]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/events/core.c
efi/libstub: Only disable stackleak plugin for arm64
[mirror_ubuntu-hirsute-kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6 211
16444645 212 lockdep_assert_irqs_disabled();
fae3fde6 213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
16444645 309 lockdep_assert_irqs_disabled();
cca20946
PZ
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
8d5bce0c 433static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
9e630205 434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
0d3d73aa
PZ
585/*
586 * State based event timekeeping...
587 *
588 * The basic idea is to use event->state to determine which (if any) time
589 * fields to increment with the current delta. This means we only need to
590 * update timestamps when we change state or when they are explicitly requested
591 * (read).
592 *
593 * Event groups make things a little more complicated, but not terribly so. The
594 * rules for a group are that if the group leader is OFF the entire group is
595 * OFF, irrespecive of what the group member states are. This results in
596 * __perf_effective_state().
597 *
598 * A futher ramification is that when a group leader flips between OFF and
599 * !OFF, we need to update all group member times.
600 *
601 *
602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603 * need to make sure the relevant context time is updated before we try and
604 * update our timestamps.
605 */
606
607static __always_inline enum perf_event_state
608__perf_effective_state(struct perf_event *event)
609{
610 struct perf_event *leader = event->group_leader;
611
612 if (leader->state <= PERF_EVENT_STATE_OFF)
613 return leader->state;
614
615 return event->state;
616}
617
618static __always_inline void
619__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620{
621 enum perf_event_state state = __perf_effective_state(event);
622 u64 delta = now - event->tstamp;
623
624 *enabled = event->total_time_enabled;
625 if (state >= PERF_EVENT_STATE_INACTIVE)
626 *enabled += delta;
627
628 *running = event->total_time_running;
629 if (state >= PERF_EVENT_STATE_ACTIVE)
630 *running += delta;
631}
632
633static void perf_event_update_time(struct perf_event *event)
634{
635 u64 now = perf_event_time(event);
636
637 __perf_update_times(event, now, &event->total_time_enabled,
638 &event->total_time_running);
639 event->tstamp = now;
640}
641
642static void perf_event_update_sibling_time(struct perf_event *leader)
643{
644 struct perf_event *sibling;
645
edb39592 646 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
647 perf_event_update_time(sibling);
648}
649
650static void
651perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652{
653 if (event->state == state)
654 return;
655
656 perf_event_update_time(event);
657 /*
658 * If a group leader gets enabled/disabled all its siblings
659 * are affected too.
660 */
661 if ((event->state < 0) ^ (state < 0))
662 perf_event_update_sibling_time(event);
663
664 WRITE_ONCE(event->state, state);
665}
666
e5d1367f
SE
667#ifdef CONFIG_CGROUP_PERF
668
e5d1367f
SE
669static inline bool
670perf_cgroup_match(struct perf_event *event)
671{
672 struct perf_event_context *ctx = event->ctx;
673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
ef824fa1
TH
675 /* @event doesn't care about cgroup */
676 if (!event->cgrp)
677 return true;
678
679 /* wants specific cgroup scope but @cpuctx isn't associated with any */
680 if (!cpuctx->cgrp)
681 return false;
682
683 /*
684 * Cgroup scoping is recursive. An event enabled for a cgroup is
685 * also enabled for all its descendant cgroups. If @cpuctx's
686 * cgroup is a descendant of @event's (the test covers identity
687 * case), it's a match.
688 */
689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 event->cgrp->css.cgroup);
e5d1367f
SE
691}
692
e5d1367f
SE
693static inline void perf_detach_cgroup(struct perf_event *event)
694{
4e2ba650 695 css_put(&event->cgrp->css);
e5d1367f
SE
696 event->cgrp = NULL;
697}
698
699static inline int is_cgroup_event(struct perf_event *event)
700{
701 return event->cgrp != NULL;
702}
703
704static inline u64 perf_cgroup_event_time(struct perf_event *event)
705{
706 struct perf_cgroup_info *t;
707
708 t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 return t->time;
710}
711
712static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713{
714 struct perf_cgroup_info *info;
715 u64 now;
716
717 now = perf_clock();
718
719 info = this_cpu_ptr(cgrp->info);
720
721 info->time += now - info->timestamp;
722 info->timestamp = now;
723}
724
725static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726{
c917e0f2
SL
727 struct perf_cgroup *cgrp = cpuctx->cgrp;
728 struct cgroup_subsys_state *css;
729
730 if (cgrp) {
731 for (css = &cgrp->css; css; css = css->parent) {
732 cgrp = container_of(css, struct perf_cgroup, css);
733 __update_cgrp_time(cgrp);
734 }
735 }
e5d1367f
SE
736}
737
738static inline void update_cgrp_time_from_event(struct perf_event *event)
739{
3f7cce3c
SE
740 struct perf_cgroup *cgrp;
741
e5d1367f 742 /*
3f7cce3c
SE
743 * ensure we access cgroup data only when needed and
744 * when we know the cgroup is pinned (css_get)
e5d1367f 745 */
3f7cce3c 746 if (!is_cgroup_event(event))
e5d1367f
SE
747 return;
748
614e4c4e 749 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
750 /*
751 * Do not update time when cgroup is not active
752 */
e6a52033 753 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 754 __update_cgrp_time(event->cgrp);
e5d1367f
SE
755}
756
757static inline void
3f7cce3c
SE
758perf_cgroup_set_timestamp(struct task_struct *task,
759 struct perf_event_context *ctx)
e5d1367f
SE
760{
761 struct perf_cgroup *cgrp;
762 struct perf_cgroup_info *info;
c917e0f2 763 struct cgroup_subsys_state *css;
e5d1367f 764
3f7cce3c
SE
765 /*
766 * ctx->lock held by caller
767 * ensure we do not access cgroup data
768 * unless we have the cgroup pinned (css_get)
769 */
770 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
771 return;
772
614e4c4e 773 cgrp = perf_cgroup_from_task(task, ctx);
c917e0f2
SL
774
775 for (css = &cgrp->css; css; css = css->parent) {
776 cgrp = container_of(css, struct perf_cgroup, css);
777 info = this_cpu_ptr(cgrp->info);
778 info->timestamp = ctx->timestamp;
779 }
e5d1367f
SE
780}
781
058fe1c0
DCC
782static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
783
e5d1367f
SE
784#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
785#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
786
787/*
788 * reschedule events based on the cgroup constraint of task.
789 *
790 * mode SWOUT : schedule out everything
791 * mode SWIN : schedule in based on cgroup for next
792 */
18ab2cd3 793static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
794{
795 struct perf_cpu_context *cpuctx;
058fe1c0 796 struct list_head *list;
e5d1367f
SE
797 unsigned long flags;
798
799 /*
058fe1c0
DCC
800 * Disable interrupts and preemption to avoid this CPU's
801 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
802 */
803 local_irq_save(flags);
804
058fe1c0
DCC
805 list = this_cpu_ptr(&cgrp_cpuctx_list);
806 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 808
058fe1c0
DCC
809 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 811
058fe1c0
DCC
812 if (mode & PERF_CGROUP_SWOUT) {
813 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
814 /*
815 * must not be done before ctxswout due
816 * to event_filter_match() in event_sched_out()
817 */
818 cpuctx->cgrp = NULL;
819 }
e5d1367f 820
058fe1c0
DCC
821 if (mode & PERF_CGROUP_SWIN) {
822 WARN_ON_ONCE(cpuctx->cgrp);
823 /*
824 * set cgrp before ctxsw in to allow
825 * event_filter_match() to not have to pass
826 * task around
827 * we pass the cpuctx->ctx to perf_cgroup_from_task()
828 * because cgorup events are only per-cpu
829 */
830 cpuctx->cgrp = perf_cgroup_from_task(task,
831 &cpuctx->ctx);
832 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 833 }
058fe1c0
DCC
834 perf_pmu_enable(cpuctx->ctx.pmu);
835 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
836 }
837
e5d1367f
SE
838 local_irq_restore(flags);
839}
840
a8d757ef
SE
841static inline void perf_cgroup_sched_out(struct task_struct *task,
842 struct task_struct *next)
e5d1367f 843{
a8d757ef
SE
844 struct perf_cgroup *cgrp1;
845 struct perf_cgroup *cgrp2 = NULL;
846
ddaaf4e2 847 rcu_read_lock();
a8d757ef
SE
848 /*
849 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
850 * we do not need to pass the ctx here because we know
851 * we are holding the rcu lock
a8d757ef 852 */
614e4c4e 853 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 854 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
855
856 /*
857 * only schedule out current cgroup events if we know
858 * that we are switching to a different cgroup. Otherwise,
859 * do no touch the cgroup events.
860 */
861 if (cgrp1 != cgrp2)
862 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
863
864 rcu_read_unlock();
e5d1367f
SE
865}
866
a8d757ef
SE
867static inline void perf_cgroup_sched_in(struct task_struct *prev,
868 struct task_struct *task)
e5d1367f 869{
a8d757ef
SE
870 struct perf_cgroup *cgrp1;
871 struct perf_cgroup *cgrp2 = NULL;
872
ddaaf4e2 873 rcu_read_lock();
a8d757ef
SE
874 /*
875 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
876 * we do not need to pass the ctx here because we know
877 * we are holding the rcu lock
a8d757ef 878 */
614e4c4e 879 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 880 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
881
882 /*
883 * only need to schedule in cgroup events if we are changing
884 * cgroup during ctxsw. Cgroup events were not scheduled
885 * out of ctxsw out if that was not the case.
886 */
887 if (cgrp1 != cgrp2)
888 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
889
890 rcu_read_unlock();
e5d1367f
SE
891}
892
893static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894 struct perf_event_attr *attr,
895 struct perf_event *group_leader)
896{
897 struct perf_cgroup *cgrp;
898 struct cgroup_subsys_state *css;
2903ff01
AV
899 struct fd f = fdget(fd);
900 int ret = 0;
e5d1367f 901
2903ff01 902 if (!f.file)
e5d1367f
SE
903 return -EBADF;
904
b583043e 905 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 906 &perf_event_cgrp_subsys);
3db272c0
LZ
907 if (IS_ERR(css)) {
908 ret = PTR_ERR(css);
909 goto out;
910 }
e5d1367f
SE
911
912 cgrp = container_of(css, struct perf_cgroup, css);
913 event->cgrp = cgrp;
914
915 /*
916 * all events in a group must monitor
917 * the same cgroup because a task belongs
918 * to only one perf cgroup at a time
919 */
920 if (group_leader && group_leader->cgrp != cgrp) {
921 perf_detach_cgroup(event);
922 ret = -EINVAL;
e5d1367f 923 }
3db272c0 924out:
2903ff01 925 fdput(f);
e5d1367f
SE
926 return ret;
927}
928
929static inline void
930perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931{
932 struct perf_cgroup_info *t;
933 t = per_cpu_ptr(event->cgrp->info, event->cpu);
934 event->shadow_ctx_time = now - t->timestamp;
935}
936
db4a8356
DCC
937/*
938 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939 * cleared when last cgroup event is removed.
940 */
941static inline void
942list_update_cgroup_event(struct perf_event *event,
943 struct perf_event_context *ctx, bool add)
944{
945 struct perf_cpu_context *cpuctx;
058fe1c0 946 struct list_head *cpuctx_entry;
db4a8356
DCC
947
948 if (!is_cgroup_event(event))
949 return;
950
db4a8356
DCC
951 /*
952 * Because cgroup events are always per-cpu events,
953 * this will always be called from the right CPU.
954 */
955 cpuctx = __get_cpu_context(ctx);
33801b94 956
957 /*
958 * Since setting cpuctx->cgrp is conditional on the current @cgrp
959 * matching the event's cgroup, we must do this for every new event,
960 * because if the first would mismatch, the second would not try again
961 * and we would leave cpuctx->cgrp unset.
962 */
963 if (add && !cpuctx->cgrp) {
be96b316
TH
964 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
965
be96b316
TH
966 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967 cpuctx->cgrp = cgrp;
058fe1c0 968 }
33801b94 969
970 if (add && ctx->nr_cgroups++)
971 return;
972 else if (!add && --ctx->nr_cgroups)
973 return;
974
975 /* no cgroup running */
976 if (!add)
977 cpuctx->cgrp = NULL;
978
979 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
980 if (add)
981 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
982 else
983 list_del(cpuctx_entry);
db4a8356
DCC
984}
985
e5d1367f
SE
986#else /* !CONFIG_CGROUP_PERF */
987
988static inline bool
989perf_cgroup_match(struct perf_event *event)
990{
991 return true;
992}
993
994static inline void perf_detach_cgroup(struct perf_event *event)
995{}
996
997static inline int is_cgroup_event(struct perf_event *event)
998{
999 return 0;
1000}
1001
e5d1367f
SE
1002static inline void update_cgrp_time_from_event(struct perf_event *event)
1003{
1004}
1005
1006static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1007{
1008}
1009
a8d757ef
SE
1010static inline void perf_cgroup_sched_out(struct task_struct *task,
1011 struct task_struct *next)
e5d1367f
SE
1012{
1013}
1014
a8d757ef
SE
1015static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016 struct task_struct *task)
e5d1367f
SE
1017{
1018}
1019
1020static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021 struct perf_event_attr *attr,
1022 struct perf_event *group_leader)
1023{
1024 return -EINVAL;
1025}
1026
1027static inline void
3f7cce3c
SE
1028perf_cgroup_set_timestamp(struct task_struct *task,
1029 struct perf_event_context *ctx)
e5d1367f
SE
1030{
1031}
1032
1033void
1034perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1035{
1036}
1037
1038static inline void
1039perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1040{
1041}
1042
1043static inline u64 perf_cgroup_event_time(struct perf_event *event)
1044{
1045 return 0;
1046}
1047
db4a8356
DCC
1048static inline void
1049list_update_cgroup_event(struct perf_event *event,
1050 struct perf_event_context *ctx, bool add)
1051{
1052}
1053
e5d1367f
SE
1054#endif
1055
9e630205
SE
1056/*
1057 * set default to be dependent on timer tick just
1058 * like original code
1059 */
1060#define PERF_CPU_HRTIMER (1000 / HZ)
1061/*
8a1115ff 1062 * function must be called with interrupts disabled
9e630205 1063 */
272325c4 1064static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1065{
1066 struct perf_cpu_context *cpuctx;
8d5bce0c 1067 bool rotations;
9e630205 1068
16444645 1069 lockdep_assert_irqs_disabled();
9e630205
SE
1070
1071 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1072 rotations = perf_rotate_context(cpuctx);
1073
4cfafd30
PZ
1074 raw_spin_lock(&cpuctx->hrtimer_lock);
1075 if (rotations)
9e630205 1076 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1077 else
1078 cpuctx->hrtimer_active = 0;
1079 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1080
4cfafd30 1081 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1082}
1083
272325c4 1084static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1085{
272325c4 1086 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1087 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1088 u64 interval;
9e630205
SE
1089
1090 /* no multiplexing needed for SW PMU */
1091 if (pmu->task_ctx_nr == perf_sw_context)
1092 return;
1093
62b85639
SE
1094 /*
1095 * check default is sane, if not set then force to
1096 * default interval (1/tick)
1097 */
272325c4
PZ
1098 interval = pmu->hrtimer_interval_ms;
1099 if (interval < 1)
1100 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1101
272325c4 1102 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1103
4cfafd30
PZ
1104 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1106 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1107}
1108
272325c4 1109static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1110{
272325c4 1111 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1112 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1113 unsigned long flags;
9e630205
SE
1114
1115 /* not for SW PMU */
1116 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1117 return 0;
9e630205 1118
4cfafd30
PZ
1119 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120 if (!cpuctx->hrtimer_active) {
1121 cpuctx->hrtimer_active = 1;
1122 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1124 }
1125 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1126
272325c4 1127 return 0;
9e630205
SE
1128}
1129
33696fc0 1130void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1131{
33696fc0
PZ
1132 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133 if (!(*count)++)
1134 pmu->pmu_disable(pmu);
9e35ad38 1135}
9e35ad38 1136
33696fc0 1137void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1138{
33696fc0
PZ
1139 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140 if (!--(*count))
1141 pmu->pmu_enable(pmu);
9e35ad38 1142}
9e35ad38 1143
2fde4f94 1144static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1145
1146/*
2fde4f94
MR
1147 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148 * perf_event_task_tick() are fully serialized because they're strictly cpu
1149 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1151 */
2fde4f94 1152static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1153{
2fde4f94 1154 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1155
16444645 1156 lockdep_assert_irqs_disabled();
b5ab4cd5 1157
2fde4f94
MR
1158 WARN_ON(!list_empty(&ctx->active_ctx_list));
1159
1160 list_add(&ctx->active_ctx_list, head);
1161}
1162
1163static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1164{
16444645 1165 lockdep_assert_irqs_disabled();
2fde4f94
MR
1166
1167 WARN_ON(list_empty(&ctx->active_ctx_list));
1168
1169 list_del_init(&ctx->active_ctx_list);
9e35ad38 1170}
9e35ad38 1171
cdd6c482 1172static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1173{
e5289d4a 1174 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1175}
1176
4af57ef2
YZ
1177static void free_ctx(struct rcu_head *head)
1178{
1179 struct perf_event_context *ctx;
1180
1181 ctx = container_of(head, struct perf_event_context, rcu_head);
1182 kfree(ctx->task_ctx_data);
1183 kfree(ctx);
1184}
1185
cdd6c482 1186static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1187{
564c2b21
PM
1188 if (atomic_dec_and_test(&ctx->refcount)) {
1189 if (ctx->parent_ctx)
1190 put_ctx(ctx->parent_ctx);
63b6da39 1191 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1192 put_task_struct(ctx->task);
4af57ef2 1193 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1194 }
a63eaf34
PM
1195}
1196
f63a8daa
PZ
1197/*
1198 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199 * perf_pmu_migrate_context() we need some magic.
1200 *
1201 * Those places that change perf_event::ctx will hold both
1202 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1203 *
8b10c5e2
PZ
1204 * Lock ordering is by mutex address. There are two other sites where
1205 * perf_event_context::mutex nests and those are:
1206 *
1207 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1208 * perf_event_exit_event()
1209 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1210 *
1211 * - perf_event_init_context() [ parent, 0 ]
1212 * inherit_task_group()
1213 * inherit_group()
1214 * inherit_event()
1215 * perf_event_alloc()
1216 * perf_init_event()
1217 * perf_try_init_event() [ child , 1 ]
1218 *
1219 * While it appears there is an obvious deadlock here -- the parent and child
1220 * nesting levels are inverted between the two. This is in fact safe because
1221 * life-time rules separate them. That is an exiting task cannot fork, and a
1222 * spawning task cannot (yet) exit.
1223 *
1224 * But remember that that these are parent<->child context relations, and
1225 * migration does not affect children, therefore these two orderings should not
1226 * interact.
f63a8daa
PZ
1227 *
1228 * The change in perf_event::ctx does not affect children (as claimed above)
1229 * because the sys_perf_event_open() case will install a new event and break
1230 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231 * concerned with cpuctx and that doesn't have children.
1232 *
1233 * The places that change perf_event::ctx will issue:
1234 *
1235 * perf_remove_from_context();
1236 * synchronize_rcu();
1237 * perf_install_in_context();
1238 *
1239 * to affect the change. The remove_from_context() + synchronize_rcu() should
1240 * quiesce the event, after which we can install it in the new location. This
1241 * means that only external vectors (perf_fops, prctl) can perturb the event
1242 * while in transit. Therefore all such accessors should also acquire
1243 * perf_event_context::mutex to serialize against this.
1244 *
1245 * However; because event->ctx can change while we're waiting to acquire
1246 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247 * function.
1248 *
1249 * Lock order:
79c9ce57 1250 * cred_guard_mutex
f63a8daa
PZ
1251 * task_struct::perf_event_mutex
1252 * perf_event_context::mutex
f63a8daa 1253 * perf_event::child_mutex;
07c4a776 1254 * perf_event_context::lock
f63a8daa
PZ
1255 * perf_event::mmap_mutex
1256 * mmap_sem
82d94856
PZ
1257 *
1258 * cpu_hotplug_lock
1259 * pmus_lock
1260 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1261 */
a83fe28e
PZ
1262static struct perf_event_context *
1263perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1264{
1265 struct perf_event_context *ctx;
1266
1267again:
1268 rcu_read_lock();
6aa7de05 1269 ctx = READ_ONCE(event->ctx);
f63a8daa
PZ
1270 if (!atomic_inc_not_zero(&ctx->refcount)) {
1271 rcu_read_unlock();
1272 goto again;
1273 }
1274 rcu_read_unlock();
1275
a83fe28e 1276 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1277 if (event->ctx != ctx) {
1278 mutex_unlock(&ctx->mutex);
1279 put_ctx(ctx);
1280 goto again;
1281 }
1282
1283 return ctx;
1284}
1285
a83fe28e
PZ
1286static inline struct perf_event_context *
1287perf_event_ctx_lock(struct perf_event *event)
1288{
1289 return perf_event_ctx_lock_nested(event, 0);
1290}
1291
f63a8daa
PZ
1292static void perf_event_ctx_unlock(struct perf_event *event,
1293 struct perf_event_context *ctx)
1294{
1295 mutex_unlock(&ctx->mutex);
1296 put_ctx(ctx);
1297}
1298
211de6eb
PZ
1299/*
1300 * This must be done under the ctx->lock, such as to serialize against
1301 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302 * calling scheduler related locks and ctx->lock nests inside those.
1303 */
1304static __must_check struct perf_event_context *
1305unclone_ctx(struct perf_event_context *ctx)
71a851b4 1306{
211de6eb
PZ
1307 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1308
1309 lockdep_assert_held(&ctx->lock);
1310
1311 if (parent_ctx)
71a851b4 1312 ctx->parent_ctx = NULL;
5a3126d4 1313 ctx->generation++;
211de6eb
PZ
1314
1315 return parent_ctx;
71a851b4
PZ
1316}
1317
1d953111
ON
1318static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1319 enum pid_type type)
6844c09d 1320{
1d953111 1321 u32 nr;
6844c09d
ACM
1322 /*
1323 * only top level events have the pid namespace they were created in
1324 */
1325 if (event->parent)
1326 event = event->parent;
1327
1d953111
ON
1328 nr = __task_pid_nr_ns(p, type, event->ns);
1329 /* avoid -1 if it is idle thread or runs in another ns */
1330 if (!nr && !pid_alive(p))
1331 nr = -1;
1332 return nr;
6844c09d
ACM
1333}
1334
1d953111 1335static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1336{
1d953111
ON
1337 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1338}
6844c09d 1339
1d953111
ON
1340static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1341{
1342 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1343}
1344
7f453c24 1345/*
cdd6c482 1346 * If we inherit events we want to return the parent event id
7f453c24
PZ
1347 * to userspace.
1348 */
cdd6c482 1349static u64 primary_event_id(struct perf_event *event)
7f453c24 1350{
cdd6c482 1351 u64 id = event->id;
7f453c24 1352
cdd6c482
IM
1353 if (event->parent)
1354 id = event->parent->id;
7f453c24
PZ
1355
1356 return id;
1357}
1358
25346b93 1359/*
cdd6c482 1360 * Get the perf_event_context for a task and lock it.
63b6da39 1361 *
25346b93
PM
1362 * This has to cope with with the fact that until it is locked,
1363 * the context could get moved to another task.
1364 */
cdd6c482 1365static struct perf_event_context *
8dc85d54 1366perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1367{
cdd6c482 1368 struct perf_event_context *ctx;
25346b93 1369
9ed6060d 1370retry:
058ebd0e
PZ
1371 /*
1372 * One of the few rules of preemptible RCU is that one cannot do
1373 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1374 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1375 * rcu_read_unlock_special().
1376 *
1377 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1378 * side critical section has interrupts disabled.
058ebd0e 1379 */
2fd59077 1380 local_irq_save(*flags);
058ebd0e 1381 rcu_read_lock();
8dc85d54 1382 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1383 if (ctx) {
1384 /*
1385 * If this context is a clone of another, it might
1386 * get swapped for another underneath us by
cdd6c482 1387 * perf_event_task_sched_out, though the
25346b93
PM
1388 * rcu_read_lock() protects us from any context
1389 * getting freed. Lock the context and check if it
1390 * got swapped before we could get the lock, and retry
1391 * if so. If we locked the right context, then it
1392 * can't get swapped on us any more.
1393 */
2fd59077 1394 raw_spin_lock(&ctx->lock);
8dc85d54 1395 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1396 raw_spin_unlock(&ctx->lock);
058ebd0e 1397 rcu_read_unlock();
2fd59077 1398 local_irq_restore(*flags);
25346b93
PM
1399 goto retry;
1400 }
b49a9e7e 1401
63b6da39
PZ
1402 if (ctx->task == TASK_TOMBSTONE ||
1403 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1404 raw_spin_unlock(&ctx->lock);
b49a9e7e 1405 ctx = NULL;
828b6f0e
PZ
1406 } else {
1407 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1408 }
25346b93
PM
1409 }
1410 rcu_read_unlock();
2fd59077
PM
1411 if (!ctx)
1412 local_irq_restore(*flags);
25346b93
PM
1413 return ctx;
1414}
1415
1416/*
1417 * Get the context for a task and increment its pin_count so it
1418 * can't get swapped to another task. This also increments its
1419 * reference count so that the context can't get freed.
1420 */
8dc85d54
PZ
1421static struct perf_event_context *
1422perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1423{
cdd6c482 1424 struct perf_event_context *ctx;
25346b93
PM
1425 unsigned long flags;
1426
8dc85d54 1427 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1428 if (ctx) {
1429 ++ctx->pin_count;
e625cce1 1430 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1431 }
1432 return ctx;
1433}
1434
cdd6c482 1435static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1436{
1437 unsigned long flags;
1438
e625cce1 1439 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1440 --ctx->pin_count;
e625cce1 1441 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1442}
1443
f67218c3
PZ
1444/*
1445 * Update the record of the current time in a context.
1446 */
1447static void update_context_time(struct perf_event_context *ctx)
1448{
1449 u64 now = perf_clock();
1450
1451 ctx->time += now - ctx->timestamp;
1452 ctx->timestamp = now;
1453}
1454
4158755d
SE
1455static u64 perf_event_time(struct perf_event *event)
1456{
1457 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1458
1459 if (is_cgroup_event(event))
1460 return perf_cgroup_event_time(event);
1461
4158755d
SE
1462 return ctx ? ctx->time : 0;
1463}
1464
487f05e1
AS
1465static enum event_type_t get_event_type(struct perf_event *event)
1466{
1467 struct perf_event_context *ctx = event->ctx;
1468 enum event_type_t event_type;
1469
1470 lockdep_assert_held(&ctx->lock);
1471
3bda69c1
AS
1472 /*
1473 * It's 'group type', really, because if our group leader is
1474 * pinned, so are we.
1475 */
1476 if (event->group_leader != event)
1477 event = event->group_leader;
1478
487f05e1
AS
1479 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1480 if (!ctx->task)
1481 event_type |= EVENT_CPU;
1482
1483 return event_type;
1484}
1485
8e1a2031 1486/*
161c85fa 1487 * Helper function to initialize event group nodes.
8e1a2031 1488 */
161c85fa 1489static void init_event_group(struct perf_event *event)
8e1a2031
AB
1490{
1491 RB_CLEAR_NODE(&event->group_node);
1492 event->group_index = 0;
1493}
1494
1495/*
1496 * Extract pinned or flexible groups from the context
161c85fa 1497 * based on event attrs bits.
8e1a2031
AB
1498 */
1499static struct perf_event_groups *
1500get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1501{
1502 if (event->attr.pinned)
1503 return &ctx->pinned_groups;
1504 else
1505 return &ctx->flexible_groups;
1506}
1507
8e1a2031 1508/*
161c85fa 1509 * Helper function to initializes perf_event_group trees.
8e1a2031 1510 */
161c85fa 1511static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1512{
1513 groups->tree = RB_ROOT;
1514 groups->index = 0;
1515}
1516
1517/*
1518 * Compare function for event groups;
161c85fa
PZ
1519 *
1520 * Implements complex key that first sorts by CPU and then by virtual index
1521 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1522 */
161c85fa
PZ
1523static bool
1524perf_event_groups_less(struct perf_event *left, struct perf_event *right)
8e1a2031 1525{
161c85fa
PZ
1526 if (left->cpu < right->cpu)
1527 return true;
1528 if (left->cpu > right->cpu)
1529 return false;
1530
1531 if (left->group_index < right->group_index)
1532 return true;
1533 if (left->group_index > right->group_index)
1534 return false;
1535
1536 return false;
8e1a2031
AB
1537}
1538
1539/*
161c85fa
PZ
1540 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541 * key (see perf_event_groups_less). This places it last inside the CPU
1542 * subtree.
8e1a2031
AB
1543 */
1544static void
1545perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1546 struct perf_event *event)
8e1a2031
AB
1547{
1548 struct perf_event *node_event;
1549 struct rb_node *parent;
1550 struct rb_node **node;
1551
1552 event->group_index = ++groups->index;
1553
1554 node = &groups->tree.rb_node;
1555 parent = *node;
1556
1557 while (*node) {
1558 parent = *node;
161c85fa 1559 node_event = container_of(*node, struct perf_event, group_node);
8e1a2031
AB
1560
1561 if (perf_event_groups_less(event, node_event))
1562 node = &parent->rb_left;
1563 else
1564 node = &parent->rb_right;
1565 }
1566
1567 rb_link_node(&event->group_node, parent, node);
1568 rb_insert_color(&event->group_node, &groups->tree);
1569}
1570
1571/*
161c85fa 1572 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1573 */
1574static void
1575add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1576{
1577 struct perf_event_groups *groups;
1578
1579 groups = get_event_groups(event, ctx);
1580 perf_event_groups_insert(groups, event);
1581}
1582
1583/*
161c85fa 1584 * Delete a group from a tree.
8e1a2031
AB
1585 */
1586static void
1587perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1588 struct perf_event *event)
8e1a2031 1589{
161c85fa
PZ
1590 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1592
161c85fa 1593 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1594 init_event_group(event);
1595}
1596
1597/*
161c85fa 1598 * Helper function to delete event from its groups.
8e1a2031
AB
1599 */
1600static void
1601del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1602{
1603 struct perf_event_groups *groups;
1604
1605 groups = get_event_groups(event, ctx);
1606 perf_event_groups_delete(groups, event);
1607}
1608
1609/*
161c85fa 1610 * Get the leftmost event in the @cpu subtree.
8e1a2031
AB
1611 */
1612static struct perf_event *
1613perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1614{
1615 struct perf_event *node_event = NULL, *match = NULL;
1616 struct rb_node *node = groups->tree.rb_node;
1617
1618 while (node) {
161c85fa 1619 node_event = container_of(node, struct perf_event, group_node);
8e1a2031
AB
1620
1621 if (cpu < node_event->cpu) {
1622 node = node->rb_left;
1623 } else if (cpu > node_event->cpu) {
1624 node = node->rb_right;
1625 } else {
1626 match = node_event;
1627 node = node->rb_left;
1628 }
1629 }
1630
1631 return match;
1632}
1633
1cac7b1a
PZ
1634/*
1635 * Like rb_entry_next_safe() for the @cpu subtree.
1636 */
1637static struct perf_event *
1638perf_event_groups_next(struct perf_event *event)
1639{
1640 struct perf_event *next;
1641
1642 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643 if (next && next->cpu == event->cpu)
1644 return next;
1645
1646 return NULL;
1647}
1648
8e1a2031 1649/*
161c85fa 1650 * Iterate through the whole groups tree.
8e1a2031 1651 */
6e6804d2
PZ
1652#define perf_event_groups_for_each(event, groups) \
1653 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1654 typeof(*event), group_node); event; \
1655 event = rb_entry_safe(rb_next(&event->group_node), \
1656 typeof(*event), group_node))
8e1a2031 1657
fccc714b 1658/*
cdd6c482 1659 * Add a event from the lists for its context.
fccc714b
PZ
1660 * Must be called with ctx->mutex and ctx->lock held.
1661 */
04289bb9 1662static void
cdd6c482 1663list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1664{
c994d613
PZ
1665 lockdep_assert_held(&ctx->lock);
1666
8a49542c
PZ
1667 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1669
0d3d73aa
PZ
1670 event->tstamp = perf_event_time(event);
1671
04289bb9 1672 /*
8a49542c
PZ
1673 * If we're a stand alone event or group leader, we go to the context
1674 * list, group events are kept attached to the group so that
1675 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1676 */
8a49542c 1677 if (event->group_leader == event) {
4ff6a8de 1678 event->group_caps = event->event_caps;
8e1a2031 1679 add_event_to_groups(event, ctx);
5c148194 1680 }
592903cd 1681
db4a8356 1682 list_update_cgroup_event(event, ctx, true);
e5d1367f 1683
cdd6c482
IM
1684 list_add_rcu(&event->event_entry, &ctx->event_list);
1685 ctx->nr_events++;
1686 if (event->attr.inherit_stat)
bfbd3381 1687 ctx->nr_stat++;
5a3126d4
PZ
1688
1689 ctx->generation++;
04289bb9
IM
1690}
1691
0231bb53
JO
1692/*
1693 * Initialize event state based on the perf_event_attr::disabled.
1694 */
1695static inline void perf_event__state_init(struct perf_event *event)
1696{
1697 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698 PERF_EVENT_STATE_INACTIVE;
1699}
1700
a723968c 1701static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1702{
1703 int entry = sizeof(u64); /* value */
1704 int size = 0;
1705 int nr = 1;
1706
1707 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708 size += sizeof(u64);
1709
1710 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711 size += sizeof(u64);
1712
1713 if (event->attr.read_format & PERF_FORMAT_ID)
1714 entry += sizeof(u64);
1715
1716 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1717 nr += nr_siblings;
c320c7b7
ACM
1718 size += sizeof(u64);
1719 }
1720
1721 size += entry * nr;
1722 event->read_size = size;
1723}
1724
a723968c 1725static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1726{
1727 struct perf_sample_data *data;
c320c7b7
ACM
1728 u16 size = 0;
1729
c320c7b7
ACM
1730 if (sample_type & PERF_SAMPLE_IP)
1731 size += sizeof(data->ip);
1732
6844c09d
ACM
1733 if (sample_type & PERF_SAMPLE_ADDR)
1734 size += sizeof(data->addr);
1735
1736 if (sample_type & PERF_SAMPLE_PERIOD)
1737 size += sizeof(data->period);
1738
c3feedf2
AK
1739 if (sample_type & PERF_SAMPLE_WEIGHT)
1740 size += sizeof(data->weight);
1741
6844c09d
ACM
1742 if (sample_type & PERF_SAMPLE_READ)
1743 size += event->read_size;
1744
d6be9ad6
SE
1745 if (sample_type & PERF_SAMPLE_DATA_SRC)
1746 size += sizeof(data->data_src.val);
1747
fdfbbd07
AK
1748 if (sample_type & PERF_SAMPLE_TRANSACTION)
1749 size += sizeof(data->txn);
1750
fc7ce9c7
KL
1751 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752 size += sizeof(data->phys_addr);
1753
6844c09d
ACM
1754 event->header_size = size;
1755}
1756
a723968c
PZ
1757/*
1758 * Called at perf_event creation and when events are attached/detached from a
1759 * group.
1760 */
1761static void perf_event__header_size(struct perf_event *event)
1762{
1763 __perf_event_read_size(event,
1764 event->group_leader->nr_siblings);
1765 __perf_event_header_size(event, event->attr.sample_type);
1766}
1767
6844c09d
ACM
1768static void perf_event__id_header_size(struct perf_event *event)
1769{
1770 struct perf_sample_data *data;
1771 u64 sample_type = event->attr.sample_type;
1772 u16 size = 0;
1773
c320c7b7
ACM
1774 if (sample_type & PERF_SAMPLE_TID)
1775 size += sizeof(data->tid_entry);
1776
1777 if (sample_type & PERF_SAMPLE_TIME)
1778 size += sizeof(data->time);
1779
ff3d527c
AH
1780 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781 size += sizeof(data->id);
1782
c320c7b7
ACM
1783 if (sample_type & PERF_SAMPLE_ID)
1784 size += sizeof(data->id);
1785
1786 if (sample_type & PERF_SAMPLE_STREAM_ID)
1787 size += sizeof(data->stream_id);
1788
1789 if (sample_type & PERF_SAMPLE_CPU)
1790 size += sizeof(data->cpu_entry);
1791
6844c09d 1792 event->id_header_size = size;
c320c7b7
ACM
1793}
1794
a723968c
PZ
1795static bool perf_event_validate_size(struct perf_event *event)
1796{
1797 /*
1798 * The values computed here will be over-written when we actually
1799 * attach the event.
1800 */
1801 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803 perf_event__id_header_size(event);
1804
1805 /*
1806 * Sum the lot; should not exceed the 64k limit we have on records.
1807 * Conservative limit to allow for callchains and other variable fields.
1808 */
1809 if (event->read_size + event->header_size +
1810 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1811 return false;
1812
1813 return true;
1814}
1815
8a49542c
PZ
1816static void perf_group_attach(struct perf_event *event)
1817{
c320c7b7 1818 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1819
a76a82a3
PZ
1820 lockdep_assert_held(&event->ctx->lock);
1821
74c3337c
PZ
1822 /*
1823 * We can have double attach due to group movement in perf_event_open.
1824 */
1825 if (event->attach_state & PERF_ATTACH_GROUP)
1826 return;
1827
8a49542c
PZ
1828 event->attach_state |= PERF_ATTACH_GROUP;
1829
1830 if (group_leader == event)
1831 return;
1832
652884fe
PZ
1833 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1834
4ff6a8de 1835 group_leader->group_caps &= event->event_caps;
8a49542c 1836
8343aae6 1837 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1838 group_leader->nr_siblings++;
c320c7b7
ACM
1839
1840 perf_event__header_size(group_leader);
1841
edb39592 1842 for_each_sibling_event(pos, group_leader)
c320c7b7 1843 perf_event__header_size(pos);
8a49542c
PZ
1844}
1845
a63eaf34 1846/*
cdd6c482 1847 * Remove a event from the lists for its context.
fccc714b 1848 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1849 */
04289bb9 1850static void
cdd6c482 1851list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1852{
652884fe
PZ
1853 WARN_ON_ONCE(event->ctx != ctx);
1854 lockdep_assert_held(&ctx->lock);
1855
8a49542c
PZ
1856 /*
1857 * We can have double detach due to exit/hot-unplug + close.
1858 */
1859 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1860 return;
8a49542c
PZ
1861
1862 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1863
db4a8356 1864 list_update_cgroup_event(event, ctx, false);
e5d1367f 1865
cdd6c482
IM
1866 ctx->nr_events--;
1867 if (event->attr.inherit_stat)
bfbd3381 1868 ctx->nr_stat--;
8bc20959 1869
cdd6c482 1870 list_del_rcu(&event->event_entry);
04289bb9 1871
8a49542c 1872 if (event->group_leader == event)
8e1a2031 1873 del_event_from_groups(event, ctx);
5c148194 1874
b2e74a26
SE
1875 /*
1876 * If event was in error state, then keep it
1877 * that way, otherwise bogus counts will be
1878 * returned on read(). The only way to get out
1879 * of error state is by explicit re-enabling
1880 * of the event
1881 */
1882 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1883 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1884
1885 ctx->generation++;
050735b0
PZ
1886}
1887
8a49542c 1888static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1889{
1890 struct perf_event *sibling, *tmp;
6668128a 1891 struct perf_event_context *ctx = event->ctx;
8a49542c 1892
6668128a 1893 lockdep_assert_held(&ctx->lock);
a76a82a3 1894
8a49542c
PZ
1895 /*
1896 * We can have double detach due to exit/hot-unplug + close.
1897 */
1898 if (!(event->attach_state & PERF_ATTACH_GROUP))
1899 return;
1900
1901 event->attach_state &= ~PERF_ATTACH_GROUP;
1902
1903 /*
1904 * If this is a sibling, remove it from its group.
1905 */
1906 if (event->group_leader != event) {
8343aae6 1907 list_del_init(&event->sibling_list);
8a49542c 1908 event->group_leader->nr_siblings--;
c320c7b7 1909 goto out;
8a49542c
PZ
1910 }
1911
04289bb9 1912 /*
cdd6c482
IM
1913 * If this was a group event with sibling events then
1914 * upgrade the siblings to singleton events by adding them
8a49542c 1915 * to whatever list we are on.
04289bb9 1916 */
8343aae6 1917 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 1918
04289bb9 1919 sibling->group_leader = sibling;
24868367 1920 list_del_init(&sibling->sibling_list);
d6f962b5
FW
1921
1922 /* Inherit group flags from the previous leader */
4ff6a8de 1923 sibling->group_caps = event->group_caps;
652884fe 1924
8e1a2031 1925 if (!RB_EMPTY_NODE(&event->group_node)) {
8e1a2031 1926 add_event_to_groups(sibling, event->ctx);
6668128a
PZ
1927
1928 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929 struct list_head *list = sibling->attr.pinned ?
1930 &ctx->pinned_active : &ctx->flexible_active;
1931
1932 list_add_tail(&sibling->active_list, list);
1933 }
8e1a2031
AB
1934 }
1935
652884fe 1936 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1937 }
c320c7b7
ACM
1938
1939out:
1940 perf_event__header_size(event->group_leader);
1941
edb39592 1942 for_each_sibling_event(tmp, event->group_leader)
c320c7b7 1943 perf_event__header_size(tmp);
04289bb9
IM
1944}
1945
fadfe7be
JO
1946static bool is_orphaned_event(struct perf_event *event)
1947{
a69b0ca4 1948 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1949}
1950
2c81a647 1951static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1952{
1953 struct pmu *pmu = event->pmu;
1954 return pmu->filter_match ? pmu->filter_match(event) : 1;
1955}
1956
2c81a647
MR
1957/*
1958 * Check whether we should attempt to schedule an event group based on
1959 * PMU-specific filtering. An event group can consist of HW and SW events,
1960 * potentially with a SW leader, so we must check all the filters, to
1961 * determine whether a group is schedulable:
1962 */
1963static inline int pmu_filter_match(struct perf_event *event)
1964{
edb39592 1965 struct perf_event *sibling;
2c81a647
MR
1966
1967 if (!__pmu_filter_match(event))
1968 return 0;
1969
edb39592
PZ
1970 for_each_sibling_event(sibling, event) {
1971 if (!__pmu_filter_match(sibling))
2c81a647
MR
1972 return 0;
1973 }
1974
1975 return 1;
1976}
1977
fa66f07a
SE
1978static inline int
1979event_filter_match(struct perf_event *event)
1980{
0b8f1e2e
PZ
1981 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1983}
1984
9ffcfa6f
SE
1985static void
1986event_sched_out(struct perf_event *event,
3b6f9e5c 1987 struct perf_cpu_context *cpuctx,
cdd6c482 1988 struct perf_event_context *ctx)
3b6f9e5c 1989{
0d3d73aa 1990 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
1991
1992 WARN_ON_ONCE(event->ctx != ctx);
1993 lockdep_assert_held(&ctx->lock);
1994
cdd6c482 1995 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1996 return;
3b6f9e5c 1997
6668128a
PZ
1998 /*
1999 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000 * we can schedule events _OUT_ individually through things like
2001 * __perf_remove_from_context().
2002 */
2003 list_del_init(&event->active_list);
2004
44377277
AS
2005 perf_pmu_disable(event->pmu);
2006
28a967c3
PZ
2007 event->pmu->del(event, 0);
2008 event->oncpu = -1;
0d3d73aa 2009
cdd6c482
IM
2010 if (event->pending_disable) {
2011 event->pending_disable = 0;
0d3d73aa 2012 state = PERF_EVENT_STATE_OFF;
970892a9 2013 }
0d3d73aa 2014 perf_event_set_state(event, state);
3b6f9e5c 2015
cdd6c482 2016 if (!is_software_event(event))
3b6f9e5c 2017 cpuctx->active_oncpu--;
2fde4f94
MR
2018 if (!--ctx->nr_active)
2019 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
2020 if (event->attr.freq && event->attr.sample_freq)
2021 ctx->nr_freq--;
cdd6c482 2022 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 2023 cpuctx->exclusive = 0;
44377277
AS
2024
2025 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2026}
2027
d859e29f 2028static void
cdd6c482 2029group_sched_out(struct perf_event *group_event,
d859e29f 2030 struct perf_cpu_context *cpuctx,
cdd6c482 2031 struct perf_event_context *ctx)
d859e29f 2032{
cdd6c482 2033 struct perf_event *event;
0d3d73aa
PZ
2034
2035 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2036 return;
d859e29f 2037
3f005e7d
MR
2038 perf_pmu_disable(ctx->pmu);
2039
cdd6c482 2040 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
2041
2042 /*
2043 * Schedule out siblings (if any):
2044 */
edb39592 2045 for_each_sibling_event(event, group_event)
cdd6c482 2046 event_sched_out(event, cpuctx, ctx);
d859e29f 2047
3f005e7d
MR
2048 perf_pmu_enable(ctx->pmu);
2049
0d3d73aa 2050 if (group_event->attr.exclusive)
d859e29f
PM
2051 cpuctx->exclusive = 0;
2052}
2053
45a0e07a 2054#define DETACH_GROUP 0x01UL
0017960f 2055
0793a61d 2056/*
cdd6c482 2057 * Cross CPU call to remove a performance event
0793a61d 2058 *
cdd6c482 2059 * We disable the event on the hardware level first. After that we
0793a61d
TG
2060 * remove it from the context list.
2061 */
fae3fde6
PZ
2062static void
2063__perf_remove_from_context(struct perf_event *event,
2064 struct perf_cpu_context *cpuctx,
2065 struct perf_event_context *ctx,
2066 void *info)
0793a61d 2067{
45a0e07a 2068 unsigned long flags = (unsigned long)info;
0793a61d 2069
3c5c8711
PZ
2070 if (ctx->is_active & EVENT_TIME) {
2071 update_context_time(ctx);
2072 update_cgrp_time_from_cpuctx(cpuctx);
2073 }
2074
cdd6c482 2075 event_sched_out(event, cpuctx, ctx);
45a0e07a 2076 if (flags & DETACH_GROUP)
46ce0fe9 2077 perf_group_detach(event);
cdd6c482 2078 list_del_event(event, ctx);
39a43640
PZ
2079
2080 if (!ctx->nr_events && ctx->is_active) {
64ce3126 2081 ctx->is_active = 0;
39a43640
PZ
2082 if (ctx->task) {
2083 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084 cpuctx->task_ctx = NULL;
2085 }
64ce3126 2086 }
0793a61d
TG
2087}
2088
0793a61d 2089/*
cdd6c482 2090 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2091 *
cdd6c482
IM
2092 * If event->ctx is a cloned context, callers must make sure that
2093 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2094 * remains valid. This is OK when called from perf_release since
2095 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2096 * When called from perf_event_exit_task, it's OK because the
c93f7669 2097 * context has been detached from its task.
0793a61d 2098 */
45a0e07a 2099static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2100{
a76a82a3
PZ
2101 struct perf_event_context *ctx = event->ctx;
2102
2103 lockdep_assert_held(&ctx->mutex);
0793a61d 2104
45a0e07a 2105 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
2106
2107 /*
2108 * The above event_function_call() can NO-OP when it hits
2109 * TASK_TOMBSTONE. In that case we must already have been detached
2110 * from the context (by perf_event_exit_event()) but the grouping
2111 * might still be in-tact.
2112 */
2113 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114 if ((flags & DETACH_GROUP) &&
2115 (event->attach_state & PERF_ATTACH_GROUP)) {
2116 /*
2117 * Since in that case we cannot possibly be scheduled, simply
2118 * detach now.
2119 */
2120 raw_spin_lock_irq(&ctx->lock);
2121 perf_group_detach(event);
2122 raw_spin_unlock_irq(&ctx->lock);
2123 }
0793a61d
TG
2124}
2125
d859e29f 2126/*
cdd6c482 2127 * Cross CPU call to disable a performance event
d859e29f 2128 */
fae3fde6
PZ
2129static void __perf_event_disable(struct perf_event *event,
2130 struct perf_cpu_context *cpuctx,
2131 struct perf_event_context *ctx,
2132 void *info)
7b648018 2133{
fae3fde6
PZ
2134 if (event->state < PERF_EVENT_STATE_INACTIVE)
2135 return;
7b648018 2136
3c5c8711
PZ
2137 if (ctx->is_active & EVENT_TIME) {
2138 update_context_time(ctx);
2139 update_cgrp_time_from_event(event);
2140 }
2141
fae3fde6
PZ
2142 if (event == event->group_leader)
2143 group_sched_out(event, cpuctx, ctx);
2144 else
2145 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
2146
2147 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
2148}
2149
d859e29f 2150/*
cdd6c482 2151 * Disable a event.
c93f7669 2152 *
cdd6c482
IM
2153 * If event->ctx is a cloned context, callers must make sure that
2154 * every task struct that event->ctx->task could possibly point to
c93f7669 2155 * remains valid. This condition is satisifed when called through
cdd6c482
IM
2156 * perf_event_for_each_child or perf_event_for_each because they
2157 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2158 * goes to exit will block in perf_event_exit_event().
2159 *
cdd6c482 2160 * When called from perf_pending_event it's OK because event->ctx
c93f7669 2161 * is the current context on this CPU and preemption is disabled,
cdd6c482 2162 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2163 */
f63a8daa 2164static void _perf_event_disable(struct perf_event *event)
d859e29f 2165{
cdd6c482 2166 struct perf_event_context *ctx = event->ctx;
d859e29f 2167
e625cce1 2168 raw_spin_lock_irq(&ctx->lock);
7b648018 2169 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2170 raw_spin_unlock_irq(&ctx->lock);
7b648018 2171 return;
53cfbf59 2172 }
e625cce1 2173 raw_spin_unlock_irq(&ctx->lock);
7b648018 2174
fae3fde6
PZ
2175 event_function_call(event, __perf_event_disable, NULL);
2176}
2177
2178void perf_event_disable_local(struct perf_event *event)
2179{
2180 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2181}
f63a8daa
PZ
2182
2183/*
2184 * Strictly speaking kernel users cannot create groups and therefore this
2185 * interface does not need the perf_event_ctx_lock() magic.
2186 */
2187void perf_event_disable(struct perf_event *event)
2188{
2189 struct perf_event_context *ctx;
2190
2191 ctx = perf_event_ctx_lock(event);
2192 _perf_event_disable(event);
2193 perf_event_ctx_unlock(event, ctx);
2194}
dcfce4a0 2195EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2196
5aab90ce
JO
2197void perf_event_disable_inatomic(struct perf_event *event)
2198{
2199 event->pending_disable = 1;
2200 irq_work_queue(&event->pending);
2201}
2202
e5d1367f 2203static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2204 struct perf_event_context *ctx)
e5d1367f
SE
2205{
2206 /*
2207 * use the correct time source for the time snapshot
2208 *
2209 * We could get by without this by leveraging the
2210 * fact that to get to this function, the caller
2211 * has most likely already called update_context_time()
2212 * and update_cgrp_time_xx() and thus both timestamp
2213 * are identical (or very close). Given that tstamp is,
2214 * already adjusted for cgroup, we could say that:
2215 * tstamp - ctx->timestamp
2216 * is equivalent to
2217 * tstamp - cgrp->timestamp.
2218 *
2219 * Then, in perf_output_read(), the calculation would
2220 * work with no changes because:
2221 * - event is guaranteed scheduled in
2222 * - no scheduled out in between
2223 * - thus the timestamp would be the same
2224 *
2225 * But this is a bit hairy.
2226 *
2227 * So instead, we have an explicit cgroup call to remain
2228 * within the time time source all along. We believe it
2229 * is cleaner and simpler to understand.
2230 */
2231 if (is_cgroup_event(event))
0d3d73aa 2232 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2233 else
0d3d73aa 2234 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2235}
2236
4fe757dd
PZ
2237#define MAX_INTERRUPTS (~0ULL)
2238
2239static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2240static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2241
235c7fc7 2242static int
9ffcfa6f 2243event_sched_in(struct perf_event *event,
235c7fc7 2244 struct perf_cpu_context *cpuctx,
6e37738a 2245 struct perf_event_context *ctx)
235c7fc7 2246{
44377277 2247 int ret = 0;
4158755d 2248
63342411
PZ
2249 lockdep_assert_held(&ctx->lock);
2250
cdd6c482 2251 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2252 return 0;
2253
95ff4ca2
AS
2254 WRITE_ONCE(event->oncpu, smp_processor_id());
2255 /*
0c1cbc18
PZ
2256 * Order event::oncpu write to happen before the ACTIVE state is
2257 * visible. This allows perf_event_{stop,read}() to observe the correct
2258 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2259 */
2260 smp_wmb();
0d3d73aa 2261 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2262
2263 /*
2264 * Unthrottle events, since we scheduled we might have missed several
2265 * ticks already, also for a heavily scheduling task there is little
2266 * guarantee it'll get a tick in a timely manner.
2267 */
2268 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2269 perf_log_throttle(event, 1);
2270 event->hw.interrupts = 0;
2271 }
2272
44377277
AS
2273 perf_pmu_disable(event->pmu);
2274
0d3d73aa 2275 perf_set_shadow_time(event, ctx);
72f669c0 2276
ec0d7729
AS
2277 perf_log_itrace_start(event);
2278
a4eaf7f1 2279 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2280 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2281 event->oncpu = -1;
44377277
AS
2282 ret = -EAGAIN;
2283 goto out;
235c7fc7
IM
2284 }
2285
cdd6c482 2286 if (!is_software_event(event))
3b6f9e5c 2287 cpuctx->active_oncpu++;
2fde4f94
MR
2288 if (!ctx->nr_active++)
2289 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2290 if (event->attr.freq && event->attr.sample_freq)
2291 ctx->nr_freq++;
235c7fc7 2292
cdd6c482 2293 if (event->attr.exclusive)
3b6f9e5c
PM
2294 cpuctx->exclusive = 1;
2295
44377277
AS
2296out:
2297 perf_pmu_enable(event->pmu);
2298
2299 return ret;
235c7fc7
IM
2300}
2301
6751b71e 2302static int
cdd6c482 2303group_sched_in(struct perf_event *group_event,
6751b71e 2304 struct perf_cpu_context *cpuctx,
6e37738a 2305 struct perf_event_context *ctx)
6751b71e 2306{
6bde9b6c 2307 struct perf_event *event, *partial_group = NULL;
4a234593 2308 struct pmu *pmu = ctx->pmu;
6751b71e 2309
cdd6c482 2310 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2311 return 0;
2312
fbbe0701 2313 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2314
9ffcfa6f 2315 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2316 pmu->cancel_txn(pmu);
272325c4 2317 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2318 return -EAGAIN;
90151c35 2319 }
6751b71e
PM
2320
2321 /*
2322 * Schedule in siblings as one group (if any):
2323 */
edb39592 2324 for_each_sibling_event(event, group_event) {
9ffcfa6f 2325 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2326 partial_group = event;
6751b71e
PM
2327 goto group_error;
2328 }
2329 }
2330
9ffcfa6f 2331 if (!pmu->commit_txn(pmu))
6e85158c 2332 return 0;
9ffcfa6f 2333
6751b71e
PM
2334group_error:
2335 /*
2336 * Groups can be scheduled in as one unit only, so undo any
2337 * partial group before returning:
0d3d73aa 2338 * The events up to the failed event are scheduled out normally.
6751b71e 2339 */
edb39592 2340 for_each_sibling_event(event, group_event) {
cdd6c482 2341 if (event == partial_group)
0d3d73aa 2342 break;
d7842da4 2343
0d3d73aa 2344 event_sched_out(event, cpuctx, ctx);
6751b71e 2345 }
9ffcfa6f 2346 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2347
ad5133b7 2348 pmu->cancel_txn(pmu);
90151c35 2349
272325c4 2350 perf_mux_hrtimer_restart(cpuctx);
9e630205 2351
6751b71e
PM
2352 return -EAGAIN;
2353}
2354
3b6f9e5c 2355/*
cdd6c482 2356 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2357 */
cdd6c482 2358static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2359 struct perf_cpu_context *cpuctx,
2360 int can_add_hw)
2361{
2362 /*
cdd6c482 2363 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2364 */
4ff6a8de 2365 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2366 return 1;
2367 /*
2368 * If an exclusive group is already on, no other hardware
cdd6c482 2369 * events can go on.
3b6f9e5c
PM
2370 */
2371 if (cpuctx->exclusive)
2372 return 0;
2373 /*
2374 * If this group is exclusive and there are already
cdd6c482 2375 * events on the CPU, it can't go on.
3b6f9e5c 2376 */
cdd6c482 2377 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2378 return 0;
2379 /*
2380 * Otherwise, try to add it if all previous groups were able
2381 * to go on.
2382 */
2383 return can_add_hw;
2384}
2385
cdd6c482
IM
2386static void add_event_to_ctx(struct perf_event *event,
2387 struct perf_event_context *ctx)
53cfbf59 2388{
cdd6c482 2389 list_add_event(event, ctx);
8a49542c 2390 perf_group_attach(event);
53cfbf59
PM
2391}
2392
bd2afa49
PZ
2393static void ctx_sched_out(struct perf_event_context *ctx,
2394 struct perf_cpu_context *cpuctx,
2395 enum event_type_t event_type);
2c29ef0f
PZ
2396static void
2397ctx_sched_in(struct perf_event_context *ctx,
2398 struct perf_cpu_context *cpuctx,
2399 enum event_type_t event_type,
2400 struct task_struct *task);
fe4b04fa 2401
bd2afa49 2402static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2403 struct perf_event_context *ctx,
2404 enum event_type_t event_type)
bd2afa49
PZ
2405{
2406 if (!cpuctx->task_ctx)
2407 return;
2408
2409 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2410 return;
2411
487f05e1 2412 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2413}
2414
dce5855b
PZ
2415static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2416 struct perf_event_context *ctx,
2417 struct task_struct *task)
2418{
2419 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2420 if (ctx)
2421 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2422 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2423 if (ctx)
2424 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2425}
2426
487f05e1
AS
2427/*
2428 * We want to maintain the following priority of scheduling:
2429 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430 * - task pinned (EVENT_PINNED)
2431 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432 * - task flexible (EVENT_FLEXIBLE).
2433 *
2434 * In order to avoid unscheduling and scheduling back in everything every
2435 * time an event is added, only do it for the groups of equal priority and
2436 * below.
2437 *
2438 * This can be called after a batch operation on task events, in which case
2439 * event_type is a bit mask of the types of events involved. For CPU events,
2440 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2441 */
3e349507 2442static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2443 struct perf_event_context *task_ctx,
2444 enum event_type_t event_type)
0017960f 2445{
bd903afe 2446 enum event_type_t ctx_event_type;
487f05e1
AS
2447 bool cpu_event = !!(event_type & EVENT_CPU);
2448
2449 /*
2450 * If pinned groups are involved, flexible groups also need to be
2451 * scheduled out.
2452 */
2453 if (event_type & EVENT_PINNED)
2454 event_type |= EVENT_FLEXIBLE;
2455
bd903afe
SL
2456 ctx_event_type = event_type & EVENT_ALL;
2457
3e349507
PZ
2458 perf_pmu_disable(cpuctx->ctx.pmu);
2459 if (task_ctx)
487f05e1
AS
2460 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2461
2462 /*
2463 * Decide which cpu ctx groups to schedule out based on the types
2464 * of events that caused rescheduling:
2465 * - EVENT_CPU: schedule out corresponding groups;
2466 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467 * - otherwise, do nothing more.
2468 */
2469 if (cpu_event)
2470 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2471 else if (ctx_event_type & EVENT_PINNED)
2472 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2473
3e349507
PZ
2474 perf_event_sched_in(cpuctx, task_ctx, current);
2475 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2476}
2477
0793a61d 2478/*
cdd6c482 2479 * Cross CPU call to install and enable a performance event
682076ae 2480 *
a096309b
PZ
2481 * Very similar to remote_function() + event_function() but cannot assume that
2482 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2483 */
fe4b04fa 2484static int __perf_install_in_context(void *info)
0793a61d 2485{
a096309b
PZ
2486 struct perf_event *event = info;
2487 struct perf_event_context *ctx = event->ctx;
108b02cf 2488 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2489 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2490 bool reprogram = true;
a096309b 2491 int ret = 0;
0793a61d 2492
63b6da39 2493 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2494 if (ctx->task) {
b58f6b0d
PZ
2495 raw_spin_lock(&ctx->lock);
2496 task_ctx = ctx;
a096309b 2497
63cae12b 2498 reprogram = (ctx->task == current);
b58f6b0d 2499
39a43640 2500 /*
63cae12b
PZ
2501 * If the task is running, it must be running on this CPU,
2502 * otherwise we cannot reprogram things.
2503 *
2504 * If its not running, we don't care, ctx->lock will
2505 * serialize against it becoming runnable.
39a43640 2506 */
63cae12b
PZ
2507 if (task_curr(ctx->task) && !reprogram) {
2508 ret = -ESRCH;
2509 goto unlock;
2510 }
a096309b 2511
63cae12b 2512 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2513 } else if (task_ctx) {
2514 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2515 }
b58f6b0d 2516
33801b94 2517#ifdef CONFIG_CGROUP_PERF
2518 if (is_cgroup_event(event)) {
2519 /*
2520 * If the current cgroup doesn't match the event's
2521 * cgroup, we should not try to schedule it.
2522 */
2523 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2524 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2525 event->cgrp->css.cgroup);
2526 }
2527#endif
2528
63cae12b 2529 if (reprogram) {
a096309b
PZ
2530 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2531 add_event_to_ctx(event, ctx);
487f05e1 2532 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2533 } else {
2534 add_event_to_ctx(event, ctx);
2535 }
2536
63b6da39 2537unlock:
2c29ef0f 2538 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2539
a096309b 2540 return ret;
0793a61d
TG
2541}
2542
2543/*
a096309b
PZ
2544 * Attach a performance event to a context.
2545 *
2546 * Very similar to event_function_call, see comment there.
0793a61d
TG
2547 */
2548static void
cdd6c482
IM
2549perf_install_in_context(struct perf_event_context *ctx,
2550 struct perf_event *event,
0793a61d
TG
2551 int cpu)
2552{
a096309b 2553 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2554
fe4b04fa
PZ
2555 lockdep_assert_held(&ctx->mutex);
2556
0cda4c02
YZ
2557 if (event->cpu != -1)
2558 event->cpu = cpu;
c3f00c70 2559
0b8f1e2e
PZ
2560 /*
2561 * Ensures that if we can observe event->ctx, both the event and ctx
2562 * will be 'complete'. See perf_iterate_sb_cpu().
2563 */
2564 smp_store_release(&event->ctx, ctx);
2565
a096309b
PZ
2566 if (!task) {
2567 cpu_function_call(cpu, __perf_install_in_context, event);
2568 return;
2569 }
2570
2571 /*
2572 * Should not happen, we validate the ctx is still alive before calling.
2573 */
2574 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2575 return;
2576
39a43640
PZ
2577 /*
2578 * Installing events is tricky because we cannot rely on ctx->is_active
2579 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2580 *
2581 * Instead we use task_curr(), which tells us if the task is running.
2582 * However, since we use task_curr() outside of rq::lock, we can race
2583 * against the actual state. This means the result can be wrong.
2584 *
2585 * If we get a false positive, we retry, this is harmless.
2586 *
2587 * If we get a false negative, things are complicated. If we are after
2588 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589 * value must be correct. If we're before, it doesn't matter since
2590 * perf_event_context_sched_in() will program the counter.
2591 *
2592 * However, this hinges on the remote context switch having observed
2593 * our task->perf_event_ctxp[] store, such that it will in fact take
2594 * ctx::lock in perf_event_context_sched_in().
2595 *
2596 * We do this by task_function_call(), if the IPI fails to hit the task
2597 * we know any future context switch of task must see the
2598 * perf_event_ctpx[] store.
39a43640 2599 */
63cae12b 2600
63b6da39 2601 /*
63cae12b
PZ
2602 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603 * task_cpu() load, such that if the IPI then does not find the task
2604 * running, a future context switch of that task must observe the
2605 * store.
63b6da39 2606 */
63cae12b
PZ
2607 smp_mb();
2608again:
2609 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2610 return;
2611
2612 raw_spin_lock_irq(&ctx->lock);
2613 task = ctx->task;
84c4e620 2614 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2615 /*
2616 * Cannot happen because we already checked above (which also
2617 * cannot happen), and we hold ctx->mutex, which serializes us
2618 * against perf_event_exit_task_context().
2619 */
63b6da39
PZ
2620 raw_spin_unlock_irq(&ctx->lock);
2621 return;
2622 }
39a43640 2623 /*
63cae12b
PZ
2624 * If the task is not running, ctx->lock will avoid it becoming so,
2625 * thus we can safely install the event.
39a43640 2626 */
63cae12b
PZ
2627 if (task_curr(task)) {
2628 raw_spin_unlock_irq(&ctx->lock);
2629 goto again;
2630 }
2631 add_event_to_ctx(event, ctx);
2632 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2633}
2634
d859e29f 2635/*
cdd6c482 2636 * Cross CPU call to enable a performance event
d859e29f 2637 */
fae3fde6
PZ
2638static void __perf_event_enable(struct perf_event *event,
2639 struct perf_cpu_context *cpuctx,
2640 struct perf_event_context *ctx,
2641 void *info)
04289bb9 2642{
cdd6c482 2643 struct perf_event *leader = event->group_leader;
fae3fde6 2644 struct perf_event_context *task_ctx;
04289bb9 2645
6e801e01
PZ
2646 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2647 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2648 return;
3cbed429 2649
bd2afa49
PZ
2650 if (ctx->is_active)
2651 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2652
0d3d73aa 2653 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2654
fae3fde6
PZ
2655 if (!ctx->is_active)
2656 return;
2657
e5d1367f 2658 if (!event_filter_match(event)) {
bd2afa49 2659 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2660 return;
e5d1367f 2661 }
f4c4176f 2662
04289bb9 2663 /*
cdd6c482 2664 * If the event is in a group and isn't the group leader,
d859e29f 2665 * then don't put it on unless the group is on.
04289bb9 2666 */
bd2afa49
PZ
2667 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2668 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2669 return;
bd2afa49 2670 }
fe4b04fa 2671
fae3fde6
PZ
2672 task_ctx = cpuctx->task_ctx;
2673 if (ctx->task)
2674 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2675
487f05e1 2676 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2677}
2678
d859e29f 2679/*
cdd6c482 2680 * Enable a event.
c93f7669 2681 *
cdd6c482
IM
2682 * If event->ctx is a cloned context, callers must make sure that
2683 * every task struct that event->ctx->task could possibly point to
c93f7669 2684 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2685 * perf_event_for_each_child or perf_event_for_each as described
2686 * for perf_event_disable.
d859e29f 2687 */
f63a8daa 2688static void _perf_event_enable(struct perf_event *event)
d859e29f 2689{
cdd6c482 2690 struct perf_event_context *ctx = event->ctx;
d859e29f 2691
7b648018 2692 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2693 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2694 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2695 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2696 return;
2697 }
2698
d859e29f 2699 /*
cdd6c482 2700 * If the event is in error state, clear that first.
7b648018
PZ
2701 *
2702 * That way, if we see the event in error state below, we know that it
2703 * has gone back into error state, as distinct from the task having
2704 * been scheduled away before the cross-call arrived.
d859e29f 2705 */
cdd6c482
IM
2706 if (event->state == PERF_EVENT_STATE_ERROR)
2707 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2708 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2709
fae3fde6 2710 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2711}
f63a8daa
PZ
2712
2713/*
2714 * See perf_event_disable();
2715 */
2716void perf_event_enable(struct perf_event *event)
2717{
2718 struct perf_event_context *ctx;
2719
2720 ctx = perf_event_ctx_lock(event);
2721 _perf_event_enable(event);
2722 perf_event_ctx_unlock(event, ctx);
2723}
dcfce4a0 2724EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2725
375637bc
AS
2726struct stop_event_data {
2727 struct perf_event *event;
2728 unsigned int restart;
2729};
2730
95ff4ca2
AS
2731static int __perf_event_stop(void *info)
2732{
375637bc
AS
2733 struct stop_event_data *sd = info;
2734 struct perf_event *event = sd->event;
95ff4ca2 2735
375637bc 2736 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2737 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2738 return 0;
2739
2740 /* matches smp_wmb() in event_sched_in() */
2741 smp_rmb();
2742
2743 /*
2744 * There is a window with interrupts enabled before we get here,
2745 * so we need to check again lest we try to stop another CPU's event.
2746 */
2747 if (READ_ONCE(event->oncpu) != smp_processor_id())
2748 return -EAGAIN;
2749
2750 event->pmu->stop(event, PERF_EF_UPDATE);
2751
375637bc
AS
2752 /*
2753 * May race with the actual stop (through perf_pmu_output_stop()),
2754 * but it is only used for events with AUX ring buffer, and such
2755 * events will refuse to restart because of rb::aux_mmap_count==0,
2756 * see comments in perf_aux_output_begin().
2757 *
2758 * Since this is happening on a event-local CPU, no trace is lost
2759 * while restarting.
2760 */
2761 if (sd->restart)
c9bbdd48 2762 event->pmu->start(event, 0);
375637bc 2763
95ff4ca2
AS
2764 return 0;
2765}
2766
767ae086 2767static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2768{
2769 struct stop_event_data sd = {
2770 .event = event,
767ae086 2771 .restart = restart,
375637bc
AS
2772 };
2773 int ret = 0;
2774
2775 do {
2776 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2777 return 0;
2778
2779 /* matches smp_wmb() in event_sched_in() */
2780 smp_rmb();
2781
2782 /*
2783 * We only want to restart ACTIVE events, so if the event goes
2784 * inactive here (event->oncpu==-1), there's nothing more to do;
2785 * fall through with ret==-ENXIO.
2786 */
2787 ret = cpu_function_call(READ_ONCE(event->oncpu),
2788 __perf_event_stop, &sd);
2789 } while (ret == -EAGAIN);
2790
2791 return ret;
2792}
2793
2794/*
2795 * In order to contain the amount of racy and tricky in the address filter
2796 * configuration management, it is a two part process:
2797 *
2798 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799 * we update the addresses of corresponding vmas in
2800 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2801 * (p2) when an event is scheduled in (pmu::add), it calls
2802 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803 * if the generation has changed since the previous call.
2804 *
2805 * If (p1) happens while the event is active, we restart it to force (p2).
2806 *
2807 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2809 * ioctl;
2810 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2812 * for reading;
2813 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2814 * of exec.
2815 */
2816void perf_event_addr_filters_sync(struct perf_event *event)
2817{
2818 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2819
2820 if (!has_addr_filter(event))
2821 return;
2822
2823 raw_spin_lock(&ifh->lock);
2824 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2825 event->pmu->addr_filters_sync(event);
2826 event->hw.addr_filters_gen = event->addr_filters_gen;
2827 }
2828 raw_spin_unlock(&ifh->lock);
2829}
2830EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2831
f63a8daa 2832static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2833{
2023b359 2834 /*
cdd6c482 2835 * not supported on inherited events
2023b359 2836 */
2e939d1d 2837 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2838 return -EINVAL;
2839
cdd6c482 2840 atomic_add(refresh, &event->event_limit);
f63a8daa 2841 _perf_event_enable(event);
2023b359
PZ
2842
2843 return 0;
79f14641 2844}
f63a8daa
PZ
2845
2846/*
2847 * See perf_event_disable()
2848 */
2849int perf_event_refresh(struct perf_event *event, int refresh)
2850{
2851 struct perf_event_context *ctx;
2852 int ret;
2853
2854 ctx = perf_event_ctx_lock(event);
2855 ret = _perf_event_refresh(event, refresh);
2856 perf_event_ctx_unlock(event, ctx);
2857
2858 return ret;
2859}
26ca5c11 2860EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2861
32ff77e8
MC
2862static int perf_event_modify_breakpoint(struct perf_event *bp,
2863 struct perf_event_attr *attr)
2864{
2865 int err;
2866
2867 _perf_event_disable(bp);
2868
2869 err = modify_user_hw_breakpoint_check(bp, attr, true);
2870 if (err) {
2871 if (!bp->attr.disabled)
2872 _perf_event_enable(bp);
2873
2874 return err;
2875 }
2876
2877 if (!attr->disabled)
2878 _perf_event_enable(bp);
2879 return 0;
2880}
2881
2882static int perf_event_modify_attr(struct perf_event *event,
2883 struct perf_event_attr *attr)
2884{
2885 if (event->attr.type != attr->type)
2886 return -EINVAL;
2887
2888 switch (event->attr.type) {
2889 case PERF_TYPE_BREAKPOINT:
2890 return perf_event_modify_breakpoint(event, attr);
2891 default:
2892 /* Place holder for future additions. */
2893 return -EOPNOTSUPP;
2894 }
2895}
2896
5b0311e1
FW
2897static void ctx_sched_out(struct perf_event_context *ctx,
2898 struct perf_cpu_context *cpuctx,
2899 enum event_type_t event_type)
235c7fc7 2900{
6668128a 2901 struct perf_event *event, *tmp;
db24d33e 2902 int is_active = ctx->is_active;
235c7fc7 2903
c994d613 2904 lockdep_assert_held(&ctx->lock);
235c7fc7 2905
39a43640
PZ
2906 if (likely(!ctx->nr_events)) {
2907 /*
2908 * See __perf_remove_from_context().
2909 */
2910 WARN_ON_ONCE(ctx->is_active);
2911 if (ctx->task)
2912 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2913 return;
39a43640
PZ
2914 }
2915
db24d33e 2916 ctx->is_active &= ~event_type;
3cbaa590
PZ
2917 if (!(ctx->is_active & EVENT_ALL))
2918 ctx->is_active = 0;
2919
63e30d3e
PZ
2920 if (ctx->task) {
2921 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2922 if (!ctx->is_active)
2923 cpuctx->task_ctx = NULL;
2924 }
facc4307 2925
8fdc6539
PZ
2926 /*
2927 * Always update time if it was set; not only when it changes.
2928 * Otherwise we can 'forget' to update time for any but the last
2929 * context we sched out. For example:
2930 *
2931 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2932 * ctx_sched_out(.event_type = EVENT_PINNED)
2933 *
2934 * would only update time for the pinned events.
2935 */
3cbaa590
PZ
2936 if (is_active & EVENT_TIME) {
2937 /* update (and stop) ctx time */
2938 update_context_time(ctx);
2939 update_cgrp_time_from_cpuctx(cpuctx);
2940 }
2941
8fdc6539
PZ
2942 is_active ^= ctx->is_active; /* changed bits */
2943
3cbaa590 2944 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2945 return;
5b0311e1 2946
075e0b00 2947 perf_pmu_disable(ctx->pmu);
3cbaa590 2948 if (is_active & EVENT_PINNED) {
6668128a 2949 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
889ff015 2950 group_sched_out(event, cpuctx, ctx);
9ed6060d 2951 }
889ff015 2952
3cbaa590 2953 if (is_active & EVENT_FLEXIBLE) {
6668128a 2954 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
8c9ed8e1 2955 group_sched_out(event, cpuctx, ctx);
9ed6060d 2956 }
1b9a644f 2957 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2958}
2959
564c2b21 2960/*
5a3126d4
PZ
2961 * Test whether two contexts are equivalent, i.e. whether they have both been
2962 * cloned from the same version of the same context.
2963 *
2964 * Equivalence is measured using a generation number in the context that is
2965 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2966 * and list_del_event().
564c2b21 2967 */
cdd6c482
IM
2968static int context_equiv(struct perf_event_context *ctx1,
2969 struct perf_event_context *ctx2)
564c2b21 2970{
211de6eb
PZ
2971 lockdep_assert_held(&ctx1->lock);
2972 lockdep_assert_held(&ctx2->lock);
2973
5a3126d4
PZ
2974 /* Pinning disables the swap optimization */
2975 if (ctx1->pin_count || ctx2->pin_count)
2976 return 0;
2977
2978 /* If ctx1 is the parent of ctx2 */
2979 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2980 return 1;
2981
2982 /* If ctx2 is the parent of ctx1 */
2983 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2984 return 1;
2985
2986 /*
2987 * If ctx1 and ctx2 have the same parent; we flatten the parent
2988 * hierarchy, see perf_event_init_context().
2989 */
2990 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2991 ctx1->parent_gen == ctx2->parent_gen)
2992 return 1;
2993
2994 /* Unmatched */
2995 return 0;
564c2b21
PM
2996}
2997
cdd6c482
IM
2998static void __perf_event_sync_stat(struct perf_event *event,
2999 struct perf_event *next_event)
bfbd3381
PZ
3000{
3001 u64 value;
3002
cdd6c482 3003 if (!event->attr.inherit_stat)
bfbd3381
PZ
3004 return;
3005
3006 /*
cdd6c482 3007 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3008 * because we're in the middle of a context switch and have IRQs
3009 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3010 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3011 * don't need to use it.
3012 */
0d3d73aa 3013 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3014 event->pmu->read(event);
bfbd3381 3015
0d3d73aa 3016 perf_event_update_time(event);
bfbd3381
PZ
3017
3018 /*
cdd6c482 3019 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3020 * values when we flip the contexts.
3021 */
e7850595
PZ
3022 value = local64_read(&next_event->count);
3023 value = local64_xchg(&event->count, value);
3024 local64_set(&next_event->count, value);
bfbd3381 3025
cdd6c482
IM
3026 swap(event->total_time_enabled, next_event->total_time_enabled);
3027 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3028
bfbd3381 3029 /*
19d2e755 3030 * Since we swizzled the values, update the user visible data too.
bfbd3381 3031 */
cdd6c482
IM
3032 perf_event_update_userpage(event);
3033 perf_event_update_userpage(next_event);
bfbd3381
PZ
3034}
3035
cdd6c482
IM
3036static void perf_event_sync_stat(struct perf_event_context *ctx,
3037 struct perf_event_context *next_ctx)
bfbd3381 3038{
cdd6c482 3039 struct perf_event *event, *next_event;
bfbd3381
PZ
3040
3041 if (!ctx->nr_stat)
3042 return;
3043
02ffdbc8
PZ
3044 update_context_time(ctx);
3045
cdd6c482
IM
3046 event = list_first_entry(&ctx->event_list,
3047 struct perf_event, event_entry);
bfbd3381 3048
cdd6c482
IM
3049 next_event = list_first_entry(&next_ctx->event_list,
3050 struct perf_event, event_entry);
bfbd3381 3051
cdd6c482
IM
3052 while (&event->event_entry != &ctx->event_list &&
3053 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3054
cdd6c482 3055 __perf_event_sync_stat(event, next_event);
bfbd3381 3056
cdd6c482
IM
3057 event = list_next_entry(event, event_entry);
3058 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3059 }
3060}
3061
fe4b04fa
PZ
3062static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3063 struct task_struct *next)
0793a61d 3064{
8dc85d54 3065 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 3066 struct perf_event_context *next_ctx;
5a3126d4 3067 struct perf_event_context *parent, *next_parent;
108b02cf 3068 struct perf_cpu_context *cpuctx;
c93f7669 3069 int do_switch = 1;
0793a61d 3070
108b02cf
PZ
3071 if (likely(!ctx))
3072 return;
10989fb2 3073
108b02cf
PZ
3074 cpuctx = __get_cpu_context(ctx);
3075 if (!cpuctx->task_ctx)
0793a61d
TG
3076 return;
3077
c93f7669 3078 rcu_read_lock();
8dc85d54 3079 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
3080 if (!next_ctx)
3081 goto unlock;
3082
3083 parent = rcu_dereference(ctx->parent_ctx);
3084 next_parent = rcu_dereference(next_ctx->parent_ctx);
3085
3086 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3087 if (!parent && !next_parent)
5a3126d4
PZ
3088 goto unlock;
3089
3090 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3091 /*
3092 * Looks like the two contexts are clones, so we might be
3093 * able to optimize the context switch. We lock both
3094 * contexts and check that they are clones under the
3095 * lock (including re-checking that neither has been
3096 * uncloned in the meantime). It doesn't matter which
3097 * order we take the locks because no other cpu could
3098 * be trying to lock both of these tasks.
3099 */
e625cce1
TG
3100 raw_spin_lock(&ctx->lock);
3101 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3102 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
3103 WRITE_ONCE(ctx->task, next);
3104 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
3105
3106 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3107
63b6da39
PZ
3108 /*
3109 * RCU_INIT_POINTER here is safe because we've not
3110 * modified the ctx and the above modification of
3111 * ctx->task and ctx->task_ctx_data are immaterial
3112 * since those values are always verified under
3113 * ctx->lock which we're now holding.
3114 */
3115 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3116 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3117
c93f7669 3118 do_switch = 0;
bfbd3381 3119
cdd6c482 3120 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3121 }
e625cce1
TG
3122 raw_spin_unlock(&next_ctx->lock);
3123 raw_spin_unlock(&ctx->lock);
564c2b21 3124 }
5a3126d4 3125unlock:
c93f7669 3126 rcu_read_unlock();
564c2b21 3127
c93f7669 3128 if (do_switch) {
facc4307 3129 raw_spin_lock(&ctx->lock);
487f05e1 3130 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 3131 raw_spin_unlock(&ctx->lock);
c93f7669 3132 }
0793a61d
TG
3133}
3134
e48c1788
PZ
3135static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3136
ba532500
YZ
3137void perf_sched_cb_dec(struct pmu *pmu)
3138{
e48c1788
PZ
3139 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3140
ba532500 3141 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3142
3143 if (!--cpuctx->sched_cb_usage)
3144 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3145}
3146
e48c1788 3147
ba532500
YZ
3148void perf_sched_cb_inc(struct pmu *pmu)
3149{
e48c1788
PZ
3150 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3151
3152 if (!cpuctx->sched_cb_usage++)
3153 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3154
ba532500
YZ
3155 this_cpu_inc(perf_sched_cb_usages);
3156}
3157
3158/*
3159 * This function provides the context switch callback to the lower code
3160 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3161 *
3162 * This callback is relevant even to per-cpu events; for example multi event
3163 * PEBS requires this to provide PID/TID information. This requires we flush
3164 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3165 */
3166static void perf_pmu_sched_task(struct task_struct *prev,
3167 struct task_struct *next,
3168 bool sched_in)
3169{
3170 struct perf_cpu_context *cpuctx;
3171 struct pmu *pmu;
ba532500
YZ
3172
3173 if (prev == next)
3174 return;
3175
e48c1788 3176 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3177 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3178
e48c1788
PZ
3179 if (WARN_ON_ONCE(!pmu->sched_task))
3180 continue;
ba532500 3181
e48c1788
PZ
3182 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3183 perf_pmu_disable(pmu);
ba532500 3184
e48c1788 3185 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3186
e48c1788
PZ
3187 perf_pmu_enable(pmu);
3188 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3189 }
ba532500
YZ
3190}
3191
45ac1403
AH
3192static void perf_event_switch(struct task_struct *task,
3193 struct task_struct *next_prev, bool sched_in);
3194
8dc85d54
PZ
3195#define for_each_task_context_nr(ctxn) \
3196 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3197
3198/*
3199 * Called from scheduler to remove the events of the current task,
3200 * with interrupts disabled.
3201 *
3202 * We stop each event and update the event value in event->count.
3203 *
3204 * This does not protect us against NMI, but disable()
3205 * sets the disabled bit in the control field of event _before_
3206 * accessing the event control register. If a NMI hits, then it will
3207 * not restart the event.
3208 */
ab0cce56
JO
3209void __perf_event_task_sched_out(struct task_struct *task,
3210 struct task_struct *next)
8dc85d54
PZ
3211{
3212 int ctxn;
3213
ba532500
YZ
3214 if (__this_cpu_read(perf_sched_cb_usages))
3215 perf_pmu_sched_task(task, next, false);
3216
45ac1403
AH
3217 if (atomic_read(&nr_switch_events))
3218 perf_event_switch(task, next, false);
3219
8dc85d54
PZ
3220 for_each_task_context_nr(ctxn)
3221 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3222
3223 /*
3224 * if cgroup events exist on this CPU, then we need
3225 * to check if we have to switch out PMU state.
3226 * cgroup event are system-wide mode only
3227 */
4a32fea9 3228 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3229 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3230}
3231
5b0311e1
FW
3232/*
3233 * Called with IRQs disabled
3234 */
3235static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3236 enum event_type_t event_type)
3237{
3238 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3239}
3240
1cac7b1a
PZ
3241static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3242 int (*func)(struct perf_event *, void *), void *data)
0793a61d 3243{
1cac7b1a
PZ
3244 struct perf_event **evt, *evt1, *evt2;
3245 int ret;
8e1a2031 3246
1cac7b1a
PZ
3247 evt1 = perf_event_groups_first(groups, -1);
3248 evt2 = perf_event_groups_first(groups, cpu);
3249
3250 while (evt1 || evt2) {
3251 if (evt1 && evt2) {
3252 if (evt1->group_index < evt2->group_index)
3253 evt = &evt1;
3254 else
3255 evt = &evt2;
3256 } else if (evt1) {
3257 evt = &evt1;
3258 } else {
3259 evt = &evt2;
8e1a2031 3260 }
1cac7b1a
PZ
3261
3262 ret = func(*evt, data);
3263 if (ret)
3264 return ret;
3265
3266 *evt = perf_event_groups_next(*evt);
8e1a2031 3267 }
0793a61d 3268
1cac7b1a
PZ
3269 return 0;
3270}
3271
3272struct sched_in_data {
3273 struct perf_event_context *ctx;
3274 struct perf_cpu_context *cpuctx;
3275 int can_add_hw;
3276};
3277
3278static int pinned_sched_in(struct perf_event *event, void *data)
3279{
3280 struct sched_in_data *sid = data;
3281
3282 if (event->state <= PERF_EVENT_STATE_OFF)
3283 return 0;
3284
3285 if (!event_filter_match(event))
3286 return 0;
3287
6668128a
PZ
3288 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3289 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3290 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3291 }
1cac7b1a
PZ
3292
3293 /*
3294 * If this pinned group hasn't been scheduled,
3295 * put it in error state.
3296 */
3297 if (event->state == PERF_EVENT_STATE_INACTIVE)
3298 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3299
3300 return 0;
3301}
3302
3303static int flexible_sched_in(struct perf_event *event, void *data)
3304{
3305 struct sched_in_data *sid = data;
3306
3307 if (event->state <= PERF_EVENT_STATE_OFF)
3308 return 0;
3309
3310 if (!event_filter_match(event))
3311 return 0;
3312
3313 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
6668128a
PZ
3314 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3315 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3316 else
1cac7b1a 3317 sid->can_add_hw = 0;
3b6f9e5c 3318 }
1cac7b1a
PZ
3319
3320 return 0;
5b0311e1
FW
3321}
3322
3323static void
1cac7b1a
PZ
3324ctx_pinned_sched_in(struct perf_event_context *ctx,
3325 struct perf_cpu_context *cpuctx)
5b0311e1 3326{
1cac7b1a
PZ
3327 struct sched_in_data sid = {
3328 .ctx = ctx,
3329 .cpuctx = cpuctx,
3330 .can_add_hw = 1,
3331 };
3b6f9e5c 3332
1cac7b1a
PZ
3333 visit_groups_merge(&ctx->pinned_groups,
3334 smp_processor_id(),
3335 pinned_sched_in, &sid);
3336}
8e1a2031 3337
1cac7b1a
PZ
3338static void
3339ctx_flexible_sched_in(struct perf_event_context *ctx,
3340 struct perf_cpu_context *cpuctx)
3341{
3342 struct sched_in_data sid = {
3343 .ctx = ctx,
3344 .cpuctx = cpuctx,
3345 .can_add_hw = 1,
3346 };
0793a61d 3347
1cac7b1a
PZ
3348 visit_groups_merge(&ctx->flexible_groups,
3349 smp_processor_id(),
3350 flexible_sched_in, &sid);
5b0311e1
FW
3351}
3352
3353static void
3354ctx_sched_in(struct perf_event_context *ctx,
3355 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3356 enum event_type_t event_type,
3357 struct task_struct *task)
5b0311e1 3358{
db24d33e 3359 int is_active = ctx->is_active;
c994d613
PZ
3360 u64 now;
3361
3362 lockdep_assert_held(&ctx->lock);
e5d1367f 3363
5b0311e1 3364 if (likely(!ctx->nr_events))
facc4307 3365 return;
5b0311e1 3366
3cbaa590 3367 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3368 if (ctx->task) {
3369 if (!is_active)
3370 cpuctx->task_ctx = ctx;
3371 else
3372 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3373 }
3374
3cbaa590
PZ
3375 is_active ^= ctx->is_active; /* changed bits */
3376
3377 if (is_active & EVENT_TIME) {
3378 /* start ctx time */
3379 now = perf_clock();
3380 ctx->timestamp = now;
3381 perf_cgroup_set_timestamp(task, ctx);
3382 }
3383
5b0311e1
FW
3384 /*
3385 * First go through the list and put on any pinned groups
3386 * in order to give them the best chance of going on.
3387 */
3cbaa590 3388 if (is_active & EVENT_PINNED)
6e37738a 3389 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3390
3391 /* Then walk through the lower prio flexible groups */
3cbaa590 3392 if (is_active & EVENT_FLEXIBLE)
6e37738a 3393 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3394}
3395
329c0e01 3396static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3397 enum event_type_t event_type,
3398 struct task_struct *task)
329c0e01
FW
3399{
3400 struct perf_event_context *ctx = &cpuctx->ctx;
3401
e5d1367f 3402 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3403}
3404
e5d1367f
SE
3405static void perf_event_context_sched_in(struct perf_event_context *ctx,
3406 struct task_struct *task)
235c7fc7 3407{
108b02cf 3408 struct perf_cpu_context *cpuctx;
235c7fc7 3409
108b02cf 3410 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3411 if (cpuctx->task_ctx == ctx)
3412 return;
3413
facc4307 3414 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3415 /*
3416 * We must check ctx->nr_events while holding ctx->lock, such
3417 * that we serialize against perf_install_in_context().
3418 */
3419 if (!ctx->nr_events)
3420 goto unlock;
3421
1b9a644f 3422 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3423 /*
3424 * We want to keep the following priority order:
3425 * cpu pinned (that don't need to move), task pinned,
3426 * cpu flexible, task flexible.
fe45bafb
AS
3427 *
3428 * However, if task's ctx is not carrying any pinned
3429 * events, no need to flip the cpuctx's events around.
329c0e01 3430 */
8e1a2031 3431 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
fe45bafb 3432 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3433 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3434 perf_pmu_enable(ctx->pmu);
fdccc3fb 3435
3436unlock:
facc4307 3437 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3438}
3439
8dc85d54
PZ
3440/*
3441 * Called from scheduler to add the events of the current task
3442 * with interrupts disabled.
3443 *
3444 * We restore the event value and then enable it.
3445 *
3446 * This does not protect us against NMI, but enable()
3447 * sets the enabled bit in the control field of event _before_
3448 * accessing the event control register. If a NMI hits, then it will
3449 * keep the event running.
3450 */
ab0cce56
JO
3451void __perf_event_task_sched_in(struct task_struct *prev,
3452 struct task_struct *task)
8dc85d54
PZ
3453{
3454 struct perf_event_context *ctx;
3455 int ctxn;
3456
7e41d177
PZ
3457 /*
3458 * If cgroup events exist on this CPU, then we need to check if we have
3459 * to switch in PMU state; cgroup event are system-wide mode only.
3460 *
3461 * Since cgroup events are CPU events, we must schedule these in before
3462 * we schedule in the task events.
3463 */
3464 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3465 perf_cgroup_sched_in(prev, task);
3466
8dc85d54
PZ
3467 for_each_task_context_nr(ctxn) {
3468 ctx = task->perf_event_ctxp[ctxn];
3469 if (likely(!ctx))
3470 continue;
3471
e5d1367f 3472 perf_event_context_sched_in(ctx, task);
8dc85d54 3473 }
d010b332 3474
45ac1403
AH
3475 if (atomic_read(&nr_switch_events))
3476 perf_event_switch(task, prev, true);
3477
ba532500
YZ
3478 if (__this_cpu_read(perf_sched_cb_usages))
3479 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3480}
3481
abd50713
PZ
3482static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3483{
3484 u64 frequency = event->attr.sample_freq;
3485 u64 sec = NSEC_PER_SEC;
3486 u64 divisor, dividend;
3487
3488 int count_fls, nsec_fls, frequency_fls, sec_fls;
3489
3490 count_fls = fls64(count);
3491 nsec_fls = fls64(nsec);
3492 frequency_fls = fls64(frequency);
3493 sec_fls = 30;
3494
3495 /*
3496 * We got @count in @nsec, with a target of sample_freq HZ
3497 * the target period becomes:
3498 *
3499 * @count * 10^9
3500 * period = -------------------
3501 * @nsec * sample_freq
3502 *
3503 */
3504
3505 /*
3506 * Reduce accuracy by one bit such that @a and @b converge
3507 * to a similar magnitude.
3508 */
fe4b04fa 3509#define REDUCE_FLS(a, b) \
abd50713
PZ
3510do { \
3511 if (a##_fls > b##_fls) { \
3512 a >>= 1; \
3513 a##_fls--; \
3514 } else { \
3515 b >>= 1; \
3516 b##_fls--; \
3517 } \
3518} while (0)
3519
3520 /*
3521 * Reduce accuracy until either term fits in a u64, then proceed with
3522 * the other, so that finally we can do a u64/u64 division.
3523 */
3524 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3525 REDUCE_FLS(nsec, frequency);
3526 REDUCE_FLS(sec, count);
3527 }
3528
3529 if (count_fls + sec_fls > 64) {
3530 divisor = nsec * frequency;
3531
3532 while (count_fls + sec_fls > 64) {
3533 REDUCE_FLS(count, sec);
3534 divisor >>= 1;
3535 }
3536
3537 dividend = count * sec;
3538 } else {
3539 dividend = count * sec;
3540
3541 while (nsec_fls + frequency_fls > 64) {
3542 REDUCE_FLS(nsec, frequency);
3543 dividend >>= 1;
3544 }
3545
3546 divisor = nsec * frequency;
3547 }
3548
f6ab91ad
PZ
3549 if (!divisor)
3550 return dividend;
3551
abd50713
PZ
3552 return div64_u64(dividend, divisor);
3553}
3554
e050e3f0
SE
3555static DEFINE_PER_CPU(int, perf_throttled_count);
3556static DEFINE_PER_CPU(u64, perf_throttled_seq);
3557
f39d47ff 3558static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3559{
cdd6c482 3560 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3561 s64 period, sample_period;
bd2b5b12
PZ
3562 s64 delta;
3563
abd50713 3564 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3565
3566 delta = (s64)(period - hwc->sample_period);
3567 delta = (delta + 7) / 8; /* low pass filter */
3568
3569 sample_period = hwc->sample_period + delta;
3570
3571 if (!sample_period)
3572 sample_period = 1;
3573
bd2b5b12 3574 hwc->sample_period = sample_period;
abd50713 3575
e7850595 3576 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3577 if (disable)
3578 event->pmu->stop(event, PERF_EF_UPDATE);
3579
e7850595 3580 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3581
3582 if (disable)
3583 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3584 }
bd2b5b12
PZ
3585}
3586
e050e3f0
SE
3587/*
3588 * combine freq adjustment with unthrottling to avoid two passes over the
3589 * events. At the same time, make sure, having freq events does not change
3590 * the rate of unthrottling as that would introduce bias.
3591 */
3592static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3593 int needs_unthr)
60db5e09 3594{
cdd6c482
IM
3595 struct perf_event *event;
3596 struct hw_perf_event *hwc;
e050e3f0 3597 u64 now, period = TICK_NSEC;
abd50713 3598 s64 delta;
60db5e09 3599
e050e3f0
SE
3600 /*
3601 * only need to iterate over all events iff:
3602 * - context have events in frequency mode (needs freq adjust)
3603 * - there are events to unthrottle on this cpu
3604 */
3605 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3606 return;
3607
e050e3f0 3608 raw_spin_lock(&ctx->lock);
f39d47ff 3609 perf_pmu_disable(ctx->pmu);
e050e3f0 3610
03541f8b 3611 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3612 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3613 continue;
3614
5632ab12 3615 if (!event_filter_match(event))
5d27c23d
PZ
3616 continue;
3617
44377277
AS
3618 perf_pmu_disable(event->pmu);
3619
cdd6c482 3620 hwc = &event->hw;
6a24ed6c 3621
ae23bff1 3622 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3623 hwc->interrupts = 0;
cdd6c482 3624 perf_log_throttle(event, 1);
a4eaf7f1 3625 event->pmu->start(event, 0);
a78ac325
PZ
3626 }
3627
cdd6c482 3628 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3629 goto next;
60db5e09 3630
e050e3f0
SE
3631 /*
3632 * stop the event and update event->count
3633 */
3634 event->pmu->stop(event, PERF_EF_UPDATE);
3635
e7850595 3636 now = local64_read(&event->count);
abd50713
PZ
3637 delta = now - hwc->freq_count_stamp;
3638 hwc->freq_count_stamp = now;
60db5e09 3639
e050e3f0
SE
3640 /*
3641 * restart the event
3642 * reload only if value has changed
f39d47ff
SE
3643 * we have stopped the event so tell that
3644 * to perf_adjust_period() to avoid stopping it
3645 * twice.
e050e3f0 3646 */
abd50713 3647 if (delta > 0)
f39d47ff 3648 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3649
3650 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3651 next:
3652 perf_pmu_enable(event->pmu);
60db5e09 3653 }
e050e3f0 3654
f39d47ff 3655 perf_pmu_enable(ctx->pmu);
e050e3f0 3656 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3657}
3658
235c7fc7 3659/*
8703a7cf 3660 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 3661 */
8703a7cf 3662static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 3663{
dddd3379
TG
3664 /*
3665 * Rotate the first entry last of non-pinned groups. Rotation might be
3666 * disabled by the inheritance code.
3667 */
8703a7cf
PZ
3668 if (ctx->rotate_disable)
3669 return;
8e1a2031 3670
8703a7cf
PZ
3671 perf_event_groups_delete(&ctx->flexible_groups, event);
3672 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
3673}
3674
8d5bce0c
PZ
3675static inline struct perf_event *
3676ctx_first_active(struct perf_event_context *ctx)
235c7fc7 3677{
8d5bce0c
PZ
3678 return list_first_entry_or_null(&ctx->flexible_active,
3679 struct perf_event, active_list);
3680}
3681
3682static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3683{
3684 struct perf_event *cpu_event = NULL, *task_event = NULL;
3685 bool cpu_rotate = false, task_rotate = false;
8dc85d54 3686 struct perf_event_context *ctx = NULL;
8d5bce0c
PZ
3687
3688 /*
3689 * Since we run this from IRQ context, nobody can install new
3690 * events, thus the event count values are stable.
3691 */
7fc23a53 3692
b5ab4cd5 3693 if (cpuctx->ctx.nr_events) {
b5ab4cd5 3694 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
8d5bce0c 3695 cpu_rotate = true;
b5ab4cd5 3696 }
235c7fc7 3697
8dc85d54 3698 ctx = cpuctx->task_ctx;
b5ab4cd5 3699 if (ctx && ctx->nr_events) {
b5ab4cd5 3700 if (ctx->nr_events != ctx->nr_active)
8d5bce0c 3701 task_rotate = true;
b5ab4cd5 3702 }
9717e6cd 3703
8d5bce0c
PZ
3704 if (!(cpu_rotate || task_rotate))
3705 return false;
0f5a2601 3706
facc4307 3707 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3708 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3709
8d5bce0c
PZ
3710 if (task_rotate)
3711 task_event = ctx_first_active(ctx);
3712 if (cpu_rotate)
3713 cpu_event = ctx_first_active(&cpuctx->ctx);
8703a7cf 3714
8d5bce0c
PZ
3715 /*
3716 * As per the order given at ctx_resched() first 'pop' task flexible
3717 * and then, if needed CPU flexible.
3718 */
3719 if (task_event || (ctx && cpu_event))
e050e3f0 3720 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
8d5bce0c
PZ
3721 if (cpu_event)
3722 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
0793a61d 3723
8d5bce0c
PZ
3724 if (task_event)
3725 rotate_ctx(ctx, task_event);
3726 if (cpu_event)
3727 rotate_ctx(&cpuctx->ctx, cpu_event);
235c7fc7 3728
e050e3f0 3729 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3730
0f5a2601
PZ
3731 perf_pmu_enable(cpuctx->ctx.pmu);
3732 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 3733
8d5bce0c 3734 return true;
e9d2b064
PZ
3735}
3736
3737void perf_event_task_tick(void)
3738{
2fde4f94
MR
3739 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3740 struct perf_event_context *ctx, *tmp;
e050e3f0 3741 int throttled;
b5ab4cd5 3742
16444645 3743 lockdep_assert_irqs_disabled();
e9d2b064 3744
e050e3f0
SE
3745 __this_cpu_inc(perf_throttled_seq);
3746 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3747 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3748
2fde4f94 3749 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3750 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3751}
3752
889ff015
FW
3753static int event_enable_on_exec(struct perf_event *event,
3754 struct perf_event_context *ctx)
3755{
3756 if (!event->attr.enable_on_exec)
3757 return 0;
3758
3759 event->attr.enable_on_exec = 0;
3760 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3761 return 0;
3762
0d3d73aa 3763 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3764
3765 return 1;
3766}
3767
57e7986e 3768/*
cdd6c482 3769 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3770 * This expects task == current.
3771 */
c1274499 3772static void perf_event_enable_on_exec(int ctxn)
57e7986e 3773{
c1274499 3774 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3775 enum event_type_t event_type = 0;
3e349507 3776 struct perf_cpu_context *cpuctx;
cdd6c482 3777 struct perf_event *event;
57e7986e
PM
3778 unsigned long flags;
3779 int enabled = 0;
3780
3781 local_irq_save(flags);
c1274499 3782 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3783 if (!ctx || !ctx->nr_events)
57e7986e
PM
3784 goto out;
3785
3e349507
PZ
3786 cpuctx = __get_cpu_context(ctx);
3787 perf_ctx_lock(cpuctx, ctx);
7fce2509 3788 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3789 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3790 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3791 event_type |= get_event_type(event);
3792 }
57e7986e
PM
3793
3794 /*
3e349507 3795 * Unclone and reschedule this context if we enabled any event.
57e7986e 3796 */
3e349507 3797 if (enabled) {
211de6eb 3798 clone_ctx = unclone_ctx(ctx);
487f05e1 3799 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3800 } else {
3801 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3802 }
3803 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3804
9ed6060d 3805out:
57e7986e 3806 local_irq_restore(flags);
211de6eb
PZ
3807
3808 if (clone_ctx)
3809 put_ctx(clone_ctx);
57e7986e
PM
3810}
3811
0492d4c5
PZ
3812struct perf_read_data {
3813 struct perf_event *event;
3814 bool group;
7d88962e 3815 int ret;
0492d4c5
PZ
3816};
3817
451d24d1 3818static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3819{
d6a2f903
DCC
3820 u16 local_pkg, event_pkg;
3821
3822 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3823 int local_cpu = smp_processor_id();
3824
3825 event_pkg = topology_physical_package_id(event_cpu);
3826 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3827
3828 if (event_pkg == local_pkg)
3829 return local_cpu;
3830 }
3831
3832 return event_cpu;
3833}
3834
0793a61d 3835/*
cdd6c482 3836 * Cross CPU call to read the hardware event
0793a61d 3837 */
cdd6c482 3838static void __perf_event_read(void *info)
0793a61d 3839{
0492d4c5
PZ
3840 struct perf_read_data *data = info;
3841 struct perf_event *sub, *event = data->event;
cdd6c482 3842 struct perf_event_context *ctx = event->ctx;
108b02cf 3843 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3844 struct pmu *pmu = event->pmu;
621a01ea 3845
e1ac3614
PM
3846 /*
3847 * If this is a task context, we need to check whether it is
3848 * the current task context of this cpu. If not it has been
3849 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3850 * event->count would have been updated to a recent sample
3851 * when the event was scheduled out.
e1ac3614
PM
3852 */
3853 if (ctx->task && cpuctx->task_ctx != ctx)
3854 return;
3855
e625cce1 3856 raw_spin_lock(&ctx->lock);
0c1cbc18 3857 if (ctx->is_active & EVENT_TIME) {
542e72fc 3858 update_context_time(ctx);
e5d1367f
SE
3859 update_cgrp_time_from_event(event);
3860 }
0492d4c5 3861
0d3d73aa
PZ
3862 perf_event_update_time(event);
3863 if (data->group)
3864 perf_event_update_sibling_time(event);
0c1cbc18 3865
4a00c16e
SB
3866 if (event->state != PERF_EVENT_STATE_ACTIVE)
3867 goto unlock;
0492d4c5 3868
4a00c16e
SB
3869 if (!data->group) {
3870 pmu->read(event);
3871 data->ret = 0;
0492d4c5 3872 goto unlock;
4a00c16e
SB
3873 }
3874
3875 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3876
3877 pmu->read(event);
0492d4c5 3878
edb39592 3879 for_each_sibling_event(sub, event) {
4a00c16e
SB
3880 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3881 /*
3882 * Use sibling's PMU rather than @event's since
3883 * sibling could be on different (eg: software) PMU.
3884 */
0492d4c5 3885 sub->pmu->read(sub);
4a00c16e 3886 }
0492d4c5 3887 }
4a00c16e
SB
3888
3889 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3890
3891unlock:
e625cce1 3892 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3893}
3894
b5e58793
PZ
3895static inline u64 perf_event_count(struct perf_event *event)
3896{
c39a0e2c 3897 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3898}
3899
ffe8690c
KX
3900/*
3901 * NMI-safe method to read a local event, that is an event that
3902 * is:
3903 * - either for the current task, or for this CPU
3904 * - does not have inherit set, for inherited task events
3905 * will not be local and we cannot read them atomically
3906 * - must not have a pmu::count method
3907 */
7d9285e8
YS
3908int perf_event_read_local(struct perf_event *event, u64 *value,
3909 u64 *enabled, u64 *running)
ffe8690c
KX
3910{
3911 unsigned long flags;
f91840a3 3912 int ret = 0;
ffe8690c
KX
3913
3914 /*
3915 * Disabling interrupts avoids all counter scheduling (context
3916 * switches, timer based rotation and IPIs).
3917 */
3918 local_irq_save(flags);
3919
ffe8690c
KX
3920 /*
3921 * It must not be an event with inherit set, we cannot read
3922 * all child counters from atomic context.
3923 */
f91840a3
AS
3924 if (event->attr.inherit) {
3925 ret = -EOPNOTSUPP;
3926 goto out;
3927 }
ffe8690c 3928
f91840a3
AS
3929 /* If this is a per-task event, it must be for current */
3930 if ((event->attach_state & PERF_ATTACH_TASK) &&
3931 event->hw.target != current) {
3932 ret = -EINVAL;
3933 goto out;
3934 }
3935
3936 /* If this is a per-CPU event, it must be for this CPU */
3937 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3938 event->cpu != smp_processor_id()) {
3939 ret = -EINVAL;
3940 goto out;
3941 }
ffe8690c
KX
3942
3943 /*
3944 * If the event is currently on this CPU, its either a per-task event,
3945 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3946 * oncpu == -1).
3947 */
3948 if (event->oncpu == smp_processor_id())
3949 event->pmu->read(event);
3950
f91840a3 3951 *value = local64_read(&event->count);
0d3d73aa
PZ
3952 if (enabled || running) {
3953 u64 now = event->shadow_ctx_time + perf_clock();
3954 u64 __enabled, __running;
3955
3956 __perf_update_times(event, now, &__enabled, &__running);
3957 if (enabled)
3958 *enabled = __enabled;
3959 if (running)
3960 *running = __running;
3961 }
f91840a3 3962out:
ffe8690c
KX
3963 local_irq_restore(flags);
3964
f91840a3 3965 return ret;
ffe8690c
KX
3966}
3967
7d88962e 3968static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3969{
0c1cbc18 3970 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 3971 int event_cpu, ret = 0;
7d88962e 3972
0793a61d 3973 /*
cdd6c482
IM
3974 * If event is enabled and currently active on a CPU, update the
3975 * value in the event structure:
0793a61d 3976 */
0c1cbc18
PZ
3977again:
3978 if (state == PERF_EVENT_STATE_ACTIVE) {
3979 struct perf_read_data data;
3980
3981 /*
3982 * Orders the ->state and ->oncpu loads such that if we see
3983 * ACTIVE we must also see the right ->oncpu.
3984 *
3985 * Matches the smp_wmb() from event_sched_in().
3986 */
3987 smp_rmb();
d6a2f903 3988
451d24d1
PZ
3989 event_cpu = READ_ONCE(event->oncpu);
3990 if ((unsigned)event_cpu >= nr_cpu_ids)
3991 return 0;
3992
0c1cbc18
PZ
3993 data = (struct perf_read_data){
3994 .event = event,
3995 .group = group,
3996 .ret = 0,
3997 };
3998
451d24d1
PZ
3999 preempt_disable();
4000 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4001
58763148
PZ
4002 /*
4003 * Purposely ignore the smp_call_function_single() return
4004 * value.
4005 *
451d24d1 4006 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4007 * scheduled out and that will have updated the event count.
4008 *
4009 * Therefore, either way, we'll have an up-to-date event count
4010 * after this.
4011 */
451d24d1
PZ
4012 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4013 preempt_enable();
58763148 4014 ret = data.ret;
0c1cbc18
PZ
4015
4016 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4017 struct perf_event_context *ctx = event->ctx;
4018 unsigned long flags;
4019
e625cce1 4020 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4021 state = event->state;
4022 if (state != PERF_EVENT_STATE_INACTIVE) {
4023 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4024 goto again;
4025 }
4026
c530ccd9 4027 /*
0c1cbc18
PZ
4028 * May read while context is not active (e.g., thread is
4029 * blocked), in that case we cannot update context time
c530ccd9 4030 */
0c1cbc18 4031 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4032 update_context_time(ctx);
e5d1367f
SE
4033 update_cgrp_time_from_event(event);
4034 }
0c1cbc18 4035
0d3d73aa 4036 perf_event_update_time(event);
0492d4c5 4037 if (group)
0d3d73aa 4038 perf_event_update_sibling_time(event);
e625cce1 4039 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4040 }
7d88962e
SB
4041
4042 return ret;
0793a61d
TG
4043}
4044
a63eaf34 4045/*
cdd6c482 4046 * Initialize the perf_event context in a task_struct:
a63eaf34 4047 */
eb184479 4048static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4049{
e625cce1 4050 raw_spin_lock_init(&ctx->lock);
a63eaf34 4051 mutex_init(&ctx->mutex);
2fde4f94 4052 INIT_LIST_HEAD(&ctx->active_ctx_list);
8e1a2031
AB
4053 perf_event_groups_init(&ctx->pinned_groups);
4054 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4055 INIT_LIST_HEAD(&ctx->event_list);
6668128a
PZ
4056 INIT_LIST_HEAD(&ctx->pinned_active);
4057 INIT_LIST_HEAD(&ctx->flexible_active);
a63eaf34 4058 atomic_set(&ctx->refcount, 1);
eb184479
PZ
4059}
4060
4061static struct perf_event_context *
4062alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4063{
4064 struct perf_event_context *ctx;
4065
4066 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4067 if (!ctx)
4068 return NULL;
4069
4070 __perf_event_init_context(ctx);
4071 if (task) {
4072 ctx->task = task;
4073 get_task_struct(task);
0793a61d 4074 }
eb184479
PZ
4075 ctx->pmu = pmu;
4076
4077 return ctx;
a63eaf34
PM
4078}
4079
2ebd4ffb
MH
4080static struct task_struct *
4081find_lively_task_by_vpid(pid_t vpid)
4082{
4083 struct task_struct *task;
0793a61d
TG
4084
4085 rcu_read_lock();
2ebd4ffb 4086 if (!vpid)
0793a61d
TG
4087 task = current;
4088 else
2ebd4ffb 4089 task = find_task_by_vpid(vpid);
0793a61d
TG
4090 if (task)
4091 get_task_struct(task);
4092 rcu_read_unlock();
4093
4094 if (!task)
4095 return ERR_PTR(-ESRCH);
4096
2ebd4ffb 4097 return task;
2ebd4ffb
MH
4098}
4099
fe4b04fa
PZ
4100/*
4101 * Returns a matching context with refcount and pincount.
4102 */
108b02cf 4103static struct perf_event_context *
4af57ef2
YZ
4104find_get_context(struct pmu *pmu, struct task_struct *task,
4105 struct perf_event *event)
0793a61d 4106{
211de6eb 4107 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4108 struct perf_cpu_context *cpuctx;
4af57ef2 4109 void *task_ctx_data = NULL;
25346b93 4110 unsigned long flags;
8dc85d54 4111 int ctxn, err;
4af57ef2 4112 int cpu = event->cpu;
0793a61d 4113
22a4ec72 4114 if (!task) {
cdd6c482 4115 /* Must be root to operate on a CPU event: */
0764771d 4116 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
4117 return ERR_PTR(-EACCES);
4118
108b02cf 4119 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 4120 ctx = &cpuctx->ctx;
c93f7669 4121 get_ctx(ctx);
fe4b04fa 4122 ++ctx->pin_count;
0793a61d 4123
0793a61d
TG
4124 return ctx;
4125 }
4126
8dc85d54
PZ
4127 err = -EINVAL;
4128 ctxn = pmu->task_ctx_nr;
4129 if (ctxn < 0)
4130 goto errout;
4131
4af57ef2
YZ
4132 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4133 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4134 if (!task_ctx_data) {
4135 err = -ENOMEM;
4136 goto errout;
4137 }
4138 }
4139
9ed6060d 4140retry:
8dc85d54 4141 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 4142 if (ctx) {
211de6eb 4143 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4144 ++ctx->pin_count;
4af57ef2
YZ
4145
4146 if (task_ctx_data && !ctx->task_ctx_data) {
4147 ctx->task_ctx_data = task_ctx_data;
4148 task_ctx_data = NULL;
4149 }
e625cce1 4150 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4151
4152 if (clone_ctx)
4153 put_ctx(clone_ctx);
9137fb28 4154 } else {
eb184479 4155 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
4156 err = -ENOMEM;
4157 if (!ctx)
4158 goto errout;
eb184479 4159
4af57ef2
YZ
4160 if (task_ctx_data) {
4161 ctx->task_ctx_data = task_ctx_data;
4162 task_ctx_data = NULL;
4163 }
4164
dbe08d82
ON
4165 err = 0;
4166 mutex_lock(&task->perf_event_mutex);
4167 /*
4168 * If it has already passed perf_event_exit_task().
4169 * we must see PF_EXITING, it takes this mutex too.
4170 */
4171 if (task->flags & PF_EXITING)
4172 err = -ESRCH;
4173 else if (task->perf_event_ctxp[ctxn])
4174 err = -EAGAIN;
fe4b04fa 4175 else {
9137fb28 4176 get_ctx(ctx);
fe4b04fa 4177 ++ctx->pin_count;
dbe08d82 4178 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 4179 }
dbe08d82
ON
4180 mutex_unlock(&task->perf_event_mutex);
4181
4182 if (unlikely(err)) {
9137fb28 4183 put_ctx(ctx);
dbe08d82
ON
4184
4185 if (err == -EAGAIN)
4186 goto retry;
4187 goto errout;
a63eaf34
PM
4188 }
4189 }
4190
4af57ef2 4191 kfree(task_ctx_data);
0793a61d 4192 return ctx;
c93f7669 4193
9ed6060d 4194errout:
4af57ef2 4195 kfree(task_ctx_data);
c93f7669 4196 return ERR_PTR(err);
0793a61d
TG
4197}
4198
6fb2915d 4199static void perf_event_free_filter(struct perf_event *event);
2541517c 4200static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 4201
cdd6c482 4202static void free_event_rcu(struct rcu_head *head)
592903cd 4203{
cdd6c482 4204 struct perf_event *event;
592903cd 4205
cdd6c482
IM
4206 event = container_of(head, struct perf_event, rcu_head);
4207 if (event->ns)
4208 put_pid_ns(event->ns);
6fb2915d 4209 perf_event_free_filter(event);
cdd6c482 4210 kfree(event);
592903cd
PZ
4211}
4212
b69cf536
PZ
4213static void ring_buffer_attach(struct perf_event *event,
4214 struct ring_buffer *rb);
925d519a 4215
f2fb6bef
KL
4216static void detach_sb_event(struct perf_event *event)
4217{
4218 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4219
4220 raw_spin_lock(&pel->lock);
4221 list_del_rcu(&event->sb_list);
4222 raw_spin_unlock(&pel->lock);
4223}
4224
a4f144eb 4225static bool is_sb_event(struct perf_event *event)
f2fb6bef 4226{
a4f144eb
DCC
4227 struct perf_event_attr *attr = &event->attr;
4228
f2fb6bef 4229 if (event->parent)
a4f144eb 4230 return false;
f2fb6bef
KL
4231
4232 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4233 return false;
f2fb6bef 4234
a4f144eb
DCC
4235 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4236 attr->comm || attr->comm_exec ||
4237 attr->task ||
4238 attr->context_switch)
4239 return true;
4240 return false;
4241}
4242
4243static void unaccount_pmu_sb_event(struct perf_event *event)
4244{
4245 if (is_sb_event(event))
4246 detach_sb_event(event);
f2fb6bef
KL
4247}
4248
4beb31f3 4249static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4250{
4beb31f3
FW
4251 if (event->parent)
4252 return;
4253
4beb31f3
FW
4254 if (is_cgroup_event(event))
4255 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4256}
925d519a 4257
555e0c1e
FW
4258#ifdef CONFIG_NO_HZ_FULL
4259static DEFINE_SPINLOCK(nr_freq_lock);
4260#endif
4261
4262static void unaccount_freq_event_nohz(void)
4263{
4264#ifdef CONFIG_NO_HZ_FULL
4265 spin_lock(&nr_freq_lock);
4266 if (atomic_dec_and_test(&nr_freq_events))
4267 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4268 spin_unlock(&nr_freq_lock);
4269#endif
4270}
4271
4272static void unaccount_freq_event(void)
4273{
4274 if (tick_nohz_full_enabled())
4275 unaccount_freq_event_nohz();
4276 else
4277 atomic_dec(&nr_freq_events);
4278}
4279
4beb31f3
FW
4280static void unaccount_event(struct perf_event *event)
4281{
25432ae9
PZ
4282 bool dec = false;
4283
4beb31f3
FW
4284 if (event->parent)
4285 return;
4286
4287 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4288 dec = true;
4beb31f3
FW
4289 if (event->attr.mmap || event->attr.mmap_data)
4290 atomic_dec(&nr_mmap_events);
4291 if (event->attr.comm)
4292 atomic_dec(&nr_comm_events);
e4222673
HB
4293 if (event->attr.namespaces)
4294 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4295 if (event->attr.task)
4296 atomic_dec(&nr_task_events);
948b26b6 4297 if (event->attr.freq)
555e0c1e 4298 unaccount_freq_event();
45ac1403 4299 if (event->attr.context_switch) {
25432ae9 4300 dec = true;
45ac1403
AH
4301 atomic_dec(&nr_switch_events);
4302 }
4beb31f3 4303 if (is_cgroup_event(event))
25432ae9 4304 dec = true;
4beb31f3 4305 if (has_branch_stack(event))
25432ae9
PZ
4306 dec = true;
4307
9107c89e
PZ
4308 if (dec) {
4309 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4310 schedule_delayed_work(&perf_sched_work, HZ);
4311 }
4beb31f3
FW
4312
4313 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4314
4315 unaccount_pmu_sb_event(event);
4beb31f3 4316}
925d519a 4317
9107c89e
PZ
4318static void perf_sched_delayed(struct work_struct *work)
4319{
4320 mutex_lock(&perf_sched_mutex);
4321 if (atomic_dec_and_test(&perf_sched_count))
4322 static_branch_disable(&perf_sched_events);
4323 mutex_unlock(&perf_sched_mutex);
4324}
4325
bed5b25a
AS
4326/*
4327 * The following implement mutual exclusion of events on "exclusive" pmus
4328 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4329 * at a time, so we disallow creating events that might conflict, namely:
4330 *
4331 * 1) cpu-wide events in the presence of per-task events,
4332 * 2) per-task events in the presence of cpu-wide events,
4333 * 3) two matching events on the same context.
4334 *
4335 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4336 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4337 */
4338static int exclusive_event_init(struct perf_event *event)
4339{
4340 struct pmu *pmu = event->pmu;
4341
4342 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4343 return 0;
4344
4345 /*
4346 * Prevent co-existence of per-task and cpu-wide events on the
4347 * same exclusive pmu.
4348 *
4349 * Negative pmu::exclusive_cnt means there are cpu-wide
4350 * events on this "exclusive" pmu, positive means there are
4351 * per-task events.
4352 *
4353 * Since this is called in perf_event_alloc() path, event::ctx
4354 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4355 * to mean "per-task event", because unlike other attach states it
4356 * never gets cleared.
4357 */
4358 if (event->attach_state & PERF_ATTACH_TASK) {
4359 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4360 return -EBUSY;
4361 } else {
4362 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4363 return -EBUSY;
4364 }
4365
4366 return 0;
4367}
4368
4369static void exclusive_event_destroy(struct perf_event *event)
4370{
4371 struct pmu *pmu = event->pmu;
4372
4373 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4374 return;
4375
4376 /* see comment in exclusive_event_init() */
4377 if (event->attach_state & PERF_ATTACH_TASK)
4378 atomic_dec(&pmu->exclusive_cnt);
4379 else
4380 atomic_inc(&pmu->exclusive_cnt);
4381}
4382
4383static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4384{
3bf6215a 4385 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4386 (e1->cpu == e2->cpu ||
4387 e1->cpu == -1 ||
4388 e2->cpu == -1))
4389 return true;
4390 return false;
4391}
4392
4393/* Called under the same ctx::mutex as perf_install_in_context() */
4394static bool exclusive_event_installable(struct perf_event *event,
4395 struct perf_event_context *ctx)
4396{
4397 struct perf_event *iter_event;
4398 struct pmu *pmu = event->pmu;
4399
4400 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4401 return true;
4402
4403 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4404 if (exclusive_event_match(iter_event, event))
4405 return false;
4406 }
4407
4408 return true;
4409}
4410
375637bc
AS
4411static void perf_addr_filters_splice(struct perf_event *event,
4412 struct list_head *head);
4413
683ede43 4414static void _free_event(struct perf_event *event)
f1600952 4415{
e360adbe 4416 irq_work_sync(&event->pending);
925d519a 4417
4beb31f3 4418 unaccount_event(event);
9ee318a7 4419
76369139 4420 if (event->rb) {
9bb5d40c
PZ
4421 /*
4422 * Can happen when we close an event with re-directed output.
4423 *
4424 * Since we have a 0 refcount, perf_mmap_close() will skip
4425 * over us; possibly making our ring_buffer_put() the last.
4426 */
4427 mutex_lock(&event->mmap_mutex);
b69cf536 4428 ring_buffer_attach(event, NULL);
9bb5d40c 4429 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4430 }
4431
e5d1367f
SE
4432 if (is_cgroup_event(event))
4433 perf_detach_cgroup(event);
4434
a0733e69
PZ
4435 if (!event->parent) {
4436 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4437 put_callchain_buffers();
4438 }
4439
4440 perf_event_free_bpf_prog(event);
375637bc
AS
4441 perf_addr_filters_splice(event, NULL);
4442 kfree(event->addr_filters_offs);
a0733e69
PZ
4443
4444 if (event->destroy)
4445 event->destroy(event);
4446
4447 if (event->ctx)
4448 put_ctx(event->ctx);
4449
621b6d2e
PB
4450 if (event->hw.target)
4451 put_task_struct(event->hw.target);
4452
62a92c8f
AS
4453 exclusive_event_destroy(event);
4454 module_put(event->pmu->module);
a0733e69
PZ
4455
4456 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4457}
4458
683ede43
PZ
4459/*
4460 * Used to free events which have a known refcount of 1, such as in error paths
4461 * where the event isn't exposed yet and inherited events.
4462 */
4463static void free_event(struct perf_event *event)
0793a61d 4464{
683ede43
PZ
4465 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4466 "unexpected event refcount: %ld; ptr=%p\n",
4467 atomic_long_read(&event->refcount), event)) {
4468 /* leak to avoid use-after-free */
4469 return;
4470 }
0793a61d 4471
683ede43 4472 _free_event(event);
0793a61d
TG
4473}
4474
a66a3052 4475/*
f8697762 4476 * Remove user event from the owner task.
a66a3052 4477 */
f8697762 4478static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4479{
8882135b 4480 struct task_struct *owner;
fb0459d7 4481
8882135b 4482 rcu_read_lock();
8882135b 4483 /*
f47c02c0
PZ
4484 * Matches the smp_store_release() in perf_event_exit_task(). If we
4485 * observe !owner it means the list deletion is complete and we can
4486 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4487 * owner->perf_event_mutex.
4488 */
506458ef 4489 owner = READ_ONCE(event->owner);
8882135b
PZ
4490 if (owner) {
4491 /*
4492 * Since delayed_put_task_struct() also drops the last
4493 * task reference we can safely take a new reference
4494 * while holding the rcu_read_lock().
4495 */
4496 get_task_struct(owner);
4497 }
4498 rcu_read_unlock();
4499
4500 if (owner) {
f63a8daa
PZ
4501 /*
4502 * If we're here through perf_event_exit_task() we're already
4503 * holding ctx->mutex which would be an inversion wrt. the
4504 * normal lock order.
4505 *
4506 * However we can safely take this lock because its the child
4507 * ctx->mutex.
4508 */
4509 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4510
8882135b
PZ
4511 /*
4512 * We have to re-check the event->owner field, if it is cleared
4513 * we raced with perf_event_exit_task(), acquiring the mutex
4514 * ensured they're done, and we can proceed with freeing the
4515 * event.
4516 */
f47c02c0 4517 if (event->owner) {
8882135b 4518 list_del_init(&event->owner_entry);
f47c02c0
PZ
4519 smp_store_release(&event->owner, NULL);
4520 }
8882135b
PZ
4521 mutex_unlock(&owner->perf_event_mutex);
4522 put_task_struct(owner);
4523 }
f8697762
JO
4524}
4525
f8697762
JO
4526static void put_event(struct perf_event *event)
4527{
f8697762
JO
4528 if (!atomic_long_dec_and_test(&event->refcount))
4529 return;
4530
c6e5b732
PZ
4531 _free_event(event);
4532}
4533
4534/*
4535 * Kill an event dead; while event:refcount will preserve the event
4536 * object, it will not preserve its functionality. Once the last 'user'
4537 * gives up the object, we'll destroy the thing.
4538 */
4539int perf_event_release_kernel(struct perf_event *event)
4540{
a4f4bb6d 4541 struct perf_event_context *ctx = event->ctx;
c6e5b732 4542 struct perf_event *child, *tmp;
82d94856 4543 LIST_HEAD(free_list);
c6e5b732 4544
a4f4bb6d
PZ
4545 /*
4546 * If we got here through err_file: fput(event_file); we will not have
4547 * attached to a context yet.
4548 */
4549 if (!ctx) {
4550 WARN_ON_ONCE(event->attach_state &
4551 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4552 goto no_ctx;
4553 }
4554
f8697762
JO
4555 if (!is_kernel_event(event))
4556 perf_remove_from_owner(event);
8882135b 4557
5fa7c8ec 4558 ctx = perf_event_ctx_lock(event);
a83fe28e 4559 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4560 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4561
a69b0ca4 4562 raw_spin_lock_irq(&ctx->lock);
683ede43 4563 /*
d8a8cfc7 4564 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4565 * anymore.
683ede43 4566 *
a69b0ca4
PZ
4567 * Anybody acquiring event->child_mutex after the below loop _must_
4568 * also see this, most importantly inherit_event() which will avoid
4569 * placing more children on the list.
683ede43 4570 *
c6e5b732
PZ
4571 * Thus this guarantees that we will in fact observe and kill _ALL_
4572 * child events.
683ede43 4573 */
a69b0ca4
PZ
4574 event->state = PERF_EVENT_STATE_DEAD;
4575 raw_spin_unlock_irq(&ctx->lock);
4576
4577 perf_event_ctx_unlock(event, ctx);
683ede43 4578
c6e5b732
PZ
4579again:
4580 mutex_lock(&event->child_mutex);
4581 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4582
c6e5b732
PZ
4583 /*
4584 * Cannot change, child events are not migrated, see the
4585 * comment with perf_event_ctx_lock_nested().
4586 */
506458ef 4587 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4588 /*
4589 * Since child_mutex nests inside ctx::mutex, we must jump
4590 * through hoops. We start by grabbing a reference on the ctx.
4591 *
4592 * Since the event cannot get freed while we hold the
4593 * child_mutex, the context must also exist and have a !0
4594 * reference count.
4595 */
4596 get_ctx(ctx);
4597
4598 /*
4599 * Now that we have a ctx ref, we can drop child_mutex, and
4600 * acquire ctx::mutex without fear of it going away. Then we
4601 * can re-acquire child_mutex.
4602 */
4603 mutex_unlock(&event->child_mutex);
4604 mutex_lock(&ctx->mutex);
4605 mutex_lock(&event->child_mutex);
4606
4607 /*
4608 * Now that we hold ctx::mutex and child_mutex, revalidate our
4609 * state, if child is still the first entry, it didn't get freed
4610 * and we can continue doing so.
4611 */
4612 tmp = list_first_entry_or_null(&event->child_list,
4613 struct perf_event, child_list);
4614 if (tmp == child) {
4615 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4616 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4617 /*
4618 * This matches the refcount bump in inherit_event();
4619 * this can't be the last reference.
4620 */
4621 put_event(event);
4622 }
4623
4624 mutex_unlock(&event->child_mutex);
4625 mutex_unlock(&ctx->mutex);
4626 put_ctx(ctx);
4627 goto again;
4628 }
4629 mutex_unlock(&event->child_mutex);
4630
82d94856
PZ
4631 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4632 list_del(&child->child_list);
4633 free_event(child);
4634 }
4635
a4f4bb6d
PZ
4636no_ctx:
4637 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4638 return 0;
4639}
4640EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4641
8b10c5e2
PZ
4642/*
4643 * Called when the last reference to the file is gone.
4644 */
a6fa941d
AV
4645static int perf_release(struct inode *inode, struct file *file)
4646{
c6e5b732 4647 perf_event_release_kernel(file->private_data);
a6fa941d 4648 return 0;
fb0459d7 4649}
fb0459d7 4650
ca0dd44c 4651static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4652{
cdd6c482 4653 struct perf_event *child;
e53c0994
PZ
4654 u64 total = 0;
4655
59ed446f
PZ
4656 *enabled = 0;
4657 *running = 0;
4658
6f10581a 4659 mutex_lock(&event->child_mutex);
01add3ea 4660
7d88962e 4661 (void)perf_event_read(event, false);
01add3ea
SB
4662 total += perf_event_count(event);
4663
59ed446f
PZ
4664 *enabled += event->total_time_enabled +
4665 atomic64_read(&event->child_total_time_enabled);
4666 *running += event->total_time_running +
4667 atomic64_read(&event->child_total_time_running);
4668
4669 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4670 (void)perf_event_read(child, false);
01add3ea 4671 total += perf_event_count(child);
59ed446f
PZ
4672 *enabled += child->total_time_enabled;
4673 *running += child->total_time_running;
4674 }
6f10581a 4675 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4676
4677 return total;
4678}
ca0dd44c
PZ
4679
4680u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4681{
4682 struct perf_event_context *ctx;
4683 u64 count;
4684
4685 ctx = perf_event_ctx_lock(event);
4686 count = __perf_event_read_value(event, enabled, running);
4687 perf_event_ctx_unlock(event, ctx);
4688
4689 return count;
4690}
fb0459d7 4691EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4692
7d88962e 4693static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4694 u64 read_format, u64 *values)
3dab77fb 4695{
2aeb1883 4696 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4697 struct perf_event *sub;
2aeb1883 4698 unsigned long flags;
fa8c2693 4699 int n = 1; /* skip @nr */
7d88962e 4700 int ret;
f63a8daa 4701
7d88962e
SB
4702 ret = perf_event_read(leader, true);
4703 if (ret)
4704 return ret;
abf4868b 4705
a9cd8194
PZ
4706 raw_spin_lock_irqsave(&ctx->lock, flags);
4707
fa8c2693
PZ
4708 /*
4709 * Since we co-schedule groups, {enabled,running} times of siblings
4710 * will be identical to those of the leader, so we only publish one
4711 * set.
4712 */
4713 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4714 values[n++] += leader->total_time_enabled +
4715 atomic64_read(&leader->child_total_time_enabled);
4716 }
3dab77fb 4717
fa8c2693
PZ
4718 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4719 values[n++] += leader->total_time_running +
4720 atomic64_read(&leader->child_total_time_running);
4721 }
4722
4723 /*
4724 * Write {count,id} tuples for every sibling.
4725 */
4726 values[n++] += perf_event_count(leader);
abf4868b
PZ
4727 if (read_format & PERF_FORMAT_ID)
4728 values[n++] = primary_event_id(leader);
3dab77fb 4729
edb39592 4730 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
4731 values[n++] += perf_event_count(sub);
4732 if (read_format & PERF_FORMAT_ID)
4733 values[n++] = primary_event_id(sub);
4734 }
7d88962e 4735
2aeb1883 4736 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4737 return 0;
fa8c2693 4738}
3dab77fb 4739
fa8c2693
PZ
4740static int perf_read_group(struct perf_event *event,
4741 u64 read_format, char __user *buf)
4742{
4743 struct perf_event *leader = event->group_leader, *child;
4744 struct perf_event_context *ctx = leader->ctx;
7d88962e 4745 int ret;
fa8c2693 4746 u64 *values;
3dab77fb 4747
fa8c2693 4748 lockdep_assert_held(&ctx->mutex);
3dab77fb 4749
fa8c2693
PZ
4750 values = kzalloc(event->read_size, GFP_KERNEL);
4751 if (!values)
4752 return -ENOMEM;
3dab77fb 4753
fa8c2693
PZ
4754 values[0] = 1 + leader->nr_siblings;
4755
4756 /*
4757 * By locking the child_mutex of the leader we effectively
4758 * lock the child list of all siblings.. XXX explain how.
4759 */
4760 mutex_lock(&leader->child_mutex);
abf4868b 4761
7d88962e
SB
4762 ret = __perf_read_group_add(leader, read_format, values);
4763 if (ret)
4764 goto unlock;
4765
4766 list_for_each_entry(child, &leader->child_list, child_list) {
4767 ret = __perf_read_group_add(child, read_format, values);
4768 if (ret)
4769 goto unlock;
4770 }
abf4868b 4771
fa8c2693 4772 mutex_unlock(&leader->child_mutex);
abf4868b 4773
7d88962e 4774 ret = event->read_size;
fa8c2693
PZ
4775 if (copy_to_user(buf, values, event->read_size))
4776 ret = -EFAULT;
7d88962e 4777 goto out;
fa8c2693 4778
7d88962e
SB
4779unlock:
4780 mutex_unlock(&leader->child_mutex);
4781out:
fa8c2693 4782 kfree(values);
abf4868b 4783 return ret;
3dab77fb
PZ
4784}
4785
b15f495b 4786static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4787 u64 read_format, char __user *buf)
4788{
59ed446f 4789 u64 enabled, running;
3dab77fb
PZ
4790 u64 values[4];
4791 int n = 0;
4792
ca0dd44c 4793 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4794 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4795 values[n++] = enabled;
4796 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4797 values[n++] = running;
3dab77fb 4798 if (read_format & PERF_FORMAT_ID)
cdd6c482 4799 values[n++] = primary_event_id(event);
3dab77fb
PZ
4800
4801 if (copy_to_user(buf, values, n * sizeof(u64)))
4802 return -EFAULT;
4803
4804 return n * sizeof(u64);
4805}
4806
dc633982
JO
4807static bool is_event_hup(struct perf_event *event)
4808{
4809 bool no_children;
4810
a69b0ca4 4811 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4812 return false;
4813
4814 mutex_lock(&event->child_mutex);
4815 no_children = list_empty(&event->child_list);
4816 mutex_unlock(&event->child_mutex);
4817 return no_children;
4818}
4819
0793a61d 4820/*
cdd6c482 4821 * Read the performance event - simple non blocking version for now
0793a61d
TG
4822 */
4823static ssize_t
b15f495b 4824__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4825{
cdd6c482 4826 u64 read_format = event->attr.read_format;
3dab77fb 4827 int ret;
0793a61d 4828
3b6f9e5c 4829 /*
cdd6c482 4830 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4831 * error state (i.e. because it was pinned but it couldn't be
4832 * scheduled on to the CPU at some point).
4833 */
cdd6c482 4834 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4835 return 0;
4836
c320c7b7 4837 if (count < event->read_size)
3dab77fb
PZ
4838 return -ENOSPC;
4839
cdd6c482 4840 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4841 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4842 ret = perf_read_group(event, read_format, buf);
3dab77fb 4843 else
b15f495b 4844 ret = perf_read_one(event, read_format, buf);
0793a61d 4845
3dab77fb 4846 return ret;
0793a61d
TG
4847}
4848
0793a61d
TG
4849static ssize_t
4850perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4851{
cdd6c482 4852 struct perf_event *event = file->private_data;
f63a8daa
PZ
4853 struct perf_event_context *ctx;
4854 int ret;
0793a61d 4855
f63a8daa 4856 ctx = perf_event_ctx_lock(event);
b15f495b 4857 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4858 perf_event_ctx_unlock(event, ctx);
4859
4860 return ret;
0793a61d
TG
4861}
4862
9dd95748 4863static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 4864{
cdd6c482 4865 struct perf_event *event = file->private_data;
76369139 4866 struct ring_buffer *rb;
a9a08845 4867 __poll_t events = EPOLLHUP;
c7138f37 4868
e708d7ad 4869 poll_wait(file, &event->waitq, wait);
179033b3 4870
dc633982 4871 if (is_event_hup(event))
179033b3 4872 return events;
c7138f37 4873
10c6db11 4874 /*
9bb5d40c
PZ
4875 * Pin the event->rb by taking event->mmap_mutex; otherwise
4876 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4877 */
4878 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4879 rb = event->rb;
4880 if (rb)
76369139 4881 events = atomic_xchg(&rb->poll, 0);
10c6db11 4882 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4883 return events;
4884}
4885
f63a8daa 4886static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4887{
7d88962e 4888 (void)perf_event_read(event, false);
e7850595 4889 local64_set(&event->count, 0);
cdd6c482 4890 perf_event_update_userpage(event);
3df5edad
PZ
4891}
4892
c93f7669 4893/*
cdd6c482
IM
4894 * Holding the top-level event's child_mutex means that any
4895 * descendant process that has inherited this event will block
8ba289b8 4896 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4897 * task existence requirements of perf_event_enable/disable.
c93f7669 4898 */
cdd6c482
IM
4899static void perf_event_for_each_child(struct perf_event *event,
4900 void (*func)(struct perf_event *))
3df5edad 4901{
cdd6c482 4902 struct perf_event *child;
3df5edad 4903
cdd6c482 4904 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4905
cdd6c482
IM
4906 mutex_lock(&event->child_mutex);
4907 func(event);
4908 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4909 func(child);
cdd6c482 4910 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4911}
4912
cdd6c482
IM
4913static void perf_event_for_each(struct perf_event *event,
4914 void (*func)(struct perf_event *))
3df5edad 4915{
cdd6c482
IM
4916 struct perf_event_context *ctx = event->ctx;
4917 struct perf_event *sibling;
3df5edad 4918
f63a8daa
PZ
4919 lockdep_assert_held(&ctx->mutex);
4920
cdd6c482 4921 event = event->group_leader;
75f937f2 4922
cdd6c482 4923 perf_event_for_each_child(event, func);
edb39592 4924 for_each_sibling_event(sibling, event)
724b6daa 4925 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4926}
4927
fae3fde6
PZ
4928static void __perf_event_period(struct perf_event *event,
4929 struct perf_cpu_context *cpuctx,
4930 struct perf_event_context *ctx,
4931 void *info)
c7999c6f 4932{
fae3fde6 4933 u64 value = *((u64 *)info);
c7999c6f 4934 bool active;
08247e31 4935
cdd6c482 4936 if (event->attr.freq) {
cdd6c482 4937 event->attr.sample_freq = value;
08247e31 4938 } else {
cdd6c482
IM
4939 event->attr.sample_period = value;
4940 event->hw.sample_period = value;
08247e31 4941 }
bad7192b
PZ
4942
4943 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4944 if (active) {
4945 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4946 /*
4947 * We could be throttled; unthrottle now to avoid the tick
4948 * trying to unthrottle while we already re-started the event.
4949 */
4950 if (event->hw.interrupts == MAX_INTERRUPTS) {
4951 event->hw.interrupts = 0;
4952 perf_log_throttle(event, 1);
4953 }
bad7192b
PZ
4954 event->pmu->stop(event, PERF_EF_UPDATE);
4955 }
4956
4957 local64_set(&event->hw.period_left, 0);
4958
4959 if (active) {
4960 event->pmu->start(event, PERF_EF_RELOAD);
4961 perf_pmu_enable(ctx->pmu);
4962 }
c7999c6f
PZ
4963}
4964
4965static int perf_event_period(struct perf_event *event, u64 __user *arg)
4966{
c7999c6f
PZ
4967 u64 value;
4968
4969 if (!is_sampling_event(event))
4970 return -EINVAL;
4971
4972 if (copy_from_user(&value, arg, sizeof(value)))
4973 return -EFAULT;
4974
4975 if (!value)
4976 return -EINVAL;
4977
4978 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4979 return -EINVAL;
4980
fae3fde6 4981 event_function_call(event, __perf_event_period, &value);
08247e31 4982
c7999c6f 4983 return 0;
08247e31
PZ
4984}
4985
ac9721f3
PZ
4986static const struct file_operations perf_fops;
4987
2903ff01 4988static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4989{
2903ff01
AV
4990 struct fd f = fdget(fd);
4991 if (!f.file)
4992 return -EBADF;
ac9721f3 4993
2903ff01
AV
4994 if (f.file->f_op != &perf_fops) {
4995 fdput(f);
4996 return -EBADF;
ac9721f3 4997 }
2903ff01
AV
4998 *p = f;
4999 return 0;
ac9721f3
PZ
5000}
5001
5002static int perf_event_set_output(struct perf_event *event,
5003 struct perf_event *output_event);
6fb2915d 5004static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 5005static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
32ff77e8
MC
5006static int perf_copy_attr(struct perf_event_attr __user *uattr,
5007 struct perf_event_attr *attr);
a4be7c27 5008
f63a8daa 5009static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5010{
cdd6c482 5011 void (*func)(struct perf_event *);
3df5edad 5012 u32 flags = arg;
d859e29f
PM
5013
5014 switch (cmd) {
cdd6c482 5015 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5016 func = _perf_event_enable;
d859e29f 5017 break;
cdd6c482 5018 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5019 func = _perf_event_disable;
79f14641 5020 break;
cdd6c482 5021 case PERF_EVENT_IOC_RESET:
f63a8daa 5022 func = _perf_event_reset;
6de6a7b9 5023 break;
3df5edad 5024
cdd6c482 5025 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5026 return _perf_event_refresh(event, arg);
08247e31 5027
cdd6c482
IM
5028 case PERF_EVENT_IOC_PERIOD:
5029 return perf_event_period(event, (u64 __user *)arg);
08247e31 5030
cf4957f1
JO
5031 case PERF_EVENT_IOC_ID:
5032 {
5033 u64 id = primary_event_id(event);
5034
5035 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5036 return -EFAULT;
5037 return 0;
5038 }
5039
cdd6c482 5040 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5041 {
ac9721f3 5042 int ret;
ac9721f3 5043 if (arg != -1) {
2903ff01
AV
5044 struct perf_event *output_event;
5045 struct fd output;
5046 ret = perf_fget_light(arg, &output);
5047 if (ret)
5048 return ret;
5049 output_event = output.file->private_data;
5050 ret = perf_event_set_output(event, output_event);
5051 fdput(output);
5052 } else {
5053 ret = perf_event_set_output(event, NULL);
ac9721f3 5054 }
ac9721f3
PZ
5055 return ret;
5056 }
a4be7c27 5057
6fb2915d
LZ
5058 case PERF_EVENT_IOC_SET_FILTER:
5059 return perf_event_set_filter(event, (void __user *)arg);
5060
2541517c
AS
5061 case PERF_EVENT_IOC_SET_BPF:
5062 return perf_event_set_bpf_prog(event, arg);
5063
86e7972f
WN
5064 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5065 struct ring_buffer *rb;
5066
5067 rcu_read_lock();
5068 rb = rcu_dereference(event->rb);
5069 if (!rb || !rb->nr_pages) {
5070 rcu_read_unlock();
5071 return -EINVAL;
5072 }
5073 rb_toggle_paused(rb, !!arg);
5074 rcu_read_unlock();
5075 return 0;
5076 }
f371b304
YS
5077
5078 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5079 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5080
5081 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5082 struct perf_event_attr new_attr;
5083 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5084 &new_attr);
5085
5086 if (err)
5087 return err;
5088
5089 return perf_event_modify_attr(event, &new_attr);
5090 }
d859e29f 5091 default:
3df5edad 5092 return -ENOTTY;
d859e29f 5093 }
3df5edad
PZ
5094
5095 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5096 perf_event_for_each(event, func);
3df5edad 5097 else
cdd6c482 5098 perf_event_for_each_child(event, func);
3df5edad
PZ
5099
5100 return 0;
d859e29f
PM
5101}
5102
f63a8daa
PZ
5103static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5104{
5105 struct perf_event *event = file->private_data;
5106 struct perf_event_context *ctx;
5107 long ret;
5108
5109 ctx = perf_event_ctx_lock(event);
5110 ret = _perf_ioctl(event, cmd, arg);
5111 perf_event_ctx_unlock(event, ctx);
5112
5113 return ret;
5114}
5115
b3f20785
PM
5116#ifdef CONFIG_COMPAT
5117static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5118 unsigned long arg)
5119{
5120 switch (_IOC_NR(cmd)) {
5121 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5122 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
5123 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5124 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
5125 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5126 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5127 cmd &= ~IOCSIZE_MASK;
5128 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5129 }
5130 break;
5131 }
5132 return perf_ioctl(file, cmd, arg);
5133}
5134#else
5135# define perf_compat_ioctl NULL
5136#endif
5137
cdd6c482 5138int perf_event_task_enable(void)
771d7cde 5139{
f63a8daa 5140 struct perf_event_context *ctx;
cdd6c482 5141 struct perf_event *event;
771d7cde 5142
cdd6c482 5143 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5144 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5145 ctx = perf_event_ctx_lock(event);
5146 perf_event_for_each_child(event, _perf_event_enable);
5147 perf_event_ctx_unlock(event, ctx);
5148 }
cdd6c482 5149 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5150
5151 return 0;
5152}
5153
cdd6c482 5154int perf_event_task_disable(void)
771d7cde 5155{
f63a8daa 5156 struct perf_event_context *ctx;
cdd6c482 5157 struct perf_event *event;
771d7cde 5158
cdd6c482 5159 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5160 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5161 ctx = perf_event_ctx_lock(event);
5162 perf_event_for_each_child(event, _perf_event_disable);
5163 perf_event_ctx_unlock(event, ctx);
5164 }
cdd6c482 5165 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5166
5167 return 0;
5168}
5169
cdd6c482 5170static int perf_event_index(struct perf_event *event)
194002b2 5171{
a4eaf7f1
PZ
5172 if (event->hw.state & PERF_HES_STOPPED)
5173 return 0;
5174
cdd6c482 5175 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
5176 return 0;
5177
35edc2a5 5178 return event->pmu->event_idx(event);
194002b2
PZ
5179}
5180
c4794295 5181static void calc_timer_values(struct perf_event *event,
e3f3541c 5182 u64 *now,
7f310a5d
EM
5183 u64 *enabled,
5184 u64 *running)
c4794295 5185{
e3f3541c 5186 u64 ctx_time;
c4794295 5187
e3f3541c
PZ
5188 *now = perf_clock();
5189 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 5190 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
5191}
5192
fa731587
PZ
5193static void perf_event_init_userpage(struct perf_event *event)
5194{
5195 struct perf_event_mmap_page *userpg;
5196 struct ring_buffer *rb;
5197
5198 rcu_read_lock();
5199 rb = rcu_dereference(event->rb);
5200 if (!rb)
5201 goto unlock;
5202
5203 userpg = rb->user_page;
5204
5205 /* Allow new userspace to detect that bit 0 is deprecated */
5206 userpg->cap_bit0_is_deprecated = 1;
5207 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
5208 userpg->data_offset = PAGE_SIZE;
5209 userpg->data_size = perf_data_size(rb);
fa731587
PZ
5210
5211unlock:
5212 rcu_read_unlock();
5213}
5214
c1317ec2
AL
5215void __weak arch_perf_update_userpage(
5216 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
5217{
5218}
5219
38ff667b
PZ
5220/*
5221 * Callers need to ensure there can be no nesting of this function, otherwise
5222 * the seqlock logic goes bad. We can not serialize this because the arch
5223 * code calls this from NMI context.
5224 */
cdd6c482 5225void perf_event_update_userpage(struct perf_event *event)
37d81828 5226{
cdd6c482 5227 struct perf_event_mmap_page *userpg;
76369139 5228 struct ring_buffer *rb;
e3f3541c 5229 u64 enabled, running, now;
38ff667b
PZ
5230
5231 rcu_read_lock();
5ec4c599
PZ
5232 rb = rcu_dereference(event->rb);
5233 if (!rb)
5234 goto unlock;
5235
0d641208
EM
5236 /*
5237 * compute total_time_enabled, total_time_running
5238 * based on snapshot values taken when the event
5239 * was last scheduled in.
5240 *
5241 * we cannot simply called update_context_time()
5242 * because of locking issue as we can be called in
5243 * NMI context
5244 */
e3f3541c 5245 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5246
76369139 5247 userpg = rb->user_page;
7b732a75
PZ
5248 /*
5249 * Disable preemption so as to not let the corresponding user-space
5250 * spin too long if we get preempted.
5251 */
5252 preempt_disable();
37d81828 5253 ++userpg->lock;
92f22a38 5254 barrier();
cdd6c482 5255 userpg->index = perf_event_index(event);
b5e58793 5256 userpg->offset = perf_event_count(event);
365a4038 5257 if (userpg->index)
e7850595 5258 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5259
0d641208 5260 userpg->time_enabled = enabled +
cdd6c482 5261 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5262
0d641208 5263 userpg->time_running = running +
cdd6c482 5264 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5265
c1317ec2 5266 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5267
92f22a38 5268 barrier();
37d81828 5269 ++userpg->lock;
7b732a75 5270 preempt_enable();
38ff667b 5271unlock:
7b732a75 5272 rcu_read_unlock();
37d81828 5273}
82975c46 5274EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 5275
11bac800 5276static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 5277{
11bac800 5278 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 5279 struct ring_buffer *rb;
906010b2
PZ
5280 int ret = VM_FAULT_SIGBUS;
5281
5282 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5283 if (vmf->pgoff == 0)
5284 ret = 0;
5285 return ret;
5286 }
5287
5288 rcu_read_lock();
76369139
FW
5289 rb = rcu_dereference(event->rb);
5290 if (!rb)
906010b2
PZ
5291 goto unlock;
5292
5293 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5294 goto unlock;
5295
76369139 5296 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5297 if (!vmf->page)
5298 goto unlock;
5299
5300 get_page(vmf->page);
11bac800 5301 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5302 vmf->page->index = vmf->pgoff;
5303
5304 ret = 0;
5305unlock:
5306 rcu_read_unlock();
5307
5308 return ret;
5309}
5310
10c6db11
PZ
5311static void ring_buffer_attach(struct perf_event *event,
5312 struct ring_buffer *rb)
5313{
b69cf536 5314 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5315 unsigned long flags;
5316
b69cf536
PZ
5317 if (event->rb) {
5318 /*
5319 * Should be impossible, we set this when removing
5320 * event->rb_entry and wait/clear when adding event->rb_entry.
5321 */
5322 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5323
b69cf536 5324 old_rb = event->rb;
b69cf536
PZ
5325 spin_lock_irqsave(&old_rb->event_lock, flags);
5326 list_del_rcu(&event->rb_entry);
5327 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5328
2f993cf0
ON
5329 event->rcu_batches = get_state_synchronize_rcu();
5330 event->rcu_pending = 1;
b69cf536 5331 }
10c6db11 5332
b69cf536 5333 if (rb) {
2f993cf0
ON
5334 if (event->rcu_pending) {
5335 cond_synchronize_rcu(event->rcu_batches);
5336 event->rcu_pending = 0;
5337 }
5338
b69cf536
PZ
5339 spin_lock_irqsave(&rb->event_lock, flags);
5340 list_add_rcu(&event->rb_entry, &rb->event_list);
5341 spin_unlock_irqrestore(&rb->event_lock, flags);
5342 }
5343
767ae086
AS
5344 /*
5345 * Avoid racing with perf_mmap_close(AUX): stop the event
5346 * before swizzling the event::rb pointer; if it's getting
5347 * unmapped, its aux_mmap_count will be 0 and it won't
5348 * restart. See the comment in __perf_pmu_output_stop().
5349 *
5350 * Data will inevitably be lost when set_output is done in
5351 * mid-air, but then again, whoever does it like this is
5352 * not in for the data anyway.
5353 */
5354 if (has_aux(event))
5355 perf_event_stop(event, 0);
5356
b69cf536
PZ
5357 rcu_assign_pointer(event->rb, rb);
5358
5359 if (old_rb) {
5360 ring_buffer_put(old_rb);
5361 /*
5362 * Since we detached before setting the new rb, so that we
5363 * could attach the new rb, we could have missed a wakeup.
5364 * Provide it now.
5365 */
5366 wake_up_all(&event->waitq);
5367 }
10c6db11
PZ
5368}
5369
5370static void ring_buffer_wakeup(struct perf_event *event)
5371{
5372 struct ring_buffer *rb;
5373
5374 rcu_read_lock();
5375 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5376 if (rb) {
5377 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5378 wake_up_all(&event->waitq);
5379 }
10c6db11
PZ
5380 rcu_read_unlock();
5381}
5382
fdc26706 5383struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5384{
76369139 5385 struct ring_buffer *rb;
7b732a75 5386
ac9721f3 5387 rcu_read_lock();
76369139
FW
5388 rb = rcu_dereference(event->rb);
5389 if (rb) {
5390 if (!atomic_inc_not_zero(&rb->refcount))
5391 rb = NULL;
ac9721f3
PZ
5392 }
5393 rcu_read_unlock();
5394
76369139 5395 return rb;
ac9721f3
PZ
5396}
5397
fdc26706 5398void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5399{
76369139 5400 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5401 return;
7b732a75 5402
9bb5d40c 5403 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5404
76369139 5405 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5406}
5407
5408static void perf_mmap_open(struct vm_area_struct *vma)
5409{
cdd6c482 5410 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5411
cdd6c482 5412 atomic_inc(&event->mmap_count);
9bb5d40c 5413 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5414
45bfb2e5
PZ
5415 if (vma->vm_pgoff)
5416 atomic_inc(&event->rb->aux_mmap_count);
5417
1e0fb9ec 5418 if (event->pmu->event_mapped)
bfe33492 5419 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5420}
5421
95ff4ca2
AS
5422static void perf_pmu_output_stop(struct perf_event *event);
5423
9bb5d40c
PZ
5424/*
5425 * A buffer can be mmap()ed multiple times; either directly through the same
5426 * event, or through other events by use of perf_event_set_output().
5427 *
5428 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5429 * the buffer here, where we still have a VM context. This means we need
5430 * to detach all events redirecting to us.
5431 */
7b732a75
PZ
5432static void perf_mmap_close(struct vm_area_struct *vma)
5433{
cdd6c482 5434 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5435
b69cf536 5436 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5437 struct user_struct *mmap_user = rb->mmap_user;
5438 int mmap_locked = rb->mmap_locked;
5439 unsigned long size = perf_data_size(rb);
789f90fc 5440
1e0fb9ec 5441 if (event->pmu->event_unmapped)
bfe33492 5442 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5443
45bfb2e5
PZ
5444 /*
5445 * rb->aux_mmap_count will always drop before rb->mmap_count and
5446 * event->mmap_count, so it is ok to use event->mmap_mutex to
5447 * serialize with perf_mmap here.
5448 */
5449 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5450 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5451 /*
5452 * Stop all AUX events that are writing to this buffer,
5453 * so that we can free its AUX pages and corresponding PMU
5454 * data. Note that after rb::aux_mmap_count dropped to zero,
5455 * they won't start any more (see perf_aux_output_begin()).
5456 */
5457 perf_pmu_output_stop(event);
5458
5459 /* now it's safe to free the pages */
45bfb2e5
PZ
5460 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5461 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5462
95ff4ca2 5463 /* this has to be the last one */
45bfb2e5 5464 rb_free_aux(rb);
95ff4ca2
AS
5465 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5466
45bfb2e5
PZ
5467 mutex_unlock(&event->mmap_mutex);
5468 }
5469
9bb5d40c
PZ
5470 atomic_dec(&rb->mmap_count);
5471
5472 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5473 goto out_put;
9bb5d40c 5474
b69cf536 5475 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5476 mutex_unlock(&event->mmap_mutex);
5477
5478 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5479 if (atomic_read(&rb->mmap_count))
5480 goto out_put;
ac9721f3 5481
9bb5d40c
PZ
5482 /*
5483 * No other mmap()s, detach from all other events that might redirect
5484 * into the now unreachable buffer. Somewhat complicated by the
5485 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5486 */
5487again:
5488 rcu_read_lock();
5489 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5490 if (!atomic_long_inc_not_zero(&event->refcount)) {
5491 /*
5492 * This event is en-route to free_event() which will
5493 * detach it and remove it from the list.
5494 */
5495 continue;
5496 }
5497 rcu_read_unlock();
789f90fc 5498
9bb5d40c
PZ
5499 mutex_lock(&event->mmap_mutex);
5500 /*
5501 * Check we didn't race with perf_event_set_output() which can
5502 * swizzle the rb from under us while we were waiting to
5503 * acquire mmap_mutex.
5504 *
5505 * If we find a different rb; ignore this event, a next
5506 * iteration will no longer find it on the list. We have to
5507 * still restart the iteration to make sure we're not now
5508 * iterating the wrong list.
5509 */
b69cf536
PZ
5510 if (event->rb == rb)
5511 ring_buffer_attach(event, NULL);
5512
cdd6c482 5513 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5514 put_event(event);
ac9721f3 5515
9bb5d40c
PZ
5516 /*
5517 * Restart the iteration; either we're on the wrong list or
5518 * destroyed its integrity by doing a deletion.
5519 */
5520 goto again;
7b732a75 5521 }
9bb5d40c
PZ
5522 rcu_read_unlock();
5523
5524 /*
5525 * It could be there's still a few 0-ref events on the list; they'll
5526 * get cleaned up by free_event() -- they'll also still have their
5527 * ref on the rb and will free it whenever they are done with it.
5528 *
5529 * Aside from that, this buffer is 'fully' detached and unmapped,
5530 * undo the VM accounting.
5531 */
5532
5533 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5534 vma->vm_mm->pinned_vm -= mmap_locked;
5535 free_uid(mmap_user);
5536
b69cf536 5537out_put:
9bb5d40c 5538 ring_buffer_put(rb); /* could be last */
37d81828
PM
5539}
5540
f0f37e2f 5541static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5542 .open = perf_mmap_open,
45bfb2e5 5543 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5544 .fault = perf_mmap_fault,
5545 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5546};
5547
5548static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5549{
cdd6c482 5550 struct perf_event *event = file->private_data;
22a4f650 5551 unsigned long user_locked, user_lock_limit;
789f90fc 5552 struct user_struct *user = current_user();
22a4f650 5553 unsigned long locked, lock_limit;
45bfb2e5 5554 struct ring_buffer *rb = NULL;
7b732a75
PZ
5555 unsigned long vma_size;
5556 unsigned long nr_pages;
45bfb2e5 5557 long user_extra = 0, extra = 0;
d57e34fd 5558 int ret = 0, flags = 0;
37d81828 5559
c7920614
PZ
5560 /*
5561 * Don't allow mmap() of inherited per-task counters. This would
5562 * create a performance issue due to all children writing to the
76369139 5563 * same rb.
c7920614
PZ
5564 */
5565 if (event->cpu == -1 && event->attr.inherit)
5566 return -EINVAL;
5567
43a21ea8 5568 if (!(vma->vm_flags & VM_SHARED))
37d81828 5569 return -EINVAL;
7b732a75
PZ
5570
5571 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5572
5573 if (vma->vm_pgoff == 0) {
5574 nr_pages = (vma_size / PAGE_SIZE) - 1;
5575 } else {
5576 /*
5577 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5578 * mapped, all subsequent mappings should have the same size
5579 * and offset. Must be above the normal perf buffer.
5580 */
5581 u64 aux_offset, aux_size;
5582
5583 if (!event->rb)
5584 return -EINVAL;
5585
5586 nr_pages = vma_size / PAGE_SIZE;
5587
5588 mutex_lock(&event->mmap_mutex);
5589 ret = -EINVAL;
5590
5591 rb = event->rb;
5592 if (!rb)
5593 goto aux_unlock;
5594
6aa7de05
MR
5595 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5596 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5597
5598 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5599 goto aux_unlock;
5600
5601 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5602 goto aux_unlock;
5603
5604 /* already mapped with a different offset */
5605 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5606 goto aux_unlock;
5607
5608 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5609 goto aux_unlock;
5610
5611 /* already mapped with a different size */
5612 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5613 goto aux_unlock;
5614
5615 if (!is_power_of_2(nr_pages))
5616 goto aux_unlock;
5617
5618 if (!atomic_inc_not_zero(&rb->mmap_count))
5619 goto aux_unlock;
5620
5621 if (rb_has_aux(rb)) {
5622 atomic_inc(&rb->aux_mmap_count);
5623 ret = 0;
5624 goto unlock;
5625 }
5626
5627 atomic_set(&rb->aux_mmap_count, 1);
5628 user_extra = nr_pages;
5629
5630 goto accounting;
5631 }
7b732a75 5632
7730d865 5633 /*
76369139 5634 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5635 * can do bitmasks instead of modulo.
5636 */
2ed11312 5637 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5638 return -EINVAL;
5639
7b732a75 5640 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5641 return -EINVAL;
5642
cdd6c482 5643 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5644again:
cdd6c482 5645 mutex_lock(&event->mmap_mutex);
76369139 5646 if (event->rb) {
9bb5d40c 5647 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5648 ret = -EINVAL;
9bb5d40c
PZ
5649 goto unlock;
5650 }
5651
5652 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5653 /*
5654 * Raced against perf_mmap_close() through
5655 * perf_event_set_output(). Try again, hope for better
5656 * luck.
5657 */
5658 mutex_unlock(&event->mmap_mutex);
5659 goto again;
5660 }
5661
ebb3c4c4
PZ
5662 goto unlock;
5663 }
5664
789f90fc 5665 user_extra = nr_pages + 1;
45bfb2e5
PZ
5666
5667accounting:
cdd6c482 5668 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5669
5670 /*
5671 * Increase the limit linearly with more CPUs:
5672 */
5673 user_lock_limit *= num_online_cpus();
5674
789f90fc 5675 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5676
789f90fc
PZ
5677 if (user_locked > user_lock_limit)
5678 extra = user_locked - user_lock_limit;
7b732a75 5679
78d7d407 5680 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5681 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5682 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5683
459ec28a
IM
5684 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5685 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5686 ret = -EPERM;
5687 goto unlock;
5688 }
7b732a75 5689
45bfb2e5 5690 WARN_ON(!rb && event->rb);
906010b2 5691
d57e34fd 5692 if (vma->vm_flags & VM_WRITE)
76369139 5693 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5694
76369139 5695 if (!rb) {
45bfb2e5
PZ
5696 rb = rb_alloc(nr_pages,
5697 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5698 event->cpu, flags);
26cb63ad 5699
45bfb2e5
PZ
5700 if (!rb) {
5701 ret = -ENOMEM;
5702 goto unlock;
5703 }
43a21ea8 5704
45bfb2e5
PZ
5705 atomic_set(&rb->mmap_count, 1);
5706 rb->mmap_user = get_current_user();
5707 rb->mmap_locked = extra;
26cb63ad 5708
45bfb2e5 5709 ring_buffer_attach(event, rb);
ac9721f3 5710
45bfb2e5
PZ
5711 perf_event_init_userpage(event);
5712 perf_event_update_userpage(event);
5713 } else {
1a594131
AS
5714 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5715 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5716 if (!ret)
5717 rb->aux_mmap_locked = extra;
5718 }
9a0f05cb 5719
ebb3c4c4 5720unlock:
45bfb2e5
PZ
5721 if (!ret) {
5722 atomic_long_add(user_extra, &user->locked_vm);
5723 vma->vm_mm->pinned_vm += extra;
5724
ac9721f3 5725 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5726 } else if (rb) {
5727 atomic_dec(&rb->mmap_count);
5728 }
5729aux_unlock:
cdd6c482 5730 mutex_unlock(&event->mmap_mutex);
37d81828 5731
9bb5d40c
PZ
5732 /*
5733 * Since pinned accounting is per vm we cannot allow fork() to copy our
5734 * vma.
5735 */
26cb63ad 5736 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5737 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5738
1e0fb9ec 5739 if (event->pmu->event_mapped)
bfe33492 5740 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5741
7b732a75 5742 return ret;
37d81828
PM
5743}
5744
3c446b3d
PZ
5745static int perf_fasync(int fd, struct file *filp, int on)
5746{
496ad9aa 5747 struct inode *inode = file_inode(filp);
cdd6c482 5748 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5749 int retval;
5750
5955102c 5751 inode_lock(inode);
cdd6c482 5752 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5753 inode_unlock(inode);
3c446b3d
PZ
5754
5755 if (retval < 0)
5756 return retval;
5757
5758 return 0;
5759}
5760
0793a61d 5761static const struct file_operations perf_fops = {
3326c1ce 5762 .llseek = no_llseek,
0793a61d
TG
5763 .release = perf_release,
5764 .read = perf_read,
5765 .poll = perf_poll,
d859e29f 5766 .unlocked_ioctl = perf_ioctl,
b3f20785 5767 .compat_ioctl = perf_compat_ioctl,
37d81828 5768 .mmap = perf_mmap,
3c446b3d 5769 .fasync = perf_fasync,
0793a61d
TG
5770};
5771
925d519a 5772/*
cdd6c482 5773 * Perf event wakeup
925d519a
PZ
5774 *
5775 * If there's data, ensure we set the poll() state and publish everything
5776 * to user-space before waking everybody up.
5777 */
5778
fed66e2c
PZ
5779static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5780{
5781 /* only the parent has fasync state */
5782 if (event->parent)
5783 event = event->parent;
5784 return &event->fasync;
5785}
5786
cdd6c482 5787void perf_event_wakeup(struct perf_event *event)
925d519a 5788{
10c6db11 5789 ring_buffer_wakeup(event);
4c9e2542 5790
cdd6c482 5791 if (event->pending_kill) {
fed66e2c 5792 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5793 event->pending_kill = 0;
4c9e2542 5794 }
925d519a
PZ
5795}
5796
e360adbe 5797static void perf_pending_event(struct irq_work *entry)
79f14641 5798{
cdd6c482
IM
5799 struct perf_event *event = container_of(entry,
5800 struct perf_event, pending);
d525211f
PZ
5801 int rctx;
5802
5803 rctx = perf_swevent_get_recursion_context();
5804 /*
5805 * If we 'fail' here, that's OK, it means recursion is already disabled
5806 * and we won't recurse 'further'.
5807 */
79f14641 5808
cdd6c482
IM
5809 if (event->pending_disable) {
5810 event->pending_disable = 0;
fae3fde6 5811 perf_event_disable_local(event);
79f14641
PZ
5812 }
5813
cdd6c482
IM
5814 if (event->pending_wakeup) {
5815 event->pending_wakeup = 0;
5816 perf_event_wakeup(event);
79f14641 5817 }
d525211f
PZ
5818
5819 if (rctx >= 0)
5820 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5821}
5822
39447b38
ZY
5823/*
5824 * We assume there is only KVM supporting the callbacks.
5825 * Later on, we might change it to a list if there is
5826 * another virtualization implementation supporting the callbacks.
5827 */
5828struct perf_guest_info_callbacks *perf_guest_cbs;
5829
5830int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5831{
5832 perf_guest_cbs = cbs;
5833 return 0;
5834}
5835EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5836
5837int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5838{
5839 perf_guest_cbs = NULL;
5840 return 0;
5841}
5842EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5843
4018994f
JO
5844static void
5845perf_output_sample_regs(struct perf_output_handle *handle,
5846 struct pt_regs *regs, u64 mask)
5847{
5848 int bit;
29dd3288 5849 DECLARE_BITMAP(_mask, 64);
4018994f 5850
29dd3288
MS
5851 bitmap_from_u64(_mask, mask);
5852 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5853 u64 val;
5854
5855 val = perf_reg_value(regs, bit);
5856 perf_output_put(handle, val);
5857 }
5858}
5859
60e2364e 5860static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5861 struct pt_regs *regs,
5862 struct pt_regs *regs_user_copy)
4018994f 5863{
88a7c26a
AL
5864 if (user_mode(regs)) {
5865 regs_user->abi = perf_reg_abi(current);
2565711f 5866 regs_user->regs = regs;
88a7c26a
AL
5867 } else if (current->mm) {
5868 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5869 } else {
5870 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5871 regs_user->regs = NULL;
4018994f
JO
5872 }
5873}
5874
60e2364e
SE
5875static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5876 struct pt_regs *regs)
5877{
5878 regs_intr->regs = regs;
5879 regs_intr->abi = perf_reg_abi(current);
5880}
5881
5882
c5ebcedb
JO
5883/*
5884 * Get remaining task size from user stack pointer.
5885 *
5886 * It'd be better to take stack vma map and limit this more
5887 * precisly, but there's no way to get it safely under interrupt,
5888 * so using TASK_SIZE as limit.
5889 */
5890static u64 perf_ustack_task_size(struct pt_regs *regs)
5891{
5892 unsigned long addr = perf_user_stack_pointer(regs);
5893
5894 if (!addr || addr >= TASK_SIZE)
5895 return 0;
5896
5897 return TASK_SIZE - addr;
5898}
5899
5900static u16
5901perf_sample_ustack_size(u16 stack_size, u16 header_size,
5902 struct pt_regs *regs)
5903{
5904 u64 task_size;
5905
5906 /* No regs, no stack pointer, no dump. */
5907 if (!regs)
5908 return 0;
5909
5910 /*
5911 * Check if we fit in with the requested stack size into the:
5912 * - TASK_SIZE
5913 * If we don't, we limit the size to the TASK_SIZE.
5914 *
5915 * - remaining sample size
5916 * If we don't, we customize the stack size to
5917 * fit in to the remaining sample size.
5918 */
5919
5920 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5921 stack_size = min(stack_size, (u16) task_size);
5922
5923 /* Current header size plus static size and dynamic size. */
5924 header_size += 2 * sizeof(u64);
5925
5926 /* Do we fit in with the current stack dump size? */
5927 if ((u16) (header_size + stack_size) < header_size) {
5928 /*
5929 * If we overflow the maximum size for the sample,
5930 * we customize the stack dump size to fit in.
5931 */
5932 stack_size = USHRT_MAX - header_size - sizeof(u64);
5933 stack_size = round_up(stack_size, sizeof(u64));
5934 }
5935
5936 return stack_size;
5937}
5938
5939static void
5940perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5941 struct pt_regs *regs)
5942{
5943 /* Case of a kernel thread, nothing to dump */
5944 if (!regs) {
5945 u64 size = 0;
5946 perf_output_put(handle, size);
5947 } else {
5948 unsigned long sp;
5949 unsigned int rem;
5950 u64 dyn_size;
5951
5952 /*
5953 * We dump:
5954 * static size
5955 * - the size requested by user or the best one we can fit
5956 * in to the sample max size
5957 * data
5958 * - user stack dump data
5959 * dynamic size
5960 * - the actual dumped size
5961 */
5962
5963 /* Static size. */
5964 perf_output_put(handle, dump_size);
5965
5966 /* Data. */
5967 sp = perf_user_stack_pointer(regs);
5968 rem = __output_copy_user(handle, (void *) sp, dump_size);
5969 dyn_size = dump_size - rem;
5970
5971 perf_output_skip(handle, rem);
5972
5973 /* Dynamic size. */
5974 perf_output_put(handle, dyn_size);
5975 }
5976}
5977
c980d109
ACM
5978static void __perf_event_header__init_id(struct perf_event_header *header,
5979 struct perf_sample_data *data,
5980 struct perf_event *event)
6844c09d
ACM
5981{
5982 u64 sample_type = event->attr.sample_type;
5983
5984 data->type = sample_type;
5985 header->size += event->id_header_size;
5986
5987 if (sample_type & PERF_SAMPLE_TID) {
5988 /* namespace issues */
5989 data->tid_entry.pid = perf_event_pid(event, current);
5990 data->tid_entry.tid = perf_event_tid(event, current);
5991 }
5992
5993 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5994 data->time = perf_event_clock(event);
6844c09d 5995
ff3d527c 5996 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5997 data->id = primary_event_id(event);
5998
5999 if (sample_type & PERF_SAMPLE_STREAM_ID)
6000 data->stream_id = event->id;
6001
6002 if (sample_type & PERF_SAMPLE_CPU) {
6003 data->cpu_entry.cpu = raw_smp_processor_id();
6004 data->cpu_entry.reserved = 0;
6005 }
6006}
6007
76369139
FW
6008void perf_event_header__init_id(struct perf_event_header *header,
6009 struct perf_sample_data *data,
6010 struct perf_event *event)
c980d109
ACM
6011{
6012 if (event->attr.sample_id_all)
6013 __perf_event_header__init_id(header, data, event);
6014}
6015
6016static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6017 struct perf_sample_data *data)
6018{
6019 u64 sample_type = data->type;
6020
6021 if (sample_type & PERF_SAMPLE_TID)
6022 perf_output_put(handle, data->tid_entry);
6023
6024 if (sample_type & PERF_SAMPLE_TIME)
6025 perf_output_put(handle, data->time);
6026
6027 if (sample_type & PERF_SAMPLE_ID)
6028 perf_output_put(handle, data->id);
6029
6030 if (sample_type & PERF_SAMPLE_STREAM_ID)
6031 perf_output_put(handle, data->stream_id);
6032
6033 if (sample_type & PERF_SAMPLE_CPU)
6034 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
6035
6036 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6037 perf_output_put(handle, data->id);
c980d109
ACM
6038}
6039
76369139
FW
6040void perf_event__output_id_sample(struct perf_event *event,
6041 struct perf_output_handle *handle,
6042 struct perf_sample_data *sample)
c980d109
ACM
6043{
6044 if (event->attr.sample_id_all)
6045 __perf_event__output_id_sample(handle, sample);
6046}
6047
3dab77fb 6048static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
6049 struct perf_event *event,
6050 u64 enabled, u64 running)
3dab77fb 6051{
cdd6c482 6052 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6053 u64 values[4];
6054 int n = 0;
6055
b5e58793 6056 values[n++] = perf_event_count(event);
3dab77fb 6057 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 6058 values[n++] = enabled +
cdd6c482 6059 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
6060 }
6061 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 6062 values[n++] = running +
cdd6c482 6063 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
6064 }
6065 if (read_format & PERF_FORMAT_ID)
cdd6c482 6066 values[n++] = primary_event_id(event);
3dab77fb 6067
76369139 6068 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6069}
6070
3dab77fb 6071static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
6072 struct perf_event *event,
6073 u64 enabled, u64 running)
3dab77fb 6074{
cdd6c482
IM
6075 struct perf_event *leader = event->group_leader, *sub;
6076 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6077 u64 values[5];
6078 int n = 0;
6079
6080 values[n++] = 1 + leader->nr_siblings;
6081
6082 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 6083 values[n++] = enabled;
3dab77fb
PZ
6084
6085 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 6086 values[n++] = running;
3dab77fb 6087
9e5b127d
PZ
6088 if ((leader != event) &&
6089 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6090 leader->pmu->read(leader);
6091
b5e58793 6092 values[n++] = perf_event_count(leader);
3dab77fb 6093 if (read_format & PERF_FORMAT_ID)
cdd6c482 6094 values[n++] = primary_event_id(leader);
3dab77fb 6095
76369139 6096 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 6097
edb39592 6098 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
6099 n = 0;
6100
6f5ab001
JO
6101 if ((sub != event) &&
6102 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6103 sub->pmu->read(sub);
6104
b5e58793 6105 values[n++] = perf_event_count(sub);
3dab77fb 6106 if (read_format & PERF_FORMAT_ID)
cdd6c482 6107 values[n++] = primary_event_id(sub);
3dab77fb 6108
76369139 6109 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6110 }
6111}
6112
eed01528
SE
6113#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6114 PERF_FORMAT_TOTAL_TIME_RUNNING)
6115
ba5213ae
PZ
6116/*
6117 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6118 *
6119 * The problem is that its both hard and excessively expensive to iterate the
6120 * child list, not to mention that its impossible to IPI the children running
6121 * on another CPU, from interrupt/NMI context.
6122 */
3dab77fb 6123static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 6124 struct perf_event *event)
3dab77fb 6125{
e3f3541c 6126 u64 enabled = 0, running = 0, now;
eed01528
SE
6127 u64 read_format = event->attr.read_format;
6128
6129 /*
6130 * compute total_time_enabled, total_time_running
6131 * based on snapshot values taken when the event
6132 * was last scheduled in.
6133 *
6134 * we cannot simply called update_context_time()
6135 * because of locking issue as we are called in
6136 * NMI context
6137 */
c4794295 6138 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 6139 calc_timer_values(event, &now, &enabled, &running);
eed01528 6140
cdd6c482 6141 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 6142 perf_output_read_group(handle, event, enabled, running);
3dab77fb 6143 else
eed01528 6144 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
6145}
6146
5622f295
MM
6147void perf_output_sample(struct perf_output_handle *handle,
6148 struct perf_event_header *header,
6149 struct perf_sample_data *data,
cdd6c482 6150 struct perf_event *event)
5622f295
MM
6151{
6152 u64 sample_type = data->type;
6153
6154 perf_output_put(handle, *header);
6155
ff3d527c
AH
6156 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6157 perf_output_put(handle, data->id);
6158
5622f295
MM
6159 if (sample_type & PERF_SAMPLE_IP)
6160 perf_output_put(handle, data->ip);
6161
6162 if (sample_type & PERF_SAMPLE_TID)
6163 perf_output_put(handle, data->tid_entry);
6164
6165 if (sample_type & PERF_SAMPLE_TIME)
6166 perf_output_put(handle, data->time);
6167
6168 if (sample_type & PERF_SAMPLE_ADDR)
6169 perf_output_put(handle, data->addr);
6170
6171 if (sample_type & PERF_SAMPLE_ID)
6172 perf_output_put(handle, data->id);
6173
6174 if (sample_type & PERF_SAMPLE_STREAM_ID)
6175 perf_output_put(handle, data->stream_id);
6176
6177 if (sample_type & PERF_SAMPLE_CPU)
6178 perf_output_put(handle, data->cpu_entry);
6179
6180 if (sample_type & PERF_SAMPLE_PERIOD)
6181 perf_output_put(handle, data->period);
6182
6183 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 6184 perf_output_read(handle, event);
5622f295
MM
6185
6186 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 6187 int size = 1;
5622f295 6188
99e818cc
JO
6189 size += data->callchain->nr;
6190 size *= sizeof(u64);
6191 __output_copy(handle, data->callchain, size);
5622f295
MM
6192 }
6193
6194 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6195 struct perf_raw_record *raw = data->raw;
6196
6197 if (raw) {
6198 struct perf_raw_frag *frag = &raw->frag;
6199
6200 perf_output_put(handle, raw->size);
6201 do {
6202 if (frag->copy) {
6203 __output_custom(handle, frag->copy,
6204 frag->data, frag->size);
6205 } else {
6206 __output_copy(handle, frag->data,
6207 frag->size);
6208 }
6209 if (perf_raw_frag_last(frag))
6210 break;
6211 frag = frag->next;
6212 } while (1);
6213 if (frag->pad)
6214 __output_skip(handle, NULL, frag->pad);
5622f295
MM
6215 } else {
6216 struct {
6217 u32 size;
6218 u32 data;
6219 } raw = {
6220 .size = sizeof(u32),
6221 .data = 0,
6222 };
6223 perf_output_put(handle, raw);
6224 }
6225 }
a7ac67ea 6226
bce38cd5
SE
6227 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6228 if (data->br_stack) {
6229 size_t size;
6230
6231 size = data->br_stack->nr
6232 * sizeof(struct perf_branch_entry);
6233
6234 perf_output_put(handle, data->br_stack->nr);
6235 perf_output_copy(handle, data->br_stack->entries, size);
6236 } else {
6237 /*
6238 * we always store at least the value of nr
6239 */
6240 u64 nr = 0;
6241 perf_output_put(handle, nr);
6242 }
6243 }
4018994f
JO
6244
6245 if (sample_type & PERF_SAMPLE_REGS_USER) {
6246 u64 abi = data->regs_user.abi;
6247
6248 /*
6249 * If there are no regs to dump, notice it through
6250 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6251 */
6252 perf_output_put(handle, abi);
6253
6254 if (abi) {
6255 u64 mask = event->attr.sample_regs_user;
6256 perf_output_sample_regs(handle,
6257 data->regs_user.regs,
6258 mask);
6259 }
6260 }
c5ebcedb 6261
a5cdd40c 6262 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6263 perf_output_sample_ustack(handle,
6264 data->stack_user_size,
6265 data->regs_user.regs);
a5cdd40c 6266 }
c3feedf2
AK
6267
6268 if (sample_type & PERF_SAMPLE_WEIGHT)
6269 perf_output_put(handle, data->weight);
d6be9ad6
SE
6270
6271 if (sample_type & PERF_SAMPLE_DATA_SRC)
6272 perf_output_put(handle, data->data_src.val);
a5cdd40c 6273
fdfbbd07
AK
6274 if (sample_type & PERF_SAMPLE_TRANSACTION)
6275 perf_output_put(handle, data->txn);
6276
60e2364e
SE
6277 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6278 u64 abi = data->regs_intr.abi;
6279 /*
6280 * If there are no regs to dump, notice it through
6281 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6282 */
6283 perf_output_put(handle, abi);
6284
6285 if (abi) {
6286 u64 mask = event->attr.sample_regs_intr;
6287
6288 perf_output_sample_regs(handle,
6289 data->regs_intr.regs,
6290 mask);
6291 }
6292 }
6293
fc7ce9c7
KL
6294 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6295 perf_output_put(handle, data->phys_addr);
6296
a5cdd40c
PZ
6297 if (!event->attr.watermark) {
6298 int wakeup_events = event->attr.wakeup_events;
6299
6300 if (wakeup_events) {
6301 struct ring_buffer *rb = handle->rb;
6302 int events = local_inc_return(&rb->events);
6303
6304 if (events >= wakeup_events) {
6305 local_sub(wakeup_events, &rb->events);
6306 local_inc(&rb->wakeup);
6307 }
6308 }
6309 }
5622f295
MM
6310}
6311
fc7ce9c7
KL
6312static u64 perf_virt_to_phys(u64 virt)
6313{
6314 u64 phys_addr = 0;
6315 struct page *p = NULL;
6316
6317 if (!virt)
6318 return 0;
6319
6320 if (virt >= TASK_SIZE) {
6321 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6322 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6323 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6324 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6325 } else {
6326 /*
6327 * Walking the pages tables for user address.
6328 * Interrupts are disabled, so it prevents any tear down
6329 * of the page tables.
6330 * Try IRQ-safe __get_user_pages_fast first.
6331 * If failed, leave phys_addr as 0.
6332 */
6333 if ((current->mm != NULL) &&
6334 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6335 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6336
6337 if (p)
6338 put_page(p);
6339 }
6340
6341 return phys_addr;
6342}
6343
99e818cc
JO
6344static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6345
8cf7e0e2
JO
6346static struct perf_callchain_entry *
6347perf_callchain(struct perf_event *event, struct pt_regs *regs)
6348{
6349 bool kernel = !event->attr.exclude_callchain_kernel;
6350 bool user = !event->attr.exclude_callchain_user;
6351 /* Disallow cross-task user callchains. */
6352 bool crosstask = event->ctx->task && event->ctx->task != current;
6353 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 6354 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6355
6356 if (!kernel && !user)
99e818cc 6357 return &__empty_callchain;
8cf7e0e2 6358
99e818cc
JO
6359 callchain = get_perf_callchain(regs, 0, kernel, user,
6360 max_stack, crosstask, true);
6361 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6362}
6363
5622f295
MM
6364void perf_prepare_sample(struct perf_event_header *header,
6365 struct perf_sample_data *data,
cdd6c482 6366 struct perf_event *event,
5622f295 6367 struct pt_regs *regs)
7b732a75 6368{
cdd6c482 6369 u64 sample_type = event->attr.sample_type;
7b732a75 6370
cdd6c482 6371 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6372 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6373
6374 header->misc = 0;
6375 header->misc |= perf_misc_flags(regs);
6fab0192 6376
c980d109 6377 __perf_event_header__init_id(header, data, event);
6844c09d 6378
c320c7b7 6379 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6380 data->ip = perf_instruction_pointer(regs);
6381
b23f3325 6382 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6383 int size = 1;
394ee076 6384
e6dab5ff 6385 data->callchain = perf_callchain(event, regs);
99e818cc 6386 size += data->callchain->nr;
5622f295
MM
6387
6388 header->size += size * sizeof(u64);
394ee076
PZ
6389 }
6390
3a43ce68 6391 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6392 struct perf_raw_record *raw = data->raw;
6393 int size;
6394
6395 if (raw) {
6396 struct perf_raw_frag *frag = &raw->frag;
6397 u32 sum = 0;
6398
6399 do {
6400 sum += frag->size;
6401 if (perf_raw_frag_last(frag))
6402 break;
6403 frag = frag->next;
6404 } while (1);
6405
6406 size = round_up(sum + sizeof(u32), sizeof(u64));
6407 raw->size = size - sizeof(u32);
6408 frag->pad = raw->size - sum;
6409 } else {
6410 size = sizeof(u64);
6411 }
a044560c 6412
7e3f977e 6413 header->size += size;
7f453c24 6414 }
bce38cd5
SE
6415
6416 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6417 int size = sizeof(u64); /* nr */
6418 if (data->br_stack) {
6419 size += data->br_stack->nr
6420 * sizeof(struct perf_branch_entry);
6421 }
6422 header->size += size;
6423 }
4018994f 6424
2565711f 6425 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6426 perf_sample_regs_user(&data->regs_user, regs,
6427 &data->regs_user_copy);
2565711f 6428
4018994f
JO
6429 if (sample_type & PERF_SAMPLE_REGS_USER) {
6430 /* regs dump ABI info */
6431 int size = sizeof(u64);
6432
4018994f
JO
6433 if (data->regs_user.regs) {
6434 u64 mask = event->attr.sample_regs_user;
6435 size += hweight64(mask) * sizeof(u64);
6436 }
6437
6438 header->size += size;
6439 }
c5ebcedb
JO
6440
6441 if (sample_type & PERF_SAMPLE_STACK_USER) {
6442 /*
6443 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6444 * processed as the last one or have additional check added
6445 * in case new sample type is added, because we could eat
6446 * up the rest of the sample size.
6447 */
c5ebcedb
JO
6448 u16 stack_size = event->attr.sample_stack_user;
6449 u16 size = sizeof(u64);
6450
c5ebcedb 6451 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6452 data->regs_user.regs);
c5ebcedb
JO
6453
6454 /*
6455 * If there is something to dump, add space for the dump
6456 * itself and for the field that tells the dynamic size,
6457 * which is how many have been actually dumped.
6458 */
6459 if (stack_size)
6460 size += sizeof(u64) + stack_size;
6461
6462 data->stack_user_size = stack_size;
6463 header->size += size;
6464 }
60e2364e
SE
6465
6466 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6467 /* regs dump ABI info */
6468 int size = sizeof(u64);
6469
6470 perf_sample_regs_intr(&data->regs_intr, regs);
6471
6472 if (data->regs_intr.regs) {
6473 u64 mask = event->attr.sample_regs_intr;
6474
6475 size += hweight64(mask) * sizeof(u64);
6476 }
6477
6478 header->size += size;
6479 }
fc7ce9c7
KL
6480
6481 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6482 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6483}
7f453c24 6484
93315101 6485static __always_inline void
9ecda41a
WN
6486__perf_event_output(struct perf_event *event,
6487 struct perf_sample_data *data,
6488 struct pt_regs *regs,
6489 int (*output_begin)(struct perf_output_handle *,
6490 struct perf_event *,
6491 unsigned int))
5622f295
MM
6492{
6493 struct perf_output_handle handle;
6494 struct perf_event_header header;
689802b2 6495
927c7a9e
FW
6496 /* protect the callchain buffers */
6497 rcu_read_lock();
6498
cdd6c482 6499 perf_prepare_sample(&header, data, event, regs);
5c148194 6500
9ecda41a 6501 if (output_begin(&handle, event, header.size))
927c7a9e 6502 goto exit;
0322cd6e 6503
cdd6c482 6504 perf_output_sample(&handle, &header, data, event);
f413cdb8 6505
8a057d84 6506 perf_output_end(&handle);
927c7a9e
FW
6507
6508exit:
6509 rcu_read_unlock();
0322cd6e
PZ
6510}
6511
9ecda41a
WN
6512void
6513perf_event_output_forward(struct perf_event *event,
6514 struct perf_sample_data *data,
6515 struct pt_regs *regs)
6516{
6517 __perf_event_output(event, data, regs, perf_output_begin_forward);
6518}
6519
6520void
6521perf_event_output_backward(struct perf_event *event,
6522 struct perf_sample_data *data,
6523 struct pt_regs *regs)
6524{
6525 __perf_event_output(event, data, regs, perf_output_begin_backward);
6526}
6527
6528void
6529perf_event_output(struct perf_event *event,
6530 struct perf_sample_data *data,
6531 struct pt_regs *regs)
6532{
6533 __perf_event_output(event, data, regs, perf_output_begin);
6534}
6535
38b200d6 6536/*
cdd6c482 6537 * read event_id
38b200d6
PZ
6538 */
6539
6540struct perf_read_event {
6541 struct perf_event_header header;
6542
6543 u32 pid;
6544 u32 tid;
38b200d6
PZ
6545};
6546
6547static void
cdd6c482 6548perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6549 struct task_struct *task)
6550{
6551 struct perf_output_handle handle;
c980d109 6552 struct perf_sample_data sample;
dfc65094 6553 struct perf_read_event read_event = {
38b200d6 6554 .header = {
cdd6c482 6555 .type = PERF_RECORD_READ,
38b200d6 6556 .misc = 0,
c320c7b7 6557 .size = sizeof(read_event) + event->read_size,
38b200d6 6558 },
cdd6c482
IM
6559 .pid = perf_event_pid(event, task),
6560 .tid = perf_event_tid(event, task),
38b200d6 6561 };
3dab77fb 6562 int ret;
38b200d6 6563
c980d109 6564 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6565 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6566 if (ret)
6567 return;
6568
dfc65094 6569 perf_output_put(&handle, read_event);
cdd6c482 6570 perf_output_read(&handle, event);
c980d109 6571 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6572
38b200d6
PZ
6573 perf_output_end(&handle);
6574}
6575
aab5b71e 6576typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6577
6578static void
aab5b71e
PZ
6579perf_iterate_ctx(struct perf_event_context *ctx,
6580 perf_iterate_f output,
b73e4fef 6581 void *data, bool all)
52d857a8
JO
6582{
6583 struct perf_event *event;
6584
6585 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6586 if (!all) {
6587 if (event->state < PERF_EVENT_STATE_INACTIVE)
6588 continue;
6589 if (!event_filter_match(event))
6590 continue;
6591 }
6592
67516844 6593 output(event, data);
52d857a8
JO
6594 }
6595}
6596
aab5b71e 6597static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6598{
6599 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6600 struct perf_event *event;
6601
6602 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6603 /*
6604 * Skip events that are not fully formed yet; ensure that
6605 * if we observe event->ctx, both event and ctx will be
6606 * complete enough. See perf_install_in_context().
6607 */
6608 if (!smp_load_acquire(&event->ctx))
6609 continue;
6610
f2fb6bef
KL
6611 if (event->state < PERF_EVENT_STATE_INACTIVE)
6612 continue;
6613 if (!event_filter_match(event))
6614 continue;
6615 output(event, data);
6616 }
6617}
6618
aab5b71e
PZ
6619/*
6620 * Iterate all events that need to receive side-band events.
6621 *
6622 * For new callers; ensure that account_pmu_sb_event() includes
6623 * your event, otherwise it might not get delivered.
6624 */
52d857a8 6625static void
aab5b71e 6626perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6627 struct perf_event_context *task_ctx)
6628{
52d857a8 6629 struct perf_event_context *ctx;
52d857a8
JO
6630 int ctxn;
6631
aab5b71e
PZ
6632 rcu_read_lock();
6633 preempt_disable();
6634
4e93ad60 6635 /*
aab5b71e
PZ
6636 * If we have task_ctx != NULL we only notify the task context itself.
6637 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6638 * context.
6639 */
6640 if (task_ctx) {
aab5b71e
PZ
6641 perf_iterate_ctx(task_ctx, output, data, false);
6642 goto done;
4e93ad60
JO
6643 }
6644
aab5b71e 6645 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6646
6647 for_each_task_context_nr(ctxn) {
52d857a8
JO
6648 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6649 if (ctx)
aab5b71e 6650 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6651 }
aab5b71e 6652done:
f2fb6bef 6653 preempt_enable();
52d857a8 6654 rcu_read_unlock();
95ff4ca2
AS
6655}
6656
375637bc
AS
6657/*
6658 * Clear all file-based filters at exec, they'll have to be
6659 * re-instated when/if these objects are mmapped again.
6660 */
6661static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6662{
6663 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6664 struct perf_addr_filter *filter;
6665 unsigned int restart = 0, count = 0;
6666 unsigned long flags;
6667
6668 if (!has_addr_filter(event))
6669 return;
6670
6671 raw_spin_lock_irqsave(&ifh->lock, flags);
6672 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 6673 if (filter->path.dentry) {
375637bc
AS
6674 event->addr_filters_offs[count] = 0;
6675 restart++;
6676 }
6677
6678 count++;
6679 }
6680
6681 if (restart)
6682 event->addr_filters_gen++;
6683 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6684
6685 if (restart)
767ae086 6686 perf_event_stop(event, 1);
375637bc
AS
6687}
6688
6689void perf_event_exec(void)
6690{
6691 struct perf_event_context *ctx;
6692 int ctxn;
6693
6694 rcu_read_lock();
6695 for_each_task_context_nr(ctxn) {
6696 ctx = current->perf_event_ctxp[ctxn];
6697 if (!ctx)
6698 continue;
6699
6700 perf_event_enable_on_exec(ctxn);
6701
aab5b71e 6702 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6703 true);
6704 }
6705 rcu_read_unlock();
6706}
6707
95ff4ca2
AS
6708struct remote_output {
6709 struct ring_buffer *rb;
6710 int err;
6711};
6712
6713static void __perf_event_output_stop(struct perf_event *event, void *data)
6714{
6715 struct perf_event *parent = event->parent;
6716 struct remote_output *ro = data;
6717 struct ring_buffer *rb = ro->rb;
375637bc
AS
6718 struct stop_event_data sd = {
6719 .event = event,
6720 };
95ff4ca2
AS
6721
6722 if (!has_aux(event))
6723 return;
6724
6725 if (!parent)
6726 parent = event;
6727
6728 /*
6729 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6730 * ring-buffer, but it will be the child that's actually using it.
6731 *
6732 * We are using event::rb to determine if the event should be stopped,
6733 * however this may race with ring_buffer_attach() (through set_output),
6734 * which will make us skip the event that actually needs to be stopped.
6735 * So ring_buffer_attach() has to stop an aux event before re-assigning
6736 * its rb pointer.
95ff4ca2
AS
6737 */
6738 if (rcu_dereference(parent->rb) == rb)
375637bc 6739 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6740}
6741
6742static int __perf_pmu_output_stop(void *info)
6743{
6744 struct perf_event *event = info;
6745 struct pmu *pmu = event->pmu;
8b6a3fe8 6746 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6747 struct remote_output ro = {
6748 .rb = event->rb,
6749 };
6750
6751 rcu_read_lock();
aab5b71e 6752 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6753 if (cpuctx->task_ctx)
aab5b71e 6754 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6755 &ro, false);
95ff4ca2
AS
6756 rcu_read_unlock();
6757
6758 return ro.err;
6759}
6760
6761static void perf_pmu_output_stop(struct perf_event *event)
6762{
6763 struct perf_event *iter;
6764 int err, cpu;
6765
6766restart:
6767 rcu_read_lock();
6768 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6769 /*
6770 * For per-CPU events, we need to make sure that neither they
6771 * nor their children are running; for cpu==-1 events it's
6772 * sufficient to stop the event itself if it's active, since
6773 * it can't have children.
6774 */
6775 cpu = iter->cpu;
6776 if (cpu == -1)
6777 cpu = READ_ONCE(iter->oncpu);
6778
6779 if (cpu == -1)
6780 continue;
6781
6782 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6783 if (err == -EAGAIN) {
6784 rcu_read_unlock();
6785 goto restart;
6786 }
6787 }
6788 rcu_read_unlock();
52d857a8
JO
6789}
6790
60313ebe 6791/*
9f498cc5
PZ
6792 * task tracking -- fork/exit
6793 *
13d7a241 6794 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6795 */
6796
9f498cc5 6797struct perf_task_event {
3a80b4a3 6798 struct task_struct *task;
cdd6c482 6799 struct perf_event_context *task_ctx;
60313ebe
PZ
6800
6801 struct {
6802 struct perf_event_header header;
6803
6804 u32 pid;
6805 u32 ppid;
9f498cc5
PZ
6806 u32 tid;
6807 u32 ptid;
393b2ad8 6808 u64 time;
cdd6c482 6809 } event_id;
60313ebe
PZ
6810};
6811
67516844
JO
6812static int perf_event_task_match(struct perf_event *event)
6813{
13d7a241
SE
6814 return event->attr.comm || event->attr.mmap ||
6815 event->attr.mmap2 || event->attr.mmap_data ||
6816 event->attr.task;
67516844
JO
6817}
6818
cdd6c482 6819static void perf_event_task_output(struct perf_event *event,
52d857a8 6820 void *data)
60313ebe 6821{
52d857a8 6822 struct perf_task_event *task_event = data;
60313ebe 6823 struct perf_output_handle handle;
c980d109 6824 struct perf_sample_data sample;
9f498cc5 6825 struct task_struct *task = task_event->task;
c980d109 6826 int ret, size = task_event->event_id.header.size;
8bb39f9a 6827
67516844
JO
6828 if (!perf_event_task_match(event))
6829 return;
6830
c980d109 6831 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6832
c980d109 6833 ret = perf_output_begin(&handle, event,
a7ac67ea 6834 task_event->event_id.header.size);
ef60777c 6835 if (ret)
c980d109 6836 goto out;
60313ebe 6837
cdd6c482
IM
6838 task_event->event_id.pid = perf_event_pid(event, task);
6839 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6840
cdd6c482
IM
6841 task_event->event_id.tid = perf_event_tid(event, task);
6842 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6843
34f43927
PZ
6844 task_event->event_id.time = perf_event_clock(event);
6845
cdd6c482 6846 perf_output_put(&handle, task_event->event_id);
393b2ad8 6847
c980d109
ACM
6848 perf_event__output_id_sample(event, &handle, &sample);
6849
60313ebe 6850 perf_output_end(&handle);
c980d109
ACM
6851out:
6852 task_event->event_id.header.size = size;
60313ebe
PZ
6853}
6854
cdd6c482
IM
6855static void perf_event_task(struct task_struct *task,
6856 struct perf_event_context *task_ctx,
3a80b4a3 6857 int new)
60313ebe 6858{
9f498cc5 6859 struct perf_task_event task_event;
60313ebe 6860
cdd6c482
IM
6861 if (!atomic_read(&nr_comm_events) &&
6862 !atomic_read(&nr_mmap_events) &&
6863 !atomic_read(&nr_task_events))
60313ebe
PZ
6864 return;
6865
9f498cc5 6866 task_event = (struct perf_task_event){
3a80b4a3
PZ
6867 .task = task,
6868 .task_ctx = task_ctx,
cdd6c482 6869 .event_id = {
60313ebe 6870 .header = {
cdd6c482 6871 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6872 .misc = 0,
cdd6c482 6873 .size = sizeof(task_event.event_id),
60313ebe 6874 },
573402db
PZ
6875 /* .pid */
6876 /* .ppid */
9f498cc5
PZ
6877 /* .tid */
6878 /* .ptid */
34f43927 6879 /* .time */
60313ebe
PZ
6880 },
6881 };
6882
aab5b71e 6883 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6884 &task_event,
6885 task_ctx);
9f498cc5
PZ
6886}
6887
cdd6c482 6888void perf_event_fork(struct task_struct *task)
9f498cc5 6889{
cdd6c482 6890 perf_event_task(task, NULL, 1);
e4222673 6891 perf_event_namespaces(task);
60313ebe
PZ
6892}
6893
8d1b2d93
PZ
6894/*
6895 * comm tracking
6896 */
6897
6898struct perf_comm_event {
22a4f650
IM
6899 struct task_struct *task;
6900 char *comm;
8d1b2d93
PZ
6901 int comm_size;
6902
6903 struct {
6904 struct perf_event_header header;
6905
6906 u32 pid;
6907 u32 tid;
cdd6c482 6908 } event_id;
8d1b2d93
PZ
6909};
6910
67516844
JO
6911static int perf_event_comm_match(struct perf_event *event)
6912{
6913 return event->attr.comm;
6914}
6915
cdd6c482 6916static void perf_event_comm_output(struct perf_event *event,
52d857a8 6917 void *data)
8d1b2d93 6918{
52d857a8 6919 struct perf_comm_event *comm_event = data;
8d1b2d93 6920 struct perf_output_handle handle;
c980d109 6921 struct perf_sample_data sample;
cdd6c482 6922 int size = comm_event->event_id.header.size;
c980d109
ACM
6923 int ret;
6924
67516844
JO
6925 if (!perf_event_comm_match(event))
6926 return;
6927
c980d109
ACM
6928 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6929 ret = perf_output_begin(&handle, event,
a7ac67ea 6930 comm_event->event_id.header.size);
8d1b2d93
PZ
6931
6932 if (ret)
c980d109 6933 goto out;
8d1b2d93 6934
cdd6c482
IM
6935 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6936 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6937
cdd6c482 6938 perf_output_put(&handle, comm_event->event_id);
76369139 6939 __output_copy(&handle, comm_event->comm,
8d1b2d93 6940 comm_event->comm_size);
c980d109
ACM
6941
6942 perf_event__output_id_sample(event, &handle, &sample);
6943
8d1b2d93 6944 perf_output_end(&handle);
c980d109
ACM
6945out:
6946 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6947}
6948
cdd6c482 6949static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6950{
413ee3b4 6951 char comm[TASK_COMM_LEN];
8d1b2d93 6952 unsigned int size;
8d1b2d93 6953
413ee3b4 6954 memset(comm, 0, sizeof(comm));
96b02d78 6955 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6956 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6957
6958 comm_event->comm = comm;
6959 comm_event->comm_size = size;
6960
cdd6c482 6961 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6962
aab5b71e 6963 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6964 comm_event,
6965 NULL);
8d1b2d93
PZ
6966}
6967
82b89778 6968void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6969{
9ee318a7
PZ
6970 struct perf_comm_event comm_event;
6971
cdd6c482 6972 if (!atomic_read(&nr_comm_events))
9ee318a7 6973 return;
a63eaf34 6974
9ee318a7 6975 comm_event = (struct perf_comm_event){
8d1b2d93 6976 .task = task,
573402db
PZ
6977 /* .comm */
6978 /* .comm_size */
cdd6c482 6979 .event_id = {
573402db 6980 .header = {
cdd6c482 6981 .type = PERF_RECORD_COMM,
82b89778 6982 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6983 /* .size */
6984 },
6985 /* .pid */
6986 /* .tid */
8d1b2d93
PZ
6987 },
6988 };
6989
cdd6c482 6990 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6991}
6992
e4222673
HB
6993/*
6994 * namespaces tracking
6995 */
6996
6997struct perf_namespaces_event {
6998 struct task_struct *task;
6999
7000 struct {
7001 struct perf_event_header header;
7002
7003 u32 pid;
7004 u32 tid;
7005 u64 nr_namespaces;
7006 struct perf_ns_link_info link_info[NR_NAMESPACES];
7007 } event_id;
7008};
7009
7010static int perf_event_namespaces_match(struct perf_event *event)
7011{
7012 return event->attr.namespaces;
7013}
7014
7015static void perf_event_namespaces_output(struct perf_event *event,
7016 void *data)
7017{
7018 struct perf_namespaces_event *namespaces_event = data;
7019 struct perf_output_handle handle;
7020 struct perf_sample_data sample;
34900ec5 7021 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
7022 int ret;
7023
7024 if (!perf_event_namespaces_match(event))
7025 return;
7026
7027 perf_event_header__init_id(&namespaces_event->event_id.header,
7028 &sample, event);
7029 ret = perf_output_begin(&handle, event,
7030 namespaces_event->event_id.header.size);
7031 if (ret)
34900ec5 7032 goto out;
e4222673
HB
7033
7034 namespaces_event->event_id.pid = perf_event_pid(event,
7035 namespaces_event->task);
7036 namespaces_event->event_id.tid = perf_event_tid(event,
7037 namespaces_event->task);
7038
7039 perf_output_put(&handle, namespaces_event->event_id);
7040
7041 perf_event__output_id_sample(event, &handle, &sample);
7042
7043 perf_output_end(&handle);
34900ec5
JO
7044out:
7045 namespaces_event->event_id.header.size = header_size;
e4222673
HB
7046}
7047
7048static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7049 struct task_struct *task,
7050 const struct proc_ns_operations *ns_ops)
7051{
7052 struct path ns_path;
7053 struct inode *ns_inode;
7054 void *error;
7055
7056 error = ns_get_path(&ns_path, task, ns_ops);
7057 if (!error) {
7058 ns_inode = ns_path.dentry->d_inode;
7059 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7060 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 7061 path_put(&ns_path);
e4222673
HB
7062 }
7063}
7064
7065void perf_event_namespaces(struct task_struct *task)
7066{
7067 struct perf_namespaces_event namespaces_event;
7068 struct perf_ns_link_info *ns_link_info;
7069
7070 if (!atomic_read(&nr_namespaces_events))
7071 return;
7072
7073 namespaces_event = (struct perf_namespaces_event){
7074 .task = task,
7075 .event_id = {
7076 .header = {
7077 .type = PERF_RECORD_NAMESPACES,
7078 .misc = 0,
7079 .size = sizeof(namespaces_event.event_id),
7080 },
7081 /* .pid */
7082 /* .tid */
7083 .nr_namespaces = NR_NAMESPACES,
7084 /* .link_info[NR_NAMESPACES] */
7085 },
7086 };
7087
7088 ns_link_info = namespaces_event.event_id.link_info;
7089
7090 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7091 task, &mntns_operations);
7092
7093#ifdef CONFIG_USER_NS
7094 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7095 task, &userns_operations);
7096#endif
7097#ifdef CONFIG_NET_NS
7098 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7099 task, &netns_operations);
7100#endif
7101#ifdef CONFIG_UTS_NS
7102 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7103 task, &utsns_operations);
7104#endif
7105#ifdef CONFIG_IPC_NS
7106 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7107 task, &ipcns_operations);
7108#endif
7109#ifdef CONFIG_PID_NS
7110 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7111 task, &pidns_operations);
7112#endif
7113#ifdef CONFIG_CGROUPS
7114 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7115 task, &cgroupns_operations);
7116#endif
7117
7118 perf_iterate_sb(perf_event_namespaces_output,
7119 &namespaces_event,
7120 NULL);
7121}
7122
0a4a9391
PZ
7123/*
7124 * mmap tracking
7125 */
7126
7127struct perf_mmap_event {
089dd79d
PZ
7128 struct vm_area_struct *vma;
7129
7130 const char *file_name;
7131 int file_size;
13d7a241
SE
7132 int maj, min;
7133 u64 ino;
7134 u64 ino_generation;
f972eb63 7135 u32 prot, flags;
0a4a9391
PZ
7136
7137 struct {
7138 struct perf_event_header header;
7139
7140 u32 pid;
7141 u32 tid;
7142 u64 start;
7143 u64 len;
7144 u64 pgoff;
cdd6c482 7145 } event_id;
0a4a9391
PZ
7146};
7147
67516844
JO
7148static int perf_event_mmap_match(struct perf_event *event,
7149 void *data)
7150{
7151 struct perf_mmap_event *mmap_event = data;
7152 struct vm_area_struct *vma = mmap_event->vma;
7153 int executable = vma->vm_flags & VM_EXEC;
7154
7155 return (!executable && event->attr.mmap_data) ||
13d7a241 7156 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
7157}
7158
cdd6c482 7159static void perf_event_mmap_output(struct perf_event *event,
52d857a8 7160 void *data)
0a4a9391 7161{
52d857a8 7162 struct perf_mmap_event *mmap_event = data;
0a4a9391 7163 struct perf_output_handle handle;
c980d109 7164 struct perf_sample_data sample;
cdd6c482 7165 int size = mmap_event->event_id.header.size;
c980d109 7166 int ret;
0a4a9391 7167
67516844
JO
7168 if (!perf_event_mmap_match(event, data))
7169 return;
7170
13d7a241
SE
7171 if (event->attr.mmap2) {
7172 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7173 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7174 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7175 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 7176 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
7177 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7178 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
7179 }
7180
c980d109
ACM
7181 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7182 ret = perf_output_begin(&handle, event,
a7ac67ea 7183 mmap_event->event_id.header.size);
0a4a9391 7184 if (ret)
c980d109 7185 goto out;
0a4a9391 7186
cdd6c482
IM
7187 mmap_event->event_id.pid = perf_event_pid(event, current);
7188 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 7189
cdd6c482 7190 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
7191
7192 if (event->attr.mmap2) {
7193 perf_output_put(&handle, mmap_event->maj);
7194 perf_output_put(&handle, mmap_event->min);
7195 perf_output_put(&handle, mmap_event->ino);
7196 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
7197 perf_output_put(&handle, mmap_event->prot);
7198 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
7199 }
7200
76369139 7201 __output_copy(&handle, mmap_event->file_name,
0a4a9391 7202 mmap_event->file_size);
c980d109
ACM
7203
7204 perf_event__output_id_sample(event, &handle, &sample);
7205
78d613eb 7206 perf_output_end(&handle);
c980d109
ACM
7207out:
7208 mmap_event->event_id.header.size = size;
0a4a9391
PZ
7209}
7210
cdd6c482 7211static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 7212{
089dd79d
PZ
7213 struct vm_area_struct *vma = mmap_event->vma;
7214 struct file *file = vma->vm_file;
13d7a241
SE
7215 int maj = 0, min = 0;
7216 u64 ino = 0, gen = 0;
f972eb63 7217 u32 prot = 0, flags = 0;
0a4a9391
PZ
7218 unsigned int size;
7219 char tmp[16];
7220 char *buf = NULL;
2c42cfbf 7221 char *name;
413ee3b4 7222
0b3589be
PZ
7223 if (vma->vm_flags & VM_READ)
7224 prot |= PROT_READ;
7225 if (vma->vm_flags & VM_WRITE)
7226 prot |= PROT_WRITE;
7227 if (vma->vm_flags & VM_EXEC)
7228 prot |= PROT_EXEC;
7229
7230 if (vma->vm_flags & VM_MAYSHARE)
7231 flags = MAP_SHARED;
7232 else
7233 flags = MAP_PRIVATE;
7234
7235 if (vma->vm_flags & VM_DENYWRITE)
7236 flags |= MAP_DENYWRITE;
7237 if (vma->vm_flags & VM_MAYEXEC)
7238 flags |= MAP_EXECUTABLE;
7239 if (vma->vm_flags & VM_LOCKED)
7240 flags |= MAP_LOCKED;
7241 if (vma->vm_flags & VM_HUGETLB)
7242 flags |= MAP_HUGETLB;
7243
0a4a9391 7244 if (file) {
13d7a241
SE
7245 struct inode *inode;
7246 dev_t dev;
3ea2f2b9 7247
2c42cfbf 7248 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 7249 if (!buf) {
c7e548b4
ON
7250 name = "//enomem";
7251 goto cpy_name;
0a4a9391 7252 }
413ee3b4 7253 /*
3ea2f2b9 7254 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
7255 * need to add enough zero bytes after the string to handle
7256 * the 64bit alignment we do later.
7257 */
9bf39ab2 7258 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 7259 if (IS_ERR(name)) {
c7e548b4
ON
7260 name = "//toolong";
7261 goto cpy_name;
0a4a9391 7262 }
13d7a241
SE
7263 inode = file_inode(vma->vm_file);
7264 dev = inode->i_sb->s_dev;
7265 ino = inode->i_ino;
7266 gen = inode->i_generation;
7267 maj = MAJOR(dev);
7268 min = MINOR(dev);
f972eb63 7269
c7e548b4 7270 goto got_name;
0a4a9391 7271 } else {
fbe26abe
JO
7272 if (vma->vm_ops && vma->vm_ops->name) {
7273 name = (char *) vma->vm_ops->name(vma);
7274 if (name)
7275 goto cpy_name;
7276 }
7277
2c42cfbf 7278 name = (char *)arch_vma_name(vma);
c7e548b4
ON
7279 if (name)
7280 goto cpy_name;
089dd79d 7281
32c5fb7e 7282 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 7283 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
7284 name = "[heap]";
7285 goto cpy_name;
32c5fb7e
ON
7286 }
7287 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 7288 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
7289 name = "[stack]";
7290 goto cpy_name;
089dd79d
PZ
7291 }
7292
c7e548b4
ON
7293 name = "//anon";
7294 goto cpy_name;
0a4a9391
PZ
7295 }
7296
c7e548b4
ON
7297cpy_name:
7298 strlcpy(tmp, name, sizeof(tmp));
7299 name = tmp;
0a4a9391 7300got_name:
2c42cfbf
PZ
7301 /*
7302 * Since our buffer works in 8 byte units we need to align our string
7303 * size to a multiple of 8. However, we must guarantee the tail end is
7304 * zero'd out to avoid leaking random bits to userspace.
7305 */
7306 size = strlen(name)+1;
7307 while (!IS_ALIGNED(size, sizeof(u64)))
7308 name[size++] = '\0';
0a4a9391
PZ
7309
7310 mmap_event->file_name = name;
7311 mmap_event->file_size = size;
13d7a241
SE
7312 mmap_event->maj = maj;
7313 mmap_event->min = min;
7314 mmap_event->ino = ino;
7315 mmap_event->ino_generation = gen;
f972eb63
PZ
7316 mmap_event->prot = prot;
7317 mmap_event->flags = flags;
0a4a9391 7318
2fe85427
SE
7319 if (!(vma->vm_flags & VM_EXEC))
7320 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7321
cdd6c482 7322 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7323
aab5b71e 7324 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7325 mmap_event,
7326 NULL);
665c2142 7327
0a4a9391
PZ
7328 kfree(buf);
7329}
7330
375637bc
AS
7331/*
7332 * Check whether inode and address range match filter criteria.
7333 */
7334static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7335 struct file *file, unsigned long offset,
7336 unsigned long size)
7337{
9511bce9 7338 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
7339 return false;
7340
7341 if (filter->offset > offset + size)
7342 return false;
7343
7344 if (filter->offset + filter->size < offset)
7345 return false;
7346
7347 return true;
7348}
7349
7350static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7351{
7352 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7353 struct vm_area_struct *vma = data;
7354 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7355 struct file *file = vma->vm_file;
7356 struct perf_addr_filter *filter;
7357 unsigned int restart = 0, count = 0;
7358
7359 if (!has_addr_filter(event))
7360 return;
7361
7362 if (!file)
7363 return;
7364
7365 raw_spin_lock_irqsave(&ifh->lock, flags);
7366 list_for_each_entry(filter, &ifh->list, entry) {
7367 if (perf_addr_filter_match(filter, file, off,
7368 vma->vm_end - vma->vm_start)) {
7369 event->addr_filters_offs[count] = vma->vm_start;
7370 restart++;
7371 }
7372
7373 count++;
7374 }
7375
7376 if (restart)
7377 event->addr_filters_gen++;
7378 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7379
7380 if (restart)
767ae086 7381 perf_event_stop(event, 1);
375637bc
AS
7382}
7383
7384/*
7385 * Adjust all task's events' filters to the new vma
7386 */
7387static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7388{
7389 struct perf_event_context *ctx;
7390 int ctxn;
7391
12b40a23
MP
7392 /*
7393 * Data tracing isn't supported yet and as such there is no need
7394 * to keep track of anything that isn't related to executable code:
7395 */
7396 if (!(vma->vm_flags & VM_EXEC))
7397 return;
7398
375637bc
AS
7399 rcu_read_lock();
7400 for_each_task_context_nr(ctxn) {
7401 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7402 if (!ctx)
7403 continue;
7404
aab5b71e 7405 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7406 }
7407 rcu_read_unlock();
7408}
7409
3af9e859 7410void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7411{
9ee318a7
PZ
7412 struct perf_mmap_event mmap_event;
7413
cdd6c482 7414 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7415 return;
7416
7417 mmap_event = (struct perf_mmap_event){
089dd79d 7418 .vma = vma,
573402db
PZ
7419 /* .file_name */
7420 /* .file_size */
cdd6c482 7421 .event_id = {
573402db 7422 .header = {
cdd6c482 7423 .type = PERF_RECORD_MMAP,
39447b38 7424 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7425 /* .size */
7426 },
7427 /* .pid */
7428 /* .tid */
089dd79d
PZ
7429 .start = vma->vm_start,
7430 .len = vma->vm_end - vma->vm_start,
3a0304e9 7431 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7432 },
13d7a241
SE
7433 /* .maj (attr_mmap2 only) */
7434 /* .min (attr_mmap2 only) */
7435 /* .ino (attr_mmap2 only) */
7436 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7437 /* .prot (attr_mmap2 only) */
7438 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7439 };
7440
375637bc 7441 perf_addr_filters_adjust(vma);
cdd6c482 7442 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7443}
7444
68db7e98
AS
7445void perf_event_aux_event(struct perf_event *event, unsigned long head,
7446 unsigned long size, u64 flags)
7447{
7448 struct perf_output_handle handle;
7449 struct perf_sample_data sample;
7450 struct perf_aux_event {
7451 struct perf_event_header header;
7452 u64 offset;
7453 u64 size;
7454 u64 flags;
7455 } rec = {
7456 .header = {
7457 .type = PERF_RECORD_AUX,
7458 .misc = 0,
7459 .size = sizeof(rec),
7460 },
7461 .offset = head,
7462 .size = size,
7463 .flags = flags,
7464 };
7465 int ret;
7466
7467 perf_event_header__init_id(&rec.header, &sample, event);
7468 ret = perf_output_begin(&handle, event, rec.header.size);
7469
7470 if (ret)
7471 return;
7472
7473 perf_output_put(&handle, rec);
7474 perf_event__output_id_sample(event, &handle, &sample);
7475
7476 perf_output_end(&handle);
7477}
7478
f38b0dbb
KL
7479/*
7480 * Lost/dropped samples logging
7481 */
7482void perf_log_lost_samples(struct perf_event *event, u64 lost)
7483{
7484 struct perf_output_handle handle;
7485 struct perf_sample_data sample;
7486 int ret;
7487
7488 struct {
7489 struct perf_event_header header;
7490 u64 lost;
7491 } lost_samples_event = {
7492 .header = {
7493 .type = PERF_RECORD_LOST_SAMPLES,
7494 .misc = 0,
7495 .size = sizeof(lost_samples_event),
7496 },
7497 .lost = lost,
7498 };
7499
7500 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7501
7502 ret = perf_output_begin(&handle, event,
7503 lost_samples_event.header.size);
7504 if (ret)
7505 return;
7506
7507 perf_output_put(&handle, lost_samples_event);
7508 perf_event__output_id_sample(event, &handle, &sample);
7509 perf_output_end(&handle);
7510}
7511
45ac1403
AH
7512/*
7513 * context_switch tracking
7514 */
7515
7516struct perf_switch_event {
7517 struct task_struct *task;
7518 struct task_struct *next_prev;
7519
7520 struct {
7521 struct perf_event_header header;
7522 u32 next_prev_pid;
7523 u32 next_prev_tid;
7524 } event_id;
7525};
7526
7527static int perf_event_switch_match(struct perf_event *event)
7528{
7529 return event->attr.context_switch;
7530}
7531
7532static void perf_event_switch_output(struct perf_event *event, void *data)
7533{
7534 struct perf_switch_event *se = data;
7535 struct perf_output_handle handle;
7536 struct perf_sample_data sample;
7537 int ret;
7538
7539 if (!perf_event_switch_match(event))
7540 return;
7541
7542 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7543 if (event->ctx->task) {
7544 se->event_id.header.type = PERF_RECORD_SWITCH;
7545 se->event_id.header.size = sizeof(se->event_id.header);
7546 } else {
7547 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7548 se->event_id.header.size = sizeof(se->event_id);
7549 se->event_id.next_prev_pid =
7550 perf_event_pid(event, se->next_prev);
7551 se->event_id.next_prev_tid =
7552 perf_event_tid(event, se->next_prev);
7553 }
7554
7555 perf_event_header__init_id(&se->event_id.header, &sample, event);
7556
7557 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7558 if (ret)
7559 return;
7560
7561 if (event->ctx->task)
7562 perf_output_put(&handle, se->event_id.header);
7563 else
7564 perf_output_put(&handle, se->event_id);
7565
7566 perf_event__output_id_sample(event, &handle, &sample);
7567
7568 perf_output_end(&handle);
7569}
7570
7571static void perf_event_switch(struct task_struct *task,
7572 struct task_struct *next_prev, bool sched_in)
7573{
7574 struct perf_switch_event switch_event;
7575
7576 /* N.B. caller checks nr_switch_events != 0 */
7577
7578 switch_event = (struct perf_switch_event){
7579 .task = task,
7580 .next_prev = next_prev,
7581 .event_id = {
7582 .header = {
7583 /* .type */
7584 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7585 /* .size */
7586 },
7587 /* .next_prev_pid */
7588 /* .next_prev_tid */
7589 },
7590 };
7591
101592b4
AB
7592 if (!sched_in && task->state == TASK_RUNNING)
7593 switch_event.event_id.header.misc |=
7594 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7595
aab5b71e 7596 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7597 &switch_event,
7598 NULL);
7599}
7600
a78ac325
PZ
7601/*
7602 * IRQ throttle logging
7603 */
7604
cdd6c482 7605static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7606{
7607 struct perf_output_handle handle;
c980d109 7608 struct perf_sample_data sample;
a78ac325
PZ
7609 int ret;
7610
7611 struct {
7612 struct perf_event_header header;
7613 u64 time;
cca3f454 7614 u64 id;
7f453c24 7615 u64 stream_id;
a78ac325
PZ
7616 } throttle_event = {
7617 .header = {
cdd6c482 7618 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7619 .misc = 0,
7620 .size = sizeof(throttle_event),
7621 },
34f43927 7622 .time = perf_event_clock(event),
cdd6c482
IM
7623 .id = primary_event_id(event),
7624 .stream_id = event->id,
a78ac325
PZ
7625 };
7626
966ee4d6 7627 if (enable)
cdd6c482 7628 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7629
c980d109
ACM
7630 perf_event_header__init_id(&throttle_event.header, &sample, event);
7631
7632 ret = perf_output_begin(&handle, event,
a7ac67ea 7633 throttle_event.header.size);
a78ac325
PZ
7634 if (ret)
7635 return;
7636
7637 perf_output_put(&handle, throttle_event);
c980d109 7638 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7639 perf_output_end(&handle);
7640}
7641
8d4e6c4c
AS
7642void perf_event_itrace_started(struct perf_event *event)
7643{
7644 event->attach_state |= PERF_ATTACH_ITRACE;
7645}
7646
ec0d7729
AS
7647static void perf_log_itrace_start(struct perf_event *event)
7648{
7649 struct perf_output_handle handle;
7650 struct perf_sample_data sample;
7651 struct perf_aux_event {
7652 struct perf_event_header header;
7653 u32 pid;
7654 u32 tid;
7655 } rec;
7656 int ret;
7657
7658 if (event->parent)
7659 event = event->parent;
7660
7661 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7662 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7663 return;
7664
ec0d7729
AS
7665 rec.header.type = PERF_RECORD_ITRACE_START;
7666 rec.header.misc = 0;
7667 rec.header.size = sizeof(rec);
7668 rec.pid = perf_event_pid(event, current);
7669 rec.tid = perf_event_tid(event, current);
7670
7671 perf_event_header__init_id(&rec.header, &sample, event);
7672 ret = perf_output_begin(&handle, event, rec.header.size);
7673
7674 if (ret)
7675 return;
7676
7677 perf_output_put(&handle, rec);
7678 perf_event__output_id_sample(event, &handle, &sample);
7679
7680 perf_output_end(&handle);
7681}
7682
475113d9
JO
7683static int
7684__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7685{
cdd6c482 7686 struct hw_perf_event *hwc = &event->hw;
79f14641 7687 int ret = 0;
475113d9 7688 u64 seq;
96398826 7689
e050e3f0
SE
7690 seq = __this_cpu_read(perf_throttled_seq);
7691 if (seq != hwc->interrupts_seq) {
7692 hwc->interrupts_seq = seq;
7693 hwc->interrupts = 1;
7694 } else {
7695 hwc->interrupts++;
7696 if (unlikely(throttle
7697 && hwc->interrupts >= max_samples_per_tick)) {
7698 __this_cpu_inc(perf_throttled_count);
555e0c1e 7699 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7700 hwc->interrupts = MAX_INTERRUPTS;
7701 perf_log_throttle(event, 0);
a78ac325
PZ
7702 ret = 1;
7703 }
e050e3f0 7704 }
60db5e09 7705
cdd6c482 7706 if (event->attr.freq) {
def0a9b2 7707 u64 now = perf_clock();
abd50713 7708 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7709
abd50713 7710 hwc->freq_time_stamp = now;
bd2b5b12 7711
abd50713 7712 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7713 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7714 }
7715
475113d9
JO
7716 return ret;
7717}
7718
7719int perf_event_account_interrupt(struct perf_event *event)
7720{
7721 return __perf_event_account_interrupt(event, 1);
7722}
7723
7724/*
7725 * Generic event overflow handling, sampling.
7726 */
7727
7728static int __perf_event_overflow(struct perf_event *event,
7729 int throttle, struct perf_sample_data *data,
7730 struct pt_regs *regs)
7731{
7732 int events = atomic_read(&event->event_limit);
7733 int ret = 0;
7734
7735 /*
7736 * Non-sampling counters might still use the PMI to fold short
7737 * hardware counters, ignore those.
7738 */
7739 if (unlikely(!is_sampling_event(event)))
7740 return 0;
7741
7742 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7743
2023b359
PZ
7744 /*
7745 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7746 * events
2023b359
PZ
7747 */
7748
cdd6c482
IM
7749 event->pending_kill = POLL_IN;
7750 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7751 ret = 1;
cdd6c482 7752 event->pending_kill = POLL_HUP;
5aab90ce
JO
7753
7754 perf_event_disable_inatomic(event);
79f14641
PZ
7755 }
7756
aa6a5f3c 7757 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7758
fed66e2c 7759 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7760 event->pending_wakeup = 1;
7761 irq_work_queue(&event->pending);
f506b3dc
PZ
7762 }
7763
79f14641 7764 return ret;
f6c7d5fe
PZ
7765}
7766
a8b0ca17 7767int perf_event_overflow(struct perf_event *event,
5622f295
MM
7768 struct perf_sample_data *data,
7769 struct pt_regs *regs)
850bc73f 7770{
a8b0ca17 7771 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7772}
7773
15dbf27c 7774/*
cdd6c482 7775 * Generic software event infrastructure
15dbf27c
PZ
7776 */
7777
b28ab83c
PZ
7778struct swevent_htable {
7779 struct swevent_hlist *swevent_hlist;
7780 struct mutex hlist_mutex;
7781 int hlist_refcount;
7782
7783 /* Recursion avoidance in each contexts */
7784 int recursion[PERF_NR_CONTEXTS];
7785};
7786
7787static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7788
7b4b6658 7789/*
cdd6c482
IM
7790 * We directly increment event->count and keep a second value in
7791 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7792 * is kept in the range [-sample_period, 0] so that we can use the
7793 * sign as trigger.
7794 */
7795
ab573844 7796u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7797{
cdd6c482 7798 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7799 u64 period = hwc->last_period;
7800 u64 nr, offset;
7801 s64 old, val;
7802
7803 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7804
7805again:
e7850595 7806 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7807 if (val < 0)
7808 return 0;
15dbf27c 7809
7b4b6658
PZ
7810 nr = div64_u64(period + val, period);
7811 offset = nr * period;
7812 val -= offset;
e7850595 7813 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7814 goto again;
15dbf27c 7815
7b4b6658 7816 return nr;
15dbf27c
PZ
7817}
7818
0cff784a 7819static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7820 struct perf_sample_data *data,
5622f295 7821 struct pt_regs *regs)
15dbf27c 7822{
cdd6c482 7823 struct hw_perf_event *hwc = &event->hw;
850bc73f 7824 int throttle = 0;
15dbf27c 7825
0cff784a
PZ
7826 if (!overflow)
7827 overflow = perf_swevent_set_period(event);
15dbf27c 7828
7b4b6658
PZ
7829 if (hwc->interrupts == MAX_INTERRUPTS)
7830 return;
15dbf27c 7831
7b4b6658 7832 for (; overflow; overflow--) {
a8b0ca17 7833 if (__perf_event_overflow(event, throttle,
5622f295 7834 data, regs)) {
7b4b6658
PZ
7835 /*
7836 * We inhibit the overflow from happening when
7837 * hwc->interrupts == MAX_INTERRUPTS.
7838 */
7839 break;
7840 }
cf450a73 7841 throttle = 1;
7b4b6658 7842 }
15dbf27c
PZ
7843}
7844
a4eaf7f1 7845static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7846 struct perf_sample_data *data,
5622f295 7847 struct pt_regs *regs)
7b4b6658 7848{
cdd6c482 7849 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7850
e7850595 7851 local64_add(nr, &event->count);
d6d020e9 7852
0cff784a
PZ
7853 if (!regs)
7854 return;
7855
6c7e550f 7856 if (!is_sampling_event(event))
7b4b6658 7857 return;
d6d020e9 7858
5d81e5cf
AV
7859 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7860 data->period = nr;
7861 return perf_swevent_overflow(event, 1, data, regs);
7862 } else
7863 data->period = event->hw.last_period;
7864
0cff784a 7865 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7866 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7867
e7850595 7868 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7869 return;
df1a132b 7870
a8b0ca17 7871 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7872}
7873
f5ffe02e
FW
7874static int perf_exclude_event(struct perf_event *event,
7875 struct pt_regs *regs)
7876{
a4eaf7f1 7877 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7878 return 1;
a4eaf7f1 7879
f5ffe02e
FW
7880 if (regs) {
7881 if (event->attr.exclude_user && user_mode(regs))
7882 return 1;
7883
7884 if (event->attr.exclude_kernel && !user_mode(regs))
7885 return 1;
7886 }
7887
7888 return 0;
7889}
7890
cdd6c482 7891static int perf_swevent_match(struct perf_event *event,
1c432d89 7892 enum perf_type_id type,
6fb2915d
LZ
7893 u32 event_id,
7894 struct perf_sample_data *data,
7895 struct pt_regs *regs)
15dbf27c 7896{
cdd6c482 7897 if (event->attr.type != type)
a21ca2ca 7898 return 0;
f5ffe02e 7899
cdd6c482 7900 if (event->attr.config != event_id)
15dbf27c
PZ
7901 return 0;
7902
f5ffe02e
FW
7903 if (perf_exclude_event(event, regs))
7904 return 0;
15dbf27c
PZ
7905
7906 return 1;
7907}
7908
76e1d904
FW
7909static inline u64 swevent_hash(u64 type, u32 event_id)
7910{
7911 u64 val = event_id | (type << 32);
7912
7913 return hash_64(val, SWEVENT_HLIST_BITS);
7914}
7915
49f135ed
FW
7916static inline struct hlist_head *
7917__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7918{
49f135ed
FW
7919 u64 hash = swevent_hash(type, event_id);
7920
7921 return &hlist->heads[hash];
7922}
76e1d904 7923
49f135ed
FW
7924/* For the read side: events when they trigger */
7925static inline struct hlist_head *
b28ab83c 7926find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7927{
7928 struct swevent_hlist *hlist;
76e1d904 7929
b28ab83c 7930 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7931 if (!hlist)
7932 return NULL;
7933
49f135ed
FW
7934 return __find_swevent_head(hlist, type, event_id);
7935}
7936
7937/* For the event head insertion and removal in the hlist */
7938static inline struct hlist_head *
b28ab83c 7939find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7940{
7941 struct swevent_hlist *hlist;
7942 u32 event_id = event->attr.config;
7943 u64 type = event->attr.type;
7944
7945 /*
7946 * Event scheduling is always serialized against hlist allocation
7947 * and release. Which makes the protected version suitable here.
7948 * The context lock guarantees that.
7949 */
b28ab83c 7950 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7951 lockdep_is_held(&event->ctx->lock));
7952 if (!hlist)
7953 return NULL;
7954
7955 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7956}
7957
7958static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7959 u64 nr,
76e1d904
FW
7960 struct perf_sample_data *data,
7961 struct pt_regs *regs)
15dbf27c 7962{
4a32fea9 7963 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7964 struct perf_event *event;
76e1d904 7965 struct hlist_head *head;
15dbf27c 7966
76e1d904 7967 rcu_read_lock();
b28ab83c 7968 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7969 if (!head)
7970 goto end;
7971
b67bfe0d 7972 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7973 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7974 perf_swevent_event(event, nr, data, regs);
15dbf27c 7975 }
76e1d904
FW
7976end:
7977 rcu_read_unlock();
15dbf27c
PZ
7978}
7979
86038c5e
PZI
7980DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7981
4ed7c92d 7982int perf_swevent_get_recursion_context(void)
96f6d444 7983{
4a32fea9 7984 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7985
b28ab83c 7986 return get_recursion_context(swhash->recursion);
96f6d444 7987}
645e8cc0 7988EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7989
98b5c2c6 7990void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7991{
4a32fea9 7992 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7993
b28ab83c 7994 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7995}
15dbf27c 7996
86038c5e 7997void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7998{
a4234bfc 7999 struct perf_sample_data data;
4ed7c92d 8000
86038c5e 8001 if (WARN_ON_ONCE(!regs))
4ed7c92d 8002 return;
a4234bfc 8003
fd0d000b 8004 perf_sample_data_init(&data, addr, 0);
a8b0ca17 8005 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
8006}
8007
8008void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8009{
8010 int rctx;
8011
8012 preempt_disable_notrace();
8013 rctx = perf_swevent_get_recursion_context();
8014 if (unlikely(rctx < 0))
8015 goto fail;
8016
8017 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
8018
8019 perf_swevent_put_recursion_context(rctx);
86038c5e 8020fail:
1c024eca 8021 preempt_enable_notrace();
b8e83514
PZ
8022}
8023
cdd6c482 8024static void perf_swevent_read(struct perf_event *event)
15dbf27c 8025{
15dbf27c
PZ
8026}
8027
a4eaf7f1 8028static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 8029{
4a32fea9 8030 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8031 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
8032 struct hlist_head *head;
8033
6c7e550f 8034 if (is_sampling_event(event)) {
7b4b6658 8035 hwc->last_period = hwc->sample_period;
cdd6c482 8036 perf_swevent_set_period(event);
7b4b6658 8037 }
76e1d904 8038
a4eaf7f1
PZ
8039 hwc->state = !(flags & PERF_EF_START);
8040
b28ab83c 8041 head = find_swevent_head(swhash, event);
12ca6ad2 8042 if (WARN_ON_ONCE(!head))
76e1d904
FW
8043 return -EINVAL;
8044
8045 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 8046 perf_event_update_userpage(event);
76e1d904 8047
15dbf27c
PZ
8048 return 0;
8049}
8050
a4eaf7f1 8051static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 8052{
76e1d904 8053 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
8054}
8055
a4eaf7f1 8056static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 8057{
a4eaf7f1 8058 event->hw.state = 0;
d6d020e9 8059}
aa9c4c0f 8060
a4eaf7f1 8061static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 8062{
a4eaf7f1 8063 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
8064}
8065
49f135ed
FW
8066/* Deref the hlist from the update side */
8067static inline struct swevent_hlist *
b28ab83c 8068swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 8069{
b28ab83c
PZ
8070 return rcu_dereference_protected(swhash->swevent_hlist,
8071 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
8072}
8073
b28ab83c 8074static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 8075{
b28ab83c 8076 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 8077
49f135ed 8078 if (!hlist)
76e1d904
FW
8079 return;
8080
70691d4a 8081 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 8082 kfree_rcu(hlist, rcu_head);
76e1d904
FW
8083}
8084
3b364d7b 8085static void swevent_hlist_put_cpu(int cpu)
76e1d904 8086{
b28ab83c 8087 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 8088
b28ab83c 8089 mutex_lock(&swhash->hlist_mutex);
76e1d904 8090
b28ab83c
PZ
8091 if (!--swhash->hlist_refcount)
8092 swevent_hlist_release(swhash);
76e1d904 8093
b28ab83c 8094 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8095}
8096
3b364d7b 8097static void swevent_hlist_put(void)
76e1d904
FW
8098{
8099 int cpu;
8100
76e1d904 8101 for_each_possible_cpu(cpu)
3b364d7b 8102 swevent_hlist_put_cpu(cpu);
76e1d904
FW
8103}
8104
3b364d7b 8105static int swevent_hlist_get_cpu(int cpu)
76e1d904 8106{
b28ab83c 8107 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
8108 int err = 0;
8109
b28ab83c 8110 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
8111 if (!swevent_hlist_deref(swhash) &&
8112 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
8113 struct swevent_hlist *hlist;
8114
8115 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8116 if (!hlist) {
8117 err = -ENOMEM;
8118 goto exit;
8119 }
b28ab83c 8120 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8121 }
b28ab83c 8122 swhash->hlist_refcount++;
9ed6060d 8123exit:
b28ab83c 8124 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8125
8126 return err;
8127}
8128
3b364d7b 8129static int swevent_hlist_get(void)
76e1d904 8130{
3b364d7b 8131 int err, cpu, failed_cpu;
76e1d904 8132
a63fbed7 8133 mutex_lock(&pmus_lock);
76e1d904 8134 for_each_possible_cpu(cpu) {
3b364d7b 8135 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
8136 if (err) {
8137 failed_cpu = cpu;
8138 goto fail;
8139 }
8140 }
a63fbed7 8141 mutex_unlock(&pmus_lock);
76e1d904 8142 return 0;
9ed6060d 8143fail:
76e1d904
FW
8144 for_each_possible_cpu(cpu) {
8145 if (cpu == failed_cpu)
8146 break;
3b364d7b 8147 swevent_hlist_put_cpu(cpu);
76e1d904 8148 }
a63fbed7 8149 mutex_unlock(&pmus_lock);
76e1d904
FW
8150 return err;
8151}
8152
c5905afb 8153struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 8154
b0a873eb
PZ
8155static void sw_perf_event_destroy(struct perf_event *event)
8156{
8157 u64 event_id = event->attr.config;
95476b64 8158
b0a873eb
PZ
8159 WARN_ON(event->parent);
8160
c5905afb 8161 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 8162 swevent_hlist_put();
b0a873eb
PZ
8163}
8164
8165static int perf_swevent_init(struct perf_event *event)
8166{
8176cced 8167 u64 event_id = event->attr.config;
b0a873eb
PZ
8168
8169 if (event->attr.type != PERF_TYPE_SOFTWARE)
8170 return -ENOENT;
8171
2481c5fa
SE
8172 /*
8173 * no branch sampling for software events
8174 */
8175 if (has_branch_stack(event))
8176 return -EOPNOTSUPP;
8177
b0a873eb
PZ
8178 switch (event_id) {
8179 case PERF_COUNT_SW_CPU_CLOCK:
8180 case PERF_COUNT_SW_TASK_CLOCK:
8181 return -ENOENT;
8182
8183 default:
8184 break;
8185 }
8186
ce677831 8187 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
8188 return -ENOENT;
8189
8190 if (!event->parent) {
8191 int err;
8192
3b364d7b 8193 err = swevent_hlist_get();
b0a873eb
PZ
8194 if (err)
8195 return err;
8196
c5905afb 8197 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
8198 event->destroy = sw_perf_event_destroy;
8199 }
8200
8201 return 0;
8202}
8203
8204static struct pmu perf_swevent = {
89a1e187 8205 .task_ctx_nr = perf_sw_context,
95476b64 8206
34f43927
PZ
8207 .capabilities = PERF_PMU_CAP_NO_NMI,
8208
b0a873eb 8209 .event_init = perf_swevent_init,
a4eaf7f1
PZ
8210 .add = perf_swevent_add,
8211 .del = perf_swevent_del,
8212 .start = perf_swevent_start,
8213 .stop = perf_swevent_stop,
1c024eca 8214 .read = perf_swevent_read,
1c024eca
PZ
8215};
8216
b0a873eb
PZ
8217#ifdef CONFIG_EVENT_TRACING
8218
1c024eca
PZ
8219static int perf_tp_filter_match(struct perf_event *event,
8220 struct perf_sample_data *data)
8221{
7e3f977e 8222 void *record = data->raw->frag.data;
1c024eca 8223
b71b437e
PZ
8224 /* only top level events have filters set */
8225 if (event->parent)
8226 event = event->parent;
8227
1c024eca
PZ
8228 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8229 return 1;
8230 return 0;
8231}
8232
8233static int perf_tp_event_match(struct perf_event *event,
8234 struct perf_sample_data *data,
8235 struct pt_regs *regs)
8236{
a0f7d0f7
FW
8237 if (event->hw.state & PERF_HES_STOPPED)
8238 return 0;
580d607c
PZ
8239 /*
8240 * All tracepoints are from kernel-space.
8241 */
8242 if (event->attr.exclude_kernel)
1c024eca
PZ
8243 return 0;
8244
8245 if (!perf_tp_filter_match(event, data))
8246 return 0;
8247
8248 return 1;
8249}
8250
85b67bcb
AS
8251void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8252 struct trace_event_call *call, u64 count,
8253 struct pt_regs *regs, struct hlist_head *head,
8254 struct task_struct *task)
8255{
e87c6bc3 8256 if (bpf_prog_array_valid(call)) {
85b67bcb 8257 *(struct pt_regs **)raw_data = regs;
e87c6bc3 8258 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
8259 perf_swevent_put_recursion_context(rctx);
8260 return;
8261 }
8262 }
8263 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 8264 rctx, task);
85b67bcb
AS
8265}
8266EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8267
1e1dcd93 8268void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 8269 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 8270 struct task_struct *task)
95476b64
FW
8271{
8272 struct perf_sample_data data;
8fd0fbbe 8273 struct perf_event *event;
1c024eca 8274
95476b64 8275 struct perf_raw_record raw = {
7e3f977e
DB
8276 .frag = {
8277 .size = entry_size,
8278 .data = record,
8279 },
95476b64
FW
8280 };
8281
1e1dcd93 8282 perf_sample_data_init(&data, 0, 0);
95476b64
FW
8283 data.raw = &raw;
8284
1e1dcd93
AS
8285 perf_trace_buf_update(record, event_type);
8286
8fd0fbbe 8287 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 8288 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 8289 perf_swevent_event(event, count, &data, regs);
4f41c013 8290 }
ecc55f84 8291
e6dab5ff
AV
8292 /*
8293 * If we got specified a target task, also iterate its context and
8294 * deliver this event there too.
8295 */
8296 if (task && task != current) {
8297 struct perf_event_context *ctx;
8298 struct trace_entry *entry = record;
8299
8300 rcu_read_lock();
8301 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8302 if (!ctx)
8303 goto unlock;
8304
8305 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8306 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8307 continue;
8308 if (event->attr.config != entry->type)
8309 continue;
8310 if (perf_tp_event_match(event, &data, regs))
8311 perf_swevent_event(event, count, &data, regs);
8312 }
8313unlock:
8314 rcu_read_unlock();
8315 }
8316
ecc55f84 8317 perf_swevent_put_recursion_context(rctx);
95476b64
FW
8318}
8319EXPORT_SYMBOL_GPL(perf_tp_event);
8320
cdd6c482 8321static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 8322{
1c024eca 8323 perf_trace_destroy(event);
e077df4f
PZ
8324}
8325
b0a873eb 8326static int perf_tp_event_init(struct perf_event *event)
e077df4f 8327{
76e1d904
FW
8328 int err;
8329
b0a873eb
PZ
8330 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8331 return -ENOENT;
8332
2481c5fa
SE
8333 /*
8334 * no branch sampling for tracepoint events
8335 */
8336 if (has_branch_stack(event))
8337 return -EOPNOTSUPP;
8338
1c024eca
PZ
8339 err = perf_trace_init(event);
8340 if (err)
b0a873eb 8341 return err;
e077df4f 8342
cdd6c482 8343 event->destroy = tp_perf_event_destroy;
e077df4f 8344
b0a873eb
PZ
8345 return 0;
8346}
8347
8348static struct pmu perf_tracepoint = {
89a1e187
PZ
8349 .task_ctx_nr = perf_sw_context,
8350
b0a873eb 8351 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
8352 .add = perf_trace_add,
8353 .del = perf_trace_del,
8354 .start = perf_swevent_start,
8355 .stop = perf_swevent_stop,
b0a873eb 8356 .read = perf_swevent_read,
b0a873eb
PZ
8357};
8358
33ea4b24 8359#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
8360/*
8361 * Flags in config, used by dynamic PMU kprobe and uprobe
8362 * The flags should match following PMU_FORMAT_ATTR().
8363 *
8364 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8365 * if not set, create kprobe/uprobe
8366 */
8367enum perf_probe_config {
8368 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
8369};
8370
8371PMU_FORMAT_ATTR(retprobe, "config:0");
8372
8373static struct attribute *probe_attrs[] = {
8374 &format_attr_retprobe.attr,
8375 NULL,
8376};
8377
8378static struct attribute_group probe_format_group = {
8379 .name = "format",
8380 .attrs = probe_attrs,
8381};
8382
8383static const struct attribute_group *probe_attr_groups[] = {
8384 &probe_format_group,
8385 NULL,
8386};
33ea4b24 8387#endif
e12f03d7 8388
33ea4b24 8389#ifdef CONFIG_KPROBE_EVENTS
e12f03d7
SL
8390static int perf_kprobe_event_init(struct perf_event *event);
8391static struct pmu perf_kprobe = {
8392 .task_ctx_nr = perf_sw_context,
8393 .event_init = perf_kprobe_event_init,
8394 .add = perf_trace_add,
8395 .del = perf_trace_del,
8396 .start = perf_swevent_start,
8397 .stop = perf_swevent_stop,
8398 .read = perf_swevent_read,
8399 .attr_groups = probe_attr_groups,
8400};
8401
8402static int perf_kprobe_event_init(struct perf_event *event)
8403{
8404 int err;
8405 bool is_retprobe;
8406
8407 if (event->attr.type != perf_kprobe.type)
8408 return -ENOENT;
32e6e967
SL
8409
8410 if (!capable(CAP_SYS_ADMIN))
8411 return -EACCES;
8412
e12f03d7
SL
8413 /*
8414 * no branch sampling for probe events
8415 */
8416 if (has_branch_stack(event))
8417 return -EOPNOTSUPP;
8418
8419 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8420 err = perf_kprobe_init(event, is_retprobe);
8421 if (err)
8422 return err;
8423
8424 event->destroy = perf_kprobe_destroy;
8425
8426 return 0;
8427}
8428#endif /* CONFIG_KPROBE_EVENTS */
8429
33ea4b24
SL
8430#ifdef CONFIG_UPROBE_EVENTS
8431static int perf_uprobe_event_init(struct perf_event *event);
8432static struct pmu perf_uprobe = {
8433 .task_ctx_nr = perf_sw_context,
8434 .event_init = perf_uprobe_event_init,
8435 .add = perf_trace_add,
8436 .del = perf_trace_del,
8437 .start = perf_swevent_start,
8438 .stop = perf_swevent_stop,
8439 .read = perf_swevent_read,
8440 .attr_groups = probe_attr_groups,
8441};
8442
8443static int perf_uprobe_event_init(struct perf_event *event)
8444{
8445 int err;
8446 bool is_retprobe;
8447
8448 if (event->attr.type != perf_uprobe.type)
8449 return -ENOENT;
32e6e967
SL
8450
8451 if (!capable(CAP_SYS_ADMIN))
8452 return -EACCES;
8453
33ea4b24
SL
8454 /*
8455 * no branch sampling for probe events
8456 */
8457 if (has_branch_stack(event))
8458 return -EOPNOTSUPP;
8459
8460 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8461 err = perf_uprobe_init(event, is_retprobe);
8462 if (err)
8463 return err;
8464
8465 event->destroy = perf_uprobe_destroy;
8466
8467 return 0;
8468}
8469#endif /* CONFIG_UPROBE_EVENTS */
8470
b0a873eb
PZ
8471static inline void perf_tp_register(void)
8472{
2e80a82a 8473 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
8474#ifdef CONFIG_KPROBE_EVENTS
8475 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8476#endif
33ea4b24
SL
8477#ifdef CONFIG_UPROBE_EVENTS
8478 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8479#endif
e077df4f 8480}
6fb2915d 8481
6fb2915d
LZ
8482static void perf_event_free_filter(struct perf_event *event)
8483{
8484 ftrace_profile_free_filter(event);
8485}
8486
aa6a5f3c
AS
8487#ifdef CONFIG_BPF_SYSCALL
8488static void bpf_overflow_handler(struct perf_event *event,
8489 struct perf_sample_data *data,
8490 struct pt_regs *regs)
8491{
8492 struct bpf_perf_event_data_kern ctx = {
8493 .data = data,
7d9285e8 8494 .event = event,
aa6a5f3c
AS
8495 };
8496 int ret = 0;
8497
c895f6f7 8498 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
8499 preempt_disable();
8500 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8501 goto out;
8502 rcu_read_lock();
88575199 8503 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8504 rcu_read_unlock();
8505out:
8506 __this_cpu_dec(bpf_prog_active);
8507 preempt_enable();
8508 if (!ret)
8509 return;
8510
8511 event->orig_overflow_handler(event, data, regs);
8512}
8513
8514static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8515{
8516 struct bpf_prog *prog;
8517
8518 if (event->overflow_handler_context)
8519 /* hw breakpoint or kernel counter */
8520 return -EINVAL;
8521
8522 if (event->prog)
8523 return -EEXIST;
8524
8525 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8526 if (IS_ERR(prog))
8527 return PTR_ERR(prog);
8528
8529 event->prog = prog;
8530 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8531 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8532 return 0;
8533}
8534
8535static void perf_event_free_bpf_handler(struct perf_event *event)
8536{
8537 struct bpf_prog *prog = event->prog;
8538
8539 if (!prog)
8540 return;
8541
8542 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8543 event->prog = NULL;
8544 bpf_prog_put(prog);
8545}
8546#else
8547static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8548{
8549 return -EOPNOTSUPP;
8550}
8551static void perf_event_free_bpf_handler(struct perf_event *event)
8552{
8553}
8554#endif
8555
e12f03d7
SL
8556/*
8557 * returns true if the event is a tracepoint, or a kprobe/upprobe created
8558 * with perf_event_open()
8559 */
8560static inline bool perf_event_is_tracing(struct perf_event *event)
8561{
8562 if (event->pmu == &perf_tracepoint)
8563 return true;
8564#ifdef CONFIG_KPROBE_EVENTS
8565 if (event->pmu == &perf_kprobe)
8566 return true;
33ea4b24
SL
8567#endif
8568#ifdef CONFIG_UPROBE_EVENTS
8569 if (event->pmu == &perf_uprobe)
8570 return true;
e12f03d7
SL
8571#endif
8572 return false;
8573}
8574
2541517c
AS
8575static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8576{
cf5f5cea 8577 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 8578 struct bpf_prog *prog;
e87c6bc3 8579 int ret;
2541517c 8580
e12f03d7 8581 if (!perf_event_is_tracing(event))
f91840a3 8582 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 8583
98b5c2c6
AS
8584 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8585 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8586 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8587 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8588 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8589 return -EINVAL;
8590
8591 prog = bpf_prog_get(prog_fd);
8592 if (IS_ERR(prog))
8593 return PTR_ERR(prog);
8594
98b5c2c6 8595 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8596 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8597 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8598 /* valid fd, but invalid bpf program type */
8599 bpf_prog_put(prog);
8600 return -EINVAL;
8601 }
8602
9802d865
JB
8603 /* Kprobe override only works for kprobes, not uprobes. */
8604 if (prog->kprobe_override &&
8605 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8606 bpf_prog_put(prog);
8607 return -EINVAL;
8608 }
8609
cf5f5cea 8610 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8611 int off = trace_event_get_offsets(event->tp_event);
8612
8613 if (prog->aux->max_ctx_offset > off) {
8614 bpf_prog_put(prog);
8615 return -EACCES;
8616 }
8617 }
2541517c 8618
e87c6bc3
YS
8619 ret = perf_event_attach_bpf_prog(event, prog);
8620 if (ret)
8621 bpf_prog_put(prog);
8622 return ret;
2541517c
AS
8623}
8624
8625static void perf_event_free_bpf_prog(struct perf_event *event)
8626{
e12f03d7 8627 if (!perf_event_is_tracing(event)) {
0b4c6841 8628 perf_event_free_bpf_handler(event);
2541517c 8629 return;
2541517c 8630 }
e87c6bc3 8631 perf_event_detach_bpf_prog(event);
2541517c
AS
8632}
8633
e077df4f 8634#else
6fb2915d 8635
b0a873eb 8636static inline void perf_tp_register(void)
e077df4f 8637{
e077df4f 8638}
6fb2915d 8639
6fb2915d
LZ
8640static void perf_event_free_filter(struct perf_event *event)
8641{
8642}
8643
2541517c
AS
8644static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8645{
8646 return -ENOENT;
8647}
8648
8649static void perf_event_free_bpf_prog(struct perf_event *event)
8650{
8651}
07b139c8 8652#endif /* CONFIG_EVENT_TRACING */
e077df4f 8653
24f1e32c 8654#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8655void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8656{
f5ffe02e
FW
8657 struct perf_sample_data sample;
8658 struct pt_regs *regs = data;
8659
fd0d000b 8660 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8661
a4eaf7f1 8662 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8663 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8664}
8665#endif
8666
375637bc
AS
8667/*
8668 * Allocate a new address filter
8669 */
8670static struct perf_addr_filter *
8671perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8672{
8673 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8674 struct perf_addr_filter *filter;
8675
8676 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8677 if (!filter)
8678 return NULL;
8679
8680 INIT_LIST_HEAD(&filter->entry);
8681 list_add_tail(&filter->entry, filters);
8682
8683 return filter;
8684}
8685
8686static void free_filters_list(struct list_head *filters)
8687{
8688 struct perf_addr_filter *filter, *iter;
8689
8690 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 8691 path_put(&filter->path);
375637bc
AS
8692 list_del(&filter->entry);
8693 kfree(filter);
8694 }
8695}
8696
8697/*
8698 * Free existing address filters and optionally install new ones
8699 */
8700static void perf_addr_filters_splice(struct perf_event *event,
8701 struct list_head *head)
8702{
8703 unsigned long flags;
8704 LIST_HEAD(list);
8705
8706 if (!has_addr_filter(event))
8707 return;
8708
8709 /* don't bother with children, they don't have their own filters */
8710 if (event->parent)
8711 return;
8712
8713 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8714
8715 list_splice_init(&event->addr_filters.list, &list);
8716 if (head)
8717 list_splice(head, &event->addr_filters.list);
8718
8719 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8720
8721 free_filters_list(&list);
8722}
8723
8724/*
8725 * Scan through mm's vmas and see if one of them matches the
8726 * @filter; if so, adjust filter's address range.
8727 * Called with mm::mmap_sem down for reading.
8728 */
8729static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8730 struct mm_struct *mm)
8731{
8732 struct vm_area_struct *vma;
8733
8734 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8735 struct file *file = vma->vm_file;
8736 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8737 unsigned long vma_size = vma->vm_end - vma->vm_start;
8738
8739 if (!file)
8740 continue;
8741
8742 if (!perf_addr_filter_match(filter, file, off, vma_size))
8743 continue;
8744
8745 return vma->vm_start;
8746 }
8747
8748 return 0;
8749}
8750
8751/*
8752 * Update event's address range filters based on the
8753 * task's existing mappings, if any.
8754 */
8755static void perf_event_addr_filters_apply(struct perf_event *event)
8756{
8757 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8758 struct task_struct *task = READ_ONCE(event->ctx->task);
8759 struct perf_addr_filter *filter;
8760 struct mm_struct *mm = NULL;
8761 unsigned int count = 0;
8762 unsigned long flags;
8763
8764 /*
8765 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8766 * will stop on the parent's child_mutex that our caller is also holding
8767 */
8768 if (task == TASK_TOMBSTONE)
8769 return;
8770
6ce77bfd
AS
8771 if (!ifh->nr_file_filters)
8772 return;
8773
375637bc
AS
8774 mm = get_task_mm(event->ctx->task);
8775 if (!mm)
8776 goto restart;
8777
8778 down_read(&mm->mmap_sem);
8779
8780 raw_spin_lock_irqsave(&ifh->lock, flags);
8781 list_for_each_entry(filter, &ifh->list, entry) {
8782 event->addr_filters_offs[count] = 0;
8783
99f5bc9b
MP
8784 /*
8785 * Adjust base offset if the filter is associated to a binary
8786 * that needs to be mapped:
8787 */
9511bce9 8788 if (filter->path.dentry)
375637bc
AS
8789 event->addr_filters_offs[count] =
8790 perf_addr_filter_apply(filter, mm);
8791
8792 count++;
8793 }
8794
8795 event->addr_filters_gen++;
8796 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8797
8798 up_read(&mm->mmap_sem);
8799
8800 mmput(mm);
8801
8802restart:
767ae086 8803 perf_event_stop(event, 1);
375637bc
AS
8804}
8805
8806/*
8807 * Address range filtering: limiting the data to certain
8808 * instruction address ranges. Filters are ioctl()ed to us from
8809 * userspace as ascii strings.
8810 *
8811 * Filter string format:
8812 *
8813 * ACTION RANGE_SPEC
8814 * where ACTION is one of the
8815 * * "filter": limit the trace to this region
8816 * * "start": start tracing from this address
8817 * * "stop": stop tracing at this address/region;
8818 * RANGE_SPEC is
8819 * * for kernel addresses: <start address>[/<size>]
8820 * * for object files: <start address>[/<size>]@</path/to/object/file>
8821 *
6ed70cf3
AS
8822 * if <size> is not specified or is zero, the range is treated as a single
8823 * address; not valid for ACTION=="filter".
375637bc
AS
8824 */
8825enum {
e96271f3 8826 IF_ACT_NONE = -1,
375637bc
AS
8827 IF_ACT_FILTER,
8828 IF_ACT_START,
8829 IF_ACT_STOP,
8830 IF_SRC_FILE,
8831 IF_SRC_KERNEL,
8832 IF_SRC_FILEADDR,
8833 IF_SRC_KERNELADDR,
8834};
8835
8836enum {
8837 IF_STATE_ACTION = 0,
8838 IF_STATE_SOURCE,
8839 IF_STATE_END,
8840};
8841
8842static const match_table_t if_tokens = {
8843 { IF_ACT_FILTER, "filter" },
8844 { IF_ACT_START, "start" },
8845 { IF_ACT_STOP, "stop" },
8846 { IF_SRC_FILE, "%u/%u@%s" },
8847 { IF_SRC_KERNEL, "%u/%u" },
8848 { IF_SRC_FILEADDR, "%u@%s" },
8849 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8850 { IF_ACT_NONE, NULL },
375637bc
AS
8851};
8852
8853/*
8854 * Address filter string parser
8855 */
8856static int
8857perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8858 struct list_head *filters)
8859{
8860 struct perf_addr_filter *filter = NULL;
8861 char *start, *orig, *filename = NULL;
375637bc
AS
8862 substring_t args[MAX_OPT_ARGS];
8863 int state = IF_STATE_ACTION, token;
8864 unsigned int kernel = 0;
8865 int ret = -EINVAL;
8866
8867 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8868 if (!fstr)
8869 return -ENOMEM;
8870
8871 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
8872 static const enum perf_addr_filter_action_t actions[] = {
8873 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
8874 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
8875 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
8876 };
375637bc
AS
8877 ret = -EINVAL;
8878
8879 if (!*start)
8880 continue;
8881
8882 /* filter definition begins */
8883 if (state == IF_STATE_ACTION) {
8884 filter = perf_addr_filter_new(event, filters);
8885 if (!filter)
8886 goto fail;
8887 }
8888
8889 token = match_token(start, if_tokens, args);
8890 switch (token) {
8891 case IF_ACT_FILTER:
8892 case IF_ACT_START:
375637bc
AS
8893 case IF_ACT_STOP:
8894 if (state != IF_STATE_ACTION)
8895 goto fail;
8896
6ed70cf3 8897 filter->action = actions[token];
375637bc
AS
8898 state = IF_STATE_SOURCE;
8899 break;
8900
8901 case IF_SRC_KERNELADDR:
8902 case IF_SRC_KERNEL:
8903 kernel = 1;
8904
8905 case IF_SRC_FILEADDR:
8906 case IF_SRC_FILE:
8907 if (state != IF_STATE_SOURCE)
8908 goto fail;
8909
375637bc
AS
8910 *args[0].to = 0;
8911 ret = kstrtoul(args[0].from, 0, &filter->offset);
8912 if (ret)
8913 goto fail;
8914
6ed70cf3 8915 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
8916 *args[1].to = 0;
8917 ret = kstrtoul(args[1].from, 0, &filter->size);
8918 if (ret)
8919 goto fail;
8920 }
8921
4059ffd0 8922 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 8923 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0
MP
8924
8925 filename = match_strdup(&args[fpos]);
375637bc
AS
8926 if (!filename) {
8927 ret = -ENOMEM;
8928 goto fail;
8929 }
8930 }
8931
8932 state = IF_STATE_END;
8933 break;
8934
8935 default:
8936 goto fail;
8937 }
8938
8939 /*
8940 * Filter definition is fully parsed, validate and install it.
8941 * Make sure that it doesn't contradict itself or the event's
8942 * attribute.
8943 */
8944 if (state == IF_STATE_END) {
9ccbfbb1 8945 ret = -EINVAL;
375637bc
AS
8946 if (kernel && event->attr.exclude_kernel)
8947 goto fail;
8948
6ed70cf3
AS
8949 /*
8950 * ACTION "filter" must have a non-zero length region
8951 * specified.
8952 */
8953 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
8954 !filter->size)
8955 goto fail;
8956
375637bc
AS
8957 if (!kernel) {
8958 if (!filename)
8959 goto fail;
8960
6ce77bfd
AS
8961 /*
8962 * For now, we only support file-based filters
8963 * in per-task events; doing so for CPU-wide
8964 * events requires additional context switching
8965 * trickery, since same object code will be
8966 * mapped at different virtual addresses in
8967 * different processes.
8968 */
8969 ret = -EOPNOTSUPP;
8970 if (!event->ctx->task)
8971 goto fail_free_name;
8972
375637bc 8973 /* look up the path and grab its inode */
9511bce9
SL
8974 ret = kern_path(filename, LOOKUP_FOLLOW,
8975 &filter->path);
375637bc
AS
8976 if (ret)
8977 goto fail_free_name;
8978
375637bc
AS
8979 kfree(filename);
8980 filename = NULL;
8981
8982 ret = -EINVAL;
9511bce9
SL
8983 if (!filter->path.dentry ||
8984 !S_ISREG(d_inode(filter->path.dentry)
8985 ->i_mode))
375637bc 8986 goto fail;
6ce77bfd
AS
8987
8988 event->addr_filters.nr_file_filters++;
375637bc
AS
8989 }
8990
8991 /* ready to consume more filters */
8992 state = IF_STATE_ACTION;
8993 filter = NULL;
8994 }
8995 }
8996
8997 if (state != IF_STATE_ACTION)
8998 goto fail;
8999
9000 kfree(orig);
9001
9002 return 0;
9003
9004fail_free_name:
9005 kfree(filename);
9006fail:
9007 free_filters_list(filters);
9008 kfree(orig);
9009
9010 return ret;
9011}
9012
9013static int
9014perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9015{
9016 LIST_HEAD(filters);
9017 int ret;
9018
9019 /*
9020 * Since this is called in perf_ioctl() path, we're already holding
9021 * ctx::mutex.
9022 */
9023 lockdep_assert_held(&event->ctx->mutex);
9024
9025 if (WARN_ON_ONCE(event->parent))
9026 return -EINVAL;
9027
375637bc
AS
9028 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9029 if (ret)
6ce77bfd 9030 goto fail_clear_files;
375637bc
AS
9031
9032 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
9033 if (ret)
9034 goto fail_free_filters;
375637bc
AS
9035
9036 /* remove existing filters, if any */
9037 perf_addr_filters_splice(event, &filters);
9038
9039 /* install new filters */
9040 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9041
6ce77bfd
AS
9042 return ret;
9043
9044fail_free_filters:
9045 free_filters_list(&filters);
9046
9047fail_clear_files:
9048 event->addr_filters.nr_file_filters = 0;
9049
375637bc
AS
9050 return ret;
9051}
9052
c796bbbe
AS
9053static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9054{
c796bbbe 9055 int ret = -EINVAL;
e12f03d7 9056 char *filter_str;
c796bbbe
AS
9057
9058 filter_str = strndup_user(arg, PAGE_SIZE);
9059 if (IS_ERR(filter_str))
9060 return PTR_ERR(filter_str);
9061
e12f03d7
SL
9062#ifdef CONFIG_EVENT_TRACING
9063 if (perf_event_is_tracing(event)) {
9064 struct perf_event_context *ctx = event->ctx;
9065
9066 /*
9067 * Beware, here be dragons!!
9068 *
9069 * the tracepoint muck will deadlock against ctx->mutex, but
9070 * the tracepoint stuff does not actually need it. So
9071 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9072 * already have a reference on ctx.
9073 *
9074 * This can result in event getting moved to a different ctx,
9075 * but that does not affect the tracepoint state.
9076 */
9077 mutex_unlock(&ctx->mutex);
9078 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9079 mutex_lock(&ctx->mutex);
9080 } else
9081#endif
9082 if (has_addr_filter(event))
375637bc 9083 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
9084
9085 kfree(filter_str);
9086 return ret;
9087}
9088
b0a873eb
PZ
9089/*
9090 * hrtimer based swevent callback
9091 */
f29ac756 9092
b0a873eb 9093static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 9094{
b0a873eb
PZ
9095 enum hrtimer_restart ret = HRTIMER_RESTART;
9096 struct perf_sample_data data;
9097 struct pt_regs *regs;
9098 struct perf_event *event;
9099 u64 period;
f29ac756 9100
b0a873eb 9101 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
9102
9103 if (event->state != PERF_EVENT_STATE_ACTIVE)
9104 return HRTIMER_NORESTART;
9105
b0a873eb 9106 event->pmu->read(event);
f344011c 9107
fd0d000b 9108 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
9109 regs = get_irq_regs();
9110
9111 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 9112 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 9113 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
9114 ret = HRTIMER_NORESTART;
9115 }
24f1e32c 9116
b0a873eb
PZ
9117 period = max_t(u64, 10000, event->hw.sample_period);
9118 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 9119
b0a873eb 9120 return ret;
f29ac756
PZ
9121}
9122
b0a873eb 9123static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 9124{
b0a873eb 9125 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
9126 s64 period;
9127
9128 if (!is_sampling_event(event))
9129 return;
f5ffe02e 9130
5d508e82
FBH
9131 period = local64_read(&hwc->period_left);
9132 if (period) {
9133 if (period < 0)
9134 period = 10000;
fa407f35 9135
5d508e82
FBH
9136 local64_set(&hwc->period_left, 0);
9137 } else {
9138 period = max_t(u64, 10000, hwc->sample_period);
9139 }
3497d206
TG
9140 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9141 HRTIMER_MODE_REL_PINNED);
24f1e32c 9142}
b0a873eb
PZ
9143
9144static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 9145{
b0a873eb
PZ
9146 struct hw_perf_event *hwc = &event->hw;
9147
6c7e550f 9148 if (is_sampling_event(event)) {
b0a873eb 9149 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 9150 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
9151
9152 hrtimer_cancel(&hwc->hrtimer);
9153 }
24f1e32c
FW
9154}
9155
ba3dd36c
PZ
9156static void perf_swevent_init_hrtimer(struct perf_event *event)
9157{
9158 struct hw_perf_event *hwc = &event->hw;
9159
9160 if (!is_sampling_event(event))
9161 return;
9162
9163 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9164 hwc->hrtimer.function = perf_swevent_hrtimer;
9165
9166 /*
9167 * Since hrtimers have a fixed rate, we can do a static freq->period
9168 * mapping and avoid the whole period adjust feedback stuff.
9169 */
9170 if (event->attr.freq) {
9171 long freq = event->attr.sample_freq;
9172
9173 event->attr.sample_period = NSEC_PER_SEC / freq;
9174 hwc->sample_period = event->attr.sample_period;
9175 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 9176 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
9177 event->attr.freq = 0;
9178 }
9179}
9180
b0a873eb
PZ
9181/*
9182 * Software event: cpu wall time clock
9183 */
9184
9185static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 9186{
b0a873eb
PZ
9187 s64 prev;
9188 u64 now;
9189
a4eaf7f1 9190 now = local_clock();
b0a873eb
PZ
9191 prev = local64_xchg(&event->hw.prev_count, now);
9192 local64_add(now - prev, &event->count);
24f1e32c 9193}
24f1e32c 9194
a4eaf7f1 9195static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9196{
a4eaf7f1 9197 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 9198 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9199}
9200
a4eaf7f1 9201static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 9202{
b0a873eb
PZ
9203 perf_swevent_cancel_hrtimer(event);
9204 cpu_clock_event_update(event);
9205}
f29ac756 9206
a4eaf7f1
PZ
9207static int cpu_clock_event_add(struct perf_event *event, int flags)
9208{
9209 if (flags & PERF_EF_START)
9210 cpu_clock_event_start(event, flags);
6a694a60 9211 perf_event_update_userpage(event);
a4eaf7f1
PZ
9212
9213 return 0;
9214}
9215
9216static void cpu_clock_event_del(struct perf_event *event, int flags)
9217{
9218 cpu_clock_event_stop(event, flags);
9219}
9220
b0a873eb
PZ
9221static void cpu_clock_event_read(struct perf_event *event)
9222{
9223 cpu_clock_event_update(event);
9224}
f344011c 9225
b0a873eb
PZ
9226static int cpu_clock_event_init(struct perf_event *event)
9227{
9228 if (event->attr.type != PERF_TYPE_SOFTWARE)
9229 return -ENOENT;
9230
9231 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9232 return -ENOENT;
9233
2481c5fa
SE
9234 /*
9235 * no branch sampling for software events
9236 */
9237 if (has_branch_stack(event))
9238 return -EOPNOTSUPP;
9239
ba3dd36c
PZ
9240 perf_swevent_init_hrtimer(event);
9241
b0a873eb 9242 return 0;
f29ac756
PZ
9243}
9244
b0a873eb 9245static struct pmu perf_cpu_clock = {
89a1e187
PZ
9246 .task_ctx_nr = perf_sw_context,
9247
34f43927
PZ
9248 .capabilities = PERF_PMU_CAP_NO_NMI,
9249
b0a873eb 9250 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
9251 .add = cpu_clock_event_add,
9252 .del = cpu_clock_event_del,
9253 .start = cpu_clock_event_start,
9254 .stop = cpu_clock_event_stop,
b0a873eb
PZ
9255 .read = cpu_clock_event_read,
9256};
9257
9258/*
9259 * Software event: task time clock
9260 */
9261
9262static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 9263{
b0a873eb
PZ
9264 u64 prev;
9265 s64 delta;
5c92d124 9266
b0a873eb
PZ
9267 prev = local64_xchg(&event->hw.prev_count, now);
9268 delta = now - prev;
9269 local64_add(delta, &event->count);
9270}
5c92d124 9271
a4eaf7f1 9272static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9273{
a4eaf7f1 9274 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 9275 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9276}
9277
a4eaf7f1 9278static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
9279{
9280 perf_swevent_cancel_hrtimer(event);
9281 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
9282}
9283
9284static int task_clock_event_add(struct perf_event *event, int flags)
9285{
9286 if (flags & PERF_EF_START)
9287 task_clock_event_start(event, flags);
6a694a60 9288 perf_event_update_userpage(event);
b0a873eb 9289
a4eaf7f1
PZ
9290 return 0;
9291}
9292
9293static void task_clock_event_del(struct perf_event *event, int flags)
9294{
9295 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
9296}
9297
9298static void task_clock_event_read(struct perf_event *event)
9299{
768a06e2
PZ
9300 u64 now = perf_clock();
9301 u64 delta = now - event->ctx->timestamp;
9302 u64 time = event->ctx->time + delta;
b0a873eb
PZ
9303
9304 task_clock_event_update(event, time);
9305}
9306
9307static int task_clock_event_init(struct perf_event *event)
6fb2915d 9308{
b0a873eb
PZ
9309 if (event->attr.type != PERF_TYPE_SOFTWARE)
9310 return -ENOENT;
9311
9312 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9313 return -ENOENT;
9314
2481c5fa
SE
9315 /*
9316 * no branch sampling for software events
9317 */
9318 if (has_branch_stack(event))
9319 return -EOPNOTSUPP;
9320
ba3dd36c
PZ
9321 perf_swevent_init_hrtimer(event);
9322
b0a873eb 9323 return 0;
6fb2915d
LZ
9324}
9325
b0a873eb 9326static struct pmu perf_task_clock = {
89a1e187
PZ
9327 .task_ctx_nr = perf_sw_context,
9328
34f43927
PZ
9329 .capabilities = PERF_PMU_CAP_NO_NMI,
9330
b0a873eb 9331 .event_init = task_clock_event_init,
a4eaf7f1
PZ
9332 .add = task_clock_event_add,
9333 .del = task_clock_event_del,
9334 .start = task_clock_event_start,
9335 .stop = task_clock_event_stop,
b0a873eb
PZ
9336 .read = task_clock_event_read,
9337};
6fb2915d 9338
ad5133b7 9339static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 9340{
e077df4f 9341}
6fb2915d 9342
fbbe0701
SB
9343static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9344{
9345}
9346
ad5133b7 9347static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 9348{
ad5133b7 9349 return 0;
6fb2915d
LZ
9350}
9351
18ab2cd3 9352static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
9353
9354static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 9355{
fbbe0701
SB
9356 __this_cpu_write(nop_txn_flags, flags);
9357
9358 if (flags & ~PERF_PMU_TXN_ADD)
9359 return;
9360
ad5133b7 9361 perf_pmu_disable(pmu);
6fb2915d
LZ
9362}
9363
ad5133b7
PZ
9364static int perf_pmu_commit_txn(struct pmu *pmu)
9365{
fbbe0701
SB
9366 unsigned int flags = __this_cpu_read(nop_txn_flags);
9367
9368 __this_cpu_write(nop_txn_flags, 0);
9369
9370 if (flags & ~PERF_PMU_TXN_ADD)
9371 return 0;
9372
ad5133b7
PZ
9373 perf_pmu_enable(pmu);
9374 return 0;
9375}
e077df4f 9376
ad5133b7 9377static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 9378{
fbbe0701
SB
9379 unsigned int flags = __this_cpu_read(nop_txn_flags);
9380
9381 __this_cpu_write(nop_txn_flags, 0);
9382
9383 if (flags & ~PERF_PMU_TXN_ADD)
9384 return;
9385
ad5133b7 9386 perf_pmu_enable(pmu);
24f1e32c
FW
9387}
9388
35edc2a5
PZ
9389static int perf_event_idx_default(struct perf_event *event)
9390{
c719f560 9391 return 0;
35edc2a5
PZ
9392}
9393
8dc85d54
PZ
9394/*
9395 * Ensures all contexts with the same task_ctx_nr have the same
9396 * pmu_cpu_context too.
9397 */
9e317041 9398static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 9399{
8dc85d54 9400 struct pmu *pmu;
b326e956 9401
8dc85d54
PZ
9402 if (ctxn < 0)
9403 return NULL;
24f1e32c 9404
8dc85d54
PZ
9405 list_for_each_entry(pmu, &pmus, entry) {
9406 if (pmu->task_ctx_nr == ctxn)
9407 return pmu->pmu_cpu_context;
9408 }
24f1e32c 9409
8dc85d54 9410 return NULL;
24f1e32c
FW
9411}
9412
51676957
PZ
9413static void free_pmu_context(struct pmu *pmu)
9414{
df0062b2
WD
9415 /*
9416 * Static contexts such as perf_sw_context have a global lifetime
9417 * and may be shared between different PMUs. Avoid freeing them
9418 * when a single PMU is going away.
9419 */
9420 if (pmu->task_ctx_nr > perf_invalid_context)
9421 return;
9422
8dc85d54 9423 mutex_lock(&pmus_lock);
51676957 9424 free_percpu(pmu->pmu_cpu_context);
8dc85d54 9425 mutex_unlock(&pmus_lock);
24f1e32c 9426}
6e855cd4
AS
9427
9428/*
9429 * Let userspace know that this PMU supports address range filtering:
9430 */
9431static ssize_t nr_addr_filters_show(struct device *dev,
9432 struct device_attribute *attr,
9433 char *page)
9434{
9435 struct pmu *pmu = dev_get_drvdata(dev);
9436
9437 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9438}
9439DEVICE_ATTR_RO(nr_addr_filters);
9440
2e80a82a 9441static struct idr pmu_idr;
d6d020e9 9442
abe43400
PZ
9443static ssize_t
9444type_show(struct device *dev, struct device_attribute *attr, char *page)
9445{
9446 struct pmu *pmu = dev_get_drvdata(dev);
9447
9448 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9449}
90826ca7 9450static DEVICE_ATTR_RO(type);
abe43400 9451
62b85639
SE
9452static ssize_t
9453perf_event_mux_interval_ms_show(struct device *dev,
9454 struct device_attribute *attr,
9455 char *page)
9456{
9457 struct pmu *pmu = dev_get_drvdata(dev);
9458
9459 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9460}
9461
272325c4
PZ
9462static DEFINE_MUTEX(mux_interval_mutex);
9463
62b85639
SE
9464static ssize_t
9465perf_event_mux_interval_ms_store(struct device *dev,
9466 struct device_attribute *attr,
9467 const char *buf, size_t count)
9468{
9469 struct pmu *pmu = dev_get_drvdata(dev);
9470 int timer, cpu, ret;
9471
9472 ret = kstrtoint(buf, 0, &timer);
9473 if (ret)
9474 return ret;
9475
9476 if (timer < 1)
9477 return -EINVAL;
9478
9479 /* same value, noting to do */
9480 if (timer == pmu->hrtimer_interval_ms)
9481 return count;
9482
272325c4 9483 mutex_lock(&mux_interval_mutex);
62b85639
SE
9484 pmu->hrtimer_interval_ms = timer;
9485
9486 /* update all cpuctx for this PMU */
a63fbed7 9487 cpus_read_lock();
272325c4 9488 for_each_online_cpu(cpu) {
62b85639
SE
9489 struct perf_cpu_context *cpuctx;
9490 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9491 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9492
272325c4
PZ
9493 cpu_function_call(cpu,
9494 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 9495 }
a63fbed7 9496 cpus_read_unlock();
272325c4 9497 mutex_unlock(&mux_interval_mutex);
62b85639
SE
9498
9499 return count;
9500}
90826ca7 9501static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 9502
90826ca7
GKH
9503static struct attribute *pmu_dev_attrs[] = {
9504 &dev_attr_type.attr,
9505 &dev_attr_perf_event_mux_interval_ms.attr,
9506 NULL,
abe43400 9507};
90826ca7 9508ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9509
9510static int pmu_bus_running;
9511static struct bus_type pmu_bus = {
9512 .name = "event_source",
90826ca7 9513 .dev_groups = pmu_dev_groups,
abe43400
PZ
9514};
9515
9516static void pmu_dev_release(struct device *dev)
9517{
9518 kfree(dev);
9519}
9520
9521static int pmu_dev_alloc(struct pmu *pmu)
9522{
9523 int ret = -ENOMEM;
9524
9525 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9526 if (!pmu->dev)
9527 goto out;
9528
0c9d42ed 9529 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9530 device_initialize(pmu->dev);
9531 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9532 if (ret)
9533 goto free_dev;
9534
9535 dev_set_drvdata(pmu->dev, pmu);
9536 pmu->dev->bus = &pmu_bus;
9537 pmu->dev->release = pmu_dev_release;
9538 ret = device_add(pmu->dev);
9539 if (ret)
9540 goto free_dev;
9541
6e855cd4
AS
9542 /* For PMUs with address filters, throw in an extra attribute: */
9543 if (pmu->nr_addr_filters)
9544 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9545
9546 if (ret)
9547 goto del_dev;
9548
abe43400
PZ
9549out:
9550 return ret;
9551
6e855cd4
AS
9552del_dev:
9553 device_del(pmu->dev);
9554
abe43400
PZ
9555free_dev:
9556 put_device(pmu->dev);
9557 goto out;
9558}
9559
547e9fd7 9560static struct lock_class_key cpuctx_mutex;
facc4307 9561static struct lock_class_key cpuctx_lock;
547e9fd7 9562
03d8e80b 9563int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9564{
108b02cf 9565 int cpu, ret;
24f1e32c 9566
b0a873eb 9567 mutex_lock(&pmus_lock);
33696fc0
PZ
9568 ret = -ENOMEM;
9569 pmu->pmu_disable_count = alloc_percpu(int);
9570 if (!pmu->pmu_disable_count)
9571 goto unlock;
f29ac756 9572
2e80a82a
PZ
9573 pmu->type = -1;
9574 if (!name)
9575 goto skip_type;
9576 pmu->name = name;
9577
9578 if (type < 0) {
0e9c3be2
TH
9579 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9580 if (type < 0) {
9581 ret = type;
2e80a82a
PZ
9582 goto free_pdc;
9583 }
9584 }
9585 pmu->type = type;
9586
abe43400
PZ
9587 if (pmu_bus_running) {
9588 ret = pmu_dev_alloc(pmu);
9589 if (ret)
9590 goto free_idr;
9591 }
9592
2e80a82a 9593skip_type:
26657848
PZ
9594 if (pmu->task_ctx_nr == perf_hw_context) {
9595 static int hw_context_taken = 0;
9596
5101ef20
MR
9597 /*
9598 * Other than systems with heterogeneous CPUs, it never makes
9599 * sense for two PMUs to share perf_hw_context. PMUs which are
9600 * uncore must use perf_invalid_context.
9601 */
9602 if (WARN_ON_ONCE(hw_context_taken &&
9603 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9604 pmu->task_ctx_nr = perf_invalid_context;
9605
9606 hw_context_taken = 1;
9607 }
9608
8dc85d54
PZ
9609 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9610 if (pmu->pmu_cpu_context)
9611 goto got_cpu_context;
f29ac756 9612
c4814202 9613 ret = -ENOMEM;
108b02cf
PZ
9614 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9615 if (!pmu->pmu_cpu_context)
abe43400 9616 goto free_dev;
f344011c 9617
108b02cf
PZ
9618 for_each_possible_cpu(cpu) {
9619 struct perf_cpu_context *cpuctx;
9620
9621 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9622 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9623 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9624 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9625 cpuctx->ctx.pmu = pmu;
a63fbed7 9626 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9627
272325c4 9628 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9629 }
76e1d904 9630
8dc85d54 9631got_cpu_context:
ad5133b7
PZ
9632 if (!pmu->start_txn) {
9633 if (pmu->pmu_enable) {
9634 /*
9635 * If we have pmu_enable/pmu_disable calls, install
9636 * transaction stubs that use that to try and batch
9637 * hardware accesses.
9638 */
9639 pmu->start_txn = perf_pmu_start_txn;
9640 pmu->commit_txn = perf_pmu_commit_txn;
9641 pmu->cancel_txn = perf_pmu_cancel_txn;
9642 } else {
fbbe0701 9643 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9644 pmu->commit_txn = perf_pmu_nop_int;
9645 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9646 }
5c92d124 9647 }
15dbf27c 9648
ad5133b7
PZ
9649 if (!pmu->pmu_enable) {
9650 pmu->pmu_enable = perf_pmu_nop_void;
9651 pmu->pmu_disable = perf_pmu_nop_void;
9652 }
9653
35edc2a5
PZ
9654 if (!pmu->event_idx)
9655 pmu->event_idx = perf_event_idx_default;
9656
b0a873eb 9657 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9658 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9659 ret = 0;
9660unlock:
b0a873eb
PZ
9661 mutex_unlock(&pmus_lock);
9662
33696fc0 9663 return ret;
108b02cf 9664
abe43400
PZ
9665free_dev:
9666 device_del(pmu->dev);
9667 put_device(pmu->dev);
9668
2e80a82a
PZ
9669free_idr:
9670 if (pmu->type >= PERF_TYPE_MAX)
9671 idr_remove(&pmu_idr, pmu->type);
9672
108b02cf
PZ
9673free_pdc:
9674 free_percpu(pmu->pmu_disable_count);
9675 goto unlock;
f29ac756 9676}
c464c76e 9677EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9678
b0a873eb 9679void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9680{
0933840a
JO
9681 int remove_device;
9682
b0a873eb 9683 mutex_lock(&pmus_lock);
0933840a 9684 remove_device = pmu_bus_running;
b0a873eb
PZ
9685 list_del_rcu(&pmu->entry);
9686 mutex_unlock(&pmus_lock);
5c92d124 9687
0475f9ea 9688 /*
cde8e884
PZ
9689 * We dereference the pmu list under both SRCU and regular RCU, so
9690 * synchronize against both of those.
0475f9ea 9691 */
b0a873eb 9692 synchronize_srcu(&pmus_srcu);
cde8e884 9693 synchronize_rcu();
d6d020e9 9694
33696fc0 9695 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9696 if (pmu->type >= PERF_TYPE_MAX)
9697 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9698 if (remove_device) {
9699 if (pmu->nr_addr_filters)
9700 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9701 device_del(pmu->dev);
9702 put_device(pmu->dev);
9703 }
51676957 9704 free_pmu_context(pmu);
b0a873eb 9705}
c464c76e 9706EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9707
cc34b98b
MR
9708static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9709{
ccd41c86 9710 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9711 int ret;
9712
9713 if (!try_module_get(pmu->module))
9714 return -ENODEV;
ccd41c86 9715
0c7296ca
PZ
9716 /*
9717 * A number of pmu->event_init() methods iterate the sibling_list to,
9718 * for example, validate if the group fits on the PMU. Therefore,
9719 * if this is a sibling event, acquire the ctx->mutex to protect
9720 * the sibling_list.
9721 */
9722 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
9723 /*
9724 * This ctx->mutex can nest when we're called through
9725 * inheritance. See the perf_event_ctx_lock_nested() comment.
9726 */
9727 ctx = perf_event_ctx_lock_nested(event->group_leader,
9728 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9729 BUG_ON(!ctx);
9730 }
9731
cc34b98b
MR
9732 event->pmu = pmu;
9733 ret = pmu->event_init(event);
ccd41c86
PZ
9734
9735 if (ctx)
9736 perf_event_ctx_unlock(event->group_leader, ctx);
9737
cc34b98b
MR
9738 if (ret)
9739 module_put(pmu->module);
9740
9741 return ret;
9742}
9743
18ab2cd3 9744static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9745{
85c617ab 9746 struct pmu *pmu;
b0a873eb 9747 int idx;
940c5b29 9748 int ret;
b0a873eb
PZ
9749
9750 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9751
40999312
KL
9752 /* Try parent's PMU first: */
9753 if (event->parent && event->parent->pmu) {
9754 pmu = event->parent->pmu;
9755 ret = perf_try_init_event(pmu, event);
9756 if (!ret)
9757 goto unlock;
9758 }
9759
2e80a82a
PZ
9760 rcu_read_lock();
9761 pmu = idr_find(&pmu_idr, event->attr.type);
9762 rcu_read_unlock();
940c5b29 9763 if (pmu) {
cc34b98b 9764 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9765 if (ret)
9766 pmu = ERR_PTR(ret);
2e80a82a 9767 goto unlock;
940c5b29 9768 }
2e80a82a 9769
b0a873eb 9770 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9771 ret = perf_try_init_event(pmu, event);
b0a873eb 9772 if (!ret)
e5f4d339 9773 goto unlock;
76e1d904 9774
b0a873eb
PZ
9775 if (ret != -ENOENT) {
9776 pmu = ERR_PTR(ret);
e5f4d339 9777 goto unlock;
f344011c 9778 }
5c92d124 9779 }
e5f4d339
PZ
9780 pmu = ERR_PTR(-ENOENT);
9781unlock:
b0a873eb 9782 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9783
4aeb0b42 9784 return pmu;
5c92d124
IM
9785}
9786
f2fb6bef
KL
9787static void attach_sb_event(struct perf_event *event)
9788{
9789 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9790
9791 raw_spin_lock(&pel->lock);
9792 list_add_rcu(&event->sb_list, &pel->list);
9793 raw_spin_unlock(&pel->lock);
9794}
9795
aab5b71e
PZ
9796/*
9797 * We keep a list of all !task (and therefore per-cpu) events
9798 * that need to receive side-band records.
9799 *
9800 * This avoids having to scan all the various PMU per-cpu contexts
9801 * looking for them.
9802 */
f2fb6bef
KL
9803static void account_pmu_sb_event(struct perf_event *event)
9804{
a4f144eb 9805 if (is_sb_event(event))
f2fb6bef
KL
9806 attach_sb_event(event);
9807}
9808
4beb31f3
FW
9809static void account_event_cpu(struct perf_event *event, int cpu)
9810{
9811 if (event->parent)
9812 return;
9813
4beb31f3
FW
9814 if (is_cgroup_event(event))
9815 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9816}
9817
555e0c1e
FW
9818/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9819static void account_freq_event_nohz(void)
9820{
9821#ifdef CONFIG_NO_HZ_FULL
9822 /* Lock so we don't race with concurrent unaccount */
9823 spin_lock(&nr_freq_lock);
9824 if (atomic_inc_return(&nr_freq_events) == 1)
9825 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9826 spin_unlock(&nr_freq_lock);
9827#endif
9828}
9829
9830static void account_freq_event(void)
9831{
9832 if (tick_nohz_full_enabled())
9833 account_freq_event_nohz();
9834 else
9835 atomic_inc(&nr_freq_events);
9836}
9837
9838
766d6c07
FW
9839static void account_event(struct perf_event *event)
9840{
25432ae9
PZ
9841 bool inc = false;
9842
4beb31f3
FW
9843 if (event->parent)
9844 return;
9845
766d6c07 9846 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9847 inc = true;
766d6c07
FW
9848 if (event->attr.mmap || event->attr.mmap_data)
9849 atomic_inc(&nr_mmap_events);
9850 if (event->attr.comm)
9851 atomic_inc(&nr_comm_events);
e4222673
HB
9852 if (event->attr.namespaces)
9853 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9854 if (event->attr.task)
9855 atomic_inc(&nr_task_events);
555e0c1e
FW
9856 if (event->attr.freq)
9857 account_freq_event();
45ac1403
AH
9858 if (event->attr.context_switch) {
9859 atomic_inc(&nr_switch_events);
25432ae9 9860 inc = true;
45ac1403 9861 }
4beb31f3 9862 if (has_branch_stack(event))
25432ae9 9863 inc = true;
4beb31f3 9864 if (is_cgroup_event(event))
25432ae9
PZ
9865 inc = true;
9866
9107c89e 9867 if (inc) {
5bce9db1
AS
9868 /*
9869 * We need the mutex here because static_branch_enable()
9870 * must complete *before* the perf_sched_count increment
9871 * becomes visible.
9872 */
9107c89e
PZ
9873 if (atomic_inc_not_zero(&perf_sched_count))
9874 goto enabled;
9875
9876 mutex_lock(&perf_sched_mutex);
9877 if (!atomic_read(&perf_sched_count)) {
9878 static_branch_enable(&perf_sched_events);
9879 /*
9880 * Guarantee that all CPUs observe they key change and
9881 * call the perf scheduling hooks before proceeding to
9882 * install events that need them.
9883 */
9884 synchronize_sched();
9885 }
9886 /*
9887 * Now that we have waited for the sync_sched(), allow further
9888 * increments to by-pass the mutex.
9889 */
9890 atomic_inc(&perf_sched_count);
9891 mutex_unlock(&perf_sched_mutex);
9892 }
9893enabled:
4beb31f3
FW
9894
9895 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9896
9897 account_pmu_sb_event(event);
766d6c07
FW
9898}
9899
0793a61d 9900/*
cdd6c482 9901 * Allocate and initialize a event structure
0793a61d 9902 */
cdd6c482 9903static struct perf_event *
c3f00c70 9904perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9905 struct task_struct *task,
9906 struct perf_event *group_leader,
9907 struct perf_event *parent_event,
4dc0da86 9908 perf_overflow_handler_t overflow_handler,
79dff51e 9909 void *context, int cgroup_fd)
0793a61d 9910{
51b0fe39 9911 struct pmu *pmu;
cdd6c482
IM
9912 struct perf_event *event;
9913 struct hw_perf_event *hwc;
90983b16 9914 long err = -EINVAL;
0793a61d 9915
66832eb4
ON
9916 if ((unsigned)cpu >= nr_cpu_ids) {
9917 if (!task || cpu != -1)
9918 return ERR_PTR(-EINVAL);
9919 }
9920
c3f00c70 9921 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9922 if (!event)
d5d2bc0d 9923 return ERR_PTR(-ENOMEM);
0793a61d 9924
04289bb9 9925 /*
cdd6c482 9926 * Single events are their own group leaders, with an
04289bb9
IM
9927 * empty sibling list:
9928 */
9929 if (!group_leader)
cdd6c482 9930 group_leader = event;
04289bb9 9931
cdd6c482
IM
9932 mutex_init(&event->child_mutex);
9933 INIT_LIST_HEAD(&event->child_list);
fccc714b 9934
cdd6c482
IM
9935 INIT_LIST_HEAD(&event->event_entry);
9936 INIT_LIST_HEAD(&event->sibling_list);
6668128a 9937 INIT_LIST_HEAD(&event->active_list);
8e1a2031 9938 init_event_group(event);
10c6db11 9939 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9940 INIT_LIST_HEAD(&event->active_entry);
375637bc 9941 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9942 INIT_HLIST_NODE(&event->hlist_entry);
9943
10c6db11 9944
cdd6c482 9945 init_waitqueue_head(&event->waitq);
e360adbe 9946 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9947
cdd6c482 9948 mutex_init(&event->mmap_mutex);
375637bc 9949 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9950
a6fa941d 9951 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9952 event->cpu = cpu;
9953 event->attr = *attr;
9954 event->group_leader = group_leader;
9955 event->pmu = NULL;
cdd6c482 9956 event->oncpu = -1;
a96bbc16 9957
cdd6c482 9958 event->parent = parent_event;
b84fbc9f 9959
17cf22c3 9960 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9961 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9962
cdd6c482 9963 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9964
d580ff86
PZ
9965 if (task) {
9966 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9967 /*
50f16a8b
PZ
9968 * XXX pmu::event_init needs to know what task to account to
9969 * and we cannot use the ctx information because we need the
9970 * pmu before we get a ctx.
d580ff86 9971 */
621b6d2e 9972 get_task_struct(task);
50f16a8b 9973 event->hw.target = task;
d580ff86
PZ
9974 }
9975
34f43927
PZ
9976 event->clock = &local_clock;
9977 if (parent_event)
9978 event->clock = parent_event->clock;
9979
4dc0da86 9980 if (!overflow_handler && parent_event) {
b326e956 9981 overflow_handler = parent_event->overflow_handler;
4dc0da86 9982 context = parent_event->overflow_handler_context;
f1e4ba5b 9983#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9984 if (overflow_handler == bpf_overflow_handler) {
9985 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9986
9987 if (IS_ERR(prog)) {
9988 err = PTR_ERR(prog);
9989 goto err_ns;
9990 }
9991 event->prog = prog;
9992 event->orig_overflow_handler =
9993 parent_event->orig_overflow_handler;
9994 }
9995#endif
4dc0da86 9996 }
66832eb4 9997
1879445d
WN
9998 if (overflow_handler) {
9999 event->overflow_handler = overflow_handler;
10000 event->overflow_handler_context = context;
9ecda41a
WN
10001 } else if (is_write_backward(event)){
10002 event->overflow_handler = perf_event_output_backward;
10003 event->overflow_handler_context = NULL;
1879445d 10004 } else {
9ecda41a 10005 event->overflow_handler = perf_event_output_forward;
1879445d
WN
10006 event->overflow_handler_context = NULL;
10007 }
97eaf530 10008
0231bb53 10009 perf_event__state_init(event);
a86ed508 10010
4aeb0b42 10011 pmu = NULL;
b8e83514 10012
cdd6c482 10013 hwc = &event->hw;
bd2b5b12 10014 hwc->sample_period = attr->sample_period;
0d48696f 10015 if (attr->freq && attr->sample_freq)
bd2b5b12 10016 hwc->sample_period = 1;
eced1dfc 10017 hwc->last_period = hwc->sample_period;
bd2b5b12 10018
e7850595 10019 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 10020
2023b359 10021 /*
ba5213ae
PZ
10022 * We currently do not support PERF_SAMPLE_READ on inherited events.
10023 * See perf_output_read().
2023b359 10024 */
ba5213ae 10025 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 10026 goto err_ns;
a46a2300
YZ
10027
10028 if (!has_branch_stack(event))
10029 event->attr.branch_sample_type = 0;
2023b359 10030
79dff51e
MF
10031 if (cgroup_fd != -1) {
10032 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10033 if (err)
10034 goto err_ns;
10035 }
10036
b0a873eb 10037 pmu = perf_init_event(event);
85c617ab 10038 if (IS_ERR(pmu)) {
4aeb0b42 10039 err = PTR_ERR(pmu);
90983b16 10040 goto err_ns;
621a01ea 10041 }
d5d2bc0d 10042
bed5b25a
AS
10043 err = exclusive_event_init(event);
10044 if (err)
10045 goto err_pmu;
10046
375637bc
AS
10047 if (has_addr_filter(event)) {
10048 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10049 sizeof(unsigned long),
10050 GFP_KERNEL);
36cc2b92
DC
10051 if (!event->addr_filters_offs) {
10052 err = -ENOMEM;
375637bc 10053 goto err_per_task;
36cc2b92 10054 }
375637bc
AS
10055
10056 /* force hw sync on the address filters */
10057 event->addr_filters_gen = 1;
10058 }
10059
cdd6c482 10060 if (!event->parent) {
927c7a9e 10061 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 10062 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 10063 if (err)
375637bc 10064 goto err_addr_filters;
d010b332 10065 }
f344011c 10066 }
9ee318a7 10067
927a5570
AS
10068 /* symmetric to unaccount_event() in _free_event() */
10069 account_event(event);
10070
cdd6c482 10071 return event;
90983b16 10072
375637bc
AS
10073err_addr_filters:
10074 kfree(event->addr_filters_offs);
10075
bed5b25a
AS
10076err_per_task:
10077 exclusive_event_destroy(event);
10078
90983b16
FW
10079err_pmu:
10080 if (event->destroy)
10081 event->destroy(event);
c464c76e 10082 module_put(pmu->module);
90983b16 10083err_ns:
79dff51e
MF
10084 if (is_cgroup_event(event))
10085 perf_detach_cgroup(event);
90983b16
FW
10086 if (event->ns)
10087 put_pid_ns(event->ns);
621b6d2e
PB
10088 if (event->hw.target)
10089 put_task_struct(event->hw.target);
90983b16
FW
10090 kfree(event);
10091
10092 return ERR_PTR(err);
0793a61d
TG
10093}
10094
cdd6c482
IM
10095static int perf_copy_attr(struct perf_event_attr __user *uattr,
10096 struct perf_event_attr *attr)
974802ea 10097{
974802ea 10098 u32 size;
cdf8073d 10099 int ret;
974802ea
PZ
10100
10101 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10102 return -EFAULT;
10103
10104 /*
10105 * zero the full structure, so that a short copy will be nice.
10106 */
10107 memset(attr, 0, sizeof(*attr));
10108
10109 ret = get_user(size, &uattr->size);
10110 if (ret)
10111 return ret;
10112
10113 if (size > PAGE_SIZE) /* silly large */
10114 goto err_size;
10115
10116 if (!size) /* abi compat */
10117 size = PERF_ATTR_SIZE_VER0;
10118
10119 if (size < PERF_ATTR_SIZE_VER0)
10120 goto err_size;
10121
10122 /*
10123 * If we're handed a bigger struct than we know of,
cdf8073d
IS
10124 * ensure all the unknown bits are 0 - i.e. new
10125 * user-space does not rely on any kernel feature
10126 * extensions we dont know about yet.
974802ea
PZ
10127 */
10128 if (size > sizeof(*attr)) {
cdf8073d
IS
10129 unsigned char __user *addr;
10130 unsigned char __user *end;
10131 unsigned char val;
974802ea 10132
cdf8073d
IS
10133 addr = (void __user *)uattr + sizeof(*attr);
10134 end = (void __user *)uattr + size;
974802ea 10135
cdf8073d 10136 for (; addr < end; addr++) {
974802ea
PZ
10137 ret = get_user(val, addr);
10138 if (ret)
10139 return ret;
10140 if (val)
10141 goto err_size;
10142 }
b3e62e35 10143 size = sizeof(*attr);
974802ea
PZ
10144 }
10145
10146 ret = copy_from_user(attr, uattr, size);
10147 if (ret)
10148 return -EFAULT;
10149
f12f42ac
MX
10150 attr->size = size;
10151
cd757645 10152 if (attr->__reserved_1)
974802ea
PZ
10153 return -EINVAL;
10154
10155 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10156 return -EINVAL;
10157
10158 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10159 return -EINVAL;
10160
bce38cd5
SE
10161 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10162 u64 mask = attr->branch_sample_type;
10163
10164 /* only using defined bits */
10165 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10166 return -EINVAL;
10167
10168 /* at least one branch bit must be set */
10169 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10170 return -EINVAL;
10171
bce38cd5
SE
10172 /* propagate priv level, when not set for branch */
10173 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10174
10175 /* exclude_kernel checked on syscall entry */
10176 if (!attr->exclude_kernel)
10177 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10178
10179 if (!attr->exclude_user)
10180 mask |= PERF_SAMPLE_BRANCH_USER;
10181
10182 if (!attr->exclude_hv)
10183 mask |= PERF_SAMPLE_BRANCH_HV;
10184 /*
10185 * adjust user setting (for HW filter setup)
10186 */
10187 attr->branch_sample_type = mask;
10188 }
e712209a
SE
10189 /* privileged levels capture (kernel, hv): check permissions */
10190 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
10191 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10192 return -EACCES;
bce38cd5 10193 }
4018994f 10194
c5ebcedb 10195 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 10196 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
10197 if (ret)
10198 return ret;
10199 }
10200
10201 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10202 if (!arch_perf_have_user_stack_dump())
10203 return -ENOSYS;
10204
10205 /*
10206 * We have __u32 type for the size, but so far
10207 * we can only use __u16 as maximum due to the
10208 * __u16 sample size limit.
10209 */
10210 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 10211 return -EINVAL;
c5ebcedb 10212 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 10213 return -EINVAL;
c5ebcedb 10214 }
4018994f 10215
5f970521
JO
10216 if (!attr->sample_max_stack)
10217 attr->sample_max_stack = sysctl_perf_event_max_stack;
10218
60e2364e
SE
10219 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10220 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
10221out:
10222 return ret;
10223
10224err_size:
10225 put_user(sizeof(*attr), &uattr->size);
10226 ret = -E2BIG;
10227 goto out;
10228}
10229
ac9721f3
PZ
10230static int
10231perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 10232{
b69cf536 10233 struct ring_buffer *rb = NULL;
a4be7c27
PZ
10234 int ret = -EINVAL;
10235
ac9721f3 10236 if (!output_event)
a4be7c27
PZ
10237 goto set;
10238
ac9721f3
PZ
10239 /* don't allow circular references */
10240 if (event == output_event)
a4be7c27
PZ
10241 goto out;
10242
0f139300
PZ
10243 /*
10244 * Don't allow cross-cpu buffers
10245 */
10246 if (output_event->cpu != event->cpu)
10247 goto out;
10248
10249 /*
76369139 10250 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
10251 */
10252 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10253 goto out;
10254
34f43927
PZ
10255 /*
10256 * Mixing clocks in the same buffer is trouble you don't need.
10257 */
10258 if (output_event->clock != event->clock)
10259 goto out;
10260
9ecda41a
WN
10261 /*
10262 * Either writing ring buffer from beginning or from end.
10263 * Mixing is not allowed.
10264 */
10265 if (is_write_backward(output_event) != is_write_backward(event))
10266 goto out;
10267
45bfb2e5
PZ
10268 /*
10269 * If both events generate aux data, they must be on the same PMU
10270 */
10271 if (has_aux(event) && has_aux(output_event) &&
10272 event->pmu != output_event->pmu)
10273 goto out;
10274
a4be7c27 10275set:
cdd6c482 10276 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
10277 /* Can't redirect output if we've got an active mmap() */
10278 if (atomic_read(&event->mmap_count))
10279 goto unlock;
a4be7c27 10280
ac9721f3 10281 if (output_event) {
76369139
FW
10282 /* get the rb we want to redirect to */
10283 rb = ring_buffer_get(output_event);
10284 if (!rb)
ac9721f3 10285 goto unlock;
a4be7c27
PZ
10286 }
10287
b69cf536 10288 ring_buffer_attach(event, rb);
9bb5d40c 10289
a4be7c27 10290 ret = 0;
ac9721f3
PZ
10291unlock:
10292 mutex_unlock(&event->mmap_mutex);
10293
a4be7c27 10294out:
a4be7c27
PZ
10295 return ret;
10296}
10297
f63a8daa
PZ
10298static void mutex_lock_double(struct mutex *a, struct mutex *b)
10299{
10300 if (b < a)
10301 swap(a, b);
10302
10303 mutex_lock(a);
10304 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10305}
10306
34f43927
PZ
10307static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10308{
10309 bool nmi_safe = false;
10310
10311 switch (clk_id) {
10312 case CLOCK_MONOTONIC:
10313 event->clock = &ktime_get_mono_fast_ns;
10314 nmi_safe = true;
10315 break;
10316
10317 case CLOCK_MONOTONIC_RAW:
10318 event->clock = &ktime_get_raw_fast_ns;
10319 nmi_safe = true;
10320 break;
10321
10322 case CLOCK_REALTIME:
10323 event->clock = &ktime_get_real_ns;
10324 break;
10325
10326 case CLOCK_BOOTTIME:
10327 event->clock = &ktime_get_boot_ns;
10328 break;
10329
10330 case CLOCK_TAI:
10331 event->clock = &ktime_get_tai_ns;
10332 break;
10333
10334 default:
10335 return -EINVAL;
10336 }
10337
10338 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10339 return -EINVAL;
10340
10341 return 0;
10342}
10343
321027c1
PZ
10344/*
10345 * Variation on perf_event_ctx_lock_nested(), except we take two context
10346 * mutexes.
10347 */
10348static struct perf_event_context *
10349__perf_event_ctx_lock_double(struct perf_event *group_leader,
10350 struct perf_event_context *ctx)
10351{
10352 struct perf_event_context *gctx;
10353
10354again:
10355 rcu_read_lock();
10356 gctx = READ_ONCE(group_leader->ctx);
10357 if (!atomic_inc_not_zero(&gctx->refcount)) {
10358 rcu_read_unlock();
10359 goto again;
10360 }
10361 rcu_read_unlock();
10362
10363 mutex_lock_double(&gctx->mutex, &ctx->mutex);
10364
10365 if (group_leader->ctx != gctx) {
10366 mutex_unlock(&ctx->mutex);
10367 mutex_unlock(&gctx->mutex);
10368 put_ctx(gctx);
10369 goto again;
10370 }
10371
10372 return gctx;
10373}
10374
0793a61d 10375/**
cdd6c482 10376 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 10377 *
cdd6c482 10378 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 10379 * @pid: target pid
9f66a381 10380 * @cpu: target cpu
cdd6c482 10381 * @group_fd: group leader event fd
0793a61d 10382 */
cdd6c482
IM
10383SYSCALL_DEFINE5(perf_event_open,
10384 struct perf_event_attr __user *, attr_uptr,
2743a5b0 10385 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 10386{
b04243ef
PZ
10387 struct perf_event *group_leader = NULL, *output_event = NULL;
10388 struct perf_event *event, *sibling;
cdd6c482 10389 struct perf_event_attr attr;
f63a8daa 10390 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 10391 struct file *event_file = NULL;
2903ff01 10392 struct fd group = {NULL, 0};
38a81da2 10393 struct task_struct *task = NULL;
89a1e187 10394 struct pmu *pmu;
ea635c64 10395 int event_fd;
b04243ef 10396 int move_group = 0;
dc86cabe 10397 int err;
a21b0b35 10398 int f_flags = O_RDWR;
79dff51e 10399 int cgroup_fd = -1;
0793a61d 10400
2743a5b0 10401 /* for future expandability... */
e5d1367f 10402 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
10403 return -EINVAL;
10404
dc86cabe
IM
10405 err = perf_copy_attr(attr_uptr, &attr);
10406 if (err)
10407 return err;
eab656ae 10408
0764771d
PZ
10409 if (!attr.exclude_kernel) {
10410 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10411 return -EACCES;
10412 }
10413
e4222673
HB
10414 if (attr.namespaces) {
10415 if (!capable(CAP_SYS_ADMIN))
10416 return -EACCES;
10417 }
10418
df58ab24 10419 if (attr.freq) {
cdd6c482 10420 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 10421 return -EINVAL;
0819b2e3
PZ
10422 } else {
10423 if (attr.sample_period & (1ULL << 63))
10424 return -EINVAL;
df58ab24
PZ
10425 }
10426
fc7ce9c7
KL
10427 /* Only privileged users can get physical addresses */
10428 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10429 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10430 return -EACCES;
10431
e5d1367f
SE
10432 /*
10433 * In cgroup mode, the pid argument is used to pass the fd
10434 * opened to the cgroup directory in cgroupfs. The cpu argument
10435 * designates the cpu on which to monitor threads from that
10436 * cgroup.
10437 */
10438 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10439 return -EINVAL;
10440
a21b0b35
YD
10441 if (flags & PERF_FLAG_FD_CLOEXEC)
10442 f_flags |= O_CLOEXEC;
10443
10444 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
10445 if (event_fd < 0)
10446 return event_fd;
10447
ac9721f3 10448 if (group_fd != -1) {
2903ff01
AV
10449 err = perf_fget_light(group_fd, &group);
10450 if (err)
d14b12d7 10451 goto err_fd;
2903ff01 10452 group_leader = group.file->private_data;
ac9721f3
PZ
10453 if (flags & PERF_FLAG_FD_OUTPUT)
10454 output_event = group_leader;
10455 if (flags & PERF_FLAG_FD_NO_GROUP)
10456 group_leader = NULL;
10457 }
10458
e5d1367f 10459 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
10460 task = find_lively_task_by_vpid(pid);
10461 if (IS_ERR(task)) {
10462 err = PTR_ERR(task);
10463 goto err_group_fd;
10464 }
10465 }
10466
1f4ee503
PZ
10467 if (task && group_leader &&
10468 group_leader->attr.inherit != attr.inherit) {
10469 err = -EINVAL;
10470 goto err_task;
10471 }
10472
79c9ce57
PZ
10473 if (task) {
10474 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10475 if (err)
e5aeee51 10476 goto err_task;
79c9ce57
PZ
10477
10478 /*
10479 * Reuse ptrace permission checks for now.
10480 *
10481 * We must hold cred_guard_mutex across this and any potential
10482 * perf_install_in_context() call for this new event to
10483 * serialize against exec() altering our credentials (and the
10484 * perf_event_exit_task() that could imply).
10485 */
10486 err = -EACCES;
10487 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10488 goto err_cred;
10489 }
10490
79dff51e
MF
10491 if (flags & PERF_FLAG_PID_CGROUP)
10492 cgroup_fd = pid;
10493
4dc0da86 10494 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 10495 NULL, NULL, cgroup_fd);
d14b12d7
SE
10496 if (IS_ERR(event)) {
10497 err = PTR_ERR(event);
79c9ce57 10498 goto err_cred;
d14b12d7
SE
10499 }
10500
53b25335
VW
10501 if (is_sampling_event(event)) {
10502 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 10503 err = -EOPNOTSUPP;
53b25335
VW
10504 goto err_alloc;
10505 }
10506 }
10507
89a1e187
PZ
10508 /*
10509 * Special case software events and allow them to be part of
10510 * any hardware group.
10511 */
10512 pmu = event->pmu;
b04243ef 10513
34f43927
PZ
10514 if (attr.use_clockid) {
10515 err = perf_event_set_clock(event, attr.clockid);
10516 if (err)
10517 goto err_alloc;
10518 }
10519
4ff6a8de
DCC
10520 if (pmu->task_ctx_nr == perf_sw_context)
10521 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10522
a1150c20
SL
10523 if (group_leader) {
10524 if (is_software_event(event) &&
10525 !in_software_context(group_leader)) {
b04243ef 10526 /*
a1150c20
SL
10527 * If the event is a sw event, but the group_leader
10528 * is on hw context.
b04243ef 10529 *
a1150c20
SL
10530 * Allow the addition of software events to hw
10531 * groups, this is safe because software events
10532 * never fail to schedule.
b04243ef 10533 */
a1150c20
SL
10534 pmu = group_leader->ctx->pmu;
10535 } else if (!is_software_event(event) &&
10536 is_software_event(group_leader) &&
4ff6a8de 10537 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10538 /*
10539 * In case the group is a pure software group, and we
10540 * try to add a hardware event, move the whole group to
10541 * the hardware context.
10542 */
10543 move_group = 1;
10544 }
10545 }
89a1e187
PZ
10546
10547 /*
10548 * Get the target context (task or percpu):
10549 */
4af57ef2 10550 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10551 if (IS_ERR(ctx)) {
10552 err = PTR_ERR(ctx);
c6be5a5c 10553 goto err_alloc;
89a1e187
PZ
10554 }
10555
bed5b25a
AS
10556 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10557 err = -EBUSY;
10558 goto err_context;
10559 }
10560
ccff286d 10561 /*
cdd6c482 10562 * Look up the group leader (we will attach this event to it):
04289bb9 10563 */
ac9721f3 10564 if (group_leader) {
dc86cabe 10565 err = -EINVAL;
04289bb9 10566
04289bb9 10567 /*
ccff286d
IM
10568 * Do not allow a recursive hierarchy (this new sibling
10569 * becoming part of another group-sibling):
10570 */
10571 if (group_leader->group_leader != group_leader)
c3f00c70 10572 goto err_context;
34f43927
PZ
10573
10574 /* All events in a group should have the same clock */
10575 if (group_leader->clock != event->clock)
10576 goto err_context;
10577
ccff286d 10578 /*
64aee2a9
MR
10579 * Make sure we're both events for the same CPU;
10580 * grouping events for different CPUs is broken; since
10581 * you can never concurrently schedule them anyhow.
04289bb9 10582 */
64aee2a9
MR
10583 if (group_leader->cpu != event->cpu)
10584 goto err_context;
c3c87e77 10585
64aee2a9
MR
10586 /*
10587 * Make sure we're both on the same task, or both
10588 * per-CPU events.
10589 */
10590 if (group_leader->ctx->task != ctx->task)
10591 goto err_context;
10592
10593 /*
10594 * Do not allow to attach to a group in a different task
10595 * or CPU context. If we're moving SW events, we'll fix
10596 * this up later, so allow that.
10597 */
10598 if (!move_group && group_leader->ctx != ctx)
10599 goto err_context;
b04243ef 10600
3b6f9e5c
PM
10601 /*
10602 * Only a group leader can be exclusive or pinned
10603 */
0d48696f 10604 if (attr.exclusive || attr.pinned)
c3f00c70 10605 goto err_context;
ac9721f3
PZ
10606 }
10607
10608 if (output_event) {
10609 err = perf_event_set_output(event, output_event);
10610 if (err)
c3f00c70 10611 goto err_context;
ac9721f3 10612 }
0793a61d 10613
a21b0b35
YD
10614 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10615 f_flags);
ea635c64
AV
10616 if (IS_ERR(event_file)) {
10617 err = PTR_ERR(event_file);
201c2f85 10618 event_file = NULL;
c3f00c70 10619 goto err_context;
ea635c64 10620 }
9b51f66d 10621
b04243ef 10622 if (move_group) {
321027c1
PZ
10623 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10624
84c4e620
PZ
10625 if (gctx->task == TASK_TOMBSTONE) {
10626 err = -ESRCH;
10627 goto err_locked;
10628 }
321027c1
PZ
10629
10630 /*
10631 * Check if we raced against another sys_perf_event_open() call
10632 * moving the software group underneath us.
10633 */
10634 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10635 /*
10636 * If someone moved the group out from under us, check
10637 * if this new event wound up on the same ctx, if so
10638 * its the regular !move_group case, otherwise fail.
10639 */
10640 if (gctx != ctx) {
10641 err = -EINVAL;
10642 goto err_locked;
10643 } else {
10644 perf_event_ctx_unlock(group_leader, gctx);
10645 move_group = 0;
10646 }
10647 }
f55fc2a5
PZ
10648 } else {
10649 mutex_lock(&ctx->mutex);
10650 }
10651
84c4e620
PZ
10652 if (ctx->task == TASK_TOMBSTONE) {
10653 err = -ESRCH;
10654 goto err_locked;
10655 }
10656
a723968c
PZ
10657 if (!perf_event_validate_size(event)) {
10658 err = -E2BIG;
10659 goto err_locked;
10660 }
10661
a63fbed7
TG
10662 if (!task) {
10663 /*
10664 * Check if the @cpu we're creating an event for is online.
10665 *
10666 * We use the perf_cpu_context::ctx::mutex to serialize against
10667 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10668 */
10669 struct perf_cpu_context *cpuctx =
10670 container_of(ctx, struct perf_cpu_context, ctx);
10671
10672 if (!cpuctx->online) {
10673 err = -ENODEV;
10674 goto err_locked;
10675 }
10676 }
10677
10678
f55fc2a5
PZ
10679 /*
10680 * Must be under the same ctx::mutex as perf_install_in_context(),
10681 * because we need to serialize with concurrent event creation.
10682 */
10683 if (!exclusive_event_installable(event, ctx)) {
10684 /* exclusive and group stuff are assumed mutually exclusive */
10685 WARN_ON_ONCE(move_group);
f63a8daa 10686
f55fc2a5
PZ
10687 err = -EBUSY;
10688 goto err_locked;
10689 }
f63a8daa 10690
f55fc2a5
PZ
10691 WARN_ON_ONCE(ctx->parent_ctx);
10692
79c9ce57
PZ
10693 /*
10694 * This is the point on no return; we cannot fail hereafter. This is
10695 * where we start modifying current state.
10696 */
10697
f55fc2a5 10698 if (move_group) {
f63a8daa
PZ
10699 /*
10700 * See perf_event_ctx_lock() for comments on the details
10701 * of swizzling perf_event::ctx.
10702 */
45a0e07a 10703 perf_remove_from_context(group_leader, 0);
279b5165 10704 put_ctx(gctx);
0231bb53 10705
edb39592 10706 for_each_sibling_event(sibling, group_leader) {
45a0e07a 10707 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10708 put_ctx(gctx);
10709 }
b04243ef 10710
f63a8daa
PZ
10711 /*
10712 * Wait for everybody to stop referencing the events through
10713 * the old lists, before installing it on new lists.
10714 */
0cda4c02 10715 synchronize_rcu();
f63a8daa 10716
8f95b435
PZI
10717 /*
10718 * Install the group siblings before the group leader.
10719 *
10720 * Because a group leader will try and install the entire group
10721 * (through the sibling list, which is still in-tact), we can
10722 * end up with siblings installed in the wrong context.
10723 *
10724 * By installing siblings first we NO-OP because they're not
10725 * reachable through the group lists.
10726 */
edb39592 10727 for_each_sibling_event(sibling, group_leader) {
8f95b435 10728 perf_event__state_init(sibling);
9fc81d87 10729 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10730 get_ctx(ctx);
10731 }
8f95b435
PZI
10732
10733 /*
10734 * Removing from the context ends up with disabled
10735 * event. What we want here is event in the initial
10736 * startup state, ready to be add into new context.
10737 */
10738 perf_event__state_init(group_leader);
10739 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10740 get_ctx(ctx);
bed5b25a
AS
10741 }
10742
f73e22ab
PZ
10743 /*
10744 * Precalculate sample_data sizes; do while holding ctx::mutex such
10745 * that we're serialized against further additions and before
10746 * perf_install_in_context() which is the point the event is active and
10747 * can use these values.
10748 */
10749 perf_event__header_size(event);
10750 perf_event__id_header_size(event);
10751
78cd2c74
PZ
10752 event->owner = current;
10753
e2d37cd2 10754 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10755 perf_unpin_context(ctx);
f63a8daa 10756
f55fc2a5 10757 if (move_group)
321027c1 10758 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10759 mutex_unlock(&ctx->mutex);
9b51f66d 10760
79c9ce57
PZ
10761 if (task) {
10762 mutex_unlock(&task->signal->cred_guard_mutex);
10763 put_task_struct(task);
10764 }
10765
cdd6c482
IM
10766 mutex_lock(&current->perf_event_mutex);
10767 list_add_tail(&event->owner_entry, &current->perf_event_list);
10768 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10769
8a49542c
PZ
10770 /*
10771 * Drop the reference on the group_event after placing the
10772 * new event on the sibling_list. This ensures destruction
10773 * of the group leader will find the pointer to itself in
10774 * perf_group_detach().
10775 */
2903ff01 10776 fdput(group);
ea635c64
AV
10777 fd_install(event_fd, event_file);
10778 return event_fd;
0793a61d 10779
f55fc2a5
PZ
10780err_locked:
10781 if (move_group)
321027c1 10782 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10783 mutex_unlock(&ctx->mutex);
10784/* err_file: */
10785 fput(event_file);
c3f00c70 10786err_context:
fe4b04fa 10787 perf_unpin_context(ctx);
ea635c64 10788 put_ctx(ctx);
c6be5a5c 10789err_alloc:
13005627
PZ
10790 /*
10791 * If event_file is set, the fput() above will have called ->release()
10792 * and that will take care of freeing the event.
10793 */
10794 if (!event_file)
10795 free_event(event);
79c9ce57
PZ
10796err_cred:
10797 if (task)
10798 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10799err_task:
e7d0bc04
PZ
10800 if (task)
10801 put_task_struct(task);
89a1e187 10802err_group_fd:
2903ff01 10803 fdput(group);
ea635c64
AV
10804err_fd:
10805 put_unused_fd(event_fd);
dc86cabe 10806 return err;
0793a61d
TG
10807}
10808
fb0459d7
AV
10809/**
10810 * perf_event_create_kernel_counter
10811 *
10812 * @attr: attributes of the counter to create
10813 * @cpu: cpu in which the counter is bound
38a81da2 10814 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10815 */
10816struct perf_event *
10817perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10818 struct task_struct *task,
4dc0da86
AK
10819 perf_overflow_handler_t overflow_handler,
10820 void *context)
fb0459d7 10821{
fb0459d7 10822 struct perf_event_context *ctx;
c3f00c70 10823 struct perf_event *event;
fb0459d7 10824 int err;
d859e29f 10825
fb0459d7
AV
10826 /*
10827 * Get the target context (task or percpu):
10828 */
d859e29f 10829
4dc0da86 10830 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10831 overflow_handler, context, -1);
c3f00c70
PZ
10832 if (IS_ERR(event)) {
10833 err = PTR_ERR(event);
10834 goto err;
10835 }
d859e29f 10836
f8697762 10837 /* Mark owner so we could distinguish it from user events. */
63b6da39 10838 event->owner = TASK_TOMBSTONE;
f8697762 10839
4af57ef2 10840 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10841 if (IS_ERR(ctx)) {
10842 err = PTR_ERR(ctx);
c3f00c70 10843 goto err_free;
d859e29f 10844 }
fb0459d7 10845
fb0459d7
AV
10846 WARN_ON_ONCE(ctx->parent_ctx);
10847 mutex_lock(&ctx->mutex);
84c4e620
PZ
10848 if (ctx->task == TASK_TOMBSTONE) {
10849 err = -ESRCH;
10850 goto err_unlock;
10851 }
10852
a63fbed7
TG
10853 if (!task) {
10854 /*
10855 * Check if the @cpu we're creating an event for is online.
10856 *
10857 * We use the perf_cpu_context::ctx::mutex to serialize against
10858 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10859 */
10860 struct perf_cpu_context *cpuctx =
10861 container_of(ctx, struct perf_cpu_context, ctx);
10862 if (!cpuctx->online) {
10863 err = -ENODEV;
10864 goto err_unlock;
10865 }
10866 }
10867
bed5b25a 10868 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10869 err = -EBUSY;
84c4e620 10870 goto err_unlock;
bed5b25a
AS
10871 }
10872
fb0459d7 10873 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10874 perf_unpin_context(ctx);
fb0459d7
AV
10875 mutex_unlock(&ctx->mutex);
10876
fb0459d7
AV
10877 return event;
10878
84c4e620
PZ
10879err_unlock:
10880 mutex_unlock(&ctx->mutex);
10881 perf_unpin_context(ctx);
10882 put_ctx(ctx);
c3f00c70
PZ
10883err_free:
10884 free_event(event);
10885err:
c6567f64 10886 return ERR_PTR(err);
9b51f66d 10887}
fb0459d7 10888EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10889
0cda4c02
YZ
10890void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10891{
10892 struct perf_event_context *src_ctx;
10893 struct perf_event_context *dst_ctx;
10894 struct perf_event *event, *tmp;
10895 LIST_HEAD(events);
10896
10897 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10898 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10899
f63a8daa
PZ
10900 /*
10901 * See perf_event_ctx_lock() for comments on the details
10902 * of swizzling perf_event::ctx.
10903 */
10904 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10905 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10906 event_entry) {
45a0e07a 10907 perf_remove_from_context(event, 0);
9a545de0 10908 unaccount_event_cpu(event, src_cpu);
0cda4c02 10909 put_ctx(src_ctx);
9886167d 10910 list_add(&event->migrate_entry, &events);
0cda4c02 10911 }
0cda4c02 10912
8f95b435
PZI
10913 /*
10914 * Wait for the events to quiesce before re-instating them.
10915 */
0cda4c02
YZ
10916 synchronize_rcu();
10917
8f95b435
PZI
10918 /*
10919 * Re-instate events in 2 passes.
10920 *
10921 * Skip over group leaders and only install siblings on this first
10922 * pass, siblings will not get enabled without a leader, however a
10923 * leader will enable its siblings, even if those are still on the old
10924 * context.
10925 */
10926 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10927 if (event->group_leader == event)
10928 continue;
10929
10930 list_del(&event->migrate_entry);
10931 if (event->state >= PERF_EVENT_STATE_OFF)
10932 event->state = PERF_EVENT_STATE_INACTIVE;
10933 account_event_cpu(event, dst_cpu);
10934 perf_install_in_context(dst_ctx, event, dst_cpu);
10935 get_ctx(dst_ctx);
10936 }
10937
10938 /*
10939 * Once all the siblings are setup properly, install the group leaders
10940 * to make it go.
10941 */
9886167d
PZ
10942 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10943 list_del(&event->migrate_entry);
0cda4c02
YZ
10944 if (event->state >= PERF_EVENT_STATE_OFF)
10945 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10946 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10947 perf_install_in_context(dst_ctx, event, dst_cpu);
10948 get_ctx(dst_ctx);
10949 }
10950 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10951 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10952}
10953EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10954
cdd6c482 10955static void sync_child_event(struct perf_event *child_event,
38b200d6 10956 struct task_struct *child)
d859e29f 10957{
cdd6c482 10958 struct perf_event *parent_event = child_event->parent;
8bc20959 10959 u64 child_val;
d859e29f 10960
cdd6c482
IM
10961 if (child_event->attr.inherit_stat)
10962 perf_event_read_event(child_event, child);
38b200d6 10963
b5e58793 10964 child_val = perf_event_count(child_event);
d859e29f
PM
10965
10966 /*
10967 * Add back the child's count to the parent's count:
10968 */
a6e6dea6 10969 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10970 atomic64_add(child_event->total_time_enabled,
10971 &parent_event->child_total_time_enabled);
10972 atomic64_add(child_event->total_time_running,
10973 &parent_event->child_total_time_running);
d859e29f
PM
10974}
10975
9b51f66d 10976static void
8ba289b8
PZ
10977perf_event_exit_event(struct perf_event *child_event,
10978 struct perf_event_context *child_ctx,
10979 struct task_struct *child)
9b51f66d 10980{
8ba289b8
PZ
10981 struct perf_event *parent_event = child_event->parent;
10982
1903d50c
PZ
10983 /*
10984 * Do not destroy the 'original' grouping; because of the context
10985 * switch optimization the original events could've ended up in a
10986 * random child task.
10987 *
10988 * If we were to destroy the original group, all group related
10989 * operations would cease to function properly after this random
10990 * child dies.
10991 *
10992 * Do destroy all inherited groups, we don't care about those
10993 * and being thorough is better.
10994 */
32132a3d
PZ
10995 raw_spin_lock_irq(&child_ctx->lock);
10996 WARN_ON_ONCE(child_ctx->is_active);
10997
8ba289b8 10998 if (parent_event)
32132a3d
PZ
10999 perf_group_detach(child_event);
11000 list_del_event(child_event, child_ctx);
0d3d73aa 11001 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 11002 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 11003
9b51f66d 11004 /*
8ba289b8 11005 * Parent events are governed by their filedesc, retain them.
9b51f66d 11006 */
8ba289b8 11007 if (!parent_event) {
179033b3 11008 perf_event_wakeup(child_event);
8ba289b8 11009 return;
4bcf349a 11010 }
8ba289b8
PZ
11011 /*
11012 * Child events can be cleaned up.
11013 */
11014
11015 sync_child_event(child_event, child);
11016
11017 /*
11018 * Remove this event from the parent's list
11019 */
11020 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11021 mutex_lock(&parent_event->child_mutex);
11022 list_del_init(&child_event->child_list);
11023 mutex_unlock(&parent_event->child_mutex);
11024
11025 /*
11026 * Kick perf_poll() for is_event_hup().
11027 */
11028 perf_event_wakeup(parent_event);
11029 free_event(child_event);
11030 put_event(parent_event);
9b51f66d
IM
11031}
11032
8dc85d54 11033static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 11034{
211de6eb 11035 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 11036 struct perf_event *child_event, *next;
63b6da39
PZ
11037
11038 WARN_ON_ONCE(child != current);
9b51f66d 11039
6a3351b6 11040 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 11041 if (!child_ctx)
9b51f66d
IM
11042 return;
11043
ad3a37de 11044 /*
6a3351b6
PZ
11045 * In order to reduce the amount of tricky in ctx tear-down, we hold
11046 * ctx::mutex over the entire thing. This serializes against almost
11047 * everything that wants to access the ctx.
11048 *
11049 * The exception is sys_perf_event_open() /
11050 * perf_event_create_kernel_count() which does find_get_context()
11051 * without ctx::mutex (it cannot because of the move_group double mutex
11052 * lock thing). See the comments in perf_install_in_context().
ad3a37de 11053 */
6a3351b6 11054 mutex_lock(&child_ctx->mutex);
c93f7669
PM
11055
11056 /*
6a3351b6
PZ
11057 * In a single ctx::lock section, de-schedule the events and detach the
11058 * context from the task such that we cannot ever get it scheduled back
11059 * in.
c93f7669 11060 */
6a3351b6 11061 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 11062 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 11063
71a851b4 11064 /*
63b6da39
PZ
11065 * Now that the context is inactive, destroy the task <-> ctx relation
11066 * and mark the context dead.
71a851b4 11067 */
63b6da39
PZ
11068 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11069 put_ctx(child_ctx); /* cannot be last */
11070 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11071 put_task_struct(current); /* cannot be last */
4a1c0f26 11072
211de6eb 11073 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 11074 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 11075
211de6eb
PZ
11076 if (clone_ctx)
11077 put_ctx(clone_ctx);
4a1c0f26 11078
9f498cc5 11079 /*
cdd6c482
IM
11080 * Report the task dead after unscheduling the events so that we
11081 * won't get any samples after PERF_RECORD_EXIT. We can however still
11082 * get a few PERF_RECORD_READ events.
9f498cc5 11083 */
cdd6c482 11084 perf_event_task(child, child_ctx, 0);
a63eaf34 11085
ebf905fc 11086 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 11087 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 11088
a63eaf34
PM
11089 mutex_unlock(&child_ctx->mutex);
11090
11091 put_ctx(child_ctx);
9b51f66d
IM
11092}
11093
8dc85d54
PZ
11094/*
11095 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
11096 *
11097 * Can be called with cred_guard_mutex held when called from
11098 * install_exec_creds().
8dc85d54
PZ
11099 */
11100void perf_event_exit_task(struct task_struct *child)
11101{
8882135b 11102 struct perf_event *event, *tmp;
8dc85d54
PZ
11103 int ctxn;
11104
8882135b
PZ
11105 mutex_lock(&child->perf_event_mutex);
11106 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11107 owner_entry) {
11108 list_del_init(&event->owner_entry);
11109
11110 /*
11111 * Ensure the list deletion is visible before we clear
11112 * the owner, closes a race against perf_release() where
11113 * we need to serialize on the owner->perf_event_mutex.
11114 */
f47c02c0 11115 smp_store_release(&event->owner, NULL);
8882135b
PZ
11116 }
11117 mutex_unlock(&child->perf_event_mutex);
11118
8dc85d54
PZ
11119 for_each_task_context_nr(ctxn)
11120 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
11121
11122 /*
11123 * The perf_event_exit_task_context calls perf_event_task
11124 * with child's task_ctx, which generates EXIT events for
11125 * child contexts and sets child->perf_event_ctxp[] to NULL.
11126 * At this point we need to send EXIT events to cpu contexts.
11127 */
11128 perf_event_task(child, NULL, 0);
8dc85d54
PZ
11129}
11130
889ff015
FW
11131static void perf_free_event(struct perf_event *event,
11132 struct perf_event_context *ctx)
11133{
11134 struct perf_event *parent = event->parent;
11135
11136 if (WARN_ON_ONCE(!parent))
11137 return;
11138
11139 mutex_lock(&parent->child_mutex);
11140 list_del_init(&event->child_list);
11141 mutex_unlock(&parent->child_mutex);
11142
a6fa941d 11143 put_event(parent);
889ff015 11144
652884fe 11145 raw_spin_lock_irq(&ctx->lock);
8a49542c 11146 perf_group_detach(event);
889ff015 11147 list_del_event(event, ctx);
652884fe 11148 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
11149 free_event(event);
11150}
11151
bbbee908 11152/*
652884fe 11153 * Free an unexposed, unused context as created by inheritance by
8dc85d54 11154 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
11155 *
11156 * Not all locks are strictly required, but take them anyway to be nice and
11157 * help out with the lockdep assertions.
bbbee908 11158 */
cdd6c482 11159void perf_event_free_task(struct task_struct *task)
bbbee908 11160{
8dc85d54 11161 struct perf_event_context *ctx;
cdd6c482 11162 struct perf_event *event, *tmp;
8dc85d54 11163 int ctxn;
bbbee908 11164
8dc85d54
PZ
11165 for_each_task_context_nr(ctxn) {
11166 ctx = task->perf_event_ctxp[ctxn];
11167 if (!ctx)
11168 continue;
bbbee908 11169
8dc85d54 11170 mutex_lock(&ctx->mutex);
e552a838
PZ
11171 raw_spin_lock_irq(&ctx->lock);
11172 /*
11173 * Destroy the task <-> ctx relation and mark the context dead.
11174 *
11175 * This is important because even though the task hasn't been
11176 * exposed yet the context has been (through child_list).
11177 */
11178 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11179 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11180 put_task_struct(task); /* cannot be last */
11181 raw_spin_unlock_irq(&ctx->lock);
bbbee908 11182
15121c78 11183 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 11184 perf_free_event(event, ctx);
bbbee908 11185
8dc85d54 11186 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
11187 put_ctx(ctx);
11188 }
889ff015
FW
11189}
11190
4e231c79
PZ
11191void perf_event_delayed_put(struct task_struct *task)
11192{
11193 int ctxn;
11194
11195 for_each_task_context_nr(ctxn)
11196 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11197}
11198
e03e7ee3 11199struct file *perf_event_get(unsigned int fd)
ffe8690c 11200{
e03e7ee3 11201 struct file *file;
ffe8690c 11202
e03e7ee3
AS
11203 file = fget_raw(fd);
11204 if (!file)
11205 return ERR_PTR(-EBADF);
ffe8690c 11206
e03e7ee3
AS
11207 if (file->f_op != &perf_fops) {
11208 fput(file);
11209 return ERR_PTR(-EBADF);
11210 }
ffe8690c 11211
e03e7ee3 11212 return file;
ffe8690c
KX
11213}
11214
f8d959a5
YS
11215const struct perf_event *perf_get_event(struct file *file)
11216{
11217 if (file->f_op != &perf_fops)
11218 return ERR_PTR(-EINVAL);
11219
11220 return file->private_data;
11221}
11222
ffe8690c
KX
11223const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11224{
11225 if (!event)
11226 return ERR_PTR(-EINVAL);
11227
11228 return &event->attr;
11229}
11230
97dee4f3 11231/*
d8a8cfc7
PZ
11232 * Inherit a event from parent task to child task.
11233 *
11234 * Returns:
11235 * - valid pointer on success
11236 * - NULL for orphaned events
11237 * - IS_ERR() on error
97dee4f3
PZ
11238 */
11239static struct perf_event *
11240inherit_event(struct perf_event *parent_event,
11241 struct task_struct *parent,
11242 struct perf_event_context *parent_ctx,
11243 struct task_struct *child,
11244 struct perf_event *group_leader,
11245 struct perf_event_context *child_ctx)
11246{
8ca2bd41 11247 enum perf_event_state parent_state = parent_event->state;
97dee4f3 11248 struct perf_event *child_event;
cee010ec 11249 unsigned long flags;
97dee4f3
PZ
11250
11251 /*
11252 * Instead of creating recursive hierarchies of events,
11253 * we link inherited events back to the original parent,
11254 * which has a filp for sure, which we use as the reference
11255 * count:
11256 */
11257 if (parent_event->parent)
11258 parent_event = parent_event->parent;
11259
11260 child_event = perf_event_alloc(&parent_event->attr,
11261 parent_event->cpu,
d580ff86 11262 child,
97dee4f3 11263 group_leader, parent_event,
79dff51e 11264 NULL, NULL, -1);
97dee4f3
PZ
11265 if (IS_ERR(child_event))
11266 return child_event;
a6fa941d 11267
313ccb96
JO
11268
11269 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11270 !child_ctx->task_ctx_data) {
11271 struct pmu *pmu = child_event->pmu;
11272
11273 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11274 GFP_KERNEL);
11275 if (!child_ctx->task_ctx_data) {
11276 free_event(child_event);
11277 return NULL;
11278 }
11279 }
11280
c6e5b732
PZ
11281 /*
11282 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11283 * must be under the same lock in order to serialize against
11284 * perf_event_release_kernel(), such that either we must observe
11285 * is_orphaned_event() or they will observe us on the child_list.
11286 */
11287 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
11288 if (is_orphaned_event(parent_event) ||
11289 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 11290 mutex_unlock(&parent_event->child_mutex);
313ccb96 11291 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
11292 free_event(child_event);
11293 return NULL;
11294 }
11295
97dee4f3
PZ
11296 get_ctx(child_ctx);
11297
11298 /*
11299 * Make the child state follow the state of the parent event,
11300 * not its attr.disabled bit. We hold the parent's mutex,
11301 * so we won't race with perf_event_{en, dis}able_family.
11302 */
1929def9 11303 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
11304 child_event->state = PERF_EVENT_STATE_INACTIVE;
11305 else
11306 child_event->state = PERF_EVENT_STATE_OFF;
11307
11308 if (parent_event->attr.freq) {
11309 u64 sample_period = parent_event->hw.sample_period;
11310 struct hw_perf_event *hwc = &child_event->hw;
11311
11312 hwc->sample_period = sample_period;
11313 hwc->last_period = sample_period;
11314
11315 local64_set(&hwc->period_left, sample_period);
11316 }
11317
11318 child_event->ctx = child_ctx;
11319 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
11320 child_event->overflow_handler_context
11321 = parent_event->overflow_handler_context;
97dee4f3 11322
614b6780
TG
11323 /*
11324 * Precalculate sample_data sizes
11325 */
11326 perf_event__header_size(child_event);
6844c09d 11327 perf_event__id_header_size(child_event);
614b6780 11328
97dee4f3
PZ
11329 /*
11330 * Link it up in the child's context:
11331 */
cee010ec 11332 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 11333 add_event_to_ctx(child_event, child_ctx);
cee010ec 11334 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 11335
97dee4f3
PZ
11336 /*
11337 * Link this into the parent event's child list
11338 */
97dee4f3
PZ
11339 list_add_tail(&child_event->child_list, &parent_event->child_list);
11340 mutex_unlock(&parent_event->child_mutex);
11341
11342 return child_event;
11343}
11344
d8a8cfc7
PZ
11345/*
11346 * Inherits an event group.
11347 *
11348 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11349 * This matches with perf_event_release_kernel() removing all child events.
11350 *
11351 * Returns:
11352 * - 0 on success
11353 * - <0 on error
11354 */
97dee4f3
PZ
11355static int inherit_group(struct perf_event *parent_event,
11356 struct task_struct *parent,
11357 struct perf_event_context *parent_ctx,
11358 struct task_struct *child,
11359 struct perf_event_context *child_ctx)
11360{
11361 struct perf_event *leader;
11362 struct perf_event *sub;
11363 struct perf_event *child_ctr;
11364
11365 leader = inherit_event(parent_event, parent, parent_ctx,
11366 child, NULL, child_ctx);
11367 if (IS_ERR(leader))
11368 return PTR_ERR(leader);
d8a8cfc7
PZ
11369 /*
11370 * @leader can be NULL here because of is_orphaned_event(). In this
11371 * case inherit_event() will create individual events, similar to what
11372 * perf_group_detach() would do anyway.
11373 */
edb39592 11374 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
11375 child_ctr = inherit_event(sub, parent, parent_ctx,
11376 child, leader, child_ctx);
11377 if (IS_ERR(child_ctr))
11378 return PTR_ERR(child_ctr);
11379 }
11380 return 0;
889ff015
FW
11381}
11382
d8a8cfc7
PZ
11383/*
11384 * Creates the child task context and tries to inherit the event-group.
11385 *
11386 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11387 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11388 * consistent with perf_event_release_kernel() removing all child events.
11389 *
11390 * Returns:
11391 * - 0 on success
11392 * - <0 on error
11393 */
889ff015
FW
11394static int
11395inherit_task_group(struct perf_event *event, struct task_struct *parent,
11396 struct perf_event_context *parent_ctx,
8dc85d54 11397 struct task_struct *child, int ctxn,
889ff015
FW
11398 int *inherited_all)
11399{
11400 int ret;
8dc85d54 11401 struct perf_event_context *child_ctx;
889ff015
FW
11402
11403 if (!event->attr.inherit) {
11404 *inherited_all = 0;
11405 return 0;
bbbee908
PZ
11406 }
11407
fe4b04fa 11408 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
11409 if (!child_ctx) {
11410 /*
11411 * This is executed from the parent task context, so
11412 * inherit events that have been marked for cloning.
11413 * First allocate and initialize a context for the
11414 * child.
11415 */
734df5ab 11416 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
11417 if (!child_ctx)
11418 return -ENOMEM;
bbbee908 11419
8dc85d54 11420 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
11421 }
11422
11423 ret = inherit_group(event, parent, parent_ctx,
11424 child, child_ctx);
11425
11426 if (ret)
11427 *inherited_all = 0;
11428
11429 return ret;
bbbee908
PZ
11430}
11431
9b51f66d 11432/*
cdd6c482 11433 * Initialize the perf_event context in task_struct
9b51f66d 11434 */
985c8dcb 11435static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 11436{
889ff015 11437 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
11438 struct perf_event_context *cloned_ctx;
11439 struct perf_event *event;
9b51f66d 11440 struct task_struct *parent = current;
564c2b21 11441 int inherited_all = 1;
dddd3379 11442 unsigned long flags;
6ab423e0 11443 int ret = 0;
9b51f66d 11444
8dc85d54 11445 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
11446 return 0;
11447
ad3a37de 11448 /*
25346b93
PM
11449 * If the parent's context is a clone, pin it so it won't get
11450 * swapped under us.
ad3a37de 11451 */
8dc85d54 11452 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
11453 if (!parent_ctx)
11454 return 0;
25346b93 11455
ad3a37de
PM
11456 /*
11457 * No need to check if parent_ctx != NULL here; since we saw
11458 * it non-NULL earlier, the only reason for it to become NULL
11459 * is if we exit, and since we're currently in the middle of
11460 * a fork we can't be exiting at the same time.
11461 */
ad3a37de 11462
9b51f66d
IM
11463 /*
11464 * Lock the parent list. No need to lock the child - not PID
11465 * hashed yet and not running, so nobody can access it.
11466 */
d859e29f 11467 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
11468
11469 /*
11470 * We dont have to disable NMIs - we are only looking at
11471 * the list, not manipulating it:
11472 */
6e6804d2 11473 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54
PZ
11474 ret = inherit_task_group(event, parent, parent_ctx,
11475 child, ctxn, &inherited_all);
889ff015 11476 if (ret)
e7cc4865 11477 goto out_unlock;
889ff015 11478 }
b93f7978 11479
dddd3379
TG
11480 /*
11481 * We can't hold ctx->lock when iterating the ->flexible_group list due
11482 * to allocations, but we need to prevent rotation because
11483 * rotate_ctx() will change the list from interrupt context.
11484 */
11485 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11486 parent_ctx->rotate_disable = 1;
11487 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11488
6e6804d2 11489 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54
PZ
11490 ret = inherit_task_group(event, parent, parent_ctx,
11491 child, ctxn, &inherited_all);
889ff015 11492 if (ret)
e7cc4865 11493 goto out_unlock;
564c2b21
PM
11494 }
11495
dddd3379
TG
11496 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11497 parent_ctx->rotate_disable = 0;
dddd3379 11498
8dc85d54 11499 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 11500
05cbaa28 11501 if (child_ctx && inherited_all) {
564c2b21
PM
11502 /*
11503 * Mark the child context as a clone of the parent
11504 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
11505 *
11506 * Note that if the parent is a clone, the holding of
11507 * parent_ctx->lock avoids it from being uncloned.
564c2b21 11508 */
c5ed5145 11509 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
11510 if (cloned_ctx) {
11511 child_ctx->parent_ctx = cloned_ctx;
25346b93 11512 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
11513 } else {
11514 child_ctx->parent_ctx = parent_ctx;
11515 child_ctx->parent_gen = parent_ctx->generation;
11516 }
11517 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
11518 }
11519
c5ed5145 11520 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 11521out_unlock:
d859e29f 11522 mutex_unlock(&parent_ctx->mutex);
6ab423e0 11523
25346b93 11524 perf_unpin_context(parent_ctx);
fe4b04fa 11525 put_ctx(parent_ctx);
ad3a37de 11526
6ab423e0 11527 return ret;
9b51f66d
IM
11528}
11529
8dc85d54
PZ
11530/*
11531 * Initialize the perf_event context in task_struct
11532 */
11533int perf_event_init_task(struct task_struct *child)
11534{
11535 int ctxn, ret;
11536
8550d7cb
ON
11537 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11538 mutex_init(&child->perf_event_mutex);
11539 INIT_LIST_HEAD(&child->perf_event_list);
11540
8dc85d54
PZ
11541 for_each_task_context_nr(ctxn) {
11542 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
11543 if (ret) {
11544 perf_event_free_task(child);
8dc85d54 11545 return ret;
6c72e350 11546 }
8dc85d54
PZ
11547 }
11548
11549 return 0;
11550}
11551
220b140b
PM
11552static void __init perf_event_init_all_cpus(void)
11553{
b28ab83c 11554 struct swevent_htable *swhash;
220b140b 11555 int cpu;
220b140b 11556
a63fbed7
TG
11557 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11558
220b140b 11559 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11560 swhash = &per_cpu(swevent_htable, cpu);
11561 mutex_init(&swhash->hlist_mutex);
2fde4f94 11562 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11563
11564 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11565 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11566
058fe1c0
DCC
11567#ifdef CONFIG_CGROUP_PERF
11568 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11569#endif
e48c1788 11570 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11571 }
11572}
11573
a63fbed7 11574void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11575{
108b02cf 11576 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11577
b28ab83c 11578 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11579 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11580 struct swevent_hlist *hlist;
11581
b28ab83c
PZ
11582 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11583 WARN_ON(!hlist);
11584 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11585 }
b28ab83c 11586 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11587}
11588
2965faa5 11589#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11590static void __perf_event_exit_context(void *__info)
0793a61d 11591{
108b02cf 11592 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11593 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11594 struct perf_event *event;
0793a61d 11595
fae3fde6 11596 raw_spin_lock(&ctx->lock);
0ee098c9 11597 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 11598 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11599 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11600 raw_spin_unlock(&ctx->lock);
0793a61d 11601}
108b02cf
PZ
11602
11603static void perf_event_exit_cpu_context(int cpu)
11604{
a63fbed7 11605 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11606 struct perf_event_context *ctx;
11607 struct pmu *pmu;
108b02cf 11608
a63fbed7
TG
11609 mutex_lock(&pmus_lock);
11610 list_for_each_entry(pmu, &pmus, entry) {
11611 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11612 ctx = &cpuctx->ctx;
108b02cf
PZ
11613
11614 mutex_lock(&ctx->mutex);
11615 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11616 cpuctx->online = 0;
108b02cf
PZ
11617 mutex_unlock(&ctx->mutex);
11618 }
a63fbed7
TG
11619 cpumask_clear_cpu(cpu, perf_online_mask);
11620 mutex_unlock(&pmus_lock);
108b02cf 11621}
00e16c3d
TG
11622#else
11623
11624static void perf_event_exit_cpu_context(int cpu) { }
11625
11626#endif
108b02cf 11627
a63fbed7
TG
11628int perf_event_init_cpu(unsigned int cpu)
11629{
11630 struct perf_cpu_context *cpuctx;
11631 struct perf_event_context *ctx;
11632 struct pmu *pmu;
11633
11634 perf_swevent_init_cpu(cpu);
11635
11636 mutex_lock(&pmus_lock);
11637 cpumask_set_cpu(cpu, perf_online_mask);
11638 list_for_each_entry(pmu, &pmus, entry) {
11639 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11640 ctx = &cpuctx->ctx;
11641
11642 mutex_lock(&ctx->mutex);
11643 cpuctx->online = 1;
11644 mutex_unlock(&ctx->mutex);
11645 }
11646 mutex_unlock(&pmus_lock);
11647
11648 return 0;
11649}
11650
00e16c3d 11651int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11652{
e3703f8c 11653 perf_event_exit_cpu_context(cpu);
00e16c3d 11654 return 0;
0793a61d 11655}
0793a61d 11656
c277443c
PZ
11657static int
11658perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11659{
11660 int cpu;
11661
11662 for_each_online_cpu(cpu)
11663 perf_event_exit_cpu(cpu);
11664
11665 return NOTIFY_OK;
11666}
11667
11668/*
11669 * Run the perf reboot notifier at the very last possible moment so that
11670 * the generic watchdog code runs as long as possible.
11671 */
11672static struct notifier_block perf_reboot_notifier = {
11673 .notifier_call = perf_reboot,
11674 .priority = INT_MIN,
11675};
11676
cdd6c482 11677void __init perf_event_init(void)
0793a61d 11678{
3c502e7a
JW
11679 int ret;
11680
2e80a82a
PZ
11681 idr_init(&pmu_idr);
11682
220b140b 11683 perf_event_init_all_cpus();
b0a873eb 11684 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11685 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11686 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11687 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11688 perf_tp_register();
00e16c3d 11689 perf_event_init_cpu(smp_processor_id());
c277443c 11690 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11691
11692 ret = init_hw_breakpoint();
11693 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11694
b01c3a00
JO
11695 /*
11696 * Build time assertion that we keep the data_head at the intended
11697 * location. IOW, validation we got the __reserved[] size right.
11698 */
11699 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11700 != 1024);
0793a61d 11701}
abe43400 11702
fd979c01
CS
11703ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11704 char *page)
11705{
11706 struct perf_pmu_events_attr *pmu_attr =
11707 container_of(attr, struct perf_pmu_events_attr, attr);
11708
11709 if (pmu_attr->event_str)
11710 return sprintf(page, "%s\n", pmu_attr->event_str);
11711
11712 return 0;
11713}
675965b0 11714EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11715
abe43400
PZ
11716static int __init perf_event_sysfs_init(void)
11717{
11718 struct pmu *pmu;
11719 int ret;
11720
11721 mutex_lock(&pmus_lock);
11722
11723 ret = bus_register(&pmu_bus);
11724 if (ret)
11725 goto unlock;
11726
11727 list_for_each_entry(pmu, &pmus, entry) {
11728 if (!pmu->name || pmu->type < 0)
11729 continue;
11730
11731 ret = pmu_dev_alloc(pmu);
11732 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11733 }
11734 pmu_bus_running = 1;
11735 ret = 0;
11736
11737unlock:
11738 mutex_unlock(&pmus_lock);
11739
11740 return ret;
11741}
11742device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11743
11744#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11745static struct cgroup_subsys_state *
11746perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11747{
11748 struct perf_cgroup *jc;
e5d1367f 11749
1b15d055 11750 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11751 if (!jc)
11752 return ERR_PTR(-ENOMEM);
11753
e5d1367f
SE
11754 jc->info = alloc_percpu(struct perf_cgroup_info);
11755 if (!jc->info) {
11756 kfree(jc);
11757 return ERR_PTR(-ENOMEM);
11758 }
11759
e5d1367f
SE
11760 return &jc->css;
11761}
11762
eb95419b 11763static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11764{
eb95419b
TH
11765 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11766
e5d1367f
SE
11767 free_percpu(jc->info);
11768 kfree(jc);
11769}
11770
11771static int __perf_cgroup_move(void *info)
11772{
11773 struct task_struct *task = info;
ddaaf4e2 11774 rcu_read_lock();
e5d1367f 11775 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11776 rcu_read_unlock();
e5d1367f
SE
11777 return 0;
11778}
11779
1f7dd3e5 11780static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11781{
bb9d97b6 11782 struct task_struct *task;
1f7dd3e5 11783 struct cgroup_subsys_state *css;
bb9d97b6 11784
1f7dd3e5 11785 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11786 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11787}
11788
073219e9 11789struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11790 .css_alloc = perf_cgroup_css_alloc,
11791 .css_free = perf_cgroup_css_free,
bb9d97b6 11792 .attach = perf_cgroup_attach,
968ebff1
TH
11793 /*
11794 * Implicitly enable on dfl hierarchy so that perf events can
11795 * always be filtered by cgroup2 path as long as perf_event
11796 * controller is not mounted on a legacy hierarchy.
11797 */
11798 .implicit_on_dfl = true,
8cfd8147 11799 .threaded = true,
e5d1367f
SE
11800};
11801#endif /* CONFIG_CGROUP_PERF */