]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/events/core.c
perf_event_open: switch to copy_struct_from_user()
[mirror_ubuntu-hirsute-kernel.git] / kernel / events / core.c
CommitLineData
8e86e015 1// SPDX-License-Identifier: GPL-2.0
0793a61d 2/*
57c0c15b 3 * Performance events core code:
0793a61d 4 *
98144511 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
2e80a82a 15#include <linux/idr.h>
04289bb9 16#include <linux/file.h>
0793a61d 17#include <linux/poll.h>
5a0e3ad6 18#include <linux/slab.h>
76e1d904 19#include <linux/hash.h>
12351ef8 20#include <linux/tick.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
39bed6cb 36#include <linux/cgroup.h>
cdd6c482 37#include <linux/perf_event.h>
af658dca 38#include <linux/trace_events.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
c464c76e 41#include <linux/module.h>
f972eb63 42#include <linux/mman.h>
b3f20785 43#include <linux/compat.h>
2541517c
AS
44#include <linux/bpf.h>
45#include <linux/filter.h>
375637bc
AS
46#include <linux/namei.h>
47#include <linux/parser.h>
e6017571 48#include <linux/sched/clock.h>
6e84f315 49#include <linux/sched/mm.h>
e4222673
HB
50#include <linux/proc_ns.h>
51#include <linux/mount.h>
0793a61d 52
76369139
FW
53#include "internal.h"
54
4e193bd4
TB
55#include <asm/irq_regs.h>
56
272325c4
PZ
57typedef int (*remote_function_f)(void *);
58
fe4b04fa 59struct remote_function_call {
e7e7ee2e 60 struct task_struct *p;
272325c4 61 remote_function_f func;
e7e7ee2e
IM
62 void *info;
63 int ret;
fe4b04fa
PZ
64};
65
66static void remote_function(void *data)
67{
68 struct remote_function_call *tfc = data;
69 struct task_struct *p = tfc->p;
70
71 if (p) {
0da4cf3e
PZ
72 /* -EAGAIN */
73 if (task_cpu(p) != smp_processor_id())
74 return;
75
76 /*
77 * Now that we're on right CPU with IRQs disabled, we can test
78 * if we hit the right task without races.
79 */
80
81 tfc->ret = -ESRCH; /* No such (running) process */
82 if (p != current)
fe4b04fa
PZ
83 return;
84 }
85
86 tfc->ret = tfc->func(tfc->info);
87}
88
89/**
90 * task_function_call - call a function on the cpu on which a task runs
91 * @p: the task to evaluate
92 * @func: the function to be called
93 * @info: the function call argument
94 *
95 * Calls the function @func when the task is currently running. This might
96 * be on the current CPU, which just calls the function directly
97 *
98 * returns: @func return value, or
99 * -ESRCH - when the process isn't running
100 * -EAGAIN - when the process moved away
101 */
102static int
272325c4 103task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
104{
105 struct remote_function_call data = {
e7e7ee2e
IM
106 .p = p,
107 .func = func,
108 .info = info,
0da4cf3e 109 .ret = -EAGAIN,
fe4b04fa 110 };
0da4cf3e 111 int ret;
fe4b04fa 112
0da4cf3e
PZ
113 do {
114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 if (!ret)
116 ret = data.ret;
117 } while (ret == -EAGAIN);
fe4b04fa 118
0da4cf3e 119 return ret;
fe4b04fa
PZ
120}
121
122/**
123 * cpu_function_call - call a function on the cpu
124 * @func: the function to be called
125 * @info: the function call argument
126 *
127 * Calls the function @func on the remote cpu.
128 *
129 * returns: @func return value or -ENXIO when the cpu is offline
130 */
272325c4 131static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
132{
133 struct remote_function_call data = {
e7e7ee2e
IM
134 .p = NULL,
135 .func = func,
136 .info = info,
137 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
138 };
139
140 smp_call_function_single(cpu, remote_function, &data, 1);
141
142 return data.ret;
143}
144
fae3fde6
PZ
145static inline struct perf_cpu_context *
146__get_cpu_context(struct perf_event_context *ctx)
147{
148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149}
150
151static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 struct perf_event_context *ctx)
0017960f 153{
fae3fde6
PZ
154 raw_spin_lock(&cpuctx->ctx.lock);
155 if (ctx)
156 raw_spin_lock(&ctx->lock);
157}
158
159static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
161{
162 if (ctx)
163 raw_spin_unlock(&ctx->lock);
164 raw_spin_unlock(&cpuctx->ctx.lock);
165}
166
63b6da39
PZ
167#define TASK_TOMBSTONE ((void *)-1L)
168
169static bool is_kernel_event(struct perf_event *event)
170{
f47c02c0 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
172}
173
39a43640
PZ
174/*
175 * On task ctx scheduling...
176 *
177 * When !ctx->nr_events a task context will not be scheduled. This means
178 * we can disable the scheduler hooks (for performance) without leaving
179 * pending task ctx state.
180 *
181 * This however results in two special cases:
182 *
183 * - removing the last event from a task ctx; this is relatively straight
184 * forward and is done in __perf_remove_from_context.
185 *
186 * - adding the first event to a task ctx; this is tricky because we cannot
187 * rely on ctx->is_active and therefore cannot use event_function_call().
188 * See perf_install_in_context().
189 *
39a43640
PZ
190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191 */
192
fae3fde6
PZ
193typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 struct perf_event_context *, void *);
195
196struct event_function_struct {
197 struct perf_event *event;
198 event_f func;
199 void *data;
200};
201
202static int event_function(void *info)
203{
204 struct event_function_struct *efs = info;
205 struct perf_event *event = efs->event;
0017960f 206 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 209 int ret = 0;
fae3fde6 210
16444645 211 lockdep_assert_irqs_disabled();
fae3fde6 212
63b6da39 213 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
214 /*
215 * Since we do the IPI call without holding ctx->lock things can have
216 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
217 */
218 if (ctx->task) {
63b6da39 219 if (ctx->task != current) {
0da4cf3e 220 ret = -ESRCH;
63b6da39
PZ
221 goto unlock;
222 }
fae3fde6 223
fae3fde6
PZ
224 /*
225 * We only use event_function_call() on established contexts,
226 * and event_function() is only ever called when active (or
227 * rather, we'll have bailed in task_function_call() or the
228 * above ctx->task != current test), therefore we must have
229 * ctx->is_active here.
230 */
231 WARN_ON_ONCE(!ctx->is_active);
232 /*
233 * And since we have ctx->is_active, cpuctx->task_ctx must
234 * match.
235 */
63b6da39
PZ
236 WARN_ON_ONCE(task_ctx != ctx);
237 } else {
238 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 239 }
63b6da39 240
fae3fde6 241 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 242unlock:
fae3fde6
PZ
243 perf_ctx_unlock(cpuctx, task_ctx);
244
63b6da39 245 return ret;
fae3fde6
PZ
246}
247
fae3fde6 248static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
249{
250 struct perf_event_context *ctx = event->ctx;
63b6da39 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
252 struct event_function_struct efs = {
253 .event = event,
254 .func = func,
255 .data = data,
256 };
0017960f 257
c97f4736
PZ
258 if (!event->parent) {
259 /*
260 * If this is a !child event, we must hold ctx::mutex to
261 * stabilize the the event->ctx relation. See
262 * perf_event_ctx_lock().
263 */
264 lockdep_assert_held(&ctx->mutex);
265 }
0017960f
PZ
266
267 if (!task) {
fae3fde6 268 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
269 return;
270 }
271
63b6da39
PZ
272 if (task == TASK_TOMBSTONE)
273 return;
274
a096309b 275again:
fae3fde6 276 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
277 return;
278
279 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
280 /*
281 * Reload the task pointer, it might have been changed by
282 * a concurrent perf_event_context_sched_out().
283 */
284 task = ctx->task;
a096309b
PZ
285 if (task == TASK_TOMBSTONE) {
286 raw_spin_unlock_irq(&ctx->lock);
287 return;
0017960f 288 }
a096309b
PZ
289 if (ctx->is_active) {
290 raw_spin_unlock_irq(&ctx->lock);
291 goto again;
292 }
293 func(event, NULL, ctx, data);
0017960f
PZ
294 raw_spin_unlock_irq(&ctx->lock);
295}
296
cca20946
PZ
297/*
298 * Similar to event_function_call() + event_function(), but hard assumes IRQs
299 * are already disabled and we're on the right CPU.
300 */
301static void event_function_local(struct perf_event *event, event_f func, void *data)
302{
303 struct perf_event_context *ctx = event->ctx;
304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 struct task_struct *task = READ_ONCE(ctx->task);
306 struct perf_event_context *task_ctx = NULL;
307
16444645 308 lockdep_assert_irqs_disabled();
cca20946
PZ
309
310 if (task) {
311 if (task == TASK_TOMBSTONE)
312 return;
313
314 task_ctx = ctx;
315 }
316
317 perf_ctx_lock(cpuctx, task_ctx);
318
319 task = ctx->task;
320 if (task == TASK_TOMBSTONE)
321 goto unlock;
322
323 if (task) {
324 /*
325 * We must be either inactive or active and the right task,
326 * otherwise we're screwed, since we cannot IPI to somewhere
327 * else.
328 */
329 if (ctx->is_active) {
330 if (WARN_ON_ONCE(task != current))
331 goto unlock;
332
333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 goto unlock;
335 }
336 } else {
337 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 }
339
340 func(event, cpuctx, ctx, data);
341unlock:
342 perf_ctx_unlock(cpuctx, task_ctx);
343}
344
e5d1367f
SE
345#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
347 PERF_FLAG_PID_CGROUP |\
348 PERF_FLAG_FD_CLOEXEC)
e5d1367f 349
bce38cd5
SE
350/*
351 * branch priv levels that need permission checks
352 */
353#define PERF_SAMPLE_BRANCH_PERM_PLM \
354 (PERF_SAMPLE_BRANCH_KERNEL |\
355 PERF_SAMPLE_BRANCH_HV)
356
0b3fcf17
SE
357enum event_type_t {
358 EVENT_FLEXIBLE = 0x1,
359 EVENT_PINNED = 0x2,
3cbaa590 360 EVENT_TIME = 0x4,
487f05e1
AS
361 /* see ctx_resched() for details */
362 EVENT_CPU = 0x8,
0b3fcf17
SE
363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364};
365
e5d1367f
SE
366/*
367 * perf_sched_events : >0 events exist
368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369 */
9107c89e
PZ
370
371static void perf_sched_delayed(struct work_struct *work);
372DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374static DEFINE_MUTEX(perf_sched_mutex);
375static atomic_t perf_sched_count;
376
e5d1367f 377static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 378static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 379static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 380
cdd6c482
IM
381static atomic_t nr_mmap_events __read_mostly;
382static atomic_t nr_comm_events __read_mostly;
e4222673 383static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 384static atomic_t nr_task_events __read_mostly;
948b26b6 385static atomic_t nr_freq_events __read_mostly;
45ac1403 386static atomic_t nr_switch_events __read_mostly;
76193a94 387static atomic_t nr_ksymbol_events __read_mostly;
6ee52e2a 388static atomic_t nr_bpf_events __read_mostly;
9ee318a7 389
108b02cf
PZ
390static LIST_HEAD(pmus);
391static DEFINE_MUTEX(pmus_lock);
392static struct srcu_struct pmus_srcu;
a63fbed7 393static cpumask_var_t perf_online_mask;
108b02cf 394
0764771d 395/*
cdd6c482 396 * perf event paranoia level:
0fbdea19
IM
397 * -1 - not paranoid at all
398 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 399 * 1 - disallow cpu events for unpriv
0fbdea19 400 * 2 - disallow kernel profiling for unpriv
0764771d 401 */
0161028b 402int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 403
20443384
FW
404/* Minimum for 512 kiB + 1 user control page */
405int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
406
407/*
cdd6c482 408 * max perf event sample rate
df58ab24 409 */
14c63f17
DH
410#define DEFAULT_MAX_SAMPLE_RATE 100000
411#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412#define DEFAULT_CPU_TIME_MAX_PERCENT 25
413
414int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
418
d9494cb4
PZ
419static int perf_sample_allowed_ns __read_mostly =
420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 421
18ab2cd3 422static void update_perf_cpu_limits(void)
14c63f17
DH
423{
424 u64 tmp = perf_sample_period_ns;
425
426 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
427 tmp = div_u64(tmp, 100);
428 if (!tmp)
429 tmp = 1;
430
431 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 432}
163ec435 433
8d5bce0c 434static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
9e630205 435
163ec435
PZ
436int perf_proc_update_handler(struct ctl_table *table, int write,
437 void __user *buffer, size_t *lenp,
438 loff_t *ppos)
439{
1a51c5da
SE
440 int ret;
441 int perf_cpu = sysctl_perf_cpu_time_max_percent;
ab7fdefb
KL
442 /*
443 * If throttling is disabled don't allow the write:
444 */
1a51c5da 445 if (write && (perf_cpu == 100 || perf_cpu == 0))
ab7fdefb
KL
446 return -EINVAL;
447
1a51c5da
SE
448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 if (ret || !write)
450 return ret;
451
163ec435 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 update_perf_cpu_limits();
455
456 return 0;
457}
458
459int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 void __user *buffer, size_t *lenp,
463 loff_t *ppos)
464{
1572e45a 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
466
467 if (ret || !write)
468 return ret;
469
b303e7c1
PZ
470 if (sysctl_perf_cpu_time_max_percent == 100 ||
471 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
472 printk(KERN_WARNING
473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 WRITE_ONCE(perf_sample_allowed_ns, 0);
475 } else {
476 update_perf_cpu_limits();
477 }
163ec435
PZ
478
479 return 0;
480}
1ccd1549 481
14c63f17
DH
482/*
483 * perf samples are done in some very critical code paths (NMIs).
484 * If they take too much CPU time, the system can lock up and not
485 * get any real work done. This will drop the sample rate when
486 * we detect that events are taking too long.
487 */
488#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 489static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 490
91a612ee
PZ
491static u64 __report_avg;
492static u64 __report_allowed;
493
6a02ad66 494static void perf_duration_warn(struct irq_work *w)
14c63f17 495{
0d87d7ec 496 printk_ratelimited(KERN_INFO
91a612ee
PZ
497 "perf: interrupt took too long (%lld > %lld), lowering "
498 "kernel.perf_event_max_sample_rate to %d\n",
499 __report_avg, __report_allowed,
500 sysctl_perf_event_sample_rate);
6a02ad66
PZ
501}
502
503static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505void perf_sample_event_took(u64 sample_len_ns)
506{
91a612ee
PZ
507 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 u64 running_len;
509 u64 avg_len;
510 u32 max;
14c63f17 511
91a612ee 512 if (max_len == 0)
14c63f17
DH
513 return;
514
91a612ee
PZ
515 /* Decay the counter by 1 average sample. */
516 running_len = __this_cpu_read(running_sample_length);
517 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 running_len += sample_len_ns;
519 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
520
521 /*
91a612ee
PZ
522 * Note: this will be biased artifically low until we have
523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
524 * from having to maintain a count.
525 */
91a612ee
PZ
526 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 if (avg_len <= max_len)
14c63f17
DH
528 return;
529
91a612ee
PZ
530 __report_avg = avg_len;
531 __report_allowed = max_len;
14c63f17 532
91a612ee
PZ
533 /*
534 * Compute a throttle threshold 25% below the current duration.
535 */
536 avg_len += avg_len / 4;
537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 if (avg_len < max)
539 max /= (u32)avg_len;
540 else
541 max = 1;
14c63f17 542
91a612ee
PZ
543 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 WRITE_ONCE(max_samples_per_tick, max);
545
546 sysctl_perf_event_sample_rate = max * HZ;
547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 548
cd578abb 549 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 551 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 552 __report_avg, __report_allowed,
cd578abb
PZ
553 sysctl_perf_event_sample_rate);
554 }
14c63f17
DH
555}
556
cdd6c482 557static atomic64_t perf_event_id;
a96bbc16 558
0b3fcf17
SE
559static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 enum event_type_t event_type);
561
562static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
563 enum event_type_t event_type,
564 struct task_struct *task);
565
566static void update_context_time(struct perf_event_context *ctx);
567static u64 perf_event_time(struct perf_event *event);
0b3fcf17 568
cdd6c482 569void __weak perf_event_print_debug(void) { }
0793a61d 570
84c79910 571extern __weak const char *perf_pmu_name(void)
0793a61d 572{
84c79910 573 return "pmu";
0793a61d
TG
574}
575
0b3fcf17
SE
576static inline u64 perf_clock(void)
577{
578 return local_clock();
579}
580
34f43927
PZ
581static inline u64 perf_event_clock(struct perf_event *event)
582{
583 return event->clock();
584}
585
0d3d73aa
PZ
586/*
587 * State based event timekeeping...
588 *
589 * The basic idea is to use event->state to determine which (if any) time
590 * fields to increment with the current delta. This means we only need to
591 * update timestamps when we change state or when they are explicitly requested
592 * (read).
593 *
594 * Event groups make things a little more complicated, but not terribly so. The
595 * rules for a group are that if the group leader is OFF the entire group is
596 * OFF, irrespecive of what the group member states are. This results in
597 * __perf_effective_state().
598 *
599 * A futher ramification is that when a group leader flips between OFF and
600 * !OFF, we need to update all group member times.
601 *
602 *
603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604 * need to make sure the relevant context time is updated before we try and
605 * update our timestamps.
606 */
607
608static __always_inline enum perf_event_state
609__perf_effective_state(struct perf_event *event)
610{
611 struct perf_event *leader = event->group_leader;
612
613 if (leader->state <= PERF_EVENT_STATE_OFF)
614 return leader->state;
615
616 return event->state;
617}
618
619static __always_inline void
620__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621{
622 enum perf_event_state state = __perf_effective_state(event);
623 u64 delta = now - event->tstamp;
624
625 *enabled = event->total_time_enabled;
626 if (state >= PERF_EVENT_STATE_INACTIVE)
627 *enabled += delta;
628
629 *running = event->total_time_running;
630 if (state >= PERF_EVENT_STATE_ACTIVE)
631 *running += delta;
632}
633
634static void perf_event_update_time(struct perf_event *event)
635{
636 u64 now = perf_event_time(event);
637
638 __perf_update_times(event, now, &event->total_time_enabled,
639 &event->total_time_running);
640 event->tstamp = now;
641}
642
643static void perf_event_update_sibling_time(struct perf_event *leader)
644{
645 struct perf_event *sibling;
646
edb39592 647 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
648 perf_event_update_time(sibling);
649}
650
651static void
652perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653{
654 if (event->state == state)
655 return;
656
657 perf_event_update_time(event);
658 /*
659 * If a group leader gets enabled/disabled all its siblings
660 * are affected too.
661 */
662 if ((event->state < 0) ^ (state < 0))
663 perf_event_update_sibling_time(event);
664
665 WRITE_ONCE(event->state, state);
666}
667
e5d1367f
SE
668#ifdef CONFIG_CGROUP_PERF
669
e5d1367f
SE
670static inline bool
671perf_cgroup_match(struct perf_event *event)
672{
673 struct perf_event_context *ctx = event->ctx;
674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
ef824fa1
TH
676 /* @event doesn't care about cgroup */
677 if (!event->cgrp)
678 return true;
679
680 /* wants specific cgroup scope but @cpuctx isn't associated with any */
681 if (!cpuctx->cgrp)
682 return false;
683
684 /*
685 * Cgroup scoping is recursive. An event enabled for a cgroup is
686 * also enabled for all its descendant cgroups. If @cpuctx's
687 * cgroup is a descendant of @event's (the test covers identity
688 * case), it's a match.
689 */
690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 event->cgrp->css.cgroup);
e5d1367f
SE
692}
693
e5d1367f
SE
694static inline void perf_detach_cgroup(struct perf_event *event)
695{
4e2ba650 696 css_put(&event->cgrp->css);
e5d1367f
SE
697 event->cgrp = NULL;
698}
699
700static inline int is_cgroup_event(struct perf_event *event)
701{
702 return event->cgrp != NULL;
703}
704
705static inline u64 perf_cgroup_event_time(struct perf_event *event)
706{
707 struct perf_cgroup_info *t;
708
709 t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 return t->time;
711}
712
713static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714{
715 struct perf_cgroup_info *info;
716 u64 now;
717
718 now = perf_clock();
719
720 info = this_cpu_ptr(cgrp->info);
721
722 info->time += now - info->timestamp;
723 info->timestamp = now;
724}
725
726static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727{
c917e0f2
SL
728 struct perf_cgroup *cgrp = cpuctx->cgrp;
729 struct cgroup_subsys_state *css;
730
731 if (cgrp) {
732 for (css = &cgrp->css; css; css = css->parent) {
733 cgrp = container_of(css, struct perf_cgroup, css);
734 __update_cgrp_time(cgrp);
735 }
736 }
e5d1367f
SE
737}
738
739static inline void update_cgrp_time_from_event(struct perf_event *event)
740{
3f7cce3c
SE
741 struct perf_cgroup *cgrp;
742
e5d1367f 743 /*
3f7cce3c
SE
744 * ensure we access cgroup data only when needed and
745 * when we know the cgroup is pinned (css_get)
e5d1367f 746 */
3f7cce3c 747 if (!is_cgroup_event(event))
e5d1367f
SE
748 return;
749
614e4c4e 750 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
751 /*
752 * Do not update time when cgroup is not active
753 */
28fa741c 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 755 __update_cgrp_time(event->cgrp);
e5d1367f
SE
756}
757
758static inline void
3f7cce3c
SE
759perf_cgroup_set_timestamp(struct task_struct *task,
760 struct perf_event_context *ctx)
e5d1367f
SE
761{
762 struct perf_cgroup *cgrp;
763 struct perf_cgroup_info *info;
c917e0f2 764 struct cgroup_subsys_state *css;
e5d1367f 765
3f7cce3c
SE
766 /*
767 * ctx->lock held by caller
768 * ensure we do not access cgroup data
769 * unless we have the cgroup pinned (css_get)
770 */
771 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
772 return;
773
614e4c4e 774 cgrp = perf_cgroup_from_task(task, ctx);
c917e0f2
SL
775
776 for (css = &cgrp->css; css; css = css->parent) {
777 cgrp = container_of(css, struct perf_cgroup, css);
778 info = this_cpu_ptr(cgrp->info);
779 info->timestamp = ctx->timestamp;
780 }
e5d1367f
SE
781}
782
058fe1c0
DCC
783static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
e5d1367f
SE
785#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
786#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
787
788/*
789 * reschedule events based on the cgroup constraint of task.
790 *
791 * mode SWOUT : schedule out everything
792 * mode SWIN : schedule in based on cgroup for next
793 */
18ab2cd3 794static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
795{
796 struct perf_cpu_context *cpuctx;
058fe1c0 797 struct list_head *list;
e5d1367f
SE
798 unsigned long flags;
799
800 /*
058fe1c0
DCC
801 * Disable interrupts and preemption to avoid this CPU's
802 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
803 */
804 local_irq_save(flags);
805
058fe1c0
DCC
806 list = this_cpu_ptr(&cgrp_cpuctx_list);
807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 809
058fe1c0
DCC
810 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 812
058fe1c0
DCC
813 if (mode & PERF_CGROUP_SWOUT) {
814 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 /*
816 * must not be done before ctxswout due
817 * to event_filter_match() in event_sched_out()
818 */
819 cpuctx->cgrp = NULL;
820 }
e5d1367f 821
058fe1c0
DCC
822 if (mode & PERF_CGROUP_SWIN) {
823 WARN_ON_ONCE(cpuctx->cgrp);
824 /*
825 * set cgrp before ctxsw in to allow
826 * event_filter_match() to not have to pass
827 * task around
828 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 * because cgorup events are only per-cpu
830 */
831 cpuctx->cgrp = perf_cgroup_from_task(task,
832 &cpuctx->ctx);
833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 834 }
058fe1c0
DCC
835 perf_pmu_enable(cpuctx->ctx.pmu);
836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
837 }
838
e5d1367f
SE
839 local_irq_restore(flags);
840}
841
a8d757ef
SE
842static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
e5d1367f 844{
a8d757ef
SE
845 struct perf_cgroup *cgrp1;
846 struct perf_cgroup *cgrp2 = NULL;
847
ddaaf4e2 848 rcu_read_lock();
a8d757ef
SE
849 /*
850 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
851 * we do not need to pass the ctx here because we know
852 * we are holding the rcu lock
a8d757ef 853 */
614e4c4e 854 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 855 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
856
857 /*
858 * only schedule out current cgroup events if we know
859 * that we are switching to a different cgroup. Otherwise,
860 * do no touch the cgroup events.
861 */
862 if (cgrp1 != cgrp2)
863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
864
865 rcu_read_unlock();
e5d1367f
SE
866}
867
a8d757ef
SE
868static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 struct task_struct *task)
e5d1367f 870{
a8d757ef
SE
871 struct perf_cgroup *cgrp1;
872 struct perf_cgroup *cgrp2 = NULL;
873
ddaaf4e2 874 rcu_read_lock();
a8d757ef
SE
875 /*
876 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
877 * we do not need to pass the ctx here because we know
878 * we are holding the rcu lock
a8d757ef 879 */
614e4c4e 880 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 881 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
882
883 /*
884 * only need to schedule in cgroup events if we are changing
885 * cgroup during ctxsw. Cgroup events were not scheduled
886 * out of ctxsw out if that was not the case.
887 */
888 if (cgrp1 != cgrp2)
889 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
890
891 rcu_read_unlock();
e5d1367f
SE
892}
893
894static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 struct perf_event_attr *attr,
896 struct perf_event *group_leader)
897{
898 struct perf_cgroup *cgrp;
899 struct cgroup_subsys_state *css;
2903ff01
AV
900 struct fd f = fdget(fd);
901 int ret = 0;
e5d1367f 902
2903ff01 903 if (!f.file)
e5d1367f
SE
904 return -EBADF;
905
b583043e 906 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 907 &perf_event_cgrp_subsys);
3db272c0
LZ
908 if (IS_ERR(css)) {
909 ret = PTR_ERR(css);
910 goto out;
911 }
e5d1367f
SE
912
913 cgrp = container_of(css, struct perf_cgroup, css);
914 event->cgrp = cgrp;
915
916 /*
917 * all events in a group must monitor
918 * the same cgroup because a task belongs
919 * to only one perf cgroup at a time
920 */
921 if (group_leader && group_leader->cgrp != cgrp) {
922 perf_detach_cgroup(event);
923 ret = -EINVAL;
e5d1367f 924 }
3db272c0 925out:
2903ff01 926 fdput(f);
e5d1367f
SE
927 return ret;
928}
929
930static inline void
931perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932{
933 struct perf_cgroup_info *t;
934 t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 event->shadow_ctx_time = now - t->timestamp;
936}
937
db4a8356
DCC
938/*
939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940 * cleared when last cgroup event is removed.
941 */
942static inline void
943list_update_cgroup_event(struct perf_event *event,
944 struct perf_event_context *ctx, bool add)
945{
946 struct perf_cpu_context *cpuctx;
058fe1c0 947 struct list_head *cpuctx_entry;
db4a8356
DCC
948
949 if (!is_cgroup_event(event))
950 return;
951
db4a8356
DCC
952 /*
953 * Because cgroup events are always per-cpu events,
954 * this will always be called from the right CPU.
955 */
956 cpuctx = __get_cpu_context(ctx);
33801b94 957
958 /*
959 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 * matching the event's cgroup, we must do this for every new event,
961 * because if the first would mismatch, the second would not try again
962 * and we would leave cpuctx->cgrp unset.
963 */
964 if (add && !cpuctx->cgrp) {
be96b316
TH
965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
be96b316
TH
967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 cpuctx->cgrp = cgrp;
058fe1c0 969 }
33801b94 970
971 if (add && ctx->nr_cgroups++)
972 return;
973 else if (!add && --ctx->nr_cgroups)
974 return;
975
976 /* no cgroup running */
977 if (!add)
978 cpuctx->cgrp = NULL;
979
980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 if (add)
982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 else
984 list_del(cpuctx_entry);
db4a8356
DCC
985}
986
e5d1367f
SE
987#else /* !CONFIG_CGROUP_PERF */
988
989static inline bool
990perf_cgroup_match(struct perf_event *event)
991{
992 return true;
993}
994
995static inline void perf_detach_cgroup(struct perf_event *event)
996{}
997
998static inline int is_cgroup_event(struct perf_event *event)
999{
1000 return 0;
1001}
1002
e5d1367f
SE
1003static inline void update_cgrp_time_from_event(struct perf_event *event)
1004{
1005}
1006
1007static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008{
1009}
1010
a8d757ef
SE
1011static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 struct task_struct *next)
e5d1367f
SE
1013{
1014}
1015
a8d757ef
SE
1016static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 struct task_struct *task)
e5d1367f
SE
1018{
1019}
1020
1021static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 struct perf_event_attr *attr,
1023 struct perf_event *group_leader)
1024{
1025 return -EINVAL;
1026}
1027
1028static inline void
3f7cce3c
SE
1029perf_cgroup_set_timestamp(struct task_struct *task,
1030 struct perf_event_context *ctx)
e5d1367f
SE
1031{
1032}
1033
1034void
1035perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036{
1037}
1038
1039static inline void
1040perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041{
1042}
1043
1044static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045{
1046 return 0;
1047}
1048
db4a8356
DCC
1049static inline void
1050list_update_cgroup_event(struct perf_event *event,
1051 struct perf_event_context *ctx, bool add)
1052{
1053}
1054
e5d1367f
SE
1055#endif
1056
9e630205
SE
1057/*
1058 * set default to be dependent on timer tick just
1059 * like original code
1060 */
1061#define PERF_CPU_HRTIMER (1000 / HZ)
1062/*
8a1115ff 1063 * function must be called with interrupts disabled
9e630205 1064 */
272325c4 1065static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1066{
1067 struct perf_cpu_context *cpuctx;
8d5bce0c 1068 bool rotations;
9e630205 1069
16444645 1070 lockdep_assert_irqs_disabled();
9e630205
SE
1071
1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1073 rotations = perf_rotate_context(cpuctx);
1074
4cfafd30
PZ
1075 raw_spin_lock(&cpuctx->hrtimer_lock);
1076 if (rotations)
9e630205 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1078 else
1079 cpuctx->hrtimer_active = 0;
1080 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1081
4cfafd30 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1083}
1084
272325c4 1085static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1086{
272325c4 1087 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1088 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1089 u64 interval;
9e630205
SE
1090
1091 /* no multiplexing needed for SW PMU */
1092 if (pmu->task_ctx_nr == perf_sw_context)
1093 return;
1094
62b85639
SE
1095 /*
1096 * check default is sane, if not set then force to
1097 * default interval (1/tick)
1098 */
272325c4
PZ
1099 interval = pmu->hrtimer_interval_ms;
1100 if (interval < 1)
1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1102
272325c4 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1104
4cfafd30 1105 raw_spin_lock_init(&cpuctx->hrtimer_lock);
30f9028b 1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
272325c4 1107 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1108}
1109
272325c4 1110static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1111{
272325c4 1112 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1113 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1114 unsigned long flags;
9e630205
SE
1115
1116 /* not for SW PMU */
1117 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1118 return 0;
9e630205 1119
4cfafd30
PZ
1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 if (!cpuctx->hrtimer_active) {
1122 cpuctx->hrtimer_active = 1;
1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
30f9028b 1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
4cfafd30
PZ
1125 }
1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1127
272325c4 1128 return 0;
9e630205
SE
1129}
1130
33696fc0 1131void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1132{
33696fc0
PZ
1133 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 if (!(*count)++)
1135 pmu->pmu_disable(pmu);
9e35ad38 1136}
9e35ad38 1137
33696fc0 1138void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1139{
33696fc0
PZ
1140 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 if (!--(*count))
1142 pmu->pmu_enable(pmu);
9e35ad38 1143}
9e35ad38 1144
2fde4f94 1145static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1146
1147/*
2fde4f94
MR
1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149 * perf_event_task_tick() are fully serialized because they're strictly cpu
1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1152 */
2fde4f94 1153static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1154{
2fde4f94 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1156
16444645 1157 lockdep_assert_irqs_disabled();
b5ab4cd5 1158
2fde4f94
MR
1159 WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161 list_add(&ctx->active_ctx_list, head);
1162}
1163
1164static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165{
16444645 1166 lockdep_assert_irqs_disabled();
2fde4f94
MR
1167
1168 WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170 list_del_init(&ctx->active_ctx_list);
9e35ad38 1171}
9e35ad38 1172
cdd6c482 1173static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1174{
8c94abbb 1175 refcount_inc(&ctx->refcount);
a63eaf34
PM
1176}
1177
4af57ef2
YZ
1178static void free_ctx(struct rcu_head *head)
1179{
1180 struct perf_event_context *ctx;
1181
1182 ctx = container_of(head, struct perf_event_context, rcu_head);
1183 kfree(ctx->task_ctx_data);
1184 kfree(ctx);
1185}
1186
cdd6c482 1187static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1188{
8c94abbb 1189 if (refcount_dec_and_test(&ctx->refcount)) {
564c2b21
PM
1190 if (ctx->parent_ctx)
1191 put_ctx(ctx->parent_ctx);
63b6da39 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1193 put_task_struct(ctx->task);
4af57ef2 1194 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1195 }
a63eaf34
PM
1196}
1197
f63a8daa
PZ
1198/*
1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200 * perf_pmu_migrate_context() we need some magic.
1201 *
1202 * Those places that change perf_event::ctx will hold both
1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204 *
8b10c5e2
PZ
1205 * Lock ordering is by mutex address. There are two other sites where
1206 * perf_event_context::mutex nests and those are:
1207 *
1208 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1209 * perf_event_exit_event()
1210 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1211 *
1212 * - perf_event_init_context() [ parent, 0 ]
1213 * inherit_task_group()
1214 * inherit_group()
1215 * inherit_event()
1216 * perf_event_alloc()
1217 * perf_init_event()
1218 * perf_try_init_event() [ child , 1 ]
1219 *
1220 * While it appears there is an obvious deadlock here -- the parent and child
1221 * nesting levels are inverted between the two. This is in fact safe because
1222 * life-time rules separate them. That is an exiting task cannot fork, and a
1223 * spawning task cannot (yet) exit.
1224 *
1225 * But remember that that these are parent<->child context relations, and
1226 * migration does not affect children, therefore these two orderings should not
1227 * interact.
f63a8daa
PZ
1228 *
1229 * The change in perf_event::ctx does not affect children (as claimed above)
1230 * because the sys_perf_event_open() case will install a new event and break
1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232 * concerned with cpuctx and that doesn't have children.
1233 *
1234 * The places that change perf_event::ctx will issue:
1235 *
1236 * perf_remove_from_context();
1237 * synchronize_rcu();
1238 * perf_install_in_context();
1239 *
1240 * to affect the change. The remove_from_context() + synchronize_rcu() should
1241 * quiesce the event, after which we can install it in the new location. This
1242 * means that only external vectors (perf_fops, prctl) can perturb the event
1243 * while in transit. Therefore all such accessors should also acquire
1244 * perf_event_context::mutex to serialize against this.
1245 *
1246 * However; because event->ctx can change while we're waiting to acquire
1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248 * function.
1249 *
1250 * Lock order:
79c9ce57 1251 * cred_guard_mutex
f63a8daa
PZ
1252 * task_struct::perf_event_mutex
1253 * perf_event_context::mutex
f63a8daa 1254 * perf_event::child_mutex;
07c4a776 1255 * perf_event_context::lock
f63a8daa
PZ
1256 * perf_event::mmap_mutex
1257 * mmap_sem
18736eef 1258 * perf_addr_filters_head::lock
82d94856
PZ
1259 *
1260 * cpu_hotplug_lock
1261 * pmus_lock
1262 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1263 */
a83fe28e
PZ
1264static struct perf_event_context *
1265perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1266{
1267 struct perf_event_context *ctx;
1268
1269again:
1270 rcu_read_lock();
6aa7de05 1271 ctx = READ_ONCE(event->ctx);
8c94abbb 1272 if (!refcount_inc_not_zero(&ctx->refcount)) {
f63a8daa
PZ
1273 rcu_read_unlock();
1274 goto again;
1275 }
1276 rcu_read_unlock();
1277
a83fe28e 1278 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1279 if (event->ctx != ctx) {
1280 mutex_unlock(&ctx->mutex);
1281 put_ctx(ctx);
1282 goto again;
1283 }
1284
1285 return ctx;
1286}
1287
a83fe28e
PZ
1288static inline struct perf_event_context *
1289perf_event_ctx_lock(struct perf_event *event)
1290{
1291 return perf_event_ctx_lock_nested(event, 0);
1292}
1293
f63a8daa
PZ
1294static void perf_event_ctx_unlock(struct perf_event *event,
1295 struct perf_event_context *ctx)
1296{
1297 mutex_unlock(&ctx->mutex);
1298 put_ctx(ctx);
1299}
1300
211de6eb
PZ
1301/*
1302 * This must be done under the ctx->lock, such as to serialize against
1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304 * calling scheduler related locks and ctx->lock nests inside those.
1305 */
1306static __must_check struct perf_event_context *
1307unclone_ctx(struct perf_event_context *ctx)
71a851b4 1308{
211de6eb
PZ
1309 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311 lockdep_assert_held(&ctx->lock);
1312
1313 if (parent_ctx)
71a851b4 1314 ctx->parent_ctx = NULL;
5a3126d4 1315 ctx->generation++;
211de6eb
PZ
1316
1317 return parent_ctx;
71a851b4
PZ
1318}
1319
1d953111
ON
1320static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 enum pid_type type)
6844c09d 1322{
1d953111 1323 u32 nr;
6844c09d
ACM
1324 /*
1325 * only top level events have the pid namespace they were created in
1326 */
1327 if (event->parent)
1328 event = event->parent;
1329
1d953111
ON
1330 nr = __task_pid_nr_ns(p, type, event->ns);
1331 /* avoid -1 if it is idle thread or runs in another ns */
1332 if (!nr && !pid_alive(p))
1333 nr = -1;
1334 return nr;
6844c09d
ACM
1335}
1336
1d953111 1337static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1338{
6883f81a 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1d953111 1340}
6844c09d 1341
1d953111
ON
1342static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343{
1344 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1345}
1346
7f453c24 1347/*
cdd6c482 1348 * If we inherit events we want to return the parent event id
7f453c24
PZ
1349 * to userspace.
1350 */
cdd6c482 1351static u64 primary_event_id(struct perf_event *event)
7f453c24 1352{
cdd6c482 1353 u64 id = event->id;
7f453c24 1354
cdd6c482
IM
1355 if (event->parent)
1356 id = event->parent->id;
7f453c24
PZ
1357
1358 return id;
1359}
1360
25346b93 1361/*
cdd6c482 1362 * Get the perf_event_context for a task and lock it.
63b6da39 1363 *
25346b93
PM
1364 * This has to cope with with the fact that until it is locked,
1365 * the context could get moved to another task.
1366 */
cdd6c482 1367static struct perf_event_context *
8dc85d54 1368perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1369{
cdd6c482 1370 struct perf_event_context *ctx;
25346b93 1371
9ed6060d 1372retry:
058ebd0e
PZ
1373 /*
1374 * One of the few rules of preemptible RCU is that one cannot do
1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1376 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1377 * rcu_read_unlock_special().
1378 *
1379 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1380 * side critical section has interrupts disabled.
058ebd0e 1381 */
2fd59077 1382 local_irq_save(*flags);
058ebd0e 1383 rcu_read_lock();
8dc85d54 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1385 if (ctx) {
1386 /*
1387 * If this context is a clone of another, it might
1388 * get swapped for another underneath us by
cdd6c482 1389 * perf_event_task_sched_out, though the
25346b93
PM
1390 * rcu_read_lock() protects us from any context
1391 * getting freed. Lock the context and check if it
1392 * got swapped before we could get the lock, and retry
1393 * if so. If we locked the right context, then it
1394 * can't get swapped on us any more.
1395 */
2fd59077 1396 raw_spin_lock(&ctx->lock);
8dc85d54 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1398 raw_spin_unlock(&ctx->lock);
058ebd0e 1399 rcu_read_unlock();
2fd59077 1400 local_irq_restore(*flags);
25346b93
PM
1401 goto retry;
1402 }
b49a9e7e 1403
63b6da39 1404 if (ctx->task == TASK_TOMBSTONE ||
8c94abbb 1405 !refcount_inc_not_zero(&ctx->refcount)) {
2fd59077 1406 raw_spin_unlock(&ctx->lock);
b49a9e7e 1407 ctx = NULL;
828b6f0e
PZ
1408 } else {
1409 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1410 }
25346b93
PM
1411 }
1412 rcu_read_unlock();
2fd59077
PM
1413 if (!ctx)
1414 local_irq_restore(*flags);
25346b93
PM
1415 return ctx;
1416}
1417
1418/*
1419 * Get the context for a task and increment its pin_count so it
1420 * can't get swapped to another task. This also increments its
1421 * reference count so that the context can't get freed.
1422 */
8dc85d54
PZ
1423static struct perf_event_context *
1424perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1425{
cdd6c482 1426 struct perf_event_context *ctx;
25346b93
PM
1427 unsigned long flags;
1428
8dc85d54 1429 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1430 if (ctx) {
1431 ++ctx->pin_count;
e625cce1 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1433 }
1434 return ctx;
1435}
1436
cdd6c482 1437static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1438{
1439 unsigned long flags;
1440
e625cce1 1441 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1442 --ctx->pin_count;
e625cce1 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1444}
1445
f67218c3
PZ
1446/*
1447 * Update the record of the current time in a context.
1448 */
1449static void update_context_time(struct perf_event_context *ctx)
1450{
1451 u64 now = perf_clock();
1452
1453 ctx->time += now - ctx->timestamp;
1454 ctx->timestamp = now;
1455}
1456
4158755d
SE
1457static u64 perf_event_time(struct perf_event *event)
1458{
1459 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1460
1461 if (is_cgroup_event(event))
1462 return perf_cgroup_event_time(event);
1463
4158755d
SE
1464 return ctx ? ctx->time : 0;
1465}
1466
487f05e1
AS
1467static enum event_type_t get_event_type(struct perf_event *event)
1468{
1469 struct perf_event_context *ctx = event->ctx;
1470 enum event_type_t event_type;
1471
1472 lockdep_assert_held(&ctx->lock);
1473
3bda69c1
AS
1474 /*
1475 * It's 'group type', really, because if our group leader is
1476 * pinned, so are we.
1477 */
1478 if (event->group_leader != event)
1479 event = event->group_leader;
1480
487f05e1
AS
1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 if (!ctx->task)
1483 event_type |= EVENT_CPU;
1484
1485 return event_type;
1486}
1487
8e1a2031 1488/*
161c85fa 1489 * Helper function to initialize event group nodes.
8e1a2031 1490 */
161c85fa 1491static void init_event_group(struct perf_event *event)
8e1a2031
AB
1492{
1493 RB_CLEAR_NODE(&event->group_node);
1494 event->group_index = 0;
1495}
1496
1497/*
1498 * Extract pinned or flexible groups from the context
161c85fa 1499 * based on event attrs bits.
8e1a2031
AB
1500 */
1501static struct perf_event_groups *
1502get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1503{
1504 if (event->attr.pinned)
1505 return &ctx->pinned_groups;
1506 else
1507 return &ctx->flexible_groups;
1508}
1509
8e1a2031 1510/*
161c85fa 1511 * Helper function to initializes perf_event_group trees.
8e1a2031 1512 */
161c85fa 1513static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1514{
1515 groups->tree = RB_ROOT;
1516 groups->index = 0;
1517}
1518
1519/*
1520 * Compare function for event groups;
161c85fa
PZ
1521 *
1522 * Implements complex key that first sorts by CPU and then by virtual index
1523 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1524 */
161c85fa
PZ
1525static bool
1526perf_event_groups_less(struct perf_event *left, struct perf_event *right)
8e1a2031 1527{
161c85fa
PZ
1528 if (left->cpu < right->cpu)
1529 return true;
1530 if (left->cpu > right->cpu)
1531 return false;
1532
1533 if (left->group_index < right->group_index)
1534 return true;
1535 if (left->group_index > right->group_index)
1536 return false;
1537
1538 return false;
8e1a2031
AB
1539}
1540
1541/*
161c85fa
PZ
1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543 * key (see perf_event_groups_less). This places it last inside the CPU
1544 * subtree.
8e1a2031
AB
1545 */
1546static void
1547perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1548 struct perf_event *event)
8e1a2031
AB
1549{
1550 struct perf_event *node_event;
1551 struct rb_node *parent;
1552 struct rb_node **node;
1553
1554 event->group_index = ++groups->index;
1555
1556 node = &groups->tree.rb_node;
1557 parent = *node;
1558
1559 while (*node) {
1560 parent = *node;
161c85fa 1561 node_event = container_of(*node, struct perf_event, group_node);
8e1a2031
AB
1562
1563 if (perf_event_groups_less(event, node_event))
1564 node = &parent->rb_left;
1565 else
1566 node = &parent->rb_right;
1567 }
1568
1569 rb_link_node(&event->group_node, parent, node);
1570 rb_insert_color(&event->group_node, &groups->tree);
1571}
1572
1573/*
161c85fa 1574 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1575 */
1576static void
1577add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578{
1579 struct perf_event_groups *groups;
1580
1581 groups = get_event_groups(event, ctx);
1582 perf_event_groups_insert(groups, event);
1583}
1584
1585/*
161c85fa 1586 * Delete a group from a tree.
8e1a2031
AB
1587 */
1588static void
1589perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1590 struct perf_event *event)
8e1a2031 1591{
161c85fa
PZ
1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1594
161c85fa 1595 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1596 init_event_group(event);
1597}
1598
1599/*
161c85fa 1600 * Helper function to delete event from its groups.
8e1a2031
AB
1601 */
1602static void
1603del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604{
1605 struct perf_event_groups *groups;
1606
1607 groups = get_event_groups(event, ctx);
1608 perf_event_groups_delete(groups, event);
1609}
1610
1611/*
161c85fa 1612 * Get the leftmost event in the @cpu subtree.
8e1a2031
AB
1613 */
1614static struct perf_event *
1615perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616{
1617 struct perf_event *node_event = NULL, *match = NULL;
1618 struct rb_node *node = groups->tree.rb_node;
1619
1620 while (node) {
161c85fa 1621 node_event = container_of(node, struct perf_event, group_node);
8e1a2031
AB
1622
1623 if (cpu < node_event->cpu) {
1624 node = node->rb_left;
1625 } else if (cpu > node_event->cpu) {
1626 node = node->rb_right;
1627 } else {
1628 match = node_event;
1629 node = node->rb_left;
1630 }
1631 }
1632
1633 return match;
1634}
1635
1cac7b1a
PZ
1636/*
1637 * Like rb_entry_next_safe() for the @cpu subtree.
1638 */
1639static struct perf_event *
1640perf_event_groups_next(struct perf_event *event)
1641{
1642 struct perf_event *next;
1643
1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 if (next && next->cpu == event->cpu)
1646 return next;
1647
1648 return NULL;
1649}
1650
8e1a2031 1651/*
161c85fa 1652 * Iterate through the whole groups tree.
8e1a2031 1653 */
6e6804d2
PZ
1654#define perf_event_groups_for_each(event, groups) \
1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1656 typeof(*event), group_node); event; \
1657 event = rb_entry_safe(rb_next(&event->group_node), \
1658 typeof(*event), group_node))
8e1a2031 1659
fccc714b 1660/*
788faab7 1661 * Add an event from the lists for its context.
fccc714b
PZ
1662 * Must be called with ctx->mutex and ctx->lock held.
1663 */
04289bb9 1664static void
cdd6c482 1665list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1666{
c994d613
PZ
1667 lockdep_assert_held(&ctx->lock);
1668
8a49542c
PZ
1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1671
0d3d73aa
PZ
1672 event->tstamp = perf_event_time(event);
1673
04289bb9 1674 /*
8a49542c
PZ
1675 * If we're a stand alone event or group leader, we go to the context
1676 * list, group events are kept attached to the group so that
1677 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1678 */
8a49542c 1679 if (event->group_leader == event) {
4ff6a8de 1680 event->group_caps = event->event_caps;
8e1a2031 1681 add_event_to_groups(event, ctx);
5c148194 1682 }
592903cd 1683
db4a8356 1684 list_update_cgroup_event(event, ctx, true);
e5d1367f 1685
cdd6c482
IM
1686 list_add_rcu(&event->event_entry, &ctx->event_list);
1687 ctx->nr_events++;
1688 if (event->attr.inherit_stat)
bfbd3381 1689 ctx->nr_stat++;
5a3126d4
PZ
1690
1691 ctx->generation++;
04289bb9
IM
1692}
1693
0231bb53
JO
1694/*
1695 * Initialize event state based on the perf_event_attr::disabled.
1696 */
1697static inline void perf_event__state_init(struct perf_event *event)
1698{
1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 PERF_EVENT_STATE_INACTIVE;
1701}
1702
a723968c 1703static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1704{
1705 int entry = sizeof(u64); /* value */
1706 int size = 0;
1707 int nr = 1;
1708
1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 size += sizeof(u64);
1711
1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 size += sizeof(u64);
1714
1715 if (event->attr.read_format & PERF_FORMAT_ID)
1716 entry += sizeof(u64);
1717
1718 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1719 nr += nr_siblings;
c320c7b7
ACM
1720 size += sizeof(u64);
1721 }
1722
1723 size += entry * nr;
1724 event->read_size = size;
1725}
1726
a723968c 1727static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1728{
1729 struct perf_sample_data *data;
c320c7b7
ACM
1730 u16 size = 0;
1731
c320c7b7
ACM
1732 if (sample_type & PERF_SAMPLE_IP)
1733 size += sizeof(data->ip);
1734
6844c09d
ACM
1735 if (sample_type & PERF_SAMPLE_ADDR)
1736 size += sizeof(data->addr);
1737
1738 if (sample_type & PERF_SAMPLE_PERIOD)
1739 size += sizeof(data->period);
1740
c3feedf2
AK
1741 if (sample_type & PERF_SAMPLE_WEIGHT)
1742 size += sizeof(data->weight);
1743
6844c09d
ACM
1744 if (sample_type & PERF_SAMPLE_READ)
1745 size += event->read_size;
1746
d6be9ad6
SE
1747 if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 size += sizeof(data->data_src.val);
1749
fdfbbd07
AK
1750 if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 size += sizeof(data->txn);
1752
fc7ce9c7
KL
1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 size += sizeof(data->phys_addr);
1755
6844c09d
ACM
1756 event->header_size = size;
1757}
1758
a723968c
PZ
1759/*
1760 * Called at perf_event creation and when events are attached/detached from a
1761 * group.
1762 */
1763static void perf_event__header_size(struct perf_event *event)
1764{
1765 __perf_event_read_size(event,
1766 event->group_leader->nr_siblings);
1767 __perf_event_header_size(event, event->attr.sample_type);
1768}
1769
6844c09d
ACM
1770static void perf_event__id_header_size(struct perf_event *event)
1771{
1772 struct perf_sample_data *data;
1773 u64 sample_type = event->attr.sample_type;
1774 u16 size = 0;
1775
c320c7b7
ACM
1776 if (sample_type & PERF_SAMPLE_TID)
1777 size += sizeof(data->tid_entry);
1778
1779 if (sample_type & PERF_SAMPLE_TIME)
1780 size += sizeof(data->time);
1781
ff3d527c
AH
1782 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 size += sizeof(data->id);
1784
c320c7b7
ACM
1785 if (sample_type & PERF_SAMPLE_ID)
1786 size += sizeof(data->id);
1787
1788 if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 size += sizeof(data->stream_id);
1790
1791 if (sample_type & PERF_SAMPLE_CPU)
1792 size += sizeof(data->cpu_entry);
1793
6844c09d 1794 event->id_header_size = size;
c320c7b7
ACM
1795}
1796
a723968c
PZ
1797static bool perf_event_validate_size(struct perf_event *event)
1798{
1799 /*
1800 * The values computed here will be over-written when we actually
1801 * attach the event.
1802 */
1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 perf_event__id_header_size(event);
1806
1807 /*
1808 * Sum the lot; should not exceed the 64k limit we have on records.
1809 * Conservative limit to allow for callchains and other variable fields.
1810 */
1811 if (event->read_size + event->header_size +
1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 return false;
1814
1815 return true;
1816}
1817
8a49542c
PZ
1818static void perf_group_attach(struct perf_event *event)
1819{
c320c7b7 1820 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1821
a76a82a3
PZ
1822 lockdep_assert_held(&event->ctx->lock);
1823
74c3337c
PZ
1824 /*
1825 * We can have double attach due to group movement in perf_event_open.
1826 */
1827 if (event->attach_state & PERF_ATTACH_GROUP)
1828 return;
1829
8a49542c
PZ
1830 event->attach_state |= PERF_ATTACH_GROUP;
1831
1832 if (group_leader == event)
1833 return;
1834
652884fe
PZ
1835 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
4ff6a8de 1837 group_leader->group_caps &= event->event_caps;
8a49542c 1838
8343aae6 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1840 group_leader->nr_siblings++;
c320c7b7
ACM
1841
1842 perf_event__header_size(group_leader);
1843
edb39592 1844 for_each_sibling_event(pos, group_leader)
c320c7b7 1845 perf_event__header_size(pos);
8a49542c
PZ
1846}
1847
a63eaf34 1848/*
788faab7 1849 * Remove an event from the lists for its context.
fccc714b 1850 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1851 */
04289bb9 1852static void
cdd6c482 1853list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1854{
652884fe
PZ
1855 WARN_ON_ONCE(event->ctx != ctx);
1856 lockdep_assert_held(&ctx->lock);
1857
8a49542c
PZ
1858 /*
1859 * We can have double detach due to exit/hot-unplug + close.
1860 */
1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1862 return;
8a49542c
PZ
1863
1864 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
db4a8356 1866 list_update_cgroup_event(event, ctx, false);
e5d1367f 1867
cdd6c482
IM
1868 ctx->nr_events--;
1869 if (event->attr.inherit_stat)
bfbd3381 1870 ctx->nr_stat--;
8bc20959 1871
cdd6c482 1872 list_del_rcu(&event->event_entry);
04289bb9 1873
8a49542c 1874 if (event->group_leader == event)
8e1a2031 1875 del_event_from_groups(event, ctx);
5c148194 1876
b2e74a26
SE
1877 /*
1878 * If event was in error state, then keep it
1879 * that way, otherwise bogus counts will be
1880 * returned on read(). The only way to get out
1881 * of error state is by explicit re-enabling
1882 * of the event
1883 */
1884 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1886
1887 ctx->generation++;
050735b0
PZ
1888}
1889
ab43762e
AS
1890static int
1891perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1892{
1893 if (!has_aux(aux_event))
1894 return 0;
1895
1896 if (!event->pmu->aux_output_match)
1897 return 0;
1898
1899 return event->pmu->aux_output_match(aux_event);
1900}
1901
1902static void put_event(struct perf_event *event);
1903static void event_sched_out(struct perf_event *event,
1904 struct perf_cpu_context *cpuctx,
1905 struct perf_event_context *ctx);
1906
1907static void perf_put_aux_event(struct perf_event *event)
1908{
1909 struct perf_event_context *ctx = event->ctx;
1910 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1911 struct perf_event *iter;
1912
1913 /*
1914 * If event uses aux_event tear down the link
1915 */
1916 if (event->aux_event) {
1917 iter = event->aux_event;
1918 event->aux_event = NULL;
1919 put_event(iter);
1920 return;
1921 }
1922
1923 /*
1924 * If the event is an aux_event, tear down all links to
1925 * it from other events.
1926 */
1927 for_each_sibling_event(iter, event->group_leader) {
1928 if (iter->aux_event != event)
1929 continue;
1930
1931 iter->aux_event = NULL;
1932 put_event(event);
1933
1934 /*
1935 * If it's ACTIVE, schedule it out and put it into ERROR
1936 * state so that we don't try to schedule it again. Note
1937 * that perf_event_enable() will clear the ERROR status.
1938 */
1939 event_sched_out(iter, cpuctx, ctx);
1940 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1941 }
1942}
1943
1944static int perf_get_aux_event(struct perf_event *event,
1945 struct perf_event *group_leader)
1946{
1947 /*
1948 * Our group leader must be an aux event if we want to be
1949 * an aux_output. This way, the aux event will precede its
1950 * aux_output events in the group, and therefore will always
1951 * schedule first.
1952 */
1953 if (!group_leader)
1954 return 0;
1955
1956 if (!perf_aux_output_match(event, group_leader))
1957 return 0;
1958
1959 if (!atomic_long_inc_not_zero(&group_leader->refcount))
1960 return 0;
1961
1962 /*
1963 * Link aux_outputs to their aux event; this is undone in
1964 * perf_group_detach() by perf_put_aux_event(). When the
1965 * group in torn down, the aux_output events loose their
1966 * link to the aux_event and can't schedule any more.
1967 */
1968 event->aux_event = group_leader;
1969
1970 return 1;
1971}
1972
8a49542c 1973static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1974{
1975 struct perf_event *sibling, *tmp;
6668128a 1976 struct perf_event_context *ctx = event->ctx;
8a49542c 1977
6668128a 1978 lockdep_assert_held(&ctx->lock);
a76a82a3 1979
8a49542c
PZ
1980 /*
1981 * We can have double detach due to exit/hot-unplug + close.
1982 */
1983 if (!(event->attach_state & PERF_ATTACH_GROUP))
1984 return;
1985
1986 event->attach_state &= ~PERF_ATTACH_GROUP;
1987
ab43762e
AS
1988 perf_put_aux_event(event);
1989
8a49542c
PZ
1990 /*
1991 * If this is a sibling, remove it from its group.
1992 */
1993 if (event->group_leader != event) {
8343aae6 1994 list_del_init(&event->sibling_list);
8a49542c 1995 event->group_leader->nr_siblings--;
c320c7b7 1996 goto out;
8a49542c
PZ
1997 }
1998
04289bb9 1999 /*
cdd6c482
IM
2000 * If this was a group event with sibling events then
2001 * upgrade the siblings to singleton events by adding them
8a49542c 2002 * to whatever list we are on.
04289bb9 2003 */
8343aae6 2004 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 2005
04289bb9 2006 sibling->group_leader = sibling;
24868367 2007 list_del_init(&sibling->sibling_list);
d6f962b5
FW
2008
2009 /* Inherit group flags from the previous leader */
4ff6a8de 2010 sibling->group_caps = event->group_caps;
652884fe 2011
8e1a2031 2012 if (!RB_EMPTY_NODE(&event->group_node)) {
8e1a2031 2013 add_event_to_groups(sibling, event->ctx);
6668128a
PZ
2014
2015 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2016 struct list_head *list = sibling->attr.pinned ?
2017 &ctx->pinned_active : &ctx->flexible_active;
2018
2019 list_add_tail(&sibling->active_list, list);
2020 }
8e1a2031
AB
2021 }
2022
652884fe 2023 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 2024 }
c320c7b7
ACM
2025
2026out:
2027 perf_event__header_size(event->group_leader);
2028
edb39592 2029 for_each_sibling_event(tmp, event->group_leader)
c320c7b7 2030 perf_event__header_size(tmp);
04289bb9
IM
2031}
2032
fadfe7be
JO
2033static bool is_orphaned_event(struct perf_event *event)
2034{
a69b0ca4 2035 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
2036}
2037
2c81a647 2038static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
2039{
2040 struct pmu *pmu = event->pmu;
2041 return pmu->filter_match ? pmu->filter_match(event) : 1;
2042}
2043
2c81a647
MR
2044/*
2045 * Check whether we should attempt to schedule an event group based on
2046 * PMU-specific filtering. An event group can consist of HW and SW events,
2047 * potentially with a SW leader, so we must check all the filters, to
2048 * determine whether a group is schedulable:
2049 */
2050static inline int pmu_filter_match(struct perf_event *event)
2051{
edb39592 2052 struct perf_event *sibling;
2c81a647
MR
2053
2054 if (!__pmu_filter_match(event))
2055 return 0;
2056
edb39592
PZ
2057 for_each_sibling_event(sibling, event) {
2058 if (!__pmu_filter_match(sibling))
2c81a647
MR
2059 return 0;
2060 }
2061
2062 return 1;
2063}
2064
fa66f07a
SE
2065static inline int
2066event_filter_match(struct perf_event *event)
2067{
0b8f1e2e
PZ
2068 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2069 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
2070}
2071
9ffcfa6f
SE
2072static void
2073event_sched_out(struct perf_event *event,
3b6f9e5c 2074 struct perf_cpu_context *cpuctx,
cdd6c482 2075 struct perf_event_context *ctx)
3b6f9e5c 2076{
0d3d73aa 2077 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
2078
2079 WARN_ON_ONCE(event->ctx != ctx);
2080 lockdep_assert_held(&ctx->lock);
2081
cdd6c482 2082 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 2083 return;
3b6f9e5c 2084
6668128a
PZ
2085 /*
2086 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2087 * we can schedule events _OUT_ individually through things like
2088 * __perf_remove_from_context().
2089 */
2090 list_del_init(&event->active_list);
2091
44377277
AS
2092 perf_pmu_disable(event->pmu);
2093
28a967c3
PZ
2094 event->pmu->del(event, 0);
2095 event->oncpu = -1;
0d3d73aa 2096
1d54ad94
PZ
2097 if (READ_ONCE(event->pending_disable) >= 0) {
2098 WRITE_ONCE(event->pending_disable, -1);
0d3d73aa 2099 state = PERF_EVENT_STATE_OFF;
970892a9 2100 }
0d3d73aa 2101 perf_event_set_state(event, state);
3b6f9e5c 2102
cdd6c482 2103 if (!is_software_event(event))
3b6f9e5c 2104 cpuctx->active_oncpu--;
2fde4f94
MR
2105 if (!--ctx->nr_active)
2106 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
2107 if (event->attr.freq && event->attr.sample_freq)
2108 ctx->nr_freq--;
cdd6c482 2109 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 2110 cpuctx->exclusive = 0;
44377277
AS
2111
2112 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2113}
2114
d859e29f 2115static void
cdd6c482 2116group_sched_out(struct perf_event *group_event,
d859e29f 2117 struct perf_cpu_context *cpuctx,
cdd6c482 2118 struct perf_event_context *ctx)
d859e29f 2119{
cdd6c482 2120 struct perf_event *event;
0d3d73aa
PZ
2121
2122 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2123 return;
d859e29f 2124
3f005e7d
MR
2125 perf_pmu_disable(ctx->pmu);
2126
cdd6c482 2127 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
2128
2129 /*
2130 * Schedule out siblings (if any):
2131 */
edb39592 2132 for_each_sibling_event(event, group_event)
cdd6c482 2133 event_sched_out(event, cpuctx, ctx);
d859e29f 2134
3f005e7d
MR
2135 perf_pmu_enable(ctx->pmu);
2136
0d3d73aa 2137 if (group_event->attr.exclusive)
d859e29f
PM
2138 cpuctx->exclusive = 0;
2139}
2140
45a0e07a 2141#define DETACH_GROUP 0x01UL
0017960f 2142
0793a61d 2143/*
cdd6c482 2144 * Cross CPU call to remove a performance event
0793a61d 2145 *
cdd6c482 2146 * We disable the event on the hardware level first. After that we
0793a61d
TG
2147 * remove it from the context list.
2148 */
fae3fde6
PZ
2149static void
2150__perf_remove_from_context(struct perf_event *event,
2151 struct perf_cpu_context *cpuctx,
2152 struct perf_event_context *ctx,
2153 void *info)
0793a61d 2154{
45a0e07a 2155 unsigned long flags = (unsigned long)info;
0793a61d 2156
3c5c8711
PZ
2157 if (ctx->is_active & EVENT_TIME) {
2158 update_context_time(ctx);
2159 update_cgrp_time_from_cpuctx(cpuctx);
2160 }
2161
cdd6c482 2162 event_sched_out(event, cpuctx, ctx);
45a0e07a 2163 if (flags & DETACH_GROUP)
46ce0fe9 2164 perf_group_detach(event);
cdd6c482 2165 list_del_event(event, ctx);
39a43640
PZ
2166
2167 if (!ctx->nr_events && ctx->is_active) {
64ce3126 2168 ctx->is_active = 0;
39a43640
PZ
2169 if (ctx->task) {
2170 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2171 cpuctx->task_ctx = NULL;
2172 }
64ce3126 2173 }
0793a61d
TG
2174}
2175
0793a61d 2176/*
cdd6c482 2177 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2178 *
cdd6c482
IM
2179 * If event->ctx is a cloned context, callers must make sure that
2180 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2181 * remains valid. This is OK when called from perf_release since
2182 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2183 * When called from perf_event_exit_task, it's OK because the
c93f7669 2184 * context has been detached from its task.
0793a61d 2185 */
45a0e07a 2186static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2187{
a76a82a3
PZ
2188 struct perf_event_context *ctx = event->ctx;
2189
2190 lockdep_assert_held(&ctx->mutex);
0793a61d 2191
45a0e07a 2192 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
2193
2194 /*
2195 * The above event_function_call() can NO-OP when it hits
2196 * TASK_TOMBSTONE. In that case we must already have been detached
2197 * from the context (by perf_event_exit_event()) but the grouping
2198 * might still be in-tact.
2199 */
2200 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2201 if ((flags & DETACH_GROUP) &&
2202 (event->attach_state & PERF_ATTACH_GROUP)) {
2203 /*
2204 * Since in that case we cannot possibly be scheduled, simply
2205 * detach now.
2206 */
2207 raw_spin_lock_irq(&ctx->lock);
2208 perf_group_detach(event);
2209 raw_spin_unlock_irq(&ctx->lock);
2210 }
0793a61d
TG
2211}
2212
d859e29f 2213/*
cdd6c482 2214 * Cross CPU call to disable a performance event
d859e29f 2215 */
fae3fde6
PZ
2216static void __perf_event_disable(struct perf_event *event,
2217 struct perf_cpu_context *cpuctx,
2218 struct perf_event_context *ctx,
2219 void *info)
7b648018 2220{
fae3fde6
PZ
2221 if (event->state < PERF_EVENT_STATE_INACTIVE)
2222 return;
7b648018 2223
3c5c8711
PZ
2224 if (ctx->is_active & EVENT_TIME) {
2225 update_context_time(ctx);
2226 update_cgrp_time_from_event(event);
2227 }
2228
fae3fde6
PZ
2229 if (event == event->group_leader)
2230 group_sched_out(event, cpuctx, ctx);
2231 else
2232 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
2233
2234 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
2235}
2236
d859e29f 2237/*
788faab7 2238 * Disable an event.
c93f7669 2239 *
cdd6c482
IM
2240 * If event->ctx is a cloned context, callers must make sure that
2241 * every task struct that event->ctx->task could possibly point to
9f014e3a 2242 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2243 * perf_event_for_each_child or perf_event_for_each because they
2244 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2245 * goes to exit will block in perf_event_exit_event().
2246 *
cdd6c482 2247 * When called from perf_pending_event it's OK because event->ctx
c93f7669 2248 * is the current context on this CPU and preemption is disabled,
cdd6c482 2249 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2250 */
f63a8daa 2251static void _perf_event_disable(struct perf_event *event)
d859e29f 2252{
cdd6c482 2253 struct perf_event_context *ctx = event->ctx;
d859e29f 2254
e625cce1 2255 raw_spin_lock_irq(&ctx->lock);
7b648018 2256 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2257 raw_spin_unlock_irq(&ctx->lock);
7b648018 2258 return;
53cfbf59 2259 }
e625cce1 2260 raw_spin_unlock_irq(&ctx->lock);
7b648018 2261
fae3fde6
PZ
2262 event_function_call(event, __perf_event_disable, NULL);
2263}
2264
2265void perf_event_disable_local(struct perf_event *event)
2266{
2267 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2268}
f63a8daa
PZ
2269
2270/*
2271 * Strictly speaking kernel users cannot create groups and therefore this
2272 * interface does not need the perf_event_ctx_lock() magic.
2273 */
2274void perf_event_disable(struct perf_event *event)
2275{
2276 struct perf_event_context *ctx;
2277
2278 ctx = perf_event_ctx_lock(event);
2279 _perf_event_disable(event);
2280 perf_event_ctx_unlock(event, ctx);
2281}
dcfce4a0 2282EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2283
5aab90ce
JO
2284void perf_event_disable_inatomic(struct perf_event *event)
2285{
1d54ad94
PZ
2286 WRITE_ONCE(event->pending_disable, smp_processor_id());
2287 /* can fail, see perf_pending_event_disable() */
5aab90ce
JO
2288 irq_work_queue(&event->pending);
2289}
2290
e5d1367f 2291static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2292 struct perf_event_context *ctx)
e5d1367f
SE
2293{
2294 /*
2295 * use the correct time source for the time snapshot
2296 *
2297 * We could get by without this by leveraging the
2298 * fact that to get to this function, the caller
2299 * has most likely already called update_context_time()
2300 * and update_cgrp_time_xx() and thus both timestamp
2301 * are identical (or very close). Given that tstamp is,
2302 * already adjusted for cgroup, we could say that:
2303 * tstamp - ctx->timestamp
2304 * is equivalent to
2305 * tstamp - cgrp->timestamp.
2306 *
2307 * Then, in perf_output_read(), the calculation would
2308 * work with no changes because:
2309 * - event is guaranteed scheduled in
2310 * - no scheduled out in between
2311 * - thus the timestamp would be the same
2312 *
2313 * But this is a bit hairy.
2314 *
2315 * So instead, we have an explicit cgroup call to remain
2316 * within the time time source all along. We believe it
2317 * is cleaner and simpler to understand.
2318 */
2319 if (is_cgroup_event(event))
0d3d73aa 2320 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2321 else
0d3d73aa 2322 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2323}
2324
4fe757dd
PZ
2325#define MAX_INTERRUPTS (~0ULL)
2326
2327static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2328static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2329
235c7fc7 2330static int
9ffcfa6f 2331event_sched_in(struct perf_event *event,
235c7fc7 2332 struct perf_cpu_context *cpuctx,
6e37738a 2333 struct perf_event_context *ctx)
235c7fc7 2334{
44377277 2335 int ret = 0;
4158755d 2336
63342411
PZ
2337 lockdep_assert_held(&ctx->lock);
2338
cdd6c482 2339 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2340 return 0;
2341
95ff4ca2
AS
2342 WRITE_ONCE(event->oncpu, smp_processor_id());
2343 /*
0c1cbc18
PZ
2344 * Order event::oncpu write to happen before the ACTIVE state is
2345 * visible. This allows perf_event_{stop,read}() to observe the correct
2346 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2347 */
2348 smp_wmb();
0d3d73aa 2349 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2350
2351 /*
2352 * Unthrottle events, since we scheduled we might have missed several
2353 * ticks already, also for a heavily scheduling task there is little
2354 * guarantee it'll get a tick in a timely manner.
2355 */
2356 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2357 perf_log_throttle(event, 1);
2358 event->hw.interrupts = 0;
2359 }
2360
44377277
AS
2361 perf_pmu_disable(event->pmu);
2362
0d3d73aa 2363 perf_set_shadow_time(event, ctx);
72f669c0 2364
ec0d7729
AS
2365 perf_log_itrace_start(event);
2366
a4eaf7f1 2367 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2368 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2369 event->oncpu = -1;
44377277
AS
2370 ret = -EAGAIN;
2371 goto out;
235c7fc7
IM
2372 }
2373
cdd6c482 2374 if (!is_software_event(event))
3b6f9e5c 2375 cpuctx->active_oncpu++;
2fde4f94
MR
2376 if (!ctx->nr_active++)
2377 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2378 if (event->attr.freq && event->attr.sample_freq)
2379 ctx->nr_freq++;
235c7fc7 2380
cdd6c482 2381 if (event->attr.exclusive)
3b6f9e5c
PM
2382 cpuctx->exclusive = 1;
2383
44377277
AS
2384out:
2385 perf_pmu_enable(event->pmu);
2386
2387 return ret;
235c7fc7
IM
2388}
2389
6751b71e 2390static int
cdd6c482 2391group_sched_in(struct perf_event *group_event,
6751b71e 2392 struct perf_cpu_context *cpuctx,
6e37738a 2393 struct perf_event_context *ctx)
6751b71e 2394{
6bde9b6c 2395 struct perf_event *event, *partial_group = NULL;
4a234593 2396 struct pmu *pmu = ctx->pmu;
6751b71e 2397
cdd6c482 2398 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2399 return 0;
2400
fbbe0701 2401 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2402
9ffcfa6f 2403 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2404 pmu->cancel_txn(pmu);
272325c4 2405 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2406 return -EAGAIN;
90151c35 2407 }
6751b71e
PM
2408
2409 /*
2410 * Schedule in siblings as one group (if any):
2411 */
edb39592 2412 for_each_sibling_event(event, group_event) {
9ffcfa6f 2413 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2414 partial_group = event;
6751b71e
PM
2415 goto group_error;
2416 }
2417 }
2418
9ffcfa6f 2419 if (!pmu->commit_txn(pmu))
6e85158c 2420 return 0;
9ffcfa6f 2421
6751b71e
PM
2422group_error:
2423 /*
2424 * Groups can be scheduled in as one unit only, so undo any
2425 * partial group before returning:
0d3d73aa 2426 * The events up to the failed event are scheduled out normally.
6751b71e 2427 */
edb39592 2428 for_each_sibling_event(event, group_event) {
cdd6c482 2429 if (event == partial_group)
0d3d73aa 2430 break;
d7842da4 2431
0d3d73aa 2432 event_sched_out(event, cpuctx, ctx);
6751b71e 2433 }
9ffcfa6f 2434 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2435
ad5133b7 2436 pmu->cancel_txn(pmu);
90151c35 2437
272325c4 2438 perf_mux_hrtimer_restart(cpuctx);
9e630205 2439
6751b71e
PM
2440 return -EAGAIN;
2441}
2442
3b6f9e5c 2443/*
cdd6c482 2444 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2445 */
cdd6c482 2446static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2447 struct perf_cpu_context *cpuctx,
2448 int can_add_hw)
2449{
2450 /*
cdd6c482 2451 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2452 */
4ff6a8de 2453 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2454 return 1;
2455 /*
2456 * If an exclusive group is already on, no other hardware
cdd6c482 2457 * events can go on.
3b6f9e5c
PM
2458 */
2459 if (cpuctx->exclusive)
2460 return 0;
2461 /*
2462 * If this group is exclusive and there are already
cdd6c482 2463 * events on the CPU, it can't go on.
3b6f9e5c 2464 */
cdd6c482 2465 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2466 return 0;
2467 /*
2468 * Otherwise, try to add it if all previous groups were able
2469 * to go on.
2470 */
2471 return can_add_hw;
2472}
2473
cdd6c482
IM
2474static void add_event_to_ctx(struct perf_event *event,
2475 struct perf_event_context *ctx)
53cfbf59 2476{
cdd6c482 2477 list_add_event(event, ctx);
8a49542c 2478 perf_group_attach(event);
53cfbf59
PM
2479}
2480
bd2afa49
PZ
2481static void ctx_sched_out(struct perf_event_context *ctx,
2482 struct perf_cpu_context *cpuctx,
2483 enum event_type_t event_type);
2c29ef0f
PZ
2484static void
2485ctx_sched_in(struct perf_event_context *ctx,
2486 struct perf_cpu_context *cpuctx,
2487 enum event_type_t event_type,
2488 struct task_struct *task);
fe4b04fa 2489
bd2afa49 2490static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2491 struct perf_event_context *ctx,
2492 enum event_type_t event_type)
bd2afa49
PZ
2493{
2494 if (!cpuctx->task_ctx)
2495 return;
2496
2497 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2498 return;
2499
487f05e1 2500 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2501}
2502
dce5855b
PZ
2503static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2504 struct perf_event_context *ctx,
2505 struct task_struct *task)
2506{
2507 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2508 if (ctx)
2509 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2510 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2511 if (ctx)
2512 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2513}
2514
487f05e1
AS
2515/*
2516 * We want to maintain the following priority of scheduling:
2517 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2518 * - task pinned (EVENT_PINNED)
2519 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2520 * - task flexible (EVENT_FLEXIBLE).
2521 *
2522 * In order to avoid unscheduling and scheduling back in everything every
2523 * time an event is added, only do it for the groups of equal priority and
2524 * below.
2525 *
2526 * This can be called after a batch operation on task events, in which case
2527 * event_type is a bit mask of the types of events involved. For CPU events,
2528 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2529 */
3e349507 2530static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2531 struct perf_event_context *task_ctx,
2532 enum event_type_t event_type)
0017960f 2533{
bd903afe 2534 enum event_type_t ctx_event_type;
487f05e1
AS
2535 bool cpu_event = !!(event_type & EVENT_CPU);
2536
2537 /*
2538 * If pinned groups are involved, flexible groups also need to be
2539 * scheduled out.
2540 */
2541 if (event_type & EVENT_PINNED)
2542 event_type |= EVENT_FLEXIBLE;
2543
bd903afe
SL
2544 ctx_event_type = event_type & EVENT_ALL;
2545
3e349507
PZ
2546 perf_pmu_disable(cpuctx->ctx.pmu);
2547 if (task_ctx)
487f05e1
AS
2548 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2549
2550 /*
2551 * Decide which cpu ctx groups to schedule out based on the types
2552 * of events that caused rescheduling:
2553 * - EVENT_CPU: schedule out corresponding groups;
2554 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2555 * - otherwise, do nothing more.
2556 */
2557 if (cpu_event)
2558 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2559 else if (ctx_event_type & EVENT_PINNED)
2560 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2561
3e349507
PZ
2562 perf_event_sched_in(cpuctx, task_ctx, current);
2563 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2564}
2565
c68d224e
SE
2566void perf_pmu_resched(struct pmu *pmu)
2567{
2568 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2569 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2570
2571 perf_ctx_lock(cpuctx, task_ctx);
2572 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2573 perf_ctx_unlock(cpuctx, task_ctx);
2574}
2575
0793a61d 2576/*
cdd6c482 2577 * Cross CPU call to install and enable a performance event
682076ae 2578 *
a096309b
PZ
2579 * Very similar to remote_function() + event_function() but cannot assume that
2580 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2581 */
fe4b04fa 2582static int __perf_install_in_context(void *info)
0793a61d 2583{
a096309b
PZ
2584 struct perf_event *event = info;
2585 struct perf_event_context *ctx = event->ctx;
108b02cf 2586 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2587 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2588 bool reprogram = true;
a096309b 2589 int ret = 0;
0793a61d 2590
63b6da39 2591 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2592 if (ctx->task) {
b58f6b0d
PZ
2593 raw_spin_lock(&ctx->lock);
2594 task_ctx = ctx;
a096309b 2595
63cae12b 2596 reprogram = (ctx->task == current);
b58f6b0d 2597
39a43640 2598 /*
63cae12b
PZ
2599 * If the task is running, it must be running on this CPU,
2600 * otherwise we cannot reprogram things.
2601 *
2602 * If its not running, we don't care, ctx->lock will
2603 * serialize against it becoming runnable.
39a43640 2604 */
63cae12b
PZ
2605 if (task_curr(ctx->task) && !reprogram) {
2606 ret = -ESRCH;
2607 goto unlock;
2608 }
a096309b 2609
63cae12b 2610 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2611 } else if (task_ctx) {
2612 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2613 }
b58f6b0d 2614
33801b94 2615#ifdef CONFIG_CGROUP_PERF
2616 if (is_cgroup_event(event)) {
2617 /*
2618 * If the current cgroup doesn't match the event's
2619 * cgroup, we should not try to schedule it.
2620 */
2621 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2622 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2623 event->cgrp->css.cgroup);
2624 }
2625#endif
2626
63cae12b 2627 if (reprogram) {
a096309b
PZ
2628 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2629 add_event_to_ctx(event, ctx);
487f05e1 2630 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2631 } else {
2632 add_event_to_ctx(event, ctx);
2633 }
2634
63b6da39 2635unlock:
2c29ef0f 2636 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2637
a096309b 2638 return ret;
0793a61d
TG
2639}
2640
8a58ddae
AS
2641static bool exclusive_event_installable(struct perf_event *event,
2642 struct perf_event_context *ctx);
2643
0793a61d 2644/*
a096309b
PZ
2645 * Attach a performance event to a context.
2646 *
2647 * Very similar to event_function_call, see comment there.
0793a61d
TG
2648 */
2649static void
cdd6c482
IM
2650perf_install_in_context(struct perf_event_context *ctx,
2651 struct perf_event *event,
0793a61d
TG
2652 int cpu)
2653{
a096309b 2654 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2655
fe4b04fa
PZ
2656 lockdep_assert_held(&ctx->mutex);
2657
8a58ddae
AS
2658 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2659
0cda4c02
YZ
2660 if (event->cpu != -1)
2661 event->cpu = cpu;
c3f00c70 2662
0b8f1e2e
PZ
2663 /*
2664 * Ensures that if we can observe event->ctx, both the event and ctx
2665 * will be 'complete'. See perf_iterate_sb_cpu().
2666 */
2667 smp_store_release(&event->ctx, ctx);
2668
a096309b
PZ
2669 if (!task) {
2670 cpu_function_call(cpu, __perf_install_in_context, event);
2671 return;
2672 }
2673
2674 /*
2675 * Should not happen, we validate the ctx is still alive before calling.
2676 */
2677 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2678 return;
2679
39a43640
PZ
2680 /*
2681 * Installing events is tricky because we cannot rely on ctx->is_active
2682 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2683 *
2684 * Instead we use task_curr(), which tells us if the task is running.
2685 * However, since we use task_curr() outside of rq::lock, we can race
2686 * against the actual state. This means the result can be wrong.
2687 *
2688 * If we get a false positive, we retry, this is harmless.
2689 *
2690 * If we get a false negative, things are complicated. If we are after
2691 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2692 * value must be correct. If we're before, it doesn't matter since
2693 * perf_event_context_sched_in() will program the counter.
2694 *
2695 * However, this hinges on the remote context switch having observed
2696 * our task->perf_event_ctxp[] store, such that it will in fact take
2697 * ctx::lock in perf_event_context_sched_in().
2698 *
2699 * We do this by task_function_call(), if the IPI fails to hit the task
2700 * we know any future context switch of task must see the
2701 * perf_event_ctpx[] store.
39a43640 2702 */
63cae12b 2703
63b6da39 2704 /*
63cae12b
PZ
2705 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2706 * task_cpu() load, such that if the IPI then does not find the task
2707 * running, a future context switch of that task must observe the
2708 * store.
63b6da39 2709 */
63cae12b
PZ
2710 smp_mb();
2711again:
2712 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2713 return;
2714
2715 raw_spin_lock_irq(&ctx->lock);
2716 task = ctx->task;
84c4e620 2717 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2718 /*
2719 * Cannot happen because we already checked above (which also
2720 * cannot happen), and we hold ctx->mutex, which serializes us
2721 * against perf_event_exit_task_context().
2722 */
63b6da39
PZ
2723 raw_spin_unlock_irq(&ctx->lock);
2724 return;
2725 }
39a43640 2726 /*
63cae12b
PZ
2727 * If the task is not running, ctx->lock will avoid it becoming so,
2728 * thus we can safely install the event.
39a43640 2729 */
63cae12b
PZ
2730 if (task_curr(task)) {
2731 raw_spin_unlock_irq(&ctx->lock);
2732 goto again;
2733 }
2734 add_event_to_ctx(event, ctx);
2735 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2736}
2737
d859e29f 2738/*
cdd6c482 2739 * Cross CPU call to enable a performance event
d859e29f 2740 */
fae3fde6
PZ
2741static void __perf_event_enable(struct perf_event *event,
2742 struct perf_cpu_context *cpuctx,
2743 struct perf_event_context *ctx,
2744 void *info)
04289bb9 2745{
cdd6c482 2746 struct perf_event *leader = event->group_leader;
fae3fde6 2747 struct perf_event_context *task_ctx;
04289bb9 2748
6e801e01
PZ
2749 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2750 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2751 return;
3cbed429 2752
bd2afa49
PZ
2753 if (ctx->is_active)
2754 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2755
0d3d73aa 2756 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2757
fae3fde6
PZ
2758 if (!ctx->is_active)
2759 return;
2760
e5d1367f 2761 if (!event_filter_match(event)) {
bd2afa49 2762 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2763 return;
e5d1367f 2764 }
f4c4176f 2765
04289bb9 2766 /*
cdd6c482 2767 * If the event is in a group and isn't the group leader,
d859e29f 2768 * then don't put it on unless the group is on.
04289bb9 2769 */
bd2afa49
PZ
2770 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2771 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2772 return;
bd2afa49 2773 }
fe4b04fa 2774
fae3fde6
PZ
2775 task_ctx = cpuctx->task_ctx;
2776 if (ctx->task)
2777 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2778
487f05e1 2779 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2780}
2781
d859e29f 2782/*
788faab7 2783 * Enable an event.
c93f7669 2784 *
cdd6c482
IM
2785 * If event->ctx is a cloned context, callers must make sure that
2786 * every task struct that event->ctx->task could possibly point to
c93f7669 2787 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2788 * perf_event_for_each_child or perf_event_for_each as described
2789 * for perf_event_disable.
d859e29f 2790 */
f63a8daa 2791static void _perf_event_enable(struct perf_event *event)
d859e29f 2792{
cdd6c482 2793 struct perf_event_context *ctx = event->ctx;
d859e29f 2794
7b648018 2795 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2796 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2797 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2798 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2799 return;
2800 }
2801
d859e29f 2802 /*
cdd6c482 2803 * If the event is in error state, clear that first.
7b648018
PZ
2804 *
2805 * That way, if we see the event in error state below, we know that it
2806 * has gone back into error state, as distinct from the task having
2807 * been scheduled away before the cross-call arrived.
d859e29f 2808 */
cdd6c482
IM
2809 if (event->state == PERF_EVENT_STATE_ERROR)
2810 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2811 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2812
fae3fde6 2813 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2814}
f63a8daa
PZ
2815
2816/*
2817 * See perf_event_disable();
2818 */
2819void perf_event_enable(struct perf_event *event)
2820{
2821 struct perf_event_context *ctx;
2822
2823 ctx = perf_event_ctx_lock(event);
2824 _perf_event_enable(event);
2825 perf_event_ctx_unlock(event, ctx);
2826}
dcfce4a0 2827EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2828
375637bc
AS
2829struct stop_event_data {
2830 struct perf_event *event;
2831 unsigned int restart;
2832};
2833
95ff4ca2
AS
2834static int __perf_event_stop(void *info)
2835{
375637bc
AS
2836 struct stop_event_data *sd = info;
2837 struct perf_event *event = sd->event;
95ff4ca2 2838
375637bc 2839 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2840 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2841 return 0;
2842
2843 /* matches smp_wmb() in event_sched_in() */
2844 smp_rmb();
2845
2846 /*
2847 * There is a window with interrupts enabled before we get here,
2848 * so we need to check again lest we try to stop another CPU's event.
2849 */
2850 if (READ_ONCE(event->oncpu) != smp_processor_id())
2851 return -EAGAIN;
2852
2853 event->pmu->stop(event, PERF_EF_UPDATE);
2854
375637bc
AS
2855 /*
2856 * May race with the actual stop (through perf_pmu_output_stop()),
2857 * but it is only used for events with AUX ring buffer, and such
2858 * events will refuse to restart because of rb::aux_mmap_count==0,
2859 * see comments in perf_aux_output_begin().
2860 *
788faab7 2861 * Since this is happening on an event-local CPU, no trace is lost
375637bc
AS
2862 * while restarting.
2863 */
2864 if (sd->restart)
c9bbdd48 2865 event->pmu->start(event, 0);
375637bc 2866
95ff4ca2
AS
2867 return 0;
2868}
2869
767ae086 2870static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2871{
2872 struct stop_event_data sd = {
2873 .event = event,
767ae086 2874 .restart = restart,
375637bc
AS
2875 };
2876 int ret = 0;
2877
2878 do {
2879 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2880 return 0;
2881
2882 /* matches smp_wmb() in event_sched_in() */
2883 smp_rmb();
2884
2885 /*
2886 * We only want to restart ACTIVE events, so if the event goes
2887 * inactive here (event->oncpu==-1), there's nothing more to do;
2888 * fall through with ret==-ENXIO.
2889 */
2890 ret = cpu_function_call(READ_ONCE(event->oncpu),
2891 __perf_event_stop, &sd);
2892 } while (ret == -EAGAIN);
2893
2894 return ret;
2895}
2896
2897/*
2898 * In order to contain the amount of racy and tricky in the address filter
2899 * configuration management, it is a two part process:
2900 *
2901 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2902 * we update the addresses of corresponding vmas in
c60f83b8 2903 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
375637bc
AS
2904 * (p2) when an event is scheduled in (pmu::add), it calls
2905 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2906 * if the generation has changed since the previous call.
2907 *
2908 * If (p1) happens while the event is active, we restart it to force (p2).
2909 *
2910 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2911 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2912 * ioctl;
2913 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2914 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2915 * for reading;
2916 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2917 * of exec.
2918 */
2919void perf_event_addr_filters_sync(struct perf_event *event)
2920{
2921 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2922
2923 if (!has_addr_filter(event))
2924 return;
2925
2926 raw_spin_lock(&ifh->lock);
2927 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2928 event->pmu->addr_filters_sync(event);
2929 event->hw.addr_filters_gen = event->addr_filters_gen;
2930 }
2931 raw_spin_unlock(&ifh->lock);
2932}
2933EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2934
f63a8daa 2935static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2936{
2023b359 2937 /*
cdd6c482 2938 * not supported on inherited events
2023b359 2939 */
2e939d1d 2940 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2941 return -EINVAL;
2942
cdd6c482 2943 atomic_add(refresh, &event->event_limit);
f63a8daa 2944 _perf_event_enable(event);
2023b359
PZ
2945
2946 return 0;
79f14641 2947}
f63a8daa
PZ
2948
2949/*
2950 * See perf_event_disable()
2951 */
2952int perf_event_refresh(struct perf_event *event, int refresh)
2953{
2954 struct perf_event_context *ctx;
2955 int ret;
2956
2957 ctx = perf_event_ctx_lock(event);
2958 ret = _perf_event_refresh(event, refresh);
2959 perf_event_ctx_unlock(event, ctx);
2960
2961 return ret;
2962}
26ca5c11 2963EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2964
32ff77e8
MC
2965static int perf_event_modify_breakpoint(struct perf_event *bp,
2966 struct perf_event_attr *attr)
2967{
2968 int err;
2969
2970 _perf_event_disable(bp);
2971
2972 err = modify_user_hw_breakpoint_check(bp, attr, true);
32ff77e8 2973
bf06278c 2974 if (!bp->attr.disabled)
32ff77e8 2975 _perf_event_enable(bp);
bf06278c
JO
2976
2977 return err;
32ff77e8
MC
2978}
2979
2980static int perf_event_modify_attr(struct perf_event *event,
2981 struct perf_event_attr *attr)
2982{
2983 if (event->attr.type != attr->type)
2984 return -EINVAL;
2985
2986 switch (event->attr.type) {
2987 case PERF_TYPE_BREAKPOINT:
2988 return perf_event_modify_breakpoint(event, attr);
2989 default:
2990 /* Place holder for future additions. */
2991 return -EOPNOTSUPP;
2992 }
2993}
2994
5b0311e1
FW
2995static void ctx_sched_out(struct perf_event_context *ctx,
2996 struct perf_cpu_context *cpuctx,
2997 enum event_type_t event_type)
235c7fc7 2998{
6668128a 2999 struct perf_event *event, *tmp;
db24d33e 3000 int is_active = ctx->is_active;
235c7fc7 3001
c994d613 3002 lockdep_assert_held(&ctx->lock);
235c7fc7 3003
39a43640
PZ
3004 if (likely(!ctx->nr_events)) {
3005 /*
3006 * See __perf_remove_from_context().
3007 */
3008 WARN_ON_ONCE(ctx->is_active);
3009 if (ctx->task)
3010 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 3011 return;
39a43640
PZ
3012 }
3013
db24d33e 3014 ctx->is_active &= ~event_type;
3cbaa590
PZ
3015 if (!(ctx->is_active & EVENT_ALL))
3016 ctx->is_active = 0;
3017
63e30d3e
PZ
3018 if (ctx->task) {
3019 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3020 if (!ctx->is_active)
3021 cpuctx->task_ctx = NULL;
3022 }
facc4307 3023
8fdc6539
PZ
3024 /*
3025 * Always update time if it was set; not only when it changes.
3026 * Otherwise we can 'forget' to update time for any but the last
3027 * context we sched out. For example:
3028 *
3029 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3030 * ctx_sched_out(.event_type = EVENT_PINNED)
3031 *
3032 * would only update time for the pinned events.
3033 */
3cbaa590
PZ
3034 if (is_active & EVENT_TIME) {
3035 /* update (and stop) ctx time */
3036 update_context_time(ctx);
3037 update_cgrp_time_from_cpuctx(cpuctx);
3038 }
3039
8fdc6539
PZ
3040 is_active ^= ctx->is_active; /* changed bits */
3041
3cbaa590 3042 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 3043 return;
5b0311e1 3044
fd7d5517
IR
3045 /*
3046 * If we had been multiplexing, no rotations are necessary, now no events
3047 * are active.
3048 */
3049 ctx->rotate_necessary = 0;
3050
075e0b00 3051 perf_pmu_disable(ctx->pmu);
3cbaa590 3052 if (is_active & EVENT_PINNED) {
6668128a 3053 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
889ff015 3054 group_sched_out(event, cpuctx, ctx);
9ed6060d 3055 }
889ff015 3056
3cbaa590 3057 if (is_active & EVENT_FLEXIBLE) {
6668128a 3058 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
8c9ed8e1 3059 group_sched_out(event, cpuctx, ctx);
9ed6060d 3060 }
1b9a644f 3061 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
3062}
3063
564c2b21 3064/*
5a3126d4
PZ
3065 * Test whether two contexts are equivalent, i.e. whether they have both been
3066 * cloned from the same version of the same context.
3067 *
3068 * Equivalence is measured using a generation number in the context that is
3069 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3070 * and list_del_event().
564c2b21 3071 */
cdd6c482
IM
3072static int context_equiv(struct perf_event_context *ctx1,
3073 struct perf_event_context *ctx2)
564c2b21 3074{
211de6eb
PZ
3075 lockdep_assert_held(&ctx1->lock);
3076 lockdep_assert_held(&ctx2->lock);
3077
5a3126d4
PZ
3078 /* Pinning disables the swap optimization */
3079 if (ctx1->pin_count || ctx2->pin_count)
3080 return 0;
3081
3082 /* If ctx1 is the parent of ctx2 */
3083 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3084 return 1;
3085
3086 /* If ctx2 is the parent of ctx1 */
3087 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3088 return 1;
3089
3090 /*
3091 * If ctx1 and ctx2 have the same parent; we flatten the parent
3092 * hierarchy, see perf_event_init_context().
3093 */
3094 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3095 ctx1->parent_gen == ctx2->parent_gen)
3096 return 1;
3097
3098 /* Unmatched */
3099 return 0;
564c2b21
PM
3100}
3101
cdd6c482
IM
3102static void __perf_event_sync_stat(struct perf_event *event,
3103 struct perf_event *next_event)
bfbd3381
PZ
3104{
3105 u64 value;
3106
cdd6c482 3107 if (!event->attr.inherit_stat)
bfbd3381
PZ
3108 return;
3109
3110 /*
cdd6c482 3111 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3112 * because we're in the middle of a context switch and have IRQs
3113 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3114 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3115 * don't need to use it.
3116 */
0d3d73aa 3117 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3118 event->pmu->read(event);
bfbd3381 3119
0d3d73aa 3120 perf_event_update_time(event);
bfbd3381
PZ
3121
3122 /*
cdd6c482 3123 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3124 * values when we flip the contexts.
3125 */
e7850595
PZ
3126 value = local64_read(&next_event->count);
3127 value = local64_xchg(&event->count, value);
3128 local64_set(&next_event->count, value);
bfbd3381 3129
cdd6c482
IM
3130 swap(event->total_time_enabled, next_event->total_time_enabled);
3131 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3132
bfbd3381 3133 /*
19d2e755 3134 * Since we swizzled the values, update the user visible data too.
bfbd3381 3135 */
cdd6c482
IM
3136 perf_event_update_userpage(event);
3137 perf_event_update_userpage(next_event);
bfbd3381
PZ
3138}
3139
cdd6c482
IM
3140static void perf_event_sync_stat(struct perf_event_context *ctx,
3141 struct perf_event_context *next_ctx)
bfbd3381 3142{
cdd6c482 3143 struct perf_event *event, *next_event;
bfbd3381
PZ
3144
3145 if (!ctx->nr_stat)
3146 return;
3147
02ffdbc8
PZ
3148 update_context_time(ctx);
3149
cdd6c482
IM
3150 event = list_first_entry(&ctx->event_list,
3151 struct perf_event, event_entry);
bfbd3381 3152
cdd6c482
IM
3153 next_event = list_first_entry(&next_ctx->event_list,
3154 struct perf_event, event_entry);
bfbd3381 3155
cdd6c482
IM
3156 while (&event->event_entry != &ctx->event_list &&
3157 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3158
cdd6c482 3159 __perf_event_sync_stat(event, next_event);
bfbd3381 3160
cdd6c482
IM
3161 event = list_next_entry(event, event_entry);
3162 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3163 }
3164}
3165
fe4b04fa
PZ
3166static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3167 struct task_struct *next)
0793a61d 3168{
8dc85d54 3169 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 3170 struct perf_event_context *next_ctx;
5a3126d4 3171 struct perf_event_context *parent, *next_parent;
108b02cf 3172 struct perf_cpu_context *cpuctx;
c93f7669 3173 int do_switch = 1;
0793a61d 3174
108b02cf
PZ
3175 if (likely(!ctx))
3176 return;
10989fb2 3177
108b02cf
PZ
3178 cpuctx = __get_cpu_context(ctx);
3179 if (!cpuctx->task_ctx)
0793a61d
TG
3180 return;
3181
c93f7669 3182 rcu_read_lock();
8dc85d54 3183 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
3184 if (!next_ctx)
3185 goto unlock;
3186
3187 parent = rcu_dereference(ctx->parent_ctx);
3188 next_parent = rcu_dereference(next_ctx->parent_ctx);
3189
3190 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3191 if (!parent && !next_parent)
5a3126d4
PZ
3192 goto unlock;
3193
3194 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3195 /*
3196 * Looks like the two contexts are clones, so we might be
3197 * able to optimize the context switch. We lock both
3198 * contexts and check that they are clones under the
3199 * lock (including re-checking that neither has been
3200 * uncloned in the meantime). It doesn't matter which
3201 * order we take the locks because no other cpu could
3202 * be trying to lock both of these tasks.
3203 */
e625cce1
TG
3204 raw_spin_lock(&ctx->lock);
3205 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3206 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
3207 WRITE_ONCE(ctx->task, next);
3208 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
3209
3210 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3211
63b6da39
PZ
3212 /*
3213 * RCU_INIT_POINTER here is safe because we've not
3214 * modified the ctx and the above modification of
3215 * ctx->task and ctx->task_ctx_data are immaterial
3216 * since those values are always verified under
3217 * ctx->lock which we're now holding.
3218 */
3219 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3220 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3221
c93f7669 3222 do_switch = 0;
bfbd3381 3223
cdd6c482 3224 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3225 }
e625cce1
TG
3226 raw_spin_unlock(&next_ctx->lock);
3227 raw_spin_unlock(&ctx->lock);
564c2b21 3228 }
5a3126d4 3229unlock:
c93f7669 3230 rcu_read_unlock();
564c2b21 3231
c93f7669 3232 if (do_switch) {
facc4307 3233 raw_spin_lock(&ctx->lock);
487f05e1 3234 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 3235 raw_spin_unlock(&ctx->lock);
c93f7669 3236 }
0793a61d
TG
3237}
3238
e48c1788
PZ
3239static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3240
ba532500
YZ
3241void perf_sched_cb_dec(struct pmu *pmu)
3242{
e48c1788
PZ
3243 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3244
ba532500 3245 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3246
3247 if (!--cpuctx->sched_cb_usage)
3248 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3249}
3250
e48c1788 3251
ba532500
YZ
3252void perf_sched_cb_inc(struct pmu *pmu)
3253{
e48c1788
PZ
3254 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3255
3256 if (!cpuctx->sched_cb_usage++)
3257 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3258
ba532500
YZ
3259 this_cpu_inc(perf_sched_cb_usages);
3260}
3261
3262/*
3263 * This function provides the context switch callback to the lower code
3264 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3265 *
3266 * This callback is relevant even to per-cpu events; for example multi event
3267 * PEBS requires this to provide PID/TID information. This requires we flush
3268 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3269 */
3270static void perf_pmu_sched_task(struct task_struct *prev,
3271 struct task_struct *next,
3272 bool sched_in)
3273{
3274 struct perf_cpu_context *cpuctx;
3275 struct pmu *pmu;
ba532500
YZ
3276
3277 if (prev == next)
3278 return;
3279
e48c1788 3280 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3281 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3282
e48c1788
PZ
3283 if (WARN_ON_ONCE(!pmu->sched_task))
3284 continue;
ba532500 3285
e48c1788
PZ
3286 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3287 perf_pmu_disable(pmu);
ba532500 3288
e48c1788 3289 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3290
e48c1788
PZ
3291 perf_pmu_enable(pmu);
3292 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3293 }
ba532500
YZ
3294}
3295
45ac1403
AH
3296static void perf_event_switch(struct task_struct *task,
3297 struct task_struct *next_prev, bool sched_in);
3298
8dc85d54
PZ
3299#define for_each_task_context_nr(ctxn) \
3300 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3301
3302/*
3303 * Called from scheduler to remove the events of the current task,
3304 * with interrupts disabled.
3305 *
3306 * We stop each event and update the event value in event->count.
3307 *
3308 * This does not protect us against NMI, but disable()
3309 * sets the disabled bit in the control field of event _before_
3310 * accessing the event control register. If a NMI hits, then it will
3311 * not restart the event.
3312 */
ab0cce56
JO
3313void __perf_event_task_sched_out(struct task_struct *task,
3314 struct task_struct *next)
8dc85d54
PZ
3315{
3316 int ctxn;
3317
ba532500
YZ
3318 if (__this_cpu_read(perf_sched_cb_usages))
3319 perf_pmu_sched_task(task, next, false);
3320
45ac1403
AH
3321 if (atomic_read(&nr_switch_events))
3322 perf_event_switch(task, next, false);
3323
8dc85d54
PZ
3324 for_each_task_context_nr(ctxn)
3325 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3326
3327 /*
3328 * if cgroup events exist on this CPU, then we need
3329 * to check if we have to switch out PMU state.
3330 * cgroup event are system-wide mode only
3331 */
4a32fea9 3332 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3333 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3334}
3335
5b0311e1
FW
3336/*
3337 * Called with IRQs disabled
3338 */
3339static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3340 enum event_type_t event_type)
3341{
3342 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3343}
3344
1cac7b1a
PZ
3345static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3346 int (*func)(struct perf_event *, void *), void *data)
0793a61d 3347{
1cac7b1a
PZ
3348 struct perf_event **evt, *evt1, *evt2;
3349 int ret;
8e1a2031 3350
1cac7b1a
PZ
3351 evt1 = perf_event_groups_first(groups, -1);
3352 evt2 = perf_event_groups_first(groups, cpu);
3353
3354 while (evt1 || evt2) {
3355 if (evt1 && evt2) {
3356 if (evt1->group_index < evt2->group_index)
3357 evt = &evt1;
3358 else
3359 evt = &evt2;
3360 } else if (evt1) {
3361 evt = &evt1;
3362 } else {
3363 evt = &evt2;
8e1a2031 3364 }
1cac7b1a
PZ
3365
3366 ret = func(*evt, data);
3367 if (ret)
3368 return ret;
3369
3370 *evt = perf_event_groups_next(*evt);
8e1a2031 3371 }
0793a61d 3372
1cac7b1a
PZ
3373 return 0;
3374}
3375
3376struct sched_in_data {
3377 struct perf_event_context *ctx;
3378 struct perf_cpu_context *cpuctx;
3379 int can_add_hw;
3380};
3381
3382static int pinned_sched_in(struct perf_event *event, void *data)
3383{
3384 struct sched_in_data *sid = data;
3385
3386 if (event->state <= PERF_EVENT_STATE_OFF)
3387 return 0;
3388
3389 if (!event_filter_match(event))
3390 return 0;
3391
6668128a
PZ
3392 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3393 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3394 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3395 }
1cac7b1a
PZ
3396
3397 /*
3398 * If this pinned group hasn't been scheduled,
3399 * put it in error state.
3400 */
3401 if (event->state == PERF_EVENT_STATE_INACTIVE)
3402 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3403
3404 return 0;
3405}
3406
3407static int flexible_sched_in(struct perf_event *event, void *data)
3408{
3409 struct sched_in_data *sid = data;
3410
3411 if (event->state <= PERF_EVENT_STATE_OFF)
3412 return 0;
3413
3414 if (!event_filter_match(event))
3415 return 0;
3416
3417 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
fd7d5517
IR
3418 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3419 if (ret) {
1cac7b1a 3420 sid->can_add_hw = 0;
fd7d5517
IR
3421 sid->ctx->rotate_necessary = 1;
3422 return 0;
3423 }
3424 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3b6f9e5c 3425 }
1cac7b1a
PZ
3426
3427 return 0;
5b0311e1
FW
3428}
3429
3430static void
1cac7b1a
PZ
3431ctx_pinned_sched_in(struct perf_event_context *ctx,
3432 struct perf_cpu_context *cpuctx)
5b0311e1 3433{
1cac7b1a
PZ
3434 struct sched_in_data sid = {
3435 .ctx = ctx,
3436 .cpuctx = cpuctx,
3437 .can_add_hw = 1,
3438 };
3b6f9e5c 3439
1cac7b1a
PZ
3440 visit_groups_merge(&ctx->pinned_groups,
3441 smp_processor_id(),
3442 pinned_sched_in, &sid);
3443}
8e1a2031 3444
1cac7b1a
PZ
3445static void
3446ctx_flexible_sched_in(struct perf_event_context *ctx,
3447 struct perf_cpu_context *cpuctx)
3448{
3449 struct sched_in_data sid = {
3450 .ctx = ctx,
3451 .cpuctx = cpuctx,
3452 .can_add_hw = 1,
3453 };
0793a61d 3454
1cac7b1a
PZ
3455 visit_groups_merge(&ctx->flexible_groups,
3456 smp_processor_id(),
3457 flexible_sched_in, &sid);
5b0311e1
FW
3458}
3459
3460static void
3461ctx_sched_in(struct perf_event_context *ctx,
3462 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3463 enum event_type_t event_type,
3464 struct task_struct *task)
5b0311e1 3465{
db24d33e 3466 int is_active = ctx->is_active;
c994d613
PZ
3467 u64 now;
3468
3469 lockdep_assert_held(&ctx->lock);
e5d1367f 3470
5b0311e1 3471 if (likely(!ctx->nr_events))
facc4307 3472 return;
5b0311e1 3473
3cbaa590 3474 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3475 if (ctx->task) {
3476 if (!is_active)
3477 cpuctx->task_ctx = ctx;
3478 else
3479 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3480 }
3481
3cbaa590
PZ
3482 is_active ^= ctx->is_active; /* changed bits */
3483
3484 if (is_active & EVENT_TIME) {
3485 /* start ctx time */
3486 now = perf_clock();
3487 ctx->timestamp = now;
3488 perf_cgroup_set_timestamp(task, ctx);
3489 }
3490
5b0311e1
FW
3491 /*
3492 * First go through the list and put on any pinned groups
3493 * in order to give them the best chance of going on.
3494 */
3cbaa590 3495 if (is_active & EVENT_PINNED)
6e37738a 3496 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3497
3498 /* Then walk through the lower prio flexible groups */
3cbaa590 3499 if (is_active & EVENT_FLEXIBLE)
6e37738a 3500 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3501}
3502
329c0e01 3503static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3504 enum event_type_t event_type,
3505 struct task_struct *task)
329c0e01
FW
3506{
3507 struct perf_event_context *ctx = &cpuctx->ctx;
3508
e5d1367f 3509 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3510}
3511
e5d1367f
SE
3512static void perf_event_context_sched_in(struct perf_event_context *ctx,
3513 struct task_struct *task)
235c7fc7 3514{
108b02cf 3515 struct perf_cpu_context *cpuctx;
235c7fc7 3516
108b02cf 3517 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3518 if (cpuctx->task_ctx == ctx)
3519 return;
3520
facc4307 3521 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3522 /*
3523 * We must check ctx->nr_events while holding ctx->lock, such
3524 * that we serialize against perf_install_in_context().
3525 */
3526 if (!ctx->nr_events)
3527 goto unlock;
3528
1b9a644f 3529 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3530 /*
3531 * We want to keep the following priority order:
3532 * cpu pinned (that don't need to move), task pinned,
3533 * cpu flexible, task flexible.
fe45bafb
AS
3534 *
3535 * However, if task's ctx is not carrying any pinned
3536 * events, no need to flip the cpuctx's events around.
329c0e01 3537 */
8e1a2031 3538 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
fe45bafb 3539 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3540 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3541 perf_pmu_enable(ctx->pmu);
fdccc3fb 3542
3543unlock:
facc4307 3544 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3545}
3546
8dc85d54
PZ
3547/*
3548 * Called from scheduler to add the events of the current task
3549 * with interrupts disabled.
3550 *
3551 * We restore the event value and then enable it.
3552 *
3553 * This does not protect us against NMI, but enable()
3554 * sets the enabled bit in the control field of event _before_
3555 * accessing the event control register. If a NMI hits, then it will
3556 * keep the event running.
3557 */
ab0cce56
JO
3558void __perf_event_task_sched_in(struct task_struct *prev,
3559 struct task_struct *task)
8dc85d54
PZ
3560{
3561 struct perf_event_context *ctx;
3562 int ctxn;
3563
7e41d177
PZ
3564 /*
3565 * If cgroup events exist on this CPU, then we need to check if we have
3566 * to switch in PMU state; cgroup event are system-wide mode only.
3567 *
3568 * Since cgroup events are CPU events, we must schedule these in before
3569 * we schedule in the task events.
3570 */
3571 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3572 perf_cgroup_sched_in(prev, task);
3573
8dc85d54
PZ
3574 for_each_task_context_nr(ctxn) {
3575 ctx = task->perf_event_ctxp[ctxn];
3576 if (likely(!ctx))
3577 continue;
3578
e5d1367f 3579 perf_event_context_sched_in(ctx, task);
8dc85d54 3580 }
d010b332 3581
45ac1403
AH
3582 if (atomic_read(&nr_switch_events))
3583 perf_event_switch(task, prev, true);
3584
ba532500
YZ
3585 if (__this_cpu_read(perf_sched_cb_usages))
3586 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3587}
3588
abd50713
PZ
3589static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3590{
3591 u64 frequency = event->attr.sample_freq;
3592 u64 sec = NSEC_PER_SEC;
3593 u64 divisor, dividend;
3594
3595 int count_fls, nsec_fls, frequency_fls, sec_fls;
3596
3597 count_fls = fls64(count);
3598 nsec_fls = fls64(nsec);
3599 frequency_fls = fls64(frequency);
3600 sec_fls = 30;
3601
3602 /*
3603 * We got @count in @nsec, with a target of sample_freq HZ
3604 * the target period becomes:
3605 *
3606 * @count * 10^9
3607 * period = -------------------
3608 * @nsec * sample_freq
3609 *
3610 */
3611
3612 /*
3613 * Reduce accuracy by one bit such that @a and @b converge
3614 * to a similar magnitude.
3615 */
fe4b04fa 3616#define REDUCE_FLS(a, b) \
abd50713
PZ
3617do { \
3618 if (a##_fls > b##_fls) { \
3619 a >>= 1; \
3620 a##_fls--; \
3621 } else { \
3622 b >>= 1; \
3623 b##_fls--; \
3624 } \
3625} while (0)
3626
3627 /*
3628 * Reduce accuracy until either term fits in a u64, then proceed with
3629 * the other, so that finally we can do a u64/u64 division.
3630 */
3631 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3632 REDUCE_FLS(nsec, frequency);
3633 REDUCE_FLS(sec, count);
3634 }
3635
3636 if (count_fls + sec_fls > 64) {
3637 divisor = nsec * frequency;
3638
3639 while (count_fls + sec_fls > 64) {
3640 REDUCE_FLS(count, sec);
3641 divisor >>= 1;
3642 }
3643
3644 dividend = count * sec;
3645 } else {
3646 dividend = count * sec;
3647
3648 while (nsec_fls + frequency_fls > 64) {
3649 REDUCE_FLS(nsec, frequency);
3650 dividend >>= 1;
3651 }
3652
3653 divisor = nsec * frequency;
3654 }
3655
f6ab91ad
PZ
3656 if (!divisor)
3657 return dividend;
3658
abd50713
PZ
3659 return div64_u64(dividend, divisor);
3660}
3661
e050e3f0
SE
3662static DEFINE_PER_CPU(int, perf_throttled_count);
3663static DEFINE_PER_CPU(u64, perf_throttled_seq);
3664
f39d47ff 3665static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3666{
cdd6c482 3667 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3668 s64 period, sample_period;
bd2b5b12
PZ
3669 s64 delta;
3670
abd50713 3671 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3672
3673 delta = (s64)(period - hwc->sample_period);
3674 delta = (delta + 7) / 8; /* low pass filter */
3675
3676 sample_period = hwc->sample_period + delta;
3677
3678 if (!sample_period)
3679 sample_period = 1;
3680
bd2b5b12 3681 hwc->sample_period = sample_period;
abd50713 3682
e7850595 3683 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3684 if (disable)
3685 event->pmu->stop(event, PERF_EF_UPDATE);
3686
e7850595 3687 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3688
3689 if (disable)
3690 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3691 }
bd2b5b12
PZ
3692}
3693
e050e3f0
SE
3694/*
3695 * combine freq adjustment with unthrottling to avoid two passes over the
3696 * events. At the same time, make sure, having freq events does not change
3697 * the rate of unthrottling as that would introduce bias.
3698 */
3699static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3700 int needs_unthr)
60db5e09 3701{
cdd6c482
IM
3702 struct perf_event *event;
3703 struct hw_perf_event *hwc;
e050e3f0 3704 u64 now, period = TICK_NSEC;
abd50713 3705 s64 delta;
60db5e09 3706
e050e3f0
SE
3707 /*
3708 * only need to iterate over all events iff:
3709 * - context have events in frequency mode (needs freq adjust)
3710 * - there are events to unthrottle on this cpu
3711 */
3712 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3713 return;
3714
e050e3f0 3715 raw_spin_lock(&ctx->lock);
f39d47ff 3716 perf_pmu_disable(ctx->pmu);
e050e3f0 3717
03541f8b 3718 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3719 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3720 continue;
3721
5632ab12 3722 if (!event_filter_match(event))
5d27c23d
PZ
3723 continue;
3724
44377277
AS
3725 perf_pmu_disable(event->pmu);
3726
cdd6c482 3727 hwc = &event->hw;
6a24ed6c 3728
ae23bff1 3729 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3730 hwc->interrupts = 0;
cdd6c482 3731 perf_log_throttle(event, 1);
a4eaf7f1 3732 event->pmu->start(event, 0);
a78ac325
PZ
3733 }
3734
cdd6c482 3735 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3736 goto next;
60db5e09 3737
e050e3f0
SE
3738 /*
3739 * stop the event and update event->count
3740 */
3741 event->pmu->stop(event, PERF_EF_UPDATE);
3742
e7850595 3743 now = local64_read(&event->count);
abd50713
PZ
3744 delta = now - hwc->freq_count_stamp;
3745 hwc->freq_count_stamp = now;
60db5e09 3746
e050e3f0
SE
3747 /*
3748 * restart the event
3749 * reload only if value has changed
f39d47ff
SE
3750 * we have stopped the event so tell that
3751 * to perf_adjust_period() to avoid stopping it
3752 * twice.
e050e3f0 3753 */
abd50713 3754 if (delta > 0)
f39d47ff 3755 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3756
3757 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3758 next:
3759 perf_pmu_enable(event->pmu);
60db5e09 3760 }
e050e3f0 3761
f39d47ff 3762 perf_pmu_enable(ctx->pmu);
e050e3f0 3763 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3764}
3765
235c7fc7 3766/*
8703a7cf 3767 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 3768 */
8703a7cf 3769static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 3770{
dddd3379
TG
3771 /*
3772 * Rotate the first entry last of non-pinned groups. Rotation might be
3773 * disabled by the inheritance code.
3774 */
8703a7cf
PZ
3775 if (ctx->rotate_disable)
3776 return;
8e1a2031 3777
8703a7cf
PZ
3778 perf_event_groups_delete(&ctx->flexible_groups, event);
3779 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
3780}
3781
8d5bce0c
PZ
3782static inline struct perf_event *
3783ctx_first_active(struct perf_event_context *ctx)
235c7fc7 3784{
8d5bce0c
PZ
3785 return list_first_entry_or_null(&ctx->flexible_active,
3786 struct perf_event, active_list);
3787}
3788
3789static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3790{
3791 struct perf_event *cpu_event = NULL, *task_event = NULL;
fd7d5517
IR
3792 struct perf_event_context *task_ctx = NULL;
3793 int cpu_rotate, task_rotate;
8d5bce0c
PZ
3794
3795 /*
3796 * Since we run this from IRQ context, nobody can install new
3797 * events, thus the event count values are stable.
3798 */
7fc23a53 3799
fd7d5517
IR
3800 cpu_rotate = cpuctx->ctx.rotate_necessary;
3801 task_ctx = cpuctx->task_ctx;
3802 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
9717e6cd 3803
8d5bce0c
PZ
3804 if (!(cpu_rotate || task_rotate))
3805 return false;
0f5a2601 3806
facc4307 3807 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3808 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3809
8d5bce0c 3810 if (task_rotate)
fd7d5517 3811 task_event = ctx_first_active(task_ctx);
8d5bce0c
PZ
3812 if (cpu_rotate)
3813 cpu_event = ctx_first_active(&cpuctx->ctx);
8703a7cf 3814
8d5bce0c
PZ
3815 /*
3816 * As per the order given at ctx_resched() first 'pop' task flexible
3817 * and then, if needed CPU flexible.
3818 */
fd7d5517
IR
3819 if (task_event || (task_ctx && cpu_event))
3820 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
8d5bce0c
PZ
3821 if (cpu_event)
3822 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
0793a61d 3823
8d5bce0c 3824 if (task_event)
fd7d5517 3825 rotate_ctx(task_ctx, task_event);
8d5bce0c
PZ
3826 if (cpu_event)
3827 rotate_ctx(&cpuctx->ctx, cpu_event);
235c7fc7 3828
fd7d5517 3829 perf_event_sched_in(cpuctx, task_ctx, current);
235c7fc7 3830
0f5a2601
PZ
3831 perf_pmu_enable(cpuctx->ctx.pmu);
3832 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 3833
8d5bce0c 3834 return true;
e9d2b064
PZ
3835}
3836
3837void perf_event_task_tick(void)
3838{
2fde4f94
MR
3839 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3840 struct perf_event_context *ctx, *tmp;
e050e3f0 3841 int throttled;
b5ab4cd5 3842
16444645 3843 lockdep_assert_irqs_disabled();
e9d2b064 3844
e050e3f0
SE
3845 __this_cpu_inc(perf_throttled_seq);
3846 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3847 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3848
2fde4f94 3849 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3850 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3851}
3852
889ff015
FW
3853static int event_enable_on_exec(struct perf_event *event,
3854 struct perf_event_context *ctx)
3855{
3856 if (!event->attr.enable_on_exec)
3857 return 0;
3858
3859 event->attr.enable_on_exec = 0;
3860 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3861 return 0;
3862
0d3d73aa 3863 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3864
3865 return 1;
3866}
3867
57e7986e 3868/*
cdd6c482 3869 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3870 * This expects task == current.
3871 */
c1274499 3872static void perf_event_enable_on_exec(int ctxn)
57e7986e 3873{
c1274499 3874 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3875 enum event_type_t event_type = 0;
3e349507 3876 struct perf_cpu_context *cpuctx;
cdd6c482 3877 struct perf_event *event;
57e7986e
PM
3878 unsigned long flags;
3879 int enabled = 0;
3880
3881 local_irq_save(flags);
c1274499 3882 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3883 if (!ctx || !ctx->nr_events)
57e7986e
PM
3884 goto out;
3885
3e349507
PZ
3886 cpuctx = __get_cpu_context(ctx);
3887 perf_ctx_lock(cpuctx, ctx);
7fce2509 3888 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3889 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3890 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3891 event_type |= get_event_type(event);
3892 }
57e7986e
PM
3893
3894 /*
3e349507 3895 * Unclone and reschedule this context if we enabled any event.
57e7986e 3896 */
3e349507 3897 if (enabled) {
211de6eb 3898 clone_ctx = unclone_ctx(ctx);
487f05e1 3899 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3900 } else {
3901 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3902 }
3903 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3904
9ed6060d 3905out:
57e7986e 3906 local_irq_restore(flags);
211de6eb
PZ
3907
3908 if (clone_ctx)
3909 put_ctx(clone_ctx);
57e7986e
PM
3910}
3911
0492d4c5
PZ
3912struct perf_read_data {
3913 struct perf_event *event;
3914 bool group;
7d88962e 3915 int ret;
0492d4c5
PZ
3916};
3917
451d24d1 3918static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3919{
d6a2f903
DCC
3920 u16 local_pkg, event_pkg;
3921
3922 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3923 int local_cpu = smp_processor_id();
3924
3925 event_pkg = topology_physical_package_id(event_cpu);
3926 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3927
3928 if (event_pkg == local_pkg)
3929 return local_cpu;
3930 }
3931
3932 return event_cpu;
3933}
3934
0793a61d 3935/*
cdd6c482 3936 * Cross CPU call to read the hardware event
0793a61d 3937 */
cdd6c482 3938static void __perf_event_read(void *info)
0793a61d 3939{
0492d4c5
PZ
3940 struct perf_read_data *data = info;
3941 struct perf_event *sub, *event = data->event;
cdd6c482 3942 struct perf_event_context *ctx = event->ctx;
108b02cf 3943 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3944 struct pmu *pmu = event->pmu;
621a01ea 3945
e1ac3614
PM
3946 /*
3947 * If this is a task context, we need to check whether it is
3948 * the current task context of this cpu. If not it has been
3949 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3950 * event->count would have been updated to a recent sample
3951 * when the event was scheduled out.
e1ac3614
PM
3952 */
3953 if (ctx->task && cpuctx->task_ctx != ctx)
3954 return;
3955
e625cce1 3956 raw_spin_lock(&ctx->lock);
0c1cbc18 3957 if (ctx->is_active & EVENT_TIME) {
542e72fc 3958 update_context_time(ctx);
e5d1367f
SE
3959 update_cgrp_time_from_event(event);
3960 }
0492d4c5 3961
0d3d73aa
PZ
3962 perf_event_update_time(event);
3963 if (data->group)
3964 perf_event_update_sibling_time(event);
0c1cbc18 3965
4a00c16e
SB
3966 if (event->state != PERF_EVENT_STATE_ACTIVE)
3967 goto unlock;
0492d4c5 3968
4a00c16e
SB
3969 if (!data->group) {
3970 pmu->read(event);
3971 data->ret = 0;
0492d4c5 3972 goto unlock;
4a00c16e
SB
3973 }
3974
3975 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3976
3977 pmu->read(event);
0492d4c5 3978
edb39592 3979 for_each_sibling_event(sub, event) {
4a00c16e
SB
3980 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3981 /*
3982 * Use sibling's PMU rather than @event's since
3983 * sibling could be on different (eg: software) PMU.
3984 */
0492d4c5 3985 sub->pmu->read(sub);
4a00c16e 3986 }
0492d4c5 3987 }
4a00c16e
SB
3988
3989 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3990
3991unlock:
e625cce1 3992 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3993}
3994
b5e58793
PZ
3995static inline u64 perf_event_count(struct perf_event *event)
3996{
c39a0e2c 3997 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3998}
3999
ffe8690c
KX
4000/*
4001 * NMI-safe method to read a local event, that is an event that
4002 * is:
4003 * - either for the current task, or for this CPU
4004 * - does not have inherit set, for inherited task events
4005 * will not be local and we cannot read them atomically
4006 * - must not have a pmu::count method
4007 */
7d9285e8
YS
4008int perf_event_read_local(struct perf_event *event, u64 *value,
4009 u64 *enabled, u64 *running)
ffe8690c
KX
4010{
4011 unsigned long flags;
f91840a3 4012 int ret = 0;
ffe8690c
KX
4013
4014 /*
4015 * Disabling interrupts avoids all counter scheduling (context
4016 * switches, timer based rotation and IPIs).
4017 */
4018 local_irq_save(flags);
4019
ffe8690c
KX
4020 /*
4021 * It must not be an event with inherit set, we cannot read
4022 * all child counters from atomic context.
4023 */
f91840a3
AS
4024 if (event->attr.inherit) {
4025 ret = -EOPNOTSUPP;
4026 goto out;
4027 }
ffe8690c 4028
f91840a3
AS
4029 /* If this is a per-task event, it must be for current */
4030 if ((event->attach_state & PERF_ATTACH_TASK) &&
4031 event->hw.target != current) {
4032 ret = -EINVAL;
4033 goto out;
4034 }
4035
4036 /* If this is a per-CPU event, it must be for this CPU */
4037 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4038 event->cpu != smp_processor_id()) {
4039 ret = -EINVAL;
4040 goto out;
4041 }
ffe8690c 4042
befb1b3c
RC
4043 /* If this is a pinned event it must be running on this CPU */
4044 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4045 ret = -EBUSY;
4046 goto out;
4047 }
4048
ffe8690c
KX
4049 /*
4050 * If the event is currently on this CPU, its either a per-task event,
4051 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4052 * oncpu == -1).
4053 */
4054 if (event->oncpu == smp_processor_id())
4055 event->pmu->read(event);
4056
f91840a3 4057 *value = local64_read(&event->count);
0d3d73aa
PZ
4058 if (enabled || running) {
4059 u64 now = event->shadow_ctx_time + perf_clock();
4060 u64 __enabled, __running;
4061
4062 __perf_update_times(event, now, &__enabled, &__running);
4063 if (enabled)
4064 *enabled = __enabled;
4065 if (running)
4066 *running = __running;
4067 }
f91840a3 4068out:
ffe8690c
KX
4069 local_irq_restore(flags);
4070
f91840a3 4071 return ret;
ffe8690c
KX
4072}
4073
7d88962e 4074static int perf_event_read(struct perf_event *event, bool group)
0793a61d 4075{
0c1cbc18 4076 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 4077 int event_cpu, ret = 0;
7d88962e 4078
0793a61d 4079 /*
cdd6c482
IM
4080 * If event is enabled and currently active on a CPU, update the
4081 * value in the event structure:
0793a61d 4082 */
0c1cbc18
PZ
4083again:
4084 if (state == PERF_EVENT_STATE_ACTIVE) {
4085 struct perf_read_data data;
4086
4087 /*
4088 * Orders the ->state and ->oncpu loads such that if we see
4089 * ACTIVE we must also see the right ->oncpu.
4090 *
4091 * Matches the smp_wmb() from event_sched_in().
4092 */
4093 smp_rmb();
d6a2f903 4094
451d24d1
PZ
4095 event_cpu = READ_ONCE(event->oncpu);
4096 if ((unsigned)event_cpu >= nr_cpu_ids)
4097 return 0;
4098
0c1cbc18
PZ
4099 data = (struct perf_read_data){
4100 .event = event,
4101 .group = group,
4102 .ret = 0,
4103 };
4104
451d24d1
PZ
4105 preempt_disable();
4106 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4107
58763148
PZ
4108 /*
4109 * Purposely ignore the smp_call_function_single() return
4110 * value.
4111 *
451d24d1 4112 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4113 * scheduled out and that will have updated the event count.
4114 *
4115 * Therefore, either way, we'll have an up-to-date event count
4116 * after this.
4117 */
451d24d1
PZ
4118 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4119 preempt_enable();
58763148 4120 ret = data.ret;
0c1cbc18
PZ
4121
4122 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4123 struct perf_event_context *ctx = event->ctx;
4124 unsigned long flags;
4125
e625cce1 4126 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4127 state = event->state;
4128 if (state != PERF_EVENT_STATE_INACTIVE) {
4129 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4130 goto again;
4131 }
4132
c530ccd9 4133 /*
0c1cbc18
PZ
4134 * May read while context is not active (e.g., thread is
4135 * blocked), in that case we cannot update context time
c530ccd9 4136 */
0c1cbc18 4137 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4138 update_context_time(ctx);
e5d1367f
SE
4139 update_cgrp_time_from_event(event);
4140 }
0c1cbc18 4141
0d3d73aa 4142 perf_event_update_time(event);
0492d4c5 4143 if (group)
0d3d73aa 4144 perf_event_update_sibling_time(event);
e625cce1 4145 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4146 }
7d88962e
SB
4147
4148 return ret;
0793a61d
TG
4149}
4150
a63eaf34 4151/*
cdd6c482 4152 * Initialize the perf_event context in a task_struct:
a63eaf34 4153 */
eb184479 4154static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4155{
e625cce1 4156 raw_spin_lock_init(&ctx->lock);
a63eaf34 4157 mutex_init(&ctx->mutex);
2fde4f94 4158 INIT_LIST_HEAD(&ctx->active_ctx_list);
8e1a2031
AB
4159 perf_event_groups_init(&ctx->pinned_groups);
4160 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4161 INIT_LIST_HEAD(&ctx->event_list);
6668128a
PZ
4162 INIT_LIST_HEAD(&ctx->pinned_active);
4163 INIT_LIST_HEAD(&ctx->flexible_active);
8c94abbb 4164 refcount_set(&ctx->refcount, 1);
eb184479
PZ
4165}
4166
4167static struct perf_event_context *
4168alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4169{
4170 struct perf_event_context *ctx;
4171
4172 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4173 if (!ctx)
4174 return NULL;
4175
4176 __perf_event_init_context(ctx);
7b3c92b8
MWO
4177 if (task)
4178 ctx->task = get_task_struct(task);
eb184479
PZ
4179 ctx->pmu = pmu;
4180
4181 return ctx;
a63eaf34
PM
4182}
4183
2ebd4ffb
MH
4184static struct task_struct *
4185find_lively_task_by_vpid(pid_t vpid)
4186{
4187 struct task_struct *task;
0793a61d
TG
4188
4189 rcu_read_lock();
2ebd4ffb 4190 if (!vpid)
0793a61d
TG
4191 task = current;
4192 else
2ebd4ffb 4193 task = find_task_by_vpid(vpid);
0793a61d
TG
4194 if (task)
4195 get_task_struct(task);
4196 rcu_read_unlock();
4197
4198 if (!task)
4199 return ERR_PTR(-ESRCH);
4200
2ebd4ffb 4201 return task;
2ebd4ffb
MH
4202}
4203
fe4b04fa
PZ
4204/*
4205 * Returns a matching context with refcount and pincount.
4206 */
108b02cf 4207static struct perf_event_context *
4af57ef2
YZ
4208find_get_context(struct pmu *pmu, struct task_struct *task,
4209 struct perf_event *event)
0793a61d 4210{
211de6eb 4211 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4212 struct perf_cpu_context *cpuctx;
4af57ef2 4213 void *task_ctx_data = NULL;
25346b93 4214 unsigned long flags;
8dc85d54 4215 int ctxn, err;
4af57ef2 4216 int cpu = event->cpu;
0793a61d 4217
22a4ec72 4218 if (!task) {
cdd6c482 4219 /* Must be root to operate on a CPU event: */
0764771d 4220 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
4221 return ERR_PTR(-EACCES);
4222
108b02cf 4223 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 4224 ctx = &cpuctx->ctx;
c93f7669 4225 get_ctx(ctx);
fe4b04fa 4226 ++ctx->pin_count;
0793a61d 4227
0793a61d
TG
4228 return ctx;
4229 }
4230
8dc85d54
PZ
4231 err = -EINVAL;
4232 ctxn = pmu->task_ctx_nr;
4233 if (ctxn < 0)
4234 goto errout;
4235
4af57ef2
YZ
4236 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4237 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4238 if (!task_ctx_data) {
4239 err = -ENOMEM;
4240 goto errout;
4241 }
4242 }
4243
9ed6060d 4244retry:
8dc85d54 4245 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 4246 if (ctx) {
211de6eb 4247 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4248 ++ctx->pin_count;
4af57ef2
YZ
4249
4250 if (task_ctx_data && !ctx->task_ctx_data) {
4251 ctx->task_ctx_data = task_ctx_data;
4252 task_ctx_data = NULL;
4253 }
e625cce1 4254 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4255
4256 if (clone_ctx)
4257 put_ctx(clone_ctx);
9137fb28 4258 } else {
eb184479 4259 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
4260 err = -ENOMEM;
4261 if (!ctx)
4262 goto errout;
eb184479 4263
4af57ef2
YZ
4264 if (task_ctx_data) {
4265 ctx->task_ctx_data = task_ctx_data;
4266 task_ctx_data = NULL;
4267 }
4268
dbe08d82
ON
4269 err = 0;
4270 mutex_lock(&task->perf_event_mutex);
4271 /*
4272 * If it has already passed perf_event_exit_task().
4273 * we must see PF_EXITING, it takes this mutex too.
4274 */
4275 if (task->flags & PF_EXITING)
4276 err = -ESRCH;
4277 else if (task->perf_event_ctxp[ctxn])
4278 err = -EAGAIN;
fe4b04fa 4279 else {
9137fb28 4280 get_ctx(ctx);
fe4b04fa 4281 ++ctx->pin_count;
dbe08d82 4282 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 4283 }
dbe08d82
ON
4284 mutex_unlock(&task->perf_event_mutex);
4285
4286 if (unlikely(err)) {
9137fb28 4287 put_ctx(ctx);
dbe08d82
ON
4288
4289 if (err == -EAGAIN)
4290 goto retry;
4291 goto errout;
a63eaf34
PM
4292 }
4293 }
4294
4af57ef2 4295 kfree(task_ctx_data);
0793a61d 4296 return ctx;
c93f7669 4297
9ed6060d 4298errout:
4af57ef2 4299 kfree(task_ctx_data);
c93f7669 4300 return ERR_PTR(err);
0793a61d
TG
4301}
4302
6fb2915d 4303static void perf_event_free_filter(struct perf_event *event);
2541517c 4304static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 4305
cdd6c482 4306static void free_event_rcu(struct rcu_head *head)
592903cd 4307{
cdd6c482 4308 struct perf_event *event;
592903cd 4309
cdd6c482
IM
4310 event = container_of(head, struct perf_event, rcu_head);
4311 if (event->ns)
4312 put_pid_ns(event->ns);
6fb2915d 4313 perf_event_free_filter(event);
cdd6c482 4314 kfree(event);
592903cd
PZ
4315}
4316
b69cf536
PZ
4317static void ring_buffer_attach(struct perf_event *event,
4318 struct ring_buffer *rb);
925d519a 4319
f2fb6bef
KL
4320static void detach_sb_event(struct perf_event *event)
4321{
4322 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4323
4324 raw_spin_lock(&pel->lock);
4325 list_del_rcu(&event->sb_list);
4326 raw_spin_unlock(&pel->lock);
4327}
4328
a4f144eb 4329static bool is_sb_event(struct perf_event *event)
f2fb6bef 4330{
a4f144eb
DCC
4331 struct perf_event_attr *attr = &event->attr;
4332
f2fb6bef 4333 if (event->parent)
a4f144eb 4334 return false;
f2fb6bef
KL
4335
4336 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4337 return false;
f2fb6bef 4338
a4f144eb
DCC
4339 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4340 attr->comm || attr->comm_exec ||
76193a94 4341 attr->task || attr->ksymbol ||
21038f2b
SL
4342 attr->context_switch ||
4343 attr->bpf_event)
a4f144eb
DCC
4344 return true;
4345 return false;
4346}
4347
4348static void unaccount_pmu_sb_event(struct perf_event *event)
4349{
4350 if (is_sb_event(event))
4351 detach_sb_event(event);
f2fb6bef
KL
4352}
4353
4beb31f3 4354static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4355{
4beb31f3
FW
4356 if (event->parent)
4357 return;
4358
4beb31f3
FW
4359 if (is_cgroup_event(event))
4360 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4361}
925d519a 4362
555e0c1e
FW
4363#ifdef CONFIG_NO_HZ_FULL
4364static DEFINE_SPINLOCK(nr_freq_lock);
4365#endif
4366
4367static void unaccount_freq_event_nohz(void)
4368{
4369#ifdef CONFIG_NO_HZ_FULL
4370 spin_lock(&nr_freq_lock);
4371 if (atomic_dec_and_test(&nr_freq_events))
4372 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4373 spin_unlock(&nr_freq_lock);
4374#endif
4375}
4376
4377static void unaccount_freq_event(void)
4378{
4379 if (tick_nohz_full_enabled())
4380 unaccount_freq_event_nohz();
4381 else
4382 atomic_dec(&nr_freq_events);
4383}
4384
4beb31f3
FW
4385static void unaccount_event(struct perf_event *event)
4386{
25432ae9
PZ
4387 bool dec = false;
4388
4beb31f3
FW
4389 if (event->parent)
4390 return;
4391
4392 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4393 dec = true;
4beb31f3
FW
4394 if (event->attr.mmap || event->attr.mmap_data)
4395 atomic_dec(&nr_mmap_events);
4396 if (event->attr.comm)
4397 atomic_dec(&nr_comm_events);
e4222673
HB
4398 if (event->attr.namespaces)
4399 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4400 if (event->attr.task)
4401 atomic_dec(&nr_task_events);
948b26b6 4402 if (event->attr.freq)
555e0c1e 4403 unaccount_freq_event();
45ac1403 4404 if (event->attr.context_switch) {
25432ae9 4405 dec = true;
45ac1403
AH
4406 atomic_dec(&nr_switch_events);
4407 }
4beb31f3 4408 if (is_cgroup_event(event))
25432ae9 4409 dec = true;
4beb31f3 4410 if (has_branch_stack(event))
25432ae9 4411 dec = true;
76193a94
SL
4412 if (event->attr.ksymbol)
4413 atomic_dec(&nr_ksymbol_events);
6ee52e2a
SL
4414 if (event->attr.bpf_event)
4415 atomic_dec(&nr_bpf_events);
25432ae9 4416
9107c89e
PZ
4417 if (dec) {
4418 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4419 schedule_delayed_work(&perf_sched_work, HZ);
4420 }
4beb31f3
FW
4421
4422 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4423
4424 unaccount_pmu_sb_event(event);
4beb31f3 4425}
925d519a 4426
9107c89e
PZ
4427static void perf_sched_delayed(struct work_struct *work)
4428{
4429 mutex_lock(&perf_sched_mutex);
4430 if (atomic_dec_and_test(&perf_sched_count))
4431 static_branch_disable(&perf_sched_events);
4432 mutex_unlock(&perf_sched_mutex);
4433}
4434
bed5b25a
AS
4435/*
4436 * The following implement mutual exclusion of events on "exclusive" pmus
4437 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4438 * at a time, so we disallow creating events that might conflict, namely:
4439 *
4440 * 1) cpu-wide events in the presence of per-task events,
4441 * 2) per-task events in the presence of cpu-wide events,
4442 * 3) two matching events on the same context.
4443 *
4444 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4445 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4446 */
4447static int exclusive_event_init(struct perf_event *event)
4448{
4449 struct pmu *pmu = event->pmu;
4450
8a58ddae 4451 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4452 return 0;
4453
4454 /*
4455 * Prevent co-existence of per-task and cpu-wide events on the
4456 * same exclusive pmu.
4457 *
4458 * Negative pmu::exclusive_cnt means there are cpu-wide
4459 * events on this "exclusive" pmu, positive means there are
4460 * per-task events.
4461 *
4462 * Since this is called in perf_event_alloc() path, event::ctx
4463 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4464 * to mean "per-task event", because unlike other attach states it
4465 * never gets cleared.
4466 */
4467 if (event->attach_state & PERF_ATTACH_TASK) {
4468 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4469 return -EBUSY;
4470 } else {
4471 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4472 return -EBUSY;
4473 }
4474
4475 return 0;
4476}
4477
4478static void exclusive_event_destroy(struct perf_event *event)
4479{
4480 struct pmu *pmu = event->pmu;
4481
8a58ddae 4482 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4483 return;
4484
4485 /* see comment in exclusive_event_init() */
4486 if (event->attach_state & PERF_ATTACH_TASK)
4487 atomic_dec(&pmu->exclusive_cnt);
4488 else
4489 atomic_inc(&pmu->exclusive_cnt);
4490}
4491
4492static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4493{
3bf6215a 4494 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4495 (e1->cpu == e2->cpu ||
4496 e1->cpu == -1 ||
4497 e2->cpu == -1))
4498 return true;
4499 return false;
4500}
4501
bed5b25a
AS
4502static bool exclusive_event_installable(struct perf_event *event,
4503 struct perf_event_context *ctx)
4504{
4505 struct perf_event *iter_event;
4506 struct pmu *pmu = event->pmu;
4507
8a58ddae
AS
4508 lockdep_assert_held(&ctx->mutex);
4509
4510 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4511 return true;
4512
4513 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4514 if (exclusive_event_match(iter_event, event))
4515 return false;
4516 }
4517
4518 return true;
4519}
4520
375637bc
AS
4521static void perf_addr_filters_splice(struct perf_event *event,
4522 struct list_head *head);
4523
683ede43 4524static void _free_event(struct perf_event *event)
f1600952 4525{
e360adbe 4526 irq_work_sync(&event->pending);
925d519a 4527
4beb31f3 4528 unaccount_event(event);
9ee318a7 4529
76369139 4530 if (event->rb) {
9bb5d40c
PZ
4531 /*
4532 * Can happen when we close an event with re-directed output.
4533 *
4534 * Since we have a 0 refcount, perf_mmap_close() will skip
4535 * over us; possibly making our ring_buffer_put() the last.
4536 */
4537 mutex_lock(&event->mmap_mutex);
b69cf536 4538 ring_buffer_attach(event, NULL);
9bb5d40c 4539 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4540 }
4541
e5d1367f
SE
4542 if (is_cgroup_event(event))
4543 perf_detach_cgroup(event);
4544
a0733e69
PZ
4545 if (!event->parent) {
4546 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4547 put_callchain_buffers();
4548 }
4549
4550 perf_event_free_bpf_prog(event);
375637bc 4551 perf_addr_filters_splice(event, NULL);
c60f83b8 4552 kfree(event->addr_filter_ranges);
a0733e69
PZ
4553
4554 if (event->destroy)
4555 event->destroy(event);
4556
1cf8dfe8
PZ
4557 /*
4558 * Must be after ->destroy(), due to uprobe_perf_close() using
4559 * hw.target.
4560 */
621b6d2e
PB
4561 if (event->hw.target)
4562 put_task_struct(event->hw.target);
4563
1cf8dfe8
PZ
4564 /*
4565 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4566 * all task references must be cleaned up.
4567 */
4568 if (event->ctx)
4569 put_ctx(event->ctx);
4570
62a92c8f
AS
4571 exclusive_event_destroy(event);
4572 module_put(event->pmu->module);
a0733e69
PZ
4573
4574 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4575}
4576
683ede43
PZ
4577/*
4578 * Used to free events which have a known refcount of 1, such as in error paths
4579 * where the event isn't exposed yet and inherited events.
4580 */
4581static void free_event(struct perf_event *event)
0793a61d 4582{
683ede43
PZ
4583 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4584 "unexpected event refcount: %ld; ptr=%p\n",
4585 atomic_long_read(&event->refcount), event)) {
4586 /* leak to avoid use-after-free */
4587 return;
4588 }
0793a61d 4589
683ede43 4590 _free_event(event);
0793a61d
TG
4591}
4592
a66a3052 4593/*
f8697762 4594 * Remove user event from the owner task.
a66a3052 4595 */
f8697762 4596static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4597{
8882135b 4598 struct task_struct *owner;
fb0459d7 4599
8882135b 4600 rcu_read_lock();
8882135b 4601 /*
f47c02c0
PZ
4602 * Matches the smp_store_release() in perf_event_exit_task(). If we
4603 * observe !owner it means the list deletion is complete and we can
4604 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4605 * owner->perf_event_mutex.
4606 */
506458ef 4607 owner = READ_ONCE(event->owner);
8882135b
PZ
4608 if (owner) {
4609 /*
4610 * Since delayed_put_task_struct() also drops the last
4611 * task reference we can safely take a new reference
4612 * while holding the rcu_read_lock().
4613 */
4614 get_task_struct(owner);
4615 }
4616 rcu_read_unlock();
4617
4618 if (owner) {
f63a8daa
PZ
4619 /*
4620 * If we're here through perf_event_exit_task() we're already
4621 * holding ctx->mutex which would be an inversion wrt. the
4622 * normal lock order.
4623 *
4624 * However we can safely take this lock because its the child
4625 * ctx->mutex.
4626 */
4627 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4628
8882135b
PZ
4629 /*
4630 * We have to re-check the event->owner field, if it is cleared
4631 * we raced with perf_event_exit_task(), acquiring the mutex
4632 * ensured they're done, and we can proceed with freeing the
4633 * event.
4634 */
f47c02c0 4635 if (event->owner) {
8882135b 4636 list_del_init(&event->owner_entry);
f47c02c0
PZ
4637 smp_store_release(&event->owner, NULL);
4638 }
8882135b
PZ
4639 mutex_unlock(&owner->perf_event_mutex);
4640 put_task_struct(owner);
4641 }
f8697762
JO
4642}
4643
f8697762
JO
4644static void put_event(struct perf_event *event)
4645{
f8697762
JO
4646 if (!atomic_long_dec_and_test(&event->refcount))
4647 return;
4648
c6e5b732
PZ
4649 _free_event(event);
4650}
4651
4652/*
4653 * Kill an event dead; while event:refcount will preserve the event
4654 * object, it will not preserve its functionality. Once the last 'user'
4655 * gives up the object, we'll destroy the thing.
4656 */
4657int perf_event_release_kernel(struct perf_event *event)
4658{
a4f4bb6d 4659 struct perf_event_context *ctx = event->ctx;
c6e5b732 4660 struct perf_event *child, *tmp;
82d94856 4661 LIST_HEAD(free_list);
c6e5b732 4662
a4f4bb6d
PZ
4663 /*
4664 * If we got here through err_file: fput(event_file); we will not have
4665 * attached to a context yet.
4666 */
4667 if (!ctx) {
4668 WARN_ON_ONCE(event->attach_state &
4669 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4670 goto no_ctx;
4671 }
4672
f8697762
JO
4673 if (!is_kernel_event(event))
4674 perf_remove_from_owner(event);
8882135b 4675
5fa7c8ec 4676 ctx = perf_event_ctx_lock(event);
a83fe28e 4677 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4678 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4679
a69b0ca4 4680 raw_spin_lock_irq(&ctx->lock);
683ede43 4681 /*
d8a8cfc7 4682 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4683 * anymore.
683ede43 4684 *
a69b0ca4
PZ
4685 * Anybody acquiring event->child_mutex after the below loop _must_
4686 * also see this, most importantly inherit_event() which will avoid
4687 * placing more children on the list.
683ede43 4688 *
c6e5b732
PZ
4689 * Thus this guarantees that we will in fact observe and kill _ALL_
4690 * child events.
683ede43 4691 */
a69b0ca4
PZ
4692 event->state = PERF_EVENT_STATE_DEAD;
4693 raw_spin_unlock_irq(&ctx->lock);
4694
4695 perf_event_ctx_unlock(event, ctx);
683ede43 4696
c6e5b732
PZ
4697again:
4698 mutex_lock(&event->child_mutex);
4699 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4700
c6e5b732
PZ
4701 /*
4702 * Cannot change, child events are not migrated, see the
4703 * comment with perf_event_ctx_lock_nested().
4704 */
506458ef 4705 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4706 /*
4707 * Since child_mutex nests inside ctx::mutex, we must jump
4708 * through hoops. We start by grabbing a reference on the ctx.
4709 *
4710 * Since the event cannot get freed while we hold the
4711 * child_mutex, the context must also exist and have a !0
4712 * reference count.
4713 */
4714 get_ctx(ctx);
4715
4716 /*
4717 * Now that we have a ctx ref, we can drop child_mutex, and
4718 * acquire ctx::mutex without fear of it going away. Then we
4719 * can re-acquire child_mutex.
4720 */
4721 mutex_unlock(&event->child_mutex);
4722 mutex_lock(&ctx->mutex);
4723 mutex_lock(&event->child_mutex);
4724
4725 /*
4726 * Now that we hold ctx::mutex and child_mutex, revalidate our
4727 * state, if child is still the first entry, it didn't get freed
4728 * and we can continue doing so.
4729 */
4730 tmp = list_first_entry_or_null(&event->child_list,
4731 struct perf_event, child_list);
4732 if (tmp == child) {
4733 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4734 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4735 /*
4736 * This matches the refcount bump in inherit_event();
4737 * this can't be the last reference.
4738 */
4739 put_event(event);
4740 }
4741
4742 mutex_unlock(&event->child_mutex);
4743 mutex_unlock(&ctx->mutex);
4744 put_ctx(ctx);
4745 goto again;
4746 }
4747 mutex_unlock(&event->child_mutex);
4748
82d94856 4749 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
1cf8dfe8
PZ
4750 void *var = &child->ctx->refcount;
4751
82d94856
PZ
4752 list_del(&child->child_list);
4753 free_event(child);
1cf8dfe8
PZ
4754
4755 /*
4756 * Wake any perf_event_free_task() waiting for this event to be
4757 * freed.
4758 */
4759 smp_mb(); /* pairs with wait_var_event() */
4760 wake_up_var(var);
82d94856
PZ
4761 }
4762
a4f4bb6d
PZ
4763no_ctx:
4764 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4765 return 0;
4766}
4767EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4768
8b10c5e2
PZ
4769/*
4770 * Called when the last reference to the file is gone.
4771 */
a6fa941d
AV
4772static int perf_release(struct inode *inode, struct file *file)
4773{
c6e5b732 4774 perf_event_release_kernel(file->private_data);
a6fa941d 4775 return 0;
fb0459d7 4776}
fb0459d7 4777
ca0dd44c 4778static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4779{
cdd6c482 4780 struct perf_event *child;
e53c0994
PZ
4781 u64 total = 0;
4782
59ed446f
PZ
4783 *enabled = 0;
4784 *running = 0;
4785
6f10581a 4786 mutex_lock(&event->child_mutex);
01add3ea 4787
7d88962e 4788 (void)perf_event_read(event, false);
01add3ea
SB
4789 total += perf_event_count(event);
4790
59ed446f
PZ
4791 *enabled += event->total_time_enabled +
4792 atomic64_read(&event->child_total_time_enabled);
4793 *running += event->total_time_running +
4794 atomic64_read(&event->child_total_time_running);
4795
4796 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4797 (void)perf_event_read(child, false);
01add3ea 4798 total += perf_event_count(child);
59ed446f
PZ
4799 *enabled += child->total_time_enabled;
4800 *running += child->total_time_running;
4801 }
6f10581a 4802 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4803
4804 return total;
4805}
ca0dd44c
PZ
4806
4807u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4808{
4809 struct perf_event_context *ctx;
4810 u64 count;
4811
4812 ctx = perf_event_ctx_lock(event);
4813 count = __perf_event_read_value(event, enabled, running);
4814 perf_event_ctx_unlock(event, ctx);
4815
4816 return count;
4817}
fb0459d7 4818EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4819
7d88962e 4820static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4821 u64 read_format, u64 *values)
3dab77fb 4822{
2aeb1883 4823 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4824 struct perf_event *sub;
2aeb1883 4825 unsigned long flags;
fa8c2693 4826 int n = 1; /* skip @nr */
7d88962e 4827 int ret;
f63a8daa 4828
7d88962e
SB
4829 ret = perf_event_read(leader, true);
4830 if (ret)
4831 return ret;
abf4868b 4832
a9cd8194
PZ
4833 raw_spin_lock_irqsave(&ctx->lock, flags);
4834
fa8c2693
PZ
4835 /*
4836 * Since we co-schedule groups, {enabled,running} times of siblings
4837 * will be identical to those of the leader, so we only publish one
4838 * set.
4839 */
4840 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4841 values[n++] += leader->total_time_enabled +
4842 atomic64_read(&leader->child_total_time_enabled);
4843 }
3dab77fb 4844
fa8c2693
PZ
4845 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4846 values[n++] += leader->total_time_running +
4847 atomic64_read(&leader->child_total_time_running);
4848 }
4849
4850 /*
4851 * Write {count,id} tuples for every sibling.
4852 */
4853 values[n++] += perf_event_count(leader);
abf4868b
PZ
4854 if (read_format & PERF_FORMAT_ID)
4855 values[n++] = primary_event_id(leader);
3dab77fb 4856
edb39592 4857 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
4858 values[n++] += perf_event_count(sub);
4859 if (read_format & PERF_FORMAT_ID)
4860 values[n++] = primary_event_id(sub);
4861 }
7d88962e 4862
2aeb1883 4863 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4864 return 0;
fa8c2693 4865}
3dab77fb 4866
fa8c2693
PZ
4867static int perf_read_group(struct perf_event *event,
4868 u64 read_format, char __user *buf)
4869{
4870 struct perf_event *leader = event->group_leader, *child;
4871 struct perf_event_context *ctx = leader->ctx;
7d88962e 4872 int ret;
fa8c2693 4873 u64 *values;
3dab77fb 4874
fa8c2693 4875 lockdep_assert_held(&ctx->mutex);
3dab77fb 4876
fa8c2693
PZ
4877 values = kzalloc(event->read_size, GFP_KERNEL);
4878 if (!values)
4879 return -ENOMEM;
3dab77fb 4880
fa8c2693
PZ
4881 values[0] = 1 + leader->nr_siblings;
4882
4883 /*
4884 * By locking the child_mutex of the leader we effectively
4885 * lock the child list of all siblings.. XXX explain how.
4886 */
4887 mutex_lock(&leader->child_mutex);
abf4868b 4888
7d88962e
SB
4889 ret = __perf_read_group_add(leader, read_format, values);
4890 if (ret)
4891 goto unlock;
4892
4893 list_for_each_entry(child, &leader->child_list, child_list) {
4894 ret = __perf_read_group_add(child, read_format, values);
4895 if (ret)
4896 goto unlock;
4897 }
abf4868b 4898
fa8c2693 4899 mutex_unlock(&leader->child_mutex);
abf4868b 4900
7d88962e 4901 ret = event->read_size;
fa8c2693
PZ
4902 if (copy_to_user(buf, values, event->read_size))
4903 ret = -EFAULT;
7d88962e 4904 goto out;
fa8c2693 4905
7d88962e
SB
4906unlock:
4907 mutex_unlock(&leader->child_mutex);
4908out:
fa8c2693 4909 kfree(values);
abf4868b 4910 return ret;
3dab77fb
PZ
4911}
4912
b15f495b 4913static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4914 u64 read_format, char __user *buf)
4915{
59ed446f 4916 u64 enabled, running;
3dab77fb
PZ
4917 u64 values[4];
4918 int n = 0;
4919
ca0dd44c 4920 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4921 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4922 values[n++] = enabled;
4923 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4924 values[n++] = running;
3dab77fb 4925 if (read_format & PERF_FORMAT_ID)
cdd6c482 4926 values[n++] = primary_event_id(event);
3dab77fb
PZ
4927
4928 if (copy_to_user(buf, values, n * sizeof(u64)))
4929 return -EFAULT;
4930
4931 return n * sizeof(u64);
4932}
4933
dc633982
JO
4934static bool is_event_hup(struct perf_event *event)
4935{
4936 bool no_children;
4937
a69b0ca4 4938 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4939 return false;
4940
4941 mutex_lock(&event->child_mutex);
4942 no_children = list_empty(&event->child_list);
4943 mutex_unlock(&event->child_mutex);
4944 return no_children;
4945}
4946
0793a61d 4947/*
cdd6c482 4948 * Read the performance event - simple non blocking version for now
0793a61d
TG
4949 */
4950static ssize_t
b15f495b 4951__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4952{
cdd6c482 4953 u64 read_format = event->attr.read_format;
3dab77fb 4954 int ret;
0793a61d 4955
3b6f9e5c 4956 /*
788faab7 4957 * Return end-of-file for a read on an event that is in
3b6f9e5c
PM
4958 * error state (i.e. because it was pinned but it couldn't be
4959 * scheduled on to the CPU at some point).
4960 */
cdd6c482 4961 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4962 return 0;
4963
c320c7b7 4964 if (count < event->read_size)
3dab77fb
PZ
4965 return -ENOSPC;
4966
cdd6c482 4967 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4968 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4969 ret = perf_read_group(event, read_format, buf);
3dab77fb 4970 else
b15f495b 4971 ret = perf_read_one(event, read_format, buf);
0793a61d 4972
3dab77fb 4973 return ret;
0793a61d
TG
4974}
4975
0793a61d
TG
4976static ssize_t
4977perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4978{
cdd6c482 4979 struct perf_event *event = file->private_data;
f63a8daa
PZ
4980 struct perf_event_context *ctx;
4981 int ret;
0793a61d 4982
f63a8daa 4983 ctx = perf_event_ctx_lock(event);
b15f495b 4984 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4985 perf_event_ctx_unlock(event, ctx);
4986
4987 return ret;
0793a61d
TG
4988}
4989
9dd95748 4990static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 4991{
cdd6c482 4992 struct perf_event *event = file->private_data;
76369139 4993 struct ring_buffer *rb;
a9a08845 4994 __poll_t events = EPOLLHUP;
c7138f37 4995
e708d7ad 4996 poll_wait(file, &event->waitq, wait);
179033b3 4997
dc633982 4998 if (is_event_hup(event))
179033b3 4999 return events;
c7138f37 5000
10c6db11 5001 /*
9bb5d40c
PZ
5002 * Pin the event->rb by taking event->mmap_mutex; otherwise
5003 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
5004 */
5005 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
5006 rb = event->rb;
5007 if (rb)
76369139 5008 events = atomic_xchg(&rb->poll, 0);
10c6db11 5009 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
5010 return events;
5011}
5012
f63a8daa 5013static void _perf_event_reset(struct perf_event *event)
6de6a7b9 5014{
7d88962e 5015 (void)perf_event_read(event, false);
e7850595 5016 local64_set(&event->count, 0);
cdd6c482 5017 perf_event_update_userpage(event);
3df5edad
PZ
5018}
5019
c93f7669 5020/*
cdd6c482
IM
5021 * Holding the top-level event's child_mutex means that any
5022 * descendant process that has inherited this event will block
8ba289b8 5023 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 5024 * task existence requirements of perf_event_enable/disable.
c93f7669 5025 */
cdd6c482
IM
5026static void perf_event_for_each_child(struct perf_event *event,
5027 void (*func)(struct perf_event *))
3df5edad 5028{
cdd6c482 5029 struct perf_event *child;
3df5edad 5030
cdd6c482 5031 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 5032
cdd6c482
IM
5033 mutex_lock(&event->child_mutex);
5034 func(event);
5035 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 5036 func(child);
cdd6c482 5037 mutex_unlock(&event->child_mutex);
3df5edad
PZ
5038}
5039
cdd6c482
IM
5040static void perf_event_for_each(struct perf_event *event,
5041 void (*func)(struct perf_event *))
3df5edad 5042{
cdd6c482
IM
5043 struct perf_event_context *ctx = event->ctx;
5044 struct perf_event *sibling;
3df5edad 5045
f63a8daa
PZ
5046 lockdep_assert_held(&ctx->mutex);
5047
cdd6c482 5048 event = event->group_leader;
75f937f2 5049
cdd6c482 5050 perf_event_for_each_child(event, func);
edb39592 5051 for_each_sibling_event(sibling, event)
724b6daa 5052 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
5053}
5054
fae3fde6
PZ
5055static void __perf_event_period(struct perf_event *event,
5056 struct perf_cpu_context *cpuctx,
5057 struct perf_event_context *ctx,
5058 void *info)
c7999c6f 5059{
fae3fde6 5060 u64 value = *((u64 *)info);
c7999c6f 5061 bool active;
08247e31 5062
cdd6c482 5063 if (event->attr.freq) {
cdd6c482 5064 event->attr.sample_freq = value;
08247e31 5065 } else {
cdd6c482
IM
5066 event->attr.sample_period = value;
5067 event->hw.sample_period = value;
08247e31 5068 }
bad7192b
PZ
5069
5070 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5071 if (active) {
5072 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
5073 /*
5074 * We could be throttled; unthrottle now to avoid the tick
5075 * trying to unthrottle while we already re-started the event.
5076 */
5077 if (event->hw.interrupts == MAX_INTERRUPTS) {
5078 event->hw.interrupts = 0;
5079 perf_log_throttle(event, 1);
5080 }
bad7192b
PZ
5081 event->pmu->stop(event, PERF_EF_UPDATE);
5082 }
5083
5084 local64_set(&event->hw.period_left, 0);
5085
5086 if (active) {
5087 event->pmu->start(event, PERF_EF_RELOAD);
5088 perf_pmu_enable(ctx->pmu);
5089 }
c7999c6f
PZ
5090}
5091
81ec3f3c
JO
5092static int perf_event_check_period(struct perf_event *event, u64 value)
5093{
5094 return event->pmu->check_period(event, value);
5095}
5096
c7999c6f
PZ
5097static int perf_event_period(struct perf_event *event, u64 __user *arg)
5098{
c7999c6f
PZ
5099 u64 value;
5100
5101 if (!is_sampling_event(event))
5102 return -EINVAL;
5103
5104 if (copy_from_user(&value, arg, sizeof(value)))
5105 return -EFAULT;
5106
5107 if (!value)
5108 return -EINVAL;
5109
5110 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5111 return -EINVAL;
5112
81ec3f3c
JO
5113 if (perf_event_check_period(event, value))
5114 return -EINVAL;
5115
913a90bc
RB
5116 if (!event->attr.freq && (value & (1ULL << 63)))
5117 return -EINVAL;
5118
fae3fde6 5119 event_function_call(event, __perf_event_period, &value);
08247e31 5120
c7999c6f 5121 return 0;
08247e31
PZ
5122}
5123
ac9721f3
PZ
5124static const struct file_operations perf_fops;
5125
2903ff01 5126static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 5127{
2903ff01
AV
5128 struct fd f = fdget(fd);
5129 if (!f.file)
5130 return -EBADF;
ac9721f3 5131
2903ff01
AV
5132 if (f.file->f_op != &perf_fops) {
5133 fdput(f);
5134 return -EBADF;
ac9721f3 5135 }
2903ff01
AV
5136 *p = f;
5137 return 0;
ac9721f3
PZ
5138}
5139
5140static int perf_event_set_output(struct perf_event *event,
5141 struct perf_event *output_event);
6fb2915d 5142static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 5143static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
32ff77e8
MC
5144static int perf_copy_attr(struct perf_event_attr __user *uattr,
5145 struct perf_event_attr *attr);
a4be7c27 5146
f63a8daa 5147static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5148{
cdd6c482 5149 void (*func)(struct perf_event *);
3df5edad 5150 u32 flags = arg;
d859e29f
PM
5151
5152 switch (cmd) {
cdd6c482 5153 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5154 func = _perf_event_enable;
d859e29f 5155 break;
cdd6c482 5156 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5157 func = _perf_event_disable;
79f14641 5158 break;
cdd6c482 5159 case PERF_EVENT_IOC_RESET:
f63a8daa 5160 func = _perf_event_reset;
6de6a7b9 5161 break;
3df5edad 5162
cdd6c482 5163 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5164 return _perf_event_refresh(event, arg);
08247e31 5165
cdd6c482
IM
5166 case PERF_EVENT_IOC_PERIOD:
5167 return perf_event_period(event, (u64 __user *)arg);
08247e31 5168
cf4957f1
JO
5169 case PERF_EVENT_IOC_ID:
5170 {
5171 u64 id = primary_event_id(event);
5172
5173 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5174 return -EFAULT;
5175 return 0;
5176 }
5177
cdd6c482 5178 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5179 {
ac9721f3 5180 int ret;
ac9721f3 5181 if (arg != -1) {
2903ff01
AV
5182 struct perf_event *output_event;
5183 struct fd output;
5184 ret = perf_fget_light(arg, &output);
5185 if (ret)
5186 return ret;
5187 output_event = output.file->private_data;
5188 ret = perf_event_set_output(event, output_event);
5189 fdput(output);
5190 } else {
5191 ret = perf_event_set_output(event, NULL);
ac9721f3 5192 }
ac9721f3
PZ
5193 return ret;
5194 }
a4be7c27 5195
6fb2915d
LZ
5196 case PERF_EVENT_IOC_SET_FILTER:
5197 return perf_event_set_filter(event, (void __user *)arg);
5198
2541517c
AS
5199 case PERF_EVENT_IOC_SET_BPF:
5200 return perf_event_set_bpf_prog(event, arg);
5201
86e7972f
WN
5202 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5203 struct ring_buffer *rb;
5204
5205 rcu_read_lock();
5206 rb = rcu_dereference(event->rb);
5207 if (!rb || !rb->nr_pages) {
5208 rcu_read_unlock();
5209 return -EINVAL;
5210 }
5211 rb_toggle_paused(rb, !!arg);
5212 rcu_read_unlock();
5213 return 0;
5214 }
f371b304
YS
5215
5216 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5217 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5218
5219 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5220 struct perf_event_attr new_attr;
5221 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5222 &new_attr);
5223
5224 if (err)
5225 return err;
5226
5227 return perf_event_modify_attr(event, &new_attr);
5228 }
d859e29f 5229 default:
3df5edad 5230 return -ENOTTY;
d859e29f 5231 }
3df5edad
PZ
5232
5233 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5234 perf_event_for_each(event, func);
3df5edad 5235 else
cdd6c482 5236 perf_event_for_each_child(event, func);
3df5edad
PZ
5237
5238 return 0;
d859e29f
PM
5239}
5240
f63a8daa
PZ
5241static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5242{
5243 struct perf_event *event = file->private_data;
5244 struct perf_event_context *ctx;
5245 long ret;
5246
5247 ctx = perf_event_ctx_lock(event);
5248 ret = _perf_ioctl(event, cmd, arg);
5249 perf_event_ctx_unlock(event, ctx);
5250
5251 return ret;
5252}
5253
b3f20785
PM
5254#ifdef CONFIG_COMPAT
5255static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5256 unsigned long arg)
5257{
5258 switch (_IOC_NR(cmd)) {
5259 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5260 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
5261 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5262 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
5263 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5264 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5265 cmd &= ~IOCSIZE_MASK;
5266 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5267 }
5268 break;
5269 }
5270 return perf_ioctl(file, cmd, arg);
5271}
5272#else
5273# define perf_compat_ioctl NULL
5274#endif
5275
cdd6c482 5276int perf_event_task_enable(void)
771d7cde 5277{
f63a8daa 5278 struct perf_event_context *ctx;
cdd6c482 5279 struct perf_event *event;
771d7cde 5280
cdd6c482 5281 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5282 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5283 ctx = perf_event_ctx_lock(event);
5284 perf_event_for_each_child(event, _perf_event_enable);
5285 perf_event_ctx_unlock(event, ctx);
5286 }
cdd6c482 5287 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5288
5289 return 0;
5290}
5291
cdd6c482 5292int perf_event_task_disable(void)
771d7cde 5293{
f63a8daa 5294 struct perf_event_context *ctx;
cdd6c482 5295 struct perf_event *event;
771d7cde 5296
cdd6c482 5297 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5298 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5299 ctx = perf_event_ctx_lock(event);
5300 perf_event_for_each_child(event, _perf_event_disable);
5301 perf_event_ctx_unlock(event, ctx);
5302 }
cdd6c482 5303 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5304
5305 return 0;
5306}
5307
cdd6c482 5308static int perf_event_index(struct perf_event *event)
194002b2 5309{
a4eaf7f1
PZ
5310 if (event->hw.state & PERF_HES_STOPPED)
5311 return 0;
5312
cdd6c482 5313 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
5314 return 0;
5315
35edc2a5 5316 return event->pmu->event_idx(event);
194002b2
PZ
5317}
5318
c4794295 5319static void calc_timer_values(struct perf_event *event,
e3f3541c 5320 u64 *now,
7f310a5d
EM
5321 u64 *enabled,
5322 u64 *running)
c4794295 5323{
e3f3541c 5324 u64 ctx_time;
c4794295 5325
e3f3541c
PZ
5326 *now = perf_clock();
5327 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 5328 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
5329}
5330
fa731587
PZ
5331static void perf_event_init_userpage(struct perf_event *event)
5332{
5333 struct perf_event_mmap_page *userpg;
5334 struct ring_buffer *rb;
5335
5336 rcu_read_lock();
5337 rb = rcu_dereference(event->rb);
5338 if (!rb)
5339 goto unlock;
5340
5341 userpg = rb->user_page;
5342
5343 /* Allow new userspace to detect that bit 0 is deprecated */
5344 userpg->cap_bit0_is_deprecated = 1;
5345 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
5346 userpg->data_offset = PAGE_SIZE;
5347 userpg->data_size = perf_data_size(rb);
fa731587
PZ
5348
5349unlock:
5350 rcu_read_unlock();
5351}
5352
c1317ec2
AL
5353void __weak arch_perf_update_userpage(
5354 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
5355{
5356}
5357
38ff667b
PZ
5358/*
5359 * Callers need to ensure there can be no nesting of this function, otherwise
5360 * the seqlock logic goes bad. We can not serialize this because the arch
5361 * code calls this from NMI context.
5362 */
cdd6c482 5363void perf_event_update_userpage(struct perf_event *event)
37d81828 5364{
cdd6c482 5365 struct perf_event_mmap_page *userpg;
76369139 5366 struct ring_buffer *rb;
e3f3541c 5367 u64 enabled, running, now;
38ff667b
PZ
5368
5369 rcu_read_lock();
5ec4c599
PZ
5370 rb = rcu_dereference(event->rb);
5371 if (!rb)
5372 goto unlock;
5373
0d641208
EM
5374 /*
5375 * compute total_time_enabled, total_time_running
5376 * based on snapshot values taken when the event
5377 * was last scheduled in.
5378 *
5379 * we cannot simply called update_context_time()
5380 * because of locking issue as we can be called in
5381 * NMI context
5382 */
e3f3541c 5383 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5384
76369139 5385 userpg = rb->user_page;
7b732a75 5386 /*
9d2dcc8f
MF
5387 * Disable preemption to guarantee consistent time stamps are stored to
5388 * the user page.
7b732a75
PZ
5389 */
5390 preempt_disable();
37d81828 5391 ++userpg->lock;
92f22a38 5392 barrier();
cdd6c482 5393 userpg->index = perf_event_index(event);
b5e58793 5394 userpg->offset = perf_event_count(event);
365a4038 5395 if (userpg->index)
e7850595 5396 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5397
0d641208 5398 userpg->time_enabled = enabled +
cdd6c482 5399 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5400
0d641208 5401 userpg->time_running = running +
cdd6c482 5402 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5403
c1317ec2 5404 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5405
92f22a38 5406 barrier();
37d81828 5407 ++userpg->lock;
7b732a75 5408 preempt_enable();
38ff667b 5409unlock:
7b732a75 5410 rcu_read_unlock();
37d81828 5411}
82975c46 5412EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 5413
9e3ed2d7 5414static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
906010b2 5415{
11bac800 5416 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 5417 struct ring_buffer *rb;
9e3ed2d7 5418 vm_fault_t ret = VM_FAULT_SIGBUS;
906010b2
PZ
5419
5420 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5421 if (vmf->pgoff == 0)
5422 ret = 0;
5423 return ret;
5424 }
5425
5426 rcu_read_lock();
76369139
FW
5427 rb = rcu_dereference(event->rb);
5428 if (!rb)
906010b2
PZ
5429 goto unlock;
5430
5431 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5432 goto unlock;
5433
76369139 5434 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5435 if (!vmf->page)
5436 goto unlock;
5437
5438 get_page(vmf->page);
11bac800 5439 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5440 vmf->page->index = vmf->pgoff;
5441
5442 ret = 0;
5443unlock:
5444 rcu_read_unlock();
5445
5446 return ret;
5447}
5448
10c6db11
PZ
5449static void ring_buffer_attach(struct perf_event *event,
5450 struct ring_buffer *rb)
5451{
b69cf536 5452 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5453 unsigned long flags;
5454
b69cf536
PZ
5455 if (event->rb) {
5456 /*
5457 * Should be impossible, we set this when removing
5458 * event->rb_entry and wait/clear when adding event->rb_entry.
5459 */
5460 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5461
b69cf536 5462 old_rb = event->rb;
b69cf536
PZ
5463 spin_lock_irqsave(&old_rb->event_lock, flags);
5464 list_del_rcu(&event->rb_entry);
5465 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5466
2f993cf0
ON
5467 event->rcu_batches = get_state_synchronize_rcu();
5468 event->rcu_pending = 1;
b69cf536 5469 }
10c6db11 5470
b69cf536 5471 if (rb) {
2f993cf0
ON
5472 if (event->rcu_pending) {
5473 cond_synchronize_rcu(event->rcu_batches);
5474 event->rcu_pending = 0;
5475 }
5476
b69cf536
PZ
5477 spin_lock_irqsave(&rb->event_lock, flags);
5478 list_add_rcu(&event->rb_entry, &rb->event_list);
5479 spin_unlock_irqrestore(&rb->event_lock, flags);
5480 }
5481
767ae086
AS
5482 /*
5483 * Avoid racing with perf_mmap_close(AUX): stop the event
5484 * before swizzling the event::rb pointer; if it's getting
5485 * unmapped, its aux_mmap_count will be 0 and it won't
5486 * restart. See the comment in __perf_pmu_output_stop().
5487 *
5488 * Data will inevitably be lost when set_output is done in
5489 * mid-air, but then again, whoever does it like this is
5490 * not in for the data anyway.
5491 */
5492 if (has_aux(event))
5493 perf_event_stop(event, 0);
5494
b69cf536
PZ
5495 rcu_assign_pointer(event->rb, rb);
5496
5497 if (old_rb) {
5498 ring_buffer_put(old_rb);
5499 /*
5500 * Since we detached before setting the new rb, so that we
5501 * could attach the new rb, we could have missed a wakeup.
5502 * Provide it now.
5503 */
5504 wake_up_all(&event->waitq);
5505 }
10c6db11
PZ
5506}
5507
5508static void ring_buffer_wakeup(struct perf_event *event)
5509{
5510 struct ring_buffer *rb;
5511
5512 rcu_read_lock();
5513 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5514 if (rb) {
5515 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5516 wake_up_all(&event->waitq);
5517 }
10c6db11
PZ
5518 rcu_read_unlock();
5519}
5520
fdc26706 5521struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5522{
76369139 5523 struct ring_buffer *rb;
7b732a75 5524
ac9721f3 5525 rcu_read_lock();
76369139
FW
5526 rb = rcu_dereference(event->rb);
5527 if (rb) {
fecb8ed2 5528 if (!refcount_inc_not_zero(&rb->refcount))
76369139 5529 rb = NULL;
ac9721f3
PZ
5530 }
5531 rcu_read_unlock();
5532
76369139 5533 return rb;
ac9721f3
PZ
5534}
5535
fdc26706 5536void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5537{
fecb8ed2 5538 if (!refcount_dec_and_test(&rb->refcount))
ac9721f3 5539 return;
7b732a75 5540
9bb5d40c 5541 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5542
76369139 5543 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5544}
5545
5546static void perf_mmap_open(struct vm_area_struct *vma)
5547{
cdd6c482 5548 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5549
cdd6c482 5550 atomic_inc(&event->mmap_count);
9bb5d40c 5551 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5552
45bfb2e5
PZ
5553 if (vma->vm_pgoff)
5554 atomic_inc(&event->rb->aux_mmap_count);
5555
1e0fb9ec 5556 if (event->pmu->event_mapped)
bfe33492 5557 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5558}
5559
95ff4ca2
AS
5560static void perf_pmu_output_stop(struct perf_event *event);
5561
9bb5d40c
PZ
5562/*
5563 * A buffer can be mmap()ed multiple times; either directly through the same
5564 * event, or through other events by use of perf_event_set_output().
5565 *
5566 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5567 * the buffer here, where we still have a VM context. This means we need
5568 * to detach all events redirecting to us.
5569 */
7b732a75
PZ
5570static void perf_mmap_close(struct vm_area_struct *vma)
5571{
cdd6c482 5572 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5573
b69cf536 5574 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5575 struct user_struct *mmap_user = rb->mmap_user;
5576 int mmap_locked = rb->mmap_locked;
5577 unsigned long size = perf_data_size(rb);
789f90fc 5578
1e0fb9ec 5579 if (event->pmu->event_unmapped)
bfe33492 5580 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5581
45bfb2e5
PZ
5582 /*
5583 * rb->aux_mmap_count will always drop before rb->mmap_count and
5584 * event->mmap_count, so it is ok to use event->mmap_mutex to
5585 * serialize with perf_mmap here.
5586 */
5587 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5588 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5589 /*
5590 * Stop all AUX events that are writing to this buffer,
5591 * so that we can free its AUX pages and corresponding PMU
5592 * data. Note that after rb::aux_mmap_count dropped to zero,
5593 * they won't start any more (see perf_aux_output_begin()).
5594 */
5595 perf_pmu_output_stop(event);
5596
5597 /* now it's safe to free the pages */
45bfb2e5 5598 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
70f8a3ca 5599 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
45bfb2e5 5600
95ff4ca2 5601 /* this has to be the last one */
45bfb2e5 5602 rb_free_aux(rb);
ca3bb3d0 5603 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
95ff4ca2 5604
45bfb2e5
PZ
5605 mutex_unlock(&event->mmap_mutex);
5606 }
5607
9bb5d40c
PZ
5608 atomic_dec(&rb->mmap_count);
5609
5610 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5611 goto out_put;
9bb5d40c 5612
b69cf536 5613 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5614 mutex_unlock(&event->mmap_mutex);
5615
5616 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5617 if (atomic_read(&rb->mmap_count))
5618 goto out_put;
ac9721f3 5619
9bb5d40c
PZ
5620 /*
5621 * No other mmap()s, detach from all other events that might redirect
5622 * into the now unreachable buffer. Somewhat complicated by the
5623 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5624 */
5625again:
5626 rcu_read_lock();
5627 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5628 if (!atomic_long_inc_not_zero(&event->refcount)) {
5629 /*
5630 * This event is en-route to free_event() which will
5631 * detach it and remove it from the list.
5632 */
5633 continue;
5634 }
5635 rcu_read_unlock();
789f90fc 5636
9bb5d40c
PZ
5637 mutex_lock(&event->mmap_mutex);
5638 /*
5639 * Check we didn't race with perf_event_set_output() which can
5640 * swizzle the rb from under us while we were waiting to
5641 * acquire mmap_mutex.
5642 *
5643 * If we find a different rb; ignore this event, a next
5644 * iteration will no longer find it on the list. We have to
5645 * still restart the iteration to make sure we're not now
5646 * iterating the wrong list.
5647 */
b69cf536
PZ
5648 if (event->rb == rb)
5649 ring_buffer_attach(event, NULL);
5650
cdd6c482 5651 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5652 put_event(event);
ac9721f3 5653
9bb5d40c
PZ
5654 /*
5655 * Restart the iteration; either we're on the wrong list or
5656 * destroyed its integrity by doing a deletion.
5657 */
5658 goto again;
7b732a75 5659 }
9bb5d40c
PZ
5660 rcu_read_unlock();
5661
5662 /*
5663 * It could be there's still a few 0-ref events on the list; they'll
5664 * get cleaned up by free_event() -- they'll also still have their
5665 * ref on the rb and will free it whenever they are done with it.
5666 *
5667 * Aside from that, this buffer is 'fully' detached and unmapped,
5668 * undo the VM accounting.
5669 */
5670
5671 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
70f8a3ca 5672 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
9bb5d40c
PZ
5673 free_uid(mmap_user);
5674
b69cf536 5675out_put:
9bb5d40c 5676 ring_buffer_put(rb); /* could be last */
37d81828
PM
5677}
5678
f0f37e2f 5679static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5680 .open = perf_mmap_open,
fca0c116 5681 .close = perf_mmap_close, /* non mergeable */
43a21ea8
PZ
5682 .fault = perf_mmap_fault,
5683 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5684};
5685
5686static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5687{
cdd6c482 5688 struct perf_event *event = file->private_data;
22a4f650 5689 unsigned long user_locked, user_lock_limit;
789f90fc 5690 struct user_struct *user = current_user();
22a4f650 5691 unsigned long locked, lock_limit;
45bfb2e5 5692 struct ring_buffer *rb = NULL;
7b732a75
PZ
5693 unsigned long vma_size;
5694 unsigned long nr_pages;
45bfb2e5 5695 long user_extra = 0, extra = 0;
d57e34fd 5696 int ret = 0, flags = 0;
37d81828 5697
c7920614
PZ
5698 /*
5699 * Don't allow mmap() of inherited per-task counters. This would
5700 * create a performance issue due to all children writing to the
76369139 5701 * same rb.
c7920614
PZ
5702 */
5703 if (event->cpu == -1 && event->attr.inherit)
5704 return -EINVAL;
5705
43a21ea8 5706 if (!(vma->vm_flags & VM_SHARED))
37d81828 5707 return -EINVAL;
7b732a75
PZ
5708
5709 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5710
5711 if (vma->vm_pgoff == 0) {
5712 nr_pages = (vma_size / PAGE_SIZE) - 1;
5713 } else {
5714 /*
5715 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5716 * mapped, all subsequent mappings should have the same size
5717 * and offset. Must be above the normal perf buffer.
5718 */
5719 u64 aux_offset, aux_size;
5720
5721 if (!event->rb)
5722 return -EINVAL;
5723
5724 nr_pages = vma_size / PAGE_SIZE;
5725
5726 mutex_lock(&event->mmap_mutex);
5727 ret = -EINVAL;
5728
5729 rb = event->rb;
5730 if (!rb)
5731 goto aux_unlock;
5732
6aa7de05
MR
5733 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5734 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5735
5736 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5737 goto aux_unlock;
5738
5739 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5740 goto aux_unlock;
5741
5742 /* already mapped with a different offset */
5743 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5744 goto aux_unlock;
5745
5746 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5747 goto aux_unlock;
5748
5749 /* already mapped with a different size */
5750 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5751 goto aux_unlock;
5752
5753 if (!is_power_of_2(nr_pages))
5754 goto aux_unlock;
5755
5756 if (!atomic_inc_not_zero(&rb->mmap_count))
5757 goto aux_unlock;
5758
5759 if (rb_has_aux(rb)) {
5760 atomic_inc(&rb->aux_mmap_count);
5761 ret = 0;
5762 goto unlock;
5763 }
5764
5765 atomic_set(&rb->aux_mmap_count, 1);
5766 user_extra = nr_pages;
5767
5768 goto accounting;
5769 }
7b732a75 5770
7730d865 5771 /*
76369139 5772 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5773 * can do bitmasks instead of modulo.
5774 */
2ed11312 5775 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5776 return -EINVAL;
5777
7b732a75 5778 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5779 return -EINVAL;
5780
cdd6c482 5781 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5782again:
cdd6c482 5783 mutex_lock(&event->mmap_mutex);
76369139 5784 if (event->rb) {
9bb5d40c 5785 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5786 ret = -EINVAL;
9bb5d40c
PZ
5787 goto unlock;
5788 }
5789
5790 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5791 /*
5792 * Raced against perf_mmap_close() through
5793 * perf_event_set_output(). Try again, hope for better
5794 * luck.
5795 */
5796 mutex_unlock(&event->mmap_mutex);
5797 goto again;
5798 }
5799
ebb3c4c4
PZ
5800 goto unlock;
5801 }
5802
789f90fc 5803 user_extra = nr_pages + 1;
45bfb2e5
PZ
5804
5805accounting:
cdd6c482 5806 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5807
5808 /*
5809 * Increase the limit linearly with more CPUs:
5810 */
5811 user_lock_limit *= num_online_cpus();
5812
789f90fc 5813 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5814
789f90fc
PZ
5815 if (user_locked > user_lock_limit)
5816 extra = user_locked - user_lock_limit;
7b732a75 5817
78d7d407 5818 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5819 lock_limit >>= PAGE_SHIFT;
70f8a3ca 5820 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
7b732a75 5821
459ec28a
IM
5822 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5823 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5824 ret = -EPERM;
5825 goto unlock;
5826 }
7b732a75 5827
45bfb2e5 5828 WARN_ON(!rb && event->rb);
906010b2 5829
d57e34fd 5830 if (vma->vm_flags & VM_WRITE)
76369139 5831 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5832
76369139 5833 if (!rb) {
45bfb2e5
PZ
5834 rb = rb_alloc(nr_pages,
5835 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5836 event->cpu, flags);
26cb63ad 5837
45bfb2e5
PZ
5838 if (!rb) {
5839 ret = -ENOMEM;
5840 goto unlock;
5841 }
43a21ea8 5842
45bfb2e5
PZ
5843 atomic_set(&rb->mmap_count, 1);
5844 rb->mmap_user = get_current_user();
5845 rb->mmap_locked = extra;
26cb63ad 5846
45bfb2e5 5847 ring_buffer_attach(event, rb);
ac9721f3 5848
45bfb2e5
PZ
5849 perf_event_init_userpage(event);
5850 perf_event_update_userpage(event);
5851 } else {
1a594131
AS
5852 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5853 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5854 if (!ret)
5855 rb->aux_mmap_locked = extra;
5856 }
9a0f05cb 5857
ebb3c4c4 5858unlock:
45bfb2e5
PZ
5859 if (!ret) {
5860 atomic_long_add(user_extra, &user->locked_vm);
70f8a3ca 5861 atomic64_add(extra, &vma->vm_mm->pinned_vm);
45bfb2e5 5862
ac9721f3 5863 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5864 } else if (rb) {
5865 atomic_dec(&rb->mmap_count);
5866 }
5867aux_unlock:
cdd6c482 5868 mutex_unlock(&event->mmap_mutex);
37d81828 5869
9bb5d40c
PZ
5870 /*
5871 * Since pinned accounting is per vm we cannot allow fork() to copy our
5872 * vma.
5873 */
26cb63ad 5874 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5875 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5876
1e0fb9ec 5877 if (event->pmu->event_mapped)
bfe33492 5878 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5879
7b732a75 5880 return ret;
37d81828
PM
5881}
5882
3c446b3d
PZ
5883static int perf_fasync(int fd, struct file *filp, int on)
5884{
496ad9aa 5885 struct inode *inode = file_inode(filp);
cdd6c482 5886 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5887 int retval;
5888
5955102c 5889 inode_lock(inode);
cdd6c482 5890 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5891 inode_unlock(inode);
3c446b3d
PZ
5892
5893 if (retval < 0)
5894 return retval;
5895
5896 return 0;
5897}
5898
0793a61d 5899static const struct file_operations perf_fops = {
3326c1ce 5900 .llseek = no_llseek,
0793a61d
TG
5901 .release = perf_release,
5902 .read = perf_read,
5903 .poll = perf_poll,
d859e29f 5904 .unlocked_ioctl = perf_ioctl,
b3f20785 5905 .compat_ioctl = perf_compat_ioctl,
37d81828 5906 .mmap = perf_mmap,
3c446b3d 5907 .fasync = perf_fasync,
0793a61d
TG
5908};
5909
925d519a 5910/*
cdd6c482 5911 * Perf event wakeup
925d519a
PZ
5912 *
5913 * If there's data, ensure we set the poll() state and publish everything
5914 * to user-space before waking everybody up.
5915 */
5916
fed66e2c
PZ
5917static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5918{
5919 /* only the parent has fasync state */
5920 if (event->parent)
5921 event = event->parent;
5922 return &event->fasync;
5923}
5924
cdd6c482 5925void perf_event_wakeup(struct perf_event *event)
925d519a 5926{
10c6db11 5927 ring_buffer_wakeup(event);
4c9e2542 5928
cdd6c482 5929 if (event->pending_kill) {
fed66e2c 5930 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5931 event->pending_kill = 0;
4c9e2542 5932 }
925d519a
PZ
5933}
5934
1d54ad94
PZ
5935static void perf_pending_event_disable(struct perf_event *event)
5936{
5937 int cpu = READ_ONCE(event->pending_disable);
5938
5939 if (cpu < 0)
5940 return;
5941
5942 if (cpu == smp_processor_id()) {
5943 WRITE_ONCE(event->pending_disable, -1);
5944 perf_event_disable_local(event);
5945 return;
5946 }
5947
5948 /*
5949 * CPU-A CPU-B
5950 *
5951 * perf_event_disable_inatomic()
5952 * @pending_disable = CPU-A;
5953 * irq_work_queue();
5954 *
5955 * sched-out
5956 * @pending_disable = -1;
5957 *
5958 * sched-in
5959 * perf_event_disable_inatomic()
5960 * @pending_disable = CPU-B;
5961 * irq_work_queue(); // FAILS
5962 *
5963 * irq_work_run()
5964 * perf_pending_event()
5965 *
5966 * But the event runs on CPU-B and wants disabling there.
5967 */
5968 irq_work_queue_on(&event->pending, cpu);
5969}
5970
e360adbe 5971static void perf_pending_event(struct irq_work *entry)
79f14641 5972{
1d54ad94 5973 struct perf_event *event = container_of(entry, struct perf_event, pending);
d525211f
PZ
5974 int rctx;
5975
5976 rctx = perf_swevent_get_recursion_context();
5977 /*
5978 * If we 'fail' here, that's OK, it means recursion is already disabled
5979 * and we won't recurse 'further'.
5980 */
79f14641 5981
1d54ad94 5982 perf_pending_event_disable(event);
79f14641 5983
cdd6c482
IM
5984 if (event->pending_wakeup) {
5985 event->pending_wakeup = 0;
5986 perf_event_wakeup(event);
79f14641 5987 }
d525211f
PZ
5988
5989 if (rctx >= 0)
5990 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5991}
5992
39447b38
ZY
5993/*
5994 * We assume there is only KVM supporting the callbacks.
5995 * Later on, we might change it to a list if there is
5996 * another virtualization implementation supporting the callbacks.
5997 */
5998struct perf_guest_info_callbacks *perf_guest_cbs;
5999
6000int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6001{
6002 perf_guest_cbs = cbs;
6003 return 0;
6004}
6005EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6006
6007int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6008{
6009 perf_guest_cbs = NULL;
6010 return 0;
6011}
6012EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6013
4018994f
JO
6014static void
6015perf_output_sample_regs(struct perf_output_handle *handle,
6016 struct pt_regs *regs, u64 mask)
6017{
6018 int bit;
29dd3288 6019 DECLARE_BITMAP(_mask, 64);
4018994f 6020
29dd3288
MS
6021 bitmap_from_u64(_mask, mask);
6022 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
6023 u64 val;
6024
6025 val = perf_reg_value(regs, bit);
6026 perf_output_put(handle, val);
6027 }
6028}
6029
60e2364e 6030static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
6031 struct pt_regs *regs,
6032 struct pt_regs *regs_user_copy)
4018994f 6033{
88a7c26a
AL
6034 if (user_mode(regs)) {
6035 regs_user->abi = perf_reg_abi(current);
2565711f 6036 regs_user->regs = regs;
085ebfe9 6037 } else if (!(current->flags & PF_KTHREAD)) {
88a7c26a 6038 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
6039 } else {
6040 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6041 regs_user->regs = NULL;
4018994f
JO
6042 }
6043}
6044
60e2364e
SE
6045static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6046 struct pt_regs *regs)
6047{
6048 regs_intr->regs = regs;
6049 regs_intr->abi = perf_reg_abi(current);
6050}
6051
6052
c5ebcedb
JO
6053/*
6054 * Get remaining task size from user stack pointer.
6055 *
6056 * It'd be better to take stack vma map and limit this more
9f014e3a 6057 * precisely, but there's no way to get it safely under interrupt,
c5ebcedb
JO
6058 * so using TASK_SIZE as limit.
6059 */
6060static u64 perf_ustack_task_size(struct pt_regs *regs)
6061{
6062 unsigned long addr = perf_user_stack_pointer(regs);
6063
6064 if (!addr || addr >= TASK_SIZE)
6065 return 0;
6066
6067 return TASK_SIZE - addr;
6068}
6069
6070static u16
6071perf_sample_ustack_size(u16 stack_size, u16 header_size,
6072 struct pt_regs *regs)
6073{
6074 u64 task_size;
6075
6076 /* No regs, no stack pointer, no dump. */
6077 if (!regs)
6078 return 0;
6079
6080 /*
6081 * Check if we fit in with the requested stack size into the:
6082 * - TASK_SIZE
6083 * If we don't, we limit the size to the TASK_SIZE.
6084 *
6085 * - remaining sample size
6086 * If we don't, we customize the stack size to
6087 * fit in to the remaining sample size.
6088 */
6089
6090 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6091 stack_size = min(stack_size, (u16) task_size);
6092
6093 /* Current header size plus static size and dynamic size. */
6094 header_size += 2 * sizeof(u64);
6095
6096 /* Do we fit in with the current stack dump size? */
6097 if ((u16) (header_size + stack_size) < header_size) {
6098 /*
6099 * If we overflow the maximum size for the sample,
6100 * we customize the stack dump size to fit in.
6101 */
6102 stack_size = USHRT_MAX - header_size - sizeof(u64);
6103 stack_size = round_up(stack_size, sizeof(u64));
6104 }
6105
6106 return stack_size;
6107}
6108
6109static void
6110perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6111 struct pt_regs *regs)
6112{
6113 /* Case of a kernel thread, nothing to dump */
6114 if (!regs) {
6115 u64 size = 0;
6116 perf_output_put(handle, size);
6117 } else {
6118 unsigned long sp;
6119 unsigned int rem;
6120 u64 dyn_size;
02e18447 6121 mm_segment_t fs;
c5ebcedb
JO
6122
6123 /*
6124 * We dump:
6125 * static size
6126 * - the size requested by user or the best one we can fit
6127 * in to the sample max size
6128 * data
6129 * - user stack dump data
6130 * dynamic size
6131 * - the actual dumped size
6132 */
6133
6134 /* Static size. */
6135 perf_output_put(handle, dump_size);
6136
6137 /* Data. */
6138 sp = perf_user_stack_pointer(regs);
02e18447
YC
6139 fs = get_fs();
6140 set_fs(USER_DS);
c5ebcedb 6141 rem = __output_copy_user(handle, (void *) sp, dump_size);
02e18447 6142 set_fs(fs);
c5ebcedb
JO
6143 dyn_size = dump_size - rem;
6144
6145 perf_output_skip(handle, rem);
6146
6147 /* Dynamic size. */
6148 perf_output_put(handle, dyn_size);
6149 }
6150}
6151
c980d109
ACM
6152static void __perf_event_header__init_id(struct perf_event_header *header,
6153 struct perf_sample_data *data,
6154 struct perf_event *event)
6844c09d
ACM
6155{
6156 u64 sample_type = event->attr.sample_type;
6157
6158 data->type = sample_type;
6159 header->size += event->id_header_size;
6160
6161 if (sample_type & PERF_SAMPLE_TID) {
6162 /* namespace issues */
6163 data->tid_entry.pid = perf_event_pid(event, current);
6164 data->tid_entry.tid = perf_event_tid(event, current);
6165 }
6166
6167 if (sample_type & PERF_SAMPLE_TIME)
34f43927 6168 data->time = perf_event_clock(event);
6844c09d 6169
ff3d527c 6170 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
6171 data->id = primary_event_id(event);
6172
6173 if (sample_type & PERF_SAMPLE_STREAM_ID)
6174 data->stream_id = event->id;
6175
6176 if (sample_type & PERF_SAMPLE_CPU) {
6177 data->cpu_entry.cpu = raw_smp_processor_id();
6178 data->cpu_entry.reserved = 0;
6179 }
6180}
6181
76369139
FW
6182void perf_event_header__init_id(struct perf_event_header *header,
6183 struct perf_sample_data *data,
6184 struct perf_event *event)
c980d109
ACM
6185{
6186 if (event->attr.sample_id_all)
6187 __perf_event_header__init_id(header, data, event);
6188}
6189
6190static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6191 struct perf_sample_data *data)
6192{
6193 u64 sample_type = data->type;
6194
6195 if (sample_type & PERF_SAMPLE_TID)
6196 perf_output_put(handle, data->tid_entry);
6197
6198 if (sample_type & PERF_SAMPLE_TIME)
6199 perf_output_put(handle, data->time);
6200
6201 if (sample_type & PERF_SAMPLE_ID)
6202 perf_output_put(handle, data->id);
6203
6204 if (sample_type & PERF_SAMPLE_STREAM_ID)
6205 perf_output_put(handle, data->stream_id);
6206
6207 if (sample_type & PERF_SAMPLE_CPU)
6208 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
6209
6210 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6211 perf_output_put(handle, data->id);
c980d109
ACM
6212}
6213
76369139
FW
6214void perf_event__output_id_sample(struct perf_event *event,
6215 struct perf_output_handle *handle,
6216 struct perf_sample_data *sample)
c980d109
ACM
6217{
6218 if (event->attr.sample_id_all)
6219 __perf_event__output_id_sample(handle, sample);
6220}
6221
3dab77fb 6222static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
6223 struct perf_event *event,
6224 u64 enabled, u64 running)
3dab77fb 6225{
cdd6c482 6226 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6227 u64 values[4];
6228 int n = 0;
6229
b5e58793 6230 values[n++] = perf_event_count(event);
3dab77fb 6231 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 6232 values[n++] = enabled +
cdd6c482 6233 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
6234 }
6235 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 6236 values[n++] = running +
cdd6c482 6237 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
6238 }
6239 if (read_format & PERF_FORMAT_ID)
cdd6c482 6240 values[n++] = primary_event_id(event);
3dab77fb 6241
76369139 6242 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6243}
6244
3dab77fb 6245static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
6246 struct perf_event *event,
6247 u64 enabled, u64 running)
3dab77fb 6248{
cdd6c482
IM
6249 struct perf_event *leader = event->group_leader, *sub;
6250 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6251 u64 values[5];
6252 int n = 0;
6253
6254 values[n++] = 1 + leader->nr_siblings;
6255
6256 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 6257 values[n++] = enabled;
3dab77fb
PZ
6258
6259 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 6260 values[n++] = running;
3dab77fb 6261
9e5b127d
PZ
6262 if ((leader != event) &&
6263 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6264 leader->pmu->read(leader);
6265
b5e58793 6266 values[n++] = perf_event_count(leader);
3dab77fb 6267 if (read_format & PERF_FORMAT_ID)
cdd6c482 6268 values[n++] = primary_event_id(leader);
3dab77fb 6269
76369139 6270 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 6271
edb39592 6272 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
6273 n = 0;
6274
6f5ab001
JO
6275 if ((sub != event) &&
6276 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6277 sub->pmu->read(sub);
6278
b5e58793 6279 values[n++] = perf_event_count(sub);
3dab77fb 6280 if (read_format & PERF_FORMAT_ID)
cdd6c482 6281 values[n++] = primary_event_id(sub);
3dab77fb 6282
76369139 6283 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6284 }
6285}
6286
eed01528
SE
6287#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6288 PERF_FORMAT_TOTAL_TIME_RUNNING)
6289
ba5213ae
PZ
6290/*
6291 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6292 *
6293 * The problem is that its both hard and excessively expensive to iterate the
6294 * child list, not to mention that its impossible to IPI the children running
6295 * on another CPU, from interrupt/NMI context.
6296 */
3dab77fb 6297static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 6298 struct perf_event *event)
3dab77fb 6299{
e3f3541c 6300 u64 enabled = 0, running = 0, now;
eed01528
SE
6301 u64 read_format = event->attr.read_format;
6302
6303 /*
6304 * compute total_time_enabled, total_time_running
6305 * based on snapshot values taken when the event
6306 * was last scheduled in.
6307 *
6308 * we cannot simply called update_context_time()
6309 * because of locking issue as we are called in
6310 * NMI context
6311 */
c4794295 6312 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 6313 calc_timer_values(event, &now, &enabled, &running);
eed01528 6314
cdd6c482 6315 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 6316 perf_output_read_group(handle, event, enabled, running);
3dab77fb 6317 else
eed01528 6318 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
6319}
6320
5622f295
MM
6321void perf_output_sample(struct perf_output_handle *handle,
6322 struct perf_event_header *header,
6323 struct perf_sample_data *data,
cdd6c482 6324 struct perf_event *event)
5622f295
MM
6325{
6326 u64 sample_type = data->type;
6327
6328 perf_output_put(handle, *header);
6329
ff3d527c
AH
6330 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6331 perf_output_put(handle, data->id);
6332
5622f295
MM
6333 if (sample_type & PERF_SAMPLE_IP)
6334 perf_output_put(handle, data->ip);
6335
6336 if (sample_type & PERF_SAMPLE_TID)
6337 perf_output_put(handle, data->tid_entry);
6338
6339 if (sample_type & PERF_SAMPLE_TIME)
6340 perf_output_put(handle, data->time);
6341
6342 if (sample_type & PERF_SAMPLE_ADDR)
6343 perf_output_put(handle, data->addr);
6344
6345 if (sample_type & PERF_SAMPLE_ID)
6346 perf_output_put(handle, data->id);
6347
6348 if (sample_type & PERF_SAMPLE_STREAM_ID)
6349 perf_output_put(handle, data->stream_id);
6350
6351 if (sample_type & PERF_SAMPLE_CPU)
6352 perf_output_put(handle, data->cpu_entry);
6353
6354 if (sample_type & PERF_SAMPLE_PERIOD)
6355 perf_output_put(handle, data->period);
6356
6357 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 6358 perf_output_read(handle, event);
5622f295
MM
6359
6360 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 6361 int size = 1;
5622f295 6362
99e818cc
JO
6363 size += data->callchain->nr;
6364 size *= sizeof(u64);
6365 __output_copy(handle, data->callchain, size);
5622f295
MM
6366 }
6367
6368 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6369 struct perf_raw_record *raw = data->raw;
6370
6371 if (raw) {
6372 struct perf_raw_frag *frag = &raw->frag;
6373
6374 perf_output_put(handle, raw->size);
6375 do {
6376 if (frag->copy) {
6377 __output_custom(handle, frag->copy,
6378 frag->data, frag->size);
6379 } else {
6380 __output_copy(handle, frag->data,
6381 frag->size);
6382 }
6383 if (perf_raw_frag_last(frag))
6384 break;
6385 frag = frag->next;
6386 } while (1);
6387 if (frag->pad)
6388 __output_skip(handle, NULL, frag->pad);
5622f295
MM
6389 } else {
6390 struct {
6391 u32 size;
6392 u32 data;
6393 } raw = {
6394 .size = sizeof(u32),
6395 .data = 0,
6396 };
6397 perf_output_put(handle, raw);
6398 }
6399 }
a7ac67ea 6400
bce38cd5
SE
6401 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6402 if (data->br_stack) {
6403 size_t size;
6404
6405 size = data->br_stack->nr
6406 * sizeof(struct perf_branch_entry);
6407
6408 perf_output_put(handle, data->br_stack->nr);
6409 perf_output_copy(handle, data->br_stack->entries, size);
6410 } else {
6411 /*
6412 * we always store at least the value of nr
6413 */
6414 u64 nr = 0;
6415 perf_output_put(handle, nr);
6416 }
6417 }
4018994f
JO
6418
6419 if (sample_type & PERF_SAMPLE_REGS_USER) {
6420 u64 abi = data->regs_user.abi;
6421
6422 /*
6423 * If there are no regs to dump, notice it through
6424 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6425 */
6426 perf_output_put(handle, abi);
6427
6428 if (abi) {
6429 u64 mask = event->attr.sample_regs_user;
6430 perf_output_sample_regs(handle,
6431 data->regs_user.regs,
6432 mask);
6433 }
6434 }
c5ebcedb 6435
a5cdd40c 6436 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6437 perf_output_sample_ustack(handle,
6438 data->stack_user_size,
6439 data->regs_user.regs);
a5cdd40c 6440 }
c3feedf2
AK
6441
6442 if (sample_type & PERF_SAMPLE_WEIGHT)
6443 perf_output_put(handle, data->weight);
d6be9ad6
SE
6444
6445 if (sample_type & PERF_SAMPLE_DATA_SRC)
6446 perf_output_put(handle, data->data_src.val);
a5cdd40c 6447
fdfbbd07
AK
6448 if (sample_type & PERF_SAMPLE_TRANSACTION)
6449 perf_output_put(handle, data->txn);
6450
60e2364e
SE
6451 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6452 u64 abi = data->regs_intr.abi;
6453 /*
6454 * If there are no regs to dump, notice it through
6455 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6456 */
6457 perf_output_put(handle, abi);
6458
6459 if (abi) {
6460 u64 mask = event->attr.sample_regs_intr;
6461
6462 perf_output_sample_regs(handle,
6463 data->regs_intr.regs,
6464 mask);
6465 }
6466 }
6467
fc7ce9c7
KL
6468 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6469 perf_output_put(handle, data->phys_addr);
6470
a5cdd40c
PZ
6471 if (!event->attr.watermark) {
6472 int wakeup_events = event->attr.wakeup_events;
6473
6474 if (wakeup_events) {
6475 struct ring_buffer *rb = handle->rb;
6476 int events = local_inc_return(&rb->events);
6477
6478 if (events >= wakeup_events) {
6479 local_sub(wakeup_events, &rb->events);
6480 local_inc(&rb->wakeup);
6481 }
6482 }
6483 }
5622f295
MM
6484}
6485
fc7ce9c7
KL
6486static u64 perf_virt_to_phys(u64 virt)
6487{
6488 u64 phys_addr = 0;
6489 struct page *p = NULL;
6490
6491 if (!virt)
6492 return 0;
6493
6494 if (virt >= TASK_SIZE) {
6495 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6496 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6497 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6498 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6499 } else {
6500 /*
6501 * Walking the pages tables for user address.
6502 * Interrupts are disabled, so it prevents any tear down
6503 * of the page tables.
6504 * Try IRQ-safe __get_user_pages_fast first.
6505 * If failed, leave phys_addr as 0.
6506 */
6507 if ((current->mm != NULL) &&
6508 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6509 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6510
6511 if (p)
6512 put_page(p);
6513 }
6514
6515 return phys_addr;
6516}
6517
99e818cc
JO
6518static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6519
6cbc304f 6520struct perf_callchain_entry *
8cf7e0e2
JO
6521perf_callchain(struct perf_event *event, struct pt_regs *regs)
6522{
6523 bool kernel = !event->attr.exclude_callchain_kernel;
6524 bool user = !event->attr.exclude_callchain_user;
6525 /* Disallow cross-task user callchains. */
6526 bool crosstask = event->ctx->task && event->ctx->task != current;
6527 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 6528 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6529
6530 if (!kernel && !user)
99e818cc 6531 return &__empty_callchain;
8cf7e0e2 6532
99e818cc
JO
6533 callchain = get_perf_callchain(regs, 0, kernel, user,
6534 max_stack, crosstask, true);
6535 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6536}
6537
5622f295
MM
6538void perf_prepare_sample(struct perf_event_header *header,
6539 struct perf_sample_data *data,
cdd6c482 6540 struct perf_event *event,
5622f295 6541 struct pt_regs *regs)
7b732a75 6542{
cdd6c482 6543 u64 sample_type = event->attr.sample_type;
7b732a75 6544
cdd6c482 6545 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6546 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6547
6548 header->misc = 0;
6549 header->misc |= perf_misc_flags(regs);
6fab0192 6550
c980d109 6551 __perf_event_header__init_id(header, data, event);
6844c09d 6552
c320c7b7 6553 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6554 data->ip = perf_instruction_pointer(regs);
6555
b23f3325 6556 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6557 int size = 1;
394ee076 6558
6cbc304f
PZ
6559 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6560 data->callchain = perf_callchain(event, regs);
6561
99e818cc 6562 size += data->callchain->nr;
5622f295
MM
6563
6564 header->size += size * sizeof(u64);
394ee076
PZ
6565 }
6566
3a43ce68 6567 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6568 struct perf_raw_record *raw = data->raw;
6569 int size;
6570
6571 if (raw) {
6572 struct perf_raw_frag *frag = &raw->frag;
6573 u32 sum = 0;
6574
6575 do {
6576 sum += frag->size;
6577 if (perf_raw_frag_last(frag))
6578 break;
6579 frag = frag->next;
6580 } while (1);
6581
6582 size = round_up(sum + sizeof(u32), sizeof(u64));
6583 raw->size = size - sizeof(u32);
6584 frag->pad = raw->size - sum;
6585 } else {
6586 size = sizeof(u64);
6587 }
a044560c 6588
7e3f977e 6589 header->size += size;
7f453c24 6590 }
bce38cd5
SE
6591
6592 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6593 int size = sizeof(u64); /* nr */
6594 if (data->br_stack) {
6595 size += data->br_stack->nr
6596 * sizeof(struct perf_branch_entry);
6597 }
6598 header->size += size;
6599 }
4018994f 6600
2565711f 6601 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6602 perf_sample_regs_user(&data->regs_user, regs,
6603 &data->regs_user_copy);
2565711f 6604
4018994f
JO
6605 if (sample_type & PERF_SAMPLE_REGS_USER) {
6606 /* regs dump ABI info */
6607 int size = sizeof(u64);
6608
4018994f
JO
6609 if (data->regs_user.regs) {
6610 u64 mask = event->attr.sample_regs_user;
6611 size += hweight64(mask) * sizeof(u64);
6612 }
6613
6614 header->size += size;
6615 }
c5ebcedb
JO
6616
6617 if (sample_type & PERF_SAMPLE_STACK_USER) {
6618 /*
9f014e3a 6619 * Either we need PERF_SAMPLE_STACK_USER bit to be always
c5ebcedb
JO
6620 * processed as the last one or have additional check added
6621 * in case new sample type is added, because we could eat
6622 * up the rest of the sample size.
6623 */
c5ebcedb
JO
6624 u16 stack_size = event->attr.sample_stack_user;
6625 u16 size = sizeof(u64);
6626
c5ebcedb 6627 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6628 data->regs_user.regs);
c5ebcedb
JO
6629
6630 /*
6631 * If there is something to dump, add space for the dump
6632 * itself and for the field that tells the dynamic size,
6633 * which is how many have been actually dumped.
6634 */
6635 if (stack_size)
6636 size += sizeof(u64) + stack_size;
6637
6638 data->stack_user_size = stack_size;
6639 header->size += size;
6640 }
60e2364e
SE
6641
6642 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6643 /* regs dump ABI info */
6644 int size = sizeof(u64);
6645
6646 perf_sample_regs_intr(&data->regs_intr, regs);
6647
6648 if (data->regs_intr.regs) {
6649 u64 mask = event->attr.sample_regs_intr;
6650
6651 size += hweight64(mask) * sizeof(u64);
6652 }
6653
6654 header->size += size;
6655 }
fc7ce9c7
KL
6656
6657 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6658 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6659}
7f453c24 6660
56201969 6661static __always_inline int
9ecda41a
WN
6662__perf_event_output(struct perf_event *event,
6663 struct perf_sample_data *data,
6664 struct pt_regs *regs,
6665 int (*output_begin)(struct perf_output_handle *,
6666 struct perf_event *,
6667 unsigned int))
5622f295
MM
6668{
6669 struct perf_output_handle handle;
6670 struct perf_event_header header;
56201969 6671 int err;
689802b2 6672
927c7a9e
FW
6673 /* protect the callchain buffers */
6674 rcu_read_lock();
6675
cdd6c482 6676 perf_prepare_sample(&header, data, event, regs);
5c148194 6677
56201969
ACM
6678 err = output_begin(&handle, event, header.size);
6679 if (err)
927c7a9e 6680 goto exit;
0322cd6e 6681
cdd6c482 6682 perf_output_sample(&handle, &header, data, event);
f413cdb8 6683
8a057d84 6684 perf_output_end(&handle);
927c7a9e
FW
6685
6686exit:
6687 rcu_read_unlock();
56201969 6688 return err;
0322cd6e
PZ
6689}
6690
9ecda41a
WN
6691void
6692perf_event_output_forward(struct perf_event *event,
6693 struct perf_sample_data *data,
6694 struct pt_regs *regs)
6695{
6696 __perf_event_output(event, data, regs, perf_output_begin_forward);
6697}
6698
6699void
6700perf_event_output_backward(struct perf_event *event,
6701 struct perf_sample_data *data,
6702 struct pt_regs *regs)
6703{
6704 __perf_event_output(event, data, regs, perf_output_begin_backward);
6705}
6706
56201969 6707int
9ecda41a
WN
6708perf_event_output(struct perf_event *event,
6709 struct perf_sample_data *data,
6710 struct pt_regs *regs)
6711{
56201969 6712 return __perf_event_output(event, data, regs, perf_output_begin);
9ecda41a
WN
6713}
6714
38b200d6 6715/*
cdd6c482 6716 * read event_id
38b200d6
PZ
6717 */
6718
6719struct perf_read_event {
6720 struct perf_event_header header;
6721
6722 u32 pid;
6723 u32 tid;
38b200d6
PZ
6724};
6725
6726static void
cdd6c482 6727perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6728 struct task_struct *task)
6729{
6730 struct perf_output_handle handle;
c980d109 6731 struct perf_sample_data sample;
dfc65094 6732 struct perf_read_event read_event = {
38b200d6 6733 .header = {
cdd6c482 6734 .type = PERF_RECORD_READ,
38b200d6 6735 .misc = 0,
c320c7b7 6736 .size = sizeof(read_event) + event->read_size,
38b200d6 6737 },
cdd6c482
IM
6738 .pid = perf_event_pid(event, task),
6739 .tid = perf_event_tid(event, task),
38b200d6 6740 };
3dab77fb 6741 int ret;
38b200d6 6742
c980d109 6743 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6744 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6745 if (ret)
6746 return;
6747
dfc65094 6748 perf_output_put(&handle, read_event);
cdd6c482 6749 perf_output_read(&handle, event);
c980d109 6750 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6751
38b200d6
PZ
6752 perf_output_end(&handle);
6753}
6754
aab5b71e 6755typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6756
6757static void
aab5b71e
PZ
6758perf_iterate_ctx(struct perf_event_context *ctx,
6759 perf_iterate_f output,
b73e4fef 6760 void *data, bool all)
52d857a8
JO
6761{
6762 struct perf_event *event;
6763
6764 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6765 if (!all) {
6766 if (event->state < PERF_EVENT_STATE_INACTIVE)
6767 continue;
6768 if (!event_filter_match(event))
6769 continue;
6770 }
6771
67516844 6772 output(event, data);
52d857a8
JO
6773 }
6774}
6775
aab5b71e 6776static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6777{
6778 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6779 struct perf_event *event;
6780
6781 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6782 /*
6783 * Skip events that are not fully formed yet; ensure that
6784 * if we observe event->ctx, both event and ctx will be
6785 * complete enough. See perf_install_in_context().
6786 */
6787 if (!smp_load_acquire(&event->ctx))
6788 continue;
6789
f2fb6bef
KL
6790 if (event->state < PERF_EVENT_STATE_INACTIVE)
6791 continue;
6792 if (!event_filter_match(event))
6793 continue;
6794 output(event, data);
6795 }
6796}
6797
aab5b71e
PZ
6798/*
6799 * Iterate all events that need to receive side-band events.
6800 *
6801 * For new callers; ensure that account_pmu_sb_event() includes
6802 * your event, otherwise it might not get delivered.
6803 */
52d857a8 6804static void
aab5b71e 6805perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6806 struct perf_event_context *task_ctx)
6807{
52d857a8 6808 struct perf_event_context *ctx;
52d857a8
JO
6809 int ctxn;
6810
aab5b71e
PZ
6811 rcu_read_lock();
6812 preempt_disable();
6813
4e93ad60 6814 /*
aab5b71e
PZ
6815 * If we have task_ctx != NULL we only notify the task context itself.
6816 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6817 * context.
6818 */
6819 if (task_ctx) {
aab5b71e
PZ
6820 perf_iterate_ctx(task_ctx, output, data, false);
6821 goto done;
4e93ad60
JO
6822 }
6823
aab5b71e 6824 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6825
6826 for_each_task_context_nr(ctxn) {
52d857a8
JO
6827 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6828 if (ctx)
aab5b71e 6829 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6830 }
aab5b71e 6831done:
f2fb6bef 6832 preempt_enable();
52d857a8 6833 rcu_read_unlock();
95ff4ca2
AS
6834}
6835
375637bc
AS
6836/*
6837 * Clear all file-based filters at exec, they'll have to be
6838 * re-instated when/if these objects are mmapped again.
6839 */
6840static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6841{
6842 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6843 struct perf_addr_filter *filter;
6844 unsigned int restart = 0, count = 0;
6845 unsigned long flags;
6846
6847 if (!has_addr_filter(event))
6848 return;
6849
6850 raw_spin_lock_irqsave(&ifh->lock, flags);
6851 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 6852 if (filter->path.dentry) {
c60f83b8
AS
6853 event->addr_filter_ranges[count].start = 0;
6854 event->addr_filter_ranges[count].size = 0;
375637bc
AS
6855 restart++;
6856 }
6857
6858 count++;
6859 }
6860
6861 if (restart)
6862 event->addr_filters_gen++;
6863 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6864
6865 if (restart)
767ae086 6866 perf_event_stop(event, 1);
375637bc
AS
6867}
6868
6869void perf_event_exec(void)
6870{
6871 struct perf_event_context *ctx;
6872 int ctxn;
6873
6874 rcu_read_lock();
6875 for_each_task_context_nr(ctxn) {
6876 ctx = current->perf_event_ctxp[ctxn];
6877 if (!ctx)
6878 continue;
6879
6880 perf_event_enable_on_exec(ctxn);
6881
aab5b71e 6882 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6883 true);
6884 }
6885 rcu_read_unlock();
6886}
6887
95ff4ca2
AS
6888struct remote_output {
6889 struct ring_buffer *rb;
6890 int err;
6891};
6892
6893static void __perf_event_output_stop(struct perf_event *event, void *data)
6894{
6895 struct perf_event *parent = event->parent;
6896 struct remote_output *ro = data;
6897 struct ring_buffer *rb = ro->rb;
375637bc
AS
6898 struct stop_event_data sd = {
6899 .event = event,
6900 };
95ff4ca2
AS
6901
6902 if (!has_aux(event))
6903 return;
6904
6905 if (!parent)
6906 parent = event;
6907
6908 /*
6909 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6910 * ring-buffer, but it will be the child that's actually using it.
6911 *
6912 * We are using event::rb to determine if the event should be stopped,
6913 * however this may race with ring_buffer_attach() (through set_output),
6914 * which will make us skip the event that actually needs to be stopped.
6915 * So ring_buffer_attach() has to stop an aux event before re-assigning
6916 * its rb pointer.
95ff4ca2
AS
6917 */
6918 if (rcu_dereference(parent->rb) == rb)
375637bc 6919 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6920}
6921
6922static int __perf_pmu_output_stop(void *info)
6923{
6924 struct perf_event *event = info;
6925 struct pmu *pmu = event->pmu;
8b6a3fe8 6926 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6927 struct remote_output ro = {
6928 .rb = event->rb,
6929 };
6930
6931 rcu_read_lock();
aab5b71e 6932 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6933 if (cpuctx->task_ctx)
aab5b71e 6934 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6935 &ro, false);
95ff4ca2
AS
6936 rcu_read_unlock();
6937
6938 return ro.err;
6939}
6940
6941static void perf_pmu_output_stop(struct perf_event *event)
6942{
6943 struct perf_event *iter;
6944 int err, cpu;
6945
6946restart:
6947 rcu_read_lock();
6948 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6949 /*
6950 * For per-CPU events, we need to make sure that neither they
6951 * nor their children are running; for cpu==-1 events it's
6952 * sufficient to stop the event itself if it's active, since
6953 * it can't have children.
6954 */
6955 cpu = iter->cpu;
6956 if (cpu == -1)
6957 cpu = READ_ONCE(iter->oncpu);
6958
6959 if (cpu == -1)
6960 continue;
6961
6962 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6963 if (err == -EAGAIN) {
6964 rcu_read_unlock();
6965 goto restart;
6966 }
6967 }
6968 rcu_read_unlock();
52d857a8
JO
6969}
6970
60313ebe 6971/*
9f498cc5
PZ
6972 * task tracking -- fork/exit
6973 *
13d7a241 6974 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6975 */
6976
9f498cc5 6977struct perf_task_event {
3a80b4a3 6978 struct task_struct *task;
cdd6c482 6979 struct perf_event_context *task_ctx;
60313ebe
PZ
6980
6981 struct {
6982 struct perf_event_header header;
6983
6984 u32 pid;
6985 u32 ppid;
9f498cc5
PZ
6986 u32 tid;
6987 u32 ptid;
393b2ad8 6988 u64 time;
cdd6c482 6989 } event_id;
60313ebe
PZ
6990};
6991
67516844
JO
6992static int perf_event_task_match(struct perf_event *event)
6993{
13d7a241
SE
6994 return event->attr.comm || event->attr.mmap ||
6995 event->attr.mmap2 || event->attr.mmap_data ||
6996 event->attr.task;
67516844
JO
6997}
6998
cdd6c482 6999static void perf_event_task_output(struct perf_event *event,
52d857a8 7000 void *data)
60313ebe 7001{
52d857a8 7002 struct perf_task_event *task_event = data;
60313ebe 7003 struct perf_output_handle handle;
c980d109 7004 struct perf_sample_data sample;
9f498cc5 7005 struct task_struct *task = task_event->task;
c980d109 7006 int ret, size = task_event->event_id.header.size;
8bb39f9a 7007
67516844
JO
7008 if (!perf_event_task_match(event))
7009 return;
7010
c980d109 7011 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 7012
c980d109 7013 ret = perf_output_begin(&handle, event,
a7ac67ea 7014 task_event->event_id.header.size);
ef60777c 7015 if (ret)
c980d109 7016 goto out;
60313ebe 7017
cdd6c482
IM
7018 task_event->event_id.pid = perf_event_pid(event, task);
7019 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 7020
cdd6c482
IM
7021 task_event->event_id.tid = perf_event_tid(event, task);
7022 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 7023
34f43927
PZ
7024 task_event->event_id.time = perf_event_clock(event);
7025
cdd6c482 7026 perf_output_put(&handle, task_event->event_id);
393b2ad8 7027
c980d109
ACM
7028 perf_event__output_id_sample(event, &handle, &sample);
7029
60313ebe 7030 perf_output_end(&handle);
c980d109
ACM
7031out:
7032 task_event->event_id.header.size = size;
60313ebe
PZ
7033}
7034
cdd6c482
IM
7035static void perf_event_task(struct task_struct *task,
7036 struct perf_event_context *task_ctx,
3a80b4a3 7037 int new)
60313ebe 7038{
9f498cc5 7039 struct perf_task_event task_event;
60313ebe 7040
cdd6c482
IM
7041 if (!atomic_read(&nr_comm_events) &&
7042 !atomic_read(&nr_mmap_events) &&
7043 !atomic_read(&nr_task_events))
60313ebe
PZ
7044 return;
7045
9f498cc5 7046 task_event = (struct perf_task_event){
3a80b4a3
PZ
7047 .task = task,
7048 .task_ctx = task_ctx,
cdd6c482 7049 .event_id = {
60313ebe 7050 .header = {
cdd6c482 7051 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 7052 .misc = 0,
cdd6c482 7053 .size = sizeof(task_event.event_id),
60313ebe 7054 },
573402db
PZ
7055 /* .pid */
7056 /* .ppid */
9f498cc5
PZ
7057 /* .tid */
7058 /* .ptid */
34f43927 7059 /* .time */
60313ebe
PZ
7060 },
7061 };
7062
aab5b71e 7063 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
7064 &task_event,
7065 task_ctx);
9f498cc5
PZ
7066}
7067
cdd6c482 7068void perf_event_fork(struct task_struct *task)
9f498cc5 7069{
cdd6c482 7070 perf_event_task(task, NULL, 1);
e4222673 7071 perf_event_namespaces(task);
60313ebe
PZ
7072}
7073
8d1b2d93
PZ
7074/*
7075 * comm tracking
7076 */
7077
7078struct perf_comm_event {
22a4f650
IM
7079 struct task_struct *task;
7080 char *comm;
8d1b2d93
PZ
7081 int comm_size;
7082
7083 struct {
7084 struct perf_event_header header;
7085
7086 u32 pid;
7087 u32 tid;
cdd6c482 7088 } event_id;
8d1b2d93
PZ
7089};
7090
67516844
JO
7091static int perf_event_comm_match(struct perf_event *event)
7092{
7093 return event->attr.comm;
7094}
7095
cdd6c482 7096static void perf_event_comm_output(struct perf_event *event,
52d857a8 7097 void *data)
8d1b2d93 7098{
52d857a8 7099 struct perf_comm_event *comm_event = data;
8d1b2d93 7100 struct perf_output_handle handle;
c980d109 7101 struct perf_sample_data sample;
cdd6c482 7102 int size = comm_event->event_id.header.size;
c980d109
ACM
7103 int ret;
7104
67516844
JO
7105 if (!perf_event_comm_match(event))
7106 return;
7107
c980d109
ACM
7108 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7109 ret = perf_output_begin(&handle, event,
a7ac67ea 7110 comm_event->event_id.header.size);
8d1b2d93
PZ
7111
7112 if (ret)
c980d109 7113 goto out;
8d1b2d93 7114
cdd6c482
IM
7115 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7116 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 7117
cdd6c482 7118 perf_output_put(&handle, comm_event->event_id);
76369139 7119 __output_copy(&handle, comm_event->comm,
8d1b2d93 7120 comm_event->comm_size);
c980d109
ACM
7121
7122 perf_event__output_id_sample(event, &handle, &sample);
7123
8d1b2d93 7124 perf_output_end(&handle);
c980d109
ACM
7125out:
7126 comm_event->event_id.header.size = size;
8d1b2d93
PZ
7127}
7128
cdd6c482 7129static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 7130{
413ee3b4 7131 char comm[TASK_COMM_LEN];
8d1b2d93 7132 unsigned int size;
8d1b2d93 7133
413ee3b4 7134 memset(comm, 0, sizeof(comm));
96b02d78 7135 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 7136 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
7137
7138 comm_event->comm = comm;
7139 comm_event->comm_size = size;
7140
cdd6c482 7141 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 7142
aab5b71e 7143 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
7144 comm_event,
7145 NULL);
8d1b2d93
PZ
7146}
7147
82b89778 7148void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 7149{
9ee318a7
PZ
7150 struct perf_comm_event comm_event;
7151
cdd6c482 7152 if (!atomic_read(&nr_comm_events))
9ee318a7 7153 return;
a63eaf34 7154
9ee318a7 7155 comm_event = (struct perf_comm_event){
8d1b2d93 7156 .task = task,
573402db
PZ
7157 /* .comm */
7158 /* .comm_size */
cdd6c482 7159 .event_id = {
573402db 7160 .header = {
cdd6c482 7161 .type = PERF_RECORD_COMM,
82b89778 7162 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
7163 /* .size */
7164 },
7165 /* .pid */
7166 /* .tid */
8d1b2d93
PZ
7167 },
7168 };
7169
cdd6c482 7170 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
7171}
7172
e4222673
HB
7173/*
7174 * namespaces tracking
7175 */
7176
7177struct perf_namespaces_event {
7178 struct task_struct *task;
7179
7180 struct {
7181 struct perf_event_header header;
7182
7183 u32 pid;
7184 u32 tid;
7185 u64 nr_namespaces;
7186 struct perf_ns_link_info link_info[NR_NAMESPACES];
7187 } event_id;
7188};
7189
7190static int perf_event_namespaces_match(struct perf_event *event)
7191{
7192 return event->attr.namespaces;
7193}
7194
7195static void perf_event_namespaces_output(struct perf_event *event,
7196 void *data)
7197{
7198 struct perf_namespaces_event *namespaces_event = data;
7199 struct perf_output_handle handle;
7200 struct perf_sample_data sample;
34900ec5 7201 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
7202 int ret;
7203
7204 if (!perf_event_namespaces_match(event))
7205 return;
7206
7207 perf_event_header__init_id(&namespaces_event->event_id.header,
7208 &sample, event);
7209 ret = perf_output_begin(&handle, event,
7210 namespaces_event->event_id.header.size);
7211 if (ret)
34900ec5 7212 goto out;
e4222673
HB
7213
7214 namespaces_event->event_id.pid = perf_event_pid(event,
7215 namespaces_event->task);
7216 namespaces_event->event_id.tid = perf_event_tid(event,
7217 namespaces_event->task);
7218
7219 perf_output_put(&handle, namespaces_event->event_id);
7220
7221 perf_event__output_id_sample(event, &handle, &sample);
7222
7223 perf_output_end(&handle);
34900ec5
JO
7224out:
7225 namespaces_event->event_id.header.size = header_size;
e4222673
HB
7226}
7227
7228static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7229 struct task_struct *task,
7230 const struct proc_ns_operations *ns_ops)
7231{
7232 struct path ns_path;
7233 struct inode *ns_inode;
7234 void *error;
7235
7236 error = ns_get_path(&ns_path, task, ns_ops);
7237 if (!error) {
7238 ns_inode = ns_path.dentry->d_inode;
7239 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7240 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 7241 path_put(&ns_path);
e4222673
HB
7242 }
7243}
7244
7245void perf_event_namespaces(struct task_struct *task)
7246{
7247 struct perf_namespaces_event namespaces_event;
7248 struct perf_ns_link_info *ns_link_info;
7249
7250 if (!atomic_read(&nr_namespaces_events))
7251 return;
7252
7253 namespaces_event = (struct perf_namespaces_event){
7254 .task = task,
7255 .event_id = {
7256 .header = {
7257 .type = PERF_RECORD_NAMESPACES,
7258 .misc = 0,
7259 .size = sizeof(namespaces_event.event_id),
7260 },
7261 /* .pid */
7262 /* .tid */
7263 .nr_namespaces = NR_NAMESPACES,
7264 /* .link_info[NR_NAMESPACES] */
7265 },
7266 };
7267
7268 ns_link_info = namespaces_event.event_id.link_info;
7269
7270 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7271 task, &mntns_operations);
7272
7273#ifdef CONFIG_USER_NS
7274 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7275 task, &userns_operations);
7276#endif
7277#ifdef CONFIG_NET_NS
7278 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7279 task, &netns_operations);
7280#endif
7281#ifdef CONFIG_UTS_NS
7282 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7283 task, &utsns_operations);
7284#endif
7285#ifdef CONFIG_IPC_NS
7286 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7287 task, &ipcns_operations);
7288#endif
7289#ifdef CONFIG_PID_NS
7290 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7291 task, &pidns_operations);
7292#endif
7293#ifdef CONFIG_CGROUPS
7294 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7295 task, &cgroupns_operations);
7296#endif
7297
7298 perf_iterate_sb(perf_event_namespaces_output,
7299 &namespaces_event,
7300 NULL);
7301}
7302
0a4a9391
PZ
7303/*
7304 * mmap tracking
7305 */
7306
7307struct perf_mmap_event {
089dd79d
PZ
7308 struct vm_area_struct *vma;
7309
7310 const char *file_name;
7311 int file_size;
13d7a241
SE
7312 int maj, min;
7313 u64 ino;
7314 u64 ino_generation;
f972eb63 7315 u32 prot, flags;
0a4a9391
PZ
7316
7317 struct {
7318 struct perf_event_header header;
7319
7320 u32 pid;
7321 u32 tid;
7322 u64 start;
7323 u64 len;
7324 u64 pgoff;
cdd6c482 7325 } event_id;
0a4a9391
PZ
7326};
7327
67516844
JO
7328static int perf_event_mmap_match(struct perf_event *event,
7329 void *data)
7330{
7331 struct perf_mmap_event *mmap_event = data;
7332 struct vm_area_struct *vma = mmap_event->vma;
7333 int executable = vma->vm_flags & VM_EXEC;
7334
7335 return (!executable && event->attr.mmap_data) ||
13d7a241 7336 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
7337}
7338
cdd6c482 7339static void perf_event_mmap_output(struct perf_event *event,
52d857a8 7340 void *data)
0a4a9391 7341{
52d857a8 7342 struct perf_mmap_event *mmap_event = data;
0a4a9391 7343 struct perf_output_handle handle;
c980d109 7344 struct perf_sample_data sample;
cdd6c482 7345 int size = mmap_event->event_id.header.size;
d9c1bb2f 7346 u32 type = mmap_event->event_id.header.type;
c980d109 7347 int ret;
0a4a9391 7348
67516844
JO
7349 if (!perf_event_mmap_match(event, data))
7350 return;
7351
13d7a241
SE
7352 if (event->attr.mmap2) {
7353 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7354 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7355 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7356 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 7357 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
7358 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7359 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
7360 }
7361
c980d109
ACM
7362 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7363 ret = perf_output_begin(&handle, event,
a7ac67ea 7364 mmap_event->event_id.header.size);
0a4a9391 7365 if (ret)
c980d109 7366 goto out;
0a4a9391 7367
cdd6c482
IM
7368 mmap_event->event_id.pid = perf_event_pid(event, current);
7369 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 7370
cdd6c482 7371 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
7372
7373 if (event->attr.mmap2) {
7374 perf_output_put(&handle, mmap_event->maj);
7375 perf_output_put(&handle, mmap_event->min);
7376 perf_output_put(&handle, mmap_event->ino);
7377 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
7378 perf_output_put(&handle, mmap_event->prot);
7379 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
7380 }
7381
76369139 7382 __output_copy(&handle, mmap_event->file_name,
0a4a9391 7383 mmap_event->file_size);
c980d109
ACM
7384
7385 perf_event__output_id_sample(event, &handle, &sample);
7386
78d613eb 7387 perf_output_end(&handle);
c980d109
ACM
7388out:
7389 mmap_event->event_id.header.size = size;
d9c1bb2f 7390 mmap_event->event_id.header.type = type;
0a4a9391
PZ
7391}
7392
cdd6c482 7393static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 7394{
089dd79d
PZ
7395 struct vm_area_struct *vma = mmap_event->vma;
7396 struct file *file = vma->vm_file;
13d7a241
SE
7397 int maj = 0, min = 0;
7398 u64 ino = 0, gen = 0;
f972eb63 7399 u32 prot = 0, flags = 0;
0a4a9391
PZ
7400 unsigned int size;
7401 char tmp[16];
7402 char *buf = NULL;
2c42cfbf 7403 char *name;
413ee3b4 7404
0b3589be
PZ
7405 if (vma->vm_flags & VM_READ)
7406 prot |= PROT_READ;
7407 if (vma->vm_flags & VM_WRITE)
7408 prot |= PROT_WRITE;
7409 if (vma->vm_flags & VM_EXEC)
7410 prot |= PROT_EXEC;
7411
7412 if (vma->vm_flags & VM_MAYSHARE)
7413 flags = MAP_SHARED;
7414 else
7415 flags = MAP_PRIVATE;
7416
7417 if (vma->vm_flags & VM_DENYWRITE)
7418 flags |= MAP_DENYWRITE;
7419 if (vma->vm_flags & VM_MAYEXEC)
7420 flags |= MAP_EXECUTABLE;
7421 if (vma->vm_flags & VM_LOCKED)
7422 flags |= MAP_LOCKED;
7423 if (vma->vm_flags & VM_HUGETLB)
7424 flags |= MAP_HUGETLB;
7425
0a4a9391 7426 if (file) {
13d7a241
SE
7427 struct inode *inode;
7428 dev_t dev;
3ea2f2b9 7429
2c42cfbf 7430 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 7431 if (!buf) {
c7e548b4
ON
7432 name = "//enomem";
7433 goto cpy_name;
0a4a9391 7434 }
413ee3b4 7435 /*
3ea2f2b9 7436 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
7437 * need to add enough zero bytes after the string to handle
7438 * the 64bit alignment we do later.
7439 */
9bf39ab2 7440 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 7441 if (IS_ERR(name)) {
c7e548b4
ON
7442 name = "//toolong";
7443 goto cpy_name;
0a4a9391 7444 }
13d7a241
SE
7445 inode = file_inode(vma->vm_file);
7446 dev = inode->i_sb->s_dev;
7447 ino = inode->i_ino;
7448 gen = inode->i_generation;
7449 maj = MAJOR(dev);
7450 min = MINOR(dev);
f972eb63 7451
c7e548b4 7452 goto got_name;
0a4a9391 7453 } else {
fbe26abe
JO
7454 if (vma->vm_ops && vma->vm_ops->name) {
7455 name = (char *) vma->vm_ops->name(vma);
7456 if (name)
7457 goto cpy_name;
7458 }
7459
2c42cfbf 7460 name = (char *)arch_vma_name(vma);
c7e548b4
ON
7461 if (name)
7462 goto cpy_name;
089dd79d 7463
32c5fb7e 7464 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 7465 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
7466 name = "[heap]";
7467 goto cpy_name;
32c5fb7e
ON
7468 }
7469 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 7470 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
7471 name = "[stack]";
7472 goto cpy_name;
089dd79d
PZ
7473 }
7474
c7e548b4
ON
7475 name = "//anon";
7476 goto cpy_name;
0a4a9391
PZ
7477 }
7478
c7e548b4
ON
7479cpy_name:
7480 strlcpy(tmp, name, sizeof(tmp));
7481 name = tmp;
0a4a9391 7482got_name:
2c42cfbf
PZ
7483 /*
7484 * Since our buffer works in 8 byte units we need to align our string
7485 * size to a multiple of 8. However, we must guarantee the tail end is
7486 * zero'd out to avoid leaking random bits to userspace.
7487 */
7488 size = strlen(name)+1;
7489 while (!IS_ALIGNED(size, sizeof(u64)))
7490 name[size++] = '\0';
0a4a9391
PZ
7491
7492 mmap_event->file_name = name;
7493 mmap_event->file_size = size;
13d7a241
SE
7494 mmap_event->maj = maj;
7495 mmap_event->min = min;
7496 mmap_event->ino = ino;
7497 mmap_event->ino_generation = gen;
f972eb63
PZ
7498 mmap_event->prot = prot;
7499 mmap_event->flags = flags;
0a4a9391 7500
2fe85427
SE
7501 if (!(vma->vm_flags & VM_EXEC))
7502 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7503
cdd6c482 7504 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7505
aab5b71e 7506 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7507 mmap_event,
7508 NULL);
665c2142 7509
0a4a9391
PZ
7510 kfree(buf);
7511}
7512
375637bc
AS
7513/*
7514 * Check whether inode and address range match filter criteria.
7515 */
7516static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7517 struct file *file, unsigned long offset,
7518 unsigned long size)
7519{
7f635ff1
MP
7520 /* d_inode(NULL) won't be equal to any mapped user-space file */
7521 if (!filter->path.dentry)
7522 return false;
7523
9511bce9 7524 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
7525 return false;
7526
7527 if (filter->offset > offset + size)
7528 return false;
7529
7530 if (filter->offset + filter->size < offset)
7531 return false;
7532
7533 return true;
7534}
7535
c60f83b8
AS
7536static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7537 struct vm_area_struct *vma,
7538 struct perf_addr_filter_range *fr)
7539{
7540 unsigned long vma_size = vma->vm_end - vma->vm_start;
7541 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7542 struct file *file = vma->vm_file;
7543
7544 if (!perf_addr_filter_match(filter, file, off, vma_size))
7545 return false;
7546
7547 if (filter->offset < off) {
7548 fr->start = vma->vm_start;
7549 fr->size = min(vma_size, filter->size - (off - filter->offset));
7550 } else {
7551 fr->start = vma->vm_start + filter->offset - off;
7552 fr->size = min(vma->vm_end - fr->start, filter->size);
7553 }
7554
7555 return true;
7556}
7557
375637bc
AS
7558static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7559{
7560 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7561 struct vm_area_struct *vma = data;
375637bc
AS
7562 struct perf_addr_filter *filter;
7563 unsigned int restart = 0, count = 0;
c60f83b8 7564 unsigned long flags;
375637bc
AS
7565
7566 if (!has_addr_filter(event))
7567 return;
7568
c60f83b8 7569 if (!vma->vm_file)
375637bc
AS
7570 return;
7571
7572 raw_spin_lock_irqsave(&ifh->lock, flags);
7573 list_for_each_entry(filter, &ifh->list, entry) {
c60f83b8
AS
7574 if (perf_addr_filter_vma_adjust(filter, vma,
7575 &event->addr_filter_ranges[count]))
375637bc 7576 restart++;
375637bc
AS
7577
7578 count++;
7579 }
7580
7581 if (restart)
7582 event->addr_filters_gen++;
7583 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7584
7585 if (restart)
767ae086 7586 perf_event_stop(event, 1);
375637bc
AS
7587}
7588
7589/*
7590 * Adjust all task's events' filters to the new vma
7591 */
7592static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7593{
7594 struct perf_event_context *ctx;
7595 int ctxn;
7596
12b40a23
MP
7597 /*
7598 * Data tracing isn't supported yet and as such there is no need
7599 * to keep track of anything that isn't related to executable code:
7600 */
7601 if (!(vma->vm_flags & VM_EXEC))
7602 return;
7603
375637bc
AS
7604 rcu_read_lock();
7605 for_each_task_context_nr(ctxn) {
7606 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7607 if (!ctx)
7608 continue;
7609
aab5b71e 7610 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7611 }
7612 rcu_read_unlock();
7613}
7614
3af9e859 7615void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7616{
9ee318a7
PZ
7617 struct perf_mmap_event mmap_event;
7618
cdd6c482 7619 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7620 return;
7621
7622 mmap_event = (struct perf_mmap_event){
089dd79d 7623 .vma = vma,
573402db
PZ
7624 /* .file_name */
7625 /* .file_size */
cdd6c482 7626 .event_id = {
573402db 7627 .header = {
cdd6c482 7628 .type = PERF_RECORD_MMAP,
39447b38 7629 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7630 /* .size */
7631 },
7632 /* .pid */
7633 /* .tid */
089dd79d
PZ
7634 .start = vma->vm_start,
7635 .len = vma->vm_end - vma->vm_start,
3a0304e9 7636 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7637 },
13d7a241
SE
7638 /* .maj (attr_mmap2 only) */
7639 /* .min (attr_mmap2 only) */
7640 /* .ino (attr_mmap2 only) */
7641 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7642 /* .prot (attr_mmap2 only) */
7643 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7644 };
7645
375637bc 7646 perf_addr_filters_adjust(vma);
cdd6c482 7647 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7648}
7649
68db7e98
AS
7650void perf_event_aux_event(struct perf_event *event, unsigned long head,
7651 unsigned long size, u64 flags)
7652{
7653 struct perf_output_handle handle;
7654 struct perf_sample_data sample;
7655 struct perf_aux_event {
7656 struct perf_event_header header;
7657 u64 offset;
7658 u64 size;
7659 u64 flags;
7660 } rec = {
7661 .header = {
7662 .type = PERF_RECORD_AUX,
7663 .misc = 0,
7664 .size = sizeof(rec),
7665 },
7666 .offset = head,
7667 .size = size,
7668 .flags = flags,
7669 };
7670 int ret;
7671
7672 perf_event_header__init_id(&rec.header, &sample, event);
7673 ret = perf_output_begin(&handle, event, rec.header.size);
7674
7675 if (ret)
7676 return;
7677
7678 perf_output_put(&handle, rec);
7679 perf_event__output_id_sample(event, &handle, &sample);
7680
7681 perf_output_end(&handle);
7682}
7683
f38b0dbb
KL
7684/*
7685 * Lost/dropped samples logging
7686 */
7687void perf_log_lost_samples(struct perf_event *event, u64 lost)
7688{
7689 struct perf_output_handle handle;
7690 struct perf_sample_data sample;
7691 int ret;
7692
7693 struct {
7694 struct perf_event_header header;
7695 u64 lost;
7696 } lost_samples_event = {
7697 .header = {
7698 .type = PERF_RECORD_LOST_SAMPLES,
7699 .misc = 0,
7700 .size = sizeof(lost_samples_event),
7701 },
7702 .lost = lost,
7703 };
7704
7705 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7706
7707 ret = perf_output_begin(&handle, event,
7708 lost_samples_event.header.size);
7709 if (ret)
7710 return;
7711
7712 perf_output_put(&handle, lost_samples_event);
7713 perf_event__output_id_sample(event, &handle, &sample);
7714 perf_output_end(&handle);
7715}
7716
45ac1403
AH
7717/*
7718 * context_switch tracking
7719 */
7720
7721struct perf_switch_event {
7722 struct task_struct *task;
7723 struct task_struct *next_prev;
7724
7725 struct {
7726 struct perf_event_header header;
7727 u32 next_prev_pid;
7728 u32 next_prev_tid;
7729 } event_id;
7730};
7731
7732static int perf_event_switch_match(struct perf_event *event)
7733{
7734 return event->attr.context_switch;
7735}
7736
7737static void perf_event_switch_output(struct perf_event *event, void *data)
7738{
7739 struct perf_switch_event *se = data;
7740 struct perf_output_handle handle;
7741 struct perf_sample_data sample;
7742 int ret;
7743
7744 if (!perf_event_switch_match(event))
7745 return;
7746
7747 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7748 if (event->ctx->task) {
7749 se->event_id.header.type = PERF_RECORD_SWITCH;
7750 se->event_id.header.size = sizeof(se->event_id.header);
7751 } else {
7752 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7753 se->event_id.header.size = sizeof(se->event_id);
7754 se->event_id.next_prev_pid =
7755 perf_event_pid(event, se->next_prev);
7756 se->event_id.next_prev_tid =
7757 perf_event_tid(event, se->next_prev);
7758 }
7759
7760 perf_event_header__init_id(&se->event_id.header, &sample, event);
7761
7762 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7763 if (ret)
7764 return;
7765
7766 if (event->ctx->task)
7767 perf_output_put(&handle, se->event_id.header);
7768 else
7769 perf_output_put(&handle, se->event_id);
7770
7771 perf_event__output_id_sample(event, &handle, &sample);
7772
7773 perf_output_end(&handle);
7774}
7775
7776static void perf_event_switch(struct task_struct *task,
7777 struct task_struct *next_prev, bool sched_in)
7778{
7779 struct perf_switch_event switch_event;
7780
7781 /* N.B. caller checks nr_switch_events != 0 */
7782
7783 switch_event = (struct perf_switch_event){
7784 .task = task,
7785 .next_prev = next_prev,
7786 .event_id = {
7787 .header = {
7788 /* .type */
7789 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7790 /* .size */
7791 },
7792 /* .next_prev_pid */
7793 /* .next_prev_tid */
7794 },
7795 };
7796
101592b4
AB
7797 if (!sched_in && task->state == TASK_RUNNING)
7798 switch_event.event_id.header.misc |=
7799 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7800
aab5b71e 7801 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7802 &switch_event,
7803 NULL);
7804}
7805
a78ac325
PZ
7806/*
7807 * IRQ throttle logging
7808 */
7809
cdd6c482 7810static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7811{
7812 struct perf_output_handle handle;
c980d109 7813 struct perf_sample_data sample;
a78ac325
PZ
7814 int ret;
7815
7816 struct {
7817 struct perf_event_header header;
7818 u64 time;
cca3f454 7819 u64 id;
7f453c24 7820 u64 stream_id;
a78ac325
PZ
7821 } throttle_event = {
7822 .header = {
cdd6c482 7823 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7824 .misc = 0,
7825 .size = sizeof(throttle_event),
7826 },
34f43927 7827 .time = perf_event_clock(event),
cdd6c482
IM
7828 .id = primary_event_id(event),
7829 .stream_id = event->id,
a78ac325
PZ
7830 };
7831
966ee4d6 7832 if (enable)
cdd6c482 7833 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7834
c980d109
ACM
7835 perf_event_header__init_id(&throttle_event.header, &sample, event);
7836
7837 ret = perf_output_begin(&handle, event,
a7ac67ea 7838 throttle_event.header.size);
a78ac325
PZ
7839 if (ret)
7840 return;
7841
7842 perf_output_put(&handle, throttle_event);
c980d109 7843 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7844 perf_output_end(&handle);
7845}
7846
76193a94
SL
7847/*
7848 * ksymbol register/unregister tracking
7849 */
7850
7851struct perf_ksymbol_event {
7852 const char *name;
7853 int name_len;
7854 struct {
7855 struct perf_event_header header;
7856 u64 addr;
7857 u32 len;
7858 u16 ksym_type;
7859 u16 flags;
7860 } event_id;
7861};
7862
7863static int perf_event_ksymbol_match(struct perf_event *event)
7864{
7865 return event->attr.ksymbol;
7866}
7867
7868static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7869{
7870 struct perf_ksymbol_event *ksymbol_event = data;
7871 struct perf_output_handle handle;
7872 struct perf_sample_data sample;
7873 int ret;
7874
7875 if (!perf_event_ksymbol_match(event))
7876 return;
7877
7878 perf_event_header__init_id(&ksymbol_event->event_id.header,
7879 &sample, event);
7880 ret = perf_output_begin(&handle, event,
7881 ksymbol_event->event_id.header.size);
7882 if (ret)
7883 return;
7884
7885 perf_output_put(&handle, ksymbol_event->event_id);
7886 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7887 perf_event__output_id_sample(event, &handle, &sample);
7888
7889 perf_output_end(&handle);
7890}
7891
7892void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7893 const char *sym)
7894{
7895 struct perf_ksymbol_event ksymbol_event;
7896 char name[KSYM_NAME_LEN];
7897 u16 flags = 0;
7898 int name_len;
7899
7900 if (!atomic_read(&nr_ksymbol_events))
7901 return;
7902
7903 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7904 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7905 goto err;
7906
7907 strlcpy(name, sym, KSYM_NAME_LEN);
7908 name_len = strlen(name) + 1;
7909 while (!IS_ALIGNED(name_len, sizeof(u64)))
7910 name[name_len++] = '\0';
7911 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7912
7913 if (unregister)
7914 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7915
7916 ksymbol_event = (struct perf_ksymbol_event){
7917 .name = name,
7918 .name_len = name_len,
7919 .event_id = {
7920 .header = {
7921 .type = PERF_RECORD_KSYMBOL,
7922 .size = sizeof(ksymbol_event.event_id) +
7923 name_len,
7924 },
7925 .addr = addr,
7926 .len = len,
7927 .ksym_type = ksym_type,
7928 .flags = flags,
7929 },
7930 };
7931
7932 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7933 return;
7934err:
7935 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7936}
7937
6ee52e2a
SL
7938/*
7939 * bpf program load/unload tracking
7940 */
7941
7942struct perf_bpf_event {
7943 struct bpf_prog *prog;
7944 struct {
7945 struct perf_event_header header;
7946 u16 type;
7947 u16 flags;
7948 u32 id;
7949 u8 tag[BPF_TAG_SIZE];
7950 } event_id;
7951};
7952
7953static int perf_event_bpf_match(struct perf_event *event)
7954{
7955 return event->attr.bpf_event;
7956}
7957
7958static void perf_event_bpf_output(struct perf_event *event, void *data)
7959{
7960 struct perf_bpf_event *bpf_event = data;
7961 struct perf_output_handle handle;
7962 struct perf_sample_data sample;
7963 int ret;
7964
7965 if (!perf_event_bpf_match(event))
7966 return;
7967
7968 perf_event_header__init_id(&bpf_event->event_id.header,
7969 &sample, event);
7970 ret = perf_output_begin(&handle, event,
7971 bpf_event->event_id.header.size);
7972 if (ret)
7973 return;
7974
7975 perf_output_put(&handle, bpf_event->event_id);
7976 perf_event__output_id_sample(event, &handle, &sample);
7977
7978 perf_output_end(&handle);
7979}
7980
7981static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7982 enum perf_bpf_event_type type)
7983{
7984 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7985 char sym[KSYM_NAME_LEN];
7986 int i;
7987
7988 if (prog->aux->func_cnt == 0) {
7989 bpf_get_prog_name(prog, sym);
7990 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7991 (u64)(unsigned long)prog->bpf_func,
7992 prog->jited_len, unregister, sym);
7993 } else {
7994 for (i = 0; i < prog->aux->func_cnt; i++) {
7995 struct bpf_prog *subprog = prog->aux->func[i];
7996
7997 bpf_get_prog_name(subprog, sym);
7998 perf_event_ksymbol(
7999 PERF_RECORD_KSYMBOL_TYPE_BPF,
8000 (u64)(unsigned long)subprog->bpf_func,
8001 subprog->jited_len, unregister, sym);
8002 }
8003 }
8004}
8005
8006void perf_event_bpf_event(struct bpf_prog *prog,
8007 enum perf_bpf_event_type type,
8008 u16 flags)
8009{
8010 struct perf_bpf_event bpf_event;
8011
8012 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8013 type >= PERF_BPF_EVENT_MAX)
8014 return;
8015
8016 switch (type) {
8017 case PERF_BPF_EVENT_PROG_LOAD:
8018 case PERF_BPF_EVENT_PROG_UNLOAD:
8019 if (atomic_read(&nr_ksymbol_events))
8020 perf_event_bpf_emit_ksymbols(prog, type);
8021 break;
8022 default:
8023 break;
8024 }
8025
8026 if (!atomic_read(&nr_bpf_events))
8027 return;
8028
8029 bpf_event = (struct perf_bpf_event){
8030 .prog = prog,
8031 .event_id = {
8032 .header = {
8033 .type = PERF_RECORD_BPF_EVENT,
8034 .size = sizeof(bpf_event.event_id),
8035 },
8036 .type = type,
8037 .flags = flags,
8038 .id = prog->aux->id,
8039 },
8040 };
8041
8042 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8043
8044 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8045 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8046}
8047
8d4e6c4c
AS
8048void perf_event_itrace_started(struct perf_event *event)
8049{
8050 event->attach_state |= PERF_ATTACH_ITRACE;
8051}
8052
ec0d7729
AS
8053static void perf_log_itrace_start(struct perf_event *event)
8054{
8055 struct perf_output_handle handle;
8056 struct perf_sample_data sample;
8057 struct perf_aux_event {
8058 struct perf_event_header header;
8059 u32 pid;
8060 u32 tid;
8061 } rec;
8062 int ret;
8063
8064 if (event->parent)
8065 event = event->parent;
8066
8067 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 8068 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
8069 return;
8070
ec0d7729
AS
8071 rec.header.type = PERF_RECORD_ITRACE_START;
8072 rec.header.misc = 0;
8073 rec.header.size = sizeof(rec);
8074 rec.pid = perf_event_pid(event, current);
8075 rec.tid = perf_event_tid(event, current);
8076
8077 perf_event_header__init_id(&rec.header, &sample, event);
8078 ret = perf_output_begin(&handle, event, rec.header.size);
8079
8080 if (ret)
8081 return;
8082
8083 perf_output_put(&handle, rec);
8084 perf_event__output_id_sample(event, &handle, &sample);
8085
8086 perf_output_end(&handle);
8087}
8088
475113d9
JO
8089static int
8090__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 8091{
cdd6c482 8092 struct hw_perf_event *hwc = &event->hw;
79f14641 8093 int ret = 0;
475113d9 8094 u64 seq;
96398826 8095
e050e3f0
SE
8096 seq = __this_cpu_read(perf_throttled_seq);
8097 if (seq != hwc->interrupts_seq) {
8098 hwc->interrupts_seq = seq;
8099 hwc->interrupts = 1;
8100 } else {
8101 hwc->interrupts++;
8102 if (unlikely(throttle
8103 && hwc->interrupts >= max_samples_per_tick)) {
8104 __this_cpu_inc(perf_throttled_count);
555e0c1e 8105 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
8106 hwc->interrupts = MAX_INTERRUPTS;
8107 perf_log_throttle(event, 0);
a78ac325
PZ
8108 ret = 1;
8109 }
e050e3f0 8110 }
60db5e09 8111
cdd6c482 8112 if (event->attr.freq) {
def0a9b2 8113 u64 now = perf_clock();
abd50713 8114 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 8115
abd50713 8116 hwc->freq_time_stamp = now;
bd2b5b12 8117
abd50713 8118 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 8119 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
8120 }
8121
475113d9
JO
8122 return ret;
8123}
8124
8125int perf_event_account_interrupt(struct perf_event *event)
8126{
8127 return __perf_event_account_interrupt(event, 1);
8128}
8129
8130/*
8131 * Generic event overflow handling, sampling.
8132 */
8133
8134static int __perf_event_overflow(struct perf_event *event,
8135 int throttle, struct perf_sample_data *data,
8136 struct pt_regs *regs)
8137{
8138 int events = atomic_read(&event->event_limit);
8139 int ret = 0;
8140
8141 /*
8142 * Non-sampling counters might still use the PMI to fold short
8143 * hardware counters, ignore those.
8144 */
8145 if (unlikely(!is_sampling_event(event)))
8146 return 0;
8147
8148 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 8149
2023b359
PZ
8150 /*
8151 * XXX event_limit might not quite work as expected on inherited
cdd6c482 8152 * events
2023b359
PZ
8153 */
8154
cdd6c482
IM
8155 event->pending_kill = POLL_IN;
8156 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 8157 ret = 1;
cdd6c482 8158 event->pending_kill = POLL_HUP;
5aab90ce
JO
8159
8160 perf_event_disable_inatomic(event);
79f14641
PZ
8161 }
8162
aa6a5f3c 8163 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 8164
fed66e2c 8165 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
8166 event->pending_wakeup = 1;
8167 irq_work_queue(&event->pending);
f506b3dc
PZ
8168 }
8169
79f14641 8170 return ret;
f6c7d5fe
PZ
8171}
8172
a8b0ca17 8173int perf_event_overflow(struct perf_event *event,
5622f295
MM
8174 struct perf_sample_data *data,
8175 struct pt_regs *regs)
850bc73f 8176{
a8b0ca17 8177 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
8178}
8179
15dbf27c 8180/*
cdd6c482 8181 * Generic software event infrastructure
15dbf27c
PZ
8182 */
8183
b28ab83c
PZ
8184struct swevent_htable {
8185 struct swevent_hlist *swevent_hlist;
8186 struct mutex hlist_mutex;
8187 int hlist_refcount;
8188
8189 /* Recursion avoidance in each contexts */
8190 int recursion[PERF_NR_CONTEXTS];
8191};
8192
8193static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8194
7b4b6658 8195/*
cdd6c482
IM
8196 * We directly increment event->count and keep a second value in
8197 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
8198 * is kept in the range [-sample_period, 0] so that we can use the
8199 * sign as trigger.
8200 */
8201
ab573844 8202u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 8203{
cdd6c482 8204 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
8205 u64 period = hwc->last_period;
8206 u64 nr, offset;
8207 s64 old, val;
8208
8209 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
8210
8211again:
e7850595 8212 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
8213 if (val < 0)
8214 return 0;
15dbf27c 8215
7b4b6658
PZ
8216 nr = div64_u64(period + val, period);
8217 offset = nr * period;
8218 val -= offset;
e7850595 8219 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 8220 goto again;
15dbf27c 8221
7b4b6658 8222 return nr;
15dbf27c
PZ
8223}
8224
0cff784a 8225static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 8226 struct perf_sample_data *data,
5622f295 8227 struct pt_regs *regs)
15dbf27c 8228{
cdd6c482 8229 struct hw_perf_event *hwc = &event->hw;
850bc73f 8230 int throttle = 0;
15dbf27c 8231
0cff784a
PZ
8232 if (!overflow)
8233 overflow = perf_swevent_set_period(event);
15dbf27c 8234
7b4b6658
PZ
8235 if (hwc->interrupts == MAX_INTERRUPTS)
8236 return;
15dbf27c 8237
7b4b6658 8238 for (; overflow; overflow--) {
a8b0ca17 8239 if (__perf_event_overflow(event, throttle,
5622f295 8240 data, regs)) {
7b4b6658
PZ
8241 /*
8242 * We inhibit the overflow from happening when
8243 * hwc->interrupts == MAX_INTERRUPTS.
8244 */
8245 break;
8246 }
cf450a73 8247 throttle = 1;
7b4b6658 8248 }
15dbf27c
PZ
8249}
8250
a4eaf7f1 8251static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 8252 struct perf_sample_data *data,
5622f295 8253 struct pt_regs *regs)
7b4b6658 8254{
cdd6c482 8255 struct hw_perf_event *hwc = &event->hw;
d6d020e9 8256
e7850595 8257 local64_add(nr, &event->count);
d6d020e9 8258
0cff784a
PZ
8259 if (!regs)
8260 return;
8261
6c7e550f 8262 if (!is_sampling_event(event))
7b4b6658 8263 return;
d6d020e9 8264
5d81e5cf
AV
8265 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8266 data->period = nr;
8267 return perf_swevent_overflow(event, 1, data, regs);
8268 } else
8269 data->period = event->hw.last_period;
8270
0cff784a 8271 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 8272 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 8273
e7850595 8274 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 8275 return;
df1a132b 8276
a8b0ca17 8277 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
8278}
8279
f5ffe02e
FW
8280static int perf_exclude_event(struct perf_event *event,
8281 struct pt_regs *regs)
8282{
a4eaf7f1 8283 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 8284 return 1;
a4eaf7f1 8285
f5ffe02e
FW
8286 if (regs) {
8287 if (event->attr.exclude_user && user_mode(regs))
8288 return 1;
8289
8290 if (event->attr.exclude_kernel && !user_mode(regs))
8291 return 1;
8292 }
8293
8294 return 0;
8295}
8296
cdd6c482 8297static int perf_swevent_match(struct perf_event *event,
1c432d89 8298 enum perf_type_id type,
6fb2915d
LZ
8299 u32 event_id,
8300 struct perf_sample_data *data,
8301 struct pt_regs *regs)
15dbf27c 8302{
cdd6c482 8303 if (event->attr.type != type)
a21ca2ca 8304 return 0;
f5ffe02e 8305
cdd6c482 8306 if (event->attr.config != event_id)
15dbf27c
PZ
8307 return 0;
8308
f5ffe02e
FW
8309 if (perf_exclude_event(event, regs))
8310 return 0;
15dbf27c
PZ
8311
8312 return 1;
8313}
8314
76e1d904
FW
8315static inline u64 swevent_hash(u64 type, u32 event_id)
8316{
8317 u64 val = event_id | (type << 32);
8318
8319 return hash_64(val, SWEVENT_HLIST_BITS);
8320}
8321
49f135ed
FW
8322static inline struct hlist_head *
8323__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 8324{
49f135ed
FW
8325 u64 hash = swevent_hash(type, event_id);
8326
8327 return &hlist->heads[hash];
8328}
76e1d904 8329
49f135ed
FW
8330/* For the read side: events when they trigger */
8331static inline struct hlist_head *
b28ab83c 8332find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
8333{
8334 struct swevent_hlist *hlist;
76e1d904 8335
b28ab83c 8336 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
8337 if (!hlist)
8338 return NULL;
8339
49f135ed
FW
8340 return __find_swevent_head(hlist, type, event_id);
8341}
8342
8343/* For the event head insertion and removal in the hlist */
8344static inline struct hlist_head *
b28ab83c 8345find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
8346{
8347 struct swevent_hlist *hlist;
8348 u32 event_id = event->attr.config;
8349 u64 type = event->attr.type;
8350
8351 /*
8352 * Event scheduling is always serialized against hlist allocation
8353 * and release. Which makes the protected version suitable here.
8354 * The context lock guarantees that.
8355 */
b28ab83c 8356 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
8357 lockdep_is_held(&event->ctx->lock));
8358 if (!hlist)
8359 return NULL;
8360
8361 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
8362}
8363
8364static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 8365 u64 nr,
76e1d904
FW
8366 struct perf_sample_data *data,
8367 struct pt_regs *regs)
15dbf27c 8368{
4a32fea9 8369 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8370 struct perf_event *event;
76e1d904 8371 struct hlist_head *head;
15dbf27c 8372
76e1d904 8373 rcu_read_lock();
b28ab83c 8374 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
8375 if (!head)
8376 goto end;
8377
b67bfe0d 8378 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 8379 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 8380 perf_swevent_event(event, nr, data, regs);
15dbf27c 8381 }
76e1d904
FW
8382end:
8383 rcu_read_unlock();
15dbf27c
PZ
8384}
8385
86038c5e
PZI
8386DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8387
4ed7c92d 8388int perf_swevent_get_recursion_context(void)
96f6d444 8389{
4a32fea9 8390 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 8391
b28ab83c 8392 return get_recursion_context(swhash->recursion);
96f6d444 8393}
645e8cc0 8394EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 8395
98b5c2c6 8396void perf_swevent_put_recursion_context(int rctx)
15dbf27c 8397{
4a32fea9 8398 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 8399
b28ab83c 8400 put_recursion_context(swhash->recursion, rctx);
ce71b9df 8401}
15dbf27c 8402
86038c5e 8403void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 8404{
a4234bfc 8405 struct perf_sample_data data;
4ed7c92d 8406
86038c5e 8407 if (WARN_ON_ONCE(!regs))
4ed7c92d 8408 return;
a4234bfc 8409
fd0d000b 8410 perf_sample_data_init(&data, addr, 0);
a8b0ca17 8411 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
8412}
8413
8414void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8415{
8416 int rctx;
8417
8418 preempt_disable_notrace();
8419 rctx = perf_swevent_get_recursion_context();
8420 if (unlikely(rctx < 0))
8421 goto fail;
8422
8423 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
8424
8425 perf_swevent_put_recursion_context(rctx);
86038c5e 8426fail:
1c024eca 8427 preempt_enable_notrace();
b8e83514
PZ
8428}
8429
cdd6c482 8430static void perf_swevent_read(struct perf_event *event)
15dbf27c 8431{
15dbf27c
PZ
8432}
8433
a4eaf7f1 8434static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 8435{
4a32fea9 8436 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8437 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
8438 struct hlist_head *head;
8439
6c7e550f 8440 if (is_sampling_event(event)) {
7b4b6658 8441 hwc->last_period = hwc->sample_period;
cdd6c482 8442 perf_swevent_set_period(event);
7b4b6658 8443 }
76e1d904 8444
a4eaf7f1
PZ
8445 hwc->state = !(flags & PERF_EF_START);
8446
b28ab83c 8447 head = find_swevent_head(swhash, event);
12ca6ad2 8448 if (WARN_ON_ONCE(!head))
76e1d904
FW
8449 return -EINVAL;
8450
8451 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 8452 perf_event_update_userpage(event);
76e1d904 8453
15dbf27c
PZ
8454 return 0;
8455}
8456
a4eaf7f1 8457static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 8458{
76e1d904 8459 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
8460}
8461
a4eaf7f1 8462static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 8463{
a4eaf7f1 8464 event->hw.state = 0;
d6d020e9 8465}
aa9c4c0f 8466
a4eaf7f1 8467static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 8468{
a4eaf7f1 8469 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
8470}
8471
49f135ed
FW
8472/* Deref the hlist from the update side */
8473static inline struct swevent_hlist *
b28ab83c 8474swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 8475{
b28ab83c
PZ
8476 return rcu_dereference_protected(swhash->swevent_hlist,
8477 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
8478}
8479
b28ab83c 8480static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 8481{
b28ab83c 8482 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 8483
49f135ed 8484 if (!hlist)
76e1d904
FW
8485 return;
8486
70691d4a 8487 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 8488 kfree_rcu(hlist, rcu_head);
76e1d904
FW
8489}
8490
3b364d7b 8491static void swevent_hlist_put_cpu(int cpu)
76e1d904 8492{
b28ab83c 8493 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 8494
b28ab83c 8495 mutex_lock(&swhash->hlist_mutex);
76e1d904 8496
b28ab83c
PZ
8497 if (!--swhash->hlist_refcount)
8498 swevent_hlist_release(swhash);
76e1d904 8499
b28ab83c 8500 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8501}
8502
3b364d7b 8503static void swevent_hlist_put(void)
76e1d904
FW
8504{
8505 int cpu;
8506
76e1d904 8507 for_each_possible_cpu(cpu)
3b364d7b 8508 swevent_hlist_put_cpu(cpu);
76e1d904
FW
8509}
8510
3b364d7b 8511static int swevent_hlist_get_cpu(int cpu)
76e1d904 8512{
b28ab83c 8513 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
8514 int err = 0;
8515
b28ab83c 8516 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
8517 if (!swevent_hlist_deref(swhash) &&
8518 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
8519 struct swevent_hlist *hlist;
8520
8521 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8522 if (!hlist) {
8523 err = -ENOMEM;
8524 goto exit;
8525 }
b28ab83c 8526 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8527 }
b28ab83c 8528 swhash->hlist_refcount++;
9ed6060d 8529exit:
b28ab83c 8530 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8531
8532 return err;
8533}
8534
3b364d7b 8535static int swevent_hlist_get(void)
76e1d904 8536{
3b364d7b 8537 int err, cpu, failed_cpu;
76e1d904 8538
a63fbed7 8539 mutex_lock(&pmus_lock);
76e1d904 8540 for_each_possible_cpu(cpu) {
3b364d7b 8541 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
8542 if (err) {
8543 failed_cpu = cpu;
8544 goto fail;
8545 }
8546 }
a63fbed7 8547 mutex_unlock(&pmus_lock);
76e1d904 8548 return 0;
9ed6060d 8549fail:
76e1d904
FW
8550 for_each_possible_cpu(cpu) {
8551 if (cpu == failed_cpu)
8552 break;
3b364d7b 8553 swevent_hlist_put_cpu(cpu);
76e1d904 8554 }
a63fbed7 8555 mutex_unlock(&pmus_lock);
76e1d904
FW
8556 return err;
8557}
8558
c5905afb 8559struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 8560
b0a873eb
PZ
8561static void sw_perf_event_destroy(struct perf_event *event)
8562{
8563 u64 event_id = event->attr.config;
95476b64 8564
b0a873eb
PZ
8565 WARN_ON(event->parent);
8566
c5905afb 8567 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 8568 swevent_hlist_put();
b0a873eb
PZ
8569}
8570
8571static int perf_swevent_init(struct perf_event *event)
8572{
8176cced 8573 u64 event_id = event->attr.config;
b0a873eb
PZ
8574
8575 if (event->attr.type != PERF_TYPE_SOFTWARE)
8576 return -ENOENT;
8577
2481c5fa
SE
8578 /*
8579 * no branch sampling for software events
8580 */
8581 if (has_branch_stack(event))
8582 return -EOPNOTSUPP;
8583
b0a873eb
PZ
8584 switch (event_id) {
8585 case PERF_COUNT_SW_CPU_CLOCK:
8586 case PERF_COUNT_SW_TASK_CLOCK:
8587 return -ENOENT;
8588
8589 default:
8590 break;
8591 }
8592
ce677831 8593 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
8594 return -ENOENT;
8595
8596 if (!event->parent) {
8597 int err;
8598
3b364d7b 8599 err = swevent_hlist_get();
b0a873eb
PZ
8600 if (err)
8601 return err;
8602
c5905afb 8603 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
8604 event->destroy = sw_perf_event_destroy;
8605 }
8606
8607 return 0;
8608}
8609
8610static struct pmu perf_swevent = {
89a1e187 8611 .task_ctx_nr = perf_sw_context,
95476b64 8612
34f43927
PZ
8613 .capabilities = PERF_PMU_CAP_NO_NMI,
8614
b0a873eb 8615 .event_init = perf_swevent_init,
a4eaf7f1
PZ
8616 .add = perf_swevent_add,
8617 .del = perf_swevent_del,
8618 .start = perf_swevent_start,
8619 .stop = perf_swevent_stop,
1c024eca 8620 .read = perf_swevent_read,
1c024eca
PZ
8621};
8622
b0a873eb
PZ
8623#ifdef CONFIG_EVENT_TRACING
8624
1c024eca
PZ
8625static int perf_tp_filter_match(struct perf_event *event,
8626 struct perf_sample_data *data)
8627{
7e3f977e 8628 void *record = data->raw->frag.data;
1c024eca 8629
b71b437e
PZ
8630 /* only top level events have filters set */
8631 if (event->parent)
8632 event = event->parent;
8633
1c024eca
PZ
8634 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8635 return 1;
8636 return 0;
8637}
8638
8639static int perf_tp_event_match(struct perf_event *event,
8640 struct perf_sample_data *data,
8641 struct pt_regs *regs)
8642{
a0f7d0f7
FW
8643 if (event->hw.state & PERF_HES_STOPPED)
8644 return 0;
580d607c 8645 /*
9fd2e48b 8646 * If exclude_kernel, only trace user-space tracepoints (uprobes)
580d607c 8647 */
9fd2e48b 8648 if (event->attr.exclude_kernel && !user_mode(regs))
1c024eca
PZ
8649 return 0;
8650
8651 if (!perf_tp_filter_match(event, data))
8652 return 0;
8653
8654 return 1;
8655}
8656
85b67bcb
AS
8657void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8658 struct trace_event_call *call, u64 count,
8659 struct pt_regs *regs, struct hlist_head *head,
8660 struct task_struct *task)
8661{
e87c6bc3 8662 if (bpf_prog_array_valid(call)) {
85b67bcb 8663 *(struct pt_regs **)raw_data = regs;
e87c6bc3 8664 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
8665 perf_swevent_put_recursion_context(rctx);
8666 return;
8667 }
8668 }
8669 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 8670 rctx, task);
85b67bcb
AS
8671}
8672EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8673
1e1dcd93 8674void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 8675 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 8676 struct task_struct *task)
95476b64
FW
8677{
8678 struct perf_sample_data data;
8fd0fbbe 8679 struct perf_event *event;
1c024eca 8680
95476b64 8681 struct perf_raw_record raw = {
7e3f977e
DB
8682 .frag = {
8683 .size = entry_size,
8684 .data = record,
8685 },
95476b64
FW
8686 };
8687
1e1dcd93 8688 perf_sample_data_init(&data, 0, 0);
95476b64
FW
8689 data.raw = &raw;
8690
1e1dcd93
AS
8691 perf_trace_buf_update(record, event_type);
8692
8fd0fbbe 8693 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 8694 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 8695 perf_swevent_event(event, count, &data, regs);
4f41c013 8696 }
ecc55f84 8697
e6dab5ff
AV
8698 /*
8699 * If we got specified a target task, also iterate its context and
8700 * deliver this event there too.
8701 */
8702 if (task && task != current) {
8703 struct perf_event_context *ctx;
8704 struct trace_entry *entry = record;
8705
8706 rcu_read_lock();
8707 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8708 if (!ctx)
8709 goto unlock;
8710
8711 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cd6fb677
JO
8712 if (event->cpu != smp_processor_id())
8713 continue;
e6dab5ff
AV
8714 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8715 continue;
8716 if (event->attr.config != entry->type)
8717 continue;
8718 if (perf_tp_event_match(event, &data, regs))
8719 perf_swevent_event(event, count, &data, regs);
8720 }
8721unlock:
8722 rcu_read_unlock();
8723 }
8724
ecc55f84 8725 perf_swevent_put_recursion_context(rctx);
95476b64
FW
8726}
8727EXPORT_SYMBOL_GPL(perf_tp_event);
8728
cdd6c482 8729static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 8730{
1c024eca 8731 perf_trace_destroy(event);
e077df4f
PZ
8732}
8733
b0a873eb 8734static int perf_tp_event_init(struct perf_event *event)
e077df4f 8735{
76e1d904
FW
8736 int err;
8737
b0a873eb
PZ
8738 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8739 return -ENOENT;
8740
2481c5fa
SE
8741 /*
8742 * no branch sampling for tracepoint events
8743 */
8744 if (has_branch_stack(event))
8745 return -EOPNOTSUPP;
8746
1c024eca
PZ
8747 err = perf_trace_init(event);
8748 if (err)
b0a873eb 8749 return err;
e077df4f 8750
cdd6c482 8751 event->destroy = tp_perf_event_destroy;
e077df4f 8752
b0a873eb
PZ
8753 return 0;
8754}
8755
8756static struct pmu perf_tracepoint = {
89a1e187
PZ
8757 .task_ctx_nr = perf_sw_context,
8758
b0a873eb 8759 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
8760 .add = perf_trace_add,
8761 .del = perf_trace_del,
8762 .start = perf_swevent_start,
8763 .stop = perf_swevent_stop,
b0a873eb 8764 .read = perf_swevent_read,
b0a873eb
PZ
8765};
8766
33ea4b24 8767#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
8768/*
8769 * Flags in config, used by dynamic PMU kprobe and uprobe
8770 * The flags should match following PMU_FORMAT_ATTR().
8771 *
8772 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8773 * if not set, create kprobe/uprobe
a6ca88b2
SL
8774 *
8775 * The following values specify a reference counter (or semaphore in the
8776 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8777 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8778 *
8779 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
8780 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
e12f03d7
SL
8781 */
8782enum perf_probe_config {
8783 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
a6ca88b2
SL
8784 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8785 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
e12f03d7
SL
8786};
8787
8788PMU_FORMAT_ATTR(retprobe, "config:0");
a6ca88b2 8789#endif
e12f03d7 8790
a6ca88b2
SL
8791#ifdef CONFIG_KPROBE_EVENTS
8792static struct attribute *kprobe_attrs[] = {
e12f03d7
SL
8793 &format_attr_retprobe.attr,
8794 NULL,
8795};
8796
a6ca88b2 8797static struct attribute_group kprobe_format_group = {
e12f03d7 8798 .name = "format",
a6ca88b2 8799 .attrs = kprobe_attrs,
e12f03d7
SL
8800};
8801
a6ca88b2
SL
8802static const struct attribute_group *kprobe_attr_groups[] = {
8803 &kprobe_format_group,
e12f03d7
SL
8804 NULL,
8805};
8806
8807static int perf_kprobe_event_init(struct perf_event *event);
8808static struct pmu perf_kprobe = {
8809 .task_ctx_nr = perf_sw_context,
8810 .event_init = perf_kprobe_event_init,
8811 .add = perf_trace_add,
8812 .del = perf_trace_del,
8813 .start = perf_swevent_start,
8814 .stop = perf_swevent_stop,
8815 .read = perf_swevent_read,
a6ca88b2 8816 .attr_groups = kprobe_attr_groups,
e12f03d7
SL
8817};
8818
8819static int perf_kprobe_event_init(struct perf_event *event)
8820{
8821 int err;
8822 bool is_retprobe;
8823
8824 if (event->attr.type != perf_kprobe.type)
8825 return -ENOENT;
32e6e967
SL
8826
8827 if (!capable(CAP_SYS_ADMIN))
8828 return -EACCES;
8829
e12f03d7
SL
8830 /*
8831 * no branch sampling for probe events
8832 */
8833 if (has_branch_stack(event))
8834 return -EOPNOTSUPP;
8835
8836 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8837 err = perf_kprobe_init(event, is_retprobe);
8838 if (err)
8839 return err;
8840
8841 event->destroy = perf_kprobe_destroy;
8842
8843 return 0;
8844}
8845#endif /* CONFIG_KPROBE_EVENTS */
8846
33ea4b24 8847#ifdef CONFIG_UPROBE_EVENTS
a6ca88b2
SL
8848PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8849
8850static struct attribute *uprobe_attrs[] = {
8851 &format_attr_retprobe.attr,
8852 &format_attr_ref_ctr_offset.attr,
8853 NULL,
8854};
8855
8856static struct attribute_group uprobe_format_group = {
8857 .name = "format",
8858 .attrs = uprobe_attrs,
8859};
8860
8861static const struct attribute_group *uprobe_attr_groups[] = {
8862 &uprobe_format_group,
8863 NULL,
8864};
8865
33ea4b24
SL
8866static int perf_uprobe_event_init(struct perf_event *event);
8867static struct pmu perf_uprobe = {
8868 .task_ctx_nr = perf_sw_context,
8869 .event_init = perf_uprobe_event_init,
8870 .add = perf_trace_add,
8871 .del = perf_trace_del,
8872 .start = perf_swevent_start,
8873 .stop = perf_swevent_stop,
8874 .read = perf_swevent_read,
a6ca88b2 8875 .attr_groups = uprobe_attr_groups,
33ea4b24
SL
8876};
8877
8878static int perf_uprobe_event_init(struct perf_event *event)
8879{
8880 int err;
a6ca88b2 8881 unsigned long ref_ctr_offset;
33ea4b24
SL
8882 bool is_retprobe;
8883
8884 if (event->attr.type != perf_uprobe.type)
8885 return -ENOENT;
32e6e967
SL
8886
8887 if (!capable(CAP_SYS_ADMIN))
8888 return -EACCES;
8889
33ea4b24
SL
8890 /*
8891 * no branch sampling for probe events
8892 */
8893 if (has_branch_stack(event))
8894 return -EOPNOTSUPP;
8895
8896 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
a6ca88b2
SL
8897 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8898 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
33ea4b24
SL
8899 if (err)
8900 return err;
8901
8902 event->destroy = perf_uprobe_destroy;
8903
8904 return 0;
8905}
8906#endif /* CONFIG_UPROBE_EVENTS */
8907
b0a873eb
PZ
8908static inline void perf_tp_register(void)
8909{
2e80a82a 8910 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
8911#ifdef CONFIG_KPROBE_EVENTS
8912 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8913#endif
33ea4b24
SL
8914#ifdef CONFIG_UPROBE_EVENTS
8915 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8916#endif
e077df4f 8917}
6fb2915d 8918
6fb2915d
LZ
8919static void perf_event_free_filter(struct perf_event *event)
8920{
8921 ftrace_profile_free_filter(event);
8922}
8923
aa6a5f3c
AS
8924#ifdef CONFIG_BPF_SYSCALL
8925static void bpf_overflow_handler(struct perf_event *event,
8926 struct perf_sample_data *data,
8927 struct pt_regs *regs)
8928{
8929 struct bpf_perf_event_data_kern ctx = {
8930 .data = data,
7d9285e8 8931 .event = event,
aa6a5f3c
AS
8932 };
8933 int ret = 0;
8934
c895f6f7 8935 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
8936 preempt_disable();
8937 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8938 goto out;
8939 rcu_read_lock();
88575199 8940 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8941 rcu_read_unlock();
8942out:
8943 __this_cpu_dec(bpf_prog_active);
8944 preempt_enable();
8945 if (!ret)
8946 return;
8947
8948 event->orig_overflow_handler(event, data, regs);
8949}
8950
8951static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8952{
8953 struct bpf_prog *prog;
8954
8955 if (event->overflow_handler_context)
8956 /* hw breakpoint or kernel counter */
8957 return -EINVAL;
8958
8959 if (event->prog)
8960 return -EEXIST;
8961
8962 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8963 if (IS_ERR(prog))
8964 return PTR_ERR(prog);
8965
8966 event->prog = prog;
8967 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8968 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8969 return 0;
8970}
8971
8972static void perf_event_free_bpf_handler(struct perf_event *event)
8973{
8974 struct bpf_prog *prog = event->prog;
8975
8976 if (!prog)
8977 return;
8978
8979 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8980 event->prog = NULL;
8981 bpf_prog_put(prog);
8982}
8983#else
8984static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8985{
8986 return -EOPNOTSUPP;
8987}
8988static void perf_event_free_bpf_handler(struct perf_event *event)
8989{
8990}
8991#endif
8992
e12f03d7
SL
8993/*
8994 * returns true if the event is a tracepoint, or a kprobe/upprobe created
8995 * with perf_event_open()
8996 */
8997static inline bool perf_event_is_tracing(struct perf_event *event)
8998{
8999 if (event->pmu == &perf_tracepoint)
9000 return true;
9001#ifdef CONFIG_KPROBE_EVENTS
9002 if (event->pmu == &perf_kprobe)
9003 return true;
33ea4b24
SL
9004#endif
9005#ifdef CONFIG_UPROBE_EVENTS
9006 if (event->pmu == &perf_uprobe)
9007 return true;
e12f03d7
SL
9008#endif
9009 return false;
9010}
9011
2541517c
AS
9012static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9013{
cf5f5cea 9014 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 9015 struct bpf_prog *prog;
e87c6bc3 9016 int ret;
2541517c 9017
e12f03d7 9018 if (!perf_event_is_tracing(event))
f91840a3 9019 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 9020
98b5c2c6
AS
9021 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9022 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
9023 is_syscall_tp = is_syscall_trace_event(event->tp_event);
9024 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 9025 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
9026 return -EINVAL;
9027
9028 prog = bpf_prog_get(prog_fd);
9029 if (IS_ERR(prog))
9030 return PTR_ERR(prog);
9031
98b5c2c6 9032 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
9033 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9034 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
9035 /* valid fd, but invalid bpf program type */
9036 bpf_prog_put(prog);
9037 return -EINVAL;
9038 }
9039
9802d865
JB
9040 /* Kprobe override only works for kprobes, not uprobes. */
9041 if (prog->kprobe_override &&
9042 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9043 bpf_prog_put(prog);
9044 return -EINVAL;
9045 }
9046
cf5f5cea 9047 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
9048 int off = trace_event_get_offsets(event->tp_event);
9049
9050 if (prog->aux->max_ctx_offset > off) {
9051 bpf_prog_put(prog);
9052 return -EACCES;
9053 }
9054 }
2541517c 9055
e87c6bc3
YS
9056 ret = perf_event_attach_bpf_prog(event, prog);
9057 if (ret)
9058 bpf_prog_put(prog);
9059 return ret;
2541517c
AS
9060}
9061
9062static void perf_event_free_bpf_prog(struct perf_event *event)
9063{
e12f03d7 9064 if (!perf_event_is_tracing(event)) {
0b4c6841 9065 perf_event_free_bpf_handler(event);
2541517c 9066 return;
2541517c 9067 }
e87c6bc3 9068 perf_event_detach_bpf_prog(event);
2541517c
AS
9069}
9070
e077df4f 9071#else
6fb2915d 9072
b0a873eb 9073static inline void perf_tp_register(void)
e077df4f 9074{
e077df4f 9075}
6fb2915d 9076
6fb2915d
LZ
9077static void perf_event_free_filter(struct perf_event *event)
9078{
9079}
9080
2541517c
AS
9081static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9082{
9083 return -ENOENT;
9084}
9085
9086static void perf_event_free_bpf_prog(struct perf_event *event)
9087{
9088}
07b139c8 9089#endif /* CONFIG_EVENT_TRACING */
e077df4f 9090
24f1e32c 9091#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 9092void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 9093{
f5ffe02e
FW
9094 struct perf_sample_data sample;
9095 struct pt_regs *regs = data;
9096
fd0d000b 9097 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 9098
a4eaf7f1 9099 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 9100 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
9101}
9102#endif
9103
375637bc
AS
9104/*
9105 * Allocate a new address filter
9106 */
9107static struct perf_addr_filter *
9108perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9109{
9110 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9111 struct perf_addr_filter *filter;
9112
9113 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9114 if (!filter)
9115 return NULL;
9116
9117 INIT_LIST_HEAD(&filter->entry);
9118 list_add_tail(&filter->entry, filters);
9119
9120 return filter;
9121}
9122
9123static void free_filters_list(struct list_head *filters)
9124{
9125 struct perf_addr_filter *filter, *iter;
9126
9127 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 9128 path_put(&filter->path);
375637bc
AS
9129 list_del(&filter->entry);
9130 kfree(filter);
9131 }
9132}
9133
9134/*
9135 * Free existing address filters and optionally install new ones
9136 */
9137static void perf_addr_filters_splice(struct perf_event *event,
9138 struct list_head *head)
9139{
9140 unsigned long flags;
9141 LIST_HEAD(list);
9142
9143 if (!has_addr_filter(event))
9144 return;
9145
9146 /* don't bother with children, they don't have their own filters */
9147 if (event->parent)
9148 return;
9149
9150 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9151
9152 list_splice_init(&event->addr_filters.list, &list);
9153 if (head)
9154 list_splice(head, &event->addr_filters.list);
9155
9156 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9157
9158 free_filters_list(&list);
9159}
9160
9161/*
9162 * Scan through mm's vmas and see if one of them matches the
9163 * @filter; if so, adjust filter's address range.
9164 * Called with mm::mmap_sem down for reading.
9165 */
c60f83b8
AS
9166static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9167 struct mm_struct *mm,
9168 struct perf_addr_filter_range *fr)
375637bc
AS
9169{
9170 struct vm_area_struct *vma;
9171
9172 for (vma = mm->mmap; vma; vma = vma->vm_next) {
c60f83b8 9173 if (!vma->vm_file)
375637bc
AS
9174 continue;
9175
c60f83b8
AS
9176 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9177 return;
375637bc 9178 }
375637bc
AS
9179}
9180
9181/*
9182 * Update event's address range filters based on the
9183 * task's existing mappings, if any.
9184 */
9185static void perf_event_addr_filters_apply(struct perf_event *event)
9186{
9187 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9188 struct task_struct *task = READ_ONCE(event->ctx->task);
9189 struct perf_addr_filter *filter;
9190 struct mm_struct *mm = NULL;
9191 unsigned int count = 0;
9192 unsigned long flags;
9193
9194 /*
9195 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9196 * will stop on the parent's child_mutex that our caller is also holding
9197 */
9198 if (task == TASK_TOMBSTONE)
9199 return;
9200
52a44f83
AS
9201 if (ifh->nr_file_filters) {
9202 mm = get_task_mm(event->ctx->task);
9203 if (!mm)
9204 goto restart;
375637bc 9205
52a44f83
AS
9206 down_read(&mm->mmap_sem);
9207 }
375637bc
AS
9208
9209 raw_spin_lock_irqsave(&ifh->lock, flags);
9210 list_for_each_entry(filter, &ifh->list, entry) {
52a44f83
AS
9211 if (filter->path.dentry) {
9212 /*
9213 * Adjust base offset if the filter is associated to a
9214 * binary that needs to be mapped:
9215 */
9216 event->addr_filter_ranges[count].start = 0;
9217 event->addr_filter_ranges[count].size = 0;
375637bc 9218
c60f83b8 9219 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
52a44f83
AS
9220 } else {
9221 event->addr_filter_ranges[count].start = filter->offset;
9222 event->addr_filter_ranges[count].size = filter->size;
9223 }
375637bc
AS
9224
9225 count++;
9226 }
9227
9228 event->addr_filters_gen++;
9229 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9230
52a44f83
AS
9231 if (ifh->nr_file_filters) {
9232 up_read(&mm->mmap_sem);
375637bc 9233
52a44f83
AS
9234 mmput(mm);
9235 }
375637bc
AS
9236
9237restart:
767ae086 9238 perf_event_stop(event, 1);
375637bc
AS
9239}
9240
9241/*
9242 * Address range filtering: limiting the data to certain
9243 * instruction address ranges. Filters are ioctl()ed to us from
9244 * userspace as ascii strings.
9245 *
9246 * Filter string format:
9247 *
9248 * ACTION RANGE_SPEC
9249 * where ACTION is one of the
9250 * * "filter": limit the trace to this region
9251 * * "start": start tracing from this address
9252 * * "stop": stop tracing at this address/region;
9253 * RANGE_SPEC is
9254 * * for kernel addresses: <start address>[/<size>]
9255 * * for object files: <start address>[/<size>]@</path/to/object/file>
9256 *
6ed70cf3
AS
9257 * if <size> is not specified or is zero, the range is treated as a single
9258 * address; not valid for ACTION=="filter".
375637bc
AS
9259 */
9260enum {
e96271f3 9261 IF_ACT_NONE = -1,
375637bc
AS
9262 IF_ACT_FILTER,
9263 IF_ACT_START,
9264 IF_ACT_STOP,
9265 IF_SRC_FILE,
9266 IF_SRC_KERNEL,
9267 IF_SRC_FILEADDR,
9268 IF_SRC_KERNELADDR,
9269};
9270
9271enum {
9272 IF_STATE_ACTION = 0,
9273 IF_STATE_SOURCE,
9274 IF_STATE_END,
9275};
9276
9277static const match_table_t if_tokens = {
9278 { IF_ACT_FILTER, "filter" },
9279 { IF_ACT_START, "start" },
9280 { IF_ACT_STOP, "stop" },
9281 { IF_SRC_FILE, "%u/%u@%s" },
9282 { IF_SRC_KERNEL, "%u/%u" },
9283 { IF_SRC_FILEADDR, "%u@%s" },
9284 { IF_SRC_KERNELADDR, "%u" },
e96271f3 9285 { IF_ACT_NONE, NULL },
375637bc
AS
9286};
9287
9288/*
9289 * Address filter string parser
9290 */
9291static int
9292perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9293 struct list_head *filters)
9294{
9295 struct perf_addr_filter *filter = NULL;
9296 char *start, *orig, *filename = NULL;
375637bc
AS
9297 substring_t args[MAX_OPT_ARGS];
9298 int state = IF_STATE_ACTION, token;
9299 unsigned int kernel = 0;
9300 int ret = -EINVAL;
9301
9302 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9303 if (!fstr)
9304 return -ENOMEM;
9305
9306 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
9307 static const enum perf_addr_filter_action_t actions[] = {
9308 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9309 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9310 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9311 };
375637bc
AS
9312 ret = -EINVAL;
9313
9314 if (!*start)
9315 continue;
9316
9317 /* filter definition begins */
9318 if (state == IF_STATE_ACTION) {
9319 filter = perf_addr_filter_new(event, filters);
9320 if (!filter)
9321 goto fail;
9322 }
9323
9324 token = match_token(start, if_tokens, args);
9325 switch (token) {
9326 case IF_ACT_FILTER:
9327 case IF_ACT_START:
375637bc
AS
9328 case IF_ACT_STOP:
9329 if (state != IF_STATE_ACTION)
9330 goto fail;
9331
6ed70cf3 9332 filter->action = actions[token];
375637bc
AS
9333 state = IF_STATE_SOURCE;
9334 break;
9335
9336 case IF_SRC_KERNELADDR:
9337 case IF_SRC_KERNEL:
9338 kernel = 1;
10c3405f 9339 /* fall through */
375637bc
AS
9340
9341 case IF_SRC_FILEADDR:
9342 case IF_SRC_FILE:
9343 if (state != IF_STATE_SOURCE)
9344 goto fail;
9345
375637bc
AS
9346 *args[0].to = 0;
9347 ret = kstrtoul(args[0].from, 0, &filter->offset);
9348 if (ret)
9349 goto fail;
9350
6ed70cf3 9351 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
9352 *args[1].to = 0;
9353 ret = kstrtoul(args[1].from, 0, &filter->size);
9354 if (ret)
9355 goto fail;
9356 }
9357
4059ffd0 9358 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 9359 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0
MP
9360
9361 filename = match_strdup(&args[fpos]);
375637bc
AS
9362 if (!filename) {
9363 ret = -ENOMEM;
9364 goto fail;
9365 }
9366 }
9367
9368 state = IF_STATE_END;
9369 break;
9370
9371 default:
9372 goto fail;
9373 }
9374
9375 /*
9376 * Filter definition is fully parsed, validate and install it.
9377 * Make sure that it doesn't contradict itself or the event's
9378 * attribute.
9379 */
9380 if (state == IF_STATE_END) {
9ccbfbb1 9381 ret = -EINVAL;
375637bc
AS
9382 if (kernel && event->attr.exclude_kernel)
9383 goto fail;
9384
6ed70cf3
AS
9385 /*
9386 * ACTION "filter" must have a non-zero length region
9387 * specified.
9388 */
9389 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9390 !filter->size)
9391 goto fail;
9392
375637bc
AS
9393 if (!kernel) {
9394 if (!filename)
9395 goto fail;
9396
6ce77bfd
AS
9397 /*
9398 * For now, we only support file-based filters
9399 * in per-task events; doing so for CPU-wide
9400 * events requires additional context switching
9401 * trickery, since same object code will be
9402 * mapped at different virtual addresses in
9403 * different processes.
9404 */
9405 ret = -EOPNOTSUPP;
9406 if (!event->ctx->task)
9407 goto fail_free_name;
9408
375637bc 9409 /* look up the path and grab its inode */
9511bce9
SL
9410 ret = kern_path(filename, LOOKUP_FOLLOW,
9411 &filter->path);
375637bc
AS
9412 if (ret)
9413 goto fail_free_name;
9414
375637bc
AS
9415 kfree(filename);
9416 filename = NULL;
9417
9418 ret = -EINVAL;
9511bce9
SL
9419 if (!filter->path.dentry ||
9420 !S_ISREG(d_inode(filter->path.dentry)
9421 ->i_mode))
375637bc 9422 goto fail;
6ce77bfd
AS
9423
9424 event->addr_filters.nr_file_filters++;
375637bc
AS
9425 }
9426
9427 /* ready to consume more filters */
9428 state = IF_STATE_ACTION;
9429 filter = NULL;
9430 }
9431 }
9432
9433 if (state != IF_STATE_ACTION)
9434 goto fail;
9435
9436 kfree(orig);
9437
9438 return 0;
9439
9440fail_free_name:
9441 kfree(filename);
9442fail:
9443 free_filters_list(filters);
9444 kfree(orig);
9445
9446 return ret;
9447}
9448
9449static int
9450perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9451{
9452 LIST_HEAD(filters);
9453 int ret;
9454
9455 /*
9456 * Since this is called in perf_ioctl() path, we're already holding
9457 * ctx::mutex.
9458 */
9459 lockdep_assert_held(&event->ctx->mutex);
9460
9461 if (WARN_ON_ONCE(event->parent))
9462 return -EINVAL;
9463
375637bc
AS
9464 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9465 if (ret)
6ce77bfd 9466 goto fail_clear_files;
375637bc
AS
9467
9468 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
9469 if (ret)
9470 goto fail_free_filters;
375637bc
AS
9471
9472 /* remove existing filters, if any */
9473 perf_addr_filters_splice(event, &filters);
9474
9475 /* install new filters */
9476 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9477
6ce77bfd
AS
9478 return ret;
9479
9480fail_free_filters:
9481 free_filters_list(&filters);
9482
9483fail_clear_files:
9484 event->addr_filters.nr_file_filters = 0;
9485
375637bc
AS
9486 return ret;
9487}
9488
c796bbbe
AS
9489static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9490{
c796bbbe 9491 int ret = -EINVAL;
e12f03d7 9492 char *filter_str;
c796bbbe
AS
9493
9494 filter_str = strndup_user(arg, PAGE_SIZE);
9495 if (IS_ERR(filter_str))
9496 return PTR_ERR(filter_str);
9497
e12f03d7
SL
9498#ifdef CONFIG_EVENT_TRACING
9499 if (perf_event_is_tracing(event)) {
9500 struct perf_event_context *ctx = event->ctx;
9501
9502 /*
9503 * Beware, here be dragons!!
9504 *
9505 * the tracepoint muck will deadlock against ctx->mutex, but
9506 * the tracepoint stuff does not actually need it. So
9507 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9508 * already have a reference on ctx.
9509 *
9510 * This can result in event getting moved to a different ctx,
9511 * but that does not affect the tracepoint state.
9512 */
9513 mutex_unlock(&ctx->mutex);
9514 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9515 mutex_lock(&ctx->mutex);
9516 } else
9517#endif
9518 if (has_addr_filter(event))
375637bc 9519 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
9520
9521 kfree(filter_str);
9522 return ret;
9523}
9524
b0a873eb
PZ
9525/*
9526 * hrtimer based swevent callback
9527 */
f29ac756 9528
b0a873eb 9529static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 9530{
b0a873eb
PZ
9531 enum hrtimer_restart ret = HRTIMER_RESTART;
9532 struct perf_sample_data data;
9533 struct pt_regs *regs;
9534 struct perf_event *event;
9535 u64 period;
f29ac756 9536
b0a873eb 9537 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
9538
9539 if (event->state != PERF_EVENT_STATE_ACTIVE)
9540 return HRTIMER_NORESTART;
9541
b0a873eb 9542 event->pmu->read(event);
f344011c 9543
fd0d000b 9544 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
9545 regs = get_irq_regs();
9546
9547 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 9548 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 9549 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
9550 ret = HRTIMER_NORESTART;
9551 }
24f1e32c 9552
b0a873eb
PZ
9553 period = max_t(u64, 10000, event->hw.sample_period);
9554 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 9555
b0a873eb 9556 return ret;
f29ac756
PZ
9557}
9558
b0a873eb 9559static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 9560{
b0a873eb 9561 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
9562 s64 period;
9563
9564 if (!is_sampling_event(event))
9565 return;
f5ffe02e 9566
5d508e82
FBH
9567 period = local64_read(&hwc->period_left);
9568 if (period) {
9569 if (period < 0)
9570 period = 10000;
fa407f35 9571
5d508e82
FBH
9572 local64_set(&hwc->period_left, 0);
9573 } else {
9574 period = max_t(u64, 10000, hwc->sample_period);
9575 }
3497d206 9576 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
30f9028b 9577 HRTIMER_MODE_REL_PINNED_HARD);
24f1e32c 9578}
b0a873eb
PZ
9579
9580static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 9581{
b0a873eb
PZ
9582 struct hw_perf_event *hwc = &event->hw;
9583
6c7e550f 9584 if (is_sampling_event(event)) {
b0a873eb 9585 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 9586 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
9587
9588 hrtimer_cancel(&hwc->hrtimer);
9589 }
24f1e32c
FW
9590}
9591
ba3dd36c
PZ
9592static void perf_swevent_init_hrtimer(struct perf_event *event)
9593{
9594 struct hw_perf_event *hwc = &event->hw;
9595
9596 if (!is_sampling_event(event))
9597 return;
9598
30f9028b 9599 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
ba3dd36c
PZ
9600 hwc->hrtimer.function = perf_swevent_hrtimer;
9601
9602 /*
9603 * Since hrtimers have a fixed rate, we can do a static freq->period
9604 * mapping and avoid the whole period adjust feedback stuff.
9605 */
9606 if (event->attr.freq) {
9607 long freq = event->attr.sample_freq;
9608
9609 event->attr.sample_period = NSEC_PER_SEC / freq;
9610 hwc->sample_period = event->attr.sample_period;
9611 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 9612 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
9613 event->attr.freq = 0;
9614 }
9615}
9616
b0a873eb
PZ
9617/*
9618 * Software event: cpu wall time clock
9619 */
9620
9621static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 9622{
b0a873eb
PZ
9623 s64 prev;
9624 u64 now;
9625
a4eaf7f1 9626 now = local_clock();
b0a873eb
PZ
9627 prev = local64_xchg(&event->hw.prev_count, now);
9628 local64_add(now - prev, &event->count);
24f1e32c 9629}
24f1e32c 9630
a4eaf7f1 9631static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9632{
a4eaf7f1 9633 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 9634 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9635}
9636
a4eaf7f1 9637static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 9638{
b0a873eb
PZ
9639 perf_swevent_cancel_hrtimer(event);
9640 cpu_clock_event_update(event);
9641}
f29ac756 9642
a4eaf7f1
PZ
9643static int cpu_clock_event_add(struct perf_event *event, int flags)
9644{
9645 if (flags & PERF_EF_START)
9646 cpu_clock_event_start(event, flags);
6a694a60 9647 perf_event_update_userpage(event);
a4eaf7f1
PZ
9648
9649 return 0;
9650}
9651
9652static void cpu_clock_event_del(struct perf_event *event, int flags)
9653{
9654 cpu_clock_event_stop(event, flags);
9655}
9656
b0a873eb
PZ
9657static void cpu_clock_event_read(struct perf_event *event)
9658{
9659 cpu_clock_event_update(event);
9660}
f344011c 9661
b0a873eb
PZ
9662static int cpu_clock_event_init(struct perf_event *event)
9663{
9664 if (event->attr.type != PERF_TYPE_SOFTWARE)
9665 return -ENOENT;
9666
9667 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9668 return -ENOENT;
9669
2481c5fa
SE
9670 /*
9671 * no branch sampling for software events
9672 */
9673 if (has_branch_stack(event))
9674 return -EOPNOTSUPP;
9675
ba3dd36c
PZ
9676 perf_swevent_init_hrtimer(event);
9677
b0a873eb 9678 return 0;
f29ac756
PZ
9679}
9680
b0a873eb 9681static struct pmu perf_cpu_clock = {
89a1e187
PZ
9682 .task_ctx_nr = perf_sw_context,
9683
34f43927
PZ
9684 .capabilities = PERF_PMU_CAP_NO_NMI,
9685
b0a873eb 9686 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
9687 .add = cpu_clock_event_add,
9688 .del = cpu_clock_event_del,
9689 .start = cpu_clock_event_start,
9690 .stop = cpu_clock_event_stop,
b0a873eb
PZ
9691 .read = cpu_clock_event_read,
9692};
9693
9694/*
9695 * Software event: task time clock
9696 */
9697
9698static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 9699{
b0a873eb
PZ
9700 u64 prev;
9701 s64 delta;
5c92d124 9702
b0a873eb
PZ
9703 prev = local64_xchg(&event->hw.prev_count, now);
9704 delta = now - prev;
9705 local64_add(delta, &event->count);
9706}
5c92d124 9707
a4eaf7f1 9708static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9709{
a4eaf7f1 9710 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 9711 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9712}
9713
a4eaf7f1 9714static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
9715{
9716 perf_swevent_cancel_hrtimer(event);
9717 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
9718}
9719
9720static int task_clock_event_add(struct perf_event *event, int flags)
9721{
9722 if (flags & PERF_EF_START)
9723 task_clock_event_start(event, flags);
6a694a60 9724 perf_event_update_userpage(event);
b0a873eb 9725
a4eaf7f1
PZ
9726 return 0;
9727}
9728
9729static void task_clock_event_del(struct perf_event *event, int flags)
9730{
9731 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
9732}
9733
9734static void task_clock_event_read(struct perf_event *event)
9735{
768a06e2
PZ
9736 u64 now = perf_clock();
9737 u64 delta = now - event->ctx->timestamp;
9738 u64 time = event->ctx->time + delta;
b0a873eb
PZ
9739
9740 task_clock_event_update(event, time);
9741}
9742
9743static int task_clock_event_init(struct perf_event *event)
6fb2915d 9744{
b0a873eb
PZ
9745 if (event->attr.type != PERF_TYPE_SOFTWARE)
9746 return -ENOENT;
9747
9748 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9749 return -ENOENT;
9750
2481c5fa
SE
9751 /*
9752 * no branch sampling for software events
9753 */
9754 if (has_branch_stack(event))
9755 return -EOPNOTSUPP;
9756
ba3dd36c
PZ
9757 perf_swevent_init_hrtimer(event);
9758
b0a873eb 9759 return 0;
6fb2915d
LZ
9760}
9761
b0a873eb 9762static struct pmu perf_task_clock = {
89a1e187
PZ
9763 .task_ctx_nr = perf_sw_context,
9764
34f43927
PZ
9765 .capabilities = PERF_PMU_CAP_NO_NMI,
9766
b0a873eb 9767 .event_init = task_clock_event_init,
a4eaf7f1
PZ
9768 .add = task_clock_event_add,
9769 .del = task_clock_event_del,
9770 .start = task_clock_event_start,
9771 .stop = task_clock_event_stop,
b0a873eb
PZ
9772 .read = task_clock_event_read,
9773};
6fb2915d 9774
ad5133b7 9775static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 9776{
e077df4f 9777}
6fb2915d 9778
fbbe0701
SB
9779static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9780{
9781}
9782
ad5133b7 9783static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 9784{
ad5133b7 9785 return 0;
6fb2915d
LZ
9786}
9787
81ec3f3c
JO
9788static int perf_event_nop_int(struct perf_event *event, u64 value)
9789{
9790 return 0;
9791}
9792
18ab2cd3 9793static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
9794
9795static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 9796{
fbbe0701
SB
9797 __this_cpu_write(nop_txn_flags, flags);
9798
9799 if (flags & ~PERF_PMU_TXN_ADD)
9800 return;
9801
ad5133b7 9802 perf_pmu_disable(pmu);
6fb2915d
LZ
9803}
9804
ad5133b7
PZ
9805static int perf_pmu_commit_txn(struct pmu *pmu)
9806{
fbbe0701
SB
9807 unsigned int flags = __this_cpu_read(nop_txn_flags);
9808
9809 __this_cpu_write(nop_txn_flags, 0);
9810
9811 if (flags & ~PERF_PMU_TXN_ADD)
9812 return 0;
9813
ad5133b7
PZ
9814 perf_pmu_enable(pmu);
9815 return 0;
9816}
e077df4f 9817
ad5133b7 9818static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 9819{
fbbe0701
SB
9820 unsigned int flags = __this_cpu_read(nop_txn_flags);
9821
9822 __this_cpu_write(nop_txn_flags, 0);
9823
9824 if (flags & ~PERF_PMU_TXN_ADD)
9825 return;
9826
ad5133b7 9827 perf_pmu_enable(pmu);
24f1e32c
FW
9828}
9829
35edc2a5
PZ
9830static int perf_event_idx_default(struct perf_event *event)
9831{
c719f560 9832 return 0;
35edc2a5
PZ
9833}
9834
8dc85d54
PZ
9835/*
9836 * Ensures all contexts with the same task_ctx_nr have the same
9837 * pmu_cpu_context too.
9838 */
9e317041 9839static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 9840{
8dc85d54 9841 struct pmu *pmu;
b326e956 9842
8dc85d54
PZ
9843 if (ctxn < 0)
9844 return NULL;
24f1e32c 9845
8dc85d54
PZ
9846 list_for_each_entry(pmu, &pmus, entry) {
9847 if (pmu->task_ctx_nr == ctxn)
9848 return pmu->pmu_cpu_context;
9849 }
24f1e32c 9850
8dc85d54 9851 return NULL;
24f1e32c
FW
9852}
9853
51676957
PZ
9854static void free_pmu_context(struct pmu *pmu)
9855{
df0062b2
WD
9856 /*
9857 * Static contexts such as perf_sw_context have a global lifetime
9858 * and may be shared between different PMUs. Avoid freeing them
9859 * when a single PMU is going away.
9860 */
9861 if (pmu->task_ctx_nr > perf_invalid_context)
9862 return;
9863
51676957 9864 free_percpu(pmu->pmu_cpu_context);
24f1e32c 9865}
6e855cd4
AS
9866
9867/*
9868 * Let userspace know that this PMU supports address range filtering:
9869 */
9870static ssize_t nr_addr_filters_show(struct device *dev,
9871 struct device_attribute *attr,
9872 char *page)
9873{
9874 struct pmu *pmu = dev_get_drvdata(dev);
9875
9876 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9877}
9878DEVICE_ATTR_RO(nr_addr_filters);
9879
2e80a82a 9880static struct idr pmu_idr;
d6d020e9 9881
abe43400
PZ
9882static ssize_t
9883type_show(struct device *dev, struct device_attribute *attr, char *page)
9884{
9885 struct pmu *pmu = dev_get_drvdata(dev);
9886
9887 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9888}
90826ca7 9889static DEVICE_ATTR_RO(type);
abe43400 9890
62b85639
SE
9891static ssize_t
9892perf_event_mux_interval_ms_show(struct device *dev,
9893 struct device_attribute *attr,
9894 char *page)
9895{
9896 struct pmu *pmu = dev_get_drvdata(dev);
9897
9898 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9899}
9900
272325c4
PZ
9901static DEFINE_MUTEX(mux_interval_mutex);
9902
62b85639
SE
9903static ssize_t
9904perf_event_mux_interval_ms_store(struct device *dev,
9905 struct device_attribute *attr,
9906 const char *buf, size_t count)
9907{
9908 struct pmu *pmu = dev_get_drvdata(dev);
9909 int timer, cpu, ret;
9910
9911 ret = kstrtoint(buf, 0, &timer);
9912 if (ret)
9913 return ret;
9914
9915 if (timer < 1)
9916 return -EINVAL;
9917
9918 /* same value, noting to do */
9919 if (timer == pmu->hrtimer_interval_ms)
9920 return count;
9921
272325c4 9922 mutex_lock(&mux_interval_mutex);
62b85639
SE
9923 pmu->hrtimer_interval_ms = timer;
9924
9925 /* update all cpuctx for this PMU */
a63fbed7 9926 cpus_read_lock();
272325c4 9927 for_each_online_cpu(cpu) {
62b85639
SE
9928 struct perf_cpu_context *cpuctx;
9929 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9930 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9931
272325c4
PZ
9932 cpu_function_call(cpu,
9933 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 9934 }
a63fbed7 9935 cpus_read_unlock();
272325c4 9936 mutex_unlock(&mux_interval_mutex);
62b85639
SE
9937
9938 return count;
9939}
90826ca7 9940static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 9941
90826ca7
GKH
9942static struct attribute *pmu_dev_attrs[] = {
9943 &dev_attr_type.attr,
9944 &dev_attr_perf_event_mux_interval_ms.attr,
9945 NULL,
abe43400 9946};
90826ca7 9947ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9948
9949static int pmu_bus_running;
9950static struct bus_type pmu_bus = {
9951 .name = "event_source",
90826ca7 9952 .dev_groups = pmu_dev_groups,
abe43400
PZ
9953};
9954
9955static void pmu_dev_release(struct device *dev)
9956{
9957 kfree(dev);
9958}
9959
9960static int pmu_dev_alloc(struct pmu *pmu)
9961{
9962 int ret = -ENOMEM;
9963
9964 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9965 if (!pmu->dev)
9966 goto out;
9967
0c9d42ed 9968 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9969 device_initialize(pmu->dev);
9970 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9971 if (ret)
9972 goto free_dev;
9973
9974 dev_set_drvdata(pmu->dev, pmu);
9975 pmu->dev->bus = &pmu_bus;
9976 pmu->dev->release = pmu_dev_release;
9977 ret = device_add(pmu->dev);
9978 if (ret)
9979 goto free_dev;
9980
6e855cd4
AS
9981 /* For PMUs with address filters, throw in an extra attribute: */
9982 if (pmu->nr_addr_filters)
9983 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9984
9985 if (ret)
9986 goto del_dev;
9987
f3a3a825
JO
9988 if (pmu->attr_update)
9989 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
9990
9991 if (ret)
9992 goto del_dev;
9993
abe43400
PZ
9994out:
9995 return ret;
9996
6e855cd4
AS
9997del_dev:
9998 device_del(pmu->dev);
9999
abe43400
PZ
10000free_dev:
10001 put_device(pmu->dev);
10002 goto out;
10003}
10004
547e9fd7 10005static struct lock_class_key cpuctx_mutex;
facc4307 10006static struct lock_class_key cpuctx_lock;
547e9fd7 10007
03d8e80b 10008int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 10009{
108b02cf 10010 int cpu, ret;
24f1e32c 10011
b0a873eb 10012 mutex_lock(&pmus_lock);
33696fc0
PZ
10013 ret = -ENOMEM;
10014 pmu->pmu_disable_count = alloc_percpu(int);
10015 if (!pmu->pmu_disable_count)
10016 goto unlock;
f29ac756 10017
2e80a82a
PZ
10018 pmu->type = -1;
10019 if (!name)
10020 goto skip_type;
10021 pmu->name = name;
10022
10023 if (type < 0) {
0e9c3be2
TH
10024 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
10025 if (type < 0) {
10026 ret = type;
2e80a82a
PZ
10027 goto free_pdc;
10028 }
10029 }
10030 pmu->type = type;
10031
abe43400
PZ
10032 if (pmu_bus_running) {
10033 ret = pmu_dev_alloc(pmu);
10034 if (ret)
10035 goto free_idr;
10036 }
10037
2e80a82a 10038skip_type:
26657848
PZ
10039 if (pmu->task_ctx_nr == perf_hw_context) {
10040 static int hw_context_taken = 0;
10041
5101ef20
MR
10042 /*
10043 * Other than systems with heterogeneous CPUs, it never makes
10044 * sense for two PMUs to share perf_hw_context. PMUs which are
10045 * uncore must use perf_invalid_context.
10046 */
10047 if (WARN_ON_ONCE(hw_context_taken &&
10048 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
10049 pmu->task_ctx_nr = perf_invalid_context;
10050
10051 hw_context_taken = 1;
10052 }
10053
8dc85d54
PZ
10054 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10055 if (pmu->pmu_cpu_context)
10056 goto got_cpu_context;
f29ac756 10057
c4814202 10058 ret = -ENOMEM;
108b02cf
PZ
10059 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10060 if (!pmu->pmu_cpu_context)
abe43400 10061 goto free_dev;
f344011c 10062
108b02cf
PZ
10063 for_each_possible_cpu(cpu) {
10064 struct perf_cpu_context *cpuctx;
10065
10066 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 10067 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 10068 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 10069 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 10070 cpuctx->ctx.pmu = pmu;
a63fbed7 10071 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 10072
272325c4 10073 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 10074 }
76e1d904 10075
8dc85d54 10076got_cpu_context:
ad5133b7
PZ
10077 if (!pmu->start_txn) {
10078 if (pmu->pmu_enable) {
10079 /*
10080 * If we have pmu_enable/pmu_disable calls, install
10081 * transaction stubs that use that to try and batch
10082 * hardware accesses.
10083 */
10084 pmu->start_txn = perf_pmu_start_txn;
10085 pmu->commit_txn = perf_pmu_commit_txn;
10086 pmu->cancel_txn = perf_pmu_cancel_txn;
10087 } else {
fbbe0701 10088 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
10089 pmu->commit_txn = perf_pmu_nop_int;
10090 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 10091 }
5c92d124 10092 }
15dbf27c 10093
ad5133b7
PZ
10094 if (!pmu->pmu_enable) {
10095 pmu->pmu_enable = perf_pmu_nop_void;
10096 pmu->pmu_disable = perf_pmu_nop_void;
10097 }
10098
81ec3f3c
JO
10099 if (!pmu->check_period)
10100 pmu->check_period = perf_event_nop_int;
10101
35edc2a5
PZ
10102 if (!pmu->event_idx)
10103 pmu->event_idx = perf_event_idx_default;
10104
b0a873eb 10105 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 10106 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
10107 ret = 0;
10108unlock:
b0a873eb
PZ
10109 mutex_unlock(&pmus_lock);
10110
33696fc0 10111 return ret;
108b02cf 10112
abe43400
PZ
10113free_dev:
10114 device_del(pmu->dev);
10115 put_device(pmu->dev);
10116
2e80a82a
PZ
10117free_idr:
10118 if (pmu->type >= PERF_TYPE_MAX)
10119 idr_remove(&pmu_idr, pmu->type);
10120
108b02cf
PZ
10121free_pdc:
10122 free_percpu(pmu->pmu_disable_count);
10123 goto unlock;
f29ac756 10124}
c464c76e 10125EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 10126
b0a873eb 10127void perf_pmu_unregister(struct pmu *pmu)
5c92d124 10128{
b0a873eb
PZ
10129 mutex_lock(&pmus_lock);
10130 list_del_rcu(&pmu->entry);
5c92d124 10131
0475f9ea 10132 /*
cde8e884
PZ
10133 * We dereference the pmu list under both SRCU and regular RCU, so
10134 * synchronize against both of those.
0475f9ea 10135 */
b0a873eb 10136 synchronize_srcu(&pmus_srcu);
cde8e884 10137 synchronize_rcu();
d6d020e9 10138
33696fc0 10139 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
10140 if (pmu->type >= PERF_TYPE_MAX)
10141 idr_remove(&pmu_idr, pmu->type);
a9f97721 10142 if (pmu_bus_running) {
0933840a
JO
10143 if (pmu->nr_addr_filters)
10144 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10145 device_del(pmu->dev);
10146 put_device(pmu->dev);
10147 }
51676957 10148 free_pmu_context(pmu);
a9f97721 10149 mutex_unlock(&pmus_lock);
b0a873eb 10150}
c464c76e 10151EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 10152
e321d02d
KL
10153static inline bool has_extended_regs(struct perf_event *event)
10154{
10155 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10156 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10157}
10158
cc34b98b
MR
10159static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10160{
ccd41c86 10161 struct perf_event_context *ctx = NULL;
cc34b98b
MR
10162 int ret;
10163
10164 if (!try_module_get(pmu->module))
10165 return -ENODEV;
ccd41c86 10166
0c7296ca
PZ
10167 /*
10168 * A number of pmu->event_init() methods iterate the sibling_list to,
10169 * for example, validate if the group fits on the PMU. Therefore,
10170 * if this is a sibling event, acquire the ctx->mutex to protect
10171 * the sibling_list.
10172 */
10173 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
10174 /*
10175 * This ctx->mutex can nest when we're called through
10176 * inheritance. See the perf_event_ctx_lock_nested() comment.
10177 */
10178 ctx = perf_event_ctx_lock_nested(event->group_leader,
10179 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
10180 BUG_ON(!ctx);
10181 }
10182
cc34b98b
MR
10183 event->pmu = pmu;
10184 ret = pmu->event_init(event);
ccd41c86
PZ
10185
10186 if (ctx)
10187 perf_event_ctx_unlock(event->group_leader, ctx);
10188
cc6795ae 10189 if (!ret) {
e321d02d
KL
10190 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10191 has_extended_regs(event))
10192 ret = -EOPNOTSUPP;
10193
cc6795ae 10194 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
e321d02d 10195 event_has_any_exclude_flag(event))
cc6795ae 10196 ret = -EINVAL;
e321d02d
KL
10197
10198 if (ret && event->destroy)
10199 event->destroy(event);
cc6795ae
AM
10200 }
10201
cc34b98b
MR
10202 if (ret)
10203 module_put(pmu->module);
10204
10205 return ret;
10206}
10207
18ab2cd3 10208static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 10209{
85c617ab 10210 struct pmu *pmu;
b0a873eb 10211 int idx;
940c5b29 10212 int ret;
b0a873eb
PZ
10213
10214 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 10215
40999312
KL
10216 /* Try parent's PMU first: */
10217 if (event->parent && event->parent->pmu) {
10218 pmu = event->parent->pmu;
10219 ret = perf_try_init_event(pmu, event);
10220 if (!ret)
10221 goto unlock;
10222 }
10223
2e80a82a
PZ
10224 rcu_read_lock();
10225 pmu = idr_find(&pmu_idr, event->attr.type);
10226 rcu_read_unlock();
940c5b29 10227 if (pmu) {
cc34b98b 10228 ret = perf_try_init_event(pmu, event);
940c5b29
LM
10229 if (ret)
10230 pmu = ERR_PTR(ret);
2e80a82a 10231 goto unlock;
940c5b29 10232 }
2e80a82a 10233
b0a873eb 10234 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 10235 ret = perf_try_init_event(pmu, event);
b0a873eb 10236 if (!ret)
e5f4d339 10237 goto unlock;
76e1d904 10238
b0a873eb
PZ
10239 if (ret != -ENOENT) {
10240 pmu = ERR_PTR(ret);
e5f4d339 10241 goto unlock;
f344011c 10242 }
5c92d124 10243 }
e5f4d339
PZ
10244 pmu = ERR_PTR(-ENOENT);
10245unlock:
b0a873eb 10246 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 10247
4aeb0b42 10248 return pmu;
5c92d124
IM
10249}
10250
f2fb6bef
KL
10251static void attach_sb_event(struct perf_event *event)
10252{
10253 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10254
10255 raw_spin_lock(&pel->lock);
10256 list_add_rcu(&event->sb_list, &pel->list);
10257 raw_spin_unlock(&pel->lock);
10258}
10259
aab5b71e
PZ
10260/*
10261 * We keep a list of all !task (and therefore per-cpu) events
10262 * that need to receive side-band records.
10263 *
10264 * This avoids having to scan all the various PMU per-cpu contexts
10265 * looking for them.
10266 */
f2fb6bef
KL
10267static void account_pmu_sb_event(struct perf_event *event)
10268{
a4f144eb 10269 if (is_sb_event(event))
f2fb6bef
KL
10270 attach_sb_event(event);
10271}
10272
4beb31f3
FW
10273static void account_event_cpu(struct perf_event *event, int cpu)
10274{
10275 if (event->parent)
10276 return;
10277
4beb31f3
FW
10278 if (is_cgroup_event(event))
10279 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10280}
10281
555e0c1e
FW
10282/* Freq events need the tick to stay alive (see perf_event_task_tick). */
10283static void account_freq_event_nohz(void)
10284{
10285#ifdef CONFIG_NO_HZ_FULL
10286 /* Lock so we don't race with concurrent unaccount */
10287 spin_lock(&nr_freq_lock);
10288 if (atomic_inc_return(&nr_freq_events) == 1)
10289 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10290 spin_unlock(&nr_freq_lock);
10291#endif
10292}
10293
10294static void account_freq_event(void)
10295{
10296 if (tick_nohz_full_enabled())
10297 account_freq_event_nohz();
10298 else
10299 atomic_inc(&nr_freq_events);
10300}
10301
10302
766d6c07
FW
10303static void account_event(struct perf_event *event)
10304{
25432ae9
PZ
10305 bool inc = false;
10306
4beb31f3
FW
10307 if (event->parent)
10308 return;
10309
766d6c07 10310 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 10311 inc = true;
766d6c07
FW
10312 if (event->attr.mmap || event->attr.mmap_data)
10313 atomic_inc(&nr_mmap_events);
10314 if (event->attr.comm)
10315 atomic_inc(&nr_comm_events);
e4222673
HB
10316 if (event->attr.namespaces)
10317 atomic_inc(&nr_namespaces_events);
766d6c07
FW
10318 if (event->attr.task)
10319 atomic_inc(&nr_task_events);
555e0c1e
FW
10320 if (event->attr.freq)
10321 account_freq_event();
45ac1403
AH
10322 if (event->attr.context_switch) {
10323 atomic_inc(&nr_switch_events);
25432ae9 10324 inc = true;
45ac1403 10325 }
4beb31f3 10326 if (has_branch_stack(event))
25432ae9 10327 inc = true;
4beb31f3 10328 if (is_cgroup_event(event))
25432ae9 10329 inc = true;
76193a94
SL
10330 if (event->attr.ksymbol)
10331 atomic_inc(&nr_ksymbol_events);
6ee52e2a
SL
10332 if (event->attr.bpf_event)
10333 atomic_inc(&nr_bpf_events);
25432ae9 10334
9107c89e 10335 if (inc) {
5bce9db1
AS
10336 /*
10337 * We need the mutex here because static_branch_enable()
10338 * must complete *before* the perf_sched_count increment
10339 * becomes visible.
10340 */
9107c89e
PZ
10341 if (atomic_inc_not_zero(&perf_sched_count))
10342 goto enabled;
10343
10344 mutex_lock(&perf_sched_mutex);
10345 if (!atomic_read(&perf_sched_count)) {
10346 static_branch_enable(&perf_sched_events);
10347 /*
10348 * Guarantee that all CPUs observe they key change and
10349 * call the perf scheduling hooks before proceeding to
10350 * install events that need them.
10351 */
0809d954 10352 synchronize_rcu();
9107c89e
PZ
10353 }
10354 /*
10355 * Now that we have waited for the sync_sched(), allow further
10356 * increments to by-pass the mutex.
10357 */
10358 atomic_inc(&perf_sched_count);
10359 mutex_unlock(&perf_sched_mutex);
10360 }
10361enabled:
4beb31f3
FW
10362
10363 account_event_cpu(event, event->cpu);
f2fb6bef
KL
10364
10365 account_pmu_sb_event(event);
766d6c07
FW
10366}
10367
0793a61d 10368/*
788faab7 10369 * Allocate and initialize an event structure
0793a61d 10370 */
cdd6c482 10371static struct perf_event *
c3f00c70 10372perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
10373 struct task_struct *task,
10374 struct perf_event *group_leader,
10375 struct perf_event *parent_event,
4dc0da86 10376 perf_overflow_handler_t overflow_handler,
79dff51e 10377 void *context, int cgroup_fd)
0793a61d 10378{
51b0fe39 10379 struct pmu *pmu;
cdd6c482
IM
10380 struct perf_event *event;
10381 struct hw_perf_event *hwc;
90983b16 10382 long err = -EINVAL;
0793a61d 10383
66832eb4
ON
10384 if ((unsigned)cpu >= nr_cpu_ids) {
10385 if (!task || cpu != -1)
10386 return ERR_PTR(-EINVAL);
10387 }
10388
c3f00c70 10389 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 10390 if (!event)
d5d2bc0d 10391 return ERR_PTR(-ENOMEM);
0793a61d 10392
04289bb9 10393 /*
cdd6c482 10394 * Single events are their own group leaders, with an
04289bb9
IM
10395 * empty sibling list:
10396 */
10397 if (!group_leader)
cdd6c482 10398 group_leader = event;
04289bb9 10399
cdd6c482
IM
10400 mutex_init(&event->child_mutex);
10401 INIT_LIST_HEAD(&event->child_list);
fccc714b 10402
cdd6c482
IM
10403 INIT_LIST_HEAD(&event->event_entry);
10404 INIT_LIST_HEAD(&event->sibling_list);
6668128a 10405 INIT_LIST_HEAD(&event->active_list);
8e1a2031 10406 init_event_group(event);
10c6db11 10407 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 10408 INIT_LIST_HEAD(&event->active_entry);
375637bc 10409 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
10410 INIT_HLIST_NODE(&event->hlist_entry);
10411
10c6db11 10412
cdd6c482 10413 init_waitqueue_head(&event->waitq);
1d54ad94 10414 event->pending_disable = -1;
e360adbe 10415 init_irq_work(&event->pending, perf_pending_event);
0793a61d 10416
cdd6c482 10417 mutex_init(&event->mmap_mutex);
375637bc 10418 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 10419
a6fa941d 10420 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
10421 event->cpu = cpu;
10422 event->attr = *attr;
10423 event->group_leader = group_leader;
10424 event->pmu = NULL;
cdd6c482 10425 event->oncpu = -1;
a96bbc16 10426
cdd6c482 10427 event->parent = parent_event;
b84fbc9f 10428
17cf22c3 10429 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 10430 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 10431
cdd6c482 10432 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 10433
d580ff86
PZ
10434 if (task) {
10435 event->attach_state = PERF_ATTACH_TASK;
d580ff86 10436 /*
50f16a8b
PZ
10437 * XXX pmu::event_init needs to know what task to account to
10438 * and we cannot use the ctx information because we need the
10439 * pmu before we get a ctx.
d580ff86 10440 */
7b3c92b8 10441 event->hw.target = get_task_struct(task);
d580ff86
PZ
10442 }
10443
34f43927
PZ
10444 event->clock = &local_clock;
10445 if (parent_event)
10446 event->clock = parent_event->clock;
10447
4dc0da86 10448 if (!overflow_handler && parent_event) {
b326e956 10449 overflow_handler = parent_event->overflow_handler;
4dc0da86 10450 context = parent_event->overflow_handler_context;
f1e4ba5b 10451#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
10452 if (overflow_handler == bpf_overflow_handler) {
10453 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10454
10455 if (IS_ERR(prog)) {
10456 err = PTR_ERR(prog);
10457 goto err_ns;
10458 }
10459 event->prog = prog;
10460 event->orig_overflow_handler =
10461 parent_event->orig_overflow_handler;
10462 }
10463#endif
4dc0da86 10464 }
66832eb4 10465
1879445d
WN
10466 if (overflow_handler) {
10467 event->overflow_handler = overflow_handler;
10468 event->overflow_handler_context = context;
9ecda41a
WN
10469 } else if (is_write_backward(event)){
10470 event->overflow_handler = perf_event_output_backward;
10471 event->overflow_handler_context = NULL;
1879445d 10472 } else {
9ecda41a 10473 event->overflow_handler = perf_event_output_forward;
1879445d
WN
10474 event->overflow_handler_context = NULL;
10475 }
97eaf530 10476
0231bb53 10477 perf_event__state_init(event);
a86ed508 10478
4aeb0b42 10479 pmu = NULL;
b8e83514 10480
cdd6c482 10481 hwc = &event->hw;
bd2b5b12 10482 hwc->sample_period = attr->sample_period;
0d48696f 10483 if (attr->freq && attr->sample_freq)
bd2b5b12 10484 hwc->sample_period = 1;
eced1dfc 10485 hwc->last_period = hwc->sample_period;
bd2b5b12 10486
e7850595 10487 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 10488
2023b359 10489 /*
ba5213ae
PZ
10490 * We currently do not support PERF_SAMPLE_READ on inherited events.
10491 * See perf_output_read().
2023b359 10492 */
ba5213ae 10493 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 10494 goto err_ns;
a46a2300
YZ
10495
10496 if (!has_branch_stack(event))
10497 event->attr.branch_sample_type = 0;
2023b359 10498
79dff51e
MF
10499 if (cgroup_fd != -1) {
10500 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10501 if (err)
10502 goto err_ns;
10503 }
10504
b0a873eb 10505 pmu = perf_init_event(event);
85c617ab 10506 if (IS_ERR(pmu)) {
4aeb0b42 10507 err = PTR_ERR(pmu);
90983b16 10508 goto err_ns;
621a01ea 10509 }
d5d2bc0d 10510
ab43762e
AS
10511 if (event->attr.aux_output &&
10512 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10513 err = -EOPNOTSUPP;
10514 goto err_pmu;
10515 }
10516
bed5b25a
AS
10517 err = exclusive_event_init(event);
10518 if (err)
10519 goto err_pmu;
10520
375637bc 10521 if (has_addr_filter(event)) {
c60f83b8
AS
10522 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10523 sizeof(struct perf_addr_filter_range),
10524 GFP_KERNEL);
10525 if (!event->addr_filter_ranges) {
36cc2b92 10526 err = -ENOMEM;
375637bc 10527 goto err_per_task;
36cc2b92 10528 }
375637bc 10529
18736eef
AS
10530 /*
10531 * Clone the parent's vma offsets: they are valid until exec()
10532 * even if the mm is not shared with the parent.
10533 */
10534 if (event->parent) {
10535 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10536
10537 raw_spin_lock_irq(&ifh->lock);
c60f83b8
AS
10538 memcpy(event->addr_filter_ranges,
10539 event->parent->addr_filter_ranges,
10540 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
18736eef
AS
10541 raw_spin_unlock_irq(&ifh->lock);
10542 }
10543
375637bc
AS
10544 /* force hw sync on the address filters */
10545 event->addr_filters_gen = 1;
10546 }
10547
cdd6c482 10548 if (!event->parent) {
927c7a9e 10549 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 10550 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 10551 if (err)
375637bc 10552 goto err_addr_filters;
d010b332 10553 }
f344011c 10554 }
9ee318a7 10555
927a5570
AS
10556 /* symmetric to unaccount_event() in _free_event() */
10557 account_event(event);
10558
cdd6c482 10559 return event;
90983b16 10560
375637bc 10561err_addr_filters:
c60f83b8 10562 kfree(event->addr_filter_ranges);
375637bc 10563
bed5b25a
AS
10564err_per_task:
10565 exclusive_event_destroy(event);
10566
90983b16
FW
10567err_pmu:
10568 if (event->destroy)
10569 event->destroy(event);
c464c76e 10570 module_put(pmu->module);
90983b16 10571err_ns:
79dff51e
MF
10572 if (is_cgroup_event(event))
10573 perf_detach_cgroup(event);
90983b16
FW
10574 if (event->ns)
10575 put_pid_ns(event->ns);
621b6d2e
PB
10576 if (event->hw.target)
10577 put_task_struct(event->hw.target);
90983b16
FW
10578 kfree(event);
10579
10580 return ERR_PTR(err);
0793a61d
TG
10581}
10582
cdd6c482
IM
10583static int perf_copy_attr(struct perf_event_attr __user *uattr,
10584 struct perf_event_attr *attr)
974802ea 10585{
974802ea 10586 u32 size;
cdf8073d 10587 int ret;
974802ea 10588
c2ba8f41 10589 /* Zero the full structure, so that a short copy will be nice. */
974802ea
PZ
10590 memset(attr, 0, sizeof(*attr));
10591
10592 ret = get_user(size, &uattr->size);
10593 if (ret)
10594 return ret;
10595
c2ba8f41
AS
10596 /* ABI compatibility quirk: */
10597 if (!size)
974802ea 10598 size = PERF_ATTR_SIZE_VER0;
c2ba8f41 10599 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
974802ea
PZ
10600 goto err_size;
10601
c2ba8f41
AS
10602 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10603 if (ret) {
10604 if (ret == -E2BIG)
10605 goto err_size;
10606 return ret;
974802ea
PZ
10607 }
10608
f12f42ac
MX
10609 attr->size = size;
10610
cd757645 10611 if (attr->__reserved_1)
974802ea
PZ
10612 return -EINVAL;
10613
10614 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10615 return -EINVAL;
10616
10617 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10618 return -EINVAL;
10619
bce38cd5
SE
10620 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10621 u64 mask = attr->branch_sample_type;
10622
10623 /* only using defined bits */
10624 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10625 return -EINVAL;
10626
10627 /* at least one branch bit must be set */
10628 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10629 return -EINVAL;
10630
bce38cd5
SE
10631 /* propagate priv level, when not set for branch */
10632 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10633
10634 /* exclude_kernel checked on syscall entry */
10635 if (!attr->exclude_kernel)
10636 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10637
10638 if (!attr->exclude_user)
10639 mask |= PERF_SAMPLE_BRANCH_USER;
10640
10641 if (!attr->exclude_hv)
10642 mask |= PERF_SAMPLE_BRANCH_HV;
10643 /*
10644 * adjust user setting (for HW filter setup)
10645 */
10646 attr->branch_sample_type = mask;
10647 }
e712209a
SE
10648 /* privileged levels capture (kernel, hv): check permissions */
10649 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
10650 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10651 return -EACCES;
bce38cd5 10652 }
4018994f 10653
c5ebcedb 10654 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 10655 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
10656 if (ret)
10657 return ret;
10658 }
10659
10660 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10661 if (!arch_perf_have_user_stack_dump())
10662 return -ENOSYS;
10663
10664 /*
10665 * We have __u32 type for the size, but so far
10666 * we can only use __u16 as maximum due to the
10667 * __u16 sample size limit.
10668 */
10669 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 10670 return -EINVAL;
c5ebcedb 10671 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 10672 return -EINVAL;
c5ebcedb 10673 }
4018994f 10674
5f970521
JO
10675 if (!attr->sample_max_stack)
10676 attr->sample_max_stack = sysctl_perf_event_max_stack;
10677
60e2364e
SE
10678 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10679 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
10680out:
10681 return ret;
10682
10683err_size:
10684 put_user(sizeof(*attr), &uattr->size);
10685 ret = -E2BIG;
10686 goto out;
10687}
10688
ac9721f3
PZ
10689static int
10690perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 10691{
b69cf536 10692 struct ring_buffer *rb = NULL;
a4be7c27
PZ
10693 int ret = -EINVAL;
10694
ac9721f3 10695 if (!output_event)
a4be7c27
PZ
10696 goto set;
10697
ac9721f3
PZ
10698 /* don't allow circular references */
10699 if (event == output_event)
a4be7c27
PZ
10700 goto out;
10701
0f139300
PZ
10702 /*
10703 * Don't allow cross-cpu buffers
10704 */
10705 if (output_event->cpu != event->cpu)
10706 goto out;
10707
10708 /*
76369139 10709 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
10710 */
10711 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10712 goto out;
10713
34f43927
PZ
10714 /*
10715 * Mixing clocks in the same buffer is trouble you don't need.
10716 */
10717 if (output_event->clock != event->clock)
10718 goto out;
10719
9ecda41a
WN
10720 /*
10721 * Either writing ring buffer from beginning or from end.
10722 * Mixing is not allowed.
10723 */
10724 if (is_write_backward(output_event) != is_write_backward(event))
10725 goto out;
10726
45bfb2e5
PZ
10727 /*
10728 * If both events generate aux data, they must be on the same PMU
10729 */
10730 if (has_aux(event) && has_aux(output_event) &&
10731 event->pmu != output_event->pmu)
10732 goto out;
10733
a4be7c27 10734set:
cdd6c482 10735 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
10736 /* Can't redirect output if we've got an active mmap() */
10737 if (atomic_read(&event->mmap_count))
10738 goto unlock;
a4be7c27 10739
ac9721f3 10740 if (output_event) {
76369139
FW
10741 /* get the rb we want to redirect to */
10742 rb = ring_buffer_get(output_event);
10743 if (!rb)
ac9721f3 10744 goto unlock;
a4be7c27
PZ
10745 }
10746
b69cf536 10747 ring_buffer_attach(event, rb);
9bb5d40c 10748
a4be7c27 10749 ret = 0;
ac9721f3
PZ
10750unlock:
10751 mutex_unlock(&event->mmap_mutex);
10752
a4be7c27 10753out:
a4be7c27
PZ
10754 return ret;
10755}
10756
f63a8daa
PZ
10757static void mutex_lock_double(struct mutex *a, struct mutex *b)
10758{
10759 if (b < a)
10760 swap(a, b);
10761
10762 mutex_lock(a);
10763 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10764}
10765
34f43927
PZ
10766static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10767{
10768 bool nmi_safe = false;
10769
10770 switch (clk_id) {
10771 case CLOCK_MONOTONIC:
10772 event->clock = &ktime_get_mono_fast_ns;
10773 nmi_safe = true;
10774 break;
10775
10776 case CLOCK_MONOTONIC_RAW:
10777 event->clock = &ktime_get_raw_fast_ns;
10778 nmi_safe = true;
10779 break;
10780
10781 case CLOCK_REALTIME:
10782 event->clock = &ktime_get_real_ns;
10783 break;
10784
10785 case CLOCK_BOOTTIME:
9285ec4c 10786 event->clock = &ktime_get_boottime_ns;
34f43927
PZ
10787 break;
10788
10789 case CLOCK_TAI:
9285ec4c 10790 event->clock = &ktime_get_clocktai_ns;
34f43927
PZ
10791 break;
10792
10793 default:
10794 return -EINVAL;
10795 }
10796
10797 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10798 return -EINVAL;
10799
10800 return 0;
10801}
10802
321027c1
PZ
10803/*
10804 * Variation on perf_event_ctx_lock_nested(), except we take two context
10805 * mutexes.
10806 */
10807static struct perf_event_context *
10808__perf_event_ctx_lock_double(struct perf_event *group_leader,
10809 struct perf_event_context *ctx)
10810{
10811 struct perf_event_context *gctx;
10812
10813again:
10814 rcu_read_lock();
10815 gctx = READ_ONCE(group_leader->ctx);
8c94abbb 10816 if (!refcount_inc_not_zero(&gctx->refcount)) {
321027c1
PZ
10817 rcu_read_unlock();
10818 goto again;
10819 }
10820 rcu_read_unlock();
10821
10822 mutex_lock_double(&gctx->mutex, &ctx->mutex);
10823
10824 if (group_leader->ctx != gctx) {
10825 mutex_unlock(&ctx->mutex);
10826 mutex_unlock(&gctx->mutex);
10827 put_ctx(gctx);
10828 goto again;
10829 }
10830
10831 return gctx;
10832}
10833
0793a61d 10834/**
cdd6c482 10835 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 10836 *
cdd6c482 10837 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 10838 * @pid: target pid
9f66a381 10839 * @cpu: target cpu
cdd6c482 10840 * @group_fd: group leader event fd
0793a61d 10841 */
cdd6c482
IM
10842SYSCALL_DEFINE5(perf_event_open,
10843 struct perf_event_attr __user *, attr_uptr,
2743a5b0 10844 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 10845{
b04243ef
PZ
10846 struct perf_event *group_leader = NULL, *output_event = NULL;
10847 struct perf_event *event, *sibling;
cdd6c482 10848 struct perf_event_attr attr;
f63a8daa 10849 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 10850 struct file *event_file = NULL;
2903ff01 10851 struct fd group = {NULL, 0};
38a81da2 10852 struct task_struct *task = NULL;
89a1e187 10853 struct pmu *pmu;
ea635c64 10854 int event_fd;
b04243ef 10855 int move_group = 0;
dc86cabe 10856 int err;
a21b0b35 10857 int f_flags = O_RDWR;
79dff51e 10858 int cgroup_fd = -1;
0793a61d 10859
2743a5b0 10860 /* for future expandability... */
e5d1367f 10861 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
10862 return -EINVAL;
10863
dc86cabe
IM
10864 err = perf_copy_attr(attr_uptr, &attr);
10865 if (err)
10866 return err;
eab656ae 10867
0764771d
PZ
10868 if (!attr.exclude_kernel) {
10869 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10870 return -EACCES;
10871 }
10872
e4222673
HB
10873 if (attr.namespaces) {
10874 if (!capable(CAP_SYS_ADMIN))
10875 return -EACCES;
10876 }
10877
df58ab24 10878 if (attr.freq) {
cdd6c482 10879 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 10880 return -EINVAL;
0819b2e3
PZ
10881 } else {
10882 if (attr.sample_period & (1ULL << 63))
10883 return -EINVAL;
df58ab24
PZ
10884 }
10885
fc7ce9c7
KL
10886 /* Only privileged users can get physical addresses */
10887 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10888 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10889 return -EACCES;
10890
b0c8fdc7
DH
10891 err = security_locked_down(LOCKDOWN_PERF);
10892 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
10893 /* REGS_INTR can leak data, lockdown must prevent this */
10894 return err;
10895
10896 err = 0;
10897
e5d1367f
SE
10898 /*
10899 * In cgroup mode, the pid argument is used to pass the fd
10900 * opened to the cgroup directory in cgroupfs. The cpu argument
10901 * designates the cpu on which to monitor threads from that
10902 * cgroup.
10903 */
10904 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10905 return -EINVAL;
10906
a21b0b35
YD
10907 if (flags & PERF_FLAG_FD_CLOEXEC)
10908 f_flags |= O_CLOEXEC;
10909
10910 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
10911 if (event_fd < 0)
10912 return event_fd;
10913
ac9721f3 10914 if (group_fd != -1) {
2903ff01
AV
10915 err = perf_fget_light(group_fd, &group);
10916 if (err)
d14b12d7 10917 goto err_fd;
2903ff01 10918 group_leader = group.file->private_data;
ac9721f3
PZ
10919 if (flags & PERF_FLAG_FD_OUTPUT)
10920 output_event = group_leader;
10921 if (flags & PERF_FLAG_FD_NO_GROUP)
10922 group_leader = NULL;
10923 }
10924
e5d1367f 10925 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
10926 task = find_lively_task_by_vpid(pid);
10927 if (IS_ERR(task)) {
10928 err = PTR_ERR(task);
10929 goto err_group_fd;
10930 }
10931 }
10932
1f4ee503
PZ
10933 if (task && group_leader &&
10934 group_leader->attr.inherit != attr.inherit) {
10935 err = -EINVAL;
10936 goto err_task;
10937 }
10938
79c9ce57
PZ
10939 if (task) {
10940 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10941 if (err)
e5aeee51 10942 goto err_task;
79c9ce57
PZ
10943
10944 /*
10945 * Reuse ptrace permission checks for now.
10946 *
10947 * We must hold cred_guard_mutex across this and any potential
10948 * perf_install_in_context() call for this new event to
10949 * serialize against exec() altering our credentials (and the
10950 * perf_event_exit_task() that could imply).
10951 */
10952 err = -EACCES;
10953 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10954 goto err_cred;
10955 }
10956
79dff51e
MF
10957 if (flags & PERF_FLAG_PID_CGROUP)
10958 cgroup_fd = pid;
10959
4dc0da86 10960 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 10961 NULL, NULL, cgroup_fd);
d14b12d7
SE
10962 if (IS_ERR(event)) {
10963 err = PTR_ERR(event);
79c9ce57 10964 goto err_cred;
d14b12d7
SE
10965 }
10966
53b25335
VW
10967 if (is_sampling_event(event)) {
10968 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 10969 err = -EOPNOTSUPP;
53b25335
VW
10970 goto err_alloc;
10971 }
10972 }
10973
89a1e187
PZ
10974 /*
10975 * Special case software events and allow them to be part of
10976 * any hardware group.
10977 */
10978 pmu = event->pmu;
b04243ef 10979
34f43927
PZ
10980 if (attr.use_clockid) {
10981 err = perf_event_set_clock(event, attr.clockid);
10982 if (err)
10983 goto err_alloc;
10984 }
10985
4ff6a8de
DCC
10986 if (pmu->task_ctx_nr == perf_sw_context)
10987 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10988
a1150c20
SL
10989 if (group_leader) {
10990 if (is_software_event(event) &&
10991 !in_software_context(group_leader)) {
b04243ef 10992 /*
a1150c20
SL
10993 * If the event is a sw event, but the group_leader
10994 * is on hw context.
b04243ef 10995 *
a1150c20
SL
10996 * Allow the addition of software events to hw
10997 * groups, this is safe because software events
10998 * never fail to schedule.
b04243ef 10999 */
a1150c20
SL
11000 pmu = group_leader->ctx->pmu;
11001 } else if (!is_software_event(event) &&
11002 is_software_event(group_leader) &&
4ff6a8de 11003 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
11004 /*
11005 * In case the group is a pure software group, and we
11006 * try to add a hardware event, move the whole group to
11007 * the hardware context.
11008 */
11009 move_group = 1;
11010 }
11011 }
89a1e187
PZ
11012
11013 /*
11014 * Get the target context (task or percpu):
11015 */
4af57ef2 11016 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
11017 if (IS_ERR(ctx)) {
11018 err = PTR_ERR(ctx);
c6be5a5c 11019 goto err_alloc;
89a1e187
PZ
11020 }
11021
ccff286d 11022 /*
cdd6c482 11023 * Look up the group leader (we will attach this event to it):
04289bb9 11024 */
ac9721f3 11025 if (group_leader) {
dc86cabe 11026 err = -EINVAL;
04289bb9 11027
04289bb9 11028 /*
ccff286d
IM
11029 * Do not allow a recursive hierarchy (this new sibling
11030 * becoming part of another group-sibling):
11031 */
11032 if (group_leader->group_leader != group_leader)
c3f00c70 11033 goto err_context;
34f43927
PZ
11034
11035 /* All events in a group should have the same clock */
11036 if (group_leader->clock != event->clock)
11037 goto err_context;
11038
ccff286d 11039 /*
64aee2a9
MR
11040 * Make sure we're both events for the same CPU;
11041 * grouping events for different CPUs is broken; since
11042 * you can never concurrently schedule them anyhow.
04289bb9 11043 */
64aee2a9
MR
11044 if (group_leader->cpu != event->cpu)
11045 goto err_context;
c3c87e77 11046
64aee2a9
MR
11047 /*
11048 * Make sure we're both on the same task, or both
11049 * per-CPU events.
11050 */
11051 if (group_leader->ctx->task != ctx->task)
11052 goto err_context;
11053
11054 /*
11055 * Do not allow to attach to a group in a different task
11056 * or CPU context. If we're moving SW events, we'll fix
11057 * this up later, so allow that.
11058 */
11059 if (!move_group && group_leader->ctx != ctx)
11060 goto err_context;
b04243ef 11061
3b6f9e5c
PM
11062 /*
11063 * Only a group leader can be exclusive or pinned
11064 */
0d48696f 11065 if (attr.exclusive || attr.pinned)
c3f00c70 11066 goto err_context;
ac9721f3
PZ
11067 }
11068
11069 if (output_event) {
11070 err = perf_event_set_output(event, output_event);
11071 if (err)
c3f00c70 11072 goto err_context;
ac9721f3 11073 }
0793a61d 11074
a21b0b35
YD
11075 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11076 f_flags);
ea635c64
AV
11077 if (IS_ERR(event_file)) {
11078 err = PTR_ERR(event_file);
201c2f85 11079 event_file = NULL;
c3f00c70 11080 goto err_context;
ea635c64 11081 }
9b51f66d 11082
b04243ef 11083 if (move_group) {
321027c1
PZ
11084 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11085
84c4e620
PZ
11086 if (gctx->task == TASK_TOMBSTONE) {
11087 err = -ESRCH;
11088 goto err_locked;
11089 }
321027c1
PZ
11090
11091 /*
11092 * Check if we raced against another sys_perf_event_open() call
11093 * moving the software group underneath us.
11094 */
11095 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11096 /*
11097 * If someone moved the group out from under us, check
11098 * if this new event wound up on the same ctx, if so
11099 * its the regular !move_group case, otherwise fail.
11100 */
11101 if (gctx != ctx) {
11102 err = -EINVAL;
11103 goto err_locked;
11104 } else {
11105 perf_event_ctx_unlock(group_leader, gctx);
11106 move_group = 0;
11107 }
11108 }
8a58ddae
AS
11109
11110 /*
11111 * Failure to create exclusive events returns -EBUSY.
11112 */
11113 err = -EBUSY;
11114 if (!exclusive_event_installable(group_leader, ctx))
11115 goto err_locked;
11116
11117 for_each_sibling_event(sibling, group_leader) {
11118 if (!exclusive_event_installable(sibling, ctx))
11119 goto err_locked;
11120 }
f55fc2a5
PZ
11121 } else {
11122 mutex_lock(&ctx->mutex);
11123 }
11124
84c4e620
PZ
11125 if (ctx->task == TASK_TOMBSTONE) {
11126 err = -ESRCH;
11127 goto err_locked;
11128 }
11129
a723968c
PZ
11130 if (!perf_event_validate_size(event)) {
11131 err = -E2BIG;
11132 goto err_locked;
11133 }
11134
a63fbed7
TG
11135 if (!task) {
11136 /*
11137 * Check if the @cpu we're creating an event for is online.
11138 *
11139 * We use the perf_cpu_context::ctx::mutex to serialize against
11140 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11141 */
11142 struct perf_cpu_context *cpuctx =
11143 container_of(ctx, struct perf_cpu_context, ctx);
11144
11145 if (!cpuctx->online) {
11146 err = -ENODEV;
11147 goto err_locked;
11148 }
11149 }
11150
ab43762e
AS
11151 if (event->attr.aux_output && !perf_get_aux_event(event, group_leader))
11152 goto err_locked;
a63fbed7 11153
f55fc2a5
PZ
11154 /*
11155 * Must be under the same ctx::mutex as perf_install_in_context(),
11156 * because we need to serialize with concurrent event creation.
11157 */
11158 if (!exclusive_event_installable(event, ctx)) {
f55fc2a5
PZ
11159 err = -EBUSY;
11160 goto err_locked;
11161 }
f63a8daa 11162
f55fc2a5
PZ
11163 WARN_ON_ONCE(ctx->parent_ctx);
11164
79c9ce57
PZ
11165 /*
11166 * This is the point on no return; we cannot fail hereafter. This is
11167 * where we start modifying current state.
11168 */
11169
f55fc2a5 11170 if (move_group) {
f63a8daa
PZ
11171 /*
11172 * See perf_event_ctx_lock() for comments on the details
11173 * of swizzling perf_event::ctx.
11174 */
45a0e07a 11175 perf_remove_from_context(group_leader, 0);
279b5165 11176 put_ctx(gctx);
0231bb53 11177
edb39592 11178 for_each_sibling_event(sibling, group_leader) {
45a0e07a 11179 perf_remove_from_context(sibling, 0);
b04243ef
PZ
11180 put_ctx(gctx);
11181 }
b04243ef 11182
f63a8daa
PZ
11183 /*
11184 * Wait for everybody to stop referencing the events through
11185 * the old lists, before installing it on new lists.
11186 */
0cda4c02 11187 synchronize_rcu();
f63a8daa 11188
8f95b435
PZI
11189 /*
11190 * Install the group siblings before the group leader.
11191 *
11192 * Because a group leader will try and install the entire group
11193 * (through the sibling list, which is still in-tact), we can
11194 * end up with siblings installed in the wrong context.
11195 *
11196 * By installing siblings first we NO-OP because they're not
11197 * reachable through the group lists.
11198 */
edb39592 11199 for_each_sibling_event(sibling, group_leader) {
8f95b435 11200 perf_event__state_init(sibling);
9fc81d87 11201 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
11202 get_ctx(ctx);
11203 }
8f95b435
PZI
11204
11205 /*
11206 * Removing from the context ends up with disabled
11207 * event. What we want here is event in the initial
11208 * startup state, ready to be add into new context.
11209 */
11210 perf_event__state_init(group_leader);
11211 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11212 get_ctx(ctx);
bed5b25a
AS
11213 }
11214
f73e22ab
PZ
11215 /*
11216 * Precalculate sample_data sizes; do while holding ctx::mutex such
11217 * that we're serialized against further additions and before
11218 * perf_install_in_context() which is the point the event is active and
11219 * can use these values.
11220 */
11221 perf_event__header_size(event);
11222 perf_event__id_header_size(event);
11223
78cd2c74
PZ
11224 event->owner = current;
11225
e2d37cd2 11226 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11227 perf_unpin_context(ctx);
f63a8daa 11228
f55fc2a5 11229 if (move_group)
321027c1 11230 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 11231 mutex_unlock(&ctx->mutex);
9b51f66d 11232
79c9ce57
PZ
11233 if (task) {
11234 mutex_unlock(&task->signal->cred_guard_mutex);
11235 put_task_struct(task);
11236 }
11237
cdd6c482
IM
11238 mutex_lock(&current->perf_event_mutex);
11239 list_add_tail(&event->owner_entry, &current->perf_event_list);
11240 mutex_unlock(&current->perf_event_mutex);
082ff5a2 11241
8a49542c
PZ
11242 /*
11243 * Drop the reference on the group_event after placing the
11244 * new event on the sibling_list. This ensures destruction
11245 * of the group leader will find the pointer to itself in
11246 * perf_group_detach().
11247 */
2903ff01 11248 fdput(group);
ea635c64
AV
11249 fd_install(event_fd, event_file);
11250 return event_fd;
0793a61d 11251
f55fc2a5
PZ
11252err_locked:
11253 if (move_group)
321027c1 11254 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
11255 mutex_unlock(&ctx->mutex);
11256/* err_file: */
11257 fput(event_file);
c3f00c70 11258err_context:
fe4b04fa 11259 perf_unpin_context(ctx);
ea635c64 11260 put_ctx(ctx);
c6be5a5c 11261err_alloc:
13005627
PZ
11262 /*
11263 * If event_file is set, the fput() above will have called ->release()
11264 * and that will take care of freeing the event.
11265 */
11266 if (!event_file)
11267 free_event(event);
79c9ce57
PZ
11268err_cred:
11269 if (task)
11270 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 11271err_task:
e7d0bc04
PZ
11272 if (task)
11273 put_task_struct(task);
89a1e187 11274err_group_fd:
2903ff01 11275 fdput(group);
ea635c64
AV
11276err_fd:
11277 put_unused_fd(event_fd);
dc86cabe 11278 return err;
0793a61d
TG
11279}
11280
fb0459d7
AV
11281/**
11282 * perf_event_create_kernel_counter
11283 *
11284 * @attr: attributes of the counter to create
11285 * @cpu: cpu in which the counter is bound
38a81da2 11286 * @task: task to profile (NULL for percpu)
fb0459d7
AV
11287 */
11288struct perf_event *
11289perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 11290 struct task_struct *task,
4dc0da86
AK
11291 perf_overflow_handler_t overflow_handler,
11292 void *context)
fb0459d7 11293{
fb0459d7 11294 struct perf_event_context *ctx;
c3f00c70 11295 struct perf_event *event;
fb0459d7 11296 int err;
d859e29f 11297
fb0459d7
AV
11298 /*
11299 * Get the target context (task or percpu):
11300 */
d859e29f 11301
4dc0da86 11302 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 11303 overflow_handler, context, -1);
c3f00c70
PZ
11304 if (IS_ERR(event)) {
11305 err = PTR_ERR(event);
11306 goto err;
11307 }
d859e29f 11308
f8697762 11309 /* Mark owner so we could distinguish it from user events. */
63b6da39 11310 event->owner = TASK_TOMBSTONE;
f8697762 11311
4af57ef2 11312 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
11313 if (IS_ERR(ctx)) {
11314 err = PTR_ERR(ctx);
c3f00c70 11315 goto err_free;
d859e29f 11316 }
fb0459d7 11317
fb0459d7
AV
11318 WARN_ON_ONCE(ctx->parent_ctx);
11319 mutex_lock(&ctx->mutex);
84c4e620
PZ
11320 if (ctx->task == TASK_TOMBSTONE) {
11321 err = -ESRCH;
11322 goto err_unlock;
11323 }
11324
a63fbed7
TG
11325 if (!task) {
11326 /*
11327 * Check if the @cpu we're creating an event for is online.
11328 *
11329 * We use the perf_cpu_context::ctx::mutex to serialize against
11330 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11331 */
11332 struct perf_cpu_context *cpuctx =
11333 container_of(ctx, struct perf_cpu_context, ctx);
11334 if (!cpuctx->online) {
11335 err = -ENODEV;
11336 goto err_unlock;
11337 }
11338 }
11339
bed5b25a 11340 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 11341 err = -EBUSY;
84c4e620 11342 goto err_unlock;
bed5b25a
AS
11343 }
11344
4ce54af8 11345 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11346 perf_unpin_context(ctx);
fb0459d7
AV
11347 mutex_unlock(&ctx->mutex);
11348
fb0459d7
AV
11349 return event;
11350
84c4e620
PZ
11351err_unlock:
11352 mutex_unlock(&ctx->mutex);
11353 perf_unpin_context(ctx);
11354 put_ctx(ctx);
c3f00c70
PZ
11355err_free:
11356 free_event(event);
11357err:
c6567f64 11358 return ERR_PTR(err);
9b51f66d 11359}
fb0459d7 11360EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 11361
0cda4c02
YZ
11362void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11363{
11364 struct perf_event_context *src_ctx;
11365 struct perf_event_context *dst_ctx;
11366 struct perf_event *event, *tmp;
11367 LIST_HEAD(events);
11368
11369 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11370 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11371
f63a8daa
PZ
11372 /*
11373 * See perf_event_ctx_lock() for comments on the details
11374 * of swizzling perf_event::ctx.
11375 */
11376 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
11377 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11378 event_entry) {
45a0e07a 11379 perf_remove_from_context(event, 0);
9a545de0 11380 unaccount_event_cpu(event, src_cpu);
0cda4c02 11381 put_ctx(src_ctx);
9886167d 11382 list_add(&event->migrate_entry, &events);
0cda4c02 11383 }
0cda4c02 11384
8f95b435
PZI
11385 /*
11386 * Wait for the events to quiesce before re-instating them.
11387 */
0cda4c02
YZ
11388 synchronize_rcu();
11389
8f95b435
PZI
11390 /*
11391 * Re-instate events in 2 passes.
11392 *
11393 * Skip over group leaders and only install siblings on this first
11394 * pass, siblings will not get enabled without a leader, however a
11395 * leader will enable its siblings, even if those are still on the old
11396 * context.
11397 */
11398 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11399 if (event->group_leader == event)
11400 continue;
11401
11402 list_del(&event->migrate_entry);
11403 if (event->state >= PERF_EVENT_STATE_OFF)
11404 event->state = PERF_EVENT_STATE_INACTIVE;
11405 account_event_cpu(event, dst_cpu);
11406 perf_install_in_context(dst_ctx, event, dst_cpu);
11407 get_ctx(dst_ctx);
11408 }
11409
11410 /*
11411 * Once all the siblings are setup properly, install the group leaders
11412 * to make it go.
11413 */
9886167d
PZ
11414 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11415 list_del(&event->migrate_entry);
0cda4c02
YZ
11416 if (event->state >= PERF_EVENT_STATE_OFF)
11417 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 11418 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
11419 perf_install_in_context(dst_ctx, event, dst_cpu);
11420 get_ctx(dst_ctx);
11421 }
11422 mutex_unlock(&dst_ctx->mutex);
f63a8daa 11423 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
11424}
11425EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11426
cdd6c482 11427static void sync_child_event(struct perf_event *child_event,
38b200d6 11428 struct task_struct *child)
d859e29f 11429{
cdd6c482 11430 struct perf_event *parent_event = child_event->parent;
8bc20959 11431 u64 child_val;
d859e29f 11432
cdd6c482
IM
11433 if (child_event->attr.inherit_stat)
11434 perf_event_read_event(child_event, child);
38b200d6 11435
b5e58793 11436 child_val = perf_event_count(child_event);
d859e29f
PM
11437
11438 /*
11439 * Add back the child's count to the parent's count:
11440 */
a6e6dea6 11441 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
11442 atomic64_add(child_event->total_time_enabled,
11443 &parent_event->child_total_time_enabled);
11444 atomic64_add(child_event->total_time_running,
11445 &parent_event->child_total_time_running);
d859e29f
PM
11446}
11447
9b51f66d 11448static void
8ba289b8
PZ
11449perf_event_exit_event(struct perf_event *child_event,
11450 struct perf_event_context *child_ctx,
11451 struct task_struct *child)
9b51f66d 11452{
8ba289b8
PZ
11453 struct perf_event *parent_event = child_event->parent;
11454
1903d50c
PZ
11455 /*
11456 * Do not destroy the 'original' grouping; because of the context
11457 * switch optimization the original events could've ended up in a
11458 * random child task.
11459 *
11460 * If we were to destroy the original group, all group related
11461 * operations would cease to function properly after this random
11462 * child dies.
11463 *
11464 * Do destroy all inherited groups, we don't care about those
11465 * and being thorough is better.
11466 */
32132a3d
PZ
11467 raw_spin_lock_irq(&child_ctx->lock);
11468 WARN_ON_ONCE(child_ctx->is_active);
11469
8ba289b8 11470 if (parent_event)
32132a3d
PZ
11471 perf_group_detach(child_event);
11472 list_del_event(child_event, child_ctx);
0d3d73aa 11473 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 11474 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 11475
9b51f66d 11476 /*
8ba289b8 11477 * Parent events are governed by their filedesc, retain them.
9b51f66d 11478 */
8ba289b8 11479 if (!parent_event) {
179033b3 11480 perf_event_wakeup(child_event);
8ba289b8 11481 return;
4bcf349a 11482 }
8ba289b8
PZ
11483 /*
11484 * Child events can be cleaned up.
11485 */
11486
11487 sync_child_event(child_event, child);
11488
11489 /*
11490 * Remove this event from the parent's list
11491 */
11492 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11493 mutex_lock(&parent_event->child_mutex);
11494 list_del_init(&child_event->child_list);
11495 mutex_unlock(&parent_event->child_mutex);
11496
11497 /*
11498 * Kick perf_poll() for is_event_hup().
11499 */
11500 perf_event_wakeup(parent_event);
11501 free_event(child_event);
11502 put_event(parent_event);
9b51f66d
IM
11503}
11504
8dc85d54 11505static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 11506{
211de6eb 11507 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 11508 struct perf_event *child_event, *next;
63b6da39
PZ
11509
11510 WARN_ON_ONCE(child != current);
9b51f66d 11511
6a3351b6 11512 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 11513 if (!child_ctx)
9b51f66d
IM
11514 return;
11515
ad3a37de 11516 /*
6a3351b6
PZ
11517 * In order to reduce the amount of tricky in ctx tear-down, we hold
11518 * ctx::mutex over the entire thing. This serializes against almost
11519 * everything that wants to access the ctx.
11520 *
11521 * The exception is sys_perf_event_open() /
11522 * perf_event_create_kernel_count() which does find_get_context()
11523 * without ctx::mutex (it cannot because of the move_group double mutex
11524 * lock thing). See the comments in perf_install_in_context().
ad3a37de 11525 */
6a3351b6 11526 mutex_lock(&child_ctx->mutex);
c93f7669
PM
11527
11528 /*
6a3351b6
PZ
11529 * In a single ctx::lock section, de-schedule the events and detach the
11530 * context from the task such that we cannot ever get it scheduled back
11531 * in.
c93f7669 11532 */
6a3351b6 11533 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 11534 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 11535
71a851b4 11536 /*
63b6da39
PZ
11537 * Now that the context is inactive, destroy the task <-> ctx relation
11538 * and mark the context dead.
71a851b4 11539 */
63b6da39
PZ
11540 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11541 put_ctx(child_ctx); /* cannot be last */
11542 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11543 put_task_struct(current); /* cannot be last */
4a1c0f26 11544
211de6eb 11545 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 11546 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 11547
211de6eb
PZ
11548 if (clone_ctx)
11549 put_ctx(clone_ctx);
4a1c0f26 11550
9f498cc5 11551 /*
cdd6c482
IM
11552 * Report the task dead after unscheduling the events so that we
11553 * won't get any samples after PERF_RECORD_EXIT. We can however still
11554 * get a few PERF_RECORD_READ events.
9f498cc5 11555 */
cdd6c482 11556 perf_event_task(child, child_ctx, 0);
a63eaf34 11557
ebf905fc 11558 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 11559 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 11560
a63eaf34
PM
11561 mutex_unlock(&child_ctx->mutex);
11562
11563 put_ctx(child_ctx);
9b51f66d
IM
11564}
11565
8dc85d54
PZ
11566/*
11567 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
11568 *
11569 * Can be called with cred_guard_mutex held when called from
11570 * install_exec_creds().
8dc85d54
PZ
11571 */
11572void perf_event_exit_task(struct task_struct *child)
11573{
8882135b 11574 struct perf_event *event, *tmp;
8dc85d54
PZ
11575 int ctxn;
11576
8882135b
PZ
11577 mutex_lock(&child->perf_event_mutex);
11578 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11579 owner_entry) {
11580 list_del_init(&event->owner_entry);
11581
11582 /*
11583 * Ensure the list deletion is visible before we clear
11584 * the owner, closes a race against perf_release() where
11585 * we need to serialize on the owner->perf_event_mutex.
11586 */
f47c02c0 11587 smp_store_release(&event->owner, NULL);
8882135b
PZ
11588 }
11589 mutex_unlock(&child->perf_event_mutex);
11590
8dc85d54
PZ
11591 for_each_task_context_nr(ctxn)
11592 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
11593
11594 /*
11595 * The perf_event_exit_task_context calls perf_event_task
11596 * with child's task_ctx, which generates EXIT events for
11597 * child contexts and sets child->perf_event_ctxp[] to NULL.
11598 * At this point we need to send EXIT events to cpu contexts.
11599 */
11600 perf_event_task(child, NULL, 0);
8dc85d54
PZ
11601}
11602
889ff015
FW
11603static void perf_free_event(struct perf_event *event,
11604 struct perf_event_context *ctx)
11605{
11606 struct perf_event *parent = event->parent;
11607
11608 if (WARN_ON_ONCE(!parent))
11609 return;
11610
11611 mutex_lock(&parent->child_mutex);
11612 list_del_init(&event->child_list);
11613 mutex_unlock(&parent->child_mutex);
11614
a6fa941d 11615 put_event(parent);
889ff015 11616
652884fe 11617 raw_spin_lock_irq(&ctx->lock);
8a49542c 11618 perf_group_detach(event);
889ff015 11619 list_del_event(event, ctx);
652884fe 11620 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
11621 free_event(event);
11622}
11623
bbbee908 11624/*
1cf8dfe8
PZ
11625 * Free a context as created by inheritance by perf_event_init_task() below,
11626 * used by fork() in case of fail.
652884fe 11627 *
1cf8dfe8
PZ
11628 * Even though the task has never lived, the context and events have been
11629 * exposed through the child_list, so we must take care tearing it all down.
bbbee908 11630 */
cdd6c482 11631void perf_event_free_task(struct task_struct *task)
bbbee908 11632{
8dc85d54 11633 struct perf_event_context *ctx;
cdd6c482 11634 struct perf_event *event, *tmp;
8dc85d54 11635 int ctxn;
bbbee908 11636
8dc85d54
PZ
11637 for_each_task_context_nr(ctxn) {
11638 ctx = task->perf_event_ctxp[ctxn];
11639 if (!ctx)
11640 continue;
bbbee908 11641
8dc85d54 11642 mutex_lock(&ctx->mutex);
e552a838
PZ
11643 raw_spin_lock_irq(&ctx->lock);
11644 /*
11645 * Destroy the task <-> ctx relation and mark the context dead.
11646 *
11647 * This is important because even though the task hasn't been
11648 * exposed yet the context has been (through child_list).
11649 */
11650 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11651 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11652 put_task_struct(task); /* cannot be last */
11653 raw_spin_unlock_irq(&ctx->lock);
bbbee908 11654
15121c78 11655 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 11656 perf_free_event(event, ctx);
bbbee908 11657
8dc85d54 11658 mutex_unlock(&ctx->mutex);
1cf8dfe8
PZ
11659
11660 /*
11661 * perf_event_release_kernel() could've stolen some of our
11662 * child events and still have them on its free_list. In that
11663 * case we must wait for these events to have been freed (in
11664 * particular all their references to this task must've been
11665 * dropped).
11666 *
11667 * Without this copy_process() will unconditionally free this
11668 * task (irrespective of its reference count) and
11669 * _free_event()'s put_task_struct(event->hw.target) will be a
11670 * use-after-free.
11671 *
11672 * Wait for all events to drop their context reference.
11673 */
11674 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11675 put_ctx(ctx); /* must be last */
8dc85d54 11676 }
889ff015
FW
11677}
11678
4e231c79
PZ
11679void perf_event_delayed_put(struct task_struct *task)
11680{
11681 int ctxn;
11682
11683 for_each_task_context_nr(ctxn)
11684 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11685}
11686
e03e7ee3 11687struct file *perf_event_get(unsigned int fd)
ffe8690c 11688{
02e5ad97 11689 struct file *file = fget(fd);
e03e7ee3
AS
11690 if (!file)
11691 return ERR_PTR(-EBADF);
ffe8690c 11692
e03e7ee3
AS
11693 if (file->f_op != &perf_fops) {
11694 fput(file);
11695 return ERR_PTR(-EBADF);
11696 }
ffe8690c 11697
e03e7ee3 11698 return file;
ffe8690c
KX
11699}
11700
f8d959a5
YS
11701const struct perf_event *perf_get_event(struct file *file)
11702{
11703 if (file->f_op != &perf_fops)
11704 return ERR_PTR(-EINVAL);
11705
11706 return file->private_data;
11707}
11708
ffe8690c
KX
11709const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11710{
11711 if (!event)
11712 return ERR_PTR(-EINVAL);
11713
11714 return &event->attr;
11715}
11716
97dee4f3 11717/*
788faab7 11718 * Inherit an event from parent task to child task.
d8a8cfc7
PZ
11719 *
11720 * Returns:
11721 * - valid pointer on success
11722 * - NULL for orphaned events
11723 * - IS_ERR() on error
97dee4f3
PZ
11724 */
11725static struct perf_event *
11726inherit_event(struct perf_event *parent_event,
11727 struct task_struct *parent,
11728 struct perf_event_context *parent_ctx,
11729 struct task_struct *child,
11730 struct perf_event *group_leader,
11731 struct perf_event_context *child_ctx)
11732{
8ca2bd41 11733 enum perf_event_state parent_state = parent_event->state;
97dee4f3 11734 struct perf_event *child_event;
cee010ec 11735 unsigned long flags;
97dee4f3
PZ
11736
11737 /*
11738 * Instead of creating recursive hierarchies of events,
11739 * we link inherited events back to the original parent,
11740 * which has a filp for sure, which we use as the reference
11741 * count:
11742 */
11743 if (parent_event->parent)
11744 parent_event = parent_event->parent;
11745
11746 child_event = perf_event_alloc(&parent_event->attr,
11747 parent_event->cpu,
d580ff86 11748 child,
97dee4f3 11749 group_leader, parent_event,
79dff51e 11750 NULL, NULL, -1);
97dee4f3
PZ
11751 if (IS_ERR(child_event))
11752 return child_event;
a6fa941d 11753
313ccb96
JO
11754
11755 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11756 !child_ctx->task_ctx_data) {
11757 struct pmu *pmu = child_event->pmu;
11758
11759 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11760 GFP_KERNEL);
11761 if (!child_ctx->task_ctx_data) {
11762 free_event(child_event);
11763 return NULL;
11764 }
11765 }
11766
c6e5b732
PZ
11767 /*
11768 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11769 * must be under the same lock in order to serialize against
11770 * perf_event_release_kernel(), such that either we must observe
11771 * is_orphaned_event() or they will observe us on the child_list.
11772 */
11773 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
11774 if (is_orphaned_event(parent_event) ||
11775 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 11776 mutex_unlock(&parent_event->child_mutex);
313ccb96 11777 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
11778 free_event(child_event);
11779 return NULL;
11780 }
11781
97dee4f3
PZ
11782 get_ctx(child_ctx);
11783
11784 /*
11785 * Make the child state follow the state of the parent event,
11786 * not its attr.disabled bit. We hold the parent's mutex,
11787 * so we won't race with perf_event_{en, dis}able_family.
11788 */
1929def9 11789 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
11790 child_event->state = PERF_EVENT_STATE_INACTIVE;
11791 else
11792 child_event->state = PERF_EVENT_STATE_OFF;
11793
11794 if (parent_event->attr.freq) {
11795 u64 sample_period = parent_event->hw.sample_period;
11796 struct hw_perf_event *hwc = &child_event->hw;
11797
11798 hwc->sample_period = sample_period;
11799 hwc->last_period = sample_period;
11800
11801 local64_set(&hwc->period_left, sample_period);
11802 }
11803
11804 child_event->ctx = child_ctx;
11805 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
11806 child_event->overflow_handler_context
11807 = parent_event->overflow_handler_context;
97dee4f3 11808
614b6780
TG
11809 /*
11810 * Precalculate sample_data sizes
11811 */
11812 perf_event__header_size(child_event);
6844c09d 11813 perf_event__id_header_size(child_event);
614b6780 11814
97dee4f3
PZ
11815 /*
11816 * Link it up in the child's context:
11817 */
cee010ec 11818 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 11819 add_event_to_ctx(child_event, child_ctx);
cee010ec 11820 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 11821
97dee4f3
PZ
11822 /*
11823 * Link this into the parent event's child list
11824 */
97dee4f3
PZ
11825 list_add_tail(&child_event->child_list, &parent_event->child_list);
11826 mutex_unlock(&parent_event->child_mutex);
11827
11828 return child_event;
11829}
11830
d8a8cfc7
PZ
11831/*
11832 * Inherits an event group.
11833 *
11834 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11835 * This matches with perf_event_release_kernel() removing all child events.
11836 *
11837 * Returns:
11838 * - 0 on success
11839 * - <0 on error
11840 */
97dee4f3
PZ
11841static int inherit_group(struct perf_event *parent_event,
11842 struct task_struct *parent,
11843 struct perf_event_context *parent_ctx,
11844 struct task_struct *child,
11845 struct perf_event_context *child_ctx)
11846{
11847 struct perf_event *leader;
11848 struct perf_event *sub;
11849 struct perf_event *child_ctr;
11850
11851 leader = inherit_event(parent_event, parent, parent_ctx,
11852 child, NULL, child_ctx);
11853 if (IS_ERR(leader))
11854 return PTR_ERR(leader);
d8a8cfc7
PZ
11855 /*
11856 * @leader can be NULL here because of is_orphaned_event(). In this
11857 * case inherit_event() will create individual events, similar to what
11858 * perf_group_detach() would do anyway.
11859 */
edb39592 11860 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
11861 child_ctr = inherit_event(sub, parent, parent_ctx,
11862 child, leader, child_ctx);
11863 if (IS_ERR(child_ctr))
11864 return PTR_ERR(child_ctr);
11865 }
11866 return 0;
889ff015
FW
11867}
11868
d8a8cfc7
PZ
11869/*
11870 * Creates the child task context and tries to inherit the event-group.
11871 *
11872 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11873 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11874 * consistent with perf_event_release_kernel() removing all child events.
11875 *
11876 * Returns:
11877 * - 0 on success
11878 * - <0 on error
11879 */
889ff015
FW
11880static int
11881inherit_task_group(struct perf_event *event, struct task_struct *parent,
11882 struct perf_event_context *parent_ctx,
8dc85d54 11883 struct task_struct *child, int ctxn,
889ff015
FW
11884 int *inherited_all)
11885{
11886 int ret;
8dc85d54 11887 struct perf_event_context *child_ctx;
889ff015
FW
11888
11889 if (!event->attr.inherit) {
11890 *inherited_all = 0;
11891 return 0;
bbbee908
PZ
11892 }
11893
fe4b04fa 11894 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
11895 if (!child_ctx) {
11896 /*
11897 * This is executed from the parent task context, so
11898 * inherit events that have been marked for cloning.
11899 * First allocate and initialize a context for the
11900 * child.
11901 */
734df5ab 11902 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
11903 if (!child_ctx)
11904 return -ENOMEM;
bbbee908 11905
8dc85d54 11906 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
11907 }
11908
11909 ret = inherit_group(event, parent, parent_ctx,
11910 child, child_ctx);
11911
11912 if (ret)
11913 *inherited_all = 0;
11914
11915 return ret;
bbbee908
PZ
11916}
11917
9b51f66d 11918/*
cdd6c482 11919 * Initialize the perf_event context in task_struct
9b51f66d 11920 */
985c8dcb 11921static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 11922{
889ff015 11923 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
11924 struct perf_event_context *cloned_ctx;
11925 struct perf_event *event;
9b51f66d 11926 struct task_struct *parent = current;
564c2b21 11927 int inherited_all = 1;
dddd3379 11928 unsigned long flags;
6ab423e0 11929 int ret = 0;
9b51f66d 11930
8dc85d54 11931 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
11932 return 0;
11933
ad3a37de 11934 /*
25346b93
PM
11935 * If the parent's context is a clone, pin it so it won't get
11936 * swapped under us.
ad3a37de 11937 */
8dc85d54 11938 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
11939 if (!parent_ctx)
11940 return 0;
25346b93 11941
ad3a37de
PM
11942 /*
11943 * No need to check if parent_ctx != NULL here; since we saw
11944 * it non-NULL earlier, the only reason for it to become NULL
11945 * is if we exit, and since we're currently in the middle of
11946 * a fork we can't be exiting at the same time.
11947 */
ad3a37de 11948
9b51f66d
IM
11949 /*
11950 * Lock the parent list. No need to lock the child - not PID
11951 * hashed yet and not running, so nobody can access it.
11952 */
d859e29f 11953 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
11954
11955 /*
11956 * We dont have to disable NMIs - we are only looking at
11957 * the list, not manipulating it:
11958 */
6e6804d2 11959 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54
PZ
11960 ret = inherit_task_group(event, parent, parent_ctx,
11961 child, ctxn, &inherited_all);
889ff015 11962 if (ret)
e7cc4865 11963 goto out_unlock;
889ff015 11964 }
b93f7978 11965
dddd3379
TG
11966 /*
11967 * We can't hold ctx->lock when iterating the ->flexible_group list due
11968 * to allocations, but we need to prevent rotation because
11969 * rotate_ctx() will change the list from interrupt context.
11970 */
11971 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11972 parent_ctx->rotate_disable = 1;
11973 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11974
6e6804d2 11975 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54
PZ
11976 ret = inherit_task_group(event, parent, parent_ctx,
11977 child, ctxn, &inherited_all);
889ff015 11978 if (ret)
e7cc4865 11979 goto out_unlock;
564c2b21
PM
11980 }
11981
dddd3379
TG
11982 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11983 parent_ctx->rotate_disable = 0;
dddd3379 11984
8dc85d54 11985 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 11986
05cbaa28 11987 if (child_ctx && inherited_all) {
564c2b21
PM
11988 /*
11989 * Mark the child context as a clone of the parent
11990 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
11991 *
11992 * Note that if the parent is a clone, the holding of
11993 * parent_ctx->lock avoids it from being uncloned.
564c2b21 11994 */
c5ed5145 11995 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
11996 if (cloned_ctx) {
11997 child_ctx->parent_ctx = cloned_ctx;
25346b93 11998 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
11999 } else {
12000 child_ctx->parent_ctx = parent_ctx;
12001 child_ctx->parent_gen = parent_ctx->generation;
12002 }
12003 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
12004 }
12005
c5ed5145 12006 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 12007out_unlock:
d859e29f 12008 mutex_unlock(&parent_ctx->mutex);
6ab423e0 12009
25346b93 12010 perf_unpin_context(parent_ctx);
fe4b04fa 12011 put_ctx(parent_ctx);
ad3a37de 12012
6ab423e0 12013 return ret;
9b51f66d
IM
12014}
12015
8dc85d54
PZ
12016/*
12017 * Initialize the perf_event context in task_struct
12018 */
12019int perf_event_init_task(struct task_struct *child)
12020{
12021 int ctxn, ret;
12022
8550d7cb
ON
12023 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12024 mutex_init(&child->perf_event_mutex);
12025 INIT_LIST_HEAD(&child->perf_event_list);
12026
8dc85d54
PZ
12027 for_each_task_context_nr(ctxn) {
12028 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
12029 if (ret) {
12030 perf_event_free_task(child);
8dc85d54 12031 return ret;
6c72e350 12032 }
8dc85d54
PZ
12033 }
12034
12035 return 0;
12036}
12037
220b140b
PM
12038static void __init perf_event_init_all_cpus(void)
12039{
b28ab83c 12040 struct swevent_htable *swhash;
220b140b 12041 int cpu;
220b140b 12042
a63fbed7
TG
12043 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12044
220b140b 12045 for_each_possible_cpu(cpu) {
b28ab83c
PZ
12046 swhash = &per_cpu(swevent_htable, cpu);
12047 mutex_init(&swhash->hlist_mutex);
2fde4f94 12048 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
12049
12050 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12051 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 12052
058fe1c0
DCC
12053#ifdef CONFIG_CGROUP_PERF
12054 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12055#endif
e48c1788 12056 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
12057 }
12058}
12059
d18bf422 12060static void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 12061{
108b02cf 12062 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 12063
b28ab83c 12064 mutex_lock(&swhash->hlist_mutex);
059fcd8c 12065 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
12066 struct swevent_hlist *hlist;
12067
b28ab83c
PZ
12068 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12069 WARN_ON(!hlist);
12070 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 12071 }
b28ab83c 12072 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
12073}
12074
2965faa5 12075#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 12076static void __perf_event_exit_context(void *__info)
0793a61d 12077{
108b02cf 12078 struct perf_event_context *ctx = __info;
fae3fde6
PZ
12079 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12080 struct perf_event *event;
0793a61d 12081
fae3fde6 12082 raw_spin_lock(&ctx->lock);
0ee098c9 12083 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 12084 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 12085 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 12086 raw_spin_unlock(&ctx->lock);
0793a61d 12087}
108b02cf
PZ
12088
12089static void perf_event_exit_cpu_context(int cpu)
12090{
a63fbed7 12091 struct perf_cpu_context *cpuctx;
108b02cf
PZ
12092 struct perf_event_context *ctx;
12093 struct pmu *pmu;
108b02cf 12094
a63fbed7
TG
12095 mutex_lock(&pmus_lock);
12096 list_for_each_entry(pmu, &pmus, entry) {
12097 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12098 ctx = &cpuctx->ctx;
108b02cf
PZ
12099
12100 mutex_lock(&ctx->mutex);
12101 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 12102 cpuctx->online = 0;
108b02cf
PZ
12103 mutex_unlock(&ctx->mutex);
12104 }
a63fbed7
TG
12105 cpumask_clear_cpu(cpu, perf_online_mask);
12106 mutex_unlock(&pmus_lock);
108b02cf 12107}
00e16c3d
TG
12108#else
12109
12110static void perf_event_exit_cpu_context(int cpu) { }
12111
12112#endif
108b02cf 12113
a63fbed7
TG
12114int perf_event_init_cpu(unsigned int cpu)
12115{
12116 struct perf_cpu_context *cpuctx;
12117 struct perf_event_context *ctx;
12118 struct pmu *pmu;
12119
12120 perf_swevent_init_cpu(cpu);
12121
12122 mutex_lock(&pmus_lock);
12123 cpumask_set_cpu(cpu, perf_online_mask);
12124 list_for_each_entry(pmu, &pmus, entry) {
12125 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12126 ctx = &cpuctx->ctx;
12127
12128 mutex_lock(&ctx->mutex);
12129 cpuctx->online = 1;
12130 mutex_unlock(&ctx->mutex);
12131 }
12132 mutex_unlock(&pmus_lock);
12133
12134 return 0;
12135}
12136
00e16c3d 12137int perf_event_exit_cpu(unsigned int cpu)
0793a61d 12138{
e3703f8c 12139 perf_event_exit_cpu_context(cpu);
00e16c3d 12140 return 0;
0793a61d 12141}
0793a61d 12142
c277443c
PZ
12143static int
12144perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12145{
12146 int cpu;
12147
12148 for_each_online_cpu(cpu)
12149 perf_event_exit_cpu(cpu);
12150
12151 return NOTIFY_OK;
12152}
12153
12154/*
12155 * Run the perf reboot notifier at the very last possible moment so that
12156 * the generic watchdog code runs as long as possible.
12157 */
12158static struct notifier_block perf_reboot_notifier = {
12159 .notifier_call = perf_reboot,
12160 .priority = INT_MIN,
12161};
12162
cdd6c482 12163void __init perf_event_init(void)
0793a61d 12164{
3c502e7a
JW
12165 int ret;
12166
2e80a82a
PZ
12167 idr_init(&pmu_idr);
12168
220b140b 12169 perf_event_init_all_cpus();
b0a873eb 12170 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
12171 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12172 perf_pmu_register(&perf_cpu_clock, NULL, -1);
12173 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 12174 perf_tp_register();
00e16c3d 12175 perf_event_init_cpu(smp_processor_id());
c277443c 12176 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
12177
12178 ret = init_hw_breakpoint();
12179 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 12180
b01c3a00
JO
12181 /*
12182 * Build time assertion that we keep the data_head at the intended
12183 * location. IOW, validation we got the __reserved[] size right.
12184 */
12185 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12186 != 1024);
0793a61d 12187}
abe43400 12188
fd979c01
CS
12189ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12190 char *page)
12191{
12192 struct perf_pmu_events_attr *pmu_attr =
12193 container_of(attr, struct perf_pmu_events_attr, attr);
12194
12195 if (pmu_attr->event_str)
12196 return sprintf(page, "%s\n", pmu_attr->event_str);
12197
12198 return 0;
12199}
675965b0 12200EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 12201
abe43400
PZ
12202static int __init perf_event_sysfs_init(void)
12203{
12204 struct pmu *pmu;
12205 int ret;
12206
12207 mutex_lock(&pmus_lock);
12208
12209 ret = bus_register(&pmu_bus);
12210 if (ret)
12211 goto unlock;
12212
12213 list_for_each_entry(pmu, &pmus, entry) {
12214 if (!pmu->name || pmu->type < 0)
12215 continue;
12216
12217 ret = pmu_dev_alloc(pmu);
12218 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12219 }
12220 pmu_bus_running = 1;
12221 ret = 0;
12222
12223unlock:
12224 mutex_unlock(&pmus_lock);
12225
12226 return ret;
12227}
12228device_initcall(perf_event_sysfs_init);
e5d1367f
SE
12229
12230#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
12231static struct cgroup_subsys_state *
12232perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
12233{
12234 struct perf_cgroup *jc;
e5d1367f 12235
1b15d055 12236 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
12237 if (!jc)
12238 return ERR_PTR(-ENOMEM);
12239
e5d1367f
SE
12240 jc->info = alloc_percpu(struct perf_cgroup_info);
12241 if (!jc->info) {
12242 kfree(jc);
12243 return ERR_PTR(-ENOMEM);
12244 }
12245
e5d1367f
SE
12246 return &jc->css;
12247}
12248
eb95419b 12249static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 12250{
eb95419b
TH
12251 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12252
e5d1367f
SE
12253 free_percpu(jc->info);
12254 kfree(jc);
12255}
12256
12257static int __perf_cgroup_move(void *info)
12258{
12259 struct task_struct *task = info;
ddaaf4e2 12260 rcu_read_lock();
e5d1367f 12261 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 12262 rcu_read_unlock();
e5d1367f
SE
12263 return 0;
12264}
12265
1f7dd3e5 12266static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 12267{
bb9d97b6 12268 struct task_struct *task;
1f7dd3e5 12269 struct cgroup_subsys_state *css;
bb9d97b6 12270
1f7dd3e5 12271 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 12272 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
12273}
12274
073219e9 12275struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
12276 .css_alloc = perf_cgroup_css_alloc,
12277 .css_free = perf_cgroup_css_free,
bb9d97b6 12278 .attach = perf_cgroup_attach,
968ebff1
TH
12279 /*
12280 * Implicitly enable on dfl hierarchy so that perf events can
12281 * always be filtered by cgroup2 path as long as perf_event
12282 * controller is not mounted on a legacy hierarchy.
12283 */
12284 .implicit_on_dfl = true,
8cfd8147 12285 .threaded = true,
e5d1367f
SE
12286};
12287#endif /* CONFIG_CGROUP_PERF */