]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/events/uprobes.c
uprobes: Kill set_orig_insn()->is_swbp_at_addr()
[mirror_ubuntu-zesty-kernel.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
194f8dcb 35#include "../../mm/internal.h" /* munlock_vma_page */
7b2d81d4 36
2b144498
SD
37#include <linux/uprobes.h>
38
d4b3b638
SD
39#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
40#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
41
2b144498 42static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 43
2b144498
SD
44static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
45
46#define UPROBES_HASH_SZ 13
7b2d81d4 47
c5784de2
PZ
48/*
49 * We need separate register/unregister and mmap/munmap lock hashes because
50 * of mmap_sem nesting.
51 *
52 * uprobe_register() needs to install probes on (potentially) all processes
53 * and thus needs to acquire multiple mmap_sems (consequtively, not
54 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
55 * for the particular process doing the mmap.
56 *
57 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
58 * because of lock order against i_mmap_mutex. This means there's a hole in
59 * the register vma iteration where a mmap() can happen.
60 *
61 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
62 * install a probe where one is already installed.
63 */
64
2b144498
SD
65/* serialize (un)register */
66static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
67
68#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
69
70/* serialize uprobe->pending_list */
71static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 72#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
73
74/*
7b2d81d4 75 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
76 * events active at this time. Probably a fine grained per inode count is
77 * better?
78 */
79static atomic_t uprobe_events = ATOMIC_INIT(0);
80
3ff54efd
SD
81struct uprobe {
82 struct rb_node rb_node; /* node in the rb tree */
83 atomic_t ref;
84 struct rw_semaphore consumer_rwsem;
85 struct list_head pending_list;
86 struct uprobe_consumer *consumers;
87 struct inode *inode; /* Also hold a ref to inode */
88 loff_t offset;
89 int flags;
90 struct arch_uprobe arch;
91};
92
2b144498
SD
93/*
94 * valid_vma: Verify if the specified vma is an executable vma
95 * Relax restrictions while unregistering: vm_flags might have
96 * changed after breakpoint was inserted.
97 * - is_register: indicates if we are in register context.
98 * - Return 1 if the specified virtual address is in an
99 * executable vma.
100 */
101static bool valid_vma(struct vm_area_struct *vma, bool is_register)
102{
e40cfce6 103 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
2b144498 104
e40cfce6
ON
105 if (is_register)
106 flags |= VM_WRITE;
2b144498 107
e40cfce6 108 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
2b144498
SD
109}
110
57683f72 111static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 112{
57683f72 113 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
114}
115
cb113b47
ON
116static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
117{
118 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
119}
120
2b144498
SD
121/**
122 * __replace_page - replace page in vma by new page.
123 * based on replace_page in mm/ksm.c
124 *
125 * @vma: vma that holds the pte pointing to page
c517ee74 126 * @addr: address the old @page is mapped at
2b144498
SD
127 * @page: the cowed page we are replacing by kpage
128 * @kpage: the modified page we replace page by
129 *
130 * Returns 0 on success, -EFAULT on failure.
131 */
c517ee74
ON
132static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
133 struct page *page, struct page *kpage)
2b144498
SD
134{
135 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
136 spinlock_t *ptl;
137 pte_t *ptep;
9f92448c 138 int err;
2b144498 139
194f8dcb 140 /* For try_to_free_swap() and munlock_vma_page() below */
9f92448c
ON
141 lock_page(page);
142
143 err = -EAGAIN;
5323ce71 144 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 145 if (!ptep)
9f92448c 146 goto unlock;
2b144498
SD
147
148 get_page(kpage);
149 page_add_new_anon_rmap(kpage, vma, addr);
150
7396fa81
SD
151 if (!PageAnon(page)) {
152 dec_mm_counter(mm, MM_FILEPAGES);
153 inc_mm_counter(mm, MM_ANONPAGES);
154 }
155
2b144498
SD
156 flush_cache_page(vma, addr, pte_pfn(*ptep));
157 ptep_clear_flush(vma, addr, ptep);
158 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
159
160 page_remove_rmap(page);
161 if (!page_mapped(page))
162 try_to_free_swap(page);
2b144498 163 pte_unmap_unlock(ptep, ptl);
2b144498 164
194f8dcb
ON
165 if (vma->vm_flags & VM_LOCKED)
166 munlock_vma_page(page);
167 put_page(page);
168
9f92448c
ON
169 err = 0;
170 unlock:
171 unlock_page(page);
172 return err;
2b144498
SD
173}
174
175/**
5cb4ac3a 176 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 177 * @insn: instruction to be checked.
5cb4ac3a 178 * Default implementation of is_swbp_insn
2b144498
SD
179 * Returns true if @insn is a breakpoint instruction.
180 */
5cb4ac3a 181bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 182{
5cb4ac3a 183 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
184}
185
cceb55aa
ON
186static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
187{
188 void *kaddr = kmap_atomic(page);
189 memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
190 kunmap_atomic(kaddr);
191}
192
ed6f6a50
ON
193static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
194{
195 uprobe_opcode_t old_opcode;
196 bool is_swbp;
197
198 copy_opcode(page, vaddr, &old_opcode);
199 is_swbp = is_swbp_insn(&old_opcode);
200
201 if (is_swbp_insn(new_opcode)) {
202 if (is_swbp) /* register: already installed? */
203 return 0;
204 } else {
205 if (!is_swbp) /* unregister: was it changed by us? */
206 return -EINVAL;
207 }
208
209 return 1;
210}
211
2b144498
SD
212/*
213 * NOTE:
214 * Expect the breakpoint instruction to be the smallest size instruction for
215 * the architecture. If an arch has variable length instruction and the
216 * breakpoint instruction is not of the smallest length instruction
cceb55aa 217 * supported by that architecture then we need to modify is_swbp_at_addr and
2b144498
SD
218 * write_opcode accordingly. This would never be a problem for archs that
219 * have fixed length instructions.
220 */
221
222/*
223 * write_opcode - write the opcode at a given virtual address.
224 * @mm: the probed process address space.
2b144498
SD
225 * @vaddr: the virtual address to store the opcode.
226 * @opcode: opcode to be written at @vaddr.
227 *
228 * Called with mm->mmap_sem held (for read and with a reference to
229 * mm).
230 *
231 * For mm @mm, write the opcode at @vaddr.
232 * Return 0 (success) or a negative errno.
233 */
cceb55aa
ON
234static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
235 uprobe_opcode_t opcode)
2b144498
SD
236{
237 struct page *old_page, *new_page;
2b144498
SD
238 void *vaddr_old, *vaddr_new;
239 struct vm_area_struct *vma;
2b144498 240 int ret;
f403072c 241
5323ce71 242retry:
2b144498 243 /* Read the page with vaddr into memory */
75ed82ea 244 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
2b144498
SD
245 if (ret <= 0)
246 return ret;
7b2d81d4 247
ed6f6a50
ON
248 ret = verify_opcode(old_page, vaddr, &opcode);
249 if (ret <= 0)
250 goto put_old;
251
2b144498
SD
252 ret = -ENOMEM;
253 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
254 if (!new_page)
9f92448c 255 goto put_old;
2b144498
SD
256
257 __SetPageUptodate(new_page);
258
2b144498
SD
259 /* copy the page now that we've got it stable */
260 vaddr_old = kmap_atomic(old_page);
261 vaddr_new = kmap_atomic(new_page);
262
263 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
d9c4a30e 264 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
265
266 kunmap_atomic(vaddr_new);
267 kunmap_atomic(vaddr_old);
268
269 ret = anon_vma_prepare(vma);
270 if (ret)
9f92448c 271 goto put_new;
2b144498 272
c517ee74 273 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 274
9f92448c 275put_new:
2b144498 276 page_cache_release(new_page);
9f92448c 277put_old:
7b2d81d4
IM
278 put_page(old_page);
279
5323ce71
ON
280 if (unlikely(ret == -EAGAIN))
281 goto retry;
2b144498
SD
282 return ret;
283}
284
5cb4ac3a 285static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
2b144498 286{
cceb55aa 287 struct page *page;
2b144498 288 uprobe_opcode_t opcode;
7b2d81d4 289 int result;
2b144498 290
c00b2750
ON
291 if (current->mm == mm) {
292 pagefault_disable();
293 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
294 sizeof(opcode));
295 pagefault_enable();
296
297 if (likely(result == 0))
298 goto out;
299 }
300
cceb55aa
ON
301 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
302 if (result < 0)
2b144498 303 return result;
2b144498 304
cceb55aa
ON
305 copy_opcode(page, vaddr, &opcode);
306 put_page(page);
307 out:
308 return is_swbp_insn(&opcode);
2b144498
SD
309}
310
311/**
5cb4ac3a 312 * set_swbp - store breakpoint at a given address.
e3343e6a 313 * @auprobe: arch specific probepoint information.
2b144498 314 * @mm: the probed process address space.
2b144498
SD
315 * @vaddr: the virtual address to insert the opcode.
316 *
317 * For mm @mm, store the breakpoint instruction at @vaddr.
318 * Return 0 (success) or a negative errno.
319 */
5cb4ac3a 320int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 321{
cceb55aa 322 return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
323}
324
325/**
326 * set_orig_insn - Restore the original instruction.
327 * @mm: the probed process address space.
e3343e6a 328 * @auprobe: arch specific probepoint information.
2b144498 329 * @vaddr: the virtual address to insert the opcode.
2b144498
SD
330 *
331 * For mm @mm, restore the original opcode (opcode) at @vaddr.
332 * Return 0 (success) or a negative errno.
333 */
7b2d81d4 334int __weak
ded86e7c 335set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 336{
cceb55aa 337 return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
338}
339
340static int match_uprobe(struct uprobe *l, struct uprobe *r)
341{
342 if (l->inode < r->inode)
343 return -1;
7b2d81d4 344
2b144498
SD
345 if (l->inode > r->inode)
346 return 1;
2b144498 347
7b2d81d4
IM
348 if (l->offset < r->offset)
349 return -1;
350
351 if (l->offset > r->offset)
352 return 1;
2b144498
SD
353
354 return 0;
355}
356
357static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
358{
359 struct uprobe u = { .inode = inode, .offset = offset };
360 struct rb_node *n = uprobes_tree.rb_node;
361 struct uprobe *uprobe;
362 int match;
363
364 while (n) {
365 uprobe = rb_entry(n, struct uprobe, rb_node);
366 match = match_uprobe(&u, uprobe);
367 if (!match) {
368 atomic_inc(&uprobe->ref);
369 return uprobe;
370 }
7b2d81d4 371
2b144498
SD
372 if (match < 0)
373 n = n->rb_left;
374 else
375 n = n->rb_right;
376 }
377 return NULL;
378}
379
380/*
381 * Find a uprobe corresponding to a given inode:offset
382 * Acquires uprobes_treelock
383 */
384static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
385{
386 struct uprobe *uprobe;
2b144498 387
6f47caa0 388 spin_lock(&uprobes_treelock);
2b144498 389 uprobe = __find_uprobe(inode, offset);
6f47caa0 390 spin_unlock(&uprobes_treelock);
7b2d81d4 391
2b144498
SD
392 return uprobe;
393}
394
395static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
396{
397 struct rb_node **p = &uprobes_tree.rb_node;
398 struct rb_node *parent = NULL;
399 struct uprobe *u;
400 int match;
401
402 while (*p) {
403 parent = *p;
404 u = rb_entry(parent, struct uprobe, rb_node);
405 match = match_uprobe(uprobe, u);
406 if (!match) {
407 atomic_inc(&u->ref);
408 return u;
409 }
410
411 if (match < 0)
412 p = &parent->rb_left;
413 else
414 p = &parent->rb_right;
415
416 }
7b2d81d4 417
2b144498
SD
418 u = NULL;
419 rb_link_node(&uprobe->rb_node, parent, p);
420 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
421 /* get access + creation ref */
422 atomic_set(&uprobe->ref, 2);
7b2d81d4 423
2b144498
SD
424 return u;
425}
426
427/*
7b2d81d4 428 * Acquire uprobes_treelock.
2b144498
SD
429 * Matching uprobe already exists in rbtree;
430 * increment (access refcount) and return the matching uprobe.
431 *
432 * No matching uprobe; insert the uprobe in rb_tree;
433 * get a double refcount (access + creation) and return NULL.
434 */
435static struct uprobe *insert_uprobe(struct uprobe *uprobe)
436{
2b144498
SD
437 struct uprobe *u;
438
6f47caa0 439 spin_lock(&uprobes_treelock);
2b144498 440 u = __insert_uprobe(uprobe);
6f47caa0 441 spin_unlock(&uprobes_treelock);
7b2d81d4 442
0326f5a9
SD
443 /* For now assume that the instruction need not be single-stepped */
444 uprobe->flags |= UPROBE_SKIP_SSTEP;
445
2b144498
SD
446 return u;
447}
448
449static void put_uprobe(struct uprobe *uprobe)
450{
451 if (atomic_dec_and_test(&uprobe->ref))
452 kfree(uprobe);
453}
454
455static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
456{
457 struct uprobe *uprobe, *cur_uprobe;
458
459 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
460 if (!uprobe)
461 return NULL;
462
463 uprobe->inode = igrab(inode);
464 uprobe->offset = offset;
465 init_rwsem(&uprobe->consumer_rwsem);
2b144498
SD
466
467 /* add to uprobes_tree, sorted on inode:offset */
468 cur_uprobe = insert_uprobe(uprobe);
469
470 /* a uprobe exists for this inode:offset combination */
471 if (cur_uprobe) {
472 kfree(uprobe);
473 uprobe = cur_uprobe;
474 iput(inode);
7b2d81d4 475 } else {
2b144498 476 atomic_inc(&uprobe_events);
7b2d81d4
IM
477 }
478
2b144498
SD
479 return uprobe;
480}
481
0326f5a9
SD
482static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
483{
484 struct uprobe_consumer *uc;
485
486 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
487 return;
488
489 down_read(&uprobe->consumer_rwsem);
490 for (uc = uprobe->consumers; uc; uc = uc->next) {
491 if (!uc->filter || uc->filter(uc, current))
492 uc->handler(uc, regs);
493 }
494 up_read(&uprobe->consumer_rwsem);
495}
496
2b144498 497/* Returns the previous consumer */
7b2d81d4 498static struct uprobe_consumer *
e3343e6a 499consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
500{
501 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
502 uc->next = uprobe->consumers;
503 uprobe->consumers = uc;
2b144498 504 up_write(&uprobe->consumer_rwsem);
7b2d81d4 505
e3343e6a 506 return uc->next;
2b144498
SD
507}
508
509/*
e3343e6a
SD
510 * For uprobe @uprobe, delete the consumer @uc.
511 * Return true if the @uc is deleted successfully
2b144498
SD
512 * or return false.
513 */
e3343e6a 514static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
515{
516 struct uprobe_consumer **con;
517 bool ret = false;
518
519 down_write(&uprobe->consumer_rwsem);
520 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
521 if (*con == uc) {
522 *con = uc->next;
2b144498
SD
523 ret = true;
524 break;
525 }
526 }
527 up_write(&uprobe->consumer_rwsem);
7b2d81d4 528
2b144498
SD
529 return ret;
530}
531
e3343e6a 532static int
d436615e 533__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 534 unsigned long nbytes, loff_t offset)
2b144498 535{
2b144498
SD
536 struct page *page;
537 void *vaddr;
593609a5
ON
538 unsigned long off;
539 pgoff_t idx;
2b144498
SD
540
541 if (!filp)
542 return -EINVAL;
543
cc359d18
ON
544 if (!mapping->a_ops->readpage)
545 return -EIO;
546
593609a5
ON
547 idx = offset >> PAGE_CACHE_SHIFT;
548 off = offset & ~PAGE_MASK;
2b144498
SD
549
550 /*
551 * Ensure that the page that has the original instruction is
552 * populated and in page-cache.
553 */
554 page = read_mapping_page(mapping, idx, filp);
555 if (IS_ERR(page))
556 return PTR_ERR(page);
557
558 vaddr = kmap_atomic(page);
593609a5 559 memcpy(insn, vaddr + off, nbytes);
2b144498
SD
560 kunmap_atomic(vaddr);
561 page_cache_release(page);
7b2d81d4 562
2b144498
SD
563 return 0;
564}
565
d436615e 566static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
567{
568 struct address_space *mapping;
2b144498 569 unsigned long nbytes;
7b2d81d4 570 int bytes;
2b144498 571
d436615e 572 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
573 mapping = uprobe->inode->i_mapping;
574
575 /* Instruction at end of binary; copy only available bytes */
576 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
577 bytes = uprobe->inode->i_size - uprobe->offset;
578 else
579 bytes = MAX_UINSN_BYTES;
580
581 /* Instruction at the page-boundary; copy bytes in second page */
582 if (nbytes < bytes) {
fc36f595
ON
583 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
584 bytes - nbytes, uprobe->offset + nbytes);
585 if (err)
586 return err;
2b144498
SD
587 bytes = nbytes;
588 }
d436615e 589 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
590}
591
682968e0
SD
592/*
593 * How mm->uprobes_state.count gets updated
594 * uprobe_mmap() increments the count if
595 * - it successfully adds a breakpoint.
596 * - it cannot add a breakpoint, but sees that there is a underlying
597 * breakpoint (via a is_swbp_at_addr()).
598 *
599 * uprobe_munmap() decrements the count if
600 * - it sees a underlying breakpoint, (via is_swbp_at_addr)
601 * (Subsequent uprobe_unregister wouldnt find the breakpoint
602 * unless a uprobe_mmap kicks in, since the old vma would be
603 * dropped just after uprobe_munmap.)
604 *
605 * uprobe_register increments the count if:
606 * - it successfully adds a breakpoint.
607 *
608 * uprobe_unregister decrements the count if:
609 * - it sees a underlying breakpoint and removes successfully.
610 * (via is_swbp_at_addr)
611 * (Subsequent uprobe_munmap wouldnt find the breakpoint
612 * since there is no underlying breakpoint after the
613 * breakpoint removal.)
614 */
e3343e6a
SD
615static int
616install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 617 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 618{
f8ac4ec9 619 bool first_uprobe;
2b144498
SD
620 int ret;
621
622 /*
623 * If probe is being deleted, unregister thread could be done with
624 * the vma-rmap-walk through. Adding a probe now can be fatal since
625 * nobody will be able to cleanup. Also we could be from fork or
626 * mremap path, where the probe might have already been inserted.
627 * Hence behave as if probe already existed.
628 */
629 if (!uprobe->consumers)
78f74116 630 return 0;
2b144498 631
900771a4 632 if (!(uprobe->flags & UPROBE_COPY_INSN)) {
d436615e 633 ret = copy_insn(uprobe, vma->vm_file);
2b144498
SD
634 if (ret)
635 return ret;
636
5cb4ac3a 637 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
c1914a09 638 return -ENOTSUPP;
2b144498 639
816c03fb 640 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
641 if (ret)
642 return ret;
643
d9c4a30e
ON
644 /* write_opcode() assumes we don't cross page boundary */
645 BUG_ON((uprobe->offset & ~PAGE_MASK) +
646 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
647
900771a4 648 uprobe->flags |= UPROBE_COPY_INSN;
2b144498 649 }
682968e0 650
f8ac4ec9
ON
651 /*
652 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
653 * the task can hit this breakpoint right after __replace_page().
654 */
655 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
656 if (first_uprobe)
657 set_bit(MMF_HAS_UPROBES, &mm->flags);
658
816c03fb 659 ret = set_swbp(&uprobe->arch, mm, vaddr);
9f68f672
ON
660 if (!ret)
661 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
662 else if (first_uprobe)
f8ac4ec9 663 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2b144498
SD
664
665 return ret;
666}
667
e3343e6a 668static void
816c03fb 669remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 670{
9f68f672
ON
671 /* can happen if uprobe_register() fails */
672 if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
673 return;
674
675 set_bit(MMF_RECALC_UPROBES, &mm->flags);
ded86e7c 676 set_orig_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
677}
678
0326f5a9 679/*
778b032d
ON
680 * There could be threads that have already hit the breakpoint. They
681 * will recheck the current insn and restart if find_uprobe() fails.
682 * See find_active_uprobe().
0326f5a9 683 */
2b144498
SD
684static void delete_uprobe(struct uprobe *uprobe)
685{
6f47caa0 686 spin_lock(&uprobes_treelock);
2b144498 687 rb_erase(&uprobe->rb_node, &uprobes_tree);
6f47caa0 688 spin_unlock(&uprobes_treelock);
2b144498
SD
689 iput(uprobe->inode);
690 put_uprobe(uprobe);
691 atomic_dec(&uprobe_events);
692}
693
26872090
ON
694struct map_info {
695 struct map_info *next;
696 struct mm_struct *mm;
816c03fb 697 unsigned long vaddr;
26872090
ON
698};
699
700static inline struct map_info *free_map_info(struct map_info *info)
2b144498 701{
26872090
ON
702 struct map_info *next = info->next;
703 kfree(info);
704 return next;
705}
706
707static struct map_info *
708build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
709{
710 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498
SD
711 struct prio_tree_iter iter;
712 struct vm_area_struct *vma;
26872090
ON
713 struct map_info *curr = NULL;
714 struct map_info *prev = NULL;
715 struct map_info *info;
716 int more = 0;
2b144498 717
26872090
ON
718 again:
719 mutex_lock(&mapping->i_mmap_mutex);
2b144498
SD
720 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
721 if (!valid_vma(vma, is_register))
722 continue;
723
7a5bfb66
ON
724 if (!prev && !more) {
725 /*
726 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
727 * reclaim. This is optimistic, no harm done if it fails.
728 */
729 prev = kmalloc(sizeof(struct map_info),
730 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
731 if (prev)
732 prev->next = NULL;
733 }
26872090
ON
734 if (!prev) {
735 more++;
736 continue;
2b144498 737 }
2b144498 738
26872090
ON
739 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
740 continue;
7b2d81d4 741
26872090
ON
742 info = prev;
743 prev = prev->next;
744 info->next = curr;
745 curr = info;
2b144498 746
26872090 747 info->mm = vma->vm_mm;
57683f72 748 info->vaddr = offset_to_vaddr(vma, offset);
26872090 749 }
2b144498
SD
750 mutex_unlock(&mapping->i_mmap_mutex);
751
26872090
ON
752 if (!more)
753 goto out;
754
755 prev = curr;
756 while (curr) {
757 mmput(curr->mm);
758 curr = curr->next;
759 }
7b2d81d4 760
26872090
ON
761 do {
762 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
763 if (!info) {
764 curr = ERR_PTR(-ENOMEM);
765 goto out;
766 }
767 info->next = prev;
768 prev = info;
769 } while (--more);
770
771 goto again;
772 out:
773 while (prev)
774 prev = free_map_info(prev);
775 return curr;
2b144498
SD
776}
777
778static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
779{
26872090
ON
780 struct map_info *info;
781 int err = 0;
2b144498 782
26872090
ON
783 info = build_map_info(uprobe->inode->i_mapping,
784 uprobe->offset, is_register);
785 if (IS_ERR(info))
786 return PTR_ERR(info);
7b2d81d4 787
26872090
ON
788 while (info) {
789 struct mm_struct *mm = info->mm;
790 struct vm_area_struct *vma;
7b2d81d4 791
26872090
ON
792 if (err)
793 goto free;
7b2d81d4 794
77fc4af1 795 down_write(&mm->mmap_sem);
f4d6dfe5
ON
796 vma = find_vma(mm, info->vaddr);
797 if (!vma || !valid_vma(vma, is_register) ||
798 vma->vm_file->f_mapping->host != uprobe->inode)
26872090
ON
799 goto unlock;
800
f4d6dfe5
ON
801 if (vma->vm_start > info->vaddr ||
802 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 803 goto unlock;
2b144498 804
78f74116 805 if (is_register)
26872090 806 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
78f74116 807 else
26872090 808 remove_breakpoint(uprobe, mm, info->vaddr);
78f74116 809
26872090
ON
810 unlock:
811 up_write(&mm->mmap_sem);
812 free:
813 mmput(mm);
814 info = free_map_info(info);
2b144498 815 }
7b2d81d4 816
26872090 817 return err;
2b144498
SD
818}
819
7b2d81d4 820static int __uprobe_register(struct uprobe *uprobe)
2b144498
SD
821{
822 return register_for_each_vma(uprobe, true);
823}
824
7b2d81d4 825static void __uprobe_unregister(struct uprobe *uprobe)
2b144498
SD
826{
827 if (!register_for_each_vma(uprobe, false))
828 delete_uprobe(uprobe);
829
830 /* TODO : cant unregister? schedule a worker thread */
831}
832
833/*
7b2d81d4 834 * uprobe_register - register a probe
2b144498
SD
835 * @inode: the file in which the probe has to be placed.
836 * @offset: offset from the start of the file.
e3343e6a 837 * @uc: information on howto handle the probe..
2b144498 838 *
7b2d81d4 839 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
840 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
841 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 842 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 843 * @uprobe even before the register operation is complete. Creation
e3343e6a 844 * refcount is released when the last @uc for the @uprobe
2b144498
SD
845 * unregisters.
846 *
847 * Return errno if it cannot successully install probes
848 * else return 0 (success)
849 */
e3343e6a 850int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
851{
852 struct uprobe *uprobe;
7b2d81d4 853 int ret;
2b144498 854
e3343e6a 855 if (!inode || !uc || uc->next)
7b2d81d4 856 return -EINVAL;
2b144498
SD
857
858 if (offset > i_size_read(inode))
7b2d81d4 859 return -EINVAL;
2b144498
SD
860
861 ret = 0;
862 mutex_lock(uprobes_hash(inode));
863 uprobe = alloc_uprobe(inode, offset);
7b2d81d4 864
e3343e6a 865 if (uprobe && !consumer_add(uprobe, uc)) {
7b2d81d4 866 ret = __uprobe_register(uprobe);
2b144498
SD
867 if (ret) {
868 uprobe->consumers = NULL;
7b2d81d4
IM
869 __uprobe_unregister(uprobe);
870 } else {
900771a4 871 uprobe->flags |= UPROBE_RUN_HANDLER;
7b2d81d4 872 }
2b144498
SD
873 }
874
875 mutex_unlock(uprobes_hash(inode));
6d1d8dfa
SAS
876 if (uprobe)
877 put_uprobe(uprobe);
2b144498
SD
878
879 return ret;
880}
881
882/*
7b2d81d4 883 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
884 * @inode: the file in which the probe has to be removed.
885 * @offset: offset from the start of the file.
e3343e6a 886 * @uc: identify which probe if multiple probes are colocated.
2b144498 887 */
e3343e6a 888void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 889{
7b2d81d4 890 struct uprobe *uprobe;
2b144498 891
e3343e6a 892 if (!inode || !uc)
2b144498
SD
893 return;
894
895 uprobe = find_uprobe(inode, offset);
896 if (!uprobe)
897 return;
898
899 mutex_lock(uprobes_hash(inode));
2b144498 900
e3343e6a 901 if (consumer_del(uprobe, uc)) {
7b2d81d4
IM
902 if (!uprobe->consumers) {
903 __uprobe_unregister(uprobe);
900771a4 904 uprobe->flags &= ~UPROBE_RUN_HANDLER;
7b2d81d4 905 }
2b144498
SD
906 }
907
2b144498
SD
908 mutex_unlock(uprobes_hash(inode));
909 if (uprobe)
910 put_uprobe(uprobe);
911}
912
891c3970
ON
913static struct rb_node *
914find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 915{
2b144498 916 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
917
918 while (n) {
891c3970 919 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 920
891c3970 921 if (inode < u->inode) {
2b144498 922 n = n->rb_left;
891c3970 923 } else if (inode > u->inode) {
2b144498 924 n = n->rb_right;
891c3970
ON
925 } else {
926 if (max < u->offset)
927 n = n->rb_left;
928 else if (min > u->offset)
929 n = n->rb_right;
930 else
931 break;
932 }
2b144498 933 }
7b2d81d4 934
891c3970 935 return n;
2b144498
SD
936}
937
938/*
891c3970 939 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 940 */
891c3970
ON
941static void build_probe_list(struct inode *inode,
942 struct vm_area_struct *vma,
943 unsigned long start, unsigned long end,
944 struct list_head *head)
2b144498 945{
891c3970 946 loff_t min, max;
891c3970
ON
947 struct rb_node *n, *t;
948 struct uprobe *u;
7b2d81d4 949
891c3970 950 INIT_LIST_HEAD(head);
cb113b47 951 min = vaddr_to_offset(vma, start);
891c3970 952 max = min + (end - start) - 1;
2b144498 953
6f47caa0 954 spin_lock(&uprobes_treelock);
891c3970
ON
955 n = find_node_in_range(inode, min, max);
956 if (n) {
957 for (t = n; t; t = rb_prev(t)) {
958 u = rb_entry(t, struct uprobe, rb_node);
959 if (u->inode != inode || u->offset < min)
960 break;
961 list_add(&u->pending_list, head);
962 atomic_inc(&u->ref);
963 }
964 for (t = n; (t = rb_next(t)); ) {
965 u = rb_entry(t, struct uprobe, rb_node);
966 if (u->inode != inode || u->offset > max)
967 break;
968 list_add(&u->pending_list, head);
969 atomic_inc(&u->ref);
970 }
2b144498 971 }
6f47caa0 972 spin_unlock(&uprobes_treelock);
2b144498
SD
973}
974
975/*
5e5be71a 976 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
2b144498 977 *
5e5be71a
ON
978 * Currently we ignore all errors and always return 0, the callers
979 * can't handle the failure anyway.
2b144498 980 */
7b2d81d4 981int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
982{
983 struct list_head tmp_list;
665605a2 984 struct uprobe *uprobe, *u;
2b144498 985 struct inode *inode;
2b144498
SD
986
987 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 988 return 0;
2b144498
SD
989
990 inode = vma->vm_file->f_mapping->host;
991 if (!inode)
7b2d81d4 992 return 0;
2b144498 993
2b144498 994 mutex_lock(uprobes_mmap_hash(inode));
891c3970 995 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
7b2d81d4 996
665605a2 997 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
5e5be71a 998 if (!fatal_signal_pending(current)) {
57683f72 999 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
5e5be71a 1000 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
2b144498
SD
1001 }
1002 put_uprobe(uprobe);
1003 }
2b144498
SD
1004 mutex_unlock(uprobes_mmap_hash(inode));
1005
5e5be71a 1006 return 0;
2b144498
SD
1007}
1008
9f68f672
ON
1009static bool
1010vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1011{
1012 loff_t min, max;
1013 struct inode *inode;
1014 struct rb_node *n;
1015
1016 inode = vma->vm_file->f_mapping->host;
1017
1018 min = vaddr_to_offset(vma, start);
1019 max = min + (end - start) - 1;
1020
1021 spin_lock(&uprobes_treelock);
1022 n = find_node_in_range(inode, min, max);
1023 spin_unlock(&uprobes_treelock);
1024
1025 return !!n;
1026}
1027
682968e0
SD
1028/*
1029 * Called in context of a munmap of a vma.
1030 */
cbc91f71 1031void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 1032{
682968e0
SD
1033 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1034 return;
1035
2fd611a9
ON
1036 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1037 return;
1038
9f68f672
ON
1039 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1040 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
f8ac4ec9
ON
1041 return;
1042
9f68f672
ON
1043 if (vma_has_uprobes(vma, start, end))
1044 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
682968e0
SD
1045}
1046
d4b3b638
SD
1047/* Slot allocation for XOL */
1048static int xol_add_vma(struct xol_area *area)
1049{
1050 struct mm_struct *mm;
1051 int ret;
1052
1053 area->page = alloc_page(GFP_HIGHUSER);
1054 if (!area->page)
1055 return -ENOMEM;
1056
1057 ret = -EALREADY;
1058 mm = current->mm;
1059
1060 down_write(&mm->mmap_sem);
1061 if (mm->uprobes_state.xol_area)
1062 goto fail;
1063
1064 ret = -ENOMEM;
1065
1066 /* Try to map as high as possible, this is only a hint. */
1067 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1068 if (area->vaddr & ~PAGE_MASK) {
1069 ret = area->vaddr;
1070 goto fail;
1071 }
1072
1073 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1074 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1075 if (ret)
1076 goto fail;
1077
1078 smp_wmb(); /* pairs with get_xol_area() */
1079 mm->uprobes_state.xol_area = area;
1080 ret = 0;
1081
1082fail:
1083 up_write(&mm->mmap_sem);
1084 if (ret)
1085 __free_page(area->page);
1086
1087 return ret;
1088}
1089
1090static struct xol_area *get_xol_area(struct mm_struct *mm)
1091{
1092 struct xol_area *area;
1093
1094 area = mm->uprobes_state.xol_area;
1095 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1096
1097 return area;
1098}
1099
1100/*
1101 * xol_alloc_area - Allocate process's xol_area.
1102 * This area will be used for storing instructions for execution out of
1103 * line.
1104 *
1105 * Returns the allocated area or NULL.
1106 */
1107static struct xol_area *xol_alloc_area(void)
1108{
1109 struct xol_area *area;
1110
1111 area = kzalloc(sizeof(*area), GFP_KERNEL);
1112 if (unlikely(!area))
1113 return NULL;
1114
1115 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1116
1117 if (!area->bitmap)
1118 goto fail;
1119
1120 init_waitqueue_head(&area->wq);
1121 if (!xol_add_vma(area))
1122 return area;
1123
1124fail:
1125 kfree(area->bitmap);
1126 kfree(area);
1127
1128 return get_xol_area(current->mm);
1129}
1130
1131/*
1132 * uprobe_clear_state - Free the area allocated for slots.
1133 */
1134void uprobe_clear_state(struct mm_struct *mm)
1135{
1136 struct xol_area *area = mm->uprobes_state.xol_area;
1137
1138 if (!area)
1139 return;
1140
1141 put_page(area->page);
1142 kfree(area->bitmap);
1143 kfree(area);
1144}
1145
f8ac4ec9
ON
1146void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1147{
61559a81
ON
1148 newmm->uprobes_state.xol_area = NULL;
1149
9f68f672 1150 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
f8ac4ec9 1151 set_bit(MMF_HAS_UPROBES, &newmm->flags);
9f68f672
ON
1152 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1153 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1154 }
f8ac4ec9
ON
1155}
1156
d4b3b638
SD
1157/*
1158 * - search for a free slot.
1159 */
1160static unsigned long xol_take_insn_slot(struct xol_area *area)
1161{
1162 unsigned long slot_addr;
1163 int slot_nr;
1164
1165 do {
1166 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1167 if (slot_nr < UINSNS_PER_PAGE) {
1168 if (!test_and_set_bit(slot_nr, area->bitmap))
1169 break;
1170
1171 slot_nr = UINSNS_PER_PAGE;
1172 continue;
1173 }
1174 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1175 } while (slot_nr >= UINSNS_PER_PAGE);
1176
1177 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1178 atomic_inc(&area->slot_count);
1179
1180 return slot_addr;
1181}
1182
1183/*
1184 * xol_get_insn_slot - If was not allocated a slot, then
1185 * allocate a slot.
1186 * Returns the allocated slot address or 0.
1187 */
1188static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1189{
1190 struct xol_area *area;
1191 unsigned long offset;
1192 void *vaddr;
1193
1194 area = get_xol_area(current->mm);
1195 if (!area) {
1196 area = xol_alloc_area();
1197 if (!area)
1198 return 0;
1199 }
1200 current->utask->xol_vaddr = xol_take_insn_slot(area);
1201
1202 /*
1203 * Initialize the slot if xol_vaddr points to valid
1204 * instruction slot.
1205 */
1206 if (unlikely(!current->utask->xol_vaddr))
1207 return 0;
1208
1209 current->utask->vaddr = slot_addr;
1210 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1211 vaddr = kmap_atomic(area->page);
1212 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1213 kunmap_atomic(vaddr);
1214
1215 return current->utask->xol_vaddr;
1216}
1217
1218/*
1219 * xol_free_insn_slot - If slot was earlier allocated by
1220 * @xol_get_insn_slot(), make the slot available for
1221 * subsequent requests.
1222 */
1223static void xol_free_insn_slot(struct task_struct *tsk)
1224{
1225 struct xol_area *area;
1226 unsigned long vma_end;
1227 unsigned long slot_addr;
1228
1229 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1230 return;
1231
1232 slot_addr = tsk->utask->xol_vaddr;
1233
1234 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1235 return;
1236
1237 area = tsk->mm->uprobes_state.xol_area;
1238 vma_end = area->vaddr + PAGE_SIZE;
1239 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1240 unsigned long offset;
1241 int slot_nr;
1242
1243 offset = slot_addr - area->vaddr;
1244 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1245 if (slot_nr >= UINSNS_PER_PAGE)
1246 return;
1247
1248 clear_bit(slot_nr, area->bitmap);
1249 atomic_dec(&area->slot_count);
1250 if (waitqueue_active(&area->wq))
1251 wake_up(&area->wq);
1252
1253 tsk->utask->xol_vaddr = 0;
1254 }
1255}
1256
0326f5a9
SD
1257/**
1258 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1259 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1260 * instruction.
1261 * Return the address of the breakpoint instruction.
1262 */
1263unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1264{
1265 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1266}
1267
1268/*
1269 * Called with no locks held.
1270 * Called in context of a exiting or a exec-ing thread.
1271 */
1272void uprobe_free_utask(struct task_struct *t)
1273{
1274 struct uprobe_task *utask = t->utask;
1275
0326f5a9
SD
1276 if (!utask)
1277 return;
1278
1279 if (utask->active_uprobe)
1280 put_uprobe(utask->active_uprobe);
1281
d4b3b638 1282 xol_free_insn_slot(t);
0326f5a9
SD
1283 kfree(utask);
1284 t->utask = NULL;
1285}
1286
1287/*
1288 * Called in context of a new clone/fork from copy_process.
1289 */
1290void uprobe_copy_process(struct task_struct *t)
1291{
1292 t->utask = NULL;
0326f5a9
SD
1293}
1294
1295/*
1296 * Allocate a uprobe_task object for the task.
1297 * Called when the thread hits a breakpoint for the first time.
1298 *
1299 * Returns:
1300 * - pointer to new uprobe_task on success
1301 * - NULL otherwise
1302 */
1303static struct uprobe_task *add_utask(void)
1304{
1305 struct uprobe_task *utask;
1306
1307 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1308 if (unlikely(!utask))
1309 return NULL;
1310
0326f5a9
SD
1311 current->utask = utask;
1312 return utask;
1313}
1314
1315/* Prepare to single-step probed instruction out of line. */
1316static int
1317pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1318{
d4b3b638
SD
1319 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1320 return 0;
1321
0326f5a9
SD
1322 return -EFAULT;
1323}
1324
1325/*
1326 * If we are singlestepping, then ensure this thread is not connected to
1327 * non-fatal signals until completion of singlestep. When xol insn itself
1328 * triggers the signal, restart the original insn even if the task is
1329 * already SIGKILL'ed (since coredump should report the correct ip). This
1330 * is even more important if the task has a handler for SIGSEGV/etc, The
1331 * _same_ instruction should be repeated again after return from the signal
1332 * handler, and SSTEP can never finish in this case.
1333 */
1334bool uprobe_deny_signal(void)
1335{
1336 struct task_struct *t = current;
1337 struct uprobe_task *utask = t->utask;
1338
1339 if (likely(!utask || !utask->active_uprobe))
1340 return false;
1341
1342 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1343
1344 if (signal_pending(t)) {
1345 spin_lock_irq(&t->sighand->siglock);
1346 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1347 spin_unlock_irq(&t->sighand->siglock);
1348
1349 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1350 utask->state = UTASK_SSTEP_TRAPPED;
1351 set_tsk_thread_flag(t, TIF_UPROBE);
1352 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1353 }
1354 }
1355
1356 return true;
1357}
1358
1359/*
1360 * Avoid singlestepping the original instruction if the original instruction
1361 * is a NOP or can be emulated.
1362 */
1363static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1364{
0578a970
ON
1365 if (uprobe->flags & UPROBE_SKIP_SSTEP) {
1366 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1367 return true;
1368 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1369 }
0326f5a9
SD
1370 return false;
1371}
1372
499a4f3e
ON
1373static void mmf_recalc_uprobes(struct mm_struct *mm)
1374{
1375 struct vm_area_struct *vma;
1376
1377 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1378 if (!valid_vma(vma, false))
1379 continue;
1380 /*
1381 * This is not strictly accurate, we can race with
1382 * uprobe_unregister() and see the already removed
1383 * uprobe if delete_uprobe() was not yet called.
1384 */
1385 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1386 return;
1387 }
1388
1389 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1390}
1391
d790d346 1392static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1393{
3a9ea052
ON
1394 struct mm_struct *mm = current->mm;
1395 struct uprobe *uprobe = NULL;
0326f5a9 1396 struct vm_area_struct *vma;
0326f5a9 1397
0326f5a9
SD
1398 down_read(&mm->mmap_sem);
1399 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1400 if (vma && vma->vm_start <= bp_vaddr) {
1401 if (valid_vma(vma, false)) {
cb113b47
ON
1402 struct inode *inode = vma->vm_file->f_mapping->host;
1403 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1404
3a9ea052
ON
1405 uprobe = find_uprobe(inode, offset);
1406 }
d790d346
ON
1407
1408 if (!uprobe)
1409 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1410 } else {
1411 *is_swbp = -EFAULT;
0326f5a9 1412 }
499a4f3e
ON
1413
1414 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1415 mmf_recalc_uprobes(mm);
0326f5a9
SD
1416 up_read(&mm->mmap_sem);
1417
3a9ea052
ON
1418 return uprobe;
1419}
1420
9d778782
SAS
1421void __weak arch_uprobe_enable_step(struct arch_uprobe *arch)
1422{
1423 user_enable_single_step(current);
1424}
1425
1426void __weak arch_uprobe_disable_step(struct arch_uprobe *arch)
1427{
1428 user_disable_single_step(current);
1429}
1430
3a9ea052
ON
1431/*
1432 * Run handler and ask thread to singlestep.
1433 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1434 */
1435static void handle_swbp(struct pt_regs *regs)
1436{
1437 struct uprobe_task *utask;
1438 struct uprobe *uprobe;
1439 unsigned long bp_vaddr;
56bb4cf6 1440 int uninitialized_var(is_swbp);
3a9ea052
ON
1441
1442 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1443 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1444
0326f5a9 1445 if (!uprobe) {
56bb4cf6
ON
1446 if (is_swbp > 0) {
1447 /* No matching uprobe; signal SIGTRAP. */
1448 send_sig(SIGTRAP, current, 0);
1449 } else {
1450 /*
1451 * Either we raced with uprobe_unregister() or we can't
1452 * access this memory. The latter is only possible if
1453 * another thread plays with our ->mm. In both cases
1454 * we can simply restart. If this vma was unmapped we
1455 * can pretend this insn was not executed yet and get
1456 * the (correct) SIGSEGV after restart.
1457 */
1458 instruction_pointer_set(regs, bp_vaddr);
1459 }
0326f5a9
SD
1460 return;
1461 }
1462
1b08e907 1463 utask = current->utask;
0326f5a9
SD
1464 if (!utask) {
1465 utask = add_utask();
1466 /* Cannot allocate; re-execute the instruction. */
1467 if (!utask)
0578a970 1468 goto restart;
0326f5a9 1469 }
746a9e6b 1470
0326f5a9 1471 handler_chain(uprobe, regs);
0578a970
ON
1472 if (can_skip_sstep(uprobe, regs))
1473 goto out;
0326f5a9 1474
0326f5a9 1475 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
9d778782 1476 arch_uprobe_enable_step(&uprobe->arch);
746a9e6b
ON
1477 utask->active_uprobe = uprobe;
1478 utask->state = UTASK_SSTEP;
0326f5a9
SD
1479 return;
1480 }
1481
0578a970
ON
1482restart:
1483 /*
1484 * cannot singlestep; cannot skip instruction;
1485 * re-execute the instruction.
1486 */
1487 instruction_pointer_set(regs, bp_vaddr);
1488out:
8bd87445 1489 put_uprobe(uprobe);
0326f5a9
SD
1490}
1491
1492/*
1493 * Perform required fix-ups and disable singlestep.
1494 * Allow pending signals to take effect.
1495 */
1496static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1497{
1498 struct uprobe *uprobe;
1499
1500 uprobe = utask->active_uprobe;
1501 if (utask->state == UTASK_SSTEP_ACK)
1502 arch_uprobe_post_xol(&uprobe->arch, regs);
1503 else if (utask->state == UTASK_SSTEP_TRAPPED)
1504 arch_uprobe_abort_xol(&uprobe->arch, regs);
1505 else
1506 WARN_ON_ONCE(1);
1507
9d778782 1508 arch_uprobe_disable_step(&uprobe->arch);
0326f5a9
SD
1509 put_uprobe(uprobe);
1510 utask->active_uprobe = NULL;
1511 utask->state = UTASK_RUNNING;
d4b3b638 1512 xol_free_insn_slot(current);
0326f5a9
SD
1513
1514 spin_lock_irq(&current->sighand->siglock);
1515 recalc_sigpending(); /* see uprobe_deny_signal() */
1516 spin_unlock_irq(&current->sighand->siglock);
1517}
1518
1519/*
1b08e907
ON
1520 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1521 * allows the thread to return from interrupt. After that handle_swbp()
1522 * sets utask->active_uprobe.
0326f5a9 1523 *
1b08e907
ON
1524 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1525 * and allows the thread to return from interrupt.
0326f5a9
SD
1526 *
1527 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1528 * uprobe_notify_resume().
1529 */
1530void uprobe_notify_resume(struct pt_regs *regs)
1531{
1532 struct uprobe_task *utask;
1533
db023ea5
ON
1534 clear_thread_flag(TIF_UPROBE);
1535
0326f5a9 1536 utask = current->utask;
1b08e907 1537 if (utask && utask->active_uprobe)
0326f5a9 1538 handle_singlestep(utask, regs);
1b08e907
ON
1539 else
1540 handle_swbp(regs);
0326f5a9
SD
1541}
1542
1543/*
1544 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1545 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1546 */
1547int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1548{
f8ac4ec9 1549 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
0326f5a9
SD
1550 return 0;
1551
0326f5a9 1552 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1553 return 1;
1554}
1555
1556/*
1557 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1558 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1559 */
1560int uprobe_post_sstep_notifier(struct pt_regs *regs)
1561{
1562 struct uprobe_task *utask = current->utask;
1563
1564 if (!current->mm || !utask || !utask->active_uprobe)
1565 /* task is currently not uprobed */
1566 return 0;
1567
1568 utask->state = UTASK_SSTEP_ACK;
1569 set_thread_flag(TIF_UPROBE);
1570 return 1;
1571}
1572
1573static struct notifier_block uprobe_exception_nb = {
1574 .notifier_call = arch_uprobe_exception_notify,
1575 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1576};
1577
2b144498
SD
1578static int __init init_uprobes(void)
1579{
1580 int i;
1581
1582 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1583 mutex_init(&uprobes_mutex[i]);
1584 mutex_init(&uprobes_mmap_mutex[i]);
1585 }
0326f5a9
SD
1586
1587 return register_die_notifier(&uprobe_exception_nb);
2b144498 1588}
0326f5a9 1589module_init(init_uprobes);
2b144498
SD
1590
1591static void __exit exit_uprobes(void)
1592{
1593}
2b144498 1594module_exit(exit_uprobes);