]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/exit.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992 Linus Torvalds | |
5 | */ | |
6 | ||
1da177e4 LT |
7 | #include <linux/mm.h> |
8 | #include <linux/slab.h> | |
4eb5aaa3 | 9 | #include <linux/sched/autogroup.h> |
6e84f315 | 10 | #include <linux/sched/mm.h> |
03441a34 | 11 | #include <linux/sched/stat.h> |
29930025 | 12 | #include <linux/sched/task.h> |
68db0cf1 | 13 | #include <linux/sched/task_stack.h> |
32ef5517 | 14 | #include <linux/sched/cputime.h> |
1da177e4 | 15 | #include <linux/interrupt.h> |
1da177e4 | 16 | #include <linux/module.h> |
c59ede7b | 17 | #include <linux/capability.h> |
1da177e4 LT |
18 | #include <linux/completion.h> |
19 | #include <linux/personality.h> | |
20 | #include <linux/tty.h> | |
da9cbc87 | 21 | #include <linux/iocontext.h> |
1da177e4 | 22 | #include <linux/key.h> |
1da177e4 LT |
23 | #include <linux/cpu.h> |
24 | #include <linux/acct.h> | |
8f0ab514 | 25 | #include <linux/tsacct_kern.h> |
1da177e4 | 26 | #include <linux/file.h> |
9f3acc31 | 27 | #include <linux/fdtable.h> |
80d26af8 | 28 | #include <linux/freezer.h> |
1da177e4 | 29 | #include <linux/binfmts.h> |
ab516013 | 30 | #include <linux/nsproxy.h> |
84d73786 | 31 | #include <linux/pid_namespace.h> |
1da177e4 LT |
32 | #include <linux/ptrace.h> |
33 | #include <linux/profile.h> | |
34 | #include <linux/mount.h> | |
35 | #include <linux/proc_fs.h> | |
49d769d5 | 36 | #include <linux/kthread.h> |
1da177e4 | 37 | #include <linux/mempolicy.h> |
c757249a | 38 | #include <linux/taskstats_kern.h> |
ca74e92b | 39 | #include <linux/delayacct.h> |
b4f48b63 | 40 | #include <linux/cgroup.h> |
1da177e4 | 41 | #include <linux/syscalls.h> |
7ed20e1a | 42 | #include <linux/signal.h> |
6a14c5c9 | 43 | #include <linux/posix-timers.h> |
9f46080c | 44 | #include <linux/cn_proc.h> |
de5097c2 | 45 | #include <linux/mutex.h> |
0771dfef | 46 | #include <linux/futex.h> |
b92ce558 | 47 | #include <linux/pipe_fs_i.h> |
fa84cb93 | 48 | #include <linux/audit.h> /* for audit_free() */ |
83cc5ed3 | 49 | #include <linux/resource.h> |
0d67a46d | 50 | #include <linux/blkdev.h> |
6eaeeaba | 51 | #include <linux/task_io_accounting_ops.h> |
30199f5a | 52 | #include <linux/tracehook.h> |
5ad4e53b | 53 | #include <linux/fs_struct.h> |
ca49ca71 | 54 | #include <linux/userfaultfd_k.h> |
d84f4f99 | 55 | #include <linux/init_task.h> |
cdd6c482 | 56 | #include <linux/perf_event.h> |
ad8d75ff | 57 | #include <trace/events/sched.h> |
24f1e32c | 58 | #include <linux/hw_breakpoint.h> |
3d5992d2 | 59 | #include <linux/oom.h> |
54848d73 | 60 | #include <linux/writeback.h> |
40401530 | 61 | #include <linux/shm.h> |
5c9a8750 | 62 | #include <linux/kcov.h> |
53d3eaa3 | 63 | #include <linux/random.h> |
8f95c90c | 64 | #include <linux/rcuwait.h> |
1da177e4 | 65 | |
7c0f6ba6 | 66 | #include <linux/uaccess.h> |
1da177e4 LT |
67 | #include <asm/unistd.h> |
68 | #include <asm/pgtable.h> | |
69 | #include <asm/mmu_context.h> | |
70 | ||
d40e48e0 | 71 | static void __unhash_process(struct task_struct *p, bool group_dead) |
1da177e4 LT |
72 | { |
73 | nr_threads--; | |
50d75f8d | 74 | detach_pid(p, PIDTYPE_PID); |
d40e48e0 | 75 | if (group_dead) { |
1da177e4 LT |
76 | detach_pid(p, PIDTYPE_PGID); |
77 | detach_pid(p, PIDTYPE_SID); | |
c97d9893 | 78 | |
5e85d4ab | 79 | list_del_rcu(&p->tasks); |
9cd80bbb | 80 | list_del_init(&p->sibling); |
909ea964 | 81 | __this_cpu_dec(process_counts); |
1da177e4 | 82 | } |
47e65328 | 83 | list_del_rcu(&p->thread_group); |
0c740d0a | 84 | list_del_rcu(&p->thread_node); |
1da177e4 LT |
85 | } |
86 | ||
6a14c5c9 ON |
87 | /* |
88 | * This function expects the tasklist_lock write-locked. | |
89 | */ | |
90 | static void __exit_signal(struct task_struct *tsk) | |
91 | { | |
92 | struct signal_struct *sig = tsk->signal; | |
d40e48e0 | 93 | bool group_dead = thread_group_leader(tsk); |
6a14c5c9 | 94 | struct sighand_struct *sighand; |
4ada856f | 95 | struct tty_struct *uninitialized_var(tty); |
5613fda9 | 96 | u64 utime, stime; |
6a14c5c9 | 97 | |
d11c563d | 98 | sighand = rcu_dereference_check(tsk->sighand, |
db1466b3 | 99 | lockdep_tasklist_lock_is_held()); |
6a14c5c9 ON |
100 | spin_lock(&sighand->siglock); |
101 | ||
baa73d9e | 102 | #ifdef CONFIG_POSIX_TIMERS |
6a14c5c9 | 103 | posix_cpu_timers_exit(tsk); |
d40e48e0 | 104 | if (group_dead) { |
6a14c5c9 | 105 | posix_cpu_timers_exit_group(tsk); |
4a599942 | 106 | } else { |
e0a70217 ON |
107 | /* |
108 | * This can only happen if the caller is de_thread(). | |
109 | * FIXME: this is the temporary hack, we should teach | |
110 | * posix-cpu-timers to handle this case correctly. | |
111 | */ | |
112 | if (unlikely(has_group_leader_pid(tsk))) | |
113 | posix_cpu_timers_exit_group(tsk); | |
baa73d9e NP |
114 | } |
115 | #endif | |
e0a70217 | 116 | |
baa73d9e NP |
117 | if (group_dead) { |
118 | tty = sig->tty; | |
119 | sig->tty = NULL; | |
120 | } else { | |
6a14c5c9 ON |
121 | /* |
122 | * If there is any task waiting for the group exit | |
123 | * then notify it: | |
124 | */ | |
d344193a | 125 | if (sig->notify_count > 0 && !--sig->notify_count) |
6a14c5c9 | 126 | wake_up_process(sig->group_exit_task); |
6db840fa | 127 | |
6a14c5c9 ON |
128 | if (tsk == sig->curr_target) |
129 | sig->curr_target = next_thread(tsk); | |
6a14c5c9 ON |
130 | } |
131 | ||
53d3eaa3 NP |
132 | add_device_randomness((const void*) &tsk->se.sum_exec_runtime, |
133 | sizeof(unsigned long long)); | |
134 | ||
90ed9cbe | 135 | /* |
26e75b5c ON |
136 | * Accumulate here the counters for all threads as they die. We could |
137 | * skip the group leader because it is the last user of signal_struct, | |
138 | * but we want to avoid the race with thread_group_cputime() which can | |
139 | * see the empty ->thread_head list. | |
90ed9cbe RR |
140 | */ |
141 | task_cputime(tsk, &utime, &stime); | |
e78c3496 | 142 | write_seqlock(&sig->stats_lock); |
90ed9cbe RR |
143 | sig->utime += utime; |
144 | sig->stime += stime; | |
145 | sig->gtime += task_gtime(tsk); | |
146 | sig->min_flt += tsk->min_flt; | |
147 | sig->maj_flt += tsk->maj_flt; | |
148 | sig->nvcsw += tsk->nvcsw; | |
149 | sig->nivcsw += tsk->nivcsw; | |
150 | sig->inblock += task_io_get_inblock(tsk); | |
151 | sig->oublock += task_io_get_oublock(tsk); | |
152 | task_io_accounting_add(&sig->ioac, &tsk->ioac); | |
153 | sig->sum_sched_runtime += tsk->se.sum_exec_runtime; | |
b3ac022c | 154 | sig->nr_threads--; |
d40e48e0 | 155 | __unhash_process(tsk, group_dead); |
e78c3496 | 156 | write_sequnlock(&sig->stats_lock); |
5876700c | 157 | |
da7978b0 ON |
158 | /* |
159 | * Do this under ->siglock, we can race with another thread | |
160 | * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. | |
161 | */ | |
162 | flush_sigqueue(&tsk->pending); | |
a7e5328a | 163 | tsk->sighand = NULL; |
6a14c5c9 | 164 | spin_unlock(&sighand->siglock); |
6a14c5c9 | 165 | |
a7e5328a | 166 | __cleanup_sighand(sighand); |
a0be55de | 167 | clear_tsk_thread_flag(tsk, TIF_SIGPENDING); |
d40e48e0 | 168 | if (group_dead) { |
6a14c5c9 | 169 | flush_sigqueue(&sig->shared_pending); |
4ada856f | 170 | tty_kref_put(tty); |
6a14c5c9 ON |
171 | } |
172 | } | |
173 | ||
8c7904a0 EB |
174 | static void delayed_put_task_struct(struct rcu_head *rhp) |
175 | { | |
0a16b607 MD |
176 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
177 | ||
4e231c79 | 178 | perf_event_delayed_put(tsk); |
0a16b607 MD |
179 | trace_sched_process_free(tsk); |
180 | put_task_struct(tsk); | |
8c7904a0 EB |
181 | } |
182 | ||
f470021a | 183 | |
a0be55de | 184 | void release_task(struct task_struct *p) |
1da177e4 | 185 | { |
36c8b586 | 186 | struct task_struct *leader; |
1da177e4 | 187 | int zap_leader; |
1f09f974 | 188 | repeat: |
c69e8d9c | 189 | /* don't need to get the RCU readlock here - the process is dead and |
d11c563d PM |
190 | * can't be modifying its own credentials. But shut RCU-lockdep up */ |
191 | rcu_read_lock(); | |
c69e8d9c | 192 | atomic_dec(&__task_cred(p)->user->processes); |
d11c563d | 193 | rcu_read_unlock(); |
c69e8d9c | 194 | |
60347f67 | 195 | proc_flush_task(p); |
0203026b | 196 | |
1da177e4 | 197 | write_lock_irq(&tasklist_lock); |
a288eecc | 198 | ptrace_release_task(p); |
1da177e4 | 199 | __exit_signal(p); |
35f5cad8 | 200 | |
1da177e4 LT |
201 | /* |
202 | * If we are the last non-leader member of the thread | |
203 | * group, and the leader is zombie, then notify the | |
204 | * group leader's parent process. (if it wants notification.) | |
205 | */ | |
206 | zap_leader = 0; | |
207 | leader = p->group_leader; | |
a0be55de IA |
208 | if (leader != p && thread_group_empty(leader) |
209 | && leader->exit_state == EXIT_ZOMBIE) { | |
1da177e4 LT |
210 | /* |
211 | * If we were the last child thread and the leader has | |
212 | * exited already, and the leader's parent ignores SIGCHLD, | |
213 | * then we are the one who should release the leader. | |
dae33574 | 214 | */ |
86773473 | 215 | zap_leader = do_notify_parent(leader, leader->exit_signal); |
dae33574 RM |
216 | if (zap_leader) |
217 | leader->exit_state = EXIT_DEAD; | |
1da177e4 LT |
218 | } |
219 | ||
1da177e4 | 220 | write_unlock_irq(&tasklist_lock); |
1da177e4 | 221 | release_thread(p); |
8c7904a0 | 222 | call_rcu(&p->rcu, delayed_put_task_struct); |
1da177e4 LT |
223 | |
224 | p = leader; | |
225 | if (unlikely(zap_leader)) | |
226 | goto repeat; | |
227 | } | |
228 | ||
150593bf ON |
229 | /* |
230 | * Note that if this function returns a valid task_struct pointer (!NULL) | |
231 | * task->usage must remain >0 for the duration of the RCU critical section. | |
232 | */ | |
233 | struct task_struct *task_rcu_dereference(struct task_struct **ptask) | |
234 | { | |
235 | struct sighand_struct *sighand; | |
236 | struct task_struct *task; | |
237 | ||
238 | /* | |
239 | * We need to verify that release_task() was not called and thus | |
240 | * delayed_put_task_struct() can't run and drop the last reference | |
241 | * before rcu_read_unlock(). We check task->sighand != NULL, | |
242 | * but we can read the already freed and reused memory. | |
243 | */ | |
244 | retry: | |
245 | task = rcu_dereference(*ptask); | |
246 | if (!task) | |
247 | return NULL; | |
248 | ||
249 | probe_kernel_address(&task->sighand, sighand); | |
250 | ||
251 | /* | |
252 | * Pairs with atomic_dec_and_test() in put_task_struct(). If this task | |
253 | * was already freed we can not miss the preceding update of this | |
254 | * pointer. | |
255 | */ | |
256 | smp_rmb(); | |
257 | if (unlikely(task != READ_ONCE(*ptask))) | |
258 | goto retry; | |
259 | ||
260 | /* | |
261 | * We've re-checked that "task == *ptask", now we have two different | |
262 | * cases: | |
263 | * | |
264 | * 1. This is actually the same task/task_struct. In this case | |
265 | * sighand != NULL tells us it is still alive. | |
266 | * | |
267 | * 2. This is another task which got the same memory for task_struct. | |
268 | * We can't know this of course, and we can not trust | |
269 | * sighand != NULL. | |
270 | * | |
271 | * In this case we actually return a random value, but this is | |
272 | * correct. | |
273 | * | |
274 | * If we return NULL - we can pretend that we actually noticed that | |
275 | * *ptask was updated when the previous task has exited. Or pretend | |
276 | * that probe_slab_address(&sighand) reads NULL. | |
277 | * | |
278 | * If we return the new task (because sighand is not NULL for any | |
279 | * reason) - this is fine too. This (new) task can't go away before | |
280 | * another gp pass. | |
281 | * | |
282 | * And note: We could even eliminate the false positive if re-read | |
283 | * task->sighand once again to avoid the falsely NULL. But this case | |
284 | * is very unlikely so we don't care. | |
285 | */ | |
286 | if (!sighand) | |
287 | return NULL; | |
288 | ||
289 | return task; | |
290 | } | |
291 | ||
8f95c90c DB |
292 | void rcuwait_wake_up(struct rcuwait *w) |
293 | { | |
294 | struct task_struct *task; | |
295 | ||
296 | rcu_read_lock(); | |
297 | ||
298 | /* | |
299 | * Order condition vs @task, such that everything prior to the load | |
300 | * of @task is visible. This is the condition as to why the user called | |
301 | * rcuwait_trywake() in the first place. Pairs with set_current_state() | |
302 | * barrier (A) in rcuwait_wait_event(). | |
303 | * | |
304 | * WAIT WAKE | |
305 | * [S] tsk = current [S] cond = true | |
306 | * MB (A) MB (B) | |
307 | * [L] cond [L] tsk | |
308 | */ | |
309 | smp_rmb(); /* (B) */ | |
310 | ||
311 | /* | |
312 | * Avoid using task_rcu_dereference() magic as long as we are careful, | |
313 | * see comment in rcuwait_wait_event() regarding ->exit_state. | |
314 | */ | |
315 | task = rcu_dereference(w->task); | |
316 | if (task) | |
317 | wake_up_process(task); | |
318 | rcu_read_unlock(); | |
319 | } | |
320 | ||
150593bf ON |
321 | struct task_struct *try_get_task_struct(struct task_struct **ptask) |
322 | { | |
323 | struct task_struct *task; | |
324 | ||
325 | rcu_read_lock(); | |
326 | task = task_rcu_dereference(ptask); | |
327 | if (task) | |
328 | get_task_struct(task); | |
329 | rcu_read_unlock(); | |
330 | ||
331 | return task; | |
332 | } | |
333 | ||
1da177e4 LT |
334 | /* |
335 | * Determine if a process group is "orphaned", according to the POSIX | |
336 | * definition in 2.2.2.52. Orphaned process groups are not to be affected | |
337 | * by terminal-generated stop signals. Newly orphaned process groups are | |
338 | * to receive a SIGHUP and a SIGCONT. | |
339 | * | |
340 | * "I ask you, have you ever known what it is to be an orphan?" | |
341 | */ | |
a0be55de IA |
342 | static int will_become_orphaned_pgrp(struct pid *pgrp, |
343 | struct task_struct *ignored_task) | |
1da177e4 LT |
344 | { |
345 | struct task_struct *p; | |
1da177e4 | 346 | |
0475ac08 | 347 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
05e83df6 ON |
348 | if ((p == ignored_task) || |
349 | (p->exit_state && thread_group_empty(p)) || | |
350 | is_global_init(p->real_parent)) | |
1da177e4 | 351 | continue; |
05e83df6 | 352 | |
0475ac08 | 353 | if (task_pgrp(p->real_parent) != pgrp && |
05e83df6 ON |
354 | task_session(p->real_parent) == task_session(p)) |
355 | return 0; | |
0475ac08 | 356 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
05e83df6 ON |
357 | |
358 | return 1; | |
1da177e4 LT |
359 | } |
360 | ||
3e7cd6c4 | 361 | int is_current_pgrp_orphaned(void) |
1da177e4 LT |
362 | { |
363 | int retval; | |
364 | ||
365 | read_lock(&tasklist_lock); | |
3e7cd6c4 | 366 | retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); |
1da177e4 LT |
367 | read_unlock(&tasklist_lock); |
368 | ||
369 | return retval; | |
370 | } | |
371 | ||
961c4675 | 372 | static bool has_stopped_jobs(struct pid *pgrp) |
1da177e4 | 373 | { |
1da177e4 LT |
374 | struct task_struct *p; |
375 | ||
0475ac08 | 376 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
961c4675 ON |
377 | if (p->signal->flags & SIGNAL_STOP_STOPPED) |
378 | return true; | |
0475ac08 | 379 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
961c4675 ON |
380 | |
381 | return false; | |
1da177e4 LT |
382 | } |
383 | ||
f49ee505 ON |
384 | /* |
385 | * Check to see if any process groups have become orphaned as | |
386 | * a result of our exiting, and if they have any stopped jobs, | |
387 | * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | |
388 | */ | |
389 | static void | |
390 | kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) | |
391 | { | |
392 | struct pid *pgrp = task_pgrp(tsk); | |
393 | struct task_struct *ignored_task = tsk; | |
394 | ||
395 | if (!parent) | |
a0be55de IA |
396 | /* exit: our father is in a different pgrp than |
397 | * we are and we were the only connection outside. | |
398 | */ | |
f49ee505 ON |
399 | parent = tsk->real_parent; |
400 | else | |
401 | /* reparent: our child is in a different pgrp than | |
402 | * we are, and it was the only connection outside. | |
403 | */ | |
404 | ignored_task = NULL; | |
405 | ||
406 | if (task_pgrp(parent) != pgrp && | |
407 | task_session(parent) == task_session(tsk) && | |
408 | will_become_orphaned_pgrp(pgrp, ignored_task) && | |
409 | has_stopped_jobs(pgrp)) { | |
410 | __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); | |
411 | __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); | |
412 | } | |
413 | } | |
414 | ||
f98bafa0 | 415 | #ifdef CONFIG_MEMCG |
cf475ad2 | 416 | /* |
733eda7a | 417 | * A task is exiting. If it owned this mm, find a new owner for the mm. |
cf475ad2 | 418 | */ |
cf475ad2 BS |
419 | void mm_update_next_owner(struct mm_struct *mm) |
420 | { | |
421 | struct task_struct *c, *g, *p = current; | |
422 | ||
423 | retry: | |
733eda7a KH |
424 | /* |
425 | * If the exiting or execing task is not the owner, it's | |
426 | * someone else's problem. | |
427 | */ | |
428 | if (mm->owner != p) | |
cf475ad2 | 429 | return; |
733eda7a KH |
430 | /* |
431 | * The current owner is exiting/execing and there are no other | |
432 | * candidates. Do not leave the mm pointing to a possibly | |
433 | * freed task structure. | |
434 | */ | |
435 | if (atomic_read(&mm->mm_users) <= 1) { | |
436 | mm->owner = NULL; | |
437 | return; | |
438 | } | |
cf475ad2 BS |
439 | |
440 | read_lock(&tasklist_lock); | |
441 | /* | |
442 | * Search in the children | |
443 | */ | |
444 | list_for_each_entry(c, &p->children, sibling) { | |
445 | if (c->mm == mm) | |
446 | goto assign_new_owner; | |
447 | } | |
448 | ||
449 | /* | |
450 | * Search in the siblings | |
451 | */ | |
dea33cfd | 452 | list_for_each_entry(c, &p->real_parent->children, sibling) { |
cf475ad2 BS |
453 | if (c->mm == mm) |
454 | goto assign_new_owner; | |
455 | } | |
456 | ||
457 | /* | |
f87fb599 | 458 | * Search through everything else, we should not get here often. |
cf475ad2 | 459 | */ |
39af1765 ON |
460 | for_each_process(g) { |
461 | if (g->flags & PF_KTHREAD) | |
462 | continue; | |
463 | for_each_thread(g, c) { | |
464 | if (c->mm == mm) | |
465 | goto assign_new_owner; | |
466 | if (c->mm) | |
467 | break; | |
468 | } | |
f87fb599 | 469 | } |
cf475ad2 | 470 | read_unlock(&tasklist_lock); |
31a78f23 BS |
471 | /* |
472 | * We found no owner yet mm_users > 1: this implies that we are | |
473 | * most likely racing with swapoff (try_to_unuse()) or /proc or | |
e5991371 | 474 | * ptrace or page migration (get_task_mm()). Mark owner as NULL. |
31a78f23 | 475 | */ |
31a78f23 | 476 | mm->owner = NULL; |
cf475ad2 BS |
477 | return; |
478 | ||
479 | assign_new_owner: | |
480 | BUG_ON(c == p); | |
481 | get_task_struct(c); | |
482 | /* | |
483 | * The task_lock protects c->mm from changing. | |
484 | * We always want mm->owner->mm == mm | |
485 | */ | |
486 | task_lock(c); | |
e5991371 HD |
487 | /* |
488 | * Delay read_unlock() till we have the task_lock() | |
489 | * to ensure that c does not slip away underneath us | |
490 | */ | |
491 | read_unlock(&tasklist_lock); | |
cf475ad2 BS |
492 | if (c->mm != mm) { |
493 | task_unlock(c); | |
494 | put_task_struct(c); | |
495 | goto retry; | |
496 | } | |
cf475ad2 BS |
497 | mm->owner = c; |
498 | task_unlock(c); | |
499 | put_task_struct(c); | |
500 | } | |
f98bafa0 | 501 | #endif /* CONFIG_MEMCG */ |
cf475ad2 | 502 | |
1da177e4 LT |
503 | /* |
504 | * Turn us into a lazy TLB process if we | |
505 | * aren't already.. | |
506 | */ | |
0039962a | 507 | static void exit_mm(void) |
1da177e4 | 508 | { |
0039962a | 509 | struct mm_struct *mm = current->mm; |
b564daf8 | 510 | struct core_state *core_state; |
1da177e4 | 511 | |
0039962a | 512 | mm_release(current, mm); |
1da177e4 LT |
513 | if (!mm) |
514 | return; | |
4fe7efdb | 515 | sync_mm_rss(mm); |
1da177e4 LT |
516 | /* |
517 | * Serialize with any possible pending coredump. | |
999d9fc1 | 518 | * We must hold mmap_sem around checking core_state |
1da177e4 | 519 | * and clearing tsk->mm. The core-inducing thread |
999d9fc1 | 520 | * will increment ->nr_threads for each thread in the |
1da177e4 LT |
521 | * group with ->mm != NULL. |
522 | */ | |
523 | down_read(&mm->mmap_sem); | |
b564daf8 ON |
524 | core_state = mm->core_state; |
525 | if (core_state) { | |
526 | struct core_thread self; | |
a0be55de | 527 | |
1da177e4 | 528 | up_read(&mm->mmap_sem); |
1da177e4 | 529 | |
0039962a | 530 | self.task = current; |
b564daf8 ON |
531 | self.next = xchg(&core_state->dumper.next, &self); |
532 | /* | |
533 | * Implies mb(), the result of xchg() must be visible | |
534 | * to core_state->dumper. | |
535 | */ | |
536 | if (atomic_dec_and_test(&core_state->nr_threads)) | |
537 | complete(&core_state->startup); | |
1da177e4 | 538 | |
a94e2d40 | 539 | for (;;) { |
642fa448 | 540 | set_current_state(TASK_UNINTERRUPTIBLE); |
a94e2d40 ON |
541 | if (!self.task) /* see coredump_finish() */ |
542 | break; | |
80d26af8 | 543 | freezable_schedule(); |
a94e2d40 | 544 | } |
642fa448 | 545 | __set_current_state(TASK_RUNNING); |
1da177e4 LT |
546 | down_read(&mm->mmap_sem); |
547 | } | |
f1f10076 | 548 | mmgrab(mm); |
0039962a | 549 | BUG_ON(mm != current->active_mm); |
1da177e4 | 550 | /* more a memory barrier than a real lock */ |
0039962a DB |
551 | task_lock(current); |
552 | current->mm = NULL; | |
1da177e4 LT |
553 | up_read(&mm->mmap_sem); |
554 | enter_lazy_tlb(mm, current); | |
0039962a | 555 | task_unlock(current); |
cf475ad2 | 556 | mm_update_next_owner(mm); |
1da177e4 | 557 | mmput(mm); |
c32b3cbe | 558 | if (test_thread_flag(TIF_MEMDIE)) |
38531201 | 559 | exit_oom_victim(); |
1da177e4 LT |
560 | } |
561 | ||
c9dc05bf ON |
562 | static struct task_struct *find_alive_thread(struct task_struct *p) |
563 | { | |
564 | struct task_struct *t; | |
565 | ||
566 | for_each_thread(p, t) { | |
567 | if (!(t->flags & PF_EXITING)) | |
568 | return t; | |
569 | } | |
570 | return NULL; | |
571 | } | |
572 | ||
1109909c ON |
573 | static struct task_struct *find_child_reaper(struct task_struct *father) |
574 | __releases(&tasklist_lock) | |
575 | __acquires(&tasklist_lock) | |
576 | { | |
577 | struct pid_namespace *pid_ns = task_active_pid_ns(father); | |
578 | struct task_struct *reaper = pid_ns->child_reaper; | |
579 | ||
580 | if (likely(reaper != father)) | |
581 | return reaper; | |
582 | ||
c9dc05bf ON |
583 | reaper = find_alive_thread(father); |
584 | if (reaper) { | |
1109909c ON |
585 | pid_ns->child_reaper = reaper; |
586 | return reaper; | |
587 | } | |
588 | ||
589 | write_unlock_irq(&tasklist_lock); | |
590 | if (unlikely(pid_ns == &init_pid_ns)) { | |
591 | panic("Attempted to kill init! exitcode=0x%08x\n", | |
592 | father->signal->group_exit_code ?: father->exit_code); | |
593 | } | |
594 | zap_pid_ns_processes(pid_ns); | |
595 | write_lock_irq(&tasklist_lock); | |
596 | ||
597 | return father; | |
598 | } | |
599 | ||
1da177e4 | 600 | /* |
ebec18a6 LP |
601 | * When we die, we re-parent all our children, and try to: |
602 | * 1. give them to another thread in our thread group, if such a member exists | |
603 | * 2. give it to the first ancestor process which prctl'd itself as a | |
604 | * child_subreaper for its children (like a service manager) | |
605 | * 3. give it to the init process (PID 1) in our pid namespace | |
1da177e4 | 606 | */ |
1109909c ON |
607 | static struct task_struct *find_new_reaper(struct task_struct *father, |
608 | struct task_struct *child_reaper) | |
1da177e4 | 609 | { |
c9dc05bf | 610 | struct task_struct *thread, *reaper; |
1da177e4 | 611 | |
c9dc05bf ON |
612 | thread = find_alive_thread(father); |
613 | if (thread) | |
950bbabb | 614 | return thread; |
1da177e4 | 615 | |
7d24e2df | 616 | if (father->signal->has_child_subreaper) { |
c6c70f44 | 617 | unsigned int ns_level = task_pid(father)->level; |
ebec18a6 | 618 | /* |
175aed3f | 619 | * Find the first ->is_child_subreaper ancestor in our pid_ns. |
c6c70f44 ON |
620 | * We can't check reaper != child_reaper to ensure we do not |
621 | * cross the namespaces, the exiting parent could be injected | |
622 | * by setns() + fork(). | |
623 | * We check pid->level, this is slightly more efficient than | |
624 | * task_active_pid_ns(reaper) != task_active_pid_ns(father). | |
ebec18a6 | 625 | */ |
c6c70f44 ON |
626 | for (reaper = father->real_parent; |
627 | task_pid(reaper)->level == ns_level; | |
ebec18a6 | 628 | reaper = reaper->real_parent) { |
175aed3f | 629 | if (reaper == &init_task) |
ebec18a6 LP |
630 | break; |
631 | if (!reaper->signal->is_child_subreaper) | |
632 | continue; | |
c9dc05bf ON |
633 | thread = find_alive_thread(reaper); |
634 | if (thread) | |
635 | return thread; | |
ebec18a6 | 636 | } |
1da177e4 | 637 | } |
762a24be | 638 | |
1109909c | 639 | return child_reaper; |
950bbabb ON |
640 | } |
641 | ||
5dfc80be ON |
642 | /* |
643 | * Any that need to be release_task'd are put on the @dead list. | |
644 | */ | |
9cd80bbb | 645 | static void reparent_leader(struct task_struct *father, struct task_struct *p, |
5dfc80be ON |
646 | struct list_head *dead) |
647 | { | |
2831096e | 648 | if (unlikely(p->exit_state == EXIT_DEAD)) |
5dfc80be ON |
649 | return; |
650 | ||
abd50b39 | 651 | /* We don't want people slaying init. */ |
5dfc80be ON |
652 | p->exit_signal = SIGCHLD; |
653 | ||
654 | /* If it has exited notify the new parent about this child's death. */ | |
d21142ec | 655 | if (!p->ptrace && |
5dfc80be | 656 | p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { |
86773473 | 657 | if (do_notify_parent(p, p->exit_signal)) { |
5dfc80be | 658 | p->exit_state = EXIT_DEAD; |
dc2fd4b0 | 659 | list_add(&p->ptrace_entry, dead); |
5dfc80be ON |
660 | } |
661 | } | |
662 | ||
663 | kill_orphaned_pgrp(p, father); | |
664 | } | |
665 | ||
482a3767 ON |
666 | /* |
667 | * This does two things: | |
668 | * | |
669 | * A. Make init inherit all the child processes | |
670 | * B. Check to see if any process groups have become orphaned | |
671 | * as a result of our exiting, and if they have any stopped | |
672 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | |
673 | */ | |
674 | static void forget_original_parent(struct task_struct *father, | |
675 | struct list_head *dead) | |
1da177e4 | 676 | { |
482a3767 | 677 | struct task_struct *p, *t, *reaper; |
762a24be | 678 | |
7c8bd232 | 679 | if (unlikely(!list_empty(&father->ptraced))) |
482a3767 | 680 | exit_ptrace(father, dead); |
f470021a | 681 | |
7c8bd232 | 682 | /* Can drop and reacquire tasklist_lock */ |
1109909c | 683 | reaper = find_child_reaper(father); |
ad9e206a | 684 | if (list_empty(&father->children)) |
482a3767 | 685 | return; |
1109909c ON |
686 | |
687 | reaper = find_new_reaper(father, reaper); | |
2831096e | 688 | list_for_each_entry(p, &father->children, sibling) { |
57a05918 | 689 | for_each_thread(p, t) { |
9cd80bbb | 690 | t->real_parent = reaper; |
57a05918 ON |
691 | BUG_ON((!t->ptrace) != (t->parent == father)); |
692 | if (likely(!t->ptrace)) | |
9cd80bbb | 693 | t->parent = t->real_parent; |
9cd80bbb ON |
694 | if (t->pdeath_signal) |
695 | group_send_sig_info(t->pdeath_signal, | |
696 | SEND_SIG_NOINFO, t); | |
57a05918 | 697 | } |
2831096e ON |
698 | /* |
699 | * If this is a threaded reparent there is no need to | |
700 | * notify anyone anything has happened. | |
701 | */ | |
702 | if (!same_thread_group(reaper, father)) | |
482a3767 | 703 | reparent_leader(father, p, dead); |
1da177e4 | 704 | } |
2831096e | 705 | list_splice_tail_init(&father->children, &reaper->children); |
1da177e4 LT |
706 | } |
707 | ||
708 | /* | |
709 | * Send signals to all our closest relatives so that they know | |
710 | * to properly mourn us.. | |
711 | */ | |
821c7de7 | 712 | static void exit_notify(struct task_struct *tsk, int group_dead) |
1da177e4 | 713 | { |
53c8f9f1 | 714 | bool autoreap; |
482a3767 ON |
715 | struct task_struct *p, *n; |
716 | LIST_HEAD(dead); | |
1da177e4 | 717 | |
762a24be | 718 | write_lock_irq(&tasklist_lock); |
482a3767 ON |
719 | forget_original_parent(tsk, &dead); |
720 | ||
821c7de7 ON |
721 | if (group_dead) |
722 | kill_orphaned_pgrp(tsk->group_leader, NULL); | |
1da177e4 | 723 | |
45cdf5cc ON |
724 | if (unlikely(tsk->ptrace)) { |
725 | int sig = thread_group_leader(tsk) && | |
726 | thread_group_empty(tsk) && | |
727 | !ptrace_reparented(tsk) ? | |
728 | tsk->exit_signal : SIGCHLD; | |
729 | autoreap = do_notify_parent(tsk, sig); | |
730 | } else if (thread_group_leader(tsk)) { | |
731 | autoreap = thread_group_empty(tsk) && | |
732 | do_notify_parent(tsk, tsk->exit_signal); | |
733 | } else { | |
734 | autoreap = true; | |
735 | } | |
1da177e4 | 736 | |
53c8f9f1 | 737 | tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; |
6c66e7db ON |
738 | if (tsk->exit_state == EXIT_DEAD) |
739 | list_add(&tsk->ptrace_entry, &dead); | |
1da177e4 | 740 | |
9c339168 ON |
741 | /* mt-exec, de_thread() is waiting for group leader */ |
742 | if (unlikely(tsk->signal->notify_count < 0)) | |
6db840fa | 743 | wake_up_process(tsk->signal->group_exit_task); |
1da177e4 LT |
744 | write_unlock_irq(&tasklist_lock); |
745 | ||
482a3767 ON |
746 | list_for_each_entry_safe(p, n, &dead, ptrace_entry) { |
747 | list_del_init(&p->ptrace_entry); | |
748 | release_task(p); | |
749 | } | |
1da177e4 LT |
750 | } |
751 | ||
e18eecb8 JD |
752 | #ifdef CONFIG_DEBUG_STACK_USAGE |
753 | static void check_stack_usage(void) | |
754 | { | |
755 | static DEFINE_SPINLOCK(low_water_lock); | |
756 | static int lowest_to_date = THREAD_SIZE; | |
e18eecb8 JD |
757 | unsigned long free; |
758 | ||
7c9f8861 | 759 | free = stack_not_used(current); |
e18eecb8 JD |
760 | |
761 | if (free >= lowest_to_date) | |
762 | return; | |
763 | ||
764 | spin_lock(&low_water_lock); | |
765 | if (free < lowest_to_date) { | |
627393d4 | 766 | pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", |
a0be55de | 767 | current->comm, task_pid_nr(current), free); |
e18eecb8 JD |
768 | lowest_to_date = free; |
769 | } | |
770 | spin_unlock(&low_water_lock); | |
771 | } | |
772 | #else | |
773 | static inline void check_stack_usage(void) {} | |
774 | #endif | |
775 | ||
9af6528e | 776 | void __noreturn do_exit(long code) |
1da177e4 LT |
777 | { |
778 | struct task_struct *tsk = current; | |
779 | int group_dead; | |
3f95aa81 | 780 | TASKS_RCU(int tasks_rcu_i); |
1da177e4 LT |
781 | |
782 | profile_task_exit(tsk); | |
5c9a8750 | 783 | kcov_task_exit(tsk); |
1da177e4 | 784 | |
73c10101 | 785 | WARN_ON(blk_needs_flush_plug(tsk)); |
22e2c507 | 786 | |
1da177e4 LT |
787 | if (unlikely(in_interrupt())) |
788 | panic("Aiee, killing interrupt handler!"); | |
789 | if (unlikely(!tsk->pid)) | |
790 | panic("Attempted to kill the idle task!"); | |
1da177e4 | 791 | |
33dd94ae NE |
792 | /* |
793 | * If do_exit is called because this processes oopsed, it's possible | |
794 | * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before | |
795 | * continuing. Amongst other possible reasons, this is to prevent | |
796 | * mm_release()->clear_child_tid() from writing to a user-controlled | |
797 | * kernel address. | |
798 | */ | |
799 | set_fs(USER_DS); | |
800 | ||
a288eecc | 801 | ptrace_event(PTRACE_EVENT_EXIT, code); |
1da177e4 | 802 | |
e0e81739 DH |
803 | validate_creds_for_do_exit(tsk); |
804 | ||
df164db5 AN |
805 | /* |
806 | * We're taking recursive faults here in do_exit. Safest is to just | |
807 | * leave this task alone and wait for reboot. | |
808 | */ | |
809 | if (unlikely(tsk->flags & PF_EXITING)) { | |
a0be55de | 810 | pr_alert("Fixing recursive fault but reboot is needed!\n"); |
778e9a9c AK |
811 | /* |
812 | * We can do this unlocked here. The futex code uses | |
813 | * this flag just to verify whether the pi state | |
814 | * cleanup has been done or not. In the worst case it | |
815 | * loops once more. We pretend that the cleanup was | |
816 | * done as there is no way to return. Either the | |
817 | * OWNER_DIED bit is set by now or we push the blocked | |
818 | * task into the wait for ever nirwana as well. | |
819 | */ | |
820 | tsk->flags |= PF_EXITPIDONE; | |
df164db5 AN |
821 | set_current_state(TASK_UNINTERRUPTIBLE); |
822 | schedule(); | |
823 | } | |
824 | ||
d12619b5 | 825 | exit_signals(tsk); /* sets PF_EXITING */ |
778e9a9c | 826 | /* |
be3e7844 PZ |
827 | * Ensure that all new tsk->pi_lock acquisitions must observe |
828 | * PF_EXITING. Serializes against futex.c:attach_to_pi_owner(). | |
778e9a9c | 829 | */ |
d2ee7198 | 830 | smp_mb(); |
be3e7844 PZ |
831 | /* |
832 | * Ensure that we must observe the pi_state in exit_mm() -> | |
833 | * mm_release() -> exit_pi_state_list(). | |
834 | */ | |
1d615482 | 835 | raw_spin_unlock_wait(&tsk->pi_lock); |
1da177e4 | 836 | |
1dc0fffc | 837 | if (unlikely(in_atomic())) { |
a0be55de IA |
838 | pr_info("note: %s[%d] exited with preempt_count %d\n", |
839 | current->comm, task_pid_nr(current), | |
840 | preempt_count()); | |
1dc0fffc PZ |
841 | preempt_count_set(PREEMPT_ENABLED); |
842 | } | |
1da177e4 | 843 | |
48d212a2 LT |
844 | /* sync mm's RSS info before statistics gathering */ |
845 | if (tsk->mm) | |
846 | sync_mm_rss(tsk->mm); | |
51229b49 | 847 | acct_update_integrals(tsk); |
1da177e4 | 848 | group_dead = atomic_dec_and_test(&tsk->signal->live); |
c3068951 | 849 | if (group_dead) { |
baa73d9e | 850 | #ifdef CONFIG_POSIX_TIMERS |
778e9a9c | 851 | hrtimer_cancel(&tsk->signal->real_timer); |
25f407f0 | 852 | exit_itimers(tsk->signal); |
baa73d9e | 853 | #endif |
1f10206c JP |
854 | if (tsk->mm) |
855 | setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); | |
c3068951 | 856 | } |
f6ec29a4 | 857 | acct_collect(code, group_dead); |
522ed776 MT |
858 | if (group_dead) |
859 | tty_audit_exit(); | |
a4ff8dba | 860 | audit_free(tsk); |
115085ea | 861 | |
48d212a2 | 862 | tsk->exit_code = code; |
115085ea | 863 | taskstats_exit(tsk, group_dead); |
c757249a | 864 | |
0039962a | 865 | exit_mm(); |
1da177e4 | 866 | |
0e464814 | 867 | if (group_dead) |
f6ec29a4 | 868 | acct_process(); |
0a16b607 MD |
869 | trace_sched_process_exit(tsk); |
870 | ||
1da177e4 | 871 | exit_sem(tsk); |
b34a6b1d | 872 | exit_shm(tsk); |
1ec7f1dd AV |
873 | exit_files(tsk); |
874 | exit_fs(tsk); | |
c39df5fa ON |
875 | if (group_dead) |
876 | disassociate_ctty(1); | |
8aac6270 | 877 | exit_task_namespaces(tsk); |
ed3e694d | 878 | exit_task_work(tsk); |
e6464694 | 879 | exit_thread(tsk); |
0b3fcf17 SE |
880 | |
881 | /* | |
882 | * Flush inherited counters to the parent - before the parent | |
883 | * gets woken up by child-exit notifications. | |
884 | * | |
885 | * because of cgroup mode, must be called before cgroup_exit() | |
886 | */ | |
887 | perf_event_exit_task(tsk); | |
888 | ||
8e5bfa8c | 889 | sched_autogroup_exit_task(tsk); |
1ec41830 | 890 | cgroup_exit(tsk); |
1da177e4 | 891 | |
24f1e32c FW |
892 | /* |
893 | * FIXME: do that only when needed, using sched_exit tracepoint | |
894 | */ | |
7c8df286 | 895 | flush_ptrace_hw_breakpoint(tsk); |
33b2fb30 | 896 | |
49f5903b | 897 | TASKS_RCU(preempt_disable()); |
3f95aa81 | 898 | TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu)); |
49f5903b | 899 | TASKS_RCU(preempt_enable()); |
821c7de7 | 900 | exit_notify(tsk, group_dead); |
ef982393 | 901 | proc_exit_connector(tsk); |
c11600e4 | 902 | mpol_put_task_policy(tsk); |
42b2dd0a | 903 | #ifdef CONFIG_FUTEX |
c87e2837 IM |
904 | if (unlikely(current->pi_state_cache)) |
905 | kfree(current->pi_state_cache); | |
42b2dd0a | 906 | #endif |
de5097c2 | 907 | /* |
9a11b49a | 908 | * Make sure we are holding no locks: |
de5097c2 | 909 | */ |
1b1d2fb4 | 910 | debug_check_no_locks_held(); |
778e9a9c AK |
911 | /* |
912 | * We can do this unlocked here. The futex code uses this flag | |
913 | * just to verify whether the pi state cleanup has been done | |
914 | * or not. In the worst case it loops once more. | |
915 | */ | |
916 | tsk->flags |= PF_EXITPIDONE; | |
1da177e4 | 917 | |
afc847b7 | 918 | if (tsk->io_context) |
b69f2292 | 919 | exit_io_context(tsk); |
afc847b7 | 920 | |
b92ce558 | 921 | if (tsk->splice_pipe) |
4b8a8f1e | 922 | free_pipe_info(tsk->splice_pipe); |
b92ce558 | 923 | |
5640f768 ED |
924 | if (tsk->task_frag.page) |
925 | put_page(tsk->task_frag.page); | |
926 | ||
e0e81739 DH |
927 | validate_creds_for_do_exit(tsk); |
928 | ||
4bcb8232 | 929 | check_stack_usage(); |
7407251a | 930 | preempt_disable(); |
54848d73 WF |
931 | if (tsk->nr_dirtied) |
932 | __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); | |
f41d911f | 933 | exit_rcu(); |
3f95aa81 | 934 | TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i)); |
b5740f4b | 935 | |
9af6528e | 936 | do_task_dead(); |
1da177e4 | 937 | } |
012914da RA |
938 | EXPORT_SYMBOL_GPL(do_exit); |
939 | ||
9402c95f | 940 | void complete_and_exit(struct completion *comp, long code) |
1da177e4 LT |
941 | { |
942 | if (comp) | |
943 | complete(comp); | |
55a101f8 | 944 | |
1da177e4 LT |
945 | do_exit(code); |
946 | } | |
1da177e4 LT |
947 | EXPORT_SYMBOL(complete_and_exit); |
948 | ||
754fe8d2 | 949 | SYSCALL_DEFINE1(exit, int, error_code) |
1da177e4 LT |
950 | { |
951 | do_exit((error_code&0xff)<<8); | |
952 | } | |
953 | ||
1da177e4 LT |
954 | /* |
955 | * Take down every thread in the group. This is called by fatal signals | |
956 | * as well as by sys_exit_group (below). | |
957 | */ | |
9402c95f | 958 | void |
1da177e4 LT |
959 | do_group_exit(int exit_code) |
960 | { | |
bfc4b089 ON |
961 | struct signal_struct *sig = current->signal; |
962 | ||
1da177e4 LT |
963 | BUG_ON(exit_code & 0x80); /* core dumps don't get here */ |
964 | ||
bfc4b089 ON |
965 | if (signal_group_exit(sig)) |
966 | exit_code = sig->group_exit_code; | |
1da177e4 | 967 | else if (!thread_group_empty(current)) { |
1da177e4 | 968 | struct sighand_struct *const sighand = current->sighand; |
a0be55de | 969 | |
1da177e4 | 970 | spin_lock_irq(&sighand->siglock); |
ed5d2cac | 971 | if (signal_group_exit(sig)) |
1da177e4 LT |
972 | /* Another thread got here before we took the lock. */ |
973 | exit_code = sig->group_exit_code; | |
974 | else { | |
1da177e4 | 975 | sig->group_exit_code = exit_code; |
ed5d2cac | 976 | sig->flags = SIGNAL_GROUP_EXIT; |
1da177e4 LT |
977 | zap_other_threads(current); |
978 | } | |
979 | spin_unlock_irq(&sighand->siglock); | |
1da177e4 LT |
980 | } |
981 | ||
982 | do_exit(exit_code); | |
983 | /* NOTREACHED */ | |
984 | } | |
985 | ||
986 | /* | |
987 | * this kills every thread in the thread group. Note that any externally | |
988 | * wait4()-ing process will get the correct exit code - even if this | |
989 | * thread is not the thread group leader. | |
990 | */ | |
754fe8d2 | 991 | SYSCALL_DEFINE1(exit_group, int, error_code) |
1da177e4 LT |
992 | { |
993 | do_group_exit((error_code & 0xff) << 8); | |
2ed7c03e HC |
994 | /* NOTREACHED */ |
995 | return 0; | |
1da177e4 LT |
996 | } |
997 | ||
9e8ae01d ON |
998 | struct wait_opts { |
999 | enum pid_type wo_type; | |
9e8ae01d | 1000 | int wo_flags; |
e1eb1ebc | 1001 | struct pid *wo_pid; |
9e8ae01d ON |
1002 | |
1003 | struct siginfo __user *wo_info; | |
1004 | int __user *wo_stat; | |
1005 | struct rusage __user *wo_rusage; | |
1006 | ||
0b7570e7 | 1007 | wait_queue_t child_wait; |
9e8ae01d ON |
1008 | int notask_error; |
1009 | }; | |
1010 | ||
989264f4 ON |
1011 | static inline |
1012 | struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | |
161550d7 | 1013 | { |
989264f4 ON |
1014 | if (type != PIDTYPE_PID) |
1015 | task = task->group_leader; | |
1016 | return task->pids[type].pid; | |
161550d7 EB |
1017 | } |
1018 | ||
989264f4 | 1019 | static int eligible_pid(struct wait_opts *wo, struct task_struct *p) |
1da177e4 | 1020 | { |
5c01ba49 ON |
1021 | return wo->wo_type == PIDTYPE_MAX || |
1022 | task_pid_type(p, wo->wo_type) == wo->wo_pid; | |
1023 | } | |
1da177e4 | 1024 | |
bf959931 ON |
1025 | static int |
1026 | eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) | |
5c01ba49 ON |
1027 | { |
1028 | if (!eligible_pid(wo, p)) | |
1029 | return 0; | |
bf959931 ON |
1030 | |
1031 | /* | |
1032 | * Wait for all children (clone and not) if __WALL is set or | |
1033 | * if it is traced by us. | |
1034 | */ | |
1035 | if (ptrace || (wo->wo_flags & __WALL)) | |
1036 | return 1; | |
1037 | ||
1038 | /* | |
1039 | * Otherwise, wait for clone children *only* if __WCLONE is set; | |
1040 | * otherwise, wait for non-clone children *only*. | |
1041 | * | |
1042 | * Note: a "clone" child here is one that reports to its parent | |
1043 | * using a signal other than SIGCHLD, or a non-leader thread which | |
1044 | * we can only see if it is traced by us. | |
1045 | */ | |
1046 | if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) | |
1da177e4 | 1047 | return 0; |
1da177e4 | 1048 | |
14dd0b81 | 1049 | return 1; |
1da177e4 LT |
1050 | } |
1051 | ||
9e8ae01d ON |
1052 | static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, |
1053 | pid_t pid, uid_t uid, int why, int status) | |
1da177e4 | 1054 | { |
9e8ae01d ON |
1055 | struct siginfo __user *infop; |
1056 | int retval = wo->wo_rusage | |
1057 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | |
36c8b586 | 1058 | |
1da177e4 | 1059 | put_task_struct(p); |
9e8ae01d | 1060 | infop = wo->wo_info; |
b6fe2d11 VM |
1061 | if (infop) { |
1062 | if (!retval) | |
1063 | retval = put_user(SIGCHLD, &infop->si_signo); | |
1064 | if (!retval) | |
1065 | retval = put_user(0, &infop->si_errno); | |
1066 | if (!retval) | |
1067 | retval = put_user((short)why, &infop->si_code); | |
1068 | if (!retval) | |
1069 | retval = put_user(pid, &infop->si_pid); | |
1070 | if (!retval) | |
1071 | retval = put_user(uid, &infop->si_uid); | |
1072 | if (!retval) | |
1073 | retval = put_user(status, &infop->si_status); | |
1074 | } | |
1da177e4 LT |
1075 | if (!retval) |
1076 | retval = pid; | |
1077 | return retval; | |
1078 | } | |
1079 | ||
1080 | /* | |
1081 | * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold | |
1082 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
1083 | * the lock and this task is uninteresting. If we return nonzero, we have | |
1084 | * released the lock and the system call should return. | |
1085 | */ | |
9e8ae01d | 1086 | static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) |
1da177e4 | 1087 | { |
f6507f83 | 1088 | int state, retval, status; |
6c5f3e7b | 1089 | pid_t pid = task_pid_vnr(p); |
43e13cc1 | 1090 | uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); |
9e8ae01d | 1091 | struct siginfo __user *infop; |
1da177e4 | 1092 | |
9e8ae01d | 1093 | if (!likely(wo->wo_flags & WEXITED)) |
98abed02 RM |
1094 | return 0; |
1095 | ||
9e8ae01d | 1096 | if (unlikely(wo->wo_flags & WNOWAIT)) { |
1da177e4 | 1097 | int exit_code = p->exit_code; |
f3abd4f9 | 1098 | int why; |
1da177e4 | 1099 | |
1da177e4 LT |
1100 | get_task_struct(p); |
1101 | read_unlock(&tasklist_lock); | |
1029a2b5 PZ |
1102 | sched_annotate_sleep(); |
1103 | ||
1da177e4 LT |
1104 | if ((exit_code & 0x7f) == 0) { |
1105 | why = CLD_EXITED; | |
1106 | status = exit_code >> 8; | |
1107 | } else { | |
1108 | why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; | |
1109 | status = exit_code & 0x7f; | |
1110 | } | |
9e8ae01d | 1111 | return wait_noreap_copyout(wo, p, pid, uid, why, status); |
1da177e4 | 1112 | } |
1da177e4 | 1113 | /* |
abd50b39 | 1114 | * Move the task's state to DEAD/TRACE, only one thread can do this. |
1da177e4 | 1115 | */ |
f6507f83 ON |
1116 | state = (ptrace_reparented(p) && thread_group_leader(p)) ? |
1117 | EXIT_TRACE : EXIT_DEAD; | |
abd50b39 | 1118 | if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) |
1da177e4 | 1119 | return 0; |
986094df ON |
1120 | /* |
1121 | * We own this thread, nobody else can reap it. | |
1122 | */ | |
1123 | read_unlock(&tasklist_lock); | |
1124 | sched_annotate_sleep(); | |
f6507f83 | 1125 | |
befca967 | 1126 | /* |
f6507f83 | 1127 | * Check thread_group_leader() to exclude the traced sub-threads. |
befca967 | 1128 | */ |
f6507f83 | 1129 | if (state == EXIT_DEAD && thread_group_leader(p)) { |
f953ccd0 ON |
1130 | struct signal_struct *sig = p->signal; |
1131 | struct signal_struct *psig = current->signal; | |
1f10206c | 1132 | unsigned long maxrss; |
5613fda9 | 1133 | u64 tgutime, tgstime; |
3795e161 | 1134 | |
1da177e4 LT |
1135 | /* |
1136 | * The resource counters for the group leader are in its | |
1137 | * own task_struct. Those for dead threads in the group | |
1138 | * are in its signal_struct, as are those for the child | |
1139 | * processes it has previously reaped. All these | |
1140 | * accumulate in the parent's signal_struct c* fields. | |
1141 | * | |
1142 | * We don't bother to take a lock here to protect these | |
f953ccd0 ON |
1143 | * p->signal fields because the whole thread group is dead |
1144 | * and nobody can change them. | |
1145 | * | |
1146 | * psig->stats_lock also protects us from our sub-theads | |
1147 | * which can reap other children at the same time. Until | |
1148 | * we change k_getrusage()-like users to rely on this lock | |
1149 | * we have to take ->siglock as well. | |
0cf55e1e | 1150 | * |
a0be55de IA |
1151 | * We use thread_group_cputime_adjusted() to get times for |
1152 | * the thread group, which consolidates times for all threads | |
1153 | * in the group including the group leader. | |
1da177e4 | 1154 | */ |
e80d0a1a | 1155 | thread_group_cputime_adjusted(p, &tgutime, &tgstime); |
f953ccd0 | 1156 | spin_lock_irq(¤t->sighand->siglock); |
e78c3496 | 1157 | write_seqlock(&psig->stats_lock); |
64861634 MS |
1158 | psig->cutime += tgutime + sig->cutime; |
1159 | psig->cstime += tgstime + sig->cstime; | |
6fac4829 | 1160 | psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; |
3795e161 JJ |
1161 | psig->cmin_flt += |
1162 | p->min_flt + sig->min_flt + sig->cmin_flt; | |
1163 | psig->cmaj_flt += | |
1164 | p->maj_flt + sig->maj_flt + sig->cmaj_flt; | |
1165 | psig->cnvcsw += | |
1166 | p->nvcsw + sig->nvcsw + sig->cnvcsw; | |
1167 | psig->cnivcsw += | |
1168 | p->nivcsw + sig->nivcsw + sig->cnivcsw; | |
6eaeeaba ED |
1169 | psig->cinblock += |
1170 | task_io_get_inblock(p) + | |
1171 | sig->inblock + sig->cinblock; | |
1172 | psig->coublock += | |
1173 | task_io_get_oublock(p) + | |
1174 | sig->oublock + sig->coublock; | |
1f10206c JP |
1175 | maxrss = max(sig->maxrss, sig->cmaxrss); |
1176 | if (psig->cmaxrss < maxrss) | |
1177 | psig->cmaxrss = maxrss; | |
5995477a AR |
1178 | task_io_accounting_add(&psig->ioac, &p->ioac); |
1179 | task_io_accounting_add(&psig->ioac, &sig->ioac); | |
e78c3496 | 1180 | write_sequnlock(&psig->stats_lock); |
f953ccd0 | 1181 | spin_unlock_irq(¤t->sighand->siglock); |
1da177e4 LT |
1182 | } |
1183 | ||
9e8ae01d ON |
1184 | retval = wo->wo_rusage |
1185 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | |
1da177e4 LT |
1186 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) |
1187 | ? p->signal->group_exit_code : p->exit_code; | |
9e8ae01d ON |
1188 | if (!retval && wo->wo_stat) |
1189 | retval = put_user(status, wo->wo_stat); | |
1190 | ||
1191 | infop = wo->wo_info; | |
1da177e4 LT |
1192 | if (!retval && infop) |
1193 | retval = put_user(SIGCHLD, &infop->si_signo); | |
1194 | if (!retval && infop) | |
1195 | retval = put_user(0, &infop->si_errno); | |
1196 | if (!retval && infop) { | |
1197 | int why; | |
1198 | ||
1199 | if ((status & 0x7f) == 0) { | |
1200 | why = CLD_EXITED; | |
1201 | status >>= 8; | |
1202 | } else { | |
1203 | why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; | |
1204 | status &= 0x7f; | |
1205 | } | |
1206 | retval = put_user((short)why, &infop->si_code); | |
1207 | if (!retval) | |
1208 | retval = put_user(status, &infop->si_status); | |
1209 | } | |
1210 | if (!retval && infop) | |
3a515e4a | 1211 | retval = put_user(pid, &infop->si_pid); |
1da177e4 | 1212 | if (!retval && infop) |
c69e8d9c | 1213 | retval = put_user(uid, &infop->si_uid); |
2f4e6e2a | 1214 | if (!retval) |
3a515e4a | 1215 | retval = pid; |
2f4e6e2a | 1216 | |
b4360690 | 1217 | if (state == EXIT_TRACE) { |
1da177e4 | 1218 | write_lock_irq(&tasklist_lock); |
2f4e6e2a ON |
1219 | /* We dropped tasklist, ptracer could die and untrace */ |
1220 | ptrace_unlink(p); | |
b4360690 ON |
1221 | |
1222 | /* If parent wants a zombie, don't release it now */ | |
1223 | state = EXIT_ZOMBIE; | |
1224 | if (do_notify_parent(p, p->exit_signal)) | |
1225 | state = EXIT_DEAD; | |
abd50b39 | 1226 | p->exit_state = state; |
1da177e4 LT |
1227 | write_unlock_irq(&tasklist_lock); |
1228 | } | |
abd50b39 | 1229 | if (state == EXIT_DEAD) |
1da177e4 | 1230 | release_task(p); |
2f4e6e2a | 1231 | |
1da177e4 LT |
1232 | return retval; |
1233 | } | |
1234 | ||
90bc8d8b ON |
1235 | static int *task_stopped_code(struct task_struct *p, bool ptrace) |
1236 | { | |
1237 | if (ptrace) { | |
570ac933 | 1238 | if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) |
90bc8d8b ON |
1239 | return &p->exit_code; |
1240 | } else { | |
1241 | if (p->signal->flags & SIGNAL_STOP_STOPPED) | |
1242 | return &p->signal->group_exit_code; | |
1243 | } | |
1244 | return NULL; | |
1245 | } | |
1246 | ||
19e27463 TH |
1247 | /** |
1248 | * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED | |
1249 | * @wo: wait options | |
1250 | * @ptrace: is the wait for ptrace | |
1251 | * @p: task to wait for | |
1252 | * | |
1253 | * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. | |
1254 | * | |
1255 | * CONTEXT: | |
1256 | * read_lock(&tasklist_lock), which is released if return value is | |
1257 | * non-zero. Also, grabs and releases @p->sighand->siglock. | |
1258 | * | |
1259 | * RETURNS: | |
1260 | * 0 if wait condition didn't exist and search for other wait conditions | |
1261 | * should continue. Non-zero return, -errno on failure and @p's pid on | |
1262 | * success, implies that tasklist_lock is released and wait condition | |
1263 | * search should terminate. | |
1da177e4 | 1264 | */ |
9e8ae01d ON |
1265 | static int wait_task_stopped(struct wait_opts *wo, |
1266 | int ptrace, struct task_struct *p) | |
1da177e4 | 1267 | { |
9e8ae01d | 1268 | struct siginfo __user *infop; |
90bc8d8b | 1269 | int retval, exit_code, *p_code, why; |
ee7c82da | 1270 | uid_t uid = 0; /* unneeded, required by compiler */ |
c8950783 | 1271 | pid_t pid; |
1da177e4 | 1272 | |
47918025 ON |
1273 | /* |
1274 | * Traditionally we see ptrace'd stopped tasks regardless of options. | |
1275 | */ | |
9e8ae01d | 1276 | if (!ptrace && !(wo->wo_flags & WUNTRACED)) |
98abed02 RM |
1277 | return 0; |
1278 | ||
19e27463 TH |
1279 | if (!task_stopped_code(p, ptrace)) |
1280 | return 0; | |
1281 | ||
ee7c82da ON |
1282 | exit_code = 0; |
1283 | spin_lock_irq(&p->sighand->siglock); | |
1284 | ||
90bc8d8b ON |
1285 | p_code = task_stopped_code(p, ptrace); |
1286 | if (unlikely(!p_code)) | |
ee7c82da ON |
1287 | goto unlock_sig; |
1288 | ||
90bc8d8b | 1289 | exit_code = *p_code; |
ee7c82da ON |
1290 | if (!exit_code) |
1291 | goto unlock_sig; | |
1292 | ||
9e8ae01d | 1293 | if (!unlikely(wo->wo_flags & WNOWAIT)) |
90bc8d8b | 1294 | *p_code = 0; |
ee7c82da | 1295 | |
8ca937a6 | 1296 | uid = from_kuid_munged(current_user_ns(), task_uid(p)); |
ee7c82da ON |
1297 | unlock_sig: |
1298 | spin_unlock_irq(&p->sighand->siglock); | |
1299 | if (!exit_code) | |
1da177e4 LT |
1300 | return 0; |
1301 | ||
1302 | /* | |
1303 | * Now we are pretty sure this task is interesting. | |
1304 | * Make sure it doesn't get reaped out from under us while we | |
1305 | * give up the lock and then examine it below. We don't want to | |
1306 | * keep holding onto the tasklist_lock while we call getrusage and | |
1307 | * possibly take page faults for user memory. | |
1308 | */ | |
1309 | get_task_struct(p); | |
6c5f3e7b | 1310 | pid = task_pid_vnr(p); |
f470021a | 1311 | why = ptrace ? CLD_TRAPPED : CLD_STOPPED; |
1da177e4 | 1312 | read_unlock(&tasklist_lock); |
1029a2b5 | 1313 | sched_annotate_sleep(); |
1da177e4 | 1314 | |
9e8ae01d ON |
1315 | if (unlikely(wo->wo_flags & WNOWAIT)) |
1316 | return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); | |
1317 | ||
1318 | retval = wo->wo_rusage | |
1319 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | |
1320 | if (!retval && wo->wo_stat) | |
1321 | retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); | |
1da177e4 | 1322 | |
9e8ae01d | 1323 | infop = wo->wo_info; |
1da177e4 LT |
1324 | if (!retval && infop) |
1325 | retval = put_user(SIGCHLD, &infop->si_signo); | |
1326 | if (!retval && infop) | |
1327 | retval = put_user(0, &infop->si_errno); | |
1328 | if (!retval && infop) | |
6efcae46 | 1329 | retval = put_user((short)why, &infop->si_code); |
1da177e4 LT |
1330 | if (!retval && infop) |
1331 | retval = put_user(exit_code, &infop->si_status); | |
1332 | if (!retval && infop) | |
c8950783 | 1333 | retval = put_user(pid, &infop->si_pid); |
1da177e4 | 1334 | if (!retval && infop) |
ee7c82da | 1335 | retval = put_user(uid, &infop->si_uid); |
1da177e4 | 1336 | if (!retval) |
c8950783 | 1337 | retval = pid; |
1da177e4 LT |
1338 | put_task_struct(p); |
1339 | ||
1340 | BUG_ON(!retval); | |
1341 | return retval; | |
1342 | } | |
1343 | ||
1344 | /* | |
1345 | * Handle do_wait work for one task in a live, non-stopped state. | |
1346 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
1347 | * the lock and this task is uninteresting. If we return nonzero, we have | |
1348 | * released the lock and the system call should return. | |
1349 | */ | |
9e8ae01d | 1350 | static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) |
1da177e4 LT |
1351 | { |
1352 | int retval; | |
1353 | pid_t pid; | |
1354 | uid_t uid; | |
1355 | ||
9e8ae01d | 1356 | if (!unlikely(wo->wo_flags & WCONTINUED)) |
98abed02 RM |
1357 | return 0; |
1358 | ||
1da177e4 LT |
1359 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) |
1360 | return 0; | |
1361 | ||
1362 | spin_lock_irq(&p->sighand->siglock); | |
1363 | /* Re-check with the lock held. */ | |
1364 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { | |
1365 | spin_unlock_irq(&p->sighand->siglock); | |
1366 | return 0; | |
1367 | } | |
9e8ae01d | 1368 | if (!unlikely(wo->wo_flags & WNOWAIT)) |
1da177e4 | 1369 | p->signal->flags &= ~SIGNAL_STOP_CONTINUED; |
8ca937a6 | 1370 | uid = from_kuid_munged(current_user_ns(), task_uid(p)); |
1da177e4 LT |
1371 | spin_unlock_irq(&p->sighand->siglock); |
1372 | ||
6c5f3e7b | 1373 | pid = task_pid_vnr(p); |
1da177e4 LT |
1374 | get_task_struct(p); |
1375 | read_unlock(&tasklist_lock); | |
1029a2b5 | 1376 | sched_annotate_sleep(); |
1da177e4 | 1377 | |
9e8ae01d ON |
1378 | if (!wo->wo_info) { |
1379 | retval = wo->wo_rusage | |
1380 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | |
1da177e4 | 1381 | put_task_struct(p); |
9e8ae01d ON |
1382 | if (!retval && wo->wo_stat) |
1383 | retval = put_user(0xffff, wo->wo_stat); | |
1da177e4 | 1384 | if (!retval) |
3a515e4a | 1385 | retval = pid; |
1da177e4 | 1386 | } else { |
9e8ae01d ON |
1387 | retval = wait_noreap_copyout(wo, p, pid, uid, |
1388 | CLD_CONTINUED, SIGCONT); | |
1da177e4 LT |
1389 | BUG_ON(retval == 0); |
1390 | } | |
1391 | ||
1392 | return retval; | |
1393 | } | |
1394 | ||
98abed02 RM |
1395 | /* |
1396 | * Consider @p for a wait by @parent. | |
1397 | * | |
9e8ae01d | 1398 | * -ECHILD should be in ->notask_error before the first call. |
98abed02 RM |
1399 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. |
1400 | * Returns zero if the search for a child should continue; | |
9e8ae01d | 1401 | * then ->notask_error is 0 if @p is an eligible child, |
3a2f5a59 | 1402 | * or still -ECHILD. |
98abed02 | 1403 | */ |
b6e763f0 ON |
1404 | static int wait_consider_task(struct wait_opts *wo, int ptrace, |
1405 | struct task_struct *p) | |
98abed02 | 1406 | { |
3245d6ac ON |
1407 | /* |
1408 | * We can race with wait_task_zombie() from another thread. | |
1409 | * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition | |
1410 | * can't confuse the checks below. | |
1411 | */ | |
1412 | int exit_state = ACCESS_ONCE(p->exit_state); | |
b3ab0316 ON |
1413 | int ret; |
1414 | ||
3245d6ac | 1415 | if (unlikely(exit_state == EXIT_DEAD)) |
b3ab0316 ON |
1416 | return 0; |
1417 | ||
bf959931 | 1418 | ret = eligible_child(wo, ptrace, p); |
14dd0b81 | 1419 | if (!ret) |
98abed02 RM |
1420 | return ret; |
1421 | ||
3245d6ac | 1422 | if (unlikely(exit_state == EXIT_TRACE)) { |
50b8d257 | 1423 | /* |
abd50b39 ON |
1424 | * ptrace == 0 means we are the natural parent. In this case |
1425 | * we should clear notask_error, debugger will notify us. | |
50b8d257 | 1426 | */ |
abd50b39 | 1427 | if (likely(!ptrace)) |
50b8d257 | 1428 | wo->notask_error = 0; |
823b018e | 1429 | return 0; |
50b8d257 | 1430 | } |
823b018e | 1431 | |
377d75da ON |
1432 | if (likely(!ptrace) && unlikely(p->ptrace)) { |
1433 | /* | |
1434 | * If it is traced by its real parent's group, just pretend | |
1435 | * the caller is ptrace_do_wait() and reap this child if it | |
1436 | * is zombie. | |
1437 | * | |
1438 | * This also hides group stop state from real parent; otherwise | |
1439 | * a single stop can be reported twice as group and ptrace stop. | |
1440 | * If a ptracer wants to distinguish these two events for its | |
1441 | * own children it should create a separate process which takes | |
1442 | * the role of real parent. | |
1443 | */ | |
1444 | if (!ptrace_reparented(p)) | |
1445 | ptrace = 1; | |
1446 | } | |
1447 | ||
45cb24a1 | 1448 | /* slay zombie? */ |
3245d6ac | 1449 | if (exit_state == EXIT_ZOMBIE) { |
9b84cca2 | 1450 | /* we don't reap group leaders with subthreads */ |
7c733eb3 ON |
1451 | if (!delay_group_leader(p)) { |
1452 | /* | |
1453 | * A zombie ptracee is only visible to its ptracer. | |
1454 | * Notification and reaping will be cascaded to the | |
1455 | * real parent when the ptracer detaches. | |
1456 | */ | |
1457 | if (unlikely(ptrace) || likely(!p->ptrace)) | |
1458 | return wait_task_zombie(wo, p); | |
1459 | } | |
98abed02 | 1460 | |
f470021a | 1461 | /* |
9b84cca2 TH |
1462 | * Allow access to stopped/continued state via zombie by |
1463 | * falling through. Clearing of notask_error is complex. | |
1464 | * | |
1465 | * When !@ptrace: | |
1466 | * | |
1467 | * If WEXITED is set, notask_error should naturally be | |
1468 | * cleared. If not, subset of WSTOPPED|WCONTINUED is set, | |
1469 | * so, if there are live subthreads, there are events to | |
1470 | * wait for. If all subthreads are dead, it's still safe | |
1471 | * to clear - this function will be called again in finite | |
1472 | * amount time once all the subthreads are released and | |
1473 | * will then return without clearing. | |
1474 | * | |
1475 | * When @ptrace: | |
1476 | * | |
1477 | * Stopped state is per-task and thus can't change once the | |
1478 | * target task dies. Only continued and exited can happen. | |
1479 | * Clear notask_error if WCONTINUED | WEXITED. | |
1480 | */ | |
1481 | if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) | |
1482 | wo->notask_error = 0; | |
1483 | } else { | |
1484 | /* | |
1485 | * @p is alive and it's gonna stop, continue or exit, so | |
1486 | * there always is something to wait for. | |
f470021a | 1487 | */ |
9e8ae01d | 1488 | wo->notask_error = 0; |
f470021a RM |
1489 | } |
1490 | ||
98abed02 | 1491 | /* |
45cb24a1 TH |
1492 | * Wait for stopped. Depending on @ptrace, different stopped state |
1493 | * is used and the two don't interact with each other. | |
98abed02 | 1494 | */ |
19e27463 TH |
1495 | ret = wait_task_stopped(wo, ptrace, p); |
1496 | if (ret) | |
1497 | return ret; | |
98abed02 RM |
1498 | |
1499 | /* | |
45cb24a1 TH |
1500 | * Wait for continued. There's only one continued state and the |
1501 | * ptracer can consume it which can confuse the real parent. Don't | |
1502 | * use WCONTINUED from ptracer. You don't need or want it. | |
98abed02 | 1503 | */ |
9e8ae01d | 1504 | return wait_task_continued(wo, p); |
98abed02 RM |
1505 | } |
1506 | ||
1507 | /* | |
1508 | * Do the work of do_wait() for one thread in the group, @tsk. | |
1509 | * | |
9e8ae01d | 1510 | * -ECHILD should be in ->notask_error before the first call. |
98abed02 RM |
1511 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. |
1512 | * Returns zero if the search for a child should continue; then | |
9e8ae01d | 1513 | * ->notask_error is 0 if there were any eligible children, |
3a2f5a59 | 1514 | * or still -ECHILD. |
98abed02 | 1515 | */ |
9e8ae01d | 1516 | static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) |
98abed02 RM |
1517 | { |
1518 | struct task_struct *p; | |
1519 | ||
1520 | list_for_each_entry(p, &tsk->children, sibling) { | |
9cd80bbb | 1521 | int ret = wait_consider_task(wo, 0, p); |
a0be55de | 1522 | |
9cd80bbb ON |
1523 | if (ret) |
1524 | return ret; | |
98abed02 RM |
1525 | } |
1526 | ||
1527 | return 0; | |
1528 | } | |
1529 | ||
9e8ae01d | 1530 | static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) |
98abed02 RM |
1531 | { |
1532 | struct task_struct *p; | |
1533 | ||
f470021a | 1534 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { |
b6e763f0 | 1535 | int ret = wait_consider_task(wo, 1, p); |
a0be55de | 1536 | |
f470021a | 1537 | if (ret) |
98abed02 | 1538 | return ret; |
98abed02 RM |
1539 | } |
1540 | ||
1541 | return 0; | |
1542 | } | |
1543 | ||
0b7570e7 ON |
1544 | static int child_wait_callback(wait_queue_t *wait, unsigned mode, |
1545 | int sync, void *key) | |
1546 | { | |
1547 | struct wait_opts *wo = container_of(wait, struct wait_opts, | |
1548 | child_wait); | |
1549 | struct task_struct *p = key; | |
1550 | ||
5c01ba49 | 1551 | if (!eligible_pid(wo, p)) |
0b7570e7 ON |
1552 | return 0; |
1553 | ||
b4fe5182 ON |
1554 | if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) |
1555 | return 0; | |
1556 | ||
0b7570e7 ON |
1557 | return default_wake_function(wait, mode, sync, key); |
1558 | } | |
1559 | ||
a7f0765e ON |
1560 | void __wake_up_parent(struct task_struct *p, struct task_struct *parent) |
1561 | { | |
0b7570e7 ON |
1562 | __wake_up_sync_key(&parent->signal->wait_chldexit, |
1563 | TASK_INTERRUPTIBLE, 1, p); | |
a7f0765e ON |
1564 | } |
1565 | ||
9e8ae01d | 1566 | static long do_wait(struct wait_opts *wo) |
1da177e4 | 1567 | { |
1da177e4 | 1568 | struct task_struct *tsk; |
98abed02 | 1569 | int retval; |
1da177e4 | 1570 | |
9e8ae01d | 1571 | trace_sched_process_wait(wo->wo_pid); |
0a16b607 | 1572 | |
0b7570e7 ON |
1573 | init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); |
1574 | wo->child_wait.private = current; | |
1575 | add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); | |
1da177e4 | 1576 | repeat: |
98abed02 | 1577 | /* |
3da56d16 | 1578 | * If there is nothing that can match our criteria, just get out. |
9e8ae01d ON |
1579 | * We will clear ->notask_error to zero if we see any child that |
1580 | * might later match our criteria, even if we are not able to reap | |
1581 | * it yet. | |
98abed02 | 1582 | */ |
64a16caf | 1583 | wo->notask_error = -ECHILD; |
9e8ae01d ON |
1584 | if ((wo->wo_type < PIDTYPE_MAX) && |
1585 | (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) | |
64a16caf | 1586 | goto notask; |
161550d7 | 1587 | |
f95d39d1 | 1588 | set_current_state(TASK_INTERRUPTIBLE); |
1da177e4 LT |
1589 | read_lock(&tasklist_lock); |
1590 | tsk = current; | |
1591 | do { | |
64a16caf ON |
1592 | retval = do_wait_thread(wo, tsk); |
1593 | if (retval) | |
1594 | goto end; | |
9e8ae01d | 1595 | |
64a16caf ON |
1596 | retval = ptrace_do_wait(wo, tsk); |
1597 | if (retval) | |
98abed02 | 1598 | goto end; |
98abed02 | 1599 | |
9e8ae01d | 1600 | if (wo->wo_flags & __WNOTHREAD) |
1da177e4 | 1601 | break; |
a3f6dfb7 | 1602 | } while_each_thread(current, tsk); |
1da177e4 | 1603 | read_unlock(&tasklist_lock); |
f2cc3eb1 | 1604 | |
64a16caf | 1605 | notask: |
9e8ae01d ON |
1606 | retval = wo->notask_error; |
1607 | if (!retval && !(wo->wo_flags & WNOHANG)) { | |
1da177e4 | 1608 | retval = -ERESTARTSYS; |
98abed02 RM |
1609 | if (!signal_pending(current)) { |
1610 | schedule(); | |
1611 | goto repeat; | |
1612 | } | |
1da177e4 | 1613 | } |
1da177e4 | 1614 | end: |
f95d39d1 | 1615 | __set_current_state(TASK_RUNNING); |
0b7570e7 | 1616 | remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); |
1da177e4 LT |
1617 | return retval; |
1618 | } | |
1619 | ||
17da2bd9 HC |
1620 | SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, |
1621 | infop, int, options, struct rusage __user *, ru) | |
1da177e4 | 1622 | { |
9e8ae01d | 1623 | struct wait_opts wo; |
161550d7 EB |
1624 | struct pid *pid = NULL; |
1625 | enum pid_type type; | |
1da177e4 LT |
1626 | long ret; |
1627 | ||
91c4e8ea ON |
1628 | if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| |
1629 | __WNOTHREAD|__WCLONE|__WALL)) | |
1da177e4 LT |
1630 | return -EINVAL; |
1631 | if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) | |
1632 | return -EINVAL; | |
1633 | ||
1634 | switch (which) { | |
1635 | case P_ALL: | |
161550d7 | 1636 | type = PIDTYPE_MAX; |
1da177e4 LT |
1637 | break; |
1638 | case P_PID: | |
161550d7 EB |
1639 | type = PIDTYPE_PID; |
1640 | if (upid <= 0) | |
1da177e4 LT |
1641 | return -EINVAL; |
1642 | break; | |
1643 | case P_PGID: | |
161550d7 EB |
1644 | type = PIDTYPE_PGID; |
1645 | if (upid <= 0) | |
1da177e4 | 1646 | return -EINVAL; |
1da177e4 LT |
1647 | break; |
1648 | default: | |
1649 | return -EINVAL; | |
1650 | } | |
1651 | ||
161550d7 EB |
1652 | if (type < PIDTYPE_MAX) |
1653 | pid = find_get_pid(upid); | |
9e8ae01d ON |
1654 | |
1655 | wo.wo_type = type; | |
1656 | wo.wo_pid = pid; | |
1657 | wo.wo_flags = options; | |
1658 | wo.wo_info = infop; | |
1659 | wo.wo_stat = NULL; | |
1660 | wo.wo_rusage = ru; | |
1661 | ret = do_wait(&wo); | |
dfe16dfa VM |
1662 | |
1663 | if (ret > 0) { | |
1664 | ret = 0; | |
1665 | } else if (infop) { | |
1666 | /* | |
1667 | * For a WNOHANG return, clear out all the fields | |
1668 | * we would set so the user can easily tell the | |
1669 | * difference. | |
1670 | */ | |
1671 | if (!ret) | |
1672 | ret = put_user(0, &infop->si_signo); | |
1673 | if (!ret) | |
1674 | ret = put_user(0, &infop->si_errno); | |
1675 | if (!ret) | |
1676 | ret = put_user(0, &infop->si_code); | |
1677 | if (!ret) | |
1678 | ret = put_user(0, &infop->si_pid); | |
1679 | if (!ret) | |
1680 | ret = put_user(0, &infop->si_uid); | |
1681 | if (!ret) | |
1682 | ret = put_user(0, &infop->si_status); | |
1683 | } | |
1684 | ||
161550d7 | 1685 | put_pid(pid); |
1da177e4 LT |
1686 | return ret; |
1687 | } | |
1688 | ||
754fe8d2 HC |
1689 | SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, |
1690 | int, options, struct rusage __user *, ru) | |
1da177e4 | 1691 | { |
9e8ae01d | 1692 | struct wait_opts wo; |
161550d7 EB |
1693 | struct pid *pid = NULL; |
1694 | enum pid_type type; | |
1da177e4 LT |
1695 | long ret; |
1696 | ||
1697 | if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| | |
1698 | __WNOTHREAD|__WCLONE|__WALL)) | |
1699 | return -EINVAL; | |
161550d7 EB |
1700 | |
1701 | if (upid == -1) | |
1702 | type = PIDTYPE_MAX; | |
1703 | else if (upid < 0) { | |
1704 | type = PIDTYPE_PGID; | |
1705 | pid = find_get_pid(-upid); | |
1706 | } else if (upid == 0) { | |
1707 | type = PIDTYPE_PGID; | |
2ae448ef | 1708 | pid = get_task_pid(current, PIDTYPE_PGID); |
161550d7 EB |
1709 | } else /* upid > 0 */ { |
1710 | type = PIDTYPE_PID; | |
1711 | pid = find_get_pid(upid); | |
1712 | } | |
1713 | ||
9e8ae01d ON |
1714 | wo.wo_type = type; |
1715 | wo.wo_pid = pid; | |
1716 | wo.wo_flags = options | WEXITED; | |
1717 | wo.wo_info = NULL; | |
1718 | wo.wo_stat = stat_addr; | |
1719 | wo.wo_rusage = ru; | |
1720 | ret = do_wait(&wo); | |
161550d7 | 1721 | put_pid(pid); |
1da177e4 | 1722 | |
1da177e4 LT |
1723 | return ret; |
1724 | } | |
1725 | ||
1726 | #ifdef __ARCH_WANT_SYS_WAITPID | |
1727 | ||
1728 | /* | |
1729 | * sys_waitpid() remains for compatibility. waitpid() should be | |
1730 | * implemented by calling sys_wait4() from libc.a. | |
1731 | */ | |
17da2bd9 | 1732 | SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) |
1da177e4 LT |
1733 | { |
1734 | return sys_wait4(pid, stat_addr, options, NULL); | |
1735 | } | |
1736 | ||
1737 | #endif |