]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/events/uprobes.c
uprobes: Rename vma_address() and make it return "unsigned long"
[mirror_ubuntu-hirsute-kernel.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
7b2d81d4 35
2b144498
SD
36#include <linux/uprobes.h>
37
d4b3b638
SD
38#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
40
2b144498 41static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 42
2b144498
SD
43static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
44
45#define UPROBES_HASH_SZ 13
7b2d81d4 46
c5784de2
PZ
47/*
48 * We need separate register/unregister and mmap/munmap lock hashes because
49 * of mmap_sem nesting.
50 *
51 * uprobe_register() needs to install probes on (potentially) all processes
52 * and thus needs to acquire multiple mmap_sems (consequtively, not
53 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
54 * for the particular process doing the mmap.
55 *
56 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
57 * because of lock order against i_mmap_mutex. This means there's a hole in
58 * the register vma iteration where a mmap() can happen.
59 *
60 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
61 * install a probe where one is already installed.
62 */
63
2b144498
SD
64/* serialize (un)register */
65static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
66
67#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
68
69/* serialize uprobe->pending_list */
70static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 71#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
72
73/*
7b2d81d4 74 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
75 * events active at this time. Probably a fine grained per inode count is
76 * better?
77 */
78static atomic_t uprobe_events = ATOMIC_INIT(0);
79
3ff54efd
SD
80struct uprobe {
81 struct rb_node rb_node; /* node in the rb tree */
82 atomic_t ref;
83 struct rw_semaphore consumer_rwsem;
84 struct list_head pending_list;
85 struct uprobe_consumer *consumers;
86 struct inode *inode; /* Also hold a ref to inode */
87 loff_t offset;
88 int flags;
89 struct arch_uprobe arch;
90};
91
2b144498
SD
92/*
93 * valid_vma: Verify if the specified vma is an executable vma
94 * Relax restrictions while unregistering: vm_flags might have
95 * changed after breakpoint was inserted.
96 * - is_register: indicates if we are in register context.
97 * - Return 1 if the specified virtual address is in an
98 * executable vma.
99 */
100static bool valid_vma(struct vm_area_struct *vma, bool is_register)
101{
102 if (!vma->vm_file)
103 return false;
104
105 if (!is_register)
106 return true;
107
ea131377
ON
108 if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
109 == (VM_READ|VM_EXEC))
2b144498
SD
110 return true;
111
112 return false;
113}
114
57683f72 115static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 116{
57683f72 117 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
118}
119
cb113b47
ON
120static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
121{
122 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
123}
124
2b144498
SD
125/**
126 * __replace_page - replace page in vma by new page.
127 * based on replace_page in mm/ksm.c
128 *
129 * @vma: vma that holds the pte pointing to page
c517ee74 130 * @addr: address the old @page is mapped at
2b144498
SD
131 * @page: the cowed page we are replacing by kpage
132 * @kpage: the modified page we replace page by
133 *
134 * Returns 0 on success, -EFAULT on failure.
135 */
c517ee74
ON
136static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
137 struct page *page, struct page *kpage)
2b144498
SD
138{
139 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
140 spinlock_t *ptl;
141 pte_t *ptep;
9f92448c 142 int err;
2b144498 143
9f92448c
ON
144 /* freeze PageSwapCache() for try_to_free_swap() below */
145 lock_page(page);
146
147 err = -EAGAIN;
5323ce71 148 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 149 if (!ptep)
9f92448c 150 goto unlock;
2b144498
SD
151
152 get_page(kpage);
153 page_add_new_anon_rmap(kpage, vma, addr);
154
7396fa81
SD
155 if (!PageAnon(page)) {
156 dec_mm_counter(mm, MM_FILEPAGES);
157 inc_mm_counter(mm, MM_ANONPAGES);
158 }
159
2b144498
SD
160 flush_cache_page(vma, addr, pte_pfn(*ptep));
161 ptep_clear_flush(vma, addr, ptep);
162 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
163
164 page_remove_rmap(page);
165 if (!page_mapped(page))
166 try_to_free_swap(page);
167 put_page(page);
168 pte_unmap_unlock(ptep, ptl);
2b144498 169
9f92448c
ON
170 err = 0;
171 unlock:
172 unlock_page(page);
173 return err;
2b144498
SD
174}
175
176/**
5cb4ac3a 177 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 178 * @insn: instruction to be checked.
5cb4ac3a 179 * Default implementation of is_swbp_insn
2b144498
SD
180 * Returns true if @insn is a breakpoint instruction.
181 */
5cb4ac3a 182bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 183{
5cb4ac3a 184 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
185}
186
187/*
188 * NOTE:
189 * Expect the breakpoint instruction to be the smallest size instruction for
190 * the architecture. If an arch has variable length instruction and the
191 * breakpoint instruction is not of the smallest length instruction
192 * supported by that architecture then we need to modify read_opcode /
193 * write_opcode accordingly. This would never be a problem for archs that
194 * have fixed length instructions.
195 */
196
197/*
198 * write_opcode - write the opcode at a given virtual address.
e3343e6a 199 * @auprobe: arch breakpointing information.
2b144498 200 * @mm: the probed process address space.
2b144498
SD
201 * @vaddr: the virtual address to store the opcode.
202 * @opcode: opcode to be written at @vaddr.
203 *
204 * Called with mm->mmap_sem held (for read and with a reference to
205 * mm).
206 *
207 * For mm @mm, write the opcode at @vaddr.
208 * Return 0 (success) or a negative errno.
209 */
e3343e6a 210static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
2b144498
SD
211 unsigned long vaddr, uprobe_opcode_t opcode)
212{
213 struct page *old_page, *new_page;
2b144498
SD
214 void *vaddr_old, *vaddr_new;
215 struct vm_area_struct *vma;
2b144498 216 int ret;
f403072c 217
5323ce71 218retry:
2b144498
SD
219 /* Read the page with vaddr into memory */
220 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
221 if (ret <= 0)
222 return ret;
7b2d81d4 223
2b144498
SD
224 ret = -ENOMEM;
225 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
226 if (!new_page)
9f92448c 227 goto put_old;
2b144498
SD
228
229 __SetPageUptodate(new_page);
230
2b144498
SD
231 /* copy the page now that we've got it stable */
232 vaddr_old = kmap_atomic(old_page);
233 vaddr_new = kmap_atomic(new_page);
234
235 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
d9c4a30e 236 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
237
238 kunmap_atomic(vaddr_new);
239 kunmap_atomic(vaddr_old);
240
241 ret = anon_vma_prepare(vma);
242 if (ret)
9f92448c 243 goto put_new;
2b144498 244
c517ee74 245 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 246
9f92448c 247put_new:
2b144498 248 page_cache_release(new_page);
9f92448c 249put_old:
7b2d81d4
IM
250 put_page(old_page);
251
5323ce71
ON
252 if (unlikely(ret == -EAGAIN))
253 goto retry;
2b144498
SD
254 return ret;
255}
256
257/**
258 * read_opcode - read the opcode at a given virtual address.
259 * @mm: the probed process address space.
260 * @vaddr: the virtual address to read the opcode.
261 * @opcode: location to store the read opcode.
262 *
263 * Called with mm->mmap_sem held (for read and with a reference to
264 * mm.
265 *
266 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
267 * Return 0 (success) or a negative errno.
268 */
7b2d81d4 269static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
2b144498
SD
270{
271 struct page *page;
272 void *vaddr_new;
273 int ret;
274
a3d7bb47 275 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
2b144498
SD
276 if (ret <= 0)
277 return ret;
278
279 lock_page(page);
280 vaddr_new = kmap_atomic(page);
281 vaddr &= ~PAGE_MASK;
5cb4ac3a 282 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
283 kunmap_atomic(vaddr_new);
284 unlock_page(page);
7b2d81d4
IM
285
286 put_page(page);
287
2b144498
SD
288 return 0;
289}
290
5cb4ac3a 291static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
2b144498
SD
292{
293 uprobe_opcode_t opcode;
7b2d81d4 294 int result;
2b144498 295
c00b2750
ON
296 if (current->mm == mm) {
297 pagefault_disable();
298 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
299 sizeof(opcode));
300 pagefault_enable();
301
302 if (likely(result == 0))
303 goto out;
304 }
305
7b2d81d4 306 result = read_opcode(mm, vaddr, &opcode);
2b144498
SD
307 if (result)
308 return result;
c00b2750 309out:
5cb4ac3a 310 if (is_swbp_insn(&opcode))
2b144498
SD
311 return 1;
312
313 return 0;
314}
315
316/**
5cb4ac3a 317 * set_swbp - store breakpoint at a given address.
e3343e6a 318 * @auprobe: arch specific probepoint information.
2b144498 319 * @mm: the probed process address space.
2b144498
SD
320 * @vaddr: the virtual address to insert the opcode.
321 *
322 * For mm @mm, store the breakpoint instruction at @vaddr.
323 * Return 0 (success) or a negative errno.
324 */
5cb4ac3a 325int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 326{
7b2d81d4 327 int result;
c5784de2
PZ
328 /*
329 * See the comment near uprobes_hash().
330 */
5cb4ac3a 331 result = is_swbp_at_addr(mm, vaddr);
2b144498
SD
332 if (result == 1)
333 return -EEXIST;
334
335 if (result)
336 return result;
337
5cb4ac3a 338 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
339}
340
341/**
342 * set_orig_insn - Restore the original instruction.
343 * @mm: the probed process address space.
e3343e6a 344 * @auprobe: arch specific probepoint information.
2b144498
SD
345 * @vaddr: the virtual address to insert the opcode.
346 * @verify: if true, verify existance of breakpoint instruction.
347 *
348 * For mm @mm, restore the original opcode (opcode) at @vaddr.
349 * Return 0 (success) or a negative errno.
350 */
7b2d81d4 351int __weak
e3343e6a 352set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
2b144498
SD
353{
354 if (verify) {
7b2d81d4 355 int result;
2b144498 356
5cb4ac3a 357 result = is_swbp_at_addr(mm, vaddr);
2b144498
SD
358 if (!result)
359 return -EINVAL;
360
361 if (result != 1)
362 return result;
363 }
e3343e6a 364 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
365}
366
367static int match_uprobe(struct uprobe *l, struct uprobe *r)
368{
369 if (l->inode < r->inode)
370 return -1;
7b2d81d4 371
2b144498
SD
372 if (l->inode > r->inode)
373 return 1;
2b144498 374
7b2d81d4
IM
375 if (l->offset < r->offset)
376 return -1;
377
378 if (l->offset > r->offset)
379 return 1;
2b144498
SD
380
381 return 0;
382}
383
384static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
385{
386 struct uprobe u = { .inode = inode, .offset = offset };
387 struct rb_node *n = uprobes_tree.rb_node;
388 struct uprobe *uprobe;
389 int match;
390
391 while (n) {
392 uprobe = rb_entry(n, struct uprobe, rb_node);
393 match = match_uprobe(&u, uprobe);
394 if (!match) {
395 atomic_inc(&uprobe->ref);
396 return uprobe;
397 }
7b2d81d4 398
2b144498
SD
399 if (match < 0)
400 n = n->rb_left;
401 else
402 n = n->rb_right;
403 }
404 return NULL;
405}
406
407/*
408 * Find a uprobe corresponding to a given inode:offset
409 * Acquires uprobes_treelock
410 */
411static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
412{
413 struct uprobe *uprobe;
414 unsigned long flags;
415
416 spin_lock_irqsave(&uprobes_treelock, flags);
417 uprobe = __find_uprobe(inode, offset);
418 spin_unlock_irqrestore(&uprobes_treelock, flags);
7b2d81d4 419
2b144498
SD
420 return uprobe;
421}
422
423static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
424{
425 struct rb_node **p = &uprobes_tree.rb_node;
426 struct rb_node *parent = NULL;
427 struct uprobe *u;
428 int match;
429
430 while (*p) {
431 parent = *p;
432 u = rb_entry(parent, struct uprobe, rb_node);
433 match = match_uprobe(uprobe, u);
434 if (!match) {
435 atomic_inc(&u->ref);
436 return u;
437 }
438
439 if (match < 0)
440 p = &parent->rb_left;
441 else
442 p = &parent->rb_right;
443
444 }
7b2d81d4 445
2b144498
SD
446 u = NULL;
447 rb_link_node(&uprobe->rb_node, parent, p);
448 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
449 /* get access + creation ref */
450 atomic_set(&uprobe->ref, 2);
7b2d81d4 451
2b144498
SD
452 return u;
453}
454
455/*
7b2d81d4 456 * Acquire uprobes_treelock.
2b144498
SD
457 * Matching uprobe already exists in rbtree;
458 * increment (access refcount) and return the matching uprobe.
459 *
460 * No matching uprobe; insert the uprobe in rb_tree;
461 * get a double refcount (access + creation) and return NULL.
462 */
463static struct uprobe *insert_uprobe(struct uprobe *uprobe)
464{
465 unsigned long flags;
466 struct uprobe *u;
467
468 spin_lock_irqsave(&uprobes_treelock, flags);
469 u = __insert_uprobe(uprobe);
470 spin_unlock_irqrestore(&uprobes_treelock, flags);
7b2d81d4 471
0326f5a9
SD
472 /* For now assume that the instruction need not be single-stepped */
473 uprobe->flags |= UPROBE_SKIP_SSTEP;
474
2b144498
SD
475 return u;
476}
477
478static void put_uprobe(struct uprobe *uprobe)
479{
480 if (atomic_dec_and_test(&uprobe->ref))
481 kfree(uprobe);
482}
483
484static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
485{
486 struct uprobe *uprobe, *cur_uprobe;
487
488 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
489 if (!uprobe)
490 return NULL;
491
492 uprobe->inode = igrab(inode);
493 uprobe->offset = offset;
494 init_rwsem(&uprobe->consumer_rwsem);
2b144498
SD
495
496 /* add to uprobes_tree, sorted on inode:offset */
497 cur_uprobe = insert_uprobe(uprobe);
498
499 /* a uprobe exists for this inode:offset combination */
500 if (cur_uprobe) {
501 kfree(uprobe);
502 uprobe = cur_uprobe;
503 iput(inode);
7b2d81d4 504 } else {
2b144498 505 atomic_inc(&uprobe_events);
7b2d81d4
IM
506 }
507
2b144498
SD
508 return uprobe;
509}
510
0326f5a9
SD
511static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
512{
513 struct uprobe_consumer *uc;
514
515 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
516 return;
517
518 down_read(&uprobe->consumer_rwsem);
519 for (uc = uprobe->consumers; uc; uc = uc->next) {
520 if (!uc->filter || uc->filter(uc, current))
521 uc->handler(uc, regs);
522 }
523 up_read(&uprobe->consumer_rwsem);
524}
525
2b144498 526/* Returns the previous consumer */
7b2d81d4 527static struct uprobe_consumer *
e3343e6a 528consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
529{
530 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
531 uc->next = uprobe->consumers;
532 uprobe->consumers = uc;
2b144498 533 up_write(&uprobe->consumer_rwsem);
7b2d81d4 534
e3343e6a 535 return uc->next;
2b144498
SD
536}
537
538/*
e3343e6a
SD
539 * For uprobe @uprobe, delete the consumer @uc.
540 * Return true if the @uc is deleted successfully
2b144498
SD
541 * or return false.
542 */
e3343e6a 543static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
544{
545 struct uprobe_consumer **con;
546 bool ret = false;
547
548 down_write(&uprobe->consumer_rwsem);
549 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
550 if (*con == uc) {
551 *con = uc->next;
2b144498
SD
552 ret = true;
553 break;
554 }
555 }
556 up_write(&uprobe->consumer_rwsem);
7b2d81d4 557
2b144498
SD
558 return ret;
559}
560
e3343e6a 561static int
d436615e 562__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 563 unsigned long nbytes, loff_t offset)
2b144498 564{
2b144498
SD
565 struct page *page;
566 void *vaddr;
593609a5
ON
567 unsigned long off;
568 pgoff_t idx;
2b144498
SD
569
570 if (!filp)
571 return -EINVAL;
572
cc359d18
ON
573 if (!mapping->a_ops->readpage)
574 return -EIO;
575
593609a5
ON
576 idx = offset >> PAGE_CACHE_SHIFT;
577 off = offset & ~PAGE_MASK;
2b144498
SD
578
579 /*
580 * Ensure that the page that has the original instruction is
581 * populated and in page-cache.
582 */
583 page = read_mapping_page(mapping, idx, filp);
584 if (IS_ERR(page))
585 return PTR_ERR(page);
586
587 vaddr = kmap_atomic(page);
593609a5 588 memcpy(insn, vaddr + off, nbytes);
2b144498
SD
589 kunmap_atomic(vaddr);
590 page_cache_release(page);
7b2d81d4 591
2b144498
SD
592 return 0;
593}
594
d436615e 595static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
596{
597 struct address_space *mapping;
2b144498 598 unsigned long nbytes;
7b2d81d4 599 int bytes;
2b144498 600
d436615e 601 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
602 mapping = uprobe->inode->i_mapping;
603
604 /* Instruction at end of binary; copy only available bytes */
605 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
606 bytes = uprobe->inode->i_size - uprobe->offset;
607 else
608 bytes = MAX_UINSN_BYTES;
609
610 /* Instruction at the page-boundary; copy bytes in second page */
611 if (nbytes < bytes) {
fc36f595
ON
612 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
613 bytes - nbytes, uprobe->offset + nbytes);
614 if (err)
615 return err;
2b144498
SD
616 bytes = nbytes;
617 }
d436615e 618 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
619}
620
682968e0
SD
621/*
622 * How mm->uprobes_state.count gets updated
623 * uprobe_mmap() increments the count if
624 * - it successfully adds a breakpoint.
625 * - it cannot add a breakpoint, but sees that there is a underlying
626 * breakpoint (via a is_swbp_at_addr()).
627 *
628 * uprobe_munmap() decrements the count if
629 * - it sees a underlying breakpoint, (via is_swbp_at_addr)
630 * (Subsequent uprobe_unregister wouldnt find the breakpoint
631 * unless a uprobe_mmap kicks in, since the old vma would be
632 * dropped just after uprobe_munmap.)
633 *
634 * uprobe_register increments the count if:
635 * - it successfully adds a breakpoint.
636 *
637 * uprobe_unregister decrements the count if:
638 * - it sees a underlying breakpoint and removes successfully.
639 * (via is_swbp_at_addr)
640 * (Subsequent uprobe_munmap wouldnt find the breakpoint
641 * since there is no underlying breakpoint after the
642 * breakpoint removal.)
643 */
e3343e6a
SD
644static int
645install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 646 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 647{
2b144498
SD
648 int ret;
649
650 /*
651 * If probe is being deleted, unregister thread could be done with
652 * the vma-rmap-walk through. Adding a probe now can be fatal since
653 * nobody will be able to cleanup. Also we could be from fork or
654 * mremap path, where the probe might have already been inserted.
655 * Hence behave as if probe already existed.
656 */
657 if (!uprobe->consumers)
658 return -EEXIST;
659
900771a4 660 if (!(uprobe->flags & UPROBE_COPY_INSN)) {
d436615e 661 ret = copy_insn(uprobe, vma->vm_file);
2b144498
SD
662 if (ret)
663 return ret;
664
5cb4ac3a 665 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
c1914a09 666 return -ENOTSUPP;
2b144498 667
816c03fb 668 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
669 if (ret)
670 return ret;
671
d9c4a30e
ON
672 /* write_opcode() assumes we don't cross page boundary */
673 BUG_ON((uprobe->offset & ~PAGE_MASK) +
674 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
675
900771a4 676 uprobe->flags |= UPROBE_COPY_INSN;
2b144498 677 }
682968e0
SD
678
679 /*
680 * Ideally, should be updating the probe count after the breakpoint
681 * has been successfully inserted. However a thread could hit the
682 * breakpoint we just inserted even before the probe count is
683 * incremented. If this is the first breakpoint placed, breakpoint
684 * notifier might ignore uprobes and pass the trap to the thread.
685 * Hence increment before and decrement on failure.
686 */
687 atomic_inc(&mm->uprobes_state.count);
816c03fb 688 ret = set_swbp(&uprobe->arch, mm, vaddr);
682968e0
SD
689 if (ret)
690 atomic_dec(&mm->uprobes_state.count);
2b144498
SD
691
692 return ret;
693}
694
e3343e6a 695static void
816c03fb 696remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 697{
816c03fb 698 if (!set_orig_insn(&uprobe->arch, mm, vaddr, true))
682968e0 699 atomic_dec(&mm->uprobes_state.count);
2b144498
SD
700}
701
0326f5a9 702/*
778b032d
ON
703 * There could be threads that have already hit the breakpoint. They
704 * will recheck the current insn and restart if find_uprobe() fails.
705 * See find_active_uprobe().
0326f5a9 706 */
2b144498
SD
707static void delete_uprobe(struct uprobe *uprobe)
708{
709 unsigned long flags;
710
711 spin_lock_irqsave(&uprobes_treelock, flags);
712 rb_erase(&uprobe->rb_node, &uprobes_tree);
713 spin_unlock_irqrestore(&uprobes_treelock, flags);
714 iput(uprobe->inode);
715 put_uprobe(uprobe);
716 atomic_dec(&uprobe_events);
717}
718
26872090
ON
719struct map_info {
720 struct map_info *next;
721 struct mm_struct *mm;
816c03fb 722 unsigned long vaddr;
26872090
ON
723};
724
725static inline struct map_info *free_map_info(struct map_info *info)
2b144498 726{
26872090
ON
727 struct map_info *next = info->next;
728 kfree(info);
729 return next;
730}
731
732static struct map_info *
733build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
734{
735 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498
SD
736 struct prio_tree_iter iter;
737 struct vm_area_struct *vma;
26872090
ON
738 struct map_info *curr = NULL;
739 struct map_info *prev = NULL;
740 struct map_info *info;
741 int more = 0;
2b144498 742
26872090
ON
743 again:
744 mutex_lock(&mapping->i_mmap_mutex);
2b144498
SD
745 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
746 if (!valid_vma(vma, is_register))
747 continue;
748
7a5bfb66
ON
749 if (!prev && !more) {
750 /*
751 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
752 * reclaim. This is optimistic, no harm done if it fails.
753 */
754 prev = kmalloc(sizeof(struct map_info),
755 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
756 if (prev)
757 prev->next = NULL;
758 }
26872090
ON
759 if (!prev) {
760 more++;
761 continue;
2b144498 762 }
2b144498 763
26872090
ON
764 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
765 continue;
7b2d81d4 766
26872090
ON
767 info = prev;
768 prev = prev->next;
769 info->next = curr;
770 curr = info;
2b144498 771
26872090 772 info->mm = vma->vm_mm;
57683f72 773 info->vaddr = offset_to_vaddr(vma, offset);
26872090 774 }
2b144498
SD
775 mutex_unlock(&mapping->i_mmap_mutex);
776
26872090
ON
777 if (!more)
778 goto out;
779
780 prev = curr;
781 while (curr) {
782 mmput(curr->mm);
783 curr = curr->next;
784 }
7b2d81d4 785
26872090
ON
786 do {
787 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
788 if (!info) {
789 curr = ERR_PTR(-ENOMEM);
790 goto out;
791 }
792 info->next = prev;
793 prev = info;
794 } while (--more);
795
796 goto again;
797 out:
798 while (prev)
799 prev = free_map_info(prev);
800 return curr;
2b144498
SD
801}
802
803static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
804{
26872090
ON
805 struct map_info *info;
806 int err = 0;
2b144498 807
26872090
ON
808 info = build_map_info(uprobe->inode->i_mapping,
809 uprobe->offset, is_register);
810 if (IS_ERR(info))
811 return PTR_ERR(info);
7b2d81d4 812
26872090
ON
813 while (info) {
814 struct mm_struct *mm = info->mm;
815 struct vm_area_struct *vma;
7b2d81d4 816
26872090
ON
817 if (err)
818 goto free;
7b2d81d4 819
77fc4af1 820 down_write(&mm->mmap_sem);
f4d6dfe5
ON
821 vma = find_vma(mm, info->vaddr);
822 if (!vma || !valid_vma(vma, is_register) ||
823 vma->vm_file->f_mapping->host != uprobe->inode)
26872090
ON
824 goto unlock;
825
f4d6dfe5
ON
826 if (vma->vm_start > info->vaddr ||
827 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 828 goto unlock;
2b144498 829
2b144498 830 if (is_register) {
26872090 831 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
c5784de2
PZ
832 /*
833 * We can race against uprobe_mmap(), see the
834 * comment near uprobe_hash().
835 */
26872090
ON
836 if (err == -EEXIST)
837 err = 0;
838 } else {
839 remove_breakpoint(uprobe, mm, info->vaddr);
2b144498 840 }
26872090
ON
841 unlock:
842 up_write(&mm->mmap_sem);
843 free:
844 mmput(mm);
845 info = free_map_info(info);
2b144498 846 }
7b2d81d4 847
26872090 848 return err;
2b144498
SD
849}
850
7b2d81d4 851static int __uprobe_register(struct uprobe *uprobe)
2b144498
SD
852{
853 return register_for_each_vma(uprobe, true);
854}
855
7b2d81d4 856static void __uprobe_unregister(struct uprobe *uprobe)
2b144498
SD
857{
858 if (!register_for_each_vma(uprobe, false))
859 delete_uprobe(uprobe);
860
861 /* TODO : cant unregister? schedule a worker thread */
862}
863
864/*
7b2d81d4 865 * uprobe_register - register a probe
2b144498
SD
866 * @inode: the file in which the probe has to be placed.
867 * @offset: offset from the start of the file.
e3343e6a 868 * @uc: information on howto handle the probe..
2b144498 869 *
7b2d81d4 870 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
871 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
872 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 873 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 874 * @uprobe even before the register operation is complete. Creation
e3343e6a 875 * refcount is released when the last @uc for the @uprobe
2b144498
SD
876 * unregisters.
877 *
878 * Return errno if it cannot successully install probes
879 * else return 0 (success)
880 */
e3343e6a 881int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
882{
883 struct uprobe *uprobe;
7b2d81d4 884 int ret;
2b144498 885
e3343e6a 886 if (!inode || !uc || uc->next)
7b2d81d4 887 return -EINVAL;
2b144498
SD
888
889 if (offset > i_size_read(inode))
7b2d81d4 890 return -EINVAL;
2b144498
SD
891
892 ret = 0;
893 mutex_lock(uprobes_hash(inode));
894 uprobe = alloc_uprobe(inode, offset);
7b2d81d4 895
e3343e6a 896 if (uprobe && !consumer_add(uprobe, uc)) {
7b2d81d4 897 ret = __uprobe_register(uprobe);
2b144498
SD
898 if (ret) {
899 uprobe->consumers = NULL;
7b2d81d4
IM
900 __uprobe_unregister(uprobe);
901 } else {
900771a4 902 uprobe->flags |= UPROBE_RUN_HANDLER;
7b2d81d4 903 }
2b144498
SD
904 }
905
906 mutex_unlock(uprobes_hash(inode));
907 put_uprobe(uprobe);
908
909 return ret;
910}
911
912/*
7b2d81d4 913 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
914 * @inode: the file in which the probe has to be removed.
915 * @offset: offset from the start of the file.
e3343e6a 916 * @uc: identify which probe if multiple probes are colocated.
2b144498 917 */
e3343e6a 918void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 919{
7b2d81d4 920 struct uprobe *uprobe;
2b144498 921
e3343e6a 922 if (!inode || !uc)
2b144498
SD
923 return;
924
925 uprobe = find_uprobe(inode, offset);
926 if (!uprobe)
927 return;
928
929 mutex_lock(uprobes_hash(inode));
2b144498 930
e3343e6a 931 if (consumer_del(uprobe, uc)) {
7b2d81d4
IM
932 if (!uprobe->consumers) {
933 __uprobe_unregister(uprobe);
900771a4 934 uprobe->flags &= ~UPROBE_RUN_HANDLER;
7b2d81d4 935 }
2b144498
SD
936 }
937
2b144498
SD
938 mutex_unlock(uprobes_hash(inode));
939 if (uprobe)
940 put_uprobe(uprobe);
941}
942
891c3970
ON
943static struct rb_node *
944find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 945{
2b144498 946 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
947
948 while (n) {
891c3970 949 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 950
891c3970 951 if (inode < u->inode) {
2b144498 952 n = n->rb_left;
891c3970 953 } else if (inode > u->inode) {
2b144498 954 n = n->rb_right;
891c3970
ON
955 } else {
956 if (max < u->offset)
957 n = n->rb_left;
958 else if (min > u->offset)
959 n = n->rb_right;
960 else
961 break;
962 }
2b144498 963 }
7b2d81d4 964
891c3970 965 return n;
2b144498
SD
966}
967
968/*
891c3970 969 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 970 */
891c3970
ON
971static void build_probe_list(struct inode *inode,
972 struct vm_area_struct *vma,
973 unsigned long start, unsigned long end,
974 struct list_head *head)
2b144498 975{
891c3970 976 loff_t min, max;
2b144498 977 unsigned long flags;
891c3970
ON
978 struct rb_node *n, *t;
979 struct uprobe *u;
7b2d81d4 980
891c3970 981 INIT_LIST_HEAD(head);
cb113b47 982 min = vaddr_to_offset(vma, start);
891c3970 983 max = min + (end - start) - 1;
2b144498 984
891c3970
ON
985 spin_lock_irqsave(&uprobes_treelock, flags);
986 n = find_node_in_range(inode, min, max);
987 if (n) {
988 for (t = n; t; t = rb_prev(t)) {
989 u = rb_entry(t, struct uprobe, rb_node);
990 if (u->inode != inode || u->offset < min)
991 break;
992 list_add(&u->pending_list, head);
993 atomic_inc(&u->ref);
994 }
995 for (t = n; (t = rb_next(t)); ) {
996 u = rb_entry(t, struct uprobe, rb_node);
997 if (u->inode != inode || u->offset > max)
998 break;
999 list_add(&u->pending_list, head);
1000 atomic_inc(&u->ref);
1001 }
2b144498
SD
1002 }
1003 spin_unlock_irqrestore(&uprobes_treelock, flags);
1004}
1005
1006/*
1007 * Called from mmap_region.
1008 * called with mm->mmap_sem acquired.
1009 *
1010 * Return -ve no if we fail to insert probes and we cannot
1011 * bail-out.
7b2d81d4
IM
1012 * Return 0 otherwise. i.e:
1013 *
2b144498
SD
1014 * - successful insertion of probes
1015 * - (or) no possible probes to be inserted.
1016 * - (or) insertion of probes failed but we can bail-out.
1017 */
7b2d81d4 1018int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
1019{
1020 struct list_head tmp_list;
665605a2 1021 struct uprobe *uprobe, *u;
2b144498 1022 struct inode *inode;
682968e0 1023 int ret, count;
2b144498
SD
1024
1025 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 1026 return 0;
2b144498
SD
1027
1028 inode = vma->vm_file->f_mapping->host;
1029 if (!inode)
7b2d81d4 1030 return 0;
2b144498 1031
2b144498 1032 mutex_lock(uprobes_mmap_hash(inode));
891c3970 1033 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
7b2d81d4
IM
1034
1035 ret = 0;
682968e0 1036 count = 0;
7b2d81d4 1037
665605a2 1038 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
2b144498 1039 if (!ret) {
57683f72 1040 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
682968e0 1041
682968e0 1042 ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
c5784de2
PZ
1043 /*
1044 * We can race against uprobe_register(), see the
1045 * comment near uprobe_hash().
1046 */
682968e0
SD
1047 if (ret == -EEXIST) {
1048 ret = 0;
1049
1050 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1051 continue;
1052
1053 /*
1054 * Unable to insert a breakpoint, but
1055 * breakpoint lies underneath. Increment the
1056 * probe count.
1057 */
1058 atomic_inc(&vma->vm_mm->uprobes_state.count);
1059 }
1060
1061 if (!ret)
1062 count++;
2b144498
SD
1063 }
1064 put_uprobe(uprobe);
1065 }
1066
1067 mutex_unlock(uprobes_mmap_hash(inode));
1068
682968e0
SD
1069 if (ret)
1070 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1071
2b144498
SD
1072 return ret;
1073}
1074
682968e0
SD
1075/*
1076 * Called in context of a munmap of a vma.
1077 */
cbc91f71 1078void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0
SD
1079{
1080 struct list_head tmp_list;
665605a2 1081 struct uprobe *uprobe, *u;
682968e0
SD
1082 struct inode *inode;
1083
1084 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1085 return;
1086
2fd611a9
ON
1087 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1088 return;
1089
682968e0
SD
1090 if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1091 return;
1092
1093 inode = vma->vm_file->f_mapping->host;
1094 if (!inode)
1095 return;
1096
682968e0 1097 mutex_lock(uprobes_mmap_hash(inode));
891c3970 1098 build_probe_list(inode, vma, start, end, &tmp_list);
682968e0 1099
665605a2 1100 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
57683f72 1101 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
891c3970
ON
1102 /*
1103 * An unregister could have removed the probe before
1104 * unmap. So check before we decrement the count.
1105 */
1106 if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1107 atomic_dec(&vma->vm_mm->uprobes_state.count);
682968e0
SD
1108 put_uprobe(uprobe);
1109 }
1110 mutex_unlock(uprobes_mmap_hash(inode));
1111}
1112
d4b3b638
SD
1113/* Slot allocation for XOL */
1114static int xol_add_vma(struct xol_area *area)
1115{
1116 struct mm_struct *mm;
1117 int ret;
1118
1119 area->page = alloc_page(GFP_HIGHUSER);
1120 if (!area->page)
1121 return -ENOMEM;
1122
1123 ret = -EALREADY;
1124 mm = current->mm;
1125
1126 down_write(&mm->mmap_sem);
1127 if (mm->uprobes_state.xol_area)
1128 goto fail;
1129
1130 ret = -ENOMEM;
1131
1132 /* Try to map as high as possible, this is only a hint. */
1133 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1134 if (area->vaddr & ~PAGE_MASK) {
1135 ret = area->vaddr;
1136 goto fail;
1137 }
1138
1139 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1140 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1141 if (ret)
1142 goto fail;
1143
1144 smp_wmb(); /* pairs with get_xol_area() */
1145 mm->uprobes_state.xol_area = area;
1146 ret = 0;
1147
1148fail:
1149 up_write(&mm->mmap_sem);
1150 if (ret)
1151 __free_page(area->page);
1152
1153 return ret;
1154}
1155
1156static struct xol_area *get_xol_area(struct mm_struct *mm)
1157{
1158 struct xol_area *area;
1159
1160 area = mm->uprobes_state.xol_area;
1161 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1162
1163 return area;
1164}
1165
1166/*
1167 * xol_alloc_area - Allocate process's xol_area.
1168 * This area will be used for storing instructions for execution out of
1169 * line.
1170 *
1171 * Returns the allocated area or NULL.
1172 */
1173static struct xol_area *xol_alloc_area(void)
1174{
1175 struct xol_area *area;
1176
1177 area = kzalloc(sizeof(*area), GFP_KERNEL);
1178 if (unlikely(!area))
1179 return NULL;
1180
1181 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1182
1183 if (!area->bitmap)
1184 goto fail;
1185
1186 init_waitqueue_head(&area->wq);
1187 if (!xol_add_vma(area))
1188 return area;
1189
1190fail:
1191 kfree(area->bitmap);
1192 kfree(area);
1193
1194 return get_xol_area(current->mm);
1195}
1196
1197/*
1198 * uprobe_clear_state - Free the area allocated for slots.
1199 */
1200void uprobe_clear_state(struct mm_struct *mm)
1201{
1202 struct xol_area *area = mm->uprobes_state.xol_area;
1203
1204 if (!area)
1205 return;
1206
1207 put_page(area->page);
1208 kfree(area->bitmap);
1209 kfree(area);
1210}
1211
1212/*
1213 * uprobe_reset_state - Free the area allocated for slots.
1214 */
1215void uprobe_reset_state(struct mm_struct *mm)
1216{
1217 mm->uprobes_state.xol_area = NULL;
682968e0 1218 atomic_set(&mm->uprobes_state.count, 0);
d4b3b638
SD
1219}
1220
1221/*
1222 * - search for a free slot.
1223 */
1224static unsigned long xol_take_insn_slot(struct xol_area *area)
1225{
1226 unsigned long slot_addr;
1227 int slot_nr;
1228
1229 do {
1230 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1231 if (slot_nr < UINSNS_PER_PAGE) {
1232 if (!test_and_set_bit(slot_nr, area->bitmap))
1233 break;
1234
1235 slot_nr = UINSNS_PER_PAGE;
1236 continue;
1237 }
1238 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1239 } while (slot_nr >= UINSNS_PER_PAGE);
1240
1241 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1242 atomic_inc(&area->slot_count);
1243
1244 return slot_addr;
1245}
1246
1247/*
1248 * xol_get_insn_slot - If was not allocated a slot, then
1249 * allocate a slot.
1250 * Returns the allocated slot address or 0.
1251 */
1252static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1253{
1254 struct xol_area *area;
1255 unsigned long offset;
1256 void *vaddr;
1257
1258 area = get_xol_area(current->mm);
1259 if (!area) {
1260 area = xol_alloc_area();
1261 if (!area)
1262 return 0;
1263 }
1264 current->utask->xol_vaddr = xol_take_insn_slot(area);
1265
1266 /*
1267 * Initialize the slot if xol_vaddr points to valid
1268 * instruction slot.
1269 */
1270 if (unlikely(!current->utask->xol_vaddr))
1271 return 0;
1272
1273 current->utask->vaddr = slot_addr;
1274 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1275 vaddr = kmap_atomic(area->page);
1276 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1277 kunmap_atomic(vaddr);
1278
1279 return current->utask->xol_vaddr;
1280}
1281
1282/*
1283 * xol_free_insn_slot - If slot was earlier allocated by
1284 * @xol_get_insn_slot(), make the slot available for
1285 * subsequent requests.
1286 */
1287static void xol_free_insn_slot(struct task_struct *tsk)
1288{
1289 struct xol_area *area;
1290 unsigned long vma_end;
1291 unsigned long slot_addr;
1292
1293 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1294 return;
1295
1296 slot_addr = tsk->utask->xol_vaddr;
1297
1298 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1299 return;
1300
1301 area = tsk->mm->uprobes_state.xol_area;
1302 vma_end = area->vaddr + PAGE_SIZE;
1303 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1304 unsigned long offset;
1305 int slot_nr;
1306
1307 offset = slot_addr - area->vaddr;
1308 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1309 if (slot_nr >= UINSNS_PER_PAGE)
1310 return;
1311
1312 clear_bit(slot_nr, area->bitmap);
1313 atomic_dec(&area->slot_count);
1314 if (waitqueue_active(&area->wq))
1315 wake_up(&area->wq);
1316
1317 tsk->utask->xol_vaddr = 0;
1318 }
1319}
1320
0326f5a9
SD
1321/**
1322 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1323 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1324 * instruction.
1325 * Return the address of the breakpoint instruction.
1326 */
1327unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1328{
1329 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1330}
1331
1332/*
1333 * Called with no locks held.
1334 * Called in context of a exiting or a exec-ing thread.
1335 */
1336void uprobe_free_utask(struct task_struct *t)
1337{
1338 struct uprobe_task *utask = t->utask;
1339
0326f5a9
SD
1340 if (!utask)
1341 return;
1342
1343 if (utask->active_uprobe)
1344 put_uprobe(utask->active_uprobe);
1345
d4b3b638 1346 xol_free_insn_slot(t);
0326f5a9
SD
1347 kfree(utask);
1348 t->utask = NULL;
1349}
1350
1351/*
1352 * Called in context of a new clone/fork from copy_process.
1353 */
1354void uprobe_copy_process(struct task_struct *t)
1355{
1356 t->utask = NULL;
0326f5a9
SD
1357}
1358
1359/*
1360 * Allocate a uprobe_task object for the task.
1361 * Called when the thread hits a breakpoint for the first time.
1362 *
1363 * Returns:
1364 * - pointer to new uprobe_task on success
1365 * - NULL otherwise
1366 */
1367static struct uprobe_task *add_utask(void)
1368{
1369 struct uprobe_task *utask;
1370
1371 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1372 if (unlikely(!utask))
1373 return NULL;
1374
0326f5a9
SD
1375 current->utask = utask;
1376 return utask;
1377}
1378
1379/* Prepare to single-step probed instruction out of line. */
1380static int
1381pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1382{
d4b3b638
SD
1383 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1384 return 0;
1385
0326f5a9
SD
1386 return -EFAULT;
1387}
1388
1389/*
1390 * If we are singlestepping, then ensure this thread is not connected to
1391 * non-fatal signals until completion of singlestep. When xol insn itself
1392 * triggers the signal, restart the original insn even if the task is
1393 * already SIGKILL'ed (since coredump should report the correct ip). This
1394 * is even more important if the task has a handler for SIGSEGV/etc, The
1395 * _same_ instruction should be repeated again after return from the signal
1396 * handler, and SSTEP can never finish in this case.
1397 */
1398bool uprobe_deny_signal(void)
1399{
1400 struct task_struct *t = current;
1401 struct uprobe_task *utask = t->utask;
1402
1403 if (likely(!utask || !utask->active_uprobe))
1404 return false;
1405
1406 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1407
1408 if (signal_pending(t)) {
1409 spin_lock_irq(&t->sighand->siglock);
1410 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1411 spin_unlock_irq(&t->sighand->siglock);
1412
1413 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1414 utask->state = UTASK_SSTEP_TRAPPED;
1415 set_tsk_thread_flag(t, TIF_UPROBE);
1416 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1417 }
1418 }
1419
1420 return true;
1421}
1422
1423/*
1424 * Avoid singlestepping the original instruction if the original instruction
1425 * is a NOP or can be emulated.
1426 */
1427static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1428{
1429 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1430 return true;
1431
1432 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1433 return false;
1434}
1435
d790d346 1436static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1437{
3a9ea052
ON
1438 struct mm_struct *mm = current->mm;
1439 struct uprobe *uprobe = NULL;
0326f5a9 1440 struct vm_area_struct *vma;
0326f5a9 1441
0326f5a9
SD
1442 down_read(&mm->mmap_sem);
1443 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1444 if (vma && vma->vm_start <= bp_vaddr) {
1445 if (valid_vma(vma, false)) {
cb113b47
ON
1446 struct inode *inode = vma->vm_file->f_mapping->host;
1447 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1448
3a9ea052
ON
1449 uprobe = find_uprobe(inode, offset);
1450 }
d790d346
ON
1451
1452 if (!uprobe)
1453 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1454 } else {
1455 *is_swbp = -EFAULT;
0326f5a9 1456 }
0326f5a9
SD
1457 up_read(&mm->mmap_sem);
1458
3a9ea052
ON
1459 return uprobe;
1460}
1461
1462/*
1463 * Run handler and ask thread to singlestep.
1464 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1465 */
1466static void handle_swbp(struct pt_regs *regs)
1467{
1468 struct uprobe_task *utask;
1469 struct uprobe *uprobe;
1470 unsigned long bp_vaddr;
56bb4cf6 1471 int uninitialized_var(is_swbp);
3a9ea052
ON
1472
1473 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1474 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1475
0326f5a9 1476 if (!uprobe) {
56bb4cf6
ON
1477 if (is_swbp > 0) {
1478 /* No matching uprobe; signal SIGTRAP. */
1479 send_sig(SIGTRAP, current, 0);
1480 } else {
1481 /*
1482 * Either we raced with uprobe_unregister() or we can't
1483 * access this memory. The latter is only possible if
1484 * another thread plays with our ->mm. In both cases
1485 * we can simply restart. If this vma was unmapped we
1486 * can pretend this insn was not executed yet and get
1487 * the (correct) SIGSEGV after restart.
1488 */
1489 instruction_pointer_set(regs, bp_vaddr);
1490 }
0326f5a9
SD
1491 return;
1492 }
1493
1494 utask = current->utask;
1495 if (!utask) {
1496 utask = add_utask();
1497 /* Cannot allocate; re-execute the instruction. */
1498 if (!utask)
1499 goto cleanup_ret;
1500 }
1501 utask->active_uprobe = uprobe;
1502 handler_chain(uprobe, regs);
1503 if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1504 goto cleanup_ret;
1505
1506 utask->state = UTASK_SSTEP;
1507 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1508 user_enable_single_step(current);
1509 return;
1510 }
1511
1512cleanup_ret:
1513 if (utask) {
1514 utask->active_uprobe = NULL;
1515 utask->state = UTASK_RUNNING;
1516 }
1517 if (uprobe) {
1518 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1519
1520 /*
1521 * cannot singlestep; cannot skip instruction;
1522 * re-execute the instruction.
1523 */
1524 instruction_pointer_set(regs, bp_vaddr);
1525
1526 put_uprobe(uprobe);
1527 }
1528}
1529
1530/*
1531 * Perform required fix-ups and disable singlestep.
1532 * Allow pending signals to take effect.
1533 */
1534static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1535{
1536 struct uprobe *uprobe;
1537
1538 uprobe = utask->active_uprobe;
1539 if (utask->state == UTASK_SSTEP_ACK)
1540 arch_uprobe_post_xol(&uprobe->arch, regs);
1541 else if (utask->state == UTASK_SSTEP_TRAPPED)
1542 arch_uprobe_abort_xol(&uprobe->arch, regs);
1543 else
1544 WARN_ON_ONCE(1);
1545
1546 put_uprobe(uprobe);
1547 utask->active_uprobe = NULL;
1548 utask->state = UTASK_RUNNING;
1549 user_disable_single_step(current);
d4b3b638 1550 xol_free_insn_slot(current);
0326f5a9
SD
1551
1552 spin_lock_irq(&current->sighand->siglock);
1553 recalc_sigpending(); /* see uprobe_deny_signal() */
1554 spin_unlock_irq(&current->sighand->siglock);
1555}
1556
1557/*
1558 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on
1559 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1560 * allows the thread to return from interrupt.
1561 *
1562 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1563 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1564 * interrupt.
1565 *
1566 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1567 * uprobe_notify_resume().
1568 */
1569void uprobe_notify_resume(struct pt_regs *regs)
1570{
1571 struct uprobe_task *utask;
1572
1573 utask = current->utask;
1574 if (!utask || utask->state == UTASK_BP_HIT)
1575 handle_swbp(regs);
1576 else
1577 handle_singlestep(utask, regs);
1578}
1579
1580/*
1581 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1582 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1583 */
1584int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1585{
1586 struct uprobe_task *utask;
1587
682968e0
SD
1588 if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1589 /* task is currently not uprobed */
0326f5a9
SD
1590 return 0;
1591
1592 utask = current->utask;
1593 if (utask)
1594 utask->state = UTASK_BP_HIT;
1595
1596 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1597
1598 return 1;
1599}
1600
1601/*
1602 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1603 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1604 */
1605int uprobe_post_sstep_notifier(struct pt_regs *regs)
1606{
1607 struct uprobe_task *utask = current->utask;
1608
1609 if (!current->mm || !utask || !utask->active_uprobe)
1610 /* task is currently not uprobed */
1611 return 0;
1612
1613 utask->state = UTASK_SSTEP_ACK;
1614 set_thread_flag(TIF_UPROBE);
1615 return 1;
1616}
1617
1618static struct notifier_block uprobe_exception_nb = {
1619 .notifier_call = arch_uprobe_exception_notify,
1620 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1621};
1622
2b144498
SD
1623static int __init init_uprobes(void)
1624{
1625 int i;
1626
1627 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1628 mutex_init(&uprobes_mutex[i]);
1629 mutex_init(&uprobes_mmap_mutex[i]);
1630 }
0326f5a9
SD
1631
1632 return register_die_notifier(&uprobe_exception_nb);
2b144498 1633}
0326f5a9 1634module_init(init_uprobes);
2b144498
SD
1635
1636static void __exit exit_uprobes(void)
1637{
1638}
2b144498 1639module_exit(exit_uprobes);