]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/fork.c
fork,memcg: fix crash in free_thread_stack on memcg charge fail
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
1da177e4 14#include <linux/slab.h>
4eb5aaa3 15#include <linux/sched/autogroup.h>
6e84f315 16#include <linux/sched/mm.h>
f7ccbae4 17#include <linux/sched/coredump.h>
8703e8a4 18#include <linux/sched/user.h>
6a3827d7 19#include <linux/sched/numa_balancing.h>
03441a34 20#include <linux/sched/stat.h>
29930025 21#include <linux/sched/task.h>
68db0cf1 22#include <linux/sched/task_stack.h>
32ef5517 23#include <linux/sched/cputime.h>
037741a6 24#include <linux/rtmutex.h>
1da177e4
LT
25#include <linux/init.h>
26#include <linux/unistd.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/vmalloc.h>
29#include <linux/completion.h>
1da177e4
LT
30#include <linux/personality.h>
31#include <linux/mempolicy.h>
32#include <linux/sem.h>
33#include <linux/file.h>
9f3acc31 34#include <linux/fdtable.h>
da9cbc87 35#include <linux/iocontext.h>
1da177e4
LT
36#include <linux/key.h>
37#include <linux/binfmts.h>
38#include <linux/mman.h>
cddb8a5c 39#include <linux/mmu_notifier.h>
133ff0ea 40#include <linux/hmm.h>
1da177e4 41#include <linux/fs.h>
615d6e87
DB
42#include <linux/mm.h>
43#include <linux/vmacache.h>
ab516013 44#include <linux/nsproxy.h>
c59ede7b 45#include <linux/capability.h>
1da177e4 46#include <linux/cpu.h>
b4f48b63 47#include <linux/cgroup.h>
1da177e4 48#include <linux/security.h>
a1e78772 49#include <linux/hugetlb.h>
e2cfabdf 50#include <linux/seccomp.h>
1da177e4
LT
51#include <linux/swap.h>
52#include <linux/syscalls.h>
53#include <linux/jiffies.h>
54#include <linux/futex.h>
8141c7f3 55#include <linux/compat.h>
207205a2 56#include <linux/kthread.h>
7c3ab738 57#include <linux/task_io_accounting_ops.h>
ab2af1f5 58#include <linux/rcupdate.h>
1da177e4
LT
59#include <linux/ptrace.h>
60#include <linux/mount.h>
61#include <linux/audit.h>
78fb7466 62#include <linux/memcontrol.h>
f201ae23 63#include <linux/ftrace.h>
5e2bf014 64#include <linux/proc_fs.h>
1da177e4
LT
65#include <linux/profile.h>
66#include <linux/rmap.h>
f8af4da3 67#include <linux/ksm.h>
1da177e4 68#include <linux/acct.h>
893e26e6 69#include <linux/userfaultfd_k.h>
8f0ab514 70#include <linux/tsacct_kern.h>
9f46080c 71#include <linux/cn_proc.h>
ba96a0c8 72#include <linux/freezer.h>
ca74e92b 73#include <linux/delayacct.h>
ad4ecbcb 74#include <linux/taskstats_kern.h>
0a425405 75#include <linux/random.h>
522ed776 76#include <linux/tty.h>
fd0928df 77#include <linux/blkdev.h>
5ad4e53b 78#include <linux/fs_struct.h>
7c9f8861 79#include <linux/magic.h>
cdd6c482 80#include <linux/perf_event.h>
42c4ab41 81#include <linux/posix-timers.h>
8e7cac79 82#include <linux/user-return-notifier.h>
3d5992d2 83#include <linux/oom.h>
ba76149f 84#include <linux/khugepaged.h>
d80e731e 85#include <linux/signalfd.h>
0326f5a9 86#include <linux/uprobes.h>
a27bb332 87#include <linux/aio.h>
52f5684c 88#include <linux/compiler.h>
16db3d3f 89#include <linux/sysctl.h>
5c9a8750 90#include <linux/kcov.h>
d83a7cb3 91#include <linux/livepatch.h>
48ac3c18 92#include <linux/thread_info.h>
1da177e4
LT
93
94#include <asm/pgtable.h>
95#include <asm/pgalloc.h>
7c0f6ba6 96#include <linux/uaccess.h>
1da177e4
LT
97#include <asm/mmu_context.h>
98#include <asm/cacheflush.h>
99#include <asm/tlbflush.h>
100
ad8d75ff
SR
101#include <trace/events/sched.h>
102
43d2b113
KH
103#define CREATE_TRACE_POINTS
104#include <trace/events/task.h>
680f7875
SH
105#ifdef CONFIG_USER_NS
106extern int unprivileged_userns_clone;
107#else
108#define unprivileged_userns_clone 0
109#endif
43d2b113 110
ac1b398d
HS
111/*
112 * Minimum number of threads to boot the kernel
113 */
114#define MIN_THREADS 20
115
116/*
117 * Maximum number of threads
118 */
119#define MAX_THREADS FUTEX_TID_MASK
120
1da177e4
LT
121/*
122 * Protected counters by write_lock_irq(&tasklist_lock)
123 */
124unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 125int nr_threads; /* The idle threads do not count.. */
1da177e4
LT
126
127int max_threads; /* tunable limit on nr_threads */
128
129DEFINE_PER_CPU(unsigned long, process_counts) = 0;
130
c59923a1 131__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
132
133#ifdef CONFIG_PROVE_RCU
134int lockdep_tasklist_lock_is_held(void)
135{
136 return lockdep_is_held(&tasklist_lock);
137}
138EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
139#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
140
141int nr_processes(void)
142{
143 int cpu;
144 int total = 0;
145
1d510750 146 for_each_possible_cpu(cpu)
1da177e4
LT
147 total += per_cpu(process_counts, cpu);
148
149 return total;
150}
151
f19b9f74
AM
152void __weak arch_release_task_struct(struct task_struct *tsk)
153{
154}
155
f5e10287 156#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
e18b890b 157static struct kmem_cache *task_struct_cachep;
41101809
TG
158
159static inline struct task_struct *alloc_task_struct_node(int node)
160{
161 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
162}
163
41101809
TG
164static inline void free_task_struct(struct task_struct *tsk)
165{
41101809
TG
166 kmem_cache_free(task_struct_cachep, tsk);
167}
1da177e4
LT
168#endif
169
b235beea 170#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
41101809 171
0d15d74a
TG
172/*
173 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174 * kmemcache based allocator.
175 */
ba14a194 176# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4
AL
177
178#ifdef CONFIG_VMAP_STACK
179/*
180 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181 * flush. Try to minimize the number of calls by caching stacks.
182 */
183#define NR_CACHED_STACKS 2
184static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59
HR
185
186static int free_vm_stack_cache(unsigned int cpu)
187{
188 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
189 int i;
190
191 for (i = 0; i < NR_CACHED_STACKS; i++) {
192 struct vm_struct *vm_stack = cached_vm_stacks[i];
193
194 if (!vm_stack)
195 continue;
196
197 vfree(vm_stack->addr);
198 cached_vm_stacks[i] = NULL;
199 }
200
201 return 0;
202}
ac496bf4
AL
203#endif
204
ba14a194 205static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 206{
ba14a194 207#ifdef CONFIG_VMAP_STACK
ac496bf4
AL
208 void *stack;
209 int i;
210
ac496bf4 211 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
212 struct vm_struct *s;
213
214 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
215
216 if (!s)
217 continue;
ac496bf4 218
ca182551
KK
219 /* Clear stale pointers from reused stack. */
220 memset(s->addr, 0, THREAD_SIZE);
c3169857 221
ac496bf4 222 tsk->stack_vm_area = s;
ac496bf4
AL
223 return s->addr;
224 }
ac496bf4 225
48ac3c18 226 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
ac496bf4 227 VMALLOC_START, VMALLOC_END,
19809c2d 228 THREADINFO_GFP,
ac496bf4
AL
229 PAGE_KERNEL,
230 0, node, __builtin_return_address(0));
ba14a194
AL
231
232 /*
233 * We can't call find_vm_area() in interrupt context, and
234 * free_thread_stack() can be called in interrupt context,
235 * so cache the vm_struct.
236 */
03fb3ef2 237 if (stack) {
ba14a194 238 tsk->stack_vm_area = find_vm_area(stack);
03fb3ef2
RR
239 tsk->stack = stack;
240 }
ba14a194
AL
241 return stack;
242#else
4949148a
VD
243 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
244 THREAD_SIZE_ORDER);
b6a84016
ED
245
246 return page ? page_address(page) : NULL;
ba14a194 247#endif
b69c49b7
FT
248}
249
ba14a194 250static inline void free_thread_stack(struct task_struct *tsk)
b69c49b7 251{
ac496bf4
AL
252#ifdef CONFIG_VMAP_STACK
253 if (task_stack_vm_area(tsk)) {
ac496bf4
AL
254 int i;
255
ac496bf4 256 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
257 if (this_cpu_cmpxchg(cached_stacks[i],
258 NULL, tsk->stack_vm_area) != NULL)
ac496bf4
AL
259 continue;
260
ac496bf4
AL
261 return;
262 }
ac496bf4 263
0f110a9b 264 vfree_atomic(tsk->stack);
ac496bf4
AL
265 return;
266 }
267#endif
268
269 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
b69c49b7 270}
0d15d74a 271# else
b235beea 272static struct kmem_cache *thread_stack_cache;
0d15d74a 273
9521d399 274static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
0d15d74a
TG
275 int node)
276{
03fb3ef2
RR
277 unsigned long *stack;
278 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
279 tsk->stack = stack;
280 return stack;
0d15d74a
TG
281}
282
ba14a194 283static void free_thread_stack(struct task_struct *tsk)
0d15d74a 284{
ba14a194 285 kmem_cache_free(thread_stack_cache, tsk->stack);
0d15d74a
TG
286}
287
b235beea 288void thread_stack_cache_init(void)
0d15d74a 289{
b235beea 290 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
0d15d74a 291 THREAD_SIZE, 0, NULL);
b235beea 292 BUG_ON(thread_stack_cache == NULL);
0d15d74a
TG
293}
294# endif
b69c49b7
FT
295#endif
296
1da177e4 297/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 298static struct kmem_cache *signal_cachep;
1da177e4
LT
299
300/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 301struct kmem_cache *sighand_cachep;
1da177e4
LT
302
303/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 304struct kmem_cache *files_cachep;
1da177e4
LT
305
306/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 307struct kmem_cache *fs_cachep;
1da177e4
LT
308
309/* SLAB cache for vm_area_struct structures */
e88c5cf9 310static struct kmem_cache *vm_area_cachep;
1da177e4
LT
311
312/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 313static struct kmem_cache *mm_cachep;
1da177e4 314
0d2c7e02 315struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
e88c5cf9 316{
0d2c7e02
LT
317 struct vm_area_struct *vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
318
319 if (vma) {
320 vma->vm_mm = mm;
321 INIT_LIST_HEAD(&vma->anon_vma_chain);
322 }
323 return vma;
e88c5cf9
LT
324}
325
326struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
327{
ee8cad6e
LT
328 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
329
330 if (new) {
331 *new = *orig;
332 INIT_LIST_HEAD(&new->anon_vma_chain);
333 }
334 return new;
e88c5cf9
LT
335}
336
337void vm_area_free(struct vm_area_struct *vma)
338{
339 kmem_cache_free(vm_area_cachep, vma);
340}
341
ba14a194 342static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 343{
ba14a194
AL
344 void *stack = task_stack_page(tsk);
345 struct vm_struct *vm = task_stack_vm_area(tsk);
346
347 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
348
349 if (vm) {
350 int i;
351
352 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
353
354 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
355 mod_zone_page_state(page_zone(vm->pages[i]),
356 NR_KERNEL_STACK_KB,
357 PAGE_SIZE / 1024 * account);
358 }
359
360 /* All stack pages belong to the same memcg. */
ed52be7b
JW
361 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
362 account * (THREAD_SIZE / 1024));
ba14a194
AL
363 } else {
364 /*
365 * All stack pages are in the same zone and belong to the
366 * same memcg.
367 */
368 struct page *first_page = virt_to_page(stack);
369
370 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
371 THREAD_SIZE / 1024 * account);
372
ed52be7b
JW
373 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
374 account * (THREAD_SIZE / 1024));
ba14a194 375 }
c6a7f572
KM
376}
377
68f24b08 378static void release_task_stack(struct task_struct *tsk)
1da177e4 379{
405c0759
AL
380 if (WARN_ON(tsk->state != TASK_DEAD))
381 return; /* Better to leak the stack than to free prematurely */
382
ba14a194 383 account_kernel_stack(tsk, -1);
ba14a194 384 free_thread_stack(tsk);
68f24b08
AL
385 tsk->stack = NULL;
386#ifdef CONFIG_VMAP_STACK
387 tsk->stack_vm_area = NULL;
388#endif
389}
390
391#ifdef CONFIG_THREAD_INFO_IN_TASK
392void put_task_stack(struct task_struct *tsk)
393{
394 if (atomic_dec_and_test(&tsk->stack_refcount))
395 release_task_stack(tsk);
396}
397#endif
398
399void free_task(struct task_struct *tsk)
400{
401#ifndef CONFIG_THREAD_INFO_IN_TASK
402 /*
403 * The task is finally done with both the stack and thread_info,
404 * so free both.
405 */
406 release_task_stack(tsk);
407#else
408 /*
409 * If the task had a separate stack allocation, it should be gone
410 * by now.
411 */
412 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
413#endif
23f78d4a 414 rt_mutex_debug_task_free(tsk);
fb52607a 415 ftrace_graph_exit_task(tsk);
e2cfabdf 416 put_seccomp_filter(tsk);
f19b9f74 417 arch_release_task_struct(tsk);
1da5c46f
ON
418 if (tsk->flags & PF_KTHREAD)
419 free_kthread_struct(tsk);
1da177e4
LT
420 free_task_struct(tsk);
421}
422EXPORT_SYMBOL(free_task);
423
ea6d290c
ON
424static inline void free_signal_struct(struct signal_struct *sig)
425{
97101eb4 426 taskstats_tgid_free(sig);
1c5354de 427 sched_autogroup_exit(sig);
7283094e
MH
428 /*
429 * __mmdrop is not safe to call from softirq context on x86 due to
430 * pgd_dtor so postpone it to the async context
431 */
26db62f1 432 if (sig->oom_mm)
7283094e 433 mmdrop_async(sig->oom_mm);
ea6d290c
ON
434 kmem_cache_free(signal_cachep, sig);
435}
436
437static inline void put_signal_struct(struct signal_struct *sig)
438{
1c5354de 439 if (atomic_dec_and_test(&sig->sigcnt))
ea6d290c
ON
440 free_signal_struct(sig);
441}
442
158d9ebd 443void __put_task_struct(struct task_struct *tsk)
1da177e4 444{
270f722d 445 WARN_ON(!tsk->exit_state);
1da177e4
LT
446 WARN_ON(atomic_read(&tsk->usage));
447 WARN_ON(tsk == current);
448
2e91fa7f 449 cgroup_free(tsk);
30197fa5 450 task_numa_free(tsk, true);
1a2a4d06 451 security_task_free(tsk);
e0e81739 452 exit_creds(tsk);
35df17c5 453 delayacct_tsk_free(tsk);
ea6d290c 454 put_signal_struct(tsk->signal);
1da177e4
LT
455
456 if (!profile_handoff_task(tsk))
457 free_task(tsk);
458}
77c100c8 459EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 460
6c0a9fa6 461void __init __weak arch_task_cache_init(void) { }
61c4628b 462
ff691f6e
HS
463/*
464 * set_max_threads
465 */
16db3d3f 466static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 467{
ac1b398d 468 u64 threads;
ff691f6e
HS
469
470 /*
ac1b398d
HS
471 * The number of threads shall be limited such that the thread
472 * structures may only consume a small part of the available memory.
ff691f6e 473 */
ac1b398d
HS
474 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
475 threads = MAX_THREADS;
476 else
477 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
478 (u64) THREAD_SIZE * 8UL);
479
16db3d3f
HS
480 if (threads > max_threads_suggested)
481 threads = max_threads_suggested;
482
ac1b398d 483 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
484}
485
5aaeb5c0
IM
486#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
487/* Initialized by the architecture: */
488int arch_task_struct_size __read_mostly;
489#endif
0c8c0f03 490
ff691f6e 491void __init fork_init(void)
1da177e4 492{
25f9c081 493 int i;
f5e10287 494#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1da177e4 495#ifndef ARCH_MIN_TASKALIGN
e274795e 496#define ARCH_MIN_TASKALIGN 0
1da177e4 497#endif
95cb64c1 498 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
e274795e 499
1da177e4 500 /* create a slab on which task_structs can be allocated */
5d097056 501 task_struct_cachep = kmem_cache_create("task_struct",
e274795e 502 arch_task_struct_size, align,
75f296d9 503 SLAB_PANIC|SLAB_ACCOUNT, NULL);
1da177e4
LT
504#endif
505
61c4628b
SS
506 /* do the arch specific task caches init */
507 arch_task_cache_init();
508
16db3d3f 509 set_max_threads(MAX_THREADS);
1da177e4
LT
510
511 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
512 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
513 init_task.signal->rlim[RLIMIT_SIGPENDING] =
514 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 515
25f9c081
EB
516 for (i = 0; i < UCOUNT_COUNTS; i++) {
517 init_user_ns.ucount_max[i] = max_threads/2;
518 }
19659c59
HR
519
520#ifdef CONFIG_VMAP_STACK
521 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
522 NULL, free_vm_stack_cache);
523#endif
b09be676
BP
524
525 lockdep_init_task(&init_task);
1da177e4
LT
526}
527
52f5684c 528int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
529 struct task_struct *src)
530{
531 *dst = *src;
532 return 0;
533}
534
d4311ff1
AT
535void set_task_stack_end_magic(struct task_struct *tsk)
536{
537 unsigned long *stackend;
538
539 stackend = end_of_stack(tsk);
540 *stackend = STACK_END_MAGIC; /* for overflow detection */
541}
542
725fc629 543static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
544{
545 struct task_struct *tsk;
b235beea 546 unsigned long *stack;
ba14a194 547 struct vm_struct *stack_vm_area;
3e26c149 548 int err;
1da177e4 549
725fc629
AK
550 if (node == NUMA_NO_NODE)
551 node = tsk_fork_get_node(orig);
504f52b5 552 tsk = alloc_task_struct_node(node);
1da177e4
LT
553 if (!tsk)
554 return NULL;
555
b235beea
LT
556 stack = alloc_thread_stack_node(tsk, node);
557 if (!stack)
f19b9f74 558 goto free_tsk;
1da177e4 559
ba14a194
AL
560 stack_vm_area = task_stack_vm_area(tsk);
561
fb0a685c 562 err = arch_dup_task_struct(tsk, orig);
ba14a194
AL
563
564 /*
565 * arch_dup_task_struct() clobbers the stack-related fields. Make
566 * sure they're properly initialized before using any stack-related
567 * functions again.
568 */
569 tsk->stack = stack;
570#ifdef CONFIG_VMAP_STACK
571 tsk->stack_vm_area = stack_vm_area;
572#endif
68f24b08
AL
573#ifdef CONFIG_THREAD_INFO_IN_TASK
574 atomic_set(&tsk->stack_refcount, 1);
575#endif
ba14a194 576
164c33c6 577 if (err)
b235beea 578 goto free_stack;
164c33c6 579
dbd95212
KC
580#ifdef CONFIG_SECCOMP
581 /*
582 * We must handle setting up seccomp filters once we're under
583 * the sighand lock in case orig has changed between now and
584 * then. Until then, filter must be NULL to avoid messing up
585 * the usage counts on the error path calling free_task.
586 */
587 tsk->seccomp.filter = NULL;
588#endif
87bec58a
AM
589
590 setup_thread_stack(tsk, orig);
8e7cac79 591 clear_user_return_notifier(tsk);
f26f9aff 592 clear_tsk_need_resched(tsk);
d4311ff1 593 set_task_stack_end_magic(tsk);
1da177e4 594
0a425405 595#ifdef CONFIG_CC_STACKPROTECTOR
7cd815bc 596 tsk->stack_canary = get_random_canary();
0a425405
AV
597#endif
598
fb0a685c
DRO
599 /*
600 * One for us, one for whoever does the "release_task()" (usually
601 * parent)
602 */
603 atomic_set(&tsk->usage, 2);
6c5c9341 604#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 605 tsk->btrace_seq = 0;
6c5c9341 606#endif
a0aa7f68 607 tsk->splice_pipe = NULL;
5640f768 608 tsk->task_frag.page = NULL;
093e5840 609 tsk->wake_q.next = NULL;
c6a7f572 610
ba14a194 611 account_kernel_stack(tsk, 1);
c6a7f572 612
5c9a8750
DV
613 kcov_task_init(tsk);
614
e41d5818
DV
615#ifdef CONFIG_FAULT_INJECTION
616 tsk->fail_nth = 0;
617#endif
618
1da177e4 619 return tsk;
61c4628b 620
b235beea 621free_stack:
ba14a194 622 free_thread_stack(tsk);
f19b9f74 623free_tsk:
61c4628b
SS
624 free_task_struct(tsk);
625 return NULL;
1da177e4
LT
626}
627
628#ifdef CONFIG_MMU
0766f788
ER
629static __latent_entropy int dup_mmap(struct mm_struct *mm,
630 struct mm_struct *oldmm)
1da177e4 631{
297c5eee 632 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
1da177e4
LT
633 struct rb_node **rb_link, *rb_parent;
634 int retval;
635 unsigned long charge;
893e26e6 636 LIST_HEAD(uf);
1da177e4 637
32cdba1e 638 uprobe_start_dup_mmap();
7c051267
MH
639 if (down_write_killable(&oldmm->mmap_sem)) {
640 retval = -EINTR;
641 goto fail_uprobe_end;
642 }
ec8c0446 643 flush_cache_dup_mm(oldmm);
f8ac4ec9 644 uprobe_dup_mmap(oldmm, mm);
ad339451
IM
645 /*
646 * Not linked in yet - no deadlock potential:
647 */
648 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
7ee78232 649
90f31d0e
KK
650 /* No ordering required: file already has been exposed. */
651 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
652
4f7d4614 653 mm->total_vm = oldmm->total_vm;
84638335 654 mm->data_vm = oldmm->data_vm;
4f7d4614
VD
655 mm->exec_vm = oldmm->exec_vm;
656 mm->stack_vm = oldmm->stack_vm;
657
1da177e4
LT
658 rb_link = &mm->mm_rb.rb_node;
659 rb_parent = NULL;
660 pprev = &mm->mmap;
f8af4da3 661 retval = ksm_fork(mm, oldmm);
ba76149f
AA
662 if (retval)
663 goto out;
664 retval = khugepaged_fork(mm, oldmm);
f8af4da3
HD
665 if (retval)
666 goto out;
1da177e4 667
297c5eee 668 prev = NULL;
fd3e42fc 669 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
1da177e4
LT
670 struct file *file;
671
672 if (mpnt->vm_flags & VM_DONTCOPY) {
84638335 673 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
1da177e4
LT
674 continue;
675 }
676 charge = 0;
32f0a536
TH
677 /*
678 * Don't duplicate many vmas if we've been oom-killed (for
679 * example)
680 */
681 if (fatal_signal_pending(current)) {
682 retval = -EINTR;
683 goto out;
684 }
1da177e4 685 if (mpnt->vm_flags & VM_ACCOUNT) {
b2412b7f
HS
686 unsigned long len = vma_pages(mpnt);
687
191c5424 688 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
1da177e4
LT
689 goto fail_nomem;
690 charge = len;
691 }
e88c5cf9 692 tmp = vm_area_dup(mpnt);
1da177e4
LT
693 if (!tmp)
694 goto fail_nomem;
ef0855d3
ON
695 retval = vma_dup_policy(mpnt, tmp);
696 if (retval)
1da177e4 697 goto fail_nomem_policy;
a247c3a9 698 tmp->vm_mm = mm;
893e26e6
PE
699 retval = dup_userfaultfd(tmp, &uf);
700 if (retval)
701 goto fail_nomem_anon_vma_fork;
d2cd9ede
RR
702 if (tmp->vm_flags & VM_WIPEONFORK) {
703 /* VM_WIPEONFORK gets a clean slate in the child. */
704 tmp->anon_vma = NULL;
705 if (anon_vma_prepare(tmp))
706 goto fail_nomem_anon_vma_fork;
707 } else if (anon_vma_fork(tmp, mpnt))
5beb4930 708 goto fail_nomem_anon_vma_fork;
893e26e6 709 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
297c5eee 710 tmp->vm_next = tmp->vm_prev = NULL;
1da177e4
LT
711 file = tmp->vm_file;
712 if (file) {
496ad9aa 713 struct inode *inode = file_inode(file);
b88ed205
HD
714 struct address_space *mapping = file->f_mapping;
715
c088e31d 716 vma_get_file(tmp);
1da177e4
LT
717 if (tmp->vm_flags & VM_DENYWRITE)
718 atomic_dec(&inode->i_writecount);
83cde9e8 719 i_mmap_lock_write(mapping);
b88ed205 720 if (tmp->vm_flags & VM_SHARED)
4bb5f5d9 721 atomic_inc(&mapping->i_mmap_writable);
b88ed205
HD
722 flush_dcache_mmap_lock(mapping);
723 /* insert tmp into the share list, just after mpnt */
27ba0644
KS
724 vma_interval_tree_insert_after(tmp, mpnt,
725 &mapping->i_mmap);
b88ed205 726 flush_dcache_mmap_unlock(mapping);
83cde9e8 727 i_mmap_unlock_write(mapping);
1da177e4
LT
728 }
729
a1e78772
MG
730 /*
731 * Clear hugetlb-related page reserves for children. This only
732 * affects MAP_PRIVATE mappings. Faults generated by the child
733 * are not guaranteed to succeed, even if read-only
734 */
735 if (is_vm_hugetlb_page(tmp))
736 reset_vma_resv_huge_pages(tmp);
737
1da177e4 738 /*
7ee78232 739 * Link in the new vma and copy the page table entries.
1da177e4 740 */
1da177e4
LT
741 *pprev = tmp;
742 pprev = &tmp->vm_next;
297c5eee
LT
743 tmp->vm_prev = prev;
744 prev = tmp;
1da177e4
LT
745
746 __vma_link_rb(mm, tmp, rb_link, rb_parent);
747 rb_link = &tmp->vm_rb.rb_right;
748 rb_parent = &tmp->vm_rb;
749
750 mm->map_count++;
d2cd9ede
RR
751 if (!(tmp->vm_flags & VM_WIPEONFORK))
752 retval = copy_page_range(mm, oldmm, mpnt);
1da177e4
LT
753
754 if (tmp->vm_ops && tmp->vm_ops->open)
755 tmp->vm_ops->open(tmp);
756
757 if (retval)
758 goto out;
759 }
d6dd61c8 760 /* a new mm has just been created */
c10e83f5 761 retval = arch_dup_mmap(oldmm, mm);
1da177e4 762out:
7ee78232 763 up_write(&mm->mmap_sem);
fd3e42fc 764 flush_tlb_mm(oldmm);
1da177e4 765 up_write(&oldmm->mmap_sem);
893e26e6 766 dup_userfaultfd_complete(&uf);
7c051267 767fail_uprobe_end:
32cdba1e 768 uprobe_end_dup_mmap();
1da177e4 769 return retval;
5beb4930 770fail_nomem_anon_vma_fork:
ef0855d3 771 mpol_put(vma_policy(tmp));
1da177e4 772fail_nomem_policy:
e88c5cf9 773 vm_area_free(tmp);
1da177e4
LT
774fail_nomem:
775 retval = -ENOMEM;
776 vm_unacct_memory(charge);
777 goto out;
778}
779
fb0a685c 780static inline int mm_alloc_pgd(struct mm_struct *mm)
1da177e4
LT
781{
782 mm->pgd = pgd_alloc(mm);
783 if (unlikely(!mm->pgd))
784 return -ENOMEM;
785 return 0;
786}
787
fb0a685c 788static inline void mm_free_pgd(struct mm_struct *mm)
1da177e4 789{
5e541973 790 pgd_free(mm, mm->pgd);
1da177e4
LT
791}
792#else
90f31d0e
KK
793static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
794{
795 down_write(&oldmm->mmap_sem);
796 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
797 up_write(&oldmm->mmap_sem);
798 return 0;
799}
1da177e4
LT
800#define mm_alloc_pgd(mm) (0)
801#define mm_free_pgd(mm)
802#endif /* CONFIG_MMU */
803
23ff4440 804__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 805
e94b1766 806#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
1da177e4
LT
807#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
808
4cb0e11b
HK
809static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
810
811static int __init coredump_filter_setup(char *s)
812{
813 default_dump_filter =
814 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
815 MMF_DUMP_FILTER_MASK;
816 return 1;
817}
818
819__setup("coredump_filter=", coredump_filter_setup);
820
1da177e4
LT
821#include <linux/init_task.h>
822
858f0993
AD
823static void mm_init_aio(struct mm_struct *mm)
824{
825#ifdef CONFIG_AIO
826 spin_lock_init(&mm->ioctx_lock);
db446a08 827 mm->ioctx_table = NULL;
858f0993
AD
828#endif
829}
830
343ef896
AA
831static __always_inline void mm_clear_owner(struct mm_struct *mm,
832 struct task_struct *p)
833{
834#ifdef CONFIG_MEMCG
835 if (mm->owner == p)
836 WRITE_ONCE(mm->owner, NULL);
837#endif
838}
839
33144e84
VD
840static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
841{
842#ifdef CONFIG_MEMCG
843 mm->owner = p;
844#endif
845}
846
355627f5
EB
847static void mm_init_uprobes_state(struct mm_struct *mm)
848{
849#ifdef CONFIG_UPROBES
850 mm->uprobes_state.xol_area = NULL;
851#endif
852}
853
bfedb589
EB
854static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
855 struct user_namespace *user_ns)
1da177e4 856{
41f727fd
VD
857 mm->mmap = NULL;
858 mm->mm_rb = RB_ROOT;
859 mm->vmacache_seqnum = 0;
1da177e4
LT
860 atomic_set(&mm->mm_users, 1);
861 atomic_set(&mm->mm_count, 1);
862 init_rwsem(&mm->mmap_sem);
863 INIT_LIST_HEAD(&mm->mmlist);
999d9fc1 864 mm->core_state = NULL;
af5b0f6a 865 mm_pgtables_bytes_init(mm);
41f727fd
VD
866 mm->map_count = 0;
867 mm->locked_vm = 0;
ce65cefa 868 mm->pinned_vm = 0;
d559db08 869 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 870 spin_lock_init(&mm->page_table_lock);
41f727fd 871 mm_init_cpumask(mm);
858f0993 872 mm_init_aio(mm);
cf475ad2 873 mm_init_owner(mm, p);
2b7e8665 874 RCU_INIT_POINTER(mm->exe_file, NULL);
41f727fd 875 mmu_notifier_mm_init(mm);
133ff0ea 876 hmm_mm_init(mm);
16af97dc 877 init_tlb_flush_pending(mm);
41f727fd
VD
878#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
879 mm->pmd_huge_pte = NULL;
880#endif
355627f5 881 mm_init_uprobes_state(mm);
1da177e4 882
a0715cc2
AT
883 if (current->mm) {
884 mm->flags = current->mm->flags & MMF_INIT_MASK;
885 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
886 } else {
887 mm->flags = default_dump_filter;
1da177e4 888 mm->def_flags = 0;
a0715cc2
AT
889 }
890
41f727fd
VD
891 if (mm_alloc_pgd(mm))
892 goto fail_nopgd;
893
894 if (init_new_context(p, mm))
895 goto fail_nocontext;
78fb7466 896
bfedb589 897 mm->user_ns = get_user_ns(user_ns);
41f727fd
VD
898 return mm;
899
900fail_nocontext:
901 mm_free_pgd(mm);
902fail_nopgd:
1da177e4
LT
903 free_mm(mm);
904 return NULL;
905}
906
c3f0327f
KK
907static void check_mm(struct mm_struct *mm)
908{
909 int i;
910
911 for (i = 0; i < NR_MM_COUNTERS; i++) {
912 long x = atomic_long_read(&mm->rss_stat.count[i]);
913
914 if (unlikely(x))
915 printk(KERN_ALERT "BUG: Bad rss-counter state "
916 "mm:%p idx:%d val:%ld\n", mm, i, x);
917 }
b30fe6c7 918
af5b0f6a
KS
919 if (mm_pgtables_bytes(mm))
920 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
921 mm_pgtables_bytes(mm));
b30fe6c7 922
e009bb30 923#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
96dad67f 924 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
c3f0327f
KK
925#endif
926}
927
1da177e4
LT
928/*
929 * Allocate and initialize an mm_struct.
930 */
fb0a685c 931struct mm_struct *mm_alloc(void)
1da177e4 932{
fb0a685c 933 struct mm_struct *mm;
1da177e4
LT
934
935 mm = allocate_mm();
de03c72c
KM
936 if (!mm)
937 return NULL;
938
939 memset(mm, 0, sizeof(*mm));
bfedb589 940 return mm_init(mm, current, current_user_ns());
1da177e4
LT
941}
942
943/*
944 * Called when the last reference to the mm
945 * is dropped: either by a lazy thread or by
946 * mmput. Free the page directory and the mm.
947 */
7ad5b3a5 948void __mmdrop(struct mm_struct *mm)
1da177e4
LT
949{
950 BUG_ON(mm == &init_mm);
951 mm_free_pgd(mm);
952 destroy_context(mm);
133ff0ea 953 hmm_mm_destroy(mm);
cddb8a5c 954 mmu_notifier_mm_destroy(mm);
c3f0327f 955 check_mm(mm);
bfedb589 956 put_user_ns(mm->user_ns);
1da177e4
LT
957 free_mm(mm);
958}
6d4e4c4f 959EXPORT_SYMBOL_GPL(__mmdrop);
1da177e4 960
ec8d7c14
MH
961static inline void __mmput(struct mm_struct *mm)
962{
963 VM_BUG_ON(atomic_read(&mm->mm_users));
964
965 uprobe_clear_state(mm);
966 exit_aio(mm);
967 ksm_exit(mm);
968 khugepaged_exit(mm); /* must run before exit_mmap */
969 exit_mmap(mm);
6fcb52a5 970 mm_put_huge_zero_page(mm);
ec8d7c14
MH
971 set_mm_exe_file(mm, NULL);
972 if (!list_empty(&mm->mmlist)) {
973 spin_lock(&mmlist_lock);
974 list_del(&mm->mmlist);
975 spin_unlock(&mmlist_lock);
976 }
977 if (mm->binfmt)
978 module_put(mm->binfmt->module);
979 mmdrop(mm);
980}
981
1da177e4
LT
982/*
983 * Decrement the use count and release all resources for an mm.
984 */
985void mmput(struct mm_struct *mm)
986{
0ae26f1b
AM
987 might_sleep();
988
ec8d7c14
MH
989 if (atomic_dec_and_test(&mm->mm_users))
990 __mmput(mm);
991}
992EXPORT_SYMBOL_GPL(mmput);
993
a1b2289c
SY
994#ifdef CONFIG_MMU
995static void mmput_async_fn(struct work_struct *work)
996{
997 struct mm_struct *mm = container_of(work, struct mm_struct,
998 async_put_work);
999
1000 __mmput(mm);
1001}
1002
1003void mmput_async(struct mm_struct *mm)
1004{
1005 if (atomic_dec_and_test(&mm->mm_users)) {
1006 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1007 schedule_work(&mm->async_put_work);
1008 }
1009}
1010#endif
1011
90f31d0e
KK
1012/**
1013 * set_mm_exe_file - change a reference to the mm's executable file
1014 *
1015 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1016 *
6e399cd1
DB
1017 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1018 * invocations: in mmput() nobody alive left, in execve task is single
1019 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1020 * mm->exe_file, but does so without using set_mm_exe_file() in order
1021 * to do avoid the need for any locks.
90f31d0e 1022 */
38646013
JS
1023void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1024{
6e399cd1
DB
1025 struct file *old_exe_file;
1026
1027 /*
1028 * It is safe to dereference the exe_file without RCU as
1029 * this function is only called if nobody else can access
1030 * this mm -- see comment above for justification.
1031 */
1032 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 1033
38646013
JS
1034 if (new_exe_file)
1035 get_file(new_exe_file);
90f31d0e
KK
1036 rcu_assign_pointer(mm->exe_file, new_exe_file);
1037 if (old_exe_file)
1038 fput(old_exe_file);
38646013
JS
1039}
1040
90f31d0e
KK
1041/**
1042 * get_mm_exe_file - acquire a reference to the mm's executable file
1043 *
1044 * Returns %NULL if mm has no associated executable file.
1045 * User must release file via fput().
1046 */
38646013
JS
1047struct file *get_mm_exe_file(struct mm_struct *mm)
1048{
1049 struct file *exe_file;
1050
90f31d0e
KK
1051 rcu_read_lock();
1052 exe_file = rcu_dereference(mm->exe_file);
1053 if (exe_file && !get_file_rcu(exe_file))
1054 exe_file = NULL;
1055 rcu_read_unlock();
38646013
JS
1056 return exe_file;
1057}
11163348 1058EXPORT_SYMBOL(get_mm_exe_file);
38646013 1059
cd81a917
MG
1060/**
1061 * get_task_exe_file - acquire a reference to the task's executable file
1062 *
1063 * Returns %NULL if task's mm (if any) has no associated executable file or
1064 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1065 * User must release file via fput().
1066 */
1067struct file *get_task_exe_file(struct task_struct *task)
1068{
1069 struct file *exe_file = NULL;
1070 struct mm_struct *mm;
1071
1072 task_lock(task);
1073 mm = task->mm;
1074 if (mm) {
1075 if (!(task->flags & PF_KTHREAD))
1076 exe_file = get_mm_exe_file(mm);
1077 }
1078 task_unlock(task);
1079 return exe_file;
1080}
1081EXPORT_SYMBOL(get_task_exe_file);
38646013 1082
1da177e4
LT
1083/**
1084 * get_task_mm - acquire a reference to the task's mm
1085 *
246bb0b1 1086 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1087 * this kernel workthread has transiently adopted a user mm with use_mm,
1088 * to do its AIO) is not set and if so returns a reference to it, after
1089 * bumping up the use count. User must release the mm via mmput()
1090 * after use. Typically used by /proc and ptrace.
1091 */
1092struct mm_struct *get_task_mm(struct task_struct *task)
1093{
1094 struct mm_struct *mm;
1095
1096 task_lock(task);
1097 mm = task->mm;
1098 if (mm) {
246bb0b1 1099 if (task->flags & PF_KTHREAD)
1da177e4
LT
1100 mm = NULL;
1101 else
3fce371b 1102 mmget(mm);
1da177e4
LT
1103 }
1104 task_unlock(task);
1105 return mm;
1106}
1107EXPORT_SYMBOL_GPL(get_task_mm);
1108
8cdb878d
CY
1109struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1110{
1111 struct mm_struct *mm;
1112 int err;
1113
1114 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1115 if (err)
1116 return ERR_PTR(err);
1117
1118 mm = get_task_mm(task);
1119 if (mm && mm != current->mm &&
1120 !ptrace_may_access(task, mode)) {
1121 mmput(mm);
1122 mm = ERR_PTR(-EACCES);
1123 }
1124 mutex_unlock(&task->signal->cred_guard_mutex);
1125
1126 return mm;
1127}
1128
57b59c4a 1129static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1130{
d68b46fe 1131 struct completion *vfork;
c415c3b4 1132
d68b46fe
ON
1133 task_lock(tsk);
1134 vfork = tsk->vfork_done;
1135 if (likely(vfork)) {
1136 tsk->vfork_done = NULL;
1137 complete(vfork);
1138 }
1139 task_unlock(tsk);
1140}
1141
1142static int wait_for_vfork_done(struct task_struct *child,
1143 struct completion *vfork)
1144{
1145 int killed;
1146
1147 freezer_do_not_count();
1148 killed = wait_for_completion_killable(vfork);
1149 freezer_count();
1150
1151 if (killed) {
1152 task_lock(child);
1153 child->vfork_done = NULL;
1154 task_unlock(child);
1155 }
1156
1157 put_task_struct(child);
1158 return killed;
c415c3b4
ON
1159}
1160
1da177e4
LT
1161/* Please note the differences between mmput and mm_release.
1162 * mmput is called whenever we stop holding onto a mm_struct,
1163 * error success whatever.
1164 *
1165 * mm_release is called after a mm_struct has been removed
1166 * from the current process.
1167 *
1168 * This difference is important for error handling, when we
1169 * only half set up a mm_struct for a new process and need to restore
1170 * the old one. Because we mmput the new mm_struct before
1171 * restoring the old one. . .
1172 * Eric Biederman 10 January 1998
1173 */
0c10e4b6 1174static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1da177e4 1175{
0326f5a9
SD
1176 uprobe_free_utask(tsk);
1177
1da177e4
LT
1178 /* Get rid of any cached register state */
1179 deactivate_mm(tsk, mm);
1180
fec1d011 1181 /*
735f2770
MH
1182 * Signal userspace if we're not exiting with a core dump
1183 * because we want to leave the value intact for debugging
1184 * purposes.
fec1d011 1185 */
9c8a8228 1186 if (tsk->clear_child_tid) {
735f2770 1187 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
9c8a8228
ED
1188 atomic_read(&mm->mm_users) > 1) {
1189 /*
1190 * We don't check the error code - if userspace has
1191 * not set up a proper pointer then tough luck.
1192 */
1193 put_user(0, tsk->clear_child_tid);
1194 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1195 1, NULL, NULL, 0);
1196 }
1da177e4 1197 tsk->clear_child_tid = NULL;
1da177e4 1198 }
f7505d64
KK
1199
1200 /*
1201 * All done, finally we can wake up parent and return this mm to him.
1202 * Also kthread_stop() uses this completion for synchronization.
1203 */
1204 if (tsk->vfork_done)
1205 complete_vfork_done(tsk);
1da177e4
LT
1206}
1207
0c10e4b6
TG
1208void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1209{
b19fd552 1210 futex_exit_release(tsk);
0c10e4b6
TG
1211 mm_release(tsk, mm);
1212}
1213
1214void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1215{
b19fd552 1216 futex_exec_release(tsk);
0c10e4b6
TG
1217 mm_release(tsk, mm);
1218}
1219
a0a7ec30
JD
1220/*
1221 * Allocate a new mm structure and copy contents from the
1222 * mm structure of the passed in task structure.
1223 */
ff252c1f 1224static struct mm_struct *dup_mm(struct task_struct *tsk)
a0a7ec30
JD
1225{
1226 struct mm_struct *mm, *oldmm = current->mm;
1227 int err;
1228
a0a7ec30
JD
1229 mm = allocate_mm();
1230 if (!mm)
1231 goto fail_nomem;
1232
1233 memcpy(mm, oldmm, sizeof(*mm));
1234
bfedb589 1235 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1236 goto fail_nomem;
1237
a0a7ec30
JD
1238 err = dup_mmap(mm, oldmm);
1239 if (err)
1240 goto free_pt;
1241
1242 mm->hiwater_rss = get_mm_rss(mm);
1243 mm->hiwater_vm = mm->total_vm;
1244
801460d0
HS
1245 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1246 goto free_pt;
1247
a0a7ec30
JD
1248 return mm;
1249
1250free_pt:
801460d0
HS
1251 /* don't put binfmt in mmput, we haven't got module yet */
1252 mm->binfmt = NULL;
343ef896 1253 mm_init_owner(mm, NULL);
a0a7ec30
JD
1254 mmput(mm);
1255
1256fail_nomem:
1257 return NULL;
a0a7ec30
JD
1258}
1259
fb0a685c 1260static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1261{
fb0a685c 1262 struct mm_struct *mm, *oldmm;
1da177e4
LT
1263 int retval;
1264
1265 tsk->min_flt = tsk->maj_flt = 0;
1266 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1267#ifdef CONFIG_DETECT_HUNG_TASK
1268 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1269#endif
1da177e4
LT
1270
1271 tsk->mm = NULL;
1272 tsk->active_mm = NULL;
1273
1274 /*
1275 * Are we cloning a kernel thread?
1276 *
1277 * We need to steal a active VM for that..
1278 */
1279 oldmm = current->mm;
1280 if (!oldmm)
1281 return 0;
1282
615d6e87
DB
1283 /* initialize the new vmacache entries */
1284 vmacache_flush(tsk);
1285
1da177e4 1286 if (clone_flags & CLONE_VM) {
3fce371b 1287 mmget(oldmm);
1da177e4 1288 mm = oldmm;
1da177e4
LT
1289 goto good_mm;
1290 }
1291
1292 retval = -ENOMEM;
a0a7ec30 1293 mm = dup_mm(tsk);
1da177e4
LT
1294 if (!mm)
1295 goto fail_nomem;
1296
1da177e4
LT
1297good_mm:
1298 tsk->mm = mm;
1299 tsk->active_mm = mm;
1300 return 0;
1301
1da177e4
LT
1302fail_nomem:
1303 return retval;
1da177e4
LT
1304}
1305
a39bc516 1306static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1307{
498052bb 1308 struct fs_struct *fs = current->fs;
1da177e4 1309 if (clone_flags & CLONE_FS) {
498052bb 1310 /* tsk->fs is already what we want */
2a4419b5 1311 spin_lock(&fs->lock);
498052bb 1312 if (fs->in_exec) {
2a4419b5 1313 spin_unlock(&fs->lock);
498052bb
AV
1314 return -EAGAIN;
1315 }
1316 fs->users++;
2a4419b5 1317 spin_unlock(&fs->lock);
1da177e4
LT
1318 return 0;
1319 }
498052bb 1320 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1321 if (!tsk->fs)
1322 return -ENOMEM;
1323 return 0;
1324}
1325
fb0a685c 1326static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
a016f338
JD
1327{
1328 struct files_struct *oldf, *newf;
1329 int error = 0;
1330
1331 /*
1332 * A background process may not have any files ...
1333 */
1334 oldf = current->files;
1335 if (!oldf)
1336 goto out;
1337
1338 if (clone_flags & CLONE_FILES) {
1339 atomic_inc(&oldf->count);
1340 goto out;
1341 }
1342
a016f338
JD
1343 newf = dup_fd(oldf, &error);
1344 if (!newf)
1345 goto out;
1346
1347 tsk->files = newf;
1348 error = 0;
1349out:
1350 return error;
1351}
1352
fadad878 1353static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
fd0928df
JA
1354{
1355#ifdef CONFIG_BLOCK
1356 struct io_context *ioc = current->io_context;
6e736be7 1357 struct io_context *new_ioc;
fd0928df
JA
1358
1359 if (!ioc)
1360 return 0;
fadad878
JA
1361 /*
1362 * Share io context with parent, if CLONE_IO is set
1363 */
1364 if (clone_flags & CLONE_IO) {
3d48749d
TH
1365 ioc_task_link(ioc);
1366 tsk->io_context = ioc;
fadad878 1367 } else if (ioprio_valid(ioc->ioprio)) {
6e736be7
TH
1368 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1369 if (unlikely(!new_ioc))
fd0928df
JA
1370 return -ENOMEM;
1371
6e736be7 1372 new_ioc->ioprio = ioc->ioprio;
11a3122f 1373 put_io_context(new_ioc);
fd0928df
JA
1374 }
1375#endif
1376 return 0;
1377}
1378
a39bc516 1379static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1380{
1381 struct sighand_struct *sig;
1382
60348802 1383 if (clone_flags & CLONE_SIGHAND) {
1da177e4
LT
1384 atomic_inc(&current->sighand->count);
1385 return 0;
1386 }
1387 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
e56d0903 1388 rcu_assign_pointer(tsk->sighand, sig);
1da177e4
LT
1389 if (!sig)
1390 return -ENOMEM;
9d7fb042 1391
1da177e4 1392 atomic_set(&sig->count, 1);
9aa84979 1393 spin_lock_irq(&current->sighand->siglock);
1da177e4 1394 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
9aa84979 1395 spin_unlock_irq(&current->sighand->siglock);
1da177e4
LT
1396 return 0;
1397}
1398
a7e5328a 1399void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1400{
d80e731e
ON
1401 if (atomic_dec_and_test(&sighand->count)) {
1402 signalfd_cleanup(sighand);
392809b2 1403 /*
5f0d5a3a 1404 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1405 * without an RCU grace period, see __lock_task_sighand().
1406 */
c81addc9 1407 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1408 }
c81addc9
ON
1409}
1410
b18b6a9c 1411#ifdef CONFIG_POSIX_TIMERS
f06febc9
FM
1412/*
1413 * Initialize POSIX timer handling for a thread group.
1414 */
1415static void posix_cpu_timers_init_group(struct signal_struct *sig)
1416{
78d7d407
JS
1417 unsigned long cpu_limit;
1418
316c1608 1419 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
78d7d407 1420 if (cpu_limit != RLIM_INFINITY) {
ebd7e7fc 1421 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
d5c373eb 1422 sig->cputimer.running = true;
6279a751
ON
1423 }
1424
f06febc9
FM
1425 /* The timer lists. */
1426 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1427 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1428 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1429}
b18b6a9c
NP
1430#else
1431static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1432#endif
f06febc9 1433
a39bc516 1434static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1435{
1436 struct signal_struct *sig;
1da177e4 1437
4ab6c083 1438 if (clone_flags & CLONE_THREAD)
490dea45 1439 return 0;
490dea45 1440
a56704ef 1441 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1442 tsk->signal = sig;
1443 if (!sig)
1444 return -ENOMEM;
1445
b3ac022c 1446 sig->nr_threads = 1;
1da177e4 1447 atomic_set(&sig->live, 1);
b3ac022c 1448 atomic_set(&sig->sigcnt, 1);
0c740d0a
ON
1449
1450 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1451 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1452 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1453
1da177e4 1454 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1455 sig->curr_target = tsk;
1da177e4 1456 init_sigpending(&sig->shared_pending);
e78c3496 1457 seqlock_init(&sig->stats_lock);
9d7fb042 1458 prev_cputime_init(&sig->prev_cputime);
1da177e4 1459
baa73d9e 1460#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1461 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1462 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1463 sig->real_timer.function = it_real_fn;
baa73d9e 1464#endif
1da177e4 1465
1da177e4
LT
1466 task_lock(current->group_leader);
1467 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1468 task_unlock(current->group_leader);
1469
6279a751
ON
1470 posix_cpu_timers_init_group(sig);
1471
522ed776 1472 tty_audit_fork(sig);
5091faa4 1473 sched_autogroup_fork(sig);
522ed776 1474
a63d83f4 1475 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1476 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1477
9b1bf12d
KM
1478 mutex_init(&sig->cred_guard_mutex);
1479
1da177e4
LT
1480 return 0;
1481}
1482
dbd95212
KC
1483static void copy_seccomp(struct task_struct *p)
1484{
1485#ifdef CONFIG_SECCOMP
1486 /*
1487 * Must be called with sighand->lock held, which is common to
1488 * all threads in the group. Holding cred_guard_mutex is not
1489 * needed because this new task is not yet running and cannot
1490 * be racing exec.
1491 */
69f6a34b 1492 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1493
1494 /* Ref-count the new filter user, and assign it. */
1495 get_seccomp_filter(current);
1496 p->seccomp = current->seccomp;
1497
1498 /*
1499 * Explicitly enable no_new_privs here in case it got set
1500 * between the task_struct being duplicated and holding the
1501 * sighand lock. The seccomp state and nnp must be in sync.
1502 */
1503 if (task_no_new_privs(current))
1504 task_set_no_new_privs(p);
1505
1506 /*
1507 * If the parent gained a seccomp mode after copying thread
1508 * flags and between before we held the sighand lock, we have
1509 * to manually enable the seccomp thread flag here.
1510 */
1511 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1512 set_tsk_thread_flag(p, TIF_SECCOMP);
1513#endif
1514}
1515
17da2bd9 1516SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1517{
1518 current->clear_child_tid = tidptr;
1519
b488893a 1520 return task_pid_vnr(current);
1da177e4
LT
1521}
1522
a39bc516 1523static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1524{
1d615482 1525 raw_spin_lock_init(&p->pi_lock);
e29e175b 1526#ifdef CONFIG_RT_MUTEXES
a23ba907 1527 p->pi_waiters = RB_ROOT_CACHED;
e96a7705 1528 p->pi_top_task = NULL;
23f78d4a 1529 p->pi_blocked_on = NULL;
23f78d4a
IM
1530#endif
1531}
1532
b18b6a9c 1533#ifdef CONFIG_POSIX_TIMERS
f06febc9
FM
1534/*
1535 * Initialize POSIX timer handling for a single task.
1536 */
1537static void posix_cpu_timers_init(struct task_struct *tsk)
1538{
64861634
MS
1539 tsk->cputime_expires.prof_exp = 0;
1540 tsk->cputime_expires.virt_exp = 0;
f06febc9
FM
1541 tsk->cputime_expires.sched_exp = 0;
1542 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1543 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1544 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1545}
b18b6a9c
NP
1546#else
1547static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1548#endif
f06febc9 1549
81907739
ON
1550static inline void
1551init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1552{
1553 task->pids[type].pid = pid;
1554}
1555
6bfbaa51
IM
1556static inline void rcu_copy_process(struct task_struct *p)
1557{
1558#ifdef CONFIG_PREEMPT_RCU
1559 p->rcu_read_lock_nesting = 0;
1560 p->rcu_read_unlock_special.s = 0;
1561 p->rcu_blocked_node = NULL;
1562 INIT_LIST_HEAD(&p->rcu_node_entry);
1563#endif /* #ifdef CONFIG_PREEMPT_RCU */
1564#ifdef CONFIG_TASKS_RCU
1565 p->rcu_tasks_holdout = false;
1566 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1567 p->rcu_tasks_idle_cpu = -1;
1568#endif /* #ifdef CONFIG_TASKS_RCU */
1569}
1570
343ef896
AA
1571static void __delayed_free_task(struct rcu_head *rhp)
1572{
1573 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1574
1575 free_task(tsk);
1576}
1577
1578static __always_inline void delayed_free_task(struct task_struct *tsk)
1579{
1580 if (IS_ENABLED(CONFIG_MEMCG))
1581 call_rcu(&tsk->rcu, __delayed_free_task);
1582 else
1583 free_task(tsk);
1584}
1585
1da177e4
LT
1586/*
1587 * This creates a new process as a copy of the old one,
1588 * but does not actually start it yet.
1589 *
1590 * It copies the registers, and all the appropriate
1591 * parts of the process environment (as per the clone
1592 * flags). The actual kick-off is left to the caller.
1593 */
0766f788
ER
1594static __latent_entropy struct task_struct *copy_process(
1595 unsigned long clone_flags,
36c8b586 1596 unsigned long stack_start,
36c8b586 1597 unsigned long stack_size,
36c8b586 1598 int __user *child_tidptr,
09a05394 1599 struct pid *pid,
3033f14a 1600 int trace,
725fc629
AK
1601 unsigned long tls,
1602 int node)
1da177e4
LT
1603{
1604 int retval;
a24efe62 1605 struct task_struct *p;
1da177e4
LT
1606
1607 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1608 return ERR_PTR(-EINVAL);
1609
e66eded8
EB
1610 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1611 return ERR_PTR(-EINVAL);
1612
680f7875
SH
1613 if ((clone_flags & CLONE_NEWUSER) && !unprivileged_userns_clone)
1614 if (!capable(CAP_SYS_ADMIN))
1615 return ERR_PTR(-EPERM);
1616
1da177e4
LT
1617 /*
1618 * Thread groups must share signals as well, and detached threads
1619 * can only be started up within the thread group.
1620 */
1621 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1622 return ERR_PTR(-EINVAL);
1623
1624 /*
1625 * Shared signal handlers imply shared VM. By way of the above,
1626 * thread groups also imply shared VM. Blocking this case allows
1627 * for various simplifications in other code.
1628 */
1629 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1630 return ERR_PTR(-EINVAL);
1631
123be07b
SB
1632 /*
1633 * Siblings of global init remain as zombies on exit since they are
1634 * not reaped by their parent (swapper). To solve this and to avoid
1635 * multi-rooted process trees, prevent global and container-inits
1636 * from creating siblings.
1637 */
1638 if ((clone_flags & CLONE_PARENT) &&
1639 current->signal->flags & SIGNAL_UNKILLABLE)
1640 return ERR_PTR(-EINVAL);
1641
8382fcac 1642 /*
40a0d32d 1643 * If the new process will be in a different pid or user namespace
faf00da5 1644 * do not allow it to share a thread group with the forking task.
8382fcac 1645 */
faf00da5 1646 if (clone_flags & CLONE_THREAD) {
40a0d32d
ON
1647 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1648 (task_active_pid_ns(current) !=
1649 current->nsproxy->pid_ns_for_children))
1650 return ERR_PTR(-EINVAL);
1651 }
8382fcac 1652
1da177e4 1653 retval = -ENOMEM;
725fc629 1654 p = dup_task_struct(current, node);
1da177e4
LT
1655 if (!p)
1656 goto fork_out;
1657
4d6501dc
VN
1658 /*
1659 * This _must_ happen before we call free_task(), i.e. before we jump
1660 * to any of the bad_fork_* labels. This is to avoid freeing
1661 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1662 * kernel threads (PF_KTHREAD).
1663 */
1664 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1665 /*
1666 * Clear TID on mm_release()?
1667 */
1668 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1669
f7e8b616
SR
1670 ftrace_graph_init_task(p);
1671
bea493a0
PZ
1672 rt_mutex_init_task(p);
1673
d12c1a37 1674#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
1675 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1676 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1677#endif
1da177e4 1678 retval = -EAGAIN;
3b11a1de 1679 if (atomic_read(&p->real_cred->user->processes) >=
78d7d407 1680 task_rlimit(p, RLIMIT_NPROC)) {
b57922b6
EP
1681 if (p->real_cred->user != INIT_USER &&
1682 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1da177e4
LT
1683 goto bad_fork_free;
1684 }
72fa5997 1685 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 1686
f1752eec
DH
1687 retval = copy_creds(p, clone_flags);
1688 if (retval < 0)
1689 goto bad_fork_free;
1da177e4
LT
1690
1691 /*
1692 * If multiple threads are within copy_process(), then this check
1693 * triggers too late. This doesn't hurt, the check is only there
1694 * to stop root fork bombs.
1695 */
04ec93fe 1696 retval = -EAGAIN;
1da177e4
LT
1697 if (nr_threads >= max_threads)
1698 goto bad_fork_cleanup_count;
1699
ca74e92b 1700 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
c1de45ca 1701 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
514ddb44 1702 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
1703 INIT_LIST_HEAD(&p->children);
1704 INIT_LIST_HEAD(&p->sibling);
f41d911f 1705 rcu_copy_process(p);
1da177e4
LT
1706 p->vfork_done = NULL;
1707 spin_lock_init(&p->alloc_lock);
1da177e4 1708
1da177e4
LT
1709 init_sigpending(&p->pending);
1710
64861634 1711 p->utime = p->stime = p->gtime = 0;
40565b5a 1712#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 1713 p->utimescaled = p->stimescaled = 0;
40565b5a 1714#endif
9d7fb042
PZ
1715 prev_cputime_init(&p->prev_cputime);
1716
6a61671b 1717#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
1718 seqcount_init(&p->vtime.seqcount);
1719 p->vtime.starttime = 0;
1720 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
1721#endif
1722
a3a2e76c
KH
1723#if defined(SPLIT_RSS_COUNTING)
1724 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1725#endif
172ba844 1726
6976675d
AV
1727 p->default_timer_slack_ns = current->timer_slack_ns;
1728
5995477a 1729 task_io_accounting_init(&p->ioac);
1da177e4
LT
1730 acct_clear_integrals(p);
1731
f06febc9 1732 posix_cpu_timers_init(p);
1da177e4 1733
1da177e4 1734 p->io_context = NULL;
1da177e4 1735 p->audit_context = NULL;
b4f48b63 1736 cgroup_fork(p);
1da177e4 1737#ifdef CONFIG_NUMA
846a16bf 1738 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
1739 if (IS_ERR(p->mempolicy)) {
1740 retval = PTR_ERR(p->mempolicy);
1741 p->mempolicy = NULL;
e8604cb4 1742 goto bad_fork_cleanup_threadgroup_lock;
fb0a685c 1743 }
1da177e4 1744#endif
778d3b0f
MH
1745#ifdef CONFIG_CPUSETS
1746 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1747 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
cc9a6c87 1748 seqcount_init(&p->mems_allowed_seq);
778d3b0f 1749#endif
de30a2b3
IM
1750#ifdef CONFIG_TRACE_IRQFLAGS
1751 p->irq_events = 0;
1752 p->hardirqs_enabled = 0;
1753 p->hardirq_enable_ip = 0;
1754 p->hardirq_enable_event = 0;
1755 p->hardirq_disable_ip = _THIS_IP_;
1756 p->hardirq_disable_event = 0;
1757 p->softirqs_enabled = 1;
1758 p->softirq_enable_ip = _THIS_IP_;
1759 p->softirq_enable_event = 0;
1760 p->softirq_disable_ip = 0;
1761 p->softirq_disable_event = 0;
1762 p->hardirq_context = 0;
1763 p->softirq_context = 0;
1764#endif
8bcbde54
DH
1765
1766 p->pagefault_disabled = 0;
1767
fbb9ce95
IM
1768#ifdef CONFIG_LOCKDEP
1769 p->lockdep_depth = 0; /* no locks held yet */
1770 p->curr_chain_key = 0;
1771 p->lockdep_recursion = 0;
b09be676 1772 lockdep_init_task(p);
fbb9ce95 1773#endif
1da177e4 1774
408894ee
IM
1775#ifdef CONFIG_DEBUG_MUTEXES
1776 p->blocked_on = NULL; /* not blocked yet */
1777#endif
cafe5635
KO
1778#ifdef CONFIG_BCACHE
1779 p->sequential_io = 0;
1780 p->sequential_io_avg = 0;
1781#endif
09227ab6
JJ
1782#ifdef CONFIG_SECURITY
1783 p->security = NULL;
1784#endif
0f481406 1785
3c90e6e9 1786 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
1787 retval = sched_fork(clone_flags, p);
1788 if (retval)
1789 goto bad_fork_cleanup_policy;
6ab423e0 1790
cdd6c482 1791 retval = perf_event_init_task(p);
6ab423e0
PZ
1792 if (retval)
1793 goto bad_fork_cleanup_policy;
fb0a685c
DRO
1794 retval = audit_alloc(p);
1795 if (retval)
6c72e350 1796 goto bad_fork_cleanup_perf;
1da177e4 1797 /* copy all the process information */
ab602f79 1798 shm_init_task(p);
e4e55b47 1799 retval = security_task_alloc(p, clone_flags);
fb0a685c 1800 if (retval)
1da177e4 1801 goto bad_fork_cleanup_audit;
e4e55b47
TH
1802 retval = copy_semundo(clone_flags, p);
1803 if (retval)
1804 goto bad_fork_cleanup_security;
fb0a685c
DRO
1805 retval = copy_files(clone_flags, p);
1806 if (retval)
1da177e4 1807 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
1808 retval = copy_fs(clone_flags, p);
1809 if (retval)
1da177e4 1810 goto bad_fork_cleanup_files;
fb0a685c
DRO
1811 retval = copy_sighand(clone_flags, p);
1812 if (retval)
1da177e4 1813 goto bad_fork_cleanup_fs;
fb0a685c
DRO
1814 retval = copy_signal(clone_flags, p);
1815 if (retval)
1da177e4 1816 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
1817 retval = copy_mm(clone_flags, p);
1818 if (retval)
1da177e4 1819 goto bad_fork_cleanup_signal;
fb0a685c
DRO
1820 retval = copy_namespaces(clone_flags, p);
1821 if (retval)
d84f4f99 1822 goto bad_fork_cleanup_mm;
fb0a685c
DRO
1823 retval = copy_io(clone_flags, p);
1824 if (retval)
fd0928df 1825 goto bad_fork_cleanup_namespaces;
3033f14a 1826 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1da177e4 1827 if (retval)
fd0928df 1828 goto bad_fork_cleanup_io;
1da177e4 1829
425fb2b4 1830 if (pid != &init_struct_pid) {
c2b1df2e 1831 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
35f71bc0
MH
1832 if (IS_ERR(pid)) {
1833 retval = PTR_ERR(pid);
0740aa5f 1834 goto bad_fork_cleanup_thread;
35f71bc0 1835 }
425fb2b4
PE
1836 }
1837
73c10101
JA
1838#ifdef CONFIG_BLOCK
1839 p->plug = NULL;
1840#endif
e891c8f7
TG
1841 futex_init_task(p);
1842
f9a3879a
GM
1843 /*
1844 * sigaltstack should be cleared when sharing the same VM
1845 */
1846 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 1847 sas_ss_reset(p);
f9a3879a 1848
1da177e4 1849 /*
6580807d
ON
1850 * Syscall tracing and stepping should be turned off in the
1851 * child regardless of CLONE_PTRACE.
1da177e4 1852 */
6580807d 1853 user_disable_single_step(p);
1da177e4 1854 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
ed75e8d5
LV
1855#ifdef TIF_SYSCALL_EMU
1856 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1857#endif
9745512c 1858 clear_all_latency_tracing(p);
1da177e4 1859
1da177e4 1860 /* ok, now we should be set up.. */
18c830df
ON
1861 p->pid = pid_nr(pid);
1862 if (clone_flags & CLONE_THREAD) {
5f8aadd8 1863 p->exit_signal = -1;
18c830df
ON
1864 p->group_leader = current->group_leader;
1865 p->tgid = current->tgid;
1866 } else {
1867 if (clone_flags & CLONE_PARENT)
1868 p->exit_signal = current->group_leader->exit_signal;
1869 else
1870 p->exit_signal = (clone_flags & CSIGNAL);
1871 p->group_leader = p;
1872 p->tgid = p->pid;
1873 }
5f8aadd8 1874
9d823e8f
WF
1875 p->nr_dirtied = 0;
1876 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 1877 p->dirty_paused_when = 0;
9d823e8f 1878
bb8cbbfe 1879 p->pdeath_signal = 0;
47e65328 1880 INIT_LIST_HEAD(&p->thread_group);
158e1645 1881 p->task_works = NULL;
1da177e4 1882
780de9dd 1883 cgroup_threadgroup_change_begin(current);
7e47682e
AS
1884 /*
1885 * Ensure that the cgroup subsystem policies allow the new process to be
1886 * forked. It should be noted the the new process's css_set can be changed
1887 * between here and cgroup_post_fork() if an organisation operation is in
1888 * progress.
1889 */
b53202e6 1890 retval = cgroup_can_fork(p);
7e47682e
AS
1891 if (retval)
1892 goto bad_fork_free_pid;
1893
e78a7b49
DH
1894 /*
1895 * From this point on we must avoid any synchronous user-space
1896 * communication until we take the tasklist-lock. In particular, we do
1897 * not want user-space to be able to predict the process start-time by
1898 * stalling fork(2) after we recorded the start_time but before it is
1899 * visible to the system.
1900 */
1901
1902 p->start_time = ktime_get_ns();
1903 p->real_start_time = ktime_get_boot_ns();
1904
18c830df
ON
1905 /*
1906 * Make it visible to the rest of the system, but dont wake it up yet.
1907 * Need tasklist lock for parent etc handling!
1908 */
1da177e4
LT
1909 write_lock_irq(&tasklist_lock);
1910
1da177e4 1911 /* CLONE_PARENT re-uses the old parent */
2d5516cb 1912 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 1913 p->real_parent = current->real_parent;
2d5516cb
ON
1914 p->parent_exec_id = current->parent_exec_id;
1915 } else {
1da177e4 1916 p->real_parent = current;
2d5516cb
ON
1917 p->parent_exec_id = current->self_exec_id;
1918 }
1da177e4 1919
d83a7cb3
JP
1920 klp_copy_process(p);
1921
3f17da69 1922 spin_lock(&current->sighand->siglock);
4a2c7a78 1923
dbd95212
KC
1924 /*
1925 * Copy seccomp details explicitly here, in case they were changed
1926 * before holding sighand lock.
1927 */
1928 copy_seccomp(p);
1929
4a2c7a78
ON
1930 /*
1931 * Process group and session signals need to be delivered to just the
1932 * parent before the fork or both the parent and the child after the
1933 * fork. Restart if a signal comes in before we add the new process to
1934 * it's process group.
1935 * A fatal signal pending means that current will exit, so the new
1936 * thread can't slip out of an OOM kill (or normal SIGKILL).
fb0a685c 1937 */
23ff4440 1938 recalc_sigpending();
4a2c7a78 1939 if (signal_pending(current)) {
4a2c7a78 1940 retval = -ERESTARTNOINTR;
7e47682e 1941 goto bad_fork_cancel_cgroup;
4a2c7a78 1942 }
e8cfbc24 1943 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
3fd37226
KT
1944 retval = -ENOMEM;
1945 goto bad_fork_cancel_cgroup;
1946 }
4a2c7a78 1947
73b9ebfe 1948 if (likely(p->pid)) {
4b9d33e6 1949 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 1950
81907739 1951 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 1952 if (thread_group_leader(p)) {
81907739
ON
1953 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1954 init_task_pid(p, PIDTYPE_SID, task_session(current));
1955
1c4042c2 1956 if (is_child_reaper(pid)) {
17cf22c3 1957 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
1958 p->signal->flags |= SIGNAL_UNKILLABLE;
1959 }
73b9ebfe 1960
fea9d175 1961 p->signal->leader_pid = pid;
9c9f4ded 1962 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
1963 /*
1964 * Inherit has_child_subreaper flag under the same
1965 * tasklist_lock with adding child to the process tree
1966 * for propagate_has_child_subreaper optimization.
1967 */
1968 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1969 p->real_parent->signal->is_child_subreaper;
9cd80bbb 1970 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 1971 list_add_tail_rcu(&p->tasks, &init_task.tasks);
81907739
ON
1972 attach_pid(p, PIDTYPE_PGID);
1973 attach_pid(p, PIDTYPE_SID);
909ea964 1974 __this_cpu_inc(process_counts);
80628ca0
ON
1975 } else {
1976 current->signal->nr_threads++;
1977 atomic_inc(&current->signal->live);
1978 atomic_inc(&current->signal->sigcnt);
80628ca0
ON
1979 list_add_tail_rcu(&p->thread_group,
1980 &p->group_leader->thread_group);
0c740d0a
ON
1981 list_add_tail_rcu(&p->thread_node,
1982 &p->signal->thread_head);
73b9ebfe 1983 }
81907739 1984 attach_pid(p, PIDTYPE_PID);
73b9ebfe 1985 nr_threads++;
1da177e4
LT
1986 }
1987
1da177e4 1988 total_forks++;
3f17da69 1989 spin_unlock(&current->sighand->siglock);
4af4206b 1990 syscall_tracepoint_update(p);
1da177e4 1991 write_unlock_irq(&tasklist_lock);
4af4206b 1992
c13cf856 1993 proc_fork_connector(p);
b53202e6 1994 cgroup_post_fork(p);
780de9dd 1995 cgroup_threadgroup_change_end(current);
cdd6c482 1996 perf_event_fork(p);
43d2b113
KH
1997
1998 trace_task_newtask(p, clone_flags);
3ab67966 1999 uprobe_copy_process(p, clone_flags);
43d2b113 2000
1da177e4
LT
2001 return p;
2002
7e47682e 2003bad_fork_cancel_cgroup:
3fd37226
KT
2004 spin_unlock(&current->sighand->siglock);
2005 write_unlock_irq(&tasklist_lock);
b53202e6 2006 cgroup_cancel_fork(p);
425fb2b4 2007bad_fork_free_pid:
780de9dd 2008 cgroup_threadgroup_change_end(current);
425fb2b4
PE
2009 if (pid != &init_struct_pid)
2010 free_pid(pid);
0740aa5f
JS
2011bad_fork_cleanup_thread:
2012 exit_thread(p);
fd0928df 2013bad_fork_cleanup_io:
b69f2292
LR
2014 if (p->io_context)
2015 exit_io_context(p);
ab516013 2016bad_fork_cleanup_namespaces:
444f378b 2017 exit_task_namespaces(p);
1da177e4 2018bad_fork_cleanup_mm:
343ef896
AA
2019 if (p->mm) {
2020 mm_clear_owner(p->mm, p);
1da177e4 2021 mmput(p->mm);
343ef896 2022 }
1da177e4 2023bad_fork_cleanup_signal:
4ab6c083 2024 if (!(clone_flags & CLONE_THREAD))
1c5354de 2025 free_signal_struct(p->signal);
1da177e4 2026bad_fork_cleanup_sighand:
a7e5328a 2027 __cleanup_sighand(p->sighand);
1da177e4
LT
2028bad_fork_cleanup_fs:
2029 exit_fs(p); /* blocking */
2030bad_fork_cleanup_files:
2031 exit_files(p); /* blocking */
2032bad_fork_cleanup_semundo:
2033 exit_sem(p);
e4e55b47
TH
2034bad_fork_cleanup_security:
2035 security_task_free(p);
1da177e4
LT
2036bad_fork_cleanup_audit:
2037 audit_free(p);
6c72e350 2038bad_fork_cleanup_perf:
cdd6c482 2039 perf_event_free_task(p);
6c72e350 2040bad_fork_cleanup_policy:
b09be676 2041 lockdep_free_task(p);
1da177e4 2042#ifdef CONFIG_NUMA
f0be3d32 2043 mpol_put(p->mempolicy);
e8604cb4 2044bad_fork_cleanup_threadgroup_lock:
1da177e4 2045#endif
35df17c5 2046 delayacct_tsk_free(p);
1da177e4 2047bad_fork_cleanup_count:
d84f4f99 2048 atomic_dec(&p->cred->user->processes);
e0e81739 2049 exit_creds(p);
1da177e4 2050bad_fork_free:
405c0759 2051 p->state = TASK_DEAD;
68f24b08 2052 put_task_stack(p);
343ef896 2053 delayed_free_task(p);
fe7d37d1
ON
2054fork_out:
2055 return ERR_PTR(retval);
1da177e4
LT
2056}
2057
f106eee1
ON
2058static inline void init_idle_pids(struct pid_link *links)
2059{
2060 enum pid_type type;
2061
2062 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2063 INIT_HLIST_NODE(&links[type].node); /* not really needed */
2064 links[type].pid = &init_struct_pid;
2065 }
2066}
2067
0db0628d 2068struct task_struct *fork_idle(int cpu)
1da177e4 2069{
36c8b586 2070 struct task_struct *task;
725fc629
AK
2071 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2072 cpu_to_node(cpu));
f106eee1
ON
2073 if (!IS_ERR(task)) {
2074 init_idle_pids(task->pids);
753ca4f3 2075 init_idle(task, cpu);
f106eee1 2076 }
73b9ebfe 2077
1da177e4
LT
2078 return task;
2079}
2080
1da177e4
LT
2081/*
2082 * Ok, this is the main fork-routine.
2083 *
2084 * It copies the process, and if successful kick-starts
2085 * it and waits for it to finish using the VM if required.
2086 */
3033f14a 2087long _do_fork(unsigned long clone_flags,
1da177e4 2088 unsigned long stack_start,
1da177e4
LT
2089 unsigned long stack_size,
2090 int __user *parent_tidptr,
3033f14a
JT
2091 int __user *child_tidptr,
2092 unsigned long tls)
1da177e4
LT
2093{
2094 struct task_struct *p;
2095 int trace = 0;
92476d7f 2096 long nr;
1da177e4 2097
09a05394 2098 /*
4b9d33e6
TH
2099 * Determine whether and which event to report to ptracer. When
2100 * called from kernel_thread or CLONE_UNTRACED is explicitly
2101 * requested, no event is reported; otherwise, report if the event
2102 * for the type of forking is enabled.
09a05394 2103 */
e80d6661 2104 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2105 if (clone_flags & CLONE_VFORK)
2106 trace = PTRACE_EVENT_VFORK;
2107 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2108 trace = PTRACE_EVENT_CLONE;
2109 else
2110 trace = PTRACE_EVENT_FORK;
2111
2112 if (likely(!ptrace_event_enabled(current, trace)))
2113 trace = 0;
2114 }
1da177e4 2115
62e791c1 2116 p = copy_process(clone_flags, stack_start, stack_size,
725fc629 2117 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
38addce8 2118 add_latent_entropy();
1da177e4
LT
2119 /*
2120 * Do this prior waking up the new thread - the thread pointer
2121 * might get invalid after that point, if the thread exits quickly.
2122 */
2123 if (!IS_ERR(p)) {
2124 struct completion vfork;
4e52365f 2125 struct pid *pid;
1da177e4 2126
0a16b607
MD
2127 trace_sched_process_fork(current, p);
2128
4e52365f
MD
2129 pid = get_task_pid(p, PIDTYPE_PID);
2130 nr = pid_vnr(pid);
30e49c26
PE
2131
2132 if (clone_flags & CLONE_PARENT_SETTID)
2133 put_user(nr, parent_tidptr);
a6f5e063 2134
1da177e4
LT
2135 if (clone_flags & CLONE_VFORK) {
2136 p->vfork_done = &vfork;
2137 init_completion(&vfork);
d68b46fe 2138 get_task_struct(p);
1da177e4
LT
2139 }
2140
3e51e3ed 2141 wake_up_new_task(p);
1da177e4 2142
4b9d33e6
TH
2143 /* forking complete and child started to run, tell ptracer */
2144 if (unlikely(trace))
4e52365f 2145 ptrace_event_pid(trace, pid);
09a05394 2146
1da177e4 2147 if (clone_flags & CLONE_VFORK) {
d68b46fe 2148 if (!wait_for_vfork_done(p, &vfork))
4e52365f 2149 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2150 }
4e52365f
MD
2151
2152 put_pid(pid);
1da177e4 2153 } else {
92476d7f 2154 nr = PTR_ERR(p);
1da177e4 2155 }
92476d7f 2156 return nr;
1da177e4
LT
2157}
2158
3033f14a
JT
2159#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2160/* For compatibility with architectures that call do_fork directly rather than
2161 * using the syscall entry points below. */
2162long do_fork(unsigned long clone_flags,
2163 unsigned long stack_start,
2164 unsigned long stack_size,
2165 int __user *parent_tidptr,
2166 int __user *child_tidptr)
2167{
2168 return _do_fork(clone_flags, stack_start, stack_size,
2169 parent_tidptr, child_tidptr, 0);
2170}
2171#endif
2172
2aa3a7f8
AV
2173/*
2174 * Create a kernel thread.
2175 */
2176pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2177{
3033f14a
JT
2178 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2179 (unsigned long)arg, NULL, NULL, 0);
2aa3a7f8 2180}
2aa3a7f8 2181
d2125043
AV
2182#ifdef __ARCH_WANT_SYS_FORK
2183SYSCALL_DEFINE0(fork)
2184{
2185#ifdef CONFIG_MMU
3033f14a 2186 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
d2125043
AV
2187#else
2188 /* can not support in nommu mode */
5d59e182 2189 return -EINVAL;
d2125043
AV
2190#endif
2191}
2192#endif
2193
2194#ifdef __ARCH_WANT_SYS_VFORK
2195SYSCALL_DEFINE0(vfork)
2196{
3033f14a
JT
2197 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2198 0, NULL, NULL, 0);
d2125043
AV
2199}
2200#endif
2201
2202#ifdef __ARCH_WANT_SYS_CLONE
2203#ifdef CONFIG_CLONE_BACKWARDS
2204SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2205 int __user *, parent_tidptr,
3033f14a 2206 unsigned long, tls,
d2125043
AV
2207 int __user *, child_tidptr)
2208#elif defined(CONFIG_CLONE_BACKWARDS2)
2209SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2210 int __user *, parent_tidptr,
2211 int __user *, child_tidptr,
3033f14a 2212 unsigned long, tls)
dfa9771a
MS
2213#elif defined(CONFIG_CLONE_BACKWARDS3)
2214SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2215 int, stack_size,
2216 int __user *, parent_tidptr,
2217 int __user *, child_tidptr,
3033f14a 2218 unsigned long, tls)
d2125043
AV
2219#else
2220SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2221 int __user *, parent_tidptr,
2222 int __user *, child_tidptr,
3033f14a 2223 unsigned long, tls)
d2125043
AV
2224#endif
2225{
3033f14a 2226 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
d2125043
AV
2227}
2228#endif
2229
0f1b92cb
ON
2230void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2231{
2232 struct task_struct *leader, *parent, *child;
2233 int res;
2234
2235 read_lock(&tasklist_lock);
2236 leader = top = top->group_leader;
2237down:
2238 for_each_thread(leader, parent) {
2239 list_for_each_entry(child, &parent->children, sibling) {
2240 res = visitor(child, data);
2241 if (res) {
2242 if (res < 0)
2243 goto out;
2244 leader = child;
2245 goto down;
2246 }
2247up:
2248 ;
2249 }
2250 }
2251
2252 if (leader != top) {
2253 child = leader;
2254 parent = child->real_parent;
2255 leader = parent->group_leader;
2256 goto up;
2257 }
2258out:
2259 read_unlock(&tasklist_lock);
2260}
2261
5fd63b30
RT
2262#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2263#define ARCH_MIN_MMSTRUCT_ALIGN 0
2264#endif
2265
51cc5068 2266static void sighand_ctor(void *data)
aa1757f9
ON
2267{
2268 struct sighand_struct *sighand = data;
2269
a35afb83 2270 spin_lock_init(&sighand->siglock);
b8fceee1 2271 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
2272}
2273
1da177e4
LT
2274void __init proc_caches_init(void)
2275{
2276 sighand_cachep = kmem_cache_create("sighand_cache",
2277 sizeof(struct sighand_struct), 0,
5f0d5a3a 2278 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
75f296d9 2279 SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
2280 signal_cachep = kmem_cache_create("signal_cache",
2281 sizeof(struct signal_struct), 0,
75f296d9 2282 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2283 NULL);
20c2df83 2284 files_cachep = kmem_cache_create("files_cache",
1da177e4 2285 sizeof(struct files_struct), 0,
75f296d9 2286 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2287 NULL);
20c2df83 2288 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 2289 sizeof(struct fs_struct), 0,
75f296d9 2290 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2291 NULL);
6345d24d
LT
2292 /*
2293 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2294 * whole struct cpumask for the OFFSTACK case. We could change
2295 * this to *only* allocate as much of it as required by the
2296 * maximum number of CPU's we can ever have. The cpumask_allocation
2297 * is at the end of the structure, exactly for that reason.
2298 */
1da177e4 2299 mm_cachep = kmem_cache_create("mm_struct",
5fd63b30 2300 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
75f296d9 2301 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056
VD
2302 NULL);
2303 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
8feae131 2304 mmap_init();
66577193 2305 nsproxy_cache_init();
1da177e4 2306}
cf2e340f 2307
cf2e340f 2308/*
9bfb23fc 2309 * Check constraints on flags passed to the unshare system call.
cf2e340f 2310 */
9bfb23fc 2311static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 2312{
9bfb23fc
ON
2313 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2314 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 2315 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
a79a908f 2316 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
9bfb23fc 2317 return -EINVAL;
cf2e340f 2318 /*
12c641ab
EB
2319 * Not implemented, but pretend it works if there is nothing
2320 * to unshare. Note that unsharing the address space or the
2321 * signal handlers also need to unshare the signal queues (aka
2322 * CLONE_THREAD).
cf2e340f 2323 */
9bfb23fc 2324 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
2325 if (!thread_group_empty(current))
2326 return -EINVAL;
2327 }
2328 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2329 if (atomic_read(&current->sighand->count) > 1)
2330 return -EINVAL;
2331 }
2332 if (unshare_flags & CLONE_VM) {
2333 if (!current_is_single_threaded())
9bfb23fc
ON
2334 return -EINVAL;
2335 }
cf2e340f
JD
2336
2337 return 0;
2338}
2339
2340/*
99d1419d 2341 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
2342 */
2343static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2344{
2345 struct fs_struct *fs = current->fs;
2346
498052bb
AV
2347 if (!(unshare_flags & CLONE_FS) || !fs)
2348 return 0;
2349
2350 /* don't need lock here; in the worst case we'll do useless copy */
2351 if (fs->users == 1)
2352 return 0;
2353
2354 *new_fsp = copy_fs_struct(fs);
2355 if (!*new_fsp)
2356 return -ENOMEM;
cf2e340f
JD
2357
2358 return 0;
2359}
2360
cf2e340f 2361/*
a016f338 2362 * Unshare file descriptor table if it is being shared
cf2e340f
JD
2363 */
2364static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2365{
2366 struct files_struct *fd = current->files;
a016f338 2367 int error = 0;
cf2e340f
JD
2368
2369 if ((unshare_flags & CLONE_FILES) &&
a016f338
JD
2370 (fd && atomic_read(&fd->count) > 1)) {
2371 *new_fdp = dup_fd(fd, &error);
2372 if (!*new_fdp)
2373 return error;
2374 }
cf2e340f
JD
2375
2376 return 0;
2377}
2378
cf2e340f
JD
2379/*
2380 * unshare allows a process to 'unshare' part of the process
2381 * context which was originally shared using clone. copy_*
2382 * functions used by do_fork() cannot be used here directly
2383 * because they modify an inactive task_struct that is being
2384 * constructed. Here we are modifying the current, active,
2385 * task_struct.
2386 */
6559eed8 2387SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
cf2e340f 2388{
cf2e340f 2389 struct fs_struct *fs, *new_fs = NULL;
cf2e340f 2390 struct files_struct *fd, *new_fd = NULL;
b2e0d987 2391 struct cred *new_cred = NULL;
cf7b708c 2392 struct nsproxy *new_nsproxy = NULL;
9edff4ab 2393 int do_sysvsem = 0;
9bfb23fc 2394 int err;
cf2e340f 2395
b2e0d987 2396 /*
faf00da5
EB
2397 * If unsharing a user namespace must also unshare the thread group
2398 * and unshare the filesystem root and working directories.
b2e0d987
EB
2399 */
2400 if (unshare_flags & CLONE_NEWUSER)
e66eded8 2401 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
2402 /*
2403 * If unsharing vm, must also unshare signal handlers.
2404 */
2405 if (unshare_flags & CLONE_VM)
2406 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
2407 /*
2408 * If unsharing a signal handlers, must also unshare the signal queues.
2409 */
2410 if (unshare_flags & CLONE_SIGHAND)
2411 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
2412 /*
2413 * If unsharing namespace, must also unshare filesystem information.
2414 */
2415 if (unshare_flags & CLONE_NEWNS)
2416 unshare_flags |= CLONE_FS;
50804fe3 2417
680f7875
SH
2418 if ((unshare_flags & CLONE_NEWUSER) && !unprivileged_userns_clone) {
2419 err = -EPERM;
2420 if (!capable(CAP_SYS_ADMIN))
2421 goto bad_unshare_out;
2422 }
2423
50804fe3
EB
2424 err = check_unshare_flags(unshare_flags);
2425 if (err)
2426 goto bad_unshare_out;
6013f67f
MS
2427 /*
2428 * CLONE_NEWIPC must also detach from the undolist: after switching
2429 * to a new ipc namespace, the semaphore arrays from the old
2430 * namespace are unreachable.
2431 */
2432 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 2433 do_sysvsem = 1;
fb0a685c
DRO
2434 err = unshare_fs(unshare_flags, &new_fs);
2435 if (err)
9bfb23fc 2436 goto bad_unshare_out;
fb0a685c
DRO
2437 err = unshare_fd(unshare_flags, &new_fd);
2438 if (err)
9bfb23fc 2439 goto bad_unshare_cleanup_fs;
b2e0d987 2440 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 2441 if (err)
9edff4ab 2442 goto bad_unshare_cleanup_fd;
b2e0d987
EB
2443 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2444 new_cred, new_fs);
2445 if (err)
2446 goto bad_unshare_cleanup_cred;
c0b2fc31 2447
b2e0d987 2448 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
2449 if (do_sysvsem) {
2450 /*
2451 * CLONE_SYSVSEM is equivalent to sys_exit().
2452 */
2453 exit_sem(current);
2454 }
ab602f79
JM
2455 if (unshare_flags & CLONE_NEWIPC) {
2456 /* Orphan segments in old ns (see sem above). */
2457 exit_shm(current);
2458 shm_init_task(current);
2459 }
ab516013 2460
6f977e6b 2461 if (new_nsproxy)
cf7b708c 2462 switch_task_namespaces(current, new_nsproxy);
cf2e340f 2463
cf7b708c
PE
2464 task_lock(current);
2465
cf2e340f
JD
2466 if (new_fs) {
2467 fs = current->fs;
2a4419b5 2468 spin_lock(&fs->lock);
cf2e340f 2469 current->fs = new_fs;
498052bb
AV
2470 if (--fs->users)
2471 new_fs = NULL;
2472 else
2473 new_fs = fs;
2a4419b5 2474 spin_unlock(&fs->lock);
cf2e340f
JD
2475 }
2476
cf2e340f
JD
2477 if (new_fd) {
2478 fd = current->files;
2479 current->files = new_fd;
2480 new_fd = fd;
2481 }
2482
2483 task_unlock(current);
b2e0d987
EB
2484
2485 if (new_cred) {
2486 /* Install the new user namespace */
2487 commit_creds(new_cred);
2488 new_cred = NULL;
2489 }
cf2e340f
JD
2490 }
2491
e4222673
HB
2492 perf_event_namespaces(current);
2493
b2e0d987
EB
2494bad_unshare_cleanup_cred:
2495 if (new_cred)
2496 put_cred(new_cred);
cf2e340f
JD
2497bad_unshare_cleanup_fd:
2498 if (new_fd)
2499 put_files_struct(new_fd);
2500
cf2e340f
JD
2501bad_unshare_cleanup_fs:
2502 if (new_fs)
498052bb 2503 free_fs_struct(new_fs);
cf2e340f 2504
cf2e340f
JD
2505bad_unshare_out:
2506 return err;
2507}
3b125388
AV
2508
2509/*
2510 * Helper to unshare the files of the current task.
2511 * We don't want to expose copy_files internals to
2512 * the exec layer of the kernel.
2513 */
2514
2515int unshare_files(struct files_struct **displaced)
2516{
2517 struct task_struct *task = current;
50704516 2518 struct files_struct *copy = NULL;
3b125388
AV
2519 int error;
2520
2521 error = unshare_fd(CLONE_FILES, &copy);
2522 if (error || !copy) {
2523 *displaced = NULL;
2524 return error;
2525 }
2526 *displaced = task->files;
2527 task_lock(task);
2528 task->files = copy;
2529 task_unlock(task);
2530 return 0;
2531}
16db3d3f
HS
2532
2533int sysctl_max_threads(struct ctl_table *table, int write,
2534 void __user *buffer, size_t *lenp, loff_t *ppos)
2535{
2536 struct ctl_table t;
2537 int ret;
2538 int threads = max_threads;
eb3794c5 2539 int min = 1;
16db3d3f
HS
2540 int max = MAX_THREADS;
2541
2542 t = *table;
2543 t.data = &threads;
2544 t.extra1 = &min;
2545 t.extra2 = &max;
2546
2547 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2548 if (ret || !write)
2549 return ret;
2550
eb3794c5 2551 max_threads = threads;
16db3d3f
HS
2552
2553 return 0;
2554}