]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/fork.c
audit: log AUDIT_TIME_* records only from rules
[mirror_ubuntu-jammy-kernel.git] / kernel / fork.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
b3e58382 15#include <linux/anon_inodes.h>
1da177e4 16#include <linux/slab.h>
4eb5aaa3 17#include <linux/sched/autogroup.h>
6e84f315 18#include <linux/sched/mm.h>
f7ccbae4 19#include <linux/sched/coredump.h>
8703e8a4 20#include <linux/sched/user.h>
6a3827d7 21#include <linux/sched/numa_balancing.h>
03441a34 22#include <linux/sched/stat.h>
29930025 23#include <linux/sched/task.h>
68db0cf1 24#include <linux/sched/task_stack.h>
32ef5517 25#include <linux/sched/cputime.h>
b3e58382 26#include <linux/seq_file.h>
037741a6 27#include <linux/rtmutex.h>
1da177e4
LT
28#include <linux/init.h>
29#include <linux/unistd.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
1da177e4
LT
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
9f3acc31 37#include <linux/fdtable.h>
da9cbc87 38#include <linux/iocontext.h>
1da177e4
LT
39#include <linux/key.h>
40#include <linux/binfmts.h>
41#include <linux/mman.h>
cddb8a5c 42#include <linux/mmu_notifier.h>
1da177e4 43#include <linux/fs.h>
615d6e87
DB
44#include <linux/mm.h>
45#include <linux/vmacache.h>
ab516013 46#include <linux/nsproxy.h>
c59ede7b 47#include <linux/capability.h>
1da177e4 48#include <linux/cpu.h>
b4f48b63 49#include <linux/cgroup.h>
1da177e4 50#include <linux/security.h>
a1e78772 51#include <linux/hugetlb.h>
e2cfabdf 52#include <linux/seccomp.h>
1da177e4
LT
53#include <linux/swap.h>
54#include <linux/syscalls.h>
55#include <linux/jiffies.h>
56#include <linux/futex.h>
8141c7f3 57#include <linux/compat.h>
207205a2 58#include <linux/kthread.h>
7c3ab738 59#include <linux/task_io_accounting_ops.h>
ab2af1f5 60#include <linux/rcupdate.h>
1da177e4
LT
61#include <linux/ptrace.h>
62#include <linux/mount.h>
63#include <linux/audit.h>
78fb7466 64#include <linux/memcontrol.h>
f201ae23 65#include <linux/ftrace.h>
5e2bf014 66#include <linux/proc_fs.h>
1da177e4
LT
67#include <linux/profile.h>
68#include <linux/rmap.h>
f8af4da3 69#include <linux/ksm.h>
1da177e4 70#include <linux/acct.h>
893e26e6 71#include <linux/userfaultfd_k.h>
8f0ab514 72#include <linux/tsacct_kern.h>
9f46080c 73#include <linux/cn_proc.h>
ba96a0c8 74#include <linux/freezer.h>
ca74e92b 75#include <linux/delayacct.h>
ad4ecbcb 76#include <linux/taskstats_kern.h>
0a425405 77#include <linux/random.h>
522ed776 78#include <linux/tty.h>
fd0928df 79#include <linux/blkdev.h>
5ad4e53b 80#include <linux/fs_struct.h>
7c9f8861 81#include <linux/magic.h>
cdd6c482 82#include <linux/perf_event.h>
42c4ab41 83#include <linux/posix-timers.h>
8e7cac79 84#include <linux/user-return-notifier.h>
3d5992d2 85#include <linux/oom.h>
ba76149f 86#include <linux/khugepaged.h>
d80e731e 87#include <linux/signalfd.h>
0326f5a9 88#include <linux/uprobes.h>
a27bb332 89#include <linux/aio.h>
52f5684c 90#include <linux/compiler.h>
16db3d3f 91#include <linux/sysctl.h>
5c9a8750 92#include <linux/kcov.h>
d83a7cb3 93#include <linux/livepatch.h>
48ac3c18 94#include <linux/thread_info.h>
afaef01c 95#include <linux/stackleak.h>
eafb149e 96#include <linux/kasan.h>
d08b9f0c 97#include <linux/scs.h>
0f212204 98#include <linux/io_uring.h>
a10787e6 99#include <linux/bpf.h>
1da177e4 100
1da177e4 101#include <asm/pgalloc.h>
7c0f6ba6 102#include <linux/uaccess.h>
1da177e4
LT
103#include <asm/mmu_context.h>
104#include <asm/cacheflush.h>
105#include <asm/tlbflush.h>
106
ad8d75ff
SR
107#include <trace/events/sched.h>
108
43d2b113
KH
109#define CREATE_TRACE_POINTS
110#include <trace/events/task.h>
34227646
SH
111#ifdef CONFIG_USER_NS
112extern int unprivileged_userns_clone;
113#else
114#define unprivileged_userns_clone 0
115#endif
43d2b113 116
ac1b398d
HS
117/*
118 * Minimum number of threads to boot the kernel
119 */
120#define MIN_THREADS 20
121
122/*
123 * Maximum number of threads
124 */
125#define MAX_THREADS FUTEX_TID_MASK
126
1da177e4
LT
127/*
128 * Protected counters by write_lock_irq(&tasklist_lock)
129 */
130unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 131int nr_threads; /* The idle threads do not count.. */
1da177e4 132
8856ae4d 133static int max_threads; /* tunable limit on nr_threads */
1da177e4 134
8495f7e6
SPP
135#define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
136
137static const char * const resident_page_types[] = {
138 NAMED_ARRAY_INDEX(MM_FILEPAGES),
139 NAMED_ARRAY_INDEX(MM_ANONPAGES),
140 NAMED_ARRAY_INDEX(MM_SWAPENTS),
141 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
142};
143
1da177e4
LT
144DEFINE_PER_CPU(unsigned long, process_counts) = 0;
145
c59923a1 146__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
147
148#ifdef CONFIG_PROVE_RCU
149int lockdep_tasklist_lock_is_held(void)
150{
151 return lockdep_is_held(&tasklist_lock);
152}
153EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
154#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
155
156int nr_processes(void)
157{
158 int cpu;
159 int total = 0;
160
1d510750 161 for_each_possible_cpu(cpu)
1da177e4
LT
162 total += per_cpu(process_counts, cpu);
163
164 return total;
165}
166
f19b9f74
AM
167void __weak arch_release_task_struct(struct task_struct *tsk)
168{
169}
170
f5e10287 171#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
e18b890b 172static struct kmem_cache *task_struct_cachep;
41101809
TG
173
174static inline struct task_struct *alloc_task_struct_node(int node)
175{
176 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
177}
178
41101809
TG
179static inline void free_task_struct(struct task_struct *tsk)
180{
41101809
TG
181 kmem_cache_free(task_struct_cachep, tsk);
182}
1da177e4
LT
183#endif
184
b235beea 185#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
41101809 186
0d15d74a
TG
187/*
188 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
189 * kmemcache based allocator.
190 */
ba14a194 191# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4
AL
192
193#ifdef CONFIG_VMAP_STACK
194/*
195 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
196 * flush. Try to minimize the number of calls by caching stacks.
197 */
198#define NR_CACHED_STACKS 2
199static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59
HR
200
201static int free_vm_stack_cache(unsigned int cpu)
202{
203 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
204 int i;
205
206 for (i = 0; i < NR_CACHED_STACKS; i++) {
207 struct vm_struct *vm_stack = cached_vm_stacks[i];
208
209 if (!vm_stack)
210 continue;
211
212 vfree(vm_stack->addr);
213 cached_vm_stacks[i] = NULL;
214 }
215
216 return 0;
217}
ac496bf4
AL
218#endif
219
ba14a194 220static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 221{
ba14a194 222#ifdef CONFIG_VMAP_STACK
ac496bf4
AL
223 void *stack;
224 int i;
225
ac496bf4 226 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
227 struct vm_struct *s;
228
229 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
230
231 if (!s)
232 continue;
ac496bf4 233
cebd0eb2
AK
234 /* Mark stack accessible for KASAN. */
235 kasan_unpoison_range(s->addr, THREAD_SIZE);
eafb149e 236
ca182551
KK
237 /* Clear stale pointers from reused stack. */
238 memset(s->addr, 0, THREAD_SIZE);
e01e8063 239
ac496bf4 240 tsk->stack_vm_area = s;
ba4a4574 241 tsk->stack = s->addr;
ac496bf4
AL
242 return s->addr;
243 }
ac496bf4 244
9b6f7e16
RG
245 /*
246 * Allocated stacks are cached and later reused by new threads,
247 * so memcg accounting is performed manually on assigning/releasing
248 * stacks to tasks. Drop __GFP_ACCOUNT.
249 */
48ac3c18 250 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
ac496bf4 251 VMALLOC_START, VMALLOC_END,
9b6f7e16 252 THREADINFO_GFP & ~__GFP_ACCOUNT,
ac496bf4
AL
253 PAGE_KERNEL,
254 0, node, __builtin_return_address(0));
ba14a194
AL
255
256 /*
257 * We can't call find_vm_area() in interrupt context, and
258 * free_thread_stack() can be called in interrupt context,
259 * so cache the vm_struct.
260 */
5eed6f1d 261 if (stack) {
ba14a194 262 tsk->stack_vm_area = find_vm_area(stack);
5eed6f1d
RR
263 tsk->stack = stack;
264 }
ba14a194
AL
265 return stack;
266#else
4949148a
VD
267 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
268 THREAD_SIZE_ORDER);
b6a84016 269
1bf4580e 270 if (likely(page)) {
8dcc1d34 271 tsk->stack = kasan_reset_tag(page_address(page));
1bf4580e
AA
272 return tsk->stack;
273 }
274 return NULL;
ba14a194 275#endif
b69c49b7
FT
276}
277
ba14a194 278static inline void free_thread_stack(struct task_struct *tsk)
b69c49b7 279{
ac496bf4 280#ifdef CONFIG_VMAP_STACK
9b6f7e16
RG
281 struct vm_struct *vm = task_stack_vm_area(tsk);
282
283 if (vm) {
ac496bf4
AL
284 int i;
285
991e7673 286 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
f4b00eab 287 memcg_kmem_uncharge_page(vm->pages[i], 0);
9b6f7e16 288
ac496bf4 289 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
290 if (this_cpu_cmpxchg(cached_stacks[i],
291 NULL, tsk->stack_vm_area) != NULL)
ac496bf4
AL
292 continue;
293
ac496bf4
AL
294 return;
295 }
ac496bf4 296
0f110a9b 297 vfree_atomic(tsk->stack);
ac496bf4
AL
298 return;
299 }
300#endif
301
302 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
b69c49b7 303}
0d15d74a 304# else
b235beea 305static struct kmem_cache *thread_stack_cache;
0d15d74a 306
9521d399 307static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
0d15d74a
TG
308 int node)
309{
5eed6f1d
RR
310 unsigned long *stack;
311 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
8dcc1d34 312 stack = kasan_reset_tag(stack);
5eed6f1d
RR
313 tsk->stack = stack;
314 return stack;
0d15d74a
TG
315}
316
ba14a194 317static void free_thread_stack(struct task_struct *tsk)
0d15d74a 318{
ba14a194 319 kmem_cache_free(thread_stack_cache, tsk->stack);
0d15d74a
TG
320}
321
b235beea 322void thread_stack_cache_init(void)
0d15d74a 323{
f9d29946
DW
324 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
325 THREAD_SIZE, THREAD_SIZE, 0, 0,
326 THREAD_SIZE, NULL);
b235beea 327 BUG_ON(thread_stack_cache == NULL);
0d15d74a
TG
328}
329# endif
b69c49b7
FT
330#endif
331
1da177e4 332/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 333static struct kmem_cache *signal_cachep;
1da177e4
LT
334
335/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 336struct kmem_cache *sighand_cachep;
1da177e4
LT
337
338/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 339struct kmem_cache *files_cachep;
1da177e4
LT
340
341/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 342struct kmem_cache *fs_cachep;
1da177e4
LT
343
344/* SLAB cache for vm_area_struct structures */
3928d4f5 345static struct kmem_cache *vm_area_cachep;
1da177e4
LT
346
347/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 348static struct kmem_cache *mm_cachep;
1da177e4 349
490fc053 350struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
3928d4f5 351{
a670468f 352 struct vm_area_struct *vma;
490fc053 353
a670468f 354 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
027232da
KS
355 if (vma)
356 vma_init(vma, mm);
490fc053 357 return vma;
3928d4f5
LT
358}
359
360struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
361{
95faf699
LT
362 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
363
364 if (new) {
cda099b3
QC
365 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
366 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
367 /*
368 * orig->shared.rb may be modified concurrently, but the clone
369 * will be reinitialized.
370 */
371 *new = data_race(*orig);
95faf699 372 INIT_LIST_HEAD(&new->anon_vma_chain);
e39a4b33 373 new->vm_next = new->vm_prev = NULL;
95faf699
LT
374 }
375 return new;
3928d4f5
LT
376}
377
378void vm_area_free(struct vm_area_struct *vma)
379{
380 kmem_cache_free(vm_area_cachep, vma);
381}
382
ba14a194 383static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 384{
ba14a194
AL
385 void *stack = task_stack_page(tsk);
386 struct vm_struct *vm = task_stack_vm_area(tsk);
387
27faca83
MS
388 if (vm) {
389 int i;
ba14a194 390
27faca83
MS
391 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
392 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
393 account * (PAGE_SIZE / 1024));
394 } else {
395 /* All stack pages are in the same node. */
da3ceeff 396 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
991e7673 397 account * (THREAD_SIZE / 1024));
27faca83 398 }
c6a7f572
KM
399}
400
9b6f7e16
RG
401static int memcg_charge_kernel_stack(struct task_struct *tsk)
402{
403#ifdef CONFIG_VMAP_STACK
404 struct vm_struct *vm = task_stack_vm_area(tsk);
405 int ret;
406
991e7673
SB
407 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
408
9b6f7e16
RG
409 if (vm) {
410 int i;
411
991e7673
SB
412 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
413
9b6f7e16
RG
414 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
415 /*
bcfe06bf
RG
416 * If memcg_kmem_charge_page() fails, page's
417 * memory cgroup pointer is NULL, and
418 * memcg_kmem_uncharge_page() in free_thread_stack()
419 * will ignore this page.
9b6f7e16 420 */
f4b00eab
RG
421 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
422 0);
9b6f7e16
RG
423 if (ret)
424 return ret;
9b6f7e16
RG
425 }
426 }
427#endif
428 return 0;
429}
430
68f24b08 431static void release_task_stack(struct task_struct *tsk)
1da177e4 432{
2f064a59 433 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
405c0759
AL
434 return; /* Better to leak the stack than to free prematurely */
435
ba14a194 436 account_kernel_stack(tsk, -1);
ba14a194 437 free_thread_stack(tsk);
68f24b08
AL
438 tsk->stack = NULL;
439#ifdef CONFIG_VMAP_STACK
440 tsk->stack_vm_area = NULL;
441#endif
442}
443
444#ifdef CONFIG_THREAD_INFO_IN_TASK
445void put_task_stack(struct task_struct *tsk)
446{
f0b89d39 447 if (refcount_dec_and_test(&tsk->stack_refcount))
68f24b08
AL
448 release_task_stack(tsk);
449}
450#endif
451
452void free_task(struct task_struct *tsk)
453{
b90ca8ba 454 release_user_cpus_ptr(tsk);
d08b9f0c
ST
455 scs_release(tsk);
456
68f24b08
AL
457#ifndef CONFIG_THREAD_INFO_IN_TASK
458 /*
459 * The task is finally done with both the stack and thread_info,
460 * so free both.
461 */
462 release_task_stack(tsk);
463#else
464 /*
465 * If the task had a separate stack allocation, it should be gone
466 * by now.
467 */
f0b89d39 468 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
68f24b08 469#endif
23f78d4a 470 rt_mutex_debug_task_free(tsk);
fb52607a 471 ftrace_graph_exit_task(tsk);
f19b9f74 472 arch_release_task_struct(tsk);
1da5c46f
ON
473 if (tsk->flags & PF_KTHREAD)
474 free_kthread_struct(tsk);
1da177e4
LT
475 free_task_struct(tsk);
476}
477EXPORT_SYMBOL(free_task);
478
fe69d560
DH
479static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
480{
481 struct file *exe_file;
482
483 exe_file = get_mm_exe_file(oldmm);
484 RCU_INIT_POINTER(mm->exe_file, exe_file);
485 /*
486 * We depend on the oldmm having properly denied write access to the
487 * exe_file already.
488 */
489 if (exe_file && deny_write_access(exe_file))
490 pr_warn_once("deny_write_access() failed in %s\n", __func__);
491}
492
d70f2a14
AM
493#ifdef CONFIG_MMU
494static __latent_entropy int dup_mmap(struct mm_struct *mm,
495 struct mm_struct *oldmm)
496{
497 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
498 struct rb_node **rb_link, *rb_parent;
499 int retval;
500 unsigned long charge;
501 LIST_HEAD(uf);
502
503 uprobe_start_dup_mmap();
d8ed45c5 504 if (mmap_write_lock_killable(oldmm)) {
d70f2a14
AM
505 retval = -EINTR;
506 goto fail_uprobe_end;
507 }
508 flush_cache_dup_mm(oldmm);
509 uprobe_dup_mmap(oldmm, mm);
510 /*
511 * Not linked in yet - no deadlock potential:
512 */
aaa2cc56 513 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
d70f2a14
AM
514
515 /* No ordering required: file already has been exposed. */
fe69d560 516 dup_mm_exe_file(mm, oldmm);
d70f2a14
AM
517
518 mm->total_vm = oldmm->total_vm;
519 mm->data_vm = oldmm->data_vm;
520 mm->exec_vm = oldmm->exec_vm;
521 mm->stack_vm = oldmm->stack_vm;
522
523 rb_link = &mm->mm_rb.rb_node;
524 rb_parent = NULL;
525 pprev = &mm->mmap;
526 retval = ksm_fork(mm, oldmm);
527 if (retval)
528 goto out;
529 retval = khugepaged_fork(mm, oldmm);
530 if (retval)
531 goto out;
532
533 prev = NULL;
534 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
535 struct file *file;
536
537 if (mpnt->vm_flags & VM_DONTCOPY) {
538 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
539 continue;
540 }
541 charge = 0;
655c79bb
TH
542 /*
543 * Don't duplicate many vmas if we've been oom-killed (for
544 * example)
545 */
546 if (fatal_signal_pending(current)) {
547 retval = -EINTR;
548 goto out;
549 }
d70f2a14
AM
550 if (mpnt->vm_flags & VM_ACCOUNT) {
551 unsigned long len = vma_pages(mpnt);
552
553 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
554 goto fail_nomem;
555 charge = len;
556 }
3928d4f5 557 tmp = vm_area_dup(mpnt);
d70f2a14
AM
558 if (!tmp)
559 goto fail_nomem;
d70f2a14
AM
560 retval = vma_dup_policy(mpnt, tmp);
561 if (retval)
562 goto fail_nomem_policy;
563 tmp->vm_mm = mm;
564 retval = dup_userfaultfd(tmp, &uf);
565 if (retval)
566 goto fail_nomem_anon_vma_fork;
567 if (tmp->vm_flags & VM_WIPEONFORK) {
93949bb2
LX
568 /*
569 * VM_WIPEONFORK gets a clean slate in the child.
570 * Don't prepare anon_vma until fault since we don't
571 * copy page for current vma.
572 */
d70f2a14 573 tmp->anon_vma = NULL;
d70f2a14
AM
574 } else if (anon_vma_fork(tmp, mpnt))
575 goto fail_nomem_anon_vma_fork;
576 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
d70f2a14
AM
577 file = tmp->vm_file;
578 if (file) {
d70f2a14
AM
579 struct address_space *mapping = file->f_mapping;
580
7fea21ae 581 vma_get_file(tmp);
d70f2a14
AM
582 i_mmap_lock_write(mapping);
583 if (tmp->vm_flags & VM_SHARED)
cf508b58 584 mapping_allow_writable(mapping);
d70f2a14
AM
585 flush_dcache_mmap_lock(mapping);
586 /* insert tmp into the share list, just after mpnt */
587 vma_interval_tree_insert_after(tmp, mpnt,
588 &mapping->i_mmap);
589 flush_dcache_mmap_unlock(mapping);
590 i_mmap_unlock_write(mapping);
591 }
592
593 /*
594 * Clear hugetlb-related page reserves for children. This only
595 * affects MAP_PRIVATE mappings. Faults generated by the child
596 * are not guaranteed to succeed, even if read-only
597 */
598 if (is_vm_hugetlb_page(tmp))
599 reset_vma_resv_huge_pages(tmp);
600
601 /*
602 * Link in the new vma and copy the page table entries.
603 */
604 *pprev = tmp;
605 pprev = &tmp->vm_next;
606 tmp->vm_prev = prev;
607 prev = tmp;
608
609 __vma_link_rb(mm, tmp, rb_link, rb_parent);
610 rb_link = &tmp->vm_rb.rb_right;
611 rb_parent = &tmp->vm_rb;
612
613 mm->map_count++;
614 if (!(tmp->vm_flags & VM_WIPEONFORK))
c78f4636 615 retval = copy_page_range(tmp, mpnt);
d70f2a14
AM
616
617 if (tmp->vm_ops && tmp->vm_ops->open)
618 tmp->vm_ops->open(tmp);
619
620 if (retval)
621 goto out;
622 }
623 /* a new mm has just been created */
1ed0cc5a 624 retval = arch_dup_mmap(oldmm, mm);
d70f2a14 625out:
d8ed45c5 626 mmap_write_unlock(mm);
d70f2a14 627 flush_tlb_mm(oldmm);
d8ed45c5 628 mmap_write_unlock(oldmm);
d70f2a14
AM
629 dup_userfaultfd_complete(&uf);
630fail_uprobe_end:
631 uprobe_end_dup_mmap();
632 return retval;
633fail_nomem_anon_vma_fork:
634 mpol_put(vma_policy(tmp));
635fail_nomem_policy:
3928d4f5 636 vm_area_free(tmp);
d70f2a14
AM
637fail_nomem:
638 retval = -ENOMEM;
639 vm_unacct_memory(charge);
640 goto out;
641}
642
643static inline int mm_alloc_pgd(struct mm_struct *mm)
644{
645 mm->pgd = pgd_alloc(mm);
646 if (unlikely(!mm->pgd))
647 return -ENOMEM;
648 return 0;
649}
650
651static inline void mm_free_pgd(struct mm_struct *mm)
652{
653 pgd_free(mm, mm->pgd);
654}
655#else
656static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
657{
d8ed45c5 658 mmap_write_lock(oldmm);
fe69d560 659 dup_mm_exe_file(mm, oldmm);
d8ed45c5 660 mmap_write_unlock(oldmm);
d70f2a14
AM
661 return 0;
662}
663#define mm_alloc_pgd(mm) (0)
664#define mm_free_pgd(mm)
665#endif /* CONFIG_MMU */
666
667static void check_mm(struct mm_struct *mm)
668{
669 int i;
670
8495f7e6
SPP
671 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
672 "Please make sure 'struct resident_page_types[]' is updated as well");
673
d70f2a14
AM
674 for (i = 0; i < NR_MM_COUNTERS; i++) {
675 long x = atomic_long_read(&mm->rss_stat.count[i]);
676
677 if (unlikely(x))
8495f7e6
SPP
678 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
679 mm, resident_page_types[i], x);
d70f2a14
AM
680 }
681
682 if (mm_pgtables_bytes(mm))
683 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
684 mm_pgtables_bytes(mm));
685
686#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
687 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
688#endif
689}
690
691#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
692#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
693
694/*
695 * Called when the last reference to the mm
696 * is dropped: either by a lazy thread or by
697 * mmput. Free the page directory and the mm.
698 */
d34bc48f 699void __mmdrop(struct mm_struct *mm)
d70f2a14
AM
700{
701 BUG_ON(mm == &init_mm);
3eda69c9
MR
702 WARN_ON_ONCE(mm == current->mm);
703 WARN_ON_ONCE(mm == current->active_mm);
d70f2a14
AM
704 mm_free_pgd(mm);
705 destroy_context(mm);
984cfe4e 706 mmu_notifier_subscriptions_destroy(mm);
d70f2a14
AM
707 check_mm(mm);
708 put_user_ns(mm->user_ns);
709 free_mm(mm);
710}
d34bc48f 711EXPORT_SYMBOL_GPL(__mmdrop);
d70f2a14
AM
712
713static void mmdrop_async_fn(struct work_struct *work)
714{
715 struct mm_struct *mm;
716
717 mm = container_of(work, struct mm_struct, async_put_work);
718 __mmdrop(mm);
719}
720
721static void mmdrop_async(struct mm_struct *mm)
722{
723 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
724 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
725 schedule_work(&mm->async_put_work);
726 }
727}
728
ea6d290c
ON
729static inline void free_signal_struct(struct signal_struct *sig)
730{
97101eb4 731 taskstats_tgid_free(sig);
1c5354de 732 sched_autogroup_exit(sig);
7283094e
MH
733 /*
734 * __mmdrop is not safe to call from softirq context on x86 due to
735 * pgd_dtor so postpone it to the async context
736 */
26db62f1 737 if (sig->oom_mm)
7283094e 738 mmdrop_async(sig->oom_mm);
ea6d290c
ON
739 kmem_cache_free(signal_cachep, sig);
740}
741
742static inline void put_signal_struct(struct signal_struct *sig)
743{
60d4de3f 744 if (refcount_dec_and_test(&sig->sigcnt))
ea6d290c
ON
745 free_signal_struct(sig);
746}
747
158d9ebd 748void __put_task_struct(struct task_struct *tsk)
1da177e4 749{
270f722d 750 WARN_ON(!tsk->exit_state);
ec1d2819 751 WARN_ON(refcount_read(&tsk->usage));
1da177e4
LT
752 WARN_ON(tsk == current);
753
0f212204 754 io_uring_free(tsk);
2e91fa7f 755 cgroup_free(tsk);
16d51a59 756 task_numa_free(tsk, true);
1a2a4d06 757 security_task_free(tsk);
a10787e6 758 bpf_task_storage_free(tsk);
e0e81739 759 exit_creds(tsk);
35df17c5 760 delayacct_tsk_free(tsk);
ea6d290c 761 put_signal_struct(tsk->signal);
6e33cad0 762 sched_core_free(tsk);
1da177e4
LT
763
764 if (!profile_handoff_task(tsk))
765 free_task(tsk);
766}
77c100c8 767EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 768
6c0a9fa6 769void __init __weak arch_task_cache_init(void) { }
61c4628b 770
ff691f6e
HS
771/*
772 * set_max_threads
773 */
16db3d3f 774static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 775{
ac1b398d 776 u64 threads;
ca79b0c2 777 unsigned long nr_pages = totalram_pages();
ff691f6e
HS
778
779 /*
ac1b398d
HS
780 * The number of threads shall be limited such that the thread
781 * structures may only consume a small part of the available memory.
ff691f6e 782 */
3d6357de 783 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
ac1b398d
HS
784 threads = MAX_THREADS;
785 else
3d6357de 786 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
ac1b398d
HS
787 (u64) THREAD_SIZE * 8UL);
788
16db3d3f
HS
789 if (threads > max_threads_suggested)
790 threads = max_threads_suggested;
791
ac1b398d 792 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
793}
794
5aaeb5c0
IM
795#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
796/* Initialized by the architecture: */
797int arch_task_struct_size __read_mostly;
798#endif
0c8c0f03 799
4189ff23 800#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
5905429a
KC
801static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
802{
803 /* Fetch thread_struct whitelist for the architecture. */
804 arch_thread_struct_whitelist(offset, size);
805
806 /*
807 * Handle zero-sized whitelist or empty thread_struct, otherwise
808 * adjust offset to position of thread_struct in task_struct.
809 */
810 if (unlikely(*size == 0))
811 *offset = 0;
812 else
813 *offset += offsetof(struct task_struct, thread);
814}
4189ff23 815#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
5905429a 816
ff691f6e 817void __init fork_init(void)
1da177e4 818{
25f9c081 819 int i;
f5e10287 820#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1da177e4 821#ifndef ARCH_MIN_TASKALIGN
e274795e 822#define ARCH_MIN_TASKALIGN 0
1da177e4 823#endif
95cb64c1 824 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
5905429a 825 unsigned long useroffset, usersize;
e274795e 826
1da177e4 827 /* create a slab on which task_structs can be allocated */
5905429a
KC
828 task_struct_whitelist(&useroffset, &usersize);
829 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
e274795e 830 arch_task_struct_size, align,
5905429a
KC
831 SLAB_PANIC|SLAB_ACCOUNT,
832 useroffset, usersize, NULL);
1da177e4
LT
833#endif
834
61c4628b
SS
835 /* do the arch specific task caches init */
836 arch_task_cache_init();
837
16db3d3f 838 set_max_threads(MAX_THREADS);
1da177e4
LT
839
840 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
841 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
842 init_task.signal->rlim[RLIMIT_SIGPENDING] =
843 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 844
21d1c5e3 845 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
25f9c081 846 init_user_ns.ucount_max[i] = max_threads/2;
19659c59 847
5ddf994f
EB
848 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
849 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
850 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
851 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
21d1c5e3 852
19659c59
HR
853#ifdef CONFIG_VMAP_STACK
854 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
855 NULL, free_vm_stack_cache);
856#endif
b09be676 857
d08b9f0c
ST
858 scs_init();
859
b09be676 860 lockdep_init_task(&init_task);
aad42dd4 861 uprobes_init();
1da177e4
LT
862}
863
52f5684c 864int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
865 struct task_struct *src)
866{
867 *dst = *src;
868 return 0;
869}
870
d4311ff1
AT
871void set_task_stack_end_magic(struct task_struct *tsk)
872{
873 unsigned long *stackend;
874
875 stackend = end_of_stack(tsk);
876 *stackend = STACK_END_MAGIC; /* for overflow detection */
877}
878
725fc629 879static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
880{
881 struct task_struct *tsk;
b235beea 882 unsigned long *stack;
0f4991e8 883 struct vm_struct *stack_vm_area __maybe_unused;
3e26c149 884 int err;
1da177e4 885
725fc629
AK
886 if (node == NUMA_NO_NODE)
887 node = tsk_fork_get_node(orig);
504f52b5 888 tsk = alloc_task_struct_node(node);
1da177e4
LT
889 if (!tsk)
890 return NULL;
891
b235beea
LT
892 stack = alloc_thread_stack_node(tsk, node);
893 if (!stack)
f19b9f74 894 goto free_tsk;
1da177e4 895
9b6f7e16
RG
896 if (memcg_charge_kernel_stack(tsk))
897 goto free_stack;
898
ba14a194
AL
899 stack_vm_area = task_stack_vm_area(tsk);
900
fb0a685c 901 err = arch_dup_task_struct(tsk, orig);
ba14a194
AL
902
903 /*
904 * arch_dup_task_struct() clobbers the stack-related fields. Make
905 * sure they're properly initialized before using any stack-related
906 * functions again.
907 */
908 tsk->stack = stack;
909#ifdef CONFIG_VMAP_STACK
910 tsk->stack_vm_area = stack_vm_area;
911#endif
68f24b08 912#ifdef CONFIG_THREAD_INFO_IN_TASK
f0b89d39 913 refcount_set(&tsk->stack_refcount, 1);
68f24b08 914#endif
ba14a194 915
164c33c6 916 if (err)
b235beea 917 goto free_stack;
164c33c6 918
d08b9f0c
ST
919 err = scs_prepare(tsk, node);
920 if (err)
921 goto free_stack;
922
dbd95212
KC
923#ifdef CONFIG_SECCOMP
924 /*
925 * We must handle setting up seccomp filters once we're under
926 * the sighand lock in case orig has changed between now and
927 * then. Until then, filter must be NULL to avoid messing up
928 * the usage counts on the error path calling free_task.
929 */
930 tsk->seccomp.filter = NULL;
931#endif
87bec58a
AM
932
933 setup_thread_stack(tsk, orig);
8e7cac79 934 clear_user_return_notifier(tsk);
f26f9aff 935 clear_tsk_need_resched(tsk);
d4311ff1 936 set_task_stack_end_magic(tsk);
1446e1df 937 clear_syscall_work_syscall_user_dispatch(tsk);
1da177e4 938
050e9baa 939#ifdef CONFIG_STACKPROTECTOR
7cd815bc 940 tsk->stack_canary = get_random_canary();
0a425405 941#endif
3bd37062
SAS
942 if (orig->cpus_ptr == &orig->cpus_mask)
943 tsk->cpus_ptr = &tsk->cpus_mask;
b90ca8ba 944 dup_user_cpus_ptr(tsk, orig, node);
0a425405 945
fb0a685c 946 /*
0ff7b2cf
EB
947 * One for the user space visible state that goes away when reaped.
948 * One for the scheduler.
fb0a685c 949 */
0ff7b2cf
EB
950 refcount_set(&tsk->rcu_users, 2);
951 /* One for the rcu users */
952 refcount_set(&tsk->usage, 1);
6c5c9341 953#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 954 tsk->btrace_seq = 0;
6c5c9341 955#endif
a0aa7f68 956 tsk->splice_pipe = NULL;
5640f768 957 tsk->task_frag.page = NULL;
093e5840 958 tsk->wake_q.next = NULL;
ff244303 959 tsk->pf_io_worker = NULL;
c6a7f572 960
ba14a194 961 account_kernel_stack(tsk, 1);
c6a7f572 962
5c9a8750 963 kcov_task_init(tsk);
5fbda3ec 964 kmap_local_fork(tsk);
5c9a8750 965
e41d5818
DV
966#ifdef CONFIG_FAULT_INJECTION
967 tsk->fail_nth = 0;
968#endif
969
2c323017
JB
970#ifdef CONFIG_BLK_CGROUP
971 tsk->throttle_queue = NULL;
972 tsk->use_memdelay = 0;
973#endif
974
d46eb14b
SB
975#ifdef CONFIG_MEMCG
976 tsk->active_memcg = NULL;
977#endif
1da177e4 978 return tsk;
61c4628b 979
b235beea 980free_stack:
ba14a194 981 free_thread_stack(tsk);
f19b9f74 982free_tsk:
61c4628b
SS
983 free_task_struct(tsk);
984 return NULL;
1da177e4
LT
985}
986
23ff4440 987__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 988
4cb0e11b
HK
989static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
990
991static int __init coredump_filter_setup(char *s)
992{
993 default_dump_filter =
994 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
995 MMF_DUMP_FILTER_MASK;
996 return 1;
997}
998
999__setup("coredump_filter=", coredump_filter_setup);
1000
1da177e4
LT
1001#include <linux/init_task.h>
1002
858f0993
AD
1003static void mm_init_aio(struct mm_struct *mm)
1004{
1005#ifdef CONFIG_AIO
1006 spin_lock_init(&mm->ioctx_lock);
db446a08 1007 mm->ioctx_table = NULL;
858f0993
AD
1008#endif
1009}
1010
c3f3ce04
AA
1011static __always_inline void mm_clear_owner(struct mm_struct *mm,
1012 struct task_struct *p)
1013{
1014#ifdef CONFIG_MEMCG
1015 if (mm->owner == p)
1016 WRITE_ONCE(mm->owner, NULL);
1017#endif
1018}
1019
33144e84
VD
1020static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1021{
1022#ifdef CONFIG_MEMCG
1023 mm->owner = p;
1024#endif
1025}
1026
82e69a12
FY
1027static void mm_init_pasid(struct mm_struct *mm)
1028{
1029#ifdef CONFIG_IOMMU_SUPPORT
1030 mm->pasid = INIT_PASID;
1031#endif
1032}
1033
355627f5
EB
1034static void mm_init_uprobes_state(struct mm_struct *mm)
1035{
1036#ifdef CONFIG_UPROBES
1037 mm->uprobes_state.xol_area = NULL;
1038#endif
1039}
1040
bfedb589
EB
1041static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1042 struct user_namespace *user_ns)
1da177e4 1043{
41f727fd
VD
1044 mm->mmap = NULL;
1045 mm->mm_rb = RB_ROOT;
1046 mm->vmacache_seqnum = 0;
1da177e4
LT
1047 atomic_set(&mm->mm_users, 1);
1048 atomic_set(&mm->mm_count, 1);
57efa1fe 1049 seqcount_init(&mm->write_protect_seq);
d8ed45c5 1050 mmap_init_lock(mm);
1da177e4 1051 INIT_LIST_HEAD(&mm->mmlist);
999d9fc1 1052 mm->core_state = NULL;
af5b0f6a 1053 mm_pgtables_bytes_init(mm);
41f727fd
VD
1054 mm->map_count = 0;
1055 mm->locked_vm = 0;
70f8a3ca 1056 atomic64_set(&mm->pinned_vm, 0);
d559db08 1057 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 1058 spin_lock_init(&mm->page_table_lock);
88aa7cc6 1059 spin_lock_init(&mm->arg_lock);
41f727fd 1060 mm_init_cpumask(mm);
858f0993 1061 mm_init_aio(mm);
cf475ad2 1062 mm_init_owner(mm, p);
82e69a12 1063 mm_init_pasid(mm);
2b7e8665 1064 RCU_INIT_POINTER(mm->exe_file, NULL);
984cfe4e 1065 mmu_notifier_subscriptions_init(mm);
16af97dc 1066 init_tlb_flush_pending(mm);
41f727fd
VD
1067#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1068 mm->pmd_huge_pte = NULL;
1069#endif
355627f5 1070 mm_init_uprobes_state(mm);
13db8c50 1071 hugetlb_count_init(mm);
1da177e4 1072
a0715cc2
AT
1073 if (current->mm) {
1074 mm->flags = current->mm->flags & MMF_INIT_MASK;
1075 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1076 } else {
1077 mm->flags = default_dump_filter;
1da177e4 1078 mm->def_flags = 0;
a0715cc2
AT
1079 }
1080
41f727fd
VD
1081 if (mm_alloc_pgd(mm))
1082 goto fail_nopgd;
1083
1084 if (init_new_context(p, mm))
1085 goto fail_nocontext;
78fb7466 1086
bfedb589 1087 mm->user_ns = get_user_ns(user_ns);
41f727fd
VD
1088 return mm;
1089
1090fail_nocontext:
1091 mm_free_pgd(mm);
1092fail_nopgd:
1da177e4
LT
1093 free_mm(mm);
1094 return NULL;
1095}
1096
1097/*
1098 * Allocate and initialize an mm_struct.
1099 */
fb0a685c 1100struct mm_struct *mm_alloc(void)
1da177e4 1101{
fb0a685c 1102 struct mm_struct *mm;
1da177e4
LT
1103
1104 mm = allocate_mm();
de03c72c
KM
1105 if (!mm)
1106 return NULL;
1107
1108 memset(mm, 0, sizeof(*mm));
bfedb589 1109 return mm_init(mm, current, current_user_ns());
1da177e4
LT
1110}
1111
ec8d7c14
MH
1112static inline void __mmput(struct mm_struct *mm)
1113{
1114 VM_BUG_ON(atomic_read(&mm->mm_users));
1115
1116 uprobe_clear_state(mm);
1117 exit_aio(mm);
1118 ksm_exit(mm);
1119 khugepaged_exit(mm); /* must run before exit_mmap */
1120 exit_mmap(mm);
6fcb52a5 1121 mm_put_huge_zero_page(mm);
ec8d7c14
MH
1122 set_mm_exe_file(mm, NULL);
1123 if (!list_empty(&mm->mmlist)) {
1124 spin_lock(&mmlist_lock);
1125 list_del(&mm->mmlist);
1126 spin_unlock(&mmlist_lock);
1127 }
1128 if (mm->binfmt)
1129 module_put(mm->binfmt->module);
1130 mmdrop(mm);
1131}
1132
1da177e4
LT
1133/*
1134 * Decrement the use count and release all resources for an mm.
1135 */
1136void mmput(struct mm_struct *mm)
1137{
0ae26f1b
AM
1138 might_sleep();
1139
ec8d7c14
MH
1140 if (atomic_dec_and_test(&mm->mm_users))
1141 __mmput(mm);
1142}
1143EXPORT_SYMBOL_GPL(mmput);
1144
a1b2289c
SY
1145#ifdef CONFIG_MMU
1146static void mmput_async_fn(struct work_struct *work)
1147{
1148 struct mm_struct *mm = container_of(work, struct mm_struct,
1149 async_put_work);
1150
1151 __mmput(mm);
1152}
1153
1154void mmput_async(struct mm_struct *mm)
1155{
1156 if (atomic_dec_and_test(&mm->mm_users)) {
1157 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1158 schedule_work(&mm->async_put_work);
1159 }
1160}
ebafbcf7 1161EXPORT_SYMBOL(mmput_async);
a1b2289c
SY
1162#endif
1163
90f31d0e
KK
1164/**
1165 * set_mm_exe_file - change a reference to the mm's executable file
1166 *
1167 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1168 *
6e399cd1
DB
1169 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1170 * invocations: in mmput() nobody alive left, in execve task is single
35d7bdc8 1171 * threaded.
fe69d560
DH
1172 *
1173 * Can only fail if new_exe_file != NULL.
90f31d0e 1174 */
fe69d560 1175int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
38646013 1176{
6e399cd1
DB
1177 struct file *old_exe_file;
1178
1179 /*
1180 * It is safe to dereference the exe_file without RCU as
1181 * this function is only called if nobody else can access
1182 * this mm -- see comment above for justification.
1183 */
1184 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 1185
fe69d560
DH
1186 if (new_exe_file) {
1187 /*
1188 * We expect the caller (i.e., sys_execve) to already denied
1189 * write access, so this is unlikely to fail.
1190 */
1191 if (unlikely(deny_write_access(new_exe_file)))
1192 return -EACCES;
38646013 1193 get_file(new_exe_file);
fe69d560 1194 }
90f31d0e 1195 rcu_assign_pointer(mm->exe_file, new_exe_file);
fe69d560
DH
1196 if (old_exe_file) {
1197 allow_write_access(old_exe_file);
90f31d0e 1198 fput(old_exe_file);
fe69d560
DH
1199 }
1200 return 0;
38646013
JS
1201}
1202
35d7bdc8
DH
1203/**
1204 * replace_mm_exe_file - replace a reference to the mm's executable file
1205 *
1206 * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1207 * dealing with concurrent invocation and without grabbing the mmap lock in
1208 * write mode.
1209 *
1210 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1211 */
1212int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1213{
1214 struct vm_area_struct *vma;
1215 struct file *old_exe_file;
1216 int ret = 0;
1217
1218 /* Forbid mm->exe_file change if old file still mapped. */
1219 old_exe_file = get_mm_exe_file(mm);
1220 if (old_exe_file) {
1221 mmap_read_lock(mm);
1222 for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) {
1223 if (!vma->vm_file)
1224 continue;
1225 if (path_equal(&vma->vm_file->f_path,
1226 &old_exe_file->f_path))
1227 ret = -EBUSY;
1228 }
1229 mmap_read_unlock(mm);
1230 fput(old_exe_file);
1231 if (ret)
1232 return ret;
1233 }
1234
1235 /* set the new file, lockless */
fe69d560
DH
1236 ret = deny_write_access(new_exe_file);
1237 if (ret)
1238 return -EACCES;
35d7bdc8 1239 get_file(new_exe_file);
fe69d560 1240
35d7bdc8 1241 old_exe_file = xchg(&mm->exe_file, new_exe_file);
fe69d560
DH
1242 if (old_exe_file) {
1243 /*
1244 * Don't race with dup_mmap() getting the file and disallowing
1245 * write access while someone might open the file writable.
1246 */
1247 mmap_read_lock(mm);
1248 allow_write_access(old_exe_file);
35d7bdc8 1249 fput(old_exe_file);
fe69d560
DH
1250 mmap_read_unlock(mm);
1251 }
35d7bdc8 1252 return 0;
38646013
JS
1253}
1254
90f31d0e
KK
1255/**
1256 * get_mm_exe_file - acquire a reference to the mm's executable file
1257 *
1258 * Returns %NULL if mm has no associated executable file.
1259 * User must release file via fput().
1260 */
38646013
JS
1261struct file *get_mm_exe_file(struct mm_struct *mm)
1262{
1263 struct file *exe_file;
1264
90f31d0e
KK
1265 rcu_read_lock();
1266 exe_file = rcu_dereference(mm->exe_file);
1267 if (exe_file && !get_file_rcu(exe_file))
1268 exe_file = NULL;
1269 rcu_read_unlock();
38646013
JS
1270 return exe_file;
1271}
1272
cd81a917
MG
1273/**
1274 * get_task_exe_file - acquire a reference to the task's executable file
1275 *
1276 * Returns %NULL if task's mm (if any) has no associated executable file or
1277 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1278 * User must release file via fput().
1279 */
1280struct file *get_task_exe_file(struct task_struct *task)
1281{
1282 struct file *exe_file = NULL;
1283 struct mm_struct *mm;
1284
1285 task_lock(task);
1286 mm = task->mm;
1287 if (mm) {
1288 if (!(task->flags & PF_KTHREAD))
1289 exe_file = get_mm_exe_file(mm);
1290 }
1291 task_unlock(task);
1292 return exe_file;
1293}
38646013 1294
1da177e4
LT
1295/**
1296 * get_task_mm - acquire a reference to the task's mm
1297 *
246bb0b1 1298 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1299 * this kernel workthread has transiently adopted a user mm with use_mm,
1300 * to do its AIO) is not set and if so returns a reference to it, after
1301 * bumping up the use count. User must release the mm via mmput()
1302 * after use. Typically used by /proc and ptrace.
1303 */
1304struct mm_struct *get_task_mm(struct task_struct *task)
1305{
1306 struct mm_struct *mm;
1307
1308 task_lock(task);
1309 mm = task->mm;
1310 if (mm) {
246bb0b1 1311 if (task->flags & PF_KTHREAD)
1da177e4
LT
1312 mm = NULL;
1313 else
3fce371b 1314 mmget(mm);
1da177e4
LT
1315 }
1316 task_unlock(task);
1317 return mm;
1318}
1319EXPORT_SYMBOL_GPL(get_task_mm);
1320
8cdb878d
CY
1321struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1322{
1323 struct mm_struct *mm;
1324 int err;
1325
f7cfd871 1326 err = down_read_killable(&task->signal->exec_update_lock);
8cdb878d
CY
1327 if (err)
1328 return ERR_PTR(err);
1329
1330 mm = get_task_mm(task);
1331 if (mm && mm != current->mm &&
1332 !ptrace_may_access(task, mode)) {
1333 mmput(mm);
1334 mm = ERR_PTR(-EACCES);
1335 }
f7cfd871 1336 up_read(&task->signal->exec_update_lock);
8cdb878d
CY
1337
1338 return mm;
1339}
1340
57b59c4a 1341static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1342{
d68b46fe 1343 struct completion *vfork;
c415c3b4 1344
d68b46fe
ON
1345 task_lock(tsk);
1346 vfork = tsk->vfork_done;
1347 if (likely(vfork)) {
1348 tsk->vfork_done = NULL;
1349 complete(vfork);
1350 }
1351 task_unlock(tsk);
1352}
1353
1354static int wait_for_vfork_done(struct task_struct *child,
1355 struct completion *vfork)
1356{
1357 int killed;
1358
1359 freezer_do_not_count();
76f969e8 1360 cgroup_enter_frozen();
d68b46fe 1361 killed = wait_for_completion_killable(vfork);
76f969e8 1362 cgroup_leave_frozen(false);
d68b46fe
ON
1363 freezer_count();
1364
1365 if (killed) {
1366 task_lock(child);
1367 child->vfork_done = NULL;
1368 task_unlock(child);
1369 }
1370
1371 put_task_struct(child);
1372 return killed;
c415c3b4
ON
1373}
1374
1da177e4
LT
1375/* Please note the differences between mmput and mm_release.
1376 * mmput is called whenever we stop holding onto a mm_struct,
1377 * error success whatever.
1378 *
1379 * mm_release is called after a mm_struct has been removed
1380 * from the current process.
1381 *
1382 * This difference is important for error handling, when we
1383 * only half set up a mm_struct for a new process and need to restore
1384 * the old one. Because we mmput the new mm_struct before
1385 * restoring the old one. . .
1386 * Eric Biederman 10 January 1998
1387 */
4610ba7a 1388static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1da177e4 1389{
0326f5a9
SD
1390 uprobe_free_utask(tsk);
1391
1da177e4
LT
1392 /* Get rid of any cached register state */
1393 deactivate_mm(tsk, mm);
1394
fec1d011 1395 /*
735f2770
MH
1396 * Signal userspace if we're not exiting with a core dump
1397 * because we want to leave the value intact for debugging
1398 * purposes.
fec1d011 1399 */
9c8a8228 1400 if (tsk->clear_child_tid) {
735f2770 1401 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
9c8a8228
ED
1402 atomic_read(&mm->mm_users) > 1) {
1403 /*
1404 * We don't check the error code - if userspace has
1405 * not set up a proper pointer then tough luck.
1406 */
1407 put_user(0, tsk->clear_child_tid);
2de0db99
DB
1408 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1409 1, NULL, NULL, 0, 0);
9c8a8228 1410 }
1da177e4 1411 tsk->clear_child_tid = NULL;
1da177e4 1412 }
f7505d64
KK
1413
1414 /*
1415 * All done, finally we can wake up parent and return this mm to him.
1416 * Also kthread_stop() uses this completion for synchronization.
1417 */
1418 if (tsk->vfork_done)
1419 complete_vfork_done(tsk);
1da177e4
LT
1420}
1421
4610ba7a
TG
1422void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1423{
150d7158 1424 futex_exit_release(tsk);
4610ba7a
TG
1425 mm_release(tsk, mm);
1426}
1427
1428void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1429{
150d7158 1430 futex_exec_release(tsk);
4610ba7a
TG
1431 mm_release(tsk, mm);
1432}
1433
13585fa0
NA
1434/**
1435 * dup_mm() - duplicates an existing mm structure
1436 * @tsk: the task_struct with which the new mm will be associated.
1437 * @oldmm: the mm to duplicate.
1438 *
1439 * Allocates a new mm structure and duplicates the provided @oldmm structure
1440 * content into it.
1441 *
1442 * Return: the duplicated mm or NULL on failure.
a0a7ec30 1443 */
13585fa0
NA
1444static struct mm_struct *dup_mm(struct task_struct *tsk,
1445 struct mm_struct *oldmm)
a0a7ec30 1446{
13585fa0 1447 struct mm_struct *mm;
a0a7ec30
JD
1448 int err;
1449
a0a7ec30
JD
1450 mm = allocate_mm();
1451 if (!mm)
1452 goto fail_nomem;
1453
1454 memcpy(mm, oldmm, sizeof(*mm));
1455
bfedb589 1456 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1457 goto fail_nomem;
1458
a0a7ec30
JD
1459 err = dup_mmap(mm, oldmm);
1460 if (err)
1461 goto free_pt;
1462
1463 mm->hiwater_rss = get_mm_rss(mm);
1464 mm->hiwater_vm = mm->total_vm;
1465
801460d0
HS
1466 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1467 goto free_pt;
1468
a0a7ec30
JD
1469 return mm;
1470
1471free_pt:
801460d0
HS
1472 /* don't put binfmt in mmput, we haven't got module yet */
1473 mm->binfmt = NULL;
c3f3ce04 1474 mm_init_owner(mm, NULL);
a0a7ec30
JD
1475 mmput(mm);
1476
1477fail_nomem:
1478 return NULL;
a0a7ec30
JD
1479}
1480
fb0a685c 1481static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1482{
fb0a685c 1483 struct mm_struct *mm, *oldmm;
1da177e4
LT
1484
1485 tsk->min_flt = tsk->maj_flt = 0;
1486 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1487#ifdef CONFIG_DETECT_HUNG_TASK
1488 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
a2e51445 1489 tsk->last_switch_time = 0;
17406b82 1490#endif
1da177e4
LT
1491
1492 tsk->mm = NULL;
1493 tsk->active_mm = NULL;
1494
1495 /*
1496 * Are we cloning a kernel thread?
1497 *
1498 * We need to steal a active VM for that..
1499 */
1500 oldmm = current->mm;
1501 if (!oldmm)
1502 return 0;
1503
615d6e87
DB
1504 /* initialize the new vmacache entries */
1505 vmacache_flush(tsk);
1506
1da177e4 1507 if (clone_flags & CLONE_VM) {
3fce371b 1508 mmget(oldmm);
1da177e4 1509 mm = oldmm;
a6895399
REB
1510 } else {
1511 mm = dup_mm(tsk, current->mm);
1512 if (!mm)
1513 return -ENOMEM;
1da177e4
LT
1514 }
1515
1da177e4
LT
1516 tsk->mm = mm;
1517 tsk->active_mm = mm;
1518 return 0;
1da177e4
LT
1519}
1520
a39bc516 1521static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1522{
498052bb 1523 struct fs_struct *fs = current->fs;
1da177e4 1524 if (clone_flags & CLONE_FS) {
498052bb 1525 /* tsk->fs is already what we want */
2a4419b5 1526 spin_lock(&fs->lock);
498052bb 1527 if (fs->in_exec) {
2a4419b5 1528 spin_unlock(&fs->lock);
498052bb
AV
1529 return -EAGAIN;
1530 }
1531 fs->users++;
2a4419b5 1532 spin_unlock(&fs->lock);
1da177e4
LT
1533 return 0;
1534 }
498052bb 1535 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1536 if (!tsk->fs)
1537 return -ENOMEM;
1538 return 0;
1539}
1540
fb0a685c 1541static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
a016f338
JD
1542{
1543 struct files_struct *oldf, *newf;
1544 int error = 0;
1545
1546 /*
1547 * A background process may not have any files ...
1548 */
1549 oldf = current->files;
1550 if (!oldf)
1551 goto out;
1552
1553 if (clone_flags & CLONE_FILES) {
1554 atomic_inc(&oldf->count);
1555 goto out;
1556 }
1557
60997c3d 1558 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
a016f338
JD
1559 if (!newf)
1560 goto out;
1561
1562 tsk->files = newf;
1563 error = 0;
1564out:
1565 return error;
1566}
1567
fadad878 1568static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
fd0928df
JA
1569{
1570#ifdef CONFIG_BLOCK
1571 struct io_context *ioc = current->io_context;
6e736be7 1572 struct io_context *new_ioc;
fd0928df
JA
1573
1574 if (!ioc)
1575 return 0;
fadad878
JA
1576 /*
1577 * Share io context with parent, if CLONE_IO is set
1578 */
1579 if (clone_flags & CLONE_IO) {
3d48749d
TH
1580 ioc_task_link(ioc);
1581 tsk->io_context = ioc;
fadad878 1582 } else if (ioprio_valid(ioc->ioprio)) {
6e736be7
TH
1583 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1584 if (unlikely(!new_ioc))
fd0928df
JA
1585 return -ENOMEM;
1586
6e736be7 1587 new_ioc->ioprio = ioc->ioprio;
11a3122f 1588 put_io_context(new_ioc);
fd0928df
JA
1589 }
1590#endif
1591 return 0;
1592}
1593
a39bc516 1594static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1595{
1596 struct sighand_struct *sig;
1597
60348802 1598 if (clone_flags & CLONE_SIGHAND) {
d036bda7 1599 refcount_inc(&current->sighand->count);
1da177e4
LT
1600 return 0;
1601 }
1602 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
0c282b06 1603 RCU_INIT_POINTER(tsk->sighand, sig);
1da177e4
LT
1604 if (!sig)
1605 return -ENOMEM;
9d7fb042 1606
d036bda7 1607 refcount_set(&sig->count, 1);
06e62a46 1608 spin_lock_irq(&current->sighand->siglock);
1da177e4 1609 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
06e62a46 1610 spin_unlock_irq(&current->sighand->siglock);
b612e5df
CB
1611
1612 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1613 if (clone_flags & CLONE_CLEAR_SIGHAND)
1614 flush_signal_handlers(tsk, 0);
1615
1da177e4
LT
1616 return 0;
1617}
1618
a7e5328a 1619void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1620{
d036bda7 1621 if (refcount_dec_and_test(&sighand->count)) {
d80e731e 1622 signalfd_cleanup(sighand);
392809b2 1623 /*
5f0d5a3a 1624 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1625 * without an RCU grace period, see __lock_task_sighand().
1626 */
c81addc9 1627 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1628 }
c81addc9
ON
1629}
1630
f06febc9
FM
1631/*
1632 * Initialize POSIX timer handling for a thread group.
1633 */
1634static void posix_cpu_timers_init_group(struct signal_struct *sig)
1635{
2b69942f 1636 struct posix_cputimers *pct = &sig->posix_cputimers;
78d7d407
JS
1637 unsigned long cpu_limit;
1638
316c1608 1639 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
3a245c0f 1640 posix_cputimers_group_init(pct, cpu_limit);
f06febc9
FM
1641}
1642
a39bc516 1643static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1644{
1645 struct signal_struct *sig;
1da177e4 1646
4ab6c083 1647 if (clone_flags & CLONE_THREAD)
490dea45 1648 return 0;
490dea45 1649
a56704ef 1650 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1651 tsk->signal = sig;
1652 if (!sig)
1653 return -ENOMEM;
1654
b3ac022c 1655 sig->nr_threads = 1;
1da177e4 1656 atomic_set(&sig->live, 1);
60d4de3f 1657 refcount_set(&sig->sigcnt, 1);
0c740d0a
ON
1658
1659 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1660 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1661 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1662
1da177e4 1663 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1664 sig->curr_target = tsk;
1da177e4 1665 init_sigpending(&sig->shared_pending);
c3ad2c3b 1666 INIT_HLIST_HEAD(&sig->multiprocess);
e78c3496 1667 seqlock_init(&sig->stats_lock);
9d7fb042 1668 prev_cputime_init(&sig->prev_cputime);
1da177e4 1669
baa73d9e 1670#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1671 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1672 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1673 sig->real_timer.function = it_real_fn;
baa73d9e 1674#endif
1da177e4 1675
1da177e4
LT
1676 task_lock(current->group_leader);
1677 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1678 task_unlock(current->group_leader);
1679
6279a751
ON
1680 posix_cpu_timers_init_group(sig);
1681
522ed776 1682 tty_audit_fork(sig);
5091faa4 1683 sched_autogroup_fork(sig);
522ed776 1684
a63d83f4 1685 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1686 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1687
9b1bf12d 1688 mutex_init(&sig->cred_guard_mutex);
f7cfd871 1689 init_rwsem(&sig->exec_update_lock);
9b1bf12d 1690
1da177e4
LT
1691 return 0;
1692}
1693
dbd95212
KC
1694static void copy_seccomp(struct task_struct *p)
1695{
1696#ifdef CONFIG_SECCOMP
1697 /*
1698 * Must be called with sighand->lock held, which is common to
1699 * all threads in the group. Holding cred_guard_mutex is not
1700 * needed because this new task is not yet running and cannot
1701 * be racing exec.
1702 */
69f6a34b 1703 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1704
1705 /* Ref-count the new filter user, and assign it. */
1706 get_seccomp_filter(current);
1707 p->seccomp = current->seccomp;
1708
1709 /*
1710 * Explicitly enable no_new_privs here in case it got set
1711 * between the task_struct being duplicated and holding the
1712 * sighand lock. The seccomp state and nnp must be in sync.
1713 */
1714 if (task_no_new_privs(current))
1715 task_set_no_new_privs(p);
1716
1717 /*
1718 * If the parent gained a seccomp mode after copying thread
1719 * flags and between before we held the sighand lock, we have
1720 * to manually enable the seccomp thread flag here.
1721 */
1722 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
23d67a54 1723 set_task_syscall_work(p, SECCOMP);
dbd95212
KC
1724#endif
1725}
1726
17da2bd9 1727SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1728{
1729 current->clear_child_tid = tidptr;
1730
b488893a 1731 return task_pid_vnr(current);
1da177e4
LT
1732}
1733
a39bc516 1734static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1735{
1d615482 1736 raw_spin_lock_init(&p->pi_lock);
e29e175b 1737#ifdef CONFIG_RT_MUTEXES
a23ba907 1738 p->pi_waiters = RB_ROOT_CACHED;
e96a7705 1739 p->pi_top_task = NULL;
23f78d4a 1740 p->pi_blocked_on = NULL;
23f78d4a
IM
1741#endif
1742}
1743
2c470475
EB
1744static inline void init_task_pid_links(struct task_struct *task)
1745{
1746 enum pid_type type;
1747
96e1e984 1748 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
2c470475 1749 INIT_HLIST_NODE(&task->pid_links[type]);
2c470475
EB
1750}
1751
81907739
ON
1752static inline void
1753init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1754{
2c470475
EB
1755 if (type == PIDTYPE_PID)
1756 task->thread_pid = pid;
1757 else
1758 task->signal->pids[type] = pid;
81907739
ON
1759}
1760
6bfbaa51
IM
1761static inline void rcu_copy_process(struct task_struct *p)
1762{
1763#ifdef CONFIG_PREEMPT_RCU
1764 p->rcu_read_lock_nesting = 0;
1765 p->rcu_read_unlock_special.s = 0;
1766 p->rcu_blocked_node = NULL;
1767 INIT_LIST_HEAD(&p->rcu_node_entry);
1768#endif /* #ifdef CONFIG_PREEMPT_RCU */
1769#ifdef CONFIG_TASKS_RCU
1770 p->rcu_tasks_holdout = false;
1771 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1772 p->rcu_tasks_idle_cpu = -1;
1773#endif /* #ifdef CONFIG_TASKS_RCU */
d5f177d3
PM
1774#ifdef CONFIG_TASKS_TRACE_RCU
1775 p->trc_reader_nesting = 0;
276c4104 1776 p->trc_reader_special.s = 0;
d5f177d3
PM
1777 INIT_LIST_HEAD(&p->trc_holdout_list);
1778#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
6bfbaa51
IM
1779}
1780
3695eae5
CB
1781struct pid *pidfd_pid(const struct file *file)
1782{
1783 if (file->f_op == &pidfd_fops)
1784 return file->private_data;
1785
1786 return ERR_PTR(-EBADF);
1787}
1788
b3e58382
CB
1789static int pidfd_release(struct inode *inode, struct file *file)
1790{
1791 struct pid *pid = file->private_data;
1792
1793 file->private_data = NULL;
1794 put_pid(pid);
1795 return 0;
1796}
1797
1798#ifdef CONFIG_PROC_FS
15d42eb2
CK
1799/**
1800 * pidfd_show_fdinfo - print information about a pidfd
1801 * @m: proc fdinfo file
1802 * @f: file referencing a pidfd
1803 *
1804 * Pid:
1805 * This function will print the pid that a given pidfd refers to in the
1806 * pid namespace of the procfs instance.
1807 * If the pid namespace of the process is not a descendant of the pid
1808 * namespace of the procfs instance 0 will be shown as its pid. This is
1809 * similar to calling getppid() on a process whose parent is outside of
1810 * its pid namespace.
1811 *
1812 * NSpid:
1813 * If pid namespaces are supported then this function will also print
1814 * the pid of a given pidfd refers to for all descendant pid namespaces
1815 * starting from the current pid namespace of the instance, i.e. the
1816 * Pid field and the first entry in the NSpid field will be identical.
1817 * If the pid namespace of the process is not a descendant of the pid
1818 * namespace of the procfs instance 0 will be shown as its first NSpid
1819 * entry and no others will be shown.
1820 * Note that this differs from the Pid and NSpid fields in
1821 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1822 * the pid namespace of the procfs instance. The difference becomes
1823 * obvious when sending around a pidfd between pid namespaces from a
a8ca6b13 1824 * different branch of the tree, i.e. where no ancestral relation is
15d42eb2
CK
1825 * present between the pid namespaces:
1826 * - create two new pid namespaces ns1 and ns2 in the initial pid
1827 * namespace (also take care to create new mount namespaces in the
1828 * new pid namespace and mount procfs)
1829 * - create a process with a pidfd in ns1
1830 * - send pidfd from ns1 to ns2
1831 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1832 * have exactly one entry, which is 0
1833 */
b3e58382
CB
1834static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1835{
b3e58382 1836 struct pid *pid = f->private_data;
3d6d8da4
CB
1837 struct pid_namespace *ns;
1838 pid_t nr = -1;
15d42eb2 1839
3d6d8da4 1840 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
9d78edea 1841 ns = proc_pid_ns(file_inode(m->file)->i_sb);
3d6d8da4
CB
1842 nr = pid_nr_ns(pid, ns);
1843 }
1844
1845 seq_put_decimal_ll(m, "Pid:\t", nr);
b3e58382 1846
15d42eb2 1847#ifdef CONFIG_PID_NS
3d6d8da4
CB
1848 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1849 if (nr > 0) {
15d42eb2 1850 int i;
b3e58382 1851
15d42eb2
CK
1852 /* If nr is non-zero it means that 'pid' is valid and that
1853 * ns, i.e. the pid namespace associated with the procfs
1854 * instance, is in the pid namespace hierarchy of pid.
1855 * Start at one below the already printed level.
1856 */
1857 for (i = ns->level + 1; i <= pid->level; i++)
3d6d8da4 1858 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
15d42eb2
CK
1859 }
1860#endif
b3e58382
CB
1861 seq_putc(m, '\n');
1862}
1863#endif
1864
b53b0b9d
JFG
1865/*
1866 * Poll support for process exit notification.
1867 */
9e77716a 1868static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
b53b0b9d 1869{
b53b0b9d 1870 struct pid *pid = file->private_data;
9e77716a 1871 __poll_t poll_flags = 0;
b53b0b9d
JFG
1872
1873 poll_wait(file, &pid->wait_pidfd, pts);
1874
b53b0b9d
JFG
1875 /*
1876 * Inform pollers only when the whole thread group exits.
1877 * If the thread group leader exits before all other threads in the
1878 * group, then poll(2) should block, similar to the wait(2) family.
1879 */
38fd525a 1880 if (thread_group_exited(pid))
9e77716a 1881 poll_flags = EPOLLIN | EPOLLRDNORM;
b53b0b9d
JFG
1882
1883 return poll_flags;
1884}
1885
b3e58382
CB
1886const struct file_operations pidfd_fops = {
1887 .release = pidfd_release,
b53b0b9d 1888 .poll = pidfd_poll,
b3e58382
CB
1889#ifdef CONFIG_PROC_FS
1890 .show_fdinfo = pidfd_show_fdinfo,
1891#endif
1892};
1893
c3f3ce04
AA
1894static void __delayed_free_task(struct rcu_head *rhp)
1895{
1896 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1897
1898 free_task(tsk);
1899}
1900
1901static __always_inline void delayed_free_task(struct task_struct *tsk)
1902{
1903 if (IS_ENABLED(CONFIG_MEMCG))
1904 call_rcu(&tsk->rcu, __delayed_free_task);
1905 else
1906 free_task(tsk);
1907}
1908
67197a4f
SB
1909static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1910{
1911 /* Skip if kernel thread */
1912 if (!tsk->mm)
1913 return;
1914
1915 /* Skip if spawning a thread or using vfork */
1916 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1917 return;
1918
1919 /* We need to synchronize with __set_oom_adj */
1920 mutex_lock(&oom_adj_mutex);
1921 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1922 /* Update the values in case they were changed after copy_signal */
1923 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1924 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1925 mutex_unlock(&oom_adj_mutex);
1926}
1927
1da177e4
LT
1928/*
1929 * This creates a new process as a copy of the old one,
1930 * but does not actually start it yet.
1931 *
1932 * It copies the registers, and all the appropriate
1933 * parts of the process environment (as per the clone
1934 * flags). The actual kick-off is left to the caller.
1935 */
0766f788 1936static __latent_entropy struct task_struct *copy_process(
09a05394 1937 struct pid *pid,
3033f14a 1938 int trace,
7f192e3c
CB
1939 int node,
1940 struct kernel_clone_args *args)
1da177e4 1941{
b3e58382 1942 int pidfd = -1, retval;
a24efe62 1943 struct task_struct *p;
c3ad2c3b 1944 struct multiprocess_signals delayed;
6fd2fe49 1945 struct file *pidfile = NULL;
7f192e3c 1946 u64 clone_flags = args->flags;
769071ac 1947 struct nsproxy *nsp = current->nsproxy;
1da177e4 1948
667b6094
MPS
1949 /*
1950 * Don't allow sharing the root directory with processes in a different
1951 * namespace
1952 */
1da177e4
LT
1953 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1954 return ERR_PTR(-EINVAL);
1955
e66eded8
EB
1956 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1957 return ERR_PTR(-EINVAL);
1958
34227646
SH
1959 if ((clone_flags & CLONE_NEWUSER) && !unprivileged_userns_clone)
1960 if (!capable(CAP_SYS_ADMIN))
1961 return ERR_PTR(-EPERM);
1962
1da177e4
LT
1963 /*
1964 * Thread groups must share signals as well, and detached threads
1965 * can only be started up within the thread group.
1966 */
1967 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1968 return ERR_PTR(-EINVAL);
1969
1970 /*
1971 * Shared signal handlers imply shared VM. By way of the above,
1972 * thread groups also imply shared VM. Blocking this case allows
1973 * for various simplifications in other code.
1974 */
1975 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1976 return ERR_PTR(-EINVAL);
1977
123be07b
SB
1978 /*
1979 * Siblings of global init remain as zombies on exit since they are
1980 * not reaped by their parent (swapper). To solve this and to avoid
1981 * multi-rooted process trees, prevent global and container-inits
1982 * from creating siblings.
1983 */
1984 if ((clone_flags & CLONE_PARENT) &&
1985 current->signal->flags & SIGNAL_UNKILLABLE)
1986 return ERR_PTR(-EINVAL);
1987
8382fcac 1988 /*
40a0d32d 1989 * If the new process will be in a different pid or user namespace
faf00da5 1990 * do not allow it to share a thread group with the forking task.
8382fcac 1991 */
faf00da5 1992 if (clone_flags & CLONE_THREAD) {
40a0d32d 1993 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
769071ac
AV
1994 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1995 return ERR_PTR(-EINVAL);
1996 }
1997
1998 /*
1999 * If the new process will be in a different time namespace
2000 * do not allow it to share VM or a thread group with the forking task.
2001 */
2002 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
2003 if (nsp->time_ns != nsp->time_ns_for_children)
40a0d32d
ON
2004 return ERR_PTR(-EINVAL);
2005 }
8382fcac 2006
b3e58382 2007 if (clone_flags & CLONE_PIDFD) {
b3e58382 2008 /*
b3e58382
CB
2009 * - CLONE_DETACHED is blocked so that we can potentially
2010 * reuse it later for CLONE_PIDFD.
2011 * - CLONE_THREAD is blocked until someone really needs it.
2012 */
7f192e3c 2013 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
b3e58382 2014 return ERR_PTR(-EINVAL);
b3e58382
CB
2015 }
2016
c3ad2c3b
EB
2017 /*
2018 * Force any signals received before this point to be delivered
2019 * before the fork happens. Collect up signals sent to multiple
2020 * processes that happen during the fork and delay them so that
2021 * they appear to happen after the fork.
2022 */
2023 sigemptyset(&delayed.signal);
2024 INIT_HLIST_NODE(&delayed.node);
2025
2026 spin_lock_irq(&current->sighand->siglock);
2027 if (!(clone_flags & CLONE_THREAD))
2028 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2029 recalc_sigpending();
2030 spin_unlock_irq(&current->sighand->siglock);
2031 retval = -ERESTARTNOINTR;
66ae0d1e 2032 if (task_sigpending(current))
c3ad2c3b
EB
2033 goto fork_out;
2034
1da177e4 2035 retval = -ENOMEM;
725fc629 2036 p = dup_task_struct(current, node);
1da177e4
LT
2037 if (!p)
2038 goto fork_out;
b16b3855
JA
2039 if (args->io_thread) {
2040 /*
2041 * Mark us an IO worker, and block any signal that isn't
2042 * fatal or STOP
2043 */
cc440e87 2044 p->flags |= PF_IO_WORKER;
b16b3855
JA
2045 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2046 }
1da177e4 2047
4d6501dc
VN
2048 /*
2049 * This _must_ happen before we call free_task(), i.e. before we jump
2050 * to any of the bad_fork_* labels. This is to avoid freeing
2051 * p->set_child_tid which is (ab)used as a kthread's data pointer for
2052 * kernel threads (PF_KTHREAD).
2053 */
7f192e3c 2054 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
4d6501dc
VN
2055 /*
2056 * Clear TID on mm_release()?
2057 */
7f192e3c 2058 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
4d6501dc 2059
f7e8b616
SR
2060 ftrace_graph_init_task(p);
2061
bea493a0
PZ
2062 rt_mutex_init_task(p);
2063
a21ee605 2064 lockdep_assert_irqs_enabled();
d12c1a37 2065#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
2066 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2067#endif
a7b7b7df
EB
2068 retval = copy_creds(p, clone_flags);
2069 if (retval < 0)
2070 goto bad_fork_free;
2071
1da177e4 2072 retval = -EAGAIN;
21d1c5e3 2073 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
b57922b6
EP
2074 if (p->real_cred->user != INIT_USER &&
2075 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
a7b7b7df 2076 goto bad_fork_cleanup_count;
1da177e4 2077 }
72fa5997 2078 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 2079
1da177e4
LT
2080 /*
2081 * If multiple threads are within copy_process(), then this check
2082 * triggers too late. This doesn't hurt, the check is only there
2083 * to stop root fork bombs.
2084 */
04ec93fe 2085 retval = -EAGAIN;
c17d1a3a 2086 if (data_race(nr_threads >= max_threads))
1da177e4
LT
2087 goto bad_fork_cleanup_count;
2088
ca74e92b 2089 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
a8ea6fc9 2090 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
514ddb44 2091 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
2092 INIT_LIST_HEAD(&p->children);
2093 INIT_LIST_HEAD(&p->sibling);
f41d911f 2094 rcu_copy_process(p);
1da177e4
LT
2095 p->vfork_done = NULL;
2096 spin_lock_init(&p->alloc_lock);
1da177e4 2097
1da177e4
LT
2098 init_sigpending(&p->pending);
2099
64861634 2100 p->utime = p->stime = p->gtime = 0;
40565b5a 2101#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 2102 p->utimescaled = p->stimescaled = 0;
40565b5a 2103#endif
9d7fb042
PZ
2104 prev_cputime_init(&p->prev_cputime);
2105
6a61671b 2106#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
2107 seqcount_init(&p->vtime.seqcount);
2108 p->vtime.starttime = 0;
2109 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
2110#endif
2111
0f212204
JA
2112#ifdef CONFIG_IO_URING
2113 p->io_uring = NULL;
2114#endif
2115
a3a2e76c
KH
2116#if defined(SPLIT_RSS_COUNTING)
2117 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2118#endif
172ba844 2119
6976675d
AV
2120 p->default_timer_slack_ns = current->timer_slack_ns;
2121
eb414681
JW
2122#ifdef CONFIG_PSI
2123 p->psi_flags = 0;
2124#endif
2125
5995477a 2126 task_io_accounting_init(&p->ioac);
1da177e4
LT
2127 acct_clear_integrals(p);
2128
3a245c0f 2129 posix_cputimers_init(&p->posix_cputimers);
1da177e4 2130
1da177e4 2131 p->io_context = NULL;
c0b0ae8a 2132 audit_set_context(p, NULL);
b4f48b63 2133 cgroup_fork(p);
1da177e4 2134#ifdef CONFIG_NUMA
846a16bf 2135 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
2136 if (IS_ERR(p->mempolicy)) {
2137 retval = PTR_ERR(p->mempolicy);
2138 p->mempolicy = NULL;
e8604cb4 2139 goto bad_fork_cleanup_threadgroup_lock;
fb0a685c 2140 }
1da177e4 2141#endif
778d3b0f
MH
2142#ifdef CONFIG_CPUSETS
2143 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2144 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
b7505861 2145 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
778d3b0f 2146#endif
de30a2b3 2147#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c
ME
2148 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2149 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2150 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2151 p->softirqs_enabled = 1;
2152 p->softirq_context = 0;
de30a2b3 2153#endif
8bcbde54
DH
2154
2155 p->pagefault_disabled = 0;
2156
fbb9ce95 2157#ifdef CONFIG_LOCKDEP
b09be676 2158 lockdep_init_task(p);
fbb9ce95 2159#endif
1da177e4 2160
408894ee
IM
2161#ifdef CONFIG_DEBUG_MUTEXES
2162 p->blocked_on = NULL; /* not blocked yet */
2163#endif
cafe5635
KO
2164#ifdef CONFIG_BCACHE
2165 p->sequential_io = 0;
2166 p->sequential_io_avg = 0;
2167#endif
a10787e6
SL
2168#ifdef CONFIG_BPF_SYSCALL
2169 RCU_INIT_POINTER(p->bpf_storage, NULL);
c7603cfa 2170 p->bpf_ctx = NULL;
a10787e6 2171#endif
0f481406 2172
3c90e6e9 2173 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
2174 retval = sched_fork(clone_flags, p);
2175 if (retval)
2176 goto bad_fork_cleanup_policy;
6ab423e0 2177
2b26f0aa 2178 retval = perf_event_init_task(p, clone_flags);
6ab423e0
PZ
2179 if (retval)
2180 goto bad_fork_cleanup_policy;
fb0a685c
DRO
2181 retval = audit_alloc(p);
2182 if (retval)
6c72e350 2183 goto bad_fork_cleanup_perf;
1da177e4 2184 /* copy all the process information */
ab602f79 2185 shm_init_task(p);
e4e55b47 2186 retval = security_task_alloc(p, clone_flags);
fb0a685c 2187 if (retval)
1da177e4 2188 goto bad_fork_cleanup_audit;
e4e55b47
TH
2189 retval = copy_semundo(clone_flags, p);
2190 if (retval)
2191 goto bad_fork_cleanup_security;
fb0a685c
DRO
2192 retval = copy_files(clone_flags, p);
2193 if (retval)
1da177e4 2194 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
2195 retval = copy_fs(clone_flags, p);
2196 if (retval)
1da177e4 2197 goto bad_fork_cleanup_files;
fb0a685c
DRO
2198 retval = copy_sighand(clone_flags, p);
2199 if (retval)
1da177e4 2200 goto bad_fork_cleanup_fs;
fb0a685c
DRO
2201 retval = copy_signal(clone_flags, p);
2202 if (retval)
1da177e4 2203 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
2204 retval = copy_mm(clone_flags, p);
2205 if (retval)
1da177e4 2206 goto bad_fork_cleanup_signal;
fb0a685c
DRO
2207 retval = copy_namespaces(clone_flags, p);
2208 if (retval)
d84f4f99 2209 goto bad_fork_cleanup_mm;
fb0a685c
DRO
2210 retval = copy_io(clone_flags, p);
2211 if (retval)
fd0928df 2212 goto bad_fork_cleanup_namespaces;
714acdbd 2213 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
1da177e4 2214 if (retval)
fd0928df 2215 goto bad_fork_cleanup_io;
1da177e4 2216
afaef01c
AP
2217 stackleak_task_init(p);
2218
425fb2b4 2219 if (pid != &init_struct_pid) {
49cb2fc4
AR
2220 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2221 args->set_tid_size);
35f71bc0
MH
2222 if (IS_ERR(pid)) {
2223 retval = PTR_ERR(pid);
0740aa5f 2224 goto bad_fork_cleanup_thread;
35f71bc0 2225 }
425fb2b4
PE
2226 }
2227
b3e58382
CB
2228 /*
2229 * This has to happen after we've potentially unshared the file
2230 * descriptor table (so that the pidfd doesn't leak into the child
2231 * if the fd table isn't shared).
2232 */
2233 if (clone_flags & CLONE_PIDFD) {
6fd2fe49 2234 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
b3e58382
CB
2235 if (retval < 0)
2236 goto bad_fork_free_pid;
2237
2238 pidfd = retval;
6fd2fe49
AV
2239
2240 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2241 O_RDWR | O_CLOEXEC);
2242 if (IS_ERR(pidfile)) {
2243 put_unused_fd(pidfd);
28dd29c0 2244 retval = PTR_ERR(pidfile);
6fd2fe49
AV
2245 goto bad_fork_free_pid;
2246 }
2247 get_pid(pid); /* held by pidfile now */
2248
7f192e3c 2249 retval = put_user(pidfd, args->pidfd);
b3e58382
CB
2250 if (retval)
2251 goto bad_fork_put_pidfd;
2252 }
2253
73c10101
JA
2254#ifdef CONFIG_BLOCK
2255 p->plug = NULL;
2256#endif
ba31c1a4
TG
2257 futex_init_task(p);
2258
f9a3879a
GM
2259 /*
2260 * sigaltstack should be cleared when sharing the same VM
2261 */
2262 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 2263 sas_ss_reset(p);
f9a3879a 2264
1da177e4 2265 /*
6580807d
ON
2266 * Syscall tracing and stepping should be turned off in the
2267 * child regardless of CLONE_PTRACE.
1da177e4 2268 */
6580807d 2269 user_disable_single_step(p);
64c19ba2 2270 clear_task_syscall_work(p, SYSCALL_TRACE);
64eb35f7
GKB
2271#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2272 clear_task_syscall_work(p, SYSCALL_EMU);
ed75e8d5 2273#endif
e02c9b0d 2274 clear_tsk_latency_tracing(p);
1da177e4 2275
1da177e4 2276 /* ok, now we should be set up.. */
18c830df
ON
2277 p->pid = pid_nr(pid);
2278 if (clone_flags & CLONE_THREAD) {
18c830df
ON
2279 p->group_leader = current->group_leader;
2280 p->tgid = current->tgid;
2281 } else {
18c830df
ON
2282 p->group_leader = p;
2283 p->tgid = p->pid;
2284 }
5f8aadd8 2285
9d823e8f
WF
2286 p->nr_dirtied = 0;
2287 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 2288 p->dirty_paused_when = 0;
9d823e8f 2289
bb8cbbfe 2290 p->pdeath_signal = 0;
47e65328 2291 INIT_LIST_HEAD(&p->thread_group);
158e1645 2292 p->task_works = NULL;
4e5e4598 2293 clear_posix_cputimers_work(p);
1da177e4 2294
d741bf41
PZ
2295#ifdef CONFIG_KRETPROBES
2296 p->kretprobe_instances.first = NULL;
2297#endif
2298
7e47682e
AS
2299 /*
2300 * Ensure that the cgroup subsystem policies allow the new process to be
7b7b8a2c 2301 * forked. It should be noted that the new process's css_set can be changed
7e47682e
AS
2302 * between here and cgroup_post_fork() if an organisation operation is in
2303 * progress.
2304 */
ef2c41cf 2305 retval = cgroup_can_fork(p, args);
7e47682e 2306 if (retval)
5a5cf5cb 2307 goto bad_fork_put_pidfd;
7e47682e 2308
65bd0eb6
PZ
2309 /*
2310 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2311 * the new task on the correct runqueue. All this *before* the task
2312 * becomes visible.
2313 *
2314 * This isn't part of ->can_fork() because while the re-cloning is
2315 * cgroup specific, it unconditionally needs to place the task on a
2316 * runqueue.
2317 */
2318 sched_cgroup_fork(p, args);
2319
7b558513
DH
2320 /*
2321 * From this point on we must avoid any synchronous user-space
2322 * communication until we take the tasklist-lock. In particular, we do
2323 * not want user-space to be able to predict the process start-time by
2324 * stalling fork(2) after we recorded the start_time but before it is
2325 * visible to the system.
2326 */
2327
2328 p->start_time = ktime_get_ns();
cf25e24d 2329 p->start_boottime = ktime_get_boottime_ns();
7b558513 2330
18c830df
ON
2331 /*
2332 * Make it visible to the rest of the system, but dont wake it up yet.
2333 * Need tasklist lock for parent etc handling!
2334 */
1da177e4
LT
2335 write_lock_irq(&tasklist_lock);
2336
1da177e4 2337 /* CLONE_PARENT re-uses the old parent */
2d5516cb 2338 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 2339 p->real_parent = current->real_parent;
2d5516cb 2340 p->parent_exec_id = current->parent_exec_id;
b4e00444
EW
2341 if (clone_flags & CLONE_THREAD)
2342 p->exit_signal = -1;
2343 else
2344 p->exit_signal = current->group_leader->exit_signal;
2d5516cb 2345 } else {
1da177e4 2346 p->real_parent = current;
2d5516cb 2347 p->parent_exec_id = current->self_exec_id;
b4e00444 2348 p->exit_signal = args->exit_signal;
2d5516cb 2349 }
1da177e4 2350
d83a7cb3
JP
2351 klp_copy_process(p);
2352
85dd3f61
PZ
2353 sched_core_fork(p);
2354
3f17da69 2355 spin_lock(&current->sighand->siglock);
4a2c7a78 2356
dbd95212
KC
2357 /*
2358 * Copy seccomp details explicitly here, in case they were changed
2359 * before holding sighand lock.
2360 */
2361 copy_seccomp(p);
2362
d7822b1e
MD
2363 rseq_fork(p, clone_flags);
2364
4ca1d3ee 2365 /* Don't start children in a dying pid namespace */
e8cfbc24 2366 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
3fd37226
KT
2367 retval = -ENOMEM;
2368 goto bad_fork_cancel_cgroup;
2369 }
4a2c7a78 2370
7673bf55
EB
2371 /* Let kill terminate clone/fork in the middle */
2372 if (fatal_signal_pending(current)) {
2373 retval = -EINTR;
2374 goto bad_fork_cancel_cgroup;
2375 }
2376
2c470475 2377 init_task_pid_links(p);
73b9ebfe 2378 if (likely(p->pid)) {
4b9d33e6 2379 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 2380
81907739 2381 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 2382 if (thread_group_leader(p)) {
6883f81a 2383 init_task_pid(p, PIDTYPE_TGID, pid);
81907739
ON
2384 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2385 init_task_pid(p, PIDTYPE_SID, task_session(current));
2386
1c4042c2 2387 if (is_child_reaper(pid)) {
17cf22c3 2388 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
2389 p->signal->flags |= SIGNAL_UNKILLABLE;
2390 }
c3ad2c3b 2391 p->signal->shared_pending.signal = delayed.signal;
9c9f4ded 2392 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
2393 /*
2394 * Inherit has_child_subreaper flag under the same
2395 * tasklist_lock with adding child to the process tree
2396 * for propagate_has_child_subreaper optimization.
2397 */
2398 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2399 p->real_parent->signal->is_child_subreaper;
9cd80bbb 2400 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 2401 list_add_tail_rcu(&p->tasks, &init_task.tasks);
6883f81a 2402 attach_pid(p, PIDTYPE_TGID);
81907739
ON
2403 attach_pid(p, PIDTYPE_PGID);
2404 attach_pid(p, PIDTYPE_SID);
909ea964 2405 __this_cpu_inc(process_counts);
80628ca0
ON
2406 } else {
2407 current->signal->nr_threads++;
2408 atomic_inc(&current->signal->live);
60d4de3f 2409 refcount_inc(&current->signal->sigcnt);
924de3b8 2410 task_join_group_stop(p);
80628ca0
ON
2411 list_add_tail_rcu(&p->thread_group,
2412 &p->group_leader->thread_group);
0c740d0a
ON
2413 list_add_tail_rcu(&p->thread_node,
2414 &p->signal->thread_head);
73b9ebfe 2415 }
81907739 2416 attach_pid(p, PIDTYPE_PID);
73b9ebfe 2417 nr_threads++;
1da177e4 2418 }
1da177e4 2419 total_forks++;
c3ad2c3b 2420 hlist_del_init(&delayed.node);
3f17da69 2421 spin_unlock(&current->sighand->siglock);
4af4206b 2422 syscall_tracepoint_update(p);
1da177e4 2423 write_unlock_irq(&tasklist_lock);
4af4206b 2424
c734221f
WL
2425 if (pidfile)
2426 fd_install(pidfd, pidfile);
2427
c13cf856 2428 proc_fork_connector(p);
65bd0eb6 2429 sched_post_fork(p);
ef2c41cf 2430 cgroup_post_fork(p, args);
cdd6c482 2431 perf_event_fork(p);
43d2b113
KH
2432
2433 trace_task_newtask(p, clone_flags);
3ab67966 2434 uprobe_copy_process(p, clone_flags);
43d2b113 2435
67197a4f
SB
2436 copy_oom_score_adj(clone_flags, p);
2437
1da177e4
LT
2438 return p;
2439
7e47682e 2440bad_fork_cancel_cgroup:
85dd3f61 2441 sched_core_free(p);
3fd37226
KT
2442 spin_unlock(&current->sighand->siglock);
2443 write_unlock_irq(&tasklist_lock);
ef2c41cf 2444 cgroup_cancel_fork(p, args);
b3e58382 2445bad_fork_put_pidfd:
6fd2fe49
AV
2446 if (clone_flags & CLONE_PIDFD) {
2447 fput(pidfile);
2448 put_unused_fd(pidfd);
2449 }
425fb2b4
PE
2450bad_fork_free_pid:
2451 if (pid != &init_struct_pid)
2452 free_pid(pid);
0740aa5f
JS
2453bad_fork_cleanup_thread:
2454 exit_thread(p);
fd0928df 2455bad_fork_cleanup_io:
b69f2292
LR
2456 if (p->io_context)
2457 exit_io_context(p);
ab516013 2458bad_fork_cleanup_namespaces:
444f378b 2459 exit_task_namespaces(p);
1da177e4 2460bad_fork_cleanup_mm:
c3f3ce04
AA
2461 if (p->mm) {
2462 mm_clear_owner(p->mm, p);
1da177e4 2463 mmput(p->mm);
c3f3ce04 2464 }
1da177e4 2465bad_fork_cleanup_signal:
4ab6c083 2466 if (!(clone_flags & CLONE_THREAD))
1c5354de 2467 free_signal_struct(p->signal);
1da177e4 2468bad_fork_cleanup_sighand:
a7e5328a 2469 __cleanup_sighand(p->sighand);
1da177e4
LT
2470bad_fork_cleanup_fs:
2471 exit_fs(p); /* blocking */
2472bad_fork_cleanup_files:
2473 exit_files(p); /* blocking */
2474bad_fork_cleanup_semundo:
2475 exit_sem(p);
e4e55b47
TH
2476bad_fork_cleanup_security:
2477 security_task_free(p);
1da177e4
LT
2478bad_fork_cleanup_audit:
2479 audit_free(p);
6c72e350 2480bad_fork_cleanup_perf:
cdd6c482 2481 perf_event_free_task(p);
6c72e350 2482bad_fork_cleanup_policy:
b09be676 2483 lockdep_free_task(p);
1da177e4 2484#ifdef CONFIG_NUMA
f0be3d32 2485 mpol_put(p->mempolicy);
e8604cb4 2486bad_fork_cleanup_threadgroup_lock:
1da177e4 2487#endif
35df17c5 2488 delayacct_tsk_free(p);
1da177e4 2489bad_fork_cleanup_count:
21d1c5e3 2490 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
e0e81739 2491 exit_creds(p);
1da177e4 2492bad_fork_free:
2f064a59 2493 WRITE_ONCE(p->__state, TASK_DEAD);
68f24b08 2494 put_task_stack(p);
c3f3ce04 2495 delayed_free_task(p);
fe7d37d1 2496fork_out:
c3ad2c3b
EB
2497 spin_lock_irq(&current->sighand->siglock);
2498 hlist_del_init(&delayed.node);
2499 spin_unlock_irq(&current->sighand->siglock);
fe7d37d1 2500 return ERR_PTR(retval);
1da177e4
LT
2501}
2502
2c470475 2503static inline void init_idle_pids(struct task_struct *idle)
f106eee1
ON
2504{
2505 enum pid_type type;
2506
2507 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2c470475
EB
2508 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2509 init_task_pid(idle, type, &init_struct_pid);
f106eee1
ON
2510 }
2511}
2512
f1a0a376 2513struct task_struct * __init fork_idle(int cpu)
1da177e4 2514{
36c8b586 2515 struct task_struct *task;
7f192e3c
CB
2516 struct kernel_clone_args args = {
2517 .flags = CLONE_VM,
2518 };
2519
2520 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
f106eee1 2521 if (!IS_ERR(task)) {
2c470475 2522 init_idle_pids(task);
753ca4f3 2523 init_idle(task, cpu);
f106eee1 2524 }
73b9ebfe 2525
1da177e4
LT
2526 return task;
2527}
2528
13585fa0
NA
2529struct mm_struct *copy_init_mm(void)
2530{
2531 return dup_mm(NULL, &init_mm);
2532}
2533
cc440e87
JA
2534/*
2535 * This is like kernel_clone(), but shaved down and tailored to just
2536 * creating io_uring workers. It returns a created task, or an error pointer.
2537 * The returned task is inactive, and the caller must fire it up through
2538 * wake_up_new_task(p). All signals are blocked in the created task.
2539 */
2540struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2541{
2542 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2543 CLONE_IO;
2544 struct kernel_clone_args args = {
2545 .flags = ((lower_32_bits(flags) | CLONE_VM |
2546 CLONE_UNTRACED) & ~CSIGNAL),
2547 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2548 .stack = (unsigned long)fn,
2549 .stack_size = (unsigned long)arg,
2550 .io_thread = 1,
2551 };
cc440e87 2552
b16b3855 2553 return copy_process(NULL, 0, node, &args);
cc440e87
JA
2554}
2555
1da177e4
LT
2556/*
2557 * Ok, this is the main fork-routine.
2558 *
2559 * It copies the process, and if successful kick-starts
2560 * it and waits for it to finish using the VM if required.
a0eb9abd
ES
2561 *
2562 * args->exit_signal is expected to be checked for sanity by the caller.
1da177e4 2563 */
cad6967a 2564pid_t kernel_clone(struct kernel_clone_args *args)
1da177e4 2565{
7f192e3c 2566 u64 clone_flags = args->flags;
9f5325aa
MPS
2567 struct completion vfork;
2568 struct pid *pid;
1da177e4
LT
2569 struct task_struct *p;
2570 int trace = 0;
cad6967a 2571 pid_t nr;
1da177e4 2572
3af8588c
CB
2573 /*
2574 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2575 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2576 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2577 * field in struct clone_args and it still doesn't make sense to have
2578 * them both point at the same memory location. Performing this check
2579 * here has the advantage that we don't need to have a separate helper
2580 * to check for legacy clone().
2581 */
2582 if ((args->flags & CLONE_PIDFD) &&
2583 (args->flags & CLONE_PARENT_SETTID) &&
2584 (args->pidfd == args->parent_tid))
2585 return -EINVAL;
2586
09a05394 2587 /*
4b9d33e6
TH
2588 * Determine whether and which event to report to ptracer. When
2589 * called from kernel_thread or CLONE_UNTRACED is explicitly
2590 * requested, no event is reported; otherwise, report if the event
2591 * for the type of forking is enabled.
09a05394 2592 */
e80d6661 2593 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2594 if (clone_flags & CLONE_VFORK)
2595 trace = PTRACE_EVENT_VFORK;
7f192e3c 2596 else if (args->exit_signal != SIGCHLD)
4b9d33e6
TH
2597 trace = PTRACE_EVENT_CLONE;
2598 else
2599 trace = PTRACE_EVENT_FORK;
2600
2601 if (likely(!ptrace_event_enabled(current, trace)))
2602 trace = 0;
2603 }
1da177e4 2604
7f192e3c 2605 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
38addce8 2606 add_latent_entropy();
9f5325aa
MPS
2607
2608 if (IS_ERR(p))
2609 return PTR_ERR(p);
2610
1da177e4
LT
2611 /*
2612 * Do this prior waking up the new thread - the thread pointer
2613 * might get invalid after that point, if the thread exits quickly.
2614 */
9f5325aa 2615 trace_sched_process_fork(current, p);
0a16b607 2616
9f5325aa
MPS
2617 pid = get_task_pid(p, PIDTYPE_PID);
2618 nr = pid_vnr(pid);
30e49c26 2619
9f5325aa 2620 if (clone_flags & CLONE_PARENT_SETTID)
7f192e3c 2621 put_user(nr, args->parent_tid);
a6f5e063 2622
9f5325aa
MPS
2623 if (clone_flags & CLONE_VFORK) {
2624 p->vfork_done = &vfork;
2625 init_completion(&vfork);
2626 get_task_struct(p);
2627 }
1da177e4 2628
9f5325aa 2629 wake_up_new_task(p);
09a05394 2630
9f5325aa
MPS
2631 /* forking complete and child started to run, tell ptracer */
2632 if (unlikely(trace))
2633 ptrace_event_pid(trace, pid);
4e52365f 2634
9f5325aa
MPS
2635 if (clone_flags & CLONE_VFORK) {
2636 if (!wait_for_vfork_done(p, &vfork))
2637 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2638 }
9f5325aa
MPS
2639
2640 put_pid(pid);
92476d7f 2641 return nr;
1da177e4
LT
2642}
2643
2aa3a7f8
AV
2644/*
2645 * Create a kernel thread.
2646 */
2647pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2648{
7f192e3c 2649 struct kernel_clone_args args = {
3f2c788a
CB
2650 .flags = ((lower_32_bits(flags) | CLONE_VM |
2651 CLONE_UNTRACED) & ~CSIGNAL),
2652 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
7f192e3c
CB
2653 .stack = (unsigned long)fn,
2654 .stack_size = (unsigned long)arg,
2655 };
2656
cad6967a 2657 return kernel_clone(&args);
2aa3a7f8 2658}
2aa3a7f8 2659
d2125043
AV
2660#ifdef __ARCH_WANT_SYS_FORK
2661SYSCALL_DEFINE0(fork)
2662{
2663#ifdef CONFIG_MMU
7f192e3c
CB
2664 struct kernel_clone_args args = {
2665 .exit_signal = SIGCHLD,
2666 };
2667
cad6967a 2668 return kernel_clone(&args);
d2125043
AV
2669#else
2670 /* can not support in nommu mode */
5d59e182 2671 return -EINVAL;
d2125043
AV
2672#endif
2673}
2674#endif
2675
2676#ifdef __ARCH_WANT_SYS_VFORK
2677SYSCALL_DEFINE0(vfork)
2678{
7f192e3c
CB
2679 struct kernel_clone_args args = {
2680 .flags = CLONE_VFORK | CLONE_VM,
2681 .exit_signal = SIGCHLD,
2682 };
2683
cad6967a 2684 return kernel_clone(&args);
d2125043
AV
2685}
2686#endif
2687
2688#ifdef __ARCH_WANT_SYS_CLONE
2689#ifdef CONFIG_CLONE_BACKWARDS
2690SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2691 int __user *, parent_tidptr,
3033f14a 2692 unsigned long, tls,
d2125043
AV
2693 int __user *, child_tidptr)
2694#elif defined(CONFIG_CLONE_BACKWARDS2)
2695SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2696 int __user *, parent_tidptr,
2697 int __user *, child_tidptr,
3033f14a 2698 unsigned long, tls)
dfa9771a
MS
2699#elif defined(CONFIG_CLONE_BACKWARDS3)
2700SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2701 int, stack_size,
2702 int __user *, parent_tidptr,
2703 int __user *, child_tidptr,
3033f14a 2704 unsigned long, tls)
d2125043
AV
2705#else
2706SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2707 int __user *, parent_tidptr,
2708 int __user *, child_tidptr,
3033f14a 2709 unsigned long, tls)
d2125043
AV
2710#endif
2711{
7f192e3c 2712 struct kernel_clone_args args = {
3f2c788a 2713 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
7f192e3c
CB
2714 .pidfd = parent_tidptr,
2715 .child_tid = child_tidptr,
2716 .parent_tid = parent_tidptr,
3f2c788a 2717 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
7f192e3c
CB
2718 .stack = newsp,
2719 .tls = tls,
2720 };
2721
cad6967a 2722 return kernel_clone(&args);
7f192e3c 2723}
d68dbb0c 2724#endif
7f192e3c 2725
d68dbb0c 2726#ifdef __ARCH_WANT_SYS_CLONE3
dd499f7a 2727
7f192e3c
CB
2728noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2729 struct clone_args __user *uargs,
f14c234b 2730 size_t usize)
7f192e3c 2731{
f14c234b 2732 int err;
7f192e3c 2733 struct clone_args args;
49cb2fc4 2734 pid_t *kset_tid = kargs->set_tid;
7f192e3c 2735
a966dcfe
ES
2736 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2737 CLONE_ARGS_SIZE_VER0);
2738 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2739 CLONE_ARGS_SIZE_VER1);
2740 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2741 CLONE_ARGS_SIZE_VER2);
2742 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2743
f14c234b 2744 if (unlikely(usize > PAGE_SIZE))
7f192e3c 2745 return -E2BIG;
f14c234b 2746 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
7f192e3c
CB
2747 return -EINVAL;
2748
f14c234b
AS
2749 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2750 if (err)
2751 return err;
7f192e3c 2752
49cb2fc4
AR
2753 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2754 return -EINVAL;
2755
2756 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2757 return -EINVAL;
2758
2759 if (unlikely(args.set_tid && args.set_tid_size == 0))
2760 return -EINVAL;
2761
a0eb9abd
ES
2762 /*
2763 * Verify that higher 32bits of exit_signal are unset and that
2764 * it is a valid signal
2765 */
2766 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2767 !valid_signal(args.exit_signal)))
2768 return -EINVAL;
2769
62173872
ES
2770 if ((args.flags & CLONE_INTO_CGROUP) &&
2771 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
ef2c41cf
CB
2772 return -EINVAL;
2773
7f192e3c
CB
2774 *kargs = (struct kernel_clone_args){
2775 .flags = args.flags,
2776 .pidfd = u64_to_user_ptr(args.pidfd),
2777 .child_tid = u64_to_user_ptr(args.child_tid),
2778 .parent_tid = u64_to_user_ptr(args.parent_tid),
2779 .exit_signal = args.exit_signal,
2780 .stack = args.stack,
2781 .stack_size = args.stack_size,
2782 .tls = args.tls,
49cb2fc4 2783 .set_tid_size = args.set_tid_size,
ef2c41cf 2784 .cgroup = args.cgroup,
7f192e3c
CB
2785 };
2786
49cb2fc4
AR
2787 if (args.set_tid &&
2788 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2789 (kargs->set_tid_size * sizeof(pid_t))))
2790 return -EFAULT;
2791
2792 kargs->set_tid = kset_tid;
2793
7f192e3c
CB
2794 return 0;
2795}
2796
fa729c4d
CB
2797/**
2798 * clone3_stack_valid - check and prepare stack
2799 * @kargs: kernel clone args
2800 *
2801 * Verify that the stack arguments userspace gave us are sane.
2802 * In addition, set the stack direction for userspace since it's easy for us to
2803 * determine.
2804 */
2805static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2806{
2807 if (kargs->stack == 0) {
2808 if (kargs->stack_size > 0)
2809 return false;
2810 } else {
2811 if (kargs->stack_size == 0)
2812 return false;
2813
2814 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2815 return false;
2816
2817#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2818 kargs->stack += kargs->stack_size;
2819#endif
2820 }
2821
2822 return true;
2823}
2824
2825static bool clone3_args_valid(struct kernel_clone_args *kargs)
7f192e3c 2826{
b612e5df 2827 /* Verify that no unknown flags are passed along. */
ef2c41cf
CB
2828 if (kargs->flags &
2829 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
7f192e3c
CB
2830 return false;
2831
2832 /*
a8ca6b13
XC
2833 * - make the CLONE_DETACHED bit reusable for clone3
2834 * - make the CSIGNAL bits reusable for clone3
7f192e3c
CB
2835 */
2836 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2837 return false;
2838
b612e5df
CB
2839 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2840 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2841 return false;
2842
7f192e3c
CB
2843 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2844 kargs->exit_signal)
2845 return false;
2846
fa729c4d
CB
2847 if (!clone3_stack_valid(kargs))
2848 return false;
2849
7f192e3c
CB
2850 return true;
2851}
2852
501bd016
CB
2853/**
2854 * clone3 - create a new process with specific properties
2855 * @uargs: argument structure
2856 * @size: size of @uargs
2857 *
2858 * clone3() is the extensible successor to clone()/clone2().
2859 * It takes a struct as argument that is versioned by its size.
2860 *
2861 * Return: On success, a positive PID for the child process.
2862 * On error, a negative errno number.
2863 */
7f192e3c
CB
2864SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2865{
2866 int err;
2867
2868 struct kernel_clone_args kargs;
49cb2fc4
AR
2869 pid_t set_tid[MAX_PID_NS_LEVEL];
2870
2871 kargs.set_tid = set_tid;
7f192e3c
CB
2872
2873 err = copy_clone_args_from_user(&kargs, uargs, size);
2874 if (err)
2875 return err;
2876
2877 if (!clone3_args_valid(&kargs))
2878 return -EINVAL;
2879
cad6967a 2880 return kernel_clone(&kargs);
d2125043
AV
2881}
2882#endif
2883
0f1b92cb
ON
2884void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2885{
2886 struct task_struct *leader, *parent, *child;
2887 int res;
2888
2889 read_lock(&tasklist_lock);
2890 leader = top = top->group_leader;
2891down:
2892 for_each_thread(leader, parent) {
2893 list_for_each_entry(child, &parent->children, sibling) {
2894 res = visitor(child, data);
2895 if (res) {
2896 if (res < 0)
2897 goto out;
2898 leader = child;
2899 goto down;
2900 }
2901up:
2902 ;
2903 }
2904 }
2905
2906 if (leader != top) {
2907 child = leader;
2908 parent = child->real_parent;
2909 leader = parent->group_leader;
2910 goto up;
2911 }
2912out:
2913 read_unlock(&tasklist_lock);
2914}
2915
5fd63b30
RT
2916#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2917#define ARCH_MIN_MMSTRUCT_ALIGN 0
2918#endif
2919
51cc5068 2920static void sighand_ctor(void *data)
aa1757f9
ON
2921{
2922 struct sighand_struct *sighand = data;
2923
a35afb83 2924 spin_lock_init(&sighand->siglock);
b8fceee1 2925 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
2926}
2927
1da177e4
LT
2928void __init proc_caches_init(void)
2929{
c1a2f7f0
RR
2930 unsigned int mm_size;
2931
1da177e4
LT
2932 sighand_cachep = kmem_cache_create("sighand_cache",
2933 sizeof(struct sighand_struct), 0,
5f0d5a3a 2934 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
75f296d9 2935 SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
2936 signal_cachep = kmem_cache_create("signal_cache",
2937 sizeof(struct signal_struct), 0,
75f296d9 2938 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2939 NULL);
20c2df83 2940 files_cachep = kmem_cache_create("files_cache",
1da177e4 2941 sizeof(struct files_struct), 0,
75f296d9 2942 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2943 NULL);
20c2df83 2944 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 2945 sizeof(struct fs_struct), 0,
75f296d9 2946 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2947 NULL);
c1a2f7f0 2948
6345d24d 2949 /*
c1a2f7f0
RR
2950 * The mm_cpumask is located at the end of mm_struct, and is
2951 * dynamically sized based on the maximum CPU number this system
2952 * can have, taking hotplug into account (nr_cpu_ids).
6345d24d 2953 */
c1a2f7f0
RR
2954 mm_size = sizeof(struct mm_struct) + cpumask_size();
2955
07dcd7fe 2956 mm_cachep = kmem_cache_create_usercopy("mm_struct",
c1a2f7f0 2957 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
75f296d9 2958 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
07dcd7fe
DW
2959 offsetof(struct mm_struct, saved_auxv),
2960 sizeof_field(struct mm_struct, saved_auxv),
5d097056
VD
2961 NULL);
2962 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
8feae131 2963 mmap_init();
66577193 2964 nsproxy_cache_init();
1da177e4 2965}
cf2e340f 2966
cf2e340f 2967/*
9bfb23fc 2968 * Check constraints on flags passed to the unshare system call.
cf2e340f 2969 */
9bfb23fc 2970static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 2971{
9bfb23fc
ON
2972 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2973 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 2974 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
769071ac
AV
2975 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2976 CLONE_NEWTIME))
9bfb23fc 2977 return -EINVAL;
cf2e340f 2978 /*
12c641ab
EB
2979 * Not implemented, but pretend it works if there is nothing
2980 * to unshare. Note that unsharing the address space or the
2981 * signal handlers also need to unshare the signal queues (aka
2982 * CLONE_THREAD).
cf2e340f 2983 */
9bfb23fc 2984 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
2985 if (!thread_group_empty(current))
2986 return -EINVAL;
2987 }
2988 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
d036bda7 2989 if (refcount_read(&current->sighand->count) > 1)
12c641ab
EB
2990 return -EINVAL;
2991 }
2992 if (unshare_flags & CLONE_VM) {
2993 if (!current_is_single_threaded())
9bfb23fc
ON
2994 return -EINVAL;
2995 }
cf2e340f
JD
2996
2997 return 0;
2998}
2999
3000/*
99d1419d 3001 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
3002 */
3003static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3004{
3005 struct fs_struct *fs = current->fs;
3006
498052bb
AV
3007 if (!(unshare_flags & CLONE_FS) || !fs)
3008 return 0;
3009
3010 /* don't need lock here; in the worst case we'll do useless copy */
3011 if (fs->users == 1)
3012 return 0;
3013
3014 *new_fsp = copy_fs_struct(fs);
3015 if (!*new_fsp)
3016 return -ENOMEM;
cf2e340f
JD
3017
3018 return 0;
3019}
3020
cf2e340f 3021/*
a016f338 3022 * Unshare file descriptor table if it is being shared
cf2e340f 3023 */
60997c3d
CB
3024int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3025 struct files_struct **new_fdp)
cf2e340f
JD
3026{
3027 struct files_struct *fd = current->files;
a016f338 3028 int error = 0;
cf2e340f
JD
3029
3030 if ((unshare_flags & CLONE_FILES) &&
a016f338 3031 (fd && atomic_read(&fd->count) > 1)) {
60997c3d 3032 *new_fdp = dup_fd(fd, max_fds, &error);
a016f338
JD
3033 if (!*new_fdp)
3034 return error;
3035 }
cf2e340f
JD
3036
3037 return 0;
3038}
3039
cf2e340f
JD
3040/*
3041 * unshare allows a process to 'unshare' part of the process
3042 * context which was originally shared using clone. copy_*
cad6967a 3043 * functions used by kernel_clone() cannot be used here directly
cf2e340f
JD
3044 * because they modify an inactive task_struct that is being
3045 * constructed. Here we are modifying the current, active,
3046 * task_struct.
3047 */
9b32105e 3048int ksys_unshare(unsigned long unshare_flags)
cf2e340f 3049{
cf2e340f 3050 struct fs_struct *fs, *new_fs = NULL;
cf2e340f 3051 struct files_struct *fd, *new_fd = NULL;
b2e0d987 3052 struct cred *new_cred = NULL;
cf7b708c 3053 struct nsproxy *new_nsproxy = NULL;
9edff4ab 3054 int do_sysvsem = 0;
9bfb23fc 3055 int err;
cf2e340f 3056
b2e0d987 3057 /*
faf00da5
EB
3058 * If unsharing a user namespace must also unshare the thread group
3059 * and unshare the filesystem root and working directories.
b2e0d987
EB
3060 */
3061 if (unshare_flags & CLONE_NEWUSER)
e66eded8 3062 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
3063 /*
3064 * If unsharing vm, must also unshare signal handlers.
3065 */
3066 if (unshare_flags & CLONE_VM)
3067 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
3068 /*
3069 * If unsharing a signal handlers, must also unshare the signal queues.
3070 */
3071 if (unshare_flags & CLONE_SIGHAND)
3072 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
3073 /*
3074 * If unsharing namespace, must also unshare filesystem information.
3075 */
3076 if (unshare_flags & CLONE_NEWNS)
3077 unshare_flags |= CLONE_FS;
50804fe3 3078
34227646
SH
3079 if ((unshare_flags & CLONE_NEWUSER) && !unprivileged_userns_clone) {
3080 err = -EPERM;
3081 if (!capable(CAP_SYS_ADMIN))
3082 goto bad_unshare_out;
3083 }
3084
50804fe3
EB
3085 err = check_unshare_flags(unshare_flags);
3086 if (err)
3087 goto bad_unshare_out;
6013f67f
MS
3088 /*
3089 * CLONE_NEWIPC must also detach from the undolist: after switching
3090 * to a new ipc namespace, the semaphore arrays from the old
3091 * namespace are unreachable.
3092 */
3093 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 3094 do_sysvsem = 1;
fb0a685c
DRO
3095 err = unshare_fs(unshare_flags, &new_fs);
3096 if (err)
9bfb23fc 3097 goto bad_unshare_out;
60997c3d 3098 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
fb0a685c 3099 if (err)
9bfb23fc 3100 goto bad_unshare_cleanup_fs;
b2e0d987 3101 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 3102 if (err)
9edff4ab 3103 goto bad_unshare_cleanup_fd;
b2e0d987
EB
3104 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3105 new_cred, new_fs);
3106 if (err)
3107 goto bad_unshare_cleanup_cred;
c0b2fc31 3108
905ae01c
AG
3109 if (new_cred) {
3110 err = set_cred_ucounts(new_cred);
3111 if (err)
3112 goto bad_unshare_cleanup_cred;
3113 }
3114
b2e0d987 3115 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
3116 if (do_sysvsem) {
3117 /*
3118 * CLONE_SYSVSEM is equivalent to sys_exit().
3119 */
3120 exit_sem(current);
3121 }
ab602f79
JM
3122 if (unshare_flags & CLONE_NEWIPC) {
3123 /* Orphan segments in old ns (see sem above). */
3124 exit_shm(current);
3125 shm_init_task(current);
3126 }
ab516013 3127
6f977e6b 3128 if (new_nsproxy)
cf7b708c 3129 switch_task_namespaces(current, new_nsproxy);
cf2e340f 3130
cf7b708c
PE
3131 task_lock(current);
3132
cf2e340f
JD
3133 if (new_fs) {
3134 fs = current->fs;
2a4419b5 3135 spin_lock(&fs->lock);
cf2e340f 3136 current->fs = new_fs;
498052bb
AV
3137 if (--fs->users)
3138 new_fs = NULL;
3139 else
3140 new_fs = fs;
2a4419b5 3141 spin_unlock(&fs->lock);
cf2e340f
JD
3142 }
3143
cf2e340f
JD
3144 if (new_fd) {
3145 fd = current->files;
3146 current->files = new_fd;
3147 new_fd = fd;
3148 }
3149
3150 task_unlock(current);
b2e0d987
EB
3151
3152 if (new_cred) {
3153 /* Install the new user namespace */
3154 commit_creds(new_cred);
3155 new_cred = NULL;
3156 }
cf2e340f
JD
3157 }
3158
e4222673
HB
3159 perf_event_namespaces(current);
3160
b2e0d987
EB
3161bad_unshare_cleanup_cred:
3162 if (new_cred)
3163 put_cred(new_cred);
cf2e340f
JD
3164bad_unshare_cleanup_fd:
3165 if (new_fd)
3166 put_files_struct(new_fd);
3167
cf2e340f
JD
3168bad_unshare_cleanup_fs:
3169 if (new_fs)
498052bb 3170 free_fs_struct(new_fs);
cf2e340f 3171
cf2e340f
JD
3172bad_unshare_out:
3173 return err;
3174}
3b125388 3175
9b32105e
DB
3176SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3177{
3178 return ksys_unshare(unshare_flags);
3179}
3180
3b125388
AV
3181/*
3182 * Helper to unshare the files of the current task.
3183 * We don't want to expose copy_files internals to
3184 * the exec layer of the kernel.
3185 */
3186
1f702603 3187int unshare_files(void)
3b125388
AV
3188{
3189 struct task_struct *task = current;
1f702603 3190 struct files_struct *old, *copy = NULL;
3b125388
AV
3191 int error;
3192
60997c3d 3193 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
1f702603 3194 if (error || !copy)
3b125388 3195 return error;
1f702603
EB
3196
3197 old = task->files;
3b125388
AV
3198 task_lock(task);
3199 task->files = copy;
3200 task_unlock(task);
1f702603 3201 put_files_struct(old);
3b125388
AV
3202 return 0;
3203}
16db3d3f
HS
3204
3205int sysctl_max_threads(struct ctl_table *table, int write,
b0daa2c7 3206 void *buffer, size_t *lenp, loff_t *ppos)
16db3d3f
HS
3207{
3208 struct ctl_table t;
3209 int ret;
3210 int threads = max_threads;
b0f53dbc 3211 int min = 1;
16db3d3f
HS
3212 int max = MAX_THREADS;
3213
3214 t = *table;
3215 t.data = &threads;
3216 t.extra1 = &min;
3217 t.extra2 = &max;
3218
3219 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3220 if (ret || !write)
3221 return ret;
3222
b0f53dbc 3223 max_threads = threads;
16db3d3f
HS
3224
3225 return 0;
3226}