]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/events/uprobes.c
uprobes: Support SDT markers having reference count (semaphore)
[mirror_ubuntu-hirsute-kernel.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
90eec103 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
6e84f315 30#include <linux/sched/mm.h>
f7ccbae4 31#include <linux/sched/coredump.h>
e8440c14 32#include <linux/export.h>
2b144498
SD
33#include <linux/rmap.h> /* anon_vma_prepare */
34#include <linux/mmu_notifier.h> /* set_pte_at_notify */
35#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
36#include <linux/ptrace.h> /* user_enable_single_step */
37#include <linux/kdebug.h> /* notifier mechanism */
194f8dcb 38#include "../../mm/internal.h" /* munlock_vma_page */
32cdba1e 39#include <linux/percpu-rwsem.h>
aa59c53f 40#include <linux/task_work.h>
40814f68 41#include <linux/shmem_fs.h>
7b2d81d4 42
2b144498
SD
43#include <linux/uprobes.h>
44
d4b3b638
SD
45#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
46#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
47
2b144498 48static struct rb_root uprobes_tree = RB_ROOT;
441f1eb7
ON
49/*
50 * allows us to skip the uprobe_mmap if there are no uprobe events active
51 * at this time. Probably a fine grained per inode count is better?
52 */
53#define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
7b2d81d4 54
2b144498
SD
55static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
56
57#define UPROBES_HASH_SZ 13
2b144498
SD
58/* serialize uprobe->pending_list */
59static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 60#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498 61
32cdba1e
ON
62static struct percpu_rw_semaphore dup_mmap_sem;
63
cb9a19fe 64/* Have a copy of original instruction */
71434f2f 65#define UPROBE_COPY_INSN 0
cb9a19fe 66
3ff54efd
SD
67struct uprobe {
68 struct rb_node rb_node; /* node in the rb tree */
69 atomic_t ref;
e591c8d7 70 struct rw_semaphore register_rwsem;
3ff54efd
SD
71 struct rw_semaphore consumer_rwsem;
72 struct list_head pending_list;
73 struct uprobe_consumer *consumers;
74 struct inode *inode; /* Also hold a ref to inode */
75 loff_t offset;
1cc33161 76 loff_t ref_ctr_offset;
71434f2f 77 unsigned long flags;
ad439356
ON
78
79 /*
80 * The generic code assumes that it has two members of unknown type
81 * owned by the arch-specific code:
82 *
83 * insn - copy_insn() saves the original instruction here for
84 * arch_uprobe_analyze_insn().
85 *
86 * ixol - potentially modified instruction to execute out of
87 * line, copied to xol_area by xol_get_insn_slot().
88 */
3ff54efd
SD
89 struct arch_uprobe arch;
90};
91
1cc33161
RB
92struct delayed_uprobe {
93 struct list_head list;
94 struct uprobe *uprobe;
95 struct mm_struct *mm;
96};
97
98static DEFINE_MUTEX(delayed_uprobe_lock);
99static LIST_HEAD(delayed_uprobe_list);
100
c912dae6 101/*
ad439356
ON
102 * Execute out of line area: anonymous executable mapping installed
103 * by the probed task to execute the copy of the original instruction
104 * mangled by set_swbp().
105 *
c912dae6
ON
106 * On a breakpoint hit, thread contests for a slot. It frees the
107 * slot after singlestep. Currently a fixed number of slots are
108 * allocated.
109 */
110struct xol_area {
704bde3c
ON
111 wait_queue_head_t wq; /* if all slots are busy */
112 atomic_t slot_count; /* number of in-use slots */
113 unsigned long *bitmap; /* 0 = free slot */
c912dae6 114
704bde3c
ON
115 struct vm_special_mapping xol_mapping;
116 struct page *pages[2];
c912dae6
ON
117 /*
118 * We keep the vma's vm_start rather than a pointer to the vma
119 * itself. The probed process or a naughty kernel module could make
120 * the vma go away, and we must handle that reasonably gracefully.
121 */
704bde3c 122 unsigned long vaddr; /* Page(s) of instruction slots */
c912dae6
ON
123};
124
2b144498
SD
125/*
126 * valid_vma: Verify if the specified vma is an executable vma
127 * Relax restrictions while unregistering: vm_flags might have
128 * changed after breakpoint was inserted.
129 * - is_register: indicates if we are in register context.
130 * - Return 1 if the specified virtual address is in an
131 * executable vma.
132 */
133static bool valid_vma(struct vm_area_struct *vma, bool is_register)
134{
13f59c5e 135 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
2b144498 136
e40cfce6
ON
137 if (is_register)
138 flags |= VM_WRITE;
2b144498 139
e40cfce6 140 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
2b144498
SD
141}
142
57683f72 143static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 144{
57683f72 145 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
146}
147
cb113b47
ON
148static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
149{
150 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
151}
152
2b144498
SD
153/**
154 * __replace_page - replace page in vma by new page.
155 * based on replace_page in mm/ksm.c
156 *
157 * @vma: vma that holds the pte pointing to page
c517ee74 158 * @addr: address the old @page is mapped at
2b144498
SD
159 * @page: the cowed page we are replacing by kpage
160 * @kpage: the modified page we replace page by
161 *
162 * Returns 0 on success, -EFAULT on failure.
163 */
c517ee74 164static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
bdfaa2ee 165 struct page *old_page, struct page *new_page)
2b144498
SD
166{
167 struct mm_struct *mm = vma->vm_mm;
14fa2daa
KS
168 struct page_vma_mapped_walk pvmw = {
169 .page = old_page,
170 .vma = vma,
171 .address = addr,
172 };
9f92448c 173 int err;
6bdb913f
HE
174 /* For mmu_notifiers */
175 const unsigned long mmun_start = addr;
176 const unsigned long mmun_end = addr + PAGE_SIZE;
00501b53
JW
177 struct mem_cgroup *memcg;
178
14fa2daa
KS
179 VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page);
180
bdfaa2ee 181 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
f627c2f5 182 false);
00501b53
JW
183 if (err)
184 return err;
2b144498 185
194f8dcb 186 /* For try_to_free_swap() and munlock_vma_page() below */
bdfaa2ee 187 lock_page(old_page);
9f92448c 188
6bdb913f 189 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
9f92448c 190 err = -EAGAIN;
14fa2daa 191 if (!page_vma_mapped_walk(&pvmw)) {
bdfaa2ee 192 mem_cgroup_cancel_charge(new_page, memcg, false);
9f92448c 193 goto unlock;
6c4687cc 194 }
14fa2daa 195 VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
2b144498 196
bdfaa2ee
ON
197 get_page(new_page);
198 page_add_new_anon_rmap(new_page, vma, addr, false);
199 mem_cgroup_commit_charge(new_page, memcg, false, false);
200 lru_cache_add_active_or_unevictable(new_page, vma);
2b144498 201
bdfaa2ee
ON
202 if (!PageAnon(old_page)) {
203 dec_mm_counter(mm, mm_counter_file(old_page));
7396fa81
SD
204 inc_mm_counter(mm, MM_ANONPAGES);
205 }
206
14fa2daa
KS
207 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
208 ptep_clear_flush_notify(vma, addr, pvmw.pte);
209 set_pte_at_notify(mm, addr, pvmw.pte,
210 mk_pte(new_page, vma->vm_page_prot));
2b144498 211
bdfaa2ee
ON
212 page_remove_rmap(old_page, false);
213 if (!page_mapped(old_page))
214 try_to_free_swap(old_page);
14fa2daa 215 page_vma_mapped_walk_done(&pvmw);
2b144498 216
194f8dcb 217 if (vma->vm_flags & VM_LOCKED)
bdfaa2ee
ON
218 munlock_vma_page(old_page);
219 put_page(old_page);
194f8dcb 220
9f92448c
ON
221 err = 0;
222 unlock:
6bdb913f 223 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
bdfaa2ee 224 unlock_page(old_page);
9f92448c 225 return err;
2b144498
SD
226}
227
228/**
5cb4ac3a 229 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 230 * @insn: instruction to be checked.
5cb4ac3a 231 * Default implementation of is_swbp_insn
2b144498
SD
232 * Returns true if @insn is a breakpoint instruction.
233 */
5cb4ac3a 234bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 235{
5cb4ac3a 236 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
237}
238
0908ad6e
AM
239/**
240 * is_trap_insn - check if instruction is breakpoint instruction.
241 * @insn: instruction to be checked.
242 * Default implementation of is_trap_insn
243 * Returns true if @insn is a breakpoint instruction.
244 *
245 * This function is needed for the case where an architecture has multiple
246 * trap instructions (like powerpc).
247 */
248bool __weak is_trap_insn(uprobe_opcode_t *insn)
249{
250 return is_swbp_insn(insn);
251}
252
ab0d805c 253static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
cceb55aa
ON
254{
255 void *kaddr = kmap_atomic(page);
ab0d805c 256 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
cceb55aa
ON
257 kunmap_atomic(kaddr);
258}
259
5669ccee
ON
260static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
261{
262 void *kaddr = kmap_atomic(page);
263 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
264 kunmap_atomic(kaddr);
265}
266
ed6f6a50
ON
267static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
268{
269 uprobe_opcode_t old_opcode;
270 bool is_swbp;
271
0908ad6e
AM
272 /*
273 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
274 * We do not check if it is any other 'trap variant' which could
275 * be conditional trap instruction such as the one powerpc supports.
276 *
277 * The logic is that we do not care if the underlying instruction
278 * is a trap variant; uprobes always wins over any other (gdb)
279 * breakpoint.
280 */
ab0d805c 281 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
ed6f6a50
ON
282 is_swbp = is_swbp_insn(&old_opcode);
283
284 if (is_swbp_insn(new_opcode)) {
285 if (is_swbp) /* register: already installed? */
286 return 0;
287 } else {
288 if (!is_swbp) /* unregister: was it changed by us? */
076a365b 289 return 0;
ed6f6a50
ON
290 }
291
292 return 1;
293}
294
1cc33161
RB
295static struct delayed_uprobe *
296delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
297{
298 struct delayed_uprobe *du;
299
300 list_for_each_entry(du, &delayed_uprobe_list, list)
301 if (du->uprobe == uprobe && du->mm == mm)
302 return du;
303 return NULL;
304}
305
306static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
307{
308 struct delayed_uprobe *du;
309
310 if (delayed_uprobe_check(uprobe, mm))
311 return 0;
312
313 du = kzalloc(sizeof(*du), GFP_KERNEL);
314 if (!du)
315 return -ENOMEM;
316
317 du->uprobe = uprobe;
318 du->mm = mm;
319 list_add(&du->list, &delayed_uprobe_list);
320 return 0;
321}
322
323static void delayed_uprobe_delete(struct delayed_uprobe *du)
324{
325 if (WARN_ON(!du))
326 return;
327 list_del(&du->list);
328 kfree(du);
329}
330
331static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
332{
333 struct list_head *pos, *q;
334 struct delayed_uprobe *du;
335
336 if (!uprobe && !mm)
337 return;
338
339 list_for_each_safe(pos, q, &delayed_uprobe_list) {
340 du = list_entry(pos, struct delayed_uprobe, list);
341
342 if (uprobe && du->uprobe != uprobe)
343 continue;
344 if (mm && du->mm != mm)
345 continue;
346
347 delayed_uprobe_delete(du);
348 }
349}
350
351static bool valid_ref_ctr_vma(struct uprobe *uprobe,
352 struct vm_area_struct *vma)
353{
354 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
355
356 return uprobe->ref_ctr_offset &&
357 vma->vm_file &&
358 file_inode(vma->vm_file) == uprobe->inode &&
359 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
360 vma->vm_start <= vaddr &&
361 vma->vm_end > vaddr;
362}
363
364static struct vm_area_struct *
365find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
366{
367 struct vm_area_struct *tmp;
368
369 for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
370 if (valid_ref_ctr_vma(uprobe, tmp))
371 return tmp;
372
373 return NULL;
374}
375
376static int
377__update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
378{
379 void *kaddr;
380 struct page *page;
381 struct vm_area_struct *vma;
382 int ret;
383 short *ptr;
384
385 if (!vaddr || !d)
386 return -EINVAL;
387
388 ret = get_user_pages_remote(NULL, mm, vaddr, 1,
389 FOLL_WRITE, &page, &vma, NULL);
390 if (unlikely(ret <= 0)) {
391 /*
392 * We are asking for 1 page. If get_user_pages_remote() fails,
393 * it may return 0, in that case we have to return error.
394 */
395 return ret == 0 ? -EBUSY : ret;
396 }
397
398 kaddr = kmap_atomic(page);
399 ptr = kaddr + (vaddr & ~PAGE_MASK);
400
401 if (unlikely(*ptr + d < 0)) {
402 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
403 "curr val: %d, delta: %d\n", vaddr, *ptr, d);
404 ret = -EINVAL;
405 goto out;
406 }
407
408 *ptr += d;
409 ret = 0;
410out:
411 kunmap_atomic(kaddr);
412 put_page(page);
413 return ret;
414}
415
416static void update_ref_ctr_warn(struct uprobe *uprobe,
417 struct mm_struct *mm, short d)
418{
419 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
420 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
421 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
422 (unsigned long long) uprobe->offset,
423 (unsigned long long) uprobe->ref_ctr_offset, mm);
424}
425
426static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
427 short d)
428{
429 struct vm_area_struct *rc_vma;
430 unsigned long rc_vaddr;
431 int ret = 0;
432
433 rc_vma = find_ref_ctr_vma(uprobe, mm);
434
435 if (rc_vma) {
436 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
437 ret = __update_ref_ctr(mm, rc_vaddr, d);
438 if (ret)
439 update_ref_ctr_warn(uprobe, mm, d);
440
441 if (d > 0)
442 return ret;
443 }
444
445 mutex_lock(&delayed_uprobe_lock);
446 if (d > 0)
447 ret = delayed_uprobe_add(uprobe, mm);
448 else
449 delayed_uprobe_remove(uprobe, mm);
450 mutex_unlock(&delayed_uprobe_lock);
451
452 return ret;
453}
454
2b144498
SD
455/*
456 * NOTE:
457 * Expect the breakpoint instruction to be the smallest size instruction for
458 * the architecture. If an arch has variable length instruction and the
459 * breakpoint instruction is not of the smallest length instruction
0908ad6e 460 * supported by that architecture then we need to modify is_trap_at_addr and
f72d41fa
ON
461 * uprobe_write_opcode accordingly. This would never be a problem for archs
462 * that have fixed length instructions.
29dedee0 463 *
f72d41fa 464 * uprobe_write_opcode - write the opcode at a given virtual address.
2b144498 465 * @mm: the probed process address space.
2b144498
SD
466 * @vaddr: the virtual address to store the opcode.
467 * @opcode: opcode to be written at @vaddr.
468 *
29dedee0 469 * Called with mm->mmap_sem held for write.
2b144498
SD
470 * Return 0 (success) or a negative errno.
471 */
6d43743e
RB
472int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
473 unsigned long vaddr, uprobe_opcode_t opcode)
2b144498 474{
1cc33161 475 struct uprobe *uprobe;
2b144498 476 struct page *old_page, *new_page;
2b144498 477 struct vm_area_struct *vma;
1cc33161
RB
478 int ret, is_register, ref_ctr_updated = 0;
479
480 is_register = is_swbp_insn(&opcode);
481 uprobe = container_of(auprobe, struct uprobe, arch);
f403072c 482
5323ce71 483retry:
2b144498 484 /* Read the page with vaddr into memory */
c8394812
KS
485 ret = get_user_pages_remote(NULL, mm, vaddr, 1,
486 FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL);
2b144498
SD
487 if (ret <= 0)
488 return ret;
7b2d81d4 489
ed6f6a50
ON
490 ret = verify_opcode(old_page, vaddr, &opcode);
491 if (ret <= 0)
492 goto put_old;
493
1cc33161
RB
494 /* We are going to replace instruction, update ref_ctr. */
495 if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
496 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
497 if (ret)
498 goto put_old;
499
500 ref_ctr_updated = 1;
501 }
502
29dedee0
ON
503 ret = anon_vma_prepare(vma);
504 if (ret)
505 goto put_old;
506
2b144498
SD
507 ret = -ENOMEM;
508 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
509 if (!new_page)
9f92448c 510 goto put_old;
2b144498 511
29dedee0 512 __SetPageUptodate(new_page);
3f47107c
ON
513 copy_highpage(new_page, old_page);
514 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498 515
c517ee74 516 ret = __replace_page(vma, vaddr, old_page, new_page);
09cbfeaf 517 put_page(new_page);
9f92448c 518put_old:
7b2d81d4
IM
519 put_page(old_page);
520
5323ce71
ON
521 if (unlikely(ret == -EAGAIN))
522 goto retry;
1cc33161
RB
523
524 /* Revert back reference counter if instruction update failed. */
525 if (ret && is_register && ref_ctr_updated)
526 update_ref_ctr(uprobe, mm, -1);
527
2b144498
SD
528 return ret;
529}
530
2b144498 531/**
5cb4ac3a 532 * set_swbp - store breakpoint at a given address.
e3343e6a 533 * @auprobe: arch specific probepoint information.
2b144498 534 * @mm: the probed process address space.
2b144498
SD
535 * @vaddr: the virtual address to insert the opcode.
536 *
537 * For mm @mm, store the breakpoint instruction at @vaddr.
538 * Return 0 (success) or a negative errno.
539 */
5cb4ac3a 540int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 541{
6d43743e 542 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
543}
544
545/**
546 * set_orig_insn - Restore the original instruction.
547 * @mm: the probed process address space.
e3343e6a 548 * @auprobe: arch specific probepoint information.
2b144498 549 * @vaddr: the virtual address to insert the opcode.
2b144498
SD
550 *
551 * For mm @mm, restore the original opcode (opcode) at @vaddr.
552 * Return 0 (success) or a negative errno.
553 */
7b2d81d4 554int __weak
ded86e7c 555set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 556{
6d43743e
RB
557 return uprobe_write_opcode(auprobe, mm, vaddr,
558 *(uprobe_opcode_t *)&auprobe->insn);
2b144498
SD
559}
560
f231722a
ON
561static struct uprobe *get_uprobe(struct uprobe *uprobe)
562{
563 atomic_inc(&uprobe->ref);
564 return uprobe;
565}
566
567static void put_uprobe(struct uprobe *uprobe)
568{
1cc33161
RB
569 if (atomic_dec_and_test(&uprobe->ref)) {
570 /*
571 * If application munmap(exec_vma) before uprobe_unregister()
572 * gets called, we don't get a chance to remove uprobe from
573 * delayed_uprobe_list from remove_breakpoint(). Do it here.
574 */
575 delayed_uprobe_remove(uprobe, NULL);
f231722a 576 kfree(uprobe);
1cc33161 577 }
f231722a
ON
578}
579
2b144498
SD
580static int match_uprobe(struct uprobe *l, struct uprobe *r)
581{
582 if (l->inode < r->inode)
583 return -1;
7b2d81d4 584
2b144498
SD
585 if (l->inode > r->inode)
586 return 1;
2b144498 587
7b2d81d4
IM
588 if (l->offset < r->offset)
589 return -1;
590
591 if (l->offset > r->offset)
592 return 1;
2b144498
SD
593
594 return 0;
595}
596
597static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
598{
599 struct uprobe u = { .inode = inode, .offset = offset };
600 struct rb_node *n = uprobes_tree.rb_node;
601 struct uprobe *uprobe;
602 int match;
603
604 while (n) {
605 uprobe = rb_entry(n, struct uprobe, rb_node);
606 match = match_uprobe(&u, uprobe);
f231722a
ON
607 if (!match)
608 return get_uprobe(uprobe);
7b2d81d4 609
2b144498
SD
610 if (match < 0)
611 n = n->rb_left;
612 else
613 n = n->rb_right;
614 }
615 return NULL;
616}
617
618/*
619 * Find a uprobe corresponding to a given inode:offset
620 * Acquires uprobes_treelock
621 */
622static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
623{
624 struct uprobe *uprobe;
2b144498 625
6f47caa0 626 spin_lock(&uprobes_treelock);
2b144498 627 uprobe = __find_uprobe(inode, offset);
6f47caa0 628 spin_unlock(&uprobes_treelock);
7b2d81d4 629
2b144498
SD
630 return uprobe;
631}
632
633static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
634{
635 struct rb_node **p = &uprobes_tree.rb_node;
636 struct rb_node *parent = NULL;
637 struct uprobe *u;
638 int match;
639
640 while (*p) {
641 parent = *p;
642 u = rb_entry(parent, struct uprobe, rb_node);
643 match = match_uprobe(uprobe, u);
f231722a
ON
644 if (!match)
645 return get_uprobe(u);
2b144498
SD
646
647 if (match < 0)
648 p = &parent->rb_left;
649 else
650 p = &parent->rb_right;
651
652 }
7b2d81d4 653
2b144498
SD
654 u = NULL;
655 rb_link_node(&uprobe->rb_node, parent, p);
656 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
657 /* get access + creation ref */
658 atomic_set(&uprobe->ref, 2);
7b2d81d4 659
2b144498
SD
660 return u;
661}
662
663/*
7b2d81d4 664 * Acquire uprobes_treelock.
2b144498
SD
665 * Matching uprobe already exists in rbtree;
666 * increment (access refcount) and return the matching uprobe.
667 *
668 * No matching uprobe; insert the uprobe in rb_tree;
669 * get a double refcount (access + creation) and return NULL.
670 */
671static struct uprobe *insert_uprobe(struct uprobe *uprobe)
672{
2b144498
SD
673 struct uprobe *u;
674
6f47caa0 675 spin_lock(&uprobes_treelock);
2b144498 676 u = __insert_uprobe(uprobe);
6f47caa0 677 spin_unlock(&uprobes_treelock);
7b2d81d4 678
2b144498
SD
679 return u;
680}
681
1cc33161
RB
682static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
683 loff_t ref_ctr_offset)
2b144498
SD
684{
685 struct uprobe *uprobe, *cur_uprobe;
686
687 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
688 if (!uprobe)
689 return NULL;
690
61f94203 691 uprobe->inode = inode;
2b144498 692 uprobe->offset = offset;
1cc33161 693 uprobe->ref_ctr_offset = ref_ctr_offset;
e591c8d7 694 init_rwsem(&uprobe->register_rwsem);
2b144498 695 init_rwsem(&uprobe->consumer_rwsem);
2b144498
SD
696
697 /* add to uprobes_tree, sorted on inode:offset */
698 cur_uprobe = insert_uprobe(uprobe);
2b144498
SD
699 /* a uprobe exists for this inode:offset combination */
700 if (cur_uprobe) {
701 kfree(uprobe);
702 uprobe = cur_uprobe;
7b2d81d4
IM
703 }
704
2b144498
SD
705 return uprobe;
706}
707
9a98e03c 708static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
709{
710 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
711 uc->next = uprobe->consumers;
712 uprobe->consumers = uc;
2b144498 713 up_write(&uprobe->consumer_rwsem);
2b144498
SD
714}
715
716/*
e3343e6a
SD
717 * For uprobe @uprobe, delete the consumer @uc.
718 * Return true if the @uc is deleted successfully
2b144498
SD
719 * or return false.
720 */
e3343e6a 721static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
722{
723 struct uprobe_consumer **con;
724 bool ret = false;
725
726 down_write(&uprobe->consumer_rwsem);
727 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
728 if (*con == uc) {
729 *con = uc->next;
2b144498
SD
730 ret = true;
731 break;
732 }
733 }
734 up_write(&uprobe->consumer_rwsem);
7b2d81d4 735
2b144498
SD
736 return ret;
737}
738
2ded0980
ON
739static int __copy_insn(struct address_space *mapping, struct file *filp,
740 void *insn, int nbytes, loff_t offset)
2b144498 741{
2b144498 742 struct page *page;
2b144498 743 /*
40814f68
ON
744 * Ensure that the page that has the original instruction is populated
745 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
746 * see uprobe_register().
2b144498 747 */
40814f68 748 if (mapping->a_ops->readpage)
09cbfeaf 749 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
40814f68 750 else
09cbfeaf 751 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
2b144498
SD
752 if (IS_ERR(page))
753 return PTR_ERR(page);
754
2edb7b55 755 copy_from_page(page, offset, insn, nbytes);
09cbfeaf 756 put_page(page);
7b2d81d4 757
2b144498
SD
758 return 0;
759}
760
d436615e 761static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498 762{
2ded0980
ON
763 struct address_space *mapping = uprobe->inode->i_mapping;
764 loff_t offs = uprobe->offset;
803200e2
ON
765 void *insn = &uprobe->arch.insn;
766 int size = sizeof(uprobe->arch.insn);
2ded0980
ON
767 int len, err = -EIO;
768
769 /* Copy only available bytes, -EIO if nothing was read */
770 do {
771 if (offs >= i_size_read(uprobe->inode))
772 break;
773
774 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
775 err = __copy_insn(mapping, filp, insn, len, offs);
fc36f595 776 if (err)
2ded0980
ON
777 break;
778
779 insn += len;
780 offs += len;
781 size -= len;
782 } while (size);
783
784 return err;
2b144498
SD
785}
786
cb9a19fe
ON
787static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
788 struct mm_struct *mm, unsigned long vaddr)
789{
790 int ret = 0;
791
71434f2f 792 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
cb9a19fe
ON
793 return ret;
794
d4d3ccc6
ON
795 /* TODO: move this into _register, until then we abuse this sem. */
796 down_write(&uprobe->consumer_rwsem);
71434f2f 797 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
4710f05f
ON
798 goto out;
799
cb9a19fe
ON
800 ret = copy_insn(uprobe, file);
801 if (ret)
802 goto out;
803
804 ret = -ENOTSUPP;
803200e2 805 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
cb9a19fe
ON
806 goto out;
807
808 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
809 if (ret)
810 goto out;
811
f72d41fa 812 /* uprobe_write_opcode() assumes we don't cross page boundary */
cb9a19fe
ON
813 BUG_ON((uprobe->offset & ~PAGE_MASK) +
814 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
815
816 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
71434f2f 817 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
cb9a19fe
ON
818
819 out:
d4d3ccc6 820 up_write(&uprobe->consumer_rwsem);
4710f05f 821
cb9a19fe
ON
822 return ret;
823}
824
8a7f2fa0
ON
825static inline bool consumer_filter(struct uprobe_consumer *uc,
826 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
806a98bd 827{
8a7f2fa0 828 return !uc->filter || uc->filter(uc, ctx, mm);
806a98bd
ON
829}
830
8a7f2fa0
ON
831static bool filter_chain(struct uprobe *uprobe,
832 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
63633cbf 833{
1ff6fee5
ON
834 struct uprobe_consumer *uc;
835 bool ret = false;
836
837 down_read(&uprobe->consumer_rwsem);
838 for (uc = uprobe->consumers; uc; uc = uc->next) {
8a7f2fa0 839 ret = consumer_filter(uc, ctx, mm);
1ff6fee5
ON
840 if (ret)
841 break;
842 }
843 up_read(&uprobe->consumer_rwsem);
844
845 return ret;
63633cbf
ON
846}
847
e3343e6a
SD
848static int
849install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 850 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 851{
f8ac4ec9 852 bool first_uprobe;
2b144498
SD
853 int ret;
854
cb9a19fe
ON
855 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
856 if (ret)
857 return ret;
682968e0 858
f8ac4ec9
ON
859 /*
860 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
861 * the task can hit this breakpoint right after __replace_page().
862 */
863 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
864 if (first_uprobe)
865 set_bit(MMF_HAS_UPROBES, &mm->flags);
866
816c03fb 867 ret = set_swbp(&uprobe->arch, mm, vaddr);
9f68f672
ON
868 if (!ret)
869 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
870 else if (first_uprobe)
f8ac4ec9 871 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2b144498
SD
872
873 return ret;
874}
875
076a365b 876static int
816c03fb 877remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 878{
9f68f672 879 set_bit(MMF_RECALC_UPROBES, &mm->flags);
076a365b 880 return set_orig_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
881}
882
06b7bcd8
ON
883static inline bool uprobe_is_active(struct uprobe *uprobe)
884{
885 return !RB_EMPTY_NODE(&uprobe->rb_node);
886}
0326f5a9 887/*
778b032d
ON
888 * There could be threads that have already hit the breakpoint. They
889 * will recheck the current insn and restart if find_uprobe() fails.
890 * See find_active_uprobe().
0326f5a9 891 */
2b144498
SD
892static void delete_uprobe(struct uprobe *uprobe)
893{
06b7bcd8
ON
894 if (WARN_ON(!uprobe_is_active(uprobe)))
895 return;
896
6f47caa0 897 spin_lock(&uprobes_treelock);
2b144498 898 rb_erase(&uprobe->rb_node, &uprobes_tree);
6f47caa0 899 spin_unlock(&uprobes_treelock);
06b7bcd8 900 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
2b144498 901 put_uprobe(uprobe);
2b144498
SD
902}
903
26872090
ON
904struct map_info {
905 struct map_info *next;
906 struct mm_struct *mm;
816c03fb 907 unsigned long vaddr;
26872090
ON
908};
909
910static inline struct map_info *free_map_info(struct map_info *info)
2b144498 911{
26872090
ON
912 struct map_info *next = info->next;
913 kfree(info);
914 return next;
915}
916
917static struct map_info *
918build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
919{
920 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498 921 struct vm_area_struct *vma;
26872090
ON
922 struct map_info *curr = NULL;
923 struct map_info *prev = NULL;
924 struct map_info *info;
925 int more = 0;
2b144498 926
26872090 927 again:
4a23717a 928 i_mmap_lock_read(mapping);
6b2dbba8 929 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
2b144498
SD
930 if (!valid_vma(vma, is_register))
931 continue;
932
7a5bfb66
ON
933 if (!prev && !more) {
934 /*
c8c06efa 935 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
7a5bfb66
ON
936 * reclaim. This is optimistic, no harm done if it fails.
937 */
938 prev = kmalloc(sizeof(struct map_info),
939 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
940 if (prev)
941 prev->next = NULL;
942 }
26872090
ON
943 if (!prev) {
944 more++;
945 continue;
2b144498 946 }
2b144498 947
388f7934 948 if (!mmget_not_zero(vma->vm_mm))
26872090 949 continue;
7b2d81d4 950
26872090
ON
951 info = prev;
952 prev = prev->next;
953 info->next = curr;
954 curr = info;
2b144498 955
26872090 956 info->mm = vma->vm_mm;
57683f72 957 info->vaddr = offset_to_vaddr(vma, offset);
26872090 958 }
4a23717a 959 i_mmap_unlock_read(mapping);
2b144498 960
26872090
ON
961 if (!more)
962 goto out;
963
964 prev = curr;
965 while (curr) {
966 mmput(curr->mm);
967 curr = curr->next;
968 }
7b2d81d4 969
26872090
ON
970 do {
971 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
972 if (!info) {
973 curr = ERR_PTR(-ENOMEM);
974 goto out;
975 }
976 info->next = prev;
977 prev = info;
978 } while (--more);
979
980 goto again;
981 out:
982 while (prev)
983 prev = free_map_info(prev);
984 return curr;
2b144498
SD
985}
986
bdf8647c
ON
987static int
988register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
2b144498 989{
bdf8647c 990 bool is_register = !!new;
26872090
ON
991 struct map_info *info;
992 int err = 0;
2b144498 993
32cdba1e 994 percpu_down_write(&dup_mmap_sem);
26872090
ON
995 info = build_map_info(uprobe->inode->i_mapping,
996 uprobe->offset, is_register);
32cdba1e
ON
997 if (IS_ERR(info)) {
998 err = PTR_ERR(info);
999 goto out;
1000 }
7b2d81d4 1001
26872090
ON
1002 while (info) {
1003 struct mm_struct *mm = info->mm;
1004 struct vm_area_struct *vma;
7b2d81d4 1005
076a365b 1006 if (err && is_register)
26872090 1007 goto free;
7b2d81d4 1008
77fc4af1 1009 down_write(&mm->mmap_sem);
f4d6dfe5
ON
1010 vma = find_vma(mm, info->vaddr);
1011 if (!vma || !valid_vma(vma, is_register) ||
f281769e 1012 file_inode(vma->vm_file) != uprobe->inode)
26872090
ON
1013 goto unlock;
1014
f4d6dfe5
ON
1015 if (vma->vm_start > info->vaddr ||
1016 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 1017 goto unlock;
2b144498 1018
806a98bd
ON
1019 if (is_register) {
1020 /* consult only the "caller", new consumer. */
bdf8647c 1021 if (consumer_filter(new,
8a7f2fa0 1022 UPROBE_FILTER_REGISTER, mm))
806a98bd
ON
1023 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1024 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
8a7f2fa0
ON
1025 if (!filter_chain(uprobe,
1026 UPROBE_FILTER_UNREGISTER, mm))
806a98bd
ON
1027 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1028 }
78f74116 1029
26872090
ON
1030 unlock:
1031 up_write(&mm->mmap_sem);
1032 free:
1033 mmput(mm);
1034 info = free_map_info(info);
2b144498 1035 }
32cdba1e
ON
1036 out:
1037 percpu_up_write(&dup_mmap_sem);
26872090 1038 return err;
2b144498
SD
1039}
1040
38e967ae
RB
1041static void
1042__uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498 1043{
04aab9b2
ON
1044 int err;
1045
06d07139 1046 if (WARN_ON(!consumer_del(uprobe, uc)))
04aab9b2 1047 return;
2b144498 1048
bdf8647c 1049 err = register_for_each_vma(uprobe, NULL);
bb929284
ON
1050 /* TODO : cant unregister? schedule a worker thread */
1051 if (!uprobe->consumers && !err)
1052 delete_uprobe(uprobe);
2b144498
SD
1053}
1054
1055/*
7140ad38 1056 * uprobe_unregister - unregister an already registered probe.
38e967ae
RB
1057 * @inode: the file in which the probe has to be removed.
1058 * @offset: offset from the start of the file.
1059 * @uc: identify which probe if multiple probes are colocated.
1060 */
1061void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1062{
1063 struct uprobe *uprobe;
1064
1065 uprobe = find_uprobe(inode, offset);
1066 if (WARN_ON(!uprobe))
1067 return;
1068
1069 down_write(&uprobe->register_rwsem);
1070 __uprobe_unregister(uprobe, uc);
1071 up_write(&uprobe->register_rwsem);
1072 put_uprobe(uprobe);
1073}
1074EXPORT_SYMBOL_GPL(uprobe_unregister);
1075
1076/*
1077 * __uprobe_register - register a probe
2b144498
SD
1078 * @inode: the file in which the probe has to be placed.
1079 * @offset: offset from the start of the file.
e3343e6a 1080 * @uc: information on howto handle the probe..
2b144498 1081 *
38e967ae 1082 * Apart from the access refcount, __uprobe_register() takes a creation
2b144498
SD
1083 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1084 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 1085 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 1086 * @uprobe even before the register operation is complete. Creation
e3343e6a 1087 * refcount is released when the last @uc for the @uprobe
38e967ae 1088 * unregisters. Caller of __uprobe_register() is required to keep @inode
61f94203 1089 * (and the containing mount) referenced.
2b144498
SD
1090 *
1091 * Return errno if it cannot successully install probes
1092 * else return 0 (success)
1093 */
38e967ae 1094static int __uprobe_register(struct inode *inode, loff_t offset,
1cc33161 1095 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
2b144498
SD
1096{
1097 struct uprobe *uprobe;
7b2d81d4 1098 int ret;
2b144498 1099
ea024870
AA
1100 /* Uprobe must have at least one set consumer */
1101 if (!uc->handler && !uc->ret_handler)
1102 return -EINVAL;
1103
40814f68
ON
1104 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1105 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
41ccba02 1106 return -EIO;
f0744af7 1107 /* Racy, just to catch the obvious mistakes */
2b144498 1108 if (offset > i_size_read(inode))
7b2d81d4 1109 return -EINVAL;
2b144498 1110
66d06dff 1111 retry:
1cc33161 1112 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
66d06dff
ON
1113 if (!uprobe)
1114 return -ENOMEM;
1115 /*
1116 * We can race with uprobe_unregister()->delete_uprobe().
1117 * Check uprobe_is_active() and retry if it is false.
1118 */
1119 down_write(&uprobe->register_rwsem);
1120 ret = -EAGAIN;
1121 if (likely(uprobe_is_active(uprobe))) {
38e967ae
RB
1122 consumer_add(uprobe, uc);
1123 ret = register_for_each_vma(uprobe, uc);
9a98e03c 1124 if (ret)
04aab9b2 1125 __uprobe_unregister(uprobe, uc);
2b144498 1126 }
66d06dff
ON
1127 up_write(&uprobe->register_rwsem);
1128 put_uprobe(uprobe);
2b144498 1129
66d06dff
ON
1130 if (unlikely(ret == -EAGAIN))
1131 goto retry;
2b144498
SD
1132 return ret;
1133}
38e967ae
RB
1134
1135int uprobe_register(struct inode *inode, loff_t offset,
1136 struct uprobe_consumer *uc)
1137{
1cc33161 1138 return __uprobe_register(inode, offset, 0, uc);
38e967ae 1139}
e8440c14 1140EXPORT_SYMBOL_GPL(uprobe_register);
2b144498 1141
1cc33161
RB
1142int uprobe_register_refctr(struct inode *inode, loff_t offset,
1143 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1144{
1145 return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1146}
1147EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1148
bdf8647c 1149/*
788faab7 1150 * uprobe_apply - unregister an already registered probe.
bdf8647c
ON
1151 * @inode: the file in which the probe has to be removed.
1152 * @offset: offset from the start of the file.
1153 * @uc: consumer which wants to add more or remove some breakpoints
1154 * @add: add or remove the breakpoints
1155 */
1156int uprobe_apply(struct inode *inode, loff_t offset,
1157 struct uprobe_consumer *uc, bool add)
1158{
1159 struct uprobe *uprobe;
1160 struct uprobe_consumer *con;
1161 int ret = -ENOENT;
1162
1163 uprobe = find_uprobe(inode, offset);
06d07139 1164 if (WARN_ON(!uprobe))
bdf8647c
ON
1165 return ret;
1166
1167 down_write(&uprobe->register_rwsem);
1168 for (con = uprobe->consumers; con && con != uc ; con = con->next)
1169 ;
1170 if (con)
1171 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1172 up_write(&uprobe->register_rwsem);
1173 put_uprobe(uprobe);
1174
1175 return ret;
1176}
1177
da1816b1
ON
1178static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1179{
1180 struct vm_area_struct *vma;
1181 int err = 0;
1182
1183 down_read(&mm->mmap_sem);
1184 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1185 unsigned long vaddr;
1186 loff_t offset;
1187
1188 if (!valid_vma(vma, false) ||
f281769e 1189 file_inode(vma->vm_file) != uprobe->inode)
da1816b1
ON
1190 continue;
1191
1192 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1193 if (uprobe->offset < offset ||
1194 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1195 continue;
1196
1197 vaddr = offset_to_vaddr(vma, uprobe->offset);
1198 err |= remove_breakpoint(uprobe, mm, vaddr);
1199 }
1200 up_read(&mm->mmap_sem);
1201
1202 return err;
1203}
1204
891c3970
ON
1205static struct rb_node *
1206find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 1207{
2b144498 1208 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
1209
1210 while (n) {
891c3970 1211 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 1212
891c3970 1213 if (inode < u->inode) {
2b144498 1214 n = n->rb_left;
891c3970 1215 } else if (inode > u->inode) {
2b144498 1216 n = n->rb_right;
891c3970
ON
1217 } else {
1218 if (max < u->offset)
1219 n = n->rb_left;
1220 else if (min > u->offset)
1221 n = n->rb_right;
1222 else
1223 break;
1224 }
2b144498 1225 }
7b2d81d4 1226
891c3970 1227 return n;
2b144498
SD
1228}
1229
1230/*
891c3970 1231 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 1232 */
891c3970
ON
1233static void build_probe_list(struct inode *inode,
1234 struct vm_area_struct *vma,
1235 unsigned long start, unsigned long end,
1236 struct list_head *head)
2b144498 1237{
891c3970 1238 loff_t min, max;
891c3970
ON
1239 struct rb_node *n, *t;
1240 struct uprobe *u;
7b2d81d4 1241
891c3970 1242 INIT_LIST_HEAD(head);
cb113b47 1243 min = vaddr_to_offset(vma, start);
891c3970 1244 max = min + (end - start) - 1;
2b144498 1245
6f47caa0 1246 spin_lock(&uprobes_treelock);
891c3970
ON
1247 n = find_node_in_range(inode, min, max);
1248 if (n) {
1249 for (t = n; t; t = rb_prev(t)) {
1250 u = rb_entry(t, struct uprobe, rb_node);
1251 if (u->inode != inode || u->offset < min)
1252 break;
1253 list_add(&u->pending_list, head);
f231722a 1254 get_uprobe(u);
891c3970
ON
1255 }
1256 for (t = n; (t = rb_next(t)); ) {
1257 u = rb_entry(t, struct uprobe, rb_node);
1258 if (u->inode != inode || u->offset > max)
1259 break;
1260 list_add(&u->pending_list, head);
f231722a 1261 get_uprobe(u);
891c3970 1262 }
2b144498 1263 }
6f47caa0 1264 spin_unlock(&uprobes_treelock);
2b144498
SD
1265}
1266
1cc33161
RB
1267/* @vma contains reference counter, not the probed instruction. */
1268static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1269{
1270 struct list_head *pos, *q;
1271 struct delayed_uprobe *du;
1272 unsigned long vaddr;
1273 int ret = 0, err = 0;
1274
1275 mutex_lock(&delayed_uprobe_lock);
1276 list_for_each_safe(pos, q, &delayed_uprobe_list) {
1277 du = list_entry(pos, struct delayed_uprobe, list);
1278
1279 if (du->mm != vma->vm_mm ||
1280 !valid_ref_ctr_vma(du->uprobe, vma))
1281 continue;
1282
1283 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1284 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1285 if (ret) {
1286 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1287 if (!err)
1288 err = ret;
1289 }
1290 delayed_uprobe_delete(du);
1291 }
1292 mutex_unlock(&delayed_uprobe_lock);
1293 return err;
1294}
1295
2b144498 1296/*
5e5be71a 1297 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
2b144498 1298 *
5e5be71a
ON
1299 * Currently we ignore all errors and always return 0, the callers
1300 * can't handle the failure anyway.
2b144498 1301 */
7b2d81d4 1302int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
1303{
1304 struct list_head tmp_list;
665605a2 1305 struct uprobe *uprobe, *u;
2b144498 1306 struct inode *inode;
2b144498 1307
1cc33161
RB
1308 if (no_uprobe_events())
1309 return 0;
1310
1311 if (vma->vm_file &&
1312 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1313 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1314 delayed_ref_ctr_inc(vma);
1315
1316 if (!valid_vma(vma, true))
7b2d81d4 1317 return 0;
2b144498 1318
f281769e 1319 inode = file_inode(vma->vm_file);
2b144498 1320 if (!inode)
7b2d81d4 1321 return 0;
2b144498 1322
2b144498 1323 mutex_lock(uprobes_mmap_hash(inode));
891c3970 1324 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
806a98bd
ON
1325 /*
1326 * We can race with uprobe_unregister(), this uprobe can be already
1327 * removed. But in this case filter_chain() must return false, all
1328 * consumers have gone away.
1329 */
665605a2 1330 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
806a98bd 1331 if (!fatal_signal_pending(current) &&
8a7f2fa0 1332 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
57683f72 1333 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
5e5be71a 1334 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
2b144498
SD
1335 }
1336 put_uprobe(uprobe);
1337 }
2b144498
SD
1338 mutex_unlock(uprobes_mmap_hash(inode));
1339
5e5be71a 1340 return 0;
2b144498
SD
1341}
1342
9f68f672
ON
1343static bool
1344vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1345{
1346 loff_t min, max;
1347 struct inode *inode;
1348 struct rb_node *n;
1349
f281769e 1350 inode = file_inode(vma->vm_file);
9f68f672
ON
1351
1352 min = vaddr_to_offset(vma, start);
1353 max = min + (end - start) - 1;
1354
1355 spin_lock(&uprobes_treelock);
1356 n = find_node_in_range(inode, min, max);
1357 spin_unlock(&uprobes_treelock);
1358
1359 return !!n;
1360}
1361
682968e0
SD
1362/*
1363 * Called in context of a munmap of a vma.
1364 */
cbc91f71 1365void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 1366{
441f1eb7 1367 if (no_uprobe_events() || !valid_vma(vma, false))
682968e0
SD
1368 return;
1369
2fd611a9
ON
1370 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1371 return;
1372
9f68f672
ON
1373 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1374 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
f8ac4ec9
ON
1375 return;
1376
9f68f672
ON
1377 if (vma_has_uprobes(vma, start, end))
1378 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
682968e0
SD
1379}
1380
d4b3b638 1381/* Slot allocation for XOL */
6441ec8b 1382static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
d4b3b638 1383{
704bde3c
ON
1384 struct vm_area_struct *vma;
1385 int ret;
d4b3b638 1386
598fdc1d
MH
1387 if (down_write_killable(&mm->mmap_sem))
1388 return -EINTR;
1389
704bde3c
ON
1390 if (mm->uprobes_state.xol_area) {
1391 ret = -EALREADY;
d4b3b638 1392 goto fail;
704bde3c 1393 }
d4b3b638 1394
af0d95af
ON
1395 if (!area->vaddr) {
1396 /* Try to map as high as possible, this is only a hint. */
1397 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1398 PAGE_SIZE, 0, 0);
1399 if (area->vaddr & ~PAGE_MASK) {
1400 ret = area->vaddr;
1401 goto fail;
1402 }
d4b3b638
SD
1403 }
1404
704bde3c
ON
1405 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1406 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1407 &area->xol_mapping);
1408 if (IS_ERR(vma)) {
1409 ret = PTR_ERR(vma);
d4b3b638 1410 goto fail;
704bde3c 1411 }
d4b3b638 1412
704bde3c 1413 ret = 0;
5c6338b4
PM
1414 /* pairs with get_xol_area() */
1415 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
c8a82538 1416 fail:
d4b3b638 1417 up_write(&mm->mmap_sem);
d4b3b638
SD
1418
1419 return ret;
1420}
1421
af0d95af 1422static struct xol_area *__create_xol_area(unsigned long vaddr)
d4b3b638 1423{
9b545df8 1424 struct mm_struct *mm = current->mm;
e78aebfd 1425 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
6441ec8b 1426 struct xol_area *area;
9b545df8 1427
af0d95af 1428 area = kmalloc(sizeof(*area), GFP_KERNEL);
d4b3b638 1429 if (unlikely(!area))
c8a82538 1430 goto out;
d4b3b638 1431
6396bb22
KC
1432 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1433 GFP_KERNEL);
d4b3b638 1434 if (!area->bitmap)
c8a82538
ON
1435 goto free_area;
1436
704bde3c 1437 area->xol_mapping.name = "[uprobes]";
869ae761 1438 area->xol_mapping.fault = NULL;
704bde3c 1439 area->xol_mapping.pages = area->pages;
f58bea2f
ON
1440 area->pages[0] = alloc_page(GFP_HIGHUSER);
1441 if (!area->pages[0])
c8a82538 1442 goto free_bitmap;
f58bea2f 1443 area->pages[1] = NULL;
d4b3b638 1444
af0d95af 1445 area->vaddr = vaddr;
6441ec8b
ON
1446 init_waitqueue_head(&area->wq);
1447 /* Reserve the 1st slot for get_trampoline_vaddr() */
e78aebfd 1448 set_bit(0, area->bitmap);
e78aebfd 1449 atomic_set(&area->slot_count, 1);
297e765e 1450 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
e78aebfd 1451
6441ec8b 1452 if (!xol_add_vma(mm, area))
d4b3b638
SD
1453 return area;
1454
f58bea2f 1455 __free_page(area->pages[0]);
c8a82538 1456 free_bitmap:
d4b3b638 1457 kfree(area->bitmap);
c8a82538 1458 free_area:
d4b3b638 1459 kfree(area);
c8a82538 1460 out:
6441ec8b
ON
1461 return NULL;
1462}
1463
1464/*
1465 * get_xol_area - Allocate process's xol_area if necessary.
1466 * This area will be used for storing instructions for execution out of line.
1467 *
1468 * Returns the allocated area or NULL.
1469 */
1470static struct xol_area *get_xol_area(void)
1471{
1472 struct mm_struct *mm = current->mm;
1473 struct xol_area *area;
1474
1475 if (!mm->uprobes_state.xol_area)
af0d95af 1476 __create_xol_area(0);
6441ec8b 1477
5c6338b4
PM
1478 /* Pairs with xol_add_vma() smp_store_release() */
1479 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
9b545df8 1480 return area;
d4b3b638
SD
1481}
1482
1483/*
1484 * uprobe_clear_state - Free the area allocated for slots.
1485 */
1486void uprobe_clear_state(struct mm_struct *mm)
1487{
1488 struct xol_area *area = mm->uprobes_state.xol_area;
1489
1cc33161
RB
1490 mutex_lock(&delayed_uprobe_lock);
1491 delayed_uprobe_remove(NULL, mm);
1492 mutex_unlock(&delayed_uprobe_lock);
1493
d4b3b638
SD
1494 if (!area)
1495 return;
1496
f58bea2f 1497 put_page(area->pages[0]);
d4b3b638
SD
1498 kfree(area->bitmap);
1499 kfree(area);
1500}
1501
32cdba1e
ON
1502void uprobe_start_dup_mmap(void)
1503{
1504 percpu_down_read(&dup_mmap_sem);
1505}
1506
1507void uprobe_end_dup_mmap(void)
1508{
1509 percpu_up_read(&dup_mmap_sem);
1510}
1511
f8ac4ec9
ON
1512void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1513{
9f68f672 1514 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
f8ac4ec9 1515 set_bit(MMF_HAS_UPROBES, &newmm->flags);
9f68f672
ON
1516 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1517 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1518 }
f8ac4ec9
ON
1519}
1520
d4b3b638
SD
1521/*
1522 * - search for a free slot.
1523 */
1524static unsigned long xol_take_insn_slot(struct xol_area *area)
1525{
1526 unsigned long slot_addr;
1527 int slot_nr;
1528
1529 do {
1530 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1531 if (slot_nr < UINSNS_PER_PAGE) {
1532 if (!test_and_set_bit(slot_nr, area->bitmap))
1533 break;
1534
1535 slot_nr = UINSNS_PER_PAGE;
1536 continue;
1537 }
1538 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1539 } while (slot_nr >= UINSNS_PER_PAGE);
1540
1541 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1542 atomic_inc(&area->slot_count);
1543
1544 return slot_addr;
1545}
1546
1547/*
a6cb3f6d 1548 * xol_get_insn_slot - allocate a slot for xol.
d4b3b638
SD
1549 * Returns the allocated slot address or 0.
1550 */
a6cb3f6d 1551static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
d4b3b638
SD
1552{
1553 struct xol_area *area;
a6cb3f6d 1554 unsigned long xol_vaddr;
d4b3b638 1555
9b545df8
ON
1556 area = get_xol_area();
1557 if (!area)
1558 return 0;
d4b3b638 1559
a6cb3f6d
ON
1560 xol_vaddr = xol_take_insn_slot(area);
1561 if (unlikely(!xol_vaddr))
d4b3b638
SD
1562 return 0;
1563
f58bea2f 1564 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
72e6ae28 1565 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
d4b3b638 1566
a6cb3f6d 1567 return xol_vaddr;
d4b3b638
SD
1568}
1569
1570/*
1571 * xol_free_insn_slot - If slot was earlier allocated by
1572 * @xol_get_insn_slot(), make the slot available for
1573 * subsequent requests.
1574 */
1575static void xol_free_insn_slot(struct task_struct *tsk)
1576{
1577 struct xol_area *area;
1578 unsigned long vma_end;
1579 unsigned long slot_addr;
1580
1581 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1582 return;
1583
1584 slot_addr = tsk->utask->xol_vaddr;
af4355e9 1585 if (unlikely(!slot_addr))
d4b3b638
SD
1586 return;
1587
1588 area = tsk->mm->uprobes_state.xol_area;
1589 vma_end = area->vaddr + PAGE_SIZE;
1590 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1591 unsigned long offset;
1592 int slot_nr;
1593
1594 offset = slot_addr - area->vaddr;
1595 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1596 if (slot_nr >= UINSNS_PER_PAGE)
1597 return;
1598
1599 clear_bit(slot_nr, area->bitmap);
1600 atomic_dec(&area->slot_count);
2a742ced 1601 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
d4b3b638
SD
1602 if (waitqueue_active(&area->wq))
1603 wake_up(&area->wq);
1604
1605 tsk->utask->xol_vaddr = 0;
1606 }
1607}
1608
72e6ae28
VK
1609void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1610 void *src, unsigned long len)
1611{
1612 /* Initialize the slot */
1613 copy_to_page(page, vaddr, src, len);
1614
1615 /*
1616 * We probably need flush_icache_user_range() but it needs vma.
1617 * This should work on most of architectures by default. If
1618 * architecture needs to do something different it can define
1619 * its own version of the function.
1620 */
1621 flush_dcache_page(page);
1622}
1623
0326f5a9
SD
1624/**
1625 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1626 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1627 * instruction.
1628 * Return the address of the breakpoint instruction.
1629 */
1630unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1631{
1632 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1633}
1634
b02ef20a
ON
1635unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1636{
1637 struct uprobe_task *utask = current->utask;
1638
1639 if (unlikely(utask && utask->active_uprobe))
1640 return utask->vaddr;
1641
1642 return instruction_pointer(regs);
1643}
1644
2bb5e840
ON
1645static struct return_instance *free_ret_instance(struct return_instance *ri)
1646{
1647 struct return_instance *next = ri->next;
1648 put_uprobe(ri->uprobe);
1649 kfree(ri);
1650 return next;
1651}
1652
0326f5a9
SD
1653/*
1654 * Called with no locks held.
788faab7 1655 * Called in context of an exiting or an exec-ing thread.
0326f5a9
SD
1656 */
1657void uprobe_free_utask(struct task_struct *t)
1658{
1659 struct uprobe_task *utask = t->utask;
2bb5e840 1660 struct return_instance *ri;
0326f5a9 1661
0326f5a9
SD
1662 if (!utask)
1663 return;
1664
1665 if (utask->active_uprobe)
1666 put_uprobe(utask->active_uprobe);
1667
0dfd0eb8 1668 ri = utask->return_instances;
2bb5e840
ON
1669 while (ri)
1670 ri = free_ret_instance(ri);
0dfd0eb8 1671
d4b3b638 1672 xol_free_insn_slot(t);
0326f5a9
SD
1673 kfree(utask);
1674 t->utask = NULL;
1675}
1676
0326f5a9 1677/*
5a2df662
ON
1678 * Allocate a uprobe_task object for the task if if necessary.
1679 * Called when the thread hits a breakpoint.
0326f5a9
SD
1680 *
1681 * Returns:
1682 * - pointer to new uprobe_task on success
1683 * - NULL otherwise
1684 */
5a2df662 1685static struct uprobe_task *get_utask(void)
0326f5a9 1686{
5a2df662
ON
1687 if (!current->utask)
1688 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1689 return current->utask;
0326f5a9
SD
1690}
1691
248d3a7b
ON
1692static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1693{
1694 struct uprobe_task *n_utask;
1695 struct return_instance **p, *o, *n;
1696
1697 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1698 if (!n_utask)
1699 return -ENOMEM;
1700 t->utask = n_utask;
1701
1702 p = &n_utask->return_instances;
1703 for (o = o_utask->return_instances; o; o = o->next) {
1704 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1705 if (!n)
1706 return -ENOMEM;
1707
1708 *n = *o;
f231722a 1709 get_uprobe(n->uprobe);
248d3a7b
ON
1710 n->next = NULL;
1711
1712 *p = n;
1713 p = &n->next;
1714 n_utask->depth++;
1715 }
1716
1717 return 0;
1718}
1719
1720static void uprobe_warn(struct task_struct *t, const char *msg)
1721{
1722 pr_warn("uprobe: %s:%d failed to %s\n",
1723 current->comm, current->pid, msg);
1724}
1725
aa59c53f
ON
1726static void dup_xol_work(struct callback_head *work)
1727{
aa59c53f
ON
1728 if (current->flags & PF_EXITING)
1729 return;
1730
598fdc1d
MH
1731 if (!__create_xol_area(current->utask->dup_xol_addr) &&
1732 !fatal_signal_pending(current))
aa59c53f
ON
1733 uprobe_warn(current, "dup xol area");
1734}
1735
b68e0749
ON
1736/*
1737 * Called in context of a new clone/fork from copy_process.
1738 */
3ab67966 1739void uprobe_copy_process(struct task_struct *t, unsigned long flags)
b68e0749 1740{
248d3a7b
ON
1741 struct uprobe_task *utask = current->utask;
1742 struct mm_struct *mm = current->mm;
aa59c53f 1743 struct xol_area *area;
248d3a7b 1744
b68e0749 1745 t->utask = NULL;
248d3a7b 1746
3ab67966
ON
1747 if (!utask || !utask->return_instances)
1748 return;
1749
1750 if (mm == t->mm && !(flags & CLONE_VFORK))
248d3a7b
ON
1751 return;
1752
1753 if (dup_utask(t, utask))
1754 return uprobe_warn(t, "dup ret instances");
aa59c53f
ON
1755
1756 /* The task can fork() after dup_xol_work() fails */
1757 area = mm->uprobes_state.xol_area;
1758 if (!area)
1759 return uprobe_warn(t, "dup xol area");
1760
3ab67966
ON
1761 if (mm == t->mm)
1762 return;
1763
32473431
ON
1764 t->utask->dup_xol_addr = area->vaddr;
1765 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1766 task_work_add(t, &t->utask->dup_xol_work, true);
b68e0749
ON
1767}
1768
e78aebfd
AA
1769/*
1770 * Current area->vaddr notion assume the trampoline address is always
1771 * equal area->vaddr.
1772 *
1773 * Returns -1 in case the xol_area is not allocated.
1774 */
1775static unsigned long get_trampoline_vaddr(void)
1776{
1777 struct xol_area *area;
1778 unsigned long trampoline_vaddr = -1;
1779
5c6338b4
PM
1780 /* Pairs with xol_add_vma() smp_store_release() */
1781 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
e78aebfd
AA
1782 if (area)
1783 trampoline_vaddr = area->vaddr;
1784
1785 return trampoline_vaddr;
1786}
1787
db087ef6
ON
1788static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1789 struct pt_regs *regs)
a5b7e1a8
ON
1790{
1791 struct return_instance *ri = utask->return_instances;
db087ef6 1792 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
86dcb702
ON
1793
1794 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
a5b7e1a8
ON
1795 ri = free_ret_instance(ri);
1796 utask->depth--;
1797 }
1798 utask->return_instances = ri;
1799}
1800
0dfd0eb8
AA
1801static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1802{
1803 struct return_instance *ri;
1804 struct uprobe_task *utask;
1805 unsigned long orig_ret_vaddr, trampoline_vaddr;
db087ef6 1806 bool chained;
0dfd0eb8
AA
1807
1808 if (!get_xol_area())
1809 return;
1810
1811 utask = get_utask();
1812 if (!utask)
1813 return;
1814
ded49c55
AA
1815 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1816 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1817 " nestedness limit pid/tgid=%d/%d\n",
1818 current->pid, current->tgid);
1819 return;
1820 }
1821
6c58d0e4 1822 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
0dfd0eb8 1823 if (!ri)
6c58d0e4 1824 return;
0dfd0eb8
AA
1825
1826 trampoline_vaddr = get_trampoline_vaddr();
1827 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1828 if (orig_ret_vaddr == -1)
1829 goto fail;
1830
a5b7e1a8 1831 /* drop the entries invalidated by longjmp() */
db087ef6
ON
1832 chained = (orig_ret_vaddr == trampoline_vaddr);
1833 cleanup_return_instances(utask, chained, regs);
a5b7e1a8 1834
0dfd0eb8
AA
1835 /*
1836 * We don't want to keep trampoline address in stack, rather keep the
1837 * original return address of first caller thru all the consequent
1838 * instances. This also makes breakpoint unwrapping easier.
1839 */
db087ef6 1840 if (chained) {
0dfd0eb8
AA
1841 if (!utask->return_instances) {
1842 /*
1843 * This situation is not possible. Likely we have an
1844 * attack from user-space.
1845 */
6c58d0e4 1846 uprobe_warn(current, "handle tail call");
0dfd0eb8
AA
1847 goto fail;
1848 }
0dfd0eb8
AA
1849 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1850 }
1851
f231722a 1852 ri->uprobe = get_uprobe(uprobe);
0dfd0eb8 1853 ri->func = instruction_pointer(regs);
7b868e48 1854 ri->stack = user_stack_pointer(regs);
0dfd0eb8
AA
1855 ri->orig_ret_vaddr = orig_ret_vaddr;
1856 ri->chained = chained;
1857
ded49c55 1858 utask->depth++;
0dfd0eb8
AA
1859 ri->next = utask->return_instances;
1860 utask->return_instances = ri;
1861
1862 return;
0dfd0eb8
AA
1863 fail:
1864 kfree(ri);
1865}
1866
0326f5a9
SD
1867/* Prepare to single-step probed instruction out of line. */
1868static int
a6cb3f6d 1869pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
0326f5a9 1870{
a6cb3f6d
ON
1871 struct uprobe_task *utask;
1872 unsigned long xol_vaddr;
aba51024 1873 int err;
a6cb3f6d 1874
608e7427
ON
1875 utask = get_utask();
1876 if (!utask)
1877 return -ENOMEM;
a6cb3f6d
ON
1878
1879 xol_vaddr = xol_get_insn_slot(uprobe);
1880 if (!xol_vaddr)
1881 return -ENOMEM;
1882
1883 utask->xol_vaddr = xol_vaddr;
1884 utask->vaddr = bp_vaddr;
d4b3b638 1885
aba51024
ON
1886 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1887 if (unlikely(err)) {
1888 xol_free_insn_slot(current);
1889 return err;
1890 }
1891
608e7427
ON
1892 utask->active_uprobe = uprobe;
1893 utask->state = UTASK_SSTEP;
aba51024 1894 return 0;
0326f5a9
SD
1895}
1896
1897/*
1898 * If we are singlestepping, then ensure this thread is not connected to
1899 * non-fatal signals until completion of singlestep. When xol insn itself
1900 * triggers the signal, restart the original insn even if the task is
1901 * already SIGKILL'ed (since coredump should report the correct ip). This
1902 * is even more important if the task has a handler for SIGSEGV/etc, The
1903 * _same_ instruction should be repeated again after return from the signal
1904 * handler, and SSTEP can never finish in this case.
1905 */
1906bool uprobe_deny_signal(void)
1907{
1908 struct task_struct *t = current;
1909 struct uprobe_task *utask = t->utask;
1910
1911 if (likely(!utask || !utask->active_uprobe))
1912 return false;
1913
1914 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1915
1916 if (signal_pending(t)) {
1917 spin_lock_irq(&t->sighand->siglock);
1918 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1919 spin_unlock_irq(&t->sighand->siglock);
1920
1921 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1922 utask->state = UTASK_SSTEP_TRAPPED;
1923 set_tsk_thread_flag(t, TIF_UPROBE);
0326f5a9
SD
1924 }
1925 }
1926
1927 return true;
1928}
1929
499a4f3e
ON
1930static void mmf_recalc_uprobes(struct mm_struct *mm)
1931{
1932 struct vm_area_struct *vma;
1933
1934 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1935 if (!valid_vma(vma, false))
1936 continue;
1937 /*
1938 * This is not strictly accurate, we can race with
1939 * uprobe_unregister() and see the already removed
1940 * uprobe if delete_uprobe() was not yet called.
63633cbf 1941 * Or this uprobe can be filtered out.
499a4f3e
ON
1942 */
1943 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1944 return;
1945 }
1946
1947 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1948}
1949
0908ad6e 1950static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
ec75fba9
ON
1951{
1952 struct page *page;
1953 uprobe_opcode_t opcode;
1954 int result;
1955
1956 pagefault_disable();
bd28b145 1957 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
ec75fba9
ON
1958 pagefault_enable();
1959
1960 if (likely(result == 0))
1961 goto out;
1962
1e987790
DH
1963 /*
1964 * The NULL 'tsk' here ensures that any faults that occur here
1965 * will not be accounted to the task. 'mm' *is* current->mm,
1966 * but we treat this as a 'remote' access since it is
1967 * essentially a kernel access to the memory.
1968 */
9beae1ea 1969 result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
5b56d49f 1970 NULL, NULL);
ec75fba9
ON
1971 if (result < 0)
1972 return result;
1973
ab0d805c 1974 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
ec75fba9
ON
1975 put_page(page);
1976 out:
0908ad6e
AM
1977 /* This needs to return true for any variant of the trap insn */
1978 return is_trap_insn(&opcode);
ec75fba9
ON
1979}
1980
d790d346 1981static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1982{
3a9ea052
ON
1983 struct mm_struct *mm = current->mm;
1984 struct uprobe *uprobe = NULL;
0326f5a9 1985 struct vm_area_struct *vma;
0326f5a9 1986
0326f5a9
SD
1987 down_read(&mm->mmap_sem);
1988 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1989 if (vma && vma->vm_start <= bp_vaddr) {
1990 if (valid_vma(vma, false)) {
f281769e 1991 struct inode *inode = file_inode(vma->vm_file);
cb113b47 1992 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1993
3a9ea052
ON
1994 uprobe = find_uprobe(inode, offset);
1995 }
d790d346
ON
1996
1997 if (!uprobe)
0908ad6e 1998 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
d790d346
ON
1999 } else {
2000 *is_swbp = -EFAULT;
0326f5a9 2001 }
499a4f3e
ON
2002
2003 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2004 mmf_recalc_uprobes(mm);
0326f5a9
SD
2005 up_read(&mm->mmap_sem);
2006
3a9ea052
ON
2007 return uprobe;
2008}
2009
da1816b1
ON
2010static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2011{
2012 struct uprobe_consumer *uc;
2013 int remove = UPROBE_HANDLER_REMOVE;
0dfd0eb8 2014 bool need_prep = false; /* prepare return uprobe, when needed */
da1816b1
ON
2015
2016 down_read(&uprobe->register_rwsem);
2017 for (uc = uprobe->consumers; uc; uc = uc->next) {
ea024870 2018 int rc = 0;
da1816b1 2019
ea024870
AA
2020 if (uc->handler) {
2021 rc = uc->handler(uc, regs);
2022 WARN(rc & ~UPROBE_HANDLER_MASK,
2023 "bad rc=0x%x from %pf()\n", rc, uc->handler);
2024 }
0dfd0eb8
AA
2025
2026 if (uc->ret_handler)
2027 need_prep = true;
2028
da1816b1
ON
2029 remove &= rc;
2030 }
2031
0dfd0eb8
AA
2032 if (need_prep && !remove)
2033 prepare_uretprobe(uprobe, regs); /* put bp at return */
2034
da1816b1
ON
2035 if (remove && uprobe->consumers) {
2036 WARN_ON(!uprobe_is_active(uprobe));
2037 unapply_uprobe(uprobe, current->mm);
2038 }
2039 up_read(&uprobe->register_rwsem);
2040}
2041
fec8898d
AA
2042static void
2043handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2044{
2045 struct uprobe *uprobe = ri->uprobe;
2046 struct uprobe_consumer *uc;
2047
2048 down_read(&uprobe->register_rwsem);
2049 for (uc = uprobe->consumers; uc; uc = uc->next) {
2050 if (uc->ret_handler)
2051 uc->ret_handler(uc, ri->func, regs);
2052 }
2053 up_read(&uprobe->register_rwsem);
2054}
2055
a83cfeb9
ON
2056static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2057{
2058 bool chained;
2059
2060 do {
2061 chained = ri->chained;
2062 ri = ri->next; /* can't be NULL if chained */
2063 } while (chained);
2064
2065 return ri;
2066}
2067
0b5256c7 2068static void handle_trampoline(struct pt_regs *regs)
fec8898d
AA
2069{
2070 struct uprobe_task *utask;
a83cfeb9 2071 struct return_instance *ri, *next;
5eeb50de 2072 bool valid;
fec8898d
AA
2073
2074 utask = current->utask;
2075 if (!utask)
0b5256c7 2076 goto sigill;
fec8898d
AA
2077
2078 ri = utask->return_instances;
2079 if (!ri)
0b5256c7 2080 goto sigill;
fec8898d 2081
a83cfeb9 2082 do {
5eeb50de
ON
2083 /*
2084 * We should throw out the frames invalidated by longjmp().
2085 * If this chain is valid, then the next one should be alive
2086 * or NULL; the latter case means that nobody but ri->func
2087 * could hit this trampoline on return. TODO: sigaltstack().
2088 */
2089 next = find_next_ret_chain(ri);
86dcb702 2090 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
5eeb50de
ON
2091
2092 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2093 do {
2094 if (valid)
2095 handle_uretprobe_chain(ri, regs);
2096 ri = free_ret_instance(ri);
2097 utask->depth--;
2098 } while (ri != next);
2099 } while (!valid);
fec8898d
AA
2100
2101 utask->return_instances = ri;
0b5256c7
ON
2102 return;
2103
2104 sigill:
2105 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2106 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
fec8898d 2107
fec8898d
AA
2108}
2109
6fe50a28
DL
2110bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2111{
2112 return false;
2113}
2114
86dcb702
ON
2115bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2116 struct pt_regs *regs)
97da8976
ON
2117{
2118 return true;
2119}
2120
3a9ea052
ON
2121/*
2122 * Run handler and ask thread to singlestep.
2123 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2124 */
2125static void handle_swbp(struct pt_regs *regs)
2126{
3a9ea052
ON
2127 struct uprobe *uprobe;
2128 unsigned long bp_vaddr;
56bb4cf6 2129 int uninitialized_var(is_swbp);
3a9ea052
ON
2130
2131 bp_vaddr = uprobe_get_swbp_addr(regs);
0b5256c7
ON
2132 if (bp_vaddr == get_trampoline_vaddr())
2133 return handle_trampoline(regs);
fec8898d
AA
2134
2135 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
0326f5a9 2136 if (!uprobe) {
56bb4cf6
ON
2137 if (is_swbp > 0) {
2138 /* No matching uprobe; signal SIGTRAP. */
2139 send_sig(SIGTRAP, current, 0);
2140 } else {
2141 /*
2142 * Either we raced with uprobe_unregister() or we can't
2143 * access this memory. The latter is only possible if
2144 * another thread plays with our ->mm. In both cases
2145 * we can simply restart. If this vma was unmapped we
2146 * can pretend this insn was not executed yet and get
2147 * the (correct) SIGSEGV after restart.
2148 */
2149 instruction_pointer_set(regs, bp_vaddr);
2150 }
0326f5a9
SD
2151 return;
2152 }
74e59dfc
ON
2153
2154 /* change it in advance for ->handler() and restart */
2155 instruction_pointer_set(regs, bp_vaddr);
2156
142b18dd
ON
2157 /*
2158 * TODO: move copy_insn/etc into _register and remove this hack.
2159 * After we hit the bp, _unregister + _register can install the
2160 * new and not-yet-analyzed uprobe at the same address, restart.
2161 */
2162 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
71434f2f 2163 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
74e59dfc 2164 goto out;
0326f5a9 2165
72fd293a
ON
2166 /* Tracing handlers use ->utask to communicate with fetch methods */
2167 if (!get_utask())
2168 goto out;
2169
6fe50a28
DL
2170 if (arch_uprobe_ignore(&uprobe->arch, regs))
2171 goto out;
2172
0326f5a9 2173 handler_chain(uprobe, regs);
6fe50a28 2174
8a6b1732 2175 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
0578a970 2176 goto out;
0326f5a9 2177
608e7427 2178 if (!pre_ssout(uprobe, regs, bp_vaddr))
0326f5a9 2179 return;
0326f5a9 2180
8a6b1732 2181 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
0578a970 2182out:
8bd87445 2183 put_uprobe(uprobe);
0326f5a9
SD
2184}
2185
2186/*
2187 * Perform required fix-ups and disable singlestep.
2188 * Allow pending signals to take effect.
2189 */
2190static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2191{
2192 struct uprobe *uprobe;
014940ba 2193 int err = 0;
0326f5a9
SD
2194
2195 uprobe = utask->active_uprobe;
2196 if (utask->state == UTASK_SSTEP_ACK)
014940ba 2197 err = arch_uprobe_post_xol(&uprobe->arch, regs);
0326f5a9
SD
2198 else if (utask->state == UTASK_SSTEP_TRAPPED)
2199 arch_uprobe_abort_xol(&uprobe->arch, regs);
2200 else
2201 WARN_ON_ONCE(1);
2202
2203 put_uprobe(uprobe);
2204 utask->active_uprobe = NULL;
2205 utask->state = UTASK_RUNNING;
d4b3b638 2206 xol_free_insn_slot(current);
0326f5a9
SD
2207
2208 spin_lock_irq(&current->sighand->siglock);
2209 recalc_sigpending(); /* see uprobe_deny_signal() */
2210 spin_unlock_irq(&current->sighand->siglock);
014940ba
ON
2211
2212 if (unlikely(err)) {
2213 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2214 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
2215 }
0326f5a9
SD
2216}
2217
2218/*
1b08e907
ON
2219 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2220 * allows the thread to return from interrupt. After that handle_swbp()
2221 * sets utask->active_uprobe.
0326f5a9 2222 *
1b08e907
ON
2223 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2224 * and allows the thread to return from interrupt.
0326f5a9
SD
2225 *
2226 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2227 * uprobe_notify_resume().
2228 */
2229void uprobe_notify_resume(struct pt_regs *regs)
2230{
2231 struct uprobe_task *utask;
2232
db023ea5
ON
2233 clear_thread_flag(TIF_UPROBE);
2234
0326f5a9 2235 utask = current->utask;
1b08e907 2236 if (utask && utask->active_uprobe)
0326f5a9 2237 handle_singlestep(utask, regs);
1b08e907
ON
2238 else
2239 handle_swbp(regs);
0326f5a9
SD
2240}
2241
2242/*
2243 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2244 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2245 */
2246int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2247{
0dfd0eb8
AA
2248 if (!current->mm)
2249 return 0;
2250
2251 if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2252 (!current->utask || !current->utask->return_instances))
0326f5a9
SD
2253 return 0;
2254
0326f5a9 2255 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
2256 return 1;
2257}
2258
2259/*
2260 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2261 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2262 */
2263int uprobe_post_sstep_notifier(struct pt_regs *regs)
2264{
2265 struct uprobe_task *utask = current->utask;
2266
2267 if (!current->mm || !utask || !utask->active_uprobe)
2268 /* task is currently not uprobed */
2269 return 0;
2270
2271 utask->state = UTASK_SSTEP_ACK;
2272 set_thread_flag(TIF_UPROBE);
2273 return 1;
2274}
2275
2276static struct notifier_block uprobe_exception_nb = {
2277 .notifier_call = arch_uprobe_exception_notify,
2278 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2279};
2280
2b144498
SD
2281static int __init init_uprobes(void)
2282{
2283 int i;
2284
66d06dff 2285 for (i = 0; i < UPROBES_HASH_SZ; i++)
2b144498 2286 mutex_init(&uprobes_mmap_mutex[i]);
0326f5a9 2287
32cdba1e
ON
2288 if (percpu_init_rwsem(&dup_mmap_sem))
2289 return -ENOMEM;
2290
0326f5a9 2291 return register_die_notifier(&uprobe_exception_nb);
2b144498 2292}
736e89d9 2293__initcall(init_uprobes);