]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/events/uprobes.c
uprobes: Don't return success if alloc_uprobe() fails
[mirror_ubuntu-artful-kernel.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
194f8dcb 35#include "../../mm/internal.h" /* munlock_vma_page */
7b2d81d4 36
2b144498
SD
37#include <linux/uprobes.h>
38
d4b3b638
SD
39#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
40#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
41
2b144498 42static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 43
2b144498
SD
44static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
45
46#define UPROBES_HASH_SZ 13
7b2d81d4 47
c5784de2
PZ
48/*
49 * We need separate register/unregister and mmap/munmap lock hashes because
50 * of mmap_sem nesting.
51 *
52 * uprobe_register() needs to install probes on (potentially) all processes
53 * and thus needs to acquire multiple mmap_sems (consequtively, not
54 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
55 * for the particular process doing the mmap.
56 *
57 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
58 * because of lock order against i_mmap_mutex. This means there's a hole in
59 * the register vma iteration where a mmap() can happen.
60 *
61 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
62 * install a probe where one is already installed.
63 */
64
2b144498
SD
65/* serialize (un)register */
66static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
67
68#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
69
70/* serialize uprobe->pending_list */
71static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 72#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
73
74/*
7b2d81d4 75 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
76 * events active at this time. Probably a fine grained per inode count is
77 * better?
78 */
79static atomic_t uprobe_events = ATOMIC_INIT(0);
80
3ff54efd
SD
81struct uprobe {
82 struct rb_node rb_node; /* node in the rb tree */
83 atomic_t ref;
84 struct rw_semaphore consumer_rwsem;
85 struct list_head pending_list;
86 struct uprobe_consumer *consumers;
87 struct inode *inode; /* Also hold a ref to inode */
88 loff_t offset;
89 int flags;
90 struct arch_uprobe arch;
91};
92
2b144498
SD
93/*
94 * valid_vma: Verify if the specified vma is an executable vma
95 * Relax restrictions while unregistering: vm_flags might have
96 * changed after breakpoint was inserted.
97 * - is_register: indicates if we are in register context.
98 * - Return 1 if the specified virtual address is in an
99 * executable vma.
100 */
101static bool valid_vma(struct vm_area_struct *vma, bool is_register)
102{
e40cfce6 103 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
2b144498 104
e40cfce6
ON
105 if (is_register)
106 flags |= VM_WRITE;
2b144498 107
e40cfce6 108 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
2b144498
SD
109}
110
57683f72 111static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 112{
57683f72 113 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
114}
115
cb113b47
ON
116static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
117{
118 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
119}
120
2b144498
SD
121/**
122 * __replace_page - replace page in vma by new page.
123 * based on replace_page in mm/ksm.c
124 *
125 * @vma: vma that holds the pte pointing to page
c517ee74 126 * @addr: address the old @page is mapped at
2b144498
SD
127 * @page: the cowed page we are replacing by kpage
128 * @kpage: the modified page we replace page by
129 *
130 * Returns 0 on success, -EFAULT on failure.
131 */
c517ee74
ON
132static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
133 struct page *page, struct page *kpage)
2b144498
SD
134{
135 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
136 spinlock_t *ptl;
137 pte_t *ptep;
9f92448c 138 int err;
2b144498 139
194f8dcb 140 /* For try_to_free_swap() and munlock_vma_page() below */
9f92448c
ON
141 lock_page(page);
142
143 err = -EAGAIN;
5323ce71 144 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 145 if (!ptep)
9f92448c 146 goto unlock;
2b144498
SD
147
148 get_page(kpage);
149 page_add_new_anon_rmap(kpage, vma, addr);
150
7396fa81
SD
151 if (!PageAnon(page)) {
152 dec_mm_counter(mm, MM_FILEPAGES);
153 inc_mm_counter(mm, MM_ANONPAGES);
154 }
155
2b144498
SD
156 flush_cache_page(vma, addr, pte_pfn(*ptep));
157 ptep_clear_flush(vma, addr, ptep);
158 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
159
160 page_remove_rmap(page);
161 if (!page_mapped(page))
162 try_to_free_swap(page);
2b144498 163 pte_unmap_unlock(ptep, ptl);
2b144498 164
194f8dcb
ON
165 if (vma->vm_flags & VM_LOCKED)
166 munlock_vma_page(page);
167 put_page(page);
168
9f92448c
ON
169 err = 0;
170 unlock:
171 unlock_page(page);
172 return err;
2b144498
SD
173}
174
175/**
5cb4ac3a 176 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 177 * @insn: instruction to be checked.
5cb4ac3a 178 * Default implementation of is_swbp_insn
2b144498
SD
179 * Returns true if @insn is a breakpoint instruction.
180 */
5cb4ac3a 181bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 182{
5cb4ac3a 183 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
184}
185
cceb55aa
ON
186static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
187{
188 void *kaddr = kmap_atomic(page);
189 memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
190 kunmap_atomic(kaddr);
191}
192
ed6f6a50
ON
193static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
194{
195 uprobe_opcode_t old_opcode;
196 bool is_swbp;
197
198 copy_opcode(page, vaddr, &old_opcode);
199 is_swbp = is_swbp_insn(&old_opcode);
200
201 if (is_swbp_insn(new_opcode)) {
202 if (is_swbp) /* register: already installed? */
203 return 0;
204 } else {
205 if (!is_swbp) /* unregister: was it changed by us? */
206 return -EINVAL;
207 }
208
209 return 1;
210}
211
2b144498
SD
212/*
213 * NOTE:
214 * Expect the breakpoint instruction to be the smallest size instruction for
215 * the architecture. If an arch has variable length instruction and the
216 * breakpoint instruction is not of the smallest length instruction
cceb55aa 217 * supported by that architecture then we need to modify is_swbp_at_addr and
2b144498
SD
218 * write_opcode accordingly. This would never be a problem for archs that
219 * have fixed length instructions.
220 */
221
222/*
223 * write_opcode - write the opcode at a given virtual address.
224 * @mm: the probed process address space.
2b144498
SD
225 * @vaddr: the virtual address to store the opcode.
226 * @opcode: opcode to be written at @vaddr.
227 *
228 * Called with mm->mmap_sem held (for read and with a reference to
229 * mm).
230 *
231 * For mm @mm, write the opcode at @vaddr.
232 * Return 0 (success) or a negative errno.
233 */
cceb55aa
ON
234static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
235 uprobe_opcode_t opcode)
2b144498
SD
236{
237 struct page *old_page, *new_page;
2b144498
SD
238 void *vaddr_old, *vaddr_new;
239 struct vm_area_struct *vma;
2b144498 240 int ret;
f403072c 241
5323ce71 242retry:
2b144498 243 /* Read the page with vaddr into memory */
75ed82ea 244 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
2b144498
SD
245 if (ret <= 0)
246 return ret;
7b2d81d4 247
ed6f6a50
ON
248 ret = verify_opcode(old_page, vaddr, &opcode);
249 if (ret <= 0)
250 goto put_old;
251
2b144498
SD
252 ret = -ENOMEM;
253 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
254 if (!new_page)
9f92448c 255 goto put_old;
2b144498
SD
256
257 __SetPageUptodate(new_page);
258
2b144498
SD
259 /* copy the page now that we've got it stable */
260 vaddr_old = kmap_atomic(old_page);
261 vaddr_new = kmap_atomic(new_page);
262
263 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
d9c4a30e 264 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
265
266 kunmap_atomic(vaddr_new);
267 kunmap_atomic(vaddr_old);
268
269 ret = anon_vma_prepare(vma);
270 if (ret)
9f92448c 271 goto put_new;
2b144498 272
c517ee74 273 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 274
9f92448c 275put_new:
2b144498 276 page_cache_release(new_page);
9f92448c 277put_old:
7b2d81d4
IM
278 put_page(old_page);
279
5323ce71
ON
280 if (unlikely(ret == -EAGAIN))
281 goto retry;
2b144498
SD
282 return ret;
283}
284
2b144498 285/**
5cb4ac3a 286 * set_swbp - store breakpoint at a given address.
e3343e6a 287 * @auprobe: arch specific probepoint information.
2b144498 288 * @mm: the probed process address space.
2b144498
SD
289 * @vaddr: the virtual address to insert the opcode.
290 *
291 * For mm @mm, store the breakpoint instruction at @vaddr.
292 * Return 0 (success) or a negative errno.
293 */
5cb4ac3a 294int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 295{
cceb55aa 296 return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
297}
298
299/**
300 * set_orig_insn - Restore the original instruction.
301 * @mm: the probed process address space.
e3343e6a 302 * @auprobe: arch specific probepoint information.
2b144498 303 * @vaddr: the virtual address to insert the opcode.
2b144498
SD
304 *
305 * For mm @mm, restore the original opcode (opcode) at @vaddr.
306 * Return 0 (success) or a negative errno.
307 */
7b2d81d4 308int __weak
ded86e7c 309set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 310{
cceb55aa 311 return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
312}
313
314static int match_uprobe(struct uprobe *l, struct uprobe *r)
315{
316 if (l->inode < r->inode)
317 return -1;
7b2d81d4 318
2b144498
SD
319 if (l->inode > r->inode)
320 return 1;
2b144498 321
7b2d81d4
IM
322 if (l->offset < r->offset)
323 return -1;
324
325 if (l->offset > r->offset)
326 return 1;
2b144498
SD
327
328 return 0;
329}
330
331static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
332{
333 struct uprobe u = { .inode = inode, .offset = offset };
334 struct rb_node *n = uprobes_tree.rb_node;
335 struct uprobe *uprobe;
336 int match;
337
338 while (n) {
339 uprobe = rb_entry(n, struct uprobe, rb_node);
340 match = match_uprobe(&u, uprobe);
341 if (!match) {
342 atomic_inc(&uprobe->ref);
343 return uprobe;
344 }
7b2d81d4 345
2b144498
SD
346 if (match < 0)
347 n = n->rb_left;
348 else
349 n = n->rb_right;
350 }
351 return NULL;
352}
353
354/*
355 * Find a uprobe corresponding to a given inode:offset
356 * Acquires uprobes_treelock
357 */
358static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
359{
360 struct uprobe *uprobe;
2b144498 361
6f47caa0 362 spin_lock(&uprobes_treelock);
2b144498 363 uprobe = __find_uprobe(inode, offset);
6f47caa0 364 spin_unlock(&uprobes_treelock);
7b2d81d4 365
2b144498
SD
366 return uprobe;
367}
368
369static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
370{
371 struct rb_node **p = &uprobes_tree.rb_node;
372 struct rb_node *parent = NULL;
373 struct uprobe *u;
374 int match;
375
376 while (*p) {
377 parent = *p;
378 u = rb_entry(parent, struct uprobe, rb_node);
379 match = match_uprobe(uprobe, u);
380 if (!match) {
381 atomic_inc(&u->ref);
382 return u;
383 }
384
385 if (match < 0)
386 p = &parent->rb_left;
387 else
388 p = &parent->rb_right;
389
390 }
7b2d81d4 391
2b144498
SD
392 u = NULL;
393 rb_link_node(&uprobe->rb_node, parent, p);
394 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
395 /* get access + creation ref */
396 atomic_set(&uprobe->ref, 2);
7b2d81d4 397
2b144498
SD
398 return u;
399}
400
401/*
7b2d81d4 402 * Acquire uprobes_treelock.
2b144498
SD
403 * Matching uprobe already exists in rbtree;
404 * increment (access refcount) and return the matching uprobe.
405 *
406 * No matching uprobe; insert the uprobe in rb_tree;
407 * get a double refcount (access + creation) and return NULL.
408 */
409static struct uprobe *insert_uprobe(struct uprobe *uprobe)
410{
2b144498
SD
411 struct uprobe *u;
412
6f47caa0 413 spin_lock(&uprobes_treelock);
2b144498 414 u = __insert_uprobe(uprobe);
6f47caa0 415 spin_unlock(&uprobes_treelock);
7b2d81d4 416
0326f5a9
SD
417 /* For now assume that the instruction need not be single-stepped */
418 uprobe->flags |= UPROBE_SKIP_SSTEP;
419
2b144498
SD
420 return u;
421}
422
423static void put_uprobe(struct uprobe *uprobe)
424{
425 if (atomic_dec_and_test(&uprobe->ref))
426 kfree(uprobe);
427}
428
429static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
430{
431 struct uprobe *uprobe, *cur_uprobe;
432
433 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
434 if (!uprobe)
435 return NULL;
436
437 uprobe->inode = igrab(inode);
438 uprobe->offset = offset;
439 init_rwsem(&uprobe->consumer_rwsem);
2b144498
SD
440
441 /* add to uprobes_tree, sorted on inode:offset */
442 cur_uprobe = insert_uprobe(uprobe);
443
444 /* a uprobe exists for this inode:offset combination */
445 if (cur_uprobe) {
446 kfree(uprobe);
447 uprobe = cur_uprobe;
448 iput(inode);
7b2d81d4 449 } else {
2b144498 450 atomic_inc(&uprobe_events);
7b2d81d4
IM
451 }
452
2b144498
SD
453 return uprobe;
454}
455
0326f5a9
SD
456static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
457{
458 struct uprobe_consumer *uc;
459
460 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
461 return;
462
463 down_read(&uprobe->consumer_rwsem);
464 for (uc = uprobe->consumers; uc; uc = uc->next) {
465 if (!uc->filter || uc->filter(uc, current))
466 uc->handler(uc, regs);
467 }
468 up_read(&uprobe->consumer_rwsem);
469}
470
2b144498 471/* Returns the previous consumer */
7b2d81d4 472static struct uprobe_consumer *
e3343e6a 473consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
474{
475 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
476 uc->next = uprobe->consumers;
477 uprobe->consumers = uc;
2b144498 478 up_write(&uprobe->consumer_rwsem);
7b2d81d4 479
e3343e6a 480 return uc->next;
2b144498
SD
481}
482
483/*
e3343e6a
SD
484 * For uprobe @uprobe, delete the consumer @uc.
485 * Return true if the @uc is deleted successfully
2b144498
SD
486 * or return false.
487 */
e3343e6a 488static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
489{
490 struct uprobe_consumer **con;
491 bool ret = false;
492
493 down_write(&uprobe->consumer_rwsem);
494 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
495 if (*con == uc) {
496 *con = uc->next;
2b144498
SD
497 ret = true;
498 break;
499 }
500 }
501 up_write(&uprobe->consumer_rwsem);
7b2d81d4 502
2b144498
SD
503 return ret;
504}
505
e3343e6a 506static int
d436615e 507__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 508 unsigned long nbytes, loff_t offset)
2b144498 509{
2b144498
SD
510 struct page *page;
511 void *vaddr;
593609a5
ON
512 unsigned long off;
513 pgoff_t idx;
2b144498
SD
514
515 if (!filp)
516 return -EINVAL;
517
cc359d18
ON
518 if (!mapping->a_ops->readpage)
519 return -EIO;
520
593609a5
ON
521 idx = offset >> PAGE_CACHE_SHIFT;
522 off = offset & ~PAGE_MASK;
2b144498
SD
523
524 /*
525 * Ensure that the page that has the original instruction is
526 * populated and in page-cache.
527 */
528 page = read_mapping_page(mapping, idx, filp);
529 if (IS_ERR(page))
530 return PTR_ERR(page);
531
532 vaddr = kmap_atomic(page);
593609a5 533 memcpy(insn, vaddr + off, nbytes);
2b144498
SD
534 kunmap_atomic(vaddr);
535 page_cache_release(page);
7b2d81d4 536
2b144498
SD
537 return 0;
538}
539
d436615e 540static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
541{
542 struct address_space *mapping;
2b144498 543 unsigned long nbytes;
7b2d81d4 544 int bytes;
2b144498 545
d436615e 546 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
547 mapping = uprobe->inode->i_mapping;
548
549 /* Instruction at end of binary; copy only available bytes */
550 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
551 bytes = uprobe->inode->i_size - uprobe->offset;
552 else
553 bytes = MAX_UINSN_BYTES;
554
555 /* Instruction at the page-boundary; copy bytes in second page */
556 if (nbytes < bytes) {
fc36f595
ON
557 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
558 bytes - nbytes, uprobe->offset + nbytes);
559 if (err)
560 return err;
2b144498
SD
561 bytes = nbytes;
562 }
d436615e 563 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
564}
565
e3343e6a
SD
566static int
567install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 568 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 569{
f8ac4ec9 570 bool first_uprobe;
2b144498
SD
571 int ret;
572
573 /*
574 * If probe is being deleted, unregister thread could be done with
575 * the vma-rmap-walk through. Adding a probe now can be fatal since
576 * nobody will be able to cleanup. Also we could be from fork or
577 * mremap path, where the probe might have already been inserted.
578 * Hence behave as if probe already existed.
579 */
580 if (!uprobe->consumers)
78f74116 581 return 0;
2b144498 582
900771a4 583 if (!(uprobe->flags & UPROBE_COPY_INSN)) {
d436615e 584 ret = copy_insn(uprobe, vma->vm_file);
2b144498
SD
585 if (ret)
586 return ret;
587
5cb4ac3a 588 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
c1914a09 589 return -ENOTSUPP;
2b144498 590
816c03fb 591 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
592 if (ret)
593 return ret;
594
d9c4a30e
ON
595 /* write_opcode() assumes we don't cross page boundary */
596 BUG_ON((uprobe->offset & ~PAGE_MASK) +
597 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
598
900771a4 599 uprobe->flags |= UPROBE_COPY_INSN;
2b144498 600 }
682968e0 601
f8ac4ec9
ON
602 /*
603 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
604 * the task can hit this breakpoint right after __replace_page().
605 */
606 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
607 if (first_uprobe)
608 set_bit(MMF_HAS_UPROBES, &mm->flags);
609
816c03fb 610 ret = set_swbp(&uprobe->arch, mm, vaddr);
9f68f672
ON
611 if (!ret)
612 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
613 else if (first_uprobe)
f8ac4ec9 614 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2b144498
SD
615
616 return ret;
617}
618
e3343e6a 619static void
816c03fb 620remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 621{
9f68f672
ON
622 /* can happen if uprobe_register() fails */
623 if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
624 return;
625
626 set_bit(MMF_RECALC_UPROBES, &mm->flags);
ded86e7c 627 set_orig_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
628}
629
0326f5a9 630/*
778b032d
ON
631 * There could be threads that have already hit the breakpoint. They
632 * will recheck the current insn and restart if find_uprobe() fails.
633 * See find_active_uprobe().
0326f5a9 634 */
2b144498
SD
635static void delete_uprobe(struct uprobe *uprobe)
636{
6f47caa0 637 spin_lock(&uprobes_treelock);
2b144498 638 rb_erase(&uprobe->rb_node, &uprobes_tree);
6f47caa0 639 spin_unlock(&uprobes_treelock);
2b144498
SD
640 iput(uprobe->inode);
641 put_uprobe(uprobe);
642 atomic_dec(&uprobe_events);
643}
644
26872090
ON
645struct map_info {
646 struct map_info *next;
647 struct mm_struct *mm;
816c03fb 648 unsigned long vaddr;
26872090
ON
649};
650
651static inline struct map_info *free_map_info(struct map_info *info)
2b144498 652{
26872090
ON
653 struct map_info *next = info->next;
654 kfree(info);
655 return next;
656}
657
658static struct map_info *
659build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
660{
661 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498
SD
662 struct prio_tree_iter iter;
663 struct vm_area_struct *vma;
26872090
ON
664 struct map_info *curr = NULL;
665 struct map_info *prev = NULL;
666 struct map_info *info;
667 int more = 0;
2b144498 668
26872090
ON
669 again:
670 mutex_lock(&mapping->i_mmap_mutex);
2b144498
SD
671 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
672 if (!valid_vma(vma, is_register))
673 continue;
674
7a5bfb66
ON
675 if (!prev && !more) {
676 /*
677 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
678 * reclaim. This is optimistic, no harm done if it fails.
679 */
680 prev = kmalloc(sizeof(struct map_info),
681 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
682 if (prev)
683 prev->next = NULL;
684 }
26872090
ON
685 if (!prev) {
686 more++;
687 continue;
2b144498 688 }
2b144498 689
26872090
ON
690 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
691 continue;
7b2d81d4 692
26872090
ON
693 info = prev;
694 prev = prev->next;
695 info->next = curr;
696 curr = info;
2b144498 697
26872090 698 info->mm = vma->vm_mm;
57683f72 699 info->vaddr = offset_to_vaddr(vma, offset);
26872090 700 }
2b144498
SD
701 mutex_unlock(&mapping->i_mmap_mutex);
702
26872090
ON
703 if (!more)
704 goto out;
705
706 prev = curr;
707 while (curr) {
708 mmput(curr->mm);
709 curr = curr->next;
710 }
7b2d81d4 711
26872090
ON
712 do {
713 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
714 if (!info) {
715 curr = ERR_PTR(-ENOMEM);
716 goto out;
717 }
718 info->next = prev;
719 prev = info;
720 } while (--more);
721
722 goto again;
723 out:
724 while (prev)
725 prev = free_map_info(prev);
726 return curr;
2b144498
SD
727}
728
729static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
730{
26872090
ON
731 struct map_info *info;
732 int err = 0;
2b144498 733
26872090
ON
734 info = build_map_info(uprobe->inode->i_mapping,
735 uprobe->offset, is_register);
736 if (IS_ERR(info))
737 return PTR_ERR(info);
7b2d81d4 738
26872090
ON
739 while (info) {
740 struct mm_struct *mm = info->mm;
741 struct vm_area_struct *vma;
7b2d81d4 742
26872090
ON
743 if (err)
744 goto free;
7b2d81d4 745
77fc4af1 746 down_write(&mm->mmap_sem);
f4d6dfe5
ON
747 vma = find_vma(mm, info->vaddr);
748 if (!vma || !valid_vma(vma, is_register) ||
749 vma->vm_file->f_mapping->host != uprobe->inode)
26872090
ON
750 goto unlock;
751
f4d6dfe5
ON
752 if (vma->vm_start > info->vaddr ||
753 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 754 goto unlock;
2b144498 755
78f74116 756 if (is_register)
26872090 757 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
78f74116 758 else
26872090 759 remove_breakpoint(uprobe, mm, info->vaddr);
78f74116 760
26872090
ON
761 unlock:
762 up_write(&mm->mmap_sem);
763 free:
764 mmput(mm);
765 info = free_map_info(info);
2b144498 766 }
7b2d81d4 767
26872090 768 return err;
2b144498
SD
769}
770
7b2d81d4 771static int __uprobe_register(struct uprobe *uprobe)
2b144498
SD
772{
773 return register_for_each_vma(uprobe, true);
774}
775
7b2d81d4 776static void __uprobe_unregister(struct uprobe *uprobe)
2b144498
SD
777{
778 if (!register_for_each_vma(uprobe, false))
779 delete_uprobe(uprobe);
780
781 /* TODO : cant unregister? schedule a worker thread */
782}
783
784/*
7b2d81d4 785 * uprobe_register - register a probe
2b144498
SD
786 * @inode: the file in which the probe has to be placed.
787 * @offset: offset from the start of the file.
e3343e6a 788 * @uc: information on howto handle the probe..
2b144498 789 *
7b2d81d4 790 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
791 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
792 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 793 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 794 * @uprobe even before the register operation is complete. Creation
e3343e6a 795 * refcount is released when the last @uc for the @uprobe
2b144498
SD
796 * unregisters.
797 *
798 * Return errno if it cannot successully install probes
799 * else return 0 (success)
800 */
e3343e6a 801int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
802{
803 struct uprobe *uprobe;
7b2d81d4 804 int ret;
2b144498 805
e3343e6a 806 if (!inode || !uc || uc->next)
7b2d81d4 807 return -EINVAL;
2b144498
SD
808
809 if (offset > i_size_read(inode))
7b2d81d4 810 return -EINVAL;
2b144498
SD
811
812 ret = 0;
813 mutex_lock(uprobes_hash(inode));
814 uprobe = alloc_uprobe(inode, offset);
7b2d81d4 815
a5f658b7
ON
816 if (!uprobe) {
817 ret = -ENOMEM;
818 } else if (!consumer_add(uprobe, uc)) {
7b2d81d4 819 ret = __uprobe_register(uprobe);
2b144498
SD
820 if (ret) {
821 uprobe->consumers = NULL;
7b2d81d4
IM
822 __uprobe_unregister(uprobe);
823 } else {
900771a4 824 uprobe->flags |= UPROBE_RUN_HANDLER;
7b2d81d4 825 }
2b144498
SD
826 }
827
828 mutex_unlock(uprobes_hash(inode));
6d1d8dfa
SAS
829 if (uprobe)
830 put_uprobe(uprobe);
2b144498
SD
831
832 return ret;
833}
834
835/*
7b2d81d4 836 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
837 * @inode: the file in which the probe has to be removed.
838 * @offset: offset from the start of the file.
e3343e6a 839 * @uc: identify which probe if multiple probes are colocated.
2b144498 840 */
e3343e6a 841void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 842{
7b2d81d4 843 struct uprobe *uprobe;
2b144498 844
e3343e6a 845 if (!inode || !uc)
2b144498
SD
846 return;
847
848 uprobe = find_uprobe(inode, offset);
849 if (!uprobe)
850 return;
851
852 mutex_lock(uprobes_hash(inode));
2b144498 853
e3343e6a 854 if (consumer_del(uprobe, uc)) {
7b2d81d4
IM
855 if (!uprobe->consumers) {
856 __uprobe_unregister(uprobe);
900771a4 857 uprobe->flags &= ~UPROBE_RUN_HANDLER;
7b2d81d4 858 }
2b144498
SD
859 }
860
2b144498
SD
861 mutex_unlock(uprobes_hash(inode));
862 if (uprobe)
863 put_uprobe(uprobe);
864}
865
891c3970
ON
866static struct rb_node *
867find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 868{
2b144498 869 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
870
871 while (n) {
891c3970 872 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 873
891c3970 874 if (inode < u->inode) {
2b144498 875 n = n->rb_left;
891c3970 876 } else if (inode > u->inode) {
2b144498 877 n = n->rb_right;
891c3970
ON
878 } else {
879 if (max < u->offset)
880 n = n->rb_left;
881 else if (min > u->offset)
882 n = n->rb_right;
883 else
884 break;
885 }
2b144498 886 }
7b2d81d4 887
891c3970 888 return n;
2b144498
SD
889}
890
891/*
891c3970 892 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 893 */
891c3970
ON
894static void build_probe_list(struct inode *inode,
895 struct vm_area_struct *vma,
896 unsigned long start, unsigned long end,
897 struct list_head *head)
2b144498 898{
891c3970 899 loff_t min, max;
891c3970
ON
900 struct rb_node *n, *t;
901 struct uprobe *u;
7b2d81d4 902
891c3970 903 INIT_LIST_HEAD(head);
cb113b47 904 min = vaddr_to_offset(vma, start);
891c3970 905 max = min + (end - start) - 1;
2b144498 906
6f47caa0 907 spin_lock(&uprobes_treelock);
891c3970
ON
908 n = find_node_in_range(inode, min, max);
909 if (n) {
910 for (t = n; t; t = rb_prev(t)) {
911 u = rb_entry(t, struct uprobe, rb_node);
912 if (u->inode != inode || u->offset < min)
913 break;
914 list_add(&u->pending_list, head);
915 atomic_inc(&u->ref);
916 }
917 for (t = n; (t = rb_next(t)); ) {
918 u = rb_entry(t, struct uprobe, rb_node);
919 if (u->inode != inode || u->offset > max)
920 break;
921 list_add(&u->pending_list, head);
922 atomic_inc(&u->ref);
923 }
2b144498 924 }
6f47caa0 925 spin_unlock(&uprobes_treelock);
2b144498
SD
926}
927
928/*
5e5be71a 929 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
2b144498 930 *
5e5be71a
ON
931 * Currently we ignore all errors and always return 0, the callers
932 * can't handle the failure anyway.
2b144498 933 */
7b2d81d4 934int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
935{
936 struct list_head tmp_list;
665605a2 937 struct uprobe *uprobe, *u;
2b144498 938 struct inode *inode;
2b144498
SD
939
940 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 941 return 0;
2b144498
SD
942
943 inode = vma->vm_file->f_mapping->host;
944 if (!inode)
7b2d81d4 945 return 0;
2b144498 946
2b144498 947 mutex_lock(uprobes_mmap_hash(inode));
891c3970 948 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
7b2d81d4 949
665605a2 950 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
5e5be71a 951 if (!fatal_signal_pending(current)) {
57683f72 952 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
5e5be71a 953 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
2b144498
SD
954 }
955 put_uprobe(uprobe);
956 }
2b144498
SD
957 mutex_unlock(uprobes_mmap_hash(inode));
958
5e5be71a 959 return 0;
2b144498
SD
960}
961
9f68f672
ON
962static bool
963vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
964{
965 loff_t min, max;
966 struct inode *inode;
967 struct rb_node *n;
968
969 inode = vma->vm_file->f_mapping->host;
970
971 min = vaddr_to_offset(vma, start);
972 max = min + (end - start) - 1;
973
974 spin_lock(&uprobes_treelock);
975 n = find_node_in_range(inode, min, max);
976 spin_unlock(&uprobes_treelock);
977
978 return !!n;
979}
980
682968e0
SD
981/*
982 * Called in context of a munmap of a vma.
983 */
cbc91f71 984void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 985{
682968e0
SD
986 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
987 return;
988
2fd611a9
ON
989 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
990 return;
991
9f68f672
ON
992 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
993 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
f8ac4ec9
ON
994 return;
995
9f68f672
ON
996 if (vma_has_uprobes(vma, start, end))
997 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
682968e0
SD
998}
999
d4b3b638
SD
1000/* Slot allocation for XOL */
1001static int xol_add_vma(struct xol_area *area)
1002{
1003 struct mm_struct *mm;
1004 int ret;
1005
1006 area->page = alloc_page(GFP_HIGHUSER);
1007 if (!area->page)
1008 return -ENOMEM;
1009
1010 ret = -EALREADY;
1011 mm = current->mm;
1012
1013 down_write(&mm->mmap_sem);
1014 if (mm->uprobes_state.xol_area)
1015 goto fail;
1016
1017 ret = -ENOMEM;
1018
1019 /* Try to map as high as possible, this is only a hint. */
1020 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1021 if (area->vaddr & ~PAGE_MASK) {
1022 ret = area->vaddr;
1023 goto fail;
1024 }
1025
1026 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1027 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1028 if (ret)
1029 goto fail;
1030
1031 smp_wmb(); /* pairs with get_xol_area() */
1032 mm->uprobes_state.xol_area = area;
1033 ret = 0;
1034
1035fail:
1036 up_write(&mm->mmap_sem);
1037 if (ret)
1038 __free_page(area->page);
1039
1040 return ret;
1041}
1042
1043static struct xol_area *get_xol_area(struct mm_struct *mm)
1044{
1045 struct xol_area *area;
1046
1047 area = mm->uprobes_state.xol_area;
1048 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1049
1050 return area;
1051}
1052
1053/*
1054 * xol_alloc_area - Allocate process's xol_area.
1055 * This area will be used for storing instructions for execution out of
1056 * line.
1057 *
1058 * Returns the allocated area or NULL.
1059 */
1060static struct xol_area *xol_alloc_area(void)
1061{
1062 struct xol_area *area;
1063
1064 area = kzalloc(sizeof(*area), GFP_KERNEL);
1065 if (unlikely(!area))
1066 return NULL;
1067
1068 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1069
1070 if (!area->bitmap)
1071 goto fail;
1072
1073 init_waitqueue_head(&area->wq);
1074 if (!xol_add_vma(area))
1075 return area;
1076
1077fail:
1078 kfree(area->bitmap);
1079 kfree(area);
1080
1081 return get_xol_area(current->mm);
1082}
1083
1084/*
1085 * uprobe_clear_state - Free the area allocated for slots.
1086 */
1087void uprobe_clear_state(struct mm_struct *mm)
1088{
1089 struct xol_area *area = mm->uprobes_state.xol_area;
1090
1091 if (!area)
1092 return;
1093
1094 put_page(area->page);
1095 kfree(area->bitmap);
1096 kfree(area);
1097}
1098
f8ac4ec9
ON
1099void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1100{
61559a81
ON
1101 newmm->uprobes_state.xol_area = NULL;
1102
9f68f672 1103 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
f8ac4ec9 1104 set_bit(MMF_HAS_UPROBES, &newmm->flags);
9f68f672
ON
1105 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1106 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1107 }
f8ac4ec9
ON
1108}
1109
d4b3b638
SD
1110/*
1111 * - search for a free slot.
1112 */
1113static unsigned long xol_take_insn_slot(struct xol_area *area)
1114{
1115 unsigned long slot_addr;
1116 int slot_nr;
1117
1118 do {
1119 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1120 if (slot_nr < UINSNS_PER_PAGE) {
1121 if (!test_and_set_bit(slot_nr, area->bitmap))
1122 break;
1123
1124 slot_nr = UINSNS_PER_PAGE;
1125 continue;
1126 }
1127 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1128 } while (slot_nr >= UINSNS_PER_PAGE);
1129
1130 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1131 atomic_inc(&area->slot_count);
1132
1133 return slot_addr;
1134}
1135
1136/*
1137 * xol_get_insn_slot - If was not allocated a slot, then
1138 * allocate a slot.
1139 * Returns the allocated slot address or 0.
1140 */
1141static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1142{
1143 struct xol_area *area;
1144 unsigned long offset;
1145 void *vaddr;
1146
1147 area = get_xol_area(current->mm);
1148 if (!area) {
1149 area = xol_alloc_area();
1150 if (!area)
1151 return 0;
1152 }
1153 current->utask->xol_vaddr = xol_take_insn_slot(area);
1154
1155 /*
1156 * Initialize the slot if xol_vaddr points to valid
1157 * instruction slot.
1158 */
1159 if (unlikely(!current->utask->xol_vaddr))
1160 return 0;
1161
1162 current->utask->vaddr = slot_addr;
1163 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1164 vaddr = kmap_atomic(area->page);
1165 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1166 kunmap_atomic(vaddr);
1167
1168 return current->utask->xol_vaddr;
1169}
1170
1171/*
1172 * xol_free_insn_slot - If slot was earlier allocated by
1173 * @xol_get_insn_slot(), make the slot available for
1174 * subsequent requests.
1175 */
1176static void xol_free_insn_slot(struct task_struct *tsk)
1177{
1178 struct xol_area *area;
1179 unsigned long vma_end;
1180 unsigned long slot_addr;
1181
1182 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1183 return;
1184
1185 slot_addr = tsk->utask->xol_vaddr;
1186
1187 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1188 return;
1189
1190 area = tsk->mm->uprobes_state.xol_area;
1191 vma_end = area->vaddr + PAGE_SIZE;
1192 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1193 unsigned long offset;
1194 int slot_nr;
1195
1196 offset = slot_addr - area->vaddr;
1197 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1198 if (slot_nr >= UINSNS_PER_PAGE)
1199 return;
1200
1201 clear_bit(slot_nr, area->bitmap);
1202 atomic_dec(&area->slot_count);
1203 if (waitqueue_active(&area->wq))
1204 wake_up(&area->wq);
1205
1206 tsk->utask->xol_vaddr = 0;
1207 }
1208}
1209
0326f5a9
SD
1210/**
1211 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1212 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1213 * instruction.
1214 * Return the address of the breakpoint instruction.
1215 */
1216unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1217{
1218 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1219}
1220
1221/*
1222 * Called with no locks held.
1223 * Called in context of a exiting or a exec-ing thread.
1224 */
1225void uprobe_free_utask(struct task_struct *t)
1226{
1227 struct uprobe_task *utask = t->utask;
1228
0326f5a9
SD
1229 if (!utask)
1230 return;
1231
1232 if (utask->active_uprobe)
1233 put_uprobe(utask->active_uprobe);
1234
d4b3b638 1235 xol_free_insn_slot(t);
0326f5a9
SD
1236 kfree(utask);
1237 t->utask = NULL;
1238}
1239
1240/*
1241 * Called in context of a new clone/fork from copy_process.
1242 */
1243void uprobe_copy_process(struct task_struct *t)
1244{
1245 t->utask = NULL;
0326f5a9
SD
1246}
1247
1248/*
1249 * Allocate a uprobe_task object for the task.
1250 * Called when the thread hits a breakpoint for the first time.
1251 *
1252 * Returns:
1253 * - pointer to new uprobe_task on success
1254 * - NULL otherwise
1255 */
1256static struct uprobe_task *add_utask(void)
1257{
1258 struct uprobe_task *utask;
1259
1260 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1261 if (unlikely(!utask))
1262 return NULL;
1263
0326f5a9
SD
1264 current->utask = utask;
1265 return utask;
1266}
1267
1268/* Prepare to single-step probed instruction out of line. */
1269static int
1270pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1271{
d4b3b638
SD
1272 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1273 return 0;
1274
0326f5a9
SD
1275 return -EFAULT;
1276}
1277
1278/*
1279 * If we are singlestepping, then ensure this thread is not connected to
1280 * non-fatal signals until completion of singlestep. When xol insn itself
1281 * triggers the signal, restart the original insn even if the task is
1282 * already SIGKILL'ed (since coredump should report the correct ip). This
1283 * is even more important if the task has a handler for SIGSEGV/etc, The
1284 * _same_ instruction should be repeated again after return from the signal
1285 * handler, and SSTEP can never finish in this case.
1286 */
1287bool uprobe_deny_signal(void)
1288{
1289 struct task_struct *t = current;
1290 struct uprobe_task *utask = t->utask;
1291
1292 if (likely(!utask || !utask->active_uprobe))
1293 return false;
1294
1295 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1296
1297 if (signal_pending(t)) {
1298 spin_lock_irq(&t->sighand->siglock);
1299 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1300 spin_unlock_irq(&t->sighand->siglock);
1301
1302 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1303 utask->state = UTASK_SSTEP_TRAPPED;
1304 set_tsk_thread_flag(t, TIF_UPROBE);
1305 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1306 }
1307 }
1308
1309 return true;
1310}
1311
1312/*
1313 * Avoid singlestepping the original instruction if the original instruction
1314 * is a NOP or can be emulated.
1315 */
1316static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1317{
0578a970
ON
1318 if (uprobe->flags & UPROBE_SKIP_SSTEP) {
1319 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1320 return true;
1321 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1322 }
0326f5a9
SD
1323 return false;
1324}
1325
499a4f3e
ON
1326static void mmf_recalc_uprobes(struct mm_struct *mm)
1327{
1328 struct vm_area_struct *vma;
1329
1330 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1331 if (!valid_vma(vma, false))
1332 continue;
1333 /*
1334 * This is not strictly accurate, we can race with
1335 * uprobe_unregister() and see the already removed
1336 * uprobe if delete_uprobe() was not yet called.
1337 */
1338 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1339 return;
1340 }
1341
1342 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1343}
1344
ec75fba9
ON
1345static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
1346{
1347 struct page *page;
1348 uprobe_opcode_t opcode;
1349 int result;
1350
1351 pagefault_disable();
1352 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1353 sizeof(opcode));
1354 pagefault_enable();
1355
1356 if (likely(result == 0))
1357 goto out;
1358
1359 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1360 if (result < 0)
1361 return result;
1362
1363 copy_opcode(page, vaddr, &opcode);
1364 put_page(page);
1365 out:
1366 return is_swbp_insn(&opcode);
1367}
1368
d790d346 1369static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1370{
3a9ea052
ON
1371 struct mm_struct *mm = current->mm;
1372 struct uprobe *uprobe = NULL;
0326f5a9 1373 struct vm_area_struct *vma;
0326f5a9 1374
0326f5a9
SD
1375 down_read(&mm->mmap_sem);
1376 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1377 if (vma && vma->vm_start <= bp_vaddr) {
1378 if (valid_vma(vma, false)) {
cb113b47
ON
1379 struct inode *inode = vma->vm_file->f_mapping->host;
1380 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1381
3a9ea052
ON
1382 uprobe = find_uprobe(inode, offset);
1383 }
d790d346
ON
1384
1385 if (!uprobe)
1386 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1387 } else {
1388 *is_swbp = -EFAULT;
0326f5a9 1389 }
499a4f3e
ON
1390
1391 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1392 mmf_recalc_uprobes(mm);
0326f5a9
SD
1393 up_read(&mm->mmap_sem);
1394
3a9ea052
ON
1395 return uprobe;
1396}
1397
9d778782
SAS
1398void __weak arch_uprobe_enable_step(struct arch_uprobe *arch)
1399{
1400 user_enable_single_step(current);
1401}
1402
1403void __weak arch_uprobe_disable_step(struct arch_uprobe *arch)
1404{
1405 user_disable_single_step(current);
1406}
1407
3a9ea052
ON
1408/*
1409 * Run handler and ask thread to singlestep.
1410 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1411 */
1412static void handle_swbp(struct pt_regs *regs)
1413{
1414 struct uprobe_task *utask;
1415 struct uprobe *uprobe;
1416 unsigned long bp_vaddr;
56bb4cf6 1417 int uninitialized_var(is_swbp);
3a9ea052
ON
1418
1419 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1420 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1421
0326f5a9 1422 if (!uprobe) {
56bb4cf6
ON
1423 if (is_swbp > 0) {
1424 /* No matching uprobe; signal SIGTRAP. */
1425 send_sig(SIGTRAP, current, 0);
1426 } else {
1427 /*
1428 * Either we raced with uprobe_unregister() or we can't
1429 * access this memory. The latter is only possible if
1430 * another thread plays with our ->mm. In both cases
1431 * we can simply restart. If this vma was unmapped we
1432 * can pretend this insn was not executed yet and get
1433 * the (correct) SIGSEGV after restart.
1434 */
1435 instruction_pointer_set(regs, bp_vaddr);
1436 }
0326f5a9
SD
1437 return;
1438 }
1439
1b08e907 1440 utask = current->utask;
0326f5a9
SD
1441 if (!utask) {
1442 utask = add_utask();
1443 /* Cannot allocate; re-execute the instruction. */
1444 if (!utask)
0578a970 1445 goto restart;
0326f5a9 1446 }
746a9e6b 1447
0326f5a9 1448 handler_chain(uprobe, regs);
0578a970
ON
1449 if (can_skip_sstep(uprobe, regs))
1450 goto out;
0326f5a9 1451
0326f5a9 1452 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
9d778782 1453 arch_uprobe_enable_step(&uprobe->arch);
746a9e6b
ON
1454 utask->active_uprobe = uprobe;
1455 utask->state = UTASK_SSTEP;
0326f5a9
SD
1456 return;
1457 }
1458
0578a970
ON
1459restart:
1460 /*
1461 * cannot singlestep; cannot skip instruction;
1462 * re-execute the instruction.
1463 */
1464 instruction_pointer_set(regs, bp_vaddr);
1465out:
8bd87445 1466 put_uprobe(uprobe);
0326f5a9
SD
1467}
1468
1469/*
1470 * Perform required fix-ups and disable singlestep.
1471 * Allow pending signals to take effect.
1472 */
1473static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1474{
1475 struct uprobe *uprobe;
1476
1477 uprobe = utask->active_uprobe;
1478 if (utask->state == UTASK_SSTEP_ACK)
1479 arch_uprobe_post_xol(&uprobe->arch, regs);
1480 else if (utask->state == UTASK_SSTEP_TRAPPED)
1481 arch_uprobe_abort_xol(&uprobe->arch, regs);
1482 else
1483 WARN_ON_ONCE(1);
1484
9d778782 1485 arch_uprobe_disable_step(&uprobe->arch);
0326f5a9
SD
1486 put_uprobe(uprobe);
1487 utask->active_uprobe = NULL;
1488 utask->state = UTASK_RUNNING;
d4b3b638 1489 xol_free_insn_slot(current);
0326f5a9
SD
1490
1491 spin_lock_irq(&current->sighand->siglock);
1492 recalc_sigpending(); /* see uprobe_deny_signal() */
1493 spin_unlock_irq(&current->sighand->siglock);
1494}
1495
1496/*
1b08e907
ON
1497 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1498 * allows the thread to return from interrupt. After that handle_swbp()
1499 * sets utask->active_uprobe.
0326f5a9 1500 *
1b08e907
ON
1501 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1502 * and allows the thread to return from interrupt.
0326f5a9
SD
1503 *
1504 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1505 * uprobe_notify_resume().
1506 */
1507void uprobe_notify_resume(struct pt_regs *regs)
1508{
1509 struct uprobe_task *utask;
1510
db023ea5
ON
1511 clear_thread_flag(TIF_UPROBE);
1512
0326f5a9 1513 utask = current->utask;
1b08e907 1514 if (utask && utask->active_uprobe)
0326f5a9 1515 handle_singlestep(utask, regs);
1b08e907
ON
1516 else
1517 handle_swbp(regs);
0326f5a9
SD
1518}
1519
1520/*
1521 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1522 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1523 */
1524int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1525{
f8ac4ec9 1526 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
0326f5a9
SD
1527 return 0;
1528
0326f5a9 1529 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1530 return 1;
1531}
1532
1533/*
1534 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1535 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1536 */
1537int uprobe_post_sstep_notifier(struct pt_regs *regs)
1538{
1539 struct uprobe_task *utask = current->utask;
1540
1541 if (!current->mm || !utask || !utask->active_uprobe)
1542 /* task is currently not uprobed */
1543 return 0;
1544
1545 utask->state = UTASK_SSTEP_ACK;
1546 set_thread_flag(TIF_UPROBE);
1547 return 1;
1548}
1549
1550static struct notifier_block uprobe_exception_nb = {
1551 .notifier_call = arch_uprobe_exception_notify,
1552 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1553};
1554
2b144498
SD
1555static int __init init_uprobes(void)
1556{
1557 int i;
1558
1559 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1560 mutex_init(&uprobes_mutex[i]);
1561 mutex_init(&uprobes_mmap_mutex[i]);
1562 }
0326f5a9
SD
1563
1564 return register_die_notifier(&uprobe_exception_nb);
2b144498 1565}
0326f5a9 1566module_init(init_uprobes);
2b144498
SD
1567
1568static void __exit exit_uprobes(void)
1569{
1570}
2b144498 1571module_exit(exit_uprobes);