]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/exit.c
lift getrusage() from wait_noreap_copyout()
[mirror_ubuntu-bionic-kernel.git] / kernel / exit.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
1da177e4
LT
7#include <linux/mm.h>
8#include <linux/slab.h>
4eb5aaa3 9#include <linux/sched/autogroup.h>
6e84f315 10#include <linux/sched/mm.h>
03441a34 11#include <linux/sched/stat.h>
29930025 12#include <linux/sched/task.h>
68db0cf1 13#include <linux/sched/task_stack.h>
32ef5517 14#include <linux/sched/cputime.h>
1da177e4 15#include <linux/interrupt.h>
1da177e4 16#include <linux/module.h>
c59ede7b 17#include <linux/capability.h>
1da177e4
LT
18#include <linux/completion.h>
19#include <linux/personality.h>
20#include <linux/tty.h>
da9cbc87 21#include <linux/iocontext.h>
1da177e4 22#include <linux/key.h>
1da177e4
LT
23#include <linux/cpu.h>
24#include <linux/acct.h>
8f0ab514 25#include <linux/tsacct_kern.h>
1da177e4 26#include <linux/file.h>
9f3acc31 27#include <linux/fdtable.h>
80d26af8 28#include <linux/freezer.h>
1da177e4 29#include <linux/binfmts.h>
ab516013 30#include <linux/nsproxy.h>
84d73786 31#include <linux/pid_namespace.h>
1da177e4
LT
32#include <linux/ptrace.h>
33#include <linux/profile.h>
34#include <linux/mount.h>
35#include <linux/proc_fs.h>
49d769d5 36#include <linux/kthread.h>
1da177e4 37#include <linux/mempolicy.h>
c757249a 38#include <linux/taskstats_kern.h>
ca74e92b 39#include <linux/delayacct.h>
b4f48b63 40#include <linux/cgroup.h>
1da177e4 41#include <linux/syscalls.h>
7ed20e1a 42#include <linux/signal.h>
6a14c5c9 43#include <linux/posix-timers.h>
9f46080c 44#include <linux/cn_proc.h>
de5097c2 45#include <linux/mutex.h>
0771dfef 46#include <linux/futex.h>
b92ce558 47#include <linux/pipe_fs_i.h>
fa84cb93 48#include <linux/audit.h> /* for audit_free() */
83cc5ed3 49#include <linux/resource.h>
0d67a46d 50#include <linux/blkdev.h>
6eaeeaba 51#include <linux/task_io_accounting_ops.h>
30199f5a 52#include <linux/tracehook.h>
5ad4e53b 53#include <linux/fs_struct.h>
ca49ca71 54#include <linux/userfaultfd_k.h>
d84f4f99 55#include <linux/init_task.h>
cdd6c482 56#include <linux/perf_event.h>
ad8d75ff 57#include <trace/events/sched.h>
24f1e32c 58#include <linux/hw_breakpoint.h>
3d5992d2 59#include <linux/oom.h>
54848d73 60#include <linux/writeback.h>
40401530 61#include <linux/shm.h>
5c9a8750 62#include <linux/kcov.h>
53d3eaa3 63#include <linux/random.h>
8f95c90c 64#include <linux/rcuwait.h>
7e95a225 65#include <linux/compat.h>
1da177e4 66
7c0f6ba6 67#include <linux/uaccess.h>
1da177e4
LT
68#include <asm/unistd.h>
69#include <asm/pgtable.h>
70#include <asm/mmu_context.h>
71
d40e48e0 72static void __unhash_process(struct task_struct *p, bool group_dead)
1da177e4
LT
73{
74 nr_threads--;
50d75f8d 75 detach_pid(p, PIDTYPE_PID);
d40e48e0 76 if (group_dead) {
1da177e4
LT
77 detach_pid(p, PIDTYPE_PGID);
78 detach_pid(p, PIDTYPE_SID);
c97d9893 79
5e85d4ab 80 list_del_rcu(&p->tasks);
9cd80bbb 81 list_del_init(&p->sibling);
909ea964 82 __this_cpu_dec(process_counts);
1da177e4 83 }
47e65328 84 list_del_rcu(&p->thread_group);
0c740d0a 85 list_del_rcu(&p->thread_node);
1da177e4
LT
86}
87
6a14c5c9
ON
88/*
89 * This function expects the tasklist_lock write-locked.
90 */
91static void __exit_signal(struct task_struct *tsk)
92{
93 struct signal_struct *sig = tsk->signal;
d40e48e0 94 bool group_dead = thread_group_leader(tsk);
6a14c5c9 95 struct sighand_struct *sighand;
4ada856f 96 struct tty_struct *uninitialized_var(tty);
5613fda9 97 u64 utime, stime;
6a14c5c9 98
d11c563d 99 sighand = rcu_dereference_check(tsk->sighand,
db1466b3 100 lockdep_tasklist_lock_is_held());
6a14c5c9
ON
101 spin_lock(&sighand->siglock);
102
baa73d9e 103#ifdef CONFIG_POSIX_TIMERS
6a14c5c9 104 posix_cpu_timers_exit(tsk);
d40e48e0 105 if (group_dead) {
6a14c5c9 106 posix_cpu_timers_exit_group(tsk);
4a599942 107 } else {
e0a70217
ON
108 /*
109 * This can only happen if the caller is de_thread().
110 * FIXME: this is the temporary hack, we should teach
111 * posix-cpu-timers to handle this case correctly.
112 */
113 if (unlikely(has_group_leader_pid(tsk)))
114 posix_cpu_timers_exit_group(tsk);
baa73d9e
NP
115 }
116#endif
e0a70217 117
baa73d9e
NP
118 if (group_dead) {
119 tty = sig->tty;
120 sig->tty = NULL;
121 } else {
6a14c5c9
ON
122 /*
123 * If there is any task waiting for the group exit
124 * then notify it:
125 */
d344193a 126 if (sig->notify_count > 0 && !--sig->notify_count)
6a14c5c9 127 wake_up_process(sig->group_exit_task);
6db840fa 128
6a14c5c9
ON
129 if (tsk == sig->curr_target)
130 sig->curr_target = next_thread(tsk);
6a14c5c9
ON
131 }
132
53d3eaa3
NP
133 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
134 sizeof(unsigned long long));
135
90ed9cbe 136 /*
26e75b5c
ON
137 * Accumulate here the counters for all threads as they die. We could
138 * skip the group leader because it is the last user of signal_struct,
139 * but we want to avoid the race with thread_group_cputime() which can
140 * see the empty ->thread_head list.
90ed9cbe
RR
141 */
142 task_cputime(tsk, &utime, &stime);
e78c3496 143 write_seqlock(&sig->stats_lock);
90ed9cbe
RR
144 sig->utime += utime;
145 sig->stime += stime;
146 sig->gtime += task_gtime(tsk);
147 sig->min_flt += tsk->min_flt;
148 sig->maj_flt += tsk->maj_flt;
149 sig->nvcsw += tsk->nvcsw;
150 sig->nivcsw += tsk->nivcsw;
151 sig->inblock += task_io_get_inblock(tsk);
152 sig->oublock += task_io_get_oublock(tsk);
153 task_io_accounting_add(&sig->ioac, &tsk->ioac);
154 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
b3ac022c 155 sig->nr_threads--;
d40e48e0 156 __unhash_process(tsk, group_dead);
e78c3496 157 write_sequnlock(&sig->stats_lock);
5876700c 158
da7978b0
ON
159 /*
160 * Do this under ->siglock, we can race with another thread
161 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
162 */
163 flush_sigqueue(&tsk->pending);
a7e5328a 164 tsk->sighand = NULL;
6a14c5c9 165 spin_unlock(&sighand->siglock);
6a14c5c9 166
a7e5328a 167 __cleanup_sighand(sighand);
a0be55de 168 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
d40e48e0 169 if (group_dead) {
6a14c5c9 170 flush_sigqueue(&sig->shared_pending);
4ada856f 171 tty_kref_put(tty);
6a14c5c9
ON
172 }
173}
174
8c7904a0
EB
175static void delayed_put_task_struct(struct rcu_head *rhp)
176{
0a16b607
MD
177 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
178
4e231c79 179 perf_event_delayed_put(tsk);
0a16b607
MD
180 trace_sched_process_free(tsk);
181 put_task_struct(tsk);
8c7904a0
EB
182}
183
f470021a 184
a0be55de 185void release_task(struct task_struct *p)
1da177e4 186{
36c8b586 187 struct task_struct *leader;
1da177e4 188 int zap_leader;
1f09f974 189repeat:
c69e8d9c 190 /* don't need to get the RCU readlock here - the process is dead and
d11c563d
PM
191 * can't be modifying its own credentials. But shut RCU-lockdep up */
192 rcu_read_lock();
c69e8d9c 193 atomic_dec(&__task_cred(p)->user->processes);
d11c563d 194 rcu_read_unlock();
c69e8d9c 195
60347f67 196 proc_flush_task(p);
0203026b 197
1da177e4 198 write_lock_irq(&tasklist_lock);
a288eecc 199 ptrace_release_task(p);
1da177e4 200 __exit_signal(p);
35f5cad8 201
1da177e4
LT
202 /*
203 * If we are the last non-leader member of the thread
204 * group, and the leader is zombie, then notify the
205 * group leader's parent process. (if it wants notification.)
206 */
207 zap_leader = 0;
208 leader = p->group_leader;
a0be55de
IA
209 if (leader != p && thread_group_empty(leader)
210 && leader->exit_state == EXIT_ZOMBIE) {
1da177e4
LT
211 /*
212 * If we were the last child thread and the leader has
213 * exited already, and the leader's parent ignores SIGCHLD,
214 * then we are the one who should release the leader.
dae33574 215 */
86773473 216 zap_leader = do_notify_parent(leader, leader->exit_signal);
dae33574
RM
217 if (zap_leader)
218 leader->exit_state = EXIT_DEAD;
1da177e4
LT
219 }
220
1da177e4 221 write_unlock_irq(&tasklist_lock);
1da177e4 222 release_thread(p);
8c7904a0 223 call_rcu(&p->rcu, delayed_put_task_struct);
1da177e4
LT
224
225 p = leader;
226 if (unlikely(zap_leader))
227 goto repeat;
228}
229
150593bf
ON
230/*
231 * Note that if this function returns a valid task_struct pointer (!NULL)
232 * task->usage must remain >0 for the duration of the RCU critical section.
233 */
234struct task_struct *task_rcu_dereference(struct task_struct **ptask)
235{
236 struct sighand_struct *sighand;
237 struct task_struct *task;
238
239 /*
240 * We need to verify that release_task() was not called and thus
241 * delayed_put_task_struct() can't run and drop the last reference
242 * before rcu_read_unlock(). We check task->sighand != NULL,
243 * but we can read the already freed and reused memory.
244 */
245retry:
246 task = rcu_dereference(*ptask);
247 if (!task)
248 return NULL;
249
250 probe_kernel_address(&task->sighand, sighand);
251
252 /*
253 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
254 * was already freed we can not miss the preceding update of this
255 * pointer.
256 */
257 smp_rmb();
258 if (unlikely(task != READ_ONCE(*ptask)))
259 goto retry;
260
261 /*
262 * We've re-checked that "task == *ptask", now we have two different
263 * cases:
264 *
265 * 1. This is actually the same task/task_struct. In this case
266 * sighand != NULL tells us it is still alive.
267 *
268 * 2. This is another task which got the same memory for task_struct.
269 * We can't know this of course, and we can not trust
270 * sighand != NULL.
271 *
272 * In this case we actually return a random value, but this is
273 * correct.
274 *
275 * If we return NULL - we can pretend that we actually noticed that
276 * *ptask was updated when the previous task has exited. Or pretend
277 * that probe_slab_address(&sighand) reads NULL.
278 *
279 * If we return the new task (because sighand is not NULL for any
280 * reason) - this is fine too. This (new) task can't go away before
281 * another gp pass.
282 *
283 * And note: We could even eliminate the false positive if re-read
284 * task->sighand once again to avoid the falsely NULL. But this case
285 * is very unlikely so we don't care.
286 */
287 if (!sighand)
288 return NULL;
289
290 return task;
291}
292
8f95c90c
DB
293void rcuwait_wake_up(struct rcuwait *w)
294{
295 struct task_struct *task;
296
297 rcu_read_lock();
298
299 /*
300 * Order condition vs @task, such that everything prior to the load
301 * of @task is visible. This is the condition as to why the user called
302 * rcuwait_trywake() in the first place. Pairs with set_current_state()
303 * barrier (A) in rcuwait_wait_event().
304 *
305 * WAIT WAKE
306 * [S] tsk = current [S] cond = true
307 * MB (A) MB (B)
308 * [L] cond [L] tsk
309 */
310 smp_rmb(); /* (B) */
311
312 /*
313 * Avoid using task_rcu_dereference() magic as long as we are careful,
314 * see comment in rcuwait_wait_event() regarding ->exit_state.
315 */
316 task = rcu_dereference(w->task);
317 if (task)
318 wake_up_process(task);
319 rcu_read_unlock();
320}
321
150593bf
ON
322struct task_struct *try_get_task_struct(struct task_struct **ptask)
323{
324 struct task_struct *task;
325
326 rcu_read_lock();
327 task = task_rcu_dereference(ptask);
328 if (task)
329 get_task_struct(task);
330 rcu_read_unlock();
331
332 return task;
333}
334
1da177e4
LT
335/*
336 * Determine if a process group is "orphaned", according to the POSIX
337 * definition in 2.2.2.52. Orphaned process groups are not to be affected
338 * by terminal-generated stop signals. Newly orphaned process groups are
339 * to receive a SIGHUP and a SIGCONT.
340 *
341 * "I ask you, have you ever known what it is to be an orphan?"
342 */
a0be55de
IA
343static int will_become_orphaned_pgrp(struct pid *pgrp,
344 struct task_struct *ignored_task)
1da177e4
LT
345{
346 struct task_struct *p;
1da177e4 347
0475ac08 348 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
05e83df6
ON
349 if ((p == ignored_task) ||
350 (p->exit_state && thread_group_empty(p)) ||
351 is_global_init(p->real_parent))
1da177e4 352 continue;
05e83df6 353
0475ac08 354 if (task_pgrp(p->real_parent) != pgrp &&
05e83df6
ON
355 task_session(p->real_parent) == task_session(p))
356 return 0;
0475ac08 357 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
05e83df6
ON
358
359 return 1;
1da177e4
LT
360}
361
3e7cd6c4 362int is_current_pgrp_orphaned(void)
1da177e4
LT
363{
364 int retval;
365
366 read_lock(&tasklist_lock);
3e7cd6c4 367 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
1da177e4
LT
368 read_unlock(&tasklist_lock);
369
370 return retval;
371}
372
961c4675 373static bool has_stopped_jobs(struct pid *pgrp)
1da177e4 374{
1da177e4
LT
375 struct task_struct *p;
376
0475ac08 377 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
961c4675
ON
378 if (p->signal->flags & SIGNAL_STOP_STOPPED)
379 return true;
0475ac08 380 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
961c4675
ON
381
382 return false;
1da177e4
LT
383}
384
f49ee505
ON
385/*
386 * Check to see if any process groups have become orphaned as
387 * a result of our exiting, and if they have any stopped jobs,
388 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
389 */
390static void
391kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
392{
393 struct pid *pgrp = task_pgrp(tsk);
394 struct task_struct *ignored_task = tsk;
395
396 if (!parent)
a0be55de
IA
397 /* exit: our father is in a different pgrp than
398 * we are and we were the only connection outside.
399 */
f49ee505
ON
400 parent = tsk->real_parent;
401 else
402 /* reparent: our child is in a different pgrp than
403 * we are, and it was the only connection outside.
404 */
405 ignored_task = NULL;
406
407 if (task_pgrp(parent) != pgrp &&
408 task_session(parent) == task_session(tsk) &&
409 will_become_orphaned_pgrp(pgrp, ignored_task) &&
410 has_stopped_jobs(pgrp)) {
411 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
412 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
413 }
414}
415
f98bafa0 416#ifdef CONFIG_MEMCG
cf475ad2 417/*
733eda7a 418 * A task is exiting. If it owned this mm, find a new owner for the mm.
cf475ad2 419 */
cf475ad2
BS
420void mm_update_next_owner(struct mm_struct *mm)
421{
422 struct task_struct *c, *g, *p = current;
423
424retry:
733eda7a
KH
425 /*
426 * If the exiting or execing task is not the owner, it's
427 * someone else's problem.
428 */
429 if (mm->owner != p)
cf475ad2 430 return;
733eda7a
KH
431 /*
432 * The current owner is exiting/execing and there are no other
433 * candidates. Do not leave the mm pointing to a possibly
434 * freed task structure.
435 */
436 if (atomic_read(&mm->mm_users) <= 1) {
437 mm->owner = NULL;
438 return;
439 }
cf475ad2
BS
440
441 read_lock(&tasklist_lock);
442 /*
443 * Search in the children
444 */
445 list_for_each_entry(c, &p->children, sibling) {
446 if (c->mm == mm)
447 goto assign_new_owner;
448 }
449
450 /*
451 * Search in the siblings
452 */
dea33cfd 453 list_for_each_entry(c, &p->real_parent->children, sibling) {
cf475ad2
BS
454 if (c->mm == mm)
455 goto assign_new_owner;
456 }
457
458 /*
f87fb599 459 * Search through everything else, we should not get here often.
cf475ad2 460 */
39af1765
ON
461 for_each_process(g) {
462 if (g->flags & PF_KTHREAD)
463 continue;
464 for_each_thread(g, c) {
465 if (c->mm == mm)
466 goto assign_new_owner;
467 if (c->mm)
468 break;
469 }
f87fb599 470 }
cf475ad2 471 read_unlock(&tasklist_lock);
31a78f23
BS
472 /*
473 * We found no owner yet mm_users > 1: this implies that we are
474 * most likely racing with swapoff (try_to_unuse()) or /proc or
e5991371 475 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
31a78f23 476 */
31a78f23 477 mm->owner = NULL;
cf475ad2
BS
478 return;
479
480assign_new_owner:
481 BUG_ON(c == p);
482 get_task_struct(c);
483 /*
484 * The task_lock protects c->mm from changing.
485 * We always want mm->owner->mm == mm
486 */
487 task_lock(c);
e5991371
HD
488 /*
489 * Delay read_unlock() till we have the task_lock()
490 * to ensure that c does not slip away underneath us
491 */
492 read_unlock(&tasklist_lock);
cf475ad2
BS
493 if (c->mm != mm) {
494 task_unlock(c);
495 put_task_struct(c);
496 goto retry;
497 }
cf475ad2
BS
498 mm->owner = c;
499 task_unlock(c);
500 put_task_struct(c);
501}
f98bafa0 502#endif /* CONFIG_MEMCG */
cf475ad2 503
1da177e4
LT
504/*
505 * Turn us into a lazy TLB process if we
506 * aren't already..
507 */
0039962a 508static void exit_mm(void)
1da177e4 509{
0039962a 510 struct mm_struct *mm = current->mm;
b564daf8 511 struct core_state *core_state;
1da177e4 512
0039962a 513 mm_release(current, mm);
1da177e4
LT
514 if (!mm)
515 return;
4fe7efdb 516 sync_mm_rss(mm);
1da177e4
LT
517 /*
518 * Serialize with any possible pending coredump.
999d9fc1 519 * We must hold mmap_sem around checking core_state
1da177e4 520 * and clearing tsk->mm. The core-inducing thread
999d9fc1 521 * will increment ->nr_threads for each thread in the
1da177e4
LT
522 * group with ->mm != NULL.
523 */
524 down_read(&mm->mmap_sem);
b564daf8
ON
525 core_state = mm->core_state;
526 if (core_state) {
527 struct core_thread self;
a0be55de 528
1da177e4 529 up_read(&mm->mmap_sem);
1da177e4 530
0039962a 531 self.task = current;
b564daf8
ON
532 self.next = xchg(&core_state->dumper.next, &self);
533 /*
534 * Implies mb(), the result of xchg() must be visible
535 * to core_state->dumper.
536 */
537 if (atomic_dec_and_test(&core_state->nr_threads))
538 complete(&core_state->startup);
1da177e4 539
a94e2d40 540 for (;;) {
642fa448 541 set_current_state(TASK_UNINTERRUPTIBLE);
a94e2d40
ON
542 if (!self.task) /* see coredump_finish() */
543 break;
80d26af8 544 freezable_schedule();
a94e2d40 545 }
642fa448 546 __set_current_state(TASK_RUNNING);
1da177e4
LT
547 down_read(&mm->mmap_sem);
548 }
f1f10076 549 mmgrab(mm);
0039962a 550 BUG_ON(mm != current->active_mm);
1da177e4 551 /* more a memory barrier than a real lock */
0039962a
DB
552 task_lock(current);
553 current->mm = NULL;
1da177e4
LT
554 up_read(&mm->mmap_sem);
555 enter_lazy_tlb(mm, current);
0039962a 556 task_unlock(current);
cf475ad2 557 mm_update_next_owner(mm);
1da177e4 558 mmput(mm);
c32b3cbe 559 if (test_thread_flag(TIF_MEMDIE))
38531201 560 exit_oom_victim();
1da177e4
LT
561}
562
c9dc05bf
ON
563static struct task_struct *find_alive_thread(struct task_struct *p)
564{
565 struct task_struct *t;
566
567 for_each_thread(p, t) {
568 if (!(t->flags & PF_EXITING))
569 return t;
570 }
571 return NULL;
572}
573
1109909c
ON
574static struct task_struct *find_child_reaper(struct task_struct *father)
575 __releases(&tasklist_lock)
576 __acquires(&tasklist_lock)
577{
578 struct pid_namespace *pid_ns = task_active_pid_ns(father);
579 struct task_struct *reaper = pid_ns->child_reaper;
580
581 if (likely(reaper != father))
582 return reaper;
583
c9dc05bf
ON
584 reaper = find_alive_thread(father);
585 if (reaper) {
1109909c
ON
586 pid_ns->child_reaper = reaper;
587 return reaper;
588 }
589
590 write_unlock_irq(&tasklist_lock);
591 if (unlikely(pid_ns == &init_pid_ns)) {
592 panic("Attempted to kill init! exitcode=0x%08x\n",
593 father->signal->group_exit_code ?: father->exit_code);
594 }
595 zap_pid_ns_processes(pid_ns);
596 write_lock_irq(&tasklist_lock);
597
598 return father;
599}
600
1da177e4 601/*
ebec18a6
LP
602 * When we die, we re-parent all our children, and try to:
603 * 1. give them to another thread in our thread group, if such a member exists
604 * 2. give it to the first ancestor process which prctl'd itself as a
605 * child_subreaper for its children (like a service manager)
606 * 3. give it to the init process (PID 1) in our pid namespace
1da177e4 607 */
1109909c
ON
608static struct task_struct *find_new_reaper(struct task_struct *father,
609 struct task_struct *child_reaper)
1da177e4 610{
c9dc05bf 611 struct task_struct *thread, *reaper;
1da177e4 612
c9dc05bf
ON
613 thread = find_alive_thread(father);
614 if (thread)
950bbabb 615 return thread;
1da177e4 616
7d24e2df 617 if (father->signal->has_child_subreaper) {
c6c70f44 618 unsigned int ns_level = task_pid(father)->level;
ebec18a6 619 /*
175aed3f 620 * Find the first ->is_child_subreaper ancestor in our pid_ns.
c6c70f44
ON
621 * We can't check reaper != child_reaper to ensure we do not
622 * cross the namespaces, the exiting parent could be injected
623 * by setns() + fork().
624 * We check pid->level, this is slightly more efficient than
625 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
ebec18a6 626 */
c6c70f44
ON
627 for (reaper = father->real_parent;
628 task_pid(reaper)->level == ns_level;
ebec18a6 629 reaper = reaper->real_parent) {
175aed3f 630 if (reaper == &init_task)
ebec18a6
LP
631 break;
632 if (!reaper->signal->is_child_subreaper)
633 continue;
c9dc05bf
ON
634 thread = find_alive_thread(reaper);
635 if (thread)
636 return thread;
ebec18a6 637 }
1da177e4 638 }
762a24be 639
1109909c 640 return child_reaper;
950bbabb
ON
641}
642
5dfc80be
ON
643/*
644* Any that need to be release_task'd are put on the @dead list.
645 */
9cd80bbb 646static void reparent_leader(struct task_struct *father, struct task_struct *p,
5dfc80be
ON
647 struct list_head *dead)
648{
2831096e 649 if (unlikely(p->exit_state == EXIT_DEAD))
5dfc80be
ON
650 return;
651
abd50b39 652 /* We don't want people slaying init. */
5dfc80be
ON
653 p->exit_signal = SIGCHLD;
654
655 /* If it has exited notify the new parent about this child's death. */
d21142ec 656 if (!p->ptrace &&
5dfc80be 657 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
86773473 658 if (do_notify_parent(p, p->exit_signal)) {
5dfc80be 659 p->exit_state = EXIT_DEAD;
dc2fd4b0 660 list_add(&p->ptrace_entry, dead);
5dfc80be
ON
661 }
662 }
663
664 kill_orphaned_pgrp(p, father);
665}
666
482a3767
ON
667/*
668 * This does two things:
669 *
670 * A. Make init inherit all the child processes
671 * B. Check to see if any process groups have become orphaned
672 * as a result of our exiting, and if they have any stopped
673 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
674 */
675static void forget_original_parent(struct task_struct *father,
676 struct list_head *dead)
1da177e4 677{
482a3767 678 struct task_struct *p, *t, *reaper;
762a24be 679
7c8bd232 680 if (unlikely(!list_empty(&father->ptraced)))
482a3767 681 exit_ptrace(father, dead);
f470021a 682
7c8bd232 683 /* Can drop and reacquire tasklist_lock */
1109909c 684 reaper = find_child_reaper(father);
ad9e206a 685 if (list_empty(&father->children))
482a3767 686 return;
1109909c
ON
687
688 reaper = find_new_reaper(father, reaper);
2831096e 689 list_for_each_entry(p, &father->children, sibling) {
57a05918 690 for_each_thread(p, t) {
9cd80bbb 691 t->real_parent = reaper;
57a05918
ON
692 BUG_ON((!t->ptrace) != (t->parent == father));
693 if (likely(!t->ptrace))
9cd80bbb 694 t->parent = t->real_parent;
9cd80bbb
ON
695 if (t->pdeath_signal)
696 group_send_sig_info(t->pdeath_signal,
697 SEND_SIG_NOINFO, t);
57a05918 698 }
2831096e
ON
699 /*
700 * If this is a threaded reparent there is no need to
701 * notify anyone anything has happened.
702 */
703 if (!same_thread_group(reaper, father))
482a3767 704 reparent_leader(father, p, dead);
1da177e4 705 }
2831096e 706 list_splice_tail_init(&father->children, &reaper->children);
1da177e4
LT
707}
708
709/*
710 * Send signals to all our closest relatives so that they know
711 * to properly mourn us..
712 */
821c7de7 713static void exit_notify(struct task_struct *tsk, int group_dead)
1da177e4 714{
53c8f9f1 715 bool autoreap;
482a3767
ON
716 struct task_struct *p, *n;
717 LIST_HEAD(dead);
1da177e4 718
762a24be 719 write_lock_irq(&tasklist_lock);
482a3767
ON
720 forget_original_parent(tsk, &dead);
721
821c7de7
ON
722 if (group_dead)
723 kill_orphaned_pgrp(tsk->group_leader, NULL);
1da177e4 724
45cdf5cc
ON
725 if (unlikely(tsk->ptrace)) {
726 int sig = thread_group_leader(tsk) &&
727 thread_group_empty(tsk) &&
728 !ptrace_reparented(tsk) ?
729 tsk->exit_signal : SIGCHLD;
730 autoreap = do_notify_parent(tsk, sig);
731 } else if (thread_group_leader(tsk)) {
732 autoreap = thread_group_empty(tsk) &&
733 do_notify_parent(tsk, tsk->exit_signal);
734 } else {
735 autoreap = true;
736 }
1da177e4 737
53c8f9f1 738 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
6c66e7db
ON
739 if (tsk->exit_state == EXIT_DEAD)
740 list_add(&tsk->ptrace_entry, &dead);
1da177e4 741
9c339168
ON
742 /* mt-exec, de_thread() is waiting for group leader */
743 if (unlikely(tsk->signal->notify_count < 0))
6db840fa 744 wake_up_process(tsk->signal->group_exit_task);
1da177e4
LT
745 write_unlock_irq(&tasklist_lock);
746
482a3767
ON
747 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
748 list_del_init(&p->ptrace_entry);
749 release_task(p);
750 }
1da177e4
LT
751}
752
e18eecb8
JD
753#ifdef CONFIG_DEBUG_STACK_USAGE
754static void check_stack_usage(void)
755{
756 static DEFINE_SPINLOCK(low_water_lock);
757 static int lowest_to_date = THREAD_SIZE;
e18eecb8
JD
758 unsigned long free;
759
7c9f8861 760 free = stack_not_used(current);
e18eecb8
JD
761
762 if (free >= lowest_to_date)
763 return;
764
765 spin_lock(&low_water_lock);
766 if (free < lowest_to_date) {
627393d4 767 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
a0be55de 768 current->comm, task_pid_nr(current), free);
e18eecb8
JD
769 lowest_to_date = free;
770 }
771 spin_unlock(&low_water_lock);
772}
773#else
774static inline void check_stack_usage(void) {}
775#endif
776
9af6528e 777void __noreturn do_exit(long code)
1da177e4
LT
778{
779 struct task_struct *tsk = current;
780 int group_dead;
3f95aa81 781 TASKS_RCU(int tasks_rcu_i);
1da177e4
LT
782
783 profile_task_exit(tsk);
5c9a8750 784 kcov_task_exit(tsk);
1da177e4 785
73c10101 786 WARN_ON(blk_needs_flush_plug(tsk));
22e2c507 787
1da177e4
LT
788 if (unlikely(in_interrupt()))
789 panic("Aiee, killing interrupt handler!");
790 if (unlikely(!tsk->pid))
791 panic("Attempted to kill the idle task!");
1da177e4 792
33dd94ae
NE
793 /*
794 * If do_exit is called because this processes oopsed, it's possible
795 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
796 * continuing. Amongst other possible reasons, this is to prevent
797 * mm_release()->clear_child_tid() from writing to a user-controlled
798 * kernel address.
799 */
800 set_fs(USER_DS);
801
a288eecc 802 ptrace_event(PTRACE_EVENT_EXIT, code);
1da177e4 803
e0e81739
DH
804 validate_creds_for_do_exit(tsk);
805
df164db5
AN
806 /*
807 * We're taking recursive faults here in do_exit. Safest is to just
808 * leave this task alone and wait for reboot.
809 */
810 if (unlikely(tsk->flags & PF_EXITING)) {
a0be55de 811 pr_alert("Fixing recursive fault but reboot is needed!\n");
778e9a9c
AK
812 /*
813 * We can do this unlocked here. The futex code uses
814 * this flag just to verify whether the pi state
815 * cleanup has been done or not. In the worst case it
816 * loops once more. We pretend that the cleanup was
817 * done as there is no way to return. Either the
818 * OWNER_DIED bit is set by now or we push the blocked
819 * task into the wait for ever nirwana as well.
820 */
821 tsk->flags |= PF_EXITPIDONE;
df164db5
AN
822 set_current_state(TASK_UNINTERRUPTIBLE);
823 schedule();
824 }
825
d12619b5 826 exit_signals(tsk); /* sets PF_EXITING */
778e9a9c 827 /*
be3e7844
PZ
828 * Ensure that all new tsk->pi_lock acquisitions must observe
829 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
778e9a9c 830 */
d2ee7198 831 smp_mb();
be3e7844
PZ
832 /*
833 * Ensure that we must observe the pi_state in exit_mm() ->
834 * mm_release() -> exit_pi_state_list().
835 */
1d615482 836 raw_spin_unlock_wait(&tsk->pi_lock);
1da177e4 837
1dc0fffc 838 if (unlikely(in_atomic())) {
a0be55de
IA
839 pr_info("note: %s[%d] exited with preempt_count %d\n",
840 current->comm, task_pid_nr(current),
841 preempt_count());
1dc0fffc
PZ
842 preempt_count_set(PREEMPT_ENABLED);
843 }
1da177e4 844
48d212a2
LT
845 /* sync mm's RSS info before statistics gathering */
846 if (tsk->mm)
847 sync_mm_rss(tsk->mm);
51229b49 848 acct_update_integrals(tsk);
1da177e4 849 group_dead = atomic_dec_and_test(&tsk->signal->live);
c3068951 850 if (group_dead) {
baa73d9e 851#ifdef CONFIG_POSIX_TIMERS
778e9a9c 852 hrtimer_cancel(&tsk->signal->real_timer);
25f407f0 853 exit_itimers(tsk->signal);
baa73d9e 854#endif
1f10206c
JP
855 if (tsk->mm)
856 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
c3068951 857 }
f6ec29a4 858 acct_collect(code, group_dead);
522ed776
MT
859 if (group_dead)
860 tty_audit_exit();
a4ff8dba 861 audit_free(tsk);
115085ea 862
48d212a2 863 tsk->exit_code = code;
115085ea 864 taskstats_exit(tsk, group_dead);
c757249a 865
0039962a 866 exit_mm();
1da177e4 867
0e464814 868 if (group_dead)
f6ec29a4 869 acct_process();
0a16b607
MD
870 trace_sched_process_exit(tsk);
871
1da177e4 872 exit_sem(tsk);
b34a6b1d 873 exit_shm(tsk);
1ec7f1dd
AV
874 exit_files(tsk);
875 exit_fs(tsk);
c39df5fa
ON
876 if (group_dead)
877 disassociate_ctty(1);
8aac6270 878 exit_task_namespaces(tsk);
ed3e694d 879 exit_task_work(tsk);
e6464694 880 exit_thread(tsk);
0b3fcf17
SE
881
882 /*
883 * Flush inherited counters to the parent - before the parent
884 * gets woken up by child-exit notifications.
885 *
886 * because of cgroup mode, must be called before cgroup_exit()
887 */
888 perf_event_exit_task(tsk);
889
8e5bfa8c 890 sched_autogroup_exit_task(tsk);
1ec41830 891 cgroup_exit(tsk);
1da177e4 892
24f1e32c
FW
893 /*
894 * FIXME: do that only when needed, using sched_exit tracepoint
895 */
7c8df286 896 flush_ptrace_hw_breakpoint(tsk);
33b2fb30 897
49f5903b 898 TASKS_RCU(preempt_disable());
3f95aa81 899 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
49f5903b 900 TASKS_RCU(preempt_enable());
821c7de7 901 exit_notify(tsk, group_dead);
ef982393 902 proc_exit_connector(tsk);
c11600e4 903 mpol_put_task_policy(tsk);
42b2dd0a 904#ifdef CONFIG_FUTEX
c87e2837
IM
905 if (unlikely(current->pi_state_cache))
906 kfree(current->pi_state_cache);
42b2dd0a 907#endif
de5097c2 908 /*
9a11b49a 909 * Make sure we are holding no locks:
de5097c2 910 */
1b1d2fb4 911 debug_check_no_locks_held();
778e9a9c
AK
912 /*
913 * We can do this unlocked here. The futex code uses this flag
914 * just to verify whether the pi state cleanup has been done
915 * or not. In the worst case it loops once more.
916 */
917 tsk->flags |= PF_EXITPIDONE;
1da177e4 918
afc847b7 919 if (tsk->io_context)
b69f2292 920 exit_io_context(tsk);
afc847b7 921
b92ce558 922 if (tsk->splice_pipe)
4b8a8f1e 923 free_pipe_info(tsk->splice_pipe);
b92ce558 924
5640f768
ED
925 if (tsk->task_frag.page)
926 put_page(tsk->task_frag.page);
927
e0e81739
DH
928 validate_creds_for_do_exit(tsk);
929
4bcb8232 930 check_stack_usage();
7407251a 931 preempt_disable();
54848d73
WF
932 if (tsk->nr_dirtied)
933 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
f41d911f 934 exit_rcu();
3f95aa81 935 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
b5740f4b 936
9af6528e 937 do_task_dead();
1da177e4 938}
012914da
RA
939EXPORT_SYMBOL_GPL(do_exit);
940
9402c95f 941void complete_and_exit(struct completion *comp, long code)
1da177e4
LT
942{
943 if (comp)
944 complete(comp);
55a101f8 945
1da177e4
LT
946 do_exit(code);
947}
1da177e4
LT
948EXPORT_SYMBOL(complete_and_exit);
949
754fe8d2 950SYSCALL_DEFINE1(exit, int, error_code)
1da177e4
LT
951{
952 do_exit((error_code&0xff)<<8);
953}
954
1da177e4
LT
955/*
956 * Take down every thread in the group. This is called by fatal signals
957 * as well as by sys_exit_group (below).
958 */
9402c95f 959void
1da177e4
LT
960do_group_exit(int exit_code)
961{
bfc4b089
ON
962 struct signal_struct *sig = current->signal;
963
1da177e4
LT
964 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
965
bfc4b089
ON
966 if (signal_group_exit(sig))
967 exit_code = sig->group_exit_code;
1da177e4 968 else if (!thread_group_empty(current)) {
1da177e4 969 struct sighand_struct *const sighand = current->sighand;
a0be55de 970
1da177e4 971 spin_lock_irq(&sighand->siglock);
ed5d2cac 972 if (signal_group_exit(sig))
1da177e4
LT
973 /* Another thread got here before we took the lock. */
974 exit_code = sig->group_exit_code;
975 else {
1da177e4 976 sig->group_exit_code = exit_code;
ed5d2cac 977 sig->flags = SIGNAL_GROUP_EXIT;
1da177e4
LT
978 zap_other_threads(current);
979 }
980 spin_unlock_irq(&sighand->siglock);
1da177e4
LT
981 }
982
983 do_exit(exit_code);
984 /* NOTREACHED */
985}
986
987/*
988 * this kills every thread in the thread group. Note that any externally
989 * wait4()-ing process will get the correct exit code - even if this
990 * thread is not the thread group leader.
991 */
754fe8d2 992SYSCALL_DEFINE1(exit_group, int, error_code)
1da177e4
LT
993{
994 do_group_exit((error_code & 0xff) << 8);
2ed7c03e
HC
995 /* NOTREACHED */
996 return 0;
1da177e4
LT
997}
998
67d7ddde
AV
999struct waitid_info {
1000 pid_t pid;
1001 uid_t uid;
1002 int status;
1003 int cause;
1004};
1005
9e8ae01d
ON
1006struct wait_opts {
1007 enum pid_type wo_type;
9e8ae01d 1008 int wo_flags;
e1eb1ebc 1009 struct pid *wo_pid;
9e8ae01d 1010
67d7ddde 1011 struct waitid_info *wo_info;
359566fa 1012 int wo_stat;
ce72a16f 1013 struct rusage *wo_rusage;
9e8ae01d 1014
0b7570e7 1015 wait_queue_t child_wait;
9e8ae01d
ON
1016 int notask_error;
1017};
1018
989264f4
ON
1019static inline
1020struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
161550d7 1021{
989264f4
ON
1022 if (type != PIDTYPE_PID)
1023 task = task->group_leader;
1024 return task->pids[type].pid;
161550d7
EB
1025}
1026
989264f4 1027static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1da177e4 1028{
5c01ba49
ON
1029 return wo->wo_type == PIDTYPE_MAX ||
1030 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1031}
1da177e4 1032
bf959931
ON
1033static int
1034eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
5c01ba49
ON
1035{
1036 if (!eligible_pid(wo, p))
1037 return 0;
bf959931
ON
1038
1039 /*
1040 * Wait for all children (clone and not) if __WALL is set or
1041 * if it is traced by us.
1042 */
1043 if (ptrace || (wo->wo_flags & __WALL))
1044 return 1;
1045
1046 /*
1047 * Otherwise, wait for clone children *only* if __WCLONE is set;
1048 * otherwise, wait for non-clone children *only*.
1049 *
1050 * Note: a "clone" child here is one that reports to its parent
1051 * using a signal other than SIGCHLD, or a non-leader thread which
1052 * we can only see if it is traced by us.
1053 */
1054 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1da177e4 1055 return 0;
1da177e4 1056
14dd0b81 1057 return 1;
1da177e4
LT
1058}
1059
9e8ae01d
ON
1060static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1061 pid_t pid, uid_t uid, int why, int status)
1da177e4 1062{
67d7ddde 1063 struct waitid_info *infop;
ce72a16f 1064
1da177e4 1065 put_task_struct(p);
9e8ae01d 1066 infop = wo->wo_info;
b6fe2d11 1067 if (infop) {
67d7ddde
AV
1068 infop->cause = why;
1069 infop->pid = pid;
1070 infop->uid = uid;
1071 infop->status = status;
b6fe2d11 1072 }
67d7ddde 1073 return pid;
1da177e4
LT
1074}
1075
1076/*
1077 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1078 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1079 * the lock and this task is uninteresting. If we return nonzero, we have
1080 * released the lock and the system call should return.
1081 */
9e8ae01d 1082static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1da177e4 1083{
67d7ddde 1084 int state, status;
6c5f3e7b 1085 pid_t pid = task_pid_vnr(p);
43e13cc1 1086 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
67d7ddde 1087 struct waitid_info *infop;
1da177e4 1088
9e8ae01d 1089 if (!likely(wo->wo_flags & WEXITED))
98abed02
RM
1090 return 0;
1091
9e8ae01d 1092 if (unlikely(wo->wo_flags & WNOWAIT)) {
1da177e4 1093 int exit_code = p->exit_code;
f3abd4f9 1094 int why;
1da177e4 1095
1da177e4
LT
1096 get_task_struct(p);
1097 read_unlock(&tasklist_lock);
1029a2b5 1098 sched_annotate_sleep();
e61a2502
AV
1099 if (wo->wo_rusage)
1100 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1029a2b5 1101
1da177e4
LT
1102 if ((exit_code & 0x7f) == 0) {
1103 why = CLD_EXITED;
1104 status = exit_code >> 8;
1105 } else {
1106 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1107 status = exit_code & 0x7f;
1108 }
9e8ae01d 1109 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1da177e4 1110 }
1da177e4 1111 /*
abd50b39 1112 * Move the task's state to DEAD/TRACE, only one thread can do this.
1da177e4 1113 */
f6507f83
ON
1114 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1115 EXIT_TRACE : EXIT_DEAD;
abd50b39 1116 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1da177e4 1117 return 0;
986094df
ON
1118 /*
1119 * We own this thread, nobody else can reap it.
1120 */
1121 read_unlock(&tasklist_lock);
1122 sched_annotate_sleep();
f6507f83 1123
befca967 1124 /*
f6507f83 1125 * Check thread_group_leader() to exclude the traced sub-threads.
befca967 1126 */
f6507f83 1127 if (state == EXIT_DEAD && thread_group_leader(p)) {
f953ccd0
ON
1128 struct signal_struct *sig = p->signal;
1129 struct signal_struct *psig = current->signal;
1f10206c 1130 unsigned long maxrss;
5613fda9 1131 u64 tgutime, tgstime;
3795e161 1132
1da177e4
LT
1133 /*
1134 * The resource counters for the group leader are in its
1135 * own task_struct. Those for dead threads in the group
1136 * are in its signal_struct, as are those for the child
1137 * processes it has previously reaped. All these
1138 * accumulate in the parent's signal_struct c* fields.
1139 *
1140 * We don't bother to take a lock here to protect these
f953ccd0
ON
1141 * p->signal fields because the whole thread group is dead
1142 * and nobody can change them.
1143 *
1144 * psig->stats_lock also protects us from our sub-theads
1145 * which can reap other children at the same time. Until
1146 * we change k_getrusage()-like users to rely on this lock
1147 * we have to take ->siglock as well.
0cf55e1e 1148 *
a0be55de
IA
1149 * We use thread_group_cputime_adjusted() to get times for
1150 * the thread group, which consolidates times for all threads
1151 * in the group including the group leader.
1da177e4 1152 */
e80d0a1a 1153 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
f953ccd0 1154 spin_lock_irq(&current->sighand->siglock);
e78c3496 1155 write_seqlock(&psig->stats_lock);
64861634
MS
1156 psig->cutime += tgutime + sig->cutime;
1157 psig->cstime += tgstime + sig->cstime;
6fac4829 1158 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
3795e161
JJ
1159 psig->cmin_flt +=
1160 p->min_flt + sig->min_flt + sig->cmin_flt;
1161 psig->cmaj_flt +=
1162 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1163 psig->cnvcsw +=
1164 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1165 psig->cnivcsw +=
1166 p->nivcsw + sig->nivcsw + sig->cnivcsw;
6eaeeaba
ED
1167 psig->cinblock +=
1168 task_io_get_inblock(p) +
1169 sig->inblock + sig->cinblock;
1170 psig->coublock +=
1171 task_io_get_oublock(p) +
1172 sig->oublock + sig->coublock;
1f10206c
JP
1173 maxrss = max(sig->maxrss, sig->cmaxrss);
1174 if (psig->cmaxrss < maxrss)
1175 psig->cmaxrss = maxrss;
5995477a
AR
1176 task_io_accounting_add(&psig->ioac, &p->ioac);
1177 task_io_accounting_add(&psig->ioac, &sig->ioac);
e78c3496 1178 write_sequnlock(&psig->stats_lock);
f953ccd0 1179 spin_unlock_irq(&current->sighand->siglock);
1da177e4
LT
1180 }
1181
ce72a16f
AV
1182 if (wo->wo_rusage)
1183 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1da177e4
LT
1184 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1185 ? p->signal->group_exit_code : p->exit_code;
359566fa 1186 wo->wo_stat = status;
9e8ae01d
ON
1187
1188 infop = wo->wo_info;
67d7ddde 1189 if (infop) {
1da177e4 1190 if ((status & 0x7f) == 0) {
67d7ddde
AV
1191 infop->cause = CLD_EXITED;
1192 infop->status = status >> 8;
1da177e4 1193 } else {
67d7ddde
AV
1194 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1195 infop->status = status & 0x7f;
1da177e4 1196 }
67d7ddde
AV
1197 infop->pid = pid;
1198 infop->uid = uid;
1da177e4 1199 }
2f4e6e2a 1200
b4360690 1201 if (state == EXIT_TRACE) {
1da177e4 1202 write_lock_irq(&tasklist_lock);
2f4e6e2a
ON
1203 /* We dropped tasklist, ptracer could die and untrace */
1204 ptrace_unlink(p);
b4360690
ON
1205
1206 /* If parent wants a zombie, don't release it now */
1207 state = EXIT_ZOMBIE;
1208 if (do_notify_parent(p, p->exit_signal))
1209 state = EXIT_DEAD;
abd50b39 1210 p->exit_state = state;
1da177e4
LT
1211 write_unlock_irq(&tasklist_lock);
1212 }
abd50b39 1213 if (state == EXIT_DEAD)
1da177e4 1214 release_task(p);
2f4e6e2a 1215
67d7ddde 1216 return pid;
1da177e4
LT
1217}
1218
90bc8d8b
ON
1219static int *task_stopped_code(struct task_struct *p, bool ptrace)
1220{
1221 if (ptrace) {
570ac933 1222 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
90bc8d8b
ON
1223 return &p->exit_code;
1224 } else {
1225 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1226 return &p->signal->group_exit_code;
1227 }
1228 return NULL;
1229}
1230
19e27463
TH
1231/**
1232 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1233 * @wo: wait options
1234 * @ptrace: is the wait for ptrace
1235 * @p: task to wait for
1236 *
1237 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1238 *
1239 * CONTEXT:
1240 * read_lock(&tasklist_lock), which is released if return value is
1241 * non-zero. Also, grabs and releases @p->sighand->siglock.
1242 *
1243 * RETURNS:
1244 * 0 if wait condition didn't exist and search for other wait conditions
1245 * should continue. Non-zero return, -errno on failure and @p's pid on
1246 * success, implies that tasklist_lock is released and wait condition
1247 * search should terminate.
1da177e4 1248 */
9e8ae01d
ON
1249static int wait_task_stopped(struct wait_opts *wo,
1250 int ptrace, struct task_struct *p)
1da177e4 1251{
67d7ddde
AV
1252 struct waitid_info *infop;
1253 int exit_code, *p_code, why;
ee7c82da 1254 uid_t uid = 0; /* unneeded, required by compiler */
c8950783 1255 pid_t pid;
1da177e4 1256
47918025
ON
1257 /*
1258 * Traditionally we see ptrace'd stopped tasks regardless of options.
1259 */
9e8ae01d 1260 if (!ptrace && !(wo->wo_flags & WUNTRACED))
98abed02
RM
1261 return 0;
1262
19e27463
TH
1263 if (!task_stopped_code(p, ptrace))
1264 return 0;
1265
ee7c82da
ON
1266 exit_code = 0;
1267 spin_lock_irq(&p->sighand->siglock);
1268
90bc8d8b
ON
1269 p_code = task_stopped_code(p, ptrace);
1270 if (unlikely(!p_code))
ee7c82da
ON
1271 goto unlock_sig;
1272
90bc8d8b 1273 exit_code = *p_code;
ee7c82da
ON
1274 if (!exit_code)
1275 goto unlock_sig;
1276
9e8ae01d 1277 if (!unlikely(wo->wo_flags & WNOWAIT))
90bc8d8b 1278 *p_code = 0;
ee7c82da 1279
8ca937a6 1280 uid = from_kuid_munged(current_user_ns(), task_uid(p));
ee7c82da
ON
1281unlock_sig:
1282 spin_unlock_irq(&p->sighand->siglock);
1283 if (!exit_code)
1da177e4
LT
1284 return 0;
1285
1286 /*
1287 * Now we are pretty sure this task is interesting.
1288 * Make sure it doesn't get reaped out from under us while we
1289 * give up the lock and then examine it below. We don't want to
1290 * keep holding onto the tasklist_lock while we call getrusage and
1291 * possibly take page faults for user memory.
1292 */
1293 get_task_struct(p);
6c5f3e7b 1294 pid = task_pid_vnr(p);
f470021a 1295 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1da177e4 1296 read_unlock(&tasklist_lock);
1029a2b5 1297 sched_annotate_sleep();
e61a2502
AV
1298 if (wo->wo_rusage)
1299 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1da177e4 1300
9e8ae01d
ON
1301 if (unlikely(wo->wo_flags & WNOWAIT))
1302 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1303
359566fa 1304 wo->wo_stat = (exit_code << 8) | 0x7f;
1da177e4 1305
9e8ae01d 1306 infop = wo->wo_info;
67d7ddde
AV
1307 if (infop) {
1308 infop->cause = why;
1309 infop->status = exit_code;
1310 infop->pid = pid;
1311 infop->uid = uid;
1312 }
1da177e4
LT
1313 put_task_struct(p);
1314
67d7ddde
AV
1315 BUG_ON(!pid);
1316 return pid;
1da177e4
LT
1317}
1318
1319/*
1320 * Handle do_wait work for one task in a live, non-stopped state.
1321 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1322 * the lock and this task is uninteresting. If we return nonzero, we have
1323 * released the lock and the system call should return.
1324 */
9e8ae01d 1325static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1da177e4
LT
1326{
1327 int retval;
1328 pid_t pid;
1329 uid_t uid;
1330
9e8ae01d 1331 if (!unlikely(wo->wo_flags & WCONTINUED))
98abed02
RM
1332 return 0;
1333
1da177e4
LT
1334 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1335 return 0;
1336
1337 spin_lock_irq(&p->sighand->siglock);
1338 /* Re-check with the lock held. */
1339 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1340 spin_unlock_irq(&p->sighand->siglock);
1341 return 0;
1342 }
9e8ae01d 1343 if (!unlikely(wo->wo_flags & WNOWAIT))
1da177e4 1344 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
8ca937a6 1345 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1da177e4
LT
1346 spin_unlock_irq(&p->sighand->siglock);
1347
6c5f3e7b 1348 pid = task_pid_vnr(p);
1da177e4
LT
1349 get_task_struct(p);
1350 read_unlock(&tasklist_lock);
1029a2b5 1351 sched_annotate_sleep();
e61a2502
AV
1352 if (wo->wo_rusage)
1353 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1da177e4 1354
9e8ae01d 1355 if (!wo->wo_info) {
1da177e4 1356 put_task_struct(p);
359566fa
AV
1357 wo->wo_stat = 0xffff;
1358 retval = pid;
1da177e4 1359 } else {
9e8ae01d
ON
1360 retval = wait_noreap_copyout(wo, p, pid, uid,
1361 CLD_CONTINUED, SIGCONT);
1da177e4
LT
1362 BUG_ON(retval == 0);
1363 }
1364
1365 return retval;
1366}
1367
98abed02
RM
1368/*
1369 * Consider @p for a wait by @parent.
1370 *
9e8ae01d 1371 * -ECHILD should be in ->notask_error before the first call.
98abed02
RM
1372 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1373 * Returns zero if the search for a child should continue;
9e8ae01d 1374 * then ->notask_error is 0 if @p is an eligible child,
3a2f5a59 1375 * or still -ECHILD.
98abed02 1376 */
b6e763f0
ON
1377static int wait_consider_task(struct wait_opts *wo, int ptrace,
1378 struct task_struct *p)
98abed02 1379{
3245d6ac
ON
1380 /*
1381 * We can race with wait_task_zombie() from another thread.
1382 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1383 * can't confuse the checks below.
1384 */
1385 int exit_state = ACCESS_ONCE(p->exit_state);
b3ab0316
ON
1386 int ret;
1387
3245d6ac 1388 if (unlikely(exit_state == EXIT_DEAD))
b3ab0316
ON
1389 return 0;
1390
bf959931 1391 ret = eligible_child(wo, ptrace, p);
14dd0b81 1392 if (!ret)
98abed02
RM
1393 return ret;
1394
3245d6ac 1395 if (unlikely(exit_state == EXIT_TRACE)) {
50b8d257 1396 /*
abd50b39
ON
1397 * ptrace == 0 means we are the natural parent. In this case
1398 * we should clear notask_error, debugger will notify us.
50b8d257 1399 */
abd50b39 1400 if (likely(!ptrace))
50b8d257 1401 wo->notask_error = 0;
823b018e 1402 return 0;
50b8d257 1403 }
823b018e 1404
377d75da
ON
1405 if (likely(!ptrace) && unlikely(p->ptrace)) {
1406 /*
1407 * If it is traced by its real parent's group, just pretend
1408 * the caller is ptrace_do_wait() and reap this child if it
1409 * is zombie.
1410 *
1411 * This also hides group stop state from real parent; otherwise
1412 * a single stop can be reported twice as group and ptrace stop.
1413 * If a ptracer wants to distinguish these two events for its
1414 * own children it should create a separate process which takes
1415 * the role of real parent.
1416 */
1417 if (!ptrace_reparented(p))
1418 ptrace = 1;
1419 }
1420
45cb24a1 1421 /* slay zombie? */
3245d6ac 1422 if (exit_state == EXIT_ZOMBIE) {
9b84cca2 1423 /* we don't reap group leaders with subthreads */
7c733eb3
ON
1424 if (!delay_group_leader(p)) {
1425 /*
1426 * A zombie ptracee is only visible to its ptracer.
1427 * Notification and reaping will be cascaded to the
1428 * real parent when the ptracer detaches.
1429 */
1430 if (unlikely(ptrace) || likely(!p->ptrace))
1431 return wait_task_zombie(wo, p);
1432 }
98abed02 1433
f470021a 1434 /*
9b84cca2
TH
1435 * Allow access to stopped/continued state via zombie by
1436 * falling through. Clearing of notask_error is complex.
1437 *
1438 * When !@ptrace:
1439 *
1440 * If WEXITED is set, notask_error should naturally be
1441 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1442 * so, if there are live subthreads, there are events to
1443 * wait for. If all subthreads are dead, it's still safe
1444 * to clear - this function will be called again in finite
1445 * amount time once all the subthreads are released and
1446 * will then return without clearing.
1447 *
1448 * When @ptrace:
1449 *
1450 * Stopped state is per-task and thus can't change once the
1451 * target task dies. Only continued and exited can happen.
1452 * Clear notask_error if WCONTINUED | WEXITED.
1453 */
1454 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1455 wo->notask_error = 0;
1456 } else {
1457 /*
1458 * @p is alive and it's gonna stop, continue or exit, so
1459 * there always is something to wait for.
f470021a 1460 */
9e8ae01d 1461 wo->notask_error = 0;
f470021a
RM
1462 }
1463
98abed02 1464 /*
45cb24a1
TH
1465 * Wait for stopped. Depending on @ptrace, different stopped state
1466 * is used and the two don't interact with each other.
98abed02 1467 */
19e27463
TH
1468 ret = wait_task_stopped(wo, ptrace, p);
1469 if (ret)
1470 return ret;
98abed02
RM
1471
1472 /*
45cb24a1
TH
1473 * Wait for continued. There's only one continued state and the
1474 * ptracer can consume it which can confuse the real parent. Don't
1475 * use WCONTINUED from ptracer. You don't need or want it.
98abed02 1476 */
9e8ae01d 1477 return wait_task_continued(wo, p);
98abed02
RM
1478}
1479
1480/*
1481 * Do the work of do_wait() for one thread in the group, @tsk.
1482 *
9e8ae01d 1483 * -ECHILD should be in ->notask_error before the first call.
98abed02
RM
1484 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1485 * Returns zero if the search for a child should continue; then
9e8ae01d 1486 * ->notask_error is 0 if there were any eligible children,
3a2f5a59 1487 * or still -ECHILD.
98abed02 1488 */
9e8ae01d 1489static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
98abed02
RM
1490{
1491 struct task_struct *p;
1492
1493 list_for_each_entry(p, &tsk->children, sibling) {
9cd80bbb 1494 int ret = wait_consider_task(wo, 0, p);
a0be55de 1495
9cd80bbb
ON
1496 if (ret)
1497 return ret;
98abed02
RM
1498 }
1499
1500 return 0;
1501}
1502
9e8ae01d 1503static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
98abed02
RM
1504{
1505 struct task_struct *p;
1506
f470021a 1507 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
b6e763f0 1508 int ret = wait_consider_task(wo, 1, p);
a0be55de 1509
f470021a 1510 if (ret)
98abed02 1511 return ret;
98abed02
RM
1512 }
1513
1514 return 0;
1515}
1516
0b7570e7
ON
1517static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1518 int sync, void *key)
1519{
1520 struct wait_opts *wo = container_of(wait, struct wait_opts,
1521 child_wait);
1522 struct task_struct *p = key;
1523
5c01ba49 1524 if (!eligible_pid(wo, p))
0b7570e7
ON
1525 return 0;
1526
b4fe5182
ON
1527 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1528 return 0;
1529
0b7570e7
ON
1530 return default_wake_function(wait, mode, sync, key);
1531}
1532
a7f0765e
ON
1533void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1534{
0b7570e7
ON
1535 __wake_up_sync_key(&parent->signal->wait_chldexit,
1536 TASK_INTERRUPTIBLE, 1, p);
a7f0765e
ON
1537}
1538
9e8ae01d 1539static long do_wait(struct wait_opts *wo)
1da177e4 1540{
1da177e4 1541 struct task_struct *tsk;
98abed02 1542 int retval;
1da177e4 1543
9e8ae01d 1544 trace_sched_process_wait(wo->wo_pid);
0a16b607 1545
0b7570e7
ON
1546 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1547 wo->child_wait.private = current;
1548 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1da177e4 1549repeat:
98abed02 1550 /*
3da56d16 1551 * If there is nothing that can match our criteria, just get out.
9e8ae01d
ON
1552 * We will clear ->notask_error to zero if we see any child that
1553 * might later match our criteria, even if we are not able to reap
1554 * it yet.
98abed02 1555 */
64a16caf 1556 wo->notask_error = -ECHILD;
9e8ae01d
ON
1557 if ((wo->wo_type < PIDTYPE_MAX) &&
1558 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
64a16caf 1559 goto notask;
161550d7 1560
f95d39d1 1561 set_current_state(TASK_INTERRUPTIBLE);
1da177e4
LT
1562 read_lock(&tasklist_lock);
1563 tsk = current;
1564 do {
64a16caf
ON
1565 retval = do_wait_thread(wo, tsk);
1566 if (retval)
1567 goto end;
9e8ae01d 1568
64a16caf
ON
1569 retval = ptrace_do_wait(wo, tsk);
1570 if (retval)
98abed02 1571 goto end;
98abed02 1572
9e8ae01d 1573 if (wo->wo_flags & __WNOTHREAD)
1da177e4 1574 break;
a3f6dfb7 1575 } while_each_thread(current, tsk);
1da177e4 1576 read_unlock(&tasklist_lock);
f2cc3eb1 1577
64a16caf 1578notask:
9e8ae01d
ON
1579 retval = wo->notask_error;
1580 if (!retval && !(wo->wo_flags & WNOHANG)) {
1da177e4 1581 retval = -ERESTARTSYS;
98abed02
RM
1582 if (!signal_pending(current)) {
1583 schedule();
1584 goto repeat;
1585 }
1da177e4 1586 }
1da177e4 1587end:
f95d39d1 1588 __set_current_state(TASK_RUNNING);
0b7570e7 1589 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1da177e4
LT
1590 return retval;
1591}
1592
67d7ddde 1593static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
ce72a16f 1594 int options, struct rusage *ru)
1da177e4 1595{
9e8ae01d 1596 struct wait_opts wo;
161550d7
EB
1597 struct pid *pid = NULL;
1598 enum pid_type type;
1da177e4
LT
1599 long ret;
1600
91c4e8ea
ON
1601 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1602 __WNOTHREAD|__WCLONE|__WALL))
1da177e4
LT
1603 return -EINVAL;
1604 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1605 return -EINVAL;
1606
1607 switch (which) {
1608 case P_ALL:
161550d7 1609 type = PIDTYPE_MAX;
1da177e4
LT
1610 break;
1611 case P_PID:
161550d7
EB
1612 type = PIDTYPE_PID;
1613 if (upid <= 0)
1da177e4
LT
1614 return -EINVAL;
1615 break;
1616 case P_PGID:
161550d7
EB
1617 type = PIDTYPE_PGID;
1618 if (upid <= 0)
1da177e4 1619 return -EINVAL;
1da177e4
LT
1620 break;
1621 default:
1622 return -EINVAL;
1623 }
1624
161550d7
EB
1625 if (type < PIDTYPE_MAX)
1626 pid = find_get_pid(upid);
9e8ae01d
ON
1627
1628 wo.wo_type = type;
1629 wo.wo_pid = pid;
1630 wo.wo_flags = options;
1631 wo.wo_info = infop;
9e8ae01d
ON
1632 wo.wo_rusage = ru;
1633 ret = do_wait(&wo);
dfe16dfa 1634
67d7ddde 1635 if (ret > 0)
dfe16dfa 1636 ret = 0;
dfe16dfa 1637
161550d7 1638 put_pid(pid);
1da177e4
LT
1639 return ret;
1640}
1641
ce72a16f
AV
1642SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1643 infop, int, options, struct rusage __user *, ru)
1644{
1645 struct rusage r;
67d7ddde
AV
1646 struct waitid_info info = {.status = 0};
1647 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
ce72a16f
AV
1648
1649 if (!err) {
1650 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1651 return -EFAULT;
1652 }
67d7ddde
AV
1653 if (!infop)
1654 return err;
1655
1656 if (put_user(err ? 0 : SIGCHLD, &infop->si_signo) ||
1657 put_user(0, &infop->si_errno) ||
1658 put_user((short)info.cause, &infop->si_code) ||
1659 put_user(info.pid, &infop->si_pid) ||
1660 put_user(info.uid, &infop->si_uid) ||
1661 put_user(info.status, &infop->si_status))
1662 err = -EFAULT;
1663
ce72a16f
AV
1664 return err;
1665}
1666
1667static long kernel_wait4(pid_t upid, int __user *stat_addr,
1668 int options, struct rusage *ru)
1da177e4 1669{
9e8ae01d 1670 struct wait_opts wo;
161550d7
EB
1671 struct pid *pid = NULL;
1672 enum pid_type type;
1da177e4
LT
1673 long ret;
1674
1675 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1676 __WNOTHREAD|__WCLONE|__WALL))
1677 return -EINVAL;
161550d7
EB
1678
1679 if (upid == -1)
1680 type = PIDTYPE_MAX;
1681 else if (upid < 0) {
1682 type = PIDTYPE_PGID;
1683 pid = find_get_pid(-upid);
1684 } else if (upid == 0) {
1685 type = PIDTYPE_PGID;
2ae448ef 1686 pid = get_task_pid(current, PIDTYPE_PGID);
161550d7
EB
1687 } else /* upid > 0 */ {
1688 type = PIDTYPE_PID;
1689 pid = find_get_pid(upid);
1690 }
1691
9e8ae01d
ON
1692 wo.wo_type = type;
1693 wo.wo_pid = pid;
1694 wo.wo_flags = options | WEXITED;
1695 wo.wo_info = NULL;
359566fa 1696 wo.wo_stat = 0;
9e8ae01d
ON
1697 wo.wo_rusage = ru;
1698 ret = do_wait(&wo);
161550d7 1699 put_pid(pid);
359566fa
AV
1700 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1701 ret = -EFAULT;
1da177e4 1702
1da177e4
LT
1703 return ret;
1704}
1705
ce72a16f
AV
1706SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1707 int, options, struct rusage __user *, ru)
1708{
1709 struct rusage r;
1710 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1711
1712 if (err > 0) {
1713 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1714 return -EFAULT;
1715 }
1716 return err;
1717}
1718
1da177e4
LT
1719#ifdef __ARCH_WANT_SYS_WAITPID
1720
1721/*
1722 * sys_waitpid() remains for compatibility. waitpid() should be
1723 * implemented by calling sys_wait4() from libc.a.
1724 */
17da2bd9 1725SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1da177e4
LT
1726{
1727 return sys_wait4(pid, stat_addr, options, NULL);
1728}
1729
1730#endif
7e95a225
AV
1731
1732#ifdef CONFIG_COMPAT
1733COMPAT_SYSCALL_DEFINE4(wait4,
1734 compat_pid_t, pid,
1735 compat_uint_t __user *, stat_addr,
1736 int, options,
1737 struct compat_rusage __user *, ru)
1738{
ce72a16f
AV
1739 struct rusage r;
1740 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1741 if (err > 0) {
1742 if (ru && put_compat_rusage(&r, ru))
1743 return -EFAULT;
7e95a225 1744 }
ce72a16f 1745 return err;
7e95a225
AV
1746}
1747
1748COMPAT_SYSCALL_DEFINE5(waitid,
1749 int, which, compat_pid_t, pid,
1750 struct compat_siginfo __user *, infop, int, options,
1751 struct compat_rusage __user *, uru)
1752{
7e95a225 1753 struct rusage ru;
67d7ddde
AV
1754 struct waitid_info info = {.status = 0};
1755 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
7e95a225 1756
67d7ddde
AV
1757 if (!err && uru) {
1758 /* kernel_waitid() overwrites everything in ru */
7e95a225 1759 if (COMPAT_USE_64BIT_TIME)
67d7ddde 1760 err = copy_to_user(uru, &ru, sizeof(ru));
7e95a225 1761 else
67d7ddde
AV
1762 err = put_compat_rusage(&ru, uru);
1763 if (err)
7e95a225
AV
1764 return -EFAULT;
1765 }
1766
67d7ddde
AV
1767 if (put_user(err ? 0 : SIGCHLD, &infop->si_signo) ||
1768 put_user(0, &infop->si_errno) ||
1769 put_user((short)info.cause, &infop->si_code) ||
1770 put_user(info.pid, &infop->si_pid) ||
1771 put_user(info.uid, &infop->si_uid) ||
1772 put_user(info.status, &infop->si_status))
1773 err = -EFAULT;
1774 return err;
7e95a225
AV
1775}
1776#endif