]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/events/uprobes.c
Merge tag 'perf-core-for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
194f8dcb 35#include "../../mm/internal.h" /* munlock_vma_page */
32cdba1e 36#include <linux/percpu-rwsem.h>
7b2d81d4 37
2b144498
SD
38#include <linux/uprobes.h>
39
d4b3b638
SD
40#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
41#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
42
2b144498 43static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 44
2b144498
SD
45static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
46
47#define UPROBES_HASH_SZ 13
7b2d81d4 48
c5784de2
PZ
49/*
50 * We need separate register/unregister and mmap/munmap lock hashes because
51 * of mmap_sem nesting.
52 *
53 * uprobe_register() needs to install probes on (potentially) all processes
54 * and thus needs to acquire multiple mmap_sems (consequtively, not
55 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
56 * for the particular process doing the mmap.
57 *
58 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
59 * because of lock order against i_mmap_mutex. This means there's a hole in
60 * the register vma iteration where a mmap() can happen.
61 *
62 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
63 * install a probe where one is already installed.
64 */
65
2b144498
SD
66/* serialize (un)register */
67static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
68
69#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
70
71/* serialize uprobe->pending_list */
72static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 73#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498 74
32cdba1e
ON
75static struct percpu_rw_semaphore dup_mmap_sem;
76
2b144498 77/*
7b2d81d4 78 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
79 * events active at this time. Probably a fine grained per inode count is
80 * better?
81 */
82static atomic_t uprobe_events = ATOMIC_INIT(0);
83
cb9a19fe 84/* Have a copy of original instruction */
71434f2f 85#define UPROBE_COPY_INSN 0
cb9a19fe 86/* Dont run handlers when first register/ last unregister in progress*/
71434f2f 87#define UPROBE_RUN_HANDLER 1
cb9a19fe 88/* Can skip singlestep */
71434f2f 89#define UPROBE_SKIP_SSTEP 2
cb9a19fe 90
3ff54efd
SD
91struct uprobe {
92 struct rb_node rb_node; /* node in the rb tree */
93 atomic_t ref;
94 struct rw_semaphore consumer_rwsem;
4710f05f 95 struct mutex copy_mutex; /* TODO: kill me and UPROBE_COPY_INSN */
3ff54efd
SD
96 struct list_head pending_list;
97 struct uprobe_consumer *consumers;
98 struct inode *inode; /* Also hold a ref to inode */
99 loff_t offset;
71434f2f 100 unsigned long flags;
3ff54efd
SD
101 struct arch_uprobe arch;
102};
103
2b144498
SD
104/*
105 * valid_vma: Verify if the specified vma is an executable vma
106 * Relax restrictions while unregistering: vm_flags might have
107 * changed after breakpoint was inserted.
108 * - is_register: indicates if we are in register context.
109 * - Return 1 if the specified virtual address is in an
110 * executable vma.
111 */
112static bool valid_vma(struct vm_area_struct *vma, bool is_register)
113{
e40cfce6 114 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
2b144498 115
e40cfce6
ON
116 if (is_register)
117 flags |= VM_WRITE;
2b144498 118
e40cfce6 119 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
2b144498
SD
120}
121
57683f72 122static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 123{
57683f72 124 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
125}
126
cb113b47
ON
127static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
128{
129 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
130}
131
2b144498
SD
132/**
133 * __replace_page - replace page in vma by new page.
134 * based on replace_page in mm/ksm.c
135 *
136 * @vma: vma that holds the pte pointing to page
c517ee74 137 * @addr: address the old @page is mapped at
2b144498
SD
138 * @page: the cowed page we are replacing by kpage
139 * @kpage: the modified page we replace page by
140 *
141 * Returns 0 on success, -EFAULT on failure.
142 */
c517ee74
ON
143static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
144 struct page *page, struct page *kpage)
2b144498
SD
145{
146 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
147 spinlock_t *ptl;
148 pte_t *ptep;
9f92448c 149 int err;
6bdb913f
HE
150 /* For mmu_notifiers */
151 const unsigned long mmun_start = addr;
152 const unsigned long mmun_end = addr + PAGE_SIZE;
2b144498 153
194f8dcb 154 /* For try_to_free_swap() and munlock_vma_page() below */
9f92448c
ON
155 lock_page(page);
156
6bdb913f 157 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
9f92448c 158 err = -EAGAIN;
5323ce71 159 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 160 if (!ptep)
9f92448c 161 goto unlock;
2b144498
SD
162
163 get_page(kpage);
164 page_add_new_anon_rmap(kpage, vma, addr);
165
7396fa81
SD
166 if (!PageAnon(page)) {
167 dec_mm_counter(mm, MM_FILEPAGES);
168 inc_mm_counter(mm, MM_ANONPAGES);
169 }
170
2b144498
SD
171 flush_cache_page(vma, addr, pte_pfn(*ptep));
172 ptep_clear_flush(vma, addr, ptep);
173 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
174
175 page_remove_rmap(page);
176 if (!page_mapped(page))
177 try_to_free_swap(page);
2b144498 178 pte_unmap_unlock(ptep, ptl);
2b144498 179
194f8dcb
ON
180 if (vma->vm_flags & VM_LOCKED)
181 munlock_vma_page(page);
182 put_page(page);
183
9f92448c
ON
184 err = 0;
185 unlock:
6bdb913f 186 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
9f92448c
ON
187 unlock_page(page);
188 return err;
2b144498
SD
189}
190
191/**
5cb4ac3a 192 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 193 * @insn: instruction to be checked.
5cb4ac3a 194 * Default implementation of is_swbp_insn
2b144498
SD
195 * Returns true if @insn is a breakpoint instruction.
196 */
5cb4ac3a 197bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 198{
5cb4ac3a 199 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
200}
201
cceb55aa
ON
202static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
203{
204 void *kaddr = kmap_atomic(page);
205 memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
206 kunmap_atomic(kaddr);
207}
208
ed6f6a50
ON
209static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
210{
211 uprobe_opcode_t old_opcode;
212 bool is_swbp;
213
214 copy_opcode(page, vaddr, &old_opcode);
215 is_swbp = is_swbp_insn(&old_opcode);
216
217 if (is_swbp_insn(new_opcode)) {
218 if (is_swbp) /* register: already installed? */
219 return 0;
220 } else {
221 if (!is_swbp) /* unregister: was it changed by us? */
076a365b 222 return 0;
ed6f6a50
ON
223 }
224
225 return 1;
226}
227
2b144498
SD
228/*
229 * NOTE:
230 * Expect the breakpoint instruction to be the smallest size instruction for
231 * the architecture. If an arch has variable length instruction and the
232 * breakpoint instruction is not of the smallest length instruction
cceb55aa 233 * supported by that architecture then we need to modify is_swbp_at_addr and
2b144498
SD
234 * write_opcode accordingly. This would never be a problem for archs that
235 * have fixed length instructions.
236 */
237
238/*
239 * write_opcode - write the opcode at a given virtual address.
240 * @mm: the probed process address space.
2b144498
SD
241 * @vaddr: the virtual address to store the opcode.
242 * @opcode: opcode to be written at @vaddr.
243 *
244 * Called with mm->mmap_sem held (for read and with a reference to
245 * mm).
246 *
247 * For mm @mm, write the opcode at @vaddr.
248 * Return 0 (success) or a negative errno.
249 */
cceb55aa
ON
250static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
251 uprobe_opcode_t opcode)
2b144498
SD
252{
253 struct page *old_page, *new_page;
2b144498
SD
254 void *vaddr_old, *vaddr_new;
255 struct vm_area_struct *vma;
2b144498 256 int ret;
f403072c 257
5323ce71 258retry:
2b144498 259 /* Read the page with vaddr into memory */
75ed82ea 260 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
2b144498
SD
261 if (ret <= 0)
262 return ret;
7b2d81d4 263
ed6f6a50
ON
264 ret = verify_opcode(old_page, vaddr, &opcode);
265 if (ret <= 0)
266 goto put_old;
267
2b144498
SD
268 ret = -ENOMEM;
269 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
270 if (!new_page)
9f92448c 271 goto put_old;
2b144498
SD
272
273 __SetPageUptodate(new_page);
274
2b144498
SD
275 /* copy the page now that we've got it stable */
276 vaddr_old = kmap_atomic(old_page);
277 vaddr_new = kmap_atomic(new_page);
278
279 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
d9c4a30e 280 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
281
282 kunmap_atomic(vaddr_new);
283 kunmap_atomic(vaddr_old);
284
285 ret = anon_vma_prepare(vma);
286 if (ret)
9f92448c 287 goto put_new;
2b144498 288
c517ee74 289 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 290
9f92448c 291put_new:
2b144498 292 page_cache_release(new_page);
9f92448c 293put_old:
7b2d81d4
IM
294 put_page(old_page);
295
5323ce71
ON
296 if (unlikely(ret == -EAGAIN))
297 goto retry;
2b144498
SD
298 return ret;
299}
300
2b144498 301/**
5cb4ac3a 302 * set_swbp - store breakpoint at a given address.
e3343e6a 303 * @auprobe: arch specific probepoint information.
2b144498 304 * @mm: the probed process address space.
2b144498
SD
305 * @vaddr: the virtual address to insert the opcode.
306 *
307 * For mm @mm, store the breakpoint instruction at @vaddr.
308 * Return 0 (success) or a negative errno.
309 */
5cb4ac3a 310int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 311{
cceb55aa 312 return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
313}
314
315/**
316 * set_orig_insn - Restore the original instruction.
317 * @mm: the probed process address space.
e3343e6a 318 * @auprobe: arch specific probepoint information.
2b144498 319 * @vaddr: the virtual address to insert the opcode.
2b144498
SD
320 *
321 * For mm @mm, restore the original opcode (opcode) at @vaddr.
322 * Return 0 (success) or a negative errno.
323 */
7b2d81d4 324int __weak
ded86e7c 325set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 326{
cceb55aa 327 return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
328}
329
330static int match_uprobe(struct uprobe *l, struct uprobe *r)
331{
332 if (l->inode < r->inode)
333 return -1;
7b2d81d4 334
2b144498
SD
335 if (l->inode > r->inode)
336 return 1;
2b144498 337
7b2d81d4
IM
338 if (l->offset < r->offset)
339 return -1;
340
341 if (l->offset > r->offset)
342 return 1;
2b144498
SD
343
344 return 0;
345}
346
347static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
348{
349 struct uprobe u = { .inode = inode, .offset = offset };
350 struct rb_node *n = uprobes_tree.rb_node;
351 struct uprobe *uprobe;
352 int match;
353
354 while (n) {
355 uprobe = rb_entry(n, struct uprobe, rb_node);
356 match = match_uprobe(&u, uprobe);
357 if (!match) {
358 atomic_inc(&uprobe->ref);
359 return uprobe;
360 }
7b2d81d4 361
2b144498
SD
362 if (match < 0)
363 n = n->rb_left;
364 else
365 n = n->rb_right;
366 }
367 return NULL;
368}
369
370/*
371 * Find a uprobe corresponding to a given inode:offset
372 * Acquires uprobes_treelock
373 */
374static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
375{
376 struct uprobe *uprobe;
2b144498 377
6f47caa0 378 spin_lock(&uprobes_treelock);
2b144498 379 uprobe = __find_uprobe(inode, offset);
6f47caa0 380 spin_unlock(&uprobes_treelock);
7b2d81d4 381
2b144498
SD
382 return uprobe;
383}
384
385static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
386{
387 struct rb_node **p = &uprobes_tree.rb_node;
388 struct rb_node *parent = NULL;
389 struct uprobe *u;
390 int match;
391
392 while (*p) {
393 parent = *p;
394 u = rb_entry(parent, struct uprobe, rb_node);
395 match = match_uprobe(uprobe, u);
396 if (!match) {
397 atomic_inc(&u->ref);
398 return u;
399 }
400
401 if (match < 0)
402 p = &parent->rb_left;
403 else
404 p = &parent->rb_right;
405
406 }
7b2d81d4 407
2b144498
SD
408 u = NULL;
409 rb_link_node(&uprobe->rb_node, parent, p);
410 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
411 /* get access + creation ref */
412 atomic_set(&uprobe->ref, 2);
7b2d81d4 413
2b144498
SD
414 return u;
415}
416
417/*
7b2d81d4 418 * Acquire uprobes_treelock.
2b144498
SD
419 * Matching uprobe already exists in rbtree;
420 * increment (access refcount) and return the matching uprobe.
421 *
422 * No matching uprobe; insert the uprobe in rb_tree;
423 * get a double refcount (access + creation) and return NULL.
424 */
425static struct uprobe *insert_uprobe(struct uprobe *uprobe)
426{
2b144498
SD
427 struct uprobe *u;
428
6f47caa0 429 spin_lock(&uprobes_treelock);
2b144498 430 u = __insert_uprobe(uprobe);
6f47caa0 431 spin_unlock(&uprobes_treelock);
7b2d81d4 432
0326f5a9 433 /* For now assume that the instruction need not be single-stepped */
71434f2f 434 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
0326f5a9 435
2b144498
SD
436 return u;
437}
438
439static void put_uprobe(struct uprobe *uprobe)
440{
441 if (atomic_dec_and_test(&uprobe->ref))
442 kfree(uprobe);
443}
444
445static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
446{
447 struct uprobe *uprobe, *cur_uprobe;
448
449 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
450 if (!uprobe)
451 return NULL;
452
453 uprobe->inode = igrab(inode);
454 uprobe->offset = offset;
455 init_rwsem(&uprobe->consumer_rwsem);
4710f05f 456 mutex_init(&uprobe->copy_mutex);
2b144498
SD
457
458 /* add to uprobes_tree, sorted on inode:offset */
459 cur_uprobe = insert_uprobe(uprobe);
460
461 /* a uprobe exists for this inode:offset combination */
462 if (cur_uprobe) {
463 kfree(uprobe);
464 uprobe = cur_uprobe;
465 iput(inode);
7b2d81d4 466 } else {
2b144498 467 atomic_inc(&uprobe_events);
7b2d81d4
IM
468 }
469
2b144498
SD
470 return uprobe;
471}
472
0326f5a9
SD
473static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
474{
475 struct uprobe_consumer *uc;
476
71434f2f 477 if (!test_bit(UPROBE_RUN_HANDLER, &uprobe->flags))
0326f5a9
SD
478 return;
479
480 down_read(&uprobe->consumer_rwsem);
481 for (uc = uprobe->consumers; uc; uc = uc->next) {
482 if (!uc->filter || uc->filter(uc, current))
483 uc->handler(uc, regs);
484 }
485 up_read(&uprobe->consumer_rwsem);
486}
487
2b144498 488/* Returns the previous consumer */
7b2d81d4 489static struct uprobe_consumer *
e3343e6a 490consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
491{
492 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
493 uc->next = uprobe->consumers;
494 uprobe->consumers = uc;
2b144498 495 up_write(&uprobe->consumer_rwsem);
7b2d81d4 496
e3343e6a 497 return uc->next;
2b144498
SD
498}
499
500/*
e3343e6a
SD
501 * For uprobe @uprobe, delete the consumer @uc.
502 * Return true if the @uc is deleted successfully
2b144498
SD
503 * or return false.
504 */
e3343e6a 505static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
506{
507 struct uprobe_consumer **con;
508 bool ret = false;
509
510 down_write(&uprobe->consumer_rwsem);
511 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
512 if (*con == uc) {
513 *con = uc->next;
2b144498
SD
514 ret = true;
515 break;
516 }
517 }
518 up_write(&uprobe->consumer_rwsem);
7b2d81d4 519
2b144498
SD
520 return ret;
521}
522
e3343e6a 523static int
d436615e 524__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 525 unsigned long nbytes, loff_t offset)
2b144498 526{
2b144498
SD
527 struct page *page;
528 void *vaddr;
593609a5
ON
529 unsigned long off;
530 pgoff_t idx;
2b144498
SD
531
532 if (!filp)
533 return -EINVAL;
534
cc359d18
ON
535 if (!mapping->a_ops->readpage)
536 return -EIO;
537
593609a5
ON
538 idx = offset >> PAGE_CACHE_SHIFT;
539 off = offset & ~PAGE_MASK;
2b144498
SD
540
541 /*
542 * Ensure that the page that has the original instruction is
543 * populated and in page-cache.
544 */
545 page = read_mapping_page(mapping, idx, filp);
546 if (IS_ERR(page))
547 return PTR_ERR(page);
548
549 vaddr = kmap_atomic(page);
593609a5 550 memcpy(insn, vaddr + off, nbytes);
2b144498
SD
551 kunmap_atomic(vaddr);
552 page_cache_release(page);
7b2d81d4 553
2b144498
SD
554 return 0;
555}
556
d436615e 557static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
558{
559 struct address_space *mapping;
2b144498 560 unsigned long nbytes;
7b2d81d4 561 int bytes;
2b144498 562
d436615e 563 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
564 mapping = uprobe->inode->i_mapping;
565
566 /* Instruction at end of binary; copy only available bytes */
567 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
568 bytes = uprobe->inode->i_size - uprobe->offset;
569 else
570 bytes = MAX_UINSN_BYTES;
571
572 /* Instruction at the page-boundary; copy bytes in second page */
573 if (nbytes < bytes) {
fc36f595
ON
574 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
575 bytes - nbytes, uprobe->offset + nbytes);
576 if (err)
577 return err;
2b144498
SD
578 bytes = nbytes;
579 }
d436615e 580 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
581}
582
cb9a19fe
ON
583static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
584 struct mm_struct *mm, unsigned long vaddr)
585{
586 int ret = 0;
587
71434f2f 588 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
cb9a19fe
ON
589 return ret;
590
4710f05f 591 mutex_lock(&uprobe->copy_mutex);
71434f2f 592 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
4710f05f
ON
593 goto out;
594
cb9a19fe
ON
595 ret = copy_insn(uprobe, file);
596 if (ret)
597 goto out;
598
599 ret = -ENOTSUPP;
600 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
601 goto out;
602
603 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
604 if (ret)
605 goto out;
606
607 /* write_opcode() assumes we don't cross page boundary */
608 BUG_ON((uprobe->offset & ~PAGE_MASK) +
609 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
610
611 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
71434f2f 612 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
cb9a19fe
ON
613
614 out:
4710f05f
ON
615 mutex_unlock(&uprobe->copy_mutex);
616
cb9a19fe
ON
617 return ret;
618}
619
e3343e6a
SD
620static int
621install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 622 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 623{
f8ac4ec9 624 bool first_uprobe;
2b144498
SD
625 int ret;
626
627 /*
628 * If probe is being deleted, unregister thread could be done with
629 * the vma-rmap-walk through. Adding a probe now can be fatal since
630 * nobody will be able to cleanup. Also we could be from fork or
631 * mremap path, where the probe might have already been inserted.
632 * Hence behave as if probe already existed.
633 */
634 if (!uprobe->consumers)
78f74116 635 return 0;
2b144498 636
cb9a19fe
ON
637 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
638 if (ret)
639 return ret;
682968e0 640
f8ac4ec9
ON
641 /*
642 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
643 * the task can hit this breakpoint right after __replace_page().
644 */
645 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
646 if (first_uprobe)
647 set_bit(MMF_HAS_UPROBES, &mm->flags);
648
816c03fb 649 ret = set_swbp(&uprobe->arch, mm, vaddr);
9f68f672
ON
650 if (!ret)
651 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
652 else if (first_uprobe)
f8ac4ec9 653 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2b144498
SD
654
655 return ret;
656}
657
076a365b 658static int
816c03fb 659remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 660{
9f68f672
ON
661 /* can happen if uprobe_register() fails */
662 if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
076a365b 663 return 0;
9f68f672
ON
664
665 set_bit(MMF_RECALC_UPROBES, &mm->flags);
076a365b 666 return set_orig_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
667}
668
0326f5a9 669/*
778b032d
ON
670 * There could be threads that have already hit the breakpoint. They
671 * will recheck the current insn and restart if find_uprobe() fails.
672 * See find_active_uprobe().
0326f5a9 673 */
2b144498
SD
674static void delete_uprobe(struct uprobe *uprobe)
675{
6f47caa0 676 spin_lock(&uprobes_treelock);
2b144498 677 rb_erase(&uprobe->rb_node, &uprobes_tree);
6f47caa0 678 spin_unlock(&uprobes_treelock);
2b144498
SD
679 iput(uprobe->inode);
680 put_uprobe(uprobe);
681 atomic_dec(&uprobe_events);
682}
683
26872090
ON
684struct map_info {
685 struct map_info *next;
686 struct mm_struct *mm;
816c03fb 687 unsigned long vaddr;
26872090
ON
688};
689
690static inline struct map_info *free_map_info(struct map_info *info)
2b144498 691{
26872090
ON
692 struct map_info *next = info->next;
693 kfree(info);
694 return next;
695}
696
697static struct map_info *
698build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
699{
700 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498 701 struct vm_area_struct *vma;
26872090
ON
702 struct map_info *curr = NULL;
703 struct map_info *prev = NULL;
704 struct map_info *info;
705 int more = 0;
2b144498 706
26872090
ON
707 again:
708 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 709 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
2b144498
SD
710 if (!valid_vma(vma, is_register))
711 continue;
712
7a5bfb66
ON
713 if (!prev && !more) {
714 /*
715 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
716 * reclaim. This is optimistic, no harm done if it fails.
717 */
718 prev = kmalloc(sizeof(struct map_info),
719 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
720 if (prev)
721 prev->next = NULL;
722 }
26872090
ON
723 if (!prev) {
724 more++;
725 continue;
2b144498 726 }
2b144498 727
26872090
ON
728 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
729 continue;
7b2d81d4 730
26872090
ON
731 info = prev;
732 prev = prev->next;
733 info->next = curr;
734 curr = info;
2b144498 735
26872090 736 info->mm = vma->vm_mm;
57683f72 737 info->vaddr = offset_to_vaddr(vma, offset);
26872090 738 }
2b144498
SD
739 mutex_unlock(&mapping->i_mmap_mutex);
740
26872090
ON
741 if (!more)
742 goto out;
743
744 prev = curr;
745 while (curr) {
746 mmput(curr->mm);
747 curr = curr->next;
748 }
7b2d81d4 749
26872090
ON
750 do {
751 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
752 if (!info) {
753 curr = ERR_PTR(-ENOMEM);
754 goto out;
755 }
756 info->next = prev;
757 prev = info;
758 } while (--more);
759
760 goto again;
761 out:
762 while (prev)
763 prev = free_map_info(prev);
764 return curr;
2b144498
SD
765}
766
767static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
768{
26872090
ON
769 struct map_info *info;
770 int err = 0;
2b144498 771
32cdba1e 772 percpu_down_write(&dup_mmap_sem);
26872090
ON
773 info = build_map_info(uprobe->inode->i_mapping,
774 uprobe->offset, is_register);
32cdba1e
ON
775 if (IS_ERR(info)) {
776 err = PTR_ERR(info);
777 goto out;
778 }
7b2d81d4 779
26872090
ON
780 while (info) {
781 struct mm_struct *mm = info->mm;
782 struct vm_area_struct *vma;
7b2d81d4 783
076a365b 784 if (err && is_register)
26872090 785 goto free;
7b2d81d4 786
77fc4af1 787 down_write(&mm->mmap_sem);
f4d6dfe5
ON
788 vma = find_vma(mm, info->vaddr);
789 if (!vma || !valid_vma(vma, is_register) ||
790 vma->vm_file->f_mapping->host != uprobe->inode)
26872090
ON
791 goto unlock;
792
f4d6dfe5
ON
793 if (vma->vm_start > info->vaddr ||
794 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 795 goto unlock;
2b144498 796
78f74116 797 if (is_register)
26872090 798 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
78f74116 799 else
076a365b 800 err |= remove_breakpoint(uprobe, mm, info->vaddr);
78f74116 801
26872090
ON
802 unlock:
803 up_write(&mm->mmap_sem);
804 free:
805 mmput(mm);
806 info = free_map_info(info);
2b144498 807 }
32cdba1e
ON
808 out:
809 percpu_up_write(&dup_mmap_sem);
26872090 810 return err;
2b144498
SD
811}
812
7b2d81d4 813static int __uprobe_register(struct uprobe *uprobe)
2b144498
SD
814{
815 return register_for_each_vma(uprobe, true);
816}
817
7b2d81d4 818static void __uprobe_unregister(struct uprobe *uprobe)
2b144498
SD
819{
820 if (!register_for_each_vma(uprobe, false))
821 delete_uprobe(uprobe);
822
823 /* TODO : cant unregister? schedule a worker thread */
824}
825
826/*
7b2d81d4 827 * uprobe_register - register a probe
2b144498
SD
828 * @inode: the file in which the probe has to be placed.
829 * @offset: offset from the start of the file.
e3343e6a 830 * @uc: information on howto handle the probe..
2b144498 831 *
7b2d81d4 832 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
833 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
834 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 835 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 836 * @uprobe even before the register operation is complete. Creation
e3343e6a 837 * refcount is released when the last @uc for the @uprobe
2b144498
SD
838 * unregisters.
839 *
840 * Return errno if it cannot successully install probes
841 * else return 0 (success)
842 */
e3343e6a 843int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
844{
845 struct uprobe *uprobe;
7b2d81d4 846 int ret;
2b144498 847
e3343e6a 848 if (!inode || !uc || uc->next)
7b2d81d4 849 return -EINVAL;
2b144498
SD
850
851 if (offset > i_size_read(inode))
7b2d81d4 852 return -EINVAL;
2b144498
SD
853
854 ret = 0;
855 mutex_lock(uprobes_hash(inode));
856 uprobe = alloc_uprobe(inode, offset);
7b2d81d4 857
a5f658b7
ON
858 if (!uprobe) {
859 ret = -ENOMEM;
860 } else if (!consumer_add(uprobe, uc)) {
7b2d81d4 861 ret = __uprobe_register(uprobe);
2b144498
SD
862 if (ret) {
863 uprobe->consumers = NULL;
7b2d81d4
IM
864 __uprobe_unregister(uprobe);
865 } else {
71434f2f 866 set_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
7b2d81d4 867 }
2b144498
SD
868 }
869
870 mutex_unlock(uprobes_hash(inode));
6d1d8dfa
SAS
871 if (uprobe)
872 put_uprobe(uprobe);
2b144498
SD
873
874 return ret;
875}
876
877/*
7b2d81d4 878 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
879 * @inode: the file in which the probe has to be removed.
880 * @offset: offset from the start of the file.
e3343e6a 881 * @uc: identify which probe if multiple probes are colocated.
2b144498 882 */
e3343e6a 883void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 884{
7b2d81d4 885 struct uprobe *uprobe;
2b144498 886
e3343e6a 887 if (!inode || !uc)
2b144498
SD
888 return;
889
890 uprobe = find_uprobe(inode, offset);
891 if (!uprobe)
892 return;
893
894 mutex_lock(uprobes_hash(inode));
2b144498 895
e3343e6a 896 if (consumer_del(uprobe, uc)) {
7b2d81d4
IM
897 if (!uprobe->consumers) {
898 __uprobe_unregister(uprobe);
71434f2f 899 clear_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
7b2d81d4 900 }
2b144498
SD
901 }
902
2b144498 903 mutex_unlock(uprobes_hash(inode));
c91368c4 904 put_uprobe(uprobe);
2b144498
SD
905}
906
891c3970
ON
907static struct rb_node *
908find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 909{
2b144498 910 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
911
912 while (n) {
891c3970 913 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 914
891c3970 915 if (inode < u->inode) {
2b144498 916 n = n->rb_left;
891c3970 917 } else if (inode > u->inode) {
2b144498 918 n = n->rb_right;
891c3970
ON
919 } else {
920 if (max < u->offset)
921 n = n->rb_left;
922 else if (min > u->offset)
923 n = n->rb_right;
924 else
925 break;
926 }
2b144498 927 }
7b2d81d4 928
891c3970 929 return n;
2b144498
SD
930}
931
932/*
891c3970 933 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 934 */
891c3970
ON
935static void build_probe_list(struct inode *inode,
936 struct vm_area_struct *vma,
937 unsigned long start, unsigned long end,
938 struct list_head *head)
2b144498 939{
891c3970 940 loff_t min, max;
891c3970
ON
941 struct rb_node *n, *t;
942 struct uprobe *u;
7b2d81d4 943
891c3970 944 INIT_LIST_HEAD(head);
cb113b47 945 min = vaddr_to_offset(vma, start);
891c3970 946 max = min + (end - start) - 1;
2b144498 947
6f47caa0 948 spin_lock(&uprobes_treelock);
891c3970
ON
949 n = find_node_in_range(inode, min, max);
950 if (n) {
951 for (t = n; t; t = rb_prev(t)) {
952 u = rb_entry(t, struct uprobe, rb_node);
953 if (u->inode != inode || u->offset < min)
954 break;
955 list_add(&u->pending_list, head);
956 atomic_inc(&u->ref);
957 }
958 for (t = n; (t = rb_next(t)); ) {
959 u = rb_entry(t, struct uprobe, rb_node);
960 if (u->inode != inode || u->offset > max)
961 break;
962 list_add(&u->pending_list, head);
963 atomic_inc(&u->ref);
964 }
2b144498 965 }
6f47caa0 966 spin_unlock(&uprobes_treelock);
2b144498
SD
967}
968
969/*
5e5be71a 970 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
2b144498 971 *
5e5be71a
ON
972 * Currently we ignore all errors and always return 0, the callers
973 * can't handle the failure anyway.
2b144498 974 */
7b2d81d4 975int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
976{
977 struct list_head tmp_list;
665605a2 978 struct uprobe *uprobe, *u;
2b144498 979 struct inode *inode;
2b144498
SD
980
981 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 982 return 0;
2b144498
SD
983
984 inode = vma->vm_file->f_mapping->host;
985 if (!inode)
7b2d81d4 986 return 0;
2b144498 987
2b144498 988 mutex_lock(uprobes_mmap_hash(inode));
891c3970 989 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
7b2d81d4 990
665605a2 991 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
5e5be71a 992 if (!fatal_signal_pending(current)) {
57683f72 993 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
5e5be71a 994 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
2b144498
SD
995 }
996 put_uprobe(uprobe);
997 }
2b144498
SD
998 mutex_unlock(uprobes_mmap_hash(inode));
999
5e5be71a 1000 return 0;
2b144498
SD
1001}
1002
9f68f672
ON
1003static bool
1004vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1005{
1006 loff_t min, max;
1007 struct inode *inode;
1008 struct rb_node *n;
1009
1010 inode = vma->vm_file->f_mapping->host;
1011
1012 min = vaddr_to_offset(vma, start);
1013 max = min + (end - start) - 1;
1014
1015 spin_lock(&uprobes_treelock);
1016 n = find_node_in_range(inode, min, max);
1017 spin_unlock(&uprobes_treelock);
1018
1019 return !!n;
1020}
1021
682968e0
SD
1022/*
1023 * Called in context of a munmap of a vma.
1024 */
cbc91f71 1025void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 1026{
682968e0
SD
1027 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1028 return;
1029
2fd611a9
ON
1030 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1031 return;
1032
9f68f672
ON
1033 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1034 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
f8ac4ec9
ON
1035 return;
1036
9f68f672
ON
1037 if (vma_has_uprobes(vma, start, end))
1038 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
682968e0
SD
1039}
1040
d4b3b638
SD
1041/* Slot allocation for XOL */
1042static int xol_add_vma(struct xol_area *area)
1043{
1044 struct mm_struct *mm;
1045 int ret;
1046
1047 area->page = alloc_page(GFP_HIGHUSER);
1048 if (!area->page)
1049 return -ENOMEM;
1050
1051 ret = -EALREADY;
1052 mm = current->mm;
1053
1054 down_write(&mm->mmap_sem);
1055 if (mm->uprobes_state.xol_area)
1056 goto fail;
1057
1058 ret = -ENOMEM;
1059
1060 /* Try to map as high as possible, this is only a hint. */
1061 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1062 if (area->vaddr & ~PAGE_MASK) {
1063 ret = area->vaddr;
1064 goto fail;
1065 }
1066
1067 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1068 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1069 if (ret)
1070 goto fail;
1071
1072 smp_wmb(); /* pairs with get_xol_area() */
1073 mm->uprobes_state.xol_area = area;
1074 ret = 0;
1075
1076fail:
1077 up_write(&mm->mmap_sem);
1078 if (ret)
1079 __free_page(area->page);
1080
1081 return ret;
1082}
1083
1084static struct xol_area *get_xol_area(struct mm_struct *mm)
1085{
1086 struct xol_area *area;
1087
1088 area = mm->uprobes_state.xol_area;
1089 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1090
1091 return area;
1092}
1093
1094/*
1095 * xol_alloc_area - Allocate process's xol_area.
1096 * This area will be used for storing instructions for execution out of
1097 * line.
1098 *
1099 * Returns the allocated area or NULL.
1100 */
1101static struct xol_area *xol_alloc_area(void)
1102{
1103 struct xol_area *area;
1104
1105 area = kzalloc(sizeof(*area), GFP_KERNEL);
1106 if (unlikely(!area))
1107 return NULL;
1108
1109 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1110
1111 if (!area->bitmap)
1112 goto fail;
1113
1114 init_waitqueue_head(&area->wq);
1115 if (!xol_add_vma(area))
1116 return area;
1117
1118fail:
1119 kfree(area->bitmap);
1120 kfree(area);
1121
1122 return get_xol_area(current->mm);
1123}
1124
1125/*
1126 * uprobe_clear_state - Free the area allocated for slots.
1127 */
1128void uprobe_clear_state(struct mm_struct *mm)
1129{
1130 struct xol_area *area = mm->uprobes_state.xol_area;
1131
1132 if (!area)
1133 return;
1134
1135 put_page(area->page);
1136 kfree(area->bitmap);
1137 kfree(area);
1138}
1139
32cdba1e
ON
1140void uprobe_start_dup_mmap(void)
1141{
1142 percpu_down_read(&dup_mmap_sem);
1143}
1144
1145void uprobe_end_dup_mmap(void)
1146{
1147 percpu_up_read(&dup_mmap_sem);
1148}
1149
f8ac4ec9
ON
1150void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1151{
61559a81
ON
1152 newmm->uprobes_state.xol_area = NULL;
1153
9f68f672 1154 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
f8ac4ec9 1155 set_bit(MMF_HAS_UPROBES, &newmm->flags);
9f68f672
ON
1156 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1157 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1158 }
f8ac4ec9
ON
1159}
1160
d4b3b638
SD
1161/*
1162 * - search for a free slot.
1163 */
1164static unsigned long xol_take_insn_slot(struct xol_area *area)
1165{
1166 unsigned long slot_addr;
1167 int slot_nr;
1168
1169 do {
1170 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1171 if (slot_nr < UINSNS_PER_PAGE) {
1172 if (!test_and_set_bit(slot_nr, area->bitmap))
1173 break;
1174
1175 slot_nr = UINSNS_PER_PAGE;
1176 continue;
1177 }
1178 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1179 } while (slot_nr >= UINSNS_PER_PAGE);
1180
1181 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1182 atomic_inc(&area->slot_count);
1183
1184 return slot_addr;
1185}
1186
1187/*
1188 * xol_get_insn_slot - If was not allocated a slot, then
1189 * allocate a slot.
1190 * Returns the allocated slot address or 0.
1191 */
1192static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1193{
1194 struct xol_area *area;
1195 unsigned long offset;
1196 void *vaddr;
1197
1198 area = get_xol_area(current->mm);
1199 if (!area) {
1200 area = xol_alloc_area();
1201 if (!area)
1202 return 0;
1203 }
1204 current->utask->xol_vaddr = xol_take_insn_slot(area);
1205
1206 /*
1207 * Initialize the slot if xol_vaddr points to valid
1208 * instruction slot.
1209 */
1210 if (unlikely(!current->utask->xol_vaddr))
1211 return 0;
1212
1213 current->utask->vaddr = slot_addr;
1214 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1215 vaddr = kmap_atomic(area->page);
1216 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1217 kunmap_atomic(vaddr);
65b6ecc0
RV
1218 /*
1219 * We probably need flush_icache_user_range() but it needs vma.
1220 * This should work on supported architectures too.
1221 */
1222 flush_dcache_page(area->page);
d4b3b638
SD
1223
1224 return current->utask->xol_vaddr;
1225}
1226
1227/*
1228 * xol_free_insn_slot - If slot was earlier allocated by
1229 * @xol_get_insn_slot(), make the slot available for
1230 * subsequent requests.
1231 */
1232static void xol_free_insn_slot(struct task_struct *tsk)
1233{
1234 struct xol_area *area;
1235 unsigned long vma_end;
1236 unsigned long slot_addr;
1237
1238 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1239 return;
1240
1241 slot_addr = tsk->utask->xol_vaddr;
1242
1243 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1244 return;
1245
1246 area = tsk->mm->uprobes_state.xol_area;
1247 vma_end = area->vaddr + PAGE_SIZE;
1248 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1249 unsigned long offset;
1250 int slot_nr;
1251
1252 offset = slot_addr - area->vaddr;
1253 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1254 if (slot_nr >= UINSNS_PER_PAGE)
1255 return;
1256
1257 clear_bit(slot_nr, area->bitmap);
1258 atomic_dec(&area->slot_count);
1259 if (waitqueue_active(&area->wq))
1260 wake_up(&area->wq);
1261
1262 tsk->utask->xol_vaddr = 0;
1263 }
1264}
1265
0326f5a9
SD
1266/**
1267 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1268 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1269 * instruction.
1270 * Return the address of the breakpoint instruction.
1271 */
1272unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1273{
1274 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1275}
1276
1277/*
1278 * Called with no locks held.
1279 * Called in context of a exiting or a exec-ing thread.
1280 */
1281void uprobe_free_utask(struct task_struct *t)
1282{
1283 struct uprobe_task *utask = t->utask;
1284
0326f5a9
SD
1285 if (!utask)
1286 return;
1287
1288 if (utask->active_uprobe)
1289 put_uprobe(utask->active_uprobe);
1290
d4b3b638 1291 xol_free_insn_slot(t);
0326f5a9
SD
1292 kfree(utask);
1293 t->utask = NULL;
1294}
1295
1296/*
1297 * Called in context of a new clone/fork from copy_process.
1298 */
1299void uprobe_copy_process(struct task_struct *t)
1300{
1301 t->utask = NULL;
0326f5a9
SD
1302}
1303
1304/*
1305 * Allocate a uprobe_task object for the task.
1306 * Called when the thread hits a breakpoint for the first time.
1307 *
1308 * Returns:
1309 * - pointer to new uprobe_task on success
1310 * - NULL otherwise
1311 */
1312static struct uprobe_task *add_utask(void)
1313{
1314 struct uprobe_task *utask;
1315
1316 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1317 if (unlikely(!utask))
1318 return NULL;
1319
0326f5a9
SD
1320 current->utask = utask;
1321 return utask;
1322}
1323
1324/* Prepare to single-step probed instruction out of line. */
1325static int
1326pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1327{
d4b3b638
SD
1328 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1329 return 0;
1330
0326f5a9
SD
1331 return -EFAULT;
1332}
1333
1334/*
1335 * If we are singlestepping, then ensure this thread is not connected to
1336 * non-fatal signals until completion of singlestep. When xol insn itself
1337 * triggers the signal, restart the original insn even if the task is
1338 * already SIGKILL'ed (since coredump should report the correct ip). This
1339 * is even more important if the task has a handler for SIGSEGV/etc, The
1340 * _same_ instruction should be repeated again after return from the signal
1341 * handler, and SSTEP can never finish in this case.
1342 */
1343bool uprobe_deny_signal(void)
1344{
1345 struct task_struct *t = current;
1346 struct uprobe_task *utask = t->utask;
1347
1348 if (likely(!utask || !utask->active_uprobe))
1349 return false;
1350
1351 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1352
1353 if (signal_pending(t)) {
1354 spin_lock_irq(&t->sighand->siglock);
1355 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1356 spin_unlock_irq(&t->sighand->siglock);
1357
1358 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1359 utask->state = UTASK_SSTEP_TRAPPED;
1360 set_tsk_thread_flag(t, TIF_UPROBE);
1361 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1362 }
1363 }
1364
1365 return true;
1366}
1367
1368/*
1369 * Avoid singlestepping the original instruction if the original instruction
1370 * is a NOP or can be emulated.
1371 */
1372static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1373{
71434f2f 1374 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
0578a970
ON
1375 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1376 return true;
71434f2f 1377 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
0578a970 1378 }
0326f5a9
SD
1379 return false;
1380}
1381
499a4f3e
ON
1382static void mmf_recalc_uprobes(struct mm_struct *mm)
1383{
1384 struct vm_area_struct *vma;
1385
1386 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1387 if (!valid_vma(vma, false))
1388 continue;
1389 /*
1390 * This is not strictly accurate, we can race with
1391 * uprobe_unregister() and see the already removed
1392 * uprobe if delete_uprobe() was not yet called.
1393 */
1394 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1395 return;
1396 }
1397
1398 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1399}
1400
ec75fba9
ON
1401static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
1402{
1403 struct page *page;
1404 uprobe_opcode_t opcode;
1405 int result;
1406
1407 pagefault_disable();
1408 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1409 sizeof(opcode));
1410 pagefault_enable();
1411
1412 if (likely(result == 0))
1413 goto out;
1414
1415 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1416 if (result < 0)
1417 return result;
1418
1419 copy_opcode(page, vaddr, &opcode);
1420 put_page(page);
1421 out:
1422 return is_swbp_insn(&opcode);
1423}
1424
d790d346 1425static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1426{
3a9ea052
ON
1427 struct mm_struct *mm = current->mm;
1428 struct uprobe *uprobe = NULL;
0326f5a9 1429 struct vm_area_struct *vma;
0326f5a9 1430
0326f5a9
SD
1431 down_read(&mm->mmap_sem);
1432 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1433 if (vma && vma->vm_start <= bp_vaddr) {
1434 if (valid_vma(vma, false)) {
cb113b47
ON
1435 struct inode *inode = vma->vm_file->f_mapping->host;
1436 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1437
3a9ea052
ON
1438 uprobe = find_uprobe(inode, offset);
1439 }
d790d346
ON
1440
1441 if (!uprobe)
1442 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1443 } else {
1444 *is_swbp = -EFAULT;
0326f5a9 1445 }
499a4f3e
ON
1446
1447 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1448 mmf_recalc_uprobes(mm);
0326f5a9
SD
1449 up_read(&mm->mmap_sem);
1450
3a9ea052
ON
1451 return uprobe;
1452}
1453
1454/*
1455 * Run handler and ask thread to singlestep.
1456 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1457 */
1458static void handle_swbp(struct pt_regs *regs)
1459{
1460 struct uprobe_task *utask;
1461 struct uprobe *uprobe;
1462 unsigned long bp_vaddr;
56bb4cf6 1463 int uninitialized_var(is_swbp);
3a9ea052
ON
1464
1465 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1466 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1467
0326f5a9 1468 if (!uprobe) {
56bb4cf6
ON
1469 if (is_swbp > 0) {
1470 /* No matching uprobe; signal SIGTRAP. */
1471 send_sig(SIGTRAP, current, 0);
1472 } else {
1473 /*
1474 * Either we raced with uprobe_unregister() or we can't
1475 * access this memory. The latter is only possible if
1476 * another thread plays with our ->mm. In both cases
1477 * we can simply restart. If this vma was unmapped we
1478 * can pretend this insn was not executed yet and get
1479 * the (correct) SIGSEGV after restart.
1480 */
1481 instruction_pointer_set(regs, bp_vaddr);
1482 }
0326f5a9
SD
1483 return;
1484 }
142b18dd
ON
1485 /*
1486 * TODO: move copy_insn/etc into _register and remove this hack.
1487 * After we hit the bp, _unregister + _register can install the
1488 * new and not-yet-analyzed uprobe at the same address, restart.
1489 */
1490 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
71434f2f 1491 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
142b18dd 1492 goto restart;
0326f5a9
SD
1493
1494 utask = current->utask;
1495 if (!utask) {
1496 utask = add_utask();
1497 /* Cannot allocate; re-execute the instruction. */
1498 if (!utask)
0578a970 1499 goto restart;
0326f5a9 1500 }
746a9e6b 1501
0326f5a9 1502 handler_chain(uprobe, regs);
0578a970
ON
1503 if (can_skip_sstep(uprobe, regs))
1504 goto out;
0326f5a9 1505
0326f5a9 1506 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
746a9e6b
ON
1507 utask->active_uprobe = uprobe;
1508 utask->state = UTASK_SSTEP;
0326f5a9
SD
1509 return;
1510 }
1511
0578a970
ON
1512restart:
1513 /*
1514 * cannot singlestep; cannot skip instruction;
1515 * re-execute the instruction.
1516 */
1517 instruction_pointer_set(regs, bp_vaddr);
1518out:
8bd87445 1519 put_uprobe(uprobe);
0326f5a9
SD
1520}
1521
1522/*
1523 * Perform required fix-ups and disable singlestep.
1524 * Allow pending signals to take effect.
1525 */
1526static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1527{
1528 struct uprobe *uprobe;
1529
1530 uprobe = utask->active_uprobe;
1531 if (utask->state == UTASK_SSTEP_ACK)
1532 arch_uprobe_post_xol(&uprobe->arch, regs);
1533 else if (utask->state == UTASK_SSTEP_TRAPPED)
1534 arch_uprobe_abort_xol(&uprobe->arch, regs);
1535 else
1536 WARN_ON_ONCE(1);
1537
1538 put_uprobe(uprobe);
1539 utask->active_uprobe = NULL;
1540 utask->state = UTASK_RUNNING;
d4b3b638 1541 xol_free_insn_slot(current);
0326f5a9
SD
1542
1543 spin_lock_irq(&current->sighand->siglock);
1544 recalc_sigpending(); /* see uprobe_deny_signal() */
1545 spin_unlock_irq(&current->sighand->siglock);
1546}
1547
1548/*
1b08e907
ON
1549 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1550 * allows the thread to return from interrupt. After that handle_swbp()
1551 * sets utask->active_uprobe.
0326f5a9 1552 *
1b08e907
ON
1553 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1554 * and allows the thread to return from interrupt.
0326f5a9
SD
1555 *
1556 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1557 * uprobe_notify_resume().
1558 */
1559void uprobe_notify_resume(struct pt_regs *regs)
1560{
1561 struct uprobe_task *utask;
1562
db023ea5
ON
1563 clear_thread_flag(TIF_UPROBE);
1564
0326f5a9 1565 utask = current->utask;
1b08e907 1566 if (utask && utask->active_uprobe)
0326f5a9 1567 handle_singlestep(utask, regs);
1b08e907
ON
1568 else
1569 handle_swbp(regs);
0326f5a9
SD
1570}
1571
1572/*
1573 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1574 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1575 */
1576int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1577{
f8ac4ec9 1578 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
0326f5a9
SD
1579 return 0;
1580
0326f5a9 1581 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1582 return 1;
1583}
1584
1585/*
1586 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1587 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1588 */
1589int uprobe_post_sstep_notifier(struct pt_regs *regs)
1590{
1591 struct uprobe_task *utask = current->utask;
1592
1593 if (!current->mm || !utask || !utask->active_uprobe)
1594 /* task is currently not uprobed */
1595 return 0;
1596
1597 utask->state = UTASK_SSTEP_ACK;
1598 set_thread_flag(TIF_UPROBE);
1599 return 1;
1600}
1601
1602static struct notifier_block uprobe_exception_nb = {
1603 .notifier_call = arch_uprobe_exception_notify,
1604 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1605};
1606
2b144498
SD
1607static int __init init_uprobes(void)
1608{
1609 int i;
1610
1611 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1612 mutex_init(&uprobes_mutex[i]);
1613 mutex_init(&uprobes_mmap_mutex[i]);
1614 }
0326f5a9 1615
32cdba1e
ON
1616 if (percpu_init_rwsem(&dup_mmap_sem))
1617 return -ENOMEM;
1618
0326f5a9 1619 return register_die_notifier(&uprobe_exception_nb);
2b144498 1620}
0326f5a9 1621module_init(init_uprobes);
2b144498
SD
1622
1623static void __exit exit_uprobes(void)
1624{
1625}
2b144498 1626module_exit(exit_uprobes);