]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/fork.c
ipc: adjust proc_ipc_sem_dointvec definition to match prototype
[mirror_ubuntu-hirsute-kernel.git] / kernel / fork.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
b3e58382 15#include <linux/anon_inodes.h>
1da177e4 16#include <linux/slab.h>
4eb5aaa3 17#include <linux/sched/autogroup.h>
6e84f315 18#include <linux/sched/mm.h>
f7ccbae4 19#include <linux/sched/coredump.h>
8703e8a4 20#include <linux/sched/user.h>
6a3827d7 21#include <linux/sched/numa_balancing.h>
03441a34 22#include <linux/sched/stat.h>
29930025 23#include <linux/sched/task.h>
68db0cf1 24#include <linux/sched/task_stack.h>
32ef5517 25#include <linux/sched/cputime.h>
b3e58382 26#include <linux/seq_file.h>
037741a6 27#include <linux/rtmutex.h>
1da177e4
LT
28#include <linux/init.h>
29#include <linux/unistd.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
1da177e4
LT
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
9f3acc31 37#include <linux/fdtable.h>
da9cbc87 38#include <linux/iocontext.h>
1da177e4
LT
39#include <linux/key.h>
40#include <linux/binfmts.h>
41#include <linux/mman.h>
cddb8a5c 42#include <linux/mmu_notifier.h>
1da177e4 43#include <linux/fs.h>
615d6e87
DB
44#include <linux/mm.h>
45#include <linux/vmacache.h>
ab516013 46#include <linux/nsproxy.h>
c59ede7b 47#include <linux/capability.h>
1da177e4 48#include <linux/cpu.h>
b4f48b63 49#include <linux/cgroup.h>
1da177e4 50#include <linux/security.h>
a1e78772 51#include <linux/hugetlb.h>
e2cfabdf 52#include <linux/seccomp.h>
1da177e4
LT
53#include <linux/swap.h>
54#include <linux/syscalls.h>
55#include <linux/jiffies.h>
56#include <linux/futex.h>
8141c7f3 57#include <linux/compat.h>
207205a2 58#include <linux/kthread.h>
7c3ab738 59#include <linux/task_io_accounting_ops.h>
ab2af1f5 60#include <linux/rcupdate.h>
1da177e4
LT
61#include <linux/ptrace.h>
62#include <linux/mount.h>
63#include <linux/audit.h>
78fb7466 64#include <linux/memcontrol.h>
f201ae23 65#include <linux/ftrace.h>
5e2bf014 66#include <linux/proc_fs.h>
1da177e4
LT
67#include <linux/profile.h>
68#include <linux/rmap.h>
f8af4da3 69#include <linux/ksm.h>
1da177e4 70#include <linux/acct.h>
893e26e6 71#include <linux/userfaultfd_k.h>
8f0ab514 72#include <linux/tsacct_kern.h>
9f46080c 73#include <linux/cn_proc.h>
ba96a0c8 74#include <linux/freezer.h>
ca74e92b 75#include <linux/delayacct.h>
ad4ecbcb 76#include <linux/taskstats_kern.h>
0a425405 77#include <linux/random.h>
522ed776 78#include <linux/tty.h>
fd0928df 79#include <linux/blkdev.h>
5ad4e53b 80#include <linux/fs_struct.h>
7c9f8861 81#include <linux/magic.h>
cdd6c482 82#include <linux/perf_event.h>
42c4ab41 83#include <linux/posix-timers.h>
8e7cac79 84#include <linux/user-return-notifier.h>
3d5992d2 85#include <linux/oom.h>
ba76149f 86#include <linux/khugepaged.h>
d80e731e 87#include <linux/signalfd.h>
0326f5a9 88#include <linux/uprobes.h>
a27bb332 89#include <linux/aio.h>
52f5684c 90#include <linux/compiler.h>
16db3d3f 91#include <linux/sysctl.h>
5c9a8750 92#include <linux/kcov.h>
d83a7cb3 93#include <linux/livepatch.h>
48ac3c18 94#include <linux/thread_info.h>
afaef01c 95#include <linux/stackleak.h>
eafb149e 96#include <linux/kasan.h>
d08b9f0c 97#include <linux/scs.h>
1da177e4 98
1da177e4 99#include <asm/pgalloc.h>
7c0f6ba6 100#include <linux/uaccess.h>
1da177e4
LT
101#include <asm/mmu_context.h>
102#include <asm/cacheflush.h>
103#include <asm/tlbflush.h>
104
ad8d75ff
SR
105#include <trace/events/sched.h>
106
43d2b113
KH
107#define CREATE_TRACE_POINTS
108#include <trace/events/task.h>
109
ac1b398d
HS
110/*
111 * Minimum number of threads to boot the kernel
112 */
113#define MIN_THREADS 20
114
115/*
116 * Maximum number of threads
117 */
118#define MAX_THREADS FUTEX_TID_MASK
119
1da177e4
LT
120/*
121 * Protected counters by write_lock_irq(&tasklist_lock)
122 */
123unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 124int nr_threads; /* The idle threads do not count.. */
1da177e4 125
8856ae4d 126static int max_threads; /* tunable limit on nr_threads */
1da177e4 127
8495f7e6
SPP
128#define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
129
130static const char * const resident_page_types[] = {
131 NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135};
136
1da177e4
LT
137DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138
c59923a1 139__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
140
141#ifdef CONFIG_PROVE_RCU
142int lockdep_tasklist_lock_is_held(void)
143{
144 return lockdep_is_held(&tasklist_lock);
145}
146EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
148
149int nr_processes(void)
150{
151 int cpu;
152 int total = 0;
153
1d510750 154 for_each_possible_cpu(cpu)
1da177e4
LT
155 total += per_cpu(process_counts, cpu);
156
157 return total;
158}
159
f19b9f74
AM
160void __weak arch_release_task_struct(struct task_struct *tsk)
161{
162}
163
f5e10287 164#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
e18b890b 165static struct kmem_cache *task_struct_cachep;
41101809
TG
166
167static inline struct task_struct *alloc_task_struct_node(int node)
168{
169 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170}
171
41101809
TG
172static inline void free_task_struct(struct task_struct *tsk)
173{
41101809
TG
174 kmem_cache_free(task_struct_cachep, tsk);
175}
1da177e4
LT
176#endif
177
b235beea 178#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
41101809 179
0d15d74a
TG
180/*
181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182 * kmemcache based allocator.
183 */
ba14a194 184# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4
AL
185
186#ifdef CONFIG_VMAP_STACK
187/*
188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189 * flush. Try to minimize the number of calls by caching stacks.
190 */
191#define NR_CACHED_STACKS 2
192static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59
HR
193
194static int free_vm_stack_cache(unsigned int cpu)
195{
196 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 int i;
198
199 for (i = 0; i < NR_CACHED_STACKS; i++) {
200 struct vm_struct *vm_stack = cached_vm_stacks[i];
201
202 if (!vm_stack)
203 continue;
204
205 vfree(vm_stack->addr);
206 cached_vm_stacks[i] = NULL;
207 }
208
209 return 0;
210}
ac496bf4
AL
211#endif
212
ba14a194 213static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 214{
ba14a194 215#ifdef CONFIG_VMAP_STACK
ac496bf4
AL
216 void *stack;
217 int i;
218
ac496bf4 219 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
220 struct vm_struct *s;
221
222 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
223
224 if (!s)
225 continue;
ac496bf4 226
eafb149e
DA
227 /* Clear the KASAN shadow of the stack. */
228 kasan_unpoison_shadow(s->addr, THREAD_SIZE);
229
ca182551
KK
230 /* Clear stale pointers from reused stack. */
231 memset(s->addr, 0, THREAD_SIZE);
e01e8063 232
ac496bf4 233 tsk->stack_vm_area = s;
ba4a4574 234 tsk->stack = s->addr;
ac496bf4
AL
235 return s->addr;
236 }
ac496bf4 237
9b6f7e16
RG
238 /*
239 * Allocated stacks are cached and later reused by new threads,
240 * so memcg accounting is performed manually on assigning/releasing
241 * stacks to tasks. Drop __GFP_ACCOUNT.
242 */
48ac3c18 243 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
ac496bf4 244 VMALLOC_START, VMALLOC_END,
9b6f7e16 245 THREADINFO_GFP & ~__GFP_ACCOUNT,
ac496bf4
AL
246 PAGE_KERNEL,
247 0, node, __builtin_return_address(0));
ba14a194
AL
248
249 /*
250 * We can't call find_vm_area() in interrupt context, and
251 * free_thread_stack() can be called in interrupt context,
252 * so cache the vm_struct.
253 */
5eed6f1d 254 if (stack) {
ba14a194 255 tsk->stack_vm_area = find_vm_area(stack);
5eed6f1d
RR
256 tsk->stack = stack;
257 }
ba14a194
AL
258 return stack;
259#else
4949148a
VD
260 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
261 THREAD_SIZE_ORDER);
b6a84016 262
1bf4580e 263 if (likely(page)) {
8dcc1d34 264 tsk->stack = kasan_reset_tag(page_address(page));
1bf4580e
AA
265 return tsk->stack;
266 }
267 return NULL;
ba14a194 268#endif
b69c49b7
FT
269}
270
ba14a194 271static inline void free_thread_stack(struct task_struct *tsk)
b69c49b7 272{
ac496bf4 273#ifdef CONFIG_VMAP_STACK
9b6f7e16
RG
274 struct vm_struct *vm = task_stack_vm_area(tsk);
275
276 if (vm) {
ac496bf4
AL
277 int i;
278
991e7673 279 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
f4b00eab 280 memcg_kmem_uncharge_page(vm->pages[i], 0);
9b6f7e16 281
ac496bf4 282 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
283 if (this_cpu_cmpxchg(cached_stacks[i],
284 NULL, tsk->stack_vm_area) != NULL)
ac496bf4
AL
285 continue;
286
ac496bf4
AL
287 return;
288 }
ac496bf4 289
0f110a9b 290 vfree_atomic(tsk->stack);
ac496bf4
AL
291 return;
292 }
293#endif
294
295 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
b69c49b7 296}
0d15d74a 297# else
b235beea 298static struct kmem_cache *thread_stack_cache;
0d15d74a 299
9521d399 300static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
0d15d74a
TG
301 int node)
302{
5eed6f1d
RR
303 unsigned long *stack;
304 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
8dcc1d34 305 stack = kasan_reset_tag(stack);
5eed6f1d
RR
306 tsk->stack = stack;
307 return stack;
0d15d74a
TG
308}
309
ba14a194 310static void free_thread_stack(struct task_struct *tsk)
0d15d74a 311{
ba14a194 312 kmem_cache_free(thread_stack_cache, tsk->stack);
0d15d74a
TG
313}
314
b235beea 315void thread_stack_cache_init(void)
0d15d74a 316{
f9d29946
DW
317 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
318 THREAD_SIZE, THREAD_SIZE, 0, 0,
319 THREAD_SIZE, NULL);
b235beea 320 BUG_ON(thread_stack_cache == NULL);
0d15d74a
TG
321}
322# endif
b69c49b7
FT
323#endif
324
1da177e4 325/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 326static struct kmem_cache *signal_cachep;
1da177e4
LT
327
328/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 329struct kmem_cache *sighand_cachep;
1da177e4
LT
330
331/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 332struct kmem_cache *files_cachep;
1da177e4
LT
333
334/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 335struct kmem_cache *fs_cachep;
1da177e4
LT
336
337/* SLAB cache for vm_area_struct structures */
3928d4f5 338static struct kmem_cache *vm_area_cachep;
1da177e4
LT
339
340/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 341static struct kmem_cache *mm_cachep;
1da177e4 342
490fc053 343struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
3928d4f5 344{
a670468f 345 struct vm_area_struct *vma;
490fc053 346
a670468f 347 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
027232da
KS
348 if (vma)
349 vma_init(vma, mm);
490fc053 350 return vma;
3928d4f5
LT
351}
352
353struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
354{
95faf699
LT
355 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
356
357 if (new) {
cda099b3
QC
358 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
359 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
360 /*
361 * orig->shared.rb may be modified concurrently, but the clone
362 * will be reinitialized.
363 */
364 *new = data_race(*orig);
95faf699 365 INIT_LIST_HEAD(&new->anon_vma_chain);
e39a4b33 366 new->vm_next = new->vm_prev = NULL;
95faf699
LT
367 }
368 return new;
3928d4f5
LT
369}
370
371void vm_area_free(struct vm_area_struct *vma)
372{
373 kmem_cache_free(vm_area_cachep, vma);
374}
375
ba14a194 376static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 377{
ba14a194
AL
378 void *stack = task_stack_page(tsk);
379 struct vm_struct *vm = task_stack_vm_area(tsk);
380
ba14a194 381
991e7673
SB
382 /* All stack pages are in the same node. */
383 if (vm)
384 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
385 account * (THREAD_SIZE / 1024));
386 else
387 mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
388 account * (THREAD_SIZE / 1024));
c6a7f572
KM
389}
390
9b6f7e16
RG
391static int memcg_charge_kernel_stack(struct task_struct *tsk)
392{
393#ifdef CONFIG_VMAP_STACK
394 struct vm_struct *vm = task_stack_vm_area(tsk);
395 int ret;
396
991e7673
SB
397 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
398
9b6f7e16
RG
399 if (vm) {
400 int i;
401
991e7673
SB
402 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
403
9b6f7e16
RG
404 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
405 /*
f4b00eab 406 * If memcg_kmem_charge_page() fails, page->mem_cgroup
991e7673
SB
407 * pointer is NULL, and memcg_kmem_uncharge_page() in
408 * free_thread_stack() will ignore this page.
9b6f7e16 409 */
f4b00eab
RG
410 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
411 0);
9b6f7e16
RG
412 if (ret)
413 return ret;
9b6f7e16
RG
414 }
415 }
416#endif
417 return 0;
418}
419
68f24b08 420static void release_task_stack(struct task_struct *tsk)
1da177e4 421{
405c0759
AL
422 if (WARN_ON(tsk->state != TASK_DEAD))
423 return; /* Better to leak the stack than to free prematurely */
424
ba14a194 425 account_kernel_stack(tsk, -1);
ba14a194 426 free_thread_stack(tsk);
68f24b08
AL
427 tsk->stack = NULL;
428#ifdef CONFIG_VMAP_STACK
429 tsk->stack_vm_area = NULL;
430#endif
431}
432
433#ifdef CONFIG_THREAD_INFO_IN_TASK
434void put_task_stack(struct task_struct *tsk)
435{
f0b89d39 436 if (refcount_dec_and_test(&tsk->stack_refcount))
68f24b08
AL
437 release_task_stack(tsk);
438}
439#endif
440
441void free_task(struct task_struct *tsk)
442{
d08b9f0c
ST
443 scs_release(tsk);
444
68f24b08
AL
445#ifndef CONFIG_THREAD_INFO_IN_TASK
446 /*
447 * The task is finally done with both the stack and thread_info,
448 * so free both.
449 */
450 release_task_stack(tsk);
451#else
452 /*
453 * If the task had a separate stack allocation, it should be gone
454 * by now.
455 */
f0b89d39 456 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
68f24b08 457#endif
23f78d4a 458 rt_mutex_debug_task_free(tsk);
fb52607a 459 ftrace_graph_exit_task(tsk);
f19b9f74 460 arch_release_task_struct(tsk);
1da5c46f
ON
461 if (tsk->flags & PF_KTHREAD)
462 free_kthread_struct(tsk);
1da177e4
LT
463 free_task_struct(tsk);
464}
465EXPORT_SYMBOL(free_task);
466
d70f2a14
AM
467#ifdef CONFIG_MMU
468static __latent_entropy int dup_mmap(struct mm_struct *mm,
469 struct mm_struct *oldmm)
470{
471 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
472 struct rb_node **rb_link, *rb_parent;
473 int retval;
474 unsigned long charge;
475 LIST_HEAD(uf);
476
477 uprobe_start_dup_mmap();
d8ed45c5 478 if (mmap_write_lock_killable(oldmm)) {
d70f2a14
AM
479 retval = -EINTR;
480 goto fail_uprobe_end;
481 }
482 flush_cache_dup_mm(oldmm);
483 uprobe_dup_mmap(oldmm, mm);
484 /*
485 * Not linked in yet - no deadlock potential:
486 */
aaa2cc56 487 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
d70f2a14
AM
488
489 /* No ordering required: file already has been exposed. */
490 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
491
492 mm->total_vm = oldmm->total_vm;
493 mm->data_vm = oldmm->data_vm;
494 mm->exec_vm = oldmm->exec_vm;
495 mm->stack_vm = oldmm->stack_vm;
496
497 rb_link = &mm->mm_rb.rb_node;
498 rb_parent = NULL;
499 pprev = &mm->mmap;
500 retval = ksm_fork(mm, oldmm);
501 if (retval)
502 goto out;
503 retval = khugepaged_fork(mm, oldmm);
504 if (retval)
505 goto out;
506
507 prev = NULL;
508 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
509 struct file *file;
510
511 if (mpnt->vm_flags & VM_DONTCOPY) {
512 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
513 continue;
514 }
515 charge = 0;
655c79bb
TH
516 /*
517 * Don't duplicate many vmas if we've been oom-killed (for
518 * example)
519 */
520 if (fatal_signal_pending(current)) {
521 retval = -EINTR;
522 goto out;
523 }
d70f2a14
AM
524 if (mpnt->vm_flags & VM_ACCOUNT) {
525 unsigned long len = vma_pages(mpnt);
526
527 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
528 goto fail_nomem;
529 charge = len;
530 }
3928d4f5 531 tmp = vm_area_dup(mpnt);
d70f2a14
AM
532 if (!tmp)
533 goto fail_nomem;
d70f2a14
AM
534 retval = vma_dup_policy(mpnt, tmp);
535 if (retval)
536 goto fail_nomem_policy;
537 tmp->vm_mm = mm;
538 retval = dup_userfaultfd(tmp, &uf);
539 if (retval)
540 goto fail_nomem_anon_vma_fork;
541 if (tmp->vm_flags & VM_WIPEONFORK) {
93949bb2
LX
542 /*
543 * VM_WIPEONFORK gets a clean slate in the child.
544 * Don't prepare anon_vma until fault since we don't
545 * copy page for current vma.
546 */
d70f2a14 547 tmp->anon_vma = NULL;
d70f2a14
AM
548 } else if (anon_vma_fork(tmp, mpnt))
549 goto fail_nomem_anon_vma_fork;
550 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
d70f2a14
AM
551 file = tmp->vm_file;
552 if (file) {
553 struct inode *inode = file_inode(file);
554 struct address_space *mapping = file->f_mapping;
555
556 get_file(file);
557 if (tmp->vm_flags & VM_DENYWRITE)
558 atomic_dec(&inode->i_writecount);
559 i_mmap_lock_write(mapping);
560 if (tmp->vm_flags & VM_SHARED)
561 atomic_inc(&mapping->i_mmap_writable);
562 flush_dcache_mmap_lock(mapping);
563 /* insert tmp into the share list, just after mpnt */
564 vma_interval_tree_insert_after(tmp, mpnt,
565 &mapping->i_mmap);
566 flush_dcache_mmap_unlock(mapping);
567 i_mmap_unlock_write(mapping);
568 }
569
570 /*
571 * Clear hugetlb-related page reserves for children. This only
572 * affects MAP_PRIVATE mappings. Faults generated by the child
573 * are not guaranteed to succeed, even if read-only
574 */
575 if (is_vm_hugetlb_page(tmp))
576 reset_vma_resv_huge_pages(tmp);
577
578 /*
579 * Link in the new vma and copy the page table entries.
580 */
581 *pprev = tmp;
582 pprev = &tmp->vm_next;
583 tmp->vm_prev = prev;
584 prev = tmp;
585
586 __vma_link_rb(mm, tmp, rb_link, rb_parent);
587 rb_link = &tmp->vm_rb.rb_right;
588 rb_parent = &tmp->vm_rb;
589
590 mm->map_count++;
591 if (!(tmp->vm_flags & VM_WIPEONFORK))
592 retval = copy_page_range(mm, oldmm, mpnt);
593
594 if (tmp->vm_ops && tmp->vm_ops->open)
595 tmp->vm_ops->open(tmp);
596
597 if (retval)
598 goto out;
599 }
600 /* a new mm has just been created */
1ed0cc5a 601 retval = arch_dup_mmap(oldmm, mm);
d70f2a14 602out:
d8ed45c5 603 mmap_write_unlock(mm);
d70f2a14 604 flush_tlb_mm(oldmm);
d8ed45c5 605 mmap_write_unlock(oldmm);
d70f2a14
AM
606 dup_userfaultfd_complete(&uf);
607fail_uprobe_end:
608 uprobe_end_dup_mmap();
609 return retval;
610fail_nomem_anon_vma_fork:
611 mpol_put(vma_policy(tmp));
612fail_nomem_policy:
3928d4f5 613 vm_area_free(tmp);
d70f2a14
AM
614fail_nomem:
615 retval = -ENOMEM;
616 vm_unacct_memory(charge);
617 goto out;
618}
619
620static inline int mm_alloc_pgd(struct mm_struct *mm)
621{
622 mm->pgd = pgd_alloc(mm);
623 if (unlikely(!mm->pgd))
624 return -ENOMEM;
625 return 0;
626}
627
628static inline void mm_free_pgd(struct mm_struct *mm)
629{
630 pgd_free(mm, mm->pgd);
631}
632#else
633static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
634{
d8ed45c5 635 mmap_write_lock(oldmm);
d70f2a14 636 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
d8ed45c5 637 mmap_write_unlock(oldmm);
d70f2a14
AM
638 return 0;
639}
640#define mm_alloc_pgd(mm) (0)
641#define mm_free_pgd(mm)
642#endif /* CONFIG_MMU */
643
644static void check_mm(struct mm_struct *mm)
645{
646 int i;
647
8495f7e6
SPP
648 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
649 "Please make sure 'struct resident_page_types[]' is updated as well");
650
d70f2a14
AM
651 for (i = 0; i < NR_MM_COUNTERS; i++) {
652 long x = atomic_long_read(&mm->rss_stat.count[i]);
653
654 if (unlikely(x))
8495f7e6
SPP
655 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
656 mm, resident_page_types[i], x);
d70f2a14
AM
657 }
658
659 if (mm_pgtables_bytes(mm))
660 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
661 mm_pgtables_bytes(mm));
662
663#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
664 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
665#endif
666}
667
668#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
669#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
670
671/*
672 * Called when the last reference to the mm
673 * is dropped: either by a lazy thread or by
674 * mmput. Free the page directory and the mm.
675 */
d34bc48f 676void __mmdrop(struct mm_struct *mm)
d70f2a14
AM
677{
678 BUG_ON(mm == &init_mm);
3eda69c9
MR
679 WARN_ON_ONCE(mm == current->mm);
680 WARN_ON_ONCE(mm == current->active_mm);
d70f2a14
AM
681 mm_free_pgd(mm);
682 destroy_context(mm);
984cfe4e 683 mmu_notifier_subscriptions_destroy(mm);
d70f2a14
AM
684 check_mm(mm);
685 put_user_ns(mm->user_ns);
686 free_mm(mm);
687}
d34bc48f 688EXPORT_SYMBOL_GPL(__mmdrop);
d70f2a14
AM
689
690static void mmdrop_async_fn(struct work_struct *work)
691{
692 struct mm_struct *mm;
693
694 mm = container_of(work, struct mm_struct, async_put_work);
695 __mmdrop(mm);
696}
697
698static void mmdrop_async(struct mm_struct *mm)
699{
700 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
701 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
702 schedule_work(&mm->async_put_work);
703 }
704}
705
ea6d290c
ON
706static inline void free_signal_struct(struct signal_struct *sig)
707{
97101eb4 708 taskstats_tgid_free(sig);
1c5354de 709 sched_autogroup_exit(sig);
7283094e
MH
710 /*
711 * __mmdrop is not safe to call from softirq context on x86 due to
712 * pgd_dtor so postpone it to the async context
713 */
26db62f1 714 if (sig->oom_mm)
7283094e 715 mmdrop_async(sig->oom_mm);
ea6d290c
ON
716 kmem_cache_free(signal_cachep, sig);
717}
718
719static inline void put_signal_struct(struct signal_struct *sig)
720{
60d4de3f 721 if (refcount_dec_and_test(&sig->sigcnt))
ea6d290c
ON
722 free_signal_struct(sig);
723}
724
158d9ebd 725void __put_task_struct(struct task_struct *tsk)
1da177e4 726{
270f722d 727 WARN_ON(!tsk->exit_state);
ec1d2819 728 WARN_ON(refcount_read(&tsk->usage));
1da177e4
LT
729 WARN_ON(tsk == current);
730
2e91fa7f 731 cgroup_free(tsk);
16d51a59 732 task_numa_free(tsk, true);
1a2a4d06 733 security_task_free(tsk);
e0e81739 734 exit_creds(tsk);
35df17c5 735 delayacct_tsk_free(tsk);
ea6d290c 736 put_signal_struct(tsk->signal);
1da177e4
LT
737
738 if (!profile_handoff_task(tsk))
739 free_task(tsk);
740}
77c100c8 741EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 742
6c0a9fa6 743void __init __weak arch_task_cache_init(void) { }
61c4628b 744
ff691f6e
HS
745/*
746 * set_max_threads
747 */
16db3d3f 748static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 749{
ac1b398d 750 u64 threads;
ca79b0c2 751 unsigned long nr_pages = totalram_pages();
ff691f6e
HS
752
753 /*
ac1b398d
HS
754 * The number of threads shall be limited such that the thread
755 * structures may only consume a small part of the available memory.
ff691f6e 756 */
3d6357de 757 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
ac1b398d
HS
758 threads = MAX_THREADS;
759 else
3d6357de 760 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
ac1b398d
HS
761 (u64) THREAD_SIZE * 8UL);
762
16db3d3f
HS
763 if (threads > max_threads_suggested)
764 threads = max_threads_suggested;
765
ac1b398d 766 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
767}
768
5aaeb5c0
IM
769#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
770/* Initialized by the architecture: */
771int arch_task_struct_size __read_mostly;
772#endif
0c8c0f03 773
4189ff23 774#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
5905429a
KC
775static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
776{
777 /* Fetch thread_struct whitelist for the architecture. */
778 arch_thread_struct_whitelist(offset, size);
779
780 /*
781 * Handle zero-sized whitelist or empty thread_struct, otherwise
782 * adjust offset to position of thread_struct in task_struct.
783 */
784 if (unlikely(*size == 0))
785 *offset = 0;
786 else
787 *offset += offsetof(struct task_struct, thread);
788}
4189ff23 789#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
5905429a 790
ff691f6e 791void __init fork_init(void)
1da177e4 792{
25f9c081 793 int i;
f5e10287 794#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1da177e4 795#ifndef ARCH_MIN_TASKALIGN
e274795e 796#define ARCH_MIN_TASKALIGN 0
1da177e4 797#endif
95cb64c1 798 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
5905429a 799 unsigned long useroffset, usersize;
e274795e 800
1da177e4 801 /* create a slab on which task_structs can be allocated */
5905429a
KC
802 task_struct_whitelist(&useroffset, &usersize);
803 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
e274795e 804 arch_task_struct_size, align,
5905429a
KC
805 SLAB_PANIC|SLAB_ACCOUNT,
806 useroffset, usersize, NULL);
1da177e4
LT
807#endif
808
61c4628b
SS
809 /* do the arch specific task caches init */
810 arch_task_cache_init();
811
16db3d3f 812 set_max_threads(MAX_THREADS);
1da177e4
LT
813
814 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
815 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
816 init_task.signal->rlim[RLIMIT_SIGPENDING] =
817 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 818
25f9c081
EB
819 for (i = 0; i < UCOUNT_COUNTS; i++) {
820 init_user_ns.ucount_max[i] = max_threads/2;
821 }
19659c59
HR
822
823#ifdef CONFIG_VMAP_STACK
824 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
825 NULL, free_vm_stack_cache);
826#endif
b09be676 827
d08b9f0c
ST
828 scs_init();
829
b09be676 830 lockdep_init_task(&init_task);
aad42dd4 831 uprobes_init();
1da177e4
LT
832}
833
52f5684c 834int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
835 struct task_struct *src)
836{
837 *dst = *src;
838 return 0;
839}
840
d4311ff1
AT
841void set_task_stack_end_magic(struct task_struct *tsk)
842{
843 unsigned long *stackend;
844
845 stackend = end_of_stack(tsk);
846 *stackend = STACK_END_MAGIC; /* for overflow detection */
847}
848
725fc629 849static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
850{
851 struct task_struct *tsk;
b235beea 852 unsigned long *stack;
0f4991e8 853 struct vm_struct *stack_vm_area __maybe_unused;
3e26c149 854 int err;
1da177e4 855
725fc629
AK
856 if (node == NUMA_NO_NODE)
857 node = tsk_fork_get_node(orig);
504f52b5 858 tsk = alloc_task_struct_node(node);
1da177e4
LT
859 if (!tsk)
860 return NULL;
861
b235beea
LT
862 stack = alloc_thread_stack_node(tsk, node);
863 if (!stack)
f19b9f74 864 goto free_tsk;
1da177e4 865
9b6f7e16
RG
866 if (memcg_charge_kernel_stack(tsk))
867 goto free_stack;
868
ba14a194
AL
869 stack_vm_area = task_stack_vm_area(tsk);
870
fb0a685c 871 err = arch_dup_task_struct(tsk, orig);
ba14a194
AL
872
873 /*
874 * arch_dup_task_struct() clobbers the stack-related fields. Make
875 * sure they're properly initialized before using any stack-related
876 * functions again.
877 */
878 tsk->stack = stack;
879#ifdef CONFIG_VMAP_STACK
880 tsk->stack_vm_area = stack_vm_area;
881#endif
68f24b08 882#ifdef CONFIG_THREAD_INFO_IN_TASK
f0b89d39 883 refcount_set(&tsk->stack_refcount, 1);
68f24b08 884#endif
ba14a194 885
164c33c6 886 if (err)
b235beea 887 goto free_stack;
164c33c6 888
d08b9f0c
ST
889 err = scs_prepare(tsk, node);
890 if (err)
891 goto free_stack;
892
dbd95212
KC
893#ifdef CONFIG_SECCOMP
894 /*
895 * We must handle setting up seccomp filters once we're under
896 * the sighand lock in case orig has changed between now and
897 * then. Until then, filter must be NULL to avoid messing up
898 * the usage counts on the error path calling free_task.
899 */
900 tsk->seccomp.filter = NULL;
901#endif
87bec58a
AM
902
903 setup_thread_stack(tsk, orig);
8e7cac79 904 clear_user_return_notifier(tsk);
f26f9aff 905 clear_tsk_need_resched(tsk);
d4311ff1 906 set_task_stack_end_magic(tsk);
1da177e4 907
050e9baa 908#ifdef CONFIG_STACKPROTECTOR
7cd815bc 909 tsk->stack_canary = get_random_canary();
0a425405 910#endif
3bd37062
SAS
911 if (orig->cpus_ptr == &orig->cpus_mask)
912 tsk->cpus_ptr = &tsk->cpus_mask;
0a425405 913
fb0a685c 914 /*
0ff7b2cf
EB
915 * One for the user space visible state that goes away when reaped.
916 * One for the scheduler.
fb0a685c 917 */
0ff7b2cf
EB
918 refcount_set(&tsk->rcu_users, 2);
919 /* One for the rcu users */
920 refcount_set(&tsk->usage, 1);
6c5c9341 921#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 922 tsk->btrace_seq = 0;
6c5c9341 923#endif
a0aa7f68 924 tsk->splice_pipe = NULL;
5640f768 925 tsk->task_frag.page = NULL;
093e5840 926 tsk->wake_q.next = NULL;
c6a7f572 927
ba14a194 928 account_kernel_stack(tsk, 1);
c6a7f572 929
5c9a8750
DV
930 kcov_task_init(tsk);
931
e41d5818
DV
932#ifdef CONFIG_FAULT_INJECTION
933 tsk->fail_nth = 0;
934#endif
935
2c323017
JB
936#ifdef CONFIG_BLK_CGROUP
937 tsk->throttle_queue = NULL;
938 tsk->use_memdelay = 0;
939#endif
940
d46eb14b
SB
941#ifdef CONFIG_MEMCG
942 tsk->active_memcg = NULL;
943#endif
1da177e4 944 return tsk;
61c4628b 945
b235beea 946free_stack:
ba14a194 947 free_thread_stack(tsk);
f19b9f74 948free_tsk:
61c4628b
SS
949 free_task_struct(tsk);
950 return NULL;
1da177e4
LT
951}
952
23ff4440 953__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 954
4cb0e11b
HK
955static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
956
957static int __init coredump_filter_setup(char *s)
958{
959 default_dump_filter =
960 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
961 MMF_DUMP_FILTER_MASK;
962 return 1;
963}
964
965__setup("coredump_filter=", coredump_filter_setup);
966
1da177e4
LT
967#include <linux/init_task.h>
968
858f0993
AD
969static void mm_init_aio(struct mm_struct *mm)
970{
971#ifdef CONFIG_AIO
972 spin_lock_init(&mm->ioctx_lock);
db446a08 973 mm->ioctx_table = NULL;
858f0993
AD
974#endif
975}
976
c3f3ce04
AA
977static __always_inline void mm_clear_owner(struct mm_struct *mm,
978 struct task_struct *p)
979{
980#ifdef CONFIG_MEMCG
981 if (mm->owner == p)
982 WRITE_ONCE(mm->owner, NULL);
983#endif
984}
985
33144e84
VD
986static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
987{
988#ifdef CONFIG_MEMCG
989 mm->owner = p;
990#endif
991}
992
355627f5
EB
993static void mm_init_uprobes_state(struct mm_struct *mm)
994{
995#ifdef CONFIG_UPROBES
996 mm->uprobes_state.xol_area = NULL;
997#endif
998}
999
bfedb589
EB
1000static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1001 struct user_namespace *user_ns)
1da177e4 1002{
41f727fd
VD
1003 mm->mmap = NULL;
1004 mm->mm_rb = RB_ROOT;
1005 mm->vmacache_seqnum = 0;
1da177e4
LT
1006 atomic_set(&mm->mm_users, 1);
1007 atomic_set(&mm->mm_count, 1);
d8ed45c5 1008 mmap_init_lock(mm);
1da177e4 1009 INIT_LIST_HEAD(&mm->mmlist);
999d9fc1 1010 mm->core_state = NULL;
af5b0f6a 1011 mm_pgtables_bytes_init(mm);
41f727fd
VD
1012 mm->map_count = 0;
1013 mm->locked_vm = 0;
70f8a3ca 1014 atomic64_set(&mm->pinned_vm, 0);
d559db08 1015 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 1016 spin_lock_init(&mm->page_table_lock);
88aa7cc6 1017 spin_lock_init(&mm->arg_lock);
41f727fd 1018 mm_init_cpumask(mm);
858f0993 1019 mm_init_aio(mm);
cf475ad2 1020 mm_init_owner(mm, p);
2b7e8665 1021 RCU_INIT_POINTER(mm->exe_file, NULL);
984cfe4e 1022 mmu_notifier_subscriptions_init(mm);
16af97dc 1023 init_tlb_flush_pending(mm);
41f727fd
VD
1024#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1025 mm->pmd_huge_pte = NULL;
1026#endif
355627f5 1027 mm_init_uprobes_state(mm);
1da177e4 1028
a0715cc2
AT
1029 if (current->mm) {
1030 mm->flags = current->mm->flags & MMF_INIT_MASK;
1031 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1032 } else {
1033 mm->flags = default_dump_filter;
1da177e4 1034 mm->def_flags = 0;
a0715cc2
AT
1035 }
1036
41f727fd
VD
1037 if (mm_alloc_pgd(mm))
1038 goto fail_nopgd;
1039
1040 if (init_new_context(p, mm))
1041 goto fail_nocontext;
78fb7466 1042
bfedb589 1043 mm->user_ns = get_user_ns(user_ns);
41f727fd
VD
1044 return mm;
1045
1046fail_nocontext:
1047 mm_free_pgd(mm);
1048fail_nopgd:
1da177e4
LT
1049 free_mm(mm);
1050 return NULL;
1051}
1052
1053/*
1054 * Allocate and initialize an mm_struct.
1055 */
fb0a685c 1056struct mm_struct *mm_alloc(void)
1da177e4 1057{
fb0a685c 1058 struct mm_struct *mm;
1da177e4
LT
1059
1060 mm = allocate_mm();
de03c72c
KM
1061 if (!mm)
1062 return NULL;
1063
1064 memset(mm, 0, sizeof(*mm));
bfedb589 1065 return mm_init(mm, current, current_user_ns());
1da177e4
LT
1066}
1067
ec8d7c14
MH
1068static inline void __mmput(struct mm_struct *mm)
1069{
1070 VM_BUG_ON(atomic_read(&mm->mm_users));
1071
1072 uprobe_clear_state(mm);
1073 exit_aio(mm);
1074 ksm_exit(mm);
1075 khugepaged_exit(mm); /* must run before exit_mmap */
1076 exit_mmap(mm);
6fcb52a5 1077 mm_put_huge_zero_page(mm);
ec8d7c14
MH
1078 set_mm_exe_file(mm, NULL);
1079 if (!list_empty(&mm->mmlist)) {
1080 spin_lock(&mmlist_lock);
1081 list_del(&mm->mmlist);
1082 spin_unlock(&mmlist_lock);
1083 }
1084 if (mm->binfmt)
1085 module_put(mm->binfmt->module);
1086 mmdrop(mm);
1087}
1088
1da177e4
LT
1089/*
1090 * Decrement the use count and release all resources for an mm.
1091 */
1092void mmput(struct mm_struct *mm)
1093{
0ae26f1b
AM
1094 might_sleep();
1095
ec8d7c14
MH
1096 if (atomic_dec_and_test(&mm->mm_users))
1097 __mmput(mm);
1098}
1099EXPORT_SYMBOL_GPL(mmput);
1100
a1b2289c
SY
1101#ifdef CONFIG_MMU
1102static void mmput_async_fn(struct work_struct *work)
1103{
1104 struct mm_struct *mm = container_of(work, struct mm_struct,
1105 async_put_work);
1106
1107 __mmput(mm);
1108}
1109
1110void mmput_async(struct mm_struct *mm)
1111{
1112 if (atomic_dec_and_test(&mm->mm_users)) {
1113 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1114 schedule_work(&mm->async_put_work);
1115 }
1116}
1117#endif
1118
90f31d0e
KK
1119/**
1120 * set_mm_exe_file - change a reference to the mm's executable file
1121 *
1122 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1123 *
6e399cd1
DB
1124 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1125 * invocations: in mmput() nobody alive left, in execve task is single
1126 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1127 * mm->exe_file, but does so without using set_mm_exe_file() in order
1128 * to do avoid the need for any locks.
90f31d0e 1129 */
38646013
JS
1130void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1131{
6e399cd1
DB
1132 struct file *old_exe_file;
1133
1134 /*
1135 * It is safe to dereference the exe_file without RCU as
1136 * this function is only called if nobody else can access
1137 * this mm -- see comment above for justification.
1138 */
1139 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 1140
38646013
JS
1141 if (new_exe_file)
1142 get_file(new_exe_file);
90f31d0e
KK
1143 rcu_assign_pointer(mm->exe_file, new_exe_file);
1144 if (old_exe_file)
1145 fput(old_exe_file);
38646013
JS
1146}
1147
90f31d0e
KK
1148/**
1149 * get_mm_exe_file - acquire a reference to the mm's executable file
1150 *
1151 * Returns %NULL if mm has no associated executable file.
1152 * User must release file via fput().
1153 */
38646013
JS
1154struct file *get_mm_exe_file(struct mm_struct *mm)
1155{
1156 struct file *exe_file;
1157
90f31d0e
KK
1158 rcu_read_lock();
1159 exe_file = rcu_dereference(mm->exe_file);
1160 if (exe_file && !get_file_rcu(exe_file))
1161 exe_file = NULL;
1162 rcu_read_unlock();
38646013
JS
1163 return exe_file;
1164}
11163348 1165EXPORT_SYMBOL(get_mm_exe_file);
38646013 1166
cd81a917
MG
1167/**
1168 * get_task_exe_file - acquire a reference to the task's executable file
1169 *
1170 * Returns %NULL if task's mm (if any) has no associated executable file or
1171 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1172 * User must release file via fput().
1173 */
1174struct file *get_task_exe_file(struct task_struct *task)
1175{
1176 struct file *exe_file = NULL;
1177 struct mm_struct *mm;
1178
1179 task_lock(task);
1180 mm = task->mm;
1181 if (mm) {
1182 if (!(task->flags & PF_KTHREAD))
1183 exe_file = get_mm_exe_file(mm);
1184 }
1185 task_unlock(task);
1186 return exe_file;
1187}
1188EXPORT_SYMBOL(get_task_exe_file);
38646013 1189
1da177e4
LT
1190/**
1191 * get_task_mm - acquire a reference to the task's mm
1192 *
246bb0b1 1193 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1194 * this kernel workthread has transiently adopted a user mm with use_mm,
1195 * to do its AIO) is not set and if so returns a reference to it, after
1196 * bumping up the use count. User must release the mm via mmput()
1197 * after use. Typically used by /proc and ptrace.
1198 */
1199struct mm_struct *get_task_mm(struct task_struct *task)
1200{
1201 struct mm_struct *mm;
1202
1203 task_lock(task);
1204 mm = task->mm;
1205 if (mm) {
246bb0b1 1206 if (task->flags & PF_KTHREAD)
1da177e4
LT
1207 mm = NULL;
1208 else
3fce371b 1209 mmget(mm);
1da177e4
LT
1210 }
1211 task_unlock(task);
1212 return mm;
1213}
1214EXPORT_SYMBOL_GPL(get_task_mm);
1215
8cdb878d
CY
1216struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1217{
1218 struct mm_struct *mm;
1219 int err;
1220
3e74fabd 1221 err = mutex_lock_killable(&task->signal->exec_update_mutex);
8cdb878d
CY
1222 if (err)
1223 return ERR_PTR(err);
1224
1225 mm = get_task_mm(task);
1226 if (mm && mm != current->mm &&
1227 !ptrace_may_access(task, mode)) {
1228 mmput(mm);
1229 mm = ERR_PTR(-EACCES);
1230 }
3e74fabd 1231 mutex_unlock(&task->signal->exec_update_mutex);
8cdb878d
CY
1232
1233 return mm;
1234}
1235
57b59c4a 1236static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1237{
d68b46fe 1238 struct completion *vfork;
c415c3b4 1239
d68b46fe
ON
1240 task_lock(tsk);
1241 vfork = tsk->vfork_done;
1242 if (likely(vfork)) {
1243 tsk->vfork_done = NULL;
1244 complete(vfork);
1245 }
1246 task_unlock(tsk);
1247}
1248
1249static int wait_for_vfork_done(struct task_struct *child,
1250 struct completion *vfork)
1251{
1252 int killed;
1253
1254 freezer_do_not_count();
76f969e8 1255 cgroup_enter_frozen();
d68b46fe 1256 killed = wait_for_completion_killable(vfork);
76f969e8 1257 cgroup_leave_frozen(false);
d68b46fe
ON
1258 freezer_count();
1259
1260 if (killed) {
1261 task_lock(child);
1262 child->vfork_done = NULL;
1263 task_unlock(child);
1264 }
1265
1266 put_task_struct(child);
1267 return killed;
c415c3b4
ON
1268}
1269
1da177e4
LT
1270/* Please note the differences between mmput and mm_release.
1271 * mmput is called whenever we stop holding onto a mm_struct,
1272 * error success whatever.
1273 *
1274 * mm_release is called after a mm_struct has been removed
1275 * from the current process.
1276 *
1277 * This difference is important for error handling, when we
1278 * only half set up a mm_struct for a new process and need to restore
1279 * the old one. Because we mmput the new mm_struct before
1280 * restoring the old one. . .
1281 * Eric Biederman 10 January 1998
1282 */
4610ba7a 1283static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1da177e4 1284{
0326f5a9
SD
1285 uprobe_free_utask(tsk);
1286
1da177e4
LT
1287 /* Get rid of any cached register state */
1288 deactivate_mm(tsk, mm);
1289
fec1d011 1290 /*
735f2770
MH
1291 * Signal userspace if we're not exiting with a core dump
1292 * because we want to leave the value intact for debugging
1293 * purposes.
fec1d011 1294 */
9c8a8228 1295 if (tsk->clear_child_tid) {
735f2770 1296 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
9c8a8228
ED
1297 atomic_read(&mm->mm_users) > 1) {
1298 /*
1299 * We don't check the error code - if userspace has
1300 * not set up a proper pointer then tough luck.
1301 */
1302 put_user(0, tsk->clear_child_tid);
2de0db99
DB
1303 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1304 1, NULL, NULL, 0, 0);
9c8a8228 1305 }
1da177e4 1306 tsk->clear_child_tid = NULL;
1da177e4 1307 }
f7505d64
KK
1308
1309 /*
1310 * All done, finally we can wake up parent and return this mm to him.
1311 * Also kthread_stop() uses this completion for synchronization.
1312 */
1313 if (tsk->vfork_done)
1314 complete_vfork_done(tsk);
1da177e4
LT
1315}
1316
4610ba7a
TG
1317void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1318{
150d7158 1319 futex_exit_release(tsk);
4610ba7a
TG
1320 mm_release(tsk, mm);
1321}
1322
1323void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1324{
150d7158 1325 futex_exec_release(tsk);
4610ba7a
TG
1326 mm_release(tsk, mm);
1327}
1328
13585fa0
NA
1329/**
1330 * dup_mm() - duplicates an existing mm structure
1331 * @tsk: the task_struct with which the new mm will be associated.
1332 * @oldmm: the mm to duplicate.
1333 *
1334 * Allocates a new mm structure and duplicates the provided @oldmm structure
1335 * content into it.
1336 *
1337 * Return: the duplicated mm or NULL on failure.
a0a7ec30 1338 */
13585fa0
NA
1339static struct mm_struct *dup_mm(struct task_struct *tsk,
1340 struct mm_struct *oldmm)
a0a7ec30 1341{
13585fa0 1342 struct mm_struct *mm;
a0a7ec30
JD
1343 int err;
1344
a0a7ec30
JD
1345 mm = allocate_mm();
1346 if (!mm)
1347 goto fail_nomem;
1348
1349 memcpy(mm, oldmm, sizeof(*mm));
1350
bfedb589 1351 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1352 goto fail_nomem;
1353
a0a7ec30
JD
1354 err = dup_mmap(mm, oldmm);
1355 if (err)
1356 goto free_pt;
1357
1358 mm->hiwater_rss = get_mm_rss(mm);
1359 mm->hiwater_vm = mm->total_vm;
1360
801460d0
HS
1361 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1362 goto free_pt;
1363
a0a7ec30
JD
1364 return mm;
1365
1366free_pt:
801460d0
HS
1367 /* don't put binfmt in mmput, we haven't got module yet */
1368 mm->binfmt = NULL;
c3f3ce04 1369 mm_init_owner(mm, NULL);
a0a7ec30
JD
1370 mmput(mm);
1371
1372fail_nomem:
1373 return NULL;
a0a7ec30
JD
1374}
1375
fb0a685c 1376static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1377{
fb0a685c 1378 struct mm_struct *mm, *oldmm;
1da177e4
LT
1379 int retval;
1380
1381 tsk->min_flt = tsk->maj_flt = 0;
1382 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1383#ifdef CONFIG_DETECT_HUNG_TASK
1384 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
a2e51445 1385 tsk->last_switch_time = 0;
17406b82 1386#endif
1da177e4
LT
1387
1388 tsk->mm = NULL;
1389 tsk->active_mm = NULL;
1390
1391 /*
1392 * Are we cloning a kernel thread?
1393 *
1394 * We need to steal a active VM for that..
1395 */
1396 oldmm = current->mm;
1397 if (!oldmm)
1398 return 0;
1399
615d6e87
DB
1400 /* initialize the new vmacache entries */
1401 vmacache_flush(tsk);
1402
1da177e4 1403 if (clone_flags & CLONE_VM) {
3fce371b 1404 mmget(oldmm);
1da177e4 1405 mm = oldmm;
1da177e4
LT
1406 goto good_mm;
1407 }
1408
1409 retval = -ENOMEM;
13585fa0 1410 mm = dup_mm(tsk, current->mm);
1da177e4
LT
1411 if (!mm)
1412 goto fail_nomem;
1413
1da177e4
LT
1414good_mm:
1415 tsk->mm = mm;
1416 tsk->active_mm = mm;
1417 return 0;
1418
1da177e4
LT
1419fail_nomem:
1420 return retval;
1da177e4
LT
1421}
1422
a39bc516 1423static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1424{
498052bb 1425 struct fs_struct *fs = current->fs;
1da177e4 1426 if (clone_flags & CLONE_FS) {
498052bb 1427 /* tsk->fs is already what we want */
2a4419b5 1428 spin_lock(&fs->lock);
498052bb 1429 if (fs->in_exec) {
2a4419b5 1430 spin_unlock(&fs->lock);
498052bb
AV
1431 return -EAGAIN;
1432 }
1433 fs->users++;
2a4419b5 1434 spin_unlock(&fs->lock);
1da177e4
LT
1435 return 0;
1436 }
498052bb 1437 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1438 if (!tsk->fs)
1439 return -ENOMEM;
1440 return 0;
1441}
1442
fb0a685c 1443static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
a016f338
JD
1444{
1445 struct files_struct *oldf, *newf;
1446 int error = 0;
1447
1448 /*
1449 * A background process may not have any files ...
1450 */
1451 oldf = current->files;
1452 if (!oldf)
1453 goto out;
1454
1455 if (clone_flags & CLONE_FILES) {
1456 atomic_inc(&oldf->count);
1457 goto out;
1458 }
1459
60997c3d 1460 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
a016f338
JD
1461 if (!newf)
1462 goto out;
1463
1464 tsk->files = newf;
1465 error = 0;
1466out:
1467 return error;
1468}
1469
fadad878 1470static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
fd0928df
JA
1471{
1472#ifdef CONFIG_BLOCK
1473 struct io_context *ioc = current->io_context;
6e736be7 1474 struct io_context *new_ioc;
fd0928df
JA
1475
1476 if (!ioc)
1477 return 0;
fadad878
JA
1478 /*
1479 * Share io context with parent, if CLONE_IO is set
1480 */
1481 if (clone_flags & CLONE_IO) {
3d48749d
TH
1482 ioc_task_link(ioc);
1483 tsk->io_context = ioc;
fadad878 1484 } else if (ioprio_valid(ioc->ioprio)) {
6e736be7
TH
1485 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1486 if (unlikely(!new_ioc))
fd0928df
JA
1487 return -ENOMEM;
1488
6e736be7 1489 new_ioc->ioprio = ioc->ioprio;
11a3122f 1490 put_io_context(new_ioc);
fd0928df
JA
1491 }
1492#endif
1493 return 0;
1494}
1495
a39bc516 1496static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1497{
1498 struct sighand_struct *sig;
1499
60348802 1500 if (clone_flags & CLONE_SIGHAND) {
d036bda7 1501 refcount_inc(&current->sighand->count);
1da177e4
LT
1502 return 0;
1503 }
1504 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
0c282b06 1505 RCU_INIT_POINTER(tsk->sighand, sig);
1da177e4
LT
1506 if (!sig)
1507 return -ENOMEM;
9d7fb042 1508
d036bda7 1509 refcount_set(&sig->count, 1);
06e62a46 1510 spin_lock_irq(&current->sighand->siglock);
1da177e4 1511 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
06e62a46 1512 spin_unlock_irq(&current->sighand->siglock);
b612e5df
CB
1513
1514 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1515 if (clone_flags & CLONE_CLEAR_SIGHAND)
1516 flush_signal_handlers(tsk, 0);
1517
1da177e4
LT
1518 return 0;
1519}
1520
a7e5328a 1521void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1522{
d036bda7 1523 if (refcount_dec_and_test(&sighand->count)) {
d80e731e 1524 signalfd_cleanup(sighand);
392809b2 1525 /*
5f0d5a3a 1526 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1527 * without an RCU grace period, see __lock_task_sighand().
1528 */
c81addc9 1529 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1530 }
c81addc9
ON
1531}
1532
f06febc9
FM
1533/*
1534 * Initialize POSIX timer handling for a thread group.
1535 */
1536static void posix_cpu_timers_init_group(struct signal_struct *sig)
1537{
2b69942f 1538 struct posix_cputimers *pct = &sig->posix_cputimers;
78d7d407
JS
1539 unsigned long cpu_limit;
1540
316c1608 1541 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
3a245c0f 1542 posix_cputimers_group_init(pct, cpu_limit);
f06febc9
FM
1543}
1544
a39bc516 1545static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1546{
1547 struct signal_struct *sig;
1da177e4 1548
4ab6c083 1549 if (clone_flags & CLONE_THREAD)
490dea45 1550 return 0;
490dea45 1551
a56704ef 1552 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1553 tsk->signal = sig;
1554 if (!sig)
1555 return -ENOMEM;
1556
b3ac022c 1557 sig->nr_threads = 1;
1da177e4 1558 atomic_set(&sig->live, 1);
60d4de3f 1559 refcount_set(&sig->sigcnt, 1);
0c740d0a
ON
1560
1561 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1562 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1563 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1564
1da177e4 1565 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1566 sig->curr_target = tsk;
1da177e4 1567 init_sigpending(&sig->shared_pending);
c3ad2c3b 1568 INIT_HLIST_HEAD(&sig->multiprocess);
e78c3496 1569 seqlock_init(&sig->stats_lock);
9d7fb042 1570 prev_cputime_init(&sig->prev_cputime);
1da177e4 1571
baa73d9e 1572#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1573 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1574 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1575 sig->real_timer.function = it_real_fn;
baa73d9e 1576#endif
1da177e4 1577
1da177e4
LT
1578 task_lock(current->group_leader);
1579 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1580 task_unlock(current->group_leader);
1581
6279a751
ON
1582 posix_cpu_timers_init_group(sig);
1583
522ed776 1584 tty_audit_fork(sig);
5091faa4 1585 sched_autogroup_fork(sig);
522ed776 1586
a63d83f4 1587 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1588 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1589
9b1bf12d 1590 mutex_init(&sig->cred_guard_mutex);
eea96732 1591 mutex_init(&sig->exec_update_mutex);
9b1bf12d 1592
1da177e4
LT
1593 return 0;
1594}
1595
dbd95212
KC
1596static void copy_seccomp(struct task_struct *p)
1597{
1598#ifdef CONFIG_SECCOMP
1599 /*
1600 * Must be called with sighand->lock held, which is common to
1601 * all threads in the group. Holding cred_guard_mutex is not
1602 * needed because this new task is not yet running and cannot
1603 * be racing exec.
1604 */
69f6a34b 1605 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1606
1607 /* Ref-count the new filter user, and assign it. */
1608 get_seccomp_filter(current);
1609 p->seccomp = current->seccomp;
1610
1611 /*
1612 * Explicitly enable no_new_privs here in case it got set
1613 * between the task_struct being duplicated and holding the
1614 * sighand lock. The seccomp state and nnp must be in sync.
1615 */
1616 if (task_no_new_privs(current))
1617 task_set_no_new_privs(p);
1618
1619 /*
1620 * If the parent gained a seccomp mode after copying thread
1621 * flags and between before we held the sighand lock, we have
1622 * to manually enable the seccomp thread flag here.
1623 */
1624 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1625 set_tsk_thread_flag(p, TIF_SECCOMP);
1626#endif
1627}
1628
17da2bd9 1629SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1630{
1631 current->clear_child_tid = tidptr;
1632
b488893a 1633 return task_pid_vnr(current);
1da177e4
LT
1634}
1635
a39bc516 1636static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1637{
1d615482 1638 raw_spin_lock_init(&p->pi_lock);
e29e175b 1639#ifdef CONFIG_RT_MUTEXES
a23ba907 1640 p->pi_waiters = RB_ROOT_CACHED;
e96a7705 1641 p->pi_top_task = NULL;
23f78d4a 1642 p->pi_blocked_on = NULL;
23f78d4a
IM
1643#endif
1644}
1645
2c470475
EB
1646static inline void init_task_pid_links(struct task_struct *task)
1647{
1648 enum pid_type type;
1649
1650 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1651 INIT_HLIST_NODE(&task->pid_links[type]);
1652 }
1653}
1654
81907739
ON
1655static inline void
1656init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1657{
2c470475
EB
1658 if (type == PIDTYPE_PID)
1659 task->thread_pid = pid;
1660 else
1661 task->signal->pids[type] = pid;
81907739
ON
1662}
1663
6bfbaa51
IM
1664static inline void rcu_copy_process(struct task_struct *p)
1665{
1666#ifdef CONFIG_PREEMPT_RCU
1667 p->rcu_read_lock_nesting = 0;
1668 p->rcu_read_unlock_special.s = 0;
1669 p->rcu_blocked_node = NULL;
1670 INIT_LIST_HEAD(&p->rcu_node_entry);
1671#endif /* #ifdef CONFIG_PREEMPT_RCU */
1672#ifdef CONFIG_TASKS_RCU
1673 p->rcu_tasks_holdout = false;
1674 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1675 p->rcu_tasks_idle_cpu = -1;
1676#endif /* #ifdef CONFIG_TASKS_RCU */
d5f177d3
PM
1677#ifdef CONFIG_TASKS_TRACE_RCU
1678 p->trc_reader_nesting = 0;
276c4104 1679 p->trc_reader_special.s = 0;
d5f177d3
PM
1680 INIT_LIST_HEAD(&p->trc_holdout_list);
1681#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
6bfbaa51
IM
1682}
1683
3695eae5
CB
1684struct pid *pidfd_pid(const struct file *file)
1685{
1686 if (file->f_op == &pidfd_fops)
1687 return file->private_data;
1688
1689 return ERR_PTR(-EBADF);
1690}
1691
b3e58382
CB
1692static int pidfd_release(struct inode *inode, struct file *file)
1693{
1694 struct pid *pid = file->private_data;
1695
1696 file->private_data = NULL;
1697 put_pid(pid);
1698 return 0;
1699}
1700
1701#ifdef CONFIG_PROC_FS
15d42eb2
CK
1702/**
1703 * pidfd_show_fdinfo - print information about a pidfd
1704 * @m: proc fdinfo file
1705 * @f: file referencing a pidfd
1706 *
1707 * Pid:
1708 * This function will print the pid that a given pidfd refers to in the
1709 * pid namespace of the procfs instance.
1710 * If the pid namespace of the process is not a descendant of the pid
1711 * namespace of the procfs instance 0 will be shown as its pid. This is
1712 * similar to calling getppid() on a process whose parent is outside of
1713 * its pid namespace.
1714 *
1715 * NSpid:
1716 * If pid namespaces are supported then this function will also print
1717 * the pid of a given pidfd refers to for all descendant pid namespaces
1718 * starting from the current pid namespace of the instance, i.e. the
1719 * Pid field and the first entry in the NSpid field will be identical.
1720 * If the pid namespace of the process is not a descendant of the pid
1721 * namespace of the procfs instance 0 will be shown as its first NSpid
1722 * entry and no others will be shown.
1723 * Note that this differs from the Pid and NSpid fields in
1724 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1725 * the pid namespace of the procfs instance. The difference becomes
1726 * obvious when sending around a pidfd between pid namespaces from a
1727 * different branch of the tree, i.e. where no ancestoral relation is
1728 * present between the pid namespaces:
1729 * - create two new pid namespaces ns1 and ns2 in the initial pid
1730 * namespace (also take care to create new mount namespaces in the
1731 * new pid namespace and mount procfs)
1732 * - create a process with a pidfd in ns1
1733 * - send pidfd from ns1 to ns2
1734 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1735 * have exactly one entry, which is 0
1736 */
b3e58382
CB
1737static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1738{
b3e58382 1739 struct pid *pid = f->private_data;
3d6d8da4
CB
1740 struct pid_namespace *ns;
1741 pid_t nr = -1;
15d42eb2 1742
3d6d8da4 1743 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
9d78edea 1744 ns = proc_pid_ns(file_inode(m->file)->i_sb);
3d6d8da4
CB
1745 nr = pid_nr_ns(pid, ns);
1746 }
1747
1748 seq_put_decimal_ll(m, "Pid:\t", nr);
b3e58382 1749
15d42eb2 1750#ifdef CONFIG_PID_NS
3d6d8da4
CB
1751 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1752 if (nr > 0) {
15d42eb2 1753 int i;
b3e58382 1754
15d42eb2
CK
1755 /* If nr is non-zero it means that 'pid' is valid and that
1756 * ns, i.e. the pid namespace associated with the procfs
1757 * instance, is in the pid namespace hierarchy of pid.
1758 * Start at one below the already printed level.
1759 */
1760 for (i = ns->level + 1; i <= pid->level; i++)
3d6d8da4 1761 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
15d42eb2
CK
1762 }
1763#endif
b3e58382
CB
1764 seq_putc(m, '\n');
1765}
1766#endif
1767
b53b0b9d
JFG
1768/*
1769 * Poll support for process exit notification.
1770 */
9e77716a 1771static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
b53b0b9d 1772{
b53b0b9d 1773 struct pid *pid = file->private_data;
9e77716a 1774 __poll_t poll_flags = 0;
b53b0b9d
JFG
1775
1776 poll_wait(file, &pid->wait_pidfd, pts);
1777
b53b0b9d
JFG
1778 /*
1779 * Inform pollers only when the whole thread group exits.
1780 * If the thread group leader exits before all other threads in the
1781 * group, then poll(2) should block, similar to the wait(2) family.
1782 */
38fd525a 1783 if (thread_group_exited(pid))
9e77716a 1784 poll_flags = EPOLLIN | EPOLLRDNORM;
b53b0b9d
JFG
1785
1786 return poll_flags;
1787}
1788
b3e58382
CB
1789const struct file_operations pidfd_fops = {
1790 .release = pidfd_release,
b53b0b9d 1791 .poll = pidfd_poll,
b3e58382
CB
1792#ifdef CONFIG_PROC_FS
1793 .show_fdinfo = pidfd_show_fdinfo,
1794#endif
1795};
1796
c3f3ce04
AA
1797static void __delayed_free_task(struct rcu_head *rhp)
1798{
1799 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1800
1801 free_task(tsk);
1802}
1803
1804static __always_inline void delayed_free_task(struct task_struct *tsk)
1805{
1806 if (IS_ENABLED(CONFIG_MEMCG))
1807 call_rcu(&tsk->rcu, __delayed_free_task);
1808 else
1809 free_task(tsk);
1810}
1811
1da177e4
LT
1812/*
1813 * This creates a new process as a copy of the old one,
1814 * but does not actually start it yet.
1815 *
1816 * It copies the registers, and all the appropriate
1817 * parts of the process environment (as per the clone
1818 * flags). The actual kick-off is left to the caller.
1819 */
0766f788 1820static __latent_entropy struct task_struct *copy_process(
09a05394 1821 struct pid *pid,
3033f14a 1822 int trace,
7f192e3c
CB
1823 int node,
1824 struct kernel_clone_args *args)
1da177e4 1825{
b3e58382 1826 int pidfd = -1, retval;
a24efe62 1827 struct task_struct *p;
c3ad2c3b 1828 struct multiprocess_signals delayed;
6fd2fe49 1829 struct file *pidfile = NULL;
7f192e3c 1830 u64 clone_flags = args->flags;
769071ac 1831 struct nsproxy *nsp = current->nsproxy;
1da177e4 1832
667b6094
MPS
1833 /*
1834 * Don't allow sharing the root directory with processes in a different
1835 * namespace
1836 */
1da177e4
LT
1837 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1838 return ERR_PTR(-EINVAL);
1839
e66eded8
EB
1840 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1841 return ERR_PTR(-EINVAL);
1842
1da177e4
LT
1843 /*
1844 * Thread groups must share signals as well, and detached threads
1845 * can only be started up within the thread group.
1846 */
1847 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1848 return ERR_PTR(-EINVAL);
1849
1850 /*
1851 * Shared signal handlers imply shared VM. By way of the above,
1852 * thread groups also imply shared VM. Blocking this case allows
1853 * for various simplifications in other code.
1854 */
1855 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1856 return ERR_PTR(-EINVAL);
1857
123be07b
SB
1858 /*
1859 * Siblings of global init remain as zombies on exit since they are
1860 * not reaped by their parent (swapper). To solve this and to avoid
1861 * multi-rooted process trees, prevent global and container-inits
1862 * from creating siblings.
1863 */
1864 if ((clone_flags & CLONE_PARENT) &&
1865 current->signal->flags & SIGNAL_UNKILLABLE)
1866 return ERR_PTR(-EINVAL);
1867
8382fcac 1868 /*
40a0d32d 1869 * If the new process will be in a different pid or user namespace
faf00da5 1870 * do not allow it to share a thread group with the forking task.
8382fcac 1871 */
faf00da5 1872 if (clone_flags & CLONE_THREAD) {
40a0d32d 1873 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
769071ac
AV
1874 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1875 return ERR_PTR(-EINVAL);
1876 }
1877
1878 /*
1879 * If the new process will be in a different time namespace
1880 * do not allow it to share VM or a thread group with the forking task.
1881 */
1882 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1883 if (nsp->time_ns != nsp->time_ns_for_children)
40a0d32d
ON
1884 return ERR_PTR(-EINVAL);
1885 }
8382fcac 1886
b3e58382 1887 if (clone_flags & CLONE_PIDFD) {
b3e58382 1888 /*
b3e58382
CB
1889 * - CLONE_DETACHED is blocked so that we can potentially
1890 * reuse it later for CLONE_PIDFD.
1891 * - CLONE_THREAD is blocked until someone really needs it.
1892 */
7f192e3c 1893 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
b3e58382 1894 return ERR_PTR(-EINVAL);
b3e58382
CB
1895 }
1896
c3ad2c3b
EB
1897 /*
1898 * Force any signals received before this point to be delivered
1899 * before the fork happens. Collect up signals sent to multiple
1900 * processes that happen during the fork and delay them so that
1901 * they appear to happen after the fork.
1902 */
1903 sigemptyset(&delayed.signal);
1904 INIT_HLIST_NODE(&delayed.node);
1905
1906 spin_lock_irq(&current->sighand->siglock);
1907 if (!(clone_flags & CLONE_THREAD))
1908 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1909 recalc_sigpending();
1910 spin_unlock_irq(&current->sighand->siglock);
1911 retval = -ERESTARTNOINTR;
1912 if (signal_pending(current))
1913 goto fork_out;
1914
1da177e4 1915 retval = -ENOMEM;
725fc629 1916 p = dup_task_struct(current, node);
1da177e4
LT
1917 if (!p)
1918 goto fork_out;
1919
4d6501dc
VN
1920 /*
1921 * This _must_ happen before we call free_task(), i.e. before we jump
1922 * to any of the bad_fork_* labels. This is to avoid freeing
1923 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1924 * kernel threads (PF_KTHREAD).
1925 */
7f192e3c 1926 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
4d6501dc
VN
1927 /*
1928 * Clear TID on mm_release()?
1929 */
7f192e3c 1930 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
4d6501dc 1931
f7e8b616
SR
1932 ftrace_graph_init_task(p);
1933
bea493a0
PZ
1934 rt_mutex_init_task(p);
1935
a21ee605 1936 lockdep_assert_irqs_enabled();
d12c1a37 1937#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
1938 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1939#endif
1da177e4 1940 retval = -EAGAIN;
3b11a1de 1941 if (atomic_read(&p->real_cred->user->processes) >=
78d7d407 1942 task_rlimit(p, RLIMIT_NPROC)) {
b57922b6
EP
1943 if (p->real_cred->user != INIT_USER &&
1944 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1da177e4
LT
1945 goto bad_fork_free;
1946 }
72fa5997 1947 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 1948
f1752eec
DH
1949 retval = copy_creds(p, clone_flags);
1950 if (retval < 0)
1951 goto bad_fork_free;
1da177e4
LT
1952
1953 /*
1954 * If multiple threads are within copy_process(), then this check
1955 * triggers too late. This doesn't hurt, the check is only there
1956 * to stop root fork bombs.
1957 */
04ec93fe 1958 retval = -EAGAIN;
c17d1a3a 1959 if (data_race(nr_threads >= max_threads))
1da177e4
LT
1960 goto bad_fork_cleanup_count;
1961
ca74e92b 1962 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
c1de45ca 1963 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
514ddb44 1964 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
1965 INIT_LIST_HEAD(&p->children);
1966 INIT_LIST_HEAD(&p->sibling);
f41d911f 1967 rcu_copy_process(p);
1da177e4
LT
1968 p->vfork_done = NULL;
1969 spin_lock_init(&p->alloc_lock);
1da177e4 1970
1da177e4
LT
1971 init_sigpending(&p->pending);
1972
64861634 1973 p->utime = p->stime = p->gtime = 0;
40565b5a 1974#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 1975 p->utimescaled = p->stimescaled = 0;
40565b5a 1976#endif
9d7fb042
PZ
1977 prev_cputime_init(&p->prev_cputime);
1978
6a61671b 1979#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
1980 seqcount_init(&p->vtime.seqcount);
1981 p->vtime.starttime = 0;
1982 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
1983#endif
1984
a3a2e76c
KH
1985#if defined(SPLIT_RSS_COUNTING)
1986 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1987#endif
172ba844 1988
6976675d
AV
1989 p->default_timer_slack_ns = current->timer_slack_ns;
1990
eb414681
JW
1991#ifdef CONFIG_PSI
1992 p->psi_flags = 0;
1993#endif
1994
5995477a 1995 task_io_accounting_init(&p->ioac);
1da177e4
LT
1996 acct_clear_integrals(p);
1997
3a245c0f 1998 posix_cputimers_init(&p->posix_cputimers);
1da177e4 1999
1da177e4 2000 p->io_context = NULL;
c0b0ae8a 2001 audit_set_context(p, NULL);
b4f48b63 2002 cgroup_fork(p);
1da177e4 2003#ifdef CONFIG_NUMA
846a16bf 2004 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
2005 if (IS_ERR(p->mempolicy)) {
2006 retval = PTR_ERR(p->mempolicy);
2007 p->mempolicy = NULL;
e8604cb4 2008 goto bad_fork_cleanup_threadgroup_lock;
fb0a685c 2009 }
1da177e4 2010#endif
778d3b0f
MH
2011#ifdef CONFIG_CPUSETS
2012 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2013 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
b7505861 2014 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
778d3b0f 2015#endif
de30a2b3 2016#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c
ME
2017 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2018 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2019 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2020 p->softirqs_enabled = 1;
2021 p->softirq_context = 0;
de30a2b3 2022#endif
8bcbde54
DH
2023
2024 p->pagefault_disabled = 0;
2025
fbb9ce95 2026#ifdef CONFIG_LOCKDEP
b09be676 2027 lockdep_init_task(p);
fbb9ce95 2028#endif
1da177e4 2029
408894ee
IM
2030#ifdef CONFIG_DEBUG_MUTEXES
2031 p->blocked_on = NULL; /* not blocked yet */
2032#endif
cafe5635
KO
2033#ifdef CONFIG_BCACHE
2034 p->sequential_io = 0;
2035 p->sequential_io_avg = 0;
2036#endif
0f481406 2037
3c90e6e9 2038 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
2039 retval = sched_fork(clone_flags, p);
2040 if (retval)
2041 goto bad_fork_cleanup_policy;
6ab423e0 2042
cdd6c482 2043 retval = perf_event_init_task(p);
6ab423e0
PZ
2044 if (retval)
2045 goto bad_fork_cleanup_policy;
fb0a685c
DRO
2046 retval = audit_alloc(p);
2047 if (retval)
6c72e350 2048 goto bad_fork_cleanup_perf;
1da177e4 2049 /* copy all the process information */
ab602f79 2050 shm_init_task(p);
e4e55b47 2051 retval = security_task_alloc(p, clone_flags);
fb0a685c 2052 if (retval)
1da177e4 2053 goto bad_fork_cleanup_audit;
e4e55b47
TH
2054 retval = copy_semundo(clone_flags, p);
2055 if (retval)
2056 goto bad_fork_cleanup_security;
fb0a685c
DRO
2057 retval = copy_files(clone_flags, p);
2058 if (retval)
1da177e4 2059 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
2060 retval = copy_fs(clone_flags, p);
2061 if (retval)
1da177e4 2062 goto bad_fork_cleanup_files;
fb0a685c
DRO
2063 retval = copy_sighand(clone_flags, p);
2064 if (retval)
1da177e4 2065 goto bad_fork_cleanup_fs;
fb0a685c
DRO
2066 retval = copy_signal(clone_flags, p);
2067 if (retval)
1da177e4 2068 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
2069 retval = copy_mm(clone_flags, p);
2070 if (retval)
1da177e4 2071 goto bad_fork_cleanup_signal;
fb0a685c
DRO
2072 retval = copy_namespaces(clone_flags, p);
2073 if (retval)
d84f4f99 2074 goto bad_fork_cleanup_mm;
fb0a685c
DRO
2075 retval = copy_io(clone_flags, p);
2076 if (retval)
fd0928df 2077 goto bad_fork_cleanup_namespaces;
714acdbd 2078 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
1da177e4 2079 if (retval)
fd0928df 2080 goto bad_fork_cleanup_io;
1da177e4 2081
afaef01c
AP
2082 stackleak_task_init(p);
2083
425fb2b4 2084 if (pid != &init_struct_pid) {
49cb2fc4
AR
2085 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2086 args->set_tid_size);
35f71bc0
MH
2087 if (IS_ERR(pid)) {
2088 retval = PTR_ERR(pid);
0740aa5f 2089 goto bad_fork_cleanup_thread;
35f71bc0 2090 }
425fb2b4
PE
2091 }
2092
b3e58382
CB
2093 /*
2094 * This has to happen after we've potentially unshared the file
2095 * descriptor table (so that the pidfd doesn't leak into the child
2096 * if the fd table isn't shared).
2097 */
2098 if (clone_flags & CLONE_PIDFD) {
6fd2fe49 2099 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
b3e58382
CB
2100 if (retval < 0)
2101 goto bad_fork_free_pid;
2102
2103 pidfd = retval;
6fd2fe49
AV
2104
2105 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2106 O_RDWR | O_CLOEXEC);
2107 if (IS_ERR(pidfile)) {
2108 put_unused_fd(pidfd);
28dd29c0 2109 retval = PTR_ERR(pidfile);
6fd2fe49
AV
2110 goto bad_fork_free_pid;
2111 }
2112 get_pid(pid); /* held by pidfile now */
2113
7f192e3c 2114 retval = put_user(pidfd, args->pidfd);
b3e58382
CB
2115 if (retval)
2116 goto bad_fork_put_pidfd;
2117 }
2118
73c10101
JA
2119#ifdef CONFIG_BLOCK
2120 p->plug = NULL;
2121#endif
ba31c1a4
TG
2122 futex_init_task(p);
2123
f9a3879a
GM
2124 /*
2125 * sigaltstack should be cleared when sharing the same VM
2126 */
2127 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 2128 sas_ss_reset(p);
f9a3879a 2129
1da177e4 2130 /*
6580807d
ON
2131 * Syscall tracing and stepping should be turned off in the
2132 * child regardless of CLONE_PTRACE.
1da177e4 2133 */
6580807d 2134 user_disable_single_step(p);
1da177e4 2135 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
ed75e8d5
LV
2136#ifdef TIF_SYSCALL_EMU
2137 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2138#endif
e02c9b0d 2139 clear_tsk_latency_tracing(p);
1da177e4 2140
1da177e4 2141 /* ok, now we should be set up.. */
18c830df
ON
2142 p->pid = pid_nr(pid);
2143 if (clone_flags & CLONE_THREAD) {
5f8aadd8 2144 p->exit_signal = -1;
18c830df
ON
2145 p->group_leader = current->group_leader;
2146 p->tgid = current->tgid;
2147 } else {
2148 if (clone_flags & CLONE_PARENT)
2149 p->exit_signal = current->group_leader->exit_signal;
2150 else
7f192e3c 2151 p->exit_signal = args->exit_signal;
18c830df
ON
2152 p->group_leader = p;
2153 p->tgid = p->pid;
2154 }
5f8aadd8 2155
9d823e8f
WF
2156 p->nr_dirtied = 0;
2157 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 2158 p->dirty_paused_when = 0;
9d823e8f 2159
bb8cbbfe 2160 p->pdeath_signal = 0;
47e65328 2161 INIT_LIST_HEAD(&p->thread_group);
158e1645 2162 p->task_works = NULL;
1da177e4 2163
7e47682e
AS
2164 /*
2165 * Ensure that the cgroup subsystem policies allow the new process to be
2166 * forked. It should be noted the the new process's css_set can be changed
2167 * between here and cgroup_post_fork() if an organisation operation is in
2168 * progress.
2169 */
ef2c41cf 2170 retval = cgroup_can_fork(p, args);
7e47682e 2171 if (retval)
5a5cf5cb 2172 goto bad_fork_put_pidfd;
7e47682e 2173
7b558513
DH
2174 /*
2175 * From this point on we must avoid any synchronous user-space
2176 * communication until we take the tasklist-lock. In particular, we do
2177 * not want user-space to be able to predict the process start-time by
2178 * stalling fork(2) after we recorded the start_time but before it is
2179 * visible to the system.
2180 */
2181
2182 p->start_time = ktime_get_ns();
cf25e24d 2183 p->start_boottime = ktime_get_boottime_ns();
7b558513 2184
18c830df
ON
2185 /*
2186 * Make it visible to the rest of the system, but dont wake it up yet.
2187 * Need tasklist lock for parent etc handling!
2188 */
1da177e4
LT
2189 write_lock_irq(&tasklist_lock);
2190
1da177e4 2191 /* CLONE_PARENT re-uses the old parent */
2d5516cb 2192 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 2193 p->real_parent = current->real_parent;
2d5516cb
ON
2194 p->parent_exec_id = current->parent_exec_id;
2195 } else {
1da177e4 2196 p->real_parent = current;
2d5516cb
ON
2197 p->parent_exec_id = current->self_exec_id;
2198 }
1da177e4 2199
d83a7cb3
JP
2200 klp_copy_process(p);
2201
3f17da69 2202 spin_lock(&current->sighand->siglock);
4a2c7a78 2203
dbd95212
KC
2204 /*
2205 * Copy seccomp details explicitly here, in case they were changed
2206 * before holding sighand lock.
2207 */
2208 copy_seccomp(p);
2209
d7822b1e
MD
2210 rseq_fork(p, clone_flags);
2211
4ca1d3ee 2212 /* Don't start children in a dying pid namespace */
e8cfbc24 2213 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
3fd37226
KT
2214 retval = -ENOMEM;
2215 goto bad_fork_cancel_cgroup;
2216 }
4a2c7a78 2217
7673bf55
EB
2218 /* Let kill terminate clone/fork in the middle */
2219 if (fatal_signal_pending(current)) {
2220 retval = -EINTR;
2221 goto bad_fork_cancel_cgroup;
2222 }
2223
6fd2fe49
AV
2224 /* past the last point of failure */
2225 if (pidfile)
2226 fd_install(pidfd, pidfile);
4a2c7a78 2227
2c470475 2228 init_task_pid_links(p);
73b9ebfe 2229 if (likely(p->pid)) {
4b9d33e6 2230 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 2231
81907739 2232 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 2233 if (thread_group_leader(p)) {
6883f81a 2234 init_task_pid(p, PIDTYPE_TGID, pid);
81907739
ON
2235 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2236 init_task_pid(p, PIDTYPE_SID, task_session(current));
2237
1c4042c2 2238 if (is_child_reaper(pid)) {
17cf22c3 2239 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
2240 p->signal->flags |= SIGNAL_UNKILLABLE;
2241 }
c3ad2c3b 2242 p->signal->shared_pending.signal = delayed.signal;
9c9f4ded 2243 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
2244 /*
2245 * Inherit has_child_subreaper flag under the same
2246 * tasklist_lock with adding child to the process tree
2247 * for propagate_has_child_subreaper optimization.
2248 */
2249 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2250 p->real_parent->signal->is_child_subreaper;
9cd80bbb 2251 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 2252 list_add_tail_rcu(&p->tasks, &init_task.tasks);
6883f81a 2253 attach_pid(p, PIDTYPE_TGID);
81907739
ON
2254 attach_pid(p, PIDTYPE_PGID);
2255 attach_pid(p, PIDTYPE_SID);
909ea964 2256 __this_cpu_inc(process_counts);
80628ca0
ON
2257 } else {
2258 current->signal->nr_threads++;
2259 atomic_inc(&current->signal->live);
60d4de3f 2260 refcount_inc(&current->signal->sigcnt);
924de3b8 2261 task_join_group_stop(p);
80628ca0
ON
2262 list_add_tail_rcu(&p->thread_group,
2263 &p->group_leader->thread_group);
0c740d0a
ON
2264 list_add_tail_rcu(&p->thread_node,
2265 &p->signal->thread_head);
73b9ebfe 2266 }
81907739 2267 attach_pid(p, PIDTYPE_PID);
73b9ebfe 2268 nr_threads++;
1da177e4 2269 }
1da177e4 2270 total_forks++;
c3ad2c3b 2271 hlist_del_init(&delayed.node);
3f17da69 2272 spin_unlock(&current->sighand->siglock);
4af4206b 2273 syscall_tracepoint_update(p);
1da177e4 2274 write_unlock_irq(&tasklist_lock);
4af4206b 2275
c13cf856 2276 proc_fork_connector(p);
13685c4a 2277 sched_post_fork(p);
ef2c41cf 2278 cgroup_post_fork(p, args);
cdd6c482 2279 perf_event_fork(p);
43d2b113
KH
2280
2281 trace_task_newtask(p, clone_flags);
3ab67966 2282 uprobe_copy_process(p, clone_flags);
43d2b113 2283
1da177e4
LT
2284 return p;
2285
7e47682e 2286bad_fork_cancel_cgroup:
3fd37226
KT
2287 spin_unlock(&current->sighand->siglock);
2288 write_unlock_irq(&tasklist_lock);
ef2c41cf 2289 cgroup_cancel_fork(p, args);
b3e58382 2290bad_fork_put_pidfd:
6fd2fe49
AV
2291 if (clone_flags & CLONE_PIDFD) {
2292 fput(pidfile);
2293 put_unused_fd(pidfd);
2294 }
425fb2b4
PE
2295bad_fork_free_pid:
2296 if (pid != &init_struct_pid)
2297 free_pid(pid);
0740aa5f
JS
2298bad_fork_cleanup_thread:
2299 exit_thread(p);
fd0928df 2300bad_fork_cleanup_io:
b69f2292
LR
2301 if (p->io_context)
2302 exit_io_context(p);
ab516013 2303bad_fork_cleanup_namespaces:
444f378b 2304 exit_task_namespaces(p);
1da177e4 2305bad_fork_cleanup_mm:
c3f3ce04
AA
2306 if (p->mm) {
2307 mm_clear_owner(p->mm, p);
1da177e4 2308 mmput(p->mm);
c3f3ce04 2309 }
1da177e4 2310bad_fork_cleanup_signal:
4ab6c083 2311 if (!(clone_flags & CLONE_THREAD))
1c5354de 2312 free_signal_struct(p->signal);
1da177e4 2313bad_fork_cleanup_sighand:
a7e5328a 2314 __cleanup_sighand(p->sighand);
1da177e4
LT
2315bad_fork_cleanup_fs:
2316 exit_fs(p); /* blocking */
2317bad_fork_cleanup_files:
2318 exit_files(p); /* blocking */
2319bad_fork_cleanup_semundo:
2320 exit_sem(p);
e4e55b47
TH
2321bad_fork_cleanup_security:
2322 security_task_free(p);
1da177e4
LT
2323bad_fork_cleanup_audit:
2324 audit_free(p);
6c72e350 2325bad_fork_cleanup_perf:
cdd6c482 2326 perf_event_free_task(p);
6c72e350 2327bad_fork_cleanup_policy:
b09be676 2328 lockdep_free_task(p);
1da177e4 2329#ifdef CONFIG_NUMA
f0be3d32 2330 mpol_put(p->mempolicy);
e8604cb4 2331bad_fork_cleanup_threadgroup_lock:
1da177e4 2332#endif
35df17c5 2333 delayacct_tsk_free(p);
1da177e4 2334bad_fork_cleanup_count:
d84f4f99 2335 atomic_dec(&p->cred->user->processes);
e0e81739 2336 exit_creds(p);
1da177e4 2337bad_fork_free:
405c0759 2338 p->state = TASK_DEAD;
68f24b08 2339 put_task_stack(p);
c3f3ce04 2340 delayed_free_task(p);
fe7d37d1 2341fork_out:
c3ad2c3b
EB
2342 spin_lock_irq(&current->sighand->siglock);
2343 hlist_del_init(&delayed.node);
2344 spin_unlock_irq(&current->sighand->siglock);
fe7d37d1 2345 return ERR_PTR(retval);
1da177e4
LT
2346}
2347
2c470475 2348static inline void init_idle_pids(struct task_struct *idle)
f106eee1
ON
2349{
2350 enum pid_type type;
2351
2352 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2c470475
EB
2353 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2354 init_task_pid(idle, type, &init_struct_pid);
f106eee1
ON
2355 }
2356}
2357
0db0628d 2358struct task_struct *fork_idle(int cpu)
1da177e4 2359{
36c8b586 2360 struct task_struct *task;
7f192e3c
CB
2361 struct kernel_clone_args args = {
2362 .flags = CLONE_VM,
2363 };
2364
2365 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
f106eee1 2366 if (!IS_ERR(task)) {
2c470475 2367 init_idle_pids(task);
753ca4f3 2368 init_idle(task, cpu);
f106eee1 2369 }
73b9ebfe 2370
1da177e4
LT
2371 return task;
2372}
2373
13585fa0
NA
2374struct mm_struct *copy_init_mm(void)
2375{
2376 return dup_mm(NULL, &init_mm);
2377}
2378
1da177e4
LT
2379/*
2380 * Ok, this is the main fork-routine.
2381 *
2382 * It copies the process, and if successful kick-starts
2383 * it and waits for it to finish using the VM if required.
a0eb9abd
ES
2384 *
2385 * args->exit_signal is expected to be checked for sanity by the caller.
1da177e4 2386 */
7f192e3c 2387long _do_fork(struct kernel_clone_args *args)
1da177e4 2388{
7f192e3c 2389 u64 clone_flags = args->flags;
9f5325aa
MPS
2390 struct completion vfork;
2391 struct pid *pid;
1da177e4
LT
2392 struct task_struct *p;
2393 int trace = 0;
92476d7f 2394 long nr;
1da177e4 2395
3af8588c
CB
2396 /*
2397 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2398 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2399 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2400 * field in struct clone_args and it still doesn't make sense to have
2401 * them both point at the same memory location. Performing this check
2402 * here has the advantage that we don't need to have a separate helper
2403 * to check for legacy clone().
2404 */
2405 if ((args->flags & CLONE_PIDFD) &&
2406 (args->flags & CLONE_PARENT_SETTID) &&
2407 (args->pidfd == args->parent_tid))
2408 return -EINVAL;
2409
09a05394 2410 /*
4b9d33e6
TH
2411 * Determine whether and which event to report to ptracer. When
2412 * called from kernel_thread or CLONE_UNTRACED is explicitly
2413 * requested, no event is reported; otherwise, report if the event
2414 * for the type of forking is enabled.
09a05394 2415 */
e80d6661 2416 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2417 if (clone_flags & CLONE_VFORK)
2418 trace = PTRACE_EVENT_VFORK;
7f192e3c 2419 else if (args->exit_signal != SIGCHLD)
4b9d33e6
TH
2420 trace = PTRACE_EVENT_CLONE;
2421 else
2422 trace = PTRACE_EVENT_FORK;
2423
2424 if (likely(!ptrace_event_enabled(current, trace)))
2425 trace = 0;
2426 }
1da177e4 2427
7f192e3c 2428 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
38addce8 2429 add_latent_entropy();
9f5325aa
MPS
2430
2431 if (IS_ERR(p))
2432 return PTR_ERR(p);
2433
1da177e4
LT
2434 /*
2435 * Do this prior waking up the new thread - the thread pointer
2436 * might get invalid after that point, if the thread exits quickly.
2437 */
9f5325aa 2438 trace_sched_process_fork(current, p);
0a16b607 2439
9f5325aa
MPS
2440 pid = get_task_pid(p, PIDTYPE_PID);
2441 nr = pid_vnr(pid);
30e49c26 2442
9f5325aa 2443 if (clone_flags & CLONE_PARENT_SETTID)
7f192e3c 2444 put_user(nr, args->parent_tid);
a6f5e063 2445
9f5325aa
MPS
2446 if (clone_flags & CLONE_VFORK) {
2447 p->vfork_done = &vfork;
2448 init_completion(&vfork);
2449 get_task_struct(p);
2450 }
1da177e4 2451
9f5325aa 2452 wake_up_new_task(p);
09a05394 2453
9f5325aa
MPS
2454 /* forking complete and child started to run, tell ptracer */
2455 if (unlikely(trace))
2456 ptrace_event_pid(trace, pid);
4e52365f 2457
9f5325aa
MPS
2458 if (clone_flags & CLONE_VFORK) {
2459 if (!wait_for_vfork_done(p, &vfork))
2460 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2461 }
9f5325aa
MPS
2462
2463 put_pid(pid);
92476d7f 2464 return nr;
1da177e4
LT
2465}
2466
2aa3a7f8
AV
2467/*
2468 * Create a kernel thread.
2469 */
2470pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2471{
7f192e3c 2472 struct kernel_clone_args args = {
3f2c788a
CB
2473 .flags = ((lower_32_bits(flags) | CLONE_VM |
2474 CLONE_UNTRACED) & ~CSIGNAL),
2475 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
7f192e3c
CB
2476 .stack = (unsigned long)fn,
2477 .stack_size = (unsigned long)arg,
2478 };
2479
2480 return _do_fork(&args);
2aa3a7f8 2481}
2aa3a7f8 2482
d2125043
AV
2483#ifdef __ARCH_WANT_SYS_FORK
2484SYSCALL_DEFINE0(fork)
2485{
2486#ifdef CONFIG_MMU
7f192e3c
CB
2487 struct kernel_clone_args args = {
2488 .exit_signal = SIGCHLD,
2489 };
2490
2491 return _do_fork(&args);
d2125043
AV
2492#else
2493 /* can not support in nommu mode */
5d59e182 2494 return -EINVAL;
d2125043
AV
2495#endif
2496}
2497#endif
2498
2499#ifdef __ARCH_WANT_SYS_VFORK
2500SYSCALL_DEFINE0(vfork)
2501{
7f192e3c
CB
2502 struct kernel_clone_args args = {
2503 .flags = CLONE_VFORK | CLONE_VM,
2504 .exit_signal = SIGCHLD,
2505 };
2506
2507 return _do_fork(&args);
d2125043
AV
2508}
2509#endif
2510
2511#ifdef __ARCH_WANT_SYS_CLONE
2512#ifdef CONFIG_CLONE_BACKWARDS
2513SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2514 int __user *, parent_tidptr,
3033f14a 2515 unsigned long, tls,
d2125043
AV
2516 int __user *, child_tidptr)
2517#elif defined(CONFIG_CLONE_BACKWARDS2)
2518SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2519 int __user *, parent_tidptr,
2520 int __user *, child_tidptr,
3033f14a 2521 unsigned long, tls)
dfa9771a
MS
2522#elif defined(CONFIG_CLONE_BACKWARDS3)
2523SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2524 int, stack_size,
2525 int __user *, parent_tidptr,
2526 int __user *, child_tidptr,
3033f14a 2527 unsigned long, tls)
d2125043
AV
2528#else
2529SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2530 int __user *, parent_tidptr,
2531 int __user *, child_tidptr,
3033f14a 2532 unsigned long, tls)
d2125043
AV
2533#endif
2534{
7f192e3c 2535 struct kernel_clone_args args = {
3f2c788a 2536 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
7f192e3c
CB
2537 .pidfd = parent_tidptr,
2538 .child_tid = child_tidptr,
2539 .parent_tid = parent_tidptr,
3f2c788a 2540 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
7f192e3c
CB
2541 .stack = newsp,
2542 .tls = tls,
2543 };
2544
7f192e3c
CB
2545 return _do_fork(&args);
2546}
d68dbb0c 2547#endif
7f192e3c 2548
d68dbb0c 2549#ifdef __ARCH_WANT_SYS_CLONE3
dd499f7a 2550
7f192e3c
CB
2551noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2552 struct clone_args __user *uargs,
f14c234b 2553 size_t usize)
7f192e3c 2554{
f14c234b 2555 int err;
7f192e3c 2556 struct clone_args args;
49cb2fc4 2557 pid_t *kset_tid = kargs->set_tid;
7f192e3c 2558
a966dcfe
ES
2559 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2560 CLONE_ARGS_SIZE_VER0);
2561 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2562 CLONE_ARGS_SIZE_VER1);
2563 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2564 CLONE_ARGS_SIZE_VER2);
2565 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2566
f14c234b 2567 if (unlikely(usize > PAGE_SIZE))
7f192e3c 2568 return -E2BIG;
f14c234b 2569 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
7f192e3c
CB
2570 return -EINVAL;
2571
f14c234b
AS
2572 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2573 if (err)
2574 return err;
7f192e3c 2575
49cb2fc4
AR
2576 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2577 return -EINVAL;
2578
2579 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2580 return -EINVAL;
2581
2582 if (unlikely(args.set_tid && args.set_tid_size == 0))
2583 return -EINVAL;
2584
a0eb9abd
ES
2585 /*
2586 * Verify that higher 32bits of exit_signal are unset and that
2587 * it is a valid signal
2588 */
2589 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2590 !valid_signal(args.exit_signal)))
2591 return -EINVAL;
2592
62173872
ES
2593 if ((args.flags & CLONE_INTO_CGROUP) &&
2594 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
ef2c41cf
CB
2595 return -EINVAL;
2596
7f192e3c
CB
2597 *kargs = (struct kernel_clone_args){
2598 .flags = args.flags,
2599 .pidfd = u64_to_user_ptr(args.pidfd),
2600 .child_tid = u64_to_user_ptr(args.child_tid),
2601 .parent_tid = u64_to_user_ptr(args.parent_tid),
2602 .exit_signal = args.exit_signal,
2603 .stack = args.stack,
2604 .stack_size = args.stack_size,
2605 .tls = args.tls,
49cb2fc4 2606 .set_tid_size = args.set_tid_size,
ef2c41cf 2607 .cgroup = args.cgroup,
7f192e3c
CB
2608 };
2609
49cb2fc4
AR
2610 if (args.set_tid &&
2611 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2612 (kargs->set_tid_size * sizeof(pid_t))))
2613 return -EFAULT;
2614
2615 kargs->set_tid = kset_tid;
2616
7f192e3c
CB
2617 return 0;
2618}
2619
fa729c4d
CB
2620/**
2621 * clone3_stack_valid - check and prepare stack
2622 * @kargs: kernel clone args
2623 *
2624 * Verify that the stack arguments userspace gave us are sane.
2625 * In addition, set the stack direction for userspace since it's easy for us to
2626 * determine.
2627 */
2628static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2629{
2630 if (kargs->stack == 0) {
2631 if (kargs->stack_size > 0)
2632 return false;
2633 } else {
2634 if (kargs->stack_size == 0)
2635 return false;
2636
2637 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2638 return false;
2639
2640#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2641 kargs->stack += kargs->stack_size;
2642#endif
2643 }
2644
2645 return true;
2646}
2647
2648static bool clone3_args_valid(struct kernel_clone_args *kargs)
7f192e3c 2649{
b612e5df 2650 /* Verify that no unknown flags are passed along. */
ef2c41cf
CB
2651 if (kargs->flags &
2652 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
7f192e3c
CB
2653 return false;
2654
2655 /*
2656 * - make the CLONE_DETACHED bit reuseable for clone3
2657 * - make the CSIGNAL bits reuseable for clone3
2658 */
2659 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2660 return false;
2661
b612e5df
CB
2662 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2663 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2664 return false;
2665
7f192e3c
CB
2666 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2667 kargs->exit_signal)
2668 return false;
2669
fa729c4d
CB
2670 if (!clone3_stack_valid(kargs))
2671 return false;
2672
7f192e3c
CB
2673 return true;
2674}
2675
501bd016
CB
2676/**
2677 * clone3 - create a new process with specific properties
2678 * @uargs: argument structure
2679 * @size: size of @uargs
2680 *
2681 * clone3() is the extensible successor to clone()/clone2().
2682 * It takes a struct as argument that is versioned by its size.
2683 *
2684 * Return: On success, a positive PID for the child process.
2685 * On error, a negative errno number.
2686 */
7f192e3c
CB
2687SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2688{
2689 int err;
2690
2691 struct kernel_clone_args kargs;
49cb2fc4
AR
2692 pid_t set_tid[MAX_PID_NS_LEVEL];
2693
2694 kargs.set_tid = set_tid;
7f192e3c
CB
2695
2696 err = copy_clone_args_from_user(&kargs, uargs, size);
2697 if (err)
2698 return err;
2699
2700 if (!clone3_args_valid(&kargs))
2701 return -EINVAL;
2702
2703 return _do_fork(&kargs);
d2125043
AV
2704}
2705#endif
2706
0f1b92cb
ON
2707void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2708{
2709 struct task_struct *leader, *parent, *child;
2710 int res;
2711
2712 read_lock(&tasklist_lock);
2713 leader = top = top->group_leader;
2714down:
2715 for_each_thread(leader, parent) {
2716 list_for_each_entry(child, &parent->children, sibling) {
2717 res = visitor(child, data);
2718 if (res) {
2719 if (res < 0)
2720 goto out;
2721 leader = child;
2722 goto down;
2723 }
2724up:
2725 ;
2726 }
2727 }
2728
2729 if (leader != top) {
2730 child = leader;
2731 parent = child->real_parent;
2732 leader = parent->group_leader;
2733 goto up;
2734 }
2735out:
2736 read_unlock(&tasklist_lock);
2737}
2738
5fd63b30
RT
2739#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2740#define ARCH_MIN_MMSTRUCT_ALIGN 0
2741#endif
2742
51cc5068 2743static void sighand_ctor(void *data)
aa1757f9
ON
2744{
2745 struct sighand_struct *sighand = data;
2746
a35afb83 2747 spin_lock_init(&sighand->siglock);
b8fceee1 2748 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
2749}
2750
1da177e4
LT
2751void __init proc_caches_init(void)
2752{
c1a2f7f0
RR
2753 unsigned int mm_size;
2754
1da177e4
LT
2755 sighand_cachep = kmem_cache_create("sighand_cache",
2756 sizeof(struct sighand_struct), 0,
5f0d5a3a 2757 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
75f296d9 2758 SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
2759 signal_cachep = kmem_cache_create("signal_cache",
2760 sizeof(struct signal_struct), 0,
75f296d9 2761 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2762 NULL);
20c2df83 2763 files_cachep = kmem_cache_create("files_cache",
1da177e4 2764 sizeof(struct files_struct), 0,
75f296d9 2765 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2766 NULL);
20c2df83 2767 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 2768 sizeof(struct fs_struct), 0,
75f296d9 2769 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2770 NULL);
c1a2f7f0 2771
6345d24d 2772 /*
c1a2f7f0
RR
2773 * The mm_cpumask is located at the end of mm_struct, and is
2774 * dynamically sized based on the maximum CPU number this system
2775 * can have, taking hotplug into account (nr_cpu_ids).
6345d24d 2776 */
c1a2f7f0
RR
2777 mm_size = sizeof(struct mm_struct) + cpumask_size();
2778
07dcd7fe 2779 mm_cachep = kmem_cache_create_usercopy("mm_struct",
c1a2f7f0 2780 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
75f296d9 2781 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
07dcd7fe
DW
2782 offsetof(struct mm_struct, saved_auxv),
2783 sizeof_field(struct mm_struct, saved_auxv),
5d097056
VD
2784 NULL);
2785 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
8feae131 2786 mmap_init();
66577193 2787 nsproxy_cache_init();
1da177e4 2788}
cf2e340f 2789
cf2e340f 2790/*
9bfb23fc 2791 * Check constraints on flags passed to the unshare system call.
cf2e340f 2792 */
9bfb23fc 2793static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 2794{
9bfb23fc
ON
2795 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2796 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 2797 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
769071ac
AV
2798 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2799 CLONE_NEWTIME))
9bfb23fc 2800 return -EINVAL;
cf2e340f 2801 /*
12c641ab
EB
2802 * Not implemented, but pretend it works if there is nothing
2803 * to unshare. Note that unsharing the address space or the
2804 * signal handlers also need to unshare the signal queues (aka
2805 * CLONE_THREAD).
cf2e340f 2806 */
9bfb23fc 2807 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
2808 if (!thread_group_empty(current))
2809 return -EINVAL;
2810 }
2811 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
d036bda7 2812 if (refcount_read(&current->sighand->count) > 1)
12c641ab
EB
2813 return -EINVAL;
2814 }
2815 if (unshare_flags & CLONE_VM) {
2816 if (!current_is_single_threaded())
9bfb23fc
ON
2817 return -EINVAL;
2818 }
cf2e340f
JD
2819
2820 return 0;
2821}
2822
2823/*
99d1419d 2824 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
2825 */
2826static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2827{
2828 struct fs_struct *fs = current->fs;
2829
498052bb
AV
2830 if (!(unshare_flags & CLONE_FS) || !fs)
2831 return 0;
2832
2833 /* don't need lock here; in the worst case we'll do useless copy */
2834 if (fs->users == 1)
2835 return 0;
2836
2837 *new_fsp = copy_fs_struct(fs);
2838 if (!*new_fsp)
2839 return -ENOMEM;
cf2e340f
JD
2840
2841 return 0;
2842}
2843
cf2e340f 2844/*
a016f338 2845 * Unshare file descriptor table if it is being shared
cf2e340f 2846 */
60997c3d
CB
2847int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2848 struct files_struct **new_fdp)
cf2e340f
JD
2849{
2850 struct files_struct *fd = current->files;
a016f338 2851 int error = 0;
cf2e340f
JD
2852
2853 if ((unshare_flags & CLONE_FILES) &&
a016f338 2854 (fd && atomic_read(&fd->count) > 1)) {
60997c3d 2855 *new_fdp = dup_fd(fd, max_fds, &error);
a016f338
JD
2856 if (!*new_fdp)
2857 return error;
2858 }
cf2e340f
JD
2859
2860 return 0;
2861}
2862
cf2e340f
JD
2863/*
2864 * unshare allows a process to 'unshare' part of the process
2865 * context which was originally shared using clone. copy_*
ff2a9112 2866 * functions used by _do_fork() cannot be used here directly
cf2e340f
JD
2867 * because they modify an inactive task_struct that is being
2868 * constructed. Here we are modifying the current, active,
2869 * task_struct.
2870 */
9b32105e 2871int ksys_unshare(unsigned long unshare_flags)
cf2e340f 2872{
cf2e340f 2873 struct fs_struct *fs, *new_fs = NULL;
cf2e340f 2874 struct files_struct *fd, *new_fd = NULL;
b2e0d987 2875 struct cred *new_cred = NULL;
cf7b708c 2876 struct nsproxy *new_nsproxy = NULL;
9edff4ab 2877 int do_sysvsem = 0;
9bfb23fc 2878 int err;
cf2e340f 2879
b2e0d987 2880 /*
faf00da5
EB
2881 * If unsharing a user namespace must also unshare the thread group
2882 * and unshare the filesystem root and working directories.
b2e0d987
EB
2883 */
2884 if (unshare_flags & CLONE_NEWUSER)
e66eded8 2885 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
2886 /*
2887 * If unsharing vm, must also unshare signal handlers.
2888 */
2889 if (unshare_flags & CLONE_VM)
2890 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
2891 /*
2892 * If unsharing a signal handlers, must also unshare the signal queues.
2893 */
2894 if (unshare_flags & CLONE_SIGHAND)
2895 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
2896 /*
2897 * If unsharing namespace, must also unshare filesystem information.
2898 */
2899 if (unshare_flags & CLONE_NEWNS)
2900 unshare_flags |= CLONE_FS;
50804fe3
EB
2901
2902 err = check_unshare_flags(unshare_flags);
2903 if (err)
2904 goto bad_unshare_out;
6013f67f
MS
2905 /*
2906 * CLONE_NEWIPC must also detach from the undolist: after switching
2907 * to a new ipc namespace, the semaphore arrays from the old
2908 * namespace are unreachable.
2909 */
2910 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 2911 do_sysvsem = 1;
fb0a685c
DRO
2912 err = unshare_fs(unshare_flags, &new_fs);
2913 if (err)
9bfb23fc 2914 goto bad_unshare_out;
60997c3d 2915 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
fb0a685c 2916 if (err)
9bfb23fc 2917 goto bad_unshare_cleanup_fs;
b2e0d987 2918 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 2919 if (err)
9edff4ab 2920 goto bad_unshare_cleanup_fd;
b2e0d987
EB
2921 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2922 new_cred, new_fs);
2923 if (err)
2924 goto bad_unshare_cleanup_cred;
c0b2fc31 2925
b2e0d987 2926 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
2927 if (do_sysvsem) {
2928 /*
2929 * CLONE_SYSVSEM is equivalent to sys_exit().
2930 */
2931 exit_sem(current);
2932 }
ab602f79
JM
2933 if (unshare_flags & CLONE_NEWIPC) {
2934 /* Orphan segments in old ns (see sem above). */
2935 exit_shm(current);
2936 shm_init_task(current);
2937 }
ab516013 2938
6f977e6b 2939 if (new_nsproxy)
cf7b708c 2940 switch_task_namespaces(current, new_nsproxy);
cf2e340f 2941
cf7b708c
PE
2942 task_lock(current);
2943
cf2e340f
JD
2944 if (new_fs) {
2945 fs = current->fs;
2a4419b5 2946 spin_lock(&fs->lock);
cf2e340f 2947 current->fs = new_fs;
498052bb
AV
2948 if (--fs->users)
2949 new_fs = NULL;
2950 else
2951 new_fs = fs;
2a4419b5 2952 spin_unlock(&fs->lock);
cf2e340f
JD
2953 }
2954
cf2e340f
JD
2955 if (new_fd) {
2956 fd = current->files;
2957 current->files = new_fd;
2958 new_fd = fd;
2959 }
2960
2961 task_unlock(current);
b2e0d987
EB
2962
2963 if (new_cred) {
2964 /* Install the new user namespace */
2965 commit_creds(new_cred);
2966 new_cred = NULL;
2967 }
cf2e340f
JD
2968 }
2969
e4222673
HB
2970 perf_event_namespaces(current);
2971
b2e0d987
EB
2972bad_unshare_cleanup_cred:
2973 if (new_cred)
2974 put_cred(new_cred);
cf2e340f
JD
2975bad_unshare_cleanup_fd:
2976 if (new_fd)
2977 put_files_struct(new_fd);
2978
cf2e340f
JD
2979bad_unshare_cleanup_fs:
2980 if (new_fs)
498052bb 2981 free_fs_struct(new_fs);
cf2e340f 2982
cf2e340f
JD
2983bad_unshare_out:
2984 return err;
2985}
3b125388 2986
9b32105e
DB
2987SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2988{
2989 return ksys_unshare(unshare_flags);
2990}
2991
3b125388
AV
2992/*
2993 * Helper to unshare the files of the current task.
2994 * We don't want to expose copy_files internals to
2995 * the exec layer of the kernel.
2996 */
2997
2998int unshare_files(struct files_struct **displaced)
2999{
3000 struct task_struct *task = current;
50704516 3001 struct files_struct *copy = NULL;
3b125388
AV
3002 int error;
3003
60997c3d 3004 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3b125388
AV
3005 if (error || !copy) {
3006 *displaced = NULL;
3007 return error;
3008 }
3009 *displaced = task->files;
3010 task_lock(task);
3011 task->files = copy;
3012 task_unlock(task);
3013 return 0;
3014}
16db3d3f
HS
3015
3016int sysctl_max_threads(struct ctl_table *table, int write,
3017 void __user *buffer, size_t *lenp, loff_t *ppos)
3018{
3019 struct ctl_table t;
3020 int ret;
3021 int threads = max_threads;
b0f53dbc 3022 int min = 1;
16db3d3f
HS
3023 int max = MAX_THREADS;
3024
3025 t = *table;
3026 t.data = &threads;
3027 t.extra1 = &min;
3028 t.extra2 = &max;
3029
3030 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3031 if (ret || !write)
3032 return ret;
3033
b0f53dbc 3034 max_threads = threads;
16db3d3f
HS
3035
3036 return 0;
3037}