]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/fork.c
mm: memcontrol: account kernel stack per node
[mirror_ubuntu-hirsute-kernel.git] / kernel / fork.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
b3e58382 15#include <linux/anon_inodes.h>
1da177e4 16#include <linux/slab.h>
4eb5aaa3 17#include <linux/sched/autogroup.h>
6e84f315 18#include <linux/sched/mm.h>
f7ccbae4 19#include <linux/sched/coredump.h>
8703e8a4 20#include <linux/sched/user.h>
6a3827d7 21#include <linux/sched/numa_balancing.h>
03441a34 22#include <linux/sched/stat.h>
29930025 23#include <linux/sched/task.h>
68db0cf1 24#include <linux/sched/task_stack.h>
32ef5517 25#include <linux/sched/cputime.h>
b3e58382 26#include <linux/seq_file.h>
037741a6 27#include <linux/rtmutex.h>
1da177e4
LT
28#include <linux/init.h>
29#include <linux/unistd.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
1da177e4
LT
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
9f3acc31 37#include <linux/fdtable.h>
da9cbc87 38#include <linux/iocontext.h>
1da177e4
LT
39#include <linux/key.h>
40#include <linux/binfmts.h>
41#include <linux/mman.h>
cddb8a5c 42#include <linux/mmu_notifier.h>
1da177e4 43#include <linux/fs.h>
615d6e87
DB
44#include <linux/mm.h>
45#include <linux/vmacache.h>
ab516013 46#include <linux/nsproxy.h>
c59ede7b 47#include <linux/capability.h>
1da177e4 48#include <linux/cpu.h>
b4f48b63 49#include <linux/cgroup.h>
1da177e4 50#include <linux/security.h>
a1e78772 51#include <linux/hugetlb.h>
e2cfabdf 52#include <linux/seccomp.h>
1da177e4
LT
53#include <linux/swap.h>
54#include <linux/syscalls.h>
55#include <linux/jiffies.h>
56#include <linux/futex.h>
8141c7f3 57#include <linux/compat.h>
207205a2 58#include <linux/kthread.h>
7c3ab738 59#include <linux/task_io_accounting_ops.h>
ab2af1f5 60#include <linux/rcupdate.h>
1da177e4
LT
61#include <linux/ptrace.h>
62#include <linux/mount.h>
63#include <linux/audit.h>
78fb7466 64#include <linux/memcontrol.h>
f201ae23 65#include <linux/ftrace.h>
5e2bf014 66#include <linux/proc_fs.h>
1da177e4
LT
67#include <linux/profile.h>
68#include <linux/rmap.h>
f8af4da3 69#include <linux/ksm.h>
1da177e4 70#include <linux/acct.h>
893e26e6 71#include <linux/userfaultfd_k.h>
8f0ab514 72#include <linux/tsacct_kern.h>
9f46080c 73#include <linux/cn_proc.h>
ba96a0c8 74#include <linux/freezer.h>
ca74e92b 75#include <linux/delayacct.h>
ad4ecbcb 76#include <linux/taskstats_kern.h>
0a425405 77#include <linux/random.h>
522ed776 78#include <linux/tty.h>
fd0928df 79#include <linux/blkdev.h>
5ad4e53b 80#include <linux/fs_struct.h>
7c9f8861 81#include <linux/magic.h>
cdd6c482 82#include <linux/perf_event.h>
42c4ab41 83#include <linux/posix-timers.h>
8e7cac79 84#include <linux/user-return-notifier.h>
3d5992d2 85#include <linux/oom.h>
ba76149f 86#include <linux/khugepaged.h>
d80e731e 87#include <linux/signalfd.h>
0326f5a9 88#include <linux/uprobes.h>
a27bb332 89#include <linux/aio.h>
52f5684c 90#include <linux/compiler.h>
16db3d3f 91#include <linux/sysctl.h>
5c9a8750 92#include <linux/kcov.h>
d83a7cb3 93#include <linux/livepatch.h>
48ac3c18 94#include <linux/thread_info.h>
afaef01c 95#include <linux/stackleak.h>
eafb149e 96#include <linux/kasan.h>
d08b9f0c 97#include <linux/scs.h>
1da177e4 98
1da177e4 99#include <asm/pgalloc.h>
7c0f6ba6 100#include <linux/uaccess.h>
1da177e4
LT
101#include <asm/mmu_context.h>
102#include <asm/cacheflush.h>
103#include <asm/tlbflush.h>
104
ad8d75ff
SR
105#include <trace/events/sched.h>
106
43d2b113
KH
107#define CREATE_TRACE_POINTS
108#include <trace/events/task.h>
109
ac1b398d
HS
110/*
111 * Minimum number of threads to boot the kernel
112 */
113#define MIN_THREADS 20
114
115/*
116 * Maximum number of threads
117 */
118#define MAX_THREADS FUTEX_TID_MASK
119
1da177e4
LT
120/*
121 * Protected counters by write_lock_irq(&tasklist_lock)
122 */
123unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 124int nr_threads; /* The idle threads do not count.. */
1da177e4 125
8856ae4d 126static int max_threads; /* tunable limit on nr_threads */
1da177e4 127
8495f7e6
SPP
128#define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
129
130static const char * const resident_page_types[] = {
131 NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135};
136
1da177e4
LT
137DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138
c59923a1 139__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
140
141#ifdef CONFIG_PROVE_RCU
142int lockdep_tasklist_lock_is_held(void)
143{
144 return lockdep_is_held(&tasklist_lock);
145}
146EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
148
149int nr_processes(void)
150{
151 int cpu;
152 int total = 0;
153
1d510750 154 for_each_possible_cpu(cpu)
1da177e4
LT
155 total += per_cpu(process_counts, cpu);
156
157 return total;
158}
159
f19b9f74
AM
160void __weak arch_release_task_struct(struct task_struct *tsk)
161{
162}
163
f5e10287 164#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
e18b890b 165static struct kmem_cache *task_struct_cachep;
41101809
TG
166
167static inline struct task_struct *alloc_task_struct_node(int node)
168{
169 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170}
171
41101809
TG
172static inline void free_task_struct(struct task_struct *tsk)
173{
41101809
TG
174 kmem_cache_free(task_struct_cachep, tsk);
175}
1da177e4
LT
176#endif
177
b235beea 178#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
41101809 179
0d15d74a
TG
180/*
181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182 * kmemcache based allocator.
183 */
ba14a194 184# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4
AL
185
186#ifdef CONFIG_VMAP_STACK
187/*
188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189 * flush. Try to minimize the number of calls by caching stacks.
190 */
191#define NR_CACHED_STACKS 2
192static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59
HR
193
194static int free_vm_stack_cache(unsigned int cpu)
195{
196 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 int i;
198
199 for (i = 0; i < NR_CACHED_STACKS; i++) {
200 struct vm_struct *vm_stack = cached_vm_stacks[i];
201
202 if (!vm_stack)
203 continue;
204
205 vfree(vm_stack->addr);
206 cached_vm_stacks[i] = NULL;
207 }
208
209 return 0;
210}
ac496bf4
AL
211#endif
212
ba14a194 213static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 214{
ba14a194 215#ifdef CONFIG_VMAP_STACK
ac496bf4
AL
216 void *stack;
217 int i;
218
ac496bf4 219 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
220 struct vm_struct *s;
221
222 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
223
224 if (!s)
225 continue;
ac496bf4 226
eafb149e
DA
227 /* Clear the KASAN shadow of the stack. */
228 kasan_unpoison_shadow(s->addr, THREAD_SIZE);
229
ca182551
KK
230 /* Clear stale pointers from reused stack. */
231 memset(s->addr, 0, THREAD_SIZE);
e01e8063 232
ac496bf4 233 tsk->stack_vm_area = s;
ba4a4574 234 tsk->stack = s->addr;
ac496bf4
AL
235 return s->addr;
236 }
ac496bf4 237
9b6f7e16
RG
238 /*
239 * Allocated stacks are cached and later reused by new threads,
240 * so memcg accounting is performed manually on assigning/releasing
241 * stacks to tasks. Drop __GFP_ACCOUNT.
242 */
48ac3c18 243 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
ac496bf4 244 VMALLOC_START, VMALLOC_END,
9b6f7e16 245 THREADINFO_GFP & ~__GFP_ACCOUNT,
ac496bf4
AL
246 PAGE_KERNEL,
247 0, node, __builtin_return_address(0));
ba14a194
AL
248
249 /*
250 * We can't call find_vm_area() in interrupt context, and
251 * free_thread_stack() can be called in interrupt context,
252 * so cache the vm_struct.
253 */
5eed6f1d 254 if (stack) {
ba14a194 255 tsk->stack_vm_area = find_vm_area(stack);
5eed6f1d
RR
256 tsk->stack = stack;
257 }
ba14a194
AL
258 return stack;
259#else
4949148a
VD
260 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
261 THREAD_SIZE_ORDER);
b6a84016 262
1bf4580e
AA
263 if (likely(page)) {
264 tsk->stack = page_address(page);
265 return tsk->stack;
266 }
267 return NULL;
ba14a194 268#endif
b69c49b7
FT
269}
270
ba14a194 271static inline void free_thread_stack(struct task_struct *tsk)
b69c49b7 272{
ac496bf4 273#ifdef CONFIG_VMAP_STACK
9b6f7e16
RG
274 struct vm_struct *vm = task_stack_vm_area(tsk);
275
276 if (vm) {
ac496bf4
AL
277 int i;
278
991e7673 279 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
f4b00eab 280 memcg_kmem_uncharge_page(vm->pages[i], 0);
9b6f7e16 281
ac496bf4 282 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
283 if (this_cpu_cmpxchg(cached_stacks[i],
284 NULL, tsk->stack_vm_area) != NULL)
ac496bf4
AL
285 continue;
286
ac496bf4
AL
287 return;
288 }
ac496bf4 289
0f110a9b 290 vfree_atomic(tsk->stack);
ac496bf4
AL
291 return;
292 }
293#endif
294
295 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
b69c49b7 296}
0d15d74a 297# else
b235beea 298static struct kmem_cache *thread_stack_cache;
0d15d74a 299
9521d399 300static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
0d15d74a
TG
301 int node)
302{
5eed6f1d
RR
303 unsigned long *stack;
304 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
305 tsk->stack = stack;
306 return stack;
0d15d74a
TG
307}
308
ba14a194 309static void free_thread_stack(struct task_struct *tsk)
0d15d74a 310{
ba14a194 311 kmem_cache_free(thread_stack_cache, tsk->stack);
0d15d74a
TG
312}
313
b235beea 314void thread_stack_cache_init(void)
0d15d74a 315{
f9d29946
DW
316 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
317 THREAD_SIZE, THREAD_SIZE, 0, 0,
318 THREAD_SIZE, NULL);
b235beea 319 BUG_ON(thread_stack_cache == NULL);
0d15d74a
TG
320}
321# endif
b69c49b7
FT
322#endif
323
1da177e4 324/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 325static struct kmem_cache *signal_cachep;
1da177e4
LT
326
327/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 328struct kmem_cache *sighand_cachep;
1da177e4
LT
329
330/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 331struct kmem_cache *files_cachep;
1da177e4
LT
332
333/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 334struct kmem_cache *fs_cachep;
1da177e4
LT
335
336/* SLAB cache for vm_area_struct structures */
3928d4f5 337static struct kmem_cache *vm_area_cachep;
1da177e4
LT
338
339/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 340static struct kmem_cache *mm_cachep;
1da177e4 341
490fc053 342struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
3928d4f5 343{
a670468f 344 struct vm_area_struct *vma;
490fc053 345
a670468f 346 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
027232da
KS
347 if (vma)
348 vma_init(vma, mm);
490fc053 349 return vma;
3928d4f5
LT
350}
351
352struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
353{
95faf699
LT
354 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
355
356 if (new) {
cda099b3
QC
357 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
358 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
359 /*
360 * orig->shared.rb may be modified concurrently, but the clone
361 * will be reinitialized.
362 */
363 *new = data_race(*orig);
95faf699 364 INIT_LIST_HEAD(&new->anon_vma_chain);
e39a4b33 365 new->vm_next = new->vm_prev = NULL;
95faf699
LT
366 }
367 return new;
3928d4f5
LT
368}
369
370void vm_area_free(struct vm_area_struct *vma)
371{
372 kmem_cache_free(vm_area_cachep, vma);
373}
374
ba14a194 375static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 376{
ba14a194
AL
377 void *stack = task_stack_page(tsk);
378 struct vm_struct *vm = task_stack_vm_area(tsk);
379
ba14a194 380
991e7673
SB
381 /* All stack pages are in the same node. */
382 if (vm)
383 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
384 account * (THREAD_SIZE / 1024));
385 else
386 mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
387 account * (THREAD_SIZE / 1024));
c6a7f572
KM
388}
389
9b6f7e16
RG
390static int memcg_charge_kernel_stack(struct task_struct *tsk)
391{
392#ifdef CONFIG_VMAP_STACK
393 struct vm_struct *vm = task_stack_vm_area(tsk);
394 int ret;
395
991e7673
SB
396 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
397
9b6f7e16
RG
398 if (vm) {
399 int i;
400
991e7673
SB
401 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
402
9b6f7e16
RG
403 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
404 /*
f4b00eab 405 * If memcg_kmem_charge_page() fails, page->mem_cgroup
991e7673
SB
406 * pointer is NULL, and memcg_kmem_uncharge_page() in
407 * free_thread_stack() will ignore this page.
9b6f7e16 408 */
f4b00eab
RG
409 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
410 0);
9b6f7e16
RG
411 if (ret)
412 return ret;
9b6f7e16
RG
413 }
414 }
415#endif
416 return 0;
417}
418
68f24b08 419static void release_task_stack(struct task_struct *tsk)
1da177e4 420{
405c0759
AL
421 if (WARN_ON(tsk->state != TASK_DEAD))
422 return; /* Better to leak the stack than to free prematurely */
423
ba14a194 424 account_kernel_stack(tsk, -1);
ba14a194 425 free_thread_stack(tsk);
68f24b08
AL
426 tsk->stack = NULL;
427#ifdef CONFIG_VMAP_STACK
428 tsk->stack_vm_area = NULL;
429#endif
430}
431
432#ifdef CONFIG_THREAD_INFO_IN_TASK
433void put_task_stack(struct task_struct *tsk)
434{
f0b89d39 435 if (refcount_dec_and_test(&tsk->stack_refcount))
68f24b08
AL
436 release_task_stack(tsk);
437}
438#endif
439
440void free_task(struct task_struct *tsk)
441{
d08b9f0c
ST
442 scs_release(tsk);
443
68f24b08
AL
444#ifndef CONFIG_THREAD_INFO_IN_TASK
445 /*
446 * The task is finally done with both the stack and thread_info,
447 * so free both.
448 */
449 release_task_stack(tsk);
450#else
451 /*
452 * If the task had a separate stack allocation, it should be gone
453 * by now.
454 */
f0b89d39 455 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
68f24b08 456#endif
23f78d4a 457 rt_mutex_debug_task_free(tsk);
fb52607a 458 ftrace_graph_exit_task(tsk);
f19b9f74 459 arch_release_task_struct(tsk);
1da5c46f
ON
460 if (tsk->flags & PF_KTHREAD)
461 free_kthread_struct(tsk);
1da177e4
LT
462 free_task_struct(tsk);
463}
464EXPORT_SYMBOL(free_task);
465
d70f2a14
AM
466#ifdef CONFIG_MMU
467static __latent_entropy int dup_mmap(struct mm_struct *mm,
468 struct mm_struct *oldmm)
469{
470 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
471 struct rb_node **rb_link, *rb_parent;
472 int retval;
473 unsigned long charge;
474 LIST_HEAD(uf);
475
476 uprobe_start_dup_mmap();
d8ed45c5 477 if (mmap_write_lock_killable(oldmm)) {
d70f2a14
AM
478 retval = -EINTR;
479 goto fail_uprobe_end;
480 }
481 flush_cache_dup_mm(oldmm);
482 uprobe_dup_mmap(oldmm, mm);
483 /*
484 * Not linked in yet - no deadlock potential:
485 */
aaa2cc56 486 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
d70f2a14
AM
487
488 /* No ordering required: file already has been exposed. */
489 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
490
491 mm->total_vm = oldmm->total_vm;
492 mm->data_vm = oldmm->data_vm;
493 mm->exec_vm = oldmm->exec_vm;
494 mm->stack_vm = oldmm->stack_vm;
495
496 rb_link = &mm->mm_rb.rb_node;
497 rb_parent = NULL;
498 pprev = &mm->mmap;
499 retval = ksm_fork(mm, oldmm);
500 if (retval)
501 goto out;
502 retval = khugepaged_fork(mm, oldmm);
503 if (retval)
504 goto out;
505
506 prev = NULL;
507 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
508 struct file *file;
509
510 if (mpnt->vm_flags & VM_DONTCOPY) {
511 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
512 continue;
513 }
514 charge = 0;
655c79bb
TH
515 /*
516 * Don't duplicate many vmas if we've been oom-killed (for
517 * example)
518 */
519 if (fatal_signal_pending(current)) {
520 retval = -EINTR;
521 goto out;
522 }
d70f2a14
AM
523 if (mpnt->vm_flags & VM_ACCOUNT) {
524 unsigned long len = vma_pages(mpnt);
525
526 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
527 goto fail_nomem;
528 charge = len;
529 }
3928d4f5 530 tmp = vm_area_dup(mpnt);
d70f2a14
AM
531 if (!tmp)
532 goto fail_nomem;
d70f2a14
AM
533 retval = vma_dup_policy(mpnt, tmp);
534 if (retval)
535 goto fail_nomem_policy;
536 tmp->vm_mm = mm;
537 retval = dup_userfaultfd(tmp, &uf);
538 if (retval)
539 goto fail_nomem_anon_vma_fork;
540 if (tmp->vm_flags & VM_WIPEONFORK) {
93949bb2
LX
541 /*
542 * VM_WIPEONFORK gets a clean slate in the child.
543 * Don't prepare anon_vma until fault since we don't
544 * copy page for current vma.
545 */
d70f2a14 546 tmp->anon_vma = NULL;
d70f2a14
AM
547 } else if (anon_vma_fork(tmp, mpnt))
548 goto fail_nomem_anon_vma_fork;
549 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
d70f2a14
AM
550 file = tmp->vm_file;
551 if (file) {
552 struct inode *inode = file_inode(file);
553 struct address_space *mapping = file->f_mapping;
554
555 get_file(file);
556 if (tmp->vm_flags & VM_DENYWRITE)
557 atomic_dec(&inode->i_writecount);
558 i_mmap_lock_write(mapping);
559 if (tmp->vm_flags & VM_SHARED)
560 atomic_inc(&mapping->i_mmap_writable);
561 flush_dcache_mmap_lock(mapping);
562 /* insert tmp into the share list, just after mpnt */
563 vma_interval_tree_insert_after(tmp, mpnt,
564 &mapping->i_mmap);
565 flush_dcache_mmap_unlock(mapping);
566 i_mmap_unlock_write(mapping);
567 }
568
569 /*
570 * Clear hugetlb-related page reserves for children. This only
571 * affects MAP_PRIVATE mappings. Faults generated by the child
572 * are not guaranteed to succeed, even if read-only
573 */
574 if (is_vm_hugetlb_page(tmp))
575 reset_vma_resv_huge_pages(tmp);
576
577 /*
578 * Link in the new vma and copy the page table entries.
579 */
580 *pprev = tmp;
581 pprev = &tmp->vm_next;
582 tmp->vm_prev = prev;
583 prev = tmp;
584
585 __vma_link_rb(mm, tmp, rb_link, rb_parent);
586 rb_link = &tmp->vm_rb.rb_right;
587 rb_parent = &tmp->vm_rb;
588
589 mm->map_count++;
590 if (!(tmp->vm_flags & VM_WIPEONFORK))
591 retval = copy_page_range(mm, oldmm, mpnt);
592
593 if (tmp->vm_ops && tmp->vm_ops->open)
594 tmp->vm_ops->open(tmp);
595
596 if (retval)
597 goto out;
598 }
599 /* a new mm has just been created */
1ed0cc5a 600 retval = arch_dup_mmap(oldmm, mm);
d70f2a14 601out:
d8ed45c5 602 mmap_write_unlock(mm);
d70f2a14 603 flush_tlb_mm(oldmm);
d8ed45c5 604 mmap_write_unlock(oldmm);
d70f2a14
AM
605 dup_userfaultfd_complete(&uf);
606fail_uprobe_end:
607 uprobe_end_dup_mmap();
608 return retval;
609fail_nomem_anon_vma_fork:
610 mpol_put(vma_policy(tmp));
611fail_nomem_policy:
3928d4f5 612 vm_area_free(tmp);
d70f2a14
AM
613fail_nomem:
614 retval = -ENOMEM;
615 vm_unacct_memory(charge);
616 goto out;
617}
618
619static inline int mm_alloc_pgd(struct mm_struct *mm)
620{
621 mm->pgd = pgd_alloc(mm);
622 if (unlikely(!mm->pgd))
623 return -ENOMEM;
624 return 0;
625}
626
627static inline void mm_free_pgd(struct mm_struct *mm)
628{
629 pgd_free(mm, mm->pgd);
630}
631#else
632static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
633{
d8ed45c5 634 mmap_write_lock(oldmm);
d70f2a14 635 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
d8ed45c5 636 mmap_write_unlock(oldmm);
d70f2a14
AM
637 return 0;
638}
639#define mm_alloc_pgd(mm) (0)
640#define mm_free_pgd(mm)
641#endif /* CONFIG_MMU */
642
643static void check_mm(struct mm_struct *mm)
644{
645 int i;
646
8495f7e6
SPP
647 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
648 "Please make sure 'struct resident_page_types[]' is updated as well");
649
d70f2a14
AM
650 for (i = 0; i < NR_MM_COUNTERS; i++) {
651 long x = atomic_long_read(&mm->rss_stat.count[i]);
652
653 if (unlikely(x))
8495f7e6
SPP
654 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
655 mm, resident_page_types[i], x);
d70f2a14
AM
656 }
657
658 if (mm_pgtables_bytes(mm))
659 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
660 mm_pgtables_bytes(mm));
661
662#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
663 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
664#endif
665}
666
667#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
668#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
669
670/*
671 * Called when the last reference to the mm
672 * is dropped: either by a lazy thread or by
673 * mmput. Free the page directory and the mm.
674 */
d34bc48f 675void __mmdrop(struct mm_struct *mm)
d70f2a14
AM
676{
677 BUG_ON(mm == &init_mm);
3eda69c9
MR
678 WARN_ON_ONCE(mm == current->mm);
679 WARN_ON_ONCE(mm == current->active_mm);
d70f2a14
AM
680 mm_free_pgd(mm);
681 destroy_context(mm);
984cfe4e 682 mmu_notifier_subscriptions_destroy(mm);
d70f2a14
AM
683 check_mm(mm);
684 put_user_ns(mm->user_ns);
685 free_mm(mm);
686}
d34bc48f 687EXPORT_SYMBOL_GPL(__mmdrop);
d70f2a14
AM
688
689static void mmdrop_async_fn(struct work_struct *work)
690{
691 struct mm_struct *mm;
692
693 mm = container_of(work, struct mm_struct, async_put_work);
694 __mmdrop(mm);
695}
696
697static void mmdrop_async(struct mm_struct *mm)
698{
699 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
700 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
701 schedule_work(&mm->async_put_work);
702 }
703}
704
ea6d290c
ON
705static inline void free_signal_struct(struct signal_struct *sig)
706{
97101eb4 707 taskstats_tgid_free(sig);
1c5354de 708 sched_autogroup_exit(sig);
7283094e
MH
709 /*
710 * __mmdrop is not safe to call from softirq context on x86 due to
711 * pgd_dtor so postpone it to the async context
712 */
26db62f1 713 if (sig->oom_mm)
7283094e 714 mmdrop_async(sig->oom_mm);
ea6d290c
ON
715 kmem_cache_free(signal_cachep, sig);
716}
717
718static inline void put_signal_struct(struct signal_struct *sig)
719{
60d4de3f 720 if (refcount_dec_and_test(&sig->sigcnt))
ea6d290c
ON
721 free_signal_struct(sig);
722}
723
158d9ebd 724void __put_task_struct(struct task_struct *tsk)
1da177e4 725{
270f722d 726 WARN_ON(!tsk->exit_state);
ec1d2819 727 WARN_ON(refcount_read(&tsk->usage));
1da177e4
LT
728 WARN_ON(tsk == current);
729
2e91fa7f 730 cgroup_free(tsk);
16d51a59 731 task_numa_free(tsk, true);
1a2a4d06 732 security_task_free(tsk);
e0e81739 733 exit_creds(tsk);
35df17c5 734 delayacct_tsk_free(tsk);
ea6d290c 735 put_signal_struct(tsk->signal);
1da177e4
LT
736
737 if (!profile_handoff_task(tsk))
738 free_task(tsk);
739}
77c100c8 740EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 741
6c0a9fa6 742void __init __weak arch_task_cache_init(void) { }
61c4628b 743
ff691f6e
HS
744/*
745 * set_max_threads
746 */
16db3d3f 747static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 748{
ac1b398d 749 u64 threads;
ca79b0c2 750 unsigned long nr_pages = totalram_pages();
ff691f6e
HS
751
752 /*
ac1b398d
HS
753 * The number of threads shall be limited such that the thread
754 * structures may only consume a small part of the available memory.
ff691f6e 755 */
3d6357de 756 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
ac1b398d
HS
757 threads = MAX_THREADS;
758 else
3d6357de 759 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
ac1b398d
HS
760 (u64) THREAD_SIZE * 8UL);
761
16db3d3f
HS
762 if (threads > max_threads_suggested)
763 threads = max_threads_suggested;
764
ac1b398d 765 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
766}
767
5aaeb5c0
IM
768#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
769/* Initialized by the architecture: */
770int arch_task_struct_size __read_mostly;
771#endif
0c8c0f03 772
4189ff23 773#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
5905429a
KC
774static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
775{
776 /* Fetch thread_struct whitelist for the architecture. */
777 arch_thread_struct_whitelist(offset, size);
778
779 /*
780 * Handle zero-sized whitelist or empty thread_struct, otherwise
781 * adjust offset to position of thread_struct in task_struct.
782 */
783 if (unlikely(*size == 0))
784 *offset = 0;
785 else
786 *offset += offsetof(struct task_struct, thread);
787}
4189ff23 788#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
5905429a 789
ff691f6e 790void __init fork_init(void)
1da177e4 791{
25f9c081 792 int i;
f5e10287 793#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1da177e4 794#ifndef ARCH_MIN_TASKALIGN
e274795e 795#define ARCH_MIN_TASKALIGN 0
1da177e4 796#endif
95cb64c1 797 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
5905429a 798 unsigned long useroffset, usersize;
e274795e 799
1da177e4 800 /* create a slab on which task_structs can be allocated */
5905429a
KC
801 task_struct_whitelist(&useroffset, &usersize);
802 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
e274795e 803 arch_task_struct_size, align,
5905429a
KC
804 SLAB_PANIC|SLAB_ACCOUNT,
805 useroffset, usersize, NULL);
1da177e4
LT
806#endif
807
61c4628b
SS
808 /* do the arch specific task caches init */
809 arch_task_cache_init();
810
16db3d3f 811 set_max_threads(MAX_THREADS);
1da177e4
LT
812
813 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
814 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
815 init_task.signal->rlim[RLIMIT_SIGPENDING] =
816 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 817
25f9c081
EB
818 for (i = 0; i < UCOUNT_COUNTS; i++) {
819 init_user_ns.ucount_max[i] = max_threads/2;
820 }
19659c59
HR
821
822#ifdef CONFIG_VMAP_STACK
823 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
824 NULL, free_vm_stack_cache);
825#endif
b09be676 826
d08b9f0c
ST
827 scs_init();
828
b09be676 829 lockdep_init_task(&init_task);
aad42dd4 830 uprobes_init();
1da177e4
LT
831}
832
52f5684c 833int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
834 struct task_struct *src)
835{
836 *dst = *src;
837 return 0;
838}
839
d4311ff1
AT
840void set_task_stack_end_magic(struct task_struct *tsk)
841{
842 unsigned long *stackend;
843
844 stackend = end_of_stack(tsk);
845 *stackend = STACK_END_MAGIC; /* for overflow detection */
846}
847
725fc629 848static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
849{
850 struct task_struct *tsk;
b235beea 851 unsigned long *stack;
0f4991e8 852 struct vm_struct *stack_vm_area __maybe_unused;
3e26c149 853 int err;
1da177e4 854
725fc629
AK
855 if (node == NUMA_NO_NODE)
856 node = tsk_fork_get_node(orig);
504f52b5 857 tsk = alloc_task_struct_node(node);
1da177e4
LT
858 if (!tsk)
859 return NULL;
860
b235beea
LT
861 stack = alloc_thread_stack_node(tsk, node);
862 if (!stack)
f19b9f74 863 goto free_tsk;
1da177e4 864
9b6f7e16
RG
865 if (memcg_charge_kernel_stack(tsk))
866 goto free_stack;
867
ba14a194
AL
868 stack_vm_area = task_stack_vm_area(tsk);
869
fb0a685c 870 err = arch_dup_task_struct(tsk, orig);
ba14a194
AL
871
872 /*
873 * arch_dup_task_struct() clobbers the stack-related fields. Make
874 * sure they're properly initialized before using any stack-related
875 * functions again.
876 */
877 tsk->stack = stack;
878#ifdef CONFIG_VMAP_STACK
879 tsk->stack_vm_area = stack_vm_area;
880#endif
68f24b08 881#ifdef CONFIG_THREAD_INFO_IN_TASK
f0b89d39 882 refcount_set(&tsk->stack_refcount, 1);
68f24b08 883#endif
ba14a194 884
164c33c6 885 if (err)
b235beea 886 goto free_stack;
164c33c6 887
d08b9f0c
ST
888 err = scs_prepare(tsk, node);
889 if (err)
890 goto free_stack;
891
dbd95212
KC
892#ifdef CONFIG_SECCOMP
893 /*
894 * We must handle setting up seccomp filters once we're under
895 * the sighand lock in case orig has changed between now and
896 * then. Until then, filter must be NULL to avoid messing up
897 * the usage counts on the error path calling free_task.
898 */
899 tsk->seccomp.filter = NULL;
900#endif
87bec58a
AM
901
902 setup_thread_stack(tsk, orig);
8e7cac79 903 clear_user_return_notifier(tsk);
f26f9aff 904 clear_tsk_need_resched(tsk);
d4311ff1 905 set_task_stack_end_magic(tsk);
1da177e4 906
050e9baa 907#ifdef CONFIG_STACKPROTECTOR
7cd815bc 908 tsk->stack_canary = get_random_canary();
0a425405 909#endif
3bd37062
SAS
910 if (orig->cpus_ptr == &orig->cpus_mask)
911 tsk->cpus_ptr = &tsk->cpus_mask;
0a425405 912
fb0a685c 913 /*
0ff7b2cf
EB
914 * One for the user space visible state that goes away when reaped.
915 * One for the scheduler.
fb0a685c 916 */
0ff7b2cf
EB
917 refcount_set(&tsk->rcu_users, 2);
918 /* One for the rcu users */
919 refcount_set(&tsk->usage, 1);
6c5c9341 920#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 921 tsk->btrace_seq = 0;
6c5c9341 922#endif
a0aa7f68 923 tsk->splice_pipe = NULL;
5640f768 924 tsk->task_frag.page = NULL;
093e5840 925 tsk->wake_q.next = NULL;
c6a7f572 926
ba14a194 927 account_kernel_stack(tsk, 1);
c6a7f572 928
5c9a8750
DV
929 kcov_task_init(tsk);
930
e41d5818
DV
931#ifdef CONFIG_FAULT_INJECTION
932 tsk->fail_nth = 0;
933#endif
934
2c323017
JB
935#ifdef CONFIG_BLK_CGROUP
936 tsk->throttle_queue = NULL;
937 tsk->use_memdelay = 0;
938#endif
939
d46eb14b
SB
940#ifdef CONFIG_MEMCG
941 tsk->active_memcg = NULL;
942#endif
1da177e4 943 return tsk;
61c4628b 944
b235beea 945free_stack:
ba14a194 946 free_thread_stack(tsk);
f19b9f74 947free_tsk:
61c4628b
SS
948 free_task_struct(tsk);
949 return NULL;
1da177e4
LT
950}
951
23ff4440 952__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 953
4cb0e11b
HK
954static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
955
956static int __init coredump_filter_setup(char *s)
957{
958 default_dump_filter =
959 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
960 MMF_DUMP_FILTER_MASK;
961 return 1;
962}
963
964__setup("coredump_filter=", coredump_filter_setup);
965
1da177e4
LT
966#include <linux/init_task.h>
967
858f0993
AD
968static void mm_init_aio(struct mm_struct *mm)
969{
970#ifdef CONFIG_AIO
971 spin_lock_init(&mm->ioctx_lock);
db446a08 972 mm->ioctx_table = NULL;
858f0993
AD
973#endif
974}
975
c3f3ce04
AA
976static __always_inline void mm_clear_owner(struct mm_struct *mm,
977 struct task_struct *p)
978{
979#ifdef CONFIG_MEMCG
980 if (mm->owner == p)
981 WRITE_ONCE(mm->owner, NULL);
982#endif
983}
984
33144e84
VD
985static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
986{
987#ifdef CONFIG_MEMCG
988 mm->owner = p;
989#endif
990}
991
355627f5
EB
992static void mm_init_uprobes_state(struct mm_struct *mm)
993{
994#ifdef CONFIG_UPROBES
995 mm->uprobes_state.xol_area = NULL;
996#endif
997}
998
bfedb589
EB
999static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1000 struct user_namespace *user_ns)
1da177e4 1001{
41f727fd
VD
1002 mm->mmap = NULL;
1003 mm->mm_rb = RB_ROOT;
1004 mm->vmacache_seqnum = 0;
1da177e4
LT
1005 atomic_set(&mm->mm_users, 1);
1006 atomic_set(&mm->mm_count, 1);
d8ed45c5 1007 mmap_init_lock(mm);
1da177e4 1008 INIT_LIST_HEAD(&mm->mmlist);
999d9fc1 1009 mm->core_state = NULL;
af5b0f6a 1010 mm_pgtables_bytes_init(mm);
41f727fd
VD
1011 mm->map_count = 0;
1012 mm->locked_vm = 0;
70f8a3ca 1013 atomic64_set(&mm->pinned_vm, 0);
d559db08 1014 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 1015 spin_lock_init(&mm->page_table_lock);
88aa7cc6 1016 spin_lock_init(&mm->arg_lock);
41f727fd 1017 mm_init_cpumask(mm);
858f0993 1018 mm_init_aio(mm);
cf475ad2 1019 mm_init_owner(mm, p);
2b7e8665 1020 RCU_INIT_POINTER(mm->exe_file, NULL);
984cfe4e 1021 mmu_notifier_subscriptions_init(mm);
16af97dc 1022 init_tlb_flush_pending(mm);
41f727fd
VD
1023#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1024 mm->pmd_huge_pte = NULL;
1025#endif
355627f5 1026 mm_init_uprobes_state(mm);
1da177e4 1027
a0715cc2
AT
1028 if (current->mm) {
1029 mm->flags = current->mm->flags & MMF_INIT_MASK;
1030 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1031 } else {
1032 mm->flags = default_dump_filter;
1da177e4 1033 mm->def_flags = 0;
a0715cc2
AT
1034 }
1035
41f727fd
VD
1036 if (mm_alloc_pgd(mm))
1037 goto fail_nopgd;
1038
1039 if (init_new_context(p, mm))
1040 goto fail_nocontext;
78fb7466 1041
bfedb589 1042 mm->user_ns = get_user_ns(user_ns);
41f727fd
VD
1043 return mm;
1044
1045fail_nocontext:
1046 mm_free_pgd(mm);
1047fail_nopgd:
1da177e4
LT
1048 free_mm(mm);
1049 return NULL;
1050}
1051
1052/*
1053 * Allocate and initialize an mm_struct.
1054 */
fb0a685c 1055struct mm_struct *mm_alloc(void)
1da177e4 1056{
fb0a685c 1057 struct mm_struct *mm;
1da177e4
LT
1058
1059 mm = allocate_mm();
de03c72c
KM
1060 if (!mm)
1061 return NULL;
1062
1063 memset(mm, 0, sizeof(*mm));
bfedb589 1064 return mm_init(mm, current, current_user_ns());
1da177e4
LT
1065}
1066
ec8d7c14
MH
1067static inline void __mmput(struct mm_struct *mm)
1068{
1069 VM_BUG_ON(atomic_read(&mm->mm_users));
1070
1071 uprobe_clear_state(mm);
1072 exit_aio(mm);
1073 ksm_exit(mm);
1074 khugepaged_exit(mm); /* must run before exit_mmap */
1075 exit_mmap(mm);
6fcb52a5 1076 mm_put_huge_zero_page(mm);
ec8d7c14
MH
1077 set_mm_exe_file(mm, NULL);
1078 if (!list_empty(&mm->mmlist)) {
1079 spin_lock(&mmlist_lock);
1080 list_del(&mm->mmlist);
1081 spin_unlock(&mmlist_lock);
1082 }
1083 if (mm->binfmt)
1084 module_put(mm->binfmt->module);
1085 mmdrop(mm);
1086}
1087
1da177e4
LT
1088/*
1089 * Decrement the use count and release all resources for an mm.
1090 */
1091void mmput(struct mm_struct *mm)
1092{
0ae26f1b
AM
1093 might_sleep();
1094
ec8d7c14
MH
1095 if (atomic_dec_and_test(&mm->mm_users))
1096 __mmput(mm);
1097}
1098EXPORT_SYMBOL_GPL(mmput);
1099
a1b2289c
SY
1100#ifdef CONFIG_MMU
1101static void mmput_async_fn(struct work_struct *work)
1102{
1103 struct mm_struct *mm = container_of(work, struct mm_struct,
1104 async_put_work);
1105
1106 __mmput(mm);
1107}
1108
1109void mmput_async(struct mm_struct *mm)
1110{
1111 if (atomic_dec_and_test(&mm->mm_users)) {
1112 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1113 schedule_work(&mm->async_put_work);
1114 }
1115}
1116#endif
1117
90f31d0e
KK
1118/**
1119 * set_mm_exe_file - change a reference to the mm's executable file
1120 *
1121 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1122 *
6e399cd1
DB
1123 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1124 * invocations: in mmput() nobody alive left, in execve task is single
1125 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1126 * mm->exe_file, but does so without using set_mm_exe_file() in order
1127 * to do avoid the need for any locks.
90f31d0e 1128 */
38646013
JS
1129void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1130{
6e399cd1
DB
1131 struct file *old_exe_file;
1132
1133 /*
1134 * It is safe to dereference the exe_file without RCU as
1135 * this function is only called if nobody else can access
1136 * this mm -- see comment above for justification.
1137 */
1138 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 1139
38646013
JS
1140 if (new_exe_file)
1141 get_file(new_exe_file);
90f31d0e
KK
1142 rcu_assign_pointer(mm->exe_file, new_exe_file);
1143 if (old_exe_file)
1144 fput(old_exe_file);
38646013
JS
1145}
1146
90f31d0e
KK
1147/**
1148 * get_mm_exe_file - acquire a reference to the mm's executable file
1149 *
1150 * Returns %NULL if mm has no associated executable file.
1151 * User must release file via fput().
1152 */
38646013
JS
1153struct file *get_mm_exe_file(struct mm_struct *mm)
1154{
1155 struct file *exe_file;
1156
90f31d0e
KK
1157 rcu_read_lock();
1158 exe_file = rcu_dereference(mm->exe_file);
1159 if (exe_file && !get_file_rcu(exe_file))
1160 exe_file = NULL;
1161 rcu_read_unlock();
38646013
JS
1162 return exe_file;
1163}
11163348 1164EXPORT_SYMBOL(get_mm_exe_file);
38646013 1165
cd81a917
MG
1166/**
1167 * get_task_exe_file - acquire a reference to the task's executable file
1168 *
1169 * Returns %NULL if task's mm (if any) has no associated executable file or
1170 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1171 * User must release file via fput().
1172 */
1173struct file *get_task_exe_file(struct task_struct *task)
1174{
1175 struct file *exe_file = NULL;
1176 struct mm_struct *mm;
1177
1178 task_lock(task);
1179 mm = task->mm;
1180 if (mm) {
1181 if (!(task->flags & PF_KTHREAD))
1182 exe_file = get_mm_exe_file(mm);
1183 }
1184 task_unlock(task);
1185 return exe_file;
1186}
1187EXPORT_SYMBOL(get_task_exe_file);
38646013 1188
1da177e4
LT
1189/**
1190 * get_task_mm - acquire a reference to the task's mm
1191 *
246bb0b1 1192 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1193 * this kernel workthread has transiently adopted a user mm with use_mm,
1194 * to do its AIO) is not set and if so returns a reference to it, after
1195 * bumping up the use count. User must release the mm via mmput()
1196 * after use. Typically used by /proc and ptrace.
1197 */
1198struct mm_struct *get_task_mm(struct task_struct *task)
1199{
1200 struct mm_struct *mm;
1201
1202 task_lock(task);
1203 mm = task->mm;
1204 if (mm) {
246bb0b1 1205 if (task->flags & PF_KTHREAD)
1da177e4
LT
1206 mm = NULL;
1207 else
3fce371b 1208 mmget(mm);
1da177e4
LT
1209 }
1210 task_unlock(task);
1211 return mm;
1212}
1213EXPORT_SYMBOL_GPL(get_task_mm);
1214
8cdb878d
CY
1215struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1216{
1217 struct mm_struct *mm;
1218 int err;
1219
3e74fabd 1220 err = mutex_lock_killable(&task->signal->exec_update_mutex);
8cdb878d
CY
1221 if (err)
1222 return ERR_PTR(err);
1223
1224 mm = get_task_mm(task);
1225 if (mm && mm != current->mm &&
1226 !ptrace_may_access(task, mode)) {
1227 mmput(mm);
1228 mm = ERR_PTR(-EACCES);
1229 }
3e74fabd 1230 mutex_unlock(&task->signal->exec_update_mutex);
8cdb878d
CY
1231
1232 return mm;
1233}
1234
57b59c4a 1235static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1236{
d68b46fe 1237 struct completion *vfork;
c415c3b4 1238
d68b46fe
ON
1239 task_lock(tsk);
1240 vfork = tsk->vfork_done;
1241 if (likely(vfork)) {
1242 tsk->vfork_done = NULL;
1243 complete(vfork);
1244 }
1245 task_unlock(tsk);
1246}
1247
1248static int wait_for_vfork_done(struct task_struct *child,
1249 struct completion *vfork)
1250{
1251 int killed;
1252
1253 freezer_do_not_count();
76f969e8 1254 cgroup_enter_frozen();
d68b46fe 1255 killed = wait_for_completion_killable(vfork);
76f969e8 1256 cgroup_leave_frozen(false);
d68b46fe
ON
1257 freezer_count();
1258
1259 if (killed) {
1260 task_lock(child);
1261 child->vfork_done = NULL;
1262 task_unlock(child);
1263 }
1264
1265 put_task_struct(child);
1266 return killed;
c415c3b4
ON
1267}
1268
1da177e4
LT
1269/* Please note the differences between mmput and mm_release.
1270 * mmput is called whenever we stop holding onto a mm_struct,
1271 * error success whatever.
1272 *
1273 * mm_release is called after a mm_struct has been removed
1274 * from the current process.
1275 *
1276 * This difference is important for error handling, when we
1277 * only half set up a mm_struct for a new process and need to restore
1278 * the old one. Because we mmput the new mm_struct before
1279 * restoring the old one. . .
1280 * Eric Biederman 10 January 1998
1281 */
4610ba7a 1282static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1da177e4 1283{
0326f5a9
SD
1284 uprobe_free_utask(tsk);
1285
1da177e4
LT
1286 /* Get rid of any cached register state */
1287 deactivate_mm(tsk, mm);
1288
fec1d011 1289 /*
735f2770
MH
1290 * Signal userspace if we're not exiting with a core dump
1291 * because we want to leave the value intact for debugging
1292 * purposes.
fec1d011 1293 */
9c8a8228 1294 if (tsk->clear_child_tid) {
735f2770 1295 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
9c8a8228
ED
1296 atomic_read(&mm->mm_users) > 1) {
1297 /*
1298 * We don't check the error code - if userspace has
1299 * not set up a proper pointer then tough luck.
1300 */
1301 put_user(0, tsk->clear_child_tid);
2de0db99
DB
1302 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1303 1, NULL, NULL, 0, 0);
9c8a8228 1304 }
1da177e4 1305 tsk->clear_child_tid = NULL;
1da177e4 1306 }
f7505d64
KK
1307
1308 /*
1309 * All done, finally we can wake up parent and return this mm to him.
1310 * Also kthread_stop() uses this completion for synchronization.
1311 */
1312 if (tsk->vfork_done)
1313 complete_vfork_done(tsk);
1da177e4
LT
1314}
1315
4610ba7a
TG
1316void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1317{
150d7158 1318 futex_exit_release(tsk);
4610ba7a
TG
1319 mm_release(tsk, mm);
1320}
1321
1322void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1323{
150d7158 1324 futex_exec_release(tsk);
4610ba7a
TG
1325 mm_release(tsk, mm);
1326}
1327
13585fa0
NA
1328/**
1329 * dup_mm() - duplicates an existing mm structure
1330 * @tsk: the task_struct with which the new mm will be associated.
1331 * @oldmm: the mm to duplicate.
1332 *
1333 * Allocates a new mm structure and duplicates the provided @oldmm structure
1334 * content into it.
1335 *
1336 * Return: the duplicated mm or NULL on failure.
a0a7ec30 1337 */
13585fa0
NA
1338static struct mm_struct *dup_mm(struct task_struct *tsk,
1339 struct mm_struct *oldmm)
a0a7ec30 1340{
13585fa0 1341 struct mm_struct *mm;
a0a7ec30
JD
1342 int err;
1343
a0a7ec30
JD
1344 mm = allocate_mm();
1345 if (!mm)
1346 goto fail_nomem;
1347
1348 memcpy(mm, oldmm, sizeof(*mm));
1349
bfedb589 1350 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1351 goto fail_nomem;
1352
a0a7ec30
JD
1353 err = dup_mmap(mm, oldmm);
1354 if (err)
1355 goto free_pt;
1356
1357 mm->hiwater_rss = get_mm_rss(mm);
1358 mm->hiwater_vm = mm->total_vm;
1359
801460d0
HS
1360 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1361 goto free_pt;
1362
a0a7ec30
JD
1363 return mm;
1364
1365free_pt:
801460d0
HS
1366 /* don't put binfmt in mmput, we haven't got module yet */
1367 mm->binfmt = NULL;
c3f3ce04 1368 mm_init_owner(mm, NULL);
a0a7ec30
JD
1369 mmput(mm);
1370
1371fail_nomem:
1372 return NULL;
a0a7ec30
JD
1373}
1374
fb0a685c 1375static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1376{
fb0a685c 1377 struct mm_struct *mm, *oldmm;
1da177e4
LT
1378 int retval;
1379
1380 tsk->min_flt = tsk->maj_flt = 0;
1381 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1382#ifdef CONFIG_DETECT_HUNG_TASK
1383 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
a2e51445 1384 tsk->last_switch_time = 0;
17406b82 1385#endif
1da177e4
LT
1386
1387 tsk->mm = NULL;
1388 tsk->active_mm = NULL;
1389
1390 /*
1391 * Are we cloning a kernel thread?
1392 *
1393 * We need to steal a active VM for that..
1394 */
1395 oldmm = current->mm;
1396 if (!oldmm)
1397 return 0;
1398
615d6e87
DB
1399 /* initialize the new vmacache entries */
1400 vmacache_flush(tsk);
1401
1da177e4 1402 if (clone_flags & CLONE_VM) {
3fce371b 1403 mmget(oldmm);
1da177e4 1404 mm = oldmm;
1da177e4
LT
1405 goto good_mm;
1406 }
1407
1408 retval = -ENOMEM;
13585fa0 1409 mm = dup_mm(tsk, current->mm);
1da177e4
LT
1410 if (!mm)
1411 goto fail_nomem;
1412
1da177e4
LT
1413good_mm:
1414 tsk->mm = mm;
1415 tsk->active_mm = mm;
1416 return 0;
1417
1da177e4
LT
1418fail_nomem:
1419 return retval;
1da177e4
LT
1420}
1421
a39bc516 1422static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1423{
498052bb 1424 struct fs_struct *fs = current->fs;
1da177e4 1425 if (clone_flags & CLONE_FS) {
498052bb 1426 /* tsk->fs is already what we want */
2a4419b5 1427 spin_lock(&fs->lock);
498052bb 1428 if (fs->in_exec) {
2a4419b5 1429 spin_unlock(&fs->lock);
498052bb
AV
1430 return -EAGAIN;
1431 }
1432 fs->users++;
2a4419b5 1433 spin_unlock(&fs->lock);
1da177e4
LT
1434 return 0;
1435 }
498052bb 1436 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1437 if (!tsk->fs)
1438 return -ENOMEM;
1439 return 0;
1440}
1441
fb0a685c 1442static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
a016f338
JD
1443{
1444 struct files_struct *oldf, *newf;
1445 int error = 0;
1446
1447 /*
1448 * A background process may not have any files ...
1449 */
1450 oldf = current->files;
1451 if (!oldf)
1452 goto out;
1453
1454 if (clone_flags & CLONE_FILES) {
1455 atomic_inc(&oldf->count);
1456 goto out;
1457 }
1458
60997c3d 1459 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
a016f338
JD
1460 if (!newf)
1461 goto out;
1462
1463 tsk->files = newf;
1464 error = 0;
1465out:
1466 return error;
1467}
1468
fadad878 1469static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
fd0928df
JA
1470{
1471#ifdef CONFIG_BLOCK
1472 struct io_context *ioc = current->io_context;
6e736be7 1473 struct io_context *new_ioc;
fd0928df
JA
1474
1475 if (!ioc)
1476 return 0;
fadad878
JA
1477 /*
1478 * Share io context with parent, if CLONE_IO is set
1479 */
1480 if (clone_flags & CLONE_IO) {
3d48749d
TH
1481 ioc_task_link(ioc);
1482 tsk->io_context = ioc;
fadad878 1483 } else if (ioprio_valid(ioc->ioprio)) {
6e736be7
TH
1484 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1485 if (unlikely(!new_ioc))
fd0928df
JA
1486 return -ENOMEM;
1487
6e736be7 1488 new_ioc->ioprio = ioc->ioprio;
11a3122f 1489 put_io_context(new_ioc);
fd0928df
JA
1490 }
1491#endif
1492 return 0;
1493}
1494
a39bc516 1495static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1496{
1497 struct sighand_struct *sig;
1498
60348802 1499 if (clone_flags & CLONE_SIGHAND) {
d036bda7 1500 refcount_inc(&current->sighand->count);
1da177e4
LT
1501 return 0;
1502 }
1503 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
0c282b06 1504 RCU_INIT_POINTER(tsk->sighand, sig);
1da177e4
LT
1505 if (!sig)
1506 return -ENOMEM;
9d7fb042 1507
d036bda7 1508 refcount_set(&sig->count, 1);
06e62a46 1509 spin_lock_irq(&current->sighand->siglock);
1da177e4 1510 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
06e62a46 1511 spin_unlock_irq(&current->sighand->siglock);
b612e5df
CB
1512
1513 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1514 if (clone_flags & CLONE_CLEAR_SIGHAND)
1515 flush_signal_handlers(tsk, 0);
1516
1da177e4
LT
1517 return 0;
1518}
1519
a7e5328a 1520void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1521{
d036bda7 1522 if (refcount_dec_and_test(&sighand->count)) {
d80e731e 1523 signalfd_cleanup(sighand);
392809b2 1524 /*
5f0d5a3a 1525 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1526 * without an RCU grace period, see __lock_task_sighand().
1527 */
c81addc9 1528 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1529 }
c81addc9
ON
1530}
1531
f06febc9
FM
1532/*
1533 * Initialize POSIX timer handling for a thread group.
1534 */
1535static void posix_cpu_timers_init_group(struct signal_struct *sig)
1536{
2b69942f 1537 struct posix_cputimers *pct = &sig->posix_cputimers;
78d7d407
JS
1538 unsigned long cpu_limit;
1539
316c1608 1540 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
3a245c0f 1541 posix_cputimers_group_init(pct, cpu_limit);
f06febc9
FM
1542}
1543
a39bc516 1544static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1545{
1546 struct signal_struct *sig;
1da177e4 1547
4ab6c083 1548 if (clone_flags & CLONE_THREAD)
490dea45 1549 return 0;
490dea45 1550
a56704ef 1551 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1552 tsk->signal = sig;
1553 if (!sig)
1554 return -ENOMEM;
1555
b3ac022c 1556 sig->nr_threads = 1;
1da177e4 1557 atomic_set(&sig->live, 1);
60d4de3f 1558 refcount_set(&sig->sigcnt, 1);
0c740d0a
ON
1559
1560 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1561 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1562 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1563
1da177e4 1564 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1565 sig->curr_target = tsk;
1da177e4 1566 init_sigpending(&sig->shared_pending);
c3ad2c3b 1567 INIT_HLIST_HEAD(&sig->multiprocess);
e78c3496 1568 seqlock_init(&sig->stats_lock);
9d7fb042 1569 prev_cputime_init(&sig->prev_cputime);
1da177e4 1570
baa73d9e 1571#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1572 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1573 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1574 sig->real_timer.function = it_real_fn;
baa73d9e 1575#endif
1da177e4 1576
1da177e4
LT
1577 task_lock(current->group_leader);
1578 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1579 task_unlock(current->group_leader);
1580
6279a751
ON
1581 posix_cpu_timers_init_group(sig);
1582
522ed776 1583 tty_audit_fork(sig);
5091faa4 1584 sched_autogroup_fork(sig);
522ed776 1585
a63d83f4 1586 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1587 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1588
9b1bf12d 1589 mutex_init(&sig->cred_guard_mutex);
eea96732 1590 mutex_init(&sig->exec_update_mutex);
9b1bf12d 1591
1da177e4
LT
1592 return 0;
1593}
1594
dbd95212
KC
1595static void copy_seccomp(struct task_struct *p)
1596{
1597#ifdef CONFIG_SECCOMP
1598 /*
1599 * Must be called with sighand->lock held, which is common to
1600 * all threads in the group. Holding cred_guard_mutex is not
1601 * needed because this new task is not yet running and cannot
1602 * be racing exec.
1603 */
69f6a34b 1604 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1605
1606 /* Ref-count the new filter user, and assign it. */
1607 get_seccomp_filter(current);
1608 p->seccomp = current->seccomp;
1609
1610 /*
1611 * Explicitly enable no_new_privs here in case it got set
1612 * between the task_struct being duplicated and holding the
1613 * sighand lock. The seccomp state and nnp must be in sync.
1614 */
1615 if (task_no_new_privs(current))
1616 task_set_no_new_privs(p);
1617
1618 /*
1619 * If the parent gained a seccomp mode after copying thread
1620 * flags and between before we held the sighand lock, we have
1621 * to manually enable the seccomp thread flag here.
1622 */
1623 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1624 set_tsk_thread_flag(p, TIF_SECCOMP);
1625#endif
1626}
1627
17da2bd9 1628SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1629{
1630 current->clear_child_tid = tidptr;
1631
b488893a 1632 return task_pid_vnr(current);
1da177e4
LT
1633}
1634
a39bc516 1635static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1636{
1d615482 1637 raw_spin_lock_init(&p->pi_lock);
e29e175b 1638#ifdef CONFIG_RT_MUTEXES
a23ba907 1639 p->pi_waiters = RB_ROOT_CACHED;
e96a7705 1640 p->pi_top_task = NULL;
23f78d4a 1641 p->pi_blocked_on = NULL;
23f78d4a
IM
1642#endif
1643}
1644
2c470475
EB
1645static inline void init_task_pid_links(struct task_struct *task)
1646{
1647 enum pid_type type;
1648
1649 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1650 INIT_HLIST_NODE(&task->pid_links[type]);
1651 }
1652}
1653
81907739
ON
1654static inline void
1655init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1656{
2c470475
EB
1657 if (type == PIDTYPE_PID)
1658 task->thread_pid = pid;
1659 else
1660 task->signal->pids[type] = pid;
81907739
ON
1661}
1662
6bfbaa51
IM
1663static inline void rcu_copy_process(struct task_struct *p)
1664{
1665#ifdef CONFIG_PREEMPT_RCU
1666 p->rcu_read_lock_nesting = 0;
1667 p->rcu_read_unlock_special.s = 0;
1668 p->rcu_blocked_node = NULL;
1669 INIT_LIST_HEAD(&p->rcu_node_entry);
1670#endif /* #ifdef CONFIG_PREEMPT_RCU */
1671#ifdef CONFIG_TASKS_RCU
1672 p->rcu_tasks_holdout = false;
1673 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1674 p->rcu_tasks_idle_cpu = -1;
1675#endif /* #ifdef CONFIG_TASKS_RCU */
d5f177d3
PM
1676#ifdef CONFIG_TASKS_TRACE_RCU
1677 p->trc_reader_nesting = 0;
276c4104 1678 p->trc_reader_special.s = 0;
d5f177d3
PM
1679 INIT_LIST_HEAD(&p->trc_holdout_list);
1680#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
6bfbaa51
IM
1681}
1682
3695eae5
CB
1683struct pid *pidfd_pid(const struct file *file)
1684{
1685 if (file->f_op == &pidfd_fops)
1686 return file->private_data;
1687
1688 return ERR_PTR(-EBADF);
1689}
1690
b3e58382
CB
1691static int pidfd_release(struct inode *inode, struct file *file)
1692{
1693 struct pid *pid = file->private_data;
1694
1695 file->private_data = NULL;
1696 put_pid(pid);
1697 return 0;
1698}
1699
1700#ifdef CONFIG_PROC_FS
15d42eb2
CK
1701/**
1702 * pidfd_show_fdinfo - print information about a pidfd
1703 * @m: proc fdinfo file
1704 * @f: file referencing a pidfd
1705 *
1706 * Pid:
1707 * This function will print the pid that a given pidfd refers to in the
1708 * pid namespace of the procfs instance.
1709 * If the pid namespace of the process is not a descendant of the pid
1710 * namespace of the procfs instance 0 will be shown as its pid. This is
1711 * similar to calling getppid() on a process whose parent is outside of
1712 * its pid namespace.
1713 *
1714 * NSpid:
1715 * If pid namespaces are supported then this function will also print
1716 * the pid of a given pidfd refers to for all descendant pid namespaces
1717 * starting from the current pid namespace of the instance, i.e. the
1718 * Pid field and the first entry in the NSpid field will be identical.
1719 * If the pid namespace of the process is not a descendant of the pid
1720 * namespace of the procfs instance 0 will be shown as its first NSpid
1721 * entry and no others will be shown.
1722 * Note that this differs from the Pid and NSpid fields in
1723 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1724 * the pid namespace of the procfs instance. The difference becomes
1725 * obvious when sending around a pidfd between pid namespaces from a
1726 * different branch of the tree, i.e. where no ancestoral relation is
1727 * present between the pid namespaces:
1728 * - create two new pid namespaces ns1 and ns2 in the initial pid
1729 * namespace (also take care to create new mount namespaces in the
1730 * new pid namespace and mount procfs)
1731 * - create a process with a pidfd in ns1
1732 * - send pidfd from ns1 to ns2
1733 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1734 * have exactly one entry, which is 0
1735 */
b3e58382
CB
1736static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1737{
b3e58382 1738 struct pid *pid = f->private_data;
3d6d8da4
CB
1739 struct pid_namespace *ns;
1740 pid_t nr = -1;
15d42eb2 1741
3d6d8da4 1742 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
9d78edea 1743 ns = proc_pid_ns(file_inode(m->file)->i_sb);
3d6d8da4
CB
1744 nr = pid_nr_ns(pid, ns);
1745 }
1746
1747 seq_put_decimal_ll(m, "Pid:\t", nr);
b3e58382 1748
15d42eb2 1749#ifdef CONFIG_PID_NS
3d6d8da4
CB
1750 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1751 if (nr > 0) {
15d42eb2 1752 int i;
b3e58382 1753
15d42eb2
CK
1754 /* If nr is non-zero it means that 'pid' is valid and that
1755 * ns, i.e. the pid namespace associated with the procfs
1756 * instance, is in the pid namespace hierarchy of pid.
1757 * Start at one below the already printed level.
1758 */
1759 for (i = ns->level + 1; i <= pid->level; i++)
3d6d8da4 1760 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
15d42eb2
CK
1761 }
1762#endif
b3e58382
CB
1763 seq_putc(m, '\n');
1764}
1765#endif
1766
b53b0b9d
JFG
1767/*
1768 * Poll support for process exit notification.
1769 */
9e77716a 1770static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
b53b0b9d 1771{
b53b0b9d 1772 struct pid *pid = file->private_data;
9e77716a 1773 __poll_t poll_flags = 0;
b53b0b9d
JFG
1774
1775 poll_wait(file, &pid->wait_pidfd, pts);
1776
b53b0b9d
JFG
1777 /*
1778 * Inform pollers only when the whole thread group exits.
1779 * If the thread group leader exits before all other threads in the
1780 * group, then poll(2) should block, similar to the wait(2) family.
1781 */
38fd525a 1782 if (thread_group_exited(pid))
9e77716a 1783 poll_flags = EPOLLIN | EPOLLRDNORM;
b53b0b9d
JFG
1784
1785 return poll_flags;
1786}
1787
b3e58382
CB
1788const struct file_operations pidfd_fops = {
1789 .release = pidfd_release,
b53b0b9d 1790 .poll = pidfd_poll,
b3e58382
CB
1791#ifdef CONFIG_PROC_FS
1792 .show_fdinfo = pidfd_show_fdinfo,
1793#endif
1794};
1795
c3f3ce04
AA
1796static void __delayed_free_task(struct rcu_head *rhp)
1797{
1798 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1799
1800 free_task(tsk);
1801}
1802
1803static __always_inline void delayed_free_task(struct task_struct *tsk)
1804{
1805 if (IS_ENABLED(CONFIG_MEMCG))
1806 call_rcu(&tsk->rcu, __delayed_free_task);
1807 else
1808 free_task(tsk);
1809}
1810
1da177e4
LT
1811/*
1812 * This creates a new process as a copy of the old one,
1813 * but does not actually start it yet.
1814 *
1815 * It copies the registers, and all the appropriate
1816 * parts of the process environment (as per the clone
1817 * flags). The actual kick-off is left to the caller.
1818 */
0766f788 1819static __latent_entropy struct task_struct *copy_process(
09a05394 1820 struct pid *pid,
3033f14a 1821 int trace,
7f192e3c
CB
1822 int node,
1823 struct kernel_clone_args *args)
1da177e4 1824{
b3e58382 1825 int pidfd = -1, retval;
a24efe62 1826 struct task_struct *p;
c3ad2c3b 1827 struct multiprocess_signals delayed;
6fd2fe49 1828 struct file *pidfile = NULL;
7f192e3c 1829 u64 clone_flags = args->flags;
769071ac 1830 struct nsproxy *nsp = current->nsproxy;
1da177e4 1831
667b6094
MPS
1832 /*
1833 * Don't allow sharing the root directory with processes in a different
1834 * namespace
1835 */
1da177e4
LT
1836 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1837 return ERR_PTR(-EINVAL);
1838
e66eded8
EB
1839 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1840 return ERR_PTR(-EINVAL);
1841
1da177e4
LT
1842 /*
1843 * Thread groups must share signals as well, and detached threads
1844 * can only be started up within the thread group.
1845 */
1846 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1847 return ERR_PTR(-EINVAL);
1848
1849 /*
1850 * Shared signal handlers imply shared VM. By way of the above,
1851 * thread groups also imply shared VM. Blocking this case allows
1852 * for various simplifications in other code.
1853 */
1854 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1855 return ERR_PTR(-EINVAL);
1856
123be07b
SB
1857 /*
1858 * Siblings of global init remain as zombies on exit since they are
1859 * not reaped by their parent (swapper). To solve this and to avoid
1860 * multi-rooted process trees, prevent global and container-inits
1861 * from creating siblings.
1862 */
1863 if ((clone_flags & CLONE_PARENT) &&
1864 current->signal->flags & SIGNAL_UNKILLABLE)
1865 return ERR_PTR(-EINVAL);
1866
8382fcac 1867 /*
40a0d32d 1868 * If the new process will be in a different pid or user namespace
faf00da5 1869 * do not allow it to share a thread group with the forking task.
8382fcac 1870 */
faf00da5 1871 if (clone_flags & CLONE_THREAD) {
40a0d32d 1872 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
769071ac
AV
1873 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1874 return ERR_PTR(-EINVAL);
1875 }
1876
1877 /*
1878 * If the new process will be in a different time namespace
1879 * do not allow it to share VM or a thread group with the forking task.
1880 */
1881 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1882 if (nsp->time_ns != nsp->time_ns_for_children)
40a0d32d
ON
1883 return ERR_PTR(-EINVAL);
1884 }
8382fcac 1885
b3e58382 1886 if (clone_flags & CLONE_PIDFD) {
b3e58382 1887 /*
b3e58382
CB
1888 * - CLONE_DETACHED is blocked so that we can potentially
1889 * reuse it later for CLONE_PIDFD.
1890 * - CLONE_THREAD is blocked until someone really needs it.
1891 */
7f192e3c 1892 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
b3e58382 1893 return ERR_PTR(-EINVAL);
b3e58382
CB
1894 }
1895
c3ad2c3b
EB
1896 /*
1897 * Force any signals received before this point to be delivered
1898 * before the fork happens. Collect up signals sent to multiple
1899 * processes that happen during the fork and delay them so that
1900 * they appear to happen after the fork.
1901 */
1902 sigemptyset(&delayed.signal);
1903 INIT_HLIST_NODE(&delayed.node);
1904
1905 spin_lock_irq(&current->sighand->siglock);
1906 if (!(clone_flags & CLONE_THREAD))
1907 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1908 recalc_sigpending();
1909 spin_unlock_irq(&current->sighand->siglock);
1910 retval = -ERESTARTNOINTR;
1911 if (signal_pending(current))
1912 goto fork_out;
1913
1da177e4 1914 retval = -ENOMEM;
725fc629 1915 p = dup_task_struct(current, node);
1da177e4
LT
1916 if (!p)
1917 goto fork_out;
1918
4d6501dc
VN
1919 /*
1920 * This _must_ happen before we call free_task(), i.e. before we jump
1921 * to any of the bad_fork_* labels. This is to avoid freeing
1922 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1923 * kernel threads (PF_KTHREAD).
1924 */
7f192e3c 1925 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
4d6501dc
VN
1926 /*
1927 * Clear TID on mm_release()?
1928 */
7f192e3c 1929 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
4d6501dc 1930
f7e8b616
SR
1931 ftrace_graph_init_task(p);
1932
bea493a0
PZ
1933 rt_mutex_init_task(p);
1934
a21ee605 1935 lockdep_assert_irqs_enabled();
d12c1a37 1936#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
1937 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1938#endif
1da177e4 1939 retval = -EAGAIN;
3b11a1de 1940 if (atomic_read(&p->real_cred->user->processes) >=
78d7d407 1941 task_rlimit(p, RLIMIT_NPROC)) {
b57922b6
EP
1942 if (p->real_cred->user != INIT_USER &&
1943 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1da177e4
LT
1944 goto bad_fork_free;
1945 }
72fa5997 1946 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 1947
f1752eec
DH
1948 retval = copy_creds(p, clone_flags);
1949 if (retval < 0)
1950 goto bad_fork_free;
1da177e4
LT
1951
1952 /*
1953 * If multiple threads are within copy_process(), then this check
1954 * triggers too late. This doesn't hurt, the check is only there
1955 * to stop root fork bombs.
1956 */
04ec93fe 1957 retval = -EAGAIN;
c17d1a3a 1958 if (data_race(nr_threads >= max_threads))
1da177e4
LT
1959 goto bad_fork_cleanup_count;
1960
ca74e92b 1961 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
c1de45ca 1962 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
514ddb44 1963 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
1964 INIT_LIST_HEAD(&p->children);
1965 INIT_LIST_HEAD(&p->sibling);
f41d911f 1966 rcu_copy_process(p);
1da177e4
LT
1967 p->vfork_done = NULL;
1968 spin_lock_init(&p->alloc_lock);
1da177e4 1969
1da177e4
LT
1970 init_sigpending(&p->pending);
1971
64861634 1972 p->utime = p->stime = p->gtime = 0;
40565b5a 1973#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 1974 p->utimescaled = p->stimescaled = 0;
40565b5a 1975#endif
9d7fb042
PZ
1976 prev_cputime_init(&p->prev_cputime);
1977
6a61671b 1978#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
1979 seqcount_init(&p->vtime.seqcount);
1980 p->vtime.starttime = 0;
1981 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
1982#endif
1983
a3a2e76c
KH
1984#if defined(SPLIT_RSS_COUNTING)
1985 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1986#endif
172ba844 1987
6976675d
AV
1988 p->default_timer_slack_ns = current->timer_slack_ns;
1989
eb414681
JW
1990#ifdef CONFIG_PSI
1991 p->psi_flags = 0;
1992#endif
1993
5995477a 1994 task_io_accounting_init(&p->ioac);
1da177e4
LT
1995 acct_clear_integrals(p);
1996
3a245c0f 1997 posix_cputimers_init(&p->posix_cputimers);
1da177e4 1998
1da177e4 1999 p->io_context = NULL;
c0b0ae8a 2000 audit_set_context(p, NULL);
b4f48b63 2001 cgroup_fork(p);
1da177e4 2002#ifdef CONFIG_NUMA
846a16bf 2003 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
2004 if (IS_ERR(p->mempolicy)) {
2005 retval = PTR_ERR(p->mempolicy);
2006 p->mempolicy = NULL;
e8604cb4 2007 goto bad_fork_cleanup_threadgroup_lock;
fb0a685c 2008 }
1da177e4 2009#endif
778d3b0f
MH
2010#ifdef CONFIG_CPUSETS
2011 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2012 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
cc9a6c87 2013 seqcount_init(&p->mems_allowed_seq);
778d3b0f 2014#endif
de30a2b3 2015#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c
ME
2016 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2017 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2018 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2019 p->softirqs_enabled = 1;
2020 p->softirq_context = 0;
de30a2b3 2021#endif
8bcbde54
DH
2022
2023 p->pagefault_disabled = 0;
2024
fbb9ce95 2025#ifdef CONFIG_LOCKDEP
b09be676 2026 lockdep_init_task(p);
fbb9ce95 2027#endif
1da177e4 2028
408894ee
IM
2029#ifdef CONFIG_DEBUG_MUTEXES
2030 p->blocked_on = NULL; /* not blocked yet */
2031#endif
cafe5635
KO
2032#ifdef CONFIG_BCACHE
2033 p->sequential_io = 0;
2034 p->sequential_io_avg = 0;
2035#endif
0f481406 2036
3c90e6e9 2037 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
2038 retval = sched_fork(clone_flags, p);
2039 if (retval)
2040 goto bad_fork_cleanup_policy;
6ab423e0 2041
cdd6c482 2042 retval = perf_event_init_task(p);
6ab423e0
PZ
2043 if (retval)
2044 goto bad_fork_cleanup_policy;
fb0a685c
DRO
2045 retval = audit_alloc(p);
2046 if (retval)
6c72e350 2047 goto bad_fork_cleanup_perf;
1da177e4 2048 /* copy all the process information */
ab602f79 2049 shm_init_task(p);
e4e55b47 2050 retval = security_task_alloc(p, clone_flags);
fb0a685c 2051 if (retval)
1da177e4 2052 goto bad_fork_cleanup_audit;
e4e55b47
TH
2053 retval = copy_semundo(clone_flags, p);
2054 if (retval)
2055 goto bad_fork_cleanup_security;
fb0a685c
DRO
2056 retval = copy_files(clone_flags, p);
2057 if (retval)
1da177e4 2058 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
2059 retval = copy_fs(clone_flags, p);
2060 if (retval)
1da177e4 2061 goto bad_fork_cleanup_files;
fb0a685c
DRO
2062 retval = copy_sighand(clone_flags, p);
2063 if (retval)
1da177e4 2064 goto bad_fork_cleanup_fs;
fb0a685c
DRO
2065 retval = copy_signal(clone_flags, p);
2066 if (retval)
1da177e4 2067 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
2068 retval = copy_mm(clone_flags, p);
2069 if (retval)
1da177e4 2070 goto bad_fork_cleanup_signal;
fb0a685c
DRO
2071 retval = copy_namespaces(clone_flags, p);
2072 if (retval)
d84f4f99 2073 goto bad_fork_cleanup_mm;
fb0a685c
DRO
2074 retval = copy_io(clone_flags, p);
2075 if (retval)
fd0928df 2076 goto bad_fork_cleanup_namespaces;
714acdbd 2077 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
1da177e4 2078 if (retval)
fd0928df 2079 goto bad_fork_cleanup_io;
1da177e4 2080
afaef01c
AP
2081 stackleak_task_init(p);
2082
425fb2b4 2083 if (pid != &init_struct_pid) {
49cb2fc4
AR
2084 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2085 args->set_tid_size);
35f71bc0
MH
2086 if (IS_ERR(pid)) {
2087 retval = PTR_ERR(pid);
0740aa5f 2088 goto bad_fork_cleanup_thread;
35f71bc0 2089 }
425fb2b4
PE
2090 }
2091
b3e58382
CB
2092 /*
2093 * This has to happen after we've potentially unshared the file
2094 * descriptor table (so that the pidfd doesn't leak into the child
2095 * if the fd table isn't shared).
2096 */
2097 if (clone_flags & CLONE_PIDFD) {
6fd2fe49 2098 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
b3e58382
CB
2099 if (retval < 0)
2100 goto bad_fork_free_pid;
2101
2102 pidfd = retval;
6fd2fe49
AV
2103
2104 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2105 O_RDWR | O_CLOEXEC);
2106 if (IS_ERR(pidfile)) {
2107 put_unused_fd(pidfd);
28dd29c0 2108 retval = PTR_ERR(pidfile);
6fd2fe49
AV
2109 goto bad_fork_free_pid;
2110 }
2111 get_pid(pid); /* held by pidfile now */
2112
7f192e3c 2113 retval = put_user(pidfd, args->pidfd);
b3e58382
CB
2114 if (retval)
2115 goto bad_fork_put_pidfd;
2116 }
2117
73c10101
JA
2118#ifdef CONFIG_BLOCK
2119 p->plug = NULL;
2120#endif
ba31c1a4
TG
2121 futex_init_task(p);
2122
f9a3879a
GM
2123 /*
2124 * sigaltstack should be cleared when sharing the same VM
2125 */
2126 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 2127 sas_ss_reset(p);
f9a3879a 2128
1da177e4 2129 /*
6580807d
ON
2130 * Syscall tracing and stepping should be turned off in the
2131 * child regardless of CLONE_PTRACE.
1da177e4 2132 */
6580807d 2133 user_disable_single_step(p);
1da177e4 2134 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
ed75e8d5
LV
2135#ifdef TIF_SYSCALL_EMU
2136 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2137#endif
e02c9b0d 2138 clear_tsk_latency_tracing(p);
1da177e4 2139
1da177e4 2140 /* ok, now we should be set up.. */
18c830df
ON
2141 p->pid = pid_nr(pid);
2142 if (clone_flags & CLONE_THREAD) {
5f8aadd8 2143 p->exit_signal = -1;
18c830df
ON
2144 p->group_leader = current->group_leader;
2145 p->tgid = current->tgid;
2146 } else {
2147 if (clone_flags & CLONE_PARENT)
2148 p->exit_signal = current->group_leader->exit_signal;
2149 else
7f192e3c 2150 p->exit_signal = args->exit_signal;
18c830df
ON
2151 p->group_leader = p;
2152 p->tgid = p->pid;
2153 }
5f8aadd8 2154
9d823e8f
WF
2155 p->nr_dirtied = 0;
2156 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 2157 p->dirty_paused_when = 0;
9d823e8f 2158
bb8cbbfe 2159 p->pdeath_signal = 0;
47e65328 2160 INIT_LIST_HEAD(&p->thread_group);
158e1645 2161 p->task_works = NULL;
1da177e4 2162
7e47682e
AS
2163 /*
2164 * Ensure that the cgroup subsystem policies allow the new process to be
2165 * forked. It should be noted the the new process's css_set can be changed
2166 * between here and cgroup_post_fork() if an organisation operation is in
2167 * progress.
2168 */
ef2c41cf 2169 retval = cgroup_can_fork(p, args);
7e47682e 2170 if (retval)
5a5cf5cb 2171 goto bad_fork_put_pidfd;
7e47682e 2172
7b558513
DH
2173 /*
2174 * From this point on we must avoid any synchronous user-space
2175 * communication until we take the tasklist-lock. In particular, we do
2176 * not want user-space to be able to predict the process start-time by
2177 * stalling fork(2) after we recorded the start_time but before it is
2178 * visible to the system.
2179 */
2180
2181 p->start_time = ktime_get_ns();
cf25e24d 2182 p->start_boottime = ktime_get_boottime_ns();
7b558513 2183
18c830df
ON
2184 /*
2185 * Make it visible to the rest of the system, but dont wake it up yet.
2186 * Need tasklist lock for parent etc handling!
2187 */
1da177e4
LT
2188 write_lock_irq(&tasklist_lock);
2189
1da177e4 2190 /* CLONE_PARENT re-uses the old parent */
2d5516cb 2191 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 2192 p->real_parent = current->real_parent;
2d5516cb
ON
2193 p->parent_exec_id = current->parent_exec_id;
2194 } else {
1da177e4 2195 p->real_parent = current;
2d5516cb
ON
2196 p->parent_exec_id = current->self_exec_id;
2197 }
1da177e4 2198
d83a7cb3
JP
2199 klp_copy_process(p);
2200
3f17da69 2201 spin_lock(&current->sighand->siglock);
4a2c7a78 2202
dbd95212
KC
2203 /*
2204 * Copy seccomp details explicitly here, in case they were changed
2205 * before holding sighand lock.
2206 */
2207 copy_seccomp(p);
2208
d7822b1e
MD
2209 rseq_fork(p, clone_flags);
2210
4ca1d3ee 2211 /* Don't start children in a dying pid namespace */
e8cfbc24 2212 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
3fd37226
KT
2213 retval = -ENOMEM;
2214 goto bad_fork_cancel_cgroup;
2215 }
4a2c7a78 2216
7673bf55
EB
2217 /* Let kill terminate clone/fork in the middle */
2218 if (fatal_signal_pending(current)) {
2219 retval = -EINTR;
2220 goto bad_fork_cancel_cgroup;
2221 }
2222
6fd2fe49
AV
2223 /* past the last point of failure */
2224 if (pidfile)
2225 fd_install(pidfd, pidfile);
4a2c7a78 2226
2c470475 2227 init_task_pid_links(p);
73b9ebfe 2228 if (likely(p->pid)) {
4b9d33e6 2229 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 2230
81907739 2231 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 2232 if (thread_group_leader(p)) {
6883f81a 2233 init_task_pid(p, PIDTYPE_TGID, pid);
81907739
ON
2234 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2235 init_task_pid(p, PIDTYPE_SID, task_session(current));
2236
1c4042c2 2237 if (is_child_reaper(pid)) {
17cf22c3 2238 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
2239 p->signal->flags |= SIGNAL_UNKILLABLE;
2240 }
c3ad2c3b 2241 p->signal->shared_pending.signal = delayed.signal;
9c9f4ded 2242 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
2243 /*
2244 * Inherit has_child_subreaper flag under the same
2245 * tasklist_lock with adding child to the process tree
2246 * for propagate_has_child_subreaper optimization.
2247 */
2248 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2249 p->real_parent->signal->is_child_subreaper;
9cd80bbb 2250 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 2251 list_add_tail_rcu(&p->tasks, &init_task.tasks);
6883f81a 2252 attach_pid(p, PIDTYPE_TGID);
81907739
ON
2253 attach_pid(p, PIDTYPE_PGID);
2254 attach_pid(p, PIDTYPE_SID);
909ea964 2255 __this_cpu_inc(process_counts);
80628ca0
ON
2256 } else {
2257 current->signal->nr_threads++;
2258 atomic_inc(&current->signal->live);
60d4de3f 2259 refcount_inc(&current->signal->sigcnt);
924de3b8 2260 task_join_group_stop(p);
80628ca0
ON
2261 list_add_tail_rcu(&p->thread_group,
2262 &p->group_leader->thread_group);
0c740d0a
ON
2263 list_add_tail_rcu(&p->thread_node,
2264 &p->signal->thread_head);
73b9ebfe 2265 }
81907739 2266 attach_pid(p, PIDTYPE_PID);
73b9ebfe 2267 nr_threads++;
1da177e4 2268 }
1da177e4 2269 total_forks++;
c3ad2c3b 2270 hlist_del_init(&delayed.node);
3f17da69 2271 spin_unlock(&current->sighand->siglock);
4af4206b 2272 syscall_tracepoint_update(p);
1da177e4 2273 write_unlock_irq(&tasklist_lock);
4af4206b 2274
c13cf856 2275 proc_fork_connector(p);
13685c4a 2276 sched_post_fork(p);
ef2c41cf 2277 cgroup_post_fork(p, args);
cdd6c482 2278 perf_event_fork(p);
43d2b113
KH
2279
2280 trace_task_newtask(p, clone_flags);
3ab67966 2281 uprobe_copy_process(p, clone_flags);
43d2b113 2282
1da177e4
LT
2283 return p;
2284
7e47682e 2285bad_fork_cancel_cgroup:
3fd37226
KT
2286 spin_unlock(&current->sighand->siglock);
2287 write_unlock_irq(&tasklist_lock);
ef2c41cf 2288 cgroup_cancel_fork(p, args);
b3e58382 2289bad_fork_put_pidfd:
6fd2fe49
AV
2290 if (clone_flags & CLONE_PIDFD) {
2291 fput(pidfile);
2292 put_unused_fd(pidfd);
2293 }
425fb2b4
PE
2294bad_fork_free_pid:
2295 if (pid != &init_struct_pid)
2296 free_pid(pid);
0740aa5f
JS
2297bad_fork_cleanup_thread:
2298 exit_thread(p);
fd0928df 2299bad_fork_cleanup_io:
b69f2292
LR
2300 if (p->io_context)
2301 exit_io_context(p);
ab516013 2302bad_fork_cleanup_namespaces:
444f378b 2303 exit_task_namespaces(p);
1da177e4 2304bad_fork_cleanup_mm:
c3f3ce04
AA
2305 if (p->mm) {
2306 mm_clear_owner(p->mm, p);
1da177e4 2307 mmput(p->mm);
c3f3ce04 2308 }
1da177e4 2309bad_fork_cleanup_signal:
4ab6c083 2310 if (!(clone_flags & CLONE_THREAD))
1c5354de 2311 free_signal_struct(p->signal);
1da177e4 2312bad_fork_cleanup_sighand:
a7e5328a 2313 __cleanup_sighand(p->sighand);
1da177e4
LT
2314bad_fork_cleanup_fs:
2315 exit_fs(p); /* blocking */
2316bad_fork_cleanup_files:
2317 exit_files(p); /* blocking */
2318bad_fork_cleanup_semundo:
2319 exit_sem(p);
e4e55b47
TH
2320bad_fork_cleanup_security:
2321 security_task_free(p);
1da177e4
LT
2322bad_fork_cleanup_audit:
2323 audit_free(p);
6c72e350 2324bad_fork_cleanup_perf:
cdd6c482 2325 perf_event_free_task(p);
6c72e350 2326bad_fork_cleanup_policy:
b09be676 2327 lockdep_free_task(p);
1da177e4 2328#ifdef CONFIG_NUMA
f0be3d32 2329 mpol_put(p->mempolicy);
e8604cb4 2330bad_fork_cleanup_threadgroup_lock:
1da177e4 2331#endif
35df17c5 2332 delayacct_tsk_free(p);
1da177e4 2333bad_fork_cleanup_count:
d84f4f99 2334 atomic_dec(&p->cred->user->processes);
e0e81739 2335 exit_creds(p);
1da177e4 2336bad_fork_free:
405c0759 2337 p->state = TASK_DEAD;
68f24b08 2338 put_task_stack(p);
c3f3ce04 2339 delayed_free_task(p);
fe7d37d1 2340fork_out:
c3ad2c3b
EB
2341 spin_lock_irq(&current->sighand->siglock);
2342 hlist_del_init(&delayed.node);
2343 spin_unlock_irq(&current->sighand->siglock);
fe7d37d1 2344 return ERR_PTR(retval);
1da177e4
LT
2345}
2346
2c470475 2347static inline void init_idle_pids(struct task_struct *idle)
f106eee1
ON
2348{
2349 enum pid_type type;
2350
2351 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2c470475
EB
2352 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2353 init_task_pid(idle, type, &init_struct_pid);
f106eee1
ON
2354 }
2355}
2356
0db0628d 2357struct task_struct *fork_idle(int cpu)
1da177e4 2358{
36c8b586 2359 struct task_struct *task;
7f192e3c
CB
2360 struct kernel_clone_args args = {
2361 .flags = CLONE_VM,
2362 };
2363
2364 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
f106eee1 2365 if (!IS_ERR(task)) {
2c470475 2366 init_idle_pids(task);
753ca4f3 2367 init_idle(task, cpu);
f106eee1 2368 }
73b9ebfe 2369
1da177e4
LT
2370 return task;
2371}
2372
13585fa0
NA
2373struct mm_struct *copy_init_mm(void)
2374{
2375 return dup_mm(NULL, &init_mm);
2376}
2377
1da177e4
LT
2378/*
2379 * Ok, this is the main fork-routine.
2380 *
2381 * It copies the process, and if successful kick-starts
2382 * it and waits for it to finish using the VM if required.
a0eb9abd
ES
2383 *
2384 * args->exit_signal is expected to be checked for sanity by the caller.
1da177e4 2385 */
7f192e3c 2386long _do_fork(struct kernel_clone_args *args)
1da177e4 2387{
7f192e3c 2388 u64 clone_flags = args->flags;
9f5325aa
MPS
2389 struct completion vfork;
2390 struct pid *pid;
1da177e4
LT
2391 struct task_struct *p;
2392 int trace = 0;
92476d7f 2393 long nr;
1da177e4 2394
3af8588c
CB
2395 /*
2396 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2397 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2398 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2399 * field in struct clone_args and it still doesn't make sense to have
2400 * them both point at the same memory location. Performing this check
2401 * here has the advantage that we don't need to have a separate helper
2402 * to check for legacy clone().
2403 */
2404 if ((args->flags & CLONE_PIDFD) &&
2405 (args->flags & CLONE_PARENT_SETTID) &&
2406 (args->pidfd == args->parent_tid))
2407 return -EINVAL;
2408
09a05394 2409 /*
4b9d33e6
TH
2410 * Determine whether and which event to report to ptracer. When
2411 * called from kernel_thread or CLONE_UNTRACED is explicitly
2412 * requested, no event is reported; otherwise, report if the event
2413 * for the type of forking is enabled.
09a05394 2414 */
e80d6661 2415 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2416 if (clone_flags & CLONE_VFORK)
2417 trace = PTRACE_EVENT_VFORK;
7f192e3c 2418 else if (args->exit_signal != SIGCHLD)
4b9d33e6
TH
2419 trace = PTRACE_EVENT_CLONE;
2420 else
2421 trace = PTRACE_EVENT_FORK;
2422
2423 if (likely(!ptrace_event_enabled(current, trace)))
2424 trace = 0;
2425 }
1da177e4 2426
7f192e3c 2427 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
38addce8 2428 add_latent_entropy();
9f5325aa
MPS
2429
2430 if (IS_ERR(p))
2431 return PTR_ERR(p);
2432
1da177e4
LT
2433 /*
2434 * Do this prior waking up the new thread - the thread pointer
2435 * might get invalid after that point, if the thread exits quickly.
2436 */
9f5325aa 2437 trace_sched_process_fork(current, p);
0a16b607 2438
9f5325aa
MPS
2439 pid = get_task_pid(p, PIDTYPE_PID);
2440 nr = pid_vnr(pid);
30e49c26 2441
9f5325aa 2442 if (clone_flags & CLONE_PARENT_SETTID)
7f192e3c 2443 put_user(nr, args->parent_tid);
a6f5e063 2444
9f5325aa
MPS
2445 if (clone_flags & CLONE_VFORK) {
2446 p->vfork_done = &vfork;
2447 init_completion(&vfork);
2448 get_task_struct(p);
2449 }
1da177e4 2450
9f5325aa 2451 wake_up_new_task(p);
09a05394 2452
9f5325aa
MPS
2453 /* forking complete and child started to run, tell ptracer */
2454 if (unlikely(trace))
2455 ptrace_event_pid(trace, pid);
4e52365f 2456
9f5325aa
MPS
2457 if (clone_flags & CLONE_VFORK) {
2458 if (!wait_for_vfork_done(p, &vfork))
2459 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2460 }
9f5325aa
MPS
2461
2462 put_pid(pid);
92476d7f 2463 return nr;
1da177e4
LT
2464}
2465
2aa3a7f8
AV
2466/*
2467 * Create a kernel thread.
2468 */
2469pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2470{
7f192e3c 2471 struct kernel_clone_args args = {
3f2c788a
CB
2472 .flags = ((lower_32_bits(flags) | CLONE_VM |
2473 CLONE_UNTRACED) & ~CSIGNAL),
2474 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
7f192e3c
CB
2475 .stack = (unsigned long)fn,
2476 .stack_size = (unsigned long)arg,
2477 };
2478
2479 return _do_fork(&args);
2aa3a7f8 2480}
2aa3a7f8 2481
d2125043
AV
2482#ifdef __ARCH_WANT_SYS_FORK
2483SYSCALL_DEFINE0(fork)
2484{
2485#ifdef CONFIG_MMU
7f192e3c
CB
2486 struct kernel_clone_args args = {
2487 .exit_signal = SIGCHLD,
2488 };
2489
2490 return _do_fork(&args);
d2125043
AV
2491#else
2492 /* can not support in nommu mode */
5d59e182 2493 return -EINVAL;
d2125043
AV
2494#endif
2495}
2496#endif
2497
2498#ifdef __ARCH_WANT_SYS_VFORK
2499SYSCALL_DEFINE0(vfork)
2500{
7f192e3c
CB
2501 struct kernel_clone_args args = {
2502 .flags = CLONE_VFORK | CLONE_VM,
2503 .exit_signal = SIGCHLD,
2504 };
2505
2506 return _do_fork(&args);
d2125043
AV
2507}
2508#endif
2509
2510#ifdef __ARCH_WANT_SYS_CLONE
2511#ifdef CONFIG_CLONE_BACKWARDS
2512SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2513 int __user *, parent_tidptr,
3033f14a 2514 unsigned long, tls,
d2125043
AV
2515 int __user *, child_tidptr)
2516#elif defined(CONFIG_CLONE_BACKWARDS2)
2517SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2518 int __user *, parent_tidptr,
2519 int __user *, child_tidptr,
3033f14a 2520 unsigned long, tls)
dfa9771a
MS
2521#elif defined(CONFIG_CLONE_BACKWARDS3)
2522SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2523 int, stack_size,
2524 int __user *, parent_tidptr,
2525 int __user *, child_tidptr,
3033f14a 2526 unsigned long, tls)
d2125043
AV
2527#else
2528SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2529 int __user *, parent_tidptr,
2530 int __user *, child_tidptr,
3033f14a 2531 unsigned long, tls)
d2125043
AV
2532#endif
2533{
7f192e3c 2534 struct kernel_clone_args args = {
3f2c788a 2535 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
7f192e3c
CB
2536 .pidfd = parent_tidptr,
2537 .child_tid = child_tidptr,
2538 .parent_tid = parent_tidptr,
3f2c788a 2539 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
7f192e3c
CB
2540 .stack = newsp,
2541 .tls = tls,
2542 };
2543
7f192e3c
CB
2544 return _do_fork(&args);
2545}
d68dbb0c 2546#endif
7f192e3c 2547
d68dbb0c 2548#ifdef __ARCH_WANT_SYS_CLONE3
dd499f7a 2549
7f192e3c
CB
2550noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2551 struct clone_args __user *uargs,
f14c234b 2552 size_t usize)
7f192e3c 2553{
f14c234b 2554 int err;
7f192e3c 2555 struct clone_args args;
49cb2fc4 2556 pid_t *kset_tid = kargs->set_tid;
7f192e3c 2557
a966dcfe
ES
2558 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2559 CLONE_ARGS_SIZE_VER0);
2560 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2561 CLONE_ARGS_SIZE_VER1);
2562 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2563 CLONE_ARGS_SIZE_VER2);
2564 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2565
f14c234b 2566 if (unlikely(usize > PAGE_SIZE))
7f192e3c 2567 return -E2BIG;
f14c234b 2568 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
7f192e3c
CB
2569 return -EINVAL;
2570
f14c234b
AS
2571 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2572 if (err)
2573 return err;
7f192e3c 2574
49cb2fc4
AR
2575 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2576 return -EINVAL;
2577
2578 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2579 return -EINVAL;
2580
2581 if (unlikely(args.set_tid && args.set_tid_size == 0))
2582 return -EINVAL;
2583
a0eb9abd
ES
2584 /*
2585 * Verify that higher 32bits of exit_signal are unset and that
2586 * it is a valid signal
2587 */
2588 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2589 !valid_signal(args.exit_signal)))
2590 return -EINVAL;
2591
62173872
ES
2592 if ((args.flags & CLONE_INTO_CGROUP) &&
2593 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
ef2c41cf
CB
2594 return -EINVAL;
2595
7f192e3c
CB
2596 *kargs = (struct kernel_clone_args){
2597 .flags = args.flags,
2598 .pidfd = u64_to_user_ptr(args.pidfd),
2599 .child_tid = u64_to_user_ptr(args.child_tid),
2600 .parent_tid = u64_to_user_ptr(args.parent_tid),
2601 .exit_signal = args.exit_signal,
2602 .stack = args.stack,
2603 .stack_size = args.stack_size,
2604 .tls = args.tls,
49cb2fc4 2605 .set_tid_size = args.set_tid_size,
ef2c41cf 2606 .cgroup = args.cgroup,
7f192e3c
CB
2607 };
2608
49cb2fc4
AR
2609 if (args.set_tid &&
2610 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2611 (kargs->set_tid_size * sizeof(pid_t))))
2612 return -EFAULT;
2613
2614 kargs->set_tid = kset_tid;
2615
7f192e3c
CB
2616 return 0;
2617}
2618
fa729c4d
CB
2619/**
2620 * clone3_stack_valid - check and prepare stack
2621 * @kargs: kernel clone args
2622 *
2623 * Verify that the stack arguments userspace gave us are sane.
2624 * In addition, set the stack direction for userspace since it's easy for us to
2625 * determine.
2626 */
2627static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2628{
2629 if (kargs->stack == 0) {
2630 if (kargs->stack_size > 0)
2631 return false;
2632 } else {
2633 if (kargs->stack_size == 0)
2634 return false;
2635
2636 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2637 return false;
2638
2639#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2640 kargs->stack += kargs->stack_size;
2641#endif
2642 }
2643
2644 return true;
2645}
2646
2647static bool clone3_args_valid(struct kernel_clone_args *kargs)
7f192e3c 2648{
b612e5df 2649 /* Verify that no unknown flags are passed along. */
ef2c41cf
CB
2650 if (kargs->flags &
2651 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
7f192e3c
CB
2652 return false;
2653
2654 /*
2655 * - make the CLONE_DETACHED bit reuseable for clone3
2656 * - make the CSIGNAL bits reuseable for clone3
2657 */
2658 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2659 return false;
2660
b612e5df
CB
2661 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2662 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2663 return false;
2664
7f192e3c
CB
2665 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2666 kargs->exit_signal)
2667 return false;
2668
fa729c4d
CB
2669 if (!clone3_stack_valid(kargs))
2670 return false;
2671
7f192e3c
CB
2672 return true;
2673}
2674
501bd016
CB
2675/**
2676 * clone3 - create a new process with specific properties
2677 * @uargs: argument structure
2678 * @size: size of @uargs
2679 *
2680 * clone3() is the extensible successor to clone()/clone2().
2681 * It takes a struct as argument that is versioned by its size.
2682 *
2683 * Return: On success, a positive PID for the child process.
2684 * On error, a negative errno number.
2685 */
7f192e3c
CB
2686SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2687{
2688 int err;
2689
2690 struct kernel_clone_args kargs;
49cb2fc4
AR
2691 pid_t set_tid[MAX_PID_NS_LEVEL];
2692
2693 kargs.set_tid = set_tid;
7f192e3c
CB
2694
2695 err = copy_clone_args_from_user(&kargs, uargs, size);
2696 if (err)
2697 return err;
2698
2699 if (!clone3_args_valid(&kargs))
2700 return -EINVAL;
2701
2702 return _do_fork(&kargs);
d2125043
AV
2703}
2704#endif
2705
0f1b92cb
ON
2706void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2707{
2708 struct task_struct *leader, *parent, *child;
2709 int res;
2710
2711 read_lock(&tasklist_lock);
2712 leader = top = top->group_leader;
2713down:
2714 for_each_thread(leader, parent) {
2715 list_for_each_entry(child, &parent->children, sibling) {
2716 res = visitor(child, data);
2717 if (res) {
2718 if (res < 0)
2719 goto out;
2720 leader = child;
2721 goto down;
2722 }
2723up:
2724 ;
2725 }
2726 }
2727
2728 if (leader != top) {
2729 child = leader;
2730 parent = child->real_parent;
2731 leader = parent->group_leader;
2732 goto up;
2733 }
2734out:
2735 read_unlock(&tasklist_lock);
2736}
2737
5fd63b30
RT
2738#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2739#define ARCH_MIN_MMSTRUCT_ALIGN 0
2740#endif
2741
51cc5068 2742static void sighand_ctor(void *data)
aa1757f9
ON
2743{
2744 struct sighand_struct *sighand = data;
2745
a35afb83 2746 spin_lock_init(&sighand->siglock);
b8fceee1 2747 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
2748}
2749
1da177e4
LT
2750void __init proc_caches_init(void)
2751{
c1a2f7f0
RR
2752 unsigned int mm_size;
2753
1da177e4
LT
2754 sighand_cachep = kmem_cache_create("sighand_cache",
2755 sizeof(struct sighand_struct), 0,
5f0d5a3a 2756 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
75f296d9 2757 SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
2758 signal_cachep = kmem_cache_create("signal_cache",
2759 sizeof(struct signal_struct), 0,
75f296d9 2760 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2761 NULL);
20c2df83 2762 files_cachep = kmem_cache_create("files_cache",
1da177e4 2763 sizeof(struct files_struct), 0,
75f296d9 2764 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2765 NULL);
20c2df83 2766 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 2767 sizeof(struct fs_struct), 0,
75f296d9 2768 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2769 NULL);
c1a2f7f0 2770
6345d24d 2771 /*
c1a2f7f0
RR
2772 * The mm_cpumask is located at the end of mm_struct, and is
2773 * dynamically sized based on the maximum CPU number this system
2774 * can have, taking hotplug into account (nr_cpu_ids).
6345d24d 2775 */
c1a2f7f0
RR
2776 mm_size = sizeof(struct mm_struct) + cpumask_size();
2777
07dcd7fe 2778 mm_cachep = kmem_cache_create_usercopy("mm_struct",
c1a2f7f0 2779 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
75f296d9 2780 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
07dcd7fe
DW
2781 offsetof(struct mm_struct, saved_auxv),
2782 sizeof_field(struct mm_struct, saved_auxv),
5d097056
VD
2783 NULL);
2784 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
8feae131 2785 mmap_init();
66577193 2786 nsproxy_cache_init();
1da177e4 2787}
cf2e340f 2788
cf2e340f 2789/*
9bfb23fc 2790 * Check constraints on flags passed to the unshare system call.
cf2e340f 2791 */
9bfb23fc 2792static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 2793{
9bfb23fc
ON
2794 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2795 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 2796 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
769071ac
AV
2797 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2798 CLONE_NEWTIME))
9bfb23fc 2799 return -EINVAL;
cf2e340f 2800 /*
12c641ab
EB
2801 * Not implemented, but pretend it works if there is nothing
2802 * to unshare. Note that unsharing the address space or the
2803 * signal handlers also need to unshare the signal queues (aka
2804 * CLONE_THREAD).
cf2e340f 2805 */
9bfb23fc 2806 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
2807 if (!thread_group_empty(current))
2808 return -EINVAL;
2809 }
2810 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
d036bda7 2811 if (refcount_read(&current->sighand->count) > 1)
12c641ab
EB
2812 return -EINVAL;
2813 }
2814 if (unshare_flags & CLONE_VM) {
2815 if (!current_is_single_threaded())
9bfb23fc
ON
2816 return -EINVAL;
2817 }
cf2e340f
JD
2818
2819 return 0;
2820}
2821
2822/*
99d1419d 2823 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
2824 */
2825static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2826{
2827 struct fs_struct *fs = current->fs;
2828
498052bb
AV
2829 if (!(unshare_flags & CLONE_FS) || !fs)
2830 return 0;
2831
2832 /* don't need lock here; in the worst case we'll do useless copy */
2833 if (fs->users == 1)
2834 return 0;
2835
2836 *new_fsp = copy_fs_struct(fs);
2837 if (!*new_fsp)
2838 return -ENOMEM;
cf2e340f
JD
2839
2840 return 0;
2841}
2842
cf2e340f 2843/*
a016f338 2844 * Unshare file descriptor table if it is being shared
cf2e340f 2845 */
60997c3d
CB
2846int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2847 struct files_struct **new_fdp)
cf2e340f
JD
2848{
2849 struct files_struct *fd = current->files;
a016f338 2850 int error = 0;
cf2e340f
JD
2851
2852 if ((unshare_flags & CLONE_FILES) &&
a016f338 2853 (fd && atomic_read(&fd->count) > 1)) {
60997c3d 2854 *new_fdp = dup_fd(fd, max_fds, &error);
a016f338
JD
2855 if (!*new_fdp)
2856 return error;
2857 }
cf2e340f
JD
2858
2859 return 0;
2860}
2861
cf2e340f
JD
2862/*
2863 * unshare allows a process to 'unshare' part of the process
2864 * context which was originally shared using clone. copy_*
ff2a9112 2865 * functions used by _do_fork() cannot be used here directly
cf2e340f
JD
2866 * because they modify an inactive task_struct that is being
2867 * constructed. Here we are modifying the current, active,
2868 * task_struct.
2869 */
9b32105e 2870int ksys_unshare(unsigned long unshare_flags)
cf2e340f 2871{
cf2e340f 2872 struct fs_struct *fs, *new_fs = NULL;
cf2e340f 2873 struct files_struct *fd, *new_fd = NULL;
b2e0d987 2874 struct cred *new_cred = NULL;
cf7b708c 2875 struct nsproxy *new_nsproxy = NULL;
9edff4ab 2876 int do_sysvsem = 0;
9bfb23fc 2877 int err;
cf2e340f 2878
b2e0d987 2879 /*
faf00da5
EB
2880 * If unsharing a user namespace must also unshare the thread group
2881 * and unshare the filesystem root and working directories.
b2e0d987
EB
2882 */
2883 if (unshare_flags & CLONE_NEWUSER)
e66eded8 2884 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
2885 /*
2886 * If unsharing vm, must also unshare signal handlers.
2887 */
2888 if (unshare_flags & CLONE_VM)
2889 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
2890 /*
2891 * If unsharing a signal handlers, must also unshare the signal queues.
2892 */
2893 if (unshare_flags & CLONE_SIGHAND)
2894 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
2895 /*
2896 * If unsharing namespace, must also unshare filesystem information.
2897 */
2898 if (unshare_flags & CLONE_NEWNS)
2899 unshare_flags |= CLONE_FS;
50804fe3
EB
2900
2901 err = check_unshare_flags(unshare_flags);
2902 if (err)
2903 goto bad_unshare_out;
6013f67f
MS
2904 /*
2905 * CLONE_NEWIPC must also detach from the undolist: after switching
2906 * to a new ipc namespace, the semaphore arrays from the old
2907 * namespace are unreachable.
2908 */
2909 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 2910 do_sysvsem = 1;
fb0a685c
DRO
2911 err = unshare_fs(unshare_flags, &new_fs);
2912 if (err)
9bfb23fc 2913 goto bad_unshare_out;
60997c3d 2914 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
fb0a685c 2915 if (err)
9bfb23fc 2916 goto bad_unshare_cleanup_fs;
b2e0d987 2917 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 2918 if (err)
9edff4ab 2919 goto bad_unshare_cleanup_fd;
b2e0d987
EB
2920 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2921 new_cred, new_fs);
2922 if (err)
2923 goto bad_unshare_cleanup_cred;
c0b2fc31 2924
b2e0d987 2925 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
2926 if (do_sysvsem) {
2927 /*
2928 * CLONE_SYSVSEM is equivalent to sys_exit().
2929 */
2930 exit_sem(current);
2931 }
ab602f79
JM
2932 if (unshare_flags & CLONE_NEWIPC) {
2933 /* Orphan segments in old ns (see sem above). */
2934 exit_shm(current);
2935 shm_init_task(current);
2936 }
ab516013 2937
6f977e6b 2938 if (new_nsproxy)
cf7b708c 2939 switch_task_namespaces(current, new_nsproxy);
cf2e340f 2940
cf7b708c
PE
2941 task_lock(current);
2942
cf2e340f
JD
2943 if (new_fs) {
2944 fs = current->fs;
2a4419b5 2945 spin_lock(&fs->lock);
cf2e340f 2946 current->fs = new_fs;
498052bb
AV
2947 if (--fs->users)
2948 new_fs = NULL;
2949 else
2950 new_fs = fs;
2a4419b5 2951 spin_unlock(&fs->lock);
cf2e340f
JD
2952 }
2953
cf2e340f
JD
2954 if (new_fd) {
2955 fd = current->files;
2956 current->files = new_fd;
2957 new_fd = fd;
2958 }
2959
2960 task_unlock(current);
b2e0d987
EB
2961
2962 if (new_cred) {
2963 /* Install the new user namespace */
2964 commit_creds(new_cred);
2965 new_cred = NULL;
2966 }
cf2e340f
JD
2967 }
2968
e4222673
HB
2969 perf_event_namespaces(current);
2970
b2e0d987
EB
2971bad_unshare_cleanup_cred:
2972 if (new_cred)
2973 put_cred(new_cred);
cf2e340f
JD
2974bad_unshare_cleanup_fd:
2975 if (new_fd)
2976 put_files_struct(new_fd);
2977
cf2e340f
JD
2978bad_unshare_cleanup_fs:
2979 if (new_fs)
498052bb 2980 free_fs_struct(new_fs);
cf2e340f 2981
cf2e340f
JD
2982bad_unshare_out:
2983 return err;
2984}
3b125388 2985
9b32105e
DB
2986SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2987{
2988 return ksys_unshare(unshare_flags);
2989}
2990
3b125388
AV
2991/*
2992 * Helper to unshare the files of the current task.
2993 * We don't want to expose copy_files internals to
2994 * the exec layer of the kernel.
2995 */
2996
2997int unshare_files(struct files_struct **displaced)
2998{
2999 struct task_struct *task = current;
50704516 3000 struct files_struct *copy = NULL;
3b125388
AV
3001 int error;
3002
60997c3d 3003 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3b125388
AV
3004 if (error || !copy) {
3005 *displaced = NULL;
3006 return error;
3007 }
3008 *displaced = task->files;
3009 task_lock(task);
3010 task->files = copy;
3011 task_unlock(task);
3012 return 0;
3013}
16db3d3f
HS
3014
3015int sysctl_max_threads(struct ctl_table *table, int write,
3016 void __user *buffer, size_t *lenp, loff_t *ppos)
3017{
3018 struct ctl_table t;
3019 int ret;
3020 int threads = max_threads;
b0f53dbc 3021 int min = 1;
16db3d3f
HS
3022 int max = MAX_THREADS;
3023
3024 t = *table;
3025 t.data = &threads;
3026 t.extra1 = &min;
3027 t.extra2 = &max;
3028
3029 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3030 if (ret || !write)
3031 return ret;
3032
b0f53dbc 3033 max_threads = threads;
16db3d3f
HS
3034
3035 return 0;
3036}