]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/events/uprobes.c
uprobes: Don't use loff_t for the valid virtual address
[mirror_ubuntu-artful-kernel.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
7b2d81d4 35
2b144498
SD
36#include <linux/uprobes.h>
37
d4b3b638
SD
38#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
40
2b144498 41static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 42
2b144498
SD
43static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
44
45#define UPROBES_HASH_SZ 13
7b2d81d4 46
c5784de2
PZ
47/*
48 * We need separate register/unregister and mmap/munmap lock hashes because
49 * of mmap_sem nesting.
50 *
51 * uprobe_register() needs to install probes on (potentially) all processes
52 * and thus needs to acquire multiple mmap_sems (consequtively, not
53 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
54 * for the particular process doing the mmap.
55 *
56 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
57 * because of lock order against i_mmap_mutex. This means there's a hole in
58 * the register vma iteration where a mmap() can happen.
59 *
60 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
61 * install a probe where one is already installed.
62 */
63
2b144498
SD
64/* serialize (un)register */
65static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
66
67#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
68
69/* serialize uprobe->pending_list */
70static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 71#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
72
73/*
7b2d81d4 74 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
75 * events active at this time. Probably a fine grained per inode count is
76 * better?
77 */
78static atomic_t uprobe_events = ATOMIC_INIT(0);
79
3ff54efd
SD
80struct uprobe {
81 struct rb_node rb_node; /* node in the rb tree */
82 atomic_t ref;
83 struct rw_semaphore consumer_rwsem;
84 struct list_head pending_list;
85 struct uprobe_consumer *consumers;
86 struct inode *inode; /* Also hold a ref to inode */
87 loff_t offset;
88 int flags;
89 struct arch_uprobe arch;
90};
91
2b144498
SD
92/*
93 * valid_vma: Verify if the specified vma is an executable vma
94 * Relax restrictions while unregistering: vm_flags might have
95 * changed after breakpoint was inserted.
96 * - is_register: indicates if we are in register context.
97 * - Return 1 if the specified virtual address is in an
98 * executable vma.
99 */
100static bool valid_vma(struct vm_area_struct *vma, bool is_register)
101{
102 if (!vma->vm_file)
103 return false;
104
105 if (!is_register)
106 return true;
107
ea131377
ON
108 if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
109 == (VM_READ|VM_EXEC))
2b144498
SD
110 return true;
111
112 return false;
113}
114
115static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
116{
117 loff_t vaddr;
118
119 vaddr = vma->vm_start + offset;
120 vaddr -= vma->vm_pgoff << PAGE_SHIFT;
7b2d81d4 121
2b144498
SD
122 return vaddr;
123}
124
125/**
126 * __replace_page - replace page in vma by new page.
127 * based on replace_page in mm/ksm.c
128 *
129 * @vma: vma that holds the pte pointing to page
130 * @page: the cowed page we are replacing by kpage
131 * @kpage: the modified page we replace page by
132 *
133 * Returns 0 on success, -EFAULT on failure.
134 */
7b2d81d4 135static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
2b144498
SD
136{
137 struct mm_struct *mm = vma->vm_mm;
2b144498 138 unsigned long addr;
5323ce71
ON
139 spinlock_t *ptl;
140 pte_t *ptep;
2b144498
SD
141
142 addr = page_address_in_vma(page, vma);
143 if (addr == -EFAULT)
5323ce71 144 return -EFAULT;
2b144498 145
5323ce71 146 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 147 if (!ptep)
5323ce71 148 return -EAGAIN;
2b144498
SD
149
150 get_page(kpage);
151 page_add_new_anon_rmap(kpage, vma, addr);
152
7396fa81
SD
153 if (!PageAnon(page)) {
154 dec_mm_counter(mm, MM_FILEPAGES);
155 inc_mm_counter(mm, MM_ANONPAGES);
156 }
157
2b144498
SD
158 flush_cache_page(vma, addr, pte_pfn(*ptep));
159 ptep_clear_flush(vma, addr, ptep);
160 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
161
162 page_remove_rmap(page);
163 if (!page_mapped(page))
164 try_to_free_swap(page);
165 put_page(page);
166 pte_unmap_unlock(ptep, ptl);
2b144498 167
5323ce71 168 return 0;
2b144498
SD
169}
170
171/**
5cb4ac3a 172 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 173 * @insn: instruction to be checked.
5cb4ac3a 174 * Default implementation of is_swbp_insn
2b144498
SD
175 * Returns true if @insn is a breakpoint instruction.
176 */
5cb4ac3a 177bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 178{
5cb4ac3a 179 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
180}
181
182/*
183 * NOTE:
184 * Expect the breakpoint instruction to be the smallest size instruction for
185 * the architecture. If an arch has variable length instruction and the
186 * breakpoint instruction is not of the smallest length instruction
187 * supported by that architecture then we need to modify read_opcode /
188 * write_opcode accordingly. This would never be a problem for archs that
189 * have fixed length instructions.
190 */
191
192/*
193 * write_opcode - write the opcode at a given virtual address.
e3343e6a 194 * @auprobe: arch breakpointing information.
2b144498 195 * @mm: the probed process address space.
2b144498
SD
196 * @vaddr: the virtual address to store the opcode.
197 * @opcode: opcode to be written at @vaddr.
198 *
199 * Called with mm->mmap_sem held (for read and with a reference to
200 * mm).
201 *
202 * For mm @mm, write the opcode at @vaddr.
203 * Return 0 (success) or a negative errno.
204 */
e3343e6a 205static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
2b144498
SD
206 unsigned long vaddr, uprobe_opcode_t opcode)
207{
208 struct page *old_page, *new_page;
209 struct address_space *mapping;
210 void *vaddr_old, *vaddr_new;
211 struct vm_area_struct *vma;
3ff54efd 212 struct uprobe *uprobe;
2b144498 213 int ret;
5323ce71 214retry:
2b144498
SD
215 /* Read the page with vaddr into memory */
216 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
217 if (ret <= 0)
218 return ret;
7b2d81d4 219
2b144498
SD
220 ret = -EINVAL;
221
222 /*
223 * We are interested in text pages only. Our pages of interest
224 * should be mapped for read and execute only. We desist from
225 * adding probes in write mapped pages since the breakpoints
226 * might end up in the file copy.
227 */
5cb4ac3a 228 if (!valid_vma(vma, is_swbp_insn(&opcode)))
2b144498
SD
229 goto put_out;
230
3ff54efd 231 uprobe = container_of(auprobe, struct uprobe, arch);
2b144498
SD
232 mapping = uprobe->inode->i_mapping;
233 if (mapping != vma->vm_file->f_mapping)
234 goto put_out;
235
2b144498
SD
236 ret = -ENOMEM;
237 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
238 if (!new_page)
239 goto put_out;
240
241 __SetPageUptodate(new_page);
242
243 /*
244 * lock page will serialize against do_wp_page()'s
245 * PageAnon() handling
246 */
247 lock_page(old_page);
248 /* copy the page now that we've got it stable */
249 vaddr_old = kmap_atomic(old_page);
250 vaddr_new = kmap_atomic(new_page);
251
252 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
d9c4a30e 253 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
254
255 kunmap_atomic(vaddr_new);
256 kunmap_atomic(vaddr_old);
257
258 ret = anon_vma_prepare(vma);
259 if (ret)
260 goto unlock_out;
261
262 lock_page(new_page);
263 ret = __replace_page(vma, old_page, new_page);
264 unlock_page(new_page);
265
266unlock_out:
267 unlock_page(old_page);
268 page_cache_release(new_page);
269
270put_out:
7b2d81d4
IM
271 put_page(old_page);
272
5323ce71
ON
273 if (unlikely(ret == -EAGAIN))
274 goto retry;
2b144498
SD
275 return ret;
276}
277
278/**
279 * read_opcode - read the opcode at a given virtual address.
280 * @mm: the probed process address space.
281 * @vaddr: the virtual address to read the opcode.
282 * @opcode: location to store the read opcode.
283 *
284 * Called with mm->mmap_sem held (for read and with a reference to
285 * mm.
286 *
287 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
288 * Return 0 (success) or a negative errno.
289 */
7b2d81d4 290static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
2b144498
SD
291{
292 struct page *page;
293 void *vaddr_new;
294 int ret;
295
a3d7bb47 296 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
2b144498
SD
297 if (ret <= 0)
298 return ret;
299
300 lock_page(page);
301 vaddr_new = kmap_atomic(page);
302 vaddr &= ~PAGE_MASK;
5cb4ac3a 303 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
304 kunmap_atomic(vaddr_new);
305 unlock_page(page);
7b2d81d4
IM
306
307 put_page(page);
308
2b144498
SD
309 return 0;
310}
311
5cb4ac3a 312static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
2b144498
SD
313{
314 uprobe_opcode_t opcode;
7b2d81d4 315 int result;
2b144498 316
c00b2750
ON
317 if (current->mm == mm) {
318 pagefault_disable();
319 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
320 sizeof(opcode));
321 pagefault_enable();
322
323 if (likely(result == 0))
324 goto out;
325 }
326
7b2d81d4 327 result = read_opcode(mm, vaddr, &opcode);
2b144498
SD
328 if (result)
329 return result;
c00b2750 330out:
5cb4ac3a 331 if (is_swbp_insn(&opcode))
2b144498
SD
332 return 1;
333
334 return 0;
335}
336
337/**
5cb4ac3a 338 * set_swbp - store breakpoint at a given address.
e3343e6a 339 * @auprobe: arch specific probepoint information.
2b144498 340 * @mm: the probed process address space.
2b144498
SD
341 * @vaddr: the virtual address to insert the opcode.
342 *
343 * For mm @mm, store the breakpoint instruction at @vaddr.
344 * Return 0 (success) or a negative errno.
345 */
5cb4ac3a 346int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 347{
7b2d81d4 348 int result;
c5784de2
PZ
349 /*
350 * See the comment near uprobes_hash().
351 */
5cb4ac3a 352 result = is_swbp_at_addr(mm, vaddr);
2b144498
SD
353 if (result == 1)
354 return -EEXIST;
355
356 if (result)
357 return result;
358
5cb4ac3a 359 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
360}
361
362/**
363 * set_orig_insn - Restore the original instruction.
364 * @mm: the probed process address space.
e3343e6a 365 * @auprobe: arch specific probepoint information.
2b144498
SD
366 * @vaddr: the virtual address to insert the opcode.
367 * @verify: if true, verify existance of breakpoint instruction.
368 *
369 * For mm @mm, restore the original opcode (opcode) at @vaddr.
370 * Return 0 (success) or a negative errno.
371 */
7b2d81d4 372int __weak
e3343e6a 373set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
2b144498
SD
374{
375 if (verify) {
7b2d81d4 376 int result;
2b144498 377
5cb4ac3a 378 result = is_swbp_at_addr(mm, vaddr);
2b144498
SD
379 if (!result)
380 return -EINVAL;
381
382 if (result != 1)
383 return result;
384 }
e3343e6a 385 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
386}
387
388static int match_uprobe(struct uprobe *l, struct uprobe *r)
389{
390 if (l->inode < r->inode)
391 return -1;
7b2d81d4 392
2b144498
SD
393 if (l->inode > r->inode)
394 return 1;
2b144498 395
7b2d81d4
IM
396 if (l->offset < r->offset)
397 return -1;
398
399 if (l->offset > r->offset)
400 return 1;
2b144498
SD
401
402 return 0;
403}
404
405static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
406{
407 struct uprobe u = { .inode = inode, .offset = offset };
408 struct rb_node *n = uprobes_tree.rb_node;
409 struct uprobe *uprobe;
410 int match;
411
412 while (n) {
413 uprobe = rb_entry(n, struct uprobe, rb_node);
414 match = match_uprobe(&u, uprobe);
415 if (!match) {
416 atomic_inc(&uprobe->ref);
417 return uprobe;
418 }
7b2d81d4 419
2b144498
SD
420 if (match < 0)
421 n = n->rb_left;
422 else
423 n = n->rb_right;
424 }
425 return NULL;
426}
427
428/*
429 * Find a uprobe corresponding to a given inode:offset
430 * Acquires uprobes_treelock
431 */
432static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
433{
434 struct uprobe *uprobe;
435 unsigned long flags;
436
437 spin_lock_irqsave(&uprobes_treelock, flags);
438 uprobe = __find_uprobe(inode, offset);
439 spin_unlock_irqrestore(&uprobes_treelock, flags);
7b2d81d4 440
2b144498
SD
441 return uprobe;
442}
443
444static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
445{
446 struct rb_node **p = &uprobes_tree.rb_node;
447 struct rb_node *parent = NULL;
448 struct uprobe *u;
449 int match;
450
451 while (*p) {
452 parent = *p;
453 u = rb_entry(parent, struct uprobe, rb_node);
454 match = match_uprobe(uprobe, u);
455 if (!match) {
456 atomic_inc(&u->ref);
457 return u;
458 }
459
460 if (match < 0)
461 p = &parent->rb_left;
462 else
463 p = &parent->rb_right;
464
465 }
7b2d81d4 466
2b144498
SD
467 u = NULL;
468 rb_link_node(&uprobe->rb_node, parent, p);
469 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
470 /* get access + creation ref */
471 atomic_set(&uprobe->ref, 2);
7b2d81d4 472
2b144498
SD
473 return u;
474}
475
476/*
7b2d81d4 477 * Acquire uprobes_treelock.
2b144498
SD
478 * Matching uprobe already exists in rbtree;
479 * increment (access refcount) and return the matching uprobe.
480 *
481 * No matching uprobe; insert the uprobe in rb_tree;
482 * get a double refcount (access + creation) and return NULL.
483 */
484static struct uprobe *insert_uprobe(struct uprobe *uprobe)
485{
486 unsigned long flags;
487 struct uprobe *u;
488
489 spin_lock_irqsave(&uprobes_treelock, flags);
490 u = __insert_uprobe(uprobe);
491 spin_unlock_irqrestore(&uprobes_treelock, flags);
7b2d81d4 492
0326f5a9
SD
493 /* For now assume that the instruction need not be single-stepped */
494 uprobe->flags |= UPROBE_SKIP_SSTEP;
495
2b144498
SD
496 return u;
497}
498
499static void put_uprobe(struct uprobe *uprobe)
500{
501 if (atomic_dec_and_test(&uprobe->ref))
502 kfree(uprobe);
503}
504
505static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
506{
507 struct uprobe *uprobe, *cur_uprobe;
508
509 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
510 if (!uprobe)
511 return NULL;
512
513 uprobe->inode = igrab(inode);
514 uprobe->offset = offset;
515 init_rwsem(&uprobe->consumer_rwsem);
2b144498
SD
516
517 /* add to uprobes_tree, sorted on inode:offset */
518 cur_uprobe = insert_uprobe(uprobe);
519
520 /* a uprobe exists for this inode:offset combination */
521 if (cur_uprobe) {
522 kfree(uprobe);
523 uprobe = cur_uprobe;
524 iput(inode);
7b2d81d4 525 } else {
2b144498 526 atomic_inc(&uprobe_events);
7b2d81d4
IM
527 }
528
2b144498
SD
529 return uprobe;
530}
531
0326f5a9
SD
532static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
533{
534 struct uprobe_consumer *uc;
535
536 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
537 return;
538
539 down_read(&uprobe->consumer_rwsem);
540 for (uc = uprobe->consumers; uc; uc = uc->next) {
541 if (!uc->filter || uc->filter(uc, current))
542 uc->handler(uc, regs);
543 }
544 up_read(&uprobe->consumer_rwsem);
545}
546
2b144498 547/* Returns the previous consumer */
7b2d81d4 548static struct uprobe_consumer *
e3343e6a 549consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
550{
551 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
552 uc->next = uprobe->consumers;
553 uprobe->consumers = uc;
2b144498 554 up_write(&uprobe->consumer_rwsem);
7b2d81d4 555
e3343e6a 556 return uc->next;
2b144498
SD
557}
558
559/*
e3343e6a
SD
560 * For uprobe @uprobe, delete the consumer @uc.
561 * Return true if the @uc is deleted successfully
2b144498
SD
562 * or return false.
563 */
e3343e6a 564static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
565{
566 struct uprobe_consumer **con;
567 bool ret = false;
568
569 down_write(&uprobe->consumer_rwsem);
570 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
571 if (*con == uc) {
572 *con = uc->next;
2b144498
SD
573 ret = true;
574 break;
575 }
576 }
577 up_write(&uprobe->consumer_rwsem);
7b2d81d4 578
2b144498
SD
579 return ret;
580}
581
e3343e6a 582static int
d436615e 583__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
2b144498
SD
584 unsigned long nbytes, unsigned long offset)
585{
2b144498
SD
586 struct page *page;
587 void *vaddr;
588 unsigned long off1;
589 unsigned long idx;
590
591 if (!filp)
592 return -EINVAL;
593
cc359d18
ON
594 if (!mapping->a_ops->readpage)
595 return -EIO;
596
2b144498
SD
597 idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
598 off1 = offset &= ~PAGE_MASK;
599
600 /*
601 * Ensure that the page that has the original instruction is
602 * populated and in page-cache.
603 */
604 page = read_mapping_page(mapping, idx, filp);
605 if (IS_ERR(page))
606 return PTR_ERR(page);
607
608 vaddr = kmap_atomic(page);
609 memcpy(insn, vaddr + off1, nbytes);
610 kunmap_atomic(vaddr);
611 page_cache_release(page);
7b2d81d4 612
2b144498
SD
613 return 0;
614}
615
d436615e 616static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
617{
618 struct address_space *mapping;
2b144498 619 unsigned long nbytes;
7b2d81d4 620 int bytes;
2b144498 621
d436615e 622 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
623 mapping = uprobe->inode->i_mapping;
624
625 /* Instruction at end of binary; copy only available bytes */
626 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
627 bytes = uprobe->inode->i_size - uprobe->offset;
628 else
629 bytes = MAX_UINSN_BYTES;
630
631 /* Instruction at the page-boundary; copy bytes in second page */
632 if (nbytes < bytes) {
fc36f595
ON
633 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
634 bytes - nbytes, uprobe->offset + nbytes);
635 if (err)
636 return err;
2b144498
SD
637 bytes = nbytes;
638 }
d436615e 639 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
640}
641
682968e0
SD
642/*
643 * How mm->uprobes_state.count gets updated
644 * uprobe_mmap() increments the count if
645 * - it successfully adds a breakpoint.
646 * - it cannot add a breakpoint, but sees that there is a underlying
647 * breakpoint (via a is_swbp_at_addr()).
648 *
649 * uprobe_munmap() decrements the count if
650 * - it sees a underlying breakpoint, (via is_swbp_at_addr)
651 * (Subsequent uprobe_unregister wouldnt find the breakpoint
652 * unless a uprobe_mmap kicks in, since the old vma would be
653 * dropped just after uprobe_munmap.)
654 *
655 * uprobe_register increments the count if:
656 * - it successfully adds a breakpoint.
657 *
658 * uprobe_unregister decrements the count if:
659 * - it sees a underlying breakpoint and removes successfully.
660 * (via is_swbp_at_addr)
661 * (Subsequent uprobe_munmap wouldnt find the breakpoint
662 * since there is no underlying breakpoint after the
663 * breakpoint removal.)
664 */
e3343e6a
SD
665static int
666install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 667 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 668{
2b144498
SD
669 int ret;
670
671 /*
672 * If probe is being deleted, unregister thread could be done with
673 * the vma-rmap-walk through. Adding a probe now can be fatal since
674 * nobody will be able to cleanup. Also we could be from fork or
675 * mremap path, where the probe might have already been inserted.
676 * Hence behave as if probe already existed.
677 */
678 if (!uprobe->consumers)
679 return -EEXIST;
680
900771a4 681 if (!(uprobe->flags & UPROBE_COPY_INSN)) {
d436615e 682 ret = copy_insn(uprobe, vma->vm_file);
2b144498
SD
683 if (ret)
684 return ret;
685
5cb4ac3a 686 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
c1914a09 687 return -ENOTSUPP;
2b144498 688
816c03fb 689 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
690 if (ret)
691 return ret;
692
d9c4a30e
ON
693 /* write_opcode() assumes we don't cross page boundary */
694 BUG_ON((uprobe->offset & ~PAGE_MASK) +
695 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
696
900771a4 697 uprobe->flags |= UPROBE_COPY_INSN;
2b144498 698 }
682968e0
SD
699
700 /*
701 * Ideally, should be updating the probe count after the breakpoint
702 * has been successfully inserted. However a thread could hit the
703 * breakpoint we just inserted even before the probe count is
704 * incremented. If this is the first breakpoint placed, breakpoint
705 * notifier might ignore uprobes and pass the trap to the thread.
706 * Hence increment before and decrement on failure.
707 */
708 atomic_inc(&mm->uprobes_state.count);
816c03fb 709 ret = set_swbp(&uprobe->arch, mm, vaddr);
682968e0
SD
710 if (ret)
711 atomic_dec(&mm->uprobes_state.count);
2b144498
SD
712
713 return ret;
714}
715
e3343e6a 716static void
816c03fb 717remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 718{
816c03fb 719 if (!set_orig_insn(&uprobe->arch, mm, vaddr, true))
682968e0 720 atomic_dec(&mm->uprobes_state.count);
2b144498
SD
721}
722
0326f5a9 723/*
778b032d
ON
724 * There could be threads that have already hit the breakpoint. They
725 * will recheck the current insn and restart if find_uprobe() fails.
726 * See find_active_uprobe().
0326f5a9 727 */
2b144498
SD
728static void delete_uprobe(struct uprobe *uprobe)
729{
730 unsigned long flags;
731
732 spin_lock_irqsave(&uprobes_treelock, flags);
733 rb_erase(&uprobe->rb_node, &uprobes_tree);
734 spin_unlock_irqrestore(&uprobes_treelock, flags);
735 iput(uprobe->inode);
736 put_uprobe(uprobe);
737 atomic_dec(&uprobe_events);
738}
739
26872090
ON
740struct map_info {
741 struct map_info *next;
742 struct mm_struct *mm;
816c03fb 743 unsigned long vaddr;
26872090
ON
744};
745
746static inline struct map_info *free_map_info(struct map_info *info)
2b144498 747{
26872090
ON
748 struct map_info *next = info->next;
749 kfree(info);
750 return next;
751}
752
753static struct map_info *
754build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
755{
756 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498
SD
757 struct prio_tree_iter iter;
758 struct vm_area_struct *vma;
26872090
ON
759 struct map_info *curr = NULL;
760 struct map_info *prev = NULL;
761 struct map_info *info;
762 int more = 0;
2b144498 763
26872090
ON
764 again:
765 mutex_lock(&mapping->i_mmap_mutex);
2b144498
SD
766 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
767 if (!valid_vma(vma, is_register))
768 continue;
769
7a5bfb66
ON
770 if (!prev && !more) {
771 /*
772 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
773 * reclaim. This is optimistic, no harm done if it fails.
774 */
775 prev = kmalloc(sizeof(struct map_info),
776 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
777 if (prev)
778 prev->next = NULL;
779 }
26872090
ON
780 if (!prev) {
781 more++;
782 continue;
2b144498 783 }
2b144498 784
26872090
ON
785 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
786 continue;
7b2d81d4 787
26872090
ON
788 info = prev;
789 prev = prev->next;
790 info->next = curr;
791 curr = info;
2b144498 792
26872090
ON
793 info->mm = vma->vm_mm;
794 info->vaddr = vma_address(vma, offset);
795 }
2b144498
SD
796 mutex_unlock(&mapping->i_mmap_mutex);
797
26872090
ON
798 if (!more)
799 goto out;
800
801 prev = curr;
802 while (curr) {
803 mmput(curr->mm);
804 curr = curr->next;
805 }
7b2d81d4 806
26872090
ON
807 do {
808 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
809 if (!info) {
810 curr = ERR_PTR(-ENOMEM);
811 goto out;
812 }
813 info->next = prev;
814 prev = info;
815 } while (--more);
816
817 goto again;
818 out:
819 while (prev)
820 prev = free_map_info(prev);
821 return curr;
2b144498
SD
822}
823
824static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
825{
26872090
ON
826 struct map_info *info;
827 int err = 0;
2b144498 828
26872090
ON
829 info = build_map_info(uprobe->inode->i_mapping,
830 uprobe->offset, is_register);
831 if (IS_ERR(info))
832 return PTR_ERR(info);
7b2d81d4 833
26872090
ON
834 while (info) {
835 struct mm_struct *mm = info->mm;
836 struct vm_area_struct *vma;
7b2d81d4 837
26872090
ON
838 if (err)
839 goto free;
7b2d81d4 840
77fc4af1 841 down_write(&mm->mmap_sem);
26872090
ON
842 vma = find_vma(mm, (unsigned long)info->vaddr);
843 if (!vma || !valid_vma(vma, is_register))
844 goto unlock;
845
2b144498 846 if (vma->vm_file->f_mapping->host != uprobe->inode ||
816c03fb 847 vma_address(vma, uprobe->offset) != info->vaddr)
26872090 848 goto unlock;
2b144498 849
2b144498 850 if (is_register) {
26872090 851 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
c5784de2
PZ
852 /*
853 * We can race against uprobe_mmap(), see the
854 * comment near uprobe_hash().
855 */
26872090
ON
856 if (err == -EEXIST)
857 err = 0;
858 } else {
859 remove_breakpoint(uprobe, mm, info->vaddr);
2b144498 860 }
26872090
ON
861 unlock:
862 up_write(&mm->mmap_sem);
863 free:
864 mmput(mm);
865 info = free_map_info(info);
2b144498 866 }
7b2d81d4 867
26872090 868 return err;
2b144498
SD
869}
870
7b2d81d4 871static int __uprobe_register(struct uprobe *uprobe)
2b144498
SD
872{
873 return register_for_each_vma(uprobe, true);
874}
875
7b2d81d4 876static void __uprobe_unregister(struct uprobe *uprobe)
2b144498
SD
877{
878 if (!register_for_each_vma(uprobe, false))
879 delete_uprobe(uprobe);
880
881 /* TODO : cant unregister? schedule a worker thread */
882}
883
884/*
7b2d81d4 885 * uprobe_register - register a probe
2b144498
SD
886 * @inode: the file in which the probe has to be placed.
887 * @offset: offset from the start of the file.
e3343e6a 888 * @uc: information on howto handle the probe..
2b144498 889 *
7b2d81d4 890 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
891 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
892 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 893 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 894 * @uprobe even before the register operation is complete. Creation
e3343e6a 895 * refcount is released when the last @uc for the @uprobe
2b144498
SD
896 * unregisters.
897 *
898 * Return errno if it cannot successully install probes
899 * else return 0 (success)
900 */
e3343e6a 901int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
902{
903 struct uprobe *uprobe;
7b2d81d4 904 int ret;
2b144498 905
e3343e6a 906 if (!inode || !uc || uc->next)
7b2d81d4 907 return -EINVAL;
2b144498
SD
908
909 if (offset > i_size_read(inode))
7b2d81d4 910 return -EINVAL;
2b144498
SD
911
912 ret = 0;
913 mutex_lock(uprobes_hash(inode));
914 uprobe = alloc_uprobe(inode, offset);
7b2d81d4 915
e3343e6a 916 if (uprobe && !consumer_add(uprobe, uc)) {
7b2d81d4 917 ret = __uprobe_register(uprobe);
2b144498
SD
918 if (ret) {
919 uprobe->consumers = NULL;
7b2d81d4
IM
920 __uprobe_unregister(uprobe);
921 } else {
900771a4 922 uprobe->flags |= UPROBE_RUN_HANDLER;
7b2d81d4 923 }
2b144498
SD
924 }
925
926 mutex_unlock(uprobes_hash(inode));
927 put_uprobe(uprobe);
928
929 return ret;
930}
931
932/*
7b2d81d4 933 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
934 * @inode: the file in which the probe has to be removed.
935 * @offset: offset from the start of the file.
e3343e6a 936 * @uc: identify which probe if multiple probes are colocated.
2b144498 937 */
e3343e6a 938void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 939{
7b2d81d4 940 struct uprobe *uprobe;
2b144498 941
e3343e6a 942 if (!inode || !uc)
2b144498
SD
943 return;
944
945 uprobe = find_uprobe(inode, offset);
946 if (!uprobe)
947 return;
948
949 mutex_lock(uprobes_hash(inode));
2b144498 950
e3343e6a 951 if (consumer_del(uprobe, uc)) {
7b2d81d4
IM
952 if (!uprobe->consumers) {
953 __uprobe_unregister(uprobe);
900771a4 954 uprobe->flags &= ~UPROBE_RUN_HANDLER;
7b2d81d4 955 }
2b144498
SD
956 }
957
2b144498
SD
958 mutex_unlock(uprobes_hash(inode));
959 if (uprobe)
960 put_uprobe(uprobe);
961}
962
963/*
964 * Of all the nodes that correspond to the given inode, return the node
965 * with the least offset.
966 */
967static struct rb_node *find_least_offset_node(struct inode *inode)
968{
969 struct uprobe u = { .inode = inode, .offset = 0};
970 struct rb_node *n = uprobes_tree.rb_node;
971 struct rb_node *close_node = NULL;
972 struct uprobe *uprobe;
973 int match;
974
975 while (n) {
976 uprobe = rb_entry(n, struct uprobe, rb_node);
977 match = match_uprobe(&u, uprobe);
7b2d81d4 978
2b144498
SD
979 if (uprobe->inode == inode)
980 close_node = n;
981
982 if (!match)
983 return close_node;
984
985 if (match < 0)
986 n = n->rb_left;
987 else
988 n = n->rb_right;
989 }
7b2d81d4 990
2b144498
SD
991 return close_node;
992}
993
994/*
995 * For a given inode, build a list of probes that need to be inserted.
996 */
997static void build_probe_list(struct inode *inode, struct list_head *head)
998{
999 struct uprobe *uprobe;
2b144498 1000 unsigned long flags;
7b2d81d4 1001 struct rb_node *n;
2b144498
SD
1002
1003 spin_lock_irqsave(&uprobes_treelock, flags);
7b2d81d4 1004
2b144498 1005 n = find_least_offset_node(inode);
7b2d81d4 1006
2b144498
SD
1007 for (; n; n = rb_next(n)) {
1008 uprobe = rb_entry(n, struct uprobe, rb_node);
1009 if (uprobe->inode != inode)
1010 break;
1011
1012 list_add(&uprobe->pending_list, head);
1013 atomic_inc(&uprobe->ref);
1014 }
7b2d81d4 1015
2b144498
SD
1016 spin_unlock_irqrestore(&uprobes_treelock, flags);
1017}
1018
1019/*
1020 * Called from mmap_region.
1021 * called with mm->mmap_sem acquired.
1022 *
1023 * Return -ve no if we fail to insert probes and we cannot
1024 * bail-out.
7b2d81d4
IM
1025 * Return 0 otherwise. i.e:
1026 *
2b144498
SD
1027 * - successful insertion of probes
1028 * - (or) no possible probes to be inserted.
1029 * - (or) insertion of probes failed but we can bail-out.
1030 */
7b2d81d4 1031int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
1032{
1033 struct list_head tmp_list;
449d0d7c 1034 struct uprobe *uprobe;
2b144498 1035 struct inode *inode;
682968e0 1036 int ret, count;
2b144498
SD
1037
1038 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 1039 return 0;
2b144498
SD
1040
1041 inode = vma->vm_file->f_mapping->host;
1042 if (!inode)
7b2d81d4 1043 return 0;
2b144498
SD
1044
1045 INIT_LIST_HEAD(&tmp_list);
1046 mutex_lock(uprobes_mmap_hash(inode));
1047 build_probe_list(inode, &tmp_list);
7b2d81d4
IM
1048
1049 ret = 0;
682968e0 1050 count = 0;
7b2d81d4 1051
449d0d7c 1052 list_for_each_entry(uprobe, &tmp_list, pending_list) {
2b144498 1053 if (!ret) {
816c03fb 1054 loff_t vaddr = vma_address(vma, uprobe->offset);
682968e0
SD
1055
1056 if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
1057 put_uprobe(uprobe);
1058 continue;
2b144498 1059 }
682968e0
SD
1060
1061 ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
c5784de2
PZ
1062 /*
1063 * We can race against uprobe_register(), see the
1064 * comment near uprobe_hash().
1065 */
682968e0
SD
1066 if (ret == -EEXIST) {
1067 ret = 0;
1068
1069 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1070 continue;
1071
1072 /*
1073 * Unable to insert a breakpoint, but
1074 * breakpoint lies underneath. Increment the
1075 * probe count.
1076 */
1077 atomic_inc(&vma->vm_mm->uprobes_state.count);
1078 }
1079
1080 if (!ret)
1081 count++;
2b144498
SD
1082 }
1083 put_uprobe(uprobe);
1084 }
1085
1086 mutex_unlock(uprobes_mmap_hash(inode));
1087
682968e0
SD
1088 if (ret)
1089 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1090
2b144498
SD
1091 return ret;
1092}
1093
682968e0
SD
1094/*
1095 * Called in context of a munmap of a vma.
1096 */
cbc91f71 1097void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0
SD
1098{
1099 struct list_head tmp_list;
449d0d7c 1100 struct uprobe *uprobe;
682968e0
SD
1101 struct inode *inode;
1102
1103 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1104 return;
1105
1106 if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1107 return;
1108
1109 inode = vma->vm_file->f_mapping->host;
1110 if (!inode)
1111 return;
1112
1113 INIT_LIST_HEAD(&tmp_list);
1114 mutex_lock(uprobes_mmap_hash(inode));
1115 build_probe_list(inode, &tmp_list);
1116
449d0d7c 1117 list_for_each_entry(uprobe, &tmp_list, pending_list) {
816c03fb 1118 loff_t vaddr = vma_address(vma, uprobe->offset);
682968e0 1119
cbc91f71 1120 if (vaddr >= start && vaddr < end) {
682968e0
SD
1121 /*
1122 * An unregister could have removed the probe before
1123 * unmap. So check before we decrement the count.
1124 */
1125 if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1126 atomic_dec(&vma->vm_mm->uprobes_state.count);
1127 }
1128 put_uprobe(uprobe);
1129 }
1130 mutex_unlock(uprobes_mmap_hash(inode));
1131}
1132
d4b3b638
SD
1133/* Slot allocation for XOL */
1134static int xol_add_vma(struct xol_area *area)
1135{
1136 struct mm_struct *mm;
1137 int ret;
1138
1139 area->page = alloc_page(GFP_HIGHUSER);
1140 if (!area->page)
1141 return -ENOMEM;
1142
1143 ret = -EALREADY;
1144 mm = current->mm;
1145
1146 down_write(&mm->mmap_sem);
1147 if (mm->uprobes_state.xol_area)
1148 goto fail;
1149
1150 ret = -ENOMEM;
1151
1152 /* Try to map as high as possible, this is only a hint. */
1153 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1154 if (area->vaddr & ~PAGE_MASK) {
1155 ret = area->vaddr;
1156 goto fail;
1157 }
1158
1159 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1160 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1161 if (ret)
1162 goto fail;
1163
1164 smp_wmb(); /* pairs with get_xol_area() */
1165 mm->uprobes_state.xol_area = area;
1166 ret = 0;
1167
1168fail:
1169 up_write(&mm->mmap_sem);
1170 if (ret)
1171 __free_page(area->page);
1172
1173 return ret;
1174}
1175
1176static struct xol_area *get_xol_area(struct mm_struct *mm)
1177{
1178 struct xol_area *area;
1179
1180 area = mm->uprobes_state.xol_area;
1181 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1182
1183 return area;
1184}
1185
1186/*
1187 * xol_alloc_area - Allocate process's xol_area.
1188 * This area will be used for storing instructions for execution out of
1189 * line.
1190 *
1191 * Returns the allocated area or NULL.
1192 */
1193static struct xol_area *xol_alloc_area(void)
1194{
1195 struct xol_area *area;
1196
1197 area = kzalloc(sizeof(*area), GFP_KERNEL);
1198 if (unlikely(!area))
1199 return NULL;
1200
1201 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1202
1203 if (!area->bitmap)
1204 goto fail;
1205
1206 init_waitqueue_head(&area->wq);
1207 if (!xol_add_vma(area))
1208 return area;
1209
1210fail:
1211 kfree(area->bitmap);
1212 kfree(area);
1213
1214 return get_xol_area(current->mm);
1215}
1216
1217/*
1218 * uprobe_clear_state - Free the area allocated for slots.
1219 */
1220void uprobe_clear_state(struct mm_struct *mm)
1221{
1222 struct xol_area *area = mm->uprobes_state.xol_area;
1223
1224 if (!area)
1225 return;
1226
1227 put_page(area->page);
1228 kfree(area->bitmap);
1229 kfree(area);
1230}
1231
1232/*
1233 * uprobe_reset_state - Free the area allocated for slots.
1234 */
1235void uprobe_reset_state(struct mm_struct *mm)
1236{
1237 mm->uprobes_state.xol_area = NULL;
682968e0 1238 atomic_set(&mm->uprobes_state.count, 0);
d4b3b638
SD
1239}
1240
1241/*
1242 * - search for a free slot.
1243 */
1244static unsigned long xol_take_insn_slot(struct xol_area *area)
1245{
1246 unsigned long slot_addr;
1247 int slot_nr;
1248
1249 do {
1250 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1251 if (slot_nr < UINSNS_PER_PAGE) {
1252 if (!test_and_set_bit(slot_nr, area->bitmap))
1253 break;
1254
1255 slot_nr = UINSNS_PER_PAGE;
1256 continue;
1257 }
1258 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1259 } while (slot_nr >= UINSNS_PER_PAGE);
1260
1261 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1262 atomic_inc(&area->slot_count);
1263
1264 return slot_addr;
1265}
1266
1267/*
1268 * xol_get_insn_slot - If was not allocated a slot, then
1269 * allocate a slot.
1270 * Returns the allocated slot address or 0.
1271 */
1272static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1273{
1274 struct xol_area *area;
1275 unsigned long offset;
1276 void *vaddr;
1277
1278 area = get_xol_area(current->mm);
1279 if (!area) {
1280 area = xol_alloc_area();
1281 if (!area)
1282 return 0;
1283 }
1284 current->utask->xol_vaddr = xol_take_insn_slot(area);
1285
1286 /*
1287 * Initialize the slot if xol_vaddr points to valid
1288 * instruction slot.
1289 */
1290 if (unlikely(!current->utask->xol_vaddr))
1291 return 0;
1292
1293 current->utask->vaddr = slot_addr;
1294 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1295 vaddr = kmap_atomic(area->page);
1296 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1297 kunmap_atomic(vaddr);
1298
1299 return current->utask->xol_vaddr;
1300}
1301
1302/*
1303 * xol_free_insn_slot - If slot was earlier allocated by
1304 * @xol_get_insn_slot(), make the slot available for
1305 * subsequent requests.
1306 */
1307static void xol_free_insn_slot(struct task_struct *tsk)
1308{
1309 struct xol_area *area;
1310 unsigned long vma_end;
1311 unsigned long slot_addr;
1312
1313 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1314 return;
1315
1316 slot_addr = tsk->utask->xol_vaddr;
1317
1318 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1319 return;
1320
1321 area = tsk->mm->uprobes_state.xol_area;
1322 vma_end = area->vaddr + PAGE_SIZE;
1323 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1324 unsigned long offset;
1325 int slot_nr;
1326
1327 offset = slot_addr - area->vaddr;
1328 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1329 if (slot_nr >= UINSNS_PER_PAGE)
1330 return;
1331
1332 clear_bit(slot_nr, area->bitmap);
1333 atomic_dec(&area->slot_count);
1334 if (waitqueue_active(&area->wq))
1335 wake_up(&area->wq);
1336
1337 tsk->utask->xol_vaddr = 0;
1338 }
1339}
1340
0326f5a9
SD
1341/**
1342 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1343 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1344 * instruction.
1345 * Return the address of the breakpoint instruction.
1346 */
1347unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1348{
1349 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1350}
1351
1352/*
1353 * Called with no locks held.
1354 * Called in context of a exiting or a exec-ing thread.
1355 */
1356void uprobe_free_utask(struct task_struct *t)
1357{
1358 struct uprobe_task *utask = t->utask;
1359
0326f5a9
SD
1360 if (!utask)
1361 return;
1362
1363 if (utask->active_uprobe)
1364 put_uprobe(utask->active_uprobe);
1365
d4b3b638 1366 xol_free_insn_slot(t);
0326f5a9
SD
1367 kfree(utask);
1368 t->utask = NULL;
1369}
1370
1371/*
1372 * Called in context of a new clone/fork from copy_process.
1373 */
1374void uprobe_copy_process(struct task_struct *t)
1375{
1376 t->utask = NULL;
0326f5a9
SD
1377}
1378
1379/*
1380 * Allocate a uprobe_task object for the task.
1381 * Called when the thread hits a breakpoint for the first time.
1382 *
1383 * Returns:
1384 * - pointer to new uprobe_task on success
1385 * - NULL otherwise
1386 */
1387static struct uprobe_task *add_utask(void)
1388{
1389 struct uprobe_task *utask;
1390
1391 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1392 if (unlikely(!utask))
1393 return NULL;
1394
1395 utask->active_uprobe = NULL;
1396 current->utask = utask;
1397 return utask;
1398}
1399
1400/* Prepare to single-step probed instruction out of line. */
1401static int
1402pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1403{
d4b3b638
SD
1404 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1405 return 0;
1406
0326f5a9
SD
1407 return -EFAULT;
1408}
1409
1410/*
1411 * If we are singlestepping, then ensure this thread is not connected to
1412 * non-fatal signals until completion of singlestep. When xol insn itself
1413 * triggers the signal, restart the original insn even if the task is
1414 * already SIGKILL'ed (since coredump should report the correct ip). This
1415 * is even more important if the task has a handler for SIGSEGV/etc, The
1416 * _same_ instruction should be repeated again after return from the signal
1417 * handler, and SSTEP can never finish in this case.
1418 */
1419bool uprobe_deny_signal(void)
1420{
1421 struct task_struct *t = current;
1422 struct uprobe_task *utask = t->utask;
1423
1424 if (likely(!utask || !utask->active_uprobe))
1425 return false;
1426
1427 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1428
1429 if (signal_pending(t)) {
1430 spin_lock_irq(&t->sighand->siglock);
1431 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1432 spin_unlock_irq(&t->sighand->siglock);
1433
1434 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1435 utask->state = UTASK_SSTEP_TRAPPED;
1436 set_tsk_thread_flag(t, TIF_UPROBE);
1437 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1438 }
1439 }
1440
1441 return true;
1442}
1443
1444/*
1445 * Avoid singlestepping the original instruction if the original instruction
1446 * is a NOP or can be emulated.
1447 */
1448static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1449{
1450 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1451 return true;
1452
1453 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1454 return false;
1455}
1456
d790d346 1457static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1458{
3a9ea052
ON
1459 struct mm_struct *mm = current->mm;
1460 struct uprobe *uprobe = NULL;
0326f5a9 1461 struct vm_area_struct *vma;
0326f5a9 1462
0326f5a9
SD
1463 down_read(&mm->mmap_sem);
1464 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1465 if (vma && vma->vm_start <= bp_vaddr) {
1466 if (valid_vma(vma, false)) {
1467 struct inode *inode;
1468 loff_t offset;
0326f5a9 1469
3a9ea052
ON
1470 inode = vma->vm_file->f_mapping->host;
1471 offset = bp_vaddr - vma->vm_start;
1472 offset += (vma->vm_pgoff << PAGE_SHIFT);
1473 uprobe = find_uprobe(inode, offset);
1474 }
d790d346
ON
1475
1476 if (!uprobe)
1477 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1478 } else {
1479 *is_swbp = -EFAULT;
0326f5a9 1480 }
0326f5a9
SD
1481 up_read(&mm->mmap_sem);
1482
3a9ea052
ON
1483 return uprobe;
1484}
1485
1486/*
1487 * Run handler and ask thread to singlestep.
1488 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1489 */
1490static void handle_swbp(struct pt_regs *regs)
1491{
1492 struct uprobe_task *utask;
1493 struct uprobe *uprobe;
1494 unsigned long bp_vaddr;
56bb4cf6 1495 int uninitialized_var(is_swbp);
3a9ea052
ON
1496
1497 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1498 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1499
0326f5a9 1500 if (!uprobe) {
56bb4cf6
ON
1501 if (is_swbp > 0) {
1502 /* No matching uprobe; signal SIGTRAP. */
1503 send_sig(SIGTRAP, current, 0);
1504 } else {
1505 /*
1506 * Either we raced with uprobe_unregister() or we can't
1507 * access this memory. The latter is only possible if
1508 * another thread plays with our ->mm. In both cases
1509 * we can simply restart. If this vma was unmapped we
1510 * can pretend this insn was not executed yet and get
1511 * the (correct) SIGSEGV after restart.
1512 */
1513 instruction_pointer_set(regs, bp_vaddr);
1514 }
0326f5a9
SD
1515 return;
1516 }
1517
1518 utask = current->utask;
1519 if (!utask) {
1520 utask = add_utask();
1521 /* Cannot allocate; re-execute the instruction. */
1522 if (!utask)
1523 goto cleanup_ret;
1524 }
1525 utask->active_uprobe = uprobe;
1526 handler_chain(uprobe, regs);
1527 if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1528 goto cleanup_ret;
1529
1530 utask->state = UTASK_SSTEP;
1531 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1532 user_enable_single_step(current);
1533 return;
1534 }
1535
1536cleanup_ret:
1537 if (utask) {
1538 utask->active_uprobe = NULL;
1539 utask->state = UTASK_RUNNING;
1540 }
1541 if (uprobe) {
1542 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1543
1544 /*
1545 * cannot singlestep; cannot skip instruction;
1546 * re-execute the instruction.
1547 */
1548 instruction_pointer_set(regs, bp_vaddr);
1549
1550 put_uprobe(uprobe);
1551 }
1552}
1553
1554/*
1555 * Perform required fix-ups and disable singlestep.
1556 * Allow pending signals to take effect.
1557 */
1558static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1559{
1560 struct uprobe *uprobe;
1561
1562 uprobe = utask->active_uprobe;
1563 if (utask->state == UTASK_SSTEP_ACK)
1564 arch_uprobe_post_xol(&uprobe->arch, regs);
1565 else if (utask->state == UTASK_SSTEP_TRAPPED)
1566 arch_uprobe_abort_xol(&uprobe->arch, regs);
1567 else
1568 WARN_ON_ONCE(1);
1569
1570 put_uprobe(uprobe);
1571 utask->active_uprobe = NULL;
1572 utask->state = UTASK_RUNNING;
1573 user_disable_single_step(current);
d4b3b638 1574 xol_free_insn_slot(current);
0326f5a9
SD
1575
1576 spin_lock_irq(&current->sighand->siglock);
1577 recalc_sigpending(); /* see uprobe_deny_signal() */
1578 spin_unlock_irq(&current->sighand->siglock);
1579}
1580
1581/*
1582 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on
1583 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1584 * allows the thread to return from interrupt.
1585 *
1586 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1587 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1588 * interrupt.
1589 *
1590 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1591 * uprobe_notify_resume().
1592 */
1593void uprobe_notify_resume(struct pt_regs *regs)
1594{
1595 struct uprobe_task *utask;
1596
1597 utask = current->utask;
1598 if (!utask || utask->state == UTASK_BP_HIT)
1599 handle_swbp(regs);
1600 else
1601 handle_singlestep(utask, regs);
1602}
1603
1604/*
1605 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1606 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1607 */
1608int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1609{
1610 struct uprobe_task *utask;
1611
682968e0
SD
1612 if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1613 /* task is currently not uprobed */
0326f5a9
SD
1614 return 0;
1615
1616 utask = current->utask;
1617 if (utask)
1618 utask->state = UTASK_BP_HIT;
1619
1620 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1621
1622 return 1;
1623}
1624
1625/*
1626 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1627 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1628 */
1629int uprobe_post_sstep_notifier(struct pt_regs *regs)
1630{
1631 struct uprobe_task *utask = current->utask;
1632
1633 if (!current->mm || !utask || !utask->active_uprobe)
1634 /* task is currently not uprobed */
1635 return 0;
1636
1637 utask->state = UTASK_SSTEP_ACK;
1638 set_thread_flag(TIF_UPROBE);
1639 return 1;
1640}
1641
1642static struct notifier_block uprobe_exception_nb = {
1643 .notifier_call = arch_uprobe_exception_notify,
1644 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1645};
1646
2b144498
SD
1647static int __init init_uprobes(void)
1648{
1649 int i;
1650
1651 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1652 mutex_init(&uprobes_mutex[i]);
1653 mutex_init(&uprobes_mmap_mutex[i]);
1654 }
0326f5a9
SD
1655
1656 return register_die_notifier(&uprobe_exception_nb);
2b144498 1657}
0326f5a9 1658module_init(init_uprobes);
2b144498
SD
1659
1660static void __exit exit_uprobes(void)
1661{
1662}
2b144498 1663module_exit(exit_uprobes);