]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/fork.c
bpf: cgroup: prevent out-of-order release of cgroup bpf
[mirror_ubuntu-eoan-kernel.git] / kernel / fork.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
b3e58382 15#include <linux/anon_inodes.h>
1da177e4 16#include <linux/slab.h>
4eb5aaa3 17#include <linux/sched/autogroup.h>
6e84f315 18#include <linux/sched/mm.h>
f7ccbae4 19#include <linux/sched/coredump.h>
8703e8a4 20#include <linux/sched/user.h>
6a3827d7 21#include <linux/sched/numa_balancing.h>
03441a34 22#include <linux/sched/stat.h>
29930025 23#include <linux/sched/task.h>
68db0cf1 24#include <linux/sched/task_stack.h>
32ef5517 25#include <linux/sched/cputime.h>
b3e58382 26#include <linux/seq_file.h>
037741a6 27#include <linux/rtmutex.h>
1da177e4
LT
28#include <linux/init.h>
29#include <linux/unistd.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
1da177e4
LT
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
9f3acc31 37#include <linux/fdtable.h>
da9cbc87 38#include <linux/iocontext.h>
1da177e4
LT
39#include <linux/key.h>
40#include <linux/binfmts.h>
41#include <linux/mman.h>
cddb8a5c 42#include <linux/mmu_notifier.h>
133ff0ea 43#include <linux/hmm.h>
1da177e4 44#include <linux/fs.h>
615d6e87
DB
45#include <linux/mm.h>
46#include <linux/vmacache.h>
ab516013 47#include <linux/nsproxy.h>
c59ede7b 48#include <linux/capability.h>
1da177e4 49#include <linux/cpu.h>
b4f48b63 50#include <linux/cgroup.h>
1da177e4 51#include <linux/security.h>
a1e78772 52#include <linux/hugetlb.h>
e2cfabdf 53#include <linux/seccomp.h>
1da177e4
LT
54#include <linux/swap.h>
55#include <linux/syscalls.h>
56#include <linux/jiffies.h>
57#include <linux/futex.h>
8141c7f3 58#include <linux/compat.h>
207205a2 59#include <linux/kthread.h>
7c3ab738 60#include <linux/task_io_accounting_ops.h>
ab2af1f5 61#include <linux/rcupdate.h>
1da177e4
LT
62#include <linux/ptrace.h>
63#include <linux/mount.h>
64#include <linux/audit.h>
78fb7466 65#include <linux/memcontrol.h>
f201ae23 66#include <linux/ftrace.h>
5e2bf014 67#include <linux/proc_fs.h>
1da177e4
LT
68#include <linux/profile.h>
69#include <linux/rmap.h>
f8af4da3 70#include <linux/ksm.h>
1da177e4 71#include <linux/acct.h>
893e26e6 72#include <linux/userfaultfd_k.h>
8f0ab514 73#include <linux/tsacct_kern.h>
9f46080c 74#include <linux/cn_proc.h>
ba96a0c8 75#include <linux/freezer.h>
ca74e92b 76#include <linux/delayacct.h>
ad4ecbcb 77#include <linux/taskstats_kern.h>
0a425405 78#include <linux/random.h>
522ed776 79#include <linux/tty.h>
fd0928df 80#include <linux/blkdev.h>
5ad4e53b 81#include <linux/fs_struct.h>
7c9f8861 82#include <linux/magic.h>
cdd6c482 83#include <linux/perf_event.h>
42c4ab41 84#include <linux/posix-timers.h>
8e7cac79 85#include <linux/user-return-notifier.h>
3d5992d2 86#include <linux/oom.h>
ba76149f 87#include <linux/khugepaged.h>
d80e731e 88#include <linux/signalfd.h>
0326f5a9 89#include <linux/uprobes.h>
a27bb332 90#include <linux/aio.h>
52f5684c 91#include <linux/compiler.h>
16db3d3f 92#include <linux/sysctl.h>
5c9a8750 93#include <linux/kcov.h>
d83a7cb3 94#include <linux/livepatch.h>
48ac3c18 95#include <linux/thread_info.h>
afaef01c 96#include <linux/stackleak.h>
1da177e4
LT
97
98#include <asm/pgtable.h>
99#include <asm/pgalloc.h>
7c0f6ba6 100#include <linux/uaccess.h>
1da177e4
LT
101#include <asm/mmu_context.h>
102#include <asm/cacheflush.h>
103#include <asm/tlbflush.h>
104
ad8d75ff
SR
105#include <trace/events/sched.h>
106
43d2b113
KH
107#define CREATE_TRACE_POINTS
108#include <trace/events/task.h>
2b612266
SH
109#ifdef CONFIG_USER_NS
110extern int unprivileged_userns_clone;
111#else
112#define unprivileged_userns_clone 0
113#endif
43d2b113 114
ac1b398d
HS
115/*
116 * Minimum number of threads to boot the kernel
117 */
118#define MIN_THREADS 20
119
120/*
121 * Maximum number of threads
122 */
123#define MAX_THREADS FUTEX_TID_MASK
124
1da177e4
LT
125/*
126 * Protected counters by write_lock_irq(&tasklist_lock)
127 */
128unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 129int nr_threads; /* The idle threads do not count.. */
1da177e4 130
8856ae4d 131static int max_threads; /* tunable limit on nr_threads */
1da177e4
LT
132
133DEFINE_PER_CPU(unsigned long, process_counts) = 0;
134
c59923a1 135__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
136
137#ifdef CONFIG_PROVE_RCU
138int lockdep_tasklist_lock_is_held(void)
139{
140 return lockdep_is_held(&tasklist_lock);
141}
142EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
143#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
144
145int nr_processes(void)
146{
147 int cpu;
148 int total = 0;
149
1d510750 150 for_each_possible_cpu(cpu)
1da177e4
LT
151 total += per_cpu(process_counts, cpu);
152
153 return total;
154}
155
f19b9f74
AM
156void __weak arch_release_task_struct(struct task_struct *tsk)
157{
158}
159
f5e10287 160#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
e18b890b 161static struct kmem_cache *task_struct_cachep;
41101809
TG
162
163static inline struct task_struct *alloc_task_struct_node(int node)
164{
165 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
166}
167
41101809
TG
168static inline void free_task_struct(struct task_struct *tsk)
169{
41101809
TG
170 kmem_cache_free(task_struct_cachep, tsk);
171}
1da177e4
LT
172#endif
173
b235beea 174#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
41101809 175
0d15d74a
TG
176/*
177 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
178 * kmemcache based allocator.
179 */
ba14a194 180# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4
AL
181
182#ifdef CONFIG_VMAP_STACK
183/*
184 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
185 * flush. Try to minimize the number of calls by caching stacks.
186 */
187#define NR_CACHED_STACKS 2
188static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59
HR
189
190static int free_vm_stack_cache(unsigned int cpu)
191{
192 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
193 int i;
194
195 for (i = 0; i < NR_CACHED_STACKS; i++) {
196 struct vm_struct *vm_stack = cached_vm_stacks[i];
197
198 if (!vm_stack)
199 continue;
200
201 vfree(vm_stack->addr);
202 cached_vm_stacks[i] = NULL;
203 }
204
205 return 0;
206}
ac496bf4
AL
207#endif
208
ba14a194 209static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 210{
ba14a194 211#ifdef CONFIG_VMAP_STACK
ac496bf4
AL
212 void *stack;
213 int i;
214
ac496bf4 215 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
216 struct vm_struct *s;
217
218 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
219
220 if (!s)
221 continue;
ac496bf4 222
ca182551
KK
223 /* Clear stale pointers from reused stack. */
224 memset(s->addr, 0, THREAD_SIZE);
e01e8063 225
ac496bf4 226 tsk->stack_vm_area = s;
ba4a4574 227 tsk->stack = s->addr;
ac496bf4
AL
228 return s->addr;
229 }
ac496bf4 230
9b6f7e16
RG
231 /*
232 * Allocated stacks are cached and later reused by new threads,
233 * so memcg accounting is performed manually on assigning/releasing
234 * stacks to tasks. Drop __GFP_ACCOUNT.
235 */
48ac3c18 236 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
ac496bf4 237 VMALLOC_START, VMALLOC_END,
9b6f7e16 238 THREADINFO_GFP & ~__GFP_ACCOUNT,
ac496bf4
AL
239 PAGE_KERNEL,
240 0, node, __builtin_return_address(0));
ba14a194
AL
241
242 /*
243 * We can't call find_vm_area() in interrupt context, and
244 * free_thread_stack() can be called in interrupt context,
245 * so cache the vm_struct.
246 */
5eed6f1d 247 if (stack) {
ba14a194 248 tsk->stack_vm_area = find_vm_area(stack);
5eed6f1d
RR
249 tsk->stack = stack;
250 }
ba14a194
AL
251 return stack;
252#else
4949148a
VD
253 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
254 THREAD_SIZE_ORDER);
b6a84016 255
1bf4580e
AA
256 if (likely(page)) {
257 tsk->stack = page_address(page);
258 return tsk->stack;
259 }
260 return NULL;
ba14a194 261#endif
b69c49b7
FT
262}
263
ba14a194 264static inline void free_thread_stack(struct task_struct *tsk)
b69c49b7 265{
ac496bf4 266#ifdef CONFIG_VMAP_STACK
9b6f7e16
RG
267 struct vm_struct *vm = task_stack_vm_area(tsk);
268
269 if (vm) {
ac496bf4
AL
270 int i;
271
9b6f7e16
RG
272 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
273 mod_memcg_page_state(vm->pages[i],
274 MEMCG_KERNEL_STACK_KB,
275 -(int)(PAGE_SIZE / 1024));
276
277 memcg_kmem_uncharge(vm->pages[i], 0);
278 }
279
ac496bf4 280 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
281 if (this_cpu_cmpxchg(cached_stacks[i],
282 NULL, tsk->stack_vm_area) != NULL)
ac496bf4
AL
283 continue;
284
ac496bf4
AL
285 return;
286 }
ac496bf4 287
0f110a9b 288 vfree_atomic(tsk->stack);
ac496bf4
AL
289 return;
290 }
291#endif
292
293 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
b69c49b7 294}
0d15d74a 295# else
b235beea 296static struct kmem_cache *thread_stack_cache;
0d15d74a 297
9521d399 298static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
0d15d74a
TG
299 int node)
300{
5eed6f1d
RR
301 unsigned long *stack;
302 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
303 tsk->stack = stack;
304 return stack;
0d15d74a
TG
305}
306
ba14a194 307static void free_thread_stack(struct task_struct *tsk)
0d15d74a 308{
ba14a194 309 kmem_cache_free(thread_stack_cache, tsk->stack);
0d15d74a
TG
310}
311
b235beea 312void thread_stack_cache_init(void)
0d15d74a 313{
f9d29946
DW
314 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
315 THREAD_SIZE, THREAD_SIZE, 0, 0,
316 THREAD_SIZE, NULL);
b235beea 317 BUG_ON(thread_stack_cache == NULL);
0d15d74a
TG
318}
319# endif
b69c49b7
FT
320#endif
321
1da177e4 322/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 323static struct kmem_cache *signal_cachep;
1da177e4
LT
324
325/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 326struct kmem_cache *sighand_cachep;
1da177e4
LT
327
328/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 329struct kmem_cache *files_cachep;
1da177e4
LT
330
331/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 332struct kmem_cache *fs_cachep;
1da177e4
LT
333
334/* SLAB cache for vm_area_struct structures */
3928d4f5 335static struct kmem_cache *vm_area_cachep;
1da177e4
LT
336
337/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 338static struct kmem_cache *mm_cachep;
1da177e4 339
490fc053 340struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
3928d4f5 341{
a670468f 342 struct vm_area_struct *vma;
490fc053 343
a670468f 344 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
027232da
KS
345 if (vma)
346 vma_init(vma, mm);
490fc053 347 return vma;
3928d4f5
LT
348}
349
350struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
351{
95faf699
LT
352 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
353
354 if (new) {
355 *new = *orig;
356 INIT_LIST_HEAD(&new->anon_vma_chain);
357 }
358 return new;
3928d4f5
LT
359}
360
361void vm_area_free(struct vm_area_struct *vma)
362{
363 kmem_cache_free(vm_area_cachep, vma);
364}
365
ba14a194 366static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 367{
ba14a194
AL
368 void *stack = task_stack_page(tsk);
369 struct vm_struct *vm = task_stack_vm_area(tsk);
370
371 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
372
373 if (vm) {
374 int i;
375
376 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
377
378 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
379 mod_zone_page_state(page_zone(vm->pages[i]),
380 NR_KERNEL_STACK_KB,
381 PAGE_SIZE / 1024 * account);
382 }
ba14a194
AL
383 } else {
384 /*
385 * All stack pages are in the same zone and belong to the
386 * same memcg.
387 */
388 struct page *first_page = virt_to_page(stack);
389
390 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
391 THREAD_SIZE / 1024 * account);
392
ed52be7b
JW
393 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
394 account * (THREAD_SIZE / 1024));
ba14a194 395 }
c6a7f572
KM
396}
397
9b6f7e16
RG
398static int memcg_charge_kernel_stack(struct task_struct *tsk)
399{
400#ifdef CONFIG_VMAP_STACK
401 struct vm_struct *vm = task_stack_vm_area(tsk);
402 int ret;
403
404 if (vm) {
405 int i;
406
407 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
408 /*
409 * If memcg_kmem_charge() fails, page->mem_cgroup
410 * pointer is NULL, and both memcg_kmem_uncharge()
411 * and mod_memcg_page_state() in free_thread_stack()
412 * will ignore this page. So it's safe.
413 */
414 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
415 if (ret)
416 return ret;
417
418 mod_memcg_page_state(vm->pages[i],
419 MEMCG_KERNEL_STACK_KB,
420 PAGE_SIZE / 1024);
421 }
422 }
423#endif
424 return 0;
425}
426
68f24b08 427static void release_task_stack(struct task_struct *tsk)
1da177e4 428{
405c0759
AL
429 if (WARN_ON(tsk->state != TASK_DEAD))
430 return; /* Better to leak the stack than to free prematurely */
431
ba14a194 432 account_kernel_stack(tsk, -1);
ba14a194 433 free_thread_stack(tsk);
68f24b08
AL
434 tsk->stack = NULL;
435#ifdef CONFIG_VMAP_STACK
436 tsk->stack_vm_area = NULL;
437#endif
438}
439
440#ifdef CONFIG_THREAD_INFO_IN_TASK
441void put_task_stack(struct task_struct *tsk)
442{
f0b89d39 443 if (refcount_dec_and_test(&tsk->stack_refcount))
68f24b08
AL
444 release_task_stack(tsk);
445}
446#endif
447
448void free_task(struct task_struct *tsk)
449{
450#ifndef CONFIG_THREAD_INFO_IN_TASK
451 /*
452 * The task is finally done with both the stack and thread_info,
453 * so free both.
454 */
455 release_task_stack(tsk);
456#else
457 /*
458 * If the task had a separate stack allocation, it should be gone
459 * by now.
460 */
f0b89d39 461 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
68f24b08 462#endif
23f78d4a 463 rt_mutex_debug_task_free(tsk);
fb52607a 464 ftrace_graph_exit_task(tsk);
e2cfabdf 465 put_seccomp_filter(tsk);
f19b9f74 466 arch_release_task_struct(tsk);
1da5c46f
ON
467 if (tsk->flags & PF_KTHREAD)
468 free_kthread_struct(tsk);
1da177e4
LT
469 free_task_struct(tsk);
470}
471EXPORT_SYMBOL(free_task);
472
d70f2a14
AM
473#ifdef CONFIG_MMU
474static __latent_entropy int dup_mmap(struct mm_struct *mm,
475 struct mm_struct *oldmm)
476{
477 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
478 struct rb_node **rb_link, *rb_parent;
479 int retval;
480 unsigned long charge;
481 LIST_HEAD(uf);
482
483 uprobe_start_dup_mmap();
484 if (down_write_killable(&oldmm->mmap_sem)) {
485 retval = -EINTR;
486 goto fail_uprobe_end;
487 }
488 flush_cache_dup_mm(oldmm);
489 uprobe_dup_mmap(oldmm, mm);
490 /*
491 * Not linked in yet - no deadlock potential:
492 */
493 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
494
495 /* No ordering required: file already has been exposed. */
496 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
497
498 mm->total_vm = oldmm->total_vm;
499 mm->data_vm = oldmm->data_vm;
500 mm->exec_vm = oldmm->exec_vm;
501 mm->stack_vm = oldmm->stack_vm;
502
503 rb_link = &mm->mm_rb.rb_node;
504 rb_parent = NULL;
505 pprev = &mm->mmap;
506 retval = ksm_fork(mm, oldmm);
507 if (retval)
508 goto out;
509 retval = khugepaged_fork(mm, oldmm);
510 if (retval)
511 goto out;
512
513 prev = NULL;
514 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
515 struct file *file;
516
517 if (mpnt->vm_flags & VM_DONTCOPY) {
518 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
519 continue;
520 }
521 charge = 0;
655c79bb
TH
522 /*
523 * Don't duplicate many vmas if we've been oom-killed (for
524 * example)
525 */
526 if (fatal_signal_pending(current)) {
527 retval = -EINTR;
528 goto out;
529 }
d70f2a14
AM
530 if (mpnt->vm_flags & VM_ACCOUNT) {
531 unsigned long len = vma_pages(mpnt);
532
533 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
534 goto fail_nomem;
535 charge = len;
536 }
3928d4f5 537 tmp = vm_area_dup(mpnt);
d70f2a14
AM
538 if (!tmp)
539 goto fail_nomem;
d70f2a14
AM
540 retval = vma_dup_policy(mpnt, tmp);
541 if (retval)
542 goto fail_nomem_policy;
543 tmp->vm_mm = mm;
544 retval = dup_userfaultfd(tmp, &uf);
545 if (retval)
546 goto fail_nomem_anon_vma_fork;
547 if (tmp->vm_flags & VM_WIPEONFORK) {
548 /* VM_WIPEONFORK gets a clean slate in the child. */
549 tmp->anon_vma = NULL;
550 if (anon_vma_prepare(tmp))
551 goto fail_nomem_anon_vma_fork;
552 } else if (anon_vma_fork(tmp, mpnt))
553 goto fail_nomem_anon_vma_fork;
554 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
555 tmp->vm_next = tmp->vm_prev = NULL;
556 file = tmp->vm_file;
557 if (file) {
558 struct inode *inode = file_inode(file);
559 struct address_space *mapping = file->f_mapping;
560
8994cce9 561 vma_get_file(tmp);
d70f2a14
AM
562 if (tmp->vm_flags & VM_DENYWRITE)
563 atomic_dec(&inode->i_writecount);
564 i_mmap_lock_write(mapping);
565 if (tmp->vm_flags & VM_SHARED)
566 atomic_inc(&mapping->i_mmap_writable);
567 flush_dcache_mmap_lock(mapping);
568 /* insert tmp into the share list, just after mpnt */
569 vma_interval_tree_insert_after(tmp, mpnt,
570 &mapping->i_mmap);
571 flush_dcache_mmap_unlock(mapping);
572 i_mmap_unlock_write(mapping);
573 }
574
575 /*
576 * Clear hugetlb-related page reserves for children. This only
577 * affects MAP_PRIVATE mappings. Faults generated by the child
578 * are not guaranteed to succeed, even if read-only
579 */
580 if (is_vm_hugetlb_page(tmp))
581 reset_vma_resv_huge_pages(tmp);
582
583 /*
584 * Link in the new vma and copy the page table entries.
585 */
586 *pprev = tmp;
587 pprev = &tmp->vm_next;
588 tmp->vm_prev = prev;
589 prev = tmp;
590
591 __vma_link_rb(mm, tmp, rb_link, rb_parent);
592 rb_link = &tmp->vm_rb.rb_right;
593 rb_parent = &tmp->vm_rb;
594
595 mm->map_count++;
596 if (!(tmp->vm_flags & VM_WIPEONFORK))
597 retval = copy_page_range(mm, oldmm, mpnt);
598
599 if (tmp->vm_ops && tmp->vm_ops->open)
600 tmp->vm_ops->open(tmp);
601
602 if (retval)
603 goto out;
604 }
605 /* a new mm has just been created */
1ed0cc5a 606 retval = arch_dup_mmap(oldmm, mm);
d70f2a14
AM
607out:
608 up_write(&mm->mmap_sem);
609 flush_tlb_mm(oldmm);
610 up_write(&oldmm->mmap_sem);
611 dup_userfaultfd_complete(&uf);
612fail_uprobe_end:
613 uprobe_end_dup_mmap();
614 return retval;
615fail_nomem_anon_vma_fork:
616 mpol_put(vma_policy(tmp));
617fail_nomem_policy:
3928d4f5 618 vm_area_free(tmp);
d70f2a14
AM
619fail_nomem:
620 retval = -ENOMEM;
621 vm_unacct_memory(charge);
622 goto out;
623}
624
625static inline int mm_alloc_pgd(struct mm_struct *mm)
626{
627 mm->pgd = pgd_alloc(mm);
628 if (unlikely(!mm->pgd))
629 return -ENOMEM;
630 return 0;
631}
632
633static inline void mm_free_pgd(struct mm_struct *mm)
634{
635 pgd_free(mm, mm->pgd);
636}
637#else
638static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
639{
640 down_write(&oldmm->mmap_sem);
641 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
642 up_write(&oldmm->mmap_sem);
643 return 0;
644}
645#define mm_alloc_pgd(mm) (0)
646#define mm_free_pgd(mm)
647#endif /* CONFIG_MMU */
648
649static void check_mm(struct mm_struct *mm)
650{
651 int i;
652
653 for (i = 0; i < NR_MM_COUNTERS; i++) {
654 long x = atomic_long_read(&mm->rss_stat.count[i]);
655
656 if (unlikely(x))
657 printk(KERN_ALERT "BUG: Bad rss-counter state "
658 "mm:%p idx:%d val:%ld\n", mm, i, x);
659 }
660
661 if (mm_pgtables_bytes(mm))
662 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
663 mm_pgtables_bytes(mm));
664
665#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
666 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
667#endif
668}
669
670#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
671#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
672
673/*
674 * Called when the last reference to the mm
675 * is dropped: either by a lazy thread or by
676 * mmput. Free the page directory and the mm.
677 */
d34bc48f 678void __mmdrop(struct mm_struct *mm)
d70f2a14
AM
679{
680 BUG_ON(mm == &init_mm);
3eda69c9
MR
681 WARN_ON_ONCE(mm == current->mm);
682 WARN_ON_ONCE(mm == current->active_mm);
d70f2a14
AM
683 mm_free_pgd(mm);
684 destroy_context(mm);
d70f2a14
AM
685 mmu_notifier_mm_destroy(mm);
686 check_mm(mm);
687 put_user_ns(mm->user_ns);
688 free_mm(mm);
689}
d34bc48f 690EXPORT_SYMBOL_GPL(__mmdrop);
d70f2a14
AM
691
692static void mmdrop_async_fn(struct work_struct *work)
693{
694 struct mm_struct *mm;
695
696 mm = container_of(work, struct mm_struct, async_put_work);
697 __mmdrop(mm);
698}
699
700static void mmdrop_async(struct mm_struct *mm)
701{
702 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
703 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
704 schedule_work(&mm->async_put_work);
705 }
706}
707
ea6d290c
ON
708static inline void free_signal_struct(struct signal_struct *sig)
709{
97101eb4 710 taskstats_tgid_free(sig);
1c5354de 711 sched_autogroup_exit(sig);
7283094e
MH
712 /*
713 * __mmdrop is not safe to call from softirq context on x86 due to
714 * pgd_dtor so postpone it to the async context
715 */
26db62f1 716 if (sig->oom_mm)
7283094e 717 mmdrop_async(sig->oom_mm);
ea6d290c
ON
718 kmem_cache_free(signal_cachep, sig);
719}
720
721static inline void put_signal_struct(struct signal_struct *sig)
722{
60d4de3f 723 if (refcount_dec_and_test(&sig->sigcnt))
ea6d290c
ON
724 free_signal_struct(sig);
725}
726
158d9ebd 727void __put_task_struct(struct task_struct *tsk)
1da177e4 728{
270f722d 729 WARN_ON(!tsk->exit_state);
ec1d2819 730 WARN_ON(refcount_read(&tsk->usage));
1da177e4
LT
731 WARN_ON(tsk == current);
732
2e91fa7f 733 cgroup_free(tsk);
16d51a59 734 task_numa_free(tsk, true);
1a2a4d06 735 security_task_free(tsk);
e0e81739 736 exit_creds(tsk);
35df17c5 737 delayacct_tsk_free(tsk);
ea6d290c 738 put_signal_struct(tsk->signal);
1da177e4
LT
739
740 if (!profile_handoff_task(tsk))
741 free_task(tsk);
742}
77c100c8 743EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 744
6c0a9fa6 745void __init __weak arch_task_cache_init(void) { }
61c4628b 746
ff691f6e
HS
747/*
748 * set_max_threads
749 */
16db3d3f 750static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 751{
ac1b398d 752 u64 threads;
ca79b0c2 753 unsigned long nr_pages = totalram_pages();
ff691f6e
HS
754
755 /*
ac1b398d
HS
756 * The number of threads shall be limited such that the thread
757 * structures may only consume a small part of the available memory.
ff691f6e 758 */
3d6357de 759 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
ac1b398d
HS
760 threads = MAX_THREADS;
761 else
3d6357de 762 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
ac1b398d
HS
763 (u64) THREAD_SIZE * 8UL);
764
16db3d3f
HS
765 if (threads > max_threads_suggested)
766 threads = max_threads_suggested;
767
ac1b398d 768 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
769}
770
5aaeb5c0
IM
771#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
772/* Initialized by the architecture: */
773int arch_task_struct_size __read_mostly;
774#endif
0c8c0f03 775
5905429a
KC
776static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
777{
778 /* Fetch thread_struct whitelist for the architecture. */
779 arch_thread_struct_whitelist(offset, size);
780
781 /*
782 * Handle zero-sized whitelist or empty thread_struct, otherwise
783 * adjust offset to position of thread_struct in task_struct.
784 */
785 if (unlikely(*size == 0))
786 *offset = 0;
787 else
788 *offset += offsetof(struct task_struct, thread);
789}
790
ff691f6e 791void __init fork_init(void)
1da177e4 792{
25f9c081 793 int i;
f5e10287 794#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1da177e4 795#ifndef ARCH_MIN_TASKALIGN
e274795e 796#define ARCH_MIN_TASKALIGN 0
1da177e4 797#endif
95cb64c1 798 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
5905429a 799 unsigned long useroffset, usersize;
e274795e 800
1da177e4 801 /* create a slab on which task_structs can be allocated */
5905429a
KC
802 task_struct_whitelist(&useroffset, &usersize);
803 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
e274795e 804 arch_task_struct_size, align,
5905429a
KC
805 SLAB_PANIC|SLAB_ACCOUNT,
806 useroffset, usersize, NULL);
1da177e4
LT
807#endif
808
61c4628b
SS
809 /* do the arch specific task caches init */
810 arch_task_cache_init();
811
16db3d3f 812 set_max_threads(MAX_THREADS);
1da177e4
LT
813
814 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
815 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
816 init_task.signal->rlim[RLIMIT_SIGPENDING] =
817 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 818
25f9c081
EB
819 for (i = 0; i < UCOUNT_COUNTS; i++) {
820 init_user_ns.ucount_max[i] = max_threads/2;
821 }
19659c59
HR
822
823#ifdef CONFIG_VMAP_STACK
824 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
825 NULL, free_vm_stack_cache);
826#endif
b09be676
BP
827
828 lockdep_init_task(&init_task);
aad42dd4 829 uprobes_init();
1da177e4
LT
830}
831
52f5684c 832int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
833 struct task_struct *src)
834{
835 *dst = *src;
836 return 0;
837}
838
d4311ff1
AT
839void set_task_stack_end_magic(struct task_struct *tsk)
840{
841 unsigned long *stackend;
842
843 stackend = end_of_stack(tsk);
844 *stackend = STACK_END_MAGIC; /* for overflow detection */
845}
846
725fc629 847static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
848{
849 struct task_struct *tsk;
b235beea 850 unsigned long *stack;
0f4991e8 851 struct vm_struct *stack_vm_area __maybe_unused;
3e26c149 852 int err;
1da177e4 853
725fc629
AK
854 if (node == NUMA_NO_NODE)
855 node = tsk_fork_get_node(orig);
504f52b5 856 tsk = alloc_task_struct_node(node);
1da177e4
LT
857 if (!tsk)
858 return NULL;
859
b235beea
LT
860 stack = alloc_thread_stack_node(tsk, node);
861 if (!stack)
f19b9f74 862 goto free_tsk;
1da177e4 863
9b6f7e16
RG
864 if (memcg_charge_kernel_stack(tsk))
865 goto free_stack;
866
ba14a194
AL
867 stack_vm_area = task_stack_vm_area(tsk);
868
fb0a685c 869 err = arch_dup_task_struct(tsk, orig);
ba14a194
AL
870
871 /*
872 * arch_dup_task_struct() clobbers the stack-related fields. Make
873 * sure they're properly initialized before using any stack-related
874 * functions again.
875 */
876 tsk->stack = stack;
877#ifdef CONFIG_VMAP_STACK
878 tsk->stack_vm_area = stack_vm_area;
879#endif
68f24b08 880#ifdef CONFIG_THREAD_INFO_IN_TASK
f0b89d39 881 refcount_set(&tsk->stack_refcount, 1);
68f24b08 882#endif
ba14a194 883
164c33c6 884 if (err)
b235beea 885 goto free_stack;
164c33c6 886
dbd95212
KC
887#ifdef CONFIG_SECCOMP
888 /*
889 * We must handle setting up seccomp filters once we're under
890 * the sighand lock in case orig has changed between now and
891 * then. Until then, filter must be NULL to avoid messing up
892 * the usage counts on the error path calling free_task.
893 */
894 tsk->seccomp.filter = NULL;
895#endif
87bec58a
AM
896
897 setup_thread_stack(tsk, orig);
8e7cac79 898 clear_user_return_notifier(tsk);
f26f9aff 899 clear_tsk_need_resched(tsk);
d4311ff1 900 set_task_stack_end_magic(tsk);
1da177e4 901
050e9baa 902#ifdef CONFIG_STACKPROTECTOR
7cd815bc 903 tsk->stack_canary = get_random_canary();
0a425405 904#endif
3bd37062
SAS
905 if (orig->cpus_ptr == &orig->cpus_mask)
906 tsk->cpus_ptr = &tsk->cpus_mask;
0a425405 907
fb0a685c
DRO
908 /*
909 * One for us, one for whoever does the "release_task()" (usually
910 * parent)
911 */
ec1d2819 912 refcount_set(&tsk->usage, 2);
6c5c9341 913#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 914 tsk->btrace_seq = 0;
6c5c9341 915#endif
a0aa7f68 916 tsk->splice_pipe = NULL;
5640f768 917 tsk->task_frag.page = NULL;
093e5840 918 tsk->wake_q.next = NULL;
c6a7f572 919
ba14a194 920 account_kernel_stack(tsk, 1);
c6a7f572 921
5c9a8750
DV
922 kcov_task_init(tsk);
923
e41d5818
DV
924#ifdef CONFIG_FAULT_INJECTION
925 tsk->fail_nth = 0;
926#endif
927
2c323017
JB
928#ifdef CONFIG_BLK_CGROUP
929 tsk->throttle_queue = NULL;
930 tsk->use_memdelay = 0;
931#endif
932
d46eb14b
SB
933#ifdef CONFIG_MEMCG
934 tsk->active_memcg = NULL;
935#endif
1da177e4 936 return tsk;
61c4628b 937
b235beea 938free_stack:
ba14a194 939 free_thread_stack(tsk);
f19b9f74 940free_tsk:
61c4628b
SS
941 free_task_struct(tsk);
942 return NULL;
1da177e4
LT
943}
944
23ff4440 945__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 946
4cb0e11b
HK
947static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
948
949static int __init coredump_filter_setup(char *s)
950{
951 default_dump_filter =
952 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
953 MMF_DUMP_FILTER_MASK;
954 return 1;
955}
956
957__setup("coredump_filter=", coredump_filter_setup);
958
1da177e4
LT
959#include <linux/init_task.h>
960
858f0993
AD
961static void mm_init_aio(struct mm_struct *mm)
962{
963#ifdef CONFIG_AIO
964 spin_lock_init(&mm->ioctx_lock);
db446a08 965 mm->ioctx_table = NULL;
858f0993
AD
966#endif
967}
968
c3f3ce04
AA
969static __always_inline void mm_clear_owner(struct mm_struct *mm,
970 struct task_struct *p)
971{
972#ifdef CONFIG_MEMCG
973 if (mm->owner == p)
974 WRITE_ONCE(mm->owner, NULL);
975#endif
976}
977
33144e84
VD
978static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
979{
980#ifdef CONFIG_MEMCG
981 mm->owner = p;
982#endif
983}
984
355627f5
EB
985static void mm_init_uprobes_state(struct mm_struct *mm)
986{
987#ifdef CONFIG_UPROBES
988 mm->uprobes_state.xol_area = NULL;
989#endif
990}
991
bfedb589
EB
992static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
993 struct user_namespace *user_ns)
1da177e4 994{
41f727fd
VD
995 mm->mmap = NULL;
996 mm->mm_rb = RB_ROOT;
997 mm->vmacache_seqnum = 0;
1da177e4
LT
998 atomic_set(&mm->mm_users, 1);
999 atomic_set(&mm->mm_count, 1);
1000 init_rwsem(&mm->mmap_sem);
1001 INIT_LIST_HEAD(&mm->mmlist);
999d9fc1 1002 mm->core_state = NULL;
af5b0f6a 1003 mm_pgtables_bytes_init(mm);
41f727fd
VD
1004 mm->map_count = 0;
1005 mm->locked_vm = 0;
70f8a3ca 1006 atomic64_set(&mm->pinned_vm, 0);
d559db08 1007 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 1008 spin_lock_init(&mm->page_table_lock);
88aa7cc6 1009 spin_lock_init(&mm->arg_lock);
41f727fd 1010 mm_init_cpumask(mm);
858f0993 1011 mm_init_aio(mm);
cf475ad2 1012 mm_init_owner(mm, p);
2b7e8665 1013 RCU_INIT_POINTER(mm->exe_file, NULL);
41f727fd 1014 mmu_notifier_mm_init(mm);
133ff0ea 1015 hmm_mm_init(mm);
16af97dc 1016 init_tlb_flush_pending(mm);
41f727fd
VD
1017#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1018 mm->pmd_huge_pte = NULL;
1019#endif
355627f5 1020 mm_init_uprobes_state(mm);
1da177e4 1021
a0715cc2
AT
1022 if (current->mm) {
1023 mm->flags = current->mm->flags & MMF_INIT_MASK;
1024 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1025 } else {
1026 mm->flags = default_dump_filter;
1da177e4 1027 mm->def_flags = 0;
a0715cc2
AT
1028 }
1029
41f727fd
VD
1030 if (mm_alloc_pgd(mm))
1031 goto fail_nopgd;
1032
1033 if (init_new_context(p, mm))
1034 goto fail_nocontext;
78fb7466 1035
bfedb589 1036 mm->user_ns = get_user_ns(user_ns);
41f727fd
VD
1037 return mm;
1038
1039fail_nocontext:
1040 mm_free_pgd(mm);
1041fail_nopgd:
1da177e4
LT
1042 free_mm(mm);
1043 return NULL;
1044}
1045
1046/*
1047 * Allocate and initialize an mm_struct.
1048 */
fb0a685c 1049struct mm_struct *mm_alloc(void)
1da177e4 1050{
fb0a685c 1051 struct mm_struct *mm;
1da177e4
LT
1052
1053 mm = allocate_mm();
de03c72c
KM
1054 if (!mm)
1055 return NULL;
1056
1057 memset(mm, 0, sizeof(*mm));
bfedb589 1058 return mm_init(mm, current, current_user_ns());
1da177e4
LT
1059}
1060
ec8d7c14
MH
1061static inline void __mmput(struct mm_struct *mm)
1062{
1063 VM_BUG_ON(atomic_read(&mm->mm_users));
1064
1065 uprobe_clear_state(mm);
1066 exit_aio(mm);
1067 ksm_exit(mm);
1068 khugepaged_exit(mm); /* must run before exit_mmap */
1069 exit_mmap(mm);
6fcb52a5 1070 mm_put_huge_zero_page(mm);
ec8d7c14
MH
1071 set_mm_exe_file(mm, NULL);
1072 if (!list_empty(&mm->mmlist)) {
1073 spin_lock(&mmlist_lock);
1074 list_del(&mm->mmlist);
1075 spin_unlock(&mmlist_lock);
1076 }
1077 if (mm->binfmt)
1078 module_put(mm->binfmt->module);
1079 mmdrop(mm);
1080}
1081
1da177e4
LT
1082/*
1083 * Decrement the use count and release all resources for an mm.
1084 */
1085void mmput(struct mm_struct *mm)
1086{
0ae26f1b
AM
1087 might_sleep();
1088
ec8d7c14
MH
1089 if (atomic_dec_and_test(&mm->mm_users))
1090 __mmput(mm);
1091}
1092EXPORT_SYMBOL_GPL(mmput);
1093
a1b2289c
SY
1094#ifdef CONFIG_MMU
1095static void mmput_async_fn(struct work_struct *work)
1096{
1097 struct mm_struct *mm = container_of(work, struct mm_struct,
1098 async_put_work);
1099
1100 __mmput(mm);
1101}
1102
1103void mmput_async(struct mm_struct *mm)
1104{
1105 if (atomic_dec_and_test(&mm->mm_users)) {
1106 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1107 schedule_work(&mm->async_put_work);
1108 }
1109}
1de76885 1110EXPORT_SYMBOL(mmput_async);
a1b2289c
SY
1111#endif
1112
90f31d0e
KK
1113/**
1114 * set_mm_exe_file - change a reference to the mm's executable file
1115 *
1116 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1117 *
6e399cd1
DB
1118 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1119 * invocations: in mmput() nobody alive left, in execve task is single
1120 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1121 * mm->exe_file, but does so without using set_mm_exe_file() in order
1122 * to do avoid the need for any locks.
90f31d0e 1123 */
38646013
JS
1124void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1125{
6e399cd1
DB
1126 struct file *old_exe_file;
1127
1128 /*
1129 * It is safe to dereference the exe_file without RCU as
1130 * this function is only called if nobody else can access
1131 * this mm -- see comment above for justification.
1132 */
1133 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 1134
38646013
JS
1135 if (new_exe_file)
1136 get_file(new_exe_file);
90f31d0e
KK
1137 rcu_assign_pointer(mm->exe_file, new_exe_file);
1138 if (old_exe_file)
1139 fput(old_exe_file);
38646013
JS
1140}
1141
90f31d0e
KK
1142/**
1143 * get_mm_exe_file - acquire a reference to the mm's executable file
1144 *
1145 * Returns %NULL if mm has no associated executable file.
1146 * User must release file via fput().
1147 */
38646013
JS
1148struct file *get_mm_exe_file(struct mm_struct *mm)
1149{
1150 struct file *exe_file;
1151
90f31d0e
KK
1152 rcu_read_lock();
1153 exe_file = rcu_dereference(mm->exe_file);
1154 if (exe_file && !get_file_rcu(exe_file))
1155 exe_file = NULL;
1156 rcu_read_unlock();
38646013
JS
1157 return exe_file;
1158}
11163348 1159EXPORT_SYMBOL(get_mm_exe_file);
38646013 1160
cd81a917
MG
1161/**
1162 * get_task_exe_file - acquire a reference to the task's executable file
1163 *
1164 * Returns %NULL if task's mm (if any) has no associated executable file or
1165 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1166 * User must release file via fput().
1167 */
1168struct file *get_task_exe_file(struct task_struct *task)
1169{
1170 struct file *exe_file = NULL;
1171 struct mm_struct *mm;
1172
1173 task_lock(task);
1174 mm = task->mm;
1175 if (mm) {
1176 if (!(task->flags & PF_KTHREAD))
1177 exe_file = get_mm_exe_file(mm);
1178 }
1179 task_unlock(task);
1180 return exe_file;
1181}
1182EXPORT_SYMBOL(get_task_exe_file);
38646013 1183
1da177e4
LT
1184/**
1185 * get_task_mm - acquire a reference to the task's mm
1186 *
246bb0b1 1187 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1188 * this kernel workthread has transiently adopted a user mm with use_mm,
1189 * to do its AIO) is not set and if so returns a reference to it, after
1190 * bumping up the use count. User must release the mm via mmput()
1191 * after use. Typically used by /proc and ptrace.
1192 */
1193struct mm_struct *get_task_mm(struct task_struct *task)
1194{
1195 struct mm_struct *mm;
1196
1197 task_lock(task);
1198 mm = task->mm;
1199 if (mm) {
246bb0b1 1200 if (task->flags & PF_KTHREAD)
1da177e4
LT
1201 mm = NULL;
1202 else
3fce371b 1203 mmget(mm);
1da177e4
LT
1204 }
1205 task_unlock(task);
1206 return mm;
1207}
1208EXPORT_SYMBOL_GPL(get_task_mm);
1209
8cdb878d
CY
1210struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1211{
1212 struct mm_struct *mm;
1213 int err;
1214
1215 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1216 if (err)
1217 return ERR_PTR(err);
1218
1219 mm = get_task_mm(task);
1220 if (mm && mm != current->mm &&
1221 !ptrace_may_access(task, mode)) {
1222 mmput(mm);
1223 mm = ERR_PTR(-EACCES);
1224 }
1225 mutex_unlock(&task->signal->cred_guard_mutex);
1226
1227 return mm;
1228}
1229
57b59c4a 1230static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1231{
d68b46fe 1232 struct completion *vfork;
c415c3b4 1233
d68b46fe
ON
1234 task_lock(tsk);
1235 vfork = tsk->vfork_done;
1236 if (likely(vfork)) {
1237 tsk->vfork_done = NULL;
1238 complete(vfork);
1239 }
1240 task_unlock(tsk);
1241}
1242
1243static int wait_for_vfork_done(struct task_struct *child,
1244 struct completion *vfork)
1245{
1246 int killed;
1247
1248 freezer_do_not_count();
76f969e8 1249 cgroup_enter_frozen();
d68b46fe 1250 killed = wait_for_completion_killable(vfork);
76f969e8 1251 cgroup_leave_frozen(false);
d68b46fe
ON
1252 freezer_count();
1253
1254 if (killed) {
1255 task_lock(child);
1256 child->vfork_done = NULL;
1257 task_unlock(child);
1258 }
1259
1260 put_task_struct(child);
1261 return killed;
c415c3b4
ON
1262}
1263
1da177e4
LT
1264/* Please note the differences between mmput and mm_release.
1265 * mmput is called whenever we stop holding onto a mm_struct,
1266 * error success whatever.
1267 *
1268 * mm_release is called after a mm_struct has been removed
1269 * from the current process.
1270 *
1271 * This difference is important for error handling, when we
1272 * only half set up a mm_struct for a new process and need to restore
1273 * the old one. Because we mmput the new mm_struct before
1274 * restoring the old one. . .
1275 * Eric Biederman 10 January 1998
1276 */
1277void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1278{
8141c7f3
LT
1279 /* Get rid of any futexes when releasing the mm */
1280#ifdef CONFIG_FUTEX
fc6b177d 1281 if (unlikely(tsk->robust_list)) {
8141c7f3 1282 exit_robust_list(tsk);
fc6b177d
PZ
1283 tsk->robust_list = NULL;
1284 }
8141c7f3 1285#ifdef CONFIG_COMPAT
fc6b177d 1286 if (unlikely(tsk->compat_robust_list)) {
8141c7f3 1287 compat_exit_robust_list(tsk);
fc6b177d
PZ
1288 tsk->compat_robust_list = NULL;
1289 }
8141c7f3 1290#endif
322a2c10
TG
1291 if (unlikely(!list_empty(&tsk->pi_state_list)))
1292 exit_pi_state_list(tsk);
8141c7f3
LT
1293#endif
1294
0326f5a9
SD
1295 uprobe_free_utask(tsk);
1296
1da177e4
LT
1297 /* Get rid of any cached register state */
1298 deactivate_mm(tsk, mm);
1299
fec1d011 1300 /*
735f2770
MH
1301 * Signal userspace if we're not exiting with a core dump
1302 * because we want to leave the value intact for debugging
1303 * purposes.
fec1d011 1304 */
9c8a8228 1305 if (tsk->clear_child_tid) {
735f2770 1306 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
9c8a8228
ED
1307 atomic_read(&mm->mm_users) > 1) {
1308 /*
1309 * We don't check the error code - if userspace has
1310 * not set up a proper pointer then tough luck.
1311 */
1312 put_user(0, tsk->clear_child_tid);
2de0db99
DB
1313 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1314 1, NULL, NULL, 0, 0);
9c8a8228 1315 }
1da177e4 1316 tsk->clear_child_tid = NULL;
1da177e4 1317 }
f7505d64
KK
1318
1319 /*
1320 * All done, finally we can wake up parent and return this mm to him.
1321 * Also kthread_stop() uses this completion for synchronization.
1322 */
1323 if (tsk->vfork_done)
1324 complete_vfork_done(tsk);
1da177e4
LT
1325}
1326
13585fa0
NA
1327/**
1328 * dup_mm() - duplicates an existing mm structure
1329 * @tsk: the task_struct with which the new mm will be associated.
1330 * @oldmm: the mm to duplicate.
1331 *
1332 * Allocates a new mm structure and duplicates the provided @oldmm structure
1333 * content into it.
1334 *
1335 * Return: the duplicated mm or NULL on failure.
a0a7ec30 1336 */
13585fa0
NA
1337static struct mm_struct *dup_mm(struct task_struct *tsk,
1338 struct mm_struct *oldmm)
a0a7ec30 1339{
13585fa0 1340 struct mm_struct *mm;
a0a7ec30
JD
1341 int err;
1342
a0a7ec30
JD
1343 mm = allocate_mm();
1344 if (!mm)
1345 goto fail_nomem;
1346
1347 memcpy(mm, oldmm, sizeof(*mm));
1348
bfedb589 1349 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1350 goto fail_nomem;
1351
a0a7ec30
JD
1352 err = dup_mmap(mm, oldmm);
1353 if (err)
1354 goto free_pt;
1355
1356 mm->hiwater_rss = get_mm_rss(mm);
1357 mm->hiwater_vm = mm->total_vm;
1358
801460d0
HS
1359 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1360 goto free_pt;
1361
a0a7ec30
JD
1362 return mm;
1363
1364free_pt:
801460d0
HS
1365 /* don't put binfmt in mmput, we haven't got module yet */
1366 mm->binfmt = NULL;
c3f3ce04 1367 mm_init_owner(mm, NULL);
a0a7ec30
JD
1368 mmput(mm);
1369
1370fail_nomem:
1371 return NULL;
a0a7ec30
JD
1372}
1373
fb0a685c 1374static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1375{
fb0a685c 1376 struct mm_struct *mm, *oldmm;
1da177e4
LT
1377 int retval;
1378
1379 tsk->min_flt = tsk->maj_flt = 0;
1380 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1381#ifdef CONFIG_DETECT_HUNG_TASK
1382 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
a2e51445 1383 tsk->last_switch_time = 0;
17406b82 1384#endif
1da177e4
LT
1385
1386 tsk->mm = NULL;
1387 tsk->active_mm = NULL;
1388
1389 /*
1390 * Are we cloning a kernel thread?
1391 *
1392 * We need to steal a active VM for that..
1393 */
1394 oldmm = current->mm;
1395 if (!oldmm)
1396 return 0;
1397
615d6e87
DB
1398 /* initialize the new vmacache entries */
1399 vmacache_flush(tsk);
1400
1da177e4 1401 if (clone_flags & CLONE_VM) {
3fce371b 1402 mmget(oldmm);
1da177e4 1403 mm = oldmm;
1da177e4
LT
1404 goto good_mm;
1405 }
1406
1407 retval = -ENOMEM;
13585fa0 1408 mm = dup_mm(tsk, current->mm);
1da177e4
LT
1409 if (!mm)
1410 goto fail_nomem;
1411
1da177e4
LT
1412good_mm:
1413 tsk->mm = mm;
1414 tsk->active_mm = mm;
1415 return 0;
1416
1da177e4
LT
1417fail_nomem:
1418 return retval;
1da177e4
LT
1419}
1420
a39bc516 1421static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1422{
498052bb 1423 struct fs_struct *fs = current->fs;
1da177e4 1424 if (clone_flags & CLONE_FS) {
498052bb 1425 /* tsk->fs is already what we want */
2a4419b5 1426 spin_lock(&fs->lock);
498052bb 1427 if (fs->in_exec) {
2a4419b5 1428 spin_unlock(&fs->lock);
498052bb
AV
1429 return -EAGAIN;
1430 }
1431 fs->users++;
2a4419b5 1432 spin_unlock(&fs->lock);
1da177e4
LT
1433 return 0;
1434 }
498052bb 1435 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1436 if (!tsk->fs)
1437 return -ENOMEM;
1438 return 0;
1439}
1440
fb0a685c 1441static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
a016f338
JD
1442{
1443 struct files_struct *oldf, *newf;
1444 int error = 0;
1445
1446 /*
1447 * A background process may not have any files ...
1448 */
1449 oldf = current->files;
1450 if (!oldf)
1451 goto out;
1452
1453 if (clone_flags & CLONE_FILES) {
1454 atomic_inc(&oldf->count);
1455 goto out;
1456 }
1457
a016f338
JD
1458 newf = dup_fd(oldf, &error);
1459 if (!newf)
1460 goto out;
1461
1462 tsk->files = newf;
1463 error = 0;
1464out:
1465 return error;
1466}
1467
fadad878 1468static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
fd0928df
JA
1469{
1470#ifdef CONFIG_BLOCK
1471 struct io_context *ioc = current->io_context;
6e736be7 1472 struct io_context *new_ioc;
fd0928df
JA
1473
1474 if (!ioc)
1475 return 0;
fadad878
JA
1476 /*
1477 * Share io context with parent, if CLONE_IO is set
1478 */
1479 if (clone_flags & CLONE_IO) {
3d48749d
TH
1480 ioc_task_link(ioc);
1481 tsk->io_context = ioc;
fadad878 1482 } else if (ioprio_valid(ioc->ioprio)) {
6e736be7
TH
1483 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1484 if (unlikely(!new_ioc))
fd0928df
JA
1485 return -ENOMEM;
1486
6e736be7 1487 new_ioc->ioprio = ioc->ioprio;
11a3122f 1488 put_io_context(new_ioc);
fd0928df
JA
1489 }
1490#endif
1491 return 0;
1492}
1493
a39bc516 1494static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1495{
1496 struct sighand_struct *sig;
1497
60348802 1498 if (clone_flags & CLONE_SIGHAND) {
d036bda7 1499 refcount_inc(&current->sighand->count);
1da177e4
LT
1500 return 0;
1501 }
1502 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
e56d0903 1503 rcu_assign_pointer(tsk->sighand, sig);
1da177e4
LT
1504 if (!sig)
1505 return -ENOMEM;
9d7fb042 1506
d036bda7 1507 refcount_set(&sig->count, 1);
06e62a46 1508 spin_lock_irq(&current->sighand->siglock);
1da177e4 1509 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
06e62a46 1510 spin_unlock_irq(&current->sighand->siglock);
1da177e4
LT
1511 return 0;
1512}
1513
a7e5328a 1514void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1515{
d036bda7 1516 if (refcount_dec_and_test(&sighand->count)) {
d80e731e 1517 signalfd_cleanup(sighand);
392809b2 1518 /*
5f0d5a3a 1519 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1520 * without an RCU grace period, see __lock_task_sighand().
1521 */
c81addc9 1522 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1523 }
c81addc9
ON
1524}
1525
b18b6a9c 1526#ifdef CONFIG_POSIX_TIMERS
f06febc9
FM
1527/*
1528 * Initialize POSIX timer handling for a thread group.
1529 */
1530static void posix_cpu_timers_init_group(struct signal_struct *sig)
1531{
78d7d407
JS
1532 unsigned long cpu_limit;
1533
316c1608 1534 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
78d7d407 1535 if (cpu_limit != RLIM_INFINITY) {
ebd7e7fc 1536 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
d5c373eb 1537 sig->cputimer.running = true;
6279a751
ON
1538 }
1539
f06febc9
FM
1540 /* The timer lists. */
1541 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1542 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1543 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1544}
b18b6a9c
NP
1545#else
1546static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1547#endif
f06febc9 1548
a39bc516 1549static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1550{
1551 struct signal_struct *sig;
1da177e4 1552
4ab6c083 1553 if (clone_flags & CLONE_THREAD)
490dea45 1554 return 0;
490dea45 1555
a56704ef 1556 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1557 tsk->signal = sig;
1558 if (!sig)
1559 return -ENOMEM;
1560
b3ac022c 1561 sig->nr_threads = 1;
1da177e4 1562 atomic_set(&sig->live, 1);
60d4de3f 1563 refcount_set(&sig->sigcnt, 1);
0c740d0a
ON
1564
1565 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1566 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1567 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1568
1da177e4 1569 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1570 sig->curr_target = tsk;
1da177e4 1571 init_sigpending(&sig->shared_pending);
c3ad2c3b 1572 INIT_HLIST_HEAD(&sig->multiprocess);
e78c3496 1573 seqlock_init(&sig->stats_lock);
9d7fb042 1574 prev_cputime_init(&sig->prev_cputime);
1da177e4 1575
baa73d9e 1576#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1577 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1578 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1579 sig->real_timer.function = it_real_fn;
baa73d9e 1580#endif
1da177e4 1581
1da177e4
LT
1582 task_lock(current->group_leader);
1583 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1584 task_unlock(current->group_leader);
1585
6279a751
ON
1586 posix_cpu_timers_init_group(sig);
1587
522ed776 1588 tty_audit_fork(sig);
5091faa4 1589 sched_autogroup_fork(sig);
522ed776 1590
a63d83f4 1591 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1592 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1593
9b1bf12d
KM
1594 mutex_init(&sig->cred_guard_mutex);
1595
1da177e4
LT
1596 return 0;
1597}
1598
dbd95212
KC
1599static void copy_seccomp(struct task_struct *p)
1600{
1601#ifdef CONFIG_SECCOMP
1602 /*
1603 * Must be called with sighand->lock held, which is common to
1604 * all threads in the group. Holding cred_guard_mutex is not
1605 * needed because this new task is not yet running and cannot
1606 * be racing exec.
1607 */
69f6a34b 1608 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1609
1610 /* Ref-count the new filter user, and assign it. */
1611 get_seccomp_filter(current);
1612 p->seccomp = current->seccomp;
1613
1614 /*
1615 * Explicitly enable no_new_privs here in case it got set
1616 * between the task_struct being duplicated and holding the
1617 * sighand lock. The seccomp state and nnp must be in sync.
1618 */
1619 if (task_no_new_privs(current))
1620 task_set_no_new_privs(p);
1621
1622 /*
1623 * If the parent gained a seccomp mode after copying thread
1624 * flags and between before we held the sighand lock, we have
1625 * to manually enable the seccomp thread flag here.
1626 */
1627 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1628 set_tsk_thread_flag(p, TIF_SECCOMP);
1629#endif
1630}
1631
17da2bd9 1632SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1633{
1634 current->clear_child_tid = tidptr;
1635
b488893a 1636 return task_pid_vnr(current);
1da177e4
LT
1637}
1638
a39bc516 1639static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1640{
1d615482 1641 raw_spin_lock_init(&p->pi_lock);
e29e175b 1642#ifdef CONFIG_RT_MUTEXES
a23ba907 1643 p->pi_waiters = RB_ROOT_CACHED;
e96a7705 1644 p->pi_top_task = NULL;
23f78d4a 1645 p->pi_blocked_on = NULL;
23f78d4a
IM
1646#endif
1647}
1648
b18b6a9c 1649#ifdef CONFIG_POSIX_TIMERS
f06febc9
FM
1650/*
1651 * Initialize POSIX timer handling for a single task.
1652 */
1653static void posix_cpu_timers_init(struct task_struct *tsk)
1654{
64861634
MS
1655 tsk->cputime_expires.prof_exp = 0;
1656 tsk->cputime_expires.virt_exp = 0;
f06febc9
FM
1657 tsk->cputime_expires.sched_exp = 0;
1658 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1659 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1660 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1661}
b18b6a9c
NP
1662#else
1663static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1664#endif
f06febc9 1665
2c470475
EB
1666static inline void init_task_pid_links(struct task_struct *task)
1667{
1668 enum pid_type type;
1669
1670 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1671 INIT_HLIST_NODE(&task->pid_links[type]);
1672 }
1673}
1674
81907739
ON
1675static inline void
1676init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1677{
2c470475
EB
1678 if (type == PIDTYPE_PID)
1679 task->thread_pid = pid;
1680 else
1681 task->signal->pids[type] = pid;
81907739
ON
1682}
1683
6bfbaa51
IM
1684static inline void rcu_copy_process(struct task_struct *p)
1685{
1686#ifdef CONFIG_PREEMPT_RCU
1687 p->rcu_read_lock_nesting = 0;
1688 p->rcu_read_unlock_special.s = 0;
1689 p->rcu_blocked_node = NULL;
1690 INIT_LIST_HEAD(&p->rcu_node_entry);
1691#endif /* #ifdef CONFIG_PREEMPT_RCU */
1692#ifdef CONFIG_TASKS_RCU
1693 p->rcu_tasks_holdout = false;
1694 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1695 p->rcu_tasks_idle_cpu = -1;
1696#endif /* #ifdef CONFIG_TASKS_RCU */
1697}
1698
b3e58382
CB
1699static int pidfd_release(struct inode *inode, struct file *file)
1700{
1701 struct pid *pid = file->private_data;
1702
1703 file->private_data = NULL;
1704 put_pid(pid);
1705 return 0;
1706}
1707
1708#ifdef CONFIG_PROC_FS
1709static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1710{
1711 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1712 struct pid *pid = f->private_data;
1713
1714 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1715 seq_putc(m, '\n');
1716}
1717#endif
1718
b53b0b9d
JFG
1719/*
1720 * Poll support for process exit notification.
1721 */
9d153525 1722static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
b53b0b9d
JFG
1723{
1724 struct task_struct *task;
1725 struct pid *pid = file->private_data;
9d153525 1726 __poll_t poll_flags = 0;
b53b0b9d
JFG
1727
1728 poll_wait(file, &pid->wait_pidfd, pts);
1729
1730 rcu_read_lock();
1731 task = pid_task(pid, PIDTYPE_PID);
1732 /*
1733 * Inform pollers only when the whole thread group exits.
1734 * If the thread group leader exits before all other threads in the
1735 * group, then poll(2) should block, similar to the wait(2) family.
1736 */
1737 if (!task || (task->exit_state && thread_group_empty(task)))
9d153525 1738 poll_flags = EPOLLIN | EPOLLRDNORM;
b53b0b9d
JFG
1739 rcu_read_unlock();
1740
1741 return poll_flags;
1742}
1743
b3e58382
CB
1744const struct file_operations pidfd_fops = {
1745 .release = pidfd_release,
b53b0b9d 1746 .poll = pidfd_poll,
b3e58382
CB
1747#ifdef CONFIG_PROC_FS
1748 .show_fdinfo = pidfd_show_fdinfo,
1749#endif
1750};
1751
c3f3ce04
AA
1752static void __delayed_free_task(struct rcu_head *rhp)
1753{
1754 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1755
1756 free_task(tsk);
1757}
1758
1759static __always_inline void delayed_free_task(struct task_struct *tsk)
1760{
1761 if (IS_ENABLED(CONFIG_MEMCG))
1762 call_rcu(&tsk->rcu, __delayed_free_task);
1763 else
1764 free_task(tsk);
1765}
1766
1da177e4
LT
1767/*
1768 * This creates a new process as a copy of the old one,
1769 * but does not actually start it yet.
1770 *
1771 * It copies the registers, and all the appropriate
1772 * parts of the process environment (as per the clone
1773 * flags). The actual kick-off is left to the caller.
1774 */
0766f788 1775static __latent_entropy struct task_struct *copy_process(
09a05394 1776 struct pid *pid,
3033f14a 1777 int trace,
7f192e3c
CB
1778 int node,
1779 struct kernel_clone_args *args)
1da177e4 1780{
b3e58382 1781 int pidfd = -1, retval;
a24efe62 1782 struct task_struct *p;
c3ad2c3b 1783 struct multiprocess_signals delayed;
6fd2fe49 1784 struct file *pidfile = NULL;
7f192e3c 1785 u64 clone_flags = args->flags;
1da177e4 1786
667b6094
MPS
1787 /*
1788 * Don't allow sharing the root directory with processes in a different
1789 * namespace
1790 */
1da177e4
LT
1791 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1792 return ERR_PTR(-EINVAL);
1793
e66eded8
EB
1794 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1795 return ERR_PTR(-EINVAL);
1796
2b612266
SH
1797 if ((clone_flags & CLONE_NEWUSER) && !unprivileged_userns_clone)
1798 if (!capable(CAP_SYS_ADMIN))
1799 return ERR_PTR(-EPERM);
1800
1da177e4
LT
1801 /*
1802 * Thread groups must share signals as well, and detached threads
1803 * can only be started up within the thread group.
1804 */
1805 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1806 return ERR_PTR(-EINVAL);
1807
1808 /*
1809 * Shared signal handlers imply shared VM. By way of the above,
1810 * thread groups also imply shared VM. Blocking this case allows
1811 * for various simplifications in other code.
1812 */
1813 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1814 return ERR_PTR(-EINVAL);
1815
123be07b
SB
1816 /*
1817 * Siblings of global init remain as zombies on exit since they are
1818 * not reaped by their parent (swapper). To solve this and to avoid
1819 * multi-rooted process trees, prevent global and container-inits
1820 * from creating siblings.
1821 */
1822 if ((clone_flags & CLONE_PARENT) &&
1823 current->signal->flags & SIGNAL_UNKILLABLE)
1824 return ERR_PTR(-EINVAL);
1825
8382fcac 1826 /*
40a0d32d 1827 * If the new process will be in a different pid or user namespace
faf00da5 1828 * do not allow it to share a thread group with the forking task.
8382fcac 1829 */
faf00da5 1830 if (clone_flags & CLONE_THREAD) {
40a0d32d
ON
1831 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1832 (task_active_pid_ns(current) !=
1833 current->nsproxy->pid_ns_for_children))
1834 return ERR_PTR(-EINVAL);
1835 }
8382fcac 1836
b3e58382 1837 if (clone_flags & CLONE_PIDFD) {
b3e58382 1838 /*
b3e58382
CB
1839 * - CLONE_DETACHED is blocked so that we can potentially
1840 * reuse it later for CLONE_PIDFD.
1841 * - CLONE_THREAD is blocked until someone really needs it.
1842 */
7f192e3c 1843 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
b3e58382 1844 return ERR_PTR(-EINVAL);
b3e58382
CB
1845 }
1846
c3ad2c3b
EB
1847 /*
1848 * Force any signals received before this point to be delivered
1849 * before the fork happens. Collect up signals sent to multiple
1850 * processes that happen during the fork and delay them so that
1851 * they appear to happen after the fork.
1852 */
1853 sigemptyset(&delayed.signal);
1854 INIT_HLIST_NODE(&delayed.node);
1855
1856 spin_lock_irq(&current->sighand->siglock);
1857 if (!(clone_flags & CLONE_THREAD))
1858 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1859 recalc_sigpending();
1860 spin_unlock_irq(&current->sighand->siglock);
1861 retval = -ERESTARTNOINTR;
1862 if (signal_pending(current))
1863 goto fork_out;
1864
1da177e4 1865 retval = -ENOMEM;
725fc629 1866 p = dup_task_struct(current, node);
1da177e4
LT
1867 if (!p)
1868 goto fork_out;
1869
4d6501dc
VN
1870 /*
1871 * This _must_ happen before we call free_task(), i.e. before we jump
1872 * to any of the bad_fork_* labels. This is to avoid freeing
1873 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1874 * kernel threads (PF_KTHREAD).
1875 */
7f192e3c 1876 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
4d6501dc
VN
1877 /*
1878 * Clear TID on mm_release()?
1879 */
7f192e3c 1880 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
4d6501dc 1881
f7e8b616
SR
1882 ftrace_graph_init_task(p);
1883
bea493a0
PZ
1884 rt_mutex_init_task(p);
1885
d12c1a37 1886#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
1887 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1888 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1889#endif
1da177e4 1890 retval = -EAGAIN;
3b11a1de 1891 if (atomic_read(&p->real_cred->user->processes) >=
78d7d407 1892 task_rlimit(p, RLIMIT_NPROC)) {
b57922b6
EP
1893 if (p->real_cred->user != INIT_USER &&
1894 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1da177e4
LT
1895 goto bad_fork_free;
1896 }
72fa5997 1897 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 1898
f1752eec
DH
1899 retval = copy_creds(p, clone_flags);
1900 if (retval < 0)
1901 goto bad_fork_free;
1da177e4
LT
1902
1903 /*
1904 * If multiple threads are within copy_process(), then this check
1905 * triggers too late. This doesn't hurt, the check is only there
1906 * to stop root fork bombs.
1907 */
04ec93fe 1908 retval = -EAGAIN;
1da177e4
LT
1909 if (nr_threads >= max_threads)
1910 goto bad_fork_cleanup_count;
1911
ca74e92b 1912 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
c1de45ca 1913 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
514ddb44 1914 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
1915 INIT_LIST_HEAD(&p->children);
1916 INIT_LIST_HEAD(&p->sibling);
f41d911f 1917 rcu_copy_process(p);
1da177e4
LT
1918 p->vfork_done = NULL;
1919 spin_lock_init(&p->alloc_lock);
1da177e4 1920
1da177e4
LT
1921 init_sigpending(&p->pending);
1922
64861634 1923 p->utime = p->stime = p->gtime = 0;
40565b5a 1924#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 1925 p->utimescaled = p->stimescaled = 0;
40565b5a 1926#endif
9d7fb042
PZ
1927 prev_cputime_init(&p->prev_cputime);
1928
6a61671b 1929#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
1930 seqcount_init(&p->vtime.seqcount);
1931 p->vtime.starttime = 0;
1932 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
1933#endif
1934
a3a2e76c
KH
1935#if defined(SPLIT_RSS_COUNTING)
1936 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1937#endif
172ba844 1938
6976675d
AV
1939 p->default_timer_slack_ns = current->timer_slack_ns;
1940
eb414681
JW
1941#ifdef CONFIG_PSI
1942 p->psi_flags = 0;
1943#endif
1944
5995477a 1945 task_io_accounting_init(&p->ioac);
1da177e4
LT
1946 acct_clear_integrals(p);
1947
f06febc9 1948 posix_cpu_timers_init(p);
1da177e4 1949
1da177e4 1950 p->io_context = NULL;
c0b0ae8a 1951 audit_set_context(p, NULL);
b4f48b63 1952 cgroup_fork(p);
1da177e4 1953#ifdef CONFIG_NUMA
846a16bf 1954 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
1955 if (IS_ERR(p->mempolicy)) {
1956 retval = PTR_ERR(p->mempolicy);
1957 p->mempolicy = NULL;
e8604cb4 1958 goto bad_fork_cleanup_threadgroup_lock;
fb0a685c 1959 }
1da177e4 1960#endif
778d3b0f
MH
1961#ifdef CONFIG_CPUSETS
1962 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1963 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
cc9a6c87 1964 seqcount_init(&p->mems_allowed_seq);
778d3b0f 1965#endif
de30a2b3
IM
1966#ifdef CONFIG_TRACE_IRQFLAGS
1967 p->irq_events = 0;
1968 p->hardirqs_enabled = 0;
1969 p->hardirq_enable_ip = 0;
1970 p->hardirq_enable_event = 0;
1971 p->hardirq_disable_ip = _THIS_IP_;
1972 p->hardirq_disable_event = 0;
1973 p->softirqs_enabled = 1;
1974 p->softirq_enable_ip = _THIS_IP_;
1975 p->softirq_enable_event = 0;
1976 p->softirq_disable_ip = 0;
1977 p->softirq_disable_event = 0;
1978 p->hardirq_context = 0;
1979 p->softirq_context = 0;
1980#endif
8bcbde54
DH
1981
1982 p->pagefault_disabled = 0;
1983
fbb9ce95 1984#ifdef CONFIG_LOCKDEP
b09be676 1985 lockdep_init_task(p);
fbb9ce95 1986#endif
1da177e4 1987
408894ee
IM
1988#ifdef CONFIG_DEBUG_MUTEXES
1989 p->blocked_on = NULL; /* not blocked yet */
1990#endif
cafe5635
KO
1991#ifdef CONFIG_BCACHE
1992 p->sequential_io = 0;
1993 p->sequential_io_avg = 0;
1994#endif
0f481406 1995
3c90e6e9 1996 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
1997 retval = sched_fork(clone_flags, p);
1998 if (retval)
1999 goto bad_fork_cleanup_policy;
6ab423e0 2000
cdd6c482 2001 retval = perf_event_init_task(p);
6ab423e0
PZ
2002 if (retval)
2003 goto bad_fork_cleanup_policy;
fb0a685c
DRO
2004 retval = audit_alloc(p);
2005 if (retval)
6c72e350 2006 goto bad_fork_cleanup_perf;
1da177e4 2007 /* copy all the process information */
ab602f79 2008 shm_init_task(p);
e4e55b47 2009 retval = security_task_alloc(p, clone_flags);
fb0a685c 2010 if (retval)
1da177e4 2011 goto bad_fork_cleanup_audit;
e4e55b47
TH
2012 retval = copy_semundo(clone_flags, p);
2013 if (retval)
2014 goto bad_fork_cleanup_security;
fb0a685c
DRO
2015 retval = copy_files(clone_flags, p);
2016 if (retval)
1da177e4 2017 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
2018 retval = copy_fs(clone_flags, p);
2019 if (retval)
1da177e4 2020 goto bad_fork_cleanup_files;
fb0a685c
DRO
2021 retval = copy_sighand(clone_flags, p);
2022 if (retval)
1da177e4 2023 goto bad_fork_cleanup_fs;
fb0a685c
DRO
2024 retval = copy_signal(clone_flags, p);
2025 if (retval)
1da177e4 2026 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
2027 retval = copy_mm(clone_flags, p);
2028 if (retval)
1da177e4 2029 goto bad_fork_cleanup_signal;
fb0a685c
DRO
2030 retval = copy_namespaces(clone_flags, p);
2031 if (retval)
d84f4f99 2032 goto bad_fork_cleanup_mm;
fb0a685c
DRO
2033 retval = copy_io(clone_flags, p);
2034 if (retval)
fd0928df 2035 goto bad_fork_cleanup_namespaces;
7f192e3c
CB
2036 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2037 args->tls);
1da177e4 2038 if (retval)
fd0928df 2039 goto bad_fork_cleanup_io;
1da177e4 2040
afaef01c
AP
2041 stackleak_task_init(p);
2042
425fb2b4 2043 if (pid != &init_struct_pid) {
c2b1df2e 2044 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
35f71bc0
MH
2045 if (IS_ERR(pid)) {
2046 retval = PTR_ERR(pid);
0740aa5f 2047 goto bad_fork_cleanup_thread;
35f71bc0 2048 }
425fb2b4
PE
2049 }
2050
b3e58382
CB
2051 /*
2052 * This has to happen after we've potentially unshared the file
2053 * descriptor table (so that the pidfd doesn't leak into the child
2054 * if the fd table isn't shared).
2055 */
2056 if (clone_flags & CLONE_PIDFD) {
6fd2fe49 2057 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
b3e58382
CB
2058 if (retval < 0)
2059 goto bad_fork_free_pid;
2060
2061 pidfd = retval;
6fd2fe49
AV
2062
2063 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2064 O_RDWR | O_CLOEXEC);
2065 if (IS_ERR(pidfile)) {
2066 put_unused_fd(pidfd);
28dd29c0 2067 retval = PTR_ERR(pidfile);
6fd2fe49
AV
2068 goto bad_fork_free_pid;
2069 }
2070 get_pid(pid); /* held by pidfile now */
2071
7f192e3c 2072 retval = put_user(pidfd, args->pidfd);
b3e58382
CB
2073 if (retval)
2074 goto bad_fork_put_pidfd;
2075 }
2076
73c10101
JA
2077#ifdef CONFIG_BLOCK
2078 p->plug = NULL;
2079#endif
42b2dd0a 2080#ifdef CONFIG_FUTEX
8f17d3a5
IM
2081 p->robust_list = NULL;
2082#ifdef CONFIG_COMPAT
2083 p->compat_robust_list = NULL;
2084#endif
c87e2837
IM
2085 INIT_LIST_HEAD(&p->pi_state_list);
2086 p->pi_state_cache = NULL;
42b2dd0a 2087#endif
f9a3879a
GM
2088 /*
2089 * sigaltstack should be cleared when sharing the same VM
2090 */
2091 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 2092 sas_ss_reset(p);
f9a3879a 2093
1da177e4 2094 /*
6580807d
ON
2095 * Syscall tracing and stepping should be turned off in the
2096 * child regardless of CLONE_PTRACE.
1da177e4 2097 */
6580807d 2098 user_disable_single_step(p);
1da177e4 2099 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
ed75e8d5
LV
2100#ifdef TIF_SYSCALL_EMU
2101 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2102#endif
e02c9b0d 2103 clear_tsk_latency_tracing(p);
1da177e4 2104
1da177e4 2105 /* ok, now we should be set up.. */
18c830df
ON
2106 p->pid = pid_nr(pid);
2107 if (clone_flags & CLONE_THREAD) {
5f8aadd8 2108 p->exit_signal = -1;
18c830df
ON
2109 p->group_leader = current->group_leader;
2110 p->tgid = current->tgid;
2111 } else {
2112 if (clone_flags & CLONE_PARENT)
2113 p->exit_signal = current->group_leader->exit_signal;
2114 else
7f192e3c 2115 p->exit_signal = args->exit_signal;
18c830df
ON
2116 p->group_leader = p;
2117 p->tgid = p->pid;
2118 }
5f8aadd8 2119
9d823e8f
WF
2120 p->nr_dirtied = 0;
2121 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 2122 p->dirty_paused_when = 0;
9d823e8f 2123
bb8cbbfe 2124 p->pdeath_signal = 0;
47e65328 2125 INIT_LIST_HEAD(&p->thread_group);
158e1645 2126 p->task_works = NULL;
1da177e4 2127
780de9dd 2128 cgroup_threadgroup_change_begin(current);
7e47682e
AS
2129 /*
2130 * Ensure that the cgroup subsystem policies allow the new process to be
2131 * forked. It should be noted the the new process's css_set can be changed
2132 * between here and cgroup_post_fork() if an organisation operation is in
2133 * progress.
2134 */
b53202e6 2135 retval = cgroup_can_fork(p);
7e47682e 2136 if (retval)
c3b7112d 2137 goto bad_fork_cgroup_threadgroup_change_end;
7e47682e 2138
7b558513
DH
2139 /*
2140 * From this point on we must avoid any synchronous user-space
2141 * communication until we take the tasklist-lock. In particular, we do
2142 * not want user-space to be able to predict the process start-time by
2143 * stalling fork(2) after we recorded the start_time but before it is
2144 * visible to the system.
2145 */
2146
2147 p->start_time = ktime_get_ns();
9285ec4c 2148 p->real_start_time = ktime_get_boottime_ns();
7b558513 2149
18c830df
ON
2150 /*
2151 * Make it visible to the rest of the system, but dont wake it up yet.
2152 * Need tasklist lock for parent etc handling!
2153 */
1da177e4
LT
2154 write_lock_irq(&tasklist_lock);
2155
1da177e4 2156 /* CLONE_PARENT re-uses the old parent */
2d5516cb 2157 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 2158 p->real_parent = current->real_parent;
2d5516cb
ON
2159 p->parent_exec_id = current->parent_exec_id;
2160 } else {
1da177e4 2161 p->real_parent = current;
2d5516cb
ON
2162 p->parent_exec_id = current->self_exec_id;
2163 }
1da177e4 2164
d83a7cb3
JP
2165 klp_copy_process(p);
2166
3f17da69 2167 spin_lock(&current->sighand->siglock);
4a2c7a78 2168
dbd95212
KC
2169 /*
2170 * Copy seccomp details explicitly here, in case they were changed
2171 * before holding sighand lock.
2172 */
2173 copy_seccomp(p);
2174
d7822b1e
MD
2175 rseq_fork(p, clone_flags);
2176
4ca1d3ee 2177 /* Don't start children in a dying pid namespace */
e8cfbc24 2178 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
3fd37226
KT
2179 retval = -ENOMEM;
2180 goto bad_fork_cancel_cgroup;
2181 }
4a2c7a78 2182
7673bf55
EB
2183 /* Let kill terminate clone/fork in the middle */
2184 if (fatal_signal_pending(current)) {
2185 retval = -EINTR;
2186 goto bad_fork_cancel_cgroup;
2187 }
2188
6fd2fe49
AV
2189 /* past the last point of failure */
2190 if (pidfile)
2191 fd_install(pidfd, pidfile);
4a2c7a78 2192
2c470475 2193 init_task_pid_links(p);
73b9ebfe 2194 if (likely(p->pid)) {
4b9d33e6 2195 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 2196
81907739 2197 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 2198 if (thread_group_leader(p)) {
6883f81a 2199 init_task_pid(p, PIDTYPE_TGID, pid);
81907739
ON
2200 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2201 init_task_pid(p, PIDTYPE_SID, task_session(current));
2202
1c4042c2 2203 if (is_child_reaper(pid)) {
17cf22c3 2204 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
2205 p->signal->flags |= SIGNAL_UNKILLABLE;
2206 }
c3ad2c3b 2207 p->signal->shared_pending.signal = delayed.signal;
9c9f4ded 2208 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
2209 /*
2210 * Inherit has_child_subreaper flag under the same
2211 * tasklist_lock with adding child to the process tree
2212 * for propagate_has_child_subreaper optimization.
2213 */
2214 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2215 p->real_parent->signal->is_child_subreaper;
9cd80bbb 2216 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 2217 list_add_tail_rcu(&p->tasks, &init_task.tasks);
6883f81a 2218 attach_pid(p, PIDTYPE_TGID);
81907739
ON
2219 attach_pid(p, PIDTYPE_PGID);
2220 attach_pid(p, PIDTYPE_SID);
909ea964 2221 __this_cpu_inc(process_counts);
80628ca0
ON
2222 } else {
2223 current->signal->nr_threads++;
2224 atomic_inc(&current->signal->live);
60d4de3f 2225 refcount_inc(&current->signal->sigcnt);
924de3b8 2226 task_join_group_stop(p);
80628ca0
ON
2227 list_add_tail_rcu(&p->thread_group,
2228 &p->group_leader->thread_group);
0c740d0a
ON
2229 list_add_tail_rcu(&p->thread_node,
2230 &p->signal->thread_head);
73b9ebfe 2231 }
81907739 2232 attach_pid(p, PIDTYPE_PID);
73b9ebfe 2233 nr_threads++;
1da177e4 2234 }
1da177e4 2235 total_forks++;
c3ad2c3b 2236 hlist_del_init(&delayed.node);
3f17da69 2237 spin_unlock(&current->sighand->siglock);
4af4206b 2238 syscall_tracepoint_update(p);
1da177e4 2239 write_unlock_irq(&tasklist_lock);
4af4206b 2240
c13cf856 2241 proc_fork_connector(p);
b53202e6 2242 cgroup_post_fork(p);
780de9dd 2243 cgroup_threadgroup_change_end(current);
cdd6c482 2244 perf_event_fork(p);
43d2b113
KH
2245
2246 trace_task_newtask(p, clone_flags);
3ab67966 2247 uprobe_copy_process(p, clone_flags);
43d2b113 2248
1da177e4
LT
2249 return p;
2250
7e47682e 2251bad_fork_cancel_cgroup:
3fd37226
KT
2252 spin_unlock(&current->sighand->siglock);
2253 write_unlock_irq(&tasklist_lock);
b53202e6 2254 cgroup_cancel_fork(p);
c3b7112d
CB
2255bad_fork_cgroup_threadgroup_change_end:
2256 cgroup_threadgroup_change_end(current);
b3e58382 2257bad_fork_put_pidfd:
6fd2fe49
AV
2258 if (clone_flags & CLONE_PIDFD) {
2259 fput(pidfile);
2260 put_unused_fd(pidfd);
2261 }
425fb2b4
PE
2262bad_fork_free_pid:
2263 if (pid != &init_struct_pid)
2264 free_pid(pid);
0740aa5f
JS
2265bad_fork_cleanup_thread:
2266 exit_thread(p);
fd0928df 2267bad_fork_cleanup_io:
b69f2292
LR
2268 if (p->io_context)
2269 exit_io_context(p);
ab516013 2270bad_fork_cleanup_namespaces:
444f378b 2271 exit_task_namespaces(p);
1da177e4 2272bad_fork_cleanup_mm:
c3f3ce04
AA
2273 if (p->mm) {
2274 mm_clear_owner(p->mm, p);
1da177e4 2275 mmput(p->mm);
c3f3ce04 2276 }
1da177e4 2277bad_fork_cleanup_signal:
4ab6c083 2278 if (!(clone_flags & CLONE_THREAD))
1c5354de 2279 free_signal_struct(p->signal);
1da177e4 2280bad_fork_cleanup_sighand:
a7e5328a 2281 __cleanup_sighand(p->sighand);
1da177e4
LT
2282bad_fork_cleanup_fs:
2283 exit_fs(p); /* blocking */
2284bad_fork_cleanup_files:
2285 exit_files(p); /* blocking */
2286bad_fork_cleanup_semundo:
2287 exit_sem(p);
e4e55b47
TH
2288bad_fork_cleanup_security:
2289 security_task_free(p);
1da177e4
LT
2290bad_fork_cleanup_audit:
2291 audit_free(p);
6c72e350 2292bad_fork_cleanup_perf:
cdd6c482 2293 perf_event_free_task(p);
6c72e350 2294bad_fork_cleanup_policy:
b09be676 2295 lockdep_free_task(p);
1da177e4 2296#ifdef CONFIG_NUMA
f0be3d32 2297 mpol_put(p->mempolicy);
e8604cb4 2298bad_fork_cleanup_threadgroup_lock:
1da177e4 2299#endif
35df17c5 2300 delayacct_tsk_free(p);
1da177e4 2301bad_fork_cleanup_count:
d84f4f99 2302 atomic_dec(&p->cred->user->processes);
e0e81739 2303 exit_creds(p);
1da177e4 2304bad_fork_free:
405c0759 2305 p->state = TASK_DEAD;
68f24b08 2306 put_task_stack(p);
c3f3ce04 2307 delayed_free_task(p);
fe7d37d1 2308fork_out:
c3ad2c3b
EB
2309 spin_lock_irq(&current->sighand->siglock);
2310 hlist_del_init(&delayed.node);
2311 spin_unlock_irq(&current->sighand->siglock);
fe7d37d1 2312 return ERR_PTR(retval);
1da177e4
LT
2313}
2314
2c470475 2315static inline void init_idle_pids(struct task_struct *idle)
f106eee1
ON
2316{
2317 enum pid_type type;
2318
2319 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2c470475
EB
2320 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2321 init_task_pid(idle, type, &init_struct_pid);
f106eee1
ON
2322 }
2323}
2324
0db0628d 2325struct task_struct *fork_idle(int cpu)
1da177e4 2326{
36c8b586 2327 struct task_struct *task;
7f192e3c
CB
2328 struct kernel_clone_args args = {
2329 .flags = CLONE_VM,
2330 };
2331
2332 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
f106eee1 2333 if (!IS_ERR(task)) {
2c470475 2334 init_idle_pids(task);
753ca4f3 2335 init_idle(task, cpu);
f106eee1 2336 }
73b9ebfe 2337
1da177e4
LT
2338 return task;
2339}
2340
13585fa0
NA
2341struct mm_struct *copy_init_mm(void)
2342{
2343 return dup_mm(NULL, &init_mm);
2344}
2345
1da177e4
LT
2346/*
2347 * Ok, this is the main fork-routine.
2348 *
2349 * It copies the process, and if successful kick-starts
2350 * it and waits for it to finish using the VM if required.
a0eb9abd
ES
2351 *
2352 * args->exit_signal is expected to be checked for sanity by the caller.
1da177e4 2353 */
7f192e3c 2354long _do_fork(struct kernel_clone_args *args)
1da177e4 2355{
7f192e3c 2356 u64 clone_flags = args->flags;
9f5325aa
MPS
2357 struct completion vfork;
2358 struct pid *pid;
1da177e4
LT
2359 struct task_struct *p;
2360 int trace = 0;
92476d7f 2361 long nr;
1da177e4 2362
09a05394 2363 /*
4b9d33e6
TH
2364 * Determine whether and which event to report to ptracer. When
2365 * called from kernel_thread or CLONE_UNTRACED is explicitly
2366 * requested, no event is reported; otherwise, report if the event
2367 * for the type of forking is enabled.
09a05394 2368 */
e80d6661 2369 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2370 if (clone_flags & CLONE_VFORK)
2371 trace = PTRACE_EVENT_VFORK;
7f192e3c 2372 else if (args->exit_signal != SIGCHLD)
4b9d33e6
TH
2373 trace = PTRACE_EVENT_CLONE;
2374 else
2375 trace = PTRACE_EVENT_FORK;
2376
2377 if (likely(!ptrace_event_enabled(current, trace)))
2378 trace = 0;
2379 }
1da177e4 2380
7f192e3c 2381 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
38addce8 2382 add_latent_entropy();
9f5325aa
MPS
2383
2384 if (IS_ERR(p))
2385 return PTR_ERR(p);
2386
1da177e4
LT
2387 /*
2388 * Do this prior waking up the new thread - the thread pointer
2389 * might get invalid after that point, if the thread exits quickly.
2390 */
9f5325aa 2391 trace_sched_process_fork(current, p);
0a16b607 2392
9f5325aa
MPS
2393 pid = get_task_pid(p, PIDTYPE_PID);
2394 nr = pid_vnr(pid);
30e49c26 2395
9f5325aa 2396 if (clone_flags & CLONE_PARENT_SETTID)
7f192e3c 2397 put_user(nr, args->parent_tid);
a6f5e063 2398
9f5325aa
MPS
2399 if (clone_flags & CLONE_VFORK) {
2400 p->vfork_done = &vfork;
2401 init_completion(&vfork);
2402 get_task_struct(p);
2403 }
1da177e4 2404
9f5325aa 2405 wake_up_new_task(p);
09a05394 2406
9f5325aa
MPS
2407 /* forking complete and child started to run, tell ptracer */
2408 if (unlikely(trace))
2409 ptrace_event_pid(trace, pid);
4e52365f 2410
9f5325aa
MPS
2411 if (clone_flags & CLONE_VFORK) {
2412 if (!wait_for_vfork_done(p, &vfork))
2413 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2414 }
9f5325aa
MPS
2415
2416 put_pid(pid);
92476d7f 2417 return nr;
1da177e4
LT
2418}
2419
028b6e8a
DL
2420bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2421{
2422 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2423 if ((kargs->flags & CLONE_PIDFD) &&
2424 (kargs->flags & CLONE_PARENT_SETTID))
2425 return false;
2426
2427 return true;
2428}
2429
3033f14a
JT
2430#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2431/* For compatibility with architectures that call do_fork directly rather than
2432 * using the syscall entry points below. */
2433long do_fork(unsigned long clone_flags,
2434 unsigned long stack_start,
2435 unsigned long stack_size,
2436 int __user *parent_tidptr,
2437 int __user *child_tidptr)
2438{
7f192e3c
CB
2439 struct kernel_clone_args args = {
2440 .flags = (clone_flags & ~CSIGNAL),
028b6e8a 2441 .pidfd = parent_tidptr,
7f192e3c
CB
2442 .child_tid = child_tidptr,
2443 .parent_tid = parent_tidptr,
2444 .exit_signal = (clone_flags & CSIGNAL),
2445 .stack = stack_start,
2446 .stack_size = stack_size,
2447 };
2448
028b6e8a
DL
2449 if (!legacy_clone_args_valid(&args))
2450 return -EINVAL;
2451
7f192e3c 2452 return _do_fork(&args);
3033f14a
JT
2453}
2454#endif
2455
2aa3a7f8
AV
2456/*
2457 * Create a kernel thread.
2458 */
2459pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2460{
7f192e3c
CB
2461 struct kernel_clone_args args = {
2462 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2463 .exit_signal = (flags & CSIGNAL),
2464 .stack = (unsigned long)fn,
2465 .stack_size = (unsigned long)arg,
2466 };
2467
2468 return _do_fork(&args);
2aa3a7f8 2469}
2aa3a7f8 2470
d2125043
AV
2471#ifdef __ARCH_WANT_SYS_FORK
2472SYSCALL_DEFINE0(fork)
2473{
2474#ifdef CONFIG_MMU
7f192e3c
CB
2475 struct kernel_clone_args args = {
2476 .exit_signal = SIGCHLD,
2477 };
2478
2479 return _do_fork(&args);
d2125043
AV
2480#else
2481 /* can not support in nommu mode */
5d59e182 2482 return -EINVAL;
d2125043
AV
2483#endif
2484}
2485#endif
2486
2487#ifdef __ARCH_WANT_SYS_VFORK
2488SYSCALL_DEFINE0(vfork)
2489{
7f192e3c
CB
2490 struct kernel_clone_args args = {
2491 .flags = CLONE_VFORK | CLONE_VM,
2492 .exit_signal = SIGCHLD,
2493 };
2494
2495 return _do_fork(&args);
d2125043
AV
2496}
2497#endif
2498
2499#ifdef __ARCH_WANT_SYS_CLONE
2500#ifdef CONFIG_CLONE_BACKWARDS
2501SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2502 int __user *, parent_tidptr,
3033f14a 2503 unsigned long, tls,
d2125043
AV
2504 int __user *, child_tidptr)
2505#elif defined(CONFIG_CLONE_BACKWARDS2)
2506SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2507 int __user *, parent_tidptr,
2508 int __user *, child_tidptr,
3033f14a 2509 unsigned long, tls)
dfa9771a
MS
2510#elif defined(CONFIG_CLONE_BACKWARDS3)
2511SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2512 int, stack_size,
2513 int __user *, parent_tidptr,
2514 int __user *, child_tidptr,
3033f14a 2515 unsigned long, tls)
d2125043
AV
2516#else
2517SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2518 int __user *, parent_tidptr,
2519 int __user *, child_tidptr,
3033f14a 2520 unsigned long, tls)
d2125043
AV
2521#endif
2522{
7f192e3c
CB
2523 struct kernel_clone_args args = {
2524 .flags = (clone_flags & ~CSIGNAL),
2525 .pidfd = parent_tidptr,
2526 .child_tid = child_tidptr,
2527 .parent_tid = parent_tidptr,
2528 .exit_signal = (clone_flags & CSIGNAL),
2529 .stack = newsp,
2530 .tls = tls,
2531 };
2532
028b6e8a 2533 if (!legacy_clone_args_valid(&args))
7f192e3c
CB
2534 return -EINVAL;
2535
2536 return _do_fork(&args);
2537}
d68dbb0c 2538#endif
7f192e3c 2539
d68dbb0c 2540#ifdef __ARCH_WANT_SYS_CLONE3
a47781f0
AA
2541
2542/*
2543 * copy_thread implementations handle CLONE_SETTLS by reading the TLS value from
2544 * the registers containing the syscall arguments for clone. This doesn't work
2545 * with clone3 since the TLS value is passed in clone_args instead.
2546 */
2547#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2548#error clone3 requires copy_thread_tls support in arch
2549#endif
2550
7f192e3c
CB
2551noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2552 struct clone_args __user *uargs,
2553 size_t size)
2554{
2555 struct clone_args args;
2556
2557 if (unlikely(size > PAGE_SIZE))
2558 return -E2BIG;
2559
2560 if (unlikely(size < sizeof(struct clone_args)))
2561 return -EINVAL;
2562
2563 if (unlikely(!access_ok(uargs, size)))
2564 return -EFAULT;
2565
2566 if (size > sizeof(struct clone_args)) {
2567 unsigned char __user *addr;
2568 unsigned char __user *end;
2569 unsigned char val;
2570
2571 addr = (void __user *)uargs + sizeof(struct clone_args);
2572 end = (void __user *)uargs + size;
2573
2574 for (; addr < end; addr++) {
2575 if (get_user(val, addr))
2576 return -EFAULT;
2577 if (val)
2578 return -E2BIG;
2579 }
2580
2581 size = sizeof(struct clone_args);
2582 }
2583
2584 if (copy_from_user(&args, uargs, size))
2585 return -EFAULT;
2586
a0eb9abd
ES
2587 /*
2588 * Verify that higher 32bits of exit_signal are unset and that
2589 * it is a valid signal
2590 */
2591 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2592 !valid_signal(args.exit_signal)))
2593 return -EINVAL;
2594
7f192e3c
CB
2595 *kargs = (struct kernel_clone_args){
2596 .flags = args.flags,
2597 .pidfd = u64_to_user_ptr(args.pidfd),
2598 .child_tid = u64_to_user_ptr(args.child_tid),
2599 .parent_tid = u64_to_user_ptr(args.parent_tid),
2600 .exit_signal = args.exit_signal,
2601 .stack = args.stack,
2602 .stack_size = args.stack_size,
2603 .tls = args.tls,
2604 };
2605
2606 return 0;
2607}
2608
f5316b81
CB
2609/**
2610 * clone3_stack_valid - check and prepare stack
2611 * @kargs: kernel clone args
2612 *
2613 * Verify that the stack arguments userspace gave us are sane.
2614 * In addition, set the stack direction for userspace since it's easy for us to
2615 * determine.
2616 */
2617static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2618{
2619 if (kargs->stack == 0) {
2620 if (kargs->stack_size > 0)
2621 return false;
2622 } else {
2623 if (kargs->stack_size == 0)
2624 return false;
2625
2626 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2627 return false;
2628
2629#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2630 kargs->stack += kargs->stack_size;
2631#endif
2632 }
2633
2634 return true;
2635}
2636
2637static bool clone3_args_valid(struct kernel_clone_args *kargs)
7f192e3c
CB
2638{
2639 /*
2640 * All lower bits of the flag word are taken.
2641 * Verify that no other unknown flags are passed along.
2642 */
2643 if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2644 return false;
2645
2646 /*
2647 * - make the CLONE_DETACHED bit reuseable for clone3
2648 * - make the CSIGNAL bits reuseable for clone3
2649 */
2650 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2651 return false;
2652
2653 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2654 kargs->exit_signal)
2655 return false;
2656
f5316b81
CB
2657 if (!clone3_stack_valid(kargs))
2658 return false;
2659
7f192e3c
CB
2660 return true;
2661}
2662
2663SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2664{
2665 int err;
2666
2667 struct kernel_clone_args kargs;
2668
2669 err = copy_clone_args_from_user(&kargs, uargs, size);
2670 if (err)
2671 return err;
2672
2673 if (!clone3_args_valid(&kargs))
2674 return -EINVAL;
2675
2676 return _do_fork(&kargs);
d2125043
AV
2677}
2678#endif
2679
0f1b92cb
ON
2680void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2681{
2682 struct task_struct *leader, *parent, *child;
2683 int res;
2684
2685 read_lock(&tasklist_lock);
2686 leader = top = top->group_leader;
2687down:
2688 for_each_thread(leader, parent) {
2689 list_for_each_entry(child, &parent->children, sibling) {
2690 res = visitor(child, data);
2691 if (res) {
2692 if (res < 0)
2693 goto out;
2694 leader = child;
2695 goto down;
2696 }
2697up:
2698 ;
2699 }
2700 }
2701
2702 if (leader != top) {
2703 child = leader;
2704 parent = child->real_parent;
2705 leader = parent->group_leader;
2706 goto up;
2707 }
2708out:
2709 read_unlock(&tasklist_lock);
2710}
2711
5fd63b30
RT
2712#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2713#define ARCH_MIN_MMSTRUCT_ALIGN 0
2714#endif
2715
51cc5068 2716static void sighand_ctor(void *data)
aa1757f9
ON
2717{
2718 struct sighand_struct *sighand = data;
2719
a35afb83 2720 spin_lock_init(&sighand->siglock);
b8fceee1 2721 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
2722}
2723
1da177e4
LT
2724void __init proc_caches_init(void)
2725{
c1a2f7f0
RR
2726 unsigned int mm_size;
2727
1da177e4
LT
2728 sighand_cachep = kmem_cache_create("sighand_cache",
2729 sizeof(struct sighand_struct), 0,
5f0d5a3a 2730 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
75f296d9 2731 SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
2732 signal_cachep = kmem_cache_create("signal_cache",
2733 sizeof(struct signal_struct), 0,
75f296d9 2734 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2735 NULL);
20c2df83 2736 files_cachep = kmem_cache_create("files_cache",
1da177e4 2737 sizeof(struct files_struct), 0,
75f296d9 2738 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2739 NULL);
20c2df83 2740 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 2741 sizeof(struct fs_struct), 0,
75f296d9 2742 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2743 NULL);
c1a2f7f0 2744
6345d24d 2745 /*
c1a2f7f0
RR
2746 * The mm_cpumask is located at the end of mm_struct, and is
2747 * dynamically sized based on the maximum CPU number this system
2748 * can have, taking hotplug into account (nr_cpu_ids).
6345d24d 2749 */
c1a2f7f0
RR
2750 mm_size = sizeof(struct mm_struct) + cpumask_size();
2751
07dcd7fe 2752 mm_cachep = kmem_cache_create_usercopy("mm_struct",
c1a2f7f0 2753 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
75f296d9 2754 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
07dcd7fe
DW
2755 offsetof(struct mm_struct, saved_auxv),
2756 sizeof_field(struct mm_struct, saved_auxv),
5d097056
VD
2757 NULL);
2758 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
8feae131 2759 mmap_init();
66577193 2760 nsproxy_cache_init();
1da177e4 2761}
cf2e340f 2762
cf2e340f 2763/*
9bfb23fc 2764 * Check constraints on flags passed to the unshare system call.
cf2e340f 2765 */
9bfb23fc 2766static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 2767{
9bfb23fc
ON
2768 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2769 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 2770 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
a79a908f 2771 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
9bfb23fc 2772 return -EINVAL;
cf2e340f 2773 /*
12c641ab
EB
2774 * Not implemented, but pretend it works if there is nothing
2775 * to unshare. Note that unsharing the address space or the
2776 * signal handlers also need to unshare the signal queues (aka
2777 * CLONE_THREAD).
cf2e340f 2778 */
9bfb23fc 2779 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
2780 if (!thread_group_empty(current))
2781 return -EINVAL;
2782 }
2783 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
d036bda7 2784 if (refcount_read(&current->sighand->count) > 1)
12c641ab
EB
2785 return -EINVAL;
2786 }
2787 if (unshare_flags & CLONE_VM) {
2788 if (!current_is_single_threaded())
9bfb23fc
ON
2789 return -EINVAL;
2790 }
cf2e340f
JD
2791
2792 return 0;
2793}
2794
2795/*
99d1419d 2796 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
2797 */
2798static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2799{
2800 struct fs_struct *fs = current->fs;
2801
498052bb
AV
2802 if (!(unshare_flags & CLONE_FS) || !fs)
2803 return 0;
2804
2805 /* don't need lock here; in the worst case we'll do useless copy */
2806 if (fs->users == 1)
2807 return 0;
2808
2809 *new_fsp = copy_fs_struct(fs);
2810 if (!*new_fsp)
2811 return -ENOMEM;
cf2e340f
JD
2812
2813 return 0;
2814}
2815
cf2e340f 2816/*
a016f338 2817 * Unshare file descriptor table if it is being shared
cf2e340f
JD
2818 */
2819static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2820{
2821 struct files_struct *fd = current->files;
a016f338 2822 int error = 0;
cf2e340f
JD
2823
2824 if ((unshare_flags & CLONE_FILES) &&
a016f338
JD
2825 (fd && atomic_read(&fd->count) > 1)) {
2826 *new_fdp = dup_fd(fd, &error);
2827 if (!*new_fdp)
2828 return error;
2829 }
cf2e340f
JD
2830
2831 return 0;
2832}
2833
cf2e340f
JD
2834/*
2835 * unshare allows a process to 'unshare' part of the process
2836 * context which was originally shared using clone. copy_*
2837 * functions used by do_fork() cannot be used here directly
2838 * because they modify an inactive task_struct that is being
2839 * constructed. Here we are modifying the current, active,
2840 * task_struct.
2841 */
9b32105e 2842int ksys_unshare(unsigned long unshare_flags)
cf2e340f 2843{
cf2e340f 2844 struct fs_struct *fs, *new_fs = NULL;
cf2e340f 2845 struct files_struct *fd, *new_fd = NULL;
b2e0d987 2846 struct cred *new_cred = NULL;
cf7b708c 2847 struct nsproxy *new_nsproxy = NULL;
9edff4ab 2848 int do_sysvsem = 0;
9bfb23fc 2849 int err;
cf2e340f 2850
b2e0d987 2851 /*
faf00da5
EB
2852 * If unsharing a user namespace must also unshare the thread group
2853 * and unshare the filesystem root and working directories.
b2e0d987
EB
2854 */
2855 if (unshare_flags & CLONE_NEWUSER)
e66eded8 2856 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
2857 /*
2858 * If unsharing vm, must also unshare signal handlers.
2859 */
2860 if (unshare_flags & CLONE_VM)
2861 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
2862 /*
2863 * If unsharing a signal handlers, must also unshare the signal queues.
2864 */
2865 if (unshare_flags & CLONE_SIGHAND)
2866 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
2867 /*
2868 * If unsharing namespace, must also unshare filesystem information.
2869 */
2870 if (unshare_flags & CLONE_NEWNS)
2871 unshare_flags |= CLONE_FS;
50804fe3 2872
2b612266
SH
2873 if ((unshare_flags & CLONE_NEWUSER) && !unprivileged_userns_clone) {
2874 err = -EPERM;
2875 if (!capable(CAP_SYS_ADMIN))
2876 goto bad_unshare_out;
2877 }
2878
50804fe3
EB
2879 err = check_unshare_flags(unshare_flags);
2880 if (err)
2881 goto bad_unshare_out;
6013f67f
MS
2882 /*
2883 * CLONE_NEWIPC must also detach from the undolist: after switching
2884 * to a new ipc namespace, the semaphore arrays from the old
2885 * namespace are unreachable.
2886 */
2887 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 2888 do_sysvsem = 1;
fb0a685c
DRO
2889 err = unshare_fs(unshare_flags, &new_fs);
2890 if (err)
9bfb23fc 2891 goto bad_unshare_out;
fb0a685c
DRO
2892 err = unshare_fd(unshare_flags, &new_fd);
2893 if (err)
9bfb23fc 2894 goto bad_unshare_cleanup_fs;
b2e0d987 2895 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 2896 if (err)
9edff4ab 2897 goto bad_unshare_cleanup_fd;
b2e0d987
EB
2898 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2899 new_cred, new_fs);
2900 if (err)
2901 goto bad_unshare_cleanup_cred;
c0b2fc31 2902
b2e0d987 2903 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
2904 if (do_sysvsem) {
2905 /*
2906 * CLONE_SYSVSEM is equivalent to sys_exit().
2907 */
2908 exit_sem(current);
2909 }
ab602f79
JM
2910 if (unshare_flags & CLONE_NEWIPC) {
2911 /* Orphan segments in old ns (see sem above). */
2912 exit_shm(current);
2913 shm_init_task(current);
2914 }
ab516013 2915
6f977e6b 2916 if (new_nsproxy)
cf7b708c 2917 switch_task_namespaces(current, new_nsproxy);
cf2e340f 2918
cf7b708c
PE
2919 task_lock(current);
2920
cf2e340f
JD
2921 if (new_fs) {
2922 fs = current->fs;
2a4419b5 2923 spin_lock(&fs->lock);
cf2e340f 2924 current->fs = new_fs;
498052bb
AV
2925 if (--fs->users)
2926 new_fs = NULL;
2927 else
2928 new_fs = fs;
2a4419b5 2929 spin_unlock(&fs->lock);
cf2e340f
JD
2930 }
2931
cf2e340f
JD
2932 if (new_fd) {
2933 fd = current->files;
2934 current->files = new_fd;
2935 new_fd = fd;
2936 }
2937
2938 task_unlock(current);
b2e0d987
EB
2939
2940 if (new_cred) {
2941 /* Install the new user namespace */
2942 commit_creds(new_cred);
2943 new_cred = NULL;
2944 }
cf2e340f
JD
2945 }
2946
e4222673
HB
2947 perf_event_namespaces(current);
2948
b2e0d987
EB
2949bad_unshare_cleanup_cred:
2950 if (new_cred)
2951 put_cred(new_cred);
cf2e340f
JD
2952bad_unshare_cleanup_fd:
2953 if (new_fd)
2954 put_files_struct(new_fd);
2955
cf2e340f
JD
2956bad_unshare_cleanup_fs:
2957 if (new_fs)
498052bb 2958 free_fs_struct(new_fs);
cf2e340f 2959
cf2e340f
JD
2960bad_unshare_out:
2961 return err;
2962}
3b125388 2963
9b32105e
DB
2964SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2965{
2966 return ksys_unshare(unshare_flags);
2967}
2968
3b125388
AV
2969/*
2970 * Helper to unshare the files of the current task.
2971 * We don't want to expose copy_files internals to
2972 * the exec layer of the kernel.
2973 */
2974
2975int unshare_files(struct files_struct **displaced)
2976{
2977 struct task_struct *task = current;
50704516 2978 struct files_struct *copy = NULL;
3b125388
AV
2979 int error;
2980
2981 error = unshare_fd(CLONE_FILES, &copy);
2982 if (error || !copy) {
2983 *displaced = NULL;
2984 return error;
2985 }
2986 *displaced = task->files;
2987 task_lock(task);
2988 task->files = copy;
2989 task_unlock(task);
2990 return 0;
2991}
16db3d3f
HS
2992
2993int sysctl_max_threads(struct ctl_table *table, int write,
2994 void __user *buffer, size_t *lenp, loff_t *ppos)
2995{
2996 struct ctl_table t;
2997 int ret;
2998 int threads = max_threads;
8e597517 2999 int min = 1;
16db3d3f
HS
3000 int max = MAX_THREADS;
3001
3002 t = *table;
3003 t.data = &threads;
3004 t.extra1 = &min;
3005 t.extra2 = &max;
3006
3007 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3008 if (ret || !write)
3009 return ret;
3010
8e597517 3011 max_threads = threads;
16db3d3f
HS
3012
3013 return 0;
3014}