]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/events/uprobes.c
uprobes: Rework register_for_each_vma() to make it O(n)
[mirror_ubuntu-hirsute-kernel.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
7b2d81d4 35
2b144498
SD
36#include <linux/uprobes.h>
37
d4b3b638
SD
38#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
40
2b144498 41static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 42
2b144498
SD
43static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
44
45#define UPROBES_HASH_SZ 13
7b2d81d4 46
2b144498
SD
47/* serialize (un)register */
48static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
49
50#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
51
52/* serialize uprobe->pending_list */
53static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 54#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
55
56/*
7b2d81d4 57 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
58 * events active at this time. Probably a fine grained per inode count is
59 * better?
60 */
61static atomic_t uprobe_events = ATOMIC_INIT(0);
62
3ff54efd
SD
63struct uprobe {
64 struct rb_node rb_node; /* node in the rb tree */
65 atomic_t ref;
66 struct rw_semaphore consumer_rwsem;
67 struct list_head pending_list;
68 struct uprobe_consumer *consumers;
69 struct inode *inode; /* Also hold a ref to inode */
70 loff_t offset;
71 int flags;
72 struct arch_uprobe arch;
73};
74
2b144498
SD
75/*
76 * valid_vma: Verify if the specified vma is an executable vma
77 * Relax restrictions while unregistering: vm_flags might have
78 * changed after breakpoint was inserted.
79 * - is_register: indicates if we are in register context.
80 * - Return 1 if the specified virtual address is in an
81 * executable vma.
82 */
83static bool valid_vma(struct vm_area_struct *vma, bool is_register)
84{
85 if (!vma->vm_file)
86 return false;
87
88 if (!is_register)
89 return true;
90
ea131377
ON
91 if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
92 == (VM_READ|VM_EXEC))
2b144498
SD
93 return true;
94
95 return false;
96}
97
98static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
99{
100 loff_t vaddr;
101
102 vaddr = vma->vm_start + offset;
103 vaddr -= vma->vm_pgoff << PAGE_SHIFT;
7b2d81d4 104
2b144498
SD
105 return vaddr;
106}
107
108/**
109 * __replace_page - replace page in vma by new page.
110 * based on replace_page in mm/ksm.c
111 *
112 * @vma: vma that holds the pte pointing to page
113 * @page: the cowed page we are replacing by kpage
114 * @kpage: the modified page we replace page by
115 *
116 * Returns 0 on success, -EFAULT on failure.
117 */
7b2d81d4 118static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
2b144498
SD
119{
120 struct mm_struct *mm = vma->vm_mm;
2b144498 121 unsigned long addr;
5323ce71
ON
122 spinlock_t *ptl;
123 pte_t *ptep;
2b144498
SD
124
125 addr = page_address_in_vma(page, vma);
126 if (addr == -EFAULT)
5323ce71 127 return -EFAULT;
2b144498 128
5323ce71 129 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 130 if (!ptep)
5323ce71 131 return -EAGAIN;
2b144498
SD
132
133 get_page(kpage);
134 page_add_new_anon_rmap(kpage, vma, addr);
135
7396fa81
SD
136 if (!PageAnon(page)) {
137 dec_mm_counter(mm, MM_FILEPAGES);
138 inc_mm_counter(mm, MM_ANONPAGES);
139 }
140
2b144498
SD
141 flush_cache_page(vma, addr, pte_pfn(*ptep));
142 ptep_clear_flush(vma, addr, ptep);
143 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
144
145 page_remove_rmap(page);
146 if (!page_mapped(page))
147 try_to_free_swap(page);
148 put_page(page);
149 pte_unmap_unlock(ptep, ptl);
2b144498 150
5323ce71 151 return 0;
2b144498
SD
152}
153
154/**
5cb4ac3a 155 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 156 * @insn: instruction to be checked.
5cb4ac3a 157 * Default implementation of is_swbp_insn
2b144498
SD
158 * Returns true if @insn is a breakpoint instruction.
159 */
5cb4ac3a 160bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 161{
5cb4ac3a 162 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
163}
164
165/*
166 * NOTE:
167 * Expect the breakpoint instruction to be the smallest size instruction for
168 * the architecture. If an arch has variable length instruction and the
169 * breakpoint instruction is not of the smallest length instruction
170 * supported by that architecture then we need to modify read_opcode /
171 * write_opcode accordingly. This would never be a problem for archs that
172 * have fixed length instructions.
173 */
174
175/*
176 * write_opcode - write the opcode at a given virtual address.
e3343e6a 177 * @auprobe: arch breakpointing information.
2b144498 178 * @mm: the probed process address space.
2b144498
SD
179 * @vaddr: the virtual address to store the opcode.
180 * @opcode: opcode to be written at @vaddr.
181 *
182 * Called with mm->mmap_sem held (for read and with a reference to
183 * mm).
184 *
185 * For mm @mm, write the opcode at @vaddr.
186 * Return 0 (success) or a negative errno.
187 */
e3343e6a 188static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
2b144498
SD
189 unsigned long vaddr, uprobe_opcode_t opcode)
190{
191 struct page *old_page, *new_page;
192 struct address_space *mapping;
193 void *vaddr_old, *vaddr_new;
194 struct vm_area_struct *vma;
3ff54efd 195 struct uprobe *uprobe;
5323ce71 196 unsigned long pgoff;
2b144498
SD
197 loff_t addr;
198 int ret;
5323ce71 199retry:
2b144498
SD
200 /* Read the page with vaddr into memory */
201 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
202 if (ret <= 0)
203 return ret;
7b2d81d4 204
2b144498
SD
205 ret = -EINVAL;
206
207 /*
208 * We are interested in text pages only. Our pages of interest
209 * should be mapped for read and execute only. We desist from
210 * adding probes in write mapped pages since the breakpoints
211 * might end up in the file copy.
212 */
5cb4ac3a 213 if (!valid_vma(vma, is_swbp_insn(&opcode)))
2b144498
SD
214 goto put_out;
215
3ff54efd 216 uprobe = container_of(auprobe, struct uprobe, arch);
2b144498
SD
217 mapping = uprobe->inode->i_mapping;
218 if (mapping != vma->vm_file->f_mapping)
219 goto put_out;
220
221 addr = vma_address(vma, uprobe->offset);
222 if (vaddr != (unsigned long)addr)
223 goto put_out;
224
225 ret = -ENOMEM;
226 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
227 if (!new_page)
228 goto put_out;
229
230 __SetPageUptodate(new_page);
231
232 /*
233 * lock page will serialize against do_wp_page()'s
234 * PageAnon() handling
235 */
236 lock_page(old_page);
237 /* copy the page now that we've got it stable */
238 vaddr_old = kmap_atomic(old_page);
239 vaddr_new = kmap_atomic(new_page);
240
241 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
7b2d81d4 242
2b144498 243 /* poke the new insn in, ASSUMES we don't cross page boundary */
5323ce71
ON
244 pgoff = (vaddr & ~PAGE_MASK);
245 BUG_ON(pgoff + UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
246 memcpy(vaddr_new + pgoff, &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
247
248 kunmap_atomic(vaddr_new);
249 kunmap_atomic(vaddr_old);
250
251 ret = anon_vma_prepare(vma);
252 if (ret)
253 goto unlock_out;
254
255 lock_page(new_page);
256 ret = __replace_page(vma, old_page, new_page);
257 unlock_page(new_page);
258
259unlock_out:
260 unlock_page(old_page);
261 page_cache_release(new_page);
262
263put_out:
7b2d81d4
IM
264 put_page(old_page);
265
5323ce71
ON
266 if (unlikely(ret == -EAGAIN))
267 goto retry;
2b144498
SD
268 return ret;
269}
270
271/**
272 * read_opcode - read the opcode at a given virtual address.
273 * @mm: the probed process address space.
274 * @vaddr: the virtual address to read the opcode.
275 * @opcode: location to store the read opcode.
276 *
277 * Called with mm->mmap_sem held (for read and with a reference to
278 * mm.
279 *
280 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
281 * Return 0 (success) or a negative errno.
282 */
7b2d81d4 283static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
2b144498
SD
284{
285 struct page *page;
286 void *vaddr_new;
287 int ret;
288
a3d7bb47 289 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
2b144498
SD
290 if (ret <= 0)
291 return ret;
292
293 lock_page(page);
294 vaddr_new = kmap_atomic(page);
295 vaddr &= ~PAGE_MASK;
5cb4ac3a 296 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
297 kunmap_atomic(vaddr_new);
298 unlock_page(page);
7b2d81d4
IM
299
300 put_page(page);
301
2b144498
SD
302 return 0;
303}
304
5cb4ac3a 305static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
2b144498
SD
306{
307 uprobe_opcode_t opcode;
7b2d81d4 308 int result;
2b144498 309
c00b2750
ON
310 if (current->mm == mm) {
311 pagefault_disable();
312 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
313 sizeof(opcode));
314 pagefault_enable();
315
316 if (likely(result == 0))
317 goto out;
318 }
319
7b2d81d4 320 result = read_opcode(mm, vaddr, &opcode);
2b144498
SD
321 if (result)
322 return result;
c00b2750 323out:
5cb4ac3a 324 if (is_swbp_insn(&opcode))
2b144498
SD
325 return 1;
326
327 return 0;
328}
329
330/**
5cb4ac3a 331 * set_swbp - store breakpoint at a given address.
e3343e6a 332 * @auprobe: arch specific probepoint information.
2b144498 333 * @mm: the probed process address space.
2b144498
SD
334 * @vaddr: the virtual address to insert the opcode.
335 *
336 * For mm @mm, store the breakpoint instruction at @vaddr.
337 * Return 0 (success) or a negative errno.
338 */
5cb4ac3a 339int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 340{
7b2d81d4 341 int result;
2b144498 342
5cb4ac3a 343 result = is_swbp_at_addr(mm, vaddr);
2b144498
SD
344 if (result == 1)
345 return -EEXIST;
346
347 if (result)
348 return result;
349
5cb4ac3a 350 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
351}
352
353/**
354 * set_orig_insn - Restore the original instruction.
355 * @mm: the probed process address space.
e3343e6a 356 * @auprobe: arch specific probepoint information.
2b144498
SD
357 * @vaddr: the virtual address to insert the opcode.
358 * @verify: if true, verify existance of breakpoint instruction.
359 *
360 * For mm @mm, restore the original opcode (opcode) at @vaddr.
361 * Return 0 (success) or a negative errno.
362 */
7b2d81d4 363int __weak
e3343e6a 364set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
2b144498
SD
365{
366 if (verify) {
7b2d81d4 367 int result;
2b144498 368
5cb4ac3a 369 result = is_swbp_at_addr(mm, vaddr);
2b144498
SD
370 if (!result)
371 return -EINVAL;
372
373 if (result != 1)
374 return result;
375 }
e3343e6a 376 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
377}
378
379static int match_uprobe(struct uprobe *l, struct uprobe *r)
380{
381 if (l->inode < r->inode)
382 return -1;
7b2d81d4 383
2b144498
SD
384 if (l->inode > r->inode)
385 return 1;
2b144498 386
7b2d81d4
IM
387 if (l->offset < r->offset)
388 return -1;
389
390 if (l->offset > r->offset)
391 return 1;
2b144498
SD
392
393 return 0;
394}
395
396static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
397{
398 struct uprobe u = { .inode = inode, .offset = offset };
399 struct rb_node *n = uprobes_tree.rb_node;
400 struct uprobe *uprobe;
401 int match;
402
403 while (n) {
404 uprobe = rb_entry(n, struct uprobe, rb_node);
405 match = match_uprobe(&u, uprobe);
406 if (!match) {
407 atomic_inc(&uprobe->ref);
408 return uprobe;
409 }
7b2d81d4 410
2b144498
SD
411 if (match < 0)
412 n = n->rb_left;
413 else
414 n = n->rb_right;
415 }
416 return NULL;
417}
418
419/*
420 * Find a uprobe corresponding to a given inode:offset
421 * Acquires uprobes_treelock
422 */
423static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
424{
425 struct uprobe *uprobe;
426 unsigned long flags;
427
428 spin_lock_irqsave(&uprobes_treelock, flags);
429 uprobe = __find_uprobe(inode, offset);
430 spin_unlock_irqrestore(&uprobes_treelock, flags);
7b2d81d4 431
2b144498
SD
432 return uprobe;
433}
434
435static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
436{
437 struct rb_node **p = &uprobes_tree.rb_node;
438 struct rb_node *parent = NULL;
439 struct uprobe *u;
440 int match;
441
442 while (*p) {
443 parent = *p;
444 u = rb_entry(parent, struct uprobe, rb_node);
445 match = match_uprobe(uprobe, u);
446 if (!match) {
447 atomic_inc(&u->ref);
448 return u;
449 }
450
451 if (match < 0)
452 p = &parent->rb_left;
453 else
454 p = &parent->rb_right;
455
456 }
7b2d81d4 457
2b144498
SD
458 u = NULL;
459 rb_link_node(&uprobe->rb_node, parent, p);
460 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
461 /* get access + creation ref */
462 atomic_set(&uprobe->ref, 2);
7b2d81d4 463
2b144498
SD
464 return u;
465}
466
467/*
7b2d81d4 468 * Acquire uprobes_treelock.
2b144498
SD
469 * Matching uprobe already exists in rbtree;
470 * increment (access refcount) and return the matching uprobe.
471 *
472 * No matching uprobe; insert the uprobe in rb_tree;
473 * get a double refcount (access + creation) and return NULL.
474 */
475static struct uprobe *insert_uprobe(struct uprobe *uprobe)
476{
477 unsigned long flags;
478 struct uprobe *u;
479
480 spin_lock_irqsave(&uprobes_treelock, flags);
481 u = __insert_uprobe(uprobe);
482 spin_unlock_irqrestore(&uprobes_treelock, flags);
7b2d81d4 483
0326f5a9
SD
484 /* For now assume that the instruction need not be single-stepped */
485 uprobe->flags |= UPROBE_SKIP_SSTEP;
486
2b144498
SD
487 return u;
488}
489
490static void put_uprobe(struct uprobe *uprobe)
491{
492 if (atomic_dec_and_test(&uprobe->ref))
493 kfree(uprobe);
494}
495
496static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
497{
498 struct uprobe *uprobe, *cur_uprobe;
499
500 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
501 if (!uprobe)
502 return NULL;
503
504 uprobe->inode = igrab(inode);
505 uprobe->offset = offset;
506 init_rwsem(&uprobe->consumer_rwsem);
507 INIT_LIST_HEAD(&uprobe->pending_list);
508
509 /* add to uprobes_tree, sorted on inode:offset */
510 cur_uprobe = insert_uprobe(uprobe);
511
512 /* a uprobe exists for this inode:offset combination */
513 if (cur_uprobe) {
514 kfree(uprobe);
515 uprobe = cur_uprobe;
516 iput(inode);
7b2d81d4 517 } else {
2b144498 518 atomic_inc(&uprobe_events);
7b2d81d4
IM
519 }
520
2b144498
SD
521 return uprobe;
522}
523
0326f5a9
SD
524static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
525{
526 struct uprobe_consumer *uc;
527
528 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
529 return;
530
531 down_read(&uprobe->consumer_rwsem);
532 for (uc = uprobe->consumers; uc; uc = uc->next) {
533 if (!uc->filter || uc->filter(uc, current))
534 uc->handler(uc, regs);
535 }
536 up_read(&uprobe->consumer_rwsem);
537}
538
2b144498 539/* Returns the previous consumer */
7b2d81d4 540static struct uprobe_consumer *
e3343e6a 541consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
542{
543 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
544 uc->next = uprobe->consumers;
545 uprobe->consumers = uc;
2b144498 546 up_write(&uprobe->consumer_rwsem);
7b2d81d4 547
e3343e6a 548 return uc->next;
2b144498
SD
549}
550
551/*
e3343e6a
SD
552 * For uprobe @uprobe, delete the consumer @uc.
553 * Return true if the @uc is deleted successfully
2b144498
SD
554 * or return false.
555 */
e3343e6a 556static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
557{
558 struct uprobe_consumer **con;
559 bool ret = false;
560
561 down_write(&uprobe->consumer_rwsem);
562 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
563 if (*con == uc) {
564 *con = uc->next;
2b144498
SD
565 ret = true;
566 break;
567 }
568 }
569 up_write(&uprobe->consumer_rwsem);
7b2d81d4 570
2b144498
SD
571 return ret;
572}
573
e3343e6a
SD
574static int
575__copy_insn(struct address_space *mapping, struct vm_area_struct *vma, char *insn,
2b144498
SD
576 unsigned long nbytes, unsigned long offset)
577{
578 struct file *filp = vma->vm_file;
579 struct page *page;
580 void *vaddr;
581 unsigned long off1;
582 unsigned long idx;
583
584 if (!filp)
585 return -EINVAL;
586
cc359d18
ON
587 if (!mapping->a_ops->readpage)
588 return -EIO;
589
2b144498
SD
590 idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
591 off1 = offset &= ~PAGE_MASK;
592
593 /*
594 * Ensure that the page that has the original instruction is
595 * populated and in page-cache.
596 */
597 page = read_mapping_page(mapping, idx, filp);
598 if (IS_ERR(page))
599 return PTR_ERR(page);
600
601 vaddr = kmap_atomic(page);
602 memcpy(insn, vaddr + off1, nbytes);
603 kunmap_atomic(vaddr);
604 page_cache_release(page);
7b2d81d4 605
2b144498
SD
606 return 0;
607}
608
e3343e6a
SD
609static int
610copy_insn(struct uprobe *uprobe, struct vm_area_struct *vma, unsigned long addr)
2b144498
SD
611{
612 struct address_space *mapping;
2b144498 613 unsigned long nbytes;
7b2d81d4 614 int bytes;
2b144498
SD
615
616 addr &= ~PAGE_MASK;
617 nbytes = PAGE_SIZE - addr;
618 mapping = uprobe->inode->i_mapping;
619
620 /* Instruction at end of binary; copy only available bytes */
621 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
622 bytes = uprobe->inode->i_size - uprobe->offset;
623 else
624 bytes = MAX_UINSN_BYTES;
625
626 /* Instruction at the page-boundary; copy bytes in second page */
627 if (nbytes < bytes) {
3ff54efd 628 if (__copy_insn(mapping, vma, uprobe->arch.insn + nbytes,
2b144498
SD
629 bytes - nbytes, uprobe->offset + nbytes))
630 return -ENOMEM;
631
632 bytes = nbytes;
633 }
3ff54efd 634 return __copy_insn(mapping, vma, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
635}
636
682968e0
SD
637/*
638 * How mm->uprobes_state.count gets updated
639 * uprobe_mmap() increments the count if
640 * - it successfully adds a breakpoint.
641 * - it cannot add a breakpoint, but sees that there is a underlying
642 * breakpoint (via a is_swbp_at_addr()).
643 *
644 * uprobe_munmap() decrements the count if
645 * - it sees a underlying breakpoint, (via is_swbp_at_addr)
646 * (Subsequent uprobe_unregister wouldnt find the breakpoint
647 * unless a uprobe_mmap kicks in, since the old vma would be
648 * dropped just after uprobe_munmap.)
649 *
650 * uprobe_register increments the count if:
651 * - it successfully adds a breakpoint.
652 *
653 * uprobe_unregister decrements the count if:
654 * - it sees a underlying breakpoint and removes successfully.
655 * (via is_swbp_at_addr)
656 * (Subsequent uprobe_munmap wouldnt find the breakpoint
657 * since there is no underlying breakpoint after the
658 * breakpoint removal.)
659 */
e3343e6a
SD
660static int
661install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
662 struct vm_area_struct *vma, loff_t vaddr)
2b144498
SD
663{
664 unsigned long addr;
665 int ret;
666
667 /*
668 * If probe is being deleted, unregister thread could be done with
669 * the vma-rmap-walk through. Adding a probe now can be fatal since
670 * nobody will be able to cleanup. Also we could be from fork or
671 * mremap path, where the probe might have already been inserted.
672 * Hence behave as if probe already existed.
673 */
674 if (!uprobe->consumers)
675 return -EEXIST;
676
677 addr = (unsigned long)vaddr;
7b2d81d4 678
900771a4 679 if (!(uprobe->flags & UPROBE_COPY_INSN)) {
2b144498
SD
680 ret = copy_insn(uprobe, vma, addr);
681 if (ret)
682 return ret;
683
5cb4ac3a 684 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
c1914a09 685 return -ENOTSUPP;
2b144498 686
7eb9ba5e 687 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, addr);
2b144498
SD
688 if (ret)
689 return ret;
690
900771a4 691 uprobe->flags |= UPROBE_COPY_INSN;
2b144498 692 }
682968e0
SD
693
694 /*
695 * Ideally, should be updating the probe count after the breakpoint
696 * has been successfully inserted. However a thread could hit the
697 * breakpoint we just inserted even before the probe count is
698 * incremented. If this is the first breakpoint placed, breakpoint
699 * notifier might ignore uprobes and pass the trap to the thread.
700 * Hence increment before and decrement on failure.
701 */
702 atomic_inc(&mm->uprobes_state.count);
5cb4ac3a 703 ret = set_swbp(&uprobe->arch, mm, addr);
682968e0
SD
704 if (ret)
705 atomic_dec(&mm->uprobes_state.count);
2b144498
SD
706
707 return ret;
708}
709
e3343e6a
SD
710static void
711remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, loff_t vaddr)
2b144498 712{
682968e0
SD
713 if (!set_orig_insn(&uprobe->arch, mm, (unsigned long)vaddr, true))
714 atomic_dec(&mm->uprobes_state.count);
2b144498
SD
715}
716
0326f5a9 717/*
778b032d
ON
718 * There could be threads that have already hit the breakpoint. They
719 * will recheck the current insn and restart if find_uprobe() fails.
720 * See find_active_uprobe().
0326f5a9 721 */
2b144498
SD
722static void delete_uprobe(struct uprobe *uprobe)
723{
724 unsigned long flags;
725
726 spin_lock_irqsave(&uprobes_treelock, flags);
727 rb_erase(&uprobe->rb_node, &uprobes_tree);
728 spin_unlock_irqrestore(&uprobes_treelock, flags);
729 iput(uprobe->inode);
730 put_uprobe(uprobe);
731 atomic_dec(&uprobe_events);
732}
733
26872090
ON
734struct map_info {
735 struct map_info *next;
736 struct mm_struct *mm;
737 loff_t vaddr;
738};
739
740static inline struct map_info *free_map_info(struct map_info *info)
2b144498 741{
26872090
ON
742 struct map_info *next = info->next;
743 kfree(info);
744 return next;
745}
746
747static struct map_info *
748build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
749{
750 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498
SD
751 struct prio_tree_iter iter;
752 struct vm_area_struct *vma;
26872090
ON
753 struct map_info *curr = NULL;
754 struct map_info *prev = NULL;
755 struct map_info *info;
756 int more = 0;
2b144498 757
26872090
ON
758 again:
759 mutex_lock(&mapping->i_mmap_mutex);
2b144498
SD
760 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
761 if (!valid_vma(vma, is_register))
762 continue;
763
26872090
ON
764 if (!prev) {
765 more++;
766 continue;
2b144498 767 }
2b144498 768
26872090
ON
769 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
770 continue;
7b2d81d4 771
26872090
ON
772 info = prev;
773 prev = prev->next;
774 info->next = curr;
775 curr = info;
2b144498 776
26872090
ON
777 info->mm = vma->vm_mm;
778 info->vaddr = vma_address(vma, offset);
779 }
2b144498
SD
780 mutex_unlock(&mapping->i_mmap_mutex);
781
26872090
ON
782 if (!more)
783 goto out;
784
785 prev = curr;
786 while (curr) {
787 mmput(curr->mm);
788 curr = curr->next;
789 }
7b2d81d4 790
26872090
ON
791 do {
792 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
793 if (!info) {
794 curr = ERR_PTR(-ENOMEM);
795 goto out;
796 }
797 info->next = prev;
798 prev = info;
799 } while (--more);
800
801 goto again;
802 out:
803 while (prev)
804 prev = free_map_info(prev);
805 return curr;
2b144498
SD
806}
807
808static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
809{
26872090
ON
810 struct map_info *info;
811 int err = 0;
2b144498 812
26872090
ON
813 info = build_map_info(uprobe->inode->i_mapping,
814 uprobe->offset, is_register);
815 if (IS_ERR(info))
816 return PTR_ERR(info);
7b2d81d4 817
26872090
ON
818 while (info) {
819 struct mm_struct *mm = info->mm;
820 struct vm_area_struct *vma;
821 loff_t vaddr;
7b2d81d4 822
26872090
ON
823 if (err)
824 goto free;
7b2d81d4 825
77fc4af1 826 down_write(&mm->mmap_sem);
26872090
ON
827 vma = find_vma(mm, (unsigned long)info->vaddr);
828 if (!vma || !valid_vma(vma, is_register))
829 goto unlock;
830
2b144498
SD
831 vaddr = vma_address(vma, uprobe->offset);
832 if (vma->vm_file->f_mapping->host != uprobe->inode ||
26872090
ON
833 vaddr != info->vaddr)
834 goto unlock;
2b144498 835
2b144498 836 if (is_register) {
26872090
ON
837 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
838 if (err == -EEXIST)
839 err = 0;
840 } else {
841 remove_breakpoint(uprobe, mm, info->vaddr);
2b144498 842 }
26872090
ON
843 unlock:
844 up_write(&mm->mmap_sem);
845 free:
846 mmput(mm);
847 info = free_map_info(info);
2b144498 848 }
7b2d81d4 849
26872090 850 return err;
2b144498
SD
851}
852
7b2d81d4 853static int __uprobe_register(struct uprobe *uprobe)
2b144498
SD
854{
855 return register_for_each_vma(uprobe, true);
856}
857
7b2d81d4 858static void __uprobe_unregister(struct uprobe *uprobe)
2b144498
SD
859{
860 if (!register_for_each_vma(uprobe, false))
861 delete_uprobe(uprobe);
862
863 /* TODO : cant unregister? schedule a worker thread */
864}
865
866/*
7b2d81d4 867 * uprobe_register - register a probe
2b144498
SD
868 * @inode: the file in which the probe has to be placed.
869 * @offset: offset from the start of the file.
e3343e6a 870 * @uc: information on howto handle the probe..
2b144498 871 *
7b2d81d4 872 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
873 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
874 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 875 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 876 * @uprobe even before the register operation is complete. Creation
e3343e6a 877 * refcount is released when the last @uc for the @uprobe
2b144498
SD
878 * unregisters.
879 *
880 * Return errno if it cannot successully install probes
881 * else return 0 (success)
882 */
e3343e6a 883int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
884{
885 struct uprobe *uprobe;
7b2d81d4 886 int ret;
2b144498 887
e3343e6a 888 if (!inode || !uc || uc->next)
7b2d81d4 889 return -EINVAL;
2b144498
SD
890
891 if (offset > i_size_read(inode))
7b2d81d4 892 return -EINVAL;
2b144498
SD
893
894 ret = 0;
895 mutex_lock(uprobes_hash(inode));
896 uprobe = alloc_uprobe(inode, offset);
7b2d81d4 897
e3343e6a 898 if (uprobe && !consumer_add(uprobe, uc)) {
7b2d81d4 899 ret = __uprobe_register(uprobe);
2b144498
SD
900 if (ret) {
901 uprobe->consumers = NULL;
7b2d81d4
IM
902 __uprobe_unregister(uprobe);
903 } else {
900771a4 904 uprobe->flags |= UPROBE_RUN_HANDLER;
7b2d81d4 905 }
2b144498
SD
906 }
907
908 mutex_unlock(uprobes_hash(inode));
909 put_uprobe(uprobe);
910
911 return ret;
912}
913
914/*
7b2d81d4 915 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
916 * @inode: the file in which the probe has to be removed.
917 * @offset: offset from the start of the file.
e3343e6a 918 * @uc: identify which probe if multiple probes are colocated.
2b144498 919 */
e3343e6a 920void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 921{
7b2d81d4 922 struct uprobe *uprobe;
2b144498 923
e3343e6a 924 if (!inode || !uc)
2b144498
SD
925 return;
926
927 uprobe = find_uprobe(inode, offset);
928 if (!uprobe)
929 return;
930
931 mutex_lock(uprobes_hash(inode));
2b144498 932
e3343e6a 933 if (consumer_del(uprobe, uc)) {
7b2d81d4
IM
934 if (!uprobe->consumers) {
935 __uprobe_unregister(uprobe);
900771a4 936 uprobe->flags &= ~UPROBE_RUN_HANDLER;
7b2d81d4 937 }
2b144498
SD
938 }
939
2b144498
SD
940 mutex_unlock(uprobes_hash(inode));
941 if (uprobe)
942 put_uprobe(uprobe);
943}
944
945/*
946 * Of all the nodes that correspond to the given inode, return the node
947 * with the least offset.
948 */
949static struct rb_node *find_least_offset_node(struct inode *inode)
950{
951 struct uprobe u = { .inode = inode, .offset = 0};
952 struct rb_node *n = uprobes_tree.rb_node;
953 struct rb_node *close_node = NULL;
954 struct uprobe *uprobe;
955 int match;
956
957 while (n) {
958 uprobe = rb_entry(n, struct uprobe, rb_node);
959 match = match_uprobe(&u, uprobe);
7b2d81d4 960
2b144498
SD
961 if (uprobe->inode == inode)
962 close_node = n;
963
964 if (!match)
965 return close_node;
966
967 if (match < 0)
968 n = n->rb_left;
969 else
970 n = n->rb_right;
971 }
7b2d81d4 972
2b144498
SD
973 return close_node;
974}
975
976/*
977 * For a given inode, build a list of probes that need to be inserted.
978 */
979static void build_probe_list(struct inode *inode, struct list_head *head)
980{
981 struct uprobe *uprobe;
2b144498 982 unsigned long flags;
7b2d81d4 983 struct rb_node *n;
2b144498
SD
984
985 spin_lock_irqsave(&uprobes_treelock, flags);
7b2d81d4 986
2b144498 987 n = find_least_offset_node(inode);
7b2d81d4 988
2b144498
SD
989 for (; n; n = rb_next(n)) {
990 uprobe = rb_entry(n, struct uprobe, rb_node);
991 if (uprobe->inode != inode)
992 break;
993
994 list_add(&uprobe->pending_list, head);
995 atomic_inc(&uprobe->ref);
996 }
7b2d81d4 997
2b144498
SD
998 spin_unlock_irqrestore(&uprobes_treelock, flags);
999}
1000
1001/*
1002 * Called from mmap_region.
1003 * called with mm->mmap_sem acquired.
1004 *
1005 * Return -ve no if we fail to insert probes and we cannot
1006 * bail-out.
7b2d81d4
IM
1007 * Return 0 otherwise. i.e:
1008 *
2b144498
SD
1009 * - successful insertion of probes
1010 * - (or) no possible probes to be inserted.
1011 * - (or) insertion of probes failed but we can bail-out.
1012 */
7b2d81d4 1013int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
1014{
1015 struct list_head tmp_list;
1016 struct uprobe *uprobe, *u;
1017 struct inode *inode;
682968e0 1018 int ret, count;
2b144498
SD
1019
1020 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 1021 return 0;
2b144498
SD
1022
1023 inode = vma->vm_file->f_mapping->host;
1024 if (!inode)
7b2d81d4 1025 return 0;
2b144498
SD
1026
1027 INIT_LIST_HEAD(&tmp_list);
1028 mutex_lock(uprobes_mmap_hash(inode));
1029 build_probe_list(inode, &tmp_list);
7b2d81d4
IM
1030
1031 ret = 0;
682968e0 1032 count = 0;
7b2d81d4 1033
2b144498
SD
1034 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1035 loff_t vaddr;
1036
1037 list_del(&uprobe->pending_list);
1038 if (!ret) {
1039 vaddr = vma_address(vma, uprobe->offset);
682968e0
SD
1040
1041 if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
1042 put_uprobe(uprobe);
1043 continue;
2b144498 1044 }
682968e0
SD
1045
1046 ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1047
1048 /* Ignore double add: */
1049 if (ret == -EEXIST) {
1050 ret = 0;
1051
1052 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1053 continue;
1054
1055 /*
1056 * Unable to insert a breakpoint, but
1057 * breakpoint lies underneath. Increment the
1058 * probe count.
1059 */
1060 atomic_inc(&vma->vm_mm->uprobes_state.count);
1061 }
1062
1063 if (!ret)
1064 count++;
2b144498
SD
1065 }
1066 put_uprobe(uprobe);
1067 }
1068
1069 mutex_unlock(uprobes_mmap_hash(inode));
1070
682968e0
SD
1071 if (ret)
1072 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1073
2b144498
SD
1074 return ret;
1075}
1076
682968e0
SD
1077/*
1078 * Called in context of a munmap of a vma.
1079 */
cbc91f71 1080void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0
SD
1081{
1082 struct list_head tmp_list;
1083 struct uprobe *uprobe, *u;
1084 struct inode *inode;
1085
1086 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1087 return;
1088
1089 if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1090 return;
1091
1092 inode = vma->vm_file->f_mapping->host;
1093 if (!inode)
1094 return;
1095
1096 INIT_LIST_HEAD(&tmp_list);
1097 mutex_lock(uprobes_mmap_hash(inode));
1098 build_probe_list(inode, &tmp_list);
1099
1100 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1101 loff_t vaddr;
1102
1103 list_del(&uprobe->pending_list);
1104 vaddr = vma_address(vma, uprobe->offset);
1105
cbc91f71 1106 if (vaddr >= start && vaddr < end) {
682968e0
SD
1107 /*
1108 * An unregister could have removed the probe before
1109 * unmap. So check before we decrement the count.
1110 */
1111 if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1112 atomic_dec(&vma->vm_mm->uprobes_state.count);
1113 }
1114 put_uprobe(uprobe);
1115 }
1116 mutex_unlock(uprobes_mmap_hash(inode));
1117}
1118
d4b3b638
SD
1119/* Slot allocation for XOL */
1120static int xol_add_vma(struct xol_area *area)
1121{
1122 struct mm_struct *mm;
1123 int ret;
1124
1125 area->page = alloc_page(GFP_HIGHUSER);
1126 if (!area->page)
1127 return -ENOMEM;
1128
1129 ret = -EALREADY;
1130 mm = current->mm;
1131
1132 down_write(&mm->mmap_sem);
1133 if (mm->uprobes_state.xol_area)
1134 goto fail;
1135
1136 ret = -ENOMEM;
1137
1138 /* Try to map as high as possible, this is only a hint. */
1139 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1140 if (area->vaddr & ~PAGE_MASK) {
1141 ret = area->vaddr;
1142 goto fail;
1143 }
1144
1145 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1146 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1147 if (ret)
1148 goto fail;
1149
1150 smp_wmb(); /* pairs with get_xol_area() */
1151 mm->uprobes_state.xol_area = area;
1152 ret = 0;
1153
1154fail:
1155 up_write(&mm->mmap_sem);
1156 if (ret)
1157 __free_page(area->page);
1158
1159 return ret;
1160}
1161
1162static struct xol_area *get_xol_area(struct mm_struct *mm)
1163{
1164 struct xol_area *area;
1165
1166 area = mm->uprobes_state.xol_area;
1167 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1168
1169 return area;
1170}
1171
1172/*
1173 * xol_alloc_area - Allocate process's xol_area.
1174 * This area will be used for storing instructions for execution out of
1175 * line.
1176 *
1177 * Returns the allocated area or NULL.
1178 */
1179static struct xol_area *xol_alloc_area(void)
1180{
1181 struct xol_area *area;
1182
1183 area = kzalloc(sizeof(*area), GFP_KERNEL);
1184 if (unlikely(!area))
1185 return NULL;
1186
1187 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1188
1189 if (!area->bitmap)
1190 goto fail;
1191
1192 init_waitqueue_head(&area->wq);
1193 if (!xol_add_vma(area))
1194 return area;
1195
1196fail:
1197 kfree(area->bitmap);
1198 kfree(area);
1199
1200 return get_xol_area(current->mm);
1201}
1202
1203/*
1204 * uprobe_clear_state - Free the area allocated for slots.
1205 */
1206void uprobe_clear_state(struct mm_struct *mm)
1207{
1208 struct xol_area *area = mm->uprobes_state.xol_area;
1209
1210 if (!area)
1211 return;
1212
1213 put_page(area->page);
1214 kfree(area->bitmap);
1215 kfree(area);
1216}
1217
1218/*
1219 * uprobe_reset_state - Free the area allocated for slots.
1220 */
1221void uprobe_reset_state(struct mm_struct *mm)
1222{
1223 mm->uprobes_state.xol_area = NULL;
682968e0 1224 atomic_set(&mm->uprobes_state.count, 0);
d4b3b638
SD
1225}
1226
1227/*
1228 * - search for a free slot.
1229 */
1230static unsigned long xol_take_insn_slot(struct xol_area *area)
1231{
1232 unsigned long slot_addr;
1233 int slot_nr;
1234
1235 do {
1236 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1237 if (slot_nr < UINSNS_PER_PAGE) {
1238 if (!test_and_set_bit(slot_nr, area->bitmap))
1239 break;
1240
1241 slot_nr = UINSNS_PER_PAGE;
1242 continue;
1243 }
1244 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1245 } while (slot_nr >= UINSNS_PER_PAGE);
1246
1247 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1248 atomic_inc(&area->slot_count);
1249
1250 return slot_addr;
1251}
1252
1253/*
1254 * xol_get_insn_slot - If was not allocated a slot, then
1255 * allocate a slot.
1256 * Returns the allocated slot address or 0.
1257 */
1258static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1259{
1260 struct xol_area *area;
1261 unsigned long offset;
1262 void *vaddr;
1263
1264 area = get_xol_area(current->mm);
1265 if (!area) {
1266 area = xol_alloc_area();
1267 if (!area)
1268 return 0;
1269 }
1270 current->utask->xol_vaddr = xol_take_insn_slot(area);
1271
1272 /*
1273 * Initialize the slot if xol_vaddr points to valid
1274 * instruction slot.
1275 */
1276 if (unlikely(!current->utask->xol_vaddr))
1277 return 0;
1278
1279 current->utask->vaddr = slot_addr;
1280 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1281 vaddr = kmap_atomic(area->page);
1282 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1283 kunmap_atomic(vaddr);
1284
1285 return current->utask->xol_vaddr;
1286}
1287
1288/*
1289 * xol_free_insn_slot - If slot was earlier allocated by
1290 * @xol_get_insn_slot(), make the slot available for
1291 * subsequent requests.
1292 */
1293static void xol_free_insn_slot(struct task_struct *tsk)
1294{
1295 struct xol_area *area;
1296 unsigned long vma_end;
1297 unsigned long slot_addr;
1298
1299 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1300 return;
1301
1302 slot_addr = tsk->utask->xol_vaddr;
1303
1304 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1305 return;
1306
1307 area = tsk->mm->uprobes_state.xol_area;
1308 vma_end = area->vaddr + PAGE_SIZE;
1309 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1310 unsigned long offset;
1311 int slot_nr;
1312
1313 offset = slot_addr - area->vaddr;
1314 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1315 if (slot_nr >= UINSNS_PER_PAGE)
1316 return;
1317
1318 clear_bit(slot_nr, area->bitmap);
1319 atomic_dec(&area->slot_count);
1320 if (waitqueue_active(&area->wq))
1321 wake_up(&area->wq);
1322
1323 tsk->utask->xol_vaddr = 0;
1324 }
1325}
1326
0326f5a9
SD
1327/**
1328 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1329 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1330 * instruction.
1331 * Return the address of the breakpoint instruction.
1332 */
1333unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1334{
1335 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1336}
1337
1338/*
1339 * Called with no locks held.
1340 * Called in context of a exiting or a exec-ing thread.
1341 */
1342void uprobe_free_utask(struct task_struct *t)
1343{
1344 struct uprobe_task *utask = t->utask;
1345
0326f5a9
SD
1346 if (!utask)
1347 return;
1348
1349 if (utask->active_uprobe)
1350 put_uprobe(utask->active_uprobe);
1351
d4b3b638 1352 xol_free_insn_slot(t);
0326f5a9
SD
1353 kfree(utask);
1354 t->utask = NULL;
1355}
1356
1357/*
1358 * Called in context of a new clone/fork from copy_process.
1359 */
1360void uprobe_copy_process(struct task_struct *t)
1361{
1362 t->utask = NULL;
0326f5a9
SD
1363}
1364
1365/*
1366 * Allocate a uprobe_task object for the task.
1367 * Called when the thread hits a breakpoint for the first time.
1368 *
1369 * Returns:
1370 * - pointer to new uprobe_task on success
1371 * - NULL otherwise
1372 */
1373static struct uprobe_task *add_utask(void)
1374{
1375 struct uprobe_task *utask;
1376
1377 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1378 if (unlikely(!utask))
1379 return NULL;
1380
1381 utask->active_uprobe = NULL;
1382 current->utask = utask;
1383 return utask;
1384}
1385
1386/* Prepare to single-step probed instruction out of line. */
1387static int
1388pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1389{
d4b3b638
SD
1390 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1391 return 0;
1392
0326f5a9
SD
1393 return -EFAULT;
1394}
1395
1396/*
1397 * If we are singlestepping, then ensure this thread is not connected to
1398 * non-fatal signals until completion of singlestep. When xol insn itself
1399 * triggers the signal, restart the original insn even if the task is
1400 * already SIGKILL'ed (since coredump should report the correct ip). This
1401 * is even more important if the task has a handler for SIGSEGV/etc, The
1402 * _same_ instruction should be repeated again after return from the signal
1403 * handler, and SSTEP can never finish in this case.
1404 */
1405bool uprobe_deny_signal(void)
1406{
1407 struct task_struct *t = current;
1408 struct uprobe_task *utask = t->utask;
1409
1410 if (likely(!utask || !utask->active_uprobe))
1411 return false;
1412
1413 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1414
1415 if (signal_pending(t)) {
1416 spin_lock_irq(&t->sighand->siglock);
1417 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1418 spin_unlock_irq(&t->sighand->siglock);
1419
1420 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1421 utask->state = UTASK_SSTEP_TRAPPED;
1422 set_tsk_thread_flag(t, TIF_UPROBE);
1423 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1424 }
1425 }
1426
1427 return true;
1428}
1429
1430/*
1431 * Avoid singlestepping the original instruction if the original instruction
1432 * is a NOP or can be emulated.
1433 */
1434static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1435{
1436 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1437 return true;
1438
1439 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1440 return false;
1441}
1442
d790d346 1443static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1444{
3a9ea052
ON
1445 struct mm_struct *mm = current->mm;
1446 struct uprobe *uprobe = NULL;
0326f5a9 1447 struct vm_area_struct *vma;
0326f5a9 1448
0326f5a9
SD
1449 down_read(&mm->mmap_sem);
1450 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1451 if (vma && vma->vm_start <= bp_vaddr) {
1452 if (valid_vma(vma, false)) {
1453 struct inode *inode;
1454 loff_t offset;
0326f5a9 1455
3a9ea052
ON
1456 inode = vma->vm_file->f_mapping->host;
1457 offset = bp_vaddr - vma->vm_start;
1458 offset += (vma->vm_pgoff << PAGE_SHIFT);
1459 uprobe = find_uprobe(inode, offset);
1460 }
d790d346
ON
1461
1462 if (!uprobe)
1463 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1464 } else {
1465 *is_swbp = -EFAULT;
0326f5a9 1466 }
0326f5a9
SD
1467 up_read(&mm->mmap_sem);
1468
3a9ea052
ON
1469 return uprobe;
1470}
1471
1472/*
1473 * Run handler and ask thread to singlestep.
1474 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1475 */
1476static void handle_swbp(struct pt_regs *regs)
1477{
1478 struct uprobe_task *utask;
1479 struct uprobe *uprobe;
1480 unsigned long bp_vaddr;
56bb4cf6 1481 int uninitialized_var(is_swbp);
3a9ea052
ON
1482
1483 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1484 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1485
0326f5a9 1486 if (!uprobe) {
56bb4cf6
ON
1487 if (is_swbp > 0) {
1488 /* No matching uprobe; signal SIGTRAP. */
1489 send_sig(SIGTRAP, current, 0);
1490 } else {
1491 /*
1492 * Either we raced with uprobe_unregister() or we can't
1493 * access this memory. The latter is only possible if
1494 * another thread plays with our ->mm. In both cases
1495 * we can simply restart. If this vma was unmapped we
1496 * can pretend this insn was not executed yet and get
1497 * the (correct) SIGSEGV after restart.
1498 */
1499 instruction_pointer_set(regs, bp_vaddr);
1500 }
0326f5a9
SD
1501 return;
1502 }
1503
1504 utask = current->utask;
1505 if (!utask) {
1506 utask = add_utask();
1507 /* Cannot allocate; re-execute the instruction. */
1508 if (!utask)
1509 goto cleanup_ret;
1510 }
1511 utask->active_uprobe = uprobe;
1512 handler_chain(uprobe, regs);
1513 if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1514 goto cleanup_ret;
1515
1516 utask->state = UTASK_SSTEP;
1517 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1518 user_enable_single_step(current);
1519 return;
1520 }
1521
1522cleanup_ret:
1523 if (utask) {
1524 utask->active_uprobe = NULL;
1525 utask->state = UTASK_RUNNING;
1526 }
1527 if (uprobe) {
1528 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1529
1530 /*
1531 * cannot singlestep; cannot skip instruction;
1532 * re-execute the instruction.
1533 */
1534 instruction_pointer_set(regs, bp_vaddr);
1535
1536 put_uprobe(uprobe);
1537 }
1538}
1539
1540/*
1541 * Perform required fix-ups and disable singlestep.
1542 * Allow pending signals to take effect.
1543 */
1544static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1545{
1546 struct uprobe *uprobe;
1547
1548 uprobe = utask->active_uprobe;
1549 if (utask->state == UTASK_SSTEP_ACK)
1550 arch_uprobe_post_xol(&uprobe->arch, regs);
1551 else if (utask->state == UTASK_SSTEP_TRAPPED)
1552 arch_uprobe_abort_xol(&uprobe->arch, regs);
1553 else
1554 WARN_ON_ONCE(1);
1555
1556 put_uprobe(uprobe);
1557 utask->active_uprobe = NULL;
1558 utask->state = UTASK_RUNNING;
1559 user_disable_single_step(current);
d4b3b638 1560 xol_free_insn_slot(current);
0326f5a9
SD
1561
1562 spin_lock_irq(&current->sighand->siglock);
1563 recalc_sigpending(); /* see uprobe_deny_signal() */
1564 spin_unlock_irq(&current->sighand->siglock);
1565}
1566
1567/*
1568 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on
1569 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1570 * allows the thread to return from interrupt.
1571 *
1572 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1573 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1574 * interrupt.
1575 *
1576 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1577 * uprobe_notify_resume().
1578 */
1579void uprobe_notify_resume(struct pt_regs *regs)
1580{
1581 struct uprobe_task *utask;
1582
1583 utask = current->utask;
1584 if (!utask || utask->state == UTASK_BP_HIT)
1585 handle_swbp(regs);
1586 else
1587 handle_singlestep(utask, regs);
1588}
1589
1590/*
1591 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1592 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1593 */
1594int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1595{
1596 struct uprobe_task *utask;
1597
682968e0
SD
1598 if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1599 /* task is currently not uprobed */
0326f5a9
SD
1600 return 0;
1601
1602 utask = current->utask;
1603 if (utask)
1604 utask->state = UTASK_BP_HIT;
1605
1606 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1607
1608 return 1;
1609}
1610
1611/*
1612 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1613 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1614 */
1615int uprobe_post_sstep_notifier(struct pt_regs *regs)
1616{
1617 struct uprobe_task *utask = current->utask;
1618
1619 if (!current->mm || !utask || !utask->active_uprobe)
1620 /* task is currently not uprobed */
1621 return 0;
1622
1623 utask->state = UTASK_SSTEP_ACK;
1624 set_thread_flag(TIF_UPROBE);
1625 return 1;
1626}
1627
1628static struct notifier_block uprobe_exception_nb = {
1629 .notifier_call = arch_uprobe_exception_notify,
1630 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1631};
1632
2b144498
SD
1633static int __init init_uprobes(void)
1634{
1635 int i;
1636
1637 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1638 mutex_init(&uprobes_mutex[i]);
1639 mutex_init(&uprobes_mmap_mutex[i]);
1640 }
0326f5a9
SD
1641
1642 return register_die_notifier(&uprobe_exception_nb);
2b144498 1643}
0326f5a9 1644module_init(init_uprobes);
2b144498
SD
1645
1646static void __exit exit_uprobes(void)
1647{
1648}
2b144498 1649module_exit(exit_uprobes);