock();
8882135b 4145 /*
f47c02c0
PZ
4146 * Matches the smp_store_release() in perf_event_exit_task(). If we
4147 * observe !owner it means the list deletion is complete and we can
4148 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4149 * owner->perf_event_mutex.
4150 */
506458ef 4151 owner = READ_ONCE(event->owner);
8882135b
PZ
4152 if (owner) {
4153 /*
4154 * Since delayed_put_task_struct() also drops the last
4155 * task reference we can safely take a new reference
4156 * while holding the rcu_read_lock().
4157 */
4158 get_task_struct(owner);
4159 }
4160 rcu_read_unlock();
4161
4162 if (owner) {
f63a8daa
PZ
4163 /*
4164 * If we're here through perf_event_exit_task() we're already
4165 * holding ctx->mutex which would be an inversion wrt. the
4166 * normal lock order.
4167 *
4168 * However we can safely take this lock because its the child
4169 * ctx->mutex.
4170 */
4171 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4172
8882135b
PZ
4173 /*
4174 * We have to re-check the event->owner field, if it is cleared
4175 * we raced with perf_event_exit_task(), acquiring the mutex
4176 * ensured they're done, and we can proceed with freeing the
4177 * event.
4178 */
f47c02c0 4179 if (event->owner) {
8882135b 4180 list_del_init(&event->owner_entry);
f47c02c0
PZ
4181 smp_store_release(&event->owner, NULL);
4182 }
8882135b
PZ
4183 mutex_unlock(&owner->perf_event_mutex);
4184 put_task_struct(owner);
4185 }
f8697762
JO
4186}
4187
f8697762
JO
4188static void put_event(struct perf_event *event)
4189{
f8697762
JO
4190 if (!atomic_long_dec_and_test(&event->refcount))
4191 return;
4192
c6e5b732
PZ
4193 _free_event(event);
4194}
4195
4196/*
4197 * Kill an event dead; while event:refcount will preserve the event
4198 * object, it will not preserve its functionality. Once the last 'user'
4199 * gives up the object, we'll destroy the thing.
4200 */
4201int perf_event_release_kernel(struct perf_event *event)
4202{
a4f4bb6d 4203 struct perf_event_context *ctx = event->ctx;
c6e5b732 4204 struct perf_event *child, *tmp;
82d94856 4205 LIST_HEAD(free_list);
c6e5b732 4206
a4f4bb6d
PZ
4207 /*
4208 * If we got here through err_file: fput(event_file); we will not have
4209 * attached to a context yet.
4210 */
4211 if (!ctx) {
4212 WARN_ON_ONCE(event->attach_state &
4213 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4214 goto no_ctx;
4215 }
4216
f8697762
JO
4217 if (!is_kernel_event(event))
4218 perf_remove_from_owner(event);
8882135b 4219
5fa7c8ec 4220 ctx = perf_event_ctx_lock(event);
a83fe28e 4221 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4222 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4223
a69b0ca4 4224 raw_spin_lock_irq(&ctx->lock);
683ede43 4225 /*
d8a8cfc7 4226 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4227 * anymore.
683ede43 4228 *
a69b0ca4
PZ
4229 * Anybody acquiring event->child_mutex after the below loop _must_
4230 * also see this, most importantly inherit_event() which will avoid
4231 * placing more children on the list.
683ede43 4232 *
c6e5b732
PZ
4233 * Thus this guarantees that we will in fact observe and kill _ALL_
4234 * child events.
683ede43 4235 */
a69b0ca4
PZ
4236 event->state = PERF_EVENT_STATE_DEAD;
4237 raw_spin_unlock_irq(&ctx->lock);
4238
4239 perf_event_ctx_unlock(event, ctx);
683ede43 4240
c6e5b732
PZ
4241again:
4242 mutex_lock(&event->child_mutex);
4243 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4244
c6e5b732
PZ
4245 /*
4246 * Cannot change, child events are not migrated, see the
4247 * comment with perf_event_ctx_lock_nested().
4248 */
506458ef 4249 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4250 /*
4251 * Since child_mutex nests inside ctx::mutex, we must jump
4252 * through hoops. We start by grabbing a reference on the ctx.
4253 *
4254 * Since the event cannot get freed while we hold the
4255 * child_mutex, the context must also exist and have a !0
4256 * reference count.
4257 */
4258 get_ctx(ctx);
4259
4260 /*
4261 * Now that we have a ctx ref, we can drop child_mutex, and
4262 * acquire ctx::mutex without fear of it going away. Then we
4263 * can re-acquire child_mutex.
4264 */
4265 mutex_unlock(&event->child_mutex);
4266 mutex_lock(&ctx->mutex);
4267 mutex_lock(&event->child_mutex);
4268
4269 /*
4270 * Now that we hold ctx::mutex and child_mutex, revalidate our
4271 * state, if child is still the first entry, it didn't get freed
4272 * and we can continue doing so.
4273 */
4274 tmp = list_first_entry_or_null(&event->child_list,
4275 struct perf_event, child_list);
4276 if (tmp == child) {
4277 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4278 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4279 /*
4280 * This matches the refcount bump in inherit_event();
4281 * this can't be the last reference.
4282 */
4283 put_event(event);
4284 }
4285
4286 mutex_unlock(&event->child_mutex);
4287 mutex_unlock(&ctx->mutex);
4288 put_ctx(ctx);
4289 goto again;
4290 }
4291 mutex_unlock(&event->child_mutex);
4292
82d94856
PZ
4293 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4294 list_del(&child->child_list);
4295 free_event(child);
4296 }
4297
a4f4bb6d
PZ
4298no_ctx:
4299 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4300 return 0;
4301}
4302EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4303
8b10c5e2
PZ
4304/*
4305 * Called when the last reference to the file is gone.
4306 */
a6fa941d
AV
4307static int perf_release(struct inode *inode, struct file *file)
4308{
c6e5b732 4309 perf_event_release_kernel(file->private_data);
a6fa941d 4310 return 0;
fb0459d7 4311}
fb0459d7 4312
ca0dd44c 4313static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4314{
cdd6c482 4315 struct perf_event *child;
e53c0994
PZ
4316 u64 total = 0;
4317
59ed446f
PZ
4318 *enabled = 0;
4319 *running = 0;
4320
6f10581a 4321 mutex_lock(&event->child_mutex);
01add3ea 4322
7d88962e 4323 (void)perf_event_read(event, false);
01add3ea
SB
4324 total += perf_event_count(event);
4325
59ed446f
PZ
4326 *enabled += event->total_time_enabled +
4327 atomic64_read(&event->child_total_time_enabled);
4328 *running += event->total_time_running +
4329 atomic64_read(&event->child_total_time_running);
4330
4331 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4332 (void)perf_event_read(child, false);
01add3ea 4333 total += perf_event_count(child);
59ed446f
PZ
4334 *enabled += child->total_time_enabled;
4335 *running += child->total_time_running;
4336 }
6f10581a 4337 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4338
4339 return total;
4340}
ca0dd44c
PZ
4341
4342u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4343{
4344 struct perf_event_context *ctx;
4345 u64 count;
4346
4347 ctx = perf_event_ctx_lock(event);
4348 count = __perf_event_read_value(event, enabled, running);
4349 perf_event_ctx_unlock(event, ctx);
4350
4351 return count;
4352}
fb0459d7 4353EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4354
7d88962e 4355static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4356 u64 read_format, u64 *values)
3dab77fb 4357{
2aeb1883 4358 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4359 struct perf_event *sub;
2aeb1883 4360 unsigned long flags;
fa8c2693 4361 int n = 1; /* skip @nr */
7d88962e 4362 int ret;
f63a8daa 4363
7d88962e
SB
4364 ret = perf_event_read(leader, true);
4365 if (ret)
4366 return ret;
abf4868b 4367
a9cd8194
PZ
4368 raw_spin_lock_irqsave(&ctx->lock, flags);
4369
fa8c2693
PZ
4370 /*
4371 * Since we co-schedule groups, {enabled,running} times of siblings
4372 * will be identical to those of the leader, so we only publish one
4373 * set.
4374 */
4375 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4376 values[n++] += leader->total_time_enabled +
4377 atomic64_read(&leader->child_total_time_enabled);
4378 }
3dab77fb 4379
fa8c2693
PZ
4380 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4381 values[n++] += leader->total_time_running +
4382 atomic64_read(&leader->child_total_time_running);
4383 }
4384
4385 /*
4386 * Write {count,id} tuples for every sibling.
4387 */
4388 values[n++] += perf_event_count(leader);
abf4868b
PZ
4389 if (read_format & PERF_FORMAT_ID)
4390 values[n++] = primary_event_id(leader);
3dab77fb 4391
fa8c2693
PZ
4392 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4393 values[n++] += perf_event_count(sub);
4394 if (read_format & PERF_FORMAT_ID)
4395 values[n++] = primary_event_id(sub);
4396 }
7d88962e 4397
2aeb1883 4398 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4399 return 0;
fa8c2693 4400}
3dab77fb 4401
fa8c2693
PZ
4402static int perf_read_group(struct perf_event *event,
4403 u64 read_format, char __user *buf)
4404{
4405 struct perf_event *leader = event->group_leader, *child;
4406 struct perf_event_context *ctx = leader->ctx;
7d88962e 4407 int ret;
fa8c2693 4408 u64 *values;
3dab77fb 4409
fa8c2693 4410 lockdep_assert_held(&ctx->mutex);
3dab77fb 4411
fa8c2693
PZ
4412 values = kzalloc(event->read_size, GFP_KERNEL);
4413 if (!values)
4414 return -ENOMEM;
3dab77fb 4415
fa8c2693
PZ
4416 values[0] = 1 + leader->nr_siblings;
4417
4418 /*
4419 * By locking the child_mutex of the leader we effectively
4420 * lock the child list of all siblings.. XXX explain how.
4421 */
4422 mutex_lock(&leader->child_mutex);
abf4868b 4423
7d88962e
SB
4424 ret = __perf_read_group_add(leader, read_format, values);
4425 if (ret)
4426 goto unlock;
4427
4428 list_for_each_entry(child, &leader->child_list, child_list) {
4429 ret = __perf_read_group_add(child, read_format, values);
4430 if (ret)
4431 goto unlock;
4432 }
abf4868b 4433
fa8c2693 4434 mutex_unlock(&leader->child_mutex);
abf4868b 4435
7d88962e 4436 ret = event->read_size;
fa8c2693
PZ
4437 if (copy_to_user(buf, values, event->read_size))
4438 ret = -EFAULT;
7d88962e 4439 goto out;
fa8c2693 4440
7d88962e
SB
4441unlock:
4442 mutex_unlock(&leader->child_mutex);
4443out:
fa8c2693 4444 kfree(values);
abf4868b 4445 return ret;
3dab77fb
PZ
4446}
4447
b15f495b 4448static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4449 u64 read_format, char __user *buf)
4450{
59ed446f 4451 u64 enabled, running;
3dab77fb
PZ
4452 u64 values[4];
4453 int n = 0;
4454
ca0dd44c 4455 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4456 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4457 values[n++] = enabled;
4458 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4459 values[n++] = running;
3dab77fb 4460 if (read_format & PERF_FORMAT_ID)
cdd6c482 4461 values[n++] = primary_event_id(event);
3dab77fb
PZ
4462
4463 if (copy_to_user(buf, values, n * sizeof(u64)))
4464 return -EFAULT;
4465
4466 return n * sizeof(u64);
4467}
4468
dc633982
JO
4469static bool is_event_hup(struct perf_event *event)
4470{
4471 bool no_children;
4472
a69b0ca4 4473 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4474 return false;
4475
4476 mutex_lock(&event->child_mutex);
4477 no_children = list_empty(&event->child_list);
4478 mutex_unlock(&event->child_mutex);
4479 return no_children;
4480}
4481
0793a61d 4482/*
cdd6c482 4483 * Read the performance event - simple non blocking version for now
0793a61d
TG
4484 */
4485static ssize_t
b15f495b 4486__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4487{
cdd6c482 4488 u64 read_format = event->attr.read_format;
3dab77fb 4489 int ret;
0793a61d 4490
3b6f9e5c 4491 /*
cdd6c482 4492 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4493 * error state (i.e. because it was pinned but it couldn't be
4494 * scheduled on to the CPU at some point).
4495 */
cdd6c482 4496 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4497 return 0;
4498
c320c7b7 4499 if (count < event->read_size)
3dab77fb
PZ
4500 return -ENOSPC;
4501
cdd6c482 4502 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4503 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4504 ret = perf_read_group(event, read_format, buf);
3dab77fb 4505 else
b15f495b 4506 ret = perf_read_one(event, read_format, buf);
0793a61d 4507
3dab77fb 4508 return ret;
0793a61d
TG
4509}
4510
0793a61d
TG
4511static ssize_t
4512perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4513{
cdd6c482 4514 struct perf_event *event = file->private_data;
f63a8daa
PZ
4515 struct perf_event_context *ctx;
4516 int ret;
0793a61d 4517
f63a8daa 4518 ctx = perf_event_ctx_lock(event);
b15f495b 4519 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4520 perf_event_ctx_unlock(event, ctx);
4521
4522 return ret;
0793a61d
TG
4523}
4524
9dd95748 4525static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 4526{
cdd6c482 4527 struct perf_event *event = file->private_data;
76369139 4528 struct ring_buffer *rb;
a9a08845 4529 __poll_t events = EPOLLHUP;
c7138f37 4530
e708d7ad 4531 poll_wait(file, &event->waitq, wait);
179033b3 4532
dc633982 4533 if (is_event_hup(event))
179033b3 4534 return events;
c7138f37 4535
10c6db11 4536 /*
9bb5d40c
PZ
4537 * Pin the event->rb by taking event->mmap_mutex; otherwise
4538 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4539 */
4540 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4541 rb = event->rb;
4542 if (rb)
76369139 4543 events = atomic_xchg(&rb->poll, 0);
10c6db11 4544 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4545 return events;
4546}
4547
f63a8daa 4548static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4549{
7d88962e 4550 (void)perf_event_read(event, false);
e7850595 4551 local64_set(&event->count, 0);
cdd6c482 4552 perf_event_update_userpage(event);
3df5edad
PZ
4553}
4554
c93f7669 4555/*
cdd6c482
IM
4556 * Holding the top-level event's child_mutex means that any
4557 * descendant process that has inherited this event will block
8ba289b8 4558 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4559 * task existence requirements of perf_event_enable/disable.
c93f7669 4560 */
cdd6c482
IM
4561static void perf_event_for_each_child(struct perf_event *event,
4562 void (*func)(struct perf_event *))
3df5edad 4563{
cdd6c482 4564 struct perf_event *child;
3df5edad 4565
cdd6c482 4566 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4567
cdd6c482
IM
4568 mutex_lock(&event->child_mutex);
4569 func(event);
4570 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4571 func(child);
cdd6c482 4572 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4573}
4574
cdd6c482
IM
4575static void perf_event_for_each(struct perf_event *event,
4576 void (*func)(struct perf_event *))
3df5edad 4577{
cdd6c482
IM
4578 struct perf_event_context *ctx = event->ctx;
4579 struct perf_event *sibling;
3df5edad 4580
f63a8daa
PZ
4581 lockdep_assert_held(&ctx->mutex);
4582
cdd6c482 4583 event = event->group_leader;
75f937f2 4584
cdd6c482 4585 perf_event_for_each_child(event, func);
cdd6c482 4586 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4587 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4588}
4589
fae3fde6
PZ
4590static void __perf_event_period(struct perf_event *event,
4591 struct perf_cpu_context *cpuctx,
4592 struct perf_event_context *ctx,
4593 void *info)
c7999c6f 4594{
fae3fde6 4595 u64 value = *((u64 *)info);
c7999c6f 4596 bool active;
08247e31 4597
cdd6c482 4598 if (event->attr.freq) {
cdd6c482 4599 event->attr.sample_freq = value;
08247e31 4600 } else {
cdd6c482
IM
4601 event->attr.sample_period = value;
4602 event->hw.sample_period = value;
08247e31 4603 }
bad7192b
PZ
4604
4605 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4606 if (active) {
4607 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4608 /*
4609 * We could be throttled; unthrottle now to avoid the tick
4610 * trying to unthrottle while we already re-started the event.
4611 */
4612 if (event->hw.interrupts == MAX_INTERRUPTS) {
4613 event->hw.interrupts = 0;
4614 perf_log_throttle(event, 1);
4615 }
bad7192b
PZ
4616 event->pmu->stop(event, PERF_EF_UPDATE);
4617 }
4618
4619 local64_set(&event->hw.period_left, 0);
4620
4621 if (active) {
4622 event->pmu->start(event, PERF_EF_RELOAD);
4623 perf_pmu_enable(ctx->pmu);
4624 }
c7999c6f
PZ
4625}
4626
4627static int perf_event_period(struct perf_event *event, u64 __user *arg)
4628{
c7999c6f
PZ
4629 u64 value;
4630
4631 if (!is_sampling_event(event))
4632 return -EINVAL;
4633
4634 if (copy_from_user(&value, arg, sizeof(value)))
4635 return -EFAULT;
4636
4637 if (!value)
4638 return -EINVAL;
4639
4640 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4641 return -EINVAL;
4642
fae3fde6 4643 event_function_call(event, __perf_event_period, &value);
08247e31 4644
c7999c6f 4645 return 0;
08247e31
PZ
4646}
4647
ac9721f3
PZ
4648static const struct file_operations perf_fops;
4649
2903ff01 4650static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4651{
2903ff01
AV
4652 struct fd f = fdget(fd);
4653 if (!f.file)
4654 return -EBADF;
ac9721f3 4655
2903ff01
AV
4656 if (f.file->f_op != &perf_fops) {
4657 fdput(f);
4658 return -EBADF;
ac9721f3 4659 }
2903ff01
AV
4660 *p = f;
4661 return 0;
ac9721f3
PZ
4662}
4663
4664static int perf_event_set_output(struct perf_event *event,
4665 struct perf_event *output_event);
6fb2915d 4666static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4667static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4668
f63a8daa 4669static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4670{
cdd6c482 4671 void (*func)(struct perf_event *);
3df5edad 4672 u32 flags = arg;
d859e29f
PM
4673
4674 switch (cmd) {
cdd6c482 4675 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4676 func = _perf_event_enable;
d859e29f 4677 break;
cdd6c482 4678 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4679 func = _perf_event_disable;
79f14641 4680 break;
cdd6c482 4681 case PERF_EVENT_IOC_RESET:
f63a8daa 4682 func = _perf_event_reset;
6de6a7b9 4683 break;
3df5edad 4684
cdd6c482 4685 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4686 return _perf_event_refresh(event, arg);
08247e31 4687
cdd6c482
IM
4688 case PERF_EVENT_IOC_PERIOD:
4689 return perf_event_period(event, (u64 __user *)arg);
08247e31 4690
cf4957f1
JO
4691 case PERF_EVENT_IOC_ID:
4692 {
4693 u64 id = primary_event_id(event);
4694
4695 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4696 return -EFAULT;
4697 return 0;
4698 }
4699
cdd6c482 4700 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4701 {
ac9721f3 4702 int ret;
ac9721f3 4703 if (arg != -1) {
2903ff01
AV
4704 struct perf_event *output_event;
4705 struct fd output;
4706 ret = perf_fget_light(arg, &output);
4707 if (ret)
4708 return ret;
4709 output_event = output.file->private_data;
4710 ret = perf_event_set_output(event, output_event);
4711 fdput(output);
4712 } else {
4713 ret = perf_event_set_output(event, NULL);
ac9721f3 4714 }
ac9721f3
PZ
4715 return ret;
4716 }
a4be7c27 4717
6fb2915d
LZ
4718 case PERF_EVENT_IOC_SET_FILTER:
4719 return perf_event_set_filter(event, (void __user *)arg);
4720
2541517c
AS
4721 case PERF_EVENT_IOC_SET_BPF:
4722 return perf_event_set_bpf_prog(event, arg);
4723
86e7972f
WN
4724 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4725 struct ring_buffer *rb;
4726
4727 rcu_read_lock();
4728 rb = rcu_dereference(event->rb);
4729 if (!rb || !rb->nr_pages) {
4730 rcu_read_unlock();
4731 return -EINVAL;
4732 }
4733 rb_toggle_paused(rb, !!arg);
4734 rcu_read_unlock();
4735 return 0;
4736 }
f371b304
YS
4737
4738 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 4739 return perf_event_query_prog_array(event, (void __user *)arg);
d859e29f 4740 default:
3df5edad 4741 return -ENOTTY;
d859e29f 4742 }
3df5edad
PZ
4743
4744 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4745 perf_event_for_each(event, func);
3df5edad 4746 else
cdd6c482 4747 perf_event_for_each_child(event, func);
3df5edad
PZ
4748
4749 return 0;
d859e29f
PM
4750}
4751
f63a8daa
PZ
4752static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4753{
4754 struct perf_event *event = file->private_data;
4755 struct perf_event_context *ctx;
4756 long ret;
4757
4758 ctx = perf_event_ctx_lock(event);
4759 ret = _perf_ioctl(event, cmd, arg);
4760 perf_event_ctx_unlock(event, ctx);
4761
4762 return ret;
4763}
4764
b3f20785
PM
4765#ifdef CONFIG_COMPAT
4766static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4767 unsigned long arg)
4768{
4769 switch (_IOC_NR(cmd)) {
4770 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4771 case _IOC_NR(PERF_EVENT_IOC_ID):
4772 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4773 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4774 cmd &= ~IOCSIZE_MASK;
4775 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4776 }
4777 break;
4778 }
4779 return perf_ioctl(file, cmd, arg);
4780}
4781#else
4782# define perf_compat_ioctl NULL
4783#endif
4784
cdd6c482 4785int perf_event_task_enable(void)
771d7cde 4786{
f63a8daa 4787 struct perf_event_context *ctx;
cdd6c482 4788 struct perf_event *event;
771d7cde 4789
cdd6c482 4790 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4791 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4792 ctx = perf_event_ctx_lock(event);
4793 perf_event_for_each_child(event, _perf_event_enable);
4794 perf_event_ctx_unlock(event, ctx);
4795 }
cdd6c482 4796 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4797
4798 return 0;
4799}
4800
cdd6c482 4801int perf_event_task_disable(void)
771d7cde 4802{
f63a8daa 4803 struct perf_event_context *ctx;
cdd6c482 4804 struct perf_event *event;
771d7cde 4805
cdd6c482 4806 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4807 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4808 ctx = perf_event_ctx_lock(event);
4809 perf_event_for_each_child(event, _perf_event_disable);
4810 perf_event_ctx_unlock(event, ctx);
4811 }
cdd6c482 4812 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4813
4814 return 0;
4815}
4816
cdd6c482 4817static int perf_event_index(struct perf_event *event)
194002b2 4818{
a4eaf7f1
PZ
4819 if (event->hw.state & PERF_HES_STOPPED)
4820 return 0;
4821
cdd6c482 4822 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4823 return 0;
4824
35edc2a5 4825 return event->pmu->event_idx(event);
194002b2
PZ
4826}
4827
c4794295 4828static void calc_timer_values(struct perf_event *event,
e3f3541c 4829 u64 *now,
7f310a5d
EM
4830 u64 *enabled,
4831 u64 *running)
c4794295 4832{
e3f3541c 4833 u64 ctx_time;
c4794295 4834
e3f3541c
PZ
4835 *now = perf_clock();
4836 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 4837 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
4838}
4839
fa731587
PZ
4840static void perf_event_init_userpage(struct perf_event *event)
4841{
4842 struct perf_event_mmap_page *userpg;
4843 struct ring_buffer *rb;
4844
4845 rcu_read_lock();
4846 rb = rcu_dereference(event->rb);
4847 if (!rb)
4848 goto unlock;
4849
4850 userpg = rb->user_page;
4851
4852 /* Allow new userspace to detect that bit 0 is deprecated */
4853 userpg->cap_bit0_is_deprecated = 1;
4854 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4855 userpg->data_offset = PAGE_SIZE;
4856 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4857
4858unlock:
4859 rcu_read_unlock();
4860}
4861
c1317ec2
AL
4862void __weak arch_perf_update_userpage(
4863 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4864{
4865}
4866
38ff667b
PZ
4867/*
4868 * Callers need to ensure there can be no nesting of this function, otherwise
4869 * the seqlock logic goes bad. We can not serialize this because the arch
4870 * code calls this from NMI context.
4871 */
cdd6c482 4872void perf_event_update_userpage(struct perf_event *event)
37d81828 4873{
cdd6c482 4874 struct perf_event_mmap_page *userpg;
76369139 4875 struct ring_buffer *rb;
e3f3541c 4876 u64 enabled, running, now;
38ff667b
PZ
4877
4878 rcu_read_lock();
5ec4c599
PZ
4879 rb = rcu_dereference(event->rb);
4880 if (!rb)
4881 goto unlock;
4882
0d641208
EM
4883 /*
4884 * compute total_time_enabled, total_time_running
4885 * based on snapshot values taken when the event
4886 * was last scheduled in.
4887 *
4888 * we cannot simply called update_context_time()
4889 * because of locking issue as we can be called in
4890 * NMI context
4891 */
e3f3541c 4892 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4893
76369139 4894 userpg = rb->user_page;
7b732a75
PZ
4895 /*
4896 * Disable preemption so as to not let the corresponding user-space
4897 * spin too long if we get preempted.
4898 */
4899 preempt_disable();
37d81828 4900 ++userpg->lock;
92f22a38 4901 barrier();
cdd6c482 4902 userpg->index = perf_event_index(event);
b5e58793 4903 userpg->offset = perf_event_count(event);
365a4038 4904 if (userpg->index)
e7850595 4905 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4906
0d641208 4907 userpg->time_enabled = enabled +
cdd6c482 4908 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4909
0d641208 4910 userpg->time_running = running +
cdd6c482 4911 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4912
c1317ec2 4913 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4914
92f22a38 4915 barrier();
37d81828 4916 ++userpg->lock;
7b732a75 4917 preempt_enable();
38ff667b 4918unlock:
7b732a75 4919 rcu_read_unlock();
37d81828 4920}
82975c46 4921EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 4922
11bac800 4923static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 4924{
11bac800 4925 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 4926 struct ring_buffer *rb;
906010b2
PZ
4927 int ret = VM_FAULT_SIGBUS;
4928
4929 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4930 if (vmf->pgoff == 0)
4931 ret = 0;
4932 return ret;
4933 }
4934
4935 rcu_read_lock();
76369139
FW
4936 rb = rcu_dereference(event->rb);
4937 if (!rb)
906010b2
PZ
4938 goto unlock;
4939
4940 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4941 goto unlock;
4942
76369139 4943 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4944 if (!vmf->page)
4945 goto unlock;
4946
4947 get_page(vmf->page);
11bac800 4948 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
4949 vmf->page->index = vmf->pgoff;
4950
4951 ret = 0;
4952unlock:
4953 rcu_read_unlock();
4954
4955 return ret;
4956}
4957
10c6db11
PZ
4958static void ring_buffer_attach(struct perf_event *event,
4959 struct ring_buffer *rb)
4960{
b69cf536 4961 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4962 unsigned long flags;
4963
b69cf536
PZ
4964 if (event->rb) {
4965 /*
4966 * Should be impossible, we set this when removing
4967 * event->rb_entry and wait/clear when adding event->rb_entry.
4968 */
4969 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4970
b69cf536 4971 old_rb = event->rb;
b69cf536
PZ
4972 spin_lock_irqsave(&old_rb->event_lock, flags);
4973 list_del_rcu(&event->rb_entry);
4974 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4975
2f993cf0
ON
4976 event->rcu_batches = get_state_synchronize_rcu();
4977 event->rcu_pending = 1;
b69cf536 4978 }
10c6db11 4979
b69cf536 4980 if (rb) {
2f993cf0
ON
4981 if (event->rcu_pending) {
4982 cond_synchronize_rcu(event->rcu_batches);
4983 event->rcu_pending = 0;
4984 }
4985
b69cf536
PZ
4986 spin_lock_irqsave(&rb->event_lock, flags);
4987 list_add_rcu(&event->rb_entry, &rb->event_list);
4988 spin_unlock_irqrestore(&rb->event_lock, flags);
4989 }
4990
767ae086
AS
4991 /*
4992 * Avoid racing with perf_mmap_close(AUX): stop the event
4993 * before swizzling the event::rb pointer; if it's getting
4994 * unmapped, its aux_mmap_count will be 0 and it won't
4995 * restart. See the comment in __perf_pmu_output_stop().
4996 *
4997 * Data will inevitably be lost when set_output is done in
4998 * mid-air, but then again, whoever does it like this is
4999 * not in for the data anyway.
5000 */
5001 if (has_aux(event))
5002 perf_event_stop(event, 0);
5003
b69cf536
PZ
5004 rcu_assign_pointer(event->rb, rb);
5005
5006 if (old_rb) {
5007 ring_buffer_put(old_rb);
5008 /*
5009 * Since we detached before setting the new rb, so that we
5010 * could attach the new rb, we could have missed a wakeup.
5011 * Provide it now.
5012 */
5013 wake_up_all(&event->waitq);
5014 }
10c6db11
PZ
5015}
5016
5017static void ring_buffer_wakeup(struct perf_event *event)
5018{
5019 struct ring_buffer *rb;
5020
5021 rcu_read_lock();
5022 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5023 if (rb) {
5024 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5025 wake_up_all(&event->waitq);
5026 }
10c6db11
PZ
5027 rcu_read_unlock();
5028}
5029
fdc26706 5030struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5031{
76369139 5032 struct ring_buffer *rb;
7b732a75 5033
ac9721f3 5034 rcu_read_lock();
76369139
FW
5035 rb = rcu_dereference(event->rb);
5036 if (rb) {
5037 if (!atomic_inc_not_zero(&rb->refcount))
5038 rb = NULL;
ac9721f3
PZ
5039 }
5040 rcu_read_unlock();
5041
76369139 5042 return rb;
ac9721f3
PZ
5043}
5044
fdc26706 5045void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5046{
76369139 5047 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5048 return;
7b732a75 5049
9bb5d40c 5050 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5051
76369139 5052 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5053}
5054
5055static void perf_mmap_open(struct vm_area_struct *vma)
5056{
cdd6c482 5057 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5058
cdd6c482 5059 atomic_inc(&event->mmap_count);
9bb5d40c 5060 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5061
45bfb2e5
PZ
5062 if (vma->vm_pgoff)
5063 atomic_inc(&event->rb->aux_mmap_count);
5064
1e0fb9ec 5065 if (event->pmu->event_mapped)
bfe33492 5066 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5067}
5068
95ff4ca2
AS
5069static void perf_pmu_output_stop(struct perf_event *event);
5070
9bb5d40c
PZ
5071/*
5072 * A buffer can be mmap()ed multiple times; either directly through the same
5073 * event, or through other events by use of perf_event_set_output().
5074 *
5075 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5076 * the buffer here, where we still have a VM context. This means we need
5077 * to detach all events redirecting to us.
5078 */
7b732a75
PZ
5079static void perf_mmap_close(struct vm_area_struct *vma)
5080{
cdd6c482 5081 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5082
b69cf536 5083 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5084 struct user_struct *mmap_user = rb->mmap_user;
5085 int mmap_locked = rb->mmap_locked;
5086 unsigned long size = perf_data_size(rb);
789f90fc 5087
1e0fb9ec 5088 if (event->pmu->event_unmapped)
bfe33492 5089 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5090
45bfb2e5
PZ
5091 /*
5092 * rb->aux_mmap_count will always drop before rb->mmap_count and
5093 * event->mmap_count, so it is ok to use event->mmap_mutex to
5094 * serialize with perf_mmap here.
5095 */
5096 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5097 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5098 /*
5099 * Stop all AUX events that are writing to this buffer,
5100 * so that we can free its AUX pages and corresponding PMU
5101 * data. Note that after rb::aux_mmap_count dropped to zero,
5102 * they won't start any more (see perf_aux_output_begin()).
5103 */
5104 perf_pmu_output_stop(event);
5105
5106 /* now it's safe to free the pages */
45bfb2e5
PZ
5107 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5108 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5109
95ff4ca2 5110 /* this has to be the last one */
45bfb2e5 5111 rb_free_aux(rb);
95ff4ca2
AS
5112 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5113
45bfb2e5
PZ
5114 mutex_unlock(&event->mmap_mutex);
5115 }
5116
9bb5d40c
PZ
5117 atomic_dec(&rb->mmap_count);
5118
5119 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5120 goto out_put;
9bb5d40c 5121
b69cf536 5122 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5123 mutex_unlock(&event->mmap_mutex);
5124
5125 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5126 if (atomic_read(&rb->mmap_count))
5127 goto out_put;
ac9721f3 5128
9bb5d40c
PZ
5129 /*
5130 * No other mmap()s, detach from all other events that might redirect
5131 * into the now unreachable buffer. Somewhat complicated by the
5132 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5133 */
5134again:
5135 rcu_read_lock();
5136 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5137 if (!atomic_long_inc_not_zero(&event->refcount)) {
5138 /*
5139 * This event is en-route to free_event() which will
5140 * detach it and remove it from the list.
5141 */
5142 continue;
5143 }
5144 rcu_read_unlock();
789f90fc 5145
9bb5d40c
PZ
5146 mutex_lock(&event->mmap_mutex);
5147 /*
5148 * Check we didn't race with perf_event_set_output() which can
5149 * swizzle the rb from under us while we were waiting to
5150 * acquire mmap_mutex.
5151 *
5152 * If we find a different rb; ignore this event, a next
5153 * iteration will no longer find it on the list. We have to
5154 * still restart the iteration to make sure we're not now
5155 * iterating the wrong list.
5156 */
b69cf536
PZ
5157 if (event->rb == rb)
5158 ring_buffer_attach(event, NULL);
5159
cdd6c482 5160 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5161 put_event(event);
ac9721f3 5162
9bb5d40c
PZ
5163 /*
5164 * Restart the iteration; either we're on the wrong list or
5165 * destroyed its integrity by doing a deletion.
5166 */
5167 goto again;
7b732a75 5168 }
9bb5d40c
PZ
5169 rcu_read_unlock();
5170
5171 /*
5172 * It could be there's still a few 0-ref events on the list; they'll
5173 * get cleaned up by free_event() -- they'll also still have their
5174 * ref on the rb and will free it whenever they are done with it.
5175 *
5176 * Aside from that, this buffer is 'fully' detached and unmapped,
5177 * undo the VM accounting.
5178 */
5179
5180 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5181 vma->vm_mm->pinned_vm -= mmap_locked;
5182 free_uid(mmap_user);
5183
b69cf536 5184out_put:
9bb5d40c 5185 ring_buffer_put(rb); /* could be last */
37d81828
PM
5186}
5187
f0f37e2f 5188static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5189 .open = perf_mmap_open,
45bfb2e5 5190 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5191 .fault = perf_mmap_fault,
5192 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5193};
5194
5195static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5196{
cdd6c482 5197 struct perf_event *event = file->private_data;
22a4f650 5198 unsigned long user_locked, user_lock_limit;
789f90fc 5199 struct user_struct *user = current_user();
22a4f650 5200 unsigned long locked, lock_limit;
45bfb2e5 5201 struct ring_buffer *rb = NULL;
7b732a75
PZ
5202 unsigned long vma_size;
5203 unsigned long nr_pages;
45bfb2e5 5204 long user_extra = 0, extra = 0;
d57e34fd 5205 int ret = 0, flags = 0;
37d81828 5206
c7920614
PZ
5207 /*
5208 * Don't allow mmap() of inherited per-task counters. This would
5209 * create a performance issue due to all children writing to the
76369139 5210 * same rb.
c7920614
PZ
5211 */
5212 if (event->cpu == -1 && event->attr.inherit)
5213 return -EINVAL;
5214
43a21ea8 5215 if (!(vma->vm_flags & VM_SHARED))
37d81828 5216 return -EINVAL;
7b732a75
PZ
5217
5218 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5219
5220 if (vma->vm_pgoff == 0) {
5221 nr_pages = (vma_size / PAGE_SIZE) - 1;
5222 } else {
5223 /*
5224 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5225 * mapped, all subsequent mappings should have the same size
5226 * and offset. Must be above the normal perf buffer.
5227 */
5228 u64 aux_offset, aux_size;
5229
5230 if (!event->rb)
5231 return -EINVAL;
5232
5233 nr_pages = vma_size / PAGE_SIZE;
5234
5235 mutex_lock(&event->mmap_mutex);
5236 ret = -EINVAL;
5237
5238 rb = event->rb;
5239 if (!rb)
5240 goto aux_unlock;
5241
6aa7de05
MR
5242 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5243 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5244
5245 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5246 goto aux_unlock;
5247
5248 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5249 goto aux_unlock;
5250
5251 /* already mapped with a different offset */
5252 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5253 goto aux_unlock;
5254
5255 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5256 goto aux_unlock;
5257
5258 /* already mapped with a different size */
5259 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5260 goto aux_unlock;
5261
5262 if (!is_power_of_2(nr_pages))
5263 goto aux_unlock;
5264
5265 if (!atomic_inc_not_zero(&rb->mmap_count))
5266 goto aux_unlock;
5267
5268 if (rb_has_aux(rb)) {
5269 atomic_inc(&rb->aux_mmap_count);
5270 ret = 0;
5271 goto unlock;
5272 }
5273
5274 atomic_set(&rb->aux_mmap_count, 1);
5275 user_extra = nr_pages;
5276
5277 goto accounting;
5278 }
7b732a75 5279
7730d865 5280 /*
76369139 5281 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5282 * can do bitmasks instead of modulo.
5283 */
2ed11312 5284 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5285 return -EINVAL;
5286
7b732a75 5287 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5288 return -EINVAL;
5289
cdd6c482 5290 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5291again:
cdd6c482 5292 mutex_lock(&event->mmap_mutex);
76369139 5293 if (event->rb) {
9bb5d40c 5294 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5295 ret = -EINVAL;
9bb5d40c
PZ
5296 goto unlock;
5297 }
5298
5299 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5300 /*
5301 * Raced against perf_mmap_close() through
5302 * perf_event_set_output(). Try again, hope for better
5303 * luck.
5304 */
5305 mutex_unlock(&event->mmap_mutex);
5306 goto again;
5307 }
5308
ebb3c4c4
PZ
5309 goto unlock;
5310 }
5311
789f90fc 5312 user_extra = nr_pages + 1;
45bfb2e5
PZ
5313
5314accounting:
cdd6c482 5315 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5316
5317 /*
5318 * Increase the limit linearly with more CPUs:
5319 */
5320 user_lock_limit *= num_online_cpus();
5321
789f90fc 5322 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5323
789f90fc
PZ
5324 if (user_locked > user_lock_limit)
5325 extra = user_locked - user_lock_limit;
7b732a75 5326
78d7d407 5327 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5328 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5329 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5330
459ec28a
IM
5331 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5332 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5333 ret = -EPERM;
5334 goto unlock;
5335 }
7b732a75 5336
45bfb2e5 5337 WARN_ON(!rb && event->rb);
906010b2 5338
d57e34fd 5339 if (vma->vm_flags & VM_WRITE)
76369139 5340 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5341
76369139 5342 if (!rb) {
45bfb2e5
PZ
5343 rb = rb_alloc(nr_pages,
5344 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5345 event->cpu, flags);
26cb63ad 5346
45bfb2e5
PZ
5347 if (!rb) {
5348 ret = -ENOMEM;
5349 goto unlock;
5350 }
43a21ea8 5351
45bfb2e5
PZ
5352 atomic_set(&rb->mmap_count, 1);
5353 rb->mmap_user = get_current_user();
5354 rb->mmap_locked = extra;
26cb63ad 5355
45bfb2e5 5356 ring_buffer_attach(event, rb);
ac9721f3 5357
45bfb2e5
PZ
5358 perf_event_init_userpage(event);
5359 perf_event_update_userpage(event);
5360 } else {
1a594131
AS
5361 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5362 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5363 if (!ret)
5364 rb->aux_mmap_locked = extra;
5365 }
9a0f05cb 5366
ebb3c4c4 5367unlock:
45bfb2e5
PZ
5368 if (!ret) {
5369 atomic_long_add(user_extra, &user->locked_vm);
5370 vma->vm_mm->pinned_vm += extra;
5371
ac9721f3 5372 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5373 } else if (rb) {
5374 atomic_dec(&rb->mmap_count);
5375 }
5376aux_unlock:
cdd6c482 5377 mutex_unlock(&event->mmap_mutex);
37d81828 5378
9bb5d40c
PZ
5379 /*
5380 * Since pinned accounting is per vm we cannot allow fork() to copy our
5381 * vma.
5382 */
26cb63ad 5383 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5384 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5385
1e0fb9ec 5386 if (event->pmu->event_mapped)
bfe33492 5387 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5388
7b732a75 5389 return ret;
37d81828
PM
5390}
5391
3c446b3d
PZ
5392static int perf_fasync(int fd, struct file *filp, int on)
5393{
496ad9aa 5394 struct inode *inode = file_inode(filp);
cdd6c482 5395 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5396 int retval;
5397
5955102c 5398 inode_lock(inode);
cdd6c482 5399 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5400 inode_unlock(inode);
3c446b3d
PZ
5401
5402 if (retval < 0)
5403 return retval;
5404
5405 return 0;
5406}
5407
0793a61d 5408static const struct file_operations perf_fops = {
3326c1ce 5409 .llseek = no_llseek,
0793a61d
TG
5410 .release = perf_release,
5411 .read = perf_read,
5412 .poll = perf_poll,
d859e29f 5413 .unlocked_ioctl = perf_ioctl,
b3f20785 5414 .compat_ioctl = perf_compat_ioctl,
37d81828 5415 .mmap = perf_mmap,
3c446b3d 5416 .fasync = perf_fasync,
0793a61d
TG
5417};
5418
925d519a 5419/*
cdd6c482 5420 * Perf event wakeup
925d519a
PZ
5421 *
5422 * If there's data, ensure we set the poll() state and publish everything
5423 * to user-space before waking everybody up.
5424 */
5425
fed66e2c
PZ
5426static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5427{
5428 /* only the parent has fasync state */
5429 if (event->parent)
5430 event = event->parent;
5431 return &event->fasync;
5432}
5433
cdd6c482 5434void perf_event_wakeup(struct perf_event *event)
925d519a 5435{
10c6db11 5436 ring_buffer_wakeup(event);
4c9e2542 5437
cdd6c482 5438 if (event->pending_kill) {
fed66e2c 5439 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5440 event->pending_kill = 0;
4c9e2542 5441 }
925d519a
PZ
5442}
5443
e360adbe 5444static void perf_pending_event(struct irq_work *entry)
79f14641 5445{
cdd6c482
IM
5446 struct perf_event *event = container_of(entry,
5447 struct perf_event, pending);
d525211f
PZ
5448 int rctx;
5449
5450 rctx = perf_swevent_get_recursion_context();
5451 /*
5452 * If we 'fail' here, that's OK, it means recursion is already disabled
5453 * and we won't recurse 'further'.
5454 */
79f14641 5455
cdd6c482
IM
5456 if (event->pending_disable) {
5457 event->pending_disable = 0;
fae3fde6 5458 perf_event_disable_local(event);
79f14641
PZ
5459 }
5460
cdd6c482
IM
5461 if (event->pending_wakeup) {
5462 event->pending_wakeup = 0;
5463 perf_event_wakeup(event);
79f14641 5464 }
d525211f
PZ
5465
5466 if (rctx >= 0)
5467 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5468}
5469
39447b38
ZY
5470/*
5471 * We assume there is only KVM supporting the callbacks.
5472 * Later on, we might change it to a list if there is
5473 * another virtualization implementation supporting the callbacks.
5474 */
5475struct perf_guest_info_callbacks *perf_guest_cbs;
5476
5477int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5478{
5479 perf_guest_cbs = cbs;
5480 return 0;
5481}
5482EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5483
5484int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5485{
5486 perf_guest_cbs = NULL;
5487 return 0;
5488}
5489EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5490
4018994f
JO
5491static void
5492perf_output_sample_regs(struct perf_output_handle *handle,
5493 struct pt_regs *regs, u64 mask)
5494{
5495 int bit;
29dd3288 5496 DECLARE_BITMAP(_mask, 64);
4018994f 5497
29dd3288
MS
5498 bitmap_from_u64(_mask, mask);
5499 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5500 u64 val;
5501
5502 val = perf_reg_value(regs, bit);
5503 perf_output_put(handle, val);
5504 }
5505}
5506
60e2364e 5507static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5508 struct pt_regs *regs,
5509 struct pt_regs *regs_user_copy)
4018994f 5510{
88a7c26a
AL
5511 if (user_mode(regs)) {
5512 regs_user->abi = perf_reg_abi(current);
2565711f 5513 regs_user->regs = regs;
88a7c26a
AL
5514 } else if (current->mm) {
5515 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5516 } else {
5517 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5518 regs_user->regs = NULL;
4018994f
JO
5519 }
5520}
5521
60e2364e
SE
5522static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5523 struct pt_regs *regs)
5524{
5525 regs_intr->regs = regs;
5526 regs_intr->abi = perf_reg_abi(current);
5527}
5528
5529
c5ebcedb
JO
5530/*
5531 * Get remaining task size from user stack pointer.
5532 *
5533 * It'd be better to take stack vma map and limit this more
5534 * precisly, but there's no way to get it safely under interrupt,
5535 * so using TASK_SIZE as limit.
5536 */
5537static u64 perf_ustack_task_size(struct pt_regs *regs)
5538{
5539 unsigned long addr = perf_user_stack_pointer(regs);
5540
5541 if (!addr || addr >= TASK_SIZE)
5542 return 0;
5543
5544 return TASK_SIZE - addr;
5545}
5546
5547static u16
5548perf_sample_ustack_size(u16 stack_size, u16 header_size,
5549 struct pt_regs *regs)
5550{
5551 u64 task_size;
5552
5553 /* No regs, no stack pointer, no dump. */
5554 if (!regs)
5555 return 0;
5556
5557 /*
5558 * Check if we fit in with the requested stack size into the:
5559 * - TASK_SIZE
5560 * If we don't, we limit the size to the TASK_SIZE.
5561 *
5562 * - remaining sample size
5563 * If we don't, we customize the stack size to
5564 * fit in to the remaining sample size.
5565 */
5566
5567 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5568 stack_size = min(stack_size, (u16) task_size);
5569
5570 /* Current header size plus static size and dynamic size. */
5571 header_size += 2 * sizeof(u64);
5572
5573 /* Do we fit in with the current stack dump size? */
5574 if ((u16) (header_size + stack_size) < header_size) {
5575 /*
5576 * If we overflow the maximum size for the sample,
5577 * we customize the stack dump size to fit in.
5578 */
5579 stack_size = USHRT_MAX - header_size - sizeof(u64);
5580 stack_size = round_up(stack_size, sizeof(u64));
5581 }
5582
5583 return stack_size;
5584}
5585
5586static void
5587perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5588 struct pt_regs *regs)
5589{
5590 /* Case of a kernel thread, nothing to dump */
5591 if (!regs) {
5592 u64 size = 0;
5593 perf_output_put(handle, size);
5594 } else {
5595 unsigned long sp;
5596 unsigned int rem;
5597 u64 dyn_size;
5598
5599 /*
5600 * We dump:
5601 * static size
5602 * - the size requested by user or the best one we can fit
5603 * in to the sample max size
5604 * data
5605 * - user stack dump data
5606 * dynamic size
5607 * - the actual dumped size
5608 */
5609
5610 /* Static size. */
5611 perf_output_put(handle, dump_size);
5612
5613 /* Data. */
5614 sp = perf_user_stack_pointer(regs);
5615 rem = __output_copy_user(handle, (void *) sp, dump_size);
5616 dyn_size = dump_size - rem;
5617
5618 perf_output_skip(handle, rem);
5619
5620 /* Dynamic size. */
5621 perf_output_put(handle, dyn_size);
5622 }
5623}
5624
c980d109
ACM
5625static void __perf_event_header__init_id(struct perf_event_header *header,
5626 struct perf_sample_data *data,
5627 struct perf_event *event)
6844c09d
ACM
5628{
5629 u64 sample_type = event->attr.sample_type;
5630
5631 data->type = sample_type;
5632 header->size += event->id_header_size;
5633
5634 if (sample_type & PERF_SAMPLE_TID) {
5635 /* namespace issues */
5636 data->tid_entry.pid = perf_event_pid(event, current);
5637 data->tid_entry.tid = perf_event_tid(event, current);
5638 }
5639
5640 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5641 data->time = perf_event_clock(event);
6844c09d 5642
ff3d527c 5643 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5644 data->id = primary_event_id(event);
5645
5646 if (sample_type & PERF_SAMPLE_STREAM_ID)
5647 data->stream_id = event->id;
5648
5649 if (sample_type & PERF_SAMPLE_CPU) {
5650 data->cpu_entry.cpu = raw_smp_processor_id();
5651 data->cpu_entry.reserved = 0;
5652 }
5653}
5654
76369139
FW
5655void perf_event_header__init_id(struct perf_event_header *header,
5656 struct perf_sample_data *data,
5657 struct perf_event *event)
c980d109
ACM
5658{
5659 if (event->attr.sample_id_all)
5660 __perf_event_header__init_id(header, data, event);
5661}
5662
5663static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5664 struct perf_sample_data *data)
5665{
5666 u64 sample_type = data->type;
5667
5668 if (sample_type & PERF_SAMPLE_TID)
5669 perf_output_put(handle, data->tid_entry);
5670
5671 if (sample_type & PERF_SAMPLE_TIME)
5672 perf_output_put(handle, data->time);
5673
5674 if (sample_type & PERF_SAMPLE_ID)
5675 perf_output_put(handle, data->id);
5676
5677 if (sample_type & PERF_SAMPLE_STREAM_ID)
5678 perf_output_put(handle, data->stream_id);
5679
5680 if (sample_type & PERF_SAMPLE_CPU)
5681 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5682
5683 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5684 perf_output_put(handle, data->id);
c980d109
ACM
5685}
5686
76369139
FW
5687void perf_event__output_id_sample(struct perf_event *event,
5688 struct perf_output_handle *handle,
5689 struct perf_sample_data *sample)
c980d109
ACM
5690{
5691 if (event->attr.sample_id_all)
5692 __perf_event__output_id_sample(handle, sample);
5693}
5694
3dab77fb 5695static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5696 struct perf_event *event,
5697 u64 enabled, u64 running)
3dab77fb 5698{
cdd6c482 5699 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5700 u64 values[4];
5701 int n = 0;
5702
b5e58793 5703 values[n++] = perf_event_count(event);
3dab77fb 5704 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5705 values[n++] = enabled +
cdd6c482 5706 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5707 }
5708 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5709 values[n++] = running +
cdd6c482 5710 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5711 }
5712 if (read_format & PERF_FORMAT_ID)
cdd6c482 5713 values[n++] = primary_event_id(event);
3dab77fb 5714
76369139 5715 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5716}
5717
3dab77fb 5718static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5719 struct perf_event *event,
5720 u64 enabled, u64 running)
3dab77fb 5721{
cdd6c482
IM
5722 struct perf_event *leader = event->group_leader, *sub;
5723 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5724 u64 values[5];
5725 int n = 0;
5726
5727 values[n++] = 1 + leader->nr_siblings;
5728
5729 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5730 values[n++] = enabled;
3dab77fb
PZ
5731
5732 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5733 values[n++] = running;
3dab77fb 5734
cdd6c482 5735 if (leader != event)
3dab77fb
PZ
5736 leader->pmu->read(leader);
5737
b5e58793 5738 values[n++] = perf_event_count(leader);
3dab77fb 5739 if (read_format & PERF_FORMAT_ID)
cdd6c482 5740 values[n++] = primary_event_id(leader);
3dab77fb 5741
76369139 5742 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5743
65abc865 5744 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5745 n = 0;
5746
6f5ab001
JO
5747 if ((sub != event) &&
5748 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5749 sub->pmu->read(sub);
5750
b5e58793 5751 values[n++] = perf_event_count(sub);
3dab77fb 5752 if (read_format & PERF_FORMAT_ID)
cdd6c482 5753 values[n++] = primary_event_id(sub);
3dab77fb 5754
76369139 5755 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5756 }
5757}
5758
eed01528
SE
5759#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5760 PERF_FORMAT_TOTAL_TIME_RUNNING)
5761
ba5213ae
PZ
5762/*
5763 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5764 *
5765 * The problem is that its both hard and excessively expensive to iterate the
5766 * child list, not to mention that its impossible to IPI the children running
5767 * on another CPU, from interrupt/NMI context.
5768 */
3dab77fb 5769static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5770 struct perf_event *event)
3dab77fb 5771{
e3f3541c 5772 u64 enabled = 0, running = 0, now;
eed01528
SE
5773 u64 read_format = event->attr.read_format;
5774
5775 /*
5776 * compute total_time_enabled, total_time_running
5777 * based on snapshot values taken when the event
5778 * was last scheduled in.
5779 *
5780 * we cannot simply called update_context_time()
5781 * because of locking issue as we are called in
5782 * NMI context
5783 */
c4794295 5784 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5785 calc_timer_values(event, &now, &enabled, &running);
eed01528 5786
cdd6c482 5787 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5788 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5789 else
eed01528 5790 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5791}
5792
5622f295
MM
5793void perf_output_sample(struct perf_output_handle *handle,
5794 struct perf_event_header *header,
5795 struct perf_sample_data *data,
cdd6c482 5796 struct perf_event *event)
5622f295
MM
5797{
5798 u64 sample_type = data->type;
5799
5800 perf_output_put(handle, *header);
5801
ff3d527c
AH
5802 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5803 perf_output_put(handle, data->id);
5804
5622f295
MM
5805 if (sample_type & PERF_SAMPLE_IP)
5806 perf_output_put(handle, data->ip);
5807
5808 if (sample_type & PERF_SAMPLE_TID)
5809 perf_output_put(handle, data->tid_entry);
5810
5811 if (sample_type & PERF_SAMPLE_TIME)
5812 perf_output_put(handle, data->time);
5813
5814 if (sample_type & PERF_SAMPLE_ADDR)
5815 perf_output_put(handle, data->addr);
5816
5817 if (sample_type & PERF_SAMPLE_ID)
5818 perf_output_put(handle, data->id);
5819
5820 if (sample_type & PERF_SAMPLE_STREAM_ID)
5821 perf_output_put(handle, data->stream_id);
5822
5823 if (sample_type & PERF_SAMPLE_CPU)
5824 perf_output_put(handle, data->cpu_entry);
5825
5826 if (sample_type & PERF_SAMPLE_PERIOD)
5827 perf_output_put(handle, data->period);
5828
5829 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5830 perf_output_read(handle, event);
5622f295
MM
5831
5832 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 5833 int size = 1;
5622f295 5834
99e818cc
JO
5835 size += data->callchain->nr;
5836 size *= sizeof(u64);
5837 __output_copy(handle, data->callchain, size);
5622f295
MM
5838 }
5839
5840 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5841 struct perf_raw_record *raw = data->raw;
5842
5843 if (raw) {
5844 struct perf_raw_frag *frag = &raw->frag;
5845
5846 perf_output_put(handle, raw->size);
5847 do {
5848 if (frag->copy) {
5849 __output_custom(handle, frag->copy,
5850 frag->data, frag->size);
5851 } else {
5852 __output_copy(handle, frag->data,
5853 frag->size);
5854 }
5855 if (perf_raw_frag_last(frag))
5856 break;
5857 frag = frag->next;
5858 } while (1);
5859 if (frag->pad)
5860 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5861 } else {
5862 struct {
5863 u32 size;
5864 u32 data;
5865 } raw = {
5866 .size = sizeof(u32),
5867 .data = 0,
5868 };
5869 perf_output_put(handle, raw);
5870 }
5871 }
a7ac67ea 5872
bce38cd5
SE
5873 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5874 if (data->br_stack) {
5875 size_t size;
5876
5877 size = data->br_stack->nr
5878 * sizeof(struct perf_branch_entry);
5879
5880 perf_output_put(handle, data->br_stack->nr);
5881 perf_output_copy(handle, data->br_stack->entries, size);
5882 } else {
5883 /*
5884 * we always store at least the value of nr
5885 */
5886 u64 nr = 0;
5887 perf_output_put(handle, nr);
5888 }
5889 }
4018994f
JO
5890
5891 if (sample_type & PERF_SAMPLE_REGS_USER) {
5892 u64 abi = data->regs_user.abi;
5893
5894 /*
5895 * If there are no regs to dump, notice it through
5896 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5897 */
5898 perf_output_put(handle, abi);
5899
5900 if (abi) {
5901 u64 mask = event->attr.sample_regs_user;
5902 perf_output_sample_regs(handle,
5903 data->regs_user.regs,
5904 mask);
5905 }
5906 }
c5ebcedb 5907
a5cdd40c 5908 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5909 perf_output_sample_ustack(handle,
5910 data->stack_user_size,
5911 data->regs_user.regs);
a5cdd40c 5912 }
c3feedf2
AK
5913
5914 if (sample_type & PERF_SAMPLE_WEIGHT)
5915 perf_output_put(handle, data->weight);
d6be9ad6
SE
5916
5917 if (sample_type & PERF_SAMPLE_DATA_SRC)
5918 perf_output_put(handle, data->data_src.val);
a5cdd40c 5919
fdfbbd07
AK
5920 if (sample_type & PERF_SAMPLE_TRANSACTION)
5921 perf_output_put(handle, data->txn);
5922
60e2364e
SE
5923 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5924 u64 abi = data->regs_intr.abi;
5925 /*
5926 * If there are no regs to dump, notice it through
5927 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5928 */
5929 perf_output_put(handle, abi);
5930
5931 if (abi) {
5932 u64 mask = event->attr.sample_regs_intr;
5933
5934 perf_output_sample_regs(handle,
5935 data->regs_intr.regs,
5936 mask);
5937 }
5938 }
5939
fc7ce9c7
KL
5940 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5941 perf_output_put(handle, data->phys_addr);
5942
a5cdd40c
PZ
5943 if (!event->attr.watermark) {
5944 int wakeup_events = event->attr.wakeup_events;
5945
5946 if (wakeup_events) {
5947 struct ring_buffer *rb = handle->rb;
5948 int events = local_inc_return(&rb->events);
5949
5950 if (events >= wakeup_events) {
5951 local_sub(wakeup_events, &rb->events);
5952 local_inc(&rb->wakeup);
5953 }
5954 }
5955 }
5622f295
MM
5956}
5957
fc7ce9c7
KL
5958static u64 perf_virt_to_phys(u64 virt)
5959{
5960 u64 phys_addr = 0;
5961 struct page *p = NULL;
5962
5963 if (!virt)
5964 return 0;
5965
5966 if (virt >= TASK_SIZE) {
5967 /* If it's vmalloc()d memory, leave phys_addr as 0 */
5968 if (virt_addr_valid((void *)(uintptr_t)virt) &&
5969 !(virt >= VMALLOC_START && virt < VMALLOC_END))
5970 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5971 } else {
5972 /*
5973 * Walking the pages tables for user address.
5974 * Interrupts are disabled, so it prevents any tear down
5975 * of the page tables.
5976 * Try IRQ-safe __get_user_pages_fast first.
5977 * If failed, leave phys_addr as 0.
5978 */
5979 if ((current->mm != NULL) &&
5980 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5981 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5982
5983 if (p)
5984 put_page(p);
5985 }
5986
5987 return phys_addr;
5988}
5989
99e818cc
JO
5990static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
5991
8cf7e0e2
JO
5992static struct perf_callchain_entry *
5993perf_callchain(struct perf_event *event, struct pt_regs *regs)
5994{
5995 bool kernel = !event->attr.exclude_callchain_kernel;
5996 bool user = !event->attr.exclude_callchain_user;
5997 /* Disallow cross-task user callchains. */
5998 bool crosstask = event->ctx->task && event->ctx->task != current;
5999 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 6000 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6001
6002 if (!kernel && !user)
99e818cc 6003 return &__empty_callchain;
8cf7e0e2 6004
99e818cc
JO
6005 callchain = get_perf_callchain(regs, 0, kernel, user,
6006 max_stack, crosstask, true);
6007 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6008}
6009
5622f295
MM
6010void perf_prepare_sample(struct perf_event_header *header,
6011 struct perf_sample_data *data,
cdd6c482 6012 struct perf_event *event,
5622f295 6013 struct pt_regs *regs)
7b732a75 6014{
cdd6c482 6015 u64 sample_type = event->attr.sample_type;
7b732a75 6016
cdd6c482 6017 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6018 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6019
6020 header->misc = 0;
6021 header->misc |= perf_misc_flags(regs);
6fab0192 6022
c980d109 6023 __perf_event_header__init_id(header, data, event);
6844c09d 6024
c320c7b7 6025 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6026 data->ip = perf_instruction_pointer(regs);
6027
b23f3325 6028 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6029 int size = 1;
394ee076 6030
e6dab5ff 6031 data->callchain = perf_callchain(event, regs);
99e818cc 6032 size += data->callchain->nr;
5622f295
MM
6033
6034 header->size += size * sizeof(u64);
394ee076
PZ
6035 }
6036
3a43ce68 6037 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6038 struct perf_raw_record *raw = data->raw;
6039 int size;
6040
6041 if (raw) {
6042 struct perf_raw_frag *frag = &raw->frag;
6043 u32 sum = 0;
6044
6045 do {
6046 sum += frag->size;
6047 if (perf_raw_frag_last(frag))
6048 break;
6049 frag = frag->next;
6050 } while (1);
6051
6052 size = round_up(sum + sizeof(u32), sizeof(u64));
6053 raw->size = size - sizeof(u32);
6054 frag->pad = raw->size - sum;
6055 } else {
6056 size = sizeof(u64);
6057 }
a044560c 6058
7e3f977e 6059 header->size += size;
7f453c24 6060 }
bce38cd5
SE
6061
6062 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6063 int size = sizeof(u64); /* nr */
6064 if (data->br_stack) {
6065 size += data->br_stack->nr
6066 * sizeof(struct perf_branch_entry);
6067 }
6068 header->size += size;
6069 }
4018994f 6070
2565711f 6071 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6072 perf_sample_regs_user(&data->regs_user, regs,
6073 &data->regs_user_copy);
2565711f 6074
4018994f
JO
6075 if (sample_type & PERF_SAMPLE_REGS_USER) {
6076 /* regs dump ABI info */
6077 int size = sizeof(u64);
6078
4018994f
JO
6079 if (data->regs_user.regs) {
6080 u64 mask = event->attr.sample_regs_user;
6081 size += hweight64(mask) * sizeof(u64);
6082 }
6083
6084 header->size += size;
6085 }
c5ebcedb
JO
6086
6087 if (sample_type & PERF_SAMPLE_STACK_USER) {
6088 /*
6089 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6090 * processed as the last one or have additional check added
6091 * in case new sample type is added, because we could eat
6092 * up the rest of the sample size.
6093 */
c5ebcedb
JO
6094 u16 stack_size = event->attr.sample_stack_user;
6095 u16 size = sizeof(u64);
6096
c5ebcedb 6097 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6098 data->regs_user.regs);
c5ebcedb
JO
6099
6100 /*
6101 * If there is something to dump, add space for the dump
6102 * itself and for the field that tells the dynamic size,
6103 * which is how many have been actually dumped.
6104 */
6105 if (stack_size)
6106 size += sizeof(u64) + stack_size;
6107
6108 data->stack_user_size = stack_size;
6109 header->size += size;
6110 }
60e2364e
SE
6111
6112 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6113 /* regs dump ABI info */
6114 int size = sizeof(u64);
6115
6116 perf_sample_regs_intr(&data->regs_intr, regs);
6117
6118 if (data->regs_intr.regs) {
6119 u64 mask = event->attr.sample_regs_intr;
6120
6121 size += hweight64(mask) * sizeof(u64);
6122 }
6123
6124 header->size += size;
6125 }
fc7ce9c7
KL
6126
6127 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6128 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6129}
7f453c24 6130
9ecda41a
WN
6131static void __always_inline
6132__perf_event_output(struct perf_event *event,
6133 struct perf_sample_data *data,
6134 struct pt_regs *regs,
6135 int (*output_begin)(struct perf_output_handle *,
6136 struct perf_event *,
6137 unsigned int))
5622f295
MM
6138{
6139 struct perf_output_handle handle;
6140 struct perf_event_header header;
689802b2 6141
927c7a9e
FW
6142 /* protect the callchain buffers */
6143 rcu_read_lock();
6144
cdd6c482 6145 perf_prepare_sample(&header, data, event, regs);
5c148194 6146
9ecda41a 6147 if (output_begin(&handle, event, header.size))
927c7a9e 6148 goto exit;
0322cd6e 6149
cdd6c482 6150 perf_output_sample(&handle, &header, data, event);
f413cdb8 6151
8a057d84 6152 perf_output_end(&handle);
927c7a9e
FW
6153
6154exit:
6155 rcu_read_unlock();
0322cd6e
PZ
6156}
6157
9ecda41a
WN
6158void
6159perf_event_output_forward(struct perf_event *event,
6160 struct perf_sample_data *data,
6161 struct pt_regs *regs)
6162{
6163 __perf_event_output(event, data, regs, perf_output_begin_forward);
6164}
6165
6166void
6167perf_event_output_backward(struct perf_event *event,
6168 struct perf_sample_data *data,
6169 struct pt_regs *regs)
6170{
6171 __perf_event_output(event, data, regs, perf_output_begin_backward);
6172}
6173
6174void
6175perf_event_output(struct perf_event *event,
6176 struct perf_sample_data *data,
6177 struct pt_regs *regs)
6178{
6179 __perf_event_output(event, data, regs, perf_output_begin);
6180}
6181
38b200d6 6182/*
cdd6c482 6183 * read event_id
38b200d6
PZ
6184 */
6185
6186struct perf_read_event {
6187 struct perf_event_header header;
6188
6189 u32 pid;
6190 u32 tid;
38b200d6
PZ
6191};
6192
6193static void
cdd6c482 6194perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6195 struct task_struct *task)
6196{
6197 struct perf_output_handle handle;
c980d109 6198 struct perf_sample_data sample;
dfc65094 6199 struct perf_read_event read_event = {
38b200d6 6200 .header = {
cdd6c482 6201 .type = PERF_RECORD_READ,
38b200d6 6202 .misc = 0,
c320c7b7 6203 .size = sizeof(read_event) + event->read_size,
38b200d6 6204 },
cdd6c482
IM
6205 .pid = perf_event_pid(event, task),
6206 .tid = perf_event_tid(event, task),
38b200d6 6207 };
3dab77fb 6208 int ret;
38b200d6 6209
c980d109 6210 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6211 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6212 if (ret)
6213 return;
6214
dfc65094 6215 perf_output_put(&handle, read_event);
cdd6c482 6216 perf_output_read(&handle, event);
c980d109 6217 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6218
38b200d6
PZ
6219 perf_output_end(&handle);
6220}
6221
aab5b71e 6222typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6223
6224static void
aab5b71e
PZ
6225perf_iterate_ctx(struct perf_event_context *ctx,
6226 perf_iterate_f output,
b73e4fef 6227 void *data, bool all)
52d857a8
JO
6228{
6229 struct perf_event *event;
6230
6231 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6232 if (!all) {
6233 if (event->state < PERF_EVENT_STATE_INACTIVE)
6234 continue;
6235 if (!event_filter_match(event))
6236 continue;
6237 }
6238
67516844 6239 output(event, data);
52d857a8
JO
6240 }
6241}
6242
aab5b71e 6243static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6244{
6245 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6246 struct perf_event *event;
6247
6248 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6249 /*
6250 * Skip events that are not fully formed yet; ensure that
6251 * if we observe event->ctx, both event and ctx will be
6252 * complete enough. See perf_install_in_context().
6253 */
6254 if (!smp_load_acquire(&event->ctx))
6255 continue;
6256
f2fb6bef
KL
6257 if (event->state < PERF_EVENT_STATE_INACTIVE)
6258 continue;
6259 if (!event_filter_match(event))
6260 continue;
6261 output(event, data);
6262 }
6263}
6264
aab5b71e
PZ
6265/*
6266 * Iterate all events that need to receive side-band events.
6267 *
6268 * For new callers; ensure that account_pmu_sb_event() includes
6269 * your event, otherwise it might not get delivered.
6270 */
52d857a8 6271static void
aab5b71e 6272perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6273 struct perf_event_context *task_ctx)
6274{
52d857a8 6275 struct perf_event_context *ctx;
52d857a8
JO
6276 int ctxn;
6277
aab5b71e
PZ
6278 rcu_read_lock();
6279 preempt_disable();
6280
4e93ad60 6281 /*
aab5b71e
PZ
6282 * If we have task_ctx != NULL we only notify the task context itself.
6283 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6284 * context.
6285 */
6286 if (task_ctx) {
aab5b71e
PZ
6287 perf_iterate_ctx(task_ctx, output, data, false);
6288 goto done;
4e93ad60
JO
6289 }
6290
aab5b71e 6291 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6292
6293 for_each_task_context_nr(ctxn) {
52d857a8
JO
6294 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6295 if (ctx)
aab5b71e 6296 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6297 }
aab5b71e 6298done:
f2fb6bef 6299 preempt_enable();
52d857a8 6300 rcu_read_unlock();
95ff4ca2
AS
6301}
6302
375637bc
AS
6303/*
6304 * Clear all file-based filters at exec, they'll have to be
6305 * re-instated when/if these objects are mmapped again.
6306 */
6307static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6308{
6309 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6310 struct perf_addr_filter *filter;
6311 unsigned int restart = 0, count = 0;
6312 unsigned long flags;
6313
6314 if (!has_addr_filter(event))
6315 return;
6316
6317 raw_spin_lock_irqsave(&ifh->lock, flags);
6318 list_for_each_entry(filter, &ifh->list, entry) {
6319 if (filter->inode) {
6320 event->addr_filters_offs[count] = 0;
6321 restart++;
6322 }
6323
6324 count++;
6325 }
6326
6327 if (restart)
6328 event->addr_filters_gen++;
6329 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6330
6331 if (restart)
767ae086 6332 perf_event_stop(event, 1);
375637bc
AS
6333}
6334
6335void perf_event_exec(void)
6336{
6337 struct perf_event_context *ctx;
6338 int ctxn;
6339
6340 rcu_read_lock();
6341 for_each_task_context_nr(ctxn) {
6342 ctx = current->perf_event_ctxp[ctxn];
6343 if (!ctx)
6344 continue;
6345
6346 perf_event_enable_on_exec(ctxn);
6347
aab5b71e 6348 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6349 true);
6350 }
6351 rcu_read_unlock();
6352}
6353
95ff4ca2
AS
6354struct remote_output {
6355 struct ring_buffer *rb;
6356 int err;
6357};
6358
6359static void __perf_event_output_stop(struct perf_event *event, void *data)
6360{
6361 struct perf_event *parent = event->parent;
6362 struct remote_output *ro = data;
6363 struct ring_buffer *rb = ro->rb;
375637bc
AS
6364 struct stop_event_data sd = {
6365 .event = event,
6366 };
95ff4ca2
AS
6367
6368 if (!has_aux(event))
6369 return;
6370
6371 if (!parent)
6372 parent = event;
6373
6374 /*
6375 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6376 * ring-buffer, but it will be the child that's actually using it.
6377 *
6378 * We are using event::rb to determine if the event should be stopped,
6379 * however this may race with ring_buffer_attach() (through set_output),
6380 * which will make us skip the event that actually needs to be stopped.
6381 * So ring_buffer_attach() has to stop an aux event before re-assigning
6382 * its rb pointer.
95ff4ca2
AS
6383 */
6384 if (rcu_dereference(parent->rb) == rb)
375637bc 6385 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6386}
6387
6388static int __perf_pmu_output_stop(void *info)
6389{
6390 struct perf_event *event = info;
6391 struct pmu *pmu = event->pmu;
8b6a3fe8 6392 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6393 struct remote_output ro = {
6394 .rb = event->rb,
6395 };
6396
6397 rcu_read_lock();
aab5b71e 6398 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6399 if (cpuctx->task_ctx)
aab5b71e 6400 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6401 &ro, false);
95ff4ca2
AS
6402 rcu_read_unlock();
6403
6404 return ro.err;
6405}
6406
6407static void perf_pmu_output_stop(struct perf_event *event)
6408{
6409 struct perf_event *iter;
6410 int err, cpu;
6411
6412restart:
6413 rcu_read_lock();
6414 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6415 /*
6416 * For per-CPU events, we need to make sure that neither they
6417 * nor their children are running; for cpu==-1 events it's
6418 * sufficient to stop the event itself if it's active, since
6419 * it can't have children.
6420 */
6421 cpu = iter->cpu;
6422 if (cpu == -1)
6423 cpu = READ_ONCE(iter->oncpu);
6424
6425 if (cpu == -1)
6426 continue;
6427
6428 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6429 if (err == -EAGAIN) {
6430 rcu_read_unlock();
6431 goto restart;
6432 }
6433 }
6434 rcu_read_unlock();
52d857a8
JO
6435}
6436
60313ebe 6437/*
9f498cc5
PZ
6438 * task tracking -- fork/exit
6439 *
13d7a241 6440 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6441 */
6442
9f498cc5 6443struct perf_task_event {
3a80b4a3 6444 struct task_struct *task;
cdd6c482 6445 struct perf_event_context *task_ctx;
60313ebe
PZ
6446
6447 struct {
6448 struct perf_event_header header;
6449
6450 u32 pid;
6451 u32 ppid;
9f498cc5
PZ
6452 u32 tid;
6453 u32 ptid;
393b2ad8 6454 u64 time;
cdd6c482 6455 } event_id;
60313ebe
PZ
6456};
6457
67516844
JO
6458static int perf_event_task_match(struct perf_event *event)
6459{
13d7a241
SE
6460 return event->attr.comm || event->attr.mmap ||
6461 event->attr.mmap2 || event->attr.mmap_data ||
6462 event->attr.task;
67516844
JO
6463}
6464
cdd6c482 6465static void perf_event_task_output(struct perf_event *event,
52d857a8 6466 void *data)
60313ebe 6467{
52d857a8 6468 struct perf_task_event *task_event = data;
60313ebe 6469 struct perf_output_handle handle;
c980d109 6470 struct perf_sample_data sample;
9f498cc5 6471 struct task_struct *task = task_event->task;
c980d109 6472 int ret, size = task_event->event_id.header.size;
8bb39f9a 6473
67516844
JO
6474 if (!perf_event_task_match(event))
6475 return;
6476
c980d109 6477 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6478
c980d109 6479 ret = perf_output_begin(&handle, event,
a7ac67ea 6480 task_event->event_id.header.size);
ef60777c 6481 if (ret)
c980d109 6482 goto out;
60313ebe 6483
cdd6c482
IM
6484 task_event->event_id.pid = perf_event_pid(event, task);
6485 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6486
cdd6c482
IM
6487 task_event->event_id.tid = perf_event_tid(event, task);
6488 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6489
34f43927
PZ
6490 task_event->event_id.time = perf_event_clock(event);
6491
cdd6c482 6492 perf_output_put(&handle, task_event->event_id);
393b2ad8 6493
c980d109
ACM
6494 perf_event__output_id_sample(event, &handle, &sample);
6495
60313ebe 6496 perf_output_end(&handle);
c980d109
ACM
6497out:
6498 task_event->event_id.header.size = size;
60313ebe
PZ
6499}
6500
cdd6c482
IM
6501static void perf_event_task(struct task_struct *task,
6502 struct perf_event_context *task_ctx,
3a80b4a3 6503 int new)
60313ebe 6504{
9f498cc5 6505 struct perf_task_event task_event;
60313ebe 6506
cdd6c482
IM
6507 if (!atomic_read(&nr_comm_events) &&
6508 !atomic_read(&nr_mmap_events) &&
6509 !atomic_read(&nr_task_events))
60313ebe
PZ
6510 return;
6511
9f498cc5 6512 task_event = (struct perf_task_event){
3a80b4a3
PZ
6513 .task = task,
6514 .task_ctx = task_ctx,
cdd6c482 6515 .event_id = {
60313ebe 6516 .header = {
cdd6c482 6517 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6518 .misc = 0,
cdd6c482 6519 .size = sizeof(task_event.event_id),
60313ebe 6520 },
573402db
PZ
6521 /* .pid */
6522 /* .ppid */
9f498cc5
PZ
6523 /* .tid */
6524 /* .ptid */
34f43927 6525 /* .time */
60313ebe
PZ
6526 },
6527 };
6528
aab5b71e 6529 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6530 &task_event,
6531 task_ctx);
9f498cc5
PZ
6532}
6533
cdd6c482 6534void perf_event_fork(struct task_struct *task)
9f498cc5 6535{
cdd6c482 6536 perf_event_task(task, NULL, 1);
e4222673 6537 perf_event_namespaces(task);
60313ebe
PZ
6538}
6539
8d1b2d93
PZ
6540/*
6541 * comm tracking
6542 */
6543
6544struct perf_comm_event {
22a4f650
IM
6545 struct task_struct *task;
6546 char *comm;
8d1b2d93
PZ
6547 int comm_size;
6548
6549 struct {
6550 struct perf_event_header header;
6551
6552 u32 pid;
6553 u32 tid;
cdd6c482 6554 } event_id;
8d1b2d93
PZ
6555};
6556
67516844
JO
6557static int perf_event_comm_match(struct perf_event *event)
6558{
6559 return event->attr.comm;
6560}
6561
cdd6c482 6562static void perf_event_comm_output(struct perf_event *event,
52d857a8 6563 void *data)
8d1b2d93 6564{
52d857a8 6565 struct perf_comm_event *comm_event = data;
8d1b2d93 6566 struct perf_output_handle handle;
c980d109 6567 struct perf_sample_data sample;
cdd6c482 6568 int size = comm_event->event_id.header.size;
c980d109
ACM
6569 int ret;
6570
67516844
JO
6571 if (!perf_event_comm_match(event))
6572 return;
6573
c980d109
ACM
6574 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6575 ret = perf_output_begin(&handle, event,
a7ac67ea 6576 comm_event->event_id.header.size);
8d1b2d93
PZ
6577
6578 if (ret)
c980d109 6579 goto out;
8d1b2d93 6580
cdd6c482
IM
6581 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6582 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6583
cdd6c482 6584 perf_output_put(&handle, comm_event->event_id);
76369139 6585 __output_copy(&handle, comm_event->comm,
8d1b2d93 6586 comm_event->comm_size);
c980d109
ACM
6587
6588 perf_event__output_id_sample(event, &handle, &sample);
6589
8d1b2d93 6590 perf_output_end(&handle);
c980d109
ACM
6591out:
6592 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6593}
6594
cdd6c482 6595static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6596{
413ee3b4 6597 char comm[TASK_COMM_LEN];
8d1b2d93 6598 unsigned int size;
8d1b2d93 6599
413ee3b4 6600 memset(comm, 0, sizeof(comm));
96b02d78 6601 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6602 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6603
6604 comm_event->comm = comm;
6605 comm_event->comm_size = size;
6606
cdd6c482 6607 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6608
aab5b71e 6609 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6610 comm_event,
6611 NULL);
8d1b2d93
PZ
6612}
6613
82b89778 6614void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6615{
9ee318a7
PZ
6616 struct perf_comm_event comm_event;
6617
cdd6c482 6618 if (!atomic_read(&nr_comm_events))
9ee318a7 6619 return;
a63eaf34 6620
9ee318a7 6621 comm_event = (struct perf_comm_event){
8d1b2d93 6622 .task = task,
573402db
PZ
6623 /* .comm */
6624 /* .comm_size */
cdd6c482 6625 .event_id = {
573402db 6626 .header = {
cdd6c482 6627 .type = PERF_RECORD_COMM,
82b89778 6628 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6629 /* .size */
6630 },
6631 /* .pid */
6632 /* .tid */
8d1b2d93
PZ
6633 },
6634 };
6635
cdd6c482 6636 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6637}
6638
e4222673
HB
6639/*
6640 * namespaces tracking
6641 */
6642
6643struct perf_namespaces_event {
6644 struct task_struct *task;
6645
6646 struct {
6647 struct perf_event_header header;
6648
6649 u32 pid;
6650 u32 tid;
6651 u64 nr_namespaces;
6652 struct perf_ns_link_info link_info[NR_NAMESPACES];
6653 } event_id;
6654};
6655
6656static int perf_event_namespaces_match(struct perf_event *event)
6657{
6658 return event->attr.namespaces;
6659}
6660
6661static void perf_event_namespaces_output(struct perf_event *event,
6662 void *data)
6663{
6664 struct perf_namespaces_event *namespaces_event = data;
6665 struct perf_output_handle handle;
6666 struct perf_sample_data sample;
34900ec5 6667 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
6668 int ret;
6669
6670 if (!perf_event_namespaces_match(event))
6671 return;
6672
6673 perf_event_header__init_id(&namespaces_event->event_id.header,
6674 &sample, event);
6675 ret = perf_output_begin(&handle, event,
6676 namespaces_event->event_id.header.size);
6677 if (ret)
34900ec5 6678 goto out;
e4222673
HB
6679
6680 namespaces_event->event_id.pid = perf_event_pid(event,
6681 namespaces_event->task);
6682 namespaces_event->event_id.tid = perf_event_tid(event,
6683 namespaces_event->task);
6684
6685 perf_output_put(&handle, namespaces_event->event_id);
6686
6687 perf_event__output_id_sample(event, &handle, &sample);
6688
6689 perf_output_end(&handle);
34900ec5
JO
6690out:
6691 namespaces_event->event_id.header.size = header_size;
e4222673
HB
6692}
6693
6694static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6695 struct task_struct *task,
6696 const struct proc_ns_operations *ns_ops)
6697{
6698 struct path ns_path;
6699 struct inode *ns_inode;
6700 void *error;
6701
6702 error = ns_get_path(&ns_path, task, ns_ops);
6703 if (!error) {
6704 ns_inode = ns_path.dentry->d_inode;
6705 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6706 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 6707 path_put(&ns_path);
e4222673
HB
6708 }
6709}
6710
6711void perf_event_namespaces(struct task_struct *task)
6712{
6713 struct perf_namespaces_event namespaces_event;
6714 struct perf_ns_link_info *ns_link_info;
6715
6716 if (!atomic_read(&nr_namespaces_events))
6717 return;
6718
6719 namespaces_event = (struct perf_namespaces_event){
6720 .task = task,
6721 .event_id = {
6722 .header = {
6723 .type = PERF_RECORD_NAMESPACES,
6724 .misc = 0,
6725 .size = sizeof(namespaces_event.event_id),
6726 },
6727 /* .pid */
6728 /* .tid */
6729 .nr_namespaces = NR_NAMESPACES,
6730 /* .link_info[NR_NAMESPACES] */
6731 },
6732 };
6733
6734 ns_link_info = namespaces_event.event_id.link_info;
6735
6736 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6737 task, &mntns_operations);
6738
6739#ifdef CONFIG_USER_NS
6740 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6741 task, &userns_operations);
6742#endif
6743#ifdef CONFIG_NET_NS
6744 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6745 task, &netns_operations);
6746#endif
6747#ifdef CONFIG_UTS_NS
6748 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6749 task, &utsns_operations);
6750#endif
6751#ifdef CONFIG_IPC_NS
6752 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6753 task, &ipcns_operations);
6754#endif
6755#ifdef CONFIG_PID_NS
6756 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6757 task, &pidns_operations);
6758#endif
6759#ifdef CONFIG_CGROUPS
6760 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6761 task, &cgroupns_operations);
6762#endif
6763
6764 perf_iterate_sb(perf_event_namespaces_output,
6765 &namespaces_event,
6766 NULL);
6767}
6768
0a4a9391
PZ
6769/*
6770 * mmap tracking
6771 */
6772
6773struct perf_mmap_event {
089dd79d
PZ
6774 struct vm_area_struct *vma;
6775
6776 const char *file_name;
6777 int file_size;
13d7a241
SE
6778 int maj, min;
6779 u64 ino;
6780 u64 ino_generation;
f972eb63 6781 u32 prot, flags;
0a4a9391
PZ
6782
6783 struct {
6784 struct perf_event_header header;
6785
6786 u32 pid;
6787 u32 tid;
6788 u64 start;
6789 u64 len;
6790 u64 pgoff;
cdd6c482 6791 } event_id;
0a4a9391
PZ
6792};
6793
67516844
JO
6794static int perf_event_mmap_match(struct perf_event *event,
6795 void *data)
6796{
6797 struct perf_mmap_event *mmap_event = data;
6798 struct vm_area_struct *vma = mmap_event->vma;
6799 int executable = vma->vm_flags & VM_EXEC;
6800
6801 return (!executable && event->attr.mmap_data) ||
13d7a241 6802 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6803}
6804
cdd6c482 6805static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6806 void *data)
0a4a9391 6807{
52d857a8 6808 struct perf_mmap_event *mmap_event = data;
0a4a9391 6809 struct perf_output_handle handle;
c980d109 6810 struct perf_sample_data sample;
cdd6c482 6811 int size = mmap_event->event_id.header.size;
c980d109 6812 int ret;
0a4a9391 6813
67516844
JO
6814 if (!perf_event_mmap_match(event, data))
6815 return;
6816
13d7a241
SE
6817 if (event->attr.mmap2) {
6818 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6819 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6820 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6821 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6822 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6823 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6824 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6825 }
6826
c980d109
ACM
6827 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6828 ret = perf_output_begin(&handle, event,
a7ac67ea 6829 mmap_event->event_id.header.size);
0a4a9391 6830 if (ret)
c980d109 6831 goto out;
0a4a9391 6832
cdd6c482
IM
6833 mmap_event->event_id.pid = perf_event_pid(event, current);
6834 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6835
cdd6c482 6836 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6837
6838 if (event->attr.mmap2) {
6839 perf_output_put(&handle, mmap_event->maj);
6840 perf_output_put(&handle, mmap_event->min);
6841 perf_output_put(&handle, mmap_event->ino);
6842 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6843 perf_output_put(&handle, mmap_event->prot);
6844 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6845 }
6846
76369139 6847 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6848 mmap_event->file_size);
c980d109
ACM
6849
6850 perf_event__output_id_sample(event, &handle, &sample);
6851
78d613eb 6852 perf_output_end(&handle);
c980d109
ACM
6853out:
6854 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6855}
6856
cdd6c482 6857static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6858{
089dd79d
PZ
6859 struct vm_area_struct *vma = mmap_event->vma;
6860 struct file *file = vma->vm_file;
13d7a241
SE
6861 int maj = 0, min = 0;
6862 u64 ino = 0, gen = 0;
f972eb63 6863 u32 prot = 0, flags = 0;
0a4a9391
PZ
6864 unsigned int size;
6865 char tmp[16];
6866 char *buf = NULL;
2c42cfbf 6867 char *name;
413ee3b4 6868
0b3589be
PZ
6869 if (vma->vm_flags & VM_READ)
6870 prot |= PROT_READ;
6871 if (vma->vm_flags & VM_WRITE)
6872 prot |= PROT_WRITE;
6873 if (vma->vm_flags & VM_EXEC)
6874 prot |= PROT_EXEC;
6875
6876 if (vma->vm_flags & VM_MAYSHARE)
6877 flags = MAP_SHARED;
6878 else
6879 flags = MAP_PRIVATE;
6880
6881 if (vma->vm_flags & VM_DENYWRITE)
6882 flags |= MAP_DENYWRITE;
6883 if (vma->vm_flags & VM_MAYEXEC)
6884 flags |= MAP_EXECUTABLE;
6885 if (vma->vm_flags & VM_LOCKED)
6886 flags |= MAP_LOCKED;
6887 if (vma->vm_flags & VM_HUGETLB)
6888 flags |= MAP_HUGETLB;
6889
0a4a9391 6890 if (file) {
13d7a241
SE
6891 struct inode *inode;
6892 dev_t dev;
3ea2f2b9 6893
2c42cfbf 6894 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6895 if (!buf) {
c7e548b4
ON
6896 name = "//enomem";
6897 goto cpy_name;
0a4a9391 6898 }
413ee3b4 6899 /*
3ea2f2b9 6900 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6901 * need to add enough zero bytes after the string to handle
6902 * the 64bit alignment we do later.
6903 */
9bf39ab2 6904 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6905 if (IS_ERR(name)) {
c7e548b4
ON
6906 name = "//toolong";
6907 goto cpy_name;
0a4a9391 6908 }
13d7a241
SE
6909 inode = file_inode(vma->vm_file);
6910 dev = inode->i_sb->s_dev;
6911 ino = inode->i_ino;
6912 gen = inode->i_generation;
6913 maj = MAJOR(dev);
6914 min = MINOR(dev);
f972eb63 6915
c7e548b4 6916 goto got_name;
0a4a9391 6917 } else {
fbe26abe
JO
6918 if (vma->vm_ops && vma->vm_ops->name) {
6919 name = (char *) vma->vm_ops->name(vma);
6920 if (name)
6921 goto cpy_name;
6922 }
6923
2c42cfbf 6924 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6925 if (name)
6926 goto cpy_name;
089dd79d 6927
32c5fb7e 6928 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6929 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6930 name = "[heap]";
6931 goto cpy_name;
32c5fb7e
ON
6932 }
6933 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6934 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6935 name = "[stack]";
6936 goto cpy_name;
089dd79d
PZ
6937 }
6938
c7e548b4
ON
6939 name = "//anon";
6940 goto cpy_name;
0a4a9391
PZ
6941 }
6942
c7e548b4
ON
6943cpy_name:
6944 strlcpy(tmp, name, sizeof(tmp));
6945 name = tmp;
0a4a9391 6946got_name:
2c42cfbf
PZ
6947 /*
6948 * Since our buffer works in 8 byte units we need to align our string
6949 * size to a multiple of 8. However, we must guarantee the tail end is
6950 * zero'd out to avoid leaking random bits to userspace.
6951 */
6952 size = strlen(name)+1;
6953 while (!IS_ALIGNED(size, sizeof(u64)))
6954 name[size++] = '\0';
0a4a9391
PZ
6955
6956 mmap_event->file_name = name;
6957 mmap_event->file_size = size;
13d7a241
SE
6958 mmap_event->maj = maj;
6959 mmap_event->min = min;
6960 mmap_event->ino = ino;
6961 mmap_event->ino_generation = gen;
f972eb63
PZ
6962 mmap_event->prot = prot;
6963 mmap_event->flags = flags;
0a4a9391 6964
2fe85427
SE
6965 if (!(vma->vm_flags & VM_EXEC))
6966 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6967
cdd6c482 6968 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6969
aab5b71e 6970 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6971 mmap_event,
6972 NULL);
665c2142 6973
0a4a9391
PZ
6974 kfree(buf);
6975}
6976
375637bc
AS
6977/*
6978 * Check whether inode and address range match filter criteria.
6979 */
6980static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6981 struct file *file, unsigned long offset,
6982 unsigned long size)
6983{
45063097 6984 if (filter->inode != file_inode(file))
375637bc
AS
6985 return false;
6986
6987 if (filter->offset > offset + size)
6988 return false;
6989
6990 if (filter->offset + filter->size < offset)
6991 return false;
6992
6993 return true;
6994}
6995
6996static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6997{
6998 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6999 struct vm_area_struct *vma = data;
7000 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7001 struct file *file = vma->vm_file;
7002 struct perf_addr_filter *filter;
7003 unsigned int restart = 0, count = 0;
7004
7005 if (!has_addr_filter(event))
7006 return;
7007
7008 if (!file)
7009 return;
7010
7011 raw_spin_lock_irqsave(&ifh->lock, flags);
7012 list_for_each_entry(filter, &ifh->list, entry) {
7013 if (perf_addr_filter_match(filter, file, off,
7014 vma->vm_end - vma->vm_start)) {
7015 event->addr_filters_offs[count] = vma->vm_start;
7016 restart++;
7017 }
7018
7019 count++;
7020 }
7021
7022 if (restart)
7023 event->addr_filters_gen++;
7024 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7025
7026 if (restart)
767ae086 7027 perf_event_stop(event, 1);
375637bc
AS
7028}
7029
7030/*
7031 * Adjust all task's events' filters to the new vma
7032 */
7033static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7034{
7035 struct perf_event_context *ctx;
7036 int ctxn;
7037
12b40a23
MP
7038 /*
7039 * Data tracing isn't supported yet and as such there is no need
7040 * to keep track of anything that isn't related to executable code:
7041 */
7042 if (!(vma->vm_flags & VM_EXEC))
7043 return;
7044
375637bc
AS
7045 rcu_read_lock();
7046 for_each_task_context_nr(ctxn) {
7047 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7048 if (!ctx)
7049 continue;
7050
aab5b71e 7051 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7052 }
7053 rcu_read_unlock();
7054}
7055
3af9e859 7056void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7057{
9ee318a7
PZ
7058 struct perf_mmap_event mmap_event;
7059
cdd6c482 7060 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7061 return;
7062
7063 mmap_event = (struct perf_mmap_event){
089dd79d 7064 .vma = vma,
573402db
PZ
7065 /* .file_name */
7066 /* .file_size */
cdd6c482 7067 .event_id = {
573402db 7068 .header = {
cdd6c482 7069 .type = PERF_RECORD_MMAP,
39447b38 7070 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7071 /* .size */
7072 },
7073 /* .pid */
7074 /* .tid */
089dd79d
PZ
7075 .start = vma->vm_start,
7076 .len = vma->vm_end - vma->vm_start,
3a0304e9 7077 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7078 },
13d7a241
SE
7079 /* .maj (attr_mmap2 only) */
7080 /* .min (attr_mmap2 only) */
7081 /* .ino (attr_mmap2 only) */
7082 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7083 /* .prot (attr_mmap2 only) */
7084 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7085 };
7086
375637bc 7087 perf_addr_filters_adjust(vma);
cdd6c482 7088 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7089}
7090
68db7e98
AS
7091void perf_event_aux_event(struct perf_event *event, unsigned long head,
7092 unsigned long size, u64 flags)
7093{
7094 struct perf_output_handle handle;
7095 struct perf_sample_data sample;
7096 struct perf_aux_event {
7097 struct perf_event_header header;
7098 u64 offset;
7099 u64 size;
7100 u64 flags;
7101 } rec = {
7102 .header = {
7103 .type = PERF_RECORD_AUX,
7104 .misc = 0,
7105 .size = sizeof(rec),
7106 },
7107 .offset = head,
7108 .size = size,
7109 .flags = flags,
7110 };
7111 int ret;
7112
7113 perf_event_header__init_id(&rec.header, &sample, event);
7114 ret = perf_output_begin(&handle, event, rec.header.size);
7115
7116 if (ret)
7117 return;
7118
7119 perf_output_put(&handle, rec);
7120 perf_event__output_id_sample(event, &handle, &sample);
7121
7122 perf_output_end(&handle);
7123}
7124
f38b0dbb
KL
7125/*
7126 * Lost/dropped samples logging
7127 */
7128void perf_log_lost_samples(struct perf_event *event, u64 lost)
7129{
7130 struct perf_output_handle handle;
7131 struct perf_sample_data sample;
7132 int ret;
7133
7134 struct {
7135 struct perf_event_header header;
7136 u64 lost;
7137 } lost_samples_event = {
7138 .header = {
7139 .type = PERF_RECORD_LOST_SAMPLES,
7140 .misc = 0,
7141 .size = sizeof(lost_samples_event),
7142 },
7143 .lost = lost,
7144 };
7145
7146 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7147
7148 ret = perf_output_begin(&handle, event,
7149 lost_samples_event.header.size);
7150 if (ret)
7151 return;
7152
7153 perf_output_put(&handle, lost_samples_event);
7154 perf_event__output_id_sample(event, &handle, &sample);
7155 perf_output_end(&handle);
7156}
7157
45ac1403
AH
7158/*
7159 * context_switch tracking
7160 */
7161
7162struct perf_switch_event {
7163 struct task_struct *task;
7164 struct task_struct *next_prev;
7165
7166 struct {
7167 struct perf_event_header header;
7168 u32 next_prev_pid;
7169 u32 next_prev_tid;
7170 } event_id;
7171};
7172
7173static int perf_event_switch_match(struct perf_event *event)
7174{
7175 return event->attr.context_switch;
7176}
7177
7178static void perf_event_switch_output(struct perf_event *event, void *data)
7179{
7180 struct perf_switch_event *se = data;
7181 struct perf_output_handle handle;
7182 struct perf_sample_data sample;
7183 int ret;
7184
7185 if (!perf_event_switch_match(event))
7186 return;
7187
7188 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7189 if (event->ctx->task) {
7190 se->event_id.header.type = PERF_RECORD_SWITCH;
7191 se->event_id.header.size = sizeof(se->event_id.header);
7192 } else {
7193 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7194 se->event_id.header.size = sizeof(se->event_id);
7195 se->event_id.next_prev_pid =
7196 perf_event_pid(event, se->next_prev);
7197 se->event_id.next_prev_tid =
7198 perf_event_tid(event, se->next_prev);
7199 }
7200
7201 perf_event_header__init_id(&se->event_id.header, &sample, event);
7202
7203 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7204 if (ret)
7205 return;
7206
7207 if (event->ctx->task)
7208 perf_output_put(&handle, se->event_id.header);
7209 else
7210 perf_output_put(&handle, se->event_id);
7211
7212 perf_event__output_id_sample(event, &handle, &sample);
7213
7214 perf_output_end(&handle);
7215}
7216
7217static void perf_event_switch(struct task_struct *task,
7218 struct task_struct *next_prev, bool sched_in)
7219{
7220 struct perf_switch_event switch_event;
7221
7222 /* N.B. caller checks nr_switch_events != 0 */
7223
7224 switch_event = (struct perf_switch_event){
7225 .task = task,
7226 .next_prev = next_prev,
7227 .event_id = {
7228 .header = {
7229 /* .type */
7230 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7231 /* .size */
7232 },
7233 /* .next_prev_pid */
7234 /* .next_prev_tid */
7235 },
7236 };
7237
aab5b71e 7238 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7239 &switch_event,
7240 NULL);
7241}
7242
a78ac325
PZ
7243/*
7244 * IRQ throttle logging
7245 */
7246
cdd6c482 7247static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7248{
7249 struct perf_output_handle handle;
c980d109 7250 struct perf_sample_data sample;
a78ac325
PZ
7251 int ret;
7252
7253 struct {
7254 struct perf_event_header header;
7255 u64 time;
cca3f454 7256 u64 id;
7f453c24 7257 u64 stream_id;
a78ac325
PZ
7258 } throttle_event = {
7259 .header = {
cdd6c482 7260 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7261 .misc = 0,
7262 .size = sizeof(throttle_event),
7263 },
34f43927 7264 .time = perf_event_clock(event),
cdd6c482
IM
7265 .id = primary_event_id(event),
7266 .stream_id = event->id,
a78ac325
PZ
7267 };
7268
966ee4d6 7269 if (enable)
cdd6c482 7270 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7271
c980d109
ACM
7272 perf_event_header__init_id(&throttle_event.header, &sample, event);
7273
7274 ret = perf_output_begin(&handle, event,
a7ac67ea 7275 throttle_event.header.size);
a78ac325
PZ
7276 if (ret)
7277 return;
7278
7279 perf_output_put(&handle, throttle_event);
c980d109 7280 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7281 perf_output_end(&handle);
7282}
7283
8d4e6c4c
AS
7284void perf_event_itrace_started(struct perf_event *event)
7285{
7286 event->attach_state |= PERF_ATTACH_ITRACE;
7287}
7288
ec0d7729
AS
7289static void perf_log_itrace_start(struct perf_event *event)
7290{
7291 struct perf_output_handle handle;
7292 struct perf_sample_data sample;
7293 struct perf_aux_event {
7294 struct perf_event_header header;
7295 u32 pid;
7296 u32 tid;
7297 } rec;
7298 int ret;
7299
7300 if (event->parent)
7301 event = event->parent;
7302
7303 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7304 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7305 return;
7306
ec0d7729
AS
7307 rec.header.type = PERF_RECORD_ITRACE_START;
7308 rec.header.misc = 0;
7309 rec.header.size = sizeof(rec);
7310 rec.pid = perf_event_pid(event, current);
7311 rec.tid = perf_event_tid(event, current);
7312
7313 perf_event_header__init_id(&rec.header, &sample, event);
7314 ret = perf_output_begin(&handle, event, rec.header.size);
7315
7316 if (ret)
7317 return;
7318
7319 perf_output_put(&handle, rec);
7320 perf_event__output_id_sample(event, &handle, &sample);
7321
7322 perf_output_end(&handle);
7323}
7324
475113d9
JO
7325static int
7326__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7327{
cdd6c482 7328 struct hw_perf_event *hwc = &event->hw;
79f14641 7329 int ret = 0;
475113d9 7330 u64 seq;
96398826 7331
e050e3f0
SE
7332 seq = __this_cpu_read(perf_throttled_seq);
7333 if (seq != hwc->interrupts_seq) {
7334 hwc->interrupts_seq = seq;
7335 hwc->interrupts = 1;
7336 } else {
7337 hwc->interrupts++;
7338 if (unlikely(throttle
7339 && hwc->interrupts >= max_samples_per_tick)) {
7340 __this_cpu_inc(perf_throttled_count);
555e0c1e 7341 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7342 hwc->interrupts = MAX_INTERRUPTS;
7343 perf_log_throttle(event, 0);
a78ac325
PZ
7344 ret = 1;
7345 }
e050e3f0 7346 }
60db5e09 7347
cdd6c482 7348 if (event->attr.freq) {
def0a9b2 7349 u64 now = perf_clock();
abd50713 7350 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7351
abd50713 7352 hwc->freq_time_stamp = now;
bd2b5b12 7353
abd50713 7354 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7355 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7356 }
7357
475113d9
JO
7358 return ret;
7359}
7360
7361int perf_event_account_interrupt(struct perf_event *event)
7362{
7363 return __perf_event_account_interrupt(event, 1);
7364}
7365
7366/*
7367 * Generic event overflow handling, sampling.
7368 */
7369
7370static int __perf_event_overflow(struct perf_event *event,
7371 int throttle, struct perf_sample_data *data,
7372 struct pt_regs *regs)
7373{
7374 int events = atomic_read(&event->event_limit);
7375 int ret = 0;
7376
7377 /*
7378 * Non-sampling counters might still use the PMI to fold short
7379 * hardware counters, ignore those.
7380 */
7381 if (unlikely(!is_sampling_event(event)))
7382 return 0;
7383
7384 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7385
2023b359
PZ
7386 /*
7387 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7388 * events
2023b359
PZ
7389 */
7390
cdd6c482
IM
7391 event->pending_kill = POLL_IN;
7392 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7393 ret = 1;
cdd6c482 7394 event->pending_kill = POLL_HUP;
5aab90ce
JO
7395
7396 perf_event_disable_inatomic(event);
79f14641
PZ
7397 }
7398
aa6a5f3c 7399 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7400
fed66e2c 7401 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7402 event->pending_wakeup = 1;
7403 irq_work_queue(&event->pending);
f506b3dc
PZ
7404 }
7405
79f14641 7406 return ret;
f6c7d5fe
PZ
7407}
7408
a8b0ca17 7409int perf_event_overflow(struct perf_event *event,
5622f295
MM
7410 struct perf_sample_data *data,
7411 struct pt_regs *regs)
850bc73f 7412{
a8b0ca17 7413 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7414}
7415
15dbf27c 7416/*
cdd6c482 7417 * Generic software event infrastructure
15dbf27c
PZ
7418 */
7419
b28ab83c
PZ
7420struct swevent_htable {
7421 struct swevent_hlist *swevent_hlist;
7422 struct mutex hlist_mutex;
7423 int hlist_refcount;
7424
7425 /* Recursion avoidance in each contexts */
7426 int recursion[PERF_NR_CONTEXTS];
7427};
7428
7429static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7430
7b4b6658 7431/*
cdd6c482
IM
7432 * We directly increment event->count and keep a second value in
7433 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7434 * is kept in the range [-sample_period, 0] so that we can use the
7435 * sign as trigger.
7436 */
7437
ab573844 7438u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7439{
cdd6c482 7440 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7441 u64 period = hwc->last_period;
7442 u64 nr, offset;
7443 s64 old, val;
7444
7445 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7446
7447again:
e7850595 7448 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7449 if (val < 0)
7450 return 0;
15dbf27c 7451
7b4b6658
PZ
7452 nr = div64_u64(period + val, period);
7453 offset = nr * period;
7454 val -= offset;
e7850595 7455 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7456 goto again;
15dbf27c 7457
7b4b6658 7458 return nr;
15dbf27c
PZ
7459}
7460
0cff784a 7461static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7462 struct perf_sample_data *data,
5622f295 7463 struct pt_regs *regs)
15dbf27c 7464{
cdd6c482 7465 struct hw_perf_event *hwc = &event->hw;
850bc73f 7466 int throttle = 0;
15dbf27c 7467
0cff784a
PZ
7468 if (!overflow)
7469 overflow = perf_swevent_set_period(event);
15dbf27c 7470
7b4b6658
PZ
7471 if (hwc->interrupts == MAX_INTERRUPTS)
7472 return;
15dbf27c 7473
7b4b6658 7474 for (; overflow; overflow--) {
a8b0ca17 7475 if (__perf_event_overflow(event, throttle,
5622f295 7476 data, regs)) {
7b4b6658
PZ
7477 /*
7478 * We inhibit the overflow from happening when
7479 * hwc->interrupts == MAX_INTERRUPTS.
7480 */
7481 break;
7482 }
cf450a73 7483 throttle = 1;
7b4b6658 7484 }
15dbf27c
PZ
7485}
7486
a4eaf7f1 7487static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7488 struct perf_sample_data *data,
5622f295 7489 struct pt_regs *regs)
7b4b6658 7490{
cdd6c482 7491 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7492
e7850595 7493 local64_add(nr, &event->count);
d6d020e9 7494
0cff784a
PZ
7495 if (!regs)
7496 return;
7497
6c7e550f 7498 if (!is_sampling_event(event))
7b4b6658 7499 return;
d6d020e9 7500
5d81e5cf
AV
7501 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7502 data->period = nr;
7503 return perf_swevent_overflow(event, 1, data, regs);
7504 } else
7505 data->period = event->hw.last_period;
7506
0cff784a 7507 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7508 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7509
e7850595 7510 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7511 return;
df1a132b 7512
a8b0ca17 7513 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7514}
7515
f5ffe02e
FW
7516static int perf_exclude_event(struct perf_event *event,
7517 struct pt_regs *regs)
7518{
a4eaf7f1 7519 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7520 return 1;
a4eaf7f1 7521
f5ffe02e
FW
7522 if (regs) {
7523 if (event->attr.exclude_user && user_mode(regs))
7524 return 1;
7525
7526 if (event->attr.exclude_kernel && !user_mode(regs))
7527 return 1;
7528 }
7529
7530 return 0;
7531}
7532
cdd6c482 7533static int perf_swevent_match(struct perf_event *event,
1c432d89 7534 enum perf_type_id type,
6fb2915d
LZ
7535 u32 event_id,
7536 struct perf_sample_data *data,
7537 struct pt_regs *regs)
15dbf27c 7538{
cdd6c482 7539 if (event->attr.type != type)
a21ca2ca 7540 return 0;
f5ffe02e 7541
cdd6c482 7542 if (event->attr.config != event_id)
15dbf27c
PZ
7543 return 0;
7544
f5ffe02e
FW
7545 if (perf_exclude_event(event, regs))
7546 return 0;
15dbf27c
PZ
7547
7548 return 1;
7549}
7550
76e1d904
FW
7551static inline u64 swevent_hash(u64 type, u32 event_id)
7552{
7553 u64 val = event_id | (type << 32);
7554
7555 return hash_64(val, SWEVENT_HLIST_BITS);
7556}
7557
49f135ed
FW
7558static inline struct hlist_head *
7559__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7560{
49f135ed
FW
7561 u64 hash = swevent_hash(type, event_id);
7562
7563 return &hlist->heads[hash];
7564}
76e1d904 7565
49f135ed
FW
7566/* For the read side: events when they trigger */
7567static inline struct hlist_head *
b28ab83c 7568find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7569{
7570 struct swevent_hlist *hlist;
76e1d904 7571
b28ab83c 7572 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7573 if (!hlist)
7574 return NULL;
7575
49f135ed
FW
7576 return __find_swevent_head(hlist, type, event_id);
7577}
7578
7579/* For the event head insertion and removal in the hlist */
7580static inline struct hlist_head *
b28ab83c 7581find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7582{
7583 struct swevent_hlist *hlist;
7584 u32 event_id = event->attr.config;
7585 u64 type = event->attr.type;
7586
7587 /*
7588 * Event scheduling is always serialized against hlist allocation
7589 * and release. Which makes the protected version suitable here.
7590 * The context lock guarantees that.
7591 */
b28ab83c 7592 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7593 lockdep_is_held(&event->ctx->lock));
7594 if (!hlist)
7595 return NULL;
7596
7597 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7598}
7599
7600static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7601 u64 nr,
76e1d904
FW
7602 struct perf_sample_data *data,
7603 struct pt_regs *regs)
15dbf27c 7604{
4a32fea9 7605 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7606 struct perf_event *event;
76e1d904 7607 struct hlist_head *head;
15dbf27c 7608
76e1d904 7609 rcu_read_lock();
b28ab83c 7610 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7611 if (!head)
7612 goto end;
7613
b67bfe0d 7614 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7615 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7616 perf_swevent_event(event, nr, data, regs);
15dbf27c 7617 }
76e1d904
FW
7618end:
7619 rcu_read_unlock();
15dbf27c
PZ
7620}
7621
86038c5e
PZI
7622DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7623
4ed7c92d 7624int perf_swevent_get_recursion_context(void)
96f6d444 7625{
4a32fea9 7626 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7627
b28ab83c 7628 return get_recursion_context(swhash->recursion);
96f6d444 7629}
645e8cc0 7630EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7631
98b5c2c6 7632void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7633{
4a32fea9 7634 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7635
b28ab83c 7636 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7637}
15dbf27c 7638
86038c5e 7639void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7640{
a4234bfc 7641 struct perf_sample_data data;
4ed7c92d 7642
86038c5e 7643 if (WARN_ON_ONCE(!regs))
4ed7c92d 7644 return;
a4234bfc 7645
fd0d000b 7646 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7647 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7648}
7649
7650void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7651{
7652 int rctx;
7653
7654 preempt_disable_notrace();
7655 rctx = perf_swevent_get_recursion_context();
7656 if (unlikely(rctx < 0))
7657 goto fail;
7658
7659 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7660
7661 perf_swevent_put_recursion_context(rctx);
86038c5e 7662fail:
1c024eca 7663 preempt_enable_notrace();
b8e83514
PZ
7664}
7665
cdd6c482 7666static void perf_swevent_read(struct perf_event *event)
15dbf27c 7667{
15dbf27c
PZ
7668}
7669
a4eaf7f1 7670static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7671{
4a32fea9 7672 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7673 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7674 struct hlist_head *head;
7675
6c7e550f 7676 if (is_sampling_event(event)) {
7b4b6658 7677 hwc->last_period = hwc->sample_period;
cdd6c482 7678 perf_swevent_set_period(event);
7b4b6658 7679 }
76e1d904 7680
a4eaf7f1
PZ
7681 hwc->state = !(flags & PERF_EF_START);
7682
b28ab83c 7683 head = find_swevent_head(swhash, event);
12ca6ad2 7684 if (WARN_ON_ONCE(!head))
76e1d904
FW
7685 return -EINVAL;
7686
7687 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7688 perf_event_update_userpage(event);
76e1d904 7689
15dbf27c
PZ
7690 return 0;
7691}
7692
a4eaf7f1 7693static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7694{
76e1d904 7695 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7696}
7697
a4eaf7f1 7698static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7699{
a4eaf7f1 7700 event->hw.state = 0;
d6d020e9 7701}
aa9c4c0f 7702
a4eaf7f1 7703static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7704{
a4eaf7f1 7705 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7706}
7707
49f135ed
FW
7708/* Deref the hlist from the update side */
7709static inline struct swevent_hlist *
b28ab83c 7710swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7711{
b28ab83c
PZ
7712 return rcu_dereference_protected(swhash->swevent_hlist,
7713 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7714}
7715
b28ab83c 7716static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7717{
b28ab83c 7718 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7719
49f135ed 7720 if (!hlist)
76e1d904
FW
7721 return;
7722
70691d4a 7723 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7724 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7725}
7726
3b364d7b 7727static void swevent_hlist_put_cpu(int cpu)
76e1d904 7728{
b28ab83c 7729 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7730
b28ab83c 7731 mutex_lock(&swhash->hlist_mutex);
76e1d904 7732
b28ab83c
PZ
7733 if (!--swhash->hlist_refcount)
7734 swevent_hlist_release(swhash);
76e1d904 7735
b28ab83c 7736 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7737}
7738
3b364d7b 7739static void swevent_hlist_put(void)
76e1d904
FW
7740{
7741 int cpu;
7742
76e1d904 7743 for_each_possible_cpu(cpu)
3b364d7b 7744 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7745}
7746
3b364d7b 7747static int swevent_hlist_get_cpu(int cpu)
76e1d904 7748{
b28ab83c 7749 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7750 int err = 0;
7751
b28ab83c 7752 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
7753 if (!swevent_hlist_deref(swhash) &&
7754 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
7755 struct swevent_hlist *hlist;
7756
7757 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7758 if (!hlist) {
7759 err = -ENOMEM;
7760 goto exit;
7761 }
b28ab83c 7762 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7763 }
b28ab83c 7764 swhash->hlist_refcount++;
9ed6060d 7765exit:
b28ab83c 7766 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7767
7768 return err;
7769}
7770
3b364d7b 7771static int swevent_hlist_get(void)
76e1d904 7772{
3b364d7b 7773 int err, cpu, failed_cpu;
76e1d904 7774
a63fbed7 7775 mutex_lock(&pmus_lock);
76e1d904 7776 for_each_possible_cpu(cpu) {
3b364d7b 7777 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7778 if (err) {
7779 failed_cpu = cpu;
7780 goto fail;
7781 }
7782 }
a63fbed7 7783 mutex_unlock(&pmus_lock);
76e1d904 7784 return 0;
9ed6060d 7785fail:
76e1d904
FW
7786 for_each_possible_cpu(cpu) {
7787 if (cpu == failed_cpu)
7788 break;
3b364d7b 7789 swevent_hlist_put_cpu(cpu);
76e1d904 7790 }
a63fbed7 7791 mutex_unlock(&pmus_lock);
76e1d904
FW
7792 return err;
7793}
7794
c5905afb 7795struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7796
b0a873eb
PZ
7797static void sw_perf_event_destroy(struct perf_event *event)
7798{
7799 u64 event_id = event->attr.config;
95476b64 7800
b0a873eb
PZ
7801 WARN_ON(event->parent);
7802
c5905afb 7803 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7804 swevent_hlist_put();
b0a873eb
PZ
7805}
7806
7807static int perf_swevent_init(struct perf_event *event)
7808{
8176cced 7809 u64 event_id = event->attr.config;
b0a873eb
PZ
7810
7811 if (event->attr.type != PERF_TYPE_SOFTWARE)
7812 return -ENOENT;
7813
2481c5fa
SE
7814 /*
7815 * no branch sampling for software events
7816 */
7817 if (has_branch_stack(event))
7818 return -EOPNOTSUPP;
7819
b0a873eb
PZ
7820 switch (event_id) {
7821 case PERF_COUNT_SW_CPU_CLOCK:
7822 case PERF_COUNT_SW_TASK_CLOCK:
7823 return -ENOENT;
7824
7825 default:
7826 break;
7827 }
7828
ce677831 7829 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7830 return -ENOENT;
7831
7832 if (!event->parent) {
7833 int err;
7834
3b364d7b 7835 err = swevent_hlist_get();
b0a873eb
PZ
7836 if (err)
7837 return err;
7838
c5905afb 7839 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7840 event->destroy = sw_perf_event_destroy;
7841 }
7842
7843 return 0;
7844}
7845
7846static struct pmu perf_swevent = {
89a1e187 7847 .task_ctx_nr = perf_sw_context,
95476b64 7848
34f43927
PZ
7849 .capabilities = PERF_PMU_CAP_NO_NMI,
7850
b0a873eb 7851 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7852 .add = perf_swevent_add,
7853 .del = perf_swevent_del,
7854 .start = perf_swevent_start,
7855 .stop = perf_swevent_stop,
1c024eca 7856 .read = perf_swevent_read,
1c024eca
PZ
7857};
7858
b0a873eb
PZ
7859#ifdef CONFIG_EVENT_TRACING
7860
1c024eca
PZ
7861static int perf_tp_filter_match(struct perf_event *event,
7862 struct perf_sample_data *data)
7863{
7e3f977e 7864 void *record = data->raw->frag.data;
1c024eca 7865
b71b437e
PZ
7866 /* only top level events have filters set */
7867 if (event->parent)
7868 event = event->parent;
7869
1c024eca
PZ
7870 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7871 return 1;
7872 return 0;
7873}
7874
7875static int perf_tp_event_match(struct perf_event *event,
7876 struct perf_sample_data *data,
7877 struct pt_regs *regs)
7878{
a0f7d0f7
FW
7879 if (event->hw.state & PERF_HES_STOPPED)
7880 return 0;
580d607c
PZ
7881 /*
7882 * All tracepoints are from kernel-space.
7883 */
7884 if (event->attr.exclude_kernel)
1c024eca
PZ
7885 return 0;
7886
7887 if (!perf_tp_filter_match(event, data))
7888 return 0;
7889
7890 return 1;
7891}
7892
85b67bcb
AS
7893void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7894 struct trace_event_call *call, u64 count,
7895 struct pt_regs *regs, struct hlist_head *head,
7896 struct task_struct *task)
7897{
e87c6bc3 7898 if (bpf_prog_array_valid(call)) {
85b67bcb 7899 *(struct pt_regs **)raw_data = regs;
e87c6bc3 7900 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
7901 perf_swevent_put_recursion_context(rctx);
7902 return;
7903 }
7904 }
7905 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 7906 rctx, task);
85b67bcb
AS
7907}
7908EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7909
1e1dcd93 7910void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 7911 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 7912 struct task_struct *task)
95476b64
FW
7913{
7914 struct perf_sample_data data;
8fd0fbbe 7915 struct perf_event *event;
1c024eca 7916
95476b64 7917 struct perf_raw_record raw = {
7e3f977e
DB
7918 .frag = {
7919 .size = entry_size,
7920 .data = record,
7921 },
95476b64
FW
7922 };
7923
1e1dcd93 7924 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7925 data.raw = &raw;
7926
1e1dcd93
AS
7927 perf_trace_buf_update(record, event_type);
7928
8fd0fbbe 7929 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7930 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7931 perf_swevent_event(event, count, &data, regs);
4f41c013 7932 }
ecc55f84 7933
e6dab5ff
AV
7934 /*
7935 * If we got specified a target task, also iterate its context and
7936 * deliver this event there too.
7937 */
7938 if (task && task != current) {
7939 struct perf_event_context *ctx;
7940 struct trace_entry *entry = record;
7941
7942 rcu_read_lock();
7943 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7944 if (!ctx)
7945 goto unlock;
7946
7947 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7948 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7949 continue;
7950 if (event->attr.config != entry->type)
7951 continue;
7952 if (perf_tp_event_match(event, &data, regs))
7953 perf_swevent_event(event, count, &data, regs);
7954 }
7955unlock:
7956 rcu_read_unlock();
7957 }
7958
ecc55f84 7959 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7960}
7961EXPORT_SYMBOL_GPL(perf_tp_event);
7962
cdd6c482 7963static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7964{
1c024eca 7965 perf_trace_destroy(event);
e077df4f
PZ
7966}
7967
b0a873eb 7968static int perf_tp_event_init(struct perf_event *event)
e077df4f 7969{
76e1d904
FW
7970 int err;
7971
b0a873eb
PZ
7972 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7973 return -ENOENT;
7974
2481c5fa
SE
7975 /*
7976 * no branch sampling for tracepoint events
7977 */
7978 if (has_branch_stack(event))
7979 return -EOPNOTSUPP;
7980
1c024eca
PZ
7981 err = perf_trace_init(event);
7982 if (err)
b0a873eb 7983 return err;
e077df4f 7984
cdd6c482 7985 event->destroy = tp_perf_event_destroy;
e077df4f 7986
b0a873eb
PZ
7987 return 0;
7988}
7989
7990static struct pmu perf_tracepoint = {
89a1e187
PZ
7991 .task_ctx_nr = perf_sw_context,
7992
b0a873eb 7993 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7994 .add = perf_trace_add,
7995 .del = perf_trace_del,
7996 .start = perf_swevent_start,
7997 .stop = perf_swevent_stop,
b0a873eb 7998 .read = perf_swevent_read,
b0a873eb
PZ
7999};
8000
8001static inline void perf_tp_register(void)
8002{
2e80a82a 8003 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 8004}
6fb2915d 8005
6fb2915d
LZ
8006static void perf_event_free_filter(struct perf_event *event)
8007{
8008 ftrace_profile_free_filter(event);
8009}
8010
aa6a5f3c
AS
8011#ifdef CONFIG_BPF_SYSCALL
8012static void bpf_overflow_handler(struct perf_event *event,
8013 struct perf_sample_data *data,
8014 struct pt_regs *regs)
8015{
8016 struct bpf_perf_event_data_kern ctx = {
8017 .data = data,
7d9285e8 8018 .event = event,
aa6a5f3c
AS
8019 };
8020 int ret = 0;
8021
c895f6f7 8022 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
8023 preempt_disable();
8024 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8025 goto out;
8026 rcu_read_lock();
88575199 8027 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8028 rcu_read_unlock();
8029out:
8030 __this_cpu_dec(bpf_prog_active);
8031 preempt_enable();
8032 if (!ret)
8033 return;
8034
8035 event->orig_overflow_handler(event, data, regs);
8036}
8037
8038static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8039{
8040 struct bpf_prog *prog;
8041
8042 if (event->overflow_handler_context)
8043 /* hw breakpoint or kernel counter */
8044 return -EINVAL;
8045
8046 if (event->prog)
8047 return -EEXIST;
8048
8049 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8050 if (IS_ERR(prog))
8051 return PTR_ERR(prog);
8052
8053 event->prog = prog;
8054 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8055 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8056 return 0;
8057}
8058
8059static void perf_event_free_bpf_handler(struct perf_event *event)
8060{
8061 struct bpf_prog *prog = event->prog;
8062
8063 if (!prog)
8064 return;
8065
8066 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8067 event->prog = NULL;
8068 bpf_prog_put(prog);
8069}
8070#else
8071static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8072{
8073 return -EOPNOTSUPP;
8074}
8075static void perf_event_free_bpf_handler(struct perf_event *event)
8076{
8077}
8078#endif
8079
2541517c
AS
8080static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8081{
cf5f5cea 8082 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 8083 struct bpf_prog *prog;
e87c6bc3 8084 int ret;
2541517c
AS
8085
8086 if (event->attr.type != PERF_TYPE_TRACEPOINT)
f91840a3 8087 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 8088
98b5c2c6
AS
8089 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8090 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8091 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8092 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8093 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8094 return -EINVAL;
8095
8096 prog = bpf_prog_get(prog_fd);
8097 if (IS_ERR(prog))
8098 return PTR_ERR(prog);
8099
98b5c2c6 8100 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8101 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8102 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8103 /* valid fd, but invalid bpf program type */
8104 bpf_prog_put(prog);
8105 return -EINVAL;
8106 }
8107
9802d865
JB
8108 /* Kprobe override only works for kprobes, not uprobes. */
8109 if (prog->kprobe_override &&
8110 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8111 bpf_prog_put(prog);
8112 return -EINVAL;
8113 }
8114
cf5f5cea 8115 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8116 int off = trace_event_get_offsets(event->tp_event);
8117
8118 if (prog->aux->max_ctx_offset > off) {
8119 bpf_prog_put(prog);
8120 return -EACCES;
8121 }
8122 }
2541517c 8123
e87c6bc3
YS
8124 ret = perf_event_attach_bpf_prog(event, prog);
8125 if (ret)
8126 bpf_prog_put(prog);
8127 return ret;
2541517c
AS
8128}
8129
8130static void perf_event_free_bpf_prog(struct perf_event *event)
8131{
0b4c6841
YS
8132 if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8133 perf_event_free_bpf_handler(event);
2541517c 8134 return;
2541517c 8135 }
e87c6bc3 8136 perf_event_detach_bpf_prog(event);
2541517c
AS
8137}
8138
e077df4f 8139#else
6fb2915d 8140
b0a873eb 8141static inline void perf_tp_register(void)
e077df4f 8142{
e077df4f 8143}
6fb2915d 8144
6fb2915d
LZ
8145static void perf_event_free_filter(struct perf_event *event)
8146{
8147}
8148
2541517c
AS
8149static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8150{
8151 return -ENOENT;
8152}
8153
8154static void perf_event_free_bpf_prog(struct perf_event *event)
8155{
8156}
07b139c8 8157#endif /* CONFIG_EVENT_TRACING */
e077df4f 8158
24f1e32c 8159#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8160void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8161{
f5ffe02e
FW
8162 struct perf_sample_data sample;
8163 struct pt_regs *regs = data;
8164
fd0d000b 8165 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8166
a4eaf7f1 8167 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8168 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8169}
8170#endif
8171
375637bc
AS
8172/*
8173 * Allocate a new address filter
8174 */
8175static struct perf_addr_filter *
8176perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8177{
8178 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8179 struct perf_addr_filter *filter;
8180
8181 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8182 if (!filter)
8183 return NULL;
8184
8185 INIT_LIST_HEAD(&filter->entry);
8186 list_add_tail(&filter->entry, filters);
8187
8188 return filter;
8189}
8190
8191static void free_filters_list(struct list_head *filters)
8192{
8193 struct perf_addr_filter *filter, *iter;
8194
8195 list_for_each_entry_safe(filter, iter, filters, entry) {
8196 if (filter->inode)
8197 iput(filter->inode);
8198 list_del(&filter->entry);
8199 kfree(filter);
8200 }
8201}
8202
8203/*
8204 * Free existing address filters and optionally install new ones
8205 */
8206static void perf_addr_filters_splice(struct perf_event *event,
8207 struct list_head *head)
8208{
8209 unsigned long flags;
8210 LIST_HEAD(list);
8211
8212 if (!has_addr_filter(event))
8213 return;
8214
8215 /* don't bother with children, they don't have their own filters */
8216 if (event->parent)
8217 return;
8218
8219 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8220
8221 list_splice_init(&event->addr_filters.list, &list);
8222 if (head)
8223 list_splice(head, &event->addr_filters.list);
8224
8225 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8226
8227 free_filters_list(&list);
8228}
8229
8230/*
8231 * Scan through mm's vmas and see if one of them matches the
8232 * @filter; if so, adjust filter's address range.
8233 * Called with mm::mmap_sem down for reading.
8234 */
8235static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8236 struct mm_struct *mm)
8237{
8238 struct vm_area_struct *vma;
8239
8240 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8241 struct file *file = vma->vm_file;
8242 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8243 unsigned long vma_size = vma->vm_end - vma->vm_start;
8244
8245 if (!file)
8246 continue;
8247
8248 if (!perf_addr_filter_match(filter, file, off, vma_size))
8249 continue;
8250
8251 return vma->vm_start;
8252 }
8253
8254 return 0;
8255}
8256
8257/*
8258 * Update event's address range filters based on the
8259 * task's existing mappings, if any.
8260 */
8261static void perf_event_addr_filters_apply(struct perf_event *event)
8262{
8263 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8264 struct task_struct *task = READ_ONCE(event->ctx->task);
8265 struct perf_addr_filter *filter;
8266 struct mm_struct *mm = NULL;
8267 unsigned int count = 0;
8268 unsigned long flags;
8269
8270 /*
8271 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8272 * will stop on the parent's child_mutex that our caller is also holding
8273 */
8274 if (task == TASK_TOMBSTONE)
8275 return;
8276
6ce77bfd
AS
8277 if (!ifh->nr_file_filters)
8278 return;
8279
375637bc
AS
8280 mm = get_task_mm(event->ctx->task);
8281 if (!mm)
8282 goto restart;
8283
8284 down_read(&mm->mmap_sem);
8285
8286 raw_spin_lock_irqsave(&ifh->lock, flags);
8287 list_for_each_entry(filter, &ifh->list, entry) {
8288 event->addr_filters_offs[count] = 0;
8289
99f5bc9b
MP
8290 /*
8291 * Adjust base offset if the filter is associated to a binary
8292 * that needs to be mapped:
8293 */
8294 if (filter->inode)
375637bc
AS
8295 event->addr_filters_offs[count] =
8296 perf_addr_filter_apply(filter, mm);
8297
8298 count++;
8299 }
8300
8301 event->addr_filters_gen++;
8302 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8303
8304 up_read(&mm->mmap_sem);
8305
8306 mmput(mm);
8307
8308restart:
767ae086 8309 perf_event_stop(event, 1);
375637bc
AS
8310}
8311
8312/*
8313 * Address range filtering: limiting the data to certain
8314 * instruction address ranges. Filters are ioctl()ed to us from
8315 * userspace as ascii strings.
8316 *
8317 * Filter string format:
8318 *
8319 * ACTION RANGE_SPEC
8320 * where ACTION is one of the
8321 * * "filter": limit the trace to this region
8322 * * "start": start tracing from this address
8323 * * "stop": stop tracing at this address/region;
8324 * RANGE_SPEC is
8325 * * for kernel addresses: <start address>[/<size>]
8326 * * for object files: <start address>[/<size>]@</path/to/object/file>
8327 *
8328 * if <size> is not specified, the range is treated as a single address.
8329 */
8330enum {
e96271f3 8331 IF_ACT_NONE = -1,
375637bc
AS
8332 IF_ACT_FILTER,
8333 IF_ACT_START,
8334 IF_ACT_STOP,
8335 IF_SRC_FILE,
8336 IF_SRC_KERNEL,
8337 IF_SRC_FILEADDR,
8338 IF_SRC_KERNELADDR,
8339};
8340
8341enum {
8342 IF_STATE_ACTION = 0,
8343 IF_STATE_SOURCE,
8344 IF_STATE_END,
8345};
8346
8347static const match_table_t if_tokens = {
8348 { IF_ACT_FILTER, "filter" },
8349 { IF_ACT_START, "start" },
8350 { IF_ACT_STOP, "stop" },
8351 { IF_SRC_FILE, "%u/%u@%s" },
8352 { IF_SRC_KERNEL, "%u/%u" },
8353 { IF_SRC_FILEADDR, "%u@%s" },
8354 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8355 { IF_ACT_NONE, NULL },
375637bc
AS
8356};
8357
8358/*
8359 * Address filter string parser
8360 */
8361static int
8362perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8363 struct list_head *filters)
8364{
8365 struct perf_addr_filter *filter = NULL;
8366 char *start, *orig, *filename = NULL;
8367 struct path path;
8368 substring_t args[MAX_OPT_ARGS];
8369 int state = IF_STATE_ACTION, token;
8370 unsigned int kernel = 0;
8371 int ret = -EINVAL;
8372
8373 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8374 if (!fstr)
8375 return -ENOMEM;
8376
8377 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8378 ret = -EINVAL;
8379
8380 if (!*start)
8381 continue;
8382
8383 /* filter definition begins */
8384 if (state == IF_STATE_ACTION) {
8385 filter = perf_addr_filter_new(event, filters);
8386 if (!filter)
8387 goto fail;
8388 }
8389
8390 token = match_token(start, if_tokens, args);
8391 switch (token) {
8392 case IF_ACT_FILTER:
8393 case IF_ACT_START:
8394 filter->filter = 1;
8395
8396 case IF_ACT_STOP:
8397 if (state != IF_STATE_ACTION)
8398 goto fail;
8399
8400 state = IF_STATE_SOURCE;
8401 break;
8402
8403 case IF_SRC_KERNELADDR:
8404 case IF_SRC_KERNEL:
8405 kernel = 1;
8406
8407 case IF_SRC_FILEADDR:
8408 case IF_SRC_FILE:
8409 if (state != IF_STATE_SOURCE)
8410 goto fail;
8411
8412 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8413 filter->range = 1;
8414
8415 *args[0].to = 0;
8416 ret = kstrtoul(args[0].from, 0, &filter->offset);
8417 if (ret)
8418 goto fail;
8419
8420 if (filter->range) {
8421 *args[1].to = 0;
8422 ret = kstrtoul(args[1].from, 0, &filter->size);
8423 if (ret)
8424 goto fail;
8425 }
8426
4059ffd0
MP
8427 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8428 int fpos = filter->range ? 2 : 1;
8429
8430 filename = match_strdup(&args[fpos]);
375637bc
AS
8431 if (!filename) {
8432 ret = -ENOMEM;
8433 goto fail;
8434 }
8435 }
8436
8437 state = IF_STATE_END;
8438 break;
8439
8440 default:
8441 goto fail;
8442 }
8443
8444 /*
8445 * Filter definition is fully parsed, validate and install it.
8446 * Make sure that it doesn't contradict itself or the event's
8447 * attribute.
8448 */
8449 if (state == IF_STATE_END) {
9ccbfbb1 8450 ret = -EINVAL;
375637bc
AS
8451 if (kernel && event->attr.exclude_kernel)
8452 goto fail;
8453
8454 if (!kernel) {
8455 if (!filename)
8456 goto fail;
8457
6ce77bfd
AS
8458 /*
8459 * For now, we only support file-based filters
8460 * in per-task events; doing so for CPU-wide
8461 * events requires additional context switching
8462 * trickery, since same object code will be
8463 * mapped at different virtual addresses in
8464 * different processes.
8465 */
8466 ret = -EOPNOTSUPP;
8467 if (!event->ctx->task)
8468 goto fail_free_name;
8469
375637bc
AS
8470 /* look up the path and grab its inode */
8471 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8472 if (ret)
8473 goto fail_free_name;
8474
8475 filter->inode = igrab(d_inode(path.dentry));
8476 path_put(&path);
8477 kfree(filename);
8478 filename = NULL;
8479
8480 ret = -EINVAL;
8481 if (!filter->inode ||
8482 !S_ISREG(filter->inode->i_mode))
8483 /* free_filters_list() will iput() */
8484 goto fail;
6ce77bfd
AS
8485
8486 event->addr_filters.nr_file_filters++;
375637bc
AS
8487 }
8488
8489 /* ready to consume more filters */
8490 state = IF_STATE_ACTION;
8491 filter = NULL;
8492 }
8493 }
8494
8495 if (state != IF_STATE_ACTION)
8496 goto fail;
8497
8498 kfree(orig);
8499
8500 return 0;
8501
8502fail_free_name:
8503 kfree(filename);
8504fail:
8505 free_filters_list(filters);
8506 kfree(orig);
8507
8508 return ret;
8509}
8510
8511static int
8512perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8513{
8514 LIST_HEAD(filters);
8515 int ret;
8516
8517 /*
8518 * Since this is called in perf_ioctl() path, we're already holding
8519 * ctx::mutex.
8520 */
8521 lockdep_assert_held(&event->ctx->mutex);
8522
8523 if (WARN_ON_ONCE(event->parent))
8524 return -EINVAL;
8525
375637bc
AS
8526 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8527 if (ret)
6ce77bfd 8528 goto fail_clear_files;
375637bc
AS
8529
8530 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8531 if (ret)
8532 goto fail_free_filters;
375637bc
AS
8533
8534 /* remove existing filters, if any */
8535 perf_addr_filters_splice(event, &filters);
8536
8537 /* install new filters */
8538 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8539
6ce77bfd
AS
8540 return ret;
8541
8542fail_free_filters:
8543 free_filters_list(&filters);
8544
8545fail_clear_files:
8546 event->addr_filters.nr_file_filters = 0;
8547
375637bc
AS
8548 return ret;
8549}
8550
43fa87f7
PZ
8551static int
8552perf_tracepoint_set_filter(struct perf_event *event, char *filter_str)
8553{
8554 struct perf_event_context *ctx = event->ctx;
8555 int ret;
8556
8557 /*
8558 * Beware, here be dragons!!
8559 *
8560 * the tracepoint muck will deadlock against ctx->mutex, but the tracepoint
8561 * stuff does not actually need it. So temporarily drop ctx->mutex. As per
8562 * perf_event_ctx_lock() we already have a reference on ctx.
8563 *
8564 * This can result in event getting moved to a different ctx, but that
8565 * does not affect the tracepoint state.
8566 */
8567 mutex_unlock(&ctx->mutex);
8568 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
8569 mutex_lock(&ctx->mutex);
8570
8571 return ret;
8572}
8573
c796bbbe
AS
8574static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8575{
8576 char *filter_str;
8577 int ret = -EINVAL;
8578
375637bc
AS
8579 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8580 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8581 !has_addr_filter(event))
c796bbbe
AS
8582 return -EINVAL;
8583
8584 filter_str = strndup_user(arg, PAGE_SIZE);
8585 if (IS_ERR(filter_str))
8586 return PTR_ERR(filter_str);
8587
8588 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8589 event->attr.type == PERF_TYPE_TRACEPOINT)
43fa87f7 8590 ret = perf_tracepoint_set_filter(event, filter_str);
375637bc
AS
8591 else if (has_addr_filter(event))
8592 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8593
8594 kfree(filter_str);
8595 return ret;
8596}
8597
b0a873eb
PZ
8598/*
8599 * hrtimer based swevent callback
8600 */
f29ac756 8601
b0a873eb 8602static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8603{
b0a873eb
PZ
8604 enum hrtimer_restart ret = HRTIMER_RESTART;
8605 struct perf_sample_data data;
8606 struct pt_regs *regs;
8607 struct perf_event *event;
8608 u64 period;
f29ac756 8609
b0a873eb 8610 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8611
8612 if (event->state != PERF_EVENT_STATE_ACTIVE)
8613 return HRTIMER_NORESTART;
8614
b0a873eb 8615 event->pmu->read(event);
f344011c 8616
fd0d000b 8617 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8618 regs = get_irq_regs();
8619
8620 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8621 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8622 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8623 ret = HRTIMER_NORESTART;
8624 }
24f1e32c 8625
b0a873eb
PZ
8626 period = max_t(u64, 10000, event->hw.sample_period);
8627 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8628
b0a873eb 8629 return ret;
f29ac756
PZ
8630}
8631
b0a873eb 8632static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8633{
b0a873eb 8634 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8635 s64 period;
8636
8637 if (!is_sampling_event(event))
8638 return;
f5ffe02e 8639
5d508e82
FBH
8640 period = local64_read(&hwc->period_left);
8641 if (period) {
8642 if (period < 0)
8643 period = 10000;
fa407f35 8644
5d508e82
FBH
8645 local64_set(&hwc->period_left, 0);
8646 } else {
8647 period = max_t(u64, 10000, hwc->sample_period);
8648 }
3497d206
TG
8649 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8650 HRTIMER_MODE_REL_PINNED);
24f1e32c 8651}
b0a873eb
PZ
8652
8653static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8654{
b0a873eb
PZ
8655 struct hw_perf_event *hwc = &event->hw;
8656
6c7e550f 8657 if (is_sampling_event(event)) {
b0a873eb 8658 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8659 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8660
8661 hrtimer_cancel(&hwc->hrtimer);
8662 }
24f1e32c
FW
8663}
8664
ba3dd36c
PZ
8665static void perf_swevent_init_hrtimer(struct perf_event *event)
8666{
8667 struct hw_perf_event *hwc = &event->hw;
8668
8669 if (!is_sampling_event(event))
8670 return;
8671
8672 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8673 hwc->hrtimer.function = perf_swevent_hrtimer;
8674
8675 /*
8676 * Since hrtimers have a fixed rate, we can do a static freq->period
8677 * mapping and avoid the whole period adjust feedback stuff.
8678 */
8679 if (event->attr.freq) {
8680 long freq = event->attr.sample_freq;
8681
8682 event->attr.sample_period = NSEC_PER_SEC / freq;
8683 hwc->sample_period = event->attr.sample_period;
8684 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8685 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8686 event->attr.freq = 0;
8687 }
8688}
8689
b0a873eb
PZ
8690/*
8691 * Software event: cpu wall time clock
8692 */
8693
8694static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8695{
b0a873eb
PZ
8696 s64 prev;
8697 u64 now;
8698
a4eaf7f1 8699 now = local_clock();
b0a873eb
PZ
8700 prev = local64_xchg(&event->hw.prev_count, now);
8701 local64_add(now - prev, &event->count);
24f1e32c 8702}
24f1e32c 8703
a4eaf7f1 8704static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8705{
a4eaf7f1 8706 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8707 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8708}
8709
a4eaf7f1 8710static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8711{
b0a873eb
PZ
8712 perf_swevent_cancel_hrtimer(event);
8713 cpu_clock_event_update(event);
8714}
f29ac756 8715
a4eaf7f1
PZ
8716static int cpu_clock_event_add(struct perf_event *event, int flags)
8717{
8718 if (flags & PERF_EF_START)
8719 cpu_clock_event_start(event, flags);
6a694a60 8720 perf_event_update_userpage(event);
a4eaf7f1
PZ
8721
8722 return 0;
8723}
8724
8725static void cpu_clock_event_del(struct perf_event *event, int flags)
8726{
8727 cpu_clock_event_stop(event, flags);
8728}
8729
b0a873eb
PZ
8730static void cpu_clock_event_read(struct perf_event *event)
8731{
8732 cpu_clock_event_update(event);
8733}
f344011c 8734
b0a873eb
PZ
8735static int cpu_clock_event_init(struct perf_event *event)
8736{
8737 if (event->attr.type != PERF_TYPE_SOFTWARE)
8738 return -ENOENT;
8739
8740 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8741 return -ENOENT;
8742
2481c5fa
SE
8743 /*
8744 * no branch sampling for software events
8745 */
8746 if (has_branch_stack(event))
8747 return -EOPNOTSUPP;
8748
ba3dd36c
PZ
8749 perf_swevent_init_hrtimer(event);
8750
b0a873eb 8751 return 0;
f29ac756
PZ
8752}
8753
b0a873eb 8754static struct pmu perf_cpu_clock = {
89a1e187
PZ
8755 .task_ctx_nr = perf_sw_context,
8756
34f43927
PZ
8757 .capabilities = PERF_PMU_CAP_NO_NMI,
8758
b0a873eb 8759 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8760 .add = cpu_clock_event_add,
8761 .del = cpu_clock_event_del,
8762 .start = cpu_clock_event_start,
8763 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8764 .read = cpu_clock_event_read,
8765};
8766
8767/*
8768 * Software event: task time clock
8769 */
8770
8771static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8772{
b0a873eb
PZ
8773 u64 prev;
8774 s64 delta;
5c92d124 8775
b0a873eb
PZ
8776 prev = local64_xchg(&event->hw.prev_count, now);
8777 delta = now - prev;
8778 local64_add(delta, &event->count);
8779}
5c92d124 8780
a4eaf7f1 8781static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8782{
a4eaf7f1 8783 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8784 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8785}
8786
a4eaf7f1 8787static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8788{
8789 perf_swevent_cancel_hrtimer(event);
8790 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8791}
8792
8793static int task_clock_event_add(struct perf_event *event, int flags)
8794{
8795 if (flags & PERF_EF_START)
8796 task_clock_event_start(event, flags);
6a694a60 8797 perf_event_update_userpage(event);
b0a873eb 8798
a4eaf7f1
PZ
8799 return 0;
8800}
8801
8802static void task_clock_event_del(struct perf_event *event, int flags)
8803{
8804 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8805}
8806
8807static void task_clock_event_read(struct perf_event *event)
8808{
768a06e2
PZ
8809 u64 now = perf_clock();
8810 u64 delta = now - event->ctx->timestamp;
8811 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8812
8813 task_clock_event_update(event, time);
8814}
8815
8816static int task_clock_event_init(struct perf_event *event)
6fb2915d 8817{
b0a873eb
PZ
8818 if (event->attr.type != PERF_TYPE_SOFTWARE)
8819 return -ENOENT;
8820
8821 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8822 return -ENOENT;
8823
2481c5fa
SE
8824 /*
8825 * no branch sampling for software events
8826 */
8827 if (has_branch_stack(event))
8828 return -EOPNOTSUPP;
8829
ba3dd36c
PZ
8830 perf_swevent_init_hrtimer(event);
8831
b0a873eb 8832 return 0;
6fb2915d
LZ
8833}
8834
b0a873eb 8835static struct pmu perf_task_clock = {
89a1e187
PZ
8836 .task_ctx_nr = perf_sw_context,
8837
34f43927
PZ
8838 .capabilities = PERF_PMU_CAP_NO_NMI,
8839
b0a873eb 8840 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8841 .add = task_clock_event_add,
8842 .del = task_clock_event_del,
8843 .start = task_clock_event_start,
8844 .stop = task_clock_event_stop,
b0a873eb
PZ
8845 .read = task_clock_event_read,
8846};
6fb2915d 8847
ad5133b7 8848static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8849{
e077df4f 8850}
6fb2915d 8851
fbbe0701
SB
8852static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8853{
8854}
8855
ad5133b7 8856static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8857{
ad5133b7 8858 return 0;
6fb2915d
LZ
8859}
8860
18ab2cd3 8861static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8862
8863static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8864{
fbbe0701
SB
8865 __this_cpu_write(nop_txn_flags, flags);
8866
8867 if (flags & ~PERF_PMU_TXN_ADD)
8868 return;
8869
ad5133b7 8870 perf_pmu_disable(pmu);
6fb2915d
LZ
8871}
8872
ad5133b7
PZ
8873static int perf_pmu_commit_txn(struct pmu *pmu)
8874{
fbbe0701
SB
8875 unsigned int flags = __this_cpu_read(nop_txn_flags);
8876
8877 __this_cpu_write(nop_txn_flags, 0);
8878
8879 if (flags & ~PERF_PMU_TXN_ADD)
8880 return 0;
8881
ad5133b7
PZ
8882 perf_pmu_enable(pmu);
8883 return 0;
8884}
e077df4f 8885
ad5133b7 8886static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8887{
fbbe0701
SB
8888 unsigned int flags = __this_cpu_read(nop_txn_flags);
8889
8890 __this_cpu_write(nop_txn_flags, 0);
8891
8892 if (flags & ~PERF_PMU_TXN_ADD)
8893 return;
8894
ad5133b7 8895 perf_pmu_enable(pmu);
24f1e32c
FW
8896}
8897
35edc2a5
PZ
8898static int perf_event_idx_default(struct perf_event *event)
8899{
c719f560 8900 return 0;
35edc2a5
PZ
8901}
8902
8dc85d54
PZ
8903/*
8904 * Ensures all contexts with the same task_ctx_nr have the same
8905 * pmu_cpu_context too.
8906 */
9e317041 8907static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8908{
8dc85d54 8909 struct pmu *pmu;
b326e956 8910
8dc85d54
PZ
8911 if (ctxn < 0)
8912 return NULL;
24f1e32c 8913
8dc85d54
PZ
8914 list_for_each_entry(pmu, &pmus, entry) {
8915 if (pmu->task_ctx_nr == ctxn)
8916 return pmu->pmu_cpu_context;
8917 }
24f1e32c 8918
8dc85d54 8919 return NULL;
24f1e32c
FW
8920}
8921
51676957
PZ
8922static void free_pmu_context(struct pmu *pmu)
8923{
df0062b2
WD
8924 /*
8925 * Static contexts such as perf_sw_context have a global lifetime
8926 * and may be shared between different PMUs. Avoid freeing them
8927 * when a single PMU is going away.
8928 */
8929 if (pmu->task_ctx_nr > perf_invalid_context)
8930 return;
8931
8dc85d54 8932 mutex_lock(&pmus_lock);
51676957 8933 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8934 mutex_unlock(&pmus_lock);
24f1e32c 8935}
6e855cd4
AS
8936
8937/*
8938 * Let userspace know that this PMU supports address range filtering:
8939 */
8940static ssize_t nr_addr_filters_show(struct device *dev,
8941 struct device_attribute *attr,
8942 char *page)
8943{
8944 struct pmu *pmu = dev_get_drvdata(dev);
8945
8946 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8947}
8948DEVICE_ATTR_RO(nr_addr_filters);
8949
2e80a82a 8950static struct idr pmu_idr;
d6d020e9 8951
abe43400
PZ
8952static ssize_t
8953type_show(struct device *dev, struct device_attribute *attr, char *page)
8954{
8955 struct pmu *pmu = dev_get_drvdata(dev);
8956
8957 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8958}
90826ca7 8959static DEVICE_ATTR_RO(type);
abe43400 8960
62b85639
SE
8961static ssize_t
8962perf_event_mux_interval_ms_show(struct device *dev,
8963 struct device_attribute *attr,
8964 char *page)
8965{
8966 struct pmu *pmu = dev_get_drvdata(dev);
8967
8968 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8969}
8970
272325c4
PZ
8971static DEFINE_MUTEX(mux_interval_mutex);
8972
62b85639
SE
8973static ssize_t
8974perf_event_mux_interval_ms_store(struct device *dev,
8975 struct device_attribute *attr,
8976 const char *buf, size_t count)
8977{
8978 struct pmu *pmu = dev_get_drvdata(dev);
8979 int timer, cpu, ret;
8980
8981 ret = kstrtoint(buf, 0, &timer);
8982 if (ret)
8983 return ret;
8984
8985 if (timer < 1)
8986 return -EINVAL;
8987
8988 /* same value, noting to do */
8989 if (timer == pmu->hrtimer_interval_ms)
8990 return count;
8991
272325c4 8992 mutex_lock(&mux_interval_mutex);
62b85639
SE
8993 pmu->hrtimer_interval_ms = timer;
8994
8995 /* update all cpuctx for this PMU */
a63fbed7 8996 cpus_read_lock();
272325c4 8997 for_each_online_cpu(cpu) {
62b85639
SE
8998 struct perf_cpu_context *cpuctx;
8999 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9000 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9001
272325c4
PZ
9002 cpu_function_call(cpu,
9003 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 9004 }
a63fbed7 9005 cpus_read_unlock();
272325c4 9006 mutex_unlock(&mux_interval_mutex);
62b85639
SE
9007
9008 return count;
9009}
90826ca7 9010static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 9011
90826ca7
GKH
9012static struct attribute *pmu_dev_attrs[] = {
9013 &dev_attr_type.attr,
9014 &dev_attr_perf_event_mux_interval_ms.attr,
9015 NULL,
abe43400 9016};
90826ca7 9017ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9018
9019static int pmu_bus_running;
9020static struct bus_type pmu_bus = {
9021 .name = "event_source",
90826ca7 9022 .dev_groups = pmu_dev_groups,
abe43400
PZ
9023};
9024
9025static void pmu_dev_release(struct device *dev)
9026{
9027 kfree(dev);
9028}
9029
9030static int pmu_dev_alloc(struct pmu *pmu)
9031{
9032 int ret = -ENOMEM;
9033
9034 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9035 if (!pmu->dev)
9036 goto out;
9037
0c9d42ed 9038 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9039 device_initialize(pmu->dev);
9040 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9041 if (ret)
9042 goto free_dev;
9043
9044 dev_set_drvdata(pmu->dev, pmu);
9045 pmu->dev->bus = &pmu_bus;
9046 pmu->dev->release = pmu_dev_release;
9047 ret = device_add(pmu->dev);
9048 if (ret)
9049 goto free_dev;
9050
6e855cd4
AS
9051 /* For PMUs with address filters, throw in an extra attribute: */
9052 if (pmu->nr_addr_filters)
9053 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9054
9055 if (ret)
9056 goto del_dev;
9057
abe43400
PZ
9058out:
9059 return ret;
9060
6e855cd4
AS
9061del_dev:
9062 device_del(pmu->dev);
9063
abe43400
PZ
9064free_dev:
9065 put_device(pmu->dev);
9066 goto out;
9067}
9068
547e9fd7 9069static struct lock_class_key cpuctx_mutex;
facc4307 9070static struct lock_class_key cpuctx_lock;
547e9fd7 9071
03d8e80b 9072int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9073{
108b02cf 9074 int cpu, ret;
24f1e32c 9075
b0a873eb 9076 mutex_lock(&pmus_lock);
33696fc0
PZ
9077 ret = -ENOMEM;
9078 pmu->pmu_disable_count = alloc_percpu(int);
9079 if (!pmu->pmu_disable_count)
9080 goto unlock;
f29ac756 9081
2e80a82a
PZ
9082 pmu->type = -1;
9083 if (!name)
9084 goto skip_type;
9085 pmu->name = name;
9086
9087 if (type < 0) {
0e9c3be2
TH
9088 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9089 if (type < 0) {
9090 ret = type;
2e80a82a
PZ
9091 goto free_pdc;
9092 }
9093 }
9094 pmu->type = type;
9095
abe43400
PZ
9096 if (pmu_bus_running) {
9097 ret = pmu_dev_alloc(pmu);
9098 if (ret)
9099 goto free_idr;
9100 }
9101
2e80a82a 9102skip_type:
26657848
PZ
9103 if (pmu->task_ctx_nr == perf_hw_context) {
9104 static int hw_context_taken = 0;
9105
5101ef20
MR
9106 /*
9107 * Other than systems with heterogeneous CPUs, it never makes
9108 * sense for two PMUs to share perf_hw_context. PMUs which are
9109 * uncore must use perf_invalid_context.
9110 */
9111 if (WARN_ON_ONCE(hw_context_taken &&
9112 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9113 pmu->task_ctx_nr = perf_invalid_context;
9114
9115 hw_context_taken = 1;
9116 }
9117
8dc85d54
PZ
9118 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9119 if (pmu->pmu_cpu_context)
9120 goto got_cpu_context;
f29ac756 9121
c4814202 9122 ret = -ENOMEM;
108b02cf
PZ
9123 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9124 if (!pmu->pmu_cpu_context)
abe43400 9125 goto free_dev;
f344011c 9126
108b02cf
PZ
9127 for_each_possible_cpu(cpu) {
9128 struct perf_cpu_context *cpuctx;
9129
9130 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9131 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9132 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9133 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9134 cpuctx->ctx.pmu = pmu;
a63fbed7 9135 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9136
272325c4 9137 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9138 }
76e1d904 9139
8dc85d54 9140got_cpu_context:
ad5133b7
PZ
9141 if (!pmu->start_txn) {
9142 if (pmu->pmu_enable) {
9143 /*
9144 * If we have pmu_enable/pmu_disable calls, install
9145 * transaction stubs that use that to try and batch
9146 * hardware accesses.
9147 */
9148 pmu->start_txn = perf_pmu_start_txn;
9149 pmu->commit_txn = perf_pmu_commit_txn;
9150 pmu->cancel_txn = perf_pmu_cancel_txn;
9151 } else {
fbbe0701 9152 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9153 pmu->commit_txn = perf_pmu_nop_int;
9154 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9155 }
5c92d124 9156 }
15dbf27c 9157
ad5133b7
PZ
9158 if (!pmu->pmu_enable) {
9159 pmu->pmu_enable = perf_pmu_nop_void;
9160 pmu->pmu_disable = perf_pmu_nop_void;
9161 }
9162
35edc2a5
PZ
9163 if (!pmu->event_idx)
9164 pmu->event_idx = perf_event_idx_default;
9165
b0a873eb 9166 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9167 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9168 ret = 0;
9169unlock:
b0a873eb
PZ
9170 mutex_unlock(&pmus_lock);
9171
33696fc0 9172 return ret;
108b02cf 9173
abe43400
PZ
9174free_dev:
9175 device_del(pmu->dev);
9176 put_device(pmu->dev);
9177
2e80a82a
PZ
9178free_idr:
9179 if (pmu->type >= PERF_TYPE_MAX)
9180 idr_remove(&pmu_idr, pmu->type);
9181
108b02cf
PZ
9182free_pdc:
9183 free_percpu(pmu->pmu_disable_count);
9184 goto unlock;
f29ac756 9185}
c464c76e 9186EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9187
b0a873eb 9188void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9189{
0933840a
JO
9190 int remove_device;
9191
b0a873eb 9192 mutex_lock(&pmus_lock);
0933840a 9193 remove_device = pmu_bus_running;
b0a873eb
PZ
9194 list_del_rcu(&pmu->entry);
9195 mutex_unlock(&pmus_lock);
5c92d124 9196
0475f9ea 9197 /*
cde8e884
PZ
9198 * We dereference the pmu list under both SRCU and regular RCU, so
9199 * synchronize against both of those.
0475f9ea 9200 */
b0a873eb 9201 synchronize_srcu(&pmus_srcu);
cde8e884 9202 synchronize_rcu();
d6d020e9 9203
33696fc0 9204 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9205 if (pmu->type >= PERF_TYPE_MAX)
9206 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9207 if (remove_device) {
9208 if (pmu->nr_addr_filters)
9209 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9210 device_del(pmu->dev);
9211 put_device(pmu->dev);
9212 }
51676957 9213 free_pmu_context(pmu);
b0a873eb 9214}
c464c76e 9215EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9216
cc34b98b
MR
9217static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9218{
ccd41c86 9219 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9220 int ret;
9221
9222 if (!try_module_get(pmu->module))
9223 return -ENODEV;
ccd41c86 9224
0c7296ca
PZ
9225 /*
9226 * A number of pmu->event_init() methods iterate the sibling_list to,
9227 * for example, validate if the group fits on the PMU. Therefore,
9228 * if this is a sibling event, acquire the ctx->mutex to protect
9229 * the sibling_list.
9230 */
9231 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
9232 /*
9233 * This ctx->mutex can nest when we're called through
9234 * inheritance. See the perf_event_ctx_lock_nested() comment.
9235 */
9236 ctx = perf_event_ctx_lock_nested(event->group_leader,
9237 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9238 BUG_ON(!ctx);
9239 }
9240
cc34b98b
MR
9241 event->pmu = pmu;
9242 ret = pmu->event_init(event);
ccd41c86
PZ
9243
9244 if (ctx)
9245 perf_event_ctx_unlock(event->group_leader, ctx);
9246
cc34b98b
MR
9247 if (ret)
9248 module_put(pmu->module);
9249
9250 return ret;
9251}
9252
18ab2cd3 9253static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9254{
85c617ab 9255 struct pmu *pmu;
b0a873eb 9256 int idx;
940c5b29 9257 int ret;
b0a873eb
PZ
9258
9259 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9260
40999312
KL
9261 /* Try parent's PMU first: */
9262 if (event->parent && event->parent->pmu) {
9263 pmu = event->parent->pmu;
9264 ret = perf_try_init_event(pmu, event);
9265 if (!ret)
9266 goto unlock;
9267 }
9268
2e80a82a
PZ
9269 rcu_read_lock();
9270 pmu = idr_find(&pmu_idr, event->attr.type);
9271 rcu_read_unlock();
940c5b29 9272 if (pmu) {
cc34b98b 9273 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9274 if (ret)
9275 pmu = ERR_PTR(ret);
2e80a82a 9276 goto unlock;
940c5b29 9277 }
2e80a82a 9278
b0a873eb 9279 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9280 ret = perf_try_init_event(pmu, event);
b0a873eb 9281 if (!ret)
e5f4d339 9282 goto unlock;
76e1d904 9283
b0a873eb
PZ
9284 if (ret != -ENOENT) {
9285 pmu = ERR_PTR(ret);
e5f4d339 9286 goto unlock;
f344011c 9287 }
5c92d124 9288 }
e5f4d339
PZ
9289 pmu = ERR_PTR(-ENOENT);
9290unlock:
b0a873eb 9291 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9292
4aeb0b42 9293 return pmu;
5c92d124
IM
9294}
9295
f2fb6bef
KL
9296static void attach_sb_event(struct perf_event *event)
9297{
9298 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9299
9300 raw_spin_lock(&pel->lock);
9301 list_add_rcu(&event->sb_list, &pel->list);
9302 raw_spin_unlock(&pel->lock);
9303}
9304
aab5b71e
PZ
9305/*
9306 * We keep a list of all !task (and therefore per-cpu) events
9307 * that need to receive side-band records.
9308 *
9309 * This avoids having to scan all the various PMU per-cpu contexts
9310 * looking for them.
9311 */
f2fb6bef
KL
9312static void account_pmu_sb_event(struct perf_event *event)
9313{
a4f144eb 9314 if (is_sb_event(event))
f2fb6bef
KL
9315 attach_sb_event(event);
9316}
9317
4beb31f3
FW
9318static void account_event_cpu(struct perf_event *event, int cpu)
9319{
9320 if (event->parent)
9321 return;
9322
4beb31f3
FW
9323 if (is_cgroup_event(event))
9324 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9325}
9326
555e0c1e
FW
9327/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9328static void account_freq_event_nohz(void)
9329{
9330#ifdef CONFIG_NO_HZ_FULL
9331 /* Lock so we don't race with concurrent unaccount */
9332 spin_lock(&nr_freq_lock);
9333 if (atomic_inc_return(&nr_freq_events) == 1)
9334 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9335 spin_unlock(&nr_freq_lock);
9336#endif
9337}
9338
9339static void account_freq_event(void)
9340{
9341 if (tick_nohz_full_enabled())
9342 account_freq_event_nohz();
9343 else
9344 atomic_inc(&nr_freq_events);
9345}
9346
9347
766d6c07
FW
9348static void account_event(struct perf_event *event)
9349{
25432ae9
PZ
9350 bool inc = false;
9351
4beb31f3
FW
9352 if (event->parent)
9353 return;
9354
766d6c07 9355 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9356 inc = true;
766d6c07
FW
9357 if (event->attr.mmap || event->attr.mmap_data)
9358 atomic_inc(&nr_mmap_events);
9359 if (event->attr.comm)
9360 atomic_inc(&nr_comm_events);
e4222673
HB
9361 if (event->attr.namespaces)
9362 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9363 if (event->attr.task)
9364 atomic_inc(&nr_task_events);
555e0c1e
FW
9365 if (event->attr.freq)
9366 account_freq_event();
45ac1403
AH
9367 if (event->attr.context_switch) {
9368 atomic_inc(&nr_switch_events);
25432ae9 9369 inc = true;
45ac1403 9370 }
4beb31f3 9371 if (has_branch_stack(event))
25432ae9 9372 inc = true;
4beb31f3 9373 if (is_cgroup_event(event))
25432ae9
PZ
9374 inc = true;
9375
9107c89e 9376 if (inc) {
5bce9db1
AS
9377 /*
9378 * We need the mutex here because static_branch_enable()
9379 * must complete *before* the perf_sched_count increment
9380 * becomes visible.
9381 */
9107c89e
PZ
9382 if (atomic_inc_not_zero(&perf_sched_count))
9383 goto enabled;
9384
9385 mutex_lock(&perf_sched_mutex);
9386 if (!atomic_read(&perf_sched_count)) {
9387 static_branch_enable(&perf_sched_events);
9388 /*
9389 * Guarantee that all CPUs observe they key change and
9390 * call the perf scheduling hooks before proceeding to
9391 * install events that need them.
9392 */
9393 synchronize_sched();
9394 }
9395 /*
9396 * Now that we have waited for the sync_sched(), allow further
9397 * increments to by-pass the mutex.
9398 */
9399 atomic_inc(&perf_sched_count);
9400 mutex_unlock(&perf_sched_mutex);
9401 }
9402enabled:
4beb31f3
FW
9403
9404 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9405
9406 account_pmu_sb_event(event);
766d6c07
FW
9407}
9408
0793a61d 9409/*
cdd6c482 9410 * Allocate and initialize a event structure
0793a61d 9411 */
cdd6c482 9412static struct perf_event *
c3f00c70 9413perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9414 struct task_struct *task,
9415 struct perf_event *group_leader,
9416 struct perf_event *parent_event,
4dc0da86 9417 perf_overflow_handler_t overflow_handler,
79dff51e 9418 void *context, int cgroup_fd)
0793a61d 9419{
51b0fe39 9420 struct pmu *pmu;
cdd6c482
IM
9421 struct perf_event *event;
9422 struct hw_perf_event *hwc;
90983b16 9423 long err = -EINVAL;
0793a61d 9424
66832eb4
ON
9425 if ((unsigned)cpu >= nr_cpu_ids) {
9426 if (!task || cpu != -1)
9427 return ERR_PTR(-EINVAL);
9428 }
9429
c3f00c70 9430 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9431 if (!event)
d5d2bc0d 9432 return ERR_PTR(-ENOMEM);
0793a61d 9433
04289bb9 9434 /*
cdd6c482 9435 * Single events are their own group leaders, with an
04289bb9
IM
9436 * empty sibling list:
9437 */
9438 if (!group_leader)
cdd6c482 9439 group_leader = event;
04289bb9 9440
cdd6c482
IM
9441 mutex_init(&event->child_mutex);
9442 INIT_LIST_HEAD(&event->child_list);
fccc714b 9443
cdd6c482
IM
9444 INIT_LIST_HEAD(&event->group_entry);
9445 INIT_LIST_HEAD(&event->event_entry);
9446 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9447 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9448 INIT_LIST_HEAD(&event->active_entry);
375637bc 9449 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9450 INIT_HLIST_NODE(&event->hlist_entry);
9451
10c6db11 9452
cdd6c482 9453 init_waitqueue_head(&event->waitq);
e360adbe 9454 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9455
cdd6c482 9456 mutex_init(&event->mmap_mutex);
375637bc 9457 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9458
a6fa941d 9459 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9460 event->cpu = cpu;
9461 event->attr = *attr;
9462 event->group_leader = group_leader;
9463 event->pmu = NULL;
cdd6c482 9464 event->oncpu = -1;
a96bbc16 9465
cdd6c482 9466 event->parent = parent_event;
b84fbc9f 9467
17cf22c3 9468 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9469 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9470
cdd6c482 9471 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9472
d580ff86
PZ
9473 if (task) {
9474 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9475 /*
50f16a8b
PZ
9476 * XXX pmu::event_init needs to know what task to account to
9477 * and we cannot use the ctx information because we need the
9478 * pmu before we get a ctx.
d580ff86 9479 */
50f16a8b 9480 event->hw.target = task;
d580ff86
PZ
9481 }
9482
34f43927
PZ
9483 event->clock = &local_clock;
9484 if (parent_event)
9485 event->clock = parent_event->clock;
9486
4dc0da86 9487 if (!overflow_handler && parent_event) {
b326e956 9488 overflow_handler = parent_event->overflow_handler;
4dc0da86 9489 context = parent_event->overflow_handler_context;
f1e4ba5b 9490#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9491 if (overflow_handler == bpf_overflow_handler) {
9492 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9493
9494 if (IS_ERR(prog)) {
9495 err = PTR_ERR(prog);
9496 goto err_ns;
9497 }
9498 event->prog = prog;
9499 event->orig_overflow_handler =
9500 parent_event->orig_overflow_handler;
9501 }
9502#endif
4dc0da86 9503 }
66832eb4 9504
1879445d
WN
9505 if (overflow_handler) {
9506 event->overflow_handler = overflow_handler;
9507 event->overflow_handler_context = context;
9ecda41a
WN
9508 } else if (is_write_backward(event)){
9509 event->overflow_handler = perf_event_output_backward;
9510 event->overflow_handler_context = NULL;
1879445d 9511 } else {
9ecda41a 9512 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9513 event->overflow_handler_context = NULL;
9514 }
97eaf530 9515
0231bb53 9516 perf_event__state_init(event);
a86ed508 9517
4aeb0b42 9518 pmu = NULL;
b8e83514 9519
cdd6c482 9520 hwc = &event->hw;
bd2b5b12 9521 hwc->sample_period = attr->sample_period;
0d48696f 9522 if (attr->freq && attr->sample_freq)
bd2b5b12 9523 hwc->sample_period = 1;
eced1dfc 9524 hwc->last_period = hwc->sample_period;
bd2b5b12 9525
e7850595 9526 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9527
2023b359 9528 /*
ba5213ae
PZ
9529 * We currently do not support PERF_SAMPLE_READ on inherited events.
9530 * See perf_output_read().
2023b359 9531 */
ba5213ae 9532 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 9533 goto err_ns;
a46a2300
YZ
9534
9535 if (!has_branch_stack(event))
9536 event->attr.branch_sample_type = 0;
2023b359 9537
79dff51e
MF
9538 if (cgroup_fd != -1) {
9539 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9540 if (err)
9541 goto err_ns;
9542 }
9543
b0a873eb 9544 pmu = perf_init_event(event);
85c617ab 9545 if (IS_ERR(pmu)) {
4aeb0b42 9546 err = PTR_ERR(pmu);
90983b16 9547 goto err_ns;
621a01ea 9548 }
d5d2bc0d 9549
bed5b25a
AS
9550 err = exclusive_event_init(event);
9551 if (err)
9552 goto err_pmu;
9553
375637bc
AS
9554 if (has_addr_filter(event)) {
9555 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9556 sizeof(unsigned long),
9557 GFP_KERNEL);
36cc2b92
DC
9558 if (!event->addr_filters_offs) {
9559 err = -ENOMEM;
375637bc 9560 goto err_per_task;
36cc2b92 9561 }
375637bc
AS
9562
9563 /* force hw sync on the address filters */
9564 event->addr_filters_gen = 1;
9565 }
9566
cdd6c482 9567 if (!event->parent) {
927c7a9e 9568 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9569 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9570 if (err)
375637bc 9571 goto err_addr_filters;
d010b332 9572 }
f344011c 9573 }
9ee318a7 9574
927a5570
AS
9575 /* symmetric to unaccount_event() in _free_event() */
9576 account_event(event);
9577
cdd6c482 9578 return event;
90983b16 9579
375637bc
AS
9580err_addr_filters:
9581 kfree(event->addr_filters_offs);
9582
bed5b25a
AS
9583err_per_task:
9584 exclusive_event_destroy(event);
9585
90983b16
FW
9586err_pmu:
9587 if (event->destroy)
9588 event->destroy(event);
c464c76e 9589 module_put(pmu->module);
90983b16 9590err_ns:
79dff51e
MF
9591 if (is_cgroup_event(event))
9592 perf_detach_cgroup(event);
90983b16
FW
9593 if (event->ns)
9594 put_pid_ns(event->ns);
9595 kfree(event);
9596
9597 return ERR_PTR(err);
0793a61d
TG
9598}
9599
cdd6c482
IM
9600static int perf_copy_attr(struct perf_event_attr __user *uattr,
9601 struct perf_event_attr *attr)
974802ea 9602{
974802ea 9603 u32 size;
cdf8073d 9604 int ret;
974802ea
PZ
9605
9606 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9607 return -EFAULT;
9608
9609 /*
9610 * zero the full structure, so that a short copy will be nice.
9611 */
9612 memset(attr, 0, sizeof(*attr));
9613
9614 ret = get_user(size, &uattr->size);
9615 if (ret)
9616 return ret;
9617
9618 if (size > PAGE_SIZE) /* silly large */
9619 goto err_size;
9620
9621 if (!size) /* abi compat */
9622 size = PERF_ATTR_SIZE_VER0;
9623
9624 if (size < PERF_ATTR_SIZE_VER0)
9625 goto err_size;
9626
9627 /*
9628 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9629 * ensure all the unknown bits are 0 - i.e. new
9630 * user-space does not rely on any kernel feature
9631 * extensions we dont know about yet.
974802ea
PZ
9632 */
9633 if (size > sizeof(*attr)) {
cdf8073d
IS
9634 unsigned char __user *addr;
9635 unsigned char __user *end;
9636 unsigned char val;
974802ea 9637
cdf8073d
IS
9638 addr = (void __user *)uattr + sizeof(*attr);
9639 end = (void __user *)uattr + size;
974802ea 9640
cdf8073d 9641 for (; addr < end; addr++) {
974802ea
PZ
9642 ret = get_user(val, addr);
9643 if (ret)
9644 return ret;
9645 if (val)
9646 goto err_size;
9647 }
b3e62e35 9648 size = sizeof(*attr);
974802ea
PZ
9649 }
9650
9651 ret = copy_from_user(attr, uattr, size);
9652 if (ret)
9653 return -EFAULT;
9654
f12f42ac
MX
9655 attr->size = size;
9656
cd757645 9657 if (attr->__reserved_1)
974802ea
PZ
9658 return -EINVAL;
9659
9660 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9661 return -EINVAL;
9662
9663 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9664 return -EINVAL;
9665
bce38cd5
SE
9666 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9667 u64 mask = attr->branch_sample_type;
9668
9669 /* only using defined bits */
9670 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9671 return -EINVAL;
9672
9673 /* at least one branch bit must be set */
9674 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9675 return -EINVAL;
9676
bce38cd5
SE
9677 /* propagate priv level, when not set for branch */
9678 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9679
9680 /* exclude_kernel checked on syscall entry */
9681 if (!attr->exclude_kernel)
9682 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9683
9684 if (!attr->exclude_user)
9685 mask |= PERF_SAMPLE_BRANCH_USER;
9686
9687 if (!attr->exclude_hv)
9688 mask |= PERF_SAMPLE_BRANCH_HV;
9689 /*
9690 * adjust user setting (for HW filter setup)
9691 */
9692 attr->branch_sample_type = mask;
9693 }
e712209a
SE
9694 /* privileged levels capture (kernel, hv): check permissions */
9695 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9696 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9697 return -EACCES;
bce38cd5 9698 }
4018994f 9699
c5ebcedb 9700 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9701 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9702 if (ret)
9703 return ret;
9704 }
9705
9706 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9707 if (!arch_perf_have_user_stack_dump())
9708 return -ENOSYS;
9709
9710 /*
9711 * We have __u32 type for the size, but so far
9712 * we can only use __u16 as maximum due to the
9713 * __u16 sample size limit.
9714 */
9715 if (attr->sample_stack_user >= USHRT_MAX)
9716 ret = -EINVAL;
9717 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9718 ret = -EINVAL;
9719 }
4018994f 9720
60e2364e
SE
9721 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9722 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9723out:
9724 return ret;
9725
9726err_size:
9727 put_user(sizeof(*attr), &uattr->size);
9728 ret = -E2BIG;
9729 goto out;
9730}
9731
ac9721f3
PZ
9732static int
9733perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9734{
b69cf536 9735 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9736 int ret = -EINVAL;
9737
ac9721f3 9738 if (!output_event)
a4be7c27
PZ
9739 goto set;
9740
ac9721f3
PZ
9741 /* don't allow circular references */
9742 if (event == output_event)
a4be7c27
PZ
9743 goto out;
9744
0f139300
PZ
9745 /*
9746 * Don't allow cross-cpu buffers
9747 */
9748 if (output_event->cpu != event->cpu)
9749 goto out;
9750
9751 /*
76369139 9752 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9753 */
9754 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9755 goto out;
9756
34f43927
PZ
9757 /*
9758 * Mixing clocks in the same buffer is trouble you don't need.
9759 */
9760 if (output_event->clock != event->clock)
9761 goto out;
9762
9ecda41a
WN
9763 /*
9764 * Either writing ring buffer from beginning or from end.
9765 * Mixing is not allowed.
9766 */
9767 if (is_write_backward(output_event) != is_write_backward(event))
9768 goto out;
9769
45bfb2e5
PZ
9770 /*
9771 * If both events generate aux data, they must be on the same PMU
9772 */
9773 if (has_aux(event) && has_aux(output_event) &&
9774 event->pmu != output_event->pmu)
9775 goto out;
9776
a4be7c27 9777set:
cdd6c482 9778 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9779 /* Can't redirect output if we've got an active mmap() */
9780 if (atomic_read(&event->mmap_count))
9781 goto unlock;
a4be7c27 9782
ac9721f3 9783 if (output_event) {
76369139
FW
9784 /* get the rb we want to redirect to */
9785 rb = ring_buffer_get(output_event);
9786 if (!rb)
ac9721f3 9787 goto unlock;
a4be7c27
PZ
9788 }
9789
b69cf536 9790 ring_buffer_attach(event, rb);
9bb5d40c 9791
a4be7c27 9792 ret = 0;
ac9721f3
PZ
9793unlock:
9794 mutex_unlock(&event->mmap_mutex);
9795
a4be7c27 9796out:
a4be7c27
PZ
9797 return ret;
9798}
9799
f63a8daa
PZ
9800static void mutex_lock_double(struct mutex *a, struct mutex *b)
9801{
9802 if (b < a)
9803 swap(a, b);
9804
9805 mutex_lock(a);
9806 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9807}
9808
34f43927
PZ
9809static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9810{
9811 bool nmi_safe = false;
9812
9813 switch (clk_id) {
9814 case CLOCK_MONOTONIC:
9815 event->clock = &ktime_get_mono_fast_ns;
9816 nmi_safe = true;
9817 break;
9818
9819 case CLOCK_MONOTONIC_RAW:
9820 event->clock = &ktime_get_raw_fast_ns;
9821 nmi_safe = true;
9822 break;
9823
9824 case CLOCK_REALTIME:
9825 event->clock = &ktime_get_real_ns;
9826 break;
9827
9828 case CLOCK_BOOTTIME:
9829 event->clock = &ktime_get_boot_ns;
9830 break;
9831
9832 case CLOCK_TAI:
9833 event->clock = &ktime_get_tai_ns;
9834 break;
9835
9836 default:
9837 return -EINVAL;
9838 }
9839
9840 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9841 return -EINVAL;
9842
9843 return 0;
9844}
9845
321027c1
PZ
9846/*
9847 * Variation on perf_event_ctx_lock_nested(), except we take two context
9848 * mutexes.
9849 */
9850static struct perf_event_context *
9851__perf_event_ctx_lock_double(struct perf_event *group_leader,
9852 struct perf_event_context *ctx)
9853{
9854 struct perf_event_context *gctx;
9855
9856again:
9857 rcu_read_lock();
9858 gctx = READ_ONCE(group_leader->ctx);
9859 if (!atomic_inc_not_zero(&gctx->refcount)) {
9860 rcu_read_unlock();
9861 goto again;
9862 }
9863 rcu_read_unlock();
9864
9865 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9866
9867 if (group_leader->ctx != gctx) {
9868 mutex_unlock(&ctx->mutex);
9869 mutex_unlock(&gctx->mutex);
9870 put_ctx(gctx);
9871 goto again;
9872 }
9873
9874 return gctx;
9875}
9876
0793a61d 9877/**
cdd6c482 9878 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9879 *
cdd6c482 9880 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9881 * @pid: target pid
9f66a381 9882 * @cpu: target cpu
cdd6c482 9883 * @group_fd: group leader event fd
0793a61d 9884 */
cdd6c482
IM
9885SYSCALL_DEFINE5(perf_event_open,
9886 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9887 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9888{
b04243ef
PZ
9889 struct perf_event *group_leader = NULL, *output_event = NULL;
9890 struct perf_event *event, *sibling;
cdd6c482 9891 struct perf_event_attr attr;
f63a8daa 9892 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9893 struct file *event_file = NULL;
2903ff01 9894 struct fd group = {NULL, 0};
38a81da2 9895 struct task_struct *task = NULL;
89a1e187 9896 struct pmu *pmu;
ea635c64 9897 int event_fd;
b04243ef 9898 int move_group = 0;
dc86cabe 9899 int err;
a21b0b35 9900 int f_flags = O_RDWR;
79dff51e 9901 int cgroup_fd = -1;
0793a61d 9902
2743a5b0 9903 /* for future expandability... */
e5d1367f 9904 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9905 return -EINVAL;
9906
dc86cabe
IM
9907 err = perf_copy_attr(attr_uptr, &attr);
9908 if (err)
9909 return err;
eab656ae 9910
0764771d
PZ
9911 if (!attr.exclude_kernel) {
9912 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9913 return -EACCES;
9914 }
9915
e4222673
HB
9916 if (attr.namespaces) {
9917 if (!capable(CAP_SYS_ADMIN))
9918 return -EACCES;
9919 }
9920
df58ab24 9921 if (attr.freq) {
cdd6c482 9922 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9923 return -EINVAL;
0819b2e3
PZ
9924 } else {
9925 if (attr.sample_period & (1ULL << 63))
9926 return -EINVAL;
df58ab24
PZ
9927 }
9928
fc7ce9c7
KL
9929 /* Only privileged users can get physical addresses */
9930 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9931 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9932 return -EACCES;
9933
97c79a38
ACM
9934 if (!attr.sample_max_stack)
9935 attr.sample_max_stack = sysctl_perf_event_max_stack;
9936
e5d1367f
SE
9937 /*
9938 * In cgroup mode, the pid argument is used to pass the fd
9939 * opened to the cgroup directory in cgroupfs. The cpu argument
9940 * designates the cpu on which to monitor threads from that
9941 * cgroup.
9942 */
9943 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9944 return -EINVAL;
9945
a21b0b35
YD
9946 if (flags & PERF_FLAG_FD_CLOEXEC)
9947 f_flags |= O_CLOEXEC;
9948
9949 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9950 if (event_fd < 0)
9951 return event_fd;
9952
ac9721f3 9953 if (group_fd != -1) {
2903ff01
AV
9954 err = perf_fget_light(group_fd, &group);
9955 if (err)
d14b12d7 9956 goto err_fd;
2903ff01 9957 group_leader = group.file->private_data;
ac9721f3
PZ
9958 if (flags & PERF_FLAG_FD_OUTPUT)
9959 output_event = group_leader;
9960 if (flags & PERF_FLAG_FD_NO_GROUP)
9961 group_leader = NULL;
9962 }
9963
e5d1367f 9964 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9965 task = find_lively_task_by_vpid(pid);
9966 if (IS_ERR(task)) {
9967 err = PTR_ERR(task);
9968 goto err_group_fd;
9969 }
9970 }
9971
1f4ee503
PZ
9972 if (task && group_leader &&
9973 group_leader->attr.inherit != attr.inherit) {
9974 err = -EINVAL;
9975 goto err_task;
9976 }
9977
79c9ce57
PZ
9978 if (task) {
9979 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9980 if (err)
e5aeee51 9981 goto err_task;
79c9ce57
PZ
9982
9983 /*
9984 * Reuse ptrace permission checks for now.
9985 *
9986 * We must hold cred_guard_mutex across this and any potential
9987 * perf_install_in_context() call for this new event to
9988 * serialize against exec() altering our credentials (and the
9989 * perf_event_exit_task() that could imply).
9990 */
9991 err = -EACCES;
9992 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9993 goto err_cred;
9994 }
9995
79dff51e
MF
9996 if (flags & PERF_FLAG_PID_CGROUP)
9997 cgroup_fd = pid;
9998
4dc0da86 9999 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 10000 NULL, NULL, cgroup_fd);
d14b12d7
SE
10001 if (IS_ERR(event)) {
10002 err = PTR_ERR(event);
79c9ce57 10003 goto err_cred;
d14b12d7
SE
10004 }
10005
53b25335
VW
10006 if (is_sampling_event(event)) {
10007 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 10008 err = -EOPNOTSUPP;
53b25335
VW
10009 goto err_alloc;
10010 }
10011 }
10012
89a1e187
PZ
10013 /*
10014 * Special case software events and allow them to be part of
10015 * any hardware group.
10016 */
10017 pmu = event->pmu;
b04243ef 10018
34f43927
PZ
10019 if (attr.use_clockid) {
10020 err = perf_event_set_clock(event, attr.clockid);
10021 if (err)
10022 goto err_alloc;
10023 }
10024
4ff6a8de
DCC
10025 if (pmu->task_ctx_nr == perf_sw_context)
10026 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10027
b04243ef
PZ
10028 if (group_leader &&
10029 (is_software_event(event) != is_software_event(group_leader))) {
10030 if (is_software_event(event)) {
10031 /*
10032 * If event and group_leader are not both a software
10033 * event, and event is, then group leader is not.
10034 *
10035 * Allow the addition of software events to !software
10036 * groups, this is safe because software events never
10037 * fail to schedule.
10038 */
10039 pmu = group_leader->pmu;
10040 } else if (is_software_event(group_leader) &&
4ff6a8de 10041 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10042 /*
10043 * In case the group is a pure software group, and we
10044 * try to add a hardware event, move the whole group to
10045 * the hardware context.
10046 */
10047 move_group = 1;
10048 }
10049 }
89a1e187
PZ
10050
10051 /*
10052 * Get the target context (task or percpu):
10053 */
4af57ef2 10054 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10055 if (IS_ERR(ctx)) {
10056 err = PTR_ERR(ctx);
c6be5a5c 10057 goto err_alloc;
89a1e187
PZ
10058 }
10059
bed5b25a
AS
10060 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10061 err = -EBUSY;
10062 goto err_context;
10063 }
10064
ccff286d 10065 /*
cdd6c482 10066 * Look up the group leader (we will attach this event to it):
04289bb9 10067 */
ac9721f3 10068 if (group_leader) {
dc86cabe 10069 err = -EINVAL;
04289bb9 10070
04289bb9 10071 /*
ccff286d
IM
10072 * Do not allow a recursive hierarchy (this new sibling
10073 * becoming part of another group-sibling):
10074 */
10075 if (group_leader->group_leader != group_leader)
c3f00c70 10076 goto err_context;
34f43927
PZ
10077
10078 /* All events in a group should have the same clock */
10079 if (group_leader->clock != event->clock)
10080 goto err_context;
10081
ccff286d 10082 /*
64aee2a9
MR
10083 * Make sure we're both events for the same CPU;
10084 * grouping events for different CPUs is broken; since
10085 * you can never concurrently schedule them anyhow.
04289bb9 10086 */
64aee2a9
MR
10087 if (group_leader->cpu != event->cpu)
10088 goto err_context;
c3c87e77 10089
64aee2a9
MR
10090 /*
10091 * Make sure we're both on the same task, or both
10092 * per-CPU events.
10093 */
10094 if (group_leader->ctx->task != ctx->task)
10095 goto err_context;
10096
10097 /*
10098 * Do not allow to attach to a group in a different task
10099 * or CPU context. If we're moving SW events, we'll fix
10100 * this up later, so allow that.
10101 */
10102 if (!move_group && group_leader->ctx != ctx)
10103 goto err_context;
b04243ef 10104
3b6f9e5c
PM
10105 /*
10106 * Only a group leader can be exclusive or pinned
10107 */
0d48696f 10108 if (attr.exclusive || attr.pinned)
c3f00c70 10109 goto err_context;
ac9721f3
PZ
10110 }
10111
10112 if (output_event) {
10113 err = perf_event_set_output(event, output_event);
10114 if (err)
c3f00c70 10115 goto err_context;
ac9721f3 10116 }
0793a61d 10117
a21b0b35
YD
10118 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10119 f_flags);
ea635c64
AV
10120 if (IS_ERR(event_file)) {
10121 err = PTR_ERR(event_file);
201c2f85 10122 event_file = NULL;
c3f00c70 10123 goto err_context;
ea635c64 10124 }
9b51f66d 10125
b04243ef 10126 if (move_group) {
321027c1
PZ
10127 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10128
84c4e620
PZ
10129 if (gctx->task == TASK_TOMBSTONE) {
10130 err = -ESRCH;
10131 goto err_locked;
10132 }
321027c1
PZ
10133
10134 /*
10135 * Check if we raced against another sys_perf_event_open() call
10136 * moving the software group underneath us.
10137 */
10138 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10139 /*
10140 * If someone moved the group out from under us, check
10141 * if this new event wound up on the same ctx, if so
10142 * its the regular !move_group case, otherwise fail.
10143 */
10144 if (gctx != ctx) {
10145 err = -EINVAL;
10146 goto err_locked;
10147 } else {
10148 perf_event_ctx_unlock(group_leader, gctx);
10149 move_group = 0;
10150 }
10151 }
f55fc2a5
PZ
10152 } else {
10153 mutex_lock(&ctx->mutex);
10154 }
10155
84c4e620
PZ
10156 if (ctx->task == TASK_TOMBSTONE) {
10157 err = -ESRCH;
10158 goto err_locked;
10159 }
10160
a723968c
PZ
10161 if (!perf_event_validate_size(event)) {
10162 err = -E2BIG;
10163 goto err_locked;
10164 }
10165
a63fbed7
TG
10166 if (!task) {
10167 /*
10168 * Check if the @cpu we're creating an event for is online.
10169 *
10170 * We use the perf_cpu_context::ctx::mutex to serialize against
10171 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10172 */
10173 struct perf_cpu_context *cpuctx =
10174 container_of(ctx, struct perf_cpu_context, ctx);
10175
10176 if (!cpuctx->online) {
10177 err = -ENODEV;
10178 goto err_locked;
10179 }
10180 }
10181
10182
f55fc2a5
PZ
10183 /*
10184 * Must be under the same ctx::mutex as perf_install_in_context(),
10185 * because we need to serialize with concurrent event creation.
10186 */
10187 if (!exclusive_event_installable(event, ctx)) {
10188 /* exclusive and group stuff are assumed mutually exclusive */
10189 WARN_ON_ONCE(move_group);
f63a8daa 10190
f55fc2a5
PZ
10191 err = -EBUSY;
10192 goto err_locked;
10193 }
f63a8daa 10194
f55fc2a5
PZ
10195 WARN_ON_ONCE(ctx->parent_ctx);
10196
79c9ce57
PZ
10197 /*
10198 * This is the point on no return; we cannot fail hereafter. This is
10199 * where we start modifying current state.
10200 */
10201
f55fc2a5 10202 if (move_group) {
f63a8daa
PZ
10203 /*
10204 * See perf_event_ctx_lock() for comments on the details
10205 * of swizzling perf_event::ctx.
10206 */
45a0e07a 10207 perf_remove_from_context(group_leader, 0);
279b5165 10208 put_ctx(gctx);
0231bb53 10209
b04243ef
PZ
10210 list_for_each_entry(sibling, &group_leader->sibling_list,
10211 group_entry) {
45a0e07a 10212 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10213 put_ctx(gctx);
10214 }
b04243ef 10215
f63a8daa
PZ
10216 /*
10217 * Wait for everybody to stop referencing the events through
10218 * the old lists, before installing it on new lists.
10219 */
0cda4c02 10220 synchronize_rcu();
f63a8daa 10221
8f95b435
PZI
10222 /*
10223 * Install the group siblings before the group leader.
10224 *
10225 * Because a group leader will try and install the entire group
10226 * (through the sibling list, which is still in-tact), we can
10227 * end up with siblings installed in the wrong context.
10228 *
10229 * By installing siblings first we NO-OP because they're not
10230 * reachable through the group lists.
10231 */
b04243ef
PZ
10232 list_for_each_entry(sibling, &group_leader->sibling_list,
10233 group_entry) {
8f95b435 10234 perf_event__state_init(sibling);
9fc81d87 10235 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10236 get_ctx(ctx);
10237 }
8f95b435
PZI
10238
10239 /*
10240 * Removing from the context ends up with disabled
10241 * event. What we want here is event in the initial
10242 * startup state, ready to be add into new context.
10243 */
10244 perf_event__state_init(group_leader);
10245 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10246 get_ctx(ctx);
bed5b25a
AS
10247 }
10248
f73e22ab
PZ
10249 /*
10250 * Precalculate sample_data sizes; do while holding ctx::mutex such
10251 * that we're serialized against further additions and before
10252 * perf_install_in_context() which is the point the event is active and
10253 * can use these values.
10254 */
10255 perf_event__header_size(event);
10256 perf_event__id_header_size(event);
10257
78cd2c74
PZ
10258 event->owner = current;
10259
e2d37cd2 10260 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10261 perf_unpin_context(ctx);
f63a8daa 10262
f55fc2a5 10263 if (move_group)
321027c1 10264 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10265 mutex_unlock(&ctx->mutex);
9b51f66d 10266
79c9ce57
PZ
10267 if (task) {
10268 mutex_unlock(&task->signal->cred_guard_mutex);
10269 put_task_struct(task);
10270 }
10271
cdd6c482
IM
10272 mutex_lock(&current->perf_event_mutex);
10273 list_add_tail(&event->owner_entry, &current->perf_event_list);
10274 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10275
8a49542c
PZ
10276 /*
10277 * Drop the reference on the group_event after placing the
10278 * new event on the sibling_list. This ensures destruction
10279 * of the group leader will find the pointer to itself in
10280 * perf_group_detach().
10281 */
2903ff01 10282 fdput(group);
ea635c64
AV
10283 fd_install(event_fd, event_file);
10284 return event_fd;
0793a61d 10285
f55fc2a5
PZ
10286err_locked:
10287 if (move_group)
321027c1 10288 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10289 mutex_unlock(&ctx->mutex);
10290/* err_file: */
10291 fput(event_file);
c3f00c70 10292err_context:
fe4b04fa 10293 perf_unpin_context(ctx);
ea635c64 10294 put_ctx(ctx);
c6be5a5c 10295err_alloc:
13005627
PZ
10296 /*
10297 * If event_file is set, the fput() above will have called ->release()
10298 * and that will take care of freeing the event.
10299 */
10300 if (!event_file)
10301 free_event(event);
79c9ce57
PZ
10302err_cred:
10303 if (task)
10304 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10305err_task:
e7d0bc04
PZ
10306 if (task)
10307 put_task_struct(task);
89a1e187 10308err_group_fd:
2903ff01 10309 fdput(group);
ea635c64
AV
10310err_fd:
10311 put_unused_fd(event_fd);
dc86cabe 10312 return err;
0793a61d
TG
10313}
10314
fb0459d7
AV
10315/**
10316 * perf_event_create_kernel_counter
10317 *
10318 * @attr: attributes of the counter to create
10319 * @cpu: cpu in which the counter is bound
38a81da2 10320 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10321 */
10322struct perf_event *
10323perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10324 struct task_struct *task,
4dc0da86
AK
10325 perf_overflow_handler_t overflow_handler,
10326 void *context)
fb0459d7 10327{
fb0459d7 10328 struct perf_event_context *ctx;
c3f00c70 10329 struct perf_event *event;
fb0459d7 10330 int err;
d859e29f 10331
fb0459d7
AV
10332 /*
10333 * Get the target context (task or percpu):
10334 */
d859e29f 10335
4dc0da86 10336 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10337 overflow_handler, context, -1);
c3f00c70
PZ
10338 if (IS_ERR(event)) {
10339 err = PTR_ERR(event);
10340 goto err;
10341 }
d859e29f 10342
f8697762 10343 /* Mark owner so we could distinguish it from user events. */
63b6da39 10344 event->owner = TASK_TOMBSTONE;
f8697762 10345
4af57ef2 10346 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10347 if (IS_ERR(ctx)) {
10348 err = PTR_ERR(ctx);
c3f00c70 10349 goto err_free;
d859e29f 10350 }
fb0459d7 10351
fb0459d7
AV
10352 WARN_ON_ONCE(ctx->parent_ctx);
10353 mutex_lock(&ctx->mutex);
84c4e620
PZ
10354 if (ctx->task == TASK_TOMBSTONE) {
10355 err = -ESRCH;
10356 goto err_unlock;
10357 }
10358
a63fbed7
TG
10359 if (!task) {
10360 /*
10361 * Check if the @cpu we're creating an event for is online.
10362 *
10363 * We use the perf_cpu_context::ctx::mutex to serialize against
10364 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10365 */
10366 struct perf_cpu_context *cpuctx =
10367 container_of(ctx, struct perf_cpu_context, ctx);
10368 if (!cpuctx->online) {
10369 err = -ENODEV;
10370 goto err_unlock;
10371 }
10372 }
10373
bed5b25a 10374 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10375 err = -EBUSY;
84c4e620 10376 goto err_unlock;
bed5b25a
AS
10377 }
10378
fb0459d7 10379 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10380 perf_unpin_context(ctx);
fb0459d7
AV
10381 mutex_unlock(&ctx->mutex);
10382
fb0459d7
AV
10383 return event;
10384
84c4e620
PZ
10385err_unlock:
10386 mutex_unlock(&ctx->mutex);
10387 perf_unpin_context(ctx);
10388 put_ctx(ctx);
c3f00c70
PZ
10389err_free:
10390 free_event(event);
10391err:
c6567f64 10392 return ERR_PTR(err);
9b51f66d 10393}
fb0459d7 10394EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10395
0cda4c02
YZ
10396void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10397{
10398 struct perf_event_context *src_ctx;
10399 struct perf_event_context *dst_ctx;
10400 struct perf_event *event, *tmp;
10401 LIST_HEAD(events);
10402
10403 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10404 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10405
f63a8daa
PZ
10406 /*
10407 * See perf_event_ctx_lock() for comments on the details
10408 * of swizzling perf_event::ctx.
10409 */
10410 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10411 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10412 event_entry) {
45a0e07a 10413 perf_remove_from_context(event, 0);
9a545de0 10414 unaccount_event_cpu(event, src_cpu);
0cda4c02 10415 put_ctx(src_ctx);
9886167d 10416 list_add(&event->migrate_entry, &events);
0cda4c02 10417 }
0cda4c02 10418
8f95b435
PZI
10419 /*
10420 * Wait for the events to quiesce before re-instating them.
10421 */
0cda4c02
YZ
10422 synchronize_rcu();
10423
8f95b435
PZI
10424 /*
10425 * Re-instate events in 2 passes.
10426 *
10427 * Skip over group leaders and only install siblings on this first
10428 * pass, siblings will not get enabled without a leader, however a
10429 * leader will enable its siblings, even if those are still on the old
10430 * context.
10431 */
10432 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10433 if (event->group_leader == event)
10434 continue;
10435
10436 list_del(&event->migrate_entry);
10437 if (event->state >= PERF_EVENT_STATE_OFF)
10438 event->state = PERF_EVENT_STATE_INACTIVE;
10439 account_event_cpu(event, dst_cpu);
10440 perf_install_in_context(dst_ctx, event, dst_cpu);
10441 get_ctx(dst_ctx);
10442 }
10443
10444 /*
10445 * Once all the siblings are setup properly, install the group leaders
10446 * to make it go.
10447 */
9886167d
PZ
10448 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10449 list_del(&event->migrate_entry);
0cda4c02
YZ
10450 if (event->state >= PERF_EVENT_STATE_OFF)
10451 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10452 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10453 perf_install_in_context(dst_ctx, event, dst_cpu);
10454 get_ctx(dst_ctx);
10455 }
10456 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10457 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10458}
10459EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10460
cdd6c482 10461static void sync_child_event(struct perf_event *child_event,
38b200d6 10462 struct task_struct *child)
d859e29f 10463{
cdd6c482 10464 struct perf_event *parent_event = child_event->parent;
8bc20959 10465 u64 child_val;
d859e29f 10466
cdd6c482
IM
10467 if (child_event->attr.inherit_stat)
10468 perf_event_read_event(child_event, child);
38b200d6 10469
b5e58793 10470 child_val = perf_event_count(child_event);
d859e29f
PM
10471
10472 /*
10473 * Add back the child's count to the parent's count:
10474 */
a6e6dea6 10475 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10476 atomic64_add(child_event->total_time_enabled,
10477 &parent_event->child_total_time_enabled);
10478 atomic64_add(child_event->total_time_running,
10479 &parent_event->child_total_time_running);
d859e29f
PM
10480}
10481
9b51f66d 10482static void
8ba289b8
PZ
10483perf_event_exit_event(struct perf_event *child_event,
10484 struct perf_event_context *child_ctx,
10485 struct task_struct *child)
9b51f66d 10486{
8ba289b8
PZ
10487 struct perf_event *parent_event = child_event->parent;
10488
1903d50c
PZ
10489 /*
10490 * Do not destroy the 'original' grouping; because of the context
10491 * switch optimization the original events could've ended up in a
10492 * random child task.
10493 *
10494 * If we were to destroy the original group, all group related
10495 * operations would cease to function properly after this random
10496 * child dies.
10497 *
10498 * Do destroy all inherited groups, we don't care about those
10499 * and being thorough is better.
10500 */
32132a3d
PZ
10501 raw_spin_lock_irq(&child_ctx->lock);
10502 WARN_ON_ONCE(child_ctx->is_active);
10503
8ba289b8 10504 if (parent_event)
32132a3d
PZ
10505 perf_group_detach(child_event);
10506 list_del_event(child_event, child_ctx);
0d3d73aa 10507 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 10508 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10509
9b51f66d 10510 /*
8ba289b8 10511 * Parent events are governed by their filedesc, retain them.
9b51f66d 10512 */
8ba289b8 10513 if (!parent_event) {
179033b3 10514 perf_event_wakeup(child_event);
8ba289b8 10515 return;
4bcf349a 10516 }
8ba289b8
PZ
10517 /*
10518 * Child events can be cleaned up.
10519 */
10520
10521 sync_child_event(child_event, child);
10522
10523 /*
10524 * Remove this event from the parent's list
10525 */
10526 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10527 mutex_lock(&parent_event->child_mutex);
10528 list_del_init(&child_event->child_list);
10529 mutex_unlock(&parent_event->child_mutex);
10530
10531 /*
10532 * Kick perf_poll() for is_event_hup().
10533 */
10534 perf_event_wakeup(parent_event);
10535 free_event(child_event);
10536 put_event(parent_event);
9b51f66d
IM
10537}
10538
8dc85d54 10539static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10540{
211de6eb 10541 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10542 struct perf_event *child_event, *next;
63b6da39
PZ
10543
10544 WARN_ON_ONCE(child != current);
9b51f66d 10545
6a3351b6 10546 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10547 if (!child_ctx)
9b51f66d
IM
10548 return;
10549
ad3a37de 10550 /*
6a3351b6
PZ
10551 * In order to reduce the amount of tricky in ctx tear-down, we hold
10552 * ctx::mutex over the entire thing. This serializes against almost
10553 * everything that wants to access the ctx.
10554 *
10555 * The exception is sys_perf_event_open() /
10556 * perf_event_create_kernel_count() which does find_get_context()
10557 * without ctx::mutex (it cannot because of the move_group double mutex
10558 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10559 */
6a3351b6 10560 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10561
10562 /*
6a3351b6
PZ
10563 * In a single ctx::lock section, de-schedule the events and detach the
10564 * context from the task such that we cannot ever get it scheduled back
10565 * in.
c93f7669 10566 */
6a3351b6 10567 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10568 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10569
71a851b4 10570 /*
63b6da39
PZ
10571 * Now that the context is inactive, destroy the task <-> ctx relation
10572 * and mark the context dead.
71a851b4 10573 */
63b6da39
PZ
10574 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10575 put_ctx(child_ctx); /* cannot be last */
10576 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10577 put_task_struct(current); /* cannot be last */
4a1c0f26 10578
211de6eb 10579 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10580 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10581
211de6eb
PZ
10582 if (clone_ctx)
10583 put_ctx(clone_ctx);
4a1c0f26 10584
9f498cc5 10585 /*
cdd6c482
IM
10586 * Report the task dead after unscheduling the events so that we
10587 * won't get any samples after PERF_RECORD_EXIT. We can however still
10588 * get a few PERF_RECORD_READ events.
9f498cc5 10589 */
cdd6c482 10590 perf_event_task(child, child_ctx, 0);
a63eaf34 10591
ebf905fc 10592 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10593 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10594
a63eaf34
PM
10595 mutex_unlock(&child_ctx->mutex);
10596
10597 put_ctx(child_ctx);
9b51f66d
IM
10598}
10599
8dc85d54
PZ
10600/*
10601 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10602 *
10603 * Can be called with cred_guard_mutex held when called from
10604 * install_exec_creds().
8dc85d54
PZ
10605 */
10606void perf_event_exit_task(struct task_struct *child)
10607{
8882135b 10608 struct perf_event *event, *tmp;
8dc85d54
PZ
10609 int ctxn;
10610
8882135b
PZ
10611 mutex_lock(&child->perf_event_mutex);
10612 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10613 owner_entry) {
10614 list_del_init(&event->owner_entry);
10615
10616 /*
10617 * Ensure the list deletion is visible before we clear
10618 * the owner, closes a race against perf_release() where
10619 * we need to serialize on the owner->perf_event_mutex.
10620 */
f47c02c0 10621 smp_store_release(&event->owner, NULL);
8882135b
PZ
10622 }
10623 mutex_unlock(&child->perf_event_mutex);
10624
8dc85d54
PZ
10625 for_each_task_context_nr(ctxn)
10626 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10627
10628 /*
10629 * The perf_event_exit_task_context calls perf_event_task
10630 * with child's task_ctx, which generates EXIT events for
10631 * child contexts and sets child->perf_event_ctxp[] to NULL.
10632 * At this point we need to send EXIT events to cpu contexts.
10633 */
10634 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10635}
10636
889ff015
FW
10637static void perf_free_event(struct perf_event *event,
10638 struct perf_event_context *ctx)
10639{
10640 struct perf_event *parent = event->parent;
10641
10642 if (WARN_ON_ONCE(!parent))
10643 return;
10644
10645 mutex_lock(&parent->child_mutex);
10646 list_del_init(&event->child_list);
10647 mutex_unlock(&parent->child_mutex);
10648
a6fa941d 10649 put_event(parent);
889ff015 10650
652884fe 10651 raw_spin_lock_irq(&ctx->lock);
8a49542c 10652 perf_group_detach(event);
889ff015 10653 list_del_event(event, ctx);
652884fe 10654 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10655 free_event(event);
10656}
10657
bbbee908 10658/*
652884fe 10659 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10660 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10661 *
10662 * Not all locks are strictly required, but take them anyway to be nice and
10663 * help out with the lockdep assertions.
bbbee908 10664 */
cdd6c482 10665void perf_event_free_task(struct task_struct *task)
bbbee908 10666{
8dc85d54 10667 struct perf_event_context *ctx;
cdd6c482 10668 struct perf_event *event, *tmp;
8dc85d54 10669 int ctxn;
bbbee908 10670
8dc85d54
PZ
10671 for_each_task_context_nr(ctxn) {
10672 ctx = task->perf_event_ctxp[ctxn];
10673 if (!ctx)
10674 continue;
bbbee908 10675
8dc85d54 10676 mutex_lock(&ctx->mutex);
e552a838
PZ
10677 raw_spin_lock_irq(&ctx->lock);
10678 /*
10679 * Destroy the task <-> ctx relation and mark the context dead.
10680 *
10681 * This is important because even though the task hasn't been
10682 * exposed yet the context has been (through child_list).
10683 */
10684 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10685 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10686 put_task_struct(task); /* cannot be last */
10687 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10688
15121c78 10689 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 10690 perf_free_event(event, ctx);
bbbee908 10691
8dc85d54 10692 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
10693 put_ctx(ctx);
10694 }
889ff015
FW
10695}
10696
4e231c79
PZ
10697void perf_event_delayed_put(struct task_struct *task)
10698{
10699 int ctxn;
10700
10701 for_each_task_context_nr(ctxn)
10702 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10703}
10704
e03e7ee3 10705struct file *perf_event_get(unsigned int fd)
ffe8690c 10706{
e03e7ee3 10707 struct file *file;
ffe8690c 10708
e03e7ee3
AS
10709 file = fget_raw(fd);
10710 if (!file)
10711 return ERR_PTR(-EBADF);
ffe8690c 10712
e03e7ee3
AS
10713 if (file->f_op != &perf_fops) {
10714 fput(file);
10715 return ERR_PTR(-EBADF);
10716 }
ffe8690c 10717
e03e7ee3 10718 return file;
ffe8690c
KX
10719}
10720
10721const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10722{
10723 if (!event)
10724 return ERR_PTR(-EINVAL);
10725
10726 return &event->attr;
10727}
10728
97dee4f3 10729/*
d8a8cfc7
PZ
10730 * Inherit a event from parent task to child task.
10731 *
10732 * Returns:
10733 * - valid pointer on success
10734 * - NULL for orphaned events
10735 * - IS_ERR() on error
97dee4f3
PZ
10736 */
10737static struct perf_event *
10738inherit_event(struct perf_event *parent_event,
10739 struct task_struct *parent,
10740 struct perf_event_context *parent_ctx,
10741 struct task_struct *child,
10742 struct perf_event *group_leader,
10743 struct perf_event_context *child_ctx)
10744{
8ca2bd41 10745 enum perf_event_state parent_state = parent_event->state;
97dee4f3 10746 struct perf_event *child_event;
cee010ec 10747 unsigned long flags;
97dee4f3
PZ
10748
10749 /*
10750 * Instead of creating recursive hierarchies of events,
10751 * we link inherited events back to the original parent,
10752 * which has a filp for sure, which we use as the reference
10753 * count:
10754 */
10755 if (parent_event->parent)
10756 parent_event = parent_event->parent;
10757
10758 child_event = perf_event_alloc(&parent_event->attr,
10759 parent_event->cpu,
d580ff86 10760 child,
97dee4f3 10761 group_leader, parent_event,
79dff51e 10762 NULL, NULL, -1);
97dee4f3
PZ
10763 if (IS_ERR(child_event))
10764 return child_event;
a6fa941d 10765
313ccb96
JO
10766
10767 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
10768 !child_ctx->task_ctx_data) {
10769 struct pmu *pmu = child_event->pmu;
10770
10771 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
10772 GFP_KERNEL);
10773 if (!child_ctx->task_ctx_data) {
10774 free_event(child_event);
10775 return NULL;
10776 }
10777 }
10778
c6e5b732
PZ
10779 /*
10780 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10781 * must be under the same lock in order to serialize against
10782 * perf_event_release_kernel(), such that either we must observe
10783 * is_orphaned_event() or they will observe us on the child_list.
10784 */
10785 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10786 if (is_orphaned_event(parent_event) ||
10787 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10788 mutex_unlock(&parent_event->child_mutex);
313ccb96 10789 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
10790 free_event(child_event);
10791 return NULL;
10792 }
10793
97dee4f3
PZ
10794 get_ctx(child_ctx);
10795
10796 /*
10797 * Make the child state follow the state of the parent event,
10798 * not its attr.disabled bit. We hold the parent's mutex,
10799 * so we won't race with perf_event_{en, dis}able_family.
10800 */
1929def9 10801 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10802 child_event->state = PERF_EVENT_STATE_INACTIVE;
10803 else
10804 child_event->state = PERF_EVENT_STATE_OFF;
10805
10806 if (parent_event->attr.freq) {
10807 u64 sample_period = parent_event->hw.sample_period;
10808 struct hw_perf_event *hwc = &child_event->hw;
10809
10810 hwc->sample_period = sample_period;
10811 hwc->last_period = sample_period;
10812
10813 local64_set(&hwc->period_left, sample_period);
10814 }
10815
10816 child_event->ctx = child_ctx;
10817 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10818 child_event->overflow_handler_context
10819 = parent_event->overflow_handler_context;
97dee4f3 10820
614b6780
TG
10821 /*
10822 * Precalculate sample_data sizes
10823 */
10824 perf_event__header_size(child_event);
6844c09d 10825 perf_event__id_header_size(child_event);
614b6780 10826
97dee4f3
PZ
10827 /*
10828 * Link it up in the child's context:
10829 */
cee010ec 10830 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10831 add_event_to_ctx(child_event, child_ctx);
cee010ec 10832 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10833
97dee4f3
PZ
10834 /*
10835 * Link this into the parent event's child list
10836 */
97dee4f3
PZ
10837 list_add_tail(&child_event->child_list, &parent_event->child_list);
10838 mutex_unlock(&parent_event->child_mutex);
10839
10840 return child_event;
10841}
10842
d8a8cfc7
PZ
10843/*
10844 * Inherits an event group.
10845 *
10846 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10847 * This matches with perf_event_release_kernel() removing all child events.
10848 *
10849 * Returns:
10850 * - 0 on success
10851 * - <0 on error
10852 */
97dee4f3
PZ
10853static int inherit_group(struct perf_event *parent_event,
10854 struct task_struct *parent,
10855 struct perf_event_context *parent_ctx,
10856 struct task_struct *child,
10857 struct perf_event_context *child_ctx)
10858{
10859 struct perf_event *leader;
10860 struct perf_event *sub;
10861 struct perf_event *child_ctr;
10862
10863 leader = inherit_event(parent_event, parent, parent_ctx,
10864 child, NULL, child_ctx);
10865 if (IS_ERR(leader))
10866 return PTR_ERR(leader);
d8a8cfc7
PZ
10867 /*
10868 * @leader can be NULL here because of is_orphaned_event(). In this
10869 * case inherit_event() will create individual events, similar to what
10870 * perf_group_detach() would do anyway.
10871 */
97dee4f3
PZ
10872 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10873 child_ctr = inherit_event(sub, parent, parent_ctx,
10874 child, leader, child_ctx);
10875 if (IS_ERR(child_ctr))
10876 return PTR_ERR(child_ctr);
10877 }
10878 return 0;
889ff015
FW
10879}
10880
d8a8cfc7
PZ
10881/*
10882 * Creates the child task context and tries to inherit the event-group.
10883 *
10884 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10885 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10886 * consistent with perf_event_release_kernel() removing all child events.
10887 *
10888 * Returns:
10889 * - 0 on success
10890 * - <0 on error
10891 */
889ff015
FW
10892static int
10893inherit_task_group(struct perf_event *event, struct task_struct *parent,
10894 struct perf_event_context *parent_ctx,
8dc85d54 10895 struct task_struct *child, int ctxn,
889ff015
FW
10896 int *inherited_all)
10897{
10898 int ret;
8dc85d54 10899 struct perf_event_context *child_ctx;
889ff015
FW
10900
10901 if (!event->attr.inherit) {
10902 *inherited_all = 0;
10903 return 0;
bbbee908
PZ
10904 }
10905
fe4b04fa 10906 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10907 if (!child_ctx) {
10908 /*
10909 * This is executed from the parent task context, so
10910 * inherit events that have been marked for cloning.
10911 * First allocate and initialize a context for the
10912 * child.
10913 */
734df5ab 10914 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10915 if (!child_ctx)
10916 return -ENOMEM;
bbbee908 10917
8dc85d54 10918 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10919 }
10920
10921 ret = inherit_group(event, parent, parent_ctx,
10922 child, child_ctx);
10923
10924 if (ret)
10925 *inherited_all = 0;
10926
10927 return ret;
bbbee908
PZ
10928}
10929
9b51f66d 10930/*
cdd6c482 10931 * Initialize the perf_event context in task_struct
9b51f66d 10932 */
985c8dcb 10933static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10934{
889ff015 10935 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10936 struct perf_event_context *cloned_ctx;
10937 struct perf_event *event;
9b51f66d 10938 struct task_struct *parent = current;
564c2b21 10939 int inherited_all = 1;
dddd3379 10940 unsigned long flags;
6ab423e0 10941 int ret = 0;
9b51f66d 10942
8dc85d54 10943 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10944 return 0;
10945
ad3a37de 10946 /*
25346b93
PM
10947 * If the parent's context is a clone, pin it so it won't get
10948 * swapped under us.
ad3a37de 10949 */
8dc85d54 10950 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10951 if (!parent_ctx)
10952 return 0;
25346b93 10953
ad3a37de
PM
10954 /*
10955 * No need to check if parent_ctx != NULL here; since we saw
10956 * it non-NULL earlier, the only reason for it to become NULL
10957 * is if we exit, and since we're currently in the middle of
10958 * a fork we can't be exiting at the same time.
10959 */
ad3a37de 10960
9b51f66d
IM
10961 /*
10962 * Lock the parent list. No need to lock the child - not PID
10963 * hashed yet and not running, so nobody can access it.
10964 */
d859e29f 10965 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10966
10967 /*
10968 * We dont have to disable NMIs - we are only looking at
10969 * the list, not manipulating it:
10970 */
889ff015 10971 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10972 ret = inherit_task_group(event, parent, parent_ctx,
10973 child, ctxn, &inherited_all);
889ff015 10974 if (ret)
e7cc4865 10975 goto out_unlock;
889ff015 10976 }
b93f7978 10977
dddd3379
TG
10978 /*
10979 * We can't hold ctx->lock when iterating the ->flexible_group list due
10980 * to allocations, but we need to prevent rotation because
10981 * rotate_ctx() will change the list from interrupt context.
10982 */
10983 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10984 parent_ctx->rotate_disable = 1;
10985 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10986
889ff015 10987 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10988 ret = inherit_task_group(event, parent, parent_ctx,
10989 child, ctxn, &inherited_all);
889ff015 10990 if (ret)
e7cc4865 10991 goto out_unlock;
564c2b21
PM
10992 }
10993
dddd3379
TG
10994 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10995 parent_ctx->rotate_disable = 0;
dddd3379 10996
8dc85d54 10997 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10998
05cbaa28 10999 if (child_ctx && inherited_all) {
564c2b21
PM
11000 /*
11001 * Mark the child context as a clone of the parent
11002 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
11003 *
11004 * Note that if the parent is a clone, the holding of
11005 * parent_ctx->lock avoids it from being uncloned.
564c2b21 11006 */
c5ed5145 11007 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
11008 if (cloned_ctx) {
11009 child_ctx->parent_ctx = cloned_ctx;
25346b93 11010 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
11011 } else {
11012 child_ctx->parent_ctx = parent_ctx;
11013 child_ctx->parent_gen = parent_ctx->generation;
11014 }
11015 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
11016 }
11017
c5ed5145 11018 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 11019out_unlock:
d859e29f 11020 mutex_unlock(&parent_ctx->mutex);
6ab423e0 11021
25346b93 11022 perf_unpin_context(parent_ctx);
fe4b04fa 11023 put_ctx(parent_ctx);
ad3a37de 11024
6ab423e0 11025 return ret;
9b51f66d
IM
11026}
11027
8dc85d54
PZ
11028/*
11029 * Initialize the perf_event context in task_struct
11030 */
11031int perf_event_init_task(struct task_struct *child)
11032{
11033 int ctxn, ret;
11034
8550d7cb
ON
11035 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11036 mutex_init(&child->perf_event_mutex);
11037 INIT_LIST_HEAD(&child->perf_event_list);
11038
8dc85d54
PZ
11039 for_each_task_context_nr(ctxn) {
11040 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
11041 if (ret) {
11042 perf_event_free_task(child);
8dc85d54 11043 return ret;
6c72e350 11044 }
8dc85d54
PZ
11045 }
11046
11047 return 0;
11048}
11049
220b140b
PM
11050static void __init perf_event_init_all_cpus(void)
11051{
b28ab83c 11052 struct swevent_htable *swhash;
220b140b 11053 int cpu;
220b140b 11054
a63fbed7
TG
11055 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11056
220b140b 11057 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11058 swhash = &per_cpu(swevent_htable, cpu);
11059 mutex_init(&swhash->hlist_mutex);
2fde4f94 11060 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11061
11062 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11063 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11064
058fe1c0
DCC
11065#ifdef CONFIG_CGROUP_PERF
11066 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11067#endif
e48c1788 11068 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11069 }
11070}
11071
a63fbed7 11072void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11073{
108b02cf 11074 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11075
b28ab83c 11076 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11077 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11078 struct swevent_hlist *hlist;
11079
b28ab83c
PZ
11080 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11081 WARN_ON(!hlist);
11082 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11083 }
b28ab83c 11084 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11085}
11086
2965faa5 11087#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11088static void __perf_event_exit_context(void *__info)
0793a61d 11089{
108b02cf 11090 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11091 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11092 struct perf_event *event;
0793a61d 11093
fae3fde6 11094 raw_spin_lock(&ctx->lock);
0ee098c9 11095 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 11096 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11097 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11098 raw_spin_unlock(&ctx->lock);
0793a61d 11099}
108b02cf
PZ
11100
11101static void perf_event_exit_cpu_context(int cpu)
11102{
a63fbed7 11103 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11104 struct perf_event_context *ctx;
11105 struct pmu *pmu;
108b02cf 11106
a63fbed7
TG
11107 mutex_lock(&pmus_lock);
11108 list_for_each_entry(pmu, &pmus, entry) {
11109 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11110 ctx = &cpuctx->ctx;
108b02cf
PZ
11111
11112 mutex_lock(&ctx->mutex);
11113 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11114 cpuctx->online = 0;
108b02cf
PZ
11115 mutex_unlock(&ctx->mutex);
11116 }
a63fbed7
TG
11117 cpumask_clear_cpu(cpu, perf_online_mask);
11118 mutex_unlock(&pmus_lock);
108b02cf 11119}
00e16c3d
TG
11120#else
11121
11122static void perf_event_exit_cpu_context(int cpu) { }
11123
11124#endif
108b02cf 11125
a63fbed7
TG
11126int perf_event_init_cpu(unsigned int cpu)
11127{
11128 struct perf_cpu_context *cpuctx;
11129 struct perf_event_context *ctx;
11130 struct pmu *pmu;
11131
11132 perf_swevent_init_cpu(cpu);
11133
11134 mutex_lock(&pmus_lock);
11135 cpumask_set_cpu(cpu, perf_online_mask);
11136 list_for_each_entry(pmu, &pmus, entry) {
11137 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11138 ctx = &cpuctx->ctx;
11139
11140 mutex_lock(&ctx->mutex);
11141 cpuctx->online = 1;
11142 mutex_unlock(&ctx->mutex);
11143 }
11144 mutex_unlock(&pmus_lock);
11145
11146 return 0;
11147}
11148
00e16c3d 11149int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11150{
e3703f8c 11151 perf_event_exit_cpu_context(cpu);
00e16c3d 11152 return 0;
0793a61d 11153}
0793a61d 11154
c277443c
PZ
11155static int
11156perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11157{
11158 int cpu;
11159
11160 for_each_online_cpu(cpu)
11161 perf_event_exit_cpu(cpu);
11162
11163 return NOTIFY_OK;
11164}
11165
11166/*
11167 * Run the perf reboot notifier at the very last possible moment so that
11168 * the generic watchdog code runs as long as possible.
11169 */
11170static struct notifier_block perf_reboot_notifier = {
11171 .notifier_call = perf_reboot,
11172 .priority = INT_MIN,
11173};
11174
cdd6c482 11175void __init perf_event_init(void)
0793a61d 11176{
3c502e7a
JW
11177 int ret;
11178
2e80a82a
PZ
11179 idr_init(&pmu_idr);
11180
220b140b 11181 perf_event_init_all_cpus();
b0a873eb 11182 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11183 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11184 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11185 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11186 perf_tp_register();
00e16c3d 11187 perf_event_init_cpu(smp_processor_id());
c277443c 11188 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11189
11190 ret = init_hw_breakpoint();
11191 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11192
b01c3a00
JO
11193 /*
11194 * Build time assertion that we keep the data_head at the intended
11195 * location. IOW, validation we got the __reserved[] size right.
11196 */
11197 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11198 != 1024);
0793a61d 11199}
abe43400 11200
fd979c01
CS
11201ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11202 char *page)
11203{
11204 struct perf_pmu_events_attr *pmu_attr =
11205 container_of(attr, struct perf_pmu_events_attr, attr);
11206
11207 if (pmu_attr->event_str)
11208 return sprintf(page, "%s\n", pmu_attr->event_str);
11209
11210 return 0;
11211}
675965b0 11212EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11213
abe43400
PZ
11214static int __init perf_event_sysfs_init(void)
11215{
11216 struct pmu *pmu;
11217 int ret;
11218
11219 mutex_lock(&pmus_lock);
11220
11221 ret = bus_register(&pmu_bus);
11222 if (ret)
11223 goto unlock;
11224
11225 list_for_each_entry(pmu, &pmus, entry) {
11226 if (!pmu->name || pmu->type < 0)
11227 continue;
11228
11229 ret = pmu_dev_alloc(pmu);
11230 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11231 }
11232 pmu_bus_running = 1;
11233 ret = 0;
11234
11235unlock:
11236 mutex_unlock(&pmus_lock);
11237
11238 return ret;
11239}
11240device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11241
11242#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11243static struct cgroup_subsys_state *
11244perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11245{
11246 struct perf_cgroup *jc;
e5d1367f 11247
1b15d055 11248 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11249 if (!jc)
11250 return ERR_PTR(-ENOMEM);
11251
e5d1367f
SE
11252 jc->info = alloc_percpu(struct perf_cgroup_info);
11253 if (!jc->info) {
11254 kfree(jc);
11255 return ERR_PTR(-ENOMEM);
11256 }
11257
e5d1367f
SE
11258 return &jc->css;
11259}
11260
eb95419b 11261static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11262{
eb95419b
TH
11263 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11264
e5d1367f
SE
11265 free_percpu(jc->info);
11266 kfree(jc);
11267}
11268
11269static int __perf_cgroup_move(void *info)
11270{
11271 struct task_struct *task = info;
ddaaf4e2 11272 rcu_read_lock();
e5d1367f 11273 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11274 rcu_read_unlock();
e5d1367f
SE
11275 return 0;
11276}
11277
1f7dd3e5 11278static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11279{
bb9d97b6 11280 struct task_struct *task;
1f7dd3e5 11281 struct cgroup_subsys_state *css;
bb9d97b6 11282
1f7dd3e5 11283 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11284 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11285}
11286
073219e9 11287struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11288 .css_alloc = perf_cgroup_css_alloc,
11289 .css_free = perf_cgroup_css_free,
bb9d97b6 11290 .attach = perf_cgroup_attach,
968ebff1
TH
11291 /*
11292 * Implicitly enable on dfl hierarchy so that perf events can
11293 * always be filtered by cgroup2 path as long as perf_event
11294 * controller is not mounted on a legacy hierarchy.
11295 */
11296 .implicit_on_dfl = true,
8cfd8147 11297 .threaded = true,
e5d1367f
SE
11298};
11299#endif /* CONFIG_CGROUP_PERF */