]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/fork.c
UBUNTU: [Config] set CONFIG_PINCTRL_MSM8953=m on armhf generic-lpae
[mirror_ubuntu-hirsute-kernel.git] / kernel / fork.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
b3e58382 15#include <linux/anon_inodes.h>
1da177e4 16#include <linux/slab.h>
4eb5aaa3 17#include <linux/sched/autogroup.h>
6e84f315 18#include <linux/sched/mm.h>
f7ccbae4 19#include <linux/sched/coredump.h>
8703e8a4 20#include <linux/sched/user.h>
6a3827d7 21#include <linux/sched/numa_balancing.h>
03441a34 22#include <linux/sched/stat.h>
29930025 23#include <linux/sched/task.h>
68db0cf1 24#include <linux/sched/task_stack.h>
32ef5517 25#include <linux/sched/cputime.h>
b3e58382 26#include <linux/seq_file.h>
037741a6 27#include <linux/rtmutex.h>
1da177e4
LT
28#include <linux/init.h>
29#include <linux/unistd.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
1da177e4
LT
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
9f3acc31 37#include <linux/fdtable.h>
da9cbc87 38#include <linux/iocontext.h>
1da177e4
LT
39#include <linux/key.h>
40#include <linux/binfmts.h>
41#include <linux/mman.h>
cddb8a5c 42#include <linux/mmu_notifier.h>
1da177e4 43#include <linux/fs.h>
615d6e87
DB
44#include <linux/mm.h>
45#include <linux/vmacache.h>
ab516013 46#include <linux/nsproxy.h>
c59ede7b 47#include <linux/capability.h>
1da177e4 48#include <linux/cpu.h>
b4f48b63 49#include <linux/cgroup.h>
1da177e4 50#include <linux/security.h>
a1e78772 51#include <linux/hugetlb.h>
e2cfabdf 52#include <linux/seccomp.h>
1da177e4
LT
53#include <linux/swap.h>
54#include <linux/syscalls.h>
55#include <linux/jiffies.h>
56#include <linux/futex.h>
8141c7f3 57#include <linux/compat.h>
207205a2 58#include <linux/kthread.h>
7c3ab738 59#include <linux/task_io_accounting_ops.h>
ab2af1f5 60#include <linux/rcupdate.h>
1da177e4
LT
61#include <linux/ptrace.h>
62#include <linux/mount.h>
63#include <linux/audit.h>
78fb7466 64#include <linux/memcontrol.h>
f201ae23 65#include <linux/ftrace.h>
5e2bf014 66#include <linux/proc_fs.h>
1da177e4
LT
67#include <linux/profile.h>
68#include <linux/rmap.h>
f8af4da3 69#include <linux/ksm.h>
1da177e4 70#include <linux/acct.h>
893e26e6 71#include <linux/userfaultfd_k.h>
8f0ab514 72#include <linux/tsacct_kern.h>
9f46080c 73#include <linux/cn_proc.h>
ba96a0c8 74#include <linux/freezer.h>
ca74e92b 75#include <linux/delayacct.h>
ad4ecbcb 76#include <linux/taskstats_kern.h>
0a425405 77#include <linux/random.h>
522ed776 78#include <linux/tty.h>
fd0928df 79#include <linux/blkdev.h>
5ad4e53b 80#include <linux/fs_struct.h>
7c9f8861 81#include <linux/magic.h>
cdd6c482 82#include <linux/perf_event.h>
42c4ab41 83#include <linux/posix-timers.h>
8e7cac79 84#include <linux/user-return-notifier.h>
3d5992d2 85#include <linux/oom.h>
ba76149f 86#include <linux/khugepaged.h>
d80e731e 87#include <linux/signalfd.h>
0326f5a9 88#include <linux/uprobes.h>
a27bb332 89#include <linux/aio.h>
52f5684c 90#include <linux/compiler.h>
16db3d3f 91#include <linux/sysctl.h>
5c9a8750 92#include <linux/kcov.h>
d83a7cb3 93#include <linux/livepatch.h>
48ac3c18 94#include <linux/thread_info.h>
afaef01c 95#include <linux/stackleak.h>
eafb149e 96#include <linux/kasan.h>
d08b9f0c 97#include <linux/scs.h>
0f212204 98#include <linux/io_uring.h>
1da177e4 99
1da177e4 100#include <asm/pgalloc.h>
7c0f6ba6 101#include <linux/uaccess.h>
1da177e4
LT
102#include <asm/mmu_context.h>
103#include <asm/cacheflush.h>
104#include <asm/tlbflush.h>
105
ad8d75ff
SR
106#include <trace/events/sched.h>
107
43d2b113
KH
108#define CREATE_TRACE_POINTS
109#include <trace/events/task.h>
e49687f6
SH
110#ifdef CONFIG_USER_NS
111extern int unprivileged_userns_clone;
112#else
113#define unprivileged_userns_clone 0
114#endif
43d2b113 115
ac1b398d
HS
116/*
117 * Minimum number of threads to boot the kernel
118 */
119#define MIN_THREADS 20
120
121/*
122 * Maximum number of threads
123 */
124#define MAX_THREADS FUTEX_TID_MASK
125
1da177e4
LT
126/*
127 * Protected counters by write_lock_irq(&tasklist_lock)
128 */
129unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 130int nr_threads; /* The idle threads do not count.. */
1da177e4 131
8856ae4d 132static int max_threads; /* tunable limit on nr_threads */
1da177e4 133
8495f7e6
SPP
134#define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
135
136static const char * const resident_page_types[] = {
137 NAMED_ARRAY_INDEX(MM_FILEPAGES),
138 NAMED_ARRAY_INDEX(MM_ANONPAGES),
139 NAMED_ARRAY_INDEX(MM_SWAPENTS),
140 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
141};
142
1da177e4
LT
143DEFINE_PER_CPU(unsigned long, process_counts) = 0;
144
c59923a1 145__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
146
147#ifdef CONFIG_PROVE_RCU
148int lockdep_tasklist_lock_is_held(void)
149{
150 return lockdep_is_held(&tasklist_lock);
151}
152EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
153#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
154
155int nr_processes(void)
156{
157 int cpu;
158 int total = 0;
159
1d510750 160 for_each_possible_cpu(cpu)
1da177e4
LT
161 total += per_cpu(process_counts, cpu);
162
163 return total;
164}
165
f19b9f74
AM
166void __weak arch_release_task_struct(struct task_struct *tsk)
167{
168}
169
f5e10287 170#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
e18b890b 171static struct kmem_cache *task_struct_cachep;
41101809
TG
172
173static inline struct task_struct *alloc_task_struct_node(int node)
174{
175 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
176}
177
41101809
TG
178static inline void free_task_struct(struct task_struct *tsk)
179{
41101809
TG
180 kmem_cache_free(task_struct_cachep, tsk);
181}
1da177e4
LT
182#endif
183
b235beea 184#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
41101809 185
0d15d74a
TG
186/*
187 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
188 * kmemcache based allocator.
189 */
ba14a194 190# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4
AL
191
192#ifdef CONFIG_VMAP_STACK
193/*
194 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
195 * flush. Try to minimize the number of calls by caching stacks.
196 */
197#define NR_CACHED_STACKS 2
198static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59
HR
199
200static int free_vm_stack_cache(unsigned int cpu)
201{
202 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
203 int i;
204
205 for (i = 0; i < NR_CACHED_STACKS; i++) {
206 struct vm_struct *vm_stack = cached_vm_stacks[i];
207
208 if (!vm_stack)
209 continue;
210
211 vfree(vm_stack->addr);
212 cached_vm_stacks[i] = NULL;
213 }
214
215 return 0;
216}
ac496bf4
AL
217#endif
218
ba14a194 219static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 220{
ba14a194 221#ifdef CONFIG_VMAP_STACK
ac496bf4
AL
222 void *stack;
223 int i;
224
ac496bf4 225 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
226 struct vm_struct *s;
227
228 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
229
230 if (!s)
231 continue;
ac496bf4 232
cebd0eb2
AK
233 /* Mark stack accessible for KASAN. */
234 kasan_unpoison_range(s->addr, THREAD_SIZE);
eafb149e 235
ca182551
KK
236 /* Clear stale pointers from reused stack. */
237 memset(s->addr, 0, THREAD_SIZE);
e01e8063 238
ac496bf4 239 tsk->stack_vm_area = s;
ba4a4574 240 tsk->stack = s->addr;
ac496bf4
AL
241 return s->addr;
242 }
ac496bf4 243
9b6f7e16
RG
244 /*
245 * Allocated stacks are cached and later reused by new threads,
246 * so memcg accounting is performed manually on assigning/releasing
247 * stacks to tasks. Drop __GFP_ACCOUNT.
248 */
48ac3c18 249 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
ac496bf4 250 VMALLOC_START, VMALLOC_END,
9b6f7e16 251 THREADINFO_GFP & ~__GFP_ACCOUNT,
ac496bf4
AL
252 PAGE_KERNEL,
253 0, node, __builtin_return_address(0));
ba14a194
AL
254
255 /*
256 * We can't call find_vm_area() in interrupt context, and
257 * free_thread_stack() can be called in interrupt context,
258 * so cache the vm_struct.
259 */
5eed6f1d 260 if (stack) {
ba14a194 261 tsk->stack_vm_area = find_vm_area(stack);
5eed6f1d
RR
262 tsk->stack = stack;
263 }
ba14a194
AL
264 return stack;
265#else
4949148a
VD
266 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
267 THREAD_SIZE_ORDER);
b6a84016 268
1bf4580e 269 if (likely(page)) {
8dcc1d34 270 tsk->stack = kasan_reset_tag(page_address(page));
1bf4580e
AA
271 return tsk->stack;
272 }
273 return NULL;
ba14a194 274#endif
b69c49b7
FT
275}
276
ba14a194 277static inline void free_thread_stack(struct task_struct *tsk)
b69c49b7 278{
ac496bf4 279#ifdef CONFIG_VMAP_STACK
9b6f7e16
RG
280 struct vm_struct *vm = task_stack_vm_area(tsk);
281
282 if (vm) {
ac496bf4
AL
283 int i;
284
991e7673 285 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
f4b00eab 286 memcg_kmem_uncharge_page(vm->pages[i], 0);
9b6f7e16 287
ac496bf4 288 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
289 if (this_cpu_cmpxchg(cached_stacks[i],
290 NULL, tsk->stack_vm_area) != NULL)
ac496bf4
AL
291 continue;
292
ac496bf4
AL
293 return;
294 }
ac496bf4 295
0f110a9b 296 vfree_atomic(tsk->stack);
ac496bf4
AL
297 return;
298 }
299#endif
300
301 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
b69c49b7 302}
0d15d74a 303# else
b235beea 304static struct kmem_cache *thread_stack_cache;
0d15d74a 305
9521d399 306static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
0d15d74a
TG
307 int node)
308{
5eed6f1d
RR
309 unsigned long *stack;
310 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
8dcc1d34 311 stack = kasan_reset_tag(stack);
5eed6f1d
RR
312 tsk->stack = stack;
313 return stack;
0d15d74a
TG
314}
315
ba14a194 316static void free_thread_stack(struct task_struct *tsk)
0d15d74a 317{
ba14a194 318 kmem_cache_free(thread_stack_cache, tsk->stack);
0d15d74a
TG
319}
320
b235beea 321void thread_stack_cache_init(void)
0d15d74a 322{
f9d29946
DW
323 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
324 THREAD_SIZE, THREAD_SIZE, 0, 0,
325 THREAD_SIZE, NULL);
b235beea 326 BUG_ON(thread_stack_cache == NULL);
0d15d74a
TG
327}
328# endif
b69c49b7
FT
329#endif
330
1da177e4 331/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 332static struct kmem_cache *signal_cachep;
1da177e4
LT
333
334/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 335struct kmem_cache *sighand_cachep;
1da177e4
LT
336
337/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 338struct kmem_cache *files_cachep;
1da177e4
LT
339
340/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 341struct kmem_cache *fs_cachep;
1da177e4
LT
342
343/* SLAB cache for vm_area_struct structures */
3928d4f5 344static struct kmem_cache *vm_area_cachep;
1da177e4
LT
345
346/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 347static struct kmem_cache *mm_cachep;
1da177e4 348
490fc053 349struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
3928d4f5 350{
a670468f 351 struct vm_area_struct *vma;
490fc053 352
a670468f 353 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
027232da
KS
354 if (vma)
355 vma_init(vma, mm);
490fc053 356 return vma;
3928d4f5
LT
357}
358
359struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
360{
95faf699
LT
361 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
362
363 if (new) {
cda099b3
QC
364 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
365 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
366 /*
367 * orig->shared.rb may be modified concurrently, but the clone
368 * will be reinitialized.
369 */
370 *new = data_race(*orig);
95faf699 371 INIT_LIST_HEAD(&new->anon_vma_chain);
e39a4b33 372 new->vm_next = new->vm_prev = NULL;
95faf699
LT
373 }
374 return new;
3928d4f5
LT
375}
376
377void vm_area_free(struct vm_area_struct *vma)
378{
379 kmem_cache_free(vm_area_cachep, vma);
380}
381
ba14a194 382static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 383{
ba14a194
AL
384 void *stack = task_stack_page(tsk);
385 struct vm_struct *vm = task_stack_vm_area(tsk);
386
ba14a194 387
991e7673
SB
388 /* All stack pages are in the same node. */
389 if (vm)
390 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
391 account * (THREAD_SIZE / 1024));
392 else
da3ceeff 393 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
991e7673 394 account * (THREAD_SIZE / 1024));
c6a7f572
KM
395}
396
9b6f7e16
RG
397static int memcg_charge_kernel_stack(struct task_struct *tsk)
398{
399#ifdef CONFIG_VMAP_STACK
400 struct vm_struct *vm = task_stack_vm_area(tsk);
401 int ret;
402
991e7673
SB
403 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
404
9b6f7e16
RG
405 if (vm) {
406 int i;
407
991e7673
SB
408 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
409
9b6f7e16
RG
410 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
411 /*
bcfe06bf
RG
412 * If memcg_kmem_charge_page() fails, page's
413 * memory cgroup pointer is NULL, and
414 * memcg_kmem_uncharge_page() in free_thread_stack()
415 * will ignore this page.
9b6f7e16 416 */
f4b00eab
RG
417 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
418 0);
9b6f7e16
RG
419 if (ret)
420 return ret;
9b6f7e16
RG
421 }
422 }
423#endif
424 return 0;
425}
426
68f24b08 427static void release_task_stack(struct task_struct *tsk)
1da177e4 428{
405c0759
AL
429 if (WARN_ON(tsk->state != TASK_DEAD))
430 return; /* Better to leak the stack than to free prematurely */
431
ba14a194 432 account_kernel_stack(tsk, -1);
ba14a194 433 free_thread_stack(tsk);
68f24b08
AL
434 tsk->stack = NULL;
435#ifdef CONFIG_VMAP_STACK
436 tsk->stack_vm_area = NULL;
437#endif
438}
439
440#ifdef CONFIG_THREAD_INFO_IN_TASK
441void put_task_stack(struct task_struct *tsk)
442{
f0b89d39 443 if (refcount_dec_and_test(&tsk->stack_refcount))
68f24b08
AL
444 release_task_stack(tsk);
445}
446#endif
447
448void free_task(struct task_struct *tsk)
449{
d08b9f0c
ST
450 scs_release(tsk);
451
68f24b08
AL
452#ifndef CONFIG_THREAD_INFO_IN_TASK
453 /*
454 * The task is finally done with both the stack and thread_info,
455 * so free both.
456 */
457 release_task_stack(tsk);
458#else
459 /*
460 * If the task had a separate stack allocation, it should be gone
461 * by now.
462 */
f0b89d39 463 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
68f24b08 464#endif
23f78d4a 465 rt_mutex_debug_task_free(tsk);
fb52607a 466 ftrace_graph_exit_task(tsk);
f19b9f74 467 arch_release_task_struct(tsk);
1da5c46f
ON
468 if (tsk->flags & PF_KTHREAD)
469 free_kthread_struct(tsk);
1da177e4
LT
470 free_task_struct(tsk);
471}
472EXPORT_SYMBOL(free_task);
473
d70f2a14
AM
474#ifdef CONFIG_MMU
475static __latent_entropy int dup_mmap(struct mm_struct *mm,
476 struct mm_struct *oldmm)
477{
478 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
479 struct rb_node **rb_link, *rb_parent;
480 int retval;
481 unsigned long charge;
482 LIST_HEAD(uf);
483
484 uprobe_start_dup_mmap();
d8ed45c5 485 if (mmap_write_lock_killable(oldmm)) {
d70f2a14
AM
486 retval = -EINTR;
487 goto fail_uprobe_end;
488 }
489 flush_cache_dup_mm(oldmm);
490 uprobe_dup_mmap(oldmm, mm);
491 /*
492 * Not linked in yet - no deadlock potential:
493 */
aaa2cc56 494 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
d70f2a14
AM
495
496 /* No ordering required: file already has been exposed. */
497 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
498
499 mm->total_vm = oldmm->total_vm;
500 mm->data_vm = oldmm->data_vm;
501 mm->exec_vm = oldmm->exec_vm;
502 mm->stack_vm = oldmm->stack_vm;
503
504 rb_link = &mm->mm_rb.rb_node;
505 rb_parent = NULL;
506 pprev = &mm->mmap;
507 retval = ksm_fork(mm, oldmm);
508 if (retval)
509 goto out;
510 retval = khugepaged_fork(mm, oldmm);
511 if (retval)
512 goto out;
513
514 prev = NULL;
515 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
516 struct file *file;
517
518 if (mpnt->vm_flags & VM_DONTCOPY) {
519 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
520 continue;
521 }
522 charge = 0;
655c79bb
TH
523 /*
524 * Don't duplicate many vmas if we've been oom-killed (for
525 * example)
526 */
527 if (fatal_signal_pending(current)) {
528 retval = -EINTR;
529 goto out;
530 }
d70f2a14
AM
531 if (mpnt->vm_flags & VM_ACCOUNT) {
532 unsigned long len = vma_pages(mpnt);
533
534 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
535 goto fail_nomem;
536 charge = len;
537 }
3928d4f5 538 tmp = vm_area_dup(mpnt);
d70f2a14
AM
539 if (!tmp)
540 goto fail_nomem;
d70f2a14
AM
541 retval = vma_dup_policy(mpnt, tmp);
542 if (retval)
543 goto fail_nomem_policy;
544 tmp->vm_mm = mm;
545 retval = dup_userfaultfd(tmp, &uf);
546 if (retval)
547 goto fail_nomem_anon_vma_fork;
548 if (tmp->vm_flags & VM_WIPEONFORK) {
93949bb2
LX
549 /*
550 * VM_WIPEONFORK gets a clean slate in the child.
551 * Don't prepare anon_vma until fault since we don't
552 * copy page for current vma.
553 */
d70f2a14 554 tmp->anon_vma = NULL;
d70f2a14
AM
555 } else if (anon_vma_fork(tmp, mpnt))
556 goto fail_nomem_anon_vma_fork;
557 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
d70f2a14
AM
558 file = tmp->vm_file;
559 if (file) {
560 struct inode *inode = file_inode(file);
561 struct address_space *mapping = file->f_mapping;
562
0d331203 563 vma_get_file(tmp);
d70f2a14 564 if (tmp->vm_flags & VM_DENYWRITE)
73eb7f9a 565 put_write_access(inode);
d70f2a14
AM
566 i_mmap_lock_write(mapping);
567 if (tmp->vm_flags & VM_SHARED)
cf508b58 568 mapping_allow_writable(mapping);
d70f2a14
AM
569 flush_dcache_mmap_lock(mapping);
570 /* insert tmp into the share list, just after mpnt */
571 vma_interval_tree_insert_after(tmp, mpnt,
572 &mapping->i_mmap);
573 flush_dcache_mmap_unlock(mapping);
574 i_mmap_unlock_write(mapping);
575 }
576
577 /*
578 * Clear hugetlb-related page reserves for children. This only
579 * affects MAP_PRIVATE mappings. Faults generated by the child
580 * are not guaranteed to succeed, even if read-only
581 */
582 if (is_vm_hugetlb_page(tmp))
583 reset_vma_resv_huge_pages(tmp);
584
585 /*
586 * Link in the new vma and copy the page table entries.
587 */
588 *pprev = tmp;
589 pprev = &tmp->vm_next;
590 tmp->vm_prev = prev;
591 prev = tmp;
592
593 __vma_link_rb(mm, tmp, rb_link, rb_parent);
594 rb_link = &tmp->vm_rb.rb_right;
595 rb_parent = &tmp->vm_rb;
596
597 mm->map_count++;
598 if (!(tmp->vm_flags & VM_WIPEONFORK))
c78f4636 599 retval = copy_page_range(tmp, mpnt);
d70f2a14
AM
600
601 if (tmp->vm_ops && tmp->vm_ops->open)
602 tmp->vm_ops->open(tmp);
603
604 if (retval)
605 goto out;
606 }
607 /* a new mm has just been created */
1ed0cc5a 608 retval = arch_dup_mmap(oldmm, mm);
d70f2a14 609out:
d8ed45c5 610 mmap_write_unlock(mm);
d70f2a14 611 flush_tlb_mm(oldmm);
d8ed45c5 612 mmap_write_unlock(oldmm);
d70f2a14
AM
613 dup_userfaultfd_complete(&uf);
614fail_uprobe_end:
615 uprobe_end_dup_mmap();
616 return retval;
617fail_nomem_anon_vma_fork:
618 mpol_put(vma_policy(tmp));
619fail_nomem_policy:
3928d4f5 620 vm_area_free(tmp);
d70f2a14
AM
621fail_nomem:
622 retval = -ENOMEM;
623 vm_unacct_memory(charge);
624 goto out;
625}
626
627static inline int mm_alloc_pgd(struct mm_struct *mm)
628{
629 mm->pgd = pgd_alloc(mm);
630 if (unlikely(!mm->pgd))
631 return -ENOMEM;
632 return 0;
633}
634
635static inline void mm_free_pgd(struct mm_struct *mm)
636{
637 pgd_free(mm, mm->pgd);
638}
639#else
640static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
641{
d8ed45c5 642 mmap_write_lock(oldmm);
d70f2a14 643 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
d8ed45c5 644 mmap_write_unlock(oldmm);
d70f2a14
AM
645 return 0;
646}
647#define mm_alloc_pgd(mm) (0)
648#define mm_free_pgd(mm)
649#endif /* CONFIG_MMU */
650
651static void check_mm(struct mm_struct *mm)
652{
653 int i;
654
8495f7e6
SPP
655 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
656 "Please make sure 'struct resident_page_types[]' is updated as well");
657
d70f2a14
AM
658 for (i = 0; i < NR_MM_COUNTERS; i++) {
659 long x = atomic_long_read(&mm->rss_stat.count[i]);
660
661 if (unlikely(x))
8495f7e6
SPP
662 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
663 mm, resident_page_types[i], x);
d70f2a14
AM
664 }
665
666 if (mm_pgtables_bytes(mm))
667 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
668 mm_pgtables_bytes(mm));
669
670#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
671 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
672#endif
673}
674
675#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
676#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
677
678/*
679 * Called when the last reference to the mm
680 * is dropped: either by a lazy thread or by
681 * mmput. Free the page directory and the mm.
682 */
d34bc48f 683void __mmdrop(struct mm_struct *mm)
d70f2a14
AM
684{
685 BUG_ON(mm == &init_mm);
3eda69c9
MR
686 WARN_ON_ONCE(mm == current->mm);
687 WARN_ON_ONCE(mm == current->active_mm);
d70f2a14
AM
688 mm_free_pgd(mm);
689 destroy_context(mm);
984cfe4e 690 mmu_notifier_subscriptions_destroy(mm);
d70f2a14
AM
691 check_mm(mm);
692 put_user_ns(mm->user_ns);
693 free_mm(mm);
694}
d34bc48f 695EXPORT_SYMBOL_GPL(__mmdrop);
d70f2a14
AM
696
697static void mmdrop_async_fn(struct work_struct *work)
698{
699 struct mm_struct *mm;
700
701 mm = container_of(work, struct mm_struct, async_put_work);
702 __mmdrop(mm);
703}
704
705static void mmdrop_async(struct mm_struct *mm)
706{
707 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
708 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
709 schedule_work(&mm->async_put_work);
710 }
711}
712
ea6d290c
ON
713static inline void free_signal_struct(struct signal_struct *sig)
714{
97101eb4 715 taskstats_tgid_free(sig);
1c5354de 716 sched_autogroup_exit(sig);
7283094e
MH
717 /*
718 * __mmdrop is not safe to call from softirq context on x86 due to
719 * pgd_dtor so postpone it to the async context
720 */
26db62f1 721 if (sig->oom_mm)
7283094e 722 mmdrop_async(sig->oom_mm);
ea6d290c
ON
723 kmem_cache_free(signal_cachep, sig);
724}
725
726static inline void put_signal_struct(struct signal_struct *sig)
727{
60d4de3f 728 if (refcount_dec_and_test(&sig->sigcnt))
ea6d290c
ON
729 free_signal_struct(sig);
730}
731
158d9ebd 732void __put_task_struct(struct task_struct *tsk)
1da177e4 733{
270f722d 734 WARN_ON(!tsk->exit_state);
ec1d2819 735 WARN_ON(refcount_read(&tsk->usage));
1da177e4
LT
736 WARN_ON(tsk == current);
737
0f212204 738 io_uring_free(tsk);
2e91fa7f 739 cgroup_free(tsk);
16d51a59 740 task_numa_free(tsk, true);
1a2a4d06 741 security_task_free(tsk);
e0e81739 742 exit_creds(tsk);
35df17c5 743 delayacct_tsk_free(tsk);
ea6d290c 744 put_signal_struct(tsk->signal);
1da177e4
LT
745
746 if (!profile_handoff_task(tsk))
747 free_task(tsk);
748}
77c100c8 749EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 750
6c0a9fa6 751void __init __weak arch_task_cache_init(void) { }
61c4628b 752
ff691f6e
HS
753/*
754 * set_max_threads
755 */
16db3d3f 756static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 757{
ac1b398d 758 u64 threads;
ca79b0c2 759 unsigned long nr_pages = totalram_pages();
ff691f6e
HS
760
761 /*
ac1b398d
HS
762 * The number of threads shall be limited such that the thread
763 * structures may only consume a small part of the available memory.
ff691f6e 764 */
3d6357de 765 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
ac1b398d
HS
766 threads = MAX_THREADS;
767 else
3d6357de 768 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
ac1b398d
HS
769 (u64) THREAD_SIZE * 8UL);
770
16db3d3f
HS
771 if (threads > max_threads_suggested)
772 threads = max_threads_suggested;
773
ac1b398d 774 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
775}
776
5aaeb5c0
IM
777#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
778/* Initialized by the architecture: */
779int arch_task_struct_size __read_mostly;
780#endif
0c8c0f03 781
4189ff23 782#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
5905429a
KC
783static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
784{
785 /* Fetch thread_struct whitelist for the architecture. */
786 arch_thread_struct_whitelist(offset, size);
787
788 /*
789 * Handle zero-sized whitelist or empty thread_struct, otherwise
790 * adjust offset to position of thread_struct in task_struct.
791 */
792 if (unlikely(*size == 0))
793 *offset = 0;
794 else
795 *offset += offsetof(struct task_struct, thread);
796}
4189ff23 797#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
5905429a 798
ff691f6e 799void __init fork_init(void)
1da177e4 800{
25f9c081 801 int i;
f5e10287 802#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1da177e4 803#ifndef ARCH_MIN_TASKALIGN
e274795e 804#define ARCH_MIN_TASKALIGN 0
1da177e4 805#endif
95cb64c1 806 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
5905429a 807 unsigned long useroffset, usersize;
e274795e 808
1da177e4 809 /* create a slab on which task_structs can be allocated */
5905429a
KC
810 task_struct_whitelist(&useroffset, &usersize);
811 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
e274795e 812 arch_task_struct_size, align,
5905429a
KC
813 SLAB_PANIC|SLAB_ACCOUNT,
814 useroffset, usersize, NULL);
1da177e4
LT
815#endif
816
61c4628b
SS
817 /* do the arch specific task caches init */
818 arch_task_cache_init();
819
16db3d3f 820 set_max_threads(MAX_THREADS);
1da177e4
LT
821
822 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
823 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
824 init_task.signal->rlim[RLIMIT_SIGPENDING] =
825 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 826
96e1e984 827 for (i = 0; i < UCOUNT_COUNTS; i++)
25f9c081 828 init_user_ns.ucount_max[i] = max_threads/2;
19659c59
HR
829
830#ifdef CONFIG_VMAP_STACK
831 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
832 NULL, free_vm_stack_cache);
833#endif
b09be676 834
d08b9f0c
ST
835 scs_init();
836
b09be676 837 lockdep_init_task(&init_task);
aad42dd4 838 uprobes_init();
1da177e4
LT
839}
840
52f5684c 841int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
842 struct task_struct *src)
843{
844 *dst = *src;
845 return 0;
846}
847
d4311ff1
AT
848void set_task_stack_end_magic(struct task_struct *tsk)
849{
850 unsigned long *stackend;
851
852 stackend = end_of_stack(tsk);
853 *stackend = STACK_END_MAGIC; /* for overflow detection */
854}
855
725fc629 856static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
857{
858 struct task_struct *tsk;
b235beea 859 unsigned long *stack;
0f4991e8 860 struct vm_struct *stack_vm_area __maybe_unused;
3e26c149 861 int err;
1da177e4 862
725fc629
AK
863 if (node == NUMA_NO_NODE)
864 node = tsk_fork_get_node(orig);
504f52b5 865 tsk = alloc_task_struct_node(node);
1da177e4
LT
866 if (!tsk)
867 return NULL;
868
b235beea
LT
869 stack = alloc_thread_stack_node(tsk, node);
870 if (!stack)
f19b9f74 871 goto free_tsk;
1da177e4 872
9b6f7e16
RG
873 if (memcg_charge_kernel_stack(tsk))
874 goto free_stack;
875
ba14a194
AL
876 stack_vm_area = task_stack_vm_area(tsk);
877
fb0a685c 878 err = arch_dup_task_struct(tsk, orig);
ba14a194
AL
879
880 /*
881 * arch_dup_task_struct() clobbers the stack-related fields. Make
882 * sure they're properly initialized before using any stack-related
883 * functions again.
884 */
885 tsk->stack = stack;
886#ifdef CONFIG_VMAP_STACK
887 tsk->stack_vm_area = stack_vm_area;
888#endif
68f24b08 889#ifdef CONFIG_THREAD_INFO_IN_TASK
f0b89d39 890 refcount_set(&tsk->stack_refcount, 1);
68f24b08 891#endif
ba14a194 892
164c33c6 893 if (err)
b235beea 894 goto free_stack;
164c33c6 895
d08b9f0c
ST
896 err = scs_prepare(tsk, node);
897 if (err)
898 goto free_stack;
899
dbd95212
KC
900#ifdef CONFIG_SECCOMP
901 /*
902 * We must handle setting up seccomp filters once we're under
903 * the sighand lock in case orig has changed between now and
904 * then. Until then, filter must be NULL to avoid messing up
905 * the usage counts on the error path calling free_task.
906 */
907 tsk->seccomp.filter = NULL;
908#endif
87bec58a
AM
909
910 setup_thread_stack(tsk, orig);
8e7cac79 911 clear_user_return_notifier(tsk);
f26f9aff 912 clear_tsk_need_resched(tsk);
d4311ff1 913 set_task_stack_end_magic(tsk);
1446e1df 914 clear_syscall_work_syscall_user_dispatch(tsk);
1da177e4 915
050e9baa 916#ifdef CONFIG_STACKPROTECTOR
7cd815bc 917 tsk->stack_canary = get_random_canary();
0a425405 918#endif
3bd37062
SAS
919 if (orig->cpus_ptr == &orig->cpus_mask)
920 tsk->cpus_ptr = &tsk->cpus_mask;
0a425405 921
fb0a685c 922 /*
0ff7b2cf
EB
923 * One for the user space visible state that goes away when reaped.
924 * One for the scheduler.
fb0a685c 925 */
0ff7b2cf
EB
926 refcount_set(&tsk->rcu_users, 2);
927 /* One for the rcu users */
928 refcount_set(&tsk->usage, 1);
6c5c9341 929#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 930 tsk->btrace_seq = 0;
6c5c9341 931#endif
a0aa7f68 932 tsk->splice_pipe = NULL;
5640f768 933 tsk->task_frag.page = NULL;
093e5840 934 tsk->wake_q.next = NULL;
c6a7f572 935
ba14a194 936 account_kernel_stack(tsk, 1);
c6a7f572 937
5c9a8750 938 kcov_task_init(tsk);
5fbda3ec 939 kmap_local_fork(tsk);
5c9a8750 940
e41d5818
DV
941#ifdef CONFIG_FAULT_INJECTION
942 tsk->fail_nth = 0;
943#endif
944
2c323017
JB
945#ifdef CONFIG_BLK_CGROUP
946 tsk->throttle_queue = NULL;
947 tsk->use_memdelay = 0;
948#endif
949
d46eb14b
SB
950#ifdef CONFIG_MEMCG
951 tsk->active_memcg = NULL;
952#endif
1da177e4 953 return tsk;
61c4628b 954
b235beea 955free_stack:
ba14a194 956 free_thread_stack(tsk);
f19b9f74 957free_tsk:
61c4628b
SS
958 free_task_struct(tsk);
959 return NULL;
1da177e4
LT
960}
961
23ff4440 962__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 963
4cb0e11b
HK
964static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
965
966static int __init coredump_filter_setup(char *s)
967{
968 default_dump_filter =
969 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
970 MMF_DUMP_FILTER_MASK;
971 return 1;
972}
973
974__setup("coredump_filter=", coredump_filter_setup);
975
1da177e4
LT
976#include <linux/init_task.h>
977
858f0993
AD
978static void mm_init_aio(struct mm_struct *mm)
979{
980#ifdef CONFIG_AIO
981 spin_lock_init(&mm->ioctx_lock);
db446a08 982 mm->ioctx_table = NULL;
858f0993
AD
983#endif
984}
985
c3f3ce04
AA
986static __always_inline void mm_clear_owner(struct mm_struct *mm,
987 struct task_struct *p)
988{
989#ifdef CONFIG_MEMCG
990 if (mm->owner == p)
991 WRITE_ONCE(mm->owner, NULL);
992#endif
993}
994
33144e84
VD
995static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
996{
997#ifdef CONFIG_MEMCG
998 mm->owner = p;
999#endif
1000}
1001
355627f5
EB
1002static void mm_init_uprobes_state(struct mm_struct *mm)
1003{
1004#ifdef CONFIG_UPROBES
1005 mm->uprobes_state.xol_area = NULL;
1006#endif
1007}
1008
bfedb589
EB
1009static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1010 struct user_namespace *user_ns)
1da177e4 1011{
41f727fd
VD
1012 mm->mmap = NULL;
1013 mm->mm_rb = RB_ROOT;
1014 mm->vmacache_seqnum = 0;
1da177e4
LT
1015 atomic_set(&mm->mm_users, 1);
1016 atomic_set(&mm->mm_count, 1);
57efa1fe 1017 seqcount_init(&mm->write_protect_seq);
d8ed45c5 1018 mmap_init_lock(mm);
1da177e4 1019 INIT_LIST_HEAD(&mm->mmlist);
999d9fc1 1020 mm->core_state = NULL;
af5b0f6a 1021 mm_pgtables_bytes_init(mm);
41f727fd
VD
1022 mm->map_count = 0;
1023 mm->locked_vm = 0;
008cfe44 1024 atomic_set(&mm->has_pinned, 0);
70f8a3ca 1025 atomic64_set(&mm->pinned_vm, 0);
d559db08 1026 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 1027 spin_lock_init(&mm->page_table_lock);
88aa7cc6 1028 spin_lock_init(&mm->arg_lock);
41f727fd 1029 mm_init_cpumask(mm);
858f0993 1030 mm_init_aio(mm);
cf475ad2 1031 mm_init_owner(mm, p);
2b7e8665 1032 RCU_INIT_POINTER(mm->exe_file, NULL);
984cfe4e 1033 mmu_notifier_subscriptions_init(mm);
16af97dc 1034 init_tlb_flush_pending(mm);
41f727fd
VD
1035#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1036 mm->pmd_huge_pte = NULL;
1037#endif
355627f5 1038 mm_init_uprobes_state(mm);
1da177e4 1039
a0715cc2
AT
1040 if (current->mm) {
1041 mm->flags = current->mm->flags & MMF_INIT_MASK;
1042 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1043 } else {
1044 mm->flags = default_dump_filter;
1da177e4 1045 mm->def_flags = 0;
a0715cc2
AT
1046 }
1047
41f727fd
VD
1048 if (mm_alloc_pgd(mm))
1049 goto fail_nopgd;
1050
1051 if (init_new_context(p, mm))
1052 goto fail_nocontext;
78fb7466 1053
bfedb589 1054 mm->user_ns = get_user_ns(user_ns);
41f727fd
VD
1055 return mm;
1056
1057fail_nocontext:
1058 mm_free_pgd(mm);
1059fail_nopgd:
1da177e4
LT
1060 free_mm(mm);
1061 return NULL;
1062}
1063
1064/*
1065 * Allocate and initialize an mm_struct.
1066 */
fb0a685c 1067struct mm_struct *mm_alloc(void)
1da177e4 1068{
fb0a685c 1069 struct mm_struct *mm;
1da177e4
LT
1070
1071 mm = allocate_mm();
de03c72c
KM
1072 if (!mm)
1073 return NULL;
1074
1075 memset(mm, 0, sizeof(*mm));
bfedb589 1076 return mm_init(mm, current, current_user_ns());
1da177e4
LT
1077}
1078
ec8d7c14
MH
1079static inline void __mmput(struct mm_struct *mm)
1080{
1081 VM_BUG_ON(atomic_read(&mm->mm_users));
1082
1083 uprobe_clear_state(mm);
1084 exit_aio(mm);
1085 ksm_exit(mm);
1086 khugepaged_exit(mm); /* must run before exit_mmap */
1087 exit_mmap(mm);
6fcb52a5 1088 mm_put_huge_zero_page(mm);
ec8d7c14
MH
1089 set_mm_exe_file(mm, NULL);
1090 if (!list_empty(&mm->mmlist)) {
1091 spin_lock(&mmlist_lock);
1092 list_del(&mm->mmlist);
1093 spin_unlock(&mmlist_lock);
1094 }
1095 if (mm->binfmt)
1096 module_put(mm->binfmt->module);
1097 mmdrop(mm);
1098}
1099
1da177e4
LT
1100/*
1101 * Decrement the use count and release all resources for an mm.
1102 */
1103void mmput(struct mm_struct *mm)
1104{
0ae26f1b
AM
1105 might_sleep();
1106
ec8d7c14
MH
1107 if (atomic_dec_and_test(&mm->mm_users))
1108 __mmput(mm);
1109}
1110EXPORT_SYMBOL_GPL(mmput);
1111
a1b2289c
SY
1112#ifdef CONFIG_MMU
1113static void mmput_async_fn(struct work_struct *work)
1114{
1115 struct mm_struct *mm = container_of(work, struct mm_struct,
1116 async_put_work);
1117
1118 __mmput(mm);
1119}
1120
1121void mmput_async(struct mm_struct *mm)
1122{
1123 if (atomic_dec_and_test(&mm->mm_users)) {
1124 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1125 schedule_work(&mm->async_put_work);
1126 }
1127}
2e0647d3 1128EXPORT_SYMBOL(mmput_async);
a1b2289c
SY
1129#endif
1130
90f31d0e
KK
1131/**
1132 * set_mm_exe_file - change a reference to the mm's executable file
1133 *
1134 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1135 *
6e399cd1
DB
1136 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1137 * invocations: in mmput() nobody alive left, in execve task is single
1138 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1139 * mm->exe_file, but does so without using set_mm_exe_file() in order
1140 * to do avoid the need for any locks.
90f31d0e 1141 */
38646013
JS
1142void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1143{
6e399cd1
DB
1144 struct file *old_exe_file;
1145
1146 /*
1147 * It is safe to dereference the exe_file without RCU as
1148 * this function is only called if nobody else can access
1149 * this mm -- see comment above for justification.
1150 */
1151 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 1152
38646013
JS
1153 if (new_exe_file)
1154 get_file(new_exe_file);
90f31d0e
KK
1155 rcu_assign_pointer(mm->exe_file, new_exe_file);
1156 if (old_exe_file)
1157 fput(old_exe_file);
38646013
JS
1158}
1159
90f31d0e
KK
1160/**
1161 * get_mm_exe_file - acquire a reference to the mm's executable file
1162 *
1163 * Returns %NULL if mm has no associated executable file.
1164 * User must release file via fput().
1165 */
38646013
JS
1166struct file *get_mm_exe_file(struct mm_struct *mm)
1167{
1168 struct file *exe_file;
1169
90f31d0e
KK
1170 rcu_read_lock();
1171 exe_file = rcu_dereference(mm->exe_file);
1172 if (exe_file && !get_file_rcu(exe_file))
1173 exe_file = NULL;
1174 rcu_read_unlock();
38646013
JS
1175 return exe_file;
1176}
11163348 1177EXPORT_SYMBOL(get_mm_exe_file);
38646013 1178
cd81a917
MG
1179/**
1180 * get_task_exe_file - acquire a reference to the task's executable file
1181 *
1182 * Returns %NULL if task's mm (if any) has no associated executable file or
1183 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1184 * User must release file via fput().
1185 */
1186struct file *get_task_exe_file(struct task_struct *task)
1187{
1188 struct file *exe_file = NULL;
1189 struct mm_struct *mm;
1190
1191 task_lock(task);
1192 mm = task->mm;
1193 if (mm) {
1194 if (!(task->flags & PF_KTHREAD))
1195 exe_file = get_mm_exe_file(mm);
1196 }
1197 task_unlock(task);
1198 return exe_file;
1199}
1200EXPORT_SYMBOL(get_task_exe_file);
38646013 1201
1da177e4
LT
1202/**
1203 * get_task_mm - acquire a reference to the task's mm
1204 *
246bb0b1 1205 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1206 * this kernel workthread has transiently adopted a user mm with use_mm,
1207 * to do its AIO) is not set and if so returns a reference to it, after
1208 * bumping up the use count. User must release the mm via mmput()
1209 * after use. Typically used by /proc and ptrace.
1210 */
1211struct mm_struct *get_task_mm(struct task_struct *task)
1212{
1213 struct mm_struct *mm;
1214
1215 task_lock(task);
1216 mm = task->mm;
1217 if (mm) {
246bb0b1 1218 if (task->flags & PF_KTHREAD)
1da177e4
LT
1219 mm = NULL;
1220 else
3fce371b 1221 mmget(mm);
1da177e4
LT
1222 }
1223 task_unlock(task);
1224 return mm;
1225}
1226EXPORT_SYMBOL_GPL(get_task_mm);
1227
8cdb878d
CY
1228struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1229{
1230 struct mm_struct *mm;
1231 int err;
1232
f7cfd871 1233 err = down_read_killable(&task->signal->exec_update_lock);
8cdb878d
CY
1234 if (err)
1235 return ERR_PTR(err);
1236
1237 mm = get_task_mm(task);
1238 if (mm && mm != current->mm &&
1239 !ptrace_may_access(task, mode)) {
1240 mmput(mm);
1241 mm = ERR_PTR(-EACCES);
1242 }
f7cfd871 1243 up_read(&task->signal->exec_update_lock);
8cdb878d
CY
1244
1245 return mm;
1246}
1247
57b59c4a 1248static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1249{
d68b46fe 1250 struct completion *vfork;
c415c3b4 1251
d68b46fe
ON
1252 task_lock(tsk);
1253 vfork = tsk->vfork_done;
1254 if (likely(vfork)) {
1255 tsk->vfork_done = NULL;
1256 complete(vfork);
1257 }
1258 task_unlock(tsk);
1259}
1260
1261static int wait_for_vfork_done(struct task_struct *child,
1262 struct completion *vfork)
1263{
1264 int killed;
1265
1266 freezer_do_not_count();
76f969e8 1267 cgroup_enter_frozen();
d68b46fe 1268 killed = wait_for_completion_killable(vfork);
76f969e8 1269 cgroup_leave_frozen(false);
d68b46fe
ON
1270 freezer_count();
1271
1272 if (killed) {
1273 task_lock(child);
1274 child->vfork_done = NULL;
1275 task_unlock(child);
1276 }
1277
1278 put_task_struct(child);
1279 return killed;
c415c3b4
ON
1280}
1281
1da177e4
LT
1282/* Please note the differences between mmput and mm_release.
1283 * mmput is called whenever we stop holding onto a mm_struct,
1284 * error success whatever.
1285 *
1286 * mm_release is called after a mm_struct has been removed
1287 * from the current process.
1288 *
1289 * This difference is important for error handling, when we
1290 * only half set up a mm_struct for a new process and need to restore
1291 * the old one. Because we mmput the new mm_struct before
1292 * restoring the old one. . .
1293 * Eric Biederman 10 January 1998
1294 */
4610ba7a 1295static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1da177e4 1296{
0326f5a9
SD
1297 uprobe_free_utask(tsk);
1298
1da177e4
LT
1299 /* Get rid of any cached register state */
1300 deactivate_mm(tsk, mm);
1301
fec1d011 1302 /*
735f2770
MH
1303 * Signal userspace if we're not exiting with a core dump
1304 * because we want to leave the value intact for debugging
1305 * purposes.
fec1d011 1306 */
9c8a8228 1307 if (tsk->clear_child_tid) {
735f2770 1308 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
9c8a8228
ED
1309 atomic_read(&mm->mm_users) > 1) {
1310 /*
1311 * We don't check the error code - if userspace has
1312 * not set up a proper pointer then tough luck.
1313 */
1314 put_user(0, tsk->clear_child_tid);
2de0db99
DB
1315 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1316 1, NULL, NULL, 0, 0);
9c8a8228 1317 }
1da177e4 1318 tsk->clear_child_tid = NULL;
1da177e4 1319 }
f7505d64
KK
1320
1321 /*
1322 * All done, finally we can wake up parent and return this mm to him.
1323 * Also kthread_stop() uses this completion for synchronization.
1324 */
1325 if (tsk->vfork_done)
1326 complete_vfork_done(tsk);
1da177e4
LT
1327}
1328
4610ba7a
TG
1329void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1330{
150d7158 1331 futex_exit_release(tsk);
4610ba7a
TG
1332 mm_release(tsk, mm);
1333}
1334
1335void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1336{
150d7158 1337 futex_exec_release(tsk);
4610ba7a
TG
1338 mm_release(tsk, mm);
1339}
1340
13585fa0
NA
1341/**
1342 * dup_mm() - duplicates an existing mm structure
1343 * @tsk: the task_struct with which the new mm will be associated.
1344 * @oldmm: the mm to duplicate.
1345 *
1346 * Allocates a new mm structure and duplicates the provided @oldmm structure
1347 * content into it.
1348 *
1349 * Return: the duplicated mm or NULL on failure.
a0a7ec30 1350 */
13585fa0
NA
1351static struct mm_struct *dup_mm(struct task_struct *tsk,
1352 struct mm_struct *oldmm)
a0a7ec30 1353{
13585fa0 1354 struct mm_struct *mm;
a0a7ec30
JD
1355 int err;
1356
a0a7ec30
JD
1357 mm = allocate_mm();
1358 if (!mm)
1359 goto fail_nomem;
1360
1361 memcpy(mm, oldmm, sizeof(*mm));
1362
bfedb589 1363 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1364 goto fail_nomem;
1365
a0a7ec30
JD
1366 err = dup_mmap(mm, oldmm);
1367 if (err)
1368 goto free_pt;
1369
1370 mm->hiwater_rss = get_mm_rss(mm);
1371 mm->hiwater_vm = mm->total_vm;
1372
801460d0
HS
1373 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1374 goto free_pt;
1375
a0a7ec30
JD
1376 return mm;
1377
1378free_pt:
801460d0
HS
1379 /* don't put binfmt in mmput, we haven't got module yet */
1380 mm->binfmt = NULL;
c3f3ce04 1381 mm_init_owner(mm, NULL);
a0a7ec30
JD
1382 mmput(mm);
1383
1384fail_nomem:
1385 return NULL;
a0a7ec30
JD
1386}
1387
fb0a685c 1388static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1389{
fb0a685c 1390 struct mm_struct *mm, *oldmm;
1da177e4
LT
1391 int retval;
1392
1393 tsk->min_flt = tsk->maj_flt = 0;
1394 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1395#ifdef CONFIG_DETECT_HUNG_TASK
1396 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
a2e51445 1397 tsk->last_switch_time = 0;
17406b82 1398#endif
1da177e4
LT
1399
1400 tsk->mm = NULL;
1401 tsk->active_mm = NULL;
1402
1403 /*
1404 * Are we cloning a kernel thread?
1405 *
1406 * We need to steal a active VM for that..
1407 */
1408 oldmm = current->mm;
1409 if (!oldmm)
1410 return 0;
1411
615d6e87
DB
1412 /* initialize the new vmacache entries */
1413 vmacache_flush(tsk);
1414
1da177e4 1415 if (clone_flags & CLONE_VM) {
3fce371b 1416 mmget(oldmm);
1da177e4 1417 mm = oldmm;
1da177e4
LT
1418 goto good_mm;
1419 }
1420
1421 retval = -ENOMEM;
13585fa0 1422 mm = dup_mm(tsk, current->mm);
1da177e4
LT
1423 if (!mm)
1424 goto fail_nomem;
1425
1da177e4
LT
1426good_mm:
1427 tsk->mm = mm;
1428 tsk->active_mm = mm;
1429 return 0;
1430
1da177e4
LT
1431fail_nomem:
1432 return retval;
1da177e4
LT
1433}
1434
a39bc516 1435static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1436{
498052bb 1437 struct fs_struct *fs = current->fs;
1da177e4 1438 if (clone_flags & CLONE_FS) {
498052bb 1439 /* tsk->fs is already what we want */
2a4419b5 1440 spin_lock(&fs->lock);
498052bb 1441 if (fs->in_exec) {
2a4419b5 1442 spin_unlock(&fs->lock);
498052bb
AV
1443 return -EAGAIN;
1444 }
1445 fs->users++;
2a4419b5 1446 spin_unlock(&fs->lock);
1da177e4
LT
1447 return 0;
1448 }
498052bb 1449 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1450 if (!tsk->fs)
1451 return -ENOMEM;
1452 return 0;
1453}
1454
fb0a685c 1455static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
a016f338
JD
1456{
1457 struct files_struct *oldf, *newf;
1458 int error = 0;
1459
1460 /*
1461 * A background process may not have any files ...
1462 */
1463 oldf = current->files;
1464 if (!oldf)
1465 goto out;
1466
1467 if (clone_flags & CLONE_FILES) {
1468 atomic_inc(&oldf->count);
1469 goto out;
1470 }
1471
60997c3d 1472 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
a016f338
JD
1473 if (!newf)
1474 goto out;
1475
1476 tsk->files = newf;
1477 error = 0;
1478out:
1479 return error;
1480}
1481
fadad878 1482static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
fd0928df
JA
1483{
1484#ifdef CONFIG_BLOCK
1485 struct io_context *ioc = current->io_context;
6e736be7 1486 struct io_context *new_ioc;
fd0928df
JA
1487
1488 if (!ioc)
1489 return 0;
fadad878
JA
1490 /*
1491 * Share io context with parent, if CLONE_IO is set
1492 */
1493 if (clone_flags & CLONE_IO) {
3d48749d
TH
1494 ioc_task_link(ioc);
1495 tsk->io_context = ioc;
fadad878 1496 } else if (ioprio_valid(ioc->ioprio)) {
6e736be7
TH
1497 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1498 if (unlikely(!new_ioc))
fd0928df
JA
1499 return -ENOMEM;
1500
6e736be7 1501 new_ioc->ioprio = ioc->ioprio;
11a3122f 1502 put_io_context(new_ioc);
fd0928df
JA
1503 }
1504#endif
1505 return 0;
1506}
1507
a39bc516 1508static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1509{
1510 struct sighand_struct *sig;
1511
60348802 1512 if (clone_flags & CLONE_SIGHAND) {
d036bda7 1513 refcount_inc(&current->sighand->count);
1da177e4
LT
1514 return 0;
1515 }
1516 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
0c282b06 1517 RCU_INIT_POINTER(tsk->sighand, sig);
1da177e4
LT
1518 if (!sig)
1519 return -ENOMEM;
9d7fb042 1520
d036bda7 1521 refcount_set(&sig->count, 1);
06e62a46 1522 spin_lock_irq(&current->sighand->siglock);
1da177e4 1523 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
06e62a46 1524 spin_unlock_irq(&current->sighand->siglock);
b612e5df
CB
1525
1526 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1527 if (clone_flags & CLONE_CLEAR_SIGHAND)
1528 flush_signal_handlers(tsk, 0);
1529
1da177e4
LT
1530 return 0;
1531}
1532
a7e5328a 1533void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1534{
d036bda7 1535 if (refcount_dec_and_test(&sighand->count)) {
d80e731e 1536 signalfd_cleanup(sighand);
392809b2 1537 /*
5f0d5a3a 1538 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1539 * without an RCU grace period, see __lock_task_sighand().
1540 */
c81addc9 1541 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1542 }
c81addc9
ON
1543}
1544
f06febc9
FM
1545/*
1546 * Initialize POSIX timer handling for a thread group.
1547 */
1548static void posix_cpu_timers_init_group(struct signal_struct *sig)
1549{
2b69942f 1550 struct posix_cputimers *pct = &sig->posix_cputimers;
78d7d407
JS
1551 unsigned long cpu_limit;
1552
316c1608 1553 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
3a245c0f 1554 posix_cputimers_group_init(pct, cpu_limit);
f06febc9
FM
1555}
1556
a39bc516 1557static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1558{
1559 struct signal_struct *sig;
1da177e4 1560
4ab6c083 1561 if (clone_flags & CLONE_THREAD)
490dea45 1562 return 0;
490dea45 1563
a56704ef 1564 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1565 tsk->signal = sig;
1566 if (!sig)
1567 return -ENOMEM;
1568
b3ac022c 1569 sig->nr_threads = 1;
1da177e4 1570 atomic_set(&sig->live, 1);
60d4de3f 1571 refcount_set(&sig->sigcnt, 1);
0c740d0a
ON
1572
1573 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1574 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1575 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1576
1da177e4 1577 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1578 sig->curr_target = tsk;
1da177e4 1579 init_sigpending(&sig->shared_pending);
c3ad2c3b 1580 INIT_HLIST_HEAD(&sig->multiprocess);
e78c3496 1581 seqlock_init(&sig->stats_lock);
9d7fb042 1582 prev_cputime_init(&sig->prev_cputime);
1da177e4 1583
baa73d9e 1584#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1585 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1586 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1587 sig->real_timer.function = it_real_fn;
baa73d9e 1588#endif
1da177e4 1589
1da177e4
LT
1590 task_lock(current->group_leader);
1591 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1592 task_unlock(current->group_leader);
1593
6279a751
ON
1594 posix_cpu_timers_init_group(sig);
1595
522ed776 1596 tty_audit_fork(sig);
5091faa4 1597 sched_autogroup_fork(sig);
522ed776 1598
a63d83f4 1599 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1600 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1601
9b1bf12d 1602 mutex_init(&sig->cred_guard_mutex);
f7cfd871 1603 init_rwsem(&sig->exec_update_lock);
9b1bf12d 1604
1da177e4
LT
1605 return 0;
1606}
1607
dbd95212
KC
1608static void copy_seccomp(struct task_struct *p)
1609{
1610#ifdef CONFIG_SECCOMP
1611 /*
1612 * Must be called with sighand->lock held, which is common to
1613 * all threads in the group. Holding cred_guard_mutex is not
1614 * needed because this new task is not yet running and cannot
1615 * be racing exec.
1616 */
69f6a34b 1617 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1618
1619 /* Ref-count the new filter user, and assign it. */
1620 get_seccomp_filter(current);
1621 p->seccomp = current->seccomp;
1622
1623 /*
1624 * Explicitly enable no_new_privs here in case it got set
1625 * between the task_struct being duplicated and holding the
1626 * sighand lock. The seccomp state and nnp must be in sync.
1627 */
1628 if (task_no_new_privs(current))
1629 task_set_no_new_privs(p);
1630
1631 /*
1632 * If the parent gained a seccomp mode after copying thread
1633 * flags and between before we held the sighand lock, we have
1634 * to manually enable the seccomp thread flag here.
1635 */
1636 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
23d67a54 1637 set_task_syscall_work(p, SECCOMP);
dbd95212
KC
1638#endif
1639}
1640
17da2bd9 1641SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1642{
1643 current->clear_child_tid = tidptr;
1644
b488893a 1645 return task_pid_vnr(current);
1da177e4
LT
1646}
1647
a39bc516 1648static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1649{
1d615482 1650 raw_spin_lock_init(&p->pi_lock);
e29e175b 1651#ifdef CONFIG_RT_MUTEXES
a23ba907 1652 p->pi_waiters = RB_ROOT_CACHED;
e96a7705 1653 p->pi_top_task = NULL;
23f78d4a 1654 p->pi_blocked_on = NULL;
23f78d4a
IM
1655#endif
1656}
1657
2c470475
EB
1658static inline void init_task_pid_links(struct task_struct *task)
1659{
1660 enum pid_type type;
1661
96e1e984 1662 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
2c470475 1663 INIT_HLIST_NODE(&task->pid_links[type]);
2c470475
EB
1664}
1665
81907739
ON
1666static inline void
1667init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1668{
2c470475
EB
1669 if (type == PIDTYPE_PID)
1670 task->thread_pid = pid;
1671 else
1672 task->signal->pids[type] = pid;
81907739
ON
1673}
1674
6bfbaa51
IM
1675static inline void rcu_copy_process(struct task_struct *p)
1676{
1677#ifdef CONFIG_PREEMPT_RCU
1678 p->rcu_read_lock_nesting = 0;
1679 p->rcu_read_unlock_special.s = 0;
1680 p->rcu_blocked_node = NULL;
1681 INIT_LIST_HEAD(&p->rcu_node_entry);
1682#endif /* #ifdef CONFIG_PREEMPT_RCU */
1683#ifdef CONFIG_TASKS_RCU
1684 p->rcu_tasks_holdout = false;
1685 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1686 p->rcu_tasks_idle_cpu = -1;
1687#endif /* #ifdef CONFIG_TASKS_RCU */
d5f177d3
PM
1688#ifdef CONFIG_TASKS_TRACE_RCU
1689 p->trc_reader_nesting = 0;
276c4104 1690 p->trc_reader_special.s = 0;
d5f177d3
PM
1691 INIT_LIST_HEAD(&p->trc_holdout_list);
1692#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
6bfbaa51
IM
1693}
1694
3695eae5
CB
1695struct pid *pidfd_pid(const struct file *file)
1696{
1697 if (file->f_op == &pidfd_fops)
1698 return file->private_data;
1699
1700 return ERR_PTR(-EBADF);
1701}
1702
b3e58382
CB
1703static int pidfd_release(struct inode *inode, struct file *file)
1704{
1705 struct pid *pid = file->private_data;
1706
1707 file->private_data = NULL;
1708 put_pid(pid);
1709 return 0;
1710}
1711
1712#ifdef CONFIG_PROC_FS
15d42eb2
CK
1713/**
1714 * pidfd_show_fdinfo - print information about a pidfd
1715 * @m: proc fdinfo file
1716 * @f: file referencing a pidfd
1717 *
1718 * Pid:
1719 * This function will print the pid that a given pidfd refers to in the
1720 * pid namespace of the procfs instance.
1721 * If the pid namespace of the process is not a descendant of the pid
1722 * namespace of the procfs instance 0 will be shown as its pid. This is
1723 * similar to calling getppid() on a process whose parent is outside of
1724 * its pid namespace.
1725 *
1726 * NSpid:
1727 * If pid namespaces are supported then this function will also print
1728 * the pid of a given pidfd refers to for all descendant pid namespaces
1729 * starting from the current pid namespace of the instance, i.e. the
1730 * Pid field and the first entry in the NSpid field will be identical.
1731 * If the pid namespace of the process is not a descendant of the pid
1732 * namespace of the procfs instance 0 will be shown as its first NSpid
1733 * entry and no others will be shown.
1734 * Note that this differs from the Pid and NSpid fields in
1735 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1736 * the pid namespace of the procfs instance. The difference becomes
1737 * obvious when sending around a pidfd between pid namespaces from a
1738 * different branch of the tree, i.e. where no ancestoral relation is
1739 * present between the pid namespaces:
1740 * - create two new pid namespaces ns1 and ns2 in the initial pid
1741 * namespace (also take care to create new mount namespaces in the
1742 * new pid namespace and mount procfs)
1743 * - create a process with a pidfd in ns1
1744 * - send pidfd from ns1 to ns2
1745 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1746 * have exactly one entry, which is 0
1747 */
b3e58382
CB
1748static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1749{
b3e58382 1750 struct pid *pid = f->private_data;
3d6d8da4
CB
1751 struct pid_namespace *ns;
1752 pid_t nr = -1;
15d42eb2 1753
3d6d8da4 1754 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
9d78edea 1755 ns = proc_pid_ns(file_inode(m->file)->i_sb);
3d6d8da4
CB
1756 nr = pid_nr_ns(pid, ns);
1757 }
1758
1759 seq_put_decimal_ll(m, "Pid:\t", nr);
b3e58382 1760
15d42eb2 1761#ifdef CONFIG_PID_NS
3d6d8da4
CB
1762 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1763 if (nr > 0) {
15d42eb2 1764 int i;
b3e58382 1765
15d42eb2
CK
1766 /* If nr is non-zero it means that 'pid' is valid and that
1767 * ns, i.e. the pid namespace associated with the procfs
1768 * instance, is in the pid namespace hierarchy of pid.
1769 * Start at one below the already printed level.
1770 */
1771 for (i = ns->level + 1; i <= pid->level; i++)
3d6d8da4 1772 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
15d42eb2
CK
1773 }
1774#endif
b3e58382
CB
1775 seq_putc(m, '\n');
1776}
1777#endif
1778
b53b0b9d
JFG
1779/*
1780 * Poll support for process exit notification.
1781 */
9e77716a 1782static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
b53b0b9d 1783{
b53b0b9d 1784 struct pid *pid = file->private_data;
9e77716a 1785 __poll_t poll_flags = 0;
b53b0b9d
JFG
1786
1787 poll_wait(file, &pid->wait_pidfd, pts);
1788
b53b0b9d
JFG
1789 /*
1790 * Inform pollers only when the whole thread group exits.
1791 * If the thread group leader exits before all other threads in the
1792 * group, then poll(2) should block, similar to the wait(2) family.
1793 */
38fd525a 1794 if (thread_group_exited(pid))
9e77716a 1795 poll_flags = EPOLLIN | EPOLLRDNORM;
b53b0b9d
JFG
1796
1797 return poll_flags;
1798}
1799
b3e58382
CB
1800const struct file_operations pidfd_fops = {
1801 .release = pidfd_release,
b53b0b9d 1802 .poll = pidfd_poll,
b3e58382
CB
1803#ifdef CONFIG_PROC_FS
1804 .show_fdinfo = pidfd_show_fdinfo,
1805#endif
1806};
1807
c3f3ce04
AA
1808static void __delayed_free_task(struct rcu_head *rhp)
1809{
1810 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1811
1812 free_task(tsk);
1813}
1814
1815static __always_inline void delayed_free_task(struct task_struct *tsk)
1816{
1817 if (IS_ENABLED(CONFIG_MEMCG))
1818 call_rcu(&tsk->rcu, __delayed_free_task);
1819 else
1820 free_task(tsk);
1821}
1822
67197a4f
SB
1823static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1824{
1825 /* Skip if kernel thread */
1826 if (!tsk->mm)
1827 return;
1828
1829 /* Skip if spawning a thread or using vfork */
1830 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1831 return;
1832
1833 /* We need to synchronize with __set_oom_adj */
1834 mutex_lock(&oom_adj_mutex);
1835 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1836 /* Update the values in case they were changed after copy_signal */
1837 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1838 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1839 mutex_unlock(&oom_adj_mutex);
1840}
1841
1da177e4
LT
1842/*
1843 * This creates a new process as a copy of the old one,
1844 * but does not actually start it yet.
1845 *
1846 * It copies the registers, and all the appropriate
1847 * parts of the process environment (as per the clone
1848 * flags). The actual kick-off is left to the caller.
1849 */
0766f788 1850static __latent_entropy struct task_struct *copy_process(
09a05394 1851 struct pid *pid,
3033f14a 1852 int trace,
7f192e3c
CB
1853 int node,
1854 struct kernel_clone_args *args)
1da177e4 1855{
b3e58382 1856 int pidfd = -1, retval;
a24efe62 1857 struct task_struct *p;
c3ad2c3b 1858 struct multiprocess_signals delayed;
6fd2fe49 1859 struct file *pidfile = NULL;
7f192e3c 1860 u64 clone_flags = args->flags;
769071ac 1861 struct nsproxy *nsp = current->nsproxy;
1da177e4 1862
667b6094
MPS
1863 /*
1864 * Don't allow sharing the root directory with processes in a different
1865 * namespace
1866 */
1da177e4
LT
1867 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1868 return ERR_PTR(-EINVAL);
1869
e66eded8
EB
1870 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1871 return ERR_PTR(-EINVAL);
1872
e49687f6
SH
1873 if ((clone_flags & CLONE_NEWUSER) && !unprivileged_userns_clone)
1874 if (!capable(CAP_SYS_ADMIN))
1875 return ERR_PTR(-EPERM);
1876
1da177e4
LT
1877 /*
1878 * Thread groups must share signals as well, and detached threads
1879 * can only be started up within the thread group.
1880 */
1881 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1882 return ERR_PTR(-EINVAL);
1883
1884 /*
1885 * Shared signal handlers imply shared VM. By way of the above,
1886 * thread groups also imply shared VM. Blocking this case allows
1887 * for various simplifications in other code.
1888 */
1889 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1890 return ERR_PTR(-EINVAL);
1891
123be07b
SB
1892 /*
1893 * Siblings of global init remain as zombies on exit since they are
1894 * not reaped by their parent (swapper). To solve this and to avoid
1895 * multi-rooted process trees, prevent global and container-inits
1896 * from creating siblings.
1897 */
1898 if ((clone_flags & CLONE_PARENT) &&
1899 current->signal->flags & SIGNAL_UNKILLABLE)
1900 return ERR_PTR(-EINVAL);
1901
8382fcac 1902 /*
40a0d32d 1903 * If the new process will be in a different pid or user namespace
faf00da5 1904 * do not allow it to share a thread group with the forking task.
8382fcac 1905 */
faf00da5 1906 if (clone_flags & CLONE_THREAD) {
40a0d32d 1907 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
769071ac
AV
1908 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1909 return ERR_PTR(-EINVAL);
1910 }
1911
1912 /*
1913 * If the new process will be in a different time namespace
1914 * do not allow it to share VM or a thread group with the forking task.
1915 */
1916 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1917 if (nsp->time_ns != nsp->time_ns_for_children)
40a0d32d
ON
1918 return ERR_PTR(-EINVAL);
1919 }
8382fcac 1920
b3e58382 1921 if (clone_flags & CLONE_PIDFD) {
b3e58382 1922 /*
b3e58382
CB
1923 * - CLONE_DETACHED is blocked so that we can potentially
1924 * reuse it later for CLONE_PIDFD.
1925 * - CLONE_THREAD is blocked until someone really needs it.
1926 */
7f192e3c 1927 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
b3e58382 1928 return ERR_PTR(-EINVAL);
b3e58382
CB
1929 }
1930
c3ad2c3b
EB
1931 /*
1932 * Force any signals received before this point to be delivered
1933 * before the fork happens. Collect up signals sent to multiple
1934 * processes that happen during the fork and delay them so that
1935 * they appear to happen after the fork.
1936 */
1937 sigemptyset(&delayed.signal);
1938 INIT_HLIST_NODE(&delayed.node);
1939
1940 spin_lock_irq(&current->sighand->siglock);
1941 if (!(clone_flags & CLONE_THREAD))
1942 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1943 recalc_sigpending();
1944 spin_unlock_irq(&current->sighand->siglock);
1945 retval = -ERESTARTNOINTR;
1946 if (signal_pending(current))
1947 goto fork_out;
1948
1da177e4 1949 retval = -ENOMEM;
725fc629 1950 p = dup_task_struct(current, node);
1da177e4
LT
1951 if (!p)
1952 goto fork_out;
1953
4d6501dc
VN
1954 /*
1955 * This _must_ happen before we call free_task(), i.e. before we jump
1956 * to any of the bad_fork_* labels. This is to avoid freeing
1957 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1958 * kernel threads (PF_KTHREAD).
1959 */
7f192e3c 1960 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
4d6501dc
VN
1961 /*
1962 * Clear TID on mm_release()?
1963 */
7f192e3c 1964 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
4d6501dc 1965
f7e8b616
SR
1966 ftrace_graph_init_task(p);
1967
bea493a0
PZ
1968 rt_mutex_init_task(p);
1969
a21ee605 1970 lockdep_assert_irqs_enabled();
d12c1a37 1971#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
1972 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1973#endif
1da177e4 1974 retval = -EAGAIN;
3b11a1de 1975 if (atomic_read(&p->real_cred->user->processes) >=
78d7d407 1976 task_rlimit(p, RLIMIT_NPROC)) {
b57922b6
EP
1977 if (p->real_cred->user != INIT_USER &&
1978 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1da177e4
LT
1979 goto bad_fork_free;
1980 }
72fa5997 1981 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 1982
f1752eec
DH
1983 retval = copy_creds(p, clone_flags);
1984 if (retval < 0)
1985 goto bad_fork_free;
1da177e4
LT
1986
1987 /*
1988 * If multiple threads are within copy_process(), then this check
1989 * triggers too late. This doesn't hurt, the check is only there
1990 * to stop root fork bombs.
1991 */
04ec93fe 1992 retval = -EAGAIN;
c17d1a3a 1993 if (data_race(nr_threads >= max_threads))
1da177e4
LT
1994 goto bad_fork_cleanup_count;
1995
ca74e92b 1996 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
c1de45ca 1997 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
514ddb44 1998 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
1999 INIT_LIST_HEAD(&p->children);
2000 INIT_LIST_HEAD(&p->sibling);
f41d911f 2001 rcu_copy_process(p);
1da177e4
LT
2002 p->vfork_done = NULL;
2003 spin_lock_init(&p->alloc_lock);
1da177e4 2004
1da177e4
LT
2005 init_sigpending(&p->pending);
2006
64861634 2007 p->utime = p->stime = p->gtime = 0;
40565b5a 2008#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 2009 p->utimescaled = p->stimescaled = 0;
40565b5a 2010#endif
9d7fb042
PZ
2011 prev_cputime_init(&p->prev_cputime);
2012
6a61671b 2013#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
2014 seqcount_init(&p->vtime.seqcount);
2015 p->vtime.starttime = 0;
2016 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
2017#endif
2018
0f212204
JA
2019#ifdef CONFIG_IO_URING
2020 p->io_uring = NULL;
2021#endif
2022
a3a2e76c
KH
2023#if defined(SPLIT_RSS_COUNTING)
2024 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2025#endif
172ba844 2026
6976675d
AV
2027 p->default_timer_slack_ns = current->timer_slack_ns;
2028
eb414681
JW
2029#ifdef CONFIG_PSI
2030 p->psi_flags = 0;
2031#endif
2032
5995477a 2033 task_io_accounting_init(&p->ioac);
1da177e4
LT
2034 acct_clear_integrals(p);
2035
3a245c0f 2036 posix_cputimers_init(&p->posix_cputimers);
1da177e4 2037
1da177e4 2038 p->io_context = NULL;
c0b0ae8a 2039 audit_set_context(p, NULL);
b4f48b63 2040 cgroup_fork(p);
1da177e4 2041#ifdef CONFIG_NUMA
846a16bf 2042 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
2043 if (IS_ERR(p->mempolicy)) {
2044 retval = PTR_ERR(p->mempolicy);
2045 p->mempolicy = NULL;
e8604cb4 2046 goto bad_fork_cleanup_threadgroup_lock;
fb0a685c 2047 }
1da177e4 2048#endif
778d3b0f
MH
2049#ifdef CONFIG_CPUSETS
2050 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2051 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
b7505861 2052 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
778d3b0f 2053#endif
de30a2b3 2054#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c
ME
2055 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2056 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2057 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2058 p->softirqs_enabled = 1;
2059 p->softirq_context = 0;
de30a2b3 2060#endif
8bcbde54
DH
2061
2062 p->pagefault_disabled = 0;
2063
fbb9ce95 2064#ifdef CONFIG_LOCKDEP
b09be676 2065 lockdep_init_task(p);
fbb9ce95 2066#endif
1da177e4 2067
408894ee
IM
2068#ifdef CONFIG_DEBUG_MUTEXES
2069 p->blocked_on = NULL; /* not blocked yet */
2070#endif
cafe5635
KO
2071#ifdef CONFIG_BCACHE
2072 p->sequential_io = 0;
2073 p->sequential_io_avg = 0;
2074#endif
0f481406 2075
3c90e6e9 2076 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
2077 retval = sched_fork(clone_flags, p);
2078 if (retval)
2079 goto bad_fork_cleanup_policy;
6ab423e0 2080
cdd6c482 2081 retval = perf_event_init_task(p);
6ab423e0
PZ
2082 if (retval)
2083 goto bad_fork_cleanup_policy;
fb0a685c
DRO
2084 retval = audit_alloc(p);
2085 if (retval)
6c72e350 2086 goto bad_fork_cleanup_perf;
1da177e4 2087 /* copy all the process information */
ab602f79 2088 shm_init_task(p);
e4e55b47 2089 retval = security_task_alloc(p, clone_flags);
fb0a685c 2090 if (retval)
1da177e4 2091 goto bad_fork_cleanup_audit;
e4e55b47
TH
2092 retval = copy_semundo(clone_flags, p);
2093 if (retval)
2094 goto bad_fork_cleanup_security;
fb0a685c
DRO
2095 retval = copy_files(clone_flags, p);
2096 if (retval)
1da177e4 2097 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
2098 retval = copy_fs(clone_flags, p);
2099 if (retval)
1da177e4 2100 goto bad_fork_cleanup_files;
fb0a685c
DRO
2101 retval = copy_sighand(clone_flags, p);
2102 if (retval)
1da177e4 2103 goto bad_fork_cleanup_fs;
fb0a685c
DRO
2104 retval = copy_signal(clone_flags, p);
2105 if (retval)
1da177e4 2106 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
2107 retval = copy_mm(clone_flags, p);
2108 if (retval)
1da177e4 2109 goto bad_fork_cleanup_signal;
fb0a685c
DRO
2110 retval = copy_namespaces(clone_flags, p);
2111 if (retval)
d84f4f99 2112 goto bad_fork_cleanup_mm;
fb0a685c
DRO
2113 retval = copy_io(clone_flags, p);
2114 if (retval)
fd0928df 2115 goto bad_fork_cleanup_namespaces;
714acdbd 2116 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
1da177e4 2117 if (retval)
fd0928df 2118 goto bad_fork_cleanup_io;
1da177e4 2119
afaef01c
AP
2120 stackleak_task_init(p);
2121
425fb2b4 2122 if (pid != &init_struct_pid) {
49cb2fc4
AR
2123 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2124 args->set_tid_size);
35f71bc0
MH
2125 if (IS_ERR(pid)) {
2126 retval = PTR_ERR(pid);
0740aa5f 2127 goto bad_fork_cleanup_thread;
35f71bc0 2128 }
425fb2b4
PE
2129 }
2130
b3e58382
CB
2131 /*
2132 * This has to happen after we've potentially unshared the file
2133 * descriptor table (so that the pidfd doesn't leak into the child
2134 * if the fd table isn't shared).
2135 */
2136 if (clone_flags & CLONE_PIDFD) {
6fd2fe49 2137 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
b3e58382
CB
2138 if (retval < 0)
2139 goto bad_fork_free_pid;
2140
2141 pidfd = retval;
6fd2fe49
AV
2142
2143 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2144 O_RDWR | O_CLOEXEC);
2145 if (IS_ERR(pidfile)) {
2146 put_unused_fd(pidfd);
28dd29c0 2147 retval = PTR_ERR(pidfile);
6fd2fe49
AV
2148 goto bad_fork_free_pid;
2149 }
2150 get_pid(pid); /* held by pidfile now */
2151
7f192e3c 2152 retval = put_user(pidfd, args->pidfd);
b3e58382
CB
2153 if (retval)
2154 goto bad_fork_put_pidfd;
2155 }
2156
73c10101
JA
2157#ifdef CONFIG_BLOCK
2158 p->plug = NULL;
2159#endif
ba31c1a4
TG
2160 futex_init_task(p);
2161
f9a3879a
GM
2162 /*
2163 * sigaltstack should be cleared when sharing the same VM
2164 */
2165 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 2166 sas_ss_reset(p);
f9a3879a 2167
1da177e4 2168 /*
6580807d
ON
2169 * Syscall tracing and stepping should be turned off in the
2170 * child regardless of CLONE_PTRACE.
1da177e4 2171 */
6580807d 2172 user_disable_single_step(p);
64c19ba2 2173 clear_task_syscall_work(p, SYSCALL_TRACE);
64eb35f7
GKB
2174#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2175 clear_task_syscall_work(p, SYSCALL_EMU);
ed75e8d5 2176#endif
e02c9b0d 2177 clear_tsk_latency_tracing(p);
1da177e4 2178
1da177e4 2179 /* ok, now we should be set up.. */
18c830df
ON
2180 p->pid = pid_nr(pid);
2181 if (clone_flags & CLONE_THREAD) {
18c830df
ON
2182 p->group_leader = current->group_leader;
2183 p->tgid = current->tgid;
2184 } else {
18c830df
ON
2185 p->group_leader = p;
2186 p->tgid = p->pid;
2187 }
5f8aadd8 2188
9d823e8f
WF
2189 p->nr_dirtied = 0;
2190 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 2191 p->dirty_paused_when = 0;
9d823e8f 2192
bb8cbbfe 2193 p->pdeath_signal = 0;
47e65328 2194 INIT_LIST_HEAD(&p->thread_group);
158e1645 2195 p->task_works = NULL;
1da177e4 2196
d741bf41
PZ
2197#ifdef CONFIG_KRETPROBES
2198 p->kretprobe_instances.first = NULL;
2199#endif
2200
7e47682e
AS
2201 /*
2202 * Ensure that the cgroup subsystem policies allow the new process to be
7b7b8a2c 2203 * forked. It should be noted that the new process's css_set can be changed
7e47682e
AS
2204 * between here and cgroup_post_fork() if an organisation operation is in
2205 * progress.
2206 */
ef2c41cf 2207 retval = cgroup_can_fork(p, args);
7e47682e 2208 if (retval)
5a5cf5cb 2209 goto bad_fork_put_pidfd;
7e47682e 2210
7b558513
DH
2211 /*
2212 * From this point on we must avoid any synchronous user-space
2213 * communication until we take the tasklist-lock. In particular, we do
2214 * not want user-space to be able to predict the process start-time by
2215 * stalling fork(2) after we recorded the start_time but before it is
2216 * visible to the system.
2217 */
2218
2219 p->start_time = ktime_get_ns();
cf25e24d 2220 p->start_boottime = ktime_get_boottime_ns();
7b558513 2221
18c830df
ON
2222 /*
2223 * Make it visible to the rest of the system, but dont wake it up yet.
2224 * Need tasklist lock for parent etc handling!
2225 */
1da177e4
LT
2226 write_lock_irq(&tasklist_lock);
2227
1da177e4 2228 /* CLONE_PARENT re-uses the old parent */
2d5516cb 2229 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 2230 p->real_parent = current->real_parent;
2d5516cb 2231 p->parent_exec_id = current->parent_exec_id;
b4e00444
EW
2232 if (clone_flags & CLONE_THREAD)
2233 p->exit_signal = -1;
2234 else
2235 p->exit_signal = current->group_leader->exit_signal;
2d5516cb 2236 } else {
1da177e4 2237 p->real_parent = current;
2d5516cb 2238 p->parent_exec_id = current->self_exec_id;
b4e00444 2239 p->exit_signal = args->exit_signal;
2d5516cb 2240 }
1da177e4 2241
d83a7cb3
JP
2242 klp_copy_process(p);
2243
3f17da69 2244 spin_lock(&current->sighand->siglock);
4a2c7a78 2245
dbd95212
KC
2246 /*
2247 * Copy seccomp details explicitly here, in case they were changed
2248 * before holding sighand lock.
2249 */
2250 copy_seccomp(p);
2251
d7822b1e
MD
2252 rseq_fork(p, clone_flags);
2253
4ca1d3ee 2254 /* Don't start children in a dying pid namespace */
e8cfbc24 2255 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
3fd37226
KT
2256 retval = -ENOMEM;
2257 goto bad_fork_cancel_cgroup;
2258 }
4a2c7a78 2259
7673bf55
EB
2260 /* Let kill terminate clone/fork in the middle */
2261 if (fatal_signal_pending(current)) {
2262 retval = -EINTR;
2263 goto bad_fork_cancel_cgroup;
2264 }
2265
6fd2fe49
AV
2266 /* past the last point of failure */
2267 if (pidfile)
2268 fd_install(pidfd, pidfile);
4a2c7a78 2269
2c470475 2270 init_task_pid_links(p);
73b9ebfe 2271 if (likely(p->pid)) {
4b9d33e6 2272 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 2273
81907739 2274 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 2275 if (thread_group_leader(p)) {
6883f81a 2276 init_task_pid(p, PIDTYPE_TGID, pid);
81907739
ON
2277 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2278 init_task_pid(p, PIDTYPE_SID, task_session(current));
2279
1c4042c2 2280 if (is_child_reaper(pid)) {
17cf22c3 2281 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
2282 p->signal->flags |= SIGNAL_UNKILLABLE;
2283 }
c3ad2c3b 2284 p->signal->shared_pending.signal = delayed.signal;
9c9f4ded 2285 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
2286 /*
2287 * Inherit has_child_subreaper flag under the same
2288 * tasklist_lock with adding child to the process tree
2289 * for propagate_has_child_subreaper optimization.
2290 */
2291 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2292 p->real_parent->signal->is_child_subreaper;
9cd80bbb 2293 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 2294 list_add_tail_rcu(&p->tasks, &init_task.tasks);
6883f81a 2295 attach_pid(p, PIDTYPE_TGID);
81907739
ON
2296 attach_pid(p, PIDTYPE_PGID);
2297 attach_pid(p, PIDTYPE_SID);
909ea964 2298 __this_cpu_inc(process_counts);
80628ca0
ON
2299 } else {
2300 current->signal->nr_threads++;
2301 atomic_inc(&current->signal->live);
60d4de3f 2302 refcount_inc(&current->signal->sigcnt);
924de3b8 2303 task_join_group_stop(p);
80628ca0
ON
2304 list_add_tail_rcu(&p->thread_group,
2305 &p->group_leader->thread_group);
0c740d0a
ON
2306 list_add_tail_rcu(&p->thread_node,
2307 &p->signal->thread_head);
73b9ebfe 2308 }
81907739 2309 attach_pid(p, PIDTYPE_PID);
73b9ebfe 2310 nr_threads++;
1da177e4 2311 }
1da177e4 2312 total_forks++;
c3ad2c3b 2313 hlist_del_init(&delayed.node);
3f17da69 2314 spin_unlock(&current->sighand->siglock);
4af4206b 2315 syscall_tracepoint_update(p);
1da177e4 2316 write_unlock_irq(&tasklist_lock);
4af4206b 2317
c13cf856 2318 proc_fork_connector(p);
13685c4a 2319 sched_post_fork(p);
ef2c41cf 2320 cgroup_post_fork(p, args);
cdd6c482 2321 perf_event_fork(p);
43d2b113
KH
2322
2323 trace_task_newtask(p, clone_flags);
3ab67966 2324 uprobe_copy_process(p, clone_flags);
43d2b113 2325
67197a4f
SB
2326 copy_oom_score_adj(clone_flags, p);
2327
1da177e4
LT
2328 return p;
2329
7e47682e 2330bad_fork_cancel_cgroup:
3fd37226
KT
2331 spin_unlock(&current->sighand->siglock);
2332 write_unlock_irq(&tasklist_lock);
ef2c41cf 2333 cgroup_cancel_fork(p, args);
b3e58382 2334bad_fork_put_pidfd:
6fd2fe49
AV
2335 if (clone_flags & CLONE_PIDFD) {
2336 fput(pidfile);
2337 put_unused_fd(pidfd);
2338 }
425fb2b4
PE
2339bad_fork_free_pid:
2340 if (pid != &init_struct_pid)
2341 free_pid(pid);
0740aa5f
JS
2342bad_fork_cleanup_thread:
2343 exit_thread(p);
fd0928df 2344bad_fork_cleanup_io:
b69f2292
LR
2345 if (p->io_context)
2346 exit_io_context(p);
ab516013 2347bad_fork_cleanup_namespaces:
444f378b 2348 exit_task_namespaces(p);
1da177e4 2349bad_fork_cleanup_mm:
c3f3ce04
AA
2350 if (p->mm) {
2351 mm_clear_owner(p->mm, p);
1da177e4 2352 mmput(p->mm);
c3f3ce04 2353 }
1da177e4 2354bad_fork_cleanup_signal:
4ab6c083 2355 if (!(clone_flags & CLONE_THREAD))
1c5354de 2356 free_signal_struct(p->signal);
1da177e4 2357bad_fork_cleanup_sighand:
a7e5328a 2358 __cleanup_sighand(p->sighand);
1da177e4
LT
2359bad_fork_cleanup_fs:
2360 exit_fs(p); /* blocking */
2361bad_fork_cleanup_files:
2362 exit_files(p); /* blocking */
2363bad_fork_cleanup_semundo:
2364 exit_sem(p);
e4e55b47
TH
2365bad_fork_cleanup_security:
2366 security_task_free(p);
1da177e4
LT
2367bad_fork_cleanup_audit:
2368 audit_free(p);
6c72e350 2369bad_fork_cleanup_perf:
cdd6c482 2370 perf_event_free_task(p);
6c72e350 2371bad_fork_cleanup_policy:
b09be676 2372 lockdep_free_task(p);
1da177e4 2373#ifdef CONFIG_NUMA
f0be3d32 2374 mpol_put(p->mempolicy);
e8604cb4 2375bad_fork_cleanup_threadgroup_lock:
1da177e4 2376#endif
35df17c5 2377 delayacct_tsk_free(p);
1da177e4 2378bad_fork_cleanup_count:
d84f4f99 2379 atomic_dec(&p->cred->user->processes);
e0e81739 2380 exit_creds(p);
1da177e4 2381bad_fork_free:
405c0759 2382 p->state = TASK_DEAD;
68f24b08 2383 put_task_stack(p);
c3f3ce04 2384 delayed_free_task(p);
fe7d37d1 2385fork_out:
c3ad2c3b
EB
2386 spin_lock_irq(&current->sighand->siglock);
2387 hlist_del_init(&delayed.node);
2388 spin_unlock_irq(&current->sighand->siglock);
fe7d37d1 2389 return ERR_PTR(retval);
1da177e4
LT
2390}
2391
2c470475 2392static inline void init_idle_pids(struct task_struct *idle)
f106eee1
ON
2393{
2394 enum pid_type type;
2395
2396 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2c470475
EB
2397 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2398 init_task_pid(idle, type, &init_struct_pid);
f106eee1
ON
2399 }
2400}
2401
0db0628d 2402struct task_struct *fork_idle(int cpu)
1da177e4 2403{
36c8b586 2404 struct task_struct *task;
7f192e3c
CB
2405 struct kernel_clone_args args = {
2406 .flags = CLONE_VM,
2407 };
2408
2409 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
f106eee1 2410 if (!IS_ERR(task)) {
2c470475 2411 init_idle_pids(task);
753ca4f3 2412 init_idle(task, cpu);
f106eee1 2413 }
73b9ebfe 2414
1da177e4
LT
2415 return task;
2416}
2417
13585fa0
NA
2418struct mm_struct *copy_init_mm(void)
2419{
2420 return dup_mm(NULL, &init_mm);
2421}
2422
1da177e4
LT
2423/*
2424 * Ok, this is the main fork-routine.
2425 *
2426 * It copies the process, and if successful kick-starts
2427 * it and waits for it to finish using the VM if required.
a0eb9abd
ES
2428 *
2429 * args->exit_signal is expected to be checked for sanity by the caller.
1da177e4 2430 */
cad6967a 2431pid_t kernel_clone(struct kernel_clone_args *args)
1da177e4 2432{
7f192e3c 2433 u64 clone_flags = args->flags;
9f5325aa
MPS
2434 struct completion vfork;
2435 struct pid *pid;
1da177e4
LT
2436 struct task_struct *p;
2437 int trace = 0;
cad6967a 2438 pid_t nr;
1da177e4 2439
3af8588c
CB
2440 /*
2441 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2442 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2443 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2444 * field in struct clone_args and it still doesn't make sense to have
2445 * them both point at the same memory location. Performing this check
2446 * here has the advantage that we don't need to have a separate helper
2447 * to check for legacy clone().
2448 */
2449 if ((args->flags & CLONE_PIDFD) &&
2450 (args->flags & CLONE_PARENT_SETTID) &&
2451 (args->pidfd == args->parent_tid))
2452 return -EINVAL;
2453
09a05394 2454 /*
4b9d33e6
TH
2455 * Determine whether and which event to report to ptracer. When
2456 * called from kernel_thread or CLONE_UNTRACED is explicitly
2457 * requested, no event is reported; otherwise, report if the event
2458 * for the type of forking is enabled.
09a05394 2459 */
e80d6661 2460 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2461 if (clone_flags & CLONE_VFORK)
2462 trace = PTRACE_EVENT_VFORK;
7f192e3c 2463 else if (args->exit_signal != SIGCHLD)
4b9d33e6
TH
2464 trace = PTRACE_EVENT_CLONE;
2465 else
2466 trace = PTRACE_EVENT_FORK;
2467
2468 if (likely(!ptrace_event_enabled(current, trace)))
2469 trace = 0;
2470 }
1da177e4 2471
7f192e3c 2472 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
38addce8 2473 add_latent_entropy();
9f5325aa
MPS
2474
2475 if (IS_ERR(p))
2476 return PTR_ERR(p);
2477
1da177e4
LT
2478 /*
2479 * Do this prior waking up the new thread - the thread pointer
2480 * might get invalid after that point, if the thread exits quickly.
2481 */
9f5325aa 2482 trace_sched_process_fork(current, p);
0a16b607 2483
9f5325aa
MPS
2484 pid = get_task_pid(p, PIDTYPE_PID);
2485 nr = pid_vnr(pid);
30e49c26 2486
9f5325aa 2487 if (clone_flags & CLONE_PARENT_SETTID)
7f192e3c 2488 put_user(nr, args->parent_tid);
a6f5e063 2489
9f5325aa
MPS
2490 if (clone_flags & CLONE_VFORK) {
2491 p->vfork_done = &vfork;
2492 init_completion(&vfork);
2493 get_task_struct(p);
2494 }
1da177e4 2495
9f5325aa 2496 wake_up_new_task(p);
09a05394 2497
9f5325aa
MPS
2498 /* forking complete and child started to run, tell ptracer */
2499 if (unlikely(trace))
2500 ptrace_event_pid(trace, pid);
4e52365f 2501
9f5325aa
MPS
2502 if (clone_flags & CLONE_VFORK) {
2503 if (!wait_for_vfork_done(p, &vfork))
2504 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2505 }
9f5325aa
MPS
2506
2507 put_pid(pid);
92476d7f 2508 return nr;
1da177e4
LT
2509}
2510
2aa3a7f8
AV
2511/*
2512 * Create a kernel thread.
2513 */
2514pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2515{
7f192e3c 2516 struct kernel_clone_args args = {
3f2c788a
CB
2517 .flags = ((lower_32_bits(flags) | CLONE_VM |
2518 CLONE_UNTRACED) & ~CSIGNAL),
2519 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
7f192e3c
CB
2520 .stack = (unsigned long)fn,
2521 .stack_size = (unsigned long)arg,
2522 };
2523
cad6967a 2524 return kernel_clone(&args);
2aa3a7f8 2525}
2aa3a7f8 2526
d2125043
AV
2527#ifdef __ARCH_WANT_SYS_FORK
2528SYSCALL_DEFINE0(fork)
2529{
2530#ifdef CONFIG_MMU
7f192e3c
CB
2531 struct kernel_clone_args args = {
2532 .exit_signal = SIGCHLD,
2533 };
2534
cad6967a 2535 return kernel_clone(&args);
d2125043
AV
2536#else
2537 /* can not support in nommu mode */
5d59e182 2538 return -EINVAL;
d2125043
AV
2539#endif
2540}
2541#endif
2542
2543#ifdef __ARCH_WANT_SYS_VFORK
2544SYSCALL_DEFINE0(vfork)
2545{
7f192e3c
CB
2546 struct kernel_clone_args args = {
2547 .flags = CLONE_VFORK | CLONE_VM,
2548 .exit_signal = SIGCHLD,
2549 };
2550
cad6967a 2551 return kernel_clone(&args);
d2125043
AV
2552}
2553#endif
2554
2555#ifdef __ARCH_WANT_SYS_CLONE
2556#ifdef CONFIG_CLONE_BACKWARDS
2557SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2558 int __user *, parent_tidptr,
3033f14a 2559 unsigned long, tls,
d2125043
AV
2560 int __user *, child_tidptr)
2561#elif defined(CONFIG_CLONE_BACKWARDS2)
2562SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2563 int __user *, parent_tidptr,
2564 int __user *, child_tidptr,
3033f14a 2565 unsigned long, tls)
dfa9771a
MS
2566#elif defined(CONFIG_CLONE_BACKWARDS3)
2567SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2568 int, stack_size,
2569 int __user *, parent_tidptr,
2570 int __user *, child_tidptr,
3033f14a 2571 unsigned long, tls)
d2125043
AV
2572#else
2573SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2574 int __user *, parent_tidptr,
2575 int __user *, child_tidptr,
3033f14a 2576 unsigned long, tls)
d2125043
AV
2577#endif
2578{
7f192e3c 2579 struct kernel_clone_args args = {
3f2c788a 2580 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
7f192e3c
CB
2581 .pidfd = parent_tidptr,
2582 .child_tid = child_tidptr,
2583 .parent_tid = parent_tidptr,
3f2c788a 2584 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
7f192e3c
CB
2585 .stack = newsp,
2586 .tls = tls,
2587 };
2588
cad6967a 2589 return kernel_clone(&args);
7f192e3c 2590}
d68dbb0c 2591#endif
7f192e3c 2592
d68dbb0c 2593#ifdef __ARCH_WANT_SYS_CLONE3
dd499f7a 2594
7f192e3c
CB
2595noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2596 struct clone_args __user *uargs,
f14c234b 2597 size_t usize)
7f192e3c 2598{
f14c234b 2599 int err;
7f192e3c 2600 struct clone_args args;
49cb2fc4 2601 pid_t *kset_tid = kargs->set_tid;
7f192e3c 2602
a966dcfe
ES
2603 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2604 CLONE_ARGS_SIZE_VER0);
2605 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2606 CLONE_ARGS_SIZE_VER1);
2607 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2608 CLONE_ARGS_SIZE_VER2);
2609 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2610
f14c234b 2611 if (unlikely(usize > PAGE_SIZE))
7f192e3c 2612 return -E2BIG;
f14c234b 2613 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
7f192e3c
CB
2614 return -EINVAL;
2615
f14c234b
AS
2616 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2617 if (err)
2618 return err;
7f192e3c 2619
49cb2fc4
AR
2620 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2621 return -EINVAL;
2622
2623 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2624 return -EINVAL;
2625
2626 if (unlikely(args.set_tid && args.set_tid_size == 0))
2627 return -EINVAL;
2628
a0eb9abd
ES
2629 /*
2630 * Verify that higher 32bits of exit_signal are unset and that
2631 * it is a valid signal
2632 */
2633 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2634 !valid_signal(args.exit_signal)))
2635 return -EINVAL;
2636
62173872
ES
2637 if ((args.flags & CLONE_INTO_CGROUP) &&
2638 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
ef2c41cf
CB
2639 return -EINVAL;
2640
7f192e3c
CB
2641 *kargs = (struct kernel_clone_args){
2642 .flags = args.flags,
2643 .pidfd = u64_to_user_ptr(args.pidfd),
2644 .child_tid = u64_to_user_ptr(args.child_tid),
2645 .parent_tid = u64_to_user_ptr(args.parent_tid),
2646 .exit_signal = args.exit_signal,
2647 .stack = args.stack,
2648 .stack_size = args.stack_size,
2649 .tls = args.tls,
49cb2fc4 2650 .set_tid_size = args.set_tid_size,
ef2c41cf 2651 .cgroup = args.cgroup,
7f192e3c
CB
2652 };
2653
49cb2fc4
AR
2654 if (args.set_tid &&
2655 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2656 (kargs->set_tid_size * sizeof(pid_t))))
2657 return -EFAULT;
2658
2659 kargs->set_tid = kset_tid;
2660
7f192e3c
CB
2661 return 0;
2662}
2663
fa729c4d
CB
2664/**
2665 * clone3_stack_valid - check and prepare stack
2666 * @kargs: kernel clone args
2667 *
2668 * Verify that the stack arguments userspace gave us are sane.
2669 * In addition, set the stack direction for userspace since it's easy for us to
2670 * determine.
2671 */
2672static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2673{
2674 if (kargs->stack == 0) {
2675 if (kargs->stack_size > 0)
2676 return false;
2677 } else {
2678 if (kargs->stack_size == 0)
2679 return false;
2680
2681 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2682 return false;
2683
2684#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2685 kargs->stack += kargs->stack_size;
2686#endif
2687 }
2688
2689 return true;
2690}
2691
2692static bool clone3_args_valid(struct kernel_clone_args *kargs)
7f192e3c 2693{
b612e5df 2694 /* Verify that no unknown flags are passed along. */
ef2c41cf
CB
2695 if (kargs->flags &
2696 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
7f192e3c
CB
2697 return false;
2698
2699 /*
2700 * - make the CLONE_DETACHED bit reuseable for clone3
2701 * - make the CSIGNAL bits reuseable for clone3
2702 */
2703 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2704 return false;
2705
b612e5df
CB
2706 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2707 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2708 return false;
2709
7f192e3c
CB
2710 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2711 kargs->exit_signal)
2712 return false;
2713
fa729c4d
CB
2714 if (!clone3_stack_valid(kargs))
2715 return false;
2716
7f192e3c
CB
2717 return true;
2718}
2719
501bd016
CB
2720/**
2721 * clone3 - create a new process with specific properties
2722 * @uargs: argument structure
2723 * @size: size of @uargs
2724 *
2725 * clone3() is the extensible successor to clone()/clone2().
2726 * It takes a struct as argument that is versioned by its size.
2727 *
2728 * Return: On success, a positive PID for the child process.
2729 * On error, a negative errno number.
2730 */
7f192e3c
CB
2731SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2732{
2733 int err;
2734
2735 struct kernel_clone_args kargs;
49cb2fc4
AR
2736 pid_t set_tid[MAX_PID_NS_LEVEL];
2737
2738 kargs.set_tid = set_tid;
7f192e3c
CB
2739
2740 err = copy_clone_args_from_user(&kargs, uargs, size);
2741 if (err)
2742 return err;
2743
2744 if (!clone3_args_valid(&kargs))
2745 return -EINVAL;
2746
cad6967a 2747 return kernel_clone(&kargs);
d2125043
AV
2748}
2749#endif
2750
0f1b92cb
ON
2751void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2752{
2753 struct task_struct *leader, *parent, *child;
2754 int res;
2755
2756 read_lock(&tasklist_lock);
2757 leader = top = top->group_leader;
2758down:
2759 for_each_thread(leader, parent) {
2760 list_for_each_entry(child, &parent->children, sibling) {
2761 res = visitor(child, data);
2762 if (res) {
2763 if (res < 0)
2764 goto out;
2765 leader = child;
2766 goto down;
2767 }
2768up:
2769 ;
2770 }
2771 }
2772
2773 if (leader != top) {
2774 child = leader;
2775 parent = child->real_parent;
2776 leader = parent->group_leader;
2777 goto up;
2778 }
2779out:
2780 read_unlock(&tasklist_lock);
2781}
2782
5fd63b30
RT
2783#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2784#define ARCH_MIN_MMSTRUCT_ALIGN 0
2785#endif
2786
51cc5068 2787static void sighand_ctor(void *data)
aa1757f9
ON
2788{
2789 struct sighand_struct *sighand = data;
2790
a35afb83 2791 spin_lock_init(&sighand->siglock);
b8fceee1 2792 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
2793}
2794
1da177e4
LT
2795void __init proc_caches_init(void)
2796{
c1a2f7f0
RR
2797 unsigned int mm_size;
2798
1da177e4
LT
2799 sighand_cachep = kmem_cache_create("sighand_cache",
2800 sizeof(struct sighand_struct), 0,
5f0d5a3a 2801 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
75f296d9 2802 SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
2803 signal_cachep = kmem_cache_create("signal_cache",
2804 sizeof(struct signal_struct), 0,
75f296d9 2805 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2806 NULL);
20c2df83 2807 files_cachep = kmem_cache_create("files_cache",
1da177e4 2808 sizeof(struct files_struct), 0,
75f296d9 2809 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2810 NULL);
20c2df83 2811 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 2812 sizeof(struct fs_struct), 0,
75f296d9 2813 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2814 NULL);
c1a2f7f0 2815
6345d24d 2816 /*
c1a2f7f0
RR
2817 * The mm_cpumask is located at the end of mm_struct, and is
2818 * dynamically sized based on the maximum CPU number this system
2819 * can have, taking hotplug into account (nr_cpu_ids).
6345d24d 2820 */
c1a2f7f0
RR
2821 mm_size = sizeof(struct mm_struct) + cpumask_size();
2822
07dcd7fe 2823 mm_cachep = kmem_cache_create_usercopy("mm_struct",
c1a2f7f0 2824 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
75f296d9 2825 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
07dcd7fe
DW
2826 offsetof(struct mm_struct, saved_auxv),
2827 sizeof_field(struct mm_struct, saved_auxv),
5d097056
VD
2828 NULL);
2829 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
8feae131 2830 mmap_init();
66577193 2831 nsproxy_cache_init();
1da177e4 2832}
cf2e340f 2833
cf2e340f 2834/*
9bfb23fc 2835 * Check constraints on flags passed to the unshare system call.
cf2e340f 2836 */
9bfb23fc 2837static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 2838{
9bfb23fc
ON
2839 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2840 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 2841 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
769071ac
AV
2842 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2843 CLONE_NEWTIME))
9bfb23fc 2844 return -EINVAL;
cf2e340f 2845 /*
12c641ab
EB
2846 * Not implemented, but pretend it works if there is nothing
2847 * to unshare. Note that unsharing the address space or the
2848 * signal handlers also need to unshare the signal queues (aka
2849 * CLONE_THREAD).
cf2e340f 2850 */
9bfb23fc 2851 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
2852 if (!thread_group_empty(current))
2853 return -EINVAL;
2854 }
2855 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
d036bda7 2856 if (refcount_read(&current->sighand->count) > 1)
12c641ab
EB
2857 return -EINVAL;
2858 }
2859 if (unshare_flags & CLONE_VM) {
2860 if (!current_is_single_threaded())
9bfb23fc
ON
2861 return -EINVAL;
2862 }
cf2e340f
JD
2863
2864 return 0;
2865}
2866
2867/*
99d1419d 2868 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
2869 */
2870static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2871{
2872 struct fs_struct *fs = current->fs;
2873
498052bb
AV
2874 if (!(unshare_flags & CLONE_FS) || !fs)
2875 return 0;
2876
2877 /* don't need lock here; in the worst case we'll do useless copy */
2878 if (fs->users == 1)
2879 return 0;
2880
2881 *new_fsp = copy_fs_struct(fs);
2882 if (!*new_fsp)
2883 return -ENOMEM;
cf2e340f
JD
2884
2885 return 0;
2886}
2887
cf2e340f 2888/*
a016f338 2889 * Unshare file descriptor table if it is being shared
cf2e340f 2890 */
60997c3d
CB
2891int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2892 struct files_struct **new_fdp)
cf2e340f
JD
2893{
2894 struct files_struct *fd = current->files;
a016f338 2895 int error = 0;
cf2e340f
JD
2896
2897 if ((unshare_flags & CLONE_FILES) &&
a016f338 2898 (fd && atomic_read(&fd->count) > 1)) {
60997c3d 2899 *new_fdp = dup_fd(fd, max_fds, &error);
a016f338
JD
2900 if (!*new_fdp)
2901 return error;
2902 }
cf2e340f
JD
2903
2904 return 0;
2905}
2906
cf2e340f
JD
2907/*
2908 * unshare allows a process to 'unshare' part of the process
2909 * context which was originally shared using clone. copy_*
cad6967a 2910 * functions used by kernel_clone() cannot be used here directly
cf2e340f
JD
2911 * because they modify an inactive task_struct that is being
2912 * constructed. Here we are modifying the current, active,
2913 * task_struct.
2914 */
9b32105e 2915int ksys_unshare(unsigned long unshare_flags)
cf2e340f 2916{
cf2e340f 2917 struct fs_struct *fs, *new_fs = NULL;
cf2e340f 2918 struct files_struct *fd, *new_fd = NULL;
b2e0d987 2919 struct cred *new_cred = NULL;
cf7b708c 2920 struct nsproxy *new_nsproxy = NULL;
9edff4ab 2921 int do_sysvsem = 0;
9bfb23fc 2922 int err;
cf2e340f 2923
b2e0d987 2924 /*
faf00da5
EB
2925 * If unsharing a user namespace must also unshare the thread group
2926 * and unshare the filesystem root and working directories.
b2e0d987
EB
2927 */
2928 if (unshare_flags & CLONE_NEWUSER)
e66eded8 2929 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
2930 /*
2931 * If unsharing vm, must also unshare signal handlers.
2932 */
2933 if (unshare_flags & CLONE_VM)
2934 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
2935 /*
2936 * If unsharing a signal handlers, must also unshare the signal queues.
2937 */
2938 if (unshare_flags & CLONE_SIGHAND)
2939 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
2940 /*
2941 * If unsharing namespace, must also unshare filesystem information.
2942 */
2943 if (unshare_flags & CLONE_NEWNS)
2944 unshare_flags |= CLONE_FS;
50804fe3 2945
e49687f6
SH
2946 if ((unshare_flags & CLONE_NEWUSER) && !unprivileged_userns_clone) {
2947 err = -EPERM;
2948 if (!capable(CAP_SYS_ADMIN))
2949 goto bad_unshare_out;
2950 }
2951
50804fe3
EB
2952 err = check_unshare_flags(unshare_flags);
2953 if (err)
2954 goto bad_unshare_out;
6013f67f
MS
2955 /*
2956 * CLONE_NEWIPC must also detach from the undolist: after switching
2957 * to a new ipc namespace, the semaphore arrays from the old
2958 * namespace are unreachable.
2959 */
2960 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 2961 do_sysvsem = 1;
fb0a685c
DRO
2962 err = unshare_fs(unshare_flags, &new_fs);
2963 if (err)
9bfb23fc 2964 goto bad_unshare_out;
60997c3d 2965 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
fb0a685c 2966 if (err)
9bfb23fc 2967 goto bad_unshare_cleanup_fs;
b2e0d987 2968 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 2969 if (err)
9edff4ab 2970 goto bad_unshare_cleanup_fd;
b2e0d987
EB
2971 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2972 new_cred, new_fs);
2973 if (err)
2974 goto bad_unshare_cleanup_cred;
c0b2fc31 2975
b2e0d987 2976 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
2977 if (do_sysvsem) {
2978 /*
2979 * CLONE_SYSVSEM is equivalent to sys_exit().
2980 */
2981 exit_sem(current);
2982 }
ab602f79
JM
2983 if (unshare_flags & CLONE_NEWIPC) {
2984 /* Orphan segments in old ns (see sem above). */
2985 exit_shm(current);
2986 shm_init_task(current);
2987 }
ab516013 2988
6f977e6b 2989 if (new_nsproxy)
cf7b708c 2990 switch_task_namespaces(current, new_nsproxy);
cf2e340f 2991
cf7b708c
PE
2992 task_lock(current);
2993
cf2e340f
JD
2994 if (new_fs) {
2995 fs = current->fs;
2a4419b5 2996 spin_lock(&fs->lock);
cf2e340f 2997 current->fs = new_fs;
498052bb
AV
2998 if (--fs->users)
2999 new_fs = NULL;
3000 else
3001 new_fs = fs;
2a4419b5 3002 spin_unlock(&fs->lock);
cf2e340f
JD
3003 }
3004
cf2e340f
JD
3005 if (new_fd) {
3006 fd = current->files;
3007 current->files = new_fd;
3008 new_fd = fd;
3009 }
3010
3011 task_unlock(current);
b2e0d987
EB
3012
3013 if (new_cred) {
3014 /* Install the new user namespace */
3015 commit_creds(new_cred);
3016 new_cred = NULL;
3017 }
cf2e340f
JD
3018 }
3019
e4222673
HB
3020 perf_event_namespaces(current);
3021
b2e0d987
EB
3022bad_unshare_cleanup_cred:
3023 if (new_cred)
3024 put_cred(new_cred);
cf2e340f
JD
3025bad_unshare_cleanup_fd:
3026 if (new_fd)
3027 put_files_struct(new_fd);
3028
cf2e340f
JD
3029bad_unshare_cleanup_fs:
3030 if (new_fs)
498052bb 3031 free_fs_struct(new_fs);
cf2e340f 3032
cf2e340f
JD
3033bad_unshare_out:
3034 return err;
3035}
3b125388 3036
9b32105e
DB
3037SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3038{
3039 return ksys_unshare(unshare_flags);
3040}
3041
3b125388
AV
3042/*
3043 * Helper to unshare the files of the current task.
3044 * We don't want to expose copy_files internals to
3045 * the exec layer of the kernel.
3046 */
3047
1f702603 3048int unshare_files(void)
3b125388
AV
3049{
3050 struct task_struct *task = current;
1f702603 3051 struct files_struct *old, *copy = NULL;
3b125388
AV
3052 int error;
3053
60997c3d 3054 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
1f702603 3055 if (error || !copy)
3b125388 3056 return error;
1f702603
EB
3057
3058 old = task->files;
3b125388
AV
3059 task_lock(task);
3060 task->files = copy;
3061 task_unlock(task);
1f702603 3062 put_files_struct(old);
3b125388
AV
3063 return 0;
3064}
16db3d3f
HS
3065
3066int sysctl_max_threads(struct ctl_table *table, int write,
b0daa2c7 3067 void *buffer, size_t *lenp, loff_t *ppos)
16db3d3f
HS
3068{
3069 struct ctl_table t;
3070 int ret;
3071 int threads = max_threads;
b0f53dbc 3072 int min = 1;
16db3d3f
HS
3073 int max = MAX_THREADS;
3074
3075 t = *table;
3076 t.data = &threads;
3077 t.extra1 = &min;
3078 t.extra2 = &max;
3079
3080 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3081 if (ret || !write)
3082 return ret;
3083
b0f53dbc 3084 max_threads = threads;
16db3d3f
HS
3085
3086 return 0;
3087}