]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/exit.c
vhost: reject zero size iova range
[mirror_ubuntu-bionic-kernel.git] / kernel / exit.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
1da177e4
LT
7#include <linux/mm.h>
8#include <linux/slab.h>
4eb5aaa3 9#include <linux/sched/autogroup.h>
6e84f315 10#include <linux/sched/mm.h>
03441a34 11#include <linux/sched/stat.h>
29930025 12#include <linux/sched/task.h>
68db0cf1 13#include <linux/sched/task_stack.h>
32ef5517 14#include <linux/sched/cputime.h>
1da177e4 15#include <linux/interrupt.h>
1da177e4 16#include <linux/module.h>
c59ede7b 17#include <linux/capability.h>
1da177e4
LT
18#include <linux/completion.h>
19#include <linux/personality.h>
20#include <linux/tty.h>
da9cbc87 21#include <linux/iocontext.h>
1da177e4 22#include <linux/key.h>
1da177e4
LT
23#include <linux/cpu.h>
24#include <linux/acct.h>
8f0ab514 25#include <linux/tsacct_kern.h>
1da177e4 26#include <linux/file.h>
9f3acc31 27#include <linux/fdtable.h>
80d26af8 28#include <linux/freezer.h>
1da177e4 29#include <linux/binfmts.h>
ab516013 30#include <linux/nsproxy.h>
84d73786 31#include <linux/pid_namespace.h>
1da177e4
LT
32#include <linux/ptrace.h>
33#include <linux/profile.h>
34#include <linux/mount.h>
35#include <linux/proc_fs.h>
49d769d5 36#include <linux/kthread.h>
1da177e4 37#include <linux/mempolicy.h>
c757249a 38#include <linux/taskstats_kern.h>
ca74e92b 39#include <linux/delayacct.h>
b4f48b63 40#include <linux/cgroup.h>
1da177e4 41#include <linux/syscalls.h>
7ed20e1a 42#include <linux/signal.h>
6a14c5c9 43#include <linux/posix-timers.h>
9f46080c 44#include <linux/cn_proc.h>
de5097c2 45#include <linux/mutex.h>
0771dfef 46#include <linux/futex.h>
b92ce558 47#include <linux/pipe_fs_i.h>
fa84cb93 48#include <linux/audit.h> /* for audit_free() */
83cc5ed3 49#include <linux/resource.h>
0d67a46d 50#include <linux/blkdev.h>
6eaeeaba 51#include <linux/task_io_accounting_ops.h>
30199f5a 52#include <linux/tracehook.h>
5ad4e53b 53#include <linux/fs_struct.h>
d84f4f99 54#include <linux/init_task.h>
cdd6c482 55#include <linux/perf_event.h>
ad8d75ff 56#include <trace/events/sched.h>
24f1e32c 57#include <linux/hw_breakpoint.h>
3d5992d2 58#include <linux/oom.h>
54848d73 59#include <linux/writeback.h>
40401530 60#include <linux/shm.h>
5c9a8750 61#include <linux/kcov.h>
53d3eaa3 62#include <linux/random.h>
8f95c90c 63#include <linux/rcuwait.h>
7e95a225 64#include <linux/compat.h>
1da177e4 65
7c0f6ba6 66#include <linux/uaccess.h>
1da177e4
LT
67#include <asm/unistd.h>
68#include <asm/pgtable.h>
69#include <asm/mmu_context.h>
70
d40e48e0 71static void __unhash_process(struct task_struct *p, bool group_dead)
1da177e4
LT
72{
73 nr_threads--;
50d75f8d 74 detach_pid(p, PIDTYPE_PID);
d40e48e0 75 if (group_dead) {
1da177e4
LT
76 detach_pid(p, PIDTYPE_PGID);
77 detach_pid(p, PIDTYPE_SID);
c97d9893 78
5e85d4ab 79 list_del_rcu(&p->tasks);
9cd80bbb 80 list_del_init(&p->sibling);
909ea964 81 __this_cpu_dec(process_counts);
1da177e4 82 }
47e65328 83 list_del_rcu(&p->thread_group);
0c740d0a 84 list_del_rcu(&p->thread_node);
1da177e4
LT
85}
86
6a14c5c9
ON
87/*
88 * This function expects the tasklist_lock write-locked.
89 */
90static void __exit_signal(struct task_struct *tsk)
91{
92 struct signal_struct *sig = tsk->signal;
d40e48e0 93 bool group_dead = thread_group_leader(tsk);
6a14c5c9 94 struct sighand_struct *sighand;
4ada856f 95 struct tty_struct *uninitialized_var(tty);
5613fda9 96 u64 utime, stime;
6a14c5c9 97
d11c563d 98 sighand = rcu_dereference_check(tsk->sighand,
db1466b3 99 lockdep_tasklist_lock_is_held());
6a14c5c9
ON
100 spin_lock(&sighand->siglock);
101
baa73d9e 102#ifdef CONFIG_POSIX_TIMERS
6a14c5c9 103 posix_cpu_timers_exit(tsk);
d40e48e0 104 if (group_dead) {
6a14c5c9 105 posix_cpu_timers_exit_group(tsk);
4a599942 106 } else {
e0a70217
ON
107 /*
108 * This can only happen if the caller is de_thread().
109 * FIXME: this is the temporary hack, we should teach
110 * posix-cpu-timers to handle this case correctly.
111 */
112 if (unlikely(has_group_leader_pid(tsk)))
113 posix_cpu_timers_exit_group(tsk);
baa73d9e
NP
114 }
115#endif
e0a70217 116
baa73d9e
NP
117 if (group_dead) {
118 tty = sig->tty;
119 sig->tty = NULL;
120 } else {
6a14c5c9
ON
121 /*
122 * If there is any task waiting for the group exit
123 * then notify it:
124 */
d344193a 125 if (sig->notify_count > 0 && !--sig->notify_count)
6a14c5c9 126 wake_up_process(sig->group_exit_task);
6db840fa 127
6a14c5c9
ON
128 if (tsk == sig->curr_target)
129 sig->curr_target = next_thread(tsk);
6a14c5c9
ON
130 }
131
53d3eaa3
NP
132 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
133 sizeof(unsigned long long));
134
90ed9cbe 135 /*
26e75b5c
ON
136 * Accumulate here the counters for all threads as they die. We could
137 * skip the group leader because it is the last user of signal_struct,
138 * but we want to avoid the race with thread_group_cputime() which can
139 * see the empty ->thread_head list.
90ed9cbe
RR
140 */
141 task_cputime(tsk, &utime, &stime);
e78c3496 142 write_seqlock(&sig->stats_lock);
90ed9cbe
RR
143 sig->utime += utime;
144 sig->stime += stime;
145 sig->gtime += task_gtime(tsk);
146 sig->min_flt += tsk->min_flt;
147 sig->maj_flt += tsk->maj_flt;
148 sig->nvcsw += tsk->nvcsw;
149 sig->nivcsw += tsk->nivcsw;
150 sig->inblock += task_io_get_inblock(tsk);
151 sig->oublock += task_io_get_oublock(tsk);
152 task_io_accounting_add(&sig->ioac, &tsk->ioac);
153 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
b3ac022c 154 sig->nr_threads--;
d40e48e0 155 __unhash_process(tsk, group_dead);
e78c3496 156 write_sequnlock(&sig->stats_lock);
5876700c 157
da7978b0
ON
158 /*
159 * Do this under ->siglock, we can race with another thread
160 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
161 */
162 flush_sigqueue(&tsk->pending);
a7e5328a 163 tsk->sighand = NULL;
6a14c5c9 164 spin_unlock(&sighand->siglock);
6a14c5c9 165
a7e5328a 166 __cleanup_sighand(sighand);
a0be55de 167 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
d40e48e0 168 if (group_dead) {
6a14c5c9 169 flush_sigqueue(&sig->shared_pending);
4ada856f 170 tty_kref_put(tty);
6a14c5c9
ON
171 }
172}
173
8c7904a0
EB
174static void delayed_put_task_struct(struct rcu_head *rhp)
175{
0a16b607
MD
176 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
177
4e231c79 178 perf_event_delayed_put(tsk);
0a16b607
MD
179 trace_sched_process_free(tsk);
180 put_task_struct(tsk);
8c7904a0
EB
181}
182
f470021a 183
a0be55de 184void release_task(struct task_struct *p)
1da177e4 185{
36c8b586 186 struct task_struct *leader;
1da177e4 187 int zap_leader;
1f09f974 188repeat:
c69e8d9c 189 /* don't need to get the RCU readlock here - the process is dead and
d11c563d
PM
190 * can't be modifying its own credentials. But shut RCU-lockdep up */
191 rcu_read_lock();
c69e8d9c 192 atomic_dec(&__task_cred(p)->user->processes);
d11c563d 193 rcu_read_unlock();
c69e8d9c 194
60347f67 195 proc_flush_task(p);
0203026b 196
1da177e4 197 write_lock_irq(&tasklist_lock);
a288eecc 198 ptrace_release_task(p);
1da177e4 199 __exit_signal(p);
35f5cad8 200
1da177e4
LT
201 /*
202 * If we are the last non-leader member of the thread
203 * group, and the leader is zombie, then notify the
204 * group leader's parent process. (if it wants notification.)
205 */
206 zap_leader = 0;
207 leader = p->group_leader;
a0be55de
IA
208 if (leader != p && thread_group_empty(leader)
209 && leader->exit_state == EXIT_ZOMBIE) {
1da177e4
LT
210 /*
211 * If we were the last child thread and the leader has
212 * exited already, and the leader's parent ignores SIGCHLD,
213 * then we are the one who should release the leader.
dae33574 214 */
86773473 215 zap_leader = do_notify_parent(leader, leader->exit_signal);
dae33574
RM
216 if (zap_leader)
217 leader->exit_state = EXIT_DEAD;
1da177e4
LT
218 }
219
1da177e4 220 write_unlock_irq(&tasklist_lock);
d7248a93 221 cgroup_release(p);
1da177e4 222 release_thread(p);
8c7904a0 223 call_rcu(&p->rcu, delayed_put_task_struct);
1da177e4
LT
224
225 p = leader;
226 if (unlikely(zap_leader))
227 goto repeat;
228}
229
150593bf
ON
230/*
231 * Note that if this function returns a valid task_struct pointer (!NULL)
232 * task->usage must remain >0 for the duration of the RCU critical section.
233 */
234struct task_struct *task_rcu_dereference(struct task_struct **ptask)
235{
236 struct sighand_struct *sighand;
237 struct task_struct *task;
238
239 /*
240 * We need to verify that release_task() was not called and thus
241 * delayed_put_task_struct() can't run and drop the last reference
242 * before rcu_read_unlock(). We check task->sighand != NULL,
243 * but we can read the already freed and reused memory.
244 */
245retry:
246 task = rcu_dereference(*ptask);
247 if (!task)
248 return NULL;
249
250 probe_kernel_address(&task->sighand, sighand);
251
252 /*
253 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
254 * was already freed we can not miss the preceding update of this
255 * pointer.
256 */
257 smp_rmb();
258 if (unlikely(task != READ_ONCE(*ptask)))
259 goto retry;
260
261 /*
262 * We've re-checked that "task == *ptask", now we have two different
263 * cases:
264 *
265 * 1. This is actually the same task/task_struct. In this case
266 * sighand != NULL tells us it is still alive.
267 *
268 * 2. This is another task which got the same memory for task_struct.
269 * We can't know this of course, and we can not trust
270 * sighand != NULL.
271 *
272 * In this case we actually return a random value, but this is
273 * correct.
274 *
275 * If we return NULL - we can pretend that we actually noticed that
276 * *ptask was updated when the previous task has exited. Or pretend
277 * that probe_slab_address(&sighand) reads NULL.
278 *
279 * If we return the new task (because sighand is not NULL for any
280 * reason) - this is fine too. This (new) task can't go away before
281 * another gp pass.
282 *
283 * And note: We could even eliminate the false positive if re-read
284 * task->sighand once again to avoid the falsely NULL. But this case
285 * is very unlikely so we don't care.
286 */
287 if (!sighand)
288 return NULL;
289
290 return task;
291}
292
8f95c90c
DB
293void rcuwait_wake_up(struct rcuwait *w)
294{
295 struct task_struct *task;
296
297 rcu_read_lock();
298
299 /*
300 * Order condition vs @task, such that everything prior to the load
301 * of @task is visible. This is the condition as to why the user called
302 * rcuwait_trywake() in the first place. Pairs with set_current_state()
303 * barrier (A) in rcuwait_wait_event().
304 *
305 * WAIT WAKE
306 * [S] tsk = current [S] cond = true
307 * MB (A) MB (B)
308 * [L] cond [L] tsk
309 */
4120dd24 310 smp_mb(); /* (B) */
8f95c90c
DB
311
312 /*
313 * Avoid using task_rcu_dereference() magic as long as we are careful,
314 * see comment in rcuwait_wait_event() regarding ->exit_state.
315 */
316 task = rcu_dereference(w->task);
317 if (task)
318 wake_up_process(task);
319 rcu_read_unlock();
320}
321
1da177e4
LT
322/*
323 * Determine if a process group is "orphaned", according to the POSIX
324 * definition in 2.2.2.52. Orphaned process groups are not to be affected
325 * by terminal-generated stop signals. Newly orphaned process groups are
326 * to receive a SIGHUP and a SIGCONT.
327 *
328 * "I ask you, have you ever known what it is to be an orphan?"
329 */
a0be55de
IA
330static int will_become_orphaned_pgrp(struct pid *pgrp,
331 struct task_struct *ignored_task)
1da177e4
LT
332{
333 struct task_struct *p;
1da177e4 334
0475ac08 335 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
05e83df6
ON
336 if ((p == ignored_task) ||
337 (p->exit_state && thread_group_empty(p)) ||
338 is_global_init(p->real_parent))
1da177e4 339 continue;
05e83df6 340
0475ac08 341 if (task_pgrp(p->real_parent) != pgrp &&
05e83df6
ON
342 task_session(p->real_parent) == task_session(p))
343 return 0;
0475ac08 344 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
05e83df6
ON
345
346 return 1;
1da177e4
LT
347}
348
3e7cd6c4 349int is_current_pgrp_orphaned(void)
1da177e4
LT
350{
351 int retval;
352
353 read_lock(&tasklist_lock);
3e7cd6c4 354 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
1da177e4
LT
355 read_unlock(&tasklist_lock);
356
357 return retval;
358}
359
961c4675 360static bool has_stopped_jobs(struct pid *pgrp)
1da177e4 361{
1da177e4
LT
362 struct task_struct *p;
363
0475ac08 364 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
961c4675
ON
365 if (p->signal->flags & SIGNAL_STOP_STOPPED)
366 return true;
0475ac08 367 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
961c4675
ON
368
369 return false;
1da177e4
LT
370}
371
f49ee505
ON
372/*
373 * Check to see if any process groups have become orphaned as
374 * a result of our exiting, and if they have any stopped jobs,
375 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
376 */
377static void
378kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
379{
380 struct pid *pgrp = task_pgrp(tsk);
381 struct task_struct *ignored_task = tsk;
382
383 if (!parent)
a0be55de
IA
384 /* exit: our father is in a different pgrp than
385 * we are and we were the only connection outside.
386 */
f49ee505
ON
387 parent = tsk->real_parent;
388 else
389 /* reparent: our child is in a different pgrp than
390 * we are, and it was the only connection outside.
391 */
392 ignored_task = NULL;
393
394 if (task_pgrp(parent) != pgrp &&
395 task_session(parent) == task_session(tsk) &&
396 will_become_orphaned_pgrp(pgrp, ignored_task) &&
397 has_stopped_jobs(pgrp)) {
398 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
399 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
400 }
401}
402
f98bafa0 403#ifdef CONFIG_MEMCG
cf475ad2 404/*
733eda7a 405 * A task is exiting. If it owned this mm, find a new owner for the mm.
cf475ad2 406 */
cf475ad2
BS
407void mm_update_next_owner(struct mm_struct *mm)
408{
409 struct task_struct *c, *g, *p = current;
410
411retry:
733eda7a
KH
412 /*
413 * If the exiting or execing task is not the owner, it's
414 * someone else's problem.
415 */
416 if (mm->owner != p)
cf475ad2 417 return;
733eda7a
KH
418 /*
419 * The current owner is exiting/execing and there are no other
420 * candidates. Do not leave the mm pointing to a possibly
421 * freed task structure.
422 */
423 if (atomic_read(&mm->mm_users) <= 1) {
424 mm->owner = NULL;
425 return;
426 }
cf475ad2
BS
427
428 read_lock(&tasklist_lock);
429 /*
430 * Search in the children
431 */
432 list_for_each_entry(c, &p->children, sibling) {
433 if (c->mm == mm)
434 goto assign_new_owner;
435 }
436
437 /*
438 * Search in the siblings
439 */
dea33cfd 440 list_for_each_entry(c, &p->real_parent->children, sibling) {
cf475ad2
BS
441 if (c->mm == mm)
442 goto assign_new_owner;
443 }
444
445 /*
f87fb599 446 * Search through everything else, we should not get here often.
cf475ad2 447 */
39af1765
ON
448 for_each_process(g) {
449 if (g->flags & PF_KTHREAD)
450 continue;
451 for_each_thread(g, c) {
452 if (c->mm == mm)
453 goto assign_new_owner;
454 if (c->mm)
455 break;
456 }
f87fb599 457 }
cf475ad2 458 read_unlock(&tasklist_lock);
31a78f23
BS
459 /*
460 * We found no owner yet mm_users > 1: this implies that we are
461 * most likely racing with swapoff (try_to_unuse()) or /proc or
e5991371 462 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
31a78f23 463 */
31a78f23 464 mm->owner = NULL;
cf475ad2
BS
465 return;
466
467assign_new_owner:
468 BUG_ON(c == p);
469 get_task_struct(c);
470 /*
471 * The task_lock protects c->mm from changing.
472 * We always want mm->owner->mm == mm
473 */
474 task_lock(c);
e5991371
HD
475 /*
476 * Delay read_unlock() till we have the task_lock()
477 * to ensure that c does not slip away underneath us
478 */
479 read_unlock(&tasklist_lock);
cf475ad2
BS
480 if (c->mm != mm) {
481 task_unlock(c);
482 put_task_struct(c);
483 goto retry;
484 }
cf475ad2
BS
485 mm->owner = c;
486 task_unlock(c);
487 put_task_struct(c);
488}
f98bafa0 489#endif /* CONFIG_MEMCG */
cf475ad2 490
1da177e4
LT
491/*
492 * Turn us into a lazy TLB process if we
493 * aren't already..
494 */
0039962a 495static void exit_mm(void)
1da177e4 496{
0039962a 497 struct mm_struct *mm = current->mm;
b564daf8 498 struct core_state *core_state;
1da177e4 499
0039962a 500 mm_release(current, mm);
1da177e4
LT
501 if (!mm)
502 return;
4fe7efdb 503 sync_mm_rss(mm);
1da177e4
LT
504 /*
505 * Serialize with any possible pending coredump.
999d9fc1 506 * We must hold mmap_sem around checking core_state
1da177e4 507 * and clearing tsk->mm. The core-inducing thread
999d9fc1 508 * will increment ->nr_threads for each thread in the
1da177e4
LT
509 * group with ->mm != NULL.
510 */
511 down_read(&mm->mmap_sem);
b564daf8
ON
512 core_state = mm->core_state;
513 if (core_state) {
514 struct core_thread self;
a0be55de 515
1da177e4 516 up_read(&mm->mmap_sem);
1da177e4 517
0039962a 518 self.task = current;
b564daf8
ON
519 self.next = xchg(&core_state->dumper.next, &self);
520 /*
521 * Implies mb(), the result of xchg() must be visible
522 * to core_state->dumper.
523 */
524 if (atomic_dec_and_test(&core_state->nr_threads))
525 complete(&core_state->startup);
1da177e4 526
a94e2d40 527 for (;;) {
642fa448 528 set_current_state(TASK_UNINTERRUPTIBLE);
a94e2d40
ON
529 if (!self.task) /* see coredump_finish() */
530 break;
80d26af8 531 freezable_schedule();
a94e2d40 532 }
642fa448 533 __set_current_state(TASK_RUNNING);
1da177e4
LT
534 down_read(&mm->mmap_sem);
535 }
f1f10076 536 mmgrab(mm);
0039962a 537 BUG_ON(mm != current->active_mm);
1da177e4 538 /* more a memory barrier than a real lock */
0039962a
DB
539 task_lock(current);
540 current->mm = NULL;
1da177e4
LT
541 up_read(&mm->mmap_sem);
542 enter_lazy_tlb(mm, current);
0039962a 543 task_unlock(current);
cf475ad2 544 mm_update_next_owner(mm);
1da177e4 545 mmput(mm);
c32b3cbe 546 if (test_thread_flag(TIF_MEMDIE))
38531201 547 exit_oom_victim();
1da177e4
LT
548}
549
c9dc05bf
ON
550static struct task_struct *find_alive_thread(struct task_struct *p)
551{
552 struct task_struct *t;
553
554 for_each_thread(p, t) {
555 if (!(t->flags & PF_EXITING))
556 return t;
557 }
558 return NULL;
559}
560
8bca422a
AV
561static struct task_struct *find_child_reaper(struct task_struct *father,
562 struct list_head *dead)
1109909c
ON
563 __releases(&tasklist_lock)
564 __acquires(&tasklist_lock)
565{
566 struct pid_namespace *pid_ns = task_active_pid_ns(father);
567 struct task_struct *reaper = pid_ns->child_reaper;
8bca422a 568 struct task_struct *p, *n;
1109909c
ON
569
570 if (likely(reaper != father))
571 return reaper;
572
c9dc05bf
ON
573 reaper = find_alive_thread(father);
574 if (reaper) {
1109909c
ON
575 pid_ns->child_reaper = reaper;
576 return reaper;
577 }
578
579 write_unlock_irq(&tasklist_lock);
580 if (unlikely(pid_ns == &init_pid_ns)) {
581 panic("Attempted to kill init! exitcode=0x%08x\n",
582 father->signal->group_exit_code ?: father->exit_code);
583 }
8bca422a
AV
584
585 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
586 list_del_init(&p->ptrace_entry);
587 release_task(p);
588 }
589
1109909c
ON
590 zap_pid_ns_processes(pid_ns);
591 write_lock_irq(&tasklist_lock);
592
593 return father;
594}
595
1da177e4 596/*
ebec18a6
LP
597 * When we die, we re-parent all our children, and try to:
598 * 1. give them to another thread in our thread group, if such a member exists
599 * 2. give it to the first ancestor process which prctl'd itself as a
600 * child_subreaper for its children (like a service manager)
601 * 3. give it to the init process (PID 1) in our pid namespace
1da177e4 602 */
1109909c
ON
603static struct task_struct *find_new_reaper(struct task_struct *father,
604 struct task_struct *child_reaper)
1da177e4 605{
c9dc05bf 606 struct task_struct *thread, *reaper;
1da177e4 607
c9dc05bf
ON
608 thread = find_alive_thread(father);
609 if (thread)
950bbabb 610 return thread;
1da177e4 611
7d24e2df 612 if (father->signal->has_child_subreaper) {
c6c70f44 613 unsigned int ns_level = task_pid(father)->level;
ebec18a6 614 /*
175aed3f 615 * Find the first ->is_child_subreaper ancestor in our pid_ns.
c6c70f44
ON
616 * We can't check reaper != child_reaper to ensure we do not
617 * cross the namespaces, the exiting parent could be injected
618 * by setns() + fork().
619 * We check pid->level, this is slightly more efficient than
620 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
ebec18a6 621 */
c6c70f44
ON
622 for (reaper = father->real_parent;
623 task_pid(reaper)->level == ns_level;
ebec18a6 624 reaper = reaper->real_parent) {
175aed3f 625 if (reaper == &init_task)
ebec18a6
LP
626 break;
627 if (!reaper->signal->is_child_subreaper)
628 continue;
c9dc05bf
ON
629 thread = find_alive_thread(reaper);
630 if (thread)
631 return thread;
ebec18a6 632 }
1da177e4 633 }
762a24be 634
1109909c 635 return child_reaper;
950bbabb
ON
636}
637
5dfc80be
ON
638/*
639* Any that need to be release_task'd are put on the @dead list.
640 */
9cd80bbb 641static void reparent_leader(struct task_struct *father, struct task_struct *p,
5dfc80be
ON
642 struct list_head *dead)
643{
2831096e 644 if (unlikely(p->exit_state == EXIT_DEAD))
5dfc80be
ON
645 return;
646
abd50b39 647 /* We don't want people slaying init. */
5dfc80be
ON
648 p->exit_signal = SIGCHLD;
649
650 /* If it has exited notify the new parent about this child's death. */
d21142ec 651 if (!p->ptrace &&
5dfc80be 652 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
86773473 653 if (do_notify_parent(p, p->exit_signal)) {
5dfc80be 654 p->exit_state = EXIT_DEAD;
dc2fd4b0 655 list_add(&p->ptrace_entry, dead);
5dfc80be
ON
656 }
657 }
658
659 kill_orphaned_pgrp(p, father);
660}
661
482a3767
ON
662/*
663 * This does two things:
664 *
665 * A. Make init inherit all the child processes
666 * B. Check to see if any process groups have become orphaned
667 * as a result of our exiting, and if they have any stopped
668 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
669 */
670static void forget_original_parent(struct task_struct *father,
671 struct list_head *dead)
1da177e4 672{
482a3767 673 struct task_struct *p, *t, *reaper;
762a24be 674
7c8bd232 675 if (unlikely(!list_empty(&father->ptraced)))
482a3767 676 exit_ptrace(father, dead);
f470021a 677
7c8bd232 678 /* Can drop and reacquire tasklist_lock */
8bca422a 679 reaper = find_child_reaper(father, dead);
ad9e206a 680 if (list_empty(&father->children))
482a3767 681 return;
1109909c
ON
682
683 reaper = find_new_reaper(father, reaper);
2831096e 684 list_for_each_entry(p, &father->children, sibling) {
57a05918 685 for_each_thread(p, t) {
9cd80bbb 686 t->real_parent = reaper;
57a05918
ON
687 BUG_ON((!t->ptrace) != (t->parent == father));
688 if (likely(!t->ptrace))
9cd80bbb 689 t->parent = t->real_parent;
9cd80bbb
ON
690 if (t->pdeath_signal)
691 group_send_sig_info(t->pdeath_signal,
692 SEND_SIG_NOINFO, t);
57a05918 693 }
2831096e
ON
694 /*
695 * If this is a threaded reparent there is no need to
696 * notify anyone anything has happened.
697 */
698 if (!same_thread_group(reaper, father))
482a3767 699 reparent_leader(father, p, dead);
1da177e4 700 }
2831096e 701 list_splice_tail_init(&father->children, &reaper->children);
1da177e4
LT
702}
703
704/*
705 * Send signals to all our closest relatives so that they know
706 * to properly mourn us..
707 */
821c7de7 708static void exit_notify(struct task_struct *tsk, int group_dead)
1da177e4 709{
53c8f9f1 710 bool autoreap;
482a3767
ON
711 struct task_struct *p, *n;
712 LIST_HEAD(dead);
1da177e4 713
762a24be 714 write_lock_irq(&tasklist_lock);
482a3767
ON
715 forget_original_parent(tsk, &dead);
716
821c7de7
ON
717 if (group_dead)
718 kill_orphaned_pgrp(tsk->group_leader, NULL);
1da177e4 719
45cdf5cc
ON
720 if (unlikely(tsk->ptrace)) {
721 int sig = thread_group_leader(tsk) &&
722 thread_group_empty(tsk) &&
723 !ptrace_reparented(tsk) ?
724 tsk->exit_signal : SIGCHLD;
725 autoreap = do_notify_parent(tsk, sig);
726 } else if (thread_group_leader(tsk)) {
727 autoreap = thread_group_empty(tsk) &&
728 do_notify_parent(tsk, tsk->exit_signal);
729 } else {
730 autoreap = true;
731 }
1da177e4 732
53c8f9f1 733 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
6c66e7db
ON
734 if (tsk->exit_state == EXIT_DEAD)
735 list_add(&tsk->ptrace_entry, &dead);
1da177e4 736
9c339168
ON
737 /* mt-exec, de_thread() is waiting for group leader */
738 if (unlikely(tsk->signal->notify_count < 0))
6db840fa 739 wake_up_process(tsk->signal->group_exit_task);
1da177e4
LT
740 write_unlock_irq(&tasklist_lock);
741
482a3767
ON
742 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
743 list_del_init(&p->ptrace_entry);
744 release_task(p);
745 }
1da177e4
LT
746}
747
e18eecb8
JD
748#ifdef CONFIG_DEBUG_STACK_USAGE
749static void check_stack_usage(void)
750{
751 static DEFINE_SPINLOCK(low_water_lock);
752 static int lowest_to_date = THREAD_SIZE;
e18eecb8
JD
753 unsigned long free;
754
7c9f8861 755 free = stack_not_used(current);
e18eecb8
JD
756
757 if (free >= lowest_to_date)
758 return;
759
760 spin_lock(&low_water_lock);
761 if (free < lowest_to_date) {
627393d4 762 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
a0be55de 763 current->comm, task_pid_nr(current), free);
e18eecb8
JD
764 lowest_to_date = free;
765 }
766 spin_unlock(&low_water_lock);
767}
768#else
769static inline void check_stack_usage(void) {}
770#endif
771
9af6528e 772void __noreturn do_exit(long code)
1da177e4
LT
773{
774 struct task_struct *tsk = current;
775 int group_dead;
776
777 profile_task_exit(tsk);
5c9a8750 778 kcov_task_exit(tsk);
1da177e4 779
73c10101 780 WARN_ON(blk_needs_flush_plug(tsk));
22e2c507 781
1da177e4
LT
782 if (unlikely(in_interrupt()))
783 panic("Aiee, killing interrupt handler!");
784 if (unlikely(!tsk->pid))
785 panic("Attempted to kill the idle task!");
1da177e4 786
33dd94ae
NE
787 /*
788 * If do_exit is called because this processes oopsed, it's possible
789 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
790 * continuing. Amongst other possible reasons, this is to prevent
791 * mm_release()->clear_child_tid() from writing to a user-controlled
792 * kernel address.
793 */
794 set_fs(USER_DS);
795
a288eecc 796 ptrace_event(PTRACE_EVENT_EXIT, code);
1da177e4 797
e0e81739
DH
798 validate_creds_for_do_exit(tsk);
799
df164db5
AN
800 /*
801 * We're taking recursive faults here in do_exit. Safest is to just
802 * leave this task alone and wait for reboot.
803 */
804 if (unlikely(tsk->flags & PF_EXITING)) {
a0be55de 805 pr_alert("Fixing recursive fault but reboot is needed!\n");
778e9a9c
AK
806 /*
807 * We can do this unlocked here. The futex code uses
808 * this flag just to verify whether the pi state
809 * cleanup has been done or not. In the worst case it
810 * loops once more. We pretend that the cleanup was
811 * done as there is no way to return. Either the
812 * OWNER_DIED bit is set by now or we push the blocked
813 * task into the wait for ever nirwana as well.
814 */
815 tsk->flags |= PF_EXITPIDONE;
df164db5
AN
816 set_current_state(TASK_UNINTERRUPTIBLE);
817 schedule();
818 }
819
d12619b5 820 exit_signals(tsk); /* sets PF_EXITING */
778e9a9c 821 /*
be3e7844
PZ
822 * Ensure that all new tsk->pi_lock acquisitions must observe
823 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
778e9a9c 824 */
d2ee7198 825 smp_mb();
be3e7844
PZ
826 /*
827 * Ensure that we must observe the pi_state in exit_mm() ->
828 * mm_release() -> exit_pi_state_list().
829 */
8083f293
PM
830 raw_spin_lock_irq(&tsk->pi_lock);
831 raw_spin_unlock_irq(&tsk->pi_lock);
1da177e4 832
1dc0fffc 833 if (unlikely(in_atomic())) {
a0be55de
IA
834 pr_info("note: %s[%d] exited with preempt_count %d\n",
835 current->comm, task_pid_nr(current),
836 preempt_count());
1dc0fffc
PZ
837 preempt_count_set(PREEMPT_ENABLED);
838 }
1da177e4 839
48d212a2
LT
840 /* sync mm's RSS info before statistics gathering */
841 if (tsk->mm)
842 sync_mm_rss(tsk->mm);
51229b49 843 acct_update_integrals(tsk);
1da177e4 844 group_dead = atomic_dec_and_test(&tsk->signal->live);
c3068951 845 if (group_dead) {
baa73d9e 846#ifdef CONFIG_POSIX_TIMERS
778e9a9c 847 hrtimer_cancel(&tsk->signal->real_timer);
25f407f0 848 exit_itimers(tsk->signal);
baa73d9e 849#endif
1f10206c
JP
850 if (tsk->mm)
851 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
c3068951 852 }
f6ec29a4 853 acct_collect(code, group_dead);
522ed776
MT
854 if (group_dead)
855 tty_audit_exit();
a4ff8dba 856 audit_free(tsk);
115085ea 857
48d212a2 858 tsk->exit_code = code;
115085ea 859 taskstats_exit(tsk, group_dead);
c757249a 860
0039962a 861 exit_mm();
1da177e4 862
0e464814 863 if (group_dead)
f6ec29a4 864 acct_process();
0a16b607
MD
865 trace_sched_process_exit(tsk);
866
1da177e4 867 exit_sem(tsk);
b34a6b1d 868 exit_shm(tsk);
1ec7f1dd
AV
869 exit_files(tsk);
870 exit_fs(tsk);
c39df5fa
ON
871 if (group_dead)
872 disassociate_ctty(1);
8aac6270 873 exit_task_namespaces(tsk);
ed3e694d 874 exit_task_work(tsk);
e6464694 875 exit_thread(tsk);
0b3fcf17
SE
876
877 /*
878 * Flush inherited counters to the parent - before the parent
879 * gets woken up by child-exit notifications.
880 *
881 * because of cgroup mode, must be called before cgroup_exit()
882 */
883 perf_event_exit_task(tsk);
884
8e5bfa8c 885 sched_autogroup_exit_task(tsk);
1ec41830 886 cgroup_exit(tsk);
1da177e4 887
24f1e32c
FW
888 /*
889 * FIXME: do that only when needed, using sched_exit tracepoint
890 */
7c8df286 891 flush_ptrace_hw_breakpoint(tsk);
33b2fb30 892
ccdd29ff 893 exit_tasks_rcu_start();
821c7de7 894 exit_notify(tsk, group_dead);
ef982393 895 proc_exit_connector(tsk);
c11600e4 896 mpol_put_task_policy(tsk);
42b2dd0a 897#ifdef CONFIG_FUTEX
c87e2837
IM
898 if (unlikely(current->pi_state_cache))
899 kfree(current->pi_state_cache);
42b2dd0a 900#endif
de5097c2 901 /*
9a11b49a 902 * Make sure we are holding no locks:
de5097c2 903 */
1b1d2fb4 904 debug_check_no_locks_held();
778e9a9c
AK
905 /*
906 * We can do this unlocked here. The futex code uses this flag
907 * just to verify whether the pi state cleanup has been done
908 * or not. In the worst case it loops once more.
909 */
910 tsk->flags |= PF_EXITPIDONE;
1da177e4 911
afc847b7 912 if (tsk->io_context)
b69f2292 913 exit_io_context(tsk);
afc847b7 914
b92ce558 915 if (tsk->splice_pipe)
4b8a8f1e 916 free_pipe_info(tsk->splice_pipe);
b92ce558 917
5640f768
ED
918 if (tsk->task_frag.page)
919 put_page(tsk->task_frag.page);
920
e0e81739
DH
921 validate_creds_for_do_exit(tsk);
922
4bcb8232 923 check_stack_usage();
7407251a 924 preempt_disable();
54848d73
WF
925 if (tsk->nr_dirtied)
926 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
f41d911f 927 exit_rcu();
ccdd29ff 928 exit_tasks_rcu_finish();
b5740f4b 929
b09be676 930 lockdep_free_task(tsk);
9af6528e 931 do_task_dead();
1da177e4 932}
012914da
RA
933EXPORT_SYMBOL_GPL(do_exit);
934
9402c95f 935void complete_and_exit(struct completion *comp, long code)
1da177e4
LT
936{
937 if (comp)
938 complete(comp);
55a101f8 939
1da177e4
LT
940 do_exit(code);
941}
1da177e4
LT
942EXPORT_SYMBOL(complete_and_exit);
943
754fe8d2 944SYSCALL_DEFINE1(exit, int, error_code)
1da177e4
LT
945{
946 do_exit((error_code&0xff)<<8);
947}
948
1da177e4
LT
949/*
950 * Take down every thread in the group. This is called by fatal signals
951 * as well as by sys_exit_group (below).
952 */
9402c95f 953void
1da177e4
LT
954do_group_exit(int exit_code)
955{
bfc4b089
ON
956 struct signal_struct *sig = current->signal;
957
1da177e4
LT
958 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
959
bfc4b089
ON
960 if (signal_group_exit(sig))
961 exit_code = sig->group_exit_code;
1da177e4 962 else if (!thread_group_empty(current)) {
1da177e4 963 struct sighand_struct *const sighand = current->sighand;
a0be55de 964
1da177e4 965 spin_lock_irq(&sighand->siglock);
ed5d2cac 966 if (signal_group_exit(sig))
1da177e4
LT
967 /* Another thread got here before we took the lock. */
968 exit_code = sig->group_exit_code;
969 else {
1da177e4 970 sig->group_exit_code = exit_code;
ed5d2cac 971 sig->flags = SIGNAL_GROUP_EXIT;
1da177e4
LT
972 zap_other_threads(current);
973 }
974 spin_unlock_irq(&sighand->siglock);
1da177e4
LT
975 }
976
977 do_exit(exit_code);
978 /* NOTREACHED */
979}
980
981/*
982 * this kills every thread in the thread group. Note that any externally
983 * wait4()-ing process will get the correct exit code - even if this
984 * thread is not the thread group leader.
985 */
754fe8d2 986SYSCALL_DEFINE1(exit_group, int, error_code)
1da177e4
LT
987{
988 do_group_exit((error_code & 0xff) << 8);
2ed7c03e
HC
989 /* NOTREACHED */
990 return 0;
1da177e4
LT
991}
992
67d7ddde
AV
993struct waitid_info {
994 pid_t pid;
995 uid_t uid;
996 int status;
997 int cause;
998};
999
9e8ae01d
ON
1000struct wait_opts {
1001 enum pid_type wo_type;
9e8ae01d 1002 int wo_flags;
e1eb1ebc 1003 struct pid *wo_pid;
9e8ae01d 1004
67d7ddde 1005 struct waitid_info *wo_info;
359566fa 1006 int wo_stat;
ce72a16f 1007 struct rusage *wo_rusage;
9e8ae01d 1008
ac6424b9 1009 wait_queue_entry_t child_wait;
9e8ae01d
ON
1010 int notask_error;
1011};
1012
989264f4
ON
1013static inline
1014struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
161550d7 1015{
989264f4
ON
1016 if (type != PIDTYPE_PID)
1017 task = task->group_leader;
1018 return task->pids[type].pid;
161550d7
EB
1019}
1020
989264f4 1021static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1da177e4 1022{
5c01ba49
ON
1023 return wo->wo_type == PIDTYPE_MAX ||
1024 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1025}
1da177e4 1026
bf959931
ON
1027static int
1028eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
5c01ba49
ON
1029{
1030 if (!eligible_pid(wo, p))
1031 return 0;
bf959931
ON
1032
1033 /*
1034 * Wait for all children (clone and not) if __WALL is set or
1035 * if it is traced by us.
1036 */
1037 if (ptrace || (wo->wo_flags & __WALL))
1038 return 1;
1039
1040 /*
1041 * Otherwise, wait for clone children *only* if __WCLONE is set;
1042 * otherwise, wait for non-clone children *only*.
1043 *
1044 * Note: a "clone" child here is one that reports to its parent
1045 * using a signal other than SIGCHLD, or a non-leader thread which
1046 * we can only see if it is traced by us.
1047 */
1048 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1da177e4 1049 return 0;
1da177e4 1050
14dd0b81 1051 return 1;
1da177e4
LT
1052}
1053
1da177e4
LT
1054/*
1055 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1056 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1057 * the lock and this task is uninteresting. If we return nonzero, we have
1058 * released the lock and the system call should return.
1059 */
9e8ae01d 1060static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1da177e4 1061{
67d7ddde 1062 int state, status;
6c5f3e7b 1063 pid_t pid = task_pid_vnr(p);
43e13cc1 1064 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
67d7ddde 1065 struct waitid_info *infop;
1da177e4 1066
9e8ae01d 1067 if (!likely(wo->wo_flags & WEXITED))
98abed02
RM
1068 return 0;
1069
9e8ae01d 1070 if (unlikely(wo->wo_flags & WNOWAIT)) {
76d9871e 1071 status = p->exit_code;
1da177e4
LT
1072 get_task_struct(p);
1073 read_unlock(&tasklist_lock);
1029a2b5 1074 sched_annotate_sleep();
e61a2502
AV
1075 if (wo->wo_rusage)
1076 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
bb380ec3 1077 put_task_struct(p);
76d9871e 1078 goto out_info;
1da177e4 1079 }
1da177e4 1080 /*
abd50b39 1081 * Move the task's state to DEAD/TRACE, only one thread can do this.
1da177e4 1082 */
f6507f83
ON
1083 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1084 EXIT_TRACE : EXIT_DEAD;
abd50b39 1085 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1da177e4 1086 return 0;
986094df
ON
1087 /*
1088 * We own this thread, nobody else can reap it.
1089 */
1090 read_unlock(&tasklist_lock);
1091 sched_annotate_sleep();
f6507f83 1092
befca967 1093 /*
f6507f83 1094 * Check thread_group_leader() to exclude the traced sub-threads.
befca967 1095 */
f6507f83 1096 if (state == EXIT_DEAD && thread_group_leader(p)) {
f953ccd0
ON
1097 struct signal_struct *sig = p->signal;
1098 struct signal_struct *psig = current->signal;
1f10206c 1099 unsigned long maxrss;
5613fda9 1100 u64 tgutime, tgstime;
3795e161 1101
1da177e4
LT
1102 /*
1103 * The resource counters for the group leader are in its
1104 * own task_struct. Those for dead threads in the group
1105 * are in its signal_struct, as are those for the child
1106 * processes it has previously reaped. All these
1107 * accumulate in the parent's signal_struct c* fields.
1108 *
1109 * We don't bother to take a lock here to protect these
f953ccd0
ON
1110 * p->signal fields because the whole thread group is dead
1111 * and nobody can change them.
1112 *
1113 * psig->stats_lock also protects us from our sub-theads
1114 * which can reap other children at the same time. Until
1115 * we change k_getrusage()-like users to rely on this lock
1116 * we have to take ->siglock as well.
0cf55e1e 1117 *
a0be55de
IA
1118 * We use thread_group_cputime_adjusted() to get times for
1119 * the thread group, which consolidates times for all threads
1120 * in the group including the group leader.
1da177e4 1121 */
e80d0a1a 1122 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
f953ccd0 1123 spin_lock_irq(&current->sighand->siglock);
e78c3496 1124 write_seqlock(&psig->stats_lock);
64861634
MS
1125 psig->cutime += tgutime + sig->cutime;
1126 psig->cstime += tgstime + sig->cstime;
6fac4829 1127 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
3795e161
JJ
1128 psig->cmin_flt +=
1129 p->min_flt + sig->min_flt + sig->cmin_flt;
1130 psig->cmaj_flt +=
1131 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1132 psig->cnvcsw +=
1133 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1134 psig->cnivcsw +=
1135 p->nivcsw + sig->nivcsw + sig->cnivcsw;
6eaeeaba
ED
1136 psig->cinblock +=
1137 task_io_get_inblock(p) +
1138 sig->inblock + sig->cinblock;
1139 psig->coublock +=
1140 task_io_get_oublock(p) +
1141 sig->oublock + sig->coublock;
1f10206c
JP
1142 maxrss = max(sig->maxrss, sig->cmaxrss);
1143 if (psig->cmaxrss < maxrss)
1144 psig->cmaxrss = maxrss;
5995477a
AR
1145 task_io_accounting_add(&psig->ioac, &p->ioac);
1146 task_io_accounting_add(&psig->ioac, &sig->ioac);
e78c3496 1147 write_sequnlock(&psig->stats_lock);
f953ccd0 1148 spin_unlock_irq(&current->sighand->siglock);
1da177e4
LT
1149 }
1150
ce72a16f
AV
1151 if (wo->wo_rusage)
1152 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1da177e4
LT
1153 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1154 ? p->signal->group_exit_code : p->exit_code;
359566fa 1155 wo->wo_stat = status;
2f4e6e2a 1156
b4360690 1157 if (state == EXIT_TRACE) {
1da177e4 1158 write_lock_irq(&tasklist_lock);
2f4e6e2a
ON
1159 /* We dropped tasklist, ptracer could die and untrace */
1160 ptrace_unlink(p);
b4360690
ON
1161
1162 /* If parent wants a zombie, don't release it now */
1163 state = EXIT_ZOMBIE;
1164 if (do_notify_parent(p, p->exit_signal))
1165 state = EXIT_DEAD;
abd50b39 1166 p->exit_state = state;
1da177e4
LT
1167 write_unlock_irq(&tasklist_lock);
1168 }
abd50b39 1169 if (state == EXIT_DEAD)
1da177e4 1170 release_task(p);
2f4e6e2a 1171
76d9871e
AV
1172out_info:
1173 infop = wo->wo_info;
1174 if (infop) {
1175 if ((status & 0x7f) == 0) {
1176 infop->cause = CLD_EXITED;
1177 infop->status = status >> 8;
1178 } else {
1179 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1180 infop->status = status & 0x7f;
1181 }
1182 infop->pid = pid;
1183 infop->uid = uid;
1184 }
1185
67d7ddde 1186 return pid;
1da177e4
LT
1187}
1188
90bc8d8b
ON
1189static int *task_stopped_code(struct task_struct *p, bool ptrace)
1190{
1191 if (ptrace) {
570ac933 1192 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
90bc8d8b
ON
1193 return &p->exit_code;
1194 } else {
1195 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1196 return &p->signal->group_exit_code;
1197 }
1198 return NULL;
1199}
1200
19e27463
TH
1201/**
1202 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1203 * @wo: wait options
1204 * @ptrace: is the wait for ptrace
1205 * @p: task to wait for
1206 *
1207 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1208 *
1209 * CONTEXT:
1210 * read_lock(&tasklist_lock), which is released if return value is
1211 * non-zero. Also, grabs and releases @p->sighand->siglock.
1212 *
1213 * RETURNS:
1214 * 0 if wait condition didn't exist and search for other wait conditions
1215 * should continue. Non-zero return, -errno on failure and @p's pid on
1216 * success, implies that tasklist_lock is released and wait condition
1217 * search should terminate.
1da177e4 1218 */
9e8ae01d
ON
1219static int wait_task_stopped(struct wait_opts *wo,
1220 int ptrace, struct task_struct *p)
1da177e4 1221{
67d7ddde
AV
1222 struct waitid_info *infop;
1223 int exit_code, *p_code, why;
ee7c82da 1224 uid_t uid = 0; /* unneeded, required by compiler */
c8950783 1225 pid_t pid;
1da177e4 1226
47918025
ON
1227 /*
1228 * Traditionally we see ptrace'd stopped tasks regardless of options.
1229 */
9e8ae01d 1230 if (!ptrace && !(wo->wo_flags & WUNTRACED))
98abed02
RM
1231 return 0;
1232
19e27463
TH
1233 if (!task_stopped_code(p, ptrace))
1234 return 0;
1235
ee7c82da
ON
1236 exit_code = 0;
1237 spin_lock_irq(&p->sighand->siglock);
1238
90bc8d8b
ON
1239 p_code = task_stopped_code(p, ptrace);
1240 if (unlikely(!p_code))
ee7c82da
ON
1241 goto unlock_sig;
1242
90bc8d8b 1243 exit_code = *p_code;
ee7c82da
ON
1244 if (!exit_code)
1245 goto unlock_sig;
1246
9e8ae01d 1247 if (!unlikely(wo->wo_flags & WNOWAIT))
90bc8d8b 1248 *p_code = 0;
ee7c82da 1249
8ca937a6 1250 uid = from_kuid_munged(current_user_ns(), task_uid(p));
ee7c82da
ON
1251unlock_sig:
1252 spin_unlock_irq(&p->sighand->siglock);
1253 if (!exit_code)
1da177e4
LT
1254 return 0;
1255
1256 /*
1257 * Now we are pretty sure this task is interesting.
1258 * Make sure it doesn't get reaped out from under us while we
1259 * give up the lock and then examine it below. We don't want to
1260 * keep holding onto the tasklist_lock while we call getrusage and
1261 * possibly take page faults for user memory.
1262 */
1263 get_task_struct(p);
6c5f3e7b 1264 pid = task_pid_vnr(p);
f470021a 1265 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1da177e4 1266 read_unlock(&tasklist_lock);
1029a2b5 1267 sched_annotate_sleep();
e61a2502
AV
1268 if (wo->wo_rusage)
1269 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
bb380ec3 1270 put_task_struct(p);
1da177e4 1271
bb380ec3
AV
1272 if (likely(!(wo->wo_flags & WNOWAIT)))
1273 wo->wo_stat = (exit_code << 8) | 0x7f;
1da177e4 1274
9e8ae01d 1275 infop = wo->wo_info;
67d7ddde
AV
1276 if (infop) {
1277 infop->cause = why;
1278 infop->status = exit_code;
1279 infop->pid = pid;
1280 infop->uid = uid;
1281 }
67d7ddde 1282 return pid;
1da177e4
LT
1283}
1284
1285/*
1286 * Handle do_wait work for one task in a live, non-stopped state.
1287 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1288 * the lock and this task is uninteresting. If we return nonzero, we have
1289 * released the lock and the system call should return.
1290 */
9e8ae01d 1291static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1da177e4 1292{
bb380ec3 1293 struct waitid_info *infop;
1da177e4
LT
1294 pid_t pid;
1295 uid_t uid;
1296
9e8ae01d 1297 if (!unlikely(wo->wo_flags & WCONTINUED))
98abed02
RM
1298 return 0;
1299
1da177e4
LT
1300 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1301 return 0;
1302
1303 spin_lock_irq(&p->sighand->siglock);
1304 /* Re-check with the lock held. */
1305 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1306 spin_unlock_irq(&p->sighand->siglock);
1307 return 0;
1308 }
9e8ae01d 1309 if (!unlikely(wo->wo_flags & WNOWAIT))
1da177e4 1310 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
8ca937a6 1311 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1da177e4
LT
1312 spin_unlock_irq(&p->sighand->siglock);
1313
6c5f3e7b 1314 pid = task_pid_vnr(p);
1da177e4
LT
1315 get_task_struct(p);
1316 read_unlock(&tasklist_lock);
1029a2b5 1317 sched_annotate_sleep();
e61a2502
AV
1318 if (wo->wo_rusage)
1319 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
bb380ec3 1320 put_task_struct(p);
1da177e4 1321
bb380ec3
AV
1322 infop = wo->wo_info;
1323 if (!infop) {
359566fa 1324 wo->wo_stat = 0xffff;
1da177e4 1325 } else {
bb380ec3
AV
1326 infop->cause = CLD_CONTINUED;
1327 infop->pid = pid;
1328 infop->uid = uid;
1329 infop->status = SIGCONT;
1da177e4 1330 }
bb380ec3 1331 return pid;
1da177e4
LT
1332}
1333
98abed02
RM
1334/*
1335 * Consider @p for a wait by @parent.
1336 *
9e8ae01d 1337 * -ECHILD should be in ->notask_error before the first call.
98abed02
RM
1338 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1339 * Returns zero if the search for a child should continue;
9e8ae01d 1340 * then ->notask_error is 0 if @p is an eligible child,
3a2f5a59 1341 * or still -ECHILD.
98abed02 1342 */
b6e763f0
ON
1343static int wait_consider_task(struct wait_opts *wo, int ptrace,
1344 struct task_struct *p)
98abed02 1345{
3245d6ac
ON
1346 /*
1347 * We can race with wait_task_zombie() from another thread.
1348 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1349 * can't confuse the checks below.
1350 */
6aa7de05 1351 int exit_state = READ_ONCE(p->exit_state);
b3ab0316
ON
1352 int ret;
1353
3245d6ac 1354 if (unlikely(exit_state == EXIT_DEAD))
b3ab0316
ON
1355 return 0;
1356
bf959931 1357 ret = eligible_child(wo, ptrace, p);
14dd0b81 1358 if (!ret)
98abed02
RM
1359 return ret;
1360
3245d6ac 1361 if (unlikely(exit_state == EXIT_TRACE)) {
50b8d257 1362 /*
abd50b39
ON
1363 * ptrace == 0 means we are the natural parent. In this case
1364 * we should clear notask_error, debugger will notify us.
50b8d257 1365 */
abd50b39 1366 if (likely(!ptrace))
50b8d257 1367 wo->notask_error = 0;
823b018e 1368 return 0;
50b8d257 1369 }
823b018e 1370
377d75da
ON
1371 if (likely(!ptrace) && unlikely(p->ptrace)) {
1372 /*
1373 * If it is traced by its real parent's group, just pretend
1374 * the caller is ptrace_do_wait() and reap this child if it
1375 * is zombie.
1376 *
1377 * This also hides group stop state from real parent; otherwise
1378 * a single stop can be reported twice as group and ptrace stop.
1379 * If a ptracer wants to distinguish these two events for its
1380 * own children it should create a separate process which takes
1381 * the role of real parent.
1382 */
1383 if (!ptrace_reparented(p))
1384 ptrace = 1;
1385 }
1386
45cb24a1 1387 /* slay zombie? */
3245d6ac 1388 if (exit_state == EXIT_ZOMBIE) {
9b84cca2 1389 /* we don't reap group leaders with subthreads */
7c733eb3
ON
1390 if (!delay_group_leader(p)) {
1391 /*
1392 * A zombie ptracee is only visible to its ptracer.
1393 * Notification and reaping will be cascaded to the
1394 * real parent when the ptracer detaches.
1395 */
1396 if (unlikely(ptrace) || likely(!p->ptrace))
1397 return wait_task_zombie(wo, p);
1398 }
98abed02 1399
f470021a 1400 /*
9b84cca2
TH
1401 * Allow access to stopped/continued state via zombie by
1402 * falling through. Clearing of notask_error is complex.
1403 *
1404 * When !@ptrace:
1405 *
1406 * If WEXITED is set, notask_error should naturally be
1407 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1408 * so, if there are live subthreads, there are events to
1409 * wait for. If all subthreads are dead, it's still safe
1410 * to clear - this function will be called again in finite
1411 * amount time once all the subthreads are released and
1412 * will then return without clearing.
1413 *
1414 * When @ptrace:
1415 *
1416 * Stopped state is per-task and thus can't change once the
1417 * target task dies. Only continued and exited can happen.
1418 * Clear notask_error if WCONTINUED | WEXITED.
1419 */
1420 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1421 wo->notask_error = 0;
1422 } else {
1423 /*
1424 * @p is alive and it's gonna stop, continue or exit, so
1425 * there always is something to wait for.
f470021a 1426 */
9e8ae01d 1427 wo->notask_error = 0;
f470021a
RM
1428 }
1429
98abed02 1430 /*
45cb24a1
TH
1431 * Wait for stopped. Depending on @ptrace, different stopped state
1432 * is used and the two don't interact with each other.
98abed02 1433 */
19e27463
TH
1434 ret = wait_task_stopped(wo, ptrace, p);
1435 if (ret)
1436 return ret;
98abed02
RM
1437
1438 /*
45cb24a1
TH
1439 * Wait for continued. There's only one continued state and the
1440 * ptracer can consume it which can confuse the real parent. Don't
1441 * use WCONTINUED from ptracer. You don't need or want it.
98abed02 1442 */
9e8ae01d 1443 return wait_task_continued(wo, p);
98abed02
RM
1444}
1445
1446/*
1447 * Do the work of do_wait() for one thread in the group, @tsk.
1448 *
9e8ae01d 1449 * -ECHILD should be in ->notask_error before the first call.
98abed02
RM
1450 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1451 * Returns zero if the search for a child should continue; then
9e8ae01d 1452 * ->notask_error is 0 if there were any eligible children,
3a2f5a59 1453 * or still -ECHILD.
98abed02 1454 */
9e8ae01d 1455static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
98abed02
RM
1456{
1457 struct task_struct *p;
1458
1459 list_for_each_entry(p, &tsk->children, sibling) {
9cd80bbb 1460 int ret = wait_consider_task(wo, 0, p);
a0be55de 1461
9cd80bbb
ON
1462 if (ret)
1463 return ret;
98abed02
RM
1464 }
1465
1466 return 0;
1467}
1468
9e8ae01d 1469static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
98abed02
RM
1470{
1471 struct task_struct *p;
1472
f470021a 1473 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
b6e763f0 1474 int ret = wait_consider_task(wo, 1, p);
a0be55de 1475
f470021a 1476 if (ret)
98abed02 1477 return ret;
98abed02
RM
1478 }
1479
1480 return 0;
1481}
1482
ac6424b9 1483static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
0b7570e7
ON
1484 int sync, void *key)
1485{
1486 struct wait_opts *wo = container_of(wait, struct wait_opts,
1487 child_wait);
1488 struct task_struct *p = key;
1489
5c01ba49 1490 if (!eligible_pid(wo, p))
0b7570e7
ON
1491 return 0;
1492
b4fe5182
ON
1493 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1494 return 0;
1495
0b7570e7
ON
1496 return default_wake_function(wait, mode, sync, key);
1497}
1498
a7f0765e
ON
1499void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1500{
0b7570e7
ON
1501 __wake_up_sync_key(&parent->signal->wait_chldexit,
1502 TASK_INTERRUPTIBLE, 1, p);
a7f0765e
ON
1503}
1504
9e8ae01d 1505static long do_wait(struct wait_opts *wo)
1da177e4 1506{
1da177e4 1507 struct task_struct *tsk;
98abed02 1508 int retval;
1da177e4 1509
9e8ae01d 1510 trace_sched_process_wait(wo->wo_pid);
0a16b607 1511
0b7570e7
ON
1512 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1513 wo->child_wait.private = current;
1514 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1da177e4 1515repeat:
98abed02 1516 /*
3da56d16 1517 * If there is nothing that can match our criteria, just get out.
9e8ae01d
ON
1518 * We will clear ->notask_error to zero if we see any child that
1519 * might later match our criteria, even if we are not able to reap
1520 * it yet.
98abed02 1521 */
64a16caf 1522 wo->notask_error = -ECHILD;
9e8ae01d
ON
1523 if ((wo->wo_type < PIDTYPE_MAX) &&
1524 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
64a16caf 1525 goto notask;
161550d7 1526
f95d39d1 1527 set_current_state(TASK_INTERRUPTIBLE);
1da177e4
LT
1528 read_lock(&tasklist_lock);
1529 tsk = current;
1530 do {
64a16caf
ON
1531 retval = do_wait_thread(wo, tsk);
1532 if (retval)
1533 goto end;
9e8ae01d 1534
64a16caf
ON
1535 retval = ptrace_do_wait(wo, tsk);
1536 if (retval)
98abed02 1537 goto end;
98abed02 1538
9e8ae01d 1539 if (wo->wo_flags & __WNOTHREAD)
1da177e4 1540 break;
a3f6dfb7 1541 } while_each_thread(current, tsk);
1da177e4 1542 read_unlock(&tasklist_lock);
f2cc3eb1 1543
64a16caf 1544notask:
9e8ae01d
ON
1545 retval = wo->notask_error;
1546 if (!retval && !(wo->wo_flags & WNOHANG)) {
1da177e4 1547 retval = -ERESTARTSYS;
98abed02
RM
1548 if (!signal_pending(current)) {
1549 schedule();
1550 goto repeat;
1551 }
1da177e4 1552 }
1da177e4 1553end:
f95d39d1 1554 __set_current_state(TASK_RUNNING);
0b7570e7 1555 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1da177e4
LT
1556 return retval;
1557}
1558
67d7ddde 1559static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
ce72a16f 1560 int options, struct rusage *ru)
1da177e4 1561{
9e8ae01d 1562 struct wait_opts wo;
161550d7
EB
1563 struct pid *pid = NULL;
1564 enum pid_type type;
1da177e4
LT
1565 long ret;
1566
91c4e8ea
ON
1567 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1568 __WNOTHREAD|__WCLONE|__WALL))
1da177e4
LT
1569 return -EINVAL;
1570 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1571 return -EINVAL;
1572
1573 switch (which) {
1574 case P_ALL:
161550d7 1575 type = PIDTYPE_MAX;
1da177e4
LT
1576 break;
1577 case P_PID:
161550d7
EB
1578 type = PIDTYPE_PID;
1579 if (upid <= 0)
1da177e4
LT
1580 return -EINVAL;
1581 break;
1582 case P_PGID:
161550d7
EB
1583 type = PIDTYPE_PGID;
1584 if (upid <= 0)
1da177e4 1585 return -EINVAL;
1da177e4
LT
1586 break;
1587 default:
1588 return -EINVAL;
1589 }
1590
161550d7
EB
1591 if (type < PIDTYPE_MAX)
1592 pid = find_get_pid(upid);
9e8ae01d
ON
1593
1594 wo.wo_type = type;
1595 wo.wo_pid = pid;
1596 wo.wo_flags = options;
1597 wo.wo_info = infop;
9e8ae01d
ON
1598 wo.wo_rusage = ru;
1599 ret = do_wait(&wo);
dfe16dfa 1600
161550d7 1601 put_pid(pid);
1da177e4
LT
1602 return ret;
1603}
1604
ce72a16f
AV
1605SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1606 infop, int, options, struct rusage __user *, ru)
1607{
1608 struct rusage r;
67d7ddde
AV
1609 struct waitid_info info = {.status = 0};
1610 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
634a8160 1611 int signo = 0;
6c85501f 1612
634a8160
AV
1613 if (err > 0) {
1614 signo = SIGCHLD;
1615 err = 0;
ce72a16f
AV
1616 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1617 return -EFAULT;
1618 }
67d7ddde
AV
1619 if (!infop)
1620 return err;
1621
96ca579a 1622 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1c9fec47 1623 return -EFAULT;
96ca579a 1624
4c48abe9 1625 user_access_begin();
634a8160 1626 unsafe_put_user(signo, &infop->si_signo, Efault);
4c48abe9 1627 unsafe_put_user(0, &infop->si_errno, Efault);
cc731525 1628 unsafe_put_user(info.cause, &infop->si_code, Efault);
4c48abe9
AV
1629 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1630 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1631 unsafe_put_user(info.status, &infop->si_status, Efault);
1632 user_access_end();
ce72a16f 1633 return err;
4c48abe9
AV
1634Efault:
1635 user_access_end();
1636 return -EFAULT;
ce72a16f
AV
1637}
1638
92ebce5a
AV
1639long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1640 struct rusage *ru)
1da177e4 1641{
9e8ae01d 1642 struct wait_opts wo;
161550d7
EB
1643 struct pid *pid = NULL;
1644 enum pid_type type;
1da177e4
LT
1645 long ret;
1646
1647 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1648 __WNOTHREAD|__WCLONE|__WALL))
1649 return -EINVAL;
161550d7 1650
dd83c161 1651 /* -INT_MIN is not defined */
1652 if (upid == INT_MIN)
1653 return -ESRCH;
1654
161550d7
EB
1655 if (upid == -1)
1656 type = PIDTYPE_MAX;
1657 else if (upid < 0) {
1658 type = PIDTYPE_PGID;
1659 pid = find_get_pid(-upid);
1660 } else if (upid == 0) {
1661 type = PIDTYPE_PGID;
2ae448ef 1662 pid = get_task_pid(current, PIDTYPE_PGID);
161550d7
EB
1663 } else /* upid > 0 */ {
1664 type = PIDTYPE_PID;
1665 pid = find_get_pid(upid);
1666 }
1667
9e8ae01d
ON
1668 wo.wo_type = type;
1669 wo.wo_pid = pid;
1670 wo.wo_flags = options | WEXITED;
1671 wo.wo_info = NULL;
359566fa 1672 wo.wo_stat = 0;
9e8ae01d
ON
1673 wo.wo_rusage = ru;
1674 ret = do_wait(&wo);
161550d7 1675 put_pid(pid);
359566fa
AV
1676 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1677 ret = -EFAULT;
1da177e4 1678
1da177e4
LT
1679 return ret;
1680}
1681
ce72a16f
AV
1682SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1683 int, options, struct rusage __user *, ru)
1684{
1685 struct rusage r;
1686 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1687
1688 if (err > 0) {
1689 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1690 return -EFAULT;
1691 }
1692 return err;
1693}
1694
1da177e4
LT
1695#ifdef __ARCH_WANT_SYS_WAITPID
1696
1697/*
1698 * sys_waitpid() remains for compatibility. waitpid() should be
1699 * implemented by calling sys_wait4() from libc.a.
1700 */
17da2bd9 1701SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1da177e4
LT
1702{
1703 return sys_wait4(pid, stat_addr, options, NULL);
1704}
1705
1706#endif
7e95a225
AV
1707
1708#ifdef CONFIG_COMPAT
1709COMPAT_SYSCALL_DEFINE4(wait4,
1710 compat_pid_t, pid,
1711 compat_uint_t __user *, stat_addr,
1712 int, options,
1713 struct compat_rusage __user *, ru)
1714{
ce72a16f
AV
1715 struct rusage r;
1716 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1717 if (err > 0) {
1718 if (ru && put_compat_rusage(&r, ru))
1719 return -EFAULT;
7e95a225 1720 }
ce72a16f 1721 return err;
7e95a225
AV
1722}
1723
1724COMPAT_SYSCALL_DEFINE5(waitid,
1725 int, which, compat_pid_t, pid,
1726 struct compat_siginfo __user *, infop, int, options,
1727 struct compat_rusage __user *, uru)
1728{
7e95a225 1729 struct rusage ru;
67d7ddde
AV
1730 struct waitid_info info = {.status = 0};
1731 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
634a8160
AV
1732 int signo = 0;
1733 if (err > 0) {
1734 signo = SIGCHLD;
1735 err = 0;
6c85501f
AV
1736 if (uru) {
1737 /* kernel_waitid() overwrites everything in ru */
1738 if (COMPAT_USE_64BIT_TIME)
1739 err = copy_to_user(uru, &ru, sizeof(ru));
1740 else
1741 err = put_compat_rusage(&ru, uru);
1742 if (err)
1743 return -EFAULT;
1744 }
7e95a225
AV
1745 }
1746
4c48abe9
AV
1747 if (!infop)
1748 return err;
1749
96ca579a 1750 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1c9fec47 1751 return -EFAULT;
96ca579a 1752
4c48abe9 1753 user_access_begin();
634a8160 1754 unsafe_put_user(signo, &infop->si_signo, Efault);
4c48abe9 1755 unsafe_put_user(0, &infop->si_errno, Efault);
cc731525 1756 unsafe_put_user(info.cause, &infop->si_code, Efault);
4c48abe9
AV
1757 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1758 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1759 unsafe_put_user(info.status, &infop->si_status, Efault);
1760 user_access_end();
67d7ddde 1761 return err;
4c48abe9
AV
1762Efault:
1763 user_access_end();
1764 return -EFAULT;
7e95a225
AV
1765}
1766#endif
7c2c11b2
SM
1767
1768__weak void abort(void)
1769{
1770 BUG();
1771
1772 /* if that doesn't kill us, halt */
1773 panic("Oops failed to kill thread");
1774}
dc8635b7 1775EXPORT_SYMBOL(abort);