]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/fork.c
[PATCH] uninline capable()
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14#include <linux/config.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/unistd.h>
18#include <linux/smp_lock.h>
19#include <linux/module.h>
20#include <linux/vmalloc.h>
21#include <linux/completion.h>
22#include <linux/namespace.h>
23#include <linux/personality.h>
24#include <linux/mempolicy.h>
25#include <linux/sem.h>
26#include <linux/file.h>
27#include <linux/key.h>
28#include <linux/binfmts.h>
29#include <linux/mman.h>
30#include <linux/fs.h>
31#include <linux/cpu.h>
32#include <linux/cpuset.h>
33#include <linux/security.h>
34#include <linux/swap.h>
35#include <linux/syscalls.h>
36#include <linux/jiffies.h>
37#include <linux/futex.h>
ab2af1f5 38#include <linux/rcupdate.h>
1da177e4
LT
39#include <linux/ptrace.h>
40#include <linux/mount.h>
41#include <linux/audit.h>
42#include <linux/profile.h>
43#include <linux/rmap.h>
44#include <linux/acct.h>
9f46080c 45#include <linux/cn_proc.h>
1da177e4
LT
46
47#include <asm/pgtable.h>
48#include <asm/pgalloc.h>
49#include <asm/uaccess.h>
50#include <asm/mmu_context.h>
51#include <asm/cacheflush.h>
52#include <asm/tlbflush.h>
53
54/*
55 * Protected counters by write_lock_irq(&tasklist_lock)
56 */
57unsigned long total_forks; /* Handle normal Linux uptimes. */
58int nr_threads; /* The idle threads do not count.. */
59
60int max_threads; /* tunable limit on nr_threads */
61
62DEFINE_PER_CPU(unsigned long, process_counts) = 0;
63
64 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
65
66EXPORT_SYMBOL(tasklist_lock);
67
68int nr_processes(void)
69{
70 int cpu;
71 int total = 0;
72
73 for_each_online_cpu(cpu)
74 total += per_cpu(process_counts, cpu);
75
76 return total;
77}
78
79#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
80# define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
81# define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
82static kmem_cache_t *task_struct_cachep;
83#endif
84
85/* SLAB cache for signal_struct structures (tsk->signal) */
86kmem_cache_t *signal_cachep;
87
88/* SLAB cache for sighand_struct structures (tsk->sighand) */
89kmem_cache_t *sighand_cachep;
90
91/* SLAB cache for files_struct structures (tsk->files) */
92kmem_cache_t *files_cachep;
93
94/* SLAB cache for fs_struct structures (tsk->fs) */
95kmem_cache_t *fs_cachep;
96
97/* SLAB cache for vm_area_struct structures */
98kmem_cache_t *vm_area_cachep;
99
100/* SLAB cache for mm_struct structures (tsk->mm) */
101static kmem_cache_t *mm_cachep;
102
103void free_task(struct task_struct *tsk)
104{
105 free_thread_info(tsk->thread_info);
106 free_task_struct(tsk);
107}
108EXPORT_SYMBOL(free_task);
109
110void __put_task_struct(struct task_struct *tsk)
111{
112 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
113 WARN_ON(atomic_read(&tsk->usage));
114 WARN_ON(tsk == current);
115
116 if (unlikely(tsk->audit_context))
117 audit_free(tsk);
118 security_task_free(tsk);
119 free_uid(tsk->user);
120 put_group_info(tsk->group_info);
121
122 if (!profile_handoff_task(tsk))
123 free_task(tsk);
124}
125
126void __init fork_init(unsigned long mempages)
127{
128#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
129#ifndef ARCH_MIN_TASKALIGN
130#define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
131#endif
132 /* create a slab on which task_structs can be allocated */
133 task_struct_cachep =
134 kmem_cache_create("task_struct", sizeof(struct task_struct),
135 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
136#endif
137
138 /*
139 * The default maximum number of threads is set to a safe
140 * value: the thread structures can take up at most half
141 * of memory.
142 */
143 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
144
145 /*
146 * we need to allow at least 20 threads to boot a system
147 */
148 if(max_threads < 20)
149 max_threads = 20;
150
151 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
152 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
153 init_task.signal->rlim[RLIMIT_SIGPENDING] =
154 init_task.signal->rlim[RLIMIT_NPROC];
155}
156
157static struct task_struct *dup_task_struct(struct task_struct *orig)
158{
159 struct task_struct *tsk;
160 struct thread_info *ti;
161
162 prepare_to_copy(orig);
163
164 tsk = alloc_task_struct();
165 if (!tsk)
166 return NULL;
167
168 ti = alloc_thread_info(tsk);
169 if (!ti) {
170 free_task_struct(tsk);
171 return NULL;
172 }
173
1da177e4
LT
174 *tsk = *orig;
175 tsk->thread_info = ti;
10ebffde 176 setup_thread_stack(tsk, orig);
1da177e4
LT
177
178 /* One for us, one for whoever does the "release_task()" (usually parent) */
179 atomic_set(&tsk->usage,2);
4b5d37ac 180 atomic_set(&tsk->fs_excl, 0);
1da177e4
LT
181 return tsk;
182}
183
184#ifdef CONFIG_MMU
fd3e42fc 185static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
1da177e4 186{
fd3e42fc 187 struct vm_area_struct *mpnt, *tmp, **pprev;
1da177e4
LT
188 struct rb_node **rb_link, *rb_parent;
189 int retval;
190 unsigned long charge;
191 struct mempolicy *pol;
192
193 down_write(&oldmm->mmap_sem);
fd3e42fc 194 flush_cache_mm(oldmm);
7ee78232
HD
195 down_write(&mm->mmap_sem);
196
1da177e4
LT
197 mm->locked_vm = 0;
198 mm->mmap = NULL;
199 mm->mmap_cache = NULL;
200 mm->free_area_cache = oldmm->mmap_base;
1363c3cd 201 mm->cached_hole_size = ~0UL;
1da177e4 202 mm->map_count = 0;
1da177e4
LT
203 cpus_clear(mm->cpu_vm_mask);
204 mm->mm_rb = RB_ROOT;
205 rb_link = &mm->mm_rb.rb_node;
206 rb_parent = NULL;
207 pprev = &mm->mmap;
208
fd3e42fc 209 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
1da177e4
LT
210 struct file *file;
211
212 if (mpnt->vm_flags & VM_DONTCOPY) {
3b6bfcdb
HD
213 long pages = vma_pages(mpnt);
214 mm->total_vm -= pages;
ab50b8ed 215 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
3b6bfcdb 216 -pages);
1da177e4
LT
217 continue;
218 }
219 charge = 0;
220 if (mpnt->vm_flags & VM_ACCOUNT) {
221 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
222 if (security_vm_enough_memory(len))
223 goto fail_nomem;
224 charge = len;
225 }
226 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
227 if (!tmp)
228 goto fail_nomem;
229 *tmp = *mpnt;
230 pol = mpol_copy(vma_policy(mpnt));
231 retval = PTR_ERR(pol);
232 if (IS_ERR(pol))
233 goto fail_nomem_policy;
234 vma_set_policy(tmp, pol);
235 tmp->vm_flags &= ~VM_LOCKED;
236 tmp->vm_mm = mm;
237 tmp->vm_next = NULL;
238 anon_vma_link(tmp);
239 file = tmp->vm_file;
240 if (file) {
241 struct inode *inode = file->f_dentry->d_inode;
242 get_file(file);
243 if (tmp->vm_flags & VM_DENYWRITE)
244 atomic_dec(&inode->i_writecount);
245
246 /* insert tmp into the share list, just after mpnt */
247 spin_lock(&file->f_mapping->i_mmap_lock);
248 tmp->vm_truncate_count = mpnt->vm_truncate_count;
249 flush_dcache_mmap_lock(file->f_mapping);
250 vma_prio_tree_add(tmp, mpnt);
251 flush_dcache_mmap_unlock(file->f_mapping);
252 spin_unlock(&file->f_mapping->i_mmap_lock);
253 }
254
255 /*
7ee78232 256 * Link in the new vma and copy the page table entries.
1da177e4 257 */
1da177e4
LT
258 *pprev = tmp;
259 pprev = &tmp->vm_next;
260
261 __vma_link_rb(mm, tmp, rb_link, rb_parent);
262 rb_link = &tmp->vm_rb.rb_right;
263 rb_parent = &tmp->vm_rb;
264
265 mm->map_count++;
0b0db14c 266 retval = copy_page_range(mm, oldmm, mpnt);
1da177e4
LT
267
268 if (tmp->vm_ops && tmp->vm_ops->open)
269 tmp->vm_ops->open(tmp);
270
271 if (retval)
272 goto out;
273 }
274 retval = 0;
1da177e4 275out:
7ee78232 276 up_write(&mm->mmap_sem);
fd3e42fc 277 flush_tlb_mm(oldmm);
1da177e4
LT
278 up_write(&oldmm->mmap_sem);
279 return retval;
280fail_nomem_policy:
281 kmem_cache_free(vm_area_cachep, tmp);
282fail_nomem:
283 retval = -ENOMEM;
284 vm_unacct_memory(charge);
285 goto out;
286}
287
288static inline int mm_alloc_pgd(struct mm_struct * mm)
289{
290 mm->pgd = pgd_alloc(mm);
291 if (unlikely(!mm->pgd))
292 return -ENOMEM;
293 return 0;
294}
295
296static inline void mm_free_pgd(struct mm_struct * mm)
297{
298 pgd_free(mm->pgd);
299}
300#else
301#define dup_mmap(mm, oldmm) (0)
302#define mm_alloc_pgd(mm) (0)
303#define mm_free_pgd(mm)
304#endif /* CONFIG_MMU */
305
306 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
307
308#define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
309#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
310
311#include <linux/init_task.h>
312
313static struct mm_struct * mm_init(struct mm_struct * mm)
314{
315 atomic_set(&mm->mm_users, 1);
316 atomic_set(&mm->mm_count, 1);
317 init_rwsem(&mm->mmap_sem);
318 INIT_LIST_HEAD(&mm->mmlist);
319 mm->core_waiters = 0;
320 mm->nr_ptes = 0;
4294621f 321 set_mm_counter(mm, file_rss, 0);
404351e6 322 set_mm_counter(mm, anon_rss, 0);
1da177e4
LT
323 spin_lock_init(&mm->page_table_lock);
324 rwlock_init(&mm->ioctx_list_lock);
325 mm->ioctx_list = NULL;
1da177e4 326 mm->free_area_cache = TASK_UNMAPPED_BASE;
1363c3cd 327 mm->cached_hole_size = ~0UL;
1da177e4
LT
328
329 if (likely(!mm_alloc_pgd(mm))) {
330 mm->def_flags = 0;
331 return mm;
332 }
333 free_mm(mm);
334 return NULL;
335}
336
337/*
338 * Allocate and initialize an mm_struct.
339 */
340struct mm_struct * mm_alloc(void)
341{
342 struct mm_struct * mm;
343
344 mm = allocate_mm();
345 if (mm) {
346 memset(mm, 0, sizeof(*mm));
347 mm = mm_init(mm);
348 }
349 return mm;
350}
351
352/*
353 * Called when the last reference to the mm
354 * is dropped: either by a lazy thread or by
355 * mmput. Free the page directory and the mm.
356 */
357void fastcall __mmdrop(struct mm_struct *mm)
358{
359 BUG_ON(mm == &init_mm);
360 mm_free_pgd(mm);
361 destroy_context(mm);
362 free_mm(mm);
363}
364
365/*
366 * Decrement the use count and release all resources for an mm.
367 */
368void mmput(struct mm_struct *mm)
369{
370 if (atomic_dec_and_test(&mm->mm_users)) {
371 exit_aio(mm);
372 exit_mmap(mm);
373 if (!list_empty(&mm->mmlist)) {
374 spin_lock(&mmlist_lock);
375 list_del(&mm->mmlist);
376 spin_unlock(&mmlist_lock);
377 }
378 put_swap_token(mm);
379 mmdrop(mm);
380 }
381}
382EXPORT_SYMBOL_GPL(mmput);
383
384/**
385 * get_task_mm - acquire a reference to the task's mm
386 *
387 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
388 * this kernel workthread has transiently adopted a user mm with use_mm,
389 * to do its AIO) is not set and if so returns a reference to it, after
390 * bumping up the use count. User must release the mm via mmput()
391 * after use. Typically used by /proc and ptrace.
392 */
393struct mm_struct *get_task_mm(struct task_struct *task)
394{
395 struct mm_struct *mm;
396
397 task_lock(task);
398 mm = task->mm;
399 if (mm) {
400 if (task->flags & PF_BORROWED_MM)
401 mm = NULL;
402 else
403 atomic_inc(&mm->mm_users);
404 }
405 task_unlock(task);
406 return mm;
407}
408EXPORT_SYMBOL_GPL(get_task_mm);
409
410/* Please note the differences between mmput and mm_release.
411 * mmput is called whenever we stop holding onto a mm_struct,
412 * error success whatever.
413 *
414 * mm_release is called after a mm_struct has been removed
415 * from the current process.
416 *
417 * This difference is important for error handling, when we
418 * only half set up a mm_struct for a new process and need to restore
419 * the old one. Because we mmput the new mm_struct before
420 * restoring the old one. . .
421 * Eric Biederman 10 January 1998
422 */
423void mm_release(struct task_struct *tsk, struct mm_struct *mm)
424{
425 struct completion *vfork_done = tsk->vfork_done;
426
427 /* Get rid of any cached register state */
428 deactivate_mm(tsk, mm);
429
430 /* notify parent sleeping on vfork() */
431 if (vfork_done) {
432 tsk->vfork_done = NULL;
433 complete(vfork_done);
434 }
435 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
436 u32 __user * tidptr = tsk->clear_child_tid;
437 tsk->clear_child_tid = NULL;
438
439 /*
440 * We don't check the error code - if userspace has
441 * not set up a proper pointer then tough luck.
442 */
443 put_user(0, tidptr);
444 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
445 }
446}
447
448static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
449{
450 struct mm_struct * mm, *oldmm;
451 int retval;
452
453 tsk->min_flt = tsk->maj_flt = 0;
454 tsk->nvcsw = tsk->nivcsw = 0;
455
456 tsk->mm = NULL;
457 tsk->active_mm = NULL;
458
459 /*
460 * Are we cloning a kernel thread?
461 *
462 * We need to steal a active VM for that..
463 */
464 oldmm = current->mm;
465 if (!oldmm)
466 return 0;
467
468 if (clone_flags & CLONE_VM) {
469 atomic_inc(&oldmm->mm_users);
470 mm = oldmm;
1da177e4
LT
471 goto good_mm;
472 }
473
474 retval = -ENOMEM;
475 mm = allocate_mm();
476 if (!mm)
477 goto fail_nomem;
478
479 /* Copy the current MM stuff.. */
480 memcpy(mm, oldmm, sizeof(*mm));
481 if (!mm_init(mm))
482 goto fail_nomem;
483
484 if (init_new_context(tsk,mm))
485 goto fail_nocontext;
486
487 retval = dup_mmap(mm, oldmm);
488 if (retval)
489 goto free_pt;
490
4294621f 491 mm->hiwater_rss = get_mm_rss(mm);
1da177e4
LT
492 mm->hiwater_vm = mm->total_vm;
493
494good_mm:
495 tsk->mm = mm;
496 tsk->active_mm = mm;
497 return 0;
498
499free_pt:
500 mmput(mm);
501fail_nomem:
502 return retval;
503
504fail_nocontext:
505 /*
506 * If init_new_context() failed, we cannot use mmput() to free the mm
507 * because it calls destroy_context()
508 */
509 mm_free_pgd(mm);
510 free_mm(mm);
511 return retval;
512}
513
514static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
515{
516 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
517 /* We don't need to lock fs - think why ;-) */
518 if (fs) {
519 atomic_set(&fs->count, 1);
520 rwlock_init(&fs->lock);
521 fs->umask = old->umask;
522 read_lock(&old->lock);
523 fs->rootmnt = mntget(old->rootmnt);
524 fs->root = dget(old->root);
525 fs->pwdmnt = mntget(old->pwdmnt);
526 fs->pwd = dget(old->pwd);
527 if (old->altroot) {
528 fs->altrootmnt = mntget(old->altrootmnt);
529 fs->altroot = dget(old->altroot);
530 } else {
531 fs->altrootmnt = NULL;
532 fs->altroot = NULL;
533 }
534 read_unlock(&old->lock);
535 }
536 return fs;
537}
538
539struct fs_struct *copy_fs_struct(struct fs_struct *old)
540{
541 return __copy_fs_struct(old);
542}
543
544EXPORT_SYMBOL_GPL(copy_fs_struct);
545
546static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
547{
548 if (clone_flags & CLONE_FS) {
549 atomic_inc(&current->fs->count);
550 return 0;
551 }
552 tsk->fs = __copy_fs_struct(current->fs);
553 if (!tsk->fs)
554 return -ENOMEM;
555 return 0;
556}
557
ab2af1f5 558static int count_open_files(struct fdtable *fdt)
1da177e4 559{
ab2af1f5 560 int size = fdt->max_fdset;
1da177e4
LT
561 int i;
562
563 /* Find the last open fd */
564 for (i = size/(8*sizeof(long)); i > 0; ) {
badf1662 565 if (fdt->open_fds->fds_bits[--i])
1da177e4
LT
566 break;
567 }
568 i = (i+1) * 8 * sizeof(long);
569 return i;
570}
571
badf1662
DS
572static struct files_struct *alloc_files(void)
573{
574 struct files_struct *newf;
575 struct fdtable *fdt;
576
577 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
578 if (!newf)
579 goto out;
580
581 atomic_set(&newf->count, 1);
582
583 spin_lock_init(&newf->file_lock);
ab2af1f5 584 fdt = &newf->fdtab;
badf1662
DS
585 fdt->next_fd = 0;
586 fdt->max_fds = NR_OPEN_DEFAULT;
587 fdt->max_fdset = __FD_SETSIZE;
588 fdt->close_on_exec = &newf->close_on_exec_init;
589 fdt->open_fds = &newf->open_fds_init;
590 fdt->fd = &newf->fd_array[0];
ab2af1f5
DS
591 INIT_RCU_HEAD(&fdt->rcu);
592 fdt->free_files = NULL;
593 fdt->next = NULL;
594 rcu_assign_pointer(newf->fdt, fdt);
badf1662
DS
595out:
596 return newf;
597}
598
1da177e4
LT
599static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
600{
601 struct files_struct *oldf, *newf;
602 struct file **old_fds, **new_fds;
603 int open_files, size, i, error = 0, expand;
badf1662 604 struct fdtable *old_fdt, *new_fdt;
1da177e4
LT
605
606 /*
607 * A background process may not have any files ...
608 */
609 oldf = current->files;
610 if (!oldf)
611 goto out;
612
613 if (clone_flags & CLONE_FILES) {
614 atomic_inc(&oldf->count);
615 goto out;
616 }
617
618 /*
619 * Note: we may be using current for both targets (See exec.c)
620 * This works because we cache current->files (old) as oldf. Don't
621 * break this.
622 */
623 tsk->files = NULL;
624 error = -ENOMEM;
badf1662
DS
625 newf = alloc_files();
626 if (!newf)
1da177e4
LT
627 goto out;
628
1da177e4 629 spin_lock(&oldf->file_lock);
badf1662
DS
630 old_fdt = files_fdtable(oldf);
631 new_fdt = files_fdtable(newf);
632 size = old_fdt->max_fdset;
ab2af1f5 633 open_files = count_open_files(old_fdt);
1da177e4
LT
634 expand = 0;
635
636 /*
637 * Check whether we need to allocate a larger fd array or fd set.
638 * Note: we're not a clone task, so the open count won't change.
639 */
badf1662
DS
640 if (open_files > new_fdt->max_fdset) {
641 new_fdt->max_fdset = 0;
1da177e4
LT
642 expand = 1;
643 }
badf1662
DS
644 if (open_files > new_fdt->max_fds) {
645 new_fdt->max_fds = 0;
1da177e4
LT
646 expand = 1;
647 }
648
649 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
650 if (expand) {
651 spin_unlock(&oldf->file_lock);
652 spin_lock(&newf->file_lock);
653 error = expand_files(newf, open_files-1);
654 spin_unlock(&newf->file_lock);
655 if (error < 0)
656 goto out_release;
ab2af1f5
DS
657 new_fdt = files_fdtable(newf);
658 /*
659 * Reacquire the oldf lock and a pointer to its fd table
660 * who knows it may have a new bigger fd table. We need
661 * the latest pointer.
662 */
1da177e4 663 spin_lock(&oldf->file_lock);
ab2af1f5 664 old_fdt = files_fdtable(oldf);
1da177e4
LT
665 }
666
badf1662
DS
667 old_fds = old_fdt->fd;
668 new_fds = new_fdt->fd;
1da177e4 669
badf1662
DS
670 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
671 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
1da177e4
LT
672
673 for (i = open_files; i != 0; i--) {
674 struct file *f = *old_fds++;
675 if (f) {
676 get_file(f);
677 } else {
678 /*
679 * The fd may be claimed in the fd bitmap but not yet
680 * instantiated in the files array if a sibling thread
681 * is partway through open(). So make sure that this
682 * fd is available to the new process.
683 */
badf1662 684 FD_CLR(open_files - i, new_fdt->open_fds);
1da177e4 685 }
ab2af1f5 686 rcu_assign_pointer(*new_fds++, f);
1da177e4
LT
687 }
688 spin_unlock(&oldf->file_lock);
689
690 /* compute the remainder to be cleared */
badf1662 691 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
1da177e4
LT
692
693 /* This is long word aligned thus could use a optimized version */
694 memset(new_fds, 0, size);
695
badf1662
DS
696 if (new_fdt->max_fdset > open_files) {
697 int left = (new_fdt->max_fdset-open_files)/8;
1da177e4
LT
698 int start = open_files / (8 * sizeof(unsigned long));
699
badf1662
DS
700 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
701 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
1da177e4
LT
702 }
703
704 tsk->files = newf;
705 error = 0;
706out:
707 return error;
708
709out_release:
badf1662
DS
710 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
711 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
712 free_fd_array(new_fdt->fd, new_fdt->max_fds);
1da177e4
LT
713 kmem_cache_free(files_cachep, newf);
714 goto out;
715}
716
717/*
718 * Helper to unshare the files of the current task.
719 * We don't want to expose copy_files internals to
720 * the exec layer of the kernel.
721 */
722
723int unshare_files(void)
724{
725 struct files_struct *files = current->files;
726 int rc;
727
728 if(!files)
729 BUG();
730
731 /* This can race but the race causes us to copy when we don't
732 need to and drop the copy */
733 if(atomic_read(&files->count) == 1)
734 {
735 atomic_inc(&files->count);
736 return 0;
737 }
738 rc = copy_files(0, current);
739 if(rc)
740 current->files = files;
741 return rc;
742}
743
744EXPORT_SYMBOL(unshare_files);
745
e56d0903
IM
746void sighand_free_cb(struct rcu_head *rhp)
747{
748 struct sighand_struct *sp;
749
750 sp = container_of(rhp, struct sighand_struct, rcu);
751 kmem_cache_free(sighand_cachep, sp);
752}
753
1da177e4
LT
754static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
755{
756 struct sighand_struct *sig;
757
758 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
759 atomic_inc(&current->sighand->count);
760 return 0;
761 }
762 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
e56d0903 763 rcu_assign_pointer(tsk->sighand, sig);
1da177e4
LT
764 if (!sig)
765 return -ENOMEM;
766 spin_lock_init(&sig->siglock);
767 atomic_set(&sig->count, 1);
768 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
769 return 0;
770}
771
772static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
773{
774 struct signal_struct *sig;
775 int ret;
776
777 if (clone_flags & CLONE_THREAD) {
778 atomic_inc(&current->signal->count);
779 atomic_inc(&current->signal->live);
780 return 0;
781 }
782 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
783 tsk->signal = sig;
784 if (!sig)
785 return -ENOMEM;
786
787 ret = copy_thread_group_keys(tsk);
788 if (ret < 0) {
789 kmem_cache_free(signal_cachep, sig);
790 return ret;
791 }
792
793 atomic_set(&sig->count, 1);
794 atomic_set(&sig->live, 1);
795 init_waitqueue_head(&sig->wait_chldexit);
796 sig->flags = 0;
797 sig->group_exit_code = 0;
798 sig->group_exit_task = NULL;
799 sig->group_stop_count = 0;
800 sig->curr_target = NULL;
801 init_sigpending(&sig->shared_pending);
802 INIT_LIST_HEAD(&sig->posix_timers);
803
2ff678b8
TG
804 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC);
805 sig->it_real_incr.tv64 = 0;
1da177e4 806 sig->real_timer.function = it_real_fn;
2ff678b8 807 sig->real_timer.data = tsk;
1da177e4
LT
808
809 sig->it_virt_expires = cputime_zero;
810 sig->it_virt_incr = cputime_zero;
811 sig->it_prof_expires = cputime_zero;
812 sig->it_prof_incr = cputime_zero;
813
1da177e4
LT
814 sig->leader = 0; /* session leadership doesn't inherit */
815 sig->tty_old_pgrp = 0;
816
817 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
818 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
819 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
820 sig->sched_time = 0;
821 INIT_LIST_HEAD(&sig->cpu_timers[0]);
822 INIT_LIST_HEAD(&sig->cpu_timers[1]);
823 INIT_LIST_HEAD(&sig->cpu_timers[2]);
824
825 task_lock(current->group_leader);
826 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
827 task_unlock(current->group_leader);
828
829 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
830 /*
831 * New sole thread in the process gets an expiry time
832 * of the whole CPU time limit.
833 */
834 tsk->it_prof_expires =
835 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
836 }
837
838 return 0;
839}
840
841static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
842{
843 unsigned long new_flags = p->flags;
844
d1209d04 845 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
1da177e4
LT
846 new_flags |= PF_FORKNOEXEC;
847 if (!(clone_flags & CLONE_PTRACE))
848 p->ptrace = 0;
849 p->flags = new_flags;
850}
851
852asmlinkage long sys_set_tid_address(int __user *tidptr)
853{
854 current->clear_child_tid = tidptr;
855
856 return current->pid;
857}
858
859/*
860 * This creates a new process as a copy of the old one,
861 * but does not actually start it yet.
862 *
863 * It copies the registers, and all the appropriate
864 * parts of the process environment (as per the clone
865 * flags). The actual kick-off is left to the caller.
866 */
867static task_t *copy_process(unsigned long clone_flags,
868 unsigned long stack_start,
869 struct pt_regs *regs,
870 unsigned long stack_size,
871 int __user *parent_tidptr,
872 int __user *child_tidptr,
873 int pid)
874{
875 int retval;
876 struct task_struct *p = NULL;
877
878 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
879 return ERR_PTR(-EINVAL);
880
881 /*
882 * Thread groups must share signals as well, and detached threads
883 * can only be started up within the thread group.
884 */
885 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
886 return ERR_PTR(-EINVAL);
887
888 /*
889 * Shared signal handlers imply shared VM. By way of the above,
890 * thread groups also imply shared VM. Blocking this case allows
891 * for various simplifications in other code.
892 */
893 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
894 return ERR_PTR(-EINVAL);
895
896 retval = security_task_create(clone_flags);
897 if (retval)
898 goto fork_out;
899
900 retval = -ENOMEM;
901 p = dup_task_struct(current);
902 if (!p)
903 goto fork_out;
904
905 retval = -EAGAIN;
906 if (atomic_read(&p->user->processes) >=
907 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
908 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
909 p->user != &root_user)
910 goto bad_fork_free;
911 }
912
913 atomic_inc(&p->user->__count);
914 atomic_inc(&p->user->processes);
915 get_group_info(p->group_info);
916
917 /*
918 * If multiple threads are within copy_process(), then this check
919 * triggers too late. This doesn't hurt, the check is only there
920 * to stop root fork bombs.
921 */
922 if (nr_threads >= max_threads)
923 goto bad_fork_cleanup_count;
924
a1261f54 925 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1da177e4
LT
926 goto bad_fork_cleanup_count;
927
928 if (p->binfmt && !try_module_get(p->binfmt->module))
929 goto bad_fork_cleanup_put_domain;
930
931 p->did_exec = 0;
932 copy_flags(clone_flags, p);
933 p->pid = pid;
934 retval = -EFAULT;
935 if (clone_flags & CLONE_PARENT_SETTID)
936 if (put_user(p->pid, parent_tidptr))
937 goto bad_fork_cleanup;
938
939 p->proc_dentry = NULL;
940
941 INIT_LIST_HEAD(&p->children);
942 INIT_LIST_HEAD(&p->sibling);
943 p->vfork_done = NULL;
944 spin_lock_init(&p->alloc_lock);
945 spin_lock_init(&p->proc_lock);
946
947 clear_tsk_thread_flag(p, TIF_SIGPENDING);
948 init_sigpending(&p->pending);
949
950 p->utime = cputime_zero;
951 p->stime = cputime_zero;
952 p->sched_time = 0;
953 p->rchar = 0; /* I/O counter: bytes read */
954 p->wchar = 0; /* I/O counter: bytes written */
955 p->syscr = 0; /* I/O counter: read syscalls */
956 p->syscw = 0; /* I/O counter: write syscalls */
957 acct_clear_integrals(p);
958
959 p->it_virt_expires = cputime_zero;
960 p->it_prof_expires = cputime_zero;
961 p->it_sched_expires = 0;
962 INIT_LIST_HEAD(&p->cpu_timers[0]);
963 INIT_LIST_HEAD(&p->cpu_timers[1]);
964 INIT_LIST_HEAD(&p->cpu_timers[2]);
965
966 p->lock_depth = -1; /* -1 = no lock */
967 do_posix_clock_monotonic_gettime(&p->start_time);
968 p->security = NULL;
969 p->io_context = NULL;
970 p->io_wait = NULL;
971 p->audit_context = NULL;
b4b26418 972 cpuset_fork(p);
1da177e4
LT
973#ifdef CONFIG_NUMA
974 p->mempolicy = mpol_copy(p->mempolicy);
975 if (IS_ERR(p->mempolicy)) {
976 retval = PTR_ERR(p->mempolicy);
977 p->mempolicy = NULL;
b4b26418 978 goto bad_fork_cleanup_cpuset;
1da177e4
LT
979 }
980#endif
981
408894ee
IM
982#ifdef CONFIG_DEBUG_MUTEXES
983 p->blocked_on = NULL; /* not blocked yet */
984#endif
985
1da177e4
LT
986 p->tgid = p->pid;
987 if (clone_flags & CLONE_THREAD)
988 p->tgid = current->tgid;
989
990 if ((retval = security_task_alloc(p)))
991 goto bad_fork_cleanup_policy;
992 if ((retval = audit_alloc(p)))
993 goto bad_fork_cleanup_security;
994 /* copy all the process information */
995 if ((retval = copy_semundo(clone_flags, p)))
996 goto bad_fork_cleanup_audit;
997 if ((retval = copy_files(clone_flags, p)))
998 goto bad_fork_cleanup_semundo;
999 if ((retval = copy_fs(clone_flags, p)))
1000 goto bad_fork_cleanup_files;
1001 if ((retval = copy_sighand(clone_flags, p)))
1002 goto bad_fork_cleanup_fs;
1003 if ((retval = copy_signal(clone_flags, p)))
1004 goto bad_fork_cleanup_sighand;
1005 if ((retval = copy_mm(clone_flags, p)))
1006 goto bad_fork_cleanup_signal;
1007 if ((retval = copy_keys(clone_flags, p)))
1008 goto bad_fork_cleanup_mm;
1009 if ((retval = copy_namespace(clone_flags, p)))
1010 goto bad_fork_cleanup_keys;
1011 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1012 if (retval)
1013 goto bad_fork_cleanup_namespace;
1014
1015 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1016 /*
1017 * Clear TID on mm_release()?
1018 */
1019 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1020
1021 /*
1022 * Syscall tracing should be turned off in the child regardless
1023 * of CLONE_PTRACE.
1024 */
1025 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
ed75e8d5
LV
1026#ifdef TIF_SYSCALL_EMU
1027 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1028#endif
1da177e4
LT
1029
1030 /* Our parent execution domain becomes current domain
1031 These must match for thread signalling to apply */
1032
1033 p->parent_exec_id = p->self_exec_id;
1034
1035 /* ok, now we should be set up.. */
1036 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1037 p->pdeath_signal = 0;
1038 p->exit_state = 0;
1039
1da177e4
LT
1040 /*
1041 * Ok, make it visible to the rest of the system.
1042 * We dont wake it up yet.
1043 */
1044 p->group_leader = p;
1045 INIT_LIST_HEAD(&p->ptrace_children);
1046 INIT_LIST_HEAD(&p->ptrace_list);
1047
476d139c
NP
1048 /* Perform scheduler related setup. Assign this task to a CPU. */
1049 sched_fork(p, clone_flags);
1050
1da177e4
LT
1051 /* Need tasklist lock for parent etc handling! */
1052 write_lock_irq(&tasklist_lock);
1053
1054 /*
476d139c
NP
1055 * The task hasn't been attached yet, so its cpus_allowed mask will
1056 * not be changed, nor will its assigned CPU.
1057 *
1058 * The cpus_allowed mask of the parent may have changed after it was
1059 * copied first time - so re-copy it here, then check the child's CPU
1060 * to ensure it is on a valid CPU (and if not, just force it back to
1061 * parent's CPU). This avoids alot of nasty races.
1da177e4
LT
1062 */
1063 p->cpus_allowed = current->cpus_allowed;
26ff6ad9
SV
1064 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1065 !cpu_online(task_cpu(p))))
476d139c 1066 set_task_cpu(p, smp_processor_id());
1da177e4
LT
1067
1068 /*
1069 * Check for pending SIGKILL! The new thread should not be allowed
1070 * to slip out of an OOM kill. (or normal SIGKILL.)
1071 */
1072 if (sigismember(&current->pending.signal, SIGKILL)) {
1073 write_unlock_irq(&tasklist_lock);
1074 retval = -EINTR;
1075 goto bad_fork_cleanup_namespace;
1076 }
1077
1078 /* CLONE_PARENT re-uses the old parent */
1079 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1080 p->real_parent = current->real_parent;
1081 else
1082 p->real_parent = current;
1083 p->parent = p->real_parent;
1084
1085 if (clone_flags & CLONE_THREAD) {
1086 spin_lock(&current->sighand->siglock);
1087 /*
1088 * Important: if an exit-all has been started then
1089 * do not create this new thread - the whole thread
1090 * group is supposed to exit anyway.
1091 */
1092 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1093 spin_unlock(&current->sighand->siglock);
1094 write_unlock_irq(&tasklist_lock);
1095 retval = -EAGAIN;
1096 goto bad_fork_cleanup_namespace;
1097 }
1098 p->group_leader = current->group_leader;
1099
1100 if (current->signal->group_stop_count > 0) {
1101 /*
1102 * There is an all-stop in progress for the group.
1103 * We ourselves will stop as soon as we check signals.
1104 * Make the new thread part of that group stop too.
1105 */
1106 current->signal->group_stop_count++;
1107 set_tsk_thread_flag(p, TIF_SIGPENDING);
1108 }
1109
1110 if (!cputime_eq(current->signal->it_virt_expires,
1111 cputime_zero) ||
1112 !cputime_eq(current->signal->it_prof_expires,
1113 cputime_zero) ||
1114 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1115 !list_empty(&current->signal->cpu_timers[0]) ||
1116 !list_empty(&current->signal->cpu_timers[1]) ||
1117 !list_empty(&current->signal->cpu_timers[2])) {
1118 /*
1119 * Have child wake up on its first tick to check
1120 * for process CPU timers.
1121 */
1122 p->it_prof_expires = jiffies_to_cputime(1);
1123 }
1124
1125 spin_unlock(&current->sighand->siglock);
1126 }
1127
22e2c507
JA
1128 /*
1129 * inherit ioprio
1130 */
1131 p->ioprio = current->ioprio;
1132
1da177e4
LT
1133 SET_LINKS(p);
1134 if (unlikely(p->ptrace & PT_PTRACED))
1135 __ptrace_link(p, current->parent);
1136
1da177e4
LT
1137 attach_pid(p, PIDTYPE_PID, p->pid);
1138 attach_pid(p, PIDTYPE_TGID, p->tgid);
1139 if (thread_group_leader(p)) {
9a5d3023
OL
1140 p->signal->tty = current->signal->tty;
1141 p->signal->pgrp = process_group(current);
1142 p->signal->session = current->signal->session;
1da177e4
LT
1143 attach_pid(p, PIDTYPE_PGID, process_group(p));
1144 attach_pid(p, PIDTYPE_SID, p->signal->session);
1145 if (p->pid)
1146 __get_cpu_var(process_counts)++;
1147 }
1148
1149 nr_threads++;
1150 total_forks++;
1151 write_unlock_irq(&tasklist_lock);
c13cf856 1152 proc_fork_connector(p);
1da177e4
LT
1153 return p;
1154
1155bad_fork_cleanup_namespace:
1156 exit_namespace(p);
1157bad_fork_cleanup_keys:
1158 exit_keys(p);
1159bad_fork_cleanup_mm:
1160 if (p->mm)
1161 mmput(p->mm);
1162bad_fork_cleanup_signal:
1163 exit_signal(p);
1164bad_fork_cleanup_sighand:
1165 exit_sighand(p);
1166bad_fork_cleanup_fs:
1167 exit_fs(p); /* blocking */
1168bad_fork_cleanup_files:
1169 exit_files(p); /* blocking */
1170bad_fork_cleanup_semundo:
1171 exit_sem(p);
1172bad_fork_cleanup_audit:
1173 audit_free(p);
1174bad_fork_cleanup_security:
1175 security_task_free(p);
1176bad_fork_cleanup_policy:
1177#ifdef CONFIG_NUMA
1178 mpol_free(p->mempolicy);
b4b26418 1179bad_fork_cleanup_cpuset:
1da177e4 1180#endif
b4b26418 1181 cpuset_exit(p);
1da177e4
LT
1182bad_fork_cleanup:
1183 if (p->binfmt)
1184 module_put(p->binfmt->module);
1185bad_fork_cleanup_put_domain:
a1261f54 1186 module_put(task_thread_info(p)->exec_domain->module);
1da177e4
LT
1187bad_fork_cleanup_count:
1188 put_group_info(p->group_info);
1189 atomic_dec(&p->user->processes);
1190 free_uid(p->user);
1191bad_fork_free:
1192 free_task(p);
fe7d37d1
ON
1193fork_out:
1194 return ERR_PTR(retval);
1da177e4
LT
1195}
1196
1197struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1198{
1199 memset(regs, 0, sizeof(struct pt_regs));
1200 return regs;
1201}
1202
1203task_t * __devinit fork_idle(int cpu)
1204{
1205 task_t *task;
1206 struct pt_regs regs;
1207
1208 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1209 if (!task)
1210 return ERR_PTR(-ENOMEM);
1211 init_idle(task, cpu);
1212 unhash_process(task);
1213 return task;
1214}
1215
1216static inline int fork_traceflag (unsigned clone_flags)
1217{
1218 if (clone_flags & CLONE_UNTRACED)
1219 return 0;
1220 else if (clone_flags & CLONE_VFORK) {
1221 if (current->ptrace & PT_TRACE_VFORK)
1222 return PTRACE_EVENT_VFORK;
1223 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1224 if (current->ptrace & PT_TRACE_CLONE)
1225 return PTRACE_EVENT_CLONE;
1226 } else if (current->ptrace & PT_TRACE_FORK)
1227 return PTRACE_EVENT_FORK;
1228
1229 return 0;
1230}
1231
1232/*
1233 * Ok, this is the main fork-routine.
1234 *
1235 * It copies the process, and if successful kick-starts
1236 * it and waits for it to finish using the VM if required.
1237 */
1238long do_fork(unsigned long clone_flags,
1239 unsigned long stack_start,
1240 struct pt_regs *regs,
1241 unsigned long stack_size,
1242 int __user *parent_tidptr,
1243 int __user *child_tidptr)
1244{
1245 struct task_struct *p;
1246 int trace = 0;
1247 long pid = alloc_pidmap();
1248
1249 if (pid < 0)
1250 return -EAGAIN;
1251 if (unlikely(current->ptrace)) {
1252 trace = fork_traceflag (clone_flags);
1253 if (trace)
1254 clone_flags |= CLONE_PTRACE;
1255 }
1256
1257 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1258 /*
1259 * Do this prior waking up the new thread - the thread pointer
1260 * might get invalid after that point, if the thread exits quickly.
1261 */
1262 if (!IS_ERR(p)) {
1263 struct completion vfork;
1264
1265 if (clone_flags & CLONE_VFORK) {
1266 p->vfork_done = &vfork;
1267 init_completion(&vfork);
1268 }
1269
1270 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1271 /*
1272 * We'll start up with an immediate SIGSTOP.
1273 */
1274 sigaddset(&p->pending.signal, SIGSTOP);
1275 set_tsk_thread_flag(p, TIF_SIGPENDING);
1276 }
1277
1278 if (!(clone_flags & CLONE_STOPPED))
1279 wake_up_new_task(p, clone_flags);
1280 else
1281 p->state = TASK_STOPPED;
1282
1283 if (unlikely (trace)) {
1284 current->ptrace_message = pid;
1285 ptrace_notify ((trace << 8) | SIGTRAP);
1286 }
1287
1288 if (clone_flags & CLONE_VFORK) {
1289 wait_for_completion(&vfork);
1290 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1291 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1292 }
1293 } else {
1294 free_pidmap(pid);
1295 pid = PTR_ERR(p);
1296 }
1297 return pid;
1298}
1299
1300void __init proc_caches_init(void)
1301{
1302 sighand_cachep = kmem_cache_create("sighand_cache",
1303 sizeof(struct sighand_struct), 0,
1304 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1305 signal_cachep = kmem_cache_create("signal_cache",
1306 sizeof(struct signal_struct), 0,
1307 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1308 files_cachep = kmem_cache_create("files_cache",
1309 sizeof(struct files_struct), 0,
1310 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1311 fs_cachep = kmem_cache_create("fs_cache",
1312 sizeof(struct fs_struct), 0,
1313 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1314 vm_area_cachep = kmem_cache_create("vm_area_struct",
1315 sizeof(struct vm_area_struct), 0,
1316 SLAB_PANIC, NULL, NULL);
1317 mm_cachep = kmem_cache_create("mm_struct",
1318 sizeof(struct mm_struct), 0,
1319 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1320}