]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/events/core.c
Merge tag 'drm-next-2020-04-08' of git://anongit.freedesktop.org/drm/drm
[mirror_ubuntu-hirsute-kernel.git] / kernel / events / core.c
CommitLineData
8e86e015 1// SPDX-License-Identifier: GPL-2.0
0793a61d 2/*
57c0c15b 3 * Performance events core code:
0793a61d 4 *
98144511 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
2e80a82a 15#include <linux/idr.h>
04289bb9 16#include <linux/file.h>
0793a61d 17#include <linux/poll.h>
5a0e3ad6 18#include <linux/slab.h>
76e1d904 19#include <linux/hash.h>
12351ef8 20#include <linux/tick.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b 30#include <linux/hardirq.h>
03911132 31#include <linux/hugetlb.h>
b9cacc7b 32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
6eef8a71 53#include <linux/min_heap.h>
0793a61d 54
76369139
FW
55#include "internal.h"
56
4e193bd4
TB
57#include <asm/irq_regs.h>
58
272325c4
PZ
59typedef int (*remote_function_f)(void *);
60
fe4b04fa 61struct remote_function_call {
e7e7ee2e 62 struct task_struct *p;
272325c4 63 remote_function_f func;
e7e7ee2e
IM
64 void *info;
65 int ret;
fe4b04fa
PZ
66};
67
68static void remote_function(void *data)
69{
70 struct remote_function_call *tfc = data;
71 struct task_struct *p = tfc->p;
72
73 if (p) {
0da4cf3e
PZ
74 /* -EAGAIN */
75 if (task_cpu(p) != smp_processor_id())
76 return;
77
78 /*
79 * Now that we're on right CPU with IRQs disabled, we can test
80 * if we hit the right task without races.
81 */
82
83 tfc->ret = -ESRCH; /* No such (running) process */
84 if (p != current)
fe4b04fa
PZ
85 return;
86 }
87
88 tfc->ret = tfc->func(tfc->info);
89}
90
91/**
92 * task_function_call - call a function on the cpu on which a task runs
93 * @p: the task to evaluate
94 * @func: the function to be called
95 * @info: the function call argument
96 *
97 * Calls the function @func when the task is currently running. This might
98 * be on the current CPU, which just calls the function directly
99 *
100 * returns: @func return value, or
101 * -ESRCH - when the process isn't running
102 * -EAGAIN - when the process moved away
103 */
104static int
272325c4 105task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
106{
107 struct remote_function_call data = {
e7e7ee2e
IM
108 .p = p,
109 .func = func,
110 .info = info,
0da4cf3e 111 .ret = -EAGAIN,
fe4b04fa 112 };
0da4cf3e 113 int ret;
fe4b04fa 114
0da4cf3e
PZ
115 do {
116 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
117 if (!ret)
118 ret = data.ret;
119 } while (ret == -EAGAIN);
fe4b04fa 120
0da4cf3e 121 return ret;
fe4b04fa
PZ
122}
123
124/**
125 * cpu_function_call - call a function on the cpu
126 * @func: the function to be called
127 * @info: the function call argument
128 *
129 * Calls the function @func on the remote cpu.
130 *
131 * returns: @func return value or -ENXIO when the cpu is offline
132 */
272325c4 133static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
134{
135 struct remote_function_call data = {
e7e7ee2e
IM
136 .p = NULL,
137 .func = func,
138 .info = info,
139 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
140 };
141
142 smp_call_function_single(cpu, remote_function, &data, 1);
143
144 return data.ret;
145}
146
fae3fde6
PZ
147static inline struct perf_cpu_context *
148__get_cpu_context(struct perf_event_context *ctx)
149{
150 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
151}
152
153static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
154 struct perf_event_context *ctx)
0017960f 155{
fae3fde6
PZ
156 raw_spin_lock(&cpuctx->ctx.lock);
157 if (ctx)
158 raw_spin_lock(&ctx->lock);
159}
160
161static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
162 struct perf_event_context *ctx)
163{
164 if (ctx)
165 raw_spin_unlock(&ctx->lock);
166 raw_spin_unlock(&cpuctx->ctx.lock);
167}
168
63b6da39
PZ
169#define TASK_TOMBSTONE ((void *)-1L)
170
171static bool is_kernel_event(struct perf_event *event)
172{
f47c02c0 173 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
174}
175
39a43640
PZ
176/*
177 * On task ctx scheduling...
178 *
179 * When !ctx->nr_events a task context will not be scheduled. This means
180 * we can disable the scheduler hooks (for performance) without leaving
181 * pending task ctx state.
182 *
183 * This however results in two special cases:
184 *
185 * - removing the last event from a task ctx; this is relatively straight
186 * forward and is done in __perf_remove_from_context.
187 *
188 * - adding the first event to a task ctx; this is tricky because we cannot
189 * rely on ctx->is_active and therefore cannot use event_function_call().
190 * See perf_install_in_context().
191 *
39a43640
PZ
192 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
193 */
194
fae3fde6
PZ
195typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
196 struct perf_event_context *, void *);
197
198struct event_function_struct {
199 struct perf_event *event;
200 event_f func;
201 void *data;
202};
203
204static int event_function(void *info)
205{
206 struct event_function_struct *efs = info;
207 struct perf_event *event = efs->event;
0017960f 208 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
209 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
210 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 211 int ret = 0;
fae3fde6 212
16444645 213 lockdep_assert_irqs_disabled();
fae3fde6 214
63b6da39 215 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
216 /*
217 * Since we do the IPI call without holding ctx->lock things can have
218 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
219 */
220 if (ctx->task) {
63b6da39 221 if (ctx->task != current) {
0da4cf3e 222 ret = -ESRCH;
63b6da39
PZ
223 goto unlock;
224 }
fae3fde6 225
fae3fde6
PZ
226 /*
227 * We only use event_function_call() on established contexts,
228 * and event_function() is only ever called when active (or
229 * rather, we'll have bailed in task_function_call() or the
230 * above ctx->task != current test), therefore we must have
231 * ctx->is_active here.
232 */
233 WARN_ON_ONCE(!ctx->is_active);
234 /*
235 * And since we have ctx->is_active, cpuctx->task_ctx must
236 * match.
237 */
63b6da39
PZ
238 WARN_ON_ONCE(task_ctx != ctx);
239 } else {
240 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 241 }
63b6da39 242
fae3fde6 243 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 244unlock:
fae3fde6
PZ
245 perf_ctx_unlock(cpuctx, task_ctx);
246
63b6da39 247 return ret;
fae3fde6
PZ
248}
249
fae3fde6 250static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
251{
252 struct perf_event_context *ctx = event->ctx;
63b6da39 253 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
254 struct event_function_struct efs = {
255 .event = event,
256 .func = func,
257 .data = data,
258 };
0017960f 259
c97f4736
PZ
260 if (!event->parent) {
261 /*
262 * If this is a !child event, we must hold ctx::mutex to
263 * stabilize the the event->ctx relation. See
264 * perf_event_ctx_lock().
265 */
266 lockdep_assert_held(&ctx->mutex);
267 }
0017960f
PZ
268
269 if (!task) {
fae3fde6 270 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
271 return;
272 }
273
63b6da39
PZ
274 if (task == TASK_TOMBSTONE)
275 return;
276
a096309b 277again:
fae3fde6 278 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
279 return;
280
281 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
282 /*
283 * Reload the task pointer, it might have been changed by
284 * a concurrent perf_event_context_sched_out().
285 */
286 task = ctx->task;
a096309b
PZ
287 if (task == TASK_TOMBSTONE) {
288 raw_spin_unlock_irq(&ctx->lock);
289 return;
0017960f 290 }
a096309b
PZ
291 if (ctx->is_active) {
292 raw_spin_unlock_irq(&ctx->lock);
293 goto again;
294 }
295 func(event, NULL, ctx, data);
0017960f
PZ
296 raw_spin_unlock_irq(&ctx->lock);
297}
298
cca20946
PZ
299/*
300 * Similar to event_function_call() + event_function(), but hard assumes IRQs
301 * are already disabled and we're on the right CPU.
302 */
303static void event_function_local(struct perf_event *event, event_f func, void *data)
304{
305 struct perf_event_context *ctx = event->ctx;
306 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
307 struct task_struct *task = READ_ONCE(ctx->task);
308 struct perf_event_context *task_ctx = NULL;
309
16444645 310 lockdep_assert_irqs_disabled();
cca20946
PZ
311
312 if (task) {
313 if (task == TASK_TOMBSTONE)
314 return;
315
316 task_ctx = ctx;
317 }
318
319 perf_ctx_lock(cpuctx, task_ctx);
320
321 task = ctx->task;
322 if (task == TASK_TOMBSTONE)
323 goto unlock;
324
325 if (task) {
326 /*
327 * We must be either inactive or active and the right task,
328 * otherwise we're screwed, since we cannot IPI to somewhere
329 * else.
330 */
331 if (ctx->is_active) {
332 if (WARN_ON_ONCE(task != current))
333 goto unlock;
334
335 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
336 goto unlock;
337 }
338 } else {
339 WARN_ON_ONCE(&cpuctx->ctx != ctx);
340 }
341
342 func(event, cpuctx, ctx, data);
343unlock:
344 perf_ctx_unlock(cpuctx, task_ctx);
345}
346
e5d1367f
SE
347#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
348 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
349 PERF_FLAG_PID_CGROUP |\
350 PERF_FLAG_FD_CLOEXEC)
e5d1367f 351
bce38cd5
SE
352/*
353 * branch priv levels that need permission checks
354 */
355#define PERF_SAMPLE_BRANCH_PERM_PLM \
356 (PERF_SAMPLE_BRANCH_KERNEL |\
357 PERF_SAMPLE_BRANCH_HV)
358
0b3fcf17
SE
359enum event_type_t {
360 EVENT_FLEXIBLE = 0x1,
361 EVENT_PINNED = 0x2,
3cbaa590 362 EVENT_TIME = 0x4,
487f05e1
AS
363 /* see ctx_resched() for details */
364 EVENT_CPU = 0x8,
0b3fcf17
SE
365 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
366};
367
e5d1367f
SE
368/*
369 * perf_sched_events : >0 events exist
370 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
371 */
9107c89e
PZ
372
373static void perf_sched_delayed(struct work_struct *work);
374DEFINE_STATIC_KEY_FALSE(perf_sched_events);
375static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
376static DEFINE_MUTEX(perf_sched_mutex);
377static atomic_t perf_sched_count;
378
e5d1367f 379static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 380static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 381static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 382
cdd6c482
IM
383static atomic_t nr_mmap_events __read_mostly;
384static atomic_t nr_comm_events __read_mostly;
e4222673 385static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 386static atomic_t nr_task_events __read_mostly;
948b26b6 387static atomic_t nr_freq_events __read_mostly;
45ac1403 388static atomic_t nr_switch_events __read_mostly;
76193a94 389static atomic_t nr_ksymbol_events __read_mostly;
6ee52e2a 390static atomic_t nr_bpf_events __read_mostly;
96aaab68 391static atomic_t nr_cgroup_events __read_mostly;
9ee318a7 392
108b02cf
PZ
393static LIST_HEAD(pmus);
394static DEFINE_MUTEX(pmus_lock);
395static struct srcu_struct pmus_srcu;
a63fbed7 396static cpumask_var_t perf_online_mask;
108b02cf 397
0764771d 398/*
cdd6c482 399 * perf event paranoia level:
0fbdea19
IM
400 * -1 - not paranoid at all
401 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 402 * 1 - disallow cpu events for unpriv
0fbdea19 403 * 2 - disallow kernel profiling for unpriv
0764771d 404 */
0161028b 405int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 406
20443384
FW
407/* Minimum for 512 kiB + 1 user control page */
408int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
409
410/*
cdd6c482 411 * max perf event sample rate
df58ab24 412 */
14c63f17
DH
413#define DEFAULT_MAX_SAMPLE_RATE 100000
414#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
415#define DEFAULT_CPU_TIME_MAX_PERCENT 25
416
417int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
418
419static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
420static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
421
d9494cb4
PZ
422static int perf_sample_allowed_ns __read_mostly =
423 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 424
18ab2cd3 425static void update_perf_cpu_limits(void)
14c63f17
DH
426{
427 u64 tmp = perf_sample_period_ns;
428
429 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
430 tmp = div_u64(tmp, 100);
431 if (!tmp)
432 tmp = 1;
433
434 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 435}
163ec435 436
8d5bce0c 437static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
9e630205 438
163ec435
PZ
439int perf_proc_update_handler(struct ctl_table *table, int write,
440 void __user *buffer, size_t *lenp,
441 loff_t *ppos)
442{
1a51c5da
SE
443 int ret;
444 int perf_cpu = sysctl_perf_cpu_time_max_percent;
ab7fdefb
KL
445 /*
446 * If throttling is disabled don't allow the write:
447 */
1a51c5da 448 if (write && (perf_cpu == 100 || perf_cpu == 0))
ab7fdefb
KL
449 return -EINVAL;
450
1a51c5da
SE
451 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
452 if (ret || !write)
453 return ret;
454
163ec435 455 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
456 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
457 update_perf_cpu_limits();
458
459 return 0;
460}
461
462int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
463
464int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
465 void __user *buffer, size_t *lenp,
466 loff_t *ppos)
467{
1572e45a 468 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
469
470 if (ret || !write)
471 return ret;
472
b303e7c1
PZ
473 if (sysctl_perf_cpu_time_max_percent == 100 ||
474 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
475 printk(KERN_WARNING
476 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
477 WRITE_ONCE(perf_sample_allowed_ns, 0);
478 } else {
479 update_perf_cpu_limits();
480 }
163ec435
PZ
481
482 return 0;
483}
1ccd1549 484
14c63f17
DH
485/*
486 * perf samples are done in some very critical code paths (NMIs).
487 * If they take too much CPU time, the system can lock up and not
488 * get any real work done. This will drop the sample rate when
489 * we detect that events are taking too long.
490 */
491#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 492static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 493
91a612ee
PZ
494static u64 __report_avg;
495static u64 __report_allowed;
496
6a02ad66 497static void perf_duration_warn(struct irq_work *w)
14c63f17 498{
0d87d7ec 499 printk_ratelimited(KERN_INFO
91a612ee
PZ
500 "perf: interrupt took too long (%lld > %lld), lowering "
501 "kernel.perf_event_max_sample_rate to %d\n",
502 __report_avg, __report_allowed,
503 sysctl_perf_event_sample_rate);
6a02ad66
PZ
504}
505
506static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
507
508void perf_sample_event_took(u64 sample_len_ns)
509{
91a612ee
PZ
510 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
511 u64 running_len;
512 u64 avg_len;
513 u32 max;
14c63f17 514
91a612ee 515 if (max_len == 0)
14c63f17
DH
516 return;
517
91a612ee
PZ
518 /* Decay the counter by 1 average sample. */
519 running_len = __this_cpu_read(running_sample_length);
520 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
521 running_len += sample_len_ns;
522 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
523
524 /*
91a612ee
PZ
525 * Note: this will be biased artifically low until we have
526 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
527 * from having to maintain a count.
528 */
91a612ee
PZ
529 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
530 if (avg_len <= max_len)
14c63f17
DH
531 return;
532
91a612ee
PZ
533 __report_avg = avg_len;
534 __report_allowed = max_len;
14c63f17 535
91a612ee
PZ
536 /*
537 * Compute a throttle threshold 25% below the current duration.
538 */
539 avg_len += avg_len / 4;
540 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
541 if (avg_len < max)
542 max /= (u32)avg_len;
543 else
544 max = 1;
14c63f17 545
91a612ee
PZ
546 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
547 WRITE_ONCE(max_samples_per_tick, max);
548
549 sysctl_perf_event_sample_rate = max * HZ;
550 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 551
cd578abb 552 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 553 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 554 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 555 __report_avg, __report_allowed,
cd578abb
PZ
556 sysctl_perf_event_sample_rate);
557 }
14c63f17
DH
558}
559
cdd6c482 560static atomic64_t perf_event_id;
a96bbc16 561
0b3fcf17
SE
562static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
563 enum event_type_t event_type);
564
565static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
566 enum event_type_t event_type,
567 struct task_struct *task);
568
569static void update_context_time(struct perf_event_context *ctx);
570static u64 perf_event_time(struct perf_event *event);
0b3fcf17 571
cdd6c482 572void __weak perf_event_print_debug(void) { }
0793a61d 573
84c79910 574extern __weak const char *perf_pmu_name(void)
0793a61d 575{
84c79910 576 return "pmu";
0793a61d
TG
577}
578
0b3fcf17
SE
579static inline u64 perf_clock(void)
580{
581 return local_clock();
582}
583
34f43927
PZ
584static inline u64 perf_event_clock(struct perf_event *event)
585{
586 return event->clock();
587}
588
0d3d73aa
PZ
589/*
590 * State based event timekeeping...
591 *
592 * The basic idea is to use event->state to determine which (if any) time
593 * fields to increment with the current delta. This means we only need to
594 * update timestamps when we change state or when they are explicitly requested
595 * (read).
596 *
597 * Event groups make things a little more complicated, but not terribly so. The
598 * rules for a group are that if the group leader is OFF the entire group is
599 * OFF, irrespecive of what the group member states are. This results in
600 * __perf_effective_state().
601 *
602 * A futher ramification is that when a group leader flips between OFF and
603 * !OFF, we need to update all group member times.
604 *
605 *
606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607 * need to make sure the relevant context time is updated before we try and
608 * update our timestamps.
609 */
610
611static __always_inline enum perf_event_state
612__perf_effective_state(struct perf_event *event)
613{
614 struct perf_event *leader = event->group_leader;
615
616 if (leader->state <= PERF_EVENT_STATE_OFF)
617 return leader->state;
618
619 return event->state;
620}
621
622static __always_inline void
623__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624{
625 enum perf_event_state state = __perf_effective_state(event);
626 u64 delta = now - event->tstamp;
627
628 *enabled = event->total_time_enabled;
629 if (state >= PERF_EVENT_STATE_INACTIVE)
630 *enabled += delta;
631
632 *running = event->total_time_running;
633 if (state >= PERF_EVENT_STATE_ACTIVE)
634 *running += delta;
635}
636
637static void perf_event_update_time(struct perf_event *event)
638{
639 u64 now = perf_event_time(event);
640
641 __perf_update_times(event, now, &event->total_time_enabled,
642 &event->total_time_running);
643 event->tstamp = now;
644}
645
646static void perf_event_update_sibling_time(struct perf_event *leader)
647{
648 struct perf_event *sibling;
649
edb39592 650 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
651 perf_event_update_time(sibling);
652}
653
654static void
655perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656{
657 if (event->state == state)
658 return;
659
660 perf_event_update_time(event);
661 /*
662 * If a group leader gets enabled/disabled all its siblings
663 * are affected too.
664 */
665 if ((event->state < 0) ^ (state < 0))
666 perf_event_update_sibling_time(event);
667
668 WRITE_ONCE(event->state, state);
669}
670
e5d1367f
SE
671#ifdef CONFIG_CGROUP_PERF
672
e5d1367f
SE
673static inline bool
674perf_cgroup_match(struct perf_event *event)
675{
676 struct perf_event_context *ctx = event->ctx;
677 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
678
ef824fa1
TH
679 /* @event doesn't care about cgroup */
680 if (!event->cgrp)
681 return true;
682
683 /* wants specific cgroup scope but @cpuctx isn't associated with any */
684 if (!cpuctx->cgrp)
685 return false;
686
687 /*
688 * Cgroup scoping is recursive. An event enabled for a cgroup is
689 * also enabled for all its descendant cgroups. If @cpuctx's
690 * cgroup is a descendant of @event's (the test covers identity
691 * case), it's a match.
692 */
693 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
694 event->cgrp->css.cgroup);
e5d1367f
SE
695}
696
e5d1367f
SE
697static inline void perf_detach_cgroup(struct perf_event *event)
698{
4e2ba650 699 css_put(&event->cgrp->css);
e5d1367f
SE
700 event->cgrp = NULL;
701}
702
703static inline int is_cgroup_event(struct perf_event *event)
704{
705 return event->cgrp != NULL;
706}
707
708static inline u64 perf_cgroup_event_time(struct perf_event *event)
709{
710 struct perf_cgroup_info *t;
711
712 t = per_cpu_ptr(event->cgrp->info, event->cpu);
713 return t->time;
714}
715
716static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
717{
718 struct perf_cgroup_info *info;
719 u64 now;
720
721 now = perf_clock();
722
723 info = this_cpu_ptr(cgrp->info);
724
725 info->time += now - info->timestamp;
726 info->timestamp = now;
727}
728
729static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
730{
c917e0f2
SL
731 struct perf_cgroup *cgrp = cpuctx->cgrp;
732 struct cgroup_subsys_state *css;
733
734 if (cgrp) {
735 for (css = &cgrp->css; css; css = css->parent) {
736 cgrp = container_of(css, struct perf_cgroup, css);
737 __update_cgrp_time(cgrp);
738 }
739 }
e5d1367f
SE
740}
741
742static inline void update_cgrp_time_from_event(struct perf_event *event)
743{
3f7cce3c
SE
744 struct perf_cgroup *cgrp;
745
e5d1367f 746 /*
3f7cce3c
SE
747 * ensure we access cgroup data only when needed and
748 * when we know the cgroup is pinned (css_get)
e5d1367f 749 */
3f7cce3c 750 if (!is_cgroup_event(event))
e5d1367f
SE
751 return;
752
614e4c4e 753 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
754 /*
755 * Do not update time when cgroup is not active
756 */
28fa741c 757 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 758 __update_cgrp_time(event->cgrp);
e5d1367f
SE
759}
760
761static inline void
3f7cce3c
SE
762perf_cgroup_set_timestamp(struct task_struct *task,
763 struct perf_event_context *ctx)
e5d1367f
SE
764{
765 struct perf_cgroup *cgrp;
766 struct perf_cgroup_info *info;
c917e0f2 767 struct cgroup_subsys_state *css;
e5d1367f 768
3f7cce3c
SE
769 /*
770 * ctx->lock held by caller
771 * ensure we do not access cgroup data
772 * unless we have the cgroup pinned (css_get)
773 */
774 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
775 return;
776
614e4c4e 777 cgrp = perf_cgroup_from_task(task, ctx);
c917e0f2
SL
778
779 for (css = &cgrp->css; css; css = css->parent) {
780 cgrp = container_of(css, struct perf_cgroup, css);
781 info = this_cpu_ptr(cgrp->info);
782 info->timestamp = ctx->timestamp;
783 }
e5d1367f
SE
784}
785
058fe1c0
DCC
786static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
787
e5d1367f
SE
788#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
789#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
790
791/*
792 * reschedule events based on the cgroup constraint of task.
793 *
794 * mode SWOUT : schedule out everything
795 * mode SWIN : schedule in based on cgroup for next
796 */
18ab2cd3 797static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
798{
799 struct perf_cpu_context *cpuctx;
058fe1c0 800 struct list_head *list;
e5d1367f
SE
801 unsigned long flags;
802
803 /*
058fe1c0
DCC
804 * Disable interrupts and preemption to avoid this CPU's
805 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
806 */
807 local_irq_save(flags);
808
058fe1c0
DCC
809 list = this_cpu_ptr(&cgrp_cpuctx_list);
810 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
811 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 812
058fe1c0
DCC
813 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
814 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 815
058fe1c0
DCC
816 if (mode & PERF_CGROUP_SWOUT) {
817 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
818 /*
819 * must not be done before ctxswout due
820 * to event_filter_match() in event_sched_out()
821 */
822 cpuctx->cgrp = NULL;
823 }
e5d1367f 824
058fe1c0
DCC
825 if (mode & PERF_CGROUP_SWIN) {
826 WARN_ON_ONCE(cpuctx->cgrp);
827 /*
828 * set cgrp before ctxsw in to allow
829 * event_filter_match() to not have to pass
830 * task around
831 * we pass the cpuctx->ctx to perf_cgroup_from_task()
832 * because cgorup events are only per-cpu
833 */
834 cpuctx->cgrp = perf_cgroup_from_task(task,
835 &cpuctx->ctx);
836 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 837 }
058fe1c0
DCC
838 perf_pmu_enable(cpuctx->ctx.pmu);
839 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
840 }
841
e5d1367f
SE
842 local_irq_restore(flags);
843}
844
a8d757ef
SE
845static inline void perf_cgroup_sched_out(struct task_struct *task,
846 struct task_struct *next)
e5d1367f 847{
a8d757ef
SE
848 struct perf_cgroup *cgrp1;
849 struct perf_cgroup *cgrp2 = NULL;
850
ddaaf4e2 851 rcu_read_lock();
a8d757ef
SE
852 /*
853 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
854 * we do not need to pass the ctx here because we know
855 * we are holding the rcu lock
a8d757ef 856 */
614e4c4e 857 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 858 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
859
860 /*
861 * only schedule out current cgroup events if we know
862 * that we are switching to a different cgroup. Otherwise,
863 * do no touch the cgroup events.
864 */
865 if (cgrp1 != cgrp2)
866 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
867
868 rcu_read_unlock();
e5d1367f
SE
869}
870
a8d757ef
SE
871static inline void perf_cgroup_sched_in(struct task_struct *prev,
872 struct task_struct *task)
e5d1367f 873{
a8d757ef
SE
874 struct perf_cgroup *cgrp1;
875 struct perf_cgroup *cgrp2 = NULL;
876
ddaaf4e2 877 rcu_read_lock();
a8d757ef
SE
878 /*
879 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
880 * we do not need to pass the ctx here because we know
881 * we are holding the rcu lock
a8d757ef 882 */
614e4c4e 883 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 884 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
885
886 /*
887 * only need to schedule in cgroup events if we are changing
888 * cgroup during ctxsw. Cgroup events were not scheduled
889 * out of ctxsw out if that was not the case.
890 */
891 if (cgrp1 != cgrp2)
892 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
893
894 rcu_read_unlock();
e5d1367f
SE
895}
896
c2283c93
IR
897static int perf_cgroup_ensure_storage(struct perf_event *event,
898 struct cgroup_subsys_state *css)
899{
900 struct perf_cpu_context *cpuctx;
901 struct perf_event **storage;
902 int cpu, heap_size, ret = 0;
903
904 /*
905 * Allow storage to have sufficent space for an iterator for each
906 * possibly nested cgroup plus an iterator for events with no cgroup.
907 */
908 for (heap_size = 1; css; css = css->parent)
909 heap_size++;
910
911 for_each_possible_cpu(cpu) {
912 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
913 if (heap_size <= cpuctx->heap_size)
914 continue;
915
916 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
917 GFP_KERNEL, cpu_to_node(cpu));
918 if (!storage) {
919 ret = -ENOMEM;
920 break;
921 }
922
923 raw_spin_lock_irq(&cpuctx->ctx.lock);
924 if (cpuctx->heap_size < heap_size) {
925 swap(cpuctx->heap, storage);
926 if (storage == cpuctx->heap_default)
927 storage = NULL;
928 cpuctx->heap_size = heap_size;
929 }
930 raw_spin_unlock_irq(&cpuctx->ctx.lock);
931
932 kfree(storage);
933 }
934
935 return ret;
936}
937
e5d1367f
SE
938static inline int perf_cgroup_connect(int fd, struct perf_event *event,
939 struct perf_event_attr *attr,
940 struct perf_event *group_leader)
941{
942 struct perf_cgroup *cgrp;
943 struct cgroup_subsys_state *css;
2903ff01
AV
944 struct fd f = fdget(fd);
945 int ret = 0;
e5d1367f 946
2903ff01 947 if (!f.file)
e5d1367f
SE
948 return -EBADF;
949
b583043e 950 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 951 &perf_event_cgrp_subsys);
3db272c0
LZ
952 if (IS_ERR(css)) {
953 ret = PTR_ERR(css);
954 goto out;
955 }
e5d1367f 956
c2283c93
IR
957 ret = perf_cgroup_ensure_storage(event, css);
958 if (ret)
959 goto out;
960
e5d1367f
SE
961 cgrp = container_of(css, struct perf_cgroup, css);
962 event->cgrp = cgrp;
963
964 /*
965 * all events in a group must monitor
966 * the same cgroup because a task belongs
967 * to only one perf cgroup at a time
968 */
969 if (group_leader && group_leader->cgrp != cgrp) {
970 perf_detach_cgroup(event);
971 ret = -EINVAL;
e5d1367f 972 }
3db272c0 973out:
2903ff01 974 fdput(f);
e5d1367f
SE
975 return ret;
976}
977
978static inline void
979perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
980{
981 struct perf_cgroup_info *t;
982 t = per_cpu_ptr(event->cgrp->info, event->cpu);
983 event->shadow_ctx_time = now - t->timestamp;
984}
985
db4a8356
DCC
986/*
987 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
988 * cleared when last cgroup event is removed.
989 */
990static inline void
991list_update_cgroup_event(struct perf_event *event,
992 struct perf_event_context *ctx, bool add)
993{
994 struct perf_cpu_context *cpuctx;
058fe1c0 995 struct list_head *cpuctx_entry;
db4a8356
DCC
996
997 if (!is_cgroup_event(event))
998 return;
999
db4a8356
DCC
1000 /*
1001 * Because cgroup events are always per-cpu events,
07c59729 1002 * @ctx == &cpuctx->ctx.
db4a8356 1003 */
07c59729 1004 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
33801b94 1005
1006 /*
1007 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008 * matching the event's cgroup, we must do this for every new event,
1009 * because if the first would mismatch, the second would not try again
1010 * and we would leave cpuctx->cgrp unset.
1011 */
1012 if (add && !cpuctx->cgrp) {
be96b316
TH
1013 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014
be96b316
TH
1015 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016 cpuctx->cgrp = cgrp;
058fe1c0 1017 }
33801b94 1018
1019 if (add && ctx->nr_cgroups++)
1020 return;
1021 else if (!add && --ctx->nr_cgroups)
1022 return;
1023
1024 /* no cgroup running */
1025 if (!add)
1026 cpuctx->cgrp = NULL;
1027
1028 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
1029 if (add)
07c59729
SL
1030 list_add(cpuctx_entry,
1031 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
33801b94 1032 else
1033 list_del(cpuctx_entry);
db4a8356
DCC
1034}
1035
e5d1367f
SE
1036#else /* !CONFIG_CGROUP_PERF */
1037
1038static inline bool
1039perf_cgroup_match(struct perf_event *event)
1040{
1041 return true;
1042}
1043
1044static inline void perf_detach_cgroup(struct perf_event *event)
1045{}
1046
1047static inline int is_cgroup_event(struct perf_event *event)
1048{
1049 return 0;
1050}
1051
e5d1367f
SE
1052static inline void update_cgrp_time_from_event(struct perf_event *event)
1053{
1054}
1055
1056static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1057{
1058}
1059
a8d757ef
SE
1060static inline void perf_cgroup_sched_out(struct task_struct *task,
1061 struct task_struct *next)
e5d1367f
SE
1062{
1063}
1064
a8d757ef
SE
1065static inline void perf_cgroup_sched_in(struct task_struct *prev,
1066 struct task_struct *task)
e5d1367f
SE
1067{
1068}
1069
1070static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1071 struct perf_event_attr *attr,
1072 struct perf_event *group_leader)
1073{
1074 return -EINVAL;
1075}
1076
1077static inline void
3f7cce3c
SE
1078perf_cgroup_set_timestamp(struct task_struct *task,
1079 struct perf_event_context *ctx)
e5d1367f
SE
1080{
1081}
1082
d00dbd29 1083static inline void
e5d1367f
SE
1084perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1085{
1086}
1087
1088static inline void
1089perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1090{
1091}
1092
1093static inline u64 perf_cgroup_event_time(struct perf_event *event)
1094{
1095 return 0;
1096}
1097
db4a8356
DCC
1098static inline void
1099list_update_cgroup_event(struct perf_event *event,
1100 struct perf_event_context *ctx, bool add)
1101{
1102}
1103
e5d1367f
SE
1104#endif
1105
9e630205
SE
1106/*
1107 * set default to be dependent on timer tick just
1108 * like original code
1109 */
1110#define PERF_CPU_HRTIMER (1000 / HZ)
1111/*
8a1115ff 1112 * function must be called with interrupts disabled
9e630205 1113 */
272325c4 1114static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1115{
1116 struct perf_cpu_context *cpuctx;
8d5bce0c 1117 bool rotations;
9e630205 1118
16444645 1119 lockdep_assert_irqs_disabled();
9e630205
SE
1120
1121 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1122 rotations = perf_rotate_context(cpuctx);
1123
4cfafd30
PZ
1124 raw_spin_lock(&cpuctx->hrtimer_lock);
1125 if (rotations)
9e630205 1126 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1127 else
1128 cpuctx->hrtimer_active = 0;
1129 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1130
4cfafd30 1131 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1132}
1133
272325c4 1134static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1135{
272325c4 1136 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1137 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1138 u64 interval;
9e630205
SE
1139
1140 /* no multiplexing needed for SW PMU */
1141 if (pmu->task_ctx_nr == perf_sw_context)
1142 return;
1143
62b85639
SE
1144 /*
1145 * check default is sane, if not set then force to
1146 * default interval (1/tick)
1147 */
272325c4
PZ
1148 interval = pmu->hrtimer_interval_ms;
1149 if (interval < 1)
1150 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1151
272325c4 1152 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1153
4cfafd30 1154 raw_spin_lock_init(&cpuctx->hrtimer_lock);
30f9028b 1155 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
272325c4 1156 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1157}
1158
272325c4 1159static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1160{
272325c4 1161 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1162 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1163 unsigned long flags;
9e630205
SE
1164
1165 /* not for SW PMU */
1166 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1167 return 0;
9e630205 1168
4cfafd30
PZ
1169 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1170 if (!cpuctx->hrtimer_active) {
1171 cpuctx->hrtimer_active = 1;
1172 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
30f9028b 1173 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
4cfafd30
PZ
1174 }
1175 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1176
272325c4 1177 return 0;
9e630205
SE
1178}
1179
33696fc0 1180void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1181{
33696fc0
PZ
1182 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1183 if (!(*count)++)
1184 pmu->pmu_disable(pmu);
9e35ad38 1185}
9e35ad38 1186
33696fc0 1187void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1188{
33696fc0
PZ
1189 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1190 if (!--(*count))
1191 pmu->pmu_enable(pmu);
9e35ad38 1192}
9e35ad38 1193
2fde4f94 1194static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1195
1196/*
2fde4f94
MR
1197 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1198 * perf_event_task_tick() are fully serialized because they're strictly cpu
1199 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1200 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1201 */
2fde4f94 1202static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1203{
2fde4f94 1204 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1205
16444645 1206 lockdep_assert_irqs_disabled();
b5ab4cd5 1207
2fde4f94
MR
1208 WARN_ON(!list_empty(&ctx->active_ctx_list));
1209
1210 list_add(&ctx->active_ctx_list, head);
1211}
1212
1213static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1214{
16444645 1215 lockdep_assert_irqs_disabled();
2fde4f94
MR
1216
1217 WARN_ON(list_empty(&ctx->active_ctx_list));
1218
1219 list_del_init(&ctx->active_ctx_list);
9e35ad38 1220}
9e35ad38 1221
cdd6c482 1222static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1223{
8c94abbb 1224 refcount_inc(&ctx->refcount);
a63eaf34
PM
1225}
1226
4af57ef2
YZ
1227static void free_ctx(struct rcu_head *head)
1228{
1229 struct perf_event_context *ctx;
1230
1231 ctx = container_of(head, struct perf_event_context, rcu_head);
1232 kfree(ctx->task_ctx_data);
1233 kfree(ctx);
1234}
1235
cdd6c482 1236static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1237{
8c94abbb 1238 if (refcount_dec_and_test(&ctx->refcount)) {
564c2b21
PM
1239 if (ctx->parent_ctx)
1240 put_ctx(ctx->parent_ctx);
63b6da39 1241 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1242 put_task_struct(ctx->task);
4af57ef2 1243 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1244 }
a63eaf34
PM
1245}
1246
f63a8daa
PZ
1247/*
1248 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1249 * perf_pmu_migrate_context() we need some magic.
1250 *
1251 * Those places that change perf_event::ctx will hold both
1252 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1253 *
8b10c5e2
PZ
1254 * Lock ordering is by mutex address. There are two other sites where
1255 * perf_event_context::mutex nests and those are:
1256 *
1257 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1258 * perf_event_exit_event()
1259 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1260 *
1261 * - perf_event_init_context() [ parent, 0 ]
1262 * inherit_task_group()
1263 * inherit_group()
1264 * inherit_event()
1265 * perf_event_alloc()
1266 * perf_init_event()
1267 * perf_try_init_event() [ child , 1 ]
1268 *
1269 * While it appears there is an obvious deadlock here -- the parent and child
1270 * nesting levels are inverted between the two. This is in fact safe because
1271 * life-time rules separate them. That is an exiting task cannot fork, and a
1272 * spawning task cannot (yet) exit.
1273 *
1274 * But remember that that these are parent<->child context relations, and
1275 * migration does not affect children, therefore these two orderings should not
1276 * interact.
f63a8daa
PZ
1277 *
1278 * The change in perf_event::ctx does not affect children (as claimed above)
1279 * because the sys_perf_event_open() case will install a new event and break
1280 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1281 * concerned with cpuctx and that doesn't have children.
1282 *
1283 * The places that change perf_event::ctx will issue:
1284 *
1285 * perf_remove_from_context();
1286 * synchronize_rcu();
1287 * perf_install_in_context();
1288 *
1289 * to affect the change. The remove_from_context() + synchronize_rcu() should
1290 * quiesce the event, after which we can install it in the new location. This
1291 * means that only external vectors (perf_fops, prctl) can perturb the event
1292 * while in transit. Therefore all such accessors should also acquire
1293 * perf_event_context::mutex to serialize against this.
1294 *
1295 * However; because event->ctx can change while we're waiting to acquire
1296 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1297 * function.
1298 *
1299 * Lock order:
69143038 1300 * exec_update_mutex
f63a8daa
PZ
1301 * task_struct::perf_event_mutex
1302 * perf_event_context::mutex
f63a8daa 1303 * perf_event::child_mutex;
07c4a776 1304 * perf_event_context::lock
f63a8daa
PZ
1305 * perf_event::mmap_mutex
1306 * mmap_sem
18736eef 1307 * perf_addr_filters_head::lock
82d94856
PZ
1308 *
1309 * cpu_hotplug_lock
1310 * pmus_lock
1311 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1312 */
a83fe28e
PZ
1313static struct perf_event_context *
1314perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1315{
1316 struct perf_event_context *ctx;
1317
1318again:
1319 rcu_read_lock();
6aa7de05 1320 ctx = READ_ONCE(event->ctx);
8c94abbb 1321 if (!refcount_inc_not_zero(&ctx->refcount)) {
f63a8daa
PZ
1322 rcu_read_unlock();
1323 goto again;
1324 }
1325 rcu_read_unlock();
1326
a83fe28e 1327 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1328 if (event->ctx != ctx) {
1329 mutex_unlock(&ctx->mutex);
1330 put_ctx(ctx);
1331 goto again;
1332 }
1333
1334 return ctx;
1335}
1336
a83fe28e
PZ
1337static inline struct perf_event_context *
1338perf_event_ctx_lock(struct perf_event *event)
1339{
1340 return perf_event_ctx_lock_nested(event, 0);
1341}
1342
f63a8daa
PZ
1343static void perf_event_ctx_unlock(struct perf_event *event,
1344 struct perf_event_context *ctx)
1345{
1346 mutex_unlock(&ctx->mutex);
1347 put_ctx(ctx);
1348}
1349
211de6eb
PZ
1350/*
1351 * This must be done under the ctx->lock, such as to serialize against
1352 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1353 * calling scheduler related locks and ctx->lock nests inside those.
1354 */
1355static __must_check struct perf_event_context *
1356unclone_ctx(struct perf_event_context *ctx)
71a851b4 1357{
211de6eb
PZ
1358 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1359
1360 lockdep_assert_held(&ctx->lock);
1361
1362 if (parent_ctx)
71a851b4 1363 ctx->parent_ctx = NULL;
5a3126d4 1364 ctx->generation++;
211de6eb
PZ
1365
1366 return parent_ctx;
71a851b4
PZ
1367}
1368
1d953111
ON
1369static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1370 enum pid_type type)
6844c09d 1371{
1d953111 1372 u32 nr;
6844c09d
ACM
1373 /*
1374 * only top level events have the pid namespace they were created in
1375 */
1376 if (event->parent)
1377 event = event->parent;
1378
1d953111
ON
1379 nr = __task_pid_nr_ns(p, type, event->ns);
1380 /* avoid -1 if it is idle thread or runs in another ns */
1381 if (!nr && !pid_alive(p))
1382 nr = -1;
1383 return nr;
6844c09d
ACM
1384}
1385
1d953111 1386static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1387{
6883f81a 1388 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1d953111 1389}
6844c09d 1390
1d953111
ON
1391static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1392{
1393 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1394}
1395
7f453c24 1396/*
cdd6c482 1397 * If we inherit events we want to return the parent event id
7f453c24
PZ
1398 * to userspace.
1399 */
cdd6c482 1400static u64 primary_event_id(struct perf_event *event)
7f453c24 1401{
cdd6c482 1402 u64 id = event->id;
7f453c24 1403
cdd6c482
IM
1404 if (event->parent)
1405 id = event->parent->id;
7f453c24
PZ
1406
1407 return id;
1408}
1409
25346b93 1410/*
cdd6c482 1411 * Get the perf_event_context for a task and lock it.
63b6da39 1412 *
25346b93
PM
1413 * This has to cope with with the fact that until it is locked,
1414 * the context could get moved to another task.
1415 */
cdd6c482 1416static struct perf_event_context *
8dc85d54 1417perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1418{
cdd6c482 1419 struct perf_event_context *ctx;
25346b93 1420
9ed6060d 1421retry:
058ebd0e
PZ
1422 /*
1423 * One of the few rules of preemptible RCU is that one cannot do
1424 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1425 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1426 * rcu_read_unlock_special().
1427 *
1428 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1429 * side critical section has interrupts disabled.
058ebd0e 1430 */
2fd59077 1431 local_irq_save(*flags);
058ebd0e 1432 rcu_read_lock();
8dc85d54 1433 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1434 if (ctx) {
1435 /*
1436 * If this context is a clone of another, it might
1437 * get swapped for another underneath us by
cdd6c482 1438 * perf_event_task_sched_out, though the
25346b93
PM
1439 * rcu_read_lock() protects us from any context
1440 * getting freed. Lock the context and check if it
1441 * got swapped before we could get the lock, and retry
1442 * if so. If we locked the right context, then it
1443 * can't get swapped on us any more.
1444 */
2fd59077 1445 raw_spin_lock(&ctx->lock);
8dc85d54 1446 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1447 raw_spin_unlock(&ctx->lock);
058ebd0e 1448 rcu_read_unlock();
2fd59077 1449 local_irq_restore(*flags);
25346b93
PM
1450 goto retry;
1451 }
b49a9e7e 1452
63b6da39 1453 if (ctx->task == TASK_TOMBSTONE ||
8c94abbb 1454 !refcount_inc_not_zero(&ctx->refcount)) {
2fd59077 1455 raw_spin_unlock(&ctx->lock);
b49a9e7e 1456 ctx = NULL;
828b6f0e
PZ
1457 } else {
1458 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1459 }
25346b93
PM
1460 }
1461 rcu_read_unlock();
2fd59077
PM
1462 if (!ctx)
1463 local_irq_restore(*flags);
25346b93
PM
1464 return ctx;
1465}
1466
1467/*
1468 * Get the context for a task and increment its pin_count so it
1469 * can't get swapped to another task. This also increments its
1470 * reference count so that the context can't get freed.
1471 */
8dc85d54
PZ
1472static struct perf_event_context *
1473perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1474{
cdd6c482 1475 struct perf_event_context *ctx;
25346b93
PM
1476 unsigned long flags;
1477
8dc85d54 1478 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1479 if (ctx) {
1480 ++ctx->pin_count;
e625cce1 1481 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1482 }
1483 return ctx;
1484}
1485
cdd6c482 1486static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1487{
1488 unsigned long flags;
1489
e625cce1 1490 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1491 --ctx->pin_count;
e625cce1 1492 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1493}
1494
f67218c3
PZ
1495/*
1496 * Update the record of the current time in a context.
1497 */
1498static void update_context_time(struct perf_event_context *ctx)
1499{
1500 u64 now = perf_clock();
1501
1502 ctx->time += now - ctx->timestamp;
1503 ctx->timestamp = now;
1504}
1505
4158755d
SE
1506static u64 perf_event_time(struct perf_event *event)
1507{
1508 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1509
1510 if (is_cgroup_event(event))
1511 return perf_cgroup_event_time(event);
1512
4158755d
SE
1513 return ctx ? ctx->time : 0;
1514}
1515
487f05e1
AS
1516static enum event_type_t get_event_type(struct perf_event *event)
1517{
1518 struct perf_event_context *ctx = event->ctx;
1519 enum event_type_t event_type;
1520
1521 lockdep_assert_held(&ctx->lock);
1522
3bda69c1
AS
1523 /*
1524 * It's 'group type', really, because if our group leader is
1525 * pinned, so are we.
1526 */
1527 if (event->group_leader != event)
1528 event = event->group_leader;
1529
487f05e1
AS
1530 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1531 if (!ctx->task)
1532 event_type |= EVENT_CPU;
1533
1534 return event_type;
1535}
1536
8e1a2031 1537/*
161c85fa 1538 * Helper function to initialize event group nodes.
8e1a2031 1539 */
161c85fa 1540static void init_event_group(struct perf_event *event)
8e1a2031
AB
1541{
1542 RB_CLEAR_NODE(&event->group_node);
1543 event->group_index = 0;
1544}
1545
1546/*
1547 * Extract pinned or flexible groups from the context
161c85fa 1548 * based on event attrs bits.
8e1a2031
AB
1549 */
1550static struct perf_event_groups *
1551get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1552{
1553 if (event->attr.pinned)
1554 return &ctx->pinned_groups;
1555 else
1556 return &ctx->flexible_groups;
1557}
1558
8e1a2031 1559/*
161c85fa 1560 * Helper function to initializes perf_event_group trees.
8e1a2031 1561 */
161c85fa 1562static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1563{
1564 groups->tree = RB_ROOT;
1565 groups->index = 0;
1566}
1567
1568/*
1569 * Compare function for event groups;
161c85fa
PZ
1570 *
1571 * Implements complex key that first sorts by CPU and then by virtual index
1572 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1573 */
161c85fa
PZ
1574static bool
1575perf_event_groups_less(struct perf_event *left, struct perf_event *right)
8e1a2031 1576{
161c85fa
PZ
1577 if (left->cpu < right->cpu)
1578 return true;
1579 if (left->cpu > right->cpu)
1580 return false;
1581
95ed6c70
IR
1582#ifdef CONFIG_CGROUP_PERF
1583 if (left->cgrp != right->cgrp) {
1584 if (!left->cgrp || !left->cgrp->css.cgroup) {
1585 /*
1586 * Left has no cgroup but right does, no cgroups come
1587 * first.
1588 */
1589 return true;
1590 }
a6763625 1591 if (!right->cgrp || !right->cgrp->css.cgroup) {
95ed6c70
IR
1592 /*
1593 * Right has no cgroup but left does, no cgroups come
1594 * first.
1595 */
1596 return false;
1597 }
1598 /* Two dissimilar cgroups, order by id. */
1599 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1600 return true;
1601
1602 return false;
1603 }
1604#endif
1605
161c85fa
PZ
1606 if (left->group_index < right->group_index)
1607 return true;
1608 if (left->group_index > right->group_index)
1609 return false;
1610
1611 return false;
8e1a2031
AB
1612}
1613
1614/*
161c85fa
PZ
1615 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1616 * key (see perf_event_groups_less). This places it last inside the CPU
1617 * subtree.
8e1a2031
AB
1618 */
1619static void
1620perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1621 struct perf_event *event)
8e1a2031
AB
1622{
1623 struct perf_event *node_event;
1624 struct rb_node *parent;
1625 struct rb_node **node;
1626
1627 event->group_index = ++groups->index;
1628
1629 node = &groups->tree.rb_node;
1630 parent = *node;
1631
1632 while (*node) {
1633 parent = *node;
161c85fa 1634 node_event = container_of(*node, struct perf_event, group_node);
8e1a2031
AB
1635
1636 if (perf_event_groups_less(event, node_event))
1637 node = &parent->rb_left;
1638 else
1639 node = &parent->rb_right;
1640 }
1641
1642 rb_link_node(&event->group_node, parent, node);
1643 rb_insert_color(&event->group_node, &groups->tree);
1644}
1645
1646/*
161c85fa 1647 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1648 */
1649static void
1650add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1651{
1652 struct perf_event_groups *groups;
1653
1654 groups = get_event_groups(event, ctx);
1655 perf_event_groups_insert(groups, event);
1656}
1657
1658/*
161c85fa 1659 * Delete a group from a tree.
8e1a2031
AB
1660 */
1661static void
1662perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1663 struct perf_event *event)
8e1a2031 1664{
161c85fa
PZ
1665 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1666 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1667
161c85fa 1668 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1669 init_event_group(event);
1670}
1671
1672/*
161c85fa 1673 * Helper function to delete event from its groups.
8e1a2031
AB
1674 */
1675static void
1676del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1677{
1678 struct perf_event_groups *groups;
1679
1680 groups = get_event_groups(event, ctx);
1681 perf_event_groups_delete(groups, event);
1682}
1683
1684/*
95ed6c70 1685 * Get the leftmost event in the cpu/cgroup subtree.
8e1a2031
AB
1686 */
1687static struct perf_event *
95ed6c70
IR
1688perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1689 struct cgroup *cgrp)
8e1a2031
AB
1690{
1691 struct perf_event *node_event = NULL, *match = NULL;
1692 struct rb_node *node = groups->tree.rb_node;
95ed6c70
IR
1693#ifdef CONFIG_CGROUP_PERF
1694 u64 node_cgrp_id, cgrp_id = 0;
1695
1696 if (cgrp)
1697 cgrp_id = cgrp->kn->id;
1698#endif
8e1a2031
AB
1699
1700 while (node) {
161c85fa 1701 node_event = container_of(node, struct perf_event, group_node);
8e1a2031
AB
1702
1703 if (cpu < node_event->cpu) {
1704 node = node->rb_left;
95ed6c70
IR
1705 continue;
1706 }
1707 if (cpu > node_event->cpu) {
8e1a2031 1708 node = node->rb_right;
95ed6c70
IR
1709 continue;
1710 }
1711#ifdef CONFIG_CGROUP_PERF
1712 node_cgrp_id = 0;
1713 if (node_event->cgrp && node_event->cgrp->css.cgroup)
1714 node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1715
1716 if (cgrp_id < node_cgrp_id) {
8e1a2031 1717 node = node->rb_left;
95ed6c70
IR
1718 continue;
1719 }
1720 if (cgrp_id > node_cgrp_id) {
1721 node = node->rb_right;
1722 continue;
8e1a2031 1723 }
95ed6c70
IR
1724#endif
1725 match = node_event;
1726 node = node->rb_left;
8e1a2031
AB
1727 }
1728
1729 return match;
1730}
1731
1cac7b1a
PZ
1732/*
1733 * Like rb_entry_next_safe() for the @cpu subtree.
1734 */
1735static struct perf_event *
1736perf_event_groups_next(struct perf_event *event)
1737{
1738 struct perf_event *next;
95ed6c70
IR
1739#ifdef CONFIG_CGROUP_PERF
1740 u64 curr_cgrp_id = 0;
1741 u64 next_cgrp_id = 0;
1742#endif
1cac7b1a
PZ
1743
1744 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
95ed6c70
IR
1745 if (next == NULL || next->cpu != event->cpu)
1746 return NULL;
1747
1748#ifdef CONFIG_CGROUP_PERF
1749 if (event->cgrp && event->cgrp->css.cgroup)
1750 curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1cac7b1a 1751
95ed6c70
IR
1752 if (next->cgrp && next->cgrp->css.cgroup)
1753 next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1754
1755 if (curr_cgrp_id != next_cgrp_id)
1756 return NULL;
1757#endif
1758 return next;
1cac7b1a
PZ
1759}
1760
8e1a2031 1761/*
161c85fa 1762 * Iterate through the whole groups tree.
8e1a2031 1763 */
6e6804d2
PZ
1764#define perf_event_groups_for_each(event, groups) \
1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1766 typeof(*event), group_node); event; \
1767 event = rb_entry_safe(rb_next(&event->group_node), \
1768 typeof(*event), group_node))
8e1a2031 1769
fccc714b 1770/*
788faab7 1771 * Add an event from the lists for its context.
fccc714b
PZ
1772 * Must be called with ctx->mutex and ctx->lock held.
1773 */
04289bb9 1774static void
cdd6c482 1775list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1776{
c994d613
PZ
1777 lockdep_assert_held(&ctx->lock);
1778
8a49542c
PZ
1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1781
0d3d73aa
PZ
1782 event->tstamp = perf_event_time(event);
1783
04289bb9 1784 /*
8a49542c
PZ
1785 * If we're a stand alone event or group leader, we go to the context
1786 * list, group events are kept attached to the group so that
1787 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1788 */
8a49542c 1789 if (event->group_leader == event) {
4ff6a8de 1790 event->group_caps = event->event_caps;
8e1a2031 1791 add_event_to_groups(event, ctx);
5c148194 1792 }
592903cd 1793
db4a8356 1794 list_update_cgroup_event(event, ctx, true);
e5d1367f 1795
cdd6c482
IM
1796 list_add_rcu(&event->event_entry, &ctx->event_list);
1797 ctx->nr_events++;
1798 if (event->attr.inherit_stat)
bfbd3381 1799 ctx->nr_stat++;
5a3126d4
PZ
1800
1801 ctx->generation++;
04289bb9
IM
1802}
1803
0231bb53
JO
1804/*
1805 * Initialize event state based on the perf_event_attr::disabled.
1806 */
1807static inline void perf_event__state_init(struct perf_event *event)
1808{
1809 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1810 PERF_EVENT_STATE_INACTIVE;
1811}
1812
a723968c 1813static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1814{
1815 int entry = sizeof(u64); /* value */
1816 int size = 0;
1817 int nr = 1;
1818
1819 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1820 size += sizeof(u64);
1821
1822 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1823 size += sizeof(u64);
1824
1825 if (event->attr.read_format & PERF_FORMAT_ID)
1826 entry += sizeof(u64);
1827
1828 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1829 nr += nr_siblings;
c320c7b7
ACM
1830 size += sizeof(u64);
1831 }
1832
1833 size += entry * nr;
1834 event->read_size = size;
1835}
1836
a723968c 1837static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1838{
1839 struct perf_sample_data *data;
c320c7b7
ACM
1840 u16 size = 0;
1841
c320c7b7
ACM
1842 if (sample_type & PERF_SAMPLE_IP)
1843 size += sizeof(data->ip);
1844
6844c09d
ACM
1845 if (sample_type & PERF_SAMPLE_ADDR)
1846 size += sizeof(data->addr);
1847
1848 if (sample_type & PERF_SAMPLE_PERIOD)
1849 size += sizeof(data->period);
1850
c3feedf2
AK
1851 if (sample_type & PERF_SAMPLE_WEIGHT)
1852 size += sizeof(data->weight);
1853
6844c09d
ACM
1854 if (sample_type & PERF_SAMPLE_READ)
1855 size += event->read_size;
1856
d6be9ad6
SE
1857 if (sample_type & PERF_SAMPLE_DATA_SRC)
1858 size += sizeof(data->data_src.val);
1859
fdfbbd07
AK
1860 if (sample_type & PERF_SAMPLE_TRANSACTION)
1861 size += sizeof(data->txn);
1862
fc7ce9c7
KL
1863 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1864 size += sizeof(data->phys_addr);
1865
6546b19f
NK
1866 if (sample_type & PERF_SAMPLE_CGROUP)
1867 size += sizeof(data->cgroup);
1868
6844c09d
ACM
1869 event->header_size = size;
1870}
1871
a723968c
PZ
1872/*
1873 * Called at perf_event creation and when events are attached/detached from a
1874 * group.
1875 */
1876static void perf_event__header_size(struct perf_event *event)
1877{
1878 __perf_event_read_size(event,
1879 event->group_leader->nr_siblings);
1880 __perf_event_header_size(event, event->attr.sample_type);
1881}
1882
6844c09d
ACM
1883static void perf_event__id_header_size(struct perf_event *event)
1884{
1885 struct perf_sample_data *data;
1886 u64 sample_type = event->attr.sample_type;
1887 u16 size = 0;
1888
c320c7b7
ACM
1889 if (sample_type & PERF_SAMPLE_TID)
1890 size += sizeof(data->tid_entry);
1891
1892 if (sample_type & PERF_SAMPLE_TIME)
1893 size += sizeof(data->time);
1894
ff3d527c
AH
1895 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1896 size += sizeof(data->id);
1897
c320c7b7
ACM
1898 if (sample_type & PERF_SAMPLE_ID)
1899 size += sizeof(data->id);
1900
1901 if (sample_type & PERF_SAMPLE_STREAM_ID)
1902 size += sizeof(data->stream_id);
1903
1904 if (sample_type & PERF_SAMPLE_CPU)
1905 size += sizeof(data->cpu_entry);
1906
6844c09d 1907 event->id_header_size = size;
c320c7b7
ACM
1908}
1909
a723968c
PZ
1910static bool perf_event_validate_size(struct perf_event *event)
1911{
1912 /*
1913 * The values computed here will be over-written when we actually
1914 * attach the event.
1915 */
1916 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1917 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1918 perf_event__id_header_size(event);
1919
1920 /*
1921 * Sum the lot; should not exceed the 64k limit we have on records.
1922 * Conservative limit to allow for callchains and other variable fields.
1923 */
1924 if (event->read_size + event->header_size +
1925 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1926 return false;
1927
1928 return true;
1929}
1930
8a49542c
PZ
1931static void perf_group_attach(struct perf_event *event)
1932{
c320c7b7 1933 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1934
a76a82a3
PZ
1935 lockdep_assert_held(&event->ctx->lock);
1936
74c3337c
PZ
1937 /*
1938 * We can have double attach due to group movement in perf_event_open.
1939 */
1940 if (event->attach_state & PERF_ATTACH_GROUP)
1941 return;
1942
8a49542c
PZ
1943 event->attach_state |= PERF_ATTACH_GROUP;
1944
1945 if (group_leader == event)
1946 return;
1947
652884fe
PZ
1948 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1949
4ff6a8de 1950 group_leader->group_caps &= event->event_caps;
8a49542c 1951
8343aae6 1952 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1953 group_leader->nr_siblings++;
c320c7b7
ACM
1954
1955 perf_event__header_size(group_leader);
1956
edb39592 1957 for_each_sibling_event(pos, group_leader)
c320c7b7 1958 perf_event__header_size(pos);
8a49542c
PZ
1959}
1960
a63eaf34 1961/*
788faab7 1962 * Remove an event from the lists for its context.
fccc714b 1963 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1964 */
04289bb9 1965static void
cdd6c482 1966list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1967{
652884fe
PZ
1968 WARN_ON_ONCE(event->ctx != ctx);
1969 lockdep_assert_held(&ctx->lock);
1970
8a49542c
PZ
1971 /*
1972 * We can have double detach due to exit/hot-unplug + close.
1973 */
1974 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1975 return;
8a49542c
PZ
1976
1977 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1978
db4a8356 1979 list_update_cgroup_event(event, ctx, false);
e5d1367f 1980
cdd6c482
IM
1981 ctx->nr_events--;
1982 if (event->attr.inherit_stat)
bfbd3381 1983 ctx->nr_stat--;
8bc20959 1984
cdd6c482 1985 list_del_rcu(&event->event_entry);
04289bb9 1986
8a49542c 1987 if (event->group_leader == event)
8e1a2031 1988 del_event_from_groups(event, ctx);
5c148194 1989
b2e74a26
SE
1990 /*
1991 * If event was in error state, then keep it
1992 * that way, otherwise bogus counts will be
1993 * returned on read(). The only way to get out
1994 * of error state is by explicit re-enabling
1995 * of the event
1996 */
1997 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1998 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1999
2000 ctx->generation++;
050735b0
PZ
2001}
2002
ab43762e
AS
2003static int
2004perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2005{
2006 if (!has_aux(aux_event))
2007 return 0;
2008
2009 if (!event->pmu->aux_output_match)
2010 return 0;
2011
2012 return event->pmu->aux_output_match(aux_event);
2013}
2014
2015static void put_event(struct perf_event *event);
2016static void event_sched_out(struct perf_event *event,
2017 struct perf_cpu_context *cpuctx,
2018 struct perf_event_context *ctx);
2019
2020static void perf_put_aux_event(struct perf_event *event)
2021{
2022 struct perf_event_context *ctx = event->ctx;
2023 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2024 struct perf_event *iter;
2025
2026 /*
2027 * If event uses aux_event tear down the link
2028 */
2029 if (event->aux_event) {
2030 iter = event->aux_event;
2031 event->aux_event = NULL;
2032 put_event(iter);
2033 return;
2034 }
2035
2036 /*
2037 * If the event is an aux_event, tear down all links to
2038 * it from other events.
2039 */
2040 for_each_sibling_event(iter, event->group_leader) {
2041 if (iter->aux_event != event)
2042 continue;
2043
2044 iter->aux_event = NULL;
2045 put_event(event);
2046
2047 /*
2048 * If it's ACTIVE, schedule it out and put it into ERROR
2049 * state so that we don't try to schedule it again. Note
2050 * that perf_event_enable() will clear the ERROR status.
2051 */
2052 event_sched_out(iter, cpuctx, ctx);
2053 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2054 }
2055}
2056
a4faf00d
AS
2057static bool perf_need_aux_event(struct perf_event *event)
2058{
2059 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2060}
2061
ab43762e
AS
2062static int perf_get_aux_event(struct perf_event *event,
2063 struct perf_event *group_leader)
2064{
2065 /*
2066 * Our group leader must be an aux event if we want to be
2067 * an aux_output. This way, the aux event will precede its
2068 * aux_output events in the group, and therefore will always
2069 * schedule first.
2070 */
2071 if (!group_leader)
2072 return 0;
2073
a4faf00d
AS
2074 /*
2075 * aux_output and aux_sample_size are mutually exclusive.
2076 */
2077 if (event->attr.aux_output && event->attr.aux_sample_size)
2078 return 0;
2079
2080 if (event->attr.aux_output &&
2081 !perf_aux_output_match(event, group_leader))
2082 return 0;
2083
2084 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
ab43762e
AS
2085 return 0;
2086
2087 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2088 return 0;
2089
2090 /*
2091 * Link aux_outputs to their aux event; this is undone in
2092 * perf_group_detach() by perf_put_aux_event(). When the
2093 * group in torn down, the aux_output events loose their
2094 * link to the aux_event and can't schedule any more.
2095 */
2096 event->aux_event = group_leader;
2097
2098 return 1;
2099}
2100
ab6f824c
PZ
2101static inline struct list_head *get_event_list(struct perf_event *event)
2102{
2103 struct perf_event_context *ctx = event->ctx;
2104 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2105}
2106
8a49542c 2107static void perf_group_detach(struct perf_event *event)
050735b0
PZ
2108{
2109 struct perf_event *sibling, *tmp;
6668128a 2110 struct perf_event_context *ctx = event->ctx;
8a49542c 2111
6668128a 2112 lockdep_assert_held(&ctx->lock);
a76a82a3 2113
8a49542c
PZ
2114 /*
2115 * We can have double detach due to exit/hot-unplug + close.
2116 */
2117 if (!(event->attach_state & PERF_ATTACH_GROUP))
2118 return;
2119
2120 event->attach_state &= ~PERF_ATTACH_GROUP;
2121
ab43762e
AS
2122 perf_put_aux_event(event);
2123
8a49542c
PZ
2124 /*
2125 * If this is a sibling, remove it from its group.
2126 */
2127 if (event->group_leader != event) {
8343aae6 2128 list_del_init(&event->sibling_list);
8a49542c 2129 event->group_leader->nr_siblings--;
c320c7b7 2130 goto out;
8a49542c
PZ
2131 }
2132
04289bb9 2133 /*
cdd6c482
IM
2134 * If this was a group event with sibling events then
2135 * upgrade the siblings to singleton events by adding them
8a49542c 2136 * to whatever list we are on.
04289bb9 2137 */
8343aae6 2138 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 2139
04289bb9 2140 sibling->group_leader = sibling;
24868367 2141 list_del_init(&sibling->sibling_list);
d6f962b5
FW
2142
2143 /* Inherit group flags from the previous leader */
4ff6a8de 2144 sibling->group_caps = event->group_caps;
652884fe 2145
8e1a2031 2146 if (!RB_EMPTY_NODE(&event->group_node)) {
8e1a2031 2147 add_event_to_groups(sibling, event->ctx);
6668128a 2148
ab6f824c
PZ
2149 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2150 list_add_tail(&sibling->active_list, get_event_list(sibling));
8e1a2031
AB
2151 }
2152
652884fe 2153 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 2154 }
c320c7b7
ACM
2155
2156out:
2157 perf_event__header_size(event->group_leader);
2158
edb39592 2159 for_each_sibling_event(tmp, event->group_leader)
c320c7b7 2160 perf_event__header_size(tmp);
04289bb9
IM
2161}
2162
fadfe7be
JO
2163static bool is_orphaned_event(struct perf_event *event)
2164{
a69b0ca4 2165 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
2166}
2167
2c81a647 2168static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
2169{
2170 struct pmu *pmu = event->pmu;
2171 return pmu->filter_match ? pmu->filter_match(event) : 1;
2172}
2173
2c81a647
MR
2174/*
2175 * Check whether we should attempt to schedule an event group based on
2176 * PMU-specific filtering. An event group can consist of HW and SW events,
2177 * potentially with a SW leader, so we must check all the filters, to
2178 * determine whether a group is schedulable:
2179 */
2180static inline int pmu_filter_match(struct perf_event *event)
2181{
edb39592 2182 struct perf_event *sibling;
2c81a647
MR
2183
2184 if (!__pmu_filter_match(event))
2185 return 0;
2186
edb39592
PZ
2187 for_each_sibling_event(sibling, event) {
2188 if (!__pmu_filter_match(sibling))
2c81a647
MR
2189 return 0;
2190 }
2191
2192 return 1;
2193}
2194
fa66f07a
SE
2195static inline int
2196event_filter_match(struct perf_event *event)
2197{
0b8f1e2e
PZ
2198 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2199 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
2200}
2201
9ffcfa6f
SE
2202static void
2203event_sched_out(struct perf_event *event,
3b6f9e5c 2204 struct perf_cpu_context *cpuctx,
cdd6c482 2205 struct perf_event_context *ctx)
3b6f9e5c 2206{
0d3d73aa 2207 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
2208
2209 WARN_ON_ONCE(event->ctx != ctx);
2210 lockdep_assert_held(&ctx->lock);
2211
cdd6c482 2212 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 2213 return;
3b6f9e5c 2214
6668128a
PZ
2215 /*
2216 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2217 * we can schedule events _OUT_ individually through things like
2218 * __perf_remove_from_context().
2219 */
2220 list_del_init(&event->active_list);
2221
44377277
AS
2222 perf_pmu_disable(event->pmu);
2223
28a967c3
PZ
2224 event->pmu->del(event, 0);
2225 event->oncpu = -1;
0d3d73aa 2226
1d54ad94
PZ
2227 if (READ_ONCE(event->pending_disable) >= 0) {
2228 WRITE_ONCE(event->pending_disable, -1);
0d3d73aa 2229 state = PERF_EVENT_STATE_OFF;
970892a9 2230 }
0d3d73aa 2231 perf_event_set_state(event, state);
3b6f9e5c 2232
cdd6c482 2233 if (!is_software_event(event))
3b6f9e5c 2234 cpuctx->active_oncpu--;
2fde4f94
MR
2235 if (!--ctx->nr_active)
2236 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
2237 if (event->attr.freq && event->attr.sample_freq)
2238 ctx->nr_freq--;
cdd6c482 2239 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 2240 cpuctx->exclusive = 0;
44377277
AS
2241
2242 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2243}
2244
d859e29f 2245static void
cdd6c482 2246group_sched_out(struct perf_event *group_event,
d859e29f 2247 struct perf_cpu_context *cpuctx,
cdd6c482 2248 struct perf_event_context *ctx)
d859e29f 2249{
cdd6c482 2250 struct perf_event *event;
0d3d73aa
PZ
2251
2252 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2253 return;
d859e29f 2254
3f005e7d
MR
2255 perf_pmu_disable(ctx->pmu);
2256
cdd6c482 2257 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
2258
2259 /*
2260 * Schedule out siblings (if any):
2261 */
edb39592 2262 for_each_sibling_event(event, group_event)
cdd6c482 2263 event_sched_out(event, cpuctx, ctx);
d859e29f 2264
3f005e7d
MR
2265 perf_pmu_enable(ctx->pmu);
2266
0d3d73aa 2267 if (group_event->attr.exclusive)
d859e29f
PM
2268 cpuctx->exclusive = 0;
2269}
2270
45a0e07a 2271#define DETACH_GROUP 0x01UL
0017960f 2272
0793a61d 2273/*
cdd6c482 2274 * Cross CPU call to remove a performance event
0793a61d 2275 *
cdd6c482 2276 * We disable the event on the hardware level first. After that we
0793a61d
TG
2277 * remove it from the context list.
2278 */
fae3fde6
PZ
2279static void
2280__perf_remove_from_context(struct perf_event *event,
2281 struct perf_cpu_context *cpuctx,
2282 struct perf_event_context *ctx,
2283 void *info)
0793a61d 2284{
45a0e07a 2285 unsigned long flags = (unsigned long)info;
0793a61d 2286
3c5c8711
PZ
2287 if (ctx->is_active & EVENT_TIME) {
2288 update_context_time(ctx);
2289 update_cgrp_time_from_cpuctx(cpuctx);
2290 }
2291
cdd6c482 2292 event_sched_out(event, cpuctx, ctx);
45a0e07a 2293 if (flags & DETACH_GROUP)
46ce0fe9 2294 perf_group_detach(event);
cdd6c482 2295 list_del_event(event, ctx);
39a43640
PZ
2296
2297 if (!ctx->nr_events && ctx->is_active) {
64ce3126 2298 ctx->is_active = 0;
90c91dfb 2299 ctx->rotate_necessary = 0;
39a43640
PZ
2300 if (ctx->task) {
2301 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2302 cpuctx->task_ctx = NULL;
2303 }
64ce3126 2304 }
0793a61d
TG
2305}
2306
0793a61d 2307/*
cdd6c482 2308 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2309 *
cdd6c482
IM
2310 * If event->ctx is a cloned context, callers must make sure that
2311 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2312 * remains valid. This is OK when called from perf_release since
2313 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2314 * When called from perf_event_exit_task, it's OK because the
c93f7669 2315 * context has been detached from its task.
0793a61d 2316 */
45a0e07a 2317static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2318{
a76a82a3
PZ
2319 struct perf_event_context *ctx = event->ctx;
2320
2321 lockdep_assert_held(&ctx->mutex);
0793a61d 2322
45a0e07a 2323 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
2324
2325 /*
2326 * The above event_function_call() can NO-OP when it hits
2327 * TASK_TOMBSTONE. In that case we must already have been detached
2328 * from the context (by perf_event_exit_event()) but the grouping
2329 * might still be in-tact.
2330 */
2331 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2332 if ((flags & DETACH_GROUP) &&
2333 (event->attach_state & PERF_ATTACH_GROUP)) {
2334 /*
2335 * Since in that case we cannot possibly be scheduled, simply
2336 * detach now.
2337 */
2338 raw_spin_lock_irq(&ctx->lock);
2339 perf_group_detach(event);
2340 raw_spin_unlock_irq(&ctx->lock);
2341 }
0793a61d
TG
2342}
2343
d859e29f 2344/*
cdd6c482 2345 * Cross CPU call to disable a performance event
d859e29f 2346 */
fae3fde6
PZ
2347static void __perf_event_disable(struct perf_event *event,
2348 struct perf_cpu_context *cpuctx,
2349 struct perf_event_context *ctx,
2350 void *info)
7b648018 2351{
fae3fde6
PZ
2352 if (event->state < PERF_EVENT_STATE_INACTIVE)
2353 return;
7b648018 2354
3c5c8711
PZ
2355 if (ctx->is_active & EVENT_TIME) {
2356 update_context_time(ctx);
2357 update_cgrp_time_from_event(event);
2358 }
2359
fae3fde6
PZ
2360 if (event == event->group_leader)
2361 group_sched_out(event, cpuctx, ctx);
2362 else
2363 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
2364
2365 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
2366}
2367
d859e29f 2368/*
788faab7 2369 * Disable an event.
c93f7669 2370 *
cdd6c482
IM
2371 * If event->ctx is a cloned context, callers must make sure that
2372 * every task struct that event->ctx->task could possibly point to
9f014e3a 2373 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2374 * perf_event_for_each_child or perf_event_for_each because they
2375 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2376 * goes to exit will block in perf_event_exit_event().
2377 *
cdd6c482 2378 * When called from perf_pending_event it's OK because event->ctx
c93f7669 2379 * is the current context on this CPU and preemption is disabled,
cdd6c482 2380 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2381 */
f63a8daa 2382static void _perf_event_disable(struct perf_event *event)
d859e29f 2383{
cdd6c482 2384 struct perf_event_context *ctx = event->ctx;
d859e29f 2385
e625cce1 2386 raw_spin_lock_irq(&ctx->lock);
7b648018 2387 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2388 raw_spin_unlock_irq(&ctx->lock);
7b648018 2389 return;
53cfbf59 2390 }
e625cce1 2391 raw_spin_unlock_irq(&ctx->lock);
7b648018 2392
fae3fde6
PZ
2393 event_function_call(event, __perf_event_disable, NULL);
2394}
2395
2396void perf_event_disable_local(struct perf_event *event)
2397{
2398 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2399}
f63a8daa
PZ
2400
2401/*
2402 * Strictly speaking kernel users cannot create groups and therefore this
2403 * interface does not need the perf_event_ctx_lock() magic.
2404 */
2405void perf_event_disable(struct perf_event *event)
2406{
2407 struct perf_event_context *ctx;
2408
2409 ctx = perf_event_ctx_lock(event);
2410 _perf_event_disable(event);
2411 perf_event_ctx_unlock(event, ctx);
2412}
dcfce4a0 2413EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2414
5aab90ce
JO
2415void perf_event_disable_inatomic(struct perf_event *event)
2416{
1d54ad94
PZ
2417 WRITE_ONCE(event->pending_disable, smp_processor_id());
2418 /* can fail, see perf_pending_event_disable() */
5aab90ce
JO
2419 irq_work_queue(&event->pending);
2420}
2421
e5d1367f 2422static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2423 struct perf_event_context *ctx)
e5d1367f
SE
2424{
2425 /*
2426 * use the correct time source for the time snapshot
2427 *
2428 * We could get by without this by leveraging the
2429 * fact that to get to this function, the caller
2430 * has most likely already called update_context_time()
2431 * and update_cgrp_time_xx() and thus both timestamp
2432 * are identical (or very close). Given that tstamp is,
2433 * already adjusted for cgroup, we could say that:
2434 * tstamp - ctx->timestamp
2435 * is equivalent to
2436 * tstamp - cgrp->timestamp.
2437 *
2438 * Then, in perf_output_read(), the calculation would
2439 * work with no changes because:
2440 * - event is guaranteed scheduled in
2441 * - no scheduled out in between
2442 * - thus the timestamp would be the same
2443 *
2444 * But this is a bit hairy.
2445 *
2446 * So instead, we have an explicit cgroup call to remain
2447 * within the time time source all along. We believe it
2448 * is cleaner and simpler to understand.
2449 */
2450 if (is_cgroup_event(event))
0d3d73aa 2451 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2452 else
0d3d73aa 2453 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2454}
2455
4fe757dd
PZ
2456#define MAX_INTERRUPTS (~0ULL)
2457
2458static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2459static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2460
235c7fc7 2461static int
9ffcfa6f 2462event_sched_in(struct perf_event *event,
235c7fc7 2463 struct perf_cpu_context *cpuctx,
6e37738a 2464 struct perf_event_context *ctx)
235c7fc7 2465{
44377277 2466 int ret = 0;
4158755d 2467
ab6f824c
PZ
2468 WARN_ON_ONCE(event->ctx != ctx);
2469
63342411
PZ
2470 lockdep_assert_held(&ctx->lock);
2471
cdd6c482 2472 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2473 return 0;
2474
95ff4ca2
AS
2475 WRITE_ONCE(event->oncpu, smp_processor_id());
2476 /*
0c1cbc18
PZ
2477 * Order event::oncpu write to happen before the ACTIVE state is
2478 * visible. This allows perf_event_{stop,read}() to observe the correct
2479 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2480 */
2481 smp_wmb();
0d3d73aa 2482 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2483
2484 /*
2485 * Unthrottle events, since we scheduled we might have missed several
2486 * ticks already, also for a heavily scheduling task there is little
2487 * guarantee it'll get a tick in a timely manner.
2488 */
2489 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2490 perf_log_throttle(event, 1);
2491 event->hw.interrupts = 0;
2492 }
2493
44377277
AS
2494 perf_pmu_disable(event->pmu);
2495
0d3d73aa 2496 perf_set_shadow_time(event, ctx);
72f669c0 2497
ec0d7729
AS
2498 perf_log_itrace_start(event);
2499
a4eaf7f1 2500 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2501 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2502 event->oncpu = -1;
44377277
AS
2503 ret = -EAGAIN;
2504 goto out;
235c7fc7
IM
2505 }
2506
cdd6c482 2507 if (!is_software_event(event))
3b6f9e5c 2508 cpuctx->active_oncpu++;
2fde4f94
MR
2509 if (!ctx->nr_active++)
2510 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2511 if (event->attr.freq && event->attr.sample_freq)
2512 ctx->nr_freq++;
235c7fc7 2513
cdd6c482 2514 if (event->attr.exclusive)
3b6f9e5c
PM
2515 cpuctx->exclusive = 1;
2516
44377277
AS
2517out:
2518 perf_pmu_enable(event->pmu);
2519
2520 return ret;
235c7fc7
IM
2521}
2522
6751b71e 2523static int
cdd6c482 2524group_sched_in(struct perf_event *group_event,
6751b71e 2525 struct perf_cpu_context *cpuctx,
6e37738a 2526 struct perf_event_context *ctx)
6751b71e 2527{
6bde9b6c 2528 struct perf_event *event, *partial_group = NULL;
4a234593 2529 struct pmu *pmu = ctx->pmu;
6751b71e 2530
cdd6c482 2531 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2532 return 0;
2533
fbbe0701 2534 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2535
9ffcfa6f 2536 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2537 pmu->cancel_txn(pmu);
272325c4 2538 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2539 return -EAGAIN;
90151c35 2540 }
6751b71e
PM
2541
2542 /*
2543 * Schedule in siblings as one group (if any):
2544 */
edb39592 2545 for_each_sibling_event(event, group_event) {
9ffcfa6f 2546 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2547 partial_group = event;
6751b71e
PM
2548 goto group_error;
2549 }
2550 }
2551
9ffcfa6f 2552 if (!pmu->commit_txn(pmu))
6e85158c 2553 return 0;
9ffcfa6f 2554
6751b71e
PM
2555group_error:
2556 /*
2557 * Groups can be scheduled in as one unit only, so undo any
2558 * partial group before returning:
0d3d73aa 2559 * The events up to the failed event are scheduled out normally.
6751b71e 2560 */
edb39592 2561 for_each_sibling_event(event, group_event) {
cdd6c482 2562 if (event == partial_group)
0d3d73aa 2563 break;
d7842da4 2564
0d3d73aa 2565 event_sched_out(event, cpuctx, ctx);
6751b71e 2566 }
9ffcfa6f 2567 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2568
ad5133b7 2569 pmu->cancel_txn(pmu);
90151c35 2570
272325c4 2571 perf_mux_hrtimer_restart(cpuctx);
9e630205 2572
6751b71e
PM
2573 return -EAGAIN;
2574}
2575
3b6f9e5c 2576/*
cdd6c482 2577 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2578 */
cdd6c482 2579static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2580 struct perf_cpu_context *cpuctx,
2581 int can_add_hw)
2582{
2583 /*
cdd6c482 2584 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2585 */
4ff6a8de 2586 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2587 return 1;
2588 /*
2589 * If an exclusive group is already on, no other hardware
cdd6c482 2590 * events can go on.
3b6f9e5c
PM
2591 */
2592 if (cpuctx->exclusive)
2593 return 0;
2594 /*
2595 * If this group is exclusive and there are already
cdd6c482 2596 * events on the CPU, it can't go on.
3b6f9e5c 2597 */
cdd6c482 2598 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2599 return 0;
2600 /*
2601 * Otherwise, try to add it if all previous groups were able
2602 * to go on.
2603 */
2604 return can_add_hw;
2605}
2606
cdd6c482
IM
2607static void add_event_to_ctx(struct perf_event *event,
2608 struct perf_event_context *ctx)
53cfbf59 2609{
cdd6c482 2610 list_add_event(event, ctx);
8a49542c 2611 perf_group_attach(event);
53cfbf59
PM
2612}
2613
bd2afa49
PZ
2614static void ctx_sched_out(struct perf_event_context *ctx,
2615 struct perf_cpu_context *cpuctx,
2616 enum event_type_t event_type);
2c29ef0f
PZ
2617static void
2618ctx_sched_in(struct perf_event_context *ctx,
2619 struct perf_cpu_context *cpuctx,
2620 enum event_type_t event_type,
2621 struct task_struct *task);
fe4b04fa 2622
bd2afa49 2623static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2624 struct perf_event_context *ctx,
2625 enum event_type_t event_type)
bd2afa49
PZ
2626{
2627 if (!cpuctx->task_ctx)
2628 return;
2629
2630 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2631 return;
2632
487f05e1 2633 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2634}
2635
dce5855b
PZ
2636static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2637 struct perf_event_context *ctx,
2638 struct task_struct *task)
2639{
2640 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2641 if (ctx)
2642 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2643 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2644 if (ctx)
2645 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2646}
2647
487f05e1
AS
2648/*
2649 * We want to maintain the following priority of scheduling:
2650 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2651 * - task pinned (EVENT_PINNED)
2652 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2653 * - task flexible (EVENT_FLEXIBLE).
2654 *
2655 * In order to avoid unscheduling and scheduling back in everything every
2656 * time an event is added, only do it for the groups of equal priority and
2657 * below.
2658 *
2659 * This can be called after a batch operation on task events, in which case
2660 * event_type is a bit mask of the types of events involved. For CPU events,
2661 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2662 */
3e349507 2663static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2664 struct perf_event_context *task_ctx,
2665 enum event_type_t event_type)
0017960f 2666{
bd903afe 2667 enum event_type_t ctx_event_type;
487f05e1
AS
2668 bool cpu_event = !!(event_type & EVENT_CPU);
2669
2670 /*
2671 * If pinned groups are involved, flexible groups also need to be
2672 * scheduled out.
2673 */
2674 if (event_type & EVENT_PINNED)
2675 event_type |= EVENT_FLEXIBLE;
2676
bd903afe
SL
2677 ctx_event_type = event_type & EVENT_ALL;
2678
3e349507
PZ
2679 perf_pmu_disable(cpuctx->ctx.pmu);
2680 if (task_ctx)
487f05e1
AS
2681 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2682
2683 /*
2684 * Decide which cpu ctx groups to schedule out based on the types
2685 * of events that caused rescheduling:
2686 * - EVENT_CPU: schedule out corresponding groups;
2687 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2688 * - otherwise, do nothing more.
2689 */
2690 if (cpu_event)
2691 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2692 else if (ctx_event_type & EVENT_PINNED)
2693 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2694
3e349507
PZ
2695 perf_event_sched_in(cpuctx, task_ctx, current);
2696 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2697}
2698
c68d224e
SE
2699void perf_pmu_resched(struct pmu *pmu)
2700{
2701 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2702 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2703
2704 perf_ctx_lock(cpuctx, task_ctx);
2705 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2706 perf_ctx_unlock(cpuctx, task_ctx);
2707}
2708
0793a61d 2709/*
cdd6c482 2710 * Cross CPU call to install and enable a performance event
682076ae 2711 *
a096309b
PZ
2712 * Very similar to remote_function() + event_function() but cannot assume that
2713 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2714 */
fe4b04fa 2715static int __perf_install_in_context(void *info)
0793a61d 2716{
a096309b
PZ
2717 struct perf_event *event = info;
2718 struct perf_event_context *ctx = event->ctx;
108b02cf 2719 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2720 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2721 bool reprogram = true;
a096309b 2722 int ret = 0;
0793a61d 2723
63b6da39 2724 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2725 if (ctx->task) {
b58f6b0d
PZ
2726 raw_spin_lock(&ctx->lock);
2727 task_ctx = ctx;
a096309b 2728
63cae12b 2729 reprogram = (ctx->task == current);
b58f6b0d 2730
39a43640 2731 /*
63cae12b
PZ
2732 * If the task is running, it must be running on this CPU,
2733 * otherwise we cannot reprogram things.
2734 *
2735 * If its not running, we don't care, ctx->lock will
2736 * serialize against it becoming runnable.
39a43640 2737 */
63cae12b
PZ
2738 if (task_curr(ctx->task) && !reprogram) {
2739 ret = -ESRCH;
2740 goto unlock;
2741 }
a096309b 2742
63cae12b 2743 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2744 } else if (task_ctx) {
2745 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2746 }
b58f6b0d 2747
33801b94 2748#ifdef CONFIG_CGROUP_PERF
2749 if (is_cgroup_event(event)) {
2750 /*
2751 * If the current cgroup doesn't match the event's
2752 * cgroup, we should not try to schedule it.
2753 */
2754 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2755 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2756 event->cgrp->css.cgroup);
2757 }
2758#endif
2759
63cae12b 2760 if (reprogram) {
a096309b
PZ
2761 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2762 add_event_to_ctx(event, ctx);
487f05e1 2763 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2764 } else {
2765 add_event_to_ctx(event, ctx);
2766 }
2767
63b6da39 2768unlock:
2c29ef0f 2769 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2770
a096309b 2771 return ret;
0793a61d
TG
2772}
2773
8a58ddae
AS
2774static bool exclusive_event_installable(struct perf_event *event,
2775 struct perf_event_context *ctx);
2776
0793a61d 2777/*
a096309b
PZ
2778 * Attach a performance event to a context.
2779 *
2780 * Very similar to event_function_call, see comment there.
0793a61d
TG
2781 */
2782static void
cdd6c482
IM
2783perf_install_in_context(struct perf_event_context *ctx,
2784 struct perf_event *event,
0793a61d
TG
2785 int cpu)
2786{
a096309b 2787 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2788
fe4b04fa
PZ
2789 lockdep_assert_held(&ctx->mutex);
2790
8a58ddae
AS
2791 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2792
0cda4c02
YZ
2793 if (event->cpu != -1)
2794 event->cpu = cpu;
c3f00c70 2795
0b8f1e2e
PZ
2796 /*
2797 * Ensures that if we can observe event->ctx, both the event and ctx
2798 * will be 'complete'. See perf_iterate_sb_cpu().
2799 */
2800 smp_store_release(&event->ctx, ctx);
2801
db0503e4
PZ
2802 /*
2803 * perf_event_attr::disabled events will not run and can be initialized
2804 * without IPI. Except when this is the first event for the context, in
2805 * that case we need the magic of the IPI to set ctx->is_active.
2806 *
2807 * The IOC_ENABLE that is sure to follow the creation of a disabled
2808 * event will issue the IPI and reprogram the hardware.
2809 */
2810 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2811 raw_spin_lock_irq(&ctx->lock);
2812 if (ctx->task == TASK_TOMBSTONE) {
2813 raw_spin_unlock_irq(&ctx->lock);
2814 return;
2815 }
2816 add_event_to_ctx(event, ctx);
2817 raw_spin_unlock_irq(&ctx->lock);
2818 return;
2819 }
2820
a096309b
PZ
2821 if (!task) {
2822 cpu_function_call(cpu, __perf_install_in_context, event);
2823 return;
2824 }
2825
2826 /*
2827 * Should not happen, we validate the ctx is still alive before calling.
2828 */
2829 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2830 return;
2831
39a43640
PZ
2832 /*
2833 * Installing events is tricky because we cannot rely on ctx->is_active
2834 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2835 *
2836 * Instead we use task_curr(), which tells us if the task is running.
2837 * However, since we use task_curr() outside of rq::lock, we can race
2838 * against the actual state. This means the result can be wrong.
2839 *
2840 * If we get a false positive, we retry, this is harmless.
2841 *
2842 * If we get a false negative, things are complicated. If we are after
2843 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2844 * value must be correct. If we're before, it doesn't matter since
2845 * perf_event_context_sched_in() will program the counter.
2846 *
2847 * However, this hinges on the remote context switch having observed
2848 * our task->perf_event_ctxp[] store, such that it will in fact take
2849 * ctx::lock in perf_event_context_sched_in().
2850 *
2851 * We do this by task_function_call(), if the IPI fails to hit the task
2852 * we know any future context switch of task must see the
2853 * perf_event_ctpx[] store.
39a43640 2854 */
63cae12b 2855
63b6da39 2856 /*
63cae12b
PZ
2857 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2858 * task_cpu() load, such that if the IPI then does not find the task
2859 * running, a future context switch of that task must observe the
2860 * store.
63b6da39 2861 */
63cae12b
PZ
2862 smp_mb();
2863again:
2864 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2865 return;
2866
2867 raw_spin_lock_irq(&ctx->lock);
2868 task = ctx->task;
84c4e620 2869 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2870 /*
2871 * Cannot happen because we already checked above (which also
2872 * cannot happen), and we hold ctx->mutex, which serializes us
2873 * against perf_event_exit_task_context().
2874 */
63b6da39
PZ
2875 raw_spin_unlock_irq(&ctx->lock);
2876 return;
2877 }
39a43640 2878 /*
63cae12b
PZ
2879 * If the task is not running, ctx->lock will avoid it becoming so,
2880 * thus we can safely install the event.
39a43640 2881 */
63cae12b
PZ
2882 if (task_curr(task)) {
2883 raw_spin_unlock_irq(&ctx->lock);
2884 goto again;
2885 }
2886 add_event_to_ctx(event, ctx);
2887 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2888}
2889
d859e29f 2890/*
cdd6c482 2891 * Cross CPU call to enable a performance event
d859e29f 2892 */
fae3fde6
PZ
2893static void __perf_event_enable(struct perf_event *event,
2894 struct perf_cpu_context *cpuctx,
2895 struct perf_event_context *ctx,
2896 void *info)
04289bb9 2897{
cdd6c482 2898 struct perf_event *leader = event->group_leader;
fae3fde6 2899 struct perf_event_context *task_ctx;
04289bb9 2900
6e801e01
PZ
2901 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2902 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2903 return;
3cbed429 2904
bd2afa49
PZ
2905 if (ctx->is_active)
2906 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2907
0d3d73aa 2908 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2909
fae3fde6
PZ
2910 if (!ctx->is_active)
2911 return;
2912
e5d1367f 2913 if (!event_filter_match(event)) {
bd2afa49 2914 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2915 return;
e5d1367f 2916 }
f4c4176f 2917
04289bb9 2918 /*
cdd6c482 2919 * If the event is in a group and isn't the group leader,
d859e29f 2920 * then don't put it on unless the group is on.
04289bb9 2921 */
bd2afa49
PZ
2922 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2923 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2924 return;
bd2afa49 2925 }
fe4b04fa 2926
fae3fde6
PZ
2927 task_ctx = cpuctx->task_ctx;
2928 if (ctx->task)
2929 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2930
487f05e1 2931 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2932}
2933
d859e29f 2934/*
788faab7 2935 * Enable an event.
c93f7669 2936 *
cdd6c482
IM
2937 * If event->ctx is a cloned context, callers must make sure that
2938 * every task struct that event->ctx->task could possibly point to
c93f7669 2939 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2940 * perf_event_for_each_child or perf_event_for_each as described
2941 * for perf_event_disable.
d859e29f 2942 */
f63a8daa 2943static void _perf_event_enable(struct perf_event *event)
d859e29f 2944{
cdd6c482 2945 struct perf_event_context *ctx = event->ctx;
d859e29f 2946
7b648018 2947 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2948 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2949 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2950 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2951 return;
2952 }
2953
d859e29f 2954 /*
cdd6c482 2955 * If the event is in error state, clear that first.
7b648018
PZ
2956 *
2957 * That way, if we see the event in error state below, we know that it
2958 * has gone back into error state, as distinct from the task having
2959 * been scheduled away before the cross-call arrived.
d859e29f 2960 */
cdd6c482
IM
2961 if (event->state == PERF_EVENT_STATE_ERROR)
2962 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2963 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2964
fae3fde6 2965 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2966}
f63a8daa
PZ
2967
2968/*
2969 * See perf_event_disable();
2970 */
2971void perf_event_enable(struct perf_event *event)
2972{
2973 struct perf_event_context *ctx;
2974
2975 ctx = perf_event_ctx_lock(event);
2976 _perf_event_enable(event);
2977 perf_event_ctx_unlock(event, ctx);
2978}
dcfce4a0 2979EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2980
375637bc
AS
2981struct stop_event_data {
2982 struct perf_event *event;
2983 unsigned int restart;
2984};
2985
95ff4ca2
AS
2986static int __perf_event_stop(void *info)
2987{
375637bc
AS
2988 struct stop_event_data *sd = info;
2989 struct perf_event *event = sd->event;
95ff4ca2 2990
375637bc 2991 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2992 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2993 return 0;
2994
2995 /* matches smp_wmb() in event_sched_in() */
2996 smp_rmb();
2997
2998 /*
2999 * There is a window with interrupts enabled before we get here,
3000 * so we need to check again lest we try to stop another CPU's event.
3001 */
3002 if (READ_ONCE(event->oncpu) != smp_processor_id())
3003 return -EAGAIN;
3004
3005 event->pmu->stop(event, PERF_EF_UPDATE);
3006
375637bc
AS
3007 /*
3008 * May race with the actual stop (through perf_pmu_output_stop()),
3009 * but it is only used for events with AUX ring buffer, and such
3010 * events will refuse to restart because of rb::aux_mmap_count==0,
3011 * see comments in perf_aux_output_begin().
3012 *
788faab7 3013 * Since this is happening on an event-local CPU, no trace is lost
375637bc
AS
3014 * while restarting.
3015 */
3016 if (sd->restart)
c9bbdd48 3017 event->pmu->start(event, 0);
375637bc 3018
95ff4ca2
AS
3019 return 0;
3020}
3021
767ae086 3022static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
3023{
3024 struct stop_event_data sd = {
3025 .event = event,
767ae086 3026 .restart = restart,
375637bc
AS
3027 };
3028 int ret = 0;
3029
3030 do {
3031 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3032 return 0;
3033
3034 /* matches smp_wmb() in event_sched_in() */
3035 smp_rmb();
3036
3037 /*
3038 * We only want to restart ACTIVE events, so if the event goes
3039 * inactive here (event->oncpu==-1), there's nothing more to do;
3040 * fall through with ret==-ENXIO.
3041 */
3042 ret = cpu_function_call(READ_ONCE(event->oncpu),
3043 __perf_event_stop, &sd);
3044 } while (ret == -EAGAIN);
3045
3046 return ret;
3047}
3048
3049/*
3050 * In order to contain the amount of racy and tricky in the address filter
3051 * configuration management, it is a two part process:
3052 *
3053 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3054 * we update the addresses of corresponding vmas in
c60f83b8 3055 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
375637bc
AS
3056 * (p2) when an event is scheduled in (pmu::add), it calls
3057 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3058 * if the generation has changed since the previous call.
3059 *
3060 * If (p1) happens while the event is active, we restart it to force (p2).
3061 *
3062 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3063 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3064 * ioctl;
3065 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3066 * registered mapping, called for every new mmap(), with mm::mmap_sem down
3067 * for reading;
3068 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3069 * of exec.
3070 */
3071void perf_event_addr_filters_sync(struct perf_event *event)
3072{
3073 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3074
3075 if (!has_addr_filter(event))
3076 return;
3077
3078 raw_spin_lock(&ifh->lock);
3079 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3080 event->pmu->addr_filters_sync(event);
3081 event->hw.addr_filters_gen = event->addr_filters_gen;
3082 }
3083 raw_spin_unlock(&ifh->lock);
3084}
3085EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3086
f63a8daa 3087static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 3088{
2023b359 3089 /*
cdd6c482 3090 * not supported on inherited events
2023b359 3091 */
2e939d1d 3092 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
3093 return -EINVAL;
3094
cdd6c482 3095 atomic_add(refresh, &event->event_limit);
f63a8daa 3096 _perf_event_enable(event);
2023b359
PZ
3097
3098 return 0;
79f14641 3099}
f63a8daa
PZ
3100
3101/*
3102 * See perf_event_disable()
3103 */
3104int perf_event_refresh(struct perf_event *event, int refresh)
3105{
3106 struct perf_event_context *ctx;
3107 int ret;
3108
3109 ctx = perf_event_ctx_lock(event);
3110 ret = _perf_event_refresh(event, refresh);
3111 perf_event_ctx_unlock(event, ctx);
3112
3113 return ret;
3114}
26ca5c11 3115EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 3116
32ff77e8
MC
3117static int perf_event_modify_breakpoint(struct perf_event *bp,
3118 struct perf_event_attr *attr)
3119{
3120 int err;
3121
3122 _perf_event_disable(bp);
3123
3124 err = modify_user_hw_breakpoint_check(bp, attr, true);
32ff77e8 3125
bf06278c 3126 if (!bp->attr.disabled)
32ff77e8 3127 _perf_event_enable(bp);
bf06278c
JO
3128
3129 return err;
32ff77e8
MC
3130}
3131
3132static int perf_event_modify_attr(struct perf_event *event,
3133 struct perf_event_attr *attr)
3134{
3135 if (event->attr.type != attr->type)
3136 return -EINVAL;
3137
3138 switch (event->attr.type) {
3139 case PERF_TYPE_BREAKPOINT:
3140 return perf_event_modify_breakpoint(event, attr);
3141 default:
3142 /* Place holder for future additions. */
3143 return -EOPNOTSUPP;
3144 }
3145}
3146
5b0311e1
FW
3147static void ctx_sched_out(struct perf_event_context *ctx,
3148 struct perf_cpu_context *cpuctx,
3149 enum event_type_t event_type)
235c7fc7 3150{
6668128a 3151 struct perf_event *event, *tmp;
db24d33e 3152 int is_active = ctx->is_active;
235c7fc7 3153
c994d613 3154 lockdep_assert_held(&ctx->lock);
235c7fc7 3155
39a43640
PZ
3156 if (likely(!ctx->nr_events)) {
3157 /*
3158 * See __perf_remove_from_context().
3159 */
3160 WARN_ON_ONCE(ctx->is_active);
3161 if (ctx->task)
3162 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 3163 return;
39a43640
PZ
3164 }
3165
db24d33e 3166 ctx->is_active &= ~event_type;
3cbaa590
PZ
3167 if (!(ctx->is_active & EVENT_ALL))
3168 ctx->is_active = 0;
3169
63e30d3e
PZ
3170 if (ctx->task) {
3171 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3172 if (!ctx->is_active)
3173 cpuctx->task_ctx = NULL;
3174 }
facc4307 3175
8fdc6539
PZ
3176 /*
3177 * Always update time if it was set; not only when it changes.
3178 * Otherwise we can 'forget' to update time for any but the last
3179 * context we sched out. For example:
3180 *
3181 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3182 * ctx_sched_out(.event_type = EVENT_PINNED)
3183 *
3184 * would only update time for the pinned events.
3185 */
3cbaa590
PZ
3186 if (is_active & EVENT_TIME) {
3187 /* update (and stop) ctx time */
3188 update_context_time(ctx);
3189 update_cgrp_time_from_cpuctx(cpuctx);
3190 }
3191
8fdc6539
PZ
3192 is_active ^= ctx->is_active; /* changed bits */
3193
3cbaa590 3194 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 3195 return;
5b0311e1 3196
075e0b00 3197 perf_pmu_disable(ctx->pmu);
3cbaa590 3198 if (is_active & EVENT_PINNED) {
6668128a 3199 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
889ff015 3200 group_sched_out(event, cpuctx, ctx);
9ed6060d 3201 }
889ff015 3202
3cbaa590 3203 if (is_active & EVENT_FLEXIBLE) {
6668128a 3204 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
8c9ed8e1 3205 group_sched_out(event, cpuctx, ctx);
90c91dfb
PZ
3206
3207 /*
3208 * Since we cleared EVENT_FLEXIBLE, also clear
3209 * rotate_necessary, is will be reset by
3210 * ctx_flexible_sched_in() when needed.
3211 */
3212 ctx->rotate_necessary = 0;
9ed6060d 3213 }
1b9a644f 3214 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
3215}
3216
564c2b21 3217/*
5a3126d4
PZ
3218 * Test whether two contexts are equivalent, i.e. whether they have both been
3219 * cloned from the same version of the same context.
3220 *
3221 * Equivalence is measured using a generation number in the context that is
3222 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3223 * and list_del_event().
564c2b21 3224 */
cdd6c482
IM
3225static int context_equiv(struct perf_event_context *ctx1,
3226 struct perf_event_context *ctx2)
564c2b21 3227{
211de6eb
PZ
3228 lockdep_assert_held(&ctx1->lock);
3229 lockdep_assert_held(&ctx2->lock);
3230
5a3126d4
PZ
3231 /* Pinning disables the swap optimization */
3232 if (ctx1->pin_count || ctx2->pin_count)
3233 return 0;
3234
3235 /* If ctx1 is the parent of ctx2 */
3236 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3237 return 1;
3238
3239 /* If ctx2 is the parent of ctx1 */
3240 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3241 return 1;
3242
3243 /*
3244 * If ctx1 and ctx2 have the same parent; we flatten the parent
3245 * hierarchy, see perf_event_init_context().
3246 */
3247 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3248 ctx1->parent_gen == ctx2->parent_gen)
3249 return 1;
3250
3251 /* Unmatched */
3252 return 0;
564c2b21
PM
3253}
3254
cdd6c482
IM
3255static void __perf_event_sync_stat(struct perf_event *event,
3256 struct perf_event *next_event)
bfbd3381
PZ
3257{
3258 u64 value;
3259
cdd6c482 3260 if (!event->attr.inherit_stat)
bfbd3381
PZ
3261 return;
3262
3263 /*
cdd6c482 3264 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3265 * because we're in the middle of a context switch and have IRQs
3266 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3267 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3268 * don't need to use it.
3269 */
0d3d73aa 3270 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3271 event->pmu->read(event);
bfbd3381 3272
0d3d73aa 3273 perf_event_update_time(event);
bfbd3381
PZ
3274
3275 /*
cdd6c482 3276 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3277 * values when we flip the contexts.
3278 */
e7850595
PZ
3279 value = local64_read(&next_event->count);
3280 value = local64_xchg(&event->count, value);
3281 local64_set(&next_event->count, value);
bfbd3381 3282
cdd6c482
IM
3283 swap(event->total_time_enabled, next_event->total_time_enabled);
3284 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3285
bfbd3381 3286 /*
19d2e755 3287 * Since we swizzled the values, update the user visible data too.
bfbd3381 3288 */
cdd6c482
IM
3289 perf_event_update_userpage(event);
3290 perf_event_update_userpage(next_event);
bfbd3381
PZ
3291}
3292
cdd6c482
IM
3293static void perf_event_sync_stat(struct perf_event_context *ctx,
3294 struct perf_event_context *next_ctx)
bfbd3381 3295{
cdd6c482 3296 struct perf_event *event, *next_event;
bfbd3381
PZ
3297
3298 if (!ctx->nr_stat)
3299 return;
3300
02ffdbc8
PZ
3301 update_context_time(ctx);
3302
cdd6c482
IM
3303 event = list_first_entry(&ctx->event_list,
3304 struct perf_event, event_entry);
bfbd3381 3305
cdd6c482
IM
3306 next_event = list_first_entry(&next_ctx->event_list,
3307 struct perf_event, event_entry);
bfbd3381 3308
cdd6c482
IM
3309 while (&event->event_entry != &ctx->event_list &&
3310 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3311
cdd6c482 3312 __perf_event_sync_stat(event, next_event);
bfbd3381 3313
cdd6c482
IM
3314 event = list_next_entry(event, event_entry);
3315 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3316 }
3317}
3318
fe4b04fa
PZ
3319static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3320 struct task_struct *next)
0793a61d 3321{
8dc85d54 3322 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 3323 struct perf_event_context *next_ctx;
5a3126d4 3324 struct perf_event_context *parent, *next_parent;
108b02cf 3325 struct perf_cpu_context *cpuctx;
c93f7669 3326 int do_switch = 1;
0793a61d 3327
108b02cf
PZ
3328 if (likely(!ctx))
3329 return;
10989fb2 3330
108b02cf
PZ
3331 cpuctx = __get_cpu_context(ctx);
3332 if (!cpuctx->task_ctx)
0793a61d
TG
3333 return;
3334
c93f7669 3335 rcu_read_lock();
8dc85d54 3336 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
3337 if (!next_ctx)
3338 goto unlock;
3339
3340 parent = rcu_dereference(ctx->parent_ctx);
3341 next_parent = rcu_dereference(next_ctx->parent_ctx);
3342
3343 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3344 if (!parent && !next_parent)
5a3126d4
PZ
3345 goto unlock;
3346
3347 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3348 /*
3349 * Looks like the two contexts are clones, so we might be
3350 * able to optimize the context switch. We lock both
3351 * contexts and check that they are clones under the
3352 * lock (including re-checking that neither has been
3353 * uncloned in the meantime). It doesn't matter which
3354 * order we take the locks because no other cpu could
3355 * be trying to lock both of these tasks.
3356 */
e625cce1
TG
3357 raw_spin_lock(&ctx->lock);
3358 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3359 if (context_equiv(ctx, next_ctx)) {
c2b98a86
AB
3360 struct pmu *pmu = ctx->pmu;
3361
63b6da39
PZ
3362 WRITE_ONCE(ctx->task, next);
3363 WRITE_ONCE(next_ctx->task, task);
5a158c3c 3364
c2b98a86
AB
3365 /*
3366 * PMU specific parts of task perf context can require
3367 * additional synchronization. As an example of such
3368 * synchronization see implementation details of Intel
3369 * LBR call stack data profiling;
3370 */
3371 if (pmu->swap_task_ctx)
3372 pmu->swap_task_ctx(ctx, next_ctx);
3373 else
3374 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
5a158c3c 3375
63b6da39
PZ
3376 /*
3377 * RCU_INIT_POINTER here is safe because we've not
3378 * modified the ctx and the above modification of
3379 * ctx->task and ctx->task_ctx_data are immaterial
3380 * since those values are always verified under
3381 * ctx->lock which we're now holding.
3382 */
3383 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3384 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3385
c93f7669 3386 do_switch = 0;
bfbd3381 3387
cdd6c482 3388 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3389 }
e625cce1
TG
3390 raw_spin_unlock(&next_ctx->lock);
3391 raw_spin_unlock(&ctx->lock);
564c2b21 3392 }
5a3126d4 3393unlock:
c93f7669 3394 rcu_read_unlock();
564c2b21 3395
c93f7669 3396 if (do_switch) {
facc4307 3397 raw_spin_lock(&ctx->lock);
487f05e1 3398 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 3399 raw_spin_unlock(&ctx->lock);
c93f7669 3400 }
0793a61d
TG
3401}
3402
e48c1788
PZ
3403static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3404
ba532500
YZ
3405void perf_sched_cb_dec(struct pmu *pmu)
3406{
e48c1788
PZ
3407 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3408
ba532500 3409 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3410
3411 if (!--cpuctx->sched_cb_usage)
3412 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3413}
3414
e48c1788 3415
ba532500
YZ
3416void perf_sched_cb_inc(struct pmu *pmu)
3417{
e48c1788
PZ
3418 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3419
3420 if (!cpuctx->sched_cb_usage++)
3421 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3422
ba532500
YZ
3423 this_cpu_inc(perf_sched_cb_usages);
3424}
3425
3426/*
3427 * This function provides the context switch callback to the lower code
3428 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3429 *
3430 * This callback is relevant even to per-cpu events; for example multi event
3431 * PEBS requires this to provide PID/TID information. This requires we flush
3432 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3433 */
3434static void perf_pmu_sched_task(struct task_struct *prev,
3435 struct task_struct *next,
3436 bool sched_in)
3437{
3438 struct perf_cpu_context *cpuctx;
3439 struct pmu *pmu;
ba532500
YZ
3440
3441 if (prev == next)
3442 return;
3443
e48c1788 3444 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3445 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3446
e48c1788
PZ
3447 if (WARN_ON_ONCE(!pmu->sched_task))
3448 continue;
ba532500 3449
e48c1788
PZ
3450 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3451 perf_pmu_disable(pmu);
ba532500 3452
e48c1788 3453 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3454
e48c1788
PZ
3455 perf_pmu_enable(pmu);
3456 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3457 }
ba532500
YZ
3458}
3459
45ac1403
AH
3460static void perf_event_switch(struct task_struct *task,
3461 struct task_struct *next_prev, bool sched_in);
3462
8dc85d54
PZ
3463#define for_each_task_context_nr(ctxn) \
3464 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3465
3466/*
3467 * Called from scheduler to remove the events of the current task,
3468 * with interrupts disabled.
3469 *
3470 * We stop each event and update the event value in event->count.
3471 *
3472 * This does not protect us against NMI, but disable()
3473 * sets the disabled bit in the control field of event _before_
3474 * accessing the event control register. If a NMI hits, then it will
3475 * not restart the event.
3476 */
ab0cce56
JO
3477void __perf_event_task_sched_out(struct task_struct *task,
3478 struct task_struct *next)
8dc85d54
PZ
3479{
3480 int ctxn;
3481
ba532500
YZ
3482 if (__this_cpu_read(perf_sched_cb_usages))
3483 perf_pmu_sched_task(task, next, false);
3484
45ac1403
AH
3485 if (atomic_read(&nr_switch_events))
3486 perf_event_switch(task, next, false);
3487
8dc85d54
PZ
3488 for_each_task_context_nr(ctxn)
3489 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3490
3491 /*
3492 * if cgroup events exist on this CPU, then we need
3493 * to check if we have to switch out PMU state.
3494 * cgroup event are system-wide mode only
3495 */
4a32fea9 3496 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3497 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3498}
3499
5b0311e1
FW
3500/*
3501 * Called with IRQs disabled
3502 */
3503static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3504 enum event_type_t event_type)
3505{
3506 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3507}
3508
6eef8a71 3509static bool perf_less_group_idx(const void *l, const void *r)
0793a61d 3510{
6eef8a71
IR
3511 const struct perf_event *le = l, *re = r;
3512
3513 return le->group_index < re->group_index;
3514}
3515
3516static void swap_ptr(void *l, void *r)
3517{
3518 void **lp = l, **rp = r;
3519
3520 swap(*lp, *rp);
3521}
3522
3523static const struct min_heap_callbacks perf_min_heap = {
3524 .elem_size = sizeof(struct perf_event *),
3525 .less = perf_less_group_idx,
3526 .swp = swap_ptr,
3527};
3528
3529static void __heap_add(struct min_heap *heap, struct perf_event *event)
3530{
3531 struct perf_event **itrs = heap->data;
3532
3533 if (event) {
3534 itrs[heap->nr] = event;
3535 heap->nr++;
3536 }
3537}
3538
836196be
IR
3539static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3540 struct perf_event_groups *groups, int cpu,
6eef8a71
IR
3541 int (*func)(struct perf_event *, void *),
3542 void *data)
3543{
95ed6c70
IR
3544#ifdef CONFIG_CGROUP_PERF
3545 struct cgroup_subsys_state *css = NULL;
3546#endif
6eef8a71
IR
3547 /* Space for per CPU and/or any CPU event iterators. */
3548 struct perf_event *itrs[2];
836196be
IR
3549 struct min_heap event_heap;
3550 struct perf_event **evt;
1cac7b1a 3551 int ret;
8e1a2031 3552
836196be
IR
3553 if (cpuctx) {
3554 event_heap = (struct min_heap){
3555 .data = cpuctx->heap,
3556 .nr = 0,
3557 .size = cpuctx->heap_size,
3558 };
c2283c93
IR
3559
3560 lockdep_assert_held(&cpuctx->ctx.lock);
95ed6c70
IR
3561
3562#ifdef CONFIG_CGROUP_PERF
3563 if (cpuctx->cgrp)
3564 css = &cpuctx->cgrp->css;
3565#endif
836196be
IR
3566 } else {
3567 event_heap = (struct min_heap){
3568 .data = itrs,
3569 .nr = 0,
3570 .size = ARRAY_SIZE(itrs),
3571 };
3572 /* Events not within a CPU context may be on any CPU. */
95ed6c70 3573 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
836196be
IR
3574 }
3575 evt = event_heap.data;
3576
95ed6c70
IR
3577 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3578
3579#ifdef CONFIG_CGROUP_PERF
3580 for (; css; css = css->parent)
3581 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3582#endif
1cac7b1a 3583
6eef8a71 3584 min_heapify_all(&event_heap, &perf_min_heap);
1cac7b1a 3585
6eef8a71 3586 while (event_heap.nr) {
1cac7b1a
PZ
3587 ret = func(*evt, data);
3588 if (ret)
3589 return ret;
3590
3591 *evt = perf_event_groups_next(*evt);
6eef8a71
IR
3592 if (*evt)
3593 min_heapify(&event_heap, 0, &perf_min_heap);
3594 else
3595 min_heap_pop(&event_heap, &perf_min_heap);
8e1a2031 3596 }
0793a61d 3597
1cac7b1a
PZ
3598 return 0;
3599}
3600
ab6f824c 3601static int merge_sched_in(struct perf_event *event, void *data)
1cac7b1a 3602{
2c2366c7
PZ
3603 struct perf_event_context *ctx = event->ctx;
3604 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3605 int *can_add_hw = data;
ab6f824c 3606
1cac7b1a
PZ
3607 if (event->state <= PERF_EVENT_STATE_OFF)
3608 return 0;
3609
3610 if (!event_filter_match(event))
3611 return 0;
3612
2c2366c7
PZ
3613 if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3614 if (!group_sched_in(event, cpuctx, ctx))
ab6f824c 3615 list_add_tail(&event->active_list, get_event_list(event));
6668128a 3616 }
1cac7b1a 3617
ab6f824c
PZ
3618 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3619 if (event->attr.pinned)
3620 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1cac7b1a 3621
2c2366c7
PZ
3622 *can_add_hw = 0;
3623 ctx->rotate_necessary = 1;
3b6f9e5c 3624 }
1cac7b1a
PZ
3625
3626 return 0;
5b0311e1
FW
3627}
3628
3629static void
1cac7b1a
PZ
3630ctx_pinned_sched_in(struct perf_event_context *ctx,
3631 struct perf_cpu_context *cpuctx)
5b0311e1 3632{
2c2366c7 3633 int can_add_hw = 1;
3b6f9e5c 3634
836196be
IR
3635 if (ctx != &cpuctx->ctx)
3636 cpuctx = NULL;
3637
3638 visit_groups_merge(cpuctx, &ctx->pinned_groups,
1cac7b1a 3639 smp_processor_id(),
2c2366c7 3640 merge_sched_in, &can_add_hw);
1cac7b1a 3641}
8e1a2031 3642
1cac7b1a
PZ
3643static void
3644ctx_flexible_sched_in(struct perf_event_context *ctx,
3645 struct perf_cpu_context *cpuctx)
3646{
2c2366c7 3647 int can_add_hw = 1;
0793a61d 3648
836196be
IR
3649 if (ctx != &cpuctx->ctx)
3650 cpuctx = NULL;
3651
3652 visit_groups_merge(cpuctx, &ctx->flexible_groups,
1cac7b1a 3653 smp_processor_id(),
2c2366c7 3654 merge_sched_in, &can_add_hw);
5b0311e1
FW
3655}
3656
3657static void
3658ctx_sched_in(struct perf_event_context *ctx,
3659 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3660 enum event_type_t event_type,
3661 struct task_struct *task)
5b0311e1 3662{
db24d33e 3663 int is_active = ctx->is_active;
c994d613
PZ
3664 u64 now;
3665
3666 lockdep_assert_held(&ctx->lock);
e5d1367f 3667
5b0311e1 3668 if (likely(!ctx->nr_events))
facc4307 3669 return;
5b0311e1 3670
3cbaa590 3671 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3672 if (ctx->task) {
3673 if (!is_active)
3674 cpuctx->task_ctx = ctx;
3675 else
3676 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3677 }
3678
3cbaa590
PZ
3679 is_active ^= ctx->is_active; /* changed bits */
3680
3681 if (is_active & EVENT_TIME) {
3682 /* start ctx time */
3683 now = perf_clock();
3684 ctx->timestamp = now;
3685 perf_cgroup_set_timestamp(task, ctx);
3686 }
3687
5b0311e1
FW
3688 /*
3689 * First go through the list and put on any pinned groups
3690 * in order to give them the best chance of going on.
3691 */
3cbaa590 3692 if (is_active & EVENT_PINNED)
6e37738a 3693 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3694
3695 /* Then walk through the lower prio flexible groups */
3cbaa590 3696 if (is_active & EVENT_FLEXIBLE)
6e37738a 3697 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3698}
3699
329c0e01 3700static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3701 enum event_type_t event_type,
3702 struct task_struct *task)
329c0e01
FW
3703{
3704 struct perf_event_context *ctx = &cpuctx->ctx;
3705
e5d1367f 3706 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3707}
3708
e5d1367f
SE
3709static void perf_event_context_sched_in(struct perf_event_context *ctx,
3710 struct task_struct *task)
235c7fc7 3711{
108b02cf 3712 struct perf_cpu_context *cpuctx;
235c7fc7 3713
108b02cf 3714 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3715 if (cpuctx->task_ctx == ctx)
3716 return;
3717
facc4307 3718 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3719 /*
3720 * We must check ctx->nr_events while holding ctx->lock, such
3721 * that we serialize against perf_install_in_context().
3722 */
3723 if (!ctx->nr_events)
3724 goto unlock;
3725
1b9a644f 3726 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3727 /*
3728 * We want to keep the following priority order:
3729 * cpu pinned (that don't need to move), task pinned,
3730 * cpu flexible, task flexible.
fe45bafb
AS
3731 *
3732 * However, if task's ctx is not carrying any pinned
3733 * events, no need to flip the cpuctx's events around.
329c0e01 3734 */
8e1a2031 3735 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
fe45bafb 3736 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3737 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3738 perf_pmu_enable(ctx->pmu);
fdccc3fb 3739
3740unlock:
facc4307 3741 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3742}
3743
8dc85d54
PZ
3744/*
3745 * Called from scheduler to add the events of the current task
3746 * with interrupts disabled.
3747 *
3748 * We restore the event value and then enable it.
3749 *
3750 * This does not protect us against NMI, but enable()
3751 * sets the enabled bit in the control field of event _before_
3752 * accessing the event control register. If a NMI hits, then it will
3753 * keep the event running.
3754 */
ab0cce56
JO
3755void __perf_event_task_sched_in(struct task_struct *prev,
3756 struct task_struct *task)
8dc85d54
PZ
3757{
3758 struct perf_event_context *ctx;
3759 int ctxn;
3760
7e41d177
PZ
3761 /*
3762 * If cgroup events exist on this CPU, then we need to check if we have
3763 * to switch in PMU state; cgroup event are system-wide mode only.
3764 *
3765 * Since cgroup events are CPU events, we must schedule these in before
3766 * we schedule in the task events.
3767 */
3768 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3769 perf_cgroup_sched_in(prev, task);
3770
8dc85d54
PZ
3771 for_each_task_context_nr(ctxn) {
3772 ctx = task->perf_event_ctxp[ctxn];
3773 if (likely(!ctx))
3774 continue;
3775
e5d1367f 3776 perf_event_context_sched_in(ctx, task);
8dc85d54 3777 }
d010b332 3778
45ac1403
AH
3779 if (atomic_read(&nr_switch_events))
3780 perf_event_switch(task, prev, true);
3781
ba532500
YZ
3782 if (__this_cpu_read(perf_sched_cb_usages))
3783 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3784}
3785
abd50713
PZ
3786static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3787{
3788 u64 frequency = event->attr.sample_freq;
3789 u64 sec = NSEC_PER_SEC;
3790 u64 divisor, dividend;
3791
3792 int count_fls, nsec_fls, frequency_fls, sec_fls;
3793
3794 count_fls = fls64(count);
3795 nsec_fls = fls64(nsec);
3796 frequency_fls = fls64(frequency);
3797 sec_fls = 30;
3798
3799 /*
3800 * We got @count in @nsec, with a target of sample_freq HZ
3801 * the target period becomes:
3802 *
3803 * @count * 10^9
3804 * period = -------------------
3805 * @nsec * sample_freq
3806 *
3807 */
3808
3809 /*
3810 * Reduce accuracy by one bit such that @a and @b converge
3811 * to a similar magnitude.
3812 */
fe4b04fa 3813#define REDUCE_FLS(a, b) \
abd50713
PZ
3814do { \
3815 if (a##_fls > b##_fls) { \
3816 a >>= 1; \
3817 a##_fls--; \
3818 } else { \
3819 b >>= 1; \
3820 b##_fls--; \
3821 } \
3822} while (0)
3823
3824 /*
3825 * Reduce accuracy until either term fits in a u64, then proceed with
3826 * the other, so that finally we can do a u64/u64 division.
3827 */
3828 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3829 REDUCE_FLS(nsec, frequency);
3830 REDUCE_FLS(sec, count);
3831 }
3832
3833 if (count_fls + sec_fls > 64) {
3834 divisor = nsec * frequency;
3835
3836 while (count_fls + sec_fls > 64) {
3837 REDUCE_FLS(count, sec);
3838 divisor >>= 1;
3839 }
3840
3841 dividend = count * sec;
3842 } else {
3843 dividend = count * sec;
3844
3845 while (nsec_fls + frequency_fls > 64) {
3846 REDUCE_FLS(nsec, frequency);
3847 dividend >>= 1;
3848 }
3849
3850 divisor = nsec * frequency;
3851 }
3852
f6ab91ad
PZ
3853 if (!divisor)
3854 return dividend;
3855
abd50713
PZ
3856 return div64_u64(dividend, divisor);
3857}
3858
e050e3f0
SE
3859static DEFINE_PER_CPU(int, perf_throttled_count);
3860static DEFINE_PER_CPU(u64, perf_throttled_seq);
3861
f39d47ff 3862static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3863{
cdd6c482 3864 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3865 s64 period, sample_period;
bd2b5b12
PZ
3866 s64 delta;
3867
abd50713 3868 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3869
3870 delta = (s64)(period - hwc->sample_period);
3871 delta = (delta + 7) / 8; /* low pass filter */
3872
3873 sample_period = hwc->sample_period + delta;
3874
3875 if (!sample_period)
3876 sample_period = 1;
3877
bd2b5b12 3878 hwc->sample_period = sample_period;
abd50713 3879
e7850595 3880 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3881 if (disable)
3882 event->pmu->stop(event, PERF_EF_UPDATE);
3883
e7850595 3884 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3885
3886 if (disable)
3887 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3888 }
bd2b5b12
PZ
3889}
3890
e050e3f0
SE
3891/*
3892 * combine freq adjustment with unthrottling to avoid two passes over the
3893 * events. At the same time, make sure, having freq events does not change
3894 * the rate of unthrottling as that would introduce bias.
3895 */
3896static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3897 int needs_unthr)
60db5e09 3898{
cdd6c482
IM
3899 struct perf_event *event;
3900 struct hw_perf_event *hwc;
e050e3f0 3901 u64 now, period = TICK_NSEC;
abd50713 3902 s64 delta;
60db5e09 3903
e050e3f0
SE
3904 /*
3905 * only need to iterate over all events iff:
3906 * - context have events in frequency mode (needs freq adjust)
3907 * - there are events to unthrottle on this cpu
3908 */
3909 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3910 return;
3911
e050e3f0 3912 raw_spin_lock(&ctx->lock);
f39d47ff 3913 perf_pmu_disable(ctx->pmu);
e050e3f0 3914
03541f8b 3915 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3916 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3917 continue;
3918
5632ab12 3919 if (!event_filter_match(event))
5d27c23d
PZ
3920 continue;
3921
44377277
AS
3922 perf_pmu_disable(event->pmu);
3923
cdd6c482 3924 hwc = &event->hw;
6a24ed6c 3925
ae23bff1 3926 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3927 hwc->interrupts = 0;
cdd6c482 3928 perf_log_throttle(event, 1);
a4eaf7f1 3929 event->pmu->start(event, 0);
a78ac325
PZ
3930 }
3931
cdd6c482 3932 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3933 goto next;
60db5e09 3934
e050e3f0
SE
3935 /*
3936 * stop the event and update event->count
3937 */
3938 event->pmu->stop(event, PERF_EF_UPDATE);
3939
e7850595 3940 now = local64_read(&event->count);
abd50713
PZ
3941 delta = now - hwc->freq_count_stamp;
3942 hwc->freq_count_stamp = now;
60db5e09 3943
e050e3f0
SE
3944 /*
3945 * restart the event
3946 * reload only if value has changed
f39d47ff
SE
3947 * we have stopped the event so tell that
3948 * to perf_adjust_period() to avoid stopping it
3949 * twice.
e050e3f0 3950 */
abd50713 3951 if (delta > 0)
f39d47ff 3952 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3953
3954 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3955 next:
3956 perf_pmu_enable(event->pmu);
60db5e09 3957 }
e050e3f0 3958
f39d47ff 3959 perf_pmu_enable(ctx->pmu);
e050e3f0 3960 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3961}
3962
235c7fc7 3963/*
8703a7cf 3964 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 3965 */
8703a7cf 3966static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 3967{
dddd3379
TG
3968 /*
3969 * Rotate the first entry last of non-pinned groups. Rotation might be
3970 * disabled by the inheritance code.
3971 */
8703a7cf
PZ
3972 if (ctx->rotate_disable)
3973 return;
8e1a2031 3974
8703a7cf
PZ
3975 perf_event_groups_delete(&ctx->flexible_groups, event);
3976 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
3977}
3978
7fa343b7 3979/* pick an event from the flexible_groups to rotate */
8d5bce0c 3980static inline struct perf_event *
7fa343b7 3981ctx_event_to_rotate(struct perf_event_context *ctx)
235c7fc7 3982{
7fa343b7
SL
3983 struct perf_event *event;
3984
3985 /* pick the first active flexible event */
3986 event = list_first_entry_or_null(&ctx->flexible_active,
3987 struct perf_event, active_list);
3988
3989 /* if no active flexible event, pick the first event */
3990 if (!event) {
3991 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3992 typeof(*event), group_node);
3993 }
3994
90c91dfb
PZ
3995 /*
3996 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
3997 * finds there are unschedulable events, it will set it again.
3998 */
3999 ctx->rotate_necessary = 0;
4000
7fa343b7 4001 return event;
8d5bce0c
PZ
4002}
4003
4004static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4005{
4006 struct perf_event *cpu_event = NULL, *task_event = NULL;
fd7d5517
IR
4007 struct perf_event_context *task_ctx = NULL;
4008 int cpu_rotate, task_rotate;
8d5bce0c
PZ
4009
4010 /*
4011 * Since we run this from IRQ context, nobody can install new
4012 * events, thus the event count values are stable.
4013 */
7fc23a53 4014
fd7d5517
IR
4015 cpu_rotate = cpuctx->ctx.rotate_necessary;
4016 task_ctx = cpuctx->task_ctx;
4017 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
9717e6cd 4018
8d5bce0c
PZ
4019 if (!(cpu_rotate || task_rotate))
4020 return false;
0f5a2601 4021
facc4307 4022 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 4023 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 4024
8d5bce0c 4025 if (task_rotate)
7fa343b7 4026 task_event = ctx_event_to_rotate(task_ctx);
8d5bce0c 4027 if (cpu_rotate)
7fa343b7 4028 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
8703a7cf 4029
8d5bce0c
PZ
4030 /*
4031 * As per the order given at ctx_resched() first 'pop' task flexible
4032 * and then, if needed CPU flexible.
4033 */
fd7d5517
IR
4034 if (task_event || (task_ctx && cpu_event))
4035 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
8d5bce0c
PZ
4036 if (cpu_event)
4037 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
0793a61d 4038
8d5bce0c 4039 if (task_event)
fd7d5517 4040 rotate_ctx(task_ctx, task_event);
8d5bce0c
PZ
4041 if (cpu_event)
4042 rotate_ctx(&cpuctx->ctx, cpu_event);
235c7fc7 4043
fd7d5517 4044 perf_event_sched_in(cpuctx, task_ctx, current);
235c7fc7 4045
0f5a2601
PZ
4046 perf_pmu_enable(cpuctx->ctx.pmu);
4047 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 4048
8d5bce0c 4049 return true;
e9d2b064
PZ
4050}
4051
4052void perf_event_task_tick(void)
4053{
2fde4f94
MR
4054 struct list_head *head = this_cpu_ptr(&active_ctx_list);
4055 struct perf_event_context *ctx, *tmp;
e050e3f0 4056 int throttled;
b5ab4cd5 4057
16444645 4058 lockdep_assert_irqs_disabled();
e9d2b064 4059
e050e3f0
SE
4060 __this_cpu_inc(perf_throttled_seq);
4061 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 4062 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 4063
2fde4f94 4064 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 4065 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
4066}
4067
889ff015
FW
4068static int event_enable_on_exec(struct perf_event *event,
4069 struct perf_event_context *ctx)
4070{
4071 if (!event->attr.enable_on_exec)
4072 return 0;
4073
4074 event->attr.enable_on_exec = 0;
4075 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4076 return 0;
4077
0d3d73aa 4078 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
4079
4080 return 1;
4081}
4082
57e7986e 4083/*
cdd6c482 4084 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
4085 * This expects task == current.
4086 */
c1274499 4087static void perf_event_enable_on_exec(int ctxn)
57e7986e 4088{
c1274499 4089 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 4090 enum event_type_t event_type = 0;
3e349507 4091 struct perf_cpu_context *cpuctx;
cdd6c482 4092 struct perf_event *event;
57e7986e
PM
4093 unsigned long flags;
4094 int enabled = 0;
4095
4096 local_irq_save(flags);
c1274499 4097 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 4098 if (!ctx || !ctx->nr_events)
57e7986e
PM
4099 goto out;
4100
3e349507
PZ
4101 cpuctx = __get_cpu_context(ctx);
4102 perf_ctx_lock(cpuctx, ctx);
7fce2509 4103 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 4104 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 4105 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
4106 event_type |= get_event_type(event);
4107 }
57e7986e
PM
4108
4109 /*
3e349507 4110 * Unclone and reschedule this context if we enabled any event.
57e7986e 4111 */
3e349507 4112 if (enabled) {
211de6eb 4113 clone_ctx = unclone_ctx(ctx);
487f05e1 4114 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
4115 } else {
4116 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
4117 }
4118 perf_ctx_unlock(cpuctx, ctx);
57e7986e 4119
9ed6060d 4120out:
57e7986e 4121 local_irq_restore(flags);
211de6eb
PZ
4122
4123 if (clone_ctx)
4124 put_ctx(clone_ctx);
57e7986e
PM
4125}
4126
0492d4c5
PZ
4127struct perf_read_data {
4128 struct perf_event *event;
4129 bool group;
7d88962e 4130 int ret;
0492d4c5
PZ
4131};
4132
451d24d1 4133static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 4134{
d6a2f903
DCC
4135 u16 local_pkg, event_pkg;
4136
4137 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
4138 int local_cpu = smp_processor_id();
4139
4140 event_pkg = topology_physical_package_id(event_cpu);
4141 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
4142
4143 if (event_pkg == local_pkg)
4144 return local_cpu;
4145 }
4146
4147 return event_cpu;
4148}
4149
0793a61d 4150/*
cdd6c482 4151 * Cross CPU call to read the hardware event
0793a61d 4152 */
cdd6c482 4153static void __perf_event_read(void *info)
0793a61d 4154{
0492d4c5
PZ
4155 struct perf_read_data *data = info;
4156 struct perf_event *sub, *event = data->event;
cdd6c482 4157 struct perf_event_context *ctx = event->ctx;
108b02cf 4158 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 4159 struct pmu *pmu = event->pmu;
621a01ea 4160
e1ac3614
PM
4161 /*
4162 * If this is a task context, we need to check whether it is
4163 * the current task context of this cpu. If not it has been
4164 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
4165 * event->count would have been updated to a recent sample
4166 * when the event was scheduled out.
e1ac3614
PM
4167 */
4168 if (ctx->task && cpuctx->task_ctx != ctx)
4169 return;
4170
e625cce1 4171 raw_spin_lock(&ctx->lock);
0c1cbc18 4172 if (ctx->is_active & EVENT_TIME) {
542e72fc 4173 update_context_time(ctx);
e5d1367f
SE
4174 update_cgrp_time_from_event(event);
4175 }
0492d4c5 4176
0d3d73aa
PZ
4177 perf_event_update_time(event);
4178 if (data->group)
4179 perf_event_update_sibling_time(event);
0c1cbc18 4180
4a00c16e
SB
4181 if (event->state != PERF_EVENT_STATE_ACTIVE)
4182 goto unlock;
0492d4c5 4183
4a00c16e
SB
4184 if (!data->group) {
4185 pmu->read(event);
4186 data->ret = 0;
0492d4c5 4187 goto unlock;
4a00c16e
SB
4188 }
4189
4190 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4191
4192 pmu->read(event);
0492d4c5 4193
edb39592 4194 for_each_sibling_event(sub, event) {
4a00c16e
SB
4195 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4196 /*
4197 * Use sibling's PMU rather than @event's since
4198 * sibling could be on different (eg: software) PMU.
4199 */
0492d4c5 4200 sub->pmu->read(sub);
4a00c16e 4201 }
0492d4c5 4202 }
4a00c16e
SB
4203
4204 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
4205
4206unlock:
e625cce1 4207 raw_spin_unlock(&ctx->lock);
0793a61d
TG
4208}
4209
b5e58793
PZ
4210static inline u64 perf_event_count(struct perf_event *event)
4211{
c39a0e2c 4212 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
4213}
4214
ffe8690c
KX
4215/*
4216 * NMI-safe method to read a local event, that is an event that
4217 * is:
4218 * - either for the current task, or for this CPU
4219 * - does not have inherit set, for inherited task events
4220 * will not be local and we cannot read them atomically
4221 * - must not have a pmu::count method
4222 */
7d9285e8
YS
4223int perf_event_read_local(struct perf_event *event, u64 *value,
4224 u64 *enabled, u64 *running)
ffe8690c
KX
4225{
4226 unsigned long flags;
f91840a3 4227 int ret = 0;
ffe8690c
KX
4228
4229 /*
4230 * Disabling interrupts avoids all counter scheduling (context
4231 * switches, timer based rotation and IPIs).
4232 */
4233 local_irq_save(flags);
4234
ffe8690c
KX
4235 /*
4236 * It must not be an event with inherit set, we cannot read
4237 * all child counters from atomic context.
4238 */
f91840a3
AS
4239 if (event->attr.inherit) {
4240 ret = -EOPNOTSUPP;
4241 goto out;
4242 }
ffe8690c 4243
f91840a3
AS
4244 /* If this is a per-task event, it must be for current */
4245 if ((event->attach_state & PERF_ATTACH_TASK) &&
4246 event->hw.target != current) {
4247 ret = -EINVAL;
4248 goto out;
4249 }
4250
4251 /* If this is a per-CPU event, it must be for this CPU */
4252 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4253 event->cpu != smp_processor_id()) {
4254 ret = -EINVAL;
4255 goto out;
4256 }
ffe8690c 4257
befb1b3c
RC
4258 /* If this is a pinned event it must be running on this CPU */
4259 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4260 ret = -EBUSY;
4261 goto out;
4262 }
4263
ffe8690c
KX
4264 /*
4265 * If the event is currently on this CPU, its either a per-task event,
4266 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4267 * oncpu == -1).
4268 */
4269 if (event->oncpu == smp_processor_id())
4270 event->pmu->read(event);
4271
f91840a3 4272 *value = local64_read(&event->count);
0d3d73aa
PZ
4273 if (enabled || running) {
4274 u64 now = event->shadow_ctx_time + perf_clock();
4275 u64 __enabled, __running;
4276
4277 __perf_update_times(event, now, &__enabled, &__running);
4278 if (enabled)
4279 *enabled = __enabled;
4280 if (running)
4281 *running = __running;
4282 }
f91840a3 4283out:
ffe8690c
KX
4284 local_irq_restore(flags);
4285
f91840a3 4286 return ret;
ffe8690c
KX
4287}
4288
7d88962e 4289static int perf_event_read(struct perf_event *event, bool group)
0793a61d 4290{
0c1cbc18 4291 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 4292 int event_cpu, ret = 0;
7d88962e 4293
0793a61d 4294 /*
cdd6c482
IM
4295 * If event is enabled and currently active on a CPU, update the
4296 * value in the event structure:
0793a61d 4297 */
0c1cbc18
PZ
4298again:
4299 if (state == PERF_EVENT_STATE_ACTIVE) {
4300 struct perf_read_data data;
4301
4302 /*
4303 * Orders the ->state and ->oncpu loads such that if we see
4304 * ACTIVE we must also see the right ->oncpu.
4305 *
4306 * Matches the smp_wmb() from event_sched_in().
4307 */
4308 smp_rmb();
d6a2f903 4309
451d24d1
PZ
4310 event_cpu = READ_ONCE(event->oncpu);
4311 if ((unsigned)event_cpu >= nr_cpu_ids)
4312 return 0;
4313
0c1cbc18
PZ
4314 data = (struct perf_read_data){
4315 .event = event,
4316 .group = group,
4317 .ret = 0,
4318 };
4319
451d24d1
PZ
4320 preempt_disable();
4321 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4322
58763148
PZ
4323 /*
4324 * Purposely ignore the smp_call_function_single() return
4325 * value.
4326 *
451d24d1 4327 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4328 * scheduled out and that will have updated the event count.
4329 *
4330 * Therefore, either way, we'll have an up-to-date event count
4331 * after this.
4332 */
451d24d1
PZ
4333 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4334 preempt_enable();
58763148 4335 ret = data.ret;
0c1cbc18
PZ
4336
4337 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4338 struct perf_event_context *ctx = event->ctx;
4339 unsigned long flags;
4340
e625cce1 4341 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4342 state = event->state;
4343 if (state != PERF_EVENT_STATE_INACTIVE) {
4344 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4345 goto again;
4346 }
4347
c530ccd9 4348 /*
0c1cbc18
PZ
4349 * May read while context is not active (e.g., thread is
4350 * blocked), in that case we cannot update context time
c530ccd9 4351 */
0c1cbc18 4352 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4353 update_context_time(ctx);
e5d1367f
SE
4354 update_cgrp_time_from_event(event);
4355 }
0c1cbc18 4356
0d3d73aa 4357 perf_event_update_time(event);
0492d4c5 4358 if (group)
0d3d73aa 4359 perf_event_update_sibling_time(event);
e625cce1 4360 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4361 }
7d88962e
SB
4362
4363 return ret;
0793a61d
TG
4364}
4365
a63eaf34 4366/*
cdd6c482 4367 * Initialize the perf_event context in a task_struct:
a63eaf34 4368 */
eb184479 4369static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4370{
e625cce1 4371 raw_spin_lock_init(&ctx->lock);
a63eaf34 4372 mutex_init(&ctx->mutex);
2fde4f94 4373 INIT_LIST_HEAD(&ctx->active_ctx_list);
8e1a2031
AB
4374 perf_event_groups_init(&ctx->pinned_groups);
4375 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4376 INIT_LIST_HEAD(&ctx->event_list);
6668128a
PZ
4377 INIT_LIST_HEAD(&ctx->pinned_active);
4378 INIT_LIST_HEAD(&ctx->flexible_active);
8c94abbb 4379 refcount_set(&ctx->refcount, 1);
eb184479
PZ
4380}
4381
4382static struct perf_event_context *
4383alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4384{
4385 struct perf_event_context *ctx;
4386
4387 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4388 if (!ctx)
4389 return NULL;
4390
4391 __perf_event_init_context(ctx);
7b3c92b8
MWO
4392 if (task)
4393 ctx->task = get_task_struct(task);
eb184479
PZ
4394 ctx->pmu = pmu;
4395
4396 return ctx;
a63eaf34
PM
4397}
4398
2ebd4ffb
MH
4399static struct task_struct *
4400find_lively_task_by_vpid(pid_t vpid)
4401{
4402 struct task_struct *task;
0793a61d
TG
4403
4404 rcu_read_lock();
2ebd4ffb 4405 if (!vpid)
0793a61d
TG
4406 task = current;
4407 else
2ebd4ffb 4408 task = find_task_by_vpid(vpid);
0793a61d
TG
4409 if (task)
4410 get_task_struct(task);
4411 rcu_read_unlock();
4412
4413 if (!task)
4414 return ERR_PTR(-ESRCH);
4415
2ebd4ffb 4416 return task;
2ebd4ffb
MH
4417}
4418
fe4b04fa
PZ
4419/*
4420 * Returns a matching context with refcount and pincount.
4421 */
108b02cf 4422static struct perf_event_context *
4af57ef2
YZ
4423find_get_context(struct pmu *pmu, struct task_struct *task,
4424 struct perf_event *event)
0793a61d 4425{
211de6eb 4426 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4427 struct perf_cpu_context *cpuctx;
4af57ef2 4428 void *task_ctx_data = NULL;
25346b93 4429 unsigned long flags;
8dc85d54 4430 int ctxn, err;
4af57ef2 4431 int cpu = event->cpu;
0793a61d 4432
22a4ec72 4433 if (!task) {
cdd6c482 4434 /* Must be root to operate on a CPU event: */
da97e184
JFG
4435 err = perf_allow_cpu(&event->attr);
4436 if (err)
4437 return ERR_PTR(err);
0793a61d 4438
108b02cf 4439 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 4440 ctx = &cpuctx->ctx;
c93f7669 4441 get_ctx(ctx);
fe4b04fa 4442 ++ctx->pin_count;
0793a61d 4443
0793a61d
TG
4444 return ctx;
4445 }
4446
8dc85d54
PZ
4447 err = -EINVAL;
4448 ctxn = pmu->task_ctx_nr;
4449 if (ctxn < 0)
4450 goto errout;
4451
4af57ef2
YZ
4452 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4453 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4454 if (!task_ctx_data) {
4455 err = -ENOMEM;
4456 goto errout;
4457 }
4458 }
4459
9ed6060d 4460retry:
8dc85d54 4461 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 4462 if (ctx) {
211de6eb 4463 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4464 ++ctx->pin_count;
4af57ef2
YZ
4465
4466 if (task_ctx_data && !ctx->task_ctx_data) {
4467 ctx->task_ctx_data = task_ctx_data;
4468 task_ctx_data = NULL;
4469 }
e625cce1 4470 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4471
4472 if (clone_ctx)
4473 put_ctx(clone_ctx);
9137fb28 4474 } else {
eb184479 4475 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
4476 err = -ENOMEM;
4477 if (!ctx)
4478 goto errout;
eb184479 4479
4af57ef2
YZ
4480 if (task_ctx_data) {
4481 ctx->task_ctx_data = task_ctx_data;
4482 task_ctx_data = NULL;
4483 }
4484
dbe08d82
ON
4485 err = 0;
4486 mutex_lock(&task->perf_event_mutex);
4487 /*
4488 * If it has already passed perf_event_exit_task().
4489 * we must see PF_EXITING, it takes this mutex too.
4490 */
4491 if (task->flags & PF_EXITING)
4492 err = -ESRCH;
4493 else if (task->perf_event_ctxp[ctxn])
4494 err = -EAGAIN;
fe4b04fa 4495 else {
9137fb28 4496 get_ctx(ctx);
fe4b04fa 4497 ++ctx->pin_count;
dbe08d82 4498 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 4499 }
dbe08d82
ON
4500 mutex_unlock(&task->perf_event_mutex);
4501
4502 if (unlikely(err)) {
9137fb28 4503 put_ctx(ctx);
dbe08d82
ON
4504
4505 if (err == -EAGAIN)
4506 goto retry;
4507 goto errout;
a63eaf34
PM
4508 }
4509 }
4510
4af57ef2 4511 kfree(task_ctx_data);
0793a61d 4512 return ctx;
c93f7669 4513
9ed6060d 4514errout:
4af57ef2 4515 kfree(task_ctx_data);
c93f7669 4516 return ERR_PTR(err);
0793a61d
TG
4517}
4518
6fb2915d 4519static void perf_event_free_filter(struct perf_event *event);
2541517c 4520static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 4521
cdd6c482 4522static void free_event_rcu(struct rcu_head *head)
592903cd 4523{
cdd6c482 4524 struct perf_event *event;
592903cd 4525
cdd6c482
IM
4526 event = container_of(head, struct perf_event, rcu_head);
4527 if (event->ns)
4528 put_pid_ns(event->ns);
6fb2915d 4529 perf_event_free_filter(event);
cdd6c482 4530 kfree(event);
592903cd
PZ
4531}
4532
b69cf536 4533static void ring_buffer_attach(struct perf_event *event,
56de4e8f 4534 struct perf_buffer *rb);
925d519a 4535
f2fb6bef
KL
4536static void detach_sb_event(struct perf_event *event)
4537{
4538 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4539
4540 raw_spin_lock(&pel->lock);
4541 list_del_rcu(&event->sb_list);
4542 raw_spin_unlock(&pel->lock);
4543}
4544
a4f144eb 4545static bool is_sb_event(struct perf_event *event)
f2fb6bef 4546{
a4f144eb
DCC
4547 struct perf_event_attr *attr = &event->attr;
4548
f2fb6bef 4549 if (event->parent)
a4f144eb 4550 return false;
f2fb6bef
KL
4551
4552 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4553 return false;
f2fb6bef 4554
a4f144eb
DCC
4555 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4556 attr->comm || attr->comm_exec ||
76193a94 4557 attr->task || attr->ksymbol ||
21038f2b
SL
4558 attr->context_switch ||
4559 attr->bpf_event)
a4f144eb
DCC
4560 return true;
4561 return false;
4562}
4563
4564static void unaccount_pmu_sb_event(struct perf_event *event)
4565{
4566 if (is_sb_event(event))
4567 detach_sb_event(event);
f2fb6bef
KL
4568}
4569
4beb31f3 4570static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4571{
4beb31f3
FW
4572 if (event->parent)
4573 return;
4574
4beb31f3
FW
4575 if (is_cgroup_event(event))
4576 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4577}
925d519a 4578
555e0c1e
FW
4579#ifdef CONFIG_NO_HZ_FULL
4580static DEFINE_SPINLOCK(nr_freq_lock);
4581#endif
4582
4583static void unaccount_freq_event_nohz(void)
4584{
4585#ifdef CONFIG_NO_HZ_FULL
4586 spin_lock(&nr_freq_lock);
4587 if (atomic_dec_and_test(&nr_freq_events))
4588 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4589 spin_unlock(&nr_freq_lock);
4590#endif
4591}
4592
4593static void unaccount_freq_event(void)
4594{
4595 if (tick_nohz_full_enabled())
4596 unaccount_freq_event_nohz();
4597 else
4598 atomic_dec(&nr_freq_events);
4599}
4600
4beb31f3
FW
4601static void unaccount_event(struct perf_event *event)
4602{
25432ae9
PZ
4603 bool dec = false;
4604
4beb31f3
FW
4605 if (event->parent)
4606 return;
4607
4608 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4609 dec = true;
4beb31f3
FW
4610 if (event->attr.mmap || event->attr.mmap_data)
4611 atomic_dec(&nr_mmap_events);
4612 if (event->attr.comm)
4613 atomic_dec(&nr_comm_events);
e4222673
HB
4614 if (event->attr.namespaces)
4615 atomic_dec(&nr_namespaces_events);
96aaab68
NK
4616 if (event->attr.cgroup)
4617 atomic_dec(&nr_cgroup_events);
4beb31f3
FW
4618 if (event->attr.task)
4619 atomic_dec(&nr_task_events);
948b26b6 4620 if (event->attr.freq)
555e0c1e 4621 unaccount_freq_event();
45ac1403 4622 if (event->attr.context_switch) {
25432ae9 4623 dec = true;
45ac1403
AH
4624 atomic_dec(&nr_switch_events);
4625 }
4beb31f3 4626 if (is_cgroup_event(event))
25432ae9 4627 dec = true;
4beb31f3 4628 if (has_branch_stack(event))
25432ae9 4629 dec = true;
76193a94
SL
4630 if (event->attr.ksymbol)
4631 atomic_dec(&nr_ksymbol_events);
6ee52e2a
SL
4632 if (event->attr.bpf_event)
4633 atomic_dec(&nr_bpf_events);
25432ae9 4634
9107c89e
PZ
4635 if (dec) {
4636 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4637 schedule_delayed_work(&perf_sched_work, HZ);
4638 }
4beb31f3
FW
4639
4640 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4641
4642 unaccount_pmu_sb_event(event);
4beb31f3 4643}
925d519a 4644
9107c89e
PZ
4645static void perf_sched_delayed(struct work_struct *work)
4646{
4647 mutex_lock(&perf_sched_mutex);
4648 if (atomic_dec_and_test(&perf_sched_count))
4649 static_branch_disable(&perf_sched_events);
4650 mutex_unlock(&perf_sched_mutex);
4651}
4652
bed5b25a
AS
4653/*
4654 * The following implement mutual exclusion of events on "exclusive" pmus
4655 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4656 * at a time, so we disallow creating events that might conflict, namely:
4657 *
4658 * 1) cpu-wide events in the presence of per-task events,
4659 * 2) per-task events in the presence of cpu-wide events,
4660 * 3) two matching events on the same context.
4661 *
4662 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4663 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4664 */
4665static int exclusive_event_init(struct perf_event *event)
4666{
4667 struct pmu *pmu = event->pmu;
4668
8a58ddae 4669 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4670 return 0;
4671
4672 /*
4673 * Prevent co-existence of per-task and cpu-wide events on the
4674 * same exclusive pmu.
4675 *
4676 * Negative pmu::exclusive_cnt means there are cpu-wide
4677 * events on this "exclusive" pmu, positive means there are
4678 * per-task events.
4679 *
4680 * Since this is called in perf_event_alloc() path, event::ctx
4681 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4682 * to mean "per-task event", because unlike other attach states it
4683 * never gets cleared.
4684 */
4685 if (event->attach_state & PERF_ATTACH_TASK) {
4686 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4687 return -EBUSY;
4688 } else {
4689 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4690 return -EBUSY;
4691 }
4692
4693 return 0;
4694}
4695
4696static void exclusive_event_destroy(struct perf_event *event)
4697{
4698 struct pmu *pmu = event->pmu;
4699
8a58ddae 4700 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4701 return;
4702
4703 /* see comment in exclusive_event_init() */
4704 if (event->attach_state & PERF_ATTACH_TASK)
4705 atomic_dec(&pmu->exclusive_cnt);
4706 else
4707 atomic_inc(&pmu->exclusive_cnt);
4708}
4709
4710static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4711{
3bf6215a 4712 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4713 (e1->cpu == e2->cpu ||
4714 e1->cpu == -1 ||
4715 e2->cpu == -1))
4716 return true;
4717 return false;
4718}
4719
bed5b25a
AS
4720static bool exclusive_event_installable(struct perf_event *event,
4721 struct perf_event_context *ctx)
4722{
4723 struct perf_event *iter_event;
4724 struct pmu *pmu = event->pmu;
4725
8a58ddae
AS
4726 lockdep_assert_held(&ctx->mutex);
4727
4728 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4729 return true;
4730
4731 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4732 if (exclusive_event_match(iter_event, event))
4733 return false;
4734 }
4735
4736 return true;
4737}
4738
375637bc
AS
4739static void perf_addr_filters_splice(struct perf_event *event,
4740 struct list_head *head);
4741
683ede43 4742static void _free_event(struct perf_event *event)
f1600952 4743{
e360adbe 4744 irq_work_sync(&event->pending);
925d519a 4745
4beb31f3 4746 unaccount_event(event);
9ee318a7 4747
da97e184
JFG
4748 security_perf_event_free(event);
4749
76369139 4750 if (event->rb) {
9bb5d40c
PZ
4751 /*
4752 * Can happen when we close an event with re-directed output.
4753 *
4754 * Since we have a 0 refcount, perf_mmap_close() will skip
4755 * over us; possibly making our ring_buffer_put() the last.
4756 */
4757 mutex_lock(&event->mmap_mutex);
b69cf536 4758 ring_buffer_attach(event, NULL);
9bb5d40c 4759 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4760 }
4761
e5d1367f
SE
4762 if (is_cgroup_event(event))
4763 perf_detach_cgroup(event);
4764
a0733e69
PZ
4765 if (!event->parent) {
4766 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4767 put_callchain_buffers();
4768 }
4769
4770 perf_event_free_bpf_prog(event);
375637bc 4771 perf_addr_filters_splice(event, NULL);
c60f83b8 4772 kfree(event->addr_filter_ranges);
a0733e69
PZ
4773
4774 if (event->destroy)
4775 event->destroy(event);
4776
1cf8dfe8
PZ
4777 /*
4778 * Must be after ->destroy(), due to uprobe_perf_close() using
4779 * hw.target.
4780 */
621b6d2e
PB
4781 if (event->hw.target)
4782 put_task_struct(event->hw.target);
4783
1cf8dfe8
PZ
4784 /*
4785 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4786 * all task references must be cleaned up.
4787 */
4788 if (event->ctx)
4789 put_ctx(event->ctx);
4790
62a92c8f
AS
4791 exclusive_event_destroy(event);
4792 module_put(event->pmu->module);
a0733e69
PZ
4793
4794 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4795}
4796
683ede43
PZ
4797/*
4798 * Used to free events which have a known refcount of 1, such as in error paths
4799 * where the event isn't exposed yet and inherited events.
4800 */
4801static void free_event(struct perf_event *event)
0793a61d 4802{
683ede43
PZ
4803 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4804 "unexpected event refcount: %ld; ptr=%p\n",
4805 atomic_long_read(&event->refcount), event)) {
4806 /* leak to avoid use-after-free */
4807 return;
4808 }
0793a61d 4809
683ede43 4810 _free_event(event);
0793a61d
TG
4811}
4812
a66a3052 4813/*
f8697762 4814 * Remove user event from the owner task.
a66a3052 4815 */
f8697762 4816static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4817{
8882135b 4818 struct task_struct *owner;
fb0459d7 4819
8882135b 4820 rcu_read_lock();
8882135b 4821 /*
f47c02c0
PZ
4822 * Matches the smp_store_release() in perf_event_exit_task(). If we
4823 * observe !owner it means the list deletion is complete and we can
4824 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4825 * owner->perf_event_mutex.
4826 */
506458ef 4827 owner = READ_ONCE(event->owner);
8882135b
PZ
4828 if (owner) {
4829 /*
4830 * Since delayed_put_task_struct() also drops the last
4831 * task reference we can safely take a new reference
4832 * while holding the rcu_read_lock().
4833 */
4834 get_task_struct(owner);
4835 }
4836 rcu_read_unlock();
4837
4838 if (owner) {
f63a8daa
PZ
4839 /*
4840 * If we're here through perf_event_exit_task() we're already
4841 * holding ctx->mutex which would be an inversion wrt. the
4842 * normal lock order.
4843 *
4844 * However we can safely take this lock because its the child
4845 * ctx->mutex.
4846 */
4847 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4848
8882135b
PZ
4849 /*
4850 * We have to re-check the event->owner field, if it is cleared
4851 * we raced with perf_event_exit_task(), acquiring the mutex
4852 * ensured they're done, and we can proceed with freeing the
4853 * event.
4854 */
f47c02c0 4855 if (event->owner) {
8882135b 4856 list_del_init(&event->owner_entry);
f47c02c0
PZ
4857 smp_store_release(&event->owner, NULL);
4858 }
8882135b
PZ
4859 mutex_unlock(&owner->perf_event_mutex);
4860 put_task_struct(owner);
4861 }
f8697762
JO
4862}
4863
f8697762
JO
4864static void put_event(struct perf_event *event)
4865{
f8697762
JO
4866 if (!atomic_long_dec_and_test(&event->refcount))
4867 return;
4868
c6e5b732
PZ
4869 _free_event(event);
4870}
4871
4872/*
4873 * Kill an event dead; while event:refcount will preserve the event
4874 * object, it will not preserve its functionality. Once the last 'user'
4875 * gives up the object, we'll destroy the thing.
4876 */
4877int perf_event_release_kernel(struct perf_event *event)
4878{
a4f4bb6d 4879 struct perf_event_context *ctx = event->ctx;
c6e5b732 4880 struct perf_event *child, *tmp;
82d94856 4881 LIST_HEAD(free_list);
c6e5b732 4882
a4f4bb6d
PZ
4883 /*
4884 * If we got here through err_file: fput(event_file); we will not have
4885 * attached to a context yet.
4886 */
4887 if (!ctx) {
4888 WARN_ON_ONCE(event->attach_state &
4889 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4890 goto no_ctx;
4891 }
4892
f8697762
JO
4893 if (!is_kernel_event(event))
4894 perf_remove_from_owner(event);
8882135b 4895
5fa7c8ec 4896 ctx = perf_event_ctx_lock(event);
a83fe28e 4897 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4898 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4899
a69b0ca4 4900 raw_spin_lock_irq(&ctx->lock);
683ede43 4901 /*
d8a8cfc7 4902 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4903 * anymore.
683ede43 4904 *
a69b0ca4
PZ
4905 * Anybody acquiring event->child_mutex after the below loop _must_
4906 * also see this, most importantly inherit_event() which will avoid
4907 * placing more children on the list.
683ede43 4908 *
c6e5b732
PZ
4909 * Thus this guarantees that we will in fact observe and kill _ALL_
4910 * child events.
683ede43 4911 */
a69b0ca4
PZ
4912 event->state = PERF_EVENT_STATE_DEAD;
4913 raw_spin_unlock_irq(&ctx->lock);
4914
4915 perf_event_ctx_unlock(event, ctx);
683ede43 4916
c6e5b732
PZ
4917again:
4918 mutex_lock(&event->child_mutex);
4919 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4920
c6e5b732
PZ
4921 /*
4922 * Cannot change, child events are not migrated, see the
4923 * comment with perf_event_ctx_lock_nested().
4924 */
506458ef 4925 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4926 /*
4927 * Since child_mutex nests inside ctx::mutex, we must jump
4928 * through hoops. We start by grabbing a reference on the ctx.
4929 *
4930 * Since the event cannot get freed while we hold the
4931 * child_mutex, the context must also exist and have a !0
4932 * reference count.
4933 */
4934 get_ctx(ctx);
4935
4936 /*
4937 * Now that we have a ctx ref, we can drop child_mutex, and
4938 * acquire ctx::mutex without fear of it going away. Then we
4939 * can re-acquire child_mutex.
4940 */
4941 mutex_unlock(&event->child_mutex);
4942 mutex_lock(&ctx->mutex);
4943 mutex_lock(&event->child_mutex);
4944
4945 /*
4946 * Now that we hold ctx::mutex and child_mutex, revalidate our
4947 * state, if child is still the first entry, it didn't get freed
4948 * and we can continue doing so.
4949 */
4950 tmp = list_first_entry_or_null(&event->child_list,
4951 struct perf_event, child_list);
4952 if (tmp == child) {
4953 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4954 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4955 /*
4956 * This matches the refcount bump in inherit_event();
4957 * this can't be the last reference.
4958 */
4959 put_event(event);
4960 }
4961
4962 mutex_unlock(&event->child_mutex);
4963 mutex_unlock(&ctx->mutex);
4964 put_ctx(ctx);
4965 goto again;
4966 }
4967 mutex_unlock(&event->child_mutex);
4968
82d94856 4969 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
1cf8dfe8
PZ
4970 void *var = &child->ctx->refcount;
4971
82d94856
PZ
4972 list_del(&child->child_list);
4973 free_event(child);
1cf8dfe8
PZ
4974
4975 /*
4976 * Wake any perf_event_free_task() waiting for this event to be
4977 * freed.
4978 */
4979 smp_mb(); /* pairs with wait_var_event() */
4980 wake_up_var(var);
82d94856
PZ
4981 }
4982
a4f4bb6d
PZ
4983no_ctx:
4984 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4985 return 0;
4986}
4987EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4988
8b10c5e2
PZ
4989/*
4990 * Called when the last reference to the file is gone.
4991 */
a6fa941d
AV
4992static int perf_release(struct inode *inode, struct file *file)
4993{
c6e5b732 4994 perf_event_release_kernel(file->private_data);
a6fa941d 4995 return 0;
fb0459d7 4996}
fb0459d7 4997
ca0dd44c 4998static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4999{
cdd6c482 5000 struct perf_event *child;
e53c0994
PZ
5001 u64 total = 0;
5002
59ed446f
PZ
5003 *enabled = 0;
5004 *running = 0;
5005
6f10581a 5006 mutex_lock(&event->child_mutex);
01add3ea 5007
7d88962e 5008 (void)perf_event_read(event, false);
01add3ea
SB
5009 total += perf_event_count(event);
5010
59ed446f
PZ
5011 *enabled += event->total_time_enabled +
5012 atomic64_read(&event->child_total_time_enabled);
5013 *running += event->total_time_running +
5014 atomic64_read(&event->child_total_time_running);
5015
5016 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 5017 (void)perf_event_read(child, false);
01add3ea 5018 total += perf_event_count(child);
59ed446f
PZ
5019 *enabled += child->total_time_enabled;
5020 *running += child->total_time_running;
5021 }
6f10581a 5022 mutex_unlock(&event->child_mutex);
e53c0994
PZ
5023
5024 return total;
5025}
ca0dd44c
PZ
5026
5027u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5028{
5029 struct perf_event_context *ctx;
5030 u64 count;
5031
5032 ctx = perf_event_ctx_lock(event);
5033 count = __perf_event_read_value(event, enabled, running);
5034 perf_event_ctx_unlock(event, ctx);
5035
5036 return count;
5037}
fb0459d7 5038EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 5039
7d88962e 5040static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 5041 u64 read_format, u64 *values)
3dab77fb 5042{
2aeb1883 5043 struct perf_event_context *ctx = leader->ctx;
fa8c2693 5044 struct perf_event *sub;
2aeb1883 5045 unsigned long flags;
fa8c2693 5046 int n = 1; /* skip @nr */
7d88962e 5047 int ret;
f63a8daa 5048
7d88962e
SB
5049 ret = perf_event_read(leader, true);
5050 if (ret)
5051 return ret;
abf4868b 5052
a9cd8194
PZ
5053 raw_spin_lock_irqsave(&ctx->lock, flags);
5054
fa8c2693
PZ
5055 /*
5056 * Since we co-schedule groups, {enabled,running} times of siblings
5057 * will be identical to those of the leader, so we only publish one
5058 * set.
5059 */
5060 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5061 values[n++] += leader->total_time_enabled +
5062 atomic64_read(&leader->child_total_time_enabled);
5063 }
3dab77fb 5064
fa8c2693
PZ
5065 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5066 values[n++] += leader->total_time_running +
5067 atomic64_read(&leader->child_total_time_running);
5068 }
5069
5070 /*
5071 * Write {count,id} tuples for every sibling.
5072 */
5073 values[n++] += perf_event_count(leader);
abf4868b
PZ
5074 if (read_format & PERF_FORMAT_ID)
5075 values[n++] = primary_event_id(leader);
3dab77fb 5076
edb39592 5077 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
5078 values[n++] += perf_event_count(sub);
5079 if (read_format & PERF_FORMAT_ID)
5080 values[n++] = primary_event_id(sub);
5081 }
7d88962e 5082
2aeb1883 5083 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 5084 return 0;
fa8c2693 5085}
3dab77fb 5086
fa8c2693
PZ
5087static int perf_read_group(struct perf_event *event,
5088 u64 read_format, char __user *buf)
5089{
5090 struct perf_event *leader = event->group_leader, *child;
5091 struct perf_event_context *ctx = leader->ctx;
7d88962e 5092 int ret;
fa8c2693 5093 u64 *values;
3dab77fb 5094
fa8c2693 5095 lockdep_assert_held(&ctx->mutex);
3dab77fb 5096
fa8c2693
PZ
5097 values = kzalloc(event->read_size, GFP_KERNEL);
5098 if (!values)
5099 return -ENOMEM;
3dab77fb 5100
fa8c2693
PZ
5101 values[0] = 1 + leader->nr_siblings;
5102
5103 /*
5104 * By locking the child_mutex of the leader we effectively
5105 * lock the child list of all siblings.. XXX explain how.
5106 */
5107 mutex_lock(&leader->child_mutex);
abf4868b 5108
7d88962e
SB
5109 ret = __perf_read_group_add(leader, read_format, values);
5110 if (ret)
5111 goto unlock;
5112
5113 list_for_each_entry(child, &leader->child_list, child_list) {
5114 ret = __perf_read_group_add(child, read_format, values);
5115 if (ret)
5116 goto unlock;
5117 }
abf4868b 5118
fa8c2693 5119 mutex_unlock(&leader->child_mutex);
abf4868b 5120
7d88962e 5121 ret = event->read_size;
fa8c2693
PZ
5122 if (copy_to_user(buf, values, event->read_size))
5123 ret = -EFAULT;
7d88962e 5124 goto out;
fa8c2693 5125
7d88962e
SB
5126unlock:
5127 mutex_unlock(&leader->child_mutex);
5128out:
fa8c2693 5129 kfree(values);
abf4868b 5130 return ret;
3dab77fb
PZ
5131}
5132
b15f495b 5133static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
5134 u64 read_format, char __user *buf)
5135{
59ed446f 5136 u64 enabled, running;
3dab77fb
PZ
5137 u64 values[4];
5138 int n = 0;
5139
ca0dd44c 5140 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
5141 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5142 values[n++] = enabled;
5143 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5144 values[n++] = running;
3dab77fb 5145 if (read_format & PERF_FORMAT_ID)
cdd6c482 5146 values[n++] = primary_event_id(event);
3dab77fb
PZ
5147
5148 if (copy_to_user(buf, values, n * sizeof(u64)))
5149 return -EFAULT;
5150
5151 return n * sizeof(u64);
5152}
5153
dc633982
JO
5154static bool is_event_hup(struct perf_event *event)
5155{
5156 bool no_children;
5157
a69b0ca4 5158 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
5159 return false;
5160
5161 mutex_lock(&event->child_mutex);
5162 no_children = list_empty(&event->child_list);
5163 mutex_unlock(&event->child_mutex);
5164 return no_children;
5165}
5166
0793a61d 5167/*
cdd6c482 5168 * Read the performance event - simple non blocking version for now
0793a61d
TG
5169 */
5170static ssize_t
b15f495b 5171__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 5172{
cdd6c482 5173 u64 read_format = event->attr.read_format;
3dab77fb 5174 int ret;
0793a61d 5175
3b6f9e5c 5176 /*
788faab7 5177 * Return end-of-file for a read on an event that is in
3b6f9e5c
PM
5178 * error state (i.e. because it was pinned but it couldn't be
5179 * scheduled on to the CPU at some point).
5180 */
cdd6c482 5181 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
5182 return 0;
5183
c320c7b7 5184 if (count < event->read_size)
3dab77fb
PZ
5185 return -ENOSPC;
5186
cdd6c482 5187 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 5188 if (read_format & PERF_FORMAT_GROUP)
b15f495b 5189 ret = perf_read_group(event, read_format, buf);
3dab77fb 5190 else
b15f495b 5191 ret = perf_read_one(event, read_format, buf);
0793a61d 5192
3dab77fb 5193 return ret;
0793a61d
TG
5194}
5195
0793a61d
TG
5196static ssize_t
5197perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5198{
cdd6c482 5199 struct perf_event *event = file->private_data;
f63a8daa
PZ
5200 struct perf_event_context *ctx;
5201 int ret;
0793a61d 5202
da97e184
JFG
5203 ret = security_perf_event_read(event);
5204 if (ret)
5205 return ret;
5206
f63a8daa 5207 ctx = perf_event_ctx_lock(event);
b15f495b 5208 ret = __perf_read(event, buf, count);
f63a8daa
PZ
5209 perf_event_ctx_unlock(event, ctx);
5210
5211 return ret;
0793a61d
TG
5212}
5213
9dd95748 5214static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 5215{
cdd6c482 5216 struct perf_event *event = file->private_data;
56de4e8f 5217 struct perf_buffer *rb;
a9a08845 5218 __poll_t events = EPOLLHUP;
c7138f37 5219
e708d7ad 5220 poll_wait(file, &event->waitq, wait);
179033b3 5221
dc633982 5222 if (is_event_hup(event))
179033b3 5223 return events;
c7138f37 5224
10c6db11 5225 /*
9bb5d40c
PZ
5226 * Pin the event->rb by taking event->mmap_mutex; otherwise
5227 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
5228 */
5229 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
5230 rb = event->rb;
5231 if (rb)
76369139 5232 events = atomic_xchg(&rb->poll, 0);
10c6db11 5233 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
5234 return events;
5235}
5236
f63a8daa 5237static void _perf_event_reset(struct perf_event *event)
6de6a7b9 5238{
7d88962e 5239 (void)perf_event_read(event, false);
e7850595 5240 local64_set(&event->count, 0);
cdd6c482 5241 perf_event_update_userpage(event);
3df5edad
PZ
5242}
5243
52ba4b0b
LX
5244/* Assume it's not an event with inherit set. */
5245u64 perf_event_pause(struct perf_event *event, bool reset)
5246{
5247 struct perf_event_context *ctx;
5248 u64 count;
5249
5250 ctx = perf_event_ctx_lock(event);
5251 WARN_ON_ONCE(event->attr.inherit);
5252 _perf_event_disable(event);
5253 count = local64_read(&event->count);
5254 if (reset)
5255 local64_set(&event->count, 0);
5256 perf_event_ctx_unlock(event, ctx);
5257
5258 return count;
5259}
5260EXPORT_SYMBOL_GPL(perf_event_pause);
5261
c93f7669 5262/*
cdd6c482
IM
5263 * Holding the top-level event's child_mutex means that any
5264 * descendant process that has inherited this event will block
8ba289b8 5265 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 5266 * task existence requirements of perf_event_enable/disable.
c93f7669 5267 */
cdd6c482
IM
5268static void perf_event_for_each_child(struct perf_event *event,
5269 void (*func)(struct perf_event *))
3df5edad 5270{
cdd6c482 5271 struct perf_event *child;
3df5edad 5272
cdd6c482 5273 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 5274
cdd6c482
IM
5275 mutex_lock(&event->child_mutex);
5276 func(event);
5277 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 5278 func(child);
cdd6c482 5279 mutex_unlock(&event->child_mutex);
3df5edad
PZ
5280}
5281
cdd6c482
IM
5282static void perf_event_for_each(struct perf_event *event,
5283 void (*func)(struct perf_event *))
3df5edad 5284{
cdd6c482
IM
5285 struct perf_event_context *ctx = event->ctx;
5286 struct perf_event *sibling;
3df5edad 5287
f63a8daa
PZ
5288 lockdep_assert_held(&ctx->mutex);
5289
cdd6c482 5290 event = event->group_leader;
75f937f2 5291
cdd6c482 5292 perf_event_for_each_child(event, func);
edb39592 5293 for_each_sibling_event(sibling, event)
724b6daa 5294 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
5295}
5296
fae3fde6
PZ
5297static void __perf_event_period(struct perf_event *event,
5298 struct perf_cpu_context *cpuctx,
5299 struct perf_event_context *ctx,
5300 void *info)
c7999c6f 5301{
fae3fde6 5302 u64 value = *((u64 *)info);
c7999c6f 5303 bool active;
08247e31 5304
cdd6c482 5305 if (event->attr.freq) {
cdd6c482 5306 event->attr.sample_freq = value;
08247e31 5307 } else {
cdd6c482
IM
5308 event->attr.sample_period = value;
5309 event->hw.sample_period = value;
08247e31 5310 }
bad7192b
PZ
5311
5312 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5313 if (active) {
5314 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
5315 /*
5316 * We could be throttled; unthrottle now to avoid the tick
5317 * trying to unthrottle while we already re-started the event.
5318 */
5319 if (event->hw.interrupts == MAX_INTERRUPTS) {
5320 event->hw.interrupts = 0;
5321 perf_log_throttle(event, 1);
5322 }
bad7192b
PZ
5323 event->pmu->stop(event, PERF_EF_UPDATE);
5324 }
5325
5326 local64_set(&event->hw.period_left, 0);
5327
5328 if (active) {
5329 event->pmu->start(event, PERF_EF_RELOAD);
5330 perf_pmu_enable(ctx->pmu);
5331 }
c7999c6f
PZ
5332}
5333
81ec3f3c
JO
5334static int perf_event_check_period(struct perf_event *event, u64 value)
5335{
5336 return event->pmu->check_period(event, value);
5337}
5338
3ca270fc 5339static int _perf_event_period(struct perf_event *event, u64 value)
c7999c6f 5340{
c7999c6f
PZ
5341 if (!is_sampling_event(event))
5342 return -EINVAL;
5343
c7999c6f
PZ
5344 if (!value)
5345 return -EINVAL;
5346
5347 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5348 return -EINVAL;
5349
81ec3f3c
JO
5350 if (perf_event_check_period(event, value))
5351 return -EINVAL;
5352
913a90bc
RB
5353 if (!event->attr.freq && (value & (1ULL << 63)))
5354 return -EINVAL;
5355
fae3fde6 5356 event_function_call(event, __perf_event_period, &value);
08247e31 5357
c7999c6f 5358 return 0;
08247e31
PZ
5359}
5360
3ca270fc
LX
5361int perf_event_period(struct perf_event *event, u64 value)
5362{
5363 struct perf_event_context *ctx;
5364 int ret;
5365
5366 ctx = perf_event_ctx_lock(event);
5367 ret = _perf_event_period(event, value);
5368 perf_event_ctx_unlock(event, ctx);
5369
5370 return ret;
5371}
5372EXPORT_SYMBOL_GPL(perf_event_period);
5373
ac9721f3
PZ
5374static const struct file_operations perf_fops;
5375
2903ff01 5376static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 5377{
2903ff01
AV
5378 struct fd f = fdget(fd);
5379 if (!f.file)
5380 return -EBADF;
ac9721f3 5381
2903ff01
AV
5382 if (f.file->f_op != &perf_fops) {
5383 fdput(f);
5384 return -EBADF;
ac9721f3 5385 }
2903ff01
AV
5386 *p = f;
5387 return 0;
ac9721f3
PZ
5388}
5389
5390static int perf_event_set_output(struct perf_event *event,
5391 struct perf_event *output_event);
6fb2915d 5392static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 5393static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
32ff77e8
MC
5394static int perf_copy_attr(struct perf_event_attr __user *uattr,
5395 struct perf_event_attr *attr);
a4be7c27 5396
f63a8daa 5397static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5398{
cdd6c482 5399 void (*func)(struct perf_event *);
3df5edad 5400 u32 flags = arg;
d859e29f
PM
5401
5402 switch (cmd) {
cdd6c482 5403 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5404 func = _perf_event_enable;
d859e29f 5405 break;
cdd6c482 5406 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5407 func = _perf_event_disable;
79f14641 5408 break;
cdd6c482 5409 case PERF_EVENT_IOC_RESET:
f63a8daa 5410 func = _perf_event_reset;
6de6a7b9 5411 break;
3df5edad 5412
cdd6c482 5413 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5414 return _perf_event_refresh(event, arg);
08247e31 5415
cdd6c482 5416 case PERF_EVENT_IOC_PERIOD:
3ca270fc
LX
5417 {
5418 u64 value;
08247e31 5419
3ca270fc
LX
5420 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5421 return -EFAULT;
08247e31 5422
3ca270fc
LX
5423 return _perf_event_period(event, value);
5424 }
cf4957f1
JO
5425 case PERF_EVENT_IOC_ID:
5426 {
5427 u64 id = primary_event_id(event);
5428
5429 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5430 return -EFAULT;
5431 return 0;
5432 }
5433
cdd6c482 5434 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5435 {
ac9721f3 5436 int ret;
ac9721f3 5437 if (arg != -1) {
2903ff01
AV
5438 struct perf_event *output_event;
5439 struct fd output;
5440 ret = perf_fget_light(arg, &output);
5441 if (ret)
5442 return ret;
5443 output_event = output.file->private_data;
5444 ret = perf_event_set_output(event, output_event);
5445 fdput(output);
5446 } else {
5447 ret = perf_event_set_output(event, NULL);
ac9721f3 5448 }
ac9721f3
PZ
5449 return ret;
5450 }
a4be7c27 5451
6fb2915d
LZ
5452 case PERF_EVENT_IOC_SET_FILTER:
5453 return perf_event_set_filter(event, (void __user *)arg);
5454
2541517c
AS
5455 case PERF_EVENT_IOC_SET_BPF:
5456 return perf_event_set_bpf_prog(event, arg);
5457
86e7972f 5458 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
56de4e8f 5459 struct perf_buffer *rb;
86e7972f
WN
5460
5461 rcu_read_lock();
5462 rb = rcu_dereference(event->rb);
5463 if (!rb || !rb->nr_pages) {
5464 rcu_read_unlock();
5465 return -EINVAL;
5466 }
5467 rb_toggle_paused(rb, !!arg);
5468 rcu_read_unlock();
5469 return 0;
5470 }
f371b304
YS
5471
5472 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5473 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5474
5475 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5476 struct perf_event_attr new_attr;
5477 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5478 &new_attr);
5479
5480 if (err)
5481 return err;
5482
5483 return perf_event_modify_attr(event, &new_attr);
5484 }
d859e29f 5485 default:
3df5edad 5486 return -ENOTTY;
d859e29f 5487 }
3df5edad
PZ
5488
5489 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5490 perf_event_for_each(event, func);
3df5edad 5491 else
cdd6c482 5492 perf_event_for_each_child(event, func);
3df5edad
PZ
5493
5494 return 0;
d859e29f
PM
5495}
5496
f63a8daa
PZ
5497static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5498{
5499 struct perf_event *event = file->private_data;
5500 struct perf_event_context *ctx;
5501 long ret;
5502
da97e184
JFG
5503 /* Treat ioctl like writes as it is likely a mutating operation. */
5504 ret = security_perf_event_write(event);
5505 if (ret)
5506 return ret;
5507
f63a8daa
PZ
5508 ctx = perf_event_ctx_lock(event);
5509 ret = _perf_ioctl(event, cmd, arg);
5510 perf_event_ctx_unlock(event, ctx);
5511
5512 return ret;
5513}
5514
b3f20785
PM
5515#ifdef CONFIG_COMPAT
5516static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5517 unsigned long arg)
5518{
5519 switch (_IOC_NR(cmd)) {
5520 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5521 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
5522 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5523 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
5524 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5525 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5526 cmd &= ~IOCSIZE_MASK;
5527 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5528 }
5529 break;
5530 }
5531 return perf_ioctl(file, cmd, arg);
5532}
5533#else
5534# define perf_compat_ioctl NULL
5535#endif
5536
cdd6c482 5537int perf_event_task_enable(void)
771d7cde 5538{
f63a8daa 5539 struct perf_event_context *ctx;
cdd6c482 5540 struct perf_event *event;
771d7cde 5541
cdd6c482 5542 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5543 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5544 ctx = perf_event_ctx_lock(event);
5545 perf_event_for_each_child(event, _perf_event_enable);
5546 perf_event_ctx_unlock(event, ctx);
5547 }
cdd6c482 5548 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5549
5550 return 0;
5551}
5552
cdd6c482 5553int perf_event_task_disable(void)
771d7cde 5554{
f63a8daa 5555 struct perf_event_context *ctx;
cdd6c482 5556 struct perf_event *event;
771d7cde 5557
cdd6c482 5558 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5559 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5560 ctx = perf_event_ctx_lock(event);
5561 perf_event_for_each_child(event, _perf_event_disable);
5562 perf_event_ctx_unlock(event, ctx);
5563 }
cdd6c482 5564 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5565
5566 return 0;
5567}
5568
cdd6c482 5569static int perf_event_index(struct perf_event *event)
194002b2 5570{
a4eaf7f1
PZ
5571 if (event->hw.state & PERF_HES_STOPPED)
5572 return 0;
5573
cdd6c482 5574 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
5575 return 0;
5576
35edc2a5 5577 return event->pmu->event_idx(event);
194002b2
PZ
5578}
5579
c4794295 5580static void calc_timer_values(struct perf_event *event,
e3f3541c 5581 u64 *now,
7f310a5d
EM
5582 u64 *enabled,
5583 u64 *running)
c4794295 5584{
e3f3541c 5585 u64 ctx_time;
c4794295 5586
e3f3541c
PZ
5587 *now = perf_clock();
5588 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 5589 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
5590}
5591
fa731587
PZ
5592static void perf_event_init_userpage(struct perf_event *event)
5593{
5594 struct perf_event_mmap_page *userpg;
56de4e8f 5595 struct perf_buffer *rb;
fa731587
PZ
5596
5597 rcu_read_lock();
5598 rb = rcu_dereference(event->rb);
5599 if (!rb)
5600 goto unlock;
5601
5602 userpg = rb->user_page;
5603
5604 /* Allow new userspace to detect that bit 0 is deprecated */
5605 userpg->cap_bit0_is_deprecated = 1;
5606 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
5607 userpg->data_offset = PAGE_SIZE;
5608 userpg->data_size = perf_data_size(rb);
fa731587
PZ
5609
5610unlock:
5611 rcu_read_unlock();
5612}
5613
c1317ec2
AL
5614void __weak arch_perf_update_userpage(
5615 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
5616{
5617}
5618
38ff667b
PZ
5619/*
5620 * Callers need to ensure there can be no nesting of this function, otherwise
5621 * the seqlock logic goes bad. We can not serialize this because the arch
5622 * code calls this from NMI context.
5623 */
cdd6c482 5624void perf_event_update_userpage(struct perf_event *event)
37d81828 5625{
cdd6c482 5626 struct perf_event_mmap_page *userpg;
56de4e8f 5627 struct perf_buffer *rb;
e3f3541c 5628 u64 enabled, running, now;
38ff667b
PZ
5629
5630 rcu_read_lock();
5ec4c599
PZ
5631 rb = rcu_dereference(event->rb);
5632 if (!rb)
5633 goto unlock;
5634
0d641208
EM
5635 /*
5636 * compute total_time_enabled, total_time_running
5637 * based on snapshot values taken when the event
5638 * was last scheduled in.
5639 *
5640 * we cannot simply called update_context_time()
5641 * because of locking issue as we can be called in
5642 * NMI context
5643 */
e3f3541c 5644 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5645
76369139 5646 userpg = rb->user_page;
7b732a75 5647 /*
9d2dcc8f
MF
5648 * Disable preemption to guarantee consistent time stamps are stored to
5649 * the user page.
7b732a75
PZ
5650 */
5651 preempt_disable();
37d81828 5652 ++userpg->lock;
92f22a38 5653 barrier();
cdd6c482 5654 userpg->index = perf_event_index(event);
b5e58793 5655 userpg->offset = perf_event_count(event);
365a4038 5656 if (userpg->index)
e7850595 5657 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5658
0d641208 5659 userpg->time_enabled = enabled +
cdd6c482 5660 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5661
0d641208 5662 userpg->time_running = running +
cdd6c482 5663 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5664
c1317ec2 5665 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5666
92f22a38 5667 barrier();
37d81828 5668 ++userpg->lock;
7b732a75 5669 preempt_enable();
38ff667b 5670unlock:
7b732a75 5671 rcu_read_unlock();
37d81828 5672}
82975c46 5673EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 5674
9e3ed2d7 5675static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
906010b2 5676{
11bac800 5677 struct perf_event *event = vmf->vma->vm_file->private_data;
56de4e8f 5678 struct perf_buffer *rb;
9e3ed2d7 5679 vm_fault_t ret = VM_FAULT_SIGBUS;
906010b2
PZ
5680
5681 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5682 if (vmf->pgoff == 0)
5683 ret = 0;
5684 return ret;
5685 }
5686
5687 rcu_read_lock();
76369139
FW
5688 rb = rcu_dereference(event->rb);
5689 if (!rb)
906010b2
PZ
5690 goto unlock;
5691
5692 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5693 goto unlock;
5694
76369139 5695 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5696 if (!vmf->page)
5697 goto unlock;
5698
5699 get_page(vmf->page);
11bac800 5700 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5701 vmf->page->index = vmf->pgoff;
5702
5703 ret = 0;
5704unlock:
5705 rcu_read_unlock();
5706
5707 return ret;
5708}
5709
10c6db11 5710static void ring_buffer_attach(struct perf_event *event,
56de4e8f 5711 struct perf_buffer *rb)
10c6db11 5712{
56de4e8f 5713 struct perf_buffer *old_rb = NULL;
10c6db11
PZ
5714 unsigned long flags;
5715
b69cf536
PZ
5716 if (event->rb) {
5717 /*
5718 * Should be impossible, we set this when removing
5719 * event->rb_entry and wait/clear when adding event->rb_entry.
5720 */
5721 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5722
b69cf536 5723 old_rb = event->rb;
b69cf536
PZ
5724 spin_lock_irqsave(&old_rb->event_lock, flags);
5725 list_del_rcu(&event->rb_entry);
5726 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5727
2f993cf0
ON
5728 event->rcu_batches = get_state_synchronize_rcu();
5729 event->rcu_pending = 1;
b69cf536 5730 }
10c6db11 5731
b69cf536 5732 if (rb) {
2f993cf0
ON
5733 if (event->rcu_pending) {
5734 cond_synchronize_rcu(event->rcu_batches);
5735 event->rcu_pending = 0;
5736 }
5737
b69cf536
PZ
5738 spin_lock_irqsave(&rb->event_lock, flags);
5739 list_add_rcu(&event->rb_entry, &rb->event_list);
5740 spin_unlock_irqrestore(&rb->event_lock, flags);
5741 }
5742
767ae086
AS
5743 /*
5744 * Avoid racing with perf_mmap_close(AUX): stop the event
5745 * before swizzling the event::rb pointer; if it's getting
5746 * unmapped, its aux_mmap_count will be 0 and it won't
5747 * restart. See the comment in __perf_pmu_output_stop().
5748 *
5749 * Data will inevitably be lost when set_output is done in
5750 * mid-air, but then again, whoever does it like this is
5751 * not in for the data anyway.
5752 */
5753 if (has_aux(event))
5754 perf_event_stop(event, 0);
5755
b69cf536
PZ
5756 rcu_assign_pointer(event->rb, rb);
5757
5758 if (old_rb) {
5759 ring_buffer_put(old_rb);
5760 /*
5761 * Since we detached before setting the new rb, so that we
5762 * could attach the new rb, we could have missed a wakeup.
5763 * Provide it now.
5764 */
5765 wake_up_all(&event->waitq);
5766 }
10c6db11
PZ
5767}
5768
5769static void ring_buffer_wakeup(struct perf_event *event)
5770{
56de4e8f 5771 struct perf_buffer *rb;
10c6db11
PZ
5772
5773 rcu_read_lock();
5774 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5775 if (rb) {
5776 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5777 wake_up_all(&event->waitq);
5778 }
10c6db11
PZ
5779 rcu_read_unlock();
5780}
5781
56de4e8f 5782struct perf_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5783{
56de4e8f 5784 struct perf_buffer *rb;
7b732a75 5785
ac9721f3 5786 rcu_read_lock();
76369139
FW
5787 rb = rcu_dereference(event->rb);
5788 if (rb) {
fecb8ed2 5789 if (!refcount_inc_not_zero(&rb->refcount))
76369139 5790 rb = NULL;
ac9721f3
PZ
5791 }
5792 rcu_read_unlock();
5793
76369139 5794 return rb;
ac9721f3
PZ
5795}
5796
56de4e8f 5797void ring_buffer_put(struct perf_buffer *rb)
ac9721f3 5798{
fecb8ed2 5799 if (!refcount_dec_and_test(&rb->refcount))
ac9721f3 5800 return;
7b732a75 5801
9bb5d40c 5802 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5803
76369139 5804 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5805}
5806
5807static void perf_mmap_open(struct vm_area_struct *vma)
5808{
cdd6c482 5809 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5810
cdd6c482 5811 atomic_inc(&event->mmap_count);
9bb5d40c 5812 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5813
45bfb2e5
PZ
5814 if (vma->vm_pgoff)
5815 atomic_inc(&event->rb->aux_mmap_count);
5816
1e0fb9ec 5817 if (event->pmu->event_mapped)
bfe33492 5818 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5819}
5820
95ff4ca2
AS
5821static void perf_pmu_output_stop(struct perf_event *event);
5822
9bb5d40c
PZ
5823/*
5824 * A buffer can be mmap()ed multiple times; either directly through the same
5825 * event, or through other events by use of perf_event_set_output().
5826 *
5827 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5828 * the buffer here, where we still have a VM context. This means we need
5829 * to detach all events redirecting to us.
5830 */
7b732a75
PZ
5831static void perf_mmap_close(struct vm_area_struct *vma)
5832{
cdd6c482 5833 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5834
56de4e8f 5835 struct perf_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5836 struct user_struct *mmap_user = rb->mmap_user;
5837 int mmap_locked = rb->mmap_locked;
5838 unsigned long size = perf_data_size(rb);
789f90fc 5839
1e0fb9ec 5840 if (event->pmu->event_unmapped)
bfe33492 5841 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5842
45bfb2e5
PZ
5843 /*
5844 * rb->aux_mmap_count will always drop before rb->mmap_count and
5845 * event->mmap_count, so it is ok to use event->mmap_mutex to
5846 * serialize with perf_mmap here.
5847 */
5848 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5849 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5850 /*
5851 * Stop all AUX events that are writing to this buffer,
5852 * so that we can free its AUX pages and corresponding PMU
5853 * data. Note that after rb::aux_mmap_count dropped to zero,
5854 * they won't start any more (see perf_aux_output_begin()).
5855 */
5856 perf_pmu_output_stop(event);
5857
5858 /* now it's safe to free the pages */
36b3db03
AS
5859 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5860 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
45bfb2e5 5861
95ff4ca2 5862 /* this has to be the last one */
45bfb2e5 5863 rb_free_aux(rb);
ca3bb3d0 5864 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
95ff4ca2 5865
45bfb2e5
PZ
5866 mutex_unlock(&event->mmap_mutex);
5867 }
5868
9bb5d40c
PZ
5869 atomic_dec(&rb->mmap_count);
5870
5871 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5872 goto out_put;
9bb5d40c 5873
b69cf536 5874 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5875 mutex_unlock(&event->mmap_mutex);
5876
5877 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5878 if (atomic_read(&rb->mmap_count))
5879 goto out_put;
ac9721f3 5880
9bb5d40c
PZ
5881 /*
5882 * No other mmap()s, detach from all other events that might redirect
5883 * into the now unreachable buffer. Somewhat complicated by the
5884 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5885 */
5886again:
5887 rcu_read_lock();
5888 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5889 if (!atomic_long_inc_not_zero(&event->refcount)) {
5890 /*
5891 * This event is en-route to free_event() which will
5892 * detach it and remove it from the list.
5893 */
5894 continue;
5895 }
5896 rcu_read_unlock();
789f90fc 5897
9bb5d40c
PZ
5898 mutex_lock(&event->mmap_mutex);
5899 /*
5900 * Check we didn't race with perf_event_set_output() which can
5901 * swizzle the rb from under us while we were waiting to
5902 * acquire mmap_mutex.
5903 *
5904 * If we find a different rb; ignore this event, a next
5905 * iteration will no longer find it on the list. We have to
5906 * still restart the iteration to make sure we're not now
5907 * iterating the wrong list.
5908 */
b69cf536
PZ
5909 if (event->rb == rb)
5910 ring_buffer_attach(event, NULL);
5911
cdd6c482 5912 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5913 put_event(event);
ac9721f3 5914
9bb5d40c
PZ
5915 /*
5916 * Restart the iteration; either we're on the wrong list or
5917 * destroyed its integrity by doing a deletion.
5918 */
5919 goto again;
7b732a75 5920 }
9bb5d40c
PZ
5921 rcu_read_unlock();
5922
5923 /*
5924 * It could be there's still a few 0-ref events on the list; they'll
5925 * get cleaned up by free_event() -- they'll also still have their
5926 * ref on the rb and will free it whenever they are done with it.
5927 *
5928 * Aside from that, this buffer is 'fully' detached and unmapped,
5929 * undo the VM accounting.
5930 */
5931
d44248a4
SL
5932 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5933 &mmap_user->locked_vm);
70f8a3ca 5934 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
9bb5d40c
PZ
5935 free_uid(mmap_user);
5936
b69cf536 5937out_put:
9bb5d40c 5938 ring_buffer_put(rb); /* could be last */
37d81828
PM
5939}
5940
f0f37e2f 5941static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5942 .open = perf_mmap_open,
fca0c116 5943 .close = perf_mmap_close, /* non mergeable */
43a21ea8
PZ
5944 .fault = perf_mmap_fault,
5945 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5946};
5947
5948static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5949{
cdd6c482 5950 struct perf_event *event = file->private_data;
22a4f650 5951 unsigned long user_locked, user_lock_limit;
789f90fc 5952 struct user_struct *user = current_user();
56de4e8f 5953 struct perf_buffer *rb = NULL;
22a4f650 5954 unsigned long locked, lock_limit;
7b732a75
PZ
5955 unsigned long vma_size;
5956 unsigned long nr_pages;
45bfb2e5 5957 long user_extra = 0, extra = 0;
d57e34fd 5958 int ret = 0, flags = 0;
37d81828 5959
c7920614
PZ
5960 /*
5961 * Don't allow mmap() of inherited per-task counters. This would
5962 * create a performance issue due to all children writing to the
76369139 5963 * same rb.
c7920614
PZ
5964 */
5965 if (event->cpu == -1 && event->attr.inherit)
5966 return -EINVAL;
5967
43a21ea8 5968 if (!(vma->vm_flags & VM_SHARED))
37d81828 5969 return -EINVAL;
7b732a75 5970
da97e184
JFG
5971 ret = security_perf_event_read(event);
5972 if (ret)
5973 return ret;
5974
7b732a75 5975 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5976
5977 if (vma->vm_pgoff == 0) {
5978 nr_pages = (vma_size / PAGE_SIZE) - 1;
5979 } else {
5980 /*
5981 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5982 * mapped, all subsequent mappings should have the same size
5983 * and offset. Must be above the normal perf buffer.
5984 */
5985 u64 aux_offset, aux_size;
5986
5987 if (!event->rb)
5988 return -EINVAL;
5989
5990 nr_pages = vma_size / PAGE_SIZE;
5991
5992 mutex_lock(&event->mmap_mutex);
5993 ret = -EINVAL;
5994
5995 rb = event->rb;
5996 if (!rb)
5997 goto aux_unlock;
5998
6aa7de05
MR
5999 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6000 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
6001
6002 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6003 goto aux_unlock;
6004
6005 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6006 goto aux_unlock;
6007
6008 /* already mapped with a different offset */
6009 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6010 goto aux_unlock;
6011
6012 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6013 goto aux_unlock;
6014
6015 /* already mapped with a different size */
6016 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6017 goto aux_unlock;
6018
6019 if (!is_power_of_2(nr_pages))
6020 goto aux_unlock;
6021
6022 if (!atomic_inc_not_zero(&rb->mmap_count))
6023 goto aux_unlock;
6024
6025 if (rb_has_aux(rb)) {
6026 atomic_inc(&rb->aux_mmap_count);
6027 ret = 0;
6028 goto unlock;
6029 }
6030
6031 atomic_set(&rb->aux_mmap_count, 1);
6032 user_extra = nr_pages;
6033
6034 goto accounting;
6035 }
7b732a75 6036
7730d865 6037 /*
76369139 6038 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
6039 * can do bitmasks instead of modulo.
6040 */
2ed11312 6041 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
6042 return -EINVAL;
6043
7b732a75 6044 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
6045 return -EINVAL;
6046
cdd6c482 6047 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 6048again:
cdd6c482 6049 mutex_lock(&event->mmap_mutex);
76369139 6050 if (event->rb) {
9bb5d40c 6051 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 6052 ret = -EINVAL;
9bb5d40c
PZ
6053 goto unlock;
6054 }
6055
6056 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6057 /*
6058 * Raced against perf_mmap_close() through
6059 * perf_event_set_output(). Try again, hope for better
6060 * luck.
6061 */
6062 mutex_unlock(&event->mmap_mutex);
6063 goto again;
6064 }
6065
ebb3c4c4
PZ
6066 goto unlock;
6067 }
6068
789f90fc 6069 user_extra = nr_pages + 1;
45bfb2e5
PZ
6070
6071accounting:
cdd6c482 6072 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
6073
6074 /*
6075 * Increase the limit linearly with more CPUs:
6076 */
6077 user_lock_limit *= num_online_cpus();
6078
00346155
SL
6079 user_locked = atomic_long_read(&user->locked_vm);
6080
6081 /*
6082 * sysctl_perf_event_mlock may have changed, so that
6083 * user->locked_vm > user_lock_limit
6084 */
6085 if (user_locked > user_lock_limit)
6086 user_locked = user_lock_limit;
6087 user_locked += user_extra;
c5078f78 6088
c4b75479 6089 if (user_locked > user_lock_limit) {
d44248a4
SL
6090 /*
6091 * charge locked_vm until it hits user_lock_limit;
6092 * charge the rest from pinned_vm
6093 */
789f90fc 6094 extra = user_locked - user_lock_limit;
d44248a4
SL
6095 user_extra -= extra;
6096 }
7b732a75 6097
78d7d407 6098 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 6099 lock_limit >>= PAGE_SHIFT;
70f8a3ca 6100 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
7b732a75 6101
da97e184 6102 if ((locked > lock_limit) && perf_is_paranoid() &&
459ec28a 6103 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
6104 ret = -EPERM;
6105 goto unlock;
6106 }
7b732a75 6107
45bfb2e5 6108 WARN_ON(!rb && event->rb);
906010b2 6109
d57e34fd 6110 if (vma->vm_flags & VM_WRITE)
76369139 6111 flags |= RING_BUFFER_WRITABLE;
d57e34fd 6112
76369139 6113 if (!rb) {
45bfb2e5
PZ
6114 rb = rb_alloc(nr_pages,
6115 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6116 event->cpu, flags);
26cb63ad 6117
45bfb2e5
PZ
6118 if (!rb) {
6119 ret = -ENOMEM;
6120 goto unlock;
6121 }
43a21ea8 6122
45bfb2e5
PZ
6123 atomic_set(&rb->mmap_count, 1);
6124 rb->mmap_user = get_current_user();
6125 rb->mmap_locked = extra;
26cb63ad 6126
45bfb2e5 6127 ring_buffer_attach(event, rb);
ac9721f3 6128
45bfb2e5
PZ
6129 perf_event_init_userpage(event);
6130 perf_event_update_userpage(event);
6131 } else {
1a594131
AS
6132 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6133 event->attr.aux_watermark, flags);
45bfb2e5
PZ
6134 if (!ret)
6135 rb->aux_mmap_locked = extra;
6136 }
9a0f05cb 6137
ebb3c4c4 6138unlock:
45bfb2e5
PZ
6139 if (!ret) {
6140 atomic_long_add(user_extra, &user->locked_vm);
70f8a3ca 6141 atomic64_add(extra, &vma->vm_mm->pinned_vm);
45bfb2e5 6142
ac9721f3 6143 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
6144 } else if (rb) {
6145 atomic_dec(&rb->mmap_count);
6146 }
6147aux_unlock:
cdd6c482 6148 mutex_unlock(&event->mmap_mutex);
37d81828 6149
9bb5d40c
PZ
6150 /*
6151 * Since pinned accounting is per vm we cannot allow fork() to copy our
6152 * vma.
6153 */
26cb63ad 6154 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 6155 vma->vm_ops = &perf_mmap_vmops;
7b732a75 6156
1e0fb9ec 6157 if (event->pmu->event_mapped)
bfe33492 6158 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 6159
7b732a75 6160 return ret;
37d81828
PM
6161}
6162
3c446b3d
PZ
6163static int perf_fasync(int fd, struct file *filp, int on)
6164{
496ad9aa 6165 struct inode *inode = file_inode(filp);
cdd6c482 6166 struct perf_event *event = filp->private_data;
3c446b3d
PZ
6167 int retval;
6168
5955102c 6169 inode_lock(inode);
cdd6c482 6170 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 6171 inode_unlock(inode);
3c446b3d
PZ
6172
6173 if (retval < 0)
6174 return retval;
6175
6176 return 0;
6177}
6178
0793a61d 6179static const struct file_operations perf_fops = {
3326c1ce 6180 .llseek = no_llseek,
0793a61d
TG
6181 .release = perf_release,
6182 .read = perf_read,
6183 .poll = perf_poll,
d859e29f 6184 .unlocked_ioctl = perf_ioctl,
b3f20785 6185 .compat_ioctl = perf_compat_ioctl,
37d81828 6186 .mmap = perf_mmap,
3c446b3d 6187 .fasync = perf_fasync,
0793a61d
TG
6188};
6189
925d519a 6190/*
cdd6c482 6191 * Perf event wakeup
925d519a
PZ
6192 *
6193 * If there's data, ensure we set the poll() state and publish everything
6194 * to user-space before waking everybody up.
6195 */
6196
fed66e2c
PZ
6197static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6198{
6199 /* only the parent has fasync state */
6200 if (event->parent)
6201 event = event->parent;
6202 return &event->fasync;
6203}
6204
cdd6c482 6205void perf_event_wakeup(struct perf_event *event)
925d519a 6206{
10c6db11 6207 ring_buffer_wakeup(event);
4c9e2542 6208
cdd6c482 6209 if (event->pending_kill) {
fed66e2c 6210 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 6211 event->pending_kill = 0;
4c9e2542 6212 }
925d519a
PZ
6213}
6214
1d54ad94
PZ
6215static void perf_pending_event_disable(struct perf_event *event)
6216{
6217 int cpu = READ_ONCE(event->pending_disable);
6218
6219 if (cpu < 0)
6220 return;
6221
6222 if (cpu == smp_processor_id()) {
6223 WRITE_ONCE(event->pending_disable, -1);
6224 perf_event_disable_local(event);
6225 return;
6226 }
6227
6228 /*
6229 * CPU-A CPU-B
6230 *
6231 * perf_event_disable_inatomic()
6232 * @pending_disable = CPU-A;
6233 * irq_work_queue();
6234 *
6235 * sched-out
6236 * @pending_disable = -1;
6237 *
6238 * sched-in
6239 * perf_event_disable_inatomic()
6240 * @pending_disable = CPU-B;
6241 * irq_work_queue(); // FAILS
6242 *
6243 * irq_work_run()
6244 * perf_pending_event()
6245 *
6246 * But the event runs on CPU-B and wants disabling there.
6247 */
6248 irq_work_queue_on(&event->pending, cpu);
6249}
6250
e360adbe 6251static void perf_pending_event(struct irq_work *entry)
79f14641 6252{
1d54ad94 6253 struct perf_event *event = container_of(entry, struct perf_event, pending);
d525211f
PZ
6254 int rctx;
6255
6256 rctx = perf_swevent_get_recursion_context();
6257 /*
6258 * If we 'fail' here, that's OK, it means recursion is already disabled
6259 * and we won't recurse 'further'.
6260 */
79f14641 6261
1d54ad94 6262 perf_pending_event_disable(event);
79f14641 6263
cdd6c482
IM
6264 if (event->pending_wakeup) {
6265 event->pending_wakeup = 0;
6266 perf_event_wakeup(event);
79f14641 6267 }
d525211f
PZ
6268
6269 if (rctx >= 0)
6270 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
6271}
6272
39447b38
ZY
6273/*
6274 * We assume there is only KVM supporting the callbacks.
6275 * Later on, we might change it to a list if there is
6276 * another virtualization implementation supporting the callbacks.
6277 */
6278struct perf_guest_info_callbacks *perf_guest_cbs;
6279
6280int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6281{
6282 perf_guest_cbs = cbs;
6283 return 0;
6284}
6285EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6286
6287int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6288{
6289 perf_guest_cbs = NULL;
6290 return 0;
6291}
6292EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6293
4018994f
JO
6294static void
6295perf_output_sample_regs(struct perf_output_handle *handle,
6296 struct pt_regs *regs, u64 mask)
6297{
6298 int bit;
29dd3288 6299 DECLARE_BITMAP(_mask, 64);
4018994f 6300
29dd3288
MS
6301 bitmap_from_u64(_mask, mask);
6302 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
6303 u64 val;
6304
6305 val = perf_reg_value(regs, bit);
6306 perf_output_put(handle, val);
6307 }
6308}
6309
60e2364e 6310static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
6311 struct pt_regs *regs,
6312 struct pt_regs *regs_user_copy)
4018994f 6313{
88a7c26a
AL
6314 if (user_mode(regs)) {
6315 regs_user->abi = perf_reg_abi(current);
2565711f 6316 regs_user->regs = regs;
085ebfe9 6317 } else if (!(current->flags & PF_KTHREAD)) {
88a7c26a 6318 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
6319 } else {
6320 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6321 regs_user->regs = NULL;
4018994f
JO
6322 }
6323}
6324
60e2364e
SE
6325static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6326 struct pt_regs *regs)
6327{
6328 regs_intr->regs = regs;
6329 regs_intr->abi = perf_reg_abi(current);
6330}
6331
6332
c5ebcedb
JO
6333/*
6334 * Get remaining task size from user stack pointer.
6335 *
6336 * It'd be better to take stack vma map and limit this more
9f014e3a 6337 * precisely, but there's no way to get it safely under interrupt,
c5ebcedb
JO
6338 * so using TASK_SIZE as limit.
6339 */
6340static u64 perf_ustack_task_size(struct pt_regs *regs)
6341{
6342 unsigned long addr = perf_user_stack_pointer(regs);
6343
6344 if (!addr || addr >= TASK_SIZE)
6345 return 0;
6346
6347 return TASK_SIZE - addr;
6348}
6349
6350static u16
6351perf_sample_ustack_size(u16 stack_size, u16 header_size,
6352 struct pt_regs *regs)
6353{
6354 u64 task_size;
6355
6356 /* No regs, no stack pointer, no dump. */
6357 if (!regs)
6358 return 0;
6359
6360 /*
6361 * Check if we fit in with the requested stack size into the:
6362 * - TASK_SIZE
6363 * If we don't, we limit the size to the TASK_SIZE.
6364 *
6365 * - remaining sample size
6366 * If we don't, we customize the stack size to
6367 * fit in to the remaining sample size.
6368 */
6369
6370 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6371 stack_size = min(stack_size, (u16) task_size);
6372
6373 /* Current header size plus static size and dynamic size. */
6374 header_size += 2 * sizeof(u64);
6375
6376 /* Do we fit in with the current stack dump size? */
6377 if ((u16) (header_size + stack_size) < header_size) {
6378 /*
6379 * If we overflow the maximum size for the sample,
6380 * we customize the stack dump size to fit in.
6381 */
6382 stack_size = USHRT_MAX - header_size - sizeof(u64);
6383 stack_size = round_up(stack_size, sizeof(u64));
6384 }
6385
6386 return stack_size;
6387}
6388
6389static void
6390perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6391 struct pt_regs *regs)
6392{
6393 /* Case of a kernel thread, nothing to dump */
6394 if (!regs) {
6395 u64 size = 0;
6396 perf_output_put(handle, size);
6397 } else {
6398 unsigned long sp;
6399 unsigned int rem;
6400 u64 dyn_size;
02e18447 6401 mm_segment_t fs;
c5ebcedb
JO
6402
6403 /*
6404 * We dump:
6405 * static size
6406 * - the size requested by user or the best one we can fit
6407 * in to the sample max size
6408 * data
6409 * - user stack dump data
6410 * dynamic size
6411 * - the actual dumped size
6412 */
6413
6414 /* Static size. */
6415 perf_output_put(handle, dump_size);
6416
6417 /* Data. */
6418 sp = perf_user_stack_pointer(regs);
02e18447
YC
6419 fs = get_fs();
6420 set_fs(USER_DS);
c5ebcedb 6421 rem = __output_copy_user(handle, (void *) sp, dump_size);
02e18447 6422 set_fs(fs);
c5ebcedb
JO
6423 dyn_size = dump_size - rem;
6424
6425 perf_output_skip(handle, rem);
6426
6427 /* Dynamic size. */
6428 perf_output_put(handle, dyn_size);
6429 }
6430}
6431
a4faf00d
AS
6432static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6433 struct perf_sample_data *data,
6434 size_t size)
6435{
6436 struct perf_event *sampler = event->aux_event;
56de4e8f 6437 struct perf_buffer *rb;
a4faf00d
AS
6438
6439 data->aux_size = 0;
6440
6441 if (!sampler)
6442 goto out;
6443
6444 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6445 goto out;
6446
6447 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6448 goto out;
6449
6450 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6451 if (!rb)
6452 goto out;
6453
6454 /*
6455 * If this is an NMI hit inside sampling code, don't take
6456 * the sample. See also perf_aux_sample_output().
6457 */
6458 if (READ_ONCE(rb->aux_in_sampling)) {
6459 data->aux_size = 0;
6460 } else {
6461 size = min_t(size_t, size, perf_aux_size(rb));
6462 data->aux_size = ALIGN(size, sizeof(u64));
6463 }
6464 ring_buffer_put(rb);
6465
6466out:
6467 return data->aux_size;
6468}
6469
56de4e8f 6470long perf_pmu_snapshot_aux(struct perf_buffer *rb,
a4faf00d
AS
6471 struct perf_event *event,
6472 struct perf_output_handle *handle,
6473 unsigned long size)
6474{
6475 unsigned long flags;
6476 long ret;
6477
6478 /*
6479 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6480 * paths. If we start calling them in NMI context, they may race with
6481 * the IRQ ones, that is, for example, re-starting an event that's just
6482 * been stopped, which is why we're using a separate callback that
6483 * doesn't change the event state.
6484 *
6485 * IRQs need to be disabled to prevent IPIs from racing with us.
6486 */
6487 local_irq_save(flags);
6488 /*
6489 * Guard against NMI hits inside the critical section;
6490 * see also perf_prepare_sample_aux().
6491 */
6492 WRITE_ONCE(rb->aux_in_sampling, 1);
6493 barrier();
6494
6495 ret = event->pmu->snapshot_aux(event, handle, size);
6496
6497 barrier();
6498 WRITE_ONCE(rb->aux_in_sampling, 0);
6499 local_irq_restore(flags);
6500
6501 return ret;
6502}
6503
6504static void perf_aux_sample_output(struct perf_event *event,
6505 struct perf_output_handle *handle,
6506 struct perf_sample_data *data)
6507{
6508 struct perf_event *sampler = event->aux_event;
56de4e8f 6509 struct perf_buffer *rb;
a4faf00d 6510 unsigned long pad;
a4faf00d
AS
6511 long size;
6512
6513 if (WARN_ON_ONCE(!sampler || !data->aux_size))
6514 return;
6515
6516 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6517 if (!rb)
6518 return;
6519
6520 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6521
6522 /*
6523 * An error here means that perf_output_copy() failed (returned a
6524 * non-zero surplus that it didn't copy), which in its current
6525 * enlightened implementation is not possible. If that changes, we'd
6526 * like to know.
6527 */
6528 if (WARN_ON_ONCE(size < 0))
6529 goto out_put;
6530
6531 /*
6532 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6533 * perf_prepare_sample_aux(), so should not be more than that.
6534 */
6535 pad = data->aux_size - size;
6536 if (WARN_ON_ONCE(pad >= sizeof(u64)))
6537 pad = 8;
6538
6539 if (pad) {
6540 u64 zero = 0;
6541 perf_output_copy(handle, &zero, pad);
6542 }
6543
6544out_put:
6545 ring_buffer_put(rb);
6546}
6547
c980d109
ACM
6548static void __perf_event_header__init_id(struct perf_event_header *header,
6549 struct perf_sample_data *data,
6550 struct perf_event *event)
6844c09d
ACM
6551{
6552 u64 sample_type = event->attr.sample_type;
6553
6554 data->type = sample_type;
6555 header->size += event->id_header_size;
6556
6557 if (sample_type & PERF_SAMPLE_TID) {
6558 /* namespace issues */
6559 data->tid_entry.pid = perf_event_pid(event, current);
6560 data->tid_entry.tid = perf_event_tid(event, current);
6561 }
6562
6563 if (sample_type & PERF_SAMPLE_TIME)
34f43927 6564 data->time = perf_event_clock(event);
6844c09d 6565
ff3d527c 6566 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
6567 data->id = primary_event_id(event);
6568
6569 if (sample_type & PERF_SAMPLE_STREAM_ID)
6570 data->stream_id = event->id;
6571
6572 if (sample_type & PERF_SAMPLE_CPU) {
6573 data->cpu_entry.cpu = raw_smp_processor_id();
6574 data->cpu_entry.reserved = 0;
6575 }
6576}
6577
76369139
FW
6578void perf_event_header__init_id(struct perf_event_header *header,
6579 struct perf_sample_data *data,
6580 struct perf_event *event)
c980d109
ACM
6581{
6582 if (event->attr.sample_id_all)
6583 __perf_event_header__init_id(header, data, event);
6584}
6585
6586static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6587 struct perf_sample_data *data)
6588{
6589 u64 sample_type = data->type;
6590
6591 if (sample_type & PERF_SAMPLE_TID)
6592 perf_output_put(handle, data->tid_entry);
6593
6594 if (sample_type & PERF_SAMPLE_TIME)
6595 perf_output_put(handle, data->time);
6596
6597 if (sample_type & PERF_SAMPLE_ID)
6598 perf_output_put(handle, data->id);
6599
6600 if (sample_type & PERF_SAMPLE_STREAM_ID)
6601 perf_output_put(handle, data->stream_id);
6602
6603 if (sample_type & PERF_SAMPLE_CPU)
6604 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
6605
6606 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6607 perf_output_put(handle, data->id);
c980d109
ACM
6608}
6609
76369139
FW
6610void perf_event__output_id_sample(struct perf_event *event,
6611 struct perf_output_handle *handle,
6612 struct perf_sample_data *sample)
c980d109
ACM
6613{
6614 if (event->attr.sample_id_all)
6615 __perf_event__output_id_sample(handle, sample);
6616}
6617
3dab77fb 6618static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
6619 struct perf_event *event,
6620 u64 enabled, u64 running)
3dab77fb 6621{
cdd6c482 6622 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6623 u64 values[4];
6624 int n = 0;
6625
b5e58793 6626 values[n++] = perf_event_count(event);
3dab77fb 6627 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 6628 values[n++] = enabled +
cdd6c482 6629 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
6630 }
6631 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 6632 values[n++] = running +
cdd6c482 6633 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
6634 }
6635 if (read_format & PERF_FORMAT_ID)
cdd6c482 6636 values[n++] = primary_event_id(event);
3dab77fb 6637
76369139 6638 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6639}
6640
3dab77fb 6641static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
6642 struct perf_event *event,
6643 u64 enabled, u64 running)
3dab77fb 6644{
cdd6c482
IM
6645 struct perf_event *leader = event->group_leader, *sub;
6646 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6647 u64 values[5];
6648 int n = 0;
6649
6650 values[n++] = 1 + leader->nr_siblings;
6651
6652 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 6653 values[n++] = enabled;
3dab77fb
PZ
6654
6655 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 6656 values[n++] = running;
3dab77fb 6657
9e5b127d
PZ
6658 if ((leader != event) &&
6659 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6660 leader->pmu->read(leader);
6661
b5e58793 6662 values[n++] = perf_event_count(leader);
3dab77fb 6663 if (read_format & PERF_FORMAT_ID)
cdd6c482 6664 values[n++] = primary_event_id(leader);
3dab77fb 6665
76369139 6666 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 6667
edb39592 6668 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
6669 n = 0;
6670
6f5ab001
JO
6671 if ((sub != event) &&
6672 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6673 sub->pmu->read(sub);
6674
b5e58793 6675 values[n++] = perf_event_count(sub);
3dab77fb 6676 if (read_format & PERF_FORMAT_ID)
cdd6c482 6677 values[n++] = primary_event_id(sub);
3dab77fb 6678
76369139 6679 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6680 }
6681}
6682
eed01528
SE
6683#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6684 PERF_FORMAT_TOTAL_TIME_RUNNING)
6685
ba5213ae
PZ
6686/*
6687 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6688 *
6689 * The problem is that its both hard and excessively expensive to iterate the
6690 * child list, not to mention that its impossible to IPI the children running
6691 * on another CPU, from interrupt/NMI context.
6692 */
3dab77fb 6693static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 6694 struct perf_event *event)
3dab77fb 6695{
e3f3541c 6696 u64 enabled = 0, running = 0, now;
eed01528
SE
6697 u64 read_format = event->attr.read_format;
6698
6699 /*
6700 * compute total_time_enabled, total_time_running
6701 * based on snapshot values taken when the event
6702 * was last scheduled in.
6703 *
6704 * we cannot simply called update_context_time()
6705 * because of locking issue as we are called in
6706 * NMI context
6707 */
c4794295 6708 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 6709 calc_timer_values(event, &now, &enabled, &running);
eed01528 6710
cdd6c482 6711 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 6712 perf_output_read_group(handle, event, enabled, running);
3dab77fb 6713 else
eed01528 6714 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
6715}
6716
bbfd5e4f
KL
6717static inline bool perf_sample_save_hw_index(struct perf_event *event)
6718{
6719 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6720}
6721
5622f295
MM
6722void perf_output_sample(struct perf_output_handle *handle,
6723 struct perf_event_header *header,
6724 struct perf_sample_data *data,
cdd6c482 6725 struct perf_event *event)
5622f295
MM
6726{
6727 u64 sample_type = data->type;
6728
6729 perf_output_put(handle, *header);
6730
ff3d527c
AH
6731 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6732 perf_output_put(handle, data->id);
6733
5622f295
MM
6734 if (sample_type & PERF_SAMPLE_IP)
6735 perf_output_put(handle, data->ip);
6736
6737 if (sample_type & PERF_SAMPLE_TID)
6738 perf_output_put(handle, data->tid_entry);
6739
6740 if (sample_type & PERF_SAMPLE_TIME)
6741 perf_output_put(handle, data->time);
6742
6743 if (sample_type & PERF_SAMPLE_ADDR)
6744 perf_output_put(handle, data->addr);
6745
6746 if (sample_type & PERF_SAMPLE_ID)
6747 perf_output_put(handle, data->id);
6748
6749 if (sample_type & PERF_SAMPLE_STREAM_ID)
6750 perf_output_put(handle, data->stream_id);
6751
6752 if (sample_type & PERF_SAMPLE_CPU)
6753 perf_output_put(handle, data->cpu_entry);
6754
6755 if (sample_type & PERF_SAMPLE_PERIOD)
6756 perf_output_put(handle, data->period);
6757
6758 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 6759 perf_output_read(handle, event);
5622f295
MM
6760
6761 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 6762 int size = 1;
5622f295 6763
99e818cc
JO
6764 size += data->callchain->nr;
6765 size *= sizeof(u64);
6766 __output_copy(handle, data->callchain, size);
5622f295
MM
6767 }
6768
6769 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6770 struct perf_raw_record *raw = data->raw;
6771
6772 if (raw) {
6773 struct perf_raw_frag *frag = &raw->frag;
6774
6775 perf_output_put(handle, raw->size);
6776 do {
6777 if (frag->copy) {
6778 __output_custom(handle, frag->copy,
6779 frag->data, frag->size);
6780 } else {
6781 __output_copy(handle, frag->data,
6782 frag->size);
6783 }
6784 if (perf_raw_frag_last(frag))
6785 break;
6786 frag = frag->next;
6787 } while (1);
6788 if (frag->pad)
6789 __output_skip(handle, NULL, frag->pad);
5622f295
MM
6790 } else {
6791 struct {
6792 u32 size;
6793 u32 data;
6794 } raw = {
6795 .size = sizeof(u32),
6796 .data = 0,
6797 };
6798 perf_output_put(handle, raw);
6799 }
6800 }
a7ac67ea 6801
bce38cd5
SE
6802 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6803 if (data->br_stack) {
6804 size_t size;
6805
6806 size = data->br_stack->nr
6807 * sizeof(struct perf_branch_entry);
6808
6809 perf_output_put(handle, data->br_stack->nr);
bbfd5e4f
KL
6810 if (perf_sample_save_hw_index(event))
6811 perf_output_put(handle, data->br_stack->hw_idx);
bce38cd5
SE
6812 perf_output_copy(handle, data->br_stack->entries, size);
6813 } else {
6814 /*
6815 * we always store at least the value of nr
6816 */
6817 u64 nr = 0;
6818 perf_output_put(handle, nr);
6819 }
6820 }
4018994f
JO
6821
6822 if (sample_type & PERF_SAMPLE_REGS_USER) {
6823 u64 abi = data->regs_user.abi;
6824
6825 /*
6826 * If there are no regs to dump, notice it through
6827 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6828 */
6829 perf_output_put(handle, abi);
6830
6831 if (abi) {
6832 u64 mask = event->attr.sample_regs_user;
6833 perf_output_sample_regs(handle,
6834 data->regs_user.regs,
6835 mask);
6836 }
6837 }
c5ebcedb 6838
a5cdd40c 6839 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6840 perf_output_sample_ustack(handle,
6841 data->stack_user_size,
6842 data->regs_user.regs);
a5cdd40c 6843 }
c3feedf2
AK
6844
6845 if (sample_type & PERF_SAMPLE_WEIGHT)
6846 perf_output_put(handle, data->weight);
d6be9ad6
SE
6847
6848 if (sample_type & PERF_SAMPLE_DATA_SRC)
6849 perf_output_put(handle, data->data_src.val);
a5cdd40c 6850
fdfbbd07
AK
6851 if (sample_type & PERF_SAMPLE_TRANSACTION)
6852 perf_output_put(handle, data->txn);
6853
60e2364e
SE
6854 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6855 u64 abi = data->regs_intr.abi;
6856 /*
6857 * If there are no regs to dump, notice it through
6858 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6859 */
6860 perf_output_put(handle, abi);
6861
6862 if (abi) {
6863 u64 mask = event->attr.sample_regs_intr;
6864
6865 perf_output_sample_regs(handle,
6866 data->regs_intr.regs,
6867 mask);
6868 }
6869 }
6870
fc7ce9c7
KL
6871 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6872 perf_output_put(handle, data->phys_addr);
6873
6546b19f
NK
6874 if (sample_type & PERF_SAMPLE_CGROUP)
6875 perf_output_put(handle, data->cgroup);
6876
a4faf00d
AS
6877 if (sample_type & PERF_SAMPLE_AUX) {
6878 perf_output_put(handle, data->aux_size);
6879
6880 if (data->aux_size)
6881 perf_aux_sample_output(event, handle, data);
6882 }
6883
a5cdd40c
PZ
6884 if (!event->attr.watermark) {
6885 int wakeup_events = event->attr.wakeup_events;
6886
6887 if (wakeup_events) {
56de4e8f 6888 struct perf_buffer *rb = handle->rb;
a5cdd40c
PZ
6889 int events = local_inc_return(&rb->events);
6890
6891 if (events >= wakeup_events) {
6892 local_sub(wakeup_events, &rb->events);
6893 local_inc(&rb->wakeup);
6894 }
6895 }
6896 }
5622f295
MM
6897}
6898
fc7ce9c7
KL
6899static u64 perf_virt_to_phys(u64 virt)
6900{
6901 u64 phys_addr = 0;
6902 struct page *p = NULL;
6903
6904 if (!virt)
6905 return 0;
6906
6907 if (virt >= TASK_SIZE) {
6908 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6909 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6910 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6911 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6912 } else {
6913 /*
6914 * Walking the pages tables for user address.
6915 * Interrupts are disabled, so it prevents any tear down
6916 * of the page tables.
6917 * Try IRQ-safe __get_user_pages_fast first.
6918 * If failed, leave phys_addr as 0.
6919 */
6920 if ((current->mm != NULL) &&
6921 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6922 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6923
6924 if (p)
6925 put_page(p);
6926 }
6927
6928 return phys_addr;
6929}
6930
99e818cc
JO
6931static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6932
6cbc304f 6933struct perf_callchain_entry *
8cf7e0e2
JO
6934perf_callchain(struct perf_event *event, struct pt_regs *regs)
6935{
6936 bool kernel = !event->attr.exclude_callchain_kernel;
6937 bool user = !event->attr.exclude_callchain_user;
6938 /* Disallow cross-task user callchains. */
6939 bool crosstask = event->ctx->task && event->ctx->task != current;
6940 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 6941 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6942
6943 if (!kernel && !user)
99e818cc 6944 return &__empty_callchain;
8cf7e0e2 6945
99e818cc
JO
6946 callchain = get_perf_callchain(regs, 0, kernel, user,
6947 max_stack, crosstask, true);
6948 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6949}
6950
5622f295
MM
6951void perf_prepare_sample(struct perf_event_header *header,
6952 struct perf_sample_data *data,
cdd6c482 6953 struct perf_event *event,
5622f295 6954 struct pt_regs *regs)
7b732a75 6955{
cdd6c482 6956 u64 sample_type = event->attr.sample_type;
7b732a75 6957
cdd6c482 6958 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6959 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6960
6961 header->misc = 0;
6962 header->misc |= perf_misc_flags(regs);
6fab0192 6963
c980d109 6964 __perf_event_header__init_id(header, data, event);
6844c09d 6965
c320c7b7 6966 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6967 data->ip = perf_instruction_pointer(regs);
6968
b23f3325 6969 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6970 int size = 1;
394ee076 6971
6cbc304f
PZ
6972 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6973 data->callchain = perf_callchain(event, regs);
6974
99e818cc 6975 size += data->callchain->nr;
5622f295
MM
6976
6977 header->size += size * sizeof(u64);
394ee076
PZ
6978 }
6979
3a43ce68 6980 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6981 struct perf_raw_record *raw = data->raw;
6982 int size;
6983
6984 if (raw) {
6985 struct perf_raw_frag *frag = &raw->frag;
6986 u32 sum = 0;
6987
6988 do {
6989 sum += frag->size;
6990 if (perf_raw_frag_last(frag))
6991 break;
6992 frag = frag->next;
6993 } while (1);
6994
6995 size = round_up(sum + sizeof(u32), sizeof(u64));
6996 raw->size = size - sizeof(u32);
6997 frag->pad = raw->size - sum;
6998 } else {
6999 size = sizeof(u64);
7000 }
a044560c 7001
7e3f977e 7002 header->size += size;
7f453c24 7003 }
bce38cd5
SE
7004
7005 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7006 int size = sizeof(u64); /* nr */
7007 if (data->br_stack) {
bbfd5e4f
KL
7008 if (perf_sample_save_hw_index(event))
7009 size += sizeof(u64);
7010
bce38cd5
SE
7011 size += data->br_stack->nr
7012 * sizeof(struct perf_branch_entry);
7013 }
7014 header->size += size;
7015 }
4018994f 7016
2565711f 7017 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
7018 perf_sample_regs_user(&data->regs_user, regs,
7019 &data->regs_user_copy);
2565711f 7020
4018994f
JO
7021 if (sample_type & PERF_SAMPLE_REGS_USER) {
7022 /* regs dump ABI info */
7023 int size = sizeof(u64);
7024
4018994f
JO
7025 if (data->regs_user.regs) {
7026 u64 mask = event->attr.sample_regs_user;
7027 size += hweight64(mask) * sizeof(u64);
7028 }
7029
7030 header->size += size;
7031 }
c5ebcedb
JO
7032
7033 if (sample_type & PERF_SAMPLE_STACK_USER) {
7034 /*
9f014e3a 7035 * Either we need PERF_SAMPLE_STACK_USER bit to be always
c5ebcedb
JO
7036 * processed as the last one or have additional check added
7037 * in case new sample type is added, because we could eat
7038 * up the rest of the sample size.
7039 */
c5ebcedb
JO
7040 u16 stack_size = event->attr.sample_stack_user;
7041 u16 size = sizeof(u64);
7042
c5ebcedb 7043 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 7044 data->regs_user.regs);
c5ebcedb
JO
7045
7046 /*
7047 * If there is something to dump, add space for the dump
7048 * itself and for the field that tells the dynamic size,
7049 * which is how many have been actually dumped.
7050 */
7051 if (stack_size)
7052 size += sizeof(u64) + stack_size;
7053
7054 data->stack_user_size = stack_size;
7055 header->size += size;
7056 }
60e2364e
SE
7057
7058 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7059 /* regs dump ABI info */
7060 int size = sizeof(u64);
7061
7062 perf_sample_regs_intr(&data->regs_intr, regs);
7063
7064 if (data->regs_intr.regs) {
7065 u64 mask = event->attr.sample_regs_intr;
7066
7067 size += hweight64(mask) * sizeof(u64);
7068 }
7069
7070 header->size += size;
7071 }
fc7ce9c7
KL
7072
7073 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7074 data->phys_addr = perf_virt_to_phys(data->addr);
a4faf00d 7075
6546b19f
NK
7076#ifdef CONFIG_CGROUP_PERF
7077 if (sample_type & PERF_SAMPLE_CGROUP) {
7078 struct cgroup *cgrp;
7079
7080 /* protected by RCU */
7081 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7082 data->cgroup = cgroup_id(cgrp);
7083 }
7084#endif
7085
a4faf00d
AS
7086 if (sample_type & PERF_SAMPLE_AUX) {
7087 u64 size;
7088
7089 header->size += sizeof(u64); /* size */
7090
7091 /*
7092 * Given the 16bit nature of header::size, an AUX sample can
7093 * easily overflow it, what with all the preceding sample bits.
7094 * Make sure this doesn't happen by using up to U16_MAX bytes
7095 * per sample in total (rounded down to 8 byte boundary).
7096 */
7097 size = min_t(size_t, U16_MAX - header->size,
7098 event->attr.aux_sample_size);
7099 size = rounddown(size, 8);
7100 size = perf_prepare_sample_aux(event, data, size);
7101
7102 WARN_ON_ONCE(size + header->size > U16_MAX);
7103 header->size += size;
7104 }
7105 /*
7106 * If you're adding more sample types here, you likely need to do
7107 * something about the overflowing header::size, like repurpose the
7108 * lowest 3 bits of size, which should be always zero at the moment.
7109 * This raises a more important question, do we really need 512k sized
7110 * samples and why, so good argumentation is in order for whatever you
7111 * do here next.
7112 */
7113 WARN_ON_ONCE(header->size & 7);
5622f295 7114}
7f453c24 7115
56201969 7116static __always_inline int
9ecda41a
WN
7117__perf_event_output(struct perf_event *event,
7118 struct perf_sample_data *data,
7119 struct pt_regs *regs,
7120 int (*output_begin)(struct perf_output_handle *,
7121 struct perf_event *,
7122 unsigned int))
5622f295
MM
7123{
7124 struct perf_output_handle handle;
7125 struct perf_event_header header;
56201969 7126 int err;
689802b2 7127
927c7a9e
FW
7128 /* protect the callchain buffers */
7129 rcu_read_lock();
7130
cdd6c482 7131 perf_prepare_sample(&header, data, event, regs);
5c148194 7132
56201969
ACM
7133 err = output_begin(&handle, event, header.size);
7134 if (err)
927c7a9e 7135 goto exit;
0322cd6e 7136
cdd6c482 7137 perf_output_sample(&handle, &header, data, event);
f413cdb8 7138
8a057d84 7139 perf_output_end(&handle);
927c7a9e
FW
7140
7141exit:
7142 rcu_read_unlock();
56201969 7143 return err;
0322cd6e
PZ
7144}
7145
9ecda41a
WN
7146void
7147perf_event_output_forward(struct perf_event *event,
7148 struct perf_sample_data *data,
7149 struct pt_regs *regs)
7150{
7151 __perf_event_output(event, data, regs, perf_output_begin_forward);
7152}
7153
7154void
7155perf_event_output_backward(struct perf_event *event,
7156 struct perf_sample_data *data,
7157 struct pt_regs *regs)
7158{
7159 __perf_event_output(event, data, regs, perf_output_begin_backward);
7160}
7161
56201969 7162int
9ecda41a
WN
7163perf_event_output(struct perf_event *event,
7164 struct perf_sample_data *data,
7165 struct pt_regs *regs)
7166{
56201969 7167 return __perf_event_output(event, data, regs, perf_output_begin);
9ecda41a
WN
7168}
7169
38b200d6 7170/*
cdd6c482 7171 * read event_id
38b200d6
PZ
7172 */
7173
7174struct perf_read_event {
7175 struct perf_event_header header;
7176
7177 u32 pid;
7178 u32 tid;
38b200d6
PZ
7179};
7180
7181static void
cdd6c482 7182perf_event_read_event(struct perf_event *event,
38b200d6
PZ
7183 struct task_struct *task)
7184{
7185 struct perf_output_handle handle;
c980d109 7186 struct perf_sample_data sample;
dfc65094 7187 struct perf_read_event read_event = {
38b200d6 7188 .header = {
cdd6c482 7189 .type = PERF_RECORD_READ,
38b200d6 7190 .misc = 0,
c320c7b7 7191 .size = sizeof(read_event) + event->read_size,
38b200d6 7192 },
cdd6c482
IM
7193 .pid = perf_event_pid(event, task),
7194 .tid = perf_event_tid(event, task),
38b200d6 7195 };
3dab77fb 7196 int ret;
38b200d6 7197
c980d109 7198 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 7199 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
7200 if (ret)
7201 return;
7202
dfc65094 7203 perf_output_put(&handle, read_event);
cdd6c482 7204 perf_output_read(&handle, event);
c980d109 7205 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 7206
38b200d6
PZ
7207 perf_output_end(&handle);
7208}
7209
aab5b71e 7210typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
7211
7212static void
aab5b71e
PZ
7213perf_iterate_ctx(struct perf_event_context *ctx,
7214 perf_iterate_f output,
b73e4fef 7215 void *data, bool all)
52d857a8
JO
7216{
7217 struct perf_event *event;
7218
7219 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
7220 if (!all) {
7221 if (event->state < PERF_EVENT_STATE_INACTIVE)
7222 continue;
7223 if (!event_filter_match(event))
7224 continue;
7225 }
7226
67516844 7227 output(event, data);
52d857a8
JO
7228 }
7229}
7230
aab5b71e 7231static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
7232{
7233 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7234 struct perf_event *event;
7235
7236 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
7237 /*
7238 * Skip events that are not fully formed yet; ensure that
7239 * if we observe event->ctx, both event and ctx will be
7240 * complete enough. See perf_install_in_context().
7241 */
7242 if (!smp_load_acquire(&event->ctx))
7243 continue;
7244
f2fb6bef
KL
7245 if (event->state < PERF_EVENT_STATE_INACTIVE)
7246 continue;
7247 if (!event_filter_match(event))
7248 continue;
7249 output(event, data);
7250 }
7251}
7252
aab5b71e
PZ
7253/*
7254 * Iterate all events that need to receive side-band events.
7255 *
7256 * For new callers; ensure that account_pmu_sb_event() includes
7257 * your event, otherwise it might not get delivered.
7258 */
52d857a8 7259static void
aab5b71e 7260perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
7261 struct perf_event_context *task_ctx)
7262{
52d857a8 7263 struct perf_event_context *ctx;
52d857a8
JO
7264 int ctxn;
7265
aab5b71e
PZ
7266 rcu_read_lock();
7267 preempt_disable();
7268
4e93ad60 7269 /*
aab5b71e
PZ
7270 * If we have task_ctx != NULL we only notify the task context itself.
7271 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
7272 * context.
7273 */
7274 if (task_ctx) {
aab5b71e
PZ
7275 perf_iterate_ctx(task_ctx, output, data, false);
7276 goto done;
4e93ad60
JO
7277 }
7278
aab5b71e 7279 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
7280
7281 for_each_task_context_nr(ctxn) {
52d857a8
JO
7282 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7283 if (ctx)
aab5b71e 7284 perf_iterate_ctx(ctx, output, data, false);
52d857a8 7285 }
aab5b71e 7286done:
f2fb6bef 7287 preempt_enable();
52d857a8 7288 rcu_read_unlock();
95ff4ca2
AS
7289}
7290
375637bc
AS
7291/*
7292 * Clear all file-based filters at exec, they'll have to be
7293 * re-instated when/if these objects are mmapped again.
7294 */
7295static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7296{
7297 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7298 struct perf_addr_filter *filter;
7299 unsigned int restart = 0, count = 0;
7300 unsigned long flags;
7301
7302 if (!has_addr_filter(event))
7303 return;
7304
7305 raw_spin_lock_irqsave(&ifh->lock, flags);
7306 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 7307 if (filter->path.dentry) {
c60f83b8
AS
7308 event->addr_filter_ranges[count].start = 0;
7309 event->addr_filter_ranges[count].size = 0;
375637bc
AS
7310 restart++;
7311 }
7312
7313 count++;
7314 }
7315
7316 if (restart)
7317 event->addr_filters_gen++;
7318 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7319
7320 if (restart)
767ae086 7321 perf_event_stop(event, 1);
375637bc
AS
7322}
7323
7324void perf_event_exec(void)
7325{
7326 struct perf_event_context *ctx;
7327 int ctxn;
7328
7329 rcu_read_lock();
7330 for_each_task_context_nr(ctxn) {
7331 ctx = current->perf_event_ctxp[ctxn];
7332 if (!ctx)
7333 continue;
7334
7335 perf_event_enable_on_exec(ctxn);
7336
aab5b71e 7337 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
7338 true);
7339 }
7340 rcu_read_unlock();
7341}
7342
95ff4ca2 7343struct remote_output {
56de4e8f 7344 struct perf_buffer *rb;
95ff4ca2
AS
7345 int err;
7346};
7347
7348static void __perf_event_output_stop(struct perf_event *event, void *data)
7349{
7350 struct perf_event *parent = event->parent;
7351 struct remote_output *ro = data;
56de4e8f 7352 struct perf_buffer *rb = ro->rb;
375637bc
AS
7353 struct stop_event_data sd = {
7354 .event = event,
7355 };
95ff4ca2
AS
7356
7357 if (!has_aux(event))
7358 return;
7359
7360 if (!parent)
7361 parent = event;
7362
7363 /*
7364 * In case of inheritance, it will be the parent that links to the
767ae086
AS
7365 * ring-buffer, but it will be the child that's actually using it.
7366 *
7367 * We are using event::rb to determine if the event should be stopped,
7368 * however this may race with ring_buffer_attach() (through set_output),
7369 * which will make us skip the event that actually needs to be stopped.
7370 * So ring_buffer_attach() has to stop an aux event before re-assigning
7371 * its rb pointer.
95ff4ca2
AS
7372 */
7373 if (rcu_dereference(parent->rb) == rb)
375637bc 7374 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
7375}
7376
7377static int __perf_pmu_output_stop(void *info)
7378{
7379 struct perf_event *event = info;
f3a519e4 7380 struct pmu *pmu = event->ctx->pmu;
8b6a3fe8 7381 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
7382 struct remote_output ro = {
7383 .rb = event->rb,
7384 };
7385
7386 rcu_read_lock();
aab5b71e 7387 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 7388 if (cpuctx->task_ctx)
aab5b71e 7389 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 7390 &ro, false);
95ff4ca2
AS
7391 rcu_read_unlock();
7392
7393 return ro.err;
7394}
7395
7396static void perf_pmu_output_stop(struct perf_event *event)
7397{
7398 struct perf_event *iter;
7399 int err, cpu;
7400
7401restart:
7402 rcu_read_lock();
7403 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7404 /*
7405 * For per-CPU events, we need to make sure that neither they
7406 * nor their children are running; for cpu==-1 events it's
7407 * sufficient to stop the event itself if it's active, since
7408 * it can't have children.
7409 */
7410 cpu = iter->cpu;
7411 if (cpu == -1)
7412 cpu = READ_ONCE(iter->oncpu);
7413
7414 if (cpu == -1)
7415 continue;
7416
7417 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7418 if (err == -EAGAIN) {
7419 rcu_read_unlock();
7420 goto restart;
7421 }
7422 }
7423 rcu_read_unlock();
52d857a8
JO
7424}
7425
60313ebe 7426/*
9f498cc5
PZ
7427 * task tracking -- fork/exit
7428 *
13d7a241 7429 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
7430 */
7431
9f498cc5 7432struct perf_task_event {
3a80b4a3 7433 struct task_struct *task;
cdd6c482 7434 struct perf_event_context *task_ctx;
60313ebe
PZ
7435
7436 struct {
7437 struct perf_event_header header;
7438
7439 u32 pid;
7440 u32 ppid;
9f498cc5
PZ
7441 u32 tid;
7442 u32 ptid;
393b2ad8 7443 u64 time;
cdd6c482 7444 } event_id;
60313ebe
PZ
7445};
7446
67516844
JO
7447static int perf_event_task_match(struct perf_event *event)
7448{
13d7a241
SE
7449 return event->attr.comm || event->attr.mmap ||
7450 event->attr.mmap2 || event->attr.mmap_data ||
7451 event->attr.task;
67516844
JO
7452}
7453
cdd6c482 7454static void perf_event_task_output(struct perf_event *event,
52d857a8 7455 void *data)
60313ebe 7456{
52d857a8 7457 struct perf_task_event *task_event = data;
60313ebe 7458 struct perf_output_handle handle;
c980d109 7459 struct perf_sample_data sample;
9f498cc5 7460 struct task_struct *task = task_event->task;
c980d109 7461 int ret, size = task_event->event_id.header.size;
8bb39f9a 7462
67516844
JO
7463 if (!perf_event_task_match(event))
7464 return;
7465
c980d109 7466 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 7467
c980d109 7468 ret = perf_output_begin(&handle, event,
a7ac67ea 7469 task_event->event_id.header.size);
ef60777c 7470 if (ret)
c980d109 7471 goto out;
60313ebe 7472
cdd6c482
IM
7473 task_event->event_id.pid = perf_event_pid(event, task);
7474 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 7475
cdd6c482
IM
7476 task_event->event_id.tid = perf_event_tid(event, task);
7477 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 7478
34f43927
PZ
7479 task_event->event_id.time = perf_event_clock(event);
7480
cdd6c482 7481 perf_output_put(&handle, task_event->event_id);
393b2ad8 7482
c980d109
ACM
7483 perf_event__output_id_sample(event, &handle, &sample);
7484
60313ebe 7485 perf_output_end(&handle);
c980d109
ACM
7486out:
7487 task_event->event_id.header.size = size;
60313ebe
PZ
7488}
7489
cdd6c482
IM
7490static void perf_event_task(struct task_struct *task,
7491 struct perf_event_context *task_ctx,
3a80b4a3 7492 int new)
60313ebe 7493{
9f498cc5 7494 struct perf_task_event task_event;
60313ebe 7495
cdd6c482
IM
7496 if (!atomic_read(&nr_comm_events) &&
7497 !atomic_read(&nr_mmap_events) &&
7498 !atomic_read(&nr_task_events))
60313ebe
PZ
7499 return;
7500
9f498cc5 7501 task_event = (struct perf_task_event){
3a80b4a3
PZ
7502 .task = task,
7503 .task_ctx = task_ctx,
cdd6c482 7504 .event_id = {
60313ebe 7505 .header = {
cdd6c482 7506 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 7507 .misc = 0,
cdd6c482 7508 .size = sizeof(task_event.event_id),
60313ebe 7509 },
573402db
PZ
7510 /* .pid */
7511 /* .ppid */
9f498cc5
PZ
7512 /* .tid */
7513 /* .ptid */
34f43927 7514 /* .time */
60313ebe
PZ
7515 },
7516 };
7517
aab5b71e 7518 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
7519 &task_event,
7520 task_ctx);
9f498cc5
PZ
7521}
7522
cdd6c482 7523void perf_event_fork(struct task_struct *task)
9f498cc5 7524{
cdd6c482 7525 perf_event_task(task, NULL, 1);
e4222673 7526 perf_event_namespaces(task);
60313ebe
PZ
7527}
7528
8d1b2d93
PZ
7529/*
7530 * comm tracking
7531 */
7532
7533struct perf_comm_event {
22a4f650
IM
7534 struct task_struct *task;
7535 char *comm;
8d1b2d93
PZ
7536 int comm_size;
7537
7538 struct {
7539 struct perf_event_header header;
7540
7541 u32 pid;
7542 u32 tid;
cdd6c482 7543 } event_id;
8d1b2d93
PZ
7544};
7545
67516844
JO
7546static int perf_event_comm_match(struct perf_event *event)
7547{
7548 return event->attr.comm;
7549}
7550
cdd6c482 7551static void perf_event_comm_output(struct perf_event *event,
52d857a8 7552 void *data)
8d1b2d93 7553{
52d857a8 7554 struct perf_comm_event *comm_event = data;
8d1b2d93 7555 struct perf_output_handle handle;
c980d109 7556 struct perf_sample_data sample;
cdd6c482 7557 int size = comm_event->event_id.header.size;
c980d109
ACM
7558 int ret;
7559
67516844
JO
7560 if (!perf_event_comm_match(event))
7561 return;
7562
c980d109
ACM
7563 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7564 ret = perf_output_begin(&handle, event,
a7ac67ea 7565 comm_event->event_id.header.size);
8d1b2d93
PZ
7566
7567 if (ret)
c980d109 7568 goto out;
8d1b2d93 7569
cdd6c482
IM
7570 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7571 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 7572
cdd6c482 7573 perf_output_put(&handle, comm_event->event_id);
76369139 7574 __output_copy(&handle, comm_event->comm,
8d1b2d93 7575 comm_event->comm_size);
c980d109
ACM
7576
7577 perf_event__output_id_sample(event, &handle, &sample);
7578
8d1b2d93 7579 perf_output_end(&handle);
c980d109
ACM
7580out:
7581 comm_event->event_id.header.size = size;
8d1b2d93
PZ
7582}
7583
cdd6c482 7584static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 7585{
413ee3b4 7586 char comm[TASK_COMM_LEN];
8d1b2d93 7587 unsigned int size;
8d1b2d93 7588
413ee3b4 7589 memset(comm, 0, sizeof(comm));
96b02d78 7590 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 7591 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
7592
7593 comm_event->comm = comm;
7594 comm_event->comm_size = size;
7595
cdd6c482 7596 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 7597
aab5b71e 7598 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
7599 comm_event,
7600 NULL);
8d1b2d93
PZ
7601}
7602
82b89778 7603void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 7604{
9ee318a7
PZ
7605 struct perf_comm_event comm_event;
7606
cdd6c482 7607 if (!atomic_read(&nr_comm_events))
9ee318a7 7608 return;
a63eaf34 7609
9ee318a7 7610 comm_event = (struct perf_comm_event){
8d1b2d93 7611 .task = task,
573402db
PZ
7612 /* .comm */
7613 /* .comm_size */
cdd6c482 7614 .event_id = {
573402db 7615 .header = {
cdd6c482 7616 .type = PERF_RECORD_COMM,
82b89778 7617 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
7618 /* .size */
7619 },
7620 /* .pid */
7621 /* .tid */
8d1b2d93
PZ
7622 },
7623 };
7624
cdd6c482 7625 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
7626}
7627
e4222673
HB
7628/*
7629 * namespaces tracking
7630 */
7631
7632struct perf_namespaces_event {
7633 struct task_struct *task;
7634
7635 struct {
7636 struct perf_event_header header;
7637
7638 u32 pid;
7639 u32 tid;
7640 u64 nr_namespaces;
7641 struct perf_ns_link_info link_info[NR_NAMESPACES];
7642 } event_id;
7643};
7644
7645static int perf_event_namespaces_match(struct perf_event *event)
7646{
7647 return event->attr.namespaces;
7648}
7649
7650static void perf_event_namespaces_output(struct perf_event *event,
7651 void *data)
7652{
7653 struct perf_namespaces_event *namespaces_event = data;
7654 struct perf_output_handle handle;
7655 struct perf_sample_data sample;
34900ec5 7656 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
7657 int ret;
7658
7659 if (!perf_event_namespaces_match(event))
7660 return;
7661
7662 perf_event_header__init_id(&namespaces_event->event_id.header,
7663 &sample, event);
7664 ret = perf_output_begin(&handle, event,
7665 namespaces_event->event_id.header.size);
7666 if (ret)
34900ec5 7667 goto out;
e4222673
HB
7668
7669 namespaces_event->event_id.pid = perf_event_pid(event,
7670 namespaces_event->task);
7671 namespaces_event->event_id.tid = perf_event_tid(event,
7672 namespaces_event->task);
7673
7674 perf_output_put(&handle, namespaces_event->event_id);
7675
7676 perf_event__output_id_sample(event, &handle, &sample);
7677
7678 perf_output_end(&handle);
34900ec5
JO
7679out:
7680 namespaces_event->event_id.header.size = header_size;
e4222673
HB
7681}
7682
7683static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7684 struct task_struct *task,
7685 const struct proc_ns_operations *ns_ops)
7686{
7687 struct path ns_path;
7688 struct inode *ns_inode;
ce623f89 7689 int error;
e4222673
HB
7690
7691 error = ns_get_path(&ns_path, task, ns_ops);
7692 if (!error) {
7693 ns_inode = ns_path.dentry->d_inode;
7694 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7695 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 7696 path_put(&ns_path);
e4222673
HB
7697 }
7698}
7699
7700void perf_event_namespaces(struct task_struct *task)
7701{
7702 struct perf_namespaces_event namespaces_event;
7703 struct perf_ns_link_info *ns_link_info;
7704
7705 if (!atomic_read(&nr_namespaces_events))
7706 return;
7707
7708 namespaces_event = (struct perf_namespaces_event){
7709 .task = task,
7710 .event_id = {
7711 .header = {
7712 .type = PERF_RECORD_NAMESPACES,
7713 .misc = 0,
7714 .size = sizeof(namespaces_event.event_id),
7715 },
7716 /* .pid */
7717 /* .tid */
7718 .nr_namespaces = NR_NAMESPACES,
7719 /* .link_info[NR_NAMESPACES] */
7720 },
7721 };
7722
7723 ns_link_info = namespaces_event.event_id.link_info;
7724
7725 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7726 task, &mntns_operations);
7727
7728#ifdef CONFIG_USER_NS
7729 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7730 task, &userns_operations);
7731#endif
7732#ifdef CONFIG_NET_NS
7733 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7734 task, &netns_operations);
7735#endif
7736#ifdef CONFIG_UTS_NS
7737 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7738 task, &utsns_operations);
7739#endif
7740#ifdef CONFIG_IPC_NS
7741 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7742 task, &ipcns_operations);
7743#endif
7744#ifdef CONFIG_PID_NS
7745 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7746 task, &pidns_operations);
7747#endif
7748#ifdef CONFIG_CGROUPS
7749 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7750 task, &cgroupns_operations);
7751#endif
7752
7753 perf_iterate_sb(perf_event_namespaces_output,
7754 &namespaces_event,
7755 NULL);
7756}
7757
96aaab68
NK
7758/*
7759 * cgroup tracking
7760 */
7761#ifdef CONFIG_CGROUP_PERF
7762
7763struct perf_cgroup_event {
7764 char *path;
7765 int path_size;
7766 struct {
7767 struct perf_event_header header;
7768 u64 id;
7769 char path[];
7770 } event_id;
7771};
7772
7773static int perf_event_cgroup_match(struct perf_event *event)
7774{
7775 return event->attr.cgroup;
7776}
7777
7778static void perf_event_cgroup_output(struct perf_event *event, void *data)
7779{
7780 struct perf_cgroup_event *cgroup_event = data;
7781 struct perf_output_handle handle;
7782 struct perf_sample_data sample;
7783 u16 header_size = cgroup_event->event_id.header.size;
7784 int ret;
7785
7786 if (!perf_event_cgroup_match(event))
7787 return;
7788
7789 perf_event_header__init_id(&cgroup_event->event_id.header,
7790 &sample, event);
7791 ret = perf_output_begin(&handle, event,
7792 cgroup_event->event_id.header.size);
7793 if (ret)
7794 goto out;
7795
7796 perf_output_put(&handle, cgroup_event->event_id);
7797 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7798
7799 perf_event__output_id_sample(event, &handle, &sample);
7800
7801 perf_output_end(&handle);
7802out:
7803 cgroup_event->event_id.header.size = header_size;
7804}
7805
7806static void perf_event_cgroup(struct cgroup *cgrp)
7807{
7808 struct perf_cgroup_event cgroup_event;
7809 char path_enomem[16] = "//enomem";
7810 char *pathname;
7811 size_t size;
7812
7813 if (!atomic_read(&nr_cgroup_events))
7814 return;
7815
7816 cgroup_event = (struct perf_cgroup_event){
7817 .event_id = {
7818 .header = {
7819 .type = PERF_RECORD_CGROUP,
7820 .misc = 0,
7821 .size = sizeof(cgroup_event.event_id),
7822 },
7823 .id = cgroup_id(cgrp),
7824 },
7825 };
7826
7827 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
7828 if (pathname == NULL) {
7829 cgroup_event.path = path_enomem;
7830 } else {
7831 /* just to be sure to have enough space for alignment */
7832 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
7833 cgroup_event.path = pathname;
7834 }
7835
7836 /*
7837 * Since our buffer works in 8 byte units we need to align our string
7838 * size to a multiple of 8. However, we must guarantee the tail end is
7839 * zero'd out to avoid leaking random bits to userspace.
7840 */
7841 size = strlen(cgroup_event.path) + 1;
7842 while (!IS_ALIGNED(size, sizeof(u64)))
7843 cgroup_event.path[size++] = '\0';
7844
7845 cgroup_event.event_id.header.size += size;
7846 cgroup_event.path_size = size;
7847
7848 perf_iterate_sb(perf_event_cgroup_output,
7849 &cgroup_event,
7850 NULL);
7851
7852 kfree(pathname);
7853}
7854
7855#endif
7856
0a4a9391
PZ
7857/*
7858 * mmap tracking
7859 */
7860
7861struct perf_mmap_event {
089dd79d
PZ
7862 struct vm_area_struct *vma;
7863
7864 const char *file_name;
7865 int file_size;
13d7a241
SE
7866 int maj, min;
7867 u64 ino;
7868 u64 ino_generation;
f972eb63 7869 u32 prot, flags;
0a4a9391
PZ
7870
7871 struct {
7872 struct perf_event_header header;
7873
7874 u32 pid;
7875 u32 tid;
7876 u64 start;
7877 u64 len;
7878 u64 pgoff;
cdd6c482 7879 } event_id;
0a4a9391
PZ
7880};
7881
67516844
JO
7882static int perf_event_mmap_match(struct perf_event *event,
7883 void *data)
7884{
7885 struct perf_mmap_event *mmap_event = data;
7886 struct vm_area_struct *vma = mmap_event->vma;
7887 int executable = vma->vm_flags & VM_EXEC;
7888
7889 return (!executable && event->attr.mmap_data) ||
13d7a241 7890 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
7891}
7892
cdd6c482 7893static void perf_event_mmap_output(struct perf_event *event,
52d857a8 7894 void *data)
0a4a9391 7895{
52d857a8 7896 struct perf_mmap_event *mmap_event = data;
0a4a9391 7897 struct perf_output_handle handle;
c980d109 7898 struct perf_sample_data sample;
cdd6c482 7899 int size = mmap_event->event_id.header.size;
d9c1bb2f 7900 u32 type = mmap_event->event_id.header.type;
c980d109 7901 int ret;
0a4a9391 7902
67516844
JO
7903 if (!perf_event_mmap_match(event, data))
7904 return;
7905
13d7a241
SE
7906 if (event->attr.mmap2) {
7907 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7908 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7909 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7910 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 7911 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
7912 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7913 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
7914 }
7915
c980d109
ACM
7916 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7917 ret = perf_output_begin(&handle, event,
a7ac67ea 7918 mmap_event->event_id.header.size);
0a4a9391 7919 if (ret)
c980d109 7920 goto out;
0a4a9391 7921
cdd6c482
IM
7922 mmap_event->event_id.pid = perf_event_pid(event, current);
7923 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 7924
cdd6c482 7925 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
7926
7927 if (event->attr.mmap2) {
7928 perf_output_put(&handle, mmap_event->maj);
7929 perf_output_put(&handle, mmap_event->min);
7930 perf_output_put(&handle, mmap_event->ino);
7931 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
7932 perf_output_put(&handle, mmap_event->prot);
7933 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
7934 }
7935
76369139 7936 __output_copy(&handle, mmap_event->file_name,
0a4a9391 7937 mmap_event->file_size);
c980d109
ACM
7938
7939 perf_event__output_id_sample(event, &handle, &sample);
7940
78d613eb 7941 perf_output_end(&handle);
c980d109
ACM
7942out:
7943 mmap_event->event_id.header.size = size;
d9c1bb2f 7944 mmap_event->event_id.header.type = type;
0a4a9391
PZ
7945}
7946
cdd6c482 7947static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 7948{
089dd79d
PZ
7949 struct vm_area_struct *vma = mmap_event->vma;
7950 struct file *file = vma->vm_file;
13d7a241
SE
7951 int maj = 0, min = 0;
7952 u64 ino = 0, gen = 0;
f972eb63 7953 u32 prot = 0, flags = 0;
0a4a9391
PZ
7954 unsigned int size;
7955 char tmp[16];
7956 char *buf = NULL;
2c42cfbf 7957 char *name;
413ee3b4 7958
0b3589be
PZ
7959 if (vma->vm_flags & VM_READ)
7960 prot |= PROT_READ;
7961 if (vma->vm_flags & VM_WRITE)
7962 prot |= PROT_WRITE;
7963 if (vma->vm_flags & VM_EXEC)
7964 prot |= PROT_EXEC;
7965
7966 if (vma->vm_flags & VM_MAYSHARE)
7967 flags = MAP_SHARED;
7968 else
7969 flags = MAP_PRIVATE;
7970
7971 if (vma->vm_flags & VM_DENYWRITE)
7972 flags |= MAP_DENYWRITE;
7973 if (vma->vm_flags & VM_MAYEXEC)
7974 flags |= MAP_EXECUTABLE;
7975 if (vma->vm_flags & VM_LOCKED)
7976 flags |= MAP_LOCKED;
03911132 7977 if (is_vm_hugetlb_page(vma))
0b3589be
PZ
7978 flags |= MAP_HUGETLB;
7979
0a4a9391 7980 if (file) {
13d7a241
SE
7981 struct inode *inode;
7982 dev_t dev;
3ea2f2b9 7983
2c42cfbf 7984 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 7985 if (!buf) {
c7e548b4
ON
7986 name = "//enomem";
7987 goto cpy_name;
0a4a9391 7988 }
413ee3b4 7989 /*
3ea2f2b9 7990 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
7991 * need to add enough zero bytes after the string to handle
7992 * the 64bit alignment we do later.
7993 */
9bf39ab2 7994 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 7995 if (IS_ERR(name)) {
c7e548b4
ON
7996 name = "//toolong";
7997 goto cpy_name;
0a4a9391 7998 }
13d7a241
SE
7999 inode = file_inode(vma->vm_file);
8000 dev = inode->i_sb->s_dev;
8001 ino = inode->i_ino;
8002 gen = inode->i_generation;
8003 maj = MAJOR(dev);
8004 min = MINOR(dev);
f972eb63 8005
c7e548b4 8006 goto got_name;
0a4a9391 8007 } else {
fbe26abe
JO
8008 if (vma->vm_ops && vma->vm_ops->name) {
8009 name = (char *) vma->vm_ops->name(vma);
8010 if (name)
8011 goto cpy_name;
8012 }
8013
2c42cfbf 8014 name = (char *)arch_vma_name(vma);
c7e548b4
ON
8015 if (name)
8016 goto cpy_name;
089dd79d 8017
32c5fb7e 8018 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 8019 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
8020 name = "[heap]";
8021 goto cpy_name;
32c5fb7e
ON
8022 }
8023 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 8024 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
8025 name = "[stack]";
8026 goto cpy_name;
089dd79d
PZ
8027 }
8028
c7e548b4
ON
8029 name = "//anon";
8030 goto cpy_name;
0a4a9391
PZ
8031 }
8032
c7e548b4
ON
8033cpy_name:
8034 strlcpy(tmp, name, sizeof(tmp));
8035 name = tmp;
0a4a9391 8036got_name:
2c42cfbf
PZ
8037 /*
8038 * Since our buffer works in 8 byte units we need to align our string
8039 * size to a multiple of 8. However, we must guarantee the tail end is
8040 * zero'd out to avoid leaking random bits to userspace.
8041 */
8042 size = strlen(name)+1;
8043 while (!IS_ALIGNED(size, sizeof(u64)))
8044 name[size++] = '\0';
0a4a9391
PZ
8045
8046 mmap_event->file_name = name;
8047 mmap_event->file_size = size;
13d7a241
SE
8048 mmap_event->maj = maj;
8049 mmap_event->min = min;
8050 mmap_event->ino = ino;
8051 mmap_event->ino_generation = gen;
f972eb63
PZ
8052 mmap_event->prot = prot;
8053 mmap_event->flags = flags;
0a4a9391 8054
2fe85427
SE
8055 if (!(vma->vm_flags & VM_EXEC))
8056 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8057
cdd6c482 8058 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 8059
aab5b71e 8060 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
8061 mmap_event,
8062 NULL);
665c2142 8063
0a4a9391
PZ
8064 kfree(buf);
8065}
8066
375637bc
AS
8067/*
8068 * Check whether inode and address range match filter criteria.
8069 */
8070static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8071 struct file *file, unsigned long offset,
8072 unsigned long size)
8073{
7f635ff1
MP
8074 /* d_inode(NULL) won't be equal to any mapped user-space file */
8075 if (!filter->path.dentry)
8076 return false;
8077
9511bce9 8078 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
8079 return false;
8080
8081 if (filter->offset > offset + size)
8082 return false;
8083
8084 if (filter->offset + filter->size < offset)
8085 return false;
8086
8087 return true;
8088}
8089
c60f83b8
AS
8090static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8091 struct vm_area_struct *vma,
8092 struct perf_addr_filter_range *fr)
8093{
8094 unsigned long vma_size = vma->vm_end - vma->vm_start;
8095 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8096 struct file *file = vma->vm_file;
8097
8098 if (!perf_addr_filter_match(filter, file, off, vma_size))
8099 return false;
8100
8101 if (filter->offset < off) {
8102 fr->start = vma->vm_start;
8103 fr->size = min(vma_size, filter->size - (off - filter->offset));
8104 } else {
8105 fr->start = vma->vm_start + filter->offset - off;
8106 fr->size = min(vma->vm_end - fr->start, filter->size);
8107 }
8108
8109 return true;
8110}
8111
375637bc
AS
8112static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8113{
8114 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8115 struct vm_area_struct *vma = data;
375637bc
AS
8116 struct perf_addr_filter *filter;
8117 unsigned int restart = 0, count = 0;
c60f83b8 8118 unsigned long flags;
375637bc
AS
8119
8120 if (!has_addr_filter(event))
8121 return;
8122
c60f83b8 8123 if (!vma->vm_file)
375637bc
AS
8124 return;
8125
8126 raw_spin_lock_irqsave(&ifh->lock, flags);
8127 list_for_each_entry(filter, &ifh->list, entry) {
c60f83b8
AS
8128 if (perf_addr_filter_vma_adjust(filter, vma,
8129 &event->addr_filter_ranges[count]))
375637bc 8130 restart++;
375637bc
AS
8131
8132 count++;
8133 }
8134
8135 if (restart)
8136 event->addr_filters_gen++;
8137 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8138
8139 if (restart)
767ae086 8140 perf_event_stop(event, 1);
375637bc
AS
8141}
8142
8143/*
8144 * Adjust all task's events' filters to the new vma
8145 */
8146static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8147{
8148 struct perf_event_context *ctx;
8149 int ctxn;
8150
12b40a23
MP
8151 /*
8152 * Data tracing isn't supported yet and as such there is no need
8153 * to keep track of anything that isn't related to executable code:
8154 */
8155 if (!(vma->vm_flags & VM_EXEC))
8156 return;
8157
375637bc
AS
8158 rcu_read_lock();
8159 for_each_task_context_nr(ctxn) {
8160 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8161 if (!ctx)
8162 continue;
8163
aab5b71e 8164 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
8165 }
8166 rcu_read_unlock();
8167}
8168
3af9e859 8169void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 8170{
9ee318a7
PZ
8171 struct perf_mmap_event mmap_event;
8172
cdd6c482 8173 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
8174 return;
8175
8176 mmap_event = (struct perf_mmap_event){
089dd79d 8177 .vma = vma,
573402db
PZ
8178 /* .file_name */
8179 /* .file_size */
cdd6c482 8180 .event_id = {
573402db 8181 .header = {
cdd6c482 8182 .type = PERF_RECORD_MMAP,
39447b38 8183 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
8184 /* .size */
8185 },
8186 /* .pid */
8187 /* .tid */
089dd79d
PZ
8188 .start = vma->vm_start,
8189 .len = vma->vm_end - vma->vm_start,
3a0304e9 8190 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 8191 },
13d7a241
SE
8192 /* .maj (attr_mmap2 only) */
8193 /* .min (attr_mmap2 only) */
8194 /* .ino (attr_mmap2 only) */
8195 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
8196 /* .prot (attr_mmap2 only) */
8197 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
8198 };
8199
375637bc 8200 perf_addr_filters_adjust(vma);
cdd6c482 8201 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
8202}
8203
68db7e98
AS
8204void perf_event_aux_event(struct perf_event *event, unsigned long head,
8205 unsigned long size, u64 flags)
8206{
8207 struct perf_output_handle handle;
8208 struct perf_sample_data sample;
8209 struct perf_aux_event {
8210 struct perf_event_header header;
8211 u64 offset;
8212 u64 size;
8213 u64 flags;
8214 } rec = {
8215 .header = {
8216 .type = PERF_RECORD_AUX,
8217 .misc = 0,
8218 .size = sizeof(rec),
8219 },
8220 .offset = head,
8221 .size = size,
8222 .flags = flags,
8223 };
8224 int ret;
8225
8226 perf_event_header__init_id(&rec.header, &sample, event);
8227 ret = perf_output_begin(&handle, event, rec.header.size);
8228
8229 if (ret)
8230 return;
8231
8232 perf_output_put(&handle, rec);
8233 perf_event__output_id_sample(event, &handle, &sample);
8234
8235 perf_output_end(&handle);
8236}
8237
f38b0dbb
KL
8238/*
8239 * Lost/dropped samples logging
8240 */
8241void perf_log_lost_samples(struct perf_event *event, u64 lost)
8242{
8243 struct perf_output_handle handle;
8244 struct perf_sample_data sample;
8245 int ret;
8246
8247 struct {
8248 struct perf_event_header header;
8249 u64 lost;
8250 } lost_samples_event = {
8251 .header = {
8252 .type = PERF_RECORD_LOST_SAMPLES,
8253 .misc = 0,
8254 .size = sizeof(lost_samples_event),
8255 },
8256 .lost = lost,
8257 };
8258
8259 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8260
8261 ret = perf_output_begin(&handle, event,
8262 lost_samples_event.header.size);
8263 if (ret)
8264 return;
8265
8266 perf_output_put(&handle, lost_samples_event);
8267 perf_event__output_id_sample(event, &handle, &sample);
8268 perf_output_end(&handle);
8269}
8270
45ac1403
AH
8271/*
8272 * context_switch tracking
8273 */
8274
8275struct perf_switch_event {
8276 struct task_struct *task;
8277 struct task_struct *next_prev;
8278
8279 struct {
8280 struct perf_event_header header;
8281 u32 next_prev_pid;
8282 u32 next_prev_tid;
8283 } event_id;
8284};
8285
8286static int perf_event_switch_match(struct perf_event *event)
8287{
8288 return event->attr.context_switch;
8289}
8290
8291static void perf_event_switch_output(struct perf_event *event, void *data)
8292{
8293 struct perf_switch_event *se = data;
8294 struct perf_output_handle handle;
8295 struct perf_sample_data sample;
8296 int ret;
8297
8298 if (!perf_event_switch_match(event))
8299 return;
8300
8301 /* Only CPU-wide events are allowed to see next/prev pid/tid */
8302 if (event->ctx->task) {
8303 se->event_id.header.type = PERF_RECORD_SWITCH;
8304 se->event_id.header.size = sizeof(se->event_id.header);
8305 } else {
8306 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8307 se->event_id.header.size = sizeof(se->event_id);
8308 se->event_id.next_prev_pid =
8309 perf_event_pid(event, se->next_prev);
8310 se->event_id.next_prev_tid =
8311 perf_event_tid(event, se->next_prev);
8312 }
8313
8314 perf_event_header__init_id(&se->event_id.header, &sample, event);
8315
8316 ret = perf_output_begin(&handle, event, se->event_id.header.size);
8317 if (ret)
8318 return;
8319
8320 if (event->ctx->task)
8321 perf_output_put(&handle, se->event_id.header);
8322 else
8323 perf_output_put(&handle, se->event_id);
8324
8325 perf_event__output_id_sample(event, &handle, &sample);
8326
8327 perf_output_end(&handle);
8328}
8329
8330static void perf_event_switch(struct task_struct *task,
8331 struct task_struct *next_prev, bool sched_in)
8332{
8333 struct perf_switch_event switch_event;
8334
8335 /* N.B. caller checks nr_switch_events != 0 */
8336
8337 switch_event = (struct perf_switch_event){
8338 .task = task,
8339 .next_prev = next_prev,
8340 .event_id = {
8341 .header = {
8342 /* .type */
8343 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8344 /* .size */
8345 },
8346 /* .next_prev_pid */
8347 /* .next_prev_tid */
8348 },
8349 };
8350
101592b4
AB
8351 if (!sched_in && task->state == TASK_RUNNING)
8352 switch_event.event_id.header.misc |=
8353 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8354
aab5b71e 8355 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
8356 &switch_event,
8357 NULL);
8358}
8359
a78ac325
PZ
8360/*
8361 * IRQ throttle logging
8362 */
8363
cdd6c482 8364static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
8365{
8366 struct perf_output_handle handle;
c980d109 8367 struct perf_sample_data sample;
a78ac325
PZ
8368 int ret;
8369
8370 struct {
8371 struct perf_event_header header;
8372 u64 time;
cca3f454 8373 u64 id;
7f453c24 8374 u64 stream_id;
a78ac325
PZ
8375 } throttle_event = {
8376 .header = {
cdd6c482 8377 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
8378 .misc = 0,
8379 .size = sizeof(throttle_event),
8380 },
34f43927 8381 .time = perf_event_clock(event),
cdd6c482
IM
8382 .id = primary_event_id(event),
8383 .stream_id = event->id,
a78ac325
PZ
8384 };
8385
966ee4d6 8386 if (enable)
cdd6c482 8387 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 8388
c980d109
ACM
8389 perf_event_header__init_id(&throttle_event.header, &sample, event);
8390
8391 ret = perf_output_begin(&handle, event,
a7ac67ea 8392 throttle_event.header.size);
a78ac325
PZ
8393 if (ret)
8394 return;
8395
8396 perf_output_put(&handle, throttle_event);
c980d109 8397 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
8398 perf_output_end(&handle);
8399}
8400
76193a94
SL
8401/*
8402 * ksymbol register/unregister tracking
8403 */
8404
8405struct perf_ksymbol_event {
8406 const char *name;
8407 int name_len;
8408 struct {
8409 struct perf_event_header header;
8410 u64 addr;
8411 u32 len;
8412 u16 ksym_type;
8413 u16 flags;
8414 } event_id;
8415};
8416
8417static int perf_event_ksymbol_match(struct perf_event *event)
8418{
8419 return event->attr.ksymbol;
8420}
8421
8422static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8423{
8424 struct perf_ksymbol_event *ksymbol_event = data;
8425 struct perf_output_handle handle;
8426 struct perf_sample_data sample;
8427 int ret;
8428
8429 if (!perf_event_ksymbol_match(event))
8430 return;
8431
8432 perf_event_header__init_id(&ksymbol_event->event_id.header,
8433 &sample, event);
8434 ret = perf_output_begin(&handle, event,
8435 ksymbol_event->event_id.header.size);
8436 if (ret)
8437 return;
8438
8439 perf_output_put(&handle, ksymbol_event->event_id);
8440 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8441 perf_event__output_id_sample(event, &handle, &sample);
8442
8443 perf_output_end(&handle);
8444}
8445
8446void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8447 const char *sym)
8448{
8449 struct perf_ksymbol_event ksymbol_event;
8450 char name[KSYM_NAME_LEN];
8451 u16 flags = 0;
8452 int name_len;
8453
8454 if (!atomic_read(&nr_ksymbol_events))
8455 return;
8456
8457 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8458 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8459 goto err;
8460
8461 strlcpy(name, sym, KSYM_NAME_LEN);
8462 name_len = strlen(name) + 1;
8463 while (!IS_ALIGNED(name_len, sizeof(u64)))
8464 name[name_len++] = '\0';
8465 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8466
8467 if (unregister)
8468 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8469
8470 ksymbol_event = (struct perf_ksymbol_event){
8471 .name = name,
8472 .name_len = name_len,
8473 .event_id = {
8474 .header = {
8475 .type = PERF_RECORD_KSYMBOL,
8476 .size = sizeof(ksymbol_event.event_id) +
8477 name_len,
8478 },
8479 .addr = addr,
8480 .len = len,
8481 .ksym_type = ksym_type,
8482 .flags = flags,
8483 },
8484 };
8485
8486 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8487 return;
8488err:
8489 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8490}
8491
6ee52e2a
SL
8492/*
8493 * bpf program load/unload tracking
8494 */
8495
8496struct perf_bpf_event {
8497 struct bpf_prog *prog;
8498 struct {
8499 struct perf_event_header header;
8500 u16 type;
8501 u16 flags;
8502 u32 id;
8503 u8 tag[BPF_TAG_SIZE];
8504 } event_id;
8505};
8506
8507static int perf_event_bpf_match(struct perf_event *event)
8508{
8509 return event->attr.bpf_event;
8510}
8511
8512static void perf_event_bpf_output(struct perf_event *event, void *data)
8513{
8514 struct perf_bpf_event *bpf_event = data;
8515 struct perf_output_handle handle;
8516 struct perf_sample_data sample;
8517 int ret;
8518
8519 if (!perf_event_bpf_match(event))
8520 return;
8521
8522 perf_event_header__init_id(&bpf_event->event_id.header,
8523 &sample, event);
8524 ret = perf_output_begin(&handle, event,
8525 bpf_event->event_id.header.size);
8526 if (ret)
8527 return;
8528
8529 perf_output_put(&handle, bpf_event->event_id);
8530 perf_event__output_id_sample(event, &handle, &sample);
8531
8532 perf_output_end(&handle);
8533}
8534
8535static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8536 enum perf_bpf_event_type type)
8537{
8538 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
6ee52e2a
SL
8539 int i;
8540
8541 if (prog->aux->func_cnt == 0) {
6ee52e2a
SL
8542 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8543 (u64)(unsigned long)prog->bpf_func,
bfea9a85
JO
8544 prog->jited_len, unregister,
8545 prog->aux->ksym.name);
6ee52e2a
SL
8546 } else {
8547 for (i = 0; i < prog->aux->func_cnt; i++) {
8548 struct bpf_prog *subprog = prog->aux->func[i];
8549
6ee52e2a
SL
8550 perf_event_ksymbol(
8551 PERF_RECORD_KSYMBOL_TYPE_BPF,
8552 (u64)(unsigned long)subprog->bpf_func,
bfea9a85
JO
8553 subprog->jited_len, unregister,
8554 prog->aux->ksym.name);
6ee52e2a
SL
8555 }
8556 }
8557}
8558
8559void perf_event_bpf_event(struct bpf_prog *prog,
8560 enum perf_bpf_event_type type,
8561 u16 flags)
8562{
8563 struct perf_bpf_event bpf_event;
8564
8565 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8566 type >= PERF_BPF_EVENT_MAX)
8567 return;
8568
8569 switch (type) {
8570 case PERF_BPF_EVENT_PROG_LOAD:
8571 case PERF_BPF_EVENT_PROG_UNLOAD:
8572 if (atomic_read(&nr_ksymbol_events))
8573 perf_event_bpf_emit_ksymbols(prog, type);
8574 break;
8575 default:
8576 break;
8577 }
8578
8579 if (!atomic_read(&nr_bpf_events))
8580 return;
8581
8582 bpf_event = (struct perf_bpf_event){
8583 .prog = prog,
8584 .event_id = {
8585 .header = {
8586 .type = PERF_RECORD_BPF_EVENT,
8587 .size = sizeof(bpf_event.event_id),
8588 },
8589 .type = type,
8590 .flags = flags,
8591 .id = prog->aux->id,
8592 },
8593 };
8594
8595 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8596
8597 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8598 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8599}
8600
8d4e6c4c
AS
8601void perf_event_itrace_started(struct perf_event *event)
8602{
8603 event->attach_state |= PERF_ATTACH_ITRACE;
8604}
8605
ec0d7729
AS
8606static void perf_log_itrace_start(struct perf_event *event)
8607{
8608 struct perf_output_handle handle;
8609 struct perf_sample_data sample;
8610 struct perf_aux_event {
8611 struct perf_event_header header;
8612 u32 pid;
8613 u32 tid;
8614 } rec;
8615 int ret;
8616
8617 if (event->parent)
8618 event = event->parent;
8619
8620 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 8621 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
8622 return;
8623
ec0d7729
AS
8624 rec.header.type = PERF_RECORD_ITRACE_START;
8625 rec.header.misc = 0;
8626 rec.header.size = sizeof(rec);
8627 rec.pid = perf_event_pid(event, current);
8628 rec.tid = perf_event_tid(event, current);
8629
8630 perf_event_header__init_id(&rec.header, &sample, event);
8631 ret = perf_output_begin(&handle, event, rec.header.size);
8632
8633 if (ret)
8634 return;
8635
8636 perf_output_put(&handle, rec);
8637 perf_event__output_id_sample(event, &handle, &sample);
8638
8639 perf_output_end(&handle);
8640}
8641
475113d9
JO
8642static int
8643__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 8644{
cdd6c482 8645 struct hw_perf_event *hwc = &event->hw;
79f14641 8646 int ret = 0;
475113d9 8647 u64 seq;
96398826 8648
e050e3f0
SE
8649 seq = __this_cpu_read(perf_throttled_seq);
8650 if (seq != hwc->interrupts_seq) {
8651 hwc->interrupts_seq = seq;
8652 hwc->interrupts = 1;
8653 } else {
8654 hwc->interrupts++;
8655 if (unlikely(throttle
8656 && hwc->interrupts >= max_samples_per_tick)) {
8657 __this_cpu_inc(perf_throttled_count);
555e0c1e 8658 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
8659 hwc->interrupts = MAX_INTERRUPTS;
8660 perf_log_throttle(event, 0);
a78ac325
PZ
8661 ret = 1;
8662 }
e050e3f0 8663 }
60db5e09 8664
cdd6c482 8665 if (event->attr.freq) {
def0a9b2 8666 u64 now = perf_clock();
abd50713 8667 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 8668
abd50713 8669 hwc->freq_time_stamp = now;
bd2b5b12 8670
abd50713 8671 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 8672 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
8673 }
8674
475113d9
JO
8675 return ret;
8676}
8677
8678int perf_event_account_interrupt(struct perf_event *event)
8679{
8680 return __perf_event_account_interrupt(event, 1);
8681}
8682
8683/*
8684 * Generic event overflow handling, sampling.
8685 */
8686
8687static int __perf_event_overflow(struct perf_event *event,
8688 int throttle, struct perf_sample_data *data,
8689 struct pt_regs *regs)
8690{
8691 int events = atomic_read(&event->event_limit);
8692 int ret = 0;
8693
8694 /*
8695 * Non-sampling counters might still use the PMI to fold short
8696 * hardware counters, ignore those.
8697 */
8698 if (unlikely(!is_sampling_event(event)))
8699 return 0;
8700
8701 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 8702
2023b359
PZ
8703 /*
8704 * XXX event_limit might not quite work as expected on inherited
cdd6c482 8705 * events
2023b359
PZ
8706 */
8707
cdd6c482
IM
8708 event->pending_kill = POLL_IN;
8709 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 8710 ret = 1;
cdd6c482 8711 event->pending_kill = POLL_HUP;
5aab90ce
JO
8712
8713 perf_event_disable_inatomic(event);
79f14641
PZ
8714 }
8715
aa6a5f3c 8716 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 8717
fed66e2c 8718 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
8719 event->pending_wakeup = 1;
8720 irq_work_queue(&event->pending);
f506b3dc
PZ
8721 }
8722
79f14641 8723 return ret;
f6c7d5fe
PZ
8724}
8725
a8b0ca17 8726int perf_event_overflow(struct perf_event *event,
5622f295
MM
8727 struct perf_sample_data *data,
8728 struct pt_regs *regs)
850bc73f 8729{
a8b0ca17 8730 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
8731}
8732
15dbf27c 8733/*
cdd6c482 8734 * Generic software event infrastructure
15dbf27c
PZ
8735 */
8736
b28ab83c
PZ
8737struct swevent_htable {
8738 struct swevent_hlist *swevent_hlist;
8739 struct mutex hlist_mutex;
8740 int hlist_refcount;
8741
8742 /* Recursion avoidance in each contexts */
8743 int recursion[PERF_NR_CONTEXTS];
8744};
8745
8746static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8747
7b4b6658 8748/*
cdd6c482
IM
8749 * We directly increment event->count and keep a second value in
8750 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
8751 * is kept in the range [-sample_period, 0] so that we can use the
8752 * sign as trigger.
8753 */
8754
ab573844 8755u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 8756{
cdd6c482 8757 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
8758 u64 period = hwc->last_period;
8759 u64 nr, offset;
8760 s64 old, val;
8761
8762 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
8763
8764again:
e7850595 8765 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
8766 if (val < 0)
8767 return 0;
15dbf27c 8768
7b4b6658
PZ
8769 nr = div64_u64(period + val, period);
8770 offset = nr * period;
8771 val -= offset;
e7850595 8772 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 8773 goto again;
15dbf27c 8774
7b4b6658 8775 return nr;
15dbf27c
PZ
8776}
8777
0cff784a 8778static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 8779 struct perf_sample_data *data,
5622f295 8780 struct pt_regs *regs)
15dbf27c 8781{
cdd6c482 8782 struct hw_perf_event *hwc = &event->hw;
850bc73f 8783 int throttle = 0;
15dbf27c 8784
0cff784a
PZ
8785 if (!overflow)
8786 overflow = perf_swevent_set_period(event);
15dbf27c 8787
7b4b6658
PZ
8788 if (hwc->interrupts == MAX_INTERRUPTS)
8789 return;
15dbf27c 8790
7b4b6658 8791 for (; overflow; overflow--) {
a8b0ca17 8792 if (__perf_event_overflow(event, throttle,
5622f295 8793 data, regs)) {
7b4b6658
PZ
8794 /*
8795 * We inhibit the overflow from happening when
8796 * hwc->interrupts == MAX_INTERRUPTS.
8797 */
8798 break;
8799 }
cf450a73 8800 throttle = 1;
7b4b6658 8801 }
15dbf27c
PZ
8802}
8803
a4eaf7f1 8804static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 8805 struct perf_sample_data *data,
5622f295 8806 struct pt_regs *regs)
7b4b6658 8807{
cdd6c482 8808 struct hw_perf_event *hwc = &event->hw;
d6d020e9 8809
e7850595 8810 local64_add(nr, &event->count);
d6d020e9 8811
0cff784a
PZ
8812 if (!regs)
8813 return;
8814
6c7e550f 8815 if (!is_sampling_event(event))
7b4b6658 8816 return;
d6d020e9 8817
5d81e5cf
AV
8818 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8819 data->period = nr;
8820 return perf_swevent_overflow(event, 1, data, regs);
8821 } else
8822 data->period = event->hw.last_period;
8823
0cff784a 8824 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 8825 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 8826
e7850595 8827 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 8828 return;
df1a132b 8829
a8b0ca17 8830 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
8831}
8832
f5ffe02e
FW
8833static int perf_exclude_event(struct perf_event *event,
8834 struct pt_regs *regs)
8835{
a4eaf7f1 8836 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 8837 return 1;
a4eaf7f1 8838
f5ffe02e
FW
8839 if (regs) {
8840 if (event->attr.exclude_user && user_mode(regs))
8841 return 1;
8842
8843 if (event->attr.exclude_kernel && !user_mode(regs))
8844 return 1;
8845 }
8846
8847 return 0;
8848}
8849
cdd6c482 8850static int perf_swevent_match(struct perf_event *event,
1c432d89 8851 enum perf_type_id type,
6fb2915d
LZ
8852 u32 event_id,
8853 struct perf_sample_data *data,
8854 struct pt_regs *regs)
15dbf27c 8855{
cdd6c482 8856 if (event->attr.type != type)
a21ca2ca 8857 return 0;
f5ffe02e 8858
cdd6c482 8859 if (event->attr.config != event_id)
15dbf27c
PZ
8860 return 0;
8861
f5ffe02e
FW
8862 if (perf_exclude_event(event, regs))
8863 return 0;
15dbf27c
PZ
8864
8865 return 1;
8866}
8867
76e1d904
FW
8868static inline u64 swevent_hash(u64 type, u32 event_id)
8869{
8870 u64 val = event_id | (type << 32);
8871
8872 return hash_64(val, SWEVENT_HLIST_BITS);
8873}
8874
49f135ed
FW
8875static inline struct hlist_head *
8876__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 8877{
49f135ed
FW
8878 u64 hash = swevent_hash(type, event_id);
8879
8880 return &hlist->heads[hash];
8881}
76e1d904 8882
49f135ed
FW
8883/* For the read side: events when they trigger */
8884static inline struct hlist_head *
b28ab83c 8885find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
8886{
8887 struct swevent_hlist *hlist;
76e1d904 8888
b28ab83c 8889 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
8890 if (!hlist)
8891 return NULL;
8892
49f135ed
FW
8893 return __find_swevent_head(hlist, type, event_id);
8894}
8895
8896/* For the event head insertion and removal in the hlist */
8897static inline struct hlist_head *
b28ab83c 8898find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
8899{
8900 struct swevent_hlist *hlist;
8901 u32 event_id = event->attr.config;
8902 u64 type = event->attr.type;
8903
8904 /*
8905 * Event scheduling is always serialized against hlist allocation
8906 * and release. Which makes the protected version suitable here.
8907 * The context lock guarantees that.
8908 */
b28ab83c 8909 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
8910 lockdep_is_held(&event->ctx->lock));
8911 if (!hlist)
8912 return NULL;
8913
8914 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
8915}
8916
8917static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 8918 u64 nr,
76e1d904
FW
8919 struct perf_sample_data *data,
8920 struct pt_regs *regs)
15dbf27c 8921{
4a32fea9 8922 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8923 struct perf_event *event;
76e1d904 8924 struct hlist_head *head;
15dbf27c 8925
76e1d904 8926 rcu_read_lock();
b28ab83c 8927 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
8928 if (!head)
8929 goto end;
8930
b67bfe0d 8931 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 8932 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 8933 perf_swevent_event(event, nr, data, regs);
15dbf27c 8934 }
76e1d904
FW
8935end:
8936 rcu_read_unlock();
15dbf27c
PZ
8937}
8938
86038c5e
PZI
8939DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8940
4ed7c92d 8941int perf_swevent_get_recursion_context(void)
96f6d444 8942{
4a32fea9 8943 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 8944
b28ab83c 8945 return get_recursion_context(swhash->recursion);
96f6d444 8946}
645e8cc0 8947EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 8948
98b5c2c6 8949void perf_swevent_put_recursion_context(int rctx)
15dbf27c 8950{
4a32fea9 8951 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 8952
b28ab83c 8953 put_recursion_context(swhash->recursion, rctx);
ce71b9df 8954}
15dbf27c 8955
86038c5e 8956void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 8957{
a4234bfc 8958 struct perf_sample_data data;
4ed7c92d 8959
86038c5e 8960 if (WARN_ON_ONCE(!regs))
4ed7c92d 8961 return;
a4234bfc 8962
fd0d000b 8963 perf_sample_data_init(&data, addr, 0);
a8b0ca17 8964 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
8965}
8966
8967void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8968{
8969 int rctx;
8970
8971 preempt_disable_notrace();
8972 rctx = perf_swevent_get_recursion_context();
8973 if (unlikely(rctx < 0))
8974 goto fail;
8975
8976 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
8977
8978 perf_swevent_put_recursion_context(rctx);
86038c5e 8979fail:
1c024eca 8980 preempt_enable_notrace();
b8e83514
PZ
8981}
8982
cdd6c482 8983static void perf_swevent_read(struct perf_event *event)
15dbf27c 8984{
15dbf27c
PZ
8985}
8986
a4eaf7f1 8987static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 8988{
4a32fea9 8989 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8990 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
8991 struct hlist_head *head;
8992
6c7e550f 8993 if (is_sampling_event(event)) {
7b4b6658 8994 hwc->last_period = hwc->sample_period;
cdd6c482 8995 perf_swevent_set_period(event);
7b4b6658 8996 }
76e1d904 8997
a4eaf7f1
PZ
8998 hwc->state = !(flags & PERF_EF_START);
8999
b28ab83c 9000 head = find_swevent_head(swhash, event);
12ca6ad2 9001 if (WARN_ON_ONCE(!head))
76e1d904
FW
9002 return -EINVAL;
9003
9004 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 9005 perf_event_update_userpage(event);
76e1d904 9006
15dbf27c
PZ
9007 return 0;
9008}
9009
a4eaf7f1 9010static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 9011{
76e1d904 9012 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
9013}
9014
a4eaf7f1 9015static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 9016{
a4eaf7f1 9017 event->hw.state = 0;
d6d020e9 9018}
aa9c4c0f 9019
a4eaf7f1 9020static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 9021{
a4eaf7f1 9022 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
9023}
9024
49f135ed
FW
9025/* Deref the hlist from the update side */
9026static inline struct swevent_hlist *
b28ab83c 9027swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 9028{
b28ab83c
PZ
9029 return rcu_dereference_protected(swhash->swevent_hlist,
9030 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
9031}
9032
b28ab83c 9033static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 9034{
b28ab83c 9035 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 9036
49f135ed 9037 if (!hlist)
76e1d904
FW
9038 return;
9039
70691d4a 9040 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 9041 kfree_rcu(hlist, rcu_head);
76e1d904
FW
9042}
9043
3b364d7b 9044static void swevent_hlist_put_cpu(int cpu)
76e1d904 9045{
b28ab83c 9046 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 9047
b28ab83c 9048 mutex_lock(&swhash->hlist_mutex);
76e1d904 9049
b28ab83c
PZ
9050 if (!--swhash->hlist_refcount)
9051 swevent_hlist_release(swhash);
76e1d904 9052
b28ab83c 9053 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
9054}
9055
3b364d7b 9056static void swevent_hlist_put(void)
76e1d904
FW
9057{
9058 int cpu;
9059
76e1d904 9060 for_each_possible_cpu(cpu)
3b364d7b 9061 swevent_hlist_put_cpu(cpu);
76e1d904
FW
9062}
9063
3b364d7b 9064static int swevent_hlist_get_cpu(int cpu)
76e1d904 9065{
b28ab83c 9066 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
9067 int err = 0;
9068
b28ab83c 9069 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
9070 if (!swevent_hlist_deref(swhash) &&
9071 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
9072 struct swevent_hlist *hlist;
9073
9074 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9075 if (!hlist) {
9076 err = -ENOMEM;
9077 goto exit;
9078 }
b28ab83c 9079 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9080 }
b28ab83c 9081 swhash->hlist_refcount++;
9ed6060d 9082exit:
b28ab83c 9083 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
9084
9085 return err;
9086}
9087
3b364d7b 9088static int swevent_hlist_get(void)
76e1d904 9089{
3b364d7b 9090 int err, cpu, failed_cpu;
76e1d904 9091
a63fbed7 9092 mutex_lock(&pmus_lock);
76e1d904 9093 for_each_possible_cpu(cpu) {
3b364d7b 9094 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
9095 if (err) {
9096 failed_cpu = cpu;
9097 goto fail;
9098 }
9099 }
a63fbed7 9100 mutex_unlock(&pmus_lock);
76e1d904 9101 return 0;
9ed6060d 9102fail:
76e1d904
FW
9103 for_each_possible_cpu(cpu) {
9104 if (cpu == failed_cpu)
9105 break;
3b364d7b 9106 swevent_hlist_put_cpu(cpu);
76e1d904 9107 }
a63fbed7 9108 mutex_unlock(&pmus_lock);
76e1d904
FW
9109 return err;
9110}
9111
c5905afb 9112struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 9113
b0a873eb
PZ
9114static void sw_perf_event_destroy(struct perf_event *event)
9115{
9116 u64 event_id = event->attr.config;
95476b64 9117
b0a873eb
PZ
9118 WARN_ON(event->parent);
9119
c5905afb 9120 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 9121 swevent_hlist_put();
b0a873eb
PZ
9122}
9123
9124static int perf_swevent_init(struct perf_event *event)
9125{
8176cced 9126 u64 event_id = event->attr.config;
b0a873eb
PZ
9127
9128 if (event->attr.type != PERF_TYPE_SOFTWARE)
9129 return -ENOENT;
9130
2481c5fa
SE
9131 /*
9132 * no branch sampling for software events
9133 */
9134 if (has_branch_stack(event))
9135 return -EOPNOTSUPP;
9136
b0a873eb
PZ
9137 switch (event_id) {
9138 case PERF_COUNT_SW_CPU_CLOCK:
9139 case PERF_COUNT_SW_TASK_CLOCK:
9140 return -ENOENT;
9141
9142 default:
9143 break;
9144 }
9145
ce677831 9146 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
9147 return -ENOENT;
9148
9149 if (!event->parent) {
9150 int err;
9151
3b364d7b 9152 err = swevent_hlist_get();
b0a873eb
PZ
9153 if (err)
9154 return err;
9155
c5905afb 9156 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
9157 event->destroy = sw_perf_event_destroy;
9158 }
9159
9160 return 0;
9161}
9162
9163static struct pmu perf_swevent = {
89a1e187 9164 .task_ctx_nr = perf_sw_context,
95476b64 9165
34f43927
PZ
9166 .capabilities = PERF_PMU_CAP_NO_NMI,
9167
b0a873eb 9168 .event_init = perf_swevent_init,
a4eaf7f1
PZ
9169 .add = perf_swevent_add,
9170 .del = perf_swevent_del,
9171 .start = perf_swevent_start,
9172 .stop = perf_swevent_stop,
1c024eca 9173 .read = perf_swevent_read,
1c024eca
PZ
9174};
9175
b0a873eb
PZ
9176#ifdef CONFIG_EVENT_TRACING
9177
1c024eca
PZ
9178static int perf_tp_filter_match(struct perf_event *event,
9179 struct perf_sample_data *data)
9180{
7e3f977e 9181 void *record = data->raw->frag.data;
1c024eca 9182
b71b437e
PZ
9183 /* only top level events have filters set */
9184 if (event->parent)
9185 event = event->parent;
9186
1c024eca
PZ
9187 if (likely(!event->filter) || filter_match_preds(event->filter, record))
9188 return 1;
9189 return 0;
9190}
9191
9192static int perf_tp_event_match(struct perf_event *event,
9193 struct perf_sample_data *data,
9194 struct pt_regs *regs)
9195{
a0f7d0f7
FW
9196 if (event->hw.state & PERF_HES_STOPPED)
9197 return 0;
580d607c 9198 /*
9fd2e48b 9199 * If exclude_kernel, only trace user-space tracepoints (uprobes)
580d607c 9200 */
9fd2e48b 9201 if (event->attr.exclude_kernel && !user_mode(regs))
1c024eca
PZ
9202 return 0;
9203
9204 if (!perf_tp_filter_match(event, data))
9205 return 0;
9206
9207 return 1;
9208}
9209
85b67bcb
AS
9210void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9211 struct trace_event_call *call, u64 count,
9212 struct pt_regs *regs, struct hlist_head *head,
9213 struct task_struct *task)
9214{
e87c6bc3 9215 if (bpf_prog_array_valid(call)) {
85b67bcb 9216 *(struct pt_regs **)raw_data = regs;
e87c6bc3 9217 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
9218 perf_swevent_put_recursion_context(rctx);
9219 return;
9220 }
9221 }
9222 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 9223 rctx, task);
85b67bcb
AS
9224}
9225EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9226
1e1dcd93 9227void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 9228 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 9229 struct task_struct *task)
95476b64
FW
9230{
9231 struct perf_sample_data data;
8fd0fbbe 9232 struct perf_event *event;
1c024eca 9233
95476b64 9234 struct perf_raw_record raw = {
7e3f977e
DB
9235 .frag = {
9236 .size = entry_size,
9237 .data = record,
9238 },
95476b64
FW
9239 };
9240
1e1dcd93 9241 perf_sample_data_init(&data, 0, 0);
95476b64
FW
9242 data.raw = &raw;
9243
1e1dcd93
AS
9244 perf_trace_buf_update(record, event_type);
9245
8fd0fbbe 9246 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 9247 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 9248 perf_swevent_event(event, count, &data, regs);
4f41c013 9249 }
ecc55f84 9250
e6dab5ff
AV
9251 /*
9252 * If we got specified a target task, also iterate its context and
9253 * deliver this event there too.
9254 */
9255 if (task && task != current) {
9256 struct perf_event_context *ctx;
9257 struct trace_entry *entry = record;
9258
9259 rcu_read_lock();
9260 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9261 if (!ctx)
9262 goto unlock;
9263
9264 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cd6fb677
JO
9265 if (event->cpu != smp_processor_id())
9266 continue;
e6dab5ff
AV
9267 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9268 continue;
9269 if (event->attr.config != entry->type)
9270 continue;
9271 if (perf_tp_event_match(event, &data, regs))
9272 perf_swevent_event(event, count, &data, regs);
9273 }
9274unlock:
9275 rcu_read_unlock();
9276 }
9277
ecc55f84 9278 perf_swevent_put_recursion_context(rctx);
95476b64
FW
9279}
9280EXPORT_SYMBOL_GPL(perf_tp_event);
9281
cdd6c482 9282static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 9283{
1c024eca 9284 perf_trace_destroy(event);
e077df4f
PZ
9285}
9286
b0a873eb 9287static int perf_tp_event_init(struct perf_event *event)
e077df4f 9288{
76e1d904
FW
9289 int err;
9290
b0a873eb
PZ
9291 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9292 return -ENOENT;
9293
2481c5fa
SE
9294 /*
9295 * no branch sampling for tracepoint events
9296 */
9297 if (has_branch_stack(event))
9298 return -EOPNOTSUPP;
9299
1c024eca
PZ
9300 err = perf_trace_init(event);
9301 if (err)
b0a873eb 9302 return err;
e077df4f 9303
cdd6c482 9304 event->destroy = tp_perf_event_destroy;
e077df4f 9305
b0a873eb
PZ
9306 return 0;
9307}
9308
9309static struct pmu perf_tracepoint = {
89a1e187
PZ
9310 .task_ctx_nr = perf_sw_context,
9311
b0a873eb 9312 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
9313 .add = perf_trace_add,
9314 .del = perf_trace_del,
9315 .start = perf_swevent_start,
9316 .stop = perf_swevent_stop,
b0a873eb 9317 .read = perf_swevent_read,
b0a873eb
PZ
9318};
9319
33ea4b24 9320#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
9321/*
9322 * Flags in config, used by dynamic PMU kprobe and uprobe
9323 * The flags should match following PMU_FORMAT_ATTR().
9324 *
9325 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9326 * if not set, create kprobe/uprobe
a6ca88b2
SL
9327 *
9328 * The following values specify a reference counter (or semaphore in the
9329 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9330 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9331 *
9332 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
9333 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
e12f03d7
SL
9334 */
9335enum perf_probe_config {
9336 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
a6ca88b2
SL
9337 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9338 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
e12f03d7
SL
9339};
9340
9341PMU_FORMAT_ATTR(retprobe, "config:0");
a6ca88b2 9342#endif
e12f03d7 9343
a6ca88b2
SL
9344#ifdef CONFIG_KPROBE_EVENTS
9345static struct attribute *kprobe_attrs[] = {
e12f03d7
SL
9346 &format_attr_retprobe.attr,
9347 NULL,
9348};
9349
a6ca88b2 9350static struct attribute_group kprobe_format_group = {
e12f03d7 9351 .name = "format",
a6ca88b2 9352 .attrs = kprobe_attrs,
e12f03d7
SL
9353};
9354
a6ca88b2
SL
9355static const struct attribute_group *kprobe_attr_groups[] = {
9356 &kprobe_format_group,
e12f03d7
SL
9357 NULL,
9358};
9359
9360static int perf_kprobe_event_init(struct perf_event *event);
9361static struct pmu perf_kprobe = {
9362 .task_ctx_nr = perf_sw_context,
9363 .event_init = perf_kprobe_event_init,
9364 .add = perf_trace_add,
9365 .del = perf_trace_del,
9366 .start = perf_swevent_start,
9367 .stop = perf_swevent_stop,
9368 .read = perf_swevent_read,
a6ca88b2 9369 .attr_groups = kprobe_attr_groups,
e12f03d7
SL
9370};
9371
9372static int perf_kprobe_event_init(struct perf_event *event)
9373{
9374 int err;
9375 bool is_retprobe;
9376
9377 if (event->attr.type != perf_kprobe.type)
9378 return -ENOENT;
32e6e967
SL
9379
9380 if (!capable(CAP_SYS_ADMIN))
9381 return -EACCES;
9382
e12f03d7
SL
9383 /*
9384 * no branch sampling for probe events
9385 */
9386 if (has_branch_stack(event))
9387 return -EOPNOTSUPP;
9388
9389 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9390 err = perf_kprobe_init(event, is_retprobe);
9391 if (err)
9392 return err;
9393
9394 event->destroy = perf_kprobe_destroy;
9395
9396 return 0;
9397}
9398#endif /* CONFIG_KPROBE_EVENTS */
9399
33ea4b24 9400#ifdef CONFIG_UPROBE_EVENTS
a6ca88b2
SL
9401PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9402
9403static struct attribute *uprobe_attrs[] = {
9404 &format_attr_retprobe.attr,
9405 &format_attr_ref_ctr_offset.attr,
9406 NULL,
9407};
9408
9409static struct attribute_group uprobe_format_group = {
9410 .name = "format",
9411 .attrs = uprobe_attrs,
9412};
9413
9414static const struct attribute_group *uprobe_attr_groups[] = {
9415 &uprobe_format_group,
9416 NULL,
9417};
9418
33ea4b24
SL
9419static int perf_uprobe_event_init(struct perf_event *event);
9420static struct pmu perf_uprobe = {
9421 .task_ctx_nr = perf_sw_context,
9422 .event_init = perf_uprobe_event_init,
9423 .add = perf_trace_add,
9424 .del = perf_trace_del,
9425 .start = perf_swevent_start,
9426 .stop = perf_swevent_stop,
9427 .read = perf_swevent_read,
a6ca88b2 9428 .attr_groups = uprobe_attr_groups,
33ea4b24
SL
9429};
9430
9431static int perf_uprobe_event_init(struct perf_event *event)
9432{
9433 int err;
a6ca88b2 9434 unsigned long ref_ctr_offset;
33ea4b24
SL
9435 bool is_retprobe;
9436
9437 if (event->attr.type != perf_uprobe.type)
9438 return -ENOENT;
32e6e967
SL
9439
9440 if (!capable(CAP_SYS_ADMIN))
9441 return -EACCES;
9442
33ea4b24
SL
9443 /*
9444 * no branch sampling for probe events
9445 */
9446 if (has_branch_stack(event))
9447 return -EOPNOTSUPP;
9448
9449 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
a6ca88b2
SL
9450 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9451 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
33ea4b24
SL
9452 if (err)
9453 return err;
9454
9455 event->destroy = perf_uprobe_destroy;
9456
9457 return 0;
9458}
9459#endif /* CONFIG_UPROBE_EVENTS */
9460
b0a873eb
PZ
9461static inline void perf_tp_register(void)
9462{
2e80a82a 9463 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
9464#ifdef CONFIG_KPROBE_EVENTS
9465 perf_pmu_register(&perf_kprobe, "kprobe", -1);
9466#endif
33ea4b24
SL
9467#ifdef CONFIG_UPROBE_EVENTS
9468 perf_pmu_register(&perf_uprobe, "uprobe", -1);
9469#endif
e077df4f 9470}
6fb2915d 9471
6fb2915d
LZ
9472static void perf_event_free_filter(struct perf_event *event)
9473{
9474 ftrace_profile_free_filter(event);
9475}
9476
aa6a5f3c
AS
9477#ifdef CONFIG_BPF_SYSCALL
9478static void bpf_overflow_handler(struct perf_event *event,
9479 struct perf_sample_data *data,
9480 struct pt_regs *regs)
9481{
9482 struct bpf_perf_event_data_kern ctx = {
9483 .data = data,
7d9285e8 9484 .event = event,
aa6a5f3c
AS
9485 };
9486 int ret = 0;
9487
c895f6f7 9488 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
9489 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9490 goto out;
9491 rcu_read_lock();
88575199 9492 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
9493 rcu_read_unlock();
9494out:
9495 __this_cpu_dec(bpf_prog_active);
aa6a5f3c
AS
9496 if (!ret)
9497 return;
9498
9499 event->orig_overflow_handler(event, data, regs);
9500}
9501
9502static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9503{
9504 struct bpf_prog *prog;
9505
9506 if (event->overflow_handler_context)
9507 /* hw breakpoint or kernel counter */
9508 return -EINVAL;
9509
9510 if (event->prog)
9511 return -EEXIST;
9512
9513 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9514 if (IS_ERR(prog))
9515 return PTR_ERR(prog);
9516
9517 event->prog = prog;
9518 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9519 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9520 return 0;
9521}
9522
9523static void perf_event_free_bpf_handler(struct perf_event *event)
9524{
9525 struct bpf_prog *prog = event->prog;
9526
9527 if (!prog)
9528 return;
9529
9530 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9531 event->prog = NULL;
9532 bpf_prog_put(prog);
9533}
9534#else
9535static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9536{
9537 return -EOPNOTSUPP;
9538}
9539static void perf_event_free_bpf_handler(struct perf_event *event)
9540{
9541}
9542#endif
9543
e12f03d7
SL
9544/*
9545 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9546 * with perf_event_open()
9547 */
9548static inline bool perf_event_is_tracing(struct perf_event *event)
9549{
9550 if (event->pmu == &perf_tracepoint)
9551 return true;
9552#ifdef CONFIG_KPROBE_EVENTS
9553 if (event->pmu == &perf_kprobe)
9554 return true;
33ea4b24
SL
9555#endif
9556#ifdef CONFIG_UPROBE_EVENTS
9557 if (event->pmu == &perf_uprobe)
9558 return true;
e12f03d7
SL
9559#endif
9560 return false;
9561}
9562
2541517c
AS
9563static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9564{
cf5f5cea 9565 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 9566 struct bpf_prog *prog;
e87c6bc3 9567 int ret;
2541517c 9568
e12f03d7 9569 if (!perf_event_is_tracing(event))
f91840a3 9570 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 9571
98b5c2c6
AS
9572 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9573 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
9574 is_syscall_tp = is_syscall_trace_event(event->tp_event);
9575 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 9576 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
9577 return -EINVAL;
9578
9579 prog = bpf_prog_get(prog_fd);
9580 if (IS_ERR(prog))
9581 return PTR_ERR(prog);
9582
98b5c2c6 9583 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
9584 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9585 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
9586 /* valid fd, but invalid bpf program type */
9587 bpf_prog_put(prog);
9588 return -EINVAL;
9589 }
9590
9802d865
JB
9591 /* Kprobe override only works for kprobes, not uprobes. */
9592 if (prog->kprobe_override &&
9593 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9594 bpf_prog_put(prog);
9595 return -EINVAL;
9596 }
9597
cf5f5cea 9598 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
9599 int off = trace_event_get_offsets(event->tp_event);
9600
9601 if (prog->aux->max_ctx_offset > off) {
9602 bpf_prog_put(prog);
9603 return -EACCES;
9604 }
9605 }
2541517c 9606
e87c6bc3
YS
9607 ret = perf_event_attach_bpf_prog(event, prog);
9608 if (ret)
9609 bpf_prog_put(prog);
9610 return ret;
2541517c
AS
9611}
9612
9613static void perf_event_free_bpf_prog(struct perf_event *event)
9614{
e12f03d7 9615 if (!perf_event_is_tracing(event)) {
0b4c6841 9616 perf_event_free_bpf_handler(event);
2541517c 9617 return;
2541517c 9618 }
e87c6bc3 9619 perf_event_detach_bpf_prog(event);
2541517c
AS
9620}
9621
e077df4f 9622#else
6fb2915d 9623
b0a873eb 9624static inline void perf_tp_register(void)
e077df4f 9625{
e077df4f 9626}
6fb2915d 9627
6fb2915d
LZ
9628static void perf_event_free_filter(struct perf_event *event)
9629{
9630}
9631
2541517c
AS
9632static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9633{
9634 return -ENOENT;
9635}
9636
9637static void perf_event_free_bpf_prog(struct perf_event *event)
9638{
9639}
07b139c8 9640#endif /* CONFIG_EVENT_TRACING */
e077df4f 9641
24f1e32c 9642#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 9643void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 9644{
f5ffe02e
FW
9645 struct perf_sample_data sample;
9646 struct pt_regs *regs = data;
9647
fd0d000b 9648 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 9649
a4eaf7f1 9650 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 9651 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
9652}
9653#endif
9654
375637bc
AS
9655/*
9656 * Allocate a new address filter
9657 */
9658static struct perf_addr_filter *
9659perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9660{
9661 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9662 struct perf_addr_filter *filter;
9663
9664 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9665 if (!filter)
9666 return NULL;
9667
9668 INIT_LIST_HEAD(&filter->entry);
9669 list_add_tail(&filter->entry, filters);
9670
9671 return filter;
9672}
9673
9674static void free_filters_list(struct list_head *filters)
9675{
9676 struct perf_addr_filter *filter, *iter;
9677
9678 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 9679 path_put(&filter->path);
375637bc
AS
9680 list_del(&filter->entry);
9681 kfree(filter);
9682 }
9683}
9684
9685/*
9686 * Free existing address filters and optionally install new ones
9687 */
9688static void perf_addr_filters_splice(struct perf_event *event,
9689 struct list_head *head)
9690{
9691 unsigned long flags;
9692 LIST_HEAD(list);
9693
9694 if (!has_addr_filter(event))
9695 return;
9696
9697 /* don't bother with children, they don't have their own filters */
9698 if (event->parent)
9699 return;
9700
9701 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9702
9703 list_splice_init(&event->addr_filters.list, &list);
9704 if (head)
9705 list_splice(head, &event->addr_filters.list);
9706
9707 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9708
9709 free_filters_list(&list);
9710}
9711
9712/*
9713 * Scan through mm's vmas and see if one of them matches the
9714 * @filter; if so, adjust filter's address range.
9715 * Called with mm::mmap_sem down for reading.
9716 */
c60f83b8
AS
9717static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9718 struct mm_struct *mm,
9719 struct perf_addr_filter_range *fr)
375637bc
AS
9720{
9721 struct vm_area_struct *vma;
9722
9723 for (vma = mm->mmap; vma; vma = vma->vm_next) {
c60f83b8 9724 if (!vma->vm_file)
375637bc
AS
9725 continue;
9726
c60f83b8
AS
9727 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9728 return;
375637bc 9729 }
375637bc
AS
9730}
9731
9732/*
9733 * Update event's address range filters based on the
9734 * task's existing mappings, if any.
9735 */
9736static void perf_event_addr_filters_apply(struct perf_event *event)
9737{
9738 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9739 struct task_struct *task = READ_ONCE(event->ctx->task);
9740 struct perf_addr_filter *filter;
9741 struct mm_struct *mm = NULL;
9742 unsigned int count = 0;
9743 unsigned long flags;
9744
9745 /*
9746 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9747 * will stop on the parent's child_mutex that our caller is also holding
9748 */
9749 if (task == TASK_TOMBSTONE)
9750 return;
9751
52a44f83
AS
9752 if (ifh->nr_file_filters) {
9753 mm = get_task_mm(event->ctx->task);
9754 if (!mm)
9755 goto restart;
375637bc 9756
52a44f83
AS
9757 down_read(&mm->mmap_sem);
9758 }
375637bc
AS
9759
9760 raw_spin_lock_irqsave(&ifh->lock, flags);
9761 list_for_each_entry(filter, &ifh->list, entry) {
52a44f83
AS
9762 if (filter->path.dentry) {
9763 /*
9764 * Adjust base offset if the filter is associated to a
9765 * binary that needs to be mapped:
9766 */
9767 event->addr_filter_ranges[count].start = 0;
9768 event->addr_filter_ranges[count].size = 0;
375637bc 9769
c60f83b8 9770 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
52a44f83
AS
9771 } else {
9772 event->addr_filter_ranges[count].start = filter->offset;
9773 event->addr_filter_ranges[count].size = filter->size;
9774 }
375637bc
AS
9775
9776 count++;
9777 }
9778
9779 event->addr_filters_gen++;
9780 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9781
52a44f83
AS
9782 if (ifh->nr_file_filters) {
9783 up_read(&mm->mmap_sem);
375637bc 9784
52a44f83
AS
9785 mmput(mm);
9786 }
375637bc
AS
9787
9788restart:
767ae086 9789 perf_event_stop(event, 1);
375637bc
AS
9790}
9791
9792/*
9793 * Address range filtering: limiting the data to certain
9794 * instruction address ranges. Filters are ioctl()ed to us from
9795 * userspace as ascii strings.
9796 *
9797 * Filter string format:
9798 *
9799 * ACTION RANGE_SPEC
9800 * where ACTION is one of the
9801 * * "filter": limit the trace to this region
9802 * * "start": start tracing from this address
9803 * * "stop": stop tracing at this address/region;
9804 * RANGE_SPEC is
9805 * * for kernel addresses: <start address>[/<size>]
9806 * * for object files: <start address>[/<size>]@</path/to/object/file>
9807 *
6ed70cf3
AS
9808 * if <size> is not specified or is zero, the range is treated as a single
9809 * address; not valid for ACTION=="filter".
375637bc
AS
9810 */
9811enum {
e96271f3 9812 IF_ACT_NONE = -1,
375637bc
AS
9813 IF_ACT_FILTER,
9814 IF_ACT_START,
9815 IF_ACT_STOP,
9816 IF_SRC_FILE,
9817 IF_SRC_KERNEL,
9818 IF_SRC_FILEADDR,
9819 IF_SRC_KERNELADDR,
9820};
9821
9822enum {
9823 IF_STATE_ACTION = 0,
9824 IF_STATE_SOURCE,
9825 IF_STATE_END,
9826};
9827
9828static const match_table_t if_tokens = {
9829 { IF_ACT_FILTER, "filter" },
9830 { IF_ACT_START, "start" },
9831 { IF_ACT_STOP, "stop" },
9832 { IF_SRC_FILE, "%u/%u@%s" },
9833 { IF_SRC_KERNEL, "%u/%u" },
9834 { IF_SRC_FILEADDR, "%u@%s" },
9835 { IF_SRC_KERNELADDR, "%u" },
e96271f3 9836 { IF_ACT_NONE, NULL },
375637bc
AS
9837};
9838
9839/*
9840 * Address filter string parser
9841 */
9842static int
9843perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9844 struct list_head *filters)
9845{
9846 struct perf_addr_filter *filter = NULL;
9847 char *start, *orig, *filename = NULL;
375637bc
AS
9848 substring_t args[MAX_OPT_ARGS];
9849 int state = IF_STATE_ACTION, token;
9850 unsigned int kernel = 0;
9851 int ret = -EINVAL;
9852
9853 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9854 if (!fstr)
9855 return -ENOMEM;
9856
9857 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
9858 static const enum perf_addr_filter_action_t actions[] = {
9859 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9860 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9861 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9862 };
375637bc
AS
9863 ret = -EINVAL;
9864
9865 if (!*start)
9866 continue;
9867
9868 /* filter definition begins */
9869 if (state == IF_STATE_ACTION) {
9870 filter = perf_addr_filter_new(event, filters);
9871 if (!filter)
9872 goto fail;
9873 }
9874
9875 token = match_token(start, if_tokens, args);
9876 switch (token) {
9877 case IF_ACT_FILTER:
9878 case IF_ACT_START:
375637bc
AS
9879 case IF_ACT_STOP:
9880 if (state != IF_STATE_ACTION)
9881 goto fail;
9882
6ed70cf3 9883 filter->action = actions[token];
375637bc
AS
9884 state = IF_STATE_SOURCE;
9885 break;
9886
9887 case IF_SRC_KERNELADDR:
9888 case IF_SRC_KERNEL:
9889 kernel = 1;
10c3405f 9890 /* fall through */
375637bc
AS
9891
9892 case IF_SRC_FILEADDR:
9893 case IF_SRC_FILE:
9894 if (state != IF_STATE_SOURCE)
9895 goto fail;
9896
375637bc
AS
9897 *args[0].to = 0;
9898 ret = kstrtoul(args[0].from, 0, &filter->offset);
9899 if (ret)
9900 goto fail;
9901
6ed70cf3 9902 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
9903 *args[1].to = 0;
9904 ret = kstrtoul(args[1].from, 0, &filter->size);
9905 if (ret)
9906 goto fail;
9907 }
9908
4059ffd0 9909 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 9910 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0
MP
9911
9912 filename = match_strdup(&args[fpos]);
375637bc
AS
9913 if (!filename) {
9914 ret = -ENOMEM;
9915 goto fail;
9916 }
9917 }
9918
9919 state = IF_STATE_END;
9920 break;
9921
9922 default:
9923 goto fail;
9924 }
9925
9926 /*
9927 * Filter definition is fully parsed, validate and install it.
9928 * Make sure that it doesn't contradict itself or the event's
9929 * attribute.
9930 */
9931 if (state == IF_STATE_END) {
9ccbfbb1 9932 ret = -EINVAL;
375637bc
AS
9933 if (kernel && event->attr.exclude_kernel)
9934 goto fail;
9935
6ed70cf3
AS
9936 /*
9937 * ACTION "filter" must have a non-zero length region
9938 * specified.
9939 */
9940 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9941 !filter->size)
9942 goto fail;
9943
375637bc
AS
9944 if (!kernel) {
9945 if (!filename)
9946 goto fail;
9947
6ce77bfd
AS
9948 /*
9949 * For now, we only support file-based filters
9950 * in per-task events; doing so for CPU-wide
9951 * events requires additional context switching
9952 * trickery, since same object code will be
9953 * mapped at different virtual addresses in
9954 * different processes.
9955 */
9956 ret = -EOPNOTSUPP;
9957 if (!event->ctx->task)
9958 goto fail_free_name;
9959
375637bc 9960 /* look up the path and grab its inode */
9511bce9
SL
9961 ret = kern_path(filename, LOOKUP_FOLLOW,
9962 &filter->path);
375637bc
AS
9963 if (ret)
9964 goto fail_free_name;
9965
375637bc
AS
9966 kfree(filename);
9967 filename = NULL;
9968
9969 ret = -EINVAL;
9511bce9
SL
9970 if (!filter->path.dentry ||
9971 !S_ISREG(d_inode(filter->path.dentry)
9972 ->i_mode))
375637bc 9973 goto fail;
6ce77bfd
AS
9974
9975 event->addr_filters.nr_file_filters++;
375637bc
AS
9976 }
9977
9978 /* ready to consume more filters */
9979 state = IF_STATE_ACTION;
9980 filter = NULL;
9981 }
9982 }
9983
9984 if (state != IF_STATE_ACTION)
9985 goto fail;
9986
9987 kfree(orig);
9988
9989 return 0;
9990
9991fail_free_name:
9992 kfree(filename);
9993fail:
9994 free_filters_list(filters);
9995 kfree(orig);
9996
9997 return ret;
9998}
9999
10000static int
10001perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10002{
10003 LIST_HEAD(filters);
10004 int ret;
10005
10006 /*
10007 * Since this is called in perf_ioctl() path, we're already holding
10008 * ctx::mutex.
10009 */
10010 lockdep_assert_held(&event->ctx->mutex);
10011
10012 if (WARN_ON_ONCE(event->parent))
10013 return -EINVAL;
10014
375637bc
AS
10015 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10016 if (ret)
6ce77bfd 10017 goto fail_clear_files;
375637bc
AS
10018
10019 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
10020 if (ret)
10021 goto fail_free_filters;
375637bc
AS
10022
10023 /* remove existing filters, if any */
10024 perf_addr_filters_splice(event, &filters);
10025
10026 /* install new filters */
10027 perf_event_for_each_child(event, perf_event_addr_filters_apply);
10028
6ce77bfd
AS
10029 return ret;
10030
10031fail_free_filters:
10032 free_filters_list(&filters);
10033
10034fail_clear_files:
10035 event->addr_filters.nr_file_filters = 0;
10036
375637bc
AS
10037 return ret;
10038}
10039
c796bbbe
AS
10040static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10041{
c796bbbe 10042 int ret = -EINVAL;
e12f03d7 10043 char *filter_str;
c796bbbe
AS
10044
10045 filter_str = strndup_user(arg, PAGE_SIZE);
10046 if (IS_ERR(filter_str))
10047 return PTR_ERR(filter_str);
10048
e12f03d7
SL
10049#ifdef CONFIG_EVENT_TRACING
10050 if (perf_event_is_tracing(event)) {
10051 struct perf_event_context *ctx = event->ctx;
10052
10053 /*
10054 * Beware, here be dragons!!
10055 *
10056 * the tracepoint muck will deadlock against ctx->mutex, but
10057 * the tracepoint stuff does not actually need it. So
10058 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10059 * already have a reference on ctx.
10060 *
10061 * This can result in event getting moved to a different ctx,
10062 * but that does not affect the tracepoint state.
10063 */
10064 mutex_unlock(&ctx->mutex);
10065 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10066 mutex_lock(&ctx->mutex);
10067 } else
10068#endif
10069 if (has_addr_filter(event))
375637bc 10070 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
10071
10072 kfree(filter_str);
10073 return ret;
10074}
10075
b0a873eb
PZ
10076/*
10077 * hrtimer based swevent callback
10078 */
f29ac756 10079
b0a873eb 10080static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 10081{
b0a873eb
PZ
10082 enum hrtimer_restart ret = HRTIMER_RESTART;
10083 struct perf_sample_data data;
10084 struct pt_regs *regs;
10085 struct perf_event *event;
10086 u64 period;
f29ac756 10087
b0a873eb 10088 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
10089
10090 if (event->state != PERF_EVENT_STATE_ACTIVE)
10091 return HRTIMER_NORESTART;
10092
b0a873eb 10093 event->pmu->read(event);
f344011c 10094
fd0d000b 10095 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
10096 regs = get_irq_regs();
10097
10098 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 10099 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 10100 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
10101 ret = HRTIMER_NORESTART;
10102 }
24f1e32c 10103
b0a873eb
PZ
10104 period = max_t(u64, 10000, event->hw.sample_period);
10105 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 10106
b0a873eb 10107 return ret;
f29ac756
PZ
10108}
10109
b0a873eb 10110static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 10111{
b0a873eb 10112 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
10113 s64 period;
10114
10115 if (!is_sampling_event(event))
10116 return;
f5ffe02e 10117
5d508e82
FBH
10118 period = local64_read(&hwc->period_left);
10119 if (period) {
10120 if (period < 0)
10121 period = 10000;
fa407f35 10122
5d508e82
FBH
10123 local64_set(&hwc->period_left, 0);
10124 } else {
10125 period = max_t(u64, 10000, hwc->sample_period);
10126 }
3497d206 10127 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
30f9028b 10128 HRTIMER_MODE_REL_PINNED_HARD);
24f1e32c 10129}
b0a873eb
PZ
10130
10131static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 10132{
b0a873eb
PZ
10133 struct hw_perf_event *hwc = &event->hw;
10134
6c7e550f 10135 if (is_sampling_event(event)) {
b0a873eb 10136 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 10137 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
10138
10139 hrtimer_cancel(&hwc->hrtimer);
10140 }
24f1e32c
FW
10141}
10142
ba3dd36c
PZ
10143static void perf_swevent_init_hrtimer(struct perf_event *event)
10144{
10145 struct hw_perf_event *hwc = &event->hw;
10146
10147 if (!is_sampling_event(event))
10148 return;
10149
30f9028b 10150 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
ba3dd36c
PZ
10151 hwc->hrtimer.function = perf_swevent_hrtimer;
10152
10153 /*
10154 * Since hrtimers have a fixed rate, we can do a static freq->period
10155 * mapping and avoid the whole period adjust feedback stuff.
10156 */
10157 if (event->attr.freq) {
10158 long freq = event->attr.sample_freq;
10159
10160 event->attr.sample_period = NSEC_PER_SEC / freq;
10161 hwc->sample_period = event->attr.sample_period;
10162 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 10163 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
10164 event->attr.freq = 0;
10165 }
10166}
10167
b0a873eb
PZ
10168/*
10169 * Software event: cpu wall time clock
10170 */
10171
10172static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 10173{
b0a873eb
PZ
10174 s64 prev;
10175 u64 now;
10176
a4eaf7f1 10177 now = local_clock();
b0a873eb
PZ
10178 prev = local64_xchg(&event->hw.prev_count, now);
10179 local64_add(now - prev, &event->count);
24f1e32c 10180}
24f1e32c 10181
a4eaf7f1 10182static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 10183{
a4eaf7f1 10184 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 10185 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
10186}
10187
a4eaf7f1 10188static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 10189{
b0a873eb
PZ
10190 perf_swevent_cancel_hrtimer(event);
10191 cpu_clock_event_update(event);
10192}
f29ac756 10193
a4eaf7f1
PZ
10194static int cpu_clock_event_add(struct perf_event *event, int flags)
10195{
10196 if (flags & PERF_EF_START)
10197 cpu_clock_event_start(event, flags);
6a694a60 10198 perf_event_update_userpage(event);
a4eaf7f1
PZ
10199
10200 return 0;
10201}
10202
10203static void cpu_clock_event_del(struct perf_event *event, int flags)
10204{
10205 cpu_clock_event_stop(event, flags);
10206}
10207
b0a873eb
PZ
10208static void cpu_clock_event_read(struct perf_event *event)
10209{
10210 cpu_clock_event_update(event);
10211}
f344011c 10212
b0a873eb
PZ
10213static int cpu_clock_event_init(struct perf_event *event)
10214{
10215 if (event->attr.type != PERF_TYPE_SOFTWARE)
10216 return -ENOENT;
10217
10218 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10219 return -ENOENT;
10220
2481c5fa
SE
10221 /*
10222 * no branch sampling for software events
10223 */
10224 if (has_branch_stack(event))
10225 return -EOPNOTSUPP;
10226
ba3dd36c
PZ
10227 perf_swevent_init_hrtimer(event);
10228
b0a873eb 10229 return 0;
f29ac756
PZ
10230}
10231
b0a873eb 10232static struct pmu perf_cpu_clock = {
89a1e187
PZ
10233 .task_ctx_nr = perf_sw_context,
10234
34f43927
PZ
10235 .capabilities = PERF_PMU_CAP_NO_NMI,
10236
b0a873eb 10237 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
10238 .add = cpu_clock_event_add,
10239 .del = cpu_clock_event_del,
10240 .start = cpu_clock_event_start,
10241 .stop = cpu_clock_event_stop,
b0a873eb
PZ
10242 .read = cpu_clock_event_read,
10243};
10244
10245/*
10246 * Software event: task time clock
10247 */
10248
10249static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 10250{
b0a873eb
PZ
10251 u64 prev;
10252 s64 delta;
5c92d124 10253
b0a873eb
PZ
10254 prev = local64_xchg(&event->hw.prev_count, now);
10255 delta = now - prev;
10256 local64_add(delta, &event->count);
10257}
5c92d124 10258
a4eaf7f1 10259static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 10260{
a4eaf7f1 10261 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 10262 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
10263}
10264
a4eaf7f1 10265static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
10266{
10267 perf_swevent_cancel_hrtimer(event);
10268 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
10269}
10270
10271static int task_clock_event_add(struct perf_event *event, int flags)
10272{
10273 if (flags & PERF_EF_START)
10274 task_clock_event_start(event, flags);
6a694a60 10275 perf_event_update_userpage(event);
b0a873eb 10276
a4eaf7f1
PZ
10277 return 0;
10278}
10279
10280static void task_clock_event_del(struct perf_event *event, int flags)
10281{
10282 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
10283}
10284
10285static void task_clock_event_read(struct perf_event *event)
10286{
768a06e2
PZ
10287 u64 now = perf_clock();
10288 u64 delta = now - event->ctx->timestamp;
10289 u64 time = event->ctx->time + delta;
b0a873eb
PZ
10290
10291 task_clock_event_update(event, time);
10292}
10293
10294static int task_clock_event_init(struct perf_event *event)
6fb2915d 10295{
b0a873eb
PZ
10296 if (event->attr.type != PERF_TYPE_SOFTWARE)
10297 return -ENOENT;
10298
10299 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10300 return -ENOENT;
10301
2481c5fa
SE
10302 /*
10303 * no branch sampling for software events
10304 */
10305 if (has_branch_stack(event))
10306 return -EOPNOTSUPP;
10307
ba3dd36c
PZ
10308 perf_swevent_init_hrtimer(event);
10309
b0a873eb 10310 return 0;
6fb2915d
LZ
10311}
10312
b0a873eb 10313static struct pmu perf_task_clock = {
89a1e187
PZ
10314 .task_ctx_nr = perf_sw_context,
10315
34f43927
PZ
10316 .capabilities = PERF_PMU_CAP_NO_NMI,
10317
b0a873eb 10318 .event_init = task_clock_event_init,
a4eaf7f1
PZ
10319 .add = task_clock_event_add,
10320 .del = task_clock_event_del,
10321 .start = task_clock_event_start,
10322 .stop = task_clock_event_stop,
b0a873eb
PZ
10323 .read = task_clock_event_read,
10324};
6fb2915d 10325
ad5133b7 10326static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 10327{
e077df4f 10328}
6fb2915d 10329
fbbe0701
SB
10330static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10331{
10332}
10333
ad5133b7 10334static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 10335{
ad5133b7 10336 return 0;
6fb2915d
LZ
10337}
10338
81ec3f3c
JO
10339static int perf_event_nop_int(struct perf_event *event, u64 value)
10340{
10341 return 0;
10342}
10343
18ab2cd3 10344static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
10345
10346static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 10347{
fbbe0701
SB
10348 __this_cpu_write(nop_txn_flags, flags);
10349
10350 if (flags & ~PERF_PMU_TXN_ADD)
10351 return;
10352
ad5133b7 10353 perf_pmu_disable(pmu);
6fb2915d
LZ
10354}
10355
ad5133b7
PZ
10356static int perf_pmu_commit_txn(struct pmu *pmu)
10357{
fbbe0701
SB
10358 unsigned int flags = __this_cpu_read(nop_txn_flags);
10359
10360 __this_cpu_write(nop_txn_flags, 0);
10361
10362 if (flags & ~PERF_PMU_TXN_ADD)
10363 return 0;
10364
ad5133b7
PZ
10365 perf_pmu_enable(pmu);
10366 return 0;
10367}
e077df4f 10368
ad5133b7 10369static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 10370{
fbbe0701
SB
10371 unsigned int flags = __this_cpu_read(nop_txn_flags);
10372
10373 __this_cpu_write(nop_txn_flags, 0);
10374
10375 if (flags & ~PERF_PMU_TXN_ADD)
10376 return;
10377
ad5133b7 10378 perf_pmu_enable(pmu);
24f1e32c
FW
10379}
10380
35edc2a5
PZ
10381static int perf_event_idx_default(struct perf_event *event)
10382{
c719f560 10383 return 0;
35edc2a5
PZ
10384}
10385
8dc85d54
PZ
10386/*
10387 * Ensures all contexts with the same task_ctx_nr have the same
10388 * pmu_cpu_context too.
10389 */
9e317041 10390static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 10391{
8dc85d54 10392 struct pmu *pmu;
b326e956 10393
8dc85d54
PZ
10394 if (ctxn < 0)
10395 return NULL;
24f1e32c 10396
8dc85d54
PZ
10397 list_for_each_entry(pmu, &pmus, entry) {
10398 if (pmu->task_ctx_nr == ctxn)
10399 return pmu->pmu_cpu_context;
10400 }
24f1e32c 10401
8dc85d54 10402 return NULL;
24f1e32c
FW
10403}
10404
51676957
PZ
10405static void free_pmu_context(struct pmu *pmu)
10406{
df0062b2
WD
10407 /*
10408 * Static contexts such as perf_sw_context have a global lifetime
10409 * and may be shared between different PMUs. Avoid freeing them
10410 * when a single PMU is going away.
10411 */
10412 if (pmu->task_ctx_nr > perf_invalid_context)
10413 return;
10414
51676957 10415 free_percpu(pmu->pmu_cpu_context);
24f1e32c 10416}
6e855cd4
AS
10417
10418/*
10419 * Let userspace know that this PMU supports address range filtering:
10420 */
10421static ssize_t nr_addr_filters_show(struct device *dev,
10422 struct device_attribute *attr,
10423 char *page)
10424{
10425 struct pmu *pmu = dev_get_drvdata(dev);
10426
10427 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10428}
10429DEVICE_ATTR_RO(nr_addr_filters);
10430
2e80a82a 10431static struct idr pmu_idr;
d6d020e9 10432
abe43400
PZ
10433static ssize_t
10434type_show(struct device *dev, struct device_attribute *attr, char *page)
10435{
10436 struct pmu *pmu = dev_get_drvdata(dev);
10437
10438 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10439}
90826ca7 10440static DEVICE_ATTR_RO(type);
abe43400 10441
62b85639
SE
10442static ssize_t
10443perf_event_mux_interval_ms_show(struct device *dev,
10444 struct device_attribute *attr,
10445 char *page)
10446{
10447 struct pmu *pmu = dev_get_drvdata(dev);
10448
10449 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10450}
10451
272325c4
PZ
10452static DEFINE_MUTEX(mux_interval_mutex);
10453
62b85639
SE
10454static ssize_t
10455perf_event_mux_interval_ms_store(struct device *dev,
10456 struct device_attribute *attr,
10457 const char *buf, size_t count)
10458{
10459 struct pmu *pmu = dev_get_drvdata(dev);
10460 int timer, cpu, ret;
10461
10462 ret = kstrtoint(buf, 0, &timer);
10463 if (ret)
10464 return ret;
10465
10466 if (timer < 1)
10467 return -EINVAL;
10468
10469 /* same value, noting to do */
10470 if (timer == pmu->hrtimer_interval_ms)
10471 return count;
10472
272325c4 10473 mutex_lock(&mux_interval_mutex);
62b85639
SE
10474 pmu->hrtimer_interval_ms = timer;
10475
10476 /* update all cpuctx for this PMU */
a63fbed7 10477 cpus_read_lock();
272325c4 10478 for_each_online_cpu(cpu) {
62b85639
SE
10479 struct perf_cpu_context *cpuctx;
10480 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10481 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10482
272325c4
PZ
10483 cpu_function_call(cpu,
10484 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 10485 }
a63fbed7 10486 cpus_read_unlock();
272325c4 10487 mutex_unlock(&mux_interval_mutex);
62b85639
SE
10488
10489 return count;
10490}
90826ca7 10491static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 10492
90826ca7
GKH
10493static struct attribute *pmu_dev_attrs[] = {
10494 &dev_attr_type.attr,
10495 &dev_attr_perf_event_mux_interval_ms.attr,
10496 NULL,
abe43400 10497};
90826ca7 10498ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
10499
10500static int pmu_bus_running;
10501static struct bus_type pmu_bus = {
10502 .name = "event_source",
90826ca7 10503 .dev_groups = pmu_dev_groups,
abe43400
PZ
10504};
10505
10506static void pmu_dev_release(struct device *dev)
10507{
10508 kfree(dev);
10509}
10510
10511static int pmu_dev_alloc(struct pmu *pmu)
10512{
10513 int ret = -ENOMEM;
10514
10515 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10516 if (!pmu->dev)
10517 goto out;
10518
0c9d42ed 10519 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
10520 device_initialize(pmu->dev);
10521 ret = dev_set_name(pmu->dev, "%s", pmu->name);
10522 if (ret)
10523 goto free_dev;
10524
10525 dev_set_drvdata(pmu->dev, pmu);
10526 pmu->dev->bus = &pmu_bus;
10527 pmu->dev->release = pmu_dev_release;
10528 ret = device_add(pmu->dev);
10529 if (ret)
10530 goto free_dev;
10531
6e855cd4
AS
10532 /* For PMUs with address filters, throw in an extra attribute: */
10533 if (pmu->nr_addr_filters)
10534 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10535
10536 if (ret)
10537 goto del_dev;
10538
f3a3a825
JO
10539 if (pmu->attr_update)
10540 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10541
10542 if (ret)
10543 goto del_dev;
10544
abe43400
PZ
10545out:
10546 return ret;
10547
6e855cd4
AS
10548del_dev:
10549 device_del(pmu->dev);
10550
abe43400
PZ
10551free_dev:
10552 put_device(pmu->dev);
10553 goto out;
10554}
10555
547e9fd7 10556static struct lock_class_key cpuctx_mutex;
facc4307 10557static struct lock_class_key cpuctx_lock;
547e9fd7 10558
03d8e80b 10559int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 10560{
66d258c5 10561 int cpu, ret, max = PERF_TYPE_MAX;
24f1e32c 10562
b0a873eb 10563 mutex_lock(&pmus_lock);
33696fc0
PZ
10564 ret = -ENOMEM;
10565 pmu->pmu_disable_count = alloc_percpu(int);
10566 if (!pmu->pmu_disable_count)
10567 goto unlock;
f29ac756 10568
2e80a82a
PZ
10569 pmu->type = -1;
10570 if (!name)
10571 goto skip_type;
10572 pmu->name = name;
10573
66d258c5
PZ
10574 if (type != PERF_TYPE_SOFTWARE) {
10575 if (type >= 0)
10576 max = type;
10577
10578 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10579 if (ret < 0)
2e80a82a 10580 goto free_pdc;
66d258c5
PZ
10581
10582 WARN_ON(type >= 0 && ret != type);
10583
10584 type = ret;
2e80a82a
PZ
10585 }
10586 pmu->type = type;
10587
abe43400
PZ
10588 if (pmu_bus_running) {
10589 ret = pmu_dev_alloc(pmu);
10590 if (ret)
10591 goto free_idr;
10592 }
10593
2e80a82a 10594skip_type:
26657848
PZ
10595 if (pmu->task_ctx_nr == perf_hw_context) {
10596 static int hw_context_taken = 0;
10597
5101ef20
MR
10598 /*
10599 * Other than systems with heterogeneous CPUs, it never makes
10600 * sense for two PMUs to share perf_hw_context. PMUs which are
10601 * uncore must use perf_invalid_context.
10602 */
10603 if (WARN_ON_ONCE(hw_context_taken &&
10604 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
10605 pmu->task_ctx_nr = perf_invalid_context;
10606
10607 hw_context_taken = 1;
10608 }
10609
8dc85d54
PZ
10610 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10611 if (pmu->pmu_cpu_context)
10612 goto got_cpu_context;
f29ac756 10613
c4814202 10614 ret = -ENOMEM;
108b02cf
PZ
10615 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10616 if (!pmu->pmu_cpu_context)
abe43400 10617 goto free_dev;
f344011c 10618
108b02cf
PZ
10619 for_each_possible_cpu(cpu) {
10620 struct perf_cpu_context *cpuctx;
10621
10622 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 10623 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 10624 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 10625 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 10626 cpuctx->ctx.pmu = pmu;
a63fbed7 10627 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 10628
272325c4 10629 __perf_mux_hrtimer_init(cpuctx, cpu);
836196be
IR
10630
10631 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10632 cpuctx->heap = cpuctx->heap_default;
108b02cf 10633 }
76e1d904 10634
8dc85d54 10635got_cpu_context:
ad5133b7
PZ
10636 if (!pmu->start_txn) {
10637 if (pmu->pmu_enable) {
10638 /*
10639 * If we have pmu_enable/pmu_disable calls, install
10640 * transaction stubs that use that to try and batch
10641 * hardware accesses.
10642 */
10643 pmu->start_txn = perf_pmu_start_txn;
10644 pmu->commit_txn = perf_pmu_commit_txn;
10645 pmu->cancel_txn = perf_pmu_cancel_txn;
10646 } else {
fbbe0701 10647 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
10648 pmu->commit_txn = perf_pmu_nop_int;
10649 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 10650 }
5c92d124 10651 }
15dbf27c 10652
ad5133b7
PZ
10653 if (!pmu->pmu_enable) {
10654 pmu->pmu_enable = perf_pmu_nop_void;
10655 pmu->pmu_disable = perf_pmu_nop_void;
10656 }
10657
81ec3f3c
JO
10658 if (!pmu->check_period)
10659 pmu->check_period = perf_event_nop_int;
10660
35edc2a5
PZ
10661 if (!pmu->event_idx)
10662 pmu->event_idx = perf_event_idx_default;
10663
d44f821b
LK
10664 /*
10665 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10666 * since these cannot be in the IDR. This way the linear search
10667 * is fast, provided a valid software event is provided.
10668 */
10669 if (type == PERF_TYPE_SOFTWARE || !name)
10670 list_add_rcu(&pmu->entry, &pmus);
10671 else
10672 list_add_tail_rcu(&pmu->entry, &pmus);
10673
bed5b25a 10674 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
10675 ret = 0;
10676unlock:
b0a873eb
PZ
10677 mutex_unlock(&pmus_lock);
10678
33696fc0 10679 return ret;
108b02cf 10680
abe43400
PZ
10681free_dev:
10682 device_del(pmu->dev);
10683 put_device(pmu->dev);
10684
2e80a82a 10685free_idr:
66d258c5 10686 if (pmu->type != PERF_TYPE_SOFTWARE)
2e80a82a
PZ
10687 idr_remove(&pmu_idr, pmu->type);
10688
108b02cf
PZ
10689free_pdc:
10690 free_percpu(pmu->pmu_disable_count);
10691 goto unlock;
f29ac756 10692}
c464c76e 10693EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 10694
b0a873eb 10695void perf_pmu_unregister(struct pmu *pmu)
5c92d124 10696{
b0a873eb
PZ
10697 mutex_lock(&pmus_lock);
10698 list_del_rcu(&pmu->entry);
5c92d124 10699
0475f9ea 10700 /*
cde8e884
PZ
10701 * We dereference the pmu list under both SRCU and regular RCU, so
10702 * synchronize against both of those.
0475f9ea 10703 */
b0a873eb 10704 synchronize_srcu(&pmus_srcu);
cde8e884 10705 synchronize_rcu();
d6d020e9 10706
33696fc0 10707 free_percpu(pmu->pmu_disable_count);
66d258c5 10708 if (pmu->type != PERF_TYPE_SOFTWARE)
2e80a82a 10709 idr_remove(&pmu_idr, pmu->type);
a9f97721 10710 if (pmu_bus_running) {
0933840a
JO
10711 if (pmu->nr_addr_filters)
10712 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10713 device_del(pmu->dev);
10714 put_device(pmu->dev);
10715 }
51676957 10716 free_pmu_context(pmu);
a9f97721 10717 mutex_unlock(&pmus_lock);
b0a873eb 10718}
c464c76e 10719EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 10720
e321d02d
KL
10721static inline bool has_extended_regs(struct perf_event *event)
10722{
10723 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10724 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10725}
10726
cc34b98b
MR
10727static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10728{
ccd41c86 10729 struct perf_event_context *ctx = NULL;
cc34b98b
MR
10730 int ret;
10731
10732 if (!try_module_get(pmu->module))
10733 return -ENODEV;
ccd41c86 10734
0c7296ca
PZ
10735 /*
10736 * A number of pmu->event_init() methods iterate the sibling_list to,
10737 * for example, validate if the group fits on the PMU. Therefore,
10738 * if this is a sibling event, acquire the ctx->mutex to protect
10739 * the sibling_list.
10740 */
10741 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
10742 /*
10743 * This ctx->mutex can nest when we're called through
10744 * inheritance. See the perf_event_ctx_lock_nested() comment.
10745 */
10746 ctx = perf_event_ctx_lock_nested(event->group_leader,
10747 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
10748 BUG_ON(!ctx);
10749 }
10750
cc34b98b
MR
10751 event->pmu = pmu;
10752 ret = pmu->event_init(event);
ccd41c86
PZ
10753
10754 if (ctx)
10755 perf_event_ctx_unlock(event->group_leader, ctx);
10756
cc6795ae 10757 if (!ret) {
e321d02d
KL
10758 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10759 has_extended_regs(event))
10760 ret = -EOPNOTSUPP;
10761
cc6795ae 10762 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
e321d02d 10763 event_has_any_exclude_flag(event))
cc6795ae 10764 ret = -EINVAL;
e321d02d
KL
10765
10766 if (ret && event->destroy)
10767 event->destroy(event);
cc6795ae
AM
10768 }
10769
cc34b98b
MR
10770 if (ret)
10771 module_put(pmu->module);
10772
10773 return ret;
10774}
10775
18ab2cd3 10776static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 10777{
66d258c5 10778 int idx, type, ret;
85c617ab 10779 struct pmu *pmu;
b0a873eb
PZ
10780
10781 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 10782
40999312
KL
10783 /* Try parent's PMU first: */
10784 if (event->parent && event->parent->pmu) {
10785 pmu = event->parent->pmu;
10786 ret = perf_try_init_event(pmu, event);
10787 if (!ret)
10788 goto unlock;
10789 }
10790
66d258c5
PZ
10791 /*
10792 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10793 * are often aliases for PERF_TYPE_RAW.
10794 */
10795 type = event->attr.type;
10796 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10797 type = PERF_TYPE_RAW;
10798
10799again:
2e80a82a 10800 rcu_read_lock();
66d258c5 10801 pmu = idr_find(&pmu_idr, type);
2e80a82a 10802 rcu_read_unlock();
940c5b29 10803 if (pmu) {
cc34b98b 10804 ret = perf_try_init_event(pmu, event);
66d258c5
PZ
10805 if (ret == -ENOENT && event->attr.type != type) {
10806 type = event->attr.type;
10807 goto again;
10808 }
10809
940c5b29
LM
10810 if (ret)
10811 pmu = ERR_PTR(ret);
66d258c5 10812
2e80a82a 10813 goto unlock;
940c5b29 10814 }
2e80a82a 10815
9f0bff11 10816 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
cc34b98b 10817 ret = perf_try_init_event(pmu, event);
b0a873eb 10818 if (!ret)
e5f4d339 10819 goto unlock;
76e1d904 10820
b0a873eb
PZ
10821 if (ret != -ENOENT) {
10822 pmu = ERR_PTR(ret);
e5f4d339 10823 goto unlock;
f344011c 10824 }
5c92d124 10825 }
e5f4d339
PZ
10826 pmu = ERR_PTR(-ENOENT);
10827unlock:
b0a873eb 10828 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 10829
4aeb0b42 10830 return pmu;
5c92d124
IM
10831}
10832
f2fb6bef
KL
10833static void attach_sb_event(struct perf_event *event)
10834{
10835 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10836
10837 raw_spin_lock(&pel->lock);
10838 list_add_rcu(&event->sb_list, &pel->list);
10839 raw_spin_unlock(&pel->lock);
10840}
10841
aab5b71e
PZ
10842/*
10843 * We keep a list of all !task (and therefore per-cpu) events
10844 * that need to receive side-band records.
10845 *
10846 * This avoids having to scan all the various PMU per-cpu contexts
10847 * looking for them.
10848 */
f2fb6bef
KL
10849static void account_pmu_sb_event(struct perf_event *event)
10850{
a4f144eb 10851 if (is_sb_event(event))
f2fb6bef
KL
10852 attach_sb_event(event);
10853}
10854
4beb31f3
FW
10855static void account_event_cpu(struct perf_event *event, int cpu)
10856{
10857 if (event->parent)
10858 return;
10859
4beb31f3
FW
10860 if (is_cgroup_event(event))
10861 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10862}
10863
555e0c1e
FW
10864/* Freq events need the tick to stay alive (see perf_event_task_tick). */
10865static void account_freq_event_nohz(void)
10866{
10867#ifdef CONFIG_NO_HZ_FULL
10868 /* Lock so we don't race with concurrent unaccount */
10869 spin_lock(&nr_freq_lock);
10870 if (atomic_inc_return(&nr_freq_events) == 1)
10871 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10872 spin_unlock(&nr_freq_lock);
10873#endif
10874}
10875
10876static void account_freq_event(void)
10877{
10878 if (tick_nohz_full_enabled())
10879 account_freq_event_nohz();
10880 else
10881 atomic_inc(&nr_freq_events);
10882}
10883
10884
766d6c07
FW
10885static void account_event(struct perf_event *event)
10886{
25432ae9
PZ
10887 bool inc = false;
10888
4beb31f3
FW
10889 if (event->parent)
10890 return;
10891
766d6c07 10892 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 10893 inc = true;
766d6c07
FW
10894 if (event->attr.mmap || event->attr.mmap_data)
10895 atomic_inc(&nr_mmap_events);
10896 if (event->attr.comm)
10897 atomic_inc(&nr_comm_events);
e4222673
HB
10898 if (event->attr.namespaces)
10899 atomic_inc(&nr_namespaces_events);
96aaab68
NK
10900 if (event->attr.cgroup)
10901 atomic_inc(&nr_cgroup_events);
766d6c07
FW
10902 if (event->attr.task)
10903 atomic_inc(&nr_task_events);
555e0c1e
FW
10904 if (event->attr.freq)
10905 account_freq_event();
45ac1403
AH
10906 if (event->attr.context_switch) {
10907 atomic_inc(&nr_switch_events);
25432ae9 10908 inc = true;
45ac1403 10909 }
4beb31f3 10910 if (has_branch_stack(event))
25432ae9 10911 inc = true;
4beb31f3 10912 if (is_cgroup_event(event))
25432ae9 10913 inc = true;
76193a94
SL
10914 if (event->attr.ksymbol)
10915 atomic_inc(&nr_ksymbol_events);
6ee52e2a
SL
10916 if (event->attr.bpf_event)
10917 atomic_inc(&nr_bpf_events);
25432ae9 10918
9107c89e 10919 if (inc) {
5bce9db1
AS
10920 /*
10921 * We need the mutex here because static_branch_enable()
10922 * must complete *before* the perf_sched_count increment
10923 * becomes visible.
10924 */
9107c89e
PZ
10925 if (atomic_inc_not_zero(&perf_sched_count))
10926 goto enabled;
10927
10928 mutex_lock(&perf_sched_mutex);
10929 if (!atomic_read(&perf_sched_count)) {
10930 static_branch_enable(&perf_sched_events);
10931 /*
10932 * Guarantee that all CPUs observe they key change and
10933 * call the perf scheduling hooks before proceeding to
10934 * install events that need them.
10935 */
0809d954 10936 synchronize_rcu();
9107c89e
PZ
10937 }
10938 /*
10939 * Now that we have waited for the sync_sched(), allow further
10940 * increments to by-pass the mutex.
10941 */
10942 atomic_inc(&perf_sched_count);
10943 mutex_unlock(&perf_sched_mutex);
10944 }
10945enabled:
4beb31f3
FW
10946
10947 account_event_cpu(event, event->cpu);
f2fb6bef
KL
10948
10949 account_pmu_sb_event(event);
766d6c07
FW
10950}
10951
0793a61d 10952/*
788faab7 10953 * Allocate and initialize an event structure
0793a61d 10954 */
cdd6c482 10955static struct perf_event *
c3f00c70 10956perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
10957 struct task_struct *task,
10958 struct perf_event *group_leader,
10959 struct perf_event *parent_event,
4dc0da86 10960 perf_overflow_handler_t overflow_handler,
79dff51e 10961 void *context, int cgroup_fd)
0793a61d 10962{
51b0fe39 10963 struct pmu *pmu;
cdd6c482
IM
10964 struct perf_event *event;
10965 struct hw_perf_event *hwc;
90983b16 10966 long err = -EINVAL;
0793a61d 10967
66832eb4
ON
10968 if ((unsigned)cpu >= nr_cpu_ids) {
10969 if (!task || cpu != -1)
10970 return ERR_PTR(-EINVAL);
10971 }
10972
c3f00c70 10973 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 10974 if (!event)
d5d2bc0d 10975 return ERR_PTR(-ENOMEM);
0793a61d 10976
04289bb9 10977 /*
cdd6c482 10978 * Single events are their own group leaders, with an
04289bb9
IM
10979 * empty sibling list:
10980 */
10981 if (!group_leader)
cdd6c482 10982 group_leader = event;
04289bb9 10983
cdd6c482
IM
10984 mutex_init(&event->child_mutex);
10985 INIT_LIST_HEAD(&event->child_list);
fccc714b 10986
cdd6c482
IM
10987 INIT_LIST_HEAD(&event->event_entry);
10988 INIT_LIST_HEAD(&event->sibling_list);
6668128a 10989 INIT_LIST_HEAD(&event->active_list);
8e1a2031 10990 init_event_group(event);
10c6db11 10991 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 10992 INIT_LIST_HEAD(&event->active_entry);
375637bc 10993 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
10994 INIT_HLIST_NODE(&event->hlist_entry);
10995
10c6db11 10996
cdd6c482 10997 init_waitqueue_head(&event->waitq);
1d54ad94 10998 event->pending_disable = -1;
e360adbe 10999 init_irq_work(&event->pending, perf_pending_event);
0793a61d 11000
cdd6c482 11001 mutex_init(&event->mmap_mutex);
375637bc 11002 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 11003
a6fa941d 11004 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
11005 event->cpu = cpu;
11006 event->attr = *attr;
11007 event->group_leader = group_leader;
11008 event->pmu = NULL;
cdd6c482 11009 event->oncpu = -1;
a96bbc16 11010
cdd6c482 11011 event->parent = parent_event;
b84fbc9f 11012
17cf22c3 11013 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 11014 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 11015
cdd6c482 11016 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 11017
d580ff86
PZ
11018 if (task) {
11019 event->attach_state = PERF_ATTACH_TASK;
d580ff86 11020 /*
50f16a8b
PZ
11021 * XXX pmu::event_init needs to know what task to account to
11022 * and we cannot use the ctx information because we need the
11023 * pmu before we get a ctx.
d580ff86 11024 */
7b3c92b8 11025 event->hw.target = get_task_struct(task);
d580ff86
PZ
11026 }
11027
34f43927
PZ
11028 event->clock = &local_clock;
11029 if (parent_event)
11030 event->clock = parent_event->clock;
11031
4dc0da86 11032 if (!overflow_handler && parent_event) {
b326e956 11033 overflow_handler = parent_event->overflow_handler;
4dc0da86 11034 context = parent_event->overflow_handler_context;
f1e4ba5b 11035#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c 11036 if (overflow_handler == bpf_overflow_handler) {
85192dbf 11037 struct bpf_prog *prog = parent_event->prog;
aa6a5f3c 11038
85192dbf 11039 bpf_prog_inc(prog);
aa6a5f3c
AS
11040 event->prog = prog;
11041 event->orig_overflow_handler =
11042 parent_event->orig_overflow_handler;
11043 }
11044#endif
4dc0da86 11045 }
66832eb4 11046
1879445d
WN
11047 if (overflow_handler) {
11048 event->overflow_handler = overflow_handler;
11049 event->overflow_handler_context = context;
9ecda41a
WN
11050 } else if (is_write_backward(event)){
11051 event->overflow_handler = perf_event_output_backward;
11052 event->overflow_handler_context = NULL;
1879445d 11053 } else {
9ecda41a 11054 event->overflow_handler = perf_event_output_forward;
1879445d
WN
11055 event->overflow_handler_context = NULL;
11056 }
97eaf530 11057
0231bb53 11058 perf_event__state_init(event);
a86ed508 11059
4aeb0b42 11060 pmu = NULL;
b8e83514 11061
cdd6c482 11062 hwc = &event->hw;
bd2b5b12 11063 hwc->sample_period = attr->sample_period;
0d48696f 11064 if (attr->freq && attr->sample_freq)
bd2b5b12 11065 hwc->sample_period = 1;
eced1dfc 11066 hwc->last_period = hwc->sample_period;
bd2b5b12 11067
e7850595 11068 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 11069
2023b359 11070 /*
ba5213ae
PZ
11071 * We currently do not support PERF_SAMPLE_READ on inherited events.
11072 * See perf_output_read().
2023b359 11073 */
ba5213ae 11074 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 11075 goto err_ns;
a46a2300
YZ
11076
11077 if (!has_branch_stack(event))
11078 event->attr.branch_sample_type = 0;
2023b359 11079
b0a873eb 11080 pmu = perf_init_event(event);
85c617ab 11081 if (IS_ERR(pmu)) {
4aeb0b42 11082 err = PTR_ERR(pmu);
90983b16 11083 goto err_ns;
621a01ea 11084 }
d5d2bc0d 11085
09f4e8f0
PZ
11086 /*
11087 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11088 * be different on other CPUs in the uncore mask.
11089 */
11090 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11091 err = -EINVAL;
11092 goto err_pmu;
11093 }
11094
ab43762e
AS
11095 if (event->attr.aux_output &&
11096 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11097 err = -EOPNOTSUPP;
11098 goto err_pmu;
11099 }
11100
98add2af
PZ
11101 if (cgroup_fd != -1) {
11102 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11103 if (err)
11104 goto err_pmu;
11105 }
11106
bed5b25a
AS
11107 err = exclusive_event_init(event);
11108 if (err)
11109 goto err_pmu;
11110
375637bc 11111 if (has_addr_filter(event)) {
c60f83b8
AS
11112 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11113 sizeof(struct perf_addr_filter_range),
11114 GFP_KERNEL);
11115 if (!event->addr_filter_ranges) {
36cc2b92 11116 err = -ENOMEM;
375637bc 11117 goto err_per_task;
36cc2b92 11118 }
375637bc 11119
18736eef
AS
11120 /*
11121 * Clone the parent's vma offsets: they are valid until exec()
11122 * even if the mm is not shared with the parent.
11123 */
11124 if (event->parent) {
11125 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11126
11127 raw_spin_lock_irq(&ifh->lock);
c60f83b8
AS
11128 memcpy(event->addr_filter_ranges,
11129 event->parent->addr_filter_ranges,
11130 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
18736eef
AS
11131 raw_spin_unlock_irq(&ifh->lock);
11132 }
11133
375637bc
AS
11134 /* force hw sync on the address filters */
11135 event->addr_filters_gen = 1;
11136 }
11137
cdd6c482 11138 if (!event->parent) {
927c7a9e 11139 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 11140 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 11141 if (err)
375637bc 11142 goto err_addr_filters;
d010b332 11143 }
f344011c 11144 }
9ee318a7 11145
da97e184
JFG
11146 err = security_perf_event_alloc(event);
11147 if (err)
11148 goto err_callchain_buffer;
11149
927a5570
AS
11150 /* symmetric to unaccount_event() in _free_event() */
11151 account_event(event);
11152
cdd6c482 11153 return event;
90983b16 11154
da97e184
JFG
11155err_callchain_buffer:
11156 if (!event->parent) {
11157 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11158 put_callchain_buffers();
11159 }
375637bc 11160err_addr_filters:
c60f83b8 11161 kfree(event->addr_filter_ranges);
375637bc 11162
bed5b25a
AS
11163err_per_task:
11164 exclusive_event_destroy(event);
11165
90983b16 11166err_pmu:
98add2af
PZ
11167 if (is_cgroup_event(event))
11168 perf_detach_cgroup(event);
90983b16
FW
11169 if (event->destroy)
11170 event->destroy(event);
c464c76e 11171 module_put(pmu->module);
90983b16
FW
11172err_ns:
11173 if (event->ns)
11174 put_pid_ns(event->ns);
621b6d2e
PB
11175 if (event->hw.target)
11176 put_task_struct(event->hw.target);
90983b16
FW
11177 kfree(event);
11178
11179 return ERR_PTR(err);
0793a61d
TG
11180}
11181
cdd6c482
IM
11182static int perf_copy_attr(struct perf_event_attr __user *uattr,
11183 struct perf_event_attr *attr)
974802ea 11184{
974802ea 11185 u32 size;
cdf8073d 11186 int ret;
974802ea 11187
c2ba8f41 11188 /* Zero the full structure, so that a short copy will be nice. */
974802ea
PZ
11189 memset(attr, 0, sizeof(*attr));
11190
11191 ret = get_user(size, &uattr->size);
11192 if (ret)
11193 return ret;
11194
c2ba8f41
AS
11195 /* ABI compatibility quirk: */
11196 if (!size)
974802ea 11197 size = PERF_ATTR_SIZE_VER0;
c2ba8f41 11198 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
974802ea
PZ
11199 goto err_size;
11200
c2ba8f41
AS
11201 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11202 if (ret) {
11203 if (ret == -E2BIG)
11204 goto err_size;
11205 return ret;
974802ea
PZ
11206 }
11207
f12f42ac
MX
11208 attr->size = size;
11209
a4faf00d 11210 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
974802ea
PZ
11211 return -EINVAL;
11212
11213 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11214 return -EINVAL;
11215
11216 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11217 return -EINVAL;
11218
bce38cd5
SE
11219 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11220 u64 mask = attr->branch_sample_type;
11221
11222 /* only using defined bits */
11223 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11224 return -EINVAL;
11225
11226 /* at least one branch bit must be set */
11227 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11228 return -EINVAL;
11229
bce38cd5
SE
11230 /* propagate priv level, when not set for branch */
11231 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11232
11233 /* exclude_kernel checked on syscall entry */
11234 if (!attr->exclude_kernel)
11235 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11236
11237 if (!attr->exclude_user)
11238 mask |= PERF_SAMPLE_BRANCH_USER;
11239
11240 if (!attr->exclude_hv)
11241 mask |= PERF_SAMPLE_BRANCH_HV;
11242 /*
11243 * adjust user setting (for HW filter setup)
11244 */
11245 attr->branch_sample_type = mask;
11246 }
e712209a 11247 /* privileged levels capture (kernel, hv): check permissions */
da97e184
JFG
11248 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11249 ret = perf_allow_kernel(attr);
11250 if (ret)
11251 return ret;
11252 }
bce38cd5 11253 }
4018994f 11254
c5ebcedb 11255 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 11256 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
11257 if (ret)
11258 return ret;
11259 }
11260
11261 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11262 if (!arch_perf_have_user_stack_dump())
11263 return -ENOSYS;
11264
11265 /*
11266 * We have __u32 type for the size, but so far
11267 * we can only use __u16 as maximum due to the
11268 * __u16 sample size limit.
11269 */
11270 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 11271 return -EINVAL;
c5ebcedb 11272 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 11273 return -EINVAL;
c5ebcedb 11274 }
4018994f 11275
5f970521
JO
11276 if (!attr->sample_max_stack)
11277 attr->sample_max_stack = sysctl_perf_event_max_stack;
11278
60e2364e
SE
11279 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11280 ret = perf_reg_validate(attr->sample_regs_intr);
6546b19f
NK
11281
11282#ifndef CONFIG_CGROUP_PERF
11283 if (attr->sample_type & PERF_SAMPLE_CGROUP)
11284 return -EINVAL;
11285#endif
11286
974802ea
PZ
11287out:
11288 return ret;
11289
11290err_size:
11291 put_user(sizeof(*attr), &uattr->size);
11292 ret = -E2BIG;
11293 goto out;
11294}
11295
ac9721f3
PZ
11296static int
11297perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 11298{
56de4e8f 11299 struct perf_buffer *rb = NULL;
a4be7c27
PZ
11300 int ret = -EINVAL;
11301
ac9721f3 11302 if (!output_event)
a4be7c27
PZ
11303 goto set;
11304
ac9721f3
PZ
11305 /* don't allow circular references */
11306 if (event == output_event)
a4be7c27
PZ
11307 goto out;
11308
0f139300
PZ
11309 /*
11310 * Don't allow cross-cpu buffers
11311 */
11312 if (output_event->cpu != event->cpu)
11313 goto out;
11314
11315 /*
76369139 11316 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
11317 */
11318 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11319 goto out;
11320
34f43927
PZ
11321 /*
11322 * Mixing clocks in the same buffer is trouble you don't need.
11323 */
11324 if (output_event->clock != event->clock)
11325 goto out;
11326
9ecda41a
WN
11327 /*
11328 * Either writing ring buffer from beginning or from end.
11329 * Mixing is not allowed.
11330 */
11331 if (is_write_backward(output_event) != is_write_backward(event))
11332 goto out;
11333
45bfb2e5
PZ
11334 /*
11335 * If both events generate aux data, they must be on the same PMU
11336 */
11337 if (has_aux(event) && has_aux(output_event) &&
11338 event->pmu != output_event->pmu)
11339 goto out;
11340
a4be7c27 11341set:
cdd6c482 11342 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
11343 /* Can't redirect output if we've got an active mmap() */
11344 if (atomic_read(&event->mmap_count))
11345 goto unlock;
a4be7c27 11346
ac9721f3 11347 if (output_event) {
76369139
FW
11348 /* get the rb we want to redirect to */
11349 rb = ring_buffer_get(output_event);
11350 if (!rb)
ac9721f3 11351 goto unlock;
a4be7c27
PZ
11352 }
11353
b69cf536 11354 ring_buffer_attach(event, rb);
9bb5d40c 11355
a4be7c27 11356 ret = 0;
ac9721f3
PZ
11357unlock:
11358 mutex_unlock(&event->mmap_mutex);
11359
a4be7c27 11360out:
a4be7c27
PZ
11361 return ret;
11362}
11363
f63a8daa
PZ
11364static void mutex_lock_double(struct mutex *a, struct mutex *b)
11365{
11366 if (b < a)
11367 swap(a, b);
11368
11369 mutex_lock(a);
11370 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11371}
11372
34f43927
PZ
11373static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11374{
11375 bool nmi_safe = false;
11376
11377 switch (clk_id) {
11378 case CLOCK_MONOTONIC:
11379 event->clock = &ktime_get_mono_fast_ns;
11380 nmi_safe = true;
11381 break;
11382
11383 case CLOCK_MONOTONIC_RAW:
11384 event->clock = &ktime_get_raw_fast_ns;
11385 nmi_safe = true;
11386 break;
11387
11388 case CLOCK_REALTIME:
11389 event->clock = &ktime_get_real_ns;
11390 break;
11391
11392 case CLOCK_BOOTTIME:
9285ec4c 11393 event->clock = &ktime_get_boottime_ns;
34f43927
PZ
11394 break;
11395
11396 case CLOCK_TAI:
9285ec4c 11397 event->clock = &ktime_get_clocktai_ns;
34f43927
PZ
11398 break;
11399
11400 default:
11401 return -EINVAL;
11402 }
11403
11404 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11405 return -EINVAL;
11406
11407 return 0;
11408}
11409
321027c1
PZ
11410/*
11411 * Variation on perf_event_ctx_lock_nested(), except we take two context
11412 * mutexes.
11413 */
11414static struct perf_event_context *
11415__perf_event_ctx_lock_double(struct perf_event *group_leader,
11416 struct perf_event_context *ctx)
11417{
11418 struct perf_event_context *gctx;
11419
11420again:
11421 rcu_read_lock();
11422 gctx = READ_ONCE(group_leader->ctx);
8c94abbb 11423 if (!refcount_inc_not_zero(&gctx->refcount)) {
321027c1
PZ
11424 rcu_read_unlock();
11425 goto again;
11426 }
11427 rcu_read_unlock();
11428
11429 mutex_lock_double(&gctx->mutex, &ctx->mutex);
11430
11431 if (group_leader->ctx != gctx) {
11432 mutex_unlock(&ctx->mutex);
11433 mutex_unlock(&gctx->mutex);
11434 put_ctx(gctx);
11435 goto again;
11436 }
11437
11438 return gctx;
11439}
11440
0793a61d 11441/**
cdd6c482 11442 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 11443 *
cdd6c482 11444 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 11445 * @pid: target pid
9f66a381 11446 * @cpu: target cpu
cdd6c482 11447 * @group_fd: group leader event fd
0793a61d 11448 */
cdd6c482
IM
11449SYSCALL_DEFINE5(perf_event_open,
11450 struct perf_event_attr __user *, attr_uptr,
2743a5b0 11451 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 11452{
b04243ef
PZ
11453 struct perf_event *group_leader = NULL, *output_event = NULL;
11454 struct perf_event *event, *sibling;
cdd6c482 11455 struct perf_event_attr attr;
f63a8daa 11456 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 11457 struct file *event_file = NULL;
2903ff01 11458 struct fd group = {NULL, 0};
38a81da2 11459 struct task_struct *task = NULL;
89a1e187 11460 struct pmu *pmu;
ea635c64 11461 int event_fd;
b04243ef 11462 int move_group = 0;
dc86cabe 11463 int err;
a21b0b35 11464 int f_flags = O_RDWR;
79dff51e 11465 int cgroup_fd = -1;
0793a61d 11466
2743a5b0 11467 /* for future expandability... */
e5d1367f 11468 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
11469 return -EINVAL;
11470
da97e184
JFG
11471 /* Do we allow access to perf_event_open(2) ? */
11472 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11473 if (err)
11474 return err;
11475
dc86cabe
IM
11476 err = perf_copy_attr(attr_uptr, &attr);
11477 if (err)
11478 return err;
eab656ae 11479
0764771d 11480 if (!attr.exclude_kernel) {
da97e184
JFG
11481 err = perf_allow_kernel(&attr);
11482 if (err)
11483 return err;
0764771d
PZ
11484 }
11485
e4222673
HB
11486 if (attr.namespaces) {
11487 if (!capable(CAP_SYS_ADMIN))
11488 return -EACCES;
11489 }
11490
df58ab24 11491 if (attr.freq) {
cdd6c482 11492 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 11493 return -EINVAL;
0819b2e3
PZ
11494 } else {
11495 if (attr.sample_period & (1ULL << 63))
11496 return -EINVAL;
df58ab24
PZ
11497 }
11498
fc7ce9c7 11499 /* Only privileged users can get physical addresses */
da97e184
JFG
11500 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11501 err = perf_allow_kernel(&attr);
11502 if (err)
11503 return err;
11504 }
fc7ce9c7 11505
b0c8fdc7
DH
11506 err = security_locked_down(LOCKDOWN_PERF);
11507 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11508 /* REGS_INTR can leak data, lockdown must prevent this */
11509 return err;
11510
11511 err = 0;
11512
e5d1367f
SE
11513 /*
11514 * In cgroup mode, the pid argument is used to pass the fd
11515 * opened to the cgroup directory in cgroupfs. The cpu argument
11516 * designates the cpu on which to monitor threads from that
11517 * cgroup.
11518 */
11519 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11520 return -EINVAL;
11521
a21b0b35
YD
11522 if (flags & PERF_FLAG_FD_CLOEXEC)
11523 f_flags |= O_CLOEXEC;
11524
11525 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
11526 if (event_fd < 0)
11527 return event_fd;
11528
ac9721f3 11529 if (group_fd != -1) {
2903ff01
AV
11530 err = perf_fget_light(group_fd, &group);
11531 if (err)
d14b12d7 11532 goto err_fd;
2903ff01 11533 group_leader = group.file->private_data;
ac9721f3
PZ
11534 if (flags & PERF_FLAG_FD_OUTPUT)
11535 output_event = group_leader;
11536 if (flags & PERF_FLAG_FD_NO_GROUP)
11537 group_leader = NULL;
11538 }
11539
e5d1367f 11540 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
11541 task = find_lively_task_by_vpid(pid);
11542 if (IS_ERR(task)) {
11543 err = PTR_ERR(task);
11544 goto err_group_fd;
11545 }
11546 }
11547
1f4ee503
PZ
11548 if (task && group_leader &&
11549 group_leader->attr.inherit != attr.inherit) {
11550 err = -EINVAL;
11551 goto err_task;
11552 }
11553
79c9ce57 11554 if (task) {
69143038 11555 err = mutex_lock_interruptible(&task->signal->exec_update_mutex);
79c9ce57 11556 if (err)
e5aeee51 11557 goto err_task;
79c9ce57
PZ
11558
11559 /*
11560 * Reuse ptrace permission checks for now.
11561 *
69143038 11562 * We must hold exec_update_mutex across this and any potential
79c9ce57
PZ
11563 * perf_install_in_context() call for this new event to
11564 * serialize against exec() altering our credentials (and the
11565 * perf_event_exit_task() that could imply).
11566 */
11567 err = -EACCES;
11568 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11569 goto err_cred;
11570 }
11571
79dff51e
MF
11572 if (flags & PERF_FLAG_PID_CGROUP)
11573 cgroup_fd = pid;
11574
4dc0da86 11575 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 11576 NULL, NULL, cgroup_fd);
d14b12d7
SE
11577 if (IS_ERR(event)) {
11578 err = PTR_ERR(event);
79c9ce57 11579 goto err_cred;
d14b12d7
SE
11580 }
11581
53b25335
VW
11582 if (is_sampling_event(event)) {
11583 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 11584 err = -EOPNOTSUPP;
53b25335
VW
11585 goto err_alloc;
11586 }
11587 }
11588
89a1e187
PZ
11589 /*
11590 * Special case software events and allow them to be part of
11591 * any hardware group.
11592 */
11593 pmu = event->pmu;
b04243ef 11594
34f43927
PZ
11595 if (attr.use_clockid) {
11596 err = perf_event_set_clock(event, attr.clockid);
11597 if (err)
11598 goto err_alloc;
11599 }
11600
4ff6a8de
DCC
11601 if (pmu->task_ctx_nr == perf_sw_context)
11602 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11603
a1150c20
SL
11604 if (group_leader) {
11605 if (is_software_event(event) &&
11606 !in_software_context(group_leader)) {
b04243ef 11607 /*
a1150c20
SL
11608 * If the event is a sw event, but the group_leader
11609 * is on hw context.
b04243ef 11610 *
a1150c20
SL
11611 * Allow the addition of software events to hw
11612 * groups, this is safe because software events
11613 * never fail to schedule.
b04243ef 11614 */
a1150c20
SL
11615 pmu = group_leader->ctx->pmu;
11616 } else if (!is_software_event(event) &&
11617 is_software_event(group_leader) &&
4ff6a8de 11618 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
11619 /*
11620 * In case the group is a pure software group, and we
11621 * try to add a hardware event, move the whole group to
11622 * the hardware context.
11623 */
11624 move_group = 1;
11625 }
11626 }
89a1e187
PZ
11627
11628 /*
11629 * Get the target context (task or percpu):
11630 */
4af57ef2 11631 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
11632 if (IS_ERR(ctx)) {
11633 err = PTR_ERR(ctx);
c6be5a5c 11634 goto err_alloc;
89a1e187
PZ
11635 }
11636
ccff286d 11637 /*
cdd6c482 11638 * Look up the group leader (we will attach this event to it):
04289bb9 11639 */
ac9721f3 11640 if (group_leader) {
dc86cabe 11641 err = -EINVAL;
04289bb9 11642
04289bb9 11643 /*
ccff286d
IM
11644 * Do not allow a recursive hierarchy (this new sibling
11645 * becoming part of another group-sibling):
11646 */
11647 if (group_leader->group_leader != group_leader)
c3f00c70 11648 goto err_context;
34f43927
PZ
11649
11650 /* All events in a group should have the same clock */
11651 if (group_leader->clock != event->clock)
11652 goto err_context;
11653
ccff286d 11654 /*
64aee2a9
MR
11655 * Make sure we're both events for the same CPU;
11656 * grouping events for different CPUs is broken; since
11657 * you can never concurrently schedule them anyhow.
04289bb9 11658 */
64aee2a9
MR
11659 if (group_leader->cpu != event->cpu)
11660 goto err_context;
c3c87e77 11661
64aee2a9
MR
11662 /*
11663 * Make sure we're both on the same task, or both
11664 * per-CPU events.
11665 */
11666 if (group_leader->ctx->task != ctx->task)
11667 goto err_context;
11668
11669 /*
11670 * Do not allow to attach to a group in a different task
11671 * or CPU context. If we're moving SW events, we'll fix
11672 * this up later, so allow that.
11673 */
11674 if (!move_group && group_leader->ctx != ctx)
11675 goto err_context;
b04243ef 11676
3b6f9e5c
PM
11677 /*
11678 * Only a group leader can be exclusive or pinned
11679 */
0d48696f 11680 if (attr.exclusive || attr.pinned)
c3f00c70 11681 goto err_context;
ac9721f3
PZ
11682 }
11683
11684 if (output_event) {
11685 err = perf_event_set_output(event, output_event);
11686 if (err)
c3f00c70 11687 goto err_context;
ac9721f3 11688 }
0793a61d 11689
a21b0b35
YD
11690 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11691 f_flags);
ea635c64
AV
11692 if (IS_ERR(event_file)) {
11693 err = PTR_ERR(event_file);
201c2f85 11694 event_file = NULL;
c3f00c70 11695 goto err_context;
ea635c64 11696 }
9b51f66d 11697
b04243ef 11698 if (move_group) {
321027c1
PZ
11699 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11700
84c4e620
PZ
11701 if (gctx->task == TASK_TOMBSTONE) {
11702 err = -ESRCH;
11703 goto err_locked;
11704 }
321027c1
PZ
11705
11706 /*
11707 * Check if we raced against another sys_perf_event_open() call
11708 * moving the software group underneath us.
11709 */
11710 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11711 /*
11712 * If someone moved the group out from under us, check
11713 * if this new event wound up on the same ctx, if so
11714 * its the regular !move_group case, otherwise fail.
11715 */
11716 if (gctx != ctx) {
11717 err = -EINVAL;
11718 goto err_locked;
11719 } else {
11720 perf_event_ctx_unlock(group_leader, gctx);
11721 move_group = 0;
11722 }
11723 }
8a58ddae
AS
11724
11725 /*
11726 * Failure to create exclusive events returns -EBUSY.
11727 */
11728 err = -EBUSY;
11729 if (!exclusive_event_installable(group_leader, ctx))
11730 goto err_locked;
11731
11732 for_each_sibling_event(sibling, group_leader) {
11733 if (!exclusive_event_installable(sibling, ctx))
11734 goto err_locked;
11735 }
f55fc2a5
PZ
11736 } else {
11737 mutex_lock(&ctx->mutex);
11738 }
11739
84c4e620
PZ
11740 if (ctx->task == TASK_TOMBSTONE) {
11741 err = -ESRCH;
11742 goto err_locked;
11743 }
11744
a723968c
PZ
11745 if (!perf_event_validate_size(event)) {
11746 err = -E2BIG;
11747 goto err_locked;
11748 }
11749
a63fbed7
TG
11750 if (!task) {
11751 /*
11752 * Check if the @cpu we're creating an event for is online.
11753 *
11754 * We use the perf_cpu_context::ctx::mutex to serialize against
11755 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11756 */
11757 struct perf_cpu_context *cpuctx =
11758 container_of(ctx, struct perf_cpu_context, ctx);
11759
11760 if (!cpuctx->online) {
11761 err = -ENODEV;
11762 goto err_locked;
11763 }
11764 }
11765
da9ec3d3
MR
11766 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11767 err = -EINVAL;
ab43762e 11768 goto err_locked;
da9ec3d3 11769 }
a63fbed7 11770
f55fc2a5
PZ
11771 /*
11772 * Must be under the same ctx::mutex as perf_install_in_context(),
11773 * because we need to serialize with concurrent event creation.
11774 */
11775 if (!exclusive_event_installable(event, ctx)) {
f55fc2a5
PZ
11776 err = -EBUSY;
11777 goto err_locked;
11778 }
f63a8daa 11779
f55fc2a5
PZ
11780 WARN_ON_ONCE(ctx->parent_ctx);
11781
79c9ce57
PZ
11782 /*
11783 * This is the point on no return; we cannot fail hereafter. This is
11784 * where we start modifying current state.
11785 */
11786
f55fc2a5 11787 if (move_group) {
f63a8daa
PZ
11788 /*
11789 * See perf_event_ctx_lock() for comments on the details
11790 * of swizzling perf_event::ctx.
11791 */
45a0e07a 11792 perf_remove_from_context(group_leader, 0);
279b5165 11793 put_ctx(gctx);
0231bb53 11794
edb39592 11795 for_each_sibling_event(sibling, group_leader) {
45a0e07a 11796 perf_remove_from_context(sibling, 0);
b04243ef
PZ
11797 put_ctx(gctx);
11798 }
b04243ef 11799
f63a8daa
PZ
11800 /*
11801 * Wait for everybody to stop referencing the events through
11802 * the old lists, before installing it on new lists.
11803 */
0cda4c02 11804 synchronize_rcu();
f63a8daa 11805
8f95b435
PZI
11806 /*
11807 * Install the group siblings before the group leader.
11808 *
11809 * Because a group leader will try and install the entire group
11810 * (through the sibling list, which is still in-tact), we can
11811 * end up with siblings installed in the wrong context.
11812 *
11813 * By installing siblings first we NO-OP because they're not
11814 * reachable through the group lists.
11815 */
edb39592 11816 for_each_sibling_event(sibling, group_leader) {
8f95b435 11817 perf_event__state_init(sibling);
9fc81d87 11818 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
11819 get_ctx(ctx);
11820 }
8f95b435
PZI
11821
11822 /*
11823 * Removing from the context ends up with disabled
11824 * event. What we want here is event in the initial
11825 * startup state, ready to be add into new context.
11826 */
11827 perf_event__state_init(group_leader);
11828 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11829 get_ctx(ctx);
bed5b25a
AS
11830 }
11831
f73e22ab
PZ
11832 /*
11833 * Precalculate sample_data sizes; do while holding ctx::mutex such
11834 * that we're serialized against further additions and before
11835 * perf_install_in_context() which is the point the event is active and
11836 * can use these values.
11837 */
11838 perf_event__header_size(event);
11839 perf_event__id_header_size(event);
11840
78cd2c74
PZ
11841 event->owner = current;
11842
e2d37cd2 11843 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11844 perf_unpin_context(ctx);
f63a8daa 11845
f55fc2a5 11846 if (move_group)
321027c1 11847 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 11848 mutex_unlock(&ctx->mutex);
9b51f66d 11849
79c9ce57 11850 if (task) {
69143038 11851 mutex_unlock(&task->signal->exec_update_mutex);
79c9ce57
PZ
11852 put_task_struct(task);
11853 }
11854
cdd6c482
IM
11855 mutex_lock(&current->perf_event_mutex);
11856 list_add_tail(&event->owner_entry, &current->perf_event_list);
11857 mutex_unlock(&current->perf_event_mutex);
082ff5a2 11858
8a49542c
PZ
11859 /*
11860 * Drop the reference on the group_event after placing the
11861 * new event on the sibling_list. This ensures destruction
11862 * of the group leader will find the pointer to itself in
11863 * perf_group_detach().
11864 */
2903ff01 11865 fdput(group);
ea635c64
AV
11866 fd_install(event_fd, event_file);
11867 return event_fd;
0793a61d 11868
f55fc2a5
PZ
11869err_locked:
11870 if (move_group)
321027c1 11871 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
11872 mutex_unlock(&ctx->mutex);
11873/* err_file: */
11874 fput(event_file);
c3f00c70 11875err_context:
fe4b04fa 11876 perf_unpin_context(ctx);
ea635c64 11877 put_ctx(ctx);
c6be5a5c 11878err_alloc:
13005627
PZ
11879 /*
11880 * If event_file is set, the fput() above will have called ->release()
11881 * and that will take care of freeing the event.
11882 */
11883 if (!event_file)
11884 free_event(event);
79c9ce57
PZ
11885err_cred:
11886 if (task)
69143038 11887 mutex_unlock(&task->signal->exec_update_mutex);
1f4ee503 11888err_task:
e7d0bc04
PZ
11889 if (task)
11890 put_task_struct(task);
89a1e187 11891err_group_fd:
2903ff01 11892 fdput(group);
ea635c64
AV
11893err_fd:
11894 put_unused_fd(event_fd);
dc86cabe 11895 return err;
0793a61d
TG
11896}
11897
fb0459d7
AV
11898/**
11899 * perf_event_create_kernel_counter
11900 *
11901 * @attr: attributes of the counter to create
11902 * @cpu: cpu in which the counter is bound
38a81da2 11903 * @task: task to profile (NULL for percpu)
fb0459d7
AV
11904 */
11905struct perf_event *
11906perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 11907 struct task_struct *task,
4dc0da86
AK
11908 perf_overflow_handler_t overflow_handler,
11909 void *context)
fb0459d7 11910{
fb0459d7 11911 struct perf_event_context *ctx;
c3f00c70 11912 struct perf_event *event;
fb0459d7 11913 int err;
d859e29f 11914
dce5affb
AS
11915 /*
11916 * Grouping is not supported for kernel events, neither is 'AUX',
11917 * make sure the caller's intentions are adjusted.
11918 */
11919 if (attr->aux_output)
11920 return ERR_PTR(-EINVAL);
11921
4dc0da86 11922 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 11923 overflow_handler, context, -1);
c3f00c70
PZ
11924 if (IS_ERR(event)) {
11925 err = PTR_ERR(event);
11926 goto err;
11927 }
d859e29f 11928
f8697762 11929 /* Mark owner so we could distinguish it from user events. */
63b6da39 11930 event->owner = TASK_TOMBSTONE;
f8697762 11931
f25d8ba9
AS
11932 /*
11933 * Get the target context (task or percpu):
11934 */
4af57ef2 11935 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
11936 if (IS_ERR(ctx)) {
11937 err = PTR_ERR(ctx);
c3f00c70 11938 goto err_free;
d859e29f 11939 }
fb0459d7 11940
fb0459d7
AV
11941 WARN_ON_ONCE(ctx->parent_ctx);
11942 mutex_lock(&ctx->mutex);
84c4e620
PZ
11943 if (ctx->task == TASK_TOMBSTONE) {
11944 err = -ESRCH;
11945 goto err_unlock;
11946 }
11947
a63fbed7
TG
11948 if (!task) {
11949 /*
11950 * Check if the @cpu we're creating an event for is online.
11951 *
11952 * We use the perf_cpu_context::ctx::mutex to serialize against
11953 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11954 */
11955 struct perf_cpu_context *cpuctx =
11956 container_of(ctx, struct perf_cpu_context, ctx);
11957 if (!cpuctx->online) {
11958 err = -ENODEV;
11959 goto err_unlock;
11960 }
11961 }
11962
bed5b25a 11963 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 11964 err = -EBUSY;
84c4e620 11965 goto err_unlock;
bed5b25a
AS
11966 }
11967
4ce54af8 11968 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11969 perf_unpin_context(ctx);
fb0459d7
AV
11970 mutex_unlock(&ctx->mutex);
11971
fb0459d7
AV
11972 return event;
11973
84c4e620
PZ
11974err_unlock:
11975 mutex_unlock(&ctx->mutex);
11976 perf_unpin_context(ctx);
11977 put_ctx(ctx);
c3f00c70
PZ
11978err_free:
11979 free_event(event);
11980err:
c6567f64 11981 return ERR_PTR(err);
9b51f66d 11982}
fb0459d7 11983EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 11984
0cda4c02
YZ
11985void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11986{
11987 struct perf_event_context *src_ctx;
11988 struct perf_event_context *dst_ctx;
11989 struct perf_event *event, *tmp;
11990 LIST_HEAD(events);
11991
11992 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11993 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11994
f63a8daa
PZ
11995 /*
11996 * See perf_event_ctx_lock() for comments on the details
11997 * of swizzling perf_event::ctx.
11998 */
11999 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
12000 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12001 event_entry) {
45a0e07a 12002 perf_remove_from_context(event, 0);
9a545de0 12003 unaccount_event_cpu(event, src_cpu);
0cda4c02 12004 put_ctx(src_ctx);
9886167d 12005 list_add(&event->migrate_entry, &events);
0cda4c02 12006 }
0cda4c02 12007
8f95b435
PZI
12008 /*
12009 * Wait for the events to quiesce before re-instating them.
12010 */
0cda4c02
YZ
12011 synchronize_rcu();
12012
8f95b435
PZI
12013 /*
12014 * Re-instate events in 2 passes.
12015 *
12016 * Skip over group leaders and only install siblings on this first
12017 * pass, siblings will not get enabled without a leader, however a
12018 * leader will enable its siblings, even if those are still on the old
12019 * context.
12020 */
12021 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12022 if (event->group_leader == event)
12023 continue;
12024
12025 list_del(&event->migrate_entry);
12026 if (event->state >= PERF_EVENT_STATE_OFF)
12027 event->state = PERF_EVENT_STATE_INACTIVE;
12028 account_event_cpu(event, dst_cpu);
12029 perf_install_in_context(dst_ctx, event, dst_cpu);
12030 get_ctx(dst_ctx);
12031 }
12032
12033 /*
12034 * Once all the siblings are setup properly, install the group leaders
12035 * to make it go.
12036 */
9886167d
PZ
12037 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12038 list_del(&event->migrate_entry);
0cda4c02
YZ
12039 if (event->state >= PERF_EVENT_STATE_OFF)
12040 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 12041 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
12042 perf_install_in_context(dst_ctx, event, dst_cpu);
12043 get_ctx(dst_ctx);
12044 }
12045 mutex_unlock(&dst_ctx->mutex);
f63a8daa 12046 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
12047}
12048EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12049
cdd6c482 12050static void sync_child_event(struct perf_event *child_event,
38b200d6 12051 struct task_struct *child)
d859e29f 12052{
cdd6c482 12053 struct perf_event *parent_event = child_event->parent;
8bc20959 12054 u64 child_val;
d859e29f 12055
cdd6c482
IM
12056 if (child_event->attr.inherit_stat)
12057 perf_event_read_event(child_event, child);
38b200d6 12058
b5e58793 12059 child_val = perf_event_count(child_event);
d859e29f
PM
12060
12061 /*
12062 * Add back the child's count to the parent's count:
12063 */
a6e6dea6 12064 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
12065 atomic64_add(child_event->total_time_enabled,
12066 &parent_event->child_total_time_enabled);
12067 atomic64_add(child_event->total_time_running,
12068 &parent_event->child_total_time_running);
d859e29f
PM
12069}
12070
9b51f66d 12071static void
8ba289b8
PZ
12072perf_event_exit_event(struct perf_event *child_event,
12073 struct perf_event_context *child_ctx,
12074 struct task_struct *child)
9b51f66d 12075{
8ba289b8
PZ
12076 struct perf_event *parent_event = child_event->parent;
12077
1903d50c
PZ
12078 /*
12079 * Do not destroy the 'original' grouping; because of the context
12080 * switch optimization the original events could've ended up in a
12081 * random child task.
12082 *
12083 * If we were to destroy the original group, all group related
12084 * operations would cease to function properly after this random
12085 * child dies.
12086 *
12087 * Do destroy all inherited groups, we don't care about those
12088 * and being thorough is better.
12089 */
32132a3d
PZ
12090 raw_spin_lock_irq(&child_ctx->lock);
12091 WARN_ON_ONCE(child_ctx->is_active);
12092
8ba289b8 12093 if (parent_event)
32132a3d
PZ
12094 perf_group_detach(child_event);
12095 list_del_event(child_event, child_ctx);
0d3d73aa 12096 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 12097 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 12098
9b51f66d 12099 /*
8ba289b8 12100 * Parent events are governed by their filedesc, retain them.
9b51f66d 12101 */
8ba289b8 12102 if (!parent_event) {
179033b3 12103 perf_event_wakeup(child_event);
8ba289b8 12104 return;
4bcf349a 12105 }
8ba289b8
PZ
12106 /*
12107 * Child events can be cleaned up.
12108 */
12109
12110 sync_child_event(child_event, child);
12111
12112 /*
12113 * Remove this event from the parent's list
12114 */
12115 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12116 mutex_lock(&parent_event->child_mutex);
12117 list_del_init(&child_event->child_list);
12118 mutex_unlock(&parent_event->child_mutex);
12119
12120 /*
12121 * Kick perf_poll() for is_event_hup().
12122 */
12123 perf_event_wakeup(parent_event);
12124 free_event(child_event);
12125 put_event(parent_event);
9b51f66d
IM
12126}
12127
8dc85d54 12128static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 12129{
211de6eb 12130 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 12131 struct perf_event *child_event, *next;
63b6da39
PZ
12132
12133 WARN_ON_ONCE(child != current);
9b51f66d 12134
6a3351b6 12135 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 12136 if (!child_ctx)
9b51f66d
IM
12137 return;
12138
ad3a37de 12139 /*
6a3351b6
PZ
12140 * In order to reduce the amount of tricky in ctx tear-down, we hold
12141 * ctx::mutex over the entire thing. This serializes against almost
12142 * everything that wants to access the ctx.
12143 *
12144 * The exception is sys_perf_event_open() /
12145 * perf_event_create_kernel_count() which does find_get_context()
12146 * without ctx::mutex (it cannot because of the move_group double mutex
12147 * lock thing). See the comments in perf_install_in_context().
ad3a37de 12148 */
6a3351b6 12149 mutex_lock(&child_ctx->mutex);
c93f7669
PM
12150
12151 /*
6a3351b6
PZ
12152 * In a single ctx::lock section, de-schedule the events and detach the
12153 * context from the task such that we cannot ever get it scheduled back
12154 * in.
c93f7669 12155 */
6a3351b6 12156 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 12157 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 12158
71a851b4 12159 /*
63b6da39
PZ
12160 * Now that the context is inactive, destroy the task <-> ctx relation
12161 * and mark the context dead.
71a851b4 12162 */
63b6da39
PZ
12163 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12164 put_ctx(child_ctx); /* cannot be last */
12165 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12166 put_task_struct(current); /* cannot be last */
4a1c0f26 12167
211de6eb 12168 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 12169 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 12170
211de6eb
PZ
12171 if (clone_ctx)
12172 put_ctx(clone_ctx);
4a1c0f26 12173
9f498cc5 12174 /*
cdd6c482
IM
12175 * Report the task dead after unscheduling the events so that we
12176 * won't get any samples after PERF_RECORD_EXIT. We can however still
12177 * get a few PERF_RECORD_READ events.
9f498cc5 12178 */
cdd6c482 12179 perf_event_task(child, child_ctx, 0);
a63eaf34 12180
ebf905fc 12181 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 12182 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 12183
a63eaf34
PM
12184 mutex_unlock(&child_ctx->mutex);
12185
12186 put_ctx(child_ctx);
9b51f66d
IM
12187}
12188
8dc85d54
PZ
12189/*
12190 * When a child task exits, feed back event values to parent events.
79c9ce57 12191 *
69143038 12192 * Can be called with exec_update_mutex held when called from
79c9ce57 12193 * install_exec_creds().
8dc85d54
PZ
12194 */
12195void perf_event_exit_task(struct task_struct *child)
12196{
8882135b 12197 struct perf_event *event, *tmp;
8dc85d54
PZ
12198 int ctxn;
12199
8882135b
PZ
12200 mutex_lock(&child->perf_event_mutex);
12201 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12202 owner_entry) {
12203 list_del_init(&event->owner_entry);
12204
12205 /*
12206 * Ensure the list deletion is visible before we clear
12207 * the owner, closes a race against perf_release() where
12208 * we need to serialize on the owner->perf_event_mutex.
12209 */
f47c02c0 12210 smp_store_release(&event->owner, NULL);
8882135b
PZ
12211 }
12212 mutex_unlock(&child->perf_event_mutex);
12213
8dc85d54
PZ
12214 for_each_task_context_nr(ctxn)
12215 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
12216
12217 /*
12218 * The perf_event_exit_task_context calls perf_event_task
12219 * with child's task_ctx, which generates EXIT events for
12220 * child contexts and sets child->perf_event_ctxp[] to NULL.
12221 * At this point we need to send EXIT events to cpu contexts.
12222 */
12223 perf_event_task(child, NULL, 0);
8dc85d54
PZ
12224}
12225
889ff015
FW
12226static void perf_free_event(struct perf_event *event,
12227 struct perf_event_context *ctx)
12228{
12229 struct perf_event *parent = event->parent;
12230
12231 if (WARN_ON_ONCE(!parent))
12232 return;
12233
12234 mutex_lock(&parent->child_mutex);
12235 list_del_init(&event->child_list);
12236 mutex_unlock(&parent->child_mutex);
12237
a6fa941d 12238 put_event(parent);
889ff015 12239
652884fe 12240 raw_spin_lock_irq(&ctx->lock);
8a49542c 12241 perf_group_detach(event);
889ff015 12242 list_del_event(event, ctx);
652884fe 12243 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
12244 free_event(event);
12245}
12246
bbbee908 12247/*
1cf8dfe8
PZ
12248 * Free a context as created by inheritance by perf_event_init_task() below,
12249 * used by fork() in case of fail.
652884fe 12250 *
1cf8dfe8
PZ
12251 * Even though the task has never lived, the context and events have been
12252 * exposed through the child_list, so we must take care tearing it all down.
bbbee908 12253 */
cdd6c482 12254void perf_event_free_task(struct task_struct *task)
bbbee908 12255{
8dc85d54 12256 struct perf_event_context *ctx;
cdd6c482 12257 struct perf_event *event, *tmp;
8dc85d54 12258 int ctxn;
bbbee908 12259
8dc85d54
PZ
12260 for_each_task_context_nr(ctxn) {
12261 ctx = task->perf_event_ctxp[ctxn];
12262 if (!ctx)
12263 continue;
bbbee908 12264
8dc85d54 12265 mutex_lock(&ctx->mutex);
e552a838
PZ
12266 raw_spin_lock_irq(&ctx->lock);
12267 /*
12268 * Destroy the task <-> ctx relation and mark the context dead.
12269 *
12270 * This is important because even though the task hasn't been
12271 * exposed yet the context has been (through child_list).
12272 */
12273 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12274 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12275 put_task_struct(task); /* cannot be last */
12276 raw_spin_unlock_irq(&ctx->lock);
bbbee908 12277
15121c78 12278 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 12279 perf_free_event(event, ctx);
bbbee908 12280
8dc85d54 12281 mutex_unlock(&ctx->mutex);
1cf8dfe8
PZ
12282
12283 /*
12284 * perf_event_release_kernel() could've stolen some of our
12285 * child events and still have them on its free_list. In that
12286 * case we must wait for these events to have been freed (in
12287 * particular all their references to this task must've been
12288 * dropped).
12289 *
12290 * Without this copy_process() will unconditionally free this
12291 * task (irrespective of its reference count) and
12292 * _free_event()'s put_task_struct(event->hw.target) will be a
12293 * use-after-free.
12294 *
12295 * Wait for all events to drop their context reference.
12296 */
12297 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12298 put_ctx(ctx); /* must be last */
8dc85d54 12299 }
889ff015
FW
12300}
12301
4e231c79
PZ
12302void perf_event_delayed_put(struct task_struct *task)
12303{
12304 int ctxn;
12305
12306 for_each_task_context_nr(ctxn)
12307 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12308}
12309
e03e7ee3 12310struct file *perf_event_get(unsigned int fd)
ffe8690c 12311{
02e5ad97 12312 struct file *file = fget(fd);
e03e7ee3
AS
12313 if (!file)
12314 return ERR_PTR(-EBADF);
ffe8690c 12315
e03e7ee3
AS
12316 if (file->f_op != &perf_fops) {
12317 fput(file);
12318 return ERR_PTR(-EBADF);
12319 }
ffe8690c 12320
e03e7ee3 12321 return file;
ffe8690c
KX
12322}
12323
f8d959a5
YS
12324const struct perf_event *perf_get_event(struct file *file)
12325{
12326 if (file->f_op != &perf_fops)
12327 return ERR_PTR(-EINVAL);
12328
12329 return file->private_data;
12330}
12331
ffe8690c
KX
12332const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12333{
12334 if (!event)
12335 return ERR_PTR(-EINVAL);
12336
12337 return &event->attr;
12338}
12339
97dee4f3 12340/*
788faab7 12341 * Inherit an event from parent task to child task.
d8a8cfc7
PZ
12342 *
12343 * Returns:
12344 * - valid pointer on success
12345 * - NULL for orphaned events
12346 * - IS_ERR() on error
97dee4f3
PZ
12347 */
12348static struct perf_event *
12349inherit_event(struct perf_event *parent_event,
12350 struct task_struct *parent,
12351 struct perf_event_context *parent_ctx,
12352 struct task_struct *child,
12353 struct perf_event *group_leader,
12354 struct perf_event_context *child_ctx)
12355{
8ca2bd41 12356 enum perf_event_state parent_state = parent_event->state;
97dee4f3 12357 struct perf_event *child_event;
cee010ec 12358 unsigned long flags;
97dee4f3
PZ
12359
12360 /*
12361 * Instead of creating recursive hierarchies of events,
12362 * we link inherited events back to the original parent,
12363 * which has a filp for sure, which we use as the reference
12364 * count:
12365 */
12366 if (parent_event->parent)
12367 parent_event = parent_event->parent;
12368
12369 child_event = perf_event_alloc(&parent_event->attr,
12370 parent_event->cpu,
d580ff86 12371 child,
97dee4f3 12372 group_leader, parent_event,
79dff51e 12373 NULL, NULL, -1);
97dee4f3
PZ
12374 if (IS_ERR(child_event))
12375 return child_event;
a6fa941d 12376
313ccb96
JO
12377
12378 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12379 !child_ctx->task_ctx_data) {
12380 struct pmu *pmu = child_event->pmu;
12381
12382 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12383 GFP_KERNEL);
12384 if (!child_ctx->task_ctx_data) {
12385 free_event(child_event);
697d8778 12386 return ERR_PTR(-ENOMEM);
313ccb96
JO
12387 }
12388 }
12389
c6e5b732
PZ
12390 /*
12391 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12392 * must be under the same lock in order to serialize against
12393 * perf_event_release_kernel(), such that either we must observe
12394 * is_orphaned_event() or they will observe us on the child_list.
12395 */
12396 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
12397 if (is_orphaned_event(parent_event) ||
12398 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 12399 mutex_unlock(&parent_event->child_mutex);
313ccb96 12400 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
12401 free_event(child_event);
12402 return NULL;
12403 }
12404
97dee4f3
PZ
12405 get_ctx(child_ctx);
12406
12407 /*
12408 * Make the child state follow the state of the parent event,
12409 * not its attr.disabled bit. We hold the parent's mutex,
12410 * so we won't race with perf_event_{en, dis}able_family.
12411 */
1929def9 12412 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
12413 child_event->state = PERF_EVENT_STATE_INACTIVE;
12414 else
12415 child_event->state = PERF_EVENT_STATE_OFF;
12416
12417 if (parent_event->attr.freq) {
12418 u64 sample_period = parent_event->hw.sample_period;
12419 struct hw_perf_event *hwc = &child_event->hw;
12420
12421 hwc->sample_period = sample_period;
12422 hwc->last_period = sample_period;
12423
12424 local64_set(&hwc->period_left, sample_period);
12425 }
12426
12427 child_event->ctx = child_ctx;
12428 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
12429 child_event->overflow_handler_context
12430 = parent_event->overflow_handler_context;
97dee4f3 12431
614b6780
TG
12432 /*
12433 * Precalculate sample_data sizes
12434 */
12435 perf_event__header_size(child_event);
6844c09d 12436 perf_event__id_header_size(child_event);
614b6780 12437
97dee4f3
PZ
12438 /*
12439 * Link it up in the child's context:
12440 */
cee010ec 12441 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 12442 add_event_to_ctx(child_event, child_ctx);
cee010ec 12443 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 12444
97dee4f3
PZ
12445 /*
12446 * Link this into the parent event's child list
12447 */
97dee4f3
PZ
12448 list_add_tail(&child_event->child_list, &parent_event->child_list);
12449 mutex_unlock(&parent_event->child_mutex);
12450
12451 return child_event;
12452}
12453
d8a8cfc7
PZ
12454/*
12455 * Inherits an event group.
12456 *
12457 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12458 * This matches with perf_event_release_kernel() removing all child events.
12459 *
12460 * Returns:
12461 * - 0 on success
12462 * - <0 on error
12463 */
97dee4f3
PZ
12464static int inherit_group(struct perf_event *parent_event,
12465 struct task_struct *parent,
12466 struct perf_event_context *parent_ctx,
12467 struct task_struct *child,
12468 struct perf_event_context *child_ctx)
12469{
12470 struct perf_event *leader;
12471 struct perf_event *sub;
12472 struct perf_event *child_ctr;
12473
12474 leader = inherit_event(parent_event, parent, parent_ctx,
12475 child, NULL, child_ctx);
12476 if (IS_ERR(leader))
12477 return PTR_ERR(leader);
d8a8cfc7
PZ
12478 /*
12479 * @leader can be NULL here because of is_orphaned_event(). In this
12480 * case inherit_event() will create individual events, similar to what
12481 * perf_group_detach() would do anyway.
12482 */
edb39592 12483 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
12484 child_ctr = inherit_event(sub, parent, parent_ctx,
12485 child, leader, child_ctx);
12486 if (IS_ERR(child_ctr))
12487 return PTR_ERR(child_ctr);
f733c6b5 12488
00496fe5 12489 if (sub->aux_event == parent_event && child_ctr &&
f733c6b5
AS
12490 !perf_get_aux_event(child_ctr, leader))
12491 return -EINVAL;
97dee4f3
PZ
12492 }
12493 return 0;
889ff015
FW
12494}
12495
d8a8cfc7
PZ
12496/*
12497 * Creates the child task context and tries to inherit the event-group.
12498 *
12499 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12500 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12501 * consistent with perf_event_release_kernel() removing all child events.
12502 *
12503 * Returns:
12504 * - 0 on success
12505 * - <0 on error
12506 */
889ff015
FW
12507static int
12508inherit_task_group(struct perf_event *event, struct task_struct *parent,
12509 struct perf_event_context *parent_ctx,
8dc85d54 12510 struct task_struct *child, int ctxn,
889ff015
FW
12511 int *inherited_all)
12512{
12513 int ret;
8dc85d54 12514 struct perf_event_context *child_ctx;
889ff015
FW
12515
12516 if (!event->attr.inherit) {
12517 *inherited_all = 0;
12518 return 0;
bbbee908
PZ
12519 }
12520
fe4b04fa 12521 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
12522 if (!child_ctx) {
12523 /*
12524 * This is executed from the parent task context, so
12525 * inherit events that have been marked for cloning.
12526 * First allocate and initialize a context for the
12527 * child.
12528 */
734df5ab 12529 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
12530 if (!child_ctx)
12531 return -ENOMEM;
bbbee908 12532
8dc85d54 12533 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
12534 }
12535
12536 ret = inherit_group(event, parent, parent_ctx,
12537 child, child_ctx);
12538
12539 if (ret)
12540 *inherited_all = 0;
12541
12542 return ret;
bbbee908
PZ
12543}
12544
9b51f66d 12545/*
cdd6c482 12546 * Initialize the perf_event context in task_struct
9b51f66d 12547 */
985c8dcb 12548static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 12549{
889ff015 12550 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
12551 struct perf_event_context *cloned_ctx;
12552 struct perf_event *event;
9b51f66d 12553 struct task_struct *parent = current;
564c2b21 12554 int inherited_all = 1;
dddd3379 12555 unsigned long flags;
6ab423e0 12556 int ret = 0;
9b51f66d 12557
8dc85d54 12558 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
12559 return 0;
12560
ad3a37de 12561 /*
25346b93
PM
12562 * If the parent's context is a clone, pin it so it won't get
12563 * swapped under us.
ad3a37de 12564 */
8dc85d54 12565 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
12566 if (!parent_ctx)
12567 return 0;
25346b93 12568
ad3a37de
PM
12569 /*
12570 * No need to check if parent_ctx != NULL here; since we saw
12571 * it non-NULL earlier, the only reason for it to become NULL
12572 * is if we exit, and since we're currently in the middle of
12573 * a fork we can't be exiting at the same time.
12574 */
ad3a37de 12575
9b51f66d
IM
12576 /*
12577 * Lock the parent list. No need to lock the child - not PID
12578 * hashed yet and not running, so nobody can access it.
12579 */
d859e29f 12580 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
12581
12582 /*
12583 * We dont have to disable NMIs - we are only looking at
12584 * the list, not manipulating it:
12585 */
6e6804d2 12586 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54
PZ
12587 ret = inherit_task_group(event, parent, parent_ctx,
12588 child, ctxn, &inherited_all);
889ff015 12589 if (ret)
e7cc4865 12590 goto out_unlock;
889ff015 12591 }
b93f7978 12592
dddd3379
TG
12593 /*
12594 * We can't hold ctx->lock when iterating the ->flexible_group list due
12595 * to allocations, but we need to prevent rotation because
12596 * rotate_ctx() will change the list from interrupt context.
12597 */
12598 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12599 parent_ctx->rotate_disable = 1;
12600 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12601
6e6804d2 12602 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54
PZ
12603 ret = inherit_task_group(event, parent, parent_ctx,
12604 child, ctxn, &inherited_all);
889ff015 12605 if (ret)
e7cc4865 12606 goto out_unlock;
564c2b21
PM
12607 }
12608
dddd3379
TG
12609 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12610 parent_ctx->rotate_disable = 0;
dddd3379 12611
8dc85d54 12612 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 12613
05cbaa28 12614 if (child_ctx && inherited_all) {
564c2b21
PM
12615 /*
12616 * Mark the child context as a clone of the parent
12617 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
12618 *
12619 * Note that if the parent is a clone, the holding of
12620 * parent_ctx->lock avoids it from being uncloned.
564c2b21 12621 */
c5ed5145 12622 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
12623 if (cloned_ctx) {
12624 child_ctx->parent_ctx = cloned_ctx;
25346b93 12625 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
12626 } else {
12627 child_ctx->parent_ctx = parent_ctx;
12628 child_ctx->parent_gen = parent_ctx->generation;
12629 }
12630 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
12631 }
12632
c5ed5145 12633 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 12634out_unlock:
d859e29f 12635 mutex_unlock(&parent_ctx->mutex);
6ab423e0 12636
25346b93 12637 perf_unpin_context(parent_ctx);
fe4b04fa 12638 put_ctx(parent_ctx);
ad3a37de 12639
6ab423e0 12640 return ret;
9b51f66d
IM
12641}
12642
8dc85d54
PZ
12643/*
12644 * Initialize the perf_event context in task_struct
12645 */
12646int perf_event_init_task(struct task_struct *child)
12647{
12648 int ctxn, ret;
12649
8550d7cb
ON
12650 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12651 mutex_init(&child->perf_event_mutex);
12652 INIT_LIST_HEAD(&child->perf_event_list);
12653
8dc85d54
PZ
12654 for_each_task_context_nr(ctxn) {
12655 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
12656 if (ret) {
12657 perf_event_free_task(child);
8dc85d54 12658 return ret;
6c72e350 12659 }
8dc85d54
PZ
12660 }
12661
12662 return 0;
12663}
12664
220b140b
PM
12665static void __init perf_event_init_all_cpus(void)
12666{
b28ab83c 12667 struct swevent_htable *swhash;
220b140b 12668 int cpu;
220b140b 12669
a63fbed7
TG
12670 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12671
220b140b 12672 for_each_possible_cpu(cpu) {
b28ab83c
PZ
12673 swhash = &per_cpu(swevent_htable, cpu);
12674 mutex_init(&swhash->hlist_mutex);
2fde4f94 12675 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
12676
12677 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12678 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 12679
058fe1c0
DCC
12680#ifdef CONFIG_CGROUP_PERF
12681 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12682#endif
e48c1788 12683 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
12684 }
12685}
12686
d18bf422 12687static void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 12688{
108b02cf 12689 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 12690
b28ab83c 12691 mutex_lock(&swhash->hlist_mutex);
059fcd8c 12692 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
12693 struct swevent_hlist *hlist;
12694
b28ab83c
PZ
12695 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12696 WARN_ON(!hlist);
12697 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 12698 }
b28ab83c 12699 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
12700}
12701
2965faa5 12702#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 12703static void __perf_event_exit_context(void *__info)
0793a61d 12704{
108b02cf 12705 struct perf_event_context *ctx = __info;
fae3fde6
PZ
12706 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12707 struct perf_event *event;
0793a61d 12708
fae3fde6 12709 raw_spin_lock(&ctx->lock);
0ee098c9 12710 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 12711 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 12712 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 12713 raw_spin_unlock(&ctx->lock);
0793a61d 12714}
108b02cf
PZ
12715
12716static void perf_event_exit_cpu_context(int cpu)
12717{
a63fbed7 12718 struct perf_cpu_context *cpuctx;
108b02cf
PZ
12719 struct perf_event_context *ctx;
12720 struct pmu *pmu;
108b02cf 12721
a63fbed7
TG
12722 mutex_lock(&pmus_lock);
12723 list_for_each_entry(pmu, &pmus, entry) {
12724 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12725 ctx = &cpuctx->ctx;
108b02cf
PZ
12726
12727 mutex_lock(&ctx->mutex);
12728 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 12729 cpuctx->online = 0;
108b02cf
PZ
12730 mutex_unlock(&ctx->mutex);
12731 }
a63fbed7
TG
12732 cpumask_clear_cpu(cpu, perf_online_mask);
12733 mutex_unlock(&pmus_lock);
108b02cf 12734}
00e16c3d
TG
12735#else
12736
12737static void perf_event_exit_cpu_context(int cpu) { }
12738
12739#endif
108b02cf 12740
a63fbed7
TG
12741int perf_event_init_cpu(unsigned int cpu)
12742{
12743 struct perf_cpu_context *cpuctx;
12744 struct perf_event_context *ctx;
12745 struct pmu *pmu;
12746
12747 perf_swevent_init_cpu(cpu);
12748
12749 mutex_lock(&pmus_lock);
12750 cpumask_set_cpu(cpu, perf_online_mask);
12751 list_for_each_entry(pmu, &pmus, entry) {
12752 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12753 ctx = &cpuctx->ctx;
12754
12755 mutex_lock(&ctx->mutex);
12756 cpuctx->online = 1;
12757 mutex_unlock(&ctx->mutex);
12758 }
12759 mutex_unlock(&pmus_lock);
12760
12761 return 0;
12762}
12763
00e16c3d 12764int perf_event_exit_cpu(unsigned int cpu)
0793a61d 12765{
e3703f8c 12766 perf_event_exit_cpu_context(cpu);
00e16c3d 12767 return 0;
0793a61d 12768}
0793a61d 12769
c277443c
PZ
12770static int
12771perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12772{
12773 int cpu;
12774
12775 for_each_online_cpu(cpu)
12776 perf_event_exit_cpu(cpu);
12777
12778 return NOTIFY_OK;
12779}
12780
12781/*
12782 * Run the perf reboot notifier at the very last possible moment so that
12783 * the generic watchdog code runs as long as possible.
12784 */
12785static struct notifier_block perf_reboot_notifier = {
12786 .notifier_call = perf_reboot,
12787 .priority = INT_MIN,
12788};
12789
cdd6c482 12790void __init perf_event_init(void)
0793a61d 12791{
3c502e7a
JW
12792 int ret;
12793
2e80a82a
PZ
12794 idr_init(&pmu_idr);
12795
220b140b 12796 perf_event_init_all_cpus();
b0a873eb 12797 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
12798 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12799 perf_pmu_register(&perf_cpu_clock, NULL, -1);
12800 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 12801 perf_tp_register();
00e16c3d 12802 perf_event_init_cpu(smp_processor_id());
c277443c 12803 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
12804
12805 ret = init_hw_breakpoint();
12806 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 12807
b01c3a00
JO
12808 /*
12809 * Build time assertion that we keep the data_head at the intended
12810 * location. IOW, validation we got the __reserved[] size right.
12811 */
12812 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12813 != 1024);
0793a61d 12814}
abe43400 12815
fd979c01
CS
12816ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12817 char *page)
12818{
12819 struct perf_pmu_events_attr *pmu_attr =
12820 container_of(attr, struct perf_pmu_events_attr, attr);
12821
12822 if (pmu_attr->event_str)
12823 return sprintf(page, "%s\n", pmu_attr->event_str);
12824
12825 return 0;
12826}
675965b0 12827EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 12828
abe43400
PZ
12829static int __init perf_event_sysfs_init(void)
12830{
12831 struct pmu *pmu;
12832 int ret;
12833
12834 mutex_lock(&pmus_lock);
12835
12836 ret = bus_register(&pmu_bus);
12837 if (ret)
12838 goto unlock;
12839
12840 list_for_each_entry(pmu, &pmus, entry) {
12841 if (!pmu->name || pmu->type < 0)
12842 continue;
12843
12844 ret = pmu_dev_alloc(pmu);
12845 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12846 }
12847 pmu_bus_running = 1;
12848 ret = 0;
12849
12850unlock:
12851 mutex_unlock(&pmus_lock);
12852
12853 return ret;
12854}
12855device_initcall(perf_event_sysfs_init);
e5d1367f
SE
12856
12857#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
12858static struct cgroup_subsys_state *
12859perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
12860{
12861 struct perf_cgroup *jc;
e5d1367f 12862
1b15d055 12863 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
12864 if (!jc)
12865 return ERR_PTR(-ENOMEM);
12866
e5d1367f
SE
12867 jc->info = alloc_percpu(struct perf_cgroup_info);
12868 if (!jc->info) {
12869 kfree(jc);
12870 return ERR_PTR(-ENOMEM);
12871 }
12872
e5d1367f
SE
12873 return &jc->css;
12874}
12875
eb95419b 12876static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 12877{
eb95419b
TH
12878 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12879
e5d1367f
SE
12880 free_percpu(jc->info);
12881 kfree(jc);
12882}
12883
96aaab68
NK
12884static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
12885{
12886 perf_event_cgroup(css->cgroup);
12887 return 0;
12888}
12889
e5d1367f
SE
12890static int __perf_cgroup_move(void *info)
12891{
12892 struct task_struct *task = info;
ddaaf4e2 12893 rcu_read_lock();
e5d1367f 12894 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 12895 rcu_read_unlock();
e5d1367f
SE
12896 return 0;
12897}
12898
1f7dd3e5 12899static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 12900{
bb9d97b6 12901 struct task_struct *task;
1f7dd3e5 12902 struct cgroup_subsys_state *css;
bb9d97b6 12903
1f7dd3e5 12904 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 12905 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
12906}
12907
073219e9 12908struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
12909 .css_alloc = perf_cgroup_css_alloc,
12910 .css_free = perf_cgroup_css_free,
96aaab68 12911 .css_online = perf_cgroup_css_online,
bb9d97b6 12912 .attach = perf_cgroup_attach,
968ebff1
TH
12913 /*
12914 * Implicitly enable on dfl hierarchy so that perf events can
12915 * always be filtered by cgroup2 path as long as perf_event
12916 * controller is not mounted on a legacy hierarchy.
12917 */
12918 .implicit_on_dfl = true,
8cfd8147 12919 .threaded = true,
e5d1367f
SE
12920};
12921#endif /* CONFIG_CGROUP_PERF */