]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/events/uprobes.c
uprobes: Introduce vaddr_to_offset(vma, vaddr)
[mirror_ubuntu-artful-kernel.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
7b2d81d4 35
2b144498
SD
36#include <linux/uprobes.h>
37
d4b3b638
SD
38#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
40
2b144498 41static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 42
2b144498
SD
43static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
44
45#define UPROBES_HASH_SZ 13
7b2d81d4 46
c5784de2
PZ
47/*
48 * We need separate register/unregister and mmap/munmap lock hashes because
49 * of mmap_sem nesting.
50 *
51 * uprobe_register() needs to install probes on (potentially) all processes
52 * and thus needs to acquire multiple mmap_sems (consequtively, not
53 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
54 * for the particular process doing the mmap.
55 *
56 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
57 * because of lock order against i_mmap_mutex. This means there's a hole in
58 * the register vma iteration where a mmap() can happen.
59 *
60 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
61 * install a probe where one is already installed.
62 */
63
2b144498
SD
64/* serialize (un)register */
65static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
66
67#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
68
69/* serialize uprobe->pending_list */
70static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 71#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
72
73/*
7b2d81d4 74 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
75 * events active at this time. Probably a fine grained per inode count is
76 * better?
77 */
78static atomic_t uprobe_events = ATOMIC_INIT(0);
79
3ff54efd
SD
80struct uprobe {
81 struct rb_node rb_node; /* node in the rb tree */
82 atomic_t ref;
83 struct rw_semaphore consumer_rwsem;
84 struct list_head pending_list;
85 struct uprobe_consumer *consumers;
86 struct inode *inode; /* Also hold a ref to inode */
87 loff_t offset;
88 int flags;
89 struct arch_uprobe arch;
90};
91
2b144498
SD
92/*
93 * valid_vma: Verify if the specified vma is an executable vma
94 * Relax restrictions while unregistering: vm_flags might have
95 * changed after breakpoint was inserted.
96 * - is_register: indicates if we are in register context.
97 * - Return 1 if the specified virtual address is in an
98 * executable vma.
99 */
100static bool valid_vma(struct vm_area_struct *vma, bool is_register)
101{
102 if (!vma->vm_file)
103 return false;
104
105 if (!is_register)
106 return true;
107
ea131377
ON
108 if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
109 == (VM_READ|VM_EXEC))
2b144498
SD
110 return true;
111
112 return false;
113}
114
115static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
116{
117 loff_t vaddr;
118
119 vaddr = vma->vm_start + offset;
aefd8933 120 vaddr -= (loff_t)vma->vm_pgoff << PAGE_SHIFT;
7b2d81d4 121
2b144498
SD
122 return vaddr;
123}
124
cb113b47
ON
125static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
126{
127 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
128}
129
2b144498
SD
130/**
131 * __replace_page - replace page in vma by new page.
132 * based on replace_page in mm/ksm.c
133 *
134 * @vma: vma that holds the pte pointing to page
c517ee74 135 * @addr: address the old @page is mapped at
2b144498
SD
136 * @page: the cowed page we are replacing by kpage
137 * @kpage: the modified page we replace page by
138 *
139 * Returns 0 on success, -EFAULT on failure.
140 */
c517ee74
ON
141static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
142 struct page *page, struct page *kpage)
2b144498
SD
143{
144 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
145 spinlock_t *ptl;
146 pte_t *ptep;
9f92448c 147 int err;
2b144498 148
9f92448c
ON
149 /* freeze PageSwapCache() for try_to_free_swap() below */
150 lock_page(page);
151
152 err = -EAGAIN;
5323ce71 153 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 154 if (!ptep)
9f92448c 155 goto unlock;
2b144498
SD
156
157 get_page(kpage);
158 page_add_new_anon_rmap(kpage, vma, addr);
159
7396fa81
SD
160 if (!PageAnon(page)) {
161 dec_mm_counter(mm, MM_FILEPAGES);
162 inc_mm_counter(mm, MM_ANONPAGES);
163 }
164
2b144498
SD
165 flush_cache_page(vma, addr, pte_pfn(*ptep));
166 ptep_clear_flush(vma, addr, ptep);
167 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
168
169 page_remove_rmap(page);
170 if (!page_mapped(page))
171 try_to_free_swap(page);
172 put_page(page);
173 pte_unmap_unlock(ptep, ptl);
2b144498 174
9f92448c
ON
175 err = 0;
176 unlock:
177 unlock_page(page);
178 return err;
2b144498
SD
179}
180
181/**
5cb4ac3a 182 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 183 * @insn: instruction to be checked.
5cb4ac3a 184 * Default implementation of is_swbp_insn
2b144498
SD
185 * Returns true if @insn is a breakpoint instruction.
186 */
5cb4ac3a 187bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 188{
5cb4ac3a 189 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
190}
191
192/*
193 * NOTE:
194 * Expect the breakpoint instruction to be the smallest size instruction for
195 * the architecture. If an arch has variable length instruction and the
196 * breakpoint instruction is not of the smallest length instruction
197 * supported by that architecture then we need to modify read_opcode /
198 * write_opcode accordingly. This would never be a problem for archs that
199 * have fixed length instructions.
200 */
201
202/*
203 * write_opcode - write the opcode at a given virtual address.
e3343e6a 204 * @auprobe: arch breakpointing information.
2b144498 205 * @mm: the probed process address space.
2b144498
SD
206 * @vaddr: the virtual address to store the opcode.
207 * @opcode: opcode to be written at @vaddr.
208 *
209 * Called with mm->mmap_sem held (for read and with a reference to
210 * mm).
211 *
212 * For mm @mm, write the opcode at @vaddr.
213 * Return 0 (success) or a negative errno.
214 */
e3343e6a 215static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
2b144498
SD
216 unsigned long vaddr, uprobe_opcode_t opcode)
217{
218 struct page *old_page, *new_page;
2b144498
SD
219 void *vaddr_old, *vaddr_new;
220 struct vm_area_struct *vma;
2b144498 221 int ret;
f403072c 222
5323ce71 223retry:
2b144498
SD
224 /* Read the page with vaddr into memory */
225 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
226 if (ret <= 0)
227 return ret;
7b2d81d4 228
2b144498
SD
229 ret = -ENOMEM;
230 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
231 if (!new_page)
9f92448c 232 goto put_old;
2b144498
SD
233
234 __SetPageUptodate(new_page);
235
2b144498
SD
236 /* copy the page now that we've got it stable */
237 vaddr_old = kmap_atomic(old_page);
238 vaddr_new = kmap_atomic(new_page);
239
240 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
d9c4a30e 241 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
242
243 kunmap_atomic(vaddr_new);
244 kunmap_atomic(vaddr_old);
245
246 ret = anon_vma_prepare(vma);
247 if (ret)
9f92448c 248 goto put_new;
2b144498 249
c517ee74 250 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 251
9f92448c 252put_new:
2b144498 253 page_cache_release(new_page);
9f92448c 254put_old:
7b2d81d4
IM
255 put_page(old_page);
256
5323ce71
ON
257 if (unlikely(ret == -EAGAIN))
258 goto retry;
2b144498
SD
259 return ret;
260}
261
262/**
263 * read_opcode - read the opcode at a given virtual address.
264 * @mm: the probed process address space.
265 * @vaddr: the virtual address to read the opcode.
266 * @opcode: location to store the read opcode.
267 *
268 * Called with mm->mmap_sem held (for read and with a reference to
269 * mm.
270 *
271 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
272 * Return 0 (success) or a negative errno.
273 */
7b2d81d4 274static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
2b144498
SD
275{
276 struct page *page;
277 void *vaddr_new;
278 int ret;
279
a3d7bb47 280 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
2b144498
SD
281 if (ret <= 0)
282 return ret;
283
284 lock_page(page);
285 vaddr_new = kmap_atomic(page);
286 vaddr &= ~PAGE_MASK;
5cb4ac3a 287 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
288 kunmap_atomic(vaddr_new);
289 unlock_page(page);
7b2d81d4
IM
290
291 put_page(page);
292
2b144498
SD
293 return 0;
294}
295
5cb4ac3a 296static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
2b144498
SD
297{
298 uprobe_opcode_t opcode;
7b2d81d4 299 int result;
2b144498 300
c00b2750
ON
301 if (current->mm == mm) {
302 pagefault_disable();
303 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
304 sizeof(opcode));
305 pagefault_enable();
306
307 if (likely(result == 0))
308 goto out;
309 }
310
7b2d81d4 311 result = read_opcode(mm, vaddr, &opcode);
2b144498
SD
312 if (result)
313 return result;
c00b2750 314out:
5cb4ac3a 315 if (is_swbp_insn(&opcode))
2b144498
SD
316 return 1;
317
318 return 0;
319}
320
321/**
5cb4ac3a 322 * set_swbp - store breakpoint at a given address.
e3343e6a 323 * @auprobe: arch specific probepoint information.
2b144498 324 * @mm: the probed process address space.
2b144498
SD
325 * @vaddr: the virtual address to insert the opcode.
326 *
327 * For mm @mm, store the breakpoint instruction at @vaddr.
328 * Return 0 (success) or a negative errno.
329 */
5cb4ac3a 330int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 331{
7b2d81d4 332 int result;
c5784de2
PZ
333 /*
334 * See the comment near uprobes_hash().
335 */
5cb4ac3a 336 result = is_swbp_at_addr(mm, vaddr);
2b144498
SD
337 if (result == 1)
338 return -EEXIST;
339
340 if (result)
341 return result;
342
5cb4ac3a 343 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
344}
345
346/**
347 * set_orig_insn - Restore the original instruction.
348 * @mm: the probed process address space.
e3343e6a 349 * @auprobe: arch specific probepoint information.
2b144498
SD
350 * @vaddr: the virtual address to insert the opcode.
351 * @verify: if true, verify existance of breakpoint instruction.
352 *
353 * For mm @mm, restore the original opcode (opcode) at @vaddr.
354 * Return 0 (success) or a negative errno.
355 */
7b2d81d4 356int __weak
e3343e6a 357set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
2b144498
SD
358{
359 if (verify) {
7b2d81d4 360 int result;
2b144498 361
5cb4ac3a 362 result = is_swbp_at_addr(mm, vaddr);
2b144498
SD
363 if (!result)
364 return -EINVAL;
365
366 if (result != 1)
367 return result;
368 }
e3343e6a 369 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
370}
371
372static int match_uprobe(struct uprobe *l, struct uprobe *r)
373{
374 if (l->inode < r->inode)
375 return -1;
7b2d81d4 376
2b144498
SD
377 if (l->inode > r->inode)
378 return 1;
2b144498 379
7b2d81d4
IM
380 if (l->offset < r->offset)
381 return -1;
382
383 if (l->offset > r->offset)
384 return 1;
2b144498
SD
385
386 return 0;
387}
388
389static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
390{
391 struct uprobe u = { .inode = inode, .offset = offset };
392 struct rb_node *n = uprobes_tree.rb_node;
393 struct uprobe *uprobe;
394 int match;
395
396 while (n) {
397 uprobe = rb_entry(n, struct uprobe, rb_node);
398 match = match_uprobe(&u, uprobe);
399 if (!match) {
400 atomic_inc(&uprobe->ref);
401 return uprobe;
402 }
7b2d81d4 403
2b144498
SD
404 if (match < 0)
405 n = n->rb_left;
406 else
407 n = n->rb_right;
408 }
409 return NULL;
410}
411
412/*
413 * Find a uprobe corresponding to a given inode:offset
414 * Acquires uprobes_treelock
415 */
416static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
417{
418 struct uprobe *uprobe;
419 unsigned long flags;
420
421 spin_lock_irqsave(&uprobes_treelock, flags);
422 uprobe = __find_uprobe(inode, offset);
423 spin_unlock_irqrestore(&uprobes_treelock, flags);
7b2d81d4 424
2b144498
SD
425 return uprobe;
426}
427
428static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
429{
430 struct rb_node **p = &uprobes_tree.rb_node;
431 struct rb_node *parent = NULL;
432 struct uprobe *u;
433 int match;
434
435 while (*p) {
436 parent = *p;
437 u = rb_entry(parent, struct uprobe, rb_node);
438 match = match_uprobe(uprobe, u);
439 if (!match) {
440 atomic_inc(&u->ref);
441 return u;
442 }
443
444 if (match < 0)
445 p = &parent->rb_left;
446 else
447 p = &parent->rb_right;
448
449 }
7b2d81d4 450
2b144498
SD
451 u = NULL;
452 rb_link_node(&uprobe->rb_node, parent, p);
453 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
454 /* get access + creation ref */
455 atomic_set(&uprobe->ref, 2);
7b2d81d4 456
2b144498
SD
457 return u;
458}
459
460/*
7b2d81d4 461 * Acquire uprobes_treelock.
2b144498
SD
462 * Matching uprobe already exists in rbtree;
463 * increment (access refcount) and return the matching uprobe.
464 *
465 * No matching uprobe; insert the uprobe in rb_tree;
466 * get a double refcount (access + creation) and return NULL.
467 */
468static struct uprobe *insert_uprobe(struct uprobe *uprobe)
469{
470 unsigned long flags;
471 struct uprobe *u;
472
473 spin_lock_irqsave(&uprobes_treelock, flags);
474 u = __insert_uprobe(uprobe);
475 spin_unlock_irqrestore(&uprobes_treelock, flags);
7b2d81d4 476
0326f5a9
SD
477 /* For now assume that the instruction need not be single-stepped */
478 uprobe->flags |= UPROBE_SKIP_SSTEP;
479
2b144498
SD
480 return u;
481}
482
483static void put_uprobe(struct uprobe *uprobe)
484{
485 if (atomic_dec_and_test(&uprobe->ref))
486 kfree(uprobe);
487}
488
489static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
490{
491 struct uprobe *uprobe, *cur_uprobe;
492
493 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
494 if (!uprobe)
495 return NULL;
496
497 uprobe->inode = igrab(inode);
498 uprobe->offset = offset;
499 init_rwsem(&uprobe->consumer_rwsem);
2b144498
SD
500
501 /* add to uprobes_tree, sorted on inode:offset */
502 cur_uprobe = insert_uprobe(uprobe);
503
504 /* a uprobe exists for this inode:offset combination */
505 if (cur_uprobe) {
506 kfree(uprobe);
507 uprobe = cur_uprobe;
508 iput(inode);
7b2d81d4 509 } else {
2b144498 510 atomic_inc(&uprobe_events);
7b2d81d4
IM
511 }
512
2b144498
SD
513 return uprobe;
514}
515
0326f5a9
SD
516static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
517{
518 struct uprobe_consumer *uc;
519
520 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
521 return;
522
523 down_read(&uprobe->consumer_rwsem);
524 for (uc = uprobe->consumers; uc; uc = uc->next) {
525 if (!uc->filter || uc->filter(uc, current))
526 uc->handler(uc, regs);
527 }
528 up_read(&uprobe->consumer_rwsem);
529}
530
2b144498 531/* Returns the previous consumer */
7b2d81d4 532static struct uprobe_consumer *
e3343e6a 533consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
534{
535 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
536 uc->next = uprobe->consumers;
537 uprobe->consumers = uc;
2b144498 538 up_write(&uprobe->consumer_rwsem);
7b2d81d4 539
e3343e6a 540 return uc->next;
2b144498
SD
541}
542
543/*
e3343e6a
SD
544 * For uprobe @uprobe, delete the consumer @uc.
545 * Return true if the @uc is deleted successfully
2b144498
SD
546 * or return false.
547 */
e3343e6a 548static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
549{
550 struct uprobe_consumer **con;
551 bool ret = false;
552
553 down_write(&uprobe->consumer_rwsem);
554 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
555 if (*con == uc) {
556 *con = uc->next;
2b144498
SD
557 ret = true;
558 break;
559 }
560 }
561 up_write(&uprobe->consumer_rwsem);
7b2d81d4 562
2b144498
SD
563 return ret;
564}
565
e3343e6a 566static int
d436615e 567__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 568 unsigned long nbytes, loff_t offset)
2b144498 569{
2b144498
SD
570 struct page *page;
571 void *vaddr;
593609a5
ON
572 unsigned long off;
573 pgoff_t idx;
2b144498
SD
574
575 if (!filp)
576 return -EINVAL;
577
cc359d18
ON
578 if (!mapping->a_ops->readpage)
579 return -EIO;
580
593609a5
ON
581 idx = offset >> PAGE_CACHE_SHIFT;
582 off = offset & ~PAGE_MASK;
2b144498
SD
583
584 /*
585 * Ensure that the page that has the original instruction is
586 * populated and in page-cache.
587 */
588 page = read_mapping_page(mapping, idx, filp);
589 if (IS_ERR(page))
590 return PTR_ERR(page);
591
592 vaddr = kmap_atomic(page);
593609a5 593 memcpy(insn, vaddr + off, nbytes);
2b144498
SD
594 kunmap_atomic(vaddr);
595 page_cache_release(page);
7b2d81d4 596
2b144498
SD
597 return 0;
598}
599
d436615e 600static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
601{
602 struct address_space *mapping;
2b144498 603 unsigned long nbytes;
7b2d81d4 604 int bytes;
2b144498 605
d436615e 606 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
607 mapping = uprobe->inode->i_mapping;
608
609 /* Instruction at end of binary; copy only available bytes */
610 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
611 bytes = uprobe->inode->i_size - uprobe->offset;
612 else
613 bytes = MAX_UINSN_BYTES;
614
615 /* Instruction at the page-boundary; copy bytes in second page */
616 if (nbytes < bytes) {
fc36f595
ON
617 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
618 bytes - nbytes, uprobe->offset + nbytes);
619 if (err)
620 return err;
2b144498
SD
621 bytes = nbytes;
622 }
d436615e 623 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
624}
625
682968e0
SD
626/*
627 * How mm->uprobes_state.count gets updated
628 * uprobe_mmap() increments the count if
629 * - it successfully adds a breakpoint.
630 * - it cannot add a breakpoint, but sees that there is a underlying
631 * breakpoint (via a is_swbp_at_addr()).
632 *
633 * uprobe_munmap() decrements the count if
634 * - it sees a underlying breakpoint, (via is_swbp_at_addr)
635 * (Subsequent uprobe_unregister wouldnt find the breakpoint
636 * unless a uprobe_mmap kicks in, since the old vma would be
637 * dropped just after uprobe_munmap.)
638 *
639 * uprobe_register increments the count if:
640 * - it successfully adds a breakpoint.
641 *
642 * uprobe_unregister decrements the count if:
643 * - it sees a underlying breakpoint and removes successfully.
644 * (via is_swbp_at_addr)
645 * (Subsequent uprobe_munmap wouldnt find the breakpoint
646 * since there is no underlying breakpoint after the
647 * breakpoint removal.)
648 */
e3343e6a
SD
649static int
650install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 651 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 652{
2b144498
SD
653 int ret;
654
655 /*
656 * If probe is being deleted, unregister thread could be done with
657 * the vma-rmap-walk through. Adding a probe now can be fatal since
658 * nobody will be able to cleanup. Also we could be from fork or
659 * mremap path, where the probe might have already been inserted.
660 * Hence behave as if probe already existed.
661 */
662 if (!uprobe->consumers)
663 return -EEXIST;
664
900771a4 665 if (!(uprobe->flags & UPROBE_COPY_INSN)) {
d436615e 666 ret = copy_insn(uprobe, vma->vm_file);
2b144498
SD
667 if (ret)
668 return ret;
669
5cb4ac3a 670 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
c1914a09 671 return -ENOTSUPP;
2b144498 672
816c03fb 673 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
674 if (ret)
675 return ret;
676
d9c4a30e
ON
677 /* write_opcode() assumes we don't cross page boundary */
678 BUG_ON((uprobe->offset & ~PAGE_MASK) +
679 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
680
900771a4 681 uprobe->flags |= UPROBE_COPY_INSN;
2b144498 682 }
682968e0
SD
683
684 /*
685 * Ideally, should be updating the probe count after the breakpoint
686 * has been successfully inserted. However a thread could hit the
687 * breakpoint we just inserted even before the probe count is
688 * incremented. If this is the first breakpoint placed, breakpoint
689 * notifier might ignore uprobes and pass the trap to the thread.
690 * Hence increment before and decrement on failure.
691 */
692 atomic_inc(&mm->uprobes_state.count);
816c03fb 693 ret = set_swbp(&uprobe->arch, mm, vaddr);
682968e0
SD
694 if (ret)
695 atomic_dec(&mm->uprobes_state.count);
2b144498
SD
696
697 return ret;
698}
699
e3343e6a 700static void
816c03fb 701remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 702{
816c03fb 703 if (!set_orig_insn(&uprobe->arch, mm, vaddr, true))
682968e0 704 atomic_dec(&mm->uprobes_state.count);
2b144498
SD
705}
706
0326f5a9 707/*
778b032d
ON
708 * There could be threads that have already hit the breakpoint. They
709 * will recheck the current insn and restart if find_uprobe() fails.
710 * See find_active_uprobe().
0326f5a9 711 */
2b144498
SD
712static void delete_uprobe(struct uprobe *uprobe)
713{
714 unsigned long flags;
715
716 spin_lock_irqsave(&uprobes_treelock, flags);
717 rb_erase(&uprobe->rb_node, &uprobes_tree);
718 spin_unlock_irqrestore(&uprobes_treelock, flags);
719 iput(uprobe->inode);
720 put_uprobe(uprobe);
721 atomic_dec(&uprobe_events);
722}
723
26872090
ON
724struct map_info {
725 struct map_info *next;
726 struct mm_struct *mm;
816c03fb 727 unsigned long vaddr;
26872090
ON
728};
729
730static inline struct map_info *free_map_info(struct map_info *info)
2b144498 731{
26872090
ON
732 struct map_info *next = info->next;
733 kfree(info);
734 return next;
735}
736
737static struct map_info *
738build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
739{
740 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498
SD
741 struct prio_tree_iter iter;
742 struct vm_area_struct *vma;
26872090
ON
743 struct map_info *curr = NULL;
744 struct map_info *prev = NULL;
745 struct map_info *info;
746 int more = 0;
2b144498 747
26872090
ON
748 again:
749 mutex_lock(&mapping->i_mmap_mutex);
2b144498
SD
750 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
751 if (!valid_vma(vma, is_register))
752 continue;
753
7a5bfb66
ON
754 if (!prev && !more) {
755 /*
756 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
757 * reclaim. This is optimistic, no harm done if it fails.
758 */
759 prev = kmalloc(sizeof(struct map_info),
760 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
761 if (prev)
762 prev->next = NULL;
763 }
26872090
ON
764 if (!prev) {
765 more++;
766 continue;
2b144498 767 }
2b144498 768
26872090
ON
769 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
770 continue;
7b2d81d4 771
26872090
ON
772 info = prev;
773 prev = prev->next;
774 info->next = curr;
775 curr = info;
2b144498 776
26872090
ON
777 info->mm = vma->vm_mm;
778 info->vaddr = vma_address(vma, offset);
779 }
2b144498
SD
780 mutex_unlock(&mapping->i_mmap_mutex);
781
26872090
ON
782 if (!more)
783 goto out;
784
785 prev = curr;
786 while (curr) {
787 mmput(curr->mm);
788 curr = curr->next;
789 }
7b2d81d4 790
26872090
ON
791 do {
792 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
793 if (!info) {
794 curr = ERR_PTR(-ENOMEM);
795 goto out;
796 }
797 info->next = prev;
798 prev = info;
799 } while (--more);
800
801 goto again;
802 out:
803 while (prev)
804 prev = free_map_info(prev);
805 return curr;
2b144498
SD
806}
807
808static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
809{
26872090
ON
810 struct map_info *info;
811 int err = 0;
2b144498 812
26872090
ON
813 info = build_map_info(uprobe->inode->i_mapping,
814 uprobe->offset, is_register);
815 if (IS_ERR(info))
816 return PTR_ERR(info);
7b2d81d4 817
26872090
ON
818 while (info) {
819 struct mm_struct *mm = info->mm;
820 struct vm_area_struct *vma;
7b2d81d4 821
26872090
ON
822 if (err)
823 goto free;
7b2d81d4 824
77fc4af1 825 down_write(&mm->mmap_sem);
26872090
ON
826 vma = find_vma(mm, (unsigned long)info->vaddr);
827 if (!vma || !valid_vma(vma, is_register))
828 goto unlock;
829
2b144498 830 if (vma->vm_file->f_mapping->host != uprobe->inode ||
816c03fb 831 vma_address(vma, uprobe->offset) != info->vaddr)
26872090 832 goto unlock;
2b144498 833
2b144498 834 if (is_register) {
26872090 835 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
c5784de2
PZ
836 /*
837 * We can race against uprobe_mmap(), see the
838 * comment near uprobe_hash().
839 */
26872090
ON
840 if (err == -EEXIST)
841 err = 0;
842 } else {
843 remove_breakpoint(uprobe, mm, info->vaddr);
2b144498 844 }
26872090
ON
845 unlock:
846 up_write(&mm->mmap_sem);
847 free:
848 mmput(mm);
849 info = free_map_info(info);
2b144498 850 }
7b2d81d4 851
26872090 852 return err;
2b144498
SD
853}
854
7b2d81d4 855static int __uprobe_register(struct uprobe *uprobe)
2b144498
SD
856{
857 return register_for_each_vma(uprobe, true);
858}
859
7b2d81d4 860static void __uprobe_unregister(struct uprobe *uprobe)
2b144498
SD
861{
862 if (!register_for_each_vma(uprobe, false))
863 delete_uprobe(uprobe);
864
865 /* TODO : cant unregister? schedule a worker thread */
866}
867
868/*
7b2d81d4 869 * uprobe_register - register a probe
2b144498
SD
870 * @inode: the file in which the probe has to be placed.
871 * @offset: offset from the start of the file.
e3343e6a 872 * @uc: information on howto handle the probe..
2b144498 873 *
7b2d81d4 874 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
875 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
876 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 877 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 878 * @uprobe even before the register operation is complete. Creation
e3343e6a 879 * refcount is released when the last @uc for the @uprobe
2b144498
SD
880 * unregisters.
881 *
882 * Return errno if it cannot successully install probes
883 * else return 0 (success)
884 */
e3343e6a 885int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
886{
887 struct uprobe *uprobe;
7b2d81d4 888 int ret;
2b144498 889
e3343e6a 890 if (!inode || !uc || uc->next)
7b2d81d4 891 return -EINVAL;
2b144498
SD
892
893 if (offset > i_size_read(inode))
7b2d81d4 894 return -EINVAL;
2b144498
SD
895
896 ret = 0;
897 mutex_lock(uprobes_hash(inode));
898 uprobe = alloc_uprobe(inode, offset);
7b2d81d4 899
e3343e6a 900 if (uprobe && !consumer_add(uprobe, uc)) {
7b2d81d4 901 ret = __uprobe_register(uprobe);
2b144498
SD
902 if (ret) {
903 uprobe->consumers = NULL;
7b2d81d4
IM
904 __uprobe_unregister(uprobe);
905 } else {
900771a4 906 uprobe->flags |= UPROBE_RUN_HANDLER;
7b2d81d4 907 }
2b144498
SD
908 }
909
910 mutex_unlock(uprobes_hash(inode));
911 put_uprobe(uprobe);
912
913 return ret;
914}
915
916/*
7b2d81d4 917 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
918 * @inode: the file in which the probe has to be removed.
919 * @offset: offset from the start of the file.
e3343e6a 920 * @uc: identify which probe if multiple probes are colocated.
2b144498 921 */
e3343e6a 922void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 923{
7b2d81d4 924 struct uprobe *uprobe;
2b144498 925
e3343e6a 926 if (!inode || !uc)
2b144498
SD
927 return;
928
929 uprobe = find_uprobe(inode, offset);
930 if (!uprobe)
931 return;
932
933 mutex_lock(uprobes_hash(inode));
2b144498 934
e3343e6a 935 if (consumer_del(uprobe, uc)) {
7b2d81d4
IM
936 if (!uprobe->consumers) {
937 __uprobe_unregister(uprobe);
900771a4 938 uprobe->flags &= ~UPROBE_RUN_HANDLER;
7b2d81d4 939 }
2b144498
SD
940 }
941
2b144498
SD
942 mutex_unlock(uprobes_hash(inode));
943 if (uprobe)
944 put_uprobe(uprobe);
945}
946
891c3970
ON
947static struct rb_node *
948find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 949{
2b144498 950 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
951
952 while (n) {
891c3970 953 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 954
891c3970 955 if (inode < u->inode) {
2b144498 956 n = n->rb_left;
891c3970 957 } else if (inode > u->inode) {
2b144498 958 n = n->rb_right;
891c3970
ON
959 } else {
960 if (max < u->offset)
961 n = n->rb_left;
962 else if (min > u->offset)
963 n = n->rb_right;
964 else
965 break;
966 }
2b144498 967 }
7b2d81d4 968
891c3970 969 return n;
2b144498
SD
970}
971
972/*
891c3970 973 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 974 */
891c3970
ON
975static void build_probe_list(struct inode *inode,
976 struct vm_area_struct *vma,
977 unsigned long start, unsigned long end,
978 struct list_head *head)
2b144498 979{
891c3970 980 loff_t min, max;
2b144498 981 unsigned long flags;
891c3970
ON
982 struct rb_node *n, *t;
983 struct uprobe *u;
7b2d81d4 984
891c3970 985 INIT_LIST_HEAD(head);
cb113b47 986 min = vaddr_to_offset(vma, start);
891c3970 987 max = min + (end - start) - 1;
2b144498 988
891c3970
ON
989 spin_lock_irqsave(&uprobes_treelock, flags);
990 n = find_node_in_range(inode, min, max);
991 if (n) {
992 for (t = n; t; t = rb_prev(t)) {
993 u = rb_entry(t, struct uprobe, rb_node);
994 if (u->inode != inode || u->offset < min)
995 break;
996 list_add(&u->pending_list, head);
997 atomic_inc(&u->ref);
998 }
999 for (t = n; (t = rb_next(t)); ) {
1000 u = rb_entry(t, struct uprobe, rb_node);
1001 if (u->inode != inode || u->offset > max)
1002 break;
1003 list_add(&u->pending_list, head);
1004 atomic_inc(&u->ref);
1005 }
2b144498
SD
1006 }
1007 spin_unlock_irqrestore(&uprobes_treelock, flags);
1008}
1009
1010/*
1011 * Called from mmap_region.
1012 * called with mm->mmap_sem acquired.
1013 *
1014 * Return -ve no if we fail to insert probes and we cannot
1015 * bail-out.
7b2d81d4
IM
1016 * Return 0 otherwise. i.e:
1017 *
2b144498
SD
1018 * - successful insertion of probes
1019 * - (or) no possible probes to be inserted.
1020 * - (or) insertion of probes failed but we can bail-out.
1021 */
7b2d81d4 1022int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
1023{
1024 struct list_head tmp_list;
665605a2 1025 struct uprobe *uprobe, *u;
2b144498 1026 struct inode *inode;
682968e0 1027 int ret, count;
2b144498
SD
1028
1029 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 1030 return 0;
2b144498
SD
1031
1032 inode = vma->vm_file->f_mapping->host;
1033 if (!inode)
7b2d81d4 1034 return 0;
2b144498 1035
2b144498 1036 mutex_lock(uprobes_mmap_hash(inode));
891c3970 1037 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
7b2d81d4
IM
1038
1039 ret = 0;
682968e0 1040 count = 0;
7b2d81d4 1041
665605a2 1042 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
2b144498 1043 if (!ret) {
816c03fb 1044 loff_t vaddr = vma_address(vma, uprobe->offset);
682968e0 1045
682968e0 1046 ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
c5784de2
PZ
1047 /*
1048 * We can race against uprobe_register(), see the
1049 * comment near uprobe_hash().
1050 */
682968e0
SD
1051 if (ret == -EEXIST) {
1052 ret = 0;
1053
1054 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1055 continue;
1056
1057 /*
1058 * Unable to insert a breakpoint, but
1059 * breakpoint lies underneath. Increment the
1060 * probe count.
1061 */
1062 atomic_inc(&vma->vm_mm->uprobes_state.count);
1063 }
1064
1065 if (!ret)
1066 count++;
2b144498
SD
1067 }
1068 put_uprobe(uprobe);
1069 }
1070
1071 mutex_unlock(uprobes_mmap_hash(inode));
1072
682968e0
SD
1073 if (ret)
1074 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1075
2b144498
SD
1076 return ret;
1077}
1078
682968e0
SD
1079/*
1080 * Called in context of a munmap of a vma.
1081 */
cbc91f71 1082void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0
SD
1083{
1084 struct list_head tmp_list;
665605a2 1085 struct uprobe *uprobe, *u;
682968e0
SD
1086 struct inode *inode;
1087
1088 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1089 return;
1090
2fd611a9
ON
1091 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1092 return;
1093
682968e0
SD
1094 if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1095 return;
1096
1097 inode = vma->vm_file->f_mapping->host;
1098 if (!inode)
1099 return;
1100
682968e0 1101 mutex_lock(uprobes_mmap_hash(inode));
891c3970 1102 build_probe_list(inode, vma, start, end, &tmp_list);
682968e0 1103
665605a2 1104 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
816c03fb 1105 loff_t vaddr = vma_address(vma, uprobe->offset);
891c3970
ON
1106 /*
1107 * An unregister could have removed the probe before
1108 * unmap. So check before we decrement the count.
1109 */
1110 if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1111 atomic_dec(&vma->vm_mm->uprobes_state.count);
682968e0
SD
1112 put_uprobe(uprobe);
1113 }
1114 mutex_unlock(uprobes_mmap_hash(inode));
1115}
1116
d4b3b638
SD
1117/* Slot allocation for XOL */
1118static int xol_add_vma(struct xol_area *area)
1119{
1120 struct mm_struct *mm;
1121 int ret;
1122
1123 area->page = alloc_page(GFP_HIGHUSER);
1124 if (!area->page)
1125 return -ENOMEM;
1126
1127 ret = -EALREADY;
1128 mm = current->mm;
1129
1130 down_write(&mm->mmap_sem);
1131 if (mm->uprobes_state.xol_area)
1132 goto fail;
1133
1134 ret = -ENOMEM;
1135
1136 /* Try to map as high as possible, this is only a hint. */
1137 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1138 if (area->vaddr & ~PAGE_MASK) {
1139 ret = area->vaddr;
1140 goto fail;
1141 }
1142
1143 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1144 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1145 if (ret)
1146 goto fail;
1147
1148 smp_wmb(); /* pairs with get_xol_area() */
1149 mm->uprobes_state.xol_area = area;
1150 ret = 0;
1151
1152fail:
1153 up_write(&mm->mmap_sem);
1154 if (ret)
1155 __free_page(area->page);
1156
1157 return ret;
1158}
1159
1160static struct xol_area *get_xol_area(struct mm_struct *mm)
1161{
1162 struct xol_area *area;
1163
1164 area = mm->uprobes_state.xol_area;
1165 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1166
1167 return area;
1168}
1169
1170/*
1171 * xol_alloc_area - Allocate process's xol_area.
1172 * This area will be used for storing instructions for execution out of
1173 * line.
1174 *
1175 * Returns the allocated area or NULL.
1176 */
1177static struct xol_area *xol_alloc_area(void)
1178{
1179 struct xol_area *area;
1180
1181 area = kzalloc(sizeof(*area), GFP_KERNEL);
1182 if (unlikely(!area))
1183 return NULL;
1184
1185 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1186
1187 if (!area->bitmap)
1188 goto fail;
1189
1190 init_waitqueue_head(&area->wq);
1191 if (!xol_add_vma(area))
1192 return area;
1193
1194fail:
1195 kfree(area->bitmap);
1196 kfree(area);
1197
1198 return get_xol_area(current->mm);
1199}
1200
1201/*
1202 * uprobe_clear_state - Free the area allocated for slots.
1203 */
1204void uprobe_clear_state(struct mm_struct *mm)
1205{
1206 struct xol_area *area = mm->uprobes_state.xol_area;
1207
1208 if (!area)
1209 return;
1210
1211 put_page(area->page);
1212 kfree(area->bitmap);
1213 kfree(area);
1214}
1215
1216/*
1217 * uprobe_reset_state - Free the area allocated for slots.
1218 */
1219void uprobe_reset_state(struct mm_struct *mm)
1220{
1221 mm->uprobes_state.xol_area = NULL;
682968e0 1222 atomic_set(&mm->uprobes_state.count, 0);
d4b3b638
SD
1223}
1224
1225/*
1226 * - search for a free slot.
1227 */
1228static unsigned long xol_take_insn_slot(struct xol_area *area)
1229{
1230 unsigned long slot_addr;
1231 int slot_nr;
1232
1233 do {
1234 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1235 if (slot_nr < UINSNS_PER_PAGE) {
1236 if (!test_and_set_bit(slot_nr, area->bitmap))
1237 break;
1238
1239 slot_nr = UINSNS_PER_PAGE;
1240 continue;
1241 }
1242 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1243 } while (slot_nr >= UINSNS_PER_PAGE);
1244
1245 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1246 atomic_inc(&area->slot_count);
1247
1248 return slot_addr;
1249}
1250
1251/*
1252 * xol_get_insn_slot - If was not allocated a slot, then
1253 * allocate a slot.
1254 * Returns the allocated slot address or 0.
1255 */
1256static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1257{
1258 struct xol_area *area;
1259 unsigned long offset;
1260 void *vaddr;
1261
1262 area = get_xol_area(current->mm);
1263 if (!area) {
1264 area = xol_alloc_area();
1265 if (!area)
1266 return 0;
1267 }
1268 current->utask->xol_vaddr = xol_take_insn_slot(area);
1269
1270 /*
1271 * Initialize the slot if xol_vaddr points to valid
1272 * instruction slot.
1273 */
1274 if (unlikely(!current->utask->xol_vaddr))
1275 return 0;
1276
1277 current->utask->vaddr = slot_addr;
1278 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1279 vaddr = kmap_atomic(area->page);
1280 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1281 kunmap_atomic(vaddr);
1282
1283 return current->utask->xol_vaddr;
1284}
1285
1286/*
1287 * xol_free_insn_slot - If slot was earlier allocated by
1288 * @xol_get_insn_slot(), make the slot available for
1289 * subsequent requests.
1290 */
1291static void xol_free_insn_slot(struct task_struct *tsk)
1292{
1293 struct xol_area *area;
1294 unsigned long vma_end;
1295 unsigned long slot_addr;
1296
1297 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1298 return;
1299
1300 slot_addr = tsk->utask->xol_vaddr;
1301
1302 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1303 return;
1304
1305 area = tsk->mm->uprobes_state.xol_area;
1306 vma_end = area->vaddr + PAGE_SIZE;
1307 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1308 unsigned long offset;
1309 int slot_nr;
1310
1311 offset = slot_addr - area->vaddr;
1312 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1313 if (slot_nr >= UINSNS_PER_PAGE)
1314 return;
1315
1316 clear_bit(slot_nr, area->bitmap);
1317 atomic_dec(&area->slot_count);
1318 if (waitqueue_active(&area->wq))
1319 wake_up(&area->wq);
1320
1321 tsk->utask->xol_vaddr = 0;
1322 }
1323}
1324
0326f5a9
SD
1325/**
1326 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1327 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1328 * instruction.
1329 * Return the address of the breakpoint instruction.
1330 */
1331unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1332{
1333 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1334}
1335
1336/*
1337 * Called with no locks held.
1338 * Called in context of a exiting or a exec-ing thread.
1339 */
1340void uprobe_free_utask(struct task_struct *t)
1341{
1342 struct uprobe_task *utask = t->utask;
1343
0326f5a9
SD
1344 if (!utask)
1345 return;
1346
1347 if (utask->active_uprobe)
1348 put_uprobe(utask->active_uprobe);
1349
d4b3b638 1350 xol_free_insn_slot(t);
0326f5a9
SD
1351 kfree(utask);
1352 t->utask = NULL;
1353}
1354
1355/*
1356 * Called in context of a new clone/fork from copy_process.
1357 */
1358void uprobe_copy_process(struct task_struct *t)
1359{
1360 t->utask = NULL;
0326f5a9
SD
1361}
1362
1363/*
1364 * Allocate a uprobe_task object for the task.
1365 * Called when the thread hits a breakpoint for the first time.
1366 *
1367 * Returns:
1368 * - pointer to new uprobe_task on success
1369 * - NULL otherwise
1370 */
1371static struct uprobe_task *add_utask(void)
1372{
1373 struct uprobe_task *utask;
1374
1375 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1376 if (unlikely(!utask))
1377 return NULL;
1378
0326f5a9
SD
1379 current->utask = utask;
1380 return utask;
1381}
1382
1383/* Prepare to single-step probed instruction out of line. */
1384static int
1385pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1386{
d4b3b638
SD
1387 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1388 return 0;
1389
0326f5a9
SD
1390 return -EFAULT;
1391}
1392
1393/*
1394 * If we are singlestepping, then ensure this thread is not connected to
1395 * non-fatal signals until completion of singlestep. When xol insn itself
1396 * triggers the signal, restart the original insn even if the task is
1397 * already SIGKILL'ed (since coredump should report the correct ip). This
1398 * is even more important if the task has a handler for SIGSEGV/etc, The
1399 * _same_ instruction should be repeated again after return from the signal
1400 * handler, and SSTEP can never finish in this case.
1401 */
1402bool uprobe_deny_signal(void)
1403{
1404 struct task_struct *t = current;
1405 struct uprobe_task *utask = t->utask;
1406
1407 if (likely(!utask || !utask->active_uprobe))
1408 return false;
1409
1410 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1411
1412 if (signal_pending(t)) {
1413 spin_lock_irq(&t->sighand->siglock);
1414 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1415 spin_unlock_irq(&t->sighand->siglock);
1416
1417 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1418 utask->state = UTASK_SSTEP_TRAPPED;
1419 set_tsk_thread_flag(t, TIF_UPROBE);
1420 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1421 }
1422 }
1423
1424 return true;
1425}
1426
1427/*
1428 * Avoid singlestepping the original instruction if the original instruction
1429 * is a NOP or can be emulated.
1430 */
1431static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1432{
1433 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1434 return true;
1435
1436 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1437 return false;
1438}
1439
d790d346 1440static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1441{
3a9ea052
ON
1442 struct mm_struct *mm = current->mm;
1443 struct uprobe *uprobe = NULL;
0326f5a9 1444 struct vm_area_struct *vma;
0326f5a9 1445
0326f5a9
SD
1446 down_read(&mm->mmap_sem);
1447 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1448 if (vma && vma->vm_start <= bp_vaddr) {
1449 if (valid_vma(vma, false)) {
cb113b47
ON
1450 struct inode *inode = vma->vm_file->f_mapping->host;
1451 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1452
3a9ea052
ON
1453 uprobe = find_uprobe(inode, offset);
1454 }
d790d346
ON
1455
1456 if (!uprobe)
1457 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1458 } else {
1459 *is_swbp = -EFAULT;
0326f5a9 1460 }
0326f5a9
SD
1461 up_read(&mm->mmap_sem);
1462
3a9ea052
ON
1463 return uprobe;
1464}
1465
1466/*
1467 * Run handler and ask thread to singlestep.
1468 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1469 */
1470static void handle_swbp(struct pt_regs *regs)
1471{
1472 struct uprobe_task *utask;
1473 struct uprobe *uprobe;
1474 unsigned long bp_vaddr;
56bb4cf6 1475 int uninitialized_var(is_swbp);
3a9ea052
ON
1476
1477 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1478 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1479
0326f5a9 1480 if (!uprobe) {
56bb4cf6
ON
1481 if (is_swbp > 0) {
1482 /* No matching uprobe; signal SIGTRAP. */
1483 send_sig(SIGTRAP, current, 0);
1484 } else {
1485 /*
1486 * Either we raced with uprobe_unregister() or we can't
1487 * access this memory. The latter is only possible if
1488 * another thread plays with our ->mm. In both cases
1489 * we can simply restart. If this vma was unmapped we
1490 * can pretend this insn was not executed yet and get
1491 * the (correct) SIGSEGV after restart.
1492 */
1493 instruction_pointer_set(regs, bp_vaddr);
1494 }
0326f5a9
SD
1495 return;
1496 }
1497
1498 utask = current->utask;
1499 if (!utask) {
1500 utask = add_utask();
1501 /* Cannot allocate; re-execute the instruction. */
1502 if (!utask)
1503 goto cleanup_ret;
1504 }
1505 utask->active_uprobe = uprobe;
1506 handler_chain(uprobe, regs);
1507 if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1508 goto cleanup_ret;
1509
1510 utask->state = UTASK_SSTEP;
1511 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1512 user_enable_single_step(current);
1513 return;
1514 }
1515
1516cleanup_ret:
1517 if (utask) {
1518 utask->active_uprobe = NULL;
1519 utask->state = UTASK_RUNNING;
1520 }
1521 if (uprobe) {
1522 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1523
1524 /*
1525 * cannot singlestep; cannot skip instruction;
1526 * re-execute the instruction.
1527 */
1528 instruction_pointer_set(regs, bp_vaddr);
1529
1530 put_uprobe(uprobe);
1531 }
1532}
1533
1534/*
1535 * Perform required fix-ups and disable singlestep.
1536 * Allow pending signals to take effect.
1537 */
1538static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1539{
1540 struct uprobe *uprobe;
1541
1542 uprobe = utask->active_uprobe;
1543 if (utask->state == UTASK_SSTEP_ACK)
1544 arch_uprobe_post_xol(&uprobe->arch, regs);
1545 else if (utask->state == UTASK_SSTEP_TRAPPED)
1546 arch_uprobe_abort_xol(&uprobe->arch, regs);
1547 else
1548 WARN_ON_ONCE(1);
1549
1550 put_uprobe(uprobe);
1551 utask->active_uprobe = NULL;
1552 utask->state = UTASK_RUNNING;
1553 user_disable_single_step(current);
d4b3b638 1554 xol_free_insn_slot(current);
0326f5a9
SD
1555
1556 spin_lock_irq(&current->sighand->siglock);
1557 recalc_sigpending(); /* see uprobe_deny_signal() */
1558 spin_unlock_irq(&current->sighand->siglock);
1559}
1560
1561/*
1562 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on
1563 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1564 * allows the thread to return from interrupt.
1565 *
1566 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1567 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1568 * interrupt.
1569 *
1570 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1571 * uprobe_notify_resume().
1572 */
1573void uprobe_notify_resume(struct pt_regs *regs)
1574{
1575 struct uprobe_task *utask;
1576
1577 utask = current->utask;
1578 if (!utask || utask->state == UTASK_BP_HIT)
1579 handle_swbp(regs);
1580 else
1581 handle_singlestep(utask, regs);
1582}
1583
1584/*
1585 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1586 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1587 */
1588int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1589{
1590 struct uprobe_task *utask;
1591
682968e0
SD
1592 if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1593 /* task is currently not uprobed */
0326f5a9
SD
1594 return 0;
1595
1596 utask = current->utask;
1597 if (utask)
1598 utask->state = UTASK_BP_HIT;
1599
1600 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1601
1602 return 1;
1603}
1604
1605/*
1606 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1607 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1608 */
1609int uprobe_post_sstep_notifier(struct pt_regs *regs)
1610{
1611 struct uprobe_task *utask = current->utask;
1612
1613 if (!current->mm || !utask || !utask->active_uprobe)
1614 /* task is currently not uprobed */
1615 return 0;
1616
1617 utask->state = UTASK_SSTEP_ACK;
1618 set_thread_flag(TIF_UPROBE);
1619 return 1;
1620}
1621
1622static struct notifier_block uprobe_exception_nb = {
1623 .notifier_call = arch_uprobe_exception_notify,
1624 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1625};
1626
2b144498
SD
1627static int __init init_uprobes(void)
1628{
1629 int i;
1630
1631 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1632 mutex_init(&uprobes_mutex[i]);
1633 mutex_init(&uprobes_mmap_mutex[i]);
1634 }
0326f5a9
SD
1635
1636 return register_die_notifier(&uprobe_exception_nb);
2b144498 1637}
0326f5a9 1638module_init(init_uprobes);
2b144498
SD
1639
1640static void __exit exit_uprobes(void)
1641{
1642}
2b144498 1643module_exit(exit_uprobes);