]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/events/core.c
perf/x86/intel: Add Alder Lake Hybrid support
[mirror_ubuntu-jammy-kernel.git] / kernel / events / core.c
CommitLineData
8e86e015 1// SPDX-License-Identifier: GPL-2.0
0793a61d 2/*
57c0c15b 3 * Performance events core code:
0793a61d 4 *
98144511 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
2e80a82a 15#include <linux/idr.h>
04289bb9 16#include <linux/file.h>
0793a61d 17#include <linux/poll.h>
5a0e3ad6 18#include <linux/slab.h>
76e1d904 19#include <linux/hash.h>
12351ef8 20#include <linux/tick.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b 30#include <linux/hardirq.h>
03911132 31#include <linux/hugetlb.h>
b9cacc7b 32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
6eef8a71 53#include <linux/min_heap.h>
8d97e718 54#include <linux/highmem.h>
8af26be0 55#include <linux/pgtable.h>
88a16a13 56#include <linux/buildid.h>
0793a61d 57
76369139
FW
58#include "internal.h"
59
4e193bd4
TB
60#include <asm/irq_regs.h>
61
272325c4
PZ
62typedef int (*remote_function_f)(void *);
63
fe4b04fa 64struct remote_function_call {
e7e7ee2e 65 struct task_struct *p;
272325c4 66 remote_function_f func;
e7e7ee2e
IM
67 void *info;
68 int ret;
fe4b04fa
PZ
69};
70
71static void remote_function(void *data)
72{
73 struct remote_function_call *tfc = data;
74 struct task_struct *p = tfc->p;
75
76 if (p) {
0da4cf3e
PZ
77 /* -EAGAIN */
78 if (task_cpu(p) != smp_processor_id())
79 return;
80
81 /*
82 * Now that we're on right CPU with IRQs disabled, we can test
83 * if we hit the right task without races.
84 */
85
86 tfc->ret = -ESRCH; /* No such (running) process */
87 if (p != current)
fe4b04fa
PZ
88 return;
89 }
90
91 tfc->ret = tfc->func(tfc->info);
92}
93
94/**
95 * task_function_call - call a function on the cpu on which a task runs
96 * @p: the task to evaluate
97 * @func: the function to be called
98 * @info: the function call argument
99 *
100 * Calls the function @func when the task is currently running. This might
2ed6edd3
BR
101 * be on the current CPU, which just calls the function directly. This will
102 * retry due to any failures in smp_call_function_single(), such as if the
103 * task_cpu() goes offline concurrently.
fe4b04fa 104 *
6d6b8b9f 105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
fe4b04fa
PZ
106 */
107static int
272325c4 108task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
109{
110 struct remote_function_call data = {
e7e7ee2e
IM
111 .p = p,
112 .func = func,
113 .info = info,
0da4cf3e 114 .ret = -EAGAIN,
fe4b04fa 115 };
0da4cf3e 116 int ret;
fe4b04fa 117
2ed6edd3
BR
118 for (;;) {
119 ret = smp_call_function_single(task_cpu(p), remote_function,
120 &data, 1);
6d6b8b9f
KJ
121 if (!ret)
122 ret = data.ret;
2ed6edd3
BR
123
124 if (ret != -EAGAIN)
125 break;
126
127 cond_resched();
128 }
fe4b04fa 129
0da4cf3e 130 return ret;
fe4b04fa
PZ
131}
132
133/**
134 * cpu_function_call - call a function on the cpu
135 * @func: the function to be called
136 * @info: the function call argument
137 *
138 * Calls the function @func on the remote cpu.
139 *
140 * returns: @func return value or -ENXIO when the cpu is offline
141 */
272325c4 142static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
143{
144 struct remote_function_call data = {
e7e7ee2e
IM
145 .p = NULL,
146 .func = func,
147 .info = info,
148 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
149 };
150
151 smp_call_function_single(cpu, remote_function, &data, 1);
152
153 return data.ret;
154}
155
fae3fde6
PZ
156static inline struct perf_cpu_context *
157__get_cpu_context(struct perf_event_context *ctx)
158{
159 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
160}
161
162static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
163 struct perf_event_context *ctx)
0017960f 164{
fae3fde6
PZ
165 raw_spin_lock(&cpuctx->ctx.lock);
166 if (ctx)
167 raw_spin_lock(&ctx->lock);
168}
169
170static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
171 struct perf_event_context *ctx)
172{
173 if (ctx)
174 raw_spin_unlock(&ctx->lock);
175 raw_spin_unlock(&cpuctx->ctx.lock);
176}
177
63b6da39
PZ
178#define TASK_TOMBSTONE ((void *)-1L)
179
180static bool is_kernel_event(struct perf_event *event)
181{
f47c02c0 182 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
183}
184
39a43640
PZ
185/*
186 * On task ctx scheduling...
187 *
188 * When !ctx->nr_events a task context will not be scheduled. This means
189 * we can disable the scheduler hooks (for performance) without leaving
190 * pending task ctx state.
191 *
192 * This however results in two special cases:
193 *
194 * - removing the last event from a task ctx; this is relatively straight
195 * forward and is done in __perf_remove_from_context.
196 *
197 * - adding the first event to a task ctx; this is tricky because we cannot
198 * rely on ctx->is_active and therefore cannot use event_function_call().
199 * See perf_install_in_context().
200 *
39a43640
PZ
201 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
202 */
203
fae3fde6
PZ
204typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
205 struct perf_event_context *, void *);
206
207struct event_function_struct {
208 struct perf_event *event;
209 event_f func;
210 void *data;
211};
212
213static int event_function(void *info)
214{
215 struct event_function_struct *efs = info;
216 struct perf_event *event = efs->event;
0017960f 217 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
218 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
219 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 220 int ret = 0;
fae3fde6 221
16444645 222 lockdep_assert_irqs_disabled();
fae3fde6 223
63b6da39 224 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
225 /*
226 * Since we do the IPI call without holding ctx->lock things can have
227 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
228 */
229 if (ctx->task) {
63b6da39 230 if (ctx->task != current) {
0da4cf3e 231 ret = -ESRCH;
63b6da39
PZ
232 goto unlock;
233 }
fae3fde6 234
fae3fde6
PZ
235 /*
236 * We only use event_function_call() on established contexts,
237 * and event_function() is only ever called when active (or
238 * rather, we'll have bailed in task_function_call() or the
239 * above ctx->task != current test), therefore we must have
240 * ctx->is_active here.
241 */
242 WARN_ON_ONCE(!ctx->is_active);
243 /*
244 * And since we have ctx->is_active, cpuctx->task_ctx must
245 * match.
246 */
63b6da39
PZ
247 WARN_ON_ONCE(task_ctx != ctx);
248 } else {
249 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 250 }
63b6da39 251
fae3fde6 252 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 253unlock:
fae3fde6
PZ
254 perf_ctx_unlock(cpuctx, task_ctx);
255
63b6da39 256 return ret;
fae3fde6
PZ
257}
258
fae3fde6 259static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
260{
261 struct perf_event_context *ctx = event->ctx;
63b6da39 262 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
263 struct event_function_struct efs = {
264 .event = event,
265 .func = func,
266 .data = data,
267 };
0017960f 268
c97f4736
PZ
269 if (!event->parent) {
270 /*
271 * If this is a !child event, we must hold ctx::mutex to
c034f48e 272 * stabilize the event->ctx relation. See
c97f4736
PZ
273 * perf_event_ctx_lock().
274 */
275 lockdep_assert_held(&ctx->mutex);
276 }
0017960f
PZ
277
278 if (!task) {
fae3fde6 279 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
280 return;
281 }
282
63b6da39
PZ
283 if (task == TASK_TOMBSTONE)
284 return;
285
a096309b 286again:
fae3fde6 287 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
288 return;
289
290 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
291 /*
292 * Reload the task pointer, it might have been changed by
293 * a concurrent perf_event_context_sched_out().
294 */
295 task = ctx->task;
a096309b
PZ
296 if (task == TASK_TOMBSTONE) {
297 raw_spin_unlock_irq(&ctx->lock);
298 return;
0017960f 299 }
a096309b
PZ
300 if (ctx->is_active) {
301 raw_spin_unlock_irq(&ctx->lock);
302 goto again;
303 }
304 func(event, NULL, ctx, data);
0017960f
PZ
305 raw_spin_unlock_irq(&ctx->lock);
306}
307
cca20946
PZ
308/*
309 * Similar to event_function_call() + event_function(), but hard assumes IRQs
310 * are already disabled and we're on the right CPU.
311 */
312static void event_function_local(struct perf_event *event, event_f func, void *data)
313{
314 struct perf_event_context *ctx = event->ctx;
315 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
316 struct task_struct *task = READ_ONCE(ctx->task);
317 struct perf_event_context *task_ctx = NULL;
318
16444645 319 lockdep_assert_irqs_disabled();
cca20946
PZ
320
321 if (task) {
322 if (task == TASK_TOMBSTONE)
323 return;
324
325 task_ctx = ctx;
326 }
327
328 perf_ctx_lock(cpuctx, task_ctx);
329
330 task = ctx->task;
331 if (task == TASK_TOMBSTONE)
332 goto unlock;
333
334 if (task) {
335 /*
336 * We must be either inactive or active and the right task,
337 * otherwise we're screwed, since we cannot IPI to somewhere
338 * else.
339 */
340 if (ctx->is_active) {
341 if (WARN_ON_ONCE(task != current))
342 goto unlock;
343
344 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
345 goto unlock;
346 }
347 } else {
348 WARN_ON_ONCE(&cpuctx->ctx != ctx);
349 }
350
351 func(event, cpuctx, ctx, data);
352unlock:
353 perf_ctx_unlock(cpuctx, task_ctx);
354}
355
e5d1367f
SE
356#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
357 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
358 PERF_FLAG_PID_CGROUP |\
359 PERF_FLAG_FD_CLOEXEC)
e5d1367f 360
bce38cd5
SE
361/*
362 * branch priv levels that need permission checks
363 */
364#define PERF_SAMPLE_BRANCH_PERM_PLM \
365 (PERF_SAMPLE_BRANCH_KERNEL |\
366 PERF_SAMPLE_BRANCH_HV)
367
0b3fcf17
SE
368enum event_type_t {
369 EVENT_FLEXIBLE = 0x1,
370 EVENT_PINNED = 0x2,
3cbaa590 371 EVENT_TIME = 0x4,
487f05e1
AS
372 /* see ctx_resched() for details */
373 EVENT_CPU = 0x8,
0b3fcf17
SE
374 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
375};
376
e5d1367f
SE
377/*
378 * perf_sched_events : >0 events exist
379 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
380 */
9107c89e
PZ
381
382static void perf_sched_delayed(struct work_struct *work);
383DEFINE_STATIC_KEY_FALSE(perf_sched_events);
384static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
385static DEFINE_MUTEX(perf_sched_mutex);
386static atomic_t perf_sched_count;
387
e5d1367f 388static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
a5398bff 389static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 390static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 391
cdd6c482
IM
392static atomic_t nr_mmap_events __read_mostly;
393static atomic_t nr_comm_events __read_mostly;
e4222673 394static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 395static atomic_t nr_task_events __read_mostly;
948b26b6 396static atomic_t nr_freq_events __read_mostly;
45ac1403 397static atomic_t nr_switch_events __read_mostly;
76193a94 398static atomic_t nr_ksymbol_events __read_mostly;
6ee52e2a 399static atomic_t nr_bpf_events __read_mostly;
96aaab68 400static atomic_t nr_cgroup_events __read_mostly;
e17d43b9 401static atomic_t nr_text_poke_events __read_mostly;
88a16a13 402static atomic_t nr_build_id_events __read_mostly;
9ee318a7 403
108b02cf
PZ
404static LIST_HEAD(pmus);
405static DEFINE_MUTEX(pmus_lock);
406static struct srcu_struct pmus_srcu;
a63fbed7 407static cpumask_var_t perf_online_mask;
bdacfaf2 408static struct kmem_cache *perf_event_cache;
108b02cf 409
0764771d 410/*
cdd6c482 411 * perf event paranoia level:
0fbdea19
IM
412 * -1 - not paranoid at all
413 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 414 * 1 - disallow cpu events for unpriv
0fbdea19 415 * 2 - disallow kernel profiling for unpriv
0764771d 416 */
0161028b 417int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 418
20443384
FW
419/* Minimum for 512 kiB + 1 user control page */
420int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
421
422/*
cdd6c482 423 * max perf event sample rate
df58ab24 424 */
14c63f17
DH
425#define DEFAULT_MAX_SAMPLE_RATE 100000
426#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
427#define DEFAULT_CPU_TIME_MAX_PERCENT 25
428
429int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
430
431static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
432static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
433
d9494cb4
PZ
434static int perf_sample_allowed_ns __read_mostly =
435 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 436
18ab2cd3 437static void update_perf_cpu_limits(void)
14c63f17
DH
438{
439 u64 tmp = perf_sample_period_ns;
440
441 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
442 tmp = div_u64(tmp, 100);
443 if (!tmp)
444 tmp = 1;
445
446 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 447}
163ec435 448
8d5bce0c 449static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
9e630205 450
163ec435 451int perf_proc_update_handler(struct ctl_table *table, int write,
32927393 452 void *buffer, size_t *lenp, loff_t *ppos)
163ec435 453{
1a51c5da
SE
454 int ret;
455 int perf_cpu = sysctl_perf_cpu_time_max_percent;
ab7fdefb
KL
456 /*
457 * If throttling is disabled don't allow the write:
458 */
1a51c5da 459 if (write && (perf_cpu == 100 || perf_cpu == 0))
ab7fdefb
KL
460 return -EINVAL;
461
1a51c5da
SE
462 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
463 if (ret || !write)
464 return ret;
465
163ec435 466 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
467 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
468 update_perf_cpu_limits();
469
470 return 0;
471}
472
473int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
474
475int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
32927393 476 void *buffer, size_t *lenp, loff_t *ppos)
14c63f17 477{
1572e45a 478 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
479
480 if (ret || !write)
481 return ret;
482
b303e7c1
PZ
483 if (sysctl_perf_cpu_time_max_percent == 100 ||
484 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
485 printk(KERN_WARNING
486 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
487 WRITE_ONCE(perf_sample_allowed_ns, 0);
488 } else {
489 update_perf_cpu_limits();
490 }
163ec435
PZ
491
492 return 0;
493}
1ccd1549 494
14c63f17
DH
495/*
496 * perf samples are done in some very critical code paths (NMIs).
497 * If they take too much CPU time, the system can lock up and not
498 * get any real work done. This will drop the sample rate when
499 * we detect that events are taking too long.
500 */
501#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 502static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 503
91a612ee
PZ
504static u64 __report_avg;
505static u64 __report_allowed;
506
6a02ad66 507static void perf_duration_warn(struct irq_work *w)
14c63f17 508{
0d87d7ec 509 printk_ratelimited(KERN_INFO
91a612ee
PZ
510 "perf: interrupt took too long (%lld > %lld), lowering "
511 "kernel.perf_event_max_sample_rate to %d\n",
512 __report_avg, __report_allowed,
513 sysctl_perf_event_sample_rate);
6a02ad66
PZ
514}
515
516static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
517
518void perf_sample_event_took(u64 sample_len_ns)
519{
91a612ee
PZ
520 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
521 u64 running_len;
522 u64 avg_len;
523 u32 max;
14c63f17 524
91a612ee 525 if (max_len == 0)
14c63f17
DH
526 return;
527
91a612ee
PZ
528 /* Decay the counter by 1 average sample. */
529 running_len = __this_cpu_read(running_sample_length);
530 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
531 running_len += sample_len_ns;
532 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
533
534 /*
91a612ee
PZ
535 * Note: this will be biased artifically low until we have
536 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
537 * from having to maintain a count.
538 */
91a612ee
PZ
539 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
540 if (avg_len <= max_len)
14c63f17
DH
541 return;
542
91a612ee
PZ
543 __report_avg = avg_len;
544 __report_allowed = max_len;
14c63f17 545
91a612ee
PZ
546 /*
547 * Compute a throttle threshold 25% below the current duration.
548 */
549 avg_len += avg_len / 4;
550 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
551 if (avg_len < max)
552 max /= (u32)avg_len;
553 else
554 max = 1;
14c63f17 555
91a612ee
PZ
556 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
557 WRITE_ONCE(max_samples_per_tick, max);
558
559 sysctl_perf_event_sample_rate = max * HZ;
560 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 561
cd578abb 562 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 563 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 564 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 565 __report_avg, __report_allowed,
cd578abb
PZ
566 sysctl_perf_event_sample_rate);
567 }
14c63f17
DH
568}
569
cdd6c482 570static atomic64_t perf_event_id;
a96bbc16 571
0b3fcf17
SE
572static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
573 enum event_type_t event_type);
574
575static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
576 enum event_type_t event_type,
577 struct task_struct *task);
578
579static void update_context_time(struct perf_event_context *ctx);
580static u64 perf_event_time(struct perf_event *event);
0b3fcf17 581
cdd6c482 582void __weak perf_event_print_debug(void) { }
0793a61d 583
84c79910 584extern __weak const char *perf_pmu_name(void)
0793a61d 585{
84c79910 586 return "pmu";
0793a61d
TG
587}
588
0b3fcf17
SE
589static inline u64 perf_clock(void)
590{
591 return local_clock();
592}
593
34f43927
PZ
594static inline u64 perf_event_clock(struct perf_event *event)
595{
596 return event->clock();
597}
598
0d3d73aa
PZ
599/*
600 * State based event timekeeping...
601 *
602 * The basic idea is to use event->state to determine which (if any) time
603 * fields to increment with the current delta. This means we only need to
604 * update timestamps when we change state or when they are explicitly requested
605 * (read).
606 *
607 * Event groups make things a little more complicated, but not terribly so. The
608 * rules for a group are that if the group leader is OFF the entire group is
609 * OFF, irrespecive of what the group member states are. This results in
610 * __perf_effective_state().
611 *
612 * A futher ramification is that when a group leader flips between OFF and
613 * !OFF, we need to update all group member times.
614 *
615 *
616 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
617 * need to make sure the relevant context time is updated before we try and
618 * update our timestamps.
619 */
620
621static __always_inline enum perf_event_state
622__perf_effective_state(struct perf_event *event)
623{
624 struct perf_event *leader = event->group_leader;
625
626 if (leader->state <= PERF_EVENT_STATE_OFF)
627 return leader->state;
628
629 return event->state;
630}
631
632static __always_inline void
633__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
634{
635 enum perf_event_state state = __perf_effective_state(event);
636 u64 delta = now - event->tstamp;
637
638 *enabled = event->total_time_enabled;
639 if (state >= PERF_EVENT_STATE_INACTIVE)
640 *enabled += delta;
641
642 *running = event->total_time_running;
643 if (state >= PERF_EVENT_STATE_ACTIVE)
644 *running += delta;
645}
646
647static void perf_event_update_time(struct perf_event *event)
648{
649 u64 now = perf_event_time(event);
650
651 __perf_update_times(event, now, &event->total_time_enabled,
652 &event->total_time_running);
653 event->tstamp = now;
654}
655
656static void perf_event_update_sibling_time(struct perf_event *leader)
657{
658 struct perf_event *sibling;
659
edb39592 660 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
661 perf_event_update_time(sibling);
662}
663
664static void
665perf_event_set_state(struct perf_event *event, enum perf_event_state state)
666{
667 if (event->state == state)
668 return;
669
670 perf_event_update_time(event);
671 /*
672 * If a group leader gets enabled/disabled all its siblings
673 * are affected too.
674 */
675 if ((event->state < 0) ^ (state < 0))
676 perf_event_update_sibling_time(event);
677
678 WRITE_ONCE(event->state, state);
679}
680
e5d1367f
SE
681#ifdef CONFIG_CGROUP_PERF
682
e5d1367f
SE
683static inline bool
684perf_cgroup_match(struct perf_event *event)
685{
686 struct perf_event_context *ctx = event->ctx;
687 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
688
ef824fa1
TH
689 /* @event doesn't care about cgroup */
690 if (!event->cgrp)
691 return true;
692
693 /* wants specific cgroup scope but @cpuctx isn't associated with any */
694 if (!cpuctx->cgrp)
695 return false;
696
697 /*
698 * Cgroup scoping is recursive. An event enabled for a cgroup is
699 * also enabled for all its descendant cgroups. If @cpuctx's
700 * cgroup is a descendant of @event's (the test covers identity
701 * case), it's a match.
702 */
703 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
704 event->cgrp->css.cgroup);
e5d1367f
SE
705}
706
e5d1367f
SE
707static inline void perf_detach_cgroup(struct perf_event *event)
708{
4e2ba650 709 css_put(&event->cgrp->css);
e5d1367f
SE
710 event->cgrp = NULL;
711}
712
713static inline int is_cgroup_event(struct perf_event *event)
714{
715 return event->cgrp != NULL;
716}
717
718static inline u64 perf_cgroup_event_time(struct perf_event *event)
719{
720 struct perf_cgroup_info *t;
721
722 t = per_cpu_ptr(event->cgrp->info, event->cpu);
723 return t->time;
724}
725
726static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
727{
728 struct perf_cgroup_info *info;
729 u64 now;
730
731 now = perf_clock();
732
733 info = this_cpu_ptr(cgrp->info);
734
735 info->time += now - info->timestamp;
736 info->timestamp = now;
737}
738
739static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
740{
c917e0f2
SL
741 struct perf_cgroup *cgrp = cpuctx->cgrp;
742 struct cgroup_subsys_state *css;
743
744 if (cgrp) {
745 for (css = &cgrp->css; css; css = css->parent) {
746 cgrp = container_of(css, struct perf_cgroup, css);
747 __update_cgrp_time(cgrp);
748 }
749 }
e5d1367f
SE
750}
751
752static inline void update_cgrp_time_from_event(struct perf_event *event)
753{
3f7cce3c
SE
754 struct perf_cgroup *cgrp;
755
e5d1367f 756 /*
3f7cce3c
SE
757 * ensure we access cgroup data only when needed and
758 * when we know the cgroup is pinned (css_get)
e5d1367f 759 */
3f7cce3c 760 if (!is_cgroup_event(event))
e5d1367f
SE
761 return;
762
614e4c4e 763 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
764 /*
765 * Do not update time when cgroup is not active
766 */
28fa741c 767 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 768 __update_cgrp_time(event->cgrp);
e5d1367f
SE
769}
770
771static inline void
3f7cce3c
SE
772perf_cgroup_set_timestamp(struct task_struct *task,
773 struct perf_event_context *ctx)
e5d1367f
SE
774{
775 struct perf_cgroup *cgrp;
776 struct perf_cgroup_info *info;
c917e0f2 777 struct cgroup_subsys_state *css;
e5d1367f 778
3f7cce3c
SE
779 /*
780 * ctx->lock held by caller
781 * ensure we do not access cgroup data
782 * unless we have the cgroup pinned (css_get)
783 */
784 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
785 return;
786
614e4c4e 787 cgrp = perf_cgroup_from_task(task, ctx);
c917e0f2
SL
788
789 for (css = &cgrp->css; css; css = css->parent) {
790 cgrp = container_of(css, struct perf_cgroup, css);
791 info = this_cpu_ptr(cgrp->info);
792 info->timestamp = ctx->timestamp;
793 }
e5d1367f
SE
794}
795
058fe1c0
DCC
796static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
797
e5d1367f
SE
798#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
799#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
800
801/*
802 * reschedule events based on the cgroup constraint of task.
803 *
804 * mode SWOUT : schedule out everything
805 * mode SWIN : schedule in based on cgroup for next
806 */
18ab2cd3 807static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
808{
809 struct perf_cpu_context *cpuctx;
058fe1c0 810 struct list_head *list;
e5d1367f
SE
811 unsigned long flags;
812
813 /*
058fe1c0
DCC
814 * Disable interrupts and preemption to avoid this CPU's
815 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
816 */
817 local_irq_save(flags);
818
058fe1c0
DCC
819 list = this_cpu_ptr(&cgrp_cpuctx_list);
820 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
821 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 822
058fe1c0
DCC
823 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
824 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 825
058fe1c0
DCC
826 if (mode & PERF_CGROUP_SWOUT) {
827 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
828 /*
829 * must not be done before ctxswout due
830 * to event_filter_match() in event_sched_out()
831 */
832 cpuctx->cgrp = NULL;
833 }
e5d1367f 834
058fe1c0
DCC
835 if (mode & PERF_CGROUP_SWIN) {
836 WARN_ON_ONCE(cpuctx->cgrp);
837 /*
838 * set cgrp before ctxsw in to allow
839 * event_filter_match() to not have to pass
840 * task around
841 * we pass the cpuctx->ctx to perf_cgroup_from_task()
842 * because cgorup events are only per-cpu
843 */
844 cpuctx->cgrp = perf_cgroup_from_task(task,
845 &cpuctx->ctx);
846 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 847 }
058fe1c0
DCC
848 perf_pmu_enable(cpuctx->ctx.pmu);
849 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
850 }
851
e5d1367f
SE
852 local_irq_restore(flags);
853}
854
a8d757ef
SE
855static inline void perf_cgroup_sched_out(struct task_struct *task,
856 struct task_struct *next)
e5d1367f 857{
a8d757ef
SE
858 struct perf_cgroup *cgrp1;
859 struct perf_cgroup *cgrp2 = NULL;
860
ddaaf4e2 861 rcu_read_lock();
a8d757ef
SE
862 /*
863 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
864 * we do not need to pass the ctx here because we know
865 * we are holding the rcu lock
a8d757ef 866 */
614e4c4e 867 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 868 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
869
870 /*
871 * only schedule out current cgroup events if we know
872 * that we are switching to a different cgroup. Otherwise,
873 * do no touch the cgroup events.
874 */
875 if (cgrp1 != cgrp2)
876 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
877
878 rcu_read_unlock();
e5d1367f
SE
879}
880
a8d757ef
SE
881static inline void perf_cgroup_sched_in(struct task_struct *prev,
882 struct task_struct *task)
e5d1367f 883{
a8d757ef
SE
884 struct perf_cgroup *cgrp1;
885 struct perf_cgroup *cgrp2 = NULL;
886
ddaaf4e2 887 rcu_read_lock();
a8d757ef
SE
888 /*
889 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
890 * we do not need to pass the ctx here because we know
891 * we are holding the rcu lock
a8d757ef 892 */
614e4c4e 893 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 894 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
895
896 /*
897 * only need to schedule in cgroup events if we are changing
898 * cgroup during ctxsw. Cgroup events were not scheduled
899 * out of ctxsw out if that was not the case.
900 */
901 if (cgrp1 != cgrp2)
902 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
903
904 rcu_read_unlock();
e5d1367f
SE
905}
906
c2283c93
IR
907static int perf_cgroup_ensure_storage(struct perf_event *event,
908 struct cgroup_subsys_state *css)
909{
910 struct perf_cpu_context *cpuctx;
911 struct perf_event **storage;
912 int cpu, heap_size, ret = 0;
913
914 /*
915 * Allow storage to have sufficent space for an iterator for each
916 * possibly nested cgroup plus an iterator for events with no cgroup.
917 */
918 for (heap_size = 1; css; css = css->parent)
919 heap_size++;
920
921 for_each_possible_cpu(cpu) {
922 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
923 if (heap_size <= cpuctx->heap_size)
924 continue;
925
926 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
927 GFP_KERNEL, cpu_to_node(cpu));
928 if (!storage) {
929 ret = -ENOMEM;
930 break;
931 }
932
933 raw_spin_lock_irq(&cpuctx->ctx.lock);
934 if (cpuctx->heap_size < heap_size) {
935 swap(cpuctx->heap, storage);
936 if (storage == cpuctx->heap_default)
937 storage = NULL;
938 cpuctx->heap_size = heap_size;
939 }
940 raw_spin_unlock_irq(&cpuctx->ctx.lock);
941
942 kfree(storage);
943 }
944
945 return ret;
946}
947
e5d1367f
SE
948static inline int perf_cgroup_connect(int fd, struct perf_event *event,
949 struct perf_event_attr *attr,
950 struct perf_event *group_leader)
951{
952 struct perf_cgroup *cgrp;
953 struct cgroup_subsys_state *css;
2903ff01
AV
954 struct fd f = fdget(fd);
955 int ret = 0;
e5d1367f 956
2903ff01 957 if (!f.file)
e5d1367f
SE
958 return -EBADF;
959
b583043e 960 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 961 &perf_event_cgrp_subsys);
3db272c0
LZ
962 if (IS_ERR(css)) {
963 ret = PTR_ERR(css);
964 goto out;
965 }
e5d1367f 966
c2283c93
IR
967 ret = perf_cgroup_ensure_storage(event, css);
968 if (ret)
969 goto out;
970
e5d1367f
SE
971 cgrp = container_of(css, struct perf_cgroup, css);
972 event->cgrp = cgrp;
973
974 /*
975 * all events in a group must monitor
976 * the same cgroup because a task belongs
977 * to only one perf cgroup at a time
978 */
979 if (group_leader && group_leader->cgrp != cgrp) {
980 perf_detach_cgroup(event);
981 ret = -EINVAL;
e5d1367f 982 }
3db272c0 983out:
2903ff01 984 fdput(f);
e5d1367f
SE
985 return ret;
986}
987
988static inline void
989perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
990{
991 struct perf_cgroup_info *t;
992 t = per_cpu_ptr(event->cgrp->info, event->cpu);
993 event->shadow_ctx_time = now - t->timestamp;
994}
995
db4a8356 996static inline void
33238c50 997perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
db4a8356
DCC
998{
999 struct perf_cpu_context *cpuctx;
1000
1001 if (!is_cgroup_event(event))
1002 return;
1003
db4a8356
DCC
1004 /*
1005 * Because cgroup events are always per-cpu events,
07c59729 1006 * @ctx == &cpuctx->ctx.
db4a8356 1007 */
07c59729 1008 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
33801b94 1009
1010 /*
1011 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1012 * matching the event's cgroup, we must do this for every new event,
1013 * because if the first would mismatch, the second would not try again
1014 * and we would leave cpuctx->cgrp unset.
1015 */
33238c50 1016 if (ctx->is_active && !cpuctx->cgrp) {
be96b316
TH
1017 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1018
be96b316
TH
1019 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1020 cpuctx->cgrp = cgrp;
058fe1c0 1021 }
33801b94 1022
33238c50 1023 if (ctx->nr_cgroups++)
33801b94 1024 return;
33238c50
PZ
1025
1026 list_add(&cpuctx->cgrp_cpuctx_entry,
1027 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1028}
1029
1030static inline void
1031perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1032{
1033 struct perf_cpu_context *cpuctx;
1034
1035 if (!is_cgroup_event(event))
33801b94 1036 return;
1037
33238c50
PZ
1038 /*
1039 * Because cgroup events are always per-cpu events,
1040 * @ctx == &cpuctx->ctx.
1041 */
1042 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1043
1044 if (--ctx->nr_cgroups)
1045 return;
1046
1047 if (ctx->is_active && cpuctx->cgrp)
33801b94 1048 cpuctx->cgrp = NULL;
1049
33238c50 1050 list_del(&cpuctx->cgrp_cpuctx_entry);
db4a8356
DCC
1051}
1052
e5d1367f
SE
1053#else /* !CONFIG_CGROUP_PERF */
1054
1055static inline bool
1056perf_cgroup_match(struct perf_event *event)
1057{
1058 return true;
1059}
1060
1061static inline void perf_detach_cgroup(struct perf_event *event)
1062{}
1063
1064static inline int is_cgroup_event(struct perf_event *event)
1065{
1066 return 0;
1067}
1068
e5d1367f
SE
1069static inline void update_cgrp_time_from_event(struct perf_event *event)
1070{
1071}
1072
1073static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1074{
1075}
1076
a8d757ef
SE
1077static inline void perf_cgroup_sched_out(struct task_struct *task,
1078 struct task_struct *next)
e5d1367f
SE
1079{
1080}
1081
a8d757ef
SE
1082static inline void perf_cgroup_sched_in(struct task_struct *prev,
1083 struct task_struct *task)
e5d1367f
SE
1084{
1085}
1086
1087static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1088 struct perf_event_attr *attr,
1089 struct perf_event *group_leader)
1090{
1091 return -EINVAL;
1092}
1093
1094static inline void
3f7cce3c
SE
1095perf_cgroup_set_timestamp(struct task_struct *task,
1096 struct perf_event_context *ctx)
e5d1367f
SE
1097{
1098}
1099
d00dbd29 1100static inline void
e5d1367f
SE
1101perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1102{
1103}
1104
1105static inline void
1106perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1107{
1108}
1109
1110static inline u64 perf_cgroup_event_time(struct perf_event *event)
1111{
1112 return 0;
1113}
1114
db4a8356 1115static inline void
33238c50 1116perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
db4a8356
DCC
1117{
1118}
1119
33238c50
PZ
1120static inline void
1121perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1122{
1123}
e5d1367f
SE
1124#endif
1125
9e630205
SE
1126/*
1127 * set default to be dependent on timer tick just
1128 * like original code
1129 */
1130#define PERF_CPU_HRTIMER (1000 / HZ)
1131/*
8a1115ff 1132 * function must be called with interrupts disabled
9e630205 1133 */
272325c4 1134static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1135{
1136 struct perf_cpu_context *cpuctx;
8d5bce0c 1137 bool rotations;
9e630205 1138
16444645 1139 lockdep_assert_irqs_disabled();
9e630205
SE
1140
1141 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1142 rotations = perf_rotate_context(cpuctx);
1143
4cfafd30
PZ
1144 raw_spin_lock(&cpuctx->hrtimer_lock);
1145 if (rotations)
9e630205 1146 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1147 else
1148 cpuctx->hrtimer_active = 0;
1149 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1150
4cfafd30 1151 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1152}
1153
272325c4 1154static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1155{
272325c4 1156 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1157 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1158 u64 interval;
9e630205
SE
1159
1160 /* no multiplexing needed for SW PMU */
1161 if (pmu->task_ctx_nr == perf_sw_context)
1162 return;
1163
62b85639
SE
1164 /*
1165 * check default is sane, if not set then force to
1166 * default interval (1/tick)
1167 */
272325c4
PZ
1168 interval = pmu->hrtimer_interval_ms;
1169 if (interval < 1)
1170 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1171
272325c4 1172 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1173
4cfafd30 1174 raw_spin_lock_init(&cpuctx->hrtimer_lock);
30f9028b 1175 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
272325c4 1176 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1177}
1178
272325c4 1179static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1180{
272325c4 1181 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1182 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1183 unsigned long flags;
9e630205
SE
1184
1185 /* not for SW PMU */
1186 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1187 return 0;
9e630205 1188
4cfafd30
PZ
1189 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1190 if (!cpuctx->hrtimer_active) {
1191 cpuctx->hrtimer_active = 1;
1192 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
30f9028b 1193 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
4cfafd30
PZ
1194 }
1195 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1196
272325c4 1197 return 0;
9e630205
SE
1198}
1199
33696fc0 1200void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1201{
33696fc0
PZ
1202 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1203 if (!(*count)++)
1204 pmu->pmu_disable(pmu);
9e35ad38 1205}
9e35ad38 1206
33696fc0 1207void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1208{
33696fc0
PZ
1209 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1210 if (!--(*count))
1211 pmu->pmu_enable(pmu);
9e35ad38 1212}
9e35ad38 1213
2fde4f94 1214static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1215
1216/*
2fde4f94
MR
1217 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1218 * perf_event_task_tick() are fully serialized because they're strictly cpu
1219 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1220 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1221 */
2fde4f94 1222static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1223{
2fde4f94 1224 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1225
16444645 1226 lockdep_assert_irqs_disabled();
b5ab4cd5 1227
2fde4f94
MR
1228 WARN_ON(!list_empty(&ctx->active_ctx_list));
1229
1230 list_add(&ctx->active_ctx_list, head);
1231}
1232
1233static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1234{
16444645 1235 lockdep_assert_irqs_disabled();
2fde4f94
MR
1236
1237 WARN_ON(list_empty(&ctx->active_ctx_list));
1238
1239 list_del_init(&ctx->active_ctx_list);
9e35ad38 1240}
9e35ad38 1241
cdd6c482 1242static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1243{
8c94abbb 1244 refcount_inc(&ctx->refcount);
a63eaf34
PM
1245}
1246
ff9ff926
KL
1247static void *alloc_task_ctx_data(struct pmu *pmu)
1248{
217c2a63
KL
1249 if (pmu->task_ctx_cache)
1250 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1251
5a09928d 1252 return NULL;
ff9ff926
KL
1253}
1254
1255static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1256{
217c2a63
KL
1257 if (pmu->task_ctx_cache && task_ctx_data)
1258 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
ff9ff926
KL
1259}
1260
4af57ef2
YZ
1261static void free_ctx(struct rcu_head *head)
1262{
1263 struct perf_event_context *ctx;
1264
1265 ctx = container_of(head, struct perf_event_context, rcu_head);
ff9ff926 1266 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
4af57ef2
YZ
1267 kfree(ctx);
1268}
1269
cdd6c482 1270static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1271{
8c94abbb 1272 if (refcount_dec_and_test(&ctx->refcount)) {
564c2b21
PM
1273 if (ctx->parent_ctx)
1274 put_ctx(ctx->parent_ctx);
63b6da39 1275 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1276 put_task_struct(ctx->task);
4af57ef2 1277 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1278 }
a63eaf34
PM
1279}
1280
f63a8daa
PZ
1281/*
1282 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1283 * perf_pmu_migrate_context() we need some magic.
1284 *
1285 * Those places that change perf_event::ctx will hold both
1286 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1287 *
8b10c5e2
PZ
1288 * Lock ordering is by mutex address. There are two other sites where
1289 * perf_event_context::mutex nests and those are:
1290 *
1291 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1292 * perf_event_exit_event()
1293 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1294 *
1295 * - perf_event_init_context() [ parent, 0 ]
1296 * inherit_task_group()
1297 * inherit_group()
1298 * inherit_event()
1299 * perf_event_alloc()
1300 * perf_init_event()
1301 * perf_try_init_event() [ child , 1 ]
1302 *
1303 * While it appears there is an obvious deadlock here -- the parent and child
1304 * nesting levels are inverted between the two. This is in fact safe because
1305 * life-time rules separate them. That is an exiting task cannot fork, and a
1306 * spawning task cannot (yet) exit.
1307 *
c034f48e 1308 * But remember that these are parent<->child context relations, and
8b10c5e2
PZ
1309 * migration does not affect children, therefore these two orderings should not
1310 * interact.
f63a8daa
PZ
1311 *
1312 * The change in perf_event::ctx does not affect children (as claimed above)
1313 * because the sys_perf_event_open() case will install a new event and break
1314 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1315 * concerned with cpuctx and that doesn't have children.
1316 *
1317 * The places that change perf_event::ctx will issue:
1318 *
1319 * perf_remove_from_context();
1320 * synchronize_rcu();
1321 * perf_install_in_context();
1322 *
1323 * to affect the change. The remove_from_context() + synchronize_rcu() should
1324 * quiesce the event, after which we can install it in the new location. This
1325 * means that only external vectors (perf_fops, prctl) can perturb the event
1326 * while in transit. Therefore all such accessors should also acquire
1327 * perf_event_context::mutex to serialize against this.
1328 *
1329 * However; because event->ctx can change while we're waiting to acquire
1330 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1331 * function.
1332 *
1333 * Lock order:
f7cfd871 1334 * exec_update_lock
f63a8daa
PZ
1335 * task_struct::perf_event_mutex
1336 * perf_event_context::mutex
f63a8daa 1337 * perf_event::child_mutex;
07c4a776 1338 * perf_event_context::lock
f63a8daa 1339 * perf_event::mmap_mutex
c1e8d7c6 1340 * mmap_lock
18736eef 1341 * perf_addr_filters_head::lock
82d94856
PZ
1342 *
1343 * cpu_hotplug_lock
1344 * pmus_lock
1345 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1346 */
a83fe28e
PZ
1347static struct perf_event_context *
1348perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1349{
1350 struct perf_event_context *ctx;
1351
1352again:
1353 rcu_read_lock();
6aa7de05 1354 ctx = READ_ONCE(event->ctx);
8c94abbb 1355 if (!refcount_inc_not_zero(&ctx->refcount)) {
f63a8daa
PZ
1356 rcu_read_unlock();
1357 goto again;
1358 }
1359 rcu_read_unlock();
1360
a83fe28e 1361 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1362 if (event->ctx != ctx) {
1363 mutex_unlock(&ctx->mutex);
1364 put_ctx(ctx);
1365 goto again;
1366 }
1367
1368 return ctx;
1369}
1370
a83fe28e
PZ
1371static inline struct perf_event_context *
1372perf_event_ctx_lock(struct perf_event *event)
1373{
1374 return perf_event_ctx_lock_nested(event, 0);
1375}
1376
f63a8daa
PZ
1377static void perf_event_ctx_unlock(struct perf_event *event,
1378 struct perf_event_context *ctx)
1379{
1380 mutex_unlock(&ctx->mutex);
1381 put_ctx(ctx);
1382}
1383
211de6eb
PZ
1384/*
1385 * This must be done under the ctx->lock, such as to serialize against
1386 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1387 * calling scheduler related locks and ctx->lock nests inside those.
1388 */
1389static __must_check struct perf_event_context *
1390unclone_ctx(struct perf_event_context *ctx)
71a851b4 1391{
211de6eb
PZ
1392 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1393
1394 lockdep_assert_held(&ctx->lock);
1395
1396 if (parent_ctx)
71a851b4 1397 ctx->parent_ctx = NULL;
5a3126d4 1398 ctx->generation++;
211de6eb
PZ
1399
1400 return parent_ctx;
71a851b4
PZ
1401}
1402
1d953111
ON
1403static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1404 enum pid_type type)
6844c09d 1405{
1d953111 1406 u32 nr;
6844c09d
ACM
1407 /*
1408 * only top level events have the pid namespace they were created in
1409 */
1410 if (event->parent)
1411 event = event->parent;
1412
1d953111
ON
1413 nr = __task_pid_nr_ns(p, type, event->ns);
1414 /* avoid -1 if it is idle thread or runs in another ns */
1415 if (!nr && !pid_alive(p))
1416 nr = -1;
1417 return nr;
6844c09d
ACM
1418}
1419
1d953111 1420static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1421{
6883f81a 1422 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1d953111 1423}
6844c09d 1424
1d953111
ON
1425static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1426{
1427 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1428}
1429
7f453c24 1430/*
cdd6c482 1431 * If we inherit events we want to return the parent event id
7f453c24
PZ
1432 * to userspace.
1433 */
cdd6c482 1434static u64 primary_event_id(struct perf_event *event)
7f453c24 1435{
cdd6c482 1436 u64 id = event->id;
7f453c24 1437
cdd6c482
IM
1438 if (event->parent)
1439 id = event->parent->id;
7f453c24
PZ
1440
1441 return id;
1442}
1443
25346b93 1444/*
cdd6c482 1445 * Get the perf_event_context for a task and lock it.
63b6da39 1446 *
c034f48e 1447 * This has to cope with the fact that until it is locked,
25346b93
PM
1448 * the context could get moved to another task.
1449 */
cdd6c482 1450static struct perf_event_context *
8dc85d54 1451perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1452{
cdd6c482 1453 struct perf_event_context *ctx;
25346b93 1454
9ed6060d 1455retry:
058ebd0e
PZ
1456 /*
1457 * One of the few rules of preemptible RCU is that one cannot do
1458 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1459 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1460 * rcu_read_unlock_special().
1461 *
1462 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1463 * side critical section has interrupts disabled.
058ebd0e 1464 */
2fd59077 1465 local_irq_save(*flags);
058ebd0e 1466 rcu_read_lock();
8dc85d54 1467 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1468 if (ctx) {
1469 /*
1470 * If this context is a clone of another, it might
1471 * get swapped for another underneath us by
cdd6c482 1472 * perf_event_task_sched_out, though the
25346b93
PM
1473 * rcu_read_lock() protects us from any context
1474 * getting freed. Lock the context and check if it
1475 * got swapped before we could get the lock, and retry
1476 * if so. If we locked the right context, then it
1477 * can't get swapped on us any more.
1478 */
2fd59077 1479 raw_spin_lock(&ctx->lock);
8dc85d54 1480 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1481 raw_spin_unlock(&ctx->lock);
058ebd0e 1482 rcu_read_unlock();
2fd59077 1483 local_irq_restore(*flags);
25346b93
PM
1484 goto retry;
1485 }
b49a9e7e 1486
63b6da39 1487 if (ctx->task == TASK_TOMBSTONE ||
8c94abbb 1488 !refcount_inc_not_zero(&ctx->refcount)) {
2fd59077 1489 raw_spin_unlock(&ctx->lock);
b49a9e7e 1490 ctx = NULL;
828b6f0e
PZ
1491 } else {
1492 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1493 }
25346b93
PM
1494 }
1495 rcu_read_unlock();
2fd59077
PM
1496 if (!ctx)
1497 local_irq_restore(*flags);
25346b93
PM
1498 return ctx;
1499}
1500
1501/*
1502 * Get the context for a task and increment its pin_count so it
1503 * can't get swapped to another task. This also increments its
1504 * reference count so that the context can't get freed.
1505 */
8dc85d54
PZ
1506static struct perf_event_context *
1507perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1508{
cdd6c482 1509 struct perf_event_context *ctx;
25346b93
PM
1510 unsigned long flags;
1511
8dc85d54 1512 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1513 if (ctx) {
1514 ++ctx->pin_count;
e625cce1 1515 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1516 }
1517 return ctx;
1518}
1519
cdd6c482 1520static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1521{
1522 unsigned long flags;
1523
e625cce1 1524 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1525 --ctx->pin_count;
e625cce1 1526 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1527}
1528
f67218c3
PZ
1529/*
1530 * Update the record of the current time in a context.
1531 */
1532static void update_context_time(struct perf_event_context *ctx)
1533{
1534 u64 now = perf_clock();
1535
1536 ctx->time += now - ctx->timestamp;
1537 ctx->timestamp = now;
1538}
1539
4158755d
SE
1540static u64 perf_event_time(struct perf_event *event)
1541{
1542 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1543
1544 if (is_cgroup_event(event))
1545 return perf_cgroup_event_time(event);
1546
4158755d
SE
1547 return ctx ? ctx->time : 0;
1548}
1549
487f05e1
AS
1550static enum event_type_t get_event_type(struct perf_event *event)
1551{
1552 struct perf_event_context *ctx = event->ctx;
1553 enum event_type_t event_type;
1554
1555 lockdep_assert_held(&ctx->lock);
1556
3bda69c1
AS
1557 /*
1558 * It's 'group type', really, because if our group leader is
1559 * pinned, so are we.
1560 */
1561 if (event->group_leader != event)
1562 event = event->group_leader;
1563
487f05e1
AS
1564 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1565 if (!ctx->task)
1566 event_type |= EVENT_CPU;
1567
1568 return event_type;
1569}
1570
8e1a2031 1571/*
161c85fa 1572 * Helper function to initialize event group nodes.
8e1a2031 1573 */
161c85fa 1574static void init_event_group(struct perf_event *event)
8e1a2031
AB
1575{
1576 RB_CLEAR_NODE(&event->group_node);
1577 event->group_index = 0;
1578}
1579
1580/*
1581 * Extract pinned or flexible groups from the context
161c85fa 1582 * based on event attrs bits.
8e1a2031
AB
1583 */
1584static struct perf_event_groups *
1585get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1586{
1587 if (event->attr.pinned)
1588 return &ctx->pinned_groups;
1589 else
1590 return &ctx->flexible_groups;
1591}
1592
8e1a2031 1593/*
161c85fa 1594 * Helper function to initializes perf_event_group trees.
8e1a2031 1595 */
161c85fa 1596static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1597{
1598 groups->tree = RB_ROOT;
1599 groups->index = 0;
1600}
1601
a3b89864
PZ
1602static inline struct cgroup *event_cgroup(const struct perf_event *event)
1603{
1604 struct cgroup *cgroup = NULL;
1605
1606#ifdef CONFIG_CGROUP_PERF
1607 if (event->cgrp)
1608 cgroup = event->cgrp->css.cgroup;
1609#endif
1610
1611 return cgroup;
1612}
1613
8e1a2031
AB
1614/*
1615 * Compare function for event groups;
161c85fa
PZ
1616 *
1617 * Implements complex key that first sorts by CPU and then by virtual index
1618 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1619 */
a3b89864
PZ
1620static __always_inline int
1621perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1622 const u64 left_group_index, const struct perf_event *right)
8e1a2031 1623{
a3b89864
PZ
1624 if (left_cpu < right->cpu)
1625 return -1;
1626 if (left_cpu > right->cpu)
1627 return 1;
161c85fa 1628
95ed6c70 1629#ifdef CONFIG_CGROUP_PERF
a3b89864
PZ
1630 {
1631 const struct cgroup *right_cgroup = event_cgroup(right);
1632
1633 if (left_cgroup != right_cgroup) {
1634 if (!left_cgroup) {
1635 /*
1636 * Left has no cgroup but right does, no
1637 * cgroups come first.
1638 */
1639 return -1;
1640 }
1641 if (!right_cgroup) {
1642 /*
1643 * Right has no cgroup but left does, no
1644 * cgroups come first.
1645 */
1646 return 1;
1647 }
1648 /* Two dissimilar cgroups, order by id. */
1649 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1650 return -1;
1651
1652 return 1;
95ed6c70 1653 }
95ed6c70
IR
1654 }
1655#endif
1656
a3b89864
PZ
1657 if (left_group_index < right->group_index)
1658 return -1;
1659 if (left_group_index > right->group_index)
1660 return 1;
1661
1662 return 0;
1663}
161c85fa 1664
a3b89864
PZ
1665#define __node_2_pe(node) \
1666 rb_entry((node), struct perf_event, group_node)
1667
1668static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1669{
1670 struct perf_event *e = __node_2_pe(a);
1671 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1672 __node_2_pe(b)) < 0;
1673}
1674
1675struct __group_key {
1676 int cpu;
1677 struct cgroup *cgroup;
1678};
1679
1680static inline int __group_cmp(const void *key, const struct rb_node *node)
1681{
1682 const struct __group_key *a = key;
1683 const struct perf_event *b = __node_2_pe(node);
1684
1685 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1686 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
8e1a2031
AB
1687}
1688
1689/*
161c85fa
PZ
1690 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1691 * key (see perf_event_groups_less). This places it last inside the CPU
1692 * subtree.
8e1a2031
AB
1693 */
1694static void
1695perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1696 struct perf_event *event)
8e1a2031 1697{
8e1a2031
AB
1698 event->group_index = ++groups->index;
1699
a3b89864 1700 rb_add(&event->group_node, &groups->tree, __group_less);
8e1a2031
AB
1701}
1702
1703/*
161c85fa 1704 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1705 */
1706static void
1707add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1708{
1709 struct perf_event_groups *groups;
1710
1711 groups = get_event_groups(event, ctx);
1712 perf_event_groups_insert(groups, event);
1713}
1714
1715/*
161c85fa 1716 * Delete a group from a tree.
8e1a2031
AB
1717 */
1718static void
1719perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1720 struct perf_event *event)
8e1a2031 1721{
161c85fa
PZ
1722 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1723 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1724
161c85fa 1725 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1726 init_event_group(event);
1727}
1728
1729/*
161c85fa 1730 * Helper function to delete event from its groups.
8e1a2031
AB
1731 */
1732static void
1733del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1734{
1735 struct perf_event_groups *groups;
1736
1737 groups = get_event_groups(event, ctx);
1738 perf_event_groups_delete(groups, event);
1739}
1740
1741/*
95ed6c70 1742 * Get the leftmost event in the cpu/cgroup subtree.
8e1a2031
AB
1743 */
1744static struct perf_event *
95ed6c70
IR
1745perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1746 struct cgroup *cgrp)
8e1a2031 1747{
a3b89864
PZ
1748 struct __group_key key = {
1749 .cpu = cpu,
1750 .cgroup = cgrp,
1751 };
1752 struct rb_node *node;
95ed6c70 1753
a3b89864
PZ
1754 node = rb_find_first(&key, &groups->tree, __group_cmp);
1755 if (node)
1756 return __node_2_pe(node);
8e1a2031 1757
a3b89864 1758 return NULL;
8e1a2031
AB
1759}
1760
1cac7b1a
PZ
1761/*
1762 * Like rb_entry_next_safe() for the @cpu subtree.
1763 */
1764static struct perf_event *
1765perf_event_groups_next(struct perf_event *event)
1766{
a3b89864
PZ
1767 struct __group_key key = {
1768 .cpu = event->cpu,
1769 .cgroup = event_cgroup(event),
1770 };
1771 struct rb_node *next;
1cac7b1a 1772
a3b89864
PZ
1773 next = rb_next_match(&key, &event->group_node, __group_cmp);
1774 if (next)
1775 return __node_2_pe(next);
95ed6c70 1776
a3b89864 1777 return NULL;
1cac7b1a
PZ
1778}
1779
8e1a2031 1780/*
161c85fa 1781 * Iterate through the whole groups tree.
8e1a2031 1782 */
6e6804d2
PZ
1783#define perf_event_groups_for_each(event, groups) \
1784 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1785 typeof(*event), group_node); event; \
1786 event = rb_entry_safe(rb_next(&event->group_node), \
1787 typeof(*event), group_node))
8e1a2031 1788
fccc714b 1789/*
788faab7 1790 * Add an event from the lists for its context.
fccc714b
PZ
1791 * Must be called with ctx->mutex and ctx->lock held.
1792 */
04289bb9 1793static void
cdd6c482 1794list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1795{
c994d613
PZ
1796 lockdep_assert_held(&ctx->lock);
1797
8a49542c
PZ
1798 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1799 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1800
0d3d73aa
PZ
1801 event->tstamp = perf_event_time(event);
1802
04289bb9 1803 /*
8a49542c
PZ
1804 * If we're a stand alone event or group leader, we go to the context
1805 * list, group events are kept attached to the group so that
1806 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1807 */
8a49542c 1808 if (event->group_leader == event) {
4ff6a8de 1809 event->group_caps = event->event_caps;
8e1a2031 1810 add_event_to_groups(event, ctx);
5c148194 1811 }
592903cd 1812
cdd6c482
IM
1813 list_add_rcu(&event->event_entry, &ctx->event_list);
1814 ctx->nr_events++;
1815 if (event->attr.inherit_stat)
bfbd3381 1816 ctx->nr_stat++;
5a3126d4 1817
33238c50
PZ
1818 if (event->state > PERF_EVENT_STATE_OFF)
1819 perf_cgroup_event_enable(event, ctx);
1820
5a3126d4 1821 ctx->generation++;
04289bb9
IM
1822}
1823
0231bb53
JO
1824/*
1825 * Initialize event state based on the perf_event_attr::disabled.
1826 */
1827static inline void perf_event__state_init(struct perf_event *event)
1828{
1829 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1830 PERF_EVENT_STATE_INACTIVE;
1831}
1832
a723968c 1833static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1834{
1835 int entry = sizeof(u64); /* value */
1836 int size = 0;
1837 int nr = 1;
1838
1839 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1840 size += sizeof(u64);
1841
1842 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1843 size += sizeof(u64);
1844
1845 if (event->attr.read_format & PERF_FORMAT_ID)
1846 entry += sizeof(u64);
1847
1848 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1849 nr += nr_siblings;
c320c7b7
ACM
1850 size += sizeof(u64);
1851 }
1852
1853 size += entry * nr;
1854 event->read_size = size;
1855}
1856
a723968c 1857static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1858{
1859 struct perf_sample_data *data;
c320c7b7
ACM
1860 u16 size = 0;
1861
c320c7b7
ACM
1862 if (sample_type & PERF_SAMPLE_IP)
1863 size += sizeof(data->ip);
1864
6844c09d
ACM
1865 if (sample_type & PERF_SAMPLE_ADDR)
1866 size += sizeof(data->addr);
1867
1868 if (sample_type & PERF_SAMPLE_PERIOD)
1869 size += sizeof(data->period);
1870
2a6c6b7d
KL
1871 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1872 size += sizeof(data->weight.full);
c3feedf2 1873
6844c09d
ACM
1874 if (sample_type & PERF_SAMPLE_READ)
1875 size += event->read_size;
1876
d6be9ad6
SE
1877 if (sample_type & PERF_SAMPLE_DATA_SRC)
1878 size += sizeof(data->data_src.val);
1879
fdfbbd07
AK
1880 if (sample_type & PERF_SAMPLE_TRANSACTION)
1881 size += sizeof(data->txn);
1882
fc7ce9c7
KL
1883 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1884 size += sizeof(data->phys_addr);
1885
6546b19f
NK
1886 if (sample_type & PERF_SAMPLE_CGROUP)
1887 size += sizeof(data->cgroup);
1888
8d97e718
KL
1889 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1890 size += sizeof(data->data_page_size);
1891
995f088e
SE
1892 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1893 size += sizeof(data->code_page_size);
1894
6844c09d
ACM
1895 event->header_size = size;
1896}
1897
a723968c
PZ
1898/*
1899 * Called at perf_event creation and when events are attached/detached from a
1900 * group.
1901 */
1902static void perf_event__header_size(struct perf_event *event)
1903{
1904 __perf_event_read_size(event,
1905 event->group_leader->nr_siblings);
1906 __perf_event_header_size(event, event->attr.sample_type);
1907}
1908
6844c09d
ACM
1909static void perf_event__id_header_size(struct perf_event *event)
1910{
1911 struct perf_sample_data *data;
1912 u64 sample_type = event->attr.sample_type;
1913 u16 size = 0;
1914
c320c7b7
ACM
1915 if (sample_type & PERF_SAMPLE_TID)
1916 size += sizeof(data->tid_entry);
1917
1918 if (sample_type & PERF_SAMPLE_TIME)
1919 size += sizeof(data->time);
1920
ff3d527c
AH
1921 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1922 size += sizeof(data->id);
1923
c320c7b7
ACM
1924 if (sample_type & PERF_SAMPLE_ID)
1925 size += sizeof(data->id);
1926
1927 if (sample_type & PERF_SAMPLE_STREAM_ID)
1928 size += sizeof(data->stream_id);
1929
1930 if (sample_type & PERF_SAMPLE_CPU)
1931 size += sizeof(data->cpu_entry);
1932
6844c09d 1933 event->id_header_size = size;
c320c7b7
ACM
1934}
1935
a723968c
PZ
1936static bool perf_event_validate_size(struct perf_event *event)
1937{
1938 /*
1939 * The values computed here will be over-written when we actually
1940 * attach the event.
1941 */
1942 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1943 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1944 perf_event__id_header_size(event);
1945
1946 /*
1947 * Sum the lot; should not exceed the 64k limit we have on records.
1948 * Conservative limit to allow for callchains and other variable fields.
1949 */
1950 if (event->read_size + event->header_size +
1951 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1952 return false;
1953
1954 return true;
1955}
1956
8a49542c
PZ
1957static void perf_group_attach(struct perf_event *event)
1958{
c320c7b7 1959 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1960
a76a82a3
PZ
1961 lockdep_assert_held(&event->ctx->lock);
1962
74c3337c
PZ
1963 /*
1964 * We can have double attach due to group movement in perf_event_open.
1965 */
1966 if (event->attach_state & PERF_ATTACH_GROUP)
1967 return;
1968
8a49542c
PZ
1969 event->attach_state |= PERF_ATTACH_GROUP;
1970
1971 if (group_leader == event)
1972 return;
1973
652884fe
PZ
1974 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1975
4ff6a8de 1976 group_leader->group_caps &= event->event_caps;
8a49542c 1977
8343aae6 1978 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1979 group_leader->nr_siblings++;
c320c7b7
ACM
1980
1981 perf_event__header_size(group_leader);
1982
edb39592 1983 for_each_sibling_event(pos, group_leader)
c320c7b7 1984 perf_event__header_size(pos);
8a49542c
PZ
1985}
1986
a63eaf34 1987/*
788faab7 1988 * Remove an event from the lists for its context.
fccc714b 1989 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1990 */
04289bb9 1991static void
cdd6c482 1992list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1993{
652884fe
PZ
1994 WARN_ON_ONCE(event->ctx != ctx);
1995 lockdep_assert_held(&ctx->lock);
1996
8a49542c
PZ
1997 /*
1998 * We can have double detach due to exit/hot-unplug + close.
1999 */
2000 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 2001 return;
8a49542c
PZ
2002
2003 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2004
cdd6c482
IM
2005 ctx->nr_events--;
2006 if (event->attr.inherit_stat)
bfbd3381 2007 ctx->nr_stat--;
8bc20959 2008
cdd6c482 2009 list_del_rcu(&event->event_entry);
04289bb9 2010
8a49542c 2011 if (event->group_leader == event)
8e1a2031 2012 del_event_from_groups(event, ctx);
5c148194 2013
b2e74a26
SE
2014 /*
2015 * If event was in error state, then keep it
2016 * that way, otherwise bogus counts will be
2017 * returned on read(). The only way to get out
2018 * of error state is by explicit re-enabling
2019 * of the event
2020 */
33238c50
PZ
2021 if (event->state > PERF_EVENT_STATE_OFF) {
2022 perf_cgroup_event_disable(event, ctx);
0d3d73aa 2023 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
33238c50 2024 }
5a3126d4
PZ
2025
2026 ctx->generation++;
050735b0
PZ
2027}
2028
ab43762e
AS
2029static int
2030perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2031{
2032 if (!has_aux(aux_event))
2033 return 0;
2034
2035 if (!event->pmu->aux_output_match)
2036 return 0;
2037
2038 return event->pmu->aux_output_match(aux_event);
2039}
2040
2041static void put_event(struct perf_event *event);
2042static void event_sched_out(struct perf_event *event,
2043 struct perf_cpu_context *cpuctx,
2044 struct perf_event_context *ctx);
2045
2046static void perf_put_aux_event(struct perf_event *event)
2047{
2048 struct perf_event_context *ctx = event->ctx;
2049 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2050 struct perf_event *iter;
2051
2052 /*
2053 * If event uses aux_event tear down the link
2054 */
2055 if (event->aux_event) {
2056 iter = event->aux_event;
2057 event->aux_event = NULL;
2058 put_event(iter);
2059 return;
2060 }
2061
2062 /*
2063 * If the event is an aux_event, tear down all links to
2064 * it from other events.
2065 */
2066 for_each_sibling_event(iter, event->group_leader) {
2067 if (iter->aux_event != event)
2068 continue;
2069
2070 iter->aux_event = NULL;
2071 put_event(event);
2072
2073 /*
2074 * If it's ACTIVE, schedule it out and put it into ERROR
2075 * state so that we don't try to schedule it again. Note
2076 * that perf_event_enable() will clear the ERROR status.
2077 */
2078 event_sched_out(iter, cpuctx, ctx);
2079 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2080 }
2081}
2082
a4faf00d
AS
2083static bool perf_need_aux_event(struct perf_event *event)
2084{
2085 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2086}
2087
ab43762e
AS
2088static int perf_get_aux_event(struct perf_event *event,
2089 struct perf_event *group_leader)
2090{
2091 /*
2092 * Our group leader must be an aux event if we want to be
2093 * an aux_output. This way, the aux event will precede its
2094 * aux_output events in the group, and therefore will always
2095 * schedule first.
2096 */
2097 if (!group_leader)
2098 return 0;
2099
a4faf00d
AS
2100 /*
2101 * aux_output and aux_sample_size are mutually exclusive.
2102 */
2103 if (event->attr.aux_output && event->attr.aux_sample_size)
2104 return 0;
2105
2106 if (event->attr.aux_output &&
2107 !perf_aux_output_match(event, group_leader))
2108 return 0;
2109
2110 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
ab43762e
AS
2111 return 0;
2112
2113 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2114 return 0;
2115
2116 /*
2117 * Link aux_outputs to their aux event; this is undone in
2118 * perf_group_detach() by perf_put_aux_event(). When the
2119 * group in torn down, the aux_output events loose their
2120 * link to the aux_event and can't schedule any more.
2121 */
2122 event->aux_event = group_leader;
2123
2124 return 1;
2125}
2126
ab6f824c
PZ
2127static inline struct list_head *get_event_list(struct perf_event *event)
2128{
2129 struct perf_event_context *ctx = event->ctx;
2130 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2131}
2132
9f0c4fa1
KL
2133/*
2134 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2135 * cannot exist on their own, schedule them out and move them into the ERROR
2136 * state. Also see _perf_event_enable(), it will not be able to recover
2137 * this ERROR state.
2138 */
2139static inline void perf_remove_sibling_event(struct perf_event *event)
2140{
2141 struct perf_event_context *ctx = event->ctx;
2142 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2143
2144 event_sched_out(event, cpuctx, ctx);
2145 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2146}
2147
8a49542c 2148static void perf_group_detach(struct perf_event *event)
050735b0 2149{
9f0c4fa1 2150 struct perf_event *leader = event->group_leader;
050735b0 2151 struct perf_event *sibling, *tmp;
6668128a 2152 struct perf_event_context *ctx = event->ctx;
8a49542c 2153
6668128a 2154 lockdep_assert_held(&ctx->lock);
a76a82a3 2155
8a49542c
PZ
2156 /*
2157 * We can have double detach due to exit/hot-unplug + close.
2158 */
2159 if (!(event->attach_state & PERF_ATTACH_GROUP))
2160 return;
2161
2162 event->attach_state &= ~PERF_ATTACH_GROUP;
2163
ab43762e
AS
2164 perf_put_aux_event(event);
2165
8a49542c
PZ
2166 /*
2167 * If this is a sibling, remove it from its group.
2168 */
9f0c4fa1 2169 if (leader != event) {
8343aae6 2170 list_del_init(&event->sibling_list);
8a49542c 2171 event->group_leader->nr_siblings--;
c320c7b7 2172 goto out;
8a49542c
PZ
2173 }
2174
04289bb9 2175 /*
cdd6c482
IM
2176 * If this was a group event with sibling events then
2177 * upgrade the siblings to singleton events by adding them
8a49542c 2178 * to whatever list we are on.
04289bb9 2179 */
8343aae6 2180 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 2181
9f0c4fa1
KL
2182 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2183 perf_remove_sibling_event(sibling);
2184
04289bb9 2185 sibling->group_leader = sibling;
24868367 2186 list_del_init(&sibling->sibling_list);
d6f962b5
FW
2187
2188 /* Inherit group flags from the previous leader */
4ff6a8de 2189 sibling->group_caps = event->group_caps;
652884fe 2190
8e1a2031 2191 if (!RB_EMPTY_NODE(&event->group_node)) {
8e1a2031 2192 add_event_to_groups(sibling, event->ctx);
6668128a 2193
ab6f824c
PZ
2194 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2195 list_add_tail(&sibling->active_list, get_event_list(sibling));
8e1a2031
AB
2196 }
2197
652884fe 2198 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 2199 }
c320c7b7
ACM
2200
2201out:
9f0c4fa1 2202 for_each_sibling_event(tmp, leader)
c320c7b7 2203 perf_event__header_size(tmp);
9f0c4fa1
KL
2204
2205 perf_event__header_size(leader);
04289bb9
IM
2206}
2207
ef54c1a4
PZ
2208static void sync_child_event(struct perf_event *child_event);
2209
2210static void perf_child_detach(struct perf_event *event)
2211{
2212 struct perf_event *parent_event = event->parent;
2213
2214 if (!(event->attach_state & PERF_ATTACH_CHILD))
2215 return;
2216
2217 event->attach_state &= ~PERF_ATTACH_CHILD;
2218
2219 if (WARN_ON_ONCE(!parent_event))
2220 return;
2221
2222 lockdep_assert_held(&parent_event->child_mutex);
2223
2224 sync_child_event(event);
2225 list_del_init(&event->child_list);
2226}
2227
fadfe7be
JO
2228static bool is_orphaned_event(struct perf_event *event)
2229{
a69b0ca4 2230 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
2231}
2232
2c81a647 2233static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
2234{
2235 struct pmu *pmu = event->pmu;
2236 return pmu->filter_match ? pmu->filter_match(event) : 1;
2237}
2238
2c81a647
MR
2239/*
2240 * Check whether we should attempt to schedule an event group based on
2241 * PMU-specific filtering. An event group can consist of HW and SW events,
2242 * potentially with a SW leader, so we must check all the filters, to
2243 * determine whether a group is schedulable:
2244 */
2245static inline int pmu_filter_match(struct perf_event *event)
2246{
edb39592 2247 struct perf_event *sibling;
2c81a647
MR
2248
2249 if (!__pmu_filter_match(event))
2250 return 0;
2251
edb39592
PZ
2252 for_each_sibling_event(sibling, event) {
2253 if (!__pmu_filter_match(sibling))
2c81a647
MR
2254 return 0;
2255 }
2256
2257 return 1;
2258}
2259
fa66f07a
SE
2260static inline int
2261event_filter_match(struct perf_event *event)
2262{
0b8f1e2e
PZ
2263 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2264 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
2265}
2266
9ffcfa6f
SE
2267static void
2268event_sched_out(struct perf_event *event,
3b6f9e5c 2269 struct perf_cpu_context *cpuctx,
cdd6c482 2270 struct perf_event_context *ctx)
3b6f9e5c 2271{
0d3d73aa 2272 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
2273
2274 WARN_ON_ONCE(event->ctx != ctx);
2275 lockdep_assert_held(&ctx->lock);
2276
cdd6c482 2277 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 2278 return;
3b6f9e5c 2279
6668128a
PZ
2280 /*
2281 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2282 * we can schedule events _OUT_ individually through things like
2283 * __perf_remove_from_context().
2284 */
2285 list_del_init(&event->active_list);
2286
44377277
AS
2287 perf_pmu_disable(event->pmu);
2288
28a967c3
PZ
2289 event->pmu->del(event, 0);
2290 event->oncpu = -1;
0d3d73aa 2291
1d54ad94
PZ
2292 if (READ_ONCE(event->pending_disable) >= 0) {
2293 WRITE_ONCE(event->pending_disable, -1);
33238c50 2294 perf_cgroup_event_disable(event, ctx);
0d3d73aa 2295 state = PERF_EVENT_STATE_OFF;
970892a9 2296 }
0d3d73aa 2297 perf_event_set_state(event, state);
3b6f9e5c 2298
cdd6c482 2299 if (!is_software_event(event))
3b6f9e5c 2300 cpuctx->active_oncpu--;
2fde4f94
MR
2301 if (!--ctx->nr_active)
2302 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
2303 if (event->attr.freq && event->attr.sample_freq)
2304 ctx->nr_freq--;
cdd6c482 2305 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 2306 cpuctx->exclusive = 0;
44377277
AS
2307
2308 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2309}
2310
d859e29f 2311static void
cdd6c482 2312group_sched_out(struct perf_event *group_event,
d859e29f 2313 struct perf_cpu_context *cpuctx,
cdd6c482 2314 struct perf_event_context *ctx)
d859e29f 2315{
cdd6c482 2316 struct perf_event *event;
0d3d73aa
PZ
2317
2318 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2319 return;
d859e29f 2320
3f005e7d
MR
2321 perf_pmu_disable(ctx->pmu);
2322
cdd6c482 2323 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
2324
2325 /*
2326 * Schedule out siblings (if any):
2327 */
edb39592 2328 for_each_sibling_event(event, group_event)
cdd6c482 2329 event_sched_out(event, cpuctx, ctx);
d859e29f 2330
3f005e7d 2331 perf_pmu_enable(ctx->pmu);
d859e29f
PM
2332}
2333
45a0e07a 2334#define DETACH_GROUP 0x01UL
ef54c1a4 2335#define DETACH_CHILD 0x02UL
0017960f 2336
0793a61d 2337/*
cdd6c482 2338 * Cross CPU call to remove a performance event
0793a61d 2339 *
cdd6c482 2340 * We disable the event on the hardware level first. After that we
0793a61d
TG
2341 * remove it from the context list.
2342 */
fae3fde6
PZ
2343static void
2344__perf_remove_from_context(struct perf_event *event,
2345 struct perf_cpu_context *cpuctx,
2346 struct perf_event_context *ctx,
2347 void *info)
0793a61d 2348{
45a0e07a 2349 unsigned long flags = (unsigned long)info;
0793a61d 2350
3c5c8711
PZ
2351 if (ctx->is_active & EVENT_TIME) {
2352 update_context_time(ctx);
2353 update_cgrp_time_from_cpuctx(cpuctx);
2354 }
2355
cdd6c482 2356 event_sched_out(event, cpuctx, ctx);
45a0e07a 2357 if (flags & DETACH_GROUP)
46ce0fe9 2358 perf_group_detach(event);
ef54c1a4
PZ
2359 if (flags & DETACH_CHILD)
2360 perf_child_detach(event);
cdd6c482 2361 list_del_event(event, ctx);
39a43640
PZ
2362
2363 if (!ctx->nr_events && ctx->is_active) {
64ce3126 2364 ctx->is_active = 0;
90c91dfb 2365 ctx->rotate_necessary = 0;
39a43640
PZ
2366 if (ctx->task) {
2367 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2368 cpuctx->task_ctx = NULL;
2369 }
64ce3126 2370 }
0793a61d
TG
2371}
2372
0793a61d 2373/*
cdd6c482 2374 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2375 *
cdd6c482
IM
2376 * If event->ctx is a cloned context, callers must make sure that
2377 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2378 * remains valid. This is OK when called from perf_release since
2379 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2380 * When called from perf_event_exit_task, it's OK because the
c93f7669 2381 * context has been detached from its task.
0793a61d 2382 */
45a0e07a 2383static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2384{
a76a82a3
PZ
2385 struct perf_event_context *ctx = event->ctx;
2386
2387 lockdep_assert_held(&ctx->mutex);
0793a61d 2388
a76a82a3 2389 /*
ef54c1a4
PZ
2390 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2391 * to work in the face of TASK_TOMBSTONE, unlike every other
2392 * event_function_call() user.
a76a82a3 2393 */
ef54c1a4
PZ
2394 raw_spin_lock_irq(&ctx->lock);
2395 if (!ctx->is_active) {
2396 __perf_remove_from_context(event, __get_cpu_context(ctx),
2397 ctx, (void *)flags);
a76a82a3 2398 raw_spin_unlock_irq(&ctx->lock);
ef54c1a4 2399 return;
a76a82a3 2400 }
ef54c1a4
PZ
2401 raw_spin_unlock_irq(&ctx->lock);
2402
2403 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
2404}
2405
d859e29f 2406/*
cdd6c482 2407 * Cross CPU call to disable a performance event
d859e29f 2408 */
fae3fde6
PZ
2409static void __perf_event_disable(struct perf_event *event,
2410 struct perf_cpu_context *cpuctx,
2411 struct perf_event_context *ctx,
2412 void *info)
7b648018 2413{
fae3fde6
PZ
2414 if (event->state < PERF_EVENT_STATE_INACTIVE)
2415 return;
7b648018 2416
3c5c8711
PZ
2417 if (ctx->is_active & EVENT_TIME) {
2418 update_context_time(ctx);
2419 update_cgrp_time_from_event(event);
2420 }
2421
fae3fde6
PZ
2422 if (event == event->group_leader)
2423 group_sched_out(event, cpuctx, ctx);
2424 else
2425 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
2426
2427 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
33238c50 2428 perf_cgroup_event_disable(event, ctx);
7b648018
PZ
2429}
2430
d859e29f 2431/*
788faab7 2432 * Disable an event.
c93f7669 2433 *
cdd6c482
IM
2434 * If event->ctx is a cloned context, callers must make sure that
2435 * every task struct that event->ctx->task could possibly point to
9f014e3a 2436 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2437 * perf_event_for_each_child or perf_event_for_each because they
2438 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2439 * goes to exit will block in perf_event_exit_event().
2440 *
cdd6c482 2441 * When called from perf_pending_event it's OK because event->ctx
c93f7669 2442 * is the current context on this CPU and preemption is disabled,
cdd6c482 2443 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2444 */
f63a8daa 2445static void _perf_event_disable(struct perf_event *event)
d859e29f 2446{
cdd6c482 2447 struct perf_event_context *ctx = event->ctx;
d859e29f 2448
e625cce1 2449 raw_spin_lock_irq(&ctx->lock);
7b648018 2450 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2451 raw_spin_unlock_irq(&ctx->lock);
7b648018 2452 return;
53cfbf59 2453 }
e625cce1 2454 raw_spin_unlock_irq(&ctx->lock);
7b648018 2455
fae3fde6
PZ
2456 event_function_call(event, __perf_event_disable, NULL);
2457}
2458
2459void perf_event_disable_local(struct perf_event *event)
2460{
2461 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2462}
f63a8daa
PZ
2463
2464/*
2465 * Strictly speaking kernel users cannot create groups and therefore this
2466 * interface does not need the perf_event_ctx_lock() magic.
2467 */
2468void perf_event_disable(struct perf_event *event)
2469{
2470 struct perf_event_context *ctx;
2471
2472 ctx = perf_event_ctx_lock(event);
2473 _perf_event_disable(event);
2474 perf_event_ctx_unlock(event, ctx);
2475}
dcfce4a0 2476EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2477
5aab90ce
JO
2478void perf_event_disable_inatomic(struct perf_event *event)
2479{
1d54ad94
PZ
2480 WRITE_ONCE(event->pending_disable, smp_processor_id());
2481 /* can fail, see perf_pending_event_disable() */
5aab90ce
JO
2482 irq_work_queue(&event->pending);
2483}
2484
e5d1367f 2485static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2486 struct perf_event_context *ctx)
e5d1367f
SE
2487{
2488 /*
2489 * use the correct time source for the time snapshot
2490 *
2491 * We could get by without this by leveraging the
2492 * fact that to get to this function, the caller
2493 * has most likely already called update_context_time()
2494 * and update_cgrp_time_xx() and thus both timestamp
2495 * are identical (or very close). Given that tstamp is,
2496 * already adjusted for cgroup, we could say that:
2497 * tstamp - ctx->timestamp
2498 * is equivalent to
2499 * tstamp - cgrp->timestamp.
2500 *
2501 * Then, in perf_output_read(), the calculation would
2502 * work with no changes because:
2503 * - event is guaranteed scheduled in
2504 * - no scheduled out in between
2505 * - thus the timestamp would be the same
2506 *
2507 * But this is a bit hairy.
2508 *
2509 * So instead, we have an explicit cgroup call to remain
c034f48e 2510 * within the time source all along. We believe it
e5d1367f
SE
2511 * is cleaner and simpler to understand.
2512 */
2513 if (is_cgroup_event(event))
0d3d73aa 2514 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2515 else
0d3d73aa 2516 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2517}
2518
4fe757dd
PZ
2519#define MAX_INTERRUPTS (~0ULL)
2520
2521static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2522static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2523
235c7fc7 2524static int
9ffcfa6f 2525event_sched_in(struct perf_event *event,
235c7fc7 2526 struct perf_cpu_context *cpuctx,
6e37738a 2527 struct perf_event_context *ctx)
235c7fc7 2528{
44377277 2529 int ret = 0;
4158755d 2530
ab6f824c
PZ
2531 WARN_ON_ONCE(event->ctx != ctx);
2532
63342411
PZ
2533 lockdep_assert_held(&ctx->lock);
2534
cdd6c482 2535 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2536 return 0;
2537
95ff4ca2
AS
2538 WRITE_ONCE(event->oncpu, smp_processor_id());
2539 /*
0c1cbc18
PZ
2540 * Order event::oncpu write to happen before the ACTIVE state is
2541 * visible. This allows perf_event_{stop,read}() to observe the correct
2542 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2543 */
2544 smp_wmb();
0d3d73aa 2545 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2546
2547 /*
2548 * Unthrottle events, since we scheduled we might have missed several
2549 * ticks already, also for a heavily scheduling task there is little
2550 * guarantee it'll get a tick in a timely manner.
2551 */
2552 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2553 perf_log_throttle(event, 1);
2554 event->hw.interrupts = 0;
2555 }
2556
44377277
AS
2557 perf_pmu_disable(event->pmu);
2558
0d3d73aa 2559 perf_set_shadow_time(event, ctx);
72f669c0 2560
ec0d7729
AS
2561 perf_log_itrace_start(event);
2562
a4eaf7f1 2563 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2564 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2565 event->oncpu = -1;
44377277
AS
2566 ret = -EAGAIN;
2567 goto out;
235c7fc7
IM
2568 }
2569
cdd6c482 2570 if (!is_software_event(event))
3b6f9e5c 2571 cpuctx->active_oncpu++;
2fde4f94
MR
2572 if (!ctx->nr_active++)
2573 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2574 if (event->attr.freq && event->attr.sample_freq)
2575 ctx->nr_freq++;
235c7fc7 2576
cdd6c482 2577 if (event->attr.exclusive)
3b6f9e5c
PM
2578 cpuctx->exclusive = 1;
2579
44377277
AS
2580out:
2581 perf_pmu_enable(event->pmu);
2582
2583 return ret;
235c7fc7
IM
2584}
2585
6751b71e 2586static int
cdd6c482 2587group_sched_in(struct perf_event *group_event,
6751b71e 2588 struct perf_cpu_context *cpuctx,
6e37738a 2589 struct perf_event_context *ctx)
6751b71e 2590{
6bde9b6c 2591 struct perf_event *event, *partial_group = NULL;
4a234593 2592 struct pmu *pmu = ctx->pmu;
6751b71e 2593
cdd6c482 2594 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2595 return 0;
2596
fbbe0701 2597 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2598
251ff2d4
PZ
2599 if (event_sched_in(group_event, cpuctx, ctx))
2600 goto error;
6751b71e
PM
2601
2602 /*
2603 * Schedule in siblings as one group (if any):
2604 */
edb39592 2605 for_each_sibling_event(event, group_event) {
9ffcfa6f 2606 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2607 partial_group = event;
6751b71e
PM
2608 goto group_error;
2609 }
2610 }
2611
9ffcfa6f 2612 if (!pmu->commit_txn(pmu))
6e85158c 2613 return 0;
9ffcfa6f 2614
6751b71e
PM
2615group_error:
2616 /*
2617 * Groups can be scheduled in as one unit only, so undo any
2618 * partial group before returning:
0d3d73aa 2619 * The events up to the failed event are scheduled out normally.
6751b71e 2620 */
edb39592 2621 for_each_sibling_event(event, group_event) {
cdd6c482 2622 if (event == partial_group)
0d3d73aa 2623 break;
d7842da4 2624
0d3d73aa 2625 event_sched_out(event, cpuctx, ctx);
6751b71e 2626 }
9ffcfa6f 2627 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2628
251ff2d4 2629error:
ad5133b7 2630 pmu->cancel_txn(pmu);
6751b71e
PM
2631 return -EAGAIN;
2632}
2633
3b6f9e5c 2634/*
cdd6c482 2635 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2636 */
cdd6c482 2637static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2638 struct perf_cpu_context *cpuctx,
2639 int can_add_hw)
2640{
2641 /*
cdd6c482 2642 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2643 */
4ff6a8de 2644 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2645 return 1;
2646 /*
2647 * If an exclusive group is already on, no other hardware
cdd6c482 2648 * events can go on.
3b6f9e5c
PM
2649 */
2650 if (cpuctx->exclusive)
2651 return 0;
2652 /*
2653 * If this group is exclusive and there are already
cdd6c482 2654 * events on the CPU, it can't go on.
3b6f9e5c 2655 */
1908dc91 2656 if (event->attr.exclusive && !list_empty(get_event_list(event)))
3b6f9e5c
PM
2657 return 0;
2658 /*
2659 * Otherwise, try to add it if all previous groups were able
2660 * to go on.
2661 */
2662 return can_add_hw;
2663}
2664
cdd6c482
IM
2665static void add_event_to_ctx(struct perf_event *event,
2666 struct perf_event_context *ctx)
53cfbf59 2667{
cdd6c482 2668 list_add_event(event, ctx);
8a49542c 2669 perf_group_attach(event);
53cfbf59
PM
2670}
2671
bd2afa49
PZ
2672static void ctx_sched_out(struct perf_event_context *ctx,
2673 struct perf_cpu_context *cpuctx,
2674 enum event_type_t event_type);
2c29ef0f
PZ
2675static void
2676ctx_sched_in(struct perf_event_context *ctx,
2677 struct perf_cpu_context *cpuctx,
2678 enum event_type_t event_type,
2679 struct task_struct *task);
fe4b04fa 2680
bd2afa49 2681static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2682 struct perf_event_context *ctx,
2683 enum event_type_t event_type)
bd2afa49
PZ
2684{
2685 if (!cpuctx->task_ctx)
2686 return;
2687
2688 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2689 return;
2690
487f05e1 2691 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2692}
2693
dce5855b
PZ
2694static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2695 struct perf_event_context *ctx,
2696 struct task_struct *task)
2697{
2698 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2699 if (ctx)
2700 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2701 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2702 if (ctx)
2703 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2704}
2705
487f05e1
AS
2706/*
2707 * We want to maintain the following priority of scheduling:
2708 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2709 * - task pinned (EVENT_PINNED)
2710 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2711 * - task flexible (EVENT_FLEXIBLE).
2712 *
2713 * In order to avoid unscheduling and scheduling back in everything every
2714 * time an event is added, only do it for the groups of equal priority and
2715 * below.
2716 *
2717 * This can be called after a batch operation on task events, in which case
2718 * event_type is a bit mask of the types of events involved. For CPU events,
2719 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2720 */
3e349507 2721static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2722 struct perf_event_context *task_ctx,
2723 enum event_type_t event_type)
0017960f 2724{
bd903afe 2725 enum event_type_t ctx_event_type;
487f05e1
AS
2726 bool cpu_event = !!(event_type & EVENT_CPU);
2727
2728 /*
2729 * If pinned groups are involved, flexible groups also need to be
2730 * scheduled out.
2731 */
2732 if (event_type & EVENT_PINNED)
2733 event_type |= EVENT_FLEXIBLE;
2734
bd903afe
SL
2735 ctx_event_type = event_type & EVENT_ALL;
2736
3e349507
PZ
2737 perf_pmu_disable(cpuctx->ctx.pmu);
2738 if (task_ctx)
487f05e1
AS
2739 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2740
2741 /*
2742 * Decide which cpu ctx groups to schedule out based on the types
2743 * of events that caused rescheduling:
2744 * - EVENT_CPU: schedule out corresponding groups;
2745 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2746 * - otherwise, do nothing more.
2747 */
2748 if (cpu_event)
2749 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2750 else if (ctx_event_type & EVENT_PINNED)
2751 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2752
3e349507
PZ
2753 perf_event_sched_in(cpuctx, task_ctx, current);
2754 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2755}
2756
c68d224e
SE
2757void perf_pmu_resched(struct pmu *pmu)
2758{
2759 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2760 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2761
2762 perf_ctx_lock(cpuctx, task_ctx);
2763 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2764 perf_ctx_unlock(cpuctx, task_ctx);
2765}
2766
0793a61d 2767/*
cdd6c482 2768 * Cross CPU call to install and enable a performance event
682076ae 2769 *
a096309b
PZ
2770 * Very similar to remote_function() + event_function() but cannot assume that
2771 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2772 */
fe4b04fa 2773static int __perf_install_in_context(void *info)
0793a61d 2774{
a096309b
PZ
2775 struct perf_event *event = info;
2776 struct perf_event_context *ctx = event->ctx;
108b02cf 2777 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2778 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2779 bool reprogram = true;
a096309b 2780 int ret = 0;
0793a61d 2781
63b6da39 2782 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2783 if (ctx->task) {
b58f6b0d
PZ
2784 raw_spin_lock(&ctx->lock);
2785 task_ctx = ctx;
a096309b 2786
63cae12b 2787 reprogram = (ctx->task == current);
b58f6b0d 2788
39a43640 2789 /*
63cae12b
PZ
2790 * If the task is running, it must be running on this CPU,
2791 * otherwise we cannot reprogram things.
2792 *
2793 * If its not running, we don't care, ctx->lock will
2794 * serialize against it becoming runnable.
39a43640 2795 */
63cae12b
PZ
2796 if (task_curr(ctx->task) && !reprogram) {
2797 ret = -ESRCH;
2798 goto unlock;
2799 }
a096309b 2800
63cae12b 2801 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2802 } else if (task_ctx) {
2803 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2804 }
b58f6b0d 2805
33801b94 2806#ifdef CONFIG_CGROUP_PERF
33238c50 2807 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
33801b94 2808 /*
2809 * If the current cgroup doesn't match the event's
2810 * cgroup, we should not try to schedule it.
2811 */
2812 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2813 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2814 event->cgrp->css.cgroup);
2815 }
2816#endif
2817
63cae12b 2818 if (reprogram) {
a096309b
PZ
2819 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2820 add_event_to_ctx(event, ctx);
487f05e1 2821 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2822 } else {
2823 add_event_to_ctx(event, ctx);
2824 }
2825
63b6da39 2826unlock:
2c29ef0f 2827 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2828
a096309b 2829 return ret;
0793a61d
TG
2830}
2831
8a58ddae
AS
2832static bool exclusive_event_installable(struct perf_event *event,
2833 struct perf_event_context *ctx);
2834
0793a61d 2835/*
a096309b
PZ
2836 * Attach a performance event to a context.
2837 *
2838 * Very similar to event_function_call, see comment there.
0793a61d
TG
2839 */
2840static void
cdd6c482
IM
2841perf_install_in_context(struct perf_event_context *ctx,
2842 struct perf_event *event,
0793a61d
TG
2843 int cpu)
2844{
a096309b 2845 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2846
fe4b04fa
PZ
2847 lockdep_assert_held(&ctx->mutex);
2848
8a58ddae
AS
2849 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2850
0cda4c02
YZ
2851 if (event->cpu != -1)
2852 event->cpu = cpu;
c3f00c70 2853
0b8f1e2e
PZ
2854 /*
2855 * Ensures that if we can observe event->ctx, both the event and ctx
2856 * will be 'complete'. See perf_iterate_sb_cpu().
2857 */
2858 smp_store_release(&event->ctx, ctx);
2859
db0503e4
PZ
2860 /*
2861 * perf_event_attr::disabled events will not run and can be initialized
2862 * without IPI. Except when this is the first event for the context, in
2863 * that case we need the magic of the IPI to set ctx->is_active.
2864 *
2865 * The IOC_ENABLE that is sure to follow the creation of a disabled
2866 * event will issue the IPI and reprogram the hardware.
2867 */
2868 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2869 raw_spin_lock_irq(&ctx->lock);
2870 if (ctx->task == TASK_TOMBSTONE) {
2871 raw_spin_unlock_irq(&ctx->lock);
2872 return;
2873 }
2874 add_event_to_ctx(event, ctx);
2875 raw_spin_unlock_irq(&ctx->lock);
2876 return;
2877 }
2878
a096309b
PZ
2879 if (!task) {
2880 cpu_function_call(cpu, __perf_install_in_context, event);
2881 return;
2882 }
2883
2884 /*
2885 * Should not happen, we validate the ctx is still alive before calling.
2886 */
2887 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2888 return;
2889
39a43640
PZ
2890 /*
2891 * Installing events is tricky because we cannot rely on ctx->is_active
2892 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2893 *
2894 * Instead we use task_curr(), which tells us if the task is running.
2895 * However, since we use task_curr() outside of rq::lock, we can race
2896 * against the actual state. This means the result can be wrong.
2897 *
2898 * If we get a false positive, we retry, this is harmless.
2899 *
2900 * If we get a false negative, things are complicated. If we are after
2901 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2902 * value must be correct. If we're before, it doesn't matter since
2903 * perf_event_context_sched_in() will program the counter.
2904 *
2905 * However, this hinges on the remote context switch having observed
2906 * our task->perf_event_ctxp[] store, such that it will in fact take
2907 * ctx::lock in perf_event_context_sched_in().
2908 *
2909 * We do this by task_function_call(), if the IPI fails to hit the task
2910 * we know any future context switch of task must see the
2911 * perf_event_ctpx[] store.
39a43640 2912 */
63cae12b 2913
63b6da39 2914 /*
63cae12b
PZ
2915 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2916 * task_cpu() load, such that if the IPI then does not find the task
2917 * running, a future context switch of that task must observe the
2918 * store.
63b6da39 2919 */
63cae12b
PZ
2920 smp_mb();
2921again:
2922 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2923 return;
2924
2925 raw_spin_lock_irq(&ctx->lock);
2926 task = ctx->task;
84c4e620 2927 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2928 /*
2929 * Cannot happen because we already checked above (which also
2930 * cannot happen), and we hold ctx->mutex, which serializes us
2931 * against perf_event_exit_task_context().
2932 */
63b6da39
PZ
2933 raw_spin_unlock_irq(&ctx->lock);
2934 return;
2935 }
39a43640 2936 /*
63cae12b
PZ
2937 * If the task is not running, ctx->lock will avoid it becoming so,
2938 * thus we can safely install the event.
39a43640 2939 */
63cae12b
PZ
2940 if (task_curr(task)) {
2941 raw_spin_unlock_irq(&ctx->lock);
2942 goto again;
2943 }
2944 add_event_to_ctx(event, ctx);
2945 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2946}
2947
d859e29f 2948/*
cdd6c482 2949 * Cross CPU call to enable a performance event
d859e29f 2950 */
fae3fde6
PZ
2951static void __perf_event_enable(struct perf_event *event,
2952 struct perf_cpu_context *cpuctx,
2953 struct perf_event_context *ctx,
2954 void *info)
04289bb9 2955{
cdd6c482 2956 struct perf_event *leader = event->group_leader;
fae3fde6 2957 struct perf_event_context *task_ctx;
04289bb9 2958
6e801e01
PZ
2959 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2960 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2961 return;
3cbed429 2962
bd2afa49
PZ
2963 if (ctx->is_active)
2964 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2965
0d3d73aa 2966 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
33238c50 2967 perf_cgroup_event_enable(event, ctx);
04289bb9 2968
fae3fde6
PZ
2969 if (!ctx->is_active)
2970 return;
2971
e5d1367f 2972 if (!event_filter_match(event)) {
bd2afa49 2973 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2974 return;
e5d1367f 2975 }
f4c4176f 2976
04289bb9 2977 /*
cdd6c482 2978 * If the event is in a group and isn't the group leader,
d859e29f 2979 * then don't put it on unless the group is on.
04289bb9 2980 */
bd2afa49
PZ
2981 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2982 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2983 return;
bd2afa49 2984 }
fe4b04fa 2985
fae3fde6
PZ
2986 task_ctx = cpuctx->task_ctx;
2987 if (ctx->task)
2988 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2989
487f05e1 2990 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2991}
2992
d859e29f 2993/*
788faab7 2994 * Enable an event.
c93f7669 2995 *
cdd6c482
IM
2996 * If event->ctx is a cloned context, callers must make sure that
2997 * every task struct that event->ctx->task could possibly point to
c93f7669 2998 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2999 * perf_event_for_each_child or perf_event_for_each as described
3000 * for perf_event_disable.
d859e29f 3001 */
f63a8daa 3002static void _perf_event_enable(struct perf_event *event)
d859e29f 3003{
cdd6c482 3004 struct perf_event_context *ctx = event->ctx;
d859e29f 3005
7b648018 3006 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
3007 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3008 event->state < PERF_EVENT_STATE_ERROR) {
9f0c4fa1 3009out:
7b648018 3010 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
3011 return;
3012 }
3013
d859e29f 3014 /*
cdd6c482 3015 * If the event is in error state, clear that first.
7b648018
PZ
3016 *
3017 * That way, if we see the event in error state below, we know that it
3018 * has gone back into error state, as distinct from the task having
3019 * been scheduled away before the cross-call arrived.
d859e29f 3020 */
9f0c4fa1
KL
3021 if (event->state == PERF_EVENT_STATE_ERROR) {
3022 /*
3023 * Detached SIBLING events cannot leave ERROR state.
3024 */
3025 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3026 event->group_leader == event)
3027 goto out;
3028
cdd6c482 3029 event->state = PERF_EVENT_STATE_OFF;
9f0c4fa1 3030 }
e625cce1 3031 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 3032
fae3fde6 3033 event_function_call(event, __perf_event_enable, NULL);
d859e29f 3034}
f63a8daa
PZ
3035
3036/*
3037 * See perf_event_disable();
3038 */
3039void perf_event_enable(struct perf_event *event)
3040{
3041 struct perf_event_context *ctx;
3042
3043 ctx = perf_event_ctx_lock(event);
3044 _perf_event_enable(event);
3045 perf_event_ctx_unlock(event, ctx);
3046}
dcfce4a0 3047EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 3048
375637bc
AS
3049struct stop_event_data {
3050 struct perf_event *event;
3051 unsigned int restart;
3052};
3053
95ff4ca2
AS
3054static int __perf_event_stop(void *info)
3055{
375637bc
AS
3056 struct stop_event_data *sd = info;
3057 struct perf_event *event = sd->event;
95ff4ca2 3058
375637bc 3059 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
3060 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3061 return 0;
3062
3063 /* matches smp_wmb() in event_sched_in() */
3064 smp_rmb();
3065
3066 /*
3067 * There is a window with interrupts enabled before we get here,
3068 * so we need to check again lest we try to stop another CPU's event.
3069 */
3070 if (READ_ONCE(event->oncpu) != smp_processor_id())
3071 return -EAGAIN;
3072
3073 event->pmu->stop(event, PERF_EF_UPDATE);
3074
375637bc
AS
3075 /*
3076 * May race with the actual stop (through perf_pmu_output_stop()),
3077 * but it is only used for events with AUX ring buffer, and such
3078 * events will refuse to restart because of rb::aux_mmap_count==0,
3079 * see comments in perf_aux_output_begin().
3080 *
788faab7 3081 * Since this is happening on an event-local CPU, no trace is lost
375637bc
AS
3082 * while restarting.
3083 */
3084 if (sd->restart)
c9bbdd48 3085 event->pmu->start(event, 0);
375637bc 3086
95ff4ca2
AS
3087 return 0;
3088}
3089
767ae086 3090static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
3091{
3092 struct stop_event_data sd = {
3093 .event = event,
767ae086 3094 .restart = restart,
375637bc
AS
3095 };
3096 int ret = 0;
3097
3098 do {
3099 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3100 return 0;
3101
3102 /* matches smp_wmb() in event_sched_in() */
3103 smp_rmb();
3104
3105 /*
3106 * We only want to restart ACTIVE events, so if the event goes
3107 * inactive here (event->oncpu==-1), there's nothing more to do;
3108 * fall through with ret==-ENXIO.
3109 */
3110 ret = cpu_function_call(READ_ONCE(event->oncpu),
3111 __perf_event_stop, &sd);
3112 } while (ret == -EAGAIN);
3113
3114 return ret;
3115}
3116
3117/*
3118 * In order to contain the amount of racy and tricky in the address filter
3119 * configuration management, it is a two part process:
3120 *
3121 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3122 * we update the addresses of corresponding vmas in
c60f83b8 3123 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
375637bc
AS
3124 * (p2) when an event is scheduled in (pmu::add), it calls
3125 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3126 * if the generation has changed since the previous call.
3127 *
3128 * If (p1) happens while the event is active, we restart it to force (p2).
3129 *
3130 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3131 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3132 * ioctl;
3133 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
c1e8d7c6 3134 * registered mapping, called for every new mmap(), with mm::mmap_lock down
375637bc
AS
3135 * for reading;
3136 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3137 * of exec.
3138 */
3139void perf_event_addr_filters_sync(struct perf_event *event)
3140{
3141 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3142
3143 if (!has_addr_filter(event))
3144 return;
3145
3146 raw_spin_lock(&ifh->lock);
3147 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3148 event->pmu->addr_filters_sync(event);
3149 event->hw.addr_filters_gen = event->addr_filters_gen;
3150 }
3151 raw_spin_unlock(&ifh->lock);
3152}
3153EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3154
f63a8daa 3155static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 3156{
2023b359 3157 /*
cdd6c482 3158 * not supported on inherited events
2023b359 3159 */
2e939d1d 3160 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
3161 return -EINVAL;
3162
cdd6c482 3163 atomic_add(refresh, &event->event_limit);
f63a8daa 3164 _perf_event_enable(event);
2023b359
PZ
3165
3166 return 0;
79f14641 3167}
f63a8daa
PZ
3168
3169/*
3170 * See perf_event_disable()
3171 */
3172int perf_event_refresh(struct perf_event *event, int refresh)
3173{
3174 struct perf_event_context *ctx;
3175 int ret;
3176
3177 ctx = perf_event_ctx_lock(event);
3178 ret = _perf_event_refresh(event, refresh);
3179 perf_event_ctx_unlock(event, ctx);
3180
3181 return ret;
3182}
26ca5c11 3183EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 3184
32ff77e8
MC
3185static int perf_event_modify_breakpoint(struct perf_event *bp,
3186 struct perf_event_attr *attr)
3187{
3188 int err;
3189
3190 _perf_event_disable(bp);
3191
3192 err = modify_user_hw_breakpoint_check(bp, attr, true);
32ff77e8 3193
bf06278c 3194 if (!bp->attr.disabled)
32ff77e8 3195 _perf_event_enable(bp);
bf06278c
JO
3196
3197 return err;
32ff77e8
MC
3198}
3199
3200static int perf_event_modify_attr(struct perf_event *event,
3201 struct perf_event_attr *attr)
3202{
47f661ec
ME
3203 int (*func)(struct perf_event *, struct perf_event_attr *);
3204 struct perf_event *child;
3205 int err;
3206
32ff77e8
MC
3207 if (event->attr.type != attr->type)
3208 return -EINVAL;
3209
3210 switch (event->attr.type) {
3211 case PERF_TYPE_BREAKPOINT:
47f661ec
ME
3212 func = perf_event_modify_breakpoint;
3213 break;
32ff77e8
MC
3214 default:
3215 /* Place holder for future additions. */
3216 return -EOPNOTSUPP;
3217 }
47f661ec
ME
3218
3219 WARN_ON_ONCE(event->ctx->parent_ctx);
3220
3221 mutex_lock(&event->child_mutex);
3222 err = func(event, attr);
3223 if (err)
3224 goto out;
3225 list_for_each_entry(child, &event->child_list, child_list) {
3226 err = func(child, attr);
3227 if (err)
3228 goto out;
3229 }
3230out:
3231 mutex_unlock(&event->child_mutex);
3232 return err;
32ff77e8
MC
3233}
3234
5b0311e1
FW
3235static void ctx_sched_out(struct perf_event_context *ctx,
3236 struct perf_cpu_context *cpuctx,
3237 enum event_type_t event_type)
235c7fc7 3238{
6668128a 3239 struct perf_event *event, *tmp;
db24d33e 3240 int is_active = ctx->is_active;
235c7fc7 3241
c994d613 3242 lockdep_assert_held(&ctx->lock);
235c7fc7 3243
39a43640
PZ
3244 if (likely(!ctx->nr_events)) {
3245 /*
3246 * See __perf_remove_from_context().
3247 */
3248 WARN_ON_ONCE(ctx->is_active);
3249 if (ctx->task)
3250 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 3251 return;
39a43640
PZ
3252 }
3253
db24d33e 3254 ctx->is_active &= ~event_type;
3cbaa590
PZ
3255 if (!(ctx->is_active & EVENT_ALL))
3256 ctx->is_active = 0;
3257
63e30d3e
PZ
3258 if (ctx->task) {
3259 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3260 if (!ctx->is_active)
3261 cpuctx->task_ctx = NULL;
3262 }
facc4307 3263
8fdc6539
PZ
3264 /*
3265 * Always update time if it was set; not only when it changes.
3266 * Otherwise we can 'forget' to update time for any but the last
3267 * context we sched out. For example:
3268 *
3269 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3270 * ctx_sched_out(.event_type = EVENT_PINNED)
3271 *
3272 * would only update time for the pinned events.
3273 */
3cbaa590
PZ
3274 if (is_active & EVENT_TIME) {
3275 /* update (and stop) ctx time */
3276 update_context_time(ctx);
3277 update_cgrp_time_from_cpuctx(cpuctx);
3278 }
3279
8fdc6539
PZ
3280 is_active ^= ctx->is_active; /* changed bits */
3281
3cbaa590 3282 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 3283 return;
5b0311e1 3284
075e0b00 3285 perf_pmu_disable(ctx->pmu);
3cbaa590 3286 if (is_active & EVENT_PINNED) {
6668128a 3287 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
889ff015 3288 group_sched_out(event, cpuctx, ctx);
9ed6060d 3289 }
889ff015 3290
3cbaa590 3291 if (is_active & EVENT_FLEXIBLE) {
6668128a 3292 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
8c9ed8e1 3293 group_sched_out(event, cpuctx, ctx);
90c91dfb
PZ
3294
3295 /*
3296 * Since we cleared EVENT_FLEXIBLE, also clear
3297 * rotate_necessary, is will be reset by
3298 * ctx_flexible_sched_in() when needed.
3299 */
3300 ctx->rotate_necessary = 0;
9ed6060d 3301 }
1b9a644f 3302 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
3303}
3304
564c2b21 3305/*
5a3126d4
PZ
3306 * Test whether two contexts are equivalent, i.e. whether they have both been
3307 * cloned from the same version of the same context.
3308 *
3309 * Equivalence is measured using a generation number in the context that is
3310 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3311 * and list_del_event().
564c2b21 3312 */
cdd6c482
IM
3313static int context_equiv(struct perf_event_context *ctx1,
3314 struct perf_event_context *ctx2)
564c2b21 3315{
211de6eb
PZ
3316 lockdep_assert_held(&ctx1->lock);
3317 lockdep_assert_held(&ctx2->lock);
3318
5a3126d4
PZ
3319 /* Pinning disables the swap optimization */
3320 if (ctx1->pin_count || ctx2->pin_count)
3321 return 0;
3322
3323 /* If ctx1 is the parent of ctx2 */
3324 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3325 return 1;
3326
3327 /* If ctx2 is the parent of ctx1 */
3328 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3329 return 1;
3330
3331 /*
3332 * If ctx1 and ctx2 have the same parent; we flatten the parent
3333 * hierarchy, see perf_event_init_context().
3334 */
3335 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3336 ctx1->parent_gen == ctx2->parent_gen)
3337 return 1;
3338
3339 /* Unmatched */
3340 return 0;
564c2b21
PM
3341}
3342
cdd6c482
IM
3343static void __perf_event_sync_stat(struct perf_event *event,
3344 struct perf_event *next_event)
bfbd3381
PZ
3345{
3346 u64 value;
3347
cdd6c482 3348 if (!event->attr.inherit_stat)
bfbd3381
PZ
3349 return;
3350
3351 /*
cdd6c482 3352 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3353 * because we're in the middle of a context switch and have IRQs
3354 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3355 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3356 * don't need to use it.
3357 */
0d3d73aa 3358 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3359 event->pmu->read(event);
bfbd3381 3360
0d3d73aa 3361 perf_event_update_time(event);
bfbd3381
PZ
3362
3363 /*
cdd6c482 3364 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3365 * values when we flip the contexts.
3366 */
e7850595
PZ
3367 value = local64_read(&next_event->count);
3368 value = local64_xchg(&event->count, value);
3369 local64_set(&next_event->count, value);
bfbd3381 3370
cdd6c482
IM
3371 swap(event->total_time_enabled, next_event->total_time_enabled);
3372 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3373
bfbd3381 3374 /*
19d2e755 3375 * Since we swizzled the values, update the user visible data too.
bfbd3381 3376 */
cdd6c482
IM
3377 perf_event_update_userpage(event);
3378 perf_event_update_userpage(next_event);
bfbd3381
PZ
3379}
3380
cdd6c482
IM
3381static void perf_event_sync_stat(struct perf_event_context *ctx,
3382 struct perf_event_context *next_ctx)
bfbd3381 3383{
cdd6c482 3384 struct perf_event *event, *next_event;
bfbd3381
PZ
3385
3386 if (!ctx->nr_stat)
3387 return;
3388
02ffdbc8
PZ
3389 update_context_time(ctx);
3390
cdd6c482
IM
3391 event = list_first_entry(&ctx->event_list,
3392 struct perf_event, event_entry);
bfbd3381 3393
cdd6c482
IM
3394 next_event = list_first_entry(&next_ctx->event_list,
3395 struct perf_event, event_entry);
bfbd3381 3396
cdd6c482
IM
3397 while (&event->event_entry != &ctx->event_list &&
3398 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3399
cdd6c482 3400 __perf_event_sync_stat(event, next_event);
bfbd3381 3401
cdd6c482
IM
3402 event = list_next_entry(event, event_entry);
3403 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3404 }
3405}
3406
fe4b04fa
PZ
3407static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3408 struct task_struct *next)
0793a61d 3409{
8dc85d54 3410 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 3411 struct perf_event_context *next_ctx;
5a3126d4 3412 struct perf_event_context *parent, *next_parent;
108b02cf 3413 struct perf_cpu_context *cpuctx;
c93f7669 3414 int do_switch = 1;
44fae179 3415 struct pmu *pmu;
0793a61d 3416
108b02cf
PZ
3417 if (likely(!ctx))
3418 return;
10989fb2 3419
44fae179 3420 pmu = ctx->pmu;
108b02cf
PZ
3421 cpuctx = __get_cpu_context(ctx);
3422 if (!cpuctx->task_ctx)
0793a61d
TG
3423 return;
3424
c93f7669 3425 rcu_read_lock();
8dc85d54 3426 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
3427 if (!next_ctx)
3428 goto unlock;
3429
3430 parent = rcu_dereference(ctx->parent_ctx);
3431 next_parent = rcu_dereference(next_ctx->parent_ctx);
3432
3433 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3434 if (!parent && !next_parent)
5a3126d4
PZ
3435 goto unlock;
3436
3437 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3438 /*
3439 * Looks like the two contexts are clones, so we might be
3440 * able to optimize the context switch. We lock both
3441 * contexts and check that they are clones under the
3442 * lock (including re-checking that neither has been
3443 * uncloned in the meantime). It doesn't matter which
3444 * order we take the locks because no other cpu could
3445 * be trying to lock both of these tasks.
3446 */
e625cce1
TG
3447 raw_spin_lock(&ctx->lock);
3448 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3449 if (context_equiv(ctx, next_ctx)) {
c2b98a86 3450
63b6da39
PZ
3451 WRITE_ONCE(ctx->task, next);
3452 WRITE_ONCE(next_ctx->task, task);
5a158c3c 3453
44fae179
KL
3454 perf_pmu_disable(pmu);
3455
3456 if (cpuctx->sched_cb_usage && pmu->sched_task)
3457 pmu->sched_task(ctx, false);
3458
c2b98a86
AB
3459 /*
3460 * PMU specific parts of task perf context can require
3461 * additional synchronization. As an example of such
3462 * synchronization see implementation details of Intel
3463 * LBR call stack data profiling;
3464 */
3465 if (pmu->swap_task_ctx)
3466 pmu->swap_task_ctx(ctx, next_ctx);
3467 else
3468 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
5a158c3c 3469
44fae179
KL
3470 perf_pmu_enable(pmu);
3471
63b6da39
PZ
3472 /*
3473 * RCU_INIT_POINTER here is safe because we've not
3474 * modified the ctx and the above modification of
3475 * ctx->task and ctx->task_ctx_data are immaterial
3476 * since those values are always verified under
3477 * ctx->lock which we're now holding.
3478 */
3479 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3480 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3481
c93f7669 3482 do_switch = 0;
bfbd3381 3483
cdd6c482 3484 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3485 }
e625cce1
TG
3486 raw_spin_unlock(&next_ctx->lock);
3487 raw_spin_unlock(&ctx->lock);
564c2b21 3488 }
5a3126d4 3489unlock:
c93f7669 3490 rcu_read_unlock();
564c2b21 3491
c93f7669 3492 if (do_switch) {
facc4307 3493 raw_spin_lock(&ctx->lock);
44fae179
KL
3494 perf_pmu_disable(pmu);
3495
3496 if (cpuctx->sched_cb_usage && pmu->sched_task)
3497 pmu->sched_task(ctx, false);
487f05e1 3498 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
44fae179
KL
3499
3500 perf_pmu_enable(pmu);
facc4307 3501 raw_spin_unlock(&ctx->lock);
c93f7669 3502 }
0793a61d
TG
3503}
3504
a5398bff
KL
3505static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3506
ba532500
YZ
3507void perf_sched_cb_dec(struct pmu *pmu)
3508{
e48c1788
PZ
3509 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3510
a5398bff
KL
3511 this_cpu_dec(perf_sched_cb_usages);
3512
3513 if (!--cpuctx->sched_cb_usage)
3514 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3515}
3516
e48c1788 3517
ba532500
YZ
3518void perf_sched_cb_inc(struct pmu *pmu)
3519{
e48c1788
PZ
3520 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3521
a5398bff
KL
3522 if (!cpuctx->sched_cb_usage++)
3523 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3524
3525 this_cpu_inc(perf_sched_cb_usages);
ba532500
YZ
3526}
3527
3528/*
3529 * This function provides the context switch callback to the lower code
3530 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3531 *
3532 * This callback is relevant even to per-cpu events; for example multi event
3533 * PEBS requires this to provide PID/TID information. This requires we flush
3534 * all queued PEBS records before we context switch to a new task.
ba532500 3535 */
556cccad
KL
3536static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3537{
3538 struct pmu *pmu;
3539
3540 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3541
3542 if (WARN_ON_ONCE(!pmu->sched_task))
3543 return;
3544
3545 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3546 perf_pmu_disable(pmu);
3547
3548 pmu->sched_task(cpuctx->task_ctx, sched_in);
3549
3550 perf_pmu_enable(pmu);
3551 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3552}
3553
a5398bff
KL
3554static void perf_pmu_sched_task(struct task_struct *prev,
3555 struct task_struct *next,
3556 bool sched_in)
3557{
3558 struct perf_cpu_context *cpuctx;
3559
3560 if (prev == next)
3561 return;
3562
3563 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3564 /* will be handled in perf_event_context_sched_in/out */
3565 if (cpuctx->task_ctx)
3566 continue;
3567
3568 __perf_pmu_sched_task(cpuctx, sched_in);
3569 }
3570}
3571
45ac1403
AH
3572static void perf_event_switch(struct task_struct *task,
3573 struct task_struct *next_prev, bool sched_in);
3574
8dc85d54
PZ
3575#define for_each_task_context_nr(ctxn) \
3576 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3577
3578/*
3579 * Called from scheduler to remove the events of the current task,
3580 * with interrupts disabled.
3581 *
3582 * We stop each event and update the event value in event->count.
3583 *
3584 * This does not protect us against NMI, but disable()
3585 * sets the disabled bit in the control field of event _before_
3586 * accessing the event control register. If a NMI hits, then it will
3587 * not restart the event.
3588 */
ab0cce56
JO
3589void __perf_event_task_sched_out(struct task_struct *task,
3590 struct task_struct *next)
8dc85d54
PZ
3591{
3592 int ctxn;
3593
a5398bff
KL
3594 if (__this_cpu_read(perf_sched_cb_usages))
3595 perf_pmu_sched_task(task, next, false);
3596
45ac1403
AH
3597 if (atomic_read(&nr_switch_events))
3598 perf_event_switch(task, next, false);
3599
8dc85d54
PZ
3600 for_each_task_context_nr(ctxn)
3601 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3602
3603 /*
3604 * if cgroup events exist on this CPU, then we need
3605 * to check if we have to switch out PMU state.
3606 * cgroup event are system-wide mode only
3607 */
4a32fea9 3608 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3609 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3610}
3611
5b0311e1
FW
3612/*
3613 * Called with IRQs disabled
3614 */
3615static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3616 enum event_type_t event_type)
3617{
3618 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3619}
3620
6eef8a71 3621static bool perf_less_group_idx(const void *l, const void *r)
0793a61d 3622{
24fb6b8e
IR
3623 const struct perf_event *le = *(const struct perf_event **)l;
3624 const struct perf_event *re = *(const struct perf_event **)r;
6eef8a71
IR
3625
3626 return le->group_index < re->group_index;
3627}
3628
3629static void swap_ptr(void *l, void *r)
3630{
3631 void **lp = l, **rp = r;
3632
3633 swap(*lp, *rp);
3634}
3635
3636static const struct min_heap_callbacks perf_min_heap = {
3637 .elem_size = sizeof(struct perf_event *),
3638 .less = perf_less_group_idx,
3639 .swp = swap_ptr,
3640};
3641
3642static void __heap_add(struct min_heap *heap, struct perf_event *event)
3643{
3644 struct perf_event **itrs = heap->data;
3645
3646 if (event) {
3647 itrs[heap->nr] = event;
3648 heap->nr++;
3649 }
3650}
3651
836196be
IR
3652static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3653 struct perf_event_groups *groups, int cpu,
6eef8a71
IR
3654 int (*func)(struct perf_event *, void *),
3655 void *data)
3656{
95ed6c70
IR
3657#ifdef CONFIG_CGROUP_PERF
3658 struct cgroup_subsys_state *css = NULL;
3659#endif
6eef8a71
IR
3660 /* Space for per CPU and/or any CPU event iterators. */
3661 struct perf_event *itrs[2];
836196be
IR
3662 struct min_heap event_heap;
3663 struct perf_event **evt;
1cac7b1a 3664 int ret;
8e1a2031 3665
836196be
IR
3666 if (cpuctx) {
3667 event_heap = (struct min_heap){
3668 .data = cpuctx->heap,
3669 .nr = 0,
3670 .size = cpuctx->heap_size,
3671 };
c2283c93
IR
3672
3673 lockdep_assert_held(&cpuctx->ctx.lock);
95ed6c70
IR
3674
3675#ifdef CONFIG_CGROUP_PERF
3676 if (cpuctx->cgrp)
3677 css = &cpuctx->cgrp->css;
3678#endif
836196be
IR
3679 } else {
3680 event_heap = (struct min_heap){
3681 .data = itrs,
3682 .nr = 0,
3683 .size = ARRAY_SIZE(itrs),
3684 };
3685 /* Events not within a CPU context may be on any CPU. */
95ed6c70 3686 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
836196be
IR
3687 }
3688 evt = event_heap.data;
3689
95ed6c70
IR
3690 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3691
3692#ifdef CONFIG_CGROUP_PERF
3693 for (; css; css = css->parent)
3694 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3695#endif
1cac7b1a 3696
6eef8a71 3697 min_heapify_all(&event_heap, &perf_min_heap);
1cac7b1a 3698
6eef8a71 3699 while (event_heap.nr) {
1cac7b1a
PZ
3700 ret = func(*evt, data);
3701 if (ret)
3702 return ret;
3703
3704 *evt = perf_event_groups_next(*evt);
6eef8a71
IR
3705 if (*evt)
3706 min_heapify(&event_heap, 0, &perf_min_heap);
3707 else
3708 min_heap_pop(&event_heap, &perf_min_heap);
8e1a2031 3709 }
0793a61d 3710
1cac7b1a
PZ
3711 return 0;
3712}
3713
ab6f824c 3714static int merge_sched_in(struct perf_event *event, void *data)
1cac7b1a 3715{
2c2366c7
PZ
3716 struct perf_event_context *ctx = event->ctx;
3717 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3718 int *can_add_hw = data;
ab6f824c 3719
1cac7b1a
PZ
3720 if (event->state <= PERF_EVENT_STATE_OFF)
3721 return 0;
3722
3723 if (!event_filter_match(event))
3724 return 0;
3725
2c2366c7
PZ
3726 if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3727 if (!group_sched_in(event, cpuctx, ctx))
ab6f824c 3728 list_add_tail(&event->active_list, get_event_list(event));
6668128a 3729 }
1cac7b1a 3730
ab6f824c 3731 if (event->state == PERF_EVENT_STATE_INACTIVE) {
33238c50
PZ
3732 if (event->attr.pinned) {
3733 perf_cgroup_event_disable(event, ctx);
ab6f824c 3734 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
33238c50 3735 }
1cac7b1a 3736
2c2366c7
PZ
3737 *can_add_hw = 0;
3738 ctx->rotate_necessary = 1;
2714c396 3739 perf_mux_hrtimer_restart(cpuctx);
3b6f9e5c 3740 }
1cac7b1a
PZ
3741
3742 return 0;
5b0311e1
FW
3743}
3744
3745static void
1cac7b1a
PZ
3746ctx_pinned_sched_in(struct perf_event_context *ctx,
3747 struct perf_cpu_context *cpuctx)
5b0311e1 3748{
2c2366c7 3749 int can_add_hw = 1;
3b6f9e5c 3750
836196be
IR
3751 if (ctx != &cpuctx->ctx)
3752 cpuctx = NULL;
3753
3754 visit_groups_merge(cpuctx, &ctx->pinned_groups,
1cac7b1a 3755 smp_processor_id(),
2c2366c7 3756 merge_sched_in, &can_add_hw);
1cac7b1a 3757}
8e1a2031 3758
1cac7b1a
PZ
3759static void
3760ctx_flexible_sched_in(struct perf_event_context *ctx,
3761 struct perf_cpu_context *cpuctx)
3762{
2c2366c7 3763 int can_add_hw = 1;
0793a61d 3764
836196be
IR
3765 if (ctx != &cpuctx->ctx)
3766 cpuctx = NULL;
3767
3768 visit_groups_merge(cpuctx, &ctx->flexible_groups,
1cac7b1a 3769 smp_processor_id(),
2c2366c7 3770 merge_sched_in, &can_add_hw);
5b0311e1
FW
3771}
3772
3773static void
3774ctx_sched_in(struct perf_event_context *ctx,
3775 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3776 enum event_type_t event_type,
3777 struct task_struct *task)
5b0311e1 3778{
db24d33e 3779 int is_active = ctx->is_active;
c994d613
PZ
3780 u64 now;
3781
3782 lockdep_assert_held(&ctx->lock);
e5d1367f 3783
5b0311e1 3784 if (likely(!ctx->nr_events))
facc4307 3785 return;
5b0311e1 3786
3cbaa590 3787 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3788 if (ctx->task) {
3789 if (!is_active)
3790 cpuctx->task_ctx = ctx;
3791 else
3792 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3793 }
3794
3cbaa590
PZ
3795 is_active ^= ctx->is_active; /* changed bits */
3796
3797 if (is_active & EVENT_TIME) {
3798 /* start ctx time */
3799 now = perf_clock();
3800 ctx->timestamp = now;
3801 perf_cgroup_set_timestamp(task, ctx);
3802 }
3803
5b0311e1
FW
3804 /*
3805 * First go through the list and put on any pinned groups
3806 * in order to give them the best chance of going on.
3807 */
3cbaa590 3808 if (is_active & EVENT_PINNED)
6e37738a 3809 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3810
3811 /* Then walk through the lower prio flexible groups */
3cbaa590 3812 if (is_active & EVENT_FLEXIBLE)
6e37738a 3813 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3814}
3815
329c0e01 3816static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3817 enum event_type_t event_type,
3818 struct task_struct *task)
329c0e01
FW
3819{
3820 struct perf_event_context *ctx = &cpuctx->ctx;
3821
e5d1367f 3822 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3823}
3824
e5d1367f
SE
3825static void perf_event_context_sched_in(struct perf_event_context *ctx,
3826 struct task_struct *task)
235c7fc7 3827{
108b02cf 3828 struct perf_cpu_context *cpuctx;
556cccad 3829 struct pmu *pmu = ctx->pmu;
235c7fc7 3830
108b02cf 3831 cpuctx = __get_cpu_context(ctx);
556cccad
KL
3832 if (cpuctx->task_ctx == ctx) {
3833 if (cpuctx->sched_cb_usage)
3834 __perf_pmu_sched_task(cpuctx, true);
329c0e01 3835 return;
556cccad 3836 }
329c0e01 3837
facc4307 3838 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3839 /*
3840 * We must check ctx->nr_events while holding ctx->lock, such
3841 * that we serialize against perf_install_in_context().
3842 */
3843 if (!ctx->nr_events)
3844 goto unlock;
3845
556cccad 3846 perf_pmu_disable(pmu);
329c0e01
FW
3847 /*
3848 * We want to keep the following priority order:
3849 * cpu pinned (that don't need to move), task pinned,
3850 * cpu flexible, task flexible.
fe45bafb
AS
3851 *
3852 * However, if task's ctx is not carrying any pinned
3853 * events, no need to flip the cpuctx's events around.
329c0e01 3854 */
8e1a2031 3855 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
fe45bafb 3856 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3857 perf_event_sched_in(cpuctx, ctx, task);
556cccad
KL
3858
3859 if (cpuctx->sched_cb_usage && pmu->sched_task)
3860 pmu->sched_task(cpuctx->task_ctx, true);
3861
3862 perf_pmu_enable(pmu);
fdccc3fb 3863
3864unlock:
facc4307 3865 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3866}
3867
8dc85d54
PZ
3868/*
3869 * Called from scheduler to add the events of the current task
3870 * with interrupts disabled.
3871 *
3872 * We restore the event value and then enable it.
3873 *
3874 * This does not protect us against NMI, but enable()
3875 * sets the enabled bit in the control field of event _before_
3876 * accessing the event control register. If a NMI hits, then it will
3877 * keep the event running.
3878 */
ab0cce56
JO
3879void __perf_event_task_sched_in(struct task_struct *prev,
3880 struct task_struct *task)
8dc85d54
PZ
3881{
3882 struct perf_event_context *ctx;
3883 int ctxn;
3884
7e41d177
PZ
3885 /*
3886 * If cgroup events exist on this CPU, then we need to check if we have
3887 * to switch in PMU state; cgroup event are system-wide mode only.
3888 *
3889 * Since cgroup events are CPU events, we must schedule these in before
3890 * we schedule in the task events.
3891 */
3892 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3893 perf_cgroup_sched_in(prev, task);
3894
8dc85d54
PZ
3895 for_each_task_context_nr(ctxn) {
3896 ctx = task->perf_event_ctxp[ctxn];
3897 if (likely(!ctx))
3898 continue;
3899
e5d1367f 3900 perf_event_context_sched_in(ctx, task);
8dc85d54 3901 }
d010b332 3902
45ac1403
AH
3903 if (atomic_read(&nr_switch_events))
3904 perf_event_switch(task, prev, true);
a5398bff
KL
3905
3906 if (__this_cpu_read(perf_sched_cb_usages))
3907 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3908}
3909
abd50713
PZ
3910static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3911{
3912 u64 frequency = event->attr.sample_freq;
3913 u64 sec = NSEC_PER_SEC;
3914 u64 divisor, dividend;
3915
3916 int count_fls, nsec_fls, frequency_fls, sec_fls;
3917
3918 count_fls = fls64(count);
3919 nsec_fls = fls64(nsec);
3920 frequency_fls = fls64(frequency);
3921 sec_fls = 30;
3922
3923 /*
3924 * We got @count in @nsec, with a target of sample_freq HZ
3925 * the target period becomes:
3926 *
3927 * @count * 10^9
3928 * period = -------------------
3929 * @nsec * sample_freq
3930 *
3931 */
3932
3933 /*
3934 * Reduce accuracy by one bit such that @a and @b converge
3935 * to a similar magnitude.
3936 */
fe4b04fa 3937#define REDUCE_FLS(a, b) \
abd50713
PZ
3938do { \
3939 if (a##_fls > b##_fls) { \
3940 a >>= 1; \
3941 a##_fls--; \
3942 } else { \
3943 b >>= 1; \
3944 b##_fls--; \
3945 } \
3946} while (0)
3947
3948 /*
3949 * Reduce accuracy until either term fits in a u64, then proceed with
3950 * the other, so that finally we can do a u64/u64 division.
3951 */
3952 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3953 REDUCE_FLS(nsec, frequency);
3954 REDUCE_FLS(sec, count);
3955 }
3956
3957 if (count_fls + sec_fls > 64) {
3958 divisor = nsec * frequency;
3959
3960 while (count_fls + sec_fls > 64) {
3961 REDUCE_FLS(count, sec);
3962 divisor >>= 1;
3963 }
3964
3965 dividend = count * sec;
3966 } else {
3967 dividend = count * sec;
3968
3969 while (nsec_fls + frequency_fls > 64) {
3970 REDUCE_FLS(nsec, frequency);
3971 dividend >>= 1;
3972 }
3973
3974 divisor = nsec * frequency;
3975 }
3976
f6ab91ad
PZ
3977 if (!divisor)
3978 return dividend;
3979
abd50713
PZ
3980 return div64_u64(dividend, divisor);
3981}
3982
e050e3f0
SE
3983static DEFINE_PER_CPU(int, perf_throttled_count);
3984static DEFINE_PER_CPU(u64, perf_throttled_seq);
3985
f39d47ff 3986static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3987{
cdd6c482 3988 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3989 s64 period, sample_period;
bd2b5b12
PZ
3990 s64 delta;
3991
abd50713 3992 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3993
3994 delta = (s64)(period - hwc->sample_period);
3995 delta = (delta + 7) / 8; /* low pass filter */
3996
3997 sample_period = hwc->sample_period + delta;
3998
3999 if (!sample_period)
4000 sample_period = 1;
4001
bd2b5b12 4002 hwc->sample_period = sample_period;
abd50713 4003
e7850595 4004 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
4005 if (disable)
4006 event->pmu->stop(event, PERF_EF_UPDATE);
4007
e7850595 4008 local64_set(&hwc->period_left, 0);
f39d47ff
SE
4009
4010 if (disable)
4011 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 4012 }
bd2b5b12
PZ
4013}
4014
e050e3f0
SE
4015/*
4016 * combine freq adjustment with unthrottling to avoid two passes over the
4017 * events. At the same time, make sure, having freq events does not change
4018 * the rate of unthrottling as that would introduce bias.
4019 */
4020static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4021 int needs_unthr)
60db5e09 4022{
cdd6c482
IM
4023 struct perf_event *event;
4024 struct hw_perf_event *hwc;
e050e3f0 4025 u64 now, period = TICK_NSEC;
abd50713 4026 s64 delta;
60db5e09 4027
e050e3f0
SE
4028 /*
4029 * only need to iterate over all events iff:
4030 * - context have events in frequency mode (needs freq adjust)
4031 * - there are events to unthrottle on this cpu
4032 */
4033 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
4034 return;
4035
e050e3f0 4036 raw_spin_lock(&ctx->lock);
f39d47ff 4037 perf_pmu_disable(ctx->pmu);
e050e3f0 4038
03541f8b 4039 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 4040 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
4041 continue;
4042
5632ab12 4043 if (!event_filter_match(event))
5d27c23d
PZ
4044 continue;
4045
44377277
AS
4046 perf_pmu_disable(event->pmu);
4047
cdd6c482 4048 hwc = &event->hw;
6a24ed6c 4049
ae23bff1 4050 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 4051 hwc->interrupts = 0;
cdd6c482 4052 perf_log_throttle(event, 1);
a4eaf7f1 4053 event->pmu->start(event, 0);
a78ac325
PZ
4054 }
4055
cdd6c482 4056 if (!event->attr.freq || !event->attr.sample_freq)
44377277 4057 goto next;
60db5e09 4058
e050e3f0
SE
4059 /*
4060 * stop the event and update event->count
4061 */
4062 event->pmu->stop(event, PERF_EF_UPDATE);
4063
e7850595 4064 now = local64_read(&event->count);
abd50713
PZ
4065 delta = now - hwc->freq_count_stamp;
4066 hwc->freq_count_stamp = now;
60db5e09 4067
e050e3f0
SE
4068 /*
4069 * restart the event
4070 * reload only if value has changed
f39d47ff
SE
4071 * we have stopped the event so tell that
4072 * to perf_adjust_period() to avoid stopping it
4073 * twice.
e050e3f0 4074 */
abd50713 4075 if (delta > 0)
f39d47ff 4076 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
4077
4078 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
4079 next:
4080 perf_pmu_enable(event->pmu);
60db5e09 4081 }
e050e3f0 4082
f39d47ff 4083 perf_pmu_enable(ctx->pmu);
e050e3f0 4084 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
4085}
4086
235c7fc7 4087/*
8703a7cf 4088 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 4089 */
8703a7cf 4090static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 4091{
dddd3379
TG
4092 /*
4093 * Rotate the first entry last of non-pinned groups. Rotation might be
4094 * disabled by the inheritance code.
4095 */
8703a7cf
PZ
4096 if (ctx->rotate_disable)
4097 return;
8e1a2031 4098
8703a7cf
PZ
4099 perf_event_groups_delete(&ctx->flexible_groups, event);
4100 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
4101}
4102
7fa343b7 4103/* pick an event from the flexible_groups to rotate */
8d5bce0c 4104static inline struct perf_event *
7fa343b7 4105ctx_event_to_rotate(struct perf_event_context *ctx)
235c7fc7 4106{
7fa343b7
SL
4107 struct perf_event *event;
4108
4109 /* pick the first active flexible event */
4110 event = list_first_entry_or_null(&ctx->flexible_active,
4111 struct perf_event, active_list);
4112
4113 /* if no active flexible event, pick the first event */
4114 if (!event) {
4115 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4116 typeof(*event), group_node);
4117 }
4118
90c91dfb
PZ
4119 /*
4120 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4121 * finds there are unschedulable events, it will set it again.
4122 */
4123 ctx->rotate_necessary = 0;
4124
7fa343b7 4125 return event;
8d5bce0c
PZ
4126}
4127
4128static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4129{
4130 struct perf_event *cpu_event = NULL, *task_event = NULL;
fd7d5517
IR
4131 struct perf_event_context *task_ctx = NULL;
4132 int cpu_rotate, task_rotate;
8d5bce0c
PZ
4133
4134 /*
4135 * Since we run this from IRQ context, nobody can install new
4136 * events, thus the event count values are stable.
4137 */
7fc23a53 4138
fd7d5517
IR
4139 cpu_rotate = cpuctx->ctx.rotate_necessary;
4140 task_ctx = cpuctx->task_ctx;
4141 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
9717e6cd 4142
8d5bce0c
PZ
4143 if (!(cpu_rotate || task_rotate))
4144 return false;
0f5a2601 4145
facc4307 4146 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 4147 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 4148
8d5bce0c 4149 if (task_rotate)
7fa343b7 4150 task_event = ctx_event_to_rotate(task_ctx);
8d5bce0c 4151 if (cpu_rotate)
7fa343b7 4152 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
8703a7cf 4153
8d5bce0c
PZ
4154 /*
4155 * As per the order given at ctx_resched() first 'pop' task flexible
4156 * and then, if needed CPU flexible.
4157 */
fd7d5517
IR
4158 if (task_event || (task_ctx && cpu_event))
4159 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
8d5bce0c
PZ
4160 if (cpu_event)
4161 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
0793a61d 4162
8d5bce0c 4163 if (task_event)
fd7d5517 4164 rotate_ctx(task_ctx, task_event);
8d5bce0c
PZ
4165 if (cpu_event)
4166 rotate_ctx(&cpuctx->ctx, cpu_event);
235c7fc7 4167
fd7d5517 4168 perf_event_sched_in(cpuctx, task_ctx, current);
235c7fc7 4169
0f5a2601
PZ
4170 perf_pmu_enable(cpuctx->ctx.pmu);
4171 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 4172
8d5bce0c 4173 return true;
e9d2b064
PZ
4174}
4175
4176void perf_event_task_tick(void)
4177{
2fde4f94
MR
4178 struct list_head *head = this_cpu_ptr(&active_ctx_list);
4179 struct perf_event_context *ctx, *tmp;
e050e3f0 4180 int throttled;
b5ab4cd5 4181
16444645 4182 lockdep_assert_irqs_disabled();
e9d2b064 4183
e050e3f0
SE
4184 __this_cpu_inc(perf_throttled_seq);
4185 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 4186 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 4187
2fde4f94 4188 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 4189 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
4190}
4191
889ff015
FW
4192static int event_enable_on_exec(struct perf_event *event,
4193 struct perf_event_context *ctx)
4194{
4195 if (!event->attr.enable_on_exec)
4196 return 0;
4197
4198 event->attr.enable_on_exec = 0;
4199 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4200 return 0;
4201
0d3d73aa 4202 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
4203
4204 return 1;
4205}
4206
57e7986e 4207/*
cdd6c482 4208 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
4209 * This expects task == current.
4210 */
c1274499 4211static void perf_event_enable_on_exec(int ctxn)
57e7986e 4212{
c1274499 4213 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 4214 enum event_type_t event_type = 0;
3e349507 4215 struct perf_cpu_context *cpuctx;
cdd6c482 4216 struct perf_event *event;
57e7986e
PM
4217 unsigned long flags;
4218 int enabled = 0;
4219
4220 local_irq_save(flags);
c1274499 4221 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 4222 if (!ctx || !ctx->nr_events)
57e7986e
PM
4223 goto out;
4224
3e349507
PZ
4225 cpuctx = __get_cpu_context(ctx);
4226 perf_ctx_lock(cpuctx, ctx);
7fce2509 4227 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 4228 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 4229 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
4230 event_type |= get_event_type(event);
4231 }
57e7986e
PM
4232
4233 /*
3e349507 4234 * Unclone and reschedule this context if we enabled any event.
57e7986e 4235 */
3e349507 4236 if (enabled) {
211de6eb 4237 clone_ctx = unclone_ctx(ctx);
487f05e1 4238 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
4239 } else {
4240 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
4241 }
4242 perf_ctx_unlock(cpuctx, ctx);
57e7986e 4243
9ed6060d 4244out:
57e7986e 4245 local_irq_restore(flags);
211de6eb
PZ
4246
4247 if (clone_ctx)
4248 put_ctx(clone_ctx);
57e7986e
PM
4249}
4250
2e498d0a
ME
4251static void perf_remove_from_owner(struct perf_event *event);
4252static void perf_event_exit_event(struct perf_event *event,
4253 struct perf_event_context *ctx);
4254
4255/*
4256 * Removes all events from the current task that have been marked
4257 * remove-on-exec, and feeds their values back to parent events.
4258 */
4259static void perf_event_remove_on_exec(int ctxn)
4260{
4261 struct perf_event_context *ctx, *clone_ctx = NULL;
4262 struct perf_event *event, *next;
4263 LIST_HEAD(free_list);
4264 unsigned long flags;
4265 bool modified = false;
4266
4267 ctx = perf_pin_task_context(current, ctxn);
4268 if (!ctx)
4269 return;
4270
4271 mutex_lock(&ctx->mutex);
4272
4273 if (WARN_ON_ONCE(ctx->task != current))
4274 goto unlock;
4275
4276 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4277 if (!event->attr.remove_on_exec)
4278 continue;
4279
4280 if (!is_kernel_event(event))
4281 perf_remove_from_owner(event);
4282
4283 modified = true;
4284
4285 perf_event_exit_event(event, ctx);
4286 }
4287
4288 raw_spin_lock_irqsave(&ctx->lock, flags);
4289 if (modified)
4290 clone_ctx = unclone_ctx(ctx);
4291 --ctx->pin_count;
4292 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4293
4294unlock:
4295 mutex_unlock(&ctx->mutex);
4296
4297 put_ctx(ctx);
4298 if (clone_ctx)
4299 put_ctx(clone_ctx);
4300}
4301
0492d4c5
PZ
4302struct perf_read_data {
4303 struct perf_event *event;
4304 bool group;
7d88962e 4305 int ret;
0492d4c5
PZ
4306};
4307
451d24d1 4308static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 4309{
d6a2f903
DCC
4310 u16 local_pkg, event_pkg;
4311
4312 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
4313 int local_cpu = smp_processor_id();
4314
4315 event_pkg = topology_physical_package_id(event_cpu);
4316 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
4317
4318 if (event_pkg == local_pkg)
4319 return local_cpu;
4320 }
4321
4322 return event_cpu;
4323}
4324
0793a61d 4325/*
cdd6c482 4326 * Cross CPU call to read the hardware event
0793a61d 4327 */
cdd6c482 4328static void __perf_event_read(void *info)
0793a61d 4329{
0492d4c5
PZ
4330 struct perf_read_data *data = info;
4331 struct perf_event *sub, *event = data->event;
cdd6c482 4332 struct perf_event_context *ctx = event->ctx;
108b02cf 4333 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 4334 struct pmu *pmu = event->pmu;
621a01ea 4335
e1ac3614
PM
4336 /*
4337 * If this is a task context, we need to check whether it is
4338 * the current task context of this cpu. If not it has been
4339 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
4340 * event->count would have been updated to a recent sample
4341 * when the event was scheduled out.
e1ac3614
PM
4342 */
4343 if (ctx->task && cpuctx->task_ctx != ctx)
4344 return;
4345
e625cce1 4346 raw_spin_lock(&ctx->lock);
0c1cbc18 4347 if (ctx->is_active & EVENT_TIME) {
542e72fc 4348 update_context_time(ctx);
e5d1367f
SE
4349 update_cgrp_time_from_event(event);
4350 }
0492d4c5 4351
0d3d73aa
PZ
4352 perf_event_update_time(event);
4353 if (data->group)
4354 perf_event_update_sibling_time(event);
0c1cbc18 4355
4a00c16e
SB
4356 if (event->state != PERF_EVENT_STATE_ACTIVE)
4357 goto unlock;
0492d4c5 4358
4a00c16e
SB
4359 if (!data->group) {
4360 pmu->read(event);
4361 data->ret = 0;
0492d4c5 4362 goto unlock;
4a00c16e
SB
4363 }
4364
4365 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4366
4367 pmu->read(event);
0492d4c5 4368
edb39592 4369 for_each_sibling_event(sub, event) {
4a00c16e
SB
4370 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4371 /*
4372 * Use sibling's PMU rather than @event's since
4373 * sibling could be on different (eg: software) PMU.
4374 */
0492d4c5 4375 sub->pmu->read(sub);
4a00c16e 4376 }
0492d4c5 4377 }
4a00c16e
SB
4378
4379 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
4380
4381unlock:
e625cce1 4382 raw_spin_unlock(&ctx->lock);
0793a61d
TG
4383}
4384
b5e58793
PZ
4385static inline u64 perf_event_count(struct perf_event *event)
4386{
c39a0e2c 4387 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
4388}
4389
ffe8690c
KX
4390/*
4391 * NMI-safe method to read a local event, that is an event that
4392 * is:
4393 * - either for the current task, or for this CPU
4394 * - does not have inherit set, for inherited task events
4395 * will not be local and we cannot read them atomically
4396 * - must not have a pmu::count method
4397 */
7d9285e8
YS
4398int perf_event_read_local(struct perf_event *event, u64 *value,
4399 u64 *enabled, u64 *running)
ffe8690c
KX
4400{
4401 unsigned long flags;
f91840a3 4402 int ret = 0;
ffe8690c
KX
4403
4404 /*
4405 * Disabling interrupts avoids all counter scheduling (context
4406 * switches, timer based rotation and IPIs).
4407 */
4408 local_irq_save(flags);
4409
ffe8690c
KX
4410 /*
4411 * It must not be an event with inherit set, we cannot read
4412 * all child counters from atomic context.
4413 */
f91840a3
AS
4414 if (event->attr.inherit) {
4415 ret = -EOPNOTSUPP;
4416 goto out;
4417 }
ffe8690c 4418
f91840a3
AS
4419 /* If this is a per-task event, it must be for current */
4420 if ((event->attach_state & PERF_ATTACH_TASK) &&
4421 event->hw.target != current) {
4422 ret = -EINVAL;
4423 goto out;
4424 }
4425
4426 /* If this is a per-CPU event, it must be for this CPU */
4427 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4428 event->cpu != smp_processor_id()) {
4429 ret = -EINVAL;
4430 goto out;
4431 }
ffe8690c 4432
befb1b3c
RC
4433 /* If this is a pinned event it must be running on this CPU */
4434 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4435 ret = -EBUSY;
4436 goto out;
4437 }
4438
ffe8690c
KX
4439 /*
4440 * If the event is currently on this CPU, its either a per-task event,
4441 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4442 * oncpu == -1).
4443 */
4444 if (event->oncpu == smp_processor_id())
4445 event->pmu->read(event);
4446
f91840a3 4447 *value = local64_read(&event->count);
0d3d73aa
PZ
4448 if (enabled || running) {
4449 u64 now = event->shadow_ctx_time + perf_clock();
4450 u64 __enabled, __running;
4451
4452 __perf_update_times(event, now, &__enabled, &__running);
4453 if (enabled)
4454 *enabled = __enabled;
4455 if (running)
4456 *running = __running;
4457 }
f91840a3 4458out:
ffe8690c
KX
4459 local_irq_restore(flags);
4460
f91840a3 4461 return ret;
ffe8690c
KX
4462}
4463
7d88962e 4464static int perf_event_read(struct perf_event *event, bool group)
0793a61d 4465{
0c1cbc18 4466 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 4467 int event_cpu, ret = 0;
7d88962e 4468
0793a61d 4469 /*
cdd6c482
IM
4470 * If event is enabled and currently active on a CPU, update the
4471 * value in the event structure:
0793a61d 4472 */
0c1cbc18
PZ
4473again:
4474 if (state == PERF_EVENT_STATE_ACTIVE) {
4475 struct perf_read_data data;
4476
4477 /*
4478 * Orders the ->state and ->oncpu loads such that if we see
4479 * ACTIVE we must also see the right ->oncpu.
4480 *
4481 * Matches the smp_wmb() from event_sched_in().
4482 */
4483 smp_rmb();
d6a2f903 4484
451d24d1
PZ
4485 event_cpu = READ_ONCE(event->oncpu);
4486 if ((unsigned)event_cpu >= nr_cpu_ids)
4487 return 0;
4488
0c1cbc18
PZ
4489 data = (struct perf_read_data){
4490 .event = event,
4491 .group = group,
4492 .ret = 0,
4493 };
4494
451d24d1
PZ
4495 preempt_disable();
4496 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4497
58763148
PZ
4498 /*
4499 * Purposely ignore the smp_call_function_single() return
4500 * value.
4501 *
451d24d1 4502 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4503 * scheduled out and that will have updated the event count.
4504 *
4505 * Therefore, either way, we'll have an up-to-date event count
4506 * after this.
4507 */
451d24d1
PZ
4508 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4509 preempt_enable();
58763148 4510 ret = data.ret;
0c1cbc18
PZ
4511
4512 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4513 struct perf_event_context *ctx = event->ctx;
4514 unsigned long flags;
4515
e625cce1 4516 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4517 state = event->state;
4518 if (state != PERF_EVENT_STATE_INACTIVE) {
4519 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4520 goto again;
4521 }
4522
c530ccd9 4523 /*
0c1cbc18
PZ
4524 * May read while context is not active (e.g., thread is
4525 * blocked), in that case we cannot update context time
c530ccd9 4526 */
0c1cbc18 4527 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4528 update_context_time(ctx);
e5d1367f
SE
4529 update_cgrp_time_from_event(event);
4530 }
0c1cbc18 4531
0d3d73aa 4532 perf_event_update_time(event);
0492d4c5 4533 if (group)
0d3d73aa 4534 perf_event_update_sibling_time(event);
e625cce1 4535 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4536 }
7d88962e
SB
4537
4538 return ret;
0793a61d
TG
4539}
4540
a63eaf34 4541/*
cdd6c482 4542 * Initialize the perf_event context in a task_struct:
a63eaf34 4543 */
eb184479 4544static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4545{
e625cce1 4546 raw_spin_lock_init(&ctx->lock);
a63eaf34 4547 mutex_init(&ctx->mutex);
2fde4f94 4548 INIT_LIST_HEAD(&ctx->active_ctx_list);
8e1a2031
AB
4549 perf_event_groups_init(&ctx->pinned_groups);
4550 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4551 INIT_LIST_HEAD(&ctx->event_list);
6668128a
PZ
4552 INIT_LIST_HEAD(&ctx->pinned_active);
4553 INIT_LIST_HEAD(&ctx->flexible_active);
8c94abbb 4554 refcount_set(&ctx->refcount, 1);
eb184479
PZ
4555}
4556
4557static struct perf_event_context *
4558alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4559{
4560 struct perf_event_context *ctx;
4561
4562 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4563 if (!ctx)
4564 return NULL;
4565
4566 __perf_event_init_context(ctx);
7b3c92b8
MWO
4567 if (task)
4568 ctx->task = get_task_struct(task);
eb184479
PZ
4569 ctx->pmu = pmu;
4570
4571 return ctx;
a63eaf34
PM
4572}
4573
2ebd4ffb
MH
4574static struct task_struct *
4575find_lively_task_by_vpid(pid_t vpid)
4576{
4577 struct task_struct *task;
0793a61d
TG
4578
4579 rcu_read_lock();
2ebd4ffb 4580 if (!vpid)
0793a61d
TG
4581 task = current;
4582 else
2ebd4ffb 4583 task = find_task_by_vpid(vpid);
0793a61d
TG
4584 if (task)
4585 get_task_struct(task);
4586 rcu_read_unlock();
4587
4588 if (!task)
4589 return ERR_PTR(-ESRCH);
4590
2ebd4ffb 4591 return task;
2ebd4ffb
MH
4592}
4593
fe4b04fa
PZ
4594/*
4595 * Returns a matching context with refcount and pincount.
4596 */
108b02cf 4597static struct perf_event_context *
4af57ef2
YZ
4598find_get_context(struct pmu *pmu, struct task_struct *task,
4599 struct perf_event *event)
0793a61d 4600{
211de6eb 4601 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4602 struct perf_cpu_context *cpuctx;
4af57ef2 4603 void *task_ctx_data = NULL;
25346b93 4604 unsigned long flags;
8dc85d54 4605 int ctxn, err;
4af57ef2 4606 int cpu = event->cpu;
0793a61d 4607
22a4ec72 4608 if (!task) {
cdd6c482 4609 /* Must be root to operate on a CPU event: */
da97e184
JFG
4610 err = perf_allow_cpu(&event->attr);
4611 if (err)
4612 return ERR_PTR(err);
0793a61d 4613
108b02cf 4614 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 4615 ctx = &cpuctx->ctx;
c93f7669 4616 get_ctx(ctx);
fe4b04fa 4617 ++ctx->pin_count;
0793a61d 4618
0793a61d
TG
4619 return ctx;
4620 }
4621
8dc85d54
PZ
4622 err = -EINVAL;
4623 ctxn = pmu->task_ctx_nr;
4624 if (ctxn < 0)
4625 goto errout;
4626
4af57ef2 4627 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
ff9ff926 4628 task_ctx_data = alloc_task_ctx_data(pmu);
4af57ef2
YZ
4629 if (!task_ctx_data) {
4630 err = -ENOMEM;
4631 goto errout;
4632 }
4633 }
4634
9ed6060d 4635retry:
8dc85d54 4636 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 4637 if (ctx) {
211de6eb 4638 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4639 ++ctx->pin_count;
4af57ef2
YZ
4640
4641 if (task_ctx_data && !ctx->task_ctx_data) {
4642 ctx->task_ctx_data = task_ctx_data;
4643 task_ctx_data = NULL;
4644 }
e625cce1 4645 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4646
4647 if (clone_ctx)
4648 put_ctx(clone_ctx);
9137fb28 4649 } else {
eb184479 4650 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
4651 err = -ENOMEM;
4652 if (!ctx)
4653 goto errout;
eb184479 4654
4af57ef2
YZ
4655 if (task_ctx_data) {
4656 ctx->task_ctx_data = task_ctx_data;
4657 task_ctx_data = NULL;
4658 }
4659
dbe08d82
ON
4660 err = 0;
4661 mutex_lock(&task->perf_event_mutex);
4662 /*
4663 * If it has already passed perf_event_exit_task().
4664 * we must see PF_EXITING, it takes this mutex too.
4665 */
4666 if (task->flags & PF_EXITING)
4667 err = -ESRCH;
4668 else if (task->perf_event_ctxp[ctxn])
4669 err = -EAGAIN;
fe4b04fa 4670 else {
9137fb28 4671 get_ctx(ctx);
fe4b04fa 4672 ++ctx->pin_count;
dbe08d82 4673 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 4674 }
dbe08d82
ON
4675 mutex_unlock(&task->perf_event_mutex);
4676
4677 if (unlikely(err)) {
9137fb28 4678 put_ctx(ctx);
dbe08d82
ON
4679
4680 if (err == -EAGAIN)
4681 goto retry;
4682 goto errout;
a63eaf34
PM
4683 }
4684 }
4685
ff9ff926 4686 free_task_ctx_data(pmu, task_ctx_data);
0793a61d 4687 return ctx;
c93f7669 4688
9ed6060d 4689errout:
ff9ff926 4690 free_task_ctx_data(pmu, task_ctx_data);
c93f7669 4691 return ERR_PTR(err);
0793a61d
TG
4692}
4693
6fb2915d 4694static void perf_event_free_filter(struct perf_event *event);
2541517c 4695static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 4696
cdd6c482 4697static void free_event_rcu(struct rcu_head *head)
592903cd 4698{
cdd6c482 4699 struct perf_event *event;
592903cd 4700
cdd6c482
IM
4701 event = container_of(head, struct perf_event, rcu_head);
4702 if (event->ns)
4703 put_pid_ns(event->ns);
6fb2915d 4704 perf_event_free_filter(event);
bdacfaf2 4705 kmem_cache_free(perf_event_cache, event);
592903cd
PZ
4706}
4707
b69cf536 4708static void ring_buffer_attach(struct perf_event *event,
56de4e8f 4709 struct perf_buffer *rb);
925d519a 4710
f2fb6bef
KL
4711static void detach_sb_event(struct perf_event *event)
4712{
4713 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4714
4715 raw_spin_lock(&pel->lock);
4716 list_del_rcu(&event->sb_list);
4717 raw_spin_unlock(&pel->lock);
4718}
4719
a4f144eb 4720static bool is_sb_event(struct perf_event *event)
f2fb6bef 4721{
a4f144eb
DCC
4722 struct perf_event_attr *attr = &event->attr;
4723
f2fb6bef 4724 if (event->parent)
a4f144eb 4725 return false;
f2fb6bef
KL
4726
4727 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4728 return false;
f2fb6bef 4729
a4f144eb
DCC
4730 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4731 attr->comm || attr->comm_exec ||
76193a94 4732 attr->task || attr->ksymbol ||
e17d43b9 4733 attr->context_switch || attr->text_poke ||
21038f2b 4734 attr->bpf_event)
a4f144eb
DCC
4735 return true;
4736 return false;
4737}
4738
4739static void unaccount_pmu_sb_event(struct perf_event *event)
4740{
4741 if (is_sb_event(event))
4742 detach_sb_event(event);
f2fb6bef
KL
4743}
4744
4beb31f3 4745static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4746{
4beb31f3
FW
4747 if (event->parent)
4748 return;
4749
4beb31f3
FW
4750 if (is_cgroup_event(event))
4751 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4752}
925d519a 4753
555e0c1e
FW
4754#ifdef CONFIG_NO_HZ_FULL
4755static DEFINE_SPINLOCK(nr_freq_lock);
4756#endif
4757
4758static void unaccount_freq_event_nohz(void)
4759{
4760#ifdef CONFIG_NO_HZ_FULL
4761 spin_lock(&nr_freq_lock);
4762 if (atomic_dec_and_test(&nr_freq_events))
4763 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4764 spin_unlock(&nr_freq_lock);
4765#endif
4766}
4767
4768static void unaccount_freq_event(void)
4769{
4770 if (tick_nohz_full_enabled())
4771 unaccount_freq_event_nohz();
4772 else
4773 atomic_dec(&nr_freq_events);
4774}
4775
4beb31f3
FW
4776static void unaccount_event(struct perf_event *event)
4777{
25432ae9
PZ
4778 bool dec = false;
4779
4beb31f3
FW
4780 if (event->parent)
4781 return;
4782
a5398bff 4783 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
25432ae9 4784 dec = true;
4beb31f3
FW
4785 if (event->attr.mmap || event->attr.mmap_data)
4786 atomic_dec(&nr_mmap_events);
88a16a13
JO
4787 if (event->attr.build_id)
4788 atomic_dec(&nr_build_id_events);
4beb31f3
FW
4789 if (event->attr.comm)
4790 atomic_dec(&nr_comm_events);
e4222673
HB
4791 if (event->attr.namespaces)
4792 atomic_dec(&nr_namespaces_events);
96aaab68
NK
4793 if (event->attr.cgroup)
4794 atomic_dec(&nr_cgroup_events);
4beb31f3
FW
4795 if (event->attr.task)
4796 atomic_dec(&nr_task_events);
948b26b6 4797 if (event->attr.freq)
555e0c1e 4798 unaccount_freq_event();
45ac1403 4799 if (event->attr.context_switch) {
25432ae9 4800 dec = true;
45ac1403
AH
4801 atomic_dec(&nr_switch_events);
4802 }
4beb31f3 4803 if (is_cgroup_event(event))
25432ae9 4804 dec = true;
4beb31f3 4805 if (has_branch_stack(event))
25432ae9 4806 dec = true;
76193a94
SL
4807 if (event->attr.ksymbol)
4808 atomic_dec(&nr_ksymbol_events);
6ee52e2a
SL
4809 if (event->attr.bpf_event)
4810 atomic_dec(&nr_bpf_events);
e17d43b9
AH
4811 if (event->attr.text_poke)
4812 atomic_dec(&nr_text_poke_events);
25432ae9 4813
9107c89e
PZ
4814 if (dec) {
4815 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4816 schedule_delayed_work(&perf_sched_work, HZ);
4817 }
4beb31f3
FW
4818
4819 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4820
4821 unaccount_pmu_sb_event(event);
4beb31f3 4822}
925d519a 4823
9107c89e
PZ
4824static void perf_sched_delayed(struct work_struct *work)
4825{
4826 mutex_lock(&perf_sched_mutex);
4827 if (atomic_dec_and_test(&perf_sched_count))
4828 static_branch_disable(&perf_sched_events);
4829 mutex_unlock(&perf_sched_mutex);
4830}
4831
bed5b25a
AS
4832/*
4833 * The following implement mutual exclusion of events on "exclusive" pmus
4834 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4835 * at a time, so we disallow creating events that might conflict, namely:
4836 *
4837 * 1) cpu-wide events in the presence of per-task events,
4838 * 2) per-task events in the presence of cpu-wide events,
4839 * 3) two matching events on the same context.
4840 *
4841 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4842 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4843 */
4844static int exclusive_event_init(struct perf_event *event)
4845{
4846 struct pmu *pmu = event->pmu;
4847
8a58ddae 4848 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4849 return 0;
4850
4851 /*
4852 * Prevent co-existence of per-task and cpu-wide events on the
4853 * same exclusive pmu.
4854 *
4855 * Negative pmu::exclusive_cnt means there are cpu-wide
4856 * events on this "exclusive" pmu, positive means there are
4857 * per-task events.
4858 *
4859 * Since this is called in perf_event_alloc() path, event::ctx
4860 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4861 * to mean "per-task event", because unlike other attach states it
4862 * never gets cleared.
4863 */
4864 if (event->attach_state & PERF_ATTACH_TASK) {
4865 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4866 return -EBUSY;
4867 } else {
4868 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4869 return -EBUSY;
4870 }
4871
4872 return 0;
4873}
4874
4875static void exclusive_event_destroy(struct perf_event *event)
4876{
4877 struct pmu *pmu = event->pmu;
4878
8a58ddae 4879 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4880 return;
4881
4882 /* see comment in exclusive_event_init() */
4883 if (event->attach_state & PERF_ATTACH_TASK)
4884 atomic_dec(&pmu->exclusive_cnt);
4885 else
4886 atomic_inc(&pmu->exclusive_cnt);
4887}
4888
4889static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4890{
3bf6215a 4891 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4892 (e1->cpu == e2->cpu ||
4893 e1->cpu == -1 ||
4894 e2->cpu == -1))
4895 return true;
4896 return false;
4897}
4898
bed5b25a
AS
4899static bool exclusive_event_installable(struct perf_event *event,
4900 struct perf_event_context *ctx)
4901{
4902 struct perf_event *iter_event;
4903 struct pmu *pmu = event->pmu;
4904
8a58ddae
AS
4905 lockdep_assert_held(&ctx->mutex);
4906
4907 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4908 return true;
4909
4910 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4911 if (exclusive_event_match(iter_event, event))
4912 return false;
4913 }
4914
4915 return true;
4916}
4917
375637bc
AS
4918static void perf_addr_filters_splice(struct perf_event *event,
4919 struct list_head *head);
4920
683ede43 4921static void _free_event(struct perf_event *event)
f1600952 4922{
e360adbe 4923 irq_work_sync(&event->pending);
925d519a 4924
4beb31f3 4925 unaccount_event(event);
9ee318a7 4926
da97e184
JFG
4927 security_perf_event_free(event);
4928
76369139 4929 if (event->rb) {
9bb5d40c
PZ
4930 /*
4931 * Can happen when we close an event with re-directed output.
4932 *
4933 * Since we have a 0 refcount, perf_mmap_close() will skip
4934 * over us; possibly making our ring_buffer_put() the last.
4935 */
4936 mutex_lock(&event->mmap_mutex);
b69cf536 4937 ring_buffer_attach(event, NULL);
9bb5d40c 4938 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4939 }
4940
e5d1367f
SE
4941 if (is_cgroup_event(event))
4942 perf_detach_cgroup(event);
4943
a0733e69
PZ
4944 if (!event->parent) {
4945 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4946 put_callchain_buffers();
4947 }
4948
4949 perf_event_free_bpf_prog(event);
375637bc 4950 perf_addr_filters_splice(event, NULL);
c60f83b8 4951 kfree(event->addr_filter_ranges);
a0733e69
PZ
4952
4953 if (event->destroy)
4954 event->destroy(event);
4955
1cf8dfe8
PZ
4956 /*
4957 * Must be after ->destroy(), due to uprobe_perf_close() using
4958 * hw.target.
4959 */
621b6d2e
PB
4960 if (event->hw.target)
4961 put_task_struct(event->hw.target);
4962
1cf8dfe8
PZ
4963 /*
4964 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4965 * all task references must be cleaned up.
4966 */
4967 if (event->ctx)
4968 put_ctx(event->ctx);
4969
62a92c8f
AS
4970 exclusive_event_destroy(event);
4971 module_put(event->pmu->module);
a0733e69
PZ
4972
4973 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4974}
4975
683ede43
PZ
4976/*
4977 * Used to free events which have a known refcount of 1, such as in error paths
4978 * where the event isn't exposed yet and inherited events.
4979 */
4980static void free_event(struct perf_event *event)
0793a61d 4981{
683ede43
PZ
4982 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4983 "unexpected event refcount: %ld; ptr=%p\n",
4984 atomic_long_read(&event->refcount), event)) {
4985 /* leak to avoid use-after-free */
4986 return;
4987 }
0793a61d 4988
683ede43 4989 _free_event(event);
0793a61d
TG
4990}
4991
a66a3052 4992/*
f8697762 4993 * Remove user event from the owner task.
a66a3052 4994 */
f8697762 4995static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4996{
8882135b 4997 struct task_struct *owner;
fb0459d7 4998
8882135b 4999 rcu_read_lock();
8882135b 5000 /*
f47c02c0
PZ
5001 * Matches the smp_store_release() in perf_event_exit_task(). If we
5002 * observe !owner it means the list deletion is complete and we can
5003 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
5004 * owner->perf_event_mutex.
5005 */
506458ef 5006 owner = READ_ONCE(event->owner);
8882135b
PZ
5007 if (owner) {
5008 /*
5009 * Since delayed_put_task_struct() also drops the last
5010 * task reference we can safely take a new reference
5011 * while holding the rcu_read_lock().
5012 */
5013 get_task_struct(owner);
5014 }
5015 rcu_read_unlock();
5016
5017 if (owner) {
f63a8daa
PZ
5018 /*
5019 * If we're here through perf_event_exit_task() we're already
5020 * holding ctx->mutex which would be an inversion wrt. the
5021 * normal lock order.
5022 *
5023 * However we can safely take this lock because its the child
5024 * ctx->mutex.
5025 */
5026 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5027
8882135b
PZ
5028 /*
5029 * We have to re-check the event->owner field, if it is cleared
5030 * we raced with perf_event_exit_task(), acquiring the mutex
5031 * ensured they're done, and we can proceed with freeing the
5032 * event.
5033 */
f47c02c0 5034 if (event->owner) {
8882135b 5035 list_del_init(&event->owner_entry);
f47c02c0
PZ
5036 smp_store_release(&event->owner, NULL);
5037 }
8882135b
PZ
5038 mutex_unlock(&owner->perf_event_mutex);
5039 put_task_struct(owner);
5040 }
f8697762
JO
5041}
5042
f8697762
JO
5043static void put_event(struct perf_event *event)
5044{
f8697762
JO
5045 if (!atomic_long_dec_and_test(&event->refcount))
5046 return;
5047
c6e5b732
PZ
5048 _free_event(event);
5049}
5050
5051/*
5052 * Kill an event dead; while event:refcount will preserve the event
5053 * object, it will not preserve its functionality. Once the last 'user'
5054 * gives up the object, we'll destroy the thing.
5055 */
5056int perf_event_release_kernel(struct perf_event *event)
5057{
a4f4bb6d 5058 struct perf_event_context *ctx = event->ctx;
c6e5b732 5059 struct perf_event *child, *tmp;
82d94856 5060 LIST_HEAD(free_list);
c6e5b732 5061
a4f4bb6d
PZ
5062 /*
5063 * If we got here through err_file: fput(event_file); we will not have
5064 * attached to a context yet.
5065 */
5066 if (!ctx) {
5067 WARN_ON_ONCE(event->attach_state &
5068 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5069 goto no_ctx;
5070 }
5071
f8697762
JO
5072 if (!is_kernel_event(event))
5073 perf_remove_from_owner(event);
8882135b 5074
5fa7c8ec 5075 ctx = perf_event_ctx_lock(event);
a83fe28e 5076 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 5077 perf_remove_from_context(event, DETACH_GROUP);
683ede43 5078
a69b0ca4 5079 raw_spin_lock_irq(&ctx->lock);
683ede43 5080 /*
d8a8cfc7 5081 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 5082 * anymore.
683ede43 5083 *
a69b0ca4
PZ
5084 * Anybody acquiring event->child_mutex after the below loop _must_
5085 * also see this, most importantly inherit_event() which will avoid
5086 * placing more children on the list.
683ede43 5087 *
c6e5b732
PZ
5088 * Thus this guarantees that we will in fact observe and kill _ALL_
5089 * child events.
683ede43 5090 */
a69b0ca4
PZ
5091 event->state = PERF_EVENT_STATE_DEAD;
5092 raw_spin_unlock_irq(&ctx->lock);
5093
5094 perf_event_ctx_unlock(event, ctx);
683ede43 5095
c6e5b732
PZ
5096again:
5097 mutex_lock(&event->child_mutex);
5098 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 5099
c6e5b732
PZ
5100 /*
5101 * Cannot change, child events are not migrated, see the
5102 * comment with perf_event_ctx_lock_nested().
5103 */
506458ef 5104 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
5105 /*
5106 * Since child_mutex nests inside ctx::mutex, we must jump
5107 * through hoops. We start by grabbing a reference on the ctx.
5108 *
5109 * Since the event cannot get freed while we hold the
5110 * child_mutex, the context must also exist and have a !0
5111 * reference count.
5112 */
5113 get_ctx(ctx);
5114
5115 /*
5116 * Now that we have a ctx ref, we can drop child_mutex, and
5117 * acquire ctx::mutex without fear of it going away. Then we
5118 * can re-acquire child_mutex.
5119 */
5120 mutex_unlock(&event->child_mutex);
5121 mutex_lock(&ctx->mutex);
5122 mutex_lock(&event->child_mutex);
5123
5124 /*
5125 * Now that we hold ctx::mutex and child_mutex, revalidate our
5126 * state, if child is still the first entry, it didn't get freed
5127 * and we can continue doing so.
5128 */
5129 tmp = list_first_entry_or_null(&event->child_list,
5130 struct perf_event, child_list);
5131 if (tmp == child) {
5132 perf_remove_from_context(child, DETACH_GROUP);
82d94856 5133 list_move(&child->child_list, &free_list);
c6e5b732
PZ
5134 /*
5135 * This matches the refcount bump in inherit_event();
5136 * this can't be the last reference.
5137 */
5138 put_event(event);
5139 }
5140
5141 mutex_unlock(&event->child_mutex);
5142 mutex_unlock(&ctx->mutex);
5143 put_ctx(ctx);
5144 goto again;
5145 }
5146 mutex_unlock(&event->child_mutex);
5147
82d94856 5148 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
1cf8dfe8
PZ
5149 void *var = &child->ctx->refcount;
5150
82d94856
PZ
5151 list_del(&child->child_list);
5152 free_event(child);
1cf8dfe8
PZ
5153
5154 /*
5155 * Wake any perf_event_free_task() waiting for this event to be
5156 * freed.
5157 */
5158 smp_mb(); /* pairs with wait_var_event() */
5159 wake_up_var(var);
82d94856
PZ
5160 }
5161
a4f4bb6d
PZ
5162no_ctx:
5163 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
5164 return 0;
5165}
5166EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5167
8b10c5e2
PZ
5168/*
5169 * Called when the last reference to the file is gone.
5170 */
a6fa941d
AV
5171static int perf_release(struct inode *inode, struct file *file)
5172{
c6e5b732 5173 perf_event_release_kernel(file->private_data);
a6fa941d 5174 return 0;
fb0459d7 5175}
fb0459d7 5176
ca0dd44c 5177static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 5178{
cdd6c482 5179 struct perf_event *child;
e53c0994
PZ
5180 u64 total = 0;
5181
59ed446f
PZ
5182 *enabled = 0;
5183 *running = 0;
5184
6f10581a 5185 mutex_lock(&event->child_mutex);
01add3ea 5186
7d88962e 5187 (void)perf_event_read(event, false);
01add3ea
SB
5188 total += perf_event_count(event);
5189
59ed446f
PZ
5190 *enabled += event->total_time_enabled +
5191 atomic64_read(&event->child_total_time_enabled);
5192 *running += event->total_time_running +
5193 atomic64_read(&event->child_total_time_running);
5194
5195 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 5196 (void)perf_event_read(child, false);
01add3ea 5197 total += perf_event_count(child);
59ed446f
PZ
5198 *enabled += child->total_time_enabled;
5199 *running += child->total_time_running;
5200 }
6f10581a 5201 mutex_unlock(&event->child_mutex);
e53c0994
PZ
5202
5203 return total;
5204}
ca0dd44c
PZ
5205
5206u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5207{
5208 struct perf_event_context *ctx;
5209 u64 count;
5210
5211 ctx = perf_event_ctx_lock(event);
5212 count = __perf_event_read_value(event, enabled, running);
5213 perf_event_ctx_unlock(event, ctx);
5214
5215 return count;
5216}
fb0459d7 5217EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 5218
7d88962e 5219static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 5220 u64 read_format, u64 *values)
3dab77fb 5221{
2aeb1883 5222 struct perf_event_context *ctx = leader->ctx;
fa8c2693 5223 struct perf_event *sub;
2aeb1883 5224 unsigned long flags;
fa8c2693 5225 int n = 1; /* skip @nr */
7d88962e 5226 int ret;
f63a8daa 5227
7d88962e
SB
5228 ret = perf_event_read(leader, true);
5229 if (ret)
5230 return ret;
abf4868b 5231
a9cd8194
PZ
5232 raw_spin_lock_irqsave(&ctx->lock, flags);
5233
fa8c2693
PZ
5234 /*
5235 * Since we co-schedule groups, {enabled,running} times of siblings
5236 * will be identical to those of the leader, so we only publish one
5237 * set.
5238 */
5239 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5240 values[n++] += leader->total_time_enabled +
5241 atomic64_read(&leader->child_total_time_enabled);
5242 }
3dab77fb 5243
fa8c2693
PZ
5244 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5245 values[n++] += leader->total_time_running +
5246 atomic64_read(&leader->child_total_time_running);
5247 }
5248
5249 /*
5250 * Write {count,id} tuples for every sibling.
5251 */
5252 values[n++] += perf_event_count(leader);
abf4868b
PZ
5253 if (read_format & PERF_FORMAT_ID)
5254 values[n++] = primary_event_id(leader);
3dab77fb 5255
edb39592 5256 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
5257 values[n++] += perf_event_count(sub);
5258 if (read_format & PERF_FORMAT_ID)
5259 values[n++] = primary_event_id(sub);
5260 }
7d88962e 5261
2aeb1883 5262 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 5263 return 0;
fa8c2693 5264}
3dab77fb 5265
fa8c2693
PZ
5266static int perf_read_group(struct perf_event *event,
5267 u64 read_format, char __user *buf)
5268{
5269 struct perf_event *leader = event->group_leader, *child;
5270 struct perf_event_context *ctx = leader->ctx;
7d88962e 5271 int ret;
fa8c2693 5272 u64 *values;
3dab77fb 5273
fa8c2693 5274 lockdep_assert_held(&ctx->mutex);
3dab77fb 5275
fa8c2693
PZ
5276 values = kzalloc(event->read_size, GFP_KERNEL);
5277 if (!values)
5278 return -ENOMEM;
3dab77fb 5279
fa8c2693
PZ
5280 values[0] = 1 + leader->nr_siblings;
5281
5282 /*
5283 * By locking the child_mutex of the leader we effectively
5284 * lock the child list of all siblings.. XXX explain how.
5285 */
5286 mutex_lock(&leader->child_mutex);
abf4868b 5287
7d88962e
SB
5288 ret = __perf_read_group_add(leader, read_format, values);
5289 if (ret)
5290 goto unlock;
5291
5292 list_for_each_entry(child, &leader->child_list, child_list) {
5293 ret = __perf_read_group_add(child, read_format, values);
5294 if (ret)
5295 goto unlock;
5296 }
abf4868b 5297
fa8c2693 5298 mutex_unlock(&leader->child_mutex);
abf4868b 5299
7d88962e 5300 ret = event->read_size;
fa8c2693
PZ
5301 if (copy_to_user(buf, values, event->read_size))
5302 ret = -EFAULT;
7d88962e 5303 goto out;
fa8c2693 5304
7d88962e
SB
5305unlock:
5306 mutex_unlock(&leader->child_mutex);
5307out:
fa8c2693 5308 kfree(values);
abf4868b 5309 return ret;
3dab77fb
PZ
5310}
5311
b15f495b 5312static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
5313 u64 read_format, char __user *buf)
5314{
59ed446f 5315 u64 enabled, running;
3dab77fb
PZ
5316 u64 values[4];
5317 int n = 0;
5318
ca0dd44c 5319 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
5320 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5321 values[n++] = enabled;
5322 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5323 values[n++] = running;
3dab77fb 5324 if (read_format & PERF_FORMAT_ID)
cdd6c482 5325 values[n++] = primary_event_id(event);
3dab77fb
PZ
5326
5327 if (copy_to_user(buf, values, n * sizeof(u64)))
5328 return -EFAULT;
5329
5330 return n * sizeof(u64);
5331}
5332
dc633982
JO
5333static bool is_event_hup(struct perf_event *event)
5334{
5335 bool no_children;
5336
a69b0ca4 5337 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
5338 return false;
5339
5340 mutex_lock(&event->child_mutex);
5341 no_children = list_empty(&event->child_list);
5342 mutex_unlock(&event->child_mutex);
5343 return no_children;
5344}
5345
0793a61d 5346/*
cdd6c482 5347 * Read the performance event - simple non blocking version for now
0793a61d
TG
5348 */
5349static ssize_t
b15f495b 5350__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 5351{
cdd6c482 5352 u64 read_format = event->attr.read_format;
3dab77fb 5353 int ret;
0793a61d 5354
3b6f9e5c 5355 /*
788faab7 5356 * Return end-of-file for a read on an event that is in
3b6f9e5c
PM
5357 * error state (i.e. because it was pinned but it couldn't be
5358 * scheduled on to the CPU at some point).
5359 */
cdd6c482 5360 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
5361 return 0;
5362
c320c7b7 5363 if (count < event->read_size)
3dab77fb
PZ
5364 return -ENOSPC;
5365
cdd6c482 5366 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 5367 if (read_format & PERF_FORMAT_GROUP)
b15f495b 5368 ret = perf_read_group(event, read_format, buf);
3dab77fb 5369 else
b15f495b 5370 ret = perf_read_one(event, read_format, buf);
0793a61d 5371
3dab77fb 5372 return ret;
0793a61d
TG
5373}
5374
0793a61d
TG
5375static ssize_t
5376perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5377{
cdd6c482 5378 struct perf_event *event = file->private_data;
f63a8daa
PZ
5379 struct perf_event_context *ctx;
5380 int ret;
0793a61d 5381
da97e184
JFG
5382 ret = security_perf_event_read(event);
5383 if (ret)
5384 return ret;
5385
f63a8daa 5386 ctx = perf_event_ctx_lock(event);
b15f495b 5387 ret = __perf_read(event, buf, count);
f63a8daa
PZ
5388 perf_event_ctx_unlock(event, ctx);
5389
5390 return ret;
0793a61d
TG
5391}
5392
9dd95748 5393static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 5394{
cdd6c482 5395 struct perf_event *event = file->private_data;
56de4e8f 5396 struct perf_buffer *rb;
a9a08845 5397 __poll_t events = EPOLLHUP;
c7138f37 5398
e708d7ad 5399 poll_wait(file, &event->waitq, wait);
179033b3 5400
dc633982 5401 if (is_event_hup(event))
179033b3 5402 return events;
c7138f37 5403
10c6db11 5404 /*
9bb5d40c
PZ
5405 * Pin the event->rb by taking event->mmap_mutex; otherwise
5406 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
5407 */
5408 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
5409 rb = event->rb;
5410 if (rb)
76369139 5411 events = atomic_xchg(&rb->poll, 0);
10c6db11 5412 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
5413 return events;
5414}
5415
f63a8daa 5416static void _perf_event_reset(struct perf_event *event)
6de6a7b9 5417{
7d88962e 5418 (void)perf_event_read(event, false);
e7850595 5419 local64_set(&event->count, 0);
cdd6c482 5420 perf_event_update_userpage(event);
3df5edad
PZ
5421}
5422
52ba4b0b
LX
5423/* Assume it's not an event with inherit set. */
5424u64 perf_event_pause(struct perf_event *event, bool reset)
5425{
5426 struct perf_event_context *ctx;
5427 u64 count;
5428
5429 ctx = perf_event_ctx_lock(event);
5430 WARN_ON_ONCE(event->attr.inherit);
5431 _perf_event_disable(event);
5432 count = local64_read(&event->count);
5433 if (reset)
5434 local64_set(&event->count, 0);
5435 perf_event_ctx_unlock(event, ctx);
5436
5437 return count;
5438}
5439EXPORT_SYMBOL_GPL(perf_event_pause);
5440
c93f7669 5441/*
cdd6c482
IM
5442 * Holding the top-level event's child_mutex means that any
5443 * descendant process that has inherited this event will block
8ba289b8 5444 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 5445 * task existence requirements of perf_event_enable/disable.
c93f7669 5446 */
cdd6c482
IM
5447static void perf_event_for_each_child(struct perf_event *event,
5448 void (*func)(struct perf_event *))
3df5edad 5449{
cdd6c482 5450 struct perf_event *child;
3df5edad 5451
cdd6c482 5452 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 5453
cdd6c482
IM
5454 mutex_lock(&event->child_mutex);
5455 func(event);
5456 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 5457 func(child);
cdd6c482 5458 mutex_unlock(&event->child_mutex);
3df5edad
PZ
5459}
5460
cdd6c482
IM
5461static void perf_event_for_each(struct perf_event *event,
5462 void (*func)(struct perf_event *))
3df5edad 5463{
cdd6c482
IM
5464 struct perf_event_context *ctx = event->ctx;
5465 struct perf_event *sibling;
3df5edad 5466
f63a8daa
PZ
5467 lockdep_assert_held(&ctx->mutex);
5468
cdd6c482 5469 event = event->group_leader;
75f937f2 5470
cdd6c482 5471 perf_event_for_each_child(event, func);
edb39592 5472 for_each_sibling_event(sibling, event)
724b6daa 5473 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
5474}
5475
fae3fde6
PZ
5476static void __perf_event_period(struct perf_event *event,
5477 struct perf_cpu_context *cpuctx,
5478 struct perf_event_context *ctx,
5479 void *info)
c7999c6f 5480{
fae3fde6 5481 u64 value = *((u64 *)info);
c7999c6f 5482 bool active;
08247e31 5483
cdd6c482 5484 if (event->attr.freq) {
cdd6c482 5485 event->attr.sample_freq = value;
08247e31 5486 } else {
cdd6c482
IM
5487 event->attr.sample_period = value;
5488 event->hw.sample_period = value;
08247e31 5489 }
bad7192b
PZ
5490
5491 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5492 if (active) {
5493 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
5494 /*
5495 * We could be throttled; unthrottle now to avoid the tick
5496 * trying to unthrottle while we already re-started the event.
5497 */
5498 if (event->hw.interrupts == MAX_INTERRUPTS) {
5499 event->hw.interrupts = 0;
5500 perf_log_throttle(event, 1);
5501 }
bad7192b
PZ
5502 event->pmu->stop(event, PERF_EF_UPDATE);
5503 }
5504
5505 local64_set(&event->hw.period_left, 0);
5506
5507 if (active) {
5508 event->pmu->start(event, PERF_EF_RELOAD);
5509 perf_pmu_enable(ctx->pmu);
5510 }
c7999c6f
PZ
5511}
5512
81ec3f3c
JO
5513static int perf_event_check_period(struct perf_event *event, u64 value)
5514{
5515 return event->pmu->check_period(event, value);
5516}
5517
3ca270fc 5518static int _perf_event_period(struct perf_event *event, u64 value)
c7999c6f 5519{
c7999c6f
PZ
5520 if (!is_sampling_event(event))
5521 return -EINVAL;
5522
c7999c6f
PZ
5523 if (!value)
5524 return -EINVAL;
5525
5526 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5527 return -EINVAL;
5528
81ec3f3c
JO
5529 if (perf_event_check_period(event, value))
5530 return -EINVAL;
5531
913a90bc
RB
5532 if (!event->attr.freq && (value & (1ULL << 63)))
5533 return -EINVAL;
5534
fae3fde6 5535 event_function_call(event, __perf_event_period, &value);
08247e31 5536
c7999c6f 5537 return 0;
08247e31
PZ
5538}
5539
3ca270fc
LX
5540int perf_event_period(struct perf_event *event, u64 value)
5541{
5542 struct perf_event_context *ctx;
5543 int ret;
5544
5545 ctx = perf_event_ctx_lock(event);
5546 ret = _perf_event_period(event, value);
5547 perf_event_ctx_unlock(event, ctx);
5548
5549 return ret;
5550}
5551EXPORT_SYMBOL_GPL(perf_event_period);
5552
ac9721f3
PZ
5553static const struct file_operations perf_fops;
5554
2903ff01 5555static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 5556{
2903ff01
AV
5557 struct fd f = fdget(fd);
5558 if (!f.file)
5559 return -EBADF;
ac9721f3 5560
2903ff01
AV
5561 if (f.file->f_op != &perf_fops) {
5562 fdput(f);
5563 return -EBADF;
ac9721f3 5564 }
2903ff01
AV
5565 *p = f;
5566 return 0;
ac9721f3
PZ
5567}
5568
5569static int perf_event_set_output(struct perf_event *event,
5570 struct perf_event *output_event);
6fb2915d 5571static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 5572static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
32ff77e8
MC
5573static int perf_copy_attr(struct perf_event_attr __user *uattr,
5574 struct perf_event_attr *attr);
a4be7c27 5575
f63a8daa 5576static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5577{
cdd6c482 5578 void (*func)(struct perf_event *);
3df5edad 5579 u32 flags = arg;
d859e29f
PM
5580
5581 switch (cmd) {
cdd6c482 5582 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5583 func = _perf_event_enable;
d859e29f 5584 break;
cdd6c482 5585 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5586 func = _perf_event_disable;
79f14641 5587 break;
cdd6c482 5588 case PERF_EVENT_IOC_RESET:
f63a8daa 5589 func = _perf_event_reset;
6de6a7b9 5590 break;
3df5edad 5591
cdd6c482 5592 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5593 return _perf_event_refresh(event, arg);
08247e31 5594
cdd6c482 5595 case PERF_EVENT_IOC_PERIOD:
3ca270fc
LX
5596 {
5597 u64 value;
08247e31 5598
3ca270fc
LX
5599 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5600 return -EFAULT;
08247e31 5601
3ca270fc
LX
5602 return _perf_event_period(event, value);
5603 }
cf4957f1
JO
5604 case PERF_EVENT_IOC_ID:
5605 {
5606 u64 id = primary_event_id(event);
5607
5608 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5609 return -EFAULT;
5610 return 0;
5611 }
5612
cdd6c482 5613 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5614 {
ac9721f3 5615 int ret;
ac9721f3 5616 if (arg != -1) {
2903ff01
AV
5617 struct perf_event *output_event;
5618 struct fd output;
5619 ret = perf_fget_light(arg, &output);
5620 if (ret)
5621 return ret;
5622 output_event = output.file->private_data;
5623 ret = perf_event_set_output(event, output_event);
5624 fdput(output);
5625 } else {
5626 ret = perf_event_set_output(event, NULL);
ac9721f3 5627 }
ac9721f3
PZ
5628 return ret;
5629 }
a4be7c27 5630
6fb2915d
LZ
5631 case PERF_EVENT_IOC_SET_FILTER:
5632 return perf_event_set_filter(event, (void __user *)arg);
5633
2541517c
AS
5634 case PERF_EVENT_IOC_SET_BPF:
5635 return perf_event_set_bpf_prog(event, arg);
5636
86e7972f 5637 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
56de4e8f 5638 struct perf_buffer *rb;
86e7972f
WN
5639
5640 rcu_read_lock();
5641 rb = rcu_dereference(event->rb);
5642 if (!rb || !rb->nr_pages) {
5643 rcu_read_unlock();
5644 return -EINVAL;
5645 }
5646 rb_toggle_paused(rb, !!arg);
5647 rcu_read_unlock();
5648 return 0;
5649 }
f371b304
YS
5650
5651 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5652 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5653
5654 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5655 struct perf_event_attr new_attr;
5656 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5657 &new_attr);
5658
5659 if (err)
5660 return err;
5661
5662 return perf_event_modify_attr(event, &new_attr);
5663 }
d859e29f 5664 default:
3df5edad 5665 return -ENOTTY;
d859e29f 5666 }
3df5edad
PZ
5667
5668 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5669 perf_event_for_each(event, func);
3df5edad 5670 else
cdd6c482 5671 perf_event_for_each_child(event, func);
3df5edad
PZ
5672
5673 return 0;
d859e29f
PM
5674}
5675
f63a8daa
PZ
5676static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5677{
5678 struct perf_event *event = file->private_data;
5679 struct perf_event_context *ctx;
5680 long ret;
5681
da97e184
JFG
5682 /* Treat ioctl like writes as it is likely a mutating operation. */
5683 ret = security_perf_event_write(event);
5684 if (ret)
5685 return ret;
5686
f63a8daa
PZ
5687 ctx = perf_event_ctx_lock(event);
5688 ret = _perf_ioctl(event, cmd, arg);
5689 perf_event_ctx_unlock(event, ctx);
5690
5691 return ret;
5692}
5693
b3f20785
PM
5694#ifdef CONFIG_COMPAT
5695static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5696 unsigned long arg)
5697{
5698 switch (_IOC_NR(cmd)) {
5699 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5700 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
5701 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5702 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
5703 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5704 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5705 cmd &= ~IOCSIZE_MASK;
5706 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5707 }
5708 break;
5709 }
5710 return perf_ioctl(file, cmd, arg);
5711}
5712#else
5713# define perf_compat_ioctl NULL
5714#endif
5715
cdd6c482 5716int perf_event_task_enable(void)
771d7cde 5717{
f63a8daa 5718 struct perf_event_context *ctx;
cdd6c482 5719 struct perf_event *event;
771d7cde 5720
cdd6c482 5721 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5722 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5723 ctx = perf_event_ctx_lock(event);
5724 perf_event_for_each_child(event, _perf_event_enable);
5725 perf_event_ctx_unlock(event, ctx);
5726 }
cdd6c482 5727 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5728
5729 return 0;
5730}
5731
cdd6c482 5732int perf_event_task_disable(void)
771d7cde 5733{
f63a8daa 5734 struct perf_event_context *ctx;
cdd6c482 5735 struct perf_event *event;
771d7cde 5736
cdd6c482 5737 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5738 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5739 ctx = perf_event_ctx_lock(event);
5740 perf_event_for_each_child(event, _perf_event_disable);
5741 perf_event_ctx_unlock(event, ctx);
5742 }
cdd6c482 5743 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5744
5745 return 0;
5746}
5747
cdd6c482 5748static int perf_event_index(struct perf_event *event)
194002b2 5749{
a4eaf7f1
PZ
5750 if (event->hw.state & PERF_HES_STOPPED)
5751 return 0;
5752
cdd6c482 5753 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
5754 return 0;
5755
35edc2a5 5756 return event->pmu->event_idx(event);
194002b2
PZ
5757}
5758
c4794295 5759static void calc_timer_values(struct perf_event *event,
e3f3541c 5760 u64 *now,
7f310a5d
EM
5761 u64 *enabled,
5762 u64 *running)
c4794295 5763{
e3f3541c 5764 u64 ctx_time;
c4794295 5765
e3f3541c
PZ
5766 *now = perf_clock();
5767 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 5768 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
5769}
5770
fa731587
PZ
5771static void perf_event_init_userpage(struct perf_event *event)
5772{
5773 struct perf_event_mmap_page *userpg;
56de4e8f 5774 struct perf_buffer *rb;
fa731587
PZ
5775
5776 rcu_read_lock();
5777 rb = rcu_dereference(event->rb);
5778 if (!rb)
5779 goto unlock;
5780
5781 userpg = rb->user_page;
5782
5783 /* Allow new userspace to detect that bit 0 is deprecated */
5784 userpg->cap_bit0_is_deprecated = 1;
5785 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
5786 userpg->data_offset = PAGE_SIZE;
5787 userpg->data_size = perf_data_size(rb);
fa731587
PZ
5788
5789unlock:
5790 rcu_read_unlock();
5791}
5792
c1317ec2
AL
5793void __weak arch_perf_update_userpage(
5794 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
5795{
5796}
5797
38ff667b
PZ
5798/*
5799 * Callers need to ensure there can be no nesting of this function, otherwise
5800 * the seqlock logic goes bad. We can not serialize this because the arch
5801 * code calls this from NMI context.
5802 */
cdd6c482 5803void perf_event_update_userpage(struct perf_event *event)
37d81828 5804{
cdd6c482 5805 struct perf_event_mmap_page *userpg;
56de4e8f 5806 struct perf_buffer *rb;
e3f3541c 5807 u64 enabled, running, now;
38ff667b
PZ
5808
5809 rcu_read_lock();
5ec4c599
PZ
5810 rb = rcu_dereference(event->rb);
5811 if (!rb)
5812 goto unlock;
5813
0d641208
EM
5814 /*
5815 * compute total_time_enabled, total_time_running
5816 * based on snapshot values taken when the event
5817 * was last scheduled in.
5818 *
5819 * we cannot simply called update_context_time()
5820 * because of locking issue as we can be called in
5821 * NMI context
5822 */
e3f3541c 5823 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5824
76369139 5825 userpg = rb->user_page;
7b732a75 5826 /*
9d2dcc8f
MF
5827 * Disable preemption to guarantee consistent time stamps are stored to
5828 * the user page.
7b732a75
PZ
5829 */
5830 preempt_disable();
37d81828 5831 ++userpg->lock;
92f22a38 5832 barrier();
cdd6c482 5833 userpg->index = perf_event_index(event);
b5e58793 5834 userpg->offset = perf_event_count(event);
365a4038 5835 if (userpg->index)
e7850595 5836 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5837
0d641208 5838 userpg->time_enabled = enabled +
cdd6c482 5839 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5840
0d641208 5841 userpg->time_running = running +
cdd6c482 5842 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5843
c1317ec2 5844 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5845
92f22a38 5846 barrier();
37d81828 5847 ++userpg->lock;
7b732a75 5848 preempt_enable();
38ff667b 5849unlock:
7b732a75 5850 rcu_read_unlock();
37d81828 5851}
82975c46 5852EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 5853
9e3ed2d7 5854static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
906010b2 5855{
11bac800 5856 struct perf_event *event = vmf->vma->vm_file->private_data;
56de4e8f 5857 struct perf_buffer *rb;
9e3ed2d7 5858 vm_fault_t ret = VM_FAULT_SIGBUS;
906010b2
PZ
5859
5860 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5861 if (vmf->pgoff == 0)
5862 ret = 0;
5863 return ret;
5864 }
5865
5866 rcu_read_lock();
76369139
FW
5867 rb = rcu_dereference(event->rb);
5868 if (!rb)
906010b2
PZ
5869 goto unlock;
5870
5871 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5872 goto unlock;
5873
76369139 5874 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5875 if (!vmf->page)
5876 goto unlock;
5877
5878 get_page(vmf->page);
11bac800 5879 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5880 vmf->page->index = vmf->pgoff;
5881
5882 ret = 0;
5883unlock:
5884 rcu_read_unlock();
5885
5886 return ret;
5887}
5888
10c6db11 5889static void ring_buffer_attach(struct perf_event *event,
56de4e8f 5890 struct perf_buffer *rb)
10c6db11 5891{
56de4e8f 5892 struct perf_buffer *old_rb = NULL;
10c6db11
PZ
5893 unsigned long flags;
5894
b69cf536
PZ
5895 if (event->rb) {
5896 /*
5897 * Should be impossible, we set this when removing
5898 * event->rb_entry and wait/clear when adding event->rb_entry.
5899 */
5900 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5901
b69cf536 5902 old_rb = event->rb;
b69cf536
PZ
5903 spin_lock_irqsave(&old_rb->event_lock, flags);
5904 list_del_rcu(&event->rb_entry);
5905 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5906
2f993cf0
ON
5907 event->rcu_batches = get_state_synchronize_rcu();
5908 event->rcu_pending = 1;
b69cf536 5909 }
10c6db11 5910
b69cf536 5911 if (rb) {
2f993cf0
ON
5912 if (event->rcu_pending) {
5913 cond_synchronize_rcu(event->rcu_batches);
5914 event->rcu_pending = 0;
5915 }
5916
b69cf536
PZ
5917 spin_lock_irqsave(&rb->event_lock, flags);
5918 list_add_rcu(&event->rb_entry, &rb->event_list);
5919 spin_unlock_irqrestore(&rb->event_lock, flags);
5920 }
5921
767ae086
AS
5922 /*
5923 * Avoid racing with perf_mmap_close(AUX): stop the event
5924 * before swizzling the event::rb pointer; if it's getting
5925 * unmapped, its aux_mmap_count will be 0 and it won't
5926 * restart. See the comment in __perf_pmu_output_stop().
5927 *
5928 * Data will inevitably be lost when set_output is done in
5929 * mid-air, but then again, whoever does it like this is
5930 * not in for the data anyway.
5931 */
5932 if (has_aux(event))
5933 perf_event_stop(event, 0);
5934
b69cf536
PZ
5935 rcu_assign_pointer(event->rb, rb);
5936
5937 if (old_rb) {
5938 ring_buffer_put(old_rb);
5939 /*
5940 * Since we detached before setting the new rb, so that we
5941 * could attach the new rb, we could have missed a wakeup.
5942 * Provide it now.
5943 */
5944 wake_up_all(&event->waitq);
5945 }
10c6db11
PZ
5946}
5947
5948static void ring_buffer_wakeup(struct perf_event *event)
5949{
56de4e8f 5950 struct perf_buffer *rb;
10c6db11
PZ
5951
5952 rcu_read_lock();
5953 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5954 if (rb) {
5955 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5956 wake_up_all(&event->waitq);
5957 }
10c6db11
PZ
5958 rcu_read_unlock();
5959}
5960
56de4e8f 5961struct perf_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5962{
56de4e8f 5963 struct perf_buffer *rb;
7b732a75 5964
ac9721f3 5965 rcu_read_lock();
76369139
FW
5966 rb = rcu_dereference(event->rb);
5967 if (rb) {
fecb8ed2 5968 if (!refcount_inc_not_zero(&rb->refcount))
76369139 5969 rb = NULL;
ac9721f3
PZ
5970 }
5971 rcu_read_unlock();
5972
76369139 5973 return rb;
ac9721f3
PZ
5974}
5975
56de4e8f 5976void ring_buffer_put(struct perf_buffer *rb)
ac9721f3 5977{
fecb8ed2 5978 if (!refcount_dec_and_test(&rb->refcount))
ac9721f3 5979 return;
7b732a75 5980
9bb5d40c 5981 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5982
76369139 5983 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5984}
5985
5986static void perf_mmap_open(struct vm_area_struct *vma)
5987{
cdd6c482 5988 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5989
cdd6c482 5990 atomic_inc(&event->mmap_count);
9bb5d40c 5991 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5992
45bfb2e5
PZ
5993 if (vma->vm_pgoff)
5994 atomic_inc(&event->rb->aux_mmap_count);
5995
1e0fb9ec 5996 if (event->pmu->event_mapped)
bfe33492 5997 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5998}
5999
95ff4ca2
AS
6000static void perf_pmu_output_stop(struct perf_event *event);
6001
9bb5d40c
PZ
6002/*
6003 * A buffer can be mmap()ed multiple times; either directly through the same
6004 * event, or through other events by use of perf_event_set_output().
6005 *
6006 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6007 * the buffer here, where we still have a VM context. This means we need
6008 * to detach all events redirecting to us.
6009 */
7b732a75
PZ
6010static void perf_mmap_close(struct vm_area_struct *vma)
6011{
cdd6c482 6012 struct perf_event *event = vma->vm_file->private_data;
56de4e8f 6013 struct perf_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
6014 struct user_struct *mmap_user = rb->mmap_user;
6015 int mmap_locked = rb->mmap_locked;
6016 unsigned long size = perf_data_size(rb);
f91072ed 6017 bool detach_rest = false;
789f90fc 6018
1e0fb9ec 6019 if (event->pmu->event_unmapped)
bfe33492 6020 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 6021
45bfb2e5
PZ
6022 /*
6023 * rb->aux_mmap_count will always drop before rb->mmap_count and
6024 * event->mmap_count, so it is ok to use event->mmap_mutex to
6025 * serialize with perf_mmap here.
6026 */
6027 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6028 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
6029 /*
6030 * Stop all AUX events that are writing to this buffer,
6031 * so that we can free its AUX pages and corresponding PMU
6032 * data. Note that after rb::aux_mmap_count dropped to zero,
6033 * they won't start any more (see perf_aux_output_begin()).
6034 */
6035 perf_pmu_output_stop(event);
6036
6037 /* now it's safe to free the pages */
36b3db03
AS
6038 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6039 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
45bfb2e5 6040
95ff4ca2 6041 /* this has to be the last one */
45bfb2e5 6042 rb_free_aux(rb);
ca3bb3d0 6043 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
95ff4ca2 6044
45bfb2e5
PZ
6045 mutex_unlock(&event->mmap_mutex);
6046 }
6047
f91072ed
JO
6048 if (atomic_dec_and_test(&rb->mmap_count))
6049 detach_rest = true;
9bb5d40c
PZ
6050
6051 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 6052 goto out_put;
9bb5d40c 6053
b69cf536 6054 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
6055 mutex_unlock(&event->mmap_mutex);
6056
6057 /* If there's still other mmap()s of this buffer, we're done. */
f91072ed 6058 if (!detach_rest)
b69cf536 6059 goto out_put;
ac9721f3 6060
9bb5d40c
PZ
6061 /*
6062 * No other mmap()s, detach from all other events that might redirect
6063 * into the now unreachable buffer. Somewhat complicated by the
6064 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6065 */
6066again:
6067 rcu_read_lock();
6068 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6069 if (!atomic_long_inc_not_zero(&event->refcount)) {
6070 /*
6071 * This event is en-route to free_event() which will
6072 * detach it and remove it from the list.
6073 */
6074 continue;
6075 }
6076 rcu_read_unlock();
789f90fc 6077
9bb5d40c
PZ
6078 mutex_lock(&event->mmap_mutex);
6079 /*
6080 * Check we didn't race with perf_event_set_output() which can
6081 * swizzle the rb from under us while we were waiting to
6082 * acquire mmap_mutex.
6083 *
6084 * If we find a different rb; ignore this event, a next
6085 * iteration will no longer find it on the list. We have to
6086 * still restart the iteration to make sure we're not now
6087 * iterating the wrong list.
6088 */
b69cf536
PZ
6089 if (event->rb == rb)
6090 ring_buffer_attach(event, NULL);
6091
cdd6c482 6092 mutex_unlock(&event->mmap_mutex);
9bb5d40c 6093 put_event(event);
ac9721f3 6094
9bb5d40c
PZ
6095 /*
6096 * Restart the iteration; either we're on the wrong list or
6097 * destroyed its integrity by doing a deletion.
6098 */
6099 goto again;
7b732a75 6100 }
9bb5d40c
PZ
6101 rcu_read_unlock();
6102
6103 /*
6104 * It could be there's still a few 0-ref events on the list; they'll
6105 * get cleaned up by free_event() -- they'll also still have their
6106 * ref on the rb and will free it whenever they are done with it.
6107 *
6108 * Aside from that, this buffer is 'fully' detached and unmapped,
6109 * undo the VM accounting.
6110 */
6111
d44248a4
SL
6112 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6113 &mmap_user->locked_vm);
70f8a3ca 6114 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
9bb5d40c
PZ
6115 free_uid(mmap_user);
6116
b69cf536 6117out_put:
9bb5d40c 6118 ring_buffer_put(rb); /* could be last */
37d81828
PM
6119}
6120
f0f37e2f 6121static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 6122 .open = perf_mmap_open,
fca0c116 6123 .close = perf_mmap_close, /* non mergeable */
43a21ea8
PZ
6124 .fault = perf_mmap_fault,
6125 .page_mkwrite = perf_mmap_fault,
37d81828
PM
6126};
6127
6128static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6129{
cdd6c482 6130 struct perf_event *event = file->private_data;
22a4f650 6131 unsigned long user_locked, user_lock_limit;
789f90fc 6132 struct user_struct *user = current_user();
56de4e8f 6133 struct perf_buffer *rb = NULL;
22a4f650 6134 unsigned long locked, lock_limit;
7b732a75
PZ
6135 unsigned long vma_size;
6136 unsigned long nr_pages;
45bfb2e5 6137 long user_extra = 0, extra = 0;
d57e34fd 6138 int ret = 0, flags = 0;
37d81828 6139
c7920614
PZ
6140 /*
6141 * Don't allow mmap() of inherited per-task counters. This would
6142 * create a performance issue due to all children writing to the
76369139 6143 * same rb.
c7920614
PZ
6144 */
6145 if (event->cpu == -1 && event->attr.inherit)
6146 return -EINVAL;
6147
43a21ea8 6148 if (!(vma->vm_flags & VM_SHARED))
37d81828 6149 return -EINVAL;
7b732a75 6150
da97e184
JFG
6151 ret = security_perf_event_read(event);
6152 if (ret)
6153 return ret;
6154
7b732a75 6155 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
6156
6157 if (vma->vm_pgoff == 0) {
6158 nr_pages = (vma_size / PAGE_SIZE) - 1;
6159 } else {
6160 /*
6161 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6162 * mapped, all subsequent mappings should have the same size
6163 * and offset. Must be above the normal perf buffer.
6164 */
6165 u64 aux_offset, aux_size;
6166
6167 if (!event->rb)
6168 return -EINVAL;
6169
6170 nr_pages = vma_size / PAGE_SIZE;
6171
6172 mutex_lock(&event->mmap_mutex);
6173 ret = -EINVAL;
6174
6175 rb = event->rb;
6176 if (!rb)
6177 goto aux_unlock;
6178
6aa7de05
MR
6179 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6180 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
6181
6182 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6183 goto aux_unlock;
6184
6185 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6186 goto aux_unlock;
6187
6188 /* already mapped with a different offset */
6189 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6190 goto aux_unlock;
6191
6192 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6193 goto aux_unlock;
6194
6195 /* already mapped with a different size */
6196 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6197 goto aux_unlock;
6198
6199 if (!is_power_of_2(nr_pages))
6200 goto aux_unlock;
6201
6202 if (!atomic_inc_not_zero(&rb->mmap_count))
6203 goto aux_unlock;
6204
6205 if (rb_has_aux(rb)) {
6206 atomic_inc(&rb->aux_mmap_count);
6207 ret = 0;
6208 goto unlock;
6209 }
6210
6211 atomic_set(&rb->aux_mmap_count, 1);
6212 user_extra = nr_pages;
6213
6214 goto accounting;
6215 }
7b732a75 6216
7730d865 6217 /*
76369139 6218 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
6219 * can do bitmasks instead of modulo.
6220 */
2ed11312 6221 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
6222 return -EINVAL;
6223
7b732a75 6224 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
6225 return -EINVAL;
6226
cdd6c482 6227 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 6228again:
cdd6c482 6229 mutex_lock(&event->mmap_mutex);
76369139 6230 if (event->rb) {
9bb5d40c 6231 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 6232 ret = -EINVAL;
9bb5d40c
PZ
6233 goto unlock;
6234 }
6235
6236 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6237 /*
6238 * Raced against perf_mmap_close() through
6239 * perf_event_set_output(). Try again, hope for better
6240 * luck.
6241 */
6242 mutex_unlock(&event->mmap_mutex);
6243 goto again;
6244 }
6245
ebb3c4c4
PZ
6246 goto unlock;
6247 }
6248
789f90fc 6249 user_extra = nr_pages + 1;
45bfb2e5
PZ
6250
6251accounting:
cdd6c482 6252 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
6253
6254 /*
6255 * Increase the limit linearly with more CPUs:
6256 */
6257 user_lock_limit *= num_online_cpus();
6258
00346155
SL
6259 user_locked = atomic_long_read(&user->locked_vm);
6260
6261 /*
6262 * sysctl_perf_event_mlock may have changed, so that
6263 * user->locked_vm > user_lock_limit
6264 */
6265 if (user_locked > user_lock_limit)
6266 user_locked = user_lock_limit;
6267 user_locked += user_extra;
c5078f78 6268
c4b75479 6269 if (user_locked > user_lock_limit) {
d44248a4
SL
6270 /*
6271 * charge locked_vm until it hits user_lock_limit;
6272 * charge the rest from pinned_vm
6273 */
789f90fc 6274 extra = user_locked - user_lock_limit;
d44248a4
SL
6275 user_extra -= extra;
6276 }
7b732a75 6277
78d7d407 6278 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 6279 lock_limit >>= PAGE_SHIFT;
70f8a3ca 6280 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
7b732a75 6281
da97e184 6282 if ((locked > lock_limit) && perf_is_paranoid() &&
459ec28a 6283 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
6284 ret = -EPERM;
6285 goto unlock;
6286 }
7b732a75 6287
45bfb2e5 6288 WARN_ON(!rb && event->rb);
906010b2 6289
d57e34fd 6290 if (vma->vm_flags & VM_WRITE)
76369139 6291 flags |= RING_BUFFER_WRITABLE;
d57e34fd 6292
76369139 6293 if (!rb) {
45bfb2e5
PZ
6294 rb = rb_alloc(nr_pages,
6295 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6296 event->cpu, flags);
26cb63ad 6297
45bfb2e5
PZ
6298 if (!rb) {
6299 ret = -ENOMEM;
6300 goto unlock;
6301 }
43a21ea8 6302
45bfb2e5
PZ
6303 atomic_set(&rb->mmap_count, 1);
6304 rb->mmap_user = get_current_user();
6305 rb->mmap_locked = extra;
26cb63ad 6306
45bfb2e5 6307 ring_buffer_attach(event, rb);
ac9721f3 6308
45bfb2e5
PZ
6309 perf_event_init_userpage(event);
6310 perf_event_update_userpage(event);
6311 } else {
1a594131
AS
6312 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6313 event->attr.aux_watermark, flags);
45bfb2e5
PZ
6314 if (!ret)
6315 rb->aux_mmap_locked = extra;
6316 }
9a0f05cb 6317
ebb3c4c4 6318unlock:
45bfb2e5
PZ
6319 if (!ret) {
6320 atomic_long_add(user_extra, &user->locked_vm);
70f8a3ca 6321 atomic64_add(extra, &vma->vm_mm->pinned_vm);
45bfb2e5 6322
ac9721f3 6323 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
6324 } else if (rb) {
6325 atomic_dec(&rb->mmap_count);
6326 }
6327aux_unlock:
cdd6c482 6328 mutex_unlock(&event->mmap_mutex);
37d81828 6329
9bb5d40c
PZ
6330 /*
6331 * Since pinned accounting is per vm we cannot allow fork() to copy our
6332 * vma.
6333 */
26cb63ad 6334 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 6335 vma->vm_ops = &perf_mmap_vmops;
7b732a75 6336
1e0fb9ec 6337 if (event->pmu->event_mapped)
bfe33492 6338 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 6339
7b732a75 6340 return ret;
37d81828
PM
6341}
6342
3c446b3d
PZ
6343static int perf_fasync(int fd, struct file *filp, int on)
6344{
496ad9aa 6345 struct inode *inode = file_inode(filp);
cdd6c482 6346 struct perf_event *event = filp->private_data;
3c446b3d
PZ
6347 int retval;
6348
5955102c 6349 inode_lock(inode);
cdd6c482 6350 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 6351 inode_unlock(inode);
3c446b3d
PZ
6352
6353 if (retval < 0)
6354 return retval;
6355
6356 return 0;
6357}
6358
0793a61d 6359static const struct file_operations perf_fops = {
3326c1ce 6360 .llseek = no_llseek,
0793a61d
TG
6361 .release = perf_release,
6362 .read = perf_read,
6363 .poll = perf_poll,
d859e29f 6364 .unlocked_ioctl = perf_ioctl,
b3f20785 6365 .compat_ioctl = perf_compat_ioctl,
37d81828 6366 .mmap = perf_mmap,
3c446b3d 6367 .fasync = perf_fasync,
0793a61d
TG
6368};
6369
925d519a 6370/*
cdd6c482 6371 * Perf event wakeup
925d519a
PZ
6372 *
6373 * If there's data, ensure we set the poll() state and publish everything
6374 * to user-space before waking everybody up.
6375 */
6376
fed66e2c
PZ
6377static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6378{
6379 /* only the parent has fasync state */
6380 if (event->parent)
6381 event = event->parent;
6382 return &event->fasync;
6383}
6384
cdd6c482 6385void perf_event_wakeup(struct perf_event *event)
925d519a 6386{
10c6db11 6387 ring_buffer_wakeup(event);
4c9e2542 6388
cdd6c482 6389 if (event->pending_kill) {
fed66e2c 6390 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 6391 event->pending_kill = 0;
4c9e2542 6392 }
925d519a
PZ
6393}
6394
97ba62b2
ME
6395static void perf_sigtrap(struct perf_event *event)
6396{
6397 struct kernel_siginfo info;
6398
6399 /*
6400 * We'd expect this to only occur if the irq_work is delayed and either
6401 * ctx->task or current has changed in the meantime. This can be the
6402 * case on architectures that do not implement arch_irq_work_raise().
6403 */
6404 if (WARN_ON_ONCE(event->ctx->task != current))
6405 return;
6406
6407 /*
6408 * perf_pending_event() can race with the task exiting.
6409 */
6410 if (current->flags & PF_EXITING)
6411 return;
6412
6413 clear_siginfo(&info);
6414 info.si_signo = SIGTRAP;
6415 info.si_code = TRAP_PERF;
6416 info.si_errno = event->attr.type;
6417 info.si_perf = event->attr.sig_data;
6418 info.si_addr = (void __user *)event->pending_addr;
6419 force_sig_info(&info);
6420}
6421
1d54ad94
PZ
6422static void perf_pending_event_disable(struct perf_event *event)
6423{
6424 int cpu = READ_ONCE(event->pending_disable);
6425
6426 if (cpu < 0)
6427 return;
6428
6429 if (cpu == smp_processor_id()) {
6430 WRITE_ONCE(event->pending_disable, -1);
97ba62b2
ME
6431
6432 if (event->attr.sigtrap) {
6433 perf_sigtrap(event);
6434 atomic_set_release(&event->event_limit, 1); /* rearm event */
6435 return;
6436 }
6437
1d54ad94
PZ
6438 perf_event_disable_local(event);
6439 return;
6440 }
6441
6442 /*
6443 * CPU-A CPU-B
6444 *
6445 * perf_event_disable_inatomic()
6446 * @pending_disable = CPU-A;
6447 * irq_work_queue();
6448 *
6449 * sched-out
6450 * @pending_disable = -1;
6451 *
6452 * sched-in
6453 * perf_event_disable_inatomic()
6454 * @pending_disable = CPU-B;
6455 * irq_work_queue(); // FAILS
6456 *
6457 * irq_work_run()
6458 * perf_pending_event()
6459 *
6460 * But the event runs on CPU-B and wants disabling there.
6461 */
6462 irq_work_queue_on(&event->pending, cpu);
6463}
6464
e360adbe 6465static void perf_pending_event(struct irq_work *entry)
79f14641 6466{
1d54ad94 6467 struct perf_event *event = container_of(entry, struct perf_event, pending);
d525211f
PZ
6468 int rctx;
6469
6470 rctx = perf_swevent_get_recursion_context();
6471 /*
6472 * If we 'fail' here, that's OK, it means recursion is already disabled
6473 * and we won't recurse 'further'.
6474 */
79f14641 6475
1d54ad94 6476 perf_pending_event_disable(event);
79f14641 6477
cdd6c482
IM
6478 if (event->pending_wakeup) {
6479 event->pending_wakeup = 0;
6480 perf_event_wakeup(event);
79f14641 6481 }
d525211f
PZ
6482
6483 if (rctx >= 0)
6484 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
6485}
6486
39447b38
ZY
6487/*
6488 * We assume there is only KVM supporting the callbacks.
6489 * Later on, we might change it to a list if there is
6490 * another virtualization implementation supporting the callbacks.
6491 */
6492struct perf_guest_info_callbacks *perf_guest_cbs;
6493
6494int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6495{
6496 perf_guest_cbs = cbs;
6497 return 0;
6498}
6499EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6500
6501int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6502{
6503 perf_guest_cbs = NULL;
6504 return 0;
6505}
6506EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6507
4018994f
JO
6508static void
6509perf_output_sample_regs(struct perf_output_handle *handle,
6510 struct pt_regs *regs, u64 mask)
6511{
6512 int bit;
29dd3288 6513 DECLARE_BITMAP(_mask, 64);
4018994f 6514
29dd3288
MS
6515 bitmap_from_u64(_mask, mask);
6516 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
6517 u64 val;
6518
6519 val = perf_reg_value(regs, bit);
6520 perf_output_put(handle, val);
6521 }
6522}
6523
60e2364e 6524static void perf_sample_regs_user(struct perf_regs *regs_user,
76a4efa8 6525 struct pt_regs *regs)
4018994f 6526{
88a7c26a
AL
6527 if (user_mode(regs)) {
6528 regs_user->abi = perf_reg_abi(current);
2565711f 6529 regs_user->regs = regs;
085ebfe9 6530 } else if (!(current->flags & PF_KTHREAD)) {
76a4efa8 6531 perf_get_regs_user(regs_user, regs);
2565711f
PZ
6532 } else {
6533 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6534 regs_user->regs = NULL;
4018994f
JO
6535 }
6536}
6537
60e2364e
SE
6538static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6539 struct pt_regs *regs)
6540{
6541 regs_intr->regs = regs;
6542 regs_intr->abi = perf_reg_abi(current);
6543}
6544
6545
c5ebcedb
JO
6546/*
6547 * Get remaining task size from user stack pointer.
6548 *
6549 * It'd be better to take stack vma map and limit this more
9f014e3a 6550 * precisely, but there's no way to get it safely under interrupt,
c5ebcedb
JO
6551 * so using TASK_SIZE as limit.
6552 */
6553static u64 perf_ustack_task_size(struct pt_regs *regs)
6554{
6555 unsigned long addr = perf_user_stack_pointer(regs);
6556
6557 if (!addr || addr >= TASK_SIZE)
6558 return 0;
6559
6560 return TASK_SIZE - addr;
6561}
6562
6563static u16
6564perf_sample_ustack_size(u16 stack_size, u16 header_size,
6565 struct pt_regs *regs)
6566{
6567 u64 task_size;
6568
6569 /* No regs, no stack pointer, no dump. */
6570 if (!regs)
6571 return 0;
6572
6573 /*
6574 * Check if we fit in with the requested stack size into the:
6575 * - TASK_SIZE
6576 * If we don't, we limit the size to the TASK_SIZE.
6577 *
6578 * - remaining sample size
6579 * If we don't, we customize the stack size to
6580 * fit in to the remaining sample size.
6581 */
6582
6583 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6584 stack_size = min(stack_size, (u16) task_size);
6585
6586 /* Current header size plus static size and dynamic size. */
6587 header_size += 2 * sizeof(u64);
6588
6589 /* Do we fit in with the current stack dump size? */
6590 if ((u16) (header_size + stack_size) < header_size) {
6591 /*
6592 * If we overflow the maximum size for the sample,
6593 * we customize the stack dump size to fit in.
6594 */
6595 stack_size = USHRT_MAX - header_size - sizeof(u64);
6596 stack_size = round_up(stack_size, sizeof(u64));
6597 }
6598
6599 return stack_size;
6600}
6601
6602static void
6603perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6604 struct pt_regs *regs)
6605{
6606 /* Case of a kernel thread, nothing to dump */
6607 if (!regs) {
6608 u64 size = 0;
6609 perf_output_put(handle, size);
6610 } else {
6611 unsigned long sp;
6612 unsigned int rem;
6613 u64 dyn_size;
02e18447 6614 mm_segment_t fs;
c5ebcedb
JO
6615
6616 /*
6617 * We dump:
6618 * static size
6619 * - the size requested by user or the best one we can fit
6620 * in to the sample max size
6621 * data
6622 * - user stack dump data
6623 * dynamic size
6624 * - the actual dumped size
6625 */
6626
6627 /* Static size. */
6628 perf_output_put(handle, dump_size);
6629
6630 /* Data. */
6631 sp = perf_user_stack_pointer(regs);
3d13f313 6632 fs = force_uaccess_begin();
c5ebcedb 6633 rem = __output_copy_user(handle, (void *) sp, dump_size);
3d13f313 6634 force_uaccess_end(fs);
c5ebcedb
JO
6635 dyn_size = dump_size - rem;
6636
6637 perf_output_skip(handle, rem);
6638
6639 /* Dynamic size. */
6640 perf_output_put(handle, dyn_size);
6641 }
6642}
6643
a4faf00d
AS
6644static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6645 struct perf_sample_data *data,
6646 size_t size)
6647{
6648 struct perf_event *sampler = event->aux_event;
56de4e8f 6649 struct perf_buffer *rb;
a4faf00d
AS
6650
6651 data->aux_size = 0;
6652
6653 if (!sampler)
6654 goto out;
6655
6656 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6657 goto out;
6658
6659 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6660 goto out;
6661
6662 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6663 if (!rb)
6664 goto out;
6665
6666 /*
6667 * If this is an NMI hit inside sampling code, don't take
6668 * the sample. See also perf_aux_sample_output().
6669 */
6670 if (READ_ONCE(rb->aux_in_sampling)) {
6671 data->aux_size = 0;
6672 } else {
6673 size = min_t(size_t, size, perf_aux_size(rb));
6674 data->aux_size = ALIGN(size, sizeof(u64));
6675 }
6676 ring_buffer_put(rb);
6677
6678out:
6679 return data->aux_size;
6680}
6681
56de4e8f 6682long perf_pmu_snapshot_aux(struct perf_buffer *rb,
a4faf00d
AS
6683 struct perf_event *event,
6684 struct perf_output_handle *handle,
6685 unsigned long size)
6686{
6687 unsigned long flags;
6688 long ret;
6689
6690 /*
6691 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6692 * paths. If we start calling them in NMI context, they may race with
6693 * the IRQ ones, that is, for example, re-starting an event that's just
6694 * been stopped, which is why we're using a separate callback that
6695 * doesn't change the event state.
6696 *
6697 * IRQs need to be disabled to prevent IPIs from racing with us.
6698 */
6699 local_irq_save(flags);
6700 /*
6701 * Guard against NMI hits inside the critical section;
6702 * see also perf_prepare_sample_aux().
6703 */
6704 WRITE_ONCE(rb->aux_in_sampling, 1);
6705 barrier();
6706
6707 ret = event->pmu->snapshot_aux(event, handle, size);
6708
6709 barrier();
6710 WRITE_ONCE(rb->aux_in_sampling, 0);
6711 local_irq_restore(flags);
6712
6713 return ret;
6714}
6715
6716static void perf_aux_sample_output(struct perf_event *event,
6717 struct perf_output_handle *handle,
6718 struct perf_sample_data *data)
6719{
6720 struct perf_event *sampler = event->aux_event;
56de4e8f 6721 struct perf_buffer *rb;
a4faf00d 6722 unsigned long pad;
a4faf00d
AS
6723 long size;
6724
6725 if (WARN_ON_ONCE(!sampler || !data->aux_size))
6726 return;
6727
6728 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6729 if (!rb)
6730 return;
6731
6732 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6733
6734 /*
6735 * An error here means that perf_output_copy() failed (returned a
6736 * non-zero surplus that it didn't copy), which in its current
6737 * enlightened implementation is not possible. If that changes, we'd
6738 * like to know.
6739 */
6740 if (WARN_ON_ONCE(size < 0))
6741 goto out_put;
6742
6743 /*
6744 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6745 * perf_prepare_sample_aux(), so should not be more than that.
6746 */
6747 pad = data->aux_size - size;
6748 if (WARN_ON_ONCE(pad >= sizeof(u64)))
6749 pad = 8;
6750
6751 if (pad) {
6752 u64 zero = 0;
6753 perf_output_copy(handle, &zero, pad);
6754 }
6755
6756out_put:
6757 ring_buffer_put(rb);
6758}
6759
c980d109
ACM
6760static void __perf_event_header__init_id(struct perf_event_header *header,
6761 struct perf_sample_data *data,
6762 struct perf_event *event)
6844c09d
ACM
6763{
6764 u64 sample_type = event->attr.sample_type;
6765
6766 data->type = sample_type;
6767 header->size += event->id_header_size;
6768
6769 if (sample_type & PERF_SAMPLE_TID) {
6770 /* namespace issues */
6771 data->tid_entry.pid = perf_event_pid(event, current);
6772 data->tid_entry.tid = perf_event_tid(event, current);
6773 }
6774
6775 if (sample_type & PERF_SAMPLE_TIME)
34f43927 6776 data->time = perf_event_clock(event);
6844c09d 6777
ff3d527c 6778 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
6779 data->id = primary_event_id(event);
6780
6781 if (sample_type & PERF_SAMPLE_STREAM_ID)
6782 data->stream_id = event->id;
6783
6784 if (sample_type & PERF_SAMPLE_CPU) {
6785 data->cpu_entry.cpu = raw_smp_processor_id();
6786 data->cpu_entry.reserved = 0;
6787 }
6788}
6789
76369139
FW
6790void perf_event_header__init_id(struct perf_event_header *header,
6791 struct perf_sample_data *data,
6792 struct perf_event *event)
c980d109
ACM
6793{
6794 if (event->attr.sample_id_all)
6795 __perf_event_header__init_id(header, data, event);
6796}
6797
6798static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6799 struct perf_sample_data *data)
6800{
6801 u64 sample_type = data->type;
6802
6803 if (sample_type & PERF_SAMPLE_TID)
6804 perf_output_put(handle, data->tid_entry);
6805
6806 if (sample_type & PERF_SAMPLE_TIME)
6807 perf_output_put(handle, data->time);
6808
6809 if (sample_type & PERF_SAMPLE_ID)
6810 perf_output_put(handle, data->id);
6811
6812 if (sample_type & PERF_SAMPLE_STREAM_ID)
6813 perf_output_put(handle, data->stream_id);
6814
6815 if (sample_type & PERF_SAMPLE_CPU)
6816 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
6817
6818 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6819 perf_output_put(handle, data->id);
c980d109
ACM
6820}
6821
76369139
FW
6822void perf_event__output_id_sample(struct perf_event *event,
6823 struct perf_output_handle *handle,
6824 struct perf_sample_data *sample)
c980d109
ACM
6825{
6826 if (event->attr.sample_id_all)
6827 __perf_event__output_id_sample(handle, sample);
6828}
6829
3dab77fb 6830static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
6831 struct perf_event *event,
6832 u64 enabled, u64 running)
3dab77fb 6833{
cdd6c482 6834 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6835 u64 values[4];
6836 int n = 0;
6837
b5e58793 6838 values[n++] = perf_event_count(event);
3dab77fb 6839 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 6840 values[n++] = enabled +
cdd6c482 6841 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
6842 }
6843 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 6844 values[n++] = running +
cdd6c482 6845 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
6846 }
6847 if (read_format & PERF_FORMAT_ID)
cdd6c482 6848 values[n++] = primary_event_id(event);
3dab77fb 6849
76369139 6850 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6851}
6852
3dab77fb 6853static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
6854 struct perf_event *event,
6855 u64 enabled, u64 running)
3dab77fb 6856{
cdd6c482
IM
6857 struct perf_event *leader = event->group_leader, *sub;
6858 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6859 u64 values[5];
6860 int n = 0;
6861
6862 values[n++] = 1 + leader->nr_siblings;
6863
6864 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 6865 values[n++] = enabled;
3dab77fb
PZ
6866
6867 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 6868 values[n++] = running;
3dab77fb 6869
9e5b127d
PZ
6870 if ((leader != event) &&
6871 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6872 leader->pmu->read(leader);
6873
b5e58793 6874 values[n++] = perf_event_count(leader);
3dab77fb 6875 if (read_format & PERF_FORMAT_ID)
cdd6c482 6876 values[n++] = primary_event_id(leader);
3dab77fb 6877
76369139 6878 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 6879
edb39592 6880 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
6881 n = 0;
6882
6f5ab001
JO
6883 if ((sub != event) &&
6884 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6885 sub->pmu->read(sub);
6886
b5e58793 6887 values[n++] = perf_event_count(sub);
3dab77fb 6888 if (read_format & PERF_FORMAT_ID)
cdd6c482 6889 values[n++] = primary_event_id(sub);
3dab77fb 6890
76369139 6891 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6892 }
6893}
6894
eed01528
SE
6895#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6896 PERF_FORMAT_TOTAL_TIME_RUNNING)
6897
ba5213ae
PZ
6898/*
6899 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6900 *
6901 * The problem is that its both hard and excessively expensive to iterate the
6902 * child list, not to mention that its impossible to IPI the children running
6903 * on another CPU, from interrupt/NMI context.
6904 */
3dab77fb 6905static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 6906 struct perf_event *event)
3dab77fb 6907{
e3f3541c 6908 u64 enabled = 0, running = 0, now;
eed01528
SE
6909 u64 read_format = event->attr.read_format;
6910
6911 /*
6912 * compute total_time_enabled, total_time_running
6913 * based on snapshot values taken when the event
6914 * was last scheduled in.
6915 *
6916 * we cannot simply called update_context_time()
6917 * because of locking issue as we are called in
6918 * NMI context
6919 */
c4794295 6920 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 6921 calc_timer_values(event, &now, &enabled, &running);
eed01528 6922
cdd6c482 6923 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 6924 perf_output_read_group(handle, event, enabled, running);
3dab77fb 6925 else
eed01528 6926 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
6927}
6928
bbfd5e4f
KL
6929static inline bool perf_sample_save_hw_index(struct perf_event *event)
6930{
6931 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6932}
6933
5622f295
MM
6934void perf_output_sample(struct perf_output_handle *handle,
6935 struct perf_event_header *header,
6936 struct perf_sample_data *data,
cdd6c482 6937 struct perf_event *event)
5622f295
MM
6938{
6939 u64 sample_type = data->type;
6940
6941 perf_output_put(handle, *header);
6942
ff3d527c
AH
6943 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6944 perf_output_put(handle, data->id);
6945
5622f295
MM
6946 if (sample_type & PERF_SAMPLE_IP)
6947 perf_output_put(handle, data->ip);
6948
6949 if (sample_type & PERF_SAMPLE_TID)
6950 perf_output_put(handle, data->tid_entry);
6951
6952 if (sample_type & PERF_SAMPLE_TIME)
6953 perf_output_put(handle, data->time);
6954
6955 if (sample_type & PERF_SAMPLE_ADDR)
6956 perf_output_put(handle, data->addr);
6957
6958 if (sample_type & PERF_SAMPLE_ID)
6959 perf_output_put(handle, data->id);
6960
6961 if (sample_type & PERF_SAMPLE_STREAM_ID)
6962 perf_output_put(handle, data->stream_id);
6963
6964 if (sample_type & PERF_SAMPLE_CPU)
6965 perf_output_put(handle, data->cpu_entry);
6966
6967 if (sample_type & PERF_SAMPLE_PERIOD)
6968 perf_output_put(handle, data->period);
6969
6970 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 6971 perf_output_read(handle, event);
5622f295
MM
6972
6973 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 6974 int size = 1;
5622f295 6975
99e818cc
JO
6976 size += data->callchain->nr;
6977 size *= sizeof(u64);
6978 __output_copy(handle, data->callchain, size);
5622f295
MM
6979 }
6980
6981 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6982 struct perf_raw_record *raw = data->raw;
6983
6984 if (raw) {
6985 struct perf_raw_frag *frag = &raw->frag;
6986
6987 perf_output_put(handle, raw->size);
6988 do {
6989 if (frag->copy) {
6990 __output_custom(handle, frag->copy,
6991 frag->data, frag->size);
6992 } else {
6993 __output_copy(handle, frag->data,
6994 frag->size);
6995 }
6996 if (perf_raw_frag_last(frag))
6997 break;
6998 frag = frag->next;
6999 } while (1);
7000 if (frag->pad)
7001 __output_skip(handle, NULL, frag->pad);
5622f295
MM
7002 } else {
7003 struct {
7004 u32 size;
7005 u32 data;
7006 } raw = {
7007 .size = sizeof(u32),
7008 .data = 0,
7009 };
7010 perf_output_put(handle, raw);
7011 }
7012 }
a7ac67ea 7013
bce38cd5
SE
7014 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7015 if (data->br_stack) {
7016 size_t size;
7017
7018 size = data->br_stack->nr
7019 * sizeof(struct perf_branch_entry);
7020
7021 perf_output_put(handle, data->br_stack->nr);
bbfd5e4f
KL
7022 if (perf_sample_save_hw_index(event))
7023 perf_output_put(handle, data->br_stack->hw_idx);
bce38cd5
SE
7024 perf_output_copy(handle, data->br_stack->entries, size);
7025 } else {
7026 /*
7027 * we always store at least the value of nr
7028 */
7029 u64 nr = 0;
7030 perf_output_put(handle, nr);
7031 }
7032 }
4018994f
JO
7033
7034 if (sample_type & PERF_SAMPLE_REGS_USER) {
7035 u64 abi = data->regs_user.abi;
7036
7037 /*
7038 * If there are no regs to dump, notice it through
7039 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7040 */
7041 perf_output_put(handle, abi);
7042
7043 if (abi) {
7044 u64 mask = event->attr.sample_regs_user;
7045 perf_output_sample_regs(handle,
7046 data->regs_user.regs,
7047 mask);
7048 }
7049 }
c5ebcedb 7050
a5cdd40c 7051 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
7052 perf_output_sample_ustack(handle,
7053 data->stack_user_size,
7054 data->regs_user.regs);
a5cdd40c 7055 }
c3feedf2 7056
2a6c6b7d
KL
7057 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7058 perf_output_put(handle, data->weight.full);
d6be9ad6
SE
7059
7060 if (sample_type & PERF_SAMPLE_DATA_SRC)
7061 perf_output_put(handle, data->data_src.val);
a5cdd40c 7062
fdfbbd07
AK
7063 if (sample_type & PERF_SAMPLE_TRANSACTION)
7064 perf_output_put(handle, data->txn);
7065
60e2364e
SE
7066 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7067 u64 abi = data->regs_intr.abi;
7068 /*
7069 * If there are no regs to dump, notice it through
7070 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7071 */
7072 perf_output_put(handle, abi);
7073
7074 if (abi) {
7075 u64 mask = event->attr.sample_regs_intr;
7076
7077 perf_output_sample_regs(handle,
7078 data->regs_intr.regs,
7079 mask);
7080 }
7081 }
7082
fc7ce9c7
KL
7083 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7084 perf_output_put(handle, data->phys_addr);
7085
6546b19f
NK
7086 if (sample_type & PERF_SAMPLE_CGROUP)
7087 perf_output_put(handle, data->cgroup);
7088
8d97e718
KL
7089 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7090 perf_output_put(handle, data->data_page_size);
7091
995f088e
SE
7092 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7093 perf_output_put(handle, data->code_page_size);
7094
a4faf00d
AS
7095 if (sample_type & PERF_SAMPLE_AUX) {
7096 perf_output_put(handle, data->aux_size);
7097
7098 if (data->aux_size)
7099 perf_aux_sample_output(event, handle, data);
7100 }
7101
a5cdd40c
PZ
7102 if (!event->attr.watermark) {
7103 int wakeup_events = event->attr.wakeup_events;
7104
7105 if (wakeup_events) {
56de4e8f 7106 struct perf_buffer *rb = handle->rb;
a5cdd40c
PZ
7107 int events = local_inc_return(&rb->events);
7108
7109 if (events >= wakeup_events) {
7110 local_sub(wakeup_events, &rb->events);
7111 local_inc(&rb->wakeup);
7112 }
7113 }
7114 }
5622f295
MM
7115}
7116
fc7ce9c7
KL
7117static u64 perf_virt_to_phys(u64 virt)
7118{
7119 u64 phys_addr = 0;
7120 struct page *p = NULL;
7121
7122 if (!virt)
7123 return 0;
7124
7125 if (virt >= TASK_SIZE) {
7126 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7127 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7128 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7129 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7130 } else {
7131 /*
7132 * Walking the pages tables for user address.
7133 * Interrupts are disabled, so it prevents any tear down
7134 * of the page tables.
dadbb612 7135 * Try IRQ-safe get_user_page_fast_only first.
fc7ce9c7
KL
7136 * If failed, leave phys_addr as 0.
7137 */
d3296fb3
JO
7138 if (current->mm != NULL) {
7139 pagefault_disable();
dadbb612 7140 if (get_user_page_fast_only(virt, 0, &p))
d3296fb3
JO
7141 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7142 pagefault_enable();
7143 }
fc7ce9c7
KL
7144
7145 if (p)
7146 put_page(p);
7147 }
7148
7149 return phys_addr;
7150}
7151
8d97e718 7152/*
8af26be0 7153 * Return the pagetable size of a given virtual address.
8d97e718 7154 */
8af26be0 7155static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
8d97e718 7156{
8af26be0 7157 u64 size = 0;
8d97e718 7158
8af26be0
PZ
7159#ifdef CONFIG_HAVE_FAST_GUP
7160 pgd_t *pgdp, pgd;
7161 p4d_t *p4dp, p4d;
7162 pud_t *pudp, pud;
7163 pmd_t *pmdp, pmd;
7164 pte_t *ptep, pte;
8d97e718 7165
8af26be0
PZ
7166 pgdp = pgd_offset(mm, addr);
7167 pgd = READ_ONCE(*pgdp);
7168 if (pgd_none(pgd))
8d97e718
KL
7169 return 0;
7170
8af26be0
PZ
7171 if (pgd_leaf(pgd))
7172 return pgd_leaf_size(pgd);
8d97e718 7173
8af26be0
PZ
7174 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7175 p4d = READ_ONCE(*p4dp);
7176 if (!p4d_present(p4d))
8d97e718
KL
7177 return 0;
7178
8af26be0
PZ
7179 if (p4d_leaf(p4d))
7180 return p4d_leaf_size(p4d);
8d97e718 7181
8af26be0
PZ
7182 pudp = pud_offset_lockless(p4dp, p4d, addr);
7183 pud = READ_ONCE(*pudp);
7184 if (!pud_present(pud))
8d97e718
KL
7185 return 0;
7186
8af26be0
PZ
7187 if (pud_leaf(pud))
7188 return pud_leaf_size(pud);
8d97e718 7189
8af26be0
PZ
7190 pmdp = pmd_offset_lockless(pudp, pud, addr);
7191 pmd = READ_ONCE(*pmdp);
7192 if (!pmd_present(pmd))
8d97e718 7193 return 0;
8d97e718 7194
8af26be0
PZ
7195 if (pmd_leaf(pmd))
7196 return pmd_leaf_size(pmd);
51b646b2 7197
8af26be0
PZ
7198 ptep = pte_offset_map(&pmd, addr);
7199 pte = ptep_get_lockless(ptep);
7200 if (pte_present(pte))
7201 size = pte_leaf_size(pte);
7202 pte_unmap(ptep);
7203#endif /* CONFIG_HAVE_FAST_GUP */
8d97e718 7204
8af26be0 7205 return size;
8d97e718
KL
7206}
7207
8d97e718
KL
7208static u64 perf_get_page_size(unsigned long addr)
7209{
7210 struct mm_struct *mm;
7211 unsigned long flags;
7212 u64 size;
7213
7214 if (!addr)
7215 return 0;
7216
7217 /*
7218 * Software page-table walkers must disable IRQs,
7219 * which prevents any tear down of the page tables.
7220 */
7221 local_irq_save(flags);
7222
7223 mm = current->mm;
7224 if (!mm) {
7225 /*
7226 * For kernel threads and the like, use init_mm so that
7227 * we can find kernel memory.
7228 */
7229 mm = &init_mm;
7230 }
7231
8af26be0 7232 size = perf_get_pgtable_size(mm, addr);
8d97e718
KL
7233
7234 local_irq_restore(flags);
7235
7236 return size;
7237}
7238
99e818cc
JO
7239static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7240
6cbc304f 7241struct perf_callchain_entry *
8cf7e0e2
JO
7242perf_callchain(struct perf_event *event, struct pt_regs *regs)
7243{
7244 bool kernel = !event->attr.exclude_callchain_kernel;
7245 bool user = !event->attr.exclude_callchain_user;
7246 /* Disallow cross-task user callchains. */
7247 bool crosstask = event->ctx->task && event->ctx->task != current;
7248 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 7249 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
7250
7251 if (!kernel && !user)
99e818cc 7252 return &__empty_callchain;
8cf7e0e2 7253
99e818cc
JO
7254 callchain = get_perf_callchain(regs, 0, kernel, user,
7255 max_stack, crosstask, true);
7256 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
7257}
7258
5622f295
MM
7259void perf_prepare_sample(struct perf_event_header *header,
7260 struct perf_sample_data *data,
cdd6c482 7261 struct perf_event *event,
5622f295 7262 struct pt_regs *regs)
7b732a75 7263{
cdd6c482 7264 u64 sample_type = event->attr.sample_type;
7b732a75 7265
cdd6c482 7266 header->type = PERF_RECORD_SAMPLE;
c320c7b7 7267 header->size = sizeof(*header) + event->header_size;
5622f295
MM
7268
7269 header->misc = 0;
7270 header->misc |= perf_misc_flags(regs);
6fab0192 7271
c980d109 7272 __perf_event_header__init_id(header, data, event);
6844c09d 7273
995f088e 7274 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
5622f295
MM
7275 data->ip = perf_instruction_pointer(regs);
7276
b23f3325 7277 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 7278 int size = 1;
394ee076 7279
6cbc304f
PZ
7280 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7281 data->callchain = perf_callchain(event, regs);
7282
99e818cc 7283 size += data->callchain->nr;
5622f295
MM
7284
7285 header->size += size * sizeof(u64);
394ee076
PZ
7286 }
7287
3a43ce68 7288 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
7289 struct perf_raw_record *raw = data->raw;
7290 int size;
7291
7292 if (raw) {
7293 struct perf_raw_frag *frag = &raw->frag;
7294 u32 sum = 0;
7295
7296 do {
7297 sum += frag->size;
7298 if (perf_raw_frag_last(frag))
7299 break;
7300 frag = frag->next;
7301 } while (1);
7302
7303 size = round_up(sum + sizeof(u32), sizeof(u64));
7304 raw->size = size - sizeof(u32);
7305 frag->pad = raw->size - sum;
7306 } else {
7307 size = sizeof(u64);
7308 }
a044560c 7309
7e3f977e 7310 header->size += size;
7f453c24 7311 }
bce38cd5
SE
7312
7313 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7314 int size = sizeof(u64); /* nr */
7315 if (data->br_stack) {
bbfd5e4f
KL
7316 if (perf_sample_save_hw_index(event))
7317 size += sizeof(u64);
7318
bce38cd5
SE
7319 size += data->br_stack->nr
7320 * sizeof(struct perf_branch_entry);
7321 }
7322 header->size += size;
7323 }
4018994f 7324
2565711f 7325 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
76a4efa8 7326 perf_sample_regs_user(&data->regs_user, regs);
2565711f 7327
4018994f
JO
7328 if (sample_type & PERF_SAMPLE_REGS_USER) {
7329 /* regs dump ABI info */
7330 int size = sizeof(u64);
7331
4018994f
JO
7332 if (data->regs_user.regs) {
7333 u64 mask = event->attr.sample_regs_user;
7334 size += hweight64(mask) * sizeof(u64);
7335 }
7336
7337 header->size += size;
7338 }
c5ebcedb
JO
7339
7340 if (sample_type & PERF_SAMPLE_STACK_USER) {
7341 /*
9f014e3a 7342 * Either we need PERF_SAMPLE_STACK_USER bit to be always
c5ebcedb
JO
7343 * processed as the last one or have additional check added
7344 * in case new sample type is added, because we could eat
7345 * up the rest of the sample size.
7346 */
c5ebcedb
JO
7347 u16 stack_size = event->attr.sample_stack_user;
7348 u16 size = sizeof(u64);
7349
c5ebcedb 7350 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 7351 data->regs_user.regs);
c5ebcedb
JO
7352
7353 /*
7354 * If there is something to dump, add space for the dump
7355 * itself and for the field that tells the dynamic size,
7356 * which is how many have been actually dumped.
7357 */
7358 if (stack_size)
7359 size += sizeof(u64) + stack_size;
7360
7361 data->stack_user_size = stack_size;
7362 header->size += size;
7363 }
60e2364e
SE
7364
7365 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7366 /* regs dump ABI info */
7367 int size = sizeof(u64);
7368
7369 perf_sample_regs_intr(&data->regs_intr, regs);
7370
7371 if (data->regs_intr.regs) {
7372 u64 mask = event->attr.sample_regs_intr;
7373
7374 size += hweight64(mask) * sizeof(u64);
7375 }
7376
7377 header->size += size;
7378 }
fc7ce9c7
KL
7379
7380 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7381 data->phys_addr = perf_virt_to_phys(data->addr);
a4faf00d 7382
6546b19f
NK
7383#ifdef CONFIG_CGROUP_PERF
7384 if (sample_type & PERF_SAMPLE_CGROUP) {
7385 struct cgroup *cgrp;
7386
7387 /* protected by RCU */
7388 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7389 data->cgroup = cgroup_id(cgrp);
7390 }
7391#endif
7392
8d97e718
KL
7393 /*
7394 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7395 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7396 * but the value will not dump to the userspace.
7397 */
7398 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7399 data->data_page_size = perf_get_page_size(data->addr);
7400
995f088e
SE
7401 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7402 data->code_page_size = perf_get_page_size(data->ip);
7403
a4faf00d
AS
7404 if (sample_type & PERF_SAMPLE_AUX) {
7405 u64 size;
7406
7407 header->size += sizeof(u64); /* size */
7408
7409 /*
7410 * Given the 16bit nature of header::size, an AUX sample can
7411 * easily overflow it, what with all the preceding sample bits.
7412 * Make sure this doesn't happen by using up to U16_MAX bytes
7413 * per sample in total (rounded down to 8 byte boundary).
7414 */
7415 size = min_t(size_t, U16_MAX - header->size,
7416 event->attr.aux_sample_size);
7417 size = rounddown(size, 8);
7418 size = perf_prepare_sample_aux(event, data, size);
7419
7420 WARN_ON_ONCE(size + header->size > U16_MAX);
7421 header->size += size;
7422 }
7423 /*
7424 * If you're adding more sample types here, you likely need to do
7425 * something about the overflowing header::size, like repurpose the
7426 * lowest 3 bits of size, which should be always zero at the moment.
7427 * This raises a more important question, do we really need 512k sized
7428 * samples and why, so good argumentation is in order for whatever you
7429 * do here next.
7430 */
7431 WARN_ON_ONCE(header->size & 7);
5622f295 7432}
7f453c24 7433
56201969 7434static __always_inline int
9ecda41a
WN
7435__perf_event_output(struct perf_event *event,
7436 struct perf_sample_data *data,
7437 struct pt_regs *regs,
7438 int (*output_begin)(struct perf_output_handle *,
267fb273 7439 struct perf_sample_data *,
9ecda41a
WN
7440 struct perf_event *,
7441 unsigned int))
5622f295
MM
7442{
7443 struct perf_output_handle handle;
7444 struct perf_event_header header;
56201969 7445 int err;
689802b2 7446
927c7a9e
FW
7447 /* protect the callchain buffers */
7448 rcu_read_lock();
7449
cdd6c482 7450 perf_prepare_sample(&header, data, event, regs);
5c148194 7451
267fb273 7452 err = output_begin(&handle, data, event, header.size);
56201969 7453 if (err)
927c7a9e 7454 goto exit;
0322cd6e 7455
cdd6c482 7456 perf_output_sample(&handle, &header, data, event);
f413cdb8 7457
8a057d84 7458 perf_output_end(&handle);
927c7a9e
FW
7459
7460exit:
7461 rcu_read_unlock();
56201969 7462 return err;
0322cd6e
PZ
7463}
7464
9ecda41a
WN
7465void
7466perf_event_output_forward(struct perf_event *event,
7467 struct perf_sample_data *data,
7468 struct pt_regs *regs)
7469{
7470 __perf_event_output(event, data, regs, perf_output_begin_forward);
7471}
7472
7473void
7474perf_event_output_backward(struct perf_event *event,
7475 struct perf_sample_data *data,
7476 struct pt_regs *regs)
7477{
7478 __perf_event_output(event, data, regs, perf_output_begin_backward);
7479}
7480
56201969 7481int
9ecda41a
WN
7482perf_event_output(struct perf_event *event,
7483 struct perf_sample_data *data,
7484 struct pt_regs *regs)
7485{
56201969 7486 return __perf_event_output(event, data, regs, perf_output_begin);
9ecda41a
WN
7487}
7488
38b200d6 7489/*
cdd6c482 7490 * read event_id
38b200d6
PZ
7491 */
7492
7493struct perf_read_event {
7494 struct perf_event_header header;
7495
7496 u32 pid;
7497 u32 tid;
38b200d6
PZ
7498};
7499
7500static void
cdd6c482 7501perf_event_read_event(struct perf_event *event,
38b200d6
PZ
7502 struct task_struct *task)
7503{
7504 struct perf_output_handle handle;
c980d109 7505 struct perf_sample_data sample;
dfc65094 7506 struct perf_read_event read_event = {
38b200d6 7507 .header = {
cdd6c482 7508 .type = PERF_RECORD_READ,
38b200d6 7509 .misc = 0,
c320c7b7 7510 .size = sizeof(read_event) + event->read_size,
38b200d6 7511 },
cdd6c482
IM
7512 .pid = perf_event_pid(event, task),
7513 .tid = perf_event_tid(event, task),
38b200d6 7514 };
3dab77fb 7515 int ret;
38b200d6 7516
c980d109 7517 perf_event_header__init_id(&read_event.header, &sample, event);
267fb273 7518 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
38b200d6
PZ
7519 if (ret)
7520 return;
7521
dfc65094 7522 perf_output_put(&handle, read_event);
cdd6c482 7523 perf_output_read(&handle, event);
c980d109 7524 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 7525
38b200d6
PZ
7526 perf_output_end(&handle);
7527}
7528
aab5b71e 7529typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
7530
7531static void
aab5b71e
PZ
7532perf_iterate_ctx(struct perf_event_context *ctx,
7533 perf_iterate_f output,
b73e4fef 7534 void *data, bool all)
52d857a8
JO
7535{
7536 struct perf_event *event;
7537
7538 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
7539 if (!all) {
7540 if (event->state < PERF_EVENT_STATE_INACTIVE)
7541 continue;
7542 if (!event_filter_match(event))
7543 continue;
7544 }
7545
67516844 7546 output(event, data);
52d857a8
JO
7547 }
7548}
7549
aab5b71e 7550static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
7551{
7552 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7553 struct perf_event *event;
7554
7555 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
7556 /*
7557 * Skip events that are not fully formed yet; ensure that
7558 * if we observe event->ctx, both event and ctx will be
7559 * complete enough. See perf_install_in_context().
7560 */
7561 if (!smp_load_acquire(&event->ctx))
7562 continue;
7563
f2fb6bef
KL
7564 if (event->state < PERF_EVENT_STATE_INACTIVE)
7565 continue;
7566 if (!event_filter_match(event))
7567 continue;
7568 output(event, data);
7569 }
7570}
7571
aab5b71e
PZ
7572/*
7573 * Iterate all events that need to receive side-band events.
7574 *
7575 * For new callers; ensure that account_pmu_sb_event() includes
7576 * your event, otherwise it might not get delivered.
7577 */
52d857a8 7578static void
aab5b71e 7579perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
7580 struct perf_event_context *task_ctx)
7581{
52d857a8 7582 struct perf_event_context *ctx;
52d857a8
JO
7583 int ctxn;
7584
aab5b71e
PZ
7585 rcu_read_lock();
7586 preempt_disable();
7587
4e93ad60 7588 /*
aab5b71e
PZ
7589 * If we have task_ctx != NULL we only notify the task context itself.
7590 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
7591 * context.
7592 */
7593 if (task_ctx) {
aab5b71e
PZ
7594 perf_iterate_ctx(task_ctx, output, data, false);
7595 goto done;
4e93ad60
JO
7596 }
7597
aab5b71e 7598 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
7599
7600 for_each_task_context_nr(ctxn) {
52d857a8
JO
7601 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7602 if (ctx)
aab5b71e 7603 perf_iterate_ctx(ctx, output, data, false);
52d857a8 7604 }
aab5b71e 7605done:
f2fb6bef 7606 preempt_enable();
52d857a8 7607 rcu_read_unlock();
95ff4ca2
AS
7608}
7609
375637bc
AS
7610/*
7611 * Clear all file-based filters at exec, they'll have to be
7612 * re-instated when/if these objects are mmapped again.
7613 */
7614static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7615{
7616 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7617 struct perf_addr_filter *filter;
7618 unsigned int restart = 0, count = 0;
7619 unsigned long flags;
7620
7621 if (!has_addr_filter(event))
7622 return;
7623
7624 raw_spin_lock_irqsave(&ifh->lock, flags);
7625 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 7626 if (filter->path.dentry) {
c60f83b8
AS
7627 event->addr_filter_ranges[count].start = 0;
7628 event->addr_filter_ranges[count].size = 0;
375637bc
AS
7629 restart++;
7630 }
7631
7632 count++;
7633 }
7634
7635 if (restart)
7636 event->addr_filters_gen++;
7637 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7638
7639 if (restart)
767ae086 7640 perf_event_stop(event, 1);
375637bc
AS
7641}
7642
7643void perf_event_exec(void)
7644{
7645 struct perf_event_context *ctx;
7646 int ctxn;
7647
375637bc 7648 for_each_task_context_nr(ctxn) {
375637bc 7649 perf_event_enable_on_exec(ctxn);
2e498d0a 7650 perf_event_remove_on_exec(ctxn);
375637bc 7651
2e498d0a
ME
7652 rcu_read_lock();
7653 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7654 if (ctx) {
7655 perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7656 NULL, true);
7657 }
7658 rcu_read_unlock();
375637bc 7659 }
375637bc
AS
7660}
7661
95ff4ca2 7662struct remote_output {
56de4e8f 7663 struct perf_buffer *rb;
95ff4ca2
AS
7664 int err;
7665};
7666
7667static void __perf_event_output_stop(struct perf_event *event, void *data)
7668{
7669 struct perf_event *parent = event->parent;
7670 struct remote_output *ro = data;
56de4e8f 7671 struct perf_buffer *rb = ro->rb;
375637bc
AS
7672 struct stop_event_data sd = {
7673 .event = event,
7674 };
95ff4ca2
AS
7675
7676 if (!has_aux(event))
7677 return;
7678
7679 if (!parent)
7680 parent = event;
7681
7682 /*
7683 * In case of inheritance, it will be the parent that links to the
767ae086
AS
7684 * ring-buffer, but it will be the child that's actually using it.
7685 *
7686 * We are using event::rb to determine if the event should be stopped,
7687 * however this may race with ring_buffer_attach() (through set_output),
7688 * which will make us skip the event that actually needs to be stopped.
7689 * So ring_buffer_attach() has to stop an aux event before re-assigning
7690 * its rb pointer.
95ff4ca2
AS
7691 */
7692 if (rcu_dereference(parent->rb) == rb)
375637bc 7693 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
7694}
7695
7696static int __perf_pmu_output_stop(void *info)
7697{
7698 struct perf_event *event = info;
f3a519e4 7699 struct pmu *pmu = event->ctx->pmu;
8b6a3fe8 7700 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
7701 struct remote_output ro = {
7702 .rb = event->rb,
7703 };
7704
7705 rcu_read_lock();
aab5b71e 7706 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 7707 if (cpuctx->task_ctx)
aab5b71e 7708 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 7709 &ro, false);
95ff4ca2
AS
7710 rcu_read_unlock();
7711
7712 return ro.err;
7713}
7714
7715static void perf_pmu_output_stop(struct perf_event *event)
7716{
7717 struct perf_event *iter;
7718 int err, cpu;
7719
7720restart:
7721 rcu_read_lock();
7722 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7723 /*
7724 * For per-CPU events, we need to make sure that neither they
7725 * nor their children are running; for cpu==-1 events it's
7726 * sufficient to stop the event itself if it's active, since
7727 * it can't have children.
7728 */
7729 cpu = iter->cpu;
7730 if (cpu == -1)
7731 cpu = READ_ONCE(iter->oncpu);
7732
7733 if (cpu == -1)
7734 continue;
7735
7736 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7737 if (err == -EAGAIN) {
7738 rcu_read_unlock();
7739 goto restart;
7740 }
7741 }
7742 rcu_read_unlock();
52d857a8
JO
7743}
7744
60313ebe 7745/*
9f498cc5
PZ
7746 * task tracking -- fork/exit
7747 *
13d7a241 7748 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
7749 */
7750
9f498cc5 7751struct perf_task_event {
3a80b4a3 7752 struct task_struct *task;
cdd6c482 7753 struct perf_event_context *task_ctx;
60313ebe
PZ
7754
7755 struct {
7756 struct perf_event_header header;
7757
7758 u32 pid;
7759 u32 ppid;
9f498cc5
PZ
7760 u32 tid;
7761 u32 ptid;
393b2ad8 7762 u64 time;
cdd6c482 7763 } event_id;
60313ebe
PZ
7764};
7765
67516844
JO
7766static int perf_event_task_match(struct perf_event *event)
7767{
13d7a241
SE
7768 return event->attr.comm || event->attr.mmap ||
7769 event->attr.mmap2 || event->attr.mmap_data ||
7770 event->attr.task;
67516844
JO
7771}
7772
cdd6c482 7773static void perf_event_task_output(struct perf_event *event,
52d857a8 7774 void *data)
60313ebe 7775{
52d857a8 7776 struct perf_task_event *task_event = data;
60313ebe 7777 struct perf_output_handle handle;
c980d109 7778 struct perf_sample_data sample;
9f498cc5 7779 struct task_struct *task = task_event->task;
c980d109 7780 int ret, size = task_event->event_id.header.size;
8bb39f9a 7781
67516844
JO
7782 if (!perf_event_task_match(event))
7783 return;
7784
c980d109 7785 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 7786
267fb273 7787 ret = perf_output_begin(&handle, &sample, event,
a7ac67ea 7788 task_event->event_id.header.size);
ef60777c 7789 if (ret)
c980d109 7790 goto out;
60313ebe 7791
cdd6c482 7792 task_event->event_id.pid = perf_event_pid(event, task);
cdd6c482 7793 task_event->event_id.tid = perf_event_tid(event, task);
f3bed55e
IR
7794
7795 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7796 task_event->event_id.ppid = perf_event_pid(event,
7797 task->real_parent);
7798 task_event->event_id.ptid = perf_event_pid(event,
7799 task->real_parent);
7800 } else { /* PERF_RECORD_FORK */
7801 task_event->event_id.ppid = perf_event_pid(event, current);
7802 task_event->event_id.ptid = perf_event_tid(event, current);
7803 }
9f498cc5 7804
34f43927
PZ
7805 task_event->event_id.time = perf_event_clock(event);
7806
cdd6c482 7807 perf_output_put(&handle, task_event->event_id);
393b2ad8 7808
c980d109
ACM
7809 perf_event__output_id_sample(event, &handle, &sample);
7810
60313ebe 7811 perf_output_end(&handle);
c980d109
ACM
7812out:
7813 task_event->event_id.header.size = size;
60313ebe
PZ
7814}
7815
cdd6c482
IM
7816static void perf_event_task(struct task_struct *task,
7817 struct perf_event_context *task_ctx,
3a80b4a3 7818 int new)
60313ebe 7819{
9f498cc5 7820 struct perf_task_event task_event;
60313ebe 7821
cdd6c482
IM
7822 if (!atomic_read(&nr_comm_events) &&
7823 !atomic_read(&nr_mmap_events) &&
7824 !atomic_read(&nr_task_events))
60313ebe
PZ
7825 return;
7826
9f498cc5 7827 task_event = (struct perf_task_event){
3a80b4a3
PZ
7828 .task = task,
7829 .task_ctx = task_ctx,
cdd6c482 7830 .event_id = {
60313ebe 7831 .header = {
cdd6c482 7832 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 7833 .misc = 0,
cdd6c482 7834 .size = sizeof(task_event.event_id),
60313ebe 7835 },
573402db
PZ
7836 /* .pid */
7837 /* .ppid */
9f498cc5
PZ
7838 /* .tid */
7839 /* .ptid */
34f43927 7840 /* .time */
60313ebe
PZ
7841 },
7842 };
7843
aab5b71e 7844 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
7845 &task_event,
7846 task_ctx);
9f498cc5
PZ
7847}
7848
cdd6c482 7849void perf_event_fork(struct task_struct *task)
9f498cc5 7850{
cdd6c482 7851 perf_event_task(task, NULL, 1);
e4222673 7852 perf_event_namespaces(task);
60313ebe
PZ
7853}
7854
8d1b2d93
PZ
7855/*
7856 * comm tracking
7857 */
7858
7859struct perf_comm_event {
22a4f650
IM
7860 struct task_struct *task;
7861 char *comm;
8d1b2d93
PZ
7862 int comm_size;
7863
7864 struct {
7865 struct perf_event_header header;
7866
7867 u32 pid;
7868 u32 tid;
cdd6c482 7869 } event_id;
8d1b2d93
PZ
7870};
7871
67516844
JO
7872static int perf_event_comm_match(struct perf_event *event)
7873{
7874 return event->attr.comm;
7875}
7876
cdd6c482 7877static void perf_event_comm_output(struct perf_event *event,
52d857a8 7878 void *data)
8d1b2d93 7879{
52d857a8 7880 struct perf_comm_event *comm_event = data;
8d1b2d93 7881 struct perf_output_handle handle;
c980d109 7882 struct perf_sample_data sample;
cdd6c482 7883 int size = comm_event->event_id.header.size;
c980d109
ACM
7884 int ret;
7885
67516844
JO
7886 if (!perf_event_comm_match(event))
7887 return;
7888
c980d109 7889 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
267fb273 7890 ret = perf_output_begin(&handle, &sample, event,
a7ac67ea 7891 comm_event->event_id.header.size);
8d1b2d93
PZ
7892
7893 if (ret)
c980d109 7894 goto out;
8d1b2d93 7895
cdd6c482
IM
7896 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7897 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 7898
cdd6c482 7899 perf_output_put(&handle, comm_event->event_id);
76369139 7900 __output_copy(&handle, comm_event->comm,
8d1b2d93 7901 comm_event->comm_size);
c980d109
ACM
7902
7903 perf_event__output_id_sample(event, &handle, &sample);
7904
8d1b2d93 7905 perf_output_end(&handle);
c980d109
ACM
7906out:
7907 comm_event->event_id.header.size = size;
8d1b2d93
PZ
7908}
7909
cdd6c482 7910static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 7911{
413ee3b4 7912 char comm[TASK_COMM_LEN];
8d1b2d93 7913 unsigned int size;
8d1b2d93 7914
413ee3b4 7915 memset(comm, 0, sizeof(comm));
96b02d78 7916 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 7917 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
7918
7919 comm_event->comm = comm;
7920 comm_event->comm_size = size;
7921
cdd6c482 7922 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 7923
aab5b71e 7924 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
7925 comm_event,
7926 NULL);
8d1b2d93
PZ
7927}
7928
82b89778 7929void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 7930{
9ee318a7
PZ
7931 struct perf_comm_event comm_event;
7932
cdd6c482 7933 if (!atomic_read(&nr_comm_events))
9ee318a7 7934 return;
a63eaf34 7935
9ee318a7 7936 comm_event = (struct perf_comm_event){
8d1b2d93 7937 .task = task,
573402db
PZ
7938 /* .comm */
7939 /* .comm_size */
cdd6c482 7940 .event_id = {
573402db 7941 .header = {
cdd6c482 7942 .type = PERF_RECORD_COMM,
82b89778 7943 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
7944 /* .size */
7945 },
7946 /* .pid */
7947 /* .tid */
8d1b2d93
PZ
7948 },
7949 };
7950
cdd6c482 7951 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
7952}
7953
e4222673
HB
7954/*
7955 * namespaces tracking
7956 */
7957
7958struct perf_namespaces_event {
7959 struct task_struct *task;
7960
7961 struct {
7962 struct perf_event_header header;
7963
7964 u32 pid;
7965 u32 tid;
7966 u64 nr_namespaces;
7967 struct perf_ns_link_info link_info[NR_NAMESPACES];
7968 } event_id;
7969};
7970
7971static int perf_event_namespaces_match(struct perf_event *event)
7972{
7973 return event->attr.namespaces;
7974}
7975
7976static void perf_event_namespaces_output(struct perf_event *event,
7977 void *data)
7978{
7979 struct perf_namespaces_event *namespaces_event = data;
7980 struct perf_output_handle handle;
7981 struct perf_sample_data sample;
34900ec5 7982 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
7983 int ret;
7984
7985 if (!perf_event_namespaces_match(event))
7986 return;
7987
7988 perf_event_header__init_id(&namespaces_event->event_id.header,
7989 &sample, event);
267fb273 7990 ret = perf_output_begin(&handle, &sample, event,
e4222673
HB
7991 namespaces_event->event_id.header.size);
7992 if (ret)
34900ec5 7993 goto out;
e4222673
HB
7994
7995 namespaces_event->event_id.pid = perf_event_pid(event,
7996 namespaces_event->task);
7997 namespaces_event->event_id.tid = perf_event_tid(event,
7998 namespaces_event->task);
7999
8000 perf_output_put(&handle, namespaces_event->event_id);
8001
8002 perf_event__output_id_sample(event, &handle, &sample);
8003
8004 perf_output_end(&handle);
34900ec5
JO
8005out:
8006 namespaces_event->event_id.header.size = header_size;
e4222673
HB
8007}
8008
8009static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8010 struct task_struct *task,
8011 const struct proc_ns_operations *ns_ops)
8012{
8013 struct path ns_path;
8014 struct inode *ns_inode;
ce623f89 8015 int error;
e4222673
HB
8016
8017 error = ns_get_path(&ns_path, task, ns_ops);
8018 if (!error) {
8019 ns_inode = ns_path.dentry->d_inode;
8020 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8021 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 8022 path_put(&ns_path);
e4222673
HB
8023 }
8024}
8025
8026void perf_event_namespaces(struct task_struct *task)
8027{
8028 struct perf_namespaces_event namespaces_event;
8029 struct perf_ns_link_info *ns_link_info;
8030
8031 if (!atomic_read(&nr_namespaces_events))
8032 return;
8033
8034 namespaces_event = (struct perf_namespaces_event){
8035 .task = task,
8036 .event_id = {
8037 .header = {
8038 .type = PERF_RECORD_NAMESPACES,
8039 .misc = 0,
8040 .size = sizeof(namespaces_event.event_id),
8041 },
8042 /* .pid */
8043 /* .tid */
8044 .nr_namespaces = NR_NAMESPACES,
8045 /* .link_info[NR_NAMESPACES] */
8046 },
8047 };
8048
8049 ns_link_info = namespaces_event.event_id.link_info;
8050
8051 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8052 task, &mntns_operations);
8053
8054#ifdef CONFIG_USER_NS
8055 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8056 task, &userns_operations);
8057#endif
8058#ifdef CONFIG_NET_NS
8059 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8060 task, &netns_operations);
8061#endif
8062#ifdef CONFIG_UTS_NS
8063 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8064 task, &utsns_operations);
8065#endif
8066#ifdef CONFIG_IPC_NS
8067 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8068 task, &ipcns_operations);
8069#endif
8070#ifdef CONFIG_PID_NS
8071 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8072 task, &pidns_operations);
8073#endif
8074#ifdef CONFIG_CGROUPS
8075 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8076 task, &cgroupns_operations);
8077#endif
8078
8079 perf_iterate_sb(perf_event_namespaces_output,
8080 &namespaces_event,
8081 NULL);
8082}
8083
96aaab68
NK
8084/*
8085 * cgroup tracking
8086 */
8087#ifdef CONFIG_CGROUP_PERF
8088
8089struct perf_cgroup_event {
8090 char *path;
8091 int path_size;
8092 struct {
8093 struct perf_event_header header;
8094 u64 id;
8095 char path[];
8096 } event_id;
8097};
8098
8099static int perf_event_cgroup_match(struct perf_event *event)
8100{
8101 return event->attr.cgroup;
8102}
8103
8104static void perf_event_cgroup_output(struct perf_event *event, void *data)
8105{
8106 struct perf_cgroup_event *cgroup_event = data;
8107 struct perf_output_handle handle;
8108 struct perf_sample_data sample;
8109 u16 header_size = cgroup_event->event_id.header.size;
8110 int ret;
8111
8112 if (!perf_event_cgroup_match(event))
8113 return;
8114
8115 perf_event_header__init_id(&cgroup_event->event_id.header,
8116 &sample, event);
267fb273 8117 ret = perf_output_begin(&handle, &sample, event,
96aaab68
NK
8118 cgroup_event->event_id.header.size);
8119 if (ret)
8120 goto out;
8121
8122 perf_output_put(&handle, cgroup_event->event_id);
8123 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8124
8125 perf_event__output_id_sample(event, &handle, &sample);
8126
8127 perf_output_end(&handle);
8128out:
8129 cgroup_event->event_id.header.size = header_size;
8130}
8131
8132static void perf_event_cgroup(struct cgroup *cgrp)
8133{
8134 struct perf_cgroup_event cgroup_event;
8135 char path_enomem[16] = "//enomem";
8136 char *pathname;
8137 size_t size;
8138
8139 if (!atomic_read(&nr_cgroup_events))
8140 return;
8141
8142 cgroup_event = (struct perf_cgroup_event){
8143 .event_id = {
8144 .header = {
8145 .type = PERF_RECORD_CGROUP,
8146 .misc = 0,
8147 .size = sizeof(cgroup_event.event_id),
8148 },
8149 .id = cgroup_id(cgrp),
8150 },
8151 };
8152
8153 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8154 if (pathname == NULL) {
8155 cgroup_event.path = path_enomem;
8156 } else {
8157 /* just to be sure to have enough space for alignment */
8158 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8159 cgroup_event.path = pathname;
8160 }
8161
8162 /*
8163 * Since our buffer works in 8 byte units we need to align our string
8164 * size to a multiple of 8. However, we must guarantee the tail end is
8165 * zero'd out to avoid leaking random bits to userspace.
8166 */
8167 size = strlen(cgroup_event.path) + 1;
8168 while (!IS_ALIGNED(size, sizeof(u64)))
8169 cgroup_event.path[size++] = '\0';
8170
8171 cgroup_event.event_id.header.size += size;
8172 cgroup_event.path_size = size;
8173
8174 perf_iterate_sb(perf_event_cgroup_output,
8175 &cgroup_event,
8176 NULL);
8177
8178 kfree(pathname);
8179}
8180
8181#endif
8182
0a4a9391
PZ
8183/*
8184 * mmap tracking
8185 */
8186
8187struct perf_mmap_event {
089dd79d
PZ
8188 struct vm_area_struct *vma;
8189
8190 const char *file_name;
8191 int file_size;
13d7a241
SE
8192 int maj, min;
8193 u64 ino;
8194 u64 ino_generation;
f972eb63 8195 u32 prot, flags;
88a16a13
JO
8196 u8 build_id[BUILD_ID_SIZE_MAX];
8197 u32 build_id_size;
0a4a9391
PZ
8198
8199 struct {
8200 struct perf_event_header header;
8201
8202 u32 pid;
8203 u32 tid;
8204 u64 start;
8205 u64 len;
8206 u64 pgoff;
cdd6c482 8207 } event_id;
0a4a9391
PZ
8208};
8209
67516844
JO
8210static int perf_event_mmap_match(struct perf_event *event,
8211 void *data)
8212{
8213 struct perf_mmap_event *mmap_event = data;
8214 struct vm_area_struct *vma = mmap_event->vma;
8215 int executable = vma->vm_flags & VM_EXEC;
8216
8217 return (!executable && event->attr.mmap_data) ||
13d7a241 8218 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
8219}
8220
cdd6c482 8221static void perf_event_mmap_output(struct perf_event *event,
52d857a8 8222 void *data)
0a4a9391 8223{
52d857a8 8224 struct perf_mmap_event *mmap_event = data;
0a4a9391 8225 struct perf_output_handle handle;
c980d109 8226 struct perf_sample_data sample;
cdd6c482 8227 int size = mmap_event->event_id.header.size;
d9c1bb2f 8228 u32 type = mmap_event->event_id.header.type;
88a16a13 8229 bool use_build_id;
c980d109 8230 int ret;
0a4a9391 8231
67516844
JO
8232 if (!perf_event_mmap_match(event, data))
8233 return;
8234
13d7a241
SE
8235 if (event->attr.mmap2) {
8236 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8237 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8238 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8239 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 8240 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
8241 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8242 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
8243 }
8244
c980d109 8245 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
267fb273 8246 ret = perf_output_begin(&handle, &sample, event,
a7ac67ea 8247 mmap_event->event_id.header.size);
0a4a9391 8248 if (ret)
c980d109 8249 goto out;
0a4a9391 8250
cdd6c482
IM
8251 mmap_event->event_id.pid = perf_event_pid(event, current);
8252 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 8253
88a16a13
JO
8254 use_build_id = event->attr.build_id && mmap_event->build_id_size;
8255
8256 if (event->attr.mmap2 && use_build_id)
8257 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8258
cdd6c482 8259 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
8260
8261 if (event->attr.mmap2) {
88a16a13
JO
8262 if (use_build_id) {
8263 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8264
8265 __output_copy(&handle, size, 4);
8266 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8267 } else {
8268 perf_output_put(&handle, mmap_event->maj);
8269 perf_output_put(&handle, mmap_event->min);
8270 perf_output_put(&handle, mmap_event->ino);
8271 perf_output_put(&handle, mmap_event->ino_generation);
8272 }
f972eb63
PZ
8273 perf_output_put(&handle, mmap_event->prot);
8274 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
8275 }
8276
76369139 8277 __output_copy(&handle, mmap_event->file_name,
0a4a9391 8278 mmap_event->file_size);
c980d109
ACM
8279
8280 perf_event__output_id_sample(event, &handle, &sample);
8281
78d613eb 8282 perf_output_end(&handle);
c980d109
ACM
8283out:
8284 mmap_event->event_id.header.size = size;
d9c1bb2f 8285 mmap_event->event_id.header.type = type;
0a4a9391
PZ
8286}
8287
cdd6c482 8288static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 8289{
089dd79d
PZ
8290 struct vm_area_struct *vma = mmap_event->vma;
8291 struct file *file = vma->vm_file;
13d7a241
SE
8292 int maj = 0, min = 0;
8293 u64 ino = 0, gen = 0;
f972eb63 8294 u32 prot = 0, flags = 0;
0a4a9391
PZ
8295 unsigned int size;
8296 char tmp[16];
8297 char *buf = NULL;
2c42cfbf 8298 char *name;
413ee3b4 8299
0b3589be
PZ
8300 if (vma->vm_flags & VM_READ)
8301 prot |= PROT_READ;
8302 if (vma->vm_flags & VM_WRITE)
8303 prot |= PROT_WRITE;
8304 if (vma->vm_flags & VM_EXEC)
8305 prot |= PROT_EXEC;
8306
8307 if (vma->vm_flags & VM_MAYSHARE)
8308 flags = MAP_SHARED;
8309 else
8310 flags = MAP_PRIVATE;
8311
8312 if (vma->vm_flags & VM_DENYWRITE)
8313 flags |= MAP_DENYWRITE;
8314 if (vma->vm_flags & VM_MAYEXEC)
8315 flags |= MAP_EXECUTABLE;
8316 if (vma->vm_flags & VM_LOCKED)
8317 flags |= MAP_LOCKED;
03911132 8318 if (is_vm_hugetlb_page(vma))
0b3589be
PZ
8319 flags |= MAP_HUGETLB;
8320
0a4a9391 8321 if (file) {
13d7a241
SE
8322 struct inode *inode;
8323 dev_t dev;
3ea2f2b9 8324
2c42cfbf 8325 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 8326 if (!buf) {
c7e548b4
ON
8327 name = "//enomem";
8328 goto cpy_name;
0a4a9391 8329 }
413ee3b4 8330 /*
3ea2f2b9 8331 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
8332 * need to add enough zero bytes after the string to handle
8333 * the 64bit alignment we do later.
8334 */
9bf39ab2 8335 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 8336 if (IS_ERR(name)) {
c7e548b4
ON
8337 name = "//toolong";
8338 goto cpy_name;
0a4a9391 8339 }
13d7a241
SE
8340 inode = file_inode(vma->vm_file);
8341 dev = inode->i_sb->s_dev;
8342 ino = inode->i_ino;
8343 gen = inode->i_generation;
8344 maj = MAJOR(dev);
8345 min = MINOR(dev);
f972eb63 8346
c7e548b4 8347 goto got_name;
0a4a9391 8348 } else {
fbe26abe
JO
8349 if (vma->vm_ops && vma->vm_ops->name) {
8350 name = (char *) vma->vm_ops->name(vma);
8351 if (name)
8352 goto cpy_name;
8353 }
8354
2c42cfbf 8355 name = (char *)arch_vma_name(vma);
c7e548b4
ON
8356 if (name)
8357 goto cpy_name;
089dd79d 8358
32c5fb7e 8359 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 8360 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
8361 name = "[heap]";
8362 goto cpy_name;
32c5fb7e
ON
8363 }
8364 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 8365 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
8366 name = "[stack]";
8367 goto cpy_name;
089dd79d
PZ
8368 }
8369
c7e548b4
ON
8370 name = "//anon";
8371 goto cpy_name;
0a4a9391
PZ
8372 }
8373
c7e548b4
ON
8374cpy_name:
8375 strlcpy(tmp, name, sizeof(tmp));
8376 name = tmp;
0a4a9391 8377got_name:
2c42cfbf
PZ
8378 /*
8379 * Since our buffer works in 8 byte units we need to align our string
8380 * size to a multiple of 8. However, we must guarantee the tail end is
8381 * zero'd out to avoid leaking random bits to userspace.
8382 */
8383 size = strlen(name)+1;
8384 while (!IS_ALIGNED(size, sizeof(u64)))
8385 name[size++] = '\0';
0a4a9391
PZ
8386
8387 mmap_event->file_name = name;
8388 mmap_event->file_size = size;
13d7a241
SE
8389 mmap_event->maj = maj;
8390 mmap_event->min = min;
8391 mmap_event->ino = ino;
8392 mmap_event->ino_generation = gen;
f972eb63
PZ
8393 mmap_event->prot = prot;
8394 mmap_event->flags = flags;
0a4a9391 8395
2fe85427
SE
8396 if (!(vma->vm_flags & VM_EXEC))
8397 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8398
cdd6c482 8399 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 8400
88a16a13
JO
8401 if (atomic_read(&nr_build_id_events))
8402 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8403
aab5b71e 8404 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
8405 mmap_event,
8406 NULL);
665c2142 8407
0a4a9391
PZ
8408 kfree(buf);
8409}
8410
375637bc
AS
8411/*
8412 * Check whether inode and address range match filter criteria.
8413 */
8414static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8415 struct file *file, unsigned long offset,
8416 unsigned long size)
8417{
7f635ff1
MP
8418 /* d_inode(NULL) won't be equal to any mapped user-space file */
8419 if (!filter->path.dentry)
8420 return false;
8421
9511bce9 8422 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
8423 return false;
8424
8425 if (filter->offset > offset + size)
8426 return false;
8427
8428 if (filter->offset + filter->size < offset)
8429 return false;
8430
8431 return true;
8432}
8433
c60f83b8
AS
8434static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8435 struct vm_area_struct *vma,
8436 struct perf_addr_filter_range *fr)
8437{
8438 unsigned long vma_size = vma->vm_end - vma->vm_start;
8439 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8440 struct file *file = vma->vm_file;
8441
8442 if (!perf_addr_filter_match(filter, file, off, vma_size))
8443 return false;
8444
8445 if (filter->offset < off) {
8446 fr->start = vma->vm_start;
8447 fr->size = min(vma_size, filter->size - (off - filter->offset));
8448 } else {
8449 fr->start = vma->vm_start + filter->offset - off;
8450 fr->size = min(vma->vm_end - fr->start, filter->size);
8451 }
8452
8453 return true;
8454}
8455
375637bc
AS
8456static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8457{
8458 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8459 struct vm_area_struct *vma = data;
375637bc
AS
8460 struct perf_addr_filter *filter;
8461 unsigned int restart = 0, count = 0;
c60f83b8 8462 unsigned long flags;
375637bc
AS
8463
8464 if (!has_addr_filter(event))
8465 return;
8466
c60f83b8 8467 if (!vma->vm_file)
375637bc
AS
8468 return;
8469
8470 raw_spin_lock_irqsave(&ifh->lock, flags);
8471 list_for_each_entry(filter, &ifh->list, entry) {
c60f83b8
AS
8472 if (perf_addr_filter_vma_adjust(filter, vma,
8473 &event->addr_filter_ranges[count]))
375637bc 8474 restart++;
375637bc
AS
8475
8476 count++;
8477 }
8478
8479 if (restart)
8480 event->addr_filters_gen++;
8481 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8482
8483 if (restart)
767ae086 8484 perf_event_stop(event, 1);
375637bc
AS
8485}
8486
8487/*
8488 * Adjust all task's events' filters to the new vma
8489 */
8490static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8491{
8492 struct perf_event_context *ctx;
8493 int ctxn;
8494
12b40a23
MP
8495 /*
8496 * Data tracing isn't supported yet and as such there is no need
8497 * to keep track of anything that isn't related to executable code:
8498 */
8499 if (!(vma->vm_flags & VM_EXEC))
8500 return;
8501
375637bc
AS
8502 rcu_read_lock();
8503 for_each_task_context_nr(ctxn) {
8504 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8505 if (!ctx)
8506 continue;
8507
aab5b71e 8508 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
8509 }
8510 rcu_read_unlock();
8511}
8512
3af9e859 8513void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 8514{
9ee318a7
PZ
8515 struct perf_mmap_event mmap_event;
8516
cdd6c482 8517 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
8518 return;
8519
8520 mmap_event = (struct perf_mmap_event){
089dd79d 8521 .vma = vma,
573402db
PZ
8522 /* .file_name */
8523 /* .file_size */
cdd6c482 8524 .event_id = {
573402db 8525 .header = {
cdd6c482 8526 .type = PERF_RECORD_MMAP,
39447b38 8527 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
8528 /* .size */
8529 },
8530 /* .pid */
8531 /* .tid */
089dd79d
PZ
8532 .start = vma->vm_start,
8533 .len = vma->vm_end - vma->vm_start,
3a0304e9 8534 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 8535 },
13d7a241
SE
8536 /* .maj (attr_mmap2 only) */
8537 /* .min (attr_mmap2 only) */
8538 /* .ino (attr_mmap2 only) */
8539 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
8540 /* .prot (attr_mmap2 only) */
8541 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
8542 };
8543
375637bc 8544 perf_addr_filters_adjust(vma);
cdd6c482 8545 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
8546}
8547
68db7e98
AS
8548void perf_event_aux_event(struct perf_event *event, unsigned long head,
8549 unsigned long size, u64 flags)
8550{
8551 struct perf_output_handle handle;
8552 struct perf_sample_data sample;
8553 struct perf_aux_event {
8554 struct perf_event_header header;
8555 u64 offset;
8556 u64 size;
8557 u64 flags;
8558 } rec = {
8559 .header = {
8560 .type = PERF_RECORD_AUX,
8561 .misc = 0,
8562 .size = sizeof(rec),
8563 },
8564 .offset = head,
8565 .size = size,
8566 .flags = flags,
8567 };
8568 int ret;
8569
8570 perf_event_header__init_id(&rec.header, &sample, event);
267fb273 8571 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
68db7e98
AS
8572
8573 if (ret)
8574 return;
8575
8576 perf_output_put(&handle, rec);
8577 perf_event__output_id_sample(event, &handle, &sample);
8578
8579 perf_output_end(&handle);
8580}
8581
f38b0dbb
KL
8582/*
8583 * Lost/dropped samples logging
8584 */
8585void perf_log_lost_samples(struct perf_event *event, u64 lost)
8586{
8587 struct perf_output_handle handle;
8588 struct perf_sample_data sample;
8589 int ret;
8590
8591 struct {
8592 struct perf_event_header header;
8593 u64 lost;
8594 } lost_samples_event = {
8595 .header = {
8596 .type = PERF_RECORD_LOST_SAMPLES,
8597 .misc = 0,
8598 .size = sizeof(lost_samples_event),
8599 },
8600 .lost = lost,
8601 };
8602
8603 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8604
267fb273 8605 ret = perf_output_begin(&handle, &sample, event,
f38b0dbb
KL
8606 lost_samples_event.header.size);
8607 if (ret)
8608 return;
8609
8610 perf_output_put(&handle, lost_samples_event);
8611 perf_event__output_id_sample(event, &handle, &sample);
8612 perf_output_end(&handle);
8613}
8614
45ac1403
AH
8615/*
8616 * context_switch tracking
8617 */
8618
8619struct perf_switch_event {
8620 struct task_struct *task;
8621 struct task_struct *next_prev;
8622
8623 struct {
8624 struct perf_event_header header;
8625 u32 next_prev_pid;
8626 u32 next_prev_tid;
8627 } event_id;
8628};
8629
8630static int perf_event_switch_match(struct perf_event *event)
8631{
8632 return event->attr.context_switch;
8633}
8634
8635static void perf_event_switch_output(struct perf_event *event, void *data)
8636{
8637 struct perf_switch_event *se = data;
8638 struct perf_output_handle handle;
8639 struct perf_sample_data sample;
8640 int ret;
8641
8642 if (!perf_event_switch_match(event))
8643 return;
8644
8645 /* Only CPU-wide events are allowed to see next/prev pid/tid */
8646 if (event->ctx->task) {
8647 se->event_id.header.type = PERF_RECORD_SWITCH;
8648 se->event_id.header.size = sizeof(se->event_id.header);
8649 } else {
8650 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8651 se->event_id.header.size = sizeof(se->event_id);
8652 se->event_id.next_prev_pid =
8653 perf_event_pid(event, se->next_prev);
8654 se->event_id.next_prev_tid =
8655 perf_event_tid(event, se->next_prev);
8656 }
8657
8658 perf_event_header__init_id(&se->event_id.header, &sample, event);
8659
267fb273 8660 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
45ac1403
AH
8661 if (ret)
8662 return;
8663
8664 if (event->ctx->task)
8665 perf_output_put(&handle, se->event_id.header);
8666 else
8667 perf_output_put(&handle, se->event_id);
8668
8669 perf_event__output_id_sample(event, &handle, &sample);
8670
8671 perf_output_end(&handle);
8672}
8673
8674static void perf_event_switch(struct task_struct *task,
8675 struct task_struct *next_prev, bool sched_in)
8676{
8677 struct perf_switch_event switch_event;
8678
8679 /* N.B. caller checks nr_switch_events != 0 */
8680
8681 switch_event = (struct perf_switch_event){
8682 .task = task,
8683 .next_prev = next_prev,
8684 .event_id = {
8685 .header = {
8686 /* .type */
8687 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8688 /* .size */
8689 },
8690 /* .next_prev_pid */
8691 /* .next_prev_tid */
8692 },
8693 };
8694
101592b4
AB
8695 if (!sched_in && task->state == TASK_RUNNING)
8696 switch_event.event_id.header.misc |=
8697 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8698
aab5b71e 8699 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
8700 &switch_event,
8701 NULL);
8702}
8703
a78ac325
PZ
8704/*
8705 * IRQ throttle logging
8706 */
8707
cdd6c482 8708static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
8709{
8710 struct perf_output_handle handle;
c980d109 8711 struct perf_sample_data sample;
a78ac325
PZ
8712 int ret;
8713
8714 struct {
8715 struct perf_event_header header;
8716 u64 time;
cca3f454 8717 u64 id;
7f453c24 8718 u64 stream_id;
a78ac325
PZ
8719 } throttle_event = {
8720 .header = {
cdd6c482 8721 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
8722 .misc = 0,
8723 .size = sizeof(throttle_event),
8724 },
34f43927 8725 .time = perf_event_clock(event),
cdd6c482
IM
8726 .id = primary_event_id(event),
8727 .stream_id = event->id,
a78ac325
PZ
8728 };
8729
966ee4d6 8730 if (enable)
cdd6c482 8731 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 8732
c980d109
ACM
8733 perf_event_header__init_id(&throttle_event.header, &sample, event);
8734
267fb273 8735 ret = perf_output_begin(&handle, &sample, event,
a7ac67ea 8736 throttle_event.header.size);
a78ac325
PZ
8737 if (ret)
8738 return;
8739
8740 perf_output_put(&handle, throttle_event);
c980d109 8741 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
8742 perf_output_end(&handle);
8743}
8744
76193a94
SL
8745/*
8746 * ksymbol register/unregister tracking
8747 */
8748
8749struct perf_ksymbol_event {
8750 const char *name;
8751 int name_len;
8752 struct {
8753 struct perf_event_header header;
8754 u64 addr;
8755 u32 len;
8756 u16 ksym_type;
8757 u16 flags;
8758 } event_id;
8759};
8760
8761static int perf_event_ksymbol_match(struct perf_event *event)
8762{
8763 return event->attr.ksymbol;
8764}
8765
8766static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8767{
8768 struct perf_ksymbol_event *ksymbol_event = data;
8769 struct perf_output_handle handle;
8770 struct perf_sample_data sample;
8771 int ret;
8772
8773 if (!perf_event_ksymbol_match(event))
8774 return;
8775
8776 perf_event_header__init_id(&ksymbol_event->event_id.header,
8777 &sample, event);
267fb273 8778 ret = perf_output_begin(&handle, &sample, event,
76193a94
SL
8779 ksymbol_event->event_id.header.size);
8780 if (ret)
8781 return;
8782
8783 perf_output_put(&handle, ksymbol_event->event_id);
8784 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8785 perf_event__output_id_sample(event, &handle, &sample);
8786
8787 perf_output_end(&handle);
8788}
8789
8790void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8791 const char *sym)
8792{
8793 struct perf_ksymbol_event ksymbol_event;
8794 char name[KSYM_NAME_LEN];
8795 u16 flags = 0;
8796 int name_len;
8797
8798 if (!atomic_read(&nr_ksymbol_events))
8799 return;
8800
8801 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8802 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8803 goto err;
8804
8805 strlcpy(name, sym, KSYM_NAME_LEN);
8806 name_len = strlen(name) + 1;
8807 while (!IS_ALIGNED(name_len, sizeof(u64)))
8808 name[name_len++] = '\0';
8809 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8810
8811 if (unregister)
8812 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8813
8814 ksymbol_event = (struct perf_ksymbol_event){
8815 .name = name,
8816 .name_len = name_len,
8817 .event_id = {
8818 .header = {
8819 .type = PERF_RECORD_KSYMBOL,
8820 .size = sizeof(ksymbol_event.event_id) +
8821 name_len,
8822 },
8823 .addr = addr,
8824 .len = len,
8825 .ksym_type = ksym_type,
8826 .flags = flags,
8827 },
8828 };
8829
8830 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8831 return;
8832err:
8833 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8834}
8835
6ee52e2a
SL
8836/*
8837 * bpf program load/unload tracking
8838 */
8839
8840struct perf_bpf_event {
8841 struct bpf_prog *prog;
8842 struct {
8843 struct perf_event_header header;
8844 u16 type;
8845 u16 flags;
8846 u32 id;
8847 u8 tag[BPF_TAG_SIZE];
8848 } event_id;
8849};
8850
8851static int perf_event_bpf_match(struct perf_event *event)
8852{
8853 return event->attr.bpf_event;
8854}
8855
8856static void perf_event_bpf_output(struct perf_event *event, void *data)
8857{
8858 struct perf_bpf_event *bpf_event = data;
8859 struct perf_output_handle handle;
8860 struct perf_sample_data sample;
8861 int ret;
8862
8863 if (!perf_event_bpf_match(event))
8864 return;
8865
8866 perf_event_header__init_id(&bpf_event->event_id.header,
8867 &sample, event);
267fb273 8868 ret = perf_output_begin(&handle, data, event,
6ee52e2a
SL
8869 bpf_event->event_id.header.size);
8870 if (ret)
8871 return;
8872
8873 perf_output_put(&handle, bpf_event->event_id);
8874 perf_event__output_id_sample(event, &handle, &sample);
8875
8876 perf_output_end(&handle);
8877}
8878
8879static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8880 enum perf_bpf_event_type type)
8881{
8882 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
6ee52e2a
SL
8883 int i;
8884
8885 if (prog->aux->func_cnt == 0) {
6ee52e2a
SL
8886 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8887 (u64)(unsigned long)prog->bpf_func,
bfea9a85
JO
8888 prog->jited_len, unregister,
8889 prog->aux->ksym.name);
6ee52e2a
SL
8890 } else {
8891 for (i = 0; i < prog->aux->func_cnt; i++) {
8892 struct bpf_prog *subprog = prog->aux->func[i];
8893
6ee52e2a
SL
8894 perf_event_ksymbol(
8895 PERF_RECORD_KSYMBOL_TYPE_BPF,
8896 (u64)(unsigned long)subprog->bpf_func,
bfea9a85
JO
8897 subprog->jited_len, unregister,
8898 prog->aux->ksym.name);
6ee52e2a
SL
8899 }
8900 }
8901}
8902
8903void perf_event_bpf_event(struct bpf_prog *prog,
8904 enum perf_bpf_event_type type,
8905 u16 flags)
8906{
8907 struct perf_bpf_event bpf_event;
8908
8909 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8910 type >= PERF_BPF_EVENT_MAX)
8911 return;
8912
8913 switch (type) {
8914 case PERF_BPF_EVENT_PROG_LOAD:
8915 case PERF_BPF_EVENT_PROG_UNLOAD:
8916 if (atomic_read(&nr_ksymbol_events))
8917 perf_event_bpf_emit_ksymbols(prog, type);
8918 break;
8919 default:
8920 break;
8921 }
8922
8923 if (!atomic_read(&nr_bpf_events))
8924 return;
8925
8926 bpf_event = (struct perf_bpf_event){
8927 .prog = prog,
8928 .event_id = {
8929 .header = {
8930 .type = PERF_RECORD_BPF_EVENT,
8931 .size = sizeof(bpf_event.event_id),
8932 },
8933 .type = type,
8934 .flags = flags,
8935 .id = prog->aux->id,
8936 },
8937 };
8938
8939 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8940
8941 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8942 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8943}
8944
e17d43b9
AH
8945struct perf_text_poke_event {
8946 const void *old_bytes;
8947 const void *new_bytes;
8948 size_t pad;
8949 u16 old_len;
8950 u16 new_len;
8951
8952 struct {
8953 struct perf_event_header header;
8954
8955 u64 addr;
8956 } event_id;
8957};
8958
8959static int perf_event_text_poke_match(struct perf_event *event)
8960{
8961 return event->attr.text_poke;
8962}
8963
8964static void perf_event_text_poke_output(struct perf_event *event, void *data)
8965{
8966 struct perf_text_poke_event *text_poke_event = data;
8967 struct perf_output_handle handle;
8968 struct perf_sample_data sample;
8969 u64 padding = 0;
8970 int ret;
8971
8972 if (!perf_event_text_poke_match(event))
8973 return;
8974
8975 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8976
267fb273
PZ
8977 ret = perf_output_begin(&handle, &sample, event,
8978 text_poke_event->event_id.header.size);
e17d43b9
AH
8979 if (ret)
8980 return;
8981
8982 perf_output_put(&handle, text_poke_event->event_id);
8983 perf_output_put(&handle, text_poke_event->old_len);
8984 perf_output_put(&handle, text_poke_event->new_len);
8985
8986 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8987 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8988
8989 if (text_poke_event->pad)
8990 __output_copy(&handle, &padding, text_poke_event->pad);
8991
8992 perf_event__output_id_sample(event, &handle, &sample);
8993
8994 perf_output_end(&handle);
8995}
8996
8997void perf_event_text_poke(const void *addr, const void *old_bytes,
8998 size_t old_len, const void *new_bytes, size_t new_len)
8999{
9000 struct perf_text_poke_event text_poke_event;
9001 size_t tot, pad;
9002
9003 if (!atomic_read(&nr_text_poke_events))
9004 return;
9005
9006 tot = sizeof(text_poke_event.old_len) + old_len;
9007 tot += sizeof(text_poke_event.new_len) + new_len;
9008 pad = ALIGN(tot, sizeof(u64)) - tot;
9009
9010 text_poke_event = (struct perf_text_poke_event){
9011 .old_bytes = old_bytes,
9012 .new_bytes = new_bytes,
9013 .pad = pad,
9014 .old_len = old_len,
9015 .new_len = new_len,
9016 .event_id = {
9017 .header = {
9018 .type = PERF_RECORD_TEXT_POKE,
9019 .misc = PERF_RECORD_MISC_KERNEL,
9020 .size = sizeof(text_poke_event.event_id) + tot + pad,
9021 },
9022 .addr = (unsigned long)addr,
9023 },
9024 };
9025
9026 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9027}
9028
8d4e6c4c
AS
9029void perf_event_itrace_started(struct perf_event *event)
9030{
9031 event->attach_state |= PERF_ATTACH_ITRACE;
9032}
9033
ec0d7729
AS
9034static void perf_log_itrace_start(struct perf_event *event)
9035{
9036 struct perf_output_handle handle;
9037 struct perf_sample_data sample;
9038 struct perf_aux_event {
9039 struct perf_event_header header;
9040 u32 pid;
9041 u32 tid;
9042 } rec;
9043 int ret;
9044
9045 if (event->parent)
9046 event = event->parent;
9047
9048 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 9049 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
9050 return;
9051
ec0d7729
AS
9052 rec.header.type = PERF_RECORD_ITRACE_START;
9053 rec.header.misc = 0;
9054 rec.header.size = sizeof(rec);
9055 rec.pid = perf_event_pid(event, current);
9056 rec.tid = perf_event_tid(event, current);
9057
9058 perf_event_header__init_id(&rec.header, &sample, event);
267fb273 9059 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
ec0d7729
AS
9060
9061 if (ret)
9062 return;
9063
9064 perf_output_put(&handle, rec);
9065 perf_event__output_id_sample(event, &handle, &sample);
9066
9067 perf_output_end(&handle);
9068}
9069
475113d9
JO
9070static int
9071__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 9072{
cdd6c482 9073 struct hw_perf_event *hwc = &event->hw;
79f14641 9074 int ret = 0;
475113d9 9075 u64 seq;
96398826 9076
e050e3f0
SE
9077 seq = __this_cpu_read(perf_throttled_seq);
9078 if (seq != hwc->interrupts_seq) {
9079 hwc->interrupts_seq = seq;
9080 hwc->interrupts = 1;
9081 } else {
9082 hwc->interrupts++;
9083 if (unlikely(throttle
9084 && hwc->interrupts >= max_samples_per_tick)) {
9085 __this_cpu_inc(perf_throttled_count);
555e0c1e 9086 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
9087 hwc->interrupts = MAX_INTERRUPTS;
9088 perf_log_throttle(event, 0);
a78ac325
PZ
9089 ret = 1;
9090 }
e050e3f0 9091 }
60db5e09 9092
cdd6c482 9093 if (event->attr.freq) {
def0a9b2 9094 u64 now = perf_clock();
abd50713 9095 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 9096
abd50713 9097 hwc->freq_time_stamp = now;
bd2b5b12 9098
abd50713 9099 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 9100 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
9101 }
9102
475113d9
JO
9103 return ret;
9104}
9105
9106int perf_event_account_interrupt(struct perf_event *event)
9107{
9108 return __perf_event_account_interrupt(event, 1);
9109}
9110
9111/*
9112 * Generic event overflow handling, sampling.
9113 */
9114
9115static int __perf_event_overflow(struct perf_event *event,
9116 int throttle, struct perf_sample_data *data,
9117 struct pt_regs *regs)
9118{
9119 int events = atomic_read(&event->event_limit);
9120 int ret = 0;
9121
9122 /*
9123 * Non-sampling counters might still use the PMI to fold short
9124 * hardware counters, ignore those.
9125 */
9126 if (unlikely(!is_sampling_event(event)))
9127 return 0;
9128
9129 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 9130
2023b359
PZ
9131 /*
9132 * XXX event_limit might not quite work as expected on inherited
cdd6c482 9133 * events
2023b359
PZ
9134 */
9135
cdd6c482
IM
9136 event->pending_kill = POLL_IN;
9137 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 9138 ret = 1;
cdd6c482 9139 event->pending_kill = POLL_HUP;
97ba62b2 9140 event->pending_addr = data->addr;
5aab90ce
JO
9141
9142 perf_event_disable_inatomic(event);
79f14641
PZ
9143 }
9144
aa6a5f3c 9145 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 9146
fed66e2c 9147 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
9148 event->pending_wakeup = 1;
9149 irq_work_queue(&event->pending);
f506b3dc
PZ
9150 }
9151
79f14641 9152 return ret;
f6c7d5fe
PZ
9153}
9154
a8b0ca17 9155int perf_event_overflow(struct perf_event *event,
5622f295
MM
9156 struct perf_sample_data *data,
9157 struct pt_regs *regs)
850bc73f 9158{
a8b0ca17 9159 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
9160}
9161
15dbf27c 9162/*
cdd6c482 9163 * Generic software event infrastructure
15dbf27c
PZ
9164 */
9165
b28ab83c
PZ
9166struct swevent_htable {
9167 struct swevent_hlist *swevent_hlist;
9168 struct mutex hlist_mutex;
9169 int hlist_refcount;
9170
9171 /* Recursion avoidance in each contexts */
9172 int recursion[PERF_NR_CONTEXTS];
9173};
9174
9175static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9176
7b4b6658 9177/*
cdd6c482
IM
9178 * We directly increment event->count and keep a second value in
9179 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
9180 * is kept in the range [-sample_period, 0] so that we can use the
9181 * sign as trigger.
9182 */
9183
ab573844 9184u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 9185{
cdd6c482 9186 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
9187 u64 period = hwc->last_period;
9188 u64 nr, offset;
9189 s64 old, val;
9190
9191 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
9192
9193again:
e7850595 9194 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
9195 if (val < 0)
9196 return 0;
15dbf27c 9197
7b4b6658
PZ
9198 nr = div64_u64(period + val, period);
9199 offset = nr * period;
9200 val -= offset;
e7850595 9201 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 9202 goto again;
15dbf27c 9203
7b4b6658 9204 return nr;
15dbf27c
PZ
9205}
9206
0cff784a 9207static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 9208 struct perf_sample_data *data,
5622f295 9209 struct pt_regs *regs)
15dbf27c 9210{
cdd6c482 9211 struct hw_perf_event *hwc = &event->hw;
850bc73f 9212 int throttle = 0;
15dbf27c 9213
0cff784a
PZ
9214 if (!overflow)
9215 overflow = perf_swevent_set_period(event);
15dbf27c 9216
7b4b6658
PZ
9217 if (hwc->interrupts == MAX_INTERRUPTS)
9218 return;
15dbf27c 9219
7b4b6658 9220 for (; overflow; overflow--) {
a8b0ca17 9221 if (__perf_event_overflow(event, throttle,
5622f295 9222 data, regs)) {
7b4b6658
PZ
9223 /*
9224 * We inhibit the overflow from happening when
9225 * hwc->interrupts == MAX_INTERRUPTS.
9226 */
9227 break;
9228 }
cf450a73 9229 throttle = 1;
7b4b6658 9230 }
15dbf27c
PZ
9231}
9232
a4eaf7f1 9233static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 9234 struct perf_sample_data *data,
5622f295 9235 struct pt_regs *regs)
7b4b6658 9236{
cdd6c482 9237 struct hw_perf_event *hwc = &event->hw;
d6d020e9 9238
e7850595 9239 local64_add(nr, &event->count);
d6d020e9 9240
0cff784a
PZ
9241 if (!regs)
9242 return;
9243
6c7e550f 9244 if (!is_sampling_event(event))
7b4b6658 9245 return;
d6d020e9 9246
5d81e5cf
AV
9247 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9248 data->period = nr;
9249 return perf_swevent_overflow(event, 1, data, regs);
9250 } else
9251 data->period = event->hw.last_period;
9252
0cff784a 9253 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 9254 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 9255
e7850595 9256 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 9257 return;
df1a132b 9258
a8b0ca17 9259 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
9260}
9261
f5ffe02e
FW
9262static int perf_exclude_event(struct perf_event *event,
9263 struct pt_regs *regs)
9264{
a4eaf7f1 9265 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 9266 return 1;
a4eaf7f1 9267
f5ffe02e
FW
9268 if (regs) {
9269 if (event->attr.exclude_user && user_mode(regs))
9270 return 1;
9271
9272 if (event->attr.exclude_kernel && !user_mode(regs))
9273 return 1;
9274 }
9275
9276 return 0;
9277}
9278
cdd6c482 9279static int perf_swevent_match(struct perf_event *event,
1c432d89 9280 enum perf_type_id type,
6fb2915d
LZ
9281 u32 event_id,
9282 struct perf_sample_data *data,
9283 struct pt_regs *regs)
15dbf27c 9284{
cdd6c482 9285 if (event->attr.type != type)
a21ca2ca 9286 return 0;
f5ffe02e 9287
cdd6c482 9288 if (event->attr.config != event_id)
15dbf27c
PZ
9289 return 0;
9290
f5ffe02e
FW
9291 if (perf_exclude_event(event, regs))
9292 return 0;
15dbf27c
PZ
9293
9294 return 1;
9295}
9296
76e1d904
FW
9297static inline u64 swevent_hash(u64 type, u32 event_id)
9298{
9299 u64 val = event_id | (type << 32);
9300
9301 return hash_64(val, SWEVENT_HLIST_BITS);
9302}
9303
49f135ed
FW
9304static inline struct hlist_head *
9305__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 9306{
49f135ed
FW
9307 u64 hash = swevent_hash(type, event_id);
9308
9309 return &hlist->heads[hash];
9310}
76e1d904 9311
49f135ed
FW
9312/* For the read side: events when they trigger */
9313static inline struct hlist_head *
b28ab83c 9314find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
9315{
9316 struct swevent_hlist *hlist;
76e1d904 9317
b28ab83c 9318 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
9319 if (!hlist)
9320 return NULL;
9321
49f135ed
FW
9322 return __find_swevent_head(hlist, type, event_id);
9323}
9324
9325/* For the event head insertion and removal in the hlist */
9326static inline struct hlist_head *
b28ab83c 9327find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
9328{
9329 struct swevent_hlist *hlist;
9330 u32 event_id = event->attr.config;
9331 u64 type = event->attr.type;
9332
9333 /*
9334 * Event scheduling is always serialized against hlist allocation
9335 * and release. Which makes the protected version suitable here.
9336 * The context lock guarantees that.
9337 */
b28ab83c 9338 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
9339 lockdep_is_held(&event->ctx->lock));
9340 if (!hlist)
9341 return NULL;
9342
9343 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
9344}
9345
9346static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 9347 u64 nr,
76e1d904
FW
9348 struct perf_sample_data *data,
9349 struct pt_regs *regs)
15dbf27c 9350{
4a32fea9 9351 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 9352 struct perf_event *event;
76e1d904 9353 struct hlist_head *head;
15dbf27c 9354
76e1d904 9355 rcu_read_lock();
b28ab83c 9356 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
9357 if (!head)
9358 goto end;
9359
b67bfe0d 9360 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 9361 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 9362 perf_swevent_event(event, nr, data, regs);
15dbf27c 9363 }
76e1d904
FW
9364end:
9365 rcu_read_unlock();
15dbf27c
PZ
9366}
9367
86038c5e
PZI
9368DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9369
4ed7c92d 9370int perf_swevent_get_recursion_context(void)
96f6d444 9371{
4a32fea9 9372 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 9373
b28ab83c 9374 return get_recursion_context(swhash->recursion);
96f6d444 9375}
645e8cc0 9376EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 9377
98b5c2c6 9378void perf_swevent_put_recursion_context(int rctx)
15dbf27c 9379{
4a32fea9 9380 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 9381
b28ab83c 9382 put_recursion_context(swhash->recursion, rctx);
ce71b9df 9383}
15dbf27c 9384
86038c5e 9385void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 9386{
a4234bfc 9387 struct perf_sample_data data;
4ed7c92d 9388
86038c5e 9389 if (WARN_ON_ONCE(!regs))
4ed7c92d 9390 return;
a4234bfc 9391
fd0d000b 9392 perf_sample_data_init(&data, addr, 0);
a8b0ca17 9393 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
9394}
9395
9396void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9397{
9398 int rctx;
9399
9400 preempt_disable_notrace();
9401 rctx = perf_swevent_get_recursion_context();
9402 if (unlikely(rctx < 0))
9403 goto fail;
9404
9405 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
9406
9407 perf_swevent_put_recursion_context(rctx);
86038c5e 9408fail:
1c024eca 9409 preempt_enable_notrace();
b8e83514
PZ
9410}
9411
cdd6c482 9412static void perf_swevent_read(struct perf_event *event)
15dbf27c 9413{
15dbf27c
PZ
9414}
9415
a4eaf7f1 9416static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 9417{
4a32fea9 9418 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 9419 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
9420 struct hlist_head *head;
9421
6c7e550f 9422 if (is_sampling_event(event)) {
7b4b6658 9423 hwc->last_period = hwc->sample_period;
cdd6c482 9424 perf_swevent_set_period(event);
7b4b6658 9425 }
76e1d904 9426
a4eaf7f1
PZ
9427 hwc->state = !(flags & PERF_EF_START);
9428
b28ab83c 9429 head = find_swevent_head(swhash, event);
12ca6ad2 9430 if (WARN_ON_ONCE(!head))
76e1d904
FW
9431 return -EINVAL;
9432
9433 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 9434 perf_event_update_userpage(event);
76e1d904 9435
15dbf27c
PZ
9436 return 0;
9437}
9438
a4eaf7f1 9439static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 9440{
76e1d904 9441 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
9442}
9443
a4eaf7f1 9444static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 9445{
a4eaf7f1 9446 event->hw.state = 0;
d6d020e9 9447}
aa9c4c0f 9448
a4eaf7f1 9449static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 9450{
a4eaf7f1 9451 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
9452}
9453
49f135ed
FW
9454/* Deref the hlist from the update side */
9455static inline struct swevent_hlist *
b28ab83c 9456swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 9457{
b28ab83c
PZ
9458 return rcu_dereference_protected(swhash->swevent_hlist,
9459 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
9460}
9461
b28ab83c 9462static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 9463{
b28ab83c 9464 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 9465
49f135ed 9466 if (!hlist)
76e1d904
FW
9467 return;
9468
70691d4a 9469 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 9470 kfree_rcu(hlist, rcu_head);
76e1d904
FW
9471}
9472
3b364d7b 9473static void swevent_hlist_put_cpu(int cpu)
76e1d904 9474{
b28ab83c 9475 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 9476
b28ab83c 9477 mutex_lock(&swhash->hlist_mutex);
76e1d904 9478
b28ab83c
PZ
9479 if (!--swhash->hlist_refcount)
9480 swevent_hlist_release(swhash);
76e1d904 9481
b28ab83c 9482 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
9483}
9484
3b364d7b 9485static void swevent_hlist_put(void)
76e1d904
FW
9486{
9487 int cpu;
9488
76e1d904 9489 for_each_possible_cpu(cpu)
3b364d7b 9490 swevent_hlist_put_cpu(cpu);
76e1d904
FW
9491}
9492
3b364d7b 9493static int swevent_hlist_get_cpu(int cpu)
76e1d904 9494{
b28ab83c 9495 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
9496 int err = 0;
9497
b28ab83c 9498 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
9499 if (!swevent_hlist_deref(swhash) &&
9500 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
9501 struct swevent_hlist *hlist;
9502
9503 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9504 if (!hlist) {
9505 err = -ENOMEM;
9506 goto exit;
9507 }
b28ab83c 9508 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9509 }
b28ab83c 9510 swhash->hlist_refcount++;
9ed6060d 9511exit:
b28ab83c 9512 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
9513
9514 return err;
9515}
9516
3b364d7b 9517static int swevent_hlist_get(void)
76e1d904 9518{
3b364d7b 9519 int err, cpu, failed_cpu;
76e1d904 9520
a63fbed7 9521 mutex_lock(&pmus_lock);
76e1d904 9522 for_each_possible_cpu(cpu) {
3b364d7b 9523 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
9524 if (err) {
9525 failed_cpu = cpu;
9526 goto fail;
9527 }
9528 }
a63fbed7 9529 mutex_unlock(&pmus_lock);
76e1d904 9530 return 0;
9ed6060d 9531fail:
76e1d904
FW
9532 for_each_possible_cpu(cpu) {
9533 if (cpu == failed_cpu)
9534 break;
3b364d7b 9535 swevent_hlist_put_cpu(cpu);
76e1d904 9536 }
a63fbed7 9537 mutex_unlock(&pmus_lock);
76e1d904
FW
9538 return err;
9539}
9540
c5905afb 9541struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 9542
b0a873eb
PZ
9543static void sw_perf_event_destroy(struct perf_event *event)
9544{
9545 u64 event_id = event->attr.config;
95476b64 9546
b0a873eb
PZ
9547 WARN_ON(event->parent);
9548
c5905afb 9549 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 9550 swevent_hlist_put();
b0a873eb
PZ
9551}
9552
9553static int perf_swevent_init(struct perf_event *event)
9554{
8176cced 9555 u64 event_id = event->attr.config;
b0a873eb
PZ
9556
9557 if (event->attr.type != PERF_TYPE_SOFTWARE)
9558 return -ENOENT;
9559
2481c5fa
SE
9560 /*
9561 * no branch sampling for software events
9562 */
9563 if (has_branch_stack(event))
9564 return -EOPNOTSUPP;
9565
b0a873eb
PZ
9566 switch (event_id) {
9567 case PERF_COUNT_SW_CPU_CLOCK:
9568 case PERF_COUNT_SW_TASK_CLOCK:
9569 return -ENOENT;
9570
9571 default:
9572 break;
9573 }
9574
ce677831 9575 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
9576 return -ENOENT;
9577
9578 if (!event->parent) {
9579 int err;
9580
3b364d7b 9581 err = swevent_hlist_get();
b0a873eb
PZ
9582 if (err)
9583 return err;
9584
c5905afb 9585 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
9586 event->destroy = sw_perf_event_destroy;
9587 }
9588
9589 return 0;
9590}
9591
9592static struct pmu perf_swevent = {
89a1e187 9593 .task_ctx_nr = perf_sw_context,
95476b64 9594
34f43927
PZ
9595 .capabilities = PERF_PMU_CAP_NO_NMI,
9596
b0a873eb 9597 .event_init = perf_swevent_init,
a4eaf7f1
PZ
9598 .add = perf_swevent_add,
9599 .del = perf_swevent_del,
9600 .start = perf_swevent_start,
9601 .stop = perf_swevent_stop,
1c024eca 9602 .read = perf_swevent_read,
1c024eca
PZ
9603};
9604
b0a873eb
PZ
9605#ifdef CONFIG_EVENT_TRACING
9606
1c024eca
PZ
9607static int perf_tp_filter_match(struct perf_event *event,
9608 struct perf_sample_data *data)
9609{
7e3f977e 9610 void *record = data->raw->frag.data;
1c024eca 9611
b71b437e
PZ
9612 /* only top level events have filters set */
9613 if (event->parent)
9614 event = event->parent;
9615
1c024eca
PZ
9616 if (likely(!event->filter) || filter_match_preds(event->filter, record))
9617 return 1;
9618 return 0;
9619}
9620
9621static int perf_tp_event_match(struct perf_event *event,
9622 struct perf_sample_data *data,
9623 struct pt_regs *regs)
9624{
a0f7d0f7
FW
9625 if (event->hw.state & PERF_HES_STOPPED)
9626 return 0;
580d607c 9627 /*
9fd2e48b 9628 * If exclude_kernel, only trace user-space tracepoints (uprobes)
580d607c 9629 */
9fd2e48b 9630 if (event->attr.exclude_kernel && !user_mode(regs))
1c024eca
PZ
9631 return 0;
9632
9633 if (!perf_tp_filter_match(event, data))
9634 return 0;
9635
9636 return 1;
9637}
9638
85b67bcb
AS
9639void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9640 struct trace_event_call *call, u64 count,
9641 struct pt_regs *regs, struct hlist_head *head,
9642 struct task_struct *task)
9643{
e87c6bc3 9644 if (bpf_prog_array_valid(call)) {
85b67bcb 9645 *(struct pt_regs **)raw_data = regs;
e87c6bc3 9646 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
9647 perf_swevent_put_recursion_context(rctx);
9648 return;
9649 }
9650 }
9651 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 9652 rctx, task);
85b67bcb
AS
9653}
9654EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9655
1e1dcd93 9656void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 9657 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 9658 struct task_struct *task)
95476b64
FW
9659{
9660 struct perf_sample_data data;
8fd0fbbe 9661 struct perf_event *event;
1c024eca 9662
95476b64 9663 struct perf_raw_record raw = {
7e3f977e
DB
9664 .frag = {
9665 .size = entry_size,
9666 .data = record,
9667 },
95476b64
FW
9668 };
9669
1e1dcd93 9670 perf_sample_data_init(&data, 0, 0);
95476b64
FW
9671 data.raw = &raw;
9672
1e1dcd93
AS
9673 perf_trace_buf_update(record, event_type);
9674
8fd0fbbe 9675 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 9676 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 9677 perf_swevent_event(event, count, &data, regs);
4f41c013 9678 }
ecc55f84 9679
e6dab5ff
AV
9680 /*
9681 * If we got specified a target task, also iterate its context and
9682 * deliver this event there too.
9683 */
9684 if (task && task != current) {
9685 struct perf_event_context *ctx;
9686 struct trace_entry *entry = record;
9687
9688 rcu_read_lock();
9689 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9690 if (!ctx)
9691 goto unlock;
9692
9693 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cd6fb677
JO
9694 if (event->cpu != smp_processor_id())
9695 continue;
e6dab5ff
AV
9696 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9697 continue;
9698 if (event->attr.config != entry->type)
9699 continue;
9700 if (perf_tp_event_match(event, &data, regs))
9701 perf_swevent_event(event, count, &data, regs);
9702 }
9703unlock:
9704 rcu_read_unlock();
9705 }
9706
ecc55f84 9707 perf_swevent_put_recursion_context(rctx);
95476b64
FW
9708}
9709EXPORT_SYMBOL_GPL(perf_tp_event);
9710
cdd6c482 9711static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 9712{
1c024eca 9713 perf_trace_destroy(event);
e077df4f
PZ
9714}
9715
b0a873eb 9716static int perf_tp_event_init(struct perf_event *event)
e077df4f 9717{
76e1d904
FW
9718 int err;
9719
b0a873eb
PZ
9720 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9721 return -ENOENT;
9722
2481c5fa
SE
9723 /*
9724 * no branch sampling for tracepoint events
9725 */
9726 if (has_branch_stack(event))
9727 return -EOPNOTSUPP;
9728
1c024eca
PZ
9729 err = perf_trace_init(event);
9730 if (err)
b0a873eb 9731 return err;
e077df4f 9732
cdd6c482 9733 event->destroy = tp_perf_event_destroy;
e077df4f 9734
b0a873eb
PZ
9735 return 0;
9736}
9737
9738static struct pmu perf_tracepoint = {
89a1e187
PZ
9739 .task_ctx_nr = perf_sw_context,
9740
b0a873eb 9741 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
9742 .add = perf_trace_add,
9743 .del = perf_trace_del,
9744 .start = perf_swevent_start,
9745 .stop = perf_swevent_stop,
b0a873eb 9746 .read = perf_swevent_read,
b0a873eb
PZ
9747};
9748
33ea4b24 9749#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
9750/*
9751 * Flags in config, used by dynamic PMU kprobe and uprobe
9752 * The flags should match following PMU_FORMAT_ATTR().
9753 *
9754 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9755 * if not set, create kprobe/uprobe
a6ca88b2
SL
9756 *
9757 * The following values specify a reference counter (or semaphore in the
9758 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9759 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9760 *
9761 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
9762 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
e12f03d7
SL
9763 */
9764enum perf_probe_config {
9765 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
a6ca88b2
SL
9766 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9767 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
e12f03d7
SL
9768};
9769
9770PMU_FORMAT_ATTR(retprobe, "config:0");
a6ca88b2 9771#endif
e12f03d7 9772
a6ca88b2
SL
9773#ifdef CONFIG_KPROBE_EVENTS
9774static struct attribute *kprobe_attrs[] = {
e12f03d7
SL
9775 &format_attr_retprobe.attr,
9776 NULL,
9777};
9778
a6ca88b2 9779static struct attribute_group kprobe_format_group = {
e12f03d7 9780 .name = "format",
a6ca88b2 9781 .attrs = kprobe_attrs,
e12f03d7
SL
9782};
9783
a6ca88b2
SL
9784static const struct attribute_group *kprobe_attr_groups[] = {
9785 &kprobe_format_group,
e12f03d7
SL
9786 NULL,
9787};
9788
9789static int perf_kprobe_event_init(struct perf_event *event);
9790static struct pmu perf_kprobe = {
9791 .task_ctx_nr = perf_sw_context,
9792 .event_init = perf_kprobe_event_init,
9793 .add = perf_trace_add,
9794 .del = perf_trace_del,
9795 .start = perf_swevent_start,
9796 .stop = perf_swevent_stop,
9797 .read = perf_swevent_read,
a6ca88b2 9798 .attr_groups = kprobe_attr_groups,
e12f03d7
SL
9799};
9800
9801static int perf_kprobe_event_init(struct perf_event *event)
9802{
9803 int err;
9804 bool is_retprobe;
9805
9806 if (event->attr.type != perf_kprobe.type)
9807 return -ENOENT;
32e6e967 9808
c9e0924e 9809 if (!perfmon_capable())
32e6e967
SL
9810 return -EACCES;
9811
e12f03d7
SL
9812 /*
9813 * no branch sampling for probe events
9814 */
9815 if (has_branch_stack(event))
9816 return -EOPNOTSUPP;
9817
9818 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9819 err = perf_kprobe_init(event, is_retprobe);
9820 if (err)
9821 return err;
9822
9823 event->destroy = perf_kprobe_destroy;
9824
9825 return 0;
9826}
9827#endif /* CONFIG_KPROBE_EVENTS */
9828
33ea4b24 9829#ifdef CONFIG_UPROBE_EVENTS
a6ca88b2
SL
9830PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9831
9832static struct attribute *uprobe_attrs[] = {
9833 &format_attr_retprobe.attr,
9834 &format_attr_ref_ctr_offset.attr,
9835 NULL,
9836};
9837
9838static struct attribute_group uprobe_format_group = {
9839 .name = "format",
9840 .attrs = uprobe_attrs,
9841};
9842
9843static const struct attribute_group *uprobe_attr_groups[] = {
9844 &uprobe_format_group,
9845 NULL,
9846};
9847
33ea4b24
SL
9848static int perf_uprobe_event_init(struct perf_event *event);
9849static struct pmu perf_uprobe = {
9850 .task_ctx_nr = perf_sw_context,
9851 .event_init = perf_uprobe_event_init,
9852 .add = perf_trace_add,
9853 .del = perf_trace_del,
9854 .start = perf_swevent_start,
9855 .stop = perf_swevent_stop,
9856 .read = perf_swevent_read,
a6ca88b2 9857 .attr_groups = uprobe_attr_groups,
33ea4b24
SL
9858};
9859
9860static int perf_uprobe_event_init(struct perf_event *event)
9861{
9862 int err;
a6ca88b2 9863 unsigned long ref_ctr_offset;
33ea4b24
SL
9864 bool is_retprobe;
9865
9866 if (event->attr.type != perf_uprobe.type)
9867 return -ENOENT;
32e6e967 9868
c9e0924e 9869 if (!perfmon_capable())
32e6e967
SL
9870 return -EACCES;
9871
33ea4b24
SL
9872 /*
9873 * no branch sampling for probe events
9874 */
9875 if (has_branch_stack(event))
9876 return -EOPNOTSUPP;
9877
9878 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
a6ca88b2
SL
9879 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9880 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
33ea4b24
SL
9881 if (err)
9882 return err;
9883
9884 event->destroy = perf_uprobe_destroy;
9885
9886 return 0;
9887}
9888#endif /* CONFIG_UPROBE_EVENTS */
9889
b0a873eb
PZ
9890static inline void perf_tp_register(void)
9891{
2e80a82a 9892 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
9893#ifdef CONFIG_KPROBE_EVENTS
9894 perf_pmu_register(&perf_kprobe, "kprobe", -1);
9895#endif
33ea4b24
SL
9896#ifdef CONFIG_UPROBE_EVENTS
9897 perf_pmu_register(&perf_uprobe, "uprobe", -1);
9898#endif
e077df4f 9899}
6fb2915d 9900
6fb2915d
LZ
9901static void perf_event_free_filter(struct perf_event *event)
9902{
9903 ftrace_profile_free_filter(event);
9904}
9905
aa6a5f3c
AS
9906#ifdef CONFIG_BPF_SYSCALL
9907static void bpf_overflow_handler(struct perf_event *event,
9908 struct perf_sample_data *data,
9909 struct pt_regs *regs)
9910{
9911 struct bpf_perf_event_data_kern ctx = {
9912 .data = data,
7d9285e8 9913 .event = event,
aa6a5f3c
AS
9914 };
9915 int ret = 0;
9916
c895f6f7 9917 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
9918 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9919 goto out;
9920 rcu_read_lock();
88575199 9921 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
9922 rcu_read_unlock();
9923out:
9924 __this_cpu_dec(bpf_prog_active);
aa6a5f3c
AS
9925 if (!ret)
9926 return;
9927
9928 event->orig_overflow_handler(event, data, regs);
9929}
9930
9931static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9932{
9933 struct bpf_prog *prog;
9934
9935 if (event->overflow_handler_context)
9936 /* hw breakpoint or kernel counter */
9937 return -EINVAL;
9938
9939 if (event->prog)
9940 return -EEXIST;
9941
9942 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9943 if (IS_ERR(prog))
9944 return PTR_ERR(prog);
9945
5d99cb2c
SL
9946 if (event->attr.precise_ip &&
9947 prog->call_get_stack &&
9948 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9949 event->attr.exclude_callchain_kernel ||
9950 event->attr.exclude_callchain_user)) {
9951 /*
9952 * On perf_event with precise_ip, calling bpf_get_stack()
9953 * may trigger unwinder warnings and occasional crashes.
9954 * bpf_get_[stack|stackid] works around this issue by using
9955 * callchain attached to perf_sample_data. If the
9956 * perf_event does not full (kernel and user) callchain
9957 * attached to perf_sample_data, do not allow attaching BPF
9958 * program that calls bpf_get_[stack|stackid].
9959 */
9960 bpf_prog_put(prog);
9961 return -EPROTO;
9962 }
9963
aa6a5f3c
AS
9964 event->prog = prog;
9965 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9966 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9967 return 0;
9968}
9969
9970static void perf_event_free_bpf_handler(struct perf_event *event)
9971{
9972 struct bpf_prog *prog = event->prog;
9973
9974 if (!prog)
9975 return;
9976
9977 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9978 event->prog = NULL;
9979 bpf_prog_put(prog);
9980}
9981#else
9982static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9983{
9984 return -EOPNOTSUPP;
9985}
9986static void perf_event_free_bpf_handler(struct perf_event *event)
9987{
9988}
9989#endif
9990
e12f03d7
SL
9991/*
9992 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9993 * with perf_event_open()
9994 */
9995static inline bool perf_event_is_tracing(struct perf_event *event)
9996{
9997 if (event->pmu == &perf_tracepoint)
9998 return true;
9999#ifdef CONFIG_KPROBE_EVENTS
10000 if (event->pmu == &perf_kprobe)
10001 return true;
33ea4b24
SL
10002#endif
10003#ifdef CONFIG_UPROBE_EVENTS
10004 if (event->pmu == &perf_uprobe)
10005 return true;
e12f03d7
SL
10006#endif
10007 return false;
10008}
10009
2541517c
AS
10010static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10011{
cf5f5cea 10012 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 10013 struct bpf_prog *prog;
e87c6bc3 10014 int ret;
2541517c 10015
e12f03d7 10016 if (!perf_event_is_tracing(event))
f91840a3 10017 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 10018
98b5c2c6
AS
10019 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10020 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
10021 is_syscall_tp = is_syscall_trace_event(event->tp_event);
10022 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 10023 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
10024 return -EINVAL;
10025
10026 prog = bpf_prog_get(prog_fd);
10027 if (IS_ERR(prog))
10028 return PTR_ERR(prog);
10029
98b5c2c6 10030 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
10031 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10032 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
10033 /* valid fd, but invalid bpf program type */
10034 bpf_prog_put(prog);
10035 return -EINVAL;
10036 }
10037
9802d865
JB
10038 /* Kprobe override only works for kprobes, not uprobes. */
10039 if (prog->kprobe_override &&
10040 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
10041 bpf_prog_put(prog);
10042 return -EINVAL;
10043 }
10044
cf5f5cea 10045 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
10046 int off = trace_event_get_offsets(event->tp_event);
10047
10048 if (prog->aux->max_ctx_offset > off) {
10049 bpf_prog_put(prog);
10050 return -EACCES;
10051 }
10052 }
2541517c 10053
e87c6bc3
YS
10054 ret = perf_event_attach_bpf_prog(event, prog);
10055 if (ret)
10056 bpf_prog_put(prog);
10057 return ret;
2541517c
AS
10058}
10059
10060static void perf_event_free_bpf_prog(struct perf_event *event)
10061{
e12f03d7 10062 if (!perf_event_is_tracing(event)) {
0b4c6841 10063 perf_event_free_bpf_handler(event);
2541517c 10064 return;
2541517c 10065 }
e87c6bc3 10066 perf_event_detach_bpf_prog(event);
2541517c
AS
10067}
10068
e077df4f 10069#else
6fb2915d 10070
b0a873eb 10071static inline void perf_tp_register(void)
e077df4f 10072{
e077df4f 10073}
6fb2915d 10074
6fb2915d
LZ
10075static void perf_event_free_filter(struct perf_event *event)
10076{
10077}
10078
2541517c
AS
10079static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10080{
10081 return -ENOENT;
10082}
10083
10084static void perf_event_free_bpf_prog(struct perf_event *event)
10085{
10086}
07b139c8 10087#endif /* CONFIG_EVENT_TRACING */
e077df4f 10088
24f1e32c 10089#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 10090void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 10091{
f5ffe02e
FW
10092 struct perf_sample_data sample;
10093 struct pt_regs *regs = data;
10094
fd0d000b 10095 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 10096
a4eaf7f1 10097 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 10098 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
10099}
10100#endif
10101
375637bc
AS
10102/*
10103 * Allocate a new address filter
10104 */
10105static struct perf_addr_filter *
10106perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10107{
10108 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10109 struct perf_addr_filter *filter;
10110
10111 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10112 if (!filter)
10113 return NULL;
10114
10115 INIT_LIST_HEAD(&filter->entry);
10116 list_add_tail(&filter->entry, filters);
10117
10118 return filter;
10119}
10120
10121static void free_filters_list(struct list_head *filters)
10122{
10123 struct perf_addr_filter *filter, *iter;
10124
10125 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 10126 path_put(&filter->path);
375637bc
AS
10127 list_del(&filter->entry);
10128 kfree(filter);
10129 }
10130}
10131
10132/*
10133 * Free existing address filters and optionally install new ones
10134 */
10135static void perf_addr_filters_splice(struct perf_event *event,
10136 struct list_head *head)
10137{
10138 unsigned long flags;
10139 LIST_HEAD(list);
10140
10141 if (!has_addr_filter(event))
10142 return;
10143
10144 /* don't bother with children, they don't have their own filters */
10145 if (event->parent)
10146 return;
10147
10148 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10149
10150 list_splice_init(&event->addr_filters.list, &list);
10151 if (head)
10152 list_splice(head, &event->addr_filters.list);
10153
10154 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10155
10156 free_filters_list(&list);
10157}
10158
10159/*
10160 * Scan through mm's vmas and see if one of them matches the
10161 * @filter; if so, adjust filter's address range.
c1e8d7c6 10162 * Called with mm::mmap_lock down for reading.
375637bc 10163 */
c60f83b8
AS
10164static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10165 struct mm_struct *mm,
10166 struct perf_addr_filter_range *fr)
375637bc
AS
10167{
10168 struct vm_area_struct *vma;
10169
10170 for (vma = mm->mmap; vma; vma = vma->vm_next) {
c60f83b8 10171 if (!vma->vm_file)
375637bc
AS
10172 continue;
10173
c60f83b8
AS
10174 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10175 return;
375637bc 10176 }
375637bc
AS
10177}
10178
10179/*
10180 * Update event's address range filters based on the
10181 * task's existing mappings, if any.
10182 */
10183static void perf_event_addr_filters_apply(struct perf_event *event)
10184{
10185 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10186 struct task_struct *task = READ_ONCE(event->ctx->task);
10187 struct perf_addr_filter *filter;
10188 struct mm_struct *mm = NULL;
10189 unsigned int count = 0;
10190 unsigned long flags;
10191
10192 /*
10193 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10194 * will stop on the parent's child_mutex that our caller is also holding
10195 */
10196 if (task == TASK_TOMBSTONE)
10197 return;
10198
52a44f83
AS
10199 if (ifh->nr_file_filters) {
10200 mm = get_task_mm(event->ctx->task);
10201 if (!mm)
10202 goto restart;
375637bc 10203
d8ed45c5 10204 mmap_read_lock(mm);
52a44f83 10205 }
375637bc
AS
10206
10207 raw_spin_lock_irqsave(&ifh->lock, flags);
10208 list_for_each_entry(filter, &ifh->list, entry) {
52a44f83
AS
10209 if (filter->path.dentry) {
10210 /*
10211 * Adjust base offset if the filter is associated to a
10212 * binary that needs to be mapped:
10213 */
10214 event->addr_filter_ranges[count].start = 0;
10215 event->addr_filter_ranges[count].size = 0;
375637bc 10216
c60f83b8 10217 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
52a44f83
AS
10218 } else {
10219 event->addr_filter_ranges[count].start = filter->offset;
10220 event->addr_filter_ranges[count].size = filter->size;
10221 }
375637bc
AS
10222
10223 count++;
10224 }
10225
10226 event->addr_filters_gen++;
10227 raw_spin_unlock_irqrestore(&ifh->lock, flags);
10228
52a44f83 10229 if (ifh->nr_file_filters) {
d8ed45c5 10230 mmap_read_unlock(mm);
375637bc 10231
52a44f83
AS
10232 mmput(mm);
10233 }
375637bc
AS
10234
10235restart:
767ae086 10236 perf_event_stop(event, 1);
375637bc
AS
10237}
10238
10239/*
10240 * Address range filtering: limiting the data to certain
10241 * instruction address ranges. Filters are ioctl()ed to us from
10242 * userspace as ascii strings.
10243 *
10244 * Filter string format:
10245 *
10246 * ACTION RANGE_SPEC
10247 * where ACTION is one of the
10248 * * "filter": limit the trace to this region
10249 * * "start": start tracing from this address
10250 * * "stop": stop tracing at this address/region;
10251 * RANGE_SPEC is
10252 * * for kernel addresses: <start address>[/<size>]
10253 * * for object files: <start address>[/<size>]@</path/to/object/file>
10254 *
6ed70cf3
AS
10255 * if <size> is not specified or is zero, the range is treated as a single
10256 * address; not valid for ACTION=="filter".
375637bc
AS
10257 */
10258enum {
e96271f3 10259 IF_ACT_NONE = -1,
375637bc
AS
10260 IF_ACT_FILTER,
10261 IF_ACT_START,
10262 IF_ACT_STOP,
10263 IF_SRC_FILE,
10264 IF_SRC_KERNEL,
10265 IF_SRC_FILEADDR,
10266 IF_SRC_KERNELADDR,
10267};
10268
10269enum {
10270 IF_STATE_ACTION = 0,
10271 IF_STATE_SOURCE,
10272 IF_STATE_END,
10273};
10274
10275static const match_table_t if_tokens = {
10276 { IF_ACT_FILTER, "filter" },
10277 { IF_ACT_START, "start" },
10278 { IF_ACT_STOP, "stop" },
10279 { IF_SRC_FILE, "%u/%u@%s" },
10280 { IF_SRC_KERNEL, "%u/%u" },
10281 { IF_SRC_FILEADDR, "%u@%s" },
10282 { IF_SRC_KERNELADDR, "%u" },
e96271f3 10283 { IF_ACT_NONE, NULL },
375637bc
AS
10284};
10285
10286/*
10287 * Address filter string parser
10288 */
10289static int
10290perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10291 struct list_head *filters)
10292{
10293 struct perf_addr_filter *filter = NULL;
10294 char *start, *orig, *filename = NULL;
375637bc
AS
10295 substring_t args[MAX_OPT_ARGS];
10296 int state = IF_STATE_ACTION, token;
10297 unsigned int kernel = 0;
10298 int ret = -EINVAL;
10299
10300 orig = fstr = kstrdup(fstr, GFP_KERNEL);
10301 if (!fstr)
10302 return -ENOMEM;
10303
10304 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
10305 static const enum perf_addr_filter_action_t actions[] = {
10306 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10307 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
10308 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
10309 };
375637bc
AS
10310 ret = -EINVAL;
10311
10312 if (!*start)
10313 continue;
10314
10315 /* filter definition begins */
10316 if (state == IF_STATE_ACTION) {
10317 filter = perf_addr_filter_new(event, filters);
10318 if (!filter)
10319 goto fail;
10320 }
10321
10322 token = match_token(start, if_tokens, args);
10323 switch (token) {
10324 case IF_ACT_FILTER:
10325 case IF_ACT_START:
375637bc
AS
10326 case IF_ACT_STOP:
10327 if (state != IF_STATE_ACTION)
10328 goto fail;
10329
6ed70cf3 10330 filter->action = actions[token];
375637bc
AS
10331 state = IF_STATE_SOURCE;
10332 break;
10333
10334 case IF_SRC_KERNELADDR:
10335 case IF_SRC_KERNEL:
10336 kernel = 1;
df561f66 10337 fallthrough;
375637bc
AS
10338
10339 case IF_SRC_FILEADDR:
10340 case IF_SRC_FILE:
10341 if (state != IF_STATE_SOURCE)
10342 goto fail;
10343
375637bc
AS
10344 *args[0].to = 0;
10345 ret = kstrtoul(args[0].from, 0, &filter->offset);
10346 if (ret)
10347 goto fail;
10348
6ed70cf3 10349 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
10350 *args[1].to = 0;
10351 ret = kstrtoul(args[1].from, 0, &filter->size);
10352 if (ret)
10353 goto fail;
10354 }
10355
4059ffd0 10356 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 10357 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0 10358
7bdb157c 10359 kfree(filename);
4059ffd0 10360 filename = match_strdup(&args[fpos]);
375637bc
AS
10361 if (!filename) {
10362 ret = -ENOMEM;
10363 goto fail;
10364 }
10365 }
10366
10367 state = IF_STATE_END;
10368 break;
10369
10370 default:
10371 goto fail;
10372 }
10373
10374 /*
10375 * Filter definition is fully parsed, validate and install it.
10376 * Make sure that it doesn't contradict itself or the event's
10377 * attribute.
10378 */
10379 if (state == IF_STATE_END) {
9ccbfbb1 10380 ret = -EINVAL;
375637bc
AS
10381 if (kernel && event->attr.exclude_kernel)
10382 goto fail;
10383
6ed70cf3
AS
10384 /*
10385 * ACTION "filter" must have a non-zero length region
10386 * specified.
10387 */
10388 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10389 !filter->size)
10390 goto fail;
10391
375637bc
AS
10392 if (!kernel) {
10393 if (!filename)
10394 goto fail;
10395
6ce77bfd
AS
10396 /*
10397 * For now, we only support file-based filters
10398 * in per-task events; doing so for CPU-wide
10399 * events requires additional context switching
10400 * trickery, since same object code will be
10401 * mapped at different virtual addresses in
10402 * different processes.
10403 */
10404 ret = -EOPNOTSUPP;
10405 if (!event->ctx->task)
7bdb157c 10406 goto fail;
6ce77bfd 10407
375637bc 10408 /* look up the path and grab its inode */
9511bce9
SL
10409 ret = kern_path(filename, LOOKUP_FOLLOW,
10410 &filter->path);
375637bc 10411 if (ret)
7bdb157c 10412 goto fail;
375637bc
AS
10413
10414 ret = -EINVAL;
9511bce9
SL
10415 if (!filter->path.dentry ||
10416 !S_ISREG(d_inode(filter->path.dentry)
10417 ->i_mode))
375637bc 10418 goto fail;
6ce77bfd
AS
10419
10420 event->addr_filters.nr_file_filters++;
375637bc
AS
10421 }
10422
10423 /* ready to consume more filters */
10424 state = IF_STATE_ACTION;
10425 filter = NULL;
10426 }
10427 }
10428
10429 if (state != IF_STATE_ACTION)
10430 goto fail;
10431
7bdb157c 10432 kfree(filename);
375637bc
AS
10433 kfree(orig);
10434
10435 return 0;
10436
375637bc 10437fail:
7bdb157c 10438 kfree(filename);
375637bc
AS
10439 free_filters_list(filters);
10440 kfree(orig);
10441
10442 return ret;
10443}
10444
10445static int
10446perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10447{
10448 LIST_HEAD(filters);
10449 int ret;
10450
10451 /*
10452 * Since this is called in perf_ioctl() path, we're already holding
10453 * ctx::mutex.
10454 */
10455 lockdep_assert_held(&event->ctx->mutex);
10456
10457 if (WARN_ON_ONCE(event->parent))
10458 return -EINVAL;
10459
375637bc
AS
10460 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10461 if (ret)
6ce77bfd 10462 goto fail_clear_files;
375637bc
AS
10463
10464 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
10465 if (ret)
10466 goto fail_free_filters;
375637bc
AS
10467
10468 /* remove existing filters, if any */
10469 perf_addr_filters_splice(event, &filters);
10470
10471 /* install new filters */
10472 perf_event_for_each_child(event, perf_event_addr_filters_apply);
10473
6ce77bfd
AS
10474 return ret;
10475
10476fail_free_filters:
10477 free_filters_list(&filters);
10478
10479fail_clear_files:
10480 event->addr_filters.nr_file_filters = 0;
10481
375637bc
AS
10482 return ret;
10483}
10484
c796bbbe
AS
10485static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10486{
c796bbbe 10487 int ret = -EINVAL;
e12f03d7 10488 char *filter_str;
c796bbbe
AS
10489
10490 filter_str = strndup_user(arg, PAGE_SIZE);
10491 if (IS_ERR(filter_str))
10492 return PTR_ERR(filter_str);
10493
e12f03d7
SL
10494#ifdef CONFIG_EVENT_TRACING
10495 if (perf_event_is_tracing(event)) {
10496 struct perf_event_context *ctx = event->ctx;
10497
10498 /*
10499 * Beware, here be dragons!!
10500 *
10501 * the tracepoint muck will deadlock against ctx->mutex, but
10502 * the tracepoint stuff does not actually need it. So
10503 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10504 * already have a reference on ctx.
10505 *
10506 * This can result in event getting moved to a different ctx,
10507 * but that does not affect the tracepoint state.
10508 */
10509 mutex_unlock(&ctx->mutex);
10510 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10511 mutex_lock(&ctx->mutex);
10512 } else
10513#endif
10514 if (has_addr_filter(event))
375637bc 10515 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
10516
10517 kfree(filter_str);
10518 return ret;
10519}
10520
b0a873eb
PZ
10521/*
10522 * hrtimer based swevent callback
10523 */
f29ac756 10524
b0a873eb 10525static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 10526{
b0a873eb
PZ
10527 enum hrtimer_restart ret = HRTIMER_RESTART;
10528 struct perf_sample_data data;
10529 struct pt_regs *regs;
10530 struct perf_event *event;
10531 u64 period;
f29ac756 10532
b0a873eb 10533 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
10534
10535 if (event->state != PERF_EVENT_STATE_ACTIVE)
10536 return HRTIMER_NORESTART;
10537
b0a873eb 10538 event->pmu->read(event);
f344011c 10539
fd0d000b 10540 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
10541 regs = get_irq_regs();
10542
10543 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 10544 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 10545 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
10546 ret = HRTIMER_NORESTART;
10547 }
24f1e32c 10548
b0a873eb
PZ
10549 period = max_t(u64, 10000, event->hw.sample_period);
10550 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 10551
b0a873eb 10552 return ret;
f29ac756
PZ
10553}
10554
b0a873eb 10555static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 10556{
b0a873eb 10557 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
10558 s64 period;
10559
10560 if (!is_sampling_event(event))
10561 return;
f5ffe02e 10562
5d508e82
FBH
10563 period = local64_read(&hwc->period_left);
10564 if (period) {
10565 if (period < 0)
10566 period = 10000;
fa407f35 10567
5d508e82
FBH
10568 local64_set(&hwc->period_left, 0);
10569 } else {
10570 period = max_t(u64, 10000, hwc->sample_period);
10571 }
3497d206 10572 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
30f9028b 10573 HRTIMER_MODE_REL_PINNED_HARD);
24f1e32c 10574}
b0a873eb
PZ
10575
10576static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 10577{
b0a873eb
PZ
10578 struct hw_perf_event *hwc = &event->hw;
10579
6c7e550f 10580 if (is_sampling_event(event)) {
b0a873eb 10581 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 10582 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
10583
10584 hrtimer_cancel(&hwc->hrtimer);
10585 }
24f1e32c
FW
10586}
10587
ba3dd36c
PZ
10588static void perf_swevent_init_hrtimer(struct perf_event *event)
10589{
10590 struct hw_perf_event *hwc = &event->hw;
10591
10592 if (!is_sampling_event(event))
10593 return;
10594
30f9028b 10595 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
ba3dd36c
PZ
10596 hwc->hrtimer.function = perf_swevent_hrtimer;
10597
10598 /*
10599 * Since hrtimers have a fixed rate, we can do a static freq->period
10600 * mapping and avoid the whole period adjust feedback stuff.
10601 */
10602 if (event->attr.freq) {
10603 long freq = event->attr.sample_freq;
10604
10605 event->attr.sample_period = NSEC_PER_SEC / freq;
10606 hwc->sample_period = event->attr.sample_period;
10607 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 10608 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
10609 event->attr.freq = 0;
10610 }
10611}
10612
b0a873eb
PZ
10613/*
10614 * Software event: cpu wall time clock
10615 */
10616
10617static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 10618{
b0a873eb
PZ
10619 s64 prev;
10620 u64 now;
10621
a4eaf7f1 10622 now = local_clock();
b0a873eb
PZ
10623 prev = local64_xchg(&event->hw.prev_count, now);
10624 local64_add(now - prev, &event->count);
24f1e32c 10625}
24f1e32c 10626
a4eaf7f1 10627static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 10628{
a4eaf7f1 10629 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 10630 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
10631}
10632
a4eaf7f1 10633static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 10634{
b0a873eb
PZ
10635 perf_swevent_cancel_hrtimer(event);
10636 cpu_clock_event_update(event);
10637}
f29ac756 10638
a4eaf7f1
PZ
10639static int cpu_clock_event_add(struct perf_event *event, int flags)
10640{
10641 if (flags & PERF_EF_START)
10642 cpu_clock_event_start(event, flags);
6a694a60 10643 perf_event_update_userpage(event);
a4eaf7f1
PZ
10644
10645 return 0;
10646}
10647
10648static void cpu_clock_event_del(struct perf_event *event, int flags)
10649{
10650 cpu_clock_event_stop(event, flags);
10651}
10652
b0a873eb
PZ
10653static void cpu_clock_event_read(struct perf_event *event)
10654{
10655 cpu_clock_event_update(event);
10656}
f344011c 10657
b0a873eb
PZ
10658static int cpu_clock_event_init(struct perf_event *event)
10659{
10660 if (event->attr.type != PERF_TYPE_SOFTWARE)
10661 return -ENOENT;
10662
10663 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10664 return -ENOENT;
10665
2481c5fa
SE
10666 /*
10667 * no branch sampling for software events
10668 */
10669 if (has_branch_stack(event))
10670 return -EOPNOTSUPP;
10671
ba3dd36c
PZ
10672 perf_swevent_init_hrtimer(event);
10673
b0a873eb 10674 return 0;
f29ac756
PZ
10675}
10676
b0a873eb 10677static struct pmu perf_cpu_clock = {
89a1e187
PZ
10678 .task_ctx_nr = perf_sw_context,
10679
34f43927
PZ
10680 .capabilities = PERF_PMU_CAP_NO_NMI,
10681
b0a873eb 10682 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
10683 .add = cpu_clock_event_add,
10684 .del = cpu_clock_event_del,
10685 .start = cpu_clock_event_start,
10686 .stop = cpu_clock_event_stop,
b0a873eb
PZ
10687 .read = cpu_clock_event_read,
10688};
10689
10690/*
10691 * Software event: task time clock
10692 */
10693
10694static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 10695{
b0a873eb
PZ
10696 u64 prev;
10697 s64 delta;
5c92d124 10698
b0a873eb
PZ
10699 prev = local64_xchg(&event->hw.prev_count, now);
10700 delta = now - prev;
10701 local64_add(delta, &event->count);
10702}
5c92d124 10703
a4eaf7f1 10704static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 10705{
a4eaf7f1 10706 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 10707 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
10708}
10709
a4eaf7f1 10710static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
10711{
10712 perf_swevent_cancel_hrtimer(event);
10713 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
10714}
10715
10716static int task_clock_event_add(struct perf_event *event, int flags)
10717{
10718 if (flags & PERF_EF_START)
10719 task_clock_event_start(event, flags);
6a694a60 10720 perf_event_update_userpage(event);
b0a873eb 10721
a4eaf7f1
PZ
10722 return 0;
10723}
10724
10725static void task_clock_event_del(struct perf_event *event, int flags)
10726{
10727 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
10728}
10729
10730static void task_clock_event_read(struct perf_event *event)
10731{
768a06e2
PZ
10732 u64 now = perf_clock();
10733 u64 delta = now - event->ctx->timestamp;
10734 u64 time = event->ctx->time + delta;
b0a873eb
PZ
10735
10736 task_clock_event_update(event, time);
10737}
10738
10739static int task_clock_event_init(struct perf_event *event)
6fb2915d 10740{
b0a873eb
PZ
10741 if (event->attr.type != PERF_TYPE_SOFTWARE)
10742 return -ENOENT;
10743
10744 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10745 return -ENOENT;
10746
2481c5fa
SE
10747 /*
10748 * no branch sampling for software events
10749 */
10750 if (has_branch_stack(event))
10751 return -EOPNOTSUPP;
10752
ba3dd36c
PZ
10753 perf_swevent_init_hrtimer(event);
10754
b0a873eb 10755 return 0;
6fb2915d
LZ
10756}
10757
b0a873eb 10758static struct pmu perf_task_clock = {
89a1e187
PZ
10759 .task_ctx_nr = perf_sw_context,
10760
34f43927
PZ
10761 .capabilities = PERF_PMU_CAP_NO_NMI,
10762
b0a873eb 10763 .event_init = task_clock_event_init,
a4eaf7f1
PZ
10764 .add = task_clock_event_add,
10765 .del = task_clock_event_del,
10766 .start = task_clock_event_start,
10767 .stop = task_clock_event_stop,
b0a873eb
PZ
10768 .read = task_clock_event_read,
10769};
6fb2915d 10770
ad5133b7 10771static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 10772{
e077df4f 10773}
6fb2915d 10774
fbbe0701
SB
10775static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10776{
10777}
10778
ad5133b7 10779static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 10780{
ad5133b7 10781 return 0;
6fb2915d
LZ
10782}
10783
81ec3f3c
JO
10784static int perf_event_nop_int(struct perf_event *event, u64 value)
10785{
10786 return 0;
10787}
10788
18ab2cd3 10789static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
10790
10791static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 10792{
fbbe0701
SB
10793 __this_cpu_write(nop_txn_flags, flags);
10794
10795 if (flags & ~PERF_PMU_TXN_ADD)
10796 return;
10797
ad5133b7 10798 perf_pmu_disable(pmu);
6fb2915d
LZ
10799}
10800
ad5133b7
PZ
10801static int perf_pmu_commit_txn(struct pmu *pmu)
10802{
fbbe0701
SB
10803 unsigned int flags = __this_cpu_read(nop_txn_flags);
10804
10805 __this_cpu_write(nop_txn_flags, 0);
10806
10807 if (flags & ~PERF_PMU_TXN_ADD)
10808 return 0;
10809
ad5133b7
PZ
10810 perf_pmu_enable(pmu);
10811 return 0;
10812}
e077df4f 10813
ad5133b7 10814static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 10815{
fbbe0701
SB
10816 unsigned int flags = __this_cpu_read(nop_txn_flags);
10817
10818 __this_cpu_write(nop_txn_flags, 0);
10819
10820 if (flags & ~PERF_PMU_TXN_ADD)
10821 return;
10822
ad5133b7 10823 perf_pmu_enable(pmu);
24f1e32c
FW
10824}
10825
35edc2a5
PZ
10826static int perf_event_idx_default(struct perf_event *event)
10827{
c719f560 10828 return 0;
35edc2a5
PZ
10829}
10830
8dc85d54
PZ
10831/*
10832 * Ensures all contexts with the same task_ctx_nr have the same
10833 * pmu_cpu_context too.
10834 */
9e317041 10835static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 10836{
8dc85d54 10837 struct pmu *pmu;
b326e956 10838
8dc85d54
PZ
10839 if (ctxn < 0)
10840 return NULL;
24f1e32c 10841
8dc85d54
PZ
10842 list_for_each_entry(pmu, &pmus, entry) {
10843 if (pmu->task_ctx_nr == ctxn)
10844 return pmu->pmu_cpu_context;
10845 }
24f1e32c 10846
8dc85d54 10847 return NULL;
24f1e32c
FW
10848}
10849
51676957
PZ
10850static void free_pmu_context(struct pmu *pmu)
10851{
df0062b2
WD
10852 /*
10853 * Static contexts such as perf_sw_context have a global lifetime
10854 * and may be shared between different PMUs. Avoid freeing them
10855 * when a single PMU is going away.
10856 */
10857 if (pmu->task_ctx_nr > perf_invalid_context)
10858 return;
10859
51676957 10860 free_percpu(pmu->pmu_cpu_context);
24f1e32c 10861}
6e855cd4
AS
10862
10863/*
10864 * Let userspace know that this PMU supports address range filtering:
10865 */
10866static ssize_t nr_addr_filters_show(struct device *dev,
10867 struct device_attribute *attr,
10868 char *page)
10869{
10870 struct pmu *pmu = dev_get_drvdata(dev);
10871
10872 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10873}
10874DEVICE_ATTR_RO(nr_addr_filters);
10875
2e80a82a 10876static struct idr pmu_idr;
d6d020e9 10877
abe43400
PZ
10878static ssize_t
10879type_show(struct device *dev, struct device_attribute *attr, char *page)
10880{
10881 struct pmu *pmu = dev_get_drvdata(dev);
10882
10883 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10884}
90826ca7 10885static DEVICE_ATTR_RO(type);
abe43400 10886
62b85639
SE
10887static ssize_t
10888perf_event_mux_interval_ms_show(struct device *dev,
10889 struct device_attribute *attr,
10890 char *page)
10891{
10892 struct pmu *pmu = dev_get_drvdata(dev);
10893
10894 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10895}
10896
272325c4
PZ
10897static DEFINE_MUTEX(mux_interval_mutex);
10898
62b85639
SE
10899static ssize_t
10900perf_event_mux_interval_ms_store(struct device *dev,
10901 struct device_attribute *attr,
10902 const char *buf, size_t count)
10903{
10904 struct pmu *pmu = dev_get_drvdata(dev);
10905 int timer, cpu, ret;
10906
10907 ret = kstrtoint(buf, 0, &timer);
10908 if (ret)
10909 return ret;
10910
10911 if (timer < 1)
10912 return -EINVAL;
10913
10914 /* same value, noting to do */
10915 if (timer == pmu->hrtimer_interval_ms)
10916 return count;
10917
272325c4 10918 mutex_lock(&mux_interval_mutex);
62b85639
SE
10919 pmu->hrtimer_interval_ms = timer;
10920
10921 /* update all cpuctx for this PMU */
a63fbed7 10922 cpus_read_lock();
272325c4 10923 for_each_online_cpu(cpu) {
62b85639
SE
10924 struct perf_cpu_context *cpuctx;
10925 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10926 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10927
272325c4
PZ
10928 cpu_function_call(cpu,
10929 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 10930 }
a63fbed7 10931 cpus_read_unlock();
272325c4 10932 mutex_unlock(&mux_interval_mutex);
62b85639
SE
10933
10934 return count;
10935}
90826ca7 10936static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 10937
90826ca7
GKH
10938static struct attribute *pmu_dev_attrs[] = {
10939 &dev_attr_type.attr,
10940 &dev_attr_perf_event_mux_interval_ms.attr,
10941 NULL,
abe43400 10942};
90826ca7 10943ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
10944
10945static int pmu_bus_running;
10946static struct bus_type pmu_bus = {
10947 .name = "event_source",
90826ca7 10948 .dev_groups = pmu_dev_groups,
abe43400
PZ
10949};
10950
10951static void pmu_dev_release(struct device *dev)
10952{
10953 kfree(dev);
10954}
10955
10956static int pmu_dev_alloc(struct pmu *pmu)
10957{
10958 int ret = -ENOMEM;
10959
10960 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10961 if (!pmu->dev)
10962 goto out;
10963
0c9d42ed 10964 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
10965 device_initialize(pmu->dev);
10966 ret = dev_set_name(pmu->dev, "%s", pmu->name);
10967 if (ret)
10968 goto free_dev;
10969
10970 dev_set_drvdata(pmu->dev, pmu);
10971 pmu->dev->bus = &pmu_bus;
10972 pmu->dev->release = pmu_dev_release;
10973 ret = device_add(pmu->dev);
10974 if (ret)
10975 goto free_dev;
10976
6e855cd4
AS
10977 /* For PMUs with address filters, throw in an extra attribute: */
10978 if (pmu->nr_addr_filters)
10979 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10980
10981 if (ret)
10982 goto del_dev;
10983
f3a3a825
JO
10984 if (pmu->attr_update)
10985 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10986
10987 if (ret)
10988 goto del_dev;
10989
abe43400
PZ
10990out:
10991 return ret;
10992
6e855cd4
AS
10993del_dev:
10994 device_del(pmu->dev);
10995
abe43400
PZ
10996free_dev:
10997 put_device(pmu->dev);
10998 goto out;
10999}
11000
547e9fd7 11001static struct lock_class_key cpuctx_mutex;
facc4307 11002static struct lock_class_key cpuctx_lock;
547e9fd7 11003
03d8e80b 11004int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 11005{
66d258c5 11006 int cpu, ret, max = PERF_TYPE_MAX;
24f1e32c 11007
b0a873eb 11008 mutex_lock(&pmus_lock);
33696fc0
PZ
11009 ret = -ENOMEM;
11010 pmu->pmu_disable_count = alloc_percpu(int);
11011 if (!pmu->pmu_disable_count)
11012 goto unlock;
f29ac756 11013
2e80a82a
PZ
11014 pmu->type = -1;
11015 if (!name)
11016 goto skip_type;
11017 pmu->name = name;
11018
66d258c5
PZ
11019 if (type != PERF_TYPE_SOFTWARE) {
11020 if (type >= 0)
11021 max = type;
11022
11023 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11024 if (ret < 0)
2e80a82a 11025 goto free_pdc;
66d258c5
PZ
11026
11027 WARN_ON(type >= 0 && ret != type);
11028
11029 type = ret;
2e80a82a
PZ
11030 }
11031 pmu->type = type;
11032
abe43400
PZ
11033 if (pmu_bus_running) {
11034 ret = pmu_dev_alloc(pmu);
11035 if (ret)
11036 goto free_idr;
11037 }
11038
2e80a82a 11039skip_type:
26657848
PZ
11040 if (pmu->task_ctx_nr == perf_hw_context) {
11041 static int hw_context_taken = 0;
11042
5101ef20
MR
11043 /*
11044 * Other than systems with heterogeneous CPUs, it never makes
11045 * sense for two PMUs to share perf_hw_context. PMUs which are
11046 * uncore must use perf_invalid_context.
11047 */
11048 if (WARN_ON_ONCE(hw_context_taken &&
11049 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
11050 pmu->task_ctx_nr = perf_invalid_context;
11051
11052 hw_context_taken = 1;
11053 }
11054
8dc85d54
PZ
11055 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11056 if (pmu->pmu_cpu_context)
11057 goto got_cpu_context;
f29ac756 11058
c4814202 11059 ret = -ENOMEM;
108b02cf
PZ
11060 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11061 if (!pmu->pmu_cpu_context)
abe43400 11062 goto free_dev;
f344011c 11063
108b02cf
PZ
11064 for_each_possible_cpu(cpu) {
11065 struct perf_cpu_context *cpuctx;
11066
11067 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 11068 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 11069 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 11070 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 11071 cpuctx->ctx.pmu = pmu;
a63fbed7 11072 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 11073
272325c4 11074 __perf_mux_hrtimer_init(cpuctx, cpu);
836196be
IR
11075
11076 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11077 cpuctx->heap = cpuctx->heap_default;
108b02cf 11078 }
76e1d904 11079
8dc85d54 11080got_cpu_context:
ad5133b7
PZ
11081 if (!pmu->start_txn) {
11082 if (pmu->pmu_enable) {
11083 /*
11084 * If we have pmu_enable/pmu_disable calls, install
11085 * transaction stubs that use that to try and batch
11086 * hardware accesses.
11087 */
11088 pmu->start_txn = perf_pmu_start_txn;
11089 pmu->commit_txn = perf_pmu_commit_txn;
11090 pmu->cancel_txn = perf_pmu_cancel_txn;
11091 } else {
fbbe0701 11092 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
11093 pmu->commit_txn = perf_pmu_nop_int;
11094 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 11095 }
5c92d124 11096 }
15dbf27c 11097
ad5133b7
PZ
11098 if (!pmu->pmu_enable) {
11099 pmu->pmu_enable = perf_pmu_nop_void;
11100 pmu->pmu_disable = perf_pmu_nop_void;
11101 }
11102
81ec3f3c
JO
11103 if (!pmu->check_period)
11104 pmu->check_period = perf_event_nop_int;
11105
35edc2a5
PZ
11106 if (!pmu->event_idx)
11107 pmu->event_idx = perf_event_idx_default;
11108
d44f821b
LK
11109 /*
11110 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11111 * since these cannot be in the IDR. This way the linear search
11112 * is fast, provided a valid software event is provided.
11113 */
11114 if (type == PERF_TYPE_SOFTWARE || !name)
11115 list_add_rcu(&pmu->entry, &pmus);
11116 else
11117 list_add_tail_rcu(&pmu->entry, &pmus);
11118
bed5b25a 11119 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
11120 ret = 0;
11121unlock:
b0a873eb
PZ
11122 mutex_unlock(&pmus_lock);
11123
33696fc0 11124 return ret;
108b02cf 11125
abe43400
PZ
11126free_dev:
11127 device_del(pmu->dev);
11128 put_device(pmu->dev);
11129
2e80a82a 11130free_idr:
66d258c5 11131 if (pmu->type != PERF_TYPE_SOFTWARE)
2e80a82a
PZ
11132 idr_remove(&pmu_idr, pmu->type);
11133
108b02cf
PZ
11134free_pdc:
11135 free_percpu(pmu->pmu_disable_count);
11136 goto unlock;
f29ac756 11137}
c464c76e 11138EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 11139
b0a873eb 11140void perf_pmu_unregister(struct pmu *pmu)
5c92d124 11141{
b0a873eb
PZ
11142 mutex_lock(&pmus_lock);
11143 list_del_rcu(&pmu->entry);
5c92d124 11144
0475f9ea 11145 /*
cde8e884
PZ
11146 * We dereference the pmu list under both SRCU and regular RCU, so
11147 * synchronize against both of those.
0475f9ea 11148 */
b0a873eb 11149 synchronize_srcu(&pmus_srcu);
cde8e884 11150 synchronize_rcu();
d6d020e9 11151
33696fc0 11152 free_percpu(pmu->pmu_disable_count);
66d258c5 11153 if (pmu->type != PERF_TYPE_SOFTWARE)
2e80a82a 11154 idr_remove(&pmu_idr, pmu->type);
a9f97721 11155 if (pmu_bus_running) {
0933840a
JO
11156 if (pmu->nr_addr_filters)
11157 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11158 device_del(pmu->dev);
11159 put_device(pmu->dev);
11160 }
51676957 11161 free_pmu_context(pmu);
a9f97721 11162 mutex_unlock(&pmus_lock);
b0a873eb 11163}
c464c76e 11164EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 11165
e321d02d
KL
11166static inline bool has_extended_regs(struct perf_event *event)
11167{
11168 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11169 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11170}
11171
cc34b98b
MR
11172static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11173{
ccd41c86 11174 struct perf_event_context *ctx = NULL;
cc34b98b
MR
11175 int ret;
11176
11177 if (!try_module_get(pmu->module))
11178 return -ENODEV;
ccd41c86 11179
0c7296ca
PZ
11180 /*
11181 * A number of pmu->event_init() methods iterate the sibling_list to,
11182 * for example, validate if the group fits on the PMU. Therefore,
11183 * if this is a sibling event, acquire the ctx->mutex to protect
11184 * the sibling_list.
11185 */
11186 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
11187 /*
11188 * This ctx->mutex can nest when we're called through
11189 * inheritance. See the perf_event_ctx_lock_nested() comment.
11190 */
11191 ctx = perf_event_ctx_lock_nested(event->group_leader,
11192 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
11193 BUG_ON(!ctx);
11194 }
11195
cc34b98b
MR
11196 event->pmu = pmu;
11197 ret = pmu->event_init(event);
ccd41c86
PZ
11198
11199 if (ctx)
11200 perf_event_ctx_unlock(event->group_leader, ctx);
11201
cc6795ae 11202 if (!ret) {
e321d02d
KL
11203 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11204 has_extended_regs(event))
11205 ret = -EOPNOTSUPP;
11206
cc6795ae 11207 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
e321d02d 11208 event_has_any_exclude_flag(event))
cc6795ae 11209 ret = -EINVAL;
e321d02d
KL
11210
11211 if (ret && event->destroy)
11212 event->destroy(event);
cc6795ae
AM
11213 }
11214
cc34b98b
MR
11215 if (ret)
11216 module_put(pmu->module);
11217
11218 return ret;
11219}
11220
18ab2cd3 11221static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 11222{
66d258c5 11223 int idx, type, ret;
85c617ab 11224 struct pmu *pmu;
b0a873eb
PZ
11225
11226 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 11227
40999312
KL
11228 /* Try parent's PMU first: */
11229 if (event->parent && event->parent->pmu) {
11230 pmu = event->parent->pmu;
11231 ret = perf_try_init_event(pmu, event);
11232 if (!ret)
11233 goto unlock;
11234 }
11235
66d258c5
PZ
11236 /*
11237 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11238 * are often aliases for PERF_TYPE_RAW.
11239 */
11240 type = event->attr.type;
11241 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
11242 type = PERF_TYPE_RAW;
11243
11244again:
2e80a82a 11245 rcu_read_lock();
66d258c5 11246 pmu = idr_find(&pmu_idr, type);
2e80a82a 11247 rcu_read_unlock();
940c5b29 11248 if (pmu) {
cc34b98b 11249 ret = perf_try_init_event(pmu, event);
66d258c5
PZ
11250 if (ret == -ENOENT && event->attr.type != type) {
11251 type = event->attr.type;
11252 goto again;
11253 }
11254
940c5b29
LM
11255 if (ret)
11256 pmu = ERR_PTR(ret);
66d258c5 11257
2e80a82a 11258 goto unlock;
940c5b29 11259 }
2e80a82a 11260
9f0bff11 11261 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
cc34b98b 11262 ret = perf_try_init_event(pmu, event);
b0a873eb 11263 if (!ret)
e5f4d339 11264 goto unlock;
76e1d904 11265
b0a873eb
PZ
11266 if (ret != -ENOENT) {
11267 pmu = ERR_PTR(ret);
e5f4d339 11268 goto unlock;
f344011c 11269 }
5c92d124 11270 }
e5f4d339
PZ
11271 pmu = ERR_PTR(-ENOENT);
11272unlock:
b0a873eb 11273 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 11274
4aeb0b42 11275 return pmu;
5c92d124
IM
11276}
11277
f2fb6bef
KL
11278static void attach_sb_event(struct perf_event *event)
11279{
11280 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11281
11282 raw_spin_lock(&pel->lock);
11283 list_add_rcu(&event->sb_list, &pel->list);
11284 raw_spin_unlock(&pel->lock);
11285}
11286
aab5b71e
PZ
11287/*
11288 * We keep a list of all !task (and therefore per-cpu) events
11289 * that need to receive side-band records.
11290 *
11291 * This avoids having to scan all the various PMU per-cpu contexts
11292 * looking for them.
11293 */
f2fb6bef
KL
11294static void account_pmu_sb_event(struct perf_event *event)
11295{
a4f144eb 11296 if (is_sb_event(event))
f2fb6bef
KL
11297 attach_sb_event(event);
11298}
11299
4beb31f3
FW
11300static void account_event_cpu(struct perf_event *event, int cpu)
11301{
11302 if (event->parent)
11303 return;
11304
4beb31f3
FW
11305 if (is_cgroup_event(event))
11306 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11307}
11308
555e0c1e
FW
11309/* Freq events need the tick to stay alive (see perf_event_task_tick). */
11310static void account_freq_event_nohz(void)
11311{
11312#ifdef CONFIG_NO_HZ_FULL
11313 /* Lock so we don't race with concurrent unaccount */
11314 spin_lock(&nr_freq_lock);
11315 if (atomic_inc_return(&nr_freq_events) == 1)
11316 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11317 spin_unlock(&nr_freq_lock);
11318#endif
11319}
11320
11321static void account_freq_event(void)
11322{
11323 if (tick_nohz_full_enabled())
11324 account_freq_event_nohz();
11325 else
11326 atomic_inc(&nr_freq_events);
11327}
11328
11329
766d6c07
FW
11330static void account_event(struct perf_event *event)
11331{
25432ae9
PZ
11332 bool inc = false;
11333
4beb31f3
FW
11334 if (event->parent)
11335 return;
11336
a5398bff 11337 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
25432ae9 11338 inc = true;
766d6c07
FW
11339 if (event->attr.mmap || event->attr.mmap_data)
11340 atomic_inc(&nr_mmap_events);
88a16a13
JO
11341 if (event->attr.build_id)
11342 atomic_inc(&nr_build_id_events);
766d6c07
FW
11343 if (event->attr.comm)
11344 atomic_inc(&nr_comm_events);
e4222673
HB
11345 if (event->attr.namespaces)
11346 atomic_inc(&nr_namespaces_events);
96aaab68
NK
11347 if (event->attr.cgroup)
11348 atomic_inc(&nr_cgroup_events);
766d6c07
FW
11349 if (event->attr.task)
11350 atomic_inc(&nr_task_events);
555e0c1e
FW
11351 if (event->attr.freq)
11352 account_freq_event();
45ac1403
AH
11353 if (event->attr.context_switch) {
11354 atomic_inc(&nr_switch_events);
25432ae9 11355 inc = true;
45ac1403 11356 }
4beb31f3 11357 if (has_branch_stack(event))
25432ae9 11358 inc = true;
4beb31f3 11359 if (is_cgroup_event(event))
25432ae9 11360 inc = true;
76193a94
SL
11361 if (event->attr.ksymbol)
11362 atomic_inc(&nr_ksymbol_events);
6ee52e2a
SL
11363 if (event->attr.bpf_event)
11364 atomic_inc(&nr_bpf_events);
e17d43b9
AH
11365 if (event->attr.text_poke)
11366 atomic_inc(&nr_text_poke_events);
25432ae9 11367
9107c89e 11368 if (inc) {
5bce9db1
AS
11369 /*
11370 * We need the mutex here because static_branch_enable()
11371 * must complete *before* the perf_sched_count increment
11372 * becomes visible.
11373 */
9107c89e
PZ
11374 if (atomic_inc_not_zero(&perf_sched_count))
11375 goto enabled;
11376
11377 mutex_lock(&perf_sched_mutex);
11378 if (!atomic_read(&perf_sched_count)) {
11379 static_branch_enable(&perf_sched_events);
11380 /*
11381 * Guarantee that all CPUs observe they key change and
11382 * call the perf scheduling hooks before proceeding to
11383 * install events that need them.
11384 */
0809d954 11385 synchronize_rcu();
9107c89e
PZ
11386 }
11387 /*
11388 * Now that we have waited for the sync_sched(), allow further
11389 * increments to by-pass the mutex.
11390 */
11391 atomic_inc(&perf_sched_count);
11392 mutex_unlock(&perf_sched_mutex);
11393 }
11394enabled:
4beb31f3
FW
11395
11396 account_event_cpu(event, event->cpu);
f2fb6bef
KL
11397
11398 account_pmu_sb_event(event);
766d6c07
FW
11399}
11400
0793a61d 11401/*
788faab7 11402 * Allocate and initialize an event structure
0793a61d 11403 */
cdd6c482 11404static struct perf_event *
c3f00c70 11405perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
11406 struct task_struct *task,
11407 struct perf_event *group_leader,
11408 struct perf_event *parent_event,
4dc0da86 11409 perf_overflow_handler_t overflow_handler,
79dff51e 11410 void *context, int cgroup_fd)
0793a61d 11411{
51b0fe39 11412 struct pmu *pmu;
cdd6c482
IM
11413 struct perf_event *event;
11414 struct hw_perf_event *hwc;
90983b16 11415 long err = -EINVAL;
ff65338e 11416 int node;
0793a61d 11417
66832eb4
ON
11418 if ((unsigned)cpu >= nr_cpu_ids) {
11419 if (!task || cpu != -1)
11420 return ERR_PTR(-EINVAL);
11421 }
97ba62b2
ME
11422 if (attr->sigtrap && !task) {
11423 /* Requires a task: avoid signalling random tasks. */
11424 return ERR_PTR(-EINVAL);
11425 }
66832eb4 11426
ff65338e
NK
11427 node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11428 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11429 node);
cdd6c482 11430 if (!event)
d5d2bc0d 11431 return ERR_PTR(-ENOMEM);
0793a61d 11432
04289bb9 11433 /*
cdd6c482 11434 * Single events are their own group leaders, with an
04289bb9
IM
11435 * empty sibling list:
11436 */
11437 if (!group_leader)
cdd6c482 11438 group_leader = event;
04289bb9 11439
cdd6c482
IM
11440 mutex_init(&event->child_mutex);
11441 INIT_LIST_HEAD(&event->child_list);
fccc714b 11442
cdd6c482
IM
11443 INIT_LIST_HEAD(&event->event_entry);
11444 INIT_LIST_HEAD(&event->sibling_list);
6668128a 11445 INIT_LIST_HEAD(&event->active_list);
8e1a2031 11446 init_event_group(event);
10c6db11 11447 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 11448 INIT_LIST_HEAD(&event->active_entry);
375637bc 11449 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
11450 INIT_HLIST_NODE(&event->hlist_entry);
11451
10c6db11 11452
cdd6c482 11453 init_waitqueue_head(&event->waitq);
1d54ad94 11454 event->pending_disable = -1;
e360adbe 11455 init_irq_work(&event->pending, perf_pending_event);
0793a61d 11456
cdd6c482 11457 mutex_init(&event->mmap_mutex);
375637bc 11458 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 11459
a6fa941d 11460 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
11461 event->cpu = cpu;
11462 event->attr = *attr;
11463 event->group_leader = group_leader;
11464 event->pmu = NULL;
cdd6c482 11465 event->oncpu = -1;
a96bbc16 11466
cdd6c482 11467 event->parent = parent_event;
b84fbc9f 11468
17cf22c3 11469 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 11470 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 11471
cdd6c482 11472 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 11473
97ba62b2
ME
11474 if (event->attr.sigtrap)
11475 atomic_set(&event->event_limit, 1);
11476
d580ff86
PZ
11477 if (task) {
11478 event->attach_state = PERF_ATTACH_TASK;
d580ff86 11479 /*
50f16a8b
PZ
11480 * XXX pmu::event_init needs to know what task to account to
11481 * and we cannot use the ctx information because we need the
11482 * pmu before we get a ctx.
d580ff86 11483 */
7b3c92b8 11484 event->hw.target = get_task_struct(task);
d580ff86
PZ
11485 }
11486
34f43927
PZ
11487 event->clock = &local_clock;
11488 if (parent_event)
11489 event->clock = parent_event->clock;
11490
4dc0da86 11491 if (!overflow_handler && parent_event) {
b326e956 11492 overflow_handler = parent_event->overflow_handler;
4dc0da86 11493 context = parent_event->overflow_handler_context;
f1e4ba5b 11494#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c 11495 if (overflow_handler == bpf_overflow_handler) {
85192dbf 11496 struct bpf_prog *prog = parent_event->prog;
aa6a5f3c 11497
85192dbf 11498 bpf_prog_inc(prog);
aa6a5f3c
AS
11499 event->prog = prog;
11500 event->orig_overflow_handler =
11501 parent_event->orig_overflow_handler;
11502 }
11503#endif
4dc0da86 11504 }
66832eb4 11505
1879445d
WN
11506 if (overflow_handler) {
11507 event->overflow_handler = overflow_handler;
11508 event->overflow_handler_context = context;
9ecda41a
WN
11509 } else if (is_write_backward(event)){
11510 event->overflow_handler = perf_event_output_backward;
11511 event->overflow_handler_context = NULL;
1879445d 11512 } else {
9ecda41a 11513 event->overflow_handler = perf_event_output_forward;
1879445d
WN
11514 event->overflow_handler_context = NULL;
11515 }
97eaf530 11516
0231bb53 11517 perf_event__state_init(event);
a86ed508 11518
4aeb0b42 11519 pmu = NULL;
b8e83514 11520
cdd6c482 11521 hwc = &event->hw;
bd2b5b12 11522 hwc->sample_period = attr->sample_period;
0d48696f 11523 if (attr->freq && attr->sample_freq)
bd2b5b12 11524 hwc->sample_period = 1;
eced1dfc 11525 hwc->last_period = hwc->sample_period;
bd2b5b12 11526
e7850595 11527 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 11528
2023b359 11529 /*
ba5213ae
PZ
11530 * We currently do not support PERF_SAMPLE_READ on inherited events.
11531 * See perf_output_read().
2023b359 11532 */
ba5213ae 11533 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 11534 goto err_ns;
a46a2300
YZ
11535
11536 if (!has_branch_stack(event))
11537 event->attr.branch_sample_type = 0;
2023b359 11538
b0a873eb 11539 pmu = perf_init_event(event);
85c617ab 11540 if (IS_ERR(pmu)) {
4aeb0b42 11541 err = PTR_ERR(pmu);
90983b16 11542 goto err_ns;
621a01ea 11543 }
d5d2bc0d 11544
09f4e8f0
PZ
11545 /*
11546 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11547 * be different on other CPUs in the uncore mask.
11548 */
11549 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11550 err = -EINVAL;
11551 goto err_pmu;
11552 }
11553
ab43762e
AS
11554 if (event->attr.aux_output &&
11555 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11556 err = -EOPNOTSUPP;
11557 goto err_pmu;
11558 }
11559
98add2af
PZ
11560 if (cgroup_fd != -1) {
11561 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11562 if (err)
11563 goto err_pmu;
11564 }
11565
bed5b25a
AS
11566 err = exclusive_event_init(event);
11567 if (err)
11568 goto err_pmu;
11569
375637bc 11570 if (has_addr_filter(event)) {
c60f83b8
AS
11571 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11572 sizeof(struct perf_addr_filter_range),
11573 GFP_KERNEL);
11574 if (!event->addr_filter_ranges) {
36cc2b92 11575 err = -ENOMEM;
375637bc 11576 goto err_per_task;
36cc2b92 11577 }
375637bc 11578
18736eef
AS
11579 /*
11580 * Clone the parent's vma offsets: they are valid until exec()
11581 * even if the mm is not shared with the parent.
11582 */
11583 if (event->parent) {
11584 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11585
11586 raw_spin_lock_irq(&ifh->lock);
c60f83b8
AS
11587 memcpy(event->addr_filter_ranges,
11588 event->parent->addr_filter_ranges,
11589 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
18736eef
AS
11590 raw_spin_unlock_irq(&ifh->lock);
11591 }
11592
375637bc
AS
11593 /* force hw sync on the address filters */
11594 event->addr_filters_gen = 1;
11595 }
11596
cdd6c482 11597 if (!event->parent) {
927c7a9e 11598 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 11599 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 11600 if (err)
375637bc 11601 goto err_addr_filters;
d010b332 11602 }
f344011c 11603 }
9ee318a7 11604
da97e184
JFG
11605 err = security_perf_event_alloc(event);
11606 if (err)
11607 goto err_callchain_buffer;
11608
927a5570
AS
11609 /* symmetric to unaccount_event() in _free_event() */
11610 account_event(event);
11611
cdd6c482 11612 return event;
90983b16 11613
da97e184
JFG
11614err_callchain_buffer:
11615 if (!event->parent) {
11616 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11617 put_callchain_buffers();
11618 }
375637bc 11619err_addr_filters:
c60f83b8 11620 kfree(event->addr_filter_ranges);
375637bc 11621
bed5b25a
AS
11622err_per_task:
11623 exclusive_event_destroy(event);
11624
90983b16 11625err_pmu:
98add2af
PZ
11626 if (is_cgroup_event(event))
11627 perf_detach_cgroup(event);
90983b16
FW
11628 if (event->destroy)
11629 event->destroy(event);
c464c76e 11630 module_put(pmu->module);
90983b16
FW
11631err_ns:
11632 if (event->ns)
11633 put_pid_ns(event->ns);
621b6d2e
PB
11634 if (event->hw.target)
11635 put_task_struct(event->hw.target);
bdacfaf2 11636 kmem_cache_free(perf_event_cache, event);
90983b16
FW
11637
11638 return ERR_PTR(err);
0793a61d
TG
11639}
11640
cdd6c482
IM
11641static int perf_copy_attr(struct perf_event_attr __user *uattr,
11642 struct perf_event_attr *attr)
974802ea 11643{
974802ea 11644 u32 size;
cdf8073d 11645 int ret;
974802ea 11646
c2ba8f41 11647 /* Zero the full structure, so that a short copy will be nice. */
974802ea
PZ
11648 memset(attr, 0, sizeof(*attr));
11649
11650 ret = get_user(size, &uattr->size);
11651 if (ret)
11652 return ret;
11653
c2ba8f41
AS
11654 /* ABI compatibility quirk: */
11655 if (!size)
974802ea 11656 size = PERF_ATTR_SIZE_VER0;
c2ba8f41 11657 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
974802ea
PZ
11658 goto err_size;
11659
c2ba8f41
AS
11660 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11661 if (ret) {
11662 if (ret == -E2BIG)
11663 goto err_size;
11664 return ret;
974802ea
PZ
11665 }
11666
f12f42ac
MX
11667 attr->size = size;
11668
a4faf00d 11669 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
974802ea
PZ
11670 return -EINVAL;
11671
11672 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11673 return -EINVAL;
11674
11675 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11676 return -EINVAL;
11677
bce38cd5
SE
11678 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11679 u64 mask = attr->branch_sample_type;
11680
11681 /* only using defined bits */
11682 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11683 return -EINVAL;
11684
11685 /* at least one branch bit must be set */
11686 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11687 return -EINVAL;
11688
bce38cd5
SE
11689 /* propagate priv level, when not set for branch */
11690 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11691
11692 /* exclude_kernel checked on syscall entry */
11693 if (!attr->exclude_kernel)
11694 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11695
11696 if (!attr->exclude_user)
11697 mask |= PERF_SAMPLE_BRANCH_USER;
11698
11699 if (!attr->exclude_hv)
11700 mask |= PERF_SAMPLE_BRANCH_HV;
11701 /*
11702 * adjust user setting (for HW filter setup)
11703 */
11704 attr->branch_sample_type = mask;
11705 }
e712209a 11706 /* privileged levels capture (kernel, hv): check permissions */
da97e184
JFG
11707 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11708 ret = perf_allow_kernel(attr);
11709 if (ret)
11710 return ret;
11711 }
bce38cd5 11712 }
4018994f 11713
c5ebcedb 11714 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 11715 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
11716 if (ret)
11717 return ret;
11718 }
11719
11720 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11721 if (!arch_perf_have_user_stack_dump())
11722 return -ENOSYS;
11723
11724 /*
11725 * We have __u32 type for the size, but so far
11726 * we can only use __u16 as maximum due to the
11727 * __u16 sample size limit.
11728 */
11729 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 11730 return -EINVAL;
c5ebcedb 11731 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 11732 return -EINVAL;
c5ebcedb 11733 }
4018994f 11734
5f970521
JO
11735 if (!attr->sample_max_stack)
11736 attr->sample_max_stack = sysctl_perf_event_max_stack;
11737
60e2364e
SE
11738 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11739 ret = perf_reg_validate(attr->sample_regs_intr);
6546b19f
NK
11740
11741#ifndef CONFIG_CGROUP_PERF
11742 if (attr->sample_type & PERF_SAMPLE_CGROUP)
11743 return -EINVAL;
11744#endif
2a6c6b7d
KL
11745 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11746 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11747 return -EINVAL;
6546b19f 11748
2b26f0aa
ME
11749 if (!attr->inherit && attr->inherit_thread)
11750 return -EINVAL;
11751
2e498d0a
ME
11752 if (attr->remove_on_exec && attr->enable_on_exec)
11753 return -EINVAL;
11754
97ba62b2
ME
11755 if (attr->sigtrap && !attr->remove_on_exec)
11756 return -EINVAL;
11757
974802ea
PZ
11758out:
11759 return ret;
11760
11761err_size:
11762 put_user(sizeof(*attr), &uattr->size);
11763 ret = -E2BIG;
11764 goto out;
11765}
11766
ac9721f3
PZ
11767static int
11768perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 11769{
56de4e8f 11770 struct perf_buffer *rb = NULL;
a4be7c27
PZ
11771 int ret = -EINVAL;
11772
ac9721f3 11773 if (!output_event)
a4be7c27
PZ
11774 goto set;
11775
ac9721f3
PZ
11776 /* don't allow circular references */
11777 if (event == output_event)
a4be7c27
PZ
11778 goto out;
11779
0f139300
PZ
11780 /*
11781 * Don't allow cross-cpu buffers
11782 */
11783 if (output_event->cpu != event->cpu)
11784 goto out;
11785
11786 /*
76369139 11787 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
11788 */
11789 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11790 goto out;
11791
34f43927
PZ
11792 /*
11793 * Mixing clocks in the same buffer is trouble you don't need.
11794 */
11795 if (output_event->clock != event->clock)
11796 goto out;
11797
9ecda41a
WN
11798 /*
11799 * Either writing ring buffer from beginning or from end.
11800 * Mixing is not allowed.
11801 */
11802 if (is_write_backward(output_event) != is_write_backward(event))
11803 goto out;
11804
45bfb2e5
PZ
11805 /*
11806 * If both events generate aux data, they must be on the same PMU
11807 */
11808 if (has_aux(event) && has_aux(output_event) &&
11809 event->pmu != output_event->pmu)
11810 goto out;
11811
a4be7c27 11812set:
cdd6c482 11813 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
11814 /* Can't redirect output if we've got an active mmap() */
11815 if (atomic_read(&event->mmap_count))
11816 goto unlock;
a4be7c27 11817
ac9721f3 11818 if (output_event) {
76369139
FW
11819 /* get the rb we want to redirect to */
11820 rb = ring_buffer_get(output_event);
11821 if (!rb)
ac9721f3 11822 goto unlock;
a4be7c27
PZ
11823 }
11824
b69cf536 11825 ring_buffer_attach(event, rb);
9bb5d40c 11826
a4be7c27 11827 ret = 0;
ac9721f3
PZ
11828unlock:
11829 mutex_unlock(&event->mmap_mutex);
11830
a4be7c27 11831out:
a4be7c27
PZ
11832 return ret;
11833}
11834
f63a8daa
PZ
11835static void mutex_lock_double(struct mutex *a, struct mutex *b)
11836{
11837 if (b < a)
11838 swap(a, b);
11839
11840 mutex_lock(a);
11841 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11842}
11843
34f43927
PZ
11844static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11845{
11846 bool nmi_safe = false;
11847
11848 switch (clk_id) {
11849 case CLOCK_MONOTONIC:
11850 event->clock = &ktime_get_mono_fast_ns;
11851 nmi_safe = true;
11852 break;
11853
11854 case CLOCK_MONOTONIC_RAW:
11855 event->clock = &ktime_get_raw_fast_ns;
11856 nmi_safe = true;
11857 break;
11858
11859 case CLOCK_REALTIME:
11860 event->clock = &ktime_get_real_ns;
11861 break;
11862
11863 case CLOCK_BOOTTIME:
9285ec4c 11864 event->clock = &ktime_get_boottime_ns;
34f43927
PZ
11865 break;
11866
11867 case CLOCK_TAI:
9285ec4c 11868 event->clock = &ktime_get_clocktai_ns;
34f43927
PZ
11869 break;
11870
11871 default:
11872 return -EINVAL;
11873 }
11874
11875 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11876 return -EINVAL;
11877
11878 return 0;
11879}
11880
321027c1
PZ
11881/*
11882 * Variation on perf_event_ctx_lock_nested(), except we take two context
11883 * mutexes.
11884 */
11885static struct perf_event_context *
11886__perf_event_ctx_lock_double(struct perf_event *group_leader,
11887 struct perf_event_context *ctx)
11888{
11889 struct perf_event_context *gctx;
11890
11891again:
11892 rcu_read_lock();
11893 gctx = READ_ONCE(group_leader->ctx);
8c94abbb 11894 if (!refcount_inc_not_zero(&gctx->refcount)) {
321027c1
PZ
11895 rcu_read_unlock();
11896 goto again;
11897 }
11898 rcu_read_unlock();
11899
11900 mutex_lock_double(&gctx->mutex, &ctx->mutex);
11901
11902 if (group_leader->ctx != gctx) {
11903 mutex_unlock(&ctx->mutex);
11904 mutex_unlock(&gctx->mutex);
11905 put_ctx(gctx);
11906 goto again;
11907 }
11908
11909 return gctx;
11910}
11911
0793a61d 11912/**
cdd6c482 11913 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 11914 *
cdd6c482 11915 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 11916 * @pid: target pid
9f66a381 11917 * @cpu: target cpu
cdd6c482 11918 * @group_fd: group leader event fd
0793a61d 11919 */
cdd6c482
IM
11920SYSCALL_DEFINE5(perf_event_open,
11921 struct perf_event_attr __user *, attr_uptr,
2743a5b0 11922 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 11923{
b04243ef
PZ
11924 struct perf_event *group_leader = NULL, *output_event = NULL;
11925 struct perf_event *event, *sibling;
cdd6c482 11926 struct perf_event_attr attr;
3f649ab7 11927 struct perf_event_context *ctx, *gctx;
cdd6c482 11928 struct file *event_file = NULL;
2903ff01 11929 struct fd group = {NULL, 0};
38a81da2 11930 struct task_struct *task = NULL;
89a1e187 11931 struct pmu *pmu;
ea635c64 11932 int event_fd;
b04243ef 11933 int move_group = 0;
dc86cabe 11934 int err;
a21b0b35 11935 int f_flags = O_RDWR;
79dff51e 11936 int cgroup_fd = -1;
0793a61d 11937
2743a5b0 11938 /* for future expandability... */
e5d1367f 11939 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
11940 return -EINVAL;
11941
da97e184
JFG
11942 /* Do we allow access to perf_event_open(2) ? */
11943 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11944 if (err)
11945 return err;
11946
dc86cabe
IM
11947 err = perf_copy_attr(attr_uptr, &attr);
11948 if (err)
11949 return err;
eab656ae 11950
0764771d 11951 if (!attr.exclude_kernel) {
da97e184
JFG
11952 err = perf_allow_kernel(&attr);
11953 if (err)
11954 return err;
0764771d
PZ
11955 }
11956
e4222673 11957 if (attr.namespaces) {
18aa1856 11958 if (!perfmon_capable())
e4222673
HB
11959 return -EACCES;
11960 }
11961
df58ab24 11962 if (attr.freq) {
cdd6c482 11963 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 11964 return -EINVAL;
0819b2e3
PZ
11965 } else {
11966 if (attr.sample_period & (1ULL << 63))
11967 return -EINVAL;
df58ab24
PZ
11968 }
11969
fc7ce9c7 11970 /* Only privileged users can get physical addresses */
da97e184
JFG
11971 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11972 err = perf_allow_kernel(&attr);
11973 if (err)
11974 return err;
11975 }
fc7ce9c7 11976
08ef1af4
OM
11977 /* REGS_INTR can leak data, lockdown must prevent this */
11978 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
11979 err = security_locked_down(LOCKDOWN_PERF);
11980 if (err)
11981 return err;
11982 }
b0c8fdc7 11983
e5d1367f
SE
11984 /*
11985 * In cgroup mode, the pid argument is used to pass the fd
11986 * opened to the cgroup directory in cgroupfs. The cpu argument
11987 * designates the cpu on which to monitor threads from that
11988 * cgroup.
11989 */
11990 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11991 return -EINVAL;
11992
a21b0b35
YD
11993 if (flags & PERF_FLAG_FD_CLOEXEC)
11994 f_flags |= O_CLOEXEC;
11995
11996 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
11997 if (event_fd < 0)
11998 return event_fd;
11999
ac9721f3 12000 if (group_fd != -1) {
2903ff01
AV
12001 err = perf_fget_light(group_fd, &group);
12002 if (err)
d14b12d7 12003 goto err_fd;
2903ff01 12004 group_leader = group.file->private_data;
ac9721f3
PZ
12005 if (flags & PERF_FLAG_FD_OUTPUT)
12006 output_event = group_leader;
12007 if (flags & PERF_FLAG_FD_NO_GROUP)
12008 group_leader = NULL;
12009 }
12010
e5d1367f 12011 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
12012 task = find_lively_task_by_vpid(pid);
12013 if (IS_ERR(task)) {
12014 err = PTR_ERR(task);
12015 goto err_group_fd;
12016 }
12017 }
12018
1f4ee503
PZ
12019 if (task && group_leader &&
12020 group_leader->attr.inherit != attr.inherit) {
12021 err = -EINVAL;
12022 goto err_task;
12023 }
12024
79dff51e
MF
12025 if (flags & PERF_FLAG_PID_CGROUP)
12026 cgroup_fd = pid;
12027
4dc0da86 12028 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 12029 NULL, NULL, cgroup_fd);
d14b12d7
SE
12030 if (IS_ERR(event)) {
12031 err = PTR_ERR(event);
78af4dc9 12032 goto err_task;
d14b12d7
SE
12033 }
12034
53b25335
VW
12035 if (is_sampling_event(event)) {
12036 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 12037 err = -EOPNOTSUPP;
53b25335
VW
12038 goto err_alloc;
12039 }
12040 }
12041
89a1e187
PZ
12042 /*
12043 * Special case software events and allow them to be part of
12044 * any hardware group.
12045 */
12046 pmu = event->pmu;
b04243ef 12047
34f43927
PZ
12048 if (attr.use_clockid) {
12049 err = perf_event_set_clock(event, attr.clockid);
12050 if (err)
12051 goto err_alloc;
12052 }
12053
4ff6a8de
DCC
12054 if (pmu->task_ctx_nr == perf_sw_context)
12055 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12056
a1150c20
SL
12057 if (group_leader) {
12058 if (is_software_event(event) &&
12059 !in_software_context(group_leader)) {
b04243ef 12060 /*
a1150c20
SL
12061 * If the event is a sw event, but the group_leader
12062 * is on hw context.
b04243ef 12063 *
a1150c20
SL
12064 * Allow the addition of software events to hw
12065 * groups, this is safe because software events
12066 * never fail to schedule.
b04243ef 12067 */
a1150c20
SL
12068 pmu = group_leader->ctx->pmu;
12069 } else if (!is_software_event(event) &&
12070 is_software_event(group_leader) &&
4ff6a8de 12071 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
12072 /*
12073 * In case the group is a pure software group, and we
12074 * try to add a hardware event, move the whole group to
12075 * the hardware context.
12076 */
12077 move_group = 1;
12078 }
12079 }
89a1e187
PZ
12080
12081 /*
12082 * Get the target context (task or percpu):
12083 */
4af57ef2 12084 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
12085 if (IS_ERR(ctx)) {
12086 err = PTR_ERR(ctx);
c6be5a5c 12087 goto err_alloc;
89a1e187
PZ
12088 }
12089
ccff286d 12090 /*
cdd6c482 12091 * Look up the group leader (we will attach this event to it):
04289bb9 12092 */
ac9721f3 12093 if (group_leader) {
dc86cabe 12094 err = -EINVAL;
04289bb9 12095
04289bb9 12096 /*
ccff286d
IM
12097 * Do not allow a recursive hierarchy (this new sibling
12098 * becoming part of another group-sibling):
12099 */
12100 if (group_leader->group_leader != group_leader)
c3f00c70 12101 goto err_context;
34f43927
PZ
12102
12103 /* All events in a group should have the same clock */
12104 if (group_leader->clock != event->clock)
12105 goto err_context;
12106
ccff286d 12107 /*
64aee2a9
MR
12108 * Make sure we're both events for the same CPU;
12109 * grouping events for different CPUs is broken; since
12110 * you can never concurrently schedule them anyhow.
04289bb9 12111 */
64aee2a9
MR
12112 if (group_leader->cpu != event->cpu)
12113 goto err_context;
c3c87e77 12114
64aee2a9
MR
12115 /*
12116 * Make sure we're both on the same task, or both
12117 * per-CPU events.
12118 */
12119 if (group_leader->ctx->task != ctx->task)
12120 goto err_context;
12121
12122 /*
12123 * Do not allow to attach to a group in a different task
12124 * or CPU context. If we're moving SW events, we'll fix
12125 * this up later, so allow that.
12126 */
12127 if (!move_group && group_leader->ctx != ctx)
12128 goto err_context;
b04243ef 12129
3b6f9e5c
PM
12130 /*
12131 * Only a group leader can be exclusive or pinned
12132 */
0d48696f 12133 if (attr.exclusive || attr.pinned)
c3f00c70 12134 goto err_context;
ac9721f3
PZ
12135 }
12136
12137 if (output_event) {
12138 err = perf_event_set_output(event, output_event);
12139 if (err)
c3f00c70 12140 goto err_context;
ac9721f3 12141 }
0793a61d 12142
a21b0b35
YD
12143 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12144 f_flags);
ea635c64
AV
12145 if (IS_ERR(event_file)) {
12146 err = PTR_ERR(event_file);
201c2f85 12147 event_file = NULL;
c3f00c70 12148 goto err_context;
ea635c64 12149 }
9b51f66d 12150
78af4dc9 12151 if (task) {
d01e7f10 12152 err = down_read_interruptible(&task->signal->exec_update_lock);
78af4dc9 12153 if (err)
12154 goto err_file;
12155
12156 /*
12157 * Preserve ptrace permission check for backwards compatibility.
12158 *
d01e7f10 12159 * We must hold exec_update_lock across this and any potential
78af4dc9 12160 * perf_install_in_context() call for this new event to
12161 * serialize against exec() altering our credentials (and the
12162 * perf_event_exit_task() that could imply).
12163 */
12164 err = -EACCES;
12165 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
12166 goto err_cred;
12167 }
12168
b04243ef 12169 if (move_group) {
321027c1
PZ
12170 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12171
84c4e620
PZ
12172 if (gctx->task == TASK_TOMBSTONE) {
12173 err = -ESRCH;
12174 goto err_locked;
12175 }
321027c1
PZ
12176
12177 /*
12178 * Check if we raced against another sys_perf_event_open() call
12179 * moving the software group underneath us.
12180 */
12181 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12182 /*
12183 * If someone moved the group out from under us, check
12184 * if this new event wound up on the same ctx, if so
12185 * its the regular !move_group case, otherwise fail.
12186 */
12187 if (gctx != ctx) {
12188 err = -EINVAL;
12189 goto err_locked;
12190 } else {
12191 perf_event_ctx_unlock(group_leader, gctx);
12192 move_group = 0;
12193 }
12194 }
8a58ddae
AS
12195
12196 /*
12197 * Failure to create exclusive events returns -EBUSY.
12198 */
12199 err = -EBUSY;
12200 if (!exclusive_event_installable(group_leader, ctx))
12201 goto err_locked;
12202
12203 for_each_sibling_event(sibling, group_leader) {
12204 if (!exclusive_event_installable(sibling, ctx))
12205 goto err_locked;
12206 }
f55fc2a5
PZ
12207 } else {
12208 mutex_lock(&ctx->mutex);
12209 }
12210
84c4e620
PZ
12211 if (ctx->task == TASK_TOMBSTONE) {
12212 err = -ESRCH;
12213 goto err_locked;
12214 }
12215
a723968c
PZ
12216 if (!perf_event_validate_size(event)) {
12217 err = -E2BIG;
12218 goto err_locked;
12219 }
12220
a63fbed7
TG
12221 if (!task) {
12222 /*
12223 * Check if the @cpu we're creating an event for is online.
12224 *
12225 * We use the perf_cpu_context::ctx::mutex to serialize against
12226 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12227 */
12228 struct perf_cpu_context *cpuctx =
12229 container_of(ctx, struct perf_cpu_context, ctx);
12230
12231 if (!cpuctx->online) {
12232 err = -ENODEV;
12233 goto err_locked;
12234 }
12235 }
12236
da9ec3d3
MR
12237 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12238 err = -EINVAL;
ab43762e 12239 goto err_locked;
da9ec3d3 12240 }
a63fbed7 12241
f55fc2a5
PZ
12242 /*
12243 * Must be under the same ctx::mutex as perf_install_in_context(),
12244 * because we need to serialize with concurrent event creation.
12245 */
12246 if (!exclusive_event_installable(event, ctx)) {
f55fc2a5
PZ
12247 err = -EBUSY;
12248 goto err_locked;
12249 }
f63a8daa 12250
f55fc2a5
PZ
12251 WARN_ON_ONCE(ctx->parent_ctx);
12252
79c9ce57
PZ
12253 /*
12254 * This is the point on no return; we cannot fail hereafter. This is
12255 * where we start modifying current state.
12256 */
12257
f55fc2a5 12258 if (move_group) {
f63a8daa
PZ
12259 /*
12260 * See perf_event_ctx_lock() for comments on the details
12261 * of swizzling perf_event::ctx.
12262 */
45a0e07a 12263 perf_remove_from_context(group_leader, 0);
279b5165 12264 put_ctx(gctx);
0231bb53 12265
edb39592 12266 for_each_sibling_event(sibling, group_leader) {
45a0e07a 12267 perf_remove_from_context(sibling, 0);
b04243ef
PZ
12268 put_ctx(gctx);
12269 }
b04243ef 12270
f63a8daa
PZ
12271 /*
12272 * Wait for everybody to stop referencing the events through
12273 * the old lists, before installing it on new lists.
12274 */
0cda4c02 12275 synchronize_rcu();
f63a8daa 12276
8f95b435
PZI
12277 /*
12278 * Install the group siblings before the group leader.
12279 *
12280 * Because a group leader will try and install the entire group
12281 * (through the sibling list, which is still in-tact), we can
12282 * end up with siblings installed in the wrong context.
12283 *
12284 * By installing siblings first we NO-OP because they're not
12285 * reachable through the group lists.
12286 */
edb39592 12287 for_each_sibling_event(sibling, group_leader) {
8f95b435 12288 perf_event__state_init(sibling);
9fc81d87 12289 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
12290 get_ctx(ctx);
12291 }
8f95b435
PZI
12292
12293 /*
12294 * Removing from the context ends up with disabled
12295 * event. What we want here is event in the initial
12296 * startup state, ready to be add into new context.
12297 */
12298 perf_event__state_init(group_leader);
12299 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12300 get_ctx(ctx);
bed5b25a
AS
12301 }
12302
f73e22ab
PZ
12303 /*
12304 * Precalculate sample_data sizes; do while holding ctx::mutex such
12305 * that we're serialized against further additions and before
12306 * perf_install_in_context() which is the point the event is active and
12307 * can use these values.
12308 */
12309 perf_event__header_size(event);
12310 perf_event__id_header_size(event);
12311
78cd2c74
PZ
12312 event->owner = current;
12313
e2d37cd2 12314 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 12315 perf_unpin_context(ctx);
f63a8daa 12316
f55fc2a5 12317 if (move_group)
321027c1 12318 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 12319 mutex_unlock(&ctx->mutex);
9b51f66d 12320
79c9ce57 12321 if (task) {
f7cfd871 12322 up_read(&task->signal->exec_update_lock);
79c9ce57
PZ
12323 put_task_struct(task);
12324 }
12325
cdd6c482
IM
12326 mutex_lock(&current->perf_event_mutex);
12327 list_add_tail(&event->owner_entry, &current->perf_event_list);
12328 mutex_unlock(&current->perf_event_mutex);
082ff5a2 12329
8a49542c
PZ
12330 /*
12331 * Drop the reference on the group_event after placing the
12332 * new event on the sibling_list. This ensures destruction
12333 * of the group leader will find the pointer to itself in
12334 * perf_group_detach().
12335 */
2903ff01 12336 fdput(group);
ea635c64
AV
12337 fd_install(event_fd, event_file);
12338 return event_fd;
0793a61d 12339
f55fc2a5
PZ
12340err_locked:
12341 if (move_group)
321027c1 12342 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5 12343 mutex_unlock(&ctx->mutex);
78af4dc9 12344err_cred:
12345 if (task)
d01e7f10 12346 up_read(&task->signal->exec_update_lock);
78af4dc9 12347err_file:
f55fc2a5 12348 fput(event_file);
c3f00c70 12349err_context:
fe4b04fa 12350 perf_unpin_context(ctx);
ea635c64 12351 put_ctx(ctx);
c6be5a5c 12352err_alloc:
13005627
PZ
12353 /*
12354 * If event_file is set, the fput() above will have called ->release()
12355 * and that will take care of freeing the event.
12356 */
12357 if (!event_file)
12358 free_event(event);
1f4ee503 12359err_task:
e7d0bc04
PZ
12360 if (task)
12361 put_task_struct(task);
89a1e187 12362err_group_fd:
2903ff01 12363 fdput(group);
ea635c64
AV
12364err_fd:
12365 put_unused_fd(event_fd);
dc86cabe 12366 return err;
0793a61d
TG
12367}
12368
fb0459d7
AV
12369/**
12370 * perf_event_create_kernel_counter
12371 *
12372 * @attr: attributes of the counter to create
12373 * @cpu: cpu in which the counter is bound
38a81da2 12374 * @task: task to profile (NULL for percpu)
fb0459d7
AV
12375 */
12376struct perf_event *
12377perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 12378 struct task_struct *task,
4dc0da86
AK
12379 perf_overflow_handler_t overflow_handler,
12380 void *context)
fb0459d7 12381{
fb0459d7 12382 struct perf_event_context *ctx;
c3f00c70 12383 struct perf_event *event;
fb0459d7 12384 int err;
d859e29f 12385
dce5affb
AS
12386 /*
12387 * Grouping is not supported for kernel events, neither is 'AUX',
12388 * make sure the caller's intentions are adjusted.
12389 */
12390 if (attr->aux_output)
12391 return ERR_PTR(-EINVAL);
12392
4dc0da86 12393 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 12394 overflow_handler, context, -1);
c3f00c70
PZ
12395 if (IS_ERR(event)) {
12396 err = PTR_ERR(event);
12397 goto err;
12398 }
d859e29f 12399
f8697762 12400 /* Mark owner so we could distinguish it from user events. */
63b6da39 12401 event->owner = TASK_TOMBSTONE;
f8697762 12402
f25d8ba9
AS
12403 /*
12404 * Get the target context (task or percpu):
12405 */
4af57ef2 12406 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
12407 if (IS_ERR(ctx)) {
12408 err = PTR_ERR(ctx);
c3f00c70 12409 goto err_free;
d859e29f 12410 }
fb0459d7 12411
fb0459d7
AV
12412 WARN_ON_ONCE(ctx->parent_ctx);
12413 mutex_lock(&ctx->mutex);
84c4e620
PZ
12414 if (ctx->task == TASK_TOMBSTONE) {
12415 err = -ESRCH;
12416 goto err_unlock;
12417 }
12418
a63fbed7
TG
12419 if (!task) {
12420 /*
12421 * Check if the @cpu we're creating an event for is online.
12422 *
12423 * We use the perf_cpu_context::ctx::mutex to serialize against
12424 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12425 */
12426 struct perf_cpu_context *cpuctx =
12427 container_of(ctx, struct perf_cpu_context, ctx);
12428 if (!cpuctx->online) {
12429 err = -ENODEV;
12430 goto err_unlock;
12431 }
12432 }
12433
bed5b25a 12434 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 12435 err = -EBUSY;
84c4e620 12436 goto err_unlock;
bed5b25a
AS
12437 }
12438
4ce54af8 12439 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 12440 perf_unpin_context(ctx);
fb0459d7
AV
12441 mutex_unlock(&ctx->mutex);
12442
fb0459d7
AV
12443 return event;
12444
84c4e620
PZ
12445err_unlock:
12446 mutex_unlock(&ctx->mutex);
12447 perf_unpin_context(ctx);
12448 put_ctx(ctx);
c3f00c70
PZ
12449err_free:
12450 free_event(event);
12451err:
c6567f64 12452 return ERR_PTR(err);
9b51f66d 12453}
fb0459d7 12454EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 12455
0cda4c02
YZ
12456void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12457{
12458 struct perf_event_context *src_ctx;
12459 struct perf_event_context *dst_ctx;
12460 struct perf_event *event, *tmp;
12461 LIST_HEAD(events);
12462
12463 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12464 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12465
f63a8daa
PZ
12466 /*
12467 * See perf_event_ctx_lock() for comments on the details
12468 * of swizzling perf_event::ctx.
12469 */
12470 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
12471 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12472 event_entry) {
45a0e07a 12473 perf_remove_from_context(event, 0);
9a545de0 12474 unaccount_event_cpu(event, src_cpu);
0cda4c02 12475 put_ctx(src_ctx);
9886167d 12476 list_add(&event->migrate_entry, &events);
0cda4c02 12477 }
0cda4c02 12478
8f95b435
PZI
12479 /*
12480 * Wait for the events to quiesce before re-instating them.
12481 */
0cda4c02
YZ
12482 synchronize_rcu();
12483
8f95b435
PZI
12484 /*
12485 * Re-instate events in 2 passes.
12486 *
12487 * Skip over group leaders and only install siblings on this first
12488 * pass, siblings will not get enabled without a leader, however a
12489 * leader will enable its siblings, even if those are still on the old
12490 * context.
12491 */
12492 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12493 if (event->group_leader == event)
12494 continue;
12495
12496 list_del(&event->migrate_entry);
12497 if (event->state >= PERF_EVENT_STATE_OFF)
12498 event->state = PERF_EVENT_STATE_INACTIVE;
12499 account_event_cpu(event, dst_cpu);
12500 perf_install_in_context(dst_ctx, event, dst_cpu);
12501 get_ctx(dst_ctx);
12502 }
12503
12504 /*
12505 * Once all the siblings are setup properly, install the group leaders
12506 * to make it go.
12507 */
9886167d
PZ
12508 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12509 list_del(&event->migrate_entry);
0cda4c02
YZ
12510 if (event->state >= PERF_EVENT_STATE_OFF)
12511 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 12512 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
12513 perf_install_in_context(dst_ctx, event, dst_cpu);
12514 get_ctx(dst_ctx);
12515 }
12516 mutex_unlock(&dst_ctx->mutex);
f63a8daa 12517 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
12518}
12519EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12520
ef54c1a4 12521static void sync_child_event(struct perf_event *child_event)
d859e29f 12522{
cdd6c482 12523 struct perf_event *parent_event = child_event->parent;
8bc20959 12524 u64 child_val;
d859e29f 12525
ef54c1a4
PZ
12526 if (child_event->attr.inherit_stat) {
12527 struct task_struct *task = child_event->ctx->task;
12528
12529 if (task && task != TASK_TOMBSTONE)
12530 perf_event_read_event(child_event, task);
12531 }
38b200d6 12532
b5e58793 12533 child_val = perf_event_count(child_event);
d859e29f
PM
12534
12535 /*
12536 * Add back the child's count to the parent's count:
12537 */
a6e6dea6 12538 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
12539 atomic64_add(child_event->total_time_enabled,
12540 &parent_event->child_total_time_enabled);
12541 atomic64_add(child_event->total_time_running,
12542 &parent_event->child_total_time_running);
d859e29f
PM
12543}
12544
9b51f66d 12545static void
ef54c1a4 12546perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
9b51f66d 12547{
ef54c1a4
PZ
12548 struct perf_event *parent_event = event->parent;
12549 unsigned long detach_flags = 0;
8ba289b8 12550
ef54c1a4
PZ
12551 if (parent_event) {
12552 /*
12553 * Do not destroy the 'original' grouping; because of the
12554 * context switch optimization the original events could've
12555 * ended up in a random child task.
12556 *
12557 * If we were to destroy the original group, all group related
12558 * operations would cease to function properly after this
12559 * random child dies.
12560 *
12561 * Do destroy all inherited groups, we don't care about those
12562 * and being thorough is better.
12563 */
12564 detach_flags = DETACH_GROUP | DETACH_CHILD;
12565 mutex_lock(&parent_event->child_mutex);
12566 }
32132a3d 12567
ef54c1a4
PZ
12568 perf_remove_from_context(event, detach_flags);
12569
12570 raw_spin_lock_irq(&ctx->lock);
12571 if (event->state > PERF_EVENT_STATE_EXIT)
12572 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12573 raw_spin_unlock_irq(&ctx->lock);
0cc0c027 12574
9b51f66d 12575 /*
ef54c1a4 12576 * Child events can be freed.
9b51f66d 12577 */
ef54c1a4
PZ
12578 if (parent_event) {
12579 mutex_unlock(&parent_event->child_mutex);
12580 /*
12581 * Kick perf_poll() for is_event_hup();
12582 */
12583 perf_event_wakeup(parent_event);
12584 free_event(event);
12585 put_event(parent_event);
8ba289b8 12586 return;
4bcf349a 12587 }
8ba289b8
PZ
12588
12589 /*
ef54c1a4 12590 * Parent events are governed by their filedesc, retain them.
8ba289b8 12591 */
ef54c1a4 12592 perf_event_wakeup(event);
9b51f66d
IM
12593}
12594
8dc85d54 12595static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 12596{
211de6eb 12597 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 12598 struct perf_event *child_event, *next;
63b6da39
PZ
12599
12600 WARN_ON_ONCE(child != current);
9b51f66d 12601
6a3351b6 12602 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 12603 if (!child_ctx)
9b51f66d
IM
12604 return;
12605
ad3a37de 12606 /*
6a3351b6
PZ
12607 * In order to reduce the amount of tricky in ctx tear-down, we hold
12608 * ctx::mutex over the entire thing. This serializes against almost
12609 * everything that wants to access the ctx.
12610 *
12611 * The exception is sys_perf_event_open() /
12612 * perf_event_create_kernel_count() which does find_get_context()
12613 * without ctx::mutex (it cannot because of the move_group double mutex
12614 * lock thing). See the comments in perf_install_in_context().
ad3a37de 12615 */
6a3351b6 12616 mutex_lock(&child_ctx->mutex);
c93f7669
PM
12617
12618 /*
6a3351b6
PZ
12619 * In a single ctx::lock section, de-schedule the events and detach the
12620 * context from the task such that we cannot ever get it scheduled back
12621 * in.
c93f7669 12622 */
6a3351b6 12623 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 12624 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 12625
71a851b4 12626 /*
63b6da39
PZ
12627 * Now that the context is inactive, destroy the task <-> ctx relation
12628 * and mark the context dead.
71a851b4 12629 */
63b6da39
PZ
12630 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12631 put_ctx(child_ctx); /* cannot be last */
12632 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12633 put_task_struct(current); /* cannot be last */
4a1c0f26 12634
211de6eb 12635 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 12636 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 12637
211de6eb
PZ
12638 if (clone_ctx)
12639 put_ctx(clone_ctx);
4a1c0f26 12640
9f498cc5 12641 /*
cdd6c482
IM
12642 * Report the task dead after unscheduling the events so that we
12643 * won't get any samples after PERF_RECORD_EXIT. We can however still
12644 * get a few PERF_RECORD_READ events.
9f498cc5 12645 */
cdd6c482 12646 perf_event_task(child, child_ctx, 0);
a63eaf34 12647
ebf905fc 12648 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
ef54c1a4 12649 perf_event_exit_event(child_event, child_ctx);
8bc20959 12650
a63eaf34
PM
12651 mutex_unlock(&child_ctx->mutex);
12652
12653 put_ctx(child_ctx);
9b51f66d
IM
12654}
12655
8dc85d54
PZ
12656/*
12657 * When a child task exits, feed back event values to parent events.
79c9ce57 12658 *
f7cfd871 12659 * Can be called with exec_update_lock held when called from
96ecee29 12660 * setup_new_exec().
8dc85d54
PZ
12661 */
12662void perf_event_exit_task(struct task_struct *child)
12663{
8882135b 12664 struct perf_event *event, *tmp;
8dc85d54
PZ
12665 int ctxn;
12666
8882135b
PZ
12667 mutex_lock(&child->perf_event_mutex);
12668 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12669 owner_entry) {
12670 list_del_init(&event->owner_entry);
12671
12672 /*
12673 * Ensure the list deletion is visible before we clear
12674 * the owner, closes a race against perf_release() where
12675 * we need to serialize on the owner->perf_event_mutex.
12676 */
f47c02c0 12677 smp_store_release(&event->owner, NULL);
8882135b
PZ
12678 }
12679 mutex_unlock(&child->perf_event_mutex);
12680
8dc85d54
PZ
12681 for_each_task_context_nr(ctxn)
12682 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
12683
12684 /*
12685 * The perf_event_exit_task_context calls perf_event_task
12686 * with child's task_ctx, which generates EXIT events for
12687 * child contexts and sets child->perf_event_ctxp[] to NULL.
12688 * At this point we need to send EXIT events to cpu contexts.
12689 */
12690 perf_event_task(child, NULL, 0);
8dc85d54
PZ
12691}
12692
889ff015
FW
12693static void perf_free_event(struct perf_event *event,
12694 struct perf_event_context *ctx)
12695{
12696 struct perf_event *parent = event->parent;
12697
12698 if (WARN_ON_ONCE(!parent))
12699 return;
12700
12701 mutex_lock(&parent->child_mutex);
12702 list_del_init(&event->child_list);
12703 mutex_unlock(&parent->child_mutex);
12704
a6fa941d 12705 put_event(parent);
889ff015 12706
652884fe 12707 raw_spin_lock_irq(&ctx->lock);
8a49542c 12708 perf_group_detach(event);
889ff015 12709 list_del_event(event, ctx);
652884fe 12710 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
12711 free_event(event);
12712}
12713
bbbee908 12714/*
1cf8dfe8
PZ
12715 * Free a context as created by inheritance by perf_event_init_task() below,
12716 * used by fork() in case of fail.
652884fe 12717 *
1cf8dfe8
PZ
12718 * Even though the task has never lived, the context and events have been
12719 * exposed through the child_list, so we must take care tearing it all down.
bbbee908 12720 */
cdd6c482 12721void perf_event_free_task(struct task_struct *task)
bbbee908 12722{
8dc85d54 12723 struct perf_event_context *ctx;
cdd6c482 12724 struct perf_event *event, *tmp;
8dc85d54 12725 int ctxn;
bbbee908 12726
8dc85d54
PZ
12727 for_each_task_context_nr(ctxn) {
12728 ctx = task->perf_event_ctxp[ctxn];
12729 if (!ctx)
12730 continue;
bbbee908 12731
8dc85d54 12732 mutex_lock(&ctx->mutex);
e552a838
PZ
12733 raw_spin_lock_irq(&ctx->lock);
12734 /*
12735 * Destroy the task <-> ctx relation and mark the context dead.
12736 *
12737 * This is important because even though the task hasn't been
12738 * exposed yet the context has been (through child_list).
12739 */
12740 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12741 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12742 put_task_struct(task); /* cannot be last */
12743 raw_spin_unlock_irq(&ctx->lock);
bbbee908 12744
15121c78 12745 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 12746 perf_free_event(event, ctx);
bbbee908 12747
8dc85d54 12748 mutex_unlock(&ctx->mutex);
1cf8dfe8
PZ
12749
12750 /*
12751 * perf_event_release_kernel() could've stolen some of our
12752 * child events and still have them on its free_list. In that
12753 * case we must wait for these events to have been freed (in
12754 * particular all their references to this task must've been
12755 * dropped).
12756 *
12757 * Without this copy_process() will unconditionally free this
12758 * task (irrespective of its reference count) and
12759 * _free_event()'s put_task_struct(event->hw.target) will be a
12760 * use-after-free.
12761 *
12762 * Wait for all events to drop their context reference.
12763 */
12764 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12765 put_ctx(ctx); /* must be last */
8dc85d54 12766 }
889ff015
FW
12767}
12768
4e231c79
PZ
12769void perf_event_delayed_put(struct task_struct *task)
12770{
12771 int ctxn;
12772
12773 for_each_task_context_nr(ctxn)
12774 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12775}
12776
e03e7ee3 12777struct file *perf_event_get(unsigned int fd)
ffe8690c 12778{
02e5ad97 12779 struct file *file = fget(fd);
e03e7ee3
AS
12780 if (!file)
12781 return ERR_PTR(-EBADF);
ffe8690c 12782
e03e7ee3
AS
12783 if (file->f_op != &perf_fops) {
12784 fput(file);
12785 return ERR_PTR(-EBADF);
12786 }
ffe8690c 12787
e03e7ee3 12788 return file;
ffe8690c
KX
12789}
12790
f8d959a5
YS
12791const struct perf_event *perf_get_event(struct file *file)
12792{
12793 if (file->f_op != &perf_fops)
12794 return ERR_PTR(-EINVAL);
12795
12796 return file->private_data;
12797}
12798
ffe8690c
KX
12799const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12800{
12801 if (!event)
12802 return ERR_PTR(-EINVAL);
12803
12804 return &event->attr;
12805}
12806
97dee4f3 12807/*
788faab7 12808 * Inherit an event from parent task to child task.
d8a8cfc7
PZ
12809 *
12810 * Returns:
12811 * - valid pointer on success
12812 * - NULL for orphaned events
12813 * - IS_ERR() on error
97dee4f3
PZ
12814 */
12815static struct perf_event *
12816inherit_event(struct perf_event *parent_event,
12817 struct task_struct *parent,
12818 struct perf_event_context *parent_ctx,
12819 struct task_struct *child,
12820 struct perf_event *group_leader,
12821 struct perf_event_context *child_ctx)
12822{
8ca2bd41 12823 enum perf_event_state parent_state = parent_event->state;
97dee4f3 12824 struct perf_event *child_event;
cee010ec 12825 unsigned long flags;
97dee4f3
PZ
12826
12827 /*
12828 * Instead of creating recursive hierarchies of events,
12829 * we link inherited events back to the original parent,
12830 * which has a filp for sure, which we use as the reference
12831 * count:
12832 */
12833 if (parent_event->parent)
12834 parent_event = parent_event->parent;
12835
12836 child_event = perf_event_alloc(&parent_event->attr,
12837 parent_event->cpu,
d580ff86 12838 child,
97dee4f3 12839 group_leader, parent_event,
79dff51e 12840 NULL, NULL, -1);
97dee4f3
PZ
12841 if (IS_ERR(child_event))
12842 return child_event;
a6fa941d 12843
313ccb96
JO
12844
12845 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12846 !child_ctx->task_ctx_data) {
12847 struct pmu *pmu = child_event->pmu;
12848
ff9ff926 12849 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
313ccb96
JO
12850 if (!child_ctx->task_ctx_data) {
12851 free_event(child_event);
697d8778 12852 return ERR_PTR(-ENOMEM);
313ccb96
JO
12853 }
12854 }
12855
c6e5b732
PZ
12856 /*
12857 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12858 * must be under the same lock in order to serialize against
12859 * perf_event_release_kernel(), such that either we must observe
12860 * is_orphaned_event() or they will observe us on the child_list.
12861 */
12862 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
12863 if (is_orphaned_event(parent_event) ||
12864 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 12865 mutex_unlock(&parent_event->child_mutex);
313ccb96 12866 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
12867 free_event(child_event);
12868 return NULL;
12869 }
12870
97dee4f3
PZ
12871 get_ctx(child_ctx);
12872
12873 /*
12874 * Make the child state follow the state of the parent event,
12875 * not its attr.disabled bit. We hold the parent's mutex,
12876 * so we won't race with perf_event_{en, dis}able_family.
12877 */
1929def9 12878 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
12879 child_event->state = PERF_EVENT_STATE_INACTIVE;
12880 else
12881 child_event->state = PERF_EVENT_STATE_OFF;
12882
12883 if (parent_event->attr.freq) {
12884 u64 sample_period = parent_event->hw.sample_period;
12885 struct hw_perf_event *hwc = &child_event->hw;
12886
12887 hwc->sample_period = sample_period;
12888 hwc->last_period = sample_period;
12889
12890 local64_set(&hwc->period_left, sample_period);
12891 }
12892
12893 child_event->ctx = child_ctx;
12894 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
12895 child_event->overflow_handler_context
12896 = parent_event->overflow_handler_context;
97dee4f3 12897
614b6780
TG
12898 /*
12899 * Precalculate sample_data sizes
12900 */
12901 perf_event__header_size(child_event);
6844c09d 12902 perf_event__id_header_size(child_event);
614b6780 12903
97dee4f3
PZ
12904 /*
12905 * Link it up in the child's context:
12906 */
cee010ec 12907 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 12908 add_event_to_ctx(child_event, child_ctx);
ef54c1a4 12909 child_event->attach_state |= PERF_ATTACH_CHILD;
cee010ec 12910 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 12911
97dee4f3
PZ
12912 /*
12913 * Link this into the parent event's child list
12914 */
97dee4f3
PZ
12915 list_add_tail(&child_event->child_list, &parent_event->child_list);
12916 mutex_unlock(&parent_event->child_mutex);
12917
12918 return child_event;
12919}
12920
d8a8cfc7
PZ
12921/*
12922 * Inherits an event group.
12923 *
12924 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12925 * This matches with perf_event_release_kernel() removing all child events.
12926 *
12927 * Returns:
12928 * - 0 on success
12929 * - <0 on error
12930 */
97dee4f3
PZ
12931static int inherit_group(struct perf_event *parent_event,
12932 struct task_struct *parent,
12933 struct perf_event_context *parent_ctx,
12934 struct task_struct *child,
12935 struct perf_event_context *child_ctx)
12936{
12937 struct perf_event *leader;
12938 struct perf_event *sub;
12939 struct perf_event *child_ctr;
12940
12941 leader = inherit_event(parent_event, parent, parent_ctx,
12942 child, NULL, child_ctx);
12943 if (IS_ERR(leader))
12944 return PTR_ERR(leader);
d8a8cfc7
PZ
12945 /*
12946 * @leader can be NULL here because of is_orphaned_event(). In this
12947 * case inherit_event() will create individual events, similar to what
12948 * perf_group_detach() would do anyway.
12949 */
edb39592 12950 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
12951 child_ctr = inherit_event(sub, parent, parent_ctx,
12952 child, leader, child_ctx);
12953 if (IS_ERR(child_ctr))
12954 return PTR_ERR(child_ctr);
f733c6b5 12955
00496fe5 12956 if (sub->aux_event == parent_event && child_ctr &&
f733c6b5
AS
12957 !perf_get_aux_event(child_ctr, leader))
12958 return -EINVAL;
97dee4f3
PZ
12959 }
12960 return 0;
889ff015
FW
12961}
12962
d8a8cfc7
PZ
12963/*
12964 * Creates the child task context and tries to inherit the event-group.
12965 *
12966 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12967 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12968 * consistent with perf_event_release_kernel() removing all child events.
12969 *
12970 * Returns:
12971 * - 0 on success
12972 * - <0 on error
12973 */
889ff015
FW
12974static int
12975inherit_task_group(struct perf_event *event, struct task_struct *parent,
12976 struct perf_event_context *parent_ctx,
8dc85d54 12977 struct task_struct *child, int ctxn,
2b26f0aa 12978 u64 clone_flags, int *inherited_all)
889ff015
FW
12979{
12980 int ret;
8dc85d54 12981 struct perf_event_context *child_ctx;
889ff015 12982
2b26f0aa 12983 if (!event->attr.inherit ||
97ba62b2
ME
12984 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
12985 /* Do not inherit if sigtrap and signal handlers were cleared. */
12986 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
889ff015
FW
12987 *inherited_all = 0;
12988 return 0;
bbbee908
PZ
12989 }
12990
fe4b04fa 12991 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
12992 if (!child_ctx) {
12993 /*
12994 * This is executed from the parent task context, so
12995 * inherit events that have been marked for cloning.
12996 * First allocate and initialize a context for the
12997 * child.
12998 */
734df5ab 12999 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
13000 if (!child_ctx)
13001 return -ENOMEM;
bbbee908 13002
8dc85d54 13003 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
13004 }
13005
13006 ret = inherit_group(event, parent, parent_ctx,
13007 child, child_ctx);
13008
13009 if (ret)
13010 *inherited_all = 0;
13011
13012 return ret;
bbbee908
PZ
13013}
13014
9b51f66d 13015/*
cdd6c482 13016 * Initialize the perf_event context in task_struct
9b51f66d 13017 */
2b26f0aa
ME
13018static int perf_event_init_context(struct task_struct *child, int ctxn,
13019 u64 clone_flags)
9b51f66d 13020{
889ff015 13021 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
13022 struct perf_event_context *cloned_ctx;
13023 struct perf_event *event;
9b51f66d 13024 struct task_struct *parent = current;
564c2b21 13025 int inherited_all = 1;
dddd3379 13026 unsigned long flags;
6ab423e0 13027 int ret = 0;
9b51f66d 13028
8dc85d54 13029 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
13030 return 0;
13031
ad3a37de 13032 /*
25346b93
PM
13033 * If the parent's context is a clone, pin it so it won't get
13034 * swapped under us.
ad3a37de 13035 */
8dc85d54 13036 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
13037 if (!parent_ctx)
13038 return 0;
25346b93 13039
ad3a37de
PM
13040 /*
13041 * No need to check if parent_ctx != NULL here; since we saw
13042 * it non-NULL earlier, the only reason for it to become NULL
13043 * is if we exit, and since we're currently in the middle of
13044 * a fork we can't be exiting at the same time.
13045 */
ad3a37de 13046
9b51f66d
IM
13047 /*
13048 * Lock the parent list. No need to lock the child - not PID
13049 * hashed yet and not running, so nobody can access it.
13050 */
d859e29f 13051 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
13052
13053 /*
13054 * We dont have to disable NMIs - we are only looking at
13055 * the list, not manipulating it:
13056 */
6e6804d2 13057 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54 13058 ret = inherit_task_group(event, parent, parent_ctx,
2b26f0aa
ME
13059 child, ctxn, clone_flags,
13060 &inherited_all);
889ff015 13061 if (ret)
e7cc4865 13062 goto out_unlock;
889ff015 13063 }
b93f7978 13064
dddd3379
TG
13065 /*
13066 * We can't hold ctx->lock when iterating the ->flexible_group list due
13067 * to allocations, but we need to prevent rotation because
13068 * rotate_ctx() will change the list from interrupt context.
13069 */
13070 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13071 parent_ctx->rotate_disable = 1;
13072 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13073
6e6804d2 13074 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54 13075 ret = inherit_task_group(event, parent, parent_ctx,
2b26f0aa
ME
13076 child, ctxn, clone_flags,
13077 &inherited_all);
889ff015 13078 if (ret)
e7cc4865 13079 goto out_unlock;
564c2b21
PM
13080 }
13081
dddd3379
TG
13082 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13083 parent_ctx->rotate_disable = 0;
dddd3379 13084
8dc85d54 13085 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 13086
05cbaa28 13087 if (child_ctx && inherited_all) {
564c2b21
PM
13088 /*
13089 * Mark the child context as a clone of the parent
13090 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
13091 *
13092 * Note that if the parent is a clone, the holding of
13093 * parent_ctx->lock avoids it from being uncloned.
564c2b21 13094 */
c5ed5145 13095 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
13096 if (cloned_ctx) {
13097 child_ctx->parent_ctx = cloned_ctx;
25346b93 13098 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
13099 } else {
13100 child_ctx->parent_ctx = parent_ctx;
13101 child_ctx->parent_gen = parent_ctx->generation;
13102 }
13103 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
13104 }
13105
c5ed5145 13106 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 13107out_unlock:
d859e29f 13108 mutex_unlock(&parent_ctx->mutex);
6ab423e0 13109
25346b93 13110 perf_unpin_context(parent_ctx);
fe4b04fa 13111 put_ctx(parent_ctx);
ad3a37de 13112
6ab423e0 13113 return ret;
9b51f66d
IM
13114}
13115
8dc85d54
PZ
13116/*
13117 * Initialize the perf_event context in task_struct
13118 */
2b26f0aa 13119int perf_event_init_task(struct task_struct *child, u64 clone_flags)
8dc85d54
PZ
13120{
13121 int ctxn, ret;
13122
8550d7cb
ON
13123 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13124 mutex_init(&child->perf_event_mutex);
13125 INIT_LIST_HEAD(&child->perf_event_list);
13126
8dc85d54 13127 for_each_task_context_nr(ctxn) {
2b26f0aa 13128 ret = perf_event_init_context(child, ctxn, clone_flags);
6c72e350
PZ
13129 if (ret) {
13130 perf_event_free_task(child);
8dc85d54 13131 return ret;
6c72e350 13132 }
8dc85d54
PZ
13133 }
13134
13135 return 0;
13136}
13137
220b140b
PM
13138static void __init perf_event_init_all_cpus(void)
13139{
b28ab83c 13140 struct swevent_htable *swhash;
220b140b 13141 int cpu;
220b140b 13142
a63fbed7
TG
13143 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13144
220b140b 13145 for_each_possible_cpu(cpu) {
b28ab83c
PZ
13146 swhash = &per_cpu(swevent_htable, cpu);
13147 mutex_init(&swhash->hlist_mutex);
2fde4f94 13148 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
13149
13150 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13151 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 13152
058fe1c0
DCC
13153#ifdef CONFIG_CGROUP_PERF
13154 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13155#endif
a5398bff 13156 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
13157 }
13158}
13159
d18bf422 13160static void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 13161{
108b02cf 13162 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 13163
b28ab83c 13164 mutex_lock(&swhash->hlist_mutex);
059fcd8c 13165 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
13166 struct swevent_hlist *hlist;
13167
b28ab83c
PZ
13168 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13169 WARN_ON(!hlist);
13170 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 13171 }
b28ab83c 13172 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
13173}
13174
2965faa5 13175#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 13176static void __perf_event_exit_context(void *__info)
0793a61d 13177{
108b02cf 13178 struct perf_event_context *ctx = __info;
fae3fde6
PZ
13179 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13180 struct perf_event *event;
0793a61d 13181
fae3fde6 13182 raw_spin_lock(&ctx->lock);
0ee098c9 13183 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 13184 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 13185 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 13186 raw_spin_unlock(&ctx->lock);
0793a61d 13187}
108b02cf
PZ
13188
13189static void perf_event_exit_cpu_context(int cpu)
13190{
a63fbed7 13191 struct perf_cpu_context *cpuctx;
108b02cf
PZ
13192 struct perf_event_context *ctx;
13193 struct pmu *pmu;
108b02cf 13194
a63fbed7
TG
13195 mutex_lock(&pmus_lock);
13196 list_for_each_entry(pmu, &pmus, entry) {
13197 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13198 ctx = &cpuctx->ctx;
108b02cf
PZ
13199
13200 mutex_lock(&ctx->mutex);
13201 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 13202 cpuctx->online = 0;
108b02cf
PZ
13203 mutex_unlock(&ctx->mutex);
13204 }
a63fbed7
TG
13205 cpumask_clear_cpu(cpu, perf_online_mask);
13206 mutex_unlock(&pmus_lock);
108b02cf 13207}
00e16c3d
TG
13208#else
13209
13210static void perf_event_exit_cpu_context(int cpu) { }
13211
13212#endif
108b02cf 13213
a63fbed7
TG
13214int perf_event_init_cpu(unsigned int cpu)
13215{
13216 struct perf_cpu_context *cpuctx;
13217 struct perf_event_context *ctx;
13218 struct pmu *pmu;
13219
13220 perf_swevent_init_cpu(cpu);
13221
13222 mutex_lock(&pmus_lock);
13223 cpumask_set_cpu(cpu, perf_online_mask);
13224 list_for_each_entry(pmu, &pmus, entry) {
13225 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13226 ctx = &cpuctx->ctx;
13227
13228 mutex_lock(&ctx->mutex);
13229 cpuctx->online = 1;
13230 mutex_unlock(&ctx->mutex);
13231 }
13232 mutex_unlock(&pmus_lock);
13233
13234 return 0;
13235}
13236
00e16c3d 13237int perf_event_exit_cpu(unsigned int cpu)
0793a61d 13238{
e3703f8c 13239 perf_event_exit_cpu_context(cpu);
00e16c3d 13240 return 0;
0793a61d 13241}
0793a61d 13242
c277443c
PZ
13243static int
13244perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13245{
13246 int cpu;
13247
13248 for_each_online_cpu(cpu)
13249 perf_event_exit_cpu(cpu);
13250
13251 return NOTIFY_OK;
13252}
13253
13254/*
13255 * Run the perf reboot notifier at the very last possible moment so that
13256 * the generic watchdog code runs as long as possible.
13257 */
13258static struct notifier_block perf_reboot_notifier = {
13259 .notifier_call = perf_reboot,
13260 .priority = INT_MIN,
13261};
13262
cdd6c482 13263void __init perf_event_init(void)
0793a61d 13264{
3c502e7a
JW
13265 int ret;
13266
2e80a82a
PZ
13267 idr_init(&pmu_idr);
13268
220b140b 13269 perf_event_init_all_cpus();
b0a873eb 13270 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
13271 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13272 perf_pmu_register(&perf_cpu_clock, NULL, -1);
13273 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 13274 perf_tp_register();
00e16c3d 13275 perf_event_init_cpu(smp_processor_id());
c277443c 13276 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
13277
13278 ret = init_hw_breakpoint();
13279 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 13280
bdacfaf2
NK
13281 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13282
b01c3a00
JO
13283 /*
13284 * Build time assertion that we keep the data_head at the intended
13285 * location. IOW, validation we got the __reserved[] size right.
13286 */
13287 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13288 != 1024);
0793a61d 13289}
abe43400 13290
fd979c01
CS
13291ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13292 char *page)
13293{
13294 struct perf_pmu_events_attr *pmu_attr =
13295 container_of(attr, struct perf_pmu_events_attr, attr);
13296
13297 if (pmu_attr->event_str)
13298 return sprintf(page, "%s\n", pmu_attr->event_str);
13299
13300 return 0;
13301}
675965b0 13302EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 13303
abe43400
PZ
13304static int __init perf_event_sysfs_init(void)
13305{
13306 struct pmu *pmu;
13307 int ret;
13308
13309 mutex_lock(&pmus_lock);
13310
13311 ret = bus_register(&pmu_bus);
13312 if (ret)
13313 goto unlock;
13314
13315 list_for_each_entry(pmu, &pmus, entry) {
13316 if (!pmu->name || pmu->type < 0)
13317 continue;
13318
13319 ret = pmu_dev_alloc(pmu);
13320 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13321 }
13322 pmu_bus_running = 1;
13323 ret = 0;
13324
13325unlock:
13326 mutex_unlock(&pmus_lock);
13327
13328 return ret;
13329}
13330device_initcall(perf_event_sysfs_init);
e5d1367f
SE
13331
13332#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
13333static struct cgroup_subsys_state *
13334perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
13335{
13336 struct perf_cgroup *jc;
e5d1367f 13337
1b15d055 13338 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
13339 if (!jc)
13340 return ERR_PTR(-ENOMEM);
13341
e5d1367f
SE
13342 jc->info = alloc_percpu(struct perf_cgroup_info);
13343 if (!jc->info) {
13344 kfree(jc);
13345 return ERR_PTR(-ENOMEM);
13346 }
13347
e5d1367f
SE
13348 return &jc->css;
13349}
13350
eb95419b 13351static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 13352{
eb95419b
TH
13353 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13354
e5d1367f
SE
13355 free_percpu(jc->info);
13356 kfree(jc);
13357}
13358
96aaab68
NK
13359static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13360{
13361 perf_event_cgroup(css->cgroup);
13362 return 0;
13363}
13364
e5d1367f
SE
13365static int __perf_cgroup_move(void *info)
13366{
13367 struct task_struct *task = info;
ddaaf4e2 13368 rcu_read_lock();
e5d1367f 13369 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 13370 rcu_read_unlock();
e5d1367f
SE
13371 return 0;
13372}
13373
1f7dd3e5 13374static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 13375{
bb9d97b6 13376 struct task_struct *task;
1f7dd3e5 13377 struct cgroup_subsys_state *css;
bb9d97b6 13378
1f7dd3e5 13379 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 13380 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
13381}
13382
073219e9 13383struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
13384 .css_alloc = perf_cgroup_css_alloc,
13385 .css_free = perf_cgroup_css_free,
96aaab68 13386 .css_online = perf_cgroup_css_online,
bb9d97b6 13387 .attach = perf_cgroup_attach,
968ebff1
TH
13388 /*
13389 * Implicitly enable on dfl hierarchy so that perf events can
13390 * always be filtered by cgroup2 path as long as perf_event
13391 * controller is not mounted on a legacy hierarchy.
13392 */
13393 .implicit_on_dfl = true,
8cfd8147 13394 .threaded = true,
e5d1367f
SE
13395};
13396#endif /* CONFIG_CGROUP_PERF */