]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/events/core.c
perf/core: Fix use-after-free in perf_release()
[mirror_ubuntu-hirsute-kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
0793a61d 49
76369139
FW
50#include "internal.h"
51
4e193bd4
TB
52#include <asm/irq_regs.h>
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
0da4cf3e
PZ
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
72
73 /*
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
76 */
77
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
fe4b04fa
PZ
80 return;
81 }
82
83 tfc->ret = tfc->func(tfc->info);
84}
85
86/**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
91 *
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
94 *
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
98 */
99static int
272325c4 100task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
101{
102 struct remote_function_call data = {
e7e7ee2e
IM
103 .p = p,
104 .func = func,
105 .info = info,
0da4cf3e 106 .ret = -EAGAIN,
fe4b04fa 107 };
0da4cf3e 108 int ret;
fe4b04fa 109
0da4cf3e
PZ
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
fe4b04fa 115
0da4cf3e 116 return ret;
fe4b04fa
PZ
117}
118
119/**
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
123 *
124 * Calls the function @func on the remote cpu.
125 *
126 * returns: @func return value or -ENXIO when the cpu is offline
127 */
272325c4 128static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
129{
130 struct remote_function_call data = {
e7e7ee2e
IM
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
135 };
136
137 smp_call_function_single(cpu, remote_function, &data, 1);
138
139 return data.ret;
140}
141
fae3fde6
PZ
142static inline struct perf_cpu_context *
143__get_cpu_context(struct perf_event_context *ctx)
144{
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146}
147
148static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
0017960f 150{
fae3fde6
PZ
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
154}
155
156static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
158{
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
162}
163
63b6da39
PZ
164#define TASK_TOMBSTONE ((void *)-1L)
165
166static bool is_kernel_event(struct perf_event *event)
167{
f47c02c0 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
169}
170
39a43640
PZ
171/*
172 * On task ctx scheduling...
173 *
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
177 *
178 * This however results in two special cases:
179 *
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
182 *
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
186 *
39a43640
PZ
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
fae3fde6
PZ
190typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197};
198
199static int event_function(void *info)
200{
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
0017960f 203 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 206 int ret = 0;
fae3fde6
PZ
207
208 WARN_ON_ONCE(!irqs_disabled());
209
63b6da39 210 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
214 */
215 if (ctx->task) {
63b6da39 216 if (ctx->task != current) {
0da4cf3e 217 ret = -ESRCH;
63b6da39
PZ
218 goto unlock;
219 }
fae3fde6 220
fae3fde6
PZ
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
63b6da39
PZ
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 236 }
63b6da39 237
fae3fde6 238 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 239unlock:
fae3fde6
PZ
240 perf_ctx_unlock(cpuctx, task_ctx);
241
63b6da39 242 return ret;
fae3fde6
PZ
243}
244
fae3fde6 245static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
246{
247 struct perf_event_context *ctx = event->ctx;
63b6da39 248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
249 struct event_function_struct efs = {
250 .event = event,
251 .func = func,
252 .data = data,
253 };
0017960f 254
c97f4736
PZ
255 if (!event->parent) {
256 /*
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
260 */
261 lockdep_assert_held(&ctx->mutex);
262 }
0017960f
PZ
263
264 if (!task) {
fae3fde6 265 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
266 return;
267 }
268
63b6da39
PZ
269 if (task == TASK_TOMBSTONE)
270 return;
271
a096309b 272again:
fae3fde6 273 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
274 return;
275
276 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
277 /*
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
280 */
281 task = ctx->task;
a096309b
PZ
282 if (task == TASK_TOMBSTONE) {
283 raw_spin_unlock_irq(&ctx->lock);
284 return;
0017960f 285 }
a096309b
PZ
286 if (ctx->is_active) {
287 raw_spin_unlock_irq(&ctx->lock);
288 goto again;
289 }
290 func(event, NULL, ctx, data);
0017960f
PZ
291 raw_spin_unlock_irq(&ctx->lock);
292}
293
cca20946
PZ
294/*
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
297 */
298static void event_function_local(struct perf_event *event, event_f func, void *data)
299{
300 struct perf_event_context *ctx = event->ctx;
301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 struct task_struct *task = READ_ONCE(ctx->task);
303 struct perf_event_context *task_ctx = NULL;
304
305 WARN_ON_ONCE(!irqs_disabled());
306
307 if (task) {
308 if (task == TASK_TOMBSTONE)
309 return;
310
311 task_ctx = ctx;
312 }
313
314 perf_ctx_lock(cpuctx, task_ctx);
315
316 task = ctx->task;
317 if (task == TASK_TOMBSTONE)
318 goto unlock;
319
320 if (task) {
321 /*
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
324 * else.
325 */
326 if (ctx->is_active) {
327 if (WARN_ON_ONCE(task != current))
328 goto unlock;
329
330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 goto unlock;
332 }
333 } else {
334 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 }
336
337 func(event, cpuctx, ctx, data);
338unlock:
339 perf_ctx_unlock(cpuctx, task_ctx);
340}
341
e5d1367f
SE
342#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
e5d1367f 346
bce38cd5
SE
347/*
348 * branch priv levels that need permission checks
349 */
350#define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
353
0b3fcf17
SE
354enum event_type_t {
355 EVENT_FLEXIBLE = 0x1,
356 EVENT_PINNED = 0x2,
3cbaa590 357 EVENT_TIME = 0x4,
487f05e1
AS
358 /* see ctx_resched() for details */
359 EVENT_CPU = 0x8,
0b3fcf17
SE
360 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
361};
362
e5d1367f
SE
363/*
364 * perf_sched_events : >0 events exist
365 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
366 */
9107c89e
PZ
367
368static void perf_sched_delayed(struct work_struct *work);
369DEFINE_STATIC_KEY_FALSE(perf_sched_events);
370static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
371static DEFINE_MUTEX(perf_sched_mutex);
372static atomic_t perf_sched_count;
373
e5d1367f 374static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 375static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 376static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 377
cdd6c482
IM
378static atomic_t nr_mmap_events __read_mostly;
379static atomic_t nr_comm_events __read_mostly;
380static atomic_t nr_task_events __read_mostly;
948b26b6 381static atomic_t nr_freq_events __read_mostly;
45ac1403 382static atomic_t nr_switch_events __read_mostly;
9ee318a7 383
108b02cf
PZ
384static LIST_HEAD(pmus);
385static DEFINE_MUTEX(pmus_lock);
386static struct srcu_struct pmus_srcu;
387
0764771d 388/*
cdd6c482 389 * perf event paranoia level:
0fbdea19
IM
390 * -1 - not paranoid at all
391 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 392 * 1 - disallow cpu events for unpriv
0fbdea19 393 * 2 - disallow kernel profiling for unpriv
0764771d 394 */
0161028b 395int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 396
20443384
FW
397/* Minimum for 512 kiB + 1 user control page */
398int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
399
400/*
cdd6c482 401 * max perf event sample rate
df58ab24 402 */
14c63f17
DH
403#define DEFAULT_MAX_SAMPLE_RATE 100000
404#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
405#define DEFAULT_CPU_TIME_MAX_PERCENT 25
406
407int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
408
409static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
410static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
411
d9494cb4
PZ
412static int perf_sample_allowed_ns __read_mostly =
413 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 414
18ab2cd3 415static void update_perf_cpu_limits(void)
14c63f17
DH
416{
417 u64 tmp = perf_sample_period_ns;
418
419 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
420 tmp = div_u64(tmp, 100);
421 if (!tmp)
422 tmp = 1;
423
424 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 425}
163ec435 426
9e630205
SE
427static int perf_rotate_context(struct perf_cpu_context *cpuctx);
428
163ec435
PZ
429int perf_proc_update_handler(struct ctl_table *table, int write,
430 void __user *buffer, size_t *lenp,
431 loff_t *ppos)
432{
723478c8 433 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
434
435 if (ret || !write)
436 return ret;
437
ab7fdefb
KL
438 /*
439 * If throttling is disabled don't allow the write:
440 */
441 if (sysctl_perf_cpu_time_max_percent == 100 ||
442 sysctl_perf_cpu_time_max_percent == 0)
443 return -EINVAL;
444
163ec435 445 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
446 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
447 update_perf_cpu_limits();
448
449 return 0;
450}
451
452int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
453
454int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
455 void __user *buffer, size_t *lenp,
456 loff_t *ppos)
457{
1572e45a 458 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
459
460 if (ret || !write)
461 return ret;
462
b303e7c1
PZ
463 if (sysctl_perf_cpu_time_max_percent == 100 ||
464 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
465 printk(KERN_WARNING
466 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
467 WRITE_ONCE(perf_sample_allowed_ns, 0);
468 } else {
469 update_perf_cpu_limits();
470 }
163ec435
PZ
471
472 return 0;
473}
1ccd1549 474
14c63f17
DH
475/*
476 * perf samples are done in some very critical code paths (NMIs).
477 * If they take too much CPU time, the system can lock up and not
478 * get any real work done. This will drop the sample rate when
479 * we detect that events are taking too long.
480 */
481#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 482static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 483
91a612ee
PZ
484static u64 __report_avg;
485static u64 __report_allowed;
486
6a02ad66 487static void perf_duration_warn(struct irq_work *w)
14c63f17 488{
0d87d7ec 489 printk_ratelimited(KERN_INFO
91a612ee
PZ
490 "perf: interrupt took too long (%lld > %lld), lowering "
491 "kernel.perf_event_max_sample_rate to %d\n",
492 __report_avg, __report_allowed,
493 sysctl_perf_event_sample_rate);
6a02ad66
PZ
494}
495
496static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
497
498void perf_sample_event_took(u64 sample_len_ns)
499{
91a612ee
PZ
500 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
501 u64 running_len;
502 u64 avg_len;
503 u32 max;
14c63f17 504
91a612ee 505 if (max_len == 0)
14c63f17
DH
506 return;
507
91a612ee
PZ
508 /* Decay the counter by 1 average sample. */
509 running_len = __this_cpu_read(running_sample_length);
510 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
511 running_len += sample_len_ns;
512 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
513
514 /*
91a612ee
PZ
515 * Note: this will be biased artifically low until we have
516 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
517 * from having to maintain a count.
518 */
91a612ee
PZ
519 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
520 if (avg_len <= max_len)
14c63f17
DH
521 return;
522
91a612ee
PZ
523 __report_avg = avg_len;
524 __report_allowed = max_len;
14c63f17 525
91a612ee
PZ
526 /*
527 * Compute a throttle threshold 25% below the current duration.
528 */
529 avg_len += avg_len / 4;
530 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
531 if (avg_len < max)
532 max /= (u32)avg_len;
533 else
534 max = 1;
14c63f17 535
91a612ee
PZ
536 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
537 WRITE_ONCE(max_samples_per_tick, max);
538
539 sysctl_perf_event_sample_rate = max * HZ;
540 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 541
cd578abb 542 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 543 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 544 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 545 __report_avg, __report_allowed,
cd578abb
PZ
546 sysctl_perf_event_sample_rate);
547 }
14c63f17
DH
548}
549
cdd6c482 550static atomic64_t perf_event_id;
a96bbc16 551
0b3fcf17
SE
552static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
553 enum event_type_t event_type);
554
555static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
556 enum event_type_t event_type,
557 struct task_struct *task);
558
559static void update_context_time(struct perf_event_context *ctx);
560static u64 perf_event_time(struct perf_event *event);
0b3fcf17 561
cdd6c482 562void __weak perf_event_print_debug(void) { }
0793a61d 563
84c79910 564extern __weak const char *perf_pmu_name(void)
0793a61d 565{
84c79910 566 return "pmu";
0793a61d
TG
567}
568
0b3fcf17
SE
569static inline u64 perf_clock(void)
570{
571 return local_clock();
572}
573
34f43927
PZ
574static inline u64 perf_event_clock(struct perf_event *event)
575{
576 return event->clock();
577}
578
e5d1367f
SE
579#ifdef CONFIG_CGROUP_PERF
580
e5d1367f
SE
581static inline bool
582perf_cgroup_match(struct perf_event *event)
583{
584 struct perf_event_context *ctx = event->ctx;
585 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
586
ef824fa1
TH
587 /* @event doesn't care about cgroup */
588 if (!event->cgrp)
589 return true;
590
591 /* wants specific cgroup scope but @cpuctx isn't associated with any */
592 if (!cpuctx->cgrp)
593 return false;
594
595 /*
596 * Cgroup scoping is recursive. An event enabled for a cgroup is
597 * also enabled for all its descendant cgroups. If @cpuctx's
598 * cgroup is a descendant of @event's (the test covers identity
599 * case), it's a match.
600 */
601 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
602 event->cgrp->css.cgroup);
e5d1367f
SE
603}
604
e5d1367f
SE
605static inline void perf_detach_cgroup(struct perf_event *event)
606{
4e2ba650 607 css_put(&event->cgrp->css);
e5d1367f
SE
608 event->cgrp = NULL;
609}
610
611static inline int is_cgroup_event(struct perf_event *event)
612{
613 return event->cgrp != NULL;
614}
615
616static inline u64 perf_cgroup_event_time(struct perf_event *event)
617{
618 struct perf_cgroup_info *t;
619
620 t = per_cpu_ptr(event->cgrp->info, event->cpu);
621 return t->time;
622}
623
624static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
625{
626 struct perf_cgroup_info *info;
627 u64 now;
628
629 now = perf_clock();
630
631 info = this_cpu_ptr(cgrp->info);
632
633 info->time += now - info->timestamp;
634 info->timestamp = now;
635}
636
637static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
638{
639 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
640 if (cgrp_out)
641 __update_cgrp_time(cgrp_out);
642}
643
644static inline void update_cgrp_time_from_event(struct perf_event *event)
645{
3f7cce3c
SE
646 struct perf_cgroup *cgrp;
647
e5d1367f 648 /*
3f7cce3c
SE
649 * ensure we access cgroup data only when needed and
650 * when we know the cgroup is pinned (css_get)
e5d1367f 651 */
3f7cce3c 652 if (!is_cgroup_event(event))
e5d1367f
SE
653 return;
654
614e4c4e 655 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
656 /*
657 * Do not update time when cgroup is not active
658 */
659 if (cgrp == event->cgrp)
660 __update_cgrp_time(event->cgrp);
e5d1367f
SE
661}
662
663static inline void
3f7cce3c
SE
664perf_cgroup_set_timestamp(struct task_struct *task,
665 struct perf_event_context *ctx)
e5d1367f
SE
666{
667 struct perf_cgroup *cgrp;
668 struct perf_cgroup_info *info;
669
3f7cce3c
SE
670 /*
671 * ctx->lock held by caller
672 * ensure we do not access cgroup data
673 * unless we have the cgroup pinned (css_get)
674 */
675 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
676 return;
677
614e4c4e 678 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 679 info = this_cpu_ptr(cgrp->info);
3f7cce3c 680 info->timestamp = ctx->timestamp;
e5d1367f
SE
681}
682
058fe1c0
DCC
683static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
684
e5d1367f
SE
685#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
686#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
687
688/*
689 * reschedule events based on the cgroup constraint of task.
690 *
691 * mode SWOUT : schedule out everything
692 * mode SWIN : schedule in based on cgroup for next
693 */
18ab2cd3 694static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
695{
696 struct perf_cpu_context *cpuctx;
058fe1c0 697 struct list_head *list;
e5d1367f
SE
698 unsigned long flags;
699
700 /*
058fe1c0
DCC
701 * Disable interrupts and preemption to avoid this CPU's
702 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
703 */
704 local_irq_save(flags);
705
058fe1c0
DCC
706 list = this_cpu_ptr(&cgrp_cpuctx_list);
707 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
708 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 709
058fe1c0
DCC
710 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
711 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 712
058fe1c0
DCC
713 if (mode & PERF_CGROUP_SWOUT) {
714 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
715 /*
716 * must not be done before ctxswout due
717 * to event_filter_match() in event_sched_out()
718 */
719 cpuctx->cgrp = NULL;
720 }
e5d1367f 721
058fe1c0
DCC
722 if (mode & PERF_CGROUP_SWIN) {
723 WARN_ON_ONCE(cpuctx->cgrp);
724 /*
725 * set cgrp before ctxsw in to allow
726 * event_filter_match() to not have to pass
727 * task around
728 * we pass the cpuctx->ctx to perf_cgroup_from_task()
729 * because cgorup events are only per-cpu
730 */
731 cpuctx->cgrp = perf_cgroup_from_task(task,
732 &cpuctx->ctx);
733 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 734 }
058fe1c0
DCC
735 perf_pmu_enable(cpuctx->ctx.pmu);
736 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
737 }
738
e5d1367f
SE
739 local_irq_restore(flags);
740}
741
a8d757ef
SE
742static inline void perf_cgroup_sched_out(struct task_struct *task,
743 struct task_struct *next)
e5d1367f 744{
a8d757ef
SE
745 struct perf_cgroup *cgrp1;
746 struct perf_cgroup *cgrp2 = NULL;
747
ddaaf4e2 748 rcu_read_lock();
a8d757ef
SE
749 /*
750 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
751 * we do not need to pass the ctx here because we know
752 * we are holding the rcu lock
a8d757ef 753 */
614e4c4e 754 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 755 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
756
757 /*
758 * only schedule out current cgroup events if we know
759 * that we are switching to a different cgroup. Otherwise,
760 * do no touch the cgroup events.
761 */
762 if (cgrp1 != cgrp2)
763 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
764
765 rcu_read_unlock();
e5d1367f
SE
766}
767
a8d757ef
SE
768static inline void perf_cgroup_sched_in(struct task_struct *prev,
769 struct task_struct *task)
e5d1367f 770{
a8d757ef
SE
771 struct perf_cgroup *cgrp1;
772 struct perf_cgroup *cgrp2 = NULL;
773
ddaaf4e2 774 rcu_read_lock();
a8d757ef
SE
775 /*
776 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
777 * we do not need to pass the ctx here because we know
778 * we are holding the rcu lock
a8d757ef 779 */
614e4c4e 780 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 781 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
782
783 /*
784 * only need to schedule in cgroup events if we are changing
785 * cgroup during ctxsw. Cgroup events were not scheduled
786 * out of ctxsw out if that was not the case.
787 */
788 if (cgrp1 != cgrp2)
789 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
790
791 rcu_read_unlock();
e5d1367f
SE
792}
793
794static inline int perf_cgroup_connect(int fd, struct perf_event *event,
795 struct perf_event_attr *attr,
796 struct perf_event *group_leader)
797{
798 struct perf_cgroup *cgrp;
799 struct cgroup_subsys_state *css;
2903ff01
AV
800 struct fd f = fdget(fd);
801 int ret = 0;
e5d1367f 802
2903ff01 803 if (!f.file)
e5d1367f
SE
804 return -EBADF;
805
b583043e 806 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 807 &perf_event_cgrp_subsys);
3db272c0
LZ
808 if (IS_ERR(css)) {
809 ret = PTR_ERR(css);
810 goto out;
811 }
e5d1367f
SE
812
813 cgrp = container_of(css, struct perf_cgroup, css);
814 event->cgrp = cgrp;
815
816 /*
817 * all events in a group must monitor
818 * the same cgroup because a task belongs
819 * to only one perf cgroup at a time
820 */
821 if (group_leader && group_leader->cgrp != cgrp) {
822 perf_detach_cgroup(event);
823 ret = -EINVAL;
e5d1367f 824 }
3db272c0 825out:
2903ff01 826 fdput(f);
e5d1367f
SE
827 return ret;
828}
829
830static inline void
831perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
832{
833 struct perf_cgroup_info *t;
834 t = per_cpu_ptr(event->cgrp->info, event->cpu);
835 event->shadow_ctx_time = now - t->timestamp;
836}
837
838static inline void
839perf_cgroup_defer_enabled(struct perf_event *event)
840{
841 /*
842 * when the current task's perf cgroup does not match
843 * the event's, we need to remember to call the
844 * perf_mark_enable() function the first time a task with
845 * a matching perf cgroup is scheduled in.
846 */
847 if (is_cgroup_event(event) && !perf_cgroup_match(event))
848 event->cgrp_defer_enabled = 1;
849}
850
851static inline void
852perf_cgroup_mark_enabled(struct perf_event *event,
853 struct perf_event_context *ctx)
854{
855 struct perf_event *sub;
856 u64 tstamp = perf_event_time(event);
857
858 if (!event->cgrp_defer_enabled)
859 return;
860
861 event->cgrp_defer_enabled = 0;
862
863 event->tstamp_enabled = tstamp - event->total_time_enabled;
864 list_for_each_entry(sub, &event->sibling_list, group_entry) {
865 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
866 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
867 sub->cgrp_defer_enabled = 0;
868 }
869 }
870}
db4a8356
DCC
871
872/*
873 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
874 * cleared when last cgroup event is removed.
875 */
876static inline void
877list_update_cgroup_event(struct perf_event *event,
878 struct perf_event_context *ctx, bool add)
879{
880 struct perf_cpu_context *cpuctx;
058fe1c0 881 struct list_head *cpuctx_entry;
db4a8356
DCC
882
883 if (!is_cgroup_event(event))
884 return;
885
886 if (add && ctx->nr_cgroups++)
887 return;
888 else if (!add && --ctx->nr_cgroups)
889 return;
890 /*
891 * Because cgroup events are always per-cpu events,
892 * this will always be called from the right CPU.
893 */
894 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
895 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
896 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
897 if (add) {
898 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
899 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
900 cpuctx->cgrp = event->cgrp;
901 } else {
902 list_del(cpuctx_entry);
8fc31ce8 903 cpuctx->cgrp = NULL;
058fe1c0 904 }
db4a8356
DCC
905}
906
e5d1367f
SE
907#else /* !CONFIG_CGROUP_PERF */
908
909static inline bool
910perf_cgroup_match(struct perf_event *event)
911{
912 return true;
913}
914
915static inline void perf_detach_cgroup(struct perf_event *event)
916{}
917
918static inline int is_cgroup_event(struct perf_event *event)
919{
920 return 0;
921}
922
923static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
924{
925 return 0;
926}
927
928static inline void update_cgrp_time_from_event(struct perf_event *event)
929{
930}
931
932static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
933{
934}
935
a8d757ef
SE
936static inline void perf_cgroup_sched_out(struct task_struct *task,
937 struct task_struct *next)
e5d1367f
SE
938{
939}
940
a8d757ef
SE
941static inline void perf_cgroup_sched_in(struct task_struct *prev,
942 struct task_struct *task)
e5d1367f
SE
943{
944}
945
946static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
947 struct perf_event_attr *attr,
948 struct perf_event *group_leader)
949{
950 return -EINVAL;
951}
952
953static inline void
3f7cce3c
SE
954perf_cgroup_set_timestamp(struct task_struct *task,
955 struct perf_event_context *ctx)
e5d1367f
SE
956{
957}
958
959void
960perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
961{
962}
963
964static inline void
965perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
966{
967}
968
969static inline u64 perf_cgroup_event_time(struct perf_event *event)
970{
971 return 0;
972}
973
974static inline void
975perf_cgroup_defer_enabled(struct perf_event *event)
976{
977}
978
979static inline void
980perf_cgroup_mark_enabled(struct perf_event *event,
981 struct perf_event_context *ctx)
982{
983}
db4a8356
DCC
984
985static inline void
986list_update_cgroup_event(struct perf_event *event,
987 struct perf_event_context *ctx, bool add)
988{
989}
990
e5d1367f
SE
991#endif
992
9e630205
SE
993/*
994 * set default to be dependent on timer tick just
995 * like original code
996 */
997#define PERF_CPU_HRTIMER (1000 / HZ)
998/*
999 * function must be called with interrupts disbled
1000 */
272325c4 1001static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1002{
1003 struct perf_cpu_context *cpuctx;
9e630205
SE
1004 int rotations = 0;
1005
1006 WARN_ON(!irqs_disabled());
1007
1008 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1009 rotations = perf_rotate_context(cpuctx);
1010
4cfafd30
PZ
1011 raw_spin_lock(&cpuctx->hrtimer_lock);
1012 if (rotations)
9e630205 1013 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1014 else
1015 cpuctx->hrtimer_active = 0;
1016 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1017
4cfafd30 1018 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1019}
1020
272325c4 1021static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1022{
272325c4 1023 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1024 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1025 u64 interval;
9e630205
SE
1026
1027 /* no multiplexing needed for SW PMU */
1028 if (pmu->task_ctx_nr == perf_sw_context)
1029 return;
1030
62b85639
SE
1031 /*
1032 * check default is sane, if not set then force to
1033 * default interval (1/tick)
1034 */
272325c4
PZ
1035 interval = pmu->hrtimer_interval_ms;
1036 if (interval < 1)
1037 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1038
272325c4 1039 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1040
4cfafd30
PZ
1041 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1042 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1043 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1044}
1045
272325c4 1046static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1047{
272325c4 1048 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1049 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1050 unsigned long flags;
9e630205
SE
1051
1052 /* not for SW PMU */
1053 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1054 return 0;
9e630205 1055
4cfafd30
PZ
1056 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1057 if (!cpuctx->hrtimer_active) {
1058 cpuctx->hrtimer_active = 1;
1059 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1060 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1061 }
1062 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1063
272325c4 1064 return 0;
9e630205
SE
1065}
1066
33696fc0 1067void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1068{
33696fc0
PZ
1069 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1070 if (!(*count)++)
1071 pmu->pmu_disable(pmu);
9e35ad38 1072}
9e35ad38 1073
33696fc0 1074void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1075{
33696fc0
PZ
1076 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1077 if (!--(*count))
1078 pmu->pmu_enable(pmu);
9e35ad38 1079}
9e35ad38 1080
2fde4f94 1081static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1082
1083/*
2fde4f94
MR
1084 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1085 * perf_event_task_tick() are fully serialized because they're strictly cpu
1086 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1087 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1088 */
2fde4f94 1089static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1090{
2fde4f94 1091 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1092
e9d2b064 1093 WARN_ON(!irqs_disabled());
b5ab4cd5 1094
2fde4f94
MR
1095 WARN_ON(!list_empty(&ctx->active_ctx_list));
1096
1097 list_add(&ctx->active_ctx_list, head);
1098}
1099
1100static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1101{
1102 WARN_ON(!irqs_disabled());
1103
1104 WARN_ON(list_empty(&ctx->active_ctx_list));
1105
1106 list_del_init(&ctx->active_ctx_list);
9e35ad38 1107}
9e35ad38 1108
cdd6c482 1109static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1110{
e5289d4a 1111 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1112}
1113
4af57ef2
YZ
1114static void free_ctx(struct rcu_head *head)
1115{
1116 struct perf_event_context *ctx;
1117
1118 ctx = container_of(head, struct perf_event_context, rcu_head);
1119 kfree(ctx->task_ctx_data);
1120 kfree(ctx);
1121}
1122
cdd6c482 1123static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1124{
564c2b21
PM
1125 if (atomic_dec_and_test(&ctx->refcount)) {
1126 if (ctx->parent_ctx)
1127 put_ctx(ctx->parent_ctx);
63b6da39 1128 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1129 put_task_struct(ctx->task);
4af57ef2 1130 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1131 }
a63eaf34
PM
1132}
1133
f63a8daa
PZ
1134/*
1135 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1136 * perf_pmu_migrate_context() we need some magic.
1137 *
1138 * Those places that change perf_event::ctx will hold both
1139 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1140 *
8b10c5e2
PZ
1141 * Lock ordering is by mutex address. There are two other sites where
1142 * perf_event_context::mutex nests and those are:
1143 *
1144 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1145 * perf_event_exit_event()
1146 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1147 *
1148 * - perf_event_init_context() [ parent, 0 ]
1149 * inherit_task_group()
1150 * inherit_group()
1151 * inherit_event()
1152 * perf_event_alloc()
1153 * perf_init_event()
1154 * perf_try_init_event() [ child , 1 ]
1155 *
1156 * While it appears there is an obvious deadlock here -- the parent and child
1157 * nesting levels are inverted between the two. This is in fact safe because
1158 * life-time rules separate them. That is an exiting task cannot fork, and a
1159 * spawning task cannot (yet) exit.
1160 *
1161 * But remember that that these are parent<->child context relations, and
1162 * migration does not affect children, therefore these two orderings should not
1163 * interact.
f63a8daa
PZ
1164 *
1165 * The change in perf_event::ctx does not affect children (as claimed above)
1166 * because the sys_perf_event_open() case will install a new event and break
1167 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1168 * concerned with cpuctx and that doesn't have children.
1169 *
1170 * The places that change perf_event::ctx will issue:
1171 *
1172 * perf_remove_from_context();
1173 * synchronize_rcu();
1174 * perf_install_in_context();
1175 *
1176 * to affect the change. The remove_from_context() + synchronize_rcu() should
1177 * quiesce the event, after which we can install it in the new location. This
1178 * means that only external vectors (perf_fops, prctl) can perturb the event
1179 * while in transit. Therefore all such accessors should also acquire
1180 * perf_event_context::mutex to serialize against this.
1181 *
1182 * However; because event->ctx can change while we're waiting to acquire
1183 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1184 * function.
1185 *
1186 * Lock order:
79c9ce57 1187 * cred_guard_mutex
f63a8daa
PZ
1188 * task_struct::perf_event_mutex
1189 * perf_event_context::mutex
f63a8daa 1190 * perf_event::child_mutex;
07c4a776 1191 * perf_event_context::lock
f63a8daa
PZ
1192 * perf_event::mmap_mutex
1193 * mmap_sem
1194 */
a83fe28e
PZ
1195static struct perf_event_context *
1196perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1197{
1198 struct perf_event_context *ctx;
1199
1200again:
1201 rcu_read_lock();
1202 ctx = ACCESS_ONCE(event->ctx);
1203 if (!atomic_inc_not_zero(&ctx->refcount)) {
1204 rcu_read_unlock();
1205 goto again;
1206 }
1207 rcu_read_unlock();
1208
a83fe28e 1209 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1210 if (event->ctx != ctx) {
1211 mutex_unlock(&ctx->mutex);
1212 put_ctx(ctx);
1213 goto again;
1214 }
1215
1216 return ctx;
1217}
1218
a83fe28e
PZ
1219static inline struct perf_event_context *
1220perf_event_ctx_lock(struct perf_event *event)
1221{
1222 return perf_event_ctx_lock_nested(event, 0);
1223}
1224
f63a8daa
PZ
1225static void perf_event_ctx_unlock(struct perf_event *event,
1226 struct perf_event_context *ctx)
1227{
1228 mutex_unlock(&ctx->mutex);
1229 put_ctx(ctx);
1230}
1231
211de6eb
PZ
1232/*
1233 * This must be done under the ctx->lock, such as to serialize against
1234 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1235 * calling scheduler related locks and ctx->lock nests inside those.
1236 */
1237static __must_check struct perf_event_context *
1238unclone_ctx(struct perf_event_context *ctx)
71a851b4 1239{
211de6eb
PZ
1240 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1241
1242 lockdep_assert_held(&ctx->lock);
1243
1244 if (parent_ctx)
71a851b4 1245 ctx->parent_ctx = NULL;
5a3126d4 1246 ctx->generation++;
211de6eb
PZ
1247
1248 return parent_ctx;
71a851b4
PZ
1249}
1250
6844c09d
ACM
1251static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1252{
1253 /*
1254 * only top level events have the pid namespace they were created in
1255 */
1256 if (event->parent)
1257 event = event->parent;
1258
1259 return task_tgid_nr_ns(p, event->ns);
1260}
1261
1262static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1263{
1264 /*
1265 * only top level events have the pid namespace they were created in
1266 */
1267 if (event->parent)
1268 event = event->parent;
1269
1270 return task_pid_nr_ns(p, event->ns);
1271}
1272
7f453c24 1273/*
cdd6c482 1274 * If we inherit events we want to return the parent event id
7f453c24
PZ
1275 * to userspace.
1276 */
cdd6c482 1277static u64 primary_event_id(struct perf_event *event)
7f453c24 1278{
cdd6c482 1279 u64 id = event->id;
7f453c24 1280
cdd6c482
IM
1281 if (event->parent)
1282 id = event->parent->id;
7f453c24
PZ
1283
1284 return id;
1285}
1286
25346b93 1287/*
cdd6c482 1288 * Get the perf_event_context for a task and lock it.
63b6da39 1289 *
25346b93
PM
1290 * This has to cope with with the fact that until it is locked,
1291 * the context could get moved to another task.
1292 */
cdd6c482 1293static struct perf_event_context *
8dc85d54 1294perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1295{
cdd6c482 1296 struct perf_event_context *ctx;
25346b93 1297
9ed6060d 1298retry:
058ebd0e
PZ
1299 /*
1300 * One of the few rules of preemptible RCU is that one cannot do
1301 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1302 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1303 * rcu_read_unlock_special().
1304 *
1305 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1306 * side critical section has interrupts disabled.
058ebd0e 1307 */
2fd59077 1308 local_irq_save(*flags);
058ebd0e 1309 rcu_read_lock();
8dc85d54 1310 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1311 if (ctx) {
1312 /*
1313 * If this context is a clone of another, it might
1314 * get swapped for another underneath us by
cdd6c482 1315 * perf_event_task_sched_out, though the
25346b93
PM
1316 * rcu_read_lock() protects us from any context
1317 * getting freed. Lock the context and check if it
1318 * got swapped before we could get the lock, and retry
1319 * if so. If we locked the right context, then it
1320 * can't get swapped on us any more.
1321 */
2fd59077 1322 raw_spin_lock(&ctx->lock);
8dc85d54 1323 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1324 raw_spin_unlock(&ctx->lock);
058ebd0e 1325 rcu_read_unlock();
2fd59077 1326 local_irq_restore(*flags);
25346b93
PM
1327 goto retry;
1328 }
b49a9e7e 1329
63b6da39
PZ
1330 if (ctx->task == TASK_TOMBSTONE ||
1331 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1332 raw_spin_unlock(&ctx->lock);
b49a9e7e 1333 ctx = NULL;
828b6f0e
PZ
1334 } else {
1335 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1336 }
25346b93
PM
1337 }
1338 rcu_read_unlock();
2fd59077
PM
1339 if (!ctx)
1340 local_irq_restore(*flags);
25346b93
PM
1341 return ctx;
1342}
1343
1344/*
1345 * Get the context for a task and increment its pin_count so it
1346 * can't get swapped to another task. This also increments its
1347 * reference count so that the context can't get freed.
1348 */
8dc85d54
PZ
1349static struct perf_event_context *
1350perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1351{
cdd6c482 1352 struct perf_event_context *ctx;
25346b93
PM
1353 unsigned long flags;
1354
8dc85d54 1355 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1356 if (ctx) {
1357 ++ctx->pin_count;
e625cce1 1358 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1359 }
1360 return ctx;
1361}
1362
cdd6c482 1363static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1364{
1365 unsigned long flags;
1366
e625cce1 1367 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1368 --ctx->pin_count;
e625cce1 1369 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1370}
1371
f67218c3
PZ
1372/*
1373 * Update the record of the current time in a context.
1374 */
1375static void update_context_time(struct perf_event_context *ctx)
1376{
1377 u64 now = perf_clock();
1378
1379 ctx->time += now - ctx->timestamp;
1380 ctx->timestamp = now;
1381}
1382
4158755d
SE
1383static u64 perf_event_time(struct perf_event *event)
1384{
1385 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1386
1387 if (is_cgroup_event(event))
1388 return perf_cgroup_event_time(event);
1389
4158755d
SE
1390 return ctx ? ctx->time : 0;
1391}
1392
f67218c3
PZ
1393/*
1394 * Update the total_time_enabled and total_time_running fields for a event.
1395 */
1396static void update_event_times(struct perf_event *event)
1397{
1398 struct perf_event_context *ctx = event->ctx;
1399 u64 run_end;
1400
3cbaa590
PZ
1401 lockdep_assert_held(&ctx->lock);
1402
f67218c3
PZ
1403 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1404 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1405 return;
3cbaa590 1406
e5d1367f
SE
1407 /*
1408 * in cgroup mode, time_enabled represents
1409 * the time the event was enabled AND active
1410 * tasks were in the monitored cgroup. This is
1411 * independent of the activity of the context as
1412 * there may be a mix of cgroup and non-cgroup events.
1413 *
1414 * That is why we treat cgroup events differently
1415 * here.
1416 */
1417 if (is_cgroup_event(event))
46cd6a7f 1418 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1419 else if (ctx->is_active)
1420 run_end = ctx->time;
acd1d7c1
PZ
1421 else
1422 run_end = event->tstamp_stopped;
1423
1424 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1425
1426 if (event->state == PERF_EVENT_STATE_INACTIVE)
1427 run_end = event->tstamp_stopped;
1428 else
4158755d 1429 run_end = perf_event_time(event);
f67218c3
PZ
1430
1431 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1432
f67218c3
PZ
1433}
1434
96c21a46
PZ
1435/*
1436 * Update total_time_enabled and total_time_running for all events in a group.
1437 */
1438static void update_group_times(struct perf_event *leader)
1439{
1440 struct perf_event *event;
1441
1442 update_event_times(leader);
1443 list_for_each_entry(event, &leader->sibling_list, group_entry)
1444 update_event_times(event);
1445}
1446
487f05e1
AS
1447static enum event_type_t get_event_type(struct perf_event *event)
1448{
1449 struct perf_event_context *ctx = event->ctx;
1450 enum event_type_t event_type;
1451
1452 lockdep_assert_held(&ctx->lock);
1453
1454 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1455 if (!ctx->task)
1456 event_type |= EVENT_CPU;
1457
1458 return event_type;
1459}
1460
889ff015
FW
1461static struct list_head *
1462ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1463{
1464 if (event->attr.pinned)
1465 return &ctx->pinned_groups;
1466 else
1467 return &ctx->flexible_groups;
1468}
1469
fccc714b 1470/*
cdd6c482 1471 * Add a event from the lists for its context.
fccc714b
PZ
1472 * Must be called with ctx->mutex and ctx->lock held.
1473 */
04289bb9 1474static void
cdd6c482 1475list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1476{
c994d613
PZ
1477 lockdep_assert_held(&ctx->lock);
1478
8a49542c
PZ
1479 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1480 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1481
1482 /*
8a49542c
PZ
1483 * If we're a stand alone event or group leader, we go to the context
1484 * list, group events are kept attached to the group so that
1485 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1486 */
8a49542c 1487 if (event->group_leader == event) {
889ff015
FW
1488 struct list_head *list;
1489
4ff6a8de 1490 event->group_caps = event->event_caps;
d6f962b5 1491
889ff015
FW
1492 list = ctx_group_list(event, ctx);
1493 list_add_tail(&event->group_entry, list);
5c148194 1494 }
592903cd 1495
db4a8356 1496 list_update_cgroup_event(event, ctx, true);
e5d1367f 1497
cdd6c482
IM
1498 list_add_rcu(&event->event_entry, &ctx->event_list);
1499 ctx->nr_events++;
1500 if (event->attr.inherit_stat)
bfbd3381 1501 ctx->nr_stat++;
5a3126d4
PZ
1502
1503 ctx->generation++;
04289bb9
IM
1504}
1505
0231bb53
JO
1506/*
1507 * Initialize event state based on the perf_event_attr::disabled.
1508 */
1509static inline void perf_event__state_init(struct perf_event *event)
1510{
1511 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1512 PERF_EVENT_STATE_INACTIVE;
1513}
1514
a723968c 1515static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1516{
1517 int entry = sizeof(u64); /* value */
1518 int size = 0;
1519 int nr = 1;
1520
1521 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1522 size += sizeof(u64);
1523
1524 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1525 size += sizeof(u64);
1526
1527 if (event->attr.read_format & PERF_FORMAT_ID)
1528 entry += sizeof(u64);
1529
1530 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1531 nr += nr_siblings;
c320c7b7
ACM
1532 size += sizeof(u64);
1533 }
1534
1535 size += entry * nr;
1536 event->read_size = size;
1537}
1538
a723968c 1539static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1540{
1541 struct perf_sample_data *data;
c320c7b7
ACM
1542 u16 size = 0;
1543
c320c7b7
ACM
1544 if (sample_type & PERF_SAMPLE_IP)
1545 size += sizeof(data->ip);
1546
6844c09d
ACM
1547 if (sample_type & PERF_SAMPLE_ADDR)
1548 size += sizeof(data->addr);
1549
1550 if (sample_type & PERF_SAMPLE_PERIOD)
1551 size += sizeof(data->period);
1552
c3feedf2
AK
1553 if (sample_type & PERF_SAMPLE_WEIGHT)
1554 size += sizeof(data->weight);
1555
6844c09d
ACM
1556 if (sample_type & PERF_SAMPLE_READ)
1557 size += event->read_size;
1558
d6be9ad6
SE
1559 if (sample_type & PERF_SAMPLE_DATA_SRC)
1560 size += sizeof(data->data_src.val);
1561
fdfbbd07
AK
1562 if (sample_type & PERF_SAMPLE_TRANSACTION)
1563 size += sizeof(data->txn);
1564
6844c09d
ACM
1565 event->header_size = size;
1566}
1567
a723968c
PZ
1568/*
1569 * Called at perf_event creation and when events are attached/detached from a
1570 * group.
1571 */
1572static void perf_event__header_size(struct perf_event *event)
1573{
1574 __perf_event_read_size(event,
1575 event->group_leader->nr_siblings);
1576 __perf_event_header_size(event, event->attr.sample_type);
1577}
1578
6844c09d
ACM
1579static void perf_event__id_header_size(struct perf_event *event)
1580{
1581 struct perf_sample_data *data;
1582 u64 sample_type = event->attr.sample_type;
1583 u16 size = 0;
1584
c320c7b7
ACM
1585 if (sample_type & PERF_SAMPLE_TID)
1586 size += sizeof(data->tid_entry);
1587
1588 if (sample_type & PERF_SAMPLE_TIME)
1589 size += sizeof(data->time);
1590
ff3d527c
AH
1591 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1592 size += sizeof(data->id);
1593
c320c7b7
ACM
1594 if (sample_type & PERF_SAMPLE_ID)
1595 size += sizeof(data->id);
1596
1597 if (sample_type & PERF_SAMPLE_STREAM_ID)
1598 size += sizeof(data->stream_id);
1599
1600 if (sample_type & PERF_SAMPLE_CPU)
1601 size += sizeof(data->cpu_entry);
1602
6844c09d 1603 event->id_header_size = size;
c320c7b7
ACM
1604}
1605
a723968c
PZ
1606static bool perf_event_validate_size(struct perf_event *event)
1607{
1608 /*
1609 * The values computed here will be over-written when we actually
1610 * attach the event.
1611 */
1612 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1613 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1614 perf_event__id_header_size(event);
1615
1616 /*
1617 * Sum the lot; should not exceed the 64k limit we have on records.
1618 * Conservative limit to allow for callchains and other variable fields.
1619 */
1620 if (event->read_size + event->header_size +
1621 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1622 return false;
1623
1624 return true;
1625}
1626
8a49542c
PZ
1627static void perf_group_attach(struct perf_event *event)
1628{
c320c7b7 1629 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1630
a76a82a3
PZ
1631 lockdep_assert_held(&event->ctx->lock);
1632
74c3337c
PZ
1633 /*
1634 * We can have double attach due to group movement in perf_event_open.
1635 */
1636 if (event->attach_state & PERF_ATTACH_GROUP)
1637 return;
1638
8a49542c
PZ
1639 event->attach_state |= PERF_ATTACH_GROUP;
1640
1641 if (group_leader == event)
1642 return;
1643
652884fe
PZ
1644 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1645
4ff6a8de 1646 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1647
1648 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1649 group_leader->nr_siblings++;
c320c7b7
ACM
1650
1651 perf_event__header_size(group_leader);
1652
1653 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1654 perf_event__header_size(pos);
8a49542c
PZ
1655}
1656
a63eaf34 1657/*
cdd6c482 1658 * Remove a event from the lists for its context.
fccc714b 1659 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1660 */
04289bb9 1661static void
cdd6c482 1662list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1663{
652884fe
PZ
1664 WARN_ON_ONCE(event->ctx != ctx);
1665 lockdep_assert_held(&ctx->lock);
1666
8a49542c
PZ
1667 /*
1668 * We can have double detach due to exit/hot-unplug + close.
1669 */
1670 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1671 return;
8a49542c
PZ
1672
1673 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1674
db4a8356 1675 list_update_cgroup_event(event, ctx, false);
e5d1367f 1676
cdd6c482
IM
1677 ctx->nr_events--;
1678 if (event->attr.inherit_stat)
bfbd3381 1679 ctx->nr_stat--;
8bc20959 1680
cdd6c482 1681 list_del_rcu(&event->event_entry);
04289bb9 1682
8a49542c
PZ
1683 if (event->group_leader == event)
1684 list_del_init(&event->group_entry);
5c148194 1685
96c21a46 1686 update_group_times(event);
b2e74a26
SE
1687
1688 /*
1689 * If event was in error state, then keep it
1690 * that way, otherwise bogus counts will be
1691 * returned on read(). The only way to get out
1692 * of error state is by explicit re-enabling
1693 * of the event
1694 */
1695 if (event->state > PERF_EVENT_STATE_OFF)
1696 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1697
1698 ctx->generation++;
050735b0
PZ
1699}
1700
8a49542c 1701static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1702{
1703 struct perf_event *sibling, *tmp;
8a49542c
PZ
1704 struct list_head *list = NULL;
1705
a76a82a3
PZ
1706 lockdep_assert_held(&event->ctx->lock);
1707
8a49542c
PZ
1708 /*
1709 * We can have double detach due to exit/hot-unplug + close.
1710 */
1711 if (!(event->attach_state & PERF_ATTACH_GROUP))
1712 return;
1713
1714 event->attach_state &= ~PERF_ATTACH_GROUP;
1715
1716 /*
1717 * If this is a sibling, remove it from its group.
1718 */
1719 if (event->group_leader != event) {
1720 list_del_init(&event->group_entry);
1721 event->group_leader->nr_siblings--;
c320c7b7 1722 goto out;
8a49542c
PZ
1723 }
1724
1725 if (!list_empty(&event->group_entry))
1726 list = &event->group_entry;
2e2af50b 1727
04289bb9 1728 /*
cdd6c482
IM
1729 * If this was a group event with sibling events then
1730 * upgrade the siblings to singleton events by adding them
8a49542c 1731 * to whatever list we are on.
04289bb9 1732 */
cdd6c482 1733 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1734 if (list)
1735 list_move_tail(&sibling->group_entry, list);
04289bb9 1736 sibling->group_leader = sibling;
d6f962b5
FW
1737
1738 /* Inherit group flags from the previous leader */
4ff6a8de 1739 sibling->group_caps = event->group_caps;
652884fe
PZ
1740
1741 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1742 }
c320c7b7
ACM
1743
1744out:
1745 perf_event__header_size(event->group_leader);
1746
1747 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1748 perf_event__header_size(tmp);
04289bb9
IM
1749}
1750
fadfe7be
JO
1751static bool is_orphaned_event(struct perf_event *event)
1752{
a69b0ca4 1753 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1754}
1755
2c81a647 1756static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1757{
1758 struct pmu *pmu = event->pmu;
1759 return pmu->filter_match ? pmu->filter_match(event) : 1;
1760}
1761
2c81a647
MR
1762/*
1763 * Check whether we should attempt to schedule an event group based on
1764 * PMU-specific filtering. An event group can consist of HW and SW events,
1765 * potentially with a SW leader, so we must check all the filters, to
1766 * determine whether a group is schedulable:
1767 */
1768static inline int pmu_filter_match(struct perf_event *event)
1769{
1770 struct perf_event *child;
1771
1772 if (!__pmu_filter_match(event))
1773 return 0;
1774
1775 list_for_each_entry(child, &event->sibling_list, group_entry) {
1776 if (!__pmu_filter_match(child))
1777 return 0;
1778 }
1779
1780 return 1;
1781}
1782
fa66f07a
SE
1783static inline int
1784event_filter_match(struct perf_event *event)
1785{
0b8f1e2e
PZ
1786 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1787 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1788}
1789
9ffcfa6f
SE
1790static void
1791event_sched_out(struct perf_event *event,
3b6f9e5c 1792 struct perf_cpu_context *cpuctx,
cdd6c482 1793 struct perf_event_context *ctx)
3b6f9e5c 1794{
4158755d 1795 u64 tstamp = perf_event_time(event);
fa66f07a 1796 u64 delta;
652884fe
PZ
1797
1798 WARN_ON_ONCE(event->ctx != ctx);
1799 lockdep_assert_held(&ctx->lock);
1800
fa66f07a
SE
1801 /*
1802 * An event which could not be activated because of
1803 * filter mismatch still needs to have its timings
1804 * maintained, otherwise bogus information is return
1805 * via read() for time_enabled, time_running:
1806 */
0b8f1e2e
PZ
1807 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1808 !event_filter_match(event)) {
e5d1367f 1809 delta = tstamp - event->tstamp_stopped;
fa66f07a 1810 event->tstamp_running += delta;
4158755d 1811 event->tstamp_stopped = tstamp;
fa66f07a
SE
1812 }
1813
cdd6c482 1814 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1815 return;
3b6f9e5c 1816
44377277
AS
1817 perf_pmu_disable(event->pmu);
1818
28a967c3
PZ
1819 event->tstamp_stopped = tstamp;
1820 event->pmu->del(event, 0);
1821 event->oncpu = -1;
cdd6c482
IM
1822 event->state = PERF_EVENT_STATE_INACTIVE;
1823 if (event->pending_disable) {
1824 event->pending_disable = 0;
1825 event->state = PERF_EVENT_STATE_OFF;
970892a9 1826 }
3b6f9e5c 1827
cdd6c482 1828 if (!is_software_event(event))
3b6f9e5c 1829 cpuctx->active_oncpu--;
2fde4f94
MR
1830 if (!--ctx->nr_active)
1831 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1832 if (event->attr.freq && event->attr.sample_freq)
1833 ctx->nr_freq--;
cdd6c482 1834 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1835 cpuctx->exclusive = 0;
44377277
AS
1836
1837 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1838}
1839
d859e29f 1840static void
cdd6c482 1841group_sched_out(struct perf_event *group_event,
d859e29f 1842 struct perf_cpu_context *cpuctx,
cdd6c482 1843 struct perf_event_context *ctx)
d859e29f 1844{
cdd6c482 1845 struct perf_event *event;
fa66f07a 1846 int state = group_event->state;
d859e29f 1847
3f005e7d
MR
1848 perf_pmu_disable(ctx->pmu);
1849
cdd6c482 1850 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1851
1852 /*
1853 * Schedule out siblings (if any):
1854 */
cdd6c482
IM
1855 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1856 event_sched_out(event, cpuctx, ctx);
d859e29f 1857
3f005e7d
MR
1858 perf_pmu_enable(ctx->pmu);
1859
fa66f07a 1860 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1861 cpuctx->exclusive = 0;
1862}
1863
45a0e07a 1864#define DETACH_GROUP 0x01UL
0017960f 1865
0793a61d 1866/*
cdd6c482 1867 * Cross CPU call to remove a performance event
0793a61d 1868 *
cdd6c482 1869 * We disable the event on the hardware level first. After that we
0793a61d
TG
1870 * remove it from the context list.
1871 */
fae3fde6
PZ
1872static void
1873__perf_remove_from_context(struct perf_event *event,
1874 struct perf_cpu_context *cpuctx,
1875 struct perf_event_context *ctx,
1876 void *info)
0793a61d 1877{
45a0e07a 1878 unsigned long flags = (unsigned long)info;
0793a61d 1879
cdd6c482 1880 event_sched_out(event, cpuctx, ctx);
45a0e07a 1881 if (flags & DETACH_GROUP)
46ce0fe9 1882 perf_group_detach(event);
cdd6c482 1883 list_del_event(event, ctx);
39a43640
PZ
1884
1885 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1886 ctx->is_active = 0;
39a43640
PZ
1887 if (ctx->task) {
1888 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1889 cpuctx->task_ctx = NULL;
1890 }
64ce3126 1891 }
0793a61d
TG
1892}
1893
0793a61d 1894/*
cdd6c482 1895 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1896 *
cdd6c482
IM
1897 * If event->ctx is a cloned context, callers must make sure that
1898 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1899 * remains valid. This is OK when called from perf_release since
1900 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1901 * When called from perf_event_exit_task, it's OK because the
c93f7669 1902 * context has been detached from its task.
0793a61d 1903 */
45a0e07a 1904static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1905{
a76a82a3
PZ
1906 struct perf_event_context *ctx = event->ctx;
1907
1908 lockdep_assert_held(&ctx->mutex);
0793a61d 1909
45a0e07a 1910 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1911
1912 /*
1913 * The above event_function_call() can NO-OP when it hits
1914 * TASK_TOMBSTONE. In that case we must already have been detached
1915 * from the context (by perf_event_exit_event()) but the grouping
1916 * might still be in-tact.
1917 */
1918 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1919 if ((flags & DETACH_GROUP) &&
1920 (event->attach_state & PERF_ATTACH_GROUP)) {
1921 /*
1922 * Since in that case we cannot possibly be scheduled, simply
1923 * detach now.
1924 */
1925 raw_spin_lock_irq(&ctx->lock);
1926 perf_group_detach(event);
1927 raw_spin_unlock_irq(&ctx->lock);
1928 }
0793a61d
TG
1929}
1930
d859e29f 1931/*
cdd6c482 1932 * Cross CPU call to disable a performance event
d859e29f 1933 */
fae3fde6
PZ
1934static void __perf_event_disable(struct perf_event *event,
1935 struct perf_cpu_context *cpuctx,
1936 struct perf_event_context *ctx,
1937 void *info)
7b648018 1938{
fae3fde6
PZ
1939 if (event->state < PERF_EVENT_STATE_INACTIVE)
1940 return;
7b648018 1941
fae3fde6
PZ
1942 update_context_time(ctx);
1943 update_cgrp_time_from_event(event);
1944 update_group_times(event);
1945 if (event == event->group_leader)
1946 group_sched_out(event, cpuctx, ctx);
1947 else
1948 event_sched_out(event, cpuctx, ctx);
1949 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1950}
1951
d859e29f 1952/*
cdd6c482 1953 * Disable a event.
c93f7669 1954 *
cdd6c482
IM
1955 * If event->ctx is a cloned context, callers must make sure that
1956 * every task struct that event->ctx->task could possibly point to
c93f7669 1957 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1958 * perf_event_for_each_child or perf_event_for_each because they
1959 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1960 * goes to exit will block in perf_event_exit_event().
1961 *
cdd6c482 1962 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1963 * is the current context on this CPU and preemption is disabled,
cdd6c482 1964 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1965 */
f63a8daa 1966static void _perf_event_disable(struct perf_event *event)
d859e29f 1967{
cdd6c482 1968 struct perf_event_context *ctx = event->ctx;
d859e29f 1969
e625cce1 1970 raw_spin_lock_irq(&ctx->lock);
7b648018 1971 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1972 raw_spin_unlock_irq(&ctx->lock);
7b648018 1973 return;
53cfbf59 1974 }
e625cce1 1975 raw_spin_unlock_irq(&ctx->lock);
7b648018 1976
fae3fde6
PZ
1977 event_function_call(event, __perf_event_disable, NULL);
1978}
1979
1980void perf_event_disable_local(struct perf_event *event)
1981{
1982 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1983}
f63a8daa
PZ
1984
1985/*
1986 * Strictly speaking kernel users cannot create groups and therefore this
1987 * interface does not need the perf_event_ctx_lock() magic.
1988 */
1989void perf_event_disable(struct perf_event *event)
1990{
1991 struct perf_event_context *ctx;
1992
1993 ctx = perf_event_ctx_lock(event);
1994 _perf_event_disable(event);
1995 perf_event_ctx_unlock(event, ctx);
1996}
dcfce4a0 1997EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1998
5aab90ce
JO
1999void perf_event_disable_inatomic(struct perf_event *event)
2000{
2001 event->pending_disable = 1;
2002 irq_work_queue(&event->pending);
2003}
2004
e5d1367f
SE
2005static void perf_set_shadow_time(struct perf_event *event,
2006 struct perf_event_context *ctx,
2007 u64 tstamp)
2008{
2009 /*
2010 * use the correct time source for the time snapshot
2011 *
2012 * We could get by without this by leveraging the
2013 * fact that to get to this function, the caller
2014 * has most likely already called update_context_time()
2015 * and update_cgrp_time_xx() and thus both timestamp
2016 * are identical (or very close). Given that tstamp is,
2017 * already adjusted for cgroup, we could say that:
2018 * tstamp - ctx->timestamp
2019 * is equivalent to
2020 * tstamp - cgrp->timestamp.
2021 *
2022 * Then, in perf_output_read(), the calculation would
2023 * work with no changes because:
2024 * - event is guaranteed scheduled in
2025 * - no scheduled out in between
2026 * - thus the timestamp would be the same
2027 *
2028 * But this is a bit hairy.
2029 *
2030 * So instead, we have an explicit cgroup call to remain
2031 * within the time time source all along. We believe it
2032 * is cleaner and simpler to understand.
2033 */
2034 if (is_cgroup_event(event))
2035 perf_cgroup_set_shadow_time(event, tstamp);
2036 else
2037 event->shadow_ctx_time = tstamp - ctx->timestamp;
2038}
2039
4fe757dd
PZ
2040#define MAX_INTERRUPTS (~0ULL)
2041
2042static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2043static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2044
235c7fc7 2045static int
9ffcfa6f 2046event_sched_in(struct perf_event *event,
235c7fc7 2047 struct perf_cpu_context *cpuctx,
6e37738a 2048 struct perf_event_context *ctx)
235c7fc7 2049{
4158755d 2050 u64 tstamp = perf_event_time(event);
44377277 2051 int ret = 0;
4158755d 2052
63342411
PZ
2053 lockdep_assert_held(&ctx->lock);
2054
cdd6c482 2055 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2056 return 0;
2057
95ff4ca2
AS
2058 WRITE_ONCE(event->oncpu, smp_processor_id());
2059 /*
2060 * Order event::oncpu write to happen before the ACTIVE state
2061 * is visible.
2062 */
2063 smp_wmb();
2064 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2065
2066 /*
2067 * Unthrottle events, since we scheduled we might have missed several
2068 * ticks already, also for a heavily scheduling task there is little
2069 * guarantee it'll get a tick in a timely manner.
2070 */
2071 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072 perf_log_throttle(event, 1);
2073 event->hw.interrupts = 0;
2074 }
2075
235c7fc7
IM
2076 /*
2077 * The new state must be visible before we turn it on in the hardware:
2078 */
2079 smp_wmb();
2080
44377277
AS
2081 perf_pmu_disable(event->pmu);
2082
72f669c0
SL
2083 perf_set_shadow_time(event, ctx, tstamp);
2084
ec0d7729
AS
2085 perf_log_itrace_start(event);
2086
a4eaf7f1 2087 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2088 event->state = PERF_EVENT_STATE_INACTIVE;
2089 event->oncpu = -1;
44377277
AS
2090 ret = -EAGAIN;
2091 goto out;
235c7fc7
IM
2092 }
2093
00a2916f
PZ
2094 event->tstamp_running += tstamp - event->tstamp_stopped;
2095
cdd6c482 2096 if (!is_software_event(event))
3b6f9e5c 2097 cpuctx->active_oncpu++;
2fde4f94
MR
2098 if (!ctx->nr_active++)
2099 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2100 if (event->attr.freq && event->attr.sample_freq)
2101 ctx->nr_freq++;
235c7fc7 2102
cdd6c482 2103 if (event->attr.exclusive)
3b6f9e5c
PM
2104 cpuctx->exclusive = 1;
2105
44377277
AS
2106out:
2107 perf_pmu_enable(event->pmu);
2108
2109 return ret;
235c7fc7
IM
2110}
2111
6751b71e 2112static int
cdd6c482 2113group_sched_in(struct perf_event *group_event,
6751b71e 2114 struct perf_cpu_context *cpuctx,
6e37738a 2115 struct perf_event_context *ctx)
6751b71e 2116{
6bde9b6c 2117 struct perf_event *event, *partial_group = NULL;
4a234593 2118 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2119 u64 now = ctx->time;
2120 bool simulate = false;
6751b71e 2121
cdd6c482 2122 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2123 return 0;
2124
fbbe0701 2125 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2126
9ffcfa6f 2127 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2128 pmu->cancel_txn(pmu);
272325c4 2129 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2130 return -EAGAIN;
90151c35 2131 }
6751b71e
PM
2132
2133 /*
2134 * Schedule in siblings as one group (if any):
2135 */
cdd6c482 2136 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2137 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2138 partial_group = event;
6751b71e
PM
2139 goto group_error;
2140 }
2141 }
2142
9ffcfa6f 2143 if (!pmu->commit_txn(pmu))
6e85158c 2144 return 0;
9ffcfa6f 2145
6751b71e
PM
2146group_error:
2147 /*
2148 * Groups can be scheduled in as one unit only, so undo any
2149 * partial group before returning:
d7842da4
SE
2150 * The events up to the failed event are scheduled out normally,
2151 * tstamp_stopped will be updated.
2152 *
2153 * The failed events and the remaining siblings need to have
2154 * their timings updated as if they had gone thru event_sched_in()
2155 * and event_sched_out(). This is required to get consistent timings
2156 * across the group. This also takes care of the case where the group
2157 * could never be scheduled by ensuring tstamp_stopped is set to mark
2158 * the time the event was actually stopped, such that time delta
2159 * calculation in update_event_times() is correct.
6751b71e 2160 */
cdd6c482
IM
2161 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2162 if (event == partial_group)
d7842da4
SE
2163 simulate = true;
2164
2165 if (simulate) {
2166 event->tstamp_running += now - event->tstamp_stopped;
2167 event->tstamp_stopped = now;
2168 } else {
2169 event_sched_out(event, cpuctx, ctx);
2170 }
6751b71e 2171 }
9ffcfa6f 2172 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2173
ad5133b7 2174 pmu->cancel_txn(pmu);
90151c35 2175
272325c4 2176 perf_mux_hrtimer_restart(cpuctx);
9e630205 2177
6751b71e
PM
2178 return -EAGAIN;
2179}
2180
3b6f9e5c 2181/*
cdd6c482 2182 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2183 */
cdd6c482 2184static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2185 struct perf_cpu_context *cpuctx,
2186 int can_add_hw)
2187{
2188 /*
cdd6c482 2189 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2190 */
4ff6a8de 2191 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2192 return 1;
2193 /*
2194 * If an exclusive group is already on, no other hardware
cdd6c482 2195 * events can go on.
3b6f9e5c
PM
2196 */
2197 if (cpuctx->exclusive)
2198 return 0;
2199 /*
2200 * If this group is exclusive and there are already
cdd6c482 2201 * events on the CPU, it can't go on.
3b6f9e5c 2202 */
cdd6c482 2203 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2204 return 0;
2205 /*
2206 * Otherwise, try to add it if all previous groups were able
2207 * to go on.
2208 */
2209 return can_add_hw;
2210}
2211
cdd6c482
IM
2212static void add_event_to_ctx(struct perf_event *event,
2213 struct perf_event_context *ctx)
53cfbf59 2214{
4158755d
SE
2215 u64 tstamp = perf_event_time(event);
2216
cdd6c482 2217 list_add_event(event, ctx);
8a49542c 2218 perf_group_attach(event);
4158755d
SE
2219 event->tstamp_enabled = tstamp;
2220 event->tstamp_running = tstamp;
2221 event->tstamp_stopped = tstamp;
53cfbf59
PM
2222}
2223
bd2afa49
PZ
2224static void ctx_sched_out(struct perf_event_context *ctx,
2225 struct perf_cpu_context *cpuctx,
2226 enum event_type_t event_type);
2c29ef0f
PZ
2227static void
2228ctx_sched_in(struct perf_event_context *ctx,
2229 struct perf_cpu_context *cpuctx,
2230 enum event_type_t event_type,
2231 struct task_struct *task);
fe4b04fa 2232
bd2afa49 2233static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2234 struct perf_event_context *ctx,
2235 enum event_type_t event_type)
bd2afa49
PZ
2236{
2237 if (!cpuctx->task_ctx)
2238 return;
2239
2240 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2241 return;
2242
487f05e1 2243 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2244}
2245
dce5855b
PZ
2246static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2247 struct perf_event_context *ctx,
2248 struct task_struct *task)
2249{
2250 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2251 if (ctx)
2252 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2253 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2254 if (ctx)
2255 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2256}
2257
487f05e1
AS
2258/*
2259 * We want to maintain the following priority of scheduling:
2260 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2261 * - task pinned (EVENT_PINNED)
2262 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2263 * - task flexible (EVENT_FLEXIBLE).
2264 *
2265 * In order to avoid unscheduling and scheduling back in everything every
2266 * time an event is added, only do it for the groups of equal priority and
2267 * below.
2268 *
2269 * This can be called after a batch operation on task events, in which case
2270 * event_type is a bit mask of the types of events involved. For CPU events,
2271 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2272 */
3e349507 2273static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2274 struct perf_event_context *task_ctx,
2275 enum event_type_t event_type)
0017960f 2276{
487f05e1
AS
2277 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2278 bool cpu_event = !!(event_type & EVENT_CPU);
2279
2280 /*
2281 * If pinned groups are involved, flexible groups also need to be
2282 * scheduled out.
2283 */
2284 if (event_type & EVENT_PINNED)
2285 event_type |= EVENT_FLEXIBLE;
2286
3e349507
PZ
2287 perf_pmu_disable(cpuctx->ctx.pmu);
2288 if (task_ctx)
487f05e1
AS
2289 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2290
2291 /*
2292 * Decide which cpu ctx groups to schedule out based on the types
2293 * of events that caused rescheduling:
2294 * - EVENT_CPU: schedule out corresponding groups;
2295 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2296 * - otherwise, do nothing more.
2297 */
2298 if (cpu_event)
2299 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2300 else if (ctx_event_type & EVENT_PINNED)
2301 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2302
3e349507
PZ
2303 perf_event_sched_in(cpuctx, task_ctx, current);
2304 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2305}
2306
0793a61d 2307/*
cdd6c482 2308 * Cross CPU call to install and enable a performance event
682076ae 2309 *
a096309b
PZ
2310 * Very similar to remote_function() + event_function() but cannot assume that
2311 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2312 */
fe4b04fa 2313static int __perf_install_in_context(void *info)
0793a61d 2314{
a096309b
PZ
2315 struct perf_event *event = info;
2316 struct perf_event_context *ctx = event->ctx;
108b02cf 2317 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2318 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2319 bool reprogram = true;
a096309b 2320 int ret = 0;
0793a61d 2321
63b6da39 2322 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2323 if (ctx->task) {
b58f6b0d
PZ
2324 raw_spin_lock(&ctx->lock);
2325 task_ctx = ctx;
a096309b 2326
63cae12b 2327 reprogram = (ctx->task == current);
b58f6b0d 2328
39a43640 2329 /*
63cae12b
PZ
2330 * If the task is running, it must be running on this CPU,
2331 * otherwise we cannot reprogram things.
2332 *
2333 * If its not running, we don't care, ctx->lock will
2334 * serialize against it becoming runnable.
39a43640 2335 */
63cae12b
PZ
2336 if (task_curr(ctx->task) && !reprogram) {
2337 ret = -ESRCH;
2338 goto unlock;
2339 }
a096309b 2340
63cae12b 2341 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2342 } else if (task_ctx) {
2343 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2344 }
b58f6b0d 2345
63cae12b 2346 if (reprogram) {
a096309b
PZ
2347 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2348 add_event_to_ctx(event, ctx);
487f05e1 2349 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2350 } else {
2351 add_event_to_ctx(event, ctx);
2352 }
2353
63b6da39 2354unlock:
2c29ef0f 2355 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2356
a096309b 2357 return ret;
0793a61d
TG
2358}
2359
2360/*
a096309b
PZ
2361 * Attach a performance event to a context.
2362 *
2363 * Very similar to event_function_call, see comment there.
0793a61d
TG
2364 */
2365static void
cdd6c482
IM
2366perf_install_in_context(struct perf_event_context *ctx,
2367 struct perf_event *event,
0793a61d
TG
2368 int cpu)
2369{
a096309b 2370 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2371
fe4b04fa
PZ
2372 lockdep_assert_held(&ctx->mutex);
2373
0cda4c02
YZ
2374 if (event->cpu != -1)
2375 event->cpu = cpu;
c3f00c70 2376
0b8f1e2e
PZ
2377 /*
2378 * Ensures that if we can observe event->ctx, both the event and ctx
2379 * will be 'complete'. See perf_iterate_sb_cpu().
2380 */
2381 smp_store_release(&event->ctx, ctx);
2382
a096309b
PZ
2383 if (!task) {
2384 cpu_function_call(cpu, __perf_install_in_context, event);
2385 return;
2386 }
2387
2388 /*
2389 * Should not happen, we validate the ctx is still alive before calling.
2390 */
2391 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2392 return;
2393
39a43640
PZ
2394 /*
2395 * Installing events is tricky because we cannot rely on ctx->is_active
2396 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2397 *
2398 * Instead we use task_curr(), which tells us if the task is running.
2399 * However, since we use task_curr() outside of rq::lock, we can race
2400 * against the actual state. This means the result can be wrong.
2401 *
2402 * If we get a false positive, we retry, this is harmless.
2403 *
2404 * If we get a false negative, things are complicated. If we are after
2405 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2406 * value must be correct. If we're before, it doesn't matter since
2407 * perf_event_context_sched_in() will program the counter.
2408 *
2409 * However, this hinges on the remote context switch having observed
2410 * our task->perf_event_ctxp[] store, such that it will in fact take
2411 * ctx::lock in perf_event_context_sched_in().
2412 *
2413 * We do this by task_function_call(), if the IPI fails to hit the task
2414 * we know any future context switch of task must see the
2415 * perf_event_ctpx[] store.
39a43640 2416 */
63cae12b 2417
63b6da39 2418 /*
63cae12b
PZ
2419 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2420 * task_cpu() load, such that if the IPI then does not find the task
2421 * running, a future context switch of that task must observe the
2422 * store.
63b6da39 2423 */
63cae12b
PZ
2424 smp_mb();
2425again:
2426 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2427 return;
2428
2429 raw_spin_lock_irq(&ctx->lock);
2430 task = ctx->task;
84c4e620 2431 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2432 /*
2433 * Cannot happen because we already checked above (which also
2434 * cannot happen), and we hold ctx->mutex, which serializes us
2435 * against perf_event_exit_task_context().
2436 */
63b6da39
PZ
2437 raw_spin_unlock_irq(&ctx->lock);
2438 return;
2439 }
39a43640 2440 /*
63cae12b
PZ
2441 * If the task is not running, ctx->lock will avoid it becoming so,
2442 * thus we can safely install the event.
39a43640 2443 */
63cae12b
PZ
2444 if (task_curr(task)) {
2445 raw_spin_unlock_irq(&ctx->lock);
2446 goto again;
2447 }
2448 add_event_to_ctx(event, ctx);
2449 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2450}
2451
fa289bec 2452/*
cdd6c482 2453 * Put a event into inactive state and update time fields.
fa289bec
PM
2454 * Enabling the leader of a group effectively enables all
2455 * the group members that aren't explicitly disabled, so we
2456 * have to update their ->tstamp_enabled also.
2457 * Note: this works for group members as well as group leaders
2458 * since the non-leader members' sibling_lists will be empty.
2459 */
1d9b482e 2460static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2461{
cdd6c482 2462 struct perf_event *sub;
4158755d 2463 u64 tstamp = perf_event_time(event);
fa289bec 2464
cdd6c482 2465 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2466 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2467 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2468 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2469 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2470 }
fa289bec
PM
2471}
2472
d859e29f 2473/*
cdd6c482 2474 * Cross CPU call to enable a performance event
d859e29f 2475 */
fae3fde6
PZ
2476static void __perf_event_enable(struct perf_event *event,
2477 struct perf_cpu_context *cpuctx,
2478 struct perf_event_context *ctx,
2479 void *info)
04289bb9 2480{
cdd6c482 2481 struct perf_event *leader = event->group_leader;
fae3fde6 2482 struct perf_event_context *task_ctx;
04289bb9 2483
6e801e01
PZ
2484 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2485 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2486 return;
3cbed429 2487
bd2afa49
PZ
2488 if (ctx->is_active)
2489 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2490
1d9b482e 2491 __perf_event_mark_enabled(event);
04289bb9 2492
fae3fde6
PZ
2493 if (!ctx->is_active)
2494 return;
2495
e5d1367f 2496 if (!event_filter_match(event)) {
bd2afa49 2497 if (is_cgroup_event(event))
e5d1367f 2498 perf_cgroup_defer_enabled(event);
bd2afa49 2499 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2500 return;
e5d1367f 2501 }
f4c4176f 2502
04289bb9 2503 /*
cdd6c482 2504 * If the event is in a group and isn't the group leader,
d859e29f 2505 * then don't put it on unless the group is on.
04289bb9 2506 */
bd2afa49
PZ
2507 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2508 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2509 return;
bd2afa49 2510 }
fe4b04fa 2511
fae3fde6
PZ
2512 task_ctx = cpuctx->task_ctx;
2513 if (ctx->task)
2514 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2515
487f05e1 2516 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2517}
2518
d859e29f 2519/*
cdd6c482 2520 * Enable a event.
c93f7669 2521 *
cdd6c482
IM
2522 * If event->ctx is a cloned context, callers must make sure that
2523 * every task struct that event->ctx->task could possibly point to
c93f7669 2524 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2525 * perf_event_for_each_child or perf_event_for_each as described
2526 * for perf_event_disable.
d859e29f 2527 */
f63a8daa 2528static void _perf_event_enable(struct perf_event *event)
d859e29f 2529{
cdd6c482 2530 struct perf_event_context *ctx = event->ctx;
d859e29f 2531
7b648018 2532 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2533 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2534 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2535 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2536 return;
2537 }
2538
d859e29f 2539 /*
cdd6c482 2540 * If the event is in error state, clear that first.
7b648018
PZ
2541 *
2542 * That way, if we see the event in error state below, we know that it
2543 * has gone back into error state, as distinct from the task having
2544 * been scheduled away before the cross-call arrived.
d859e29f 2545 */
cdd6c482
IM
2546 if (event->state == PERF_EVENT_STATE_ERROR)
2547 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2548 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2549
fae3fde6 2550 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2551}
f63a8daa
PZ
2552
2553/*
2554 * See perf_event_disable();
2555 */
2556void perf_event_enable(struct perf_event *event)
2557{
2558 struct perf_event_context *ctx;
2559
2560 ctx = perf_event_ctx_lock(event);
2561 _perf_event_enable(event);
2562 perf_event_ctx_unlock(event, ctx);
2563}
dcfce4a0 2564EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2565
375637bc
AS
2566struct stop_event_data {
2567 struct perf_event *event;
2568 unsigned int restart;
2569};
2570
95ff4ca2
AS
2571static int __perf_event_stop(void *info)
2572{
375637bc
AS
2573 struct stop_event_data *sd = info;
2574 struct perf_event *event = sd->event;
95ff4ca2 2575
375637bc 2576 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2577 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2578 return 0;
2579
2580 /* matches smp_wmb() in event_sched_in() */
2581 smp_rmb();
2582
2583 /*
2584 * There is a window with interrupts enabled before we get here,
2585 * so we need to check again lest we try to stop another CPU's event.
2586 */
2587 if (READ_ONCE(event->oncpu) != smp_processor_id())
2588 return -EAGAIN;
2589
2590 event->pmu->stop(event, PERF_EF_UPDATE);
2591
375637bc
AS
2592 /*
2593 * May race with the actual stop (through perf_pmu_output_stop()),
2594 * but it is only used for events with AUX ring buffer, and such
2595 * events will refuse to restart because of rb::aux_mmap_count==0,
2596 * see comments in perf_aux_output_begin().
2597 *
2598 * Since this is happening on a event-local CPU, no trace is lost
2599 * while restarting.
2600 */
2601 if (sd->restart)
c9bbdd48 2602 event->pmu->start(event, 0);
375637bc 2603
95ff4ca2
AS
2604 return 0;
2605}
2606
767ae086 2607static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2608{
2609 struct stop_event_data sd = {
2610 .event = event,
767ae086 2611 .restart = restart,
375637bc
AS
2612 };
2613 int ret = 0;
2614
2615 do {
2616 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2617 return 0;
2618
2619 /* matches smp_wmb() in event_sched_in() */
2620 smp_rmb();
2621
2622 /*
2623 * We only want to restart ACTIVE events, so if the event goes
2624 * inactive here (event->oncpu==-1), there's nothing more to do;
2625 * fall through with ret==-ENXIO.
2626 */
2627 ret = cpu_function_call(READ_ONCE(event->oncpu),
2628 __perf_event_stop, &sd);
2629 } while (ret == -EAGAIN);
2630
2631 return ret;
2632}
2633
2634/*
2635 * In order to contain the amount of racy and tricky in the address filter
2636 * configuration management, it is a two part process:
2637 *
2638 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2639 * we update the addresses of corresponding vmas in
2640 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2641 * (p2) when an event is scheduled in (pmu::add), it calls
2642 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2643 * if the generation has changed since the previous call.
2644 *
2645 * If (p1) happens while the event is active, we restart it to force (p2).
2646 *
2647 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2648 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2649 * ioctl;
2650 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2651 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2652 * for reading;
2653 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2654 * of exec.
2655 */
2656void perf_event_addr_filters_sync(struct perf_event *event)
2657{
2658 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2659
2660 if (!has_addr_filter(event))
2661 return;
2662
2663 raw_spin_lock(&ifh->lock);
2664 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2665 event->pmu->addr_filters_sync(event);
2666 event->hw.addr_filters_gen = event->addr_filters_gen;
2667 }
2668 raw_spin_unlock(&ifh->lock);
2669}
2670EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2671
f63a8daa 2672static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2673{
2023b359 2674 /*
cdd6c482 2675 * not supported on inherited events
2023b359 2676 */
2e939d1d 2677 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2678 return -EINVAL;
2679
cdd6c482 2680 atomic_add(refresh, &event->event_limit);
f63a8daa 2681 _perf_event_enable(event);
2023b359
PZ
2682
2683 return 0;
79f14641 2684}
f63a8daa
PZ
2685
2686/*
2687 * See perf_event_disable()
2688 */
2689int perf_event_refresh(struct perf_event *event, int refresh)
2690{
2691 struct perf_event_context *ctx;
2692 int ret;
2693
2694 ctx = perf_event_ctx_lock(event);
2695 ret = _perf_event_refresh(event, refresh);
2696 perf_event_ctx_unlock(event, ctx);
2697
2698 return ret;
2699}
26ca5c11 2700EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2701
5b0311e1
FW
2702static void ctx_sched_out(struct perf_event_context *ctx,
2703 struct perf_cpu_context *cpuctx,
2704 enum event_type_t event_type)
235c7fc7 2705{
db24d33e 2706 int is_active = ctx->is_active;
c994d613 2707 struct perf_event *event;
235c7fc7 2708
c994d613 2709 lockdep_assert_held(&ctx->lock);
235c7fc7 2710
39a43640
PZ
2711 if (likely(!ctx->nr_events)) {
2712 /*
2713 * See __perf_remove_from_context().
2714 */
2715 WARN_ON_ONCE(ctx->is_active);
2716 if (ctx->task)
2717 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2718 return;
39a43640
PZ
2719 }
2720
db24d33e 2721 ctx->is_active &= ~event_type;
3cbaa590
PZ
2722 if (!(ctx->is_active & EVENT_ALL))
2723 ctx->is_active = 0;
2724
63e30d3e
PZ
2725 if (ctx->task) {
2726 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2727 if (!ctx->is_active)
2728 cpuctx->task_ctx = NULL;
2729 }
facc4307 2730
8fdc6539
PZ
2731 /*
2732 * Always update time if it was set; not only when it changes.
2733 * Otherwise we can 'forget' to update time for any but the last
2734 * context we sched out. For example:
2735 *
2736 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2737 * ctx_sched_out(.event_type = EVENT_PINNED)
2738 *
2739 * would only update time for the pinned events.
2740 */
3cbaa590
PZ
2741 if (is_active & EVENT_TIME) {
2742 /* update (and stop) ctx time */
2743 update_context_time(ctx);
2744 update_cgrp_time_from_cpuctx(cpuctx);
2745 }
2746
8fdc6539
PZ
2747 is_active ^= ctx->is_active; /* changed bits */
2748
3cbaa590 2749 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2750 return;
5b0311e1 2751
075e0b00 2752 perf_pmu_disable(ctx->pmu);
3cbaa590 2753 if (is_active & EVENT_PINNED) {
889ff015
FW
2754 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2755 group_sched_out(event, cpuctx, ctx);
9ed6060d 2756 }
889ff015 2757
3cbaa590 2758 if (is_active & EVENT_FLEXIBLE) {
889ff015 2759 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2760 group_sched_out(event, cpuctx, ctx);
9ed6060d 2761 }
1b9a644f 2762 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2763}
2764
564c2b21 2765/*
5a3126d4
PZ
2766 * Test whether two contexts are equivalent, i.e. whether they have both been
2767 * cloned from the same version of the same context.
2768 *
2769 * Equivalence is measured using a generation number in the context that is
2770 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2771 * and list_del_event().
564c2b21 2772 */
cdd6c482
IM
2773static int context_equiv(struct perf_event_context *ctx1,
2774 struct perf_event_context *ctx2)
564c2b21 2775{
211de6eb
PZ
2776 lockdep_assert_held(&ctx1->lock);
2777 lockdep_assert_held(&ctx2->lock);
2778
5a3126d4
PZ
2779 /* Pinning disables the swap optimization */
2780 if (ctx1->pin_count || ctx2->pin_count)
2781 return 0;
2782
2783 /* If ctx1 is the parent of ctx2 */
2784 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2785 return 1;
2786
2787 /* If ctx2 is the parent of ctx1 */
2788 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2789 return 1;
2790
2791 /*
2792 * If ctx1 and ctx2 have the same parent; we flatten the parent
2793 * hierarchy, see perf_event_init_context().
2794 */
2795 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2796 ctx1->parent_gen == ctx2->parent_gen)
2797 return 1;
2798
2799 /* Unmatched */
2800 return 0;
564c2b21
PM
2801}
2802
cdd6c482
IM
2803static void __perf_event_sync_stat(struct perf_event *event,
2804 struct perf_event *next_event)
bfbd3381
PZ
2805{
2806 u64 value;
2807
cdd6c482 2808 if (!event->attr.inherit_stat)
bfbd3381
PZ
2809 return;
2810
2811 /*
cdd6c482 2812 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2813 * because we're in the middle of a context switch and have IRQs
2814 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2815 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2816 * don't need to use it.
2817 */
cdd6c482
IM
2818 switch (event->state) {
2819 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2820 event->pmu->read(event);
2821 /* fall-through */
bfbd3381 2822
cdd6c482
IM
2823 case PERF_EVENT_STATE_INACTIVE:
2824 update_event_times(event);
bfbd3381
PZ
2825 break;
2826
2827 default:
2828 break;
2829 }
2830
2831 /*
cdd6c482 2832 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2833 * values when we flip the contexts.
2834 */
e7850595
PZ
2835 value = local64_read(&next_event->count);
2836 value = local64_xchg(&event->count, value);
2837 local64_set(&next_event->count, value);
bfbd3381 2838
cdd6c482
IM
2839 swap(event->total_time_enabled, next_event->total_time_enabled);
2840 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2841
bfbd3381 2842 /*
19d2e755 2843 * Since we swizzled the values, update the user visible data too.
bfbd3381 2844 */
cdd6c482
IM
2845 perf_event_update_userpage(event);
2846 perf_event_update_userpage(next_event);
bfbd3381
PZ
2847}
2848
cdd6c482
IM
2849static void perf_event_sync_stat(struct perf_event_context *ctx,
2850 struct perf_event_context *next_ctx)
bfbd3381 2851{
cdd6c482 2852 struct perf_event *event, *next_event;
bfbd3381
PZ
2853
2854 if (!ctx->nr_stat)
2855 return;
2856
02ffdbc8
PZ
2857 update_context_time(ctx);
2858
cdd6c482
IM
2859 event = list_first_entry(&ctx->event_list,
2860 struct perf_event, event_entry);
bfbd3381 2861
cdd6c482
IM
2862 next_event = list_first_entry(&next_ctx->event_list,
2863 struct perf_event, event_entry);
bfbd3381 2864
cdd6c482
IM
2865 while (&event->event_entry != &ctx->event_list &&
2866 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2867
cdd6c482 2868 __perf_event_sync_stat(event, next_event);
bfbd3381 2869
cdd6c482
IM
2870 event = list_next_entry(event, event_entry);
2871 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2872 }
2873}
2874
fe4b04fa
PZ
2875static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2876 struct task_struct *next)
0793a61d 2877{
8dc85d54 2878 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2879 struct perf_event_context *next_ctx;
5a3126d4 2880 struct perf_event_context *parent, *next_parent;
108b02cf 2881 struct perf_cpu_context *cpuctx;
c93f7669 2882 int do_switch = 1;
0793a61d 2883
108b02cf
PZ
2884 if (likely(!ctx))
2885 return;
10989fb2 2886
108b02cf
PZ
2887 cpuctx = __get_cpu_context(ctx);
2888 if (!cpuctx->task_ctx)
0793a61d
TG
2889 return;
2890
c93f7669 2891 rcu_read_lock();
8dc85d54 2892 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2893 if (!next_ctx)
2894 goto unlock;
2895
2896 parent = rcu_dereference(ctx->parent_ctx);
2897 next_parent = rcu_dereference(next_ctx->parent_ctx);
2898
2899 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2900 if (!parent && !next_parent)
5a3126d4
PZ
2901 goto unlock;
2902
2903 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2904 /*
2905 * Looks like the two contexts are clones, so we might be
2906 * able to optimize the context switch. We lock both
2907 * contexts and check that they are clones under the
2908 * lock (including re-checking that neither has been
2909 * uncloned in the meantime). It doesn't matter which
2910 * order we take the locks because no other cpu could
2911 * be trying to lock both of these tasks.
2912 */
e625cce1
TG
2913 raw_spin_lock(&ctx->lock);
2914 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2915 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2916 WRITE_ONCE(ctx->task, next);
2917 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2918
2919 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2920
63b6da39
PZ
2921 /*
2922 * RCU_INIT_POINTER here is safe because we've not
2923 * modified the ctx and the above modification of
2924 * ctx->task and ctx->task_ctx_data are immaterial
2925 * since those values are always verified under
2926 * ctx->lock which we're now holding.
2927 */
2928 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2929 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2930
c93f7669 2931 do_switch = 0;
bfbd3381 2932
cdd6c482 2933 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2934 }
e625cce1
TG
2935 raw_spin_unlock(&next_ctx->lock);
2936 raw_spin_unlock(&ctx->lock);
564c2b21 2937 }
5a3126d4 2938unlock:
c93f7669 2939 rcu_read_unlock();
564c2b21 2940
c93f7669 2941 if (do_switch) {
facc4307 2942 raw_spin_lock(&ctx->lock);
487f05e1 2943 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2944 raw_spin_unlock(&ctx->lock);
c93f7669 2945 }
0793a61d
TG
2946}
2947
e48c1788
PZ
2948static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2949
ba532500
YZ
2950void perf_sched_cb_dec(struct pmu *pmu)
2951{
e48c1788
PZ
2952 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2953
ba532500 2954 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2955
2956 if (!--cpuctx->sched_cb_usage)
2957 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2958}
2959
e48c1788 2960
ba532500
YZ
2961void perf_sched_cb_inc(struct pmu *pmu)
2962{
e48c1788
PZ
2963 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2964
2965 if (!cpuctx->sched_cb_usage++)
2966 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2967
ba532500
YZ
2968 this_cpu_inc(perf_sched_cb_usages);
2969}
2970
2971/*
2972 * This function provides the context switch callback to the lower code
2973 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
2974 *
2975 * This callback is relevant even to per-cpu events; for example multi event
2976 * PEBS requires this to provide PID/TID information. This requires we flush
2977 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
2978 */
2979static void perf_pmu_sched_task(struct task_struct *prev,
2980 struct task_struct *next,
2981 bool sched_in)
2982{
2983 struct perf_cpu_context *cpuctx;
2984 struct pmu *pmu;
ba532500
YZ
2985
2986 if (prev == next)
2987 return;
2988
e48c1788 2989 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 2990 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 2991
e48c1788
PZ
2992 if (WARN_ON_ONCE(!pmu->sched_task))
2993 continue;
ba532500 2994
e48c1788
PZ
2995 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2996 perf_pmu_disable(pmu);
ba532500 2997
e48c1788 2998 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 2999
e48c1788
PZ
3000 perf_pmu_enable(pmu);
3001 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3002 }
ba532500
YZ
3003}
3004
45ac1403
AH
3005static void perf_event_switch(struct task_struct *task,
3006 struct task_struct *next_prev, bool sched_in);
3007
8dc85d54
PZ
3008#define for_each_task_context_nr(ctxn) \
3009 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3010
3011/*
3012 * Called from scheduler to remove the events of the current task,
3013 * with interrupts disabled.
3014 *
3015 * We stop each event and update the event value in event->count.
3016 *
3017 * This does not protect us against NMI, but disable()
3018 * sets the disabled bit in the control field of event _before_
3019 * accessing the event control register. If a NMI hits, then it will
3020 * not restart the event.
3021 */
ab0cce56
JO
3022void __perf_event_task_sched_out(struct task_struct *task,
3023 struct task_struct *next)
8dc85d54
PZ
3024{
3025 int ctxn;
3026
ba532500
YZ
3027 if (__this_cpu_read(perf_sched_cb_usages))
3028 perf_pmu_sched_task(task, next, false);
3029
45ac1403
AH
3030 if (atomic_read(&nr_switch_events))
3031 perf_event_switch(task, next, false);
3032
8dc85d54
PZ
3033 for_each_task_context_nr(ctxn)
3034 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3035
3036 /*
3037 * if cgroup events exist on this CPU, then we need
3038 * to check if we have to switch out PMU state.
3039 * cgroup event are system-wide mode only
3040 */
4a32fea9 3041 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3042 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3043}
3044
5b0311e1
FW
3045/*
3046 * Called with IRQs disabled
3047 */
3048static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3049 enum event_type_t event_type)
3050{
3051 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3052}
3053
235c7fc7 3054static void
5b0311e1 3055ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 3056 struct perf_cpu_context *cpuctx)
0793a61d 3057{
cdd6c482 3058 struct perf_event *event;
0793a61d 3059
889ff015
FW
3060 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3061 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3062 continue;
5632ab12 3063 if (!event_filter_match(event))
3b6f9e5c
PM
3064 continue;
3065
e5d1367f
SE
3066 /* may need to reset tstamp_enabled */
3067 if (is_cgroup_event(event))
3068 perf_cgroup_mark_enabled(event, ctx);
3069
8c9ed8e1 3070 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3071 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3072
3073 /*
3074 * If this pinned group hasn't been scheduled,
3075 * put it in error state.
3076 */
cdd6c482
IM
3077 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3078 update_group_times(event);
3079 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 3080 }
3b6f9e5c 3081 }
5b0311e1
FW
3082}
3083
3084static void
3085ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3086 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3087{
3088 struct perf_event *event;
3089 int can_add_hw = 1;
3b6f9e5c 3090
889ff015
FW
3091 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3092 /* Ignore events in OFF or ERROR state */
3093 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3094 continue;
04289bb9
IM
3095 /*
3096 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3097 * of events:
04289bb9 3098 */
5632ab12 3099 if (!event_filter_match(event))
0793a61d
TG
3100 continue;
3101
e5d1367f
SE
3102 /* may need to reset tstamp_enabled */
3103 if (is_cgroup_event(event))
3104 perf_cgroup_mark_enabled(event, ctx);
3105
9ed6060d 3106 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3107 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3108 can_add_hw = 0;
9ed6060d 3109 }
0793a61d 3110 }
5b0311e1
FW
3111}
3112
3113static void
3114ctx_sched_in(struct perf_event_context *ctx,
3115 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3116 enum event_type_t event_type,
3117 struct task_struct *task)
5b0311e1 3118{
db24d33e 3119 int is_active = ctx->is_active;
c994d613
PZ
3120 u64 now;
3121
3122 lockdep_assert_held(&ctx->lock);
e5d1367f 3123
5b0311e1 3124 if (likely(!ctx->nr_events))
facc4307 3125 return;
5b0311e1 3126
3cbaa590 3127 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3128 if (ctx->task) {
3129 if (!is_active)
3130 cpuctx->task_ctx = ctx;
3131 else
3132 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3133 }
3134
3cbaa590
PZ
3135 is_active ^= ctx->is_active; /* changed bits */
3136
3137 if (is_active & EVENT_TIME) {
3138 /* start ctx time */
3139 now = perf_clock();
3140 ctx->timestamp = now;
3141 perf_cgroup_set_timestamp(task, ctx);
3142 }
3143
5b0311e1
FW
3144 /*
3145 * First go through the list and put on any pinned groups
3146 * in order to give them the best chance of going on.
3147 */
3cbaa590 3148 if (is_active & EVENT_PINNED)
6e37738a 3149 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3150
3151 /* Then walk through the lower prio flexible groups */
3cbaa590 3152 if (is_active & EVENT_FLEXIBLE)
6e37738a 3153 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3154}
3155
329c0e01 3156static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3157 enum event_type_t event_type,
3158 struct task_struct *task)
329c0e01
FW
3159{
3160 struct perf_event_context *ctx = &cpuctx->ctx;
3161
e5d1367f 3162 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3163}
3164
e5d1367f
SE
3165static void perf_event_context_sched_in(struct perf_event_context *ctx,
3166 struct task_struct *task)
235c7fc7 3167{
108b02cf 3168 struct perf_cpu_context *cpuctx;
235c7fc7 3169
108b02cf 3170 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3171 if (cpuctx->task_ctx == ctx)
3172 return;
3173
facc4307 3174 perf_ctx_lock(cpuctx, ctx);
1b9a644f 3175 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3176 /*
3177 * We want to keep the following priority order:
3178 * cpu pinned (that don't need to move), task pinned,
3179 * cpu flexible, task flexible.
fe45bafb
AS
3180 *
3181 * However, if task's ctx is not carrying any pinned
3182 * events, no need to flip the cpuctx's events around.
329c0e01 3183 */
fe45bafb
AS
3184 if (!list_empty(&ctx->pinned_groups))
3185 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3186 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
3187 perf_pmu_enable(ctx->pmu);
3188 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3189}
3190
8dc85d54
PZ
3191/*
3192 * Called from scheduler to add the events of the current task
3193 * with interrupts disabled.
3194 *
3195 * We restore the event value and then enable it.
3196 *
3197 * This does not protect us against NMI, but enable()
3198 * sets the enabled bit in the control field of event _before_
3199 * accessing the event control register. If a NMI hits, then it will
3200 * keep the event running.
3201 */
ab0cce56
JO
3202void __perf_event_task_sched_in(struct task_struct *prev,
3203 struct task_struct *task)
8dc85d54
PZ
3204{
3205 struct perf_event_context *ctx;
3206 int ctxn;
3207
7e41d177
PZ
3208 /*
3209 * If cgroup events exist on this CPU, then we need to check if we have
3210 * to switch in PMU state; cgroup event are system-wide mode only.
3211 *
3212 * Since cgroup events are CPU events, we must schedule these in before
3213 * we schedule in the task events.
3214 */
3215 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3216 perf_cgroup_sched_in(prev, task);
3217
8dc85d54
PZ
3218 for_each_task_context_nr(ctxn) {
3219 ctx = task->perf_event_ctxp[ctxn];
3220 if (likely(!ctx))
3221 continue;
3222
e5d1367f 3223 perf_event_context_sched_in(ctx, task);
8dc85d54 3224 }
d010b332 3225
45ac1403
AH
3226 if (atomic_read(&nr_switch_events))
3227 perf_event_switch(task, prev, true);
3228
ba532500
YZ
3229 if (__this_cpu_read(perf_sched_cb_usages))
3230 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3231}
3232
abd50713
PZ
3233static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3234{
3235 u64 frequency = event->attr.sample_freq;
3236 u64 sec = NSEC_PER_SEC;
3237 u64 divisor, dividend;
3238
3239 int count_fls, nsec_fls, frequency_fls, sec_fls;
3240
3241 count_fls = fls64(count);
3242 nsec_fls = fls64(nsec);
3243 frequency_fls = fls64(frequency);
3244 sec_fls = 30;
3245
3246 /*
3247 * We got @count in @nsec, with a target of sample_freq HZ
3248 * the target period becomes:
3249 *
3250 * @count * 10^9
3251 * period = -------------------
3252 * @nsec * sample_freq
3253 *
3254 */
3255
3256 /*
3257 * Reduce accuracy by one bit such that @a and @b converge
3258 * to a similar magnitude.
3259 */
fe4b04fa 3260#define REDUCE_FLS(a, b) \
abd50713
PZ
3261do { \
3262 if (a##_fls > b##_fls) { \
3263 a >>= 1; \
3264 a##_fls--; \
3265 } else { \
3266 b >>= 1; \
3267 b##_fls--; \
3268 } \
3269} while (0)
3270
3271 /*
3272 * Reduce accuracy until either term fits in a u64, then proceed with
3273 * the other, so that finally we can do a u64/u64 division.
3274 */
3275 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3276 REDUCE_FLS(nsec, frequency);
3277 REDUCE_FLS(sec, count);
3278 }
3279
3280 if (count_fls + sec_fls > 64) {
3281 divisor = nsec * frequency;
3282
3283 while (count_fls + sec_fls > 64) {
3284 REDUCE_FLS(count, sec);
3285 divisor >>= 1;
3286 }
3287
3288 dividend = count * sec;
3289 } else {
3290 dividend = count * sec;
3291
3292 while (nsec_fls + frequency_fls > 64) {
3293 REDUCE_FLS(nsec, frequency);
3294 dividend >>= 1;
3295 }
3296
3297 divisor = nsec * frequency;
3298 }
3299
f6ab91ad
PZ
3300 if (!divisor)
3301 return dividend;
3302
abd50713
PZ
3303 return div64_u64(dividend, divisor);
3304}
3305
e050e3f0
SE
3306static DEFINE_PER_CPU(int, perf_throttled_count);
3307static DEFINE_PER_CPU(u64, perf_throttled_seq);
3308
f39d47ff 3309static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3310{
cdd6c482 3311 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3312 s64 period, sample_period;
bd2b5b12
PZ
3313 s64 delta;
3314
abd50713 3315 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3316
3317 delta = (s64)(period - hwc->sample_period);
3318 delta = (delta + 7) / 8; /* low pass filter */
3319
3320 sample_period = hwc->sample_period + delta;
3321
3322 if (!sample_period)
3323 sample_period = 1;
3324
bd2b5b12 3325 hwc->sample_period = sample_period;
abd50713 3326
e7850595 3327 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3328 if (disable)
3329 event->pmu->stop(event, PERF_EF_UPDATE);
3330
e7850595 3331 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3332
3333 if (disable)
3334 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3335 }
bd2b5b12
PZ
3336}
3337
e050e3f0
SE
3338/*
3339 * combine freq adjustment with unthrottling to avoid two passes over the
3340 * events. At the same time, make sure, having freq events does not change
3341 * the rate of unthrottling as that would introduce bias.
3342 */
3343static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3344 int needs_unthr)
60db5e09 3345{
cdd6c482
IM
3346 struct perf_event *event;
3347 struct hw_perf_event *hwc;
e050e3f0 3348 u64 now, period = TICK_NSEC;
abd50713 3349 s64 delta;
60db5e09 3350
e050e3f0
SE
3351 /*
3352 * only need to iterate over all events iff:
3353 * - context have events in frequency mode (needs freq adjust)
3354 * - there are events to unthrottle on this cpu
3355 */
3356 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3357 return;
3358
e050e3f0 3359 raw_spin_lock(&ctx->lock);
f39d47ff 3360 perf_pmu_disable(ctx->pmu);
e050e3f0 3361
03541f8b 3362 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3363 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3364 continue;
3365
5632ab12 3366 if (!event_filter_match(event))
5d27c23d
PZ
3367 continue;
3368
44377277
AS
3369 perf_pmu_disable(event->pmu);
3370
cdd6c482 3371 hwc = &event->hw;
6a24ed6c 3372
ae23bff1 3373 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3374 hwc->interrupts = 0;
cdd6c482 3375 perf_log_throttle(event, 1);
a4eaf7f1 3376 event->pmu->start(event, 0);
a78ac325
PZ
3377 }
3378
cdd6c482 3379 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3380 goto next;
60db5e09 3381
e050e3f0
SE
3382 /*
3383 * stop the event and update event->count
3384 */
3385 event->pmu->stop(event, PERF_EF_UPDATE);
3386
e7850595 3387 now = local64_read(&event->count);
abd50713
PZ
3388 delta = now - hwc->freq_count_stamp;
3389 hwc->freq_count_stamp = now;
60db5e09 3390
e050e3f0
SE
3391 /*
3392 * restart the event
3393 * reload only if value has changed
f39d47ff
SE
3394 * we have stopped the event so tell that
3395 * to perf_adjust_period() to avoid stopping it
3396 * twice.
e050e3f0 3397 */
abd50713 3398 if (delta > 0)
f39d47ff 3399 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3400
3401 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3402 next:
3403 perf_pmu_enable(event->pmu);
60db5e09 3404 }
e050e3f0 3405
f39d47ff 3406 perf_pmu_enable(ctx->pmu);
e050e3f0 3407 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3408}
3409
235c7fc7 3410/*
cdd6c482 3411 * Round-robin a context's events:
235c7fc7 3412 */
cdd6c482 3413static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3414{
dddd3379
TG
3415 /*
3416 * Rotate the first entry last of non-pinned groups. Rotation might be
3417 * disabled by the inheritance code.
3418 */
3419 if (!ctx->rotate_disable)
3420 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3421}
3422
9e630205 3423static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3424{
8dc85d54 3425 struct perf_event_context *ctx = NULL;
2fde4f94 3426 int rotate = 0;
7fc23a53 3427
b5ab4cd5 3428 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3429 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3430 rotate = 1;
3431 }
235c7fc7 3432
8dc85d54 3433 ctx = cpuctx->task_ctx;
b5ab4cd5 3434 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3435 if (ctx->nr_events != ctx->nr_active)
3436 rotate = 1;
3437 }
9717e6cd 3438
e050e3f0 3439 if (!rotate)
0f5a2601
PZ
3440 goto done;
3441
facc4307 3442 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3443 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3444
e050e3f0
SE
3445 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3446 if (ctx)
3447 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3448
e050e3f0
SE
3449 rotate_ctx(&cpuctx->ctx);
3450 if (ctx)
3451 rotate_ctx(ctx);
235c7fc7 3452
e050e3f0 3453 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3454
0f5a2601
PZ
3455 perf_pmu_enable(cpuctx->ctx.pmu);
3456 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3457done:
9e630205
SE
3458
3459 return rotate;
e9d2b064
PZ
3460}
3461
3462void perf_event_task_tick(void)
3463{
2fde4f94
MR
3464 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3465 struct perf_event_context *ctx, *tmp;
e050e3f0 3466 int throttled;
b5ab4cd5 3467
e9d2b064
PZ
3468 WARN_ON(!irqs_disabled());
3469
e050e3f0
SE
3470 __this_cpu_inc(perf_throttled_seq);
3471 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3472 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3473
2fde4f94 3474 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3475 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3476}
3477
889ff015
FW
3478static int event_enable_on_exec(struct perf_event *event,
3479 struct perf_event_context *ctx)
3480{
3481 if (!event->attr.enable_on_exec)
3482 return 0;
3483
3484 event->attr.enable_on_exec = 0;
3485 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3486 return 0;
3487
1d9b482e 3488 __perf_event_mark_enabled(event);
889ff015
FW
3489
3490 return 1;
3491}
3492
57e7986e 3493/*
cdd6c482 3494 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3495 * This expects task == current.
3496 */
c1274499 3497static void perf_event_enable_on_exec(int ctxn)
57e7986e 3498{
c1274499 3499 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3500 enum event_type_t event_type = 0;
3e349507 3501 struct perf_cpu_context *cpuctx;
cdd6c482 3502 struct perf_event *event;
57e7986e
PM
3503 unsigned long flags;
3504 int enabled = 0;
3505
3506 local_irq_save(flags);
c1274499 3507 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3508 if (!ctx || !ctx->nr_events)
57e7986e
PM
3509 goto out;
3510
3e349507
PZ
3511 cpuctx = __get_cpu_context(ctx);
3512 perf_ctx_lock(cpuctx, ctx);
7fce2509 3513 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3514 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3515 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3516 event_type |= get_event_type(event);
3517 }
57e7986e
PM
3518
3519 /*
3e349507 3520 * Unclone and reschedule this context if we enabled any event.
57e7986e 3521 */
3e349507 3522 if (enabled) {
211de6eb 3523 clone_ctx = unclone_ctx(ctx);
487f05e1 3524 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3525 } else {
3526 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3527 }
3528 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3529
9ed6060d 3530out:
57e7986e 3531 local_irq_restore(flags);
211de6eb
PZ
3532
3533 if (clone_ctx)
3534 put_ctx(clone_ctx);
57e7986e
PM
3535}
3536
0492d4c5
PZ
3537struct perf_read_data {
3538 struct perf_event *event;
3539 bool group;
7d88962e 3540 int ret;
0492d4c5
PZ
3541};
3542
451d24d1 3543static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3544{
d6a2f903
DCC
3545 u16 local_pkg, event_pkg;
3546
3547 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3548 int local_cpu = smp_processor_id();
3549
3550 event_pkg = topology_physical_package_id(event_cpu);
3551 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3552
3553 if (event_pkg == local_pkg)
3554 return local_cpu;
3555 }
3556
3557 return event_cpu;
3558}
3559
0793a61d 3560/*
cdd6c482 3561 * Cross CPU call to read the hardware event
0793a61d 3562 */
cdd6c482 3563static void __perf_event_read(void *info)
0793a61d 3564{
0492d4c5
PZ
3565 struct perf_read_data *data = info;
3566 struct perf_event *sub, *event = data->event;
cdd6c482 3567 struct perf_event_context *ctx = event->ctx;
108b02cf 3568 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3569 struct pmu *pmu = event->pmu;
621a01ea 3570
e1ac3614
PM
3571 /*
3572 * If this is a task context, we need to check whether it is
3573 * the current task context of this cpu. If not it has been
3574 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3575 * event->count would have been updated to a recent sample
3576 * when the event was scheduled out.
e1ac3614
PM
3577 */
3578 if (ctx->task && cpuctx->task_ctx != ctx)
3579 return;
3580
e625cce1 3581 raw_spin_lock(&ctx->lock);
e5d1367f 3582 if (ctx->is_active) {
542e72fc 3583 update_context_time(ctx);
e5d1367f
SE
3584 update_cgrp_time_from_event(event);
3585 }
0492d4c5 3586
cdd6c482 3587 update_event_times(event);
4a00c16e
SB
3588 if (event->state != PERF_EVENT_STATE_ACTIVE)
3589 goto unlock;
0492d4c5 3590
4a00c16e
SB
3591 if (!data->group) {
3592 pmu->read(event);
3593 data->ret = 0;
0492d4c5 3594 goto unlock;
4a00c16e
SB
3595 }
3596
3597 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3598
3599 pmu->read(event);
0492d4c5
PZ
3600
3601 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3602 update_event_times(sub);
4a00c16e
SB
3603 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3604 /*
3605 * Use sibling's PMU rather than @event's since
3606 * sibling could be on different (eg: software) PMU.
3607 */
0492d4c5 3608 sub->pmu->read(sub);
4a00c16e 3609 }
0492d4c5 3610 }
4a00c16e
SB
3611
3612 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3613
3614unlock:
e625cce1 3615 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3616}
3617
b5e58793
PZ
3618static inline u64 perf_event_count(struct perf_event *event)
3619{
eacd3ecc
MF
3620 if (event->pmu->count)
3621 return event->pmu->count(event);
3622
3623 return __perf_event_count(event);
b5e58793
PZ
3624}
3625
ffe8690c
KX
3626/*
3627 * NMI-safe method to read a local event, that is an event that
3628 * is:
3629 * - either for the current task, or for this CPU
3630 * - does not have inherit set, for inherited task events
3631 * will not be local and we cannot read them atomically
3632 * - must not have a pmu::count method
3633 */
3634u64 perf_event_read_local(struct perf_event *event)
3635{
3636 unsigned long flags;
3637 u64 val;
3638
3639 /*
3640 * Disabling interrupts avoids all counter scheduling (context
3641 * switches, timer based rotation and IPIs).
3642 */
3643 local_irq_save(flags);
3644
3645 /* If this is a per-task event, it must be for current */
3646 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3647 event->hw.target != current);
3648
3649 /* If this is a per-CPU event, it must be for this CPU */
3650 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3651 event->cpu != smp_processor_id());
3652
3653 /*
3654 * It must not be an event with inherit set, we cannot read
3655 * all child counters from atomic context.
3656 */
3657 WARN_ON_ONCE(event->attr.inherit);
3658
3659 /*
3660 * It must not have a pmu::count method, those are not
3661 * NMI safe.
3662 */
3663 WARN_ON_ONCE(event->pmu->count);
3664
3665 /*
3666 * If the event is currently on this CPU, its either a per-task event,
3667 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3668 * oncpu == -1).
3669 */
3670 if (event->oncpu == smp_processor_id())
3671 event->pmu->read(event);
3672
3673 val = local64_read(&event->count);
3674 local_irq_restore(flags);
3675
3676 return val;
3677}
3678
7d88962e 3679static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3680{
451d24d1 3681 int event_cpu, ret = 0;
7d88962e 3682
0793a61d 3683 /*
cdd6c482
IM
3684 * If event is enabled and currently active on a CPU, update the
3685 * value in the event structure:
0793a61d 3686 */
cdd6c482 3687 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3688 struct perf_read_data data = {
3689 .event = event,
3690 .group = group,
7d88962e 3691 .ret = 0,
0492d4c5 3692 };
d6a2f903 3693
451d24d1
PZ
3694 event_cpu = READ_ONCE(event->oncpu);
3695 if ((unsigned)event_cpu >= nr_cpu_ids)
3696 return 0;
3697
3698 preempt_disable();
3699 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3700
58763148
PZ
3701 /*
3702 * Purposely ignore the smp_call_function_single() return
3703 * value.
3704 *
451d24d1 3705 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3706 * scheduled out and that will have updated the event count.
3707 *
3708 * Therefore, either way, we'll have an up-to-date event count
3709 * after this.
3710 */
451d24d1
PZ
3711 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3712 preempt_enable();
58763148 3713 ret = data.ret;
cdd6c482 3714 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3715 struct perf_event_context *ctx = event->ctx;
3716 unsigned long flags;
3717
e625cce1 3718 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3719 /*
3720 * may read while context is not active
3721 * (e.g., thread is blocked), in that case
3722 * we cannot update context time
3723 */
e5d1367f 3724 if (ctx->is_active) {
c530ccd9 3725 update_context_time(ctx);
e5d1367f
SE
3726 update_cgrp_time_from_event(event);
3727 }
0492d4c5
PZ
3728 if (group)
3729 update_group_times(event);
3730 else
3731 update_event_times(event);
e625cce1 3732 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3733 }
7d88962e
SB
3734
3735 return ret;
0793a61d
TG
3736}
3737
a63eaf34 3738/*
cdd6c482 3739 * Initialize the perf_event context in a task_struct:
a63eaf34 3740 */
eb184479 3741static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3742{
e625cce1 3743 raw_spin_lock_init(&ctx->lock);
a63eaf34 3744 mutex_init(&ctx->mutex);
2fde4f94 3745 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3746 INIT_LIST_HEAD(&ctx->pinned_groups);
3747 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3748 INIT_LIST_HEAD(&ctx->event_list);
3749 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3750}
3751
3752static struct perf_event_context *
3753alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3754{
3755 struct perf_event_context *ctx;
3756
3757 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3758 if (!ctx)
3759 return NULL;
3760
3761 __perf_event_init_context(ctx);
3762 if (task) {
3763 ctx->task = task;
3764 get_task_struct(task);
0793a61d 3765 }
eb184479
PZ
3766 ctx->pmu = pmu;
3767
3768 return ctx;
a63eaf34
PM
3769}
3770
2ebd4ffb
MH
3771static struct task_struct *
3772find_lively_task_by_vpid(pid_t vpid)
3773{
3774 struct task_struct *task;
0793a61d
TG
3775
3776 rcu_read_lock();
2ebd4ffb 3777 if (!vpid)
0793a61d
TG
3778 task = current;
3779 else
2ebd4ffb 3780 task = find_task_by_vpid(vpid);
0793a61d
TG
3781 if (task)
3782 get_task_struct(task);
3783 rcu_read_unlock();
3784
3785 if (!task)
3786 return ERR_PTR(-ESRCH);
3787
2ebd4ffb 3788 return task;
2ebd4ffb
MH
3789}
3790
fe4b04fa
PZ
3791/*
3792 * Returns a matching context with refcount and pincount.
3793 */
108b02cf 3794static struct perf_event_context *
4af57ef2
YZ
3795find_get_context(struct pmu *pmu, struct task_struct *task,
3796 struct perf_event *event)
0793a61d 3797{
211de6eb 3798 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3799 struct perf_cpu_context *cpuctx;
4af57ef2 3800 void *task_ctx_data = NULL;
25346b93 3801 unsigned long flags;
8dc85d54 3802 int ctxn, err;
4af57ef2 3803 int cpu = event->cpu;
0793a61d 3804
22a4ec72 3805 if (!task) {
cdd6c482 3806 /* Must be root to operate on a CPU event: */
0764771d 3807 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3808 return ERR_PTR(-EACCES);
3809
0793a61d 3810 /*
cdd6c482 3811 * We could be clever and allow to attach a event to an
0793a61d
TG
3812 * offline CPU and activate it when the CPU comes up, but
3813 * that's for later.
3814 */
f6325e30 3815 if (!cpu_online(cpu))
0793a61d
TG
3816 return ERR_PTR(-ENODEV);
3817
108b02cf 3818 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3819 ctx = &cpuctx->ctx;
c93f7669 3820 get_ctx(ctx);
fe4b04fa 3821 ++ctx->pin_count;
0793a61d 3822
0793a61d
TG
3823 return ctx;
3824 }
3825
8dc85d54
PZ
3826 err = -EINVAL;
3827 ctxn = pmu->task_ctx_nr;
3828 if (ctxn < 0)
3829 goto errout;
3830
4af57ef2
YZ
3831 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3832 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3833 if (!task_ctx_data) {
3834 err = -ENOMEM;
3835 goto errout;
3836 }
3837 }
3838
9ed6060d 3839retry:
8dc85d54 3840 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3841 if (ctx) {
211de6eb 3842 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3843 ++ctx->pin_count;
4af57ef2
YZ
3844
3845 if (task_ctx_data && !ctx->task_ctx_data) {
3846 ctx->task_ctx_data = task_ctx_data;
3847 task_ctx_data = NULL;
3848 }
e625cce1 3849 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3850
3851 if (clone_ctx)
3852 put_ctx(clone_ctx);
9137fb28 3853 } else {
eb184479 3854 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3855 err = -ENOMEM;
3856 if (!ctx)
3857 goto errout;
eb184479 3858
4af57ef2
YZ
3859 if (task_ctx_data) {
3860 ctx->task_ctx_data = task_ctx_data;
3861 task_ctx_data = NULL;
3862 }
3863
dbe08d82
ON
3864 err = 0;
3865 mutex_lock(&task->perf_event_mutex);
3866 /*
3867 * If it has already passed perf_event_exit_task().
3868 * we must see PF_EXITING, it takes this mutex too.
3869 */
3870 if (task->flags & PF_EXITING)
3871 err = -ESRCH;
3872 else if (task->perf_event_ctxp[ctxn])
3873 err = -EAGAIN;
fe4b04fa 3874 else {
9137fb28 3875 get_ctx(ctx);
fe4b04fa 3876 ++ctx->pin_count;
dbe08d82 3877 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3878 }
dbe08d82
ON
3879 mutex_unlock(&task->perf_event_mutex);
3880
3881 if (unlikely(err)) {
9137fb28 3882 put_ctx(ctx);
dbe08d82
ON
3883
3884 if (err == -EAGAIN)
3885 goto retry;
3886 goto errout;
a63eaf34
PM
3887 }
3888 }
3889
4af57ef2 3890 kfree(task_ctx_data);
0793a61d 3891 return ctx;
c93f7669 3892
9ed6060d 3893errout:
4af57ef2 3894 kfree(task_ctx_data);
c93f7669 3895 return ERR_PTR(err);
0793a61d
TG
3896}
3897
6fb2915d 3898static void perf_event_free_filter(struct perf_event *event);
2541517c 3899static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3900
cdd6c482 3901static void free_event_rcu(struct rcu_head *head)
592903cd 3902{
cdd6c482 3903 struct perf_event *event;
592903cd 3904
cdd6c482
IM
3905 event = container_of(head, struct perf_event, rcu_head);
3906 if (event->ns)
3907 put_pid_ns(event->ns);
6fb2915d 3908 perf_event_free_filter(event);
cdd6c482 3909 kfree(event);
592903cd
PZ
3910}
3911
b69cf536
PZ
3912static void ring_buffer_attach(struct perf_event *event,
3913 struct ring_buffer *rb);
925d519a 3914
f2fb6bef
KL
3915static void detach_sb_event(struct perf_event *event)
3916{
3917 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3918
3919 raw_spin_lock(&pel->lock);
3920 list_del_rcu(&event->sb_list);
3921 raw_spin_unlock(&pel->lock);
3922}
3923
a4f144eb 3924static bool is_sb_event(struct perf_event *event)
f2fb6bef 3925{
a4f144eb
DCC
3926 struct perf_event_attr *attr = &event->attr;
3927
f2fb6bef 3928 if (event->parent)
a4f144eb 3929 return false;
f2fb6bef
KL
3930
3931 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3932 return false;
f2fb6bef 3933
a4f144eb
DCC
3934 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3935 attr->comm || attr->comm_exec ||
3936 attr->task ||
3937 attr->context_switch)
3938 return true;
3939 return false;
3940}
3941
3942static void unaccount_pmu_sb_event(struct perf_event *event)
3943{
3944 if (is_sb_event(event))
3945 detach_sb_event(event);
f2fb6bef
KL
3946}
3947
4beb31f3 3948static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3949{
4beb31f3
FW
3950 if (event->parent)
3951 return;
3952
4beb31f3
FW
3953 if (is_cgroup_event(event))
3954 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3955}
925d519a 3956
555e0c1e
FW
3957#ifdef CONFIG_NO_HZ_FULL
3958static DEFINE_SPINLOCK(nr_freq_lock);
3959#endif
3960
3961static void unaccount_freq_event_nohz(void)
3962{
3963#ifdef CONFIG_NO_HZ_FULL
3964 spin_lock(&nr_freq_lock);
3965 if (atomic_dec_and_test(&nr_freq_events))
3966 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3967 spin_unlock(&nr_freq_lock);
3968#endif
3969}
3970
3971static void unaccount_freq_event(void)
3972{
3973 if (tick_nohz_full_enabled())
3974 unaccount_freq_event_nohz();
3975 else
3976 atomic_dec(&nr_freq_events);
3977}
3978
4beb31f3
FW
3979static void unaccount_event(struct perf_event *event)
3980{
25432ae9
PZ
3981 bool dec = false;
3982
4beb31f3
FW
3983 if (event->parent)
3984 return;
3985
3986 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3987 dec = true;
4beb31f3
FW
3988 if (event->attr.mmap || event->attr.mmap_data)
3989 atomic_dec(&nr_mmap_events);
3990 if (event->attr.comm)
3991 atomic_dec(&nr_comm_events);
3992 if (event->attr.task)
3993 atomic_dec(&nr_task_events);
948b26b6 3994 if (event->attr.freq)
555e0c1e 3995 unaccount_freq_event();
45ac1403 3996 if (event->attr.context_switch) {
25432ae9 3997 dec = true;
45ac1403
AH
3998 atomic_dec(&nr_switch_events);
3999 }
4beb31f3 4000 if (is_cgroup_event(event))
25432ae9 4001 dec = true;
4beb31f3 4002 if (has_branch_stack(event))
25432ae9
PZ
4003 dec = true;
4004
9107c89e
PZ
4005 if (dec) {
4006 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4007 schedule_delayed_work(&perf_sched_work, HZ);
4008 }
4beb31f3
FW
4009
4010 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4011
4012 unaccount_pmu_sb_event(event);
4beb31f3 4013}
925d519a 4014
9107c89e
PZ
4015static void perf_sched_delayed(struct work_struct *work)
4016{
4017 mutex_lock(&perf_sched_mutex);
4018 if (atomic_dec_and_test(&perf_sched_count))
4019 static_branch_disable(&perf_sched_events);
4020 mutex_unlock(&perf_sched_mutex);
4021}
4022
bed5b25a
AS
4023/*
4024 * The following implement mutual exclusion of events on "exclusive" pmus
4025 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4026 * at a time, so we disallow creating events that might conflict, namely:
4027 *
4028 * 1) cpu-wide events in the presence of per-task events,
4029 * 2) per-task events in the presence of cpu-wide events,
4030 * 3) two matching events on the same context.
4031 *
4032 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4033 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4034 */
4035static int exclusive_event_init(struct perf_event *event)
4036{
4037 struct pmu *pmu = event->pmu;
4038
4039 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4040 return 0;
4041
4042 /*
4043 * Prevent co-existence of per-task and cpu-wide events on the
4044 * same exclusive pmu.
4045 *
4046 * Negative pmu::exclusive_cnt means there are cpu-wide
4047 * events on this "exclusive" pmu, positive means there are
4048 * per-task events.
4049 *
4050 * Since this is called in perf_event_alloc() path, event::ctx
4051 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4052 * to mean "per-task event", because unlike other attach states it
4053 * never gets cleared.
4054 */
4055 if (event->attach_state & PERF_ATTACH_TASK) {
4056 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4057 return -EBUSY;
4058 } else {
4059 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4060 return -EBUSY;
4061 }
4062
4063 return 0;
4064}
4065
4066static void exclusive_event_destroy(struct perf_event *event)
4067{
4068 struct pmu *pmu = event->pmu;
4069
4070 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4071 return;
4072
4073 /* see comment in exclusive_event_init() */
4074 if (event->attach_state & PERF_ATTACH_TASK)
4075 atomic_dec(&pmu->exclusive_cnt);
4076 else
4077 atomic_inc(&pmu->exclusive_cnt);
4078}
4079
4080static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4081{
3bf6215a 4082 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4083 (e1->cpu == e2->cpu ||
4084 e1->cpu == -1 ||
4085 e2->cpu == -1))
4086 return true;
4087 return false;
4088}
4089
4090/* Called under the same ctx::mutex as perf_install_in_context() */
4091static bool exclusive_event_installable(struct perf_event *event,
4092 struct perf_event_context *ctx)
4093{
4094 struct perf_event *iter_event;
4095 struct pmu *pmu = event->pmu;
4096
4097 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4098 return true;
4099
4100 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4101 if (exclusive_event_match(iter_event, event))
4102 return false;
4103 }
4104
4105 return true;
4106}
4107
375637bc
AS
4108static void perf_addr_filters_splice(struct perf_event *event,
4109 struct list_head *head);
4110
683ede43 4111static void _free_event(struct perf_event *event)
f1600952 4112{
e360adbe 4113 irq_work_sync(&event->pending);
925d519a 4114
4beb31f3 4115 unaccount_event(event);
9ee318a7 4116
76369139 4117 if (event->rb) {
9bb5d40c
PZ
4118 /*
4119 * Can happen when we close an event with re-directed output.
4120 *
4121 * Since we have a 0 refcount, perf_mmap_close() will skip
4122 * over us; possibly making our ring_buffer_put() the last.
4123 */
4124 mutex_lock(&event->mmap_mutex);
b69cf536 4125 ring_buffer_attach(event, NULL);
9bb5d40c 4126 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4127 }
4128
e5d1367f
SE
4129 if (is_cgroup_event(event))
4130 perf_detach_cgroup(event);
4131
a0733e69
PZ
4132 if (!event->parent) {
4133 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4134 put_callchain_buffers();
4135 }
4136
4137 perf_event_free_bpf_prog(event);
375637bc
AS
4138 perf_addr_filters_splice(event, NULL);
4139 kfree(event->addr_filters_offs);
a0733e69
PZ
4140
4141 if (event->destroy)
4142 event->destroy(event);
4143
4144 if (event->ctx)
4145 put_ctx(event->ctx);
4146
62a92c8f
AS
4147 exclusive_event_destroy(event);
4148 module_put(event->pmu->module);
a0733e69
PZ
4149
4150 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4151}
4152
683ede43
PZ
4153/*
4154 * Used to free events which have a known refcount of 1, such as in error paths
4155 * where the event isn't exposed yet and inherited events.
4156 */
4157static void free_event(struct perf_event *event)
0793a61d 4158{
683ede43
PZ
4159 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4160 "unexpected event refcount: %ld; ptr=%p\n",
4161 atomic_long_read(&event->refcount), event)) {
4162 /* leak to avoid use-after-free */
4163 return;
4164 }
0793a61d 4165
683ede43 4166 _free_event(event);
0793a61d
TG
4167}
4168
a66a3052 4169/*
f8697762 4170 * Remove user event from the owner task.
a66a3052 4171 */
f8697762 4172static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4173{
8882135b 4174 struct task_struct *owner;
fb0459d7 4175
8882135b 4176 rcu_read_lock();
8882135b 4177 /*
f47c02c0
PZ
4178 * Matches the smp_store_release() in perf_event_exit_task(). If we
4179 * observe !owner it means the list deletion is complete and we can
4180 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4181 * owner->perf_event_mutex.
4182 */
f47c02c0 4183 owner = lockless_dereference(event->owner);
8882135b
PZ
4184 if (owner) {
4185 /*
4186 * Since delayed_put_task_struct() also drops the last
4187 * task reference we can safely take a new reference
4188 * while holding the rcu_read_lock().
4189 */
4190 get_task_struct(owner);
4191 }
4192 rcu_read_unlock();
4193
4194 if (owner) {
f63a8daa
PZ
4195 /*
4196 * If we're here through perf_event_exit_task() we're already
4197 * holding ctx->mutex which would be an inversion wrt. the
4198 * normal lock order.
4199 *
4200 * However we can safely take this lock because its the child
4201 * ctx->mutex.
4202 */
4203 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4204
8882135b
PZ
4205 /*
4206 * We have to re-check the event->owner field, if it is cleared
4207 * we raced with perf_event_exit_task(), acquiring the mutex
4208 * ensured they're done, and we can proceed with freeing the
4209 * event.
4210 */
f47c02c0 4211 if (event->owner) {
8882135b 4212 list_del_init(&event->owner_entry);
f47c02c0
PZ
4213 smp_store_release(&event->owner, NULL);
4214 }
8882135b
PZ
4215 mutex_unlock(&owner->perf_event_mutex);
4216 put_task_struct(owner);
4217 }
f8697762
JO
4218}
4219
f8697762
JO
4220static void put_event(struct perf_event *event)
4221{
f8697762
JO
4222 if (!atomic_long_dec_and_test(&event->refcount))
4223 return;
4224
c6e5b732
PZ
4225 _free_event(event);
4226}
4227
4228/*
4229 * Kill an event dead; while event:refcount will preserve the event
4230 * object, it will not preserve its functionality. Once the last 'user'
4231 * gives up the object, we'll destroy the thing.
4232 */
4233int perf_event_release_kernel(struct perf_event *event)
4234{
a4f4bb6d 4235 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4236 struct perf_event *child, *tmp;
4237
a4f4bb6d
PZ
4238 /*
4239 * If we got here through err_file: fput(event_file); we will not have
4240 * attached to a context yet.
4241 */
4242 if (!ctx) {
4243 WARN_ON_ONCE(event->attach_state &
4244 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4245 goto no_ctx;
4246 }
4247
f8697762
JO
4248 if (!is_kernel_event(event))
4249 perf_remove_from_owner(event);
8882135b 4250
5fa7c8ec 4251 ctx = perf_event_ctx_lock(event);
a83fe28e 4252 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4253 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4254
a69b0ca4 4255 raw_spin_lock_irq(&ctx->lock);
683ede43 4256 /*
a69b0ca4
PZ
4257 * Mark this even as STATE_DEAD, there is no external reference to it
4258 * anymore.
683ede43 4259 *
a69b0ca4
PZ
4260 * Anybody acquiring event->child_mutex after the below loop _must_
4261 * also see this, most importantly inherit_event() which will avoid
4262 * placing more children on the list.
683ede43 4263 *
c6e5b732
PZ
4264 * Thus this guarantees that we will in fact observe and kill _ALL_
4265 * child events.
683ede43 4266 */
a69b0ca4
PZ
4267 event->state = PERF_EVENT_STATE_DEAD;
4268 raw_spin_unlock_irq(&ctx->lock);
4269
4270 perf_event_ctx_unlock(event, ctx);
683ede43 4271
c6e5b732
PZ
4272again:
4273 mutex_lock(&event->child_mutex);
4274 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4275
c6e5b732
PZ
4276 /*
4277 * Cannot change, child events are not migrated, see the
4278 * comment with perf_event_ctx_lock_nested().
4279 */
4280 ctx = lockless_dereference(child->ctx);
4281 /*
4282 * Since child_mutex nests inside ctx::mutex, we must jump
4283 * through hoops. We start by grabbing a reference on the ctx.
4284 *
4285 * Since the event cannot get freed while we hold the
4286 * child_mutex, the context must also exist and have a !0
4287 * reference count.
4288 */
4289 get_ctx(ctx);
4290
4291 /*
4292 * Now that we have a ctx ref, we can drop child_mutex, and
4293 * acquire ctx::mutex without fear of it going away. Then we
4294 * can re-acquire child_mutex.
4295 */
4296 mutex_unlock(&event->child_mutex);
4297 mutex_lock(&ctx->mutex);
4298 mutex_lock(&event->child_mutex);
4299
4300 /*
4301 * Now that we hold ctx::mutex and child_mutex, revalidate our
4302 * state, if child is still the first entry, it didn't get freed
4303 * and we can continue doing so.
4304 */
4305 tmp = list_first_entry_or_null(&event->child_list,
4306 struct perf_event, child_list);
4307 if (tmp == child) {
4308 perf_remove_from_context(child, DETACH_GROUP);
4309 list_del(&child->child_list);
4310 free_event(child);
4311 /*
4312 * This matches the refcount bump in inherit_event();
4313 * this can't be the last reference.
4314 */
4315 put_event(event);
4316 }
4317
4318 mutex_unlock(&event->child_mutex);
4319 mutex_unlock(&ctx->mutex);
4320 put_ctx(ctx);
4321 goto again;
4322 }
4323 mutex_unlock(&event->child_mutex);
4324
a4f4bb6d
PZ
4325no_ctx:
4326 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4327 return 0;
4328}
4329EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4330
8b10c5e2
PZ
4331/*
4332 * Called when the last reference to the file is gone.
4333 */
a6fa941d
AV
4334static int perf_release(struct inode *inode, struct file *file)
4335{
c6e5b732 4336 perf_event_release_kernel(file->private_data);
a6fa941d 4337 return 0;
fb0459d7 4338}
fb0459d7 4339
59ed446f 4340u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4341{
cdd6c482 4342 struct perf_event *child;
e53c0994
PZ
4343 u64 total = 0;
4344
59ed446f
PZ
4345 *enabled = 0;
4346 *running = 0;
4347
6f10581a 4348 mutex_lock(&event->child_mutex);
01add3ea 4349
7d88962e 4350 (void)perf_event_read(event, false);
01add3ea
SB
4351 total += perf_event_count(event);
4352
59ed446f
PZ
4353 *enabled += event->total_time_enabled +
4354 atomic64_read(&event->child_total_time_enabled);
4355 *running += event->total_time_running +
4356 atomic64_read(&event->child_total_time_running);
4357
4358 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4359 (void)perf_event_read(child, false);
01add3ea 4360 total += perf_event_count(child);
59ed446f
PZ
4361 *enabled += child->total_time_enabled;
4362 *running += child->total_time_running;
4363 }
6f10581a 4364 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4365
4366 return total;
4367}
fb0459d7 4368EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4369
7d88962e 4370static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4371 u64 read_format, u64 *values)
3dab77fb 4372{
fa8c2693
PZ
4373 struct perf_event *sub;
4374 int n = 1; /* skip @nr */
7d88962e 4375 int ret;
f63a8daa 4376
7d88962e
SB
4377 ret = perf_event_read(leader, true);
4378 if (ret)
4379 return ret;
abf4868b 4380
fa8c2693
PZ
4381 /*
4382 * Since we co-schedule groups, {enabled,running} times of siblings
4383 * will be identical to those of the leader, so we only publish one
4384 * set.
4385 */
4386 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4387 values[n++] += leader->total_time_enabled +
4388 atomic64_read(&leader->child_total_time_enabled);
4389 }
3dab77fb 4390
fa8c2693
PZ
4391 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4392 values[n++] += leader->total_time_running +
4393 atomic64_read(&leader->child_total_time_running);
4394 }
4395
4396 /*
4397 * Write {count,id} tuples for every sibling.
4398 */
4399 values[n++] += perf_event_count(leader);
abf4868b
PZ
4400 if (read_format & PERF_FORMAT_ID)
4401 values[n++] = primary_event_id(leader);
3dab77fb 4402
fa8c2693
PZ
4403 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4404 values[n++] += perf_event_count(sub);
4405 if (read_format & PERF_FORMAT_ID)
4406 values[n++] = primary_event_id(sub);
4407 }
7d88962e
SB
4408
4409 return 0;
fa8c2693 4410}
3dab77fb 4411
fa8c2693
PZ
4412static int perf_read_group(struct perf_event *event,
4413 u64 read_format, char __user *buf)
4414{
4415 struct perf_event *leader = event->group_leader, *child;
4416 struct perf_event_context *ctx = leader->ctx;
7d88962e 4417 int ret;
fa8c2693 4418 u64 *values;
3dab77fb 4419
fa8c2693 4420 lockdep_assert_held(&ctx->mutex);
3dab77fb 4421
fa8c2693
PZ
4422 values = kzalloc(event->read_size, GFP_KERNEL);
4423 if (!values)
4424 return -ENOMEM;
3dab77fb 4425
fa8c2693
PZ
4426 values[0] = 1 + leader->nr_siblings;
4427
4428 /*
4429 * By locking the child_mutex of the leader we effectively
4430 * lock the child list of all siblings.. XXX explain how.
4431 */
4432 mutex_lock(&leader->child_mutex);
abf4868b 4433
7d88962e
SB
4434 ret = __perf_read_group_add(leader, read_format, values);
4435 if (ret)
4436 goto unlock;
4437
4438 list_for_each_entry(child, &leader->child_list, child_list) {
4439 ret = __perf_read_group_add(child, read_format, values);
4440 if (ret)
4441 goto unlock;
4442 }
abf4868b 4443
fa8c2693 4444 mutex_unlock(&leader->child_mutex);
abf4868b 4445
7d88962e 4446 ret = event->read_size;
fa8c2693
PZ
4447 if (copy_to_user(buf, values, event->read_size))
4448 ret = -EFAULT;
7d88962e 4449 goto out;
fa8c2693 4450
7d88962e
SB
4451unlock:
4452 mutex_unlock(&leader->child_mutex);
4453out:
fa8c2693 4454 kfree(values);
abf4868b 4455 return ret;
3dab77fb
PZ
4456}
4457
b15f495b 4458static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4459 u64 read_format, char __user *buf)
4460{
59ed446f 4461 u64 enabled, running;
3dab77fb
PZ
4462 u64 values[4];
4463 int n = 0;
4464
59ed446f
PZ
4465 values[n++] = perf_event_read_value(event, &enabled, &running);
4466 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4467 values[n++] = enabled;
4468 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4469 values[n++] = running;
3dab77fb 4470 if (read_format & PERF_FORMAT_ID)
cdd6c482 4471 values[n++] = primary_event_id(event);
3dab77fb
PZ
4472
4473 if (copy_to_user(buf, values, n * sizeof(u64)))
4474 return -EFAULT;
4475
4476 return n * sizeof(u64);
4477}
4478
dc633982
JO
4479static bool is_event_hup(struct perf_event *event)
4480{
4481 bool no_children;
4482
a69b0ca4 4483 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4484 return false;
4485
4486 mutex_lock(&event->child_mutex);
4487 no_children = list_empty(&event->child_list);
4488 mutex_unlock(&event->child_mutex);
4489 return no_children;
4490}
4491
0793a61d 4492/*
cdd6c482 4493 * Read the performance event - simple non blocking version for now
0793a61d
TG
4494 */
4495static ssize_t
b15f495b 4496__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4497{
cdd6c482 4498 u64 read_format = event->attr.read_format;
3dab77fb 4499 int ret;
0793a61d 4500
3b6f9e5c 4501 /*
cdd6c482 4502 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4503 * error state (i.e. because it was pinned but it couldn't be
4504 * scheduled on to the CPU at some point).
4505 */
cdd6c482 4506 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4507 return 0;
4508
c320c7b7 4509 if (count < event->read_size)
3dab77fb
PZ
4510 return -ENOSPC;
4511
cdd6c482 4512 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4513 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4514 ret = perf_read_group(event, read_format, buf);
3dab77fb 4515 else
b15f495b 4516 ret = perf_read_one(event, read_format, buf);
0793a61d 4517
3dab77fb 4518 return ret;
0793a61d
TG
4519}
4520
0793a61d
TG
4521static ssize_t
4522perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4523{
cdd6c482 4524 struct perf_event *event = file->private_data;
f63a8daa
PZ
4525 struct perf_event_context *ctx;
4526 int ret;
0793a61d 4527
f63a8daa 4528 ctx = perf_event_ctx_lock(event);
b15f495b 4529 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4530 perf_event_ctx_unlock(event, ctx);
4531
4532 return ret;
0793a61d
TG
4533}
4534
4535static unsigned int perf_poll(struct file *file, poll_table *wait)
4536{
cdd6c482 4537 struct perf_event *event = file->private_data;
76369139 4538 struct ring_buffer *rb;
61b67684 4539 unsigned int events = POLLHUP;
c7138f37 4540
e708d7ad 4541 poll_wait(file, &event->waitq, wait);
179033b3 4542
dc633982 4543 if (is_event_hup(event))
179033b3 4544 return events;
c7138f37 4545
10c6db11 4546 /*
9bb5d40c
PZ
4547 * Pin the event->rb by taking event->mmap_mutex; otherwise
4548 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4549 */
4550 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4551 rb = event->rb;
4552 if (rb)
76369139 4553 events = atomic_xchg(&rb->poll, 0);
10c6db11 4554 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4555 return events;
4556}
4557
f63a8daa 4558static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4559{
7d88962e 4560 (void)perf_event_read(event, false);
e7850595 4561 local64_set(&event->count, 0);
cdd6c482 4562 perf_event_update_userpage(event);
3df5edad
PZ
4563}
4564
c93f7669 4565/*
cdd6c482
IM
4566 * Holding the top-level event's child_mutex means that any
4567 * descendant process that has inherited this event will block
8ba289b8 4568 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4569 * task existence requirements of perf_event_enable/disable.
c93f7669 4570 */
cdd6c482
IM
4571static void perf_event_for_each_child(struct perf_event *event,
4572 void (*func)(struct perf_event *))
3df5edad 4573{
cdd6c482 4574 struct perf_event *child;
3df5edad 4575
cdd6c482 4576 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4577
cdd6c482
IM
4578 mutex_lock(&event->child_mutex);
4579 func(event);
4580 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4581 func(child);
cdd6c482 4582 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4583}
4584
cdd6c482
IM
4585static void perf_event_for_each(struct perf_event *event,
4586 void (*func)(struct perf_event *))
3df5edad 4587{
cdd6c482
IM
4588 struct perf_event_context *ctx = event->ctx;
4589 struct perf_event *sibling;
3df5edad 4590
f63a8daa
PZ
4591 lockdep_assert_held(&ctx->mutex);
4592
cdd6c482 4593 event = event->group_leader;
75f937f2 4594
cdd6c482 4595 perf_event_for_each_child(event, func);
cdd6c482 4596 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4597 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4598}
4599
fae3fde6
PZ
4600static void __perf_event_period(struct perf_event *event,
4601 struct perf_cpu_context *cpuctx,
4602 struct perf_event_context *ctx,
4603 void *info)
c7999c6f 4604{
fae3fde6 4605 u64 value = *((u64 *)info);
c7999c6f 4606 bool active;
08247e31 4607
cdd6c482 4608 if (event->attr.freq) {
cdd6c482 4609 event->attr.sample_freq = value;
08247e31 4610 } else {
cdd6c482
IM
4611 event->attr.sample_period = value;
4612 event->hw.sample_period = value;
08247e31 4613 }
bad7192b
PZ
4614
4615 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4616 if (active) {
4617 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4618 /*
4619 * We could be throttled; unthrottle now to avoid the tick
4620 * trying to unthrottle while we already re-started the event.
4621 */
4622 if (event->hw.interrupts == MAX_INTERRUPTS) {
4623 event->hw.interrupts = 0;
4624 perf_log_throttle(event, 1);
4625 }
bad7192b
PZ
4626 event->pmu->stop(event, PERF_EF_UPDATE);
4627 }
4628
4629 local64_set(&event->hw.period_left, 0);
4630
4631 if (active) {
4632 event->pmu->start(event, PERF_EF_RELOAD);
4633 perf_pmu_enable(ctx->pmu);
4634 }
c7999c6f
PZ
4635}
4636
4637static int perf_event_period(struct perf_event *event, u64 __user *arg)
4638{
c7999c6f
PZ
4639 u64 value;
4640
4641 if (!is_sampling_event(event))
4642 return -EINVAL;
4643
4644 if (copy_from_user(&value, arg, sizeof(value)))
4645 return -EFAULT;
4646
4647 if (!value)
4648 return -EINVAL;
4649
4650 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4651 return -EINVAL;
4652
fae3fde6 4653 event_function_call(event, __perf_event_period, &value);
08247e31 4654
c7999c6f 4655 return 0;
08247e31
PZ
4656}
4657
ac9721f3
PZ
4658static const struct file_operations perf_fops;
4659
2903ff01 4660static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4661{
2903ff01
AV
4662 struct fd f = fdget(fd);
4663 if (!f.file)
4664 return -EBADF;
ac9721f3 4665
2903ff01
AV
4666 if (f.file->f_op != &perf_fops) {
4667 fdput(f);
4668 return -EBADF;
ac9721f3 4669 }
2903ff01
AV
4670 *p = f;
4671 return 0;
ac9721f3
PZ
4672}
4673
4674static int perf_event_set_output(struct perf_event *event,
4675 struct perf_event *output_event);
6fb2915d 4676static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4677static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4678
f63a8daa 4679static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4680{
cdd6c482 4681 void (*func)(struct perf_event *);
3df5edad 4682 u32 flags = arg;
d859e29f
PM
4683
4684 switch (cmd) {
cdd6c482 4685 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4686 func = _perf_event_enable;
d859e29f 4687 break;
cdd6c482 4688 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4689 func = _perf_event_disable;
79f14641 4690 break;
cdd6c482 4691 case PERF_EVENT_IOC_RESET:
f63a8daa 4692 func = _perf_event_reset;
6de6a7b9 4693 break;
3df5edad 4694
cdd6c482 4695 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4696 return _perf_event_refresh(event, arg);
08247e31 4697
cdd6c482
IM
4698 case PERF_EVENT_IOC_PERIOD:
4699 return perf_event_period(event, (u64 __user *)arg);
08247e31 4700
cf4957f1
JO
4701 case PERF_EVENT_IOC_ID:
4702 {
4703 u64 id = primary_event_id(event);
4704
4705 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4706 return -EFAULT;
4707 return 0;
4708 }
4709
cdd6c482 4710 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4711 {
ac9721f3 4712 int ret;
ac9721f3 4713 if (arg != -1) {
2903ff01
AV
4714 struct perf_event *output_event;
4715 struct fd output;
4716 ret = perf_fget_light(arg, &output);
4717 if (ret)
4718 return ret;
4719 output_event = output.file->private_data;
4720 ret = perf_event_set_output(event, output_event);
4721 fdput(output);
4722 } else {
4723 ret = perf_event_set_output(event, NULL);
ac9721f3 4724 }
ac9721f3
PZ
4725 return ret;
4726 }
a4be7c27 4727
6fb2915d
LZ
4728 case PERF_EVENT_IOC_SET_FILTER:
4729 return perf_event_set_filter(event, (void __user *)arg);
4730
2541517c
AS
4731 case PERF_EVENT_IOC_SET_BPF:
4732 return perf_event_set_bpf_prog(event, arg);
4733
86e7972f
WN
4734 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4735 struct ring_buffer *rb;
4736
4737 rcu_read_lock();
4738 rb = rcu_dereference(event->rb);
4739 if (!rb || !rb->nr_pages) {
4740 rcu_read_unlock();
4741 return -EINVAL;
4742 }
4743 rb_toggle_paused(rb, !!arg);
4744 rcu_read_unlock();
4745 return 0;
4746 }
d859e29f 4747 default:
3df5edad 4748 return -ENOTTY;
d859e29f 4749 }
3df5edad
PZ
4750
4751 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4752 perf_event_for_each(event, func);
3df5edad 4753 else
cdd6c482 4754 perf_event_for_each_child(event, func);
3df5edad
PZ
4755
4756 return 0;
d859e29f
PM
4757}
4758
f63a8daa
PZ
4759static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4760{
4761 struct perf_event *event = file->private_data;
4762 struct perf_event_context *ctx;
4763 long ret;
4764
4765 ctx = perf_event_ctx_lock(event);
4766 ret = _perf_ioctl(event, cmd, arg);
4767 perf_event_ctx_unlock(event, ctx);
4768
4769 return ret;
4770}
4771
b3f20785
PM
4772#ifdef CONFIG_COMPAT
4773static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4774 unsigned long arg)
4775{
4776 switch (_IOC_NR(cmd)) {
4777 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4778 case _IOC_NR(PERF_EVENT_IOC_ID):
4779 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4780 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4781 cmd &= ~IOCSIZE_MASK;
4782 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4783 }
4784 break;
4785 }
4786 return perf_ioctl(file, cmd, arg);
4787}
4788#else
4789# define perf_compat_ioctl NULL
4790#endif
4791
cdd6c482 4792int perf_event_task_enable(void)
771d7cde 4793{
f63a8daa 4794 struct perf_event_context *ctx;
cdd6c482 4795 struct perf_event *event;
771d7cde 4796
cdd6c482 4797 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4798 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4799 ctx = perf_event_ctx_lock(event);
4800 perf_event_for_each_child(event, _perf_event_enable);
4801 perf_event_ctx_unlock(event, ctx);
4802 }
cdd6c482 4803 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4804
4805 return 0;
4806}
4807
cdd6c482 4808int perf_event_task_disable(void)
771d7cde 4809{
f63a8daa 4810 struct perf_event_context *ctx;
cdd6c482 4811 struct perf_event *event;
771d7cde 4812
cdd6c482 4813 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4814 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4815 ctx = perf_event_ctx_lock(event);
4816 perf_event_for_each_child(event, _perf_event_disable);
4817 perf_event_ctx_unlock(event, ctx);
4818 }
cdd6c482 4819 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4820
4821 return 0;
4822}
4823
cdd6c482 4824static int perf_event_index(struct perf_event *event)
194002b2 4825{
a4eaf7f1
PZ
4826 if (event->hw.state & PERF_HES_STOPPED)
4827 return 0;
4828
cdd6c482 4829 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4830 return 0;
4831
35edc2a5 4832 return event->pmu->event_idx(event);
194002b2
PZ
4833}
4834
c4794295 4835static void calc_timer_values(struct perf_event *event,
e3f3541c 4836 u64 *now,
7f310a5d
EM
4837 u64 *enabled,
4838 u64 *running)
c4794295 4839{
e3f3541c 4840 u64 ctx_time;
c4794295 4841
e3f3541c
PZ
4842 *now = perf_clock();
4843 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4844 *enabled = ctx_time - event->tstamp_enabled;
4845 *running = ctx_time - event->tstamp_running;
4846}
4847
fa731587
PZ
4848static void perf_event_init_userpage(struct perf_event *event)
4849{
4850 struct perf_event_mmap_page *userpg;
4851 struct ring_buffer *rb;
4852
4853 rcu_read_lock();
4854 rb = rcu_dereference(event->rb);
4855 if (!rb)
4856 goto unlock;
4857
4858 userpg = rb->user_page;
4859
4860 /* Allow new userspace to detect that bit 0 is deprecated */
4861 userpg->cap_bit0_is_deprecated = 1;
4862 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4863 userpg->data_offset = PAGE_SIZE;
4864 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4865
4866unlock:
4867 rcu_read_unlock();
4868}
4869
c1317ec2
AL
4870void __weak arch_perf_update_userpage(
4871 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4872{
4873}
4874
38ff667b
PZ
4875/*
4876 * Callers need to ensure there can be no nesting of this function, otherwise
4877 * the seqlock logic goes bad. We can not serialize this because the arch
4878 * code calls this from NMI context.
4879 */
cdd6c482 4880void perf_event_update_userpage(struct perf_event *event)
37d81828 4881{
cdd6c482 4882 struct perf_event_mmap_page *userpg;
76369139 4883 struct ring_buffer *rb;
e3f3541c 4884 u64 enabled, running, now;
38ff667b
PZ
4885
4886 rcu_read_lock();
5ec4c599
PZ
4887 rb = rcu_dereference(event->rb);
4888 if (!rb)
4889 goto unlock;
4890
0d641208
EM
4891 /*
4892 * compute total_time_enabled, total_time_running
4893 * based on snapshot values taken when the event
4894 * was last scheduled in.
4895 *
4896 * we cannot simply called update_context_time()
4897 * because of locking issue as we can be called in
4898 * NMI context
4899 */
e3f3541c 4900 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4901
76369139 4902 userpg = rb->user_page;
7b732a75
PZ
4903 /*
4904 * Disable preemption so as to not let the corresponding user-space
4905 * spin too long if we get preempted.
4906 */
4907 preempt_disable();
37d81828 4908 ++userpg->lock;
92f22a38 4909 barrier();
cdd6c482 4910 userpg->index = perf_event_index(event);
b5e58793 4911 userpg->offset = perf_event_count(event);
365a4038 4912 if (userpg->index)
e7850595 4913 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4914
0d641208 4915 userpg->time_enabled = enabled +
cdd6c482 4916 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4917
0d641208 4918 userpg->time_running = running +
cdd6c482 4919 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4920
c1317ec2 4921 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4922
92f22a38 4923 barrier();
37d81828 4924 ++userpg->lock;
7b732a75 4925 preempt_enable();
38ff667b 4926unlock:
7b732a75 4927 rcu_read_unlock();
37d81828
PM
4928}
4929
11bac800 4930static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 4931{
11bac800 4932 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 4933 struct ring_buffer *rb;
906010b2
PZ
4934 int ret = VM_FAULT_SIGBUS;
4935
4936 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4937 if (vmf->pgoff == 0)
4938 ret = 0;
4939 return ret;
4940 }
4941
4942 rcu_read_lock();
76369139
FW
4943 rb = rcu_dereference(event->rb);
4944 if (!rb)
906010b2
PZ
4945 goto unlock;
4946
4947 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4948 goto unlock;
4949
76369139 4950 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4951 if (!vmf->page)
4952 goto unlock;
4953
4954 get_page(vmf->page);
11bac800 4955 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
4956 vmf->page->index = vmf->pgoff;
4957
4958 ret = 0;
4959unlock:
4960 rcu_read_unlock();
4961
4962 return ret;
4963}
4964
10c6db11
PZ
4965static void ring_buffer_attach(struct perf_event *event,
4966 struct ring_buffer *rb)
4967{
b69cf536 4968 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4969 unsigned long flags;
4970
b69cf536
PZ
4971 if (event->rb) {
4972 /*
4973 * Should be impossible, we set this when removing
4974 * event->rb_entry and wait/clear when adding event->rb_entry.
4975 */
4976 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4977
b69cf536 4978 old_rb = event->rb;
b69cf536
PZ
4979 spin_lock_irqsave(&old_rb->event_lock, flags);
4980 list_del_rcu(&event->rb_entry);
4981 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4982
2f993cf0
ON
4983 event->rcu_batches = get_state_synchronize_rcu();
4984 event->rcu_pending = 1;
b69cf536 4985 }
10c6db11 4986
b69cf536 4987 if (rb) {
2f993cf0
ON
4988 if (event->rcu_pending) {
4989 cond_synchronize_rcu(event->rcu_batches);
4990 event->rcu_pending = 0;
4991 }
4992
b69cf536
PZ
4993 spin_lock_irqsave(&rb->event_lock, flags);
4994 list_add_rcu(&event->rb_entry, &rb->event_list);
4995 spin_unlock_irqrestore(&rb->event_lock, flags);
4996 }
4997
767ae086
AS
4998 /*
4999 * Avoid racing with perf_mmap_close(AUX): stop the event
5000 * before swizzling the event::rb pointer; if it's getting
5001 * unmapped, its aux_mmap_count will be 0 and it won't
5002 * restart. See the comment in __perf_pmu_output_stop().
5003 *
5004 * Data will inevitably be lost when set_output is done in
5005 * mid-air, but then again, whoever does it like this is
5006 * not in for the data anyway.
5007 */
5008 if (has_aux(event))
5009 perf_event_stop(event, 0);
5010
b69cf536
PZ
5011 rcu_assign_pointer(event->rb, rb);
5012
5013 if (old_rb) {
5014 ring_buffer_put(old_rb);
5015 /*
5016 * Since we detached before setting the new rb, so that we
5017 * could attach the new rb, we could have missed a wakeup.
5018 * Provide it now.
5019 */
5020 wake_up_all(&event->waitq);
5021 }
10c6db11
PZ
5022}
5023
5024static void ring_buffer_wakeup(struct perf_event *event)
5025{
5026 struct ring_buffer *rb;
5027
5028 rcu_read_lock();
5029 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5030 if (rb) {
5031 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5032 wake_up_all(&event->waitq);
5033 }
10c6db11
PZ
5034 rcu_read_unlock();
5035}
5036
fdc26706 5037struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5038{
76369139 5039 struct ring_buffer *rb;
7b732a75 5040
ac9721f3 5041 rcu_read_lock();
76369139
FW
5042 rb = rcu_dereference(event->rb);
5043 if (rb) {
5044 if (!atomic_inc_not_zero(&rb->refcount))
5045 rb = NULL;
ac9721f3
PZ
5046 }
5047 rcu_read_unlock();
5048
76369139 5049 return rb;
ac9721f3
PZ
5050}
5051
fdc26706 5052void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5053{
76369139 5054 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5055 return;
7b732a75 5056
9bb5d40c 5057 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5058
76369139 5059 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5060}
5061
5062static void perf_mmap_open(struct vm_area_struct *vma)
5063{
cdd6c482 5064 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5065
cdd6c482 5066 atomic_inc(&event->mmap_count);
9bb5d40c 5067 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5068
45bfb2e5
PZ
5069 if (vma->vm_pgoff)
5070 atomic_inc(&event->rb->aux_mmap_count);
5071
1e0fb9ec
AL
5072 if (event->pmu->event_mapped)
5073 event->pmu->event_mapped(event);
7b732a75
PZ
5074}
5075
95ff4ca2
AS
5076static void perf_pmu_output_stop(struct perf_event *event);
5077
9bb5d40c
PZ
5078/*
5079 * A buffer can be mmap()ed multiple times; either directly through the same
5080 * event, or through other events by use of perf_event_set_output().
5081 *
5082 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5083 * the buffer here, where we still have a VM context. This means we need
5084 * to detach all events redirecting to us.
5085 */
7b732a75
PZ
5086static void perf_mmap_close(struct vm_area_struct *vma)
5087{
cdd6c482 5088 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5089
b69cf536 5090 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5091 struct user_struct *mmap_user = rb->mmap_user;
5092 int mmap_locked = rb->mmap_locked;
5093 unsigned long size = perf_data_size(rb);
789f90fc 5094
1e0fb9ec
AL
5095 if (event->pmu->event_unmapped)
5096 event->pmu->event_unmapped(event);
5097
45bfb2e5
PZ
5098 /*
5099 * rb->aux_mmap_count will always drop before rb->mmap_count and
5100 * event->mmap_count, so it is ok to use event->mmap_mutex to
5101 * serialize with perf_mmap here.
5102 */
5103 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5104 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5105 /*
5106 * Stop all AUX events that are writing to this buffer,
5107 * so that we can free its AUX pages and corresponding PMU
5108 * data. Note that after rb::aux_mmap_count dropped to zero,
5109 * they won't start any more (see perf_aux_output_begin()).
5110 */
5111 perf_pmu_output_stop(event);
5112
5113 /* now it's safe to free the pages */
45bfb2e5
PZ
5114 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5115 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5116
95ff4ca2 5117 /* this has to be the last one */
45bfb2e5 5118 rb_free_aux(rb);
95ff4ca2
AS
5119 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5120
45bfb2e5
PZ
5121 mutex_unlock(&event->mmap_mutex);
5122 }
5123
9bb5d40c
PZ
5124 atomic_dec(&rb->mmap_count);
5125
5126 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5127 goto out_put;
9bb5d40c 5128
b69cf536 5129 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5130 mutex_unlock(&event->mmap_mutex);
5131
5132 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5133 if (atomic_read(&rb->mmap_count))
5134 goto out_put;
ac9721f3 5135
9bb5d40c
PZ
5136 /*
5137 * No other mmap()s, detach from all other events that might redirect
5138 * into the now unreachable buffer. Somewhat complicated by the
5139 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5140 */
5141again:
5142 rcu_read_lock();
5143 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5144 if (!atomic_long_inc_not_zero(&event->refcount)) {
5145 /*
5146 * This event is en-route to free_event() which will
5147 * detach it and remove it from the list.
5148 */
5149 continue;
5150 }
5151 rcu_read_unlock();
789f90fc 5152
9bb5d40c
PZ
5153 mutex_lock(&event->mmap_mutex);
5154 /*
5155 * Check we didn't race with perf_event_set_output() which can
5156 * swizzle the rb from under us while we were waiting to
5157 * acquire mmap_mutex.
5158 *
5159 * If we find a different rb; ignore this event, a next
5160 * iteration will no longer find it on the list. We have to
5161 * still restart the iteration to make sure we're not now
5162 * iterating the wrong list.
5163 */
b69cf536
PZ
5164 if (event->rb == rb)
5165 ring_buffer_attach(event, NULL);
5166
cdd6c482 5167 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5168 put_event(event);
ac9721f3 5169
9bb5d40c
PZ
5170 /*
5171 * Restart the iteration; either we're on the wrong list or
5172 * destroyed its integrity by doing a deletion.
5173 */
5174 goto again;
7b732a75 5175 }
9bb5d40c
PZ
5176 rcu_read_unlock();
5177
5178 /*
5179 * It could be there's still a few 0-ref events on the list; they'll
5180 * get cleaned up by free_event() -- they'll also still have their
5181 * ref on the rb and will free it whenever they are done with it.
5182 *
5183 * Aside from that, this buffer is 'fully' detached and unmapped,
5184 * undo the VM accounting.
5185 */
5186
5187 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5188 vma->vm_mm->pinned_vm -= mmap_locked;
5189 free_uid(mmap_user);
5190
b69cf536 5191out_put:
9bb5d40c 5192 ring_buffer_put(rb); /* could be last */
37d81828
PM
5193}
5194
f0f37e2f 5195static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5196 .open = perf_mmap_open,
45bfb2e5 5197 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5198 .fault = perf_mmap_fault,
5199 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5200};
5201
5202static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5203{
cdd6c482 5204 struct perf_event *event = file->private_data;
22a4f650 5205 unsigned long user_locked, user_lock_limit;
789f90fc 5206 struct user_struct *user = current_user();
22a4f650 5207 unsigned long locked, lock_limit;
45bfb2e5 5208 struct ring_buffer *rb = NULL;
7b732a75
PZ
5209 unsigned long vma_size;
5210 unsigned long nr_pages;
45bfb2e5 5211 long user_extra = 0, extra = 0;
d57e34fd 5212 int ret = 0, flags = 0;
37d81828 5213
c7920614
PZ
5214 /*
5215 * Don't allow mmap() of inherited per-task counters. This would
5216 * create a performance issue due to all children writing to the
76369139 5217 * same rb.
c7920614
PZ
5218 */
5219 if (event->cpu == -1 && event->attr.inherit)
5220 return -EINVAL;
5221
43a21ea8 5222 if (!(vma->vm_flags & VM_SHARED))
37d81828 5223 return -EINVAL;
7b732a75
PZ
5224
5225 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5226
5227 if (vma->vm_pgoff == 0) {
5228 nr_pages = (vma_size / PAGE_SIZE) - 1;
5229 } else {
5230 /*
5231 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5232 * mapped, all subsequent mappings should have the same size
5233 * and offset. Must be above the normal perf buffer.
5234 */
5235 u64 aux_offset, aux_size;
5236
5237 if (!event->rb)
5238 return -EINVAL;
5239
5240 nr_pages = vma_size / PAGE_SIZE;
5241
5242 mutex_lock(&event->mmap_mutex);
5243 ret = -EINVAL;
5244
5245 rb = event->rb;
5246 if (!rb)
5247 goto aux_unlock;
5248
5249 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5250 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5251
5252 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5253 goto aux_unlock;
5254
5255 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5256 goto aux_unlock;
5257
5258 /* already mapped with a different offset */
5259 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5260 goto aux_unlock;
5261
5262 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5263 goto aux_unlock;
5264
5265 /* already mapped with a different size */
5266 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5267 goto aux_unlock;
5268
5269 if (!is_power_of_2(nr_pages))
5270 goto aux_unlock;
5271
5272 if (!atomic_inc_not_zero(&rb->mmap_count))
5273 goto aux_unlock;
5274
5275 if (rb_has_aux(rb)) {
5276 atomic_inc(&rb->aux_mmap_count);
5277 ret = 0;
5278 goto unlock;
5279 }
5280
5281 atomic_set(&rb->aux_mmap_count, 1);
5282 user_extra = nr_pages;
5283
5284 goto accounting;
5285 }
7b732a75 5286
7730d865 5287 /*
76369139 5288 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5289 * can do bitmasks instead of modulo.
5290 */
2ed11312 5291 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5292 return -EINVAL;
5293
7b732a75 5294 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5295 return -EINVAL;
5296
cdd6c482 5297 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5298again:
cdd6c482 5299 mutex_lock(&event->mmap_mutex);
76369139 5300 if (event->rb) {
9bb5d40c 5301 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5302 ret = -EINVAL;
9bb5d40c
PZ
5303 goto unlock;
5304 }
5305
5306 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5307 /*
5308 * Raced against perf_mmap_close() through
5309 * perf_event_set_output(). Try again, hope for better
5310 * luck.
5311 */
5312 mutex_unlock(&event->mmap_mutex);
5313 goto again;
5314 }
5315
ebb3c4c4
PZ
5316 goto unlock;
5317 }
5318
789f90fc 5319 user_extra = nr_pages + 1;
45bfb2e5
PZ
5320
5321accounting:
cdd6c482 5322 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5323
5324 /*
5325 * Increase the limit linearly with more CPUs:
5326 */
5327 user_lock_limit *= num_online_cpus();
5328
789f90fc 5329 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5330
789f90fc
PZ
5331 if (user_locked > user_lock_limit)
5332 extra = user_locked - user_lock_limit;
7b732a75 5333
78d7d407 5334 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5335 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5336 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5337
459ec28a
IM
5338 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5339 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5340 ret = -EPERM;
5341 goto unlock;
5342 }
7b732a75 5343
45bfb2e5 5344 WARN_ON(!rb && event->rb);
906010b2 5345
d57e34fd 5346 if (vma->vm_flags & VM_WRITE)
76369139 5347 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5348
76369139 5349 if (!rb) {
45bfb2e5
PZ
5350 rb = rb_alloc(nr_pages,
5351 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5352 event->cpu, flags);
26cb63ad 5353
45bfb2e5
PZ
5354 if (!rb) {
5355 ret = -ENOMEM;
5356 goto unlock;
5357 }
43a21ea8 5358
45bfb2e5
PZ
5359 atomic_set(&rb->mmap_count, 1);
5360 rb->mmap_user = get_current_user();
5361 rb->mmap_locked = extra;
26cb63ad 5362
45bfb2e5 5363 ring_buffer_attach(event, rb);
ac9721f3 5364
45bfb2e5
PZ
5365 perf_event_init_userpage(event);
5366 perf_event_update_userpage(event);
5367 } else {
1a594131
AS
5368 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5369 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5370 if (!ret)
5371 rb->aux_mmap_locked = extra;
5372 }
9a0f05cb 5373
ebb3c4c4 5374unlock:
45bfb2e5
PZ
5375 if (!ret) {
5376 atomic_long_add(user_extra, &user->locked_vm);
5377 vma->vm_mm->pinned_vm += extra;
5378
ac9721f3 5379 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5380 } else if (rb) {
5381 atomic_dec(&rb->mmap_count);
5382 }
5383aux_unlock:
cdd6c482 5384 mutex_unlock(&event->mmap_mutex);
37d81828 5385
9bb5d40c
PZ
5386 /*
5387 * Since pinned accounting is per vm we cannot allow fork() to copy our
5388 * vma.
5389 */
26cb63ad 5390 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5391 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5392
1e0fb9ec
AL
5393 if (event->pmu->event_mapped)
5394 event->pmu->event_mapped(event);
5395
7b732a75 5396 return ret;
37d81828
PM
5397}
5398
3c446b3d
PZ
5399static int perf_fasync(int fd, struct file *filp, int on)
5400{
496ad9aa 5401 struct inode *inode = file_inode(filp);
cdd6c482 5402 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5403 int retval;
5404
5955102c 5405 inode_lock(inode);
cdd6c482 5406 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5407 inode_unlock(inode);
3c446b3d
PZ
5408
5409 if (retval < 0)
5410 return retval;
5411
5412 return 0;
5413}
5414
0793a61d 5415static const struct file_operations perf_fops = {
3326c1ce 5416 .llseek = no_llseek,
0793a61d
TG
5417 .release = perf_release,
5418 .read = perf_read,
5419 .poll = perf_poll,
d859e29f 5420 .unlocked_ioctl = perf_ioctl,
b3f20785 5421 .compat_ioctl = perf_compat_ioctl,
37d81828 5422 .mmap = perf_mmap,
3c446b3d 5423 .fasync = perf_fasync,
0793a61d
TG
5424};
5425
925d519a 5426/*
cdd6c482 5427 * Perf event wakeup
925d519a
PZ
5428 *
5429 * If there's data, ensure we set the poll() state and publish everything
5430 * to user-space before waking everybody up.
5431 */
5432
fed66e2c
PZ
5433static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5434{
5435 /* only the parent has fasync state */
5436 if (event->parent)
5437 event = event->parent;
5438 return &event->fasync;
5439}
5440
cdd6c482 5441void perf_event_wakeup(struct perf_event *event)
925d519a 5442{
10c6db11 5443 ring_buffer_wakeup(event);
4c9e2542 5444
cdd6c482 5445 if (event->pending_kill) {
fed66e2c 5446 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5447 event->pending_kill = 0;
4c9e2542 5448 }
925d519a
PZ
5449}
5450
e360adbe 5451static void perf_pending_event(struct irq_work *entry)
79f14641 5452{
cdd6c482
IM
5453 struct perf_event *event = container_of(entry,
5454 struct perf_event, pending);
d525211f
PZ
5455 int rctx;
5456
5457 rctx = perf_swevent_get_recursion_context();
5458 /*
5459 * If we 'fail' here, that's OK, it means recursion is already disabled
5460 * and we won't recurse 'further'.
5461 */
79f14641 5462
cdd6c482
IM
5463 if (event->pending_disable) {
5464 event->pending_disable = 0;
fae3fde6 5465 perf_event_disable_local(event);
79f14641
PZ
5466 }
5467
cdd6c482
IM
5468 if (event->pending_wakeup) {
5469 event->pending_wakeup = 0;
5470 perf_event_wakeup(event);
79f14641 5471 }
d525211f
PZ
5472
5473 if (rctx >= 0)
5474 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5475}
5476
39447b38
ZY
5477/*
5478 * We assume there is only KVM supporting the callbacks.
5479 * Later on, we might change it to a list if there is
5480 * another virtualization implementation supporting the callbacks.
5481 */
5482struct perf_guest_info_callbacks *perf_guest_cbs;
5483
5484int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5485{
5486 perf_guest_cbs = cbs;
5487 return 0;
5488}
5489EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5490
5491int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5492{
5493 perf_guest_cbs = NULL;
5494 return 0;
5495}
5496EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5497
4018994f
JO
5498static void
5499perf_output_sample_regs(struct perf_output_handle *handle,
5500 struct pt_regs *regs, u64 mask)
5501{
5502 int bit;
29dd3288 5503 DECLARE_BITMAP(_mask, 64);
4018994f 5504
29dd3288
MS
5505 bitmap_from_u64(_mask, mask);
5506 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5507 u64 val;
5508
5509 val = perf_reg_value(regs, bit);
5510 perf_output_put(handle, val);
5511 }
5512}
5513
60e2364e 5514static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5515 struct pt_regs *regs,
5516 struct pt_regs *regs_user_copy)
4018994f 5517{
88a7c26a
AL
5518 if (user_mode(regs)) {
5519 regs_user->abi = perf_reg_abi(current);
2565711f 5520 regs_user->regs = regs;
88a7c26a
AL
5521 } else if (current->mm) {
5522 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5523 } else {
5524 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5525 regs_user->regs = NULL;
4018994f
JO
5526 }
5527}
5528
60e2364e
SE
5529static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5530 struct pt_regs *regs)
5531{
5532 regs_intr->regs = regs;
5533 regs_intr->abi = perf_reg_abi(current);
5534}
5535
5536
c5ebcedb
JO
5537/*
5538 * Get remaining task size from user stack pointer.
5539 *
5540 * It'd be better to take stack vma map and limit this more
5541 * precisly, but there's no way to get it safely under interrupt,
5542 * so using TASK_SIZE as limit.
5543 */
5544static u64 perf_ustack_task_size(struct pt_regs *regs)
5545{
5546 unsigned long addr = perf_user_stack_pointer(regs);
5547
5548 if (!addr || addr >= TASK_SIZE)
5549 return 0;
5550
5551 return TASK_SIZE - addr;
5552}
5553
5554static u16
5555perf_sample_ustack_size(u16 stack_size, u16 header_size,
5556 struct pt_regs *regs)
5557{
5558 u64 task_size;
5559
5560 /* No regs, no stack pointer, no dump. */
5561 if (!regs)
5562 return 0;
5563
5564 /*
5565 * Check if we fit in with the requested stack size into the:
5566 * - TASK_SIZE
5567 * If we don't, we limit the size to the TASK_SIZE.
5568 *
5569 * - remaining sample size
5570 * If we don't, we customize the stack size to
5571 * fit in to the remaining sample size.
5572 */
5573
5574 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5575 stack_size = min(stack_size, (u16) task_size);
5576
5577 /* Current header size plus static size and dynamic size. */
5578 header_size += 2 * sizeof(u64);
5579
5580 /* Do we fit in with the current stack dump size? */
5581 if ((u16) (header_size + stack_size) < header_size) {
5582 /*
5583 * If we overflow the maximum size for the sample,
5584 * we customize the stack dump size to fit in.
5585 */
5586 stack_size = USHRT_MAX - header_size - sizeof(u64);
5587 stack_size = round_up(stack_size, sizeof(u64));
5588 }
5589
5590 return stack_size;
5591}
5592
5593static void
5594perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5595 struct pt_regs *regs)
5596{
5597 /* Case of a kernel thread, nothing to dump */
5598 if (!regs) {
5599 u64 size = 0;
5600 perf_output_put(handle, size);
5601 } else {
5602 unsigned long sp;
5603 unsigned int rem;
5604 u64 dyn_size;
5605
5606 /*
5607 * We dump:
5608 * static size
5609 * - the size requested by user or the best one we can fit
5610 * in to the sample max size
5611 * data
5612 * - user stack dump data
5613 * dynamic size
5614 * - the actual dumped size
5615 */
5616
5617 /* Static size. */
5618 perf_output_put(handle, dump_size);
5619
5620 /* Data. */
5621 sp = perf_user_stack_pointer(regs);
5622 rem = __output_copy_user(handle, (void *) sp, dump_size);
5623 dyn_size = dump_size - rem;
5624
5625 perf_output_skip(handle, rem);
5626
5627 /* Dynamic size. */
5628 perf_output_put(handle, dyn_size);
5629 }
5630}
5631
c980d109
ACM
5632static void __perf_event_header__init_id(struct perf_event_header *header,
5633 struct perf_sample_data *data,
5634 struct perf_event *event)
6844c09d
ACM
5635{
5636 u64 sample_type = event->attr.sample_type;
5637
5638 data->type = sample_type;
5639 header->size += event->id_header_size;
5640
5641 if (sample_type & PERF_SAMPLE_TID) {
5642 /* namespace issues */
5643 data->tid_entry.pid = perf_event_pid(event, current);
5644 data->tid_entry.tid = perf_event_tid(event, current);
5645 }
5646
5647 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5648 data->time = perf_event_clock(event);
6844c09d 5649
ff3d527c 5650 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5651 data->id = primary_event_id(event);
5652
5653 if (sample_type & PERF_SAMPLE_STREAM_ID)
5654 data->stream_id = event->id;
5655
5656 if (sample_type & PERF_SAMPLE_CPU) {
5657 data->cpu_entry.cpu = raw_smp_processor_id();
5658 data->cpu_entry.reserved = 0;
5659 }
5660}
5661
76369139
FW
5662void perf_event_header__init_id(struct perf_event_header *header,
5663 struct perf_sample_data *data,
5664 struct perf_event *event)
c980d109
ACM
5665{
5666 if (event->attr.sample_id_all)
5667 __perf_event_header__init_id(header, data, event);
5668}
5669
5670static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5671 struct perf_sample_data *data)
5672{
5673 u64 sample_type = data->type;
5674
5675 if (sample_type & PERF_SAMPLE_TID)
5676 perf_output_put(handle, data->tid_entry);
5677
5678 if (sample_type & PERF_SAMPLE_TIME)
5679 perf_output_put(handle, data->time);
5680
5681 if (sample_type & PERF_SAMPLE_ID)
5682 perf_output_put(handle, data->id);
5683
5684 if (sample_type & PERF_SAMPLE_STREAM_ID)
5685 perf_output_put(handle, data->stream_id);
5686
5687 if (sample_type & PERF_SAMPLE_CPU)
5688 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5689
5690 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5691 perf_output_put(handle, data->id);
c980d109
ACM
5692}
5693
76369139
FW
5694void perf_event__output_id_sample(struct perf_event *event,
5695 struct perf_output_handle *handle,
5696 struct perf_sample_data *sample)
c980d109
ACM
5697{
5698 if (event->attr.sample_id_all)
5699 __perf_event__output_id_sample(handle, sample);
5700}
5701
3dab77fb 5702static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5703 struct perf_event *event,
5704 u64 enabled, u64 running)
3dab77fb 5705{
cdd6c482 5706 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5707 u64 values[4];
5708 int n = 0;
5709
b5e58793 5710 values[n++] = perf_event_count(event);
3dab77fb 5711 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5712 values[n++] = enabled +
cdd6c482 5713 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5714 }
5715 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5716 values[n++] = running +
cdd6c482 5717 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5718 }
5719 if (read_format & PERF_FORMAT_ID)
cdd6c482 5720 values[n++] = primary_event_id(event);
3dab77fb 5721
76369139 5722 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5723}
5724
5725/*
cdd6c482 5726 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5727 */
5728static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5729 struct perf_event *event,
5730 u64 enabled, u64 running)
3dab77fb 5731{
cdd6c482
IM
5732 struct perf_event *leader = event->group_leader, *sub;
5733 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5734 u64 values[5];
5735 int n = 0;
5736
5737 values[n++] = 1 + leader->nr_siblings;
5738
5739 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5740 values[n++] = enabled;
3dab77fb
PZ
5741
5742 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5743 values[n++] = running;
3dab77fb 5744
cdd6c482 5745 if (leader != event)
3dab77fb
PZ
5746 leader->pmu->read(leader);
5747
b5e58793 5748 values[n++] = perf_event_count(leader);
3dab77fb 5749 if (read_format & PERF_FORMAT_ID)
cdd6c482 5750 values[n++] = primary_event_id(leader);
3dab77fb 5751
76369139 5752 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5753
65abc865 5754 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5755 n = 0;
5756
6f5ab001
JO
5757 if ((sub != event) &&
5758 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5759 sub->pmu->read(sub);
5760
b5e58793 5761 values[n++] = perf_event_count(sub);
3dab77fb 5762 if (read_format & PERF_FORMAT_ID)
cdd6c482 5763 values[n++] = primary_event_id(sub);
3dab77fb 5764
76369139 5765 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5766 }
5767}
5768
eed01528
SE
5769#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5770 PERF_FORMAT_TOTAL_TIME_RUNNING)
5771
3dab77fb 5772static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5773 struct perf_event *event)
3dab77fb 5774{
e3f3541c 5775 u64 enabled = 0, running = 0, now;
eed01528
SE
5776 u64 read_format = event->attr.read_format;
5777
5778 /*
5779 * compute total_time_enabled, total_time_running
5780 * based on snapshot values taken when the event
5781 * was last scheduled in.
5782 *
5783 * we cannot simply called update_context_time()
5784 * because of locking issue as we are called in
5785 * NMI context
5786 */
c4794295 5787 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5788 calc_timer_values(event, &now, &enabled, &running);
eed01528 5789
cdd6c482 5790 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5791 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5792 else
eed01528 5793 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5794}
5795
5622f295
MM
5796void perf_output_sample(struct perf_output_handle *handle,
5797 struct perf_event_header *header,
5798 struct perf_sample_data *data,
cdd6c482 5799 struct perf_event *event)
5622f295
MM
5800{
5801 u64 sample_type = data->type;
5802
5803 perf_output_put(handle, *header);
5804
ff3d527c
AH
5805 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5806 perf_output_put(handle, data->id);
5807
5622f295
MM
5808 if (sample_type & PERF_SAMPLE_IP)
5809 perf_output_put(handle, data->ip);
5810
5811 if (sample_type & PERF_SAMPLE_TID)
5812 perf_output_put(handle, data->tid_entry);
5813
5814 if (sample_type & PERF_SAMPLE_TIME)
5815 perf_output_put(handle, data->time);
5816
5817 if (sample_type & PERF_SAMPLE_ADDR)
5818 perf_output_put(handle, data->addr);
5819
5820 if (sample_type & PERF_SAMPLE_ID)
5821 perf_output_put(handle, data->id);
5822
5823 if (sample_type & PERF_SAMPLE_STREAM_ID)
5824 perf_output_put(handle, data->stream_id);
5825
5826 if (sample_type & PERF_SAMPLE_CPU)
5827 perf_output_put(handle, data->cpu_entry);
5828
5829 if (sample_type & PERF_SAMPLE_PERIOD)
5830 perf_output_put(handle, data->period);
5831
5832 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5833 perf_output_read(handle, event);
5622f295
MM
5834
5835 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5836 if (data->callchain) {
5837 int size = 1;
5838
5839 if (data->callchain)
5840 size += data->callchain->nr;
5841
5842 size *= sizeof(u64);
5843
76369139 5844 __output_copy(handle, data->callchain, size);
5622f295
MM
5845 } else {
5846 u64 nr = 0;
5847 perf_output_put(handle, nr);
5848 }
5849 }
5850
5851 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5852 struct perf_raw_record *raw = data->raw;
5853
5854 if (raw) {
5855 struct perf_raw_frag *frag = &raw->frag;
5856
5857 perf_output_put(handle, raw->size);
5858 do {
5859 if (frag->copy) {
5860 __output_custom(handle, frag->copy,
5861 frag->data, frag->size);
5862 } else {
5863 __output_copy(handle, frag->data,
5864 frag->size);
5865 }
5866 if (perf_raw_frag_last(frag))
5867 break;
5868 frag = frag->next;
5869 } while (1);
5870 if (frag->pad)
5871 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5872 } else {
5873 struct {
5874 u32 size;
5875 u32 data;
5876 } raw = {
5877 .size = sizeof(u32),
5878 .data = 0,
5879 };
5880 perf_output_put(handle, raw);
5881 }
5882 }
a7ac67ea 5883
bce38cd5
SE
5884 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5885 if (data->br_stack) {
5886 size_t size;
5887
5888 size = data->br_stack->nr
5889 * sizeof(struct perf_branch_entry);
5890
5891 perf_output_put(handle, data->br_stack->nr);
5892 perf_output_copy(handle, data->br_stack->entries, size);
5893 } else {
5894 /*
5895 * we always store at least the value of nr
5896 */
5897 u64 nr = 0;
5898 perf_output_put(handle, nr);
5899 }
5900 }
4018994f
JO
5901
5902 if (sample_type & PERF_SAMPLE_REGS_USER) {
5903 u64 abi = data->regs_user.abi;
5904
5905 /*
5906 * If there are no regs to dump, notice it through
5907 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5908 */
5909 perf_output_put(handle, abi);
5910
5911 if (abi) {
5912 u64 mask = event->attr.sample_regs_user;
5913 perf_output_sample_regs(handle,
5914 data->regs_user.regs,
5915 mask);
5916 }
5917 }
c5ebcedb 5918
a5cdd40c 5919 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5920 perf_output_sample_ustack(handle,
5921 data->stack_user_size,
5922 data->regs_user.regs);
a5cdd40c 5923 }
c3feedf2
AK
5924
5925 if (sample_type & PERF_SAMPLE_WEIGHT)
5926 perf_output_put(handle, data->weight);
d6be9ad6
SE
5927
5928 if (sample_type & PERF_SAMPLE_DATA_SRC)
5929 perf_output_put(handle, data->data_src.val);
a5cdd40c 5930
fdfbbd07
AK
5931 if (sample_type & PERF_SAMPLE_TRANSACTION)
5932 perf_output_put(handle, data->txn);
5933
60e2364e
SE
5934 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5935 u64 abi = data->regs_intr.abi;
5936 /*
5937 * If there are no regs to dump, notice it through
5938 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5939 */
5940 perf_output_put(handle, abi);
5941
5942 if (abi) {
5943 u64 mask = event->attr.sample_regs_intr;
5944
5945 perf_output_sample_regs(handle,
5946 data->regs_intr.regs,
5947 mask);
5948 }
5949 }
5950
a5cdd40c
PZ
5951 if (!event->attr.watermark) {
5952 int wakeup_events = event->attr.wakeup_events;
5953
5954 if (wakeup_events) {
5955 struct ring_buffer *rb = handle->rb;
5956 int events = local_inc_return(&rb->events);
5957
5958 if (events >= wakeup_events) {
5959 local_sub(wakeup_events, &rb->events);
5960 local_inc(&rb->wakeup);
5961 }
5962 }
5963 }
5622f295
MM
5964}
5965
5966void perf_prepare_sample(struct perf_event_header *header,
5967 struct perf_sample_data *data,
cdd6c482 5968 struct perf_event *event,
5622f295 5969 struct pt_regs *regs)
7b732a75 5970{
cdd6c482 5971 u64 sample_type = event->attr.sample_type;
7b732a75 5972
cdd6c482 5973 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5974 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5975
5976 header->misc = 0;
5977 header->misc |= perf_misc_flags(regs);
6fab0192 5978
c980d109 5979 __perf_event_header__init_id(header, data, event);
6844c09d 5980
c320c7b7 5981 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5982 data->ip = perf_instruction_pointer(regs);
5983
b23f3325 5984 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5985 int size = 1;
394ee076 5986
e6dab5ff 5987 data->callchain = perf_callchain(event, regs);
5622f295
MM
5988
5989 if (data->callchain)
5990 size += data->callchain->nr;
5991
5992 header->size += size * sizeof(u64);
394ee076
PZ
5993 }
5994
3a43ce68 5995 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5996 struct perf_raw_record *raw = data->raw;
5997 int size;
5998
5999 if (raw) {
6000 struct perf_raw_frag *frag = &raw->frag;
6001 u32 sum = 0;
6002
6003 do {
6004 sum += frag->size;
6005 if (perf_raw_frag_last(frag))
6006 break;
6007 frag = frag->next;
6008 } while (1);
6009
6010 size = round_up(sum + sizeof(u32), sizeof(u64));
6011 raw->size = size - sizeof(u32);
6012 frag->pad = raw->size - sum;
6013 } else {
6014 size = sizeof(u64);
6015 }
a044560c 6016
7e3f977e 6017 header->size += size;
7f453c24 6018 }
bce38cd5
SE
6019
6020 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6021 int size = sizeof(u64); /* nr */
6022 if (data->br_stack) {
6023 size += data->br_stack->nr
6024 * sizeof(struct perf_branch_entry);
6025 }
6026 header->size += size;
6027 }
4018994f 6028
2565711f 6029 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6030 perf_sample_regs_user(&data->regs_user, regs,
6031 &data->regs_user_copy);
2565711f 6032
4018994f
JO
6033 if (sample_type & PERF_SAMPLE_REGS_USER) {
6034 /* regs dump ABI info */
6035 int size = sizeof(u64);
6036
4018994f
JO
6037 if (data->regs_user.regs) {
6038 u64 mask = event->attr.sample_regs_user;
6039 size += hweight64(mask) * sizeof(u64);
6040 }
6041
6042 header->size += size;
6043 }
c5ebcedb
JO
6044
6045 if (sample_type & PERF_SAMPLE_STACK_USER) {
6046 /*
6047 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6048 * processed as the last one or have additional check added
6049 * in case new sample type is added, because we could eat
6050 * up the rest of the sample size.
6051 */
c5ebcedb
JO
6052 u16 stack_size = event->attr.sample_stack_user;
6053 u16 size = sizeof(u64);
6054
c5ebcedb 6055 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6056 data->regs_user.regs);
c5ebcedb
JO
6057
6058 /*
6059 * If there is something to dump, add space for the dump
6060 * itself and for the field that tells the dynamic size,
6061 * which is how many have been actually dumped.
6062 */
6063 if (stack_size)
6064 size += sizeof(u64) + stack_size;
6065
6066 data->stack_user_size = stack_size;
6067 header->size += size;
6068 }
60e2364e
SE
6069
6070 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6071 /* regs dump ABI info */
6072 int size = sizeof(u64);
6073
6074 perf_sample_regs_intr(&data->regs_intr, regs);
6075
6076 if (data->regs_intr.regs) {
6077 u64 mask = event->attr.sample_regs_intr;
6078
6079 size += hweight64(mask) * sizeof(u64);
6080 }
6081
6082 header->size += size;
6083 }
5622f295 6084}
7f453c24 6085
9ecda41a
WN
6086static void __always_inline
6087__perf_event_output(struct perf_event *event,
6088 struct perf_sample_data *data,
6089 struct pt_regs *regs,
6090 int (*output_begin)(struct perf_output_handle *,
6091 struct perf_event *,
6092 unsigned int))
5622f295
MM
6093{
6094 struct perf_output_handle handle;
6095 struct perf_event_header header;
689802b2 6096
927c7a9e
FW
6097 /* protect the callchain buffers */
6098 rcu_read_lock();
6099
cdd6c482 6100 perf_prepare_sample(&header, data, event, regs);
5c148194 6101
9ecda41a 6102 if (output_begin(&handle, event, header.size))
927c7a9e 6103 goto exit;
0322cd6e 6104
cdd6c482 6105 perf_output_sample(&handle, &header, data, event);
f413cdb8 6106
8a057d84 6107 perf_output_end(&handle);
927c7a9e
FW
6108
6109exit:
6110 rcu_read_unlock();
0322cd6e
PZ
6111}
6112
9ecda41a
WN
6113void
6114perf_event_output_forward(struct perf_event *event,
6115 struct perf_sample_data *data,
6116 struct pt_regs *regs)
6117{
6118 __perf_event_output(event, data, regs, perf_output_begin_forward);
6119}
6120
6121void
6122perf_event_output_backward(struct perf_event *event,
6123 struct perf_sample_data *data,
6124 struct pt_regs *regs)
6125{
6126 __perf_event_output(event, data, regs, perf_output_begin_backward);
6127}
6128
6129void
6130perf_event_output(struct perf_event *event,
6131 struct perf_sample_data *data,
6132 struct pt_regs *regs)
6133{
6134 __perf_event_output(event, data, regs, perf_output_begin);
6135}
6136
38b200d6 6137/*
cdd6c482 6138 * read event_id
38b200d6
PZ
6139 */
6140
6141struct perf_read_event {
6142 struct perf_event_header header;
6143
6144 u32 pid;
6145 u32 tid;
38b200d6
PZ
6146};
6147
6148static void
cdd6c482 6149perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6150 struct task_struct *task)
6151{
6152 struct perf_output_handle handle;
c980d109 6153 struct perf_sample_data sample;
dfc65094 6154 struct perf_read_event read_event = {
38b200d6 6155 .header = {
cdd6c482 6156 .type = PERF_RECORD_READ,
38b200d6 6157 .misc = 0,
c320c7b7 6158 .size = sizeof(read_event) + event->read_size,
38b200d6 6159 },
cdd6c482
IM
6160 .pid = perf_event_pid(event, task),
6161 .tid = perf_event_tid(event, task),
38b200d6 6162 };
3dab77fb 6163 int ret;
38b200d6 6164
c980d109 6165 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6166 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6167 if (ret)
6168 return;
6169
dfc65094 6170 perf_output_put(&handle, read_event);
cdd6c482 6171 perf_output_read(&handle, event);
c980d109 6172 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6173
38b200d6
PZ
6174 perf_output_end(&handle);
6175}
6176
aab5b71e 6177typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6178
6179static void
aab5b71e
PZ
6180perf_iterate_ctx(struct perf_event_context *ctx,
6181 perf_iterate_f output,
b73e4fef 6182 void *data, bool all)
52d857a8
JO
6183{
6184 struct perf_event *event;
6185
6186 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6187 if (!all) {
6188 if (event->state < PERF_EVENT_STATE_INACTIVE)
6189 continue;
6190 if (!event_filter_match(event))
6191 continue;
6192 }
6193
67516844 6194 output(event, data);
52d857a8
JO
6195 }
6196}
6197
aab5b71e 6198static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6199{
6200 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6201 struct perf_event *event;
6202
6203 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6204 /*
6205 * Skip events that are not fully formed yet; ensure that
6206 * if we observe event->ctx, both event and ctx will be
6207 * complete enough. See perf_install_in_context().
6208 */
6209 if (!smp_load_acquire(&event->ctx))
6210 continue;
6211
f2fb6bef
KL
6212 if (event->state < PERF_EVENT_STATE_INACTIVE)
6213 continue;
6214 if (!event_filter_match(event))
6215 continue;
6216 output(event, data);
6217 }
6218}
6219
aab5b71e
PZ
6220/*
6221 * Iterate all events that need to receive side-band events.
6222 *
6223 * For new callers; ensure that account_pmu_sb_event() includes
6224 * your event, otherwise it might not get delivered.
6225 */
52d857a8 6226static void
aab5b71e 6227perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6228 struct perf_event_context *task_ctx)
6229{
52d857a8 6230 struct perf_event_context *ctx;
52d857a8
JO
6231 int ctxn;
6232
aab5b71e
PZ
6233 rcu_read_lock();
6234 preempt_disable();
6235
4e93ad60 6236 /*
aab5b71e
PZ
6237 * If we have task_ctx != NULL we only notify the task context itself.
6238 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6239 * context.
6240 */
6241 if (task_ctx) {
aab5b71e
PZ
6242 perf_iterate_ctx(task_ctx, output, data, false);
6243 goto done;
4e93ad60
JO
6244 }
6245
aab5b71e 6246 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6247
6248 for_each_task_context_nr(ctxn) {
52d857a8
JO
6249 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6250 if (ctx)
aab5b71e 6251 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6252 }
aab5b71e 6253done:
f2fb6bef 6254 preempt_enable();
52d857a8 6255 rcu_read_unlock();
95ff4ca2
AS
6256}
6257
375637bc
AS
6258/*
6259 * Clear all file-based filters at exec, they'll have to be
6260 * re-instated when/if these objects are mmapped again.
6261 */
6262static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6263{
6264 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6265 struct perf_addr_filter *filter;
6266 unsigned int restart = 0, count = 0;
6267 unsigned long flags;
6268
6269 if (!has_addr_filter(event))
6270 return;
6271
6272 raw_spin_lock_irqsave(&ifh->lock, flags);
6273 list_for_each_entry(filter, &ifh->list, entry) {
6274 if (filter->inode) {
6275 event->addr_filters_offs[count] = 0;
6276 restart++;
6277 }
6278
6279 count++;
6280 }
6281
6282 if (restart)
6283 event->addr_filters_gen++;
6284 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6285
6286 if (restart)
767ae086 6287 perf_event_stop(event, 1);
375637bc
AS
6288}
6289
6290void perf_event_exec(void)
6291{
6292 struct perf_event_context *ctx;
6293 int ctxn;
6294
6295 rcu_read_lock();
6296 for_each_task_context_nr(ctxn) {
6297 ctx = current->perf_event_ctxp[ctxn];
6298 if (!ctx)
6299 continue;
6300
6301 perf_event_enable_on_exec(ctxn);
6302
aab5b71e 6303 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6304 true);
6305 }
6306 rcu_read_unlock();
6307}
6308
95ff4ca2
AS
6309struct remote_output {
6310 struct ring_buffer *rb;
6311 int err;
6312};
6313
6314static void __perf_event_output_stop(struct perf_event *event, void *data)
6315{
6316 struct perf_event *parent = event->parent;
6317 struct remote_output *ro = data;
6318 struct ring_buffer *rb = ro->rb;
375637bc
AS
6319 struct stop_event_data sd = {
6320 .event = event,
6321 };
95ff4ca2
AS
6322
6323 if (!has_aux(event))
6324 return;
6325
6326 if (!parent)
6327 parent = event;
6328
6329 /*
6330 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6331 * ring-buffer, but it will be the child that's actually using it.
6332 *
6333 * We are using event::rb to determine if the event should be stopped,
6334 * however this may race with ring_buffer_attach() (through set_output),
6335 * which will make us skip the event that actually needs to be stopped.
6336 * So ring_buffer_attach() has to stop an aux event before re-assigning
6337 * its rb pointer.
95ff4ca2
AS
6338 */
6339 if (rcu_dereference(parent->rb) == rb)
375637bc 6340 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6341}
6342
6343static int __perf_pmu_output_stop(void *info)
6344{
6345 struct perf_event *event = info;
6346 struct pmu *pmu = event->pmu;
8b6a3fe8 6347 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6348 struct remote_output ro = {
6349 .rb = event->rb,
6350 };
6351
6352 rcu_read_lock();
aab5b71e 6353 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6354 if (cpuctx->task_ctx)
aab5b71e 6355 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6356 &ro, false);
95ff4ca2
AS
6357 rcu_read_unlock();
6358
6359 return ro.err;
6360}
6361
6362static void perf_pmu_output_stop(struct perf_event *event)
6363{
6364 struct perf_event *iter;
6365 int err, cpu;
6366
6367restart:
6368 rcu_read_lock();
6369 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6370 /*
6371 * For per-CPU events, we need to make sure that neither they
6372 * nor their children are running; for cpu==-1 events it's
6373 * sufficient to stop the event itself if it's active, since
6374 * it can't have children.
6375 */
6376 cpu = iter->cpu;
6377 if (cpu == -1)
6378 cpu = READ_ONCE(iter->oncpu);
6379
6380 if (cpu == -1)
6381 continue;
6382
6383 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6384 if (err == -EAGAIN) {
6385 rcu_read_unlock();
6386 goto restart;
6387 }
6388 }
6389 rcu_read_unlock();
52d857a8
JO
6390}
6391
60313ebe 6392/*
9f498cc5
PZ
6393 * task tracking -- fork/exit
6394 *
13d7a241 6395 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6396 */
6397
9f498cc5 6398struct perf_task_event {
3a80b4a3 6399 struct task_struct *task;
cdd6c482 6400 struct perf_event_context *task_ctx;
60313ebe
PZ
6401
6402 struct {
6403 struct perf_event_header header;
6404
6405 u32 pid;
6406 u32 ppid;
9f498cc5
PZ
6407 u32 tid;
6408 u32 ptid;
393b2ad8 6409 u64 time;
cdd6c482 6410 } event_id;
60313ebe
PZ
6411};
6412
67516844
JO
6413static int perf_event_task_match(struct perf_event *event)
6414{
13d7a241
SE
6415 return event->attr.comm || event->attr.mmap ||
6416 event->attr.mmap2 || event->attr.mmap_data ||
6417 event->attr.task;
67516844
JO
6418}
6419
cdd6c482 6420static void perf_event_task_output(struct perf_event *event,
52d857a8 6421 void *data)
60313ebe 6422{
52d857a8 6423 struct perf_task_event *task_event = data;
60313ebe 6424 struct perf_output_handle handle;
c980d109 6425 struct perf_sample_data sample;
9f498cc5 6426 struct task_struct *task = task_event->task;
c980d109 6427 int ret, size = task_event->event_id.header.size;
8bb39f9a 6428
67516844
JO
6429 if (!perf_event_task_match(event))
6430 return;
6431
c980d109 6432 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6433
c980d109 6434 ret = perf_output_begin(&handle, event,
a7ac67ea 6435 task_event->event_id.header.size);
ef60777c 6436 if (ret)
c980d109 6437 goto out;
60313ebe 6438
cdd6c482
IM
6439 task_event->event_id.pid = perf_event_pid(event, task);
6440 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6441
cdd6c482
IM
6442 task_event->event_id.tid = perf_event_tid(event, task);
6443 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6444
34f43927
PZ
6445 task_event->event_id.time = perf_event_clock(event);
6446
cdd6c482 6447 perf_output_put(&handle, task_event->event_id);
393b2ad8 6448
c980d109
ACM
6449 perf_event__output_id_sample(event, &handle, &sample);
6450
60313ebe 6451 perf_output_end(&handle);
c980d109
ACM
6452out:
6453 task_event->event_id.header.size = size;
60313ebe
PZ
6454}
6455
cdd6c482
IM
6456static void perf_event_task(struct task_struct *task,
6457 struct perf_event_context *task_ctx,
3a80b4a3 6458 int new)
60313ebe 6459{
9f498cc5 6460 struct perf_task_event task_event;
60313ebe 6461
cdd6c482
IM
6462 if (!atomic_read(&nr_comm_events) &&
6463 !atomic_read(&nr_mmap_events) &&
6464 !atomic_read(&nr_task_events))
60313ebe
PZ
6465 return;
6466
9f498cc5 6467 task_event = (struct perf_task_event){
3a80b4a3
PZ
6468 .task = task,
6469 .task_ctx = task_ctx,
cdd6c482 6470 .event_id = {
60313ebe 6471 .header = {
cdd6c482 6472 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6473 .misc = 0,
cdd6c482 6474 .size = sizeof(task_event.event_id),
60313ebe 6475 },
573402db
PZ
6476 /* .pid */
6477 /* .ppid */
9f498cc5
PZ
6478 /* .tid */
6479 /* .ptid */
34f43927 6480 /* .time */
60313ebe
PZ
6481 },
6482 };
6483
aab5b71e 6484 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6485 &task_event,
6486 task_ctx);
9f498cc5
PZ
6487}
6488
cdd6c482 6489void perf_event_fork(struct task_struct *task)
9f498cc5 6490{
cdd6c482 6491 perf_event_task(task, NULL, 1);
60313ebe
PZ
6492}
6493
8d1b2d93
PZ
6494/*
6495 * comm tracking
6496 */
6497
6498struct perf_comm_event {
22a4f650
IM
6499 struct task_struct *task;
6500 char *comm;
8d1b2d93
PZ
6501 int comm_size;
6502
6503 struct {
6504 struct perf_event_header header;
6505
6506 u32 pid;
6507 u32 tid;
cdd6c482 6508 } event_id;
8d1b2d93
PZ
6509};
6510
67516844
JO
6511static int perf_event_comm_match(struct perf_event *event)
6512{
6513 return event->attr.comm;
6514}
6515
cdd6c482 6516static void perf_event_comm_output(struct perf_event *event,
52d857a8 6517 void *data)
8d1b2d93 6518{
52d857a8 6519 struct perf_comm_event *comm_event = data;
8d1b2d93 6520 struct perf_output_handle handle;
c980d109 6521 struct perf_sample_data sample;
cdd6c482 6522 int size = comm_event->event_id.header.size;
c980d109
ACM
6523 int ret;
6524
67516844
JO
6525 if (!perf_event_comm_match(event))
6526 return;
6527
c980d109
ACM
6528 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6529 ret = perf_output_begin(&handle, event,
a7ac67ea 6530 comm_event->event_id.header.size);
8d1b2d93
PZ
6531
6532 if (ret)
c980d109 6533 goto out;
8d1b2d93 6534
cdd6c482
IM
6535 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6536 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6537
cdd6c482 6538 perf_output_put(&handle, comm_event->event_id);
76369139 6539 __output_copy(&handle, comm_event->comm,
8d1b2d93 6540 comm_event->comm_size);
c980d109
ACM
6541
6542 perf_event__output_id_sample(event, &handle, &sample);
6543
8d1b2d93 6544 perf_output_end(&handle);
c980d109
ACM
6545out:
6546 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6547}
6548
cdd6c482 6549static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6550{
413ee3b4 6551 char comm[TASK_COMM_LEN];
8d1b2d93 6552 unsigned int size;
8d1b2d93 6553
413ee3b4 6554 memset(comm, 0, sizeof(comm));
96b02d78 6555 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6556 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6557
6558 comm_event->comm = comm;
6559 comm_event->comm_size = size;
6560
cdd6c482 6561 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6562
aab5b71e 6563 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6564 comm_event,
6565 NULL);
8d1b2d93
PZ
6566}
6567
82b89778 6568void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6569{
9ee318a7
PZ
6570 struct perf_comm_event comm_event;
6571
cdd6c482 6572 if (!atomic_read(&nr_comm_events))
9ee318a7 6573 return;
a63eaf34 6574
9ee318a7 6575 comm_event = (struct perf_comm_event){
8d1b2d93 6576 .task = task,
573402db
PZ
6577 /* .comm */
6578 /* .comm_size */
cdd6c482 6579 .event_id = {
573402db 6580 .header = {
cdd6c482 6581 .type = PERF_RECORD_COMM,
82b89778 6582 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6583 /* .size */
6584 },
6585 /* .pid */
6586 /* .tid */
8d1b2d93
PZ
6587 },
6588 };
6589
cdd6c482 6590 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6591}
6592
0a4a9391
PZ
6593/*
6594 * mmap tracking
6595 */
6596
6597struct perf_mmap_event {
089dd79d
PZ
6598 struct vm_area_struct *vma;
6599
6600 const char *file_name;
6601 int file_size;
13d7a241
SE
6602 int maj, min;
6603 u64 ino;
6604 u64 ino_generation;
f972eb63 6605 u32 prot, flags;
0a4a9391
PZ
6606
6607 struct {
6608 struct perf_event_header header;
6609
6610 u32 pid;
6611 u32 tid;
6612 u64 start;
6613 u64 len;
6614 u64 pgoff;
cdd6c482 6615 } event_id;
0a4a9391
PZ
6616};
6617
67516844
JO
6618static int perf_event_mmap_match(struct perf_event *event,
6619 void *data)
6620{
6621 struct perf_mmap_event *mmap_event = data;
6622 struct vm_area_struct *vma = mmap_event->vma;
6623 int executable = vma->vm_flags & VM_EXEC;
6624
6625 return (!executable && event->attr.mmap_data) ||
13d7a241 6626 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6627}
6628
cdd6c482 6629static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6630 void *data)
0a4a9391 6631{
52d857a8 6632 struct perf_mmap_event *mmap_event = data;
0a4a9391 6633 struct perf_output_handle handle;
c980d109 6634 struct perf_sample_data sample;
cdd6c482 6635 int size = mmap_event->event_id.header.size;
c980d109 6636 int ret;
0a4a9391 6637
67516844
JO
6638 if (!perf_event_mmap_match(event, data))
6639 return;
6640
13d7a241
SE
6641 if (event->attr.mmap2) {
6642 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6643 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6644 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6645 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6646 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6647 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6648 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6649 }
6650
c980d109
ACM
6651 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6652 ret = perf_output_begin(&handle, event,
a7ac67ea 6653 mmap_event->event_id.header.size);
0a4a9391 6654 if (ret)
c980d109 6655 goto out;
0a4a9391 6656
cdd6c482
IM
6657 mmap_event->event_id.pid = perf_event_pid(event, current);
6658 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6659
cdd6c482 6660 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6661
6662 if (event->attr.mmap2) {
6663 perf_output_put(&handle, mmap_event->maj);
6664 perf_output_put(&handle, mmap_event->min);
6665 perf_output_put(&handle, mmap_event->ino);
6666 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6667 perf_output_put(&handle, mmap_event->prot);
6668 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6669 }
6670
76369139 6671 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6672 mmap_event->file_size);
c980d109
ACM
6673
6674 perf_event__output_id_sample(event, &handle, &sample);
6675
78d613eb 6676 perf_output_end(&handle);
c980d109
ACM
6677out:
6678 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6679}
6680
cdd6c482 6681static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6682{
089dd79d
PZ
6683 struct vm_area_struct *vma = mmap_event->vma;
6684 struct file *file = vma->vm_file;
13d7a241
SE
6685 int maj = 0, min = 0;
6686 u64 ino = 0, gen = 0;
f972eb63 6687 u32 prot = 0, flags = 0;
0a4a9391
PZ
6688 unsigned int size;
6689 char tmp[16];
6690 char *buf = NULL;
2c42cfbf 6691 char *name;
413ee3b4 6692
0b3589be
PZ
6693 if (vma->vm_flags & VM_READ)
6694 prot |= PROT_READ;
6695 if (vma->vm_flags & VM_WRITE)
6696 prot |= PROT_WRITE;
6697 if (vma->vm_flags & VM_EXEC)
6698 prot |= PROT_EXEC;
6699
6700 if (vma->vm_flags & VM_MAYSHARE)
6701 flags = MAP_SHARED;
6702 else
6703 flags = MAP_PRIVATE;
6704
6705 if (vma->vm_flags & VM_DENYWRITE)
6706 flags |= MAP_DENYWRITE;
6707 if (vma->vm_flags & VM_MAYEXEC)
6708 flags |= MAP_EXECUTABLE;
6709 if (vma->vm_flags & VM_LOCKED)
6710 flags |= MAP_LOCKED;
6711 if (vma->vm_flags & VM_HUGETLB)
6712 flags |= MAP_HUGETLB;
6713
0a4a9391 6714 if (file) {
13d7a241
SE
6715 struct inode *inode;
6716 dev_t dev;
3ea2f2b9 6717
2c42cfbf 6718 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6719 if (!buf) {
c7e548b4
ON
6720 name = "//enomem";
6721 goto cpy_name;
0a4a9391 6722 }
413ee3b4 6723 /*
3ea2f2b9 6724 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6725 * need to add enough zero bytes after the string to handle
6726 * the 64bit alignment we do later.
6727 */
9bf39ab2 6728 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6729 if (IS_ERR(name)) {
c7e548b4
ON
6730 name = "//toolong";
6731 goto cpy_name;
0a4a9391 6732 }
13d7a241
SE
6733 inode = file_inode(vma->vm_file);
6734 dev = inode->i_sb->s_dev;
6735 ino = inode->i_ino;
6736 gen = inode->i_generation;
6737 maj = MAJOR(dev);
6738 min = MINOR(dev);
f972eb63 6739
c7e548b4 6740 goto got_name;
0a4a9391 6741 } else {
fbe26abe
JO
6742 if (vma->vm_ops && vma->vm_ops->name) {
6743 name = (char *) vma->vm_ops->name(vma);
6744 if (name)
6745 goto cpy_name;
6746 }
6747
2c42cfbf 6748 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6749 if (name)
6750 goto cpy_name;
089dd79d 6751
32c5fb7e 6752 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6753 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6754 name = "[heap]";
6755 goto cpy_name;
32c5fb7e
ON
6756 }
6757 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6758 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6759 name = "[stack]";
6760 goto cpy_name;
089dd79d
PZ
6761 }
6762
c7e548b4
ON
6763 name = "//anon";
6764 goto cpy_name;
0a4a9391
PZ
6765 }
6766
c7e548b4
ON
6767cpy_name:
6768 strlcpy(tmp, name, sizeof(tmp));
6769 name = tmp;
0a4a9391 6770got_name:
2c42cfbf
PZ
6771 /*
6772 * Since our buffer works in 8 byte units we need to align our string
6773 * size to a multiple of 8. However, we must guarantee the tail end is
6774 * zero'd out to avoid leaking random bits to userspace.
6775 */
6776 size = strlen(name)+1;
6777 while (!IS_ALIGNED(size, sizeof(u64)))
6778 name[size++] = '\0';
0a4a9391
PZ
6779
6780 mmap_event->file_name = name;
6781 mmap_event->file_size = size;
13d7a241
SE
6782 mmap_event->maj = maj;
6783 mmap_event->min = min;
6784 mmap_event->ino = ino;
6785 mmap_event->ino_generation = gen;
f972eb63
PZ
6786 mmap_event->prot = prot;
6787 mmap_event->flags = flags;
0a4a9391 6788
2fe85427
SE
6789 if (!(vma->vm_flags & VM_EXEC))
6790 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6791
cdd6c482 6792 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6793
aab5b71e 6794 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6795 mmap_event,
6796 NULL);
665c2142 6797
0a4a9391
PZ
6798 kfree(buf);
6799}
6800
375637bc
AS
6801/*
6802 * Check whether inode and address range match filter criteria.
6803 */
6804static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6805 struct file *file, unsigned long offset,
6806 unsigned long size)
6807{
45063097 6808 if (filter->inode != file_inode(file))
375637bc
AS
6809 return false;
6810
6811 if (filter->offset > offset + size)
6812 return false;
6813
6814 if (filter->offset + filter->size < offset)
6815 return false;
6816
6817 return true;
6818}
6819
6820static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6821{
6822 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6823 struct vm_area_struct *vma = data;
6824 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6825 struct file *file = vma->vm_file;
6826 struct perf_addr_filter *filter;
6827 unsigned int restart = 0, count = 0;
6828
6829 if (!has_addr_filter(event))
6830 return;
6831
6832 if (!file)
6833 return;
6834
6835 raw_spin_lock_irqsave(&ifh->lock, flags);
6836 list_for_each_entry(filter, &ifh->list, entry) {
6837 if (perf_addr_filter_match(filter, file, off,
6838 vma->vm_end - vma->vm_start)) {
6839 event->addr_filters_offs[count] = vma->vm_start;
6840 restart++;
6841 }
6842
6843 count++;
6844 }
6845
6846 if (restart)
6847 event->addr_filters_gen++;
6848 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6849
6850 if (restart)
767ae086 6851 perf_event_stop(event, 1);
375637bc
AS
6852}
6853
6854/*
6855 * Adjust all task's events' filters to the new vma
6856 */
6857static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6858{
6859 struct perf_event_context *ctx;
6860 int ctxn;
6861
12b40a23
MP
6862 /*
6863 * Data tracing isn't supported yet and as such there is no need
6864 * to keep track of anything that isn't related to executable code:
6865 */
6866 if (!(vma->vm_flags & VM_EXEC))
6867 return;
6868
375637bc
AS
6869 rcu_read_lock();
6870 for_each_task_context_nr(ctxn) {
6871 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6872 if (!ctx)
6873 continue;
6874
aab5b71e 6875 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
6876 }
6877 rcu_read_unlock();
6878}
6879
3af9e859 6880void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6881{
9ee318a7
PZ
6882 struct perf_mmap_event mmap_event;
6883
cdd6c482 6884 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6885 return;
6886
6887 mmap_event = (struct perf_mmap_event){
089dd79d 6888 .vma = vma,
573402db
PZ
6889 /* .file_name */
6890 /* .file_size */
cdd6c482 6891 .event_id = {
573402db 6892 .header = {
cdd6c482 6893 .type = PERF_RECORD_MMAP,
39447b38 6894 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6895 /* .size */
6896 },
6897 /* .pid */
6898 /* .tid */
089dd79d
PZ
6899 .start = vma->vm_start,
6900 .len = vma->vm_end - vma->vm_start,
3a0304e9 6901 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6902 },
13d7a241
SE
6903 /* .maj (attr_mmap2 only) */
6904 /* .min (attr_mmap2 only) */
6905 /* .ino (attr_mmap2 only) */
6906 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6907 /* .prot (attr_mmap2 only) */
6908 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6909 };
6910
375637bc 6911 perf_addr_filters_adjust(vma);
cdd6c482 6912 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6913}
6914
68db7e98
AS
6915void perf_event_aux_event(struct perf_event *event, unsigned long head,
6916 unsigned long size, u64 flags)
6917{
6918 struct perf_output_handle handle;
6919 struct perf_sample_data sample;
6920 struct perf_aux_event {
6921 struct perf_event_header header;
6922 u64 offset;
6923 u64 size;
6924 u64 flags;
6925 } rec = {
6926 .header = {
6927 .type = PERF_RECORD_AUX,
6928 .misc = 0,
6929 .size = sizeof(rec),
6930 },
6931 .offset = head,
6932 .size = size,
6933 .flags = flags,
6934 };
6935 int ret;
6936
6937 perf_event_header__init_id(&rec.header, &sample, event);
6938 ret = perf_output_begin(&handle, event, rec.header.size);
6939
6940 if (ret)
6941 return;
6942
6943 perf_output_put(&handle, rec);
6944 perf_event__output_id_sample(event, &handle, &sample);
6945
6946 perf_output_end(&handle);
6947}
6948
f38b0dbb
KL
6949/*
6950 * Lost/dropped samples logging
6951 */
6952void perf_log_lost_samples(struct perf_event *event, u64 lost)
6953{
6954 struct perf_output_handle handle;
6955 struct perf_sample_data sample;
6956 int ret;
6957
6958 struct {
6959 struct perf_event_header header;
6960 u64 lost;
6961 } lost_samples_event = {
6962 .header = {
6963 .type = PERF_RECORD_LOST_SAMPLES,
6964 .misc = 0,
6965 .size = sizeof(lost_samples_event),
6966 },
6967 .lost = lost,
6968 };
6969
6970 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6971
6972 ret = perf_output_begin(&handle, event,
6973 lost_samples_event.header.size);
6974 if (ret)
6975 return;
6976
6977 perf_output_put(&handle, lost_samples_event);
6978 perf_event__output_id_sample(event, &handle, &sample);
6979 perf_output_end(&handle);
6980}
6981
45ac1403
AH
6982/*
6983 * context_switch tracking
6984 */
6985
6986struct perf_switch_event {
6987 struct task_struct *task;
6988 struct task_struct *next_prev;
6989
6990 struct {
6991 struct perf_event_header header;
6992 u32 next_prev_pid;
6993 u32 next_prev_tid;
6994 } event_id;
6995};
6996
6997static int perf_event_switch_match(struct perf_event *event)
6998{
6999 return event->attr.context_switch;
7000}
7001
7002static void perf_event_switch_output(struct perf_event *event, void *data)
7003{
7004 struct perf_switch_event *se = data;
7005 struct perf_output_handle handle;
7006 struct perf_sample_data sample;
7007 int ret;
7008
7009 if (!perf_event_switch_match(event))
7010 return;
7011
7012 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7013 if (event->ctx->task) {
7014 se->event_id.header.type = PERF_RECORD_SWITCH;
7015 se->event_id.header.size = sizeof(se->event_id.header);
7016 } else {
7017 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7018 se->event_id.header.size = sizeof(se->event_id);
7019 se->event_id.next_prev_pid =
7020 perf_event_pid(event, se->next_prev);
7021 se->event_id.next_prev_tid =
7022 perf_event_tid(event, se->next_prev);
7023 }
7024
7025 perf_event_header__init_id(&se->event_id.header, &sample, event);
7026
7027 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7028 if (ret)
7029 return;
7030
7031 if (event->ctx->task)
7032 perf_output_put(&handle, se->event_id.header);
7033 else
7034 perf_output_put(&handle, se->event_id);
7035
7036 perf_event__output_id_sample(event, &handle, &sample);
7037
7038 perf_output_end(&handle);
7039}
7040
7041static void perf_event_switch(struct task_struct *task,
7042 struct task_struct *next_prev, bool sched_in)
7043{
7044 struct perf_switch_event switch_event;
7045
7046 /* N.B. caller checks nr_switch_events != 0 */
7047
7048 switch_event = (struct perf_switch_event){
7049 .task = task,
7050 .next_prev = next_prev,
7051 .event_id = {
7052 .header = {
7053 /* .type */
7054 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7055 /* .size */
7056 },
7057 /* .next_prev_pid */
7058 /* .next_prev_tid */
7059 },
7060 };
7061
aab5b71e 7062 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7063 &switch_event,
7064 NULL);
7065}
7066
a78ac325
PZ
7067/*
7068 * IRQ throttle logging
7069 */
7070
cdd6c482 7071static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7072{
7073 struct perf_output_handle handle;
c980d109 7074 struct perf_sample_data sample;
a78ac325
PZ
7075 int ret;
7076
7077 struct {
7078 struct perf_event_header header;
7079 u64 time;
cca3f454 7080 u64 id;
7f453c24 7081 u64 stream_id;
a78ac325
PZ
7082 } throttle_event = {
7083 .header = {
cdd6c482 7084 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7085 .misc = 0,
7086 .size = sizeof(throttle_event),
7087 },
34f43927 7088 .time = perf_event_clock(event),
cdd6c482
IM
7089 .id = primary_event_id(event),
7090 .stream_id = event->id,
a78ac325
PZ
7091 };
7092
966ee4d6 7093 if (enable)
cdd6c482 7094 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7095
c980d109
ACM
7096 perf_event_header__init_id(&throttle_event.header, &sample, event);
7097
7098 ret = perf_output_begin(&handle, event,
a7ac67ea 7099 throttle_event.header.size);
a78ac325
PZ
7100 if (ret)
7101 return;
7102
7103 perf_output_put(&handle, throttle_event);
c980d109 7104 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7105 perf_output_end(&handle);
7106}
7107
ec0d7729
AS
7108static void perf_log_itrace_start(struct perf_event *event)
7109{
7110 struct perf_output_handle handle;
7111 struct perf_sample_data sample;
7112 struct perf_aux_event {
7113 struct perf_event_header header;
7114 u32 pid;
7115 u32 tid;
7116 } rec;
7117 int ret;
7118
7119 if (event->parent)
7120 event = event->parent;
7121
7122 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7123 event->hw.itrace_started)
7124 return;
7125
ec0d7729
AS
7126 rec.header.type = PERF_RECORD_ITRACE_START;
7127 rec.header.misc = 0;
7128 rec.header.size = sizeof(rec);
7129 rec.pid = perf_event_pid(event, current);
7130 rec.tid = perf_event_tid(event, current);
7131
7132 perf_event_header__init_id(&rec.header, &sample, event);
7133 ret = perf_output_begin(&handle, event, rec.header.size);
7134
7135 if (ret)
7136 return;
7137
7138 perf_output_put(&handle, rec);
7139 perf_event__output_id_sample(event, &handle, &sample);
7140
7141 perf_output_end(&handle);
7142}
7143
475113d9
JO
7144static int
7145__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7146{
cdd6c482 7147 struct hw_perf_event *hwc = &event->hw;
79f14641 7148 int ret = 0;
475113d9 7149 u64 seq;
96398826 7150
e050e3f0
SE
7151 seq = __this_cpu_read(perf_throttled_seq);
7152 if (seq != hwc->interrupts_seq) {
7153 hwc->interrupts_seq = seq;
7154 hwc->interrupts = 1;
7155 } else {
7156 hwc->interrupts++;
7157 if (unlikely(throttle
7158 && hwc->interrupts >= max_samples_per_tick)) {
7159 __this_cpu_inc(perf_throttled_count);
555e0c1e 7160 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7161 hwc->interrupts = MAX_INTERRUPTS;
7162 perf_log_throttle(event, 0);
a78ac325
PZ
7163 ret = 1;
7164 }
e050e3f0 7165 }
60db5e09 7166
cdd6c482 7167 if (event->attr.freq) {
def0a9b2 7168 u64 now = perf_clock();
abd50713 7169 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7170
abd50713 7171 hwc->freq_time_stamp = now;
bd2b5b12 7172
abd50713 7173 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7174 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7175 }
7176
475113d9
JO
7177 return ret;
7178}
7179
7180int perf_event_account_interrupt(struct perf_event *event)
7181{
7182 return __perf_event_account_interrupt(event, 1);
7183}
7184
7185/*
7186 * Generic event overflow handling, sampling.
7187 */
7188
7189static int __perf_event_overflow(struct perf_event *event,
7190 int throttle, struct perf_sample_data *data,
7191 struct pt_regs *regs)
7192{
7193 int events = atomic_read(&event->event_limit);
7194 int ret = 0;
7195
7196 /*
7197 * Non-sampling counters might still use the PMI to fold short
7198 * hardware counters, ignore those.
7199 */
7200 if (unlikely(!is_sampling_event(event)))
7201 return 0;
7202
7203 ret = __perf_event_account_interrupt(event, throttle);
7204
2023b359
PZ
7205 /*
7206 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7207 * events
2023b359
PZ
7208 */
7209
cdd6c482
IM
7210 event->pending_kill = POLL_IN;
7211 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7212 ret = 1;
cdd6c482 7213 event->pending_kill = POLL_HUP;
5aab90ce
JO
7214
7215 perf_event_disable_inatomic(event);
79f14641
PZ
7216 }
7217
aa6a5f3c 7218 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7219
fed66e2c 7220 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7221 event->pending_wakeup = 1;
7222 irq_work_queue(&event->pending);
f506b3dc
PZ
7223 }
7224
79f14641 7225 return ret;
f6c7d5fe
PZ
7226}
7227
a8b0ca17 7228int perf_event_overflow(struct perf_event *event,
5622f295
MM
7229 struct perf_sample_data *data,
7230 struct pt_regs *regs)
850bc73f 7231{
a8b0ca17 7232 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7233}
7234
15dbf27c 7235/*
cdd6c482 7236 * Generic software event infrastructure
15dbf27c
PZ
7237 */
7238
b28ab83c
PZ
7239struct swevent_htable {
7240 struct swevent_hlist *swevent_hlist;
7241 struct mutex hlist_mutex;
7242 int hlist_refcount;
7243
7244 /* Recursion avoidance in each contexts */
7245 int recursion[PERF_NR_CONTEXTS];
7246};
7247
7248static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7249
7b4b6658 7250/*
cdd6c482
IM
7251 * We directly increment event->count and keep a second value in
7252 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7253 * is kept in the range [-sample_period, 0] so that we can use the
7254 * sign as trigger.
7255 */
7256
ab573844 7257u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7258{
cdd6c482 7259 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7260 u64 period = hwc->last_period;
7261 u64 nr, offset;
7262 s64 old, val;
7263
7264 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7265
7266again:
e7850595 7267 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7268 if (val < 0)
7269 return 0;
15dbf27c 7270
7b4b6658
PZ
7271 nr = div64_u64(period + val, period);
7272 offset = nr * period;
7273 val -= offset;
e7850595 7274 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7275 goto again;
15dbf27c 7276
7b4b6658 7277 return nr;
15dbf27c
PZ
7278}
7279
0cff784a 7280static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7281 struct perf_sample_data *data,
5622f295 7282 struct pt_regs *regs)
15dbf27c 7283{
cdd6c482 7284 struct hw_perf_event *hwc = &event->hw;
850bc73f 7285 int throttle = 0;
15dbf27c 7286
0cff784a
PZ
7287 if (!overflow)
7288 overflow = perf_swevent_set_period(event);
15dbf27c 7289
7b4b6658
PZ
7290 if (hwc->interrupts == MAX_INTERRUPTS)
7291 return;
15dbf27c 7292
7b4b6658 7293 for (; overflow; overflow--) {
a8b0ca17 7294 if (__perf_event_overflow(event, throttle,
5622f295 7295 data, regs)) {
7b4b6658
PZ
7296 /*
7297 * We inhibit the overflow from happening when
7298 * hwc->interrupts == MAX_INTERRUPTS.
7299 */
7300 break;
7301 }
cf450a73 7302 throttle = 1;
7b4b6658 7303 }
15dbf27c
PZ
7304}
7305
a4eaf7f1 7306static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7307 struct perf_sample_data *data,
5622f295 7308 struct pt_regs *regs)
7b4b6658 7309{
cdd6c482 7310 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7311
e7850595 7312 local64_add(nr, &event->count);
d6d020e9 7313
0cff784a
PZ
7314 if (!regs)
7315 return;
7316
6c7e550f 7317 if (!is_sampling_event(event))
7b4b6658 7318 return;
d6d020e9 7319
5d81e5cf
AV
7320 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7321 data->period = nr;
7322 return perf_swevent_overflow(event, 1, data, regs);
7323 } else
7324 data->period = event->hw.last_period;
7325
0cff784a 7326 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7327 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7328
e7850595 7329 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7330 return;
df1a132b 7331
a8b0ca17 7332 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7333}
7334
f5ffe02e
FW
7335static int perf_exclude_event(struct perf_event *event,
7336 struct pt_regs *regs)
7337{
a4eaf7f1 7338 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7339 return 1;
a4eaf7f1 7340
f5ffe02e
FW
7341 if (regs) {
7342 if (event->attr.exclude_user && user_mode(regs))
7343 return 1;
7344
7345 if (event->attr.exclude_kernel && !user_mode(regs))
7346 return 1;
7347 }
7348
7349 return 0;
7350}
7351
cdd6c482 7352static int perf_swevent_match(struct perf_event *event,
1c432d89 7353 enum perf_type_id type,
6fb2915d
LZ
7354 u32 event_id,
7355 struct perf_sample_data *data,
7356 struct pt_regs *regs)
15dbf27c 7357{
cdd6c482 7358 if (event->attr.type != type)
a21ca2ca 7359 return 0;
f5ffe02e 7360
cdd6c482 7361 if (event->attr.config != event_id)
15dbf27c
PZ
7362 return 0;
7363
f5ffe02e
FW
7364 if (perf_exclude_event(event, regs))
7365 return 0;
15dbf27c
PZ
7366
7367 return 1;
7368}
7369
76e1d904
FW
7370static inline u64 swevent_hash(u64 type, u32 event_id)
7371{
7372 u64 val = event_id | (type << 32);
7373
7374 return hash_64(val, SWEVENT_HLIST_BITS);
7375}
7376
49f135ed
FW
7377static inline struct hlist_head *
7378__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7379{
49f135ed
FW
7380 u64 hash = swevent_hash(type, event_id);
7381
7382 return &hlist->heads[hash];
7383}
76e1d904 7384
49f135ed
FW
7385/* For the read side: events when they trigger */
7386static inline struct hlist_head *
b28ab83c 7387find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7388{
7389 struct swevent_hlist *hlist;
76e1d904 7390
b28ab83c 7391 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7392 if (!hlist)
7393 return NULL;
7394
49f135ed
FW
7395 return __find_swevent_head(hlist, type, event_id);
7396}
7397
7398/* For the event head insertion and removal in the hlist */
7399static inline struct hlist_head *
b28ab83c 7400find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7401{
7402 struct swevent_hlist *hlist;
7403 u32 event_id = event->attr.config;
7404 u64 type = event->attr.type;
7405
7406 /*
7407 * Event scheduling is always serialized against hlist allocation
7408 * and release. Which makes the protected version suitable here.
7409 * The context lock guarantees that.
7410 */
b28ab83c 7411 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7412 lockdep_is_held(&event->ctx->lock));
7413 if (!hlist)
7414 return NULL;
7415
7416 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7417}
7418
7419static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7420 u64 nr,
76e1d904
FW
7421 struct perf_sample_data *data,
7422 struct pt_regs *regs)
15dbf27c 7423{
4a32fea9 7424 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7425 struct perf_event *event;
76e1d904 7426 struct hlist_head *head;
15dbf27c 7427
76e1d904 7428 rcu_read_lock();
b28ab83c 7429 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7430 if (!head)
7431 goto end;
7432
b67bfe0d 7433 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7434 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7435 perf_swevent_event(event, nr, data, regs);
15dbf27c 7436 }
76e1d904
FW
7437end:
7438 rcu_read_unlock();
15dbf27c
PZ
7439}
7440
86038c5e
PZI
7441DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7442
4ed7c92d 7443int perf_swevent_get_recursion_context(void)
96f6d444 7444{
4a32fea9 7445 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7446
b28ab83c 7447 return get_recursion_context(swhash->recursion);
96f6d444 7448}
645e8cc0 7449EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7450
98b5c2c6 7451void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7452{
4a32fea9 7453 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7454
b28ab83c 7455 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7456}
15dbf27c 7457
86038c5e 7458void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7459{
a4234bfc 7460 struct perf_sample_data data;
4ed7c92d 7461
86038c5e 7462 if (WARN_ON_ONCE(!regs))
4ed7c92d 7463 return;
a4234bfc 7464
fd0d000b 7465 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7466 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7467}
7468
7469void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7470{
7471 int rctx;
7472
7473 preempt_disable_notrace();
7474 rctx = perf_swevent_get_recursion_context();
7475 if (unlikely(rctx < 0))
7476 goto fail;
7477
7478 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7479
7480 perf_swevent_put_recursion_context(rctx);
86038c5e 7481fail:
1c024eca 7482 preempt_enable_notrace();
b8e83514
PZ
7483}
7484
cdd6c482 7485static void perf_swevent_read(struct perf_event *event)
15dbf27c 7486{
15dbf27c
PZ
7487}
7488
a4eaf7f1 7489static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7490{
4a32fea9 7491 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7492 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7493 struct hlist_head *head;
7494
6c7e550f 7495 if (is_sampling_event(event)) {
7b4b6658 7496 hwc->last_period = hwc->sample_period;
cdd6c482 7497 perf_swevent_set_period(event);
7b4b6658 7498 }
76e1d904 7499
a4eaf7f1
PZ
7500 hwc->state = !(flags & PERF_EF_START);
7501
b28ab83c 7502 head = find_swevent_head(swhash, event);
12ca6ad2 7503 if (WARN_ON_ONCE(!head))
76e1d904
FW
7504 return -EINVAL;
7505
7506 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7507 perf_event_update_userpage(event);
76e1d904 7508
15dbf27c
PZ
7509 return 0;
7510}
7511
a4eaf7f1 7512static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7513{
76e1d904 7514 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7515}
7516
a4eaf7f1 7517static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7518{
a4eaf7f1 7519 event->hw.state = 0;
d6d020e9 7520}
aa9c4c0f 7521
a4eaf7f1 7522static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7523{
a4eaf7f1 7524 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7525}
7526
49f135ed
FW
7527/* Deref the hlist from the update side */
7528static inline struct swevent_hlist *
b28ab83c 7529swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7530{
b28ab83c
PZ
7531 return rcu_dereference_protected(swhash->swevent_hlist,
7532 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7533}
7534
b28ab83c 7535static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7536{
b28ab83c 7537 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7538
49f135ed 7539 if (!hlist)
76e1d904
FW
7540 return;
7541
70691d4a 7542 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7543 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7544}
7545
3b364d7b 7546static void swevent_hlist_put_cpu(int cpu)
76e1d904 7547{
b28ab83c 7548 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7549
b28ab83c 7550 mutex_lock(&swhash->hlist_mutex);
76e1d904 7551
b28ab83c
PZ
7552 if (!--swhash->hlist_refcount)
7553 swevent_hlist_release(swhash);
76e1d904 7554
b28ab83c 7555 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7556}
7557
3b364d7b 7558static void swevent_hlist_put(void)
76e1d904
FW
7559{
7560 int cpu;
7561
76e1d904 7562 for_each_possible_cpu(cpu)
3b364d7b 7563 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7564}
7565
3b364d7b 7566static int swevent_hlist_get_cpu(int cpu)
76e1d904 7567{
b28ab83c 7568 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7569 int err = 0;
7570
b28ab83c 7571 mutex_lock(&swhash->hlist_mutex);
b28ab83c 7572 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
7573 struct swevent_hlist *hlist;
7574
7575 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7576 if (!hlist) {
7577 err = -ENOMEM;
7578 goto exit;
7579 }
b28ab83c 7580 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7581 }
b28ab83c 7582 swhash->hlist_refcount++;
9ed6060d 7583exit:
b28ab83c 7584 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7585
7586 return err;
7587}
7588
3b364d7b 7589static int swevent_hlist_get(void)
76e1d904 7590{
3b364d7b 7591 int err, cpu, failed_cpu;
76e1d904 7592
76e1d904
FW
7593 get_online_cpus();
7594 for_each_possible_cpu(cpu) {
3b364d7b 7595 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7596 if (err) {
7597 failed_cpu = cpu;
7598 goto fail;
7599 }
7600 }
7601 put_online_cpus();
7602
7603 return 0;
9ed6060d 7604fail:
76e1d904
FW
7605 for_each_possible_cpu(cpu) {
7606 if (cpu == failed_cpu)
7607 break;
3b364d7b 7608 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7609 }
7610
7611 put_online_cpus();
7612 return err;
7613}
7614
c5905afb 7615struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7616
b0a873eb
PZ
7617static void sw_perf_event_destroy(struct perf_event *event)
7618{
7619 u64 event_id = event->attr.config;
95476b64 7620
b0a873eb
PZ
7621 WARN_ON(event->parent);
7622
c5905afb 7623 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7624 swevent_hlist_put();
b0a873eb
PZ
7625}
7626
7627static int perf_swevent_init(struct perf_event *event)
7628{
8176cced 7629 u64 event_id = event->attr.config;
b0a873eb
PZ
7630
7631 if (event->attr.type != PERF_TYPE_SOFTWARE)
7632 return -ENOENT;
7633
2481c5fa
SE
7634 /*
7635 * no branch sampling for software events
7636 */
7637 if (has_branch_stack(event))
7638 return -EOPNOTSUPP;
7639
b0a873eb
PZ
7640 switch (event_id) {
7641 case PERF_COUNT_SW_CPU_CLOCK:
7642 case PERF_COUNT_SW_TASK_CLOCK:
7643 return -ENOENT;
7644
7645 default:
7646 break;
7647 }
7648
ce677831 7649 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7650 return -ENOENT;
7651
7652 if (!event->parent) {
7653 int err;
7654
3b364d7b 7655 err = swevent_hlist_get();
b0a873eb
PZ
7656 if (err)
7657 return err;
7658
c5905afb 7659 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7660 event->destroy = sw_perf_event_destroy;
7661 }
7662
7663 return 0;
7664}
7665
7666static struct pmu perf_swevent = {
89a1e187 7667 .task_ctx_nr = perf_sw_context,
95476b64 7668
34f43927
PZ
7669 .capabilities = PERF_PMU_CAP_NO_NMI,
7670
b0a873eb 7671 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7672 .add = perf_swevent_add,
7673 .del = perf_swevent_del,
7674 .start = perf_swevent_start,
7675 .stop = perf_swevent_stop,
1c024eca 7676 .read = perf_swevent_read,
1c024eca
PZ
7677};
7678
b0a873eb
PZ
7679#ifdef CONFIG_EVENT_TRACING
7680
1c024eca
PZ
7681static int perf_tp_filter_match(struct perf_event *event,
7682 struct perf_sample_data *data)
7683{
7e3f977e 7684 void *record = data->raw->frag.data;
1c024eca 7685
b71b437e
PZ
7686 /* only top level events have filters set */
7687 if (event->parent)
7688 event = event->parent;
7689
1c024eca
PZ
7690 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7691 return 1;
7692 return 0;
7693}
7694
7695static int perf_tp_event_match(struct perf_event *event,
7696 struct perf_sample_data *data,
7697 struct pt_regs *regs)
7698{
a0f7d0f7
FW
7699 if (event->hw.state & PERF_HES_STOPPED)
7700 return 0;
580d607c
PZ
7701 /*
7702 * All tracepoints are from kernel-space.
7703 */
7704 if (event->attr.exclude_kernel)
1c024eca
PZ
7705 return 0;
7706
7707 if (!perf_tp_filter_match(event, data))
7708 return 0;
7709
7710 return 1;
7711}
7712
85b67bcb
AS
7713void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7714 struct trace_event_call *call, u64 count,
7715 struct pt_regs *regs, struct hlist_head *head,
7716 struct task_struct *task)
7717{
7718 struct bpf_prog *prog = call->prog;
7719
7720 if (prog) {
7721 *(struct pt_regs **)raw_data = regs;
7722 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7723 perf_swevent_put_recursion_context(rctx);
7724 return;
7725 }
7726 }
7727 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7728 rctx, task);
7729}
7730EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7731
1e1dcd93 7732void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff
AV
7733 struct pt_regs *regs, struct hlist_head *head, int rctx,
7734 struct task_struct *task)
95476b64
FW
7735{
7736 struct perf_sample_data data;
1c024eca 7737 struct perf_event *event;
1c024eca 7738
95476b64 7739 struct perf_raw_record raw = {
7e3f977e
DB
7740 .frag = {
7741 .size = entry_size,
7742 .data = record,
7743 },
95476b64
FW
7744 };
7745
1e1dcd93 7746 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7747 data.raw = &raw;
7748
1e1dcd93
AS
7749 perf_trace_buf_update(record, event_type);
7750
b67bfe0d 7751 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7752 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7753 perf_swevent_event(event, count, &data, regs);
4f41c013 7754 }
ecc55f84 7755
e6dab5ff
AV
7756 /*
7757 * If we got specified a target task, also iterate its context and
7758 * deliver this event there too.
7759 */
7760 if (task && task != current) {
7761 struct perf_event_context *ctx;
7762 struct trace_entry *entry = record;
7763
7764 rcu_read_lock();
7765 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7766 if (!ctx)
7767 goto unlock;
7768
7769 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7770 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7771 continue;
7772 if (event->attr.config != entry->type)
7773 continue;
7774 if (perf_tp_event_match(event, &data, regs))
7775 perf_swevent_event(event, count, &data, regs);
7776 }
7777unlock:
7778 rcu_read_unlock();
7779 }
7780
ecc55f84 7781 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7782}
7783EXPORT_SYMBOL_GPL(perf_tp_event);
7784
cdd6c482 7785static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7786{
1c024eca 7787 perf_trace_destroy(event);
e077df4f
PZ
7788}
7789
b0a873eb 7790static int perf_tp_event_init(struct perf_event *event)
e077df4f 7791{
76e1d904
FW
7792 int err;
7793
b0a873eb
PZ
7794 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7795 return -ENOENT;
7796
2481c5fa
SE
7797 /*
7798 * no branch sampling for tracepoint events
7799 */
7800 if (has_branch_stack(event))
7801 return -EOPNOTSUPP;
7802
1c024eca
PZ
7803 err = perf_trace_init(event);
7804 if (err)
b0a873eb 7805 return err;
e077df4f 7806
cdd6c482 7807 event->destroy = tp_perf_event_destroy;
e077df4f 7808
b0a873eb
PZ
7809 return 0;
7810}
7811
7812static struct pmu perf_tracepoint = {
89a1e187
PZ
7813 .task_ctx_nr = perf_sw_context,
7814
b0a873eb 7815 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7816 .add = perf_trace_add,
7817 .del = perf_trace_del,
7818 .start = perf_swevent_start,
7819 .stop = perf_swevent_stop,
b0a873eb 7820 .read = perf_swevent_read,
b0a873eb
PZ
7821};
7822
7823static inline void perf_tp_register(void)
7824{
2e80a82a 7825 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7826}
6fb2915d 7827
6fb2915d
LZ
7828static void perf_event_free_filter(struct perf_event *event)
7829{
7830 ftrace_profile_free_filter(event);
7831}
7832
aa6a5f3c
AS
7833#ifdef CONFIG_BPF_SYSCALL
7834static void bpf_overflow_handler(struct perf_event *event,
7835 struct perf_sample_data *data,
7836 struct pt_regs *regs)
7837{
7838 struct bpf_perf_event_data_kern ctx = {
7839 .data = data,
7840 .regs = regs,
7841 };
7842 int ret = 0;
7843
7844 preempt_disable();
7845 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7846 goto out;
7847 rcu_read_lock();
88575199 7848 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
7849 rcu_read_unlock();
7850out:
7851 __this_cpu_dec(bpf_prog_active);
7852 preempt_enable();
7853 if (!ret)
7854 return;
7855
7856 event->orig_overflow_handler(event, data, regs);
7857}
7858
7859static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7860{
7861 struct bpf_prog *prog;
7862
7863 if (event->overflow_handler_context)
7864 /* hw breakpoint or kernel counter */
7865 return -EINVAL;
7866
7867 if (event->prog)
7868 return -EEXIST;
7869
7870 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7871 if (IS_ERR(prog))
7872 return PTR_ERR(prog);
7873
7874 event->prog = prog;
7875 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7876 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7877 return 0;
7878}
7879
7880static void perf_event_free_bpf_handler(struct perf_event *event)
7881{
7882 struct bpf_prog *prog = event->prog;
7883
7884 if (!prog)
7885 return;
7886
7887 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7888 event->prog = NULL;
7889 bpf_prog_put(prog);
7890}
7891#else
7892static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7893{
7894 return -EOPNOTSUPP;
7895}
7896static void perf_event_free_bpf_handler(struct perf_event *event)
7897{
7898}
7899#endif
7900
2541517c
AS
7901static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7902{
98b5c2c6 7903 bool is_kprobe, is_tracepoint;
2541517c
AS
7904 struct bpf_prog *prog;
7905
aa6a5f3c
AS
7906 if (event->attr.type == PERF_TYPE_HARDWARE ||
7907 event->attr.type == PERF_TYPE_SOFTWARE)
7908 return perf_event_set_bpf_handler(event, prog_fd);
7909
2541517c
AS
7910 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7911 return -EINVAL;
7912
7913 if (event->tp_event->prog)
7914 return -EEXIST;
7915
98b5c2c6
AS
7916 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7917 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7918 if (!is_kprobe && !is_tracepoint)
7919 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
7920 return -EINVAL;
7921
7922 prog = bpf_prog_get(prog_fd);
7923 if (IS_ERR(prog))
7924 return PTR_ERR(prog);
7925
98b5c2c6
AS
7926 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7927 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
7928 /* valid fd, but invalid bpf program type */
7929 bpf_prog_put(prog);
7930 return -EINVAL;
7931 }
7932
32bbe007
AS
7933 if (is_tracepoint) {
7934 int off = trace_event_get_offsets(event->tp_event);
7935
7936 if (prog->aux->max_ctx_offset > off) {
7937 bpf_prog_put(prog);
7938 return -EACCES;
7939 }
7940 }
2541517c
AS
7941 event->tp_event->prog = prog;
7942
7943 return 0;
7944}
7945
7946static void perf_event_free_bpf_prog(struct perf_event *event)
7947{
7948 struct bpf_prog *prog;
7949
aa6a5f3c
AS
7950 perf_event_free_bpf_handler(event);
7951
2541517c
AS
7952 if (!event->tp_event)
7953 return;
7954
7955 prog = event->tp_event->prog;
7956 if (prog) {
7957 event->tp_event->prog = NULL;
1aacde3d 7958 bpf_prog_put(prog);
2541517c
AS
7959 }
7960}
7961
e077df4f 7962#else
6fb2915d 7963
b0a873eb 7964static inline void perf_tp_register(void)
e077df4f 7965{
e077df4f 7966}
6fb2915d 7967
6fb2915d
LZ
7968static void perf_event_free_filter(struct perf_event *event)
7969{
7970}
7971
2541517c
AS
7972static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7973{
7974 return -ENOENT;
7975}
7976
7977static void perf_event_free_bpf_prog(struct perf_event *event)
7978{
7979}
07b139c8 7980#endif /* CONFIG_EVENT_TRACING */
e077df4f 7981
24f1e32c 7982#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7983void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7984{
f5ffe02e
FW
7985 struct perf_sample_data sample;
7986 struct pt_regs *regs = data;
7987
fd0d000b 7988 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7989
a4eaf7f1 7990 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7991 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7992}
7993#endif
7994
375637bc
AS
7995/*
7996 * Allocate a new address filter
7997 */
7998static struct perf_addr_filter *
7999perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8000{
8001 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8002 struct perf_addr_filter *filter;
8003
8004 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8005 if (!filter)
8006 return NULL;
8007
8008 INIT_LIST_HEAD(&filter->entry);
8009 list_add_tail(&filter->entry, filters);
8010
8011 return filter;
8012}
8013
8014static void free_filters_list(struct list_head *filters)
8015{
8016 struct perf_addr_filter *filter, *iter;
8017
8018 list_for_each_entry_safe(filter, iter, filters, entry) {
8019 if (filter->inode)
8020 iput(filter->inode);
8021 list_del(&filter->entry);
8022 kfree(filter);
8023 }
8024}
8025
8026/*
8027 * Free existing address filters and optionally install new ones
8028 */
8029static void perf_addr_filters_splice(struct perf_event *event,
8030 struct list_head *head)
8031{
8032 unsigned long flags;
8033 LIST_HEAD(list);
8034
8035 if (!has_addr_filter(event))
8036 return;
8037
8038 /* don't bother with children, they don't have their own filters */
8039 if (event->parent)
8040 return;
8041
8042 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8043
8044 list_splice_init(&event->addr_filters.list, &list);
8045 if (head)
8046 list_splice(head, &event->addr_filters.list);
8047
8048 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8049
8050 free_filters_list(&list);
8051}
8052
8053/*
8054 * Scan through mm's vmas and see if one of them matches the
8055 * @filter; if so, adjust filter's address range.
8056 * Called with mm::mmap_sem down for reading.
8057 */
8058static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8059 struct mm_struct *mm)
8060{
8061 struct vm_area_struct *vma;
8062
8063 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8064 struct file *file = vma->vm_file;
8065 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8066 unsigned long vma_size = vma->vm_end - vma->vm_start;
8067
8068 if (!file)
8069 continue;
8070
8071 if (!perf_addr_filter_match(filter, file, off, vma_size))
8072 continue;
8073
8074 return vma->vm_start;
8075 }
8076
8077 return 0;
8078}
8079
8080/*
8081 * Update event's address range filters based on the
8082 * task's existing mappings, if any.
8083 */
8084static void perf_event_addr_filters_apply(struct perf_event *event)
8085{
8086 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8087 struct task_struct *task = READ_ONCE(event->ctx->task);
8088 struct perf_addr_filter *filter;
8089 struct mm_struct *mm = NULL;
8090 unsigned int count = 0;
8091 unsigned long flags;
8092
8093 /*
8094 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8095 * will stop on the parent's child_mutex that our caller is also holding
8096 */
8097 if (task == TASK_TOMBSTONE)
8098 return;
8099
6ce77bfd
AS
8100 if (!ifh->nr_file_filters)
8101 return;
8102
375637bc
AS
8103 mm = get_task_mm(event->ctx->task);
8104 if (!mm)
8105 goto restart;
8106
8107 down_read(&mm->mmap_sem);
8108
8109 raw_spin_lock_irqsave(&ifh->lock, flags);
8110 list_for_each_entry(filter, &ifh->list, entry) {
8111 event->addr_filters_offs[count] = 0;
8112
99f5bc9b
MP
8113 /*
8114 * Adjust base offset if the filter is associated to a binary
8115 * that needs to be mapped:
8116 */
8117 if (filter->inode)
375637bc
AS
8118 event->addr_filters_offs[count] =
8119 perf_addr_filter_apply(filter, mm);
8120
8121 count++;
8122 }
8123
8124 event->addr_filters_gen++;
8125 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8126
8127 up_read(&mm->mmap_sem);
8128
8129 mmput(mm);
8130
8131restart:
767ae086 8132 perf_event_stop(event, 1);
375637bc
AS
8133}
8134
8135/*
8136 * Address range filtering: limiting the data to certain
8137 * instruction address ranges. Filters are ioctl()ed to us from
8138 * userspace as ascii strings.
8139 *
8140 * Filter string format:
8141 *
8142 * ACTION RANGE_SPEC
8143 * where ACTION is one of the
8144 * * "filter": limit the trace to this region
8145 * * "start": start tracing from this address
8146 * * "stop": stop tracing at this address/region;
8147 * RANGE_SPEC is
8148 * * for kernel addresses: <start address>[/<size>]
8149 * * for object files: <start address>[/<size>]@</path/to/object/file>
8150 *
8151 * if <size> is not specified, the range is treated as a single address.
8152 */
8153enum {
e96271f3 8154 IF_ACT_NONE = -1,
375637bc
AS
8155 IF_ACT_FILTER,
8156 IF_ACT_START,
8157 IF_ACT_STOP,
8158 IF_SRC_FILE,
8159 IF_SRC_KERNEL,
8160 IF_SRC_FILEADDR,
8161 IF_SRC_KERNELADDR,
8162};
8163
8164enum {
8165 IF_STATE_ACTION = 0,
8166 IF_STATE_SOURCE,
8167 IF_STATE_END,
8168};
8169
8170static const match_table_t if_tokens = {
8171 { IF_ACT_FILTER, "filter" },
8172 { IF_ACT_START, "start" },
8173 { IF_ACT_STOP, "stop" },
8174 { IF_SRC_FILE, "%u/%u@%s" },
8175 { IF_SRC_KERNEL, "%u/%u" },
8176 { IF_SRC_FILEADDR, "%u@%s" },
8177 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8178 { IF_ACT_NONE, NULL },
375637bc
AS
8179};
8180
8181/*
8182 * Address filter string parser
8183 */
8184static int
8185perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8186 struct list_head *filters)
8187{
8188 struct perf_addr_filter *filter = NULL;
8189 char *start, *orig, *filename = NULL;
8190 struct path path;
8191 substring_t args[MAX_OPT_ARGS];
8192 int state = IF_STATE_ACTION, token;
8193 unsigned int kernel = 0;
8194 int ret = -EINVAL;
8195
8196 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8197 if (!fstr)
8198 return -ENOMEM;
8199
8200 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8201 ret = -EINVAL;
8202
8203 if (!*start)
8204 continue;
8205
8206 /* filter definition begins */
8207 if (state == IF_STATE_ACTION) {
8208 filter = perf_addr_filter_new(event, filters);
8209 if (!filter)
8210 goto fail;
8211 }
8212
8213 token = match_token(start, if_tokens, args);
8214 switch (token) {
8215 case IF_ACT_FILTER:
8216 case IF_ACT_START:
8217 filter->filter = 1;
8218
8219 case IF_ACT_STOP:
8220 if (state != IF_STATE_ACTION)
8221 goto fail;
8222
8223 state = IF_STATE_SOURCE;
8224 break;
8225
8226 case IF_SRC_KERNELADDR:
8227 case IF_SRC_KERNEL:
8228 kernel = 1;
8229
8230 case IF_SRC_FILEADDR:
8231 case IF_SRC_FILE:
8232 if (state != IF_STATE_SOURCE)
8233 goto fail;
8234
8235 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8236 filter->range = 1;
8237
8238 *args[0].to = 0;
8239 ret = kstrtoul(args[0].from, 0, &filter->offset);
8240 if (ret)
8241 goto fail;
8242
8243 if (filter->range) {
8244 *args[1].to = 0;
8245 ret = kstrtoul(args[1].from, 0, &filter->size);
8246 if (ret)
8247 goto fail;
8248 }
8249
4059ffd0
MP
8250 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8251 int fpos = filter->range ? 2 : 1;
8252
8253 filename = match_strdup(&args[fpos]);
375637bc
AS
8254 if (!filename) {
8255 ret = -ENOMEM;
8256 goto fail;
8257 }
8258 }
8259
8260 state = IF_STATE_END;
8261 break;
8262
8263 default:
8264 goto fail;
8265 }
8266
8267 /*
8268 * Filter definition is fully parsed, validate and install it.
8269 * Make sure that it doesn't contradict itself or the event's
8270 * attribute.
8271 */
8272 if (state == IF_STATE_END) {
9ccbfbb1 8273 ret = -EINVAL;
375637bc
AS
8274 if (kernel && event->attr.exclude_kernel)
8275 goto fail;
8276
8277 if (!kernel) {
8278 if (!filename)
8279 goto fail;
8280
6ce77bfd
AS
8281 /*
8282 * For now, we only support file-based filters
8283 * in per-task events; doing so for CPU-wide
8284 * events requires additional context switching
8285 * trickery, since same object code will be
8286 * mapped at different virtual addresses in
8287 * different processes.
8288 */
8289 ret = -EOPNOTSUPP;
8290 if (!event->ctx->task)
8291 goto fail_free_name;
8292
375637bc
AS
8293 /* look up the path and grab its inode */
8294 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8295 if (ret)
8296 goto fail_free_name;
8297
8298 filter->inode = igrab(d_inode(path.dentry));
8299 path_put(&path);
8300 kfree(filename);
8301 filename = NULL;
8302
8303 ret = -EINVAL;
8304 if (!filter->inode ||
8305 !S_ISREG(filter->inode->i_mode))
8306 /* free_filters_list() will iput() */
8307 goto fail;
6ce77bfd
AS
8308
8309 event->addr_filters.nr_file_filters++;
375637bc
AS
8310 }
8311
8312 /* ready to consume more filters */
8313 state = IF_STATE_ACTION;
8314 filter = NULL;
8315 }
8316 }
8317
8318 if (state != IF_STATE_ACTION)
8319 goto fail;
8320
8321 kfree(orig);
8322
8323 return 0;
8324
8325fail_free_name:
8326 kfree(filename);
8327fail:
8328 free_filters_list(filters);
8329 kfree(orig);
8330
8331 return ret;
8332}
8333
8334static int
8335perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8336{
8337 LIST_HEAD(filters);
8338 int ret;
8339
8340 /*
8341 * Since this is called in perf_ioctl() path, we're already holding
8342 * ctx::mutex.
8343 */
8344 lockdep_assert_held(&event->ctx->mutex);
8345
8346 if (WARN_ON_ONCE(event->parent))
8347 return -EINVAL;
8348
375637bc
AS
8349 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8350 if (ret)
6ce77bfd 8351 goto fail_clear_files;
375637bc
AS
8352
8353 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8354 if (ret)
8355 goto fail_free_filters;
375637bc
AS
8356
8357 /* remove existing filters, if any */
8358 perf_addr_filters_splice(event, &filters);
8359
8360 /* install new filters */
8361 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8362
6ce77bfd
AS
8363 return ret;
8364
8365fail_free_filters:
8366 free_filters_list(&filters);
8367
8368fail_clear_files:
8369 event->addr_filters.nr_file_filters = 0;
8370
375637bc
AS
8371 return ret;
8372}
8373
c796bbbe
AS
8374static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8375{
8376 char *filter_str;
8377 int ret = -EINVAL;
8378
375637bc
AS
8379 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8380 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8381 !has_addr_filter(event))
c796bbbe
AS
8382 return -EINVAL;
8383
8384 filter_str = strndup_user(arg, PAGE_SIZE);
8385 if (IS_ERR(filter_str))
8386 return PTR_ERR(filter_str);
8387
8388 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8389 event->attr.type == PERF_TYPE_TRACEPOINT)
8390 ret = ftrace_profile_set_filter(event, event->attr.config,
8391 filter_str);
375637bc
AS
8392 else if (has_addr_filter(event))
8393 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8394
8395 kfree(filter_str);
8396 return ret;
8397}
8398
b0a873eb
PZ
8399/*
8400 * hrtimer based swevent callback
8401 */
f29ac756 8402
b0a873eb 8403static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8404{
b0a873eb
PZ
8405 enum hrtimer_restart ret = HRTIMER_RESTART;
8406 struct perf_sample_data data;
8407 struct pt_regs *regs;
8408 struct perf_event *event;
8409 u64 period;
f29ac756 8410
b0a873eb 8411 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8412
8413 if (event->state != PERF_EVENT_STATE_ACTIVE)
8414 return HRTIMER_NORESTART;
8415
b0a873eb 8416 event->pmu->read(event);
f344011c 8417
fd0d000b 8418 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8419 regs = get_irq_regs();
8420
8421 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8422 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8423 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8424 ret = HRTIMER_NORESTART;
8425 }
24f1e32c 8426
b0a873eb
PZ
8427 period = max_t(u64, 10000, event->hw.sample_period);
8428 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8429
b0a873eb 8430 return ret;
f29ac756
PZ
8431}
8432
b0a873eb 8433static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8434{
b0a873eb 8435 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8436 s64 period;
8437
8438 if (!is_sampling_event(event))
8439 return;
f5ffe02e 8440
5d508e82
FBH
8441 period = local64_read(&hwc->period_left);
8442 if (period) {
8443 if (period < 0)
8444 period = 10000;
fa407f35 8445
5d508e82
FBH
8446 local64_set(&hwc->period_left, 0);
8447 } else {
8448 period = max_t(u64, 10000, hwc->sample_period);
8449 }
3497d206
TG
8450 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8451 HRTIMER_MODE_REL_PINNED);
24f1e32c 8452}
b0a873eb
PZ
8453
8454static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8455{
b0a873eb
PZ
8456 struct hw_perf_event *hwc = &event->hw;
8457
6c7e550f 8458 if (is_sampling_event(event)) {
b0a873eb 8459 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8460 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8461
8462 hrtimer_cancel(&hwc->hrtimer);
8463 }
24f1e32c
FW
8464}
8465
ba3dd36c
PZ
8466static void perf_swevent_init_hrtimer(struct perf_event *event)
8467{
8468 struct hw_perf_event *hwc = &event->hw;
8469
8470 if (!is_sampling_event(event))
8471 return;
8472
8473 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8474 hwc->hrtimer.function = perf_swevent_hrtimer;
8475
8476 /*
8477 * Since hrtimers have a fixed rate, we can do a static freq->period
8478 * mapping and avoid the whole period adjust feedback stuff.
8479 */
8480 if (event->attr.freq) {
8481 long freq = event->attr.sample_freq;
8482
8483 event->attr.sample_period = NSEC_PER_SEC / freq;
8484 hwc->sample_period = event->attr.sample_period;
8485 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8486 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8487 event->attr.freq = 0;
8488 }
8489}
8490
b0a873eb
PZ
8491/*
8492 * Software event: cpu wall time clock
8493 */
8494
8495static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8496{
b0a873eb
PZ
8497 s64 prev;
8498 u64 now;
8499
a4eaf7f1 8500 now = local_clock();
b0a873eb
PZ
8501 prev = local64_xchg(&event->hw.prev_count, now);
8502 local64_add(now - prev, &event->count);
24f1e32c 8503}
24f1e32c 8504
a4eaf7f1 8505static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8506{
a4eaf7f1 8507 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8508 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8509}
8510
a4eaf7f1 8511static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8512{
b0a873eb
PZ
8513 perf_swevent_cancel_hrtimer(event);
8514 cpu_clock_event_update(event);
8515}
f29ac756 8516
a4eaf7f1
PZ
8517static int cpu_clock_event_add(struct perf_event *event, int flags)
8518{
8519 if (flags & PERF_EF_START)
8520 cpu_clock_event_start(event, flags);
6a694a60 8521 perf_event_update_userpage(event);
a4eaf7f1
PZ
8522
8523 return 0;
8524}
8525
8526static void cpu_clock_event_del(struct perf_event *event, int flags)
8527{
8528 cpu_clock_event_stop(event, flags);
8529}
8530
b0a873eb
PZ
8531static void cpu_clock_event_read(struct perf_event *event)
8532{
8533 cpu_clock_event_update(event);
8534}
f344011c 8535
b0a873eb
PZ
8536static int cpu_clock_event_init(struct perf_event *event)
8537{
8538 if (event->attr.type != PERF_TYPE_SOFTWARE)
8539 return -ENOENT;
8540
8541 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8542 return -ENOENT;
8543
2481c5fa
SE
8544 /*
8545 * no branch sampling for software events
8546 */
8547 if (has_branch_stack(event))
8548 return -EOPNOTSUPP;
8549
ba3dd36c
PZ
8550 perf_swevent_init_hrtimer(event);
8551
b0a873eb 8552 return 0;
f29ac756
PZ
8553}
8554
b0a873eb 8555static struct pmu perf_cpu_clock = {
89a1e187
PZ
8556 .task_ctx_nr = perf_sw_context,
8557
34f43927
PZ
8558 .capabilities = PERF_PMU_CAP_NO_NMI,
8559
b0a873eb 8560 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8561 .add = cpu_clock_event_add,
8562 .del = cpu_clock_event_del,
8563 .start = cpu_clock_event_start,
8564 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8565 .read = cpu_clock_event_read,
8566};
8567
8568/*
8569 * Software event: task time clock
8570 */
8571
8572static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8573{
b0a873eb
PZ
8574 u64 prev;
8575 s64 delta;
5c92d124 8576
b0a873eb
PZ
8577 prev = local64_xchg(&event->hw.prev_count, now);
8578 delta = now - prev;
8579 local64_add(delta, &event->count);
8580}
5c92d124 8581
a4eaf7f1 8582static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8583{
a4eaf7f1 8584 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8585 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8586}
8587
a4eaf7f1 8588static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8589{
8590 perf_swevent_cancel_hrtimer(event);
8591 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8592}
8593
8594static int task_clock_event_add(struct perf_event *event, int flags)
8595{
8596 if (flags & PERF_EF_START)
8597 task_clock_event_start(event, flags);
6a694a60 8598 perf_event_update_userpage(event);
b0a873eb 8599
a4eaf7f1
PZ
8600 return 0;
8601}
8602
8603static void task_clock_event_del(struct perf_event *event, int flags)
8604{
8605 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8606}
8607
8608static void task_clock_event_read(struct perf_event *event)
8609{
768a06e2
PZ
8610 u64 now = perf_clock();
8611 u64 delta = now - event->ctx->timestamp;
8612 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8613
8614 task_clock_event_update(event, time);
8615}
8616
8617static int task_clock_event_init(struct perf_event *event)
6fb2915d 8618{
b0a873eb
PZ
8619 if (event->attr.type != PERF_TYPE_SOFTWARE)
8620 return -ENOENT;
8621
8622 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8623 return -ENOENT;
8624
2481c5fa
SE
8625 /*
8626 * no branch sampling for software events
8627 */
8628 if (has_branch_stack(event))
8629 return -EOPNOTSUPP;
8630
ba3dd36c
PZ
8631 perf_swevent_init_hrtimer(event);
8632
b0a873eb 8633 return 0;
6fb2915d
LZ
8634}
8635
b0a873eb 8636static struct pmu perf_task_clock = {
89a1e187
PZ
8637 .task_ctx_nr = perf_sw_context,
8638
34f43927
PZ
8639 .capabilities = PERF_PMU_CAP_NO_NMI,
8640
b0a873eb 8641 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8642 .add = task_clock_event_add,
8643 .del = task_clock_event_del,
8644 .start = task_clock_event_start,
8645 .stop = task_clock_event_stop,
b0a873eb
PZ
8646 .read = task_clock_event_read,
8647};
6fb2915d 8648
ad5133b7 8649static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8650{
e077df4f 8651}
6fb2915d 8652
fbbe0701
SB
8653static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8654{
8655}
8656
ad5133b7 8657static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8658{
ad5133b7 8659 return 0;
6fb2915d
LZ
8660}
8661
18ab2cd3 8662static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8663
8664static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8665{
fbbe0701
SB
8666 __this_cpu_write(nop_txn_flags, flags);
8667
8668 if (flags & ~PERF_PMU_TXN_ADD)
8669 return;
8670
ad5133b7 8671 perf_pmu_disable(pmu);
6fb2915d
LZ
8672}
8673
ad5133b7
PZ
8674static int perf_pmu_commit_txn(struct pmu *pmu)
8675{
fbbe0701
SB
8676 unsigned int flags = __this_cpu_read(nop_txn_flags);
8677
8678 __this_cpu_write(nop_txn_flags, 0);
8679
8680 if (flags & ~PERF_PMU_TXN_ADD)
8681 return 0;
8682
ad5133b7
PZ
8683 perf_pmu_enable(pmu);
8684 return 0;
8685}
e077df4f 8686
ad5133b7 8687static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8688{
fbbe0701
SB
8689 unsigned int flags = __this_cpu_read(nop_txn_flags);
8690
8691 __this_cpu_write(nop_txn_flags, 0);
8692
8693 if (flags & ~PERF_PMU_TXN_ADD)
8694 return;
8695
ad5133b7 8696 perf_pmu_enable(pmu);
24f1e32c
FW
8697}
8698
35edc2a5
PZ
8699static int perf_event_idx_default(struct perf_event *event)
8700{
c719f560 8701 return 0;
35edc2a5
PZ
8702}
8703
8dc85d54
PZ
8704/*
8705 * Ensures all contexts with the same task_ctx_nr have the same
8706 * pmu_cpu_context too.
8707 */
9e317041 8708static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8709{
8dc85d54 8710 struct pmu *pmu;
b326e956 8711
8dc85d54
PZ
8712 if (ctxn < 0)
8713 return NULL;
24f1e32c 8714
8dc85d54
PZ
8715 list_for_each_entry(pmu, &pmus, entry) {
8716 if (pmu->task_ctx_nr == ctxn)
8717 return pmu->pmu_cpu_context;
8718 }
24f1e32c 8719
8dc85d54 8720 return NULL;
24f1e32c
FW
8721}
8722
51676957
PZ
8723static void free_pmu_context(struct pmu *pmu)
8724{
8dc85d54 8725 mutex_lock(&pmus_lock);
51676957 8726 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8727 mutex_unlock(&pmus_lock);
24f1e32c 8728}
6e855cd4
AS
8729
8730/*
8731 * Let userspace know that this PMU supports address range filtering:
8732 */
8733static ssize_t nr_addr_filters_show(struct device *dev,
8734 struct device_attribute *attr,
8735 char *page)
8736{
8737 struct pmu *pmu = dev_get_drvdata(dev);
8738
8739 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8740}
8741DEVICE_ATTR_RO(nr_addr_filters);
8742
2e80a82a 8743static struct idr pmu_idr;
d6d020e9 8744
abe43400
PZ
8745static ssize_t
8746type_show(struct device *dev, struct device_attribute *attr, char *page)
8747{
8748 struct pmu *pmu = dev_get_drvdata(dev);
8749
8750 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8751}
90826ca7 8752static DEVICE_ATTR_RO(type);
abe43400 8753
62b85639
SE
8754static ssize_t
8755perf_event_mux_interval_ms_show(struct device *dev,
8756 struct device_attribute *attr,
8757 char *page)
8758{
8759 struct pmu *pmu = dev_get_drvdata(dev);
8760
8761 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8762}
8763
272325c4
PZ
8764static DEFINE_MUTEX(mux_interval_mutex);
8765
62b85639
SE
8766static ssize_t
8767perf_event_mux_interval_ms_store(struct device *dev,
8768 struct device_attribute *attr,
8769 const char *buf, size_t count)
8770{
8771 struct pmu *pmu = dev_get_drvdata(dev);
8772 int timer, cpu, ret;
8773
8774 ret = kstrtoint(buf, 0, &timer);
8775 if (ret)
8776 return ret;
8777
8778 if (timer < 1)
8779 return -EINVAL;
8780
8781 /* same value, noting to do */
8782 if (timer == pmu->hrtimer_interval_ms)
8783 return count;
8784
272325c4 8785 mutex_lock(&mux_interval_mutex);
62b85639
SE
8786 pmu->hrtimer_interval_ms = timer;
8787
8788 /* update all cpuctx for this PMU */
272325c4
PZ
8789 get_online_cpus();
8790 for_each_online_cpu(cpu) {
62b85639
SE
8791 struct perf_cpu_context *cpuctx;
8792 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8793 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8794
272325c4
PZ
8795 cpu_function_call(cpu,
8796 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8797 }
272325c4
PZ
8798 put_online_cpus();
8799 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8800
8801 return count;
8802}
90826ca7 8803static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8804
90826ca7
GKH
8805static struct attribute *pmu_dev_attrs[] = {
8806 &dev_attr_type.attr,
8807 &dev_attr_perf_event_mux_interval_ms.attr,
8808 NULL,
abe43400 8809};
90826ca7 8810ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8811
8812static int pmu_bus_running;
8813static struct bus_type pmu_bus = {
8814 .name = "event_source",
90826ca7 8815 .dev_groups = pmu_dev_groups,
abe43400
PZ
8816};
8817
8818static void pmu_dev_release(struct device *dev)
8819{
8820 kfree(dev);
8821}
8822
8823static int pmu_dev_alloc(struct pmu *pmu)
8824{
8825 int ret = -ENOMEM;
8826
8827 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8828 if (!pmu->dev)
8829 goto out;
8830
0c9d42ed 8831 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
8832 device_initialize(pmu->dev);
8833 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8834 if (ret)
8835 goto free_dev;
8836
8837 dev_set_drvdata(pmu->dev, pmu);
8838 pmu->dev->bus = &pmu_bus;
8839 pmu->dev->release = pmu_dev_release;
8840 ret = device_add(pmu->dev);
8841 if (ret)
8842 goto free_dev;
8843
6e855cd4
AS
8844 /* For PMUs with address filters, throw in an extra attribute: */
8845 if (pmu->nr_addr_filters)
8846 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8847
8848 if (ret)
8849 goto del_dev;
8850
abe43400
PZ
8851out:
8852 return ret;
8853
6e855cd4
AS
8854del_dev:
8855 device_del(pmu->dev);
8856
abe43400
PZ
8857free_dev:
8858 put_device(pmu->dev);
8859 goto out;
8860}
8861
547e9fd7 8862static struct lock_class_key cpuctx_mutex;
facc4307 8863static struct lock_class_key cpuctx_lock;
547e9fd7 8864
03d8e80b 8865int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 8866{
108b02cf 8867 int cpu, ret;
24f1e32c 8868
b0a873eb 8869 mutex_lock(&pmus_lock);
33696fc0
PZ
8870 ret = -ENOMEM;
8871 pmu->pmu_disable_count = alloc_percpu(int);
8872 if (!pmu->pmu_disable_count)
8873 goto unlock;
f29ac756 8874
2e80a82a
PZ
8875 pmu->type = -1;
8876 if (!name)
8877 goto skip_type;
8878 pmu->name = name;
8879
8880 if (type < 0) {
0e9c3be2
TH
8881 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8882 if (type < 0) {
8883 ret = type;
2e80a82a
PZ
8884 goto free_pdc;
8885 }
8886 }
8887 pmu->type = type;
8888
abe43400
PZ
8889 if (pmu_bus_running) {
8890 ret = pmu_dev_alloc(pmu);
8891 if (ret)
8892 goto free_idr;
8893 }
8894
2e80a82a 8895skip_type:
26657848
PZ
8896 if (pmu->task_ctx_nr == perf_hw_context) {
8897 static int hw_context_taken = 0;
8898
5101ef20
MR
8899 /*
8900 * Other than systems with heterogeneous CPUs, it never makes
8901 * sense for two PMUs to share perf_hw_context. PMUs which are
8902 * uncore must use perf_invalid_context.
8903 */
8904 if (WARN_ON_ONCE(hw_context_taken &&
8905 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
8906 pmu->task_ctx_nr = perf_invalid_context;
8907
8908 hw_context_taken = 1;
8909 }
8910
8dc85d54
PZ
8911 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8912 if (pmu->pmu_cpu_context)
8913 goto got_cpu_context;
f29ac756 8914
c4814202 8915 ret = -ENOMEM;
108b02cf
PZ
8916 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8917 if (!pmu->pmu_cpu_context)
abe43400 8918 goto free_dev;
f344011c 8919
108b02cf
PZ
8920 for_each_possible_cpu(cpu) {
8921 struct perf_cpu_context *cpuctx;
8922
8923 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 8924 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 8925 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 8926 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 8927 cpuctx->ctx.pmu = pmu;
9e630205 8928
272325c4 8929 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 8930 }
76e1d904 8931
8dc85d54 8932got_cpu_context:
ad5133b7
PZ
8933 if (!pmu->start_txn) {
8934 if (pmu->pmu_enable) {
8935 /*
8936 * If we have pmu_enable/pmu_disable calls, install
8937 * transaction stubs that use that to try and batch
8938 * hardware accesses.
8939 */
8940 pmu->start_txn = perf_pmu_start_txn;
8941 pmu->commit_txn = perf_pmu_commit_txn;
8942 pmu->cancel_txn = perf_pmu_cancel_txn;
8943 } else {
fbbe0701 8944 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
8945 pmu->commit_txn = perf_pmu_nop_int;
8946 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 8947 }
5c92d124 8948 }
15dbf27c 8949
ad5133b7
PZ
8950 if (!pmu->pmu_enable) {
8951 pmu->pmu_enable = perf_pmu_nop_void;
8952 pmu->pmu_disable = perf_pmu_nop_void;
8953 }
8954
35edc2a5
PZ
8955 if (!pmu->event_idx)
8956 pmu->event_idx = perf_event_idx_default;
8957
b0a873eb 8958 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 8959 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
8960 ret = 0;
8961unlock:
b0a873eb
PZ
8962 mutex_unlock(&pmus_lock);
8963
33696fc0 8964 return ret;
108b02cf 8965
abe43400
PZ
8966free_dev:
8967 device_del(pmu->dev);
8968 put_device(pmu->dev);
8969
2e80a82a
PZ
8970free_idr:
8971 if (pmu->type >= PERF_TYPE_MAX)
8972 idr_remove(&pmu_idr, pmu->type);
8973
108b02cf
PZ
8974free_pdc:
8975 free_percpu(pmu->pmu_disable_count);
8976 goto unlock;
f29ac756 8977}
c464c76e 8978EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 8979
b0a873eb 8980void perf_pmu_unregister(struct pmu *pmu)
5c92d124 8981{
0933840a
JO
8982 int remove_device;
8983
b0a873eb 8984 mutex_lock(&pmus_lock);
0933840a 8985 remove_device = pmu_bus_running;
b0a873eb
PZ
8986 list_del_rcu(&pmu->entry);
8987 mutex_unlock(&pmus_lock);
5c92d124 8988
0475f9ea 8989 /*
cde8e884
PZ
8990 * We dereference the pmu list under both SRCU and regular RCU, so
8991 * synchronize against both of those.
0475f9ea 8992 */
b0a873eb 8993 synchronize_srcu(&pmus_srcu);
cde8e884 8994 synchronize_rcu();
d6d020e9 8995
33696fc0 8996 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
8997 if (pmu->type >= PERF_TYPE_MAX)
8998 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
8999 if (remove_device) {
9000 if (pmu->nr_addr_filters)
9001 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9002 device_del(pmu->dev);
9003 put_device(pmu->dev);
9004 }
51676957 9005 free_pmu_context(pmu);
b0a873eb 9006}
c464c76e 9007EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9008
cc34b98b
MR
9009static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9010{
ccd41c86 9011 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9012 int ret;
9013
9014 if (!try_module_get(pmu->module))
9015 return -ENODEV;
ccd41c86
PZ
9016
9017 if (event->group_leader != event) {
8b10c5e2
PZ
9018 /*
9019 * This ctx->mutex can nest when we're called through
9020 * inheritance. See the perf_event_ctx_lock_nested() comment.
9021 */
9022 ctx = perf_event_ctx_lock_nested(event->group_leader,
9023 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9024 BUG_ON(!ctx);
9025 }
9026
cc34b98b
MR
9027 event->pmu = pmu;
9028 ret = pmu->event_init(event);
ccd41c86
PZ
9029
9030 if (ctx)
9031 perf_event_ctx_unlock(event->group_leader, ctx);
9032
cc34b98b
MR
9033 if (ret)
9034 module_put(pmu->module);
9035
9036 return ret;
9037}
9038
18ab2cd3 9039static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
9040{
9041 struct pmu *pmu = NULL;
9042 int idx;
940c5b29 9043 int ret;
b0a873eb
PZ
9044
9045 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9046
40999312
KL
9047 /* Try parent's PMU first: */
9048 if (event->parent && event->parent->pmu) {
9049 pmu = event->parent->pmu;
9050 ret = perf_try_init_event(pmu, event);
9051 if (!ret)
9052 goto unlock;
9053 }
9054
2e80a82a
PZ
9055 rcu_read_lock();
9056 pmu = idr_find(&pmu_idr, event->attr.type);
9057 rcu_read_unlock();
940c5b29 9058 if (pmu) {
cc34b98b 9059 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9060 if (ret)
9061 pmu = ERR_PTR(ret);
2e80a82a 9062 goto unlock;
940c5b29 9063 }
2e80a82a 9064
b0a873eb 9065 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9066 ret = perf_try_init_event(pmu, event);
b0a873eb 9067 if (!ret)
e5f4d339 9068 goto unlock;
76e1d904 9069
b0a873eb
PZ
9070 if (ret != -ENOENT) {
9071 pmu = ERR_PTR(ret);
e5f4d339 9072 goto unlock;
f344011c 9073 }
5c92d124 9074 }
e5f4d339
PZ
9075 pmu = ERR_PTR(-ENOENT);
9076unlock:
b0a873eb 9077 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9078
4aeb0b42 9079 return pmu;
5c92d124
IM
9080}
9081
f2fb6bef
KL
9082static void attach_sb_event(struct perf_event *event)
9083{
9084 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9085
9086 raw_spin_lock(&pel->lock);
9087 list_add_rcu(&event->sb_list, &pel->list);
9088 raw_spin_unlock(&pel->lock);
9089}
9090
aab5b71e
PZ
9091/*
9092 * We keep a list of all !task (and therefore per-cpu) events
9093 * that need to receive side-band records.
9094 *
9095 * This avoids having to scan all the various PMU per-cpu contexts
9096 * looking for them.
9097 */
f2fb6bef
KL
9098static void account_pmu_sb_event(struct perf_event *event)
9099{
a4f144eb 9100 if (is_sb_event(event))
f2fb6bef
KL
9101 attach_sb_event(event);
9102}
9103
4beb31f3
FW
9104static void account_event_cpu(struct perf_event *event, int cpu)
9105{
9106 if (event->parent)
9107 return;
9108
4beb31f3
FW
9109 if (is_cgroup_event(event))
9110 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9111}
9112
555e0c1e
FW
9113/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9114static void account_freq_event_nohz(void)
9115{
9116#ifdef CONFIG_NO_HZ_FULL
9117 /* Lock so we don't race with concurrent unaccount */
9118 spin_lock(&nr_freq_lock);
9119 if (atomic_inc_return(&nr_freq_events) == 1)
9120 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9121 spin_unlock(&nr_freq_lock);
9122#endif
9123}
9124
9125static void account_freq_event(void)
9126{
9127 if (tick_nohz_full_enabled())
9128 account_freq_event_nohz();
9129 else
9130 atomic_inc(&nr_freq_events);
9131}
9132
9133
766d6c07
FW
9134static void account_event(struct perf_event *event)
9135{
25432ae9
PZ
9136 bool inc = false;
9137
4beb31f3
FW
9138 if (event->parent)
9139 return;
9140
766d6c07 9141 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9142 inc = true;
766d6c07
FW
9143 if (event->attr.mmap || event->attr.mmap_data)
9144 atomic_inc(&nr_mmap_events);
9145 if (event->attr.comm)
9146 atomic_inc(&nr_comm_events);
9147 if (event->attr.task)
9148 atomic_inc(&nr_task_events);
555e0c1e
FW
9149 if (event->attr.freq)
9150 account_freq_event();
45ac1403
AH
9151 if (event->attr.context_switch) {
9152 atomic_inc(&nr_switch_events);
25432ae9 9153 inc = true;
45ac1403 9154 }
4beb31f3 9155 if (has_branch_stack(event))
25432ae9 9156 inc = true;
4beb31f3 9157 if (is_cgroup_event(event))
25432ae9
PZ
9158 inc = true;
9159
9107c89e
PZ
9160 if (inc) {
9161 if (atomic_inc_not_zero(&perf_sched_count))
9162 goto enabled;
9163
9164 mutex_lock(&perf_sched_mutex);
9165 if (!atomic_read(&perf_sched_count)) {
9166 static_branch_enable(&perf_sched_events);
9167 /*
9168 * Guarantee that all CPUs observe they key change and
9169 * call the perf scheduling hooks before proceeding to
9170 * install events that need them.
9171 */
9172 synchronize_sched();
9173 }
9174 /*
9175 * Now that we have waited for the sync_sched(), allow further
9176 * increments to by-pass the mutex.
9177 */
9178 atomic_inc(&perf_sched_count);
9179 mutex_unlock(&perf_sched_mutex);
9180 }
9181enabled:
4beb31f3
FW
9182
9183 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9184
9185 account_pmu_sb_event(event);
766d6c07
FW
9186}
9187
0793a61d 9188/*
cdd6c482 9189 * Allocate and initialize a event structure
0793a61d 9190 */
cdd6c482 9191static struct perf_event *
c3f00c70 9192perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9193 struct task_struct *task,
9194 struct perf_event *group_leader,
9195 struct perf_event *parent_event,
4dc0da86 9196 perf_overflow_handler_t overflow_handler,
79dff51e 9197 void *context, int cgroup_fd)
0793a61d 9198{
51b0fe39 9199 struct pmu *pmu;
cdd6c482
IM
9200 struct perf_event *event;
9201 struct hw_perf_event *hwc;
90983b16 9202 long err = -EINVAL;
0793a61d 9203
66832eb4
ON
9204 if ((unsigned)cpu >= nr_cpu_ids) {
9205 if (!task || cpu != -1)
9206 return ERR_PTR(-EINVAL);
9207 }
9208
c3f00c70 9209 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9210 if (!event)
d5d2bc0d 9211 return ERR_PTR(-ENOMEM);
0793a61d 9212
04289bb9 9213 /*
cdd6c482 9214 * Single events are their own group leaders, with an
04289bb9
IM
9215 * empty sibling list:
9216 */
9217 if (!group_leader)
cdd6c482 9218 group_leader = event;
04289bb9 9219
cdd6c482
IM
9220 mutex_init(&event->child_mutex);
9221 INIT_LIST_HEAD(&event->child_list);
fccc714b 9222
cdd6c482
IM
9223 INIT_LIST_HEAD(&event->group_entry);
9224 INIT_LIST_HEAD(&event->event_entry);
9225 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9226 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9227 INIT_LIST_HEAD(&event->active_entry);
375637bc 9228 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9229 INIT_HLIST_NODE(&event->hlist_entry);
9230
10c6db11 9231
cdd6c482 9232 init_waitqueue_head(&event->waitq);
e360adbe 9233 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9234
cdd6c482 9235 mutex_init(&event->mmap_mutex);
375637bc 9236 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9237
a6fa941d 9238 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9239 event->cpu = cpu;
9240 event->attr = *attr;
9241 event->group_leader = group_leader;
9242 event->pmu = NULL;
cdd6c482 9243 event->oncpu = -1;
a96bbc16 9244
cdd6c482 9245 event->parent = parent_event;
b84fbc9f 9246
17cf22c3 9247 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9248 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9249
cdd6c482 9250 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9251
d580ff86
PZ
9252 if (task) {
9253 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9254 /*
50f16a8b
PZ
9255 * XXX pmu::event_init needs to know what task to account to
9256 * and we cannot use the ctx information because we need the
9257 * pmu before we get a ctx.
d580ff86 9258 */
50f16a8b 9259 event->hw.target = task;
d580ff86
PZ
9260 }
9261
34f43927
PZ
9262 event->clock = &local_clock;
9263 if (parent_event)
9264 event->clock = parent_event->clock;
9265
4dc0da86 9266 if (!overflow_handler && parent_event) {
b326e956 9267 overflow_handler = parent_event->overflow_handler;
4dc0da86 9268 context = parent_event->overflow_handler_context;
f1e4ba5b 9269#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9270 if (overflow_handler == bpf_overflow_handler) {
9271 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9272
9273 if (IS_ERR(prog)) {
9274 err = PTR_ERR(prog);
9275 goto err_ns;
9276 }
9277 event->prog = prog;
9278 event->orig_overflow_handler =
9279 parent_event->orig_overflow_handler;
9280 }
9281#endif
4dc0da86 9282 }
66832eb4 9283
1879445d
WN
9284 if (overflow_handler) {
9285 event->overflow_handler = overflow_handler;
9286 event->overflow_handler_context = context;
9ecda41a
WN
9287 } else if (is_write_backward(event)){
9288 event->overflow_handler = perf_event_output_backward;
9289 event->overflow_handler_context = NULL;
1879445d 9290 } else {
9ecda41a 9291 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9292 event->overflow_handler_context = NULL;
9293 }
97eaf530 9294
0231bb53 9295 perf_event__state_init(event);
a86ed508 9296
4aeb0b42 9297 pmu = NULL;
b8e83514 9298
cdd6c482 9299 hwc = &event->hw;
bd2b5b12 9300 hwc->sample_period = attr->sample_period;
0d48696f 9301 if (attr->freq && attr->sample_freq)
bd2b5b12 9302 hwc->sample_period = 1;
eced1dfc 9303 hwc->last_period = hwc->sample_period;
bd2b5b12 9304
e7850595 9305 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9306
2023b359 9307 /*
cdd6c482 9308 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 9309 */
3dab77fb 9310 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 9311 goto err_ns;
a46a2300
YZ
9312
9313 if (!has_branch_stack(event))
9314 event->attr.branch_sample_type = 0;
2023b359 9315
79dff51e
MF
9316 if (cgroup_fd != -1) {
9317 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9318 if (err)
9319 goto err_ns;
9320 }
9321
b0a873eb 9322 pmu = perf_init_event(event);
4aeb0b42 9323 if (!pmu)
90983b16
FW
9324 goto err_ns;
9325 else if (IS_ERR(pmu)) {
4aeb0b42 9326 err = PTR_ERR(pmu);
90983b16 9327 goto err_ns;
621a01ea 9328 }
d5d2bc0d 9329
bed5b25a
AS
9330 err = exclusive_event_init(event);
9331 if (err)
9332 goto err_pmu;
9333
375637bc
AS
9334 if (has_addr_filter(event)) {
9335 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9336 sizeof(unsigned long),
9337 GFP_KERNEL);
9338 if (!event->addr_filters_offs)
9339 goto err_per_task;
9340
9341 /* force hw sync on the address filters */
9342 event->addr_filters_gen = 1;
9343 }
9344
cdd6c482 9345 if (!event->parent) {
927c7a9e 9346 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9347 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9348 if (err)
375637bc 9349 goto err_addr_filters;
d010b332 9350 }
f344011c 9351 }
9ee318a7 9352
927a5570
AS
9353 /* symmetric to unaccount_event() in _free_event() */
9354 account_event(event);
9355
cdd6c482 9356 return event;
90983b16 9357
375637bc
AS
9358err_addr_filters:
9359 kfree(event->addr_filters_offs);
9360
bed5b25a
AS
9361err_per_task:
9362 exclusive_event_destroy(event);
9363
90983b16
FW
9364err_pmu:
9365 if (event->destroy)
9366 event->destroy(event);
c464c76e 9367 module_put(pmu->module);
90983b16 9368err_ns:
79dff51e
MF
9369 if (is_cgroup_event(event))
9370 perf_detach_cgroup(event);
90983b16
FW
9371 if (event->ns)
9372 put_pid_ns(event->ns);
9373 kfree(event);
9374
9375 return ERR_PTR(err);
0793a61d
TG
9376}
9377
cdd6c482
IM
9378static int perf_copy_attr(struct perf_event_attr __user *uattr,
9379 struct perf_event_attr *attr)
974802ea 9380{
974802ea 9381 u32 size;
cdf8073d 9382 int ret;
974802ea
PZ
9383
9384 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9385 return -EFAULT;
9386
9387 /*
9388 * zero the full structure, so that a short copy will be nice.
9389 */
9390 memset(attr, 0, sizeof(*attr));
9391
9392 ret = get_user(size, &uattr->size);
9393 if (ret)
9394 return ret;
9395
9396 if (size > PAGE_SIZE) /* silly large */
9397 goto err_size;
9398
9399 if (!size) /* abi compat */
9400 size = PERF_ATTR_SIZE_VER0;
9401
9402 if (size < PERF_ATTR_SIZE_VER0)
9403 goto err_size;
9404
9405 /*
9406 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9407 * ensure all the unknown bits are 0 - i.e. new
9408 * user-space does not rely on any kernel feature
9409 * extensions we dont know about yet.
974802ea
PZ
9410 */
9411 if (size > sizeof(*attr)) {
cdf8073d
IS
9412 unsigned char __user *addr;
9413 unsigned char __user *end;
9414 unsigned char val;
974802ea 9415
cdf8073d
IS
9416 addr = (void __user *)uattr + sizeof(*attr);
9417 end = (void __user *)uattr + size;
974802ea 9418
cdf8073d 9419 for (; addr < end; addr++) {
974802ea
PZ
9420 ret = get_user(val, addr);
9421 if (ret)
9422 return ret;
9423 if (val)
9424 goto err_size;
9425 }
b3e62e35 9426 size = sizeof(*attr);
974802ea
PZ
9427 }
9428
9429 ret = copy_from_user(attr, uattr, size);
9430 if (ret)
9431 return -EFAULT;
9432
cd757645 9433 if (attr->__reserved_1)
974802ea
PZ
9434 return -EINVAL;
9435
9436 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9437 return -EINVAL;
9438
9439 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9440 return -EINVAL;
9441
bce38cd5
SE
9442 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9443 u64 mask = attr->branch_sample_type;
9444
9445 /* only using defined bits */
9446 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9447 return -EINVAL;
9448
9449 /* at least one branch bit must be set */
9450 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9451 return -EINVAL;
9452
bce38cd5
SE
9453 /* propagate priv level, when not set for branch */
9454 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9455
9456 /* exclude_kernel checked on syscall entry */
9457 if (!attr->exclude_kernel)
9458 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9459
9460 if (!attr->exclude_user)
9461 mask |= PERF_SAMPLE_BRANCH_USER;
9462
9463 if (!attr->exclude_hv)
9464 mask |= PERF_SAMPLE_BRANCH_HV;
9465 /*
9466 * adjust user setting (for HW filter setup)
9467 */
9468 attr->branch_sample_type = mask;
9469 }
e712209a
SE
9470 /* privileged levels capture (kernel, hv): check permissions */
9471 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9472 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9473 return -EACCES;
bce38cd5 9474 }
4018994f 9475
c5ebcedb 9476 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9477 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9478 if (ret)
9479 return ret;
9480 }
9481
9482 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9483 if (!arch_perf_have_user_stack_dump())
9484 return -ENOSYS;
9485
9486 /*
9487 * We have __u32 type for the size, but so far
9488 * we can only use __u16 as maximum due to the
9489 * __u16 sample size limit.
9490 */
9491 if (attr->sample_stack_user >= USHRT_MAX)
9492 ret = -EINVAL;
9493 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9494 ret = -EINVAL;
9495 }
4018994f 9496
60e2364e
SE
9497 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9498 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9499out:
9500 return ret;
9501
9502err_size:
9503 put_user(sizeof(*attr), &uattr->size);
9504 ret = -E2BIG;
9505 goto out;
9506}
9507
ac9721f3
PZ
9508static int
9509perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9510{
b69cf536 9511 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9512 int ret = -EINVAL;
9513
ac9721f3 9514 if (!output_event)
a4be7c27
PZ
9515 goto set;
9516
ac9721f3
PZ
9517 /* don't allow circular references */
9518 if (event == output_event)
a4be7c27
PZ
9519 goto out;
9520
0f139300
PZ
9521 /*
9522 * Don't allow cross-cpu buffers
9523 */
9524 if (output_event->cpu != event->cpu)
9525 goto out;
9526
9527 /*
76369139 9528 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9529 */
9530 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9531 goto out;
9532
34f43927
PZ
9533 /*
9534 * Mixing clocks in the same buffer is trouble you don't need.
9535 */
9536 if (output_event->clock != event->clock)
9537 goto out;
9538
9ecda41a
WN
9539 /*
9540 * Either writing ring buffer from beginning or from end.
9541 * Mixing is not allowed.
9542 */
9543 if (is_write_backward(output_event) != is_write_backward(event))
9544 goto out;
9545
45bfb2e5
PZ
9546 /*
9547 * If both events generate aux data, they must be on the same PMU
9548 */
9549 if (has_aux(event) && has_aux(output_event) &&
9550 event->pmu != output_event->pmu)
9551 goto out;
9552
a4be7c27 9553set:
cdd6c482 9554 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9555 /* Can't redirect output if we've got an active mmap() */
9556 if (atomic_read(&event->mmap_count))
9557 goto unlock;
a4be7c27 9558
ac9721f3 9559 if (output_event) {
76369139
FW
9560 /* get the rb we want to redirect to */
9561 rb = ring_buffer_get(output_event);
9562 if (!rb)
ac9721f3 9563 goto unlock;
a4be7c27
PZ
9564 }
9565
b69cf536 9566 ring_buffer_attach(event, rb);
9bb5d40c 9567
a4be7c27 9568 ret = 0;
ac9721f3
PZ
9569unlock:
9570 mutex_unlock(&event->mmap_mutex);
9571
a4be7c27 9572out:
a4be7c27
PZ
9573 return ret;
9574}
9575
f63a8daa
PZ
9576static void mutex_lock_double(struct mutex *a, struct mutex *b)
9577{
9578 if (b < a)
9579 swap(a, b);
9580
9581 mutex_lock(a);
9582 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9583}
9584
34f43927
PZ
9585static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9586{
9587 bool nmi_safe = false;
9588
9589 switch (clk_id) {
9590 case CLOCK_MONOTONIC:
9591 event->clock = &ktime_get_mono_fast_ns;
9592 nmi_safe = true;
9593 break;
9594
9595 case CLOCK_MONOTONIC_RAW:
9596 event->clock = &ktime_get_raw_fast_ns;
9597 nmi_safe = true;
9598 break;
9599
9600 case CLOCK_REALTIME:
9601 event->clock = &ktime_get_real_ns;
9602 break;
9603
9604 case CLOCK_BOOTTIME:
9605 event->clock = &ktime_get_boot_ns;
9606 break;
9607
9608 case CLOCK_TAI:
9609 event->clock = &ktime_get_tai_ns;
9610 break;
9611
9612 default:
9613 return -EINVAL;
9614 }
9615
9616 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9617 return -EINVAL;
9618
9619 return 0;
9620}
9621
321027c1
PZ
9622/*
9623 * Variation on perf_event_ctx_lock_nested(), except we take two context
9624 * mutexes.
9625 */
9626static struct perf_event_context *
9627__perf_event_ctx_lock_double(struct perf_event *group_leader,
9628 struct perf_event_context *ctx)
9629{
9630 struct perf_event_context *gctx;
9631
9632again:
9633 rcu_read_lock();
9634 gctx = READ_ONCE(group_leader->ctx);
9635 if (!atomic_inc_not_zero(&gctx->refcount)) {
9636 rcu_read_unlock();
9637 goto again;
9638 }
9639 rcu_read_unlock();
9640
9641 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9642
9643 if (group_leader->ctx != gctx) {
9644 mutex_unlock(&ctx->mutex);
9645 mutex_unlock(&gctx->mutex);
9646 put_ctx(gctx);
9647 goto again;
9648 }
9649
9650 return gctx;
9651}
9652
0793a61d 9653/**
cdd6c482 9654 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9655 *
cdd6c482 9656 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9657 * @pid: target pid
9f66a381 9658 * @cpu: target cpu
cdd6c482 9659 * @group_fd: group leader event fd
0793a61d 9660 */
cdd6c482
IM
9661SYSCALL_DEFINE5(perf_event_open,
9662 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9663 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9664{
b04243ef
PZ
9665 struct perf_event *group_leader = NULL, *output_event = NULL;
9666 struct perf_event *event, *sibling;
cdd6c482 9667 struct perf_event_attr attr;
f63a8daa 9668 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9669 struct file *event_file = NULL;
2903ff01 9670 struct fd group = {NULL, 0};
38a81da2 9671 struct task_struct *task = NULL;
89a1e187 9672 struct pmu *pmu;
ea635c64 9673 int event_fd;
b04243ef 9674 int move_group = 0;
dc86cabe 9675 int err;
a21b0b35 9676 int f_flags = O_RDWR;
79dff51e 9677 int cgroup_fd = -1;
0793a61d 9678
2743a5b0 9679 /* for future expandability... */
e5d1367f 9680 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9681 return -EINVAL;
9682
dc86cabe
IM
9683 err = perf_copy_attr(attr_uptr, &attr);
9684 if (err)
9685 return err;
eab656ae 9686
0764771d
PZ
9687 if (!attr.exclude_kernel) {
9688 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9689 return -EACCES;
9690 }
9691
df58ab24 9692 if (attr.freq) {
cdd6c482 9693 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9694 return -EINVAL;
0819b2e3
PZ
9695 } else {
9696 if (attr.sample_period & (1ULL << 63))
9697 return -EINVAL;
df58ab24
PZ
9698 }
9699
97c79a38
ACM
9700 if (!attr.sample_max_stack)
9701 attr.sample_max_stack = sysctl_perf_event_max_stack;
9702
e5d1367f
SE
9703 /*
9704 * In cgroup mode, the pid argument is used to pass the fd
9705 * opened to the cgroup directory in cgroupfs. The cpu argument
9706 * designates the cpu on which to monitor threads from that
9707 * cgroup.
9708 */
9709 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9710 return -EINVAL;
9711
a21b0b35
YD
9712 if (flags & PERF_FLAG_FD_CLOEXEC)
9713 f_flags |= O_CLOEXEC;
9714
9715 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9716 if (event_fd < 0)
9717 return event_fd;
9718
ac9721f3 9719 if (group_fd != -1) {
2903ff01
AV
9720 err = perf_fget_light(group_fd, &group);
9721 if (err)
d14b12d7 9722 goto err_fd;
2903ff01 9723 group_leader = group.file->private_data;
ac9721f3
PZ
9724 if (flags & PERF_FLAG_FD_OUTPUT)
9725 output_event = group_leader;
9726 if (flags & PERF_FLAG_FD_NO_GROUP)
9727 group_leader = NULL;
9728 }
9729
e5d1367f 9730 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9731 task = find_lively_task_by_vpid(pid);
9732 if (IS_ERR(task)) {
9733 err = PTR_ERR(task);
9734 goto err_group_fd;
9735 }
9736 }
9737
1f4ee503
PZ
9738 if (task && group_leader &&
9739 group_leader->attr.inherit != attr.inherit) {
9740 err = -EINVAL;
9741 goto err_task;
9742 }
9743
fbfc623f
YZ
9744 get_online_cpus();
9745
79c9ce57
PZ
9746 if (task) {
9747 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9748 if (err)
9749 goto err_cpus;
9750
9751 /*
9752 * Reuse ptrace permission checks for now.
9753 *
9754 * We must hold cred_guard_mutex across this and any potential
9755 * perf_install_in_context() call for this new event to
9756 * serialize against exec() altering our credentials (and the
9757 * perf_event_exit_task() that could imply).
9758 */
9759 err = -EACCES;
9760 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9761 goto err_cred;
9762 }
9763
79dff51e
MF
9764 if (flags & PERF_FLAG_PID_CGROUP)
9765 cgroup_fd = pid;
9766
4dc0da86 9767 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9768 NULL, NULL, cgroup_fd);
d14b12d7
SE
9769 if (IS_ERR(event)) {
9770 err = PTR_ERR(event);
79c9ce57 9771 goto err_cred;
d14b12d7
SE
9772 }
9773
53b25335
VW
9774 if (is_sampling_event(event)) {
9775 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 9776 err = -EOPNOTSUPP;
53b25335
VW
9777 goto err_alloc;
9778 }
9779 }
9780
89a1e187
PZ
9781 /*
9782 * Special case software events and allow them to be part of
9783 * any hardware group.
9784 */
9785 pmu = event->pmu;
b04243ef 9786
34f43927
PZ
9787 if (attr.use_clockid) {
9788 err = perf_event_set_clock(event, attr.clockid);
9789 if (err)
9790 goto err_alloc;
9791 }
9792
4ff6a8de
DCC
9793 if (pmu->task_ctx_nr == perf_sw_context)
9794 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9795
b04243ef
PZ
9796 if (group_leader &&
9797 (is_software_event(event) != is_software_event(group_leader))) {
9798 if (is_software_event(event)) {
9799 /*
9800 * If event and group_leader are not both a software
9801 * event, and event is, then group leader is not.
9802 *
9803 * Allow the addition of software events to !software
9804 * groups, this is safe because software events never
9805 * fail to schedule.
9806 */
9807 pmu = group_leader->pmu;
9808 } else if (is_software_event(group_leader) &&
4ff6a8de 9809 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
9810 /*
9811 * In case the group is a pure software group, and we
9812 * try to add a hardware event, move the whole group to
9813 * the hardware context.
9814 */
9815 move_group = 1;
9816 }
9817 }
89a1e187
PZ
9818
9819 /*
9820 * Get the target context (task or percpu):
9821 */
4af57ef2 9822 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
9823 if (IS_ERR(ctx)) {
9824 err = PTR_ERR(ctx);
c6be5a5c 9825 goto err_alloc;
89a1e187
PZ
9826 }
9827
bed5b25a
AS
9828 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9829 err = -EBUSY;
9830 goto err_context;
9831 }
9832
ccff286d 9833 /*
cdd6c482 9834 * Look up the group leader (we will attach this event to it):
04289bb9 9835 */
ac9721f3 9836 if (group_leader) {
dc86cabe 9837 err = -EINVAL;
04289bb9 9838
04289bb9 9839 /*
ccff286d
IM
9840 * Do not allow a recursive hierarchy (this new sibling
9841 * becoming part of another group-sibling):
9842 */
9843 if (group_leader->group_leader != group_leader)
c3f00c70 9844 goto err_context;
34f43927
PZ
9845
9846 /* All events in a group should have the same clock */
9847 if (group_leader->clock != event->clock)
9848 goto err_context;
9849
ccff286d
IM
9850 /*
9851 * Do not allow to attach to a group in a different
9852 * task or CPU context:
04289bb9 9853 */
b04243ef 9854 if (move_group) {
c3c87e77
PZ
9855 /*
9856 * Make sure we're both on the same task, or both
9857 * per-cpu events.
9858 */
9859 if (group_leader->ctx->task != ctx->task)
9860 goto err_context;
9861
9862 /*
9863 * Make sure we're both events for the same CPU;
9864 * grouping events for different CPUs is broken; since
9865 * you can never concurrently schedule them anyhow.
9866 */
9867 if (group_leader->cpu != event->cpu)
b04243ef
PZ
9868 goto err_context;
9869 } else {
9870 if (group_leader->ctx != ctx)
9871 goto err_context;
9872 }
9873
3b6f9e5c
PM
9874 /*
9875 * Only a group leader can be exclusive or pinned
9876 */
0d48696f 9877 if (attr.exclusive || attr.pinned)
c3f00c70 9878 goto err_context;
ac9721f3
PZ
9879 }
9880
9881 if (output_event) {
9882 err = perf_event_set_output(event, output_event);
9883 if (err)
c3f00c70 9884 goto err_context;
ac9721f3 9885 }
0793a61d 9886
a21b0b35
YD
9887 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9888 f_flags);
ea635c64
AV
9889 if (IS_ERR(event_file)) {
9890 err = PTR_ERR(event_file);
201c2f85 9891 event_file = NULL;
c3f00c70 9892 goto err_context;
ea635c64 9893 }
9b51f66d 9894
b04243ef 9895 if (move_group) {
321027c1
PZ
9896 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9897
84c4e620
PZ
9898 if (gctx->task == TASK_TOMBSTONE) {
9899 err = -ESRCH;
9900 goto err_locked;
9901 }
321027c1
PZ
9902
9903 /*
9904 * Check if we raced against another sys_perf_event_open() call
9905 * moving the software group underneath us.
9906 */
9907 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9908 /*
9909 * If someone moved the group out from under us, check
9910 * if this new event wound up on the same ctx, if so
9911 * its the regular !move_group case, otherwise fail.
9912 */
9913 if (gctx != ctx) {
9914 err = -EINVAL;
9915 goto err_locked;
9916 } else {
9917 perf_event_ctx_unlock(group_leader, gctx);
9918 move_group = 0;
9919 }
9920 }
f55fc2a5
PZ
9921 } else {
9922 mutex_lock(&ctx->mutex);
9923 }
9924
84c4e620
PZ
9925 if (ctx->task == TASK_TOMBSTONE) {
9926 err = -ESRCH;
9927 goto err_locked;
9928 }
9929
a723968c
PZ
9930 if (!perf_event_validate_size(event)) {
9931 err = -E2BIG;
9932 goto err_locked;
9933 }
9934
f55fc2a5
PZ
9935 /*
9936 * Must be under the same ctx::mutex as perf_install_in_context(),
9937 * because we need to serialize with concurrent event creation.
9938 */
9939 if (!exclusive_event_installable(event, ctx)) {
9940 /* exclusive and group stuff are assumed mutually exclusive */
9941 WARN_ON_ONCE(move_group);
f63a8daa 9942
f55fc2a5
PZ
9943 err = -EBUSY;
9944 goto err_locked;
9945 }
f63a8daa 9946
f55fc2a5
PZ
9947 WARN_ON_ONCE(ctx->parent_ctx);
9948
79c9ce57
PZ
9949 /*
9950 * This is the point on no return; we cannot fail hereafter. This is
9951 * where we start modifying current state.
9952 */
9953
f55fc2a5 9954 if (move_group) {
f63a8daa
PZ
9955 /*
9956 * See perf_event_ctx_lock() for comments on the details
9957 * of swizzling perf_event::ctx.
9958 */
45a0e07a 9959 perf_remove_from_context(group_leader, 0);
279b5165 9960 put_ctx(gctx);
0231bb53 9961
b04243ef
PZ
9962 list_for_each_entry(sibling, &group_leader->sibling_list,
9963 group_entry) {
45a0e07a 9964 perf_remove_from_context(sibling, 0);
b04243ef
PZ
9965 put_ctx(gctx);
9966 }
b04243ef 9967
f63a8daa
PZ
9968 /*
9969 * Wait for everybody to stop referencing the events through
9970 * the old lists, before installing it on new lists.
9971 */
0cda4c02 9972 synchronize_rcu();
f63a8daa 9973
8f95b435
PZI
9974 /*
9975 * Install the group siblings before the group leader.
9976 *
9977 * Because a group leader will try and install the entire group
9978 * (through the sibling list, which is still in-tact), we can
9979 * end up with siblings installed in the wrong context.
9980 *
9981 * By installing siblings first we NO-OP because they're not
9982 * reachable through the group lists.
9983 */
b04243ef
PZ
9984 list_for_each_entry(sibling, &group_leader->sibling_list,
9985 group_entry) {
8f95b435 9986 perf_event__state_init(sibling);
9fc81d87 9987 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
9988 get_ctx(ctx);
9989 }
8f95b435
PZI
9990
9991 /*
9992 * Removing from the context ends up with disabled
9993 * event. What we want here is event in the initial
9994 * startup state, ready to be add into new context.
9995 */
9996 perf_event__state_init(group_leader);
9997 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9998 get_ctx(ctx);
bed5b25a
AS
9999 }
10000
f73e22ab
PZ
10001 /*
10002 * Precalculate sample_data sizes; do while holding ctx::mutex such
10003 * that we're serialized against further additions and before
10004 * perf_install_in_context() which is the point the event is active and
10005 * can use these values.
10006 */
10007 perf_event__header_size(event);
10008 perf_event__id_header_size(event);
10009
78cd2c74
PZ
10010 event->owner = current;
10011
e2d37cd2 10012 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10013 perf_unpin_context(ctx);
f63a8daa 10014
f55fc2a5 10015 if (move_group)
321027c1 10016 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10017 mutex_unlock(&ctx->mutex);
9b51f66d 10018
79c9ce57
PZ
10019 if (task) {
10020 mutex_unlock(&task->signal->cred_guard_mutex);
10021 put_task_struct(task);
10022 }
10023
fbfc623f
YZ
10024 put_online_cpus();
10025
cdd6c482
IM
10026 mutex_lock(&current->perf_event_mutex);
10027 list_add_tail(&event->owner_entry, &current->perf_event_list);
10028 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10029
8a49542c
PZ
10030 /*
10031 * Drop the reference on the group_event after placing the
10032 * new event on the sibling_list. This ensures destruction
10033 * of the group leader will find the pointer to itself in
10034 * perf_group_detach().
10035 */
2903ff01 10036 fdput(group);
ea635c64
AV
10037 fd_install(event_fd, event_file);
10038 return event_fd;
0793a61d 10039
f55fc2a5
PZ
10040err_locked:
10041 if (move_group)
321027c1 10042 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10043 mutex_unlock(&ctx->mutex);
10044/* err_file: */
10045 fput(event_file);
c3f00c70 10046err_context:
fe4b04fa 10047 perf_unpin_context(ctx);
ea635c64 10048 put_ctx(ctx);
c6be5a5c 10049err_alloc:
13005627
PZ
10050 /*
10051 * If event_file is set, the fput() above will have called ->release()
10052 * and that will take care of freeing the event.
10053 */
10054 if (!event_file)
10055 free_event(event);
79c9ce57
PZ
10056err_cred:
10057 if (task)
10058 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10059err_cpus:
fbfc623f 10060 put_online_cpus();
1f4ee503 10061err_task:
e7d0bc04
PZ
10062 if (task)
10063 put_task_struct(task);
89a1e187 10064err_group_fd:
2903ff01 10065 fdput(group);
ea635c64
AV
10066err_fd:
10067 put_unused_fd(event_fd);
dc86cabe 10068 return err;
0793a61d
TG
10069}
10070
fb0459d7
AV
10071/**
10072 * perf_event_create_kernel_counter
10073 *
10074 * @attr: attributes of the counter to create
10075 * @cpu: cpu in which the counter is bound
38a81da2 10076 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10077 */
10078struct perf_event *
10079perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10080 struct task_struct *task,
4dc0da86
AK
10081 perf_overflow_handler_t overflow_handler,
10082 void *context)
fb0459d7 10083{
fb0459d7 10084 struct perf_event_context *ctx;
c3f00c70 10085 struct perf_event *event;
fb0459d7 10086 int err;
d859e29f 10087
fb0459d7
AV
10088 /*
10089 * Get the target context (task or percpu):
10090 */
d859e29f 10091
4dc0da86 10092 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10093 overflow_handler, context, -1);
c3f00c70
PZ
10094 if (IS_ERR(event)) {
10095 err = PTR_ERR(event);
10096 goto err;
10097 }
d859e29f 10098
f8697762 10099 /* Mark owner so we could distinguish it from user events. */
63b6da39 10100 event->owner = TASK_TOMBSTONE;
f8697762 10101
4af57ef2 10102 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10103 if (IS_ERR(ctx)) {
10104 err = PTR_ERR(ctx);
c3f00c70 10105 goto err_free;
d859e29f 10106 }
fb0459d7 10107
fb0459d7
AV
10108 WARN_ON_ONCE(ctx->parent_ctx);
10109 mutex_lock(&ctx->mutex);
84c4e620
PZ
10110 if (ctx->task == TASK_TOMBSTONE) {
10111 err = -ESRCH;
10112 goto err_unlock;
10113 }
10114
bed5b25a 10115 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10116 err = -EBUSY;
84c4e620 10117 goto err_unlock;
bed5b25a
AS
10118 }
10119
fb0459d7 10120 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10121 perf_unpin_context(ctx);
fb0459d7
AV
10122 mutex_unlock(&ctx->mutex);
10123
fb0459d7
AV
10124 return event;
10125
84c4e620
PZ
10126err_unlock:
10127 mutex_unlock(&ctx->mutex);
10128 perf_unpin_context(ctx);
10129 put_ctx(ctx);
c3f00c70
PZ
10130err_free:
10131 free_event(event);
10132err:
c6567f64 10133 return ERR_PTR(err);
9b51f66d 10134}
fb0459d7 10135EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10136
0cda4c02
YZ
10137void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10138{
10139 struct perf_event_context *src_ctx;
10140 struct perf_event_context *dst_ctx;
10141 struct perf_event *event, *tmp;
10142 LIST_HEAD(events);
10143
10144 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10145 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10146
f63a8daa
PZ
10147 /*
10148 * See perf_event_ctx_lock() for comments on the details
10149 * of swizzling perf_event::ctx.
10150 */
10151 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10152 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10153 event_entry) {
45a0e07a 10154 perf_remove_from_context(event, 0);
9a545de0 10155 unaccount_event_cpu(event, src_cpu);
0cda4c02 10156 put_ctx(src_ctx);
9886167d 10157 list_add(&event->migrate_entry, &events);
0cda4c02 10158 }
0cda4c02 10159
8f95b435
PZI
10160 /*
10161 * Wait for the events to quiesce before re-instating them.
10162 */
0cda4c02
YZ
10163 synchronize_rcu();
10164
8f95b435
PZI
10165 /*
10166 * Re-instate events in 2 passes.
10167 *
10168 * Skip over group leaders and only install siblings on this first
10169 * pass, siblings will not get enabled without a leader, however a
10170 * leader will enable its siblings, even if those are still on the old
10171 * context.
10172 */
10173 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10174 if (event->group_leader == event)
10175 continue;
10176
10177 list_del(&event->migrate_entry);
10178 if (event->state >= PERF_EVENT_STATE_OFF)
10179 event->state = PERF_EVENT_STATE_INACTIVE;
10180 account_event_cpu(event, dst_cpu);
10181 perf_install_in_context(dst_ctx, event, dst_cpu);
10182 get_ctx(dst_ctx);
10183 }
10184
10185 /*
10186 * Once all the siblings are setup properly, install the group leaders
10187 * to make it go.
10188 */
9886167d
PZ
10189 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10190 list_del(&event->migrate_entry);
0cda4c02
YZ
10191 if (event->state >= PERF_EVENT_STATE_OFF)
10192 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10193 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10194 perf_install_in_context(dst_ctx, event, dst_cpu);
10195 get_ctx(dst_ctx);
10196 }
10197 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10198 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10199}
10200EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10201
cdd6c482 10202static void sync_child_event(struct perf_event *child_event,
38b200d6 10203 struct task_struct *child)
d859e29f 10204{
cdd6c482 10205 struct perf_event *parent_event = child_event->parent;
8bc20959 10206 u64 child_val;
d859e29f 10207
cdd6c482
IM
10208 if (child_event->attr.inherit_stat)
10209 perf_event_read_event(child_event, child);
38b200d6 10210
b5e58793 10211 child_val = perf_event_count(child_event);
d859e29f
PM
10212
10213 /*
10214 * Add back the child's count to the parent's count:
10215 */
a6e6dea6 10216 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10217 atomic64_add(child_event->total_time_enabled,
10218 &parent_event->child_total_time_enabled);
10219 atomic64_add(child_event->total_time_running,
10220 &parent_event->child_total_time_running);
d859e29f
PM
10221}
10222
9b51f66d 10223static void
8ba289b8
PZ
10224perf_event_exit_event(struct perf_event *child_event,
10225 struct perf_event_context *child_ctx,
10226 struct task_struct *child)
9b51f66d 10227{
8ba289b8
PZ
10228 struct perf_event *parent_event = child_event->parent;
10229
1903d50c
PZ
10230 /*
10231 * Do not destroy the 'original' grouping; because of the context
10232 * switch optimization the original events could've ended up in a
10233 * random child task.
10234 *
10235 * If we were to destroy the original group, all group related
10236 * operations would cease to function properly after this random
10237 * child dies.
10238 *
10239 * Do destroy all inherited groups, we don't care about those
10240 * and being thorough is better.
10241 */
32132a3d
PZ
10242 raw_spin_lock_irq(&child_ctx->lock);
10243 WARN_ON_ONCE(child_ctx->is_active);
10244
8ba289b8 10245 if (parent_event)
32132a3d
PZ
10246 perf_group_detach(child_event);
10247 list_del_event(child_event, child_ctx);
a69b0ca4 10248 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 10249 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10250
9b51f66d 10251 /*
8ba289b8 10252 * Parent events are governed by their filedesc, retain them.
9b51f66d 10253 */
8ba289b8 10254 if (!parent_event) {
179033b3 10255 perf_event_wakeup(child_event);
8ba289b8 10256 return;
4bcf349a 10257 }
8ba289b8
PZ
10258 /*
10259 * Child events can be cleaned up.
10260 */
10261
10262 sync_child_event(child_event, child);
10263
10264 /*
10265 * Remove this event from the parent's list
10266 */
10267 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10268 mutex_lock(&parent_event->child_mutex);
10269 list_del_init(&child_event->child_list);
10270 mutex_unlock(&parent_event->child_mutex);
10271
10272 /*
10273 * Kick perf_poll() for is_event_hup().
10274 */
10275 perf_event_wakeup(parent_event);
10276 free_event(child_event);
10277 put_event(parent_event);
9b51f66d
IM
10278}
10279
8dc85d54 10280static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10281{
211de6eb 10282 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10283 struct perf_event *child_event, *next;
63b6da39
PZ
10284
10285 WARN_ON_ONCE(child != current);
9b51f66d 10286
6a3351b6 10287 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10288 if (!child_ctx)
9b51f66d
IM
10289 return;
10290
ad3a37de 10291 /*
6a3351b6
PZ
10292 * In order to reduce the amount of tricky in ctx tear-down, we hold
10293 * ctx::mutex over the entire thing. This serializes against almost
10294 * everything that wants to access the ctx.
10295 *
10296 * The exception is sys_perf_event_open() /
10297 * perf_event_create_kernel_count() which does find_get_context()
10298 * without ctx::mutex (it cannot because of the move_group double mutex
10299 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10300 */
6a3351b6 10301 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10302
10303 /*
6a3351b6
PZ
10304 * In a single ctx::lock section, de-schedule the events and detach the
10305 * context from the task such that we cannot ever get it scheduled back
10306 * in.
c93f7669 10307 */
6a3351b6 10308 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10309 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10310
71a851b4 10311 /*
63b6da39
PZ
10312 * Now that the context is inactive, destroy the task <-> ctx relation
10313 * and mark the context dead.
71a851b4 10314 */
63b6da39
PZ
10315 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10316 put_ctx(child_ctx); /* cannot be last */
10317 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10318 put_task_struct(current); /* cannot be last */
4a1c0f26 10319
211de6eb 10320 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10321 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10322
211de6eb
PZ
10323 if (clone_ctx)
10324 put_ctx(clone_ctx);
4a1c0f26 10325
9f498cc5 10326 /*
cdd6c482
IM
10327 * Report the task dead after unscheduling the events so that we
10328 * won't get any samples after PERF_RECORD_EXIT. We can however still
10329 * get a few PERF_RECORD_READ events.
9f498cc5 10330 */
cdd6c482 10331 perf_event_task(child, child_ctx, 0);
a63eaf34 10332
ebf905fc 10333 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10334 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10335
a63eaf34
PM
10336 mutex_unlock(&child_ctx->mutex);
10337
10338 put_ctx(child_ctx);
9b51f66d
IM
10339}
10340
8dc85d54
PZ
10341/*
10342 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10343 *
10344 * Can be called with cred_guard_mutex held when called from
10345 * install_exec_creds().
8dc85d54
PZ
10346 */
10347void perf_event_exit_task(struct task_struct *child)
10348{
8882135b 10349 struct perf_event *event, *tmp;
8dc85d54
PZ
10350 int ctxn;
10351
8882135b
PZ
10352 mutex_lock(&child->perf_event_mutex);
10353 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10354 owner_entry) {
10355 list_del_init(&event->owner_entry);
10356
10357 /*
10358 * Ensure the list deletion is visible before we clear
10359 * the owner, closes a race against perf_release() where
10360 * we need to serialize on the owner->perf_event_mutex.
10361 */
f47c02c0 10362 smp_store_release(&event->owner, NULL);
8882135b
PZ
10363 }
10364 mutex_unlock(&child->perf_event_mutex);
10365
8dc85d54
PZ
10366 for_each_task_context_nr(ctxn)
10367 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10368
10369 /*
10370 * The perf_event_exit_task_context calls perf_event_task
10371 * with child's task_ctx, which generates EXIT events for
10372 * child contexts and sets child->perf_event_ctxp[] to NULL.
10373 * At this point we need to send EXIT events to cpu contexts.
10374 */
10375 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10376}
10377
889ff015
FW
10378static void perf_free_event(struct perf_event *event,
10379 struct perf_event_context *ctx)
10380{
10381 struct perf_event *parent = event->parent;
10382
10383 if (WARN_ON_ONCE(!parent))
10384 return;
10385
10386 mutex_lock(&parent->child_mutex);
10387 list_del_init(&event->child_list);
10388 mutex_unlock(&parent->child_mutex);
10389
a6fa941d 10390 put_event(parent);
889ff015 10391
652884fe 10392 raw_spin_lock_irq(&ctx->lock);
8a49542c 10393 perf_group_detach(event);
889ff015 10394 list_del_event(event, ctx);
652884fe 10395 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10396 free_event(event);
10397}
10398
bbbee908 10399/*
652884fe 10400 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10401 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10402 *
10403 * Not all locks are strictly required, but take them anyway to be nice and
10404 * help out with the lockdep assertions.
bbbee908 10405 */
cdd6c482 10406void perf_event_free_task(struct task_struct *task)
bbbee908 10407{
8dc85d54 10408 struct perf_event_context *ctx;
cdd6c482 10409 struct perf_event *event, *tmp;
8dc85d54 10410 int ctxn;
bbbee908 10411
8dc85d54
PZ
10412 for_each_task_context_nr(ctxn) {
10413 ctx = task->perf_event_ctxp[ctxn];
10414 if (!ctx)
10415 continue;
bbbee908 10416
8dc85d54 10417 mutex_lock(&ctx->mutex);
e552a838
PZ
10418 raw_spin_lock_irq(&ctx->lock);
10419 /*
10420 * Destroy the task <-> ctx relation and mark the context dead.
10421 *
10422 * This is important because even though the task hasn't been
10423 * exposed yet the context has been (through child_list).
10424 */
10425 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10426 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10427 put_task_struct(task); /* cannot be last */
10428 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10429again:
8dc85d54
PZ
10430 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10431 group_entry)
10432 perf_free_event(event, ctx);
bbbee908 10433
8dc85d54
PZ
10434 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10435 group_entry)
10436 perf_free_event(event, ctx);
bbbee908 10437
8dc85d54
PZ
10438 if (!list_empty(&ctx->pinned_groups) ||
10439 !list_empty(&ctx->flexible_groups))
10440 goto again;
bbbee908 10441
8dc85d54 10442 mutex_unlock(&ctx->mutex);
bbbee908 10443
8dc85d54
PZ
10444 put_ctx(ctx);
10445 }
889ff015
FW
10446}
10447
4e231c79
PZ
10448void perf_event_delayed_put(struct task_struct *task)
10449{
10450 int ctxn;
10451
10452 for_each_task_context_nr(ctxn)
10453 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10454}
10455
e03e7ee3 10456struct file *perf_event_get(unsigned int fd)
ffe8690c 10457{
e03e7ee3 10458 struct file *file;
ffe8690c 10459
e03e7ee3
AS
10460 file = fget_raw(fd);
10461 if (!file)
10462 return ERR_PTR(-EBADF);
ffe8690c 10463
e03e7ee3
AS
10464 if (file->f_op != &perf_fops) {
10465 fput(file);
10466 return ERR_PTR(-EBADF);
10467 }
ffe8690c 10468
e03e7ee3 10469 return file;
ffe8690c
KX
10470}
10471
10472const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10473{
10474 if (!event)
10475 return ERR_PTR(-EINVAL);
10476
10477 return &event->attr;
10478}
10479
97dee4f3
PZ
10480/*
10481 * inherit a event from parent task to child task:
10482 */
10483static struct perf_event *
10484inherit_event(struct perf_event *parent_event,
10485 struct task_struct *parent,
10486 struct perf_event_context *parent_ctx,
10487 struct task_struct *child,
10488 struct perf_event *group_leader,
10489 struct perf_event_context *child_ctx)
10490{
1929def9 10491 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10492 struct perf_event *child_event;
cee010ec 10493 unsigned long flags;
97dee4f3
PZ
10494
10495 /*
10496 * Instead of creating recursive hierarchies of events,
10497 * we link inherited events back to the original parent,
10498 * which has a filp for sure, which we use as the reference
10499 * count:
10500 */
10501 if (parent_event->parent)
10502 parent_event = parent_event->parent;
10503
10504 child_event = perf_event_alloc(&parent_event->attr,
10505 parent_event->cpu,
d580ff86 10506 child,
97dee4f3 10507 group_leader, parent_event,
79dff51e 10508 NULL, NULL, -1);
97dee4f3
PZ
10509 if (IS_ERR(child_event))
10510 return child_event;
a6fa941d 10511
c6e5b732
PZ
10512 /*
10513 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10514 * must be under the same lock in order to serialize against
10515 * perf_event_release_kernel(), such that either we must observe
10516 * is_orphaned_event() or they will observe us on the child_list.
10517 */
10518 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10519 if (is_orphaned_event(parent_event) ||
10520 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10521 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10522 free_event(child_event);
10523 return NULL;
10524 }
10525
97dee4f3
PZ
10526 get_ctx(child_ctx);
10527
10528 /*
10529 * Make the child state follow the state of the parent event,
10530 * not its attr.disabled bit. We hold the parent's mutex,
10531 * so we won't race with perf_event_{en, dis}able_family.
10532 */
1929def9 10533 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10534 child_event->state = PERF_EVENT_STATE_INACTIVE;
10535 else
10536 child_event->state = PERF_EVENT_STATE_OFF;
10537
10538 if (parent_event->attr.freq) {
10539 u64 sample_period = parent_event->hw.sample_period;
10540 struct hw_perf_event *hwc = &child_event->hw;
10541
10542 hwc->sample_period = sample_period;
10543 hwc->last_period = sample_period;
10544
10545 local64_set(&hwc->period_left, sample_period);
10546 }
10547
10548 child_event->ctx = child_ctx;
10549 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10550 child_event->overflow_handler_context
10551 = parent_event->overflow_handler_context;
97dee4f3 10552
614b6780
TG
10553 /*
10554 * Precalculate sample_data sizes
10555 */
10556 perf_event__header_size(child_event);
6844c09d 10557 perf_event__id_header_size(child_event);
614b6780 10558
97dee4f3
PZ
10559 /*
10560 * Link it up in the child's context:
10561 */
cee010ec 10562 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10563 add_event_to_ctx(child_event, child_ctx);
cee010ec 10564 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10565
97dee4f3
PZ
10566 /*
10567 * Link this into the parent event's child list
10568 */
97dee4f3
PZ
10569 list_add_tail(&child_event->child_list, &parent_event->child_list);
10570 mutex_unlock(&parent_event->child_mutex);
10571
10572 return child_event;
10573}
10574
10575static int inherit_group(struct perf_event *parent_event,
10576 struct task_struct *parent,
10577 struct perf_event_context *parent_ctx,
10578 struct task_struct *child,
10579 struct perf_event_context *child_ctx)
10580{
10581 struct perf_event *leader;
10582 struct perf_event *sub;
10583 struct perf_event *child_ctr;
10584
10585 leader = inherit_event(parent_event, parent, parent_ctx,
10586 child, NULL, child_ctx);
10587 if (IS_ERR(leader))
10588 return PTR_ERR(leader);
10589 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10590 child_ctr = inherit_event(sub, parent, parent_ctx,
10591 child, leader, child_ctx);
10592 if (IS_ERR(child_ctr))
10593 return PTR_ERR(child_ctr);
10594 }
10595 return 0;
889ff015
FW
10596}
10597
10598static int
10599inherit_task_group(struct perf_event *event, struct task_struct *parent,
10600 struct perf_event_context *parent_ctx,
8dc85d54 10601 struct task_struct *child, int ctxn,
889ff015
FW
10602 int *inherited_all)
10603{
10604 int ret;
8dc85d54 10605 struct perf_event_context *child_ctx;
889ff015
FW
10606
10607 if (!event->attr.inherit) {
10608 *inherited_all = 0;
10609 return 0;
bbbee908
PZ
10610 }
10611
fe4b04fa 10612 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10613 if (!child_ctx) {
10614 /*
10615 * This is executed from the parent task context, so
10616 * inherit events that have been marked for cloning.
10617 * First allocate and initialize a context for the
10618 * child.
10619 */
bbbee908 10620
734df5ab 10621 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10622 if (!child_ctx)
10623 return -ENOMEM;
bbbee908 10624
8dc85d54 10625 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10626 }
10627
10628 ret = inherit_group(event, parent, parent_ctx,
10629 child, child_ctx);
10630
10631 if (ret)
10632 *inherited_all = 0;
10633
10634 return ret;
bbbee908
PZ
10635}
10636
9b51f66d 10637/*
cdd6c482 10638 * Initialize the perf_event context in task_struct
9b51f66d 10639 */
985c8dcb 10640static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10641{
889ff015 10642 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10643 struct perf_event_context *cloned_ctx;
10644 struct perf_event *event;
9b51f66d 10645 struct task_struct *parent = current;
564c2b21 10646 int inherited_all = 1;
dddd3379 10647 unsigned long flags;
6ab423e0 10648 int ret = 0;
9b51f66d 10649
8dc85d54 10650 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10651 return 0;
10652
ad3a37de 10653 /*
25346b93
PM
10654 * If the parent's context is a clone, pin it so it won't get
10655 * swapped under us.
ad3a37de 10656 */
8dc85d54 10657 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10658 if (!parent_ctx)
10659 return 0;
25346b93 10660
ad3a37de
PM
10661 /*
10662 * No need to check if parent_ctx != NULL here; since we saw
10663 * it non-NULL earlier, the only reason for it to become NULL
10664 * is if we exit, and since we're currently in the middle of
10665 * a fork we can't be exiting at the same time.
10666 */
ad3a37de 10667
9b51f66d
IM
10668 /*
10669 * Lock the parent list. No need to lock the child - not PID
10670 * hashed yet and not running, so nobody can access it.
10671 */
d859e29f 10672 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10673
10674 /*
10675 * We dont have to disable NMIs - we are only looking at
10676 * the list, not manipulating it:
10677 */
889ff015 10678 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10679 ret = inherit_task_group(event, parent, parent_ctx,
10680 child, ctxn, &inherited_all);
889ff015
FW
10681 if (ret)
10682 break;
10683 }
b93f7978 10684
dddd3379
TG
10685 /*
10686 * We can't hold ctx->lock when iterating the ->flexible_group list due
10687 * to allocations, but we need to prevent rotation because
10688 * rotate_ctx() will change the list from interrupt context.
10689 */
10690 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10691 parent_ctx->rotate_disable = 1;
10692 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10693
889ff015 10694 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10695 ret = inherit_task_group(event, parent, parent_ctx,
10696 child, ctxn, &inherited_all);
889ff015 10697 if (ret)
9b51f66d 10698 break;
564c2b21
PM
10699 }
10700
dddd3379
TG
10701 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10702 parent_ctx->rotate_disable = 0;
dddd3379 10703
8dc85d54 10704 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10705
05cbaa28 10706 if (child_ctx && inherited_all) {
564c2b21
PM
10707 /*
10708 * Mark the child context as a clone of the parent
10709 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10710 *
10711 * Note that if the parent is a clone, the holding of
10712 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10713 */
c5ed5145 10714 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10715 if (cloned_ctx) {
10716 child_ctx->parent_ctx = cloned_ctx;
25346b93 10717 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10718 } else {
10719 child_ctx->parent_ctx = parent_ctx;
10720 child_ctx->parent_gen = parent_ctx->generation;
10721 }
10722 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10723 }
10724
c5ed5145 10725 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 10726 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10727
25346b93 10728 perf_unpin_context(parent_ctx);
fe4b04fa 10729 put_ctx(parent_ctx);
ad3a37de 10730
6ab423e0 10731 return ret;
9b51f66d
IM
10732}
10733
8dc85d54
PZ
10734/*
10735 * Initialize the perf_event context in task_struct
10736 */
10737int perf_event_init_task(struct task_struct *child)
10738{
10739 int ctxn, ret;
10740
8550d7cb
ON
10741 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10742 mutex_init(&child->perf_event_mutex);
10743 INIT_LIST_HEAD(&child->perf_event_list);
10744
8dc85d54
PZ
10745 for_each_task_context_nr(ctxn) {
10746 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10747 if (ret) {
10748 perf_event_free_task(child);
8dc85d54 10749 return ret;
6c72e350 10750 }
8dc85d54
PZ
10751 }
10752
10753 return 0;
10754}
10755
220b140b
PM
10756static void __init perf_event_init_all_cpus(void)
10757{
b28ab83c 10758 struct swevent_htable *swhash;
220b140b 10759 int cpu;
220b140b
PM
10760
10761 for_each_possible_cpu(cpu) {
b28ab83c
PZ
10762 swhash = &per_cpu(swevent_htable, cpu);
10763 mutex_init(&swhash->hlist_mutex);
2fde4f94 10764 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
10765
10766 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10767 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 10768
058fe1c0
DCC
10769#ifdef CONFIG_CGROUP_PERF
10770 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10771#endif
e48c1788 10772 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
10773 }
10774}
10775
00e16c3d 10776int perf_event_init_cpu(unsigned int cpu)
0793a61d 10777{
108b02cf 10778 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 10779
b28ab83c 10780 mutex_lock(&swhash->hlist_mutex);
059fcd8c 10781 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
10782 struct swevent_hlist *hlist;
10783
b28ab83c
PZ
10784 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10785 WARN_ON(!hlist);
10786 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 10787 }
b28ab83c 10788 mutex_unlock(&swhash->hlist_mutex);
00e16c3d 10789 return 0;
0793a61d
TG
10790}
10791
2965faa5 10792#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 10793static void __perf_event_exit_context(void *__info)
0793a61d 10794{
108b02cf 10795 struct perf_event_context *ctx = __info;
fae3fde6
PZ
10796 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10797 struct perf_event *event;
0793a61d 10798
fae3fde6
PZ
10799 raw_spin_lock(&ctx->lock);
10800 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 10801 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 10802 raw_spin_unlock(&ctx->lock);
0793a61d 10803}
108b02cf
PZ
10804
10805static void perf_event_exit_cpu_context(int cpu)
10806{
10807 struct perf_event_context *ctx;
10808 struct pmu *pmu;
10809 int idx;
10810
10811 idx = srcu_read_lock(&pmus_srcu);
10812 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 10813 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
10814
10815 mutex_lock(&ctx->mutex);
10816 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10817 mutex_unlock(&ctx->mutex);
10818 }
10819 srcu_read_unlock(&pmus_srcu, idx);
108b02cf 10820}
00e16c3d
TG
10821#else
10822
10823static void perf_event_exit_cpu_context(int cpu) { }
10824
10825#endif
108b02cf 10826
00e16c3d 10827int perf_event_exit_cpu(unsigned int cpu)
0793a61d 10828{
e3703f8c 10829 perf_event_exit_cpu_context(cpu);
00e16c3d 10830 return 0;
0793a61d 10831}
0793a61d 10832
c277443c
PZ
10833static int
10834perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10835{
10836 int cpu;
10837
10838 for_each_online_cpu(cpu)
10839 perf_event_exit_cpu(cpu);
10840
10841 return NOTIFY_OK;
10842}
10843
10844/*
10845 * Run the perf reboot notifier at the very last possible moment so that
10846 * the generic watchdog code runs as long as possible.
10847 */
10848static struct notifier_block perf_reboot_notifier = {
10849 .notifier_call = perf_reboot,
10850 .priority = INT_MIN,
10851};
10852
cdd6c482 10853void __init perf_event_init(void)
0793a61d 10854{
3c502e7a
JW
10855 int ret;
10856
2e80a82a
PZ
10857 idr_init(&pmu_idr);
10858
220b140b 10859 perf_event_init_all_cpus();
b0a873eb 10860 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
10861 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10862 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10863 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 10864 perf_tp_register();
00e16c3d 10865 perf_event_init_cpu(smp_processor_id());
c277443c 10866 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
10867
10868 ret = init_hw_breakpoint();
10869 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 10870
b01c3a00
JO
10871 /*
10872 * Build time assertion that we keep the data_head at the intended
10873 * location. IOW, validation we got the __reserved[] size right.
10874 */
10875 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10876 != 1024);
0793a61d 10877}
abe43400 10878
fd979c01
CS
10879ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10880 char *page)
10881{
10882 struct perf_pmu_events_attr *pmu_attr =
10883 container_of(attr, struct perf_pmu_events_attr, attr);
10884
10885 if (pmu_attr->event_str)
10886 return sprintf(page, "%s\n", pmu_attr->event_str);
10887
10888 return 0;
10889}
675965b0 10890EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 10891
abe43400
PZ
10892static int __init perf_event_sysfs_init(void)
10893{
10894 struct pmu *pmu;
10895 int ret;
10896
10897 mutex_lock(&pmus_lock);
10898
10899 ret = bus_register(&pmu_bus);
10900 if (ret)
10901 goto unlock;
10902
10903 list_for_each_entry(pmu, &pmus, entry) {
10904 if (!pmu->name || pmu->type < 0)
10905 continue;
10906
10907 ret = pmu_dev_alloc(pmu);
10908 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10909 }
10910 pmu_bus_running = 1;
10911 ret = 0;
10912
10913unlock:
10914 mutex_unlock(&pmus_lock);
10915
10916 return ret;
10917}
10918device_initcall(perf_event_sysfs_init);
e5d1367f
SE
10919
10920#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
10921static struct cgroup_subsys_state *
10922perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
10923{
10924 struct perf_cgroup *jc;
e5d1367f 10925
1b15d055 10926 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
10927 if (!jc)
10928 return ERR_PTR(-ENOMEM);
10929
e5d1367f
SE
10930 jc->info = alloc_percpu(struct perf_cgroup_info);
10931 if (!jc->info) {
10932 kfree(jc);
10933 return ERR_PTR(-ENOMEM);
10934 }
10935
e5d1367f
SE
10936 return &jc->css;
10937}
10938
eb95419b 10939static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 10940{
eb95419b
TH
10941 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10942
e5d1367f
SE
10943 free_percpu(jc->info);
10944 kfree(jc);
10945}
10946
10947static int __perf_cgroup_move(void *info)
10948{
10949 struct task_struct *task = info;
ddaaf4e2 10950 rcu_read_lock();
e5d1367f 10951 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 10952 rcu_read_unlock();
e5d1367f
SE
10953 return 0;
10954}
10955
1f7dd3e5 10956static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 10957{
bb9d97b6 10958 struct task_struct *task;
1f7dd3e5 10959 struct cgroup_subsys_state *css;
bb9d97b6 10960
1f7dd3e5 10961 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 10962 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
10963}
10964
073219e9 10965struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
10966 .css_alloc = perf_cgroup_css_alloc,
10967 .css_free = perf_cgroup_css_free,
bb9d97b6 10968 .attach = perf_cgroup_attach,
968ebff1
TH
10969 /*
10970 * Implicitly enable on dfl hierarchy so that perf events can
10971 * always be filtered by cgroup2 path as long as perf_event
10972 * controller is not mounted on a legacy hierarchy.
10973 */
10974 .implicit_on_dfl = true,
e5d1367f
SE
10975};
10976#endif /* CONFIG_CGROUP_PERF */