]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/exit.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992 Linus Torvalds | |
5 | */ | |
6 | ||
1da177e4 LT |
7 | #include <linux/mm.h> |
8 | #include <linux/slab.h> | |
9 | #include <linux/interrupt.h> | |
1da177e4 | 10 | #include <linux/module.h> |
c59ede7b | 11 | #include <linux/capability.h> |
1da177e4 LT |
12 | #include <linux/completion.h> |
13 | #include <linux/personality.h> | |
14 | #include <linux/tty.h> | |
da9cbc87 | 15 | #include <linux/iocontext.h> |
1da177e4 LT |
16 | #include <linux/key.h> |
17 | #include <linux/security.h> | |
18 | #include <linux/cpu.h> | |
19 | #include <linux/acct.h> | |
8f0ab514 | 20 | #include <linux/tsacct_kern.h> |
1da177e4 | 21 | #include <linux/file.h> |
9f3acc31 | 22 | #include <linux/fdtable.h> |
80d26af8 | 23 | #include <linux/freezer.h> |
1da177e4 | 24 | #include <linux/binfmts.h> |
ab516013 | 25 | #include <linux/nsproxy.h> |
84d73786 | 26 | #include <linux/pid_namespace.h> |
1da177e4 LT |
27 | #include <linux/ptrace.h> |
28 | #include <linux/profile.h> | |
29 | #include <linux/mount.h> | |
30 | #include <linux/proc_fs.h> | |
49d769d5 | 31 | #include <linux/kthread.h> |
1da177e4 | 32 | #include <linux/mempolicy.h> |
c757249a | 33 | #include <linux/taskstats_kern.h> |
ca74e92b | 34 | #include <linux/delayacct.h> |
b4f48b63 | 35 | #include <linux/cgroup.h> |
1da177e4 | 36 | #include <linux/syscalls.h> |
7ed20e1a | 37 | #include <linux/signal.h> |
6a14c5c9 | 38 | #include <linux/posix-timers.h> |
9f46080c | 39 | #include <linux/cn_proc.h> |
de5097c2 | 40 | #include <linux/mutex.h> |
0771dfef | 41 | #include <linux/futex.h> |
b92ce558 | 42 | #include <linux/pipe_fs_i.h> |
fa84cb93 | 43 | #include <linux/audit.h> /* for audit_free() */ |
83cc5ed3 | 44 | #include <linux/resource.h> |
0d67a46d | 45 | #include <linux/blkdev.h> |
6eaeeaba | 46 | #include <linux/task_io_accounting_ops.h> |
30199f5a | 47 | #include <linux/tracehook.h> |
5ad4e53b | 48 | #include <linux/fs_struct.h> |
d84f4f99 | 49 | #include <linux/init_task.h> |
cdd6c482 | 50 | #include <linux/perf_event.h> |
ad8d75ff | 51 | #include <trace/events/sched.h> |
24f1e32c | 52 | #include <linux/hw_breakpoint.h> |
3d5992d2 | 53 | #include <linux/oom.h> |
54848d73 | 54 | #include <linux/writeback.h> |
40401530 | 55 | #include <linux/shm.h> |
1da177e4 LT |
56 | |
57 | #include <asm/uaccess.h> | |
58 | #include <asm/unistd.h> | |
59 | #include <asm/pgtable.h> | |
60 | #include <asm/mmu_context.h> | |
61 | ||
a0be55de | 62 | static void exit_mm(struct task_struct *tsk); |
408b664a | 63 | |
d40e48e0 | 64 | static void __unhash_process(struct task_struct *p, bool group_dead) |
1da177e4 LT |
65 | { |
66 | nr_threads--; | |
50d75f8d | 67 | detach_pid(p, PIDTYPE_PID); |
d40e48e0 | 68 | if (group_dead) { |
1da177e4 LT |
69 | detach_pid(p, PIDTYPE_PGID); |
70 | detach_pid(p, PIDTYPE_SID); | |
c97d9893 | 71 | |
5e85d4ab | 72 | list_del_rcu(&p->tasks); |
9cd80bbb | 73 | list_del_init(&p->sibling); |
909ea964 | 74 | __this_cpu_dec(process_counts); |
1da177e4 | 75 | } |
47e65328 | 76 | list_del_rcu(&p->thread_group); |
0c740d0a | 77 | list_del_rcu(&p->thread_node); |
1da177e4 LT |
78 | } |
79 | ||
6a14c5c9 ON |
80 | /* |
81 | * This function expects the tasklist_lock write-locked. | |
82 | */ | |
83 | static void __exit_signal(struct task_struct *tsk) | |
84 | { | |
85 | struct signal_struct *sig = tsk->signal; | |
d40e48e0 | 86 | bool group_dead = thread_group_leader(tsk); |
6a14c5c9 | 87 | struct sighand_struct *sighand; |
4ada856f | 88 | struct tty_struct *uninitialized_var(tty); |
6fac4829 | 89 | cputime_t utime, stime; |
6a14c5c9 | 90 | |
d11c563d | 91 | sighand = rcu_dereference_check(tsk->sighand, |
db1466b3 | 92 | lockdep_tasklist_lock_is_held()); |
6a14c5c9 ON |
93 | spin_lock(&sighand->siglock); |
94 | ||
95 | posix_cpu_timers_exit(tsk); | |
d40e48e0 | 96 | if (group_dead) { |
6a14c5c9 | 97 | posix_cpu_timers_exit_group(tsk); |
4ada856f ON |
98 | tty = sig->tty; |
99 | sig->tty = NULL; | |
4a599942 | 100 | } else { |
e0a70217 ON |
101 | /* |
102 | * This can only happen if the caller is de_thread(). | |
103 | * FIXME: this is the temporary hack, we should teach | |
104 | * posix-cpu-timers to handle this case correctly. | |
105 | */ | |
106 | if (unlikely(has_group_leader_pid(tsk))) | |
107 | posix_cpu_timers_exit_group(tsk); | |
108 | ||
6a14c5c9 ON |
109 | /* |
110 | * If there is any task waiting for the group exit | |
111 | * then notify it: | |
112 | */ | |
d344193a | 113 | if (sig->notify_count > 0 && !--sig->notify_count) |
6a14c5c9 | 114 | wake_up_process(sig->group_exit_task); |
6db840fa | 115 | |
6a14c5c9 ON |
116 | if (tsk == sig->curr_target) |
117 | sig->curr_target = next_thread(tsk); | |
6a14c5c9 ON |
118 | } |
119 | ||
90ed9cbe | 120 | /* |
26e75b5c ON |
121 | * Accumulate here the counters for all threads as they die. We could |
122 | * skip the group leader because it is the last user of signal_struct, | |
123 | * but we want to avoid the race with thread_group_cputime() which can | |
124 | * see the empty ->thread_head list. | |
90ed9cbe RR |
125 | */ |
126 | task_cputime(tsk, &utime, &stime); | |
e78c3496 | 127 | write_seqlock(&sig->stats_lock); |
90ed9cbe RR |
128 | sig->utime += utime; |
129 | sig->stime += stime; | |
130 | sig->gtime += task_gtime(tsk); | |
131 | sig->min_flt += tsk->min_flt; | |
132 | sig->maj_flt += tsk->maj_flt; | |
133 | sig->nvcsw += tsk->nvcsw; | |
134 | sig->nivcsw += tsk->nivcsw; | |
135 | sig->inblock += task_io_get_inblock(tsk); | |
136 | sig->oublock += task_io_get_oublock(tsk); | |
137 | task_io_accounting_add(&sig->ioac, &tsk->ioac); | |
138 | sig->sum_sched_runtime += tsk->se.sum_exec_runtime; | |
b3ac022c | 139 | sig->nr_threads--; |
d40e48e0 | 140 | __unhash_process(tsk, group_dead); |
e78c3496 | 141 | write_sequnlock(&sig->stats_lock); |
5876700c | 142 | |
da7978b0 ON |
143 | /* |
144 | * Do this under ->siglock, we can race with another thread | |
145 | * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. | |
146 | */ | |
147 | flush_sigqueue(&tsk->pending); | |
a7e5328a | 148 | tsk->sighand = NULL; |
6a14c5c9 | 149 | spin_unlock(&sighand->siglock); |
6a14c5c9 | 150 | |
a7e5328a | 151 | __cleanup_sighand(sighand); |
a0be55de | 152 | clear_tsk_thread_flag(tsk, TIF_SIGPENDING); |
d40e48e0 | 153 | if (group_dead) { |
6a14c5c9 | 154 | flush_sigqueue(&sig->shared_pending); |
4ada856f | 155 | tty_kref_put(tty); |
6a14c5c9 ON |
156 | } |
157 | } | |
158 | ||
8c7904a0 EB |
159 | static void delayed_put_task_struct(struct rcu_head *rhp) |
160 | { | |
0a16b607 MD |
161 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
162 | ||
4e231c79 | 163 | perf_event_delayed_put(tsk); |
0a16b607 MD |
164 | trace_sched_process_free(tsk); |
165 | put_task_struct(tsk); | |
8c7904a0 EB |
166 | } |
167 | ||
f470021a | 168 | |
a0be55de | 169 | void release_task(struct task_struct *p) |
1da177e4 | 170 | { |
36c8b586 | 171 | struct task_struct *leader; |
1da177e4 | 172 | int zap_leader; |
1f09f974 | 173 | repeat: |
c69e8d9c | 174 | /* don't need to get the RCU readlock here - the process is dead and |
d11c563d PM |
175 | * can't be modifying its own credentials. But shut RCU-lockdep up */ |
176 | rcu_read_lock(); | |
c69e8d9c | 177 | atomic_dec(&__task_cred(p)->user->processes); |
d11c563d | 178 | rcu_read_unlock(); |
c69e8d9c | 179 | |
60347f67 | 180 | proc_flush_task(p); |
0203026b | 181 | |
1da177e4 | 182 | write_lock_irq(&tasklist_lock); |
a288eecc | 183 | ptrace_release_task(p); |
1da177e4 | 184 | __exit_signal(p); |
35f5cad8 | 185 | |
1da177e4 LT |
186 | /* |
187 | * If we are the last non-leader member of the thread | |
188 | * group, and the leader is zombie, then notify the | |
189 | * group leader's parent process. (if it wants notification.) | |
190 | */ | |
191 | zap_leader = 0; | |
192 | leader = p->group_leader; | |
a0be55de IA |
193 | if (leader != p && thread_group_empty(leader) |
194 | && leader->exit_state == EXIT_ZOMBIE) { | |
1da177e4 LT |
195 | /* |
196 | * If we were the last child thread and the leader has | |
197 | * exited already, and the leader's parent ignores SIGCHLD, | |
198 | * then we are the one who should release the leader. | |
dae33574 | 199 | */ |
86773473 | 200 | zap_leader = do_notify_parent(leader, leader->exit_signal); |
dae33574 RM |
201 | if (zap_leader) |
202 | leader->exit_state = EXIT_DEAD; | |
1da177e4 LT |
203 | } |
204 | ||
1da177e4 | 205 | write_unlock_irq(&tasklist_lock); |
1da177e4 | 206 | release_thread(p); |
8c7904a0 | 207 | call_rcu(&p->rcu, delayed_put_task_struct); |
1da177e4 LT |
208 | |
209 | p = leader; | |
210 | if (unlikely(zap_leader)) | |
211 | goto repeat; | |
212 | } | |
213 | ||
1da177e4 LT |
214 | /* |
215 | * Determine if a process group is "orphaned", according to the POSIX | |
216 | * definition in 2.2.2.52. Orphaned process groups are not to be affected | |
217 | * by terminal-generated stop signals. Newly orphaned process groups are | |
218 | * to receive a SIGHUP and a SIGCONT. | |
219 | * | |
220 | * "I ask you, have you ever known what it is to be an orphan?" | |
221 | */ | |
a0be55de IA |
222 | static int will_become_orphaned_pgrp(struct pid *pgrp, |
223 | struct task_struct *ignored_task) | |
1da177e4 LT |
224 | { |
225 | struct task_struct *p; | |
1da177e4 | 226 | |
0475ac08 | 227 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
05e83df6 ON |
228 | if ((p == ignored_task) || |
229 | (p->exit_state && thread_group_empty(p)) || | |
230 | is_global_init(p->real_parent)) | |
1da177e4 | 231 | continue; |
05e83df6 | 232 | |
0475ac08 | 233 | if (task_pgrp(p->real_parent) != pgrp && |
05e83df6 ON |
234 | task_session(p->real_parent) == task_session(p)) |
235 | return 0; | |
0475ac08 | 236 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
05e83df6 ON |
237 | |
238 | return 1; | |
1da177e4 LT |
239 | } |
240 | ||
3e7cd6c4 | 241 | int is_current_pgrp_orphaned(void) |
1da177e4 LT |
242 | { |
243 | int retval; | |
244 | ||
245 | read_lock(&tasklist_lock); | |
3e7cd6c4 | 246 | retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); |
1da177e4 LT |
247 | read_unlock(&tasklist_lock); |
248 | ||
249 | return retval; | |
250 | } | |
251 | ||
961c4675 | 252 | static bool has_stopped_jobs(struct pid *pgrp) |
1da177e4 | 253 | { |
1da177e4 LT |
254 | struct task_struct *p; |
255 | ||
0475ac08 | 256 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
961c4675 ON |
257 | if (p->signal->flags & SIGNAL_STOP_STOPPED) |
258 | return true; | |
0475ac08 | 259 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
961c4675 ON |
260 | |
261 | return false; | |
1da177e4 LT |
262 | } |
263 | ||
f49ee505 ON |
264 | /* |
265 | * Check to see if any process groups have become orphaned as | |
266 | * a result of our exiting, and if they have any stopped jobs, | |
267 | * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | |
268 | */ | |
269 | static void | |
270 | kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) | |
271 | { | |
272 | struct pid *pgrp = task_pgrp(tsk); | |
273 | struct task_struct *ignored_task = tsk; | |
274 | ||
275 | if (!parent) | |
a0be55de IA |
276 | /* exit: our father is in a different pgrp than |
277 | * we are and we were the only connection outside. | |
278 | */ | |
f49ee505 ON |
279 | parent = tsk->real_parent; |
280 | else | |
281 | /* reparent: our child is in a different pgrp than | |
282 | * we are, and it was the only connection outside. | |
283 | */ | |
284 | ignored_task = NULL; | |
285 | ||
286 | if (task_pgrp(parent) != pgrp && | |
287 | task_session(parent) == task_session(tsk) && | |
288 | will_become_orphaned_pgrp(pgrp, ignored_task) && | |
289 | has_stopped_jobs(pgrp)) { | |
290 | __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); | |
291 | __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); | |
292 | } | |
293 | } | |
294 | ||
f98bafa0 | 295 | #ifdef CONFIG_MEMCG |
cf475ad2 | 296 | /* |
733eda7a | 297 | * A task is exiting. If it owned this mm, find a new owner for the mm. |
cf475ad2 | 298 | */ |
cf475ad2 BS |
299 | void mm_update_next_owner(struct mm_struct *mm) |
300 | { | |
301 | struct task_struct *c, *g, *p = current; | |
302 | ||
303 | retry: | |
733eda7a KH |
304 | /* |
305 | * If the exiting or execing task is not the owner, it's | |
306 | * someone else's problem. | |
307 | */ | |
308 | if (mm->owner != p) | |
cf475ad2 | 309 | return; |
733eda7a KH |
310 | /* |
311 | * The current owner is exiting/execing and there are no other | |
312 | * candidates. Do not leave the mm pointing to a possibly | |
313 | * freed task structure. | |
314 | */ | |
315 | if (atomic_read(&mm->mm_users) <= 1) { | |
316 | mm->owner = NULL; | |
317 | return; | |
318 | } | |
cf475ad2 BS |
319 | |
320 | read_lock(&tasklist_lock); | |
321 | /* | |
322 | * Search in the children | |
323 | */ | |
324 | list_for_each_entry(c, &p->children, sibling) { | |
325 | if (c->mm == mm) | |
326 | goto assign_new_owner; | |
327 | } | |
328 | ||
329 | /* | |
330 | * Search in the siblings | |
331 | */ | |
dea33cfd | 332 | list_for_each_entry(c, &p->real_parent->children, sibling) { |
cf475ad2 BS |
333 | if (c->mm == mm) |
334 | goto assign_new_owner; | |
335 | } | |
336 | ||
337 | /* | |
f87fb599 | 338 | * Search through everything else, we should not get here often. |
cf475ad2 | 339 | */ |
39af1765 ON |
340 | for_each_process(g) { |
341 | if (g->flags & PF_KTHREAD) | |
342 | continue; | |
343 | for_each_thread(g, c) { | |
344 | if (c->mm == mm) | |
345 | goto assign_new_owner; | |
346 | if (c->mm) | |
347 | break; | |
348 | } | |
f87fb599 | 349 | } |
cf475ad2 | 350 | read_unlock(&tasklist_lock); |
31a78f23 BS |
351 | /* |
352 | * We found no owner yet mm_users > 1: this implies that we are | |
353 | * most likely racing with swapoff (try_to_unuse()) or /proc or | |
e5991371 | 354 | * ptrace or page migration (get_task_mm()). Mark owner as NULL. |
31a78f23 | 355 | */ |
31a78f23 | 356 | mm->owner = NULL; |
cf475ad2 BS |
357 | return; |
358 | ||
359 | assign_new_owner: | |
360 | BUG_ON(c == p); | |
361 | get_task_struct(c); | |
362 | /* | |
363 | * The task_lock protects c->mm from changing. | |
364 | * We always want mm->owner->mm == mm | |
365 | */ | |
366 | task_lock(c); | |
e5991371 HD |
367 | /* |
368 | * Delay read_unlock() till we have the task_lock() | |
369 | * to ensure that c does not slip away underneath us | |
370 | */ | |
371 | read_unlock(&tasklist_lock); | |
cf475ad2 BS |
372 | if (c->mm != mm) { |
373 | task_unlock(c); | |
374 | put_task_struct(c); | |
375 | goto retry; | |
376 | } | |
cf475ad2 BS |
377 | mm->owner = c; |
378 | task_unlock(c); | |
379 | put_task_struct(c); | |
380 | } | |
f98bafa0 | 381 | #endif /* CONFIG_MEMCG */ |
cf475ad2 | 382 | |
1da177e4 LT |
383 | /* |
384 | * Turn us into a lazy TLB process if we | |
385 | * aren't already.. | |
386 | */ | |
a0be55de | 387 | static void exit_mm(struct task_struct *tsk) |
1da177e4 LT |
388 | { |
389 | struct mm_struct *mm = tsk->mm; | |
b564daf8 | 390 | struct core_state *core_state; |
1da177e4 | 391 | |
48d212a2 | 392 | mm_release(tsk, mm); |
1da177e4 LT |
393 | if (!mm) |
394 | return; | |
4fe7efdb | 395 | sync_mm_rss(mm); |
1da177e4 LT |
396 | /* |
397 | * Serialize with any possible pending coredump. | |
999d9fc1 | 398 | * We must hold mmap_sem around checking core_state |
1da177e4 | 399 | * and clearing tsk->mm. The core-inducing thread |
999d9fc1 | 400 | * will increment ->nr_threads for each thread in the |
1da177e4 LT |
401 | * group with ->mm != NULL. |
402 | */ | |
403 | down_read(&mm->mmap_sem); | |
b564daf8 ON |
404 | core_state = mm->core_state; |
405 | if (core_state) { | |
406 | struct core_thread self; | |
a0be55de | 407 | |
1da177e4 | 408 | up_read(&mm->mmap_sem); |
1da177e4 | 409 | |
b564daf8 ON |
410 | self.task = tsk; |
411 | self.next = xchg(&core_state->dumper.next, &self); | |
412 | /* | |
413 | * Implies mb(), the result of xchg() must be visible | |
414 | * to core_state->dumper. | |
415 | */ | |
416 | if (atomic_dec_and_test(&core_state->nr_threads)) | |
417 | complete(&core_state->startup); | |
1da177e4 | 418 | |
a94e2d40 ON |
419 | for (;;) { |
420 | set_task_state(tsk, TASK_UNINTERRUPTIBLE); | |
421 | if (!self.task) /* see coredump_finish() */ | |
422 | break; | |
80d26af8 | 423 | freezable_schedule(); |
a94e2d40 ON |
424 | } |
425 | __set_task_state(tsk, TASK_RUNNING); | |
1da177e4 LT |
426 | down_read(&mm->mmap_sem); |
427 | } | |
428 | atomic_inc(&mm->mm_count); | |
125e1874 | 429 | BUG_ON(mm != tsk->active_mm); |
1da177e4 LT |
430 | /* more a memory barrier than a real lock */ |
431 | task_lock(tsk); | |
432 | tsk->mm = NULL; | |
433 | up_read(&mm->mmap_sem); | |
434 | enter_lazy_tlb(mm, current); | |
435 | task_unlock(tsk); | |
cf475ad2 | 436 | mm_update_next_owner(mm); |
1da177e4 | 437 | mmput(mm); |
c32b3cbe | 438 | if (test_thread_flag(TIF_MEMDIE)) |
16e95196 | 439 | exit_oom_victim(); |
1da177e4 LT |
440 | } |
441 | ||
c9dc05bf ON |
442 | static struct task_struct *find_alive_thread(struct task_struct *p) |
443 | { | |
444 | struct task_struct *t; | |
445 | ||
446 | for_each_thread(p, t) { | |
447 | if (!(t->flags & PF_EXITING)) | |
448 | return t; | |
449 | } | |
450 | return NULL; | |
451 | } | |
452 | ||
1109909c ON |
453 | static struct task_struct *find_child_reaper(struct task_struct *father) |
454 | __releases(&tasklist_lock) | |
455 | __acquires(&tasklist_lock) | |
456 | { | |
457 | struct pid_namespace *pid_ns = task_active_pid_ns(father); | |
458 | struct task_struct *reaper = pid_ns->child_reaper; | |
459 | ||
460 | if (likely(reaper != father)) | |
461 | return reaper; | |
462 | ||
c9dc05bf ON |
463 | reaper = find_alive_thread(father); |
464 | if (reaper) { | |
1109909c ON |
465 | pid_ns->child_reaper = reaper; |
466 | return reaper; | |
467 | } | |
468 | ||
469 | write_unlock_irq(&tasklist_lock); | |
470 | if (unlikely(pid_ns == &init_pid_ns)) { | |
471 | panic("Attempted to kill init! exitcode=0x%08x\n", | |
472 | father->signal->group_exit_code ?: father->exit_code); | |
473 | } | |
474 | zap_pid_ns_processes(pid_ns); | |
475 | write_lock_irq(&tasklist_lock); | |
476 | ||
477 | return father; | |
478 | } | |
479 | ||
1da177e4 | 480 | /* |
ebec18a6 LP |
481 | * When we die, we re-parent all our children, and try to: |
482 | * 1. give them to another thread in our thread group, if such a member exists | |
483 | * 2. give it to the first ancestor process which prctl'd itself as a | |
484 | * child_subreaper for its children (like a service manager) | |
485 | * 3. give it to the init process (PID 1) in our pid namespace | |
1da177e4 | 486 | */ |
1109909c ON |
487 | static struct task_struct *find_new_reaper(struct task_struct *father, |
488 | struct task_struct *child_reaper) | |
1da177e4 | 489 | { |
c9dc05bf | 490 | struct task_struct *thread, *reaper; |
1da177e4 | 491 | |
c9dc05bf ON |
492 | thread = find_alive_thread(father); |
493 | if (thread) | |
950bbabb | 494 | return thread; |
1da177e4 | 495 | |
7d24e2df | 496 | if (father->signal->has_child_subreaper) { |
ebec18a6 | 497 | /* |
175aed3f ON |
498 | * Find the first ->is_child_subreaper ancestor in our pid_ns. |
499 | * We start from father to ensure we can not look into another | |
500 | * namespace, this is safe because all its threads are dead. | |
ebec18a6 | 501 | */ |
7d24e2df | 502 | for (reaper = father; |
1109909c | 503 | !same_thread_group(reaper, child_reaper); |
ebec18a6 | 504 | reaper = reaper->real_parent) { |
175aed3f ON |
505 | /* call_usermodehelper() descendants need this check */ |
506 | if (reaper == &init_task) | |
ebec18a6 LP |
507 | break; |
508 | if (!reaper->signal->is_child_subreaper) | |
509 | continue; | |
c9dc05bf ON |
510 | thread = find_alive_thread(reaper); |
511 | if (thread) | |
512 | return thread; | |
ebec18a6 | 513 | } |
1da177e4 | 514 | } |
762a24be | 515 | |
1109909c | 516 | return child_reaper; |
950bbabb ON |
517 | } |
518 | ||
5dfc80be ON |
519 | /* |
520 | * Any that need to be release_task'd are put on the @dead list. | |
521 | */ | |
9cd80bbb | 522 | static void reparent_leader(struct task_struct *father, struct task_struct *p, |
5dfc80be ON |
523 | struct list_head *dead) |
524 | { | |
2831096e | 525 | if (unlikely(p->exit_state == EXIT_DEAD)) |
5dfc80be ON |
526 | return; |
527 | ||
abd50b39 | 528 | /* We don't want people slaying init. */ |
5dfc80be ON |
529 | p->exit_signal = SIGCHLD; |
530 | ||
531 | /* If it has exited notify the new parent about this child's death. */ | |
d21142ec | 532 | if (!p->ptrace && |
5dfc80be | 533 | p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { |
86773473 | 534 | if (do_notify_parent(p, p->exit_signal)) { |
5dfc80be | 535 | p->exit_state = EXIT_DEAD; |
dc2fd4b0 | 536 | list_add(&p->ptrace_entry, dead); |
5dfc80be ON |
537 | } |
538 | } | |
539 | ||
540 | kill_orphaned_pgrp(p, father); | |
541 | } | |
542 | ||
482a3767 ON |
543 | /* |
544 | * This does two things: | |
545 | * | |
546 | * A. Make init inherit all the child processes | |
547 | * B. Check to see if any process groups have become orphaned | |
548 | * as a result of our exiting, and if they have any stopped | |
549 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | |
550 | */ | |
551 | static void forget_original_parent(struct task_struct *father, | |
552 | struct list_head *dead) | |
1da177e4 | 553 | { |
482a3767 | 554 | struct task_struct *p, *t, *reaper; |
762a24be | 555 | |
7c8bd232 | 556 | if (unlikely(!list_empty(&father->ptraced))) |
482a3767 | 557 | exit_ptrace(father, dead); |
f470021a | 558 | |
7c8bd232 | 559 | /* Can drop and reacquire tasklist_lock */ |
1109909c | 560 | reaper = find_child_reaper(father); |
ad9e206a | 561 | if (list_empty(&father->children)) |
482a3767 | 562 | return; |
1109909c ON |
563 | |
564 | reaper = find_new_reaper(father, reaper); | |
2831096e | 565 | list_for_each_entry(p, &father->children, sibling) { |
57a05918 | 566 | for_each_thread(p, t) { |
9cd80bbb | 567 | t->real_parent = reaper; |
57a05918 ON |
568 | BUG_ON((!t->ptrace) != (t->parent == father)); |
569 | if (likely(!t->ptrace)) | |
9cd80bbb | 570 | t->parent = t->real_parent; |
9cd80bbb ON |
571 | if (t->pdeath_signal) |
572 | group_send_sig_info(t->pdeath_signal, | |
573 | SEND_SIG_NOINFO, t); | |
57a05918 | 574 | } |
2831096e ON |
575 | /* |
576 | * If this is a threaded reparent there is no need to | |
577 | * notify anyone anything has happened. | |
578 | */ | |
579 | if (!same_thread_group(reaper, father)) | |
482a3767 | 580 | reparent_leader(father, p, dead); |
1da177e4 | 581 | } |
2831096e | 582 | list_splice_tail_init(&father->children, &reaper->children); |
1da177e4 LT |
583 | } |
584 | ||
585 | /* | |
586 | * Send signals to all our closest relatives so that they know | |
587 | * to properly mourn us.. | |
588 | */ | |
821c7de7 | 589 | static void exit_notify(struct task_struct *tsk, int group_dead) |
1da177e4 | 590 | { |
53c8f9f1 | 591 | bool autoreap; |
482a3767 ON |
592 | struct task_struct *p, *n; |
593 | LIST_HEAD(dead); | |
1da177e4 | 594 | |
762a24be | 595 | write_lock_irq(&tasklist_lock); |
482a3767 ON |
596 | forget_original_parent(tsk, &dead); |
597 | ||
821c7de7 ON |
598 | if (group_dead) |
599 | kill_orphaned_pgrp(tsk->group_leader, NULL); | |
1da177e4 | 600 | |
45cdf5cc ON |
601 | if (unlikely(tsk->ptrace)) { |
602 | int sig = thread_group_leader(tsk) && | |
603 | thread_group_empty(tsk) && | |
604 | !ptrace_reparented(tsk) ? | |
605 | tsk->exit_signal : SIGCHLD; | |
606 | autoreap = do_notify_parent(tsk, sig); | |
607 | } else if (thread_group_leader(tsk)) { | |
608 | autoreap = thread_group_empty(tsk) && | |
609 | do_notify_parent(tsk, tsk->exit_signal); | |
610 | } else { | |
611 | autoreap = true; | |
612 | } | |
1da177e4 | 613 | |
53c8f9f1 | 614 | tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; |
6c66e7db ON |
615 | if (tsk->exit_state == EXIT_DEAD) |
616 | list_add(&tsk->ptrace_entry, &dead); | |
1da177e4 | 617 | |
9c339168 ON |
618 | /* mt-exec, de_thread() is waiting for group leader */ |
619 | if (unlikely(tsk->signal->notify_count < 0)) | |
6db840fa | 620 | wake_up_process(tsk->signal->group_exit_task); |
1da177e4 LT |
621 | write_unlock_irq(&tasklist_lock); |
622 | ||
482a3767 ON |
623 | list_for_each_entry_safe(p, n, &dead, ptrace_entry) { |
624 | list_del_init(&p->ptrace_entry); | |
625 | release_task(p); | |
626 | } | |
1da177e4 LT |
627 | } |
628 | ||
e18eecb8 JD |
629 | #ifdef CONFIG_DEBUG_STACK_USAGE |
630 | static void check_stack_usage(void) | |
631 | { | |
632 | static DEFINE_SPINLOCK(low_water_lock); | |
633 | static int lowest_to_date = THREAD_SIZE; | |
e18eecb8 JD |
634 | unsigned long free; |
635 | ||
7c9f8861 | 636 | free = stack_not_used(current); |
e18eecb8 JD |
637 | |
638 | if (free >= lowest_to_date) | |
639 | return; | |
640 | ||
641 | spin_lock(&low_water_lock); | |
642 | if (free < lowest_to_date) { | |
a0be55de IA |
643 | pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n", |
644 | current->comm, task_pid_nr(current), free); | |
e18eecb8 JD |
645 | lowest_to_date = free; |
646 | } | |
647 | spin_unlock(&low_water_lock); | |
648 | } | |
649 | #else | |
650 | static inline void check_stack_usage(void) {} | |
651 | #endif | |
652 | ||
9402c95f | 653 | void do_exit(long code) |
1da177e4 LT |
654 | { |
655 | struct task_struct *tsk = current; | |
656 | int group_dead; | |
3f95aa81 | 657 | TASKS_RCU(int tasks_rcu_i); |
1da177e4 LT |
658 | |
659 | profile_task_exit(tsk); | |
660 | ||
73c10101 | 661 | WARN_ON(blk_needs_flush_plug(tsk)); |
22e2c507 | 662 | |
1da177e4 LT |
663 | if (unlikely(in_interrupt())) |
664 | panic("Aiee, killing interrupt handler!"); | |
665 | if (unlikely(!tsk->pid)) | |
666 | panic("Attempted to kill the idle task!"); | |
1da177e4 | 667 | |
33dd94ae NE |
668 | /* |
669 | * If do_exit is called because this processes oopsed, it's possible | |
670 | * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before | |
671 | * continuing. Amongst other possible reasons, this is to prevent | |
672 | * mm_release()->clear_child_tid() from writing to a user-controlled | |
673 | * kernel address. | |
674 | */ | |
675 | set_fs(USER_DS); | |
676 | ||
a288eecc | 677 | ptrace_event(PTRACE_EVENT_EXIT, code); |
1da177e4 | 678 | |
e0e81739 DH |
679 | validate_creds_for_do_exit(tsk); |
680 | ||
df164db5 AN |
681 | /* |
682 | * We're taking recursive faults here in do_exit. Safest is to just | |
683 | * leave this task alone and wait for reboot. | |
684 | */ | |
685 | if (unlikely(tsk->flags & PF_EXITING)) { | |
a0be55de | 686 | pr_alert("Fixing recursive fault but reboot is needed!\n"); |
778e9a9c AK |
687 | /* |
688 | * We can do this unlocked here. The futex code uses | |
689 | * this flag just to verify whether the pi state | |
690 | * cleanup has been done or not. In the worst case it | |
691 | * loops once more. We pretend that the cleanup was | |
692 | * done as there is no way to return. Either the | |
693 | * OWNER_DIED bit is set by now or we push the blocked | |
694 | * task into the wait for ever nirwana as well. | |
695 | */ | |
696 | tsk->flags |= PF_EXITPIDONE; | |
df164db5 AN |
697 | set_current_state(TASK_UNINTERRUPTIBLE); |
698 | schedule(); | |
699 | } | |
700 | ||
d12619b5 | 701 | exit_signals(tsk); /* sets PF_EXITING */ |
778e9a9c AK |
702 | /* |
703 | * tsk->flags are checked in the futex code to protect against | |
ed3e694d | 704 | * an exiting task cleaning up the robust pi futexes. |
778e9a9c | 705 | */ |
d2ee7198 | 706 | smp_mb(); |
1d615482 | 707 | raw_spin_unlock_wait(&tsk->pi_lock); |
1da177e4 | 708 | |
1da177e4 | 709 | if (unlikely(in_atomic())) |
a0be55de IA |
710 | pr_info("note: %s[%d] exited with preempt_count %d\n", |
711 | current->comm, task_pid_nr(current), | |
712 | preempt_count()); | |
1da177e4 | 713 | |
48d212a2 LT |
714 | /* sync mm's RSS info before statistics gathering */ |
715 | if (tsk->mm) | |
716 | sync_mm_rss(tsk->mm); | |
51229b49 | 717 | acct_update_integrals(tsk); |
1da177e4 | 718 | group_dead = atomic_dec_and_test(&tsk->signal->live); |
c3068951 | 719 | if (group_dead) { |
778e9a9c | 720 | hrtimer_cancel(&tsk->signal->real_timer); |
25f407f0 | 721 | exit_itimers(tsk->signal); |
1f10206c JP |
722 | if (tsk->mm) |
723 | setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); | |
c3068951 | 724 | } |
f6ec29a4 | 725 | acct_collect(code, group_dead); |
522ed776 MT |
726 | if (group_dead) |
727 | tty_audit_exit(); | |
a4ff8dba | 728 | audit_free(tsk); |
115085ea | 729 | |
48d212a2 | 730 | tsk->exit_code = code; |
115085ea | 731 | taskstats_exit(tsk, group_dead); |
c757249a | 732 | |
1da177e4 LT |
733 | exit_mm(tsk); |
734 | ||
0e464814 | 735 | if (group_dead) |
f6ec29a4 | 736 | acct_process(); |
0a16b607 MD |
737 | trace_sched_process_exit(tsk); |
738 | ||
1da177e4 | 739 | exit_sem(tsk); |
b34a6b1d | 740 | exit_shm(tsk); |
1ec7f1dd AV |
741 | exit_files(tsk); |
742 | exit_fs(tsk); | |
c39df5fa ON |
743 | if (group_dead) |
744 | disassociate_ctty(1); | |
8aac6270 | 745 | exit_task_namespaces(tsk); |
ed3e694d | 746 | exit_task_work(tsk); |
1da177e4 | 747 | exit_thread(); |
0b3fcf17 SE |
748 | |
749 | /* | |
750 | * Flush inherited counters to the parent - before the parent | |
751 | * gets woken up by child-exit notifications. | |
752 | * | |
753 | * because of cgroup mode, must be called before cgroup_exit() | |
754 | */ | |
755 | perf_event_exit_task(tsk); | |
756 | ||
1ec41830 | 757 | cgroup_exit(tsk); |
1da177e4 | 758 | |
24f1e32c FW |
759 | /* |
760 | * FIXME: do that only when needed, using sched_exit tracepoint | |
761 | */ | |
7c8df286 | 762 | flush_ptrace_hw_breakpoint(tsk); |
33b2fb30 | 763 | |
3f95aa81 | 764 | TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu)); |
821c7de7 | 765 | exit_notify(tsk, group_dead); |
ef982393 | 766 | proc_exit_connector(tsk); |
1da177e4 | 767 | #ifdef CONFIG_NUMA |
c0ff7453 | 768 | task_lock(tsk); |
f0be3d32 | 769 | mpol_put(tsk->mempolicy); |
1da177e4 | 770 | tsk->mempolicy = NULL; |
c0ff7453 | 771 | task_unlock(tsk); |
1da177e4 | 772 | #endif |
42b2dd0a | 773 | #ifdef CONFIG_FUTEX |
c87e2837 IM |
774 | if (unlikely(current->pi_state_cache)) |
775 | kfree(current->pi_state_cache); | |
42b2dd0a | 776 | #endif |
de5097c2 | 777 | /* |
9a11b49a | 778 | * Make sure we are holding no locks: |
de5097c2 | 779 | */ |
1b1d2fb4 | 780 | debug_check_no_locks_held(); |
778e9a9c AK |
781 | /* |
782 | * We can do this unlocked here. The futex code uses this flag | |
783 | * just to verify whether the pi state cleanup has been done | |
784 | * or not. In the worst case it loops once more. | |
785 | */ | |
786 | tsk->flags |= PF_EXITPIDONE; | |
1da177e4 | 787 | |
afc847b7 | 788 | if (tsk->io_context) |
b69f2292 | 789 | exit_io_context(tsk); |
afc847b7 | 790 | |
b92ce558 | 791 | if (tsk->splice_pipe) |
4b8a8f1e | 792 | free_pipe_info(tsk->splice_pipe); |
b92ce558 | 793 | |
5640f768 ED |
794 | if (tsk->task_frag.page) |
795 | put_page(tsk->task_frag.page); | |
796 | ||
e0e81739 DH |
797 | validate_creds_for_do_exit(tsk); |
798 | ||
4bcb8232 | 799 | check_stack_usage(); |
7407251a | 800 | preempt_disable(); |
54848d73 WF |
801 | if (tsk->nr_dirtied) |
802 | __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); | |
f41d911f | 803 | exit_rcu(); |
3f95aa81 | 804 | TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i)); |
b5740f4b YG |
805 | |
806 | /* | |
807 | * The setting of TASK_RUNNING by try_to_wake_up() may be delayed | |
808 | * when the following two conditions become true. | |
809 | * - There is race condition of mmap_sem (It is acquired by | |
810 | * exit_mm()), and | |
811 | * - SMI occurs before setting TASK_RUNINNG. | |
812 | * (or hypervisor of virtual machine switches to other guest) | |
813 | * As a result, we may become TASK_RUNNING after becoming TASK_DEAD | |
814 | * | |
815 | * To avoid it, we have to wait for releasing tsk->pi_lock which | |
816 | * is held by try_to_wake_up() | |
817 | */ | |
818 | smp_mb(); | |
819 | raw_spin_unlock_wait(&tsk->pi_lock); | |
820 | ||
55a101f8 | 821 | /* causes final put_task_struct in finish_task_switch(). */ |
c394cc9f | 822 | tsk->state = TASK_DEAD; |
a585042f | 823 | tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ |
1da177e4 LT |
824 | schedule(); |
825 | BUG(); | |
826 | /* Avoid "noreturn function does return". */ | |
54306cf0 AC |
827 | for (;;) |
828 | cpu_relax(); /* For when BUG is null */ | |
1da177e4 | 829 | } |
012914da RA |
830 | EXPORT_SYMBOL_GPL(do_exit); |
831 | ||
9402c95f | 832 | void complete_and_exit(struct completion *comp, long code) |
1da177e4 LT |
833 | { |
834 | if (comp) | |
835 | complete(comp); | |
55a101f8 | 836 | |
1da177e4 LT |
837 | do_exit(code); |
838 | } | |
1da177e4 LT |
839 | EXPORT_SYMBOL(complete_and_exit); |
840 | ||
754fe8d2 | 841 | SYSCALL_DEFINE1(exit, int, error_code) |
1da177e4 LT |
842 | { |
843 | do_exit((error_code&0xff)<<8); | |
844 | } | |
845 | ||
1da177e4 LT |
846 | /* |
847 | * Take down every thread in the group. This is called by fatal signals | |
848 | * as well as by sys_exit_group (below). | |
849 | */ | |
9402c95f | 850 | void |
1da177e4 LT |
851 | do_group_exit(int exit_code) |
852 | { | |
bfc4b089 ON |
853 | struct signal_struct *sig = current->signal; |
854 | ||
1da177e4 LT |
855 | BUG_ON(exit_code & 0x80); /* core dumps don't get here */ |
856 | ||
bfc4b089 ON |
857 | if (signal_group_exit(sig)) |
858 | exit_code = sig->group_exit_code; | |
1da177e4 | 859 | else if (!thread_group_empty(current)) { |
1da177e4 | 860 | struct sighand_struct *const sighand = current->sighand; |
a0be55de | 861 | |
1da177e4 | 862 | spin_lock_irq(&sighand->siglock); |
ed5d2cac | 863 | if (signal_group_exit(sig)) |
1da177e4 LT |
864 | /* Another thread got here before we took the lock. */ |
865 | exit_code = sig->group_exit_code; | |
866 | else { | |
1da177e4 | 867 | sig->group_exit_code = exit_code; |
ed5d2cac | 868 | sig->flags = SIGNAL_GROUP_EXIT; |
1da177e4 LT |
869 | zap_other_threads(current); |
870 | } | |
871 | spin_unlock_irq(&sighand->siglock); | |
1da177e4 LT |
872 | } |
873 | ||
874 | do_exit(exit_code); | |
875 | /* NOTREACHED */ | |
876 | } | |
877 | ||
878 | /* | |
879 | * this kills every thread in the thread group. Note that any externally | |
880 | * wait4()-ing process will get the correct exit code - even if this | |
881 | * thread is not the thread group leader. | |
882 | */ | |
754fe8d2 | 883 | SYSCALL_DEFINE1(exit_group, int, error_code) |
1da177e4 LT |
884 | { |
885 | do_group_exit((error_code & 0xff) << 8); | |
2ed7c03e HC |
886 | /* NOTREACHED */ |
887 | return 0; | |
1da177e4 LT |
888 | } |
889 | ||
9e8ae01d ON |
890 | struct wait_opts { |
891 | enum pid_type wo_type; | |
9e8ae01d | 892 | int wo_flags; |
e1eb1ebc | 893 | struct pid *wo_pid; |
9e8ae01d ON |
894 | |
895 | struct siginfo __user *wo_info; | |
896 | int __user *wo_stat; | |
897 | struct rusage __user *wo_rusage; | |
898 | ||
0b7570e7 | 899 | wait_queue_t child_wait; |
9e8ae01d ON |
900 | int notask_error; |
901 | }; | |
902 | ||
989264f4 ON |
903 | static inline |
904 | struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | |
161550d7 | 905 | { |
989264f4 ON |
906 | if (type != PIDTYPE_PID) |
907 | task = task->group_leader; | |
908 | return task->pids[type].pid; | |
161550d7 EB |
909 | } |
910 | ||
989264f4 | 911 | static int eligible_pid(struct wait_opts *wo, struct task_struct *p) |
1da177e4 | 912 | { |
5c01ba49 ON |
913 | return wo->wo_type == PIDTYPE_MAX || |
914 | task_pid_type(p, wo->wo_type) == wo->wo_pid; | |
915 | } | |
1da177e4 | 916 | |
5c01ba49 ON |
917 | static int eligible_child(struct wait_opts *wo, struct task_struct *p) |
918 | { | |
919 | if (!eligible_pid(wo, p)) | |
920 | return 0; | |
1da177e4 LT |
921 | /* Wait for all children (clone and not) if __WALL is set; |
922 | * otherwise, wait for clone children *only* if __WCLONE is | |
923 | * set; otherwise, wait for non-clone children *only*. (Note: | |
924 | * A "clone" child here is one that reports to its parent | |
925 | * using a signal other than SIGCHLD.) */ | |
9e8ae01d ON |
926 | if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) |
927 | && !(wo->wo_flags & __WALL)) | |
1da177e4 | 928 | return 0; |
1da177e4 | 929 | |
14dd0b81 | 930 | return 1; |
1da177e4 LT |
931 | } |
932 | ||
9e8ae01d ON |
933 | static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, |
934 | pid_t pid, uid_t uid, int why, int status) | |
1da177e4 | 935 | { |
9e8ae01d ON |
936 | struct siginfo __user *infop; |
937 | int retval = wo->wo_rusage | |
938 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | |
36c8b586 | 939 | |
1da177e4 | 940 | put_task_struct(p); |
9e8ae01d | 941 | infop = wo->wo_info; |
b6fe2d11 VM |
942 | if (infop) { |
943 | if (!retval) | |
944 | retval = put_user(SIGCHLD, &infop->si_signo); | |
945 | if (!retval) | |
946 | retval = put_user(0, &infop->si_errno); | |
947 | if (!retval) | |
948 | retval = put_user((short)why, &infop->si_code); | |
949 | if (!retval) | |
950 | retval = put_user(pid, &infop->si_pid); | |
951 | if (!retval) | |
952 | retval = put_user(uid, &infop->si_uid); | |
953 | if (!retval) | |
954 | retval = put_user(status, &infop->si_status); | |
955 | } | |
1da177e4 LT |
956 | if (!retval) |
957 | retval = pid; | |
958 | return retval; | |
959 | } | |
960 | ||
961 | /* | |
962 | * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold | |
963 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
964 | * the lock and this task is uninteresting. If we return nonzero, we have | |
965 | * released the lock and the system call should return. | |
966 | */ | |
9e8ae01d | 967 | static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) |
1da177e4 | 968 | { |
f6507f83 | 969 | int state, retval, status; |
6c5f3e7b | 970 | pid_t pid = task_pid_vnr(p); |
43e13cc1 | 971 | uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); |
9e8ae01d | 972 | struct siginfo __user *infop; |
1da177e4 | 973 | |
9e8ae01d | 974 | if (!likely(wo->wo_flags & WEXITED)) |
98abed02 RM |
975 | return 0; |
976 | ||
9e8ae01d | 977 | if (unlikely(wo->wo_flags & WNOWAIT)) { |
1da177e4 | 978 | int exit_code = p->exit_code; |
f3abd4f9 | 979 | int why; |
1da177e4 | 980 | |
1da177e4 LT |
981 | get_task_struct(p); |
982 | read_unlock(&tasklist_lock); | |
1029a2b5 PZ |
983 | sched_annotate_sleep(); |
984 | ||
1da177e4 LT |
985 | if ((exit_code & 0x7f) == 0) { |
986 | why = CLD_EXITED; | |
987 | status = exit_code >> 8; | |
988 | } else { | |
989 | why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; | |
990 | status = exit_code & 0x7f; | |
991 | } | |
9e8ae01d | 992 | return wait_noreap_copyout(wo, p, pid, uid, why, status); |
1da177e4 | 993 | } |
1da177e4 | 994 | /* |
abd50b39 | 995 | * Move the task's state to DEAD/TRACE, only one thread can do this. |
1da177e4 | 996 | */ |
f6507f83 ON |
997 | state = (ptrace_reparented(p) && thread_group_leader(p)) ? |
998 | EXIT_TRACE : EXIT_DEAD; | |
abd50b39 | 999 | if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) |
1da177e4 | 1000 | return 0; |
986094df ON |
1001 | /* |
1002 | * We own this thread, nobody else can reap it. | |
1003 | */ | |
1004 | read_unlock(&tasklist_lock); | |
1005 | sched_annotate_sleep(); | |
f6507f83 | 1006 | |
befca967 | 1007 | /* |
f6507f83 | 1008 | * Check thread_group_leader() to exclude the traced sub-threads. |
befca967 | 1009 | */ |
f6507f83 | 1010 | if (state == EXIT_DEAD && thread_group_leader(p)) { |
f953ccd0 ON |
1011 | struct signal_struct *sig = p->signal; |
1012 | struct signal_struct *psig = current->signal; | |
1f10206c | 1013 | unsigned long maxrss; |
0cf55e1e | 1014 | cputime_t tgutime, tgstime; |
3795e161 | 1015 | |
1da177e4 LT |
1016 | /* |
1017 | * The resource counters for the group leader are in its | |
1018 | * own task_struct. Those for dead threads in the group | |
1019 | * are in its signal_struct, as are those for the child | |
1020 | * processes it has previously reaped. All these | |
1021 | * accumulate in the parent's signal_struct c* fields. | |
1022 | * | |
1023 | * We don't bother to take a lock here to protect these | |
f953ccd0 ON |
1024 | * p->signal fields because the whole thread group is dead |
1025 | * and nobody can change them. | |
1026 | * | |
1027 | * psig->stats_lock also protects us from our sub-theads | |
1028 | * which can reap other children at the same time. Until | |
1029 | * we change k_getrusage()-like users to rely on this lock | |
1030 | * we have to take ->siglock as well. | |
0cf55e1e | 1031 | * |
a0be55de IA |
1032 | * We use thread_group_cputime_adjusted() to get times for |
1033 | * the thread group, which consolidates times for all threads | |
1034 | * in the group including the group leader. | |
1da177e4 | 1035 | */ |
e80d0a1a | 1036 | thread_group_cputime_adjusted(p, &tgutime, &tgstime); |
f953ccd0 | 1037 | spin_lock_irq(¤t->sighand->siglock); |
e78c3496 | 1038 | write_seqlock(&psig->stats_lock); |
64861634 MS |
1039 | psig->cutime += tgutime + sig->cutime; |
1040 | psig->cstime += tgstime + sig->cstime; | |
6fac4829 | 1041 | psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; |
3795e161 JJ |
1042 | psig->cmin_flt += |
1043 | p->min_flt + sig->min_flt + sig->cmin_flt; | |
1044 | psig->cmaj_flt += | |
1045 | p->maj_flt + sig->maj_flt + sig->cmaj_flt; | |
1046 | psig->cnvcsw += | |
1047 | p->nvcsw + sig->nvcsw + sig->cnvcsw; | |
1048 | psig->cnivcsw += | |
1049 | p->nivcsw + sig->nivcsw + sig->cnivcsw; | |
6eaeeaba ED |
1050 | psig->cinblock += |
1051 | task_io_get_inblock(p) + | |
1052 | sig->inblock + sig->cinblock; | |
1053 | psig->coublock += | |
1054 | task_io_get_oublock(p) + | |
1055 | sig->oublock + sig->coublock; | |
1f10206c JP |
1056 | maxrss = max(sig->maxrss, sig->cmaxrss); |
1057 | if (psig->cmaxrss < maxrss) | |
1058 | psig->cmaxrss = maxrss; | |
5995477a AR |
1059 | task_io_accounting_add(&psig->ioac, &p->ioac); |
1060 | task_io_accounting_add(&psig->ioac, &sig->ioac); | |
e78c3496 | 1061 | write_sequnlock(&psig->stats_lock); |
f953ccd0 | 1062 | spin_unlock_irq(¤t->sighand->siglock); |
1da177e4 LT |
1063 | } |
1064 | ||
9e8ae01d ON |
1065 | retval = wo->wo_rusage |
1066 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | |
1da177e4 LT |
1067 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) |
1068 | ? p->signal->group_exit_code : p->exit_code; | |
9e8ae01d ON |
1069 | if (!retval && wo->wo_stat) |
1070 | retval = put_user(status, wo->wo_stat); | |
1071 | ||
1072 | infop = wo->wo_info; | |
1da177e4 LT |
1073 | if (!retval && infop) |
1074 | retval = put_user(SIGCHLD, &infop->si_signo); | |
1075 | if (!retval && infop) | |
1076 | retval = put_user(0, &infop->si_errno); | |
1077 | if (!retval && infop) { | |
1078 | int why; | |
1079 | ||
1080 | if ((status & 0x7f) == 0) { | |
1081 | why = CLD_EXITED; | |
1082 | status >>= 8; | |
1083 | } else { | |
1084 | why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; | |
1085 | status &= 0x7f; | |
1086 | } | |
1087 | retval = put_user((short)why, &infop->si_code); | |
1088 | if (!retval) | |
1089 | retval = put_user(status, &infop->si_status); | |
1090 | } | |
1091 | if (!retval && infop) | |
3a515e4a | 1092 | retval = put_user(pid, &infop->si_pid); |
1da177e4 | 1093 | if (!retval && infop) |
c69e8d9c | 1094 | retval = put_user(uid, &infop->si_uid); |
2f4e6e2a | 1095 | if (!retval) |
3a515e4a | 1096 | retval = pid; |
2f4e6e2a | 1097 | |
b4360690 | 1098 | if (state == EXIT_TRACE) { |
1da177e4 | 1099 | write_lock_irq(&tasklist_lock); |
2f4e6e2a ON |
1100 | /* We dropped tasklist, ptracer could die and untrace */ |
1101 | ptrace_unlink(p); | |
b4360690 ON |
1102 | |
1103 | /* If parent wants a zombie, don't release it now */ | |
1104 | state = EXIT_ZOMBIE; | |
1105 | if (do_notify_parent(p, p->exit_signal)) | |
1106 | state = EXIT_DEAD; | |
abd50b39 | 1107 | p->exit_state = state; |
1da177e4 LT |
1108 | write_unlock_irq(&tasklist_lock); |
1109 | } | |
abd50b39 | 1110 | if (state == EXIT_DEAD) |
1da177e4 | 1111 | release_task(p); |
2f4e6e2a | 1112 | |
1da177e4 LT |
1113 | return retval; |
1114 | } | |
1115 | ||
90bc8d8b ON |
1116 | static int *task_stopped_code(struct task_struct *p, bool ptrace) |
1117 | { | |
1118 | if (ptrace) { | |
544b2c91 TH |
1119 | if (task_is_stopped_or_traced(p) && |
1120 | !(p->jobctl & JOBCTL_LISTENING)) | |
90bc8d8b ON |
1121 | return &p->exit_code; |
1122 | } else { | |
1123 | if (p->signal->flags & SIGNAL_STOP_STOPPED) | |
1124 | return &p->signal->group_exit_code; | |
1125 | } | |
1126 | return NULL; | |
1127 | } | |
1128 | ||
19e27463 TH |
1129 | /** |
1130 | * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED | |
1131 | * @wo: wait options | |
1132 | * @ptrace: is the wait for ptrace | |
1133 | * @p: task to wait for | |
1134 | * | |
1135 | * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. | |
1136 | * | |
1137 | * CONTEXT: | |
1138 | * read_lock(&tasklist_lock), which is released if return value is | |
1139 | * non-zero. Also, grabs and releases @p->sighand->siglock. | |
1140 | * | |
1141 | * RETURNS: | |
1142 | * 0 if wait condition didn't exist and search for other wait conditions | |
1143 | * should continue. Non-zero return, -errno on failure and @p's pid on | |
1144 | * success, implies that tasklist_lock is released and wait condition | |
1145 | * search should terminate. | |
1da177e4 | 1146 | */ |
9e8ae01d ON |
1147 | static int wait_task_stopped(struct wait_opts *wo, |
1148 | int ptrace, struct task_struct *p) | |
1da177e4 | 1149 | { |
9e8ae01d | 1150 | struct siginfo __user *infop; |
90bc8d8b | 1151 | int retval, exit_code, *p_code, why; |
ee7c82da | 1152 | uid_t uid = 0; /* unneeded, required by compiler */ |
c8950783 | 1153 | pid_t pid; |
1da177e4 | 1154 | |
47918025 ON |
1155 | /* |
1156 | * Traditionally we see ptrace'd stopped tasks regardless of options. | |
1157 | */ | |
9e8ae01d | 1158 | if (!ptrace && !(wo->wo_flags & WUNTRACED)) |
98abed02 RM |
1159 | return 0; |
1160 | ||
19e27463 TH |
1161 | if (!task_stopped_code(p, ptrace)) |
1162 | return 0; | |
1163 | ||
ee7c82da ON |
1164 | exit_code = 0; |
1165 | spin_lock_irq(&p->sighand->siglock); | |
1166 | ||
90bc8d8b ON |
1167 | p_code = task_stopped_code(p, ptrace); |
1168 | if (unlikely(!p_code)) | |
ee7c82da ON |
1169 | goto unlock_sig; |
1170 | ||
90bc8d8b | 1171 | exit_code = *p_code; |
ee7c82da ON |
1172 | if (!exit_code) |
1173 | goto unlock_sig; | |
1174 | ||
9e8ae01d | 1175 | if (!unlikely(wo->wo_flags & WNOWAIT)) |
90bc8d8b | 1176 | *p_code = 0; |
ee7c82da | 1177 | |
8ca937a6 | 1178 | uid = from_kuid_munged(current_user_ns(), task_uid(p)); |
ee7c82da ON |
1179 | unlock_sig: |
1180 | spin_unlock_irq(&p->sighand->siglock); | |
1181 | if (!exit_code) | |
1da177e4 LT |
1182 | return 0; |
1183 | ||
1184 | /* | |
1185 | * Now we are pretty sure this task is interesting. | |
1186 | * Make sure it doesn't get reaped out from under us while we | |
1187 | * give up the lock and then examine it below. We don't want to | |
1188 | * keep holding onto the tasklist_lock while we call getrusage and | |
1189 | * possibly take page faults for user memory. | |
1190 | */ | |
1191 | get_task_struct(p); | |
6c5f3e7b | 1192 | pid = task_pid_vnr(p); |
f470021a | 1193 | why = ptrace ? CLD_TRAPPED : CLD_STOPPED; |
1da177e4 | 1194 | read_unlock(&tasklist_lock); |
1029a2b5 | 1195 | sched_annotate_sleep(); |
1da177e4 | 1196 | |
9e8ae01d ON |
1197 | if (unlikely(wo->wo_flags & WNOWAIT)) |
1198 | return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); | |
1199 | ||
1200 | retval = wo->wo_rusage | |
1201 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | |
1202 | if (!retval && wo->wo_stat) | |
1203 | retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); | |
1da177e4 | 1204 | |
9e8ae01d | 1205 | infop = wo->wo_info; |
1da177e4 LT |
1206 | if (!retval && infop) |
1207 | retval = put_user(SIGCHLD, &infop->si_signo); | |
1208 | if (!retval && infop) | |
1209 | retval = put_user(0, &infop->si_errno); | |
1210 | if (!retval && infop) | |
6efcae46 | 1211 | retval = put_user((short)why, &infop->si_code); |
1da177e4 LT |
1212 | if (!retval && infop) |
1213 | retval = put_user(exit_code, &infop->si_status); | |
1214 | if (!retval && infop) | |
c8950783 | 1215 | retval = put_user(pid, &infop->si_pid); |
1da177e4 | 1216 | if (!retval && infop) |
ee7c82da | 1217 | retval = put_user(uid, &infop->si_uid); |
1da177e4 | 1218 | if (!retval) |
c8950783 | 1219 | retval = pid; |
1da177e4 LT |
1220 | put_task_struct(p); |
1221 | ||
1222 | BUG_ON(!retval); | |
1223 | return retval; | |
1224 | } | |
1225 | ||
1226 | /* | |
1227 | * Handle do_wait work for one task in a live, non-stopped state. | |
1228 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
1229 | * the lock and this task is uninteresting. If we return nonzero, we have | |
1230 | * released the lock and the system call should return. | |
1231 | */ | |
9e8ae01d | 1232 | static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) |
1da177e4 LT |
1233 | { |
1234 | int retval; | |
1235 | pid_t pid; | |
1236 | uid_t uid; | |
1237 | ||
9e8ae01d | 1238 | if (!unlikely(wo->wo_flags & WCONTINUED)) |
98abed02 RM |
1239 | return 0; |
1240 | ||
1da177e4 LT |
1241 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) |
1242 | return 0; | |
1243 | ||
1244 | spin_lock_irq(&p->sighand->siglock); | |
1245 | /* Re-check with the lock held. */ | |
1246 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { | |
1247 | spin_unlock_irq(&p->sighand->siglock); | |
1248 | return 0; | |
1249 | } | |
9e8ae01d | 1250 | if (!unlikely(wo->wo_flags & WNOWAIT)) |
1da177e4 | 1251 | p->signal->flags &= ~SIGNAL_STOP_CONTINUED; |
8ca937a6 | 1252 | uid = from_kuid_munged(current_user_ns(), task_uid(p)); |
1da177e4 LT |
1253 | spin_unlock_irq(&p->sighand->siglock); |
1254 | ||
6c5f3e7b | 1255 | pid = task_pid_vnr(p); |
1da177e4 LT |
1256 | get_task_struct(p); |
1257 | read_unlock(&tasklist_lock); | |
1029a2b5 | 1258 | sched_annotate_sleep(); |
1da177e4 | 1259 | |
9e8ae01d ON |
1260 | if (!wo->wo_info) { |
1261 | retval = wo->wo_rusage | |
1262 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | |
1da177e4 | 1263 | put_task_struct(p); |
9e8ae01d ON |
1264 | if (!retval && wo->wo_stat) |
1265 | retval = put_user(0xffff, wo->wo_stat); | |
1da177e4 | 1266 | if (!retval) |
3a515e4a | 1267 | retval = pid; |
1da177e4 | 1268 | } else { |
9e8ae01d ON |
1269 | retval = wait_noreap_copyout(wo, p, pid, uid, |
1270 | CLD_CONTINUED, SIGCONT); | |
1da177e4 LT |
1271 | BUG_ON(retval == 0); |
1272 | } | |
1273 | ||
1274 | return retval; | |
1275 | } | |
1276 | ||
98abed02 RM |
1277 | /* |
1278 | * Consider @p for a wait by @parent. | |
1279 | * | |
9e8ae01d | 1280 | * -ECHILD should be in ->notask_error before the first call. |
98abed02 RM |
1281 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. |
1282 | * Returns zero if the search for a child should continue; | |
9e8ae01d | 1283 | * then ->notask_error is 0 if @p is an eligible child, |
14dd0b81 | 1284 | * or another error from security_task_wait(), or still -ECHILD. |
98abed02 | 1285 | */ |
b6e763f0 ON |
1286 | static int wait_consider_task(struct wait_opts *wo, int ptrace, |
1287 | struct task_struct *p) | |
98abed02 | 1288 | { |
3245d6ac ON |
1289 | /* |
1290 | * We can race with wait_task_zombie() from another thread. | |
1291 | * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition | |
1292 | * can't confuse the checks below. | |
1293 | */ | |
1294 | int exit_state = ACCESS_ONCE(p->exit_state); | |
b3ab0316 ON |
1295 | int ret; |
1296 | ||
3245d6ac | 1297 | if (unlikely(exit_state == EXIT_DEAD)) |
b3ab0316 ON |
1298 | return 0; |
1299 | ||
1300 | ret = eligible_child(wo, p); | |
14dd0b81 | 1301 | if (!ret) |
98abed02 RM |
1302 | return ret; |
1303 | ||
a2322e1d | 1304 | ret = security_task_wait(p); |
14dd0b81 RM |
1305 | if (unlikely(ret < 0)) { |
1306 | /* | |
1307 | * If we have not yet seen any eligible child, | |
1308 | * then let this error code replace -ECHILD. | |
1309 | * A permission error will give the user a clue | |
1310 | * to look for security policy problems, rather | |
1311 | * than for mysterious wait bugs. | |
1312 | */ | |
9e8ae01d ON |
1313 | if (wo->notask_error) |
1314 | wo->notask_error = ret; | |
78a3d9d5 | 1315 | return 0; |
14dd0b81 RM |
1316 | } |
1317 | ||
3245d6ac | 1318 | if (unlikely(exit_state == EXIT_TRACE)) { |
50b8d257 | 1319 | /* |
abd50b39 ON |
1320 | * ptrace == 0 means we are the natural parent. In this case |
1321 | * we should clear notask_error, debugger will notify us. | |
50b8d257 | 1322 | */ |
abd50b39 | 1323 | if (likely(!ptrace)) |
50b8d257 | 1324 | wo->notask_error = 0; |
823b018e | 1325 | return 0; |
50b8d257 | 1326 | } |
823b018e | 1327 | |
377d75da ON |
1328 | if (likely(!ptrace) && unlikely(p->ptrace)) { |
1329 | /* | |
1330 | * If it is traced by its real parent's group, just pretend | |
1331 | * the caller is ptrace_do_wait() and reap this child if it | |
1332 | * is zombie. | |
1333 | * | |
1334 | * This also hides group stop state from real parent; otherwise | |
1335 | * a single stop can be reported twice as group and ptrace stop. | |
1336 | * If a ptracer wants to distinguish these two events for its | |
1337 | * own children it should create a separate process which takes | |
1338 | * the role of real parent. | |
1339 | */ | |
1340 | if (!ptrace_reparented(p)) | |
1341 | ptrace = 1; | |
1342 | } | |
1343 | ||
45cb24a1 | 1344 | /* slay zombie? */ |
3245d6ac | 1345 | if (exit_state == EXIT_ZOMBIE) { |
9b84cca2 | 1346 | /* we don't reap group leaders with subthreads */ |
7c733eb3 ON |
1347 | if (!delay_group_leader(p)) { |
1348 | /* | |
1349 | * A zombie ptracee is only visible to its ptracer. | |
1350 | * Notification and reaping will be cascaded to the | |
1351 | * real parent when the ptracer detaches. | |
1352 | */ | |
1353 | if (unlikely(ptrace) || likely(!p->ptrace)) | |
1354 | return wait_task_zombie(wo, p); | |
1355 | } | |
98abed02 | 1356 | |
f470021a | 1357 | /* |
9b84cca2 TH |
1358 | * Allow access to stopped/continued state via zombie by |
1359 | * falling through. Clearing of notask_error is complex. | |
1360 | * | |
1361 | * When !@ptrace: | |
1362 | * | |
1363 | * If WEXITED is set, notask_error should naturally be | |
1364 | * cleared. If not, subset of WSTOPPED|WCONTINUED is set, | |
1365 | * so, if there are live subthreads, there are events to | |
1366 | * wait for. If all subthreads are dead, it's still safe | |
1367 | * to clear - this function will be called again in finite | |
1368 | * amount time once all the subthreads are released and | |
1369 | * will then return without clearing. | |
1370 | * | |
1371 | * When @ptrace: | |
1372 | * | |
1373 | * Stopped state is per-task and thus can't change once the | |
1374 | * target task dies. Only continued and exited can happen. | |
1375 | * Clear notask_error if WCONTINUED | WEXITED. | |
1376 | */ | |
1377 | if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) | |
1378 | wo->notask_error = 0; | |
1379 | } else { | |
1380 | /* | |
1381 | * @p is alive and it's gonna stop, continue or exit, so | |
1382 | * there always is something to wait for. | |
f470021a | 1383 | */ |
9e8ae01d | 1384 | wo->notask_error = 0; |
f470021a RM |
1385 | } |
1386 | ||
98abed02 | 1387 | /* |
45cb24a1 TH |
1388 | * Wait for stopped. Depending on @ptrace, different stopped state |
1389 | * is used and the two don't interact with each other. | |
98abed02 | 1390 | */ |
19e27463 TH |
1391 | ret = wait_task_stopped(wo, ptrace, p); |
1392 | if (ret) | |
1393 | return ret; | |
98abed02 RM |
1394 | |
1395 | /* | |
45cb24a1 TH |
1396 | * Wait for continued. There's only one continued state and the |
1397 | * ptracer can consume it which can confuse the real parent. Don't | |
1398 | * use WCONTINUED from ptracer. You don't need or want it. | |
98abed02 | 1399 | */ |
9e8ae01d | 1400 | return wait_task_continued(wo, p); |
98abed02 RM |
1401 | } |
1402 | ||
1403 | /* | |
1404 | * Do the work of do_wait() for one thread in the group, @tsk. | |
1405 | * | |
9e8ae01d | 1406 | * -ECHILD should be in ->notask_error before the first call. |
98abed02 RM |
1407 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. |
1408 | * Returns zero if the search for a child should continue; then | |
9e8ae01d | 1409 | * ->notask_error is 0 if there were any eligible children, |
14dd0b81 | 1410 | * or another error from security_task_wait(), or still -ECHILD. |
98abed02 | 1411 | */ |
9e8ae01d | 1412 | static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) |
98abed02 RM |
1413 | { |
1414 | struct task_struct *p; | |
1415 | ||
1416 | list_for_each_entry(p, &tsk->children, sibling) { | |
9cd80bbb | 1417 | int ret = wait_consider_task(wo, 0, p); |
a0be55de | 1418 | |
9cd80bbb ON |
1419 | if (ret) |
1420 | return ret; | |
98abed02 RM |
1421 | } |
1422 | ||
1423 | return 0; | |
1424 | } | |
1425 | ||
9e8ae01d | 1426 | static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) |
98abed02 RM |
1427 | { |
1428 | struct task_struct *p; | |
1429 | ||
f470021a | 1430 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { |
b6e763f0 | 1431 | int ret = wait_consider_task(wo, 1, p); |
a0be55de | 1432 | |
f470021a | 1433 | if (ret) |
98abed02 | 1434 | return ret; |
98abed02 RM |
1435 | } |
1436 | ||
1437 | return 0; | |
1438 | } | |
1439 | ||
0b7570e7 ON |
1440 | static int child_wait_callback(wait_queue_t *wait, unsigned mode, |
1441 | int sync, void *key) | |
1442 | { | |
1443 | struct wait_opts *wo = container_of(wait, struct wait_opts, | |
1444 | child_wait); | |
1445 | struct task_struct *p = key; | |
1446 | ||
5c01ba49 | 1447 | if (!eligible_pid(wo, p)) |
0b7570e7 ON |
1448 | return 0; |
1449 | ||
b4fe5182 ON |
1450 | if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) |
1451 | return 0; | |
1452 | ||
0b7570e7 ON |
1453 | return default_wake_function(wait, mode, sync, key); |
1454 | } | |
1455 | ||
a7f0765e ON |
1456 | void __wake_up_parent(struct task_struct *p, struct task_struct *parent) |
1457 | { | |
0b7570e7 ON |
1458 | __wake_up_sync_key(&parent->signal->wait_chldexit, |
1459 | TASK_INTERRUPTIBLE, 1, p); | |
a7f0765e ON |
1460 | } |
1461 | ||
9e8ae01d | 1462 | static long do_wait(struct wait_opts *wo) |
1da177e4 | 1463 | { |
1da177e4 | 1464 | struct task_struct *tsk; |
98abed02 | 1465 | int retval; |
1da177e4 | 1466 | |
9e8ae01d | 1467 | trace_sched_process_wait(wo->wo_pid); |
0a16b607 | 1468 | |
0b7570e7 ON |
1469 | init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); |
1470 | wo->child_wait.private = current; | |
1471 | add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); | |
1da177e4 | 1472 | repeat: |
98abed02 | 1473 | /* |
3da56d16 | 1474 | * If there is nothing that can match our criteria, just get out. |
9e8ae01d ON |
1475 | * We will clear ->notask_error to zero if we see any child that |
1476 | * might later match our criteria, even if we are not able to reap | |
1477 | * it yet. | |
98abed02 | 1478 | */ |
64a16caf | 1479 | wo->notask_error = -ECHILD; |
9e8ae01d ON |
1480 | if ((wo->wo_type < PIDTYPE_MAX) && |
1481 | (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) | |
64a16caf | 1482 | goto notask; |
161550d7 | 1483 | |
f95d39d1 | 1484 | set_current_state(TASK_INTERRUPTIBLE); |
1da177e4 LT |
1485 | read_lock(&tasklist_lock); |
1486 | tsk = current; | |
1487 | do { | |
64a16caf ON |
1488 | retval = do_wait_thread(wo, tsk); |
1489 | if (retval) | |
1490 | goto end; | |
9e8ae01d | 1491 | |
64a16caf ON |
1492 | retval = ptrace_do_wait(wo, tsk); |
1493 | if (retval) | |
98abed02 | 1494 | goto end; |
98abed02 | 1495 | |
9e8ae01d | 1496 | if (wo->wo_flags & __WNOTHREAD) |
1da177e4 | 1497 | break; |
a3f6dfb7 | 1498 | } while_each_thread(current, tsk); |
1da177e4 | 1499 | read_unlock(&tasklist_lock); |
f2cc3eb1 | 1500 | |
64a16caf | 1501 | notask: |
9e8ae01d ON |
1502 | retval = wo->notask_error; |
1503 | if (!retval && !(wo->wo_flags & WNOHANG)) { | |
1da177e4 | 1504 | retval = -ERESTARTSYS; |
98abed02 RM |
1505 | if (!signal_pending(current)) { |
1506 | schedule(); | |
1507 | goto repeat; | |
1508 | } | |
1da177e4 | 1509 | } |
1da177e4 | 1510 | end: |
f95d39d1 | 1511 | __set_current_state(TASK_RUNNING); |
0b7570e7 | 1512 | remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); |
1da177e4 LT |
1513 | return retval; |
1514 | } | |
1515 | ||
17da2bd9 HC |
1516 | SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, |
1517 | infop, int, options, struct rusage __user *, ru) | |
1da177e4 | 1518 | { |
9e8ae01d | 1519 | struct wait_opts wo; |
161550d7 EB |
1520 | struct pid *pid = NULL; |
1521 | enum pid_type type; | |
1da177e4 LT |
1522 | long ret; |
1523 | ||
1524 | if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) | |
1525 | return -EINVAL; | |
1526 | if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) | |
1527 | return -EINVAL; | |
1528 | ||
1529 | switch (which) { | |
1530 | case P_ALL: | |
161550d7 | 1531 | type = PIDTYPE_MAX; |
1da177e4 LT |
1532 | break; |
1533 | case P_PID: | |
161550d7 EB |
1534 | type = PIDTYPE_PID; |
1535 | if (upid <= 0) | |
1da177e4 LT |
1536 | return -EINVAL; |
1537 | break; | |
1538 | case P_PGID: | |
161550d7 EB |
1539 | type = PIDTYPE_PGID; |
1540 | if (upid <= 0) | |
1da177e4 | 1541 | return -EINVAL; |
1da177e4 LT |
1542 | break; |
1543 | default: | |
1544 | return -EINVAL; | |
1545 | } | |
1546 | ||
161550d7 EB |
1547 | if (type < PIDTYPE_MAX) |
1548 | pid = find_get_pid(upid); | |
9e8ae01d ON |
1549 | |
1550 | wo.wo_type = type; | |
1551 | wo.wo_pid = pid; | |
1552 | wo.wo_flags = options; | |
1553 | wo.wo_info = infop; | |
1554 | wo.wo_stat = NULL; | |
1555 | wo.wo_rusage = ru; | |
1556 | ret = do_wait(&wo); | |
dfe16dfa VM |
1557 | |
1558 | if (ret > 0) { | |
1559 | ret = 0; | |
1560 | } else if (infop) { | |
1561 | /* | |
1562 | * For a WNOHANG return, clear out all the fields | |
1563 | * we would set so the user can easily tell the | |
1564 | * difference. | |
1565 | */ | |
1566 | if (!ret) | |
1567 | ret = put_user(0, &infop->si_signo); | |
1568 | if (!ret) | |
1569 | ret = put_user(0, &infop->si_errno); | |
1570 | if (!ret) | |
1571 | ret = put_user(0, &infop->si_code); | |
1572 | if (!ret) | |
1573 | ret = put_user(0, &infop->si_pid); | |
1574 | if (!ret) | |
1575 | ret = put_user(0, &infop->si_uid); | |
1576 | if (!ret) | |
1577 | ret = put_user(0, &infop->si_status); | |
1578 | } | |
1579 | ||
161550d7 | 1580 | put_pid(pid); |
1da177e4 LT |
1581 | return ret; |
1582 | } | |
1583 | ||
754fe8d2 HC |
1584 | SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, |
1585 | int, options, struct rusage __user *, ru) | |
1da177e4 | 1586 | { |
9e8ae01d | 1587 | struct wait_opts wo; |
161550d7 EB |
1588 | struct pid *pid = NULL; |
1589 | enum pid_type type; | |
1da177e4 LT |
1590 | long ret; |
1591 | ||
1592 | if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| | |
1593 | __WNOTHREAD|__WCLONE|__WALL)) | |
1594 | return -EINVAL; | |
161550d7 EB |
1595 | |
1596 | if (upid == -1) | |
1597 | type = PIDTYPE_MAX; | |
1598 | else if (upid < 0) { | |
1599 | type = PIDTYPE_PGID; | |
1600 | pid = find_get_pid(-upid); | |
1601 | } else if (upid == 0) { | |
1602 | type = PIDTYPE_PGID; | |
2ae448ef | 1603 | pid = get_task_pid(current, PIDTYPE_PGID); |
161550d7 EB |
1604 | } else /* upid > 0 */ { |
1605 | type = PIDTYPE_PID; | |
1606 | pid = find_get_pid(upid); | |
1607 | } | |
1608 | ||
9e8ae01d ON |
1609 | wo.wo_type = type; |
1610 | wo.wo_pid = pid; | |
1611 | wo.wo_flags = options | WEXITED; | |
1612 | wo.wo_info = NULL; | |
1613 | wo.wo_stat = stat_addr; | |
1614 | wo.wo_rusage = ru; | |
1615 | ret = do_wait(&wo); | |
161550d7 | 1616 | put_pid(pid); |
1da177e4 | 1617 | |
1da177e4 LT |
1618 | return ret; |
1619 | } | |
1620 | ||
1621 | #ifdef __ARCH_WANT_SYS_WAITPID | |
1622 | ||
1623 | /* | |
1624 | * sys_waitpid() remains for compatibility. waitpid() should be | |
1625 | * implemented by calling sys_wait4() from libc.a. | |
1626 | */ | |
17da2bd9 | 1627 | SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) |
1da177e4 LT |
1628 | { |
1629 | return sys_wait4(pid, stat_addr, options, NULL); | |
1630 | } | |
1631 | ||
1632 | #endif |