]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/events/uprobes.c
uprobes: Change filter_chain() to iterate ->consumers list
[mirror_ubuntu-hirsute-kernel.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
194f8dcb 35#include "../../mm/internal.h" /* munlock_vma_page */
32cdba1e 36#include <linux/percpu-rwsem.h>
7b2d81d4 37
2b144498
SD
38#include <linux/uprobes.h>
39
d4b3b638
SD
40#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
41#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
42
2b144498 43static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 44
2b144498
SD
45static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
46
47#define UPROBES_HASH_SZ 13
7b2d81d4 48
c5784de2
PZ
49/*
50 * We need separate register/unregister and mmap/munmap lock hashes because
51 * of mmap_sem nesting.
52 *
53 * uprobe_register() needs to install probes on (potentially) all processes
54 * and thus needs to acquire multiple mmap_sems (consequtively, not
55 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
56 * for the particular process doing the mmap.
57 *
58 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
59 * because of lock order against i_mmap_mutex. This means there's a hole in
60 * the register vma iteration where a mmap() can happen.
61 *
62 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
63 * install a probe where one is already installed.
64 */
65
2b144498
SD
66/* serialize (un)register */
67static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
68
69#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
70
71/* serialize uprobe->pending_list */
72static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 73#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498 74
32cdba1e
ON
75static struct percpu_rw_semaphore dup_mmap_sem;
76
2b144498 77/*
7b2d81d4 78 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
79 * events active at this time. Probably a fine grained per inode count is
80 * better?
81 */
82static atomic_t uprobe_events = ATOMIC_INIT(0);
83
cb9a19fe 84/* Have a copy of original instruction */
71434f2f 85#define UPROBE_COPY_INSN 0
cb9a19fe 86/* Dont run handlers when first register/ last unregister in progress*/
71434f2f 87#define UPROBE_RUN_HANDLER 1
cb9a19fe 88/* Can skip singlestep */
71434f2f 89#define UPROBE_SKIP_SSTEP 2
cb9a19fe 90
3ff54efd
SD
91struct uprobe {
92 struct rb_node rb_node; /* node in the rb tree */
93 atomic_t ref;
e591c8d7 94 struct rw_semaphore register_rwsem;
3ff54efd 95 struct rw_semaphore consumer_rwsem;
4710f05f 96 struct mutex copy_mutex; /* TODO: kill me and UPROBE_COPY_INSN */
3ff54efd
SD
97 struct list_head pending_list;
98 struct uprobe_consumer *consumers;
99 struct inode *inode; /* Also hold a ref to inode */
100 loff_t offset;
71434f2f 101 unsigned long flags;
3ff54efd
SD
102 struct arch_uprobe arch;
103};
104
2b144498
SD
105/*
106 * valid_vma: Verify if the specified vma is an executable vma
107 * Relax restrictions while unregistering: vm_flags might have
108 * changed after breakpoint was inserted.
109 * - is_register: indicates if we are in register context.
110 * - Return 1 if the specified virtual address is in an
111 * executable vma.
112 */
113static bool valid_vma(struct vm_area_struct *vma, bool is_register)
114{
e40cfce6 115 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
2b144498 116
e40cfce6
ON
117 if (is_register)
118 flags |= VM_WRITE;
2b144498 119
e40cfce6 120 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
2b144498
SD
121}
122
57683f72 123static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 124{
57683f72 125 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
126}
127
cb113b47
ON
128static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
129{
130 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
131}
132
2b144498
SD
133/**
134 * __replace_page - replace page in vma by new page.
135 * based on replace_page in mm/ksm.c
136 *
137 * @vma: vma that holds the pte pointing to page
c517ee74 138 * @addr: address the old @page is mapped at
2b144498
SD
139 * @page: the cowed page we are replacing by kpage
140 * @kpage: the modified page we replace page by
141 *
142 * Returns 0 on success, -EFAULT on failure.
143 */
c517ee74
ON
144static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
145 struct page *page, struct page *kpage)
2b144498
SD
146{
147 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
148 spinlock_t *ptl;
149 pte_t *ptep;
9f92448c 150 int err;
6bdb913f
HE
151 /* For mmu_notifiers */
152 const unsigned long mmun_start = addr;
153 const unsigned long mmun_end = addr + PAGE_SIZE;
2b144498 154
194f8dcb 155 /* For try_to_free_swap() and munlock_vma_page() below */
9f92448c
ON
156 lock_page(page);
157
6bdb913f 158 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
9f92448c 159 err = -EAGAIN;
5323ce71 160 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 161 if (!ptep)
9f92448c 162 goto unlock;
2b144498
SD
163
164 get_page(kpage);
165 page_add_new_anon_rmap(kpage, vma, addr);
166
7396fa81
SD
167 if (!PageAnon(page)) {
168 dec_mm_counter(mm, MM_FILEPAGES);
169 inc_mm_counter(mm, MM_ANONPAGES);
170 }
171
2b144498
SD
172 flush_cache_page(vma, addr, pte_pfn(*ptep));
173 ptep_clear_flush(vma, addr, ptep);
174 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
175
176 page_remove_rmap(page);
177 if (!page_mapped(page))
178 try_to_free_swap(page);
2b144498 179 pte_unmap_unlock(ptep, ptl);
2b144498 180
194f8dcb
ON
181 if (vma->vm_flags & VM_LOCKED)
182 munlock_vma_page(page);
183 put_page(page);
184
9f92448c
ON
185 err = 0;
186 unlock:
6bdb913f 187 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
9f92448c
ON
188 unlock_page(page);
189 return err;
2b144498
SD
190}
191
192/**
5cb4ac3a 193 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 194 * @insn: instruction to be checked.
5cb4ac3a 195 * Default implementation of is_swbp_insn
2b144498
SD
196 * Returns true if @insn is a breakpoint instruction.
197 */
5cb4ac3a 198bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 199{
5cb4ac3a 200 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
201}
202
cceb55aa
ON
203static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
204{
205 void *kaddr = kmap_atomic(page);
206 memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
207 kunmap_atomic(kaddr);
208}
209
ed6f6a50
ON
210static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
211{
212 uprobe_opcode_t old_opcode;
213 bool is_swbp;
214
215 copy_opcode(page, vaddr, &old_opcode);
216 is_swbp = is_swbp_insn(&old_opcode);
217
218 if (is_swbp_insn(new_opcode)) {
219 if (is_swbp) /* register: already installed? */
220 return 0;
221 } else {
222 if (!is_swbp) /* unregister: was it changed by us? */
076a365b 223 return 0;
ed6f6a50
ON
224 }
225
226 return 1;
227}
228
2b144498
SD
229/*
230 * NOTE:
231 * Expect the breakpoint instruction to be the smallest size instruction for
232 * the architecture. If an arch has variable length instruction and the
233 * breakpoint instruction is not of the smallest length instruction
cceb55aa 234 * supported by that architecture then we need to modify is_swbp_at_addr and
2b144498
SD
235 * write_opcode accordingly. This would never be a problem for archs that
236 * have fixed length instructions.
237 */
238
239/*
240 * write_opcode - write the opcode at a given virtual address.
241 * @mm: the probed process address space.
2b144498
SD
242 * @vaddr: the virtual address to store the opcode.
243 * @opcode: opcode to be written at @vaddr.
244 *
245 * Called with mm->mmap_sem held (for read and with a reference to
246 * mm).
247 *
248 * For mm @mm, write the opcode at @vaddr.
249 * Return 0 (success) or a negative errno.
250 */
cceb55aa
ON
251static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
252 uprobe_opcode_t opcode)
2b144498
SD
253{
254 struct page *old_page, *new_page;
2b144498
SD
255 void *vaddr_old, *vaddr_new;
256 struct vm_area_struct *vma;
2b144498 257 int ret;
f403072c 258
5323ce71 259retry:
2b144498 260 /* Read the page with vaddr into memory */
75ed82ea 261 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
2b144498
SD
262 if (ret <= 0)
263 return ret;
7b2d81d4 264
ed6f6a50
ON
265 ret = verify_opcode(old_page, vaddr, &opcode);
266 if (ret <= 0)
267 goto put_old;
268
2b144498
SD
269 ret = -ENOMEM;
270 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
271 if (!new_page)
9f92448c 272 goto put_old;
2b144498
SD
273
274 __SetPageUptodate(new_page);
275
2b144498
SD
276 /* copy the page now that we've got it stable */
277 vaddr_old = kmap_atomic(old_page);
278 vaddr_new = kmap_atomic(new_page);
279
280 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
d9c4a30e 281 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
282
283 kunmap_atomic(vaddr_new);
284 kunmap_atomic(vaddr_old);
285
286 ret = anon_vma_prepare(vma);
287 if (ret)
9f92448c 288 goto put_new;
2b144498 289
c517ee74 290 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 291
9f92448c 292put_new:
2b144498 293 page_cache_release(new_page);
9f92448c 294put_old:
7b2d81d4
IM
295 put_page(old_page);
296
5323ce71
ON
297 if (unlikely(ret == -EAGAIN))
298 goto retry;
2b144498
SD
299 return ret;
300}
301
2b144498 302/**
5cb4ac3a 303 * set_swbp - store breakpoint at a given address.
e3343e6a 304 * @auprobe: arch specific probepoint information.
2b144498 305 * @mm: the probed process address space.
2b144498
SD
306 * @vaddr: the virtual address to insert the opcode.
307 *
308 * For mm @mm, store the breakpoint instruction at @vaddr.
309 * Return 0 (success) or a negative errno.
310 */
5cb4ac3a 311int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 312{
cceb55aa 313 return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
314}
315
316/**
317 * set_orig_insn - Restore the original instruction.
318 * @mm: the probed process address space.
e3343e6a 319 * @auprobe: arch specific probepoint information.
2b144498 320 * @vaddr: the virtual address to insert the opcode.
2b144498
SD
321 *
322 * For mm @mm, restore the original opcode (opcode) at @vaddr.
323 * Return 0 (success) or a negative errno.
324 */
7b2d81d4 325int __weak
ded86e7c 326set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 327{
cceb55aa 328 return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
329}
330
331static int match_uprobe(struct uprobe *l, struct uprobe *r)
332{
333 if (l->inode < r->inode)
334 return -1;
7b2d81d4 335
2b144498
SD
336 if (l->inode > r->inode)
337 return 1;
2b144498 338
7b2d81d4
IM
339 if (l->offset < r->offset)
340 return -1;
341
342 if (l->offset > r->offset)
343 return 1;
2b144498
SD
344
345 return 0;
346}
347
348static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
349{
350 struct uprobe u = { .inode = inode, .offset = offset };
351 struct rb_node *n = uprobes_tree.rb_node;
352 struct uprobe *uprobe;
353 int match;
354
355 while (n) {
356 uprobe = rb_entry(n, struct uprobe, rb_node);
357 match = match_uprobe(&u, uprobe);
358 if (!match) {
359 atomic_inc(&uprobe->ref);
360 return uprobe;
361 }
7b2d81d4 362
2b144498
SD
363 if (match < 0)
364 n = n->rb_left;
365 else
366 n = n->rb_right;
367 }
368 return NULL;
369}
370
371/*
372 * Find a uprobe corresponding to a given inode:offset
373 * Acquires uprobes_treelock
374 */
375static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
376{
377 struct uprobe *uprobe;
2b144498 378
6f47caa0 379 spin_lock(&uprobes_treelock);
2b144498 380 uprobe = __find_uprobe(inode, offset);
6f47caa0 381 spin_unlock(&uprobes_treelock);
7b2d81d4 382
2b144498
SD
383 return uprobe;
384}
385
386static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
387{
388 struct rb_node **p = &uprobes_tree.rb_node;
389 struct rb_node *parent = NULL;
390 struct uprobe *u;
391 int match;
392
393 while (*p) {
394 parent = *p;
395 u = rb_entry(parent, struct uprobe, rb_node);
396 match = match_uprobe(uprobe, u);
397 if (!match) {
398 atomic_inc(&u->ref);
399 return u;
400 }
401
402 if (match < 0)
403 p = &parent->rb_left;
404 else
405 p = &parent->rb_right;
406
407 }
7b2d81d4 408
2b144498
SD
409 u = NULL;
410 rb_link_node(&uprobe->rb_node, parent, p);
411 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
412 /* get access + creation ref */
413 atomic_set(&uprobe->ref, 2);
7b2d81d4 414
2b144498
SD
415 return u;
416}
417
418/*
7b2d81d4 419 * Acquire uprobes_treelock.
2b144498
SD
420 * Matching uprobe already exists in rbtree;
421 * increment (access refcount) and return the matching uprobe.
422 *
423 * No matching uprobe; insert the uprobe in rb_tree;
424 * get a double refcount (access + creation) and return NULL.
425 */
426static struct uprobe *insert_uprobe(struct uprobe *uprobe)
427{
2b144498
SD
428 struct uprobe *u;
429
6f47caa0 430 spin_lock(&uprobes_treelock);
2b144498 431 u = __insert_uprobe(uprobe);
6f47caa0 432 spin_unlock(&uprobes_treelock);
7b2d81d4 433
2b144498
SD
434 return u;
435}
436
437static void put_uprobe(struct uprobe *uprobe)
438{
439 if (atomic_dec_and_test(&uprobe->ref))
440 kfree(uprobe);
441}
442
443static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
444{
445 struct uprobe *uprobe, *cur_uprobe;
446
447 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
448 if (!uprobe)
449 return NULL;
450
451 uprobe->inode = igrab(inode);
452 uprobe->offset = offset;
e591c8d7 453 init_rwsem(&uprobe->register_rwsem);
2b144498 454 init_rwsem(&uprobe->consumer_rwsem);
4710f05f 455 mutex_init(&uprobe->copy_mutex);
bbc33d05
ON
456 /* For now assume that the instruction need not be single-stepped */
457 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
2b144498
SD
458
459 /* add to uprobes_tree, sorted on inode:offset */
460 cur_uprobe = insert_uprobe(uprobe);
461
462 /* a uprobe exists for this inode:offset combination */
463 if (cur_uprobe) {
464 kfree(uprobe);
465 uprobe = cur_uprobe;
466 iput(inode);
7b2d81d4 467 } else {
2b144498 468 atomic_inc(&uprobe_events);
7b2d81d4
IM
469 }
470
2b144498
SD
471 return uprobe;
472}
473
0326f5a9
SD
474static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
475{
476 struct uprobe_consumer *uc;
477
71434f2f 478 if (!test_bit(UPROBE_RUN_HANDLER, &uprobe->flags))
0326f5a9
SD
479 return;
480
e591c8d7 481 down_read(&uprobe->register_rwsem);
fe20d71f
ON
482 for (uc = uprobe->consumers; uc; uc = uc->next)
483 uc->handler(uc, regs);
e591c8d7 484 up_read(&uprobe->register_rwsem);
0326f5a9
SD
485}
486
9a98e03c 487static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
488{
489 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
490 uc->next = uprobe->consumers;
491 uprobe->consumers = uc;
2b144498 492 up_write(&uprobe->consumer_rwsem);
2b144498
SD
493}
494
495/*
e3343e6a
SD
496 * For uprobe @uprobe, delete the consumer @uc.
497 * Return true if the @uc is deleted successfully
2b144498
SD
498 * or return false.
499 */
e3343e6a 500static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
501{
502 struct uprobe_consumer **con;
503 bool ret = false;
504
505 down_write(&uprobe->consumer_rwsem);
506 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
507 if (*con == uc) {
508 *con = uc->next;
2b144498
SD
509 ret = true;
510 break;
511 }
512 }
513 up_write(&uprobe->consumer_rwsem);
7b2d81d4 514
2b144498
SD
515 return ret;
516}
517
e3343e6a 518static int
d436615e 519__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 520 unsigned long nbytes, loff_t offset)
2b144498 521{
2b144498
SD
522 struct page *page;
523 void *vaddr;
593609a5
ON
524 unsigned long off;
525 pgoff_t idx;
2b144498
SD
526
527 if (!filp)
528 return -EINVAL;
529
cc359d18
ON
530 if (!mapping->a_ops->readpage)
531 return -EIO;
532
593609a5
ON
533 idx = offset >> PAGE_CACHE_SHIFT;
534 off = offset & ~PAGE_MASK;
2b144498
SD
535
536 /*
537 * Ensure that the page that has the original instruction is
538 * populated and in page-cache.
539 */
540 page = read_mapping_page(mapping, idx, filp);
541 if (IS_ERR(page))
542 return PTR_ERR(page);
543
544 vaddr = kmap_atomic(page);
593609a5 545 memcpy(insn, vaddr + off, nbytes);
2b144498
SD
546 kunmap_atomic(vaddr);
547 page_cache_release(page);
7b2d81d4 548
2b144498
SD
549 return 0;
550}
551
d436615e 552static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
553{
554 struct address_space *mapping;
2b144498 555 unsigned long nbytes;
7b2d81d4 556 int bytes;
2b144498 557
d436615e 558 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
559 mapping = uprobe->inode->i_mapping;
560
561 /* Instruction at end of binary; copy only available bytes */
562 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
563 bytes = uprobe->inode->i_size - uprobe->offset;
564 else
565 bytes = MAX_UINSN_BYTES;
566
567 /* Instruction at the page-boundary; copy bytes in second page */
568 if (nbytes < bytes) {
fc36f595
ON
569 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
570 bytes - nbytes, uprobe->offset + nbytes);
571 if (err)
572 return err;
2b144498
SD
573 bytes = nbytes;
574 }
d436615e 575 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
576}
577
cb9a19fe
ON
578static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
579 struct mm_struct *mm, unsigned long vaddr)
580{
581 int ret = 0;
582
71434f2f 583 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
cb9a19fe
ON
584 return ret;
585
4710f05f 586 mutex_lock(&uprobe->copy_mutex);
71434f2f 587 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
4710f05f
ON
588 goto out;
589
cb9a19fe
ON
590 ret = copy_insn(uprobe, file);
591 if (ret)
592 goto out;
593
594 ret = -ENOTSUPP;
595 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
596 goto out;
597
598 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
599 if (ret)
600 goto out;
601
602 /* write_opcode() assumes we don't cross page boundary */
603 BUG_ON((uprobe->offset & ~PAGE_MASK) +
604 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
605
606 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
71434f2f 607 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
cb9a19fe
ON
608
609 out:
4710f05f
ON
610 mutex_unlock(&uprobe->copy_mutex);
611
cb9a19fe
ON
612 return ret;
613}
614
63633cbf
ON
615static bool filter_chain(struct uprobe *uprobe)
616{
1ff6fee5
ON
617 struct uprobe_consumer *uc;
618 bool ret = false;
619
620 down_read(&uprobe->consumer_rwsem);
621 for (uc = uprobe->consumers; uc; uc = uc->next) {
622 /* TODO: ret = uc->filter(...) */
623 ret = true;
624 if (ret)
625 break;
626 }
627 up_read(&uprobe->consumer_rwsem);
628
629 return ret;
63633cbf
ON
630}
631
e3343e6a
SD
632static int
633install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 634 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 635{
f8ac4ec9 636 bool first_uprobe;
2b144498
SD
637 int ret;
638
639 /*
640 * If probe is being deleted, unregister thread could be done with
641 * the vma-rmap-walk through. Adding a probe now can be fatal since
63633cbf
ON
642 * nobody will be able to cleanup. But in this case filter_chain()
643 * must return false, all consumers have gone away.
2b144498 644 */
63633cbf 645 if (!filter_chain(uprobe))
78f74116 646 return 0;
2b144498 647
cb9a19fe
ON
648 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
649 if (ret)
650 return ret;
682968e0 651
f8ac4ec9
ON
652 /*
653 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
654 * the task can hit this breakpoint right after __replace_page().
655 */
656 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
657 if (first_uprobe)
658 set_bit(MMF_HAS_UPROBES, &mm->flags);
659
816c03fb 660 ret = set_swbp(&uprobe->arch, mm, vaddr);
9f68f672
ON
661 if (!ret)
662 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
663 else if (first_uprobe)
f8ac4ec9 664 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2b144498
SD
665
666 return ret;
667}
668
076a365b 669static int
816c03fb 670remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 671{
9f68f672 672 if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
076a365b 673 return 0;
9f68f672 674
63633cbf
ON
675 if (filter_chain(uprobe))
676 return 0;
677
9f68f672 678 set_bit(MMF_RECALC_UPROBES, &mm->flags);
076a365b 679 return set_orig_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
680}
681
0326f5a9 682/*
778b032d
ON
683 * There could be threads that have already hit the breakpoint. They
684 * will recheck the current insn and restart if find_uprobe() fails.
685 * See find_active_uprobe().
0326f5a9 686 */
2b144498
SD
687static void delete_uprobe(struct uprobe *uprobe)
688{
6f47caa0 689 spin_lock(&uprobes_treelock);
2b144498 690 rb_erase(&uprobe->rb_node, &uprobes_tree);
6f47caa0 691 spin_unlock(&uprobes_treelock);
2b144498
SD
692 iput(uprobe->inode);
693 put_uprobe(uprobe);
694 atomic_dec(&uprobe_events);
695}
696
26872090
ON
697struct map_info {
698 struct map_info *next;
699 struct mm_struct *mm;
816c03fb 700 unsigned long vaddr;
26872090
ON
701};
702
703static inline struct map_info *free_map_info(struct map_info *info)
2b144498 704{
26872090
ON
705 struct map_info *next = info->next;
706 kfree(info);
707 return next;
708}
709
710static struct map_info *
711build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
712{
713 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498 714 struct vm_area_struct *vma;
26872090
ON
715 struct map_info *curr = NULL;
716 struct map_info *prev = NULL;
717 struct map_info *info;
718 int more = 0;
2b144498 719
26872090
ON
720 again:
721 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 722 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
2b144498
SD
723 if (!valid_vma(vma, is_register))
724 continue;
725
7a5bfb66
ON
726 if (!prev && !more) {
727 /*
728 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
729 * reclaim. This is optimistic, no harm done if it fails.
730 */
731 prev = kmalloc(sizeof(struct map_info),
732 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
733 if (prev)
734 prev->next = NULL;
735 }
26872090
ON
736 if (!prev) {
737 more++;
738 continue;
2b144498 739 }
2b144498 740
26872090
ON
741 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
742 continue;
7b2d81d4 743
26872090
ON
744 info = prev;
745 prev = prev->next;
746 info->next = curr;
747 curr = info;
2b144498 748
26872090 749 info->mm = vma->vm_mm;
57683f72 750 info->vaddr = offset_to_vaddr(vma, offset);
26872090 751 }
2b144498
SD
752 mutex_unlock(&mapping->i_mmap_mutex);
753
26872090
ON
754 if (!more)
755 goto out;
756
757 prev = curr;
758 while (curr) {
759 mmput(curr->mm);
760 curr = curr->next;
761 }
7b2d81d4 762
26872090
ON
763 do {
764 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
765 if (!info) {
766 curr = ERR_PTR(-ENOMEM);
767 goto out;
768 }
769 info->next = prev;
770 prev = info;
771 } while (--more);
772
773 goto again;
774 out:
775 while (prev)
776 prev = free_map_info(prev);
777 return curr;
2b144498
SD
778}
779
780static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
781{
26872090
ON
782 struct map_info *info;
783 int err = 0;
2b144498 784
32cdba1e 785 percpu_down_write(&dup_mmap_sem);
26872090
ON
786 info = build_map_info(uprobe->inode->i_mapping,
787 uprobe->offset, is_register);
32cdba1e
ON
788 if (IS_ERR(info)) {
789 err = PTR_ERR(info);
790 goto out;
791 }
7b2d81d4 792
26872090
ON
793 while (info) {
794 struct mm_struct *mm = info->mm;
795 struct vm_area_struct *vma;
7b2d81d4 796
076a365b 797 if (err && is_register)
26872090 798 goto free;
7b2d81d4 799
77fc4af1 800 down_write(&mm->mmap_sem);
f4d6dfe5
ON
801 vma = find_vma(mm, info->vaddr);
802 if (!vma || !valid_vma(vma, is_register) ||
803 vma->vm_file->f_mapping->host != uprobe->inode)
26872090
ON
804 goto unlock;
805
f4d6dfe5
ON
806 if (vma->vm_start > info->vaddr ||
807 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 808 goto unlock;
2b144498 809
78f74116 810 if (is_register)
26872090 811 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
78f74116 812 else
076a365b 813 err |= remove_breakpoint(uprobe, mm, info->vaddr);
78f74116 814
26872090
ON
815 unlock:
816 up_write(&mm->mmap_sem);
817 free:
818 mmput(mm);
819 info = free_map_info(info);
2b144498 820 }
32cdba1e
ON
821 out:
822 percpu_up_write(&dup_mmap_sem);
26872090 823 return err;
2b144498
SD
824}
825
9a98e03c 826static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498 827{
9a98e03c
ON
828 int err;
829
830 consumer_add(uprobe, uc);
831 err = register_for_each_vma(uprobe, true);
832 if (!err) /* TODO: pointless unless the first consumer */
833 set_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
834 return err;
2b144498
SD
835}
836
04aab9b2 837static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498 838{
04aab9b2
ON
839 int err;
840
841 if (!consumer_del(uprobe, uc)) /* WARN? */
842 return;
2b144498 843
04aab9b2
ON
844 err = register_for_each_vma(uprobe, false);
845 if (!uprobe->consumers) {
846 clear_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
847 /* TODO : cant unregister? schedule a worker thread */
848 if (!err)
849 delete_uprobe(uprobe);
850 }
2b144498
SD
851}
852
853/*
7b2d81d4 854 * uprobe_register - register a probe
2b144498
SD
855 * @inode: the file in which the probe has to be placed.
856 * @offset: offset from the start of the file.
e3343e6a 857 * @uc: information on howto handle the probe..
2b144498 858 *
7b2d81d4 859 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
860 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
861 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 862 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 863 * @uprobe even before the register operation is complete. Creation
e3343e6a 864 * refcount is released when the last @uc for the @uprobe
2b144498
SD
865 * unregisters.
866 *
867 * Return errno if it cannot successully install probes
868 * else return 0 (success)
869 */
e3343e6a 870int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
871{
872 struct uprobe *uprobe;
7b2d81d4 873 int ret;
2b144498 874
f0744af7 875 /* Racy, just to catch the obvious mistakes */
2b144498 876 if (offset > i_size_read(inode))
7b2d81d4 877 return -EINVAL;
2b144498 878
9a98e03c 879 ret = -ENOMEM;
2b144498
SD
880 mutex_lock(uprobes_hash(inode));
881 uprobe = alloc_uprobe(inode, offset);
9a98e03c 882 if (uprobe) {
e591c8d7 883 down_write(&uprobe->register_rwsem);
9a98e03c
ON
884 ret = __uprobe_register(uprobe, uc);
885 if (ret)
04aab9b2 886 __uprobe_unregister(uprobe, uc);
e591c8d7 887 up_write(&uprobe->register_rwsem);
2b144498 888 }
2b144498 889 mutex_unlock(uprobes_hash(inode));
6d1d8dfa
SAS
890 if (uprobe)
891 put_uprobe(uprobe);
2b144498
SD
892
893 return ret;
894}
895
896/*
7b2d81d4 897 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
898 * @inode: the file in which the probe has to be removed.
899 * @offset: offset from the start of the file.
e3343e6a 900 * @uc: identify which probe if multiple probes are colocated.
2b144498 901 */
e3343e6a 902void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 903{
7b2d81d4 904 struct uprobe *uprobe;
2b144498 905
2b144498
SD
906 uprobe = find_uprobe(inode, offset);
907 if (!uprobe)
908 return;
909
910 mutex_lock(uprobes_hash(inode));
e591c8d7 911 down_write(&uprobe->register_rwsem);
04aab9b2 912 __uprobe_unregister(uprobe, uc);
e591c8d7 913 up_write(&uprobe->register_rwsem);
2b144498 914 mutex_unlock(uprobes_hash(inode));
c91368c4 915 put_uprobe(uprobe);
2b144498
SD
916}
917
891c3970
ON
918static struct rb_node *
919find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 920{
2b144498 921 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
922
923 while (n) {
891c3970 924 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 925
891c3970 926 if (inode < u->inode) {
2b144498 927 n = n->rb_left;
891c3970 928 } else if (inode > u->inode) {
2b144498 929 n = n->rb_right;
891c3970
ON
930 } else {
931 if (max < u->offset)
932 n = n->rb_left;
933 else if (min > u->offset)
934 n = n->rb_right;
935 else
936 break;
937 }
2b144498 938 }
7b2d81d4 939
891c3970 940 return n;
2b144498
SD
941}
942
943/*
891c3970 944 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 945 */
891c3970
ON
946static void build_probe_list(struct inode *inode,
947 struct vm_area_struct *vma,
948 unsigned long start, unsigned long end,
949 struct list_head *head)
2b144498 950{
891c3970 951 loff_t min, max;
891c3970
ON
952 struct rb_node *n, *t;
953 struct uprobe *u;
7b2d81d4 954
891c3970 955 INIT_LIST_HEAD(head);
cb113b47 956 min = vaddr_to_offset(vma, start);
891c3970 957 max = min + (end - start) - 1;
2b144498 958
6f47caa0 959 spin_lock(&uprobes_treelock);
891c3970
ON
960 n = find_node_in_range(inode, min, max);
961 if (n) {
962 for (t = n; t; t = rb_prev(t)) {
963 u = rb_entry(t, struct uprobe, rb_node);
964 if (u->inode != inode || u->offset < min)
965 break;
966 list_add(&u->pending_list, head);
967 atomic_inc(&u->ref);
968 }
969 for (t = n; (t = rb_next(t)); ) {
970 u = rb_entry(t, struct uprobe, rb_node);
971 if (u->inode != inode || u->offset > max)
972 break;
973 list_add(&u->pending_list, head);
974 atomic_inc(&u->ref);
975 }
2b144498 976 }
6f47caa0 977 spin_unlock(&uprobes_treelock);
2b144498
SD
978}
979
980/*
5e5be71a 981 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
2b144498 982 *
5e5be71a
ON
983 * Currently we ignore all errors and always return 0, the callers
984 * can't handle the failure anyway.
2b144498 985 */
7b2d81d4 986int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
987{
988 struct list_head tmp_list;
665605a2 989 struct uprobe *uprobe, *u;
2b144498 990 struct inode *inode;
2b144498
SD
991
992 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 993 return 0;
2b144498
SD
994
995 inode = vma->vm_file->f_mapping->host;
996 if (!inode)
7b2d81d4 997 return 0;
2b144498 998
2b144498 999 mutex_lock(uprobes_mmap_hash(inode));
891c3970 1000 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
7b2d81d4 1001
665605a2 1002 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
5e5be71a 1003 if (!fatal_signal_pending(current)) {
57683f72 1004 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
5e5be71a 1005 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
2b144498
SD
1006 }
1007 put_uprobe(uprobe);
1008 }
2b144498
SD
1009 mutex_unlock(uprobes_mmap_hash(inode));
1010
5e5be71a 1011 return 0;
2b144498
SD
1012}
1013
9f68f672
ON
1014static bool
1015vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1016{
1017 loff_t min, max;
1018 struct inode *inode;
1019 struct rb_node *n;
1020
1021 inode = vma->vm_file->f_mapping->host;
1022
1023 min = vaddr_to_offset(vma, start);
1024 max = min + (end - start) - 1;
1025
1026 spin_lock(&uprobes_treelock);
1027 n = find_node_in_range(inode, min, max);
1028 spin_unlock(&uprobes_treelock);
1029
1030 return !!n;
1031}
1032
682968e0
SD
1033/*
1034 * Called in context of a munmap of a vma.
1035 */
cbc91f71 1036void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 1037{
682968e0
SD
1038 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1039 return;
1040
2fd611a9
ON
1041 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1042 return;
1043
9f68f672
ON
1044 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1045 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
f8ac4ec9
ON
1046 return;
1047
9f68f672
ON
1048 if (vma_has_uprobes(vma, start, end))
1049 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
682968e0
SD
1050}
1051
d4b3b638
SD
1052/* Slot allocation for XOL */
1053static int xol_add_vma(struct xol_area *area)
1054{
1055 struct mm_struct *mm;
1056 int ret;
1057
1058 area->page = alloc_page(GFP_HIGHUSER);
1059 if (!area->page)
1060 return -ENOMEM;
1061
1062 ret = -EALREADY;
1063 mm = current->mm;
1064
1065 down_write(&mm->mmap_sem);
1066 if (mm->uprobes_state.xol_area)
1067 goto fail;
1068
1069 ret = -ENOMEM;
1070
1071 /* Try to map as high as possible, this is only a hint. */
1072 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1073 if (area->vaddr & ~PAGE_MASK) {
1074 ret = area->vaddr;
1075 goto fail;
1076 }
1077
1078 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1079 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1080 if (ret)
1081 goto fail;
1082
1083 smp_wmb(); /* pairs with get_xol_area() */
1084 mm->uprobes_state.xol_area = area;
1085 ret = 0;
1086
1087fail:
1088 up_write(&mm->mmap_sem);
1089 if (ret)
1090 __free_page(area->page);
1091
1092 return ret;
1093}
1094
1095static struct xol_area *get_xol_area(struct mm_struct *mm)
1096{
1097 struct xol_area *area;
1098
1099 area = mm->uprobes_state.xol_area;
1100 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1101
1102 return area;
1103}
1104
1105/*
1106 * xol_alloc_area - Allocate process's xol_area.
1107 * This area will be used for storing instructions for execution out of
1108 * line.
1109 *
1110 * Returns the allocated area or NULL.
1111 */
1112static struct xol_area *xol_alloc_area(void)
1113{
1114 struct xol_area *area;
1115
1116 area = kzalloc(sizeof(*area), GFP_KERNEL);
1117 if (unlikely(!area))
1118 return NULL;
1119
1120 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1121
1122 if (!area->bitmap)
1123 goto fail;
1124
1125 init_waitqueue_head(&area->wq);
1126 if (!xol_add_vma(area))
1127 return area;
1128
1129fail:
1130 kfree(area->bitmap);
1131 kfree(area);
1132
1133 return get_xol_area(current->mm);
1134}
1135
1136/*
1137 * uprobe_clear_state - Free the area allocated for slots.
1138 */
1139void uprobe_clear_state(struct mm_struct *mm)
1140{
1141 struct xol_area *area = mm->uprobes_state.xol_area;
1142
1143 if (!area)
1144 return;
1145
1146 put_page(area->page);
1147 kfree(area->bitmap);
1148 kfree(area);
1149}
1150
32cdba1e
ON
1151void uprobe_start_dup_mmap(void)
1152{
1153 percpu_down_read(&dup_mmap_sem);
1154}
1155
1156void uprobe_end_dup_mmap(void)
1157{
1158 percpu_up_read(&dup_mmap_sem);
1159}
1160
f8ac4ec9
ON
1161void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1162{
61559a81
ON
1163 newmm->uprobes_state.xol_area = NULL;
1164
9f68f672 1165 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
f8ac4ec9 1166 set_bit(MMF_HAS_UPROBES, &newmm->flags);
9f68f672
ON
1167 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1168 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1169 }
f8ac4ec9
ON
1170}
1171
d4b3b638
SD
1172/*
1173 * - search for a free slot.
1174 */
1175static unsigned long xol_take_insn_slot(struct xol_area *area)
1176{
1177 unsigned long slot_addr;
1178 int slot_nr;
1179
1180 do {
1181 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1182 if (slot_nr < UINSNS_PER_PAGE) {
1183 if (!test_and_set_bit(slot_nr, area->bitmap))
1184 break;
1185
1186 slot_nr = UINSNS_PER_PAGE;
1187 continue;
1188 }
1189 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1190 } while (slot_nr >= UINSNS_PER_PAGE);
1191
1192 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1193 atomic_inc(&area->slot_count);
1194
1195 return slot_addr;
1196}
1197
1198/*
1199 * xol_get_insn_slot - If was not allocated a slot, then
1200 * allocate a slot.
1201 * Returns the allocated slot address or 0.
1202 */
1203static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1204{
1205 struct xol_area *area;
1206 unsigned long offset;
1207 void *vaddr;
1208
1209 area = get_xol_area(current->mm);
1210 if (!area) {
1211 area = xol_alloc_area();
1212 if (!area)
1213 return 0;
1214 }
1215 current->utask->xol_vaddr = xol_take_insn_slot(area);
1216
1217 /*
1218 * Initialize the slot if xol_vaddr points to valid
1219 * instruction slot.
1220 */
1221 if (unlikely(!current->utask->xol_vaddr))
1222 return 0;
1223
1224 current->utask->vaddr = slot_addr;
1225 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1226 vaddr = kmap_atomic(area->page);
1227 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1228 kunmap_atomic(vaddr);
65b6ecc0
RV
1229 /*
1230 * We probably need flush_icache_user_range() but it needs vma.
1231 * This should work on supported architectures too.
1232 */
1233 flush_dcache_page(area->page);
d4b3b638
SD
1234
1235 return current->utask->xol_vaddr;
1236}
1237
1238/*
1239 * xol_free_insn_slot - If slot was earlier allocated by
1240 * @xol_get_insn_slot(), make the slot available for
1241 * subsequent requests.
1242 */
1243static void xol_free_insn_slot(struct task_struct *tsk)
1244{
1245 struct xol_area *area;
1246 unsigned long vma_end;
1247 unsigned long slot_addr;
1248
1249 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1250 return;
1251
1252 slot_addr = tsk->utask->xol_vaddr;
1253
1254 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1255 return;
1256
1257 area = tsk->mm->uprobes_state.xol_area;
1258 vma_end = area->vaddr + PAGE_SIZE;
1259 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1260 unsigned long offset;
1261 int slot_nr;
1262
1263 offset = slot_addr - area->vaddr;
1264 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1265 if (slot_nr >= UINSNS_PER_PAGE)
1266 return;
1267
1268 clear_bit(slot_nr, area->bitmap);
1269 atomic_dec(&area->slot_count);
1270 if (waitqueue_active(&area->wq))
1271 wake_up(&area->wq);
1272
1273 tsk->utask->xol_vaddr = 0;
1274 }
1275}
1276
0326f5a9
SD
1277/**
1278 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1279 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1280 * instruction.
1281 * Return the address of the breakpoint instruction.
1282 */
1283unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1284{
1285 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1286}
1287
1288/*
1289 * Called with no locks held.
1290 * Called in context of a exiting or a exec-ing thread.
1291 */
1292void uprobe_free_utask(struct task_struct *t)
1293{
1294 struct uprobe_task *utask = t->utask;
1295
0326f5a9
SD
1296 if (!utask)
1297 return;
1298
1299 if (utask->active_uprobe)
1300 put_uprobe(utask->active_uprobe);
1301
d4b3b638 1302 xol_free_insn_slot(t);
0326f5a9
SD
1303 kfree(utask);
1304 t->utask = NULL;
1305}
1306
1307/*
1308 * Called in context of a new clone/fork from copy_process.
1309 */
1310void uprobe_copy_process(struct task_struct *t)
1311{
1312 t->utask = NULL;
0326f5a9
SD
1313}
1314
1315/*
1316 * Allocate a uprobe_task object for the task.
1317 * Called when the thread hits a breakpoint for the first time.
1318 *
1319 * Returns:
1320 * - pointer to new uprobe_task on success
1321 * - NULL otherwise
1322 */
1323static struct uprobe_task *add_utask(void)
1324{
1325 struct uprobe_task *utask;
1326
1327 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1328 if (unlikely(!utask))
1329 return NULL;
1330
0326f5a9
SD
1331 current->utask = utask;
1332 return utask;
1333}
1334
1335/* Prepare to single-step probed instruction out of line. */
1336static int
1337pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1338{
d4b3b638
SD
1339 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1340 return 0;
1341
0326f5a9
SD
1342 return -EFAULT;
1343}
1344
1345/*
1346 * If we are singlestepping, then ensure this thread is not connected to
1347 * non-fatal signals until completion of singlestep. When xol insn itself
1348 * triggers the signal, restart the original insn even if the task is
1349 * already SIGKILL'ed (since coredump should report the correct ip). This
1350 * is even more important if the task has a handler for SIGSEGV/etc, The
1351 * _same_ instruction should be repeated again after return from the signal
1352 * handler, and SSTEP can never finish in this case.
1353 */
1354bool uprobe_deny_signal(void)
1355{
1356 struct task_struct *t = current;
1357 struct uprobe_task *utask = t->utask;
1358
1359 if (likely(!utask || !utask->active_uprobe))
1360 return false;
1361
1362 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1363
1364 if (signal_pending(t)) {
1365 spin_lock_irq(&t->sighand->siglock);
1366 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1367 spin_unlock_irq(&t->sighand->siglock);
1368
1369 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1370 utask->state = UTASK_SSTEP_TRAPPED;
1371 set_tsk_thread_flag(t, TIF_UPROBE);
1372 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1373 }
1374 }
1375
1376 return true;
1377}
1378
1379/*
1380 * Avoid singlestepping the original instruction if the original instruction
1381 * is a NOP or can be emulated.
1382 */
1383static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1384{
71434f2f 1385 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
0578a970
ON
1386 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1387 return true;
71434f2f 1388 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
0578a970 1389 }
0326f5a9
SD
1390 return false;
1391}
1392
499a4f3e
ON
1393static void mmf_recalc_uprobes(struct mm_struct *mm)
1394{
1395 struct vm_area_struct *vma;
1396
1397 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1398 if (!valid_vma(vma, false))
1399 continue;
1400 /*
1401 * This is not strictly accurate, we can race with
1402 * uprobe_unregister() and see the already removed
1403 * uprobe if delete_uprobe() was not yet called.
63633cbf 1404 * Or this uprobe can be filtered out.
499a4f3e
ON
1405 */
1406 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1407 return;
1408 }
1409
1410 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1411}
1412
ec75fba9
ON
1413static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
1414{
1415 struct page *page;
1416 uprobe_opcode_t opcode;
1417 int result;
1418
1419 pagefault_disable();
1420 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1421 sizeof(opcode));
1422 pagefault_enable();
1423
1424 if (likely(result == 0))
1425 goto out;
1426
1427 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1428 if (result < 0)
1429 return result;
1430
1431 copy_opcode(page, vaddr, &opcode);
1432 put_page(page);
1433 out:
1434 return is_swbp_insn(&opcode);
1435}
1436
d790d346 1437static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1438{
3a9ea052
ON
1439 struct mm_struct *mm = current->mm;
1440 struct uprobe *uprobe = NULL;
0326f5a9 1441 struct vm_area_struct *vma;
0326f5a9 1442
0326f5a9
SD
1443 down_read(&mm->mmap_sem);
1444 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1445 if (vma && vma->vm_start <= bp_vaddr) {
1446 if (valid_vma(vma, false)) {
cb113b47
ON
1447 struct inode *inode = vma->vm_file->f_mapping->host;
1448 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1449
3a9ea052
ON
1450 uprobe = find_uprobe(inode, offset);
1451 }
d790d346
ON
1452
1453 if (!uprobe)
1454 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1455 } else {
1456 *is_swbp = -EFAULT;
0326f5a9 1457 }
499a4f3e
ON
1458
1459 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1460 mmf_recalc_uprobes(mm);
0326f5a9
SD
1461 up_read(&mm->mmap_sem);
1462
3a9ea052
ON
1463 return uprobe;
1464}
1465
1466/*
1467 * Run handler and ask thread to singlestep.
1468 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1469 */
1470static void handle_swbp(struct pt_regs *regs)
1471{
1472 struct uprobe_task *utask;
1473 struct uprobe *uprobe;
1474 unsigned long bp_vaddr;
56bb4cf6 1475 int uninitialized_var(is_swbp);
3a9ea052
ON
1476
1477 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1478 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1479
0326f5a9 1480 if (!uprobe) {
56bb4cf6
ON
1481 if (is_swbp > 0) {
1482 /* No matching uprobe; signal SIGTRAP. */
1483 send_sig(SIGTRAP, current, 0);
1484 } else {
1485 /*
1486 * Either we raced with uprobe_unregister() or we can't
1487 * access this memory. The latter is only possible if
1488 * another thread plays with our ->mm. In both cases
1489 * we can simply restart. If this vma was unmapped we
1490 * can pretend this insn was not executed yet and get
1491 * the (correct) SIGSEGV after restart.
1492 */
1493 instruction_pointer_set(regs, bp_vaddr);
1494 }
0326f5a9
SD
1495 return;
1496 }
142b18dd
ON
1497 /*
1498 * TODO: move copy_insn/etc into _register and remove this hack.
1499 * After we hit the bp, _unregister + _register can install the
1500 * new and not-yet-analyzed uprobe at the same address, restart.
1501 */
1502 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
71434f2f 1503 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
142b18dd 1504 goto restart;
0326f5a9
SD
1505
1506 utask = current->utask;
1507 if (!utask) {
1508 utask = add_utask();
1509 /* Cannot allocate; re-execute the instruction. */
1510 if (!utask)
0578a970 1511 goto restart;
0326f5a9 1512 }
746a9e6b 1513
0326f5a9 1514 handler_chain(uprobe, regs);
0578a970
ON
1515 if (can_skip_sstep(uprobe, regs))
1516 goto out;
0326f5a9 1517
0326f5a9 1518 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
746a9e6b
ON
1519 utask->active_uprobe = uprobe;
1520 utask->state = UTASK_SSTEP;
0326f5a9
SD
1521 return;
1522 }
1523
0578a970
ON
1524restart:
1525 /*
1526 * cannot singlestep; cannot skip instruction;
1527 * re-execute the instruction.
1528 */
1529 instruction_pointer_set(regs, bp_vaddr);
1530out:
8bd87445 1531 put_uprobe(uprobe);
0326f5a9
SD
1532}
1533
1534/*
1535 * Perform required fix-ups and disable singlestep.
1536 * Allow pending signals to take effect.
1537 */
1538static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1539{
1540 struct uprobe *uprobe;
1541
1542 uprobe = utask->active_uprobe;
1543 if (utask->state == UTASK_SSTEP_ACK)
1544 arch_uprobe_post_xol(&uprobe->arch, regs);
1545 else if (utask->state == UTASK_SSTEP_TRAPPED)
1546 arch_uprobe_abort_xol(&uprobe->arch, regs);
1547 else
1548 WARN_ON_ONCE(1);
1549
1550 put_uprobe(uprobe);
1551 utask->active_uprobe = NULL;
1552 utask->state = UTASK_RUNNING;
d4b3b638 1553 xol_free_insn_slot(current);
0326f5a9
SD
1554
1555 spin_lock_irq(&current->sighand->siglock);
1556 recalc_sigpending(); /* see uprobe_deny_signal() */
1557 spin_unlock_irq(&current->sighand->siglock);
1558}
1559
1560/*
1b08e907
ON
1561 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1562 * allows the thread to return from interrupt. After that handle_swbp()
1563 * sets utask->active_uprobe.
0326f5a9 1564 *
1b08e907
ON
1565 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1566 * and allows the thread to return from interrupt.
0326f5a9
SD
1567 *
1568 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1569 * uprobe_notify_resume().
1570 */
1571void uprobe_notify_resume(struct pt_regs *regs)
1572{
1573 struct uprobe_task *utask;
1574
db023ea5
ON
1575 clear_thread_flag(TIF_UPROBE);
1576
0326f5a9 1577 utask = current->utask;
1b08e907 1578 if (utask && utask->active_uprobe)
0326f5a9 1579 handle_singlestep(utask, regs);
1b08e907
ON
1580 else
1581 handle_swbp(regs);
0326f5a9
SD
1582}
1583
1584/*
1585 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1586 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1587 */
1588int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1589{
f8ac4ec9 1590 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
0326f5a9
SD
1591 return 0;
1592
0326f5a9 1593 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1594 return 1;
1595}
1596
1597/*
1598 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1599 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1600 */
1601int uprobe_post_sstep_notifier(struct pt_regs *regs)
1602{
1603 struct uprobe_task *utask = current->utask;
1604
1605 if (!current->mm || !utask || !utask->active_uprobe)
1606 /* task is currently not uprobed */
1607 return 0;
1608
1609 utask->state = UTASK_SSTEP_ACK;
1610 set_thread_flag(TIF_UPROBE);
1611 return 1;
1612}
1613
1614static struct notifier_block uprobe_exception_nb = {
1615 .notifier_call = arch_uprobe_exception_notify,
1616 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1617};
1618
2b144498
SD
1619static int __init init_uprobes(void)
1620{
1621 int i;
1622
1623 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1624 mutex_init(&uprobes_mutex[i]);
1625 mutex_init(&uprobes_mmap_mutex[i]);
1626 }
0326f5a9 1627
32cdba1e
ON
1628 if (percpu_init_rwsem(&dup_mmap_sem))
1629 return -ENOMEM;
1630
0326f5a9 1631 return register_die_notifier(&uprobe_exception_nb);
2b144498 1632}
0326f5a9 1633module_init(init_uprobes);
2b144498
SD
1634
1635static void __exit exit_uprobes(void)
1636{
1637}
2b144498 1638module_exit(exit_uprobes);