]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/futex.c
tuntap: properly align skb->head before building skb
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
84f001e1 64#include <linux/sched/wake_q.h>
6e84f315 65#include <linux/sched/mm.h>
13d60f4b 66#include <linux/hugetlb.h>
88c8004f 67#include <linux/freezer.h>
a52b89eb 68#include <linux/bootmem.h>
ab51fbab 69#include <linux/fault-inject.h>
b488893a 70
4732efbe 71#include <asm/futex.h>
1da177e4 72
1696a8be 73#include "locking/rtmutex_common.h"
c87e2837 74
99b60ce6 75/*
d7e8af1a
DB
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
99b60ce6
TG
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
99b60ce6
TG
87 *
88 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
99b60ce6 92 *
b0c29f79
DB
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 118 *
b0c29f79
DB
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
99b60ce6
TG
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
b0c29f79 127 *
d7e8af1a 128 * waiters++; (a)
8ad7b378
DB
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
99b60ce6 139 * if (uval == val)
b0c29f79 140 * queue();
99b60ce6 141 * unlock(hash_bucket(futex));
b0c29f79
DB
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
d7e8af1a
DB
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 146 *
d7e8af1a
DB
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
d7e8af1a
DB
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
174 */
175
03b8c7b6 176#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 177int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 178#endif
a0c1e907 179
b41277dc
DH
180/*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
784bdf3b
TG
184#ifdef CONFIG_MMU
185# define FLAGS_SHARED 0x01
186#else
187/*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191# define FLAGS_SHARED 0x00
192#endif
b41277dc
DH
193#define FLAGS_CLOCKRT 0x02
194#define FLAGS_HAS_TIMEOUT 0x04
195
c87e2837
IM
196/*
197 * Priority Inheritance state:
198 */
199struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
3859a271 215} __randomize_layout;
c87e2837 216
d8d88fbb
DH
217/**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 219 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
ac6424b9 228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 233 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
238 */
239struct futex_q {
ec92d082 240 struct plist_node list;
1da177e4 241
d8d88fbb 242 struct task_struct *task;
1da177e4 243 spinlock_t *lock_ptr;
1da177e4 244 union futex_key key;
c87e2837 245 struct futex_pi_state *pi_state;
52400ba9 246 struct rt_mutex_waiter *rt_waiter;
84bc4af5 247 union futex_key *requeue_pi_key;
cd689985 248 u32 bitset;
3859a271 249} __randomize_layout;
1da177e4 250
5bdb05f9
DH
251static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255};
256
1da177e4 257/*
b2d0994b
DH
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
1da177e4
LT
261 */
262struct futex_hash_bucket {
11d4616b 263 atomic_t waiters;
ec92d082
PP
264 spinlock_t lock;
265 struct plist_head chain;
a52b89eb 266} ____cacheline_aligned_in_smp;
1da177e4 267
ac742d37
RV
268/*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276} __futex_data __read_mostly __aligned(2*sizeof(long));
277#define futex_queues (__futex_data.queues)
278#define futex_hashsize (__futex_data.hashsize)
a52b89eb 279
1da177e4 280
ab51fbab
DB
281/*
282 * Fault injections for futexes.
283 */
284#ifdef CONFIG_FAIL_FUTEX
285
286static struct {
287 struct fault_attr attr;
288
621a5f7a 289 bool ignore_private;
ab51fbab
DB
290} fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 292 .ignore_private = false,
ab51fbab
DB
293};
294
295static int __init setup_fail_futex(char *str)
296{
297 return setup_fault_attr(&fail_futex.attr, str);
298}
299__setup("fail_futex=", setup_fail_futex);
300
5d285a7f 301static bool should_fail_futex(bool fshared)
ab51fbab
DB
302{
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307}
308
309#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311static int __init fail_futex_debugfs(void)
312{
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328}
329
330late_initcall(fail_futex_debugfs);
331
332#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334#else
335static inline bool should_fail_futex(bool fshared)
336{
337 return false;
338}
339#endif /* CONFIG_FAIL_FUTEX */
340
b0c29f79
DB
341static inline void futex_get_mm(union futex_key *key)
342{
f1f10076 343 mmgrab(key->private.mm);
b0c29f79
DB
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 347 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 348 */
4e857c58 349 smp_mb__after_atomic();
b0c29f79
DB
350}
351
11d4616b
LT
352/*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
356{
357#ifdef CONFIG_SMP
11d4616b 358 atomic_inc(&hb->waiters);
b0c29f79 359 /*
11d4616b 360 * Full barrier (A), see the ordering comment above.
b0c29f79 361 */
4e857c58 362 smp_mb__after_atomic();
11d4616b
LT
363#endif
364}
365
366/*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371{
372#ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374#endif
375}
b0c29f79 376
11d4616b
LT
377static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378{
379#ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
b0c29f79 381#else
11d4616b 382 return 1;
b0c29f79
DB
383#endif
384}
385
e8b61b3f
TG
386/**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
1da177e4
LT
392 */
393static struct futex_hash_bucket *hash_futex(union futex_key *key)
394{
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
a52b89eb 398 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
399}
400
e8b61b3f
TG
401
402/**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
1da177e4
LT
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409static inline int match_futex(union futex_key *key1, union futex_key *key2)
410{
2bc87203
DH
411 return (key1 && key2
412 && key1->both.word == key2->both.word
1da177e4
LT
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415}
416
38d47c1b
PZ
417/*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422static void get_futex_key_refs(union futex_key *key)
423{
424 if (!key->both.ptr)
425 return;
426
784bdf3b
TG
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
38d47c1b
PZ
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
8ad7b378 439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
440 break;
441 case FUT_OFF_MMSHARED:
8ad7b378 442 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 443 break;
76835b0e 444 default:
993b2ff2
DB
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
8ad7b378 450 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
451 }
452}
453
454/*
455 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
38d47c1b
PZ
459 */
460static void drop_futex_key_refs(union futex_key *key)
461{
90621c40
DH
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
38d47c1b 465 return;
90621c40 466 }
38d47c1b 467
784bdf3b
TG
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
38d47c1b
PZ
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479}
480
34f01cc1 481/**
d96ee56c
DH
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
9ea71503
SB
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
34f01cc1 488 *
6c23cbbd
RD
489 * Return: a negative error code or 0
490 *
7b4ff1ad 491 * The key words are stored in @key on success.
1da177e4 492 *
6131ffaa 493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
b2d0994b 497 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 498 */
64d1304a 499static int
9ea71503 500get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 501{
e2970f2f 502 unsigned long address = (unsigned long)uaddr;
1da177e4 503 struct mm_struct *mm = current->mm;
077fa7ae 504 struct page *page, *tail;
14d27abd 505 struct address_space *mapping;
9ea71503 506 int err, ro = 0;
1da177e4
LT
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
e2970f2f 511 key->both.offset = address % PAGE_SIZE;
34f01cc1 512 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 513 return -EINVAL;
e2970f2f 514 address -= key->both.offset;
1da177e4 515
5cdec2d8
LT
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
ab51fbab
DB
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
34f01cc1
ED
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
34f01cc1
ED
530 key->private.mm = mm;
531 key->private.address = address;
8ad7b378 532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
533 return 0;
534 }
1da177e4 535
38d47c1b 536again:
ab51fbab
DB
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
7485d0d3 541 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
38d47c1b
PZ
550 if (err < 0)
551 return err;
9ea71503
SB
552 else
553 err = 0;
38d47c1b 554
65d8fc77
MG
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
65d8fc77 572 */
077fa7ae 573 tail = page;
65d8fc77
MG
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
e6780f72 577 /*
14d27abd 578 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 590 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 591 */
65d8fc77
MG
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
602 unlock_page(page);
603 put_page(page);
65d8fc77 604
e6780f72
HD
605 if (shmem_swizzled)
606 goto again;
65d8fc77 607
e6780f72 608 return -EFAULT;
38d47c1b 609 }
1da177e4
LT
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
65d8fc77
MG
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
1da177e4
LT
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 619 * the object not the particular process.
1da177e4 620 */
14d27abd 621 if (PageAnon(page)) {
9ea71503
SB
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
ab51fbab 626 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
627 err = -EFAULT;
628 goto out;
629 }
630
38d47c1b 631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 632 key->private.mm = mm;
e2970f2f 633 key->private.address = address;
65d8fc77
MG
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
38d47c1b 637 } else {
65d8fc77
MG
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
48fb6f4d
MG
673 * truncated in parallel which is almost certainly an
674 * application bug. In such a case, just retry.
65d8fc77
MG
675 *
676 * We are not calling into get_futex_key_refs() in file-backed
677 * cases, therefore a successful atomic_inc return below will
678 * guarantee that get_futex_key() will still imply smp_mb(); (B).
679 */
48fb6f4d 680 if (!atomic_inc_not_zero(&inode->i_count)) {
65d8fc77
MG
681 rcu_read_unlock();
682 put_page(page);
683
684 goto again;
685 }
686
687 /* Should be impossible but lets be paranoid for now */
688 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689 err = -EFAULT;
690 rcu_read_unlock();
691 iput(inode);
692
693 goto out;
694 }
695
38d47c1b 696 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 697 key->shared.inode = inode;
077fa7ae 698 key->shared.pgoff = basepage_index(tail);
65d8fc77 699 rcu_read_unlock();
1da177e4
LT
700 }
701
9ea71503 702out:
14d27abd 703 put_page(page);
9ea71503 704 return err;
1da177e4
LT
705}
706
ae791a2d 707static inline void put_futex_key(union futex_key *key)
1da177e4 708{
38d47c1b 709 drop_futex_key_refs(key);
1da177e4
LT
710}
711
d96ee56c
DH
712/**
713 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
714 * @uaddr: pointer to faulting user space address
715 *
716 * Slow path to fixup the fault we just took in the atomic write
717 * access to @uaddr.
718 *
fb62db2b 719 * We have no generic implementation of a non-destructive write to the
d0725992
TG
720 * user address. We know that we faulted in the atomic pagefault
721 * disabled section so we can as well avoid the #PF overhead by
722 * calling get_user_pages() right away.
723 */
724static int fault_in_user_writeable(u32 __user *uaddr)
725{
722d0172
AK
726 struct mm_struct *mm = current->mm;
727 int ret;
728
729 down_read(&mm->mmap_sem);
2efaca92 730 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 731 FAULT_FLAG_WRITE, NULL);
722d0172
AK
732 up_read(&mm->mmap_sem);
733
d0725992
TG
734 return ret < 0 ? ret : 0;
735}
736
4b1c486b
DH
737/**
738 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
739 * @hb: the hash bucket the futex_q's reside in
740 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
741 *
742 * Must be called with the hb lock held.
743 */
744static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745 union futex_key *key)
746{
747 struct futex_q *this;
748
749 plist_for_each_entry(this, &hb->chain, list) {
750 if (match_futex(&this->key, key))
751 return this;
752 }
753 return NULL;
754}
755
37a9d912
ML
756static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757 u32 uval, u32 newval)
36cf3b5c 758{
37a9d912 759 int ret;
36cf3b5c
TG
760
761 pagefault_disable();
37a9d912 762 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
763 pagefault_enable();
764
37a9d912 765 return ret;
36cf3b5c
TG
766}
767
768static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
769{
770 int ret;
771
a866374a 772 pagefault_disable();
bd28b145 773 ret = __get_user(*dest, from);
a866374a 774 pagefault_enable();
1da177e4
LT
775
776 return ret ? -EFAULT : 0;
777}
778
c87e2837
IM
779
780/*
781 * PI code:
782 */
783static int refill_pi_state_cache(void)
784{
785 struct futex_pi_state *pi_state;
786
787 if (likely(current->pi_state_cache))
788 return 0;
789
4668edc3 790 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
791
792 if (!pi_state)
793 return -ENOMEM;
794
c87e2837
IM
795 INIT_LIST_HEAD(&pi_state->list);
796 /* pi_mutex gets initialized later */
797 pi_state->owner = NULL;
798 atomic_set(&pi_state->refcount, 1);
38d47c1b 799 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
800
801 current->pi_state_cache = pi_state;
802
803 return 0;
804}
805
bf92cf3a 806static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
807{
808 struct futex_pi_state *pi_state = current->pi_state_cache;
809
810 WARN_ON(!pi_state);
811 current->pi_state_cache = NULL;
812
813 return pi_state;
814}
815
bf92cf3a
PZ
816static void get_pi_state(struct futex_pi_state *pi_state)
817{
818 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
819}
820
30a6b803 821/*
29e9ee5d
TG
822 * Drops a reference to the pi_state object and frees or caches it
823 * when the last reference is gone.
30a6b803 824 */
29e9ee5d 825static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 826{
30a6b803
BS
827 if (!pi_state)
828 return;
829
c87e2837
IM
830 if (!atomic_dec_and_test(&pi_state->refcount))
831 return;
832
833 /*
834 * If pi_state->owner is NULL, the owner is most probably dying
835 * and has cleaned up the pi_state already
836 */
837 if (pi_state->owner) {
c74aef2d 838 struct task_struct *owner;
c87e2837 839
c74aef2d
PZ
840 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
841 owner = pi_state->owner;
842 if (owner) {
843 raw_spin_lock(&owner->pi_lock);
844 list_del_init(&pi_state->list);
845 raw_spin_unlock(&owner->pi_lock);
846 }
847 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
848 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
849 }
850
c74aef2d 851 if (current->pi_state_cache) {
c87e2837 852 kfree(pi_state);
c74aef2d 853 } else {
c87e2837
IM
854 /*
855 * pi_state->list is already empty.
856 * clear pi_state->owner.
857 * refcount is at 0 - put it back to 1.
858 */
859 pi_state->owner = NULL;
860 atomic_set(&pi_state->refcount, 1);
861 current->pi_state_cache = pi_state;
862 }
863}
864
865/*
866 * Look up the task based on what TID userspace gave us.
867 * We dont trust it.
868 */
bf92cf3a 869static struct task_struct *futex_find_get_task(pid_t pid)
c87e2837
IM
870{
871 struct task_struct *p;
872
d359b549 873 rcu_read_lock();
228ebcbe 874 p = find_task_by_vpid(pid);
7a0ea09a
MH
875 if (p)
876 get_task_struct(p);
a06381fe 877
d359b549 878 rcu_read_unlock();
c87e2837
IM
879
880 return p;
881}
882
bc2eecd7
NP
883#ifdef CONFIG_FUTEX_PI
884
c87e2837
IM
885/*
886 * This task is holding PI mutexes at exit time => bad.
887 * Kernel cleans up PI-state, but userspace is likely hosed.
888 * (Robust-futex cleanup is separate and might save the day for userspace.)
889 */
890void exit_pi_state_list(struct task_struct *curr)
891{
c87e2837
IM
892 struct list_head *next, *head = &curr->pi_state_list;
893 struct futex_pi_state *pi_state;
627371d7 894 struct futex_hash_bucket *hb;
38d47c1b 895 union futex_key key = FUTEX_KEY_INIT;
c87e2837 896
a0c1e907
TG
897 if (!futex_cmpxchg_enabled)
898 return;
c87e2837
IM
899 /*
900 * We are a ZOMBIE and nobody can enqueue itself on
901 * pi_state_list anymore, but we have to be careful
627371d7 902 * versus waiters unqueueing themselves:
c87e2837 903 */
1d615482 904 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
905 while (!list_empty(head)) {
906
907 next = head->next;
908 pi_state = list_entry(next, struct futex_pi_state, list);
909 key = pi_state->key;
627371d7 910 hb = hash_futex(&key);
1d615482 911 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 912
c87e2837 913 spin_lock(&hb->lock);
c74aef2d
PZ
914 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
915 raw_spin_lock(&curr->pi_lock);
627371d7
IM
916 /*
917 * We dropped the pi-lock, so re-check whether this
918 * task still owns the PI-state:
919 */
c87e2837 920 if (head->next != next) {
c74aef2d 921 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
922 spin_unlock(&hb->lock);
923 continue;
924 }
925
c87e2837 926 WARN_ON(pi_state->owner != curr);
627371d7
IM
927 WARN_ON(list_empty(&pi_state->list));
928 list_del_init(&pi_state->list);
c87e2837 929 pi_state->owner = NULL;
c74aef2d 930 raw_spin_unlock(&curr->pi_lock);
c87e2837 931
16ffa12d 932 get_pi_state(pi_state);
c74aef2d 933 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
934 spin_unlock(&hb->lock);
935
16ffa12d
PZ
936 rt_mutex_futex_unlock(&pi_state->pi_mutex);
937 put_pi_state(pi_state);
938
1d615482 939 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 940 }
1d615482 941 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
942}
943
bc2eecd7
NP
944#endif
945
54a21788
TG
946/*
947 * We need to check the following states:
948 *
949 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
950 *
951 * [1] NULL | --- | --- | 0 | 0/1 | Valid
952 * [2] NULL | --- | --- | >0 | 0/1 | Valid
953 *
954 * [3] Found | NULL | -- | Any | 0/1 | Invalid
955 *
956 * [4] Found | Found | NULL | 0 | 1 | Valid
957 * [5] Found | Found | NULL | >0 | 1 | Invalid
958 *
959 * [6] Found | Found | task | 0 | 1 | Valid
960 *
961 * [7] Found | Found | NULL | Any | 0 | Invalid
962 *
963 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
964 * [9] Found | Found | task | 0 | 0 | Invalid
965 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
966 *
967 * [1] Indicates that the kernel can acquire the futex atomically. We
968 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
969 *
970 * [2] Valid, if TID does not belong to a kernel thread. If no matching
971 * thread is found then it indicates that the owner TID has died.
972 *
973 * [3] Invalid. The waiter is queued on a non PI futex
974 *
975 * [4] Valid state after exit_robust_list(), which sets the user space
976 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
977 *
978 * [5] The user space value got manipulated between exit_robust_list()
979 * and exit_pi_state_list()
980 *
981 * [6] Valid state after exit_pi_state_list() which sets the new owner in
982 * the pi_state but cannot access the user space value.
983 *
984 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
985 *
986 * [8] Owner and user space value match
987 *
988 * [9] There is no transient state which sets the user space TID to 0
989 * except exit_robust_list(), but this is indicated by the
990 * FUTEX_OWNER_DIED bit. See [4]
991 *
992 * [10] There is no transient state which leaves owner and user space
993 * TID out of sync.
734009e9
PZ
994 *
995 *
996 * Serialization and lifetime rules:
997 *
998 * hb->lock:
999 *
1000 * hb -> futex_q, relation
1001 * futex_q -> pi_state, relation
1002 *
1003 * (cannot be raw because hb can contain arbitrary amount
1004 * of futex_q's)
1005 *
1006 * pi_mutex->wait_lock:
1007 *
1008 * {uval, pi_state}
1009 *
1010 * (and pi_mutex 'obviously')
1011 *
1012 * p->pi_lock:
1013 *
1014 * p->pi_state_list -> pi_state->list, relation
1015 *
1016 * pi_state->refcount:
1017 *
1018 * pi_state lifetime
1019 *
1020 *
1021 * Lock order:
1022 *
1023 * hb->lock
1024 * pi_mutex->wait_lock
1025 * p->pi_lock
1026 *
54a21788 1027 */
e60cbc5c
TG
1028
1029/*
1030 * Validate that the existing waiter has a pi_state and sanity check
1031 * the pi_state against the user space value. If correct, attach to
1032 * it.
1033 */
734009e9
PZ
1034static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1035 struct futex_pi_state *pi_state,
e60cbc5c 1036 struct futex_pi_state **ps)
c87e2837 1037{
778e9a9c 1038 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1039 u32 uval2;
1040 int ret;
c87e2837 1041
e60cbc5c
TG
1042 /*
1043 * Userspace might have messed up non-PI and PI futexes [3]
1044 */
1045 if (unlikely(!pi_state))
1046 return -EINVAL;
06a9ec29 1047
734009e9
PZ
1048 /*
1049 * We get here with hb->lock held, and having found a
1050 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1051 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1052 * which in turn means that futex_lock_pi() still has a reference on
1053 * our pi_state.
16ffa12d
PZ
1054 *
1055 * The waiter holding a reference on @pi_state also protects against
1056 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1057 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1058 * free pi_state before we can take a reference ourselves.
734009e9 1059 */
e60cbc5c 1060 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 1061
734009e9
PZ
1062 /*
1063 * Now that we have a pi_state, we can acquire wait_lock
1064 * and do the state validation.
1065 */
1066 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1067
1068 /*
1069 * Since {uval, pi_state} is serialized by wait_lock, and our current
1070 * uval was read without holding it, it can have changed. Verify it
1071 * still is what we expect it to be, otherwise retry the entire
1072 * operation.
1073 */
1074 if (get_futex_value_locked(&uval2, uaddr))
1075 goto out_efault;
1076
1077 if (uval != uval2)
1078 goto out_eagain;
1079
e60cbc5c
TG
1080 /*
1081 * Handle the owner died case:
1082 */
1083 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1084 /*
e60cbc5c
TG
1085 * exit_pi_state_list sets owner to NULL and wakes the
1086 * topmost waiter. The task which acquires the
1087 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1088 */
e60cbc5c 1089 if (!pi_state->owner) {
59647b6a 1090 /*
e60cbc5c
TG
1091 * No pi state owner, but the user space TID
1092 * is not 0. Inconsistent state. [5]
59647b6a 1093 */
e60cbc5c 1094 if (pid)
734009e9 1095 goto out_einval;
bd1dbcc6 1096 /*
e60cbc5c 1097 * Take a ref on the state and return success. [4]
866293ee 1098 */
734009e9 1099 goto out_attach;
c87e2837 1100 }
bd1dbcc6
TG
1101
1102 /*
e60cbc5c
TG
1103 * If TID is 0, then either the dying owner has not
1104 * yet executed exit_pi_state_list() or some waiter
1105 * acquired the rtmutex in the pi state, but did not
1106 * yet fixup the TID in user space.
1107 *
1108 * Take a ref on the state and return success. [6]
1109 */
1110 if (!pid)
734009e9 1111 goto out_attach;
e60cbc5c
TG
1112 } else {
1113 /*
1114 * If the owner died bit is not set, then the pi_state
1115 * must have an owner. [7]
bd1dbcc6 1116 */
e60cbc5c 1117 if (!pi_state->owner)
734009e9 1118 goto out_einval;
c87e2837
IM
1119 }
1120
e60cbc5c
TG
1121 /*
1122 * Bail out if user space manipulated the futex value. If pi
1123 * state exists then the owner TID must be the same as the
1124 * user space TID. [9/10]
1125 */
1126 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1127 goto out_einval;
1128
1129out_attach:
bf92cf3a 1130 get_pi_state(pi_state);
734009e9 1131 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1132 *ps = pi_state;
1133 return 0;
734009e9
PZ
1134
1135out_einval:
1136 ret = -EINVAL;
1137 goto out_error;
1138
1139out_eagain:
1140 ret = -EAGAIN;
1141 goto out_error;
1142
1143out_efault:
1144 ret = -EFAULT;
1145 goto out_error;
1146
1147out_error:
1148 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1149 return ret;
e60cbc5c
TG
1150}
1151
04e1b2e5
TG
1152/*
1153 * Lookup the task for the TID provided from user space and attach to
1154 * it after doing proper sanity checks.
1155 */
1156static int attach_to_pi_owner(u32 uval, union futex_key *key,
1157 struct futex_pi_state **ps)
e60cbc5c 1158{
e60cbc5c 1159 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1160 struct futex_pi_state *pi_state;
1161 struct task_struct *p;
e60cbc5c 1162
c87e2837 1163 /*
e3f2ddea 1164 * We are the first waiter - try to look up the real owner and attach
54a21788 1165 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 1166 */
778e9a9c 1167 if (!pid)
e3f2ddea 1168 return -ESRCH;
c87e2837 1169 p = futex_find_get_task(pid);
7a0ea09a
MH
1170 if (!p)
1171 return -ESRCH;
778e9a9c 1172
a2129464 1173 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1174 put_task_struct(p);
1175 return -EPERM;
1176 }
1177
778e9a9c
AK
1178 /*
1179 * We need to look at the task state flags to figure out,
1180 * whether the task is exiting. To protect against the do_exit
1181 * change of the task flags, we do this protected by
1182 * p->pi_lock:
1183 */
1d615482 1184 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1185 if (unlikely(p->flags & PF_EXITING)) {
1186 /*
1187 * The task is on the way out. When PF_EXITPIDONE is
1188 * set, we know that the task has finished the
1189 * cleanup:
1190 */
1191 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1192
1d615482 1193 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1194 put_task_struct(p);
1195 return ret;
1196 }
c87e2837 1197
54a21788
TG
1198 /*
1199 * No existing pi state. First waiter. [2]
734009e9
PZ
1200 *
1201 * This creates pi_state, we have hb->lock held, this means nothing can
1202 * observe this state, wait_lock is irrelevant.
54a21788 1203 */
c87e2837
IM
1204 pi_state = alloc_pi_state();
1205
1206 /*
04e1b2e5 1207 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1208 * the owner of it:
1209 */
1210 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1211
1212 /* Store the key for possible exit cleanups: */
d0aa7a70 1213 pi_state->key = *key;
c87e2837 1214
627371d7 1215 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1216 list_add(&pi_state->list, &p->pi_state_list);
c74aef2d
PZ
1217 /*
1218 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1219 * because there is no concurrency as the object is not published yet.
1220 */
c87e2837 1221 pi_state->owner = p;
1d615482 1222 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1223
1224 put_task_struct(p);
1225
d0aa7a70 1226 *ps = pi_state;
c87e2837
IM
1227
1228 return 0;
1229}
1230
734009e9
PZ
1231static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1232 struct futex_hash_bucket *hb,
04e1b2e5
TG
1233 union futex_key *key, struct futex_pi_state **ps)
1234{
499f5aca 1235 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1236
1237 /*
1238 * If there is a waiter on that futex, validate it and
1239 * attach to the pi_state when the validation succeeds.
1240 */
499f5aca 1241 if (top_waiter)
734009e9 1242 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1243
1244 /*
1245 * We are the first waiter - try to look up the owner based on
1246 * @uval and attach to it.
1247 */
1248 return attach_to_pi_owner(uval, key, ps);
1249}
1250
af54d6a1
TG
1251static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1252{
1253 u32 uninitialized_var(curval);
1254
ab51fbab
DB
1255 if (unlikely(should_fail_futex(true)))
1256 return -EFAULT;
1257
af54d6a1
TG
1258 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1259 return -EFAULT;
1260
734009e9 1261 /* If user space value changed, let the caller retry */
af54d6a1
TG
1262 return curval != uval ? -EAGAIN : 0;
1263}
1264
1a52084d 1265/**
d96ee56c 1266 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1267 * @uaddr: the pi futex user address
1268 * @hb: the pi futex hash bucket
1269 * @key: the futex key associated with uaddr and hb
1270 * @ps: the pi_state pointer where we store the result of the
1271 * lookup
1272 * @task: the task to perform the atomic lock work for. This will
1273 * be "current" except in the case of requeue pi.
1274 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1275 *
6c23cbbd 1276 * Return:
7b4ff1ad
MCC
1277 * - 0 - ready to wait;
1278 * - 1 - acquired the lock;
1279 * - <0 - error
1a52084d
DH
1280 *
1281 * The hb->lock and futex_key refs shall be held by the caller.
1282 */
1283static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1284 union futex_key *key,
1285 struct futex_pi_state **ps,
bab5bc9e 1286 struct task_struct *task, int set_waiters)
1a52084d 1287{
af54d6a1 1288 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1289 struct futex_q *top_waiter;
af54d6a1 1290 int ret;
1a52084d
DH
1291
1292 /*
af54d6a1
TG
1293 * Read the user space value first so we can validate a few
1294 * things before proceeding further.
1a52084d 1295 */
af54d6a1 1296 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1297 return -EFAULT;
1298
ab51fbab
DB
1299 if (unlikely(should_fail_futex(true)))
1300 return -EFAULT;
1301
1a52084d
DH
1302 /*
1303 * Detect deadlocks.
1304 */
af54d6a1 1305 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1306 return -EDEADLK;
1307
ab51fbab
DB
1308 if ((unlikely(should_fail_futex(true))))
1309 return -EDEADLK;
1310
1a52084d 1311 /*
af54d6a1
TG
1312 * Lookup existing state first. If it exists, try to attach to
1313 * its pi_state.
1a52084d 1314 */
499f5aca
PZ
1315 top_waiter = futex_top_waiter(hb, key);
1316 if (top_waiter)
734009e9 1317 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1318
1319 /*
af54d6a1
TG
1320 * No waiter and user TID is 0. We are here because the
1321 * waiters or the owner died bit is set or called from
1322 * requeue_cmp_pi or for whatever reason something took the
1323 * syscall.
1a52084d 1324 */
af54d6a1 1325 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1326 /*
af54d6a1
TG
1327 * We take over the futex. No other waiters and the user space
1328 * TID is 0. We preserve the owner died bit.
59fa6245 1329 */
af54d6a1
TG
1330 newval = uval & FUTEX_OWNER_DIED;
1331 newval |= vpid;
1a52084d 1332
af54d6a1
TG
1333 /* The futex requeue_pi code can enforce the waiters bit */
1334 if (set_waiters)
1335 newval |= FUTEX_WAITERS;
1336
1337 ret = lock_pi_update_atomic(uaddr, uval, newval);
1338 /* If the take over worked, return 1 */
1339 return ret < 0 ? ret : 1;
1340 }
1a52084d
DH
1341
1342 /*
af54d6a1
TG
1343 * First waiter. Set the waiters bit before attaching ourself to
1344 * the owner. If owner tries to unlock, it will be forced into
1345 * the kernel and blocked on hb->lock.
1a52084d 1346 */
af54d6a1
TG
1347 newval = uval | FUTEX_WAITERS;
1348 ret = lock_pi_update_atomic(uaddr, uval, newval);
1349 if (ret)
1350 return ret;
1a52084d 1351 /*
af54d6a1
TG
1352 * If the update of the user space value succeeded, we try to
1353 * attach to the owner. If that fails, no harm done, we only
1354 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1355 */
af54d6a1 1356 return attach_to_pi_owner(uval, key, ps);
1a52084d
DH
1357}
1358
2e12978a
LJ
1359/**
1360 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1361 * @q: The futex_q to unqueue
1362 *
1363 * The q->lock_ptr must not be NULL and must be held by the caller.
1364 */
1365static void __unqueue_futex(struct futex_q *q)
1366{
1367 struct futex_hash_bucket *hb;
1368
29096202
SR
1369 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1370 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1371 return;
1372
1373 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1374 plist_del(&q->list, &hb->chain);
11d4616b 1375 hb_waiters_dec(hb);
2e12978a
LJ
1376}
1377
1da177e4
LT
1378/*
1379 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1380 * Afterwards, the futex_q must not be accessed. Callers
1381 * must ensure to later call wake_up_q() for the actual
1382 * wakeups to occur.
1da177e4 1383 */
1d0dcb3a 1384static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1385{
f1a11e05
TG
1386 struct task_struct *p = q->task;
1387
aa10990e
DH
1388 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1389 return;
1390
1da177e4 1391 /*
1d0dcb3a
DB
1392 * Queue the task for later wakeup for after we've released
1393 * the hb->lock. wake_q_add() grabs reference to p.
1da177e4 1394 */
1d0dcb3a 1395 wake_q_add(wake_q, p);
2e12978a 1396 __unqueue_futex(q);
1da177e4 1397 /*
38fcd06e
DHV
1398 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1399 * is written, without taking any locks. This is possible in the event
1400 * of a spurious wakeup, for example. A memory barrier is required here
1401 * to prevent the following store to lock_ptr from getting ahead of the
1402 * plist_del in __unqueue_futex().
1da177e4 1403 */
1b367ece 1404 smp_store_release(&q->lock_ptr, NULL);
1da177e4
LT
1405}
1406
16ffa12d
PZ
1407/*
1408 * Caller must hold a reference on @pi_state.
1409 */
1410static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1411{
7cfdaf38 1412 u32 uninitialized_var(curval), newval;
16ffa12d 1413 struct task_struct *new_owner;
aa2bfe55 1414 bool postunlock = false;
194a6b5b 1415 DEFINE_WAKE_Q(wake_q);
13fbca4c 1416 int ret = 0;
c87e2837 1417
c87e2837 1418 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1419 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1420 /*
bebe5b51 1421 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1422 *
1423 * When this happens, give up our locks and try again, giving
1424 * the futex_lock_pi() instance time to complete, either by
1425 * waiting on the rtmutex or removing itself from the futex
1426 * queue.
1427 */
1428 ret = -EAGAIN;
1429 goto out_unlock;
73d786bd 1430 }
c87e2837
IM
1431
1432 /*
16ffa12d
PZ
1433 * We pass it to the next owner. The WAITERS bit is always kept
1434 * enabled while there is PI state around. We cleanup the owner
1435 * died bit, because we are the owner.
c87e2837 1436 */
13fbca4c 1437 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1438
ab51fbab
DB
1439 if (unlikely(should_fail_futex(true)))
1440 ret = -EFAULT;
1441
89e9e66b 1442 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
13fbca4c 1443 ret = -EFAULT;
734009e9 1444
89e9e66b
SAS
1445 } else if (curval != uval) {
1446 /*
1447 * If a unconditional UNLOCK_PI operation (user space did not
1448 * try the TID->0 transition) raced with a waiter setting the
1449 * FUTEX_WAITERS flag between get_user() and locking the hash
1450 * bucket lock, retry the operation.
1451 */
1452 if ((FUTEX_TID_MASK & curval) == uval)
1453 ret = -EAGAIN;
1454 else
1455 ret = -EINVAL;
1456 }
734009e9 1457
16ffa12d
PZ
1458 if (ret)
1459 goto out_unlock;
c87e2837 1460
94ffac5d
PZ
1461 /*
1462 * This is a point of no return; once we modify the uval there is no
1463 * going back and subsequent operations must not fail.
1464 */
1465
b4abf910 1466 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1467 WARN_ON(list_empty(&pi_state->list));
1468 list_del_init(&pi_state->list);
b4abf910 1469 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1470
b4abf910 1471 raw_spin_lock(&new_owner->pi_lock);
627371d7 1472 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1473 list_add(&pi_state->list, &new_owner->pi_state_list);
1474 pi_state->owner = new_owner;
b4abf910 1475 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1476
aa2bfe55 1477 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
5293c2ef 1478
16ffa12d 1479out_unlock:
5293c2ef 1480 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1481
aa2bfe55
PZ
1482 if (postunlock)
1483 rt_mutex_postunlock(&wake_q);
c87e2837 1484
16ffa12d 1485 return ret;
c87e2837
IM
1486}
1487
8b8f319f
IM
1488/*
1489 * Express the locking dependencies for lockdep:
1490 */
1491static inline void
1492double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1493{
1494 if (hb1 <= hb2) {
1495 spin_lock(&hb1->lock);
1496 if (hb1 < hb2)
1497 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1498 } else { /* hb1 > hb2 */
1499 spin_lock(&hb2->lock);
1500 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1501 }
1502}
1503
5eb3dc62
DH
1504static inline void
1505double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1506{
f061d351 1507 spin_unlock(&hb1->lock);
88f502fe
IM
1508 if (hb1 != hb2)
1509 spin_unlock(&hb2->lock);
5eb3dc62
DH
1510}
1511
1da177e4 1512/*
b2d0994b 1513 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1514 */
b41277dc
DH
1515static int
1516futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1517{
e2970f2f 1518 struct futex_hash_bucket *hb;
1da177e4 1519 struct futex_q *this, *next;
38d47c1b 1520 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1521 int ret;
194a6b5b 1522 DEFINE_WAKE_Q(wake_q);
1da177e4 1523
cd689985
TG
1524 if (!bitset)
1525 return -EINVAL;
1526
9ea71503 1527 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1528 if (unlikely(ret != 0))
1529 goto out;
1530
e2970f2f 1531 hb = hash_futex(&key);
b0c29f79
DB
1532
1533 /* Make sure we really have tasks to wakeup */
1534 if (!hb_waiters_pending(hb))
1535 goto out_put_key;
1536
e2970f2f 1537 spin_lock(&hb->lock);
1da177e4 1538
0d00c7b2 1539 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1540 if (match_futex (&this->key, &key)) {
52400ba9 1541 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1542 ret = -EINVAL;
1543 break;
1544 }
cd689985
TG
1545
1546 /* Check if one of the bits is set in both bitsets */
1547 if (!(this->bitset & bitset))
1548 continue;
1549
1d0dcb3a 1550 mark_wake_futex(&wake_q, this);
1da177e4
LT
1551 if (++ret >= nr_wake)
1552 break;
1553 }
1554 }
1555
e2970f2f 1556 spin_unlock(&hb->lock);
1d0dcb3a 1557 wake_up_q(&wake_q);
b0c29f79 1558out_put_key:
ae791a2d 1559 put_futex_key(&key);
42d35d48 1560out:
1da177e4
LT
1561 return ret;
1562}
1563
30d6e0a4
JS
1564static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1565{
1566 unsigned int op = (encoded_op & 0x70000000) >> 28;
1567 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1568 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 12);
1569 int cmparg = sign_extend32(encoded_op & 0x00000fff, 12);
1570 int oldval, ret;
1571
1572 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1573 if (oparg < 0 || oparg > 31)
1574 return -EINVAL;
1575 oparg = 1 << oparg;
1576 }
1577
1578 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1579 return -EFAULT;
1580
1581 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1582 if (ret)
1583 return ret;
1584
1585 switch (cmp) {
1586 case FUTEX_OP_CMP_EQ:
1587 return oldval == cmparg;
1588 case FUTEX_OP_CMP_NE:
1589 return oldval != cmparg;
1590 case FUTEX_OP_CMP_LT:
1591 return oldval < cmparg;
1592 case FUTEX_OP_CMP_GE:
1593 return oldval >= cmparg;
1594 case FUTEX_OP_CMP_LE:
1595 return oldval <= cmparg;
1596 case FUTEX_OP_CMP_GT:
1597 return oldval > cmparg;
1598 default:
1599 return -ENOSYS;
1600 }
1601}
1602
4732efbe
JJ
1603/*
1604 * Wake up all waiters hashed on the physical page that is mapped
1605 * to this virtual address:
1606 */
e2970f2f 1607static int
b41277dc 1608futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1609 int nr_wake, int nr_wake2, int op)
4732efbe 1610{
38d47c1b 1611 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1612 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1613 struct futex_q *this, *next;
e4dc5b7a 1614 int ret, op_ret;
194a6b5b 1615 DEFINE_WAKE_Q(wake_q);
4732efbe 1616
e4dc5b7a 1617retry:
9ea71503 1618 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1619 if (unlikely(ret != 0))
1620 goto out;
9ea71503 1621 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1622 if (unlikely(ret != 0))
42d35d48 1623 goto out_put_key1;
4732efbe 1624
e2970f2f
IM
1625 hb1 = hash_futex(&key1);
1626 hb2 = hash_futex(&key2);
4732efbe 1627
e4dc5b7a 1628retry_private:
eaaea803 1629 double_lock_hb(hb1, hb2);
e2970f2f 1630 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1631 if (unlikely(op_ret < 0)) {
4732efbe 1632
5eb3dc62 1633 double_unlock_hb(hb1, hb2);
4732efbe 1634
7ee1dd3f 1635#ifndef CONFIG_MMU
e2970f2f
IM
1636 /*
1637 * we don't get EFAULT from MMU faults if we don't have an MMU,
1638 * but we might get them from range checking
1639 */
7ee1dd3f 1640 ret = op_ret;
42d35d48 1641 goto out_put_keys;
7ee1dd3f
DH
1642#endif
1643
796f8d9b
DG
1644 if (unlikely(op_ret != -EFAULT)) {
1645 ret = op_ret;
42d35d48 1646 goto out_put_keys;
796f8d9b
DG
1647 }
1648
d0725992 1649 ret = fault_in_user_writeable(uaddr2);
4732efbe 1650 if (ret)
de87fcc1 1651 goto out_put_keys;
4732efbe 1652
b41277dc 1653 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1654 goto retry_private;
1655
ae791a2d
TG
1656 put_futex_key(&key2);
1657 put_futex_key(&key1);
e4dc5b7a 1658 goto retry;
4732efbe
JJ
1659 }
1660
0d00c7b2 1661 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1662 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1663 if (this->pi_state || this->rt_waiter) {
1664 ret = -EINVAL;
1665 goto out_unlock;
1666 }
1d0dcb3a 1667 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1668 if (++ret >= nr_wake)
1669 break;
1670 }
1671 }
1672
1673 if (op_ret > 0) {
4732efbe 1674 op_ret = 0;
0d00c7b2 1675 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1676 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1677 if (this->pi_state || this->rt_waiter) {
1678 ret = -EINVAL;
1679 goto out_unlock;
1680 }
1d0dcb3a 1681 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1682 if (++op_ret >= nr_wake2)
1683 break;
1684 }
1685 }
1686 ret += op_ret;
1687 }
1688
aa10990e 1689out_unlock:
5eb3dc62 1690 double_unlock_hb(hb1, hb2);
1d0dcb3a 1691 wake_up_q(&wake_q);
42d35d48 1692out_put_keys:
ae791a2d 1693 put_futex_key(&key2);
42d35d48 1694out_put_key1:
ae791a2d 1695 put_futex_key(&key1);
42d35d48 1696out:
4732efbe
JJ
1697 return ret;
1698}
1699
9121e478
DH
1700/**
1701 * requeue_futex() - Requeue a futex_q from one hb to another
1702 * @q: the futex_q to requeue
1703 * @hb1: the source hash_bucket
1704 * @hb2: the target hash_bucket
1705 * @key2: the new key for the requeued futex_q
1706 */
1707static inline
1708void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1709 struct futex_hash_bucket *hb2, union futex_key *key2)
1710{
1711
1712 /*
1713 * If key1 and key2 hash to the same bucket, no need to
1714 * requeue.
1715 */
1716 if (likely(&hb1->chain != &hb2->chain)) {
1717 plist_del(&q->list, &hb1->chain);
11d4616b 1718 hb_waiters_dec(hb1);
11d4616b 1719 hb_waiters_inc(hb2);
fe1bce9e 1720 plist_add(&q->list, &hb2->chain);
9121e478 1721 q->lock_ptr = &hb2->lock;
9121e478
DH
1722 }
1723 get_futex_key_refs(key2);
1724 q->key = *key2;
1725}
1726
52400ba9
DH
1727/**
1728 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1729 * @q: the futex_q
1730 * @key: the key of the requeue target futex
1731 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1732 *
1733 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1734 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1735 * to the requeue target futex so the waiter can detect the wakeup on the right
1736 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1737 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1738 * to protect access to the pi_state to fixup the owner later. Must be called
1739 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1740 */
1741static inline
beda2c7e
DH
1742void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1743 struct futex_hash_bucket *hb)
52400ba9 1744{
52400ba9
DH
1745 get_futex_key_refs(key);
1746 q->key = *key;
1747
2e12978a 1748 __unqueue_futex(q);
52400ba9
DH
1749
1750 WARN_ON(!q->rt_waiter);
1751 q->rt_waiter = NULL;
1752
beda2c7e 1753 q->lock_ptr = &hb->lock;
beda2c7e 1754
f1a11e05 1755 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1756}
1757
1758/**
1759 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1760 * @pifutex: the user address of the to futex
1761 * @hb1: the from futex hash bucket, must be locked by the caller
1762 * @hb2: the to futex hash bucket, must be locked by the caller
1763 * @key1: the from futex key
1764 * @key2: the to futex key
1765 * @ps: address to store the pi_state pointer
1766 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1767 *
1768 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1769 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1770 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1771 * hb1 and hb2 must be held by the caller.
52400ba9 1772 *
6c23cbbd 1773 * Return:
7b4ff1ad
MCC
1774 * - 0 - failed to acquire the lock atomically;
1775 * - >0 - acquired the lock, return value is vpid of the top_waiter
1776 * - <0 - error
52400ba9
DH
1777 */
1778static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1779 struct futex_hash_bucket *hb1,
1780 struct futex_hash_bucket *hb2,
1781 union futex_key *key1, union futex_key *key2,
bab5bc9e 1782 struct futex_pi_state **ps, int set_waiters)
52400ba9 1783{
bab5bc9e 1784 struct futex_q *top_waiter = NULL;
52400ba9 1785 u32 curval;
866293ee 1786 int ret, vpid;
52400ba9
DH
1787
1788 if (get_futex_value_locked(&curval, pifutex))
1789 return -EFAULT;
1790
ab51fbab
DB
1791 if (unlikely(should_fail_futex(true)))
1792 return -EFAULT;
1793
bab5bc9e
DH
1794 /*
1795 * Find the top_waiter and determine if there are additional waiters.
1796 * If the caller intends to requeue more than 1 waiter to pifutex,
1797 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1798 * as we have means to handle the possible fault. If not, don't set
1799 * the bit unecessarily as it will force the subsequent unlock to enter
1800 * the kernel.
1801 */
52400ba9
DH
1802 top_waiter = futex_top_waiter(hb1, key1);
1803
1804 /* There are no waiters, nothing for us to do. */
1805 if (!top_waiter)
1806 return 0;
1807
84bc4af5
DH
1808 /* Ensure we requeue to the expected futex. */
1809 if (!match_futex(top_waiter->requeue_pi_key, key2))
1810 return -EINVAL;
1811
52400ba9 1812 /*
bab5bc9e
DH
1813 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1814 * the contended case or if set_waiters is 1. The pi_state is returned
1815 * in ps in contended cases.
52400ba9 1816 */
866293ee 1817 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1818 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1819 set_waiters);
866293ee 1820 if (ret == 1) {
beda2c7e 1821 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1822 return vpid;
1823 }
52400ba9
DH
1824 return ret;
1825}
1826
1827/**
1828 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1829 * @uaddr1: source futex user address
b41277dc 1830 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1831 * @uaddr2: target futex user address
1832 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1833 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1834 * @cmpval: @uaddr1 expected value (or %NULL)
1835 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1836 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1837 *
1838 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1839 * uaddr2 atomically on behalf of the top waiter.
1840 *
6c23cbbd 1841 * Return:
7b4ff1ad
MCC
1842 * - >=0 - on success, the number of tasks requeued or woken;
1843 * - <0 - on error
1da177e4 1844 */
b41277dc
DH
1845static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1846 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1847 u32 *cmpval, int requeue_pi)
1da177e4 1848{
38d47c1b 1849 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1850 int drop_count = 0, task_count = 0, ret;
1851 struct futex_pi_state *pi_state = NULL;
e2970f2f 1852 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1853 struct futex_q *this, *next;
194a6b5b 1854 DEFINE_WAKE_Q(wake_q);
52400ba9 1855
bc2eecd7
NP
1856 /*
1857 * When PI not supported: return -ENOSYS if requeue_pi is true,
1858 * consequently the compiler knows requeue_pi is always false past
1859 * this point which will optimize away all the conditional code
1860 * further down.
1861 */
1862 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1863 return -ENOSYS;
1864
52400ba9 1865 if (requeue_pi) {
e9c243a5
TG
1866 /*
1867 * Requeue PI only works on two distinct uaddrs. This
1868 * check is only valid for private futexes. See below.
1869 */
1870 if (uaddr1 == uaddr2)
1871 return -EINVAL;
1872
52400ba9
DH
1873 /*
1874 * requeue_pi requires a pi_state, try to allocate it now
1875 * without any locks in case it fails.
1876 */
1877 if (refill_pi_state_cache())
1878 return -ENOMEM;
1879 /*
1880 * requeue_pi must wake as many tasks as it can, up to nr_wake
1881 * + nr_requeue, since it acquires the rt_mutex prior to
1882 * returning to userspace, so as to not leave the rt_mutex with
1883 * waiters and no owner. However, second and third wake-ups
1884 * cannot be predicted as they involve race conditions with the
1885 * first wake and a fault while looking up the pi_state. Both
1886 * pthread_cond_signal() and pthread_cond_broadcast() should
1887 * use nr_wake=1.
1888 */
1889 if (nr_wake != 1)
1890 return -EINVAL;
1891 }
1da177e4 1892
42d35d48 1893retry:
9ea71503 1894 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1895 if (unlikely(ret != 0))
1896 goto out;
9ea71503
SB
1897 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1898 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1899 if (unlikely(ret != 0))
42d35d48 1900 goto out_put_key1;
1da177e4 1901
e9c243a5
TG
1902 /*
1903 * The check above which compares uaddrs is not sufficient for
1904 * shared futexes. We need to compare the keys:
1905 */
1906 if (requeue_pi && match_futex(&key1, &key2)) {
1907 ret = -EINVAL;
1908 goto out_put_keys;
1909 }
1910
e2970f2f
IM
1911 hb1 = hash_futex(&key1);
1912 hb2 = hash_futex(&key2);
1da177e4 1913
e4dc5b7a 1914retry_private:
69cd9eba 1915 hb_waiters_inc(hb2);
8b8f319f 1916 double_lock_hb(hb1, hb2);
1da177e4 1917
e2970f2f
IM
1918 if (likely(cmpval != NULL)) {
1919 u32 curval;
1da177e4 1920
e2970f2f 1921 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1922
1923 if (unlikely(ret)) {
5eb3dc62 1924 double_unlock_hb(hb1, hb2);
69cd9eba 1925 hb_waiters_dec(hb2);
1da177e4 1926
e2970f2f 1927 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1928 if (ret)
1929 goto out_put_keys;
1da177e4 1930
b41277dc 1931 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1932 goto retry_private;
1da177e4 1933
ae791a2d
TG
1934 put_futex_key(&key2);
1935 put_futex_key(&key1);
e4dc5b7a 1936 goto retry;
1da177e4 1937 }
e2970f2f 1938 if (curval != *cmpval) {
1da177e4
LT
1939 ret = -EAGAIN;
1940 goto out_unlock;
1941 }
1942 }
1943
52400ba9 1944 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1945 /*
1946 * Attempt to acquire uaddr2 and wake the top waiter. If we
1947 * intend to requeue waiters, force setting the FUTEX_WAITERS
1948 * bit. We force this here where we are able to easily handle
1949 * faults rather in the requeue loop below.
1950 */
52400ba9 1951 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1952 &key2, &pi_state, nr_requeue);
52400ba9
DH
1953
1954 /*
1955 * At this point the top_waiter has either taken uaddr2 or is
1956 * waiting on it. If the former, then the pi_state will not
1957 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1958 * reference to it. If the lock was taken, ret contains the
1959 * vpid of the top waiter task.
ecb38b78
TG
1960 * If the lock was not taken, we have pi_state and an initial
1961 * refcount on it. In case of an error we have nothing.
52400ba9 1962 */
866293ee 1963 if (ret > 0) {
52400ba9 1964 WARN_ON(pi_state);
89061d3d 1965 drop_count++;
52400ba9 1966 task_count++;
866293ee 1967 /*
ecb38b78
TG
1968 * If we acquired the lock, then the user space value
1969 * of uaddr2 should be vpid. It cannot be changed by
1970 * the top waiter as it is blocked on hb2 lock if it
1971 * tries to do so. If something fiddled with it behind
1972 * our back the pi state lookup might unearth it. So
1973 * we rather use the known value than rereading and
1974 * handing potential crap to lookup_pi_state.
1975 *
1976 * If that call succeeds then we have pi_state and an
1977 * initial refcount on it.
866293ee 1978 */
734009e9 1979 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
52400ba9
DH
1980 }
1981
1982 switch (ret) {
1983 case 0:
ecb38b78 1984 /* We hold a reference on the pi state. */
52400ba9 1985 break;
4959f2de
TG
1986
1987 /* If the above failed, then pi_state is NULL */
52400ba9
DH
1988 case -EFAULT:
1989 double_unlock_hb(hb1, hb2);
69cd9eba 1990 hb_waiters_dec(hb2);
ae791a2d
TG
1991 put_futex_key(&key2);
1992 put_futex_key(&key1);
d0725992 1993 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1994 if (!ret)
1995 goto retry;
1996 goto out;
1997 case -EAGAIN:
af54d6a1
TG
1998 /*
1999 * Two reasons for this:
2000 * - Owner is exiting and we just wait for the
2001 * exit to complete.
2002 * - The user space value changed.
2003 */
52400ba9 2004 double_unlock_hb(hb1, hb2);
69cd9eba 2005 hb_waiters_dec(hb2);
ae791a2d
TG
2006 put_futex_key(&key2);
2007 put_futex_key(&key1);
52400ba9
DH
2008 cond_resched();
2009 goto retry;
2010 default:
2011 goto out_unlock;
2012 }
2013 }
2014
0d00c7b2 2015 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2016 if (task_count - nr_wake >= nr_requeue)
2017 break;
2018
2019 if (!match_futex(&this->key, &key1))
1da177e4 2020 continue;
52400ba9 2021
392741e0
DH
2022 /*
2023 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2024 * be paired with each other and no other futex ops.
aa10990e
DH
2025 *
2026 * We should never be requeueing a futex_q with a pi_state,
2027 * which is awaiting a futex_unlock_pi().
392741e0
DH
2028 */
2029 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2030 (!requeue_pi && this->rt_waiter) ||
2031 this->pi_state) {
392741e0
DH
2032 ret = -EINVAL;
2033 break;
2034 }
52400ba9
DH
2035
2036 /*
2037 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2038 * lock, we already woke the top_waiter. If not, it will be
2039 * woken by futex_unlock_pi().
2040 */
2041 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 2042 mark_wake_futex(&wake_q, this);
52400ba9
DH
2043 continue;
2044 }
1da177e4 2045
84bc4af5
DH
2046 /* Ensure we requeue to the expected futex for requeue_pi. */
2047 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2048 ret = -EINVAL;
2049 break;
2050 }
2051
52400ba9
DH
2052 /*
2053 * Requeue nr_requeue waiters and possibly one more in the case
2054 * of requeue_pi if we couldn't acquire the lock atomically.
2055 */
2056 if (requeue_pi) {
ecb38b78
TG
2057 /*
2058 * Prepare the waiter to take the rt_mutex. Take a
2059 * refcount on the pi_state and store the pointer in
2060 * the futex_q object of the waiter.
2061 */
bf92cf3a 2062 get_pi_state(pi_state);
52400ba9
DH
2063 this->pi_state = pi_state;
2064 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2065 this->rt_waiter,
c051b21f 2066 this->task);
52400ba9 2067 if (ret == 1) {
ecb38b78
TG
2068 /*
2069 * We got the lock. We do neither drop the
2070 * refcount on pi_state nor clear
2071 * this->pi_state because the waiter needs the
2072 * pi_state for cleaning up the user space
2073 * value. It will drop the refcount after
2074 * doing so.
2075 */
beda2c7e 2076 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 2077 drop_count++;
52400ba9
DH
2078 continue;
2079 } else if (ret) {
ecb38b78
TG
2080 /*
2081 * rt_mutex_start_proxy_lock() detected a
2082 * potential deadlock when we tried to queue
2083 * that waiter. Drop the pi_state reference
2084 * which we took above and remove the pointer
2085 * to the state from the waiters futex_q
2086 * object.
2087 */
52400ba9 2088 this->pi_state = NULL;
29e9ee5d 2089 put_pi_state(pi_state);
885c2cb7
TG
2090 /*
2091 * We stop queueing more waiters and let user
2092 * space deal with the mess.
2093 */
2094 break;
52400ba9 2095 }
1da177e4 2096 }
52400ba9
DH
2097 requeue_futex(this, hb1, hb2, &key2);
2098 drop_count++;
1da177e4
LT
2099 }
2100
ecb38b78
TG
2101 /*
2102 * We took an extra initial reference to the pi_state either
2103 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2104 * need to drop it here again.
2105 */
29e9ee5d 2106 put_pi_state(pi_state);
885c2cb7
TG
2107
2108out_unlock:
5eb3dc62 2109 double_unlock_hb(hb1, hb2);
1d0dcb3a 2110 wake_up_q(&wake_q);
69cd9eba 2111 hb_waiters_dec(hb2);
1da177e4 2112
cd84a42f
DH
2113 /*
2114 * drop_futex_key_refs() must be called outside the spinlocks. During
2115 * the requeue we moved futex_q's from the hash bucket at key1 to the
2116 * one at key2 and updated their key pointer. We no longer need to
2117 * hold the references to key1.
2118 */
1da177e4 2119 while (--drop_count >= 0)
9adef58b 2120 drop_futex_key_refs(&key1);
1da177e4 2121
42d35d48 2122out_put_keys:
ae791a2d 2123 put_futex_key(&key2);
42d35d48 2124out_put_key1:
ae791a2d 2125 put_futex_key(&key1);
42d35d48 2126out:
52400ba9 2127 return ret ? ret : task_count;
1da177e4
LT
2128}
2129
2130/* The key must be already stored in q->key. */
82af7aca 2131static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2132 __acquires(&hb->lock)
1da177e4 2133{
e2970f2f 2134 struct futex_hash_bucket *hb;
1da177e4 2135
e2970f2f 2136 hb = hash_futex(&q->key);
11d4616b
LT
2137
2138 /*
2139 * Increment the counter before taking the lock so that
2140 * a potential waker won't miss a to-be-slept task that is
2141 * waiting for the spinlock. This is safe as all queue_lock()
2142 * users end up calling queue_me(). Similarly, for housekeeping,
2143 * decrement the counter at queue_unlock() when some error has
2144 * occurred and we don't end up adding the task to the list.
2145 */
2146 hb_waiters_inc(hb);
2147
e2970f2f 2148 q->lock_ptr = &hb->lock;
1da177e4 2149
8ad7b378 2150 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
e2970f2f 2151 return hb;
1da177e4
LT
2152}
2153
d40d65c8 2154static inline void
0d00c7b2 2155queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2156 __releases(&hb->lock)
d40d65c8
DH
2157{
2158 spin_unlock(&hb->lock);
11d4616b 2159 hb_waiters_dec(hb);
d40d65c8
DH
2160}
2161
cfafcd11 2162static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2163{
ec92d082
PP
2164 int prio;
2165
2166 /*
2167 * The priority used to register this element is
2168 * - either the real thread-priority for the real-time threads
2169 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2170 * - or MAX_RT_PRIO for non-RT threads.
2171 * Thus, all RT-threads are woken first in priority order, and
2172 * the others are woken last, in FIFO order.
2173 */
2174 prio = min(current->normal_prio, MAX_RT_PRIO);
2175
2176 plist_node_init(&q->list, prio);
ec92d082 2177 plist_add(&q->list, &hb->chain);
c87e2837 2178 q->task = current;
cfafcd11
PZ
2179}
2180
2181/**
2182 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2183 * @q: The futex_q to enqueue
2184 * @hb: The destination hash bucket
2185 *
2186 * The hb->lock must be held by the caller, and is released here. A call to
2187 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2188 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2189 * or nothing if the unqueue is done as part of the wake process and the unqueue
2190 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2191 * an example).
2192 */
2193static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2194 __releases(&hb->lock)
2195{
2196 __queue_me(q, hb);
e2970f2f 2197 spin_unlock(&hb->lock);
1da177e4
LT
2198}
2199
d40d65c8
DH
2200/**
2201 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2202 * @q: The futex_q to unqueue
2203 *
2204 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2205 * be paired with exactly one earlier call to queue_me().
2206 *
6c23cbbd 2207 * Return:
7b4ff1ad
MCC
2208 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2209 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2210 */
1da177e4
LT
2211static int unqueue_me(struct futex_q *q)
2212{
1da177e4 2213 spinlock_t *lock_ptr;
e2970f2f 2214 int ret = 0;
1da177e4
LT
2215
2216 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2217retry:
29b75eb2
JZ
2218 /*
2219 * q->lock_ptr can change between this read and the following spin_lock.
2220 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2221 * optimizing lock_ptr out of the logic below.
2222 */
2223 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2224 if (lock_ptr != NULL) {
1da177e4
LT
2225 spin_lock(lock_ptr);
2226 /*
2227 * q->lock_ptr can change between reading it and
2228 * spin_lock(), causing us to take the wrong lock. This
2229 * corrects the race condition.
2230 *
2231 * Reasoning goes like this: if we have the wrong lock,
2232 * q->lock_ptr must have changed (maybe several times)
2233 * between reading it and the spin_lock(). It can
2234 * change again after the spin_lock() but only if it was
2235 * already changed before the spin_lock(). It cannot,
2236 * however, change back to the original value. Therefore
2237 * we can detect whether we acquired the correct lock.
2238 */
2239 if (unlikely(lock_ptr != q->lock_ptr)) {
2240 spin_unlock(lock_ptr);
2241 goto retry;
2242 }
2e12978a 2243 __unqueue_futex(q);
c87e2837
IM
2244
2245 BUG_ON(q->pi_state);
2246
1da177e4
LT
2247 spin_unlock(lock_ptr);
2248 ret = 1;
2249 }
2250
9adef58b 2251 drop_futex_key_refs(&q->key);
1da177e4
LT
2252 return ret;
2253}
2254
c87e2837
IM
2255/*
2256 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2257 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2258 * and dropped here.
c87e2837 2259 */
d0aa7a70 2260static void unqueue_me_pi(struct futex_q *q)
15e408cd 2261 __releases(q->lock_ptr)
c87e2837 2262{
2e12978a 2263 __unqueue_futex(q);
c87e2837
IM
2264
2265 BUG_ON(!q->pi_state);
29e9ee5d 2266 put_pi_state(q->pi_state);
c87e2837
IM
2267 q->pi_state = NULL;
2268
d0aa7a70 2269 spin_unlock(q->lock_ptr);
c87e2837
IM
2270}
2271
d0aa7a70 2272/*
cdf71a10 2273 * Fixup the pi_state owner with the new owner.
d0aa7a70 2274 *
778e9a9c
AK
2275 * Must be called with hash bucket lock held and mm->sem held for non
2276 * private futexes.
d0aa7a70 2277 */
778e9a9c 2278static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 2279 struct task_struct *newowner)
d0aa7a70 2280{
cdf71a10 2281 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 2282 struct futex_pi_state *pi_state = q->pi_state;
7cfdaf38 2283 u32 uval, uninitialized_var(curval), newval;
734009e9 2284 struct task_struct *oldowner;
e4dc5b7a 2285 int ret;
d0aa7a70 2286
734009e9
PZ
2287 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2288
2289 oldowner = pi_state->owner;
d0aa7a70 2290 /* Owner died? */
1b7558e4
TG
2291 if (!pi_state->owner)
2292 newtid |= FUTEX_OWNER_DIED;
2293
2294 /*
2295 * We are here either because we stole the rtmutex from the
8161239a 2296 * previous highest priority waiter or we are the highest priority
16ffa12d
PZ
2297 * waiter but have failed to get the rtmutex the first time.
2298 *
8161239a
LJ
2299 * We have to replace the newowner TID in the user space variable.
2300 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2301 *
b2d0994b
DH
2302 * Note: We write the user space value _before_ changing the pi_state
2303 * because we can fault here. Imagine swapped out pages or a fork
2304 * that marked all the anonymous memory readonly for cow.
1b7558e4 2305 *
734009e9
PZ
2306 * Modifying pi_state _before_ the user space value would leave the
2307 * pi_state in an inconsistent state when we fault here, because we
2308 * need to drop the locks to handle the fault. This might be observed
2309 * in the PID check in lookup_pi_state.
1b7558e4
TG
2310 */
2311retry:
2312 if (get_futex_value_locked(&uval, uaddr))
2313 goto handle_fault;
2314
16ffa12d 2315 for (;;) {
1b7558e4
TG
2316 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2317
37a9d912 2318 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
2319 goto handle_fault;
2320 if (curval == uval)
2321 break;
2322 uval = curval;
2323 }
2324
2325 /*
2326 * We fixed up user space. Now we need to fix the pi_state
2327 * itself.
2328 */
d0aa7a70 2329 if (pi_state->owner != NULL) {
734009e9 2330 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2331 WARN_ON(list_empty(&pi_state->list));
2332 list_del_init(&pi_state->list);
734009e9 2333 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2334 }
d0aa7a70 2335
cdf71a10 2336 pi_state->owner = newowner;
d0aa7a70 2337
734009e9 2338 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2339 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2340 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2341 raw_spin_unlock(&newowner->pi_lock);
2342 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2343
1b7558e4 2344 return 0;
d0aa7a70 2345
d0aa7a70 2346 /*
734009e9
PZ
2347 * To handle the page fault we need to drop the locks here. That gives
2348 * the other task (either the highest priority waiter itself or the
2349 * task which stole the rtmutex) the chance to try the fixup of the
2350 * pi_state. So once we are back from handling the fault we need to
2351 * check the pi_state after reacquiring the locks and before trying to
2352 * do another fixup. When the fixup has been done already we simply
2353 * return.
2354 *
2355 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2356 * drop hb->lock since the caller owns the hb -> futex_q relation.
2357 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2358 */
1b7558e4 2359handle_fault:
734009e9 2360 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2361 spin_unlock(q->lock_ptr);
778e9a9c 2362
d0725992 2363 ret = fault_in_user_writeable(uaddr);
778e9a9c 2364
1b7558e4 2365 spin_lock(q->lock_ptr);
734009e9 2366 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2367
1b7558e4
TG
2368 /*
2369 * Check if someone else fixed it for us:
2370 */
734009e9
PZ
2371 if (pi_state->owner != oldowner) {
2372 ret = 0;
2373 goto out_unlock;
2374 }
1b7558e4
TG
2375
2376 if (ret)
734009e9 2377 goto out_unlock;
1b7558e4
TG
2378
2379 goto retry;
734009e9
PZ
2380
2381out_unlock:
2382 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2383 return ret;
d0aa7a70
PP
2384}
2385
72c1bbf3 2386static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2387
dd973998
DH
2388/**
2389 * fixup_owner() - Post lock pi_state and corner case management
2390 * @uaddr: user address of the futex
dd973998
DH
2391 * @q: futex_q (contains pi_state and access to the rt_mutex)
2392 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2393 *
2394 * After attempting to lock an rt_mutex, this function is called to cleanup
2395 * the pi_state owner as well as handle race conditions that may allow us to
2396 * acquire the lock. Must be called with the hb lock held.
2397 *
6c23cbbd 2398 * Return:
7b4ff1ad
MCC
2399 * - 1 - success, lock taken;
2400 * - 0 - success, lock not taken;
2401 * - <0 - on error (-EFAULT)
dd973998 2402 */
ae791a2d 2403static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2404{
dd973998
DH
2405 int ret = 0;
2406
2407 if (locked) {
2408 /*
2409 * Got the lock. We might not be the anticipated owner if we
2410 * did a lock-steal - fix up the PI-state in that case:
16ffa12d
PZ
2411 *
2412 * We can safely read pi_state->owner without holding wait_lock
2413 * because we now own the rt_mutex, only the owner will attempt
2414 * to change it.
dd973998
DH
2415 */
2416 if (q->pi_state->owner != current)
ae791a2d 2417 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2418 goto out;
2419 }
2420
dd973998
DH
2421 /*
2422 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2423 * the owner of the rt_mutex.
dd973998 2424 */
73d786bd 2425 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2426 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2427 "pi-state %p\n", ret,
2428 q->pi_state->pi_mutex.owner,
2429 q->pi_state->owner);
73d786bd 2430 }
dd973998
DH
2431
2432out:
2433 return ret ? ret : locked;
2434}
2435
ca5f9524
DH
2436/**
2437 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2438 * @hb: the futex hash bucket, must be locked by the caller
2439 * @q: the futex_q to queue up on
2440 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2441 */
2442static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2443 struct hrtimer_sleeper *timeout)
ca5f9524 2444{
9beba3c5
DH
2445 /*
2446 * The task state is guaranteed to be set before another task can
b92b8b35 2447 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2448 * queue_me() calls spin_unlock() upon completion, both serializing
2449 * access to the hash list and forcing another memory barrier.
2450 */
f1a11e05 2451 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2452 queue_me(q, hb);
ca5f9524
DH
2453
2454 /* Arm the timer */
2e4b0d3f 2455 if (timeout)
ca5f9524 2456 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2457
2458 /*
0729e196
DH
2459 * If we have been removed from the hash list, then another task
2460 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2461 */
2462 if (likely(!plist_node_empty(&q->list))) {
2463 /*
2464 * If the timer has already expired, current will already be
2465 * flagged for rescheduling. Only call schedule if there
2466 * is no timeout, or if it has yet to expire.
2467 */
2468 if (!timeout || timeout->task)
88c8004f 2469 freezable_schedule();
ca5f9524
DH
2470 }
2471 __set_current_state(TASK_RUNNING);
2472}
2473
f801073f
DH
2474/**
2475 * futex_wait_setup() - Prepare to wait on a futex
2476 * @uaddr: the futex userspace address
2477 * @val: the expected value
b41277dc 2478 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2479 * @q: the associated futex_q
2480 * @hb: storage for hash_bucket pointer to be returned to caller
2481 *
2482 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2483 * compare it with the expected value. Handle atomic faults internally.
2484 * Return with the hb lock held and a q.key reference on success, and unlocked
2485 * with no q.key reference on failure.
2486 *
6c23cbbd 2487 * Return:
7b4ff1ad
MCC
2488 * - 0 - uaddr contains val and hb has been locked;
2489 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2490 */
b41277dc 2491static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2492 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2493{
e2970f2f
IM
2494 u32 uval;
2495 int ret;
1da177e4 2496
1da177e4 2497 /*
b2d0994b 2498 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2499 * Order is important:
2500 *
2501 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2502 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2503 *
2504 * The basic logical guarantee of a futex is that it blocks ONLY
2505 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2506 * any cond. If we locked the hash-bucket after testing *uaddr, that
2507 * would open a race condition where we could block indefinitely with
1da177e4
LT
2508 * cond(var) false, which would violate the guarantee.
2509 *
8fe8f545
ML
2510 * On the other hand, we insert q and release the hash-bucket only
2511 * after testing *uaddr. This guarantees that futex_wait() will NOT
2512 * absorb a wakeup if *uaddr does not match the desired values
2513 * while the syscall executes.
1da177e4 2514 */
f801073f 2515retry:
9ea71503 2516 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2517 if (unlikely(ret != 0))
a5a2a0c7 2518 return ret;
f801073f
DH
2519
2520retry_private:
2521 *hb = queue_lock(q);
2522
e2970f2f 2523 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2524
f801073f 2525 if (ret) {
0d00c7b2 2526 queue_unlock(*hb);
1da177e4 2527
e2970f2f 2528 ret = get_user(uval, uaddr);
e4dc5b7a 2529 if (ret)
f801073f 2530 goto out;
1da177e4 2531
b41277dc 2532 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2533 goto retry_private;
2534
ae791a2d 2535 put_futex_key(&q->key);
e4dc5b7a 2536 goto retry;
1da177e4 2537 }
ca5f9524 2538
f801073f 2539 if (uval != val) {
0d00c7b2 2540 queue_unlock(*hb);
f801073f 2541 ret = -EWOULDBLOCK;
2fff78c7 2542 }
1da177e4 2543
f801073f
DH
2544out:
2545 if (ret)
ae791a2d 2546 put_futex_key(&q->key);
f801073f
DH
2547 return ret;
2548}
2549
b41277dc
DH
2550static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2551 ktime_t *abs_time, u32 bitset)
f801073f
DH
2552{
2553 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2554 struct restart_block *restart;
2555 struct futex_hash_bucket *hb;
5bdb05f9 2556 struct futex_q q = futex_q_init;
f801073f
DH
2557 int ret;
2558
2559 if (!bitset)
2560 return -EINVAL;
f801073f
DH
2561 q.bitset = bitset;
2562
2563 if (abs_time) {
2564 to = &timeout;
2565
b41277dc
DH
2566 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2567 CLOCK_REALTIME : CLOCK_MONOTONIC,
2568 HRTIMER_MODE_ABS);
f801073f
DH
2569 hrtimer_init_sleeper(to, current);
2570 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2571 current->timer_slack_ns);
2572 }
2573
d58e6576 2574retry:
7ada876a
DH
2575 /*
2576 * Prepare to wait on uaddr. On success, holds hb lock and increments
2577 * q.key refs.
2578 */
b41277dc 2579 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2580 if (ret)
2581 goto out;
2582
ca5f9524 2583 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2584 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2585
2586 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2587 ret = 0;
7ada876a 2588 /* unqueue_me() drops q.key ref */
1da177e4 2589 if (!unqueue_me(&q))
7ada876a 2590 goto out;
2fff78c7 2591 ret = -ETIMEDOUT;
ca5f9524 2592 if (to && !to->task)
7ada876a 2593 goto out;
72c1bbf3 2594
e2970f2f 2595 /*
d58e6576
TG
2596 * We expect signal_pending(current), but we might be the
2597 * victim of a spurious wakeup as well.
e2970f2f 2598 */
7ada876a 2599 if (!signal_pending(current))
d58e6576 2600 goto retry;
d58e6576 2601
2fff78c7 2602 ret = -ERESTARTSYS;
c19384b5 2603 if (!abs_time)
7ada876a 2604 goto out;
1da177e4 2605
f56141e3 2606 restart = &current->restart_block;
2fff78c7 2607 restart->fn = futex_wait_restart;
a3c74c52 2608 restart->futex.uaddr = uaddr;
2fff78c7 2609 restart->futex.val = val;
2456e855 2610 restart->futex.time = *abs_time;
2fff78c7 2611 restart->futex.bitset = bitset;
0cd9c649 2612 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2613
2fff78c7
PZ
2614 ret = -ERESTART_RESTARTBLOCK;
2615
42d35d48 2616out:
ca5f9524
DH
2617 if (to) {
2618 hrtimer_cancel(&to->timer);
2619 destroy_hrtimer_on_stack(&to->timer);
2620 }
c87e2837
IM
2621 return ret;
2622}
2623
72c1bbf3
NP
2624
2625static long futex_wait_restart(struct restart_block *restart)
2626{
a3c74c52 2627 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2628 ktime_t t, *tp = NULL;
72c1bbf3 2629
a72188d8 2630 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2631 t = restart->futex.time;
a72188d8
DH
2632 tp = &t;
2633 }
72c1bbf3 2634 restart->fn = do_no_restart_syscall;
b41277dc
DH
2635
2636 return (long)futex_wait(uaddr, restart->futex.flags,
2637 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2638}
2639
2640
c87e2837
IM
2641/*
2642 * Userspace tried a 0 -> TID atomic transition of the futex value
2643 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2644 * if there are waiters then it will block as a consequence of relying
2645 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2646 * a 0 value of the futex too.).
2647 *
2648 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2649 */
996636dd 2650static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2651 ktime_t *time, int trylock)
c87e2837 2652{
c5780e97 2653 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 2654 struct futex_pi_state *pi_state = NULL;
cfafcd11 2655 struct rt_mutex_waiter rt_waiter;
c87e2837 2656 struct futex_hash_bucket *hb;
5bdb05f9 2657 struct futex_q q = futex_q_init;
dd973998 2658 int res, ret;
c87e2837 2659
bc2eecd7
NP
2660 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2661 return -ENOSYS;
2662
c87e2837
IM
2663 if (refill_pi_state_cache())
2664 return -ENOMEM;
2665
c19384b5 2666 if (time) {
c5780e97 2667 to = &timeout;
237fc6e7
TG
2668 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2669 HRTIMER_MODE_ABS);
c5780e97 2670 hrtimer_init_sleeper(to, current);
cc584b21 2671 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2672 }
2673
42d35d48 2674retry:
9ea71503 2675 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2676 if (unlikely(ret != 0))
42d35d48 2677 goto out;
c87e2837 2678
e4dc5b7a 2679retry_private:
82af7aca 2680 hb = queue_lock(&q);
c87e2837 2681
bab5bc9e 2682 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2683 if (unlikely(ret)) {
767f509c
DB
2684 /*
2685 * Atomic work succeeded and we got the lock,
2686 * or failed. Either way, we do _not_ block.
2687 */
778e9a9c 2688 switch (ret) {
1a52084d
DH
2689 case 1:
2690 /* We got the lock. */
2691 ret = 0;
2692 goto out_unlock_put_key;
2693 case -EFAULT:
2694 goto uaddr_faulted;
778e9a9c
AK
2695 case -EAGAIN:
2696 /*
af54d6a1
TG
2697 * Two reasons for this:
2698 * - Task is exiting and we just wait for the
2699 * exit to complete.
2700 * - The user space value changed.
778e9a9c 2701 */
0d00c7b2 2702 queue_unlock(hb);
ae791a2d 2703 put_futex_key(&q.key);
778e9a9c
AK
2704 cond_resched();
2705 goto retry;
778e9a9c 2706 default:
42d35d48 2707 goto out_unlock_put_key;
c87e2837 2708 }
c87e2837
IM
2709 }
2710
cfafcd11
PZ
2711 WARN_ON(!q.pi_state);
2712
c87e2837
IM
2713 /*
2714 * Only actually queue now that the atomic ops are done:
2715 */
cfafcd11 2716 __queue_me(&q, hb);
c87e2837 2717
cfafcd11 2718 if (trylock) {
5293c2ef 2719 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2720 /* Fixup the trylock return value: */
2721 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2722 goto no_block;
c87e2837
IM
2723 }
2724
56222b21
PZ
2725 rt_mutex_init_waiter(&rt_waiter);
2726
cfafcd11 2727 /*
56222b21
PZ
2728 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2729 * hold it while doing rt_mutex_start_proxy(), because then it will
2730 * include hb->lock in the blocking chain, even through we'll not in
2731 * fact hold it while blocking. This will lead it to report -EDEADLK
2732 * and BUG when futex_unlock_pi() interleaves with this.
2733 *
2734 * Therefore acquire wait_lock while holding hb->lock, but drop the
2735 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2736 * serializes against futex_unlock_pi() as that does the exact same
2737 * lock handoff sequence.
cfafcd11 2738 */
56222b21
PZ
2739 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2740 spin_unlock(q.lock_ptr);
2741 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2742 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2743
cfafcd11
PZ
2744 if (ret) {
2745 if (ret == 1)
2746 ret = 0;
2747
56222b21 2748 spin_lock(q.lock_ptr);
cfafcd11
PZ
2749 goto no_block;
2750 }
2751
cfafcd11
PZ
2752
2753 if (unlikely(to))
2754 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2755
2756 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2757
a99e4e41 2758 spin_lock(q.lock_ptr);
cfafcd11
PZ
2759 /*
2760 * If we failed to acquire the lock (signal/timeout), we must
2761 * first acquire the hb->lock before removing the lock from the
2762 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2763 * wait lists consistent.
56222b21
PZ
2764 *
2765 * In particular; it is important that futex_unlock_pi() can not
2766 * observe this inconsistency.
cfafcd11
PZ
2767 */
2768 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2769 ret = 0;
2770
2771no_block:
dd973998
DH
2772 /*
2773 * Fixup the pi_state owner and possibly acquire the lock if we
2774 * haven't already.
2775 */
ae791a2d 2776 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2777 /*
2778 * If fixup_owner() returned an error, proprogate that. If it acquired
2779 * the lock, clear our -ETIMEDOUT or -EINTR.
2780 */
2781 if (res)
2782 ret = (res < 0) ? res : 0;
c87e2837 2783
e8f6386c 2784 /*
dd973998
DH
2785 * If fixup_owner() faulted and was unable to handle the fault, unlock
2786 * it and return the fault to userspace.
e8f6386c 2787 */
16ffa12d
PZ
2788 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2789 pi_state = q.pi_state;
2790 get_pi_state(pi_state);
2791 }
e8f6386c 2792
778e9a9c
AK
2793 /* Unqueue and drop the lock */
2794 unqueue_me_pi(&q);
c87e2837 2795
16ffa12d
PZ
2796 if (pi_state) {
2797 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2798 put_pi_state(pi_state);
2799 }
2800
5ecb01cf 2801 goto out_put_key;
c87e2837 2802
42d35d48 2803out_unlock_put_key:
0d00c7b2 2804 queue_unlock(hb);
c87e2837 2805
42d35d48 2806out_put_key:
ae791a2d 2807 put_futex_key(&q.key);
42d35d48 2808out:
97181f9b
TG
2809 if (to) {
2810 hrtimer_cancel(&to->timer);
237fc6e7 2811 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2812 }
dd973998 2813 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2814
42d35d48 2815uaddr_faulted:
0d00c7b2 2816 queue_unlock(hb);
778e9a9c 2817
d0725992 2818 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2819 if (ret)
2820 goto out_put_key;
c87e2837 2821
b41277dc 2822 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2823 goto retry_private;
2824
ae791a2d 2825 put_futex_key(&q.key);
e4dc5b7a 2826 goto retry;
c87e2837
IM
2827}
2828
c87e2837
IM
2829/*
2830 * Userspace attempted a TID -> 0 atomic transition, and failed.
2831 * This is the in-kernel slowpath: we look up the PI state (if any),
2832 * and do the rt-mutex unlock.
2833 */
b41277dc 2834static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2835{
ccf9e6a8 2836 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2837 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2838 struct futex_hash_bucket *hb;
499f5aca 2839 struct futex_q *top_waiter;
e4dc5b7a 2840 int ret;
c87e2837 2841
bc2eecd7
NP
2842 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2843 return -ENOSYS;
2844
c87e2837
IM
2845retry:
2846 if (get_user(uval, uaddr))
2847 return -EFAULT;
2848 /*
2849 * We release only a lock we actually own:
2850 */
c0c9ed15 2851 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2852 return -EPERM;
c87e2837 2853
9ea71503 2854 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2855 if (ret)
2856 return ret;
c87e2837
IM
2857
2858 hb = hash_futex(&key);
2859 spin_lock(&hb->lock);
2860
c87e2837 2861 /*
ccf9e6a8
TG
2862 * Check waiters first. We do not trust user space values at
2863 * all and we at least want to know if user space fiddled
2864 * with the futex value instead of blindly unlocking.
c87e2837 2865 */
499f5aca
PZ
2866 top_waiter = futex_top_waiter(hb, &key);
2867 if (top_waiter) {
16ffa12d
PZ
2868 struct futex_pi_state *pi_state = top_waiter->pi_state;
2869
2870 ret = -EINVAL;
2871 if (!pi_state)
2872 goto out_unlock;
2873
2874 /*
2875 * If current does not own the pi_state then the futex is
2876 * inconsistent and user space fiddled with the futex value.
2877 */
2878 if (pi_state->owner != current)
2879 goto out_unlock;
2880
bebe5b51 2881 get_pi_state(pi_state);
802ab58d 2882 /*
bebe5b51
PZ
2883 * By taking wait_lock while still holding hb->lock, we ensure
2884 * there is no point where we hold neither; and therefore
2885 * wake_futex_pi() must observe a state consistent with what we
2886 * observed.
16ffa12d 2887 */
bebe5b51 2888 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
2889 spin_unlock(&hb->lock);
2890
c74aef2d 2891 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
2892 ret = wake_futex_pi(uaddr, uval, pi_state);
2893
2894 put_pi_state(pi_state);
2895
2896 /*
2897 * Success, we're done! No tricky corner cases.
802ab58d
SAS
2898 */
2899 if (!ret)
2900 goto out_putkey;
c87e2837 2901 /*
ccf9e6a8
TG
2902 * The atomic access to the futex value generated a
2903 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
2904 */
2905 if (ret == -EFAULT)
2906 goto pi_faulted;
89e9e66b
SAS
2907 /*
2908 * A unconditional UNLOCK_PI op raced against a waiter
2909 * setting the FUTEX_WAITERS bit. Try again.
2910 */
2911 if (ret == -EAGAIN) {
89e9e66b
SAS
2912 put_futex_key(&key);
2913 goto retry;
2914 }
802ab58d
SAS
2915 /*
2916 * wake_futex_pi has detected invalid state. Tell user
2917 * space.
2918 */
16ffa12d 2919 goto out_putkey;
c87e2837 2920 }
ccf9e6a8 2921
c87e2837 2922 /*
ccf9e6a8
TG
2923 * We have no kernel internal state, i.e. no waiters in the
2924 * kernel. Waiters which are about to queue themselves are stuck
2925 * on hb->lock. So we can safely ignore them. We do neither
2926 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2927 * owner.
c87e2837 2928 */
16ffa12d
PZ
2929 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2930 spin_unlock(&hb->lock);
13fbca4c 2931 goto pi_faulted;
16ffa12d 2932 }
c87e2837 2933
ccf9e6a8
TG
2934 /*
2935 * If uval has changed, let user space handle it.
2936 */
2937 ret = (curval == uval) ? 0 : -EAGAIN;
2938
c87e2837
IM
2939out_unlock:
2940 spin_unlock(&hb->lock);
802ab58d 2941out_putkey:
ae791a2d 2942 put_futex_key(&key);
c87e2837
IM
2943 return ret;
2944
2945pi_faulted:
ae791a2d 2946 put_futex_key(&key);
c87e2837 2947
d0725992 2948 ret = fault_in_user_writeable(uaddr);
b5686363 2949 if (!ret)
c87e2837
IM
2950 goto retry;
2951
1da177e4
LT
2952 return ret;
2953}
2954
52400ba9
DH
2955/**
2956 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2957 * @hb: the hash_bucket futex_q was original enqueued on
2958 * @q: the futex_q woken while waiting to be requeued
2959 * @key2: the futex_key of the requeue target futex
2960 * @timeout: the timeout associated with the wait (NULL if none)
2961 *
2962 * Detect if the task was woken on the initial futex as opposed to the requeue
2963 * target futex. If so, determine if it was a timeout or a signal that caused
2964 * the wakeup and return the appropriate error code to the caller. Must be
2965 * called with the hb lock held.
2966 *
6c23cbbd 2967 * Return:
7b4ff1ad
MCC
2968 * - 0 = no early wakeup detected;
2969 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2970 */
2971static inline
2972int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2973 struct futex_q *q, union futex_key *key2,
2974 struct hrtimer_sleeper *timeout)
2975{
2976 int ret = 0;
2977
2978 /*
2979 * With the hb lock held, we avoid races while we process the wakeup.
2980 * We only need to hold hb (and not hb2) to ensure atomicity as the
2981 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2982 * It can't be requeued from uaddr2 to something else since we don't
2983 * support a PI aware source futex for requeue.
2984 */
2985 if (!match_futex(&q->key, key2)) {
2986 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2987 /*
2988 * We were woken prior to requeue by a timeout or a signal.
2989 * Unqueue the futex_q and determine which it was.
2990 */
2e12978a 2991 plist_del(&q->list, &hb->chain);
11d4616b 2992 hb_waiters_dec(hb);
52400ba9 2993
d58e6576 2994 /* Handle spurious wakeups gracefully */
11df6ddd 2995 ret = -EWOULDBLOCK;
52400ba9
DH
2996 if (timeout && !timeout->task)
2997 ret = -ETIMEDOUT;
d58e6576 2998 else if (signal_pending(current))
1c840c14 2999 ret = -ERESTARTNOINTR;
52400ba9
DH
3000 }
3001 return ret;
3002}
3003
3004/**
3005 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 3006 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 3007 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 3008 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
3009 * @val: the expected value of uaddr
3010 * @abs_time: absolute timeout
56ec1607 3011 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3012 * @uaddr2: the pi futex we will take prior to returning to user-space
3013 *
3014 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3015 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3016 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3017 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3018 * without one, the pi logic would not know which task to boost/deboost, if
3019 * there was a need to.
52400ba9
DH
3020 *
3021 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3022 * via the following--
52400ba9 3023 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3024 * 2) wakeup on uaddr2 after a requeue
3025 * 3) signal
3026 * 4) timeout
52400ba9 3027 *
cc6db4e6 3028 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3029 *
3030 * If 2, we may then block on trying to take the rt_mutex and return via:
3031 * 5) successful lock
3032 * 6) signal
3033 * 7) timeout
3034 * 8) other lock acquisition failure
3035 *
cc6db4e6 3036 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3037 *
3038 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3039 *
6c23cbbd 3040 * Return:
7b4ff1ad
MCC
3041 * - 0 - On success;
3042 * - <0 - On error
52400ba9 3043 */
b41277dc 3044static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3045 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3046 u32 __user *uaddr2)
52400ba9
DH
3047{
3048 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 3049 struct futex_pi_state *pi_state = NULL;
52400ba9 3050 struct rt_mutex_waiter rt_waiter;
52400ba9 3051 struct futex_hash_bucket *hb;
5bdb05f9
DH
3052 union futex_key key2 = FUTEX_KEY_INIT;
3053 struct futex_q q = futex_q_init;
52400ba9 3054 int res, ret;
52400ba9 3055
bc2eecd7
NP
3056 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3057 return -ENOSYS;
3058
6f7b0a2a
DH
3059 if (uaddr == uaddr2)
3060 return -EINVAL;
3061
52400ba9
DH
3062 if (!bitset)
3063 return -EINVAL;
3064
3065 if (abs_time) {
3066 to = &timeout;
b41277dc
DH
3067 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3068 CLOCK_REALTIME : CLOCK_MONOTONIC,
3069 HRTIMER_MODE_ABS);
52400ba9
DH
3070 hrtimer_init_sleeper(to, current);
3071 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3072 current->timer_slack_ns);
3073 }
3074
3075 /*
3076 * The waiter is allocated on our stack, manipulated by the requeue
3077 * code while we sleep on uaddr.
3078 */
50809358 3079 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3080
9ea71503 3081 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
3082 if (unlikely(ret != 0))
3083 goto out;
3084
84bc4af5
DH
3085 q.bitset = bitset;
3086 q.rt_waiter = &rt_waiter;
3087 q.requeue_pi_key = &key2;
3088
7ada876a
DH
3089 /*
3090 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3091 * count.
3092 */
b41277dc 3093 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
3094 if (ret)
3095 goto out_key2;
52400ba9 3096
e9c243a5
TG
3097 /*
3098 * The check above which compares uaddrs is not sufficient for
3099 * shared futexes. We need to compare the keys:
3100 */
3101 if (match_futex(&q.key, &key2)) {
13c42c2f 3102 queue_unlock(hb);
e9c243a5
TG
3103 ret = -EINVAL;
3104 goto out_put_keys;
3105 }
3106
52400ba9 3107 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3108 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3109
3110 spin_lock(&hb->lock);
3111 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3112 spin_unlock(&hb->lock);
3113 if (ret)
3114 goto out_put_keys;
3115
3116 /*
3117 * In order for us to be here, we know our q.key == key2, and since
3118 * we took the hb->lock above, we also know that futex_requeue() has
3119 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3120 * race with the atomic proxy lock acquisition by the requeue code. The
3121 * futex_requeue dropped our key1 reference and incremented our key2
3122 * reference count.
52400ba9
DH
3123 */
3124
3125 /* Check if the requeue code acquired the second futex for us. */
3126 if (!q.rt_waiter) {
3127 /*
3128 * Got the lock. We might not be the anticipated owner if we
3129 * did a lock-steal - fix up the PI-state in that case.
3130 */
3131 if (q.pi_state && (q.pi_state->owner != current)) {
3132 spin_lock(q.lock_ptr);
ae791a2d 3133 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3134 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3135 pi_state = q.pi_state;
3136 get_pi_state(pi_state);
3137 }
fb75a428
TG
3138 /*
3139 * Drop the reference to the pi state which
3140 * the requeue_pi() code acquired for us.
3141 */
29e9ee5d 3142 put_pi_state(q.pi_state);
52400ba9
DH
3143 spin_unlock(q.lock_ptr);
3144 }
3145 } else {
c236c8e9
PZ
3146 struct rt_mutex *pi_mutex;
3147
52400ba9
DH
3148 /*
3149 * We have been woken up by futex_unlock_pi(), a timeout, or a
3150 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3151 * the pi_state.
3152 */
f27071cb 3153 WARN_ON(!q.pi_state);
52400ba9 3154 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3155 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3156
3157 spin_lock(q.lock_ptr);
38d589f2
PZ
3158 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3159 ret = 0;
3160
3161 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3162 /*
3163 * Fixup the pi_state owner and possibly acquire the lock if we
3164 * haven't already.
3165 */
ae791a2d 3166 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3167 /*
3168 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3169 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3170 */
3171 if (res)
3172 ret = (res < 0) ? res : 0;
3173
c236c8e9
PZ
3174 /*
3175 * If fixup_pi_state_owner() faulted and was unable to handle
3176 * the fault, unlock the rt_mutex and return the fault to
3177 * userspace.
3178 */
16ffa12d
PZ
3179 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3180 pi_state = q.pi_state;
3181 get_pi_state(pi_state);
3182 }
c236c8e9 3183
52400ba9
DH
3184 /* Unqueue and drop the lock. */
3185 unqueue_me_pi(&q);
3186 }
3187
16ffa12d
PZ
3188 if (pi_state) {
3189 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3190 put_pi_state(pi_state);
3191 }
3192
c236c8e9 3193 if (ret == -EINTR) {
52400ba9 3194 /*
cc6db4e6
DH
3195 * We've already been requeued, but cannot restart by calling
3196 * futex_lock_pi() directly. We could restart this syscall, but
3197 * it would detect that the user space "val" changed and return
3198 * -EWOULDBLOCK. Save the overhead of the restart and return
3199 * -EWOULDBLOCK directly.
52400ba9 3200 */
2070887f 3201 ret = -EWOULDBLOCK;
52400ba9
DH
3202 }
3203
3204out_put_keys:
ae791a2d 3205 put_futex_key(&q.key);
c8b15a70 3206out_key2:
ae791a2d 3207 put_futex_key(&key2);
52400ba9
DH
3208
3209out:
3210 if (to) {
3211 hrtimer_cancel(&to->timer);
3212 destroy_hrtimer_on_stack(&to->timer);
3213 }
3214 return ret;
3215}
3216
0771dfef
IM
3217/*
3218 * Support for robust futexes: the kernel cleans up held futexes at
3219 * thread exit time.
3220 *
3221 * Implementation: user-space maintains a per-thread list of locks it
3222 * is holding. Upon do_exit(), the kernel carefully walks this list,
3223 * and marks all locks that are owned by this thread with the
c87e2837 3224 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3225 * always manipulated with the lock held, so the list is private and
3226 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3227 * field, to allow the kernel to clean up if the thread dies after
3228 * acquiring the lock, but just before it could have added itself to
3229 * the list. There can only be one such pending lock.
3230 */
3231
3232/**
d96ee56c
DH
3233 * sys_set_robust_list() - Set the robust-futex list head of a task
3234 * @head: pointer to the list-head
3235 * @len: length of the list-head, as userspace expects
0771dfef 3236 */
836f92ad
HC
3237SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3238 size_t, len)
0771dfef 3239{
a0c1e907
TG
3240 if (!futex_cmpxchg_enabled)
3241 return -ENOSYS;
0771dfef
IM
3242 /*
3243 * The kernel knows only one size for now:
3244 */
3245 if (unlikely(len != sizeof(*head)))
3246 return -EINVAL;
3247
3248 current->robust_list = head;
3249
3250 return 0;
3251}
3252
3253/**
d96ee56c
DH
3254 * sys_get_robust_list() - Get the robust-futex list head of a task
3255 * @pid: pid of the process [zero for current task]
3256 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3257 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3258 */
836f92ad
HC
3259SYSCALL_DEFINE3(get_robust_list, int, pid,
3260 struct robust_list_head __user * __user *, head_ptr,
3261 size_t __user *, len_ptr)
0771dfef 3262{
ba46df98 3263 struct robust_list_head __user *head;
0771dfef 3264 unsigned long ret;
bdbb776f 3265 struct task_struct *p;
0771dfef 3266
a0c1e907
TG
3267 if (!futex_cmpxchg_enabled)
3268 return -ENOSYS;
3269
bdbb776f
KC
3270 rcu_read_lock();
3271
3272 ret = -ESRCH;
0771dfef 3273 if (!pid)
bdbb776f 3274 p = current;
0771dfef 3275 else {
228ebcbe 3276 p = find_task_by_vpid(pid);
0771dfef
IM
3277 if (!p)
3278 goto err_unlock;
0771dfef
IM
3279 }
3280
bdbb776f 3281 ret = -EPERM;
caaee623 3282 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3283 goto err_unlock;
3284
3285 head = p->robust_list;
3286 rcu_read_unlock();
3287
0771dfef
IM
3288 if (put_user(sizeof(*head), len_ptr))
3289 return -EFAULT;
3290 return put_user(head, head_ptr);
3291
3292err_unlock:
aaa2a97e 3293 rcu_read_unlock();
0771dfef
IM
3294
3295 return ret;
3296}
3297
3298/*
3299 * Process a futex-list entry, check whether it's owned by the
3300 * dying task, and do notification if so:
3301 */
e3f2ddea 3302int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 3303{
7cfdaf38 3304 u32 uval, uninitialized_var(nval), mval;
0771dfef 3305
8f17d3a5
IM
3306retry:
3307 if (get_user(uval, uaddr))
0771dfef
IM
3308 return -1;
3309
b488893a 3310 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
3311 /*
3312 * Ok, this dying thread is truly holding a futex
3313 * of interest. Set the OWNER_DIED bit atomically
3314 * via cmpxchg, and if the value had FUTEX_WAITERS
3315 * set, wake up a waiter (if any). (We have to do a
3316 * futex_wake() even if OWNER_DIED is already set -
3317 * to handle the rare but possible case of recursive
3318 * thread-death.) The rest of the cleanup is done in
3319 * userspace.
3320 */
e3f2ddea 3321 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
3322 /*
3323 * We are not holding a lock here, but we want to have
3324 * the pagefault_disable/enable() protection because
3325 * we want to handle the fault gracefully. If the
3326 * access fails we try to fault in the futex with R/W
3327 * verification via get_user_pages. get_user() above
3328 * does not guarantee R/W access. If that fails we
3329 * give up and leave the futex locked.
3330 */
3331 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3332 if (fault_in_user_writeable(uaddr))
3333 return -1;
3334 goto retry;
3335 }
c87e2837 3336 if (nval != uval)
8f17d3a5 3337 goto retry;
0771dfef 3338
e3f2ddea
IM
3339 /*
3340 * Wake robust non-PI futexes here. The wakeup of
3341 * PI futexes happens in exit_pi_state():
3342 */
36cf3b5c 3343 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 3344 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
3345 }
3346 return 0;
3347}
3348
e3f2ddea
IM
3349/*
3350 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3351 */
3352static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3353 struct robust_list __user * __user *head,
1dcc41bb 3354 unsigned int *pi)
e3f2ddea
IM
3355{
3356 unsigned long uentry;
3357
ba46df98 3358 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3359 return -EFAULT;
3360
ba46df98 3361 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3362 *pi = uentry & 1;
3363
3364 return 0;
3365}
3366
0771dfef
IM
3367/*
3368 * Walk curr->robust_list (very carefully, it's a userspace list!)
3369 * and mark any locks found there dead, and notify any waiters.
3370 *
3371 * We silently return on any sign of list-walking problem.
3372 */
3373void exit_robust_list(struct task_struct *curr)
3374{
3375 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3376 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3377 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3378 unsigned int uninitialized_var(next_pi);
0771dfef 3379 unsigned long futex_offset;
9f96cb1e 3380 int rc;
0771dfef 3381
a0c1e907
TG
3382 if (!futex_cmpxchg_enabled)
3383 return;
3384
0771dfef
IM
3385 /*
3386 * Fetch the list head (which was registered earlier, via
3387 * sys_set_robust_list()):
3388 */
e3f2ddea 3389 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3390 return;
3391 /*
3392 * Fetch the relative futex offset:
3393 */
3394 if (get_user(futex_offset, &head->futex_offset))
3395 return;
3396 /*
3397 * Fetch any possibly pending lock-add first, and handle it
3398 * if it exists:
3399 */
e3f2ddea 3400 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3401 return;
e3f2ddea 3402
9f96cb1e 3403 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3404 while (entry != &head->list) {
9f96cb1e
MS
3405 /*
3406 * Fetch the next entry in the list before calling
3407 * handle_futex_death:
3408 */
3409 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3410 /*
3411 * A pending lock might already be on the list, so
c87e2837 3412 * don't process it twice:
0771dfef
IM
3413 */
3414 if (entry != pending)
ba46df98 3415 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3416 curr, pi))
0771dfef 3417 return;
9f96cb1e 3418 if (rc)
0771dfef 3419 return;
9f96cb1e
MS
3420 entry = next_entry;
3421 pi = next_pi;
0771dfef
IM
3422 /*
3423 * Avoid excessively long or circular lists:
3424 */
3425 if (!--limit)
3426 break;
3427
3428 cond_resched();
3429 }
9f96cb1e
MS
3430
3431 if (pending)
3432 handle_futex_death((void __user *)pending + futex_offset,
3433 curr, pip);
0771dfef
IM
3434}
3435
c19384b5 3436long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3437 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3438{
81b40539 3439 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3440 unsigned int flags = 0;
34f01cc1
ED
3441
3442 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3443 flags |= FLAGS_SHARED;
1da177e4 3444
b41277dc
DH
3445 if (op & FUTEX_CLOCK_REALTIME) {
3446 flags |= FLAGS_CLOCKRT;
337f1304
DH
3447 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3448 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3449 return -ENOSYS;
3450 }
1da177e4 3451
59263b51
TG
3452 switch (cmd) {
3453 case FUTEX_LOCK_PI:
3454 case FUTEX_UNLOCK_PI:
3455 case FUTEX_TRYLOCK_PI:
3456 case FUTEX_WAIT_REQUEUE_PI:
3457 case FUTEX_CMP_REQUEUE_PI:
3458 if (!futex_cmpxchg_enabled)
3459 return -ENOSYS;
3460 }
3461
34f01cc1 3462 switch (cmd) {
1da177e4 3463 case FUTEX_WAIT:
cd689985
TG
3464 val3 = FUTEX_BITSET_MATCH_ANY;
3465 case FUTEX_WAIT_BITSET:
81b40539 3466 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3467 case FUTEX_WAKE:
cd689985
TG
3468 val3 = FUTEX_BITSET_MATCH_ANY;
3469 case FUTEX_WAKE_BITSET:
81b40539 3470 return futex_wake(uaddr, flags, val, val3);
1da177e4 3471 case FUTEX_REQUEUE:
81b40539 3472 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3473 case FUTEX_CMP_REQUEUE:
81b40539 3474 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3475 case FUTEX_WAKE_OP:
81b40539 3476 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3477 case FUTEX_LOCK_PI:
996636dd 3478 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3479 case FUTEX_UNLOCK_PI:
81b40539 3480 return futex_unlock_pi(uaddr, flags);
c87e2837 3481 case FUTEX_TRYLOCK_PI:
996636dd 3482 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3483 case FUTEX_WAIT_REQUEUE_PI:
3484 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3485 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3486 uaddr2);
52400ba9 3487 case FUTEX_CMP_REQUEUE_PI:
81b40539 3488 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3489 }
81b40539 3490 return -ENOSYS;
1da177e4
LT
3491}
3492
3493
17da2bd9
HC
3494SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3495 struct timespec __user *, utime, u32 __user *, uaddr2,
3496 u32, val3)
1da177e4 3497{
c19384b5
PP
3498 struct timespec ts;
3499 ktime_t t, *tp = NULL;
e2970f2f 3500 u32 val2 = 0;
34f01cc1 3501 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3502
cd689985 3503 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3504 cmd == FUTEX_WAIT_BITSET ||
3505 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3506 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3507 return -EFAULT;
c19384b5 3508 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 3509 return -EFAULT;
c19384b5 3510 if (!timespec_valid(&ts))
9741ef96 3511 return -EINVAL;
c19384b5
PP
3512
3513 t = timespec_to_ktime(ts);
34f01cc1 3514 if (cmd == FUTEX_WAIT)
5a7780e7 3515 t = ktime_add_safe(ktime_get(), t);
c19384b5 3516 tp = &t;
1da177e4
LT
3517 }
3518 /*
52400ba9 3519 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3520 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3521 */
f54f0986 3522 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3523 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3524 val2 = (u32) (unsigned long) utime;
1da177e4 3525
c19384b5 3526 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3527}
3528
03b8c7b6 3529static void __init futex_detect_cmpxchg(void)
1da177e4 3530{
03b8c7b6 3531#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3532 u32 curval;
03b8c7b6
HC
3533
3534 /*
3535 * This will fail and we want it. Some arch implementations do
3536 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3537 * functionality. We want to know that before we call in any
3538 * of the complex code paths. Also we want to prevent
3539 * registration of robust lists in that case. NULL is
3540 * guaranteed to fault and we get -EFAULT on functional
3541 * implementation, the non-functional ones will return
3542 * -ENOSYS.
3543 */
3544 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3545 futex_cmpxchg_enabled = 1;
3546#endif
3547}
3548
3549static int __init futex_init(void)
3550{
63b1a816 3551 unsigned int futex_shift;
a52b89eb
DB
3552 unsigned long i;
3553
3554#if CONFIG_BASE_SMALL
3555 futex_hashsize = 16;
3556#else
3557 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3558#endif
3559
3560 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3561 futex_hashsize, 0,
3562 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3563 &futex_shift, NULL,
3564 futex_hashsize, futex_hashsize);
3565 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3566
3567 futex_detect_cmpxchg();
a0c1e907 3568
a52b89eb 3569 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3570 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3571 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3572 spin_lock_init(&futex_queues[i].lock);
3573 }
3574
1da177e4
LT
3575 return 0;
3576}
25f71d1c 3577core_initcall(futex_init);