]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/fork.c
kcmp: fs/epoll: wrap kcmp code with CONFIG_CHECKPOINT_RESTORE
[mirror_ubuntu-artful-kernel.git] / kernel / fork.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
1da177e4 14#include <linux/slab.h>
4eb5aaa3 15#include <linux/sched/autogroup.h>
6e84f315 16#include <linux/sched/mm.h>
f7ccbae4 17#include <linux/sched/coredump.h>
8703e8a4 18#include <linux/sched/user.h>
6a3827d7 19#include <linux/sched/numa_balancing.h>
03441a34 20#include <linux/sched/stat.h>
29930025 21#include <linux/sched/task.h>
68db0cf1 22#include <linux/sched/task_stack.h>
32ef5517 23#include <linux/sched/cputime.h>
037741a6 24#include <linux/rtmutex.h>
1da177e4
LT
25#include <linux/init.h>
26#include <linux/unistd.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/vmalloc.h>
29#include <linux/completion.h>
1da177e4
LT
30#include <linux/personality.h>
31#include <linux/mempolicy.h>
32#include <linux/sem.h>
33#include <linux/file.h>
9f3acc31 34#include <linux/fdtable.h>
da9cbc87 35#include <linux/iocontext.h>
1da177e4
LT
36#include <linux/key.h>
37#include <linux/binfmts.h>
38#include <linux/mman.h>
cddb8a5c 39#include <linux/mmu_notifier.h>
1da177e4 40#include <linux/fs.h>
615d6e87
DB
41#include <linux/mm.h>
42#include <linux/vmacache.h>
ab516013 43#include <linux/nsproxy.h>
c59ede7b 44#include <linux/capability.h>
1da177e4 45#include <linux/cpu.h>
b4f48b63 46#include <linux/cgroup.h>
1da177e4 47#include <linux/security.h>
a1e78772 48#include <linux/hugetlb.h>
e2cfabdf 49#include <linux/seccomp.h>
1da177e4
LT
50#include <linux/swap.h>
51#include <linux/syscalls.h>
52#include <linux/jiffies.h>
53#include <linux/futex.h>
8141c7f3 54#include <linux/compat.h>
207205a2 55#include <linux/kthread.h>
7c3ab738 56#include <linux/task_io_accounting_ops.h>
ab2af1f5 57#include <linux/rcupdate.h>
1da177e4
LT
58#include <linux/ptrace.h>
59#include <linux/mount.h>
60#include <linux/audit.h>
78fb7466 61#include <linux/memcontrol.h>
f201ae23 62#include <linux/ftrace.h>
5e2bf014 63#include <linux/proc_fs.h>
1da177e4
LT
64#include <linux/profile.h>
65#include <linux/rmap.h>
f8af4da3 66#include <linux/ksm.h>
1da177e4 67#include <linux/acct.h>
893e26e6 68#include <linux/userfaultfd_k.h>
8f0ab514 69#include <linux/tsacct_kern.h>
9f46080c 70#include <linux/cn_proc.h>
ba96a0c8 71#include <linux/freezer.h>
ca74e92b 72#include <linux/delayacct.h>
ad4ecbcb 73#include <linux/taskstats_kern.h>
0a425405 74#include <linux/random.h>
522ed776 75#include <linux/tty.h>
fd0928df 76#include <linux/blkdev.h>
5ad4e53b 77#include <linux/fs_struct.h>
7c9f8861 78#include <linux/magic.h>
cdd6c482 79#include <linux/perf_event.h>
42c4ab41 80#include <linux/posix-timers.h>
8e7cac79 81#include <linux/user-return-notifier.h>
3d5992d2 82#include <linux/oom.h>
ba76149f 83#include <linux/khugepaged.h>
d80e731e 84#include <linux/signalfd.h>
0326f5a9 85#include <linux/uprobes.h>
a27bb332 86#include <linux/aio.h>
52f5684c 87#include <linux/compiler.h>
16db3d3f 88#include <linux/sysctl.h>
5c9a8750 89#include <linux/kcov.h>
d83a7cb3 90#include <linux/livepatch.h>
1da177e4
LT
91
92#include <asm/pgtable.h>
93#include <asm/pgalloc.h>
7c0f6ba6 94#include <linux/uaccess.h>
1da177e4
LT
95#include <asm/mmu_context.h>
96#include <asm/cacheflush.h>
97#include <asm/tlbflush.h>
98
ad8d75ff
SR
99#include <trace/events/sched.h>
100
43d2b113
KH
101#define CREATE_TRACE_POINTS
102#include <trace/events/task.h>
103
ac1b398d
HS
104/*
105 * Minimum number of threads to boot the kernel
106 */
107#define MIN_THREADS 20
108
109/*
110 * Maximum number of threads
111 */
112#define MAX_THREADS FUTEX_TID_MASK
113
1da177e4
LT
114/*
115 * Protected counters by write_lock_irq(&tasklist_lock)
116 */
117unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 118int nr_threads; /* The idle threads do not count.. */
1da177e4
LT
119
120int max_threads; /* tunable limit on nr_threads */
121
122DEFINE_PER_CPU(unsigned long, process_counts) = 0;
123
c59923a1 124__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
125
126#ifdef CONFIG_PROVE_RCU
127int lockdep_tasklist_lock_is_held(void)
128{
129 return lockdep_is_held(&tasklist_lock);
130}
131EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
132#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
133
134int nr_processes(void)
135{
136 int cpu;
137 int total = 0;
138
1d510750 139 for_each_possible_cpu(cpu)
1da177e4
LT
140 total += per_cpu(process_counts, cpu);
141
142 return total;
143}
144
f19b9f74
AM
145void __weak arch_release_task_struct(struct task_struct *tsk)
146{
147}
148
f5e10287 149#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
e18b890b 150static struct kmem_cache *task_struct_cachep;
41101809
TG
151
152static inline struct task_struct *alloc_task_struct_node(int node)
153{
154 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
155}
156
41101809
TG
157static inline void free_task_struct(struct task_struct *tsk)
158{
41101809
TG
159 kmem_cache_free(task_struct_cachep, tsk);
160}
1da177e4
LT
161#endif
162
b235beea 163void __weak arch_release_thread_stack(unsigned long *stack)
f19b9f74
AM
164{
165}
166
b235beea 167#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
41101809 168
0d15d74a
TG
169/*
170 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
171 * kmemcache based allocator.
172 */
ba14a194 173# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4
AL
174
175#ifdef CONFIG_VMAP_STACK
176/*
177 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
178 * flush. Try to minimize the number of calls by caching stacks.
179 */
180#define NR_CACHED_STACKS 2
181static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59
HR
182
183static int free_vm_stack_cache(unsigned int cpu)
184{
185 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
186 int i;
187
188 for (i = 0; i < NR_CACHED_STACKS; i++) {
189 struct vm_struct *vm_stack = cached_vm_stacks[i];
190
191 if (!vm_stack)
192 continue;
193
194 vfree(vm_stack->addr);
195 cached_vm_stacks[i] = NULL;
196 }
197
198 return 0;
199}
ac496bf4
AL
200#endif
201
ba14a194 202static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 203{
ba14a194 204#ifdef CONFIG_VMAP_STACK
ac496bf4
AL
205 void *stack;
206 int i;
207
ac496bf4 208 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
209 struct vm_struct *s;
210
211 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
212
213 if (!s)
214 continue;
ac496bf4
AL
215
216 tsk->stack_vm_area = s;
ac496bf4
AL
217 return s->addr;
218 }
ac496bf4
AL
219
220 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
221 VMALLOC_START, VMALLOC_END,
19809c2d 222 THREADINFO_GFP,
ac496bf4
AL
223 PAGE_KERNEL,
224 0, node, __builtin_return_address(0));
ba14a194
AL
225
226 /*
227 * We can't call find_vm_area() in interrupt context, and
228 * free_thread_stack() can be called in interrupt context,
229 * so cache the vm_struct.
230 */
231 if (stack)
232 tsk->stack_vm_area = find_vm_area(stack);
233 return stack;
234#else
4949148a
VD
235 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
236 THREAD_SIZE_ORDER);
b6a84016
ED
237
238 return page ? page_address(page) : NULL;
ba14a194 239#endif
b69c49b7
FT
240}
241
ba14a194 242static inline void free_thread_stack(struct task_struct *tsk)
b69c49b7 243{
ac496bf4
AL
244#ifdef CONFIG_VMAP_STACK
245 if (task_stack_vm_area(tsk)) {
ac496bf4
AL
246 int i;
247
ac496bf4 248 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
249 if (this_cpu_cmpxchg(cached_stacks[i],
250 NULL, tsk->stack_vm_area) != NULL)
ac496bf4
AL
251 continue;
252
ac496bf4
AL
253 return;
254 }
ac496bf4 255
0f110a9b 256 vfree_atomic(tsk->stack);
ac496bf4
AL
257 return;
258 }
259#endif
260
261 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
b69c49b7 262}
0d15d74a 263# else
b235beea 264static struct kmem_cache *thread_stack_cache;
0d15d74a 265
9521d399 266static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
0d15d74a
TG
267 int node)
268{
b235beea 269 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
0d15d74a
TG
270}
271
ba14a194 272static void free_thread_stack(struct task_struct *tsk)
0d15d74a 273{
ba14a194 274 kmem_cache_free(thread_stack_cache, tsk->stack);
0d15d74a
TG
275}
276
b235beea 277void thread_stack_cache_init(void)
0d15d74a 278{
b235beea 279 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
0d15d74a 280 THREAD_SIZE, 0, NULL);
b235beea 281 BUG_ON(thread_stack_cache == NULL);
0d15d74a
TG
282}
283# endif
b69c49b7
FT
284#endif
285
1da177e4 286/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 287static struct kmem_cache *signal_cachep;
1da177e4
LT
288
289/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 290struct kmem_cache *sighand_cachep;
1da177e4
LT
291
292/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 293struct kmem_cache *files_cachep;
1da177e4
LT
294
295/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 296struct kmem_cache *fs_cachep;
1da177e4
LT
297
298/* SLAB cache for vm_area_struct structures */
e18b890b 299struct kmem_cache *vm_area_cachep;
1da177e4
LT
300
301/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 302static struct kmem_cache *mm_cachep;
1da177e4 303
ba14a194 304static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 305{
ba14a194
AL
306 void *stack = task_stack_page(tsk);
307 struct vm_struct *vm = task_stack_vm_area(tsk);
308
309 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
310
311 if (vm) {
312 int i;
313
314 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
315
316 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
317 mod_zone_page_state(page_zone(vm->pages[i]),
318 NR_KERNEL_STACK_KB,
319 PAGE_SIZE / 1024 * account);
320 }
321
322 /* All stack pages belong to the same memcg. */
ed52be7b
JW
323 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
324 account * (THREAD_SIZE / 1024));
ba14a194
AL
325 } else {
326 /*
327 * All stack pages are in the same zone and belong to the
328 * same memcg.
329 */
330 struct page *first_page = virt_to_page(stack);
331
332 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
333 THREAD_SIZE / 1024 * account);
334
ed52be7b
JW
335 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
336 account * (THREAD_SIZE / 1024));
ba14a194 337 }
c6a7f572
KM
338}
339
68f24b08 340static void release_task_stack(struct task_struct *tsk)
1da177e4 341{
405c0759
AL
342 if (WARN_ON(tsk->state != TASK_DEAD))
343 return; /* Better to leak the stack than to free prematurely */
344
ba14a194 345 account_kernel_stack(tsk, -1);
b235beea 346 arch_release_thread_stack(tsk->stack);
ba14a194 347 free_thread_stack(tsk);
68f24b08
AL
348 tsk->stack = NULL;
349#ifdef CONFIG_VMAP_STACK
350 tsk->stack_vm_area = NULL;
351#endif
352}
353
354#ifdef CONFIG_THREAD_INFO_IN_TASK
355void put_task_stack(struct task_struct *tsk)
356{
357 if (atomic_dec_and_test(&tsk->stack_refcount))
358 release_task_stack(tsk);
359}
360#endif
361
362void free_task(struct task_struct *tsk)
363{
364#ifndef CONFIG_THREAD_INFO_IN_TASK
365 /*
366 * The task is finally done with both the stack and thread_info,
367 * so free both.
368 */
369 release_task_stack(tsk);
370#else
371 /*
372 * If the task had a separate stack allocation, it should be gone
373 * by now.
374 */
375 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
376#endif
23f78d4a 377 rt_mutex_debug_task_free(tsk);
fb52607a 378 ftrace_graph_exit_task(tsk);
e2cfabdf 379 put_seccomp_filter(tsk);
f19b9f74 380 arch_release_task_struct(tsk);
1da5c46f
ON
381 if (tsk->flags & PF_KTHREAD)
382 free_kthread_struct(tsk);
1da177e4
LT
383 free_task_struct(tsk);
384}
385EXPORT_SYMBOL(free_task);
386
ea6d290c
ON
387static inline void free_signal_struct(struct signal_struct *sig)
388{
97101eb4 389 taskstats_tgid_free(sig);
1c5354de 390 sched_autogroup_exit(sig);
7283094e
MH
391 /*
392 * __mmdrop is not safe to call from softirq context on x86 due to
393 * pgd_dtor so postpone it to the async context
394 */
26db62f1 395 if (sig->oom_mm)
7283094e 396 mmdrop_async(sig->oom_mm);
ea6d290c
ON
397 kmem_cache_free(signal_cachep, sig);
398}
399
400static inline void put_signal_struct(struct signal_struct *sig)
401{
1c5354de 402 if (atomic_dec_and_test(&sig->sigcnt))
ea6d290c
ON
403 free_signal_struct(sig);
404}
405
158d9ebd 406void __put_task_struct(struct task_struct *tsk)
1da177e4 407{
270f722d 408 WARN_ON(!tsk->exit_state);
1da177e4
LT
409 WARN_ON(atomic_read(&tsk->usage));
410 WARN_ON(tsk == current);
411
2e91fa7f 412 cgroup_free(tsk);
156654f4 413 task_numa_free(tsk);
1a2a4d06 414 security_task_free(tsk);
e0e81739 415 exit_creds(tsk);
35df17c5 416 delayacct_tsk_free(tsk);
ea6d290c 417 put_signal_struct(tsk->signal);
1da177e4
LT
418
419 if (!profile_handoff_task(tsk))
420 free_task(tsk);
421}
77c100c8 422EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 423
6c0a9fa6 424void __init __weak arch_task_cache_init(void) { }
61c4628b 425
ff691f6e
HS
426/*
427 * set_max_threads
428 */
16db3d3f 429static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 430{
ac1b398d 431 u64 threads;
ff691f6e
HS
432
433 /*
ac1b398d
HS
434 * The number of threads shall be limited such that the thread
435 * structures may only consume a small part of the available memory.
ff691f6e 436 */
ac1b398d
HS
437 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
438 threads = MAX_THREADS;
439 else
440 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
441 (u64) THREAD_SIZE * 8UL);
442
16db3d3f
HS
443 if (threads > max_threads_suggested)
444 threads = max_threads_suggested;
445
ac1b398d 446 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
447}
448
5aaeb5c0
IM
449#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
450/* Initialized by the architecture: */
451int arch_task_struct_size __read_mostly;
452#endif
0c8c0f03 453
ff691f6e 454void __init fork_init(void)
1da177e4 455{
25f9c081 456 int i;
f5e10287 457#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1da177e4 458#ifndef ARCH_MIN_TASKALIGN
e274795e 459#define ARCH_MIN_TASKALIGN 0
1da177e4 460#endif
95cb64c1 461 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
e274795e 462
1da177e4 463 /* create a slab on which task_structs can be allocated */
5d097056 464 task_struct_cachep = kmem_cache_create("task_struct",
e274795e 465 arch_task_struct_size, align,
5d097056 466 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
1da177e4
LT
467#endif
468
61c4628b
SS
469 /* do the arch specific task caches init */
470 arch_task_cache_init();
471
16db3d3f 472 set_max_threads(MAX_THREADS);
1da177e4
LT
473
474 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
475 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
476 init_task.signal->rlim[RLIMIT_SIGPENDING] =
477 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 478
25f9c081
EB
479 for (i = 0; i < UCOUNT_COUNTS; i++) {
480 init_user_ns.ucount_max[i] = max_threads/2;
481 }
19659c59
HR
482
483#ifdef CONFIG_VMAP_STACK
484 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
485 NULL, free_vm_stack_cache);
486#endif
1da177e4
LT
487}
488
52f5684c 489int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
490 struct task_struct *src)
491{
492 *dst = *src;
493 return 0;
494}
495
d4311ff1
AT
496void set_task_stack_end_magic(struct task_struct *tsk)
497{
498 unsigned long *stackend;
499
500 stackend = end_of_stack(tsk);
501 *stackend = STACK_END_MAGIC; /* for overflow detection */
502}
503
725fc629 504static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
505{
506 struct task_struct *tsk;
b235beea 507 unsigned long *stack;
ba14a194 508 struct vm_struct *stack_vm_area;
3e26c149 509 int err;
1da177e4 510
725fc629
AK
511 if (node == NUMA_NO_NODE)
512 node = tsk_fork_get_node(orig);
504f52b5 513 tsk = alloc_task_struct_node(node);
1da177e4
LT
514 if (!tsk)
515 return NULL;
516
b235beea
LT
517 stack = alloc_thread_stack_node(tsk, node);
518 if (!stack)
f19b9f74 519 goto free_tsk;
1da177e4 520
ba14a194
AL
521 stack_vm_area = task_stack_vm_area(tsk);
522
fb0a685c 523 err = arch_dup_task_struct(tsk, orig);
ba14a194
AL
524
525 /*
526 * arch_dup_task_struct() clobbers the stack-related fields. Make
527 * sure they're properly initialized before using any stack-related
528 * functions again.
529 */
530 tsk->stack = stack;
531#ifdef CONFIG_VMAP_STACK
532 tsk->stack_vm_area = stack_vm_area;
533#endif
68f24b08
AL
534#ifdef CONFIG_THREAD_INFO_IN_TASK
535 atomic_set(&tsk->stack_refcount, 1);
536#endif
ba14a194 537
164c33c6 538 if (err)
b235beea 539 goto free_stack;
164c33c6 540
dbd95212
KC
541#ifdef CONFIG_SECCOMP
542 /*
543 * We must handle setting up seccomp filters once we're under
544 * the sighand lock in case orig has changed between now and
545 * then. Until then, filter must be NULL to avoid messing up
546 * the usage counts on the error path calling free_task.
547 */
548 tsk->seccomp.filter = NULL;
549#endif
87bec58a
AM
550
551 setup_thread_stack(tsk, orig);
8e7cac79 552 clear_user_return_notifier(tsk);
f26f9aff 553 clear_tsk_need_resched(tsk);
d4311ff1 554 set_task_stack_end_magic(tsk);
1da177e4 555
0a425405 556#ifdef CONFIG_CC_STACKPROTECTOR
5ea30e4e 557 tsk->stack_canary = get_random_long();
0a425405
AV
558#endif
559
fb0a685c
DRO
560 /*
561 * One for us, one for whoever does the "release_task()" (usually
562 * parent)
563 */
564 atomic_set(&tsk->usage, 2);
6c5c9341 565#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 566 tsk->btrace_seq = 0;
6c5c9341 567#endif
a0aa7f68 568 tsk->splice_pipe = NULL;
5640f768 569 tsk->task_frag.page = NULL;
093e5840 570 tsk->wake_q.next = NULL;
c6a7f572 571
ba14a194 572 account_kernel_stack(tsk, 1);
c6a7f572 573
5c9a8750
DV
574 kcov_task_init(tsk);
575
1da177e4 576 return tsk;
61c4628b 577
b235beea 578free_stack:
ba14a194 579 free_thread_stack(tsk);
f19b9f74 580free_tsk:
61c4628b
SS
581 free_task_struct(tsk);
582 return NULL;
1da177e4
LT
583}
584
585#ifdef CONFIG_MMU
0766f788
ER
586static __latent_entropy int dup_mmap(struct mm_struct *mm,
587 struct mm_struct *oldmm)
1da177e4 588{
297c5eee 589 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
1da177e4
LT
590 struct rb_node **rb_link, *rb_parent;
591 int retval;
592 unsigned long charge;
893e26e6 593 LIST_HEAD(uf);
1da177e4 594
32cdba1e 595 uprobe_start_dup_mmap();
7c051267
MH
596 if (down_write_killable(&oldmm->mmap_sem)) {
597 retval = -EINTR;
598 goto fail_uprobe_end;
599 }
ec8c0446 600 flush_cache_dup_mm(oldmm);
f8ac4ec9 601 uprobe_dup_mmap(oldmm, mm);
ad339451
IM
602 /*
603 * Not linked in yet - no deadlock potential:
604 */
605 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
7ee78232 606
90f31d0e
KK
607 /* No ordering required: file already has been exposed. */
608 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
609
4f7d4614 610 mm->total_vm = oldmm->total_vm;
84638335 611 mm->data_vm = oldmm->data_vm;
4f7d4614
VD
612 mm->exec_vm = oldmm->exec_vm;
613 mm->stack_vm = oldmm->stack_vm;
614
1da177e4
LT
615 rb_link = &mm->mm_rb.rb_node;
616 rb_parent = NULL;
617 pprev = &mm->mmap;
f8af4da3 618 retval = ksm_fork(mm, oldmm);
ba76149f
AA
619 if (retval)
620 goto out;
621 retval = khugepaged_fork(mm, oldmm);
f8af4da3
HD
622 if (retval)
623 goto out;
1da177e4 624
297c5eee 625 prev = NULL;
fd3e42fc 626 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
1da177e4
LT
627 struct file *file;
628
629 if (mpnt->vm_flags & VM_DONTCOPY) {
84638335 630 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
1da177e4
LT
631 continue;
632 }
633 charge = 0;
634 if (mpnt->vm_flags & VM_ACCOUNT) {
b2412b7f
HS
635 unsigned long len = vma_pages(mpnt);
636
191c5424 637 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
1da177e4
LT
638 goto fail_nomem;
639 charge = len;
640 }
e94b1766 641 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1da177e4
LT
642 if (!tmp)
643 goto fail_nomem;
644 *tmp = *mpnt;
5beb4930 645 INIT_LIST_HEAD(&tmp->anon_vma_chain);
ef0855d3
ON
646 retval = vma_dup_policy(mpnt, tmp);
647 if (retval)
1da177e4 648 goto fail_nomem_policy;
a247c3a9 649 tmp->vm_mm = mm;
893e26e6
PE
650 retval = dup_userfaultfd(tmp, &uf);
651 if (retval)
652 goto fail_nomem_anon_vma_fork;
5beb4930
RR
653 if (anon_vma_fork(tmp, mpnt))
654 goto fail_nomem_anon_vma_fork;
893e26e6 655 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
297c5eee 656 tmp->vm_next = tmp->vm_prev = NULL;
1da177e4
LT
657 file = tmp->vm_file;
658 if (file) {
496ad9aa 659 struct inode *inode = file_inode(file);
b88ed205
HD
660 struct address_space *mapping = file->f_mapping;
661
1da177e4
LT
662 get_file(file);
663 if (tmp->vm_flags & VM_DENYWRITE)
664 atomic_dec(&inode->i_writecount);
83cde9e8 665 i_mmap_lock_write(mapping);
b88ed205 666 if (tmp->vm_flags & VM_SHARED)
4bb5f5d9 667 atomic_inc(&mapping->i_mmap_writable);
b88ed205
HD
668 flush_dcache_mmap_lock(mapping);
669 /* insert tmp into the share list, just after mpnt */
27ba0644
KS
670 vma_interval_tree_insert_after(tmp, mpnt,
671 &mapping->i_mmap);
b88ed205 672 flush_dcache_mmap_unlock(mapping);
83cde9e8 673 i_mmap_unlock_write(mapping);
1da177e4
LT
674 }
675
a1e78772
MG
676 /*
677 * Clear hugetlb-related page reserves for children. This only
678 * affects MAP_PRIVATE mappings. Faults generated by the child
679 * are not guaranteed to succeed, even if read-only
680 */
681 if (is_vm_hugetlb_page(tmp))
682 reset_vma_resv_huge_pages(tmp);
683
1da177e4 684 /*
7ee78232 685 * Link in the new vma and copy the page table entries.
1da177e4 686 */
1da177e4
LT
687 *pprev = tmp;
688 pprev = &tmp->vm_next;
297c5eee
LT
689 tmp->vm_prev = prev;
690 prev = tmp;
1da177e4
LT
691
692 __vma_link_rb(mm, tmp, rb_link, rb_parent);
693 rb_link = &tmp->vm_rb.rb_right;
694 rb_parent = &tmp->vm_rb;
695
696 mm->map_count++;
0b0db14c 697 retval = copy_page_range(mm, oldmm, mpnt);
1da177e4
LT
698
699 if (tmp->vm_ops && tmp->vm_ops->open)
700 tmp->vm_ops->open(tmp);
701
702 if (retval)
703 goto out;
704 }
d6dd61c8
JF
705 /* a new mm has just been created */
706 arch_dup_mmap(oldmm, mm);
1da177e4 707 retval = 0;
1da177e4 708out:
7ee78232 709 up_write(&mm->mmap_sem);
fd3e42fc 710 flush_tlb_mm(oldmm);
1da177e4 711 up_write(&oldmm->mmap_sem);
893e26e6 712 dup_userfaultfd_complete(&uf);
7c051267 713fail_uprobe_end:
32cdba1e 714 uprobe_end_dup_mmap();
1da177e4 715 return retval;
5beb4930 716fail_nomem_anon_vma_fork:
ef0855d3 717 mpol_put(vma_policy(tmp));
1da177e4
LT
718fail_nomem_policy:
719 kmem_cache_free(vm_area_cachep, tmp);
720fail_nomem:
721 retval = -ENOMEM;
722 vm_unacct_memory(charge);
723 goto out;
724}
725
fb0a685c 726static inline int mm_alloc_pgd(struct mm_struct *mm)
1da177e4
LT
727{
728 mm->pgd = pgd_alloc(mm);
729 if (unlikely(!mm->pgd))
730 return -ENOMEM;
731 return 0;
732}
733
fb0a685c 734static inline void mm_free_pgd(struct mm_struct *mm)
1da177e4 735{
5e541973 736 pgd_free(mm, mm->pgd);
1da177e4
LT
737}
738#else
90f31d0e
KK
739static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
740{
741 down_write(&oldmm->mmap_sem);
742 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
743 up_write(&oldmm->mmap_sem);
744 return 0;
745}
1da177e4
LT
746#define mm_alloc_pgd(mm) (0)
747#define mm_free_pgd(mm)
748#endif /* CONFIG_MMU */
749
23ff4440 750__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 751
e94b1766 752#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
1da177e4
LT
753#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
754
4cb0e11b
HK
755static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
756
757static int __init coredump_filter_setup(char *s)
758{
759 default_dump_filter =
760 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
761 MMF_DUMP_FILTER_MASK;
762 return 1;
763}
764
765__setup("coredump_filter=", coredump_filter_setup);
766
1da177e4
LT
767#include <linux/init_task.h>
768
858f0993
AD
769static void mm_init_aio(struct mm_struct *mm)
770{
771#ifdef CONFIG_AIO
772 spin_lock_init(&mm->ioctx_lock);
db446a08 773 mm->ioctx_table = NULL;
858f0993
AD
774#endif
775}
776
33144e84
VD
777static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
778{
779#ifdef CONFIG_MEMCG
780 mm->owner = p;
781#endif
782}
783
bfedb589
EB
784static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
785 struct user_namespace *user_ns)
1da177e4 786{
41f727fd
VD
787 mm->mmap = NULL;
788 mm->mm_rb = RB_ROOT;
789 mm->vmacache_seqnum = 0;
1da177e4
LT
790 atomic_set(&mm->mm_users, 1);
791 atomic_set(&mm->mm_count, 1);
792 init_rwsem(&mm->mmap_sem);
793 INIT_LIST_HEAD(&mm->mmlist);
999d9fc1 794 mm->core_state = NULL;
e1f56c89 795 atomic_long_set(&mm->nr_ptes, 0);
2d2f5119 796 mm_nr_pmds_init(mm);
41f727fd
VD
797 mm->map_count = 0;
798 mm->locked_vm = 0;
ce65cefa 799 mm->pinned_vm = 0;
d559db08 800 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 801 spin_lock_init(&mm->page_table_lock);
41f727fd 802 mm_init_cpumask(mm);
858f0993 803 mm_init_aio(mm);
cf475ad2 804 mm_init_owner(mm, p);
41f727fd 805 mmu_notifier_mm_init(mm);
20841405 806 clear_tlb_flush_pending(mm);
41f727fd
VD
807#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
808 mm->pmd_huge_pte = NULL;
809#endif
1da177e4 810
a0715cc2
AT
811 if (current->mm) {
812 mm->flags = current->mm->flags & MMF_INIT_MASK;
813 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
814 } else {
815 mm->flags = default_dump_filter;
1da177e4 816 mm->def_flags = 0;
a0715cc2
AT
817 }
818
41f727fd
VD
819 if (mm_alloc_pgd(mm))
820 goto fail_nopgd;
821
822 if (init_new_context(p, mm))
823 goto fail_nocontext;
78fb7466 824
bfedb589 825 mm->user_ns = get_user_ns(user_ns);
41f727fd
VD
826 return mm;
827
828fail_nocontext:
829 mm_free_pgd(mm);
830fail_nopgd:
1da177e4
LT
831 free_mm(mm);
832 return NULL;
833}
834
c3f0327f
KK
835static void check_mm(struct mm_struct *mm)
836{
837 int i;
838
839 for (i = 0; i < NR_MM_COUNTERS; i++) {
840 long x = atomic_long_read(&mm->rss_stat.count[i]);
841
842 if (unlikely(x))
843 printk(KERN_ALERT "BUG: Bad rss-counter state "
844 "mm:%p idx:%d val:%ld\n", mm, i, x);
845 }
b30fe6c7
KS
846
847 if (atomic_long_read(&mm->nr_ptes))
848 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
849 atomic_long_read(&mm->nr_ptes));
850 if (mm_nr_pmds(mm))
851 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
852 mm_nr_pmds(mm));
853
e009bb30 854#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
96dad67f 855 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
c3f0327f
KK
856#endif
857}
858
1da177e4
LT
859/*
860 * Allocate and initialize an mm_struct.
861 */
fb0a685c 862struct mm_struct *mm_alloc(void)
1da177e4 863{
fb0a685c 864 struct mm_struct *mm;
1da177e4
LT
865
866 mm = allocate_mm();
de03c72c
KM
867 if (!mm)
868 return NULL;
869
870 memset(mm, 0, sizeof(*mm));
bfedb589 871 return mm_init(mm, current, current_user_ns());
1da177e4
LT
872}
873
874/*
875 * Called when the last reference to the mm
876 * is dropped: either by a lazy thread or by
877 * mmput. Free the page directory and the mm.
878 */
7ad5b3a5 879void __mmdrop(struct mm_struct *mm)
1da177e4
LT
880{
881 BUG_ON(mm == &init_mm);
882 mm_free_pgd(mm);
883 destroy_context(mm);
cddb8a5c 884 mmu_notifier_mm_destroy(mm);
c3f0327f 885 check_mm(mm);
bfedb589 886 put_user_ns(mm->user_ns);
1da177e4
LT
887 free_mm(mm);
888}
6d4e4c4f 889EXPORT_SYMBOL_GPL(__mmdrop);
1da177e4 890
ec8d7c14
MH
891static inline void __mmput(struct mm_struct *mm)
892{
893 VM_BUG_ON(atomic_read(&mm->mm_users));
894
895 uprobe_clear_state(mm);
896 exit_aio(mm);
897 ksm_exit(mm);
898 khugepaged_exit(mm); /* must run before exit_mmap */
899 exit_mmap(mm);
6fcb52a5 900 mm_put_huge_zero_page(mm);
ec8d7c14
MH
901 set_mm_exe_file(mm, NULL);
902 if (!list_empty(&mm->mmlist)) {
903 spin_lock(&mmlist_lock);
904 list_del(&mm->mmlist);
905 spin_unlock(&mmlist_lock);
906 }
907 if (mm->binfmt)
908 module_put(mm->binfmt->module);
862e3073 909 set_bit(MMF_OOM_SKIP, &mm->flags);
ec8d7c14
MH
910 mmdrop(mm);
911}
912
1da177e4
LT
913/*
914 * Decrement the use count and release all resources for an mm.
915 */
916void mmput(struct mm_struct *mm)
917{
0ae26f1b
AM
918 might_sleep();
919
ec8d7c14
MH
920 if (atomic_dec_and_test(&mm->mm_users))
921 __mmput(mm);
922}
923EXPORT_SYMBOL_GPL(mmput);
924
7ef949d7 925#ifdef CONFIG_MMU
ec8d7c14
MH
926static void mmput_async_fn(struct work_struct *work)
927{
928 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
929 __mmput(mm);
930}
931
932void mmput_async(struct mm_struct *mm)
933{
1da177e4 934 if (atomic_dec_and_test(&mm->mm_users)) {
ec8d7c14
MH
935 INIT_WORK(&mm->async_put_work, mmput_async_fn);
936 schedule_work(&mm->async_put_work);
1da177e4
LT
937 }
938}
7ef949d7 939#endif
1da177e4 940
90f31d0e
KK
941/**
942 * set_mm_exe_file - change a reference to the mm's executable file
943 *
944 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
945 *
6e399cd1
DB
946 * Main users are mmput() and sys_execve(). Callers prevent concurrent
947 * invocations: in mmput() nobody alive left, in execve task is single
948 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
949 * mm->exe_file, but does so without using set_mm_exe_file() in order
950 * to do avoid the need for any locks.
90f31d0e 951 */
38646013
JS
952void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
953{
6e399cd1
DB
954 struct file *old_exe_file;
955
956 /*
957 * It is safe to dereference the exe_file without RCU as
958 * this function is only called if nobody else can access
959 * this mm -- see comment above for justification.
960 */
961 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 962
38646013
JS
963 if (new_exe_file)
964 get_file(new_exe_file);
90f31d0e
KK
965 rcu_assign_pointer(mm->exe_file, new_exe_file);
966 if (old_exe_file)
967 fput(old_exe_file);
38646013
JS
968}
969
90f31d0e
KK
970/**
971 * get_mm_exe_file - acquire a reference to the mm's executable file
972 *
973 * Returns %NULL if mm has no associated executable file.
974 * User must release file via fput().
975 */
38646013
JS
976struct file *get_mm_exe_file(struct mm_struct *mm)
977{
978 struct file *exe_file;
979
90f31d0e
KK
980 rcu_read_lock();
981 exe_file = rcu_dereference(mm->exe_file);
982 if (exe_file && !get_file_rcu(exe_file))
983 exe_file = NULL;
984 rcu_read_unlock();
38646013
JS
985 return exe_file;
986}
11163348 987EXPORT_SYMBOL(get_mm_exe_file);
38646013 988
cd81a917
MG
989/**
990 * get_task_exe_file - acquire a reference to the task's executable file
991 *
992 * Returns %NULL if task's mm (if any) has no associated executable file or
993 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
994 * User must release file via fput().
995 */
996struct file *get_task_exe_file(struct task_struct *task)
997{
998 struct file *exe_file = NULL;
999 struct mm_struct *mm;
1000
1001 task_lock(task);
1002 mm = task->mm;
1003 if (mm) {
1004 if (!(task->flags & PF_KTHREAD))
1005 exe_file = get_mm_exe_file(mm);
1006 }
1007 task_unlock(task);
1008 return exe_file;
1009}
1010EXPORT_SYMBOL(get_task_exe_file);
38646013 1011
1da177e4
LT
1012/**
1013 * get_task_mm - acquire a reference to the task's mm
1014 *
246bb0b1 1015 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1016 * this kernel workthread has transiently adopted a user mm with use_mm,
1017 * to do its AIO) is not set and if so returns a reference to it, after
1018 * bumping up the use count. User must release the mm via mmput()
1019 * after use. Typically used by /proc and ptrace.
1020 */
1021struct mm_struct *get_task_mm(struct task_struct *task)
1022{
1023 struct mm_struct *mm;
1024
1025 task_lock(task);
1026 mm = task->mm;
1027 if (mm) {
246bb0b1 1028 if (task->flags & PF_KTHREAD)
1da177e4
LT
1029 mm = NULL;
1030 else
3fce371b 1031 mmget(mm);
1da177e4
LT
1032 }
1033 task_unlock(task);
1034 return mm;
1035}
1036EXPORT_SYMBOL_GPL(get_task_mm);
1037
8cdb878d
CY
1038struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1039{
1040 struct mm_struct *mm;
1041 int err;
1042
1043 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1044 if (err)
1045 return ERR_PTR(err);
1046
1047 mm = get_task_mm(task);
1048 if (mm && mm != current->mm &&
1049 !ptrace_may_access(task, mode)) {
1050 mmput(mm);
1051 mm = ERR_PTR(-EACCES);
1052 }
1053 mutex_unlock(&task->signal->cred_guard_mutex);
1054
1055 return mm;
1056}
1057
57b59c4a 1058static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1059{
d68b46fe 1060 struct completion *vfork;
c415c3b4 1061
d68b46fe
ON
1062 task_lock(tsk);
1063 vfork = tsk->vfork_done;
1064 if (likely(vfork)) {
1065 tsk->vfork_done = NULL;
1066 complete(vfork);
1067 }
1068 task_unlock(tsk);
1069}
1070
1071static int wait_for_vfork_done(struct task_struct *child,
1072 struct completion *vfork)
1073{
1074 int killed;
1075
1076 freezer_do_not_count();
1077 killed = wait_for_completion_killable(vfork);
1078 freezer_count();
1079
1080 if (killed) {
1081 task_lock(child);
1082 child->vfork_done = NULL;
1083 task_unlock(child);
1084 }
1085
1086 put_task_struct(child);
1087 return killed;
c415c3b4
ON
1088}
1089
1da177e4
LT
1090/* Please note the differences between mmput and mm_release.
1091 * mmput is called whenever we stop holding onto a mm_struct,
1092 * error success whatever.
1093 *
1094 * mm_release is called after a mm_struct has been removed
1095 * from the current process.
1096 *
1097 * This difference is important for error handling, when we
1098 * only half set up a mm_struct for a new process and need to restore
1099 * the old one. Because we mmput the new mm_struct before
1100 * restoring the old one. . .
1101 * Eric Biederman 10 January 1998
1102 */
1103void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1104{
8141c7f3
LT
1105 /* Get rid of any futexes when releasing the mm */
1106#ifdef CONFIG_FUTEX
fc6b177d 1107 if (unlikely(tsk->robust_list)) {
8141c7f3 1108 exit_robust_list(tsk);
fc6b177d
PZ
1109 tsk->robust_list = NULL;
1110 }
8141c7f3 1111#ifdef CONFIG_COMPAT
fc6b177d 1112 if (unlikely(tsk->compat_robust_list)) {
8141c7f3 1113 compat_exit_robust_list(tsk);
fc6b177d
PZ
1114 tsk->compat_robust_list = NULL;
1115 }
8141c7f3 1116#endif
322a2c10
TG
1117 if (unlikely(!list_empty(&tsk->pi_state_list)))
1118 exit_pi_state_list(tsk);
8141c7f3
LT
1119#endif
1120
0326f5a9
SD
1121 uprobe_free_utask(tsk);
1122
1da177e4
LT
1123 /* Get rid of any cached register state */
1124 deactivate_mm(tsk, mm);
1125
fec1d011 1126 /*
735f2770
MH
1127 * Signal userspace if we're not exiting with a core dump
1128 * because we want to leave the value intact for debugging
1129 * purposes.
fec1d011 1130 */
9c8a8228 1131 if (tsk->clear_child_tid) {
735f2770 1132 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
9c8a8228
ED
1133 atomic_read(&mm->mm_users) > 1) {
1134 /*
1135 * We don't check the error code - if userspace has
1136 * not set up a proper pointer then tough luck.
1137 */
1138 put_user(0, tsk->clear_child_tid);
1139 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1140 1, NULL, NULL, 0);
1141 }
1da177e4 1142 tsk->clear_child_tid = NULL;
1da177e4 1143 }
f7505d64
KK
1144
1145 /*
1146 * All done, finally we can wake up parent and return this mm to him.
1147 * Also kthread_stop() uses this completion for synchronization.
1148 */
1149 if (tsk->vfork_done)
1150 complete_vfork_done(tsk);
1da177e4
LT
1151}
1152
a0a7ec30
JD
1153/*
1154 * Allocate a new mm structure and copy contents from the
1155 * mm structure of the passed in task structure.
1156 */
ff252c1f 1157static struct mm_struct *dup_mm(struct task_struct *tsk)
a0a7ec30
JD
1158{
1159 struct mm_struct *mm, *oldmm = current->mm;
1160 int err;
1161
a0a7ec30
JD
1162 mm = allocate_mm();
1163 if (!mm)
1164 goto fail_nomem;
1165
1166 memcpy(mm, oldmm, sizeof(*mm));
1167
bfedb589 1168 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1169 goto fail_nomem;
1170
a0a7ec30
JD
1171 err = dup_mmap(mm, oldmm);
1172 if (err)
1173 goto free_pt;
1174
1175 mm->hiwater_rss = get_mm_rss(mm);
1176 mm->hiwater_vm = mm->total_vm;
1177
801460d0
HS
1178 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1179 goto free_pt;
1180
a0a7ec30
JD
1181 return mm;
1182
1183free_pt:
801460d0
HS
1184 /* don't put binfmt in mmput, we haven't got module yet */
1185 mm->binfmt = NULL;
a0a7ec30
JD
1186 mmput(mm);
1187
1188fail_nomem:
1189 return NULL;
a0a7ec30
JD
1190}
1191
fb0a685c 1192static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1193{
fb0a685c 1194 struct mm_struct *mm, *oldmm;
1da177e4
LT
1195 int retval;
1196
1197 tsk->min_flt = tsk->maj_flt = 0;
1198 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1199#ifdef CONFIG_DETECT_HUNG_TASK
1200 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1201#endif
1da177e4
LT
1202
1203 tsk->mm = NULL;
1204 tsk->active_mm = NULL;
1205
1206 /*
1207 * Are we cloning a kernel thread?
1208 *
1209 * We need to steal a active VM for that..
1210 */
1211 oldmm = current->mm;
1212 if (!oldmm)
1213 return 0;
1214
615d6e87
DB
1215 /* initialize the new vmacache entries */
1216 vmacache_flush(tsk);
1217
1da177e4 1218 if (clone_flags & CLONE_VM) {
3fce371b 1219 mmget(oldmm);
1da177e4 1220 mm = oldmm;
1da177e4
LT
1221 goto good_mm;
1222 }
1223
1224 retval = -ENOMEM;
a0a7ec30 1225 mm = dup_mm(tsk);
1da177e4
LT
1226 if (!mm)
1227 goto fail_nomem;
1228
1da177e4
LT
1229good_mm:
1230 tsk->mm = mm;
1231 tsk->active_mm = mm;
1232 return 0;
1233
1da177e4
LT
1234fail_nomem:
1235 return retval;
1da177e4
LT
1236}
1237
a39bc516 1238static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1239{
498052bb 1240 struct fs_struct *fs = current->fs;
1da177e4 1241 if (clone_flags & CLONE_FS) {
498052bb 1242 /* tsk->fs is already what we want */
2a4419b5 1243 spin_lock(&fs->lock);
498052bb 1244 if (fs->in_exec) {
2a4419b5 1245 spin_unlock(&fs->lock);
498052bb
AV
1246 return -EAGAIN;
1247 }
1248 fs->users++;
2a4419b5 1249 spin_unlock(&fs->lock);
1da177e4
LT
1250 return 0;
1251 }
498052bb 1252 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1253 if (!tsk->fs)
1254 return -ENOMEM;
1255 return 0;
1256}
1257
fb0a685c 1258static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
a016f338
JD
1259{
1260 struct files_struct *oldf, *newf;
1261 int error = 0;
1262
1263 /*
1264 * A background process may not have any files ...
1265 */
1266 oldf = current->files;
1267 if (!oldf)
1268 goto out;
1269
1270 if (clone_flags & CLONE_FILES) {
1271 atomic_inc(&oldf->count);
1272 goto out;
1273 }
1274
a016f338
JD
1275 newf = dup_fd(oldf, &error);
1276 if (!newf)
1277 goto out;
1278
1279 tsk->files = newf;
1280 error = 0;
1281out:
1282 return error;
1283}
1284
fadad878 1285static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
fd0928df
JA
1286{
1287#ifdef CONFIG_BLOCK
1288 struct io_context *ioc = current->io_context;
6e736be7 1289 struct io_context *new_ioc;
fd0928df
JA
1290
1291 if (!ioc)
1292 return 0;
fadad878
JA
1293 /*
1294 * Share io context with parent, if CLONE_IO is set
1295 */
1296 if (clone_flags & CLONE_IO) {
3d48749d
TH
1297 ioc_task_link(ioc);
1298 tsk->io_context = ioc;
fadad878 1299 } else if (ioprio_valid(ioc->ioprio)) {
6e736be7
TH
1300 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1301 if (unlikely(!new_ioc))
fd0928df
JA
1302 return -ENOMEM;
1303
6e736be7 1304 new_ioc->ioprio = ioc->ioprio;
11a3122f 1305 put_io_context(new_ioc);
fd0928df
JA
1306 }
1307#endif
1308 return 0;
1309}
1310
a39bc516 1311static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1312{
1313 struct sighand_struct *sig;
1314
60348802 1315 if (clone_flags & CLONE_SIGHAND) {
1da177e4
LT
1316 atomic_inc(&current->sighand->count);
1317 return 0;
1318 }
1319 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
e56d0903 1320 rcu_assign_pointer(tsk->sighand, sig);
1da177e4
LT
1321 if (!sig)
1322 return -ENOMEM;
9d7fb042 1323
1da177e4
LT
1324 atomic_set(&sig->count, 1);
1325 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1326 return 0;
1327}
1328
a7e5328a 1329void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1330{
d80e731e
ON
1331 if (atomic_dec_and_test(&sighand->count)) {
1332 signalfd_cleanup(sighand);
392809b2 1333 /*
5f0d5a3a 1334 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1335 * without an RCU grace period, see __lock_task_sighand().
1336 */
c81addc9 1337 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1338 }
c81addc9
ON
1339}
1340
b18b6a9c 1341#ifdef CONFIG_POSIX_TIMERS
f06febc9
FM
1342/*
1343 * Initialize POSIX timer handling for a thread group.
1344 */
1345static void posix_cpu_timers_init_group(struct signal_struct *sig)
1346{
78d7d407
JS
1347 unsigned long cpu_limit;
1348
316c1608 1349 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
78d7d407 1350 if (cpu_limit != RLIM_INFINITY) {
ebd7e7fc 1351 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
d5c373eb 1352 sig->cputimer.running = true;
6279a751
ON
1353 }
1354
f06febc9
FM
1355 /* The timer lists. */
1356 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1357 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1358 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1359}
b18b6a9c
NP
1360#else
1361static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1362#endif
f06febc9 1363
a39bc516 1364static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1365{
1366 struct signal_struct *sig;
1da177e4 1367
4ab6c083 1368 if (clone_flags & CLONE_THREAD)
490dea45 1369 return 0;
490dea45 1370
a56704ef 1371 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1372 tsk->signal = sig;
1373 if (!sig)
1374 return -ENOMEM;
1375
b3ac022c 1376 sig->nr_threads = 1;
1da177e4 1377 atomic_set(&sig->live, 1);
b3ac022c 1378 atomic_set(&sig->sigcnt, 1);
0c740d0a
ON
1379
1380 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1381 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1382 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1383
1da177e4 1384 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1385 sig->curr_target = tsk;
1da177e4 1386 init_sigpending(&sig->shared_pending);
e78c3496 1387 seqlock_init(&sig->stats_lock);
9d7fb042 1388 prev_cputime_init(&sig->prev_cputime);
1da177e4 1389
baa73d9e 1390#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1391 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1392 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1393 sig->real_timer.function = it_real_fn;
baa73d9e 1394#endif
1da177e4 1395
1da177e4
LT
1396 task_lock(current->group_leader);
1397 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1398 task_unlock(current->group_leader);
1399
6279a751
ON
1400 posix_cpu_timers_init_group(sig);
1401
522ed776 1402 tty_audit_fork(sig);
5091faa4 1403 sched_autogroup_fork(sig);
522ed776 1404
a63d83f4 1405 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1406 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1407
9b1bf12d
KM
1408 mutex_init(&sig->cred_guard_mutex);
1409
1da177e4
LT
1410 return 0;
1411}
1412
dbd95212
KC
1413static void copy_seccomp(struct task_struct *p)
1414{
1415#ifdef CONFIG_SECCOMP
1416 /*
1417 * Must be called with sighand->lock held, which is common to
1418 * all threads in the group. Holding cred_guard_mutex is not
1419 * needed because this new task is not yet running and cannot
1420 * be racing exec.
1421 */
69f6a34b 1422 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1423
1424 /* Ref-count the new filter user, and assign it. */
1425 get_seccomp_filter(current);
1426 p->seccomp = current->seccomp;
1427
1428 /*
1429 * Explicitly enable no_new_privs here in case it got set
1430 * between the task_struct being duplicated and holding the
1431 * sighand lock. The seccomp state and nnp must be in sync.
1432 */
1433 if (task_no_new_privs(current))
1434 task_set_no_new_privs(p);
1435
1436 /*
1437 * If the parent gained a seccomp mode after copying thread
1438 * flags and between before we held the sighand lock, we have
1439 * to manually enable the seccomp thread flag here.
1440 */
1441 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1442 set_tsk_thread_flag(p, TIF_SECCOMP);
1443#endif
1444}
1445
17da2bd9 1446SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1447{
1448 current->clear_child_tid = tidptr;
1449
b488893a 1450 return task_pid_vnr(current);
1da177e4
LT
1451}
1452
a39bc516 1453static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1454{
1d615482 1455 raw_spin_lock_init(&p->pi_lock);
e29e175b 1456#ifdef CONFIG_RT_MUTEXES
fb00aca4
PZ
1457 p->pi_waiters = RB_ROOT;
1458 p->pi_waiters_leftmost = NULL;
e96a7705 1459 p->pi_top_task = NULL;
23f78d4a 1460 p->pi_blocked_on = NULL;
23f78d4a
IM
1461#endif
1462}
1463
b18b6a9c 1464#ifdef CONFIG_POSIX_TIMERS
f06febc9
FM
1465/*
1466 * Initialize POSIX timer handling for a single task.
1467 */
1468static void posix_cpu_timers_init(struct task_struct *tsk)
1469{
64861634
MS
1470 tsk->cputime_expires.prof_exp = 0;
1471 tsk->cputime_expires.virt_exp = 0;
f06febc9
FM
1472 tsk->cputime_expires.sched_exp = 0;
1473 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1474 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1475 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1476}
b18b6a9c
NP
1477#else
1478static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1479#endif
f06febc9 1480
81907739
ON
1481static inline void
1482init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1483{
1484 task->pids[type].pid = pid;
1485}
1486
6bfbaa51
IM
1487static inline void rcu_copy_process(struct task_struct *p)
1488{
1489#ifdef CONFIG_PREEMPT_RCU
1490 p->rcu_read_lock_nesting = 0;
1491 p->rcu_read_unlock_special.s = 0;
1492 p->rcu_blocked_node = NULL;
1493 INIT_LIST_HEAD(&p->rcu_node_entry);
1494#endif /* #ifdef CONFIG_PREEMPT_RCU */
1495#ifdef CONFIG_TASKS_RCU
1496 p->rcu_tasks_holdout = false;
1497 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1498 p->rcu_tasks_idle_cpu = -1;
1499#endif /* #ifdef CONFIG_TASKS_RCU */
1500}
1501
1da177e4
LT
1502/*
1503 * This creates a new process as a copy of the old one,
1504 * but does not actually start it yet.
1505 *
1506 * It copies the registers, and all the appropriate
1507 * parts of the process environment (as per the clone
1508 * flags). The actual kick-off is left to the caller.
1509 */
0766f788
ER
1510static __latent_entropy struct task_struct *copy_process(
1511 unsigned long clone_flags,
36c8b586 1512 unsigned long stack_start,
36c8b586 1513 unsigned long stack_size,
36c8b586 1514 int __user *child_tidptr,
09a05394 1515 struct pid *pid,
3033f14a 1516 int trace,
725fc629
AK
1517 unsigned long tls,
1518 int node)
1da177e4
LT
1519{
1520 int retval;
a24efe62 1521 struct task_struct *p;
1da177e4
LT
1522
1523 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1524 return ERR_PTR(-EINVAL);
1525
e66eded8
EB
1526 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1527 return ERR_PTR(-EINVAL);
1528
1da177e4
LT
1529 /*
1530 * Thread groups must share signals as well, and detached threads
1531 * can only be started up within the thread group.
1532 */
1533 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1534 return ERR_PTR(-EINVAL);
1535
1536 /*
1537 * Shared signal handlers imply shared VM. By way of the above,
1538 * thread groups also imply shared VM. Blocking this case allows
1539 * for various simplifications in other code.
1540 */
1541 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1542 return ERR_PTR(-EINVAL);
1543
123be07b
SB
1544 /*
1545 * Siblings of global init remain as zombies on exit since they are
1546 * not reaped by their parent (swapper). To solve this and to avoid
1547 * multi-rooted process trees, prevent global and container-inits
1548 * from creating siblings.
1549 */
1550 if ((clone_flags & CLONE_PARENT) &&
1551 current->signal->flags & SIGNAL_UNKILLABLE)
1552 return ERR_PTR(-EINVAL);
1553
8382fcac 1554 /*
40a0d32d 1555 * If the new process will be in a different pid or user namespace
faf00da5 1556 * do not allow it to share a thread group with the forking task.
8382fcac 1557 */
faf00da5 1558 if (clone_flags & CLONE_THREAD) {
40a0d32d
ON
1559 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1560 (task_active_pid_ns(current) !=
1561 current->nsproxy->pid_ns_for_children))
1562 return ERR_PTR(-EINVAL);
1563 }
8382fcac 1564
1da177e4
LT
1565 retval = security_task_create(clone_flags);
1566 if (retval)
1567 goto fork_out;
1568
1569 retval = -ENOMEM;
725fc629 1570 p = dup_task_struct(current, node);
1da177e4
LT
1571 if (!p)
1572 goto fork_out;
1573
4d6501dc
VN
1574 /*
1575 * This _must_ happen before we call free_task(), i.e. before we jump
1576 * to any of the bad_fork_* labels. This is to avoid freeing
1577 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1578 * kernel threads (PF_KTHREAD).
1579 */
1580 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1581 /*
1582 * Clear TID on mm_release()?
1583 */
1584 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1585
f7e8b616
SR
1586 ftrace_graph_init_task(p);
1587
bea493a0
PZ
1588 rt_mutex_init_task(p);
1589
d12c1a37 1590#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
1591 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1592 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1593#endif
1da177e4 1594 retval = -EAGAIN;
3b11a1de 1595 if (atomic_read(&p->real_cred->user->processes) >=
78d7d407 1596 task_rlimit(p, RLIMIT_NPROC)) {
b57922b6
EP
1597 if (p->real_cred->user != INIT_USER &&
1598 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1da177e4
LT
1599 goto bad_fork_free;
1600 }
72fa5997 1601 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 1602
f1752eec
DH
1603 retval = copy_creds(p, clone_flags);
1604 if (retval < 0)
1605 goto bad_fork_free;
1da177e4
LT
1606
1607 /*
1608 * If multiple threads are within copy_process(), then this check
1609 * triggers too late. This doesn't hurt, the check is only there
1610 * to stop root fork bombs.
1611 */
04ec93fe 1612 retval = -EAGAIN;
1da177e4
LT
1613 if (nr_threads >= max_threads)
1614 goto bad_fork_cleanup_count;
1615
ca74e92b 1616 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
c1de45ca 1617 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
514ddb44 1618 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
1619 INIT_LIST_HEAD(&p->children);
1620 INIT_LIST_HEAD(&p->sibling);
f41d911f 1621 rcu_copy_process(p);
1da177e4
LT
1622 p->vfork_done = NULL;
1623 spin_lock_init(&p->alloc_lock);
1da177e4 1624
1da177e4
LT
1625 init_sigpending(&p->pending);
1626
64861634 1627 p->utime = p->stime = p->gtime = 0;
40565b5a 1628#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 1629 p->utimescaled = p->stimescaled = 0;
40565b5a 1630#endif
9d7fb042
PZ
1631 prev_cputime_init(&p->prev_cputime);
1632
6a61671b 1633#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
1634 seqcount_init(&p->vtime.seqcount);
1635 p->vtime.starttime = 0;
1636 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
1637#endif
1638
a3a2e76c
KH
1639#if defined(SPLIT_RSS_COUNTING)
1640 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1641#endif
172ba844 1642
6976675d
AV
1643 p->default_timer_slack_ns = current->timer_slack_ns;
1644
5995477a 1645 task_io_accounting_init(&p->ioac);
1da177e4
LT
1646 acct_clear_integrals(p);
1647
f06febc9 1648 posix_cpu_timers_init(p);
1da177e4 1649
ccbf62d8 1650 p->start_time = ktime_get_ns();
57e0be04 1651 p->real_start_time = ktime_get_boot_ns();
1da177e4 1652 p->io_context = NULL;
1da177e4 1653 p->audit_context = NULL;
b4f48b63 1654 cgroup_fork(p);
1da177e4 1655#ifdef CONFIG_NUMA
846a16bf 1656 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
1657 if (IS_ERR(p->mempolicy)) {
1658 retval = PTR_ERR(p->mempolicy);
1659 p->mempolicy = NULL;
e8604cb4 1660 goto bad_fork_cleanup_threadgroup_lock;
fb0a685c 1661 }
1da177e4 1662#endif
778d3b0f
MH
1663#ifdef CONFIG_CPUSETS
1664 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1665 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
cc9a6c87 1666 seqcount_init(&p->mems_allowed_seq);
778d3b0f 1667#endif
de30a2b3
IM
1668#ifdef CONFIG_TRACE_IRQFLAGS
1669 p->irq_events = 0;
1670 p->hardirqs_enabled = 0;
1671 p->hardirq_enable_ip = 0;
1672 p->hardirq_enable_event = 0;
1673 p->hardirq_disable_ip = _THIS_IP_;
1674 p->hardirq_disable_event = 0;
1675 p->softirqs_enabled = 1;
1676 p->softirq_enable_ip = _THIS_IP_;
1677 p->softirq_enable_event = 0;
1678 p->softirq_disable_ip = 0;
1679 p->softirq_disable_event = 0;
1680 p->hardirq_context = 0;
1681 p->softirq_context = 0;
1682#endif
8bcbde54
DH
1683
1684 p->pagefault_disabled = 0;
1685
fbb9ce95
IM
1686#ifdef CONFIG_LOCKDEP
1687 p->lockdep_depth = 0; /* no locks held yet */
1688 p->curr_chain_key = 0;
1689 p->lockdep_recursion = 0;
1690#endif
1da177e4 1691
408894ee
IM
1692#ifdef CONFIG_DEBUG_MUTEXES
1693 p->blocked_on = NULL; /* not blocked yet */
1694#endif
cafe5635
KO
1695#ifdef CONFIG_BCACHE
1696 p->sequential_io = 0;
1697 p->sequential_io_avg = 0;
1698#endif
0f481406 1699
3c90e6e9 1700 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
1701 retval = sched_fork(clone_flags, p);
1702 if (retval)
1703 goto bad_fork_cleanup_policy;
6ab423e0 1704
cdd6c482 1705 retval = perf_event_init_task(p);
6ab423e0
PZ
1706 if (retval)
1707 goto bad_fork_cleanup_policy;
fb0a685c
DRO
1708 retval = audit_alloc(p);
1709 if (retval)
6c72e350 1710 goto bad_fork_cleanup_perf;
1da177e4 1711 /* copy all the process information */
ab602f79 1712 shm_init_task(p);
e4e55b47 1713 retval = security_task_alloc(p, clone_flags);
fb0a685c 1714 if (retval)
1da177e4 1715 goto bad_fork_cleanup_audit;
e4e55b47
TH
1716 retval = copy_semundo(clone_flags, p);
1717 if (retval)
1718 goto bad_fork_cleanup_security;
fb0a685c
DRO
1719 retval = copy_files(clone_flags, p);
1720 if (retval)
1da177e4 1721 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
1722 retval = copy_fs(clone_flags, p);
1723 if (retval)
1da177e4 1724 goto bad_fork_cleanup_files;
fb0a685c
DRO
1725 retval = copy_sighand(clone_flags, p);
1726 if (retval)
1da177e4 1727 goto bad_fork_cleanup_fs;
fb0a685c
DRO
1728 retval = copy_signal(clone_flags, p);
1729 if (retval)
1da177e4 1730 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
1731 retval = copy_mm(clone_flags, p);
1732 if (retval)
1da177e4 1733 goto bad_fork_cleanup_signal;
fb0a685c
DRO
1734 retval = copy_namespaces(clone_flags, p);
1735 if (retval)
d84f4f99 1736 goto bad_fork_cleanup_mm;
fb0a685c
DRO
1737 retval = copy_io(clone_flags, p);
1738 if (retval)
fd0928df 1739 goto bad_fork_cleanup_namespaces;
3033f14a 1740 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1da177e4 1741 if (retval)
fd0928df 1742 goto bad_fork_cleanup_io;
1da177e4 1743
425fb2b4 1744 if (pid != &init_struct_pid) {
c2b1df2e 1745 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
35f71bc0
MH
1746 if (IS_ERR(pid)) {
1747 retval = PTR_ERR(pid);
0740aa5f 1748 goto bad_fork_cleanup_thread;
35f71bc0 1749 }
425fb2b4
PE
1750 }
1751
73c10101
JA
1752#ifdef CONFIG_BLOCK
1753 p->plug = NULL;
1754#endif
42b2dd0a 1755#ifdef CONFIG_FUTEX
8f17d3a5
IM
1756 p->robust_list = NULL;
1757#ifdef CONFIG_COMPAT
1758 p->compat_robust_list = NULL;
1759#endif
c87e2837
IM
1760 INIT_LIST_HEAD(&p->pi_state_list);
1761 p->pi_state_cache = NULL;
42b2dd0a 1762#endif
f9a3879a
GM
1763 /*
1764 * sigaltstack should be cleared when sharing the same VM
1765 */
1766 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 1767 sas_ss_reset(p);
f9a3879a 1768
1da177e4 1769 /*
6580807d
ON
1770 * Syscall tracing and stepping should be turned off in the
1771 * child regardless of CLONE_PTRACE.
1da177e4 1772 */
6580807d 1773 user_disable_single_step(p);
1da177e4 1774 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
ed75e8d5
LV
1775#ifdef TIF_SYSCALL_EMU
1776 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1777#endif
9745512c 1778 clear_all_latency_tracing(p);
1da177e4 1779
1da177e4 1780 /* ok, now we should be set up.. */
18c830df
ON
1781 p->pid = pid_nr(pid);
1782 if (clone_flags & CLONE_THREAD) {
5f8aadd8 1783 p->exit_signal = -1;
18c830df
ON
1784 p->group_leader = current->group_leader;
1785 p->tgid = current->tgid;
1786 } else {
1787 if (clone_flags & CLONE_PARENT)
1788 p->exit_signal = current->group_leader->exit_signal;
1789 else
1790 p->exit_signal = (clone_flags & CSIGNAL);
1791 p->group_leader = p;
1792 p->tgid = p->pid;
1793 }
5f8aadd8 1794
9d823e8f
WF
1795 p->nr_dirtied = 0;
1796 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 1797 p->dirty_paused_when = 0;
9d823e8f 1798
bb8cbbfe 1799 p->pdeath_signal = 0;
47e65328 1800 INIT_LIST_HEAD(&p->thread_group);
158e1645 1801 p->task_works = NULL;
1da177e4 1802
780de9dd 1803 cgroup_threadgroup_change_begin(current);
7e47682e
AS
1804 /*
1805 * Ensure that the cgroup subsystem policies allow the new process to be
1806 * forked. It should be noted the the new process's css_set can be changed
1807 * between here and cgroup_post_fork() if an organisation operation is in
1808 * progress.
1809 */
b53202e6 1810 retval = cgroup_can_fork(p);
7e47682e
AS
1811 if (retval)
1812 goto bad_fork_free_pid;
1813
18c830df
ON
1814 /*
1815 * Make it visible to the rest of the system, but dont wake it up yet.
1816 * Need tasklist lock for parent etc handling!
1817 */
1da177e4
LT
1818 write_lock_irq(&tasklist_lock);
1819
1da177e4 1820 /* CLONE_PARENT re-uses the old parent */
2d5516cb 1821 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 1822 p->real_parent = current->real_parent;
2d5516cb
ON
1823 p->parent_exec_id = current->parent_exec_id;
1824 } else {
1da177e4 1825 p->real_parent = current;
2d5516cb
ON
1826 p->parent_exec_id = current->self_exec_id;
1827 }
1da177e4 1828
d83a7cb3
JP
1829 klp_copy_process(p);
1830
3f17da69 1831 spin_lock(&current->sighand->siglock);
4a2c7a78 1832
dbd95212
KC
1833 /*
1834 * Copy seccomp details explicitly here, in case they were changed
1835 * before holding sighand lock.
1836 */
1837 copy_seccomp(p);
1838
4a2c7a78
ON
1839 /*
1840 * Process group and session signals need to be delivered to just the
1841 * parent before the fork or both the parent and the child after the
1842 * fork. Restart if a signal comes in before we add the new process to
1843 * it's process group.
1844 * A fatal signal pending means that current will exit, so the new
1845 * thread can't slip out of an OOM kill (or normal SIGKILL).
fb0a685c 1846 */
23ff4440 1847 recalc_sigpending();
4a2c7a78 1848 if (signal_pending(current)) {
4a2c7a78 1849 retval = -ERESTARTNOINTR;
7e47682e 1850 goto bad_fork_cancel_cgroup;
4a2c7a78 1851 }
3fd37226
KT
1852 if (unlikely(!(ns_of_pid(pid)->nr_hashed & PIDNS_HASH_ADDING))) {
1853 retval = -ENOMEM;
1854 goto bad_fork_cancel_cgroup;
1855 }
4a2c7a78 1856
73b9ebfe 1857 if (likely(p->pid)) {
4b9d33e6 1858 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 1859
81907739 1860 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 1861 if (thread_group_leader(p)) {
81907739
ON
1862 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1863 init_task_pid(p, PIDTYPE_SID, task_session(current));
1864
1c4042c2 1865 if (is_child_reaper(pid)) {
17cf22c3 1866 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
1867 p->signal->flags |= SIGNAL_UNKILLABLE;
1868 }
73b9ebfe 1869
fea9d175 1870 p->signal->leader_pid = pid;
9c9f4ded 1871 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
1872 /*
1873 * Inherit has_child_subreaper flag under the same
1874 * tasklist_lock with adding child to the process tree
1875 * for propagate_has_child_subreaper optimization.
1876 */
1877 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1878 p->real_parent->signal->is_child_subreaper;
9cd80bbb 1879 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 1880 list_add_tail_rcu(&p->tasks, &init_task.tasks);
81907739
ON
1881 attach_pid(p, PIDTYPE_PGID);
1882 attach_pid(p, PIDTYPE_SID);
909ea964 1883 __this_cpu_inc(process_counts);
80628ca0
ON
1884 } else {
1885 current->signal->nr_threads++;
1886 atomic_inc(&current->signal->live);
1887 atomic_inc(&current->signal->sigcnt);
80628ca0
ON
1888 list_add_tail_rcu(&p->thread_group,
1889 &p->group_leader->thread_group);
0c740d0a
ON
1890 list_add_tail_rcu(&p->thread_node,
1891 &p->signal->thread_head);
73b9ebfe 1892 }
81907739 1893 attach_pid(p, PIDTYPE_PID);
73b9ebfe 1894 nr_threads++;
1da177e4
LT
1895 }
1896
1da177e4 1897 total_forks++;
3f17da69 1898 spin_unlock(&current->sighand->siglock);
4af4206b 1899 syscall_tracepoint_update(p);
1da177e4 1900 write_unlock_irq(&tasklist_lock);
4af4206b 1901
c13cf856 1902 proc_fork_connector(p);
b53202e6 1903 cgroup_post_fork(p);
780de9dd 1904 cgroup_threadgroup_change_end(current);
cdd6c482 1905 perf_event_fork(p);
43d2b113
KH
1906
1907 trace_task_newtask(p, clone_flags);
3ab67966 1908 uprobe_copy_process(p, clone_flags);
43d2b113 1909
1da177e4
LT
1910 return p;
1911
7e47682e 1912bad_fork_cancel_cgroup:
3fd37226
KT
1913 spin_unlock(&current->sighand->siglock);
1914 write_unlock_irq(&tasklist_lock);
b53202e6 1915 cgroup_cancel_fork(p);
425fb2b4 1916bad_fork_free_pid:
780de9dd 1917 cgroup_threadgroup_change_end(current);
425fb2b4
PE
1918 if (pid != &init_struct_pid)
1919 free_pid(pid);
0740aa5f
JS
1920bad_fork_cleanup_thread:
1921 exit_thread(p);
fd0928df 1922bad_fork_cleanup_io:
b69f2292
LR
1923 if (p->io_context)
1924 exit_io_context(p);
ab516013 1925bad_fork_cleanup_namespaces:
444f378b 1926 exit_task_namespaces(p);
1da177e4 1927bad_fork_cleanup_mm:
c9f01245 1928 if (p->mm)
1da177e4
LT
1929 mmput(p->mm);
1930bad_fork_cleanup_signal:
4ab6c083 1931 if (!(clone_flags & CLONE_THREAD))
1c5354de 1932 free_signal_struct(p->signal);
1da177e4 1933bad_fork_cleanup_sighand:
a7e5328a 1934 __cleanup_sighand(p->sighand);
1da177e4
LT
1935bad_fork_cleanup_fs:
1936 exit_fs(p); /* blocking */
1937bad_fork_cleanup_files:
1938 exit_files(p); /* blocking */
1939bad_fork_cleanup_semundo:
1940 exit_sem(p);
e4e55b47
TH
1941bad_fork_cleanup_security:
1942 security_task_free(p);
1da177e4
LT
1943bad_fork_cleanup_audit:
1944 audit_free(p);
6c72e350 1945bad_fork_cleanup_perf:
cdd6c482 1946 perf_event_free_task(p);
6c72e350 1947bad_fork_cleanup_policy:
1da177e4 1948#ifdef CONFIG_NUMA
f0be3d32 1949 mpol_put(p->mempolicy);
e8604cb4 1950bad_fork_cleanup_threadgroup_lock:
1da177e4 1951#endif
35df17c5 1952 delayacct_tsk_free(p);
1da177e4 1953bad_fork_cleanup_count:
d84f4f99 1954 atomic_dec(&p->cred->user->processes);
e0e81739 1955 exit_creds(p);
1da177e4 1956bad_fork_free:
405c0759 1957 p->state = TASK_DEAD;
68f24b08 1958 put_task_stack(p);
1da177e4 1959 free_task(p);
fe7d37d1
ON
1960fork_out:
1961 return ERR_PTR(retval);
1da177e4
LT
1962}
1963
f106eee1
ON
1964static inline void init_idle_pids(struct pid_link *links)
1965{
1966 enum pid_type type;
1967
1968 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1969 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1970 links[type].pid = &init_struct_pid;
1971 }
1972}
1973
0db0628d 1974struct task_struct *fork_idle(int cpu)
1da177e4 1975{
36c8b586 1976 struct task_struct *task;
725fc629
AK
1977 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1978 cpu_to_node(cpu));
f106eee1
ON
1979 if (!IS_ERR(task)) {
1980 init_idle_pids(task->pids);
753ca4f3 1981 init_idle(task, cpu);
f106eee1 1982 }
73b9ebfe 1983
1da177e4
LT
1984 return task;
1985}
1986
1da177e4
LT
1987/*
1988 * Ok, this is the main fork-routine.
1989 *
1990 * It copies the process, and if successful kick-starts
1991 * it and waits for it to finish using the VM if required.
1992 */
3033f14a 1993long _do_fork(unsigned long clone_flags,
1da177e4 1994 unsigned long stack_start,
1da177e4
LT
1995 unsigned long stack_size,
1996 int __user *parent_tidptr,
3033f14a
JT
1997 int __user *child_tidptr,
1998 unsigned long tls)
1da177e4
LT
1999{
2000 struct task_struct *p;
2001 int trace = 0;
92476d7f 2002 long nr;
1da177e4 2003
09a05394 2004 /*
4b9d33e6
TH
2005 * Determine whether and which event to report to ptracer. When
2006 * called from kernel_thread or CLONE_UNTRACED is explicitly
2007 * requested, no event is reported; otherwise, report if the event
2008 * for the type of forking is enabled.
09a05394 2009 */
e80d6661 2010 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2011 if (clone_flags & CLONE_VFORK)
2012 trace = PTRACE_EVENT_VFORK;
2013 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2014 trace = PTRACE_EVENT_CLONE;
2015 else
2016 trace = PTRACE_EVENT_FORK;
2017
2018 if (likely(!ptrace_event_enabled(current, trace)))
2019 trace = 0;
2020 }
1da177e4 2021
62e791c1 2022 p = copy_process(clone_flags, stack_start, stack_size,
725fc629 2023 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
38addce8 2024 add_latent_entropy();
1da177e4
LT
2025 /*
2026 * Do this prior waking up the new thread - the thread pointer
2027 * might get invalid after that point, if the thread exits quickly.
2028 */
2029 if (!IS_ERR(p)) {
2030 struct completion vfork;
4e52365f 2031 struct pid *pid;
1da177e4 2032
0a16b607
MD
2033 trace_sched_process_fork(current, p);
2034
4e52365f
MD
2035 pid = get_task_pid(p, PIDTYPE_PID);
2036 nr = pid_vnr(pid);
30e49c26
PE
2037
2038 if (clone_flags & CLONE_PARENT_SETTID)
2039 put_user(nr, parent_tidptr);
a6f5e063 2040
1da177e4
LT
2041 if (clone_flags & CLONE_VFORK) {
2042 p->vfork_done = &vfork;
2043 init_completion(&vfork);
d68b46fe 2044 get_task_struct(p);
1da177e4
LT
2045 }
2046
3e51e3ed 2047 wake_up_new_task(p);
1da177e4 2048
4b9d33e6
TH
2049 /* forking complete and child started to run, tell ptracer */
2050 if (unlikely(trace))
4e52365f 2051 ptrace_event_pid(trace, pid);
09a05394 2052
1da177e4 2053 if (clone_flags & CLONE_VFORK) {
d68b46fe 2054 if (!wait_for_vfork_done(p, &vfork))
4e52365f 2055 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2056 }
4e52365f
MD
2057
2058 put_pid(pid);
1da177e4 2059 } else {
92476d7f 2060 nr = PTR_ERR(p);
1da177e4 2061 }
92476d7f 2062 return nr;
1da177e4
LT
2063}
2064
3033f14a
JT
2065#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2066/* For compatibility with architectures that call do_fork directly rather than
2067 * using the syscall entry points below. */
2068long do_fork(unsigned long clone_flags,
2069 unsigned long stack_start,
2070 unsigned long stack_size,
2071 int __user *parent_tidptr,
2072 int __user *child_tidptr)
2073{
2074 return _do_fork(clone_flags, stack_start, stack_size,
2075 parent_tidptr, child_tidptr, 0);
2076}
2077#endif
2078
2aa3a7f8
AV
2079/*
2080 * Create a kernel thread.
2081 */
2082pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2083{
3033f14a
JT
2084 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2085 (unsigned long)arg, NULL, NULL, 0);
2aa3a7f8 2086}
2aa3a7f8 2087
d2125043
AV
2088#ifdef __ARCH_WANT_SYS_FORK
2089SYSCALL_DEFINE0(fork)
2090{
2091#ifdef CONFIG_MMU
3033f14a 2092 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
d2125043
AV
2093#else
2094 /* can not support in nommu mode */
5d59e182 2095 return -EINVAL;
d2125043
AV
2096#endif
2097}
2098#endif
2099
2100#ifdef __ARCH_WANT_SYS_VFORK
2101SYSCALL_DEFINE0(vfork)
2102{
3033f14a
JT
2103 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2104 0, NULL, NULL, 0);
d2125043
AV
2105}
2106#endif
2107
2108#ifdef __ARCH_WANT_SYS_CLONE
2109#ifdef CONFIG_CLONE_BACKWARDS
2110SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2111 int __user *, parent_tidptr,
3033f14a 2112 unsigned long, tls,
d2125043
AV
2113 int __user *, child_tidptr)
2114#elif defined(CONFIG_CLONE_BACKWARDS2)
2115SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2116 int __user *, parent_tidptr,
2117 int __user *, child_tidptr,
3033f14a 2118 unsigned long, tls)
dfa9771a
MS
2119#elif defined(CONFIG_CLONE_BACKWARDS3)
2120SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2121 int, stack_size,
2122 int __user *, parent_tidptr,
2123 int __user *, child_tidptr,
3033f14a 2124 unsigned long, tls)
d2125043
AV
2125#else
2126SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2127 int __user *, parent_tidptr,
2128 int __user *, child_tidptr,
3033f14a 2129 unsigned long, tls)
d2125043
AV
2130#endif
2131{
3033f14a 2132 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
d2125043
AV
2133}
2134#endif
2135
0f1b92cb
ON
2136void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2137{
2138 struct task_struct *leader, *parent, *child;
2139 int res;
2140
2141 read_lock(&tasklist_lock);
2142 leader = top = top->group_leader;
2143down:
2144 for_each_thread(leader, parent) {
2145 list_for_each_entry(child, &parent->children, sibling) {
2146 res = visitor(child, data);
2147 if (res) {
2148 if (res < 0)
2149 goto out;
2150 leader = child;
2151 goto down;
2152 }
2153up:
2154 ;
2155 }
2156 }
2157
2158 if (leader != top) {
2159 child = leader;
2160 parent = child->real_parent;
2161 leader = parent->group_leader;
2162 goto up;
2163 }
2164out:
2165 read_unlock(&tasklist_lock);
2166}
2167
5fd63b30
RT
2168#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2169#define ARCH_MIN_MMSTRUCT_ALIGN 0
2170#endif
2171
51cc5068 2172static void sighand_ctor(void *data)
aa1757f9
ON
2173{
2174 struct sighand_struct *sighand = data;
2175
a35afb83 2176 spin_lock_init(&sighand->siglock);
b8fceee1 2177 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
2178}
2179
1da177e4
LT
2180void __init proc_caches_init(void)
2181{
2182 sighand_cachep = kmem_cache_create("sighand_cache",
2183 sizeof(struct sighand_struct), 0,
5f0d5a3a 2184 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
5d097056 2185 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
2186 signal_cachep = kmem_cache_create("signal_cache",
2187 sizeof(struct signal_struct), 0,
5d097056
VD
2188 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2189 NULL);
20c2df83 2190 files_cachep = kmem_cache_create("files_cache",
1da177e4 2191 sizeof(struct files_struct), 0,
5d097056
VD
2192 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2193 NULL);
20c2df83 2194 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 2195 sizeof(struct fs_struct), 0,
5d097056
VD
2196 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2197 NULL);
6345d24d
LT
2198 /*
2199 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2200 * whole struct cpumask for the OFFSTACK case. We could change
2201 * this to *only* allocate as much of it as required by the
2202 * maximum number of CPU's we can ever have. The cpumask_allocation
2203 * is at the end of the structure, exactly for that reason.
2204 */
1da177e4 2205 mm_cachep = kmem_cache_create("mm_struct",
5fd63b30 2206 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
5d097056
VD
2207 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2208 NULL);
2209 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
8feae131 2210 mmap_init();
66577193 2211 nsproxy_cache_init();
1da177e4 2212}
cf2e340f 2213
cf2e340f 2214/*
9bfb23fc 2215 * Check constraints on flags passed to the unshare system call.
cf2e340f 2216 */
9bfb23fc 2217static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 2218{
9bfb23fc
ON
2219 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2220 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 2221 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
a79a908f 2222 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
9bfb23fc 2223 return -EINVAL;
cf2e340f 2224 /*
12c641ab
EB
2225 * Not implemented, but pretend it works if there is nothing
2226 * to unshare. Note that unsharing the address space or the
2227 * signal handlers also need to unshare the signal queues (aka
2228 * CLONE_THREAD).
cf2e340f 2229 */
9bfb23fc 2230 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
2231 if (!thread_group_empty(current))
2232 return -EINVAL;
2233 }
2234 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2235 if (atomic_read(&current->sighand->count) > 1)
2236 return -EINVAL;
2237 }
2238 if (unshare_flags & CLONE_VM) {
2239 if (!current_is_single_threaded())
9bfb23fc
ON
2240 return -EINVAL;
2241 }
cf2e340f
JD
2242
2243 return 0;
2244}
2245
2246/*
99d1419d 2247 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
2248 */
2249static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2250{
2251 struct fs_struct *fs = current->fs;
2252
498052bb
AV
2253 if (!(unshare_flags & CLONE_FS) || !fs)
2254 return 0;
2255
2256 /* don't need lock here; in the worst case we'll do useless copy */
2257 if (fs->users == 1)
2258 return 0;
2259
2260 *new_fsp = copy_fs_struct(fs);
2261 if (!*new_fsp)
2262 return -ENOMEM;
cf2e340f
JD
2263
2264 return 0;
2265}
2266
cf2e340f 2267/*
a016f338 2268 * Unshare file descriptor table if it is being shared
cf2e340f
JD
2269 */
2270static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2271{
2272 struct files_struct *fd = current->files;
a016f338 2273 int error = 0;
cf2e340f
JD
2274
2275 if ((unshare_flags & CLONE_FILES) &&
a016f338
JD
2276 (fd && atomic_read(&fd->count) > 1)) {
2277 *new_fdp = dup_fd(fd, &error);
2278 if (!*new_fdp)
2279 return error;
2280 }
cf2e340f
JD
2281
2282 return 0;
2283}
2284
cf2e340f
JD
2285/*
2286 * unshare allows a process to 'unshare' part of the process
2287 * context which was originally shared using clone. copy_*
2288 * functions used by do_fork() cannot be used here directly
2289 * because they modify an inactive task_struct that is being
2290 * constructed. Here we are modifying the current, active,
2291 * task_struct.
2292 */
6559eed8 2293SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
cf2e340f 2294{
cf2e340f 2295 struct fs_struct *fs, *new_fs = NULL;
cf2e340f 2296 struct files_struct *fd, *new_fd = NULL;
b2e0d987 2297 struct cred *new_cred = NULL;
cf7b708c 2298 struct nsproxy *new_nsproxy = NULL;
9edff4ab 2299 int do_sysvsem = 0;
9bfb23fc 2300 int err;
cf2e340f 2301
b2e0d987 2302 /*
faf00da5
EB
2303 * If unsharing a user namespace must also unshare the thread group
2304 * and unshare the filesystem root and working directories.
b2e0d987
EB
2305 */
2306 if (unshare_flags & CLONE_NEWUSER)
e66eded8 2307 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
2308 /*
2309 * If unsharing vm, must also unshare signal handlers.
2310 */
2311 if (unshare_flags & CLONE_VM)
2312 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
2313 /*
2314 * If unsharing a signal handlers, must also unshare the signal queues.
2315 */
2316 if (unshare_flags & CLONE_SIGHAND)
2317 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
2318 /*
2319 * If unsharing namespace, must also unshare filesystem information.
2320 */
2321 if (unshare_flags & CLONE_NEWNS)
2322 unshare_flags |= CLONE_FS;
50804fe3
EB
2323
2324 err = check_unshare_flags(unshare_flags);
2325 if (err)
2326 goto bad_unshare_out;
6013f67f
MS
2327 /*
2328 * CLONE_NEWIPC must also detach from the undolist: after switching
2329 * to a new ipc namespace, the semaphore arrays from the old
2330 * namespace are unreachable.
2331 */
2332 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 2333 do_sysvsem = 1;
fb0a685c
DRO
2334 err = unshare_fs(unshare_flags, &new_fs);
2335 if (err)
9bfb23fc 2336 goto bad_unshare_out;
fb0a685c
DRO
2337 err = unshare_fd(unshare_flags, &new_fd);
2338 if (err)
9bfb23fc 2339 goto bad_unshare_cleanup_fs;
b2e0d987 2340 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 2341 if (err)
9edff4ab 2342 goto bad_unshare_cleanup_fd;
b2e0d987
EB
2343 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2344 new_cred, new_fs);
2345 if (err)
2346 goto bad_unshare_cleanup_cred;
c0b2fc31 2347
b2e0d987 2348 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
2349 if (do_sysvsem) {
2350 /*
2351 * CLONE_SYSVSEM is equivalent to sys_exit().
2352 */
2353 exit_sem(current);
2354 }
ab602f79
JM
2355 if (unshare_flags & CLONE_NEWIPC) {
2356 /* Orphan segments in old ns (see sem above). */
2357 exit_shm(current);
2358 shm_init_task(current);
2359 }
ab516013 2360
6f977e6b 2361 if (new_nsproxy)
cf7b708c 2362 switch_task_namespaces(current, new_nsproxy);
cf2e340f 2363
cf7b708c
PE
2364 task_lock(current);
2365
cf2e340f
JD
2366 if (new_fs) {
2367 fs = current->fs;
2a4419b5 2368 spin_lock(&fs->lock);
cf2e340f 2369 current->fs = new_fs;
498052bb
AV
2370 if (--fs->users)
2371 new_fs = NULL;
2372 else
2373 new_fs = fs;
2a4419b5 2374 spin_unlock(&fs->lock);
cf2e340f
JD
2375 }
2376
cf2e340f
JD
2377 if (new_fd) {
2378 fd = current->files;
2379 current->files = new_fd;
2380 new_fd = fd;
2381 }
2382
2383 task_unlock(current);
b2e0d987
EB
2384
2385 if (new_cred) {
2386 /* Install the new user namespace */
2387 commit_creds(new_cred);
2388 new_cred = NULL;
2389 }
cf2e340f
JD
2390 }
2391
e4222673
HB
2392 perf_event_namespaces(current);
2393
b2e0d987
EB
2394bad_unshare_cleanup_cred:
2395 if (new_cred)
2396 put_cred(new_cred);
cf2e340f
JD
2397bad_unshare_cleanup_fd:
2398 if (new_fd)
2399 put_files_struct(new_fd);
2400
cf2e340f
JD
2401bad_unshare_cleanup_fs:
2402 if (new_fs)
498052bb 2403 free_fs_struct(new_fs);
cf2e340f 2404
cf2e340f
JD
2405bad_unshare_out:
2406 return err;
2407}
3b125388
AV
2408
2409/*
2410 * Helper to unshare the files of the current task.
2411 * We don't want to expose copy_files internals to
2412 * the exec layer of the kernel.
2413 */
2414
2415int unshare_files(struct files_struct **displaced)
2416{
2417 struct task_struct *task = current;
50704516 2418 struct files_struct *copy = NULL;
3b125388
AV
2419 int error;
2420
2421 error = unshare_fd(CLONE_FILES, &copy);
2422 if (error || !copy) {
2423 *displaced = NULL;
2424 return error;
2425 }
2426 *displaced = task->files;
2427 task_lock(task);
2428 task->files = copy;
2429 task_unlock(task);
2430 return 0;
2431}
16db3d3f
HS
2432
2433int sysctl_max_threads(struct ctl_table *table, int write,
2434 void __user *buffer, size_t *lenp, loff_t *ppos)
2435{
2436 struct ctl_table t;
2437 int ret;
2438 int threads = max_threads;
2439 int min = MIN_THREADS;
2440 int max = MAX_THREADS;
2441
2442 t = *table;
2443 t.data = &threads;
2444 t.extra1 = &min;
2445 t.extra2 = &max;
2446
2447 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2448 if (ret || !write)
2449 return ret;
2450
2451 set_max_threads(threads);
2452
2453 return 0;
2454}